1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793 { 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279 { 1280 int wake = 0; 1281 1282 if (bits & EXTENT_LOCKED) 1283 wake = 1; 1284 1285 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask); 1286 } 1287 1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1289 struct extent_state **cached_state, gfp_t mask) 1290 { 1291 return set_extent_bit(tree, start, end, 1292 EXTENT_DELALLOC | EXTENT_UPTODATE, 1293 NULL, cached_state, mask); 1294 } 1295 1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1297 struct extent_state **cached_state, gfp_t mask) 1298 { 1299 return set_extent_bit(tree, start, end, 1300 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1301 NULL, cached_state, mask); 1302 } 1303 1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1305 gfp_t mask) 1306 { 1307 return clear_extent_bit(tree, start, end, 1308 EXTENT_DIRTY | EXTENT_DELALLOC | 1309 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1310 } 1311 1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1313 gfp_t mask) 1314 { 1315 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1316 NULL, mask); 1317 } 1318 1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1320 struct extent_state **cached_state, gfp_t mask) 1321 { 1322 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1323 cached_state, mask); 1324 } 1325 1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1327 struct extent_state **cached_state, gfp_t mask) 1328 { 1329 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1330 cached_state, mask); 1331 } 1332 1333 /* 1334 * either insert or lock state struct between start and end use mask to tell 1335 * us if waiting is desired. 1336 */ 1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1338 unsigned bits, struct extent_state **cached_state) 1339 { 1340 int err; 1341 u64 failed_start; 1342 1343 while (1) { 1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1345 EXTENT_LOCKED, &failed_start, 1346 cached_state, GFP_NOFS); 1347 if (err == -EEXIST) { 1348 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1349 start = failed_start; 1350 } else 1351 break; 1352 WARN_ON(start > end); 1353 } 1354 return err; 1355 } 1356 1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 return lock_extent_bits(tree, start, end, 0, NULL); 1360 } 1361 1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1363 { 1364 int err; 1365 u64 failed_start; 1366 1367 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1368 &failed_start, NULL, GFP_NOFS); 1369 if (err == -EEXIST) { 1370 if (failed_start > start) 1371 clear_extent_bit(tree, start, failed_start - 1, 1372 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1373 return 0; 1374 } 1375 return 1; 1376 } 1377 1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1379 struct extent_state **cached, gfp_t mask) 1380 { 1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1382 mask); 1383 } 1384 1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1386 { 1387 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1388 GFP_NOFS); 1389 } 1390 1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1392 { 1393 unsigned long index = start >> PAGE_CACHE_SHIFT; 1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1395 struct page *page; 1396 1397 while (index <= end_index) { 1398 page = find_get_page(inode->i_mapping, index); 1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1400 clear_page_dirty_for_io(page); 1401 page_cache_release(page); 1402 index++; 1403 } 1404 return 0; 1405 } 1406 1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1408 { 1409 unsigned long index = start >> PAGE_CACHE_SHIFT; 1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1411 struct page *page; 1412 1413 while (index <= end_index) { 1414 page = find_get_page(inode->i_mapping, index); 1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1416 __set_page_dirty_nobuffers(page); 1417 account_page_redirty(page); 1418 page_cache_release(page); 1419 index++; 1420 } 1421 return 0; 1422 } 1423 1424 /* 1425 * helper function to set both pages and extents in the tree writeback 1426 */ 1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1428 { 1429 unsigned long index = start >> PAGE_CACHE_SHIFT; 1430 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1431 struct page *page; 1432 1433 while (index <= end_index) { 1434 page = find_get_page(tree->mapping, index); 1435 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1436 set_page_writeback(page); 1437 page_cache_release(page); 1438 index++; 1439 } 1440 return 0; 1441 } 1442 1443 /* find the first state struct with 'bits' set after 'start', and 1444 * return it. tree->lock must be held. NULL will returned if 1445 * nothing was found after 'start' 1446 */ 1447 static struct extent_state * 1448 find_first_extent_bit_state(struct extent_io_tree *tree, 1449 u64 start, unsigned bits) 1450 { 1451 struct rb_node *node; 1452 struct extent_state *state; 1453 1454 /* 1455 * this search will find all the extents that end after 1456 * our range starts. 1457 */ 1458 node = tree_search(tree, start); 1459 if (!node) 1460 goto out; 1461 1462 while (1) { 1463 state = rb_entry(node, struct extent_state, rb_node); 1464 if (state->end >= start && (state->state & bits)) 1465 return state; 1466 1467 node = rb_next(node); 1468 if (!node) 1469 break; 1470 } 1471 out: 1472 return NULL; 1473 } 1474 1475 /* 1476 * find the first offset in the io tree with 'bits' set. zero is 1477 * returned if we find something, and *start_ret and *end_ret are 1478 * set to reflect the state struct that was found. 1479 * 1480 * If nothing was found, 1 is returned. If found something, return 0. 1481 */ 1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1483 u64 *start_ret, u64 *end_ret, unsigned bits, 1484 struct extent_state **cached_state) 1485 { 1486 struct extent_state *state; 1487 struct rb_node *n; 1488 int ret = 1; 1489 1490 spin_lock(&tree->lock); 1491 if (cached_state && *cached_state) { 1492 state = *cached_state; 1493 if (state->end == start - 1 && extent_state_in_tree(state)) { 1494 n = rb_next(&state->rb_node); 1495 while (n) { 1496 state = rb_entry(n, struct extent_state, 1497 rb_node); 1498 if (state->state & bits) 1499 goto got_it; 1500 n = rb_next(n); 1501 } 1502 free_extent_state(*cached_state); 1503 *cached_state = NULL; 1504 goto out; 1505 } 1506 free_extent_state(*cached_state); 1507 *cached_state = NULL; 1508 } 1509 1510 state = find_first_extent_bit_state(tree, start, bits); 1511 got_it: 1512 if (state) { 1513 cache_state_if_flags(state, cached_state, 0); 1514 *start_ret = state->start; 1515 *end_ret = state->end; 1516 ret = 0; 1517 } 1518 out: 1519 spin_unlock(&tree->lock); 1520 return ret; 1521 } 1522 1523 /* 1524 * find a contiguous range of bytes in the file marked as delalloc, not 1525 * more than 'max_bytes'. start and end are used to return the range, 1526 * 1527 * 1 is returned if we find something, 0 if nothing was in the tree 1528 */ 1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1530 u64 *start, u64 *end, u64 max_bytes, 1531 struct extent_state **cached_state) 1532 { 1533 struct rb_node *node; 1534 struct extent_state *state; 1535 u64 cur_start = *start; 1536 u64 found = 0; 1537 u64 total_bytes = 0; 1538 1539 spin_lock(&tree->lock); 1540 1541 /* 1542 * this search will find all the extents that end after 1543 * our range starts. 1544 */ 1545 node = tree_search(tree, cur_start); 1546 if (!node) { 1547 if (!found) 1548 *end = (u64)-1; 1549 goto out; 1550 } 1551 1552 while (1) { 1553 state = rb_entry(node, struct extent_state, rb_node); 1554 if (found && (state->start != cur_start || 1555 (state->state & EXTENT_BOUNDARY))) { 1556 goto out; 1557 } 1558 if (!(state->state & EXTENT_DELALLOC)) { 1559 if (!found) 1560 *end = state->end; 1561 goto out; 1562 } 1563 if (!found) { 1564 *start = state->start; 1565 *cached_state = state; 1566 atomic_inc(&state->refs); 1567 } 1568 found++; 1569 *end = state->end; 1570 cur_start = state->end + 1; 1571 node = rb_next(node); 1572 total_bytes += state->end - state->start + 1; 1573 if (total_bytes >= max_bytes) 1574 break; 1575 if (!node) 1576 break; 1577 } 1578 out: 1579 spin_unlock(&tree->lock); 1580 return found; 1581 } 1582 1583 static noinline void __unlock_for_delalloc(struct inode *inode, 1584 struct page *locked_page, 1585 u64 start, u64 end) 1586 { 1587 int ret; 1588 struct page *pages[16]; 1589 unsigned long index = start >> PAGE_CACHE_SHIFT; 1590 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1591 unsigned long nr_pages = end_index - index + 1; 1592 int i; 1593 1594 if (index == locked_page->index && end_index == index) 1595 return; 1596 1597 while (nr_pages > 0) { 1598 ret = find_get_pages_contig(inode->i_mapping, index, 1599 min_t(unsigned long, nr_pages, 1600 ARRAY_SIZE(pages)), pages); 1601 for (i = 0; i < ret; i++) { 1602 if (pages[i] != locked_page) 1603 unlock_page(pages[i]); 1604 page_cache_release(pages[i]); 1605 } 1606 nr_pages -= ret; 1607 index += ret; 1608 cond_resched(); 1609 } 1610 } 1611 1612 static noinline int lock_delalloc_pages(struct inode *inode, 1613 struct page *locked_page, 1614 u64 delalloc_start, 1615 u64 delalloc_end) 1616 { 1617 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1618 unsigned long start_index = index; 1619 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1620 unsigned long pages_locked = 0; 1621 struct page *pages[16]; 1622 unsigned long nrpages; 1623 int ret; 1624 int i; 1625 1626 /* the caller is responsible for locking the start index */ 1627 if (index == locked_page->index && index == end_index) 1628 return 0; 1629 1630 /* skip the page at the start index */ 1631 nrpages = end_index - index + 1; 1632 while (nrpages > 0) { 1633 ret = find_get_pages_contig(inode->i_mapping, index, 1634 min_t(unsigned long, 1635 nrpages, ARRAY_SIZE(pages)), pages); 1636 if (ret == 0) { 1637 ret = -EAGAIN; 1638 goto done; 1639 } 1640 /* now we have an array of pages, lock them all */ 1641 for (i = 0; i < ret; i++) { 1642 /* 1643 * the caller is taking responsibility for 1644 * locked_page 1645 */ 1646 if (pages[i] != locked_page) { 1647 lock_page(pages[i]); 1648 if (!PageDirty(pages[i]) || 1649 pages[i]->mapping != inode->i_mapping) { 1650 ret = -EAGAIN; 1651 unlock_page(pages[i]); 1652 page_cache_release(pages[i]); 1653 goto done; 1654 } 1655 } 1656 page_cache_release(pages[i]); 1657 pages_locked++; 1658 } 1659 nrpages -= ret; 1660 index += ret; 1661 cond_resched(); 1662 } 1663 ret = 0; 1664 done: 1665 if (ret && pages_locked) { 1666 __unlock_for_delalloc(inode, locked_page, 1667 delalloc_start, 1668 ((u64)(start_index + pages_locked - 1)) << 1669 PAGE_CACHE_SHIFT); 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * find a contiguous range of bytes in the file marked as delalloc, not 1676 * more than 'max_bytes'. start and end are used to return the range, 1677 * 1678 * 1 is returned if we find something, 0 if nothing was in the tree 1679 */ 1680 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1681 struct extent_io_tree *tree, 1682 struct page *locked_page, u64 *start, 1683 u64 *end, u64 max_bytes) 1684 { 1685 u64 delalloc_start; 1686 u64 delalloc_end; 1687 u64 found; 1688 struct extent_state *cached_state = NULL; 1689 int ret; 1690 int loops = 0; 1691 1692 again: 1693 /* step one, find a bunch of delalloc bytes starting at start */ 1694 delalloc_start = *start; 1695 delalloc_end = 0; 1696 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1697 max_bytes, &cached_state); 1698 if (!found || delalloc_end <= *start) { 1699 *start = delalloc_start; 1700 *end = delalloc_end; 1701 free_extent_state(cached_state); 1702 return 0; 1703 } 1704 1705 /* 1706 * start comes from the offset of locked_page. We have to lock 1707 * pages in order, so we can't process delalloc bytes before 1708 * locked_page 1709 */ 1710 if (delalloc_start < *start) 1711 delalloc_start = *start; 1712 1713 /* 1714 * make sure to limit the number of pages we try to lock down 1715 */ 1716 if (delalloc_end + 1 - delalloc_start > max_bytes) 1717 delalloc_end = delalloc_start + max_bytes - 1; 1718 1719 /* step two, lock all the pages after the page that has start */ 1720 ret = lock_delalloc_pages(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 if (ret == -EAGAIN) { 1723 /* some of the pages are gone, lets avoid looping by 1724 * shortening the size of the delalloc range we're searching 1725 */ 1726 free_extent_state(cached_state); 1727 cached_state = NULL; 1728 if (!loops) { 1729 max_bytes = PAGE_CACHE_SIZE; 1730 loops = 1; 1731 goto again; 1732 } else { 1733 found = 0; 1734 goto out_failed; 1735 } 1736 } 1737 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1738 1739 /* step three, lock the state bits for the whole range */ 1740 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1741 1742 /* then test to make sure it is all still delalloc */ 1743 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1744 EXTENT_DELALLOC, 1, cached_state); 1745 if (!ret) { 1746 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1747 &cached_state, GFP_NOFS); 1748 __unlock_for_delalloc(inode, locked_page, 1749 delalloc_start, delalloc_end); 1750 cond_resched(); 1751 goto again; 1752 } 1753 free_extent_state(cached_state); 1754 *start = delalloc_start; 1755 *end = delalloc_end; 1756 out_failed: 1757 return found; 1758 } 1759 1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1761 struct page *locked_page, 1762 unsigned clear_bits, 1763 unsigned long page_ops) 1764 { 1765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1766 int ret; 1767 struct page *pages[16]; 1768 unsigned long index = start >> PAGE_CACHE_SHIFT; 1769 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1770 unsigned long nr_pages = end_index - index + 1; 1771 int i; 1772 1773 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1774 if (page_ops == 0) 1775 return 0; 1776 1777 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1778 mapping_set_error(inode->i_mapping, -EIO); 1779 1780 while (nr_pages > 0) { 1781 ret = find_get_pages_contig(inode->i_mapping, index, 1782 min_t(unsigned long, 1783 nr_pages, ARRAY_SIZE(pages)), pages); 1784 for (i = 0; i < ret; i++) { 1785 1786 if (page_ops & PAGE_SET_PRIVATE2) 1787 SetPagePrivate2(pages[i]); 1788 1789 if (pages[i] == locked_page) { 1790 page_cache_release(pages[i]); 1791 continue; 1792 } 1793 if (page_ops & PAGE_CLEAR_DIRTY) 1794 clear_page_dirty_for_io(pages[i]); 1795 if (page_ops & PAGE_SET_WRITEBACK) 1796 set_page_writeback(pages[i]); 1797 if (page_ops & PAGE_SET_ERROR) 1798 SetPageError(pages[i]); 1799 if (page_ops & PAGE_END_WRITEBACK) 1800 end_page_writeback(pages[i]); 1801 if (page_ops & PAGE_UNLOCK) 1802 unlock_page(pages[i]); 1803 page_cache_release(pages[i]); 1804 } 1805 nr_pages -= ret; 1806 index += ret; 1807 cond_resched(); 1808 } 1809 return 0; 1810 } 1811 1812 /* 1813 * count the number of bytes in the tree that have a given bit(s) 1814 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1815 * cached. The total number found is returned. 1816 */ 1817 u64 count_range_bits(struct extent_io_tree *tree, 1818 u64 *start, u64 search_end, u64 max_bytes, 1819 unsigned bits, int contig) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 u64 cur_start = *start; 1824 u64 total_bytes = 0; 1825 u64 last = 0; 1826 int found = 0; 1827 1828 if (WARN_ON(search_end <= cur_start)) 1829 return 0; 1830 1831 spin_lock(&tree->lock); 1832 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1833 total_bytes = tree->dirty_bytes; 1834 goto out; 1835 } 1836 /* 1837 * this search will find all the extents that end after 1838 * our range starts. 1839 */ 1840 node = tree_search(tree, cur_start); 1841 if (!node) 1842 goto out; 1843 1844 while (1) { 1845 state = rb_entry(node, struct extent_state, rb_node); 1846 if (state->start > search_end) 1847 break; 1848 if (contig && found && state->start > last + 1) 1849 break; 1850 if (state->end >= cur_start && (state->state & bits) == bits) { 1851 total_bytes += min(search_end, state->end) + 1 - 1852 max(cur_start, state->start); 1853 if (total_bytes >= max_bytes) 1854 break; 1855 if (!found) { 1856 *start = max(cur_start, state->start); 1857 found = 1; 1858 } 1859 last = state->end; 1860 } else if (contig && found) { 1861 break; 1862 } 1863 node = rb_next(node); 1864 if (!node) 1865 break; 1866 } 1867 out: 1868 spin_unlock(&tree->lock); 1869 return total_bytes; 1870 } 1871 1872 /* 1873 * set the private field for a given byte offset in the tree. If there isn't 1874 * an extent_state there already, this does nothing. 1875 */ 1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1877 { 1878 struct rb_node *node; 1879 struct extent_state *state; 1880 int ret = 0; 1881 1882 spin_lock(&tree->lock); 1883 /* 1884 * this search will find all the extents that end after 1885 * our range starts. 1886 */ 1887 node = tree_search(tree, start); 1888 if (!node) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state = rb_entry(node, struct extent_state, rb_node); 1893 if (state->start != start) { 1894 ret = -ENOENT; 1895 goto out; 1896 } 1897 state->private = private; 1898 out: 1899 spin_unlock(&tree->lock); 1900 return ret; 1901 } 1902 1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1904 { 1905 struct rb_node *node; 1906 struct extent_state *state; 1907 int ret = 0; 1908 1909 spin_lock(&tree->lock); 1910 /* 1911 * this search will find all the extents that end after 1912 * our range starts. 1913 */ 1914 node = tree_search(tree, start); 1915 if (!node) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 state = rb_entry(node, struct extent_state, rb_node); 1920 if (state->start != start) { 1921 ret = -ENOENT; 1922 goto out; 1923 } 1924 *private = state->private; 1925 out: 1926 spin_unlock(&tree->lock); 1927 return ret; 1928 } 1929 1930 /* 1931 * searches a range in the state tree for a given mask. 1932 * If 'filled' == 1, this returns 1 only if every extent in the tree 1933 * has the bits set. Otherwise, 1 is returned if any bit in the 1934 * range is found set. 1935 */ 1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1937 unsigned bits, int filled, struct extent_state *cached) 1938 { 1939 struct extent_state *state = NULL; 1940 struct rb_node *node; 1941 int bitset = 0; 1942 1943 spin_lock(&tree->lock); 1944 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1945 cached->end > start) 1946 node = &cached->rb_node; 1947 else 1948 node = tree_search(tree, start); 1949 while (node && start <= end) { 1950 state = rb_entry(node, struct extent_state, rb_node); 1951 1952 if (filled && state->start > start) { 1953 bitset = 0; 1954 break; 1955 } 1956 1957 if (state->start > end) 1958 break; 1959 1960 if (state->state & bits) { 1961 bitset = 1; 1962 if (!filled) 1963 break; 1964 } else if (filled) { 1965 bitset = 0; 1966 break; 1967 } 1968 1969 if (state->end == (u64)-1) 1970 break; 1971 1972 start = state->end + 1; 1973 if (start > end) 1974 break; 1975 node = rb_next(node); 1976 if (!node) { 1977 if (filled) 1978 bitset = 0; 1979 break; 1980 } 1981 } 1982 spin_unlock(&tree->lock); 1983 return bitset; 1984 } 1985 1986 /* 1987 * helper function to set a given page up to date if all the 1988 * extents in the tree for that page are up to date 1989 */ 1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1991 { 1992 u64 start = page_offset(page); 1993 u64 end = start + PAGE_CACHE_SIZE - 1; 1994 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1995 SetPageUptodate(page); 1996 } 1997 1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1999 { 2000 int ret; 2001 int err = 0; 2002 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2003 2004 set_state_private(failure_tree, rec->start, 0); 2005 ret = clear_extent_bits(failure_tree, rec->start, 2006 rec->start + rec->len - 1, 2007 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2008 if (ret) 2009 err = ret; 2010 2011 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2012 rec->start + rec->len - 1, 2013 EXTENT_DAMAGED, GFP_NOFS); 2014 if (ret && !err) 2015 err = ret; 2016 2017 kfree(rec); 2018 return err; 2019 } 2020 2021 /* 2022 * this bypasses the standard btrfs submit functions deliberately, as 2023 * the standard behavior is to write all copies in a raid setup. here we only 2024 * want to write the one bad copy. so we do the mapping for ourselves and issue 2025 * submit_bio directly. 2026 * to avoid any synchronization issues, wait for the data after writing, which 2027 * actually prevents the read that triggered the error from finishing. 2028 * currently, there can be no more than two copies of every data bit. thus, 2029 * exactly one rewrite is required. 2030 */ 2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2032 struct page *page, unsigned int pg_offset, int mirror_num) 2033 { 2034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2035 struct bio *bio; 2036 struct btrfs_device *dev; 2037 u64 map_length = 0; 2038 u64 sector; 2039 struct btrfs_bio *bbio = NULL; 2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2041 int ret; 2042 2043 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2044 BUG_ON(!mirror_num); 2045 2046 /* we can't repair anything in raid56 yet */ 2047 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2048 return 0; 2049 2050 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2051 if (!bio) 2052 return -EIO; 2053 bio->bi_iter.bi_size = 0; 2054 map_length = length; 2055 2056 ret = btrfs_map_block(fs_info, WRITE, logical, 2057 &map_length, &bbio, mirror_num); 2058 if (ret) { 2059 bio_put(bio); 2060 return -EIO; 2061 } 2062 BUG_ON(mirror_num != bbio->mirror_num); 2063 sector = bbio->stripes[mirror_num-1].physical >> 9; 2064 bio->bi_iter.bi_sector = sector; 2065 dev = bbio->stripes[mirror_num-1].dev; 2066 btrfs_put_bbio(bbio); 2067 if (!dev || !dev->bdev || !dev->writeable) { 2068 bio_put(bio); 2069 return -EIO; 2070 } 2071 bio->bi_bdev = dev->bdev; 2072 bio_add_page(bio, page, length, pg_offset); 2073 2074 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2075 /* try to remap that extent elsewhere? */ 2076 bio_put(bio); 2077 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2078 return -EIO; 2079 } 2080 2081 printk_ratelimited_in_rcu(KERN_INFO 2082 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2083 btrfs_ino(inode), start, 2084 rcu_str_deref(dev->name), sector); 2085 bio_put(bio); 2086 return 0; 2087 } 2088 2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2090 int mirror_num) 2091 { 2092 u64 start = eb->start; 2093 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2094 int ret = 0; 2095 2096 if (root->fs_info->sb->s_flags & MS_RDONLY) 2097 return -EROFS; 2098 2099 for (i = 0; i < num_pages; i++) { 2100 struct page *p = eb->pages[i]; 2101 2102 ret = repair_io_failure(root->fs_info->btree_inode, start, 2103 PAGE_CACHE_SIZE, start, p, 2104 start - page_offset(p), mirror_num); 2105 if (ret) 2106 break; 2107 start += PAGE_CACHE_SIZE; 2108 } 2109 2110 return ret; 2111 } 2112 2113 /* 2114 * each time an IO finishes, we do a fast check in the IO failure tree 2115 * to see if we need to process or clean up an io_failure_record 2116 */ 2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2118 unsigned int pg_offset) 2119 { 2120 u64 private; 2121 u64 private_failure; 2122 struct io_failure_record *failrec; 2123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2124 struct extent_state *state; 2125 int num_copies; 2126 int ret; 2127 2128 private = 0; 2129 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2130 (u64)-1, 1, EXTENT_DIRTY, 0); 2131 if (!ret) 2132 return 0; 2133 2134 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2135 &private_failure); 2136 if (ret) 2137 return 0; 2138 2139 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2140 BUG_ON(!failrec->this_mirror); 2141 2142 if (failrec->in_validation) { 2143 /* there was no real error, just free the record */ 2144 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2145 failrec->start); 2146 goto out; 2147 } 2148 if (fs_info->sb->s_flags & MS_RDONLY) 2149 goto out; 2150 2151 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2152 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2153 failrec->start, 2154 EXTENT_LOCKED); 2155 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2156 2157 if (state && state->start <= failrec->start && 2158 state->end >= failrec->start + failrec->len - 1) { 2159 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2160 failrec->len); 2161 if (num_copies > 1) { 2162 repair_io_failure(inode, start, failrec->len, 2163 failrec->logical, page, 2164 pg_offset, failrec->failed_mirror); 2165 } 2166 } 2167 2168 out: 2169 free_io_failure(inode, failrec); 2170 2171 return 0; 2172 } 2173 2174 /* 2175 * Can be called when 2176 * - hold extent lock 2177 * - under ordered extent 2178 * - the inode is freeing 2179 */ 2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2181 { 2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2183 struct io_failure_record *failrec; 2184 struct extent_state *state, *next; 2185 2186 if (RB_EMPTY_ROOT(&failure_tree->state)) 2187 return; 2188 2189 spin_lock(&failure_tree->lock); 2190 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2191 while (state) { 2192 if (state->start > end) 2193 break; 2194 2195 ASSERT(state->end <= end); 2196 2197 next = next_state(state); 2198 2199 failrec = (struct io_failure_record *)(unsigned long)state->private; 2200 free_extent_state(state); 2201 kfree(failrec); 2202 2203 state = next; 2204 } 2205 spin_unlock(&failure_tree->lock); 2206 } 2207 2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2209 struct io_failure_record **failrec_ret) 2210 { 2211 struct io_failure_record *failrec; 2212 u64 private; 2213 struct extent_map *em; 2214 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2216 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2217 int ret; 2218 u64 logical; 2219 2220 ret = get_state_private(failure_tree, start, &private); 2221 if (ret) { 2222 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2223 if (!failrec) 2224 return -ENOMEM; 2225 2226 failrec->start = start; 2227 failrec->len = end - start + 1; 2228 failrec->this_mirror = 0; 2229 failrec->bio_flags = 0; 2230 failrec->in_validation = 0; 2231 2232 read_lock(&em_tree->lock); 2233 em = lookup_extent_mapping(em_tree, start, failrec->len); 2234 if (!em) { 2235 read_unlock(&em_tree->lock); 2236 kfree(failrec); 2237 return -EIO; 2238 } 2239 2240 if (em->start > start || em->start + em->len <= start) { 2241 free_extent_map(em); 2242 em = NULL; 2243 } 2244 read_unlock(&em_tree->lock); 2245 if (!em) { 2246 kfree(failrec); 2247 return -EIO; 2248 } 2249 2250 logical = start - em->start; 2251 logical = em->block_start + logical; 2252 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2253 logical = em->block_start; 2254 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2255 extent_set_compress_type(&failrec->bio_flags, 2256 em->compress_type); 2257 } 2258 2259 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2260 logical, start, failrec->len); 2261 2262 failrec->logical = logical; 2263 free_extent_map(em); 2264 2265 /* set the bits in the private failure tree */ 2266 ret = set_extent_bits(failure_tree, start, end, 2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2268 if (ret >= 0) 2269 ret = set_state_private(failure_tree, start, 2270 (u64)(unsigned long)failrec); 2271 /* set the bits in the inode's tree */ 2272 if (ret >= 0) 2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2274 GFP_NOFS); 2275 if (ret < 0) { 2276 kfree(failrec); 2277 return ret; 2278 } 2279 } else { 2280 failrec = (struct io_failure_record *)(unsigned long)private; 2281 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2282 failrec->logical, failrec->start, failrec->len, 2283 failrec->in_validation); 2284 /* 2285 * when data can be on disk more than twice, add to failrec here 2286 * (e.g. with a list for failed_mirror) to make 2287 * clean_io_failure() clean all those errors at once. 2288 */ 2289 } 2290 2291 *failrec_ret = failrec; 2292 2293 return 0; 2294 } 2295 2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2297 struct io_failure_record *failrec, int failed_mirror) 2298 { 2299 int num_copies; 2300 2301 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2302 failrec->logical, failrec->len); 2303 if (num_copies == 1) { 2304 /* 2305 * we only have a single copy of the data, so don't bother with 2306 * all the retry and error correction code that follows. no 2307 * matter what the error is, it is very likely to persist. 2308 */ 2309 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2310 num_copies, failrec->this_mirror, failed_mirror); 2311 return 0; 2312 } 2313 2314 /* 2315 * there are two premises: 2316 * a) deliver good data to the caller 2317 * b) correct the bad sectors on disk 2318 */ 2319 if (failed_bio->bi_vcnt > 1) { 2320 /* 2321 * to fulfill b), we need to know the exact failing sectors, as 2322 * we don't want to rewrite any more than the failed ones. thus, 2323 * we need separate read requests for the failed bio 2324 * 2325 * if the following BUG_ON triggers, our validation request got 2326 * merged. we need separate requests for our algorithm to work. 2327 */ 2328 BUG_ON(failrec->in_validation); 2329 failrec->in_validation = 1; 2330 failrec->this_mirror = failed_mirror; 2331 } else { 2332 /* 2333 * we're ready to fulfill a) and b) alongside. get a good copy 2334 * of the failed sector and if we succeed, we have setup 2335 * everything for repair_io_failure to do the rest for us. 2336 */ 2337 if (failrec->in_validation) { 2338 BUG_ON(failrec->this_mirror != failed_mirror); 2339 failrec->in_validation = 0; 2340 failrec->this_mirror = 0; 2341 } 2342 failrec->failed_mirror = failed_mirror; 2343 failrec->this_mirror++; 2344 if (failrec->this_mirror == failed_mirror) 2345 failrec->this_mirror++; 2346 } 2347 2348 if (failrec->this_mirror > num_copies) { 2349 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2350 num_copies, failrec->this_mirror, failed_mirror); 2351 return 0; 2352 } 2353 2354 return 1; 2355 } 2356 2357 2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2359 struct io_failure_record *failrec, 2360 struct page *page, int pg_offset, int icsum, 2361 bio_end_io_t *endio_func, void *data) 2362 { 2363 struct bio *bio; 2364 struct btrfs_io_bio *btrfs_failed_bio; 2365 struct btrfs_io_bio *btrfs_bio; 2366 2367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2368 if (!bio) 2369 return NULL; 2370 2371 bio->bi_end_io = endio_func; 2372 bio->bi_iter.bi_sector = failrec->logical >> 9; 2373 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2374 bio->bi_iter.bi_size = 0; 2375 bio->bi_private = data; 2376 2377 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2378 if (btrfs_failed_bio->csum) { 2379 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2380 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2381 2382 btrfs_bio = btrfs_io_bio(bio); 2383 btrfs_bio->csum = btrfs_bio->csum_inline; 2384 icsum *= csum_size; 2385 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2386 csum_size); 2387 } 2388 2389 bio_add_page(bio, page, failrec->len, pg_offset); 2390 2391 return bio; 2392 } 2393 2394 /* 2395 * this is a generic handler for readpage errors (default 2396 * readpage_io_failed_hook). if other copies exist, read those and write back 2397 * good data to the failed position. does not investigate in remapping the 2398 * failed extent elsewhere, hoping the device will be smart enough to do this as 2399 * needed 2400 */ 2401 2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2403 struct page *page, u64 start, u64 end, 2404 int failed_mirror) 2405 { 2406 struct io_failure_record *failrec; 2407 struct inode *inode = page->mapping->host; 2408 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2409 struct bio *bio; 2410 int read_mode; 2411 int ret; 2412 2413 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2414 2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2416 if (ret) 2417 return ret; 2418 2419 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2420 if (!ret) { 2421 free_io_failure(inode, failrec); 2422 return -EIO; 2423 } 2424 2425 if (failed_bio->bi_vcnt > 1) 2426 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2427 else 2428 read_mode = READ_SYNC; 2429 2430 phy_offset >>= inode->i_sb->s_blocksize_bits; 2431 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2432 start - page_offset(page), 2433 (int)phy_offset, failed_bio->bi_end_io, 2434 NULL); 2435 if (!bio) { 2436 free_io_failure(inode, failrec); 2437 return -EIO; 2438 } 2439 2440 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2441 read_mode, failrec->this_mirror, failrec->in_validation); 2442 2443 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2444 failrec->this_mirror, 2445 failrec->bio_flags, 0); 2446 if (ret) { 2447 free_io_failure(inode, failrec); 2448 bio_put(bio); 2449 } 2450 2451 return ret; 2452 } 2453 2454 /* lots and lots of room for performance fixes in the end_bio funcs */ 2455 2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2457 { 2458 int uptodate = (err == 0); 2459 struct extent_io_tree *tree; 2460 int ret = 0; 2461 2462 tree = &BTRFS_I(page->mapping->host)->io_tree; 2463 2464 if (tree->ops && tree->ops->writepage_end_io_hook) { 2465 ret = tree->ops->writepage_end_io_hook(page, start, 2466 end, NULL, uptodate); 2467 if (ret) 2468 uptodate = 0; 2469 } 2470 2471 if (!uptodate) { 2472 ClearPageUptodate(page); 2473 SetPageError(page); 2474 ret = ret < 0 ? ret : -EIO; 2475 mapping_set_error(page->mapping, ret); 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * after a writepage IO is done, we need to: 2482 * clear the uptodate bits on error 2483 * clear the writeback bits in the extent tree for this IO 2484 * end_page_writeback if the page has no more pending IO 2485 * 2486 * Scheduling is not allowed, so the extent state tree is expected 2487 * to have one and only one object corresponding to this IO. 2488 */ 2489 static void end_bio_extent_writepage(struct bio *bio) 2490 { 2491 struct bio_vec *bvec; 2492 u64 start; 2493 u64 end; 2494 int i; 2495 2496 bio_for_each_segment_all(bvec, bio, i) { 2497 struct page *page = bvec->bv_page; 2498 2499 /* We always issue full-page reads, but if some block 2500 * in a page fails to read, blk_update_request() will 2501 * advance bv_offset and adjust bv_len to compensate. 2502 * Print a warning for nonzero offsets, and an error 2503 * if they don't add up to a full page. */ 2504 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2505 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2506 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2507 "partial page write in btrfs with offset %u and length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 else 2510 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2511 "incomplete page write in btrfs with offset %u and " 2512 "length %u", 2513 bvec->bv_offset, bvec->bv_len); 2514 } 2515 2516 start = page_offset(page); 2517 end = start + bvec->bv_offset + bvec->bv_len - 1; 2518 2519 if (end_extent_writepage(page, bio->bi_error, start, end)) 2520 continue; 2521 2522 end_page_writeback(page); 2523 } 2524 2525 bio_put(bio); 2526 } 2527 2528 static void 2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2530 int uptodate) 2531 { 2532 struct extent_state *cached = NULL; 2533 u64 end = start + len - 1; 2534 2535 if (uptodate && tree->track_uptodate) 2536 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2537 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2538 } 2539 2540 /* 2541 * after a readpage IO is done, we need to: 2542 * clear the uptodate bits on error 2543 * set the uptodate bits if things worked 2544 * set the page up to date if all extents in the tree are uptodate 2545 * clear the lock bit in the extent tree 2546 * unlock the page if there are no other extents locked for it 2547 * 2548 * Scheduling is not allowed, so the extent state tree is expected 2549 * to have one and only one object corresponding to this IO. 2550 */ 2551 static void end_bio_extent_readpage(struct bio *bio) 2552 { 2553 struct bio_vec *bvec; 2554 int uptodate = !bio->bi_error; 2555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2556 struct extent_io_tree *tree; 2557 u64 offset = 0; 2558 u64 start; 2559 u64 end; 2560 u64 len; 2561 u64 extent_start = 0; 2562 u64 extent_len = 0; 2563 int mirror; 2564 int ret; 2565 int i; 2566 2567 bio_for_each_segment_all(bvec, bio, i) { 2568 struct page *page = bvec->bv_page; 2569 struct inode *inode = page->mapping->host; 2570 2571 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2572 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2573 bio->bi_error, io_bio->mirror_num); 2574 tree = &BTRFS_I(inode)->io_tree; 2575 2576 /* We always issue full-page reads, but if some block 2577 * in a page fails to read, blk_update_request() will 2578 * advance bv_offset and adjust bv_len to compensate. 2579 * Print a warning for nonzero offsets, and an error 2580 * if they don't add up to a full page. */ 2581 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2582 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2583 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2584 "partial page read in btrfs with offset %u and length %u", 2585 bvec->bv_offset, bvec->bv_len); 2586 else 2587 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2588 "incomplete page read in btrfs with offset %u and " 2589 "length %u", 2590 bvec->bv_offset, bvec->bv_len); 2591 } 2592 2593 start = page_offset(page); 2594 end = start + bvec->bv_offset + bvec->bv_len - 1; 2595 len = bvec->bv_len; 2596 2597 mirror = io_bio->mirror_num; 2598 if (likely(uptodate && tree->ops && 2599 tree->ops->readpage_end_io_hook)) { 2600 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2601 page, start, end, 2602 mirror); 2603 if (ret) 2604 uptodate = 0; 2605 else 2606 clean_io_failure(inode, start, page, 0); 2607 } 2608 2609 if (likely(uptodate)) 2610 goto readpage_ok; 2611 2612 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2613 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2614 if (!ret && !bio->bi_error) 2615 uptodate = 1; 2616 } else { 2617 /* 2618 * The generic bio_readpage_error handles errors the 2619 * following way: If possible, new read requests are 2620 * created and submitted and will end up in 2621 * end_bio_extent_readpage as well (if we're lucky, not 2622 * in the !uptodate case). In that case it returns 0 and 2623 * we just go on with the next page in our bio. If it 2624 * can't handle the error it will return -EIO and we 2625 * remain responsible for that page. 2626 */ 2627 ret = bio_readpage_error(bio, offset, page, start, end, 2628 mirror); 2629 if (ret == 0) { 2630 uptodate = !bio->bi_error; 2631 offset += len; 2632 continue; 2633 } 2634 } 2635 readpage_ok: 2636 if (likely(uptodate)) { 2637 loff_t i_size = i_size_read(inode); 2638 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2639 unsigned off; 2640 2641 /* Zero out the end if this page straddles i_size */ 2642 off = i_size & (PAGE_CACHE_SIZE-1); 2643 if (page->index == end_index && off) 2644 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2645 SetPageUptodate(page); 2646 } else { 2647 ClearPageUptodate(page); 2648 SetPageError(page); 2649 } 2650 unlock_page(page); 2651 offset += len; 2652 2653 if (unlikely(!uptodate)) { 2654 if (extent_len) { 2655 endio_readpage_release_extent(tree, 2656 extent_start, 2657 extent_len, 1); 2658 extent_start = 0; 2659 extent_len = 0; 2660 } 2661 endio_readpage_release_extent(tree, start, 2662 end - start + 1, 0); 2663 } else if (!extent_len) { 2664 extent_start = start; 2665 extent_len = end + 1 - start; 2666 } else if (extent_start + extent_len == start) { 2667 extent_len += end + 1 - start; 2668 } else { 2669 endio_readpage_release_extent(tree, extent_start, 2670 extent_len, uptodate); 2671 extent_start = start; 2672 extent_len = end + 1 - start; 2673 } 2674 } 2675 2676 if (extent_len) 2677 endio_readpage_release_extent(tree, extent_start, extent_len, 2678 uptodate); 2679 if (io_bio->end_io) 2680 io_bio->end_io(io_bio, bio->bi_error); 2681 bio_put(bio); 2682 } 2683 2684 /* 2685 * this allocates from the btrfs_bioset. We're returning a bio right now 2686 * but you can call btrfs_io_bio for the appropriate container_of magic 2687 */ 2688 struct bio * 2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2690 gfp_t gfp_flags) 2691 { 2692 struct btrfs_io_bio *btrfs_bio; 2693 struct bio *bio; 2694 2695 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2696 2697 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2698 while (!bio && (nr_vecs /= 2)) { 2699 bio = bio_alloc_bioset(gfp_flags, 2700 nr_vecs, btrfs_bioset); 2701 } 2702 } 2703 2704 if (bio) { 2705 bio->bi_bdev = bdev; 2706 bio->bi_iter.bi_sector = first_sector; 2707 btrfs_bio = btrfs_io_bio(bio); 2708 btrfs_bio->csum = NULL; 2709 btrfs_bio->csum_allocated = NULL; 2710 btrfs_bio->end_io = NULL; 2711 } 2712 return bio; 2713 } 2714 2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2716 { 2717 struct btrfs_io_bio *btrfs_bio; 2718 struct bio *new; 2719 2720 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2721 if (new) { 2722 btrfs_bio = btrfs_io_bio(new); 2723 btrfs_bio->csum = NULL; 2724 btrfs_bio->csum_allocated = NULL; 2725 btrfs_bio->end_io = NULL; 2726 } 2727 return new; 2728 } 2729 2730 /* this also allocates from the btrfs_bioset */ 2731 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2732 { 2733 struct btrfs_io_bio *btrfs_bio; 2734 struct bio *bio; 2735 2736 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2737 if (bio) { 2738 btrfs_bio = btrfs_io_bio(bio); 2739 btrfs_bio->csum = NULL; 2740 btrfs_bio->csum_allocated = NULL; 2741 btrfs_bio->end_io = NULL; 2742 } 2743 return bio; 2744 } 2745 2746 2747 static int __must_check submit_one_bio(int rw, struct bio *bio, 2748 int mirror_num, unsigned long bio_flags) 2749 { 2750 int ret = 0; 2751 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2752 struct page *page = bvec->bv_page; 2753 struct extent_io_tree *tree = bio->bi_private; 2754 u64 start; 2755 2756 start = page_offset(page) + bvec->bv_offset; 2757 2758 bio->bi_private = NULL; 2759 2760 bio_get(bio); 2761 2762 if (tree->ops && tree->ops->submit_bio_hook) 2763 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2764 mirror_num, bio_flags, start); 2765 else 2766 btrfsic_submit_bio(rw, bio); 2767 2768 bio_put(bio); 2769 return ret; 2770 } 2771 2772 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2773 unsigned long offset, size_t size, struct bio *bio, 2774 unsigned long bio_flags) 2775 { 2776 int ret = 0; 2777 if (tree->ops && tree->ops->merge_bio_hook) 2778 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2779 bio_flags); 2780 BUG_ON(ret < 0); 2781 return ret; 2782 2783 } 2784 2785 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2786 struct page *page, sector_t sector, 2787 size_t size, unsigned long offset, 2788 struct block_device *bdev, 2789 struct bio **bio_ret, 2790 unsigned long max_pages, 2791 bio_end_io_t end_io_func, 2792 int mirror_num, 2793 unsigned long prev_bio_flags, 2794 unsigned long bio_flags) 2795 { 2796 int ret = 0; 2797 struct bio *bio; 2798 int contig = 0; 2799 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2800 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2801 2802 if (bio_ret && *bio_ret) { 2803 bio = *bio_ret; 2804 if (old_compressed) 2805 contig = bio->bi_iter.bi_sector == sector; 2806 else 2807 contig = bio_end_sector(bio) == sector; 2808 2809 if (prev_bio_flags != bio_flags || !contig || 2810 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2811 bio_add_page(bio, page, page_size, offset) < page_size) { 2812 ret = submit_one_bio(rw, bio, mirror_num, 2813 prev_bio_flags); 2814 if (ret < 0) { 2815 *bio_ret = NULL; 2816 return ret; 2817 } 2818 bio = NULL; 2819 } else { 2820 return 0; 2821 } 2822 } 2823 2824 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2825 GFP_NOFS | __GFP_HIGH); 2826 if (!bio) 2827 return -ENOMEM; 2828 2829 bio_add_page(bio, page, page_size, offset); 2830 bio->bi_end_io = end_io_func; 2831 bio->bi_private = tree; 2832 2833 if (bio_ret) 2834 *bio_ret = bio; 2835 else 2836 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2837 2838 return ret; 2839 } 2840 2841 static void attach_extent_buffer_page(struct extent_buffer *eb, 2842 struct page *page) 2843 { 2844 if (!PagePrivate(page)) { 2845 SetPagePrivate(page); 2846 page_cache_get(page); 2847 set_page_private(page, (unsigned long)eb); 2848 } else { 2849 WARN_ON(page->private != (unsigned long)eb); 2850 } 2851 } 2852 2853 void set_page_extent_mapped(struct page *page) 2854 { 2855 if (!PagePrivate(page)) { 2856 SetPagePrivate(page); 2857 page_cache_get(page); 2858 set_page_private(page, EXTENT_PAGE_PRIVATE); 2859 } 2860 } 2861 2862 static struct extent_map * 2863 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2864 u64 start, u64 len, get_extent_t *get_extent, 2865 struct extent_map **em_cached) 2866 { 2867 struct extent_map *em; 2868 2869 if (em_cached && *em_cached) { 2870 em = *em_cached; 2871 if (extent_map_in_tree(em) && start >= em->start && 2872 start < extent_map_end(em)) { 2873 atomic_inc(&em->refs); 2874 return em; 2875 } 2876 2877 free_extent_map(em); 2878 *em_cached = NULL; 2879 } 2880 2881 em = get_extent(inode, page, pg_offset, start, len, 0); 2882 if (em_cached && !IS_ERR_OR_NULL(em)) { 2883 BUG_ON(*em_cached); 2884 atomic_inc(&em->refs); 2885 *em_cached = em; 2886 } 2887 return em; 2888 } 2889 /* 2890 * basic readpage implementation. Locked extent state structs are inserted 2891 * into the tree that are removed when the IO is done (by the end_io 2892 * handlers) 2893 * XXX JDM: This needs looking at to ensure proper page locking 2894 */ 2895 static int __do_readpage(struct extent_io_tree *tree, 2896 struct page *page, 2897 get_extent_t *get_extent, 2898 struct extent_map **em_cached, 2899 struct bio **bio, int mirror_num, 2900 unsigned long *bio_flags, int rw) 2901 { 2902 struct inode *inode = page->mapping->host; 2903 u64 start = page_offset(page); 2904 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2905 u64 end; 2906 u64 cur = start; 2907 u64 extent_offset; 2908 u64 last_byte = i_size_read(inode); 2909 u64 block_start; 2910 u64 cur_end; 2911 sector_t sector; 2912 struct extent_map *em; 2913 struct block_device *bdev; 2914 int ret; 2915 int nr = 0; 2916 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2917 size_t pg_offset = 0; 2918 size_t iosize; 2919 size_t disk_io_size; 2920 size_t blocksize = inode->i_sb->s_blocksize; 2921 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2922 2923 set_page_extent_mapped(page); 2924 2925 end = page_end; 2926 if (!PageUptodate(page)) { 2927 if (cleancache_get_page(page) == 0) { 2928 BUG_ON(blocksize != PAGE_SIZE); 2929 unlock_extent(tree, start, end); 2930 goto out; 2931 } 2932 } 2933 2934 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2935 char *userpage; 2936 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2937 2938 if (zero_offset) { 2939 iosize = PAGE_CACHE_SIZE - zero_offset; 2940 userpage = kmap_atomic(page); 2941 memset(userpage + zero_offset, 0, iosize); 2942 flush_dcache_page(page); 2943 kunmap_atomic(userpage); 2944 } 2945 } 2946 while (cur <= end) { 2947 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2948 2949 if (cur >= last_byte) { 2950 char *userpage; 2951 struct extent_state *cached = NULL; 2952 2953 iosize = PAGE_CACHE_SIZE - pg_offset; 2954 userpage = kmap_atomic(page); 2955 memset(userpage + pg_offset, 0, iosize); 2956 flush_dcache_page(page); 2957 kunmap_atomic(userpage); 2958 set_extent_uptodate(tree, cur, cur + iosize - 1, 2959 &cached, GFP_NOFS); 2960 if (!parent_locked) 2961 unlock_extent_cached(tree, cur, 2962 cur + iosize - 1, 2963 &cached, GFP_NOFS); 2964 break; 2965 } 2966 em = __get_extent_map(inode, page, pg_offset, cur, 2967 end - cur + 1, get_extent, em_cached); 2968 if (IS_ERR_OR_NULL(em)) { 2969 SetPageError(page); 2970 if (!parent_locked) 2971 unlock_extent(tree, cur, end); 2972 break; 2973 } 2974 extent_offset = cur - em->start; 2975 BUG_ON(extent_map_end(em) <= cur); 2976 BUG_ON(end < cur); 2977 2978 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2979 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2980 extent_set_compress_type(&this_bio_flag, 2981 em->compress_type); 2982 } 2983 2984 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2985 cur_end = min(extent_map_end(em) - 1, end); 2986 iosize = ALIGN(iosize, blocksize); 2987 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2988 disk_io_size = em->block_len; 2989 sector = em->block_start >> 9; 2990 } else { 2991 sector = (em->block_start + extent_offset) >> 9; 2992 disk_io_size = iosize; 2993 } 2994 bdev = em->bdev; 2995 block_start = em->block_start; 2996 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2997 block_start = EXTENT_MAP_HOLE; 2998 free_extent_map(em); 2999 em = NULL; 3000 3001 /* we've found a hole, just zero and go on */ 3002 if (block_start == EXTENT_MAP_HOLE) { 3003 char *userpage; 3004 struct extent_state *cached = NULL; 3005 3006 userpage = kmap_atomic(page); 3007 memset(userpage + pg_offset, 0, iosize); 3008 flush_dcache_page(page); 3009 kunmap_atomic(userpage); 3010 3011 set_extent_uptodate(tree, cur, cur + iosize - 1, 3012 &cached, GFP_NOFS); 3013 unlock_extent_cached(tree, cur, cur + iosize - 1, 3014 &cached, GFP_NOFS); 3015 cur = cur + iosize; 3016 pg_offset += iosize; 3017 continue; 3018 } 3019 /* the get_extent function already copied into the page */ 3020 if (test_range_bit(tree, cur, cur_end, 3021 EXTENT_UPTODATE, 1, NULL)) { 3022 check_page_uptodate(tree, page); 3023 if (!parent_locked) 3024 unlock_extent(tree, cur, cur + iosize - 1); 3025 cur = cur + iosize; 3026 pg_offset += iosize; 3027 continue; 3028 } 3029 /* we have an inline extent but it didn't get marked up 3030 * to date. Error out 3031 */ 3032 if (block_start == EXTENT_MAP_INLINE) { 3033 SetPageError(page); 3034 if (!parent_locked) 3035 unlock_extent(tree, cur, cur + iosize - 1); 3036 cur = cur + iosize; 3037 pg_offset += iosize; 3038 continue; 3039 } 3040 3041 pnr -= page->index; 3042 ret = submit_extent_page(rw, tree, page, 3043 sector, disk_io_size, pg_offset, 3044 bdev, bio, pnr, 3045 end_bio_extent_readpage, mirror_num, 3046 *bio_flags, 3047 this_bio_flag); 3048 if (!ret) { 3049 nr++; 3050 *bio_flags = this_bio_flag; 3051 } else { 3052 SetPageError(page); 3053 if (!parent_locked) 3054 unlock_extent(tree, cur, cur + iosize - 1); 3055 } 3056 cur = cur + iosize; 3057 pg_offset += iosize; 3058 } 3059 out: 3060 if (!nr) { 3061 if (!PageError(page)) 3062 SetPageUptodate(page); 3063 unlock_page(page); 3064 } 3065 return 0; 3066 } 3067 3068 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3069 struct page *pages[], int nr_pages, 3070 u64 start, u64 end, 3071 get_extent_t *get_extent, 3072 struct extent_map **em_cached, 3073 struct bio **bio, int mirror_num, 3074 unsigned long *bio_flags, int rw) 3075 { 3076 struct inode *inode; 3077 struct btrfs_ordered_extent *ordered; 3078 int index; 3079 3080 inode = pages[0]->mapping->host; 3081 while (1) { 3082 lock_extent(tree, start, end); 3083 ordered = btrfs_lookup_ordered_range(inode, start, 3084 end - start + 1); 3085 if (!ordered) 3086 break; 3087 unlock_extent(tree, start, end); 3088 btrfs_start_ordered_extent(inode, ordered, 1); 3089 btrfs_put_ordered_extent(ordered); 3090 } 3091 3092 for (index = 0; index < nr_pages; index++) { 3093 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3094 mirror_num, bio_flags, rw); 3095 page_cache_release(pages[index]); 3096 } 3097 } 3098 3099 static void __extent_readpages(struct extent_io_tree *tree, 3100 struct page *pages[], 3101 int nr_pages, get_extent_t *get_extent, 3102 struct extent_map **em_cached, 3103 struct bio **bio, int mirror_num, 3104 unsigned long *bio_flags, int rw) 3105 { 3106 u64 start = 0; 3107 u64 end = 0; 3108 u64 page_start; 3109 int index; 3110 int first_index = 0; 3111 3112 for (index = 0; index < nr_pages; index++) { 3113 page_start = page_offset(pages[index]); 3114 if (!end) { 3115 start = page_start; 3116 end = start + PAGE_CACHE_SIZE - 1; 3117 first_index = index; 3118 } else if (end + 1 == page_start) { 3119 end += PAGE_CACHE_SIZE; 3120 } else { 3121 __do_contiguous_readpages(tree, &pages[first_index], 3122 index - first_index, start, 3123 end, get_extent, em_cached, 3124 bio, mirror_num, bio_flags, 3125 rw); 3126 start = page_start; 3127 end = start + PAGE_CACHE_SIZE - 1; 3128 first_index = index; 3129 } 3130 } 3131 3132 if (end) 3133 __do_contiguous_readpages(tree, &pages[first_index], 3134 index - first_index, start, 3135 end, get_extent, em_cached, bio, 3136 mirror_num, bio_flags, rw); 3137 } 3138 3139 static int __extent_read_full_page(struct extent_io_tree *tree, 3140 struct page *page, 3141 get_extent_t *get_extent, 3142 struct bio **bio, int mirror_num, 3143 unsigned long *bio_flags, int rw) 3144 { 3145 struct inode *inode = page->mapping->host; 3146 struct btrfs_ordered_extent *ordered; 3147 u64 start = page_offset(page); 3148 u64 end = start + PAGE_CACHE_SIZE - 1; 3149 int ret; 3150 3151 while (1) { 3152 lock_extent(tree, start, end); 3153 ordered = btrfs_lookup_ordered_extent(inode, start); 3154 if (!ordered) 3155 break; 3156 unlock_extent(tree, start, end); 3157 btrfs_start_ordered_extent(inode, ordered, 1); 3158 btrfs_put_ordered_extent(ordered); 3159 } 3160 3161 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3162 bio_flags, rw); 3163 return ret; 3164 } 3165 3166 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3167 get_extent_t *get_extent, int mirror_num) 3168 { 3169 struct bio *bio = NULL; 3170 unsigned long bio_flags = 0; 3171 int ret; 3172 3173 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3174 &bio_flags, READ); 3175 if (bio) 3176 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3177 return ret; 3178 } 3179 3180 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3181 get_extent_t *get_extent, int mirror_num) 3182 { 3183 struct bio *bio = NULL; 3184 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3185 int ret; 3186 3187 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3188 &bio_flags, READ); 3189 if (bio) 3190 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3191 return ret; 3192 } 3193 3194 static noinline void update_nr_written(struct page *page, 3195 struct writeback_control *wbc, 3196 unsigned long nr_written) 3197 { 3198 wbc->nr_to_write -= nr_written; 3199 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3200 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3201 page->mapping->writeback_index = page->index + nr_written; 3202 } 3203 3204 /* 3205 * helper for __extent_writepage, doing all of the delayed allocation setup. 3206 * 3207 * This returns 1 if our fill_delalloc function did all the work required 3208 * to write the page (copy into inline extent). In this case the IO has 3209 * been started and the page is already unlocked. 3210 * 3211 * This returns 0 if all went well (page still locked) 3212 * This returns < 0 if there were errors (page still locked) 3213 */ 3214 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3215 struct page *page, struct writeback_control *wbc, 3216 struct extent_page_data *epd, 3217 u64 delalloc_start, 3218 unsigned long *nr_written) 3219 { 3220 struct extent_io_tree *tree = epd->tree; 3221 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3222 u64 nr_delalloc; 3223 u64 delalloc_to_write = 0; 3224 u64 delalloc_end = 0; 3225 int ret; 3226 int page_started = 0; 3227 3228 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3229 return 0; 3230 3231 while (delalloc_end < page_end) { 3232 nr_delalloc = find_lock_delalloc_range(inode, tree, 3233 page, 3234 &delalloc_start, 3235 &delalloc_end, 3236 BTRFS_MAX_EXTENT_SIZE); 3237 if (nr_delalloc == 0) { 3238 delalloc_start = delalloc_end + 1; 3239 continue; 3240 } 3241 ret = tree->ops->fill_delalloc(inode, page, 3242 delalloc_start, 3243 delalloc_end, 3244 &page_started, 3245 nr_written); 3246 /* File system has been set read-only */ 3247 if (ret) { 3248 SetPageError(page); 3249 /* fill_delalloc should be return < 0 for error 3250 * but just in case, we use > 0 here meaning the 3251 * IO is started, so we don't want to return > 0 3252 * unless things are going well. 3253 */ 3254 ret = ret < 0 ? ret : -EIO; 3255 goto done; 3256 } 3257 /* 3258 * delalloc_end is already one less than the total 3259 * length, so we don't subtract one from 3260 * PAGE_CACHE_SIZE 3261 */ 3262 delalloc_to_write += (delalloc_end - delalloc_start + 3263 PAGE_CACHE_SIZE) >> 3264 PAGE_CACHE_SHIFT; 3265 delalloc_start = delalloc_end + 1; 3266 } 3267 if (wbc->nr_to_write < delalloc_to_write) { 3268 int thresh = 8192; 3269 3270 if (delalloc_to_write < thresh * 2) 3271 thresh = delalloc_to_write; 3272 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3273 thresh); 3274 } 3275 3276 /* did the fill delalloc function already unlock and start 3277 * the IO? 3278 */ 3279 if (page_started) { 3280 /* 3281 * we've unlocked the page, so we can't update 3282 * the mapping's writeback index, just update 3283 * nr_to_write. 3284 */ 3285 wbc->nr_to_write -= *nr_written; 3286 return 1; 3287 } 3288 3289 ret = 0; 3290 3291 done: 3292 return ret; 3293 } 3294 3295 /* 3296 * helper for __extent_writepage. This calls the writepage start hooks, 3297 * and does the loop to map the page into extents and bios. 3298 * 3299 * We return 1 if the IO is started and the page is unlocked, 3300 * 0 if all went well (page still locked) 3301 * < 0 if there were errors (page still locked) 3302 */ 3303 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3304 struct page *page, 3305 struct writeback_control *wbc, 3306 struct extent_page_data *epd, 3307 loff_t i_size, 3308 unsigned long nr_written, 3309 int write_flags, int *nr_ret) 3310 { 3311 struct extent_io_tree *tree = epd->tree; 3312 u64 start = page_offset(page); 3313 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3314 u64 end; 3315 u64 cur = start; 3316 u64 extent_offset; 3317 u64 block_start; 3318 u64 iosize; 3319 sector_t sector; 3320 struct extent_state *cached_state = NULL; 3321 struct extent_map *em; 3322 struct block_device *bdev; 3323 size_t pg_offset = 0; 3324 size_t blocksize; 3325 int ret = 0; 3326 int nr = 0; 3327 bool compressed; 3328 3329 if (tree->ops && tree->ops->writepage_start_hook) { 3330 ret = tree->ops->writepage_start_hook(page, start, 3331 page_end); 3332 if (ret) { 3333 /* Fixup worker will requeue */ 3334 if (ret == -EBUSY) 3335 wbc->pages_skipped++; 3336 else 3337 redirty_page_for_writepage(wbc, page); 3338 3339 update_nr_written(page, wbc, nr_written); 3340 unlock_page(page); 3341 ret = 1; 3342 goto done_unlocked; 3343 } 3344 } 3345 3346 /* 3347 * we don't want to touch the inode after unlocking the page, 3348 * so we update the mapping writeback index now 3349 */ 3350 update_nr_written(page, wbc, nr_written + 1); 3351 3352 end = page_end; 3353 if (i_size <= start) { 3354 if (tree->ops && tree->ops->writepage_end_io_hook) 3355 tree->ops->writepage_end_io_hook(page, start, 3356 page_end, NULL, 1); 3357 goto done; 3358 } 3359 3360 blocksize = inode->i_sb->s_blocksize; 3361 3362 while (cur <= end) { 3363 u64 em_end; 3364 if (cur >= i_size) { 3365 if (tree->ops && tree->ops->writepage_end_io_hook) 3366 tree->ops->writepage_end_io_hook(page, cur, 3367 page_end, NULL, 1); 3368 break; 3369 } 3370 em = epd->get_extent(inode, page, pg_offset, cur, 3371 end - cur + 1, 1); 3372 if (IS_ERR_OR_NULL(em)) { 3373 SetPageError(page); 3374 ret = PTR_ERR_OR_ZERO(em); 3375 break; 3376 } 3377 3378 extent_offset = cur - em->start; 3379 em_end = extent_map_end(em); 3380 BUG_ON(em_end <= cur); 3381 BUG_ON(end < cur); 3382 iosize = min(em_end - cur, end - cur + 1); 3383 iosize = ALIGN(iosize, blocksize); 3384 sector = (em->block_start + extent_offset) >> 9; 3385 bdev = em->bdev; 3386 block_start = em->block_start; 3387 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3388 free_extent_map(em); 3389 em = NULL; 3390 3391 /* 3392 * compressed and inline extents are written through other 3393 * paths in the FS 3394 */ 3395 if (compressed || block_start == EXTENT_MAP_HOLE || 3396 block_start == EXTENT_MAP_INLINE) { 3397 /* 3398 * end_io notification does not happen here for 3399 * compressed extents 3400 */ 3401 if (!compressed && tree->ops && 3402 tree->ops->writepage_end_io_hook) 3403 tree->ops->writepage_end_io_hook(page, cur, 3404 cur + iosize - 1, 3405 NULL, 1); 3406 else if (compressed) { 3407 /* we don't want to end_page_writeback on 3408 * a compressed extent. this happens 3409 * elsewhere 3410 */ 3411 nr++; 3412 } 3413 3414 cur += iosize; 3415 pg_offset += iosize; 3416 continue; 3417 } 3418 3419 if (tree->ops && tree->ops->writepage_io_hook) { 3420 ret = tree->ops->writepage_io_hook(page, cur, 3421 cur + iosize - 1); 3422 } else { 3423 ret = 0; 3424 } 3425 if (ret) { 3426 SetPageError(page); 3427 } else { 3428 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3429 3430 set_range_writeback(tree, cur, cur + iosize - 1); 3431 if (!PageWriteback(page)) { 3432 btrfs_err(BTRFS_I(inode)->root->fs_info, 3433 "page %lu not writeback, cur %llu end %llu", 3434 page->index, cur, end); 3435 } 3436 3437 ret = submit_extent_page(write_flags, tree, page, 3438 sector, iosize, pg_offset, 3439 bdev, &epd->bio, max_nr, 3440 end_bio_extent_writepage, 3441 0, 0, 0); 3442 if (ret) 3443 SetPageError(page); 3444 } 3445 cur = cur + iosize; 3446 pg_offset += iosize; 3447 nr++; 3448 } 3449 done: 3450 *nr_ret = nr; 3451 3452 done_unlocked: 3453 3454 /* drop our reference on any cached states */ 3455 free_extent_state(cached_state); 3456 return ret; 3457 } 3458 3459 /* 3460 * the writepage semantics are similar to regular writepage. extent 3461 * records are inserted to lock ranges in the tree, and as dirty areas 3462 * are found, they are marked writeback. Then the lock bits are removed 3463 * and the end_io handler clears the writeback ranges 3464 */ 3465 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3466 void *data) 3467 { 3468 struct inode *inode = page->mapping->host; 3469 struct extent_page_data *epd = data; 3470 u64 start = page_offset(page); 3471 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3472 int ret; 3473 int nr = 0; 3474 size_t pg_offset = 0; 3475 loff_t i_size = i_size_read(inode); 3476 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3477 int write_flags; 3478 unsigned long nr_written = 0; 3479 3480 if (wbc->sync_mode == WB_SYNC_ALL) 3481 write_flags = WRITE_SYNC; 3482 else 3483 write_flags = WRITE; 3484 3485 trace___extent_writepage(page, inode, wbc); 3486 3487 WARN_ON(!PageLocked(page)); 3488 3489 ClearPageError(page); 3490 3491 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3492 if (page->index > end_index || 3493 (page->index == end_index && !pg_offset)) { 3494 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3495 unlock_page(page); 3496 return 0; 3497 } 3498 3499 if (page->index == end_index) { 3500 char *userpage; 3501 3502 userpage = kmap_atomic(page); 3503 memset(userpage + pg_offset, 0, 3504 PAGE_CACHE_SIZE - pg_offset); 3505 kunmap_atomic(userpage); 3506 flush_dcache_page(page); 3507 } 3508 3509 pg_offset = 0; 3510 3511 set_page_extent_mapped(page); 3512 3513 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3514 if (ret == 1) 3515 goto done_unlocked; 3516 if (ret) 3517 goto done; 3518 3519 ret = __extent_writepage_io(inode, page, wbc, epd, 3520 i_size, nr_written, write_flags, &nr); 3521 if (ret == 1) 3522 goto done_unlocked; 3523 3524 done: 3525 if (nr == 0) { 3526 /* make sure the mapping tag for page dirty gets cleared */ 3527 set_page_writeback(page); 3528 end_page_writeback(page); 3529 } 3530 if (PageError(page)) { 3531 ret = ret < 0 ? ret : -EIO; 3532 end_extent_writepage(page, ret, start, page_end); 3533 } 3534 unlock_page(page); 3535 return ret; 3536 3537 done_unlocked: 3538 return 0; 3539 } 3540 3541 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3542 { 3543 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3544 TASK_UNINTERRUPTIBLE); 3545 } 3546 3547 static noinline_for_stack int 3548 lock_extent_buffer_for_io(struct extent_buffer *eb, 3549 struct btrfs_fs_info *fs_info, 3550 struct extent_page_data *epd) 3551 { 3552 unsigned long i, num_pages; 3553 int flush = 0; 3554 int ret = 0; 3555 3556 if (!btrfs_try_tree_write_lock(eb)) { 3557 flush = 1; 3558 flush_write_bio(epd); 3559 btrfs_tree_lock(eb); 3560 } 3561 3562 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3563 btrfs_tree_unlock(eb); 3564 if (!epd->sync_io) 3565 return 0; 3566 if (!flush) { 3567 flush_write_bio(epd); 3568 flush = 1; 3569 } 3570 while (1) { 3571 wait_on_extent_buffer_writeback(eb); 3572 btrfs_tree_lock(eb); 3573 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3574 break; 3575 btrfs_tree_unlock(eb); 3576 } 3577 } 3578 3579 /* 3580 * We need to do this to prevent races in people who check if the eb is 3581 * under IO since we can end up having no IO bits set for a short period 3582 * of time. 3583 */ 3584 spin_lock(&eb->refs_lock); 3585 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3586 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3587 spin_unlock(&eb->refs_lock); 3588 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3589 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3590 -eb->len, 3591 fs_info->dirty_metadata_batch); 3592 ret = 1; 3593 } else { 3594 spin_unlock(&eb->refs_lock); 3595 } 3596 3597 btrfs_tree_unlock(eb); 3598 3599 if (!ret) 3600 return ret; 3601 3602 num_pages = num_extent_pages(eb->start, eb->len); 3603 for (i = 0; i < num_pages; i++) { 3604 struct page *p = eb->pages[i]; 3605 3606 if (!trylock_page(p)) { 3607 if (!flush) { 3608 flush_write_bio(epd); 3609 flush = 1; 3610 } 3611 lock_page(p); 3612 } 3613 } 3614 3615 return ret; 3616 } 3617 3618 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3619 { 3620 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3621 smp_mb__after_atomic(); 3622 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3623 } 3624 3625 static void set_btree_ioerr(struct page *page) 3626 { 3627 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3628 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3629 3630 SetPageError(page); 3631 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3632 return; 3633 3634 /* 3635 * If writeback for a btree extent that doesn't belong to a log tree 3636 * failed, increment the counter transaction->eb_write_errors. 3637 * We do this because while the transaction is running and before it's 3638 * committing (when we call filemap_fdata[write|wait]_range against 3639 * the btree inode), we might have 3640 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3641 * returns an error or an error happens during writeback, when we're 3642 * committing the transaction we wouldn't know about it, since the pages 3643 * can be no longer dirty nor marked anymore for writeback (if a 3644 * subsequent modification to the extent buffer didn't happen before the 3645 * transaction commit), which makes filemap_fdata[write|wait]_range not 3646 * able to find the pages tagged with SetPageError at transaction 3647 * commit time. So if this happens we must abort the transaction, 3648 * otherwise we commit a super block with btree roots that point to 3649 * btree nodes/leafs whose content on disk is invalid - either garbage 3650 * or the content of some node/leaf from a past generation that got 3651 * cowed or deleted and is no longer valid. 3652 * 3653 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3654 * not be enough - we need to distinguish between log tree extents vs 3655 * non-log tree extents, and the next filemap_fdatawait_range() call 3656 * will catch and clear such errors in the mapping - and that call might 3657 * be from a log sync and not from a transaction commit. Also, checking 3658 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3659 * not done and would not be reliable - the eb might have been released 3660 * from memory and reading it back again means that flag would not be 3661 * set (since it's a runtime flag, not persisted on disk). 3662 * 3663 * Using the flags below in the btree inode also makes us achieve the 3664 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3665 * writeback for all dirty pages and before filemap_fdatawait_range() 3666 * is called, the writeback for all dirty pages had already finished 3667 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3668 * filemap_fdatawait_range() would return success, as it could not know 3669 * that writeback errors happened (the pages were no longer tagged for 3670 * writeback). 3671 */ 3672 switch (eb->log_index) { 3673 case -1: 3674 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3675 break; 3676 case 0: 3677 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3678 break; 3679 case 1: 3680 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3681 break; 3682 default: 3683 BUG(); /* unexpected, logic error */ 3684 } 3685 } 3686 3687 static void end_bio_extent_buffer_writepage(struct bio *bio) 3688 { 3689 struct bio_vec *bvec; 3690 struct extent_buffer *eb; 3691 int i, done; 3692 3693 bio_for_each_segment_all(bvec, bio, i) { 3694 struct page *page = bvec->bv_page; 3695 3696 eb = (struct extent_buffer *)page->private; 3697 BUG_ON(!eb); 3698 done = atomic_dec_and_test(&eb->io_pages); 3699 3700 if (bio->bi_error || 3701 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3702 ClearPageUptodate(page); 3703 set_btree_ioerr(page); 3704 } 3705 3706 end_page_writeback(page); 3707 3708 if (!done) 3709 continue; 3710 3711 end_extent_buffer_writeback(eb); 3712 } 3713 3714 bio_put(bio); 3715 } 3716 3717 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3718 struct btrfs_fs_info *fs_info, 3719 struct writeback_control *wbc, 3720 struct extent_page_data *epd) 3721 { 3722 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3723 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3724 u64 offset = eb->start; 3725 unsigned long i, num_pages; 3726 unsigned long bio_flags = 0; 3727 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3728 int ret = 0; 3729 3730 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3731 num_pages = num_extent_pages(eb->start, eb->len); 3732 atomic_set(&eb->io_pages, num_pages); 3733 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3734 bio_flags = EXTENT_BIO_TREE_LOG; 3735 3736 for (i = 0; i < num_pages; i++) { 3737 struct page *p = eb->pages[i]; 3738 3739 clear_page_dirty_for_io(p); 3740 set_page_writeback(p); 3741 ret = submit_extent_page(rw, tree, p, offset >> 9, 3742 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3743 -1, end_bio_extent_buffer_writepage, 3744 0, epd->bio_flags, bio_flags); 3745 epd->bio_flags = bio_flags; 3746 if (ret) { 3747 set_btree_ioerr(p); 3748 end_page_writeback(p); 3749 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3750 end_extent_buffer_writeback(eb); 3751 ret = -EIO; 3752 break; 3753 } 3754 offset += PAGE_CACHE_SIZE; 3755 update_nr_written(p, wbc, 1); 3756 unlock_page(p); 3757 } 3758 3759 if (unlikely(ret)) { 3760 for (; i < num_pages; i++) { 3761 struct page *p = eb->pages[i]; 3762 clear_page_dirty_for_io(p); 3763 unlock_page(p); 3764 } 3765 } 3766 3767 return ret; 3768 } 3769 3770 int btree_write_cache_pages(struct address_space *mapping, 3771 struct writeback_control *wbc) 3772 { 3773 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3774 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3775 struct extent_buffer *eb, *prev_eb = NULL; 3776 struct extent_page_data epd = { 3777 .bio = NULL, 3778 .tree = tree, 3779 .extent_locked = 0, 3780 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3781 .bio_flags = 0, 3782 }; 3783 int ret = 0; 3784 int done = 0; 3785 int nr_to_write_done = 0; 3786 struct pagevec pvec; 3787 int nr_pages; 3788 pgoff_t index; 3789 pgoff_t end; /* Inclusive */ 3790 int scanned = 0; 3791 int tag; 3792 3793 pagevec_init(&pvec, 0); 3794 if (wbc->range_cyclic) { 3795 index = mapping->writeback_index; /* Start from prev offset */ 3796 end = -1; 3797 } else { 3798 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3799 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3800 scanned = 1; 3801 } 3802 if (wbc->sync_mode == WB_SYNC_ALL) 3803 tag = PAGECACHE_TAG_TOWRITE; 3804 else 3805 tag = PAGECACHE_TAG_DIRTY; 3806 retry: 3807 if (wbc->sync_mode == WB_SYNC_ALL) 3808 tag_pages_for_writeback(mapping, index, end); 3809 while (!done && !nr_to_write_done && (index <= end) && 3810 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3811 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3812 unsigned i; 3813 3814 scanned = 1; 3815 for (i = 0; i < nr_pages; i++) { 3816 struct page *page = pvec.pages[i]; 3817 3818 if (!PagePrivate(page)) 3819 continue; 3820 3821 if (!wbc->range_cyclic && page->index > end) { 3822 done = 1; 3823 break; 3824 } 3825 3826 spin_lock(&mapping->private_lock); 3827 if (!PagePrivate(page)) { 3828 spin_unlock(&mapping->private_lock); 3829 continue; 3830 } 3831 3832 eb = (struct extent_buffer *)page->private; 3833 3834 /* 3835 * Shouldn't happen and normally this would be a BUG_ON 3836 * but no sense in crashing the users box for something 3837 * we can survive anyway. 3838 */ 3839 if (WARN_ON(!eb)) { 3840 spin_unlock(&mapping->private_lock); 3841 continue; 3842 } 3843 3844 if (eb == prev_eb) { 3845 spin_unlock(&mapping->private_lock); 3846 continue; 3847 } 3848 3849 ret = atomic_inc_not_zero(&eb->refs); 3850 spin_unlock(&mapping->private_lock); 3851 if (!ret) 3852 continue; 3853 3854 prev_eb = eb; 3855 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3856 if (!ret) { 3857 free_extent_buffer(eb); 3858 continue; 3859 } 3860 3861 ret = write_one_eb(eb, fs_info, wbc, &epd); 3862 if (ret) { 3863 done = 1; 3864 free_extent_buffer(eb); 3865 break; 3866 } 3867 free_extent_buffer(eb); 3868 3869 /* 3870 * the filesystem may choose to bump up nr_to_write. 3871 * We have to make sure to honor the new nr_to_write 3872 * at any time 3873 */ 3874 nr_to_write_done = wbc->nr_to_write <= 0; 3875 } 3876 pagevec_release(&pvec); 3877 cond_resched(); 3878 } 3879 if (!scanned && !done) { 3880 /* 3881 * We hit the last page and there is more work to be done: wrap 3882 * back to the start of the file 3883 */ 3884 scanned = 1; 3885 index = 0; 3886 goto retry; 3887 } 3888 flush_write_bio(&epd); 3889 return ret; 3890 } 3891 3892 /** 3893 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3894 * @mapping: address space structure to write 3895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3896 * @writepage: function called for each page 3897 * @data: data passed to writepage function 3898 * 3899 * If a page is already under I/O, write_cache_pages() skips it, even 3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3902 * and msync() need to guarantee that all the data which was dirty at the time 3903 * the call was made get new I/O started against them. If wbc->sync_mode is 3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3905 * existing IO to complete. 3906 */ 3907 static int extent_write_cache_pages(struct extent_io_tree *tree, 3908 struct address_space *mapping, 3909 struct writeback_control *wbc, 3910 writepage_t writepage, void *data, 3911 void (*flush_fn)(void *)) 3912 { 3913 struct inode *inode = mapping->host; 3914 int ret = 0; 3915 int done = 0; 3916 int err = 0; 3917 int nr_to_write_done = 0; 3918 struct pagevec pvec; 3919 int nr_pages; 3920 pgoff_t index; 3921 pgoff_t end; /* Inclusive */ 3922 int scanned = 0; 3923 int tag; 3924 3925 /* 3926 * We have to hold onto the inode so that ordered extents can do their 3927 * work when the IO finishes. The alternative to this is failing to add 3928 * an ordered extent if the igrab() fails there and that is a huge pain 3929 * to deal with, so instead just hold onto the inode throughout the 3930 * writepages operation. If it fails here we are freeing up the inode 3931 * anyway and we'd rather not waste our time writing out stuff that is 3932 * going to be truncated anyway. 3933 */ 3934 if (!igrab(inode)) 3935 return 0; 3936 3937 pagevec_init(&pvec, 0); 3938 if (wbc->range_cyclic) { 3939 index = mapping->writeback_index; /* Start from prev offset */ 3940 end = -1; 3941 } else { 3942 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3943 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3944 scanned = 1; 3945 } 3946 if (wbc->sync_mode == WB_SYNC_ALL) 3947 tag = PAGECACHE_TAG_TOWRITE; 3948 else 3949 tag = PAGECACHE_TAG_DIRTY; 3950 retry: 3951 if (wbc->sync_mode == WB_SYNC_ALL) 3952 tag_pages_for_writeback(mapping, index, end); 3953 while (!done && !nr_to_write_done && (index <= end) && 3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3956 unsigned i; 3957 3958 scanned = 1; 3959 for (i = 0; i < nr_pages; i++) { 3960 struct page *page = pvec.pages[i]; 3961 3962 /* 3963 * At this point we hold neither mapping->tree_lock nor 3964 * lock on the page itself: the page may be truncated or 3965 * invalidated (changing page->mapping to NULL), or even 3966 * swizzled back from swapper_space to tmpfs file 3967 * mapping 3968 */ 3969 if (!trylock_page(page)) { 3970 flush_fn(data); 3971 lock_page(page); 3972 } 3973 3974 if (unlikely(page->mapping != mapping)) { 3975 unlock_page(page); 3976 continue; 3977 } 3978 3979 if (!wbc->range_cyclic && page->index > end) { 3980 done = 1; 3981 unlock_page(page); 3982 continue; 3983 } 3984 3985 if (wbc->sync_mode != WB_SYNC_NONE) { 3986 if (PageWriteback(page)) 3987 flush_fn(data); 3988 wait_on_page_writeback(page); 3989 } 3990 3991 if (PageWriteback(page) || 3992 !clear_page_dirty_for_io(page)) { 3993 unlock_page(page); 3994 continue; 3995 } 3996 3997 ret = (*writepage)(page, wbc, data); 3998 3999 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4000 unlock_page(page); 4001 ret = 0; 4002 } 4003 if (!err && ret < 0) 4004 err = ret; 4005 4006 /* 4007 * the filesystem may choose to bump up nr_to_write. 4008 * We have to make sure to honor the new nr_to_write 4009 * at any time 4010 */ 4011 nr_to_write_done = wbc->nr_to_write <= 0; 4012 } 4013 pagevec_release(&pvec); 4014 cond_resched(); 4015 } 4016 if (!scanned && !done && !err) { 4017 /* 4018 * We hit the last page and there is more work to be done: wrap 4019 * back to the start of the file 4020 */ 4021 scanned = 1; 4022 index = 0; 4023 goto retry; 4024 } 4025 btrfs_add_delayed_iput(inode); 4026 return err; 4027 } 4028 4029 static void flush_epd_write_bio(struct extent_page_data *epd) 4030 { 4031 if (epd->bio) { 4032 int rw = WRITE; 4033 int ret; 4034 4035 if (epd->sync_io) 4036 rw = WRITE_SYNC; 4037 4038 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4039 BUG_ON(ret < 0); /* -ENOMEM */ 4040 epd->bio = NULL; 4041 } 4042 } 4043 4044 static noinline void flush_write_bio(void *data) 4045 { 4046 struct extent_page_data *epd = data; 4047 flush_epd_write_bio(epd); 4048 } 4049 4050 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4051 get_extent_t *get_extent, 4052 struct writeback_control *wbc) 4053 { 4054 int ret; 4055 struct extent_page_data epd = { 4056 .bio = NULL, 4057 .tree = tree, 4058 .get_extent = get_extent, 4059 .extent_locked = 0, 4060 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4061 .bio_flags = 0, 4062 }; 4063 4064 ret = __extent_writepage(page, wbc, &epd); 4065 4066 flush_epd_write_bio(&epd); 4067 return ret; 4068 } 4069 4070 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4071 u64 start, u64 end, get_extent_t *get_extent, 4072 int mode) 4073 { 4074 int ret = 0; 4075 struct address_space *mapping = inode->i_mapping; 4076 struct page *page; 4077 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4078 PAGE_CACHE_SHIFT; 4079 4080 struct extent_page_data epd = { 4081 .bio = NULL, 4082 .tree = tree, 4083 .get_extent = get_extent, 4084 .extent_locked = 1, 4085 .sync_io = mode == WB_SYNC_ALL, 4086 .bio_flags = 0, 4087 }; 4088 struct writeback_control wbc_writepages = { 4089 .sync_mode = mode, 4090 .nr_to_write = nr_pages * 2, 4091 .range_start = start, 4092 .range_end = end + 1, 4093 }; 4094 4095 while (start <= end) { 4096 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4097 if (clear_page_dirty_for_io(page)) 4098 ret = __extent_writepage(page, &wbc_writepages, &epd); 4099 else { 4100 if (tree->ops && tree->ops->writepage_end_io_hook) 4101 tree->ops->writepage_end_io_hook(page, start, 4102 start + PAGE_CACHE_SIZE - 1, 4103 NULL, 1); 4104 unlock_page(page); 4105 } 4106 page_cache_release(page); 4107 start += PAGE_CACHE_SIZE; 4108 } 4109 4110 flush_epd_write_bio(&epd); 4111 return ret; 4112 } 4113 4114 int extent_writepages(struct extent_io_tree *tree, 4115 struct address_space *mapping, 4116 get_extent_t *get_extent, 4117 struct writeback_control *wbc) 4118 { 4119 int ret = 0; 4120 struct extent_page_data epd = { 4121 .bio = NULL, 4122 .tree = tree, 4123 .get_extent = get_extent, 4124 .extent_locked = 0, 4125 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4126 .bio_flags = 0, 4127 }; 4128 4129 ret = extent_write_cache_pages(tree, mapping, wbc, 4130 __extent_writepage, &epd, 4131 flush_write_bio); 4132 flush_epd_write_bio(&epd); 4133 return ret; 4134 } 4135 4136 int extent_readpages(struct extent_io_tree *tree, 4137 struct address_space *mapping, 4138 struct list_head *pages, unsigned nr_pages, 4139 get_extent_t get_extent) 4140 { 4141 struct bio *bio = NULL; 4142 unsigned page_idx; 4143 unsigned long bio_flags = 0; 4144 struct page *pagepool[16]; 4145 struct page *page; 4146 struct extent_map *em_cached = NULL; 4147 int nr = 0; 4148 4149 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4150 page = list_entry(pages->prev, struct page, lru); 4151 4152 prefetchw(&page->flags); 4153 list_del(&page->lru); 4154 if (add_to_page_cache_lru(page, mapping, 4155 page->index, GFP_NOFS)) { 4156 page_cache_release(page); 4157 continue; 4158 } 4159 4160 pagepool[nr++] = page; 4161 if (nr < ARRAY_SIZE(pagepool)) 4162 continue; 4163 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4164 &bio, 0, &bio_flags, READ); 4165 nr = 0; 4166 } 4167 if (nr) 4168 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4169 &bio, 0, &bio_flags, READ); 4170 4171 if (em_cached) 4172 free_extent_map(em_cached); 4173 4174 BUG_ON(!list_empty(pages)); 4175 if (bio) 4176 return submit_one_bio(READ, bio, 0, bio_flags); 4177 return 0; 4178 } 4179 4180 /* 4181 * basic invalidatepage code, this waits on any locked or writeback 4182 * ranges corresponding to the page, and then deletes any extent state 4183 * records from the tree 4184 */ 4185 int extent_invalidatepage(struct extent_io_tree *tree, 4186 struct page *page, unsigned long offset) 4187 { 4188 struct extent_state *cached_state = NULL; 4189 u64 start = page_offset(page); 4190 u64 end = start + PAGE_CACHE_SIZE - 1; 4191 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4192 4193 start += ALIGN(offset, blocksize); 4194 if (start > end) 4195 return 0; 4196 4197 lock_extent_bits(tree, start, end, 0, &cached_state); 4198 wait_on_page_writeback(page); 4199 clear_extent_bit(tree, start, end, 4200 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4201 EXTENT_DO_ACCOUNTING, 4202 1, 1, &cached_state, GFP_NOFS); 4203 return 0; 4204 } 4205 4206 /* 4207 * a helper for releasepage, this tests for areas of the page that 4208 * are locked or under IO and drops the related state bits if it is safe 4209 * to drop the page. 4210 */ 4211 static int try_release_extent_state(struct extent_map_tree *map, 4212 struct extent_io_tree *tree, 4213 struct page *page, gfp_t mask) 4214 { 4215 u64 start = page_offset(page); 4216 u64 end = start + PAGE_CACHE_SIZE - 1; 4217 int ret = 1; 4218 4219 if (test_range_bit(tree, start, end, 4220 EXTENT_IOBITS, 0, NULL)) 4221 ret = 0; 4222 else { 4223 if ((mask & GFP_NOFS) == GFP_NOFS) 4224 mask = GFP_NOFS; 4225 /* 4226 * at this point we can safely clear everything except the 4227 * locked bit and the nodatasum bit 4228 */ 4229 ret = clear_extent_bit(tree, start, end, 4230 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4231 0, 0, NULL, mask); 4232 4233 /* if clear_extent_bit failed for enomem reasons, 4234 * we can't allow the release to continue. 4235 */ 4236 if (ret < 0) 4237 ret = 0; 4238 else 4239 ret = 1; 4240 } 4241 return ret; 4242 } 4243 4244 /* 4245 * a helper for releasepage. As long as there are no locked extents 4246 * in the range corresponding to the page, both state records and extent 4247 * map records are removed 4248 */ 4249 int try_release_extent_mapping(struct extent_map_tree *map, 4250 struct extent_io_tree *tree, struct page *page, 4251 gfp_t mask) 4252 { 4253 struct extent_map *em; 4254 u64 start = page_offset(page); 4255 u64 end = start + PAGE_CACHE_SIZE - 1; 4256 4257 if ((mask & __GFP_WAIT) && 4258 page->mapping->host->i_size > 16 * 1024 * 1024) { 4259 u64 len; 4260 while (start <= end) { 4261 len = end - start + 1; 4262 write_lock(&map->lock); 4263 em = lookup_extent_mapping(map, start, len); 4264 if (!em) { 4265 write_unlock(&map->lock); 4266 break; 4267 } 4268 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4269 em->start != start) { 4270 write_unlock(&map->lock); 4271 free_extent_map(em); 4272 break; 4273 } 4274 if (!test_range_bit(tree, em->start, 4275 extent_map_end(em) - 1, 4276 EXTENT_LOCKED | EXTENT_WRITEBACK, 4277 0, NULL)) { 4278 remove_extent_mapping(map, em); 4279 /* once for the rb tree */ 4280 free_extent_map(em); 4281 } 4282 start = extent_map_end(em); 4283 write_unlock(&map->lock); 4284 4285 /* once for us */ 4286 free_extent_map(em); 4287 } 4288 } 4289 return try_release_extent_state(map, tree, page, mask); 4290 } 4291 4292 /* 4293 * helper function for fiemap, which doesn't want to see any holes. 4294 * This maps until we find something past 'last' 4295 */ 4296 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4297 u64 offset, 4298 u64 last, 4299 get_extent_t *get_extent) 4300 { 4301 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4302 struct extent_map *em; 4303 u64 len; 4304 4305 if (offset >= last) 4306 return NULL; 4307 4308 while (1) { 4309 len = last - offset; 4310 if (len == 0) 4311 break; 4312 len = ALIGN(len, sectorsize); 4313 em = get_extent(inode, NULL, 0, offset, len, 0); 4314 if (IS_ERR_OR_NULL(em)) 4315 return em; 4316 4317 /* if this isn't a hole return it */ 4318 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4319 em->block_start != EXTENT_MAP_HOLE) { 4320 return em; 4321 } 4322 4323 /* this is a hole, advance to the next extent */ 4324 offset = extent_map_end(em); 4325 free_extent_map(em); 4326 if (offset >= last) 4327 break; 4328 } 4329 return NULL; 4330 } 4331 4332 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4333 __u64 start, __u64 len, get_extent_t *get_extent) 4334 { 4335 int ret = 0; 4336 u64 off = start; 4337 u64 max = start + len; 4338 u32 flags = 0; 4339 u32 found_type; 4340 u64 last; 4341 u64 last_for_get_extent = 0; 4342 u64 disko = 0; 4343 u64 isize = i_size_read(inode); 4344 struct btrfs_key found_key; 4345 struct extent_map *em = NULL; 4346 struct extent_state *cached_state = NULL; 4347 struct btrfs_path *path; 4348 struct btrfs_root *root = BTRFS_I(inode)->root; 4349 int end = 0; 4350 u64 em_start = 0; 4351 u64 em_len = 0; 4352 u64 em_end = 0; 4353 4354 if (len == 0) 4355 return -EINVAL; 4356 4357 path = btrfs_alloc_path(); 4358 if (!path) 4359 return -ENOMEM; 4360 path->leave_spinning = 1; 4361 4362 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4363 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4364 4365 /* 4366 * lookup the last file extent. We're not using i_size here 4367 * because there might be preallocation past i_size 4368 */ 4369 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4370 0); 4371 if (ret < 0) { 4372 btrfs_free_path(path); 4373 return ret; 4374 } 4375 WARN_ON(!ret); 4376 path->slots[0]--; 4377 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4378 found_type = found_key.type; 4379 4380 /* No extents, but there might be delalloc bits */ 4381 if (found_key.objectid != btrfs_ino(inode) || 4382 found_type != BTRFS_EXTENT_DATA_KEY) { 4383 /* have to trust i_size as the end */ 4384 last = (u64)-1; 4385 last_for_get_extent = isize; 4386 } else { 4387 /* 4388 * remember the start of the last extent. There are a 4389 * bunch of different factors that go into the length of the 4390 * extent, so its much less complex to remember where it started 4391 */ 4392 last = found_key.offset; 4393 last_for_get_extent = last + 1; 4394 } 4395 btrfs_release_path(path); 4396 4397 /* 4398 * we might have some extents allocated but more delalloc past those 4399 * extents. so, we trust isize unless the start of the last extent is 4400 * beyond isize 4401 */ 4402 if (last < isize) { 4403 last = (u64)-1; 4404 last_for_get_extent = isize; 4405 } 4406 4407 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4408 &cached_state); 4409 4410 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4411 get_extent); 4412 if (!em) 4413 goto out; 4414 if (IS_ERR(em)) { 4415 ret = PTR_ERR(em); 4416 goto out; 4417 } 4418 4419 while (!end) { 4420 u64 offset_in_extent = 0; 4421 4422 /* break if the extent we found is outside the range */ 4423 if (em->start >= max || extent_map_end(em) < off) 4424 break; 4425 4426 /* 4427 * get_extent may return an extent that starts before our 4428 * requested range. We have to make sure the ranges 4429 * we return to fiemap always move forward and don't 4430 * overlap, so adjust the offsets here 4431 */ 4432 em_start = max(em->start, off); 4433 4434 /* 4435 * record the offset from the start of the extent 4436 * for adjusting the disk offset below. Only do this if the 4437 * extent isn't compressed since our in ram offset may be past 4438 * what we have actually allocated on disk. 4439 */ 4440 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4441 offset_in_extent = em_start - em->start; 4442 em_end = extent_map_end(em); 4443 em_len = em_end - em_start; 4444 disko = 0; 4445 flags = 0; 4446 4447 /* 4448 * bump off for our next call to get_extent 4449 */ 4450 off = extent_map_end(em); 4451 if (off >= max) 4452 end = 1; 4453 4454 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4455 end = 1; 4456 flags |= FIEMAP_EXTENT_LAST; 4457 } else if (em->block_start == EXTENT_MAP_INLINE) { 4458 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4459 FIEMAP_EXTENT_NOT_ALIGNED); 4460 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4461 flags |= (FIEMAP_EXTENT_DELALLOC | 4462 FIEMAP_EXTENT_UNKNOWN); 4463 } else if (fieinfo->fi_extents_max) { 4464 u64 bytenr = em->block_start - 4465 (em->start - em->orig_start); 4466 4467 disko = em->block_start + offset_in_extent; 4468 4469 /* 4470 * As btrfs supports shared space, this information 4471 * can be exported to userspace tools via 4472 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4473 * then we're just getting a count and we can skip the 4474 * lookup stuff. 4475 */ 4476 ret = btrfs_check_shared(NULL, root->fs_info, 4477 root->objectid, 4478 btrfs_ino(inode), bytenr); 4479 if (ret < 0) 4480 goto out_free; 4481 if (ret) 4482 flags |= FIEMAP_EXTENT_SHARED; 4483 ret = 0; 4484 } 4485 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4486 flags |= FIEMAP_EXTENT_ENCODED; 4487 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4488 flags |= FIEMAP_EXTENT_UNWRITTEN; 4489 4490 free_extent_map(em); 4491 em = NULL; 4492 if ((em_start >= last) || em_len == (u64)-1 || 4493 (last == (u64)-1 && isize <= em_end)) { 4494 flags |= FIEMAP_EXTENT_LAST; 4495 end = 1; 4496 } 4497 4498 /* now scan forward to see if this is really the last extent. */ 4499 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4500 get_extent); 4501 if (IS_ERR(em)) { 4502 ret = PTR_ERR(em); 4503 goto out; 4504 } 4505 if (!em) { 4506 flags |= FIEMAP_EXTENT_LAST; 4507 end = 1; 4508 } 4509 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4510 em_len, flags); 4511 if (ret) { 4512 if (ret == 1) 4513 ret = 0; 4514 goto out_free; 4515 } 4516 } 4517 out_free: 4518 free_extent_map(em); 4519 out: 4520 btrfs_free_path(path); 4521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4522 &cached_state, GFP_NOFS); 4523 return ret; 4524 } 4525 4526 static void __free_extent_buffer(struct extent_buffer *eb) 4527 { 4528 btrfs_leak_debug_del(&eb->leak_list); 4529 kmem_cache_free(extent_buffer_cache, eb); 4530 } 4531 4532 int extent_buffer_under_io(struct extent_buffer *eb) 4533 { 4534 return (atomic_read(&eb->io_pages) || 4535 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4536 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4537 } 4538 4539 /* 4540 * Helper for releasing extent buffer page. 4541 */ 4542 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4543 { 4544 unsigned long index; 4545 struct page *page; 4546 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4547 4548 BUG_ON(extent_buffer_under_io(eb)); 4549 4550 index = num_extent_pages(eb->start, eb->len); 4551 if (index == 0) 4552 return; 4553 4554 do { 4555 index--; 4556 page = eb->pages[index]; 4557 if (!page) 4558 continue; 4559 if (mapped) 4560 spin_lock(&page->mapping->private_lock); 4561 /* 4562 * We do this since we'll remove the pages after we've 4563 * removed the eb from the radix tree, so we could race 4564 * and have this page now attached to the new eb. So 4565 * only clear page_private if it's still connected to 4566 * this eb. 4567 */ 4568 if (PagePrivate(page) && 4569 page->private == (unsigned long)eb) { 4570 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4571 BUG_ON(PageDirty(page)); 4572 BUG_ON(PageWriteback(page)); 4573 /* 4574 * We need to make sure we haven't be attached 4575 * to a new eb. 4576 */ 4577 ClearPagePrivate(page); 4578 set_page_private(page, 0); 4579 /* One for the page private */ 4580 page_cache_release(page); 4581 } 4582 4583 if (mapped) 4584 spin_unlock(&page->mapping->private_lock); 4585 4586 /* One for when we alloced the page */ 4587 page_cache_release(page); 4588 } while (index != 0); 4589 } 4590 4591 /* 4592 * Helper for releasing the extent buffer. 4593 */ 4594 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4595 { 4596 btrfs_release_extent_buffer_page(eb); 4597 __free_extent_buffer(eb); 4598 } 4599 4600 static struct extent_buffer * 4601 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4602 unsigned long len) 4603 { 4604 struct extent_buffer *eb = NULL; 4605 4606 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS); 4607 if (eb == NULL) 4608 return NULL; 4609 eb->start = start; 4610 eb->len = len; 4611 eb->fs_info = fs_info; 4612 eb->bflags = 0; 4613 rwlock_init(&eb->lock); 4614 atomic_set(&eb->write_locks, 0); 4615 atomic_set(&eb->read_locks, 0); 4616 atomic_set(&eb->blocking_readers, 0); 4617 atomic_set(&eb->blocking_writers, 0); 4618 atomic_set(&eb->spinning_readers, 0); 4619 atomic_set(&eb->spinning_writers, 0); 4620 eb->lock_nested = 0; 4621 init_waitqueue_head(&eb->write_lock_wq); 4622 init_waitqueue_head(&eb->read_lock_wq); 4623 4624 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4625 4626 spin_lock_init(&eb->refs_lock); 4627 atomic_set(&eb->refs, 1); 4628 atomic_set(&eb->io_pages, 0); 4629 4630 /* 4631 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4632 */ 4633 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4634 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4635 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4636 4637 return eb; 4638 } 4639 4640 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4641 { 4642 unsigned long i; 4643 struct page *p; 4644 struct extent_buffer *new; 4645 unsigned long num_pages = num_extent_pages(src->start, src->len); 4646 4647 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4648 if (new == NULL) 4649 return NULL; 4650 4651 for (i = 0; i < num_pages; i++) { 4652 p = alloc_page(GFP_NOFS); 4653 if (!p) { 4654 btrfs_release_extent_buffer(new); 4655 return NULL; 4656 } 4657 attach_extent_buffer_page(new, p); 4658 WARN_ON(PageDirty(p)); 4659 SetPageUptodate(p); 4660 new->pages[i] = p; 4661 } 4662 4663 copy_extent_buffer(new, src, 0, 0, src->len); 4664 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4665 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4666 4667 return new; 4668 } 4669 4670 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4671 u64 start) 4672 { 4673 struct extent_buffer *eb; 4674 unsigned long len; 4675 unsigned long num_pages; 4676 unsigned long i; 4677 4678 if (!fs_info) { 4679 /* 4680 * Called only from tests that don't always have a fs_info 4681 * available, but we know that nodesize is 4096 4682 */ 4683 len = 4096; 4684 } else { 4685 len = fs_info->tree_root->nodesize; 4686 } 4687 num_pages = num_extent_pages(0, len); 4688 4689 eb = __alloc_extent_buffer(fs_info, start, len); 4690 if (!eb) 4691 return NULL; 4692 4693 for (i = 0; i < num_pages; i++) { 4694 eb->pages[i] = alloc_page(GFP_NOFS); 4695 if (!eb->pages[i]) 4696 goto err; 4697 } 4698 set_extent_buffer_uptodate(eb); 4699 btrfs_set_header_nritems(eb, 0); 4700 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4701 4702 return eb; 4703 err: 4704 for (; i > 0; i--) 4705 __free_page(eb->pages[i - 1]); 4706 __free_extent_buffer(eb); 4707 return NULL; 4708 } 4709 4710 static void check_buffer_tree_ref(struct extent_buffer *eb) 4711 { 4712 int refs; 4713 /* the ref bit is tricky. We have to make sure it is set 4714 * if we have the buffer dirty. Otherwise the 4715 * code to free a buffer can end up dropping a dirty 4716 * page 4717 * 4718 * Once the ref bit is set, it won't go away while the 4719 * buffer is dirty or in writeback, and it also won't 4720 * go away while we have the reference count on the 4721 * eb bumped. 4722 * 4723 * We can't just set the ref bit without bumping the 4724 * ref on the eb because free_extent_buffer might 4725 * see the ref bit and try to clear it. If this happens 4726 * free_extent_buffer might end up dropping our original 4727 * ref by mistake and freeing the page before we are able 4728 * to add one more ref. 4729 * 4730 * So bump the ref count first, then set the bit. If someone 4731 * beat us to it, drop the ref we added. 4732 */ 4733 refs = atomic_read(&eb->refs); 4734 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4735 return; 4736 4737 spin_lock(&eb->refs_lock); 4738 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4739 atomic_inc(&eb->refs); 4740 spin_unlock(&eb->refs_lock); 4741 } 4742 4743 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4744 struct page *accessed) 4745 { 4746 unsigned long num_pages, i; 4747 4748 check_buffer_tree_ref(eb); 4749 4750 num_pages = num_extent_pages(eb->start, eb->len); 4751 for (i = 0; i < num_pages; i++) { 4752 struct page *p = eb->pages[i]; 4753 4754 if (p != accessed) 4755 mark_page_accessed(p); 4756 } 4757 } 4758 4759 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4760 u64 start) 4761 { 4762 struct extent_buffer *eb; 4763 4764 rcu_read_lock(); 4765 eb = radix_tree_lookup(&fs_info->buffer_radix, 4766 start >> PAGE_CACHE_SHIFT); 4767 if (eb && atomic_inc_not_zero(&eb->refs)) { 4768 rcu_read_unlock(); 4769 /* 4770 * Lock our eb's refs_lock to avoid races with 4771 * free_extent_buffer. When we get our eb it might be flagged 4772 * with EXTENT_BUFFER_STALE and another task running 4773 * free_extent_buffer might have seen that flag set, 4774 * eb->refs == 2, that the buffer isn't under IO (dirty and 4775 * writeback flags not set) and it's still in the tree (flag 4776 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4777 * of decrementing the extent buffer's reference count twice. 4778 * So here we could race and increment the eb's reference count, 4779 * clear its stale flag, mark it as dirty and drop our reference 4780 * before the other task finishes executing free_extent_buffer, 4781 * which would later result in an attempt to free an extent 4782 * buffer that is dirty. 4783 */ 4784 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4785 spin_lock(&eb->refs_lock); 4786 spin_unlock(&eb->refs_lock); 4787 } 4788 mark_extent_buffer_accessed(eb, NULL); 4789 return eb; 4790 } 4791 rcu_read_unlock(); 4792 4793 return NULL; 4794 } 4795 4796 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4797 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4798 u64 start) 4799 { 4800 struct extent_buffer *eb, *exists = NULL; 4801 int ret; 4802 4803 eb = find_extent_buffer(fs_info, start); 4804 if (eb) 4805 return eb; 4806 eb = alloc_dummy_extent_buffer(fs_info, start); 4807 if (!eb) 4808 return NULL; 4809 eb->fs_info = fs_info; 4810 again: 4811 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4812 if (ret) 4813 goto free_eb; 4814 spin_lock(&fs_info->buffer_lock); 4815 ret = radix_tree_insert(&fs_info->buffer_radix, 4816 start >> PAGE_CACHE_SHIFT, eb); 4817 spin_unlock(&fs_info->buffer_lock); 4818 radix_tree_preload_end(); 4819 if (ret == -EEXIST) { 4820 exists = find_extent_buffer(fs_info, start); 4821 if (exists) 4822 goto free_eb; 4823 else 4824 goto again; 4825 } 4826 check_buffer_tree_ref(eb); 4827 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4828 4829 /* 4830 * We will free dummy extent buffer's if they come into 4831 * free_extent_buffer with a ref count of 2, but if we are using this we 4832 * want the buffers to stay in memory until we're done with them, so 4833 * bump the ref count again. 4834 */ 4835 atomic_inc(&eb->refs); 4836 return eb; 4837 free_eb: 4838 btrfs_release_extent_buffer(eb); 4839 return exists; 4840 } 4841 #endif 4842 4843 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4844 u64 start) 4845 { 4846 unsigned long len = fs_info->tree_root->nodesize; 4847 unsigned long num_pages = num_extent_pages(start, len); 4848 unsigned long i; 4849 unsigned long index = start >> PAGE_CACHE_SHIFT; 4850 struct extent_buffer *eb; 4851 struct extent_buffer *exists = NULL; 4852 struct page *p; 4853 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4854 int uptodate = 1; 4855 int ret; 4856 4857 eb = find_extent_buffer(fs_info, start); 4858 if (eb) 4859 return eb; 4860 4861 eb = __alloc_extent_buffer(fs_info, start, len); 4862 if (!eb) 4863 return NULL; 4864 4865 for (i = 0; i < num_pages; i++, index++) { 4866 p = find_or_create_page(mapping, index, GFP_NOFS); 4867 if (!p) 4868 goto free_eb; 4869 4870 spin_lock(&mapping->private_lock); 4871 if (PagePrivate(p)) { 4872 /* 4873 * We could have already allocated an eb for this page 4874 * and attached one so lets see if we can get a ref on 4875 * the existing eb, and if we can we know it's good and 4876 * we can just return that one, else we know we can just 4877 * overwrite page->private. 4878 */ 4879 exists = (struct extent_buffer *)p->private; 4880 if (atomic_inc_not_zero(&exists->refs)) { 4881 spin_unlock(&mapping->private_lock); 4882 unlock_page(p); 4883 page_cache_release(p); 4884 mark_extent_buffer_accessed(exists, p); 4885 goto free_eb; 4886 } 4887 exists = NULL; 4888 4889 /* 4890 * Do this so attach doesn't complain and we need to 4891 * drop the ref the old guy had. 4892 */ 4893 ClearPagePrivate(p); 4894 WARN_ON(PageDirty(p)); 4895 page_cache_release(p); 4896 } 4897 attach_extent_buffer_page(eb, p); 4898 spin_unlock(&mapping->private_lock); 4899 WARN_ON(PageDirty(p)); 4900 eb->pages[i] = p; 4901 if (!PageUptodate(p)) 4902 uptodate = 0; 4903 4904 /* 4905 * see below about how we avoid a nasty race with release page 4906 * and why we unlock later 4907 */ 4908 } 4909 if (uptodate) 4910 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4911 again: 4912 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4913 if (ret) 4914 goto free_eb; 4915 4916 spin_lock(&fs_info->buffer_lock); 4917 ret = radix_tree_insert(&fs_info->buffer_radix, 4918 start >> PAGE_CACHE_SHIFT, eb); 4919 spin_unlock(&fs_info->buffer_lock); 4920 radix_tree_preload_end(); 4921 if (ret == -EEXIST) { 4922 exists = find_extent_buffer(fs_info, start); 4923 if (exists) 4924 goto free_eb; 4925 else 4926 goto again; 4927 } 4928 /* add one reference for the tree */ 4929 check_buffer_tree_ref(eb); 4930 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4931 4932 /* 4933 * there is a race where release page may have 4934 * tried to find this extent buffer in the radix 4935 * but failed. It will tell the VM it is safe to 4936 * reclaim the, and it will clear the page private bit. 4937 * We must make sure to set the page private bit properly 4938 * after the extent buffer is in the radix tree so 4939 * it doesn't get lost 4940 */ 4941 SetPageChecked(eb->pages[0]); 4942 for (i = 1; i < num_pages; i++) { 4943 p = eb->pages[i]; 4944 ClearPageChecked(p); 4945 unlock_page(p); 4946 } 4947 unlock_page(eb->pages[0]); 4948 return eb; 4949 4950 free_eb: 4951 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4952 for (i = 0; i < num_pages; i++) { 4953 if (eb->pages[i]) 4954 unlock_page(eb->pages[i]); 4955 } 4956 4957 btrfs_release_extent_buffer(eb); 4958 return exists; 4959 } 4960 4961 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4962 { 4963 struct extent_buffer *eb = 4964 container_of(head, struct extent_buffer, rcu_head); 4965 4966 __free_extent_buffer(eb); 4967 } 4968 4969 /* Expects to have eb->eb_lock already held */ 4970 static int release_extent_buffer(struct extent_buffer *eb) 4971 { 4972 WARN_ON(atomic_read(&eb->refs) == 0); 4973 if (atomic_dec_and_test(&eb->refs)) { 4974 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4975 struct btrfs_fs_info *fs_info = eb->fs_info; 4976 4977 spin_unlock(&eb->refs_lock); 4978 4979 spin_lock(&fs_info->buffer_lock); 4980 radix_tree_delete(&fs_info->buffer_radix, 4981 eb->start >> PAGE_CACHE_SHIFT); 4982 spin_unlock(&fs_info->buffer_lock); 4983 } else { 4984 spin_unlock(&eb->refs_lock); 4985 } 4986 4987 /* Should be safe to release our pages at this point */ 4988 btrfs_release_extent_buffer_page(eb); 4989 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4990 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 4991 __free_extent_buffer(eb); 4992 return 1; 4993 } 4994 #endif 4995 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4996 return 1; 4997 } 4998 spin_unlock(&eb->refs_lock); 4999 5000 return 0; 5001 } 5002 5003 void free_extent_buffer(struct extent_buffer *eb) 5004 { 5005 int refs; 5006 int old; 5007 if (!eb) 5008 return; 5009 5010 while (1) { 5011 refs = atomic_read(&eb->refs); 5012 if (refs <= 3) 5013 break; 5014 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5015 if (old == refs) 5016 return; 5017 } 5018 5019 spin_lock(&eb->refs_lock); 5020 if (atomic_read(&eb->refs) == 2 && 5021 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5022 atomic_dec(&eb->refs); 5023 5024 if (atomic_read(&eb->refs) == 2 && 5025 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5026 !extent_buffer_under_io(eb) && 5027 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5028 atomic_dec(&eb->refs); 5029 5030 /* 5031 * I know this is terrible, but it's temporary until we stop tracking 5032 * the uptodate bits and such for the extent buffers. 5033 */ 5034 release_extent_buffer(eb); 5035 } 5036 5037 void free_extent_buffer_stale(struct extent_buffer *eb) 5038 { 5039 if (!eb) 5040 return; 5041 5042 spin_lock(&eb->refs_lock); 5043 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5044 5045 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5046 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5047 atomic_dec(&eb->refs); 5048 release_extent_buffer(eb); 5049 } 5050 5051 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5052 { 5053 unsigned long i; 5054 unsigned long num_pages; 5055 struct page *page; 5056 5057 num_pages = num_extent_pages(eb->start, eb->len); 5058 5059 for (i = 0; i < num_pages; i++) { 5060 page = eb->pages[i]; 5061 if (!PageDirty(page)) 5062 continue; 5063 5064 lock_page(page); 5065 WARN_ON(!PagePrivate(page)); 5066 5067 clear_page_dirty_for_io(page); 5068 spin_lock_irq(&page->mapping->tree_lock); 5069 if (!PageDirty(page)) { 5070 radix_tree_tag_clear(&page->mapping->page_tree, 5071 page_index(page), 5072 PAGECACHE_TAG_DIRTY); 5073 } 5074 spin_unlock_irq(&page->mapping->tree_lock); 5075 ClearPageError(page); 5076 unlock_page(page); 5077 } 5078 WARN_ON(atomic_read(&eb->refs) == 0); 5079 } 5080 5081 int set_extent_buffer_dirty(struct extent_buffer *eb) 5082 { 5083 unsigned long i; 5084 unsigned long num_pages; 5085 int was_dirty = 0; 5086 5087 check_buffer_tree_ref(eb); 5088 5089 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5090 5091 num_pages = num_extent_pages(eb->start, eb->len); 5092 WARN_ON(atomic_read(&eb->refs) == 0); 5093 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5094 5095 for (i = 0; i < num_pages; i++) 5096 set_page_dirty(eb->pages[i]); 5097 return was_dirty; 5098 } 5099 5100 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5101 { 5102 unsigned long i; 5103 struct page *page; 5104 unsigned long num_pages; 5105 5106 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5107 num_pages = num_extent_pages(eb->start, eb->len); 5108 for (i = 0; i < num_pages; i++) { 5109 page = eb->pages[i]; 5110 if (page) 5111 ClearPageUptodate(page); 5112 } 5113 return 0; 5114 } 5115 5116 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5117 { 5118 unsigned long i; 5119 struct page *page; 5120 unsigned long num_pages; 5121 5122 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5123 num_pages = num_extent_pages(eb->start, eb->len); 5124 for (i = 0; i < num_pages; i++) { 5125 page = eb->pages[i]; 5126 SetPageUptodate(page); 5127 } 5128 return 0; 5129 } 5130 5131 int extent_buffer_uptodate(struct extent_buffer *eb) 5132 { 5133 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5134 } 5135 5136 int read_extent_buffer_pages(struct extent_io_tree *tree, 5137 struct extent_buffer *eb, u64 start, int wait, 5138 get_extent_t *get_extent, int mirror_num) 5139 { 5140 unsigned long i; 5141 unsigned long start_i; 5142 struct page *page; 5143 int err; 5144 int ret = 0; 5145 int locked_pages = 0; 5146 int all_uptodate = 1; 5147 unsigned long num_pages; 5148 unsigned long num_reads = 0; 5149 struct bio *bio = NULL; 5150 unsigned long bio_flags = 0; 5151 5152 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5153 return 0; 5154 5155 if (start) { 5156 WARN_ON(start < eb->start); 5157 start_i = (start >> PAGE_CACHE_SHIFT) - 5158 (eb->start >> PAGE_CACHE_SHIFT); 5159 } else { 5160 start_i = 0; 5161 } 5162 5163 num_pages = num_extent_pages(eb->start, eb->len); 5164 for (i = start_i; i < num_pages; i++) { 5165 page = eb->pages[i]; 5166 if (wait == WAIT_NONE) { 5167 if (!trylock_page(page)) 5168 goto unlock_exit; 5169 } else { 5170 lock_page(page); 5171 } 5172 locked_pages++; 5173 if (!PageUptodate(page)) { 5174 num_reads++; 5175 all_uptodate = 0; 5176 } 5177 } 5178 if (all_uptodate) { 5179 if (start_i == 0) 5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5181 goto unlock_exit; 5182 } 5183 5184 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5185 eb->read_mirror = 0; 5186 atomic_set(&eb->io_pages, num_reads); 5187 for (i = start_i; i < num_pages; i++) { 5188 page = eb->pages[i]; 5189 if (!PageUptodate(page)) { 5190 ClearPageError(page); 5191 err = __extent_read_full_page(tree, page, 5192 get_extent, &bio, 5193 mirror_num, &bio_flags, 5194 READ | REQ_META); 5195 if (err) 5196 ret = err; 5197 } else { 5198 unlock_page(page); 5199 } 5200 } 5201 5202 if (bio) { 5203 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5204 bio_flags); 5205 if (err) 5206 return err; 5207 } 5208 5209 if (ret || wait != WAIT_COMPLETE) 5210 return ret; 5211 5212 for (i = start_i; i < num_pages; i++) { 5213 page = eb->pages[i]; 5214 wait_on_page_locked(page); 5215 if (!PageUptodate(page)) 5216 ret = -EIO; 5217 } 5218 5219 return ret; 5220 5221 unlock_exit: 5222 i = start_i; 5223 while (locked_pages > 0) { 5224 page = eb->pages[i]; 5225 i++; 5226 unlock_page(page); 5227 locked_pages--; 5228 } 5229 return ret; 5230 } 5231 5232 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5233 unsigned long start, 5234 unsigned long len) 5235 { 5236 size_t cur; 5237 size_t offset; 5238 struct page *page; 5239 char *kaddr; 5240 char *dst = (char *)dstv; 5241 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5242 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5243 5244 WARN_ON(start > eb->len); 5245 WARN_ON(start + len > eb->start + eb->len); 5246 5247 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5248 5249 while (len > 0) { 5250 page = eb->pages[i]; 5251 5252 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5253 kaddr = page_address(page); 5254 memcpy(dst, kaddr + offset, cur); 5255 5256 dst += cur; 5257 len -= cur; 5258 offset = 0; 5259 i++; 5260 } 5261 } 5262 5263 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5264 unsigned long start, 5265 unsigned long len) 5266 { 5267 size_t cur; 5268 size_t offset; 5269 struct page *page; 5270 char *kaddr; 5271 char __user *dst = (char __user *)dstv; 5272 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5273 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5274 int ret = 0; 5275 5276 WARN_ON(start > eb->len); 5277 WARN_ON(start + len > eb->start + eb->len); 5278 5279 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5280 5281 while (len > 0) { 5282 page = eb->pages[i]; 5283 5284 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5285 kaddr = page_address(page); 5286 if (copy_to_user(dst, kaddr + offset, cur)) { 5287 ret = -EFAULT; 5288 break; 5289 } 5290 5291 dst += cur; 5292 len -= cur; 5293 offset = 0; 5294 i++; 5295 } 5296 5297 return ret; 5298 } 5299 5300 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5301 unsigned long min_len, char **map, 5302 unsigned long *map_start, 5303 unsigned long *map_len) 5304 { 5305 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5306 char *kaddr; 5307 struct page *p; 5308 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5309 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5310 unsigned long end_i = (start_offset + start + min_len - 1) >> 5311 PAGE_CACHE_SHIFT; 5312 5313 if (i != end_i) 5314 return -EINVAL; 5315 5316 if (i == 0) { 5317 offset = start_offset; 5318 *map_start = 0; 5319 } else { 5320 offset = 0; 5321 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5322 } 5323 5324 if (start + min_len > eb->len) { 5325 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5326 "wanted %lu %lu\n", 5327 eb->start, eb->len, start, min_len); 5328 return -EINVAL; 5329 } 5330 5331 p = eb->pages[i]; 5332 kaddr = page_address(p); 5333 *map = kaddr + offset; 5334 *map_len = PAGE_CACHE_SIZE - offset; 5335 return 0; 5336 } 5337 5338 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5339 unsigned long start, 5340 unsigned long len) 5341 { 5342 size_t cur; 5343 size_t offset; 5344 struct page *page; 5345 char *kaddr; 5346 char *ptr = (char *)ptrv; 5347 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5348 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5349 int ret = 0; 5350 5351 WARN_ON(start > eb->len); 5352 WARN_ON(start + len > eb->start + eb->len); 5353 5354 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5355 5356 while (len > 0) { 5357 page = eb->pages[i]; 5358 5359 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5360 5361 kaddr = page_address(page); 5362 ret = memcmp(ptr, kaddr + offset, cur); 5363 if (ret) 5364 break; 5365 5366 ptr += cur; 5367 len -= cur; 5368 offset = 0; 5369 i++; 5370 } 5371 return ret; 5372 } 5373 5374 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5375 unsigned long start, unsigned long len) 5376 { 5377 size_t cur; 5378 size_t offset; 5379 struct page *page; 5380 char *kaddr; 5381 char *src = (char *)srcv; 5382 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5383 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5384 5385 WARN_ON(start > eb->len); 5386 WARN_ON(start + len > eb->start + eb->len); 5387 5388 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5389 5390 while (len > 0) { 5391 page = eb->pages[i]; 5392 WARN_ON(!PageUptodate(page)); 5393 5394 cur = min(len, PAGE_CACHE_SIZE - offset); 5395 kaddr = page_address(page); 5396 memcpy(kaddr + offset, src, cur); 5397 5398 src += cur; 5399 len -= cur; 5400 offset = 0; 5401 i++; 5402 } 5403 } 5404 5405 void memset_extent_buffer(struct extent_buffer *eb, char c, 5406 unsigned long start, unsigned long len) 5407 { 5408 size_t cur; 5409 size_t offset; 5410 struct page *page; 5411 char *kaddr; 5412 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5413 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5414 5415 WARN_ON(start > eb->len); 5416 WARN_ON(start + len > eb->start + eb->len); 5417 5418 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5419 5420 while (len > 0) { 5421 page = eb->pages[i]; 5422 WARN_ON(!PageUptodate(page)); 5423 5424 cur = min(len, PAGE_CACHE_SIZE - offset); 5425 kaddr = page_address(page); 5426 memset(kaddr + offset, c, cur); 5427 5428 len -= cur; 5429 offset = 0; 5430 i++; 5431 } 5432 } 5433 5434 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5435 unsigned long dst_offset, unsigned long src_offset, 5436 unsigned long len) 5437 { 5438 u64 dst_len = dst->len; 5439 size_t cur; 5440 size_t offset; 5441 struct page *page; 5442 char *kaddr; 5443 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5444 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5445 5446 WARN_ON(src->len != dst_len); 5447 5448 offset = (start_offset + dst_offset) & 5449 (PAGE_CACHE_SIZE - 1); 5450 5451 while (len > 0) { 5452 page = dst->pages[i]; 5453 WARN_ON(!PageUptodate(page)); 5454 5455 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5456 5457 kaddr = page_address(page); 5458 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5459 5460 src_offset += cur; 5461 len -= cur; 5462 offset = 0; 5463 i++; 5464 } 5465 } 5466 5467 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5468 { 5469 unsigned long distance = (src > dst) ? src - dst : dst - src; 5470 return distance < len; 5471 } 5472 5473 static void copy_pages(struct page *dst_page, struct page *src_page, 5474 unsigned long dst_off, unsigned long src_off, 5475 unsigned long len) 5476 { 5477 char *dst_kaddr = page_address(dst_page); 5478 char *src_kaddr; 5479 int must_memmove = 0; 5480 5481 if (dst_page != src_page) { 5482 src_kaddr = page_address(src_page); 5483 } else { 5484 src_kaddr = dst_kaddr; 5485 if (areas_overlap(src_off, dst_off, len)) 5486 must_memmove = 1; 5487 } 5488 5489 if (must_memmove) 5490 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5491 else 5492 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5493 } 5494 5495 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5496 unsigned long src_offset, unsigned long len) 5497 { 5498 size_t cur; 5499 size_t dst_off_in_page; 5500 size_t src_off_in_page; 5501 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5502 unsigned long dst_i; 5503 unsigned long src_i; 5504 5505 if (src_offset + len > dst->len) { 5506 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5507 "len %lu dst len %lu\n", src_offset, len, dst->len); 5508 BUG_ON(1); 5509 } 5510 if (dst_offset + len > dst->len) { 5511 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5512 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5513 BUG_ON(1); 5514 } 5515 5516 while (len > 0) { 5517 dst_off_in_page = (start_offset + dst_offset) & 5518 (PAGE_CACHE_SIZE - 1); 5519 src_off_in_page = (start_offset + src_offset) & 5520 (PAGE_CACHE_SIZE - 1); 5521 5522 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5523 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5524 5525 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5526 src_off_in_page)); 5527 cur = min_t(unsigned long, cur, 5528 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5529 5530 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5531 dst_off_in_page, src_off_in_page, cur); 5532 5533 src_offset += cur; 5534 dst_offset += cur; 5535 len -= cur; 5536 } 5537 } 5538 5539 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5540 unsigned long src_offset, unsigned long len) 5541 { 5542 size_t cur; 5543 size_t dst_off_in_page; 5544 size_t src_off_in_page; 5545 unsigned long dst_end = dst_offset + len - 1; 5546 unsigned long src_end = src_offset + len - 1; 5547 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5548 unsigned long dst_i; 5549 unsigned long src_i; 5550 5551 if (src_offset + len > dst->len) { 5552 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5553 "len %lu len %lu\n", src_offset, len, dst->len); 5554 BUG_ON(1); 5555 } 5556 if (dst_offset + len > dst->len) { 5557 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5558 "len %lu len %lu\n", dst_offset, len, dst->len); 5559 BUG_ON(1); 5560 } 5561 if (dst_offset < src_offset) { 5562 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5563 return; 5564 } 5565 while (len > 0) { 5566 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5567 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5568 5569 dst_off_in_page = (start_offset + dst_end) & 5570 (PAGE_CACHE_SIZE - 1); 5571 src_off_in_page = (start_offset + src_end) & 5572 (PAGE_CACHE_SIZE - 1); 5573 5574 cur = min_t(unsigned long, len, src_off_in_page + 1); 5575 cur = min(cur, dst_off_in_page + 1); 5576 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5577 dst_off_in_page - cur + 1, 5578 src_off_in_page - cur + 1, cur); 5579 5580 dst_end -= cur; 5581 src_end -= cur; 5582 len -= cur; 5583 } 5584 } 5585 5586 int try_release_extent_buffer(struct page *page) 5587 { 5588 struct extent_buffer *eb; 5589 5590 /* 5591 * We need to make sure noboody is attaching this page to an eb right 5592 * now. 5593 */ 5594 spin_lock(&page->mapping->private_lock); 5595 if (!PagePrivate(page)) { 5596 spin_unlock(&page->mapping->private_lock); 5597 return 1; 5598 } 5599 5600 eb = (struct extent_buffer *)page->private; 5601 BUG_ON(!eb); 5602 5603 /* 5604 * This is a little awful but should be ok, we need to make sure that 5605 * the eb doesn't disappear out from under us while we're looking at 5606 * this page. 5607 */ 5608 spin_lock(&eb->refs_lock); 5609 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5610 spin_unlock(&eb->refs_lock); 5611 spin_unlock(&page->mapping->private_lock); 5612 return 0; 5613 } 5614 spin_unlock(&page->mapping->private_lock); 5615 5616 /* 5617 * If tree ref isn't set then we know the ref on this eb is a real ref, 5618 * so just return, this page will likely be freed soon anyway. 5619 */ 5620 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5621 spin_unlock(&eb->refs_lock); 5622 return 0; 5623 } 5624 5625 return release_extent_buffer(eb); 5626 } 5627