xref: /linux/fs/btrfs/extent_io.c (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "locking.h"
25 #include "rcu-string.h"
26 #include "backref.h"
27 #include "disk-io.h"
28 #include "subpage.h"
29 #include "zoned.h"
30 #include "block-group.h"
31 #include "compression.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "file-item.h"
35 #include "file.h"
36 #include "dev-replace.h"
37 #include "super.h"
38 #include "transaction.h"
39 
40 static struct kmem_cache *extent_buffer_cache;
41 
42 #ifdef CONFIG_BTRFS_DEBUG
43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44 {
45 	struct btrfs_fs_info *fs_info = eb->fs_info;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51 }
52 
53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54 {
55 	struct btrfs_fs_info *fs_info = eb->fs_info;
56 	unsigned long flags;
57 
58 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 	list_del(&eb->leak_list);
60 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61 }
62 
63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 {
65 	struct extent_buffer *eb;
66 	unsigned long flags;
67 
68 	/*
69 	 * If we didn't get into open_ctree our allocated_ebs will not be
70 	 * initialized, so just skip this.
71 	 */
72 	if (!fs_info->allocated_ebs.next)
73 		return;
74 
75 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 	while (!list_empty(&fs_info->allocated_ebs)) {
78 		eb = list_first_entry(&fs_info->allocated_ebs,
79 				      struct extent_buffer, leak_list);
80 		pr_err(
81 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 		       btrfs_header_owner(eb));
84 		list_del(&eb->leak_list);
85 		kmem_cache_free(extent_buffer_cache, eb);
86 	}
87 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 }
89 #else
90 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
91 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
92 #endif
93 
94 /*
95  * Structure to record info about the bio being assembled, and other info like
96  * how many bytes are there before stripe/ordered extent boundary.
97  */
98 struct btrfs_bio_ctrl {
99 	struct btrfs_bio *bbio;
100 	enum btrfs_compression_type compress_type;
101 	u32 len_to_oe_boundary;
102 	blk_opf_t opf;
103 	btrfs_bio_end_io_t end_io_func;
104 	struct writeback_control *wbc;
105 };
106 
107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
108 {
109 	struct btrfs_bio *bbio = bio_ctrl->bbio;
110 
111 	if (!bbio)
112 		return;
113 
114 	/* Caller should ensure the bio has at least some range added */
115 	ASSERT(bbio->bio.bi_iter.bi_size);
116 
117 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
118 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
119 		btrfs_submit_compressed_read(bbio);
120 	else
121 		btrfs_submit_bio(bbio, 0);
122 
123 	/* The bbio is owned by the end_io handler now */
124 	bio_ctrl->bbio = NULL;
125 }
126 
127 /*
128  * Submit or fail the current bio in the bio_ctrl structure.
129  */
130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
131 {
132 	struct btrfs_bio *bbio = bio_ctrl->bbio;
133 
134 	if (!bbio)
135 		return;
136 
137 	if (ret) {
138 		ASSERT(ret < 0);
139 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
140 		/* The bio is owned by the end_io handler now */
141 		bio_ctrl->bbio = NULL;
142 	} else {
143 		submit_one_bio(bio_ctrl);
144 	}
145 }
146 
147 int __init extent_buffer_init_cachep(void)
148 {
149 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
150 			sizeof(struct extent_buffer), 0,
151 			SLAB_MEM_SPREAD, NULL);
152 	if (!extent_buffer_cache)
153 		return -ENOMEM;
154 
155 	return 0;
156 }
157 
158 void __cold extent_buffer_free_cachep(void)
159 {
160 	/*
161 	 * Make sure all delayed rcu free are flushed before we
162 	 * destroy caches.
163 	 */
164 	rcu_barrier();
165 	kmem_cache_destroy(extent_buffer_cache);
166 }
167 
168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
169 {
170 	unsigned long index = start >> PAGE_SHIFT;
171 	unsigned long end_index = end >> PAGE_SHIFT;
172 	struct page *page;
173 
174 	while (index <= end_index) {
175 		page = find_get_page(inode->i_mapping, index);
176 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
177 		clear_page_dirty_for_io(page);
178 		put_page(page);
179 		index++;
180 	}
181 }
182 
183 static void process_one_page(struct btrfs_fs_info *fs_info,
184 			     struct page *page, struct page *locked_page,
185 			     unsigned long page_ops, u64 start, u64 end)
186 {
187 	u32 len;
188 
189 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 	len = end + 1 - start;
191 
192 	if (page_ops & PAGE_SET_ORDERED)
193 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
194 	if (page_ops & PAGE_START_WRITEBACK) {
195 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
196 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
197 	}
198 	if (page_ops & PAGE_END_WRITEBACK)
199 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
200 
201 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 		btrfs_page_end_writer_lock(fs_info, page, start, len);
203 }
204 
205 static void __process_pages_contig(struct address_space *mapping,
206 				   struct page *locked_page, u64 start, u64 end,
207 				   unsigned long page_ops)
208 {
209 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
210 	pgoff_t start_index = start >> PAGE_SHIFT;
211 	pgoff_t end_index = end >> PAGE_SHIFT;
212 	pgoff_t index = start_index;
213 	struct folio_batch fbatch;
214 	int i;
215 
216 	folio_batch_init(&fbatch);
217 	while (index <= end_index) {
218 		int found_folios;
219 
220 		found_folios = filemap_get_folios_contig(mapping, &index,
221 				end_index, &fbatch);
222 		for (i = 0; i < found_folios; i++) {
223 			struct folio *folio = fbatch.folios[i];
224 
225 			process_one_page(fs_info, &folio->page, locked_page,
226 					 page_ops, start, end);
227 		}
228 		folio_batch_release(&fbatch);
229 		cond_resched();
230 	}
231 }
232 
233 static noinline void __unlock_for_delalloc(struct inode *inode,
234 					   struct page *locked_page,
235 					   u64 start, u64 end)
236 {
237 	unsigned long index = start >> PAGE_SHIFT;
238 	unsigned long end_index = end >> PAGE_SHIFT;
239 
240 	ASSERT(locked_page);
241 	if (index == locked_page->index && end_index == index)
242 		return;
243 
244 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
245 			       PAGE_UNLOCK);
246 }
247 
248 static noinline int lock_delalloc_pages(struct inode *inode,
249 					struct page *locked_page,
250 					u64 start,
251 					u64 end)
252 {
253 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
254 	struct address_space *mapping = inode->i_mapping;
255 	pgoff_t start_index = start >> PAGE_SHIFT;
256 	pgoff_t end_index = end >> PAGE_SHIFT;
257 	pgoff_t index = start_index;
258 	u64 processed_end = start;
259 	struct folio_batch fbatch;
260 
261 	if (index == locked_page->index && index == end_index)
262 		return 0;
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		unsigned int found_folios, i;
267 
268 		found_folios = filemap_get_folios_contig(mapping, &index,
269 				end_index, &fbatch);
270 		if (found_folios == 0)
271 			goto out;
272 
273 		for (i = 0; i < found_folios; i++) {
274 			struct page *page = &fbatch.folios[i]->page;
275 			u32 len = end + 1 - start;
276 
277 			if (page == locked_page)
278 				continue;
279 
280 			if (btrfs_page_start_writer_lock(fs_info, page, start,
281 							 len))
282 				goto out;
283 
284 			if (!PageDirty(page) || page->mapping != mapping) {
285 				btrfs_page_end_writer_lock(fs_info, page, start,
286 							   len);
287 				goto out;
288 			}
289 
290 			processed_end = page_offset(page) + PAGE_SIZE - 1;
291 		}
292 		folio_batch_release(&fbatch);
293 		cond_resched();
294 	}
295 
296 	return 0;
297 out:
298 	folio_batch_release(&fbatch);
299 	if (processed_end > start)
300 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
301 	return -EAGAIN;
302 }
303 
304 /*
305  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
306  * more than @max_bytes.
307  *
308  * @start:	The original start bytenr to search.
309  *		Will store the extent range start bytenr.
310  * @end:	The original end bytenr of the search range
311  *		Will store the extent range end bytenr.
312  *
313  * Return true if we find a delalloc range which starts inside the original
314  * range, and @start/@end will store the delalloc range start/end.
315  *
316  * Return false if we can't find any delalloc range which starts inside the
317  * original range, and @start/@end will be the non-delalloc range start/end.
318  */
319 EXPORT_FOR_TESTS
320 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
321 				    struct page *locked_page, u64 *start,
322 				    u64 *end)
323 {
324 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
325 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
326 	const u64 orig_start = *start;
327 	const u64 orig_end = *end;
328 	/* The sanity tests may not set a valid fs_info. */
329 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
330 	u64 delalloc_start;
331 	u64 delalloc_end;
332 	bool found;
333 	struct extent_state *cached_state = NULL;
334 	int ret;
335 	int loops = 0;
336 
337 	/* Caller should pass a valid @end to indicate the search range end */
338 	ASSERT(orig_end > orig_start);
339 
340 	/* The range should at least cover part of the page */
341 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
342 		 orig_end <= page_offset(locked_page)));
343 again:
344 	/* step one, find a bunch of delalloc bytes starting at start */
345 	delalloc_start = *start;
346 	delalloc_end = 0;
347 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
348 					  max_bytes, &cached_state);
349 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
350 		*start = delalloc_start;
351 
352 		/* @delalloc_end can be -1, never go beyond @orig_end */
353 		*end = min(delalloc_end, orig_end);
354 		free_extent_state(cached_state);
355 		return false;
356 	}
357 
358 	/*
359 	 * start comes from the offset of locked_page.  We have to lock
360 	 * pages in order, so we can't process delalloc bytes before
361 	 * locked_page
362 	 */
363 	if (delalloc_start < *start)
364 		delalloc_start = *start;
365 
366 	/*
367 	 * make sure to limit the number of pages we try to lock down
368 	 */
369 	if (delalloc_end + 1 - delalloc_start > max_bytes)
370 		delalloc_end = delalloc_start + max_bytes - 1;
371 
372 	/* step two, lock all the pages after the page that has start */
373 	ret = lock_delalloc_pages(inode, locked_page,
374 				  delalloc_start, delalloc_end);
375 	ASSERT(!ret || ret == -EAGAIN);
376 	if (ret == -EAGAIN) {
377 		/* some of the pages are gone, lets avoid looping by
378 		 * shortening the size of the delalloc range we're searching
379 		 */
380 		free_extent_state(cached_state);
381 		cached_state = NULL;
382 		if (!loops) {
383 			max_bytes = PAGE_SIZE;
384 			loops = 1;
385 			goto again;
386 		} else {
387 			found = false;
388 			goto out_failed;
389 		}
390 	}
391 
392 	/* step three, lock the state bits for the whole range */
393 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
394 
395 	/* then test to make sure it is all still delalloc */
396 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
397 			     EXTENT_DELALLOC, cached_state);
398 	if (!ret) {
399 		unlock_extent(tree, delalloc_start, delalloc_end,
400 			      &cached_state);
401 		__unlock_for_delalloc(inode, locked_page,
402 			      delalloc_start, delalloc_end);
403 		cond_resched();
404 		goto again;
405 	}
406 	free_extent_state(cached_state);
407 	*start = delalloc_start;
408 	*end = delalloc_end;
409 out_failed:
410 	return found;
411 }
412 
413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
414 				  struct page *locked_page,
415 				  u32 clear_bits, unsigned long page_ops)
416 {
417 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
418 
419 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
420 			       start, end, page_ops);
421 }
422 
423 static bool btrfs_verify_page(struct page *page, u64 start)
424 {
425 	if (!fsverity_active(page->mapping->host) ||
426 	    PageUptodate(page) ||
427 	    start >= i_size_read(page->mapping->host))
428 		return true;
429 	return fsverity_verify_page(page);
430 }
431 
432 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
433 {
434 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
435 
436 	ASSERT(page_offset(page) <= start &&
437 	       start + len <= page_offset(page) + PAGE_SIZE);
438 
439 	if (uptodate && btrfs_verify_page(page, start))
440 		btrfs_page_set_uptodate(fs_info, page, start, len);
441 	else
442 		btrfs_page_clear_uptodate(fs_info, page, start, len);
443 
444 	if (!btrfs_is_subpage(fs_info, page))
445 		unlock_page(page);
446 	else
447 		btrfs_subpage_end_reader(fs_info, page, start, len);
448 }
449 
450 /*
451  * after a writepage IO is done, we need to:
452  * clear the uptodate bits on error
453  * clear the writeback bits in the extent tree for this IO
454  * end_page_writeback if the page has no more pending IO
455  *
456  * Scheduling is not allowed, so the extent state tree is expected
457  * to have one and only one object corresponding to this IO.
458  */
459 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
460 {
461 	struct bio *bio = &bbio->bio;
462 	int error = blk_status_to_errno(bio->bi_status);
463 	struct bio_vec *bvec;
464 	struct bvec_iter_all iter_all;
465 
466 	ASSERT(!bio_flagged(bio, BIO_CLONED));
467 	bio_for_each_segment_all(bvec, bio, iter_all) {
468 		struct page *page = bvec->bv_page;
469 		struct inode *inode = page->mapping->host;
470 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
471 		const u32 sectorsize = fs_info->sectorsize;
472 		u64 start = page_offset(page) + bvec->bv_offset;
473 		u32 len = bvec->bv_len;
474 
475 		/* Our read/write should always be sector aligned. */
476 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
477 			btrfs_err(fs_info,
478 		"partial page write in btrfs with offset %u and length %u",
479 				  bvec->bv_offset, bvec->bv_len);
480 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
481 			btrfs_info(fs_info,
482 		"incomplete page write with offset %u and length %u",
483 				   bvec->bv_offset, bvec->bv_len);
484 
485 		btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
486 		if (error)
487 			mapping_set_error(page->mapping, error);
488 		btrfs_page_clear_writeback(fs_info, page, start, len);
489 	}
490 
491 	bio_put(bio);
492 }
493 
494 /*
495  * Record previously processed extent range
496  *
497  * For endio_readpage_release_extent() to handle a full extent range, reducing
498  * the extent io operations.
499  */
500 struct processed_extent {
501 	struct btrfs_inode *inode;
502 	/* Start of the range in @inode */
503 	u64 start;
504 	/* End of the range in @inode */
505 	u64 end;
506 	bool uptodate;
507 };
508 
509 /*
510  * Try to release processed extent range
511  *
512  * May not release the extent range right now if the current range is
513  * contiguous to processed extent.
514  *
515  * Will release processed extent when any of @inode, @uptodate, the range is
516  * no longer contiguous to the processed range.
517  *
518  * Passing @inode == NULL will force processed extent to be released.
519  */
520 static void endio_readpage_release_extent(struct processed_extent *processed,
521 			      struct btrfs_inode *inode, u64 start, u64 end,
522 			      bool uptodate)
523 {
524 	struct extent_state *cached = NULL;
525 	struct extent_io_tree *tree;
526 
527 	/* The first extent, initialize @processed */
528 	if (!processed->inode)
529 		goto update;
530 
531 	/*
532 	 * Contiguous to processed extent, just uptodate the end.
533 	 *
534 	 * Several things to notice:
535 	 *
536 	 * - bio can be merged as long as on-disk bytenr is contiguous
537 	 *   This means we can have page belonging to other inodes, thus need to
538 	 *   check if the inode still matches.
539 	 * - bvec can contain range beyond current page for multi-page bvec
540 	 *   Thus we need to do processed->end + 1 >= start check
541 	 */
542 	if (processed->inode == inode && processed->uptodate == uptodate &&
543 	    processed->end + 1 >= start && end >= processed->end) {
544 		processed->end = end;
545 		return;
546 	}
547 
548 	tree = &processed->inode->io_tree;
549 	/*
550 	 * Now we don't have range contiguous to the processed range, release
551 	 * the processed range now.
552 	 */
553 	unlock_extent(tree, processed->start, processed->end, &cached);
554 
555 update:
556 	/* Update processed to current range */
557 	processed->inode = inode;
558 	processed->start = start;
559 	processed->end = end;
560 	processed->uptodate = uptodate;
561 }
562 
563 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
564 {
565 	ASSERT(PageLocked(page));
566 	if (!btrfs_is_subpage(fs_info, page))
567 		return;
568 
569 	ASSERT(PagePrivate(page));
570 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
571 }
572 
573 /*
574  * after a readpage IO is done, we need to:
575  * clear the uptodate bits on error
576  * set the uptodate bits if things worked
577  * set the page up to date if all extents in the tree are uptodate
578  * clear the lock bit in the extent tree
579  * unlock the page if there are no other extents locked for it
580  *
581  * Scheduling is not allowed, so the extent state tree is expected
582  * to have one and only one object corresponding to this IO.
583  */
584 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
585 {
586 	struct bio *bio = &bbio->bio;
587 	struct bio_vec *bvec;
588 	struct processed_extent processed = { 0 };
589 	/*
590 	 * The offset to the beginning of a bio, since one bio can never be
591 	 * larger than UINT_MAX, u32 here is enough.
592 	 */
593 	u32 bio_offset = 0;
594 	struct bvec_iter_all iter_all;
595 
596 	ASSERT(!bio_flagged(bio, BIO_CLONED));
597 	bio_for_each_segment_all(bvec, bio, iter_all) {
598 		bool uptodate = !bio->bi_status;
599 		struct page *page = bvec->bv_page;
600 		struct inode *inode = page->mapping->host;
601 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
602 		const u32 sectorsize = fs_info->sectorsize;
603 		u64 start;
604 		u64 end;
605 		u32 len;
606 
607 		btrfs_debug(fs_info,
608 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
609 			bio->bi_iter.bi_sector, bio->bi_status,
610 			bbio->mirror_num);
611 
612 		/*
613 		 * We always issue full-sector reads, but if some block in a
614 		 * page fails to read, blk_update_request() will advance
615 		 * bv_offset and adjust bv_len to compensate.  Print a warning
616 		 * for unaligned offsets, and an error if they don't add up to
617 		 * a full sector.
618 		 */
619 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
620 			btrfs_err(fs_info,
621 		"partial page read in btrfs with offset %u and length %u",
622 				  bvec->bv_offset, bvec->bv_len);
623 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
624 				     sectorsize))
625 			btrfs_info(fs_info,
626 		"incomplete page read with offset %u and length %u",
627 				   bvec->bv_offset, bvec->bv_len);
628 
629 		start = page_offset(page) + bvec->bv_offset;
630 		end = start + bvec->bv_len - 1;
631 		len = bvec->bv_len;
632 
633 		if (likely(uptodate)) {
634 			loff_t i_size = i_size_read(inode);
635 			pgoff_t end_index = i_size >> PAGE_SHIFT;
636 
637 			/*
638 			 * Zero out the remaining part if this range straddles
639 			 * i_size.
640 			 *
641 			 * Here we should only zero the range inside the bvec,
642 			 * not touch anything else.
643 			 *
644 			 * NOTE: i_size is exclusive while end is inclusive.
645 			 */
646 			if (page->index == end_index && i_size <= end) {
647 				u32 zero_start = max(offset_in_page(i_size),
648 						     offset_in_page(start));
649 
650 				zero_user_segment(page, zero_start,
651 						  offset_in_page(end) + 1);
652 			}
653 		}
654 
655 		/* Update page status and unlock. */
656 		end_page_read(page, uptodate, start, len);
657 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
658 					      start, end, uptodate);
659 
660 		ASSERT(bio_offset + len > bio_offset);
661 		bio_offset += len;
662 
663 	}
664 	/* Release the last extent */
665 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 	bio_put(bio);
667 }
668 
669 /*
670  * Populate every free slot in a provided array with pages.
671  *
672  * @nr_pages:   number of pages to allocate
673  * @page_array: the array to fill with pages; any existing non-null entries in
674  * 		the array will be skipped
675  *
676  * Return: 0        if all pages were able to be allocated;
677  *         -ENOMEM  otherwise, and the caller is responsible for freeing all
678  *                  non-null page pointers in the array.
679  */
680 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
681 {
682 	unsigned int allocated;
683 
684 	for (allocated = 0; allocated < nr_pages;) {
685 		unsigned int last = allocated;
686 
687 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
688 
689 		if (allocated == nr_pages)
690 			return 0;
691 
692 		/*
693 		 * During this iteration, no page could be allocated, even
694 		 * though alloc_pages_bulk_array() falls back to alloc_page()
695 		 * if  it could not bulk-allocate. So we must be out of memory.
696 		 */
697 		if (allocated == last)
698 			return -ENOMEM;
699 
700 		memalloc_retry_wait(GFP_NOFS);
701 	}
702 	return 0;
703 }
704 
705 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
706 				struct page *page, u64 disk_bytenr,
707 				unsigned int pg_offset)
708 {
709 	struct bio *bio = &bio_ctrl->bbio->bio;
710 	struct bio_vec *bvec = bio_last_bvec_all(bio);
711 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
712 
713 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
714 		/*
715 		 * For compression, all IO should have its logical bytenr set
716 		 * to the starting bytenr of the compressed extent.
717 		 */
718 		return bio->bi_iter.bi_sector == sector;
719 	}
720 
721 	/*
722 	 * The contig check requires the following conditions to be met:
723 	 *
724 	 * 1) The pages are belonging to the same inode
725 	 *    This is implied by the call chain.
726 	 *
727 	 * 2) The range has adjacent logical bytenr
728 	 *
729 	 * 3) The range has adjacent file offset
730 	 *    This is required for the usage of btrfs_bio->file_offset.
731 	 */
732 	return bio_end_sector(bio) == sector &&
733 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
734 		page_offset(page) + pg_offset;
735 }
736 
737 static void alloc_new_bio(struct btrfs_inode *inode,
738 			  struct btrfs_bio_ctrl *bio_ctrl,
739 			  u64 disk_bytenr, u64 file_offset)
740 {
741 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
742 	struct btrfs_bio *bbio;
743 
744 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
745 			       bio_ctrl->end_io_func, NULL);
746 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
747 	bbio->inode = inode;
748 	bbio->file_offset = file_offset;
749 	bio_ctrl->bbio = bbio;
750 	bio_ctrl->len_to_oe_boundary = U32_MAX;
751 
752 	/* Limit data write bios to the ordered boundary. */
753 	if (bio_ctrl->wbc) {
754 		struct btrfs_ordered_extent *ordered;
755 
756 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
757 		if (ordered) {
758 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
759 					ordered->file_offset +
760 					ordered->disk_num_bytes - file_offset);
761 			bbio->ordered = ordered;
762 		}
763 
764 		/*
765 		 * Pick the last added device to support cgroup writeback.  For
766 		 * multi-device file systems this means blk-cgroup policies have
767 		 * to always be set on the last added/replaced device.
768 		 * This is a bit odd but has been like that for a long time.
769 		 */
770 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
771 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
772 	}
773 }
774 
775 /*
776  * @disk_bytenr: logical bytenr where the write will be
777  * @page:	page to add to the bio
778  * @size:	portion of page that we want to write to
779  * @pg_offset:	offset of the new bio or to check whether we are adding
780  *              a contiguous page to the previous one
781  *
782  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
783  * new one in @bio_ctrl->bbio.
784  * The mirror number for this IO should already be initizlied in
785  * @bio_ctrl->mirror_num.
786  */
787 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
788 			       u64 disk_bytenr, struct page *page,
789 			       size_t size, unsigned long pg_offset)
790 {
791 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
792 
793 	ASSERT(pg_offset + size <= PAGE_SIZE);
794 	ASSERT(bio_ctrl->end_io_func);
795 
796 	if (bio_ctrl->bbio &&
797 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
798 		submit_one_bio(bio_ctrl);
799 
800 	do {
801 		u32 len = size;
802 
803 		/* Allocate new bio if needed */
804 		if (!bio_ctrl->bbio) {
805 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
806 				      page_offset(page) + pg_offset);
807 		}
808 
809 		/* Cap to the current ordered extent boundary if there is one. */
810 		if (len > bio_ctrl->len_to_oe_boundary) {
811 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
812 			ASSERT(is_data_inode(&inode->vfs_inode));
813 			len = bio_ctrl->len_to_oe_boundary;
814 		}
815 
816 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
817 			/* bio full: move on to a new one */
818 			submit_one_bio(bio_ctrl);
819 			continue;
820 		}
821 
822 		if (bio_ctrl->wbc)
823 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
824 
825 		size -= len;
826 		pg_offset += len;
827 		disk_bytenr += len;
828 
829 		/*
830 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
831 		 * sector aligned.  alloc_new_bio() then sets it to the end of
832 		 * our ordered extent for writes into zoned devices.
833 		 *
834 		 * When len_to_oe_boundary is tracking an ordered extent, we
835 		 * trust the ordered extent code to align things properly, and
836 		 * the check above to cap our write to the ordered extent
837 		 * boundary is correct.
838 		 *
839 		 * When len_to_oe_boundary is U32_MAX, the cap above would
840 		 * result in a 4095 byte IO for the last page right before
841 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
842 		 * the checks required to make sure we don't overflow the bio,
843 		 * and we should just ignore len_to_oe_boundary completely
844 		 * unless we're using it to track an ordered extent.
845 		 *
846 		 * It's pretty hard to make a bio sized U32_MAX, but it can
847 		 * happen when the page cache is able to feed us contiguous
848 		 * pages for large extents.
849 		 */
850 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
851 			bio_ctrl->len_to_oe_boundary -= len;
852 
853 		/* Ordered extent boundary: move on to a new bio. */
854 		if (bio_ctrl->len_to_oe_boundary == 0)
855 			submit_one_bio(bio_ctrl);
856 	} while (size);
857 }
858 
859 static int attach_extent_buffer_page(struct extent_buffer *eb,
860 				     struct page *page,
861 				     struct btrfs_subpage *prealloc)
862 {
863 	struct btrfs_fs_info *fs_info = eb->fs_info;
864 	int ret = 0;
865 
866 	/*
867 	 * If the page is mapped to btree inode, we should hold the private
868 	 * lock to prevent race.
869 	 * For cloned or dummy extent buffers, their pages are not mapped and
870 	 * will not race with any other ebs.
871 	 */
872 	if (page->mapping)
873 		lockdep_assert_held(&page->mapping->private_lock);
874 
875 	if (fs_info->nodesize >= PAGE_SIZE) {
876 		if (!PagePrivate(page))
877 			attach_page_private(page, eb);
878 		else
879 			WARN_ON(page->private != (unsigned long)eb);
880 		return 0;
881 	}
882 
883 	/* Already mapped, just free prealloc */
884 	if (PagePrivate(page)) {
885 		btrfs_free_subpage(prealloc);
886 		return 0;
887 	}
888 
889 	if (prealloc)
890 		/* Has preallocated memory for subpage */
891 		attach_page_private(page, prealloc);
892 	else
893 		/* Do new allocation to attach subpage */
894 		ret = btrfs_attach_subpage(fs_info, page,
895 					   BTRFS_SUBPAGE_METADATA);
896 	return ret;
897 }
898 
899 int set_page_extent_mapped(struct page *page)
900 {
901 	struct btrfs_fs_info *fs_info;
902 
903 	ASSERT(page->mapping);
904 
905 	if (PagePrivate(page))
906 		return 0;
907 
908 	fs_info = btrfs_sb(page->mapping->host->i_sb);
909 
910 	if (btrfs_is_subpage(fs_info, page))
911 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
912 
913 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
914 	return 0;
915 }
916 
917 void clear_page_extent_mapped(struct page *page)
918 {
919 	struct btrfs_fs_info *fs_info;
920 
921 	ASSERT(page->mapping);
922 
923 	if (!PagePrivate(page))
924 		return;
925 
926 	fs_info = btrfs_sb(page->mapping->host->i_sb);
927 	if (btrfs_is_subpage(fs_info, page))
928 		return btrfs_detach_subpage(fs_info, page);
929 
930 	detach_page_private(page);
931 }
932 
933 static struct extent_map *
934 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
935 		 u64 start, u64 len, struct extent_map **em_cached)
936 {
937 	struct extent_map *em;
938 
939 	if (em_cached && *em_cached) {
940 		em = *em_cached;
941 		if (extent_map_in_tree(em) && start >= em->start &&
942 		    start < extent_map_end(em)) {
943 			refcount_inc(&em->refs);
944 			return em;
945 		}
946 
947 		free_extent_map(em);
948 		*em_cached = NULL;
949 	}
950 
951 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
952 	if (em_cached && !IS_ERR(em)) {
953 		BUG_ON(*em_cached);
954 		refcount_inc(&em->refs);
955 		*em_cached = em;
956 	}
957 	return em;
958 }
959 /*
960  * basic readpage implementation.  Locked extent state structs are inserted
961  * into the tree that are removed when the IO is done (by the end_io
962  * handlers)
963  * XXX JDM: This needs looking at to ensure proper page locking
964  * return 0 on success, otherwise return error
965  */
966 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
967 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
968 {
969 	struct inode *inode = page->mapping->host;
970 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
971 	u64 start = page_offset(page);
972 	const u64 end = start + PAGE_SIZE - 1;
973 	u64 cur = start;
974 	u64 extent_offset;
975 	u64 last_byte = i_size_read(inode);
976 	u64 block_start;
977 	struct extent_map *em;
978 	int ret = 0;
979 	size_t pg_offset = 0;
980 	size_t iosize;
981 	size_t blocksize = inode->i_sb->s_blocksize;
982 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
983 
984 	ret = set_page_extent_mapped(page);
985 	if (ret < 0) {
986 		unlock_extent(tree, start, end, NULL);
987 		unlock_page(page);
988 		return ret;
989 	}
990 
991 	if (page->index == last_byte >> PAGE_SHIFT) {
992 		size_t zero_offset = offset_in_page(last_byte);
993 
994 		if (zero_offset) {
995 			iosize = PAGE_SIZE - zero_offset;
996 			memzero_page(page, zero_offset, iosize);
997 		}
998 	}
999 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1000 	begin_page_read(fs_info, page);
1001 	while (cur <= end) {
1002 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1003 		bool force_bio_submit = false;
1004 		u64 disk_bytenr;
1005 
1006 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1007 		if (cur >= last_byte) {
1008 			iosize = PAGE_SIZE - pg_offset;
1009 			memzero_page(page, pg_offset, iosize);
1010 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1011 			end_page_read(page, true, cur, iosize);
1012 			break;
1013 		}
1014 		em = __get_extent_map(inode, page, pg_offset, cur,
1015 				      end - cur + 1, em_cached);
1016 		if (IS_ERR(em)) {
1017 			unlock_extent(tree, cur, end, NULL);
1018 			end_page_read(page, false, cur, end + 1 - cur);
1019 			return PTR_ERR(em);
1020 		}
1021 		extent_offset = cur - em->start;
1022 		BUG_ON(extent_map_end(em) <= cur);
1023 		BUG_ON(end < cur);
1024 
1025 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1026 			compress_type = em->compress_type;
1027 
1028 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1029 		iosize = ALIGN(iosize, blocksize);
1030 		if (compress_type != BTRFS_COMPRESS_NONE)
1031 			disk_bytenr = em->block_start;
1032 		else
1033 			disk_bytenr = em->block_start + extent_offset;
1034 		block_start = em->block_start;
1035 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1036 			block_start = EXTENT_MAP_HOLE;
1037 
1038 		/*
1039 		 * If we have a file range that points to a compressed extent
1040 		 * and it's followed by a consecutive file range that points
1041 		 * to the same compressed extent (possibly with a different
1042 		 * offset and/or length, so it either points to the whole extent
1043 		 * or only part of it), we must make sure we do not submit a
1044 		 * single bio to populate the pages for the 2 ranges because
1045 		 * this makes the compressed extent read zero out the pages
1046 		 * belonging to the 2nd range. Imagine the following scenario:
1047 		 *
1048 		 *  File layout
1049 		 *  [0 - 8K]                     [8K - 24K]
1050 		 *    |                               |
1051 		 *    |                               |
1052 		 * points to extent X,         points to extent X,
1053 		 * offset 4K, length of 8K     offset 0, length 16K
1054 		 *
1055 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1056 		 *
1057 		 * If the bio to read the compressed extent covers both ranges,
1058 		 * it will decompress extent X into the pages belonging to the
1059 		 * first range and then it will stop, zeroing out the remaining
1060 		 * pages that belong to the other range that points to extent X.
1061 		 * So here we make sure we submit 2 bios, one for the first
1062 		 * range and another one for the third range. Both will target
1063 		 * the same physical extent from disk, but we can't currently
1064 		 * make the compressed bio endio callback populate the pages
1065 		 * for both ranges because each compressed bio is tightly
1066 		 * coupled with a single extent map, and each range can have
1067 		 * an extent map with a different offset value relative to the
1068 		 * uncompressed data of our extent and different lengths. This
1069 		 * is a corner case so we prioritize correctness over
1070 		 * non-optimal behavior (submitting 2 bios for the same extent).
1071 		 */
1072 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1073 		    prev_em_start && *prev_em_start != (u64)-1 &&
1074 		    *prev_em_start != em->start)
1075 			force_bio_submit = true;
1076 
1077 		if (prev_em_start)
1078 			*prev_em_start = em->start;
1079 
1080 		free_extent_map(em);
1081 		em = NULL;
1082 
1083 		/* we've found a hole, just zero and go on */
1084 		if (block_start == EXTENT_MAP_HOLE) {
1085 			memzero_page(page, pg_offset, iosize);
1086 
1087 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1088 			end_page_read(page, true, cur, iosize);
1089 			cur = cur + iosize;
1090 			pg_offset += iosize;
1091 			continue;
1092 		}
1093 		/* the get_extent function already copied into the page */
1094 		if (block_start == EXTENT_MAP_INLINE) {
1095 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1096 			end_page_read(page, true, cur, iosize);
1097 			cur = cur + iosize;
1098 			pg_offset += iosize;
1099 			continue;
1100 		}
1101 
1102 		if (bio_ctrl->compress_type != compress_type) {
1103 			submit_one_bio(bio_ctrl);
1104 			bio_ctrl->compress_type = compress_type;
1105 		}
1106 
1107 		if (force_bio_submit)
1108 			submit_one_bio(bio_ctrl);
1109 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1110 				   pg_offset);
1111 		cur = cur + iosize;
1112 		pg_offset += iosize;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 int btrfs_read_folio(struct file *file, struct folio *folio)
1119 {
1120 	struct page *page = &folio->page;
1121 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1122 	u64 start = page_offset(page);
1123 	u64 end = start + PAGE_SIZE - 1;
1124 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1125 	int ret;
1126 
1127 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1128 
1129 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1130 	/*
1131 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1132 	 * bio to do the cleanup.
1133 	 */
1134 	submit_one_bio(&bio_ctrl);
1135 	return ret;
1136 }
1137 
1138 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1139 					u64 start, u64 end,
1140 					struct extent_map **em_cached,
1141 					struct btrfs_bio_ctrl *bio_ctrl,
1142 					u64 *prev_em_start)
1143 {
1144 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1145 	int index;
1146 
1147 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1148 
1149 	for (index = 0; index < nr_pages; index++) {
1150 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1151 				  prev_em_start);
1152 		put_page(pages[index]);
1153 	}
1154 }
1155 
1156 /*
1157  * helper for __extent_writepage, doing all of the delayed allocation setup.
1158  *
1159  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1160  * to write the page (copy into inline extent).  In this case the IO has
1161  * been started and the page is already unlocked.
1162  *
1163  * This returns 0 if all went well (page still locked)
1164  * This returns < 0 if there were errors (page still locked)
1165  */
1166 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1167 		struct page *page, struct writeback_control *wbc)
1168 {
1169 	const u64 page_start = page_offset(page);
1170 	const u64 page_end = page_start + PAGE_SIZE - 1;
1171 	u64 delalloc_start = page_start;
1172 	u64 delalloc_end = page_end;
1173 	u64 delalloc_to_write = 0;
1174 	int ret = 0;
1175 
1176 	while (delalloc_start < page_end) {
1177 		delalloc_end = page_end;
1178 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1179 					      &delalloc_start, &delalloc_end)) {
1180 			delalloc_start = delalloc_end + 1;
1181 			continue;
1182 		}
1183 
1184 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1185 					       delalloc_end, wbc);
1186 		if (ret < 0)
1187 			return ret;
1188 
1189 		delalloc_start = delalloc_end + 1;
1190 	}
1191 
1192 	/*
1193 	 * delalloc_end is already one less than the total length, so
1194 	 * we don't subtract one from PAGE_SIZE
1195 	 */
1196 	delalloc_to_write +=
1197 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1198 
1199 	/*
1200 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1201 	 * the pages, we just need to account for them here.
1202 	 */
1203 	if (ret == 1) {
1204 		wbc->nr_to_write -= delalloc_to_write;
1205 		return 1;
1206 	}
1207 
1208 	if (wbc->nr_to_write < delalloc_to_write) {
1209 		int thresh = 8192;
1210 
1211 		if (delalloc_to_write < thresh * 2)
1212 			thresh = delalloc_to_write;
1213 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1214 					 thresh);
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Find the first byte we need to write.
1222  *
1223  * For subpage, one page can contain several sectors, and
1224  * __extent_writepage_io() will just grab all extent maps in the page
1225  * range and try to submit all non-inline/non-compressed extents.
1226  *
1227  * This is a big problem for subpage, we shouldn't re-submit already written
1228  * data at all.
1229  * This function will lookup subpage dirty bit to find which range we really
1230  * need to submit.
1231  *
1232  * Return the next dirty range in [@start, @end).
1233  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1234  */
1235 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1236 				 struct page *page, u64 *start, u64 *end)
1237 {
1238 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1239 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1240 	u64 orig_start = *start;
1241 	/* Declare as unsigned long so we can use bitmap ops */
1242 	unsigned long flags;
1243 	int range_start_bit;
1244 	int range_end_bit;
1245 
1246 	/*
1247 	 * For regular sector size == page size case, since one page only
1248 	 * contains one sector, we return the page offset directly.
1249 	 */
1250 	if (!btrfs_is_subpage(fs_info, page)) {
1251 		*start = page_offset(page);
1252 		*end = page_offset(page) + PAGE_SIZE;
1253 		return;
1254 	}
1255 
1256 	range_start_bit = spi->dirty_offset +
1257 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1258 
1259 	/* We should have the page locked, but just in case */
1260 	spin_lock_irqsave(&subpage->lock, flags);
1261 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1262 			       spi->dirty_offset + spi->bitmap_nr_bits);
1263 	spin_unlock_irqrestore(&subpage->lock, flags);
1264 
1265 	range_start_bit -= spi->dirty_offset;
1266 	range_end_bit -= spi->dirty_offset;
1267 
1268 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1269 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1270 }
1271 
1272 /*
1273  * helper for __extent_writepage.  This calls the writepage start hooks,
1274  * and does the loop to map the page into extents and bios.
1275  *
1276  * We return 1 if the IO is started and the page is unlocked,
1277  * 0 if all went well (page still locked)
1278  * < 0 if there were errors (page still locked)
1279  */
1280 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1281 				 struct page *page,
1282 				 struct btrfs_bio_ctrl *bio_ctrl,
1283 				 loff_t i_size,
1284 				 int *nr_ret)
1285 {
1286 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1287 	u64 cur = page_offset(page);
1288 	u64 end = cur + PAGE_SIZE - 1;
1289 	u64 extent_offset;
1290 	u64 block_start;
1291 	struct extent_map *em;
1292 	int ret = 0;
1293 	int nr = 0;
1294 
1295 	ret = btrfs_writepage_cow_fixup(page);
1296 	if (ret) {
1297 		/* Fixup worker will requeue */
1298 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1299 		unlock_page(page);
1300 		return 1;
1301 	}
1302 
1303 	bio_ctrl->end_io_func = end_bio_extent_writepage;
1304 	while (cur <= end) {
1305 		u32 len = end - cur + 1;
1306 		u64 disk_bytenr;
1307 		u64 em_end;
1308 		u64 dirty_range_start = cur;
1309 		u64 dirty_range_end;
1310 		u32 iosize;
1311 
1312 		if (cur >= i_size) {
1313 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1314 						       true);
1315 			/*
1316 			 * This range is beyond i_size, thus we don't need to
1317 			 * bother writing back.
1318 			 * But we still need to clear the dirty subpage bit, or
1319 			 * the next time the page gets dirtied, we will try to
1320 			 * writeback the sectors with subpage dirty bits,
1321 			 * causing writeback without ordered extent.
1322 			 */
1323 			btrfs_page_clear_dirty(fs_info, page, cur, len);
1324 			break;
1325 		}
1326 
1327 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1328 				     &dirty_range_end);
1329 		if (cur < dirty_range_start) {
1330 			cur = dirty_range_start;
1331 			continue;
1332 		}
1333 
1334 		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1335 		if (IS_ERR(em)) {
1336 			ret = PTR_ERR_OR_ZERO(em);
1337 			goto out_error;
1338 		}
1339 
1340 		extent_offset = cur - em->start;
1341 		em_end = extent_map_end(em);
1342 		ASSERT(cur <= em_end);
1343 		ASSERT(cur < end);
1344 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1345 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1346 
1347 		block_start = em->block_start;
1348 		disk_bytenr = em->block_start + extent_offset;
1349 
1350 		ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1351 		ASSERT(block_start != EXTENT_MAP_HOLE);
1352 		ASSERT(block_start != EXTENT_MAP_INLINE);
1353 
1354 		/*
1355 		 * Note that em_end from extent_map_end() and dirty_range_end from
1356 		 * find_next_dirty_byte() are all exclusive
1357 		 */
1358 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1359 		free_extent_map(em);
1360 		em = NULL;
1361 
1362 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1363 		if (!PageWriteback(page)) {
1364 			btrfs_err(inode->root->fs_info,
1365 				   "page %lu not writeback, cur %llu end %llu",
1366 			       page->index, cur, end);
1367 		}
1368 
1369 		/*
1370 		 * Although the PageDirty bit is cleared before entering this
1371 		 * function, subpage dirty bit is not cleared.
1372 		 * So clear subpage dirty bit here so next time we won't submit
1373 		 * page for range already written to disk.
1374 		 */
1375 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1376 
1377 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1378 				   cur - page_offset(page));
1379 		cur += iosize;
1380 		nr++;
1381 	}
1382 
1383 	btrfs_page_assert_not_dirty(fs_info, page);
1384 	*nr_ret = nr;
1385 	return 0;
1386 
1387 out_error:
1388 	/*
1389 	 * If we finish without problem, we should not only clear page dirty,
1390 	 * but also empty subpage dirty bits
1391 	 */
1392 	*nr_ret = nr;
1393 	return ret;
1394 }
1395 
1396 /*
1397  * the writepage semantics are similar to regular writepage.  extent
1398  * records are inserted to lock ranges in the tree, and as dirty areas
1399  * are found, they are marked writeback.  Then the lock bits are removed
1400  * and the end_io handler clears the writeback ranges
1401  *
1402  * Return 0 if everything goes well.
1403  * Return <0 for error.
1404  */
1405 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1406 {
1407 	struct folio *folio = page_folio(page);
1408 	struct inode *inode = page->mapping->host;
1409 	const u64 page_start = page_offset(page);
1410 	int ret;
1411 	int nr = 0;
1412 	size_t pg_offset;
1413 	loff_t i_size = i_size_read(inode);
1414 	unsigned long end_index = i_size >> PAGE_SHIFT;
1415 
1416 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1417 
1418 	WARN_ON(!PageLocked(page));
1419 
1420 	pg_offset = offset_in_page(i_size);
1421 	if (page->index > end_index ||
1422 	   (page->index == end_index && !pg_offset)) {
1423 		folio_invalidate(folio, 0, folio_size(folio));
1424 		folio_unlock(folio);
1425 		return 0;
1426 	}
1427 
1428 	if (page->index == end_index)
1429 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1430 
1431 	ret = set_page_extent_mapped(page);
1432 	if (ret < 0)
1433 		goto done;
1434 
1435 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1436 	if (ret == 1)
1437 		return 0;
1438 	if (ret)
1439 		goto done;
1440 
1441 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1442 	if (ret == 1)
1443 		return 0;
1444 
1445 	bio_ctrl->wbc->nr_to_write--;
1446 
1447 done:
1448 	if (nr == 0) {
1449 		/* make sure the mapping tag for page dirty gets cleared */
1450 		set_page_writeback(page);
1451 		end_page_writeback(page);
1452 	}
1453 	if (ret) {
1454 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1455 					       PAGE_SIZE, !ret);
1456 		mapping_set_error(page->mapping, ret);
1457 	}
1458 	unlock_page(page);
1459 	ASSERT(ret <= 0);
1460 	return ret;
1461 }
1462 
1463 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1464 {
1465 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1466 		       TASK_UNINTERRUPTIBLE);
1467 }
1468 
1469 /*
1470  * Lock extent buffer status and pages for writeback.
1471  *
1472  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1473  * extent buffer is not dirty)
1474  * Return %true is the extent buffer is submitted to bio.
1475  */
1476 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1477 			  struct writeback_control *wbc)
1478 {
1479 	struct btrfs_fs_info *fs_info = eb->fs_info;
1480 	bool ret = false;
1481 
1482 	btrfs_tree_lock(eb);
1483 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1484 		btrfs_tree_unlock(eb);
1485 		if (wbc->sync_mode != WB_SYNC_ALL)
1486 			return false;
1487 		wait_on_extent_buffer_writeback(eb);
1488 		btrfs_tree_lock(eb);
1489 	}
1490 
1491 	/*
1492 	 * We need to do this to prevent races in people who check if the eb is
1493 	 * under IO since we can end up having no IO bits set for a short period
1494 	 * of time.
1495 	 */
1496 	spin_lock(&eb->refs_lock);
1497 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1498 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1499 		spin_unlock(&eb->refs_lock);
1500 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1501 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1502 					 -eb->len,
1503 					 fs_info->dirty_metadata_batch);
1504 		ret = true;
1505 	} else {
1506 		spin_unlock(&eb->refs_lock);
1507 	}
1508 	btrfs_tree_unlock(eb);
1509 	return ret;
1510 }
1511 
1512 static void set_btree_ioerr(struct extent_buffer *eb)
1513 {
1514 	struct btrfs_fs_info *fs_info = eb->fs_info;
1515 
1516 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1517 
1518 	/*
1519 	 * A read may stumble upon this buffer later, make sure that it gets an
1520 	 * error and knows there was an error.
1521 	 */
1522 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1523 
1524 	/*
1525 	 * We need to set the mapping with the io error as well because a write
1526 	 * error will flip the file system readonly, and then syncfs() will
1527 	 * return a 0 because we are readonly if we don't modify the err seq for
1528 	 * the superblock.
1529 	 */
1530 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1531 
1532 	/*
1533 	 * If writeback for a btree extent that doesn't belong to a log tree
1534 	 * failed, increment the counter transaction->eb_write_errors.
1535 	 * We do this because while the transaction is running and before it's
1536 	 * committing (when we call filemap_fdata[write|wait]_range against
1537 	 * the btree inode), we might have
1538 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1539 	 * returns an error or an error happens during writeback, when we're
1540 	 * committing the transaction we wouldn't know about it, since the pages
1541 	 * can be no longer dirty nor marked anymore for writeback (if a
1542 	 * subsequent modification to the extent buffer didn't happen before the
1543 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1544 	 * able to find the pages tagged with SetPageError at transaction
1545 	 * commit time. So if this happens we must abort the transaction,
1546 	 * otherwise we commit a super block with btree roots that point to
1547 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1548 	 * or the content of some node/leaf from a past generation that got
1549 	 * cowed or deleted and is no longer valid.
1550 	 *
1551 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1552 	 * not be enough - we need to distinguish between log tree extents vs
1553 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1554 	 * will catch and clear such errors in the mapping - and that call might
1555 	 * be from a log sync and not from a transaction commit. Also, checking
1556 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1557 	 * not done and would not be reliable - the eb might have been released
1558 	 * from memory and reading it back again means that flag would not be
1559 	 * set (since it's a runtime flag, not persisted on disk).
1560 	 *
1561 	 * Using the flags below in the btree inode also makes us achieve the
1562 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1563 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1564 	 * is called, the writeback for all dirty pages had already finished
1565 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1566 	 * filemap_fdatawait_range() would return success, as it could not know
1567 	 * that writeback errors happened (the pages were no longer tagged for
1568 	 * writeback).
1569 	 */
1570 	switch (eb->log_index) {
1571 	case -1:
1572 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1573 		break;
1574 	case 0:
1575 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1576 		break;
1577 	case 1:
1578 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1579 		break;
1580 	default:
1581 		BUG(); /* unexpected, logic error */
1582 	}
1583 }
1584 
1585 /*
1586  * The endio specific version which won't touch any unsafe spinlock in endio
1587  * context.
1588  */
1589 static struct extent_buffer *find_extent_buffer_nolock(
1590 		struct btrfs_fs_info *fs_info, u64 start)
1591 {
1592 	struct extent_buffer *eb;
1593 
1594 	rcu_read_lock();
1595 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1596 			       start >> fs_info->sectorsize_bits);
1597 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1598 		rcu_read_unlock();
1599 		return eb;
1600 	}
1601 	rcu_read_unlock();
1602 	return NULL;
1603 }
1604 
1605 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1606 {
1607 	struct extent_buffer *eb = bbio->private;
1608 	struct btrfs_fs_info *fs_info = eb->fs_info;
1609 	bool uptodate = !bbio->bio.bi_status;
1610 	struct bvec_iter_all iter_all;
1611 	struct bio_vec *bvec;
1612 	u32 bio_offset = 0;
1613 
1614 	if (!uptodate)
1615 		set_btree_ioerr(eb);
1616 
1617 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1618 		u64 start = eb->start + bio_offset;
1619 		struct page *page = bvec->bv_page;
1620 		u32 len = bvec->bv_len;
1621 
1622 		btrfs_page_clear_writeback(fs_info, page, start, len);
1623 		bio_offset += len;
1624 	}
1625 
1626 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1627 	smp_mb__after_atomic();
1628 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1629 
1630 	bio_put(&bbio->bio);
1631 }
1632 
1633 static void prepare_eb_write(struct extent_buffer *eb)
1634 {
1635 	u32 nritems;
1636 	unsigned long start;
1637 	unsigned long end;
1638 
1639 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1640 
1641 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1642 	nritems = btrfs_header_nritems(eb);
1643 	if (btrfs_header_level(eb) > 0) {
1644 		end = btrfs_node_key_ptr_offset(eb, nritems);
1645 		memzero_extent_buffer(eb, end, eb->len - end);
1646 	} else {
1647 		/*
1648 		 * Leaf:
1649 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1650 		 */
1651 		start = btrfs_item_nr_offset(eb, nritems);
1652 		end = btrfs_item_nr_offset(eb, 0);
1653 		if (nritems == 0)
1654 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1655 		else
1656 			end += btrfs_item_offset(eb, nritems - 1);
1657 		memzero_extent_buffer(eb, start, end - start);
1658 	}
1659 }
1660 
1661 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1662 					    struct writeback_control *wbc)
1663 {
1664 	struct btrfs_fs_info *fs_info = eb->fs_info;
1665 	struct btrfs_bio *bbio;
1666 
1667 	prepare_eb_write(eb);
1668 
1669 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1670 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1671 			       eb->fs_info, extent_buffer_write_end_io, eb);
1672 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1673 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1674 	wbc_init_bio(wbc, &bbio->bio);
1675 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1676 	bbio->file_offset = eb->start;
1677 	if (fs_info->nodesize < PAGE_SIZE) {
1678 		struct page *p = eb->pages[0];
1679 
1680 		lock_page(p);
1681 		btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1682 		if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1683 						       eb->len)) {
1684 			clear_page_dirty_for_io(p);
1685 			wbc->nr_to_write--;
1686 		}
1687 		__bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1688 		wbc_account_cgroup_owner(wbc, p, eb->len);
1689 		unlock_page(p);
1690 	} else {
1691 		for (int i = 0; i < num_extent_pages(eb); i++) {
1692 			struct page *p = eb->pages[i];
1693 
1694 			lock_page(p);
1695 			clear_page_dirty_for_io(p);
1696 			set_page_writeback(p);
1697 			__bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1698 			wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1699 			wbc->nr_to_write--;
1700 			unlock_page(p);
1701 		}
1702 	}
1703 	btrfs_submit_bio(bbio, 0);
1704 }
1705 
1706 /*
1707  * Submit one subpage btree page.
1708  *
1709  * The main difference to submit_eb_page() is:
1710  * - Page locking
1711  *   For subpage, we don't rely on page locking at all.
1712  *
1713  * - Flush write bio
1714  *   We only flush bio if we may be unable to fit current extent buffers into
1715  *   current bio.
1716  *
1717  * Return >=0 for the number of submitted extent buffers.
1718  * Return <0 for fatal error.
1719  */
1720 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1721 {
1722 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1723 	int submitted = 0;
1724 	u64 page_start = page_offset(page);
1725 	int bit_start = 0;
1726 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1727 
1728 	/* Lock and write each dirty extent buffers in the range */
1729 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1730 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1731 		struct extent_buffer *eb;
1732 		unsigned long flags;
1733 		u64 start;
1734 
1735 		/*
1736 		 * Take private lock to ensure the subpage won't be detached
1737 		 * in the meantime.
1738 		 */
1739 		spin_lock(&page->mapping->private_lock);
1740 		if (!PagePrivate(page)) {
1741 			spin_unlock(&page->mapping->private_lock);
1742 			break;
1743 		}
1744 		spin_lock_irqsave(&subpage->lock, flags);
1745 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1746 			      subpage->bitmaps)) {
1747 			spin_unlock_irqrestore(&subpage->lock, flags);
1748 			spin_unlock(&page->mapping->private_lock);
1749 			bit_start++;
1750 			continue;
1751 		}
1752 
1753 		start = page_start + bit_start * fs_info->sectorsize;
1754 		bit_start += sectors_per_node;
1755 
1756 		/*
1757 		 * Here we just want to grab the eb without touching extra
1758 		 * spin locks, so call find_extent_buffer_nolock().
1759 		 */
1760 		eb = find_extent_buffer_nolock(fs_info, start);
1761 		spin_unlock_irqrestore(&subpage->lock, flags);
1762 		spin_unlock(&page->mapping->private_lock);
1763 
1764 		/*
1765 		 * The eb has already reached 0 refs thus find_extent_buffer()
1766 		 * doesn't return it. We don't need to write back such eb
1767 		 * anyway.
1768 		 */
1769 		if (!eb)
1770 			continue;
1771 
1772 		if (lock_extent_buffer_for_io(eb, wbc)) {
1773 			write_one_eb(eb, wbc);
1774 			submitted++;
1775 		}
1776 		free_extent_buffer(eb);
1777 	}
1778 	return submitted;
1779 }
1780 
1781 /*
1782  * Submit all page(s) of one extent buffer.
1783  *
1784  * @page:	the page of one extent buffer
1785  * @eb_context:	to determine if we need to submit this page, if current page
1786  *		belongs to this eb, we don't need to submit
1787  *
1788  * The caller should pass each page in their bytenr order, and here we use
1789  * @eb_context to determine if we have submitted pages of one extent buffer.
1790  *
1791  * If we have, we just skip until we hit a new page that doesn't belong to
1792  * current @eb_context.
1793  *
1794  * If not, we submit all the page(s) of the extent buffer.
1795  *
1796  * Return >0 if we have submitted the extent buffer successfully.
1797  * Return 0 if we don't need to submit the page, as it's already submitted by
1798  * previous call.
1799  * Return <0 for fatal error.
1800  */
1801 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1802 {
1803 	struct writeback_control *wbc = ctx->wbc;
1804 	struct address_space *mapping = page->mapping;
1805 	struct extent_buffer *eb;
1806 	int ret;
1807 
1808 	if (!PagePrivate(page))
1809 		return 0;
1810 
1811 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1812 		return submit_eb_subpage(page, wbc);
1813 
1814 	spin_lock(&mapping->private_lock);
1815 	if (!PagePrivate(page)) {
1816 		spin_unlock(&mapping->private_lock);
1817 		return 0;
1818 	}
1819 
1820 	eb = (struct extent_buffer *)page->private;
1821 
1822 	/*
1823 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1824 	 * crashing the machine for something we can survive anyway.
1825 	 */
1826 	if (WARN_ON(!eb)) {
1827 		spin_unlock(&mapping->private_lock);
1828 		return 0;
1829 	}
1830 
1831 	if (eb == ctx->eb) {
1832 		spin_unlock(&mapping->private_lock);
1833 		return 0;
1834 	}
1835 	ret = atomic_inc_not_zero(&eb->refs);
1836 	spin_unlock(&mapping->private_lock);
1837 	if (!ret)
1838 		return 0;
1839 
1840 	ctx->eb = eb;
1841 
1842 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1843 	if (ret) {
1844 		if (ret == -EBUSY)
1845 			ret = 0;
1846 		free_extent_buffer(eb);
1847 		return ret;
1848 	}
1849 
1850 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1851 		free_extent_buffer(eb);
1852 		return 0;
1853 	}
1854 	/* Implies write in zoned mode. */
1855 	if (ctx->zoned_bg) {
1856 		/* Mark the last eb in the block group. */
1857 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1858 		ctx->zoned_bg->meta_write_pointer += eb->len;
1859 	}
1860 	write_one_eb(eb, wbc);
1861 	free_extent_buffer(eb);
1862 	return 1;
1863 }
1864 
1865 int btree_write_cache_pages(struct address_space *mapping,
1866 				   struct writeback_control *wbc)
1867 {
1868 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1869 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1870 	int ret = 0;
1871 	int done = 0;
1872 	int nr_to_write_done = 0;
1873 	struct folio_batch fbatch;
1874 	unsigned int nr_folios;
1875 	pgoff_t index;
1876 	pgoff_t end;		/* Inclusive */
1877 	int scanned = 0;
1878 	xa_mark_t tag;
1879 
1880 	folio_batch_init(&fbatch);
1881 	if (wbc->range_cyclic) {
1882 		index = mapping->writeback_index; /* Start from prev offset */
1883 		end = -1;
1884 		/*
1885 		 * Start from the beginning does not need to cycle over the
1886 		 * range, mark it as scanned.
1887 		 */
1888 		scanned = (index == 0);
1889 	} else {
1890 		index = wbc->range_start >> PAGE_SHIFT;
1891 		end = wbc->range_end >> PAGE_SHIFT;
1892 		scanned = 1;
1893 	}
1894 	if (wbc->sync_mode == WB_SYNC_ALL)
1895 		tag = PAGECACHE_TAG_TOWRITE;
1896 	else
1897 		tag = PAGECACHE_TAG_DIRTY;
1898 	btrfs_zoned_meta_io_lock(fs_info);
1899 retry:
1900 	if (wbc->sync_mode == WB_SYNC_ALL)
1901 		tag_pages_for_writeback(mapping, index, end);
1902 	while (!done && !nr_to_write_done && (index <= end) &&
1903 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1904 					    tag, &fbatch))) {
1905 		unsigned i;
1906 
1907 		for (i = 0; i < nr_folios; i++) {
1908 			struct folio *folio = fbatch.folios[i];
1909 
1910 			ret = submit_eb_page(&folio->page, &ctx);
1911 			if (ret == 0)
1912 				continue;
1913 			if (ret < 0) {
1914 				done = 1;
1915 				break;
1916 			}
1917 
1918 			/*
1919 			 * the filesystem may choose to bump up nr_to_write.
1920 			 * We have to make sure to honor the new nr_to_write
1921 			 * at any time
1922 			 */
1923 			nr_to_write_done = wbc->nr_to_write <= 0;
1924 		}
1925 		folio_batch_release(&fbatch);
1926 		cond_resched();
1927 	}
1928 	if (!scanned && !done) {
1929 		/*
1930 		 * We hit the last page and there is more work to be done: wrap
1931 		 * back to the start of the file
1932 		 */
1933 		scanned = 1;
1934 		index = 0;
1935 		goto retry;
1936 	}
1937 	/*
1938 	 * If something went wrong, don't allow any metadata write bio to be
1939 	 * submitted.
1940 	 *
1941 	 * This would prevent use-after-free if we had dirty pages not
1942 	 * cleaned up, which can still happen by fuzzed images.
1943 	 *
1944 	 * - Bad extent tree
1945 	 *   Allowing existing tree block to be allocated for other trees.
1946 	 *
1947 	 * - Log tree operations
1948 	 *   Exiting tree blocks get allocated to log tree, bumps its
1949 	 *   generation, then get cleaned in tree re-balance.
1950 	 *   Such tree block will not be written back, since it's clean,
1951 	 *   thus no WRITTEN flag set.
1952 	 *   And after log writes back, this tree block is not traced by
1953 	 *   any dirty extent_io_tree.
1954 	 *
1955 	 * - Offending tree block gets re-dirtied from its original owner
1956 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1957 	 *   reused without COWing. This tree block will not be traced
1958 	 *   by btrfs_transaction::dirty_pages.
1959 	 *
1960 	 *   Now such dirty tree block will not be cleaned by any dirty
1961 	 *   extent io tree. Thus we don't want to submit such wild eb
1962 	 *   if the fs already has error.
1963 	 *
1964 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1965 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1966 	 */
1967 	if (ret > 0)
1968 		ret = 0;
1969 	if (!ret && BTRFS_FS_ERROR(fs_info))
1970 		ret = -EROFS;
1971 
1972 	if (ctx.zoned_bg)
1973 		btrfs_put_block_group(ctx.zoned_bg);
1974 	btrfs_zoned_meta_io_unlock(fs_info);
1975 	return ret;
1976 }
1977 
1978 /*
1979  * Walk the list of dirty pages of the given address space and write all of them.
1980  *
1981  * @mapping:   address space structure to write
1982  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
1983  * @bio_ctrl:  holds context for the write, namely the bio
1984  *
1985  * If a page is already under I/O, write_cache_pages() skips it, even
1986  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1987  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1988  * and msync() need to guarantee that all the data which was dirty at the time
1989  * the call was made get new I/O started against them.  If wbc->sync_mode is
1990  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1991  * existing IO to complete.
1992  */
1993 static int extent_write_cache_pages(struct address_space *mapping,
1994 			     struct btrfs_bio_ctrl *bio_ctrl)
1995 {
1996 	struct writeback_control *wbc = bio_ctrl->wbc;
1997 	struct inode *inode = mapping->host;
1998 	int ret = 0;
1999 	int done = 0;
2000 	int nr_to_write_done = 0;
2001 	struct folio_batch fbatch;
2002 	unsigned int nr_folios;
2003 	pgoff_t index;
2004 	pgoff_t end;		/* Inclusive */
2005 	pgoff_t done_index;
2006 	int range_whole = 0;
2007 	int scanned = 0;
2008 	xa_mark_t tag;
2009 
2010 	/*
2011 	 * We have to hold onto the inode so that ordered extents can do their
2012 	 * work when the IO finishes.  The alternative to this is failing to add
2013 	 * an ordered extent if the igrab() fails there and that is a huge pain
2014 	 * to deal with, so instead just hold onto the inode throughout the
2015 	 * writepages operation.  If it fails here we are freeing up the inode
2016 	 * anyway and we'd rather not waste our time writing out stuff that is
2017 	 * going to be truncated anyway.
2018 	 */
2019 	if (!igrab(inode))
2020 		return 0;
2021 
2022 	folio_batch_init(&fbatch);
2023 	if (wbc->range_cyclic) {
2024 		index = mapping->writeback_index; /* Start from prev offset */
2025 		end = -1;
2026 		/*
2027 		 * Start from the beginning does not need to cycle over the
2028 		 * range, mark it as scanned.
2029 		 */
2030 		scanned = (index == 0);
2031 	} else {
2032 		index = wbc->range_start >> PAGE_SHIFT;
2033 		end = wbc->range_end >> PAGE_SHIFT;
2034 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2035 			range_whole = 1;
2036 		scanned = 1;
2037 	}
2038 
2039 	/*
2040 	 * We do the tagged writepage as long as the snapshot flush bit is set
2041 	 * and we are the first one who do the filemap_flush() on this inode.
2042 	 *
2043 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2044 	 * not race in and drop the bit.
2045 	 */
2046 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2047 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2048 			       &BTRFS_I(inode)->runtime_flags))
2049 		wbc->tagged_writepages = 1;
2050 
2051 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2052 		tag = PAGECACHE_TAG_TOWRITE;
2053 	else
2054 		tag = PAGECACHE_TAG_DIRTY;
2055 retry:
2056 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2057 		tag_pages_for_writeback(mapping, index, end);
2058 	done_index = index;
2059 	while (!done && !nr_to_write_done && (index <= end) &&
2060 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2061 							end, tag, &fbatch))) {
2062 		unsigned i;
2063 
2064 		for (i = 0; i < nr_folios; i++) {
2065 			struct folio *folio = fbatch.folios[i];
2066 
2067 			done_index = folio_next_index(folio);
2068 			/*
2069 			 * At this point we hold neither the i_pages lock nor
2070 			 * the page lock: the page may be truncated or
2071 			 * invalidated (changing page->mapping to NULL),
2072 			 * or even swizzled back from swapper_space to
2073 			 * tmpfs file mapping
2074 			 */
2075 			if (!folio_trylock(folio)) {
2076 				submit_write_bio(bio_ctrl, 0);
2077 				folio_lock(folio);
2078 			}
2079 
2080 			if (unlikely(folio->mapping != mapping)) {
2081 				folio_unlock(folio);
2082 				continue;
2083 			}
2084 
2085 			if (!folio_test_dirty(folio)) {
2086 				/* Someone wrote it for us. */
2087 				folio_unlock(folio);
2088 				continue;
2089 			}
2090 
2091 			if (wbc->sync_mode != WB_SYNC_NONE) {
2092 				if (folio_test_writeback(folio))
2093 					submit_write_bio(bio_ctrl, 0);
2094 				folio_wait_writeback(folio);
2095 			}
2096 
2097 			if (folio_test_writeback(folio) ||
2098 			    !folio_clear_dirty_for_io(folio)) {
2099 				folio_unlock(folio);
2100 				continue;
2101 			}
2102 
2103 			ret = __extent_writepage(&folio->page, bio_ctrl);
2104 			if (ret < 0) {
2105 				done = 1;
2106 				break;
2107 			}
2108 
2109 			/*
2110 			 * The filesystem may choose to bump up nr_to_write.
2111 			 * We have to make sure to honor the new nr_to_write
2112 			 * at any time.
2113 			 */
2114 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2115 					    wbc->nr_to_write <= 0);
2116 		}
2117 		folio_batch_release(&fbatch);
2118 		cond_resched();
2119 	}
2120 	if (!scanned && !done) {
2121 		/*
2122 		 * We hit the last page and there is more work to be done: wrap
2123 		 * back to the start of the file
2124 		 */
2125 		scanned = 1;
2126 		index = 0;
2127 
2128 		/*
2129 		 * If we're looping we could run into a page that is locked by a
2130 		 * writer and that writer could be waiting on writeback for a
2131 		 * page in our current bio, and thus deadlock, so flush the
2132 		 * write bio here.
2133 		 */
2134 		submit_write_bio(bio_ctrl, 0);
2135 		goto retry;
2136 	}
2137 
2138 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2139 		mapping->writeback_index = done_index;
2140 
2141 	btrfs_add_delayed_iput(BTRFS_I(inode));
2142 	return ret;
2143 }
2144 
2145 /*
2146  * Submit the pages in the range to bio for call sites which delalloc range has
2147  * already been ran (aka, ordered extent inserted) and all pages are still
2148  * locked.
2149  */
2150 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2151 			       u64 start, u64 end, struct writeback_control *wbc,
2152 			       bool pages_dirty)
2153 {
2154 	bool found_error = false;
2155 	int ret = 0;
2156 	struct address_space *mapping = inode->i_mapping;
2157 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2158 	const u32 sectorsize = fs_info->sectorsize;
2159 	loff_t i_size = i_size_read(inode);
2160 	u64 cur = start;
2161 	struct btrfs_bio_ctrl bio_ctrl = {
2162 		.wbc = wbc,
2163 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2164 	};
2165 
2166 	if (wbc->no_cgroup_owner)
2167 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2168 
2169 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2170 
2171 	while (cur <= end) {
2172 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2173 		u32 cur_len = cur_end + 1 - cur;
2174 		struct page *page;
2175 		int nr = 0;
2176 
2177 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2178 		ASSERT(PageLocked(page));
2179 		if (pages_dirty && page != locked_page) {
2180 			ASSERT(PageDirty(page));
2181 			clear_page_dirty_for_io(page);
2182 		}
2183 
2184 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2185 					    i_size, &nr);
2186 		if (ret == 1)
2187 			goto next_page;
2188 
2189 		/* Make sure the mapping tag for page dirty gets cleared. */
2190 		if (nr == 0) {
2191 			set_page_writeback(page);
2192 			end_page_writeback(page);
2193 		}
2194 		if (ret) {
2195 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2196 						       cur, cur_len, !ret);
2197 			mapping_set_error(page->mapping, ret);
2198 		}
2199 		btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2200 		if (ret < 0)
2201 			found_error = true;
2202 next_page:
2203 		put_page(page);
2204 		cur = cur_end + 1;
2205 	}
2206 
2207 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2208 }
2209 
2210 int extent_writepages(struct address_space *mapping,
2211 		      struct writeback_control *wbc)
2212 {
2213 	struct inode *inode = mapping->host;
2214 	int ret = 0;
2215 	struct btrfs_bio_ctrl bio_ctrl = {
2216 		.wbc = wbc,
2217 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2218 	};
2219 
2220 	/*
2221 	 * Allow only a single thread to do the reloc work in zoned mode to
2222 	 * protect the write pointer updates.
2223 	 */
2224 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2225 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2226 	submit_write_bio(&bio_ctrl, ret);
2227 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2228 	return ret;
2229 }
2230 
2231 void extent_readahead(struct readahead_control *rac)
2232 {
2233 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2234 	struct page *pagepool[16];
2235 	struct extent_map *em_cached = NULL;
2236 	u64 prev_em_start = (u64)-1;
2237 	int nr;
2238 
2239 	while ((nr = readahead_page_batch(rac, pagepool))) {
2240 		u64 contig_start = readahead_pos(rac);
2241 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2242 
2243 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2244 				&em_cached, &bio_ctrl, &prev_em_start);
2245 	}
2246 
2247 	if (em_cached)
2248 		free_extent_map(em_cached);
2249 	submit_one_bio(&bio_ctrl);
2250 }
2251 
2252 /*
2253  * basic invalidate_folio code, this waits on any locked or writeback
2254  * ranges corresponding to the folio, and then deletes any extent state
2255  * records from the tree
2256  */
2257 int extent_invalidate_folio(struct extent_io_tree *tree,
2258 			  struct folio *folio, size_t offset)
2259 {
2260 	struct extent_state *cached_state = NULL;
2261 	u64 start = folio_pos(folio);
2262 	u64 end = start + folio_size(folio) - 1;
2263 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2264 
2265 	/* This function is only called for the btree inode */
2266 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2267 
2268 	start += ALIGN(offset, blocksize);
2269 	if (start > end)
2270 		return 0;
2271 
2272 	lock_extent(tree, start, end, &cached_state);
2273 	folio_wait_writeback(folio);
2274 
2275 	/*
2276 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2277 	 * so here we only need to unlock the extent range to free any
2278 	 * existing extent state.
2279 	 */
2280 	unlock_extent(tree, start, end, &cached_state);
2281 	return 0;
2282 }
2283 
2284 /*
2285  * a helper for release_folio, this tests for areas of the page that
2286  * are locked or under IO and drops the related state bits if it is safe
2287  * to drop the page.
2288  */
2289 static int try_release_extent_state(struct extent_io_tree *tree,
2290 				    struct page *page, gfp_t mask)
2291 {
2292 	u64 start = page_offset(page);
2293 	u64 end = start + PAGE_SIZE - 1;
2294 	int ret = 1;
2295 
2296 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2297 		ret = 0;
2298 	} else {
2299 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2300 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2301 
2302 		/*
2303 		 * At this point we can safely clear everything except the
2304 		 * locked bit, the nodatasum bit and the delalloc new bit.
2305 		 * The delalloc new bit will be cleared by ordered extent
2306 		 * completion.
2307 		 */
2308 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2309 
2310 		/* if clear_extent_bit failed for enomem reasons,
2311 		 * we can't allow the release to continue.
2312 		 */
2313 		if (ret < 0)
2314 			ret = 0;
2315 		else
2316 			ret = 1;
2317 	}
2318 	return ret;
2319 }
2320 
2321 /*
2322  * a helper for release_folio.  As long as there are no locked extents
2323  * in the range corresponding to the page, both state records and extent
2324  * map records are removed
2325  */
2326 int try_release_extent_mapping(struct page *page, gfp_t mask)
2327 {
2328 	struct extent_map *em;
2329 	u64 start = page_offset(page);
2330 	u64 end = start + PAGE_SIZE - 1;
2331 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2332 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2333 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2334 
2335 	if (gfpflags_allow_blocking(mask) &&
2336 	    page->mapping->host->i_size > SZ_16M) {
2337 		u64 len;
2338 		while (start <= end) {
2339 			struct btrfs_fs_info *fs_info;
2340 			u64 cur_gen;
2341 
2342 			len = end - start + 1;
2343 			write_lock(&map->lock);
2344 			em = lookup_extent_mapping(map, start, len);
2345 			if (!em) {
2346 				write_unlock(&map->lock);
2347 				break;
2348 			}
2349 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2350 			    em->start != start) {
2351 				write_unlock(&map->lock);
2352 				free_extent_map(em);
2353 				break;
2354 			}
2355 			if (test_range_bit_exists(tree, em->start,
2356 						  extent_map_end(em) - 1,
2357 						  EXTENT_LOCKED))
2358 				goto next;
2359 			/*
2360 			 * If it's not in the list of modified extents, used
2361 			 * by a fast fsync, we can remove it. If it's being
2362 			 * logged we can safely remove it since fsync took an
2363 			 * extra reference on the em.
2364 			 */
2365 			if (list_empty(&em->list) ||
2366 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2367 				goto remove_em;
2368 			/*
2369 			 * If it's in the list of modified extents, remove it
2370 			 * only if its generation is older then the current one,
2371 			 * in which case we don't need it for a fast fsync.
2372 			 * Otherwise don't remove it, we could be racing with an
2373 			 * ongoing fast fsync that could miss the new extent.
2374 			 */
2375 			fs_info = btrfs_inode->root->fs_info;
2376 			spin_lock(&fs_info->trans_lock);
2377 			cur_gen = fs_info->generation;
2378 			spin_unlock(&fs_info->trans_lock);
2379 			if (em->generation >= cur_gen)
2380 				goto next;
2381 remove_em:
2382 			/*
2383 			 * We only remove extent maps that are not in the list of
2384 			 * modified extents or that are in the list but with a
2385 			 * generation lower then the current generation, so there
2386 			 * is no need to set the full fsync flag on the inode (it
2387 			 * hurts the fsync performance for workloads with a data
2388 			 * size that exceeds or is close to the system's memory).
2389 			 */
2390 			remove_extent_mapping(map, em);
2391 			/* once for the rb tree */
2392 			free_extent_map(em);
2393 next:
2394 			start = extent_map_end(em);
2395 			write_unlock(&map->lock);
2396 
2397 			/* once for us */
2398 			free_extent_map(em);
2399 
2400 			cond_resched(); /* Allow large-extent preemption. */
2401 		}
2402 	}
2403 	return try_release_extent_state(tree, page, mask);
2404 }
2405 
2406 /*
2407  * To cache previous fiemap extent
2408  *
2409  * Will be used for merging fiemap extent
2410  */
2411 struct fiemap_cache {
2412 	u64 offset;
2413 	u64 phys;
2414 	u64 len;
2415 	u32 flags;
2416 	bool cached;
2417 };
2418 
2419 /*
2420  * Helper to submit fiemap extent.
2421  *
2422  * Will try to merge current fiemap extent specified by @offset, @phys,
2423  * @len and @flags with cached one.
2424  * And only when we fails to merge, cached one will be submitted as
2425  * fiemap extent.
2426  *
2427  * Return value is the same as fiemap_fill_next_extent().
2428  */
2429 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2430 				struct fiemap_cache *cache,
2431 				u64 offset, u64 phys, u64 len, u32 flags)
2432 {
2433 	int ret = 0;
2434 
2435 	/* Set at the end of extent_fiemap(). */
2436 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2437 
2438 	if (!cache->cached)
2439 		goto assign;
2440 
2441 	/*
2442 	 * Sanity check, extent_fiemap() should have ensured that new
2443 	 * fiemap extent won't overlap with cached one.
2444 	 * Not recoverable.
2445 	 *
2446 	 * NOTE: Physical address can overlap, due to compression
2447 	 */
2448 	if (cache->offset + cache->len > offset) {
2449 		WARN_ON(1);
2450 		return -EINVAL;
2451 	}
2452 
2453 	/*
2454 	 * Only merges fiemap extents if
2455 	 * 1) Their logical addresses are continuous
2456 	 *
2457 	 * 2) Their physical addresses are continuous
2458 	 *    So truly compressed (physical size smaller than logical size)
2459 	 *    extents won't get merged with each other
2460 	 *
2461 	 * 3) Share same flags
2462 	 */
2463 	if (cache->offset + cache->len  == offset &&
2464 	    cache->phys + cache->len == phys  &&
2465 	    cache->flags == flags) {
2466 		cache->len += len;
2467 		return 0;
2468 	}
2469 
2470 	/* Not mergeable, need to submit cached one */
2471 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2472 				      cache->len, cache->flags);
2473 	cache->cached = false;
2474 	if (ret)
2475 		return ret;
2476 assign:
2477 	cache->cached = true;
2478 	cache->offset = offset;
2479 	cache->phys = phys;
2480 	cache->len = len;
2481 	cache->flags = flags;
2482 
2483 	return 0;
2484 }
2485 
2486 /*
2487  * Emit last fiemap cache
2488  *
2489  * The last fiemap cache may still be cached in the following case:
2490  * 0		      4k		    8k
2491  * |<- Fiemap range ->|
2492  * |<------------  First extent ----------->|
2493  *
2494  * In this case, the first extent range will be cached but not emitted.
2495  * So we must emit it before ending extent_fiemap().
2496  */
2497 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2498 				  struct fiemap_cache *cache)
2499 {
2500 	int ret;
2501 
2502 	if (!cache->cached)
2503 		return 0;
2504 
2505 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2506 				      cache->len, cache->flags);
2507 	cache->cached = false;
2508 	if (ret > 0)
2509 		ret = 0;
2510 	return ret;
2511 }
2512 
2513 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2514 {
2515 	struct extent_buffer *clone;
2516 	struct btrfs_key key;
2517 	int slot;
2518 	int ret;
2519 
2520 	path->slots[0]++;
2521 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2522 		return 0;
2523 
2524 	ret = btrfs_next_leaf(inode->root, path);
2525 	if (ret != 0)
2526 		return ret;
2527 
2528 	/*
2529 	 * Don't bother with cloning if there are no more file extent items for
2530 	 * our inode.
2531 	 */
2532 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2533 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2534 		return 1;
2535 
2536 	/* See the comment at fiemap_search_slot() about why we clone. */
2537 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2538 	if (!clone)
2539 		return -ENOMEM;
2540 
2541 	slot = path->slots[0];
2542 	btrfs_release_path(path);
2543 	path->nodes[0] = clone;
2544 	path->slots[0] = slot;
2545 
2546 	return 0;
2547 }
2548 
2549 /*
2550  * Search for the first file extent item that starts at a given file offset or
2551  * the one that starts immediately before that offset.
2552  * Returns: 0 on success, < 0 on error, 1 if not found.
2553  */
2554 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2555 			      u64 file_offset)
2556 {
2557 	const u64 ino = btrfs_ino(inode);
2558 	struct btrfs_root *root = inode->root;
2559 	struct extent_buffer *clone;
2560 	struct btrfs_key key;
2561 	int slot;
2562 	int ret;
2563 
2564 	key.objectid = ino;
2565 	key.type = BTRFS_EXTENT_DATA_KEY;
2566 	key.offset = file_offset;
2567 
2568 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2569 	if (ret < 0)
2570 		return ret;
2571 
2572 	if (ret > 0 && path->slots[0] > 0) {
2573 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2574 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2575 			path->slots[0]--;
2576 	}
2577 
2578 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2579 		ret = btrfs_next_leaf(root, path);
2580 		if (ret != 0)
2581 			return ret;
2582 
2583 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2584 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2585 			return 1;
2586 	}
2587 
2588 	/*
2589 	 * We clone the leaf and use it during fiemap. This is because while
2590 	 * using the leaf we do expensive things like checking if an extent is
2591 	 * shared, which can take a long time. In order to prevent blocking
2592 	 * other tasks for too long, we use a clone of the leaf. We have locked
2593 	 * the file range in the inode's io tree, so we know none of our file
2594 	 * extent items can change. This way we avoid blocking other tasks that
2595 	 * want to insert items for other inodes in the same leaf or b+tree
2596 	 * rebalance operations (triggered for example when someone is trying
2597 	 * to push items into this leaf when trying to insert an item in a
2598 	 * neighbour leaf).
2599 	 * We also need the private clone because holding a read lock on an
2600 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2601 	 * when we call fiemap_fill_next_extent(), because that may cause a page
2602 	 * fault when filling the user space buffer with fiemap data.
2603 	 */
2604 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2605 	if (!clone)
2606 		return -ENOMEM;
2607 
2608 	slot = path->slots[0];
2609 	btrfs_release_path(path);
2610 	path->nodes[0] = clone;
2611 	path->slots[0] = slot;
2612 
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2618  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2619  * extent. The end offset (@end) is inclusive.
2620  */
2621 static int fiemap_process_hole(struct btrfs_inode *inode,
2622 			       struct fiemap_extent_info *fieinfo,
2623 			       struct fiemap_cache *cache,
2624 			       struct extent_state **delalloc_cached_state,
2625 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2626 			       u64 disk_bytenr, u64 extent_offset,
2627 			       u64 extent_gen,
2628 			       u64 start, u64 end)
2629 {
2630 	const u64 i_size = i_size_read(&inode->vfs_inode);
2631 	u64 cur_offset = start;
2632 	u64 last_delalloc_end = 0;
2633 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2634 	bool checked_extent_shared = false;
2635 	int ret;
2636 
2637 	/*
2638 	 * There can be no delalloc past i_size, so don't waste time looking for
2639 	 * it beyond i_size.
2640 	 */
2641 	while (cur_offset < end && cur_offset < i_size) {
2642 		u64 delalloc_start;
2643 		u64 delalloc_end;
2644 		u64 prealloc_start;
2645 		u64 prealloc_len = 0;
2646 		bool delalloc;
2647 
2648 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2649 							delalloc_cached_state,
2650 							&delalloc_start,
2651 							&delalloc_end);
2652 		if (!delalloc)
2653 			break;
2654 
2655 		/*
2656 		 * If this is a prealloc extent we have to report every section
2657 		 * of it that has no delalloc.
2658 		 */
2659 		if (disk_bytenr != 0) {
2660 			if (last_delalloc_end == 0) {
2661 				prealloc_start = start;
2662 				prealloc_len = delalloc_start - start;
2663 			} else {
2664 				prealloc_start = last_delalloc_end + 1;
2665 				prealloc_len = delalloc_start - prealloc_start;
2666 			}
2667 		}
2668 
2669 		if (prealloc_len > 0) {
2670 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2671 				ret = btrfs_is_data_extent_shared(inode,
2672 								  disk_bytenr,
2673 								  extent_gen,
2674 								  backref_ctx);
2675 				if (ret < 0)
2676 					return ret;
2677 				else if (ret > 0)
2678 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2679 
2680 				checked_extent_shared = true;
2681 			}
2682 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2683 						 disk_bytenr + extent_offset,
2684 						 prealloc_len, prealloc_flags);
2685 			if (ret)
2686 				return ret;
2687 			extent_offset += prealloc_len;
2688 		}
2689 
2690 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2691 					 delalloc_end + 1 - delalloc_start,
2692 					 FIEMAP_EXTENT_DELALLOC |
2693 					 FIEMAP_EXTENT_UNKNOWN);
2694 		if (ret)
2695 			return ret;
2696 
2697 		last_delalloc_end = delalloc_end;
2698 		cur_offset = delalloc_end + 1;
2699 		extent_offset += cur_offset - delalloc_start;
2700 		cond_resched();
2701 	}
2702 
2703 	/*
2704 	 * Either we found no delalloc for the whole prealloc extent or we have
2705 	 * a prealloc extent that spans i_size or starts at or after i_size.
2706 	 */
2707 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2708 		u64 prealloc_start;
2709 		u64 prealloc_len;
2710 
2711 		if (last_delalloc_end == 0) {
2712 			prealloc_start = start;
2713 			prealloc_len = end + 1 - start;
2714 		} else {
2715 			prealloc_start = last_delalloc_end + 1;
2716 			prealloc_len = end + 1 - prealloc_start;
2717 		}
2718 
2719 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2720 			ret = btrfs_is_data_extent_shared(inode,
2721 							  disk_bytenr,
2722 							  extent_gen,
2723 							  backref_ctx);
2724 			if (ret < 0)
2725 				return ret;
2726 			else if (ret > 0)
2727 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2728 		}
2729 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2730 					 disk_bytenr + extent_offset,
2731 					 prealloc_len, prealloc_flags);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2740 					  struct btrfs_path *path,
2741 					  u64 *last_extent_end_ret)
2742 {
2743 	const u64 ino = btrfs_ino(inode);
2744 	struct btrfs_root *root = inode->root;
2745 	struct extent_buffer *leaf;
2746 	struct btrfs_file_extent_item *ei;
2747 	struct btrfs_key key;
2748 	u64 disk_bytenr;
2749 	int ret;
2750 
2751 	/*
2752 	 * Lookup the last file extent. We're not using i_size here because
2753 	 * there might be preallocation past i_size.
2754 	 */
2755 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2756 	/* There can't be a file extent item at offset (u64)-1 */
2757 	ASSERT(ret != 0);
2758 	if (ret < 0)
2759 		return ret;
2760 
2761 	/*
2762 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2763 	 * slot > 0, except if the btree is empty, which is impossible because
2764 	 * at least it has the inode item for this inode and all the items for
2765 	 * the root inode 256.
2766 	 */
2767 	ASSERT(path->slots[0] > 0);
2768 	path->slots[0]--;
2769 	leaf = path->nodes[0];
2770 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2771 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2772 		/* No file extent items in the subvolume tree. */
2773 		*last_extent_end_ret = 0;
2774 		return 0;
2775 	}
2776 
2777 	/*
2778 	 * For an inline extent, the disk_bytenr is where inline data starts at,
2779 	 * so first check if we have an inline extent item before checking if we
2780 	 * have an implicit hole (disk_bytenr == 0).
2781 	 */
2782 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2783 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2784 		*last_extent_end_ret = btrfs_file_extent_end(path);
2785 		return 0;
2786 	}
2787 
2788 	/*
2789 	 * Find the last file extent item that is not a hole (when NO_HOLES is
2790 	 * not enabled). This should take at most 2 iterations in the worst
2791 	 * case: we have one hole file extent item at slot 0 of a leaf and
2792 	 * another hole file extent item as the last item in the previous leaf.
2793 	 * This is because we merge file extent items that represent holes.
2794 	 */
2795 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2796 	while (disk_bytenr == 0) {
2797 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2798 		if (ret < 0) {
2799 			return ret;
2800 		} else if (ret > 0) {
2801 			/* No file extent items that are not holes. */
2802 			*last_extent_end_ret = 0;
2803 			return 0;
2804 		}
2805 		leaf = path->nodes[0];
2806 		ei = btrfs_item_ptr(leaf, path->slots[0],
2807 				    struct btrfs_file_extent_item);
2808 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2809 	}
2810 
2811 	*last_extent_end_ret = btrfs_file_extent_end(path);
2812 	return 0;
2813 }
2814 
2815 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2816 		  u64 start, u64 len)
2817 {
2818 	const u64 ino = btrfs_ino(inode);
2819 	struct extent_state *cached_state = NULL;
2820 	struct extent_state *delalloc_cached_state = NULL;
2821 	struct btrfs_path *path;
2822 	struct fiemap_cache cache = { 0 };
2823 	struct btrfs_backref_share_check_ctx *backref_ctx;
2824 	u64 last_extent_end;
2825 	u64 prev_extent_end;
2826 	u64 lockstart;
2827 	u64 lockend;
2828 	bool stopped = false;
2829 	int ret;
2830 
2831 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2832 	path = btrfs_alloc_path();
2833 	if (!backref_ctx || !path) {
2834 		ret = -ENOMEM;
2835 		goto out;
2836 	}
2837 
2838 	lockstart = round_down(start, inode->root->fs_info->sectorsize);
2839 	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2840 	prev_extent_end = lockstart;
2841 
2842 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2843 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2844 
2845 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2846 	if (ret < 0)
2847 		goto out_unlock;
2848 	btrfs_release_path(path);
2849 
2850 	path->reada = READA_FORWARD;
2851 	ret = fiemap_search_slot(inode, path, lockstart);
2852 	if (ret < 0) {
2853 		goto out_unlock;
2854 	} else if (ret > 0) {
2855 		/*
2856 		 * No file extent item found, but we may have delalloc between
2857 		 * the current offset and i_size. So check for that.
2858 		 */
2859 		ret = 0;
2860 		goto check_eof_delalloc;
2861 	}
2862 
2863 	while (prev_extent_end < lockend) {
2864 		struct extent_buffer *leaf = path->nodes[0];
2865 		struct btrfs_file_extent_item *ei;
2866 		struct btrfs_key key;
2867 		u64 extent_end;
2868 		u64 extent_len;
2869 		u64 extent_offset = 0;
2870 		u64 extent_gen;
2871 		u64 disk_bytenr = 0;
2872 		u64 flags = 0;
2873 		int extent_type;
2874 		u8 compression;
2875 
2876 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2877 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2878 			break;
2879 
2880 		extent_end = btrfs_file_extent_end(path);
2881 
2882 		/*
2883 		 * The first iteration can leave us at an extent item that ends
2884 		 * before our range's start. Move to the next item.
2885 		 */
2886 		if (extent_end <= lockstart)
2887 			goto next_item;
2888 
2889 		backref_ctx->curr_leaf_bytenr = leaf->start;
2890 
2891 		/* We have in implicit hole (NO_HOLES feature enabled). */
2892 		if (prev_extent_end < key.offset) {
2893 			const u64 range_end = min(key.offset, lockend) - 1;
2894 
2895 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2896 						  &delalloc_cached_state,
2897 						  backref_ctx, 0, 0, 0,
2898 						  prev_extent_end, range_end);
2899 			if (ret < 0) {
2900 				goto out_unlock;
2901 			} else if (ret > 0) {
2902 				/* fiemap_fill_next_extent() told us to stop. */
2903 				stopped = true;
2904 				break;
2905 			}
2906 
2907 			/* We've reached the end of the fiemap range, stop. */
2908 			if (key.offset >= lockend) {
2909 				stopped = true;
2910 				break;
2911 			}
2912 		}
2913 
2914 		extent_len = extent_end - key.offset;
2915 		ei = btrfs_item_ptr(leaf, path->slots[0],
2916 				    struct btrfs_file_extent_item);
2917 		compression = btrfs_file_extent_compression(leaf, ei);
2918 		extent_type = btrfs_file_extent_type(leaf, ei);
2919 		extent_gen = btrfs_file_extent_generation(leaf, ei);
2920 
2921 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2922 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2923 			if (compression == BTRFS_COMPRESS_NONE)
2924 				extent_offset = btrfs_file_extent_offset(leaf, ei);
2925 		}
2926 
2927 		if (compression != BTRFS_COMPRESS_NONE)
2928 			flags |= FIEMAP_EXTENT_ENCODED;
2929 
2930 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2931 			flags |= FIEMAP_EXTENT_DATA_INLINE;
2932 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2933 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2934 						 extent_len, flags);
2935 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2936 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2937 						  &delalloc_cached_state,
2938 						  backref_ctx,
2939 						  disk_bytenr, extent_offset,
2940 						  extent_gen, key.offset,
2941 						  extent_end - 1);
2942 		} else if (disk_bytenr == 0) {
2943 			/* We have an explicit hole. */
2944 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2945 						  &delalloc_cached_state,
2946 						  backref_ctx, 0, 0, 0,
2947 						  key.offset, extent_end - 1);
2948 		} else {
2949 			/* We have a regular extent. */
2950 			if (fieinfo->fi_extents_max) {
2951 				ret = btrfs_is_data_extent_shared(inode,
2952 								  disk_bytenr,
2953 								  extent_gen,
2954 								  backref_ctx);
2955 				if (ret < 0)
2956 					goto out_unlock;
2957 				else if (ret > 0)
2958 					flags |= FIEMAP_EXTENT_SHARED;
2959 			}
2960 
2961 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2962 						 disk_bytenr + extent_offset,
2963 						 extent_len, flags);
2964 		}
2965 
2966 		if (ret < 0) {
2967 			goto out_unlock;
2968 		} else if (ret > 0) {
2969 			/* fiemap_fill_next_extent() told us to stop. */
2970 			stopped = true;
2971 			break;
2972 		}
2973 
2974 		prev_extent_end = extent_end;
2975 next_item:
2976 		if (fatal_signal_pending(current)) {
2977 			ret = -EINTR;
2978 			goto out_unlock;
2979 		}
2980 
2981 		ret = fiemap_next_leaf_item(inode, path);
2982 		if (ret < 0) {
2983 			goto out_unlock;
2984 		} else if (ret > 0) {
2985 			/* No more file extent items for this inode. */
2986 			break;
2987 		}
2988 		cond_resched();
2989 	}
2990 
2991 check_eof_delalloc:
2992 	/*
2993 	 * Release (and free) the path before emitting any final entries to
2994 	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
2995 	 * once we find no more file extent items exist, we may have a
2996 	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
2997 	 * faults when copying data to the user space buffer.
2998 	 */
2999 	btrfs_free_path(path);
3000 	path = NULL;
3001 
3002 	if (!stopped && prev_extent_end < lockend) {
3003 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3004 					  &delalloc_cached_state, backref_ctx,
3005 					  0, 0, 0, prev_extent_end, lockend - 1);
3006 		if (ret < 0)
3007 			goto out_unlock;
3008 		prev_extent_end = lockend;
3009 	}
3010 
3011 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3012 		const u64 i_size = i_size_read(&inode->vfs_inode);
3013 
3014 		if (prev_extent_end < i_size) {
3015 			u64 delalloc_start;
3016 			u64 delalloc_end;
3017 			bool delalloc;
3018 
3019 			delalloc = btrfs_find_delalloc_in_range(inode,
3020 								prev_extent_end,
3021 								i_size - 1,
3022 								&delalloc_cached_state,
3023 								&delalloc_start,
3024 								&delalloc_end);
3025 			if (!delalloc)
3026 				cache.flags |= FIEMAP_EXTENT_LAST;
3027 		} else {
3028 			cache.flags |= FIEMAP_EXTENT_LAST;
3029 		}
3030 	}
3031 
3032 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3033 
3034 out_unlock:
3035 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3036 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3037 out:
3038 	free_extent_state(delalloc_cached_state);
3039 	btrfs_free_backref_share_ctx(backref_ctx);
3040 	btrfs_free_path(path);
3041 	return ret;
3042 }
3043 
3044 static void __free_extent_buffer(struct extent_buffer *eb)
3045 {
3046 	kmem_cache_free(extent_buffer_cache, eb);
3047 }
3048 
3049 static int extent_buffer_under_io(const struct extent_buffer *eb)
3050 {
3051 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3052 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3053 }
3054 
3055 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3056 {
3057 	struct btrfs_subpage *subpage;
3058 
3059 	lockdep_assert_held(&page->mapping->private_lock);
3060 
3061 	if (PagePrivate(page)) {
3062 		subpage = (struct btrfs_subpage *)page->private;
3063 		if (atomic_read(&subpage->eb_refs))
3064 			return true;
3065 		/*
3066 		 * Even there is no eb refs here, we may still have
3067 		 * end_page_read() call relying on page::private.
3068 		 */
3069 		if (atomic_read(&subpage->readers))
3070 			return true;
3071 	}
3072 	return false;
3073 }
3074 
3075 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3076 {
3077 	struct btrfs_fs_info *fs_info = eb->fs_info;
3078 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3079 
3080 	/*
3081 	 * For mapped eb, we're going to change the page private, which should
3082 	 * be done under the private_lock.
3083 	 */
3084 	if (mapped)
3085 		spin_lock(&page->mapping->private_lock);
3086 
3087 	if (!PagePrivate(page)) {
3088 		if (mapped)
3089 			spin_unlock(&page->mapping->private_lock);
3090 		return;
3091 	}
3092 
3093 	if (fs_info->nodesize >= PAGE_SIZE) {
3094 		/*
3095 		 * We do this since we'll remove the pages after we've
3096 		 * removed the eb from the radix tree, so we could race
3097 		 * and have this page now attached to the new eb.  So
3098 		 * only clear page_private if it's still connected to
3099 		 * this eb.
3100 		 */
3101 		if (PagePrivate(page) &&
3102 		    page->private == (unsigned long)eb) {
3103 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3104 			BUG_ON(PageDirty(page));
3105 			BUG_ON(PageWriteback(page));
3106 			/*
3107 			 * We need to make sure we haven't be attached
3108 			 * to a new eb.
3109 			 */
3110 			detach_page_private(page);
3111 		}
3112 		if (mapped)
3113 			spin_unlock(&page->mapping->private_lock);
3114 		return;
3115 	}
3116 
3117 	/*
3118 	 * For subpage, we can have dummy eb with page private.  In this case,
3119 	 * we can directly detach the private as such page is only attached to
3120 	 * one dummy eb, no sharing.
3121 	 */
3122 	if (!mapped) {
3123 		btrfs_detach_subpage(fs_info, page);
3124 		return;
3125 	}
3126 
3127 	btrfs_page_dec_eb_refs(fs_info, page);
3128 
3129 	/*
3130 	 * We can only detach the page private if there are no other ebs in the
3131 	 * page range and no unfinished IO.
3132 	 */
3133 	if (!page_range_has_eb(fs_info, page))
3134 		btrfs_detach_subpage(fs_info, page);
3135 
3136 	spin_unlock(&page->mapping->private_lock);
3137 }
3138 
3139 /* Release all pages attached to the extent buffer */
3140 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3141 {
3142 	int i;
3143 	int num_pages;
3144 
3145 	ASSERT(!extent_buffer_under_io(eb));
3146 
3147 	num_pages = num_extent_pages(eb);
3148 	for (i = 0; i < num_pages; i++) {
3149 		struct page *page = eb->pages[i];
3150 
3151 		if (!page)
3152 			continue;
3153 
3154 		detach_extent_buffer_page(eb, page);
3155 
3156 		/* One for when we allocated the page */
3157 		put_page(page);
3158 	}
3159 }
3160 
3161 /*
3162  * Helper for releasing the extent buffer.
3163  */
3164 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3165 {
3166 	btrfs_release_extent_buffer_pages(eb);
3167 	btrfs_leak_debug_del_eb(eb);
3168 	__free_extent_buffer(eb);
3169 }
3170 
3171 static struct extent_buffer *
3172 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3173 		      unsigned long len)
3174 {
3175 	struct extent_buffer *eb = NULL;
3176 
3177 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3178 	eb->start = start;
3179 	eb->len = len;
3180 	eb->fs_info = fs_info;
3181 	init_rwsem(&eb->lock);
3182 
3183 	btrfs_leak_debug_add_eb(eb);
3184 
3185 	spin_lock_init(&eb->refs_lock);
3186 	atomic_set(&eb->refs, 1);
3187 
3188 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3189 
3190 	return eb;
3191 }
3192 
3193 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3194 {
3195 	int i;
3196 	struct extent_buffer *new;
3197 	int num_pages = num_extent_pages(src);
3198 	int ret;
3199 
3200 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3201 	if (new == NULL)
3202 		return NULL;
3203 
3204 	/*
3205 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3206 	 * btrfs_release_extent_buffer() have different behavior for
3207 	 * UNMAPPED subpage extent buffer.
3208 	 */
3209 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3210 
3211 	ret = btrfs_alloc_page_array(num_pages, new->pages);
3212 	if (ret) {
3213 		btrfs_release_extent_buffer(new);
3214 		return NULL;
3215 	}
3216 
3217 	for (i = 0; i < num_pages; i++) {
3218 		int ret;
3219 		struct page *p = new->pages[i];
3220 
3221 		ret = attach_extent_buffer_page(new, p, NULL);
3222 		if (ret < 0) {
3223 			btrfs_release_extent_buffer(new);
3224 			return NULL;
3225 		}
3226 		WARN_ON(PageDirty(p));
3227 	}
3228 	copy_extent_buffer_full(new, src);
3229 	set_extent_buffer_uptodate(new);
3230 
3231 	return new;
3232 }
3233 
3234 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3235 						  u64 start, unsigned long len)
3236 {
3237 	struct extent_buffer *eb;
3238 	int num_pages;
3239 	int i;
3240 	int ret;
3241 
3242 	eb = __alloc_extent_buffer(fs_info, start, len);
3243 	if (!eb)
3244 		return NULL;
3245 
3246 	num_pages = num_extent_pages(eb);
3247 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3248 	if (ret)
3249 		goto err;
3250 
3251 	for (i = 0; i < num_pages; i++) {
3252 		struct page *p = eb->pages[i];
3253 
3254 		ret = attach_extent_buffer_page(eb, p, NULL);
3255 		if (ret < 0)
3256 			goto err;
3257 	}
3258 
3259 	set_extent_buffer_uptodate(eb);
3260 	btrfs_set_header_nritems(eb, 0);
3261 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3262 
3263 	return eb;
3264 err:
3265 	for (i = 0; i < num_pages; i++) {
3266 		if (eb->pages[i]) {
3267 			detach_extent_buffer_page(eb, eb->pages[i]);
3268 			__free_page(eb->pages[i]);
3269 		}
3270 	}
3271 	__free_extent_buffer(eb);
3272 	return NULL;
3273 }
3274 
3275 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3276 						u64 start)
3277 {
3278 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3279 }
3280 
3281 static void check_buffer_tree_ref(struct extent_buffer *eb)
3282 {
3283 	int refs;
3284 	/*
3285 	 * The TREE_REF bit is first set when the extent_buffer is added
3286 	 * to the radix tree. It is also reset, if unset, when a new reference
3287 	 * is created by find_extent_buffer.
3288 	 *
3289 	 * It is only cleared in two cases: freeing the last non-tree
3290 	 * reference to the extent_buffer when its STALE bit is set or
3291 	 * calling release_folio when the tree reference is the only reference.
3292 	 *
3293 	 * In both cases, care is taken to ensure that the extent_buffer's
3294 	 * pages are not under io. However, release_folio can be concurrently
3295 	 * called with creating new references, which is prone to race
3296 	 * conditions between the calls to check_buffer_tree_ref in those
3297 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3298 	 *
3299 	 * The actual lifetime of the extent_buffer in the radix tree is
3300 	 * adequately protected by the refcount, but the TREE_REF bit and
3301 	 * its corresponding reference are not. To protect against this
3302 	 * class of races, we call check_buffer_tree_ref from the codepaths
3303 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3304 	 * longer be cleared, so that is the moment at which any such race is
3305 	 * best fixed.
3306 	 */
3307 	refs = atomic_read(&eb->refs);
3308 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3309 		return;
3310 
3311 	spin_lock(&eb->refs_lock);
3312 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3313 		atomic_inc(&eb->refs);
3314 	spin_unlock(&eb->refs_lock);
3315 }
3316 
3317 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3318 		struct page *accessed)
3319 {
3320 	int num_pages, i;
3321 
3322 	check_buffer_tree_ref(eb);
3323 
3324 	num_pages = num_extent_pages(eb);
3325 	for (i = 0; i < num_pages; i++) {
3326 		struct page *p = eb->pages[i];
3327 
3328 		if (p != accessed)
3329 			mark_page_accessed(p);
3330 	}
3331 }
3332 
3333 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3334 					 u64 start)
3335 {
3336 	struct extent_buffer *eb;
3337 
3338 	eb = find_extent_buffer_nolock(fs_info, start);
3339 	if (!eb)
3340 		return NULL;
3341 	/*
3342 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3343 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3344 	 * another task running free_extent_buffer() might have seen that flag
3345 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3346 	 * writeback flags not set) and it's still in the tree (flag
3347 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3348 	 * decrementing the extent buffer's reference count twice.  So here we
3349 	 * could race and increment the eb's reference count, clear its stale
3350 	 * flag, mark it as dirty and drop our reference before the other task
3351 	 * finishes executing free_extent_buffer, which would later result in
3352 	 * an attempt to free an extent buffer that is dirty.
3353 	 */
3354 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3355 		spin_lock(&eb->refs_lock);
3356 		spin_unlock(&eb->refs_lock);
3357 	}
3358 	mark_extent_buffer_accessed(eb, NULL);
3359 	return eb;
3360 }
3361 
3362 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3363 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3364 					u64 start)
3365 {
3366 	struct extent_buffer *eb, *exists = NULL;
3367 	int ret;
3368 
3369 	eb = find_extent_buffer(fs_info, start);
3370 	if (eb)
3371 		return eb;
3372 	eb = alloc_dummy_extent_buffer(fs_info, start);
3373 	if (!eb)
3374 		return ERR_PTR(-ENOMEM);
3375 	eb->fs_info = fs_info;
3376 again:
3377 	ret = radix_tree_preload(GFP_NOFS);
3378 	if (ret) {
3379 		exists = ERR_PTR(ret);
3380 		goto free_eb;
3381 	}
3382 	spin_lock(&fs_info->buffer_lock);
3383 	ret = radix_tree_insert(&fs_info->buffer_radix,
3384 				start >> fs_info->sectorsize_bits, eb);
3385 	spin_unlock(&fs_info->buffer_lock);
3386 	radix_tree_preload_end();
3387 	if (ret == -EEXIST) {
3388 		exists = find_extent_buffer(fs_info, start);
3389 		if (exists)
3390 			goto free_eb;
3391 		else
3392 			goto again;
3393 	}
3394 	check_buffer_tree_ref(eb);
3395 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3396 
3397 	return eb;
3398 free_eb:
3399 	btrfs_release_extent_buffer(eb);
3400 	return exists;
3401 }
3402 #endif
3403 
3404 static struct extent_buffer *grab_extent_buffer(
3405 		struct btrfs_fs_info *fs_info, struct page *page)
3406 {
3407 	struct extent_buffer *exists;
3408 
3409 	/*
3410 	 * For subpage case, we completely rely on radix tree to ensure we
3411 	 * don't try to insert two ebs for the same bytenr.  So here we always
3412 	 * return NULL and just continue.
3413 	 */
3414 	if (fs_info->nodesize < PAGE_SIZE)
3415 		return NULL;
3416 
3417 	/* Page not yet attached to an extent buffer */
3418 	if (!PagePrivate(page))
3419 		return NULL;
3420 
3421 	/*
3422 	 * We could have already allocated an eb for this page and attached one
3423 	 * so lets see if we can get a ref on the existing eb, and if we can we
3424 	 * know it's good and we can just return that one, else we know we can
3425 	 * just overwrite page->private.
3426 	 */
3427 	exists = (struct extent_buffer *)page->private;
3428 	if (atomic_inc_not_zero(&exists->refs))
3429 		return exists;
3430 
3431 	WARN_ON(PageDirty(page));
3432 	detach_page_private(page);
3433 	return NULL;
3434 }
3435 
3436 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3437 {
3438 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3439 		btrfs_err(fs_info, "bad tree block start %llu", start);
3440 		return -EINVAL;
3441 	}
3442 
3443 	if (fs_info->nodesize < PAGE_SIZE &&
3444 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3445 		btrfs_err(fs_info,
3446 		"tree block crosses page boundary, start %llu nodesize %u",
3447 			  start, fs_info->nodesize);
3448 		return -EINVAL;
3449 	}
3450 	if (fs_info->nodesize >= PAGE_SIZE &&
3451 	    !PAGE_ALIGNED(start)) {
3452 		btrfs_err(fs_info,
3453 		"tree block is not page aligned, start %llu nodesize %u",
3454 			  start, fs_info->nodesize);
3455 		return -EINVAL;
3456 	}
3457 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3458 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3459 		btrfs_warn(fs_info,
3460 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3461 			      start, fs_info->nodesize);
3462 	}
3463 	return 0;
3464 }
3465 
3466 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3467 					  u64 start, u64 owner_root, int level)
3468 {
3469 	unsigned long len = fs_info->nodesize;
3470 	int num_pages;
3471 	int i;
3472 	unsigned long index = start >> PAGE_SHIFT;
3473 	struct extent_buffer *eb;
3474 	struct extent_buffer *exists = NULL;
3475 	struct page *p;
3476 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3477 	struct btrfs_subpage *prealloc = NULL;
3478 	u64 lockdep_owner = owner_root;
3479 	int uptodate = 1;
3480 	int ret;
3481 
3482 	if (check_eb_alignment(fs_info, start))
3483 		return ERR_PTR(-EINVAL);
3484 
3485 #if BITS_PER_LONG == 32
3486 	if (start >= MAX_LFS_FILESIZE) {
3487 		btrfs_err_rl(fs_info,
3488 		"extent buffer %llu is beyond 32bit page cache limit", start);
3489 		btrfs_err_32bit_limit(fs_info);
3490 		return ERR_PTR(-EOVERFLOW);
3491 	}
3492 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3493 		btrfs_warn_32bit_limit(fs_info);
3494 #endif
3495 
3496 	eb = find_extent_buffer(fs_info, start);
3497 	if (eb)
3498 		return eb;
3499 
3500 	eb = __alloc_extent_buffer(fs_info, start, len);
3501 	if (!eb)
3502 		return ERR_PTR(-ENOMEM);
3503 
3504 	/*
3505 	 * The reloc trees are just snapshots, so we need them to appear to be
3506 	 * just like any other fs tree WRT lockdep.
3507 	 */
3508 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3509 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3510 
3511 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3512 
3513 	num_pages = num_extent_pages(eb);
3514 
3515 	/*
3516 	 * Preallocate page->private for subpage case, so that we won't
3517 	 * allocate memory with private_lock nor page lock hold.
3518 	 *
3519 	 * The memory will be freed by attach_extent_buffer_page() or freed
3520 	 * manually if we exit earlier.
3521 	 */
3522 	if (fs_info->nodesize < PAGE_SIZE) {
3523 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3524 		if (IS_ERR(prealloc)) {
3525 			exists = ERR_CAST(prealloc);
3526 			goto free_eb;
3527 		}
3528 	}
3529 
3530 	for (i = 0; i < num_pages; i++, index++) {
3531 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3532 		if (!p) {
3533 			exists = ERR_PTR(-ENOMEM);
3534 			btrfs_free_subpage(prealloc);
3535 			goto free_eb;
3536 		}
3537 
3538 		spin_lock(&mapping->private_lock);
3539 		exists = grab_extent_buffer(fs_info, p);
3540 		if (exists) {
3541 			spin_unlock(&mapping->private_lock);
3542 			unlock_page(p);
3543 			put_page(p);
3544 			mark_extent_buffer_accessed(exists, p);
3545 			btrfs_free_subpage(prealloc);
3546 			goto free_eb;
3547 		}
3548 		/* Should not fail, as we have preallocated the memory */
3549 		ret = attach_extent_buffer_page(eb, p, prealloc);
3550 		ASSERT(!ret);
3551 		/*
3552 		 * To inform we have extra eb under allocation, so that
3553 		 * detach_extent_buffer_page() won't release the page private
3554 		 * when the eb hasn't yet been inserted into radix tree.
3555 		 *
3556 		 * The ref will be decreased when the eb released the page, in
3557 		 * detach_extent_buffer_page().
3558 		 * Thus needs no special handling in error path.
3559 		 */
3560 		btrfs_page_inc_eb_refs(fs_info, p);
3561 		spin_unlock(&mapping->private_lock);
3562 
3563 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3564 		eb->pages[i] = p;
3565 		if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3566 			uptodate = 0;
3567 
3568 		/*
3569 		 * We can't unlock the pages just yet since the extent buffer
3570 		 * hasn't been properly inserted in the radix tree, this
3571 		 * opens a race with btree_release_folio which can free a page
3572 		 * while we are still filling in all pages for the buffer and
3573 		 * we could crash.
3574 		 */
3575 	}
3576 	if (uptodate)
3577 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3578 again:
3579 	ret = radix_tree_preload(GFP_NOFS);
3580 	if (ret) {
3581 		exists = ERR_PTR(ret);
3582 		goto free_eb;
3583 	}
3584 
3585 	spin_lock(&fs_info->buffer_lock);
3586 	ret = radix_tree_insert(&fs_info->buffer_radix,
3587 				start >> fs_info->sectorsize_bits, eb);
3588 	spin_unlock(&fs_info->buffer_lock);
3589 	radix_tree_preload_end();
3590 	if (ret == -EEXIST) {
3591 		exists = find_extent_buffer(fs_info, start);
3592 		if (exists)
3593 			goto free_eb;
3594 		else
3595 			goto again;
3596 	}
3597 	/* add one reference for the tree */
3598 	check_buffer_tree_ref(eb);
3599 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3600 
3601 	/*
3602 	 * Now it's safe to unlock the pages because any calls to
3603 	 * btree_release_folio will correctly detect that a page belongs to a
3604 	 * live buffer and won't free them prematurely.
3605 	 */
3606 	for (i = 0; i < num_pages; i++)
3607 		unlock_page(eb->pages[i]);
3608 	return eb;
3609 
3610 free_eb:
3611 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3612 	for (i = 0; i < num_pages; i++) {
3613 		if (eb->pages[i])
3614 			unlock_page(eb->pages[i]);
3615 	}
3616 
3617 	btrfs_release_extent_buffer(eb);
3618 	return exists;
3619 }
3620 
3621 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3622 {
3623 	struct extent_buffer *eb =
3624 			container_of(head, struct extent_buffer, rcu_head);
3625 
3626 	__free_extent_buffer(eb);
3627 }
3628 
3629 static int release_extent_buffer(struct extent_buffer *eb)
3630 	__releases(&eb->refs_lock)
3631 {
3632 	lockdep_assert_held(&eb->refs_lock);
3633 
3634 	WARN_ON(atomic_read(&eb->refs) == 0);
3635 	if (atomic_dec_and_test(&eb->refs)) {
3636 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3637 			struct btrfs_fs_info *fs_info = eb->fs_info;
3638 
3639 			spin_unlock(&eb->refs_lock);
3640 
3641 			spin_lock(&fs_info->buffer_lock);
3642 			radix_tree_delete(&fs_info->buffer_radix,
3643 					  eb->start >> fs_info->sectorsize_bits);
3644 			spin_unlock(&fs_info->buffer_lock);
3645 		} else {
3646 			spin_unlock(&eb->refs_lock);
3647 		}
3648 
3649 		btrfs_leak_debug_del_eb(eb);
3650 		/* Should be safe to release our pages at this point */
3651 		btrfs_release_extent_buffer_pages(eb);
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3653 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3654 			__free_extent_buffer(eb);
3655 			return 1;
3656 		}
3657 #endif
3658 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3659 		return 1;
3660 	}
3661 	spin_unlock(&eb->refs_lock);
3662 
3663 	return 0;
3664 }
3665 
3666 void free_extent_buffer(struct extent_buffer *eb)
3667 {
3668 	int refs;
3669 	if (!eb)
3670 		return;
3671 
3672 	refs = atomic_read(&eb->refs);
3673 	while (1) {
3674 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3675 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3676 			refs == 1))
3677 			break;
3678 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3679 			return;
3680 	}
3681 
3682 	spin_lock(&eb->refs_lock);
3683 	if (atomic_read(&eb->refs) == 2 &&
3684 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3685 	    !extent_buffer_under_io(eb) &&
3686 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3687 		atomic_dec(&eb->refs);
3688 
3689 	/*
3690 	 * I know this is terrible, but it's temporary until we stop tracking
3691 	 * the uptodate bits and such for the extent buffers.
3692 	 */
3693 	release_extent_buffer(eb);
3694 }
3695 
3696 void free_extent_buffer_stale(struct extent_buffer *eb)
3697 {
3698 	if (!eb)
3699 		return;
3700 
3701 	spin_lock(&eb->refs_lock);
3702 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3703 
3704 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3705 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3706 		atomic_dec(&eb->refs);
3707 	release_extent_buffer(eb);
3708 }
3709 
3710 static void btree_clear_page_dirty(struct page *page)
3711 {
3712 	ASSERT(PageDirty(page));
3713 	ASSERT(PageLocked(page));
3714 	clear_page_dirty_for_io(page);
3715 	xa_lock_irq(&page->mapping->i_pages);
3716 	if (!PageDirty(page))
3717 		__xa_clear_mark(&page->mapping->i_pages,
3718 				page_index(page), PAGECACHE_TAG_DIRTY);
3719 	xa_unlock_irq(&page->mapping->i_pages);
3720 }
3721 
3722 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3723 {
3724 	struct btrfs_fs_info *fs_info = eb->fs_info;
3725 	struct page *page = eb->pages[0];
3726 	bool last;
3727 
3728 	/* btree_clear_page_dirty() needs page locked */
3729 	lock_page(page);
3730 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3731 						  eb->len);
3732 	if (last)
3733 		btree_clear_page_dirty(page);
3734 	unlock_page(page);
3735 	WARN_ON(atomic_read(&eb->refs) == 0);
3736 }
3737 
3738 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3739 			      struct extent_buffer *eb)
3740 {
3741 	struct btrfs_fs_info *fs_info = eb->fs_info;
3742 	int i;
3743 	int num_pages;
3744 	struct page *page;
3745 
3746 	btrfs_assert_tree_write_locked(eb);
3747 
3748 	if (trans && btrfs_header_generation(eb) != trans->transid)
3749 		return;
3750 
3751 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3752 		return;
3753 
3754 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3755 				 fs_info->dirty_metadata_batch);
3756 
3757 	if (eb->fs_info->nodesize < PAGE_SIZE)
3758 		return clear_subpage_extent_buffer_dirty(eb);
3759 
3760 	num_pages = num_extent_pages(eb);
3761 
3762 	for (i = 0; i < num_pages; i++) {
3763 		page = eb->pages[i];
3764 		if (!PageDirty(page))
3765 			continue;
3766 		lock_page(page);
3767 		btree_clear_page_dirty(page);
3768 		unlock_page(page);
3769 	}
3770 	WARN_ON(atomic_read(&eb->refs) == 0);
3771 }
3772 
3773 void set_extent_buffer_dirty(struct extent_buffer *eb)
3774 {
3775 	int i;
3776 	int num_pages;
3777 	bool was_dirty;
3778 
3779 	check_buffer_tree_ref(eb);
3780 
3781 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3782 
3783 	num_pages = num_extent_pages(eb);
3784 	WARN_ON(atomic_read(&eb->refs) == 0);
3785 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3786 
3787 	if (!was_dirty) {
3788 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3789 
3790 		/*
3791 		 * For subpage case, we can have other extent buffers in the
3792 		 * same page, and in clear_subpage_extent_buffer_dirty() we
3793 		 * have to clear page dirty without subpage lock held.
3794 		 * This can cause race where our page gets dirty cleared after
3795 		 * we just set it.
3796 		 *
3797 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3798 		 * its page for other reasons, we can use page lock to prevent
3799 		 * the above race.
3800 		 */
3801 		if (subpage)
3802 			lock_page(eb->pages[0]);
3803 		for (i = 0; i < num_pages; i++)
3804 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3805 					     eb->start, eb->len);
3806 		if (subpage)
3807 			unlock_page(eb->pages[0]);
3808 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3809 					 eb->len,
3810 					 eb->fs_info->dirty_metadata_batch);
3811 	}
3812 #ifdef CONFIG_BTRFS_DEBUG
3813 	for (i = 0; i < num_pages; i++)
3814 		ASSERT(PageDirty(eb->pages[i]));
3815 #endif
3816 }
3817 
3818 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3819 {
3820 	struct btrfs_fs_info *fs_info = eb->fs_info;
3821 	struct page *page;
3822 	int num_pages;
3823 	int i;
3824 
3825 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3826 	num_pages = num_extent_pages(eb);
3827 	for (i = 0; i < num_pages; i++) {
3828 		page = eb->pages[i];
3829 		if (!page)
3830 			continue;
3831 
3832 		/*
3833 		 * This is special handling for metadata subpage, as regular
3834 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3835 		 */
3836 		if (fs_info->nodesize >= PAGE_SIZE)
3837 			ClearPageUptodate(page);
3838 		else
3839 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3840 						     eb->len);
3841 	}
3842 }
3843 
3844 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3845 {
3846 	struct btrfs_fs_info *fs_info = eb->fs_info;
3847 	struct page *page;
3848 	int num_pages;
3849 	int i;
3850 
3851 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3852 	num_pages = num_extent_pages(eb);
3853 	for (i = 0; i < num_pages; i++) {
3854 		page = eb->pages[i];
3855 
3856 		/*
3857 		 * This is special handling for metadata subpage, as regular
3858 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3859 		 */
3860 		if (fs_info->nodesize >= PAGE_SIZE)
3861 			SetPageUptodate(page);
3862 		else
3863 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3864 						   eb->len);
3865 	}
3866 }
3867 
3868 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3869 {
3870 	struct extent_buffer *eb = bbio->private;
3871 	struct btrfs_fs_info *fs_info = eb->fs_info;
3872 	bool uptodate = !bbio->bio.bi_status;
3873 	struct bvec_iter_all iter_all;
3874 	struct bio_vec *bvec;
3875 	u32 bio_offset = 0;
3876 
3877 	eb->read_mirror = bbio->mirror_num;
3878 
3879 	if (uptodate &&
3880 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3881 		uptodate = false;
3882 
3883 	if (uptodate) {
3884 		set_extent_buffer_uptodate(eb);
3885 	} else {
3886 		clear_extent_buffer_uptodate(eb);
3887 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3888 	}
3889 
3890 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3891 		u64 start = eb->start + bio_offset;
3892 		struct page *page = bvec->bv_page;
3893 		u32 len = bvec->bv_len;
3894 
3895 		if (uptodate)
3896 			btrfs_page_set_uptodate(fs_info, page, start, len);
3897 		else
3898 			btrfs_page_clear_uptodate(fs_info, page, start, len);
3899 
3900 		bio_offset += len;
3901 	}
3902 
3903 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3904 	smp_mb__after_atomic();
3905 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3906 	free_extent_buffer(eb);
3907 
3908 	bio_put(&bbio->bio);
3909 }
3910 
3911 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3912 			     struct btrfs_tree_parent_check *check)
3913 {
3914 	int num_pages = num_extent_pages(eb), i;
3915 	struct btrfs_bio *bbio;
3916 
3917 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3918 		return 0;
3919 
3920 	/*
3921 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3922 	 * operation, which could potentially still be in flight.  In this case
3923 	 * we simply want to return an error.
3924 	 */
3925 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3926 		return -EIO;
3927 
3928 	/* Someone else is already reading the buffer, just wait for it. */
3929 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3930 		goto done;
3931 
3932 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3933 	eb->read_mirror = 0;
3934 	check_buffer_tree_ref(eb);
3935 	atomic_inc(&eb->refs);
3936 
3937 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3938 			       REQ_OP_READ | REQ_META, eb->fs_info,
3939 			       extent_buffer_read_end_io, eb);
3940 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3941 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3942 	bbio->file_offset = eb->start;
3943 	memcpy(&bbio->parent_check, check, sizeof(*check));
3944 	if (eb->fs_info->nodesize < PAGE_SIZE) {
3945 		__bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3946 			       eb->start - page_offset(eb->pages[0]));
3947 	} else {
3948 		for (i = 0; i < num_pages; i++)
3949 			__bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3950 	}
3951 	btrfs_submit_bio(bbio, mirror_num);
3952 
3953 done:
3954 	if (wait == WAIT_COMPLETE) {
3955 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3956 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3957 			return -EIO;
3958 	}
3959 
3960 	return 0;
3961 }
3962 
3963 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3964 			    unsigned long len)
3965 {
3966 	btrfs_warn(eb->fs_info,
3967 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
3968 		eb->start, eb->len, start, len);
3969 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3970 
3971 	return true;
3972 }
3973 
3974 /*
3975  * Check if the [start, start + len) range is valid before reading/writing
3976  * the eb.
3977  * NOTE: @start and @len are offset inside the eb, not logical address.
3978  *
3979  * Caller should not touch the dst/src memory if this function returns error.
3980  */
3981 static inline int check_eb_range(const struct extent_buffer *eb,
3982 				 unsigned long start, unsigned long len)
3983 {
3984 	unsigned long offset;
3985 
3986 	/* start, start + len should not go beyond eb->len nor overflow */
3987 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3988 		return report_eb_range(eb, start, len);
3989 
3990 	return false;
3991 }
3992 
3993 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3994 			unsigned long start, unsigned long len)
3995 {
3996 	size_t cur;
3997 	size_t offset;
3998 	struct page *page;
3999 	char *kaddr;
4000 	char *dst = (char *)dstv;
4001 	unsigned long i = get_eb_page_index(start);
4002 
4003 	if (check_eb_range(eb, start, len)) {
4004 		/*
4005 		 * Invalid range hit, reset the memory, so callers won't get
4006 		 * some random garbage for their uninitialzed memory.
4007 		 */
4008 		memset(dstv, 0, len);
4009 		return;
4010 	}
4011 
4012 	offset = get_eb_offset_in_page(eb, start);
4013 
4014 	while (len > 0) {
4015 		page = eb->pages[i];
4016 
4017 		cur = min(len, (PAGE_SIZE - offset));
4018 		kaddr = page_address(page);
4019 		memcpy(dst, kaddr + offset, cur);
4020 
4021 		dst += cur;
4022 		len -= cur;
4023 		offset = 0;
4024 		i++;
4025 	}
4026 }
4027 
4028 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4029 				       void __user *dstv,
4030 				       unsigned long start, unsigned long len)
4031 {
4032 	size_t cur;
4033 	size_t offset;
4034 	struct page *page;
4035 	char *kaddr;
4036 	char __user *dst = (char __user *)dstv;
4037 	unsigned long i = get_eb_page_index(start);
4038 	int ret = 0;
4039 
4040 	WARN_ON(start > eb->len);
4041 	WARN_ON(start + len > eb->start + eb->len);
4042 
4043 	offset = get_eb_offset_in_page(eb, start);
4044 
4045 	while (len > 0) {
4046 		page = eb->pages[i];
4047 
4048 		cur = min(len, (PAGE_SIZE - offset));
4049 		kaddr = page_address(page);
4050 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4051 			ret = -EFAULT;
4052 			break;
4053 		}
4054 
4055 		dst += cur;
4056 		len -= cur;
4057 		offset = 0;
4058 		i++;
4059 	}
4060 
4061 	return ret;
4062 }
4063 
4064 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4065 			 unsigned long start, unsigned long len)
4066 {
4067 	size_t cur;
4068 	size_t offset;
4069 	struct page *page;
4070 	char *kaddr;
4071 	char *ptr = (char *)ptrv;
4072 	unsigned long i = get_eb_page_index(start);
4073 	int ret = 0;
4074 
4075 	if (check_eb_range(eb, start, len))
4076 		return -EINVAL;
4077 
4078 	offset = get_eb_offset_in_page(eb, start);
4079 
4080 	while (len > 0) {
4081 		page = eb->pages[i];
4082 
4083 		cur = min(len, (PAGE_SIZE - offset));
4084 
4085 		kaddr = page_address(page);
4086 		ret = memcmp(ptr, kaddr + offset, cur);
4087 		if (ret)
4088 			break;
4089 
4090 		ptr += cur;
4091 		len -= cur;
4092 		offset = 0;
4093 		i++;
4094 	}
4095 	return ret;
4096 }
4097 
4098 /*
4099  * Check that the extent buffer is uptodate.
4100  *
4101  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4102  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4103  */
4104 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4105 				    struct page *page)
4106 {
4107 	struct btrfs_fs_info *fs_info = eb->fs_info;
4108 
4109 	/*
4110 	 * If we are using the commit root we could potentially clear a page
4111 	 * Uptodate while we're using the extent buffer that we've previously
4112 	 * looked up.  We don't want to complain in this case, as the page was
4113 	 * valid before, we just didn't write it out.  Instead we want to catch
4114 	 * the case where we didn't actually read the block properly, which
4115 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4116 	 */
4117 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4118 		return;
4119 
4120 	if (fs_info->nodesize < PAGE_SIZE) {
4121 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4122 							 eb->start, eb->len)))
4123 			btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4124 	} else {
4125 		WARN_ON(!PageUptodate(page));
4126 	}
4127 }
4128 
4129 static void __write_extent_buffer(const struct extent_buffer *eb,
4130 				  const void *srcv, unsigned long start,
4131 				  unsigned long len, bool use_memmove)
4132 {
4133 	size_t cur;
4134 	size_t offset;
4135 	struct page *page;
4136 	char *kaddr;
4137 	char *src = (char *)srcv;
4138 	unsigned long i = get_eb_page_index(start);
4139 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4140 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4141 
4142 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4143 
4144 	if (check_eb_range(eb, start, len))
4145 		return;
4146 
4147 	offset = get_eb_offset_in_page(eb, start);
4148 
4149 	while (len > 0) {
4150 		page = eb->pages[i];
4151 		if (check_uptodate)
4152 			assert_eb_page_uptodate(eb, page);
4153 
4154 		cur = min(len, PAGE_SIZE - offset);
4155 		kaddr = page_address(page);
4156 		if (use_memmove)
4157 			memmove(kaddr + offset, src, cur);
4158 		else
4159 			memcpy(kaddr + offset, src, cur);
4160 
4161 		src += cur;
4162 		len -= cur;
4163 		offset = 0;
4164 		i++;
4165 	}
4166 }
4167 
4168 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4169 			 unsigned long start, unsigned long len)
4170 {
4171 	return __write_extent_buffer(eb, srcv, start, len, false);
4172 }
4173 
4174 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4175 				 unsigned long start, unsigned long len)
4176 {
4177 	unsigned long cur = start;
4178 
4179 	while (cur < start + len) {
4180 		unsigned long index = get_eb_page_index(cur);
4181 		unsigned int offset = get_eb_offset_in_page(eb, cur);
4182 		unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4183 		struct page *page = eb->pages[index];
4184 
4185 		assert_eb_page_uptodate(eb, page);
4186 		memset(page_address(page) + offset, c, cur_len);
4187 
4188 		cur += cur_len;
4189 	}
4190 }
4191 
4192 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4193 			   unsigned long len)
4194 {
4195 	if (check_eb_range(eb, start, len))
4196 		return;
4197 	return memset_extent_buffer(eb, 0, start, len);
4198 }
4199 
4200 void copy_extent_buffer_full(const struct extent_buffer *dst,
4201 			     const struct extent_buffer *src)
4202 {
4203 	unsigned long cur = 0;
4204 
4205 	ASSERT(dst->len == src->len);
4206 
4207 	while (cur < src->len) {
4208 		unsigned long index = get_eb_page_index(cur);
4209 		unsigned long offset = get_eb_offset_in_page(src, cur);
4210 		unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4211 		void *addr = page_address(src->pages[index]) + offset;
4212 
4213 		write_extent_buffer(dst, addr, cur, cur_len);
4214 
4215 		cur += cur_len;
4216 	}
4217 }
4218 
4219 void copy_extent_buffer(const struct extent_buffer *dst,
4220 			const struct extent_buffer *src,
4221 			unsigned long dst_offset, unsigned long src_offset,
4222 			unsigned long len)
4223 {
4224 	u64 dst_len = dst->len;
4225 	size_t cur;
4226 	size_t offset;
4227 	struct page *page;
4228 	char *kaddr;
4229 	unsigned long i = get_eb_page_index(dst_offset);
4230 
4231 	if (check_eb_range(dst, dst_offset, len) ||
4232 	    check_eb_range(src, src_offset, len))
4233 		return;
4234 
4235 	WARN_ON(src->len != dst_len);
4236 
4237 	offset = get_eb_offset_in_page(dst, dst_offset);
4238 
4239 	while (len > 0) {
4240 		page = dst->pages[i];
4241 		assert_eb_page_uptodate(dst, page);
4242 
4243 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4244 
4245 		kaddr = page_address(page);
4246 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4247 
4248 		src_offset += cur;
4249 		len -= cur;
4250 		offset = 0;
4251 		i++;
4252 	}
4253 }
4254 
4255 /*
4256  * Calculate the page and offset of the byte containing the given bit number.
4257  *
4258  * @eb:           the extent buffer
4259  * @start:        offset of the bitmap item in the extent buffer
4260  * @nr:           bit number
4261  * @page_index:   return index of the page in the extent buffer that contains
4262  *                the given bit number
4263  * @page_offset:  return offset into the page given by page_index
4264  *
4265  * This helper hides the ugliness of finding the byte in an extent buffer which
4266  * contains a given bit.
4267  */
4268 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4269 				    unsigned long start, unsigned long nr,
4270 				    unsigned long *page_index,
4271 				    size_t *page_offset)
4272 {
4273 	size_t byte_offset = BIT_BYTE(nr);
4274 	size_t offset;
4275 
4276 	/*
4277 	 * The byte we want is the offset of the extent buffer + the offset of
4278 	 * the bitmap item in the extent buffer + the offset of the byte in the
4279 	 * bitmap item.
4280 	 */
4281 	offset = start + offset_in_page(eb->start) + byte_offset;
4282 
4283 	*page_index = offset >> PAGE_SHIFT;
4284 	*page_offset = offset_in_page(offset);
4285 }
4286 
4287 /*
4288  * Determine whether a bit in a bitmap item is set.
4289  *
4290  * @eb:     the extent buffer
4291  * @start:  offset of the bitmap item in the extent buffer
4292  * @nr:     bit number to test
4293  */
4294 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4295 			   unsigned long nr)
4296 {
4297 	u8 *kaddr;
4298 	struct page *page;
4299 	unsigned long i;
4300 	size_t offset;
4301 
4302 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4303 	page = eb->pages[i];
4304 	assert_eb_page_uptodate(eb, page);
4305 	kaddr = page_address(page);
4306 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4307 }
4308 
4309 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4310 {
4311 	unsigned long index = get_eb_page_index(bytenr);
4312 
4313 	if (check_eb_range(eb, bytenr, 1))
4314 		return NULL;
4315 	return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4316 }
4317 
4318 /*
4319  * Set an area of a bitmap to 1.
4320  *
4321  * @eb:     the extent buffer
4322  * @start:  offset of the bitmap item in the extent buffer
4323  * @pos:    bit number of the first bit
4324  * @len:    number of bits to set
4325  */
4326 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4327 			      unsigned long pos, unsigned long len)
4328 {
4329 	unsigned int first_byte = start + BIT_BYTE(pos);
4330 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4331 	const bool same_byte = (first_byte == last_byte);
4332 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4333 	u8 *kaddr;
4334 
4335 	if (same_byte)
4336 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4337 
4338 	/* Handle the first byte. */
4339 	kaddr = extent_buffer_get_byte(eb, first_byte);
4340 	*kaddr |= mask;
4341 	if (same_byte)
4342 		return;
4343 
4344 	/* Handle the byte aligned part. */
4345 	ASSERT(first_byte + 1 <= last_byte);
4346 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4347 
4348 	/* Handle the last byte. */
4349 	kaddr = extent_buffer_get_byte(eb, last_byte);
4350 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4351 }
4352 
4353 
4354 /*
4355  * Clear an area of a bitmap.
4356  *
4357  * @eb:     the extent buffer
4358  * @start:  offset of the bitmap item in the extent buffer
4359  * @pos:    bit number of the first bit
4360  * @len:    number of bits to clear
4361  */
4362 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4363 				unsigned long start, unsigned long pos,
4364 				unsigned long len)
4365 {
4366 	unsigned int first_byte = start + BIT_BYTE(pos);
4367 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4368 	const bool same_byte = (first_byte == last_byte);
4369 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4370 	u8 *kaddr;
4371 
4372 	if (same_byte)
4373 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4374 
4375 	/* Handle the first byte. */
4376 	kaddr = extent_buffer_get_byte(eb, first_byte);
4377 	*kaddr &= ~mask;
4378 	if (same_byte)
4379 		return;
4380 
4381 	/* Handle the byte aligned part. */
4382 	ASSERT(first_byte + 1 <= last_byte);
4383 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4384 
4385 	/* Handle the last byte. */
4386 	kaddr = extent_buffer_get_byte(eb, last_byte);
4387 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4388 }
4389 
4390 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4391 {
4392 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4393 	return distance < len;
4394 }
4395 
4396 void memcpy_extent_buffer(const struct extent_buffer *dst,
4397 			  unsigned long dst_offset, unsigned long src_offset,
4398 			  unsigned long len)
4399 {
4400 	unsigned long cur_off = 0;
4401 
4402 	if (check_eb_range(dst, dst_offset, len) ||
4403 	    check_eb_range(dst, src_offset, len))
4404 		return;
4405 
4406 	while (cur_off < len) {
4407 		unsigned long cur_src = cur_off + src_offset;
4408 		unsigned long pg_index = get_eb_page_index(cur_src);
4409 		unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4410 		unsigned long cur_len = min(src_offset + len - cur_src,
4411 					    PAGE_SIZE - pg_off);
4412 		void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4413 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4414 						       dst_offset + cur_off, cur_len);
4415 
4416 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4417 				      use_memmove);
4418 		cur_off += cur_len;
4419 	}
4420 }
4421 
4422 void memmove_extent_buffer(const struct extent_buffer *dst,
4423 			   unsigned long dst_offset, unsigned long src_offset,
4424 			   unsigned long len)
4425 {
4426 	unsigned long dst_end = dst_offset + len - 1;
4427 	unsigned long src_end = src_offset + len - 1;
4428 
4429 	if (check_eb_range(dst, dst_offset, len) ||
4430 	    check_eb_range(dst, src_offset, len))
4431 		return;
4432 
4433 	if (dst_offset < src_offset) {
4434 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4435 		return;
4436 	}
4437 
4438 	while (len > 0) {
4439 		unsigned long src_i;
4440 		size_t cur;
4441 		size_t dst_off_in_page;
4442 		size_t src_off_in_page;
4443 		void *src_addr;
4444 		bool use_memmove;
4445 
4446 		src_i = get_eb_page_index(src_end);
4447 
4448 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4449 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4450 
4451 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4452 		cur = min(cur, dst_off_in_page + 1);
4453 
4454 		src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4455 					cur + 1;
4456 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4457 					    cur);
4458 
4459 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4460 				      use_memmove);
4461 
4462 		dst_end -= cur;
4463 		src_end -= cur;
4464 		len -= cur;
4465 	}
4466 }
4467 
4468 #define GANG_LOOKUP_SIZE	16
4469 static struct extent_buffer *get_next_extent_buffer(
4470 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4471 {
4472 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4473 	struct extent_buffer *found = NULL;
4474 	u64 page_start = page_offset(page);
4475 	u64 cur = page_start;
4476 
4477 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4478 	lockdep_assert_held(&fs_info->buffer_lock);
4479 
4480 	while (cur < page_start + PAGE_SIZE) {
4481 		int ret;
4482 		int i;
4483 
4484 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4485 				(void **)gang, cur >> fs_info->sectorsize_bits,
4486 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4487 				      PAGE_SIZE / fs_info->nodesize));
4488 		if (ret == 0)
4489 			goto out;
4490 		for (i = 0; i < ret; i++) {
4491 			/* Already beyond page end */
4492 			if (gang[i]->start >= page_start + PAGE_SIZE)
4493 				goto out;
4494 			/* Found one */
4495 			if (gang[i]->start >= bytenr) {
4496 				found = gang[i];
4497 				goto out;
4498 			}
4499 		}
4500 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4501 	}
4502 out:
4503 	return found;
4504 }
4505 
4506 static int try_release_subpage_extent_buffer(struct page *page)
4507 {
4508 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4509 	u64 cur = page_offset(page);
4510 	const u64 end = page_offset(page) + PAGE_SIZE;
4511 	int ret;
4512 
4513 	while (cur < end) {
4514 		struct extent_buffer *eb = NULL;
4515 
4516 		/*
4517 		 * Unlike try_release_extent_buffer() which uses page->private
4518 		 * to grab buffer, for subpage case we rely on radix tree, thus
4519 		 * we need to ensure radix tree consistency.
4520 		 *
4521 		 * We also want an atomic snapshot of the radix tree, thus go
4522 		 * with spinlock rather than RCU.
4523 		 */
4524 		spin_lock(&fs_info->buffer_lock);
4525 		eb = get_next_extent_buffer(fs_info, page, cur);
4526 		if (!eb) {
4527 			/* No more eb in the page range after or at cur */
4528 			spin_unlock(&fs_info->buffer_lock);
4529 			break;
4530 		}
4531 		cur = eb->start + eb->len;
4532 
4533 		/*
4534 		 * The same as try_release_extent_buffer(), to ensure the eb
4535 		 * won't disappear out from under us.
4536 		 */
4537 		spin_lock(&eb->refs_lock);
4538 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4539 			spin_unlock(&eb->refs_lock);
4540 			spin_unlock(&fs_info->buffer_lock);
4541 			break;
4542 		}
4543 		spin_unlock(&fs_info->buffer_lock);
4544 
4545 		/*
4546 		 * If tree ref isn't set then we know the ref on this eb is a
4547 		 * real ref, so just return, this eb will likely be freed soon
4548 		 * anyway.
4549 		 */
4550 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4551 			spin_unlock(&eb->refs_lock);
4552 			break;
4553 		}
4554 
4555 		/*
4556 		 * Here we don't care about the return value, we will always
4557 		 * check the page private at the end.  And
4558 		 * release_extent_buffer() will release the refs_lock.
4559 		 */
4560 		release_extent_buffer(eb);
4561 	}
4562 	/*
4563 	 * Finally to check if we have cleared page private, as if we have
4564 	 * released all ebs in the page, the page private should be cleared now.
4565 	 */
4566 	spin_lock(&page->mapping->private_lock);
4567 	if (!PagePrivate(page))
4568 		ret = 1;
4569 	else
4570 		ret = 0;
4571 	spin_unlock(&page->mapping->private_lock);
4572 	return ret;
4573 
4574 }
4575 
4576 int try_release_extent_buffer(struct page *page)
4577 {
4578 	struct extent_buffer *eb;
4579 
4580 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4581 		return try_release_subpage_extent_buffer(page);
4582 
4583 	/*
4584 	 * We need to make sure nobody is changing page->private, as we rely on
4585 	 * page->private as the pointer to extent buffer.
4586 	 */
4587 	spin_lock(&page->mapping->private_lock);
4588 	if (!PagePrivate(page)) {
4589 		spin_unlock(&page->mapping->private_lock);
4590 		return 1;
4591 	}
4592 
4593 	eb = (struct extent_buffer *)page->private;
4594 	BUG_ON(!eb);
4595 
4596 	/*
4597 	 * This is a little awful but should be ok, we need to make sure that
4598 	 * the eb doesn't disappear out from under us while we're looking at
4599 	 * this page.
4600 	 */
4601 	spin_lock(&eb->refs_lock);
4602 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4603 		spin_unlock(&eb->refs_lock);
4604 		spin_unlock(&page->mapping->private_lock);
4605 		return 0;
4606 	}
4607 	spin_unlock(&page->mapping->private_lock);
4608 
4609 	/*
4610 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4611 	 * so just return, this page will likely be freed soon anyway.
4612 	 */
4613 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4614 		spin_unlock(&eb->refs_lock);
4615 		return 0;
4616 	}
4617 
4618 	return release_extent_buffer(eb);
4619 }
4620 
4621 /*
4622  * Attempt to readahead a child block.
4623  *
4624  * @fs_info:	the fs_info
4625  * @bytenr:	bytenr to read
4626  * @owner_root: objectid of the root that owns this eb
4627  * @gen:	generation for the uptodate check, can be 0
4628  * @level:	level for the eb
4629  *
4630  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4631  * normal uptodate check of the eb, without checking the generation.  If we have
4632  * to read the block we will not block on anything.
4633  */
4634 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4635 				u64 bytenr, u64 owner_root, u64 gen, int level)
4636 {
4637 	struct btrfs_tree_parent_check check = {
4638 		.has_first_key = 0,
4639 		.level = level,
4640 		.transid = gen
4641 	};
4642 	struct extent_buffer *eb;
4643 	int ret;
4644 
4645 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4646 	if (IS_ERR(eb))
4647 		return;
4648 
4649 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4650 		free_extent_buffer(eb);
4651 		return;
4652 	}
4653 
4654 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4655 	if (ret < 0)
4656 		free_extent_buffer_stale(eb);
4657 	else
4658 		free_extent_buffer(eb);
4659 }
4660 
4661 /*
4662  * Readahead a node's child block.
4663  *
4664  * @node:	parent node we're reading from
4665  * @slot:	slot in the parent node for the child we want to read
4666  *
4667  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4668  * the slot in the node provided.
4669  */
4670 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4671 {
4672 	btrfs_readahead_tree_block(node->fs_info,
4673 				   btrfs_node_blockptr(node, slot),
4674 				   btrfs_header_owner(node),
4675 				   btrfs_node_ptr_generation(node, slot),
4676 				   btrfs_header_level(node) - 1);
4677 }
4678