1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct bio *bio; 101 int mirror_num; 102 enum btrfs_compression_type compress_type; 103 u32 len_to_oe_boundary; 104 btrfs_bio_end_io_t end_io_func; 105 106 /* 107 * This is for metadata read, to provide the extra needed verification 108 * info. This has to be provided for submit_one_bio(), as 109 * submit_one_bio() can submit a bio if it ends at stripe boundary. If 110 * no such parent_check is provided, the metadata can hit false alert at 111 * endio time. 112 */ 113 struct btrfs_tree_parent_check *parent_check; 114 115 /* 116 * Tell writepage not to lock the state bits for this range, it still 117 * does the unlocking. 118 */ 119 bool extent_locked; 120 121 /* Tell the submit_bio code to use REQ_SYNC */ 122 bool sync_io; 123 }; 124 125 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 126 { 127 struct bio *bio; 128 struct bio_vec *bv; 129 struct inode *inode; 130 int mirror_num; 131 132 if (!bio_ctrl->bio) 133 return; 134 135 bio = bio_ctrl->bio; 136 bv = bio_first_bvec_all(bio); 137 inode = bv->bv_page->mapping->host; 138 mirror_num = bio_ctrl->mirror_num; 139 140 /* Caller should ensure the bio has at least some range added */ 141 ASSERT(bio->bi_iter.bi_size); 142 143 if (!is_data_inode(inode)) { 144 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 145 /* 146 * For metadata read, we should have the parent_check, 147 * and copy it to bbio for metadata verification. 148 */ 149 ASSERT(bio_ctrl->parent_check); 150 memcpy(&btrfs_bio(bio)->parent_check, 151 bio_ctrl->parent_check, 152 sizeof(struct btrfs_tree_parent_check)); 153 } 154 bio->bi_opf |= REQ_META; 155 } 156 157 if (btrfs_op(bio) == BTRFS_MAP_READ && 158 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 159 btrfs_submit_compressed_read(inode, bio, mirror_num); 160 else 161 btrfs_submit_bio(bio, mirror_num); 162 163 /* The bio is owned by the end_io handler now */ 164 bio_ctrl->bio = NULL; 165 } 166 167 /* 168 * Submit or fail the current bio in the bio_ctrl structure. 169 */ 170 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 171 { 172 struct bio *bio = bio_ctrl->bio; 173 174 if (!bio) 175 return; 176 177 if (ret) { 178 ASSERT(ret < 0); 179 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 180 /* The bio is owned by the end_io handler now */ 181 bio_ctrl->bio = NULL; 182 } else { 183 submit_one_bio(bio_ctrl); 184 } 185 } 186 187 int __init extent_buffer_init_cachep(void) 188 { 189 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 190 sizeof(struct extent_buffer), 0, 191 SLAB_MEM_SPREAD, NULL); 192 if (!extent_buffer_cache) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 void __cold extent_buffer_free_cachep(void) 199 { 200 /* 201 * Make sure all delayed rcu free are flushed before we 202 * destroy caches. 203 */ 204 rcu_barrier(); 205 kmem_cache_destroy(extent_buffer_cache); 206 } 207 208 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 209 { 210 unsigned long index = start >> PAGE_SHIFT; 211 unsigned long end_index = end >> PAGE_SHIFT; 212 struct page *page; 213 214 while (index <= end_index) { 215 page = find_get_page(inode->i_mapping, index); 216 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 217 clear_page_dirty_for_io(page); 218 put_page(page); 219 index++; 220 } 221 } 222 223 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 224 { 225 struct address_space *mapping = inode->i_mapping; 226 unsigned long index = start >> PAGE_SHIFT; 227 unsigned long end_index = end >> PAGE_SHIFT; 228 struct folio *folio; 229 230 while (index <= end_index) { 231 folio = filemap_get_folio(mapping, index); 232 filemap_dirty_folio(mapping, folio); 233 folio_account_redirty(folio); 234 index += folio_nr_pages(folio); 235 folio_put(folio); 236 } 237 } 238 239 /* 240 * Process one page for __process_pages_contig(). 241 * 242 * Return >0 if we hit @page == @locked_page. 243 * Return 0 if we updated the page status. 244 * Return -EGAIN if the we need to try again. 245 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 246 */ 247 static int process_one_page(struct btrfs_fs_info *fs_info, 248 struct address_space *mapping, 249 struct page *page, struct page *locked_page, 250 unsigned long page_ops, u64 start, u64 end) 251 { 252 u32 len; 253 254 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 255 len = end + 1 - start; 256 257 if (page_ops & PAGE_SET_ORDERED) 258 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 259 if (page_ops & PAGE_SET_ERROR) 260 btrfs_page_clamp_set_error(fs_info, page, start, len); 261 if (page_ops & PAGE_START_WRITEBACK) { 262 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 263 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 264 } 265 if (page_ops & PAGE_END_WRITEBACK) 266 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 267 268 if (page == locked_page) 269 return 1; 270 271 if (page_ops & PAGE_LOCK) { 272 int ret; 273 274 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 275 if (ret) 276 return ret; 277 if (!PageDirty(page) || page->mapping != mapping) { 278 btrfs_page_end_writer_lock(fs_info, page, start, len); 279 return -EAGAIN; 280 } 281 } 282 if (page_ops & PAGE_UNLOCK) 283 btrfs_page_end_writer_lock(fs_info, page, start, len); 284 return 0; 285 } 286 287 static int __process_pages_contig(struct address_space *mapping, 288 struct page *locked_page, 289 u64 start, u64 end, unsigned long page_ops, 290 u64 *processed_end) 291 { 292 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 293 pgoff_t start_index = start >> PAGE_SHIFT; 294 pgoff_t end_index = end >> PAGE_SHIFT; 295 pgoff_t index = start_index; 296 unsigned long pages_processed = 0; 297 struct folio_batch fbatch; 298 int err = 0; 299 int i; 300 301 if (page_ops & PAGE_LOCK) { 302 ASSERT(page_ops == PAGE_LOCK); 303 ASSERT(processed_end && *processed_end == start); 304 } 305 306 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 307 mapping_set_error(mapping, -EIO); 308 309 folio_batch_init(&fbatch); 310 while (index <= end_index) { 311 int found_folios; 312 313 found_folios = filemap_get_folios_contig(mapping, &index, 314 end_index, &fbatch); 315 316 if (found_folios == 0) { 317 /* 318 * Only if we're going to lock these pages, we can find 319 * nothing at @index. 320 */ 321 ASSERT(page_ops & PAGE_LOCK); 322 err = -EAGAIN; 323 goto out; 324 } 325 326 for (i = 0; i < found_folios; i++) { 327 int process_ret; 328 struct folio *folio = fbatch.folios[i]; 329 process_ret = process_one_page(fs_info, mapping, 330 &folio->page, locked_page, page_ops, 331 start, end); 332 if (process_ret < 0) { 333 err = -EAGAIN; 334 folio_batch_release(&fbatch); 335 goto out; 336 } 337 pages_processed += folio_nr_pages(folio); 338 } 339 folio_batch_release(&fbatch); 340 cond_resched(); 341 } 342 out: 343 if (err && processed_end) { 344 /* 345 * Update @processed_end. I know this is awful since it has 346 * two different return value patterns (inclusive vs exclusive). 347 * 348 * But the exclusive pattern is necessary if @start is 0, or we 349 * underflow and check against processed_end won't work as 350 * expected. 351 */ 352 if (pages_processed) 353 *processed_end = min(end, 354 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 355 else 356 *processed_end = start; 357 } 358 return err; 359 } 360 361 static noinline void __unlock_for_delalloc(struct inode *inode, 362 struct page *locked_page, 363 u64 start, u64 end) 364 { 365 unsigned long index = start >> PAGE_SHIFT; 366 unsigned long end_index = end >> PAGE_SHIFT; 367 368 ASSERT(locked_page); 369 if (index == locked_page->index && end_index == index) 370 return; 371 372 __process_pages_contig(inode->i_mapping, locked_page, start, end, 373 PAGE_UNLOCK, NULL); 374 } 375 376 static noinline int lock_delalloc_pages(struct inode *inode, 377 struct page *locked_page, 378 u64 delalloc_start, 379 u64 delalloc_end) 380 { 381 unsigned long index = delalloc_start >> PAGE_SHIFT; 382 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 383 u64 processed_end = delalloc_start; 384 int ret; 385 386 ASSERT(locked_page); 387 if (index == locked_page->index && index == end_index) 388 return 0; 389 390 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 391 delalloc_end, PAGE_LOCK, &processed_end); 392 if (ret == -EAGAIN && processed_end > delalloc_start) 393 __unlock_for_delalloc(inode, locked_page, delalloc_start, 394 processed_end); 395 return ret; 396 } 397 398 /* 399 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 400 * more than @max_bytes. 401 * 402 * @start: The original start bytenr to search. 403 * Will store the extent range start bytenr. 404 * @end: The original end bytenr of the search range 405 * Will store the extent range end bytenr. 406 * 407 * Return true if we find a delalloc range which starts inside the original 408 * range, and @start/@end will store the delalloc range start/end. 409 * 410 * Return false if we can't find any delalloc range which starts inside the 411 * original range, and @start/@end will be the non-delalloc range start/end. 412 */ 413 EXPORT_FOR_TESTS 414 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 415 struct page *locked_page, u64 *start, 416 u64 *end) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 420 const u64 orig_start = *start; 421 const u64 orig_end = *end; 422 /* The sanity tests may not set a valid fs_info. */ 423 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 424 u64 delalloc_start; 425 u64 delalloc_end; 426 bool found; 427 struct extent_state *cached_state = NULL; 428 int ret; 429 int loops = 0; 430 431 /* Caller should pass a valid @end to indicate the search range end */ 432 ASSERT(orig_end > orig_start); 433 434 /* The range should at least cover part of the page */ 435 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 436 orig_end <= page_offset(locked_page))); 437 again: 438 /* step one, find a bunch of delalloc bytes starting at start */ 439 delalloc_start = *start; 440 delalloc_end = 0; 441 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 442 max_bytes, &cached_state); 443 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 444 *start = delalloc_start; 445 446 /* @delalloc_end can be -1, never go beyond @orig_end */ 447 *end = min(delalloc_end, orig_end); 448 free_extent_state(cached_state); 449 return false; 450 } 451 452 /* 453 * start comes from the offset of locked_page. We have to lock 454 * pages in order, so we can't process delalloc bytes before 455 * locked_page 456 */ 457 if (delalloc_start < *start) 458 delalloc_start = *start; 459 460 /* 461 * make sure to limit the number of pages we try to lock down 462 */ 463 if (delalloc_end + 1 - delalloc_start > max_bytes) 464 delalloc_end = delalloc_start + max_bytes - 1; 465 466 /* step two, lock all the pages after the page that has start */ 467 ret = lock_delalloc_pages(inode, locked_page, 468 delalloc_start, delalloc_end); 469 ASSERT(!ret || ret == -EAGAIN); 470 if (ret == -EAGAIN) { 471 /* some of the pages are gone, lets avoid looping by 472 * shortening the size of the delalloc range we're searching 473 */ 474 free_extent_state(cached_state); 475 cached_state = NULL; 476 if (!loops) { 477 max_bytes = PAGE_SIZE; 478 loops = 1; 479 goto again; 480 } else { 481 found = false; 482 goto out_failed; 483 } 484 } 485 486 /* step three, lock the state bits for the whole range */ 487 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 488 489 /* then test to make sure it is all still delalloc */ 490 ret = test_range_bit(tree, delalloc_start, delalloc_end, 491 EXTENT_DELALLOC, 1, cached_state); 492 if (!ret) { 493 unlock_extent(tree, delalloc_start, delalloc_end, 494 &cached_state); 495 __unlock_for_delalloc(inode, locked_page, 496 delalloc_start, delalloc_end); 497 cond_resched(); 498 goto again; 499 } 500 free_extent_state(cached_state); 501 *start = delalloc_start; 502 *end = delalloc_end; 503 out_failed: 504 return found; 505 } 506 507 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 508 struct page *locked_page, 509 u32 clear_bits, unsigned long page_ops) 510 { 511 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 512 513 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 514 start, end, page_ops, NULL); 515 } 516 517 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 518 { 519 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 520 521 ASSERT(page_offset(page) <= start && 522 start + len <= page_offset(page) + PAGE_SIZE); 523 524 if (uptodate) { 525 if (fsverity_active(page->mapping->host) && 526 !PageError(page) && 527 !PageUptodate(page) && 528 start < i_size_read(page->mapping->host) && 529 !fsverity_verify_page(page)) { 530 btrfs_page_set_error(fs_info, page, start, len); 531 } else { 532 btrfs_page_set_uptodate(fs_info, page, start, len); 533 } 534 } else { 535 btrfs_page_clear_uptodate(fs_info, page, start, len); 536 btrfs_page_set_error(fs_info, page, start, len); 537 } 538 539 if (!btrfs_is_subpage(fs_info, page)) 540 unlock_page(page); 541 else 542 btrfs_subpage_end_reader(fs_info, page, start, len); 543 } 544 545 /* lots and lots of room for performance fixes in the end_bio funcs */ 546 547 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 548 { 549 struct btrfs_inode *inode; 550 const bool uptodate = (err == 0); 551 int ret = 0; 552 553 ASSERT(page && page->mapping); 554 inode = BTRFS_I(page->mapping->host); 555 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 556 557 if (!uptodate) { 558 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 559 u32 len; 560 561 ASSERT(end + 1 - start <= U32_MAX); 562 len = end + 1 - start; 563 564 btrfs_page_clear_uptodate(fs_info, page, start, len); 565 btrfs_page_set_error(fs_info, page, start, len); 566 ret = err < 0 ? err : -EIO; 567 mapping_set_error(page->mapping, ret); 568 } 569 } 570 571 /* 572 * after a writepage IO is done, we need to: 573 * clear the uptodate bits on error 574 * clear the writeback bits in the extent tree for this IO 575 * end_page_writeback if the page has no more pending IO 576 * 577 * Scheduling is not allowed, so the extent state tree is expected 578 * to have one and only one object corresponding to this IO. 579 */ 580 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 581 { 582 struct bio *bio = &bbio->bio; 583 int error = blk_status_to_errno(bio->bi_status); 584 struct bio_vec *bvec; 585 u64 start; 586 u64 end; 587 struct bvec_iter_all iter_all; 588 589 ASSERT(!bio_flagged(bio, BIO_CLONED)); 590 bio_for_each_segment_all(bvec, bio, iter_all) { 591 struct page *page = bvec->bv_page; 592 struct inode *inode = page->mapping->host; 593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 594 const u32 sectorsize = fs_info->sectorsize; 595 596 /* Our read/write should always be sector aligned. */ 597 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 598 btrfs_err(fs_info, 599 "partial page write in btrfs with offset %u and length %u", 600 bvec->bv_offset, bvec->bv_len); 601 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 602 btrfs_info(fs_info, 603 "incomplete page write with offset %u and length %u", 604 bvec->bv_offset, bvec->bv_len); 605 606 start = page_offset(page) + bvec->bv_offset; 607 end = start + bvec->bv_len - 1; 608 609 end_extent_writepage(page, error, start, end); 610 611 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 612 } 613 614 bio_put(bio); 615 } 616 617 /* 618 * Record previously processed extent range 619 * 620 * For endio_readpage_release_extent() to handle a full extent range, reducing 621 * the extent io operations. 622 */ 623 struct processed_extent { 624 struct btrfs_inode *inode; 625 /* Start of the range in @inode */ 626 u64 start; 627 /* End of the range in @inode */ 628 u64 end; 629 bool uptodate; 630 }; 631 632 /* 633 * Try to release processed extent range 634 * 635 * May not release the extent range right now if the current range is 636 * contiguous to processed extent. 637 * 638 * Will release processed extent when any of @inode, @uptodate, the range is 639 * no longer contiguous to the processed range. 640 * 641 * Passing @inode == NULL will force processed extent to be released. 642 */ 643 static void endio_readpage_release_extent(struct processed_extent *processed, 644 struct btrfs_inode *inode, u64 start, u64 end, 645 bool uptodate) 646 { 647 struct extent_state *cached = NULL; 648 struct extent_io_tree *tree; 649 650 /* The first extent, initialize @processed */ 651 if (!processed->inode) 652 goto update; 653 654 /* 655 * Contiguous to processed extent, just uptodate the end. 656 * 657 * Several things to notice: 658 * 659 * - bio can be merged as long as on-disk bytenr is contiguous 660 * This means we can have page belonging to other inodes, thus need to 661 * check if the inode still matches. 662 * - bvec can contain range beyond current page for multi-page bvec 663 * Thus we need to do processed->end + 1 >= start check 664 */ 665 if (processed->inode == inode && processed->uptodate == uptodate && 666 processed->end + 1 >= start && end >= processed->end) { 667 processed->end = end; 668 return; 669 } 670 671 tree = &processed->inode->io_tree; 672 /* 673 * Now we don't have range contiguous to the processed range, release 674 * the processed range now. 675 */ 676 unlock_extent(tree, processed->start, processed->end, &cached); 677 678 update: 679 /* Update processed to current range */ 680 processed->inode = inode; 681 processed->start = start; 682 processed->end = end; 683 processed->uptodate = uptodate; 684 } 685 686 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 687 { 688 ASSERT(PageLocked(page)); 689 if (!btrfs_is_subpage(fs_info, page)) 690 return; 691 692 ASSERT(PagePrivate(page)); 693 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 694 } 695 696 /* 697 * Find extent buffer for a givne bytenr. 698 * 699 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 700 * in endio context. 701 */ 702 static struct extent_buffer *find_extent_buffer_readpage( 703 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 704 { 705 struct extent_buffer *eb; 706 707 /* 708 * For regular sectorsize, we can use page->private to grab extent 709 * buffer 710 */ 711 if (fs_info->nodesize >= PAGE_SIZE) { 712 ASSERT(PagePrivate(page) && page->private); 713 return (struct extent_buffer *)page->private; 714 } 715 716 /* For subpage case, we need to lookup buffer radix tree */ 717 rcu_read_lock(); 718 eb = radix_tree_lookup(&fs_info->buffer_radix, 719 bytenr >> fs_info->sectorsize_bits); 720 rcu_read_unlock(); 721 ASSERT(eb); 722 return eb; 723 } 724 725 /* 726 * after a readpage IO is done, we need to: 727 * clear the uptodate bits on error 728 * set the uptodate bits if things worked 729 * set the page up to date if all extents in the tree are uptodate 730 * clear the lock bit in the extent tree 731 * unlock the page if there are no other extents locked for it 732 * 733 * Scheduling is not allowed, so the extent state tree is expected 734 * to have one and only one object corresponding to this IO. 735 */ 736 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 737 { 738 struct bio *bio = &bbio->bio; 739 struct bio_vec *bvec; 740 struct processed_extent processed = { 0 }; 741 /* 742 * The offset to the beginning of a bio, since one bio can never be 743 * larger than UINT_MAX, u32 here is enough. 744 */ 745 u32 bio_offset = 0; 746 int mirror; 747 struct bvec_iter_all iter_all; 748 749 ASSERT(!bio_flagged(bio, BIO_CLONED)); 750 bio_for_each_segment_all(bvec, bio, iter_all) { 751 bool uptodate = !bio->bi_status; 752 struct page *page = bvec->bv_page; 753 struct inode *inode = page->mapping->host; 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 755 const u32 sectorsize = fs_info->sectorsize; 756 u64 start; 757 u64 end; 758 u32 len; 759 760 btrfs_debug(fs_info, 761 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 762 bio->bi_iter.bi_sector, bio->bi_status, 763 bbio->mirror_num); 764 765 /* 766 * We always issue full-sector reads, but if some block in a 767 * page fails to read, blk_update_request() will advance 768 * bv_offset and adjust bv_len to compensate. Print a warning 769 * for unaligned offsets, and an error if they don't add up to 770 * a full sector. 771 */ 772 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 773 btrfs_err(fs_info, 774 "partial page read in btrfs with offset %u and length %u", 775 bvec->bv_offset, bvec->bv_len); 776 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 777 sectorsize)) 778 btrfs_info(fs_info, 779 "incomplete page read with offset %u and length %u", 780 bvec->bv_offset, bvec->bv_len); 781 782 start = page_offset(page) + bvec->bv_offset; 783 end = start + bvec->bv_len - 1; 784 len = bvec->bv_len; 785 786 mirror = bbio->mirror_num; 787 if (uptodate && !is_data_inode(inode) && 788 btrfs_validate_metadata_buffer(bbio, page, start, end, mirror)) 789 uptodate = false; 790 791 if (likely(uptodate)) { 792 loff_t i_size = i_size_read(inode); 793 pgoff_t end_index = i_size >> PAGE_SHIFT; 794 795 /* 796 * Zero out the remaining part if this range straddles 797 * i_size. 798 * 799 * Here we should only zero the range inside the bvec, 800 * not touch anything else. 801 * 802 * NOTE: i_size is exclusive while end is inclusive. 803 */ 804 if (page->index == end_index && i_size <= end) { 805 u32 zero_start = max(offset_in_page(i_size), 806 offset_in_page(start)); 807 808 zero_user_segment(page, zero_start, 809 offset_in_page(end) + 1); 810 } 811 } else if (!is_data_inode(inode)) { 812 struct extent_buffer *eb; 813 814 eb = find_extent_buffer_readpage(fs_info, page, start); 815 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 816 eb->read_mirror = mirror; 817 atomic_dec(&eb->io_pages); 818 } 819 820 /* Update page status and unlock. */ 821 end_page_read(page, uptodate, start, len); 822 endio_readpage_release_extent(&processed, BTRFS_I(inode), 823 start, end, PageUptodate(page)); 824 825 ASSERT(bio_offset + len > bio_offset); 826 bio_offset += len; 827 828 } 829 /* Release the last extent */ 830 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 831 bio_put(bio); 832 } 833 834 /* 835 * Populate every free slot in a provided array with pages. 836 * 837 * @nr_pages: number of pages to allocate 838 * @page_array: the array to fill with pages; any existing non-null entries in 839 * the array will be skipped 840 * 841 * Return: 0 if all pages were able to be allocated; 842 * -ENOMEM otherwise, and the caller is responsible for freeing all 843 * non-null page pointers in the array. 844 */ 845 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 846 { 847 unsigned int allocated; 848 849 for (allocated = 0; allocated < nr_pages;) { 850 unsigned int last = allocated; 851 852 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 853 854 if (allocated == nr_pages) 855 return 0; 856 857 /* 858 * During this iteration, no page could be allocated, even 859 * though alloc_pages_bulk_array() falls back to alloc_page() 860 * if it could not bulk-allocate. So we must be out of memory. 861 */ 862 if (allocated == last) 863 return -ENOMEM; 864 865 memalloc_retry_wait(GFP_NOFS); 866 } 867 return 0; 868 } 869 870 /* 871 * Attempt to add a page to bio. 872 * 873 * @bio_ctrl: record both the bio, and its bio_flags 874 * @page: page to add to the bio 875 * @disk_bytenr: offset of the new bio or to check whether we are adding 876 * a contiguous page to the previous one 877 * @size: portion of page that we want to write 878 * @pg_offset: starting offset in the page 879 * @compress_type: compression type of the current bio to see if we can merge them 880 * 881 * Attempt to add a page to bio considering stripe alignment etc. 882 * 883 * Return >= 0 for the number of bytes added to the bio. 884 * Can return 0 if the current bio is already at stripe/zone boundary. 885 * Return <0 for error. 886 */ 887 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 888 struct page *page, 889 u64 disk_bytenr, unsigned int size, 890 unsigned int pg_offset, 891 enum btrfs_compression_type compress_type) 892 { 893 struct bio *bio = bio_ctrl->bio; 894 u32 bio_size = bio->bi_iter.bi_size; 895 u32 real_size; 896 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 897 bool contig = false; 898 899 ASSERT(bio); 900 /* The limit should be calculated when bio_ctrl->bio is allocated */ 901 ASSERT(bio_ctrl->len_to_oe_boundary); 902 if (bio_ctrl->compress_type != compress_type) 903 return 0; 904 905 906 if (bio->bi_iter.bi_size == 0) { 907 /* We can always add a page into an empty bio. */ 908 contig = true; 909 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 910 struct bio_vec *bvec = bio_last_bvec_all(bio); 911 912 /* 913 * The contig check requires the following conditions to be met: 914 * 1) The pages are belonging to the same inode 915 * This is implied by the call chain. 916 * 917 * 2) The range has adjacent logical bytenr 918 * 919 * 3) The range has adjacent file offset 920 * This is required for the usage of btrfs_bio->file_offset. 921 */ 922 if (bio_end_sector(bio) == sector && 923 page_offset(bvec->bv_page) + bvec->bv_offset + 924 bvec->bv_len == page_offset(page) + pg_offset) 925 contig = true; 926 } else { 927 /* 928 * For compression, all IO should have its logical bytenr 929 * set to the starting bytenr of the compressed extent. 930 */ 931 contig = bio->bi_iter.bi_sector == sector; 932 } 933 934 if (!contig) 935 return 0; 936 937 real_size = min(bio_ctrl->len_to_oe_boundary - bio_size, size); 938 939 /* 940 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 941 * bio will still execute its endio function on the page! 942 */ 943 if (real_size == 0) 944 return 0; 945 946 return bio_add_page(bio, page, real_size, pg_offset); 947 } 948 949 static void calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 950 struct btrfs_inode *inode, u64 file_offset) 951 { 952 struct btrfs_ordered_extent *ordered; 953 954 /* 955 * Limit the extent to the ordered boundary for Zone Append. 956 * Compressed bios aren't submitted directly, so it doesn't apply to 957 * them. 958 */ 959 if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE && 960 btrfs_use_zone_append(btrfs_bio(bio_ctrl->bio))) { 961 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 962 if (ordered) { 963 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 964 ordered->file_offset + 965 ordered->disk_num_bytes - file_offset); 966 btrfs_put_ordered_extent(ordered); 967 return; 968 } 969 } 970 971 bio_ctrl->len_to_oe_boundary = U32_MAX; 972 } 973 974 static void alloc_new_bio(struct btrfs_inode *inode, 975 struct btrfs_bio_ctrl *bio_ctrl, 976 struct writeback_control *wbc, blk_opf_t opf, 977 u64 disk_bytenr, u32 offset, u64 file_offset, 978 enum btrfs_compression_type compress_type) 979 { 980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 981 struct bio *bio; 982 983 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, inode, bio_ctrl->end_io_func, 984 NULL); 985 /* 986 * For compressed page range, its disk_bytenr is always @disk_bytenr 987 * passed in, no matter if we have added any range into previous bio. 988 */ 989 if (compress_type != BTRFS_COMPRESS_NONE) 990 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 991 else 992 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 993 btrfs_bio(bio)->file_offset = file_offset; 994 bio_ctrl->bio = bio; 995 bio_ctrl->compress_type = compress_type; 996 calc_bio_boundaries(bio_ctrl, inode, file_offset); 997 998 if (wbc) { 999 /* 1000 * Pick the last added device to support cgroup writeback. For 1001 * multi-device file systems this means blk-cgroup policies have 1002 * to always be set on the last added/replaced device. 1003 * This is a bit odd but has been like that for a long time. 1004 */ 1005 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1006 wbc_init_bio(wbc, bio); 1007 } 1008 } 1009 1010 /* 1011 * @opf: bio REQ_OP_* and REQ_* flags as one value 1012 * @wbc: optional writeback control for io accounting 1013 * @disk_bytenr: logical bytenr where the write will be 1014 * @page: page to add to the bio 1015 * @size: portion of page that we want to write to 1016 * @pg_offset: offset of the new bio or to check whether we are adding 1017 * a contiguous page to the previous one 1018 * @compress_type: compress type for current bio 1019 * 1020 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1021 * new one in @bio_ctrl->bio. 1022 * The mirror number for this IO should already be initizlied in 1023 * @bio_ctrl->mirror_num. 1024 */ 1025 static int submit_extent_page(blk_opf_t opf, 1026 struct writeback_control *wbc, 1027 struct btrfs_bio_ctrl *bio_ctrl, 1028 u64 disk_bytenr, struct page *page, 1029 size_t size, unsigned long pg_offset, 1030 enum btrfs_compression_type compress_type, 1031 bool force_bio_submit) 1032 { 1033 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1034 unsigned int cur = pg_offset; 1035 1036 ASSERT(bio_ctrl); 1037 1038 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1039 pg_offset + size <= PAGE_SIZE); 1040 1041 ASSERT(bio_ctrl->end_io_func); 1042 1043 if (force_bio_submit) 1044 submit_one_bio(bio_ctrl); 1045 1046 while (cur < pg_offset + size) { 1047 u32 offset = cur - pg_offset; 1048 int added; 1049 1050 /* Allocate new bio if needed */ 1051 if (!bio_ctrl->bio) { 1052 alloc_new_bio(inode, bio_ctrl, wbc, opf, disk_bytenr, 1053 offset, page_offset(page) + cur, 1054 compress_type); 1055 } 1056 /* 1057 * We must go through btrfs_bio_add_page() to ensure each 1058 * page range won't cross various boundaries. 1059 */ 1060 if (compress_type != BTRFS_COMPRESS_NONE) 1061 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1062 size - offset, pg_offset + offset, 1063 compress_type); 1064 else 1065 added = btrfs_bio_add_page(bio_ctrl, page, 1066 disk_bytenr + offset, size - offset, 1067 pg_offset + offset, compress_type); 1068 1069 /* Metadata page range should never be split */ 1070 if (!is_data_inode(&inode->vfs_inode)) 1071 ASSERT(added == 0 || added == size - offset); 1072 1073 /* At least we added some page, update the account */ 1074 if (wbc && added) 1075 wbc_account_cgroup_owner(wbc, page, added); 1076 1077 /* We have reached boundary, submit right now */ 1078 if (added < size - offset) { 1079 /* The bio should contain some page(s) */ 1080 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1081 submit_one_bio(bio_ctrl); 1082 } 1083 cur += added; 1084 } 1085 return 0; 1086 } 1087 1088 static int attach_extent_buffer_page(struct extent_buffer *eb, 1089 struct page *page, 1090 struct btrfs_subpage *prealloc) 1091 { 1092 struct btrfs_fs_info *fs_info = eb->fs_info; 1093 int ret = 0; 1094 1095 /* 1096 * If the page is mapped to btree inode, we should hold the private 1097 * lock to prevent race. 1098 * For cloned or dummy extent buffers, their pages are not mapped and 1099 * will not race with any other ebs. 1100 */ 1101 if (page->mapping) 1102 lockdep_assert_held(&page->mapping->private_lock); 1103 1104 if (fs_info->nodesize >= PAGE_SIZE) { 1105 if (!PagePrivate(page)) 1106 attach_page_private(page, eb); 1107 else 1108 WARN_ON(page->private != (unsigned long)eb); 1109 return 0; 1110 } 1111 1112 /* Already mapped, just free prealloc */ 1113 if (PagePrivate(page)) { 1114 btrfs_free_subpage(prealloc); 1115 return 0; 1116 } 1117 1118 if (prealloc) 1119 /* Has preallocated memory for subpage */ 1120 attach_page_private(page, prealloc); 1121 else 1122 /* Do new allocation to attach subpage */ 1123 ret = btrfs_attach_subpage(fs_info, page, 1124 BTRFS_SUBPAGE_METADATA); 1125 return ret; 1126 } 1127 1128 int set_page_extent_mapped(struct page *page) 1129 { 1130 struct btrfs_fs_info *fs_info; 1131 1132 ASSERT(page->mapping); 1133 1134 if (PagePrivate(page)) 1135 return 0; 1136 1137 fs_info = btrfs_sb(page->mapping->host->i_sb); 1138 1139 if (btrfs_is_subpage(fs_info, page)) 1140 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1141 1142 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1143 return 0; 1144 } 1145 1146 void clear_page_extent_mapped(struct page *page) 1147 { 1148 struct btrfs_fs_info *fs_info; 1149 1150 ASSERT(page->mapping); 1151 1152 if (!PagePrivate(page)) 1153 return; 1154 1155 fs_info = btrfs_sb(page->mapping->host->i_sb); 1156 if (btrfs_is_subpage(fs_info, page)) 1157 return btrfs_detach_subpage(fs_info, page); 1158 1159 detach_page_private(page); 1160 } 1161 1162 static struct extent_map * 1163 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1164 u64 start, u64 len, struct extent_map **em_cached) 1165 { 1166 struct extent_map *em; 1167 1168 if (em_cached && *em_cached) { 1169 em = *em_cached; 1170 if (extent_map_in_tree(em) && start >= em->start && 1171 start < extent_map_end(em)) { 1172 refcount_inc(&em->refs); 1173 return em; 1174 } 1175 1176 free_extent_map(em); 1177 *em_cached = NULL; 1178 } 1179 1180 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1181 if (em_cached && !IS_ERR(em)) { 1182 BUG_ON(*em_cached); 1183 refcount_inc(&em->refs); 1184 *em_cached = em; 1185 } 1186 return em; 1187 } 1188 /* 1189 * basic readpage implementation. Locked extent state structs are inserted 1190 * into the tree that are removed when the IO is done (by the end_io 1191 * handlers) 1192 * XXX JDM: This needs looking at to ensure proper page locking 1193 * return 0 on success, otherwise return error 1194 */ 1195 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1196 struct btrfs_bio_ctrl *bio_ctrl, 1197 blk_opf_t read_flags, u64 *prev_em_start) 1198 { 1199 struct inode *inode = page->mapping->host; 1200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1201 u64 start = page_offset(page); 1202 const u64 end = start + PAGE_SIZE - 1; 1203 u64 cur = start; 1204 u64 extent_offset; 1205 u64 last_byte = i_size_read(inode); 1206 u64 block_start; 1207 struct extent_map *em; 1208 int ret = 0; 1209 size_t pg_offset = 0; 1210 size_t iosize; 1211 size_t blocksize = inode->i_sb->s_blocksize; 1212 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1213 1214 ret = set_page_extent_mapped(page); 1215 if (ret < 0) { 1216 unlock_extent(tree, start, end, NULL); 1217 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1218 unlock_page(page); 1219 goto out; 1220 } 1221 1222 if (page->index == last_byte >> PAGE_SHIFT) { 1223 size_t zero_offset = offset_in_page(last_byte); 1224 1225 if (zero_offset) { 1226 iosize = PAGE_SIZE - zero_offset; 1227 memzero_page(page, zero_offset, iosize); 1228 } 1229 } 1230 bio_ctrl->end_io_func = end_bio_extent_readpage; 1231 begin_page_read(fs_info, page); 1232 while (cur <= end) { 1233 unsigned long this_bio_flag = 0; 1234 bool force_bio_submit = false; 1235 u64 disk_bytenr; 1236 1237 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1238 if (cur >= last_byte) { 1239 iosize = PAGE_SIZE - pg_offset; 1240 memzero_page(page, pg_offset, iosize); 1241 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1242 end_page_read(page, true, cur, iosize); 1243 break; 1244 } 1245 em = __get_extent_map(inode, page, pg_offset, cur, 1246 end - cur + 1, em_cached); 1247 if (IS_ERR(em)) { 1248 unlock_extent(tree, cur, end, NULL); 1249 end_page_read(page, false, cur, end + 1 - cur); 1250 ret = PTR_ERR(em); 1251 break; 1252 } 1253 extent_offset = cur - em->start; 1254 BUG_ON(extent_map_end(em) <= cur); 1255 BUG_ON(end < cur); 1256 1257 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1258 this_bio_flag = em->compress_type; 1259 1260 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1261 iosize = ALIGN(iosize, blocksize); 1262 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1263 disk_bytenr = em->block_start; 1264 else 1265 disk_bytenr = em->block_start + extent_offset; 1266 block_start = em->block_start; 1267 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1268 block_start = EXTENT_MAP_HOLE; 1269 1270 /* 1271 * If we have a file range that points to a compressed extent 1272 * and it's followed by a consecutive file range that points 1273 * to the same compressed extent (possibly with a different 1274 * offset and/or length, so it either points to the whole extent 1275 * or only part of it), we must make sure we do not submit a 1276 * single bio to populate the pages for the 2 ranges because 1277 * this makes the compressed extent read zero out the pages 1278 * belonging to the 2nd range. Imagine the following scenario: 1279 * 1280 * File layout 1281 * [0 - 8K] [8K - 24K] 1282 * | | 1283 * | | 1284 * points to extent X, points to extent X, 1285 * offset 4K, length of 8K offset 0, length 16K 1286 * 1287 * [extent X, compressed length = 4K uncompressed length = 16K] 1288 * 1289 * If the bio to read the compressed extent covers both ranges, 1290 * it will decompress extent X into the pages belonging to the 1291 * first range and then it will stop, zeroing out the remaining 1292 * pages that belong to the other range that points to extent X. 1293 * So here we make sure we submit 2 bios, one for the first 1294 * range and another one for the third range. Both will target 1295 * the same physical extent from disk, but we can't currently 1296 * make the compressed bio endio callback populate the pages 1297 * for both ranges because each compressed bio is tightly 1298 * coupled with a single extent map, and each range can have 1299 * an extent map with a different offset value relative to the 1300 * uncompressed data of our extent and different lengths. This 1301 * is a corner case so we prioritize correctness over 1302 * non-optimal behavior (submitting 2 bios for the same extent). 1303 */ 1304 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1305 prev_em_start && *prev_em_start != (u64)-1 && 1306 *prev_em_start != em->start) 1307 force_bio_submit = true; 1308 1309 if (prev_em_start) 1310 *prev_em_start = em->start; 1311 1312 free_extent_map(em); 1313 em = NULL; 1314 1315 /* we've found a hole, just zero and go on */ 1316 if (block_start == EXTENT_MAP_HOLE) { 1317 memzero_page(page, pg_offset, iosize); 1318 1319 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1320 end_page_read(page, true, cur, iosize); 1321 cur = cur + iosize; 1322 pg_offset += iosize; 1323 continue; 1324 } 1325 /* the get_extent function already copied into the page */ 1326 if (block_start == EXTENT_MAP_INLINE) { 1327 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1328 end_page_read(page, true, cur, iosize); 1329 cur = cur + iosize; 1330 pg_offset += iosize; 1331 continue; 1332 } 1333 1334 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1335 bio_ctrl, disk_bytenr, page, iosize, 1336 pg_offset, this_bio_flag, 1337 force_bio_submit); 1338 if (ret) { 1339 /* 1340 * We have to unlock the remaining range, or the page 1341 * will never be unlocked. 1342 */ 1343 unlock_extent(tree, cur, end, NULL); 1344 end_page_read(page, false, cur, end + 1 - cur); 1345 goto out; 1346 } 1347 cur = cur + iosize; 1348 pg_offset += iosize; 1349 } 1350 out: 1351 return ret; 1352 } 1353 1354 int btrfs_read_folio(struct file *file, struct folio *folio) 1355 { 1356 struct page *page = &folio->page; 1357 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1358 u64 start = page_offset(page); 1359 u64 end = start + PAGE_SIZE - 1; 1360 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1361 int ret; 1362 1363 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1364 1365 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1366 /* 1367 * If btrfs_do_readpage() failed we will want to submit the assembled 1368 * bio to do the cleanup. 1369 */ 1370 submit_one_bio(&bio_ctrl); 1371 return ret; 1372 } 1373 1374 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1375 u64 start, u64 end, 1376 struct extent_map **em_cached, 1377 struct btrfs_bio_ctrl *bio_ctrl, 1378 u64 *prev_em_start) 1379 { 1380 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1381 int index; 1382 1383 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1384 1385 for (index = 0; index < nr_pages; index++) { 1386 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1387 REQ_RAHEAD, prev_em_start); 1388 put_page(pages[index]); 1389 } 1390 } 1391 1392 /* 1393 * helper for __extent_writepage, doing all of the delayed allocation setup. 1394 * 1395 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1396 * to write the page (copy into inline extent). In this case the IO has 1397 * been started and the page is already unlocked. 1398 * 1399 * This returns 0 if all went well (page still locked) 1400 * This returns < 0 if there were errors (page still locked) 1401 */ 1402 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1403 struct page *page, struct writeback_control *wbc) 1404 { 1405 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1406 u64 delalloc_start = page_offset(page); 1407 u64 delalloc_to_write = 0; 1408 /* How many pages are started by btrfs_run_delalloc_range() */ 1409 unsigned long nr_written = 0; 1410 int ret; 1411 int page_started = 0; 1412 1413 while (delalloc_start < page_end) { 1414 u64 delalloc_end = page_end; 1415 bool found; 1416 1417 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1418 &delalloc_start, 1419 &delalloc_end); 1420 if (!found) { 1421 delalloc_start = delalloc_end + 1; 1422 continue; 1423 } 1424 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1425 delalloc_end, &page_started, &nr_written, wbc); 1426 if (ret) { 1427 btrfs_page_set_error(inode->root->fs_info, page, 1428 page_offset(page), PAGE_SIZE); 1429 return ret; 1430 } 1431 /* 1432 * delalloc_end is already one less than the total length, so 1433 * we don't subtract one from PAGE_SIZE 1434 */ 1435 delalloc_to_write += (delalloc_end - delalloc_start + 1436 PAGE_SIZE) >> PAGE_SHIFT; 1437 delalloc_start = delalloc_end + 1; 1438 } 1439 if (wbc->nr_to_write < delalloc_to_write) { 1440 int thresh = 8192; 1441 1442 if (delalloc_to_write < thresh * 2) 1443 thresh = delalloc_to_write; 1444 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1445 thresh); 1446 } 1447 1448 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1449 if (page_started) { 1450 /* 1451 * We've unlocked the page, so we can't update the mapping's 1452 * writeback index, just update nr_to_write. 1453 */ 1454 wbc->nr_to_write -= nr_written; 1455 return 1; 1456 } 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Find the first byte we need to write. 1463 * 1464 * For subpage, one page can contain several sectors, and 1465 * __extent_writepage_io() will just grab all extent maps in the page 1466 * range and try to submit all non-inline/non-compressed extents. 1467 * 1468 * This is a big problem for subpage, we shouldn't re-submit already written 1469 * data at all. 1470 * This function will lookup subpage dirty bit to find which range we really 1471 * need to submit. 1472 * 1473 * Return the next dirty range in [@start, @end). 1474 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1475 */ 1476 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1477 struct page *page, u64 *start, u64 *end) 1478 { 1479 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1480 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1481 u64 orig_start = *start; 1482 /* Declare as unsigned long so we can use bitmap ops */ 1483 unsigned long flags; 1484 int range_start_bit; 1485 int range_end_bit; 1486 1487 /* 1488 * For regular sector size == page size case, since one page only 1489 * contains one sector, we return the page offset directly. 1490 */ 1491 if (!btrfs_is_subpage(fs_info, page)) { 1492 *start = page_offset(page); 1493 *end = page_offset(page) + PAGE_SIZE; 1494 return; 1495 } 1496 1497 range_start_bit = spi->dirty_offset + 1498 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1499 1500 /* We should have the page locked, but just in case */ 1501 spin_lock_irqsave(&subpage->lock, flags); 1502 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1503 spi->dirty_offset + spi->bitmap_nr_bits); 1504 spin_unlock_irqrestore(&subpage->lock, flags); 1505 1506 range_start_bit -= spi->dirty_offset; 1507 range_end_bit -= spi->dirty_offset; 1508 1509 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1510 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1511 } 1512 1513 /* 1514 * helper for __extent_writepage. This calls the writepage start hooks, 1515 * and does the loop to map the page into extents and bios. 1516 * 1517 * We return 1 if the IO is started and the page is unlocked, 1518 * 0 if all went well (page still locked) 1519 * < 0 if there were errors (page still locked) 1520 */ 1521 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1522 struct page *page, 1523 struct writeback_control *wbc, 1524 struct btrfs_bio_ctrl *bio_ctrl, 1525 loff_t i_size, 1526 int *nr_ret) 1527 { 1528 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1529 u64 cur = page_offset(page); 1530 u64 end = cur + PAGE_SIZE - 1; 1531 u64 extent_offset; 1532 u64 block_start; 1533 struct extent_map *em; 1534 int saved_ret = 0; 1535 int ret = 0; 1536 int nr = 0; 1537 enum req_op op = REQ_OP_WRITE; 1538 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1539 bool has_error = false; 1540 bool compressed; 1541 1542 ret = btrfs_writepage_cow_fixup(page); 1543 if (ret) { 1544 /* Fixup worker will requeue */ 1545 redirty_page_for_writepage(wbc, page); 1546 unlock_page(page); 1547 return 1; 1548 } 1549 1550 /* 1551 * we don't want to touch the inode after unlocking the page, 1552 * so we update the mapping writeback index now 1553 */ 1554 wbc->nr_to_write--; 1555 1556 bio_ctrl->end_io_func = end_bio_extent_writepage; 1557 while (cur <= end) { 1558 u64 disk_bytenr; 1559 u64 em_end; 1560 u64 dirty_range_start = cur; 1561 u64 dirty_range_end; 1562 u32 iosize; 1563 1564 if (cur >= i_size) { 1565 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1566 end, true); 1567 /* 1568 * This range is beyond i_size, thus we don't need to 1569 * bother writing back. 1570 * But we still need to clear the dirty subpage bit, or 1571 * the next time the page gets dirtied, we will try to 1572 * writeback the sectors with subpage dirty bits, 1573 * causing writeback without ordered extent. 1574 */ 1575 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 1576 break; 1577 } 1578 1579 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1580 &dirty_range_end); 1581 if (cur < dirty_range_start) { 1582 cur = dirty_range_start; 1583 continue; 1584 } 1585 1586 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 1587 if (IS_ERR(em)) { 1588 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 1589 ret = PTR_ERR_OR_ZERO(em); 1590 has_error = true; 1591 if (!saved_ret) 1592 saved_ret = ret; 1593 break; 1594 } 1595 1596 extent_offset = cur - em->start; 1597 em_end = extent_map_end(em); 1598 ASSERT(cur <= em_end); 1599 ASSERT(cur < end); 1600 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1601 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1602 block_start = em->block_start; 1603 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1604 disk_bytenr = em->block_start + extent_offset; 1605 1606 /* 1607 * Note that em_end from extent_map_end() and dirty_range_end from 1608 * find_next_dirty_byte() are all exclusive 1609 */ 1610 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1611 free_extent_map(em); 1612 em = NULL; 1613 1614 /* 1615 * compressed and inline extents are written through other 1616 * paths in the FS 1617 */ 1618 if (compressed || block_start == EXTENT_MAP_HOLE || 1619 block_start == EXTENT_MAP_INLINE) { 1620 if (compressed) 1621 nr++; 1622 else 1623 btrfs_writepage_endio_finish_ordered(inode, 1624 page, cur, cur + iosize - 1, true); 1625 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1626 cur += iosize; 1627 continue; 1628 } 1629 1630 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1631 if (!PageWriteback(page)) { 1632 btrfs_err(inode->root->fs_info, 1633 "page %lu not writeback, cur %llu end %llu", 1634 page->index, cur, end); 1635 } 1636 1637 /* 1638 * Although the PageDirty bit is cleared before entering this 1639 * function, subpage dirty bit is not cleared. 1640 * So clear subpage dirty bit here so next time we won't submit 1641 * page for range already written to disk. 1642 */ 1643 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1644 1645 ret = submit_extent_page(op | write_flags, wbc, 1646 bio_ctrl, disk_bytenr, 1647 page, iosize, 1648 cur - page_offset(page), 1649 0, false); 1650 if (ret) { 1651 has_error = true; 1652 if (!saved_ret) 1653 saved_ret = ret; 1654 1655 btrfs_page_set_error(fs_info, page, cur, iosize); 1656 if (PageWriteback(page)) 1657 btrfs_page_clear_writeback(fs_info, page, cur, 1658 iosize); 1659 } 1660 1661 cur += iosize; 1662 nr++; 1663 } 1664 /* 1665 * If we finish without problem, we should not only clear page dirty, 1666 * but also empty subpage dirty bits 1667 */ 1668 if (!has_error) 1669 btrfs_page_assert_not_dirty(fs_info, page); 1670 else 1671 ret = saved_ret; 1672 *nr_ret = nr; 1673 return ret; 1674 } 1675 1676 /* 1677 * the writepage semantics are similar to regular writepage. extent 1678 * records are inserted to lock ranges in the tree, and as dirty areas 1679 * are found, they are marked writeback. Then the lock bits are removed 1680 * and the end_io handler clears the writeback ranges 1681 * 1682 * Return 0 if everything goes well. 1683 * Return <0 for error. 1684 */ 1685 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 1686 struct btrfs_bio_ctrl *bio_ctrl) 1687 { 1688 struct folio *folio = page_folio(page); 1689 struct inode *inode = page->mapping->host; 1690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1691 const u64 page_start = page_offset(page); 1692 const u64 page_end = page_start + PAGE_SIZE - 1; 1693 int ret; 1694 int nr = 0; 1695 size_t pg_offset; 1696 loff_t i_size = i_size_read(inode); 1697 unsigned long end_index = i_size >> PAGE_SHIFT; 1698 1699 trace___extent_writepage(page, inode, wbc); 1700 1701 WARN_ON(!PageLocked(page)); 1702 1703 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 1704 page_offset(page), PAGE_SIZE); 1705 1706 pg_offset = offset_in_page(i_size); 1707 if (page->index > end_index || 1708 (page->index == end_index && !pg_offset)) { 1709 folio_invalidate(folio, 0, folio_size(folio)); 1710 folio_unlock(folio); 1711 return 0; 1712 } 1713 1714 if (page->index == end_index) 1715 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1716 1717 ret = set_page_extent_mapped(page); 1718 if (ret < 0) { 1719 SetPageError(page); 1720 goto done; 1721 } 1722 1723 if (!bio_ctrl->extent_locked) { 1724 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 1725 if (ret == 1) 1726 return 0; 1727 if (ret) 1728 goto done; 1729 } 1730 1731 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size, 1732 &nr); 1733 if (ret == 1) 1734 return 0; 1735 1736 done: 1737 if (nr == 0) { 1738 /* make sure the mapping tag for page dirty gets cleared */ 1739 set_page_writeback(page); 1740 end_page_writeback(page); 1741 } 1742 /* 1743 * Here we used to have a check for PageError() and then set @ret and 1744 * call end_extent_writepage(). 1745 * 1746 * But in fact setting @ret here will cause different error paths 1747 * between subpage and regular sectorsize. 1748 * 1749 * For regular page size, we never submit current page, but only add 1750 * current page to current bio. 1751 * The bio submission can only happen in next page. 1752 * Thus if we hit the PageError() branch, @ret is already set to 1753 * non-zero value and will not get updated for regular sectorsize. 1754 * 1755 * But for subpage case, it's possible we submit part of current page, 1756 * thus can get PageError() set by submitted bio of the same page, 1757 * while our @ret is still 0. 1758 * 1759 * So here we unify the behavior and don't set @ret. 1760 * Error can still be properly passed to higher layer as page will 1761 * be set error, here we just don't handle the IO failure. 1762 * 1763 * NOTE: This is just a hotfix for subpage. 1764 * The root fix will be properly ending ordered extent when we hit 1765 * an error during writeback. 1766 * 1767 * But that needs a bigger refactoring, as we not only need to grab the 1768 * submitted OE, but also need to know exactly at which bytenr we hit 1769 * the error. 1770 * Currently the full page based __extent_writepage_io() is not 1771 * capable of that. 1772 */ 1773 if (PageError(page)) 1774 end_extent_writepage(page, ret, page_start, page_end); 1775 if (bio_ctrl->extent_locked) { 1776 /* 1777 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(), 1778 * the page can either be locked by lock_page() or 1779 * process_one_page(). 1780 * Let btrfs_page_unlock_writer() handle both cases. 1781 */ 1782 ASSERT(wbc); 1783 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 1784 wbc->range_end + 1 - wbc->range_start); 1785 } else { 1786 unlock_page(page); 1787 } 1788 ASSERT(ret <= 0); 1789 return ret; 1790 } 1791 1792 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1793 { 1794 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1795 TASK_UNINTERRUPTIBLE); 1796 } 1797 1798 static void end_extent_buffer_writeback(struct extent_buffer *eb) 1799 { 1800 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1801 smp_mb__after_atomic(); 1802 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1803 } 1804 1805 /* 1806 * Lock extent buffer status and pages for writeback. 1807 * 1808 * May try to flush write bio if we can't get the lock. 1809 * 1810 * Return 0 if the extent buffer doesn't need to be submitted. 1811 * (E.g. the extent buffer is not dirty) 1812 * Return >0 is the extent buffer is submitted to bio. 1813 * Return <0 if something went wrong, no page is locked. 1814 */ 1815 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 1816 struct btrfs_bio_ctrl *bio_ctrl) 1817 { 1818 struct btrfs_fs_info *fs_info = eb->fs_info; 1819 int i, num_pages; 1820 int flush = 0; 1821 int ret = 0; 1822 1823 if (!btrfs_try_tree_write_lock(eb)) { 1824 submit_write_bio(bio_ctrl, 0); 1825 flush = 1; 1826 btrfs_tree_lock(eb); 1827 } 1828 1829 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1830 btrfs_tree_unlock(eb); 1831 if (!bio_ctrl->sync_io) 1832 return 0; 1833 if (!flush) { 1834 submit_write_bio(bio_ctrl, 0); 1835 flush = 1; 1836 } 1837 while (1) { 1838 wait_on_extent_buffer_writeback(eb); 1839 btrfs_tree_lock(eb); 1840 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 1841 break; 1842 btrfs_tree_unlock(eb); 1843 } 1844 } 1845 1846 /* 1847 * We need to do this to prevent races in people who check if the eb is 1848 * under IO since we can end up having no IO bits set for a short period 1849 * of time. 1850 */ 1851 spin_lock(&eb->refs_lock); 1852 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1853 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1854 spin_unlock(&eb->refs_lock); 1855 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1856 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1857 -eb->len, 1858 fs_info->dirty_metadata_batch); 1859 ret = 1; 1860 } else { 1861 spin_unlock(&eb->refs_lock); 1862 } 1863 1864 btrfs_tree_unlock(eb); 1865 1866 /* 1867 * Either we don't need to submit any tree block, or we're submitting 1868 * subpage eb. 1869 * Subpage metadata doesn't use page locking at all, so we can skip 1870 * the page locking. 1871 */ 1872 if (!ret || fs_info->nodesize < PAGE_SIZE) 1873 return ret; 1874 1875 num_pages = num_extent_pages(eb); 1876 for (i = 0; i < num_pages; i++) { 1877 struct page *p = eb->pages[i]; 1878 1879 if (!trylock_page(p)) { 1880 if (!flush) { 1881 submit_write_bio(bio_ctrl, 0); 1882 flush = 1; 1883 } 1884 lock_page(p); 1885 } 1886 } 1887 1888 return ret; 1889 } 1890 1891 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 1892 { 1893 struct btrfs_fs_info *fs_info = eb->fs_info; 1894 1895 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 1896 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 1897 return; 1898 1899 /* 1900 * A read may stumble upon this buffer later, make sure that it gets an 1901 * error and knows there was an error. 1902 */ 1903 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1904 1905 /* 1906 * We need to set the mapping with the io error as well because a write 1907 * error will flip the file system readonly, and then syncfs() will 1908 * return a 0 because we are readonly if we don't modify the err seq for 1909 * the superblock. 1910 */ 1911 mapping_set_error(page->mapping, -EIO); 1912 1913 /* 1914 * If writeback for a btree extent that doesn't belong to a log tree 1915 * failed, increment the counter transaction->eb_write_errors. 1916 * We do this because while the transaction is running and before it's 1917 * committing (when we call filemap_fdata[write|wait]_range against 1918 * the btree inode), we might have 1919 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1920 * returns an error or an error happens during writeback, when we're 1921 * committing the transaction we wouldn't know about it, since the pages 1922 * can be no longer dirty nor marked anymore for writeback (if a 1923 * subsequent modification to the extent buffer didn't happen before the 1924 * transaction commit), which makes filemap_fdata[write|wait]_range not 1925 * able to find the pages tagged with SetPageError at transaction 1926 * commit time. So if this happens we must abort the transaction, 1927 * otherwise we commit a super block with btree roots that point to 1928 * btree nodes/leafs whose content on disk is invalid - either garbage 1929 * or the content of some node/leaf from a past generation that got 1930 * cowed or deleted and is no longer valid. 1931 * 1932 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1933 * not be enough - we need to distinguish between log tree extents vs 1934 * non-log tree extents, and the next filemap_fdatawait_range() call 1935 * will catch and clear such errors in the mapping - and that call might 1936 * be from a log sync and not from a transaction commit. Also, checking 1937 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1938 * not done and would not be reliable - the eb might have been released 1939 * from memory and reading it back again means that flag would not be 1940 * set (since it's a runtime flag, not persisted on disk). 1941 * 1942 * Using the flags below in the btree inode also makes us achieve the 1943 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1944 * writeback for all dirty pages and before filemap_fdatawait_range() 1945 * is called, the writeback for all dirty pages had already finished 1946 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1947 * filemap_fdatawait_range() would return success, as it could not know 1948 * that writeback errors happened (the pages were no longer tagged for 1949 * writeback). 1950 */ 1951 switch (eb->log_index) { 1952 case -1: 1953 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1954 break; 1955 case 0: 1956 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1957 break; 1958 case 1: 1959 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1960 break; 1961 default: 1962 BUG(); /* unexpected, logic error */ 1963 } 1964 } 1965 1966 /* 1967 * The endio specific version which won't touch any unsafe spinlock in endio 1968 * context. 1969 */ 1970 static struct extent_buffer *find_extent_buffer_nolock( 1971 struct btrfs_fs_info *fs_info, u64 start) 1972 { 1973 struct extent_buffer *eb; 1974 1975 rcu_read_lock(); 1976 eb = radix_tree_lookup(&fs_info->buffer_radix, 1977 start >> fs_info->sectorsize_bits); 1978 if (eb && atomic_inc_not_zero(&eb->refs)) { 1979 rcu_read_unlock(); 1980 return eb; 1981 } 1982 rcu_read_unlock(); 1983 return NULL; 1984 } 1985 1986 /* 1987 * The endio function for subpage extent buffer write. 1988 * 1989 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 1990 * after all extent buffers in the page has finished their writeback. 1991 */ 1992 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 1993 { 1994 struct bio *bio = &bbio->bio; 1995 struct btrfs_fs_info *fs_info; 1996 struct bio_vec *bvec; 1997 struct bvec_iter_all iter_all; 1998 1999 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2000 ASSERT(fs_info->nodesize < PAGE_SIZE); 2001 2002 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2003 bio_for_each_segment_all(bvec, bio, iter_all) { 2004 struct page *page = bvec->bv_page; 2005 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2006 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2007 u64 cur_bytenr = bvec_start; 2008 2009 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2010 2011 /* Iterate through all extent buffers in the range */ 2012 while (cur_bytenr <= bvec_end) { 2013 struct extent_buffer *eb; 2014 int done; 2015 2016 /* 2017 * Here we can't use find_extent_buffer(), as it may 2018 * try to lock eb->refs_lock, which is not safe in endio 2019 * context. 2020 */ 2021 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2022 ASSERT(eb); 2023 2024 cur_bytenr = eb->start + eb->len; 2025 2026 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2027 done = atomic_dec_and_test(&eb->io_pages); 2028 ASSERT(done); 2029 2030 if (bio->bi_status || 2031 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2032 ClearPageUptodate(page); 2033 set_btree_ioerr(page, eb); 2034 } 2035 2036 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2037 eb->len); 2038 end_extent_buffer_writeback(eb); 2039 /* 2040 * free_extent_buffer() will grab spinlock which is not 2041 * safe in endio context. Thus here we manually dec 2042 * the ref. 2043 */ 2044 atomic_dec(&eb->refs); 2045 } 2046 } 2047 bio_put(bio); 2048 } 2049 2050 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2051 { 2052 struct bio *bio = &bbio->bio; 2053 struct bio_vec *bvec; 2054 struct extent_buffer *eb; 2055 int done; 2056 struct bvec_iter_all iter_all; 2057 2058 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2059 bio_for_each_segment_all(bvec, bio, iter_all) { 2060 struct page *page = bvec->bv_page; 2061 2062 eb = (struct extent_buffer *)page->private; 2063 BUG_ON(!eb); 2064 done = atomic_dec_and_test(&eb->io_pages); 2065 2066 if (bio->bi_status || 2067 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2068 ClearPageUptodate(page); 2069 set_btree_ioerr(page, eb); 2070 } 2071 2072 end_page_writeback(page); 2073 2074 if (!done) 2075 continue; 2076 2077 end_extent_buffer_writeback(eb); 2078 } 2079 2080 bio_put(bio); 2081 } 2082 2083 static void prepare_eb_write(struct extent_buffer *eb) 2084 { 2085 u32 nritems; 2086 unsigned long start; 2087 unsigned long end; 2088 2089 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2090 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2091 2092 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2093 nritems = btrfs_header_nritems(eb); 2094 if (btrfs_header_level(eb) > 0) { 2095 end = btrfs_node_key_ptr_offset(eb, nritems); 2096 memzero_extent_buffer(eb, end, eb->len - end); 2097 } else { 2098 /* 2099 * Leaf: 2100 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2101 */ 2102 start = btrfs_item_nr_offset(eb, nritems); 2103 end = btrfs_item_nr_offset(eb, 0); 2104 if (nritems == 0) 2105 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2106 else 2107 end += btrfs_item_offset(eb, nritems - 1); 2108 memzero_extent_buffer(eb, start, end - start); 2109 } 2110 } 2111 2112 /* 2113 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2114 * Page locking is only utilized at minimum to keep the VMM code happy. 2115 */ 2116 static int write_one_subpage_eb(struct extent_buffer *eb, 2117 struct writeback_control *wbc, 2118 struct btrfs_bio_ctrl *bio_ctrl) 2119 { 2120 struct btrfs_fs_info *fs_info = eb->fs_info; 2121 struct page *page = eb->pages[0]; 2122 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2123 bool no_dirty_ebs = false; 2124 int ret; 2125 2126 prepare_eb_write(eb); 2127 2128 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2129 lock_page(page); 2130 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2131 2132 /* Check if this is the last dirty bit to update nr_written */ 2133 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2134 eb->start, eb->len); 2135 if (no_dirty_ebs) 2136 clear_page_dirty_for_io(page); 2137 2138 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage; 2139 2140 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2141 bio_ctrl, eb->start, page, eb->len, 2142 eb->start - page_offset(page), 0, false); 2143 if (ret) { 2144 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2145 set_btree_ioerr(page, eb); 2146 unlock_page(page); 2147 2148 if (atomic_dec_and_test(&eb->io_pages)) 2149 end_extent_buffer_writeback(eb); 2150 return -EIO; 2151 } 2152 unlock_page(page); 2153 /* 2154 * Submission finished without problem, if no range of the page is 2155 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2156 */ 2157 if (no_dirty_ebs) 2158 wbc->nr_to_write--; 2159 return ret; 2160 } 2161 2162 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2163 struct writeback_control *wbc, 2164 struct btrfs_bio_ctrl *bio_ctrl) 2165 { 2166 u64 disk_bytenr = eb->start; 2167 int i, num_pages; 2168 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2169 int ret = 0; 2170 2171 prepare_eb_write(eb); 2172 2173 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage; 2174 2175 num_pages = num_extent_pages(eb); 2176 for (i = 0; i < num_pages; i++) { 2177 struct page *p = eb->pages[i]; 2178 2179 clear_page_dirty_for_io(p); 2180 set_page_writeback(p); 2181 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2182 bio_ctrl, disk_bytenr, p, 2183 PAGE_SIZE, 0, 0, false); 2184 if (ret) { 2185 set_btree_ioerr(p, eb); 2186 if (PageWriteback(p)) 2187 end_page_writeback(p); 2188 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2189 end_extent_buffer_writeback(eb); 2190 ret = -EIO; 2191 break; 2192 } 2193 disk_bytenr += PAGE_SIZE; 2194 wbc->nr_to_write--; 2195 unlock_page(p); 2196 } 2197 2198 if (unlikely(ret)) { 2199 for (; i < num_pages; i++) { 2200 struct page *p = eb->pages[i]; 2201 clear_page_dirty_for_io(p); 2202 unlock_page(p); 2203 } 2204 } 2205 2206 return ret; 2207 } 2208 2209 /* 2210 * Submit one subpage btree page. 2211 * 2212 * The main difference to submit_eb_page() is: 2213 * - Page locking 2214 * For subpage, we don't rely on page locking at all. 2215 * 2216 * - Flush write bio 2217 * We only flush bio if we may be unable to fit current extent buffers into 2218 * current bio. 2219 * 2220 * Return >=0 for the number of submitted extent buffers. 2221 * Return <0 for fatal error. 2222 */ 2223 static int submit_eb_subpage(struct page *page, 2224 struct writeback_control *wbc, 2225 struct btrfs_bio_ctrl *bio_ctrl) 2226 { 2227 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2228 int submitted = 0; 2229 u64 page_start = page_offset(page); 2230 int bit_start = 0; 2231 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2232 int ret; 2233 2234 /* Lock and write each dirty extent buffers in the range */ 2235 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2236 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2237 struct extent_buffer *eb; 2238 unsigned long flags; 2239 u64 start; 2240 2241 /* 2242 * Take private lock to ensure the subpage won't be detached 2243 * in the meantime. 2244 */ 2245 spin_lock(&page->mapping->private_lock); 2246 if (!PagePrivate(page)) { 2247 spin_unlock(&page->mapping->private_lock); 2248 break; 2249 } 2250 spin_lock_irqsave(&subpage->lock, flags); 2251 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2252 subpage->bitmaps)) { 2253 spin_unlock_irqrestore(&subpage->lock, flags); 2254 spin_unlock(&page->mapping->private_lock); 2255 bit_start++; 2256 continue; 2257 } 2258 2259 start = page_start + bit_start * fs_info->sectorsize; 2260 bit_start += sectors_per_node; 2261 2262 /* 2263 * Here we just want to grab the eb without touching extra 2264 * spin locks, so call find_extent_buffer_nolock(). 2265 */ 2266 eb = find_extent_buffer_nolock(fs_info, start); 2267 spin_unlock_irqrestore(&subpage->lock, flags); 2268 spin_unlock(&page->mapping->private_lock); 2269 2270 /* 2271 * The eb has already reached 0 refs thus find_extent_buffer() 2272 * doesn't return it. We don't need to write back such eb 2273 * anyway. 2274 */ 2275 if (!eb) 2276 continue; 2277 2278 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2279 if (ret == 0) { 2280 free_extent_buffer(eb); 2281 continue; 2282 } 2283 if (ret < 0) { 2284 free_extent_buffer(eb); 2285 goto cleanup; 2286 } 2287 ret = write_one_subpage_eb(eb, wbc, bio_ctrl); 2288 free_extent_buffer(eb); 2289 if (ret < 0) 2290 goto cleanup; 2291 submitted++; 2292 } 2293 return submitted; 2294 2295 cleanup: 2296 /* We hit error, end bio for the submitted extent buffers */ 2297 submit_write_bio(bio_ctrl, ret); 2298 return ret; 2299 } 2300 2301 /* 2302 * Submit all page(s) of one extent buffer. 2303 * 2304 * @page: the page of one extent buffer 2305 * @eb_context: to determine if we need to submit this page, if current page 2306 * belongs to this eb, we don't need to submit 2307 * 2308 * The caller should pass each page in their bytenr order, and here we use 2309 * @eb_context to determine if we have submitted pages of one extent buffer. 2310 * 2311 * If we have, we just skip until we hit a new page that doesn't belong to 2312 * current @eb_context. 2313 * 2314 * If not, we submit all the page(s) of the extent buffer. 2315 * 2316 * Return >0 if we have submitted the extent buffer successfully. 2317 * Return 0 if we don't need to submit the page, as it's already submitted by 2318 * previous call. 2319 * Return <0 for fatal error. 2320 */ 2321 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2322 struct btrfs_bio_ctrl *bio_ctrl, 2323 struct extent_buffer **eb_context) 2324 { 2325 struct address_space *mapping = page->mapping; 2326 struct btrfs_block_group *cache = NULL; 2327 struct extent_buffer *eb; 2328 int ret; 2329 2330 if (!PagePrivate(page)) 2331 return 0; 2332 2333 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2334 return submit_eb_subpage(page, wbc, bio_ctrl); 2335 2336 spin_lock(&mapping->private_lock); 2337 if (!PagePrivate(page)) { 2338 spin_unlock(&mapping->private_lock); 2339 return 0; 2340 } 2341 2342 eb = (struct extent_buffer *)page->private; 2343 2344 /* 2345 * Shouldn't happen and normally this would be a BUG_ON but no point 2346 * crashing the machine for something we can survive anyway. 2347 */ 2348 if (WARN_ON(!eb)) { 2349 spin_unlock(&mapping->private_lock); 2350 return 0; 2351 } 2352 2353 if (eb == *eb_context) { 2354 spin_unlock(&mapping->private_lock); 2355 return 0; 2356 } 2357 ret = atomic_inc_not_zero(&eb->refs); 2358 spin_unlock(&mapping->private_lock); 2359 if (!ret) 2360 return 0; 2361 2362 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2363 /* 2364 * If for_sync, this hole will be filled with 2365 * trasnsaction commit. 2366 */ 2367 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2368 ret = -EAGAIN; 2369 else 2370 ret = 0; 2371 free_extent_buffer(eb); 2372 return ret; 2373 } 2374 2375 *eb_context = eb; 2376 2377 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2378 if (ret <= 0) { 2379 btrfs_revert_meta_write_pointer(cache, eb); 2380 if (cache) 2381 btrfs_put_block_group(cache); 2382 free_extent_buffer(eb); 2383 return ret; 2384 } 2385 if (cache) { 2386 /* 2387 * Implies write in zoned mode. Mark the last eb in a block group. 2388 */ 2389 btrfs_schedule_zone_finish_bg(cache, eb); 2390 btrfs_put_block_group(cache); 2391 } 2392 ret = write_one_eb(eb, wbc, bio_ctrl); 2393 free_extent_buffer(eb); 2394 if (ret < 0) 2395 return ret; 2396 return 1; 2397 } 2398 2399 int btree_write_cache_pages(struct address_space *mapping, 2400 struct writeback_control *wbc) 2401 { 2402 struct extent_buffer *eb_context = NULL; 2403 struct btrfs_bio_ctrl bio_ctrl = { 2404 .extent_locked = 0, 2405 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2406 }; 2407 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2408 int ret = 0; 2409 int done = 0; 2410 int nr_to_write_done = 0; 2411 struct pagevec pvec; 2412 int nr_pages; 2413 pgoff_t index; 2414 pgoff_t end; /* Inclusive */ 2415 int scanned = 0; 2416 xa_mark_t tag; 2417 2418 pagevec_init(&pvec); 2419 if (wbc->range_cyclic) { 2420 index = mapping->writeback_index; /* Start from prev offset */ 2421 end = -1; 2422 /* 2423 * Start from the beginning does not need to cycle over the 2424 * range, mark it as scanned. 2425 */ 2426 scanned = (index == 0); 2427 } else { 2428 index = wbc->range_start >> PAGE_SHIFT; 2429 end = wbc->range_end >> PAGE_SHIFT; 2430 scanned = 1; 2431 } 2432 if (wbc->sync_mode == WB_SYNC_ALL) 2433 tag = PAGECACHE_TAG_TOWRITE; 2434 else 2435 tag = PAGECACHE_TAG_DIRTY; 2436 btrfs_zoned_meta_io_lock(fs_info); 2437 retry: 2438 if (wbc->sync_mode == WB_SYNC_ALL) 2439 tag_pages_for_writeback(mapping, index, end); 2440 while (!done && !nr_to_write_done && (index <= end) && 2441 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2442 tag))) { 2443 unsigned i; 2444 2445 for (i = 0; i < nr_pages; i++) { 2446 struct page *page = pvec.pages[i]; 2447 2448 ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context); 2449 if (ret == 0) 2450 continue; 2451 if (ret < 0) { 2452 done = 1; 2453 break; 2454 } 2455 2456 /* 2457 * the filesystem may choose to bump up nr_to_write. 2458 * We have to make sure to honor the new nr_to_write 2459 * at any time 2460 */ 2461 nr_to_write_done = wbc->nr_to_write <= 0; 2462 } 2463 pagevec_release(&pvec); 2464 cond_resched(); 2465 } 2466 if (!scanned && !done) { 2467 /* 2468 * We hit the last page and there is more work to be done: wrap 2469 * back to the start of the file 2470 */ 2471 scanned = 1; 2472 index = 0; 2473 goto retry; 2474 } 2475 /* 2476 * If something went wrong, don't allow any metadata write bio to be 2477 * submitted. 2478 * 2479 * This would prevent use-after-free if we had dirty pages not 2480 * cleaned up, which can still happen by fuzzed images. 2481 * 2482 * - Bad extent tree 2483 * Allowing existing tree block to be allocated for other trees. 2484 * 2485 * - Log tree operations 2486 * Exiting tree blocks get allocated to log tree, bumps its 2487 * generation, then get cleaned in tree re-balance. 2488 * Such tree block will not be written back, since it's clean, 2489 * thus no WRITTEN flag set. 2490 * And after log writes back, this tree block is not traced by 2491 * any dirty extent_io_tree. 2492 * 2493 * - Offending tree block gets re-dirtied from its original owner 2494 * Since it has bumped generation, no WRITTEN flag, it can be 2495 * reused without COWing. This tree block will not be traced 2496 * by btrfs_transaction::dirty_pages. 2497 * 2498 * Now such dirty tree block will not be cleaned by any dirty 2499 * extent io tree. Thus we don't want to submit such wild eb 2500 * if the fs already has error. 2501 * 2502 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2503 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2504 */ 2505 if (ret > 0) 2506 ret = 0; 2507 if (!ret && BTRFS_FS_ERROR(fs_info)) 2508 ret = -EROFS; 2509 submit_write_bio(&bio_ctrl, ret); 2510 2511 btrfs_zoned_meta_io_unlock(fs_info); 2512 return ret; 2513 } 2514 2515 /* 2516 * Walk the list of dirty pages of the given address space and write all of them. 2517 * 2518 * @mapping: address space structure to write 2519 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2520 * @bio_ctrl: holds context for the write, namely the bio 2521 * 2522 * If a page is already under I/O, write_cache_pages() skips it, even 2523 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2524 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2525 * and msync() need to guarantee that all the data which was dirty at the time 2526 * the call was made get new I/O started against them. If wbc->sync_mode is 2527 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2528 * existing IO to complete. 2529 */ 2530 static int extent_write_cache_pages(struct address_space *mapping, 2531 struct writeback_control *wbc, 2532 struct btrfs_bio_ctrl *bio_ctrl) 2533 { 2534 struct inode *inode = mapping->host; 2535 int ret = 0; 2536 int done = 0; 2537 int nr_to_write_done = 0; 2538 struct pagevec pvec; 2539 int nr_pages; 2540 pgoff_t index; 2541 pgoff_t end; /* Inclusive */ 2542 pgoff_t done_index; 2543 int range_whole = 0; 2544 int scanned = 0; 2545 xa_mark_t tag; 2546 2547 /* 2548 * We have to hold onto the inode so that ordered extents can do their 2549 * work when the IO finishes. The alternative to this is failing to add 2550 * an ordered extent if the igrab() fails there and that is a huge pain 2551 * to deal with, so instead just hold onto the inode throughout the 2552 * writepages operation. If it fails here we are freeing up the inode 2553 * anyway and we'd rather not waste our time writing out stuff that is 2554 * going to be truncated anyway. 2555 */ 2556 if (!igrab(inode)) 2557 return 0; 2558 2559 pagevec_init(&pvec); 2560 if (wbc->range_cyclic) { 2561 index = mapping->writeback_index; /* Start from prev offset */ 2562 end = -1; 2563 /* 2564 * Start from the beginning does not need to cycle over the 2565 * range, mark it as scanned. 2566 */ 2567 scanned = (index == 0); 2568 } else { 2569 index = wbc->range_start >> PAGE_SHIFT; 2570 end = wbc->range_end >> PAGE_SHIFT; 2571 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2572 range_whole = 1; 2573 scanned = 1; 2574 } 2575 2576 /* 2577 * We do the tagged writepage as long as the snapshot flush bit is set 2578 * and we are the first one who do the filemap_flush() on this inode. 2579 * 2580 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2581 * not race in and drop the bit. 2582 */ 2583 if (range_whole && wbc->nr_to_write == LONG_MAX && 2584 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2585 &BTRFS_I(inode)->runtime_flags)) 2586 wbc->tagged_writepages = 1; 2587 2588 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2589 tag = PAGECACHE_TAG_TOWRITE; 2590 else 2591 tag = PAGECACHE_TAG_DIRTY; 2592 retry: 2593 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2594 tag_pages_for_writeback(mapping, index, end); 2595 done_index = index; 2596 while (!done && !nr_to_write_done && (index <= end) && 2597 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 2598 &index, end, tag))) { 2599 unsigned i; 2600 2601 for (i = 0; i < nr_pages; i++) { 2602 struct page *page = pvec.pages[i]; 2603 2604 done_index = page->index + 1; 2605 /* 2606 * At this point we hold neither the i_pages lock nor 2607 * the page lock: the page may be truncated or 2608 * invalidated (changing page->mapping to NULL), 2609 * or even swizzled back from swapper_space to 2610 * tmpfs file mapping 2611 */ 2612 if (!trylock_page(page)) { 2613 submit_write_bio(bio_ctrl, 0); 2614 lock_page(page); 2615 } 2616 2617 if (unlikely(page->mapping != mapping)) { 2618 unlock_page(page); 2619 continue; 2620 } 2621 2622 if (wbc->sync_mode != WB_SYNC_NONE) { 2623 if (PageWriteback(page)) 2624 submit_write_bio(bio_ctrl, 0); 2625 wait_on_page_writeback(page); 2626 } 2627 2628 if (PageWriteback(page) || 2629 !clear_page_dirty_for_io(page)) { 2630 unlock_page(page); 2631 continue; 2632 } 2633 2634 ret = __extent_writepage(page, wbc, bio_ctrl); 2635 if (ret < 0) { 2636 done = 1; 2637 break; 2638 } 2639 2640 /* 2641 * the filesystem may choose to bump up nr_to_write. 2642 * We have to make sure to honor the new nr_to_write 2643 * at any time 2644 */ 2645 nr_to_write_done = wbc->nr_to_write <= 0; 2646 } 2647 pagevec_release(&pvec); 2648 cond_resched(); 2649 } 2650 if (!scanned && !done) { 2651 /* 2652 * We hit the last page and there is more work to be done: wrap 2653 * back to the start of the file 2654 */ 2655 scanned = 1; 2656 index = 0; 2657 2658 /* 2659 * If we're looping we could run into a page that is locked by a 2660 * writer and that writer could be waiting on writeback for a 2661 * page in our current bio, and thus deadlock, so flush the 2662 * write bio here. 2663 */ 2664 submit_write_bio(bio_ctrl, 0); 2665 goto retry; 2666 } 2667 2668 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2669 mapping->writeback_index = done_index; 2670 2671 btrfs_add_delayed_iput(BTRFS_I(inode)); 2672 return ret; 2673 } 2674 2675 /* 2676 * Submit the pages in the range to bio for call sites which delalloc range has 2677 * already been ran (aka, ordered extent inserted) and all pages are still 2678 * locked. 2679 */ 2680 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 2681 { 2682 bool found_error = false; 2683 int first_error = 0; 2684 int ret = 0; 2685 struct address_space *mapping = inode->i_mapping; 2686 struct page *page; 2687 u64 cur = start; 2688 unsigned long nr_pages; 2689 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 2690 struct btrfs_bio_ctrl bio_ctrl = { 2691 .extent_locked = 1, 2692 .sync_io = 1, 2693 }; 2694 struct writeback_control wbc_writepages = { 2695 .sync_mode = WB_SYNC_ALL, 2696 .range_start = start, 2697 .range_end = end + 1, 2698 /* We're called from an async helper function */ 2699 .punt_to_cgroup = 1, 2700 .no_cgroup_owner = 1, 2701 }; 2702 2703 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2704 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 2705 PAGE_SHIFT; 2706 wbc_writepages.nr_to_write = nr_pages * 2; 2707 2708 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 2709 while (cur <= end) { 2710 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2711 2712 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2713 /* 2714 * All pages in the range are locked since 2715 * btrfs_run_delalloc_range(), thus there is no way to clear 2716 * the page dirty flag. 2717 */ 2718 ASSERT(PageLocked(page)); 2719 ASSERT(PageDirty(page)); 2720 clear_page_dirty_for_io(page); 2721 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl); 2722 ASSERT(ret <= 0); 2723 if (ret < 0) { 2724 found_error = true; 2725 first_error = ret; 2726 } 2727 put_page(page); 2728 cur = cur_end + 1; 2729 } 2730 2731 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2732 2733 wbc_detach_inode(&wbc_writepages); 2734 if (found_error) 2735 return first_error; 2736 return ret; 2737 } 2738 2739 int extent_writepages(struct address_space *mapping, 2740 struct writeback_control *wbc) 2741 { 2742 struct inode *inode = mapping->host; 2743 int ret = 0; 2744 struct btrfs_bio_ctrl bio_ctrl = { 2745 .extent_locked = 0, 2746 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2747 }; 2748 2749 /* 2750 * Allow only a single thread to do the reloc work in zoned mode to 2751 * protect the write pointer updates. 2752 */ 2753 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2754 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl); 2755 submit_write_bio(&bio_ctrl, ret); 2756 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2757 return ret; 2758 } 2759 2760 void extent_readahead(struct readahead_control *rac) 2761 { 2762 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 2763 struct page *pagepool[16]; 2764 struct extent_map *em_cached = NULL; 2765 u64 prev_em_start = (u64)-1; 2766 int nr; 2767 2768 while ((nr = readahead_page_batch(rac, pagepool))) { 2769 u64 contig_start = readahead_pos(rac); 2770 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2771 2772 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2773 &em_cached, &bio_ctrl, &prev_em_start); 2774 } 2775 2776 if (em_cached) 2777 free_extent_map(em_cached); 2778 submit_one_bio(&bio_ctrl); 2779 } 2780 2781 /* 2782 * basic invalidate_folio code, this waits on any locked or writeback 2783 * ranges corresponding to the folio, and then deletes any extent state 2784 * records from the tree 2785 */ 2786 int extent_invalidate_folio(struct extent_io_tree *tree, 2787 struct folio *folio, size_t offset) 2788 { 2789 struct extent_state *cached_state = NULL; 2790 u64 start = folio_pos(folio); 2791 u64 end = start + folio_size(folio) - 1; 2792 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2793 2794 /* This function is only called for the btree inode */ 2795 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2796 2797 start += ALIGN(offset, blocksize); 2798 if (start > end) 2799 return 0; 2800 2801 lock_extent(tree, start, end, &cached_state); 2802 folio_wait_writeback(folio); 2803 2804 /* 2805 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2806 * so here we only need to unlock the extent range to free any 2807 * existing extent state. 2808 */ 2809 unlock_extent(tree, start, end, &cached_state); 2810 return 0; 2811 } 2812 2813 /* 2814 * a helper for release_folio, this tests for areas of the page that 2815 * are locked or under IO and drops the related state bits if it is safe 2816 * to drop the page. 2817 */ 2818 static int try_release_extent_state(struct extent_io_tree *tree, 2819 struct page *page, gfp_t mask) 2820 { 2821 u64 start = page_offset(page); 2822 u64 end = start + PAGE_SIZE - 1; 2823 int ret = 1; 2824 2825 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2826 ret = 0; 2827 } else { 2828 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2829 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2830 2831 /* 2832 * At this point we can safely clear everything except the 2833 * locked bit, the nodatasum bit and the delalloc new bit. 2834 * The delalloc new bit will be cleared by ordered extent 2835 * completion. 2836 */ 2837 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 2838 mask, NULL); 2839 2840 /* if clear_extent_bit failed for enomem reasons, 2841 * we can't allow the release to continue. 2842 */ 2843 if (ret < 0) 2844 ret = 0; 2845 else 2846 ret = 1; 2847 } 2848 return ret; 2849 } 2850 2851 /* 2852 * a helper for release_folio. As long as there are no locked extents 2853 * in the range corresponding to the page, both state records and extent 2854 * map records are removed 2855 */ 2856 int try_release_extent_mapping(struct page *page, gfp_t mask) 2857 { 2858 struct extent_map *em; 2859 u64 start = page_offset(page); 2860 u64 end = start + PAGE_SIZE - 1; 2861 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2862 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2863 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2864 2865 if (gfpflags_allow_blocking(mask) && 2866 page->mapping->host->i_size > SZ_16M) { 2867 u64 len; 2868 while (start <= end) { 2869 struct btrfs_fs_info *fs_info; 2870 u64 cur_gen; 2871 2872 len = end - start + 1; 2873 write_lock(&map->lock); 2874 em = lookup_extent_mapping(map, start, len); 2875 if (!em) { 2876 write_unlock(&map->lock); 2877 break; 2878 } 2879 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2880 em->start != start) { 2881 write_unlock(&map->lock); 2882 free_extent_map(em); 2883 break; 2884 } 2885 if (test_range_bit(tree, em->start, 2886 extent_map_end(em) - 1, 2887 EXTENT_LOCKED, 0, NULL)) 2888 goto next; 2889 /* 2890 * If it's not in the list of modified extents, used 2891 * by a fast fsync, we can remove it. If it's being 2892 * logged we can safely remove it since fsync took an 2893 * extra reference on the em. 2894 */ 2895 if (list_empty(&em->list) || 2896 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2897 goto remove_em; 2898 /* 2899 * If it's in the list of modified extents, remove it 2900 * only if its generation is older then the current one, 2901 * in which case we don't need it for a fast fsync. 2902 * Otherwise don't remove it, we could be racing with an 2903 * ongoing fast fsync that could miss the new extent. 2904 */ 2905 fs_info = btrfs_inode->root->fs_info; 2906 spin_lock(&fs_info->trans_lock); 2907 cur_gen = fs_info->generation; 2908 spin_unlock(&fs_info->trans_lock); 2909 if (em->generation >= cur_gen) 2910 goto next; 2911 remove_em: 2912 /* 2913 * We only remove extent maps that are not in the list of 2914 * modified extents or that are in the list but with a 2915 * generation lower then the current generation, so there 2916 * is no need to set the full fsync flag on the inode (it 2917 * hurts the fsync performance for workloads with a data 2918 * size that exceeds or is close to the system's memory). 2919 */ 2920 remove_extent_mapping(map, em); 2921 /* once for the rb tree */ 2922 free_extent_map(em); 2923 next: 2924 start = extent_map_end(em); 2925 write_unlock(&map->lock); 2926 2927 /* once for us */ 2928 free_extent_map(em); 2929 2930 cond_resched(); /* Allow large-extent preemption. */ 2931 } 2932 } 2933 return try_release_extent_state(tree, page, mask); 2934 } 2935 2936 /* 2937 * To cache previous fiemap extent 2938 * 2939 * Will be used for merging fiemap extent 2940 */ 2941 struct fiemap_cache { 2942 u64 offset; 2943 u64 phys; 2944 u64 len; 2945 u32 flags; 2946 bool cached; 2947 }; 2948 2949 /* 2950 * Helper to submit fiemap extent. 2951 * 2952 * Will try to merge current fiemap extent specified by @offset, @phys, 2953 * @len and @flags with cached one. 2954 * And only when we fails to merge, cached one will be submitted as 2955 * fiemap extent. 2956 * 2957 * Return value is the same as fiemap_fill_next_extent(). 2958 */ 2959 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2960 struct fiemap_cache *cache, 2961 u64 offset, u64 phys, u64 len, u32 flags) 2962 { 2963 int ret = 0; 2964 2965 /* Set at the end of extent_fiemap(). */ 2966 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2967 2968 if (!cache->cached) 2969 goto assign; 2970 2971 /* 2972 * Sanity check, extent_fiemap() should have ensured that new 2973 * fiemap extent won't overlap with cached one. 2974 * Not recoverable. 2975 * 2976 * NOTE: Physical address can overlap, due to compression 2977 */ 2978 if (cache->offset + cache->len > offset) { 2979 WARN_ON(1); 2980 return -EINVAL; 2981 } 2982 2983 /* 2984 * Only merges fiemap extents if 2985 * 1) Their logical addresses are continuous 2986 * 2987 * 2) Their physical addresses are continuous 2988 * So truly compressed (physical size smaller than logical size) 2989 * extents won't get merged with each other 2990 * 2991 * 3) Share same flags 2992 */ 2993 if (cache->offset + cache->len == offset && 2994 cache->phys + cache->len == phys && 2995 cache->flags == flags) { 2996 cache->len += len; 2997 return 0; 2998 } 2999 3000 /* Not mergeable, need to submit cached one */ 3001 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3002 cache->len, cache->flags); 3003 cache->cached = false; 3004 if (ret) 3005 return ret; 3006 assign: 3007 cache->cached = true; 3008 cache->offset = offset; 3009 cache->phys = phys; 3010 cache->len = len; 3011 cache->flags = flags; 3012 3013 return 0; 3014 } 3015 3016 /* 3017 * Emit last fiemap cache 3018 * 3019 * The last fiemap cache may still be cached in the following case: 3020 * 0 4k 8k 3021 * |<- Fiemap range ->| 3022 * |<------------ First extent ----------->| 3023 * 3024 * In this case, the first extent range will be cached but not emitted. 3025 * So we must emit it before ending extent_fiemap(). 3026 */ 3027 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3028 struct fiemap_cache *cache) 3029 { 3030 int ret; 3031 3032 if (!cache->cached) 3033 return 0; 3034 3035 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3036 cache->len, cache->flags); 3037 cache->cached = false; 3038 if (ret > 0) 3039 ret = 0; 3040 return ret; 3041 } 3042 3043 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3044 { 3045 struct extent_buffer *clone; 3046 struct btrfs_key key; 3047 int slot; 3048 int ret; 3049 3050 path->slots[0]++; 3051 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3052 return 0; 3053 3054 ret = btrfs_next_leaf(inode->root, path); 3055 if (ret != 0) 3056 return ret; 3057 3058 /* 3059 * Don't bother with cloning if there are no more file extent items for 3060 * our inode. 3061 */ 3062 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3063 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3064 return 1; 3065 3066 /* See the comment at fiemap_search_slot() about why we clone. */ 3067 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3068 if (!clone) 3069 return -ENOMEM; 3070 3071 slot = path->slots[0]; 3072 btrfs_release_path(path); 3073 path->nodes[0] = clone; 3074 path->slots[0] = slot; 3075 3076 return 0; 3077 } 3078 3079 /* 3080 * Search for the first file extent item that starts at a given file offset or 3081 * the one that starts immediately before that offset. 3082 * Returns: 0 on success, < 0 on error, 1 if not found. 3083 */ 3084 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3085 u64 file_offset) 3086 { 3087 const u64 ino = btrfs_ino(inode); 3088 struct btrfs_root *root = inode->root; 3089 struct extent_buffer *clone; 3090 struct btrfs_key key; 3091 int slot; 3092 int ret; 3093 3094 key.objectid = ino; 3095 key.type = BTRFS_EXTENT_DATA_KEY; 3096 key.offset = file_offset; 3097 3098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3099 if (ret < 0) 3100 return ret; 3101 3102 if (ret > 0 && path->slots[0] > 0) { 3103 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3104 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3105 path->slots[0]--; 3106 } 3107 3108 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3109 ret = btrfs_next_leaf(root, path); 3110 if (ret != 0) 3111 return ret; 3112 3113 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3114 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3115 return 1; 3116 } 3117 3118 /* 3119 * We clone the leaf and use it during fiemap. This is because while 3120 * using the leaf we do expensive things like checking if an extent is 3121 * shared, which can take a long time. In order to prevent blocking 3122 * other tasks for too long, we use a clone of the leaf. We have locked 3123 * the file range in the inode's io tree, so we know none of our file 3124 * extent items can change. This way we avoid blocking other tasks that 3125 * want to insert items for other inodes in the same leaf or b+tree 3126 * rebalance operations (triggered for example when someone is trying 3127 * to push items into this leaf when trying to insert an item in a 3128 * neighbour leaf). 3129 * We also need the private clone because holding a read lock on an 3130 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3131 * when we call fiemap_fill_next_extent(), because that may cause a page 3132 * fault when filling the user space buffer with fiemap data. 3133 */ 3134 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3135 if (!clone) 3136 return -ENOMEM; 3137 3138 slot = path->slots[0]; 3139 btrfs_release_path(path); 3140 path->nodes[0] = clone; 3141 path->slots[0] = slot; 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3148 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3149 * extent. The end offset (@end) is inclusive. 3150 */ 3151 static int fiemap_process_hole(struct btrfs_inode *inode, 3152 struct fiemap_extent_info *fieinfo, 3153 struct fiemap_cache *cache, 3154 struct extent_state **delalloc_cached_state, 3155 struct btrfs_backref_share_check_ctx *backref_ctx, 3156 u64 disk_bytenr, u64 extent_offset, 3157 u64 extent_gen, 3158 u64 start, u64 end) 3159 { 3160 const u64 i_size = i_size_read(&inode->vfs_inode); 3161 u64 cur_offset = start; 3162 u64 last_delalloc_end = 0; 3163 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3164 bool checked_extent_shared = false; 3165 int ret; 3166 3167 /* 3168 * There can be no delalloc past i_size, so don't waste time looking for 3169 * it beyond i_size. 3170 */ 3171 while (cur_offset < end && cur_offset < i_size) { 3172 u64 delalloc_start; 3173 u64 delalloc_end; 3174 u64 prealloc_start; 3175 u64 prealloc_len = 0; 3176 bool delalloc; 3177 3178 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3179 delalloc_cached_state, 3180 &delalloc_start, 3181 &delalloc_end); 3182 if (!delalloc) 3183 break; 3184 3185 /* 3186 * If this is a prealloc extent we have to report every section 3187 * of it that has no delalloc. 3188 */ 3189 if (disk_bytenr != 0) { 3190 if (last_delalloc_end == 0) { 3191 prealloc_start = start; 3192 prealloc_len = delalloc_start - start; 3193 } else { 3194 prealloc_start = last_delalloc_end + 1; 3195 prealloc_len = delalloc_start - prealloc_start; 3196 } 3197 } 3198 3199 if (prealloc_len > 0) { 3200 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3201 ret = btrfs_is_data_extent_shared(inode, 3202 disk_bytenr, 3203 extent_gen, 3204 backref_ctx); 3205 if (ret < 0) 3206 return ret; 3207 else if (ret > 0) 3208 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3209 3210 checked_extent_shared = true; 3211 } 3212 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3213 disk_bytenr + extent_offset, 3214 prealloc_len, prealloc_flags); 3215 if (ret) 3216 return ret; 3217 extent_offset += prealloc_len; 3218 } 3219 3220 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3221 delalloc_end + 1 - delalloc_start, 3222 FIEMAP_EXTENT_DELALLOC | 3223 FIEMAP_EXTENT_UNKNOWN); 3224 if (ret) 3225 return ret; 3226 3227 last_delalloc_end = delalloc_end; 3228 cur_offset = delalloc_end + 1; 3229 extent_offset += cur_offset - delalloc_start; 3230 cond_resched(); 3231 } 3232 3233 /* 3234 * Either we found no delalloc for the whole prealloc extent or we have 3235 * a prealloc extent that spans i_size or starts at or after i_size. 3236 */ 3237 if (disk_bytenr != 0 && last_delalloc_end < end) { 3238 u64 prealloc_start; 3239 u64 prealloc_len; 3240 3241 if (last_delalloc_end == 0) { 3242 prealloc_start = start; 3243 prealloc_len = end + 1 - start; 3244 } else { 3245 prealloc_start = last_delalloc_end + 1; 3246 prealloc_len = end + 1 - prealloc_start; 3247 } 3248 3249 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3250 ret = btrfs_is_data_extent_shared(inode, 3251 disk_bytenr, 3252 extent_gen, 3253 backref_ctx); 3254 if (ret < 0) 3255 return ret; 3256 else if (ret > 0) 3257 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3258 } 3259 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3260 disk_bytenr + extent_offset, 3261 prealloc_len, prealloc_flags); 3262 if (ret) 3263 return ret; 3264 } 3265 3266 return 0; 3267 } 3268 3269 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3270 struct btrfs_path *path, 3271 u64 *last_extent_end_ret) 3272 { 3273 const u64 ino = btrfs_ino(inode); 3274 struct btrfs_root *root = inode->root; 3275 struct extent_buffer *leaf; 3276 struct btrfs_file_extent_item *ei; 3277 struct btrfs_key key; 3278 u64 disk_bytenr; 3279 int ret; 3280 3281 /* 3282 * Lookup the last file extent. We're not using i_size here because 3283 * there might be preallocation past i_size. 3284 */ 3285 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3286 /* There can't be a file extent item at offset (u64)-1 */ 3287 ASSERT(ret != 0); 3288 if (ret < 0) 3289 return ret; 3290 3291 /* 3292 * For a non-existing key, btrfs_search_slot() always leaves us at a 3293 * slot > 0, except if the btree is empty, which is impossible because 3294 * at least it has the inode item for this inode and all the items for 3295 * the root inode 256. 3296 */ 3297 ASSERT(path->slots[0] > 0); 3298 path->slots[0]--; 3299 leaf = path->nodes[0]; 3300 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3301 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3302 /* No file extent items in the subvolume tree. */ 3303 *last_extent_end_ret = 0; 3304 return 0; 3305 } 3306 3307 /* 3308 * For an inline extent, the disk_bytenr is where inline data starts at, 3309 * so first check if we have an inline extent item before checking if we 3310 * have an implicit hole (disk_bytenr == 0). 3311 */ 3312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3313 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3314 *last_extent_end_ret = btrfs_file_extent_end(path); 3315 return 0; 3316 } 3317 3318 /* 3319 * Find the last file extent item that is not a hole (when NO_HOLES is 3320 * not enabled). This should take at most 2 iterations in the worst 3321 * case: we have one hole file extent item at slot 0 of a leaf and 3322 * another hole file extent item as the last item in the previous leaf. 3323 * This is because we merge file extent items that represent holes. 3324 */ 3325 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3326 while (disk_bytenr == 0) { 3327 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3328 if (ret < 0) { 3329 return ret; 3330 } else if (ret > 0) { 3331 /* No file extent items that are not holes. */ 3332 *last_extent_end_ret = 0; 3333 return 0; 3334 } 3335 leaf = path->nodes[0]; 3336 ei = btrfs_item_ptr(leaf, path->slots[0], 3337 struct btrfs_file_extent_item); 3338 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3339 } 3340 3341 *last_extent_end_ret = btrfs_file_extent_end(path); 3342 return 0; 3343 } 3344 3345 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3346 u64 start, u64 len) 3347 { 3348 const u64 ino = btrfs_ino(inode); 3349 struct extent_state *cached_state = NULL; 3350 struct extent_state *delalloc_cached_state = NULL; 3351 struct btrfs_path *path; 3352 struct fiemap_cache cache = { 0 }; 3353 struct btrfs_backref_share_check_ctx *backref_ctx; 3354 u64 last_extent_end; 3355 u64 prev_extent_end; 3356 u64 lockstart; 3357 u64 lockend; 3358 bool stopped = false; 3359 int ret; 3360 3361 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3362 path = btrfs_alloc_path(); 3363 if (!backref_ctx || !path) { 3364 ret = -ENOMEM; 3365 goto out; 3366 } 3367 3368 lockstart = round_down(start, inode->root->fs_info->sectorsize); 3369 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 3370 prev_extent_end = lockstart; 3371 3372 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3373 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3374 3375 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3376 if (ret < 0) 3377 goto out_unlock; 3378 btrfs_release_path(path); 3379 3380 path->reada = READA_FORWARD; 3381 ret = fiemap_search_slot(inode, path, lockstart); 3382 if (ret < 0) { 3383 goto out_unlock; 3384 } else if (ret > 0) { 3385 /* 3386 * No file extent item found, but we may have delalloc between 3387 * the current offset and i_size. So check for that. 3388 */ 3389 ret = 0; 3390 goto check_eof_delalloc; 3391 } 3392 3393 while (prev_extent_end < lockend) { 3394 struct extent_buffer *leaf = path->nodes[0]; 3395 struct btrfs_file_extent_item *ei; 3396 struct btrfs_key key; 3397 u64 extent_end; 3398 u64 extent_len; 3399 u64 extent_offset = 0; 3400 u64 extent_gen; 3401 u64 disk_bytenr = 0; 3402 u64 flags = 0; 3403 int extent_type; 3404 u8 compression; 3405 3406 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3407 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3408 break; 3409 3410 extent_end = btrfs_file_extent_end(path); 3411 3412 /* 3413 * The first iteration can leave us at an extent item that ends 3414 * before our range's start. Move to the next item. 3415 */ 3416 if (extent_end <= lockstart) 3417 goto next_item; 3418 3419 backref_ctx->curr_leaf_bytenr = leaf->start; 3420 3421 /* We have in implicit hole (NO_HOLES feature enabled). */ 3422 if (prev_extent_end < key.offset) { 3423 const u64 range_end = min(key.offset, lockend) - 1; 3424 3425 ret = fiemap_process_hole(inode, fieinfo, &cache, 3426 &delalloc_cached_state, 3427 backref_ctx, 0, 0, 0, 3428 prev_extent_end, range_end); 3429 if (ret < 0) { 3430 goto out_unlock; 3431 } else if (ret > 0) { 3432 /* fiemap_fill_next_extent() told us to stop. */ 3433 stopped = true; 3434 break; 3435 } 3436 3437 /* We've reached the end of the fiemap range, stop. */ 3438 if (key.offset >= lockend) { 3439 stopped = true; 3440 break; 3441 } 3442 } 3443 3444 extent_len = extent_end - key.offset; 3445 ei = btrfs_item_ptr(leaf, path->slots[0], 3446 struct btrfs_file_extent_item); 3447 compression = btrfs_file_extent_compression(leaf, ei); 3448 extent_type = btrfs_file_extent_type(leaf, ei); 3449 extent_gen = btrfs_file_extent_generation(leaf, ei); 3450 3451 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3452 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3453 if (compression == BTRFS_COMPRESS_NONE) 3454 extent_offset = btrfs_file_extent_offset(leaf, ei); 3455 } 3456 3457 if (compression != BTRFS_COMPRESS_NONE) 3458 flags |= FIEMAP_EXTENT_ENCODED; 3459 3460 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3461 flags |= FIEMAP_EXTENT_DATA_INLINE; 3462 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3463 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3464 extent_len, flags); 3465 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3466 ret = fiemap_process_hole(inode, fieinfo, &cache, 3467 &delalloc_cached_state, 3468 backref_ctx, 3469 disk_bytenr, extent_offset, 3470 extent_gen, key.offset, 3471 extent_end - 1); 3472 } else if (disk_bytenr == 0) { 3473 /* We have an explicit hole. */ 3474 ret = fiemap_process_hole(inode, fieinfo, &cache, 3475 &delalloc_cached_state, 3476 backref_ctx, 0, 0, 0, 3477 key.offset, extent_end - 1); 3478 } else { 3479 /* We have a regular extent. */ 3480 if (fieinfo->fi_extents_max) { 3481 ret = btrfs_is_data_extent_shared(inode, 3482 disk_bytenr, 3483 extent_gen, 3484 backref_ctx); 3485 if (ret < 0) 3486 goto out_unlock; 3487 else if (ret > 0) 3488 flags |= FIEMAP_EXTENT_SHARED; 3489 } 3490 3491 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3492 disk_bytenr + extent_offset, 3493 extent_len, flags); 3494 } 3495 3496 if (ret < 0) { 3497 goto out_unlock; 3498 } else if (ret > 0) { 3499 /* fiemap_fill_next_extent() told us to stop. */ 3500 stopped = true; 3501 break; 3502 } 3503 3504 prev_extent_end = extent_end; 3505 next_item: 3506 if (fatal_signal_pending(current)) { 3507 ret = -EINTR; 3508 goto out_unlock; 3509 } 3510 3511 ret = fiemap_next_leaf_item(inode, path); 3512 if (ret < 0) { 3513 goto out_unlock; 3514 } else if (ret > 0) { 3515 /* No more file extent items for this inode. */ 3516 break; 3517 } 3518 cond_resched(); 3519 } 3520 3521 check_eof_delalloc: 3522 /* 3523 * Release (and free) the path before emitting any final entries to 3524 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3525 * once we find no more file extent items exist, we may have a 3526 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3527 * faults when copying data to the user space buffer. 3528 */ 3529 btrfs_free_path(path); 3530 path = NULL; 3531 3532 if (!stopped && prev_extent_end < lockend) { 3533 ret = fiemap_process_hole(inode, fieinfo, &cache, 3534 &delalloc_cached_state, backref_ctx, 3535 0, 0, 0, prev_extent_end, lockend - 1); 3536 if (ret < 0) 3537 goto out_unlock; 3538 prev_extent_end = lockend; 3539 } 3540 3541 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3542 const u64 i_size = i_size_read(&inode->vfs_inode); 3543 3544 if (prev_extent_end < i_size) { 3545 u64 delalloc_start; 3546 u64 delalloc_end; 3547 bool delalloc; 3548 3549 delalloc = btrfs_find_delalloc_in_range(inode, 3550 prev_extent_end, 3551 i_size - 1, 3552 &delalloc_cached_state, 3553 &delalloc_start, 3554 &delalloc_end); 3555 if (!delalloc) 3556 cache.flags |= FIEMAP_EXTENT_LAST; 3557 } else { 3558 cache.flags |= FIEMAP_EXTENT_LAST; 3559 } 3560 } 3561 3562 ret = emit_last_fiemap_cache(fieinfo, &cache); 3563 3564 out_unlock: 3565 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3566 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3567 out: 3568 free_extent_state(delalloc_cached_state); 3569 btrfs_free_backref_share_ctx(backref_ctx); 3570 btrfs_free_path(path); 3571 return ret; 3572 } 3573 3574 static void __free_extent_buffer(struct extent_buffer *eb) 3575 { 3576 kmem_cache_free(extent_buffer_cache, eb); 3577 } 3578 3579 int extent_buffer_under_io(const struct extent_buffer *eb) 3580 { 3581 return (atomic_read(&eb->io_pages) || 3582 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3583 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3584 } 3585 3586 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3587 { 3588 struct btrfs_subpage *subpage; 3589 3590 lockdep_assert_held(&page->mapping->private_lock); 3591 3592 if (PagePrivate(page)) { 3593 subpage = (struct btrfs_subpage *)page->private; 3594 if (atomic_read(&subpage->eb_refs)) 3595 return true; 3596 /* 3597 * Even there is no eb refs here, we may still have 3598 * end_page_read() call relying on page::private. 3599 */ 3600 if (atomic_read(&subpage->readers)) 3601 return true; 3602 } 3603 return false; 3604 } 3605 3606 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3607 { 3608 struct btrfs_fs_info *fs_info = eb->fs_info; 3609 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3610 3611 /* 3612 * For mapped eb, we're going to change the page private, which should 3613 * be done under the private_lock. 3614 */ 3615 if (mapped) 3616 spin_lock(&page->mapping->private_lock); 3617 3618 if (!PagePrivate(page)) { 3619 if (mapped) 3620 spin_unlock(&page->mapping->private_lock); 3621 return; 3622 } 3623 3624 if (fs_info->nodesize >= PAGE_SIZE) { 3625 /* 3626 * We do this since we'll remove the pages after we've 3627 * removed the eb from the radix tree, so we could race 3628 * and have this page now attached to the new eb. So 3629 * only clear page_private if it's still connected to 3630 * this eb. 3631 */ 3632 if (PagePrivate(page) && 3633 page->private == (unsigned long)eb) { 3634 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3635 BUG_ON(PageDirty(page)); 3636 BUG_ON(PageWriteback(page)); 3637 /* 3638 * We need to make sure we haven't be attached 3639 * to a new eb. 3640 */ 3641 detach_page_private(page); 3642 } 3643 if (mapped) 3644 spin_unlock(&page->mapping->private_lock); 3645 return; 3646 } 3647 3648 /* 3649 * For subpage, we can have dummy eb with page private. In this case, 3650 * we can directly detach the private as such page is only attached to 3651 * one dummy eb, no sharing. 3652 */ 3653 if (!mapped) { 3654 btrfs_detach_subpage(fs_info, page); 3655 return; 3656 } 3657 3658 btrfs_page_dec_eb_refs(fs_info, page); 3659 3660 /* 3661 * We can only detach the page private if there are no other ebs in the 3662 * page range and no unfinished IO. 3663 */ 3664 if (!page_range_has_eb(fs_info, page)) 3665 btrfs_detach_subpage(fs_info, page); 3666 3667 spin_unlock(&page->mapping->private_lock); 3668 } 3669 3670 /* Release all pages attached to the extent buffer */ 3671 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3672 { 3673 int i; 3674 int num_pages; 3675 3676 ASSERT(!extent_buffer_under_io(eb)); 3677 3678 num_pages = num_extent_pages(eb); 3679 for (i = 0; i < num_pages; i++) { 3680 struct page *page = eb->pages[i]; 3681 3682 if (!page) 3683 continue; 3684 3685 detach_extent_buffer_page(eb, page); 3686 3687 /* One for when we allocated the page */ 3688 put_page(page); 3689 } 3690 } 3691 3692 /* 3693 * Helper for releasing the extent buffer. 3694 */ 3695 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3696 { 3697 btrfs_release_extent_buffer_pages(eb); 3698 btrfs_leak_debug_del_eb(eb); 3699 __free_extent_buffer(eb); 3700 } 3701 3702 static struct extent_buffer * 3703 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3704 unsigned long len) 3705 { 3706 struct extent_buffer *eb = NULL; 3707 3708 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3709 eb->start = start; 3710 eb->len = len; 3711 eb->fs_info = fs_info; 3712 init_rwsem(&eb->lock); 3713 3714 btrfs_leak_debug_add_eb(eb); 3715 INIT_LIST_HEAD(&eb->release_list); 3716 3717 spin_lock_init(&eb->refs_lock); 3718 atomic_set(&eb->refs, 1); 3719 atomic_set(&eb->io_pages, 0); 3720 3721 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3722 3723 return eb; 3724 } 3725 3726 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3727 { 3728 int i; 3729 struct extent_buffer *new; 3730 int num_pages = num_extent_pages(src); 3731 int ret; 3732 3733 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3734 if (new == NULL) 3735 return NULL; 3736 3737 /* 3738 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3739 * btrfs_release_extent_buffer() have different behavior for 3740 * UNMAPPED subpage extent buffer. 3741 */ 3742 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3743 3744 ret = btrfs_alloc_page_array(num_pages, new->pages); 3745 if (ret) { 3746 btrfs_release_extent_buffer(new); 3747 return NULL; 3748 } 3749 3750 for (i = 0; i < num_pages; i++) { 3751 int ret; 3752 struct page *p = new->pages[i]; 3753 3754 ret = attach_extent_buffer_page(new, p, NULL); 3755 if (ret < 0) { 3756 btrfs_release_extent_buffer(new); 3757 return NULL; 3758 } 3759 WARN_ON(PageDirty(p)); 3760 copy_page(page_address(p), page_address(src->pages[i])); 3761 } 3762 set_extent_buffer_uptodate(new); 3763 3764 return new; 3765 } 3766 3767 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3768 u64 start, unsigned long len) 3769 { 3770 struct extent_buffer *eb; 3771 int num_pages; 3772 int i; 3773 int ret; 3774 3775 eb = __alloc_extent_buffer(fs_info, start, len); 3776 if (!eb) 3777 return NULL; 3778 3779 num_pages = num_extent_pages(eb); 3780 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3781 if (ret) 3782 goto err; 3783 3784 for (i = 0; i < num_pages; i++) { 3785 struct page *p = eb->pages[i]; 3786 3787 ret = attach_extent_buffer_page(eb, p, NULL); 3788 if (ret < 0) 3789 goto err; 3790 } 3791 3792 set_extent_buffer_uptodate(eb); 3793 btrfs_set_header_nritems(eb, 0); 3794 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3795 3796 return eb; 3797 err: 3798 for (i = 0; i < num_pages; i++) { 3799 if (eb->pages[i]) { 3800 detach_extent_buffer_page(eb, eb->pages[i]); 3801 __free_page(eb->pages[i]); 3802 } 3803 } 3804 __free_extent_buffer(eb); 3805 return NULL; 3806 } 3807 3808 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3809 u64 start) 3810 { 3811 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3812 } 3813 3814 static void check_buffer_tree_ref(struct extent_buffer *eb) 3815 { 3816 int refs; 3817 /* 3818 * The TREE_REF bit is first set when the extent_buffer is added 3819 * to the radix tree. It is also reset, if unset, when a new reference 3820 * is created by find_extent_buffer. 3821 * 3822 * It is only cleared in two cases: freeing the last non-tree 3823 * reference to the extent_buffer when its STALE bit is set or 3824 * calling release_folio when the tree reference is the only reference. 3825 * 3826 * In both cases, care is taken to ensure that the extent_buffer's 3827 * pages are not under io. However, release_folio can be concurrently 3828 * called with creating new references, which is prone to race 3829 * conditions between the calls to check_buffer_tree_ref in those 3830 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3831 * 3832 * The actual lifetime of the extent_buffer in the radix tree is 3833 * adequately protected by the refcount, but the TREE_REF bit and 3834 * its corresponding reference are not. To protect against this 3835 * class of races, we call check_buffer_tree_ref from the codepaths 3836 * which trigger io after they set eb->io_pages. Note that once io is 3837 * initiated, TREE_REF can no longer be cleared, so that is the 3838 * moment at which any such race is best fixed. 3839 */ 3840 refs = atomic_read(&eb->refs); 3841 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3842 return; 3843 3844 spin_lock(&eb->refs_lock); 3845 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3846 atomic_inc(&eb->refs); 3847 spin_unlock(&eb->refs_lock); 3848 } 3849 3850 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3851 struct page *accessed) 3852 { 3853 int num_pages, i; 3854 3855 check_buffer_tree_ref(eb); 3856 3857 num_pages = num_extent_pages(eb); 3858 for (i = 0; i < num_pages; i++) { 3859 struct page *p = eb->pages[i]; 3860 3861 if (p != accessed) 3862 mark_page_accessed(p); 3863 } 3864 } 3865 3866 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3867 u64 start) 3868 { 3869 struct extent_buffer *eb; 3870 3871 eb = find_extent_buffer_nolock(fs_info, start); 3872 if (!eb) 3873 return NULL; 3874 /* 3875 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3876 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3877 * another task running free_extent_buffer() might have seen that flag 3878 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3879 * writeback flags not set) and it's still in the tree (flag 3880 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3881 * decrementing the extent buffer's reference count twice. So here we 3882 * could race and increment the eb's reference count, clear its stale 3883 * flag, mark it as dirty and drop our reference before the other task 3884 * finishes executing free_extent_buffer, which would later result in 3885 * an attempt to free an extent buffer that is dirty. 3886 */ 3887 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3888 spin_lock(&eb->refs_lock); 3889 spin_unlock(&eb->refs_lock); 3890 } 3891 mark_extent_buffer_accessed(eb, NULL); 3892 return eb; 3893 } 3894 3895 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3896 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3897 u64 start) 3898 { 3899 struct extent_buffer *eb, *exists = NULL; 3900 int ret; 3901 3902 eb = find_extent_buffer(fs_info, start); 3903 if (eb) 3904 return eb; 3905 eb = alloc_dummy_extent_buffer(fs_info, start); 3906 if (!eb) 3907 return ERR_PTR(-ENOMEM); 3908 eb->fs_info = fs_info; 3909 again: 3910 ret = radix_tree_preload(GFP_NOFS); 3911 if (ret) { 3912 exists = ERR_PTR(ret); 3913 goto free_eb; 3914 } 3915 spin_lock(&fs_info->buffer_lock); 3916 ret = radix_tree_insert(&fs_info->buffer_radix, 3917 start >> fs_info->sectorsize_bits, eb); 3918 spin_unlock(&fs_info->buffer_lock); 3919 radix_tree_preload_end(); 3920 if (ret == -EEXIST) { 3921 exists = find_extent_buffer(fs_info, start); 3922 if (exists) 3923 goto free_eb; 3924 else 3925 goto again; 3926 } 3927 check_buffer_tree_ref(eb); 3928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3929 3930 return eb; 3931 free_eb: 3932 btrfs_release_extent_buffer(eb); 3933 return exists; 3934 } 3935 #endif 3936 3937 static struct extent_buffer *grab_extent_buffer( 3938 struct btrfs_fs_info *fs_info, struct page *page) 3939 { 3940 struct extent_buffer *exists; 3941 3942 /* 3943 * For subpage case, we completely rely on radix tree to ensure we 3944 * don't try to insert two ebs for the same bytenr. So here we always 3945 * return NULL and just continue. 3946 */ 3947 if (fs_info->nodesize < PAGE_SIZE) 3948 return NULL; 3949 3950 /* Page not yet attached to an extent buffer */ 3951 if (!PagePrivate(page)) 3952 return NULL; 3953 3954 /* 3955 * We could have already allocated an eb for this page and attached one 3956 * so lets see if we can get a ref on the existing eb, and if we can we 3957 * know it's good and we can just return that one, else we know we can 3958 * just overwrite page->private. 3959 */ 3960 exists = (struct extent_buffer *)page->private; 3961 if (atomic_inc_not_zero(&exists->refs)) 3962 return exists; 3963 3964 WARN_ON(PageDirty(page)); 3965 detach_page_private(page); 3966 return NULL; 3967 } 3968 3969 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3970 { 3971 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3972 btrfs_err(fs_info, "bad tree block start %llu", start); 3973 return -EINVAL; 3974 } 3975 3976 if (fs_info->nodesize < PAGE_SIZE && 3977 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3978 btrfs_err(fs_info, 3979 "tree block crosses page boundary, start %llu nodesize %u", 3980 start, fs_info->nodesize); 3981 return -EINVAL; 3982 } 3983 if (fs_info->nodesize >= PAGE_SIZE && 3984 !PAGE_ALIGNED(start)) { 3985 btrfs_err(fs_info, 3986 "tree block is not page aligned, start %llu nodesize %u", 3987 start, fs_info->nodesize); 3988 return -EINVAL; 3989 } 3990 return 0; 3991 } 3992 3993 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3994 u64 start, u64 owner_root, int level) 3995 { 3996 unsigned long len = fs_info->nodesize; 3997 int num_pages; 3998 int i; 3999 unsigned long index = start >> PAGE_SHIFT; 4000 struct extent_buffer *eb; 4001 struct extent_buffer *exists = NULL; 4002 struct page *p; 4003 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4004 u64 lockdep_owner = owner_root; 4005 int uptodate = 1; 4006 int ret; 4007 4008 if (check_eb_alignment(fs_info, start)) 4009 return ERR_PTR(-EINVAL); 4010 4011 #if BITS_PER_LONG == 32 4012 if (start >= MAX_LFS_FILESIZE) { 4013 btrfs_err_rl(fs_info, 4014 "extent buffer %llu is beyond 32bit page cache limit", start); 4015 btrfs_err_32bit_limit(fs_info); 4016 return ERR_PTR(-EOVERFLOW); 4017 } 4018 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4019 btrfs_warn_32bit_limit(fs_info); 4020 #endif 4021 4022 eb = find_extent_buffer(fs_info, start); 4023 if (eb) 4024 return eb; 4025 4026 eb = __alloc_extent_buffer(fs_info, start, len); 4027 if (!eb) 4028 return ERR_PTR(-ENOMEM); 4029 4030 /* 4031 * The reloc trees are just snapshots, so we need them to appear to be 4032 * just like any other fs tree WRT lockdep. 4033 */ 4034 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4035 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4036 4037 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4038 4039 num_pages = num_extent_pages(eb); 4040 for (i = 0; i < num_pages; i++, index++) { 4041 struct btrfs_subpage *prealloc = NULL; 4042 4043 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4044 if (!p) { 4045 exists = ERR_PTR(-ENOMEM); 4046 goto free_eb; 4047 } 4048 4049 /* 4050 * Preallocate page->private for subpage case, so that we won't 4051 * allocate memory with private_lock hold. The memory will be 4052 * freed by attach_extent_buffer_page() or freed manually if 4053 * we exit earlier. 4054 * 4055 * Although we have ensured one subpage eb can only have one 4056 * page, but it may change in the future for 16K page size 4057 * support, so we still preallocate the memory in the loop. 4058 */ 4059 if (fs_info->nodesize < PAGE_SIZE) { 4060 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4061 if (IS_ERR(prealloc)) { 4062 ret = PTR_ERR(prealloc); 4063 unlock_page(p); 4064 put_page(p); 4065 exists = ERR_PTR(ret); 4066 goto free_eb; 4067 } 4068 } 4069 4070 spin_lock(&mapping->private_lock); 4071 exists = grab_extent_buffer(fs_info, p); 4072 if (exists) { 4073 spin_unlock(&mapping->private_lock); 4074 unlock_page(p); 4075 put_page(p); 4076 mark_extent_buffer_accessed(exists, p); 4077 btrfs_free_subpage(prealloc); 4078 goto free_eb; 4079 } 4080 /* Should not fail, as we have preallocated the memory */ 4081 ret = attach_extent_buffer_page(eb, p, prealloc); 4082 ASSERT(!ret); 4083 /* 4084 * To inform we have extra eb under allocation, so that 4085 * detach_extent_buffer_page() won't release the page private 4086 * when the eb hasn't yet been inserted into radix tree. 4087 * 4088 * The ref will be decreased when the eb released the page, in 4089 * detach_extent_buffer_page(). 4090 * Thus needs no special handling in error path. 4091 */ 4092 btrfs_page_inc_eb_refs(fs_info, p); 4093 spin_unlock(&mapping->private_lock); 4094 4095 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4096 eb->pages[i] = p; 4097 if (!PageUptodate(p)) 4098 uptodate = 0; 4099 4100 /* 4101 * We can't unlock the pages just yet since the extent buffer 4102 * hasn't been properly inserted in the radix tree, this 4103 * opens a race with btree_release_folio which can free a page 4104 * while we are still filling in all pages for the buffer and 4105 * we could crash. 4106 */ 4107 } 4108 if (uptodate) 4109 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4110 again: 4111 ret = radix_tree_preload(GFP_NOFS); 4112 if (ret) { 4113 exists = ERR_PTR(ret); 4114 goto free_eb; 4115 } 4116 4117 spin_lock(&fs_info->buffer_lock); 4118 ret = radix_tree_insert(&fs_info->buffer_radix, 4119 start >> fs_info->sectorsize_bits, eb); 4120 spin_unlock(&fs_info->buffer_lock); 4121 radix_tree_preload_end(); 4122 if (ret == -EEXIST) { 4123 exists = find_extent_buffer(fs_info, start); 4124 if (exists) 4125 goto free_eb; 4126 else 4127 goto again; 4128 } 4129 /* add one reference for the tree */ 4130 check_buffer_tree_ref(eb); 4131 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4132 4133 /* 4134 * Now it's safe to unlock the pages because any calls to 4135 * btree_release_folio will correctly detect that a page belongs to a 4136 * live buffer and won't free them prematurely. 4137 */ 4138 for (i = 0; i < num_pages; i++) 4139 unlock_page(eb->pages[i]); 4140 return eb; 4141 4142 free_eb: 4143 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4144 for (i = 0; i < num_pages; i++) { 4145 if (eb->pages[i]) 4146 unlock_page(eb->pages[i]); 4147 } 4148 4149 btrfs_release_extent_buffer(eb); 4150 return exists; 4151 } 4152 4153 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4154 { 4155 struct extent_buffer *eb = 4156 container_of(head, struct extent_buffer, rcu_head); 4157 4158 __free_extent_buffer(eb); 4159 } 4160 4161 static int release_extent_buffer(struct extent_buffer *eb) 4162 __releases(&eb->refs_lock) 4163 { 4164 lockdep_assert_held(&eb->refs_lock); 4165 4166 WARN_ON(atomic_read(&eb->refs) == 0); 4167 if (atomic_dec_and_test(&eb->refs)) { 4168 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4169 struct btrfs_fs_info *fs_info = eb->fs_info; 4170 4171 spin_unlock(&eb->refs_lock); 4172 4173 spin_lock(&fs_info->buffer_lock); 4174 radix_tree_delete(&fs_info->buffer_radix, 4175 eb->start >> fs_info->sectorsize_bits); 4176 spin_unlock(&fs_info->buffer_lock); 4177 } else { 4178 spin_unlock(&eb->refs_lock); 4179 } 4180 4181 btrfs_leak_debug_del_eb(eb); 4182 /* Should be safe to release our pages at this point */ 4183 btrfs_release_extent_buffer_pages(eb); 4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4185 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4186 __free_extent_buffer(eb); 4187 return 1; 4188 } 4189 #endif 4190 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4191 return 1; 4192 } 4193 spin_unlock(&eb->refs_lock); 4194 4195 return 0; 4196 } 4197 4198 void free_extent_buffer(struct extent_buffer *eb) 4199 { 4200 int refs; 4201 if (!eb) 4202 return; 4203 4204 refs = atomic_read(&eb->refs); 4205 while (1) { 4206 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4207 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4208 refs == 1)) 4209 break; 4210 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4211 return; 4212 } 4213 4214 spin_lock(&eb->refs_lock); 4215 if (atomic_read(&eb->refs) == 2 && 4216 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4217 !extent_buffer_under_io(eb) && 4218 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4219 atomic_dec(&eb->refs); 4220 4221 /* 4222 * I know this is terrible, but it's temporary until we stop tracking 4223 * the uptodate bits and such for the extent buffers. 4224 */ 4225 release_extent_buffer(eb); 4226 } 4227 4228 void free_extent_buffer_stale(struct extent_buffer *eb) 4229 { 4230 if (!eb) 4231 return; 4232 4233 spin_lock(&eb->refs_lock); 4234 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4235 4236 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4237 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4238 atomic_dec(&eb->refs); 4239 release_extent_buffer(eb); 4240 } 4241 4242 static void btree_clear_page_dirty(struct page *page) 4243 { 4244 ASSERT(PageDirty(page)); 4245 ASSERT(PageLocked(page)); 4246 clear_page_dirty_for_io(page); 4247 xa_lock_irq(&page->mapping->i_pages); 4248 if (!PageDirty(page)) 4249 __xa_clear_mark(&page->mapping->i_pages, 4250 page_index(page), PAGECACHE_TAG_DIRTY); 4251 xa_unlock_irq(&page->mapping->i_pages); 4252 } 4253 4254 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4255 { 4256 struct btrfs_fs_info *fs_info = eb->fs_info; 4257 struct page *page = eb->pages[0]; 4258 bool last; 4259 4260 /* btree_clear_page_dirty() needs page locked */ 4261 lock_page(page); 4262 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4263 eb->len); 4264 if (last) 4265 btree_clear_page_dirty(page); 4266 unlock_page(page); 4267 WARN_ON(atomic_read(&eb->refs) == 0); 4268 } 4269 4270 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4271 struct extent_buffer *eb) 4272 { 4273 struct btrfs_fs_info *fs_info = eb->fs_info; 4274 int i; 4275 int num_pages; 4276 struct page *page; 4277 4278 btrfs_assert_tree_write_locked(eb); 4279 4280 if (trans && btrfs_header_generation(eb) != trans->transid) 4281 return; 4282 4283 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4284 return; 4285 4286 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4287 fs_info->dirty_metadata_batch); 4288 4289 if (eb->fs_info->nodesize < PAGE_SIZE) 4290 return clear_subpage_extent_buffer_dirty(eb); 4291 4292 num_pages = num_extent_pages(eb); 4293 4294 for (i = 0; i < num_pages; i++) { 4295 page = eb->pages[i]; 4296 if (!PageDirty(page)) 4297 continue; 4298 lock_page(page); 4299 btree_clear_page_dirty(page); 4300 ClearPageError(page); 4301 unlock_page(page); 4302 } 4303 WARN_ON(atomic_read(&eb->refs) == 0); 4304 } 4305 4306 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4307 { 4308 int i; 4309 int num_pages; 4310 bool was_dirty; 4311 4312 check_buffer_tree_ref(eb); 4313 4314 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4315 4316 num_pages = num_extent_pages(eb); 4317 WARN_ON(atomic_read(&eb->refs) == 0); 4318 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4319 4320 if (!was_dirty) { 4321 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4322 4323 /* 4324 * For subpage case, we can have other extent buffers in the 4325 * same page, and in clear_subpage_extent_buffer_dirty() we 4326 * have to clear page dirty without subpage lock held. 4327 * This can cause race where our page gets dirty cleared after 4328 * we just set it. 4329 * 4330 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4331 * its page for other reasons, we can use page lock to prevent 4332 * the above race. 4333 */ 4334 if (subpage) 4335 lock_page(eb->pages[0]); 4336 for (i = 0; i < num_pages; i++) 4337 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4338 eb->start, eb->len); 4339 if (subpage) 4340 unlock_page(eb->pages[0]); 4341 } 4342 #ifdef CONFIG_BTRFS_DEBUG 4343 for (i = 0; i < num_pages; i++) 4344 ASSERT(PageDirty(eb->pages[i])); 4345 #endif 4346 4347 return was_dirty; 4348 } 4349 4350 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4351 { 4352 struct btrfs_fs_info *fs_info = eb->fs_info; 4353 struct page *page; 4354 int num_pages; 4355 int i; 4356 4357 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4358 num_pages = num_extent_pages(eb); 4359 for (i = 0; i < num_pages; i++) { 4360 page = eb->pages[i]; 4361 if (!page) 4362 continue; 4363 4364 /* 4365 * This is special handling for metadata subpage, as regular 4366 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4367 */ 4368 if (fs_info->nodesize >= PAGE_SIZE) 4369 ClearPageUptodate(page); 4370 else 4371 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4372 eb->len); 4373 } 4374 } 4375 4376 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4377 { 4378 struct btrfs_fs_info *fs_info = eb->fs_info; 4379 struct page *page; 4380 int num_pages; 4381 int i; 4382 4383 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4384 num_pages = num_extent_pages(eb); 4385 for (i = 0; i < num_pages; i++) { 4386 page = eb->pages[i]; 4387 4388 /* 4389 * This is special handling for metadata subpage, as regular 4390 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4391 */ 4392 if (fs_info->nodesize >= PAGE_SIZE) 4393 SetPageUptodate(page); 4394 else 4395 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4396 eb->len); 4397 } 4398 } 4399 4400 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4401 int mirror_num, 4402 struct btrfs_tree_parent_check *check) 4403 { 4404 struct btrfs_fs_info *fs_info = eb->fs_info; 4405 struct extent_io_tree *io_tree; 4406 struct page *page = eb->pages[0]; 4407 struct extent_state *cached_state = NULL; 4408 struct btrfs_bio_ctrl bio_ctrl = { 4409 .mirror_num = mirror_num, 4410 .parent_check = check, 4411 }; 4412 int ret = 0; 4413 4414 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4415 ASSERT(PagePrivate(page)); 4416 ASSERT(check); 4417 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4418 4419 if (wait == WAIT_NONE) { 4420 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4421 &cached_state)) 4422 return -EAGAIN; 4423 } else { 4424 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4425 &cached_state); 4426 if (ret < 0) 4427 return ret; 4428 } 4429 4430 ret = 0; 4431 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4432 PageUptodate(page) || 4433 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4434 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4435 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4436 &cached_state); 4437 return ret; 4438 } 4439 4440 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4441 eb->read_mirror = 0; 4442 atomic_set(&eb->io_pages, 1); 4443 check_buffer_tree_ref(eb); 4444 bio_ctrl.end_io_func = end_bio_extent_readpage; 4445 4446 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4447 4448 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4449 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4450 eb->start, page, eb->len, 4451 eb->start - page_offset(page), 0, true); 4452 if (ret) { 4453 /* 4454 * In the endio function, if we hit something wrong we will 4455 * increase the io_pages, so here we need to decrease it for 4456 * error path. 4457 */ 4458 atomic_dec(&eb->io_pages); 4459 } 4460 submit_one_bio(&bio_ctrl); 4461 if (ret || wait != WAIT_COMPLETE) { 4462 free_extent_state(cached_state); 4463 return ret; 4464 } 4465 4466 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, 4467 EXTENT_LOCKED, &cached_state); 4468 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4469 ret = -EIO; 4470 return ret; 4471 } 4472 4473 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4474 struct btrfs_tree_parent_check *check) 4475 { 4476 int i; 4477 struct page *page; 4478 int err; 4479 int ret = 0; 4480 int locked_pages = 0; 4481 int all_uptodate = 1; 4482 int num_pages; 4483 unsigned long num_reads = 0; 4484 struct btrfs_bio_ctrl bio_ctrl = { 4485 .mirror_num = mirror_num, 4486 .parent_check = check, 4487 }; 4488 4489 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4490 return 0; 4491 4492 /* 4493 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4494 * operation, which could potentially still be in flight. In this case 4495 * we simply want to return an error. 4496 */ 4497 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4498 return -EIO; 4499 4500 if (eb->fs_info->nodesize < PAGE_SIZE) 4501 return read_extent_buffer_subpage(eb, wait, mirror_num, check); 4502 4503 num_pages = num_extent_pages(eb); 4504 for (i = 0; i < num_pages; i++) { 4505 page = eb->pages[i]; 4506 if (wait == WAIT_NONE) { 4507 /* 4508 * WAIT_NONE is only utilized by readahead. If we can't 4509 * acquire the lock atomically it means either the eb 4510 * is being read out or under modification. 4511 * Either way the eb will be or has been cached, 4512 * readahead can exit safely. 4513 */ 4514 if (!trylock_page(page)) 4515 goto unlock_exit; 4516 } else { 4517 lock_page(page); 4518 } 4519 locked_pages++; 4520 } 4521 /* 4522 * We need to firstly lock all pages to make sure that 4523 * the uptodate bit of our pages won't be affected by 4524 * clear_extent_buffer_uptodate(). 4525 */ 4526 for (i = 0; i < num_pages; i++) { 4527 page = eb->pages[i]; 4528 if (!PageUptodate(page)) { 4529 num_reads++; 4530 all_uptodate = 0; 4531 } 4532 } 4533 4534 if (all_uptodate) { 4535 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4536 goto unlock_exit; 4537 } 4538 4539 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4540 eb->read_mirror = 0; 4541 atomic_set(&eb->io_pages, num_reads); 4542 /* 4543 * It is possible for release_folio to clear the TREE_REF bit before we 4544 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 4545 */ 4546 check_buffer_tree_ref(eb); 4547 bio_ctrl.end_io_func = end_bio_extent_readpage; 4548 for (i = 0; i < num_pages; i++) { 4549 page = eb->pages[i]; 4550 4551 if (!PageUptodate(page)) { 4552 if (ret) { 4553 atomic_dec(&eb->io_pages); 4554 unlock_page(page); 4555 continue; 4556 } 4557 4558 ClearPageError(page); 4559 err = submit_extent_page(REQ_OP_READ, NULL, 4560 &bio_ctrl, page_offset(page), page, 4561 PAGE_SIZE, 0, 0, false); 4562 if (err) { 4563 /* 4564 * We failed to submit the bio so it's the 4565 * caller's responsibility to perform cleanup 4566 * i.e unlock page/set error bit. 4567 */ 4568 ret = err; 4569 SetPageError(page); 4570 unlock_page(page); 4571 atomic_dec(&eb->io_pages); 4572 } 4573 } else { 4574 unlock_page(page); 4575 } 4576 } 4577 4578 submit_one_bio(&bio_ctrl); 4579 4580 if (ret || wait != WAIT_COMPLETE) 4581 return ret; 4582 4583 for (i = 0; i < num_pages; i++) { 4584 page = eb->pages[i]; 4585 wait_on_page_locked(page); 4586 if (!PageUptodate(page)) 4587 ret = -EIO; 4588 } 4589 4590 return ret; 4591 4592 unlock_exit: 4593 while (locked_pages > 0) { 4594 locked_pages--; 4595 page = eb->pages[locked_pages]; 4596 unlock_page(page); 4597 } 4598 return ret; 4599 } 4600 4601 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4602 unsigned long len) 4603 { 4604 btrfs_warn(eb->fs_info, 4605 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4606 eb->start, eb->len, start, len); 4607 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4608 4609 return true; 4610 } 4611 4612 /* 4613 * Check if the [start, start + len) range is valid before reading/writing 4614 * the eb. 4615 * NOTE: @start and @len are offset inside the eb, not logical address. 4616 * 4617 * Caller should not touch the dst/src memory if this function returns error. 4618 */ 4619 static inline int check_eb_range(const struct extent_buffer *eb, 4620 unsigned long start, unsigned long len) 4621 { 4622 unsigned long offset; 4623 4624 /* start, start + len should not go beyond eb->len nor overflow */ 4625 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4626 return report_eb_range(eb, start, len); 4627 4628 return false; 4629 } 4630 4631 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4632 unsigned long start, unsigned long len) 4633 { 4634 size_t cur; 4635 size_t offset; 4636 struct page *page; 4637 char *kaddr; 4638 char *dst = (char *)dstv; 4639 unsigned long i = get_eb_page_index(start); 4640 4641 if (check_eb_range(eb, start, len)) 4642 return; 4643 4644 offset = get_eb_offset_in_page(eb, start); 4645 4646 while (len > 0) { 4647 page = eb->pages[i]; 4648 4649 cur = min(len, (PAGE_SIZE - offset)); 4650 kaddr = page_address(page); 4651 memcpy(dst, kaddr + offset, cur); 4652 4653 dst += cur; 4654 len -= cur; 4655 offset = 0; 4656 i++; 4657 } 4658 } 4659 4660 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4661 void __user *dstv, 4662 unsigned long start, unsigned long len) 4663 { 4664 size_t cur; 4665 size_t offset; 4666 struct page *page; 4667 char *kaddr; 4668 char __user *dst = (char __user *)dstv; 4669 unsigned long i = get_eb_page_index(start); 4670 int ret = 0; 4671 4672 WARN_ON(start > eb->len); 4673 WARN_ON(start + len > eb->start + eb->len); 4674 4675 offset = get_eb_offset_in_page(eb, start); 4676 4677 while (len > 0) { 4678 page = eb->pages[i]; 4679 4680 cur = min(len, (PAGE_SIZE - offset)); 4681 kaddr = page_address(page); 4682 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4683 ret = -EFAULT; 4684 break; 4685 } 4686 4687 dst += cur; 4688 len -= cur; 4689 offset = 0; 4690 i++; 4691 } 4692 4693 return ret; 4694 } 4695 4696 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4697 unsigned long start, unsigned long len) 4698 { 4699 size_t cur; 4700 size_t offset; 4701 struct page *page; 4702 char *kaddr; 4703 char *ptr = (char *)ptrv; 4704 unsigned long i = get_eb_page_index(start); 4705 int ret = 0; 4706 4707 if (check_eb_range(eb, start, len)) 4708 return -EINVAL; 4709 4710 offset = get_eb_offset_in_page(eb, start); 4711 4712 while (len > 0) { 4713 page = eb->pages[i]; 4714 4715 cur = min(len, (PAGE_SIZE - offset)); 4716 4717 kaddr = page_address(page); 4718 ret = memcmp(ptr, kaddr + offset, cur); 4719 if (ret) 4720 break; 4721 4722 ptr += cur; 4723 len -= cur; 4724 offset = 0; 4725 i++; 4726 } 4727 return ret; 4728 } 4729 4730 /* 4731 * Check that the extent buffer is uptodate. 4732 * 4733 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4734 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4735 */ 4736 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4737 struct page *page) 4738 { 4739 struct btrfs_fs_info *fs_info = eb->fs_info; 4740 4741 /* 4742 * If we are using the commit root we could potentially clear a page 4743 * Uptodate while we're using the extent buffer that we've previously 4744 * looked up. We don't want to complain in this case, as the page was 4745 * valid before, we just didn't write it out. Instead we want to catch 4746 * the case where we didn't actually read the block properly, which 4747 * would have !PageUptodate && !PageError, as we clear PageError before 4748 * reading. 4749 */ 4750 if (fs_info->nodesize < PAGE_SIZE) { 4751 bool uptodate, error; 4752 4753 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 4754 eb->start, eb->len); 4755 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 4756 WARN_ON(!uptodate && !error); 4757 } else { 4758 WARN_ON(!PageUptodate(page) && !PageError(page)); 4759 } 4760 } 4761 4762 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 4763 const void *srcv) 4764 { 4765 char *kaddr; 4766 4767 assert_eb_page_uptodate(eb, eb->pages[0]); 4768 kaddr = page_address(eb->pages[0]) + 4769 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 4770 chunk_tree_uuid)); 4771 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4772 } 4773 4774 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 4775 { 4776 char *kaddr; 4777 4778 assert_eb_page_uptodate(eb, eb->pages[0]); 4779 kaddr = page_address(eb->pages[0]) + 4780 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 4781 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4782 } 4783 4784 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4785 unsigned long start, unsigned long len) 4786 { 4787 size_t cur; 4788 size_t offset; 4789 struct page *page; 4790 char *kaddr; 4791 char *src = (char *)srcv; 4792 unsigned long i = get_eb_page_index(start); 4793 4794 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4795 4796 if (check_eb_range(eb, start, len)) 4797 return; 4798 4799 offset = get_eb_offset_in_page(eb, start); 4800 4801 while (len > 0) { 4802 page = eb->pages[i]; 4803 assert_eb_page_uptodate(eb, page); 4804 4805 cur = min(len, PAGE_SIZE - offset); 4806 kaddr = page_address(page); 4807 memcpy(kaddr + offset, src, cur); 4808 4809 src += cur; 4810 len -= cur; 4811 offset = 0; 4812 i++; 4813 } 4814 } 4815 4816 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4817 unsigned long len) 4818 { 4819 size_t cur; 4820 size_t offset; 4821 struct page *page; 4822 char *kaddr; 4823 unsigned long i = get_eb_page_index(start); 4824 4825 if (check_eb_range(eb, start, len)) 4826 return; 4827 4828 offset = get_eb_offset_in_page(eb, start); 4829 4830 while (len > 0) { 4831 page = eb->pages[i]; 4832 assert_eb_page_uptodate(eb, page); 4833 4834 cur = min(len, PAGE_SIZE - offset); 4835 kaddr = page_address(page); 4836 memset(kaddr + offset, 0, cur); 4837 4838 len -= cur; 4839 offset = 0; 4840 i++; 4841 } 4842 } 4843 4844 void copy_extent_buffer_full(const struct extent_buffer *dst, 4845 const struct extent_buffer *src) 4846 { 4847 int i; 4848 int num_pages; 4849 4850 ASSERT(dst->len == src->len); 4851 4852 if (dst->fs_info->nodesize >= PAGE_SIZE) { 4853 num_pages = num_extent_pages(dst); 4854 for (i = 0; i < num_pages; i++) 4855 copy_page(page_address(dst->pages[i]), 4856 page_address(src->pages[i])); 4857 } else { 4858 size_t src_offset = get_eb_offset_in_page(src, 0); 4859 size_t dst_offset = get_eb_offset_in_page(dst, 0); 4860 4861 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 4862 memcpy(page_address(dst->pages[0]) + dst_offset, 4863 page_address(src->pages[0]) + src_offset, 4864 src->len); 4865 } 4866 } 4867 4868 void copy_extent_buffer(const struct extent_buffer *dst, 4869 const struct extent_buffer *src, 4870 unsigned long dst_offset, unsigned long src_offset, 4871 unsigned long len) 4872 { 4873 u64 dst_len = dst->len; 4874 size_t cur; 4875 size_t offset; 4876 struct page *page; 4877 char *kaddr; 4878 unsigned long i = get_eb_page_index(dst_offset); 4879 4880 if (check_eb_range(dst, dst_offset, len) || 4881 check_eb_range(src, src_offset, len)) 4882 return; 4883 4884 WARN_ON(src->len != dst_len); 4885 4886 offset = get_eb_offset_in_page(dst, dst_offset); 4887 4888 while (len > 0) { 4889 page = dst->pages[i]; 4890 assert_eb_page_uptodate(dst, page); 4891 4892 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4893 4894 kaddr = page_address(page); 4895 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4896 4897 src_offset += cur; 4898 len -= cur; 4899 offset = 0; 4900 i++; 4901 } 4902 } 4903 4904 /* 4905 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4906 * given bit number 4907 * @eb: the extent buffer 4908 * @start: offset of the bitmap item in the extent buffer 4909 * @nr: bit number 4910 * @page_index: return index of the page in the extent buffer that contains the 4911 * given bit number 4912 * @page_offset: return offset into the page given by page_index 4913 * 4914 * This helper hides the ugliness of finding the byte in an extent buffer which 4915 * contains a given bit. 4916 */ 4917 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4918 unsigned long start, unsigned long nr, 4919 unsigned long *page_index, 4920 size_t *page_offset) 4921 { 4922 size_t byte_offset = BIT_BYTE(nr); 4923 size_t offset; 4924 4925 /* 4926 * The byte we want is the offset of the extent buffer + the offset of 4927 * the bitmap item in the extent buffer + the offset of the byte in the 4928 * bitmap item. 4929 */ 4930 offset = start + offset_in_page(eb->start) + byte_offset; 4931 4932 *page_index = offset >> PAGE_SHIFT; 4933 *page_offset = offset_in_page(offset); 4934 } 4935 4936 /* 4937 * Determine whether a bit in a bitmap item is set. 4938 * 4939 * @eb: the extent buffer 4940 * @start: offset of the bitmap item in the extent buffer 4941 * @nr: bit number to test 4942 */ 4943 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4944 unsigned long nr) 4945 { 4946 u8 *kaddr; 4947 struct page *page; 4948 unsigned long i; 4949 size_t offset; 4950 4951 eb_bitmap_offset(eb, start, nr, &i, &offset); 4952 page = eb->pages[i]; 4953 assert_eb_page_uptodate(eb, page); 4954 kaddr = page_address(page); 4955 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4956 } 4957 4958 /* 4959 * Set an area of a bitmap to 1. 4960 * 4961 * @eb: the extent buffer 4962 * @start: offset of the bitmap item in the extent buffer 4963 * @pos: bit number of the first bit 4964 * @len: number of bits to set 4965 */ 4966 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4967 unsigned long pos, unsigned long len) 4968 { 4969 u8 *kaddr; 4970 struct page *page; 4971 unsigned long i; 4972 size_t offset; 4973 const unsigned int size = pos + len; 4974 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4975 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 4976 4977 eb_bitmap_offset(eb, start, pos, &i, &offset); 4978 page = eb->pages[i]; 4979 assert_eb_page_uptodate(eb, page); 4980 kaddr = page_address(page); 4981 4982 while (len >= bits_to_set) { 4983 kaddr[offset] |= mask_to_set; 4984 len -= bits_to_set; 4985 bits_to_set = BITS_PER_BYTE; 4986 mask_to_set = ~0; 4987 if (++offset >= PAGE_SIZE && len > 0) { 4988 offset = 0; 4989 page = eb->pages[++i]; 4990 assert_eb_page_uptodate(eb, page); 4991 kaddr = page_address(page); 4992 } 4993 } 4994 if (len) { 4995 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 4996 kaddr[offset] |= mask_to_set; 4997 } 4998 } 4999 5000 5001 /* 5002 * Clear an area of a bitmap. 5003 * 5004 * @eb: the extent buffer 5005 * @start: offset of the bitmap item in the extent buffer 5006 * @pos: bit number of the first bit 5007 * @len: number of bits to clear 5008 */ 5009 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5010 unsigned long start, unsigned long pos, 5011 unsigned long len) 5012 { 5013 u8 *kaddr; 5014 struct page *page; 5015 unsigned long i; 5016 size_t offset; 5017 const unsigned int size = pos + len; 5018 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5019 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5020 5021 eb_bitmap_offset(eb, start, pos, &i, &offset); 5022 page = eb->pages[i]; 5023 assert_eb_page_uptodate(eb, page); 5024 kaddr = page_address(page); 5025 5026 while (len >= bits_to_clear) { 5027 kaddr[offset] &= ~mask_to_clear; 5028 len -= bits_to_clear; 5029 bits_to_clear = BITS_PER_BYTE; 5030 mask_to_clear = ~0; 5031 if (++offset >= PAGE_SIZE && len > 0) { 5032 offset = 0; 5033 page = eb->pages[++i]; 5034 assert_eb_page_uptodate(eb, page); 5035 kaddr = page_address(page); 5036 } 5037 } 5038 if (len) { 5039 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5040 kaddr[offset] &= ~mask_to_clear; 5041 } 5042 } 5043 5044 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5045 { 5046 unsigned long distance = (src > dst) ? src - dst : dst - src; 5047 return distance < len; 5048 } 5049 5050 static void copy_pages(struct page *dst_page, struct page *src_page, 5051 unsigned long dst_off, unsigned long src_off, 5052 unsigned long len) 5053 { 5054 char *dst_kaddr = page_address(dst_page); 5055 char *src_kaddr; 5056 int must_memmove = 0; 5057 5058 if (dst_page != src_page) { 5059 src_kaddr = page_address(src_page); 5060 } else { 5061 src_kaddr = dst_kaddr; 5062 if (areas_overlap(src_off, dst_off, len)) 5063 must_memmove = 1; 5064 } 5065 5066 if (must_memmove) 5067 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5068 else 5069 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5070 } 5071 5072 void memcpy_extent_buffer(const struct extent_buffer *dst, 5073 unsigned long dst_offset, unsigned long src_offset, 5074 unsigned long len) 5075 { 5076 size_t cur; 5077 size_t dst_off_in_page; 5078 size_t src_off_in_page; 5079 unsigned long dst_i; 5080 unsigned long src_i; 5081 5082 if (check_eb_range(dst, dst_offset, len) || 5083 check_eb_range(dst, src_offset, len)) 5084 return; 5085 5086 while (len > 0) { 5087 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5088 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5089 5090 dst_i = get_eb_page_index(dst_offset); 5091 src_i = get_eb_page_index(src_offset); 5092 5093 cur = min(len, (unsigned long)(PAGE_SIZE - 5094 src_off_in_page)); 5095 cur = min_t(unsigned long, cur, 5096 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5097 5098 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5099 dst_off_in_page, src_off_in_page, cur); 5100 5101 src_offset += cur; 5102 dst_offset += cur; 5103 len -= cur; 5104 } 5105 } 5106 5107 void memmove_extent_buffer(const struct extent_buffer *dst, 5108 unsigned long dst_offset, unsigned long src_offset, 5109 unsigned long len) 5110 { 5111 size_t cur; 5112 size_t dst_off_in_page; 5113 size_t src_off_in_page; 5114 unsigned long dst_end = dst_offset + len - 1; 5115 unsigned long src_end = src_offset + len - 1; 5116 unsigned long dst_i; 5117 unsigned long src_i; 5118 5119 if (check_eb_range(dst, dst_offset, len) || 5120 check_eb_range(dst, src_offset, len)) 5121 return; 5122 if (dst_offset < src_offset) { 5123 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5124 return; 5125 } 5126 while (len > 0) { 5127 dst_i = get_eb_page_index(dst_end); 5128 src_i = get_eb_page_index(src_end); 5129 5130 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5131 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5132 5133 cur = min_t(unsigned long, len, src_off_in_page + 1); 5134 cur = min(cur, dst_off_in_page + 1); 5135 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5136 dst_off_in_page - cur + 1, 5137 src_off_in_page - cur + 1, cur); 5138 5139 dst_end -= cur; 5140 src_end -= cur; 5141 len -= cur; 5142 } 5143 } 5144 5145 #define GANG_LOOKUP_SIZE 16 5146 static struct extent_buffer *get_next_extent_buffer( 5147 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5148 { 5149 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5150 struct extent_buffer *found = NULL; 5151 u64 page_start = page_offset(page); 5152 u64 cur = page_start; 5153 5154 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5155 lockdep_assert_held(&fs_info->buffer_lock); 5156 5157 while (cur < page_start + PAGE_SIZE) { 5158 int ret; 5159 int i; 5160 5161 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5162 (void **)gang, cur >> fs_info->sectorsize_bits, 5163 min_t(unsigned int, GANG_LOOKUP_SIZE, 5164 PAGE_SIZE / fs_info->nodesize)); 5165 if (ret == 0) 5166 goto out; 5167 for (i = 0; i < ret; i++) { 5168 /* Already beyond page end */ 5169 if (gang[i]->start >= page_start + PAGE_SIZE) 5170 goto out; 5171 /* Found one */ 5172 if (gang[i]->start >= bytenr) { 5173 found = gang[i]; 5174 goto out; 5175 } 5176 } 5177 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5178 } 5179 out: 5180 return found; 5181 } 5182 5183 static int try_release_subpage_extent_buffer(struct page *page) 5184 { 5185 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5186 u64 cur = page_offset(page); 5187 const u64 end = page_offset(page) + PAGE_SIZE; 5188 int ret; 5189 5190 while (cur < end) { 5191 struct extent_buffer *eb = NULL; 5192 5193 /* 5194 * Unlike try_release_extent_buffer() which uses page->private 5195 * to grab buffer, for subpage case we rely on radix tree, thus 5196 * we need to ensure radix tree consistency. 5197 * 5198 * We also want an atomic snapshot of the radix tree, thus go 5199 * with spinlock rather than RCU. 5200 */ 5201 spin_lock(&fs_info->buffer_lock); 5202 eb = get_next_extent_buffer(fs_info, page, cur); 5203 if (!eb) { 5204 /* No more eb in the page range after or at cur */ 5205 spin_unlock(&fs_info->buffer_lock); 5206 break; 5207 } 5208 cur = eb->start + eb->len; 5209 5210 /* 5211 * The same as try_release_extent_buffer(), to ensure the eb 5212 * won't disappear out from under us. 5213 */ 5214 spin_lock(&eb->refs_lock); 5215 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5216 spin_unlock(&eb->refs_lock); 5217 spin_unlock(&fs_info->buffer_lock); 5218 break; 5219 } 5220 spin_unlock(&fs_info->buffer_lock); 5221 5222 /* 5223 * If tree ref isn't set then we know the ref on this eb is a 5224 * real ref, so just return, this eb will likely be freed soon 5225 * anyway. 5226 */ 5227 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5228 spin_unlock(&eb->refs_lock); 5229 break; 5230 } 5231 5232 /* 5233 * Here we don't care about the return value, we will always 5234 * check the page private at the end. And 5235 * release_extent_buffer() will release the refs_lock. 5236 */ 5237 release_extent_buffer(eb); 5238 } 5239 /* 5240 * Finally to check if we have cleared page private, as if we have 5241 * released all ebs in the page, the page private should be cleared now. 5242 */ 5243 spin_lock(&page->mapping->private_lock); 5244 if (!PagePrivate(page)) 5245 ret = 1; 5246 else 5247 ret = 0; 5248 spin_unlock(&page->mapping->private_lock); 5249 return ret; 5250 5251 } 5252 5253 int try_release_extent_buffer(struct page *page) 5254 { 5255 struct extent_buffer *eb; 5256 5257 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5258 return try_release_subpage_extent_buffer(page); 5259 5260 /* 5261 * We need to make sure nobody is changing page->private, as we rely on 5262 * page->private as the pointer to extent buffer. 5263 */ 5264 spin_lock(&page->mapping->private_lock); 5265 if (!PagePrivate(page)) { 5266 spin_unlock(&page->mapping->private_lock); 5267 return 1; 5268 } 5269 5270 eb = (struct extent_buffer *)page->private; 5271 BUG_ON(!eb); 5272 5273 /* 5274 * This is a little awful but should be ok, we need to make sure that 5275 * the eb doesn't disappear out from under us while we're looking at 5276 * this page. 5277 */ 5278 spin_lock(&eb->refs_lock); 5279 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5280 spin_unlock(&eb->refs_lock); 5281 spin_unlock(&page->mapping->private_lock); 5282 return 0; 5283 } 5284 spin_unlock(&page->mapping->private_lock); 5285 5286 /* 5287 * If tree ref isn't set then we know the ref on this eb is a real ref, 5288 * so just return, this page will likely be freed soon anyway. 5289 */ 5290 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5291 spin_unlock(&eb->refs_lock); 5292 return 0; 5293 } 5294 5295 return release_extent_buffer(eb); 5296 } 5297 5298 /* 5299 * btrfs_readahead_tree_block - attempt to readahead a child block 5300 * @fs_info: the fs_info 5301 * @bytenr: bytenr to read 5302 * @owner_root: objectid of the root that owns this eb 5303 * @gen: generation for the uptodate check, can be 0 5304 * @level: level for the eb 5305 * 5306 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5307 * normal uptodate check of the eb, without checking the generation. If we have 5308 * to read the block we will not block on anything. 5309 */ 5310 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5311 u64 bytenr, u64 owner_root, u64 gen, int level) 5312 { 5313 struct btrfs_tree_parent_check check = { 5314 .has_first_key = 0, 5315 .level = level, 5316 .transid = gen 5317 }; 5318 struct extent_buffer *eb; 5319 int ret; 5320 5321 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5322 if (IS_ERR(eb)) 5323 return; 5324 5325 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5326 free_extent_buffer(eb); 5327 return; 5328 } 5329 5330 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5331 if (ret < 0) 5332 free_extent_buffer_stale(eb); 5333 else 5334 free_extent_buffer(eb); 5335 } 5336 5337 /* 5338 * btrfs_readahead_node_child - readahead a node's child block 5339 * @node: parent node we're reading from 5340 * @slot: slot in the parent node for the child we want to read 5341 * 5342 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5343 * the slot in the node provided. 5344 */ 5345 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5346 { 5347 btrfs_readahead_tree_block(node->fs_info, 5348 btrfs_node_blockptr(node, slot), 5349 btrfs_header_owner(node), 5350 btrfs_node_ptr_generation(node, slot), 5351 btrfs_header_level(node) - 1); 5352 } 5353