1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/module.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include "extent_io.h" 14 #include "extent_map.h" 15 #include "compat.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 19 static struct kmem_cache *extent_state_cache; 20 static struct kmem_cache *extent_buffer_cache; 21 22 static LIST_HEAD(buffers); 23 static LIST_HEAD(states); 24 25 #define LEAK_DEBUG 0 26 #if LEAK_DEBUG 27 static DEFINE_SPINLOCK(leak_lock); 28 #endif 29 30 #define BUFFER_LRU_MAX 64 31 32 struct tree_entry { 33 u64 start; 34 u64 end; 35 struct rb_node rb_node; 36 }; 37 38 struct extent_page_data { 39 struct bio *bio; 40 struct extent_io_tree *tree; 41 get_extent_t *get_extent; 42 43 /* tells writepage not to lock the state bits for this range 44 * it still does the unlocking 45 */ 46 unsigned int extent_locked:1; 47 48 /* tells the submit_bio code to use a WRITE_SYNC */ 49 unsigned int sync_io:1; 50 }; 51 52 int __init extent_io_init(void) 53 { 54 extent_state_cache = kmem_cache_create("extent_state", 55 sizeof(struct extent_state), 0, 56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 57 if (!extent_state_cache) 58 return -ENOMEM; 59 60 extent_buffer_cache = kmem_cache_create("extent_buffers", 61 sizeof(struct extent_buffer), 0, 62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 63 if (!extent_buffer_cache) 64 goto free_state_cache; 65 return 0; 66 67 free_state_cache: 68 kmem_cache_destroy(extent_state_cache); 69 return -ENOMEM; 70 } 71 72 void extent_io_exit(void) 73 { 74 struct extent_state *state; 75 struct extent_buffer *eb; 76 77 while (!list_empty(&states)) { 78 state = list_entry(states.next, struct extent_state, leak_list); 79 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 80 "state %lu in tree %p refs %d\n", 81 (unsigned long long)state->start, 82 (unsigned long long)state->end, 83 state->state, state->tree, atomic_read(&state->refs)); 84 list_del(&state->leak_list); 85 kmem_cache_free(extent_state_cache, state); 86 87 } 88 89 while (!list_empty(&buffers)) { 90 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 92 "refs %d\n", (unsigned long long)eb->start, 93 eb->len, atomic_read(&eb->refs)); 94 list_del(&eb->leak_list); 95 kmem_cache_free(extent_buffer_cache, eb); 96 } 97 if (extent_state_cache) 98 kmem_cache_destroy(extent_state_cache); 99 if (extent_buffer_cache) 100 kmem_cache_destroy(extent_buffer_cache); 101 } 102 103 void extent_io_tree_init(struct extent_io_tree *tree, 104 struct address_space *mapping, gfp_t mask) 105 { 106 tree->state = RB_ROOT; 107 tree->buffer = RB_ROOT; 108 tree->ops = NULL; 109 tree->dirty_bytes = 0; 110 spin_lock_init(&tree->lock); 111 spin_lock_init(&tree->buffer_lock); 112 tree->mapping = mapping; 113 } 114 115 static struct extent_state *alloc_extent_state(gfp_t mask) 116 { 117 struct extent_state *state; 118 #if LEAK_DEBUG 119 unsigned long flags; 120 #endif 121 122 state = kmem_cache_alloc(extent_state_cache, mask); 123 if (!state) 124 return state; 125 state->state = 0; 126 state->private = 0; 127 state->tree = NULL; 128 #if LEAK_DEBUG 129 spin_lock_irqsave(&leak_lock, flags); 130 list_add(&state->leak_list, &states); 131 spin_unlock_irqrestore(&leak_lock, flags); 132 #endif 133 atomic_set(&state->refs, 1); 134 init_waitqueue_head(&state->wq); 135 return state; 136 } 137 138 void free_extent_state(struct extent_state *state) 139 { 140 if (!state) 141 return; 142 if (atomic_dec_and_test(&state->refs)) { 143 #if LEAK_DEBUG 144 unsigned long flags; 145 #endif 146 WARN_ON(state->tree); 147 #if LEAK_DEBUG 148 spin_lock_irqsave(&leak_lock, flags); 149 list_del(&state->leak_list); 150 spin_unlock_irqrestore(&leak_lock, flags); 151 #endif 152 kmem_cache_free(extent_state_cache, state); 153 } 154 } 155 156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 157 struct rb_node *node) 158 { 159 struct rb_node **p = &root->rb_node; 160 struct rb_node *parent = NULL; 161 struct tree_entry *entry; 162 163 while (*p) { 164 parent = *p; 165 entry = rb_entry(parent, struct tree_entry, rb_node); 166 167 if (offset < entry->start) 168 p = &(*p)->rb_left; 169 else if (offset > entry->end) 170 p = &(*p)->rb_right; 171 else 172 return parent; 173 } 174 175 entry = rb_entry(node, struct tree_entry, rb_node); 176 rb_link_node(node, parent, p); 177 rb_insert_color(node, root); 178 return NULL; 179 } 180 181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 182 struct rb_node **prev_ret, 183 struct rb_node **next_ret) 184 { 185 struct rb_root *root = &tree->state; 186 struct rb_node *n = root->rb_node; 187 struct rb_node *prev = NULL; 188 struct rb_node *orig_prev = NULL; 189 struct tree_entry *entry; 190 struct tree_entry *prev_entry = NULL; 191 192 while (n) { 193 entry = rb_entry(n, struct tree_entry, rb_node); 194 prev = n; 195 prev_entry = entry; 196 197 if (offset < entry->start) 198 n = n->rb_left; 199 else if (offset > entry->end) 200 n = n->rb_right; 201 else 202 return n; 203 } 204 205 if (prev_ret) { 206 orig_prev = prev; 207 while (prev && offset > prev_entry->end) { 208 prev = rb_next(prev); 209 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 210 } 211 *prev_ret = prev; 212 prev = orig_prev; 213 } 214 215 if (next_ret) { 216 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 217 while (prev && offset < prev_entry->start) { 218 prev = rb_prev(prev); 219 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 220 } 221 *next_ret = prev; 222 } 223 return NULL; 224 } 225 226 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 227 u64 offset) 228 { 229 struct rb_node *prev = NULL; 230 struct rb_node *ret; 231 232 ret = __etree_search(tree, offset, &prev, NULL); 233 if (!ret) 234 return prev; 235 return ret; 236 } 237 238 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree, 239 u64 offset, struct rb_node *node) 240 { 241 struct rb_root *root = &tree->buffer; 242 struct rb_node **p = &root->rb_node; 243 struct rb_node *parent = NULL; 244 struct extent_buffer *eb; 245 246 while (*p) { 247 parent = *p; 248 eb = rb_entry(parent, struct extent_buffer, rb_node); 249 250 if (offset < eb->start) 251 p = &(*p)->rb_left; 252 else if (offset > eb->start) 253 p = &(*p)->rb_right; 254 else 255 return eb; 256 } 257 258 rb_link_node(node, parent, p); 259 rb_insert_color(node, root); 260 return NULL; 261 } 262 263 static struct extent_buffer *buffer_search(struct extent_io_tree *tree, 264 u64 offset) 265 { 266 struct rb_root *root = &tree->buffer; 267 struct rb_node *n = root->rb_node; 268 struct extent_buffer *eb; 269 270 while (n) { 271 eb = rb_entry(n, struct extent_buffer, rb_node); 272 if (offset < eb->start) 273 n = n->rb_left; 274 else if (offset > eb->start) 275 n = n->rb_right; 276 else 277 return eb; 278 } 279 return NULL; 280 } 281 282 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 283 struct extent_state *other) 284 { 285 if (tree->ops && tree->ops->merge_extent_hook) 286 tree->ops->merge_extent_hook(tree->mapping->host, new, 287 other); 288 } 289 290 /* 291 * utility function to look for merge candidates inside a given range. 292 * Any extents with matching state are merged together into a single 293 * extent in the tree. Extents with EXTENT_IO in their state field 294 * are not merged because the end_io handlers need to be able to do 295 * operations on them without sleeping (or doing allocations/splits). 296 * 297 * This should be called with the tree lock held. 298 */ 299 static int merge_state(struct extent_io_tree *tree, 300 struct extent_state *state) 301 { 302 struct extent_state *other; 303 struct rb_node *other_node; 304 305 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 306 return 0; 307 308 other_node = rb_prev(&state->rb_node); 309 if (other_node) { 310 other = rb_entry(other_node, struct extent_state, rb_node); 311 if (other->end == state->start - 1 && 312 other->state == state->state) { 313 merge_cb(tree, state, other); 314 state->start = other->start; 315 other->tree = NULL; 316 rb_erase(&other->rb_node, &tree->state); 317 free_extent_state(other); 318 } 319 } 320 other_node = rb_next(&state->rb_node); 321 if (other_node) { 322 other = rb_entry(other_node, struct extent_state, rb_node); 323 if (other->start == state->end + 1 && 324 other->state == state->state) { 325 merge_cb(tree, state, other); 326 other->start = state->start; 327 state->tree = NULL; 328 rb_erase(&state->rb_node, &tree->state); 329 free_extent_state(state); 330 state = NULL; 331 } 332 } 333 334 return 0; 335 } 336 337 static int set_state_cb(struct extent_io_tree *tree, 338 struct extent_state *state, int *bits) 339 { 340 if (tree->ops && tree->ops->set_bit_hook) { 341 return tree->ops->set_bit_hook(tree->mapping->host, 342 state, bits); 343 } 344 345 return 0; 346 } 347 348 static void clear_state_cb(struct extent_io_tree *tree, 349 struct extent_state *state, int *bits) 350 { 351 if (tree->ops && tree->ops->clear_bit_hook) 352 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 353 } 354 355 /* 356 * insert an extent_state struct into the tree. 'bits' are set on the 357 * struct before it is inserted. 358 * 359 * This may return -EEXIST if the extent is already there, in which case the 360 * state struct is freed. 361 * 362 * The tree lock is not taken internally. This is a utility function and 363 * probably isn't what you want to call (see set/clear_extent_bit). 364 */ 365 static int insert_state(struct extent_io_tree *tree, 366 struct extent_state *state, u64 start, u64 end, 367 int *bits) 368 { 369 struct rb_node *node; 370 int bits_to_set = *bits & ~EXTENT_CTLBITS; 371 int ret; 372 373 if (end < start) { 374 printk(KERN_ERR "btrfs end < start %llu %llu\n", 375 (unsigned long long)end, 376 (unsigned long long)start); 377 WARN_ON(1); 378 } 379 state->start = start; 380 state->end = end; 381 ret = set_state_cb(tree, state, bits); 382 if (ret) 383 return ret; 384 385 if (bits_to_set & EXTENT_DIRTY) 386 tree->dirty_bytes += end - start + 1; 387 state->state |= bits_to_set; 388 node = tree_insert(&tree->state, end, &state->rb_node); 389 if (node) { 390 struct extent_state *found; 391 found = rb_entry(node, struct extent_state, rb_node); 392 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 393 "%llu %llu\n", (unsigned long long)found->start, 394 (unsigned long long)found->end, 395 (unsigned long long)start, (unsigned long long)end); 396 free_extent_state(state); 397 return -EEXIST; 398 } 399 state->tree = tree; 400 merge_state(tree, state); 401 return 0; 402 } 403 404 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig, 405 u64 split) 406 { 407 if (tree->ops && tree->ops->split_extent_hook) 408 return tree->ops->split_extent_hook(tree->mapping->host, 409 orig, split); 410 return 0; 411 } 412 413 /* 414 * split a given extent state struct in two, inserting the preallocated 415 * struct 'prealloc' as the newly created second half. 'split' indicates an 416 * offset inside 'orig' where it should be split. 417 * 418 * Before calling, 419 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 420 * are two extent state structs in the tree: 421 * prealloc: [orig->start, split - 1] 422 * orig: [ split, orig->end ] 423 * 424 * The tree locks are not taken by this function. They need to be held 425 * by the caller. 426 */ 427 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 428 struct extent_state *prealloc, u64 split) 429 { 430 struct rb_node *node; 431 432 split_cb(tree, orig, split); 433 434 prealloc->start = orig->start; 435 prealloc->end = split - 1; 436 prealloc->state = orig->state; 437 orig->start = split; 438 439 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 440 if (node) { 441 free_extent_state(prealloc); 442 return -EEXIST; 443 } 444 prealloc->tree = tree; 445 return 0; 446 } 447 448 /* 449 * utility function to clear some bits in an extent state struct. 450 * it will optionally wake up any one waiting on this state (wake == 1), or 451 * forcibly remove the state from the tree (delete == 1). 452 * 453 * If no bits are set on the state struct after clearing things, the 454 * struct is freed and removed from the tree 455 */ 456 static int clear_state_bit(struct extent_io_tree *tree, 457 struct extent_state *state, 458 int *bits, int wake) 459 { 460 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 461 int ret = state->state & bits_to_clear; 462 463 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 464 u64 range = state->end - state->start + 1; 465 WARN_ON(range > tree->dirty_bytes); 466 tree->dirty_bytes -= range; 467 } 468 clear_state_cb(tree, state, bits); 469 state->state &= ~bits_to_clear; 470 if (wake) 471 wake_up(&state->wq); 472 if (state->state == 0) { 473 if (state->tree) { 474 rb_erase(&state->rb_node, &tree->state); 475 state->tree = NULL; 476 free_extent_state(state); 477 } else { 478 WARN_ON(1); 479 } 480 } else { 481 merge_state(tree, state); 482 } 483 return ret; 484 } 485 486 /* 487 * clear some bits on a range in the tree. This may require splitting 488 * or inserting elements in the tree, so the gfp mask is used to 489 * indicate which allocations or sleeping are allowed. 490 * 491 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 492 * the given range from the tree regardless of state (ie for truncate). 493 * 494 * the range [start, end] is inclusive. 495 * 496 * This takes the tree lock, and returns < 0 on error, > 0 if any of the 497 * bits were already set, or zero if none of the bits were already set. 498 */ 499 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 500 int bits, int wake, int delete, 501 struct extent_state **cached_state, 502 gfp_t mask) 503 { 504 struct extent_state *state; 505 struct extent_state *cached; 506 struct extent_state *prealloc = NULL; 507 struct rb_node *next_node; 508 struct rb_node *node; 509 u64 last_end; 510 int err; 511 int set = 0; 512 int clear = 0; 513 514 if (delete) 515 bits |= ~EXTENT_CTLBITS; 516 bits |= EXTENT_FIRST_DELALLOC; 517 518 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 519 clear = 1; 520 again: 521 if (!prealloc && (mask & __GFP_WAIT)) { 522 prealloc = alloc_extent_state(mask); 523 if (!prealloc) 524 return -ENOMEM; 525 } 526 527 spin_lock(&tree->lock); 528 if (cached_state) { 529 cached = *cached_state; 530 531 if (clear) { 532 *cached_state = NULL; 533 cached_state = NULL; 534 } 535 536 if (cached && cached->tree && cached->start == start) { 537 if (clear) 538 atomic_dec(&cached->refs); 539 state = cached; 540 goto hit_next; 541 } 542 if (clear) 543 free_extent_state(cached); 544 } 545 /* 546 * this search will find the extents that end after 547 * our range starts 548 */ 549 node = tree_search(tree, start); 550 if (!node) 551 goto out; 552 state = rb_entry(node, struct extent_state, rb_node); 553 hit_next: 554 if (state->start > end) 555 goto out; 556 WARN_ON(state->end < start); 557 last_end = state->end; 558 559 /* 560 * | ---- desired range ---- | 561 * | state | or 562 * | ------------- state -------------- | 563 * 564 * We need to split the extent we found, and may flip 565 * bits on second half. 566 * 567 * If the extent we found extends past our range, we 568 * just split and search again. It'll get split again 569 * the next time though. 570 * 571 * If the extent we found is inside our range, we clear 572 * the desired bit on it. 573 */ 574 575 if (state->start < start) { 576 if (!prealloc) 577 prealloc = alloc_extent_state(GFP_ATOMIC); 578 err = split_state(tree, state, prealloc, start); 579 BUG_ON(err == -EEXIST); 580 prealloc = NULL; 581 if (err) 582 goto out; 583 if (state->end <= end) { 584 set |= clear_state_bit(tree, state, &bits, wake); 585 if (last_end == (u64)-1) 586 goto out; 587 start = last_end + 1; 588 } 589 goto search_again; 590 } 591 /* 592 * | ---- desired range ---- | 593 * | state | 594 * We need to split the extent, and clear the bit 595 * on the first half 596 */ 597 if (state->start <= end && state->end > end) { 598 if (!prealloc) 599 prealloc = alloc_extent_state(GFP_ATOMIC); 600 err = split_state(tree, state, prealloc, end + 1); 601 BUG_ON(err == -EEXIST); 602 if (wake) 603 wake_up(&state->wq); 604 605 set |= clear_state_bit(tree, prealloc, &bits, wake); 606 607 prealloc = NULL; 608 goto out; 609 } 610 611 if (state->end < end && prealloc && !need_resched()) 612 next_node = rb_next(&state->rb_node); 613 else 614 next_node = NULL; 615 616 set |= clear_state_bit(tree, state, &bits, wake); 617 if (last_end == (u64)-1) 618 goto out; 619 start = last_end + 1; 620 if (start <= end && next_node) { 621 state = rb_entry(next_node, struct extent_state, 622 rb_node); 623 if (state->start == start) 624 goto hit_next; 625 } 626 goto search_again; 627 628 out: 629 spin_unlock(&tree->lock); 630 if (prealloc) 631 free_extent_state(prealloc); 632 633 return set; 634 635 search_again: 636 if (start > end) 637 goto out; 638 spin_unlock(&tree->lock); 639 if (mask & __GFP_WAIT) 640 cond_resched(); 641 goto again; 642 } 643 644 static int wait_on_state(struct extent_io_tree *tree, 645 struct extent_state *state) 646 __releases(tree->lock) 647 __acquires(tree->lock) 648 { 649 DEFINE_WAIT(wait); 650 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 651 spin_unlock(&tree->lock); 652 schedule(); 653 spin_lock(&tree->lock); 654 finish_wait(&state->wq, &wait); 655 return 0; 656 } 657 658 /* 659 * waits for one or more bits to clear on a range in the state tree. 660 * The range [start, end] is inclusive. 661 * The tree lock is taken by this function 662 */ 663 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 664 { 665 struct extent_state *state; 666 struct rb_node *node; 667 668 spin_lock(&tree->lock); 669 again: 670 while (1) { 671 /* 672 * this search will find all the extents that end after 673 * our range starts 674 */ 675 node = tree_search(tree, start); 676 if (!node) 677 break; 678 679 state = rb_entry(node, struct extent_state, rb_node); 680 681 if (state->start > end) 682 goto out; 683 684 if (state->state & bits) { 685 start = state->start; 686 atomic_inc(&state->refs); 687 wait_on_state(tree, state); 688 free_extent_state(state); 689 goto again; 690 } 691 start = state->end + 1; 692 693 if (start > end) 694 break; 695 696 if (need_resched()) { 697 spin_unlock(&tree->lock); 698 cond_resched(); 699 spin_lock(&tree->lock); 700 } 701 } 702 out: 703 spin_unlock(&tree->lock); 704 return 0; 705 } 706 707 static int set_state_bits(struct extent_io_tree *tree, 708 struct extent_state *state, 709 int *bits) 710 { 711 int ret; 712 int bits_to_set = *bits & ~EXTENT_CTLBITS; 713 714 ret = set_state_cb(tree, state, bits); 715 if (ret) 716 return ret; 717 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 718 u64 range = state->end - state->start + 1; 719 tree->dirty_bytes += range; 720 } 721 state->state |= bits_to_set; 722 723 return 0; 724 } 725 726 static void cache_state(struct extent_state *state, 727 struct extent_state **cached_ptr) 728 { 729 if (cached_ptr && !(*cached_ptr)) { 730 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 731 *cached_ptr = state; 732 atomic_inc(&state->refs); 733 } 734 } 735 } 736 737 /* 738 * set some bits on a range in the tree. This may require allocations or 739 * sleeping, so the gfp mask is used to indicate what is allowed. 740 * 741 * If any of the exclusive bits are set, this will fail with -EEXIST if some 742 * part of the range already has the desired bits set. The start of the 743 * existing range is returned in failed_start in this case. 744 * 745 * [start, end] is inclusive This takes the tree lock. 746 */ 747 748 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 749 int bits, int exclusive_bits, u64 *failed_start, 750 struct extent_state **cached_state, gfp_t mask) 751 { 752 struct extent_state *state; 753 struct extent_state *prealloc = NULL; 754 struct rb_node *node; 755 int err = 0; 756 u64 last_start; 757 u64 last_end; 758 759 bits |= EXTENT_FIRST_DELALLOC; 760 again: 761 if (!prealloc && (mask & __GFP_WAIT)) { 762 prealloc = alloc_extent_state(mask); 763 if (!prealloc) 764 return -ENOMEM; 765 } 766 767 spin_lock(&tree->lock); 768 if (cached_state && *cached_state) { 769 state = *cached_state; 770 if (state->start == start && state->tree) { 771 node = &state->rb_node; 772 goto hit_next; 773 } 774 } 775 /* 776 * this search will find all the extents that end after 777 * our range starts. 778 */ 779 node = tree_search(tree, start); 780 if (!node) { 781 err = insert_state(tree, prealloc, start, end, &bits); 782 prealloc = NULL; 783 BUG_ON(err == -EEXIST); 784 goto out; 785 } 786 state = rb_entry(node, struct extent_state, rb_node); 787 hit_next: 788 last_start = state->start; 789 last_end = state->end; 790 791 /* 792 * | ---- desired range ---- | 793 * | state | 794 * 795 * Just lock what we found and keep going 796 */ 797 if (state->start == start && state->end <= end) { 798 struct rb_node *next_node; 799 if (state->state & exclusive_bits) { 800 *failed_start = state->start; 801 err = -EEXIST; 802 goto out; 803 } 804 805 err = set_state_bits(tree, state, &bits); 806 if (err) 807 goto out; 808 809 cache_state(state, cached_state); 810 merge_state(tree, state); 811 if (last_end == (u64)-1) 812 goto out; 813 814 start = last_end + 1; 815 if (start < end && prealloc && !need_resched()) { 816 next_node = rb_next(node); 817 if (next_node) { 818 state = rb_entry(next_node, struct extent_state, 819 rb_node); 820 if (state->start == start) 821 goto hit_next; 822 } 823 } 824 goto search_again; 825 } 826 827 /* 828 * | ---- desired range ---- | 829 * | state | 830 * or 831 * | ------------- state -------------- | 832 * 833 * We need to split the extent we found, and may flip bits on 834 * second half. 835 * 836 * If the extent we found extends past our 837 * range, we just split and search again. It'll get split 838 * again the next time though. 839 * 840 * If the extent we found is inside our range, we set the 841 * desired bit on it. 842 */ 843 if (state->start < start) { 844 if (state->state & exclusive_bits) { 845 *failed_start = start; 846 err = -EEXIST; 847 goto out; 848 } 849 err = split_state(tree, state, prealloc, start); 850 BUG_ON(err == -EEXIST); 851 prealloc = NULL; 852 if (err) 853 goto out; 854 if (state->end <= end) { 855 err = set_state_bits(tree, state, &bits); 856 if (err) 857 goto out; 858 cache_state(state, cached_state); 859 merge_state(tree, state); 860 if (last_end == (u64)-1) 861 goto out; 862 start = last_end + 1; 863 } 864 goto search_again; 865 } 866 /* 867 * | ---- desired range ---- | 868 * | state | or | state | 869 * 870 * There's a hole, we need to insert something in it and 871 * ignore the extent we found. 872 */ 873 if (state->start > start) { 874 u64 this_end; 875 if (end < last_start) 876 this_end = end; 877 else 878 this_end = last_start - 1; 879 err = insert_state(tree, prealloc, start, this_end, 880 &bits); 881 BUG_ON(err == -EEXIST); 882 if (err) { 883 prealloc = NULL; 884 goto out; 885 } 886 cache_state(prealloc, cached_state); 887 prealloc = NULL; 888 start = this_end + 1; 889 goto search_again; 890 } 891 /* 892 * | ---- desired range ---- | 893 * | state | 894 * We need to split the extent, and set the bit 895 * on the first half 896 */ 897 if (state->start <= end && state->end > end) { 898 if (state->state & exclusive_bits) { 899 *failed_start = start; 900 err = -EEXIST; 901 goto out; 902 } 903 err = split_state(tree, state, prealloc, end + 1); 904 BUG_ON(err == -EEXIST); 905 906 err = set_state_bits(tree, prealloc, &bits); 907 if (err) { 908 prealloc = NULL; 909 goto out; 910 } 911 cache_state(prealloc, cached_state); 912 merge_state(tree, prealloc); 913 prealloc = NULL; 914 goto out; 915 } 916 917 goto search_again; 918 919 out: 920 spin_unlock(&tree->lock); 921 if (prealloc) 922 free_extent_state(prealloc); 923 924 return err; 925 926 search_again: 927 if (start > end) 928 goto out; 929 spin_unlock(&tree->lock); 930 if (mask & __GFP_WAIT) 931 cond_resched(); 932 goto again; 933 } 934 935 /* wrappers around set/clear extent bit */ 936 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 937 gfp_t mask) 938 { 939 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, 940 NULL, mask); 941 } 942 943 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 944 int bits, gfp_t mask) 945 { 946 return set_extent_bit(tree, start, end, bits, 0, NULL, 947 NULL, mask); 948 } 949 950 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 951 int bits, gfp_t mask) 952 { 953 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 954 } 955 956 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 957 struct extent_state **cached_state, gfp_t mask) 958 { 959 return set_extent_bit(tree, start, end, 960 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE, 961 0, NULL, cached_state, mask); 962 } 963 964 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 965 gfp_t mask) 966 { 967 return clear_extent_bit(tree, start, end, 968 EXTENT_DIRTY | EXTENT_DELALLOC | 969 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 970 } 971 972 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 973 gfp_t mask) 974 { 975 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, 976 NULL, mask); 977 } 978 979 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 980 gfp_t mask) 981 { 982 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, 983 NULL, mask); 984 } 985 986 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 987 gfp_t mask) 988 { 989 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, 990 NULL, mask); 991 } 992 993 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 994 u64 end, struct extent_state **cached_state, 995 gfp_t mask) 996 { 997 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 998 cached_state, mask); 999 } 1000 1001 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1002 { 1003 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); 1004 } 1005 1006 /* 1007 * either insert or lock state struct between start and end use mask to tell 1008 * us if waiting is desired. 1009 */ 1010 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1011 int bits, struct extent_state **cached_state, gfp_t mask) 1012 { 1013 int err; 1014 u64 failed_start; 1015 while (1) { 1016 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1017 EXTENT_LOCKED, &failed_start, 1018 cached_state, mask); 1019 if (err == -EEXIST && (mask & __GFP_WAIT)) { 1020 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1021 start = failed_start; 1022 } else { 1023 break; 1024 } 1025 WARN_ON(start > end); 1026 } 1027 return err; 1028 } 1029 1030 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 1031 { 1032 return lock_extent_bits(tree, start, end, 0, NULL, mask); 1033 } 1034 1035 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, 1036 gfp_t mask) 1037 { 1038 int err; 1039 u64 failed_start; 1040 1041 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1042 &failed_start, NULL, mask); 1043 if (err == -EEXIST) { 1044 if (failed_start > start) 1045 clear_extent_bit(tree, start, failed_start - 1, 1046 EXTENT_LOCKED, 1, 0, NULL, mask); 1047 return 0; 1048 } 1049 return 1; 1050 } 1051 1052 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1053 struct extent_state **cached, gfp_t mask) 1054 { 1055 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1056 mask); 1057 } 1058 1059 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, 1060 gfp_t mask) 1061 { 1062 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1063 mask); 1064 } 1065 1066 /* 1067 * helper function to set pages and extents in the tree dirty 1068 */ 1069 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) 1070 { 1071 unsigned long index = start >> PAGE_CACHE_SHIFT; 1072 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1073 struct page *page; 1074 1075 while (index <= end_index) { 1076 page = find_get_page(tree->mapping, index); 1077 BUG_ON(!page); 1078 __set_page_dirty_nobuffers(page); 1079 page_cache_release(page); 1080 index++; 1081 } 1082 return 0; 1083 } 1084 1085 /* 1086 * helper function to set both pages and extents in the tree writeback 1087 */ 1088 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1089 { 1090 unsigned long index = start >> PAGE_CACHE_SHIFT; 1091 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1092 struct page *page; 1093 1094 while (index <= end_index) { 1095 page = find_get_page(tree->mapping, index); 1096 BUG_ON(!page); 1097 set_page_writeback(page); 1098 page_cache_release(page); 1099 index++; 1100 } 1101 return 0; 1102 } 1103 1104 /* 1105 * find the first offset in the io tree with 'bits' set. zero is 1106 * returned if we find something, and *start_ret and *end_ret are 1107 * set to reflect the state struct that was found. 1108 * 1109 * If nothing was found, 1 is returned, < 0 on error 1110 */ 1111 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1112 u64 *start_ret, u64 *end_ret, int bits) 1113 { 1114 struct rb_node *node; 1115 struct extent_state *state; 1116 int ret = 1; 1117 1118 spin_lock(&tree->lock); 1119 /* 1120 * this search will find all the extents that end after 1121 * our range starts. 1122 */ 1123 node = tree_search(tree, start); 1124 if (!node) 1125 goto out; 1126 1127 while (1) { 1128 state = rb_entry(node, struct extent_state, rb_node); 1129 if (state->end >= start && (state->state & bits)) { 1130 *start_ret = state->start; 1131 *end_ret = state->end; 1132 ret = 0; 1133 break; 1134 } 1135 node = rb_next(node); 1136 if (!node) 1137 break; 1138 } 1139 out: 1140 spin_unlock(&tree->lock); 1141 return ret; 1142 } 1143 1144 /* find the first state struct with 'bits' set after 'start', and 1145 * return it. tree->lock must be held. NULL will returned if 1146 * nothing was found after 'start' 1147 */ 1148 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1149 u64 start, int bits) 1150 { 1151 struct rb_node *node; 1152 struct extent_state *state; 1153 1154 /* 1155 * this search will find all the extents that end after 1156 * our range starts. 1157 */ 1158 node = tree_search(tree, start); 1159 if (!node) 1160 goto out; 1161 1162 while (1) { 1163 state = rb_entry(node, struct extent_state, rb_node); 1164 if (state->end >= start && (state->state & bits)) 1165 return state; 1166 1167 node = rb_next(node); 1168 if (!node) 1169 break; 1170 } 1171 out: 1172 return NULL; 1173 } 1174 1175 /* 1176 * find a contiguous range of bytes in the file marked as delalloc, not 1177 * more than 'max_bytes'. start and end are used to return the range, 1178 * 1179 * 1 is returned if we find something, 0 if nothing was in the tree 1180 */ 1181 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1182 u64 *start, u64 *end, u64 max_bytes, 1183 struct extent_state **cached_state) 1184 { 1185 struct rb_node *node; 1186 struct extent_state *state; 1187 u64 cur_start = *start; 1188 u64 found = 0; 1189 u64 total_bytes = 0; 1190 1191 spin_lock(&tree->lock); 1192 1193 /* 1194 * this search will find all the extents that end after 1195 * our range starts. 1196 */ 1197 node = tree_search(tree, cur_start); 1198 if (!node) { 1199 if (!found) 1200 *end = (u64)-1; 1201 goto out; 1202 } 1203 1204 while (1) { 1205 state = rb_entry(node, struct extent_state, rb_node); 1206 if (found && (state->start != cur_start || 1207 (state->state & EXTENT_BOUNDARY))) { 1208 goto out; 1209 } 1210 if (!(state->state & EXTENT_DELALLOC)) { 1211 if (!found) 1212 *end = state->end; 1213 goto out; 1214 } 1215 if (!found) { 1216 *start = state->start; 1217 *cached_state = state; 1218 atomic_inc(&state->refs); 1219 } 1220 found++; 1221 *end = state->end; 1222 cur_start = state->end + 1; 1223 node = rb_next(node); 1224 if (!node) 1225 break; 1226 total_bytes += state->end - state->start + 1; 1227 if (total_bytes >= max_bytes) 1228 break; 1229 } 1230 out: 1231 spin_unlock(&tree->lock); 1232 return found; 1233 } 1234 1235 static noinline int __unlock_for_delalloc(struct inode *inode, 1236 struct page *locked_page, 1237 u64 start, u64 end) 1238 { 1239 int ret; 1240 struct page *pages[16]; 1241 unsigned long index = start >> PAGE_CACHE_SHIFT; 1242 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1243 unsigned long nr_pages = end_index - index + 1; 1244 int i; 1245 1246 if (index == locked_page->index && end_index == index) 1247 return 0; 1248 1249 while (nr_pages > 0) { 1250 ret = find_get_pages_contig(inode->i_mapping, index, 1251 min_t(unsigned long, nr_pages, 1252 ARRAY_SIZE(pages)), pages); 1253 for (i = 0; i < ret; i++) { 1254 if (pages[i] != locked_page) 1255 unlock_page(pages[i]); 1256 page_cache_release(pages[i]); 1257 } 1258 nr_pages -= ret; 1259 index += ret; 1260 cond_resched(); 1261 } 1262 return 0; 1263 } 1264 1265 static noinline int lock_delalloc_pages(struct inode *inode, 1266 struct page *locked_page, 1267 u64 delalloc_start, 1268 u64 delalloc_end) 1269 { 1270 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1271 unsigned long start_index = index; 1272 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1273 unsigned long pages_locked = 0; 1274 struct page *pages[16]; 1275 unsigned long nrpages; 1276 int ret; 1277 int i; 1278 1279 /* the caller is responsible for locking the start index */ 1280 if (index == locked_page->index && index == end_index) 1281 return 0; 1282 1283 /* skip the page at the start index */ 1284 nrpages = end_index - index + 1; 1285 while (nrpages > 0) { 1286 ret = find_get_pages_contig(inode->i_mapping, index, 1287 min_t(unsigned long, 1288 nrpages, ARRAY_SIZE(pages)), pages); 1289 if (ret == 0) { 1290 ret = -EAGAIN; 1291 goto done; 1292 } 1293 /* now we have an array of pages, lock them all */ 1294 for (i = 0; i < ret; i++) { 1295 /* 1296 * the caller is taking responsibility for 1297 * locked_page 1298 */ 1299 if (pages[i] != locked_page) { 1300 lock_page(pages[i]); 1301 if (!PageDirty(pages[i]) || 1302 pages[i]->mapping != inode->i_mapping) { 1303 ret = -EAGAIN; 1304 unlock_page(pages[i]); 1305 page_cache_release(pages[i]); 1306 goto done; 1307 } 1308 } 1309 page_cache_release(pages[i]); 1310 pages_locked++; 1311 } 1312 nrpages -= ret; 1313 index += ret; 1314 cond_resched(); 1315 } 1316 ret = 0; 1317 done: 1318 if (ret && pages_locked) { 1319 __unlock_for_delalloc(inode, locked_page, 1320 delalloc_start, 1321 ((u64)(start_index + pages_locked - 1)) << 1322 PAGE_CACHE_SHIFT); 1323 } 1324 return ret; 1325 } 1326 1327 /* 1328 * find a contiguous range of bytes in the file marked as delalloc, not 1329 * more than 'max_bytes'. start and end are used to return the range, 1330 * 1331 * 1 is returned if we find something, 0 if nothing was in the tree 1332 */ 1333 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1334 struct extent_io_tree *tree, 1335 struct page *locked_page, 1336 u64 *start, u64 *end, 1337 u64 max_bytes) 1338 { 1339 u64 delalloc_start; 1340 u64 delalloc_end; 1341 u64 found; 1342 struct extent_state *cached_state = NULL; 1343 int ret; 1344 int loops = 0; 1345 1346 again: 1347 /* step one, find a bunch of delalloc bytes starting at start */ 1348 delalloc_start = *start; 1349 delalloc_end = 0; 1350 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1351 max_bytes, &cached_state); 1352 if (!found || delalloc_end <= *start) { 1353 *start = delalloc_start; 1354 *end = delalloc_end; 1355 free_extent_state(cached_state); 1356 return found; 1357 } 1358 1359 /* 1360 * start comes from the offset of locked_page. We have to lock 1361 * pages in order, so we can't process delalloc bytes before 1362 * locked_page 1363 */ 1364 if (delalloc_start < *start) 1365 delalloc_start = *start; 1366 1367 /* 1368 * make sure to limit the number of pages we try to lock down 1369 * if we're looping. 1370 */ 1371 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1372 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1373 1374 /* step two, lock all the pages after the page that has start */ 1375 ret = lock_delalloc_pages(inode, locked_page, 1376 delalloc_start, delalloc_end); 1377 if (ret == -EAGAIN) { 1378 /* some of the pages are gone, lets avoid looping by 1379 * shortening the size of the delalloc range we're searching 1380 */ 1381 free_extent_state(cached_state); 1382 if (!loops) { 1383 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1384 max_bytes = PAGE_CACHE_SIZE - offset; 1385 loops = 1; 1386 goto again; 1387 } else { 1388 found = 0; 1389 goto out_failed; 1390 } 1391 } 1392 BUG_ON(ret); 1393 1394 /* step three, lock the state bits for the whole range */ 1395 lock_extent_bits(tree, delalloc_start, delalloc_end, 1396 0, &cached_state, GFP_NOFS); 1397 1398 /* then test to make sure it is all still delalloc */ 1399 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1400 EXTENT_DELALLOC, 1, cached_state); 1401 if (!ret) { 1402 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1403 &cached_state, GFP_NOFS); 1404 __unlock_for_delalloc(inode, locked_page, 1405 delalloc_start, delalloc_end); 1406 cond_resched(); 1407 goto again; 1408 } 1409 free_extent_state(cached_state); 1410 *start = delalloc_start; 1411 *end = delalloc_end; 1412 out_failed: 1413 return found; 1414 } 1415 1416 int extent_clear_unlock_delalloc(struct inode *inode, 1417 struct extent_io_tree *tree, 1418 u64 start, u64 end, struct page *locked_page, 1419 unsigned long op) 1420 { 1421 int ret; 1422 struct page *pages[16]; 1423 unsigned long index = start >> PAGE_CACHE_SHIFT; 1424 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1425 unsigned long nr_pages = end_index - index + 1; 1426 int i; 1427 int clear_bits = 0; 1428 1429 if (op & EXTENT_CLEAR_UNLOCK) 1430 clear_bits |= EXTENT_LOCKED; 1431 if (op & EXTENT_CLEAR_DIRTY) 1432 clear_bits |= EXTENT_DIRTY; 1433 1434 if (op & EXTENT_CLEAR_DELALLOC) 1435 clear_bits |= EXTENT_DELALLOC; 1436 1437 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1438 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1439 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1440 EXTENT_SET_PRIVATE2))) 1441 return 0; 1442 1443 while (nr_pages > 0) { 1444 ret = find_get_pages_contig(inode->i_mapping, index, 1445 min_t(unsigned long, 1446 nr_pages, ARRAY_SIZE(pages)), pages); 1447 for (i = 0; i < ret; i++) { 1448 1449 if (op & EXTENT_SET_PRIVATE2) 1450 SetPagePrivate2(pages[i]); 1451 1452 if (pages[i] == locked_page) { 1453 page_cache_release(pages[i]); 1454 continue; 1455 } 1456 if (op & EXTENT_CLEAR_DIRTY) 1457 clear_page_dirty_for_io(pages[i]); 1458 if (op & EXTENT_SET_WRITEBACK) 1459 set_page_writeback(pages[i]); 1460 if (op & EXTENT_END_WRITEBACK) 1461 end_page_writeback(pages[i]); 1462 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1463 unlock_page(pages[i]); 1464 page_cache_release(pages[i]); 1465 } 1466 nr_pages -= ret; 1467 index += ret; 1468 cond_resched(); 1469 } 1470 return 0; 1471 } 1472 1473 /* 1474 * count the number of bytes in the tree that have a given bit(s) 1475 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1476 * cached. The total number found is returned. 1477 */ 1478 u64 count_range_bits(struct extent_io_tree *tree, 1479 u64 *start, u64 search_end, u64 max_bytes, 1480 unsigned long bits) 1481 { 1482 struct rb_node *node; 1483 struct extent_state *state; 1484 u64 cur_start = *start; 1485 u64 total_bytes = 0; 1486 int found = 0; 1487 1488 if (search_end <= cur_start) { 1489 WARN_ON(1); 1490 return 0; 1491 } 1492 1493 spin_lock(&tree->lock); 1494 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1495 total_bytes = tree->dirty_bytes; 1496 goto out; 1497 } 1498 /* 1499 * this search will find all the extents that end after 1500 * our range starts. 1501 */ 1502 node = tree_search(tree, cur_start); 1503 if (!node) 1504 goto out; 1505 1506 while (1) { 1507 state = rb_entry(node, struct extent_state, rb_node); 1508 if (state->start > search_end) 1509 break; 1510 if (state->end >= cur_start && (state->state & bits)) { 1511 total_bytes += min(search_end, state->end) + 1 - 1512 max(cur_start, state->start); 1513 if (total_bytes >= max_bytes) 1514 break; 1515 if (!found) { 1516 *start = state->start; 1517 found = 1; 1518 } 1519 } 1520 node = rb_next(node); 1521 if (!node) 1522 break; 1523 } 1524 out: 1525 spin_unlock(&tree->lock); 1526 return total_bytes; 1527 } 1528 1529 /* 1530 * set the private field for a given byte offset in the tree. If there isn't 1531 * an extent_state there already, this does nothing. 1532 */ 1533 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1534 { 1535 struct rb_node *node; 1536 struct extent_state *state; 1537 int ret = 0; 1538 1539 spin_lock(&tree->lock); 1540 /* 1541 * this search will find all the extents that end after 1542 * our range starts. 1543 */ 1544 node = tree_search(tree, start); 1545 if (!node) { 1546 ret = -ENOENT; 1547 goto out; 1548 } 1549 state = rb_entry(node, struct extent_state, rb_node); 1550 if (state->start != start) { 1551 ret = -ENOENT; 1552 goto out; 1553 } 1554 state->private = private; 1555 out: 1556 spin_unlock(&tree->lock); 1557 return ret; 1558 } 1559 1560 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1561 { 1562 struct rb_node *node; 1563 struct extent_state *state; 1564 int ret = 0; 1565 1566 spin_lock(&tree->lock); 1567 /* 1568 * this search will find all the extents that end after 1569 * our range starts. 1570 */ 1571 node = tree_search(tree, start); 1572 if (!node) { 1573 ret = -ENOENT; 1574 goto out; 1575 } 1576 state = rb_entry(node, struct extent_state, rb_node); 1577 if (state->start != start) { 1578 ret = -ENOENT; 1579 goto out; 1580 } 1581 *private = state->private; 1582 out: 1583 spin_unlock(&tree->lock); 1584 return ret; 1585 } 1586 1587 /* 1588 * searches a range in the state tree for a given mask. 1589 * If 'filled' == 1, this returns 1 only if every extent in the tree 1590 * has the bits set. Otherwise, 1 is returned if any bit in the 1591 * range is found set. 1592 */ 1593 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1594 int bits, int filled, struct extent_state *cached) 1595 { 1596 struct extent_state *state = NULL; 1597 struct rb_node *node; 1598 int bitset = 0; 1599 1600 spin_lock(&tree->lock); 1601 if (cached && cached->tree && cached->start == start) 1602 node = &cached->rb_node; 1603 else 1604 node = tree_search(tree, start); 1605 while (node && start <= end) { 1606 state = rb_entry(node, struct extent_state, rb_node); 1607 1608 if (filled && state->start > start) { 1609 bitset = 0; 1610 break; 1611 } 1612 1613 if (state->start > end) 1614 break; 1615 1616 if (state->state & bits) { 1617 bitset = 1; 1618 if (!filled) 1619 break; 1620 } else if (filled) { 1621 bitset = 0; 1622 break; 1623 } 1624 1625 if (state->end == (u64)-1) 1626 break; 1627 1628 start = state->end + 1; 1629 if (start > end) 1630 break; 1631 node = rb_next(node); 1632 if (!node) { 1633 if (filled) 1634 bitset = 0; 1635 break; 1636 } 1637 } 1638 spin_unlock(&tree->lock); 1639 return bitset; 1640 } 1641 1642 /* 1643 * helper function to set a given page up to date if all the 1644 * extents in the tree for that page are up to date 1645 */ 1646 static int check_page_uptodate(struct extent_io_tree *tree, 1647 struct page *page) 1648 { 1649 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1650 u64 end = start + PAGE_CACHE_SIZE - 1; 1651 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1652 SetPageUptodate(page); 1653 return 0; 1654 } 1655 1656 /* 1657 * helper function to unlock a page if all the extents in the tree 1658 * for that page are unlocked 1659 */ 1660 static int check_page_locked(struct extent_io_tree *tree, 1661 struct page *page) 1662 { 1663 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1664 u64 end = start + PAGE_CACHE_SIZE - 1; 1665 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1666 unlock_page(page); 1667 return 0; 1668 } 1669 1670 /* 1671 * helper function to end page writeback if all the extents 1672 * in the tree for that page are done with writeback 1673 */ 1674 static int check_page_writeback(struct extent_io_tree *tree, 1675 struct page *page) 1676 { 1677 end_page_writeback(page); 1678 return 0; 1679 } 1680 1681 /* lots and lots of room for performance fixes in the end_bio funcs */ 1682 1683 /* 1684 * after a writepage IO is done, we need to: 1685 * clear the uptodate bits on error 1686 * clear the writeback bits in the extent tree for this IO 1687 * end_page_writeback if the page has no more pending IO 1688 * 1689 * Scheduling is not allowed, so the extent state tree is expected 1690 * to have one and only one object corresponding to this IO. 1691 */ 1692 static void end_bio_extent_writepage(struct bio *bio, int err) 1693 { 1694 int uptodate = err == 0; 1695 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1696 struct extent_io_tree *tree; 1697 u64 start; 1698 u64 end; 1699 int whole_page; 1700 int ret; 1701 1702 do { 1703 struct page *page = bvec->bv_page; 1704 tree = &BTRFS_I(page->mapping->host)->io_tree; 1705 1706 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1707 bvec->bv_offset; 1708 end = start + bvec->bv_len - 1; 1709 1710 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1711 whole_page = 1; 1712 else 1713 whole_page = 0; 1714 1715 if (--bvec >= bio->bi_io_vec) 1716 prefetchw(&bvec->bv_page->flags); 1717 if (tree->ops && tree->ops->writepage_end_io_hook) { 1718 ret = tree->ops->writepage_end_io_hook(page, start, 1719 end, NULL, uptodate); 1720 if (ret) 1721 uptodate = 0; 1722 } 1723 1724 if (!uptodate && tree->ops && 1725 tree->ops->writepage_io_failed_hook) { 1726 ret = tree->ops->writepage_io_failed_hook(bio, page, 1727 start, end, NULL); 1728 if (ret == 0) { 1729 uptodate = (err == 0); 1730 continue; 1731 } 1732 } 1733 1734 if (!uptodate) { 1735 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS); 1736 ClearPageUptodate(page); 1737 SetPageError(page); 1738 } 1739 1740 if (whole_page) 1741 end_page_writeback(page); 1742 else 1743 check_page_writeback(tree, page); 1744 } while (bvec >= bio->bi_io_vec); 1745 1746 bio_put(bio); 1747 } 1748 1749 /* 1750 * after a readpage IO is done, we need to: 1751 * clear the uptodate bits on error 1752 * set the uptodate bits if things worked 1753 * set the page up to date if all extents in the tree are uptodate 1754 * clear the lock bit in the extent tree 1755 * unlock the page if there are no other extents locked for it 1756 * 1757 * Scheduling is not allowed, so the extent state tree is expected 1758 * to have one and only one object corresponding to this IO. 1759 */ 1760 static void end_bio_extent_readpage(struct bio *bio, int err) 1761 { 1762 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1763 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 1764 struct bio_vec *bvec = bio->bi_io_vec; 1765 struct extent_io_tree *tree; 1766 u64 start; 1767 u64 end; 1768 int whole_page; 1769 int ret; 1770 1771 if (err) 1772 uptodate = 0; 1773 1774 do { 1775 struct page *page = bvec->bv_page; 1776 tree = &BTRFS_I(page->mapping->host)->io_tree; 1777 1778 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1779 bvec->bv_offset; 1780 end = start + bvec->bv_len - 1; 1781 1782 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1783 whole_page = 1; 1784 else 1785 whole_page = 0; 1786 1787 if (++bvec <= bvec_end) 1788 prefetchw(&bvec->bv_page->flags); 1789 1790 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 1791 ret = tree->ops->readpage_end_io_hook(page, start, end, 1792 NULL); 1793 if (ret) 1794 uptodate = 0; 1795 } 1796 if (!uptodate && tree->ops && 1797 tree->ops->readpage_io_failed_hook) { 1798 ret = tree->ops->readpage_io_failed_hook(bio, page, 1799 start, end, NULL); 1800 if (ret == 0) { 1801 uptodate = 1802 test_bit(BIO_UPTODATE, &bio->bi_flags); 1803 if (err) 1804 uptodate = 0; 1805 continue; 1806 } 1807 } 1808 1809 if (uptodate) { 1810 set_extent_uptodate(tree, start, end, 1811 GFP_ATOMIC); 1812 } 1813 unlock_extent(tree, start, end, GFP_ATOMIC); 1814 1815 if (whole_page) { 1816 if (uptodate) { 1817 SetPageUptodate(page); 1818 } else { 1819 ClearPageUptodate(page); 1820 SetPageError(page); 1821 } 1822 unlock_page(page); 1823 } else { 1824 if (uptodate) { 1825 check_page_uptodate(tree, page); 1826 } else { 1827 ClearPageUptodate(page); 1828 SetPageError(page); 1829 } 1830 check_page_locked(tree, page); 1831 } 1832 } while (bvec <= bvec_end); 1833 1834 bio_put(bio); 1835 } 1836 1837 /* 1838 * IO done from prepare_write is pretty simple, we just unlock 1839 * the structs in the extent tree when done, and set the uptodate bits 1840 * as appropriate. 1841 */ 1842 static void end_bio_extent_preparewrite(struct bio *bio, int err) 1843 { 1844 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1845 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1846 struct extent_io_tree *tree; 1847 u64 start; 1848 u64 end; 1849 1850 do { 1851 struct page *page = bvec->bv_page; 1852 tree = &BTRFS_I(page->mapping->host)->io_tree; 1853 1854 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1855 bvec->bv_offset; 1856 end = start + bvec->bv_len - 1; 1857 1858 if (--bvec >= bio->bi_io_vec) 1859 prefetchw(&bvec->bv_page->flags); 1860 1861 if (uptodate) { 1862 set_extent_uptodate(tree, start, end, GFP_ATOMIC); 1863 } else { 1864 ClearPageUptodate(page); 1865 SetPageError(page); 1866 } 1867 1868 unlock_extent(tree, start, end, GFP_ATOMIC); 1869 1870 } while (bvec >= bio->bi_io_vec); 1871 1872 bio_put(bio); 1873 } 1874 1875 static struct bio * 1876 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 1877 gfp_t gfp_flags) 1878 { 1879 struct bio *bio; 1880 1881 bio = bio_alloc(gfp_flags, nr_vecs); 1882 1883 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 1884 while (!bio && (nr_vecs /= 2)) 1885 bio = bio_alloc(gfp_flags, nr_vecs); 1886 } 1887 1888 if (bio) { 1889 bio->bi_size = 0; 1890 bio->bi_bdev = bdev; 1891 bio->bi_sector = first_sector; 1892 } 1893 return bio; 1894 } 1895 1896 static int submit_one_bio(int rw, struct bio *bio, int mirror_num, 1897 unsigned long bio_flags) 1898 { 1899 int ret = 0; 1900 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1901 struct page *page = bvec->bv_page; 1902 struct extent_io_tree *tree = bio->bi_private; 1903 u64 start; 1904 u64 end; 1905 1906 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 1907 end = start + bvec->bv_len - 1; 1908 1909 bio->bi_private = NULL; 1910 1911 bio_get(bio); 1912 1913 if (tree->ops && tree->ops->submit_bio_hook) 1914 tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 1915 mirror_num, bio_flags, start); 1916 else 1917 submit_bio(rw, bio); 1918 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 1919 ret = -EOPNOTSUPP; 1920 bio_put(bio); 1921 return ret; 1922 } 1923 1924 static int submit_extent_page(int rw, struct extent_io_tree *tree, 1925 struct page *page, sector_t sector, 1926 size_t size, unsigned long offset, 1927 struct block_device *bdev, 1928 struct bio **bio_ret, 1929 unsigned long max_pages, 1930 bio_end_io_t end_io_func, 1931 int mirror_num, 1932 unsigned long prev_bio_flags, 1933 unsigned long bio_flags) 1934 { 1935 int ret = 0; 1936 struct bio *bio; 1937 int nr; 1938 int contig = 0; 1939 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 1940 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 1941 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 1942 1943 if (bio_ret && *bio_ret) { 1944 bio = *bio_ret; 1945 if (old_compressed) 1946 contig = bio->bi_sector == sector; 1947 else 1948 contig = bio->bi_sector + (bio->bi_size >> 9) == 1949 sector; 1950 1951 if (prev_bio_flags != bio_flags || !contig || 1952 (tree->ops && tree->ops->merge_bio_hook && 1953 tree->ops->merge_bio_hook(page, offset, page_size, bio, 1954 bio_flags)) || 1955 bio_add_page(bio, page, page_size, offset) < page_size) { 1956 ret = submit_one_bio(rw, bio, mirror_num, 1957 prev_bio_flags); 1958 bio = NULL; 1959 } else { 1960 return 0; 1961 } 1962 } 1963 if (this_compressed) 1964 nr = BIO_MAX_PAGES; 1965 else 1966 nr = bio_get_nr_vecs(bdev); 1967 1968 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 1969 1970 bio_add_page(bio, page, page_size, offset); 1971 bio->bi_end_io = end_io_func; 1972 bio->bi_private = tree; 1973 1974 if (bio_ret) 1975 *bio_ret = bio; 1976 else 1977 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 1978 1979 return ret; 1980 } 1981 1982 void set_page_extent_mapped(struct page *page) 1983 { 1984 if (!PagePrivate(page)) { 1985 SetPagePrivate(page); 1986 page_cache_get(page); 1987 set_page_private(page, EXTENT_PAGE_PRIVATE); 1988 } 1989 } 1990 1991 static void set_page_extent_head(struct page *page, unsigned long len) 1992 { 1993 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); 1994 } 1995 1996 /* 1997 * basic readpage implementation. Locked extent state structs are inserted 1998 * into the tree that are removed when the IO is done (by the end_io 1999 * handlers) 2000 */ 2001 static int __extent_read_full_page(struct extent_io_tree *tree, 2002 struct page *page, 2003 get_extent_t *get_extent, 2004 struct bio **bio, int mirror_num, 2005 unsigned long *bio_flags) 2006 { 2007 struct inode *inode = page->mapping->host; 2008 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2009 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2010 u64 end; 2011 u64 cur = start; 2012 u64 extent_offset; 2013 u64 last_byte = i_size_read(inode); 2014 u64 block_start; 2015 u64 cur_end; 2016 sector_t sector; 2017 struct extent_map *em; 2018 struct block_device *bdev; 2019 struct btrfs_ordered_extent *ordered; 2020 int ret; 2021 int nr = 0; 2022 size_t page_offset = 0; 2023 size_t iosize; 2024 size_t disk_io_size; 2025 size_t blocksize = inode->i_sb->s_blocksize; 2026 unsigned long this_bio_flag = 0; 2027 2028 set_page_extent_mapped(page); 2029 2030 end = page_end; 2031 while (1) { 2032 lock_extent(tree, start, end, GFP_NOFS); 2033 ordered = btrfs_lookup_ordered_extent(inode, start); 2034 if (!ordered) 2035 break; 2036 unlock_extent(tree, start, end, GFP_NOFS); 2037 btrfs_start_ordered_extent(inode, ordered, 1); 2038 btrfs_put_ordered_extent(ordered); 2039 } 2040 2041 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2042 char *userpage; 2043 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2044 2045 if (zero_offset) { 2046 iosize = PAGE_CACHE_SIZE - zero_offset; 2047 userpage = kmap_atomic(page, KM_USER0); 2048 memset(userpage + zero_offset, 0, iosize); 2049 flush_dcache_page(page); 2050 kunmap_atomic(userpage, KM_USER0); 2051 } 2052 } 2053 while (cur <= end) { 2054 if (cur >= last_byte) { 2055 char *userpage; 2056 iosize = PAGE_CACHE_SIZE - page_offset; 2057 userpage = kmap_atomic(page, KM_USER0); 2058 memset(userpage + page_offset, 0, iosize); 2059 flush_dcache_page(page); 2060 kunmap_atomic(userpage, KM_USER0); 2061 set_extent_uptodate(tree, cur, cur + iosize - 1, 2062 GFP_NOFS); 2063 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2064 break; 2065 } 2066 em = get_extent(inode, page, page_offset, cur, 2067 end - cur + 1, 0); 2068 if (IS_ERR(em) || !em) { 2069 SetPageError(page); 2070 unlock_extent(tree, cur, end, GFP_NOFS); 2071 break; 2072 } 2073 extent_offset = cur - em->start; 2074 BUG_ON(extent_map_end(em) <= cur); 2075 BUG_ON(end < cur); 2076 2077 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2078 this_bio_flag = EXTENT_BIO_COMPRESSED; 2079 2080 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2081 cur_end = min(extent_map_end(em) - 1, end); 2082 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2083 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2084 disk_io_size = em->block_len; 2085 sector = em->block_start >> 9; 2086 } else { 2087 sector = (em->block_start + extent_offset) >> 9; 2088 disk_io_size = iosize; 2089 } 2090 bdev = em->bdev; 2091 block_start = em->block_start; 2092 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2093 block_start = EXTENT_MAP_HOLE; 2094 free_extent_map(em); 2095 em = NULL; 2096 2097 /* we've found a hole, just zero and go on */ 2098 if (block_start == EXTENT_MAP_HOLE) { 2099 char *userpage; 2100 userpage = kmap_atomic(page, KM_USER0); 2101 memset(userpage + page_offset, 0, iosize); 2102 flush_dcache_page(page); 2103 kunmap_atomic(userpage, KM_USER0); 2104 2105 set_extent_uptodate(tree, cur, cur + iosize - 1, 2106 GFP_NOFS); 2107 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2108 cur = cur + iosize; 2109 page_offset += iosize; 2110 continue; 2111 } 2112 /* the get_extent function already copied into the page */ 2113 if (test_range_bit(tree, cur, cur_end, 2114 EXTENT_UPTODATE, 1, NULL)) { 2115 check_page_uptodate(tree, page); 2116 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2117 cur = cur + iosize; 2118 page_offset += iosize; 2119 continue; 2120 } 2121 /* we have an inline extent but it didn't get marked up 2122 * to date. Error out 2123 */ 2124 if (block_start == EXTENT_MAP_INLINE) { 2125 SetPageError(page); 2126 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2127 cur = cur + iosize; 2128 page_offset += iosize; 2129 continue; 2130 } 2131 2132 ret = 0; 2133 if (tree->ops && tree->ops->readpage_io_hook) { 2134 ret = tree->ops->readpage_io_hook(page, cur, 2135 cur + iosize - 1); 2136 } 2137 if (!ret) { 2138 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2139 pnr -= page->index; 2140 ret = submit_extent_page(READ, tree, page, 2141 sector, disk_io_size, page_offset, 2142 bdev, bio, pnr, 2143 end_bio_extent_readpage, mirror_num, 2144 *bio_flags, 2145 this_bio_flag); 2146 nr++; 2147 *bio_flags = this_bio_flag; 2148 } 2149 if (ret) 2150 SetPageError(page); 2151 cur = cur + iosize; 2152 page_offset += iosize; 2153 } 2154 if (!nr) { 2155 if (!PageError(page)) 2156 SetPageUptodate(page); 2157 unlock_page(page); 2158 } 2159 return 0; 2160 } 2161 2162 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2163 get_extent_t *get_extent) 2164 { 2165 struct bio *bio = NULL; 2166 unsigned long bio_flags = 0; 2167 int ret; 2168 2169 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, 2170 &bio_flags); 2171 if (bio) 2172 submit_one_bio(READ, bio, 0, bio_flags); 2173 return ret; 2174 } 2175 2176 static noinline void update_nr_written(struct page *page, 2177 struct writeback_control *wbc, 2178 unsigned long nr_written) 2179 { 2180 wbc->nr_to_write -= nr_written; 2181 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2182 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2183 page->mapping->writeback_index = page->index + nr_written; 2184 } 2185 2186 /* 2187 * the writepage semantics are similar to regular writepage. extent 2188 * records are inserted to lock ranges in the tree, and as dirty areas 2189 * are found, they are marked writeback. Then the lock bits are removed 2190 * and the end_io handler clears the writeback ranges 2191 */ 2192 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2193 void *data) 2194 { 2195 struct inode *inode = page->mapping->host; 2196 struct extent_page_data *epd = data; 2197 struct extent_io_tree *tree = epd->tree; 2198 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2199 u64 delalloc_start; 2200 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2201 u64 end; 2202 u64 cur = start; 2203 u64 extent_offset; 2204 u64 last_byte = i_size_read(inode); 2205 u64 block_start; 2206 u64 iosize; 2207 u64 unlock_start; 2208 sector_t sector; 2209 struct extent_state *cached_state = NULL; 2210 struct extent_map *em; 2211 struct block_device *bdev; 2212 int ret; 2213 int nr = 0; 2214 size_t pg_offset = 0; 2215 size_t blocksize; 2216 loff_t i_size = i_size_read(inode); 2217 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2218 u64 nr_delalloc; 2219 u64 delalloc_end; 2220 int page_started; 2221 int compressed; 2222 int write_flags; 2223 unsigned long nr_written = 0; 2224 2225 if (wbc->sync_mode == WB_SYNC_ALL) 2226 write_flags = WRITE_SYNC_PLUG; 2227 else 2228 write_flags = WRITE; 2229 2230 WARN_ON(!PageLocked(page)); 2231 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2232 if (page->index > end_index || 2233 (page->index == end_index && !pg_offset)) { 2234 page->mapping->a_ops->invalidatepage(page, 0); 2235 unlock_page(page); 2236 return 0; 2237 } 2238 2239 if (page->index == end_index) { 2240 char *userpage; 2241 2242 userpage = kmap_atomic(page, KM_USER0); 2243 memset(userpage + pg_offset, 0, 2244 PAGE_CACHE_SIZE - pg_offset); 2245 kunmap_atomic(userpage, KM_USER0); 2246 flush_dcache_page(page); 2247 } 2248 pg_offset = 0; 2249 2250 set_page_extent_mapped(page); 2251 2252 delalloc_start = start; 2253 delalloc_end = 0; 2254 page_started = 0; 2255 if (!epd->extent_locked) { 2256 u64 delalloc_to_write = 0; 2257 /* 2258 * make sure the wbc mapping index is at least updated 2259 * to this page. 2260 */ 2261 update_nr_written(page, wbc, 0); 2262 2263 while (delalloc_end < page_end) { 2264 nr_delalloc = find_lock_delalloc_range(inode, tree, 2265 page, 2266 &delalloc_start, 2267 &delalloc_end, 2268 128 * 1024 * 1024); 2269 if (nr_delalloc == 0) { 2270 delalloc_start = delalloc_end + 1; 2271 continue; 2272 } 2273 tree->ops->fill_delalloc(inode, page, delalloc_start, 2274 delalloc_end, &page_started, 2275 &nr_written); 2276 /* 2277 * delalloc_end is already one less than the total 2278 * length, so we don't subtract one from 2279 * PAGE_CACHE_SIZE 2280 */ 2281 delalloc_to_write += (delalloc_end - delalloc_start + 2282 PAGE_CACHE_SIZE) >> 2283 PAGE_CACHE_SHIFT; 2284 delalloc_start = delalloc_end + 1; 2285 } 2286 if (wbc->nr_to_write < delalloc_to_write) { 2287 int thresh = 8192; 2288 2289 if (delalloc_to_write < thresh * 2) 2290 thresh = delalloc_to_write; 2291 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2292 thresh); 2293 } 2294 2295 /* did the fill delalloc function already unlock and start 2296 * the IO? 2297 */ 2298 if (page_started) { 2299 ret = 0; 2300 /* 2301 * we've unlocked the page, so we can't update 2302 * the mapping's writeback index, just update 2303 * nr_to_write. 2304 */ 2305 wbc->nr_to_write -= nr_written; 2306 goto done_unlocked; 2307 } 2308 } 2309 if (tree->ops && tree->ops->writepage_start_hook) { 2310 ret = tree->ops->writepage_start_hook(page, start, 2311 page_end); 2312 if (ret == -EAGAIN) { 2313 redirty_page_for_writepage(wbc, page); 2314 update_nr_written(page, wbc, nr_written); 2315 unlock_page(page); 2316 ret = 0; 2317 goto done_unlocked; 2318 } 2319 } 2320 2321 /* 2322 * we don't want to touch the inode after unlocking the page, 2323 * so we update the mapping writeback index now 2324 */ 2325 update_nr_written(page, wbc, nr_written + 1); 2326 2327 end = page_end; 2328 if (last_byte <= start) { 2329 if (tree->ops && tree->ops->writepage_end_io_hook) 2330 tree->ops->writepage_end_io_hook(page, start, 2331 page_end, NULL, 1); 2332 unlock_start = page_end + 1; 2333 goto done; 2334 } 2335 2336 blocksize = inode->i_sb->s_blocksize; 2337 2338 while (cur <= end) { 2339 if (cur >= last_byte) { 2340 if (tree->ops && tree->ops->writepage_end_io_hook) 2341 tree->ops->writepage_end_io_hook(page, cur, 2342 page_end, NULL, 1); 2343 unlock_start = page_end + 1; 2344 break; 2345 } 2346 em = epd->get_extent(inode, page, pg_offset, cur, 2347 end - cur + 1, 1); 2348 if (IS_ERR(em) || !em) { 2349 SetPageError(page); 2350 break; 2351 } 2352 2353 extent_offset = cur - em->start; 2354 BUG_ON(extent_map_end(em) <= cur); 2355 BUG_ON(end < cur); 2356 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2357 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2358 sector = (em->block_start + extent_offset) >> 9; 2359 bdev = em->bdev; 2360 block_start = em->block_start; 2361 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2362 free_extent_map(em); 2363 em = NULL; 2364 2365 /* 2366 * compressed and inline extents are written through other 2367 * paths in the FS 2368 */ 2369 if (compressed || block_start == EXTENT_MAP_HOLE || 2370 block_start == EXTENT_MAP_INLINE) { 2371 /* 2372 * end_io notification does not happen here for 2373 * compressed extents 2374 */ 2375 if (!compressed && tree->ops && 2376 tree->ops->writepage_end_io_hook) 2377 tree->ops->writepage_end_io_hook(page, cur, 2378 cur + iosize - 1, 2379 NULL, 1); 2380 else if (compressed) { 2381 /* we don't want to end_page_writeback on 2382 * a compressed extent. this happens 2383 * elsewhere 2384 */ 2385 nr++; 2386 } 2387 2388 cur += iosize; 2389 pg_offset += iosize; 2390 unlock_start = cur; 2391 continue; 2392 } 2393 /* leave this out until we have a page_mkwrite call */ 2394 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2395 EXTENT_DIRTY, 0, NULL)) { 2396 cur = cur + iosize; 2397 pg_offset += iosize; 2398 continue; 2399 } 2400 2401 if (tree->ops && tree->ops->writepage_io_hook) { 2402 ret = tree->ops->writepage_io_hook(page, cur, 2403 cur + iosize - 1); 2404 } else { 2405 ret = 0; 2406 } 2407 if (ret) { 2408 SetPageError(page); 2409 } else { 2410 unsigned long max_nr = end_index + 1; 2411 2412 set_range_writeback(tree, cur, cur + iosize - 1); 2413 if (!PageWriteback(page)) { 2414 printk(KERN_ERR "btrfs warning page %lu not " 2415 "writeback, cur %llu end %llu\n", 2416 page->index, (unsigned long long)cur, 2417 (unsigned long long)end); 2418 } 2419 2420 ret = submit_extent_page(write_flags, tree, page, 2421 sector, iosize, pg_offset, 2422 bdev, &epd->bio, max_nr, 2423 end_bio_extent_writepage, 2424 0, 0, 0); 2425 if (ret) 2426 SetPageError(page); 2427 } 2428 cur = cur + iosize; 2429 pg_offset += iosize; 2430 nr++; 2431 } 2432 done: 2433 if (nr == 0) { 2434 /* make sure the mapping tag for page dirty gets cleared */ 2435 set_page_writeback(page); 2436 end_page_writeback(page); 2437 } 2438 unlock_page(page); 2439 2440 done_unlocked: 2441 2442 /* drop our reference on any cached states */ 2443 free_extent_state(cached_state); 2444 return 0; 2445 } 2446 2447 /** 2448 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2449 * @mapping: address space structure to write 2450 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2451 * @writepage: function called for each page 2452 * @data: data passed to writepage function 2453 * 2454 * If a page is already under I/O, write_cache_pages() skips it, even 2455 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2456 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2457 * and msync() need to guarantee that all the data which was dirty at the time 2458 * the call was made get new I/O started against them. If wbc->sync_mode is 2459 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2460 * existing IO to complete. 2461 */ 2462 static int extent_write_cache_pages(struct extent_io_tree *tree, 2463 struct address_space *mapping, 2464 struct writeback_control *wbc, 2465 writepage_t writepage, void *data, 2466 void (*flush_fn)(void *)) 2467 { 2468 int ret = 0; 2469 int done = 0; 2470 int nr_to_write_done = 0; 2471 struct pagevec pvec; 2472 int nr_pages; 2473 pgoff_t index; 2474 pgoff_t end; /* Inclusive */ 2475 int scanned = 0; 2476 int range_whole = 0; 2477 2478 pagevec_init(&pvec, 0); 2479 if (wbc->range_cyclic) { 2480 index = mapping->writeback_index; /* Start from prev offset */ 2481 end = -1; 2482 } else { 2483 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2484 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2485 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2486 range_whole = 1; 2487 scanned = 1; 2488 } 2489 retry: 2490 while (!done && !nr_to_write_done && (index <= end) && 2491 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2492 PAGECACHE_TAG_DIRTY, min(end - index, 2493 (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 2494 unsigned i; 2495 2496 scanned = 1; 2497 for (i = 0; i < nr_pages; i++) { 2498 struct page *page = pvec.pages[i]; 2499 2500 /* 2501 * At this point we hold neither mapping->tree_lock nor 2502 * lock on the page itself: the page may be truncated or 2503 * invalidated (changing page->mapping to NULL), or even 2504 * swizzled back from swapper_space to tmpfs file 2505 * mapping 2506 */ 2507 if (tree->ops && tree->ops->write_cache_pages_lock_hook) 2508 tree->ops->write_cache_pages_lock_hook(page); 2509 else 2510 lock_page(page); 2511 2512 if (unlikely(page->mapping != mapping)) { 2513 unlock_page(page); 2514 continue; 2515 } 2516 2517 if (!wbc->range_cyclic && page->index > end) { 2518 done = 1; 2519 unlock_page(page); 2520 continue; 2521 } 2522 2523 if (wbc->sync_mode != WB_SYNC_NONE) { 2524 if (PageWriteback(page)) 2525 flush_fn(data); 2526 wait_on_page_writeback(page); 2527 } 2528 2529 if (PageWriteback(page) || 2530 !clear_page_dirty_for_io(page)) { 2531 unlock_page(page); 2532 continue; 2533 } 2534 2535 ret = (*writepage)(page, wbc, data); 2536 2537 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 2538 unlock_page(page); 2539 ret = 0; 2540 } 2541 if (ret) 2542 done = 1; 2543 2544 /* 2545 * the filesystem may choose to bump up nr_to_write. 2546 * We have to make sure to honor the new nr_to_write 2547 * at any time 2548 */ 2549 nr_to_write_done = wbc->nr_to_write <= 0; 2550 } 2551 pagevec_release(&pvec); 2552 cond_resched(); 2553 } 2554 if (!scanned && !done) { 2555 /* 2556 * We hit the last page and there is more work to be done: wrap 2557 * back to the start of the file 2558 */ 2559 scanned = 1; 2560 index = 0; 2561 goto retry; 2562 } 2563 return ret; 2564 } 2565 2566 static void flush_epd_write_bio(struct extent_page_data *epd) 2567 { 2568 if (epd->bio) { 2569 if (epd->sync_io) 2570 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); 2571 else 2572 submit_one_bio(WRITE, epd->bio, 0, 0); 2573 epd->bio = NULL; 2574 } 2575 } 2576 2577 static noinline void flush_write_bio(void *data) 2578 { 2579 struct extent_page_data *epd = data; 2580 flush_epd_write_bio(epd); 2581 } 2582 2583 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 2584 get_extent_t *get_extent, 2585 struct writeback_control *wbc) 2586 { 2587 int ret; 2588 struct address_space *mapping = page->mapping; 2589 struct extent_page_data epd = { 2590 .bio = NULL, 2591 .tree = tree, 2592 .get_extent = get_extent, 2593 .extent_locked = 0, 2594 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2595 }; 2596 struct writeback_control wbc_writepages = { 2597 .sync_mode = wbc->sync_mode, 2598 .older_than_this = NULL, 2599 .nr_to_write = 64, 2600 .range_start = page_offset(page) + PAGE_CACHE_SIZE, 2601 .range_end = (loff_t)-1, 2602 }; 2603 2604 ret = __extent_writepage(page, wbc, &epd); 2605 2606 extent_write_cache_pages(tree, mapping, &wbc_writepages, 2607 __extent_writepage, &epd, flush_write_bio); 2608 flush_epd_write_bio(&epd); 2609 return ret; 2610 } 2611 2612 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 2613 u64 start, u64 end, get_extent_t *get_extent, 2614 int mode) 2615 { 2616 int ret = 0; 2617 struct address_space *mapping = inode->i_mapping; 2618 struct page *page; 2619 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 2620 PAGE_CACHE_SHIFT; 2621 2622 struct extent_page_data epd = { 2623 .bio = NULL, 2624 .tree = tree, 2625 .get_extent = get_extent, 2626 .extent_locked = 1, 2627 .sync_io = mode == WB_SYNC_ALL, 2628 }; 2629 struct writeback_control wbc_writepages = { 2630 .sync_mode = mode, 2631 .older_than_this = NULL, 2632 .nr_to_write = nr_pages * 2, 2633 .range_start = start, 2634 .range_end = end + 1, 2635 }; 2636 2637 while (start <= end) { 2638 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 2639 if (clear_page_dirty_for_io(page)) 2640 ret = __extent_writepage(page, &wbc_writepages, &epd); 2641 else { 2642 if (tree->ops && tree->ops->writepage_end_io_hook) 2643 tree->ops->writepage_end_io_hook(page, start, 2644 start + PAGE_CACHE_SIZE - 1, 2645 NULL, 1); 2646 unlock_page(page); 2647 } 2648 page_cache_release(page); 2649 start += PAGE_CACHE_SIZE; 2650 } 2651 2652 flush_epd_write_bio(&epd); 2653 return ret; 2654 } 2655 2656 int extent_writepages(struct extent_io_tree *tree, 2657 struct address_space *mapping, 2658 get_extent_t *get_extent, 2659 struct writeback_control *wbc) 2660 { 2661 int ret = 0; 2662 struct extent_page_data epd = { 2663 .bio = NULL, 2664 .tree = tree, 2665 .get_extent = get_extent, 2666 .extent_locked = 0, 2667 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2668 }; 2669 2670 ret = extent_write_cache_pages(tree, mapping, wbc, 2671 __extent_writepage, &epd, 2672 flush_write_bio); 2673 flush_epd_write_bio(&epd); 2674 return ret; 2675 } 2676 2677 int extent_readpages(struct extent_io_tree *tree, 2678 struct address_space *mapping, 2679 struct list_head *pages, unsigned nr_pages, 2680 get_extent_t get_extent) 2681 { 2682 struct bio *bio = NULL; 2683 unsigned page_idx; 2684 unsigned long bio_flags = 0; 2685 2686 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 2687 struct page *page = list_entry(pages->prev, struct page, lru); 2688 2689 prefetchw(&page->flags); 2690 list_del(&page->lru); 2691 if (!add_to_page_cache_lru(page, mapping, 2692 page->index, GFP_KERNEL)) { 2693 __extent_read_full_page(tree, page, get_extent, 2694 &bio, 0, &bio_flags); 2695 } 2696 page_cache_release(page); 2697 } 2698 BUG_ON(!list_empty(pages)); 2699 if (bio) 2700 submit_one_bio(READ, bio, 0, bio_flags); 2701 return 0; 2702 } 2703 2704 /* 2705 * basic invalidatepage code, this waits on any locked or writeback 2706 * ranges corresponding to the page, and then deletes any extent state 2707 * records from the tree 2708 */ 2709 int extent_invalidatepage(struct extent_io_tree *tree, 2710 struct page *page, unsigned long offset) 2711 { 2712 struct extent_state *cached_state = NULL; 2713 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 2714 u64 end = start + PAGE_CACHE_SIZE - 1; 2715 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 2716 2717 start += (offset + blocksize - 1) & ~(blocksize - 1); 2718 if (start > end) 2719 return 0; 2720 2721 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS); 2722 wait_on_page_writeback(page); 2723 clear_extent_bit(tree, start, end, 2724 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 2725 EXTENT_DO_ACCOUNTING, 2726 1, 1, &cached_state, GFP_NOFS); 2727 return 0; 2728 } 2729 2730 /* 2731 * simple commit_write call, set_range_dirty is used to mark both 2732 * the pages and the extent records as dirty 2733 */ 2734 int extent_commit_write(struct extent_io_tree *tree, 2735 struct inode *inode, struct page *page, 2736 unsigned from, unsigned to) 2737 { 2738 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2739 2740 set_page_extent_mapped(page); 2741 set_page_dirty(page); 2742 2743 if (pos > inode->i_size) { 2744 i_size_write(inode, pos); 2745 mark_inode_dirty(inode); 2746 } 2747 return 0; 2748 } 2749 2750 int extent_prepare_write(struct extent_io_tree *tree, 2751 struct inode *inode, struct page *page, 2752 unsigned from, unsigned to, get_extent_t *get_extent) 2753 { 2754 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2755 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 2756 u64 block_start; 2757 u64 orig_block_start; 2758 u64 block_end; 2759 u64 cur_end; 2760 struct extent_map *em; 2761 unsigned blocksize = 1 << inode->i_blkbits; 2762 size_t page_offset = 0; 2763 size_t block_off_start; 2764 size_t block_off_end; 2765 int err = 0; 2766 int iocount = 0; 2767 int ret = 0; 2768 int isnew; 2769 2770 set_page_extent_mapped(page); 2771 2772 block_start = (page_start + from) & ~((u64)blocksize - 1); 2773 block_end = (page_start + to - 1) | (blocksize - 1); 2774 orig_block_start = block_start; 2775 2776 lock_extent(tree, page_start, page_end, GFP_NOFS); 2777 while (block_start <= block_end) { 2778 em = get_extent(inode, page, page_offset, block_start, 2779 block_end - block_start + 1, 1); 2780 if (IS_ERR(em) || !em) 2781 goto err; 2782 2783 cur_end = min(block_end, extent_map_end(em) - 1); 2784 block_off_start = block_start & (PAGE_CACHE_SIZE - 1); 2785 block_off_end = block_off_start + blocksize; 2786 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); 2787 2788 if (!PageUptodate(page) && isnew && 2789 (block_off_end > to || block_off_start < from)) { 2790 void *kaddr; 2791 2792 kaddr = kmap_atomic(page, KM_USER0); 2793 if (block_off_end > to) 2794 memset(kaddr + to, 0, block_off_end - to); 2795 if (block_off_start < from) 2796 memset(kaddr + block_off_start, 0, 2797 from - block_off_start); 2798 flush_dcache_page(page); 2799 kunmap_atomic(kaddr, KM_USER0); 2800 } 2801 if ((em->block_start != EXTENT_MAP_HOLE && 2802 em->block_start != EXTENT_MAP_INLINE) && 2803 !isnew && !PageUptodate(page) && 2804 (block_off_end > to || block_off_start < from) && 2805 !test_range_bit(tree, block_start, cur_end, 2806 EXTENT_UPTODATE, 1, NULL)) { 2807 u64 sector; 2808 u64 extent_offset = block_start - em->start; 2809 size_t iosize; 2810 sector = (em->block_start + extent_offset) >> 9; 2811 iosize = (cur_end - block_start + blocksize) & 2812 ~((u64)blocksize - 1); 2813 /* 2814 * we've already got the extent locked, but we 2815 * need to split the state such that our end_bio 2816 * handler can clear the lock. 2817 */ 2818 set_extent_bit(tree, block_start, 2819 block_start + iosize - 1, 2820 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS); 2821 ret = submit_extent_page(READ, tree, page, 2822 sector, iosize, page_offset, em->bdev, 2823 NULL, 1, 2824 end_bio_extent_preparewrite, 0, 2825 0, 0); 2826 iocount++; 2827 block_start = block_start + iosize; 2828 } else { 2829 set_extent_uptodate(tree, block_start, cur_end, 2830 GFP_NOFS); 2831 unlock_extent(tree, block_start, cur_end, GFP_NOFS); 2832 block_start = cur_end + 1; 2833 } 2834 page_offset = block_start & (PAGE_CACHE_SIZE - 1); 2835 free_extent_map(em); 2836 } 2837 if (iocount) { 2838 wait_extent_bit(tree, orig_block_start, 2839 block_end, EXTENT_LOCKED); 2840 } 2841 check_page_uptodate(tree, page); 2842 err: 2843 /* FIXME, zero out newly allocated blocks on error */ 2844 return err; 2845 } 2846 2847 /* 2848 * a helper for releasepage, this tests for areas of the page that 2849 * are locked or under IO and drops the related state bits if it is safe 2850 * to drop the page. 2851 */ 2852 int try_release_extent_state(struct extent_map_tree *map, 2853 struct extent_io_tree *tree, struct page *page, 2854 gfp_t mask) 2855 { 2856 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2857 u64 end = start + PAGE_CACHE_SIZE - 1; 2858 int ret = 1; 2859 2860 if (test_range_bit(tree, start, end, 2861 EXTENT_IOBITS, 0, NULL)) 2862 ret = 0; 2863 else { 2864 if ((mask & GFP_NOFS) == GFP_NOFS) 2865 mask = GFP_NOFS; 2866 /* 2867 * at this point we can safely clear everything except the 2868 * locked bit and the nodatasum bit 2869 */ 2870 clear_extent_bit(tree, start, end, 2871 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 2872 0, 0, NULL, mask); 2873 } 2874 return ret; 2875 } 2876 2877 /* 2878 * a helper for releasepage. As long as there are no locked extents 2879 * in the range corresponding to the page, both state records and extent 2880 * map records are removed 2881 */ 2882 int try_release_extent_mapping(struct extent_map_tree *map, 2883 struct extent_io_tree *tree, struct page *page, 2884 gfp_t mask) 2885 { 2886 struct extent_map *em; 2887 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2888 u64 end = start + PAGE_CACHE_SIZE - 1; 2889 2890 if ((mask & __GFP_WAIT) && 2891 page->mapping->host->i_size > 16 * 1024 * 1024) { 2892 u64 len; 2893 while (start <= end) { 2894 len = end - start + 1; 2895 write_lock(&map->lock); 2896 em = lookup_extent_mapping(map, start, len); 2897 if (!em || IS_ERR(em)) { 2898 write_unlock(&map->lock); 2899 break; 2900 } 2901 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2902 em->start != start) { 2903 write_unlock(&map->lock); 2904 free_extent_map(em); 2905 break; 2906 } 2907 if (!test_range_bit(tree, em->start, 2908 extent_map_end(em) - 1, 2909 EXTENT_LOCKED | EXTENT_WRITEBACK, 2910 0, NULL)) { 2911 remove_extent_mapping(map, em); 2912 /* once for the rb tree */ 2913 free_extent_map(em); 2914 } 2915 start = extent_map_end(em); 2916 write_unlock(&map->lock); 2917 2918 /* once for us */ 2919 free_extent_map(em); 2920 } 2921 } 2922 return try_release_extent_state(map, tree, page, mask); 2923 } 2924 2925 sector_t extent_bmap(struct address_space *mapping, sector_t iblock, 2926 get_extent_t *get_extent) 2927 { 2928 struct inode *inode = mapping->host; 2929 struct extent_state *cached_state = NULL; 2930 u64 start = iblock << inode->i_blkbits; 2931 sector_t sector = 0; 2932 size_t blksize = (1 << inode->i_blkbits); 2933 struct extent_map *em; 2934 2935 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2936 0, &cached_state, GFP_NOFS); 2937 em = get_extent(inode, NULL, 0, start, blksize, 0); 2938 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, 2939 start + blksize - 1, &cached_state, GFP_NOFS); 2940 if (!em || IS_ERR(em)) 2941 return 0; 2942 2943 if (em->block_start > EXTENT_MAP_LAST_BYTE) 2944 goto out; 2945 2946 sector = (em->block_start + start - em->start) >> inode->i_blkbits; 2947 out: 2948 free_extent_map(em); 2949 return sector; 2950 } 2951 2952 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2953 __u64 start, __u64 len, get_extent_t *get_extent) 2954 { 2955 int ret; 2956 u64 off = start; 2957 u64 max = start + len; 2958 u32 flags = 0; 2959 u64 disko = 0; 2960 struct extent_map *em = NULL; 2961 struct extent_state *cached_state = NULL; 2962 int end = 0; 2963 u64 em_start = 0, em_len = 0; 2964 unsigned long emflags; 2965 ret = 0; 2966 2967 if (len == 0) 2968 return -EINVAL; 2969 2970 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 2971 &cached_state, GFP_NOFS); 2972 em = get_extent(inode, NULL, 0, off, max - off, 0); 2973 if (!em) 2974 goto out; 2975 if (IS_ERR(em)) { 2976 ret = PTR_ERR(em); 2977 goto out; 2978 } 2979 while (!end) { 2980 off = em->start + em->len; 2981 if (off >= max) 2982 end = 1; 2983 2984 em_start = em->start; 2985 em_len = em->len; 2986 2987 disko = 0; 2988 flags = 0; 2989 2990 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 2991 end = 1; 2992 flags |= FIEMAP_EXTENT_LAST; 2993 } else if (em->block_start == EXTENT_MAP_HOLE) { 2994 flags |= FIEMAP_EXTENT_UNWRITTEN; 2995 } else if (em->block_start == EXTENT_MAP_INLINE) { 2996 flags |= (FIEMAP_EXTENT_DATA_INLINE | 2997 FIEMAP_EXTENT_NOT_ALIGNED); 2998 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 2999 flags |= (FIEMAP_EXTENT_DELALLOC | 3000 FIEMAP_EXTENT_UNKNOWN); 3001 } else { 3002 disko = em->block_start; 3003 } 3004 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3005 flags |= FIEMAP_EXTENT_ENCODED; 3006 3007 emflags = em->flags; 3008 free_extent_map(em); 3009 em = NULL; 3010 3011 if (!end) { 3012 em = get_extent(inode, NULL, 0, off, max - off, 0); 3013 if (!em) 3014 goto out; 3015 if (IS_ERR(em)) { 3016 ret = PTR_ERR(em); 3017 goto out; 3018 } 3019 emflags = em->flags; 3020 } 3021 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) { 3022 flags |= FIEMAP_EXTENT_LAST; 3023 end = 1; 3024 } 3025 3026 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3027 em_len, flags); 3028 if (ret) 3029 goto out_free; 3030 } 3031 out_free: 3032 free_extent_map(em); 3033 out: 3034 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 3035 &cached_state, GFP_NOFS); 3036 return ret; 3037 } 3038 3039 static inline struct page *extent_buffer_page(struct extent_buffer *eb, 3040 unsigned long i) 3041 { 3042 struct page *p; 3043 struct address_space *mapping; 3044 3045 if (i == 0) 3046 return eb->first_page; 3047 i += eb->start >> PAGE_CACHE_SHIFT; 3048 mapping = eb->first_page->mapping; 3049 if (!mapping) 3050 return NULL; 3051 3052 /* 3053 * extent_buffer_page is only called after pinning the page 3054 * by increasing the reference count. So we know the page must 3055 * be in the radix tree. 3056 */ 3057 rcu_read_lock(); 3058 p = radix_tree_lookup(&mapping->page_tree, i); 3059 rcu_read_unlock(); 3060 3061 return p; 3062 } 3063 3064 static inline unsigned long num_extent_pages(u64 start, u64 len) 3065 { 3066 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3067 (start >> PAGE_CACHE_SHIFT); 3068 } 3069 3070 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3071 u64 start, 3072 unsigned long len, 3073 gfp_t mask) 3074 { 3075 struct extent_buffer *eb = NULL; 3076 #if LEAK_DEBUG 3077 unsigned long flags; 3078 #endif 3079 3080 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3081 eb->start = start; 3082 eb->len = len; 3083 spin_lock_init(&eb->lock); 3084 init_waitqueue_head(&eb->lock_wq); 3085 3086 #if LEAK_DEBUG 3087 spin_lock_irqsave(&leak_lock, flags); 3088 list_add(&eb->leak_list, &buffers); 3089 spin_unlock_irqrestore(&leak_lock, flags); 3090 #endif 3091 atomic_set(&eb->refs, 1); 3092 3093 return eb; 3094 } 3095 3096 static void __free_extent_buffer(struct extent_buffer *eb) 3097 { 3098 #if LEAK_DEBUG 3099 unsigned long flags; 3100 spin_lock_irqsave(&leak_lock, flags); 3101 list_del(&eb->leak_list); 3102 spin_unlock_irqrestore(&leak_lock, flags); 3103 #endif 3104 kmem_cache_free(extent_buffer_cache, eb); 3105 } 3106 3107 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 3108 u64 start, unsigned long len, 3109 struct page *page0, 3110 gfp_t mask) 3111 { 3112 unsigned long num_pages = num_extent_pages(start, len); 3113 unsigned long i; 3114 unsigned long index = start >> PAGE_CACHE_SHIFT; 3115 struct extent_buffer *eb; 3116 struct extent_buffer *exists = NULL; 3117 struct page *p; 3118 struct address_space *mapping = tree->mapping; 3119 int uptodate = 1; 3120 3121 spin_lock(&tree->buffer_lock); 3122 eb = buffer_search(tree, start); 3123 if (eb) { 3124 atomic_inc(&eb->refs); 3125 spin_unlock(&tree->buffer_lock); 3126 mark_page_accessed(eb->first_page); 3127 return eb; 3128 } 3129 spin_unlock(&tree->buffer_lock); 3130 3131 eb = __alloc_extent_buffer(tree, start, len, mask); 3132 if (!eb) 3133 return NULL; 3134 3135 if (page0) { 3136 eb->first_page = page0; 3137 i = 1; 3138 index++; 3139 page_cache_get(page0); 3140 mark_page_accessed(page0); 3141 set_page_extent_mapped(page0); 3142 set_page_extent_head(page0, len); 3143 uptodate = PageUptodate(page0); 3144 } else { 3145 i = 0; 3146 } 3147 for (; i < num_pages; i++, index++) { 3148 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); 3149 if (!p) { 3150 WARN_ON(1); 3151 goto free_eb; 3152 } 3153 set_page_extent_mapped(p); 3154 mark_page_accessed(p); 3155 if (i == 0) { 3156 eb->first_page = p; 3157 set_page_extent_head(p, len); 3158 } else { 3159 set_page_private(p, EXTENT_PAGE_PRIVATE); 3160 } 3161 if (!PageUptodate(p)) 3162 uptodate = 0; 3163 unlock_page(p); 3164 } 3165 if (uptodate) 3166 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3167 3168 spin_lock(&tree->buffer_lock); 3169 exists = buffer_tree_insert(tree, start, &eb->rb_node); 3170 if (exists) { 3171 /* add one reference for the caller */ 3172 atomic_inc(&exists->refs); 3173 spin_unlock(&tree->buffer_lock); 3174 goto free_eb; 3175 } 3176 /* add one reference for the tree */ 3177 atomic_inc(&eb->refs); 3178 spin_unlock(&tree->buffer_lock); 3179 return eb; 3180 3181 free_eb: 3182 if (!atomic_dec_and_test(&eb->refs)) 3183 return exists; 3184 for (index = 1; index < i; index++) 3185 page_cache_release(extent_buffer_page(eb, index)); 3186 page_cache_release(extent_buffer_page(eb, 0)); 3187 __free_extent_buffer(eb); 3188 return exists; 3189 } 3190 3191 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 3192 u64 start, unsigned long len, 3193 gfp_t mask) 3194 { 3195 struct extent_buffer *eb; 3196 3197 spin_lock(&tree->buffer_lock); 3198 eb = buffer_search(tree, start); 3199 if (eb) 3200 atomic_inc(&eb->refs); 3201 spin_unlock(&tree->buffer_lock); 3202 3203 if (eb) 3204 mark_page_accessed(eb->first_page); 3205 3206 return eb; 3207 } 3208 3209 void free_extent_buffer(struct extent_buffer *eb) 3210 { 3211 if (!eb) 3212 return; 3213 3214 if (!atomic_dec_and_test(&eb->refs)) 3215 return; 3216 3217 WARN_ON(1); 3218 } 3219 3220 int clear_extent_buffer_dirty(struct extent_io_tree *tree, 3221 struct extent_buffer *eb) 3222 { 3223 unsigned long i; 3224 unsigned long num_pages; 3225 struct page *page; 3226 3227 num_pages = num_extent_pages(eb->start, eb->len); 3228 3229 for (i = 0; i < num_pages; i++) { 3230 page = extent_buffer_page(eb, i); 3231 if (!PageDirty(page)) 3232 continue; 3233 3234 lock_page(page); 3235 if (i == 0) 3236 set_page_extent_head(page, eb->len); 3237 else 3238 set_page_private(page, EXTENT_PAGE_PRIVATE); 3239 3240 clear_page_dirty_for_io(page); 3241 spin_lock_irq(&page->mapping->tree_lock); 3242 if (!PageDirty(page)) { 3243 radix_tree_tag_clear(&page->mapping->page_tree, 3244 page_index(page), 3245 PAGECACHE_TAG_DIRTY); 3246 } 3247 spin_unlock_irq(&page->mapping->tree_lock); 3248 unlock_page(page); 3249 } 3250 return 0; 3251 } 3252 3253 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, 3254 struct extent_buffer *eb) 3255 { 3256 return wait_on_extent_writeback(tree, eb->start, 3257 eb->start + eb->len - 1); 3258 } 3259 3260 int set_extent_buffer_dirty(struct extent_io_tree *tree, 3261 struct extent_buffer *eb) 3262 { 3263 unsigned long i; 3264 unsigned long num_pages; 3265 int was_dirty = 0; 3266 3267 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3268 num_pages = num_extent_pages(eb->start, eb->len); 3269 for (i = 0; i < num_pages; i++) 3270 __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); 3271 return was_dirty; 3272 } 3273 3274 int clear_extent_buffer_uptodate(struct extent_io_tree *tree, 3275 struct extent_buffer *eb, 3276 struct extent_state **cached_state) 3277 { 3278 unsigned long i; 3279 struct page *page; 3280 unsigned long num_pages; 3281 3282 num_pages = num_extent_pages(eb->start, eb->len); 3283 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3284 3285 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3286 cached_state, GFP_NOFS); 3287 for (i = 0; i < num_pages; i++) { 3288 page = extent_buffer_page(eb, i); 3289 if (page) 3290 ClearPageUptodate(page); 3291 } 3292 return 0; 3293 } 3294 3295 int set_extent_buffer_uptodate(struct extent_io_tree *tree, 3296 struct extent_buffer *eb) 3297 { 3298 unsigned long i; 3299 struct page *page; 3300 unsigned long num_pages; 3301 3302 num_pages = num_extent_pages(eb->start, eb->len); 3303 3304 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3305 GFP_NOFS); 3306 for (i = 0; i < num_pages; i++) { 3307 page = extent_buffer_page(eb, i); 3308 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || 3309 ((i == num_pages - 1) && 3310 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { 3311 check_page_uptodate(tree, page); 3312 continue; 3313 } 3314 SetPageUptodate(page); 3315 } 3316 return 0; 3317 } 3318 3319 int extent_range_uptodate(struct extent_io_tree *tree, 3320 u64 start, u64 end) 3321 { 3322 struct page *page; 3323 int ret; 3324 int pg_uptodate = 1; 3325 int uptodate; 3326 unsigned long index; 3327 3328 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL); 3329 if (ret) 3330 return 1; 3331 while (start <= end) { 3332 index = start >> PAGE_CACHE_SHIFT; 3333 page = find_get_page(tree->mapping, index); 3334 uptodate = PageUptodate(page); 3335 page_cache_release(page); 3336 if (!uptodate) { 3337 pg_uptodate = 0; 3338 break; 3339 } 3340 start += PAGE_CACHE_SIZE; 3341 } 3342 return pg_uptodate; 3343 } 3344 3345 int extent_buffer_uptodate(struct extent_io_tree *tree, 3346 struct extent_buffer *eb, 3347 struct extent_state *cached_state) 3348 { 3349 int ret = 0; 3350 unsigned long num_pages; 3351 unsigned long i; 3352 struct page *page; 3353 int pg_uptodate = 1; 3354 3355 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3356 return 1; 3357 3358 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3359 EXTENT_UPTODATE, 1, cached_state); 3360 if (ret) 3361 return ret; 3362 3363 num_pages = num_extent_pages(eb->start, eb->len); 3364 for (i = 0; i < num_pages; i++) { 3365 page = extent_buffer_page(eb, i); 3366 if (!PageUptodate(page)) { 3367 pg_uptodate = 0; 3368 break; 3369 } 3370 } 3371 return pg_uptodate; 3372 } 3373 3374 int read_extent_buffer_pages(struct extent_io_tree *tree, 3375 struct extent_buffer *eb, 3376 u64 start, int wait, 3377 get_extent_t *get_extent, int mirror_num) 3378 { 3379 unsigned long i; 3380 unsigned long start_i; 3381 struct page *page; 3382 int err; 3383 int ret = 0; 3384 int locked_pages = 0; 3385 int all_uptodate = 1; 3386 int inc_all_pages = 0; 3387 unsigned long num_pages; 3388 struct bio *bio = NULL; 3389 unsigned long bio_flags = 0; 3390 3391 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3392 return 0; 3393 3394 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3395 EXTENT_UPTODATE, 1, NULL)) { 3396 return 0; 3397 } 3398 3399 if (start) { 3400 WARN_ON(start < eb->start); 3401 start_i = (start >> PAGE_CACHE_SHIFT) - 3402 (eb->start >> PAGE_CACHE_SHIFT); 3403 } else { 3404 start_i = 0; 3405 } 3406 3407 num_pages = num_extent_pages(eb->start, eb->len); 3408 for (i = start_i; i < num_pages; i++) { 3409 page = extent_buffer_page(eb, i); 3410 if (!wait) { 3411 if (!trylock_page(page)) 3412 goto unlock_exit; 3413 } else { 3414 lock_page(page); 3415 } 3416 locked_pages++; 3417 if (!PageUptodate(page)) 3418 all_uptodate = 0; 3419 } 3420 if (all_uptodate) { 3421 if (start_i == 0) 3422 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3423 goto unlock_exit; 3424 } 3425 3426 for (i = start_i; i < num_pages; i++) { 3427 page = extent_buffer_page(eb, i); 3428 if (inc_all_pages) 3429 page_cache_get(page); 3430 if (!PageUptodate(page)) { 3431 if (start_i == 0) 3432 inc_all_pages = 1; 3433 ClearPageError(page); 3434 err = __extent_read_full_page(tree, page, 3435 get_extent, &bio, 3436 mirror_num, &bio_flags); 3437 if (err) 3438 ret = err; 3439 } else { 3440 unlock_page(page); 3441 } 3442 } 3443 3444 if (bio) 3445 submit_one_bio(READ, bio, mirror_num, bio_flags); 3446 3447 if (ret || !wait) 3448 return ret; 3449 3450 for (i = start_i; i < num_pages; i++) { 3451 page = extent_buffer_page(eb, i); 3452 wait_on_page_locked(page); 3453 if (!PageUptodate(page)) 3454 ret = -EIO; 3455 } 3456 3457 if (!ret) 3458 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3459 return ret; 3460 3461 unlock_exit: 3462 i = start_i; 3463 while (locked_pages > 0) { 3464 page = extent_buffer_page(eb, i); 3465 i++; 3466 unlock_page(page); 3467 locked_pages--; 3468 } 3469 return ret; 3470 } 3471 3472 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 3473 unsigned long start, 3474 unsigned long len) 3475 { 3476 size_t cur; 3477 size_t offset; 3478 struct page *page; 3479 char *kaddr; 3480 char *dst = (char *)dstv; 3481 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3482 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3483 3484 WARN_ON(start > eb->len); 3485 WARN_ON(start + len > eb->start + eb->len); 3486 3487 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3488 3489 while (len > 0) { 3490 page = extent_buffer_page(eb, i); 3491 3492 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3493 kaddr = kmap_atomic(page, KM_USER1); 3494 memcpy(dst, kaddr + offset, cur); 3495 kunmap_atomic(kaddr, KM_USER1); 3496 3497 dst += cur; 3498 len -= cur; 3499 offset = 0; 3500 i++; 3501 } 3502 } 3503 3504 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 3505 unsigned long min_len, char **token, char **map, 3506 unsigned long *map_start, 3507 unsigned long *map_len, int km) 3508 { 3509 size_t offset = start & (PAGE_CACHE_SIZE - 1); 3510 char *kaddr; 3511 struct page *p; 3512 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3513 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3514 unsigned long end_i = (start_offset + start + min_len - 1) >> 3515 PAGE_CACHE_SHIFT; 3516 3517 if (i != end_i) 3518 return -EINVAL; 3519 3520 if (i == 0) { 3521 offset = start_offset; 3522 *map_start = 0; 3523 } else { 3524 offset = 0; 3525 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 3526 } 3527 3528 if (start + min_len > eb->len) { 3529 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 3530 "wanted %lu %lu\n", (unsigned long long)eb->start, 3531 eb->len, start, min_len); 3532 WARN_ON(1); 3533 } 3534 3535 p = extent_buffer_page(eb, i); 3536 kaddr = kmap_atomic(p, km); 3537 *token = kaddr; 3538 *map = kaddr + offset; 3539 *map_len = PAGE_CACHE_SIZE - offset; 3540 return 0; 3541 } 3542 3543 int map_extent_buffer(struct extent_buffer *eb, unsigned long start, 3544 unsigned long min_len, 3545 char **token, char **map, 3546 unsigned long *map_start, 3547 unsigned long *map_len, int km) 3548 { 3549 int err; 3550 int save = 0; 3551 if (eb->map_token) { 3552 unmap_extent_buffer(eb, eb->map_token, km); 3553 eb->map_token = NULL; 3554 save = 1; 3555 } 3556 err = map_private_extent_buffer(eb, start, min_len, token, map, 3557 map_start, map_len, km); 3558 if (!err && save) { 3559 eb->map_token = *token; 3560 eb->kaddr = *map; 3561 eb->map_start = *map_start; 3562 eb->map_len = *map_len; 3563 } 3564 return err; 3565 } 3566 3567 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) 3568 { 3569 kunmap_atomic(token, km); 3570 } 3571 3572 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 3573 unsigned long start, 3574 unsigned long len) 3575 { 3576 size_t cur; 3577 size_t offset; 3578 struct page *page; 3579 char *kaddr; 3580 char *ptr = (char *)ptrv; 3581 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3582 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3583 int ret = 0; 3584 3585 WARN_ON(start > eb->len); 3586 WARN_ON(start + len > eb->start + eb->len); 3587 3588 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3589 3590 while (len > 0) { 3591 page = extent_buffer_page(eb, i); 3592 3593 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3594 3595 kaddr = kmap_atomic(page, KM_USER0); 3596 ret = memcmp(ptr, kaddr + offset, cur); 3597 kunmap_atomic(kaddr, KM_USER0); 3598 if (ret) 3599 break; 3600 3601 ptr += cur; 3602 len -= cur; 3603 offset = 0; 3604 i++; 3605 } 3606 return ret; 3607 } 3608 3609 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 3610 unsigned long start, unsigned long len) 3611 { 3612 size_t cur; 3613 size_t offset; 3614 struct page *page; 3615 char *kaddr; 3616 char *src = (char *)srcv; 3617 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3618 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3619 3620 WARN_ON(start > eb->len); 3621 WARN_ON(start + len > eb->start + eb->len); 3622 3623 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3624 3625 while (len > 0) { 3626 page = extent_buffer_page(eb, i); 3627 WARN_ON(!PageUptodate(page)); 3628 3629 cur = min(len, PAGE_CACHE_SIZE - offset); 3630 kaddr = kmap_atomic(page, KM_USER1); 3631 memcpy(kaddr + offset, src, cur); 3632 kunmap_atomic(kaddr, KM_USER1); 3633 3634 src += cur; 3635 len -= cur; 3636 offset = 0; 3637 i++; 3638 } 3639 } 3640 3641 void memset_extent_buffer(struct extent_buffer *eb, char c, 3642 unsigned long start, unsigned long len) 3643 { 3644 size_t cur; 3645 size_t offset; 3646 struct page *page; 3647 char *kaddr; 3648 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3649 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3650 3651 WARN_ON(start > eb->len); 3652 WARN_ON(start + len > eb->start + eb->len); 3653 3654 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3655 3656 while (len > 0) { 3657 page = extent_buffer_page(eb, i); 3658 WARN_ON(!PageUptodate(page)); 3659 3660 cur = min(len, PAGE_CACHE_SIZE - offset); 3661 kaddr = kmap_atomic(page, KM_USER0); 3662 memset(kaddr + offset, c, cur); 3663 kunmap_atomic(kaddr, KM_USER0); 3664 3665 len -= cur; 3666 offset = 0; 3667 i++; 3668 } 3669 } 3670 3671 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 3672 unsigned long dst_offset, unsigned long src_offset, 3673 unsigned long len) 3674 { 3675 u64 dst_len = dst->len; 3676 size_t cur; 3677 size_t offset; 3678 struct page *page; 3679 char *kaddr; 3680 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3681 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3682 3683 WARN_ON(src->len != dst_len); 3684 3685 offset = (start_offset + dst_offset) & 3686 ((unsigned long)PAGE_CACHE_SIZE - 1); 3687 3688 while (len > 0) { 3689 page = extent_buffer_page(dst, i); 3690 WARN_ON(!PageUptodate(page)); 3691 3692 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 3693 3694 kaddr = kmap_atomic(page, KM_USER0); 3695 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3696 kunmap_atomic(kaddr, KM_USER0); 3697 3698 src_offset += cur; 3699 len -= cur; 3700 offset = 0; 3701 i++; 3702 } 3703 } 3704 3705 static void move_pages(struct page *dst_page, struct page *src_page, 3706 unsigned long dst_off, unsigned long src_off, 3707 unsigned long len) 3708 { 3709 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3710 if (dst_page == src_page) { 3711 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 3712 } else { 3713 char *src_kaddr = kmap_atomic(src_page, KM_USER1); 3714 char *p = dst_kaddr + dst_off + len; 3715 char *s = src_kaddr + src_off + len; 3716 3717 while (len--) 3718 *--p = *--s; 3719 3720 kunmap_atomic(src_kaddr, KM_USER1); 3721 } 3722 kunmap_atomic(dst_kaddr, KM_USER0); 3723 } 3724 3725 static void copy_pages(struct page *dst_page, struct page *src_page, 3726 unsigned long dst_off, unsigned long src_off, 3727 unsigned long len) 3728 { 3729 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3730 char *src_kaddr; 3731 3732 if (dst_page != src_page) 3733 src_kaddr = kmap_atomic(src_page, KM_USER1); 3734 else 3735 src_kaddr = dst_kaddr; 3736 3737 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 3738 kunmap_atomic(dst_kaddr, KM_USER0); 3739 if (dst_page != src_page) 3740 kunmap_atomic(src_kaddr, KM_USER1); 3741 } 3742 3743 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3744 unsigned long src_offset, unsigned long len) 3745 { 3746 size_t cur; 3747 size_t dst_off_in_page; 3748 size_t src_off_in_page; 3749 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3750 unsigned long dst_i; 3751 unsigned long src_i; 3752 3753 if (src_offset + len > dst->len) { 3754 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3755 "len %lu dst len %lu\n", src_offset, len, dst->len); 3756 BUG_ON(1); 3757 } 3758 if (dst_offset + len > dst->len) { 3759 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3760 "len %lu dst len %lu\n", dst_offset, len, dst->len); 3761 BUG_ON(1); 3762 } 3763 3764 while (len > 0) { 3765 dst_off_in_page = (start_offset + dst_offset) & 3766 ((unsigned long)PAGE_CACHE_SIZE - 1); 3767 src_off_in_page = (start_offset + src_offset) & 3768 ((unsigned long)PAGE_CACHE_SIZE - 1); 3769 3770 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3771 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 3772 3773 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 3774 src_off_in_page)); 3775 cur = min_t(unsigned long, cur, 3776 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 3777 3778 copy_pages(extent_buffer_page(dst, dst_i), 3779 extent_buffer_page(dst, src_i), 3780 dst_off_in_page, src_off_in_page, cur); 3781 3782 src_offset += cur; 3783 dst_offset += cur; 3784 len -= cur; 3785 } 3786 } 3787 3788 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3789 unsigned long src_offset, unsigned long len) 3790 { 3791 size_t cur; 3792 size_t dst_off_in_page; 3793 size_t src_off_in_page; 3794 unsigned long dst_end = dst_offset + len - 1; 3795 unsigned long src_end = src_offset + len - 1; 3796 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3797 unsigned long dst_i; 3798 unsigned long src_i; 3799 3800 if (src_offset + len > dst->len) { 3801 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3802 "len %lu len %lu\n", src_offset, len, dst->len); 3803 BUG_ON(1); 3804 } 3805 if (dst_offset + len > dst->len) { 3806 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3807 "len %lu len %lu\n", dst_offset, len, dst->len); 3808 BUG_ON(1); 3809 } 3810 if (dst_offset < src_offset) { 3811 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 3812 return; 3813 } 3814 while (len > 0) { 3815 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 3816 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 3817 3818 dst_off_in_page = (start_offset + dst_end) & 3819 ((unsigned long)PAGE_CACHE_SIZE - 1); 3820 src_off_in_page = (start_offset + src_end) & 3821 ((unsigned long)PAGE_CACHE_SIZE - 1); 3822 3823 cur = min_t(unsigned long, len, src_off_in_page + 1); 3824 cur = min(cur, dst_off_in_page + 1); 3825 move_pages(extent_buffer_page(dst, dst_i), 3826 extent_buffer_page(dst, src_i), 3827 dst_off_in_page - cur + 1, 3828 src_off_in_page - cur + 1, cur); 3829 3830 dst_end -= cur; 3831 src_end -= cur; 3832 len -= cur; 3833 } 3834 } 3835 3836 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) 3837 { 3838 u64 start = page_offset(page); 3839 struct extent_buffer *eb; 3840 int ret = 1; 3841 unsigned long i; 3842 unsigned long num_pages; 3843 3844 spin_lock(&tree->buffer_lock); 3845 eb = buffer_search(tree, start); 3846 if (!eb) 3847 goto out; 3848 3849 if (atomic_read(&eb->refs) > 1) { 3850 ret = 0; 3851 goto out; 3852 } 3853 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3854 ret = 0; 3855 goto out; 3856 } 3857 /* at this point we can safely release the extent buffer */ 3858 num_pages = num_extent_pages(eb->start, eb->len); 3859 for (i = 0; i < num_pages; i++) 3860 page_cache_release(extent_buffer_page(eb, i)); 3861 rb_erase(&eb->rb_node, &tree->buffer); 3862 __free_extent_buffer(eb); 3863 out: 3864 spin_unlock(&tree->buffer_lock); 3865 return ret; 3866 } 3867