1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "locking.h" 25 #include "rcu-string.h" 26 #include "backref.h" 27 #include "disk-io.h" 28 #include "subpage.h" 29 #include "zoned.h" 30 #include "block-group.h" 31 #include "compression.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "file-item.h" 35 #include "file.h" 36 #include "dev-replace.h" 37 #include "super.h" 38 #include "transaction.h" 39 40 static struct kmem_cache *extent_buffer_cache; 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 44 { 45 struct btrfs_fs_info *fs_info = eb->fs_info; 46 unsigned long flags; 47 48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 49 list_add(&eb->leak_list, &fs_info->allocated_ebs); 50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 51 } 52 53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 54 { 55 struct btrfs_fs_info *fs_info = eb->fs_info; 56 unsigned long flags; 57 58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 59 list_del(&eb->leak_list); 60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 61 } 62 63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 64 { 65 struct extent_buffer *eb; 66 unsigned long flags; 67 68 /* 69 * If we didn't get into open_ctree our allocated_ebs will not be 70 * initialized, so just skip this. 71 */ 72 if (!fs_info->allocated_ebs.next) 73 return; 74 75 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 77 while (!list_empty(&fs_info->allocated_ebs)) { 78 eb = list_first_entry(&fs_info->allocated_ebs, 79 struct extent_buffer, leak_list); 80 pr_err( 81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 83 btrfs_header_owner(eb)); 84 list_del(&eb->leak_list); 85 kmem_cache_free(extent_buffer_cache, eb); 86 } 87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 88 } 89 #else 90 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 91 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 92 #endif 93 94 /* 95 * Structure to record info about the bio being assembled, and other info like 96 * how many bytes are there before stripe/ordered extent boundary. 97 */ 98 struct btrfs_bio_ctrl { 99 struct btrfs_bio *bbio; 100 enum btrfs_compression_type compress_type; 101 u32 len_to_oe_boundary; 102 blk_opf_t opf; 103 btrfs_bio_end_io_t end_io_func; 104 struct writeback_control *wbc; 105 }; 106 107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 108 { 109 struct btrfs_bio *bbio = bio_ctrl->bbio; 110 111 if (!bbio) 112 return; 113 114 /* Caller should ensure the bio has at least some range added */ 115 ASSERT(bbio->bio.bi_iter.bi_size); 116 117 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 118 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 119 btrfs_submit_compressed_read(bbio); 120 else 121 btrfs_submit_bio(bbio, 0); 122 123 /* The bbio is owned by the end_io handler now */ 124 bio_ctrl->bbio = NULL; 125 } 126 127 /* 128 * Submit or fail the current bio in the bio_ctrl structure. 129 */ 130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 131 { 132 struct btrfs_bio *bbio = bio_ctrl->bbio; 133 134 if (!bbio) 135 return; 136 137 if (ret) { 138 ASSERT(ret < 0); 139 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 140 /* The bio is owned by the end_io handler now */ 141 bio_ctrl->bbio = NULL; 142 } else { 143 submit_one_bio(bio_ctrl); 144 } 145 } 146 147 int __init extent_buffer_init_cachep(void) 148 { 149 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 150 sizeof(struct extent_buffer), 0, 151 SLAB_MEM_SPREAD, NULL); 152 if (!extent_buffer_cache) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 void __cold extent_buffer_free_cachep(void) 159 { 160 /* 161 * Make sure all delayed rcu free are flushed before we 162 * destroy caches. 163 */ 164 rcu_barrier(); 165 kmem_cache_destroy(extent_buffer_cache); 166 } 167 168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 169 { 170 unsigned long index = start >> PAGE_SHIFT; 171 unsigned long end_index = end >> PAGE_SHIFT; 172 struct page *page; 173 174 while (index <= end_index) { 175 page = find_get_page(inode->i_mapping, index); 176 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 177 clear_page_dirty_for_io(page); 178 put_page(page); 179 index++; 180 } 181 } 182 183 static void process_one_page(struct btrfs_fs_info *fs_info, 184 struct page *page, struct page *locked_page, 185 unsigned long page_ops, u64 start, u64 end) 186 { 187 u32 len; 188 189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 190 len = end + 1 - start; 191 192 if (page_ops & PAGE_SET_ORDERED) 193 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 194 if (page_ops & PAGE_START_WRITEBACK) { 195 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 196 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 197 } 198 if (page_ops & PAGE_END_WRITEBACK) 199 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 200 201 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 202 btrfs_page_end_writer_lock(fs_info, page, start, len); 203 } 204 205 static void __process_pages_contig(struct address_space *mapping, 206 struct page *locked_page, u64 start, u64 end, 207 unsigned long page_ops) 208 { 209 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 210 pgoff_t start_index = start >> PAGE_SHIFT; 211 pgoff_t end_index = end >> PAGE_SHIFT; 212 pgoff_t index = start_index; 213 struct folio_batch fbatch; 214 int i; 215 216 folio_batch_init(&fbatch); 217 while (index <= end_index) { 218 int found_folios; 219 220 found_folios = filemap_get_folios_contig(mapping, &index, 221 end_index, &fbatch); 222 for (i = 0; i < found_folios; i++) { 223 struct folio *folio = fbatch.folios[i]; 224 225 process_one_page(fs_info, &folio->page, locked_page, 226 page_ops, start, end); 227 } 228 folio_batch_release(&fbatch); 229 cond_resched(); 230 } 231 } 232 233 static noinline void __unlock_for_delalloc(struct inode *inode, 234 struct page *locked_page, 235 u64 start, u64 end) 236 { 237 unsigned long index = start >> PAGE_SHIFT; 238 unsigned long end_index = end >> PAGE_SHIFT; 239 240 ASSERT(locked_page); 241 if (index == locked_page->index && end_index == index) 242 return; 243 244 __process_pages_contig(inode->i_mapping, locked_page, start, end, 245 PAGE_UNLOCK); 246 } 247 248 static noinline int lock_delalloc_pages(struct inode *inode, 249 struct page *locked_page, 250 u64 start, 251 u64 end) 252 { 253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 254 struct address_space *mapping = inode->i_mapping; 255 pgoff_t start_index = start >> PAGE_SHIFT; 256 pgoff_t end_index = end >> PAGE_SHIFT; 257 pgoff_t index = start_index; 258 u64 processed_end = start; 259 struct folio_batch fbatch; 260 261 if (index == locked_page->index && index == end_index) 262 return 0; 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 unsigned int found_folios, i; 267 268 found_folios = filemap_get_folios_contig(mapping, &index, 269 end_index, &fbatch); 270 if (found_folios == 0) 271 goto out; 272 273 for (i = 0; i < found_folios; i++) { 274 struct page *page = &fbatch.folios[i]->page; 275 u32 len = end + 1 - start; 276 277 if (page == locked_page) 278 continue; 279 280 if (btrfs_page_start_writer_lock(fs_info, page, start, 281 len)) 282 goto out; 283 284 if (!PageDirty(page) || page->mapping != mapping) { 285 btrfs_page_end_writer_lock(fs_info, page, start, 286 len); 287 goto out; 288 } 289 290 processed_end = page_offset(page) + PAGE_SIZE - 1; 291 } 292 folio_batch_release(&fbatch); 293 cond_resched(); 294 } 295 296 return 0; 297 out: 298 folio_batch_release(&fbatch); 299 if (processed_end > start) 300 __unlock_for_delalloc(inode, locked_page, start, processed_end); 301 return -EAGAIN; 302 } 303 304 /* 305 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 306 * more than @max_bytes. 307 * 308 * @start: The original start bytenr to search. 309 * Will store the extent range start bytenr. 310 * @end: The original end bytenr of the search range 311 * Will store the extent range end bytenr. 312 * 313 * Return true if we find a delalloc range which starts inside the original 314 * range, and @start/@end will store the delalloc range start/end. 315 * 316 * Return false if we can't find any delalloc range which starts inside the 317 * original range, and @start/@end will be the non-delalloc range start/end. 318 */ 319 EXPORT_FOR_TESTS 320 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 321 struct page *locked_page, u64 *start, 322 u64 *end) 323 { 324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 325 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 326 const u64 orig_start = *start; 327 const u64 orig_end = *end; 328 /* The sanity tests may not set a valid fs_info. */ 329 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 330 u64 delalloc_start; 331 u64 delalloc_end; 332 bool found; 333 struct extent_state *cached_state = NULL; 334 int ret; 335 int loops = 0; 336 337 /* Caller should pass a valid @end to indicate the search range end */ 338 ASSERT(orig_end > orig_start); 339 340 /* The range should at least cover part of the page */ 341 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 342 orig_end <= page_offset(locked_page))); 343 again: 344 /* step one, find a bunch of delalloc bytes starting at start */ 345 delalloc_start = *start; 346 delalloc_end = 0; 347 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 348 max_bytes, &cached_state); 349 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 350 *start = delalloc_start; 351 352 /* @delalloc_end can be -1, never go beyond @orig_end */ 353 *end = min(delalloc_end, orig_end); 354 free_extent_state(cached_state); 355 return false; 356 } 357 358 /* 359 * start comes from the offset of locked_page. We have to lock 360 * pages in order, so we can't process delalloc bytes before 361 * locked_page 362 */ 363 if (delalloc_start < *start) 364 delalloc_start = *start; 365 366 /* 367 * make sure to limit the number of pages we try to lock down 368 */ 369 if (delalloc_end + 1 - delalloc_start > max_bytes) 370 delalloc_end = delalloc_start + max_bytes - 1; 371 372 /* step two, lock all the pages after the page that has start */ 373 ret = lock_delalloc_pages(inode, locked_page, 374 delalloc_start, delalloc_end); 375 ASSERT(!ret || ret == -EAGAIN); 376 if (ret == -EAGAIN) { 377 /* some of the pages are gone, lets avoid looping by 378 * shortening the size of the delalloc range we're searching 379 */ 380 free_extent_state(cached_state); 381 cached_state = NULL; 382 if (!loops) { 383 max_bytes = PAGE_SIZE; 384 loops = 1; 385 goto again; 386 } else { 387 found = false; 388 goto out_failed; 389 } 390 } 391 392 /* step three, lock the state bits for the whole range */ 393 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 394 395 /* then test to make sure it is all still delalloc */ 396 ret = test_range_bit(tree, delalloc_start, delalloc_end, 397 EXTENT_DELALLOC, cached_state); 398 if (!ret) { 399 unlock_extent(tree, delalloc_start, delalloc_end, 400 &cached_state); 401 __unlock_for_delalloc(inode, locked_page, 402 delalloc_start, delalloc_end); 403 cond_resched(); 404 goto again; 405 } 406 free_extent_state(cached_state); 407 *start = delalloc_start; 408 *end = delalloc_end; 409 out_failed: 410 return found; 411 } 412 413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 414 struct page *locked_page, 415 u32 clear_bits, unsigned long page_ops) 416 { 417 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 418 419 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 420 start, end, page_ops); 421 } 422 423 static bool btrfs_verify_page(struct page *page, u64 start) 424 { 425 if (!fsverity_active(page->mapping->host) || 426 PageUptodate(page) || 427 start >= i_size_read(page->mapping->host)) 428 return true; 429 return fsverity_verify_page(page); 430 } 431 432 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 433 { 434 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 435 436 ASSERT(page_offset(page) <= start && 437 start + len <= page_offset(page) + PAGE_SIZE); 438 439 if (uptodate && btrfs_verify_page(page, start)) 440 btrfs_page_set_uptodate(fs_info, page, start, len); 441 else 442 btrfs_page_clear_uptodate(fs_info, page, start, len); 443 444 if (!btrfs_is_subpage(fs_info, page)) 445 unlock_page(page); 446 else 447 btrfs_subpage_end_reader(fs_info, page, start, len); 448 } 449 450 /* 451 * after a writepage IO is done, we need to: 452 * clear the uptodate bits on error 453 * clear the writeback bits in the extent tree for this IO 454 * end_page_writeback if the page has no more pending IO 455 * 456 * Scheduling is not allowed, so the extent state tree is expected 457 * to have one and only one object corresponding to this IO. 458 */ 459 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 460 { 461 struct bio *bio = &bbio->bio; 462 int error = blk_status_to_errno(bio->bi_status); 463 struct bio_vec *bvec; 464 struct bvec_iter_all iter_all; 465 466 ASSERT(!bio_flagged(bio, BIO_CLONED)); 467 bio_for_each_segment_all(bvec, bio, iter_all) { 468 struct page *page = bvec->bv_page; 469 struct inode *inode = page->mapping->host; 470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 471 const u32 sectorsize = fs_info->sectorsize; 472 u64 start = page_offset(page) + bvec->bv_offset; 473 u32 len = bvec->bv_len; 474 475 /* Our read/write should always be sector aligned. */ 476 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 477 btrfs_err(fs_info, 478 "partial page write in btrfs with offset %u and length %u", 479 bvec->bv_offset, bvec->bv_len); 480 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 481 btrfs_info(fs_info, 482 "incomplete page write with offset %u and length %u", 483 bvec->bv_offset, bvec->bv_len); 484 485 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 486 if (error) 487 mapping_set_error(page->mapping, error); 488 btrfs_page_clear_writeback(fs_info, page, start, len); 489 } 490 491 bio_put(bio); 492 } 493 494 /* 495 * Record previously processed extent range 496 * 497 * For endio_readpage_release_extent() to handle a full extent range, reducing 498 * the extent io operations. 499 */ 500 struct processed_extent { 501 struct btrfs_inode *inode; 502 /* Start of the range in @inode */ 503 u64 start; 504 /* End of the range in @inode */ 505 u64 end; 506 bool uptodate; 507 }; 508 509 /* 510 * Try to release processed extent range 511 * 512 * May not release the extent range right now if the current range is 513 * contiguous to processed extent. 514 * 515 * Will release processed extent when any of @inode, @uptodate, the range is 516 * no longer contiguous to the processed range. 517 * 518 * Passing @inode == NULL will force processed extent to be released. 519 */ 520 static void endio_readpage_release_extent(struct processed_extent *processed, 521 struct btrfs_inode *inode, u64 start, u64 end, 522 bool uptodate) 523 { 524 struct extent_state *cached = NULL; 525 struct extent_io_tree *tree; 526 527 /* The first extent, initialize @processed */ 528 if (!processed->inode) 529 goto update; 530 531 /* 532 * Contiguous to processed extent, just uptodate the end. 533 * 534 * Several things to notice: 535 * 536 * - bio can be merged as long as on-disk bytenr is contiguous 537 * This means we can have page belonging to other inodes, thus need to 538 * check if the inode still matches. 539 * - bvec can contain range beyond current page for multi-page bvec 540 * Thus we need to do processed->end + 1 >= start check 541 */ 542 if (processed->inode == inode && processed->uptodate == uptodate && 543 processed->end + 1 >= start && end >= processed->end) { 544 processed->end = end; 545 return; 546 } 547 548 tree = &processed->inode->io_tree; 549 /* 550 * Now we don't have range contiguous to the processed range, release 551 * the processed range now. 552 */ 553 unlock_extent(tree, processed->start, processed->end, &cached); 554 555 update: 556 /* Update processed to current range */ 557 processed->inode = inode; 558 processed->start = start; 559 processed->end = end; 560 processed->uptodate = uptodate; 561 } 562 563 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 564 { 565 ASSERT(PageLocked(page)); 566 if (!btrfs_is_subpage(fs_info, page)) 567 return; 568 569 ASSERT(PagePrivate(page)); 570 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 571 } 572 573 /* 574 * after a readpage IO is done, we need to: 575 * clear the uptodate bits on error 576 * set the uptodate bits if things worked 577 * set the page up to date if all extents in the tree are uptodate 578 * clear the lock bit in the extent tree 579 * unlock the page if there are no other extents locked for it 580 * 581 * Scheduling is not allowed, so the extent state tree is expected 582 * to have one and only one object corresponding to this IO. 583 */ 584 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 585 { 586 struct bio *bio = &bbio->bio; 587 struct bio_vec *bvec; 588 struct processed_extent processed = { 0 }; 589 /* 590 * The offset to the beginning of a bio, since one bio can never be 591 * larger than UINT_MAX, u32 here is enough. 592 */ 593 u32 bio_offset = 0; 594 struct bvec_iter_all iter_all; 595 596 ASSERT(!bio_flagged(bio, BIO_CLONED)); 597 bio_for_each_segment_all(bvec, bio, iter_all) { 598 bool uptodate = !bio->bi_status; 599 struct page *page = bvec->bv_page; 600 struct inode *inode = page->mapping->host; 601 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 602 const u32 sectorsize = fs_info->sectorsize; 603 u64 start; 604 u64 end; 605 u32 len; 606 607 btrfs_debug(fs_info, 608 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 609 bio->bi_iter.bi_sector, bio->bi_status, 610 bbio->mirror_num); 611 612 /* 613 * We always issue full-sector reads, but if some block in a 614 * page fails to read, blk_update_request() will advance 615 * bv_offset and adjust bv_len to compensate. Print a warning 616 * for unaligned offsets, and an error if they don't add up to 617 * a full sector. 618 */ 619 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 620 btrfs_err(fs_info, 621 "partial page read in btrfs with offset %u and length %u", 622 bvec->bv_offset, bvec->bv_len); 623 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 624 sectorsize)) 625 btrfs_info(fs_info, 626 "incomplete page read with offset %u and length %u", 627 bvec->bv_offset, bvec->bv_len); 628 629 start = page_offset(page) + bvec->bv_offset; 630 end = start + bvec->bv_len - 1; 631 len = bvec->bv_len; 632 633 if (likely(uptodate)) { 634 loff_t i_size = i_size_read(inode); 635 pgoff_t end_index = i_size >> PAGE_SHIFT; 636 637 /* 638 * Zero out the remaining part if this range straddles 639 * i_size. 640 * 641 * Here we should only zero the range inside the bvec, 642 * not touch anything else. 643 * 644 * NOTE: i_size is exclusive while end is inclusive. 645 */ 646 if (page->index == end_index && i_size <= end) { 647 u32 zero_start = max(offset_in_page(i_size), 648 offset_in_page(start)); 649 650 zero_user_segment(page, zero_start, 651 offset_in_page(end) + 1); 652 } 653 } 654 655 /* Update page status and unlock. */ 656 end_page_read(page, uptodate, start, len); 657 endio_readpage_release_extent(&processed, BTRFS_I(inode), 658 start, end, uptodate); 659 660 ASSERT(bio_offset + len > bio_offset); 661 bio_offset += len; 662 663 } 664 /* Release the last extent */ 665 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 666 bio_put(bio); 667 } 668 669 /* 670 * Populate every free slot in a provided array with pages. 671 * 672 * @nr_pages: number of pages to allocate 673 * @page_array: the array to fill with pages; any existing non-null entries in 674 * the array will be skipped 675 * 676 * Return: 0 if all pages were able to be allocated; 677 * -ENOMEM otherwise, and the caller is responsible for freeing all 678 * non-null page pointers in the array. 679 */ 680 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 681 { 682 unsigned int allocated; 683 684 for (allocated = 0; allocated < nr_pages;) { 685 unsigned int last = allocated; 686 687 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 688 689 if (allocated == nr_pages) 690 return 0; 691 692 /* 693 * During this iteration, no page could be allocated, even 694 * though alloc_pages_bulk_array() falls back to alloc_page() 695 * if it could not bulk-allocate. So we must be out of memory. 696 */ 697 if (allocated == last) 698 return -ENOMEM; 699 700 memalloc_retry_wait(GFP_NOFS); 701 } 702 return 0; 703 } 704 705 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 706 struct page *page, u64 disk_bytenr, 707 unsigned int pg_offset) 708 { 709 struct bio *bio = &bio_ctrl->bbio->bio; 710 struct bio_vec *bvec = bio_last_bvec_all(bio); 711 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 712 713 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 714 /* 715 * For compression, all IO should have its logical bytenr set 716 * to the starting bytenr of the compressed extent. 717 */ 718 return bio->bi_iter.bi_sector == sector; 719 } 720 721 /* 722 * The contig check requires the following conditions to be met: 723 * 724 * 1) The pages are belonging to the same inode 725 * This is implied by the call chain. 726 * 727 * 2) The range has adjacent logical bytenr 728 * 729 * 3) The range has adjacent file offset 730 * This is required for the usage of btrfs_bio->file_offset. 731 */ 732 return bio_end_sector(bio) == sector && 733 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 734 page_offset(page) + pg_offset; 735 } 736 737 static void alloc_new_bio(struct btrfs_inode *inode, 738 struct btrfs_bio_ctrl *bio_ctrl, 739 u64 disk_bytenr, u64 file_offset) 740 { 741 struct btrfs_fs_info *fs_info = inode->root->fs_info; 742 struct btrfs_bio *bbio; 743 744 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 745 bio_ctrl->end_io_func, NULL); 746 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 747 bbio->inode = inode; 748 bbio->file_offset = file_offset; 749 bio_ctrl->bbio = bbio; 750 bio_ctrl->len_to_oe_boundary = U32_MAX; 751 752 /* Limit data write bios to the ordered boundary. */ 753 if (bio_ctrl->wbc) { 754 struct btrfs_ordered_extent *ordered; 755 756 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 757 if (ordered) { 758 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 759 ordered->file_offset + 760 ordered->disk_num_bytes - file_offset); 761 bbio->ordered = ordered; 762 } 763 764 /* 765 * Pick the last added device to support cgroup writeback. For 766 * multi-device file systems this means blk-cgroup policies have 767 * to always be set on the last added/replaced device. 768 * This is a bit odd but has been like that for a long time. 769 */ 770 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 771 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 772 } 773 } 774 775 /* 776 * @disk_bytenr: logical bytenr where the write will be 777 * @page: page to add to the bio 778 * @size: portion of page that we want to write to 779 * @pg_offset: offset of the new bio or to check whether we are adding 780 * a contiguous page to the previous one 781 * 782 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 783 * new one in @bio_ctrl->bbio. 784 * The mirror number for this IO should already be initizlied in 785 * @bio_ctrl->mirror_num. 786 */ 787 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 788 u64 disk_bytenr, struct page *page, 789 size_t size, unsigned long pg_offset) 790 { 791 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 792 793 ASSERT(pg_offset + size <= PAGE_SIZE); 794 ASSERT(bio_ctrl->end_io_func); 795 796 if (bio_ctrl->bbio && 797 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 798 submit_one_bio(bio_ctrl); 799 800 do { 801 u32 len = size; 802 803 /* Allocate new bio if needed */ 804 if (!bio_ctrl->bbio) { 805 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 806 page_offset(page) + pg_offset); 807 } 808 809 /* Cap to the current ordered extent boundary if there is one. */ 810 if (len > bio_ctrl->len_to_oe_boundary) { 811 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 812 ASSERT(is_data_inode(&inode->vfs_inode)); 813 len = bio_ctrl->len_to_oe_boundary; 814 } 815 816 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 817 /* bio full: move on to a new one */ 818 submit_one_bio(bio_ctrl); 819 continue; 820 } 821 822 if (bio_ctrl->wbc) 823 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 824 825 size -= len; 826 pg_offset += len; 827 disk_bytenr += len; 828 829 /* 830 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 831 * sector aligned. alloc_new_bio() then sets it to the end of 832 * our ordered extent for writes into zoned devices. 833 * 834 * When len_to_oe_boundary is tracking an ordered extent, we 835 * trust the ordered extent code to align things properly, and 836 * the check above to cap our write to the ordered extent 837 * boundary is correct. 838 * 839 * When len_to_oe_boundary is U32_MAX, the cap above would 840 * result in a 4095 byte IO for the last page right before 841 * we hit the bio limit of UINT_MAX. bio_add_page() has all 842 * the checks required to make sure we don't overflow the bio, 843 * and we should just ignore len_to_oe_boundary completely 844 * unless we're using it to track an ordered extent. 845 * 846 * It's pretty hard to make a bio sized U32_MAX, but it can 847 * happen when the page cache is able to feed us contiguous 848 * pages for large extents. 849 */ 850 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 851 bio_ctrl->len_to_oe_boundary -= len; 852 853 /* Ordered extent boundary: move on to a new bio. */ 854 if (bio_ctrl->len_to_oe_boundary == 0) 855 submit_one_bio(bio_ctrl); 856 } while (size); 857 } 858 859 static int attach_extent_buffer_page(struct extent_buffer *eb, 860 struct page *page, 861 struct btrfs_subpage *prealloc) 862 { 863 struct btrfs_fs_info *fs_info = eb->fs_info; 864 int ret = 0; 865 866 /* 867 * If the page is mapped to btree inode, we should hold the private 868 * lock to prevent race. 869 * For cloned or dummy extent buffers, their pages are not mapped and 870 * will not race with any other ebs. 871 */ 872 if (page->mapping) 873 lockdep_assert_held(&page->mapping->private_lock); 874 875 if (fs_info->nodesize >= PAGE_SIZE) { 876 if (!PagePrivate(page)) 877 attach_page_private(page, eb); 878 else 879 WARN_ON(page->private != (unsigned long)eb); 880 return 0; 881 } 882 883 /* Already mapped, just free prealloc */ 884 if (PagePrivate(page)) { 885 btrfs_free_subpage(prealloc); 886 return 0; 887 } 888 889 if (prealloc) 890 /* Has preallocated memory for subpage */ 891 attach_page_private(page, prealloc); 892 else 893 /* Do new allocation to attach subpage */ 894 ret = btrfs_attach_subpage(fs_info, page, 895 BTRFS_SUBPAGE_METADATA); 896 return ret; 897 } 898 899 int set_page_extent_mapped(struct page *page) 900 { 901 struct btrfs_fs_info *fs_info; 902 903 ASSERT(page->mapping); 904 905 if (PagePrivate(page)) 906 return 0; 907 908 fs_info = btrfs_sb(page->mapping->host->i_sb); 909 910 if (btrfs_is_subpage(fs_info, page)) 911 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 912 913 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 914 return 0; 915 } 916 917 void clear_page_extent_mapped(struct page *page) 918 { 919 struct btrfs_fs_info *fs_info; 920 921 ASSERT(page->mapping); 922 923 if (!PagePrivate(page)) 924 return; 925 926 fs_info = btrfs_sb(page->mapping->host->i_sb); 927 if (btrfs_is_subpage(fs_info, page)) 928 return btrfs_detach_subpage(fs_info, page); 929 930 detach_page_private(page); 931 } 932 933 static struct extent_map * 934 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 935 u64 start, u64 len, struct extent_map **em_cached) 936 { 937 struct extent_map *em; 938 939 if (em_cached && *em_cached) { 940 em = *em_cached; 941 if (extent_map_in_tree(em) && start >= em->start && 942 start < extent_map_end(em)) { 943 refcount_inc(&em->refs); 944 return em; 945 } 946 947 free_extent_map(em); 948 *em_cached = NULL; 949 } 950 951 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 952 if (em_cached && !IS_ERR(em)) { 953 BUG_ON(*em_cached); 954 refcount_inc(&em->refs); 955 *em_cached = em; 956 } 957 return em; 958 } 959 /* 960 * basic readpage implementation. Locked extent state structs are inserted 961 * into the tree that are removed when the IO is done (by the end_io 962 * handlers) 963 * XXX JDM: This needs looking at to ensure proper page locking 964 * return 0 on success, otherwise return error 965 */ 966 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 967 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 968 { 969 struct inode *inode = page->mapping->host; 970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 971 u64 start = page_offset(page); 972 const u64 end = start + PAGE_SIZE - 1; 973 u64 cur = start; 974 u64 extent_offset; 975 u64 last_byte = i_size_read(inode); 976 u64 block_start; 977 struct extent_map *em; 978 int ret = 0; 979 size_t pg_offset = 0; 980 size_t iosize; 981 size_t blocksize = inode->i_sb->s_blocksize; 982 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 983 984 ret = set_page_extent_mapped(page); 985 if (ret < 0) { 986 unlock_extent(tree, start, end, NULL); 987 unlock_page(page); 988 return ret; 989 } 990 991 if (page->index == last_byte >> PAGE_SHIFT) { 992 size_t zero_offset = offset_in_page(last_byte); 993 994 if (zero_offset) { 995 iosize = PAGE_SIZE - zero_offset; 996 memzero_page(page, zero_offset, iosize); 997 } 998 } 999 bio_ctrl->end_io_func = end_bio_extent_readpage; 1000 begin_page_read(fs_info, page); 1001 while (cur <= end) { 1002 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1003 bool force_bio_submit = false; 1004 u64 disk_bytenr; 1005 1006 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1007 if (cur >= last_byte) { 1008 iosize = PAGE_SIZE - pg_offset; 1009 memzero_page(page, pg_offset, iosize); 1010 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1011 end_page_read(page, true, cur, iosize); 1012 break; 1013 } 1014 em = __get_extent_map(inode, page, pg_offset, cur, 1015 end - cur + 1, em_cached); 1016 if (IS_ERR(em)) { 1017 unlock_extent(tree, cur, end, NULL); 1018 end_page_read(page, false, cur, end + 1 - cur); 1019 return PTR_ERR(em); 1020 } 1021 extent_offset = cur - em->start; 1022 BUG_ON(extent_map_end(em) <= cur); 1023 BUG_ON(end < cur); 1024 1025 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1026 compress_type = em->compress_type; 1027 1028 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1029 iosize = ALIGN(iosize, blocksize); 1030 if (compress_type != BTRFS_COMPRESS_NONE) 1031 disk_bytenr = em->block_start; 1032 else 1033 disk_bytenr = em->block_start + extent_offset; 1034 block_start = em->block_start; 1035 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1036 block_start = EXTENT_MAP_HOLE; 1037 1038 /* 1039 * If we have a file range that points to a compressed extent 1040 * and it's followed by a consecutive file range that points 1041 * to the same compressed extent (possibly with a different 1042 * offset and/or length, so it either points to the whole extent 1043 * or only part of it), we must make sure we do not submit a 1044 * single bio to populate the pages for the 2 ranges because 1045 * this makes the compressed extent read zero out the pages 1046 * belonging to the 2nd range. Imagine the following scenario: 1047 * 1048 * File layout 1049 * [0 - 8K] [8K - 24K] 1050 * | | 1051 * | | 1052 * points to extent X, points to extent X, 1053 * offset 4K, length of 8K offset 0, length 16K 1054 * 1055 * [extent X, compressed length = 4K uncompressed length = 16K] 1056 * 1057 * If the bio to read the compressed extent covers both ranges, 1058 * it will decompress extent X into the pages belonging to the 1059 * first range and then it will stop, zeroing out the remaining 1060 * pages that belong to the other range that points to extent X. 1061 * So here we make sure we submit 2 bios, one for the first 1062 * range and another one for the third range. Both will target 1063 * the same physical extent from disk, but we can't currently 1064 * make the compressed bio endio callback populate the pages 1065 * for both ranges because each compressed bio is tightly 1066 * coupled with a single extent map, and each range can have 1067 * an extent map with a different offset value relative to the 1068 * uncompressed data of our extent and different lengths. This 1069 * is a corner case so we prioritize correctness over 1070 * non-optimal behavior (submitting 2 bios for the same extent). 1071 */ 1072 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1073 prev_em_start && *prev_em_start != (u64)-1 && 1074 *prev_em_start != em->start) 1075 force_bio_submit = true; 1076 1077 if (prev_em_start) 1078 *prev_em_start = em->start; 1079 1080 free_extent_map(em); 1081 em = NULL; 1082 1083 /* we've found a hole, just zero and go on */ 1084 if (block_start == EXTENT_MAP_HOLE) { 1085 memzero_page(page, pg_offset, iosize); 1086 1087 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1088 end_page_read(page, true, cur, iosize); 1089 cur = cur + iosize; 1090 pg_offset += iosize; 1091 continue; 1092 } 1093 /* the get_extent function already copied into the page */ 1094 if (block_start == EXTENT_MAP_INLINE) { 1095 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1096 end_page_read(page, true, cur, iosize); 1097 cur = cur + iosize; 1098 pg_offset += iosize; 1099 continue; 1100 } 1101 1102 if (bio_ctrl->compress_type != compress_type) { 1103 submit_one_bio(bio_ctrl); 1104 bio_ctrl->compress_type = compress_type; 1105 } 1106 1107 if (force_bio_submit) 1108 submit_one_bio(bio_ctrl); 1109 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1110 pg_offset); 1111 cur = cur + iosize; 1112 pg_offset += iosize; 1113 } 1114 1115 return 0; 1116 } 1117 1118 int btrfs_read_folio(struct file *file, struct folio *folio) 1119 { 1120 struct page *page = &folio->page; 1121 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1122 u64 start = page_offset(page); 1123 u64 end = start + PAGE_SIZE - 1; 1124 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1125 int ret; 1126 1127 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1128 1129 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1130 /* 1131 * If btrfs_do_readpage() failed we will want to submit the assembled 1132 * bio to do the cleanup. 1133 */ 1134 submit_one_bio(&bio_ctrl); 1135 return ret; 1136 } 1137 1138 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1139 u64 start, u64 end, 1140 struct extent_map **em_cached, 1141 struct btrfs_bio_ctrl *bio_ctrl, 1142 u64 *prev_em_start) 1143 { 1144 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1145 int index; 1146 1147 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1148 1149 for (index = 0; index < nr_pages; index++) { 1150 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1151 prev_em_start); 1152 put_page(pages[index]); 1153 } 1154 } 1155 1156 /* 1157 * helper for __extent_writepage, doing all of the delayed allocation setup. 1158 * 1159 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1160 * to write the page (copy into inline extent). In this case the IO has 1161 * been started and the page is already unlocked. 1162 * 1163 * This returns 0 if all went well (page still locked) 1164 * This returns < 0 if there were errors (page still locked) 1165 */ 1166 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1167 struct page *page, struct writeback_control *wbc) 1168 { 1169 const u64 page_start = page_offset(page); 1170 const u64 page_end = page_start + PAGE_SIZE - 1; 1171 u64 delalloc_start = page_start; 1172 u64 delalloc_end = page_end; 1173 u64 delalloc_to_write = 0; 1174 int ret = 0; 1175 1176 while (delalloc_start < page_end) { 1177 delalloc_end = page_end; 1178 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1179 &delalloc_start, &delalloc_end)) { 1180 delalloc_start = delalloc_end + 1; 1181 continue; 1182 } 1183 1184 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1185 delalloc_end, wbc); 1186 if (ret < 0) 1187 return ret; 1188 1189 delalloc_start = delalloc_end + 1; 1190 } 1191 1192 /* 1193 * delalloc_end is already one less than the total length, so 1194 * we don't subtract one from PAGE_SIZE 1195 */ 1196 delalloc_to_write += 1197 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1198 1199 /* 1200 * If btrfs_run_dealloc_range() already started I/O and unlocked 1201 * the pages, we just need to account for them here. 1202 */ 1203 if (ret == 1) { 1204 wbc->nr_to_write -= delalloc_to_write; 1205 return 1; 1206 } 1207 1208 if (wbc->nr_to_write < delalloc_to_write) { 1209 int thresh = 8192; 1210 1211 if (delalloc_to_write < thresh * 2) 1212 thresh = delalloc_to_write; 1213 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1214 thresh); 1215 } 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * Find the first byte we need to write. 1222 * 1223 * For subpage, one page can contain several sectors, and 1224 * __extent_writepage_io() will just grab all extent maps in the page 1225 * range and try to submit all non-inline/non-compressed extents. 1226 * 1227 * This is a big problem for subpage, we shouldn't re-submit already written 1228 * data at all. 1229 * This function will lookup subpage dirty bit to find which range we really 1230 * need to submit. 1231 * 1232 * Return the next dirty range in [@start, @end). 1233 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1234 */ 1235 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1236 struct page *page, u64 *start, u64 *end) 1237 { 1238 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1239 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1240 u64 orig_start = *start; 1241 /* Declare as unsigned long so we can use bitmap ops */ 1242 unsigned long flags; 1243 int range_start_bit; 1244 int range_end_bit; 1245 1246 /* 1247 * For regular sector size == page size case, since one page only 1248 * contains one sector, we return the page offset directly. 1249 */ 1250 if (!btrfs_is_subpage(fs_info, page)) { 1251 *start = page_offset(page); 1252 *end = page_offset(page) + PAGE_SIZE; 1253 return; 1254 } 1255 1256 range_start_bit = spi->dirty_offset + 1257 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1258 1259 /* We should have the page locked, but just in case */ 1260 spin_lock_irqsave(&subpage->lock, flags); 1261 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1262 spi->dirty_offset + spi->bitmap_nr_bits); 1263 spin_unlock_irqrestore(&subpage->lock, flags); 1264 1265 range_start_bit -= spi->dirty_offset; 1266 range_end_bit -= spi->dirty_offset; 1267 1268 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1269 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1270 } 1271 1272 /* 1273 * helper for __extent_writepage. This calls the writepage start hooks, 1274 * and does the loop to map the page into extents and bios. 1275 * 1276 * We return 1 if the IO is started and the page is unlocked, 1277 * 0 if all went well (page still locked) 1278 * < 0 if there were errors (page still locked) 1279 */ 1280 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1281 struct page *page, 1282 struct btrfs_bio_ctrl *bio_ctrl, 1283 loff_t i_size, 1284 int *nr_ret) 1285 { 1286 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1287 u64 cur = page_offset(page); 1288 u64 end = cur + PAGE_SIZE - 1; 1289 u64 extent_offset; 1290 u64 block_start; 1291 struct extent_map *em; 1292 int ret = 0; 1293 int nr = 0; 1294 1295 ret = btrfs_writepage_cow_fixup(page); 1296 if (ret) { 1297 /* Fixup worker will requeue */ 1298 redirty_page_for_writepage(bio_ctrl->wbc, page); 1299 unlock_page(page); 1300 return 1; 1301 } 1302 1303 bio_ctrl->end_io_func = end_bio_extent_writepage; 1304 while (cur <= end) { 1305 u32 len = end - cur + 1; 1306 u64 disk_bytenr; 1307 u64 em_end; 1308 u64 dirty_range_start = cur; 1309 u64 dirty_range_end; 1310 u32 iosize; 1311 1312 if (cur >= i_size) { 1313 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1314 true); 1315 /* 1316 * This range is beyond i_size, thus we don't need to 1317 * bother writing back. 1318 * But we still need to clear the dirty subpage bit, or 1319 * the next time the page gets dirtied, we will try to 1320 * writeback the sectors with subpage dirty bits, 1321 * causing writeback without ordered extent. 1322 */ 1323 btrfs_page_clear_dirty(fs_info, page, cur, len); 1324 break; 1325 } 1326 1327 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1328 &dirty_range_end); 1329 if (cur < dirty_range_start) { 1330 cur = dirty_range_start; 1331 continue; 1332 } 1333 1334 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1335 if (IS_ERR(em)) { 1336 ret = PTR_ERR_OR_ZERO(em); 1337 goto out_error; 1338 } 1339 1340 extent_offset = cur - em->start; 1341 em_end = extent_map_end(em); 1342 ASSERT(cur <= em_end); 1343 ASSERT(cur < end); 1344 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1345 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1346 1347 block_start = em->block_start; 1348 disk_bytenr = em->block_start + extent_offset; 1349 1350 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1351 ASSERT(block_start != EXTENT_MAP_HOLE); 1352 ASSERT(block_start != EXTENT_MAP_INLINE); 1353 1354 /* 1355 * Note that em_end from extent_map_end() and dirty_range_end from 1356 * find_next_dirty_byte() are all exclusive 1357 */ 1358 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1359 free_extent_map(em); 1360 em = NULL; 1361 1362 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1363 if (!PageWriteback(page)) { 1364 btrfs_err(inode->root->fs_info, 1365 "page %lu not writeback, cur %llu end %llu", 1366 page->index, cur, end); 1367 } 1368 1369 /* 1370 * Although the PageDirty bit is cleared before entering this 1371 * function, subpage dirty bit is not cleared. 1372 * So clear subpage dirty bit here so next time we won't submit 1373 * page for range already written to disk. 1374 */ 1375 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1376 1377 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1378 cur - page_offset(page)); 1379 cur += iosize; 1380 nr++; 1381 } 1382 1383 btrfs_page_assert_not_dirty(fs_info, page); 1384 *nr_ret = nr; 1385 return 0; 1386 1387 out_error: 1388 /* 1389 * If we finish without problem, we should not only clear page dirty, 1390 * but also empty subpage dirty bits 1391 */ 1392 *nr_ret = nr; 1393 return ret; 1394 } 1395 1396 /* 1397 * the writepage semantics are similar to regular writepage. extent 1398 * records are inserted to lock ranges in the tree, and as dirty areas 1399 * are found, they are marked writeback. Then the lock bits are removed 1400 * and the end_io handler clears the writeback ranges 1401 * 1402 * Return 0 if everything goes well. 1403 * Return <0 for error. 1404 */ 1405 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1406 { 1407 struct folio *folio = page_folio(page); 1408 struct inode *inode = page->mapping->host; 1409 const u64 page_start = page_offset(page); 1410 int ret; 1411 int nr = 0; 1412 size_t pg_offset; 1413 loff_t i_size = i_size_read(inode); 1414 unsigned long end_index = i_size >> PAGE_SHIFT; 1415 1416 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1417 1418 WARN_ON(!PageLocked(page)); 1419 1420 pg_offset = offset_in_page(i_size); 1421 if (page->index > end_index || 1422 (page->index == end_index && !pg_offset)) { 1423 folio_invalidate(folio, 0, folio_size(folio)); 1424 folio_unlock(folio); 1425 return 0; 1426 } 1427 1428 if (page->index == end_index) 1429 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1430 1431 ret = set_page_extent_mapped(page); 1432 if (ret < 0) 1433 goto done; 1434 1435 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1436 if (ret == 1) 1437 return 0; 1438 if (ret) 1439 goto done; 1440 1441 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1442 if (ret == 1) 1443 return 0; 1444 1445 bio_ctrl->wbc->nr_to_write--; 1446 1447 done: 1448 if (nr == 0) { 1449 /* make sure the mapping tag for page dirty gets cleared */ 1450 set_page_writeback(page); 1451 end_page_writeback(page); 1452 } 1453 if (ret) { 1454 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1455 PAGE_SIZE, !ret); 1456 mapping_set_error(page->mapping, ret); 1457 } 1458 unlock_page(page); 1459 ASSERT(ret <= 0); 1460 return ret; 1461 } 1462 1463 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1464 { 1465 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1466 TASK_UNINTERRUPTIBLE); 1467 } 1468 1469 /* 1470 * Lock extent buffer status and pages for writeback. 1471 * 1472 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1473 * extent buffer is not dirty) 1474 * Return %true is the extent buffer is submitted to bio. 1475 */ 1476 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1477 struct writeback_control *wbc) 1478 { 1479 struct btrfs_fs_info *fs_info = eb->fs_info; 1480 bool ret = false; 1481 1482 btrfs_tree_lock(eb); 1483 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1484 btrfs_tree_unlock(eb); 1485 if (wbc->sync_mode != WB_SYNC_ALL) 1486 return false; 1487 wait_on_extent_buffer_writeback(eb); 1488 btrfs_tree_lock(eb); 1489 } 1490 1491 /* 1492 * We need to do this to prevent races in people who check if the eb is 1493 * under IO since we can end up having no IO bits set for a short period 1494 * of time. 1495 */ 1496 spin_lock(&eb->refs_lock); 1497 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1498 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1499 spin_unlock(&eb->refs_lock); 1500 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1501 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1502 -eb->len, 1503 fs_info->dirty_metadata_batch); 1504 ret = true; 1505 } else { 1506 spin_unlock(&eb->refs_lock); 1507 } 1508 btrfs_tree_unlock(eb); 1509 return ret; 1510 } 1511 1512 static void set_btree_ioerr(struct extent_buffer *eb) 1513 { 1514 struct btrfs_fs_info *fs_info = eb->fs_info; 1515 1516 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1517 1518 /* 1519 * A read may stumble upon this buffer later, make sure that it gets an 1520 * error and knows there was an error. 1521 */ 1522 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1523 1524 /* 1525 * We need to set the mapping with the io error as well because a write 1526 * error will flip the file system readonly, and then syncfs() will 1527 * return a 0 because we are readonly if we don't modify the err seq for 1528 * the superblock. 1529 */ 1530 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1531 1532 /* 1533 * If writeback for a btree extent that doesn't belong to a log tree 1534 * failed, increment the counter transaction->eb_write_errors. 1535 * We do this because while the transaction is running and before it's 1536 * committing (when we call filemap_fdata[write|wait]_range against 1537 * the btree inode), we might have 1538 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1539 * returns an error or an error happens during writeback, when we're 1540 * committing the transaction we wouldn't know about it, since the pages 1541 * can be no longer dirty nor marked anymore for writeback (if a 1542 * subsequent modification to the extent buffer didn't happen before the 1543 * transaction commit), which makes filemap_fdata[write|wait]_range not 1544 * able to find the pages tagged with SetPageError at transaction 1545 * commit time. So if this happens we must abort the transaction, 1546 * otherwise we commit a super block with btree roots that point to 1547 * btree nodes/leafs whose content on disk is invalid - either garbage 1548 * or the content of some node/leaf from a past generation that got 1549 * cowed or deleted and is no longer valid. 1550 * 1551 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1552 * not be enough - we need to distinguish between log tree extents vs 1553 * non-log tree extents, and the next filemap_fdatawait_range() call 1554 * will catch and clear such errors in the mapping - and that call might 1555 * be from a log sync and not from a transaction commit. Also, checking 1556 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1557 * not done and would not be reliable - the eb might have been released 1558 * from memory and reading it back again means that flag would not be 1559 * set (since it's a runtime flag, not persisted on disk). 1560 * 1561 * Using the flags below in the btree inode also makes us achieve the 1562 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1563 * writeback for all dirty pages and before filemap_fdatawait_range() 1564 * is called, the writeback for all dirty pages had already finished 1565 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1566 * filemap_fdatawait_range() would return success, as it could not know 1567 * that writeback errors happened (the pages were no longer tagged for 1568 * writeback). 1569 */ 1570 switch (eb->log_index) { 1571 case -1: 1572 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1573 break; 1574 case 0: 1575 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1576 break; 1577 case 1: 1578 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1579 break; 1580 default: 1581 BUG(); /* unexpected, logic error */ 1582 } 1583 } 1584 1585 /* 1586 * The endio specific version which won't touch any unsafe spinlock in endio 1587 * context. 1588 */ 1589 static struct extent_buffer *find_extent_buffer_nolock( 1590 struct btrfs_fs_info *fs_info, u64 start) 1591 { 1592 struct extent_buffer *eb; 1593 1594 rcu_read_lock(); 1595 eb = radix_tree_lookup(&fs_info->buffer_radix, 1596 start >> fs_info->sectorsize_bits); 1597 if (eb && atomic_inc_not_zero(&eb->refs)) { 1598 rcu_read_unlock(); 1599 return eb; 1600 } 1601 rcu_read_unlock(); 1602 return NULL; 1603 } 1604 1605 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1606 { 1607 struct extent_buffer *eb = bbio->private; 1608 struct btrfs_fs_info *fs_info = eb->fs_info; 1609 bool uptodate = !bbio->bio.bi_status; 1610 struct bvec_iter_all iter_all; 1611 struct bio_vec *bvec; 1612 u32 bio_offset = 0; 1613 1614 if (!uptodate) 1615 set_btree_ioerr(eb); 1616 1617 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1618 u64 start = eb->start + bio_offset; 1619 struct page *page = bvec->bv_page; 1620 u32 len = bvec->bv_len; 1621 1622 btrfs_page_clear_writeback(fs_info, page, start, len); 1623 bio_offset += len; 1624 } 1625 1626 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1627 smp_mb__after_atomic(); 1628 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1629 1630 bio_put(&bbio->bio); 1631 } 1632 1633 static void prepare_eb_write(struct extent_buffer *eb) 1634 { 1635 u32 nritems; 1636 unsigned long start; 1637 unsigned long end; 1638 1639 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1640 1641 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1642 nritems = btrfs_header_nritems(eb); 1643 if (btrfs_header_level(eb) > 0) { 1644 end = btrfs_node_key_ptr_offset(eb, nritems); 1645 memzero_extent_buffer(eb, end, eb->len - end); 1646 } else { 1647 /* 1648 * Leaf: 1649 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1650 */ 1651 start = btrfs_item_nr_offset(eb, nritems); 1652 end = btrfs_item_nr_offset(eb, 0); 1653 if (nritems == 0) 1654 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1655 else 1656 end += btrfs_item_offset(eb, nritems - 1); 1657 memzero_extent_buffer(eb, start, end - start); 1658 } 1659 } 1660 1661 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1662 struct writeback_control *wbc) 1663 { 1664 struct btrfs_fs_info *fs_info = eb->fs_info; 1665 struct btrfs_bio *bbio; 1666 1667 prepare_eb_write(eb); 1668 1669 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1670 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1671 eb->fs_info, extent_buffer_write_end_io, eb); 1672 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1673 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1674 wbc_init_bio(wbc, &bbio->bio); 1675 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1676 bbio->file_offset = eb->start; 1677 if (fs_info->nodesize < PAGE_SIZE) { 1678 struct page *p = eb->pages[0]; 1679 1680 lock_page(p); 1681 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1682 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1683 eb->len)) { 1684 clear_page_dirty_for_io(p); 1685 wbc->nr_to_write--; 1686 } 1687 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1688 wbc_account_cgroup_owner(wbc, p, eb->len); 1689 unlock_page(p); 1690 } else { 1691 for (int i = 0; i < num_extent_pages(eb); i++) { 1692 struct page *p = eb->pages[i]; 1693 1694 lock_page(p); 1695 clear_page_dirty_for_io(p); 1696 set_page_writeback(p); 1697 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1698 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1699 wbc->nr_to_write--; 1700 unlock_page(p); 1701 } 1702 } 1703 btrfs_submit_bio(bbio, 0); 1704 } 1705 1706 /* 1707 * Submit one subpage btree page. 1708 * 1709 * The main difference to submit_eb_page() is: 1710 * - Page locking 1711 * For subpage, we don't rely on page locking at all. 1712 * 1713 * - Flush write bio 1714 * We only flush bio if we may be unable to fit current extent buffers into 1715 * current bio. 1716 * 1717 * Return >=0 for the number of submitted extent buffers. 1718 * Return <0 for fatal error. 1719 */ 1720 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1721 { 1722 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1723 int submitted = 0; 1724 u64 page_start = page_offset(page); 1725 int bit_start = 0; 1726 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1727 1728 /* Lock and write each dirty extent buffers in the range */ 1729 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1730 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1731 struct extent_buffer *eb; 1732 unsigned long flags; 1733 u64 start; 1734 1735 /* 1736 * Take private lock to ensure the subpage won't be detached 1737 * in the meantime. 1738 */ 1739 spin_lock(&page->mapping->private_lock); 1740 if (!PagePrivate(page)) { 1741 spin_unlock(&page->mapping->private_lock); 1742 break; 1743 } 1744 spin_lock_irqsave(&subpage->lock, flags); 1745 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1746 subpage->bitmaps)) { 1747 spin_unlock_irqrestore(&subpage->lock, flags); 1748 spin_unlock(&page->mapping->private_lock); 1749 bit_start++; 1750 continue; 1751 } 1752 1753 start = page_start + bit_start * fs_info->sectorsize; 1754 bit_start += sectors_per_node; 1755 1756 /* 1757 * Here we just want to grab the eb without touching extra 1758 * spin locks, so call find_extent_buffer_nolock(). 1759 */ 1760 eb = find_extent_buffer_nolock(fs_info, start); 1761 spin_unlock_irqrestore(&subpage->lock, flags); 1762 spin_unlock(&page->mapping->private_lock); 1763 1764 /* 1765 * The eb has already reached 0 refs thus find_extent_buffer() 1766 * doesn't return it. We don't need to write back such eb 1767 * anyway. 1768 */ 1769 if (!eb) 1770 continue; 1771 1772 if (lock_extent_buffer_for_io(eb, wbc)) { 1773 write_one_eb(eb, wbc); 1774 submitted++; 1775 } 1776 free_extent_buffer(eb); 1777 } 1778 return submitted; 1779 } 1780 1781 /* 1782 * Submit all page(s) of one extent buffer. 1783 * 1784 * @page: the page of one extent buffer 1785 * @eb_context: to determine if we need to submit this page, if current page 1786 * belongs to this eb, we don't need to submit 1787 * 1788 * The caller should pass each page in their bytenr order, and here we use 1789 * @eb_context to determine if we have submitted pages of one extent buffer. 1790 * 1791 * If we have, we just skip until we hit a new page that doesn't belong to 1792 * current @eb_context. 1793 * 1794 * If not, we submit all the page(s) of the extent buffer. 1795 * 1796 * Return >0 if we have submitted the extent buffer successfully. 1797 * Return 0 if we don't need to submit the page, as it's already submitted by 1798 * previous call. 1799 * Return <0 for fatal error. 1800 */ 1801 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1802 { 1803 struct writeback_control *wbc = ctx->wbc; 1804 struct address_space *mapping = page->mapping; 1805 struct extent_buffer *eb; 1806 int ret; 1807 1808 if (!PagePrivate(page)) 1809 return 0; 1810 1811 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1812 return submit_eb_subpage(page, wbc); 1813 1814 spin_lock(&mapping->private_lock); 1815 if (!PagePrivate(page)) { 1816 spin_unlock(&mapping->private_lock); 1817 return 0; 1818 } 1819 1820 eb = (struct extent_buffer *)page->private; 1821 1822 /* 1823 * Shouldn't happen and normally this would be a BUG_ON but no point 1824 * crashing the machine for something we can survive anyway. 1825 */ 1826 if (WARN_ON(!eb)) { 1827 spin_unlock(&mapping->private_lock); 1828 return 0; 1829 } 1830 1831 if (eb == ctx->eb) { 1832 spin_unlock(&mapping->private_lock); 1833 return 0; 1834 } 1835 ret = atomic_inc_not_zero(&eb->refs); 1836 spin_unlock(&mapping->private_lock); 1837 if (!ret) 1838 return 0; 1839 1840 ctx->eb = eb; 1841 1842 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1843 if (ret) { 1844 if (ret == -EBUSY) 1845 ret = 0; 1846 free_extent_buffer(eb); 1847 return ret; 1848 } 1849 1850 if (!lock_extent_buffer_for_io(eb, wbc)) { 1851 free_extent_buffer(eb); 1852 return 0; 1853 } 1854 /* Implies write in zoned mode. */ 1855 if (ctx->zoned_bg) { 1856 /* Mark the last eb in the block group. */ 1857 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1858 ctx->zoned_bg->meta_write_pointer += eb->len; 1859 } 1860 write_one_eb(eb, wbc); 1861 free_extent_buffer(eb); 1862 return 1; 1863 } 1864 1865 int btree_write_cache_pages(struct address_space *mapping, 1866 struct writeback_control *wbc) 1867 { 1868 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1869 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1870 int ret = 0; 1871 int done = 0; 1872 int nr_to_write_done = 0; 1873 struct folio_batch fbatch; 1874 unsigned int nr_folios; 1875 pgoff_t index; 1876 pgoff_t end; /* Inclusive */ 1877 int scanned = 0; 1878 xa_mark_t tag; 1879 1880 folio_batch_init(&fbatch); 1881 if (wbc->range_cyclic) { 1882 index = mapping->writeback_index; /* Start from prev offset */ 1883 end = -1; 1884 /* 1885 * Start from the beginning does not need to cycle over the 1886 * range, mark it as scanned. 1887 */ 1888 scanned = (index == 0); 1889 } else { 1890 index = wbc->range_start >> PAGE_SHIFT; 1891 end = wbc->range_end >> PAGE_SHIFT; 1892 scanned = 1; 1893 } 1894 if (wbc->sync_mode == WB_SYNC_ALL) 1895 tag = PAGECACHE_TAG_TOWRITE; 1896 else 1897 tag = PAGECACHE_TAG_DIRTY; 1898 btrfs_zoned_meta_io_lock(fs_info); 1899 retry: 1900 if (wbc->sync_mode == WB_SYNC_ALL) 1901 tag_pages_for_writeback(mapping, index, end); 1902 while (!done && !nr_to_write_done && (index <= end) && 1903 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1904 tag, &fbatch))) { 1905 unsigned i; 1906 1907 for (i = 0; i < nr_folios; i++) { 1908 struct folio *folio = fbatch.folios[i]; 1909 1910 ret = submit_eb_page(&folio->page, &ctx); 1911 if (ret == 0) 1912 continue; 1913 if (ret < 0) { 1914 done = 1; 1915 break; 1916 } 1917 1918 /* 1919 * the filesystem may choose to bump up nr_to_write. 1920 * We have to make sure to honor the new nr_to_write 1921 * at any time 1922 */ 1923 nr_to_write_done = wbc->nr_to_write <= 0; 1924 } 1925 folio_batch_release(&fbatch); 1926 cond_resched(); 1927 } 1928 if (!scanned && !done) { 1929 /* 1930 * We hit the last page and there is more work to be done: wrap 1931 * back to the start of the file 1932 */ 1933 scanned = 1; 1934 index = 0; 1935 goto retry; 1936 } 1937 /* 1938 * If something went wrong, don't allow any metadata write bio to be 1939 * submitted. 1940 * 1941 * This would prevent use-after-free if we had dirty pages not 1942 * cleaned up, which can still happen by fuzzed images. 1943 * 1944 * - Bad extent tree 1945 * Allowing existing tree block to be allocated for other trees. 1946 * 1947 * - Log tree operations 1948 * Exiting tree blocks get allocated to log tree, bumps its 1949 * generation, then get cleaned in tree re-balance. 1950 * Such tree block will not be written back, since it's clean, 1951 * thus no WRITTEN flag set. 1952 * And after log writes back, this tree block is not traced by 1953 * any dirty extent_io_tree. 1954 * 1955 * - Offending tree block gets re-dirtied from its original owner 1956 * Since it has bumped generation, no WRITTEN flag, it can be 1957 * reused without COWing. This tree block will not be traced 1958 * by btrfs_transaction::dirty_pages. 1959 * 1960 * Now such dirty tree block will not be cleaned by any dirty 1961 * extent io tree. Thus we don't want to submit such wild eb 1962 * if the fs already has error. 1963 * 1964 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1965 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1966 */ 1967 if (ret > 0) 1968 ret = 0; 1969 if (!ret && BTRFS_FS_ERROR(fs_info)) 1970 ret = -EROFS; 1971 1972 if (ctx.zoned_bg) 1973 btrfs_put_block_group(ctx.zoned_bg); 1974 btrfs_zoned_meta_io_unlock(fs_info); 1975 return ret; 1976 } 1977 1978 /* 1979 * Walk the list of dirty pages of the given address space and write all of them. 1980 * 1981 * @mapping: address space structure to write 1982 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1983 * @bio_ctrl: holds context for the write, namely the bio 1984 * 1985 * If a page is already under I/O, write_cache_pages() skips it, even 1986 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1987 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1988 * and msync() need to guarantee that all the data which was dirty at the time 1989 * the call was made get new I/O started against them. If wbc->sync_mode is 1990 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1991 * existing IO to complete. 1992 */ 1993 static int extent_write_cache_pages(struct address_space *mapping, 1994 struct btrfs_bio_ctrl *bio_ctrl) 1995 { 1996 struct writeback_control *wbc = bio_ctrl->wbc; 1997 struct inode *inode = mapping->host; 1998 int ret = 0; 1999 int done = 0; 2000 int nr_to_write_done = 0; 2001 struct folio_batch fbatch; 2002 unsigned int nr_folios; 2003 pgoff_t index; 2004 pgoff_t end; /* Inclusive */ 2005 pgoff_t done_index; 2006 int range_whole = 0; 2007 int scanned = 0; 2008 xa_mark_t tag; 2009 2010 /* 2011 * We have to hold onto the inode so that ordered extents can do their 2012 * work when the IO finishes. The alternative to this is failing to add 2013 * an ordered extent if the igrab() fails there and that is a huge pain 2014 * to deal with, so instead just hold onto the inode throughout the 2015 * writepages operation. If it fails here we are freeing up the inode 2016 * anyway and we'd rather not waste our time writing out stuff that is 2017 * going to be truncated anyway. 2018 */ 2019 if (!igrab(inode)) 2020 return 0; 2021 2022 folio_batch_init(&fbatch); 2023 if (wbc->range_cyclic) { 2024 index = mapping->writeback_index; /* Start from prev offset */ 2025 end = -1; 2026 /* 2027 * Start from the beginning does not need to cycle over the 2028 * range, mark it as scanned. 2029 */ 2030 scanned = (index == 0); 2031 } else { 2032 index = wbc->range_start >> PAGE_SHIFT; 2033 end = wbc->range_end >> PAGE_SHIFT; 2034 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2035 range_whole = 1; 2036 scanned = 1; 2037 } 2038 2039 /* 2040 * We do the tagged writepage as long as the snapshot flush bit is set 2041 * and we are the first one who do the filemap_flush() on this inode. 2042 * 2043 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2044 * not race in and drop the bit. 2045 */ 2046 if (range_whole && wbc->nr_to_write == LONG_MAX && 2047 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2048 &BTRFS_I(inode)->runtime_flags)) 2049 wbc->tagged_writepages = 1; 2050 2051 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2052 tag = PAGECACHE_TAG_TOWRITE; 2053 else 2054 tag = PAGECACHE_TAG_DIRTY; 2055 retry: 2056 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2057 tag_pages_for_writeback(mapping, index, end); 2058 done_index = index; 2059 while (!done && !nr_to_write_done && (index <= end) && 2060 (nr_folios = filemap_get_folios_tag(mapping, &index, 2061 end, tag, &fbatch))) { 2062 unsigned i; 2063 2064 for (i = 0; i < nr_folios; i++) { 2065 struct folio *folio = fbatch.folios[i]; 2066 2067 done_index = folio_next_index(folio); 2068 /* 2069 * At this point we hold neither the i_pages lock nor 2070 * the page lock: the page may be truncated or 2071 * invalidated (changing page->mapping to NULL), 2072 * or even swizzled back from swapper_space to 2073 * tmpfs file mapping 2074 */ 2075 if (!folio_trylock(folio)) { 2076 submit_write_bio(bio_ctrl, 0); 2077 folio_lock(folio); 2078 } 2079 2080 if (unlikely(folio->mapping != mapping)) { 2081 folio_unlock(folio); 2082 continue; 2083 } 2084 2085 if (!folio_test_dirty(folio)) { 2086 /* Someone wrote it for us. */ 2087 folio_unlock(folio); 2088 continue; 2089 } 2090 2091 if (wbc->sync_mode != WB_SYNC_NONE) { 2092 if (folio_test_writeback(folio)) 2093 submit_write_bio(bio_ctrl, 0); 2094 folio_wait_writeback(folio); 2095 } 2096 2097 if (folio_test_writeback(folio) || 2098 !folio_clear_dirty_for_io(folio)) { 2099 folio_unlock(folio); 2100 continue; 2101 } 2102 2103 ret = __extent_writepage(&folio->page, bio_ctrl); 2104 if (ret < 0) { 2105 done = 1; 2106 break; 2107 } 2108 2109 /* 2110 * The filesystem may choose to bump up nr_to_write. 2111 * We have to make sure to honor the new nr_to_write 2112 * at any time. 2113 */ 2114 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2115 wbc->nr_to_write <= 0); 2116 } 2117 folio_batch_release(&fbatch); 2118 cond_resched(); 2119 } 2120 if (!scanned && !done) { 2121 /* 2122 * We hit the last page and there is more work to be done: wrap 2123 * back to the start of the file 2124 */ 2125 scanned = 1; 2126 index = 0; 2127 2128 /* 2129 * If we're looping we could run into a page that is locked by a 2130 * writer and that writer could be waiting on writeback for a 2131 * page in our current bio, and thus deadlock, so flush the 2132 * write bio here. 2133 */ 2134 submit_write_bio(bio_ctrl, 0); 2135 goto retry; 2136 } 2137 2138 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2139 mapping->writeback_index = done_index; 2140 2141 btrfs_add_delayed_iput(BTRFS_I(inode)); 2142 return ret; 2143 } 2144 2145 /* 2146 * Submit the pages in the range to bio for call sites which delalloc range has 2147 * already been ran (aka, ordered extent inserted) and all pages are still 2148 * locked. 2149 */ 2150 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2151 u64 start, u64 end, struct writeback_control *wbc, 2152 bool pages_dirty) 2153 { 2154 bool found_error = false; 2155 int ret = 0; 2156 struct address_space *mapping = inode->i_mapping; 2157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2158 const u32 sectorsize = fs_info->sectorsize; 2159 loff_t i_size = i_size_read(inode); 2160 u64 cur = start; 2161 struct btrfs_bio_ctrl bio_ctrl = { 2162 .wbc = wbc, 2163 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2164 }; 2165 2166 if (wbc->no_cgroup_owner) 2167 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2168 2169 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2170 2171 while (cur <= end) { 2172 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2173 u32 cur_len = cur_end + 1 - cur; 2174 struct page *page; 2175 int nr = 0; 2176 2177 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2178 ASSERT(PageLocked(page)); 2179 if (pages_dirty && page != locked_page) { 2180 ASSERT(PageDirty(page)); 2181 clear_page_dirty_for_io(page); 2182 } 2183 2184 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2185 i_size, &nr); 2186 if (ret == 1) 2187 goto next_page; 2188 2189 /* Make sure the mapping tag for page dirty gets cleared. */ 2190 if (nr == 0) { 2191 set_page_writeback(page); 2192 end_page_writeback(page); 2193 } 2194 if (ret) { 2195 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2196 cur, cur_len, !ret); 2197 mapping_set_error(page->mapping, ret); 2198 } 2199 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2200 if (ret < 0) 2201 found_error = true; 2202 next_page: 2203 put_page(page); 2204 cur = cur_end + 1; 2205 } 2206 2207 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2208 } 2209 2210 int extent_writepages(struct address_space *mapping, 2211 struct writeback_control *wbc) 2212 { 2213 struct inode *inode = mapping->host; 2214 int ret = 0; 2215 struct btrfs_bio_ctrl bio_ctrl = { 2216 .wbc = wbc, 2217 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2218 }; 2219 2220 /* 2221 * Allow only a single thread to do the reloc work in zoned mode to 2222 * protect the write pointer updates. 2223 */ 2224 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2225 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2226 submit_write_bio(&bio_ctrl, ret); 2227 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2228 return ret; 2229 } 2230 2231 void extent_readahead(struct readahead_control *rac) 2232 { 2233 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2234 struct page *pagepool[16]; 2235 struct extent_map *em_cached = NULL; 2236 u64 prev_em_start = (u64)-1; 2237 int nr; 2238 2239 while ((nr = readahead_page_batch(rac, pagepool))) { 2240 u64 contig_start = readahead_pos(rac); 2241 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2242 2243 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2244 &em_cached, &bio_ctrl, &prev_em_start); 2245 } 2246 2247 if (em_cached) 2248 free_extent_map(em_cached); 2249 submit_one_bio(&bio_ctrl); 2250 } 2251 2252 /* 2253 * basic invalidate_folio code, this waits on any locked or writeback 2254 * ranges corresponding to the folio, and then deletes any extent state 2255 * records from the tree 2256 */ 2257 int extent_invalidate_folio(struct extent_io_tree *tree, 2258 struct folio *folio, size_t offset) 2259 { 2260 struct extent_state *cached_state = NULL; 2261 u64 start = folio_pos(folio); 2262 u64 end = start + folio_size(folio) - 1; 2263 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2264 2265 /* This function is only called for the btree inode */ 2266 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2267 2268 start += ALIGN(offset, blocksize); 2269 if (start > end) 2270 return 0; 2271 2272 lock_extent(tree, start, end, &cached_state); 2273 folio_wait_writeback(folio); 2274 2275 /* 2276 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2277 * so here we only need to unlock the extent range to free any 2278 * existing extent state. 2279 */ 2280 unlock_extent(tree, start, end, &cached_state); 2281 return 0; 2282 } 2283 2284 /* 2285 * a helper for release_folio, this tests for areas of the page that 2286 * are locked or under IO and drops the related state bits if it is safe 2287 * to drop the page. 2288 */ 2289 static int try_release_extent_state(struct extent_io_tree *tree, 2290 struct page *page, gfp_t mask) 2291 { 2292 u64 start = page_offset(page); 2293 u64 end = start + PAGE_SIZE - 1; 2294 int ret = 1; 2295 2296 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2297 ret = 0; 2298 } else { 2299 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2300 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2301 2302 /* 2303 * At this point we can safely clear everything except the 2304 * locked bit, the nodatasum bit and the delalloc new bit. 2305 * The delalloc new bit will be cleared by ordered extent 2306 * completion. 2307 */ 2308 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2309 2310 /* if clear_extent_bit failed for enomem reasons, 2311 * we can't allow the release to continue. 2312 */ 2313 if (ret < 0) 2314 ret = 0; 2315 else 2316 ret = 1; 2317 } 2318 return ret; 2319 } 2320 2321 /* 2322 * a helper for release_folio. As long as there are no locked extents 2323 * in the range corresponding to the page, both state records and extent 2324 * map records are removed 2325 */ 2326 int try_release_extent_mapping(struct page *page, gfp_t mask) 2327 { 2328 struct extent_map *em; 2329 u64 start = page_offset(page); 2330 u64 end = start + PAGE_SIZE - 1; 2331 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2332 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2333 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2334 2335 if (gfpflags_allow_blocking(mask) && 2336 page->mapping->host->i_size > SZ_16M) { 2337 u64 len; 2338 while (start <= end) { 2339 struct btrfs_fs_info *fs_info; 2340 u64 cur_gen; 2341 2342 len = end - start + 1; 2343 write_lock(&map->lock); 2344 em = lookup_extent_mapping(map, start, len); 2345 if (!em) { 2346 write_unlock(&map->lock); 2347 break; 2348 } 2349 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2350 em->start != start) { 2351 write_unlock(&map->lock); 2352 free_extent_map(em); 2353 break; 2354 } 2355 if (test_range_bit_exists(tree, em->start, 2356 extent_map_end(em) - 1, 2357 EXTENT_LOCKED)) 2358 goto next; 2359 /* 2360 * If it's not in the list of modified extents, used 2361 * by a fast fsync, we can remove it. If it's being 2362 * logged we can safely remove it since fsync took an 2363 * extra reference on the em. 2364 */ 2365 if (list_empty(&em->list) || 2366 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2367 goto remove_em; 2368 /* 2369 * If it's in the list of modified extents, remove it 2370 * only if its generation is older then the current one, 2371 * in which case we don't need it for a fast fsync. 2372 * Otherwise don't remove it, we could be racing with an 2373 * ongoing fast fsync that could miss the new extent. 2374 */ 2375 fs_info = btrfs_inode->root->fs_info; 2376 spin_lock(&fs_info->trans_lock); 2377 cur_gen = fs_info->generation; 2378 spin_unlock(&fs_info->trans_lock); 2379 if (em->generation >= cur_gen) 2380 goto next; 2381 remove_em: 2382 /* 2383 * We only remove extent maps that are not in the list of 2384 * modified extents or that are in the list but with a 2385 * generation lower then the current generation, so there 2386 * is no need to set the full fsync flag on the inode (it 2387 * hurts the fsync performance for workloads with a data 2388 * size that exceeds or is close to the system's memory). 2389 */ 2390 remove_extent_mapping(map, em); 2391 /* once for the rb tree */ 2392 free_extent_map(em); 2393 next: 2394 start = extent_map_end(em); 2395 write_unlock(&map->lock); 2396 2397 /* once for us */ 2398 free_extent_map(em); 2399 2400 cond_resched(); /* Allow large-extent preemption. */ 2401 } 2402 } 2403 return try_release_extent_state(tree, page, mask); 2404 } 2405 2406 /* 2407 * To cache previous fiemap extent 2408 * 2409 * Will be used for merging fiemap extent 2410 */ 2411 struct fiemap_cache { 2412 u64 offset; 2413 u64 phys; 2414 u64 len; 2415 u32 flags; 2416 bool cached; 2417 }; 2418 2419 /* 2420 * Helper to submit fiemap extent. 2421 * 2422 * Will try to merge current fiemap extent specified by @offset, @phys, 2423 * @len and @flags with cached one. 2424 * And only when we fails to merge, cached one will be submitted as 2425 * fiemap extent. 2426 * 2427 * Return value is the same as fiemap_fill_next_extent(). 2428 */ 2429 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2430 struct fiemap_cache *cache, 2431 u64 offset, u64 phys, u64 len, u32 flags) 2432 { 2433 int ret = 0; 2434 2435 /* Set at the end of extent_fiemap(). */ 2436 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2437 2438 if (!cache->cached) 2439 goto assign; 2440 2441 /* 2442 * Sanity check, extent_fiemap() should have ensured that new 2443 * fiemap extent won't overlap with cached one. 2444 * Not recoverable. 2445 * 2446 * NOTE: Physical address can overlap, due to compression 2447 */ 2448 if (cache->offset + cache->len > offset) { 2449 WARN_ON(1); 2450 return -EINVAL; 2451 } 2452 2453 /* 2454 * Only merges fiemap extents if 2455 * 1) Their logical addresses are continuous 2456 * 2457 * 2) Their physical addresses are continuous 2458 * So truly compressed (physical size smaller than logical size) 2459 * extents won't get merged with each other 2460 * 2461 * 3) Share same flags 2462 */ 2463 if (cache->offset + cache->len == offset && 2464 cache->phys + cache->len == phys && 2465 cache->flags == flags) { 2466 cache->len += len; 2467 return 0; 2468 } 2469 2470 /* Not mergeable, need to submit cached one */ 2471 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2472 cache->len, cache->flags); 2473 cache->cached = false; 2474 if (ret) 2475 return ret; 2476 assign: 2477 cache->cached = true; 2478 cache->offset = offset; 2479 cache->phys = phys; 2480 cache->len = len; 2481 cache->flags = flags; 2482 2483 return 0; 2484 } 2485 2486 /* 2487 * Emit last fiemap cache 2488 * 2489 * The last fiemap cache may still be cached in the following case: 2490 * 0 4k 8k 2491 * |<- Fiemap range ->| 2492 * |<------------ First extent ----------->| 2493 * 2494 * In this case, the first extent range will be cached but not emitted. 2495 * So we must emit it before ending extent_fiemap(). 2496 */ 2497 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2498 struct fiemap_cache *cache) 2499 { 2500 int ret; 2501 2502 if (!cache->cached) 2503 return 0; 2504 2505 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2506 cache->len, cache->flags); 2507 cache->cached = false; 2508 if (ret > 0) 2509 ret = 0; 2510 return ret; 2511 } 2512 2513 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2514 { 2515 struct extent_buffer *clone; 2516 struct btrfs_key key; 2517 int slot; 2518 int ret; 2519 2520 path->slots[0]++; 2521 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2522 return 0; 2523 2524 ret = btrfs_next_leaf(inode->root, path); 2525 if (ret != 0) 2526 return ret; 2527 2528 /* 2529 * Don't bother with cloning if there are no more file extent items for 2530 * our inode. 2531 */ 2532 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2533 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2534 return 1; 2535 2536 /* See the comment at fiemap_search_slot() about why we clone. */ 2537 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2538 if (!clone) 2539 return -ENOMEM; 2540 2541 slot = path->slots[0]; 2542 btrfs_release_path(path); 2543 path->nodes[0] = clone; 2544 path->slots[0] = slot; 2545 2546 return 0; 2547 } 2548 2549 /* 2550 * Search for the first file extent item that starts at a given file offset or 2551 * the one that starts immediately before that offset. 2552 * Returns: 0 on success, < 0 on error, 1 if not found. 2553 */ 2554 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2555 u64 file_offset) 2556 { 2557 const u64 ino = btrfs_ino(inode); 2558 struct btrfs_root *root = inode->root; 2559 struct extent_buffer *clone; 2560 struct btrfs_key key; 2561 int slot; 2562 int ret; 2563 2564 key.objectid = ino; 2565 key.type = BTRFS_EXTENT_DATA_KEY; 2566 key.offset = file_offset; 2567 2568 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2569 if (ret < 0) 2570 return ret; 2571 2572 if (ret > 0 && path->slots[0] > 0) { 2573 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2574 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2575 path->slots[0]--; 2576 } 2577 2578 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2579 ret = btrfs_next_leaf(root, path); 2580 if (ret != 0) 2581 return ret; 2582 2583 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2584 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2585 return 1; 2586 } 2587 2588 /* 2589 * We clone the leaf and use it during fiemap. This is because while 2590 * using the leaf we do expensive things like checking if an extent is 2591 * shared, which can take a long time. In order to prevent blocking 2592 * other tasks for too long, we use a clone of the leaf. We have locked 2593 * the file range in the inode's io tree, so we know none of our file 2594 * extent items can change. This way we avoid blocking other tasks that 2595 * want to insert items for other inodes in the same leaf or b+tree 2596 * rebalance operations (triggered for example when someone is trying 2597 * to push items into this leaf when trying to insert an item in a 2598 * neighbour leaf). 2599 * We also need the private clone because holding a read lock on an 2600 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2601 * when we call fiemap_fill_next_extent(), because that may cause a page 2602 * fault when filling the user space buffer with fiemap data. 2603 */ 2604 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2605 if (!clone) 2606 return -ENOMEM; 2607 2608 slot = path->slots[0]; 2609 btrfs_release_path(path); 2610 path->nodes[0] = clone; 2611 path->slots[0] = slot; 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2618 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2619 * extent. The end offset (@end) is inclusive. 2620 */ 2621 static int fiemap_process_hole(struct btrfs_inode *inode, 2622 struct fiemap_extent_info *fieinfo, 2623 struct fiemap_cache *cache, 2624 struct extent_state **delalloc_cached_state, 2625 struct btrfs_backref_share_check_ctx *backref_ctx, 2626 u64 disk_bytenr, u64 extent_offset, 2627 u64 extent_gen, 2628 u64 start, u64 end) 2629 { 2630 const u64 i_size = i_size_read(&inode->vfs_inode); 2631 u64 cur_offset = start; 2632 u64 last_delalloc_end = 0; 2633 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2634 bool checked_extent_shared = false; 2635 int ret; 2636 2637 /* 2638 * There can be no delalloc past i_size, so don't waste time looking for 2639 * it beyond i_size. 2640 */ 2641 while (cur_offset < end && cur_offset < i_size) { 2642 u64 delalloc_start; 2643 u64 delalloc_end; 2644 u64 prealloc_start; 2645 u64 prealloc_len = 0; 2646 bool delalloc; 2647 2648 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2649 delalloc_cached_state, 2650 &delalloc_start, 2651 &delalloc_end); 2652 if (!delalloc) 2653 break; 2654 2655 /* 2656 * If this is a prealloc extent we have to report every section 2657 * of it that has no delalloc. 2658 */ 2659 if (disk_bytenr != 0) { 2660 if (last_delalloc_end == 0) { 2661 prealloc_start = start; 2662 prealloc_len = delalloc_start - start; 2663 } else { 2664 prealloc_start = last_delalloc_end + 1; 2665 prealloc_len = delalloc_start - prealloc_start; 2666 } 2667 } 2668 2669 if (prealloc_len > 0) { 2670 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2671 ret = btrfs_is_data_extent_shared(inode, 2672 disk_bytenr, 2673 extent_gen, 2674 backref_ctx); 2675 if (ret < 0) 2676 return ret; 2677 else if (ret > 0) 2678 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2679 2680 checked_extent_shared = true; 2681 } 2682 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2683 disk_bytenr + extent_offset, 2684 prealloc_len, prealloc_flags); 2685 if (ret) 2686 return ret; 2687 extent_offset += prealloc_len; 2688 } 2689 2690 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2691 delalloc_end + 1 - delalloc_start, 2692 FIEMAP_EXTENT_DELALLOC | 2693 FIEMAP_EXTENT_UNKNOWN); 2694 if (ret) 2695 return ret; 2696 2697 last_delalloc_end = delalloc_end; 2698 cur_offset = delalloc_end + 1; 2699 extent_offset += cur_offset - delalloc_start; 2700 cond_resched(); 2701 } 2702 2703 /* 2704 * Either we found no delalloc for the whole prealloc extent or we have 2705 * a prealloc extent that spans i_size or starts at or after i_size. 2706 */ 2707 if (disk_bytenr != 0 && last_delalloc_end < end) { 2708 u64 prealloc_start; 2709 u64 prealloc_len; 2710 2711 if (last_delalloc_end == 0) { 2712 prealloc_start = start; 2713 prealloc_len = end + 1 - start; 2714 } else { 2715 prealloc_start = last_delalloc_end + 1; 2716 prealloc_len = end + 1 - prealloc_start; 2717 } 2718 2719 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2720 ret = btrfs_is_data_extent_shared(inode, 2721 disk_bytenr, 2722 extent_gen, 2723 backref_ctx); 2724 if (ret < 0) 2725 return ret; 2726 else if (ret > 0) 2727 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2728 } 2729 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2730 disk_bytenr + extent_offset, 2731 prealloc_len, prealloc_flags); 2732 if (ret) 2733 return ret; 2734 } 2735 2736 return 0; 2737 } 2738 2739 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2740 struct btrfs_path *path, 2741 u64 *last_extent_end_ret) 2742 { 2743 const u64 ino = btrfs_ino(inode); 2744 struct btrfs_root *root = inode->root; 2745 struct extent_buffer *leaf; 2746 struct btrfs_file_extent_item *ei; 2747 struct btrfs_key key; 2748 u64 disk_bytenr; 2749 int ret; 2750 2751 /* 2752 * Lookup the last file extent. We're not using i_size here because 2753 * there might be preallocation past i_size. 2754 */ 2755 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2756 /* There can't be a file extent item at offset (u64)-1 */ 2757 ASSERT(ret != 0); 2758 if (ret < 0) 2759 return ret; 2760 2761 /* 2762 * For a non-existing key, btrfs_search_slot() always leaves us at a 2763 * slot > 0, except if the btree is empty, which is impossible because 2764 * at least it has the inode item for this inode and all the items for 2765 * the root inode 256. 2766 */ 2767 ASSERT(path->slots[0] > 0); 2768 path->slots[0]--; 2769 leaf = path->nodes[0]; 2770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2771 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2772 /* No file extent items in the subvolume tree. */ 2773 *last_extent_end_ret = 0; 2774 return 0; 2775 } 2776 2777 /* 2778 * For an inline extent, the disk_bytenr is where inline data starts at, 2779 * so first check if we have an inline extent item before checking if we 2780 * have an implicit hole (disk_bytenr == 0). 2781 */ 2782 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2783 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2784 *last_extent_end_ret = btrfs_file_extent_end(path); 2785 return 0; 2786 } 2787 2788 /* 2789 * Find the last file extent item that is not a hole (when NO_HOLES is 2790 * not enabled). This should take at most 2 iterations in the worst 2791 * case: we have one hole file extent item at slot 0 of a leaf and 2792 * another hole file extent item as the last item in the previous leaf. 2793 * This is because we merge file extent items that represent holes. 2794 */ 2795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2796 while (disk_bytenr == 0) { 2797 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2798 if (ret < 0) { 2799 return ret; 2800 } else if (ret > 0) { 2801 /* No file extent items that are not holes. */ 2802 *last_extent_end_ret = 0; 2803 return 0; 2804 } 2805 leaf = path->nodes[0]; 2806 ei = btrfs_item_ptr(leaf, path->slots[0], 2807 struct btrfs_file_extent_item); 2808 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2809 } 2810 2811 *last_extent_end_ret = btrfs_file_extent_end(path); 2812 return 0; 2813 } 2814 2815 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2816 u64 start, u64 len) 2817 { 2818 const u64 ino = btrfs_ino(inode); 2819 struct extent_state *cached_state = NULL; 2820 struct extent_state *delalloc_cached_state = NULL; 2821 struct btrfs_path *path; 2822 struct fiemap_cache cache = { 0 }; 2823 struct btrfs_backref_share_check_ctx *backref_ctx; 2824 u64 last_extent_end; 2825 u64 prev_extent_end; 2826 u64 lockstart; 2827 u64 lockend; 2828 bool stopped = false; 2829 int ret; 2830 2831 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2832 path = btrfs_alloc_path(); 2833 if (!backref_ctx || !path) { 2834 ret = -ENOMEM; 2835 goto out; 2836 } 2837 2838 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2839 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2840 prev_extent_end = lockstart; 2841 2842 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2843 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2844 2845 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2846 if (ret < 0) 2847 goto out_unlock; 2848 btrfs_release_path(path); 2849 2850 path->reada = READA_FORWARD; 2851 ret = fiemap_search_slot(inode, path, lockstart); 2852 if (ret < 0) { 2853 goto out_unlock; 2854 } else if (ret > 0) { 2855 /* 2856 * No file extent item found, but we may have delalloc between 2857 * the current offset and i_size. So check for that. 2858 */ 2859 ret = 0; 2860 goto check_eof_delalloc; 2861 } 2862 2863 while (prev_extent_end < lockend) { 2864 struct extent_buffer *leaf = path->nodes[0]; 2865 struct btrfs_file_extent_item *ei; 2866 struct btrfs_key key; 2867 u64 extent_end; 2868 u64 extent_len; 2869 u64 extent_offset = 0; 2870 u64 extent_gen; 2871 u64 disk_bytenr = 0; 2872 u64 flags = 0; 2873 int extent_type; 2874 u8 compression; 2875 2876 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2877 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2878 break; 2879 2880 extent_end = btrfs_file_extent_end(path); 2881 2882 /* 2883 * The first iteration can leave us at an extent item that ends 2884 * before our range's start. Move to the next item. 2885 */ 2886 if (extent_end <= lockstart) 2887 goto next_item; 2888 2889 backref_ctx->curr_leaf_bytenr = leaf->start; 2890 2891 /* We have in implicit hole (NO_HOLES feature enabled). */ 2892 if (prev_extent_end < key.offset) { 2893 const u64 range_end = min(key.offset, lockend) - 1; 2894 2895 ret = fiemap_process_hole(inode, fieinfo, &cache, 2896 &delalloc_cached_state, 2897 backref_ctx, 0, 0, 0, 2898 prev_extent_end, range_end); 2899 if (ret < 0) { 2900 goto out_unlock; 2901 } else if (ret > 0) { 2902 /* fiemap_fill_next_extent() told us to stop. */ 2903 stopped = true; 2904 break; 2905 } 2906 2907 /* We've reached the end of the fiemap range, stop. */ 2908 if (key.offset >= lockend) { 2909 stopped = true; 2910 break; 2911 } 2912 } 2913 2914 extent_len = extent_end - key.offset; 2915 ei = btrfs_item_ptr(leaf, path->slots[0], 2916 struct btrfs_file_extent_item); 2917 compression = btrfs_file_extent_compression(leaf, ei); 2918 extent_type = btrfs_file_extent_type(leaf, ei); 2919 extent_gen = btrfs_file_extent_generation(leaf, ei); 2920 2921 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2922 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2923 if (compression == BTRFS_COMPRESS_NONE) 2924 extent_offset = btrfs_file_extent_offset(leaf, ei); 2925 } 2926 2927 if (compression != BTRFS_COMPRESS_NONE) 2928 flags |= FIEMAP_EXTENT_ENCODED; 2929 2930 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2931 flags |= FIEMAP_EXTENT_DATA_INLINE; 2932 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 2933 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 2934 extent_len, flags); 2935 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2936 ret = fiemap_process_hole(inode, fieinfo, &cache, 2937 &delalloc_cached_state, 2938 backref_ctx, 2939 disk_bytenr, extent_offset, 2940 extent_gen, key.offset, 2941 extent_end - 1); 2942 } else if (disk_bytenr == 0) { 2943 /* We have an explicit hole. */ 2944 ret = fiemap_process_hole(inode, fieinfo, &cache, 2945 &delalloc_cached_state, 2946 backref_ctx, 0, 0, 0, 2947 key.offset, extent_end - 1); 2948 } else { 2949 /* We have a regular extent. */ 2950 if (fieinfo->fi_extents_max) { 2951 ret = btrfs_is_data_extent_shared(inode, 2952 disk_bytenr, 2953 extent_gen, 2954 backref_ctx); 2955 if (ret < 0) 2956 goto out_unlock; 2957 else if (ret > 0) 2958 flags |= FIEMAP_EXTENT_SHARED; 2959 } 2960 2961 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 2962 disk_bytenr + extent_offset, 2963 extent_len, flags); 2964 } 2965 2966 if (ret < 0) { 2967 goto out_unlock; 2968 } else if (ret > 0) { 2969 /* fiemap_fill_next_extent() told us to stop. */ 2970 stopped = true; 2971 break; 2972 } 2973 2974 prev_extent_end = extent_end; 2975 next_item: 2976 if (fatal_signal_pending(current)) { 2977 ret = -EINTR; 2978 goto out_unlock; 2979 } 2980 2981 ret = fiemap_next_leaf_item(inode, path); 2982 if (ret < 0) { 2983 goto out_unlock; 2984 } else if (ret > 0) { 2985 /* No more file extent items for this inode. */ 2986 break; 2987 } 2988 cond_resched(); 2989 } 2990 2991 check_eof_delalloc: 2992 /* 2993 * Release (and free) the path before emitting any final entries to 2994 * fiemap_fill_next_extent() to keep lockdep happy. This is because 2995 * once we find no more file extent items exist, we may have a 2996 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 2997 * faults when copying data to the user space buffer. 2998 */ 2999 btrfs_free_path(path); 3000 path = NULL; 3001 3002 if (!stopped && prev_extent_end < lockend) { 3003 ret = fiemap_process_hole(inode, fieinfo, &cache, 3004 &delalloc_cached_state, backref_ctx, 3005 0, 0, 0, prev_extent_end, lockend - 1); 3006 if (ret < 0) 3007 goto out_unlock; 3008 prev_extent_end = lockend; 3009 } 3010 3011 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3012 const u64 i_size = i_size_read(&inode->vfs_inode); 3013 3014 if (prev_extent_end < i_size) { 3015 u64 delalloc_start; 3016 u64 delalloc_end; 3017 bool delalloc; 3018 3019 delalloc = btrfs_find_delalloc_in_range(inode, 3020 prev_extent_end, 3021 i_size - 1, 3022 &delalloc_cached_state, 3023 &delalloc_start, 3024 &delalloc_end); 3025 if (!delalloc) 3026 cache.flags |= FIEMAP_EXTENT_LAST; 3027 } else { 3028 cache.flags |= FIEMAP_EXTENT_LAST; 3029 } 3030 } 3031 3032 ret = emit_last_fiemap_cache(fieinfo, &cache); 3033 3034 out_unlock: 3035 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3036 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3037 out: 3038 free_extent_state(delalloc_cached_state); 3039 btrfs_free_backref_share_ctx(backref_ctx); 3040 btrfs_free_path(path); 3041 return ret; 3042 } 3043 3044 static void __free_extent_buffer(struct extent_buffer *eb) 3045 { 3046 kmem_cache_free(extent_buffer_cache, eb); 3047 } 3048 3049 static int extent_buffer_under_io(const struct extent_buffer *eb) 3050 { 3051 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3052 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3053 } 3054 3055 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3056 { 3057 struct btrfs_subpage *subpage; 3058 3059 lockdep_assert_held(&page->mapping->private_lock); 3060 3061 if (PagePrivate(page)) { 3062 subpage = (struct btrfs_subpage *)page->private; 3063 if (atomic_read(&subpage->eb_refs)) 3064 return true; 3065 /* 3066 * Even there is no eb refs here, we may still have 3067 * end_page_read() call relying on page::private. 3068 */ 3069 if (atomic_read(&subpage->readers)) 3070 return true; 3071 } 3072 return false; 3073 } 3074 3075 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3076 { 3077 struct btrfs_fs_info *fs_info = eb->fs_info; 3078 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3079 3080 /* 3081 * For mapped eb, we're going to change the page private, which should 3082 * be done under the private_lock. 3083 */ 3084 if (mapped) 3085 spin_lock(&page->mapping->private_lock); 3086 3087 if (!PagePrivate(page)) { 3088 if (mapped) 3089 spin_unlock(&page->mapping->private_lock); 3090 return; 3091 } 3092 3093 if (fs_info->nodesize >= PAGE_SIZE) { 3094 /* 3095 * We do this since we'll remove the pages after we've 3096 * removed the eb from the radix tree, so we could race 3097 * and have this page now attached to the new eb. So 3098 * only clear page_private if it's still connected to 3099 * this eb. 3100 */ 3101 if (PagePrivate(page) && 3102 page->private == (unsigned long)eb) { 3103 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3104 BUG_ON(PageDirty(page)); 3105 BUG_ON(PageWriteback(page)); 3106 /* 3107 * We need to make sure we haven't be attached 3108 * to a new eb. 3109 */ 3110 detach_page_private(page); 3111 } 3112 if (mapped) 3113 spin_unlock(&page->mapping->private_lock); 3114 return; 3115 } 3116 3117 /* 3118 * For subpage, we can have dummy eb with page private. In this case, 3119 * we can directly detach the private as such page is only attached to 3120 * one dummy eb, no sharing. 3121 */ 3122 if (!mapped) { 3123 btrfs_detach_subpage(fs_info, page); 3124 return; 3125 } 3126 3127 btrfs_page_dec_eb_refs(fs_info, page); 3128 3129 /* 3130 * We can only detach the page private if there are no other ebs in the 3131 * page range and no unfinished IO. 3132 */ 3133 if (!page_range_has_eb(fs_info, page)) 3134 btrfs_detach_subpage(fs_info, page); 3135 3136 spin_unlock(&page->mapping->private_lock); 3137 } 3138 3139 /* Release all pages attached to the extent buffer */ 3140 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3141 { 3142 int i; 3143 int num_pages; 3144 3145 ASSERT(!extent_buffer_under_io(eb)); 3146 3147 num_pages = num_extent_pages(eb); 3148 for (i = 0; i < num_pages; i++) { 3149 struct page *page = eb->pages[i]; 3150 3151 if (!page) 3152 continue; 3153 3154 detach_extent_buffer_page(eb, page); 3155 3156 /* One for when we allocated the page */ 3157 put_page(page); 3158 } 3159 } 3160 3161 /* 3162 * Helper for releasing the extent buffer. 3163 */ 3164 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3165 { 3166 btrfs_release_extent_buffer_pages(eb); 3167 btrfs_leak_debug_del_eb(eb); 3168 __free_extent_buffer(eb); 3169 } 3170 3171 static struct extent_buffer * 3172 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3173 unsigned long len) 3174 { 3175 struct extent_buffer *eb = NULL; 3176 3177 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3178 eb->start = start; 3179 eb->len = len; 3180 eb->fs_info = fs_info; 3181 init_rwsem(&eb->lock); 3182 3183 btrfs_leak_debug_add_eb(eb); 3184 3185 spin_lock_init(&eb->refs_lock); 3186 atomic_set(&eb->refs, 1); 3187 3188 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3189 3190 return eb; 3191 } 3192 3193 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3194 { 3195 int i; 3196 struct extent_buffer *new; 3197 int num_pages = num_extent_pages(src); 3198 int ret; 3199 3200 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3201 if (new == NULL) 3202 return NULL; 3203 3204 /* 3205 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3206 * btrfs_release_extent_buffer() have different behavior for 3207 * UNMAPPED subpage extent buffer. 3208 */ 3209 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3210 3211 ret = btrfs_alloc_page_array(num_pages, new->pages); 3212 if (ret) { 3213 btrfs_release_extent_buffer(new); 3214 return NULL; 3215 } 3216 3217 for (i = 0; i < num_pages; i++) { 3218 int ret; 3219 struct page *p = new->pages[i]; 3220 3221 ret = attach_extent_buffer_page(new, p, NULL); 3222 if (ret < 0) { 3223 btrfs_release_extent_buffer(new); 3224 return NULL; 3225 } 3226 WARN_ON(PageDirty(p)); 3227 } 3228 copy_extent_buffer_full(new, src); 3229 set_extent_buffer_uptodate(new); 3230 3231 return new; 3232 } 3233 3234 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3235 u64 start, unsigned long len) 3236 { 3237 struct extent_buffer *eb; 3238 int num_pages; 3239 int i; 3240 int ret; 3241 3242 eb = __alloc_extent_buffer(fs_info, start, len); 3243 if (!eb) 3244 return NULL; 3245 3246 num_pages = num_extent_pages(eb); 3247 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3248 if (ret) 3249 goto err; 3250 3251 for (i = 0; i < num_pages; i++) { 3252 struct page *p = eb->pages[i]; 3253 3254 ret = attach_extent_buffer_page(eb, p, NULL); 3255 if (ret < 0) 3256 goto err; 3257 } 3258 3259 set_extent_buffer_uptodate(eb); 3260 btrfs_set_header_nritems(eb, 0); 3261 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3262 3263 return eb; 3264 err: 3265 for (i = 0; i < num_pages; i++) { 3266 if (eb->pages[i]) { 3267 detach_extent_buffer_page(eb, eb->pages[i]); 3268 __free_page(eb->pages[i]); 3269 } 3270 } 3271 __free_extent_buffer(eb); 3272 return NULL; 3273 } 3274 3275 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3276 u64 start) 3277 { 3278 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3279 } 3280 3281 static void check_buffer_tree_ref(struct extent_buffer *eb) 3282 { 3283 int refs; 3284 /* 3285 * The TREE_REF bit is first set when the extent_buffer is added 3286 * to the radix tree. It is also reset, if unset, when a new reference 3287 * is created by find_extent_buffer. 3288 * 3289 * It is only cleared in two cases: freeing the last non-tree 3290 * reference to the extent_buffer when its STALE bit is set or 3291 * calling release_folio when the tree reference is the only reference. 3292 * 3293 * In both cases, care is taken to ensure that the extent_buffer's 3294 * pages are not under io. However, release_folio can be concurrently 3295 * called with creating new references, which is prone to race 3296 * conditions between the calls to check_buffer_tree_ref in those 3297 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3298 * 3299 * The actual lifetime of the extent_buffer in the radix tree is 3300 * adequately protected by the refcount, but the TREE_REF bit and 3301 * its corresponding reference are not. To protect against this 3302 * class of races, we call check_buffer_tree_ref from the codepaths 3303 * which trigger io. Note that once io is initiated, TREE_REF can no 3304 * longer be cleared, so that is the moment at which any such race is 3305 * best fixed. 3306 */ 3307 refs = atomic_read(&eb->refs); 3308 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3309 return; 3310 3311 spin_lock(&eb->refs_lock); 3312 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3313 atomic_inc(&eb->refs); 3314 spin_unlock(&eb->refs_lock); 3315 } 3316 3317 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3318 struct page *accessed) 3319 { 3320 int num_pages, i; 3321 3322 check_buffer_tree_ref(eb); 3323 3324 num_pages = num_extent_pages(eb); 3325 for (i = 0; i < num_pages; i++) { 3326 struct page *p = eb->pages[i]; 3327 3328 if (p != accessed) 3329 mark_page_accessed(p); 3330 } 3331 } 3332 3333 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3334 u64 start) 3335 { 3336 struct extent_buffer *eb; 3337 3338 eb = find_extent_buffer_nolock(fs_info, start); 3339 if (!eb) 3340 return NULL; 3341 /* 3342 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3343 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3344 * another task running free_extent_buffer() might have seen that flag 3345 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3346 * writeback flags not set) and it's still in the tree (flag 3347 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3348 * decrementing the extent buffer's reference count twice. So here we 3349 * could race and increment the eb's reference count, clear its stale 3350 * flag, mark it as dirty and drop our reference before the other task 3351 * finishes executing free_extent_buffer, which would later result in 3352 * an attempt to free an extent buffer that is dirty. 3353 */ 3354 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3355 spin_lock(&eb->refs_lock); 3356 spin_unlock(&eb->refs_lock); 3357 } 3358 mark_extent_buffer_accessed(eb, NULL); 3359 return eb; 3360 } 3361 3362 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3363 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3364 u64 start) 3365 { 3366 struct extent_buffer *eb, *exists = NULL; 3367 int ret; 3368 3369 eb = find_extent_buffer(fs_info, start); 3370 if (eb) 3371 return eb; 3372 eb = alloc_dummy_extent_buffer(fs_info, start); 3373 if (!eb) 3374 return ERR_PTR(-ENOMEM); 3375 eb->fs_info = fs_info; 3376 again: 3377 ret = radix_tree_preload(GFP_NOFS); 3378 if (ret) { 3379 exists = ERR_PTR(ret); 3380 goto free_eb; 3381 } 3382 spin_lock(&fs_info->buffer_lock); 3383 ret = radix_tree_insert(&fs_info->buffer_radix, 3384 start >> fs_info->sectorsize_bits, eb); 3385 spin_unlock(&fs_info->buffer_lock); 3386 radix_tree_preload_end(); 3387 if (ret == -EEXIST) { 3388 exists = find_extent_buffer(fs_info, start); 3389 if (exists) 3390 goto free_eb; 3391 else 3392 goto again; 3393 } 3394 check_buffer_tree_ref(eb); 3395 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3396 3397 return eb; 3398 free_eb: 3399 btrfs_release_extent_buffer(eb); 3400 return exists; 3401 } 3402 #endif 3403 3404 static struct extent_buffer *grab_extent_buffer( 3405 struct btrfs_fs_info *fs_info, struct page *page) 3406 { 3407 struct extent_buffer *exists; 3408 3409 /* 3410 * For subpage case, we completely rely on radix tree to ensure we 3411 * don't try to insert two ebs for the same bytenr. So here we always 3412 * return NULL and just continue. 3413 */ 3414 if (fs_info->nodesize < PAGE_SIZE) 3415 return NULL; 3416 3417 /* Page not yet attached to an extent buffer */ 3418 if (!PagePrivate(page)) 3419 return NULL; 3420 3421 /* 3422 * We could have already allocated an eb for this page and attached one 3423 * so lets see if we can get a ref on the existing eb, and if we can we 3424 * know it's good and we can just return that one, else we know we can 3425 * just overwrite page->private. 3426 */ 3427 exists = (struct extent_buffer *)page->private; 3428 if (atomic_inc_not_zero(&exists->refs)) 3429 return exists; 3430 3431 WARN_ON(PageDirty(page)); 3432 detach_page_private(page); 3433 return NULL; 3434 } 3435 3436 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3437 { 3438 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3439 btrfs_err(fs_info, "bad tree block start %llu", start); 3440 return -EINVAL; 3441 } 3442 3443 if (fs_info->nodesize < PAGE_SIZE && 3444 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3445 btrfs_err(fs_info, 3446 "tree block crosses page boundary, start %llu nodesize %u", 3447 start, fs_info->nodesize); 3448 return -EINVAL; 3449 } 3450 if (fs_info->nodesize >= PAGE_SIZE && 3451 !PAGE_ALIGNED(start)) { 3452 btrfs_err(fs_info, 3453 "tree block is not page aligned, start %llu nodesize %u", 3454 start, fs_info->nodesize); 3455 return -EINVAL; 3456 } 3457 if (!IS_ALIGNED(start, fs_info->nodesize) && 3458 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3459 btrfs_warn(fs_info, 3460 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3461 start, fs_info->nodesize); 3462 } 3463 return 0; 3464 } 3465 3466 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3467 u64 start, u64 owner_root, int level) 3468 { 3469 unsigned long len = fs_info->nodesize; 3470 int num_pages; 3471 int i; 3472 unsigned long index = start >> PAGE_SHIFT; 3473 struct extent_buffer *eb; 3474 struct extent_buffer *exists = NULL; 3475 struct page *p; 3476 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3477 struct btrfs_subpage *prealloc = NULL; 3478 u64 lockdep_owner = owner_root; 3479 int uptodate = 1; 3480 int ret; 3481 3482 if (check_eb_alignment(fs_info, start)) 3483 return ERR_PTR(-EINVAL); 3484 3485 #if BITS_PER_LONG == 32 3486 if (start >= MAX_LFS_FILESIZE) { 3487 btrfs_err_rl(fs_info, 3488 "extent buffer %llu is beyond 32bit page cache limit", start); 3489 btrfs_err_32bit_limit(fs_info); 3490 return ERR_PTR(-EOVERFLOW); 3491 } 3492 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3493 btrfs_warn_32bit_limit(fs_info); 3494 #endif 3495 3496 eb = find_extent_buffer(fs_info, start); 3497 if (eb) 3498 return eb; 3499 3500 eb = __alloc_extent_buffer(fs_info, start, len); 3501 if (!eb) 3502 return ERR_PTR(-ENOMEM); 3503 3504 /* 3505 * The reloc trees are just snapshots, so we need them to appear to be 3506 * just like any other fs tree WRT lockdep. 3507 */ 3508 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3509 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3510 3511 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3512 3513 num_pages = num_extent_pages(eb); 3514 3515 /* 3516 * Preallocate page->private for subpage case, so that we won't 3517 * allocate memory with private_lock nor page lock hold. 3518 * 3519 * The memory will be freed by attach_extent_buffer_page() or freed 3520 * manually if we exit earlier. 3521 */ 3522 if (fs_info->nodesize < PAGE_SIZE) { 3523 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3524 if (IS_ERR(prealloc)) { 3525 exists = ERR_CAST(prealloc); 3526 goto free_eb; 3527 } 3528 } 3529 3530 for (i = 0; i < num_pages; i++, index++) { 3531 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3532 if (!p) { 3533 exists = ERR_PTR(-ENOMEM); 3534 btrfs_free_subpage(prealloc); 3535 goto free_eb; 3536 } 3537 3538 spin_lock(&mapping->private_lock); 3539 exists = grab_extent_buffer(fs_info, p); 3540 if (exists) { 3541 spin_unlock(&mapping->private_lock); 3542 unlock_page(p); 3543 put_page(p); 3544 mark_extent_buffer_accessed(exists, p); 3545 btrfs_free_subpage(prealloc); 3546 goto free_eb; 3547 } 3548 /* Should not fail, as we have preallocated the memory */ 3549 ret = attach_extent_buffer_page(eb, p, prealloc); 3550 ASSERT(!ret); 3551 /* 3552 * To inform we have extra eb under allocation, so that 3553 * detach_extent_buffer_page() won't release the page private 3554 * when the eb hasn't yet been inserted into radix tree. 3555 * 3556 * The ref will be decreased when the eb released the page, in 3557 * detach_extent_buffer_page(). 3558 * Thus needs no special handling in error path. 3559 */ 3560 btrfs_page_inc_eb_refs(fs_info, p); 3561 spin_unlock(&mapping->private_lock); 3562 3563 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3564 eb->pages[i] = p; 3565 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3566 uptodate = 0; 3567 3568 /* 3569 * We can't unlock the pages just yet since the extent buffer 3570 * hasn't been properly inserted in the radix tree, this 3571 * opens a race with btree_release_folio which can free a page 3572 * while we are still filling in all pages for the buffer and 3573 * we could crash. 3574 */ 3575 } 3576 if (uptodate) 3577 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3578 again: 3579 ret = radix_tree_preload(GFP_NOFS); 3580 if (ret) { 3581 exists = ERR_PTR(ret); 3582 goto free_eb; 3583 } 3584 3585 spin_lock(&fs_info->buffer_lock); 3586 ret = radix_tree_insert(&fs_info->buffer_radix, 3587 start >> fs_info->sectorsize_bits, eb); 3588 spin_unlock(&fs_info->buffer_lock); 3589 radix_tree_preload_end(); 3590 if (ret == -EEXIST) { 3591 exists = find_extent_buffer(fs_info, start); 3592 if (exists) 3593 goto free_eb; 3594 else 3595 goto again; 3596 } 3597 /* add one reference for the tree */ 3598 check_buffer_tree_ref(eb); 3599 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3600 3601 /* 3602 * Now it's safe to unlock the pages because any calls to 3603 * btree_release_folio will correctly detect that a page belongs to a 3604 * live buffer and won't free them prematurely. 3605 */ 3606 for (i = 0; i < num_pages; i++) 3607 unlock_page(eb->pages[i]); 3608 return eb; 3609 3610 free_eb: 3611 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3612 for (i = 0; i < num_pages; i++) { 3613 if (eb->pages[i]) 3614 unlock_page(eb->pages[i]); 3615 } 3616 3617 btrfs_release_extent_buffer(eb); 3618 return exists; 3619 } 3620 3621 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3622 { 3623 struct extent_buffer *eb = 3624 container_of(head, struct extent_buffer, rcu_head); 3625 3626 __free_extent_buffer(eb); 3627 } 3628 3629 static int release_extent_buffer(struct extent_buffer *eb) 3630 __releases(&eb->refs_lock) 3631 { 3632 lockdep_assert_held(&eb->refs_lock); 3633 3634 WARN_ON(atomic_read(&eb->refs) == 0); 3635 if (atomic_dec_and_test(&eb->refs)) { 3636 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3637 struct btrfs_fs_info *fs_info = eb->fs_info; 3638 3639 spin_unlock(&eb->refs_lock); 3640 3641 spin_lock(&fs_info->buffer_lock); 3642 radix_tree_delete(&fs_info->buffer_radix, 3643 eb->start >> fs_info->sectorsize_bits); 3644 spin_unlock(&fs_info->buffer_lock); 3645 } else { 3646 spin_unlock(&eb->refs_lock); 3647 } 3648 3649 btrfs_leak_debug_del_eb(eb); 3650 /* Should be safe to release our pages at this point */ 3651 btrfs_release_extent_buffer_pages(eb); 3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3653 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3654 __free_extent_buffer(eb); 3655 return 1; 3656 } 3657 #endif 3658 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3659 return 1; 3660 } 3661 spin_unlock(&eb->refs_lock); 3662 3663 return 0; 3664 } 3665 3666 void free_extent_buffer(struct extent_buffer *eb) 3667 { 3668 int refs; 3669 if (!eb) 3670 return; 3671 3672 refs = atomic_read(&eb->refs); 3673 while (1) { 3674 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3675 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3676 refs == 1)) 3677 break; 3678 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3679 return; 3680 } 3681 3682 spin_lock(&eb->refs_lock); 3683 if (atomic_read(&eb->refs) == 2 && 3684 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3685 !extent_buffer_under_io(eb) && 3686 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3687 atomic_dec(&eb->refs); 3688 3689 /* 3690 * I know this is terrible, but it's temporary until we stop tracking 3691 * the uptodate bits and such for the extent buffers. 3692 */ 3693 release_extent_buffer(eb); 3694 } 3695 3696 void free_extent_buffer_stale(struct extent_buffer *eb) 3697 { 3698 if (!eb) 3699 return; 3700 3701 spin_lock(&eb->refs_lock); 3702 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3703 3704 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3705 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3706 atomic_dec(&eb->refs); 3707 release_extent_buffer(eb); 3708 } 3709 3710 static void btree_clear_page_dirty(struct page *page) 3711 { 3712 ASSERT(PageDirty(page)); 3713 ASSERT(PageLocked(page)); 3714 clear_page_dirty_for_io(page); 3715 xa_lock_irq(&page->mapping->i_pages); 3716 if (!PageDirty(page)) 3717 __xa_clear_mark(&page->mapping->i_pages, 3718 page_index(page), PAGECACHE_TAG_DIRTY); 3719 xa_unlock_irq(&page->mapping->i_pages); 3720 } 3721 3722 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3723 { 3724 struct btrfs_fs_info *fs_info = eb->fs_info; 3725 struct page *page = eb->pages[0]; 3726 bool last; 3727 3728 /* btree_clear_page_dirty() needs page locked */ 3729 lock_page(page); 3730 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3731 eb->len); 3732 if (last) 3733 btree_clear_page_dirty(page); 3734 unlock_page(page); 3735 WARN_ON(atomic_read(&eb->refs) == 0); 3736 } 3737 3738 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3739 struct extent_buffer *eb) 3740 { 3741 struct btrfs_fs_info *fs_info = eb->fs_info; 3742 int i; 3743 int num_pages; 3744 struct page *page; 3745 3746 btrfs_assert_tree_write_locked(eb); 3747 3748 if (trans && btrfs_header_generation(eb) != trans->transid) 3749 return; 3750 3751 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3752 return; 3753 3754 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3755 fs_info->dirty_metadata_batch); 3756 3757 if (eb->fs_info->nodesize < PAGE_SIZE) 3758 return clear_subpage_extent_buffer_dirty(eb); 3759 3760 num_pages = num_extent_pages(eb); 3761 3762 for (i = 0; i < num_pages; i++) { 3763 page = eb->pages[i]; 3764 if (!PageDirty(page)) 3765 continue; 3766 lock_page(page); 3767 btree_clear_page_dirty(page); 3768 unlock_page(page); 3769 } 3770 WARN_ON(atomic_read(&eb->refs) == 0); 3771 } 3772 3773 void set_extent_buffer_dirty(struct extent_buffer *eb) 3774 { 3775 int i; 3776 int num_pages; 3777 bool was_dirty; 3778 3779 check_buffer_tree_ref(eb); 3780 3781 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3782 3783 num_pages = num_extent_pages(eb); 3784 WARN_ON(atomic_read(&eb->refs) == 0); 3785 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3786 3787 if (!was_dirty) { 3788 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3789 3790 /* 3791 * For subpage case, we can have other extent buffers in the 3792 * same page, and in clear_subpage_extent_buffer_dirty() we 3793 * have to clear page dirty without subpage lock held. 3794 * This can cause race where our page gets dirty cleared after 3795 * we just set it. 3796 * 3797 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3798 * its page for other reasons, we can use page lock to prevent 3799 * the above race. 3800 */ 3801 if (subpage) 3802 lock_page(eb->pages[0]); 3803 for (i = 0; i < num_pages; i++) 3804 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3805 eb->start, eb->len); 3806 if (subpage) 3807 unlock_page(eb->pages[0]); 3808 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3809 eb->len, 3810 eb->fs_info->dirty_metadata_batch); 3811 } 3812 #ifdef CONFIG_BTRFS_DEBUG 3813 for (i = 0; i < num_pages; i++) 3814 ASSERT(PageDirty(eb->pages[i])); 3815 #endif 3816 } 3817 3818 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3819 { 3820 struct btrfs_fs_info *fs_info = eb->fs_info; 3821 struct page *page; 3822 int num_pages; 3823 int i; 3824 3825 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3826 num_pages = num_extent_pages(eb); 3827 for (i = 0; i < num_pages; i++) { 3828 page = eb->pages[i]; 3829 if (!page) 3830 continue; 3831 3832 /* 3833 * This is special handling for metadata subpage, as regular 3834 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3835 */ 3836 if (fs_info->nodesize >= PAGE_SIZE) 3837 ClearPageUptodate(page); 3838 else 3839 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3840 eb->len); 3841 } 3842 } 3843 3844 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3845 { 3846 struct btrfs_fs_info *fs_info = eb->fs_info; 3847 struct page *page; 3848 int num_pages; 3849 int i; 3850 3851 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3852 num_pages = num_extent_pages(eb); 3853 for (i = 0; i < num_pages; i++) { 3854 page = eb->pages[i]; 3855 3856 /* 3857 * This is special handling for metadata subpage, as regular 3858 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3859 */ 3860 if (fs_info->nodesize >= PAGE_SIZE) 3861 SetPageUptodate(page); 3862 else 3863 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3864 eb->len); 3865 } 3866 } 3867 3868 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3869 { 3870 struct extent_buffer *eb = bbio->private; 3871 struct btrfs_fs_info *fs_info = eb->fs_info; 3872 bool uptodate = !bbio->bio.bi_status; 3873 struct bvec_iter_all iter_all; 3874 struct bio_vec *bvec; 3875 u32 bio_offset = 0; 3876 3877 eb->read_mirror = bbio->mirror_num; 3878 3879 if (uptodate && 3880 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3881 uptodate = false; 3882 3883 if (uptodate) { 3884 set_extent_buffer_uptodate(eb); 3885 } else { 3886 clear_extent_buffer_uptodate(eb); 3887 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3888 } 3889 3890 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3891 u64 start = eb->start + bio_offset; 3892 struct page *page = bvec->bv_page; 3893 u32 len = bvec->bv_len; 3894 3895 if (uptodate) 3896 btrfs_page_set_uptodate(fs_info, page, start, len); 3897 else 3898 btrfs_page_clear_uptodate(fs_info, page, start, len); 3899 3900 bio_offset += len; 3901 } 3902 3903 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3904 smp_mb__after_atomic(); 3905 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3906 free_extent_buffer(eb); 3907 3908 bio_put(&bbio->bio); 3909 } 3910 3911 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3912 struct btrfs_tree_parent_check *check) 3913 { 3914 int num_pages = num_extent_pages(eb), i; 3915 struct btrfs_bio *bbio; 3916 3917 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3918 return 0; 3919 3920 /* 3921 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3922 * operation, which could potentially still be in flight. In this case 3923 * we simply want to return an error. 3924 */ 3925 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3926 return -EIO; 3927 3928 /* Someone else is already reading the buffer, just wait for it. */ 3929 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3930 goto done; 3931 3932 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3933 eb->read_mirror = 0; 3934 check_buffer_tree_ref(eb); 3935 atomic_inc(&eb->refs); 3936 3937 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3938 REQ_OP_READ | REQ_META, eb->fs_info, 3939 extent_buffer_read_end_io, eb); 3940 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3941 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3942 bbio->file_offset = eb->start; 3943 memcpy(&bbio->parent_check, check, sizeof(*check)); 3944 if (eb->fs_info->nodesize < PAGE_SIZE) { 3945 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 3946 eb->start - page_offset(eb->pages[0])); 3947 } else { 3948 for (i = 0; i < num_pages; i++) 3949 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 3950 } 3951 btrfs_submit_bio(bbio, mirror_num); 3952 3953 done: 3954 if (wait == WAIT_COMPLETE) { 3955 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3956 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3957 return -EIO; 3958 } 3959 3960 return 0; 3961 } 3962 3963 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3964 unsigned long len) 3965 { 3966 btrfs_warn(eb->fs_info, 3967 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 3968 eb->start, eb->len, start, len); 3969 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3970 3971 return true; 3972 } 3973 3974 /* 3975 * Check if the [start, start + len) range is valid before reading/writing 3976 * the eb. 3977 * NOTE: @start and @len are offset inside the eb, not logical address. 3978 * 3979 * Caller should not touch the dst/src memory if this function returns error. 3980 */ 3981 static inline int check_eb_range(const struct extent_buffer *eb, 3982 unsigned long start, unsigned long len) 3983 { 3984 unsigned long offset; 3985 3986 /* start, start + len should not go beyond eb->len nor overflow */ 3987 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3988 return report_eb_range(eb, start, len); 3989 3990 return false; 3991 } 3992 3993 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3994 unsigned long start, unsigned long len) 3995 { 3996 size_t cur; 3997 size_t offset; 3998 struct page *page; 3999 char *kaddr; 4000 char *dst = (char *)dstv; 4001 unsigned long i = get_eb_page_index(start); 4002 4003 if (check_eb_range(eb, start, len)) { 4004 /* 4005 * Invalid range hit, reset the memory, so callers won't get 4006 * some random garbage for their uninitialzed memory. 4007 */ 4008 memset(dstv, 0, len); 4009 return; 4010 } 4011 4012 offset = get_eb_offset_in_page(eb, start); 4013 4014 while (len > 0) { 4015 page = eb->pages[i]; 4016 4017 cur = min(len, (PAGE_SIZE - offset)); 4018 kaddr = page_address(page); 4019 memcpy(dst, kaddr + offset, cur); 4020 4021 dst += cur; 4022 len -= cur; 4023 offset = 0; 4024 i++; 4025 } 4026 } 4027 4028 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4029 void __user *dstv, 4030 unsigned long start, unsigned long len) 4031 { 4032 size_t cur; 4033 size_t offset; 4034 struct page *page; 4035 char *kaddr; 4036 char __user *dst = (char __user *)dstv; 4037 unsigned long i = get_eb_page_index(start); 4038 int ret = 0; 4039 4040 WARN_ON(start > eb->len); 4041 WARN_ON(start + len > eb->start + eb->len); 4042 4043 offset = get_eb_offset_in_page(eb, start); 4044 4045 while (len > 0) { 4046 page = eb->pages[i]; 4047 4048 cur = min(len, (PAGE_SIZE - offset)); 4049 kaddr = page_address(page); 4050 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4051 ret = -EFAULT; 4052 break; 4053 } 4054 4055 dst += cur; 4056 len -= cur; 4057 offset = 0; 4058 i++; 4059 } 4060 4061 return ret; 4062 } 4063 4064 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4065 unsigned long start, unsigned long len) 4066 { 4067 size_t cur; 4068 size_t offset; 4069 struct page *page; 4070 char *kaddr; 4071 char *ptr = (char *)ptrv; 4072 unsigned long i = get_eb_page_index(start); 4073 int ret = 0; 4074 4075 if (check_eb_range(eb, start, len)) 4076 return -EINVAL; 4077 4078 offset = get_eb_offset_in_page(eb, start); 4079 4080 while (len > 0) { 4081 page = eb->pages[i]; 4082 4083 cur = min(len, (PAGE_SIZE - offset)); 4084 4085 kaddr = page_address(page); 4086 ret = memcmp(ptr, kaddr + offset, cur); 4087 if (ret) 4088 break; 4089 4090 ptr += cur; 4091 len -= cur; 4092 offset = 0; 4093 i++; 4094 } 4095 return ret; 4096 } 4097 4098 /* 4099 * Check that the extent buffer is uptodate. 4100 * 4101 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4102 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4103 */ 4104 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4105 struct page *page) 4106 { 4107 struct btrfs_fs_info *fs_info = eb->fs_info; 4108 4109 /* 4110 * If we are using the commit root we could potentially clear a page 4111 * Uptodate while we're using the extent buffer that we've previously 4112 * looked up. We don't want to complain in this case, as the page was 4113 * valid before, we just didn't write it out. Instead we want to catch 4114 * the case where we didn't actually read the block properly, which 4115 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4116 */ 4117 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4118 return; 4119 4120 if (fs_info->nodesize < PAGE_SIZE) { 4121 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4122 eb->start, eb->len))) 4123 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4124 } else { 4125 WARN_ON(!PageUptodate(page)); 4126 } 4127 } 4128 4129 static void __write_extent_buffer(const struct extent_buffer *eb, 4130 const void *srcv, unsigned long start, 4131 unsigned long len, bool use_memmove) 4132 { 4133 size_t cur; 4134 size_t offset; 4135 struct page *page; 4136 char *kaddr; 4137 char *src = (char *)srcv; 4138 unsigned long i = get_eb_page_index(start); 4139 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4140 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4141 4142 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4143 4144 if (check_eb_range(eb, start, len)) 4145 return; 4146 4147 offset = get_eb_offset_in_page(eb, start); 4148 4149 while (len > 0) { 4150 page = eb->pages[i]; 4151 if (check_uptodate) 4152 assert_eb_page_uptodate(eb, page); 4153 4154 cur = min(len, PAGE_SIZE - offset); 4155 kaddr = page_address(page); 4156 if (use_memmove) 4157 memmove(kaddr + offset, src, cur); 4158 else 4159 memcpy(kaddr + offset, src, cur); 4160 4161 src += cur; 4162 len -= cur; 4163 offset = 0; 4164 i++; 4165 } 4166 } 4167 4168 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4169 unsigned long start, unsigned long len) 4170 { 4171 return __write_extent_buffer(eb, srcv, start, len, false); 4172 } 4173 4174 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4175 unsigned long start, unsigned long len) 4176 { 4177 unsigned long cur = start; 4178 4179 while (cur < start + len) { 4180 unsigned long index = get_eb_page_index(cur); 4181 unsigned int offset = get_eb_offset_in_page(eb, cur); 4182 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4183 struct page *page = eb->pages[index]; 4184 4185 assert_eb_page_uptodate(eb, page); 4186 memset(page_address(page) + offset, c, cur_len); 4187 4188 cur += cur_len; 4189 } 4190 } 4191 4192 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4193 unsigned long len) 4194 { 4195 if (check_eb_range(eb, start, len)) 4196 return; 4197 return memset_extent_buffer(eb, 0, start, len); 4198 } 4199 4200 void copy_extent_buffer_full(const struct extent_buffer *dst, 4201 const struct extent_buffer *src) 4202 { 4203 unsigned long cur = 0; 4204 4205 ASSERT(dst->len == src->len); 4206 4207 while (cur < src->len) { 4208 unsigned long index = get_eb_page_index(cur); 4209 unsigned long offset = get_eb_offset_in_page(src, cur); 4210 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4211 void *addr = page_address(src->pages[index]) + offset; 4212 4213 write_extent_buffer(dst, addr, cur, cur_len); 4214 4215 cur += cur_len; 4216 } 4217 } 4218 4219 void copy_extent_buffer(const struct extent_buffer *dst, 4220 const struct extent_buffer *src, 4221 unsigned long dst_offset, unsigned long src_offset, 4222 unsigned long len) 4223 { 4224 u64 dst_len = dst->len; 4225 size_t cur; 4226 size_t offset; 4227 struct page *page; 4228 char *kaddr; 4229 unsigned long i = get_eb_page_index(dst_offset); 4230 4231 if (check_eb_range(dst, dst_offset, len) || 4232 check_eb_range(src, src_offset, len)) 4233 return; 4234 4235 WARN_ON(src->len != dst_len); 4236 4237 offset = get_eb_offset_in_page(dst, dst_offset); 4238 4239 while (len > 0) { 4240 page = dst->pages[i]; 4241 assert_eb_page_uptodate(dst, page); 4242 4243 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4244 4245 kaddr = page_address(page); 4246 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4247 4248 src_offset += cur; 4249 len -= cur; 4250 offset = 0; 4251 i++; 4252 } 4253 } 4254 4255 /* 4256 * Calculate the page and offset of the byte containing the given bit number. 4257 * 4258 * @eb: the extent buffer 4259 * @start: offset of the bitmap item in the extent buffer 4260 * @nr: bit number 4261 * @page_index: return index of the page in the extent buffer that contains 4262 * the given bit number 4263 * @page_offset: return offset into the page given by page_index 4264 * 4265 * This helper hides the ugliness of finding the byte in an extent buffer which 4266 * contains a given bit. 4267 */ 4268 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4269 unsigned long start, unsigned long nr, 4270 unsigned long *page_index, 4271 size_t *page_offset) 4272 { 4273 size_t byte_offset = BIT_BYTE(nr); 4274 size_t offset; 4275 4276 /* 4277 * The byte we want is the offset of the extent buffer + the offset of 4278 * the bitmap item in the extent buffer + the offset of the byte in the 4279 * bitmap item. 4280 */ 4281 offset = start + offset_in_page(eb->start) + byte_offset; 4282 4283 *page_index = offset >> PAGE_SHIFT; 4284 *page_offset = offset_in_page(offset); 4285 } 4286 4287 /* 4288 * Determine whether a bit in a bitmap item is set. 4289 * 4290 * @eb: the extent buffer 4291 * @start: offset of the bitmap item in the extent buffer 4292 * @nr: bit number to test 4293 */ 4294 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4295 unsigned long nr) 4296 { 4297 u8 *kaddr; 4298 struct page *page; 4299 unsigned long i; 4300 size_t offset; 4301 4302 eb_bitmap_offset(eb, start, nr, &i, &offset); 4303 page = eb->pages[i]; 4304 assert_eb_page_uptodate(eb, page); 4305 kaddr = page_address(page); 4306 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4307 } 4308 4309 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4310 { 4311 unsigned long index = get_eb_page_index(bytenr); 4312 4313 if (check_eb_range(eb, bytenr, 1)) 4314 return NULL; 4315 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4316 } 4317 4318 /* 4319 * Set an area of a bitmap to 1. 4320 * 4321 * @eb: the extent buffer 4322 * @start: offset of the bitmap item in the extent buffer 4323 * @pos: bit number of the first bit 4324 * @len: number of bits to set 4325 */ 4326 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4327 unsigned long pos, unsigned long len) 4328 { 4329 unsigned int first_byte = start + BIT_BYTE(pos); 4330 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4331 const bool same_byte = (first_byte == last_byte); 4332 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4333 u8 *kaddr; 4334 4335 if (same_byte) 4336 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4337 4338 /* Handle the first byte. */ 4339 kaddr = extent_buffer_get_byte(eb, first_byte); 4340 *kaddr |= mask; 4341 if (same_byte) 4342 return; 4343 4344 /* Handle the byte aligned part. */ 4345 ASSERT(first_byte + 1 <= last_byte); 4346 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4347 4348 /* Handle the last byte. */ 4349 kaddr = extent_buffer_get_byte(eb, last_byte); 4350 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4351 } 4352 4353 4354 /* 4355 * Clear an area of a bitmap. 4356 * 4357 * @eb: the extent buffer 4358 * @start: offset of the bitmap item in the extent buffer 4359 * @pos: bit number of the first bit 4360 * @len: number of bits to clear 4361 */ 4362 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4363 unsigned long start, unsigned long pos, 4364 unsigned long len) 4365 { 4366 unsigned int first_byte = start + BIT_BYTE(pos); 4367 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4368 const bool same_byte = (first_byte == last_byte); 4369 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4370 u8 *kaddr; 4371 4372 if (same_byte) 4373 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4374 4375 /* Handle the first byte. */ 4376 kaddr = extent_buffer_get_byte(eb, first_byte); 4377 *kaddr &= ~mask; 4378 if (same_byte) 4379 return; 4380 4381 /* Handle the byte aligned part. */ 4382 ASSERT(first_byte + 1 <= last_byte); 4383 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4384 4385 /* Handle the last byte. */ 4386 kaddr = extent_buffer_get_byte(eb, last_byte); 4387 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4388 } 4389 4390 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4391 { 4392 unsigned long distance = (src > dst) ? src - dst : dst - src; 4393 return distance < len; 4394 } 4395 4396 void memcpy_extent_buffer(const struct extent_buffer *dst, 4397 unsigned long dst_offset, unsigned long src_offset, 4398 unsigned long len) 4399 { 4400 unsigned long cur_off = 0; 4401 4402 if (check_eb_range(dst, dst_offset, len) || 4403 check_eb_range(dst, src_offset, len)) 4404 return; 4405 4406 while (cur_off < len) { 4407 unsigned long cur_src = cur_off + src_offset; 4408 unsigned long pg_index = get_eb_page_index(cur_src); 4409 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4410 unsigned long cur_len = min(src_offset + len - cur_src, 4411 PAGE_SIZE - pg_off); 4412 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4413 const bool use_memmove = areas_overlap(src_offset + cur_off, 4414 dst_offset + cur_off, cur_len); 4415 4416 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4417 use_memmove); 4418 cur_off += cur_len; 4419 } 4420 } 4421 4422 void memmove_extent_buffer(const struct extent_buffer *dst, 4423 unsigned long dst_offset, unsigned long src_offset, 4424 unsigned long len) 4425 { 4426 unsigned long dst_end = dst_offset + len - 1; 4427 unsigned long src_end = src_offset + len - 1; 4428 4429 if (check_eb_range(dst, dst_offset, len) || 4430 check_eb_range(dst, src_offset, len)) 4431 return; 4432 4433 if (dst_offset < src_offset) { 4434 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4435 return; 4436 } 4437 4438 while (len > 0) { 4439 unsigned long src_i; 4440 size_t cur; 4441 size_t dst_off_in_page; 4442 size_t src_off_in_page; 4443 void *src_addr; 4444 bool use_memmove; 4445 4446 src_i = get_eb_page_index(src_end); 4447 4448 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4449 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4450 4451 cur = min_t(unsigned long, len, src_off_in_page + 1); 4452 cur = min(cur, dst_off_in_page + 1); 4453 4454 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4455 cur + 1; 4456 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4457 cur); 4458 4459 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4460 use_memmove); 4461 4462 dst_end -= cur; 4463 src_end -= cur; 4464 len -= cur; 4465 } 4466 } 4467 4468 #define GANG_LOOKUP_SIZE 16 4469 static struct extent_buffer *get_next_extent_buffer( 4470 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4471 { 4472 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4473 struct extent_buffer *found = NULL; 4474 u64 page_start = page_offset(page); 4475 u64 cur = page_start; 4476 4477 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4478 lockdep_assert_held(&fs_info->buffer_lock); 4479 4480 while (cur < page_start + PAGE_SIZE) { 4481 int ret; 4482 int i; 4483 4484 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4485 (void **)gang, cur >> fs_info->sectorsize_bits, 4486 min_t(unsigned int, GANG_LOOKUP_SIZE, 4487 PAGE_SIZE / fs_info->nodesize)); 4488 if (ret == 0) 4489 goto out; 4490 for (i = 0; i < ret; i++) { 4491 /* Already beyond page end */ 4492 if (gang[i]->start >= page_start + PAGE_SIZE) 4493 goto out; 4494 /* Found one */ 4495 if (gang[i]->start >= bytenr) { 4496 found = gang[i]; 4497 goto out; 4498 } 4499 } 4500 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4501 } 4502 out: 4503 return found; 4504 } 4505 4506 static int try_release_subpage_extent_buffer(struct page *page) 4507 { 4508 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4509 u64 cur = page_offset(page); 4510 const u64 end = page_offset(page) + PAGE_SIZE; 4511 int ret; 4512 4513 while (cur < end) { 4514 struct extent_buffer *eb = NULL; 4515 4516 /* 4517 * Unlike try_release_extent_buffer() which uses page->private 4518 * to grab buffer, for subpage case we rely on radix tree, thus 4519 * we need to ensure radix tree consistency. 4520 * 4521 * We also want an atomic snapshot of the radix tree, thus go 4522 * with spinlock rather than RCU. 4523 */ 4524 spin_lock(&fs_info->buffer_lock); 4525 eb = get_next_extent_buffer(fs_info, page, cur); 4526 if (!eb) { 4527 /* No more eb in the page range after or at cur */ 4528 spin_unlock(&fs_info->buffer_lock); 4529 break; 4530 } 4531 cur = eb->start + eb->len; 4532 4533 /* 4534 * The same as try_release_extent_buffer(), to ensure the eb 4535 * won't disappear out from under us. 4536 */ 4537 spin_lock(&eb->refs_lock); 4538 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4539 spin_unlock(&eb->refs_lock); 4540 spin_unlock(&fs_info->buffer_lock); 4541 break; 4542 } 4543 spin_unlock(&fs_info->buffer_lock); 4544 4545 /* 4546 * If tree ref isn't set then we know the ref on this eb is a 4547 * real ref, so just return, this eb will likely be freed soon 4548 * anyway. 4549 */ 4550 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4551 spin_unlock(&eb->refs_lock); 4552 break; 4553 } 4554 4555 /* 4556 * Here we don't care about the return value, we will always 4557 * check the page private at the end. And 4558 * release_extent_buffer() will release the refs_lock. 4559 */ 4560 release_extent_buffer(eb); 4561 } 4562 /* 4563 * Finally to check if we have cleared page private, as if we have 4564 * released all ebs in the page, the page private should be cleared now. 4565 */ 4566 spin_lock(&page->mapping->private_lock); 4567 if (!PagePrivate(page)) 4568 ret = 1; 4569 else 4570 ret = 0; 4571 spin_unlock(&page->mapping->private_lock); 4572 return ret; 4573 4574 } 4575 4576 int try_release_extent_buffer(struct page *page) 4577 { 4578 struct extent_buffer *eb; 4579 4580 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4581 return try_release_subpage_extent_buffer(page); 4582 4583 /* 4584 * We need to make sure nobody is changing page->private, as we rely on 4585 * page->private as the pointer to extent buffer. 4586 */ 4587 spin_lock(&page->mapping->private_lock); 4588 if (!PagePrivate(page)) { 4589 spin_unlock(&page->mapping->private_lock); 4590 return 1; 4591 } 4592 4593 eb = (struct extent_buffer *)page->private; 4594 BUG_ON(!eb); 4595 4596 /* 4597 * This is a little awful but should be ok, we need to make sure that 4598 * the eb doesn't disappear out from under us while we're looking at 4599 * this page. 4600 */ 4601 spin_lock(&eb->refs_lock); 4602 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4603 spin_unlock(&eb->refs_lock); 4604 spin_unlock(&page->mapping->private_lock); 4605 return 0; 4606 } 4607 spin_unlock(&page->mapping->private_lock); 4608 4609 /* 4610 * If tree ref isn't set then we know the ref on this eb is a real ref, 4611 * so just return, this page will likely be freed soon anyway. 4612 */ 4613 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4614 spin_unlock(&eb->refs_lock); 4615 return 0; 4616 } 4617 4618 return release_extent_buffer(eb); 4619 } 4620 4621 /* 4622 * Attempt to readahead a child block. 4623 * 4624 * @fs_info: the fs_info 4625 * @bytenr: bytenr to read 4626 * @owner_root: objectid of the root that owns this eb 4627 * @gen: generation for the uptodate check, can be 0 4628 * @level: level for the eb 4629 * 4630 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4631 * normal uptodate check of the eb, without checking the generation. If we have 4632 * to read the block we will not block on anything. 4633 */ 4634 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4635 u64 bytenr, u64 owner_root, u64 gen, int level) 4636 { 4637 struct btrfs_tree_parent_check check = { 4638 .has_first_key = 0, 4639 .level = level, 4640 .transid = gen 4641 }; 4642 struct extent_buffer *eb; 4643 int ret; 4644 4645 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4646 if (IS_ERR(eb)) 4647 return; 4648 4649 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4650 free_extent_buffer(eb); 4651 return; 4652 } 4653 4654 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4655 if (ret < 0) 4656 free_extent_buffer_stale(eb); 4657 else 4658 free_extent_buffer(eb); 4659 } 4660 4661 /* 4662 * Readahead a node's child block. 4663 * 4664 * @node: parent node we're reading from 4665 * @slot: slot in the parent node for the child we want to read 4666 * 4667 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4668 * the slot in the node provided. 4669 */ 4670 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4671 { 4672 btrfs_readahead_tree_block(node->fs_info, 4673 btrfs_node_blockptr(node, slot), 4674 btrfs_header_owner(node), 4675 btrfs_node_ptr_generation(node, slot), 4676 btrfs_header_level(node) - 1); 4677 } 4678