1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 185 { 186 struct address_space *mapping = inode->i_mapping; 187 unsigned long index = start >> PAGE_SHIFT; 188 unsigned long end_index = end >> PAGE_SHIFT; 189 struct folio *folio; 190 191 while (index <= end_index) { 192 folio = filemap_get_folio(mapping, index); 193 filemap_dirty_folio(mapping, folio); 194 folio_account_redirty(folio); 195 index += folio_nr_pages(folio); 196 folio_put(folio); 197 } 198 } 199 200 /* 201 * Process one page for __process_pages_contig(). 202 * 203 * Return >0 if we hit @page == @locked_page. 204 * Return 0 if we updated the page status. 205 * Return -EGAIN if the we need to try again. 206 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 207 */ 208 static int process_one_page(struct btrfs_fs_info *fs_info, 209 struct address_space *mapping, 210 struct page *page, struct page *locked_page, 211 unsigned long page_ops, u64 start, u64 end) 212 { 213 u32 len; 214 215 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 216 len = end + 1 - start; 217 218 if (page_ops & PAGE_SET_ORDERED) 219 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 220 if (page_ops & PAGE_START_WRITEBACK) { 221 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 222 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 223 } 224 if (page_ops & PAGE_END_WRITEBACK) 225 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 226 227 if (page == locked_page) 228 return 1; 229 230 if (page_ops & PAGE_LOCK) { 231 int ret; 232 233 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 234 if (ret) 235 return ret; 236 if (!PageDirty(page) || page->mapping != mapping) { 237 btrfs_page_end_writer_lock(fs_info, page, start, len); 238 return -EAGAIN; 239 } 240 } 241 if (page_ops & PAGE_UNLOCK) 242 btrfs_page_end_writer_lock(fs_info, page, start, len); 243 return 0; 244 } 245 246 static int __process_pages_contig(struct address_space *mapping, 247 struct page *locked_page, 248 u64 start, u64 end, unsigned long page_ops, 249 u64 *processed_end) 250 { 251 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 252 pgoff_t start_index = start >> PAGE_SHIFT; 253 pgoff_t end_index = end >> PAGE_SHIFT; 254 pgoff_t index = start_index; 255 unsigned long pages_processed = 0; 256 struct folio_batch fbatch; 257 int err = 0; 258 int i; 259 260 if (page_ops & PAGE_LOCK) { 261 ASSERT(page_ops == PAGE_LOCK); 262 ASSERT(processed_end && *processed_end == start); 263 } 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 int found_folios; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 272 if (found_folios == 0) { 273 /* 274 * Only if we're going to lock these pages, we can find 275 * nothing at @index. 276 */ 277 ASSERT(page_ops & PAGE_LOCK); 278 err = -EAGAIN; 279 goto out; 280 } 281 282 for (i = 0; i < found_folios; i++) { 283 int process_ret; 284 struct folio *folio = fbatch.folios[i]; 285 process_ret = process_one_page(fs_info, mapping, 286 &folio->page, locked_page, page_ops, 287 start, end); 288 if (process_ret < 0) { 289 err = -EAGAIN; 290 folio_batch_release(&fbatch); 291 goto out; 292 } 293 pages_processed += folio_nr_pages(folio); 294 } 295 folio_batch_release(&fbatch); 296 cond_resched(); 297 } 298 out: 299 if (err && processed_end) { 300 /* 301 * Update @processed_end. I know this is awful since it has 302 * two different return value patterns (inclusive vs exclusive). 303 * 304 * But the exclusive pattern is necessary if @start is 0, or we 305 * underflow and check against processed_end won't work as 306 * expected. 307 */ 308 if (pages_processed) 309 *processed_end = min(end, 310 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 311 else 312 *processed_end = start; 313 } 314 return err; 315 } 316 317 static noinline void __unlock_for_delalloc(struct inode *inode, 318 struct page *locked_page, 319 u64 start, u64 end) 320 { 321 unsigned long index = start >> PAGE_SHIFT; 322 unsigned long end_index = end >> PAGE_SHIFT; 323 324 ASSERT(locked_page); 325 if (index == locked_page->index && end_index == index) 326 return; 327 328 __process_pages_contig(inode->i_mapping, locked_page, start, end, 329 PAGE_UNLOCK, NULL); 330 } 331 332 static noinline int lock_delalloc_pages(struct inode *inode, 333 struct page *locked_page, 334 u64 delalloc_start, 335 u64 delalloc_end) 336 { 337 unsigned long index = delalloc_start >> PAGE_SHIFT; 338 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 339 u64 processed_end = delalloc_start; 340 int ret; 341 342 ASSERT(locked_page); 343 if (index == locked_page->index && index == end_index) 344 return 0; 345 346 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 347 delalloc_end, PAGE_LOCK, &processed_end); 348 if (ret == -EAGAIN && processed_end > delalloc_start) 349 __unlock_for_delalloc(inode, locked_page, delalloc_start, 350 processed_end); 351 return ret; 352 } 353 354 /* 355 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 356 * more than @max_bytes. 357 * 358 * @start: The original start bytenr to search. 359 * Will store the extent range start bytenr. 360 * @end: The original end bytenr of the search range 361 * Will store the extent range end bytenr. 362 * 363 * Return true if we find a delalloc range which starts inside the original 364 * range, and @start/@end will store the delalloc range start/end. 365 * 366 * Return false if we can't find any delalloc range which starts inside the 367 * original range, and @start/@end will be the non-delalloc range start/end. 368 */ 369 EXPORT_FOR_TESTS 370 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 371 struct page *locked_page, u64 *start, 372 u64 *end) 373 { 374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 376 const u64 orig_start = *start; 377 const u64 orig_end = *end; 378 /* The sanity tests may not set a valid fs_info. */ 379 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 380 u64 delalloc_start; 381 u64 delalloc_end; 382 bool found; 383 struct extent_state *cached_state = NULL; 384 int ret; 385 int loops = 0; 386 387 /* Caller should pass a valid @end to indicate the search range end */ 388 ASSERT(orig_end > orig_start); 389 390 /* The range should at least cover part of the page */ 391 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 392 orig_end <= page_offset(locked_page))); 393 again: 394 /* step one, find a bunch of delalloc bytes starting at start */ 395 delalloc_start = *start; 396 delalloc_end = 0; 397 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 398 max_bytes, &cached_state); 399 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 400 *start = delalloc_start; 401 402 /* @delalloc_end can be -1, never go beyond @orig_end */ 403 *end = min(delalloc_end, orig_end); 404 free_extent_state(cached_state); 405 return false; 406 } 407 408 /* 409 * start comes from the offset of locked_page. We have to lock 410 * pages in order, so we can't process delalloc bytes before 411 * locked_page 412 */ 413 if (delalloc_start < *start) 414 delalloc_start = *start; 415 416 /* 417 * make sure to limit the number of pages we try to lock down 418 */ 419 if (delalloc_end + 1 - delalloc_start > max_bytes) 420 delalloc_end = delalloc_start + max_bytes - 1; 421 422 /* step two, lock all the pages after the page that has start */ 423 ret = lock_delalloc_pages(inode, locked_page, 424 delalloc_start, delalloc_end); 425 ASSERT(!ret || ret == -EAGAIN); 426 if (ret == -EAGAIN) { 427 /* some of the pages are gone, lets avoid looping by 428 * shortening the size of the delalloc range we're searching 429 */ 430 free_extent_state(cached_state); 431 cached_state = NULL; 432 if (!loops) { 433 max_bytes = PAGE_SIZE; 434 loops = 1; 435 goto again; 436 } else { 437 found = false; 438 goto out_failed; 439 } 440 } 441 442 /* step three, lock the state bits for the whole range */ 443 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 444 445 /* then test to make sure it is all still delalloc */ 446 ret = test_range_bit(tree, delalloc_start, delalloc_end, 447 EXTENT_DELALLOC, 1, cached_state); 448 if (!ret) { 449 unlock_extent(tree, delalloc_start, delalloc_end, 450 &cached_state); 451 __unlock_for_delalloc(inode, locked_page, 452 delalloc_start, delalloc_end); 453 cond_resched(); 454 goto again; 455 } 456 free_extent_state(cached_state); 457 *start = delalloc_start; 458 *end = delalloc_end; 459 out_failed: 460 return found; 461 } 462 463 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 464 struct page *locked_page, 465 u32 clear_bits, unsigned long page_ops) 466 { 467 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 468 469 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 470 start, end, page_ops, NULL); 471 } 472 473 static bool btrfs_verify_page(struct page *page, u64 start) 474 { 475 if (!fsverity_active(page->mapping->host) || 476 PageUptodate(page) || 477 start >= i_size_read(page->mapping->host)) 478 return true; 479 return fsverity_verify_page(page); 480 } 481 482 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 483 { 484 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 485 486 ASSERT(page_offset(page) <= start && 487 start + len <= page_offset(page) + PAGE_SIZE); 488 489 if (uptodate && btrfs_verify_page(page, start)) 490 btrfs_page_set_uptodate(fs_info, page, start, len); 491 else 492 btrfs_page_clear_uptodate(fs_info, page, start, len); 493 494 if (!btrfs_is_subpage(fs_info, page)) 495 unlock_page(page); 496 else 497 btrfs_subpage_end_reader(fs_info, page, start, len); 498 } 499 500 /* lots and lots of room for performance fixes in the end_bio funcs */ 501 502 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 503 { 504 struct btrfs_inode *inode; 505 const bool uptodate = (err == 0); 506 int ret = 0; 507 508 ASSERT(page && page->mapping); 509 inode = BTRFS_I(page->mapping->host); 510 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 511 512 if (!uptodate) { 513 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 514 u32 len; 515 516 ASSERT(end + 1 - start <= U32_MAX); 517 len = end + 1 - start; 518 519 btrfs_page_clear_uptodate(fs_info, page, start, len); 520 ret = err < 0 ? err : -EIO; 521 mapping_set_error(page->mapping, ret); 522 } 523 } 524 525 /* 526 * after a writepage IO is done, we need to: 527 * clear the uptodate bits on error 528 * clear the writeback bits in the extent tree for this IO 529 * end_page_writeback if the page has no more pending IO 530 * 531 * Scheduling is not allowed, so the extent state tree is expected 532 * to have one and only one object corresponding to this IO. 533 */ 534 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 535 { 536 struct bio *bio = &bbio->bio; 537 int error = blk_status_to_errno(bio->bi_status); 538 struct bio_vec *bvec; 539 struct bvec_iter_all iter_all; 540 541 ASSERT(!bio_flagged(bio, BIO_CLONED)); 542 bio_for_each_segment_all(bvec, bio, iter_all) { 543 struct page *page = bvec->bv_page; 544 struct inode *inode = page->mapping->host; 545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 546 const u32 sectorsize = fs_info->sectorsize; 547 u64 start = page_offset(page) + bvec->bv_offset; 548 u32 len = bvec->bv_len; 549 550 /* Our read/write should always be sector aligned. */ 551 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 552 btrfs_err(fs_info, 553 "partial page write in btrfs with offset %u and length %u", 554 bvec->bv_offset, bvec->bv_len); 555 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 556 btrfs_info(fs_info, 557 "incomplete page write with offset %u and length %u", 558 bvec->bv_offset, bvec->bv_len); 559 560 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 561 if (error) { 562 btrfs_page_clear_uptodate(fs_info, page, start, len); 563 mapping_set_error(page->mapping, error); 564 } 565 btrfs_page_clear_writeback(fs_info, page, start, len); 566 } 567 568 bio_put(bio); 569 } 570 571 /* 572 * Record previously processed extent range 573 * 574 * For endio_readpage_release_extent() to handle a full extent range, reducing 575 * the extent io operations. 576 */ 577 struct processed_extent { 578 struct btrfs_inode *inode; 579 /* Start of the range in @inode */ 580 u64 start; 581 /* End of the range in @inode */ 582 u64 end; 583 bool uptodate; 584 }; 585 586 /* 587 * Try to release processed extent range 588 * 589 * May not release the extent range right now if the current range is 590 * contiguous to processed extent. 591 * 592 * Will release processed extent when any of @inode, @uptodate, the range is 593 * no longer contiguous to the processed range. 594 * 595 * Passing @inode == NULL will force processed extent to be released. 596 */ 597 static void endio_readpage_release_extent(struct processed_extent *processed, 598 struct btrfs_inode *inode, u64 start, u64 end, 599 bool uptodate) 600 { 601 struct extent_state *cached = NULL; 602 struct extent_io_tree *tree; 603 604 /* The first extent, initialize @processed */ 605 if (!processed->inode) 606 goto update; 607 608 /* 609 * Contiguous to processed extent, just uptodate the end. 610 * 611 * Several things to notice: 612 * 613 * - bio can be merged as long as on-disk bytenr is contiguous 614 * This means we can have page belonging to other inodes, thus need to 615 * check if the inode still matches. 616 * - bvec can contain range beyond current page for multi-page bvec 617 * Thus we need to do processed->end + 1 >= start check 618 */ 619 if (processed->inode == inode && processed->uptodate == uptodate && 620 processed->end + 1 >= start && end >= processed->end) { 621 processed->end = end; 622 return; 623 } 624 625 tree = &processed->inode->io_tree; 626 /* 627 * Now we don't have range contiguous to the processed range, release 628 * the processed range now. 629 */ 630 unlock_extent(tree, processed->start, processed->end, &cached); 631 632 update: 633 /* Update processed to current range */ 634 processed->inode = inode; 635 processed->start = start; 636 processed->end = end; 637 processed->uptodate = uptodate; 638 } 639 640 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 641 { 642 ASSERT(PageLocked(page)); 643 if (!btrfs_is_subpage(fs_info, page)) 644 return; 645 646 ASSERT(PagePrivate(page)); 647 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 648 } 649 650 /* 651 * after a readpage IO is done, we need to: 652 * clear the uptodate bits on error 653 * set the uptodate bits if things worked 654 * set the page up to date if all extents in the tree are uptodate 655 * clear the lock bit in the extent tree 656 * unlock the page if there are no other extents locked for it 657 * 658 * Scheduling is not allowed, so the extent state tree is expected 659 * to have one and only one object corresponding to this IO. 660 */ 661 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 662 { 663 struct bio *bio = &bbio->bio; 664 struct bio_vec *bvec; 665 struct processed_extent processed = { 0 }; 666 /* 667 * The offset to the beginning of a bio, since one bio can never be 668 * larger than UINT_MAX, u32 here is enough. 669 */ 670 u32 bio_offset = 0; 671 struct bvec_iter_all iter_all; 672 673 ASSERT(!bio_flagged(bio, BIO_CLONED)); 674 bio_for_each_segment_all(bvec, bio, iter_all) { 675 bool uptodate = !bio->bi_status; 676 struct page *page = bvec->bv_page; 677 struct inode *inode = page->mapping->host; 678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 679 const u32 sectorsize = fs_info->sectorsize; 680 u64 start; 681 u64 end; 682 u32 len; 683 684 btrfs_debug(fs_info, 685 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 686 bio->bi_iter.bi_sector, bio->bi_status, 687 bbio->mirror_num); 688 689 /* 690 * We always issue full-sector reads, but if some block in a 691 * page fails to read, blk_update_request() will advance 692 * bv_offset and adjust bv_len to compensate. Print a warning 693 * for unaligned offsets, and an error if they don't add up to 694 * a full sector. 695 */ 696 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 697 btrfs_err(fs_info, 698 "partial page read in btrfs with offset %u and length %u", 699 bvec->bv_offset, bvec->bv_len); 700 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 701 sectorsize)) 702 btrfs_info(fs_info, 703 "incomplete page read with offset %u and length %u", 704 bvec->bv_offset, bvec->bv_len); 705 706 start = page_offset(page) + bvec->bv_offset; 707 end = start + bvec->bv_len - 1; 708 len = bvec->bv_len; 709 710 if (likely(uptodate)) { 711 loff_t i_size = i_size_read(inode); 712 pgoff_t end_index = i_size >> PAGE_SHIFT; 713 714 /* 715 * Zero out the remaining part if this range straddles 716 * i_size. 717 * 718 * Here we should only zero the range inside the bvec, 719 * not touch anything else. 720 * 721 * NOTE: i_size is exclusive while end is inclusive. 722 */ 723 if (page->index == end_index && i_size <= end) { 724 u32 zero_start = max(offset_in_page(i_size), 725 offset_in_page(start)); 726 727 zero_user_segment(page, zero_start, 728 offset_in_page(end) + 1); 729 } 730 } 731 732 /* Update page status and unlock. */ 733 end_page_read(page, uptodate, start, len); 734 endio_readpage_release_extent(&processed, BTRFS_I(inode), 735 start, end, uptodate); 736 737 ASSERT(bio_offset + len > bio_offset); 738 bio_offset += len; 739 740 } 741 /* Release the last extent */ 742 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 743 bio_put(bio); 744 } 745 746 /* 747 * Populate every free slot in a provided array with pages. 748 * 749 * @nr_pages: number of pages to allocate 750 * @page_array: the array to fill with pages; any existing non-null entries in 751 * the array will be skipped 752 * 753 * Return: 0 if all pages were able to be allocated; 754 * -ENOMEM otherwise, and the caller is responsible for freeing all 755 * non-null page pointers in the array. 756 */ 757 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 758 { 759 unsigned int allocated; 760 761 for (allocated = 0; allocated < nr_pages;) { 762 unsigned int last = allocated; 763 764 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 765 766 if (allocated == nr_pages) 767 return 0; 768 769 /* 770 * During this iteration, no page could be allocated, even 771 * though alloc_pages_bulk_array() falls back to alloc_page() 772 * if it could not bulk-allocate. So we must be out of memory. 773 */ 774 if (allocated == last) 775 return -ENOMEM; 776 777 memalloc_retry_wait(GFP_NOFS); 778 } 779 return 0; 780 } 781 782 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 783 struct page *page, u64 disk_bytenr, 784 unsigned int pg_offset) 785 { 786 struct bio *bio = &bio_ctrl->bbio->bio; 787 struct bio_vec *bvec = bio_last_bvec_all(bio); 788 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 789 790 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 791 /* 792 * For compression, all IO should have its logical bytenr set 793 * to the starting bytenr of the compressed extent. 794 */ 795 return bio->bi_iter.bi_sector == sector; 796 } 797 798 /* 799 * The contig check requires the following conditions to be met: 800 * 801 * 1) The pages are belonging to the same inode 802 * This is implied by the call chain. 803 * 804 * 2) The range has adjacent logical bytenr 805 * 806 * 3) The range has adjacent file offset 807 * This is required for the usage of btrfs_bio->file_offset. 808 */ 809 return bio_end_sector(bio) == sector && 810 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 811 page_offset(page) + pg_offset; 812 } 813 814 static void alloc_new_bio(struct btrfs_inode *inode, 815 struct btrfs_bio_ctrl *bio_ctrl, 816 u64 disk_bytenr, u64 file_offset) 817 { 818 struct btrfs_fs_info *fs_info = inode->root->fs_info; 819 struct btrfs_bio *bbio; 820 821 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 822 bio_ctrl->end_io_func, NULL); 823 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 824 bbio->inode = inode; 825 bbio->file_offset = file_offset; 826 bio_ctrl->bbio = bbio; 827 bio_ctrl->len_to_oe_boundary = U32_MAX; 828 829 /* Limit data write bios to the ordered boundary. */ 830 if (bio_ctrl->wbc) { 831 struct btrfs_ordered_extent *ordered; 832 833 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 834 if (ordered) { 835 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 836 ordered->file_offset + 837 ordered->disk_num_bytes - file_offset); 838 bbio->ordered = ordered; 839 } 840 841 /* 842 * Pick the last added device to support cgroup writeback. For 843 * multi-device file systems this means blk-cgroup policies have 844 * to always be set on the last added/replaced device. 845 * This is a bit odd but has been like that for a long time. 846 */ 847 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 848 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 849 } 850 } 851 852 /* 853 * @disk_bytenr: logical bytenr where the write will be 854 * @page: page to add to the bio 855 * @size: portion of page that we want to write to 856 * @pg_offset: offset of the new bio or to check whether we are adding 857 * a contiguous page to the previous one 858 * 859 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 860 * new one in @bio_ctrl->bbio. 861 * The mirror number for this IO should already be initizlied in 862 * @bio_ctrl->mirror_num. 863 */ 864 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 865 u64 disk_bytenr, struct page *page, 866 size_t size, unsigned long pg_offset) 867 { 868 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 869 870 ASSERT(pg_offset + size <= PAGE_SIZE); 871 ASSERT(bio_ctrl->end_io_func); 872 873 if (bio_ctrl->bbio && 874 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 875 submit_one_bio(bio_ctrl); 876 877 do { 878 u32 len = size; 879 880 /* Allocate new bio if needed */ 881 if (!bio_ctrl->bbio) { 882 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 883 page_offset(page) + pg_offset); 884 } 885 886 /* Cap to the current ordered extent boundary if there is one. */ 887 if (len > bio_ctrl->len_to_oe_boundary) { 888 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 889 ASSERT(is_data_inode(&inode->vfs_inode)); 890 len = bio_ctrl->len_to_oe_boundary; 891 } 892 893 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 894 /* bio full: move on to a new one */ 895 submit_one_bio(bio_ctrl); 896 continue; 897 } 898 899 if (bio_ctrl->wbc) 900 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 901 902 size -= len; 903 pg_offset += len; 904 disk_bytenr += len; 905 bio_ctrl->len_to_oe_boundary -= len; 906 907 /* Ordered extent boundary: move on to a new bio. */ 908 if (bio_ctrl->len_to_oe_boundary == 0) 909 submit_one_bio(bio_ctrl); 910 } while (size); 911 } 912 913 static int attach_extent_buffer_page(struct extent_buffer *eb, 914 struct page *page, 915 struct btrfs_subpage *prealloc) 916 { 917 struct btrfs_fs_info *fs_info = eb->fs_info; 918 int ret = 0; 919 920 /* 921 * If the page is mapped to btree inode, we should hold the private 922 * lock to prevent race. 923 * For cloned or dummy extent buffers, their pages are not mapped and 924 * will not race with any other ebs. 925 */ 926 if (page->mapping) 927 lockdep_assert_held(&page->mapping->private_lock); 928 929 if (fs_info->nodesize >= PAGE_SIZE) { 930 if (!PagePrivate(page)) 931 attach_page_private(page, eb); 932 else 933 WARN_ON(page->private != (unsigned long)eb); 934 return 0; 935 } 936 937 /* Already mapped, just free prealloc */ 938 if (PagePrivate(page)) { 939 btrfs_free_subpage(prealloc); 940 return 0; 941 } 942 943 if (prealloc) 944 /* Has preallocated memory for subpage */ 945 attach_page_private(page, prealloc); 946 else 947 /* Do new allocation to attach subpage */ 948 ret = btrfs_attach_subpage(fs_info, page, 949 BTRFS_SUBPAGE_METADATA); 950 return ret; 951 } 952 953 int set_page_extent_mapped(struct page *page) 954 { 955 struct btrfs_fs_info *fs_info; 956 957 ASSERT(page->mapping); 958 959 if (PagePrivate(page)) 960 return 0; 961 962 fs_info = btrfs_sb(page->mapping->host->i_sb); 963 964 if (btrfs_is_subpage(fs_info, page)) 965 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 966 967 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 968 return 0; 969 } 970 971 void clear_page_extent_mapped(struct page *page) 972 { 973 struct btrfs_fs_info *fs_info; 974 975 ASSERT(page->mapping); 976 977 if (!PagePrivate(page)) 978 return; 979 980 fs_info = btrfs_sb(page->mapping->host->i_sb); 981 if (btrfs_is_subpage(fs_info, page)) 982 return btrfs_detach_subpage(fs_info, page); 983 984 detach_page_private(page); 985 } 986 987 static struct extent_map * 988 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 989 u64 start, u64 len, struct extent_map **em_cached) 990 { 991 struct extent_map *em; 992 993 if (em_cached && *em_cached) { 994 em = *em_cached; 995 if (extent_map_in_tree(em) && start >= em->start && 996 start < extent_map_end(em)) { 997 refcount_inc(&em->refs); 998 return em; 999 } 1000 1001 free_extent_map(em); 1002 *em_cached = NULL; 1003 } 1004 1005 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1006 if (em_cached && !IS_ERR(em)) { 1007 BUG_ON(*em_cached); 1008 refcount_inc(&em->refs); 1009 *em_cached = em; 1010 } 1011 return em; 1012 } 1013 /* 1014 * basic readpage implementation. Locked extent state structs are inserted 1015 * into the tree that are removed when the IO is done (by the end_io 1016 * handlers) 1017 * XXX JDM: This needs looking at to ensure proper page locking 1018 * return 0 on success, otherwise return error 1019 */ 1020 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1021 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1022 { 1023 struct inode *inode = page->mapping->host; 1024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1025 u64 start = page_offset(page); 1026 const u64 end = start + PAGE_SIZE - 1; 1027 u64 cur = start; 1028 u64 extent_offset; 1029 u64 last_byte = i_size_read(inode); 1030 u64 block_start; 1031 struct extent_map *em; 1032 int ret = 0; 1033 size_t pg_offset = 0; 1034 size_t iosize; 1035 size_t blocksize = inode->i_sb->s_blocksize; 1036 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1037 1038 ret = set_page_extent_mapped(page); 1039 if (ret < 0) { 1040 unlock_extent(tree, start, end, NULL); 1041 unlock_page(page); 1042 return ret; 1043 } 1044 1045 if (page->index == last_byte >> PAGE_SHIFT) { 1046 size_t zero_offset = offset_in_page(last_byte); 1047 1048 if (zero_offset) { 1049 iosize = PAGE_SIZE - zero_offset; 1050 memzero_page(page, zero_offset, iosize); 1051 } 1052 } 1053 bio_ctrl->end_io_func = end_bio_extent_readpage; 1054 begin_page_read(fs_info, page); 1055 while (cur <= end) { 1056 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1057 bool force_bio_submit = false; 1058 u64 disk_bytenr; 1059 1060 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1061 if (cur >= last_byte) { 1062 iosize = PAGE_SIZE - pg_offset; 1063 memzero_page(page, pg_offset, iosize); 1064 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1065 end_page_read(page, true, cur, iosize); 1066 break; 1067 } 1068 em = __get_extent_map(inode, page, pg_offset, cur, 1069 end - cur + 1, em_cached); 1070 if (IS_ERR(em)) { 1071 unlock_extent(tree, cur, end, NULL); 1072 end_page_read(page, false, cur, end + 1 - cur); 1073 return PTR_ERR(em); 1074 } 1075 extent_offset = cur - em->start; 1076 BUG_ON(extent_map_end(em) <= cur); 1077 BUG_ON(end < cur); 1078 1079 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1080 compress_type = em->compress_type; 1081 1082 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1083 iosize = ALIGN(iosize, blocksize); 1084 if (compress_type != BTRFS_COMPRESS_NONE) 1085 disk_bytenr = em->block_start; 1086 else 1087 disk_bytenr = em->block_start + extent_offset; 1088 block_start = em->block_start; 1089 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1090 block_start = EXTENT_MAP_HOLE; 1091 1092 /* 1093 * If we have a file range that points to a compressed extent 1094 * and it's followed by a consecutive file range that points 1095 * to the same compressed extent (possibly with a different 1096 * offset and/or length, so it either points to the whole extent 1097 * or only part of it), we must make sure we do not submit a 1098 * single bio to populate the pages for the 2 ranges because 1099 * this makes the compressed extent read zero out the pages 1100 * belonging to the 2nd range. Imagine the following scenario: 1101 * 1102 * File layout 1103 * [0 - 8K] [8K - 24K] 1104 * | | 1105 * | | 1106 * points to extent X, points to extent X, 1107 * offset 4K, length of 8K offset 0, length 16K 1108 * 1109 * [extent X, compressed length = 4K uncompressed length = 16K] 1110 * 1111 * If the bio to read the compressed extent covers both ranges, 1112 * it will decompress extent X into the pages belonging to the 1113 * first range and then it will stop, zeroing out the remaining 1114 * pages that belong to the other range that points to extent X. 1115 * So here we make sure we submit 2 bios, one for the first 1116 * range and another one for the third range. Both will target 1117 * the same physical extent from disk, but we can't currently 1118 * make the compressed bio endio callback populate the pages 1119 * for both ranges because each compressed bio is tightly 1120 * coupled with a single extent map, and each range can have 1121 * an extent map with a different offset value relative to the 1122 * uncompressed data of our extent and different lengths. This 1123 * is a corner case so we prioritize correctness over 1124 * non-optimal behavior (submitting 2 bios for the same extent). 1125 */ 1126 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1127 prev_em_start && *prev_em_start != (u64)-1 && 1128 *prev_em_start != em->start) 1129 force_bio_submit = true; 1130 1131 if (prev_em_start) 1132 *prev_em_start = em->start; 1133 1134 free_extent_map(em); 1135 em = NULL; 1136 1137 /* we've found a hole, just zero and go on */ 1138 if (block_start == EXTENT_MAP_HOLE) { 1139 memzero_page(page, pg_offset, iosize); 1140 1141 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1142 end_page_read(page, true, cur, iosize); 1143 cur = cur + iosize; 1144 pg_offset += iosize; 1145 continue; 1146 } 1147 /* the get_extent function already copied into the page */ 1148 if (block_start == EXTENT_MAP_INLINE) { 1149 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1150 end_page_read(page, true, cur, iosize); 1151 cur = cur + iosize; 1152 pg_offset += iosize; 1153 continue; 1154 } 1155 1156 if (bio_ctrl->compress_type != compress_type) { 1157 submit_one_bio(bio_ctrl); 1158 bio_ctrl->compress_type = compress_type; 1159 } 1160 1161 if (force_bio_submit) 1162 submit_one_bio(bio_ctrl); 1163 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1164 pg_offset); 1165 cur = cur + iosize; 1166 pg_offset += iosize; 1167 } 1168 1169 return 0; 1170 } 1171 1172 int btrfs_read_folio(struct file *file, struct folio *folio) 1173 { 1174 struct page *page = &folio->page; 1175 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1176 u64 start = page_offset(page); 1177 u64 end = start + PAGE_SIZE - 1; 1178 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1179 int ret; 1180 1181 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1182 1183 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1184 /* 1185 * If btrfs_do_readpage() failed we will want to submit the assembled 1186 * bio to do the cleanup. 1187 */ 1188 submit_one_bio(&bio_ctrl); 1189 return ret; 1190 } 1191 1192 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1193 u64 start, u64 end, 1194 struct extent_map **em_cached, 1195 struct btrfs_bio_ctrl *bio_ctrl, 1196 u64 *prev_em_start) 1197 { 1198 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1199 int index; 1200 1201 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1202 1203 for (index = 0; index < nr_pages; index++) { 1204 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1205 prev_em_start); 1206 put_page(pages[index]); 1207 } 1208 } 1209 1210 /* 1211 * helper for __extent_writepage, doing all of the delayed allocation setup. 1212 * 1213 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1214 * to write the page (copy into inline extent). In this case the IO has 1215 * been started and the page is already unlocked. 1216 * 1217 * This returns 0 if all went well (page still locked) 1218 * This returns < 0 if there were errors (page still locked) 1219 */ 1220 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1221 struct page *page, struct writeback_control *wbc) 1222 { 1223 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1224 u64 delalloc_start = page_offset(page); 1225 u64 delalloc_to_write = 0; 1226 /* How many pages are started by btrfs_run_delalloc_range() */ 1227 unsigned long nr_written = 0; 1228 int ret; 1229 int page_started = 0; 1230 1231 while (delalloc_start < page_end) { 1232 u64 delalloc_end = page_end; 1233 bool found; 1234 1235 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1236 &delalloc_start, 1237 &delalloc_end); 1238 if (!found) { 1239 delalloc_start = delalloc_end + 1; 1240 continue; 1241 } 1242 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1243 delalloc_end, &page_started, &nr_written, wbc); 1244 if (ret) 1245 return ret; 1246 1247 /* 1248 * delalloc_end is already one less than the total length, so 1249 * we don't subtract one from PAGE_SIZE 1250 */ 1251 delalloc_to_write += (delalloc_end - delalloc_start + 1252 PAGE_SIZE) >> PAGE_SHIFT; 1253 delalloc_start = delalloc_end + 1; 1254 } 1255 if (wbc->nr_to_write < delalloc_to_write) { 1256 int thresh = 8192; 1257 1258 if (delalloc_to_write < thresh * 2) 1259 thresh = delalloc_to_write; 1260 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1261 thresh); 1262 } 1263 1264 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1265 if (page_started) { 1266 /* 1267 * We've unlocked the page, so we can't update the mapping's 1268 * writeback index, just update nr_to_write. 1269 */ 1270 wbc->nr_to_write -= nr_written; 1271 return 1; 1272 } 1273 1274 return 0; 1275 } 1276 1277 /* 1278 * Find the first byte we need to write. 1279 * 1280 * For subpage, one page can contain several sectors, and 1281 * __extent_writepage_io() will just grab all extent maps in the page 1282 * range and try to submit all non-inline/non-compressed extents. 1283 * 1284 * This is a big problem for subpage, we shouldn't re-submit already written 1285 * data at all. 1286 * This function will lookup subpage dirty bit to find which range we really 1287 * need to submit. 1288 * 1289 * Return the next dirty range in [@start, @end). 1290 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1291 */ 1292 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1293 struct page *page, u64 *start, u64 *end) 1294 { 1295 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1296 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1297 u64 orig_start = *start; 1298 /* Declare as unsigned long so we can use bitmap ops */ 1299 unsigned long flags; 1300 int range_start_bit; 1301 int range_end_bit; 1302 1303 /* 1304 * For regular sector size == page size case, since one page only 1305 * contains one sector, we return the page offset directly. 1306 */ 1307 if (!btrfs_is_subpage(fs_info, page)) { 1308 *start = page_offset(page); 1309 *end = page_offset(page) + PAGE_SIZE; 1310 return; 1311 } 1312 1313 range_start_bit = spi->dirty_offset + 1314 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1315 1316 /* We should have the page locked, but just in case */ 1317 spin_lock_irqsave(&subpage->lock, flags); 1318 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1319 spi->dirty_offset + spi->bitmap_nr_bits); 1320 spin_unlock_irqrestore(&subpage->lock, flags); 1321 1322 range_start_bit -= spi->dirty_offset; 1323 range_end_bit -= spi->dirty_offset; 1324 1325 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1326 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1327 } 1328 1329 /* 1330 * helper for __extent_writepage. This calls the writepage start hooks, 1331 * and does the loop to map the page into extents and bios. 1332 * 1333 * We return 1 if the IO is started and the page is unlocked, 1334 * 0 if all went well (page still locked) 1335 * < 0 if there were errors (page still locked) 1336 */ 1337 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1338 struct page *page, 1339 struct btrfs_bio_ctrl *bio_ctrl, 1340 loff_t i_size, 1341 int *nr_ret) 1342 { 1343 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1344 u64 cur = page_offset(page); 1345 u64 end = cur + PAGE_SIZE - 1; 1346 u64 extent_offset; 1347 u64 block_start; 1348 struct extent_map *em; 1349 int ret = 0; 1350 int nr = 0; 1351 1352 ret = btrfs_writepage_cow_fixup(page); 1353 if (ret) { 1354 /* Fixup worker will requeue */ 1355 redirty_page_for_writepage(bio_ctrl->wbc, page); 1356 unlock_page(page); 1357 return 1; 1358 } 1359 1360 bio_ctrl->end_io_func = end_bio_extent_writepage; 1361 while (cur <= end) { 1362 u64 disk_bytenr; 1363 u64 em_end; 1364 u64 dirty_range_start = cur; 1365 u64 dirty_range_end; 1366 u32 iosize; 1367 1368 if (cur >= i_size) { 1369 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1370 end, true); 1371 /* 1372 * This range is beyond i_size, thus we don't need to 1373 * bother writing back. 1374 * But we still need to clear the dirty subpage bit, or 1375 * the next time the page gets dirtied, we will try to 1376 * writeback the sectors with subpage dirty bits, 1377 * causing writeback without ordered extent. 1378 */ 1379 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 1380 break; 1381 } 1382 1383 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1384 &dirty_range_end); 1385 if (cur < dirty_range_start) { 1386 cur = dirty_range_start; 1387 continue; 1388 } 1389 1390 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 1391 if (IS_ERR(em)) { 1392 ret = PTR_ERR_OR_ZERO(em); 1393 goto out_error; 1394 } 1395 1396 extent_offset = cur - em->start; 1397 em_end = extent_map_end(em); 1398 ASSERT(cur <= em_end); 1399 ASSERT(cur < end); 1400 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1401 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1402 1403 block_start = em->block_start; 1404 disk_bytenr = em->block_start + extent_offset; 1405 1406 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1407 ASSERT(block_start != EXTENT_MAP_HOLE); 1408 ASSERT(block_start != EXTENT_MAP_INLINE); 1409 1410 /* 1411 * Note that em_end from extent_map_end() and dirty_range_end from 1412 * find_next_dirty_byte() are all exclusive 1413 */ 1414 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1415 free_extent_map(em); 1416 em = NULL; 1417 1418 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1419 if (!PageWriteback(page)) { 1420 btrfs_err(inode->root->fs_info, 1421 "page %lu not writeback, cur %llu end %llu", 1422 page->index, cur, end); 1423 } 1424 1425 /* 1426 * Although the PageDirty bit is cleared before entering this 1427 * function, subpage dirty bit is not cleared. 1428 * So clear subpage dirty bit here so next time we won't submit 1429 * page for range already written to disk. 1430 */ 1431 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1432 1433 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1434 cur - page_offset(page)); 1435 cur += iosize; 1436 nr++; 1437 } 1438 1439 btrfs_page_assert_not_dirty(fs_info, page); 1440 *nr_ret = nr; 1441 return 0; 1442 1443 out_error: 1444 /* 1445 * If we finish without problem, we should not only clear page dirty, 1446 * but also empty subpage dirty bits 1447 */ 1448 *nr_ret = nr; 1449 return ret; 1450 } 1451 1452 /* 1453 * the writepage semantics are similar to regular writepage. extent 1454 * records are inserted to lock ranges in the tree, and as dirty areas 1455 * are found, they are marked writeback. Then the lock bits are removed 1456 * and the end_io handler clears the writeback ranges 1457 * 1458 * Return 0 if everything goes well. 1459 * Return <0 for error. 1460 */ 1461 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1462 { 1463 struct folio *folio = page_folio(page); 1464 struct inode *inode = page->mapping->host; 1465 const u64 page_start = page_offset(page); 1466 const u64 page_end = page_start + PAGE_SIZE - 1; 1467 int ret; 1468 int nr = 0; 1469 size_t pg_offset; 1470 loff_t i_size = i_size_read(inode); 1471 unsigned long end_index = i_size >> PAGE_SHIFT; 1472 1473 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1474 1475 WARN_ON(!PageLocked(page)); 1476 1477 pg_offset = offset_in_page(i_size); 1478 if (page->index > end_index || 1479 (page->index == end_index && !pg_offset)) { 1480 folio_invalidate(folio, 0, folio_size(folio)); 1481 folio_unlock(folio); 1482 return 0; 1483 } 1484 1485 if (page->index == end_index) 1486 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1487 1488 ret = set_page_extent_mapped(page); 1489 if (ret < 0) 1490 goto done; 1491 1492 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1493 if (ret == 1) 1494 return 0; 1495 if (ret) 1496 goto done; 1497 1498 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1499 if (ret == 1) 1500 return 0; 1501 1502 bio_ctrl->wbc->nr_to_write--; 1503 1504 done: 1505 if (nr == 0) { 1506 /* make sure the mapping tag for page dirty gets cleared */ 1507 set_page_writeback(page); 1508 end_page_writeback(page); 1509 } 1510 if (ret) 1511 end_extent_writepage(page, ret, page_start, page_end); 1512 unlock_page(page); 1513 ASSERT(ret <= 0); 1514 return ret; 1515 } 1516 1517 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1518 { 1519 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1520 TASK_UNINTERRUPTIBLE); 1521 } 1522 1523 /* 1524 * Lock extent buffer status and pages for writeback. 1525 * 1526 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1527 * extent buffer is not dirty) 1528 * Return %true is the extent buffer is submitted to bio. 1529 */ 1530 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1531 struct writeback_control *wbc) 1532 { 1533 struct btrfs_fs_info *fs_info = eb->fs_info; 1534 bool ret = false; 1535 1536 btrfs_tree_lock(eb); 1537 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1538 btrfs_tree_unlock(eb); 1539 if (wbc->sync_mode != WB_SYNC_ALL) 1540 return false; 1541 wait_on_extent_buffer_writeback(eb); 1542 btrfs_tree_lock(eb); 1543 } 1544 1545 /* 1546 * We need to do this to prevent races in people who check if the eb is 1547 * under IO since we can end up having no IO bits set for a short period 1548 * of time. 1549 */ 1550 spin_lock(&eb->refs_lock); 1551 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1552 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1553 spin_unlock(&eb->refs_lock); 1554 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1555 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1556 -eb->len, 1557 fs_info->dirty_metadata_batch); 1558 ret = true; 1559 } else { 1560 spin_unlock(&eb->refs_lock); 1561 } 1562 btrfs_tree_unlock(eb); 1563 return ret; 1564 } 1565 1566 static void set_btree_ioerr(struct extent_buffer *eb) 1567 { 1568 struct btrfs_fs_info *fs_info = eb->fs_info; 1569 1570 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1571 1572 /* 1573 * A read may stumble upon this buffer later, make sure that it gets an 1574 * error and knows there was an error. 1575 */ 1576 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1577 1578 /* 1579 * We need to set the mapping with the io error as well because a write 1580 * error will flip the file system readonly, and then syncfs() will 1581 * return a 0 because we are readonly if we don't modify the err seq for 1582 * the superblock. 1583 */ 1584 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1585 1586 /* 1587 * If writeback for a btree extent that doesn't belong to a log tree 1588 * failed, increment the counter transaction->eb_write_errors. 1589 * We do this because while the transaction is running and before it's 1590 * committing (when we call filemap_fdata[write|wait]_range against 1591 * the btree inode), we might have 1592 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1593 * returns an error or an error happens during writeback, when we're 1594 * committing the transaction we wouldn't know about it, since the pages 1595 * can be no longer dirty nor marked anymore for writeback (if a 1596 * subsequent modification to the extent buffer didn't happen before the 1597 * transaction commit), which makes filemap_fdata[write|wait]_range not 1598 * able to find the pages tagged with SetPageError at transaction 1599 * commit time. So if this happens we must abort the transaction, 1600 * otherwise we commit a super block with btree roots that point to 1601 * btree nodes/leafs whose content on disk is invalid - either garbage 1602 * or the content of some node/leaf from a past generation that got 1603 * cowed or deleted and is no longer valid. 1604 * 1605 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1606 * not be enough - we need to distinguish between log tree extents vs 1607 * non-log tree extents, and the next filemap_fdatawait_range() call 1608 * will catch and clear such errors in the mapping - and that call might 1609 * be from a log sync and not from a transaction commit. Also, checking 1610 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1611 * not done and would not be reliable - the eb might have been released 1612 * from memory and reading it back again means that flag would not be 1613 * set (since it's a runtime flag, not persisted on disk). 1614 * 1615 * Using the flags below in the btree inode also makes us achieve the 1616 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1617 * writeback for all dirty pages and before filemap_fdatawait_range() 1618 * is called, the writeback for all dirty pages had already finished 1619 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1620 * filemap_fdatawait_range() would return success, as it could not know 1621 * that writeback errors happened (the pages were no longer tagged for 1622 * writeback). 1623 */ 1624 switch (eb->log_index) { 1625 case -1: 1626 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1627 break; 1628 case 0: 1629 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1630 break; 1631 case 1: 1632 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1633 break; 1634 default: 1635 BUG(); /* unexpected, logic error */ 1636 } 1637 } 1638 1639 /* 1640 * The endio specific version which won't touch any unsafe spinlock in endio 1641 * context. 1642 */ 1643 static struct extent_buffer *find_extent_buffer_nolock( 1644 struct btrfs_fs_info *fs_info, u64 start) 1645 { 1646 struct extent_buffer *eb; 1647 1648 rcu_read_lock(); 1649 eb = radix_tree_lookup(&fs_info->buffer_radix, 1650 start >> fs_info->sectorsize_bits); 1651 if (eb && atomic_inc_not_zero(&eb->refs)) { 1652 rcu_read_unlock(); 1653 return eb; 1654 } 1655 rcu_read_unlock(); 1656 return NULL; 1657 } 1658 1659 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1660 { 1661 struct extent_buffer *eb = bbio->private; 1662 struct btrfs_fs_info *fs_info = eb->fs_info; 1663 bool uptodate = !bbio->bio.bi_status; 1664 struct bvec_iter_all iter_all; 1665 struct bio_vec *bvec; 1666 u32 bio_offset = 0; 1667 1668 if (!uptodate) 1669 set_btree_ioerr(eb); 1670 1671 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1672 u64 start = eb->start + bio_offset; 1673 struct page *page = bvec->bv_page; 1674 u32 len = bvec->bv_len; 1675 1676 if (!uptodate) 1677 btrfs_page_clear_uptodate(fs_info, page, start, len); 1678 btrfs_page_clear_writeback(fs_info, page, start, len); 1679 bio_offset += len; 1680 } 1681 1682 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1683 smp_mb__after_atomic(); 1684 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1685 1686 bio_put(&bbio->bio); 1687 } 1688 1689 static void prepare_eb_write(struct extent_buffer *eb) 1690 { 1691 u32 nritems; 1692 unsigned long start; 1693 unsigned long end; 1694 1695 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1696 1697 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1698 nritems = btrfs_header_nritems(eb); 1699 if (btrfs_header_level(eb) > 0) { 1700 end = btrfs_node_key_ptr_offset(eb, nritems); 1701 memzero_extent_buffer(eb, end, eb->len - end); 1702 } else { 1703 /* 1704 * Leaf: 1705 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1706 */ 1707 start = btrfs_item_nr_offset(eb, nritems); 1708 end = btrfs_item_nr_offset(eb, 0); 1709 if (nritems == 0) 1710 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1711 else 1712 end += btrfs_item_offset(eb, nritems - 1); 1713 memzero_extent_buffer(eb, start, end - start); 1714 } 1715 } 1716 1717 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1718 struct writeback_control *wbc) 1719 { 1720 struct btrfs_fs_info *fs_info = eb->fs_info; 1721 struct btrfs_bio *bbio; 1722 1723 prepare_eb_write(eb); 1724 1725 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1726 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1727 eb->fs_info, extent_buffer_write_end_io, eb); 1728 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1729 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1730 wbc_init_bio(wbc, &bbio->bio); 1731 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1732 bbio->file_offset = eb->start; 1733 if (fs_info->nodesize < PAGE_SIZE) { 1734 struct page *p = eb->pages[0]; 1735 1736 lock_page(p); 1737 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1738 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1739 eb->len)) { 1740 clear_page_dirty_for_io(p); 1741 wbc->nr_to_write--; 1742 } 1743 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1744 wbc_account_cgroup_owner(wbc, p, eb->len); 1745 unlock_page(p); 1746 } else { 1747 for (int i = 0; i < num_extent_pages(eb); i++) { 1748 struct page *p = eb->pages[i]; 1749 1750 lock_page(p); 1751 clear_page_dirty_for_io(p); 1752 set_page_writeback(p); 1753 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1754 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1755 wbc->nr_to_write--; 1756 unlock_page(p); 1757 } 1758 } 1759 btrfs_submit_bio(bbio, 0); 1760 } 1761 1762 /* 1763 * Submit one subpage btree page. 1764 * 1765 * The main difference to submit_eb_page() is: 1766 * - Page locking 1767 * For subpage, we don't rely on page locking at all. 1768 * 1769 * - Flush write bio 1770 * We only flush bio if we may be unable to fit current extent buffers into 1771 * current bio. 1772 * 1773 * Return >=0 for the number of submitted extent buffers. 1774 * Return <0 for fatal error. 1775 */ 1776 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1777 { 1778 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1779 int submitted = 0; 1780 u64 page_start = page_offset(page); 1781 int bit_start = 0; 1782 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1783 1784 /* Lock and write each dirty extent buffers in the range */ 1785 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1786 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1787 struct extent_buffer *eb; 1788 unsigned long flags; 1789 u64 start; 1790 1791 /* 1792 * Take private lock to ensure the subpage won't be detached 1793 * in the meantime. 1794 */ 1795 spin_lock(&page->mapping->private_lock); 1796 if (!PagePrivate(page)) { 1797 spin_unlock(&page->mapping->private_lock); 1798 break; 1799 } 1800 spin_lock_irqsave(&subpage->lock, flags); 1801 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1802 subpage->bitmaps)) { 1803 spin_unlock_irqrestore(&subpage->lock, flags); 1804 spin_unlock(&page->mapping->private_lock); 1805 bit_start++; 1806 continue; 1807 } 1808 1809 start = page_start + bit_start * fs_info->sectorsize; 1810 bit_start += sectors_per_node; 1811 1812 /* 1813 * Here we just want to grab the eb without touching extra 1814 * spin locks, so call find_extent_buffer_nolock(). 1815 */ 1816 eb = find_extent_buffer_nolock(fs_info, start); 1817 spin_unlock_irqrestore(&subpage->lock, flags); 1818 spin_unlock(&page->mapping->private_lock); 1819 1820 /* 1821 * The eb has already reached 0 refs thus find_extent_buffer() 1822 * doesn't return it. We don't need to write back such eb 1823 * anyway. 1824 */ 1825 if (!eb) 1826 continue; 1827 1828 if (lock_extent_buffer_for_io(eb, wbc)) { 1829 write_one_eb(eb, wbc); 1830 submitted++; 1831 } 1832 free_extent_buffer(eb); 1833 } 1834 return submitted; 1835 } 1836 1837 /* 1838 * Submit all page(s) of one extent buffer. 1839 * 1840 * @page: the page of one extent buffer 1841 * @eb_context: to determine if we need to submit this page, if current page 1842 * belongs to this eb, we don't need to submit 1843 * 1844 * The caller should pass each page in their bytenr order, and here we use 1845 * @eb_context to determine if we have submitted pages of one extent buffer. 1846 * 1847 * If we have, we just skip until we hit a new page that doesn't belong to 1848 * current @eb_context. 1849 * 1850 * If not, we submit all the page(s) of the extent buffer. 1851 * 1852 * Return >0 if we have submitted the extent buffer successfully. 1853 * Return 0 if we don't need to submit the page, as it's already submitted by 1854 * previous call. 1855 * Return <0 for fatal error. 1856 */ 1857 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 1858 struct extent_buffer **eb_context) 1859 { 1860 struct address_space *mapping = page->mapping; 1861 struct btrfs_block_group *cache = NULL; 1862 struct extent_buffer *eb; 1863 int ret; 1864 1865 if (!PagePrivate(page)) 1866 return 0; 1867 1868 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1869 return submit_eb_subpage(page, wbc); 1870 1871 spin_lock(&mapping->private_lock); 1872 if (!PagePrivate(page)) { 1873 spin_unlock(&mapping->private_lock); 1874 return 0; 1875 } 1876 1877 eb = (struct extent_buffer *)page->private; 1878 1879 /* 1880 * Shouldn't happen and normally this would be a BUG_ON but no point 1881 * crashing the machine for something we can survive anyway. 1882 */ 1883 if (WARN_ON(!eb)) { 1884 spin_unlock(&mapping->private_lock); 1885 return 0; 1886 } 1887 1888 if (eb == *eb_context) { 1889 spin_unlock(&mapping->private_lock); 1890 return 0; 1891 } 1892 ret = atomic_inc_not_zero(&eb->refs); 1893 spin_unlock(&mapping->private_lock); 1894 if (!ret) 1895 return 0; 1896 1897 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 1898 /* 1899 * If for_sync, this hole will be filled with 1900 * trasnsaction commit. 1901 */ 1902 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1903 ret = -EAGAIN; 1904 else 1905 ret = 0; 1906 free_extent_buffer(eb); 1907 return ret; 1908 } 1909 1910 *eb_context = eb; 1911 1912 if (!lock_extent_buffer_for_io(eb, wbc)) { 1913 btrfs_revert_meta_write_pointer(cache, eb); 1914 if (cache) 1915 btrfs_put_block_group(cache); 1916 free_extent_buffer(eb); 1917 return 0; 1918 } 1919 if (cache) { 1920 /* 1921 * Implies write in zoned mode. Mark the last eb in a block group. 1922 */ 1923 btrfs_schedule_zone_finish_bg(cache, eb); 1924 btrfs_put_block_group(cache); 1925 } 1926 write_one_eb(eb, wbc); 1927 free_extent_buffer(eb); 1928 return 1; 1929 } 1930 1931 int btree_write_cache_pages(struct address_space *mapping, 1932 struct writeback_control *wbc) 1933 { 1934 struct extent_buffer *eb_context = NULL; 1935 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1936 int ret = 0; 1937 int done = 0; 1938 int nr_to_write_done = 0; 1939 struct folio_batch fbatch; 1940 unsigned int nr_folios; 1941 pgoff_t index; 1942 pgoff_t end; /* Inclusive */ 1943 int scanned = 0; 1944 xa_mark_t tag; 1945 1946 folio_batch_init(&fbatch); 1947 if (wbc->range_cyclic) { 1948 index = mapping->writeback_index; /* Start from prev offset */ 1949 end = -1; 1950 /* 1951 * Start from the beginning does not need to cycle over the 1952 * range, mark it as scanned. 1953 */ 1954 scanned = (index == 0); 1955 } else { 1956 index = wbc->range_start >> PAGE_SHIFT; 1957 end = wbc->range_end >> PAGE_SHIFT; 1958 scanned = 1; 1959 } 1960 if (wbc->sync_mode == WB_SYNC_ALL) 1961 tag = PAGECACHE_TAG_TOWRITE; 1962 else 1963 tag = PAGECACHE_TAG_DIRTY; 1964 btrfs_zoned_meta_io_lock(fs_info); 1965 retry: 1966 if (wbc->sync_mode == WB_SYNC_ALL) 1967 tag_pages_for_writeback(mapping, index, end); 1968 while (!done && !nr_to_write_done && (index <= end) && 1969 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1970 tag, &fbatch))) { 1971 unsigned i; 1972 1973 for (i = 0; i < nr_folios; i++) { 1974 struct folio *folio = fbatch.folios[i]; 1975 1976 ret = submit_eb_page(&folio->page, wbc, &eb_context); 1977 if (ret == 0) 1978 continue; 1979 if (ret < 0) { 1980 done = 1; 1981 break; 1982 } 1983 1984 /* 1985 * the filesystem may choose to bump up nr_to_write. 1986 * We have to make sure to honor the new nr_to_write 1987 * at any time 1988 */ 1989 nr_to_write_done = wbc->nr_to_write <= 0; 1990 } 1991 folio_batch_release(&fbatch); 1992 cond_resched(); 1993 } 1994 if (!scanned && !done) { 1995 /* 1996 * We hit the last page and there is more work to be done: wrap 1997 * back to the start of the file 1998 */ 1999 scanned = 1; 2000 index = 0; 2001 goto retry; 2002 } 2003 /* 2004 * If something went wrong, don't allow any metadata write bio to be 2005 * submitted. 2006 * 2007 * This would prevent use-after-free if we had dirty pages not 2008 * cleaned up, which can still happen by fuzzed images. 2009 * 2010 * - Bad extent tree 2011 * Allowing existing tree block to be allocated for other trees. 2012 * 2013 * - Log tree operations 2014 * Exiting tree blocks get allocated to log tree, bumps its 2015 * generation, then get cleaned in tree re-balance. 2016 * Such tree block will not be written back, since it's clean, 2017 * thus no WRITTEN flag set. 2018 * And after log writes back, this tree block is not traced by 2019 * any dirty extent_io_tree. 2020 * 2021 * - Offending tree block gets re-dirtied from its original owner 2022 * Since it has bumped generation, no WRITTEN flag, it can be 2023 * reused without COWing. This tree block will not be traced 2024 * by btrfs_transaction::dirty_pages. 2025 * 2026 * Now such dirty tree block will not be cleaned by any dirty 2027 * extent io tree. Thus we don't want to submit such wild eb 2028 * if the fs already has error. 2029 * 2030 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2031 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2032 */ 2033 if (ret > 0) 2034 ret = 0; 2035 if (!ret && BTRFS_FS_ERROR(fs_info)) 2036 ret = -EROFS; 2037 btrfs_zoned_meta_io_unlock(fs_info); 2038 return ret; 2039 } 2040 2041 /* 2042 * Walk the list of dirty pages of the given address space and write all of them. 2043 * 2044 * @mapping: address space structure to write 2045 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2046 * @bio_ctrl: holds context for the write, namely the bio 2047 * 2048 * If a page is already under I/O, write_cache_pages() skips it, even 2049 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2050 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2051 * and msync() need to guarantee that all the data which was dirty at the time 2052 * the call was made get new I/O started against them. If wbc->sync_mode is 2053 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2054 * existing IO to complete. 2055 */ 2056 static int extent_write_cache_pages(struct address_space *mapping, 2057 struct btrfs_bio_ctrl *bio_ctrl) 2058 { 2059 struct writeback_control *wbc = bio_ctrl->wbc; 2060 struct inode *inode = mapping->host; 2061 int ret = 0; 2062 int done = 0; 2063 int nr_to_write_done = 0; 2064 struct folio_batch fbatch; 2065 unsigned int nr_folios; 2066 pgoff_t index; 2067 pgoff_t end; /* Inclusive */ 2068 pgoff_t done_index; 2069 int range_whole = 0; 2070 int scanned = 0; 2071 xa_mark_t tag; 2072 2073 /* 2074 * We have to hold onto the inode so that ordered extents can do their 2075 * work when the IO finishes. The alternative to this is failing to add 2076 * an ordered extent if the igrab() fails there and that is a huge pain 2077 * to deal with, so instead just hold onto the inode throughout the 2078 * writepages operation. If it fails here we are freeing up the inode 2079 * anyway and we'd rather not waste our time writing out stuff that is 2080 * going to be truncated anyway. 2081 */ 2082 if (!igrab(inode)) 2083 return 0; 2084 2085 folio_batch_init(&fbatch); 2086 if (wbc->range_cyclic) { 2087 index = mapping->writeback_index; /* Start from prev offset */ 2088 end = -1; 2089 /* 2090 * Start from the beginning does not need to cycle over the 2091 * range, mark it as scanned. 2092 */ 2093 scanned = (index == 0); 2094 } else { 2095 index = wbc->range_start >> PAGE_SHIFT; 2096 end = wbc->range_end >> PAGE_SHIFT; 2097 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2098 range_whole = 1; 2099 scanned = 1; 2100 } 2101 2102 /* 2103 * We do the tagged writepage as long as the snapshot flush bit is set 2104 * and we are the first one who do the filemap_flush() on this inode. 2105 * 2106 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2107 * not race in and drop the bit. 2108 */ 2109 if (range_whole && wbc->nr_to_write == LONG_MAX && 2110 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2111 &BTRFS_I(inode)->runtime_flags)) 2112 wbc->tagged_writepages = 1; 2113 2114 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2115 tag = PAGECACHE_TAG_TOWRITE; 2116 else 2117 tag = PAGECACHE_TAG_DIRTY; 2118 retry: 2119 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2120 tag_pages_for_writeback(mapping, index, end); 2121 done_index = index; 2122 while (!done && !nr_to_write_done && (index <= end) && 2123 (nr_folios = filemap_get_folios_tag(mapping, &index, 2124 end, tag, &fbatch))) { 2125 unsigned i; 2126 2127 for (i = 0; i < nr_folios; i++) { 2128 struct folio *folio = fbatch.folios[i]; 2129 2130 done_index = folio->index + folio_nr_pages(folio); 2131 /* 2132 * At this point we hold neither the i_pages lock nor 2133 * the page lock: the page may be truncated or 2134 * invalidated (changing page->mapping to NULL), 2135 * or even swizzled back from swapper_space to 2136 * tmpfs file mapping 2137 */ 2138 if (!folio_trylock(folio)) { 2139 submit_write_bio(bio_ctrl, 0); 2140 folio_lock(folio); 2141 } 2142 2143 if (unlikely(folio->mapping != mapping)) { 2144 folio_unlock(folio); 2145 continue; 2146 } 2147 2148 if (!folio_test_dirty(folio)) { 2149 /* Someone wrote it for us. */ 2150 folio_unlock(folio); 2151 continue; 2152 } 2153 2154 if (wbc->sync_mode != WB_SYNC_NONE) { 2155 if (folio_test_writeback(folio)) 2156 submit_write_bio(bio_ctrl, 0); 2157 folio_wait_writeback(folio); 2158 } 2159 2160 if (folio_test_writeback(folio) || 2161 !folio_clear_dirty_for_io(folio)) { 2162 folio_unlock(folio); 2163 continue; 2164 } 2165 2166 ret = __extent_writepage(&folio->page, bio_ctrl); 2167 if (ret < 0) { 2168 done = 1; 2169 break; 2170 } 2171 2172 /* 2173 * The filesystem may choose to bump up nr_to_write. 2174 * We have to make sure to honor the new nr_to_write 2175 * at any time. 2176 */ 2177 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2178 wbc->nr_to_write <= 0); 2179 } 2180 folio_batch_release(&fbatch); 2181 cond_resched(); 2182 } 2183 if (!scanned && !done) { 2184 /* 2185 * We hit the last page and there is more work to be done: wrap 2186 * back to the start of the file 2187 */ 2188 scanned = 1; 2189 index = 0; 2190 2191 /* 2192 * If we're looping we could run into a page that is locked by a 2193 * writer and that writer could be waiting on writeback for a 2194 * page in our current bio, and thus deadlock, so flush the 2195 * write bio here. 2196 */ 2197 submit_write_bio(bio_ctrl, 0); 2198 goto retry; 2199 } 2200 2201 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2202 mapping->writeback_index = done_index; 2203 2204 btrfs_add_delayed_iput(BTRFS_I(inode)); 2205 return ret; 2206 } 2207 2208 /* 2209 * Submit the pages in the range to bio for call sites which delalloc range has 2210 * already been ran (aka, ordered extent inserted) and all pages are still 2211 * locked. 2212 */ 2213 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 2214 struct writeback_control *wbc) 2215 { 2216 bool found_error = false; 2217 int first_error = 0; 2218 int ret = 0; 2219 struct address_space *mapping = inode->i_mapping; 2220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2221 const u32 sectorsize = fs_info->sectorsize; 2222 loff_t i_size = i_size_read(inode); 2223 u64 cur = start; 2224 struct btrfs_bio_ctrl bio_ctrl = { 2225 .wbc = wbc, 2226 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2227 }; 2228 2229 if (wbc->no_cgroup_owner) 2230 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2231 2232 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2233 2234 while (cur <= end) { 2235 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2236 struct page *page; 2237 int nr = 0; 2238 2239 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2240 /* 2241 * All pages in the range are locked since 2242 * btrfs_run_delalloc_range(), thus there is no way to clear 2243 * the page dirty flag. 2244 */ 2245 ASSERT(PageLocked(page)); 2246 ASSERT(PageDirty(page)); 2247 clear_page_dirty_for_io(page); 2248 2249 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2250 i_size, &nr); 2251 if (ret == 1) 2252 goto next_page; 2253 2254 /* Make sure the mapping tag for page dirty gets cleared. */ 2255 if (nr == 0) { 2256 set_page_writeback(page); 2257 end_page_writeback(page); 2258 } 2259 if (ret) 2260 end_extent_writepage(page, ret, cur, cur_end); 2261 btrfs_page_unlock_writer(fs_info, page, cur, cur_end + 1 - cur); 2262 if (ret < 0) { 2263 found_error = true; 2264 first_error = ret; 2265 } 2266 next_page: 2267 put_page(page); 2268 cur = cur_end + 1; 2269 } 2270 2271 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2272 2273 if (found_error) 2274 return first_error; 2275 return ret; 2276 } 2277 2278 int extent_writepages(struct address_space *mapping, 2279 struct writeback_control *wbc) 2280 { 2281 struct inode *inode = mapping->host; 2282 int ret = 0; 2283 struct btrfs_bio_ctrl bio_ctrl = { 2284 .wbc = wbc, 2285 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2286 }; 2287 2288 /* 2289 * Allow only a single thread to do the reloc work in zoned mode to 2290 * protect the write pointer updates. 2291 */ 2292 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2293 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2294 submit_write_bio(&bio_ctrl, ret); 2295 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2296 return ret; 2297 } 2298 2299 void extent_readahead(struct readahead_control *rac) 2300 { 2301 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2302 struct page *pagepool[16]; 2303 struct extent_map *em_cached = NULL; 2304 u64 prev_em_start = (u64)-1; 2305 int nr; 2306 2307 while ((nr = readahead_page_batch(rac, pagepool))) { 2308 u64 contig_start = readahead_pos(rac); 2309 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2310 2311 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2312 &em_cached, &bio_ctrl, &prev_em_start); 2313 } 2314 2315 if (em_cached) 2316 free_extent_map(em_cached); 2317 submit_one_bio(&bio_ctrl); 2318 } 2319 2320 /* 2321 * basic invalidate_folio code, this waits on any locked or writeback 2322 * ranges corresponding to the folio, and then deletes any extent state 2323 * records from the tree 2324 */ 2325 int extent_invalidate_folio(struct extent_io_tree *tree, 2326 struct folio *folio, size_t offset) 2327 { 2328 struct extent_state *cached_state = NULL; 2329 u64 start = folio_pos(folio); 2330 u64 end = start + folio_size(folio) - 1; 2331 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2332 2333 /* This function is only called for the btree inode */ 2334 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2335 2336 start += ALIGN(offset, blocksize); 2337 if (start > end) 2338 return 0; 2339 2340 lock_extent(tree, start, end, &cached_state); 2341 folio_wait_writeback(folio); 2342 2343 /* 2344 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2345 * so here we only need to unlock the extent range to free any 2346 * existing extent state. 2347 */ 2348 unlock_extent(tree, start, end, &cached_state); 2349 return 0; 2350 } 2351 2352 /* 2353 * a helper for release_folio, this tests for areas of the page that 2354 * are locked or under IO and drops the related state bits if it is safe 2355 * to drop the page. 2356 */ 2357 static int try_release_extent_state(struct extent_io_tree *tree, 2358 struct page *page, gfp_t mask) 2359 { 2360 u64 start = page_offset(page); 2361 u64 end = start + PAGE_SIZE - 1; 2362 int ret = 1; 2363 2364 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2365 ret = 0; 2366 } else { 2367 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2368 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2369 2370 /* 2371 * At this point we can safely clear everything except the 2372 * locked bit, the nodatasum bit and the delalloc new bit. 2373 * The delalloc new bit will be cleared by ordered extent 2374 * completion. 2375 */ 2376 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2377 2378 /* if clear_extent_bit failed for enomem reasons, 2379 * we can't allow the release to continue. 2380 */ 2381 if (ret < 0) 2382 ret = 0; 2383 else 2384 ret = 1; 2385 } 2386 return ret; 2387 } 2388 2389 /* 2390 * a helper for release_folio. As long as there are no locked extents 2391 * in the range corresponding to the page, both state records and extent 2392 * map records are removed 2393 */ 2394 int try_release_extent_mapping(struct page *page, gfp_t mask) 2395 { 2396 struct extent_map *em; 2397 u64 start = page_offset(page); 2398 u64 end = start + PAGE_SIZE - 1; 2399 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2400 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2401 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2402 2403 if (gfpflags_allow_blocking(mask) && 2404 page->mapping->host->i_size > SZ_16M) { 2405 u64 len; 2406 while (start <= end) { 2407 struct btrfs_fs_info *fs_info; 2408 u64 cur_gen; 2409 2410 len = end - start + 1; 2411 write_lock(&map->lock); 2412 em = lookup_extent_mapping(map, start, len); 2413 if (!em) { 2414 write_unlock(&map->lock); 2415 break; 2416 } 2417 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2418 em->start != start) { 2419 write_unlock(&map->lock); 2420 free_extent_map(em); 2421 break; 2422 } 2423 if (test_range_bit(tree, em->start, 2424 extent_map_end(em) - 1, 2425 EXTENT_LOCKED, 0, NULL)) 2426 goto next; 2427 /* 2428 * If it's not in the list of modified extents, used 2429 * by a fast fsync, we can remove it. If it's being 2430 * logged we can safely remove it since fsync took an 2431 * extra reference on the em. 2432 */ 2433 if (list_empty(&em->list) || 2434 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2435 goto remove_em; 2436 /* 2437 * If it's in the list of modified extents, remove it 2438 * only if its generation is older then the current one, 2439 * in which case we don't need it for a fast fsync. 2440 * Otherwise don't remove it, we could be racing with an 2441 * ongoing fast fsync that could miss the new extent. 2442 */ 2443 fs_info = btrfs_inode->root->fs_info; 2444 spin_lock(&fs_info->trans_lock); 2445 cur_gen = fs_info->generation; 2446 spin_unlock(&fs_info->trans_lock); 2447 if (em->generation >= cur_gen) 2448 goto next; 2449 remove_em: 2450 /* 2451 * We only remove extent maps that are not in the list of 2452 * modified extents or that are in the list but with a 2453 * generation lower then the current generation, so there 2454 * is no need to set the full fsync flag on the inode (it 2455 * hurts the fsync performance for workloads with a data 2456 * size that exceeds or is close to the system's memory). 2457 */ 2458 remove_extent_mapping(map, em); 2459 /* once for the rb tree */ 2460 free_extent_map(em); 2461 next: 2462 start = extent_map_end(em); 2463 write_unlock(&map->lock); 2464 2465 /* once for us */ 2466 free_extent_map(em); 2467 2468 cond_resched(); /* Allow large-extent preemption. */ 2469 } 2470 } 2471 return try_release_extent_state(tree, page, mask); 2472 } 2473 2474 /* 2475 * To cache previous fiemap extent 2476 * 2477 * Will be used for merging fiemap extent 2478 */ 2479 struct fiemap_cache { 2480 u64 offset; 2481 u64 phys; 2482 u64 len; 2483 u32 flags; 2484 bool cached; 2485 }; 2486 2487 /* 2488 * Helper to submit fiemap extent. 2489 * 2490 * Will try to merge current fiemap extent specified by @offset, @phys, 2491 * @len and @flags with cached one. 2492 * And only when we fails to merge, cached one will be submitted as 2493 * fiemap extent. 2494 * 2495 * Return value is the same as fiemap_fill_next_extent(). 2496 */ 2497 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2498 struct fiemap_cache *cache, 2499 u64 offset, u64 phys, u64 len, u32 flags) 2500 { 2501 int ret = 0; 2502 2503 /* Set at the end of extent_fiemap(). */ 2504 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2505 2506 if (!cache->cached) 2507 goto assign; 2508 2509 /* 2510 * Sanity check, extent_fiemap() should have ensured that new 2511 * fiemap extent won't overlap with cached one. 2512 * Not recoverable. 2513 * 2514 * NOTE: Physical address can overlap, due to compression 2515 */ 2516 if (cache->offset + cache->len > offset) { 2517 WARN_ON(1); 2518 return -EINVAL; 2519 } 2520 2521 /* 2522 * Only merges fiemap extents if 2523 * 1) Their logical addresses are continuous 2524 * 2525 * 2) Their physical addresses are continuous 2526 * So truly compressed (physical size smaller than logical size) 2527 * extents won't get merged with each other 2528 * 2529 * 3) Share same flags 2530 */ 2531 if (cache->offset + cache->len == offset && 2532 cache->phys + cache->len == phys && 2533 cache->flags == flags) { 2534 cache->len += len; 2535 return 0; 2536 } 2537 2538 /* Not mergeable, need to submit cached one */ 2539 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2540 cache->len, cache->flags); 2541 cache->cached = false; 2542 if (ret) 2543 return ret; 2544 assign: 2545 cache->cached = true; 2546 cache->offset = offset; 2547 cache->phys = phys; 2548 cache->len = len; 2549 cache->flags = flags; 2550 2551 return 0; 2552 } 2553 2554 /* 2555 * Emit last fiemap cache 2556 * 2557 * The last fiemap cache may still be cached in the following case: 2558 * 0 4k 8k 2559 * |<- Fiemap range ->| 2560 * |<------------ First extent ----------->| 2561 * 2562 * In this case, the first extent range will be cached but not emitted. 2563 * So we must emit it before ending extent_fiemap(). 2564 */ 2565 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2566 struct fiemap_cache *cache) 2567 { 2568 int ret; 2569 2570 if (!cache->cached) 2571 return 0; 2572 2573 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2574 cache->len, cache->flags); 2575 cache->cached = false; 2576 if (ret > 0) 2577 ret = 0; 2578 return ret; 2579 } 2580 2581 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2582 { 2583 struct extent_buffer *clone; 2584 struct btrfs_key key; 2585 int slot; 2586 int ret; 2587 2588 path->slots[0]++; 2589 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2590 return 0; 2591 2592 ret = btrfs_next_leaf(inode->root, path); 2593 if (ret != 0) 2594 return ret; 2595 2596 /* 2597 * Don't bother with cloning if there are no more file extent items for 2598 * our inode. 2599 */ 2600 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2601 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2602 return 1; 2603 2604 /* See the comment at fiemap_search_slot() about why we clone. */ 2605 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2606 if (!clone) 2607 return -ENOMEM; 2608 2609 slot = path->slots[0]; 2610 btrfs_release_path(path); 2611 path->nodes[0] = clone; 2612 path->slots[0] = slot; 2613 2614 return 0; 2615 } 2616 2617 /* 2618 * Search for the first file extent item that starts at a given file offset or 2619 * the one that starts immediately before that offset. 2620 * Returns: 0 on success, < 0 on error, 1 if not found. 2621 */ 2622 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2623 u64 file_offset) 2624 { 2625 const u64 ino = btrfs_ino(inode); 2626 struct btrfs_root *root = inode->root; 2627 struct extent_buffer *clone; 2628 struct btrfs_key key; 2629 int slot; 2630 int ret; 2631 2632 key.objectid = ino; 2633 key.type = BTRFS_EXTENT_DATA_KEY; 2634 key.offset = file_offset; 2635 2636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2637 if (ret < 0) 2638 return ret; 2639 2640 if (ret > 0 && path->slots[0] > 0) { 2641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2642 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2643 path->slots[0]--; 2644 } 2645 2646 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2647 ret = btrfs_next_leaf(root, path); 2648 if (ret != 0) 2649 return ret; 2650 2651 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2652 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2653 return 1; 2654 } 2655 2656 /* 2657 * We clone the leaf and use it during fiemap. This is because while 2658 * using the leaf we do expensive things like checking if an extent is 2659 * shared, which can take a long time. In order to prevent blocking 2660 * other tasks for too long, we use a clone of the leaf. We have locked 2661 * the file range in the inode's io tree, so we know none of our file 2662 * extent items can change. This way we avoid blocking other tasks that 2663 * want to insert items for other inodes in the same leaf or b+tree 2664 * rebalance operations (triggered for example when someone is trying 2665 * to push items into this leaf when trying to insert an item in a 2666 * neighbour leaf). 2667 * We also need the private clone because holding a read lock on an 2668 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2669 * when we call fiemap_fill_next_extent(), because that may cause a page 2670 * fault when filling the user space buffer with fiemap data. 2671 */ 2672 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2673 if (!clone) 2674 return -ENOMEM; 2675 2676 slot = path->slots[0]; 2677 btrfs_release_path(path); 2678 path->nodes[0] = clone; 2679 path->slots[0] = slot; 2680 2681 return 0; 2682 } 2683 2684 /* 2685 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2686 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2687 * extent. The end offset (@end) is inclusive. 2688 */ 2689 static int fiemap_process_hole(struct btrfs_inode *inode, 2690 struct fiemap_extent_info *fieinfo, 2691 struct fiemap_cache *cache, 2692 struct extent_state **delalloc_cached_state, 2693 struct btrfs_backref_share_check_ctx *backref_ctx, 2694 u64 disk_bytenr, u64 extent_offset, 2695 u64 extent_gen, 2696 u64 start, u64 end) 2697 { 2698 const u64 i_size = i_size_read(&inode->vfs_inode); 2699 u64 cur_offset = start; 2700 u64 last_delalloc_end = 0; 2701 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2702 bool checked_extent_shared = false; 2703 int ret; 2704 2705 /* 2706 * There can be no delalloc past i_size, so don't waste time looking for 2707 * it beyond i_size. 2708 */ 2709 while (cur_offset < end && cur_offset < i_size) { 2710 u64 delalloc_start; 2711 u64 delalloc_end; 2712 u64 prealloc_start; 2713 u64 prealloc_len = 0; 2714 bool delalloc; 2715 2716 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2717 delalloc_cached_state, 2718 &delalloc_start, 2719 &delalloc_end); 2720 if (!delalloc) 2721 break; 2722 2723 /* 2724 * If this is a prealloc extent we have to report every section 2725 * of it that has no delalloc. 2726 */ 2727 if (disk_bytenr != 0) { 2728 if (last_delalloc_end == 0) { 2729 prealloc_start = start; 2730 prealloc_len = delalloc_start - start; 2731 } else { 2732 prealloc_start = last_delalloc_end + 1; 2733 prealloc_len = delalloc_start - prealloc_start; 2734 } 2735 } 2736 2737 if (prealloc_len > 0) { 2738 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2739 ret = btrfs_is_data_extent_shared(inode, 2740 disk_bytenr, 2741 extent_gen, 2742 backref_ctx); 2743 if (ret < 0) 2744 return ret; 2745 else if (ret > 0) 2746 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2747 2748 checked_extent_shared = true; 2749 } 2750 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2751 disk_bytenr + extent_offset, 2752 prealloc_len, prealloc_flags); 2753 if (ret) 2754 return ret; 2755 extent_offset += prealloc_len; 2756 } 2757 2758 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2759 delalloc_end + 1 - delalloc_start, 2760 FIEMAP_EXTENT_DELALLOC | 2761 FIEMAP_EXTENT_UNKNOWN); 2762 if (ret) 2763 return ret; 2764 2765 last_delalloc_end = delalloc_end; 2766 cur_offset = delalloc_end + 1; 2767 extent_offset += cur_offset - delalloc_start; 2768 cond_resched(); 2769 } 2770 2771 /* 2772 * Either we found no delalloc for the whole prealloc extent or we have 2773 * a prealloc extent that spans i_size or starts at or after i_size. 2774 */ 2775 if (disk_bytenr != 0 && last_delalloc_end < end) { 2776 u64 prealloc_start; 2777 u64 prealloc_len; 2778 2779 if (last_delalloc_end == 0) { 2780 prealloc_start = start; 2781 prealloc_len = end + 1 - start; 2782 } else { 2783 prealloc_start = last_delalloc_end + 1; 2784 prealloc_len = end + 1 - prealloc_start; 2785 } 2786 2787 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2788 ret = btrfs_is_data_extent_shared(inode, 2789 disk_bytenr, 2790 extent_gen, 2791 backref_ctx); 2792 if (ret < 0) 2793 return ret; 2794 else if (ret > 0) 2795 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2796 } 2797 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2798 disk_bytenr + extent_offset, 2799 prealloc_len, prealloc_flags); 2800 if (ret) 2801 return ret; 2802 } 2803 2804 return 0; 2805 } 2806 2807 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2808 struct btrfs_path *path, 2809 u64 *last_extent_end_ret) 2810 { 2811 const u64 ino = btrfs_ino(inode); 2812 struct btrfs_root *root = inode->root; 2813 struct extent_buffer *leaf; 2814 struct btrfs_file_extent_item *ei; 2815 struct btrfs_key key; 2816 u64 disk_bytenr; 2817 int ret; 2818 2819 /* 2820 * Lookup the last file extent. We're not using i_size here because 2821 * there might be preallocation past i_size. 2822 */ 2823 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2824 /* There can't be a file extent item at offset (u64)-1 */ 2825 ASSERT(ret != 0); 2826 if (ret < 0) 2827 return ret; 2828 2829 /* 2830 * For a non-existing key, btrfs_search_slot() always leaves us at a 2831 * slot > 0, except if the btree is empty, which is impossible because 2832 * at least it has the inode item for this inode and all the items for 2833 * the root inode 256. 2834 */ 2835 ASSERT(path->slots[0] > 0); 2836 path->slots[0]--; 2837 leaf = path->nodes[0]; 2838 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2839 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2840 /* No file extent items in the subvolume tree. */ 2841 *last_extent_end_ret = 0; 2842 return 0; 2843 } 2844 2845 /* 2846 * For an inline extent, the disk_bytenr is where inline data starts at, 2847 * so first check if we have an inline extent item before checking if we 2848 * have an implicit hole (disk_bytenr == 0). 2849 */ 2850 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2851 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2852 *last_extent_end_ret = btrfs_file_extent_end(path); 2853 return 0; 2854 } 2855 2856 /* 2857 * Find the last file extent item that is not a hole (when NO_HOLES is 2858 * not enabled). This should take at most 2 iterations in the worst 2859 * case: we have one hole file extent item at slot 0 of a leaf and 2860 * another hole file extent item as the last item in the previous leaf. 2861 * This is because we merge file extent items that represent holes. 2862 */ 2863 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2864 while (disk_bytenr == 0) { 2865 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2866 if (ret < 0) { 2867 return ret; 2868 } else if (ret > 0) { 2869 /* No file extent items that are not holes. */ 2870 *last_extent_end_ret = 0; 2871 return 0; 2872 } 2873 leaf = path->nodes[0]; 2874 ei = btrfs_item_ptr(leaf, path->slots[0], 2875 struct btrfs_file_extent_item); 2876 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2877 } 2878 2879 *last_extent_end_ret = btrfs_file_extent_end(path); 2880 return 0; 2881 } 2882 2883 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2884 u64 start, u64 len) 2885 { 2886 const u64 ino = btrfs_ino(inode); 2887 struct extent_state *cached_state = NULL; 2888 struct extent_state *delalloc_cached_state = NULL; 2889 struct btrfs_path *path; 2890 struct fiemap_cache cache = { 0 }; 2891 struct btrfs_backref_share_check_ctx *backref_ctx; 2892 u64 last_extent_end; 2893 u64 prev_extent_end; 2894 u64 lockstart; 2895 u64 lockend; 2896 bool stopped = false; 2897 int ret; 2898 2899 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2900 path = btrfs_alloc_path(); 2901 if (!backref_ctx || !path) { 2902 ret = -ENOMEM; 2903 goto out; 2904 } 2905 2906 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2907 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2908 prev_extent_end = lockstart; 2909 2910 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2911 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2912 2913 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2914 if (ret < 0) 2915 goto out_unlock; 2916 btrfs_release_path(path); 2917 2918 path->reada = READA_FORWARD; 2919 ret = fiemap_search_slot(inode, path, lockstart); 2920 if (ret < 0) { 2921 goto out_unlock; 2922 } else if (ret > 0) { 2923 /* 2924 * No file extent item found, but we may have delalloc between 2925 * the current offset and i_size. So check for that. 2926 */ 2927 ret = 0; 2928 goto check_eof_delalloc; 2929 } 2930 2931 while (prev_extent_end < lockend) { 2932 struct extent_buffer *leaf = path->nodes[0]; 2933 struct btrfs_file_extent_item *ei; 2934 struct btrfs_key key; 2935 u64 extent_end; 2936 u64 extent_len; 2937 u64 extent_offset = 0; 2938 u64 extent_gen; 2939 u64 disk_bytenr = 0; 2940 u64 flags = 0; 2941 int extent_type; 2942 u8 compression; 2943 2944 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2945 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2946 break; 2947 2948 extent_end = btrfs_file_extent_end(path); 2949 2950 /* 2951 * The first iteration can leave us at an extent item that ends 2952 * before our range's start. Move to the next item. 2953 */ 2954 if (extent_end <= lockstart) 2955 goto next_item; 2956 2957 backref_ctx->curr_leaf_bytenr = leaf->start; 2958 2959 /* We have in implicit hole (NO_HOLES feature enabled). */ 2960 if (prev_extent_end < key.offset) { 2961 const u64 range_end = min(key.offset, lockend) - 1; 2962 2963 ret = fiemap_process_hole(inode, fieinfo, &cache, 2964 &delalloc_cached_state, 2965 backref_ctx, 0, 0, 0, 2966 prev_extent_end, range_end); 2967 if (ret < 0) { 2968 goto out_unlock; 2969 } else if (ret > 0) { 2970 /* fiemap_fill_next_extent() told us to stop. */ 2971 stopped = true; 2972 break; 2973 } 2974 2975 /* We've reached the end of the fiemap range, stop. */ 2976 if (key.offset >= lockend) { 2977 stopped = true; 2978 break; 2979 } 2980 } 2981 2982 extent_len = extent_end - key.offset; 2983 ei = btrfs_item_ptr(leaf, path->slots[0], 2984 struct btrfs_file_extent_item); 2985 compression = btrfs_file_extent_compression(leaf, ei); 2986 extent_type = btrfs_file_extent_type(leaf, ei); 2987 extent_gen = btrfs_file_extent_generation(leaf, ei); 2988 2989 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2990 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2991 if (compression == BTRFS_COMPRESS_NONE) 2992 extent_offset = btrfs_file_extent_offset(leaf, ei); 2993 } 2994 2995 if (compression != BTRFS_COMPRESS_NONE) 2996 flags |= FIEMAP_EXTENT_ENCODED; 2997 2998 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2999 flags |= FIEMAP_EXTENT_DATA_INLINE; 3000 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3001 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3002 extent_len, flags); 3003 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3004 ret = fiemap_process_hole(inode, fieinfo, &cache, 3005 &delalloc_cached_state, 3006 backref_ctx, 3007 disk_bytenr, extent_offset, 3008 extent_gen, key.offset, 3009 extent_end - 1); 3010 } else if (disk_bytenr == 0) { 3011 /* We have an explicit hole. */ 3012 ret = fiemap_process_hole(inode, fieinfo, &cache, 3013 &delalloc_cached_state, 3014 backref_ctx, 0, 0, 0, 3015 key.offset, extent_end - 1); 3016 } else { 3017 /* We have a regular extent. */ 3018 if (fieinfo->fi_extents_max) { 3019 ret = btrfs_is_data_extent_shared(inode, 3020 disk_bytenr, 3021 extent_gen, 3022 backref_ctx); 3023 if (ret < 0) 3024 goto out_unlock; 3025 else if (ret > 0) 3026 flags |= FIEMAP_EXTENT_SHARED; 3027 } 3028 3029 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3030 disk_bytenr + extent_offset, 3031 extent_len, flags); 3032 } 3033 3034 if (ret < 0) { 3035 goto out_unlock; 3036 } else if (ret > 0) { 3037 /* fiemap_fill_next_extent() told us to stop. */ 3038 stopped = true; 3039 break; 3040 } 3041 3042 prev_extent_end = extent_end; 3043 next_item: 3044 if (fatal_signal_pending(current)) { 3045 ret = -EINTR; 3046 goto out_unlock; 3047 } 3048 3049 ret = fiemap_next_leaf_item(inode, path); 3050 if (ret < 0) { 3051 goto out_unlock; 3052 } else if (ret > 0) { 3053 /* No more file extent items for this inode. */ 3054 break; 3055 } 3056 cond_resched(); 3057 } 3058 3059 check_eof_delalloc: 3060 /* 3061 * Release (and free) the path before emitting any final entries to 3062 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3063 * once we find no more file extent items exist, we may have a 3064 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3065 * faults when copying data to the user space buffer. 3066 */ 3067 btrfs_free_path(path); 3068 path = NULL; 3069 3070 if (!stopped && prev_extent_end < lockend) { 3071 ret = fiemap_process_hole(inode, fieinfo, &cache, 3072 &delalloc_cached_state, backref_ctx, 3073 0, 0, 0, prev_extent_end, lockend - 1); 3074 if (ret < 0) 3075 goto out_unlock; 3076 prev_extent_end = lockend; 3077 } 3078 3079 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3080 const u64 i_size = i_size_read(&inode->vfs_inode); 3081 3082 if (prev_extent_end < i_size) { 3083 u64 delalloc_start; 3084 u64 delalloc_end; 3085 bool delalloc; 3086 3087 delalloc = btrfs_find_delalloc_in_range(inode, 3088 prev_extent_end, 3089 i_size - 1, 3090 &delalloc_cached_state, 3091 &delalloc_start, 3092 &delalloc_end); 3093 if (!delalloc) 3094 cache.flags |= FIEMAP_EXTENT_LAST; 3095 } else { 3096 cache.flags |= FIEMAP_EXTENT_LAST; 3097 } 3098 } 3099 3100 ret = emit_last_fiemap_cache(fieinfo, &cache); 3101 3102 out_unlock: 3103 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3104 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3105 out: 3106 free_extent_state(delalloc_cached_state); 3107 btrfs_free_backref_share_ctx(backref_ctx); 3108 btrfs_free_path(path); 3109 return ret; 3110 } 3111 3112 static void __free_extent_buffer(struct extent_buffer *eb) 3113 { 3114 kmem_cache_free(extent_buffer_cache, eb); 3115 } 3116 3117 static int extent_buffer_under_io(const struct extent_buffer *eb) 3118 { 3119 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3120 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3121 } 3122 3123 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3124 { 3125 struct btrfs_subpage *subpage; 3126 3127 lockdep_assert_held(&page->mapping->private_lock); 3128 3129 if (PagePrivate(page)) { 3130 subpage = (struct btrfs_subpage *)page->private; 3131 if (atomic_read(&subpage->eb_refs)) 3132 return true; 3133 /* 3134 * Even there is no eb refs here, we may still have 3135 * end_page_read() call relying on page::private. 3136 */ 3137 if (atomic_read(&subpage->readers)) 3138 return true; 3139 } 3140 return false; 3141 } 3142 3143 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3144 { 3145 struct btrfs_fs_info *fs_info = eb->fs_info; 3146 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3147 3148 /* 3149 * For mapped eb, we're going to change the page private, which should 3150 * be done under the private_lock. 3151 */ 3152 if (mapped) 3153 spin_lock(&page->mapping->private_lock); 3154 3155 if (!PagePrivate(page)) { 3156 if (mapped) 3157 spin_unlock(&page->mapping->private_lock); 3158 return; 3159 } 3160 3161 if (fs_info->nodesize >= PAGE_SIZE) { 3162 /* 3163 * We do this since we'll remove the pages after we've 3164 * removed the eb from the radix tree, so we could race 3165 * and have this page now attached to the new eb. So 3166 * only clear page_private if it's still connected to 3167 * this eb. 3168 */ 3169 if (PagePrivate(page) && 3170 page->private == (unsigned long)eb) { 3171 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3172 BUG_ON(PageDirty(page)); 3173 BUG_ON(PageWriteback(page)); 3174 /* 3175 * We need to make sure we haven't be attached 3176 * to a new eb. 3177 */ 3178 detach_page_private(page); 3179 } 3180 if (mapped) 3181 spin_unlock(&page->mapping->private_lock); 3182 return; 3183 } 3184 3185 /* 3186 * For subpage, we can have dummy eb with page private. In this case, 3187 * we can directly detach the private as such page is only attached to 3188 * one dummy eb, no sharing. 3189 */ 3190 if (!mapped) { 3191 btrfs_detach_subpage(fs_info, page); 3192 return; 3193 } 3194 3195 btrfs_page_dec_eb_refs(fs_info, page); 3196 3197 /* 3198 * We can only detach the page private if there are no other ebs in the 3199 * page range and no unfinished IO. 3200 */ 3201 if (!page_range_has_eb(fs_info, page)) 3202 btrfs_detach_subpage(fs_info, page); 3203 3204 spin_unlock(&page->mapping->private_lock); 3205 } 3206 3207 /* Release all pages attached to the extent buffer */ 3208 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3209 { 3210 int i; 3211 int num_pages; 3212 3213 ASSERT(!extent_buffer_under_io(eb)); 3214 3215 num_pages = num_extent_pages(eb); 3216 for (i = 0; i < num_pages; i++) { 3217 struct page *page = eb->pages[i]; 3218 3219 if (!page) 3220 continue; 3221 3222 detach_extent_buffer_page(eb, page); 3223 3224 /* One for when we allocated the page */ 3225 put_page(page); 3226 } 3227 } 3228 3229 /* 3230 * Helper for releasing the extent buffer. 3231 */ 3232 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3233 { 3234 btrfs_release_extent_buffer_pages(eb); 3235 btrfs_leak_debug_del_eb(eb); 3236 __free_extent_buffer(eb); 3237 } 3238 3239 static struct extent_buffer * 3240 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3241 unsigned long len) 3242 { 3243 struct extent_buffer *eb = NULL; 3244 3245 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3246 eb->start = start; 3247 eb->len = len; 3248 eb->fs_info = fs_info; 3249 init_rwsem(&eb->lock); 3250 3251 btrfs_leak_debug_add_eb(eb); 3252 3253 spin_lock_init(&eb->refs_lock); 3254 atomic_set(&eb->refs, 1); 3255 3256 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3257 3258 return eb; 3259 } 3260 3261 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3262 { 3263 int i; 3264 struct extent_buffer *new; 3265 int num_pages = num_extent_pages(src); 3266 int ret; 3267 3268 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3269 if (new == NULL) 3270 return NULL; 3271 3272 /* 3273 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3274 * btrfs_release_extent_buffer() have different behavior for 3275 * UNMAPPED subpage extent buffer. 3276 */ 3277 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3278 3279 ret = btrfs_alloc_page_array(num_pages, new->pages); 3280 if (ret) { 3281 btrfs_release_extent_buffer(new); 3282 return NULL; 3283 } 3284 3285 for (i = 0; i < num_pages; i++) { 3286 int ret; 3287 struct page *p = new->pages[i]; 3288 3289 ret = attach_extent_buffer_page(new, p, NULL); 3290 if (ret < 0) { 3291 btrfs_release_extent_buffer(new); 3292 return NULL; 3293 } 3294 WARN_ON(PageDirty(p)); 3295 copy_page(page_address(p), page_address(src->pages[i])); 3296 } 3297 set_extent_buffer_uptodate(new); 3298 3299 return new; 3300 } 3301 3302 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3303 u64 start, unsigned long len) 3304 { 3305 struct extent_buffer *eb; 3306 int num_pages; 3307 int i; 3308 int ret; 3309 3310 eb = __alloc_extent_buffer(fs_info, start, len); 3311 if (!eb) 3312 return NULL; 3313 3314 num_pages = num_extent_pages(eb); 3315 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3316 if (ret) 3317 goto err; 3318 3319 for (i = 0; i < num_pages; i++) { 3320 struct page *p = eb->pages[i]; 3321 3322 ret = attach_extent_buffer_page(eb, p, NULL); 3323 if (ret < 0) 3324 goto err; 3325 } 3326 3327 set_extent_buffer_uptodate(eb); 3328 btrfs_set_header_nritems(eb, 0); 3329 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3330 3331 return eb; 3332 err: 3333 for (i = 0; i < num_pages; i++) { 3334 if (eb->pages[i]) { 3335 detach_extent_buffer_page(eb, eb->pages[i]); 3336 __free_page(eb->pages[i]); 3337 } 3338 } 3339 __free_extent_buffer(eb); 3340 return NULL; 3341 } 3342 3343 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3344 u64 start) 3345 { 3346 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3347 } 3348 3349 static void check_buffer_tree_ref(struct extent_buffer *eb) 3350 { 3351 int refs; 3352 /* 3353 * The TREE_REF bit is first set when the extent_buffer is added 3354 * to the radix tree. It is also reset, if unset, when a new reference 3355 * is created by find_extent_buffer. 3356 * 3357 * It is only cleared in two cases: freeing the last non-tree 3358 * reference to the extent_buffer when its STALE bit is set or 3359 * calling release_folio when the tree reference is the only reference. 3360 * 3361 * In both cases, care is taken to ensure that the extent_buffer's 3362 * pages are not under io. However, release_folio can be concurrently 3363 * called with creating new references, which is prone to race 3364 * conditions between the calls to check_buffer_tree_ref in those 3365 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3366 * 3367 * The actual lifetime of the extent_buffer in the radix tree is 3368 * adequately protected by the refcount, but the TREE_REF bit and 3369 * its corresponding reference are not. To protect against this 3370 * class of races, we call check_buffer_tree_ref from the codepaths 3371 * which trigger io. Note that once io is initiated, TREE_REF can no 3372 * longer be cleared, so that is the moment at which any such race is 3373 * best fixed. 3374 */ 3375 refs = atomic_read(&eb->refs); 3376 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3377 return; 3378 3379 spin_lock(&eb->refs_lock); 3380 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3381 atomic_inc(&eb->refs); 3382 spin_unlock(&eb->refs_lock); 3383 } 3384 3385 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3386 struct page *accessed) 3387 { 3388 int num_pages, i; 3389 3390 check_buffer_tree_ref(eb); 3391 3392 num_pages = num_extent_pages(eb); 3393 for (i = 0; i < num_pages; i++) { 3394 struct page *p = eb->pages[i]; 3395 3396 if (p != accessed) 3397 mark_page_accessed(p); 3398 } 3399 } 3400 3401 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3402 u64 start) 3403 { 3404 struct extent_buffer *eb; 3405 3406 eb = find_extent_buffer_nolock(fs_info, start); 3407 if (!eb) 3408 return NULL; 3409 /* 3410 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3411 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3412 * another task running free_extent_buffer() might have seen that flag 3413 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3414 * writeback flags not set) and it's still in the tree (flag 3415 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3416 * decrementing the extent buffer's reference count twice. So here we 3417 * could race and increment the eb's reference count, clear its stale 3418 * flag, mark it as dirty and drop our reference before the other task 3419 * finishes executing free_extent_buffer, which would later result in 3420 * an attempt to free an extent buffer that is dirty. 3421 */ 3422 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3423 spin_lock(&eb->refs_lock); 3424 spin_unlock(&eb->refs_lock); 3425 } 3426 mark_extent_buffer_accessed(eb, NULL); 3427 return eb; 3428 } 3429 3430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3431 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3432 u64 start) 3433 { 3434 struct extent_buffer *eb, *exists = NULL; 3435 int ret; 3436 3437 eb = find_extent_buffer(fs_info, start); 3438 if (eb) 3439 return eb; 3440 eb = alloc_dummy_extent_buffer(fs_info, start); 3441 if (!eb) 3442 return ERR_PTR(-ENOMEM); 3443 eb->fs_info = fs_info; 3444 again: 3445 ret = radix_tree_preload(GFP_NOFS); 3446 if (ret) { 3447 exists = ERR_PTR(ret); 3448 goto free_eb; 3449 } 3450 spin_lock(&fs_info->buffer_lock); 3451 ret = radix_tree_insert(&fs_info->buffer_radix, 3452 start >> fs_info->sectorsize_bits, eb); 3453 spin_unlock(&fs_info->buffer_lock); 3454 radix_tree_preload_end(); 3455 if (ret == -EEXIST) { 3456 exists = find_extent_buffer(fs_info, start); 3457 if (exists) 3458 goto free_eb; 3459 else 3460 goto again; 3461 } 3462 check_buffer_tree_ref(eb); 3463 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3464 3465 return eb; 3466 free_eb: 3467 btrfs_release_extent_buffer(eb); 3468 return exists; 3469 } 3470 #endif 3471 3472 static struct extent_buffer *grab_extent_buffer( 3473 struct btrfs_fs_info *fs_info, struct page *page) 3474 { 3475 struct extent_buffer *exists; 3476 3477 /* 3478 * For subpage case, we completely rely on radix tree to ensure we 3479 * don't try to insert two ebs for the same bytenr. So here we always 3480 * return NULL and just continue. 3481 */ 3482 if (fs_info->nodesize < PAGE_SIZE) 3483 return NULL; 3484 3485 /* Page not yet attached to an extent buffer */ 3486 if (!PagePrivate(page)) 3487 return NULL; 3488 3489 /* 3490 * We could have already allocated an eb for this page and attached one 3491 * so lets see if we can get a ref on the existing eb, and if we can we 3492 * know it's good and we can just return that one, else we know we can 3493 * just overwrite page->private. 3494 */ 3495 exists = (struct extent_buffer *)page->private; 3496 if (atomic_inc_not_zero(&exists->refs)) 3497 return exists; 3498 3499 WARN_ON(PageDirty(page)); 3500 detach_page_private(page); 3501 return NULL; 3502 } 3503 3504 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3505 { 3506 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3507 btrfs_err(fs_info, "bad tree block start %llu", start); 3508 return -EINVAL; 3509 } 3510 3511 if (fs_info->nodesize < PAGE_SIZE && 3512 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3513 btrfs_err(fs_info, 3514 "tree block crosses page boundary, start %llu nodesize %u", 3515 start, fs_info->nodesize); 3516 return -EINVAL; 3517 } 3518 if (fs_info->nodesize >= PAGE_SIZE && 3519 !PAGE_ALIGNED(start)) { 3520 btrfs_err(fs_info, 3521 "tree block is not page aligned, start %llu nodesize %u", 3522 start, fs_info->nodesize); 3523 return -EINVAL; 3524 } 3525 return 0; 3526 } 3527 3528 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3529 u64 start, u64 owner_root, int level) 3530 { 3531 unsigned long len = fs_info->nodesize; 3532 int num_pages; 3533 int i; 3534 unsigned long index = start >> PAGE_SHIFT; 3535 struct extent_buffer *eb; 3536 struct extent_buffer *exists = NULL; 3537 struct page *p; 3538 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3539 u64 lockdep_owner = owner_root; 3540 int uptodate = 1; 3541 int ret; 3542 3543 if (check_eb_alignment(fs_info, start)) 3544 return ERR_PTR(-EINVAL); 3545 3546 #if BITS_PER_LONG == 32 3547 if (start >= MAX_LFS_FILESIZE) { 3548 btrfs_err_rl(fs_info, 3549 "extent buffer %llu is beyond 32bit page cache limit", start); 3550 btrfs_err_32bit_limit(fs_info); 3551 return ERR_PTR(-EOVERFLOW); 3552 } 3553 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3554 btrfs_warn_32bit_limit(fs_info); 3555 #endif 3556 3557 eb = find_extent_buffer(fs_info, start); 3558 if (eb) 3559 return eb; 3560 3561 eb = __alloc_extent_buffer(fs_info, start, len); 3562 if (!eb) 3563 return ERR_PTR(-ENOMEM); 3564 3565 /* 3566 * The reloc trees are just snapshots, so we need them to appear to be 3567 * just like any other fs tree WRT lockdep. 3568 */ 3569 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3570 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3571 3572 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3573 3574 num_pages = num_extent_pages(eb); 3575 for (i = 0; i < num_pages; i++, index++) { 3576 struct btrfs_subpage *prealloc = NULL; 3577 3578 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3579 if (!p) { 3580 exists = ERR_PTR(-ENOMEM); 3581 goto free_eb; 3582 } 3583 3584 /* 3585 * Preallocate page->private for subpage case, so that we won't 3586 * allocate memory with private_lock hold. The memory will be 3587 * freed by attach_extent_buffer_page() or freed manually if 3588 * we exit earlier. 3589 * 3590 * Although we have ensured one subpage eb can only have one 3591 * page, but it may change in the future for 16K page size 3592 * support, so we still preallocate the memory in the loop. 3593 */ 3594 if (fs_info->nodesize < PAGE_SIZE) { 3595 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3596 if (IS_ERR(prealloc)) { 3597 ret = PTR_ERR(prealloc); 3598 unlock_page(p); 3599 put_page(p); 3600 exists = ERR_PTR(ret); 3601 goto free_eb; 3602 } 3603 } 3604 3605 spin_lock(&mapping->private_lock); 3606 exists = grab_extent_buffer(fs_info, p); 3607 if (exists) { 3608 spin_unlock(&mapping->private_lock); 3609 unlock_page(p); 3610 put_page(p); 3611 mark_extent_buffer_accessed(exists, p); 3612 btrfs_free_subpage(prealloc); 3613 goto free_eb; 3614 } 3615 /* Should not fail, as we have preallocated the memory */ 3616 ret = attach_extent_buffer_page(eb, p, prealloc); 3617 ASSERT(!ret); 3618 /* 3619 * To inform we have extra eb under allocation, so that 3620 * detach_extent_buffer_page() won't release the page private 3621 * when the eb hasn't yet been inserted into radix tree. 3622 * 3623 * The ref will be decreased when the eb released the page, in 3624 * detach_extent_buffer_page(). 3625 * Thus needs no special handling in error path. 3626 */ 3627 btrfs_page_inc_eb_refs(fs_info, p); 3628 spin_unlock(&mapping->private_lock); 3629 3630 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3631 eb->pages[i] = p; 3632 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3633 uptodate = 0; 3634 3635 /* 3636 * We can't unlock the pages just yet since the extent buffer 3637 * hasn't been properly inserted in the radix tree, this 3638 * opens a race with btree_release_folio which can free a page 3639 * while we are still filling in all pages for the buffer and 3640 * we could crash. 3641 */ 3642 } 3643 if (uptodate) 3644 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3645 again: 3646 ret = radix_tree_preload(GFP_NOFS); 3647 if (ret) { 3648 exists = ERR_PTR(ret); 3649 goto free_eb; 3650 } 3651 3652 spin_lock(&fs_info->buffer_lock); 3653 ret = radix_tree_insert(&fs_info->buffer_radix, 3654 start >> fs_info->sectorsize_bits, eb); 3655 spin_unlock(&fs_info->buffer_lock); 3656 radix_tree_preload_end(); 3657 if (ret == -EEXIST) { 3658 exists = find_extent_buffer(fs_info, start); 3659 if (exists) 3660 goto free_eb; 3661 else 3662 goto again; 3663 } 3664 /* add one reference for the tree */ 3665 check_buffer_tree_ref(eb); 3666 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3667 3668 /* 3669 * Now it's safe to unlock the pages because any calls to 3670 * btree_release_folio will correctly detect that a page belongs to a 3671 * live buffer and won't free them prematurely. 3672 */ 3673 for (i = 0; i < num_pages; i++) 3674 unlock_page(eb->pages[i]); 3675 return eb; 3676 3677 free_eb: 3678 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3679 for (i = 0; i < num_pages; i++) { 3680 if (eb->pages[i]) 3681 unlock_page(eb->pages[i]); 3682 } 3683 3684 btrfs_release_extent_buffer(eb); 3685 return exists; 3686 } 3687 3688 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3689 { 3690 struct extent_buffer *eb = 3691 container_of(head, struct extent_buffer, rcu_head); 3692 3693 __free_extent_buffer(eb); 3694 } 3695 3696 static int release_extent_buffer(struct extent_buffer *eb) 3697 __releases(&eb->refs_lock) 3698 { 3699 lockdep_assert_held(&eb->refs_lock); 3700 3701 WARN_ON(atomic_read(&eb->refs) == 0); 3702 if (atomic_dec_and_test(&eb->refs)) { 3703 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3704 struct btrfs_fs_info *fs_info = eb->fs_info; 3705 3706 spin_unlock(&eb->refs_lock); 3707 3708 spin_lock(&fs_info->buffer_lock); 3709 radix_tree_delete(&fs_info->buffer_radix, 3710 eb->start >> fs_info->sectorsize_bits); 3711 spin_unlock(&fs_info->buffer_lock); 3712 } else { 3713 spin_unlock(&eb->refs_lock); 3714 } 3715 3716 btrfs_leak_debug_del_eb(eb); 3717 /* Should be safe to release our pages at this point */ 3718 btrfs_release_extent_buffer_pages(eb); 3719 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3720 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3721 __free_extent_buffer(eb); 3722 return 1; 3723 } 3724 #endif 3725 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3726 return 1; 3727 } 3728 spin_unlock(&eb->refs_lock); 3729 3730 return 0; 3731 } 3732 3733 void free_extent_buffer(struct extent_buffer *eb) 3734 { 3735 int refs; 3736 if (!eb) 3737 return; 3738 3739 refs = atomic_read(&eb->refs); 3740 while (1) { 3741 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3742 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3743 refs == 1)) 3744 break; 3745 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3746 return; 3747 } 3748 3749 spin_lock(&eb->refs_lock); 3750 if (atomic_read(&eb->refs) == 2 && 3751 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3752 !extent_buffer_under_io(eb) && 3753 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3754 atomic_dec(&eb->refs); 3755 3756 /* 3757 * I know this is terrible, but it's temporary until we stop tracking 3758 * the uptodate bits and such for the extent buffers. 3759 */ 3760 release_extent_buffer(eb); 3761 } 3762 3763 void free_extent_buffer_stale(struct extent_buffer *eb) 3764 { 3765 if (!eb) 3766 return; 3767 3768 spin_lock(&eb->refs_lock); 3769 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3770 3771 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3772 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3773 atomic_dec(&eb->refs); 3774 release_extent_buffer(eb); 3775 } 3776 3777 static void btree_clear_page_dirty(struct page *page) 3778 { 3779 ASSERT(PageDirty(page)); 3780 ASSERT(PageLocked(page)); 3781 clear_page_dirty_for_io(page); 3782 xa_lock_irq(&page->mapping->i_pages); 3783 if (!PageDirty(page)) 3784 __xa_clear_mark(&page->mapping->i_pages, 3785 page_index(page), PAGECACHE_TAG_DIRTY); 3786 xa_unlock_irq(&page->mapping->i_pages); 3787 } 3788 3789 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3790 { 3791 struct btrfs_fs_info *fs_info = eb->fs_info; 3792 struct page *page = eb->pages[0]; 3793 bool last; 3794 3795 /* btree_clear_page_dirty() needs page locked */ 3796 lock_page(page); 3797 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3798 eb->len); 3799 if (last) 3800 btree_clear_page_dirty(page); 3801 unlock_page(page); 3802 WARN_ON(atomic_read(&eb->refs) == 0); 3803 } 3804 3805 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3806 struct extent_buffer *eb) 3807 { 3808 struct btrfs_fs_info *fs_info = eb->fs_info; 3809 int i; 3810 int num_pages; 3811 struct page *page; 3812 3813 btrfs_assert_tree_write_locked(eb); 3814 3815 if (trans && btrfs_header_generation(eb) != trans->transid) 3816 return; 3817 3818 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3819 return; 3820 3821 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3822 fs_info->dirty_metadata_batch); 3823 3824 if (eb->fs_info->nodesize < PAGE_SIZE) 3825 return clear_subpage_extent_buffer_dirty(eb); 3826 3827 num_pages = num_extent_pages(eb); 3828 3829 for (i = 0; i < num_pages; i++) { 3830 page = eb->pages[i]; 3831 if (!PageDirty(page)) 3832 continue; 3833 lock_page(page); 3834 btree_clear_page_dirty(page); 3835 unlock_page(page); 3836 } 3837 WARN_ON(atomic_read(&eb->refs) == 0); 3838 } 3839 3840 void set_extent_buffer_dirty(struct extent_buffer *eb) 3841 { 3842 int i; 3843 int num_pages; 3844 bool was_dirty; 3845 3846 check_buffer_tree_ref(eb); 3847 3848 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3849 3850 num_pages = num_extent_pages(eb); 3851 WARN_ON(atomic_read(&eb->refs) == 0); 3852 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3853 3854 if (!was_dirty) { 3855 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3856 3857 /* 3858 * For subpage case, we can have other extent buffers in the 3859 * same page, and in clear_subpage_extent_buffer_dirty() we 3860 * have to clear page dirty without subpage lock held. 3861 * This can cause race where our page gets dirty cleared after 3862 * we just set it. 3863 * 3864 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3865 * its page for other reasons, we can use page lock to prevent 3866 * the above race. 3867 */ 3868 if (subpage) 3869 lock_page(eb->pages[0]); 3870 for (i = 0; i < num_pages; i++) 3871 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3872 eb->start, eb->len); 3873 if (subpage) 3874 unlock_page(eb->pages[0]); 3875 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3876 eb->len, 3877 eb->fs_info->dirty_metadata_batch); 3878 } 3879 #ifdef CONFIG_BTRFS_DEBUG 3880 for (i = 0; i < num_pages; i++) 3881 ASSERT(PageDirty(eb->pages[i])); 3882 #endif 3883 } 3884 3885 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3886 { 3887 struct btrfs_fs_info *fs_info = eb->fs_info; 3888 struct page *page; 3889 int num_pages; 3890 int i; 3891 3892 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3893 num_pages = num_extent_pages(eb); 3894 for (i = 0; i < num_pages; i++) { 3895 page = eb->pages[i]; 3896 if (!page) 3897 continue; 3898 3899 /* 3900 * This is special handling for metadata subpage, as regular 3901 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3902 */ 3903 if (fs_info->nodesize >= PAGE_SIZE) 3904 ClearPageUptodate(page); 3905 else 3906 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3907 eb->len); 3908 } 3909 } 3910 3911 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3912 { 3913 struct btrfs_fs_info *fs_info = eb->fs_info; 3914 struct page *page; 3915 int num_pages; 3916 int i; 3917 3918 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3919 num_pages = num_extent_pages(eb); 3920 for (i = 0; i < num_pages; i++) { 3921 page = eb->pages[i]; 3922 3923 /* 3924 * This is special handling for metadata subpage, as regular 3925 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3926 */ 3927 if (fs_info->nodesize >= PAGE_SIZE) 3928 SetPageUptodate(page); 3929 else 3930 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3931 eb->len); 3932 } 3933 } 3934 3935 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3936 { 3937 struct extent_buffer *eb = bbio->private; 3938 struct btrfs_fs_info *fs_info = eb->fs_info; 3939 bool uptodate = !bbio->bio.bi_status; 3940 struct bvec_iter_all iter_all; 3941 struct bio_vec *bvec; 3942 u32 bio_offset = 0; 3943 3944 eb->read_mirror = bbio->mirror_num; 3945 3946 if (uptodate && 3947 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3948 uptodate = false; 3949 3950 if (uptodate) { 3951 set_extent_buffer_uptodate(eb); 3952 } else { 3953 clear_extent_buffer_uptodate(eb); 3954 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3955 } 3956 3957 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3958 u64 start = eb->start + bio_offset; 3959 struct page *page = bvec->bv_page; 3960 u32 len = bvec->bv_len; 3961 3962 if (uptodate) 3963 btrfs_page_set_uptodate(fs_info, page, start, len); 3964 else 3965 btrfs_page_clear_uptodate(fs_info, page, start, len); 3966 3967 bio_offset += len; 3968 } 3969 3970 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3971 smp_mb__after_atomic(); 3972 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3973 free_extent_buffer(eb); 3974 3975 bio_put(&bbio->bio); 3976 } 3977 3978 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3979 struct btrfs_tree_parent_check *check) 3980 { 3981 int num_pages = num_extent_pages(eb), i; 3982 struct btrfs_bio *bbio; 3983 3984 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3985 return 0; 3986 3987 /* 3988 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3989 * operation, which could potentially still be in flight. In this case 3990 * we simply want to return an error. 3991 */ 3992 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3993 return -EIO; 3994 3995 /* Someone else is already reading the buffer, just wait for it. */ 3996 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3997 goto done; 3998 3999 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4000 eb->read_mirror = 0; 4001 check_buffer_tree_ref(eb); 4002 atomic_inc(&eb->refs); 4003 4004 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4005 REQ_OP_READ | REQ_META, eb->fs_info, 4006 extent_buffer_read_end_io, eb); 4007 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4008 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4009 bbio->file_offset = eb->start; 4010 memcpy(&bbio->parent_check, check, sizeof(*check)); 4011 if (eb->fs_info->nodesize < PAGE_SIZE) { 4012 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 4013 eb->start - page_offset(eb->pages[0])); 4014 } else { 4015 for (i = 0; i < num_pages; i++) 4016 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 4017 } 4018 btrfs_submit_bio(bbio, mirror_num); 4019 4020 done: 4021 if (wait == WAIT_COMPLETE) { 4022 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4023 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4024 return -EIO; 4025 } 4026 4027 return 0; 4028 } 4029 4030 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4031 unsigned long len) 4032 { 4033 btrfs_warn(eb->fs_info, 4034 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4035 eb->start, eb->len, start, len); 4036 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4037 4038 return true; 4039 } 4040 4041 /* 4042 * Check if the [start, start + len) range is valid before reading/writing 4043 * the eb. 4044 * NOTE: @start and @len are offset inside the eb, not logical address. 4045 * 4046 * Caller should not touch the dst/src memory if this function returns error. 4047 */ 4048 static inline int check_eb_range(const struct extent_buffer *eb, 4049 unsigned long start, unsigned long len) 4050 { 4051 unsigned long offset; 4052 4053 /* start, start + len should not go beyond eb->len nor overflow */ 4054 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4055 return report_eb_range(eb, start, len); 4056 4057 return false; 4058 } 4059 4060 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4061 unsigned long start, unsigned long len) 4062 { 4063 size_t cur; 4064 size_t offset; 4065 struct page *page; 4066 char *kaddr; 4067 char *dst = (char *)dstv; 4068 unsigned long i = get_eb_page_index(start); 4069 4070 if (check_eb_range(eb, start, len)) 4071 return; 4072 4073 offset = get_eb_offset_in_page(eb, start); 4074 4075 while (len > 0) { 4076 page = eb->pages[i]; 4077 4078 cur = min(len, (PAGE_SIZE - offset)); 4079 kaddr = page_address(page); 4080 memcpy(dst, kaddr + offset, cur); 4081 4082 dst += cur; 4083 len -= cur; 4084 offset = 0; 4085 i++; 4086 } 4087 } 4088 4089 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4090 void __user *dstv, 4091 unsigned long start, unsigned long len) 4092 { 4093 size_t cur; 4094 size_t offset; 4095 struct page *page; 4096 char *kaddr; 4097 char __user *dst = (char __user *)dstv; 4098 unsigned long i = get_eb_page_index(start); 4099 int ret = 0; 4100 4101 WARN_ON(start > eb->len); 4102 WARN_ON(start + len > eb->start + eb->len); 4103 4104 offset = get_eb_offset_in_page(eb, start); 4105 4106 while (len > 0) { 4107 page = eb->pages[i]; 4108 4109 cur = min(len, (PAGE_SIZE - offset)); 4110 kaddr = page_address(page); 4111 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4112 ret = -EFAULT; 4113 break; 4114 } 4115 4116 dst += cur; 4117 len -= cur; 4118 offset = 0; 4119 i++; 4120 } 4121 4122 return ret; 4123 } 4124 4125 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4126 unsigned long start, unsigned long len) 4127 { 4128 size_t cur; 4129 size_t offset; 4130 struct page *page; 4131 char *kaddr; 4132 char *ptr = (char *)ptrv; 4133 unsigned long i = get_eb_page_index(start); 4134 int ret = 0; 4135 4136 if (check_eb_range(eb, start, len)) 4137 return -EINVAL; 4138 4139 offset = get_eb_offset_in_page(eb, start); 4140 4141 while (len > 0) { 4142 page = eb->pages[i]; 4143 4144 cur = min(len, (PAGE_SIZE - offset)); 4145 4146 kaddr = page_address(page); 4147 ret = memcmp(ptr, kaddr + offset, cur); 4148 if (ret) 4149 break; 4150 4151 ptr += cur; 4152 len -= cur; 4153 offset = 0; 4154 i++; 4155 } 4156 return ret; 4157 } 4158 4159 /* 4160 * Check that the extent buffer is uptodate. 4161 * 4162 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4163 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4164 */ 4165 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4166 struct page *page) 4167 { 4168 struct btrfs_fs_info *fs_info = eb->fs_info; 4169 4170 /* 4171 * If we are using the commit root we could potentially clear a page 4172 * Uptodate while we're using the extent buffer that we've previously 4173 * looked up. We don't want to complain in this case, as the page was 4174 * valid before, we just didn't write it out. Instead we want to catch 4175 * the case where we didn't actually read the block properly, which 4176 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4177 */ 4178 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4179 return; 4180 4181 if (fs_info->nodesize < PAGE_SIZE) { 4182 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4183 eb->start, eb->len))) 4184 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4185 } else { 4186 WARN_ON(!PageUptodate(page)); 4187 } 4188 } 4189 4190 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 4191 const void *srcv) 4192 { 4193 char *kaddr; 4194 4195 assert_eb_page_uptodate(eb, eb->pages[0]); 4196 kaddr = page_address(eb->pages[0]) + 4197 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 4198 chunk_tree_uuid)); 4199 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4200 } 4201 4202 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 4203 { 4204 char *kaddr; 4205 4206 assert_eb_page_uptodate(eb, eb->pages[0]); 4207 kaddr = page_address(eb->pages[0]) + 4208 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 4209 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4210 } 4211 4212 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4213 unsigned long start, unsigned long len) 4214 { 4215 size_t cur; 4216 size_t offset; 4217 struct page *page; 4218 char *kaddr; 4219 char *src = (char *)srcv; 4220 unsigned long i = get_eb_page_index(start); 4221 4222 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4223 4224 if (check_eb_range(eb, start, len)) 4225 return; 4226 4227 offset = get_eb_offset_in_page(eb, start); 4228 4229 while (len > 0) { 4230 page = eb->pages[i]; 4231 assert_eb_page_uptodate(eb, page); 4232 4233 cur = min(len, PAGE_SIZE - offset); 4234 kaddr = page_address(page); 4235 memcpy(kaddr + offset, src, cur); 4236 4237 src += cur; 4238 len -= cur; 4239 offset = 0; 4240 i++; 4241 } 4242 } 4243 4244 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4245 unsigned long len) 4246 { 4247 size_t cur; 4248 size_t offset; 4249 struct page *page; 4250 char *kaddr; 4251 unsigned long i = get_eb_page_index(start); 4252 4253 if (check_eb_range(eb, start, len)) 4254 return; 4255 4256 offset = get_eb_offset_in_page(eb, start); 4257 4258 while (len > 0) { 4259 page = eb->pages[i]; 4260 assert_eb_page_uptodate(eb, page); 4261 4262 cur = min(len, PAGE_SIZE - offset); 4263 kaddr = page_address(page); 4264 memset(kaddr + offset, 0, cur); 4265 4266 len -= cur; 4267 offset = 0; 4268 i++; 4269 } 4270 } 4271 4272 void copy_extent_buffer_full(const struct extent_buffer *dst, 4273 const struct extent_buffer *src) 4274 { 4275 int i; 4276 int num_pages; 4277 4278 ASSERT(dst->len == src->len); 4279 4280 if (dst->fs_info->nodesize >= PAGE_SIZE) { 4281 num_pages = num_extent_pages(dst); 4282 for (i = 0; i < num_pages; i++) 4283 copy_page(page_address(dst->pages[i]), 4284 page_address(src->pages[i])); 4285 } else { 4286 size_t src_offset = get_eb_offset_in_page(src, 0); 4287 size_t dst_offset = get_eb_offset_in_page(dst, 0); 4288 4289 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 4290 memcpy(page_address(dst->pages[0]) + dst_offset, 4291 page_address(src->pages[0]) + src_offset, 4292 src->len); 4293 } 4294 } 4295 4296 void copy_extent_buffer(const struct extent_buffer *dst, 4297 const struct extent_buffer *src, 4298 unsigned long dst_offset, unsigned long src_offset, 4299 unsigned long len) 4300 { 4301 u64 dst_len = dst->len; 4302 size_t cur; 4303 size_t offset; 4304 struct page *page; 4305 char *kaddr; 4306 unsigned long i = get_eb_page_index(dst_offset); 4307 4308 if (check_eb_range(dst, dst_offset, len) || 4309 check_eb_range(src, src_offset, len)) 4310 return; 4311 4312 WARN_ON(src->len != dst_len); 4313 4314 offset = get_eb_offset_in_page(dst, dst_offset); 4315 4316 while (len > 0) { 4317 page = dst->pages[i]; 4318 assert_eb_page_uptodate(dst, page); 4319 4320 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4321 4322 kaddr = page_address(page); 4323 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4324 4325 src_offset += cur; 4326 len -= cur; 4327 offset = 0; 4328 i++; 4329 } 4330 } 4331 4332 /* 4333 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4334 * given bit number 4335 * @eb: the extent buffer 4336 * @start: offset of the bitmap item in the extent buffer 4337 * @nr: bit number 4338 * @page_index: return index of the page in the extent buffer that contains the 4339 * given bit number 4340 * @page_offset: return offset into the page given by page_index 4341 * 4342 * This helper hides the ugliness of finding the byte in an extent buffer which 4343 * contains a given bit. 4344 */ 4345 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4346 unsigned long start, unsigned long nr, 4347 unsigned long *page_index, 4348 size_t *page_offset) 4349 { 4350 size_t byte_offset = BIT_BYTE(nr); 4351 size_t offset; 4352 4353 /* 4354 * The byte we want is the offset of the extent buffer + the offset of 4355 * the bitmap item in the extent buffer + the offset of the byte in the 4356 * bitmap item. 4357 */ 4358 offset = start + offset_in_page(eb->start) + byte_offset; 4359 4360 *page_index = offset >> PAGE_SHIFT; 4361 *page_offset = offset_in_page(offset); 4362 } 4363 4364 /* 4365 * Determine whether a bit in a bitmap item is set. 4366 * 4367 * @eb: the extent buffer 4368 * @start: offset of the bitmap item in the extent buffer 4369 * @nr: bit number to test 4370 */ 4371 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4372 unsigned long nr) 4373 { 4374 u8 *kaddr; 4375 struct page *page; 4376 unsigned long i; 4377 size_t offset; 4378 4379 eb_bitmap_offset(eb, start, nr, &i, &offset); 4380 page = eb->pages[i]; 4381 assert_eb_page_uptodate(eb, page); 4382 kaddr = page_address(page); 4383 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4384 } 4385 4386 /* 4387 * Set an area of a bitmap to 1. 4388 * 4389 * @eb: the extent buffer 4390 * @start: offset of the bitmap item in the extent buffer 4391 * @pos: bit number of the first bit 4392 * @len: number of bits to set 4393 */ 4394 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4395 unsigned long pos, unsigned long len) 4396 { 4397 u8 *kaddr; 4398 struct page *page; 4399 unsigned long i; 4400 size_t offset; 4401 const unsigned int size = pos + len; 4402 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4403 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 4404 4405 eb_bitmap_offset(eb, start, pos, &i, &offset); 4406 page = eb->pages[i]; 4407 assert_eb_page_uptodate(eb, page); 4408 kaddr = page_address(page); 4409 4410 while (len >= bits_to_set) { 4411 kaddr[offset] |= mask_to_set; 4412 len -= bits_to_set; 4413 bits_to_set = BITS_PER_BYTE; 4414 mask_to_set = ~0; 4415 if (++offset >= PAGE_SIZE && len > 0) { 4416 offset = 0; 4417 page = eb->pages[++i]; 4418 assert_eb_page_uptodate(eb, page); 4419 kaddr = page_address(page); 4420 } 4421 } 4422 if (len) { 4423 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 4424 kaddr[offset] |= mask_to_set; 4425 } 4426 } 4427 4428 4429 /* 4430 * Clear an area of a bitmap. 4431 * 4432 * @eb: the extent buffer 4433 * @start: offset of the bitmap item in the extent buffer 4434 * @pos: bit number of the first bit 4435 * @len: number of bits to clear 4436 */ 4437 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4438 unsigned long start, unsigned long pos, 4439 unsigned long len) 4440 { 4441 u8 *kaddr; 4442 struct page *page; 4443 unsigned long i; 4444 size_t offset; 4445 const unsigned int size = pos + len; 4446 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4447 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 4448 4449 eb_bitmap_offset(eb, start, pos, &i, &offset); 4450 page = eb->pages[i]; 4451 assert_eb_page_uptodate(eb, page); 4452 kaddr = page_address(page); 4453 4454 while (len >= bits_to_clear) { 4455 kaddr[offset] &= ~mask_to_clear; 4456 len -= bits_to_clear; 4457 bits_to_clear = BITS_PER_BYTE; 4458 mask_to_clear = ~0; 4459 if (++offset >= PAGE_SIZE && len > 0) { 4460 offset = 0; 4461 page = eb->pages[++i]; 4462 assert_eb_page_uptodate(eb, page); 4463 kaddr = page_address(page); 4464 } 4465 } 4466 if (len) { 4467 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 4468 kaddr[offset] &= ~mask_to_clear; 4469 } 4470 } 4471 4472 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4473 { 4474 unsigned long distance = (src > dst) ? src - dst : dst - src; 4475 return distance < len; 4476 } 4477 4478 static void copy_pages(struct page *dst_page, struct page *src_page, 4479 unsigned long dst_off, unsigned long src_off, 4480 unsigned long len) 4481 { 4482 char *dst_kaddr = page_address(dst_page); 4483 char *src_kaddr; 4484 int must_memmove = 0; 4485 4486 if (dst_page != src_page) { 4487 src_kaddr = page_address(src_page); 4488 } else { 4489 src_kaddr = dst_kaddr; 4490 if (areas_overlap(src_off, dst_off, len)) 4491 must_memmove = 1; 4492 } 4493 4494 if (must_memmove) 4495 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4496 else 4497 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4498 } 4499 4500 void memcpy_extent_buffer(const struct extent_buffer *dst, 4501 unsigned long dst_offset, unsigned long src_offset, 4502 unsigned long len) 4503 { 4504 size_t cur; 4505 size_t dst_off_in_page; 4506 size_t src_off_in_page; 4507 unsigned long dst_i; 4508 unsigned long src_i; 4509 4510 if (check_eb_range(dst, dst_offset, len) || 4511 check_eb_range(dst, src_offset, len)) 4512 return; 4513 4514 while (len > 0) { 4515 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 4516 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 4517 4518 dst_i = get_eb_page_index(dst_offset); 4519 src_i = get_eb_page_index(src_offset); 4520 4521 cur = min(len, (unsigned long)(PAGE_SIZE - 4522 src_off_in_page)); 4523 cur = min_t(unsigned long, cur, 4524 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 4525 4526 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4527 dst_off_in_page, src_off_in_page, cur); 4528 4529 src_offset += cur; 4530 dst_offset += cur; 4531 len -= cur; 4532 } 4533 } 4534 4535 void memmove_extent_buffer(const struct extent_buffer *dst, 4536 unsigned long dst_offset, unsigned long src_offset, 4537 unsigned long len) 4538 { 4539 size_t cur; 4540 size_t dst_off_in_page; 4541 size_t src_off_in_page; 4542 unsigned long dst_end = dst_offset + len - 1; 4543 unsigned long src_end = src_offset + len - 1; 4544 unsigned long dst_i; 4545 unsigned long src_i; 4546 4547 if (check_eb_range(dst, dst_offset, len) || 4548 check_eb_range(dst, src_offset, len)) 4549 return; 4550 if (dst_offset < src_offset) { 4551 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4552 return; 4553 } 4554 while (len > 0) { 4555 dst_i = get_eb_page_index(dst_end); 4556 src_i = get_eb_page_index(src_end); 4557 4558 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4559 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4560 4561 cur = min_t(unsigned long, len, src_off_in_page + 1); 4562 cur = min(cur, dst_off_in_page + 1); 4563 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4564 dst_off_in_page - cur + 1, 4565 src_off_in_page - cur + 1, cur); 4566 4567 dst_end -= cur; 4568 src_end -= cur; 4569 len -= cur; 4570 } 4571 } 4572 4573 #define GANG_LOOKUP_SIZE 16 4574 static struct extent_buffer *get_next_extent_buffer( 4575 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4576 { 4577 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4578 struct extent_buffer *found = NULL; 4579 u64 page_start = page_offset(page); 4580 u64 cur = page_start; 4581 4582 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4583 lockdep_assert_held(&fs_info->buffer_lock); 4584 4585 while (cur < page_start + PAGE_SIZE) { 4586 int ret; 4587 int i; 4588 4589 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4590 (void **)gang, cur >> fs_info->sectorsize_bits, 4591 min_t(unsigned int, GANG_LOOKUP_SIZE, 4592 PAGE_SIZE / fs_info->nodesize)); 4593 if (ret == 0) 4594 goto out; 4595 for (i = 0; i < ret; i++) { 4596 /* Already beyond page end */ 4597 if (gang[i]->start >= page_start + PAGE_SIZE) 4598 goto out; 4599 /* Found one */ 4600 if (gang[i]->start >= bytenr) { 4601 found = gang[i]; 4602 goto out; 4603 } 4604 } 4605 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4606 } 4607 out: 4608 return found; 4609 } 4610 4611 static int try_release_subpage_extent_buffer(struct page *page) 4612 { 4613 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4614 u64 cur = page_offset(page); 4615 const u64 end = page_offset(page) + PAGE_SIZE; 4616 int ret; 4617 4618 while (cur < end) { 4619 struct extent_buffer *eb = NULL; 4620 4621 /* 4622 * Unlike try_release_extent_buffer() which uses page->private 4623 * to grab buffer, for subpage case we rely on radix tree, thus 4624 * we need to ensure radix tree consistency. 4625 * 4626 * We also want an atomic snapshot of the radix tree, thus go 4627 * with spinlock rather than RCU. 4628 */ 4629 spin_lock(&fs_info->buffer_lock); 4630 eb = get_next_extent_buffer(fs_info, page, cur); 4631 if (!eb) { 4632 /* No more eb in the page range after or at cur */ 4633 spin_unlock(&fs_info->buffer_lock); 4634 break; 4635 } 4636 cur = eb->start + eb->len; 4637 4638 /* 4639 * The same as try_release_extent_buffer(), to ensure the eb 4640 * won't disappear out from under us. 4641 */ 4642 spin_lock(&eb->refs_lock); 4643 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4644 spin_unlock(&eb->refs_lock); 4645 spin_unlock(&fs_info->buffer_lock); 4646 break; 4647 } 4648 spin_unlock(&fs_info->buffer_lock); 4649 4650 /* 4651 * If tree ref isn't set then we know the ref on this eb is a 4652 * real ref, so just return, this eb will likely be freed soon 4653 * anyway. 4654 */ 4655 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4656 spin_unlock(&eb->refs_lock); 4657 break; 4658 } 4659 4660 /* 4661 * Here we don't care about the return value, we will always 4662 * check the page private at the end. And 4663 * release_extent_buffer() will release the refs_lock. 4664 */ 4665 release_extent_buffer(eb); 4666 } 4667 /* 4668 * Finally to check if we have cleared page private, as if we have 4669 * released all ebs in the page, the page private should be cleared now. 4670 */ 4671 spin_lock(&page->mapping->private_lock); 4672 if (!PagePrivate(page)) 4673 ret = 1; 4674 else 4675 ret = 0; 4676 spin_unlock(&page->mapping->private_lock); 4677 return ret; 4678 4679 } 4680 4681 int try_release_extent_buffer(struct page *page) 4682 { 4683 struct extent_buffer *eb; 4684 4685 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4686 return try_release_subpage_extent_buffer(page); 4687 4688 /* 4689 * We need to make sure nobody is changing page->private, as we rely on 4690 * page->private as the pointer to extent buffer. 4691 */ 4692 spin_lock(&page->mapping->private_lock); 4693 if (!PagePrivate(page)) { 4694 spin_unlock(&page->mapping->private_lock); 4695 return 1; 4696 } 4697 4698 eb = (struct extent_buffer *)page->private; 4699 BUG_ON(!eb); 4700 4701 /* 4702 * This is a little awful but should be ok, we need to make sure that 4703 * the eb doesn't disappear out from under us while we're looking at 4704 * this page. 4705 */ 4706 spin_lock(&eb->refs_lock); 4707 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4708 spin_unlock(&eb->refs_lock); 4709 spin_unlock(&page->mapping->private_lock); 4710 return 0; 4711 } 4712 spin_unlock(&page->mapping->private_lock); 4713 4714 /* 4715 * If tree ref isn't set then we know the ref on this eb is a real ref, 4716 * so just return, this page will likely be freed soon anyway. 4717 */ 4718 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4719 spin_unlock(&eb->refs_lock); 4720 return 0; 4721 } 4722 4723 return release_extent_buffer(eb); 4724 } 4725 4726 /* 4727 * btrfs_readahead_tree_block - attempt to readahead a child block 4728 * @fs_info: the fs_info 4729 * @bytenr: bytenr to read 4730 * @owner_root: objectid of the root that owns this eb 4731 * @gen: generation for the uptodate check, can be 0 4732 * @level: level for the eb 4733 * 4734 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4735 * normal uptodate check of the eb, without checking the generation. If we have 4736 * to read the block we will not block on anything. 4737 */ 4738 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4739 u64 bytenr, u64 owner_root, u64 gen, int level) 4740 { 4741 struct btrfs_tree_parent_check check = { 4742 .has_first_key = 0, 4743 .level = level, 4744 .transid = gen 4745 }; 4746 struct extent_buffer *eb; 4747 int ret; 4748 4749 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4750 if (IS_ERR(eb)) 4751 return; 4752 4753 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4754 free_extent_buffer(eb); 4755 return; 4756 } 4757 4758 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4759 if (ret < 0) 4760 free_extent_buffer_stale(eb); 4761 else 4762 free_extent_buffer(eb); 4763 } 4764 4765 /* 4766 * btrfs_readahead_node_child - readahead a node's child block 4767 * @node: parent node we're reading from 4768 * @slot: slot in the parent node for the child we want to read 4769 * 4770 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4771 * the slot in the node provided. 4772 */ 4773 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4774 { 4775 btrfs_readahead_tree_block(node->fs_info, 4776 btrfs_node_blockptr(node, slot), 4777 btrfs_header_owner(node), 4778 btrfs_node_ptr_generation(node, slot), 4779 btrfs_header_level(node) - 1); 4780 } 4781