1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 struct inode *inode = tree->private_data; 93 u64 isize; 94 95 if (!inode || !is_data_inode(inode)) 96 return; 97 98 isize = i_size_read(inode); 99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 101 "%s: ino %llu isize %llu odd range [%llu,%llu]", 102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 103 } 104 } 105 #else 106 #define btrfs_leak_debug_add(new, head) do {} while (0) 107 #define btrfs_leak_debug_del(entry) do {} while (0) 108 #define btrfs_leak_debug_check() do {} while (0) 109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 110 #endif 111 112 struct tree_entry { 113 u64 start; 114 u64 end; 115 struct rb_node rb_node; 116 }; 117 118 struct extent_page_data { 119 struct bio *bio; 120 struct extent_io_tree *tree; 121 /* tells writepage not to lock the state bits for this range 122 * it still does the unlocking 123 */ 124 unsigned int extent_locked:1; 125 126 /* tells the submit_bio code to use REQ_SYNC */ 127 unsigned int sync_io:1; 128 }; 129 130 static int add_extent_changeset(struct extent_state *state, unsigned bits, 131 struct extent_changeset *changeset, 132 int set) 133 { 134 int ret; 135 136 if (!changeset) 137 return 0; 138 if (set && (state->state & bits) == bits) 139 return 0; 140 if (!set && (state->state & bits) == 0) 141 return 0; 142 changeset->bytes_changed += state->end - state->start + 1; 143 ret = ulist_add(&changeset->range_changed, state->start, state->end, 144 GFP_ATOMIC); 145 return ret; 146 } 147 148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 149 unsigned long bio_flags) 150 { 151 blk_status_t ret = 0; 152 struct extent_io_tree *tree = bio->bi_private; 153 154 bio->bi_private = NULL; 155 156 if (tree->ops) 157 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 158 mirror_num, bio_flags); 159 else 160 btrfsic_submit_bio(bio); 161 162 return blk_status_to_errno(ret); 163 } 164 165 /* Cleanup unsubmitted bios */ 166 static void end_write_bio(struct extent_page_data *epd, int ret) 167 { 168 if (epd->bio) { 169 epd->bio->bi_status = errno_to_blk_status(ret); 170 bio_endio(epd->bio); 171 epd->bio = NULL; 172 } 173 } 174 175 /* 176 * Submit bio from extent page data via submit_one_bio 177 * 178 * Return 0 if everything is OK. 179 * Return <0 for error. 180 */ 181 static int __must_check flush_write_bio(struct extent_page_data *epd) 182 { 183 int ret = 0; 184 185 if (epd->bio) { 186 ret = submit_one_bio(epd->bio, 0, 0); 187 /* 188 * Clean up of epd->bio is handled by its endio function. 189 * And endio is either triggered by successful bio execution 190 * or the error handler of submit bio hook. 191 * So at this point, no matter what happened, we don't need 192 * to clean up epd->bio. 193 */ 194 epd->bio = NULL; 195 } 196 return ret; 197 } 198 199 int __init extent_io_init(void) 200 { 201 extent_state_cache = kmem_cache_create("btrfs_extent_state", 202 sizeof(struct extent_state), 0, 203 SLAB_MEM_SPREAD, NULL); 204 if (!extent_state_cache) 205 return -ENOMEM; 206 207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 208 sizeof(struct extent_buffer), 0, 209 SLAB_MEM_SPREAD, NULL); 210 if (!extent_buffer_cache) 211 goto free_state_cache; 212 213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 214 offsetof(struct btrfs_io_bio, bio), 215 BIOSET_NEED_BVECS)) 216 goto free_buffer_cache; 217 218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 219 goto free_bioset; 220 221 return 0; 222 223 free_bioset: 224 bioset_exit(&btrfs_bioset); 225 226 free_buffer_cache: 227 kmem_cache_destroy(extent_buffer_cache); 228 extent_buffer_cache = NULL; 229 230 free_state_cache: 231 kmem_cache_destroy(extent_state_cache); 232 extent_state_cache = NULL; 233 return -ENOMEM; 234 } 235 236 void __cold extent_io_exit(void) 237 { 238 btrfs_leak_debug_check(); 239 240 /* 241 * Make sure all delayed rcu free are flushed before we 242 * destroy caches. 243 */ 244 rcu_barrier(); 245 kmem_cache_destroy(extent_state_cache); 246 kmem_cache_destroy(extent_buffer_cache); 247 bioset_exit(&btrfs_bioset); 248 } 249 250 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 251 struct extent_io_tree *tree, unsigned int owner, 252 void *private_data) 253 { 254 tree->fs_info = fs_info; 255 tree->state = RB_ROOT; 256 tree->ops = NULL; 257 tree->dirty_bytes = 0; 258 spin_lock_init(&tree->lock); 259 tree->private_data = private_data; 260 tree->owner = owner; 261 } 262 263 void extent_io_tree_release(struct extent_io_tree *tree) 264 { 265 spin_lock(&tree->lock); 266 /* 267 * Do a single barrier for the waitqueue_active check here, the state 268 * of the waitqueue should not change once extent_io_tree_release is 269 * called. 270 */ 271 smp_mb(); 272 while (!RB_EMPTY_ROOT(&tree->state)) { 273 struct rb_node *node; 274 struct extent_state *state; 275 276 node = rb_first(&tree->state); 277 state = rb_entry(node, struct extent_state, rb_node); 278 rb_erase(&state->rb_node, &tree->state); 279 RB_CLEAR_NODE(&state->rb_node); 280 /* 281 * btree io trees aren't supposed to have tasks waiting for 282 * changes in the flags of extent states ever. 283 */ 284 ASSERT(!waitqueue_active(&state->wq)); 285 free_extent_state(state); 286 287 cond_resched_lock(&tree->lock); 288 } 289 spin_unlock(&tree->lock); 290 } 291 292 static struct extent_state *alloc_extent_state(gfp_t mask) 293 { 294 struct extent_state *state; 295 296 /* 297 * The given mask might be not appropriate for the slab allocator, 298 * drop the unsupported bits 299 */ 300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 301 state = kmem_cache_alloc(extent_state_cache, mask); 302 if (!state) 303 return state; 304 state->state = 0; 305 state->failrec = NULL; 306 RB_CLEAR_NODE(&state->rb_node); 307 btrfs_leak_debug_add(&state->leak_list, &states); 308 refcount_set(&state->refs, 1); 309 init_waitqueue_head(&state->wq); 310 trace_alloc_extent_state(state, mask, _RET_IP_); 311 return state; 312 } 313 314 void free_extent_state(struct extent_state *state) 315 { 316 if (!state) 317 return; 318 if (refcount_dec_and_test(&state->refs)) { 319 WARN_ON(extent_state_in_tree(state)); 320 btrfs_leak_debug_del(&state->leak_list); 321 trace_free_extent_state(state, _RET_IP_); 322 kmem_cache_free(extent_state_cache, state); 323 } 324 } 325 326 static struct rb_node *tree_insert(struct rb_root *root, 327 struct rb_node *search_start, 328 u64 offset, 329 struct rb_node *node, 330 struct rb_node ***p_in, 331 struct rb_node **parent_in) 332 { 333 struct rb_node **p; 334 struct rb_node *parent = NULL; 335 struct tree_entry *entry; 336 337 if (p_in && parent_in) { 338 p = *p_in; 339 parent = *parent_in; 340 goto do_insert; 341 } 342 343 p = search_start ? &search_start : &root->rb_node; 344 while (*p) { 345 parent = *p; 346 entry = rb_entry(parent, struct tree_entry, rb_node); 347 348 if (offset < entry->start) 349 p = &(*p)->rb_left; 350 else if (offset > entry->end) 351 p = &(*p)->rb_right; 352 else 353 return parent; 354 } 355 356 do_insert: 357 rb_link_node(node, parent, p); 358 rb_insert_color(node, root); 359 return NULL; 360 } 361 362 /** 363 * __etree_search - searche @tree for an entry that contains @offset. Such 364 * entry would have entry->start <= offset && entry->end >= offset. 365 * 366 * @tree - the tree to search 367 * @offset - offset that should fall within an entry in @tree 368 * @next_ret - pointer to the first entry whose range ends after @offset 369 * @prev - pointer to the first entry whose range begins before @offset 370 * @p_ret - pointer where new node should be anchored (used when inserting an 371 * entry in the tree) 372 * @parent_ret - points to entry which would have been the parent of the entry, 373 * containing @offset 374 * 375 * This function returns a pointer to the entry that contains @offset byte 376 * address. If no such entry exists, then NULL is returned and the other 377 * pointer arguments to the function are filled, otherwise the found entry is 378 * returned and other pointers are left untouched. 379 */ 380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 381 struct rb_node **next_ret, 382 struct rb_node **prev_ret, 383 struct rb_node ***p_ret, 384 struct rb_node **parent_ret) 385 { 386 struct rb_root *root = &tree->state; 387 struct rb_node **n = &root->rb_node; 388 struct rb_node *prev = NULL; 389 struct rb_node *orig_prev = NULL; 390 struct tree_entry *entry; 391 struct tree_entry *prev_entry = NULL; 392 393 while (*n) { 394 prev = *n; 395 entry = rb_entry(prev, struct tree_entry, rb_node); 396 prev_entry = entry; 397 398 if (offset < entry->start) 399 n = &(*n)->rb_left; 400 else if (offset > entry->end) 401 n = &(*n)->rb_right; 402 else 403 return *n; 404 } 405 406 if (p_ret) 407 *p_ret = n; 408 if (parent_ret) 409 *parent_ret = prev; 410 411 if (next_ret) { 412 orig_prev = prev; 413 while (prev && offset > prev_entry->end) { 414 prev = rb_next(prev); 415 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 416 } 417 *next_ret = prev; 418 prev = orig_prev; 419 } 420 421 if (prev_ret) { 422 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 423 while (prev && offset < prev_entry->start) { 424 prev = rb_prev(prev); 425 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 426 } 427 *prev_ret = prev; 428 } 429 return NULL; 430 } 431 432 static inline struct rb_node * 433 tree_search_for_insert(struct extent_io_tree *tree, 434 u64 offset, 435 struct rb_node ***p_ret, 436 struct rb_node **parent_ret) 437 { 438 struct rb_node *next= NULL; 439 struct rb_node *ret; 440 441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 442 if (!ret) 443 return next; 444 return ret; 445 } 446 447 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 448 u64 offset) 449 { 450 return tree_search_for_insert(tree, offset, NULL, NULL); 451 } 452 453 /* 454 * utility function to look for merge candidates inside a given range. 455 * Any extents with matching state are merged together into a single 456 * extent in the tree. Extents with EXTENT_IO in their state field 457 * are not merged because the end_io handlers need to be able to do 458 * operations on them without sleeping (or doing allocations/splits). 459 * 460 * This should be called with the tree lock held. 461 */ 462 static void merge_state(struct extent_io_tree *tree, 463 struct extent_state *state) 464 { 465 struct extent_state *other; 466 struct rb_node *other_node; 467 468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 469 return; 470 471 other_node = rb_prev(&state->rb_node); 472 if (other_node) { 473 other = rb_entry(other_node, struct extent_state, rb_node); 474 if (other->end == state->start - 1 && 475 other->state == state->state) { 476 if (tree->private_data && 477 is_data_inode(tree->private_data)) 478 btrfs_merge_delalloc_extent(tree->private_data, 479 state, other); 480 state->start = other->start; 481 rb_erase(&other->rb_node, &tree->state); 482 RB_CLEAR_NODE(&other->rb_node); 483 free_extent_state(other); 484 } 485 } 486 other_node = rb_next(&state->rb_node); 487 if (other_node) { 488 other = rb_entry(other_node, struct extent_state, rb_node); 489 if (other->start == state->end + 1 && 490 other->state == state->state) { 491 if (tree->private_data && 492 is_data_inode(tree->private_data)) 493 btrfs_merge_delalloc_extent(tree->private_data, 494 state, other); 495 state->end = other->end; 496 rb_erase(&other->rb_node, &tree->state); 497 RB_CLEAR_NODE(&other->rb_node); 498 free_extent_state(other); 499 } 500 } 501 } 502 503 static void set_state_bits(struct extent_io_tree *tree, 504 struct extent_state *state, unsigned *bits, 505 struct extent_changeset *changeset); 506 507 /* 508 * insert an extent_state struct into the tree. 'bits' are set on the 509 * struct before it is inserted. 510 * 511 * This may return -EEXIST if the extent is already there, in which case the 512 * state struct is freed. 513 * 514 * The tree lock is not taken internally. This is a utility function and 515 * probably isn't what you want to call (see set/clear_extent_bit). 516 */ 517 static int insert_state(struct extent_io_tree *tree, 518 struct extent_state *state, u64 start, u64 end, 519 struct rb_node ***p, 520 struct rb_node **parent, 521 unsigned *bits, struct extent_changeset *changeset) 522 { 523 struct rb_node *node; 524 525 if (end < start) { 526 btrfs_err(tree->fs_info, 527 "insert state: end < start %llu %llu", end, start); 528 WARN_ON(1); 529 } 530 state->start = start; 531 state->end = end; 532 533 set_state_bits(tree, state, bits, changeset); 534 535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 536 if (node) { 537 struct extent_state *found; 538 found = rb_entry(node, struct extent_state, rb_node); 539 btrfs_err(tree->fs_info, 540 "found node %llu %llu on insert of %llu %llu", 541 found->start, found->end, start, end); 542 return -EEXIST; 543 } 544 merge_state(tree, state); 545 return 0; 546 } 547 548 /* 549 * split a given extent state struct in two, inserting the preallocated 550 * struct 'prealloc' as the newly created second half. 'split' indicates an 551 * offset inside 'orig' where it should be split. 552 * 553 * Before calling, 554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 555 * are two extent state structs in the tree: 556 * prealloc: [orig->start, split - 1] 557 * orig: [ split, orig->end ] 558 * 559 * The tree locks are not taken by this function. They need to be held 560 * by the caller. 561 */ 562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 563 struct extent_state *prealloc, u64 split) 564 { 565 struct rb_node *node; 566 567 if (tree->private_data && is_data_inode(tree->private_data)) 568 btrfs_split_delalloc_extent(tree->private_data, orig, split); 569 570 prealloc->start = orig->start; 571 prealloc->end = split - 1; 572 prealloc->state = orig->state; 573 orig->start = split; 574 575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 576 &prealloc->rb_node, NULL, NULL); 577 if (node) { 578 free_extent_state(prealloc); 579 return -EEXIST; 580 } 581 return 0; 582 } 583 584 static struct extent_state *next_state(struct extent_state *state) 585 { 586 struct rb_node *next = rb_next(&state->rb_node); 587 if (next) 588 return rb_entry(next, struct extent_state, rb_node); 589 else 590 return NULL; 591 } 592 593 /* 594 * utility function to clear some bits in an extent state struct. 595 * it will optionally wake up anyone waiting on this state (wake == 1). 596 * 597 * If no bits are set on the state struct after clearing things, the 598 * struct is freed and removed from the tree 599 */ 600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 601 struct extent_state *state, 602 unsigned *bits, int wake, 603 struct extent_changeset *changeset) 604 { 605 struct extent_state *next; 606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 607 int ret; 608 609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 610 u64 range = state->end - state->start + 1; 611 WARN_ON(range > tree->dirty_bytes); 612 tree->dirty_bytes -= range; 613 } 614 615 if (tree->private_data && is_data_inode(tree->private_data)) 616 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 617 618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 619 BUG_ON(ret < 0); 620 state->state &= ~bits_to_clear; 621 if (wake) 622 wake_up(&state->wq); 623 if (state->state == 0) { 624 next = next_state(state); 625 if (extent_state_in_tree(state)) { 626 rb_erase(&state->rb_node, &tree->state); 627 RB_CLEAR_NODE(&state->rb_node); 628 free_extent_state(state); 629 } else { 630 WARN_ON(1); 631 } 632 } else { 633 merge_state(tree, state); 634 next = next_state(state); 635 } 636 return next; 637 } 638 639 static struct extent_state * 640 alloc_extent_state_atomic(struct extent_state *prealloc) 641 { 642 if (!prealloc) 643 prealloc = alloc_extent_state(GFP_ATOMIC); 644 645 return prealloc; 646 } 647 648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 649 { 650 struct inode *inode = tree->private_data; 651 652 btrfs_panic(btrfs_sb(inode->i_sb), err, 653 "locking error: extent tree was modified by another thread while locked"); 654 } 655 656 /* 657 * clear some bits on a range in the tree. This may require splitting 658 * or inserting elements in the tree, so the gfp mask is used to 659 * indicate which allocations or sleeping are allowed. 660 * 661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 662 * the given range from the tree regardless of state (ie for truncate). 663 * 664 * the range [start, end] is inclusive. 665 * 666 * This takes the tree lock, and returns 0 on success and < 0 on error. 667 */ 668 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 669 unsigned bits, int wake, int delete, 670 struct extent_state **cached_state, 671 gfp_t mask, struct extent_changeset *changeset) 672 { 673 struct extent_state *state; 674 struct extent_state *cached; 675 struct extent_state *prealloc = NULL; 676 struct rb_node *node; 677 u64 last_end; 678 int err; 679 int clear = 0; 680 681 btrfs_debug_check_extent_io_range(tree, start, end); 682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 683 684 if (bits & EXTENT_DELALLOC) 685 bits |= EXTENT_NORESERVE; 686 687 if (delete) 688 bits |= ~EXTENT_CTLBITS; 689 690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 691 clear = 1; 692 again: 693 if (!prealloc && gfpflags_allow_blocking(mask)) { 694 /* 695 * Don't care for allocation failure here because we might end 696 * up not needing the pre-allocated extent state at all, which 697 * is the case if we only have in the tree extent states that 698 * cover our input range and don't cover too any other range. 699 * If we end up needing a new extent state we allocate it later. 700 */ 701 prealloc = alloc_extent_state(mask); 702 } 703 704 spin_lock(&tree->lock); 705 if (cached_state) { 706 cached = *cached_state; 707 708 if (clear) { 709 *cached_state = NULL; 710 cached_state = NULL; 711 } 712 713 if (cached && extent_state_in_tree(cached) && 714 cached->start <= start && cached->end > start) { 715 if (clear) 716 refcount_dec(&cached->refs); 717 state = cached; 718 goto hit_next; 719 } 720 if (clear) 721 free_extent_state(cached); 722 } 723 /* 724 * this search will find the extents that end after 725 * our range starts 726 */ 727 node = tree_search(tree, start); 728 if (!node) 729 goto out; 730 state = rb_entry(node, struct extent_state, rb_node); 731 hit_next: 732 if (state->start > end) 733 goto out; 734 WARN_ON(state->end < start); 735 last_end = state->end; 736 737 /* the state doesn't have the wanted bits, go ahead */ 738 if (!(state->state & bits)) { 739 state = next_state(state); 740 goto next; 741 } 742 743 /* 744 * | ---- desired range ---- | 745 * | state | or 746 * | ------------- state -------------- | 747 * 748 * We need to split the extent we found, and may flip 749 * bits on second half. 750 * 751 * If the extent we found extends past our range, we 752 * just split and search again. It'll get split again 753 * the next time though. 754 * 755 * If the extent we found is inside our range, we clear 756 * the desired bit on it. 757 */ 758 759 if (state->start < start) { 760 prealloc = alloc_extent_state_atomic(prealloc); 761 BUG_ON(!prealloc); 762 err = split_state(tree, state, prealloc, start); 763 if (err) 764 extent_io_tree_panic(tree, err); 765 766 prealloc = NULL; 767 if (err) 768 goto out; 769 if (state->end <= end) { 770 state = clear_state_bit(tree, state, &bits, wake, 771 changeset); 772 goto next; 773 } 774 goto search_again; 775 } 776 /* 777 * | ---- desired range ---- | 778 * | state | 779 * We need to split the extent, and clear the bit 780 * on the first half 781 */ 782 if (state->start <= end && state->end > end) { 783 prealloc = alloc_extent_state_atomic(prealloc); 784 BUG_ON(!prealloc); 785 err = split_state(tree, state, prealloc, end + 1); 786 if (err) 787 extent_io_tree_panic(tree, err); 788 789 if (wake) 790 wake_up(&state->wq); 791 792 clear_state_bit(tree, prealloc, &bits, wake, changeset); 793 794 prealloc = NULL; 795 goto out; 796 } 797 798 state = clear_state_bit(tree, state, &bits, wake, changeset); 799 next: 800 if (last_end == (u64)-1) 801 goto out; 802 start = last_end + 1; 803 if (start <= end && state && !need_resched()) 804 goto hit_next; 805 806 search_again: 807 if (start > end) 808 goto out; 809 spin_unlock(&tree->lock); 810 if (gfpflags_allow_blocking(mask)) 811 cond_resched(); 812 goto again; 813 814 out: 815 spin_unlock(&tree->lock); 816 if (prealloc) 817 free_extent_state(prealloc); 818 819 return 0; 820 821 } 822 823 static void wait_on_state(struct extent_io_tree *tree, 824 struct extent_state *state) 825 __releases(tree->lock) 826 __acquires(tree->lock) 827 { 828 DEFINE_WAIT(wait); 829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 830 spin_unlock(&tree->lock); 831 schedule(); 832 spin_lock(&tree->lock); 833 finish_wait(&state->wq, &wait); 834 } 835 836 /* 837 * waits for one or more bits to clear on a range in the state tree. 838 * The range [start, end] is inclusive. 839 * The tree lock is taken by this function 840 */ 841 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 842 unsigned long bits) 843 { 844 struct extent_state *state; 845 struct rb_node *node; 846 847 btrfs_debug_check_extent_io_range(tree, start, end); 848 849 spin_lock(&tree->lock); 850 again: 851 while (1) { 852 /* 853 * this search will find all the extents that end after 854 * our range starts 855 */ 856 node = tree_search(tree, start); 857 process_node: 858 if (!node) 859 break; 860 861 state = rb_entry(node, struct extent_state, rb_node); 862 863 if (state->start > end) 864 goto out; 865 866 if (state->state & bits) { 867 start = state->start; 868 refcount_inc(&state->refs); 869 wait_on_state(tree, state); 870 free_extent_state(state); 871 goto again; 872 } 873 start = state->end + 1; 874 875 if (start > end) 876 break; 877 878 if (!cond_resched_lock(&tree->lock)) { 879 node = rb_next(node); 880 goto process_node; 881 } 882 } 883 out: 884 spin_unlock(&tree->lock); 885 } 886 887 static void set_state_bits(struct extent_io_tree *tree, 888 struct extent_state *state, 889 unsigned *bits, struct extent_changeset *changeset) 890 { 891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 892 int ret; 893 894 if (tree->private_data && is_data_inode(tree->private_data)) 895 btrfs_set_delalloc_extent(tree->private_data, state, bits); 896 897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 898 u64 range = state->end - state->start + 1; 899 tree->dirty_bytes += range; 900 } 901 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 902 BUG_ON(ret < 0); 903 state->state |= bits_to_set; 904 } 905 906 static void cache_state_if_flags(struct extent_state *state, 907 struct extent_state **cached_ptr, 908 unsigned flags) 909 { 910 if (cached_ptr && !(*cached_ptr)) { 911 if (!flags || (state->state & flags)) { 912 *cached_ptr = state; 913 refcount_inc(&state->refs); 914 } 915 } 916 } 917 918 static void cache_state(struct extent_state *state, 919 struct extent_state **cached_ptr) 920 { 921 return cache_state_if_flags(state, cached_ptr, 922 EXTENT_LOCKED | EXTENT_BOUNDARY); 923 } 924 925 /* 926 * set some bits on a range in the tree. This may require allocations or 927 * sleeping, so the gfp mask is used to indicate what is allowed. 928 * 929 * If any of the exclusive bits are set, this will fail with -EEXIST if some 930 * part of the range already has the desired bits set. The start of the 931 * existing range is returned in failed_start in this case. 932 * 933 * [start, end] is inclusive This takes the tree lock. 934 */ 935 936 static int __must_check 937 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 938 unsigned bits, unsigned exclusive_bits, 939 u64 *failed_start, struct extent_state **cached_state, 940 gfp_t mask, struct extent_changeset *changeset) 941 { 942 struct extent_state *state; 943 struct extent_state *prealloc = NULL; 944 struct rb_node *node; 945 struct rb_node **p; 946 struct rb_node *parent; 947 int err = 0; 948 u64 last_start; 949 u64 last_end; 950 951 btrfs_debug_check_extent_io_range(tree, start, end); 952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 953 954 again: 955 if (!prealloc && gfpflags_allow_blocking(mask)) { 956 /* 957 * Don't care for allocation failure here because we might end 958 * up not needing the pre-allocated extent state at all, which 959 * is the case if we only have in the tree extent states that 960 * cover our input range and don't cover too any other range. 961 * If we end up needing a new extent state we allocate it later. 962 */ 963 prealloc = alloc_extent_state(mask); 964 } 965 966 spin_lock(&tree->lock); 967 if (cached_state && *cached_state) { 968 state = *cached_state; 969 if (state->start <= start && state->end > start && 970 extent_state_in_tree(state)) { 971 node = &state->rb_node; 972 goto hit_next; 973 } 974 } 975 /* 976 * this search will find all the extents that end after 977 * our range starts. 978 */ 979 node = tree_search_for_insert(tree, start, &p, &parent); 980 if (!node) { 981 prealloc = alloc_extent_state_atomic(prealloc); 982 BUG_ON(!prealloc); 983 err = insert_state(tree, prealloc, start, end, 984 &p, &parent, &bits, changeset); 985 if (err) 986 extent_io_tree_panic(tree, err); 987 988 cache_state(prealloc, cached_state); 989 prealloc = NULL; 990 goto out; 991 } 992 state = rb_entry(node, struct extent_state, rb_node); 993 hit_next: 994 last_start = state->start; 995 last_end = state->end; 996 997 /* 998 * | ---- desired range ---- | 999 * | state | 1000 * 1001 * Just lock what we found and keep going 1002 */ 1003 if (state->start == start && state->end <= end) { 1004 if (state->state & exclusive_bits) { 1005 *failed_start = state->start; 1006 err = -EEXIST; 1007 goto out; 1008 } 1009 1010 set_state_bits(tree, state, &bits, changeset); 1011 cache_state(state, cached_state); 1012 merge_state(tree, state); 1013 if (last_end == (u64)-1) 1014 goto out; 1015 start = last_end + 1; 1016 state = next_state(state); 1017 if (start < end && state && state->start == start && 1018 !need_resched()) 1019 goto hit_next; 1020 goto search_again; 1021 } 1022 1023 /* 1024 * | ---- desired range ---- | 1025 * | state | 1026 * or 1027 * | ------------- state -------------- | 1028 * 1029 * We need to split the extent we found, and may flip bits on 1030 * second half. 1031 * 1032 * If the extent we found extends past our 1033 * range, we just split and search again. It'll get split 1034 * again the next time though. 1035 * 1036 * If the extent we found is inside our range, we set the 1037 * desired bit on it. 1038 */ 1039 if (state->start < start) { 1040 if (state->state & exclusive_bits) { 1041 *failed_start = start; 1042 err = -EEXIST; 1043 goto out; 1044 } 1045 1046 prealloc = alloc_extent_state_atomic(prealloc); 1047 BUG_ON(!prealloc); 1048 err = split_state(tree, state, prealloc, start); 1049 if (err) 1050 extent_io_tree_panic(tree, err); 1051 1052 prealloc = NULL; 1053 if (err) 1054 goto out; 1055 if (state->end <= end) { 1056 set_state_bits(tree, state, &bits, changeset); 1057 cache_state(state, cached_state); 1058 merge_state(tree, state); 1059 if (last_end == (u64)-1) 1060 goto out; 1061 start = last_end + 1; 1062 state = next_state(state); 1063 if (start < end && state && state->start == start && 1064 !need_resched()) 1065 goto hit_next; 1066 } 1067 goto search_again; 1068 } 1069 /* 1070 * | ---- desired range ---- | 1071 * | state | or | state | 1072 * 1073 * There's a hole, we need to insert something in it and 1074 * ignore the extent we found. 1075 */ 1076 if (state->start > start) { 1077 u64 this_end; 1078 if (end < last_start) 1079 this_end = end; 1080 else 1081 this_end = last_start - 1; 1082 1083 prealloc = alloc_extent_state_atomic(prealloc); 1084 BUG_ON(!prealloc); 1085 1086 /* 1087 * Avoid to free 'prealloc' if it can be merged with 1088 * the later extent. 1089 */ 1090 err = insert_state(tree, prealloc, start, this_end, 1091 NULL, NULL, &bits, changeset); 1092 if (err) 1093 extent_io_tree_panic(tree, err); 1094 1095 cache_state(prealloc, cached_state); 1096 prealloc = NULL; 1097 start = this_end + 1; 1098 goto search_again; 1099 } 1100 /* 1101 * | ---- desired range ---- | 1102 * | state | 1103 * We need to split the extent, and set the bit 1104 * on the first half 1105 */ 1106 if (state->start <= end && state->end > end) { 1107 if (state->state & exclusive_bits) { 1108 *failed_start = start; 1109 err = -EEXIST; 1110 goto out; 1111 } 1112 1113 prealloc = alloc_extent_state_atomic(prealloc); 1114 BUG_ON(!prealloc); 1115 err = split_state(tree, state, prealloc, end + 1); 1116 if (err) 1117 extent_io_tree_panic(tree, err); 1118 1119 set_state_bits(tree, prealloc, &bits, changeset); 1120 cache_state(prealloc, cached_state); 1121 merge_state(tree, prealloc); 1122 prealloc = NULL; 1123 goto out; 1124 } 1125 1126 search_again: 1127 if (start > end) 1128 goto out; 1129 spin_unlock(&tree->lock); 1130 if (gfpflags_allow_blocking(mask)) 1131 cond_resched(); 1132 goto again; 1133 1134 out: 1135 spin_unlock(&tree->lock); 1136 if (prealloc) 1137 free_extent_state(prealloc); 1138 1139 return err; 1140 1141 } 1142 1143 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1144 unsigned bits, u64 * failed_start, 1145 struct extent_state **cached_state, gfp_t mask) 1146 { 1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1148 cached_state, mask, NULL); 1149 } 1150 1151 1152 /** 1153 * convert_extent_bit - convert all bits in a given range from one bit to 1154 * another 1155 * @tree: the io tree to search 1156 * @start: the start offset in bytes 1157 * @end: the end offset in bytes (inclusive) 1158 * @bits: the bits to set in this range 1159 * @clear_bits: the bits to clear in this range 1160 * @cached_state: state that we're going to cache 1161 * 1162 * This will go through and set bits for the given range. If any states exist 1163 * already in this range they are set with the given bit and cleared of the 1164 * clear_bits. This is only meant to be used by things that are mergeable, ie 1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1166 * boundary bits like LOCK. 1167 * 1168 * All allocations are done with GFP_NOFS. 1169 */ 1170 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1171 unsigned bits, unsigned clear_bits, 1172 struct extent_state **cached_state) 1173 { 1174 struct extent_state *state; 1175 struct extent_state *prealloc = NULL; 1176 struct rb_node *node; 1177 struct rb_node **p; 1178 struct rb_node *parent; 1179 int err = 0; 1180 u64 last_start; 1181 u64 last_end; 1182 bool first_iteration = true; 1183 1184 btrfs_debug_check_extent_io_range(tree, start, end); 1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1186 clear_bits); 1187 1188 again: 1189 if (!prealloc) { 1190 /* 1191 * Best effort, don't worry if extent state allocation fails 1192 * here for the first iteration. We might have a cached state 1193 * that matches exactly the target range, in which case no 1194 * extent state allocations are needed. We'll only know this 1195 * after locking the tree. 1196 */ 1197 prealloc = alloc_extent_state(GFP_NOFS); 1198 if (!prealloc && !first_iteration) 1199 return -ENOMEM; 1200 } 1201 1202 spin_lock(&tree->lock); 1203 if (cached_state && *cached_state) { 1204 state = *cached_state; 1205 if (state->start <= start && state->end > start && 1206 extent_state_in_tree(state)) { 1207 node = &state->rb_node; 1208 goto hit_next; 1209 } 1210 } 1211 1212 /* 1213 * this search will find all the extents that end after 1214 * our range starts. 1215 */ 1216 node = tree_search_for_insert(tree, start, &p, &parent); 1217 if (!node) { 1218 prealloc = alloc_extent_state_atomic(prealloc); 1219 if (!prealloc) { 1220 err = -ENOMEM; 1221 goto out; 1222 } 1223 err = insert_state(tree, prealloc, start, end, 1224 &p, &parent, &bits, NULL); 1225 if (err) 1226 extent_io_tree_panic(tree, err); 1227 cache_state(prealloc, cached_state); 1228 prealloc = NULL; 1229 goto out; 1230 } 1231 state = rb_entry(node, struct extent_state, rb_node); 1232 hit_next: 1233 last_start = state->start; 1234 last_end = state->end; 1235 1236 /* 1237 * | ---- desired range ---- | 1238 * | state | 1239 * 1240 * Just lock what we found and keep going 1241 */ 1242 if (state->start == start && state->end <= end) { 1243 set_state_bits(tree, state, &bits, NULL); 1244 cache_state(state, cached_state); 1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1246 if (last_end == (u64)-1) 1247 goto out; 1248 start = last_end + 1; 1249 if (start < end && state && state->start == start && 1250 !need_resched()) 1251 goto hit_next; 1252 goto search_again; 1253 } 1254 1255 /* 1256 * | ---- desired range ---- | 1257 * | state | 1258 * or 1259 * | ------------- state -------------- | 1260 * 1261 * We need to split the extent we found, and may flip bits on 1262 * second half. 1263 * 1264 * If the extent we found extends past our 1265 * range, we just split and search again. It'll get split 1266 * again the next time though. 1267 * 1268 * If the extent we found is inside our range, we set the 1269 * desired bit on it. 1270 */ 1271 if (state->start < start) { 1272 prealloc = alloc_extent_state_atomic(prealloc); 1273 if (!prealloc) { 1274 err = -ENOMEM; 1275 goto out; 1276 } 1277 err = split_state(tree, state, prealloc, start); 1278 if (err) 1279 extent_io_tree_panic(tree, err); 1280 prealloc = NULL; 1281 if (err) 1282 goto out; 1283 if (state->end <= end) { 1284 set_state_bits(tree, state, &bits, NULL); 1285 cache_state(state, cached_state); 1286 state = clear_state_bit(tree, state, &clear_bits, 0, 1287 NULL); 1288 if (last_end == (u64)-1) 1289 goto out; 1290 start = last_end + 1; 1291 if (start < end && state && state->start == start && 1292 !need_resched()) 1293 goto hit_next; 1294 } 1295 goto search_again; 1296 } 1297 /* 1298 * | ---- desired range ---- | 1299 * | state | or | state | 1300 * 1301 * There's a hole, we need to insert something in it and 1302 * ignore the extent we found. 1303 */ 1304 if (state->start > start) { 1305 u64 this_end; 1306 if (end < last_start) 1307 this_end = end; 1308 else 1309 this_end = last_start - 1; 1310 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 1317 /* 1318 * Avoid to free 'prealloc' if it can be merged with 1319 * the later extent. 1320 */ 1321 err = insert_state(tree, prealloc, start, this_end, 1322 NULL, NULL, &bits, NULL); 1323 if (err) 1324 extent_io_tree_panic(tree, err); 1325 cache_state(prealloc, cached_state); 1326 prealloc = NULL; 1327 start = this_end + 1; 1328 goto search_again; 1329 } 1330 /* 1331 * | ---- desired range ---- | 1332 * | state | 1333 * We need to split the extent, and set the bit 1334 * on the first half 1335 */ 1336 if (state->start <= end && state->end > end) { 1337 prealloc = alloc_extent_state_atomic(prealloc); 1338 if (!prealloc) { 1339 err = -ENOMEM; 1340 goto out; 1341 } 1342 1343 err = split_state(tree, state, prealloc, end + 1); 1344 if (err) 1345 extent_io_tree_panic(tree, err); 1346 1347 set_state_bits(tree, prealloc, &bits, NULL); 1348 cache_state(prealloc, cached_state); 1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1350 prealloc = NULL; 1351 goto out; 1352 } 1353 1354 search_again: 1355 if (start > end) 1356 goto out; 1357 spin_unlock(&tree->lock); 1358 cond_resched(); 1359 first_iteration = false; 1360 goto again; 1361 1362 out: 1363 spin_unlock(&tree->lock); 1364 if (prealloc) 1365 free_extent_state(prealloc); 1366 1367 return err; 1368 } 1369 1370 /* wrappers around set/clear extent bit */ 1371 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1372 unsigned bits, struct extent_changeset *changeset) 1373 { 1374 /* 1375 * We don't support EXTENT_LOCKED yet, as current changeset will 1376 * record any bits changed, so for EXTENT_LOCKED case, it will 1377 * either fail with -EEXIST or changeset will record the whole 1378 * range. 1379 */ 1380 BUG_ON(bits & EXTENT_LOCKED); 1381 1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1383 changeset); 1384 } 1385 1386 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1387 unsigned bits) 1388 { 1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1390 GFP_NOWAIT, NULL); 1391 } 1392 1393 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1394 unsigned bits, int wake, int delete, 1395 struct extent_state **cached) 1396 { 1397 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1398 cached, GFP_NOFS, NULL); 1399 } 1400 1401 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1402 unsigned bits, struct extent_changeset *changeset) 1403 { 1404 /* 1405 * Don't support EXTENT_LOCKED case, same reason as 1406 * set_record_extent_bits(). 1407 */ 1408 BUG_ON(bits & EXTENT_LOCKED); 1409 1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1411 changeset); 1412 } 1413 1414 /* 1415 * either insert or lock state struct between start and end use mask to tell 1416 * us if waiting is desired. 1417 */ 1418 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1419 struct extent_state **cached_state) 1420 { 1421 int err; 1422 u64 failed_start; 1423 1424 while (1) { 1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1426 EXTENT_LOCKED, &failed_start, 1427 cached_state, GFP_NOFS, NULL); 1428 if (err == -EEXIST) { 1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1430 start = failed_start; 1431 } else 1432 break; 1433 WARN_ON(start > end); 1434 } 1435 return err; 1436 } 1437 1438 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1439 { 1440 int err; 1441 u64 failed_start; 1442 1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1444 &failed_start, NULL, GFP_NOFS, NULL); 1445 if (err == -EEXIST) { 1446 if (failed_start > start) 1447 clear_extent_bit(tree, start, failed_start - 1, 1448 EXTENT_LOCKED, 1, 0, NULL); 1449 return 0; 1450 } 1451 return 1; 1452 } 1453 1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1455 { 1456 unsigned long index = start >> PAGE_SHIFT; 1457 unsigned long end_index = end >> PAGE_SHIFT; 1458 struct page *page; 1459 1460 while (index <= end_index) { 1461 page = find_get_page(inode->i_mapping, index); 1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1463 clear_page_dirty_for_io(page); 1464 put_page(page); 1465 index++; 1466 } 1467 } 1468 1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1470 { 1471 unsigned long index = start >> PAGE_SHIFT; 1472 unsigned long end_index = end >> PAGE_SHIFT; 1473 struct page *page; 1474 1475 while (index <= end_index) { 1476 page = find_get_page(inode->i_mapping, index); 1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1478 __set_page_dirty_nobuffers(page); 1479 account_page_redirty(page); 1480 put_page(page); 1481 index++; 1482 } 1483 } 1484 1485 /* find the first state struct with 'bits' set after 'start', and 1486 * return it. tree->lock must be held. NULL will returned if 1487 * nothing was found after 'start' 1488 */ 1489 static struct extent_state * 1490 find_first_extent_bit_state(struct extent_io_tree *tree, 1491 u64 start, unsigned bits) 1492 { 1493 struct rb_node *node; 1494 struct extent_state *state; 1495 1496 /* 1497 * this search will find all the extents that end after 1498 * our range starts. 1499 */ 1500 node = tree_search(tree, start); 1501 if (!node) 1502 goto out; 1503 1504 while (1) { 1505 state = rb_entry(node, struct extent_state, rb_node); 1506 if (state->end >= start && (state->state & bits)) 1507 return state; 1508 1509 node = rb_next(node); 1510 if (!node) 1511 break; 1512 } 1513 out: 1514 return NULL; 1515 } 1516 1517 /* 1518 * find the first offset in the io tree with 'bits' set. zero is 1519 * returned if we find something, and *start_ret and *end_ret are 1520 * set to reflect the state struct that was found. 1521 * 1522 * If nothing was found, 1 is returned. If found something, return 0. 1523 */ 1524 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1525 u64 *start_ret, u64 *end_ret, unsigned bits, 1526 struct extent_state **cached_state) 1527 { 1528 struct extent_state *state; 1529 int ret = 1; 1530 1531 spin_lock(&tree->lock); 1532 if (cached_state && *cached_state) { 1533 state = *cached_state; 1534 if (state->end == start - 1 && extent_state_in_tree(state)) { 1535 while ((state = next_state(state)) != NULL) { 1536 if (state->state & bits) 1537 goto got_it; 1538 } 1539 free_extent_state(*cached_state); 1540 *cached_state = NULL; 1541 goto out; 1542 } 1543 free_extent_state(*cached_state); 1544 *cached_state = NULL; 1545 } 1546 1547 state = find_first_extent_bit_state(tree, start, bits); 1548 got_it: 1549 if (state) { 1550 cache_state_if_flags(state, cached_state, 0); 1551 *start_ret = state->start; 1552 *end_ret = state->end; 1553 ret = 0; 1554 } 1555 out: 1556 spin_unlock(&tree->lock); 1557 return ret; 1558 } 1559 1560 /** 1561 * find_first_clear_extent_bit - find the first range that has @bits not set. 1562 * This range could start before @start. 1563 * 1564 * @tree - the tree to search 1565 * @start - the offset at/after which the found extent should start 1566 * @start_ret - records the beginning of the range 1567 * @end_ret - records the end of the range (inclusive) 1568 * @bits - the set of bits which must be unset 1569 * 1570 * Since unallocated range is also considered one which doesn't have the bits 1571 * set it's possible that @end_ret contains -1, this happens in case the range 1572 * spans (last_range_end, end of device]. In this case it's up to the caller to 1573 * trim @end_ret to the appropriate size. 1574 */ 1575 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1576 u64 *start_ret, u64 *end_ret, unsigned bits) 1577 { 1578 struct extent_state *state; 1579 struct rb_node *node, *prev = NULL, *next; 1580 1581 spin_lock(&tree->lock); 1582 1583 /* Find first extent with bits cleared */ 1584 while (1) { 1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1586 if (!node) { 1587 node = next; 1588 if (!node) { 1589 /* 1590 * We are past the last allocated chunk, 1591 * set start at the end of the last extent. The 1592 * device alloc tree should never be empty so 1593 * prev is always set. 1594 */ 1595 ASSERT(prev); 1596 state = rb_entry(prev, struct extent_state, rb_node); 1597 *start_ret = state->end + 1; 1598 *end_ret = -1; 1599 goto out; 1600 } 1601 } 1602 /* 1603 * At this point 'node' either contains 'start' or start is 1604 * before 'node' 1605 */ 1606 state = rb_entry(node, struct extent_state, rb_node); 1607 1608 if (in_range(start, state->start, state->end - state->start + 1)) { 1609 if (state->state & bits) { 1610 /* 1611 * |--range with bits sets--| 1612 * | 1613 * start 1614 */ 1615 start = state->end + 1; 1616 } else { 1617 /* 1618 * 'start' falls within a range that doesn't 1619 * have the bits set, so take its start as 1620 * the beginning of the desired range 1621 * 1622 * |--range with bits cleared----| 1623 * | 1624 * start 1625 */ 1626 *start_ret = state->start; 1627 break; 1628 } 1629 } else { 1630 /* 1631 * |---prev range---|---hole/unset---|---node range---| 1632 * | 1633 * start 1634 * 1635 * or 1636 * 1637 * |---hole/unset--||--first node--| 1638 * 0 | 1639 * start 1640 */ 1641 if (prev) { 1642 state = rb_entry(prev, struct extent_state, 1643 rb_node); 1644 *start_ret = state->end + 1; 1645 } else { 1646 *start_ret = 0; 1647 } 1648 break; 1649 } 1650 } 1651 1652 /* 1653 * Find the longest stretch from start until an entry which has the 1654 * bits set 1655 */ 1656 while (1) { 1657 state = rb_entry(node, struct extent_state, rb_node); 1658 if (state->end >= start && !(state->state & bits)) { 1659 *end_ret = state->end; 1660 } else { 1661 *end_ret = state->start - 1; 1662 break; 1663 } 1664 1665 node = rb_next(node); 1666 if (!node) 1667 break; 1668 } 1669 out: 1670 spin_unlock(&tree->lock); 1671 } 1672 1673 /* 1674 * find a contiguous range of bytes in the file marked as delalloc, not 1675 * more than 'max_bytes'. start and end are used to return the range, 1676 * 1677 * true is returned if we find something, false if nothing was in the tree 1678 */ 1679 static noinline bool find_delalloc_range(struct extent_io_tree *tree, 1680 u64 *start, u64 *end, u64 max_bytes, 1681 struct extent_state **cached_state) 1682 { 1683 struct rb_node *node; 1684 struct extent_state *state; 1685 u64 cur_start = *start; 1686 bool found = false; 1687 u64 total_bytes = 0; 1688 1689 spin_lock(&tree->lock); 1690 1691 /* 1692 * this search will find all the extents that end after 1693 * our range starts. 1694 */ 1695 node = tree_search(tree, cur_start); 1696 if (!node) { 1697 *end = (u64)-1; 1698 goto out; 1699 } 1700 1701 while (1) { 1702 state = rb_entry(node, struct extent_state, rb_node); 1703 if (found && (state->start != cur_start || 1704 (state->state & EXTENT_BOUNDARY))) { 1705 goto out; 1706 } 1707 if (!(state->state & EXTENT_DELALLOC)) { 1708 if (!found) 1709 *end = state->end; 1710 goto out; 1711 } 1712 if (!found) { 1713 *start = state->start; 1714 *cached_state = state; 1715 refcount_inc(&state->refs); 1716 } 1717 found = true; 1718 *end = state->end; 1719 cur_start = state->end + 1; 1720 node = rb_next(node); 1721 total_bytes += state->end - state->start + 1; 1722 if (total_bytes >= max_bytes) 1723 break; 1724 if (!node) 1725 break; 1726 } 1727 out: 1728 spin_unlock(&tree->lock); 1729 return found; 1730 } 1731 1732 static int __process_pages_contig(struct address_space *mapping, 1733 struct page *locked_page, 1734 pgoff_t start_index, pgoff_t end_index, 1735 unsigned long page_ops, pgoff_t *index_ret); 1736 1737 static noinline void __unlock_for_delalloc(struct inode *inode, 1738 struct page *locked_page, 1739 u64 start, u64 end) 1740 { 1741 unsigned long index = start >> PAGE_SHIFT; 1742 unsigned long end_index = end >> PAGE_SHIFT; 1743 1744 ASSERT(locked_page); 1745 if (index == locked_page->index && end_index == index) 1746 return; 1747 1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1749 PAGE_UNLOCK, NULL); 1750 } 1751 1752 static noinline int lock_delalloc_pages(struct inode *inode, 1753 struct page *locked_page, 1754 u64 delalloc_start, 1755 u64 delalloc_end) 1756 { 1757 unsigned long index = delalloc_start >> PAGE_SHIFT; 1758 unsigned long index_ret = index; 1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1760 int ret; 1761 1762 ASSERT(locked_page); 1763 if (index == locked_page->index && index == end_index) 1764 return 0; 1765 1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1767 end_index, PAGE_LOCK, &index_ret); 1768 if (ret == -EAGAIN) 1769 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1770 (u64)index_ret << PAGE_SHIFT); 1771 return ret; 1772 } 1773 1774 /* 1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1776 * more than @max_bytes. @Start and @end are used to return the range, 1777 * 1778 * Return: true if we find something 1779 * false if nothing was in the tree 1780 */ 1781 EXPORT_FOR_TESTS 1782 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1783 struct page *locked_page, u64 *start, 1784 u64 *end) 1785 { 1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1788 u64 delalloc_start; 1789 u64 delalloc_end; 1790 bool found; 1791 struct extent_state *cached_state = NULL; 1792 int ret; 1793 int loops = 0; 1794 1795 again: 1796 /* step one, find a bunch of delalloc bytes starting at start */ 1797 delalloc_start = *start; 1798 delalloc_end = 0; 1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1800 max_bytes, &cached_state); 1801 if (!found || delalloc_end <= *start) { 1802 *start = delalloc_start; 1803 *end = delalloc_end; 1804 free_extent_state(cached_state); 1805 return false; 1806 } 1807 1808 /* 1809 * start comes from the offset of locked_page. We have to lock 1810 * pages in order, so we can't process delalloc bytes before 1811 * locked_page 1812 */ 1813 if (delalloc_start < *start) 1814 delalloc_start = *start; 1815 1816 /* 1817 * make sure to limit the number of pages we try to lock down 1818 */ 1819 if (delalloc_end + 1 - delalloc_start > max_bytes) 1820 delalloc_end = delalloc_start + max_bytes - 1; 1821 1822 /* step two, lock all the pages after the page that has start */ 1823 ret = lock_delalloc_pages(inode, locked_page, 1824 delalloc_start, delalloc_end); 1825 ASSERT(!ret || ret == -EAGAIN); 1826 if (ret == -EAGAIN) { 1827 /* some of the pages are gone, lets avoid looping by 1828 * shortening the size of the delalloc range we're searching 1829 */ 1830 free_extent_state(cached_state); 1831 cached_state = NULL; 1832 if (!loops) { 1833 max_bytes = PAGE_SIZE; 1834 loops = 1; 1835 goto again; 1836 } else { 1837 found = false; 1838 goto out_failed; 1839 } 1840 } 1841 1842 /* step three, lock the state bits for the whole range */ 1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1844 1845 /* then test to make sure it is all still delalloc */ 1846 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1847 EXTENT_DELALLOC, 1, cached_state); 1848 if (!ret) { 1849 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1850 &cached_state); 1851 __unlock_for_delalloc(inode, locked_page, 1852 delalloc_start, delalloc_end); 1853 cond_resched(); 1854 goto again; 1855 } 1856 free_extent_state(cached_state); 1857 *start = delalloc_start; 1858 *end = delalloc_end; 1859 out_failed: 1860 return found; 1861 } 1862 1863 static int __process_pages_contig(struct address_space *mapping, 1864 struct page *locked_page, 1865 pgoff_t start_index, pgoff_t end_index, 1866 unsigned long page_ops, pgoff_t *index_ret) 1867 { 1868 unsigned long nr_pages = end_index - start_index + 1; 1869 unsigned long pages_locked = 0; 1870 pgoff_t index = start_index; 1871 struct page *pages[16]; 1872 unsigned ret; 1873 int err = 0; 1874 int i; 1875 1876 if (page_ops & PAGE_LOCK) { 1877 ASSERT(page_ops == PAGE_LOCK); 1878 ASSERT(index_ret && *index_ret == start_index); 1879 } 1880 1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1882 mapping_set_error(mapping, -EIO); 1883 1884 while (nr_pages > 0) { 1885 ret = find_get_pages_contig(mapping, index, 1886 min_t(unsigned long, 1887 nr_pages, ARRAY_SIZE(pages)), pages); 1888 if (ret == 0) { 1889 /* 1890 * Only if we're going to lock these pages, 1891 * can we find nothing at @index. 1892 */ 1893 ASSERT(page_ops & PAGE_LOCK); 1894 err = -EAGAIN; 1895 goto out; 1896 } 1897 1898 for (i = 0; i < ret; i++) { 1899 if (page_ops & PAGE_SET_PRIVATE2) 1900 SetPagePrivate2(pages[i]); 1901 1902 if (pages[i] == locked_page) { 1903 put_page(pages[i]); 1904 pages_locked++; 1905 continue; 1906 } 1907 if (page_ops & PAGE_CLEAR_DIRTY) 1908 clear_page_dirty_for_io(pages[i]); 1909 if (page_ops & PAGE_SET_WRITEBACK) 1910 set_page_writeback(pages[i]); 1911 if (page_ops & PAGE_SET_ERROR) 1912 SetPageError(pages[i]); 1913 if (page_ops & PAGE_END_WRITEBACK) 1914 end_page_writeback(pages[i]); 1915 if (page_ops & PAGE_UNLOCK) 1916 unlock_page(pages[i]); 1917 if (page_ops & PAGE_LOCK) { 1918 lock_page(pages[i]); 1919 if (!PageDirty(pages[i]) || 1920 pages[i]->mapping != mapping) { 1921 unlock_page(pages[i]); 1922 put_page(pages[i]); 1923 err = -EAGAIN; 1924 goto out; 1925 } 1926 } 1927 put_page(pages[i]); 1928 pages_locked++; 1929 } 1930 nr_pages -= ret; 1931 index += ret; 1932 cond_resched(); 1933 } 1934 out: 1935 if (err && index_ret) 1936 *index_ret = start_index + pages_locked - 1; 1937 return err; 1938 } 1939 1940 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1941 u64 delalloc_end, struct page *locked_page, 1942 unsigned clear_bits, 1943 unsigned long page_ops) 1944 { 1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1946 NULL); 1947 1948 __process_pages_contig(inode->i_mapping, locked_page, 1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1950 page_ops, NULL); 1951 } 1952 1953 /* 1954 * count the number of bytes in the tree that have a given bit(s) 1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1956 * cached. The total number found is returned. 1957 */ 1958 u64 count_range_bits(struct extent_io_tree *tree, 1959 u64 *start, u64 search_end, u64 max_bytes, 1960 unsigned bits, int contig) 1961 { 1962 struct rb_node *node; 1963 struct extent_state *state; 1964 u64 cur_start = *start; 1965 u64 total_bytes = 0; 1966 u64 last = 0; 1967 int found = 0; 1968 1969 if (WARN_ON(search_end <= cur_start)) 1970 return 0; 1971 1972 spin_lock(&tree->lock); 1973 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1974 total_bytes = tree->dirty_bytes; 1975 goto out; 1976 } 1977 /* 1978 * this search will find all the extents that end after 1979 * our range starts. 1980 */ 1981 node = tree_search(tree, cur_start); 1982 if (!node) 1983 goto out; 1984 1985 while (1) { 1986 state = rb_entry(node, struct extent_state, rb_node); 1987 if (state->start > search_end) 1988 break; 1989 if (contig && found && state->start > last + 1) 1990 break; 1991 if (state->end >= cur_start && (state->state & bits) == bits) { 1992 total_bytes += min(search_end, state->end) + 1 - 1993 max(cur_start, state->start); 1994 if (total_bytes >= max_bytes) 1995 break; 1996 if (!found) { 1997 *start = max(cur_start, state->start); 1998 found = 1; 1999 } 2000 last = state->end; 2001 } else if (contig && found) { 2002 break; 2003 } 2004 node = rb_next(node); 2005 if (!node) 2006 break; 2007 } 2008 out: 2009 spin_unlock(&tree->lock); 2010 return total_bytes; 2011 } 2012 2013 /* 2014 * set the private field for a given byte offset in the tree. If there isn't 2015 * an extent_state there already, this does nothing. 2016 */ 2017 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 2018 struct io_failure_record *failrec) 2019 { 2020 struct rb_node *node; 2021 struct extent_state *state; 2022 int ret = 0; 2023 2024 spin_lock(&tree->lock); 2025 /* 2026 * this search will find all the extents that end after 2027 * our range starts. 2028 */ 2029 node = tree_search(tree, start); 2030 if (!node) { 2031 ret = -ENOENT; 2032 goto out; 2033 } 2034 state = rb_entry(node, struct extent_state, rb_node); 2035 if (state->start != start) { 2036 ret = -ENOENT; 2037 goto out; 2038 } 2039 state->failrec = failrec; 2040 out: 2041 spin_unlock(&tree->lock); 2042 return ret; 2043 } 2044 2045 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 2046 struct io_failure_record **failrec) 2047 { 2048 struct rb_node *node; 2049 struct extent_state *state; 2050 int ret = 0; 2051 2052 spin_lock(&tree->lock); 2053 /* 2054 * this search will find all the extents that end after 2055 * our range starts. 2056 */ 2057 node = tree_search(tree, start); 2058 if (!node) { 2059 ret = -ENOENT; 2060 goto out; 2061 } 2062 state = rb_entry(node, struct extent_state, rb_node); 2063 if (state->start != start) { 2064 ret = -ENOENT; 2065 goto out; 2066 } 2067 *failrec = state->failrec; 2068 out: 2069 spin_unlock(&tree->lock); 2070 return ret; 2071 } 2072 2073 /* 2074 * searches a range in the state tree for a given mask. 2075 * If 'filled' == 1, this returns 1 only if every extent in the tree 2076 * has the bits set. Otherwise, 1 is returned if any bit in the 2077 * range is found set. 2078 */ 2079 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2080 unsigned bits, int filled, struct extent_state *cached) 2081 { 2082 struct extent_state *state = NULL; 2083 struct rb_node *node; 2084 int bitset = 0; 2085 2086 spin_lock(&tree->lock); 2087 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2088 cached->end > start) 2089 node = &cached->rb_node; 2090 else 2091 node = tree_search(tree, start); 2092 while (node && start <= end) { 2093 state = rb_entry(node, struct extent_state, rb_node); 2094 2095 if (filled && state->start > start) { 2096 bitset = 0; 2097 break; 2098 } 2099 2100 if (state->start > end) 2101 break; 2102 2103 if (state->state & bits) { 2104 bitset = 1; 2105 if (!filled) 2106 break; 2107 } else if (filled) { 2108 bitset = 0; 2109 break; 2110 } 2111 2112 if (state->end == (u64)-1) 2113 break; 2114 2115 start = state->end + 1; 2116 if (start > end) 2117 break; 2118 node = rb_next(node); 2119 if (!node) { 2120 if (filled) 2121 bitset = 0; 2122 break; 2123 } 2124 } 2125 spin_unlock(&tree->lock); 2126 return bitset; 2127 } 2128 2129 /* 2130 * helper function to set a given page up to date if all the 2131 * extents in the tree for that page are up to date 2132 */ 2133 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2134 { 2135 u64 start = page_offset(page); 2136 u64 end = start + PAGE_SIZE - 1; 2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2138 SetPageUptodate(page); 2139 } 2140 2141 int free_io_failure(struct extent_io_tree *failure_tree, 2142 struct extent_io_tree *io_tree, 2143 struct io_failure_record *rec) 2144 { 2145 int ret; 2146 int err = 0; 2147 2148 set_state_failrec(failure_tree, rec->start, NULL); 2149 ret = clear_extent_bits(failure_tree, rec->start, 2150 rec->start + rec->len - 1, 2151 EXTENT_LOCKED | EXTENT_DIRTY); 2152 if (ret) 2153 err = ret; 2154 2155 ret = clear_extent_bits(io_tree, rec->start, 2156 rec->start + rec->len - 1, 2157 EXTENT_DAMAGED); 2158 if (ret && !err) 2159 err = ret; 2160 2161 kfree(rec); 2162 return err; 2163 } 2164 2165 /* 2166 * this bypasses the standard btrfs submit functions deliberately, as 2167 * the standard behavior is to write all copies in a raid setup. here we only 2168 * want to write the one bad copy. so we do the mapping for ourselves and issue 2169 * submit_bio directly. 2170 * to avoid any synchronization issues, wait for the data after writing, which 2171 * actually prevents the read that triggered the error from finishing. 2172 * currently, there can be no more than two copies of every data bit. thus, 2173 * exactly one rewrite is required. 2174 */ 2175 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2176 u64 length, u64 logical, struct page *page, 2177 unsigned int pg_offset, int mirror_num) 2178 { 2179 struct bio *bio; 2180 struct btrfs_device *dev; 2181 u64 map_length = 0; 2182 u64 sector; 2183 struct btrfs_bio *bbio = NULL; 2184 int ret; 2185 2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2187 BUG_ON(!mirror_num); 2188 2189 bio = btrfs_io_bio_alloc(1); 2190 bio->bi_iter.bi_size = 0; 2191 map_length = length; 2192 2193 /* 2194 * Avoid races with device replace and make sure our bbio has devices 2195 * associated to its stripes that don't go away while we are doing the 2196 * read repair operation. 2197 */ 2198 btrfs_bio_counter_inc_blocked(fs_info); 2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2200 /* 2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2202 * to update all raid stripes, but here we just want to correct 2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2204 * stripe's dev and sector. 2205 */ 2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2207 &map_length, &bbio, 0); 2208 if (ret) { 2209 btrfs_bio_counter_dec(fs_info); 2210 bio_put(bio); 2211 return -EIO; 2212 } 2213 ASSERT(bbio->mirror_num == 1); 2214 } else { 2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2216 &map_length, &bbio, mirror_num); 2217 if (ret) { 2218 btrfs_bio_counter_dec(fs_info); 2219 bio_put(bio); 2220 return -EIO; 2221 } 2222 BUG_ON(mirror_num != bbio->mirror_num); 2223 } 2224 2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2226 bio->bi_iter.bi_sector = sector; 2227 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2228 btrfs_put_bbio(bbio); 2229 if (!dev || !dev->bdev || 2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2231 btrfs_bio_counter_dec(fs_info); 2232 bio_put(bio); 2233 return -EIO; 2234 } 2235 bio_set_dev(bio, dev->bdev); 2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2237 bio_add_page(bio, page, length, pg_offset); 2238 2239 if (btrfsic_submit_bio_wait(bio)) { 2240 /* try to remap that extent elsewhere? */ 2241 btrfs_bio_counter_dec(fs_info); 2242 bio_put(bio); 2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2244 return -EIO; 2245 } 2246 2247 btrfs_info_rl_in_rcu(fs_info, 2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2249 ino, start, 2250 rcu_str_deref(dev->name), sector); 2251 btrfs_bio_counter_dec(fs_info); 2252 bio_put(bio); 2253 return 0; 2254 } 2255 2256 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num) 2257 { 2258 struct btrfs_fs_info *fs_info = eb->fs_info; 2259 u64 start = eb->start; 2260 int i, num_pages = num_extent_pages(eb); 2261 int ret = 0; 2262 2263 if (sb_rdonly(fs_info->sb)) 2264 return -EROFS; 2265 2266 for (i = 0; i < num_pages; i++) { 2267 struct page *p = eb->pages[i]; 2268 2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2270 start - page_offset(p), mirror_num); 2271 if (ret) 2272 break; 2273 start += PAGE_SIZE; 2274 } 2275 2276 return ret; 2277 } 2278 2279 /* 2280 * each time an IO finishes, we do a fast check in the IO failure tree 2281 * to see if we need to process or clean up an io_failure_record 2282 */ 2283 int clean_io_failure(struct btrfs_fs_info *fs_info, 2284 struct extent_io_tree *failure_tree, 2285 struct extent_io_tree *io_tree, u64 start, 2286 struct page *page, u64 ino, unsigned int pg_offset) 2287 { 2288 u64 private; 2289 struct io_failure_record *failrec; 2290 struct extent_state *state; 2291 int num_copies; 2292 int ret; 2293 2294 private = 0; 2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2296 EXTENT_DIRTY, 0); 2297 if (!ret) 2298 return 0; 2299 2300 ret = get_state_failrec(failure_tree, start, &failrec); 2301 if (ret) 2302 return 0; 2303 2304 BUG_ON(!failrec->this_mirror); 2305 2306 if (failrec->in_validation) { 2307 /* there was no real error, just free the record */ 2308 btrfs_debug(fs_info, 2309 "clean_io_failure: freeing dummy error at %llu", 2310 failrec->start); 2311 goto out; 2312 } 2313 if (sb_rdonly(fs_info->sb)) 2314 goto out; 2315 2316 spin_lock(&io_tree->lock); 2317 state = find_first_extent_bit_state(io_tree, 2318 failrec->start, 2319 EXTENT_LOCKED); 2320 spin_unlock(&io_tree->lock); 2321 2322 if (state && state->start <= failrec->start && 2323 state->end >= failrec->start + failrec->len - 1) { 2324 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2325 failrec->len); 2326 if (num_copies > 1) { 2327 repair_io_failure(fs_info, ino, start, failrec->len, 2328 failrec->logical, page, pg_offset, 2329 failrec->failed_mirror); 2330 } 2331 } 2332 2333 out: 2334 free_io_failure(failure_tree, io_tree, failrec); 2335 2336 return 0; 2337 } 2338 2339 /* 2340 * Can be called when 2341 * - hold extent lock 2342 * - under ordered extent 2343 * - the inode is freeing 2344 */ 2345 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2346 { 2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2348 struct io_failure_record *failrec; 2349 struct extent_state *state, *next; 2350 2351 if (RB_EMPTY_ROOT(&failure_tree->state)) 2352 return; 2353 2354 spin_lock(&failure_tree->lock); 2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2356 while (state) { 2357 if (state->start > end) 2358 break; 2359 2360 ASSERT(state->end <= end); 2361 2362 next = next_state(state); 2363 2364 failrec = state->failrec; 2365 free_extent_state(state); 2366 kfree(failrec); 2367 2368 state = next; 2369 } 2370 spin_unlock(&failure_tree->lock); 2371 } 2372 2373 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2374 struct io_failure_record **failrec_ret) 2375 { 2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2377 struct io_failure_record *failrec; 2378 struct extent_map *em; 2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2382 int ret; 2383 u64 logical; 2384 2385 ret = get_state_failrec(failure_tree, start, &failrec); 2386 if (ret) { 2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2388 if (!failrec) 2389 return -ENOMEM; 2390 2391 failrec->start = start; 2392 failrec->len = end - start + 1; 2393 failrec->this_mirror = 0; 2394 failrec->bio_flags = 0; 2395 failrec->in_validation = 0; 2396 2397 read_lock(&em_tree->lock); 2398 em = lookup_extent_mapping(em_tree, start, failrec->len); 2399 if (!em) { 2400 read_unlock(&em_tree->lock); 2401 kfree(failrec); 2402 return -EIO; 2403 } 2404 2405 if (em->start > start || em->start + em->len <= start) { 2406 free_extent_map(em); 2407 em = NULL; 2408 } 2409 read_unlock(&em_tree->lock); 2410 if (!em) { 2411 kfree(failrec); 2412 return -EIO; 2413 } 2414 2415 logical = start - em->start; 2416 logical = em->block_start + logical; 2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2418 logical = em->block_start; 2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2420 extent_set_compress_type(&failrec->bio_flags, 2421 em->compress_type); 2422 } 2423 2424 btrfs_debug(fs_info, 2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2426 logical, start, failrec->len); 2427 2428 failrec->logical = logical; 2429 free_extent_map(em); 2430 2431 /* set the bits in the private failure tree */ 2432 ret = set_extent_bits(failure_tree, start, end, 2433 EXTENT_LOCKED | EXTENT_DIRTY); 2434 if (ret >= 0) 2435 ret = set_state_failrec(failure_tree, start, failrec); 2436 /* set the bits in the inode's tree */ 2437 if (ret >= 0) 2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2439 if (ret < 0) { 2440 kfree(failrec); 2441 return ret; 2442 } 2443 } else { 2444 btrfs_debug(fs_info, 2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2446 failrec->logical, failrec->start, failrec->len, 2447 failrec->in_validation); 2448 /* 2449 * when data can be on disk more than twice, add to failrec here 2450 * (e.g. with a list for failed_mirror) to make 2451 * clean_io_failure() clean all those errors at once. 2452 */ 2453 } 2454 2455 *failrec_ret = failrec; 2456 2457 return 0; 2458 } 2459 2460 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2461 struct io_failure_record *failrec, int failed_mirror) 2462 { 2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2464 int num_copies; 2465 2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2467 if (num_copies == 1) { 2468 /* 2469 * we only have a single copy of the data, so don't bother with 2470 * all the retry and error correction code that follows. no 2471 * matter what the error is, it is very likely to persist. 2472 */ 2473 btrfs_debug(fs_info, 2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2475 num_copies, failrec->this_mirror, failed_mirror); 2476 return false; 2477 } 2478 2479 /* 2480 * there are two premises: 2481 * a) deliver good data to the caller 2482 * b) correct the bad sectors on disk 2483 */ 2484 if (failed_bio_pages > 1) { 2485 /* 2486 * to fulfill b), we need to know the exact failing sectors, as 2487 * we don't want to rewrite any more than the failed ones. thus, 2488 * we need separate read requests for the failed bio 2489 * 2490 * if the following BUG_ON triggers, our validation request got 2491 * merged. we need separate requests for our algorithm to work. 2492 */ 2493 BUG_ON(failrec->in_validation); 2494 failrec->in_validation = 1; 2495 failrec->this_mirror = failed_mirror; 2496 } else { 2497 /* 2498 * we're ready to fulfill a) and b) alongside. get a good copy 2499 * of the failed sector and if we succeed, we have setup 2500 * everything for repair_io_failure to do the rest for us. 2501 */ 2502 if (failrec->in_validation) { 2503 BUG_ON(failrec->this_mirror != failed_mirror); 2504 failrec->in_validation = 0; 2505 failrec->this_mirror = 0; 2506 } 2507 failrec->failed_mirror = failed_mirror; 2508 failrec->this_mirror++; 2509 if (failrec->this_mirror == failed_mirror) 2510 failrec->this_mirror++; 2511 } 2512 2513 if (failrec->this_mirror > num_copies) { 2514 btrfs_debug(fs_info, 2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2516 num_copies, failrec->this_mirror, failed_mirror); 2517 return false; 2518 } 2519 2520 return true; 2521 } 2522 2523 2524 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2525 struct io_failure_record *failrec, 2526 struct page *page, int pg_offset, int icsum, 2527 bio_end_io_t *endio_func, void *data) 2528 { 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2530 struct bio *bio; 2531 struct btrfs_io_bio *btrfs_failed_bio; 2532 struct btrfs_io_bio *btrfs_bio; 2533 2534 bio = btrfs_io_bio_alloc(1); 2535 bio->bi_end_io = endio_func; 2536 bio->bi_iter.bi_sector = failrec->logical >> 9; 2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2538 bio->bi_iter.bi_size = 0; 2539 bio->bi_private = data; 2540 2541 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2542 if (btrfs_failed_bio->csum) { 2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2544 2545 btrfs_bio = btrfs_io_bio(bio); 2546 btrfs_bio->csum = btrfs_bio->csum_inline; 2547 icsum *= csum_size; 2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2549 csum_size); 2550 } 2551 2552 bio_add_page(bio, page, failrec->len, pg_offset); 2553 2554 return bio; 2555 } 2556 2557 /* 2558 * This is a generic handler for readpage errors. If other copies exist, read 2559 * those and write back good data to the failed position. Does not investigate 2560 * in remapping the failed extent elsewhere, hoping the device will be smart 2561 * enough to do this as needed 2562 */ 2563 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2564 struct page *page, u64 start, u64 end, 2565 int failed_mirror) 2566 { 2567 struct io_failure_record *failrec; 2568 struct inode *inode = page->mapping->host; 2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2571 struct bio *bio; 2572 int read_mode = 0; 2573 blk_status_t status; 2574 int ret; 2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; 2576 2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2578 2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2580 if (ret) 2581 return ret; 2582 2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2584 failed_mirror)) { 2585 free_io_failure(failure_tree, tree, failrec); 2586 return -EIO; 2587 } 2588 2589 if (failed_bio_pages > 1) 2590 read_mode |= REQ_FAILFAST_DEV; 2591 2592 phy_offset >>= inode->i_sb->s_blocksize_bits; 2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2594 start - page_offset(page), 2595 (int)phy_offset, failed_bio->bi_end_io, 2596 NULL); 2597 bio->bi_opf = REQ_OP_READ | read_mode; 2598 2599 btrfs_debug(btrfs_sb(inode->i_sb), 2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2601 read_mode, failrec->this_mirror, failrec->in_validation); 2602 2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2604 failrec->bio_flags); 2605 if (status) { 2606 free_io_failure(failure_tree, tree, failrec); 2607 bio_put(bio); 2608 ret = blk_status_to_errno(status); 2609 } 2610 2611 return ret; 2612 } 2613 2614 /* lots and lots of room for performance fixes in the end_bio funcs */ 2615 2616 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2617 { 2618 int uptodate = (err == 0); 2619 int ret = 0; 2620 2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2622 2623 if (!uptodate) { 2624 ClearPageUptodate(page); 2625 SetPageError(page); 2626 ret = err < 0 ? err : -EIO; 2627 mapping_set_error(page->mapping, ret); 2628 } 2629 } 2630 2631 /* 2632 * after a writepage IO is done, we need to: 2633 * clear the uptodate bits on error 2634 * clear the writeback bits in the extent tree for this IO 2635 * end_page_writeback if the page has no more pending IO 2636 * 2637 * Scheduling is not allowed, so the extent state tree is expected 2638 * to have one and only one object corresponding to this IO. 2639 */ 2640 static void end_bio_extent_writepage(struct bio *bio) 2641 { 2642 int error = blk_status_to_errno(bio->bi_status); 2643 struct bio_vec *bvec; 2644 u64 start; 2645 u64 end; 2646 struct bvec_iter_all iter_all; 2647 2648 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2649 bio_for_each_segment_all(bvec, bio, iter_all) { 2650 struct page *page = bvec->bv_page; 2651 struct inode *inode = page->mapping->host; 2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2653 2654 /* We always issue full-page reads, but if some block 2655 * in a page fails to read, blk_update_request() will 2656 * advance bv_offset and adjust bv_len to compensate. 2657 * Print a warning for nonzero offsets, and an error 2658 * if they don't add up to a full page. */ 2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2661 btrfs_err(fs_info, 2662 "partial page write in btrfs with offset %u and length %u", 2663 bvec->bv_offset, bvec->bv_len); 2664 else 2665 btrfs_info(fs_info, 2666 "incomplete page write in btrfs with offset %u and length %u", 2667 bvec->bv_offset, bvec->bv_len); 2668 } 2669 2670 start = page_offset(page); 2671 end = start + bvec->bv_offset + bvec->bv_len - 1; 2672 2673 end_extent_writepage(page, error, start, end); 2674 end_page_writeback(page); 2675 } 2676 2677 bio_put(bio); 2678 } 2679 2680 static void 2681 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2682 int uptodate) 2683 { 2684 struct extent_state *cached = NULL; 2685 u64 end = start + len - 1; 2686 2687 if (uptodate && tree->track_uptodate) 2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2689 unlock_extent_cached_atomic(tree, start, end, &cached); 2690 } 2691 2692 /* 2693 * after a readpage IO is done, we need to: 2694 * clear the uptodate bits on error 2695 * set the uptodate bits if things worked 2696 * set the page up to date if all extents in the tree are uptodate 2697 * clear the lock bit in the extent tree 2698 * unlock the page if there are no other extents locked for it 2699 * 2700 * Scheduling is not allowed, so the extent state tree is expected 2701 * to have one and only one object corresponding to this IO. 2702 */ 2703 static void end_bio_extent_readpage(struct bio *bio) 2704 { 2705 struct bio_vec *bvec; 2706 int uptodate = !bio->bi_status; 2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2708 struct extent_io_tree *tree, *failure_tree; 2709 u64 offset = 0; 2710 u64 start; 2711 u64 end; 2712 u64 len; 2713 u64 extent_start = 0; 2714 u64 extent_len = 0; 2715 int mirror; 2716 int ret; 2717 struct bvec_iter_all iter_all; 2718 2719 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2720 bio_for_each_segment_all(bvec, bio, iter_all) { 2721 struct page *page = bvec->bv_page; 2722 struct inode *inode = page->mapping->host; 2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2724 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2725 != BTRFS_BTREE_INODE_OBJECTID; 2726 2727 btrfs_debug(fs_info, 2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2729 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2730 io_bio->mirror_num); 2731 tree = &BTRFS_I(inode)->io_tree; 2732 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2733 2734 /* We always issue full-page reads, but if some block 2735 * in a page fails to read, blk_update_request() will 2736 * advance bv_offset and adjust bv_len to compensate. 2737 * Print a warning for nonzero offsets, and an error 2738 * if they don't add up to a full page. */ 2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2741 btrfs_err(fs_info, 2742 "partial page read in btrfs with offset %u and length %u", 2743 bvec->bv_offset, bvec->bv_len); 2744 else 2745 btrfs_info(fs_info, 2746 "incomplete page read in btrfs with offset %u and length %u", 2747 bvec->bv_offset, bvec->bv_len); 2748 } 2749 2750 start = page_offset(page); 2751 end = start + bvec->bv_offset + bvec->bv_len - 1; 2752 len = bvec->bv_len; 2753 2754 mirror = io_bio->mirror_num; 2755 if (likely(uptodate)) { 2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2757 page, start, end, 2758 mirror); 2759 if (ret) 2760 uptodate = 0; 2761 else 2762 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2763 failure_tree, tree, start, 2764 page, 2765 btrfs_ino(BTRFS_I(inode)), 0); 2766 } 2767 2768 if (likely(uptodate)) 2769 goto readpage_ok; 2770 2771 if (data_inode) { 2772 2773 /* 2774 * The generic bio_readpage_error handles errors the 2775 * following way: If possible, new read requests are 2776 * created and submitted and will end up in 2777 * end_bio_extent_readpage as well (if we're lucky, 2778 * not in the !uptodate case). In that case it returns 2779 * 0 and we just go on with the next page in our bio. 2780 * If it can't handle the error it will return -EIO and 2781 * we remain responsible for that page. 2782 */ 2783 ret = bio_readpage_error(bio, offset, page, start, end, 2784 mirror); 2785 if (ret == 0) { 2786 uptodate = !bio->bi_status; 2787 offset += len; 2788 continue; 2789 } 2790 } else { 2791 struct extent_buffer *eb; 2792 2793 eb = (struct extent_buffer *)page->private; 2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2795 eb->read_mirror = mirror; 2796 atomic_dec(&eb->io_pages); 2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2798 &eb->bflags)) 2799 btree_readahead_hook(eb, -EIO); 2800 } 2801 readpage_ok: 2802 if (likely(uptodate)) { 2803 loff_t i_size = i_size_read(inode); 2804 pgoff_t end_index = i_size >> PAGE_SHIFT; 2805 unsigned off; 2806 2807 /* Zero out the end if this page straddles i_size */ 2808 off = offset_in_page(i_size); 2809 if (page->index == end_index && off) 2810 zero_user_segment(page, off, PAGE_SIZE); 2811 SetPageUptodate(page); 2812 } else { 2813 ClearPageUptodate(page); 2814 SetPageError(page); 2815 } 2816 unlock_page(page); 2817 offset += len; 2818 2819 if (unlikely(!uptodate)) { 2820 if (extent_len) { 2821 endio_readpage_release_extent(tree, 2822 extent_start, 2823 extent_len, 1); 2824 extent_start = 0; 2825 extent_len = 0; 2826 } 2827 endio_readpage_release_extent(tree, start, 2828 end - start + 1, 0); 2829 } else if (!extent_len) { 2830 extent_start = start; 2831 extent_len = end + 1 - start; 2832 } else if (extent_start + extent_len == start) { 2833 extent_len += end + 1 - start; 2834 } else { 2835 endio_readpage_release_extent(tree, extent_start, 2836 extent_len, uptodate); 2837 extent_start = start; 2838 extent_len = end + 1 - start; 2839 } 2840 } 2841 2842 if (extent_len) 2843 endio_readpage_release_extent(tree, extent_start, extent_len, 2844 uptodate); 2845 btrfs_io_bio_free_csum(io_bio); 2846 bio_put(bio); 2847 } 2848 2849 /* 2850 * Initialize the members up to but not including 'bio'. Use after allocating a 2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2852 * 'bio' because use of __GFP_ZERO is not supported. 2853 */ 2854 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2855 { 2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2857 } 2858 2859 /* 2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2862 * for the appropriate container_of magic 2863 */ 2864 struct bio *btrfs_bio_alloc(u64 first_byte) 2865 { 2866 struct bio *bio; 2867 2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2869 bio->bi_iter.bi_sector = first_byte >> 9; 2870 btrfs_io_bio_init(btrfs_io_bio(bio)); 2871 return bio; 2872 } 2873 2874 struct bio *btrfs_bio_clone(struct bio *bio) 2875 { 2876 struct btrfs_io_bio *btrfs_bio; 2877 struct bio *new; 2878 2879 /* Bio allocation backed by a bioset does not fail */ 2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2881 btrfs_bio = btrfs_io_bio(new); 2882 btrfs_io_bio_init(btrfs_bio); 2883 btrfs_bio->iter = bio->bi_iter; 2884 return new; 2885 } 2886 2887 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2888 { 2889 struct bio *bio; 2890 2891 /* Bio allocation backed by a bioset does not fail */ 2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2893 btrfs_io_bio_init(btrfs_io_bio(bio)); 2894 return bio; 2895 } 2896 2897 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2898 { 2899 struct bio *bio; 2900 struct btrfs_io_bio *btrfs_bio; 2901 2902 /* this will never fail when it's backed by a bioset */ 2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2904 ASSERT(bio); 2905 2906 btrfs_bio = btrfs_io_bio(bio); 2907 btrfs_io_bio_init(btrfs_bio); 2908 2909 bio_trim(bio, offset >> 9, size >> 9); 2910 btrfs_bio->iter = bio->bi_iter; 2911 return bio; 2912 } 2913 2914 /* 2915 * @opf: bio REQ_OP_* and REQ_* flags as one value 2916 * @tree: tree so we can call our merge_bio hook 2917 * @wbc: optional writeback control for io accounting 2918 * @page: page to add to the bio 2919 * @pg_offset: offset of the new bio or to check whether we are adding 2920 * a contiguous page to the previous one 2921 * @size: portion of page that we want to write 2922 * @offset: starting offset in the page 2923 * @bdev: attach newly created bios to this bdev 2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2925 * @end_io_func: end_io callback for new bio 2926 * @mirror_num: desired mirror to read/write 2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2928 * @bio_flags: flags of the current bio to see if we can merge them 2929 */ 2930 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2931 struct writeback_control *wbc, 2932 struct page *page, u64 offset, 2933 size_t size, unsigned long pg_offset, 2934 struct block_device *bdev, 2935 struct bio **bio_ret, 2936 bio_end_io_t end_io_func, 2937 int mirror_num, 2938 unsigned long prev_bio_flags, 2939 unsigned long bio_flags, 2940 bool force_bio_submit) 2941 { 2942 int ret = 0; 2943 struct bio *bio; 2944 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2945 sector_t sector = offset >> 9; 2946 2947 ASSERT(bio_ret); 2948 2949 if (*bio_ret) { 2950 bool contig; 2951 bool can_merge = true; 2952 2953 bio = *bio_ret; 2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2955 contig = bio->bi_iter.bi_sector == sector; 2956 else 2957 contig = bio_end_sector(bio) == sector; 2958 2959 ASSERT(tree->ops); 2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 2961 can_merge = false; 2962 2963 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2964 force_bio_submit || 2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2967 if (ret < 0) { 2968 *bio_ret = NULL; 2969 return ret; 2970 } 2971 bio = NULL; 2972 } else { 2973 if (wbc) 2974 wbc_account_cgroup_owner(wbc, page, page_size); 2975 return 0; 2976 } 2977 } 2978 2979 bio = btrfs_bio_alloc(offset); 2980 bio_set_dev(bio, bdev); 2981 bio_add_page(bio, page, page_size, pg_offset); 2982 bio->bi_end_io = end_io_func; 2983 bio->bi_private = tree; 2984 bio->bi_write_hint = page->mapping->host->i_write_hint; 2985 bio->bi_opf = opf; 2986 if (wbc) { 2987 wbc_init_bio(wbc, bio); 2988 wbc_account_cgroup_owner(wbc, page, page_size); 2989 } 2990 2991 *bio_ret = bio; 2992 2993 return ret; 2994 } 2995 2996 static void attach_extent_buffer_page(struct extent_buffer *eb, 2997 struct page *page) 2998 { 2999 if (!PagePrivate(page)) { 3000 SetPagePrivate(page); 3001 get_page(page); 3002 set_page_private(page, (unsigned long)eb); 3003 } else { 3004 WARN_ON(page->private != (unsigned long)eb); 3005 } 3006 } 3007 3008 void set_page_extent_mapped(struct page *page) 3009 { 3010 if (!PagePrivate(page)) { 3011 SetPagePrivate(page); 3012 get_page(page); 3013 set_page_private(page, EXTENT_PAGE_PRIVATE); 3014 } 3015 } 3016 3017 static struct extent_map * 3018 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3019 u64 start, u64 len, get_extent_t *get_extent, 3020 struct extent_map **em_cached) 3021 { 3022 struct extent_map *em; 3023 3024 if (em_cached && *em_cached) { 3025 em = *em_cached; 3026 if (extent_map_in_tree(em) && start >= em->start && 3027 start < extent_map_end(em)) { 3028 refcount_inc(&em->refs); 3029 return em; 3030 } 3031 3032 free_extent_map(em); 3033 *em_cached = NULL; 3034 } 3035 3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 3037 if (em_cached && !IS_ERR_OR_NULL(em)) { 3038 BUG_ON(*em_cached); 3039 refcount_inc(&em->refs); 3040 *em_cached = em; 3041 } 3042 return em; 3043 } 3044 /* 3045 * basic readpage implementation. Locked extent state structs are inserted 3046 * into the tree that are removed when the IO is done (by the end_io 3047 * handlers) 3048 * XXX JDM: This needs looking at to ensure proper page locking 3049 * return 0 on success, otherwise return error 3050 */ 3051 static int __do_readpage(struct extent_io_tree *tree, 3052 struct page *page, 3053 get_extent_t *get_extent, 3054 struct extent_map **em_cached, 3055 struct bio **bio, int mirror_num, 3056 unsigned long *bio_flags, unsigned int read_flags, 3057 u64 *prev_em_start) 3058 { 3059 struct inode *inode = page->mapping->host; 3060 u64 start = page_offset(page); 3061 const u64 end = start + PAGE_SIZE - 1; 3062 u64 cur = start; 3063 u64 extent_offset; 3064 u64 last_byte = i_size_read(inode); 3065 u64 block_start; 3066 u64 cur_end; 3067 struct extent_map *em; 3068 struct block_device *bdev; 3069 int ret = 0; 3070 int nr = 0; 3071 size_t pg_offset = 0; 3072 size_t iosize; 3073 size_t disk_io_size; 3074 size_t blocksize = inode->i_sb->s_blocksize; 3075 unsigned long this_bio_flag = 0; 3076 3077 set_page_extent_mapped(page); 3078 3079 if (!PageUptodate(page)) { 3080 if (cleancache_get_page(page) == 0) { 3081 BUG_ON(blocksize != PAGE_SIZE); 3082 unlock_extent(tree, start, end); 3083 goto out; 3084 } 3085 } 3086 3087 if (page->index == last_byte >> PAGE_SHIFT) { 3088 char *userpage; 3089 size_t zero_offset = offset_in_page(last_byte); 3090 3091 if (zero_offset) { 3092 iosize = PAGE_SIZE - zero_offset; 3093 userpage = kmap_atomic(page); 3094 memset(userpage + zero_offset, 0, iosize); 3095 flush_dcache_page(page); 3096 kunmap_atomic(userpage); 3097 } 3098 } 3099 while (cur <= end) { 3100 bool force_bio_submit = false; 3101 u64 offset; 3102 3103 if (cur >= last_byte) { 3104 char *userpage; 3105 struct extent_state *cached = NULL; 3106 3107 iosize = PAGE_SIZE - pg_offset; 3108 userpage = kmap_atomic(page); 3109 memset(userpage + pg_offset, 0, iosize); 3110 flush_dcache_page(page); 3111 kunmap_atomic(userpage); 3112 set_extent_uptodate(tree, cur, cur + iosize - 1, 3113 &cached, GFP_NOFS); 3114 unlock_extent_cached(tree, cur, 3115 cur + iosize - 1, &cached); 3116 break; 3117 } 3118 em = __get_extent_map(inode, page, pg_offset, cur, 3119 end - cur + 1, get_extent, em_cached); 3120 if (IS_ERR_OR_NULL(em)) { 3121 SetPageError(page); 3122 unlock_extent(tree, cur, end); 3123 break; 3124 } 3125 extent_offset = cur - em->start; 3126 BUG_ON(extent_map_end(em) <= cur); 3127 BUG_ON(end < cur); 3128 3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3130 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3131 extent_set_compress_type(&this_bio_flag, 3132 em->compress_type); 3133 } 3134 3135 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3136 cur_end = min(extent_map_end(em) - 1, end); 3137 iosize = ALIGN(iosize, blocksize); 3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3139 disk_io_size = em->block_len; 3140 offset = em->block_start; 3141 } else { 3142 offset = em->block_start + extent_offset; 3143 disk_io_size = iosize; 3144 } 3145 bdev = em->bdev; 3146 block_start = em->block_start; 3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3148 block_start = EXTENT_MAP_HOLE; 3149 3150 /* 3151 * If we have a file range that points to a compressed extent 3152 * and it's followed by a consecutive file range that points to 3153 * to the same compressed extent (possibly with a different 3154 * offset and/or length, so it either points to the whole extent 3155 * or only part of it), we must make sure we do not submit a 3156 * single bio to populate the pages for the 2 ranges because 3157 * this makes the compressed extent read zero out the pages 3158 * belonging to the 2nd range. Imagine the following scenario: 3159 * 3160 * File layout 3161 * [0 - 8K] [8K - 24K] 3162 * | | 3163 * | | 3164 * points to extent X, points to extent X, 3165 * offset 4K, length of 8K offset 0, length 16K 3166 * 3167 * [extent X, compressed length = 4K uncompressed length = 16K] 3168 * 3169 * If the bio to read the compressed extent covers both ranges, 3170 * it will decompress extent X into the pages belonging to the 3171 * first range and then it will stop, zeroing out the remaining 3172 * pages that belong to the other range that points to extent X. 3173 * So here we make sure we submit 2 bios, one for the first 3174 * range and another one for the third range. Both will target 3175 * the same physical extent from disk, but we can't currently 3176 * make the compressed bio endio callback populate the pages 3177 * for both ranges because each compressed bio is tightly 3178 * coupled with a single extent map, and each range can have 3179 * an extent map with a different offset value relative to the 3180 * uncompressed data of our extent and different lengths. This 3181 * is a corner case so we prioritize correctness over 3182 * non-optimal behavior (submitting 2 bios for the same extent). 3183 */ 3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3185 prev_em_start && *prev_em_start != (u64)-1 && 3186 *prev_em_start != em->start) 3187 force_bio_submit = true; 3188 3189 if (prev_em_start) 3190 *prev_em_start = em->start; 3191 3192 free_extent_map(em); 3193 em = NULL; 3194 3195 /* we've found a hole, just zero and go on */ 3196 if (block_start == EXTENT_MAP_HOLE) { 3197 char *userpage; 3198 struct extent_state *cached = NULL; 3199 3200 userpage = kmap_atomic(page); 3201 memset(userpage + pg_offset, 0, iosize); 3202 flush_dcache_page(page); 3203 kunmap_atomic(userpage); 3204 3205 set_extent_uptodate(tree, cur, cur + iosize - 1, 3206 &cached, GFP_NOFS); 3207 unlock_extent_cached(tree, cur, 3208 cur + iosize - 1, &cached); 3209 cur = cur + iosize; 3210 pg_offset += iosize; 3211 continue; 3212 } 3213 /* the get_extent function already copied into the page */ 3214 if (test_range_bit(tree, cur, cur_end, 3215 EXTENT_UPTODATE, 1, NULL)) { 3216 check_page_uptodate(tree, page); 3217 unlock_extent(tree, cur, cur + iosize - 1); 3218 cur = cur + iosize; 3219 pg_offset += iosize; 3220 continue; 3221 } 3222 /* we have an inline extent but it didn't get marked up 3223 * to date. Error out 3224 */ 3225 if (block_start == EXTENT_MAP_INLINE) { 3226 SetPageError(page); 3227 unlock_extent(tree, cur, cur + iosize - 1); 3228 cur = cur + iosize; 3229 pg_offset += iosize; 3230 continue; 3231 } 3232 3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3234 page, offset, disk_io_size, 3235 pg_offset, bdev, bio, 3236 end_bio_extent_readpage, mirror_num, 3237 *bio_flags, 3238 this_bio_flag, 3239 force_bio_submit); 3240 if (!ret) { 3241 nr++; 3242 *bio_flags = this_bio_flag; 3243 } else { 3244 SetPageError(page); 3245 unlock_extent(tree, cur, cur + iosize - 1); 3246 goto out; 3247 } 3248 cur = cur + iosize; 3249 pg_offset += iosize; 3250 } 3251 out: 3252 if (!nr) { 3253 if (!PageError(page)) 3254 SetPageUptodate(page); 3255 unlock_page(page); 3256 } 3257 return ret; 3258 } 3259 3260 static inline void contiguous_readpages(struct extent_io_tree *tree, 3261 struct page *pages[], int nr_pages, 3262 u64 start, u64 end, 3263 struct extent_map **em_cached, 3264 struct bio **bio, 3265 unsigned long *bio_flags, 3266 u64 *prev_em_start) 3267 { 3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3269 int index; 3270 3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); 3272 3273 for (index = 0; index < nr_pages; index++) { 3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3276 put_page(pages[index]); 3277 } 3278 } 3279 3280 static int __extent_read_full_page(struct extent_io_tree *tree, 3281 struct page *page, 3282 get_extent_t *get_extent, 3283 struct bio **bio, int mirror_num, 3284 unsigned long *bio_flags, 3285 unsigned int read_flags) 3286 { 3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3288 u64 start = page_offset(page); 3289 u64 end = start + PAGE_SIZE - 1; 3290 int ret; 3291 3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); 3293 3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3295 bio_flags, read_flags, NULL); 3296 return ret; 3297 } 3298 3299 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3300 get_extent_t *get_extent, int mirror_num) 3301 { 3302 struct bio *bio = NULL; 3303 unsigned long bio_flags = 0; 3304 int ret; 3305 3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3307 &bio_flags, 0); 3308 if (bio) 3309 ret = submit_one_bio(bio, mirror_num, bio_flags); 3310 return ret; 3311 } 3312 3313 static void update_nr_written(struct writeback_control *wbc, 3314 unsigned long nr_written) 3315 { 3316 wbc->nr_to_write -= nr_written; 3317 } 3318 3319 /* 3320 * helper for __extent_writepage, doing all of the delayed allocation setup. 3321 * 3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3323 * to write the page (copy into inline extent). In this case the IO has 3324 * been started and the page is already unlocked. 3325 * 3326 * This returns 0 if all went well (page still locked) 3327 * This returns < 0 if there were errors (page still locked) 3328 */ 3329 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3330 struct page *page, struct writeback_control *wbc, 3331 u64 delalloc_start, unsigned long *nr_written) 3332 { 3333 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3334 bool found; 3335 u64 delalloc_to_write = 0; 3336 u64 delalloc_end = 0; 3337 int ret; 3338 int page_started = 0; 3339 3340 3341 while (delalloc_end < page_end) { 3342 found = find_lock_delalloc_range(inode, page, 3343 &delalloc_start, 3344 &delalloc_end); 3345 if (!found) { 3346 delalloc_start = delalloc_end + 1; 3347 continue; 3348 } 3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3350 delalloc_end, &page_started, nr_written, wbc); 3351 if (ret) { 3352 SetPageError(page); 3353 /* 3354 * btrfs_run_delalloc_range should return < 0 for error 3355 * but just in case, we use > 0 here meaning the IO is 3356 * started, so we don't want to return > 0 unless 3357 * things are going well. 3358 */ 3359 ret = ret < 0 ? ret : -EIO; 3360 goto done; 3361 } 3362 /* 3363 * delalloc_end is already one less than the total length, so 3364 * we don't subtract one from PAGE_SIZE 3365 */ 3366 delalloc_to_write += (delalloc_end - delalloc_start + 3367 PAGE_SIZE) >> PAGE_SHIFT; 3368 delalloc_start = delalloc_end + 1; 3369 } 3370 if (wbc->nr_to_write < delalloc_to_write) { 3371 int thresh = 8192; 3372 3373 if (delalloc_to_write < thresh * 2) 3374 thresh = delalloc_to_write; 3375 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3376 thresh); 3377 } 3378 3379 /* did the fill delalloc function already unlock and start 3380 * the IO? 3381 */ 3382 if (page_started) { 3383 /* 3384 * we've unlocked the page, so we can't update 3385 * the mapping's writeback index, just update 3386 * nr_to_write. 3387 */ 3388 wbc->nr_to_write -= *nr_written; 3389 return 1; 3390 } 3391 3392 ret = 0; 3393 3394 done: 3395 return ret; 3396 } 3397 3398 /* 3399 * helper for __extent_writepage. This calls the writepage start hooks, 3400 * and does the loop to map the page into extents and bios. 3401 * 3402 * We return 1 if the IO is started and the page is unlocked, 3403 * 0 if all went well (page still locked) 3404 * < 0 if there were errors (page still locked) 3405 */ 3406 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3407 struct page *page, 3408 struct writeback_control *wbc, 3409 struct extent_page_data *epd, 3410 loff_t i_size, 3411 unsigned long nr_written, 3412 unsigned int write_flags, int *nr_ret) 3413 { 3414 struct extent_io_tree *tree = epd->tree; 3415 u64 start = page_offset(page); 3416 u64 page_end = start + PAGE_SIZE - 1; 3417 u64 end; 3418 u64 cur = start; 3419 u64 extent_offset; 3420 u64 block_start; 3421 u64 iosize; 3422 struct extent_map *em; 3423 struct block_device *bdev; 3424 size_t pg_offset = 0; 3425 size_t blocksize; 3426 int ret = 0; 3427 int nr = 0; 3428 bool compressed; 3429 3430 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3431 if (ret) { 3432 /* Fixup worker will requeue */ 3433 if (ret == -EBUSY) 3434 wbc->pages_skipped++; 3435 else 3436 redirty_page_for_writepage(wbc, page); 3437 3438 update_nr_written(wbc, nr_written); 3439 unlock_page(page); 3440 return 1; 3441 } 3442 3443 /* 3444 * we don't want to touch the inode after unlocking the page, 3445 * so we update the mapping writeback index now 3446 */ 3447 update_nr_written(wbc, nr_written + 1); 3448 3449 end = page_end; 3450 if (i_size <= start) { 3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); 3452 goto done; 3453 } 3454 3455 blocksize = inode->i_sb->s_blocksize; 3456 3457 while (cur <= end) { 3458 u64 em_end; 3459 u64 offset; 3460 3461 if (cur >= i_size) { 3462 btrfs_writepage_endio_finish_ordered(page, cur, 3463 page_end, 1); 3464 break; 3465 } 3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3467 end - cur + 1, 1); 3468 if (IS_ERR_OR_NULL(em)) { 3469 SetPageError(page); 3470 ret = PTR_ERR_OR_ZERO(em); 3471 break; 3472 } 3473 3474 extent_offset = cur - em->start; 3475 em_end = extent_map_end(em); 3476 BUG_ON(em_end <= cur); 3477 BUG_ON(end < cur); 3478 iosize = min(em_end - cur, end - cur + 1); 3479 iosize = ALIGN(iosize, blocksize); 3480 offset = em->block_start + extent_offset; 3481 bdev = em->bdev; 3482 block_start = em->block_start; 3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3484 free_extent_map(em); 3485 em = NULL; 3486 3487 /* 3488 * compressed and inline extents are written through other 3489 * paths in the FS 3490 */ 3491 if (compressed || block_start == EXTENT_MAP_HOLE || 3492 block_start == EXTENT_MAP_INLINE) { 3493 /* 3494 * end_io notification does not happen here for 3495 * compressed extents 3496 */ 3497 if (!compressed) 3498 btrfs_writepage_endio_finish_ordered(page, cur, 3499 cur + iosize - 1, 3500 1); 3501 else if (compressed) { 3502 /* we don't want to end_page_writeback on 3503 * a compressed extent. this happens 3504 * elsewhere 3505 */ 3506 nr++; 3507 } 3508 3509 cur += iosize; 3510 pg_offset += iosize; 3511 continue; 3512 } 3513 3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3515 if (!PageWriteback(page)) { 3516 btrfs_err(BTRFS_I(inode)->root->fs_info, 3517 "page %lu not writeback, cur %llu end %llu", 3518 page->index, cur, end); 3519 } 3520 3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3522 page, offset, iosize, pg_offset, 3523 bdev, &epd->bio, 3524 end_bio_extent_writepage, 3525 0, 0, 0, false); 3526 if (ret) { 3527 SetPageError(page); 3528 if (PageWriteback(page)) 3529 end_page_writeback(page); 3530 } 3531 3532 cur = cur + iosize; 3533 pg_offset += iosize; 3534 nr++; 3535 } 3536 done: 3537 *nr_ret = nr; 3538 return ret; 3539 } 3540 3541 /* 3542 * the writepage semantics are similar to regular writepage. extent 3543 * records are inserted to lock ranges in the tree, and as dirty areas 3544 * are found, they are marked writeback. Then the lock bits are removed 3545 * and the end_io handler clears the writeback ranges 3546 * 3547 * Return 0 if everything goes well. 3548 * Return <0 for error. 3549 */ 3550 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3551 struct extent_page_data *epd) 3552 { 3553 struct inode *inode = page->mapping->host; 3554 u64 start = page_offset(page); 3555 u64 page_end = start + PAGE_SIZE - 1; 3556 int ret; 3557 int nr = 0; 3558 size_t pg_offset = 0; 3559 loff_t i_size = i_size_read(inode); 3560 unsigned long end_index = i_size >> PAGE_SHIFT; 3561 unsigned int write_flags = 0; 3562 unsigned long nr_written = 0; 3563 3564 write_flags = wbc_to_write_flags(wbc); 3565 3566 trace___extent_writepage(page, inode, wbc); 3567 3568 WARN_ON(!PageLocked(page)); 3569 3570 ClearPageError(page); 3571 3572 pg_offset = offset_in_page(i_size); 3573 if (page->index > end_index || 3574 (page->index == end_index && !pg_offset)) { 3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3576 unlock_page(page); 3577 return 0; 3578 } 3579 3580 if (page->index == end_index) { 3581 char *userpage; 3582 3583 userpage = kmap_atomic(page); 3584 memset(userpage + pg_offset, 0, 3585 PAGE_SIZE - pg_offset); 3586 kunmap_atomic(userpage); 3587 flush_dcache_page(page); 3588 } 3589 3590 pg_offset = 0; 3591 3592 set_page_extent_mapped(page); 3593 3594 if (!epd->extent_locked) { 3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3596 if (ret == 1) 3597 goto done_unlocked; 3598 if (ret) 3599 goto done; 3600 } 3601 3602 ret = __extent_writepage_io(inode, page, wbc, epd, 3603 i_size, nr_written, write_flags, &nr); 3604 if (ret == 1) 3605 goto done_unlocked; 3606 3607 done: 3608 if (nr == 0) { 3609 /* make sure the mapping tag for page dirty gets cleared */ 3610 set_page_writeback(page); 3611 end_page_writeback(page); 3612 } 3613 if (PageError(page)) { 3614 ret = ret < 0 ? ret : -EIO; 3615 end_extent_writepage(page, ret, start, page_end); 3616 } 3617 unlock_page(page); 3618 ASSERT(ret <= 0); 3619 return ret; 3620 3621 done_unlocked: 3622 return 0; 3623 } 3624 3625 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3626 { 3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3628 TASK_UNINTERRUPTIBLE); 3629 } 3630 3631 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3632 { 3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3634 smp_mb__after_atomic(); 3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3636 } 3637 3638 /* 3639 * Lock eb pages and flush the bio if we can't the locks 3640 * 3641 * Return 0 if nothing went wrong 3642 * Return >0 is same as 0, except bio is not submitted 3643 * Return <0 if something went wrong, no page is locked 3644 */ 3645 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3646 struct extent_page_data *epd) 3647 { 3648 struct btrfs_fs_info *fs_info = eb->fs_info; 3649 int i, num_pages, failed_page_nr; 3650 int flush = 0; 3651 int ret = 0; 3652 3653 if (!btrfs_try_tree_write_lock(eb)) { 3654 ret = flush_write_bio(epd); 3655 if (ret < 0) 3656 return ret; 3657 flush = 1; 3658 btrfs_tree_lock(eb); 3659 } 3660 3661 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3662 btrfs_tree_unlock(eb); 3663 if (!epd->sync_io) 3664 return 0; 3665 if (!flush) { 3666 ret = flush_write_bio(epd); 3667 if (ret < 0) 3668 return ret; 3669 flush = 1; 3670 } 3671 while (1) { 3672 wait_on_extent_buffer_writeback(eb); 3673 btrfs_tree_lock(eb); 3674 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3675 break; 3676 btrfs_tree_unlock(eb); 3677 } 3678 } 3679 3680 /* 3681 * We need to do this to prevent races in people who check if the eb is 3682 * under IO since we can end up having no IO bits set for a short period 3683 * of time. 3684 */ 3685 spin_lock(&eb->refs_lock); 3686 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3687 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3688 spin_unlock(&eb->refs_lock); 3689 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3691 -eb->len, 3692 fs_info->dirty_metadata_batch); 3693 ret = 1; 3694 } else { 3695 spin_unlock(&eb->refs_lock); 3696 } 3697 3698 btrfs_tree_unlock(eb); 3699 3700 if (!ret) 3701 return ret; 3702 3703 num_pages = num_extent_pages(eb); 3704 for (i = 0; i < num_pages; i++) { 3705 struct page *p = eb->pages[i]; 3706 3707 if (!trylock_page(p)) { 3708 if (!flush) { 3709 int err; 3710 3711 err = flush_write_bio(epd); 3712 if (err < 0) { 3713 ret = err; 3714 failed_page_nr = i; 3715 goto err_unlock; 3716 } 3717 flush = 1; 3718 } 3719 lock_page(p); 3720 } 3721 } 3722 3723 return ret; 3724 err_unlock: 3725 /* Unlock already locked pages */ 3726 for (i = 0; i < failed_page_nr; i++) 3727 unlock_page(eb->pages[i]); 3728 /* 3729 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3730 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3731 * be made and undo everything done before. 3732 */ 3733 btrfs_tree_lock(eb); 3734 spin_lock(&eb->refs_lock); 3735 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3736 end_extent_buffer_writeback(eb); 3737 spin_unlock(&eb->refs_lock); 3738 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3739 fs_info->dirty_metadata_batch); 3740 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3741 btrfs_tree_unlock(eb); 3742 return ret; 3743 } 3744 3745 static void set_btree_ioerr(struct page *page) 3746 { 3747 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3748 3749 SetPageError(page); 3750 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3751 return; 3752 3753 /* 3754 * If writeback for a btree extent that doesn't belong to a log tree 3755 * failed, increment the counter transaction->eb_write_errors. 3756 * We do this because while the transaction is running and before it's 3757 * committing (when we call filemap_fdata[write|wait]_range against 3758 * the btree inode), we might have 3759 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3760 * returns an error or an error happens during writeback, when we're 3761 * committing the transaction we wouldn't know about it, since the pages 3762 * can be no longer dirty nor marked anymore for writeback (if a 3763 * subsequent modification to the extent buffer didn't happen before the 3764 * transaction commit), which makes filemap_fdata[write|wait]_range not 3765 * able to find the pages tagged with SetPageError at transaction 3766 * commit time. So if this happens we must abort the transaction, 3767 * otherwise we commit a super block with btree roots that point to 3768 * btree nodes/leafs whose content on disk is invalid - either garbage 3769 * or the content of some node/leaf from a past generation that got 3770 * cowed or deleted and is no longer valid. 3771 * 3772 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3773 * not be enough - we need to distinguish between log tree extents vs 3774 * non-log tree extents, and the next filemap_fdatawait_range() call 3775 * will catch and clear such errors in the mapping - and that call might 3776 * be from a log sync and not from a transaction commit. Also, checking 3777 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3778 * not done and would not be reliable - the eb might have been released 3779 * from memory and reading it back again means that flag would not be 3780 * set (since it's a runtime flag, not persisted on disk). 3781 * 3782 * Using the flags below in the btree inode also makes us achieve the 3783 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3784 * writeback for all dirty pages and before filemap_fdatawait_range() 3785 * is called, the writeback for all dirty pages had already finished 3786 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3787 * filemap_fdatawait_range() would return success, as it could not know 3788 * that writeback errors happened (the pages were no longer tagged for 3789 * writeback). 3790 */ 3791 switch (eb->log_index) { 3792 case -1: 3793 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3794 break; 3795 case 0: 3796 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3797 break; 3798 case 1: 3799 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3800 break; 3801 default: 3802 BUG(); /* unexpected, logic error */ 3803 } 3804 } 3805 3806 static void end_bio_extent_buffer_writepage(struct bio *bio) 3807 { 3808 struct bio_vec *bvec; 3809 struct extent_buffer *eb; 3810 int done; 3811 struct bvec_iter_all iter_all; 3812 3813 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3814 bio_for_each_segment_all(bvec, bio, iter_all) { 3815 struct page *page = bvec->bv_page; 3816 3817 eb = (struct extent_buffer *)page->private; 3818 BUG_ON(!eb); 3819 done = atomic_dec_and_test(&eb->io_pages); 3820 3821 if (bio->bi_status || 3822 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3823 ClearPageUptodate(page); 3824 set_btree_ioerr(page); 3825 } 3826 3827 end_page_writeback(page); 3828 3829 if (!done) 3830 continue; 3831 3832 end_extent_buffer_writeback(eb); 3833 } 3834 3835 bio_put(bio); 3836 } 3837 3838 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3839 struct writeback_control *wbc, 3840 struct extent_page_data *epd) 3841 { 3842 struct btrfs_fs_info *fs_info = eb->fs_info; 3843 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3844 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3845 u64 offset = eb->start; 3846 u32 nritems; 3847 int i, num_pages; 3848 unsigned long start, end; 3849 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3850 int ret = 0; 3851 3852 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3853 num_pages = num_extent_pages(eb); 3854 atomic_set(&eb->io_pages, num_pages); 3855 3856 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3857 nritems = btrfs_header_nritems(eb); 3858 if (btrfs_header_level(eb) > 0) { 3859 end = btrfs_node_key_ptr_offset(nritems); 3860 3861 memzero_extent_buffer(eb, end, eb->len - end); 3862 } else { 3863 /* 3864 * leaf: 3865 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3866 */ 3867 start = btrfs_item_nr_offset(nritems); 3868 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3869 memzero_extent_buffer(eb, start, end - start); 3870 } 3871 3872 for (i = 0; i < num_pages; i++) { 3873 struct page *p = eb->pages[i]; 3874 3875 clear_page_dirty_for_io(p); 3876 set_page_writeback(p); 3877 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3878 p, offset, PAGE_SIZE, 0, bdev, 3879 &epd->bio, 3880 end_bio_extent_buffer_writepage, 3881 0, 0, 0, false); 3882 if (ret) { 3883 set_btree_ioerr(p); 3884 if (PageWriteback(p)) 3885 end_page_writeback(p); 3886 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3887 end_extent_buffer_writeback(eb); 3888 ret = -EIO; 3889 break; 3890 } 3891 offset += PAGE_SIZE; 3892 update_nr_written(wbc, 1); 3893 unlock_page(p); 3894 } 3895 3896 if (unlikely(ret)) { 3897 for (; i < num_pages; i++) { 3898 struct page *p = eb->pages[i]; 3899 clear_page_dirty_for_io(p); 3900 unlock_page(p); 3901 } 3902 } 3903 3904 return ret; 3905 } 3906 3907 int btree_write_cache_pages(struct address_space *mapping, 3908 struct writeback_control *wbc) 3909 { 3910 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3911 struct extent_buffer *eb, *prev_eb = NULL; 3912 struct extent_page_data epd = { 3913 .bio = NULL, 3914 .tree = tree, 3915 .extent_locked = 0, 3916 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3917 }; 3918 int ret = 0; 3919 int done = 0; 3920 int nr_to_write_done = 0; 3921 struct pagevec pvec; 3922 int nr_pages; 3923 pgoff_t index; 3924 pgoff_t end; /* Inclusive */ 3925 int scanned = 0; 3926 xa_mark_t tag; 3927 3928 pagevec_init(&pvec); 3929 if (wbc->range_cyclic) { 3930 index = mapping->writeback_index; /* Start from prev offset */ 3931 end = -1; 3932 } else { 3933 index = wbc->range_start >> PAGE_SHIFT; 3934 end = wbc->range_end >> PAGE_SHIFT; 3935 scanned = 1; 3936 } 3937 if (wbc->sync_mode == WB_SYNC_ALL) 3938 tag = PAGECACHE_TAG_TOWRITE; 3939 else 3940 tag = PAGECACHE_TAG_DIRTY; 3941 retry: 3942 if (wbc->sync_mode == WB_SYNC_ALL) 3943 tag_pages_for_writeback(mapping, index, end); 3944 while (!done && !nr_to_write_done && (index <= end) && 3945 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3946 tag))) { 3947 unsigned i; 3948 3949 scanned = 1; 3950 for (i = 0; i < nr_pages; i++) { 3951 struct page *page = pvec.pages[i]; 3952 3953 if (!PagePrivate(page)) 3954 continue; 3955 3956 spin_lock(&mapping->private_lock); 3957 if (!PagePrivate(page)) { 3958 spin_unlock(&mapping->private_lock); 3959 continue; 3960 } 3961 3962 eb = (struct extent_buffer *)page->private; 3963 3964 /* 3965 * Shouldn't happen and normally this would be a BUG_ON 3966 * but no sense in crashing the users box for something 3967 * we can survive anyway. 3968 */ 3969 if (WARN_ON(!eb)) { 3970 spin_unlock(&mapping->private_lock); 3971 continue; 3972 } 3973 3974 if (eb == prev_eb) { 3975 spin_unlock(&mapping->private_lock); 3976 continue; 3977 } 3978 3979 ret = atomic_inc_not_zero(&eb->refs); 3980 spin_unlock(&mapping->private_lock); 3981 if (!ret) 3982 continue; 3983 3984 prev_eb = eb; 3985 ret = lock_extent_buffer_for_io(eb, &epd); 3986 if (!ret) { 3987 free_extent_buffer(eb); 3988 continue; 3989 } 3990 3991 ret = write_one_eb(eb, wbc, &epd); 3992 if (ret) { 3993 done = 1; 3994 free_extent_buffer(eb); 3995 break; 3996 } 3997 free_extent_buffer(eb); 3998 3999 /* 4000 * the filesystem may choose to bump up nr_to_write. 4001 * We have to make sure to honor the new nr_to_write 4002 * at any time 4003 */ 4004 nr_to_write_done = wbc->nr_to_write <= 0; 4005 } 4006 pagevec_release(&pvec); 4007 cond_resched(); 4008 } 4009 if (!scanned && !done) { 4010 /* 4011 * We hit the last page and there is more work to be done: wrap 4012 * back to the start of the file 4013 */ 4014 scanned = 1; 4015 index = 0; 4016 goto retry; 4017 } 4018 ASSERT(ret <= 0); 4019 if (ret < 0) { 4020 end_write_bio(&epd, ret); 4021 return ret; 4022 } 4023 ret = flush_write_bio(&epd); 4024 return ret; 4025 } 4026 4027 /** 4028 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4029 * @mapping: address space structure to write 4030 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4031 * @data: data passed to __extent_writepage function 4032 * 4033 * If a page is already under I/O, write_cache_pages() skips it, even 4034 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4035 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4036 * and msync() need to guarantee that all the data which was dirty at the time 4037 * the call was made get new I/O started against them. If wbc->sync_mode is 4038 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4039 * existing IO to complete. 4040 */ 4041 static int extent_write_cache_pages(struct address_space *mapping, 4042 struct writeback_control *wbc, 4043 struct extent_page_data *epd) 4044 { 4045 struct inode *inode = mapping->host; 4046 int ret = 0; 4047 int done = 0; 4048 int nr_to_write_done = 0; 4049 struct pagevec pvec; 4050 int nr_pages; 4051 pgoff_t index; 4052 pgoff_t end; /* Inclusive */ 4053 pgoff_t done_index; 4054 int range_whole = 0; 4055 int scanned = 0; 4056 xa_mark_t tag; 4057 4058 /* 4059 * We have to hold onto the inode so that ordered extents can do their 4060 * work when the IO finishes. The alternative to this is failing to add 4061 * an ordered extent if the igrab() fails there and that is a huge pain 4062 * to deal with, so instead just hold onto the inode throughout the 4063 * writepages operation. If it fails here we are freeing up the inode 4064 * anyway and we'd rather not waste our time writing out stuff that is 4065 * going to be truncated anyway. 4066 */ 4067 if (!igrab(inode)) 4068 return 0; 4069 4070 pagevec_init(&pvec); 4071 if (wbc->range_cyclic) { 4072 index = mapping->writeback_index; /* Start from prev offset */ 4073 end = -1; 4074 } else { 4075 index = wbc->range_start >> PAGE_SHIFT; 4076 end = wbc->range_end >> PAGE_SHIFT; 4077 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4078 range_whole = 1; 4079 scanned = 1; 4080 } 4081 4082 /* 4083 * We do the tagged writepage as long as the snapshot flush bit is set 4084 * and we are the first one who do the filemap_flush() on this inode. 4085 * 4086 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4087 * not race in and drop the bit. 4088 */ 4089 if (range_whole && wbc->nr_to_write == LONG_MAX && 4090 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4091 &BTRFS_I(inode)->runtime_flags)) 4092 wbc->tagged_writepages = 1; 4093 4094 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4095 tag = PAGECACHE_TAG_TOWRITE; 4096 else 4097 tag = PAGECACHE_TAG_DIRTY; 4098 retry: 4099 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4100 tag_pages_for_writeback(mapping, index, end); 4101 done_index = index; 4102 while (!done && !nr_to_write_done && (index <= end) && 4103 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4104 &index, end, tag))) { 4105 unsigned i; 4106 4107 scanned = 1; 4108 for (i = 0; i < nr_pages; i++) { 4109 struct page *page = pvec.pages[i]; 4110 4111 done_index = page->index; 4112 /* 4113 * At this point we hold neither the i_pages lock nor 4114 * the page lock: the page may be truncated or 4115 * invalidated (changing page->mapping to NULL), 4116 * or even swizzled back from swapper_space to 4117 * tmpfs file mapping 4118 */ 4119 if (!trylock_page(page)) { 4120 ret = flush_write_bio(epd); 4121 BUG_ON(ret < 0); 4122 lock_page(page); 4123 } 4124 4125 if (unlikely(page->mapping != mapping)) { 4126 unlock_page(page); 4127 continue; 4128 } 4129 4130 if (wbc->sync_mode != WB_SYNC_NONE) { 4131 if (PageWriteback(page)) { 4132 ret = flush_write_bio(epd); 4133 BUG_ON(ret < 0); 4134 } 4135 wait_on_page_writeback(page); 4136 } 4137 4138 if (PageWriteback(page) || 4139 !clear_page_dirty_for_io(page)) { 4140 unlock_page(page); 4141 continue; 4142 } 4143 4144 ret = __extent_writepage(page, wbc, epd); 4145 if (ret < 0) { 4146 /* 4147 * done_index is set past this page, 4148 * so media errors will not choke 4149 * background writeout for the entire 4150 * file. This has consequences for 4151 * range_cyclic semantics (ie. it may 4152 * not be suitable for data integrity 4153 * writeout). 4154 */ 4155 done_index = page->index + 1; 4156 done = 1; 4157 break; 4158 } 4159 4160 /* 4161 * the filesystem may choose to bump up nr_to_write. 4162 * We have to make sure to honor the new nr_to_write 4163 * at any time 4164 */ 4165 nr_to_write_done = wbc->nr_to_write <= 0; 4166 } 4167 pagevec_release(&pvec); 4168 cond_resched(); 4169 } 4170 if (!scanned && !done) { 4171 /* 4172 * We hit the last page and there is more work to be done: wrap 4173 * back to the start of the file 4174 */ 4175 scanned = 1; 4176 index = 0; 4177 goto retry; 4178 } 4179 4180 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4181 mapping->writeback_index = done_index; 4182 4183 btrfs_add_delayed_iput(inode); 4184 return ret; 4185 } 4186 4187 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4188 { 4189 int ret; 4190 struct extent_page_data epd = { 4191 .bio = NULL, 4192 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4193 .extent_locked = 0, 4194 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4195 }; 4196 4197 ret = __extent_writepage(page, wbc, &epd); 4198 ASSERT(ret <= 0); 4199 if (ret < 0) { 4200 end_write_bio(&epd, ret); 4201 return ret; 4202 } 4203 4204 ret = flush_write_bio(&epd); 4205 ASSERT(ret <= 0); 4206 return ret; 4207 } 4208 4209 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4210 int mode) 4211 { 4212 int ret = 0; 4213 struct address_space *mapping = inode->i_mapping; 4214 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4215 struct page *page; 4216 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4217 PAGE_SHIFT; 4218 4219 struct extent_page_data epd = { 4220 .bio = NULL, 4221 .tree = tree, 4222 .extent_locked = 1, 4223 .sync_io = mode == WB_SYNC_ALL, 4224 }; 4225 struct writeback_control wbc_writepages = { 4226 .sync_mode = mode, 4227 .nr_to_write = nr_pages * 2, 4228 .range_start = start, 4229 .range_end = end + 1, 4230 }; 4231 4232 while (start <= end) { 4233 page = find_get_page(mapping, start >> PAGE_SHIFT); 4234 if (clear_page_dirty_for_io(page)) 4235 ret = __extent_writepage(page, &wbc_writepages, &epd); 4236 else { 4237 btrfs_writepage_endio_finish_ordered(page, start, 4238 start + PAGE_SIZE - 1, 1); 4239 unlock_page(page); 4240 } 4241 put_page(page); 4242 start += PAGE_SIZE; 4243 } 4244 4245 ASSERT(ret <= 0); 4246 if (ret < 0) { 4247 end_write_bio(&epd, ret); 4248 return ret; 4249 } 4250 ret = flush_write_bio(&epd); 4251 return ret; 4252 } 4253 4254 int extent_writepages(struct address_space *mapping, 4255 struct writeback_control *wbc) 4256 { 4257 int ret = 0; 4258 struct extent_page_data epd = { 4259 .bio = NULL, 4260 .tree = &BTRFS_I(mapping->host)->io_tree, 4261 .extent_locked = 0, 4262 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4263 }; 4264 4265 ret = extent_write_cache_pages(mapping, wbc, &epd); 4266 ASSERT(ret <= 0); 4267 if (ret < 0) { 4268 end_write_bio(&epd, ret); 4269 return ret; 4270 } 4271 ret = flush_write_bio(&epd); 4272 return ret; 4273 } 4274 4275 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4276 unsigned nr_pages) 4277 { 4278 struct bio *bio = NULL; 4279 unsigned long bio_flags = 0; 4280 struct page *pagepool[16]; 4281 struct extent_map *em_cached = NULL; 4282 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4283 int nr = 0; 4284 u64 prev_em_start = (u64)-1; 4285 4286 while (!list_empty(pages)) { 4287 u64 contig_end = 0; 4288 4289 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { 4290 struct page *page = lru_to_page(pages); 4291 4292 prefetchw(&page->flags); 4293 list_del(&page->lru); 4294 if (add_to_page_cache_lru(page, mapping, page->index, 4295 readahead_gfp_mask(mapping))) { 4296 put_page(page); 4297 break; 4298 } 4299 4300 pagepool[nr++] = page; 4301 contig_end = page_offset(page) + PAGE_SIZE - 1; 4302 } 4303 4304 if (nr) { 4305 u64 contig_start = page_offset(pagepool[0]); 4306 4307 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4308 4309 contiguous_readpages(tree, pagepool, nr, contig_start, 4310 contig_end, &em_cached, &bio, &bio_flags, 4311 &prev_em_start); 4312 } 4313 } 4314 4315 if (em_cached) 4316 free_extent_map(em_cached); 4317 4318 if (bio) 4319 return submit_one_bio(bio, 0, bio_flags); 4320 return 0; 4321 } 4322 4323 /* 4324 * basic invalidatepage code, this waits on any locked or writeback 4325 * ranges corresponding to the page, and then deletes any extent state 4326 * records from the tree 4327 */ 4328 int extent_invalidatepage(struct extent_io_tree *tree, 4329 struct page *page, unsigned long offset) 4330 { 4331 struct extent_state *cached_state = NULL; 4332 u64 start = page_offset(page); 4333 u64 end = start + PAGE_SIZE - 1; 4334 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4335 4336 start += ALIGN(offset, blocksize); 4337 if (start > end) 4338 return 0; 4339 4340 lock_extent_bits(tree, start, end, &cached_state); 4341 wait_on_page_writeback(page); 4342 clear_extent_bit(tree, start, end, 4343 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4344 EXTENT_DO_ACCOUNTING, 4345 1, 1, &cached_state); 4346 return 0; 4347 } 4348 4349 /* 4350 * a helper for releasepage, this tests for areas of the page that 4351 * are locked or under IO and drops the related state bits if it is safe 4352 * to drop the page. 4353 */ 4354 static int try_release_extent_state(struct extent_io_tree *tree, 4355 struct page *page, gfp_t mask) 4356 { 4357 u64 start = page_offset(page); 4358 u64 end = start + PAGE_SIZE - 1; 4359 int ret = 1; 4360 4361 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4362 ret = 0; 4363 } else { 4364 /* 4365 * at this point we can safely clear everything except the 4366 * locked bit and the nodatasum bit 4367 */ 4368 ret = __clear_extent_bit(tree, start, end, 4369 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4370 0, 0, NULL, mask, NULL); 4371 4372 /* if clear_extent_bit failed for enomem reasons, 4373 * we can't allow the release to continue. 4374 */ 4375 if (ret < 0) 4376 ret = 0; 4377 else 4378 ret = 1; 4379 } 4380 return ret; 4381 } 4382 4383 /* 4384 * a helper for releasepage. As long as there are no locked extents 4385 * in the range corresponding to the page, both state records and extent 4386 * map records are removed 4387 */ 4388 int try_release_extent_mapping(struct page *page, gfp_t mask) 4389 { 4390 struct extent_map *em; 4391 u64 start = page_offset(page); 4392 u64 end = start + PAGE_SIZE - 1; 4393 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4394 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4395 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4396 4397 if (gfpflags_allow_blocking(mask) && 4398 page->mapping->host->i_size > SZ_16M) { 4399 u64 len; 4400 while (start <= end) { 4401 len = end - start + 1; 4402 write_lock(&map->lock); 4403 em = lookup_extent_mapping(map, start, len); 4404 if (!em) { 4405 write_unlock(&map->lock); 4406 break; 4407 } 4408 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4409 em->start != start) { 4410 write_unlock(&map->lock); 4411 free_extent_map(em); 4412 break; 4413 } 4414 if (!test_range_bit(tree, em->start, 4415 extent_map_end(em) - 1, 4416 EXTENT_LOCKED, 0, NULL)) { 4417 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4418 &btrfs_inode->runtime_flags); 4419 remove_extent_mapping(map, em); 4420 /* once for the rb tree */ 4421 free_extent_map(em); 4422 } 4423 start = extent_map_end(em); 4424 write_unlock(&map->lock); 4425 4426 /* once for us */ 4427 free_extent_map(em); 4428 } 4429 } 4430 return try_release_extent_state(tree, page, mask); 4431 } 4432 4433 /* 4434 * helper function for fiemap, which doesn't want to see any holes. 4435 * This maps until we find something past 'last' 4436 */ 4437 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4438 u64 offset, u64 last) 4439 { 4440 u64 sectorsize = btrfs_inode_sectorsize(inode); 4441 struct extent_map *em; 4442 u64 len; 4443 4444 if (offset >= last) 4445 return NULL; 4446 4447 while (1) { 4448 len = last - offset; 4449 if (len == 0) 4450 break; 4451 len = ALIGN(len, sectorsize); 4452 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4453 if (IS_ERR_OR_NULL(em)) 4454 return em; 4455 4456 /* if this isn't a hole return it */ 4457 if (em->block_start != EXTENT_MAP_HOLE) 4458 return em; 4459 4460 /* this is a hole, advance to the next extent */ 4461 offset = extent_map_end(em); 4462 free_extent_map(em); 4463 if (offset >= last) 4464 break; 4465 } 4466 return NULL; 4467 } 4468 4469 /* 4470 * To cache previous fiemap extent 4471 * 4472 * Will be used for merging fiemap extent 4473 */ 4474 struct fiemap_cache { 4475 u64 offset; 4476 u64 phys; 4477 u64 len; 4478 u32 flags; 4479 bool cached; 4480 }; 4481 4482 /* 4483 * Helper to submit fiemap extent. 4484 * 4485 * Will try to merge current fiemap extent specified by @offset, @phys, 4486 * @len and @flags with cached one. 4487 * And only when we fails to merge, cached one will be submitted as 4488 * fiemap extent. 4489 * 4490 * Return value is the same as fiemap_fill_next_extent(). 4491 */ 4492 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4493 struct fiemap_cache *cache, 4494 u64 offset, u64 phys, u64 len, u32 flags) 4495 { 4496 int ret = 0; 4497 4498 if (!cache->cached) 4499 goto assign; 4500 4501 /* 4502 * Sanity check, extent_fiemap() should have ensured that new 4503 * fiemap extent won't overlap with cached one. 4504 * Not recoverable. 4505 * 4506 * NOTE: Physical address can overlap, due to compression 4507 */ 4508 if (cache->offset + cache->len > offset) { 4509 WARN_ON(1); 4510 return -EINVAL; 4511 } 4512 4513 /* 4514 * Only merges fiemap extents if 4515 * 1) Their logical addresses are continuous 4516 * 4517 * 2) Their physical addresses are continuous 4518 * So truly compressed (physical size smaller than logical size) 4519 * extents won't get merged with each other 4520 * 4521 * 3) Share same flags except FIEMAP_EXTENT_LAST 4522 * So regular extent won't get merged with prealloc extent 4523 */ 4524 if (cache->offset + cache->len == offset && 4525 cache->phys + cache->len == phys && 4526 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4527 (flags & ~FIEMAP_EXTENT_LAST)) { 4528 cache->len += len; 4529 cache->flags |= flags; 4530 goto try_submit_last; 4531 } 4532 4533 /* Not mergeable, need to submit cached one */ 4534 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4535 cache->len, cache->flags); 4536 cache->cached = false; 4537 if (ret) 4538 return ret; 4539 assign: 4540 cache->cached = true; 4541 cache->offset = offset; 4542 cache->phys = phys; 4543 cache->len = len; 4544 cache->flags = flags; 4545 try_submit_last: 4546 if (cache->flags & FIEMAP_EXTENT_LAST) { 4547 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4548 cache->phys, cache->len, cache->flags); 4549 cache->cached = false; 4550 } 4551 return ret; 4552 } 4553 4554 /* 4555 * Emit last fiemap cache 4556 * 4557 * The last fiemap cache may still be cached in the following case: 4558 * 0 4k 8k 4559 * |<- Fiemap range ->| 4560 * |<------------ First extent ----------->| 4561 * 4562 * In this case, the first extent range will be cached but not emitted. 4563 * So we must emit it before ending extent_fiemap(). 4564 */ 4565 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4566 struct fiemap_cache *cache) 4567 { 4568 int ret; 4569 4570 if (!cache->cached) 4571 return 0; 4572 4573 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4574 cache->len, cache->flags); 4575 cache->cached = false; 4576 if (ret > 0) 4577 ret = 0; 4578 return ret; 4579 } 4580 4581 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4582 __u64 start, __u64 len) 4583 { 4584 int ret = 0; 4585 u64 off = start; 4586 u64 max = start + len; 4587 u32 flags = 0; 4588 u32 found_type; 4589 u64 last; 4590 u64 last_for_get_extent = 0; 4591 u64 disko = 0; 4592 u64 isize = i_size_read(inode); 4593 struct btrfs_key found_key; 4594 struct extent_map *em = NULL; 4595 struct extent_state *cached_state = NULL; 4596 struct btrfs_path *path; 4597 struct btrfs_root *root = BTRFS_I(inode)->root; 4598 struct fiemap_cache cache = { 0 }; 4599 struct ulist *roots; 4600 struct ulist *tmp_ulist; 4601 int end = 0; 4602 u64 em_start = 0; 4603 u64 em_len = 0; 4604 u64 em_end = 0; 4605 4606 if (len == 0) 4607 return -EINVAL; 4608 4609 path = btrfs_alloc_path(); 4610 if (!path) 4611 return -ENOMEM; 4612 path->leave_spinning = 1; 4613 4614 roots = ulist_alloc(GFP_KERNEL); 4615 tmp_ulist = ulist_alloc(GFP_KERNEL); 4616 if (!roots || !tmp_ulist) { 4617 ret = -ENOMEM; 4618 goto out_free_ulist; 4619 } 4620 4621 start = round_down(start, btrfs_inode_sectorsize(inode)); 4622 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4623 4624 /* 4625 * lookup the last file extent. We're not using i_size here 4626 * because there might be preallocation past i_size 4627 */ 4628 ret = btrfs_lookup_file_extent(NULL, root, path, 4629 btrfs_ino(BTRFS_I(inode)), -1, 0); 4630 if (ret < 0) { 4631 goto out_free_ulist; 4632 } else { 4633 WARN_ON(!ret); 4634 if (ret == 1) 4635 ret = 0; 4636 } 4637 4638 path->slots[0]--; 4639 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4640 found_type = found_key.type; 4641 4642 /* No extents, but there might be delalloc bits */ 4643 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4644 found_type != BTRFS_EXTENT_DATA_KEY) { 4645 /* have to trust i_size as the end */ 4646 last = (u64)-1; 4647 last_for_get_extent = isize; 4648 } else { 4649 /* 4650 * remember the start of the last extent. There are a 4651 * bunch of different factors that go into the length of the 4652 * extent, so its much less complex to remember where it started 4653 */ 4654 last = found_key.offset; 4655 last_for_get_extent = last + 1; 4656 } 4657 btrfs_release_path(path); 4658 4659 /* 4660 * we might have some extents allocated but more delalloc past those 4661 * extents. so, we trust isize unless the start of the last extent is 4662 * beyond isize 4663 */ 4664 if (last < isize) { 4665 last = (u64)-1; 4666 last_for_get_extent = isize; 4667 } 4668 4669 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4670 &cached_state); 4671 4672 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4673 if (!em) 4674 goto out; 4675 if (IS_ERR(em)) { 4676 ret = PTR_ERR(em); 4677 goto out; 4678 } 4679 4680 while (!end) { 4681 u64 offset_in_extent = 0; 4682 4683 /* break if the extent we found is outside the range */ 4684 if (em->start >= max || extent_map_end(em) < off) 4685 break; 4686 4687 /* 4688 * get_extent may return an extent that starts before our 4689 * requested range. We have to make sure the ranges 4690 * we return to fiemap always move forward and don't 4691 * overlap, so adjust the offsets here 4692 */ 4693 em_start = max(em->start, off); 4694 4695 /* 4696 * record the offset from the start of the extent 4697 * for adjusting the disk offset below. Only do this if the 4698 * extent isn't compressed since our in ram offset may be past 4699 * what we have actually allocated on disk. 4700 */ 4701 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4702 offset_in_extent = em_start - em->start; 4703 em_end = extent_map_end(em); 4704 em_len = em_end - em_start; 4705 flags = 0; 4706 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4707 disko = em->block_start + offset_in_extent; 4708 else 4709 disko = 0; 4710 4711 /* 4712 * bump off for our next call to get_extent 4713 */ 4714 off = extent_map_end(em); 4715 if (off >= max) 4716 end = 1; 4717 4718 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4719 end = 1; 4720 flags |= FIEMAP_EXTENT_LAST; 4721 } else if (em->block_start == EXTENT_MAP_INLINE) { 4722 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4723 FIEMAP_EXTENT_NOT_ALIGNED); 4724 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4725 flags |= (FIEMAP_EXTENT_DELALLOC | 4726 FIEMAP_EXTENT_UNKNOWN); 4727 } else if (fieinfo->fi_extents_max) { 4728 u64 bytenr = em->block_start - 4729 (em->start - em->orig_start); 4730 4731 /* 4732 * As btrfs supports shared space, this information 4733 * can be exported to userspace tools via 4734 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4735 * then we're just getting a count and we can skip the 4736 * lookup stuff. 4737 */ 4738 ret = btrfs_check_shared(root, 4739 btrfs_ino(BTRFS_I(inode)), 4740 bytenr, roots, tmp_ulist); 4741 if (ret < 0) 4742 goto out_free; 4743 if (ret) 4744 flags |= FIEMAP_EXTENT_SHARED; 4745 ret = 0; 4746 } 4747 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4748 flags |= FIEMAP_EXTENT_ENCODED; 4749 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4750 flags |= FIEMAP_EXTENT_UNWRITTEN; 4751 4752 free_extent_map(em); 4753 em = NULL; 4754 if ((em_start >= last) || em_len == (u64)-1 || 4755 (last == (u64)-1 && isize <= em_end)) { 4756 flags |= FIEMAP_EXTENT_LAST; 4757 end = 1; 4758 } 4759 4760 /* now scan forward to see if this is really the last extent. */ 4761 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4762 if (IS_ERR(em)) { 4763 ret = PTR_ERR(em); 4764 goto out; 4765 } 4766 if (!em) { 4767 flags |= FIEMAP_EXTENT_LAST; 4768 end = 1; 4769 } 4770 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4771 em_len, flags); 4772 if (ret) { 4773 if (ret == 1) 4774 ret = 0; 4775 goto out_free; 4776 } 4777 } 4778 out_free: 4779 if (!ret) 4780 ret = emit_last_fiemap_cache(fieinfo, &cache); 4781 free_extent_map(em); 4782 out: 4783 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4784 &cached_state); 4785 4786 out_free_ulist: 4787 btrfs_free_path(path); 4788 ulist_free(roots); 4789 ulist_free(tmp_ulist); 4790 return ret; 4791 } 4792 4793 static void __free_extent_buffer(struct extent_buffer *eb) 4794 { 4795 btrfs_leak_debug_del(&eb->leak_list); 4796 kmem_cache_free(extent_buffer_cache, eb); 4797 } 4798 4799 int extent_buffer_under_io(struct extent_buffer *eb) 4800 { 4801 return (atomic_read(&eb->io_pages) || 4802 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4803 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4804 } 4805 4806 /* 4807 * Release all pages attached to the extent buffer. 4808 */ 4809 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4810 { 4811 int i; 4812 int num_pages; 4813 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4814 4815 BUG_ON(extent_buffer_under_io(eb)); 4816 4817 num_pages = num_extent_pages(eb); 4818 for (i = 0; i < num_pages; i++) { 4819 struct page *page = eb->pages[i]; 4820 4821 if (!page) 4822 continue; 4823 if (mapped) 4824 spin_lock(&page->mapping->private_lock); 4825 /* 4826 * We do this since we'll remove the pages after we've 4827 * removed the eb from the radix tree, so we could race 4828 * and have this page now attached to the new eb. So 4829 * only clear page_private if it's still connected to 4830 * this eb. 4831 */ 4832 if (PagePrivate(page) && 4833 page->private == (unsigned long)eb) { 4834 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4835 BUG_ON(PageDirty(page)); 4836 BUG_ON(PageWriteback(page)); 4837 /* 4838 * We need to make sure we haven't be attached 4839 * to a new eb. 4840 */ 4841 ClearPagePrivate(page); 4842 set_page_private(page, 0); 4843 /* One for the page private */ 4844 put_page(page); 4845 } 4846 4847 if (mapped) 4848 spin_unlock(&page->mapping->private_lock); 4849 4850 /* One for when we allocated the page */ 4851 put_page(page); 4852 } 4853 } 4854 4855 /* 4856 * Helper for releasing the extent buffer. 4857 */ 4858 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4859 { 4860 btrfs_release_extent_buffer_pages(eb); 4861 __free_extent_buffer(eb); 4862 } 4863 4864 static struct extent_buffer * 4865 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4866 unsigned long len) 4867 { 4868 struct extent_buffer *eb = NULL; 4869 4870 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4871 eb->start = start; 4872 eb->len = len; 4873 eb->fs_info = fs_info; 4874 eb->bflags = 0; 4875 rwlock_init(&eb->lock); 4876 atomic_set(&eb->blocking_readers, 0); 4877 eb->blocking_writers = 0; 4878 eb->lock_nested = false; 4879 init_waitqueue_head(&eb->write_lock_wq); 4880 init_waitqueue_head(&eb->read_lock_wq); 4881 4882 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4883 4884 spin_lock_init(&eb->refs_lock); 4885 atomic_set(&eb->refs, 1); 4886 atomic_set(&eb->io_pages, 0); 4887 4888 /* 4889 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4890 */ 4891 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4892 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4893 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4894 4895 #ifdef CONFIG_BTRFS_DEBUG 4896 eb->spinning_writers = 0; 4897 atomic_set(&eb->spinning_readers, 0); 4898 atomic_set(&eb->read_locks, 0); 4899 eb->write_locks = 0; 4900 #endif 4901 4902 return eb; 4903 } 4904 4905 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4906 { 4907 int i; 4908 struct page *p; 4909 struct extent_buffer *new; 4910 int num_pages = num_extent_pages(src); 4911 4912 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4913 if (new == NULL) 4914 return NULL; 4915 4916 for (i = 0; i < num_pages; i++) { 4917 p = alloc_page(GFP_NOFS); 4918 if (!p) { 4919 btrfs_release_extent_buffer(new); 4920 return NULL; 4921 } 4922 attach_extent_buffer_page(new, p); 4923 WARN_ON(PageDirty(p)); 4924 SetPageUptodate(p); 4925 new->pages[i] = p; 4926 copy_page(page_address(p), page_address(src->pages[i])); 4927 } 4928 4929 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4930 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4931 4932 return new; 4933 } 4934 4935 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4936 u64 start, unsigned long len) 4937 { 4938 struct extent_buffer *eb; 4939 int num_pages; 4940 int i; 4941 4942 eb = __alloc_extent_buffer(fs_info, start, len); 4943 if (!eb) 4944 return NULL; 4945 4946 num_pages = num_extent_pages(eb); 4947 for (i = 0; i < num_pages; i++) { 4948 eb->pages[i] = alloc_page(GFP_NOFS); 4949 if (!eb->pages[i]) 4950 goto err; 4951 } 4952 set_extent_buffer_uptodate(eb); 4953 btrfs_set_header_nritems(eb, 0); 4954 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4955 4956 return eb; 4957 err: 4958 for (; i > 0; i--) 4959 __free_page(eb->pages[i - 1]); 4960 __free_extent_buffer(eb); 4961 return NULL; 4962 } 4963 4964 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4965 u64 start) 4966 { 4967 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4968 } 4969 4970 static void check_buffer_tree_ref(struct extent_buffer *eb) 4971 { 4972 int refs; 4973 /* the ref bit is tricky. We have to make sure it is set 4974 * if we have the buffer dirty. Otherwise the 4975 * code to free a buffer can end up dropping a dirty 4976 * page 4977 * 4978 * Once the ref bit is set, it won't go away while the 4979 * buffer is dirty or in writeback, and it also won't 4980 * go away while we have the reference count on the 4981 * eb bumped. 4982 * 4983 * We can't just set the ref bit without bumping the 4984 * ref on the eb because free_extent_buffer might 4985 * see the ref bit and try to clear it. If this happens 4986 * free_extent_buffer might end up dropping our original 4987 * ref by mistake and freeing the page before we are able 4988 * to add one more ref. 4989 * 4990 * So bump the ref count first, then set the bit. If someone 4991 * beat us to it, drop the ref we added. 4992 */ 4993 refs = atomic_read(&eb->refs); 4994 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4995 return; 4996 4997 spin_lock(&eb->refs_lock); 4998 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4999 atomic_inc(&eb->refs); 5000 spin_unlock(&eb->refs_lock); 5001 } 5002 5003 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5004 struct page *accessed) 5005 { 5006 int num_pages, i; 5007 5008 check_buffer_tree_ref(eb); 5009 5010 num_pages = num_extent_pages(eb); 5011 for (i = 0; i < num_pages; i++) { 5012 struct page *p = eb->pages[i]; 5013 5014 if (p != accessed) 5015 mark_page_accessed(p); 5016 } 5017 } 5018 5019 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5020 u64 start) 5021 { 5022 struct extent_buffer *eb; 5023 5024 rcu_read_lock(); 5025 eb = radix_tree_lookup(&fs_info->buffer_radix, 5026 start >> PAGE_SHIFT); 5027 if (eb && atomic_inc_not_zero(&eb->refs)) { 5028 rcu_read_unlock(); 5029 /* 5030 * Lock our eb's refs_lock to avoid races with 5031 * free_extent_buffer. When we get our eb it might be flagged 5032 * with EXTENT_BUFFER_STALE and another task running 5033 * free_extent_buffer might have seen that flag set, 5034 * eb->refs == 2, that the buffer isn't under IO (dirty and 5035 * writeback flags not set) and it's still in the tree (flag 5036 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5037 * of decrementing the extent buffer's reference count twice. 5038 * So here we could race and increment the eb's reference count, 5039 * clear its stale flag, mark it as dirty and drop our reference 5040 * before the other task finishes executing free_extent_buffer, 5041 * which would later result in an attempt to free an extent 5042 * buffer that is dirty. 5043 */ 5044 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5045 spin_lock(&eb->refs_lock); 5046 spin_unlock(&eb->refs_lock); 5047 } 5048 mark_extent_buffer_accessed(eb, NULL); 5049 return eb; 5050 } 5051 rcu_read_unlock(); 5052 5053 return NULL; 5054 } 5055 5056 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5057 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5058 u64 start) 5059 { 5060 struct extent_buffer *eb, *exists = NULL; 5061 int ret; 5062 5063 eb = find_extent_buffer(fs_info, start); 5064 if (eb) 5065 return eb; 5066 eb = alloc_dummy_extent_buffer(fs_info, start); 5067 if (!eb) 5068 return NULL; 5069 eb->fs_info = fs_info; 5070 again: 5071 ret = radix_tree_preload(GFP_NOFS); 5072 if (ret) 5073 goto free_eb; 5074 spin_lock(&fs_info->buffer_lock); 5075 ret = radix_tree_insert(&fs_info->buffer_radix, 5076 start >> PAGE_SHIFT, eb); 5077 spin_unlock(&fs_info->buffer_lock); 5078 radix_tree_preload_end(); 5079 if (ret == -EEXIST) { 5080 exists = find_extent_buffer(fs_info, start); 5081 if (exists) 5082 goto free_eb; 5083 else 5084 goto again; 5085 } 5086 check_buffer_tree_ref(eb); 5087 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5088 5089 return eb; 5090 free_eb: 5091 btrfs_release_extent_buffer(eb); 5092 return exists; 5093 } 5094 #endif 5095 5096 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5097 u64 start) 5098 { 5099 unsigned long len = fs_info->nodesize; 5100 int num_pages; 5101 int i; 5102 unsigned long index = start >> PAGE_SHIFT; 5103 struct extent_buffer *eb; 5104 struct extent_buffer *exists = NULL; 5105 struct page *p; 5106 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5107 int uptodate = 1; 5108 int ret; 5109 5110 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5111 btrfs_err(fs_info, "bad tree block start %llu", start); 5112 return ERR_PTR(-EINVAL); 5113 } 5114 5115 eb = find_extent_buffer(fs_info, start); 5116 if (eb) 5117 return eb; 5118 5119 eb = __alloc_extent_buffer(fs_info, start, len); 5120 if (!eb) 5121 return ERR_PTR(-ENOMEM); 5122 5123 num_pages = num_extent_pages(eb); 5124 for (i = 0; i < num_pages; i++, index++) { 5125 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5126 if (!p) { 5127 exists = ERR_PTR(-ENOMEM); 5128 goto free_eb; 5129 } 5130 5131 spin_lock(&mapping->private_lock); 5132 if (PagePrivate(p)) { 5133 /* 5134 * We could have already allocated an eb for this page 5135 * and attached one so lets see if we can get a ref on 5136 * the existing eb, and if we can we know it's good and 5137 * we can just return that one, else we know we can just 5138 * overwrite page->private. 5139 */ 5140 exists = (struct extent_buffer *)p->private; 5141 if (atomic_inc_not_zero(&exists->refs)) { 5142 spin_unlock(&mapping->private_lock); 5143 unlock_page(p); 5144 put_page(p); 5145 mark_extent_buffer_accessed(exists, p); 5146 goto free_eb; 5147 } 5148 exists = NULL; 5149 5150 /* 5151 * Do this so attach doesn't complain and we need to 5152 * drop the ref the old guy had. 5153 */ 5154 ClearPagePrivate(p); 5155 WARN_ON(PageDirty(p)); 5156 put_page(p); 5157 } 5158 attach_extent_buffer_page(eb, p); 5159 spin_unlock(&mapping->private_lock); 5160 WARN_ON(PageDirty(p)); 5161 eb->pages[i] = p; 5162 if (!PageUptodate(p)) 5163 uptodate = 0; 5164 5165 /* 5166 * We can't unlock the pages just yet since the extent buffer 5167 * hasn't been properly inserted in the radix tree, this 5168 * opens a race with btree_releasepage which can free a page 5169 * while we are still filling in all pages for the buffer and 5170 * we could crash. 5171 */ 5172 } 5173 if (uptodate) 5174 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5175 again: 5176 ret = radix_tree_preload(GFP_NOFS); 5177 if (ret) { 5178 exists = ERR_PTR(ret); 5179 goto free_eb; 5180 } 5181 5182 spin_lock(&fs_info->buffer_lock); 5183 ret = radix_tree_insert(&fs_info->buffer_radix, 5184 start >> PAGE_SHIFT, eb); 5185 spin_unlock(&fs_info->buffer_lock); 5186 radix_tree_preload_end(); 5187 if (ret == -EEXIST) { 5188 exists = find_extent_buffer(fs_info, start); 5189 if (exists) 5190 goto free_eb; 5191 else 5192 goto again; 5193 } 5194 /* add one reference for the tree */ 5195 check_buffer_tree_ref(eb); 5196 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5197 5198 /* 5199 * Now it's safe to unlock the pages because any calls to 5200 * btree_releasepage will correctly detect that a page belongs to a 5201 * live buffer and won't free them prematurely. 5202 */ 5203 for (i = 0; i < num_pages; i++) 5204 unlock_page(eb->pages[i]); 5205 return eb; 5206 5207 free_eb: 5208 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5209 for (i = 0; i < num_pages; i++) { 5210 if (eb->pages[i]) 5211 unlock_page(eb->pages[i]); 5212 } 5213 5214 btrfs_release_extent_buffer(eb); 5215 return exists; 5216 } 5217 5218 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5219 { 5220 struct extent_buffer *eb = 5221 container_of(head, struct extent_buffer, rcu_head); 5222 5223 __free_extent_buffer(eb); 5224 } 5225 5226 static int release_extent_buffer(struct extent_buffer *eb) 5227 { 5228 lockdep_assert_held(&eb->refs_lock); 5229 5230 WARN_ON(atomic_read(&eb->refs) == 0); 5231 if (atomic_dec_and_test(&eb->refs)) { 5232 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5233 struct btrfs_fs_info *fs_info = eb->fs_info; 5234 5235 spin_unlock(&eb->refs_lock); 5236 5237 spin_lock(&fs_info->buffer_lock); 5238 radix_tree_delete(&fs_info->buffer_radix, 5239 eb->start >> PAGE_SHIFT); 5240 spin_unlock(&fs_info->buffer_lock); 5241 } else { 5242 spin_unlock(&eb->refs_lock); 5243 } 5244 5245 /* Should be safe to release our pages at this point */ 5246 btrfs_release_extent_buffer_pages(eb); 5247 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5248 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5249 __free_extent_buffer(eb); 5250 return 1; 5251 } 5252 #endif 5253 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5254 return 1; 5255 } 5256 spin_unlock(&eb->refs_lock); 5257 5258 return 0; 5259 } 5260 5261 void free_extent_buffer(struct extent_buffer *eb) 5262 { 5263 int refs; 5264 int old; 5265 if (!eb) 5266 return; 5267 5268 while (1) { 5269 refs = atomic_read(&eb->refs); 5270 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5271 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5272 refs == 1)) 5273 break; 5274 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5275 if (old == refs) 5276 return; 5277 } 5278 5279 spin_lock(&eb->refs_lock); 5280 if (atomic_read(&eb->refs) == 2 && 5281 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5282 !extent_buffer_under_io(eb) && 5283 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5284 atomic_dec(&eb->refs); 5285 5286 /* 5287 * I know this is terrible, but it's temporary until we stop tracking 5288 * the uptodate bits and such for the extent buffers. 5289 */ 5290 release_extent_buffer(eb); 5291 } 5292 5293 void free_extent_buffer_stale(struct extent_buffer *eb) 5294 { 5295 if (!eb) 5296 return; 5297 5298 spin_lock(&eb->refs_lock); 5299 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5300 5301 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5302 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5303 atomic_dec(&eb->refs); 5304 release_extent_buffer(eb); 5305 } 5306 5307 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5308 { 5309 int i; 5310 int num_pages; 5311 struct page *page; 5312 5313 num_pages = num_extent_pages(eb); 5314 5315 for (i = 0; i < num_pages; i++) { 5316 page = eb->pages[i]; 5317 if (!PageDirty(page)) 5318 continue; 5319 5320 lock_page(page); 5321 WARN_ON(!PagePrivate(page)); 5322 5323 clear_page_dirty_for_io(page); 5324 xa_lock_irq(&page->mapping->i_pages); 5325 if (!PageDirty(page)) 5326 __xa_clear_mark(&page->mapping->i_pages, 5327 page_index(page), PAGECACHE_TAG_DIRTY); 5328 xa_unlock_irq(&page->mapping->i_pages); 5329 ClearPageError(page); 5330 unlock_page(page); 5331 } 5332 WARN_ON(atomic_read(&eb->refs) == 0); 5333 } 5334 5335 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5336 { 5337 int i; 5338 int num_pages; 5339 bool was_dirty; 5340 5341 check_buffer_tree_ref(eb); 5342 5343 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5344 5345 num_pages = num_extent_pages(eb); 5346 WARN_ON(atomic_read(&eb->refs) == 0); 5347 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5348 5349 if (!was_dirty) 5350 for (i = 0; i < num_pages; i++) 5351 set_page_dirty(eb->pages[i]); 5352 5353 #ifdef CONFIG_BTRFS_DEBUG 5354 for (i = 0; i < num_pages; i++) 5355 ASSERT(PageDirty(eb->pages[i])); 5356 #endif 5357 5358 return was_dirty; 5359 } 5360 5361 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5362 { 5363 int i; 5364 struct page *page; 5365 int num_pages; 5366 5367 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5368 num_pages = num_extent_pages(eb); 5369 for (i = 0; i < num_pages; i++) { 5370 page = eb->pages[i]; 5371 if (page) 5372 ClearPageUptodate(page); 5373 } 5374 } 5375 5376 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5377 { 5378 int i; 5379 struct page *page; 5380 int num_pages; 5381 5382 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5383 num_pages = num_extent_pages(eb); 5384 for (i = 0; i < num_pages; i++) { 5385 page = eb->pages[i]; 5386 SetPageUptodate(page); 5387 } 5388 } 5389 5390 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5391 { 5392 int i; 5393 struct page *page; 5394 int err; 5395 int ret = 0; 5396 int locked_pages = 0; 5397 int all_uptodate = 1; 5398 int num_pages; 5399 unsigned long num_reads = 0; 5400 struct bio *bio = NULL; 5401 unsigned long bio_flags = 0; 5402 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree; 5403 5404 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5405 return 0; 5406 5407 num_pages = num_extent_pages(eb); 5408 for (i = 0; i < num_pages; i++) { 5409 page = eb->pages[i]; 5410 if (wait == WAIT_NONE) { 5411 if (!trylock_page(page)) 5412 goto unlock_exit; 5413 } else { 5414 lock_page(page); 5415 } 5416 locked_pages++; 5417 } 5418 /* 5419 * We need to firstly lock all pages to make sure that 5420 * the uptodate bit of our pages won't be affected by 5421 * clear_extent_buffer_uptodate(). 5422 */ 5423 for (i = 0; i < num_pages; i++) { 5424 page = eb->pages[i]; 5425 if (!PageUptodate(page)) { 5426 num_reads++; 5427 all_uptodate = 0; 5428 } 5429 } 5430 5431 if (all_uptodate) { 5432 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5433 goto unlock_exit; 5434 } 5435 5436 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5437 eb->read_mirror = 0; 5438 atomic_set(&eb->io_pages, num_reads); 5439 for (i = 0; i < num_pages; i++) { 5440 page = eb->pages[i]; 5441 5442 if (!PageUptodate(page)) { 5443 if (ret) { 5444 atomic_dec(&eb->io_pages); 5445 unlock_page(page); 5446 continue; 5447 } 5448 5449 ClearPageError(page); 5450 err = __extent_read_full_page(tree, page, 5451 btree_get_extent, &bio, 5452 mirror_num, &bio_flags, 5453 REQ_META); 5454 if (err) { 5455 ret = err; 5456 /* 5457 * We use &bio in above __extent_read_full_page, 5458 * so we ensure that if it returns error, the 5459 * current page fails to add itself to bio and 5460 * it's been unlocked. 5461 * 5462 * We must dec io_pages by ourselves. 5463 */ 5464 atomic_dec(&eb->io_pages); 5465 } 5466 } else { 5467 unlock_page(page); 5468 } 5469 } 5470 5471 if (bio) { 5472 err = submit_one_bio(bio, mirror_num, bio_flags); 5473 if (err) 5474 return err; 5475 } 5476 5477 if (ret || wait != WAIT_COMPLETE) 5478 return ret; 5479 5480 for (i = 0; i < num_pages; i++) { 5481 page = eb->pages[i]; 5482 wait_on_page_locked(page); 5483 if (!PageUptodate(page)) 5484 ret = -EIO; 5485 } 5486 5487 return ret; 5488 5489 unlock_exit: 5490 while (locked_pages > 0) { 5491 locked_pages--; 5492 page = eb->pages[locked_pages]; 5493 unlock_page(page); 5494 } 5495 return ret; 5496 } 5497 5498 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5499 unsigned long start, unsigned long len) 5500 { 5501 size_t cur; 5502 size_t offset; 5503 struct page *page; 5504 char *kaddr; 5505 char *dst = (char *)dstv; 5506 size_t start_offset = offset_in_page(eb->start); 5507 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5508 5509 if (start + len > eb->len) { 5510 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5511 eb->start, eb->len, start, len); 5512 memset(dst, 0, len); 5513 return; 5514 } 5515 5516 offset = offset_in_page(start_offset + start); 5517 5518 while (len > 0) { 5519 page = eb->pages[i]; 5520 5521 cur = min(len, (PAGE_SIZE - offset)); 5522 kaddr = page_address(page); 5523 memcpy(dst, kaddr + offset, cur); 5524 5525 dst += cur; 5526 len -= cur; 5527 offset = 0; 5528 i++; 5529 } 5530 } 5531 5532 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5533 void __user *dstv, 5534 unsigned long start, unsigned long len) 5535 { 5536 size_t cur; 5537 size_t offset; 5538 struct page *page; 5539 char *kaddr; 5540 char __user *dst = (char __user *)dstv; 5541 size_t start_offset = offset_in_page(eb->start); 5542 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5543 int ret = 0; 5544 5545 WARN_ON(start > eb->len); 5546 WARN_ON(start + len > eb->start + eb->len); 5547 5548 offset = offset_in_page(start_offset + start); 5549 5550 while (len > 0) { 5551 page = eb->pages[i]; 5552 5553 cur = min(len, (PAGE_SIZE - offset)); 5554 kaddr = page_address(page); 5555 if (copy_to_user(dst, kaddr + offset, cur)) { 5556 ret = -EFAULT; 5557 break; 5558 } 5559 5560 dst += cur; 5561 len -= cur; 5562 offset = 0; 5563 i++; 5564 } 5565 5566 return ret; 5567 } 5568 5569 /* 5570 * return 0 if the item is found within a page. 5571 * return 1 if the item spans two pages. 5572 * return -EINVAL otherwise. 5573 */ 5574 int map_private_extent_buffer(const struct extent_buffer *eb, 5575 unsigned long start, unsigned long min_len, 5576 char **map, unsigned long *map_start, 5577 unsigned long *map_len) 5578 { 5579 size_t offset; 5580 char *kaddr; 5581 struct page *p; 5582 size_t start_offset = offset_in_page(eb->start); 5583 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5584 unsigned long end_i = (start_offset + start + min_len - 1) >> 5585 PAGE_SHIFT; 5586 5587 if (start + min_len > eb->len) { 5588 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5589 eb->start, eb->len, start, min_len); 5590 return -EINVAL; 5591 } 5592 5593 if (i != end_i) 5594 return 1; 5595 5596 if (i == 0) { 5597 offset = start_offset; 5598 *map_start = 0; 5599 } else { 5600 offset = 0; 5601 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5602 } 5603 5604 p = eb->pages[i]; 5605 kaddr = page_address(p); 5606 *map = kaddr + offset; 5607 *map_len = PAGE_SIZE - offset; 5608 return 0; 5609 } 5610 5611 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5612 unsigned long start, unsigned long len) 5613 { 5614 size_t cur; 5615 size_t offset; 5616 struct page *page; 5617 char *kaddr; 5618 char *ptr = (char *)ptrv; 5619 size_t start_offset = offset_in_page(eb->start); 5620 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5621 int ret = 0; 5622 5623 WARN_ON(start > eb->len); 5624 WARN_ON(start + len > eb->start + eb->len); 5625 5626 offset = offset_in_page(start_offset + start); 5627 5628 while (len > 0) { 5629 page = eb->pages[i]; 5630 5631 cur = min(len, (PAGE_SIZE - offset)); 5632 5633 kaddr = page_address(page); 5634 ret = memcmp(ptr, kaddr + offset, cur); 5635 if (ret) 5636 break; 5637 5638 ptr += cur; 5639 len -= cur; 5640 offset = 0; 5641 i++; 5642 } 5643 return ret; 5644 } 5645 5646 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5647 const void *srcv) 5648 { 5649 char *kaddr; 5650 5651 WARN_ON(!PageUptodate(eb->pages[0])); 5652 kaddr = page_address(eb->pages[0]); 5653 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5654 BTRFS_FSID_SIZE); 5655 } 5656 5657 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5658 { 5659 char *kaddr; 5660 5661 WARN_ON(!PageUptodate(eb->pages[0])); 5662 kaddr = page_address(eb->pages[0]); 5663 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5664 BTRFS_FSID_SIZE); 5665 } 5666 5667 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5668 unsigned long start, unsigned long len) 5669 { 5670 size_t cur; 5671 size_t offset; 5672 struct page *page; 5673 char *kaddr; 5674 char *src = (char *)srcv; 5675 size_t start_offset = offset_in_page(eb->start); 5676 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5677 5678 WARN_ON(start > eb->len); 5679 WARN_ON(start + len > eb->start + eb->len); 5680 5681 offset = offset_in_page(start_offset + start); 5682 5683 while (len > 0) { 5684 page = eb->pages[i]; 5685 WARN_ON(!PageUptodate(page)); 5686 5687 cur = min(len, PAGE_SIZE - offset); 5688 kaddr = page_address(page); 5689 memcpy(kaddr + offset, src, cur); 5690 5691 src += cur; 5692 len -= cur; 5693 offset = 0; 5694 i++; 5695 } 5696 } 5697 5698 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5699 unsigned long len) 5700 { 5701 size_t cur; 5702 size_t offset; 5703 struct page *page; 5704 char *kaddr; 5705 size_t start_offset = offset_in_page(eb->start); 5706 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5707 5708 WARN_ON(start > eb->len); 5709 WARN_ON(start + len > eb->start + eb->len); 5710 5711 offset = offset_in_page(start_offset + start); 5712 5713 while (len > 0) { 5714 page = eb->pages[i]; 5715 WARN_ON(!PageUptodate(page)); 5716 5717 cur = min(len, PAGE_SIZE - offset); 5718 kaddr = page_address(page); 5719 memset(kaddr + offset, 0, cur); 5720 5721 len -= cur; 5722 offset = 0; 5723 i++; 5724 } 5725 } 5726 5727 void copy_extent_buffer_full(struct extent_buffer *dst, 5728 struct extent_buffer *src) 5729 { 5730 int i; 5731 int num_pages; 5732 5733 ASSERT(dst->len == src->len); 5734 5735 num_pages = num_extent_pages(dst); 5736 for (i = 0; i < num_pages; i++) 5737 copy_page(page_address(dst->pages[i]), 5738 page_address(src->pages[i])); 5739 } 5740 5741 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5742 unsigned long dst_offset, unsigned long src_offset, 5743 unsigned long len) 5744 { 5745 u64 dst_len = dst->len; 5746 size_t cur; 5747 size_t offset; 5748 struct page *page; 5749 char *kaddr; 5750 size_t start_offset = offset_in_page(dst->start); 5751 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5752 5753 WARN_ON(src->len != dst_len); 5754 5755 offset = offset_in_page(start_offset + dst_offset); 5756 5757 while (len > 0) { 5758 page = dst->pages[i]; 5759 WARN_ON(!PageUptodate(page)); 5760 5761 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5762 5763 kaddr = page_address(page); 5764 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5765 5766 src_offset += cur; 5767 len -= cur; 5768 offset = 0; 5769 i++; 5770 } 5771 } 5772 5773 /* 5774 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5775 * given bit number 5776 * @eb: the extent buffer 5777 * @start: offset of the bitmap item in the extent buffer 5778 * @nr: bit number 5779 * @page_index: return index of the page in the extent buffer that contains the 5780 * given bit number 5781 * @page_offset: return offset into the page given by page_index 5782 * 5783 * This helper hides the ugliness of finding the byte in an extent buffer which 5784 * contains a given bit. 5785 */ 5786 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5787 unsigned long start, unsigned long nr, 5788 unsigned long *page_index, 5789 size_t *page_offset) 5790 { 5791 size_t start_offset = offset_in_page(eb->start); 5792 size_t byte_offset = BIT_BYTE(nr); 5793 size_t offset; 5794 5795 /* 5796 * The byte we want is the offset of the extent buffer + the offset of 5797 * the bitmap item in the extent buffer + the offset of the byte in the 5798 * bitmap item. 5799 */ 5800 offset = start_offset + start + byte_offset; 5801 5802 *page_index = offset >> PAGE_SHIFT; 5803 *page_offset = offset_in_page(offset); 5804 } 5805 5806 /** 5807 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5808 * @eb: the extent buffer 5809 * @start: offset of the bitmap item in the extent buffer 5810 * @nr: bit number to test 5811 */ 5812 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5813 unsigned long nr) 5814 { 5815 u8 *kaddr; 5816 struct page *page; 5817 unsigned long i; 5818 size_t offset; 5819 5820 eb_bitmap_offset(eb, start, nr, &i, &offset); 5821 page = eb->pages[i]; 5822 WARN_ON(!PageUptodate(page)); 5823 kaddr = page_address(page); 5824 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5825 } 5826 5827 /** 5828 * extent_buffer_bitmap_set - set an area of a bitmap 5829 * @eb: the extent buffer 5830 * @start: offset of the bitmap item in the extent buffer 5831 * @pos: bit number of the first bit 5832 * @len: number of bits to set 5833 */ 5834 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5835 unsigned long pos, unsigned long len) 5836 { 5837 u8 *kaddr; 5838 struct page *page; 5839 unsigned long i; 5840 size_t offset; 5841 const unsigned int size = pos + len; 5842 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5843 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5844 5845 eb_bitmap_offset(eb, start, pos, &i, &offset); 5846 page = eb->pages[i]; 5847 WARN_ON(!PageUptodate(page)); 5848 kaddr = page_address(page); 5849 5850 while (len >= bits_to_set) { 5851 kaddr[offset] |= mask_to_set; 5852 len -= bits_to_set; 5853 bits_to_set = BITS_PER_BYTE; 5854 mask_to_set = ~0; 5855 if (++offset >= PAGE_SIZE && len > 0) { 5856 offset = 0; 5857 page = eb->pages[++i]; 5858 WARN_ON(!PageUptodate(page)); 5859 kaddr = page_address(page); 5860 } 5861 } 5862 if (len) { 5863 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5864 kaddr[offset] |= mask_to_set; 5865 } 5866 } 5867 5868 5869 /** 5870 * extent_buffer_bitmap_clear - clear an area of a bitmap 5871 * @eb: the extent buffer 5872 * @start: offset of the bitmap item in the extent buffer 5873 * @pos: bit number of the first bit 5874 * @len: number of bits to clear 5875 */ 5876 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5877 unsigned long pos, unsigned long len) 5878 { 5879 u8 *kaddr; 5880 struct page *page; 5881 unsigned long i; 5882 size_t offset; 5883 const unsigned int size = pos + len; 5884 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5885 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5886 5887 eb_bitmap_offset(eb, start, pos, &i, &offset); 5888 page = eb->pages[i]; 5889 WARN_ON(!PageUptodate(page)); 5890 kaddr = page_address(page); 5891 5892 while (len >= bits_to_clear) { 5893 kaddr[offset] &= ~mask_to_clear; 5894 len -= bits_to_clear; 5895 bits_to_clear = BITS_PER_BYTE; 5896 mask_to_clear = ~0; 5897 if (++offset >= PAGE_SIZE && len > 0) { 5898 offset = 0; 5899 page = eb->pages[++i]; 5900 WARN_ON(!PageUptodate(page)); 5901 kaddr = page_address(page); 5902 } 5903 } 5904 if (len) { 5905 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5906 kaddr[offset] &= ~mask_to_clear; 5907 } 5908 } 5909 5910 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5911 { 5912 unsigned long distance = (src > dst) ? src - dst : dst - src; 5913 return distance < len; 5914 } 5915 5916 static void copy_pages(struct page *dst_page, struct page *src_page, 5917 unsigned long dst_off, unsigned long src_off, 5918 unsigned long len) 5919 { 5920 char *dst_kaddr = page_address(dst_page); 5921 char *src_kaddr; 5922 int must_memmove = 0; 5923 5924 if (dst_page != src_page) { 5925 src_kaddr = page_address(src_page); 5926 } else { 5927 src_kaddr = dst_kaddr; 5928 if (areas_overlap(src_off, dst_off, len)) 5929 must_memmove = 1; 5930 } 5931 5932 if (must_memmove) 5933 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5934 else 5935 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5936 } 5937 5938 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5939 unsigned long src_offset, unsigned long len) 5940 { 5941 struct btrfs_fs_info *fs_info = dst->fs_info; 5942 size_t cur; 5943 size_t dst_off_in_page; 5944 size_t src_off_in_page; 5945 size_t start_offset = offset_in_page(dst->start); 5946 unsigned long dst_i; 5947 unsigned long src_i; 5948 5949 if (src_offset + len > dst->len) { 5950 btrfs_err(fs_info, 5951 "memmove bogus src_offset %lu move len %lu dst len %lu", 5952 src_offset, len, dst->len); 5953 BUG(); 5954 } 5955 if (dst_offset + len > dst->len) { 5956 btrfs_err(fs_info, 5957 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5958 dst_offset, len, dst->len); 5959 BUG(); 5960 } 5961 5962 while (len > 0) { 5963 dst_off_in_page = offset_in_page(start_offset + dst_offset); 5964 src_off_in_page = offset_in_page(start_offset + src_offset); 5965 5966 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5967 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5968 5969 cur = min(len, (unsigned long)(PAGE_SIZE - 5970 src_off_in_page)); 5971 cur = min_t(unsigned long, cur, 5972 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5973 5974 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5975 dst_off_in_page, src_off_in_page, cur); 5976 5977 src_offset += cur; 5978 dst_offset += cur; 5979 len -= cur; 5980 } 5981 } 5982 5983 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5984 unsigned long src_offset, unsigned long len) 5985 { 5986 struct btrfs_fs_info *fs_info = dst->fs_info; 5987 size_t cur; 5988 size_t dst_off_in_page; 5989 size_t src_off_in_page; 5990 unsigned long dst_end = dst_offset + len - 1; 5991 unsigned long src_end = src_offset + len - 1; 5992 size_t start_offset = offset_in_page(dst->start); 5993 unsigned long dst_i; 5994 unsigned long src_i; 5995 5996 if (src_offset + len > dst->len) { 5997 btrfs_err(fs_info, 5998 "memmove bogus src_offset %lu move len %lu len %lu", 5999 src_offset, len, dst->len); 6000 BUG(); 6001 } 6002 if (dst_offset + len > dst->len) { 6003 btrfs_err(fs_info, 6004 "memmove bogus dst_offset %lu move len %lu len %lu", 6005 dst_offset, len, dst->len); 6006 BUG(); 6007 } 6008 if (dst_offset < src_offset) { 6009 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6010 return; 6011 } 6012 while (len > 0) { 6013 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 6014 src_i = (start_offset + src_end) >> PAGE_SHIFT; 6015 6016 dst_off_in_page = offset_in_page(start_offset + dst_end); 6017 src_off_in_page = offset_in_page(start_offset + src_end); 6018 6019 cur = min_t(unsigned long, len, src_off_in_page + 1); 6020 cur = min(cur, dst_off_in_page + 1); 6021 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6022 dst_off_in_page - cur + 1, 6023 src_off_in_page - cur + 1, cur); 6024 6025 dst_end -= cur; 6026 src_end -= cur; 6027 len -= cur; 6028 } 6029 } 6030 6031 int try_release_extent_buffer(struct page *page) 6032 { 6033 struct extent_buffer *eb; 6034 6035 /* 6036 * We need to make sure nobody is attaching this page to an eb right 6037 * now. 6038 */ 6039 spin_lock(&page->mapping->private_lock); 6040 if (!PagePrivate(page)) { 6041 spin_unlock(&page->mapping->private_lock); 6042 return 1; 6043 } 6044 6045 eb = (struct extent_buffer *)page->private; 6046 BUG_ON(!eb); 6047 6048 /* 6049 * This is a little awful but should be ok, we need to make sure that 6050 * the eb doesn't disappear out from under us while we're looking at 6051 * this page. 6052 */ 6053 spin_lock(&eb->refs_lock); 6054 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6055 spin_unlock(&eb->refs_lock); 6056 spin_unlock(&page->mapping->private_lock); 6057 return 0; 6058 } 6059 spin_unlock(&page->mapping->private_lock); 6060 6061 /* 6062 * If tree ref isn't set then we know the ref on this eb is a real ref, 6063 * so just return, this page will likely be freed soon anyway. 6064 */ 6065 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6066 spin_unlock(&eb->refs_lock); 6067 return 0; 6068 } 6069 6070 return release_extent_buffer(eb); 6071 } 6072