1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "locking.h" 25 #include "rcu-string.h" 26 #include "backref.h" 27 #include "disk-io.h" 28 #include "subpage.h" 29 #include "zoned.h" 30 #include "block-group.h" 31 #include "compression.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "file-item.h" 35 #include "file.h" 36 #include "dev-replace.h" 37 #include "super.h" 38 #include "transaction.h" 39 40 static struct kmem_cache *extent_buffer_cache; 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 44 { 45 struct btrfs_fs_info *fs_info = eb->fs_info; 46 unsigned long flags; 47 48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 49 list_add(&eb->leak_list, &fs_info->allocated_ebs); 50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 51 } 52 53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 54 { 55 struct btrfs_fs_info *fs_info = eb->fs_info; 56 unsigned long flags; 57 58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 59 list_del(&eb->leak_list); 60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 61 } 62 63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 64 { 65 struct extent_buffer *eb; 66 unsigned long flags; 67 68 /* 69 * If we didn't get into open_ctree our allocated_ebs will not be 70 * initialized, so just skip this. 71 */ 72 if (!fs_info->allocated_ebs.next) 73 return; 74 75 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 77 while (!list_empty(&fs_info->allocated_ebs)) { 78 eb = list_first_entry(&fs_info->allocated_ebs, 79 struct extent_buffer, leak_list); 80 pr_err( 81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 83 btrfs_header_owner(eb)); 84 list_del(&eb->leak_list); 85 kmem_cache_free(extent_buffer_cache, eb); 86 } 87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 88 } 89 #else 90 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 91 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 92 #endif 93 94 /* 95 * Structure to record info about the bio being assembled, and other info like 96 * how many bytes are there before stripe/ordered extent boundary. 97 */ 98 struct btrfs_bio_ctrl { 99 struct btrfs_bio *bbio; 100 enum btrfs_compression_type compress_type; 101 u32 len_to_oe_boundary; 102 blk_opf_t opf; 103 btrfs_bio_end_io_t end_io_func; 104 struct writeback_control *wbc; 105 }; 106 107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 108 { 109 struct btrfs_bio *bbio = bio_ctrl->bbio; 110 111 if (!bbio) 112 return; 113 114 /* Caller should ensure the bio has at least some range added */ 115 ASSERT(bbio->bio.bi_iter.bi_size); 116 117 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 118 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 119 btrfs_submit_compressed_read(bbio); 120 else 121 btrfs_submit_bio(bbio, 0); 122 123 /* The bbio is owned by the end_io handler now */ 124 bio_ctrl->bbio = NULL; 125 } 126 127 /* 128 * Submit or fail the current bio in the bio_ctrl structure. 129 */ 130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 131 { 132 struct btrfs_bio *bbio = bio_ctrl->bbio; 133 134 if (!bbio) 135 return; 136 137 if (ret) { 138 ASSERT(ret < 0); 139 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 140 /* The bio is owned by the end_io handler now */ 141 bio_ctrl->bbio = NULL; 142 } else { 143 submit_one_bio(bio_ctrl); 144 } 145 } 146 147 int __init extent_buffer_init_cachep(void) 148 { 149 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 150 sizeof(struct extent_buffer), 0, 151 SLAB_MEM_SPREAD, NULL); 152 if (!extent_buffer_cache) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 void __cold extent_buffer_free_cachep(void) 159 { 160 /* 161 * Make sure all delayed rcu free are flushed before we 162 * destroy caches. 163 */ 164 rcu_barrier(); 165 kmem_cache_destroy(extent_buffer_cache); 166 } 167 168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 169 { 170 unsigned long index = start >> PAGE_SHIFT; 171 unsigned long end_index = end >> PAGE_SHIFT; 172 struct page *page; 173 174 while (index <= end_index) { 175 page = find_get_page(inode->i_mapping, index); 176 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 177 clear_page_dirty_for_io(page); 178 put_page(page); 179 index++; 180 } 181 } 182 183 static void process_one_page(struct btrfs_fs_info *fs_info, 184 struct page *page, struct page *locked_page, 185 unsigned long page_ops, u64 start, u64 end) 186 { 187 struct folio *folio = page_folio(page); 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 197 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct folio *folio = fbatch.folios[i]; 276 struct page *page = folio_page(folio, 0); 277 u32 len = end + 1 - start; 278 279 if (page == locked_page) 280 continue; 281 282 if (btrfs_folio_start_writer_lock(fs_info, folio, start, 283 len)) 284 goto out; 285 286 if (!PageDirty(page) || page->mapping != mapping) { 287 btrfs_folio_end_writer_lock(fs_info, folio, start, 288 len); 289 goto out; 290 } 291 292 processed_end = page_offset(page) + PAGE_SIZE - 1; 293 } 294 folio_batch_release(&fbatch); 295 cond_resched(); 296 } 297 298 return 0; 299 out: 300 folio_batch_release(&fbatch); 301 if (processed_end > start) 302 __unlock_for_delalloc(inode, locked_page, start, processed_end); 303 return -EAGAIN; 304 } 305 306 /* 307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 308 * more than @max_bytes. 309 * 310 * @start: The original start bytenr to search. 311 * Will store the extent range start bytenr. 312 * @end: The original end bytenr of the search range 313 * Will store the extent range end bytenr. 314 * 315 * Return true if we find a delalloc range which starts inside the original 316 * range, and @start/@end will store the delalloc range start/end. 317 * 318 * Return false if we can't find any delalloc range which starts inside the 319 * original range, and @start/@end will be the non-delalloc range start/end. 320 */ 321 EXPORT_FOR_TESTS 322 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 323 struct page *locked_page, u64 *start, 324 u64 *end) 325 { 326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 327 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 328 const u64 orig_start = *start; 329 const u64 orig_end = *end; 330 /* The sanity tests may not set a valid fs_info. */ 331 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 332 u64 delalloc_start; 333 u64 delalloc_end; 334 bool found; 335 struct extent_state *cached_state = NULL; 336 int ret; 337 int loops = 0; 338 339 /* Caller should pass a valid @end to indicate the search range end */ 340 ASSERT(orig_end > orig_start); 341 342 /* The range should at least cover part of the page */ 343 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 344 orig_end <= page_offset(locked_page))); 345 again: 346 /* step one, find a bunch of delalloc bytes starting at start */ 347 delalloc_start = *start; 348 delalloc_end = 0; 349 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 350 max_bytes, &cached_state); 351 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 352 *start = delalloc_start; 353 354 /* @delalloc_end can be -1, never go beyond @orig_end */ 355 *end = min(delalloc_end, orig_end); 356 free_extent_state(cached_state); 357 return false; 358 } 359 360 /* 361 * start comes from the offset of locked_page. We have to lock 362 * pages in order, so we can't process delalloc bytes before 363 * locked_page 364 */ 365 if (delalloc_start < *start) 366 delalloc_start = *start; 367 368 /* 369 * make sure to limit the number of pages we try to lock down 370 */ 371 if (delalloc_end + 1 - delalloc_start > max_bytes) 372 delalloc_end = delalloc_start + max_bytes - 1; 373 374 /* step two, lock all the pages after the page that has start */ 375 ret = lock_delalloc_pages(inode, locked_page, 376 delalloc_start, delalloc_end); 377 ASSERT(!ret || ret == -EAGAIN); 378 if (ret == -EAGAIN) { 379 /* some of the pages are gone, lets avoid looping by 380 * shortening the size of the delalloc range we're searching 381 */ 382 free_extent_state(cached_state); 383 cached_state = NULL; 384 if (!loops) { 385 max_bytes = PAGE_SIZE; 386 loops = 1; 387 goto again; 388 } else { 389 found = false; 390 goto out_failed; 391 } 392 } 393 394 /* step three, lock the state bits for the whole range */ 395 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 396 397 /* then test to make sure it is all still delalloc */ 398 ret = test_range_bit(tree, delalloc_start, delalloc_end, 399 EXTENT_DELALLOC, cached_state); 400 if (!ret) { 401 unlock_extent(tree, delalloc_start, delalloc_end, 402 &cached_state); 403 __unlock_for_delalloc(inode, locked_page, 404 delalloc_start, delalloc_end); 405 cond_resched(); 406 goto again; 407 } 408 free_extent_state(cached_state); 409 *start = delalloc_start; 410 *end = delalloc_end; 411 out_failed: 412 return found; 413 } 414 415 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 416 struct page *locked_page, 417 u32 clear_bits, unsigned long page_ops) 418 { 419 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 420 421 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 422 start, end, page_ops); 423 } 424 425 static bool btrfs_verify_page(struct page *page, u64 start) 426 { 427 if (!fsverity_active(page->mapping->host) || 428 PageUptodate(page) || 429 start >= i_size_read(page->mapping->host)) 430 return true; 431 return fsverity_verify_page(page); 432 } 433 434 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 435 { 436 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 437 struct folio *folio = page_folio(page); 438 439 ASSERT(page_offset(page) <= start && 440 start + len <= page_offset(page) + PAGE_SIZE); 441 442 if (uptodate && btrfs_verify_page(page, start)) 443 btrfs_folio_set_uptodate(fs_info, folio, start, len); 444 else 445 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 446 447 if (!btrfs_is_subpage(fs_info, page->mapping)) 448 unlock_page(page); 449 else 450 btrfs_subpage_end_reader(fs_info, folio, start, len); 451 } 452 453 /* 454 * After a write IO is done, we need to: 455 * 456 * - clear the uptodate bits on error 457 * - clear the writeback bits in the extent tree for the range 458 * - filio_end_writeback() if there is no more pending io for the folio 459 * 460 * Scheduling is not allowed, so the extent state tree is expected 461 * to have one and only one object corresponding to this IO. 462 */ 463 static void end_bbio_data_write(struct btrfs_bio *bbio) 464 { 465 struct bio *bio = &bbio->bio; 466 int error = blk_status_to_errno(bio->bi_status); 467 struct folio_iter fi; 468 469 ASSERT(!bio_flagged(bio, BIO_CLONED)); 470 bio_for_each_folio_all(fi, bio) { 471 struct folio *folio = fi.folio; 472 struct inode *inode = folio->mapping->host; 473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 474 const u32 sectorsize = fs_info->sectorsize; 475 u64 start = folio_pos(folio) + fi.offset; 476 u32 len = fi.length; 477 478 /* Only order 0 (single page) folios are allowed for data. */ 479 ASSERT(folio_order(folio) == 0); 480 481 /* Our read/write should always be sector aligned. */ 482 if (!IS_ALIGNED(fi.offset, sectorsize)) 483 btrfs_err(fs_info, 484 "partial page write in btrfs with offset %zu and length %zu", 485 fi.offset, fi.length); 486 else if (!IS_ALIGNED(fi.length, sectorsize)) 487 btrfs_info(fs_info, 488 "incomplete page write with offset %zu and length %zu", 489 fi.offset, fi.length); 490 491 btrfs_finish_ordered_extent(bbio->ordered, 492 folio_page(folio, 0), start, len, !error); 493 if (error) 494 mapping_set_error(folio->mapping, error); 495 btrfs_folio_clear_writeback(fs_info, folio, start, len); 496 } 497 498 bio_put(bio); 499 } 500 501 /* 502 * Record previously processed extent range 503 * 504 * For endio_readpage_release_extent() to handle a full extent range, reducing 505 * the extent io operations. 506 */ 507 struct processed_extent { 508 struct btrfs_inode *inode; 509 /* Start of the range in @inode */ 510 u64 start; 511 /* End of the range in @inode */ 512 u64 end; 513 bool uptodate; 514 }; 515 516 /* 517 * Try to release processed extent range 518 * 519 * May not release the extent range right now if the current range is 520 * contiguous to processed extent. 521 * 522 * Will release processed extent when any of @inode, @uptodate, the range is 523 * no longer contiguous to the processed range. 524 * 525 * Passing @inode == NULL will force processed extent to be released. 526 */ 527 static void endio_readpage_release_extent(struct processed_extent *processed, 528 struct btrfs_inode *inode, u64 start, u64 end, 529 bool uptodate) 530 { 531 struct extent_state *cached = NULL; 532 struct extent_io_tree *tree; 533 534 /* The first extent, initialize @processed */ 535 if (!processed->inode) 536 goto update; 537 538 /* 539 * Contiguous to processed extent, just uptodate the end. 540 * 541 * Several things to notice: 542 * 543 * - bio can be merged as long as on-disk bytenr is contiguous 544 * This means we can have page belonging to other inodes, thus need to 545 * check if the inode still matches. 546 * - bvec can contain range beyond current page for multi-page bvec 547 * Thus we need to do processed->end + 1 >= start check 548 */ 549 if (processed->inode == inode && processed->uptodate == uptodate && 550 processed->end + 1 >= start && end >= processed->end) { 551 processed->end = end; 552 return; 553 } 554 555 tree = &processed->inode->io_tree; 556 /* 557 * Now we don't have range contiguous to the processed range, release 558 * the processed range now. 559 */ 560 unlock_extent(tree, processed->start, processed->end, &cached); 561 562 update: 563 /* Update processed to current range */ 564 processed->inode = inode; 565 processed->start = start; 566 processed->end = end; 567 processed->uptodate = uptodate; 568 } 569 570 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 571 { 572 struct folio *folio = page_folio(page); 573 574 ASSERT(folio_test_locked(folio)); 575 if (!btrfs_is_subpage(fs_info, folio->mapping)) 576 return; 577 578 ASSERT(folio_test_private(folio)); 579 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE); 580 } 581 582 /* 583 * After a data read IO is done, we need to: 584 * 585 * - clear the uptodate bits on error 586 * - set the uptodate bits if things worked 587 * - set the folio up to date if all extents in the tree are uptodate 588 * - clear the lock bit in the extent tree 589 * - unlock the folio if there are no other extents locked for it 590 * 591 * Scheduling is not allowed, so the extent state tree is expected 592 * to have one and only one object corresponding to this IO. 593 */ 594 static void end_bbio_data_read(struct btrfs_bio *bbio) 595 { 596 struct bio *bio = &bbio->bio; 597 struct processed_extent processed = { 0 }; 598 struct folio_iter fi; 599 /* 600 * The offset to the beginning of a bio, since one bio can never be 601 * larger than UINT_MAX, u32 here is enough. 602 */ 603 u32 bio_offset = 0; 604 605 ASSERT(!bio_flagged(bio, BIO_CLONED)); 606 bio_for_each_folio_all(fi, &bbio->bio) { 607 bool uptodate = !bio->bi_status; 608 struct folio *folio = fi.folio; 609 struct inode *inode = folio->mapping->host; 610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 611 const u32 sectorsize = fs_info->sectorsize; 612 u64 start; 613 u64 end; 614 u32 len; 615 616 /* For now only order 0 folios are supported for data. */ 617 ASSERT(folio_order(folio) == 0); 618 btrfs_debug(fs_info, 619 "%s: bi_sector=%llu, err=%d, mirror=%u", 620 __func__, bio->bi_iter.bi_sector, bio->bi_status, 621 bbio->mirror_num); 622 623 /* 624 * We always issue full-sector reads, but if some block in a 625 * folio fails to read, blk_update_request() will advance 626 * bv_offset and adjust bv_len to compensate. Print a warning 627 * for unaligned offsets, and an error if they don't add up to 628 * a full sector. 629 */ 630 if (!IS_ALIGNED(fi.offset, sectorsize)) 631 btrfs_err(fs_info, 632 "partial page read in btrfs with offset %zu and length %zu", 633 fi.offset, fi.length); 634 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 635 btrfs_info(fs_info, 636 "incomplete page read with offset %zu and length %zu", 637 fi.offset, fi.length); 638 639 start = folio_pos(folio) + fi.offset; 640 end = start + fi.length - 1; 641 len = fi.length; 642 643 if (likely(uptodate)) { 644 loff_t i_size = i_size_read(inode); 645 pgoff_t end_index = i_size >> folio_shift(folio); 646 647 /* 648 * Zero out the remaining part if this range straddles 649 * i_size. 650 * 651 * Here we should only zero the range inside the folio, 652 * not touch anything else. 653 * 654 * NOTE: i_size is exclusive while end is inclusive. 655 */ 656 if (folio_index(folio) == end_index && i_size <= end) { 657 u32 zero_start = max(offset_in_folio(folio, i_size), 658 offset_in_folio(folio, start)); 659 u32 zero_len = offset_in_folio(folio, end) + 1 - 660 zero_start; 661 662 folio_zero_range(folio, zero_start, zero_len); 663 } 664 } 665 666 /* Update page status and unlock. */ 667 end_page_read(folio_page(folio, 0), uptodate, start, len); 668 endio_readpage_release_extent(&processed, BTRFS_I(inode), 669 start, end, uptodate); 670 671 ASSERT(bio_offset + len > bio_offset); 672 bio_offset += len; 673 674 } 675 /* Release the last extent */ 676 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 677 bio_put(bio); 678 } 679 680 /* 681 * Populate every free slot in a provided array with pages. 682 * 683 * @nr_pages: number of pages to allocate 684 * @page_array: the array to fill with pages; any existing non-null entries in 685 * the array will be skipped 686 * @extra_gfp: the extra GFP flags for the allocation. 687 * 688 * Return: 0 if all pages were able to be allocated; 689 * -ENOMEM otherwise, the partially allocated pages would be freed and 690 * the array slots zeroed 691 */ 692 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 693 gfp_t extra_gfp) 694 { 695 unsigned int allocated; 696 697 for (allocated = 0; allocated < nr_pages;) { 698 unsigned int last = allocated; 699 700 allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp, 701 nr_pages, page_array); 702 703 if (allocated == nr_pages) 704 return 0; 705 706 /* 707 * During this iteration, no page could be allocated, even 708 * though alloc_pages_bulk_array() falls back to alloc_page() 709 * if it could not bulk-allocate. So we must be out of memory. 710 */ 711 if (allocated == last) { 712 for (int i = 0; i < allocated; i++) { 713 __free_page(page_array[i]); 714 page_array[i] = NULL; 715 } 716 return -ENOMEM; 717 } 718 719 memalloc_retry_wait(GFP_NOFS); 720 } 721 return 0; 722 } 723 724 /* 725 * Populate needed folios for the extent buffer. 726 * 727 * For now, the folios populated are always in order 0 (aka, single page). 728 */ 729 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp) 730 { 731 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 732 int num_pages = num_extent_pages(eb); 733 int ret; 734 735 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp); 736 if (ret < 0) 737 return ret; 738 739 for (int i = 0; i < num_pages; i++) 740 eb->folios[i] = page_folio(page_array[i]); 741 return 0; 742 } 743 744 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 745 struct page *page, u64 disk_bytenr, 746 unsigned int pg_offset) 747 { 748 struct bio *bio = &bio_ctrl->bbio->bio; 749 struct bio_vec *bvec = bio_last_bvec_all(bio); 750 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 751 752 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 753 /* 754 * For compression, all IO should have its logical bytenr set 755 * to the starting bytenr of the compressed extent. 756 */ 757 return bio->bi_iter.bi_sector == sector; 758 } 759 760 /* 761 * The contig check requires the following conditions to be met: 762 * 763 * 1) The pages are belonging to the same inode 764 * This is implied by the call chain. 765 * 766 * 2) The range has adjacent logical bytenr 767 * 768 * 3) The range has adjacent file offset 769 * This is required for the usage of btrfs_bio->file_offset. 770 */ 771 return bio_end_sector(bio) == sector && 772 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 773 page_offset(page) + pg_offset; 774 } 775 776 static void alloc_new_bio(struct btrfs_inode *inode, 777 struct btrfs_bio_ctrl *bio_ctrl, 778 u64 disk_bytenr, u64 file_offset) 779 { 780 struct btrfs_fs_info *fs_info = inode->root->fs_info; 781 struct btrfs_bio *bbio; 782 783 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 784 bio_ctrl->end_io_func, NULL); 785 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 786 bbio->inode = inode; 787 bbio->file_offset = file_offset; 788 bio_ctrl->bbio = bbio; 789 bio_ctrl->len_to_oe_boundary = U32_MAX; 790 791 /* Limit data write bios to the ordered boundary. */ 792 if (bio_ctrl->wbc) { 793 struct btrfs_ordered_extent *ordered; 794 795 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 796 if (ordered) { 797 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 798 ordered->file_offset + 799 ordered->disk_num_bytes - file_offset); 800 bbio->ordered = ordered; 801 } 802 803 /* 804 * Pick the last added device to support cgroup writeback. For 805 * multi-device file systems this means blk-cgroup policies have 806 * to always be set on the last added/replaced device. 807 * This is a bit odd but has been like that for a long time. 808 */ 809 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 810 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 811 } 812 } 813 814 /* 815 * @disk_bytenr: logical bytenr where the write will be 816 * @page: page to add to the bio 817 * @size: portion of page that we want to write to 818 * @pg_offset: offset of the new bio or to check whether we are adding 819 * a contiguous page to the previous one 820 * 821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 822 * new one in @bio_ctrl->bbio. 823 * The mirror number for this IO should already be initizlied in 824 * @bio_ctrl->mirror_num. 825 */ 826 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 827 u64 disk_bytenr, struct page *page, 828 size_t size, unsigned long pg_offset) 829 { 830 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 831 832 ASSERT(pg_offset + size <= PAGE_SIZE); 833 ASSERT(bio_ctrl->end_io_func); 834 835 if (bio_ctrl->bbio && 836 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 837 submit_one_bio(bio_ctrl); 838 839 do { 840 u32 len = size; 841 842 /* Allocate new bio if needed */ 843 if (!bio_ctrl->bbio) { 844 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 845 page_offset(page) + pg_offset); 846 } 847 848 /* Cap to the current ordered extent boundary if there is one. */ 849 if (len > bio_ctrl->len_to_oe_boundary) { 850 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 851 ASSERT(is_data_inode(&inode->vfs_inode)); 852 len = bio_ctrl->len_to_oe_boundary; 853 } 854 855 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 856 /* bio full: move on to a new one */ 857 submit_one_bio(bio_ctrl); 858 continue; 859 } 860 861 if (bio_ctrl->wbc) 862 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 863 864 size -= len; 865 pg_offset += len; 866 disk_bytenr += len; 867 868 /* 869 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 870 * sector aligned. alloc_new_bio() then sets it to the end of 871 * our ordered extent for writes into zoned devices. 872 * 873 * When len_to_oe_boundary is tracking an ordered extent, we 874 * trust the ordered extent code to align things properly, and 875 * the check above to cap our write to the ordered extent 876 * boundary is correct. 877 * 878 * When len_to_oe_boundary is U32_MAX, the cap above would 879 * result in a 4095 byte IO for the last page right before 880 * we hit the bio limit of UINT_MAX. bio_add_page() has all 881 * the checks required to make sure we don't overflow the bio, 882 * and we should just ignore len_to_oe_boundary completely 883 * unless we're using it to track an ordered extent. 884 * 885 * It's pretty hard to make a bio sized U32_MAX, but it can 886 * happen when the page cache is able to feed us contiguous 887 * pages for large extents. 888 */ 889 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 890 bio_ctrl->len_to_oe_boundary -= len; 891 892 /* Ordered extent boundary: move on to a new bio. */ 893 if (bio_ctrl->len_to_oe_boundary == 0) 894 submit_one_bio(bio_ctrl); 895 } while (size); 896 } 897 898 static int attach_extent_buffer_folio(struct extent_buffer *eb, 899 struct folio *folio, 900 struct btrfs_subpage *prealloc) 901 { 902 struct btrfs_fs_info *fs_info = eb->fs_info; 903 int ret = 0; 904 905 /* 906 * If the page is mapped to btree inode, we should hold the private 907 * lock to prevent race. 908 * For cloned or dummy extent buffers, their pages are not mapped and 909 * will not race with any other ebs. 910 */ 911 if (folio->mapping) 912 lockdep_assert_held(&folio->mapping->i_private_lock); 913 914 if (fs_info->nodesize >= PAGE_SIZE) { 915 if (!folio_test_private(folio)) 916 folio_attach_private(folio, eb); 917 else 918 WARN_ON(folio_get_private(folio) != eb); 919 return 0; 920 } 921 922 /* Already mapped, just free prealloc */ 923 if (folio_test_private(folio)) { 924 btrfs_free_subpage(prealloc); 925 return 0; 926 } 927 928 if (prealloc) 929 /* Has preallocated memory for subpage */ 930 folio_attach_private(folio, prealloc); 931 else 932 /* Do new allocation to attach subpage */ 933 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 934 return ret; 935 } 936 937 int set_page_extent_mapped(struct page *page) 938 { 939 struct folio *folio = page_folio(page); 940 struct btrfs_fs_info *fs_info; 941 942 ASSERT(page->mapping); 943 944 if (folio_test_private(folio)) 945 return 0; 946 947 fs_info = btrfs_sb(page->mapping->host->i_sb); 948 949 if (btrfs_is_subpage(fs_info, page->mapping)) 950 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 951 952 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 953 return 0; 954 } 955 956 void clear_page_extent_mapped(struct page *page) 957 { 958 struct folio *folio = page_folio(page); 959 struct btrfs_fs_info *fs_info; 960 961 ASSERT(page->mapping); 962 963 if (!folio_test_private(folio)) 964 return; 965 966 fs_info = btrfs_sb(page->mapping->host->i_sb); 967 if (btrfs_is_subpage(fs_info, page->mapping)) 968 return btrfs_detach_subpage(fs_info, folio); 969 970 folio_detach_private(folio); 971 } 972 973 static struct extent_map * 974 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 975 u64 start, u64 len, struct extent_map **em_cached) 976 { 977 struct extent_map *em; 978 979 if (em_cached && *em_cached) { 980 em = *em_cached; 981 if (extent_map_in_tree(em) && start >= em->start && 982 start < extent_map_end(em)) { 983 refcount_inc(&em->refs); 984 return em; 985 } 986 987 free_extent_map(em); 988 *em_cached = NULL; 989 } 990 991 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 992 if (em_cached && !IS_ERR(em)) { 993 BUG_ON(*em_cached); 994 refcount_inc(&em->refs); 995 *em_cached = em; 996 } 997 return em; 998 } 999 /* 1000 * basic readpage implementation. Locked extent state structs are inserted 1001 * into the tree that are removed when the IO is done (by the end_io 1002 * handlers) 1003 * XXX JDM: This needs looking at to ensure proper page locking 1004 * return 0 on success, otherwise return error 1005 */ 1006 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1007 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1008 { 1009 struct inode *inode = page->mapping->host; 1010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1011 u64 start = page_offset(page); 1012 const u64 end = start + PAGE_SIZE - 1; 1013 u64 cur = start; 1014 u64 extent_offset; 1015 u64 last_byte = i_size_read(inode); 1016 u64 block_start; 1017 struct extent_map *em; 1018 int ret = 0; 1019 size_t pg_offset = 0; 1020 size_t iosize; 1021 size_t blocksize = inode->i_sb->s_blocksize; 1022 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1023 1024 ret = set_page_extent_mapped(page); 1025 if (ret < 0) { 1026 unlock_extent(tree, start, end, NULL); 1027 unlock_page(page); 1028 return ret; 1029 } 1030 1031 if (page->index == last_byte >> PAGE_SHIFT) { 1032 size_t zero_offset = offset_in_page(last_byte); 1033 1034 if (zero_offset) { 1035 iosize = PAGE_SIZE - zero_offset; 1036 memzero_page(page, zero_offset, iosize); 1037 } 1038 } 1039 bio_ctrl->end_io_func = end_bbio_data_read; 1040 begin_page_read(fs_info, page); 1041 while (cur <= end) { 1042 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1043 bool force_bio_submit = false; 1044 u64 disk_bytenr; 1045 1046 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1047 if (cur >= last_byte) { 1048 iosize = PAGE_SIZE - pg_offset; 1049 memzero_page(page, pg_offset, iosize); 1050 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1051 end_page_read(page, true, cur, iosize); 1052 break; 1053 } 1054 em = __get_extent_map(inode, page, pg_offset, cur, 1055 end - cur + 1, em_cached); 1056 if (IS_ERR(em)) { 1057 unlock_extent(tree, cur, end, NULL); 1058 end_page_read(page, false, cur, end + 1 - cur); 1059 return PTR_ERR(em); 1060 } 1061 extent_offset = cur - em->start; 1062 BUG_ON(extent_map_end(em) <= cur); 1063 BUG_ON(end < cur); 1064 1065 compress_type = extent_map_compression(em); 1066 1067 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1068 iosize = ALIGN(iosize, blocksize); 1069 if (compress_type != BTRFS_COMPRESS_NONE) 1070 disk_bytenr = em->block_start; 1071 else 1072 disk_bytenr = em->block_start + extent_offset; 1073 block_start = em->block_start; 1074 if (em->flags & EXTENT_FLAG_PREALLOC) 1075 block_start = EXTENT_MAP_HOLE; 1076 1077 /* 1078 * If we have a file range that points to a compressed extent 1079 * and it's followed by a consecutive file range that points 1080 * to the same compressed extent (possibly with a different 1081 * offset and/or length, so it either points to the whole extent 1082 * or only part of it), we must make sure we do not submit a 1083 * single bio to populate the pages for the 2 ranges because 1084 * this makes the compressed extent read zero out the pages 1085 * belonging to the 2nd range. Imagine the following scenario: 1086 * 1087 * File layout 1088 * [0 - 8K] [8K - 24K] 1089 * | | 1090 * | | 1091 * points to extent X, points to extent X, 1092 * offset 4K, length of 8K offset 0, length 16K 1093 * 1094 * [extent X, compressed length = 4K uncompressed length = 16K] 1095 * 1096 * If the bio to read the compressed extent covers both ranges, 1097 * it will decompress extent X into the pages belonging to the 1098 * first range and then it will stop, zeroing out the remaining 1099 * pages that belong to the other range that points to extent X. 1100 * So here we make sure we submit 2 bios, one for the first 1101 * range and another one for the third range. Both will target 1102 * the same physical extent from disk, but we can't currently 1103 * make the compressed bio endio callback populate the pages 1104 * for both ranges because each compressed bio is tightly 1105 * coupled with a single extent map, and each range can have 1106 * an extent map with a different offset value relative to the 1107 * uncompressed data of our extent and different lengths. This 1108 * is a corner case so we prioritize correctness over 1109 * non-optimal behavior (submitting 2 bios for the same extent). 1110 */ 1111 if (compress_type != BTRFS_COMPRESS_NONE && 1112 prev_em_start && *prev_em_start != (u64)-1 && 1113 *prev_em_start != em->start) 1114 force_bio_submit = true; 1115 1116 if (prev_em_start) 1117 *prev_em_start = em->start; 1118 1119 free_extent_map(em); 1120 em = NULL; 1121 1122 /* we've found a hole, just zero and go on */ 1123 if (block_start == EXTENT_MAP_HOLE) { 1124 memzero_page(page, pg_offset, iosize); 1125 1126 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1127 end_page_read(page, true, cur, iosize); 1128 cur = cur + iosize; 1129 pg_offset += iosize; 1130 continue; 1131 } 1132 /* the get_extent function already copied into the page */ 1133 if (block_start == EXTENT_MAP_INLINE) { 1134 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1135 end_page_read(page, true, cur, iosize); 1136 cur = cur + iosize; 1137 pg_offset += iosize; 1138 continue; 1139 } 1140 1141 if (bio_ctrl->compress_type != compress_type) { 1142 submit_one_bio(bio_ctrl); 1143 bio_ctrl->compress_type = compress_type; 1144 } 1145 1146 if (force_bio_submit) 1147 submit_one_bio(bio_ctrl); 1148 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1149 pg_offset); 1150 cur = cur + iosize; 1151 pg_offset += iosize; 1152 } 1153 1154 return 0; 1155 } 1156 1157 int btrfs_read_folio(struct file *file, struct folio *folio) 1158 { 1159 struct page *page = &folio->page; 1160 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1161 u64 start = page_offset(page); 1162 u64 end = start + PAGE_SIZE - 1; 1163 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1164 int ret; 1165 1166 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1167 1168 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1169 /* 1170 * If btrfs_do_readpage() failed we will want to submit the assembled 1171 * bio to do the cleanup. 1172 */ 1173 submit_one_bio(&bio_ctrl); 1174 return ret; 1175 } 1176 1177 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1178 u64 start, u64 end, 1179 struct extent_map **em_cached, 1180 struct btrfs_bio_ctrl *bio_ctrl, 1181 u64 *prev_em_start) 1182 { 1183 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1184 int index; 1185 1186 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1187 1188 for (index = 0; index < nr_pages; index++) { 1189 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1190 prev_em_start); 1191 put_page(pages[index]); 1192 } 1193 } 1194 1195 /* 1196 * helper for __extent_writepage, doing all of the delayed allocation setup. 1197 * 1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1199 * to write the page (copy into inline extent). In this case the IO has 1200 * been started and the page is already unlocked. 1201 * 1202 * This returns 0 if all went well (page still locked) 1203 * This returns < 0 if there were errors (page still locked) 1204 */ 1205 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1206 struct page *page, struct writeback_control *wbc) 1207 { 1208 const u64 page_start = page_offset(page); 1209 const u64 page_end = page_start + PAGE_SIZE - 1; 1210 u64 delalloc_start = page_start; 1211 u64 delalloc_end = page_end; 1212 u64 delalloc_to_write = 0; 1213 int ret = 0; 1214 1215 while (delalloc_start < page_end) { 1216 delalloc_end = page_end; 1217 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1218 &delalloc_start, &delalloc_end)) { 1219 delalloc_start = delalloc_end + 1; 1220 continue; 1221 } 1222 1223 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1224 delalloc_end, wbc); 1225 if (ret < 0) 1226 return ret; 1227 1228 delalloc_start = delalloc_end + 1; 1229 } 1230 1231 /* 1232 * delalloc_end is already one less than the total length, so 1233 * we don't subtract one from PAGE_SIZE 1234 */ 1235 delalloc_to_write += 1236 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1237 1238 /* 1239 * If btrfs_run_dealloc_range() already started I/O and unlocked 1240 * the pages, we just need to account for them here. 1241 */ 1242 if (ret == 1) { 1243 wbc->nr_to_write -= delalloc_to_write; 1244 return 1; 1245 } 1246 1247 if (wbc->nr_to_write < delalloc_to_write) { 1248 int thresh = 8192; 1249 1250 if (delalloc_to_write < thresh * 2) 1251 thresh = delalloc_to_write; 1252 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1253 thresh); 1254 } 1255 1256 return 0; 1257 } 1258 1259 /* 1260 * Find the first byte we need to write. 1261 * 1262 * For subpage, one page can contain several sectors, and 1263 * __extent_writepage_io() will just grab all extent maps in the page 1264 * range and try to submit all non-inline/non-compressed extents. 1265 * 1266 * This is a big problem for subpage, we shouldn't re-submit already written 1267 * data at all. 1268 * This function will lookup subpage dirty bit to find which range we really 1269 * need to submit. 1270 * 1271 * Return the next dirty range in [@start, @end). 1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1273 */ 1274 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1275 struct page *page, u64 *start, u64 *end) 1276 { 1277 struct folio *folio = page_folio(page); 1278 struct btrfs_subpage *subpage = folio_get_private(folio); 1279 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1280 u64 orig_start = *start; 1281 /* Declare as unsigned long so we can use bitmap ops */ 1282 unsigned long flags; 1283 int range_start_bit; 1284 int range_end_bit; 1285 1286 /* 1287 * For regular sector size == page size case, since one page only 1288 * contains one sector, we return the page offset directly. 1289 */ 1290 if (!btrfs_is_subpage(fs_info, page->mapping)) { 1291 *start = page_offset(page); 1292 *end = page_offset(page) + PAGE_SIZE; 1293 return; 1294 } 1295 1296 range_start_bit = spi->dirty_offset + 1297 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1298 1299 /* We should have the page locked, but just in case */ 1300 spin_lock_irqsave(&subpage->lock, flags); 1301 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1302 spi->dirty_offset + spi->bitmap_nr_bits); 1303 spin_unlock_irqrestore(&subpage->lock, flags); 1304 1305 range_start_bit -= spi->dirty_offset; 1306 range_end_bit -= spi->dirty_offset; 1307 1308 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1309 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1310 } 1311 1312 /* 1313 * helper for __extent_writepage. This calls the writepage start hooks, 1314 * and does the loop to map the page into extents and bios. 1315 * 1316 * We return 1 if the IO is started and the page is unlocked, 1317 * 0 if all went well (page still locked) 1318 * < 0 if there were errors (page still locked) 1319 */ 1320 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1321 struct page *page, 1322 struct btrfs_bio_ctrl *bio_ctrl, 1323 loff_t i_size, 1324 int *nr_ret) 1325 { 1326 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1327 u64 cur = page_offset(page); 1328 u64 end = cur + PAGE_SIZE - 1; 1329 u64 extent_offset; 1330 u64 block_start; 1331 struct extent_map *em; 1332 int ret = 0; 1333 int nr = 0; 1334 1335 ret = btrfs_writepage_cow_fixup(page); 1336 if (ret) { 1337 /* Fixup worker will requeue */ 1338 redirty_page_for_writepage(bio_ctrl->wbc, page); 1339 unlock_page(page); 1340 return 1; 1341 } 1342 1343 bio_ctrl->end_io_func = end_bbio_data_write; 1344 while (cur <= end) { 1345 u32 len = end - cur + 1; 1346 u64 disk_bytenr; 1347 u64 em_end; 1348 u64 dirty_range_start = cur; 1349 u64 dirty_range_end; 1350 u32 iosize; 1351 1352 if (cur >= i_size) { 1353 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1354 true); 1355 /* 1356 * This range is beyond i_size, thus we don't need to 1357 * bother writing back. 1358 * But we still need to clear the dirty subpage bit, or 1359 * the next time the page gets dirtied, we will try to 1360 * writeback the sectors with subpage dirty bits, 1361 * causing writeback without ordered extent. 1362 */ 1363 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len); 1364 break; 1365 } 1366 1367 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1368 &dirty_range_end); 1369 if (cur < dirty_range_start) { 1370 cur = dirty_range_start; 1371 continue; 1372 } 1373 1374 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1375 if (IS_ERR(em)) { 1376 ret = PTR_ERR_OR_ZERO(em); 1377 goto out_error; 1378 } 1379 1380 extent_offset = cur - em->start; 1381 em_end = extent_map_end(em); 1382 ASSERT(cur <= em_end); 1383 ASSERT(cur < end); 1384 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1385 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1386 1387 block_start = em->block_start; 1388 disk_bytenr = em->block_start + extent_offset; 1389 1390 ASSERT(!extent_map_is_compressed(em)); 1391 ASSERT(block_start != EXTENT_MAP_HOLE); 1392 ASSERT(block_start != EXTENT_MAP_INLINE); 1393 1394 /* 1395 * Note that em_end from extent_map_end() and dirty_range_end from 1396 * find_next_dirty_byte() are all exclusive 1397 */ 1398 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1399 free_extent_map(em); 1400 em = NULL; 1401 1402 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1403 if (!PageWriteback(page)) { 1404 btrfs_err(inode->root->fs_info, 1405 "page %lu not writeback, cur %llu end %llu", 1406 page->index, cur, end); 1407 } 1408 1409 /* 1410 * Although the PageDirty bit is cleared before entering this 1411 * function, subpage dirty bit is not cleared. 1412 * So clear subpage dirty bit here so next time we won't submit 1413 * page for range already written to disk. 1414 */ 1415 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize); 1416 1417 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1418 cur - page_offset(page)); 1419 cur += iosize; 1420 nr++; 1421 } 1422 1423 btrfs_folio_assert_not_dirty(fs_info, page_folio(page)); 1424 *nr_ret = nr; 1425 return 0; 1426 1427 out_error: 1428 /* 1429 * If we finish without problem, we should not only clear page dirty, 1430 * but also empty subpage dirty bits 1431 */ 1432 *nr_ret = nr; 1433 return ret; 1434 } 1435 1436 /* 1437 * the writepage semantics are similar to regular writepage. extent 1438 * records are inserted to lock ranges in the tree, and as dirty areas 1439 * are found, they are marked writeback. Then the lock bits are removed 1440 * and the end_io handler clears the writeback ranges 1441 * 1442 * Return 0 if everything goes well. 1443 * Return <0 for error. 1444 */ 1445 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1446 { 1447 struct folio *folio = page_folio(page); 1448 struct inode *inode = page->mapping->host; 1449 const u64 page_start = page_offset(page); 1450 int ret; 1451 int nr = 0; 1452 size_t pg_offset; 1453 loff_t i_size = i_size_read(inode); 1454 unsigned long end_index = i_size >> PAGE_SHIFT; 1455 1456 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1457 1458 WARN_ON(!PageLocked(page)); 1459 1460 pg_offset = offset_in_page(i_size); 1461 if (page->index > end_index || 1462 (page->index == end_index && !pg_offset)) { 1463 folio_invalidate(folio, 0, folio_size(folio)); 1464 folio_unlock(folio); 1465 return 0; 1466 } 1467 1468 if (page->index == end_index) 1469 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1470 1471 ret = set_page_extent_mapped(page); 1472 if (ret < 0) 1473 goto done; 1474 1475 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1476 if (ret == 1) 1477 return 0; 1478 if (ret) 1479 goto done; 1480 1481 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1482 if (ret == 1) 1483 return 0; 1484 1485 bio_ctrl->wbc->nr_to_write--; 1486 1487 done: 1488 if (nr == 0) { 1489 /* make sure the mapping tag for page dirty gets cleared */ 1490 set_page_writeback(page); 1491 end_page_writeback(page); 1492 } 1493 if (ret) { 1494 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1495 PAGE_SIZE, !ret); 1496 mapping_set_error(page->mapping, ret); 1497 } 1498 unlock_page(page); 1499 ASSERT(ret <= 0); 1500 return ret; 1501 } 1502 1503 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1504 { 1505 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1506 TASK_UNINTERRUPTIBLE); 1507 } 1508 1509 /* 1510 * Lock extent buffer status and pages for writeback. 1511 * 1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1513 * extent buffer is not dirty) 1514 * Return %true is the extent buffer is submitted to bio. 1515 */ 1516 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1517 struct writeback_control *wbc) 1518 { 1519 struct btrfs_fs_info *fs_info = eb->fs_info; 1520 bool ret = false; 1521 1522 btrfs_tree_lock(eb); 1523 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1524 btrfs_tree_unlock(eb); 1525 if (wbc->sync_mode != WB_SYNC_ALL) 1526 return false; 1527 wait_on_extent_buffer_writeback(eb); 1528 btrfs_tree_lock(eb); 1529 } 1530 1531 /* 1532 * We need to do this to prevent races in people who check if the eb is 1533 * under IO since we can end up having no IO bits set for a short period 1534 * of time. 1535 */ 1536 spin_lock(&eb->refs_lock); 1537 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1538 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1539 spin_unlock(&eb->refs_lock); 1540 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1541 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1542 -eb->len, 1543 fs_info->dirty_metadata_batch); 1544 ret = true; 1545 } else { 1546 spin_unlock(&eb->refs_lock); 1547 } 1548 btrfs_tree_unlock(eb); 1549 return ret; 1550 } 1551 1552 static void set_btree_ioerr(struct extent_buffer *eb) 1553 { 1554 struct btrfs_fs_info *fs_info = eb->fs_info; 1555 1556 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1557 1558 /* 1559 * A read may stumble upon this buffer later, make sure that it gets an 1560 * error and knows there was an error. 1561 */ 1562 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1563 1564 /* 1565 * We need to set the mapping with the io error as well because a write 1566 * error will flip the file system readonly, and then syncfs() will 1567 * return a 0 because we are readonly if we don't modify the err seq for 1568 * the superblock. 1569 */ 1570 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1571 1572 /* 1573 * If writeback for a btree extent that doesn't belong to a log tree 1574 * failed, increment the counter transaction->eb_write_errors. 1575 * We do this because while the transaction is running and before it's 1576 * committing (when we call filemap_fdata[write|wait]_range against 1577 * the btree inode), we might have 1578 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1579 * returns an error or an error happens during writeback, when we're 1580 * committing the transaction we wouldn't know about it, since the pages 1581 * can be no longer dirty nor marked anymore for writeback (if a 1582 * subsequent modification to the extent buffer didn't happen before the 1583 * transaction commit), which makes filemap_fdata[write|wait]_range not 1584 * able to find the pages tagged with SetPageError at transaction 1585 * commit time. So if this happens we must abort the transaction, 1586 * otherwise we commit a super block with btree roots that point to 1587 * btree nodes/leafs whose content on disk is invalid - either garbage 1588 * or the content of some node/leaf from a past generation that got 1589 * cowed or deleted and is no longer valid. 1590 * 1591 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1592 * not be enough - we need to distinguish between log tree extents vs 1593 * non-log tree extents, and the next filemap_fdatawait_range() call 1594 * will catch and clear such errors in the mapping - and that call might 1595 * be from a log sync and not from a transaction commit. Also, checking 1596 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1597 * not done and would not be reliable - the eb might have been released 1598 * from memory and reading it back again means that flag would not be 1599 * set (since it's a runtime flag, not persisted on disk). 1600 * 1601 * Using the flags below in the btree inode also makes us achieve the 1602 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1603 * writeback for all dirty pages and before filemap_fdatawait_range() 1604 * is called, the writeback for all dirty pages had already finished 1605 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1606 * filemap_fdatawait_range() would return success, as it could not know 1607 * that writeback errors happened (the pages were no longer tagged for 1608 * writeback). 1609 */ 1610 switch (eb->log_index) { 1611 case -1: 1612 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1613 break; 1614 case 0: 1615 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1616 break; 1617 case 1: 1618 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1619 break; 1620 default: 1621 BUG(); /* unexpected, logic error */ 1622 } 1623 } 1624 1625 /* 1626 * The endio specific version which won't touch any unsafe spinlock in endio 1627 * context. 1628 */ 1629 static struct extent_buffer *find_extent_buffer_nolock( 1630 struct btrfs_fs_info *fs_info, u64 start) 1631 { 1632 struct extent_buffer *eb; 1633 1634 rcu_read_lock(); 1635 eb = radix_tree_lookup(&fs_info->buffer_radix, 1636 start >> fs_info->sectorsize_bits); 1637 if (eb && atomic_inc_not_zero(&eb->refs)) { 1638 rcu_read_unlock(); 1639 return eb; 1640 } 1641 rcu_read_unlock(); 1642 return NULL; 1643 } 1644 1645 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1646 { 1647 struct extent_buffer *eb = bbio->private; 1648 struct btrfs_fs_info *fs_info = eb->fs_info; 1649 bool uptodate = !bbio->bio.bi_status; 1650 struct folio_iter fi; 1651 u32 bio_offset = 0; 1652 1653 if (!uptodate) 1654 set_btree_ioerr(eb); 1655 1656 bio_for_each_folio_all(fi, &bbio->bio) { 1657 u64 start = eb->start + bio_offset; 1658 struct folio *folio = fi.folio; 1659 u32 len = fi.length; 1660 1661 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1662 bio_offset += len; 1663 } 1664 1665 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1666 smp_mb__after_atomic(); 1667 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1668 1669 bio_put(&bbio->bio); 1670 } 1671 1672 static void prepare_eb_write(struct extent_buffer *eb) 1673 { 1674 u32 nritems; 1675 unsigned long start; 1676 unsigned long end; 1677 1678 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1679 1680 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1681 nritems = btrfs_header_nritems(eb); 1682 if (btrfs_header_level(eb) > 0) { 1683 end = btrfs_node_key_ptr_offset(eb, nritems); 1684 memzero_extent_buffer(eb, end, eb->len - end); 1685 } else { 1686 /* 1687 * Leaf: 1688 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1689 */ 1690 start = btrfs_item_nr_offset(eb, nritems); 1691 end = btrfs_item_nr_offset(eb, 0); 1692 if (nritems == 0) 1693 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1694 else 1695 end += btrfs_item_offset(eb, nritems - 1); 1696 memzero_extent_buffer(eb, start, end - start); 1697 } 1698 } 1699 1700 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1701 struct writeback_control *wbc) 1702 { 1703 struct btrfs_fs_info *fs_info = eb->fs_info; 1704 struct btrfs_bio *bbio; 1705 1706 prepare_eb_write(eb); 1707 1708 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1709 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1710 eb->fs_info, end_bbio_meta_write, eb); 1711 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1712 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1713 wbc_init_bio(wbc, &bbio->bio); 1714 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1715 bbio->file_offset = eb->start; 1716 if (fs_info->nodesize < PAGE_SIZE) { 1717 struct folio *folio = eb->folios[0]; 1718 bool ret; 1719 1720 folio_lock(folio); 1721 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1722 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1723 eb->len)) { 1724 folio_clear_dirty_for_io(folio); 1725 wbc->nr_to_write--; 1726 } 1727 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1728 eb->start - folio_pos(folio)); 1729 ASSERT(ret); 1730 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1731 folio_unlock(folio); 1732 } else { 1733 int num_folios = num_extent_folios(eb); 1734 1735 for (int i = 0; i < num_folios; i++) { 1736 struct folio *folio = eb->folios[i]; 1737 bool ret; 1738 1739 folio_lock(folio); 1740 folio_clear_dirty_for_io(folio); 1741 folio_start_writeback(folio); 1742 ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0); 1743 ASSERT(ret); 1744 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1745 folio_size(folio)); 1746 wbc->nr_to_write -= folio_nr_pages(folio); 1747 folio_unlock(folio); 1748 } 1749 } 1750 btrfs_submit_bio(bbio, 0); 1751 } 1752 1753 /* 1754 * Submit one subpage btree page. 1755 * 1756 * The main difference to submit_eb_page() is: 1757 * - Page locking 1758 * For subpage, we don't rely on page locking at all. 1759 * 1760 * - Flush write bio 1761 * We only flush bio if we may be unable to fit current extent buffers into 1762 * current bio. 1763 * 1764 * Return >=0 for the number of submitted extent buffers. 1765 * Return <0 for fatal error. 1766 */ 1767 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1768 { 1769 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1770 struct folio *folio = page_folio(page); 1771 int submitted = 0; 1772 u64 page_start = page_offset(page); 1773 int bit_start = 0; 1774 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1775 1776 /* Lock and write each dirty extent buffers in the range */ 1777 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1778 struct btrfs_subpage *subpage = folio_get_private(folio); 1779 struct extent_buffer *eb; 1780 unsigned long flags; 1781 u64 start; 1782 1783 /* 1784 * Take private lock to ensure the subpage won't be detached 1785 * in the meantime. 1786 */ 1787 spin_lock(&page->mapping->i_private_lock); 1788 if (!folio_test_private(folio)) { 1789 spin_unlock(&page->mapping->i_private_lock); 1790 break; 1791 } 1792 spin_lock_irqsave(&subpage->lock, flags); 1793 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1794 subpage->bitmaps)) { 1795 spin_unlock_irqrestore(&subpage->lock, flags); 1796 spin_unlock(&page->mapping->i_private_lock); 1797 bit_start++; 1798 continue; 1799 } 1800 1801 start = page_start + bit_start * fs_info->sectorsize; 1802 bit_start += sectors_per_node; 1803 1804 /* 1805 * Here we just want to grab the eb without touching extra 1806 * spin locks, so call find_extent_buffer_nolock(). 1807 */ 1808 eb = find_extent_buffer_nolock(fs_info, start); 1809 spin_unlock_irqrestore(&subpage->lock, flags); 1810 spin_unlock(&page->mapping->i_private_lock); 1811 1812 /* 1813 * The eb has already reached 0 refs thus find_extent_buffer() 1814 * doesn't return it. We don't need to write back such eb 1815 * anyway. 1816 */ 1817 if (!eb) 1818 continue; 1819 1820 if (lock_extent_buffer_for_io(eb, wbc)) { 1821 write_one_eb(eb, wbc); 1822 submitted++; 1823 } 1824 free_extent_buffer(eb); 1825 } 1826 return submitted; 1827 } 1828 1829 /* 1830 * Submit all page(s) of one extent buffer. 1831 * 1832 * @page: the page of one extent buffer 1833 * @eb_context: to determine if we need to submit this page, if current page 1834 * belongs to this eb, we don't need to submit 1835 * 1836 * The caller should pass each page in their bytenr order, and here we use 1837 * @eb_context to determine if we have submitted pages of one extent buffer. 1838 * 1839 * If we have, we just skip until we hit a new page that doesn't belong to 1840 * current @eb_context. 1841 * 1842 * If not, we submit all the page(s) of the extent buffer. 1843 * 1844 * Return >0 if we have submitted the extent buffer successfully. 1845 * Return 0 if we don't need to submit the page, as it's already submitted by 1846 * previous call. 1847 * Return <0 for fatal error. 1848 */ 1849 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1850 { 1851 struct writeback_control *wbc = ctx->wbc; 1852 struct address_space *mapping = page->mapping; 1853 struct folio *folio = page_folio(page); 1854 struct extent_buffer *eb; 1855 int ret; 1856 1857 if (!folio_test_private(folio)) 1858 return 0; 1859 1860 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1861 return submit_eb_subpage(page, wbc); 1862 1863 spin_lock(&mapping->i_private_lock); 1864 if (!folio_test_private(folio)) { 1865 spin_unlock(&mapping->i_private_lock); 1866 return 0; 1867 } 1868 1869 eb = folio_get_private(folio); 1870 1871 /* 1872 * Shouldn't happen and normally this would be a BUG_ON but no point 1873 * crashing the machine for something we can survive anyway. 1874 */ 1875 if (WARN_ON(!eb)) { 1876 spin_unlock(&mapping->i_private_lock); 1877 return 0; 1878 } 1879 1880 if (eb == ctx->eb) { 1881 spin_unlock(&mapping->i_private_lock); 1882 return 0; 1883 } 1884 ret = atomic_inc_not_zero(&eb->refs); 1885 spin_unlock(&mapping->i_private_lock); 1886 if (!ret) 1887 return 0; 1888 1889 ctx->eb = eb; 1890 1891 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1892 if (ret) { 1893 if (ret == -EBUSY) 1894 ret = 0; 1895 free_extent_buffer(eb); 1896 return ret; 1897 } 1898 1899 if (!lock_extent_buffer_for_io(eb, wbc)) { 1900 free_extent_buffer(eb); 1901 return 0; 1902 } 1903 /* Implies write in zoned mode. */ 1904 if (ctx->zoned_bg) { 1905 /* Mark the last eb in the block group. */ 1906 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1907 ctx->zoned_bg->meta_write_pointer += eb->len; 1908 } 1909 write_one_eb(eb, wbc); 1910 free_extent_buffer(eb); 1911 return 1; 1912 } 1913 1914 int btree_write_cache_pages(struct address_space *mapping, 1915 struct writeback_control *wbc) 1916 { 1917 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1918 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1919 int ret = 0; 1920 int done = 0; 1921 int nr_to_write_done = 0; 1922 struct folio_batch fbatch; 1923 unsigned int nr_folios; 1924 pgoff_t index; 1925 pgoff_t end; /* Inclusive */ 1926 int scanned = 0; 1927 xa_mark_t tag; 1928 1929 folio_batch_init(&fbatch); 1930 if (wbc->range_cyclic) { 1931 index = mapping->writeback_index; /* Start from prev offset */ 1932 end = -1; 1933 /* 1934 * Start from the beginning does not need to cycle over the 1935 * range, mark it as scanned. 1936 */ 1937 scanned = (index == 0); 1938 } else { 1939 index = wbc->range_start >> PAGE_SHIFT; 1940 end = wbc->range_end >> PAGE_SHIFT; 1941 scanned = 1; 1942 } 1943 if (wbc->sync_mode == WB_SYNC_ALL) 1944 tag = PAGECACHE_TAG_TOWRITE; 1945 else 1946 tag = PAGECACHE_TAG_DIRTY; 1947 btrfs_zoned_meta_io_lock(fs_info); 1948 retry: 1949 if (wbc->sync_mode == WB_SYNC_ALL) 1950 tag_pages_for_writeback(mapping, index, end); 1951 while (!done && !nr_to_write_done && (index <= end) && 1952 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1953 tag, &fbatch))) { 1954 unsigned i; 1955 1956 for (i = 0; i < nr_folios; i++) { 1957 struct folio *folio = fbatch.folios[i]; 1958 1959 ret = submit_eb_page(&folio->page, &ctx); 1960 if (ret == 0) 1961 continue; 1962 if (ret < 0) { 1963 done = 1; 1964 break; 1965 } 1966 1967 /* 1968 * the filesystem may choose to bump up nr_to_write. 1969 * We have to make sure to honor the new nr_to_write 1970 * at any time 1971 */ 1972 nr_to_write_done = wbc->nr_to_write <= 0; 1973 } 1974 folio_batch_release(&fbatch); 1975 cond_resched(); 1976 } 1977 if (!scanned && !done) { 1978 /* 1979 * We hit the last page and there is more work to be done: wrap 1980 * back to the start of the file 1981 */ 1982 scanned = 1; 1983 index = 0; 1984 goto retry; 1985 } 1986 /* 1987 * If something went wrong, don't allow any metadata write bio to be 1988 * submitted. 1989 * 1990 * This would prevent use-after-free if we had dirty pages not 1991 * cleaned up, which can still happen by fuzzed images. 1992 * 1993 * - Bad extent tree 1994 * Allowing existing tree block to be allocated for other trees. 1995 * 1996 * - Log tree operations 1997 * Exiting tree blocks get allocated to log tree, bumps its 1998 * generation, then get cleaned in tree re-balance. 1999 * Such tree block will not be written back, since it's clean, 2000 * thus no WRITTEN flag set. 2001 * And after log writes back, this tree block is not traced by 2002 * any dirty extent_io_tree. 2003 * 2004 * - Offending tree block gets re-dirtied from its original owner 2005 * Since it has bumped generation, no WRITTEN flag, it can be 2006 * reused without COWing. This tree block will not be traced 2007 * by btrfs_transaction::dirty_pages. 2008 * 2009 * Now such dirty tree block will not be cleaned by any dirty 2010 * extent io tree. Thus we don't want to submit such wild eb 2011 * if the fs already has error. 2012 * 2013 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2014 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2015 */ 2016 if (ret > 0) 2017 ret = 0; 2018 if (!ret && BTRFS_FS_ERROR(fs_info)) 2019 ret = -EROFS; 2020 2021 if (ctx.zoned_bg) 2022 btrfs_put_block_group(ctx.zoned_bg); 2023 btrfs_zoned_meta_io_unlock(fs_info); 2024 return ret; 2025 } 2026 2027 /* 2028 * Walk the list of dirty pages of the given address space and write all of them. 2029 * 2030 * @mapping: address space structure to write 2031 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2032 * @bio_ctrl: holds context for the write, namely the bio 2033 * 2034 * If a page is already under I/O, write_cache_pages() skips it, even 2035 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2036 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2037 * and msync() need to guarantee that all the data which was dirty at the time 2038 * the call was made get new I/O started against them. If wbc->sync_mode is 2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2040 * existing IO to complete. 2041 */ 2042 static int extent_write_cache_pages(struct address_space *mapping, 2043 struct btrfs_bio_ctrl *bio_ctrl) 2044 { 2045 struct writeback_control *wbc = bio_ctrl->wbc; 2046 struct inode *inode = mapping->host; 2047 int ret = 0; 2048 int done = 0; 2049 int nr_to_write_done = 0; 2050 struct folio_batch fbatch; 2051 unsigned int nr_folios; 2052 pgoff_t index; 2053 pgoff_t end; /* Inclusive */ 2054 pgoff_t done_index; 2055 int range_whole = 0; 2056 int scanned = 0; 2057 xa_mark_t tag; 2058 2059 /* 2060 * We have to hold onto the inode so that ordered extents can do their 2061 * work when the IO finishes. The alternative to this is failing to add 2062 * an ordered extent if the igrab() fails there and that is a huge pain 2063 * to deal with, so instead just hold onto the inode throughout the 2064 * writepages operation. If it fails here we are freeing up the inode 2065 * anyway and we'd rather not waste our time writing out stuff that is 2066 * going to be truncated anyway. 2067 */ 2068 if (!igrab(inode)) 2069 return 0; 2070 2071 folio_batch_init(&fbatch); 2072 if (wbc->range_cyclic) { 2073 index = mapping->writeback_index; /* Start from prev offset */ 2074 end = -1; 2075 /* 2076 * Start from the beginning does not need to cycle over the 2077 * range, mark it as scanned. 2078 */ 2079 scanned = (index == 0); 2080 } else { 2081 index = wbc->range_start >> PAGE_SHIFT; 2082 end = wbc->range_end >> PAGE_SHIFT; 2083 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2084 range_whole = 1; 2085 scanned = 1; 2086 } 2087 2088 /* 2089 * We do the tagged writepage as long as the snapshot flush bit is set 2090 * and we are the first one who do the filemap_flush() on this inode. 2091 * 2092 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2093 * not race in and drop the bit. 2094 */ 2095 if (range_whole && wbc->nr_to_write == LONG_MAX && 2096 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2097 &BTRFS_I(inode)->runtime_flags)) 2098 wbc->tagged_writepages = 1; 2099 2100 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2101 tag = PAGECACHE_TAG_TOWRITE; 2102 else 2103 tag = PAGECACHE_TAG_DIRTY; 2104 retry: 2105 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2106 tag_pages_for_writeback(mapping, index, end); 2107 done_index = index; 2108 while (!done && !nr_to_write_done && (index <= end) && 2109 (nr_folios = filemap_get_folios_tag(mapping, &index, 2110 end, tag, &fbatch))) { 2111 unsigned i; 2112 2113 for (i = 0; i < nr_folios; i++) { 2114 struct folio *folio = fbatch.folios[i]; 2115 2116 done_index = folio_next_index(folio); 2117 /* 2118 * At this point we hold neither the i_pages lock nor 2119 * the page lock: the page may be truncated or 2120 * invalidated (changing page->mapping to NULL), 2121 * or even swizzled back from swapper_space to 2122 * tmpfs file mapping 2123 */ 2124 if (!folio_trylock(folio)) { 2125 submit_write_bio(bio_ctrl, 0); 2126 folio_lock(folio); 2127 } 2128 2129 if (unlikely(folio->mapping != mapping)) { 2130 folio_unlock(folio); 2131 continue; 2132 } 2133 2134 if (!folio_test_dirty(folio)) { 2135 /* Someone wrote it for us. */ 2136 folio_unlock(folio); 2137 continue; 2138 } 2139 2140 if (wbc->sync_mode != WB_SYNC_NONE) { 2141 if (folio_test_writeback(folio)) 2142 submit_write_bio(bio_ctrl, 0); 2143 folio_wait_writeback(folio); 2144 } 2145 2146 if (folio_test_writeback(folio) || 2147 !folio_clear_dirty_for_io(folio)) { 2148 folio_unlock(folio); 2149 continue; 2150 } 2151 2152 ret = __extent_writepage(&folio->page, bio_ctrl); 2153 if (ret < 0) { 2154 done = 1; 2155 break; 2156 } 2157 2158 /* 2159 * The filesystem may choose to bump up nr_to_write. 2160 * We have to make sure to honor the new nr_to_write 2161 * at any time. 2162 */ 2163 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2164 wbc->nr_to_write <= 0); 2165 } 2166 folio_batch_release(&fbatch); 2167 cond_resched(); 2168 } 2169 if (!scanned && !done) { 2170 /* 2171 * We hit the last page and there is more work to be done: wrap 2172 * back to the start of the file 2173 */ 2174 scanned = 1; 2175 index = 0; 2176 2177 /* 2178 * If we're looping we could run into a page that is locked by a 2179 * writer and that writer could be waiting on writeback for a 2180 * page in our current bio, and thus deadlock, so flush the 2181 * write bio here. 2182 */ 2183 submit_write_bio(bio_ctrl, 0); 2184 goto retry; 2185 } 2186 2187 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2188 mapping->writeback_index = done_index; 2189 2190 btrfs_add_delayed_iput(BTRFS_I(inode)); 2191 return ret; 2192 } 2193 2194 /* 2195 * Submit the pages in the range to bio for call sites which delalloc range has 2196 * already been ran (aka, ordered extent inserted) and all pages are still 2197 * locked. 2198 */ 2199 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2200 u64 start, u64 end, struct writeback_control *wbc, 2201 bool pages_dirty) 2202 { 2203 bool found_error = false; 2204 int ret = 0; 2205 struct address_space *mapping = inode->i_mapping; 2206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2207 const u32 sectorsize = fs_info->sectorsize; 2208 loff_t i_size = i_size_read(inode); 2209 u64 cur = start; 2210 struct btrfs_bio_ctrl bio_ctrl = { 2211 .wbc = wbc, 2212 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2213 }; 2214 2215 if (wbc->no_cgroup_owner) 2216 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2217 2218 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2219 2220 while (cur <= end) { 2221 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2222 u32 cur_len = cur_end + 1 - cur; 2223 struct page *page; 2224 int nr = 0; 2225 2226 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2227 ASSERT(PageLocked(page)); 2228 if (pages_dirty && page != locked_page) { 2229 ASSERT(PageDirty(page)); 2230 clear_page_dirty_for_io(page); 2231 } 2232 2233 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2234 i_size, &nr); 2235 if (ret == 1) 2236 goto next_page; 2237 2238 /* Make sure the mapping tag for page dirty gets cleared. */ 2239 if (nr == 0) { 2240 set_page_writeback(page); 2241 end_page_writeback(page); 2242 } 2243 if (ret) { 2244 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2245 cur, cur_len, !ret); 2246 mapping_set_error(page->mapping, ret); 2247 } 2248 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len); 2249 if (ret < 0) 2250 found_error = true; 2251 next_page: 2252 put_page(page); 2253 cur = cur_end + 1; 2254 } 2255 2256 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2257 } 2258 2259 int extent_writepages(struct address_space *mapping, 2260 struct writeback_control *wbc) 2261 { 2262 struct inode *inode = mapping->host; 2263 int ret = 0; 2264 struct btrfs_bio_ctrl bio_ctrl = { 2265 .wbc = wbc, 2266 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2267 }; 2268 2269 /* 2270 * Allow only a single thread to do the reloc work in zoned mode to 2271 * protect the write pointer updates. 2272 */ 2273 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2274 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2275 submit_write_bio(&bio_ctrl, ret); 2276 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2277 return ret; 2278 } 2279 2280 void extent_readahead(struct readahead_control *rac) 2281 { 2282 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2283 struct page *pagepool[16]; 2284 struct extent_map *em_cached = NULL; 2285 u64 prev_em_start = (u64)-1; 2286 int nr; 2287 2288 while ((nr = readahead_page_batch(rac, pagepool))) { 2289 u64 contig_start = readahead_pos(rac); 2290 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2291 2292 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2293 &em_cached, &bio_ctrl, &prev_em_start); 2294 } 2295 2296 if (em_cached) 2297 free_extent_map(em_cached); 2298 submit_one_bio(&bio_ctrl); 2299 } 2300 2301 /* 2302 * basic invalidate_folio code, this waits on any locked or writeback 2303 * ranges corresponding to the folio, and then deletes any extent state 2304 * records from the tree 2305 */ 2306 int extent_invalidate_folio(struct extent_io_tree *tree, 2307 struct folio *folio, size_t offset) 2308 { 2309 struct extent_state *cached_state = NULL; 2310 u64 start = folio_pos(folio); 2311 u64 end = start + folio_size(folio) - 1; 2312 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2313 2314 /* This function is only called for the btree inode */ 2315 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2316 2317 start += ALIGN(offset, blocksize); 2318 if (start > end) 2319 return 0; 2320 2321 lock_extent(tree, start, end, &cached_state); 2322 folio_wait_writeback(folio); 2323 2324 /* 2325 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2326 * so here we only need to unlock the extent range to free any 2327 * existing extent state. 2328 */ 2329 unlock_extent(tree, start, end, &cached_state); 2330 return 0; 2331 } 2332 2333 /* 2334 * a helper for release_folio, this tests for areas of the page that 2335 * are locked or under IO and drops the related state bits if it is safe 2336 * to drop the page. 2337 */ 2338 static int try_release_extent_state(struct extent_io_tree *tree, 2339 struct page *page, gfp_t mask) 2340 { 2341 u64 start = page_offset(page); 2342 u64 end = start + PAGE_SIZE - 1; 2343 int ret = 1; 2344 2345 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2346 ret = 0; 2347 } else { 2348 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2349 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2350 EXTENT_QGROUP_RESERVED); 2351 2352 /* 2353 * At this point we can safely clear everything except the 2354 * locked bit, the nodatasum bit and the delalloc new bit. 2355 * The delalloc new bit will be cleared by ordered extent 2356 * completion. 2357 */ 2358 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2359 2360 /* if clear_extent_bit failed for enomem reasons, 2361 * we can't allow the release to continue. 2362 */ 2363 if (ret < 0) 2364 ret = 0; 2365 else 2366 ret = 1; 2367 } 2368 return ret; 2369 } 2370 2371 /* 2372 * a helper for release_folio. As long as there are no locked extents 2373 * in the range corresponding to the page, both state records and extent 2374 * map records are removed 2375 */ 2376 int try_release_extent_mapping(struct page *page, gfp_t mask) 2377 { 2378 struct extent_map *em; 2379 u64 start = page_offset(page); 2380 u64 end = start + PAGE_SIZE - 1; 2381 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2382 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2383 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2384 2385 if (gfpflags_allow_blocking(mask) && 2386 page->mapping->host->i_size > SZ_16M) { 2387 u64 len; 2388 while (start <= end) { 2389 struct btrfs_fs_info *fs_info; 2390 u64 cur_gen; 2391 2392 len = end - start + 1; 2393 write_lock(&map->lock); 2394 em = lookup_extent_mapping(map, start, len); 2395 if (!em) { 2396 write_unlock(&map->lock); 2397 break; 2398 } 2399 if ((em->flags & EXTENT_FLAG_PINNED) || 2400 em->start != start) { 2401 write_unlock(&map->lock); 2402 free_extent_map(em); 2403 break; 2404 } 2405 if (test_range_bit_exists(tree, em->start, 2406 extent_map_end(em) - 1, 2407 EXTENT_LOCKED)) 2408 goto next; 2409 /* 2410 * If it's not in the list of modified extents, used 2411 * by a fast fsync, we can remove it. If it's being 2412 * logged we can safely remove it since fsync took an 2413 * extra reference on the em. 2414 */ 2415 if (list_empty(&em->list) || 2416 (em->flags & EXTENT_FLAG_LOGGING)) 2417 goto remove_em; 2418 /* 2419 * If it's in the list of modified extents, remove it 2420 * only if its generation is older then the current one, 2421 * in which case we don't need it for a fast fsync. 2422 * Otherwise don't remove it, we could be racing with an 2423 * ongoing fast fsync that could miss the new extent. 2424 */ 2425 fs_info = btrfs_inode->root->fs_info; 2426 spin_lock(&fs_info->trans_lock); 2427 cur_gen = fs_info->generation; 2428 spin_unlock(&fs_info->trans_lock); 2429 if (em->generation >= cur_gen) 2430 goto next; 2431 remove_em: 2432 /* 2433 * We only remove extent maps that are not in the list of 2434 * modified extents or that are in the list but with a 2435 * generation lower then the current generation, so there 2436 * is no need to set the full fsync flag on the inode (it 2437 * hurts the fsync performance for workloads with a data 2438 * size that exceeds or is close to the system's memory). 2439 */ 2440 remove_extent_mapping(map, em); 2441 /* once for the rb tree */ 2442 free_extent_map(em); 2443 next: 2444 start = extent_map_end(em); 2445 write_unlock(&map->lock); 2446 2447 /* once for us */ 2448 free_extent_map(em); 2449 2450 cond_resched(); /* Allow large-extent preemption. */ 2451 } 2452 } 2453 return try_release_extent_state(tree, page, mask); 2454 } 2455 2456 /* 2457 * To cache previous fiemap extent 2458 * 2459 * Will be used for merging fiemap extent 2460 */ 2461 struct fiemap_cache { 2462 u64 offset; 2463 u64 phys; 2464 u64 len; 2465 u32 flags; 2466 bool cached; 2467 }; 2468 2469 /* 2470 * Helper to submit fiemap extent. 2471 * 2472 * Will try to merge current fiemap extent specified by @offset, @phys, 2473 * @len and @flags with cached one. 2474 * And only when we fails to merge, cached one will be submitted as 2475 * fiemap extent. 2476 * 2477 * Return value is the same as fiemap_fill_next_extent(). 2478 */ 2479 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2480 struct fiemap_cache *cache, 2481 u64 offset, u64 phys, u64 len, u32 flags) 2482 { 2483 u64 cache_end; 2484 int ret = 0; 2485 2486 /* Set at the end of extent_fiemap(). */ 2487 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2488 2489 if (!cache->cached) 2490 goto assign; 2491 2492 /* 2493 * When iterating the extents of the inode, at extent_fiemap(), we may 2494 * find an extent that starts at an offset behind the end offset of the 2495 * previous extent we processed. This happens if fiemap is called 2496 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2497 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()). 2498 * 2499 * For example we are in leaf X processing its last item, which is the 2500 * file extent item for file range [512K, 1M[, and after 2501 * btrfs_next_leaf() releases the path, there's an ordered extent that 2502 * completes for the file range [768K, 2M[, and that results in trimming 2503 * the file extent item so that it now corresponds to the file range 2504 * [512K, 768K[ and a new file extent item is inserted for the file 2505 * range [768K, 2M[, which may end up as the last item of leaf X or as 2506 * the first item of the next leaf - in either case btrfs_next_leaf() 2507 * will leave us with a path pointing to the new extent item, for the 2508 * file range [768K, 2M[, since that's the first key that follows the 2509 * last one we processed. So in order not to report overlapping extents 2510 * to user space, we trim the length of the previously cached extent and 2511 * emit it. 2512 * 2513 * Upon calling btrfs_next_leaf() we may also find an extent with an 2514 * offset smaller than or equals to cache->offset, and this happens 2515 * when we had a hole or prealloc extent with several delalloc ranges in 2516 * it, but after btrfs_next_leaf() released the path, delalloc was 2517 * flushed and the resulting ordered extents were completed, so we can 2518 * now have found a file extent item for an offset that is smaller than 2519 * or equals to what we have in cache->offset. We deal with this as 2520 * described below. 2521 */ 2522 cache_end = cache->offset + cache->len; 2523 if (cache_end > offset) { 2524 if (offset == cache->offset) { 2525 /* 2526 * We cached a dealloc range (found in the io tree) for 2527 * a hole or prealloc extent and we have now found a 2528 * file extent item for the same offset. What we have 2529 * now is more recent and up to date, so discard what 2530 * we had in the cache and use what we have just found. 2531 */ 2532 goto assign; 2533 } else if (offset > cache->offset) { 2534 /* 2535 * The extent range we previously found ends after the 2536 * offset of the file extent item we found and that 2537 * offset falls somewhere in the middle of that previous 2538 * extent range. So adjust the range we previously found 2539 * to end at the offset of the file extent item we have 2540 * just found, since this extent is more up to date. 2541 * Emit that adjusted range and cache the file extent 2542 * item we have just found. This corresponds to the case 2543 * where a previously found file extent item was split 2544 * due to an ordered extent completing. 2545 */ 2546 cache->len = offset - cache->offset; 2547 goto emit; 2548 } else { 2549 const u64 range_end = offset + len; 2550 2551 /* 2552 * The offset of the file extent item we have just found 2553 * is behind the cached offset. This means we were 2554 * processing a hole or prealloc extent for which we 2555 * have found delalloc ranges (in the io tree), so what 2556 * we have in the cache is the last delalloc range we 2557 * found while the file extent item we found can be 2558 * either for a whole delalloc range we previously 2559 * emmitted or only a part of that range. 2560 * 2561 * We have two cases here: 2562 * 2563 * 1) The file extent item's range ends at or behind the 2564 * cached extent's end. In this case just ignore the 2565 * current file extent item because we don't want to 2566 * overlap with previous ranges that may have been 2567 * emmitted already; 2568 * 2569 * 2) The file extent item starts behind the currently 2570 * cached extent but its end offset goes beyond the 2571 * end offset of the cached extent. We don't want to 2572 * overlap with a previous range that may have been 2573 * emmitted already, so we emit the currently cached 2574 * extent and then partially store the current file 2575 * extent item's range in the cache, for the subrange 2576 * going the cached extent's end to the end of the 2577 * file extent item. 2578 */ 2579 if (range_end <= cache_end) 2580 return 0; 2581 2582 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2583 phys += cache_end - offset; 2584 2585 offset = cache_end; 2586 len = range_end - cache_end; 2587 goto emit; 2588 } 2589 } 2590 2591 /* 2592 * Only merges fiemap extents if 2593 * 1) Their logical addresses are continuous 2594 * 2595 * 2) Their physical addresses are continuous 2596 * So truly compressed (physical size smaller than logical size) 2597 * extents won't get merged with each other 2598 * 2599 * 3) Share same flags 2600 */ 2601 if (cache->offset + cache->len == offset && 2602 cache->phys + cache->len == phys && 2603 cache->flags == flags) { 2604 cache->len += len; 2605 return 0; 2606 } 2607 2608 emit: 2609 /* Not mergeable, need to submit cached one */ 2610 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2611 cache->len, cache->flags); 2612 cache->cached = false; 2613 if (ret) 2614 return ret; 2615 assign: 2616 cache->cached = true; 2617 cache->offset = offset; 2618 cache->phys = phys; 2619 cache->len = len; 2620 cache->flags = flags; 2621 2622 return 0; 2623 } 2624 2625 /* 2626 * Emit last fiemap cache 2627 * 2628 * The last fiemap cache may still be cached in the following case: 2629 * 0 4k 8k 2630 * |<- Fiemap range ->| 2631 * |<------------ First extent ----------->| 2632 * 2633 * In this case, the first extent range will be cached but not emitted. 2634 * So we must emit it before ending extent_fiemap(). 2635 */ 2636 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2637 struct fiemap_cache *cache) 2638 { 2639 int ret; 2640 2641 if (!cache->cached) 2642 return 0; 2643 2644 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2645 cache->len, cache->flags); 2646 cache->cached = false; 2647 if (ret > 0) 2648 ret = 0; 2649 return ret; 2650 } 2651 2652 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2653 { 2654 struct extent_buffer *clone; 2655 struct btrfs_key key; 2656 int slot; 2657 int ret; 2658 2659 path->slots[0]++; 2660 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2661 return 0; 2662 2663 ret = btrfs_next_leaf(inode->root, path); 2664 if (ret != 0) 2665 return ret; 2666 2667 /* 2668 * Don't bother with cloning if there are no more file extent items for 2669 * our inode. 2670 */ 2671 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2672 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2673 return 1; 2674 2675 /* See the comment at fiemap_search_slot() about why we clone. */ 2676 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2677 if (!clone) 2678 return -ENOMEM; 2679 2680 slot = path->slots[0]; 2681 btrfs_release_path(path); 2682 path->nodes[0] = clone; 2683 path->slots[0] = slot; 2684 2685 return 0; 2686 } 2687 2688 /* 2689 * Search for the first file extent item that starts at a given file offset or 2690 * the one that starts immediately before that offset. 2691 * Returns: 0 on success, < 0 on error, 1 if not found. 2692 */ 2693 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2694 u64 file_offset) 2695 { 2696 const u64 ino = btrfs_ino(inode); 2697 struct btrfs_root *root = inode->root; 2698 struct extent_buffer *clone; 2699 struct btrfs_key key; 2700 int slot; 2701 int ret; 2702 2703 key.objectid = ino; 2704 key.type = BTRFS_EXTENT_DATA_KEY; 2705 key.offset = file_offset; 2706 2707 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2708 if (ret < 0) 2709 return ret; 2710 2711 if (ret > 0 && path->slots[0] > 0) { 2712 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2713 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2714 path->slots[0]--; 2715 } 2716 2717 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2718 ret = btrfs_next_leaf(root, path); 2719 if (ret != 0) 2720 return ret; 2721 2722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2723 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2724 return 1; 2725 } 2726 2727 /* 2728 * We clone the leaf and use it during fiemap. This is because while 2729 * using the leaf we do expensive things like checking if an extent is 2730 * shared, which can take a long time. In order to prevent blocking 2731 * other tasks for too long, we use a clone of the leaf. We have locked 2732 * the file range in the inode's io tree, so we know none of our file 2733 * extent items can change. This way we avoid blocking other tasks that 2734 * want to insert items for other inodes in the same leaf or b+tree 2735 * rebalance operations (triggered for example when someone is trying 2736 * to push items into this leaf when trying to insert an item in a 2737 * neighbour leaf). 2738 * We also need the private clone because holding a read lock on an 2739 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2740 * when we call fiemap_fill_next_extent(), because that may cause a page 2741 * fault when filling the user space buffer with fiemap data. 2742 */ 2743 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2744 if (!clone) 2745 return -ENOMEM; 2746 2747 slot = path->slots[0]; 2748 btrfs_release_path(path); 2749 path->nodes[0] = clone; 2750 path->slots[0] = slot; 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2757 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2758 * extent. The end offset (@end) is inclusive. 2759 */ 2760 static int fiemap_process_hole(struct btrfs_inode *inode, 2761 struct fiemap_extent_info *fieinfo, 2762 struct fiemap_cache *cache, 2763 struct extent_state **delalloc_cached_state, 2764 struct btrfs_backref_share_check_ctx *backref_ctx, 2765 u64 disk_bytenr, u64 extent_offset, 2766 u64 extent_gen, 2767 u64 start, u64 end) 2768 { 2769 const u64 i_size = i_size_read(&inode->vfs_inode); 2770 u64 cur_offset = start; 2771 u64 last_delalloc_end = 0; 2772 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2773 bool checked_extent_shared = false; 2774 int ret; 2775 2776 /* 2777 * There can be no delalloc past i_size, so don't waste time looking for 2778 * it beyond i_size. 2779 */ 2780 while (cur_offset < end && cur_offset < i_size) { 2781 struct extent_state *cached_state = NULL; 2782 u64 delalloc_start; 2783 u64 delalloc_end; 2784 u64 prealloc_start; 2785 u64 lockstart; 2786 u64 lockend; 2787 u64 prealloc_len = 0; 2788 bool delalloc; 2789 2790 lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize); 2791 lockend = round_up(end, inode->root->fs_info->sectorsize); 2792 2793 /* 2794 * We are only locking for the delalloc range because that's the 2795 * only thing that can change here. With fiemap we have a lock 2796 * on the inode, so no buffered or direct writes can happen. 2797 * 2798 * However mmaps and normal page writeback will cause this to 2799 * change arbitrarily. We have to lock the extent lock here to 2800 * make sure that nobody messes with the tree while we're doing 2801 * btrfs_find_delalloc_in_range. 2802 */ 2803 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2804 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2805 delalloc_cached_state, 2806 &delalloc_start, 2807 &delalloc_end); 2808 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2809 if (!delalloc) 2810 break; 2811 2812 /* 2813 * If this is a prealloc extent we have to report every section 2814 * of it that has no delalloc. 2815 */ 2816 if (disk_bytenr != 0) { 2817 if (last_delalloc_end == 0) { 2818 prealloc_start = start; 2819 prealloc_len = delalloc_start - start; 2820 } else { 2821 prealloc_start = last_delalloc_end + 1; 2822 prealloc_len = delalloc_start - prealloc_start; 2823 } 2824 } 2825 2826 if (prealloc_len > 0) { 2827 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2828 ret = btrfs_is_data_extent_shared(inode, 2829 disk_bytenr, 2830 extent_gen, 2831 backref_ctx); 2832 if (ret < 0) 2833 return ret; 2834 else if (ret > 0) 2835 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2836 2837 checked_extent_shared = true; 2838 } 2839 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2840 disk_bytenr + extent_offset, 2841 prealloc_len, prealloc_flags); 2842 if (ret) 2843 return ret; 2844 extent_offset += prealloc_len; 2845 } 2846 2847 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2848 delalloc_end + 1 - delalloc_start, 2849 FIEMAP_EXTENT_DELALLOC | 2850 FIEMAP_EXTENT_UNKNOWN); 2851 if (ret) 2852 return ret; 2853 2854 last_delalloc_end = delalloc_end; 2855 cur_offset = delalloc_end + 1; 2856 extent_offset += cur_offset - delalloc_start; 2857 cond_resched(); 2858 } 2859 2860 /* 2861 * Either we found no delalloc for the whole prealloc extent or we have 2862 * a prealloc extent that spans i_size or starts at or after i_size. 2863 */ 2864 if (disk_bytenr != 0 && last_delalloc_end < end) { 2865 u64 prealloc_start; 2866 u64 prealloc_len; 2867 2868 if (last_delalloc_end == 0) { 2869 prealloc_start = start; 2870 prealloc_len = end + 1 - start; 2871 } else { 2872 prealloc_start = last_delalloc_end + 1; 2873 prealloc_len = end + 1 - prealloc_start; 2874 } 2875 2876 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2877 ret = btrfs_is_data_extent_shared(inode, 2878 disk_bytenr, 2879 extent_gen, 2880 backref_ctx); 2881 if (ret < 0) 2882 return ret; 2883 else if (ret > 0) 2884 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2885 } 2886 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2887 disk_bytenr + extent_offset, 2888 prealloc_len, prealloc_flags); 2889 if (ret) 2890 return ret; 2891 } 2892 2893 return 0; 2894 } 2895 2896 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2897 struct btrfs_path *path, 2898 u64 *last_extent_end_ret) 2899 { 2900 const u64 ino = btrfs_ino(inode); 2901 struct btrfs_root *root = inode->root; 2902 struct extent_buffer *leaf; 2903 struct btrfs_file_extent_item *ei; 2904 struct btrfs_key key; 2905 u64 disk_bytenr; 2906 int ret; 2907 2908 /* 2909 * Lookup the last file extent. We're not using i_size here because 2910 * there might be preallocation past i_size. 2911 */ 2912 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2913 /* There can't be a file extent item at offset (u64)-1 */ 2914 ASSERT(ret != 0); 2915 if (ret < 0) 2916 return ret; 2917 2918 /* 2919 * For a non-existing key, btrfs_search_slot() always leaves us at a 2920 * slot > 0, except if the btree is empty, which is impossible because 2921 * at least it has the inode item for this inode and all the items for 2922 * the root inode 256. 2923 */ 2924 ASSERT(path->slots[0] > 0); 2925 path->slots[0]--; 2926 leaf = path->nodes[0]; 2927 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2928 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2929 /* No file extent items in the subvolume tree. */ 2930 *last_extent_end_ret = 0; 2931 return 0; 2932 } 2933 2934 /* 2935 * For an inline extent, the disk_bytenr is where inline data starts at, 2936 * so first check if we have an inline extent item before checking if we 2937 * have an implicit hole (disk_bytenr == 0). 2938 */ 2939 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2940 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2941 *last_extent_end_ret = btrfs_file_extent_end(path); 2942 return 0; 2943 } 2944 2945 /* 2946 * Find the last file extent item that is not a hole (when NO_HOLES is 2947 * not enabled). This should take at most 2 iterations in the worst 2948 * case: we have one hole file extent item at slot 0 of a leaf and 2949 * another hole file extent item as the last item in the previous leaf. 2950 * This is because we merge file extent items that represent holes. 2951 */ 2952 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2953 while (disk_bytenr == 0) { 2954 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2955 if (ret < 0) { 2956 return ret; 2957 } else if (ret > 0) { 2958 /* No file extent items that are not holes. */ 2959 *last_extent_end_ret = 0; 2960 return 0; 2961 } 2962 leaf = path->nodes[0]; 2963 ei = btrfs_item_ptr(leaf, path->slots[0], 2964 struct btrfs_file_extent_item); 2965 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2966 } 2967 2968 *last_extent_end_ret = btrfs_file_extent_end(path); 2969 return 0; 2970 } 2971 2972 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2973 u64 start, u64 len) 2974 { 2975 const u64 ino = btrfs_ino(inode); 2976 struct extent_state *delalloc_cached_state = NULL; 2977 struct btrfs_path *path; 2978 struct fiemap_cache cache = { 0 }; 2979 struct btrfs_backref_share_check_ctx *backref_ctx; 2980 u64 last_extent_end; 2981 u64 prev_extent_end; 2982 u64 range_start; 2983 u64 range_end; 2984 const u64 sectorsize = inode->root->fs_info->sectorsize; 2985 bool stopped = false; 2986 int ret; 2987 2988 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2989 path = btrfs_alloc_path(); 2990 if (!backref_ctx || !path) { 2991 ret = -ENOMEM; 2992 goto out; 2993 } 2994 2995 range_start = round_down(start, sectorsize); 2996 range_end = round_up(start + len, sectorsize); 2997 prev_extent_end = range_start; 2998 2999 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3000 if (ret < 0) 3001 goto out; 3002 btrfs_release_path(path); 3003 3004 path->reada = READA_FORWARD; 3005 ret = fiemap_search_slot(inode, path, range_start); 3006 if (ret < 0) { 3007 goto out; 3008 } else if (ret > 0) { 3009 /* 3010 * No file extent item found, but we may have delalloc between 3011 * the current offset and i_size. So check for that. 3012 */ 3013 ret = 0; 3014 goto check_eof_delalloc; 3015 } 3016 3017 while (prev_extent_end < range_end) { 3018 struct extent_buffer *leaf = path->nodes[0]; 3019 struct btrfs_file_extent_item *ei; 3020 struct btrfs_key key; 3021 u64 extent_end; 3022 u64 extent_len; 3023 u64 extent_offset = 0; 3024 u64 extent_gen; 3025 u64 disk_bytenr = 0; 3026 u64 flags = 0; 3027 int extent_type; 3028 u8 compression; 3029 3030 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3031 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3032 break; 3033 3034 extent_end = btrfs_file_extent_end(path); 3035 3036 /* 3037 * The first iteration can leave us at an extent item that ends 3038 * before our range's start. Move to the next item. 3039 */ 3040 if (extent_end <= range_start) 3041 goto next_item; 3042 3043 backref_ctx->curr_leaf_bytenr = leaf->start; 3044 3045 /* We have in implicit hole (NO_HOLES feature enabled). */ 3046 if (prev_extent_end < key.offset) { 3047 const u64 hole_end = min(key.offset, range_end) - 1; 3048 3049 ret = fiemap_process_hole(inode, fieinfo, &cache, 3050 &delalloc_cached_state, 3051 backref_ctx, 0, 0, 0, 3052 prev_extent_end, hole_end); 3053 if (ret < 0) { 3054 goto out; 3055 } else if (ret > 0) { 3056 /* fiemap_fill_next_extent() told us to stop. */ 3057 stopped = true; 3058 break; 3059 } 3060 3061 /* We've reached the end of the fiemap range, stop. */ 3062 if (key.offset >= range_end) { 3063 stopped = true; 3064 break; 3065 } 3066 } 3067 3068 extent_len = extent_end - key.offset; 3069 ei = btrfs_item_ptr(leaf, path->slots[0], 3070 struct btrfs_file_extent_item); 3071 compression = btrfs_file_extent_compression(leaf, ei); 3072 extent_type = btrfs_file_extent_type(leaf, ei); 3073 extent_gen = btrfs_file_extent_generation(leaf, ei); 3074 3075 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3076 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3077 if (compression == BTRFS_COMPRESS_NONE) 3078 extent_offset = btrfs_file_extent_offset(leaf, ei); 3079 } 3080 3081 if (compression != BTRFS_COMPRESS_NONE) 3082 flags |= FIEMAP_EXTENT_ENCODED; 3083 3084 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3085 flags |= FIEMAP_EXTENT_DATA_INLINE; 3086 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3087 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3088 extent_len, flags); 3089 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3090 ret = fiemap_process_hole(inode, fieinfo, &cache, 3091 &delalloc_cached_state, 3092 backref_ctx, 3093 disk_bytenr, extent_offset, 3094 extent_gen, key.offset, 3095 extent_end - 1); 3096 } else if (disk_bytenr == 0) { 3097 /* We have an explicit hole. */ 3098 ret = fiemap_process_hole(inode, fieinfo, &cache, 3099 &delalloc_cached_state, 3100 backref_ctx, 0, 0, 0, 3101 key.offset, extent_end - 1); 3102 } else { 3103 /* We have a regular extent. */ 3104 if (fieinfo->fi_extents_max) { 3105 ret = btrfs_is_data_extent_shared(inode, 3106 disk_bytenr, 3107 extent_gen, 3108 backref_ctx); 3109 if (ret < 0) 3110 goto out; 3111 else if (ret > 0) 3112 flags |= FIEMAP_EXTENT_SHARED; 3113 } 3114 3115 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3116 disk_bytenr + extent_offset, 3117 extent_len, flags); 3118 } 3119 3120 if (ret < 0) { 3121 goto out; 3122 } else if (ret > 0) { 3123 /* fiemap_fill_next_extent() told us to stop. */ 3124 stopped = true; 3125 break; 3126 } 3127 3128 prev_extent_end = extent_end; 3129 next_item: 3130 if (fatal_signal_pending(current)) { 3131 ret = -EINTR; 3132 goto out; 3133 } 3134 3135 ret = fiemap_next_leaf_item(inode, path); 3136 if (ret < 0) { 3137 goto out; 3138 } else if (ret > 0) { 3139 /* No more file extent items for this inode. */ 3140 break; 3141 } 3142 cond_resched(); 3143 } 3144 3145 check_eof_delalloc: 3146 /* 3147 * Release (and free) the path before emitting any final entries to 3148 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3149 * once we find no more file extent items exist, we may have a 3150 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3151 * faults when copying data to the user space buffer. 3152 */ 3153 btrfs_free_path(path); 3154 path = NULL; 3155 3156 if (!stopped && prev_extent_end < range_end) { 3157 ret = fiemap_process_hole(inode, fieinfo, &cache, 3158 &delalloc_cached_state, backref_ctx, 3159 0, 0, 0, prev_extent_end, range_end - 1); 3160 if (ret < 0) 3161 goto out; 3162 prev_extent_end = range_end; 3163 } 3164 3165 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3166 const u64 i_size = i_size_read(&inode->vfs_inode); 3167 3168 if (prev_extent_end < i_size) { 3169 struct extent_state *cached_state = NULL; 3170 u64 delalloc_start; 3171 u64 delalloc_end; 3172 u64 lockstart; 3173 u64 lockend; 3174 bool delalloc; 3175 3176 lockstart = round_down(prev_extent_end, sectorsize); 3177 lockend = round_up(i_size, sectorsize); 3178 3179 /* 3180 * See the comment in fiemap_process_hole as to why 3181 * we're doing the locking here. 3182 */ 3183 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3184 delalloc = btrfs_find_delalloc_in_range(inode, 3185 prev_extent_end, 3186 i_size - 1, 3187 &delalloc_cached_state, 3188 &delalloc_start, 3189 &delalloc_end); 3190 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3191 if (!delalloc) 3192 cache.flags |= FIEMAP_EXTENT_LAST; 3193 } else { 3194 cache.flags |= FIEMAP_EXTENT_LAST; 3195 } 3196 } 3197 3198 ret = emit_last_fiemap_cache(fieinfo, &cache); 3199 out: 3200 free_extent_state(delalloc_cached_state); 3201 btrfs_free_backref_share_ctx(backref_ctx); 3202 btrfs_free_path(path); 3203 return ret; 3204 } 3205 3206 static void __free_extent_buffer(struct extent_buffer *eb) 3207 { 3208 kmem_cache_free(extent_buffer_cache, eb); 3209 } 3210 3211 static int extent_buffer_under_io(const struct extent_buffer *eb) 3212 { 3213 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3214 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3215 } 3216 3217 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 3218 { 3219 struct btrfs_subpage *subpage; 3220 3221 lockdep_assert_held(&folio->mapping->i_private_lock); 3222 3223 if (folio_test_private(folio)) { 3224 subpage = folio_get_private(folio); 3225 if (atomic_read(&subpage->eb_refs)) 3226 return true; 3227 /* 3228 * Even there is no eb refs here, we may still have 3229 * end_page_read() call relying on page::private. 3230 */ 3231 if (atomic_read(&subpage->readers)) 3232 return true; 3233 } 3234 return false; 3235 } 3236 3237 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio) 3238 { 3239 struct btrfs_fs_info *fs_info = eb->fs_info; 3240 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3241 3242 /* 3243 * For mapped eb, we're going to change the folio private, which should 3244 * be done under the i_private_lock. 3245 */ 3246 if (mapped) 3247 spin_lock(&folio->mapping->i_private_lock); 3248 3249 if (!folio_test_private(folio)) { 3250 if (mapped) 3251 spin_unlock(&folio->mapping->i_private_lock); 3252 return; 3253 } 3254 3255 if (fs_info->nodesize >= PAGE_SIZE) { 3256 /* 3257 * We do this since we'll remove the pages after we've 3258 * removed the eb from the radix tree, so we could race 3259 * and have this page now attached to the new eb. So 3260 * only clear folio if it's still connected to 3261 * this eb. 3262 */ 3263 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 3264 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3265 BUG_ON(folio_test_dirty(folio)); 3266 BUG_ON(folio_test_writeback(folio)); 3267 /* We need to make sure we haven't be attached to a new eb. */ 3268 folio_detach_private(folio); 3269 } 3270 if (mapped) 3271 spin_unlock(&folio->mapping->i_private_lock); 3272 return; 3273 } 3274 3275 /* 3276 * For subpage, we can have dummy eb with folio private attached. In 3277 * this case, we can directly detach the private as such folio is only 3278 * attached to one dummy eb, no sharing. 3279 */ 3280 if (!mapped) { 3281 btrfs_detach_subpage(fs_info, folio); 3282 return; 3283 } 3284 3285 btrfs_folio_dec_eb_refs(fs_info, folio); 3286 3287 /* 3288 * We can only detach the folio private if there are no other ebs in the 3289 * page range and no unfinished IO. 3290 */ 3291 if (!folio_range_has_eb(fs_info, folio)) 3292 btrfs_detach_subpage(fs_info, folio); 3293 3294 spin_unlock(&folio->mapping->i_private_lock); 3295 } 3296 3297 /* Release all pages attached to the extent buffer */ 3298 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3299 { 3300 ASSERT(!extent_buffer_under_io(eb)); 3301 3302 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 3303 struct folio *folio = eb->folios[i]; 3304 3305 if (!folio) 3306 continue; 3307 3308 detach_extent_buffer_folio(eb, folio); 3309 3310 /* One for when we allocated the folio. */ 3311 folio_put(folio); 3312 } 3313 } 3314 3315 /* 3316 * Helper for releasing the extent buffer. 3317 */ 3318 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3319 { 3320 btrfs_release_extent_buffer_pages(eb); 3321 btrfs_leak_debug_del_eb(eb); 3322 __free_extent_buffer(eb); 3323 } 3324 3325 static struct extent_buffer * 3326 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3327 unsigned long len) 3328 { 3329 struct extent_buffer *eb = NULL; 3330 3331 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3332 eb->start = start; 3333 eb->len = len; 3334 eb->fs_info = fs_info; 3335 init_rwsem(&eb->lock); 3336 3337 btrfs_leak_debug_add_eb(eb); 3338 3339 spin_lock_init(&eb->refs_lock); 3340 atomic_set(&eb->refs, 1); 3341 3342 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3343 3344 return eb; 3345 } 3346 3347 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3348 { 3349 struct extent_buffer *new; 3350 int num_folios = num_extent_folios(src); 3351 int ret; 3352 3353 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3354 if (new == NULL) 3355 return NULL; 3356 3357 /* 3358 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3359 * btrfs_release_extent_buffer() have different behavior for 3360 * UNMAPPED subpage extent buffer. 3361 */ 3362 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3363 3364 ret = alloc_eb_folio_array(new, 0); 3365 if (ret) { 3366 btrfs_release_extent_buffer(new); 3367 return NULL; 3368 } 3369 3370 for (int i = 0; i < num_folios; i++) { 3371 struct folio *folio = new->folios[i]; 3372 int ret; 3373 3374 ret = attach_extent_buffer_folio(new, folio, NULL); 3375 if (ret < 0) { 3376 btrfs_release_extent_buffer(new); 3377 return NULL; 3378 } 3379 WARN_ON(folio_test_dirty(folio)); 3380 } 3381 copy_extent_buffer_full(new, src); 3382 set_extent_buffer_uptodate(new); 3383 3384 return new; 3385 } 3386 3387 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3388 u64 start, unsigned long len) 3389 { 3390 struct extent_buffer *eb; 3391 int num_folios = 0; 3392 int ret; 3393 3394 eb = __alloc_extent_buffer(fs_info, start, len); 3395 if (!eb) 3396 return NULL; 3397 3398 ret = alloc_eb_folio_array(eb, 0); 3399 if (ret) 3400 goto err; 3401 3402 num_folios = num_extent_folios(eb); 3403 for (int i = 0; i < num_folios; i++) { 3404 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3405 if (ret < 0) 3406 goto err; 3407 } 3408 3409 set_extent_buffer_uptodate(eb); 3410 btrfs_set_header_nritems(eb, 0); 3411 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3412 3413 return eb; 3414 err: 3415 for (int i = 0; i < num_folios; i++) { 3416 if (eb->folios[i]) { 3417 detach_extent_buffer_folio(eb, eb->folios[i]); 3418 __folio_put(eb->folios[i]); 3419 } 3420 } 3421 __free_extent_buffer(eb); 3422 return NULL; 3423 } 3424 3425 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3426 u64 start) 3427 { 3428 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3429 } 3430 3431 static void check_buffer_tree_ref(struct extent_buffer *eb) 3432 { 3433 int refs; 3434 /* 3435 * The TREE_REF bit is first set when the extent_buffer is added 3436 * to the radix tree. It is also reset, if unset, when a new reference 3437 * is created by find_extent_buffer. 3438 * 3439 * It is only cleared in two cases: freeing the last non-tree 3440 * reference to the extent_buffer when its STALE bit is set or 3441 * calling release_folio when the tree reference is the only reference. 3442 * 3443 * In both cases, care is taken to ensure that the extent_buffer's 3444 * pages are not under io. However, release_folio can be concurrently 3445 * called with creating new references, which is prone to race 3446 * conditions between the calls to check_buffer_tree_ref in those 3447 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3448 * 3449 * The actual lifetime of the extent_buffer in the radix tree is 3450 * adequately protected by the refcount, but the TREE_REF bit and 3451 * its corresponding reference are not. To protect against this 3452 * class of races, we call check_buffer_tree_ref from the codepaths 3453 * which trigger io. Note that once io is initiated, TREE_REF can no 3454 * longer be cleared, so that is the moment at which any such race is 3455 * best fixed. 3456 */ 3457 refs = atomic_read(&eb->refs); 3458 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3459 return; 3460 3461 spin_lock(&eb->refs_lock); 3462 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3463 atomic_inc(&eb->refs); 3464 spin_unlock(&eb->refs_lock); 3465 } 3466 3467 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3468 { 3469 int num_folios= num_extent_folios(eb); 3470 3471 check_buffer_tree_ref(eb); 3472 3473 for (int i = 0; i < num_folios; i++) 3474 folio_mark_accessed(eb->folios[i]); 3475 } 3476 3477 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3478 u64 start) 3479 { 3480 struct extent_buffer *eb; 3481 3482 eb = find_extent_buffer_nolock(fs_info, start); 3483 if (!eb) 3484 return NULL; 3485 /* 3486 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3487 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3488 * another task running free_extent_buffer() might have seen that flag 3489 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3490 * writeback flags not set) and it's still in the tree (flag 3491 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3492 * decrementing the extent buffer's reference count twice. So here we 3493 * could race and increment the eb's reference count, clear its stale 3494 * flag, mark it as dirty and drop our reference before the other task 3495 * finishes executing free_extent_buffer, which would later result in 3496 * an attempt to free an extent buffer that is dirty. 3497 */ 3498 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3499 spin_lock(&eb->refs_lock); 3500 spin_unlock(&eb->refs_lock); 3501 } 3502 mark_extent_buffer_accessed(eb); 3503 return eb; 3504 } 3505 3506 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3507 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3508 u64 start) 3509 { 3510 struct extent_buffer *eb, *exists = NULL; 3511 int ret; 3512 3513 eb = find_extent_buffer(fs_info, start); 3514 if (eb) 3515 return eb; 3516 eb = alloc_dummy_extent_buffer(fs_info, start); 3517 if (!eb) 3518 return ERR_PTR(-ENOMEM); 3519 eb->fs_info = fs_info; 3520 again: 3521 ret = radix_tree_preload(GFP_NOFS); 3522 if (ret) { 3523 exists = ERR_PTR(ret); 3524 goto free_eb; 3525 } 3526 spin_lock(&fs_info->buffer_lock); 3527 ret = radix_tree_insert(&fs_info->buffer_radix, 3528 start >> fs_info->sectorsize_bits, eb); 3529 spin_unlock(&fs_info->buffer_lock); 3530 radix_tree_preload_end(); 3531 if (ret == -EEXIST) { 3532 exists = find_extent_buffer(fs_info, start); 3533 if (exists) 3534 goto free_eb; 3535 else 3536 goto again; 3537 } 3538 check_buffer_tree_ref(eb); 3539 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3540 3541 return eb; 3542 free_eb: 3543 btrfs_release_extent_buffer(eb); 3544 return exists; 3545 } 3546 #endif 3547 3548 static struct extent_buffer *grab_extent_buffer( 3549 struct btrfs_fs_info *fs_info, struct page *page) 3550 { 3551 struct folio *folio = page_folio(page); 3552 struct extent_buffer *exists; 3553 3554 /* 3555 * For subpage case, we completely rely on radix tree to ensure we 3556 * don't try to insert two ebs for the same bytenr. So here we always 3557 * return NULL and just continue. 3558 */ 3559 if (fs_info->nodesize < PAGE_SIZE) 3560 return NULL; 3561 3562 /* Page not yet attached to an extent buffer */ 3563 if (!folio_test_private(folio)) 3564 return NULL; 3565 3566 /* 3567 * We could have already allocated an eb for this page and attached one 3568 * so lets see if we can get a ref on the existing eb, and if we can we 3569 * know it's good and we can just return that one, else we know we can 3570 * just overwrite folio private. 3571 */ 3572 exists = folio_get_private(folio); 3573 if (atomic_inc_not_zero(&exists->refs)) 3574 return exists; 3575 3576 WARN_ON(PageDirty(page)); 3577 folio_detach_private(folio); 3578 return NULL; 3579 } 3580 3581 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3582 { 3583 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3584 btrfs_err(fs_info, "bad tree block start %llu", start); 3585 return -EINVAL; 3586 } 3587 3588 if (fs_info->nodesize < PAGE_SIZE && 3589 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3590 btrfs_err(fs_info, 3591 "tree block crosses page boundary, start %llu nodesize %u", 3592 start, fs_info->nodesize); 3593 return -EINVAL; 3594 } 3595 if (fs_info->nodesize >= PAGE_SIZE && 3596 !PAGE_ALIGNED(start)) { 3597 btrfs_err(fs_info, 3598 "tree block is not page aligned, start %llu nodesize %u", 3599 start, fs_info->nodesize); 3600 return -EINVAL; 3601 } 3602 if (!IS_ALIGNED(start, fs_info->nodesize) && 3603 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3604 btrfs_warn(fs_info, 3605 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3606 start, fs_info->nodesize); 3607 } 3608 return 0; 3609 } 3610 3611 3612 /* 3613 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3614 * Return >0 if there is already another extent buffer for the range, 3615 * and @found_eb_ret would be updated. 3616 * Return -EAGAIN if the filemap has an existing folio but with different size 3617 * than @eb. 3618 * The caller needs to free the existing folios and retry using the same order. 3619 */ 3620 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3621 struct extent_buffer **found_eb_ret) 3622 { 3623 3624 struct btrfs_fs_info *fs_info = eb->fs_info; 3625 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3626 const unsigned long index = eb->start >> PAGE_SHIFT; 3627 struct folio *existing_folio; 3628 int ret; 3629 3630 ASSERT(found_eb_ret); 3631 3632 /* Caller should ensure the folio exists. */ 3633 ASSERT(eb->folios[i]); 3634 3635 retry: 3636 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3637 GFP_NOFS | __GFP_NOFAIL); 3638 if (!ret) 3639 return 0; 3640 3641 existing_folio = filemap_lock_folio(mapping, index + i); 3642 /* The page cache only exists for a very short time, just retry. */ 3643 if (IS_ERR(existing_folio)) 3644 goto retry; 3645 3646 /* For now, we should only have single-page folios for btree inode. */ 3647 ASSERT(folio_nr_pages(existing_folio) == 1); 3648 3649 if (folio_size(existing_folio) != folio_size(eb->folios[0])) { 3650 folio_unlock(existing_folio); 3651 folio_put(existing_folio); 3652 return -EAGAIN; 3653 } 3654 3655 if (fs_info->nodesize < PAGE_SIZE) { 3656 /* 3657 * We're going to reuse the existing page, can drop our page 3658 * and subpage structure now. 3659 */ 3660 __free_page(folio_page(eb->folios[i], 0)); 3661 eb->folios[i] = existing_folio; 3662 } else { 3663 struct extent_buffer *existing_eb; 3664 3665 existing_eb = grab_extent_buffer(fs_info, 3666 folio_page(existing_folio, 0)); 3667 if (existing_eb) { 3668 /* The extent buffer still exists, we can use it directly. */ 3669 *found_eb_ret = existing_eb; 3670 folio_unlock(existing_folio); 3671 folio_put(existing_folio); 3672 return 1; 3673 } 3674 /* The extent buffer no longer exists, we can reuse the folio. */ 3675 __free_page(folio_page(eb->folios[i], 0)); 3676 eb->folios[i] = existing_folio; 3677 } 3678 return 0; 3679 } 3680 3681 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3682 u64 start, u64 owner_root, int level) 3683 { 3684 unsigned long len = fs_info->nodesize; 3685 int num_folios; 3686 int attached = 0; 3687 struct extent_buffer *eb; 3688 struct extent_buffer *existing_eb = NULL; 3689 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3690 struct btrfs_subpage *prealloc = NULL; 3691 u64 lockdep_owner = owner_root; 3692 bool page_contig = true; 3693 int uptodate = 1; 3694 int ret; 3695 3696 if (check_eb_alignment(fs_info, start)) 3697 return ERR_PTR(-EINVAL); 3698 3699 #if BITS_PER_LONG == 32 3700 if (start >= MAX_LFS_FILESIZE) { 3701 btrfs_err_rl(fs_info, 3702 "extent buffer %llu is beyond 32bit page cache limit", start); 3703 btrfs_err_32bit_limit(fs_info); 3704 return ERR_PTR(-EOVERFLOW); 3705 } 3706 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3707 btrfs_warn_32bit_limit(fs_info); 3708 #endif 3709 3710 eb = find_extent_buffer(fs_info, start); 3711 if (eb) 3712 return eb; 3713 3714 eb = __alloc_extent_buffer(fs_info, start, len); 3715 if (!eb) 3716 return ERR_PTR(-ENOMEM); 3717 3718 /* 3719 * The reloc trees are just snapshots, so we need them to appear to be 3720 * just like any other fs tree WRT lockdep. 3721 */ 3722 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3723 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3724 3725 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3726 3727 /* 3728 * Preallocate folio private for subpage case, so that we won't 3729 * allocate memory with i_private_lock nor page lock hold. 3730 * 3731 * The memory will be freed by attach_extent_buffer_page() or freed 3732 * manually if we exit earlier. 3733 */ 3734 if (fs_info->nodesize < PAGE_SIZE) { 3735 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3736 if (IS_ERR(prealloc)) { 3737 ret = PTR_ERR(prealloc); 3738 goto out; 3739 } 3740 } 3741 3742 reallocate: 3743 /* Allocate all pages first. */ 3744 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL); 3745 if (ret < 0) { 3746 btrfs_free_subpage(prealloc); 3747 goto out; 3748 } 3749 3750 num_folios = num_extent_folios(eb); 3751 /* Attach all pages to the filemap. */ 3752 for (int i = 0; i < num_folios; i++) { 3753 struct folio *folio; 3754 3755 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb); 3756 if (ret > 0) { 3757 ASSERT(existing_eb); 3758 goto out; 3759 } 3760 3761 /* 3762 * TODO: Special handling for a corner case where the order of 3763 * folios mismatch between the new eb and filemap. 3764 * 3765 * This happens when: 3766 * 3767 * - the new eb is using higher order folio 3768 * 3769 * - the filemap is still using 0-order folios for the range 3770 * This can happen at the previous eb allocation, and we don't 3771 * have higher order folio for the call. 3772 * 3773 * - the existing eb has already been freed 3774 * 3775 * In this case, we have to free the existing folios first, and 3776 * re-allocate using the same order. 3777 * Thankfully this is not going to happen yet, as we're still 3778 * using 0-order folios. 3779 */ 3780 if (unlikely(ret == -EAGAIN)) { 3781 ASSERT(0); 3782 goto reallocate; 3783 } 3784 attached++; 3785 3786 /* 3787 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3788 * reliable, as we may choose to reuse the existing page cache 3789 * and free the allocated page. 3790 */ 3791 folio = eb->folios[i]; 3792 spin_lock(&mapping->i_private_lock); 3793 /* Should not fail, as we have preallocated the memory */ 3794 ret = attach_extent_buffer_folio(eb, folio, prealloc); 3795 ASSERT(!ret); 3796 /* 3797 * To inform we have extra eb under allocation, so that 3798 * detach_extent_buffer_page() won't release the folio private 3799 * when the eb hasn't yet been inserted into radix tree. 3800 * 3801 * The ref will be decreased when the eb released the page, in 3802 * detach_extent_buffer_page(). 3803 * Thus needs no special handling in error path. 3804 */ 3805 btrfs_folio_inc_eb_refs(fs_info, folio); 3806 spin_unlock(&mapping->i_private_lock); 3807 3808 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3809 3810 /* 3811 * Check if the current page is physically contiguous with previous eb 3812 * page. 3813 * At this stage, either we allocated a large folio, thus @i 3814 * would only be 0, or we fall back to per-page allocation. 3815 */ 3816 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3817 page_contig = false; 3818 3819 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3820 uptodate = 0; 3821 3822 /* 3823 * We can't unlock the pages just yet since the extent buffer 3824 * hasn't been properly inserted in the radix tree, this 3825 * opens a race with btree_release_folio which can free a page 3826 * while we are still filling in all pages for the buffer and 3827 * we could crash. 3828 */ 3829 } 3830 if (uptodate) 3831 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3832 /* All pages are physically contiguous, can skip cross page handling. */ 3833 if (page_contig) 3834 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3835 again: 3836 ret = radix_tree_preload(GFP_NOFS); 3837 if (ret) 3838 goto out; 3839 3840 spin_lock(&fs_info->buffer_lock); 3841 ret = radix_tree_insert(&fs_info->buffer_radix, 3842 start >> fs_info->sectorsize_bits, eb); 3843 spin_unlock(&fs_info->buffer_lock); 3844 radix_tree_preload_end(); 3845 if (ret == -EEXIST) { 3846 ret = 0; 3847 existing_eb = find_extent_buffer(fs_info, start); 3848 if (existing_eb) 3849 goto out; 3850 else 3851 goto again; 3852 } 3853 /* add one reference for the tree */ 3854 check_buffer_tree_ref(eb); 3855 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3856 3857 /* 3858 * Now it's safe to unlock the pages because any calls to 3859 * btree_release_folio will correctly detect that a page belongs to a 3860 * live buffer and won't free them prematurely. 3861 */ 3862 for (int i = 0; i < num_folios; i++) 3863 unlock_page(folio_page(eb->folios[i], 0)); 3864 return eb; 3865 3866 out: 3867 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3868 3869 /* 3870 * Any attached folios need to be detached before we unlock them. This 3871 * is because when we're inserting our new folios into the mapping, and 3872 * then attaching our eb to that folio. If we fail to insert our folio 3873 * we'll lookup the folio for that index, and grab that EB. We do not 3874 * want that to grab this eb, as we're getting ready to free it. So we 3875 * have to detach it first and then unlock it. 3876 * 3877 * We have to drop our reference and NULL it out here because in the 3878 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3879 * Below when we call btrfs_release_extent_buffer() we will call 3880 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3881 * case. If we left eb->folios[i] populated in the subpage case we'd 3882 * double put our reference and be super sad. 3883 */ 3884 for (int i = 0; i < attached; i++) { 3885 ASSERT(eb->folios[i]); 3886 detach_extent_buffer_folio(eb, eb->folios[i]); 3887 unlock_page(folio_page(eb->folios[i], 0)); 3888 folio_put(eb->folios[i]); 3889 eb->folios[i] = NULL; 3890 } 3891 /* 3892 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3893 * so it can be cleaned up without utlizing page->mapping. 3894 */ 3895 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3896 3897 btrfs_release_extent_buffer(eb); 3898 if (ret < 0) 3899 return ERR_PTR(ret); 3900 ASSERT(existing_eb); 3901 return existing_eb; 3902 } 3903 3904 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3905 { 3906 struct extent_buffer *eb = 3907 container_of(head, struct extent_buffer, rcu_head); 3908 3909 __free_extent_buffer(eb); 3910 } 3911 3912 static int release_extent_buffer(struct extent_buffer *eb) 3913 __releases(&eb->refs_lock) 3914 { 3915 lockdep_assert_held(&eb->refs_lock); 3916 3917 WARN_ON(atomic_read(&eb->refs) == 0); 3918 if (atomic_dec_and_test(&eb->refs)) { 3919 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3920 struct btrfs_fs_info *fs_info = eb->fs_info; 3921 3922 spin_unlock(&eb->refs_lock); 3923 3924 spin_lock(&fs_info->buffer_lock); 3925 radix_tree_delete(&fs_info->buffer_radix, 3926 eb->start >> fs_info->sectorsize_bits); 3927 spin_unlock(&fs_info->buffer_lock); 3928 } else { 3929 spin_unlock(&eb->refs_lock); 3930 } 3931 3932 btrfs_leak_debug_del_eb(eb); 3933 /* Should be safe to release our pages at this point */ 3934 btrfs_release_extent_buffer_pages(eb); 3935 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3936 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3937 __free_extent_buffer(eb); 3938 return 1; 3939 } 3940 #endif 3941 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3942 return 1; 3943 } 3944 spin_unlock(&eb->refs_lock); 3945 3946 return 0; 3947 } 3948 3949 void free_extent_buffer(struct extent_buffer *eb) 3950 { 3951 int refs; 3952 if (!eb) 3953 return; 3954 3955 refs = atomic_read(&eb->refs); 3956 while (1) { 3957 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3958 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3959 refs == 1)) 3960 break; 3961 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3962 return; 3963 } 3964 3965 spin_lock(&eb->refs_lock); 3966 if (atomic_read(&eb->refs) == 2 && 3967 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3968 !extent_buffer_under_io(eb) && 3969 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3970 atomic_dec(&eb->refs); 3971 3972 /* 3973 * I know this is terrible, but it's temporary until we stop tracking 3974 * the uptodate bits and such for the extent buffers. 3975 */ 3976 release_extent_buffer(eb); 3977 } 3978 3979 void free_extent_buffer_stale(struct extent_buffer *eb) 3980 { 3981 if (!eb) 3982 return; 3983 3984 spin_lock(&eb->refs_lock); 3985 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3986 3987 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3988 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3989 atomic_dec(&eb->refs); 3990 release_extent_buffer(eb); 3991 } 3992 3993 static void btree_clear_folio_dirty(struct folio *folio) 3994 { 3995 ASSERT(folio_test_dirty(folio)); 3996 ASSERT(folio_test_locked(folio)); 3997 folio_clear_dirty_for_io(folio); 3998 xa_lock_irq(&folio->mapping->i_pages); 3999 if (!folio_test_dirty(folio)) 4000 __xa_clear_mark(&folio->mapping->i_pages, 4001 folio_index(folio), PAGECACHE_TAG_DIRTY); 4002 xa_unlock_irq(&folio->mapping->i_pages); 4003 } 4004 4005 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4006 { 4007 struct btrfs_fs_info *fs_info = eb->fs_info; 4008 struct folio *folio = eb->folios[0]; 4009 bool last; 4010 4011 /* btree_clear_folio_dirty() needs page locked. */ 4012 folio_lock(folio); 4013 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 4014 if (last) 4015 btree_clear_folio_dirty(folio); 4016 folio_unlock(folio); 4017 WARN_ON(atomic_read(&eb->refs) == 0); 4018 } 4019 4020 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4021 struct extent_buffer *eb) 4022 { 4023 struct btrfs_fs_info *fs_info = eb->fs_info; 4024 int num_folios; 4025 4026 btrfs_assert_tree_write_locked(eb); 4027 4028 if (trans && btrfs_header_generation(eb) != trans->transid) 4029 return; 4030 4031 /* 4032 * Instead of clearing the dirty flag off of the buffer, mark it as 4033 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 4034 * write-ordering in zoned mode, without the need to later re-dirty 4035 * the extent_buffer. 4036 * 4037 * The actual zeroout of the buffer will happen later in 4038 * btree_csum_one_bio. 4039 */ 4040 if (btrfs_is_zoned(fs_info)) { 4041 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 4042 return; 4043 } 4044 4045 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4046 return; 4047 4048 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4049 fs_info->dirty_metadata_batch); 4050 4051 if (eb->fs_info->nodesize < PAGE_SIZE) 4052 return clear_subpage_extent_buffer_dirty(eb); 4053 4054 num_folios = num_extent_folios(eb); 4055 for (int i = 0; i < num_folios; i++) { 4056 struct folio *folio = eb->folios[i]; 4057 4058 if (!folio_test_dirty(folio)) 4059 continue; 4060 folio_lock(folio); 4061 btree_clear_folio_dirty(folio); 4062 folio_unlock(folio); 4063 } 4064 WARN_ON(atomic_read(&eb->refs) == 0); 4065 } 4066 4067 void set_extent_buffer_dirty(struct extent_buffer *eb) 4068 { 4069 int num_folios; 4070 bool was_dirty; 4071 4072 check_buffer_tree_ref(eb); 4073 4074 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4075 4076 num_folios = num_extent_folios(eb); 4077 WARN_ON(atomic_read(&eb->refs) == 0); 4078 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4079 4080 if (!was_dirty) { 4081 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4082 4083 /* 4084 * For subpage case, we can have other extent buffers in the 4085 * same page, and in clear_subpage_extent_buffer_dirty() we 4086 * have to clear page dirty without subpage lock held. 4087 * This can cause race where our page gets dirty cleared after 4088 * we just set it. 4089 * 4090 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4091 * its page for other reasons, we can use page lock to prevent 4092 * the above race. 4093 */ 4094 if (subpage) 4095 lock_page(folio_page(eb->folios[0], 0)); 4096 for (int i = 0; i < num_folios; i++) 4097 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 4098 eb->start, eb->len); 4099 if (subpage) 4100 unlock_page(folio_page(eb->folios[0], 0)); 4101 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4102 eb->len, 4103 eb->fs_info->dirty_metadata_batch); 4104 } 4105 #ifdef CONFIG_BTRFS_DEBUG 4106 for (int i = 0; i < num_folios; i++) 4107 ASSERT(folio_test_dirty(eb->folios[i])); 4108 #endif 4109 } 4110 4111 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4112 { 4113 struct btrfs_fs_info *fs_info = eb->fs_info; 4114 int num_folios = num_extent_folios(eb); 4115 4116 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4117 for (int i = 0; i < num_folios; i++) { 4118 struct folio *folio = eb->folios[i]; 4119 4120 if (!folio) 4121 continue; 4122 4123 /* 4124 * This is special handling for metadata subpage, as regular 4125 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4126 */ 4127 if (fs_info->nodesize >= PAGE_SIZE) 4128 folio_clear_uptodate(folio); 4129 else 4130 btrfs_subpage_clear_uptodate(fs_info, folio, 4131 eb->start, eb->len); 4132 } 4133 } 4134 4135 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4136 { 4137 struct btrfs_fs_info *fs_info = eb->fs_info; 4138 int num_folios = num_extent_folios(eb); 4139 4140 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4141 for (int i = 0; i < num_folios; i++) { 4142 struct folio *folio = eb->folios[i]; 4143 4144 /* 4145 * This is special handling for metadata subpage, as regular 4146 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4147 */ 4148 if (fs_info->nodesize >= PAGE_SIZE) 4149 folio_mark_uptodate(folio); 4150 else 4151 btrfs_subpage_set_uptodate(fs_info, folio, 4152 eb->start, eb->len); 4153 } 4154 } 4155 4156 static void end_bbio_meta_read(struct btrfs_bio *bbio) 4157 { 4158 struct extent_buffer *eb = bbio->private; 4159 struct btrfs_fs_info *fs_info = eb->fs_info; 4160 bool uptodate = !bbio->bio.bi_status; 4161 struct folio_iter fi; 4162 u32 bio_offset = 0; 4163 4164 eb->read_mirror = bbio->mirror_num; 4165 4166 if (uptodate && 4167 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4168 uptodate = false; 4169 4170 if (uptodate) { 4171 set_extent_buffer_uptodate(eb); 4172 } else { 4173 clear_extent_buffer_uptodate(eb); 4174 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4175 } 4176 4177 bio_for_each_folio_all(fi, &bbio->bio) { 4178 struct folio *folio = fi.folio; 4179 u64 start = eb->start + bio_offset; 4180 u32 len = fi.length; 4181 4182 if (uptodate) 4183 btrfs_folio_set_uptodate(fs_info, folio, start, len); 4184 else 4185 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 4186 4187 bio_offset += len; 4188 } 4189 4190 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4191 smp_mb__after_atomic(); 4192 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4193 free_extent_buffer(eb); 4194 4195 bio_put(&bbio->bio); 4196 } 4197 4198 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4199 struct btrfs_tree_parent_check *check) 4200 { 4201 struct btrfs_bio *bbio; 4202 bool ret; 4203 4204 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4205 return 0; 4206 4207 /* 4208 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4209 * operation, which could potentially still be in flight. In this case 4210 * we simply want to return an error. 4211 */ 4212 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4213 return -EIO; 4214 4215 /* Someone else is already reading the buffer, just wait for it. */ 4216 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4217 goto done; 4218 4219 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4220 eb->read_mirror = 0; 4221 check_buffer_tree_ref(eb); 4222 atomic_inc(&eb->refs); 4223 4224 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4225 REQ_OP_READ | REQ_META, eb->fs_info, 4226 end_bbio_meta_read, eb); 4227 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4228 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4229 bbio->file_offset = eb->start; 4230 memcpy(&bbio->parent_check, check, sizeof(*check)); 4231 if (eb->fs_info->nodesize < PAGE_SIZE) { 4232 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 4233 eb->start - folio_pos(eb->folios[0])); 4234 ASSERT(ret); 4235 } else { 4236 int num_folios = num_extent_folios(eb); 4237 4238 for (int i = 0; i < num_folios; i++) { 4239 struct folio *folio = eb->folios[i]; 4240 4241 ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0); 4242 ASSERT(ret); 4243 } 4244 } 4245 btrfs_submit_bio(bbio, mirror_num); 4246 4247 done: 4248 if (wait == WAIT_COMPLETE) { 4249 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4250 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4251 return -EIO; 4252 } 4253 4254 return 0; 4255 } 4256 4257 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4258 unsigned long len) 4259 { 4260 btrfs_warn(eb->fs_info, 4261 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4262 eb->start, eb->len, start, len); 4263 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4264 4265 return true; 4266 } 4267 4268 /* 4269 * Check if the [start, start + len) range is valid before reading/writing 4270 * the eb. 4271 * NOTE: @start and @len are offset inside the eb, not logical address. 4272 * 4273 * Caller should not touch the dst/src memory if this function returns error. 4274 */ 4275 static inline int check_eb_range(const struct extent_buffer *eb, 4276 unsigned long start, unsigned long len) 4277 { 4278 unsigned long offset; 4279 4280 /* start, start + len should not go beyond eb->len nor overflow */ 4281 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4282 return report_eb_range(eb, start, len); 4283 4284 return false; 4285 } 4286 4287 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4288 unsigned long start, unsigned long len) 4289 { 4290 const int unit_size = folio_size(eb->folios[0]); 4291 size_t cur; 4292 size_t offset; 4293 char *dst = (char *)dstv; 4294 unsigned long i = get_eb_folio_index(eb, start); 4295 4296 if (check_eb_range(eb, start, len)) { 4297 /* 4298 * Invalid range hit, reset the memory, so callers won't get 4299 * some random garbage for their uninitialized memory. 4300 */ 4301 memset(dstv, 0, len); 4302 return; 4303 } 4304 4305 if (eb->addr) { 4306 memcpy(dstv, eb->addr + start, len); 4307 return; 4308 } 4309 4310 offset = get_eb_offset_in_folio(eb, start); 4311 4312 while (len > 0) { 4313 char *kaddr; 4314 4315 cur = min(len, unit_size - offset); 4316 kaddr = folio_address(eb->folios[i]); 4317 memcpy(dst, kaddr + offset, cur); 4318 4319 dst += cur; 4320 len -= cur; 4321 offset = 0; 4322 i++; 4323 } 4324 } 4325 4326 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4327 void __user *dstv, 4328 unsigned long start, unsigned long len) 4329 { 4330 const int unit_size = folio_size(eb->folios[0]); 4331 size_t cur; 4332 size_t offset; 4333 char __user *dst = (char __user *)dstv; 4334 unsigned long i = get_eb_folio_index(eb, start); 4335 int ret = 0; 4336 4337 WARN_ON(start > eb->len); 4338 WARN_ON(start + len > eb->start + eb->len); 4339 4340 if (eb->addr) { 4341 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 4342 ret = -EFAULT; 4343 return ret; 4344 } 4345 4346 offset = get_eb_offset_in_folio(eb, start); 4347 4348 while (len > 0) { 4349 char *kaddr; 4350 4351 cur = min(len, unit_size - offset); 4352 kaddr = folio_address(eb->folios[i]); 4353 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4354 ret = -EFAULT; 4355 break; 4356 } 4357 4358 dst += cur; 4359 len -= cur; 4360 offset = 0; 4361 i++; 4362 } 4363 4364 return ret; 4365 } 4366 4367 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4368 unsigned long start, unsigned long len) 4369 { 4370 const int unit_size = folio_size(eb->folios[0]); 4371 size_t cur; 4372 size_t offset; 4373 char *kaddr; 4374 char *ptr = (char *)ptrv; 4375 unsigned long i = get_eb_folio_index(eb, start); 4376 int ret = 0; 4377 4378 if (check_eb_range(eb, start, len)) 4379 return -EINVAL; 4380 4381 if (eb->addr) 4382 return memcmp(ptrv, eb->addr + start, len); 4383 4384 offset = get_eb_offset_in_folio(eb, start); 4385 4386 while (len > 0) { 4387 cur = min(len, unit_size - offset); 4388 kaddr = folio_address(eb->folios[i]); 4389 ret = memcmp(ptr, kaddr + offset, cur); 4390 if (ret) 4391 break; 4392 4393 ptr += cur; 4394 len -= cur; 4395 offset = 0; 4396 i++; 4397 } 4398 return ret; 4399 } 4400 4401 /* 4402 * Check that the extent buffer is uptodate. 4403 * 4404 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4405 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4406 */ 4407 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4408 { 4409 struct btrfs_fs_info *fs_info = eb->fs_info; 4410 struct folio *folio = eb->folios[i]; 4411 4412 ASSERT(folio); 4413 4414 /* 4415 * If we are using the commit root we could potentially clear a page 4416 * Uptodate while we're using the extent buffer that we've previously 4417 * looked up. We don't want to complain in this case, as the page was 4418 * valid before, we just didn't write it out. Instead we want to catch 4419 * the case where we didn't actually read the block properly, which 4420 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4421 */ 4422 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4423 return; 4424 4425 if (fs_info->nodesize < PAGE_SIZE) { 4426 struct folio *folio = eb->folios[0]; 4427 4428 ASSERT(i == 0); 4429 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4430 eb->start, eb->len))) 4431 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4432 } else { 4433 WARN_ON(!folio_test_uptodate(folio)); 4434 } 4435 } 4436 4437 static void __write_extent_buffer(const struct extent_buffer *eb, 4438 const void *srcv, unsigned long start, 4439 unsigned long len, bool use_memmove) 4440 { 4441 const int unit_size = folio_size(eb->folios[0]); 4442 size_t cur; 4443 size_t offset; 4444 char *kaddr; 4445 char *src = (char *)srcv; 4446 unsigned long i = get_eb_folio_index(eb, start); 4447 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4448 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4449 4450 if (check_eb_range(eb, start, len)) 4451 return; 4452 4453 if (eb->addr) { 4454 if (use_memmove) 4455 memmove(eb->addr + start, srcv, len); 4456 else 4457 memcpy(eb->addr + start, srcv, len); 4458 return; 4459 } 4460 4461 offset = get_eb_offset_in_folio(eb, start); 4462 4463 while (len > 0) { 4464 if (check_uptodate) 4465 assert_eb_folio_uptodate(eb, i); 4466 4467 cur = min(len, unit_size - offset); 4468 kaddr = folio_address(eb->folios[i]); 4469 if (use_memmove) 4470 memmove(kaddr + offset, src, cur); 4471 else 4472 memcpy(kaddr + offset, src, cur); 4473 4474 src += cur; 4475 len -= cur; 4476 offset = 0; 4477 i++; 4478 } 4479 } 4480 4481 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4482 unsigned long start, unsigned long len) 4483 { 4484 return __write_extent_buffer(eb, srcv, start, len, false); 4485 } 4486 4487 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4488 unsigned long start, unsigned long len) 4489 { 4490 const int unit_size = folio_size(eb->folios[0]); 4491 unsigned long cur = start; 4492 4493 if (eb->addr) { 4494 memset(eb->addr + start, c, len); 4495 return; 4496 } 4497 4498 while (cur < start + len) { 4499 unsigned long index = get_eb_folio_index(eb, cur); 4500 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4501 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4502 4503 assert_eb_folio_uptodate(eb, index); 4504 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4505 4506 cur += cur_len; 4507 } 4508 } 4509 4510 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4511 unsigned long len) 4512 { 4513 if (check_eb_range(eb, start, len)) 4514 return; 4515 return memset_extent_buffer(eb, 0, start, len); 4516 } 4517 4518 void copy_extent_buffer_full(const struct extent_buffer *dst, 4519 const struct extent_buffer *src) 4520 { 4521 const int unit_size = folio_size(src->folios[0]); 4522 unsigned long cur = 0; 4523 4524 ASSERT(dst->len == src->len); 4525 4526 while (cur < src->len) { 4527 unsigned long index = get_eb_folio_index(src, cur); 4528 unsigned long offset = get_eb_offset_in_folio(src, cur); 4529 unsigned long cur_len = min(src->len, unit_size - offset); 4530 void *addr = folio_address(src->folios[index]) + offset; 4531 4532 write_extent_buffer(dst, addr, cur, cur_len); 4533 4534 cur += cur_len; 4535 } 4536 } 4537 4538 void copy_extent_buffer(const struct extent_buffer *dst, 4539 const struct extent_buffer *src, 4540 unsigned long dst_offset, unsigned long src_offset, 4541 unsigned long len) 4542 { 4543 const int unit_size = folio_size(dst->folios[0]); 4544 u64 dst_len = dst->len; 4545 size_t cur; 4546 size_t offset; 4547 char *kaddr; 4548 unsigned long i = get_eb_folio_index(dst, dst_offset); 4549 4550 if (check_eb_range(dst, dst_offset, len) || 4551 check_eb_range(src, src_offset, len)) 4552 return; 4553 4554 WARN_ON(src->len != dst_len); 4555 4556 offset = get_eb_offset_in_folio(dst, dst_offset); 4557 4558 while (len > 0) { 4559 assert_eb_folio_uptodate(dst, i); 4560 4561 cur = min(len, (unsigned long)(unit_size - offset)); 4562 4563 kaddr = folio_address(dst->folios[i]); 4564 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4565 4566 src_offset += cur; 4567 len -= cur; 4568 offset = 0; 4569 i++; 4570 } 4571 } 4572 4573 /* 4574 * Calculate the folio and offset of the byte containing the given bit number. 4575 * 4576 * @eb: the extent buffer 4577 * @start: offset of the bitmap item in the extent buffer 4578 * @nr: bit number 4579 * @folio_index: return index of the folio in the extent buffer that contains 4580 * the given bit number 4581 * @folio_offset: return offset into the folio given by folio_index 4582 * 4583 * This helper hides the ugliness of finding the byte in an extent buffer which 4584 * contains a given bit. 4585 */ 4586 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4587 unsigned long start, unsigned long nr, 4588 unsigned long *folio_index, 4589 size_t *folio_offset) 4590 { 4591 size_t byte_offset = BIT_BYTE(nr); 4592 size_t offset; 4593 4594 /* 4595 * The byte we want is the offset of the extent buffer + the offset of 4596 * the bitmap item in the extent buffer + the offset of the byte in the 4597 * bitmap item. 4598 */ 4599 offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset; 4600 4601 *folio_index = offset >> folio_shift(eb->folios[0]); 4602 *folio_offset = offset_in_folio(eb->folios[0], offset); 4603 } 4604 4605 /* 4606 * Determine whether a bit in a bitmap item is set. 4607 * 4608 * @eb: the extent buffer 4609 * @start: offset of the bitmap item in the extent buffer 4610 * @nr: bit number to test 4611 */ 4612 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4613 unsigned long nr) 4614 { 4615 unsigned long i; 4616 size_t offset; 4617 u8 *kaddr; 4618 4619 eb_bitmap_offset(eb, start, nr, &i, &offset); 4620 assert_eb_folio_uptodate(eb, i); 4621 kaddr = folio_address(eb->folios[i]); 4622 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4623 } 4624 4625 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4626 { 4627 unsigned long index = get_eb_folio_index(eb, bytenr); 4628 4629 if (check_eb_range(eb, bytenr, 1)) 4630 return NULL; 4631 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4632 } 4633 4634 /* 4635 * Set an area of a bitmap to 1. 4636 * 4637 * @eb: the extent buffer 4638 * @start: offset of the bitmap item in the extent buffer 4639 * @pos: bit number of the first bit 4640 * @len: number of bits to set 4641 */ 4642 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4643 unsigned long pos, unsigned long len) 4644 { 4645 unsigned int first_byte = start + BIT_BYTE(pos); 4646 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4647 const bool same_byte = (first_byte == last_byte); 4648 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4649 u8 *kaddr; 4650 4651 if (same_byte) 4652 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4653 4654 /* Handle the first byte. */ 4655 kaddr = extent_buffer_get_byte(eb, first_byte); 4656 *kaddr |= mask; 4657 if (same_byte) 4658 return; 4659 4660 /* Handle the byte aligned part. */ 4661 ASSERT(first_byte + 1 <= last_byte); 4662 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4663 4664 /* Handle the last byte. */ 4665 kaddr = extent_buffer_get_byte(eb, last_byte); 4666 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4667 } 4668 4669 4670 /* 4671 * Clear an area of a bitmap. 4672 * 4673 * @eb: the extent buffer 4674 * @start: offset of the bitmap item in the extent buffer 4675 * @pos: bit number of the first bit 4676 * @len: number of bits to clear 4677 */ 4678 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4679 unsigned long start, unsigned long pos, 4680 unsigned long len) 4681 { 4682 unsigned int first_byte = start + BIT_BYTE(pos); 4683 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4684 const bool same_byte = (first_byte == last_byte); 4685 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4686 u8 *kaddr; 4687 4688 if (same_byte) 4689 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4690 4691 /* Handle the first byte. */ 4692 kaddr = extent_buffer_get_byte(eb, first_byte); 4693 *kaddr &= ~mask; 4694 if (same_byte) 4695 return; 4696 4697 /* Handle the byte aligned part. */ 4698 ASSERT(first_byte + 1 <= last_byte); 4699 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4700 4701 /* Handle the last byte. */ 4702 kaddr = extent_buffer_get_byte(eb, last_byte); 4703 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4704 } 4705 4706 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4707 { 4708 unsigned long distance = (src > dst) ? src - dst : dst - src; 4709 return distance < len; 4710 } 4711 4712 void memcpy_extent_buffer(const struct extent_buffer *dst, 4713 unsigned long dst_offset, unsigned long src_offset, 4714 unsigned long len) 4715 { 4716 const int unit_size = folio_size(dst->folios[0]); 4717 unsigned long cur_off = 0; 4718 4719 if (check_eb_range(dst, dst_offset, len) || 4720 check_eb_range(dst, src_offset, len)) 4721 return; 4722 4723 if (dst->addr) { 4724 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4725 4726 if (use_memmove) 4727 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4728 else 4729 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4730 return; 4731 } 4732 4733 while (cur_off < len) { 4734 unsigned long cur_src = cur_off + src_offset; 4735 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4736 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4737 unsigned long cur_len = min(src_offset + len - cur_src, 4738 unit_size - folio_off); 4739 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4740 const bool use_memmove = areas_overlap(src_offset + cur_off, 4741 dst_offset + cur_off, cur_len); 4742 4743 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4744 use_memmove); 4745 cur_off += cur_len; 4746 } 4747 } 4748 4749 void memmove_extent_buffer(const struct extent_buffer *dst, 4750 unsigned long dst_offset, unsigned long src_offset, 4751 unsigned long len) 4752 { 4753 unsigned long dst_end = dst_offset + len - 1; 4754 unsigned long src_end = src_offset + len - 1; 4755 4756 if (check_eb_range(dst, dst_offset, len) || 4757 check_eb_range(dst, src_offset, len)) 4758 return; 4759 4760 if (dst_offset < src_offset) { 4761 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4762 return; 4763 } 4764 4765 if (dst->addr) { 4766 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4767 return; 4768 } 4769 4770 while (len > 0) { 4771 unsigned long src_i; 4772 size_t cur; 4773 size_t dst_off_in_folio; 4774 size_t src_off_in_folio; 4775 void *src_addr; 4776 bool use_memmove; 4777 4778 src_i = get_eb_folio_index(dst, src_end); 4779 4780 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4781 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4782 4783 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4784 cur = min(cur, dst_off_in_folio + 1); 4785 4786 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4787 cur + 1; 4788 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4789 cur); 4790 4791 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4792 use_memmove); 4793 4794 dst_end -= cur; 4795 src_end -= cur; 4796 len -= cur; 4797 } 4798 } 4799 4800 #define GANG_LOOKUP_SIZE 16 4801 static struct extent_buffer *get_next_extent_buffer( 4802 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4803 { 4804 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4805 struct extent_buffer *found = NULL; 4806 u64 page_start = page_offset(page); 4807 u64 cur = page_start; 4808 4809 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4810 lockdep_assert_held(&fs_info->buffer_lock); 4811 4812 while (cur < page_start + PAGE_SIZE) { 4813 int ret; 4814 int i; 4815 4816 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4817 (void **)gang, cur >> fs_info->sectorsize_bits, 4818 min_t(unsigned int, GANG_LOOKUP_SIZE, 4819 PAGE_SIZE / fs_info->nodesize)); 4820 if (ret == 0) 4821 goto out; 4822 for (i = 0; i < ret; i++) { 4823 /* Already beyond page end */ 4824 if (gang[i]->start >= page_start + PAGE_SIZE) 4825 goto out; 4826 /* Found one */ 4827 if (gang[i]->start >= bytenr) { 4828 found = gang[i]; 4829 goto out; 4830 } 4831 } 4832 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4833 } 4834 out: 4835 return found; 4836 } 4837 4838 static int try_release_subpage_extent_buffer(struct page *page) 4839 { 4840 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4841 u64 cur = page_offset(page); 4842 const u64 end = page_offset(page) + PAGE_SIZE; 4843 int ret; 4844 4845 while (cur < end) { 4846 struct extent_buffer *eb = NULL; 4847 4848 /* 4849 * Unlike try_release_extent_buffer() which uses folio private 4850 * to grab buffer, for subpage case we rely on radix tree, thus 4851 * we need to ensure radix tree consistency. 4852 * 4853 * We also want an atomic snapshot of the radix tree, thus go 4854 * with spinlock rather than RCU. 4855 */ 4856 spin_lock(&fs_info->buffer_lock); 4857 eb = get_next_extent_buffer(fs_info, page, cur); 4858 if (!eb) { 4859 /* No more eb in the page range after or at cur */ 4860 spin_unlock(&fs_info->buffer_lock); 4861 break; 4862 } 4863 cur = eb->start + eb->len; 4864 4865 /* 4866 * The same as try_release_extent_buffer(), to ensure the eb 4867 * won't disappear out from under us. 4868 */ 4869 spin_lock(&eb->refs_lock); 4870 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4871 spin_unlock(&eb->refs_lock); 4872 spin_unlock(&fs_info->buffer_lock); 4873 break; 4874 } 4875 spin_unlock(&fs_info->buffer_lock); 4876 4877 /* 4878 * If tree ref isn't set then we know the ref on this eb is a 4879 * real ref, so just return, this eb will likely be freed soon 4880 * anyway. 4881 */ 4882 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4883 spin_unlock(&eb->refs_lock); 4884 break; 4885 } 4886 4887 /* 4888 * Here we don't care about the return value, we will always 4889 * check the folio private at the end. And 4890 * release_extent_buffer() will release the refs_lock. 4891 */ 4892 release_extent_buffer(eb); 4893 } 4894 /* 4895 * Finally to check if we have cleared folio private, as if we have 4896 * released all ebs in the page, the folio private should be cleared now. 4897 */ 4898 spin_lock(&page->mapping->i_private_lock); 4899 if (!folio_test_private(page_folio(page))) 4900 ret = 1; 4901 else 4902 ret = 0; 4903 spin_unlock(&page->mapping->i_private_lock); 4904 return ret; 4905 4906 } 4907 4908 int try_release_extent_buffer(struct page *page) 4909 { 4910 struct folio *folio = page_folio(page); 4911 struct extent_buffer *eb; 4912 4913 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4914 return try_release_subpage_extent_buffer(page); 4915 4916 /* 4917 * We need to make sure nobody is changing folio private, as we rely on 4918 * folio private as the pointer to extent buffer. 4919 */ 4920 spin_lock(&page->mapping->i_private_lock); 4921 if (!folio_test_private(folio)) { 4922 spin_unlock(&page->mapping->i_private_lock); 4923 return 1; 4924 } 4925 4926 eb = folio_get_private(folio); 4927 BUG_ON(!eb); 4928 4929 /* 4930 * This is a little awful but should be ok, we need to make sure that 4931 * the eb doesn't disappear out from under us while we're looking at 4932 * this page. 4933 */ 4934 spin_lock(&eb->refs_lock); 4935 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4936 spin_unlock(&eb->refs_lock); 4937 spin_unlock(&page->mapping->i_private_lock); 4938 return 0; 4939 } 4940 spin_unlock(&page->mapping->i_private_lock); 4941 4942 /* 4943 * If tree ref isn't set then we know the ref on this eb is a real ref, 4944 * so just return, this page will likely be freed soon anyway. 4945 */ 4946 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4947 spin_unlock(&eb->refs_lock); 4948 return 0; 4949 } 4950 4951 return release_extent_buffer(eb); 4952 } 4953 4954 /* 4955 * Attempt to readahead a child block. 4956 * 4957 * @fs_info: the fs_info 4958 * @bytenr: bytenr to read 4959 * @owner_root: objectid of the root that owns this eb 4960 * @gen: generation for the uptodate check, can be 0 4961 * @level: level for the eb 4962 * 4963 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4964 * normal uptodate check of the eb, without checking the generation. If we have 4965 * to read the block we will not block on anything. 4966 */ 4967 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4968 u64 bytenr, u64 owner_root, u64 gen, int level) 4969 { 4970 struct btrfs_tree_parent_check check = { 4971 .has_first_key = 0, 4972 .level = level, 4973 .transid = gen 4974 }; 4975 struct extent_buffer *eb; 4976 int ret; 4977 4978 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4979 if (IS_ERR(eb)) 4980 return; 4981 4982 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4983 free_extent_buffer(eb); 4984 return; 4985 } 4986 4987 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4988 if (ret < 0) 4989 free_extent_buffer_stale(eb); 4990 else 4991 free_extent_buffer(eb); 4992 } 4993 4994 /* 4995 * Readahead a node's child block. 4996 * 4997 * @node: parent node we're reading from 4998 * @slot: slot in the parent node for the child we want to read 4999 * 5000 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5001 * the slot in the node provided. 5002 */ 5003 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5004 { 5005 btrfs_readahead_tree_block(node->fs_info, 5006 btrfs_node_blockptr(node, slot), 5007 btrfs_header_owner(node), 5008 btrfs_node_ptr_generation(node, slot), 5009 btrfs_header_level(node) - 1); 5010 } 5011