xref: /linux/fs/btrfs/extent_io.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		printk_ratelimited(KERN_DEBUG
100 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 	if (!tree->mapping)
139 		return NULL;
140 	return btrfs_sb(tree->mapping->host->i_sb);
141 }
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 				     offsetof(struct btrfs_io_bio, bio));
159 	if (!btrfs_bioset)
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_free(btrfs_bioset);
169 	btrfs_bioset = NULL;
170 
171 free_buffer_cache:
172 	kmem_cache_destroy(extent_buffer_cache);
173 	extent_buffer_cache = NULL;
174 
175 free_state_cache:
176 	kmem_cache_destroy(extent_state_cache);
177 	extent_state_cache = NULL;
178 	return -ENOMEM;
179 }
180 
181 void extent_io_exit(void)
182 {
183 	btrfs_leak_debug_check();
184 
185 	/*
186 	 * Make sure all delayed rcu free are flushed before we
187 	 * destroy caches.
188 	 */
189 	rcu_barrier();
190 	if (extent_state_cache)
191 		kmem_cache_destroy(extent_state_cache);
192 	if (extent_buffer_cache)
193 		kmem_cache_destroy(extent_buffer_cache);
194 	if (btrfs_bioset)
195 		bioset_free(btrfs_bioset);
196 }
197 
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 			 struct address_space *mapping)
200 {
201 	tree->state = RB_ROOT;
202 	tree->ops = NULL;
203 	tree->dirty_bytes = 0;
204 	spin_lock_init(&tree->lock);
205 	tree->mapping = mapping;
206 }
207 
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 	struct extent_state *state;
211 
212 	state = kmem_cache_alloc(extent_state_cache, mask);
213 	if (!state)
214 		return state;
215 	state->state = 0;
216 	state->private = 0;
217 	RB_CLEAR_NODE(&state->rb_node);
218 	btrfs_leak_debug_add(&state->leak_list, &states);
219 	atomic_set(&state->refs, 1);
220 	init_waitqueue_head(&state->wq);
221 	trace_alloc_extent_state(state, mask, _RET_IP_);
222 	return state;
223 }
224 
225 void free_extent_state(struct extent_state *state)
226 {
227 	if (!state)
228 		return;
229 	if (atomic_dec_and_test(&state->refs)) {
230 		WARN_ON(extent_state_in_tree(state));
231 		btrfs_leak_debug_del(&state->leak_list);
232 		trace_free_extent_state(state, _RET_IP_);
233 		kmem_cache_free(extent_state_cache, state);
234 	}
235 }
236 
237 static struct rb_node *tree_insert(struct rb_root *root,
238 				   struct rb_node *search_start,
239 				   u64 offset,
240 				   struct rb_node *node,
241 				   struct rb_node ***p_in,
242 				   struct rb_node **parent_in)
243 {
244 	struct rb_node **p;
245 	struct rb_node *parent = NULL;
246 	struct tree_entry *entry;
247 
248 	if (p_in && parent_in) {
249 		p = *p_in;
250 		parent = *parent_in;
251 		goto do_insert;
252 	}
253 
254 	p = search_start ? &search_start : &root->rb_node;
255 	while (*p) {
256 		parent = *p;
257 		entry = rb_entry(parent, struct tree_entry, rb_node);
258 
259 		if (offset < entry->start)
260 			p = &(*p)->rb_left;
261 		else if (offset > entry->end)
262 			p = &(*p)->rb_right;
263 		else
264 			return parent;
265 	}
266 
267 do_insert:
268 	rb_link_node(node, parent, p);
269 	rb_insert_color(node, root);
270 	return NULL;
271 }
272 
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 				      struct rb_node **prev_ret,
275 				      struct rb_node **next_ret,
276 				      struct rb_node ***p_ret,
277 				      struct rb_node **parent_ret)
278 {
279 	struct rb_root *root = &tree->state;
280 	struct rb_node **n = &root->rb_node;
281 	struct rb_node *prev = NULL;
282 	struct rb_node *orig_prev = NULL;
283 	struct tree_entry *entry;
284 	struct tree_entry *prev_entry = NULL;
285 
286 	while (*n) {
287 		prev = *n;
288 		entry = rb_entry(prev, struct tree_entry, rb_node);
289 		prev_entry = entry;
290 
291 		if (offset < entry->start)
292 			n = &(*n)->rb_left;
293 		else if (offset > entry->end)
294 			n = &(*n)->rb_right;
295 		else
296 			return *n;
297 	}
298 
299 	if (p_ret)
300 		*p_ret = n;
301 	if (parent_ret)
302 		*parent_ret = prev;
303 
304 	if (prev_ret) {
305 		orig_prev = prev;
306 		while (prev && offset > prev_entry->end) {
307 			prev = rb_next(prev);
308 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 		}
310 		*prev_ret = prev;
311 		prev = orig_prev;
312 	}
313 
314 	if (next_ret) {
315 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 		while (prev && offset < prev_entry->start) {
317 			prev = rb_prev(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*next_ret = prev;
321 	}
322 	return NULL;
323 }
324 
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 		       u64 offset,
328 		       struct rb_node ***p_ret,
329 		       struct rb_node **parent_ret)
330 {
331 	struct rb_node *prev = NULL;
332 	struct rb_node *ret;
333 
334 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 	if (!ret)
336 		return prev;
337 	return ret;
338 }
339 
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 					  u64 offset)
342 {
343 	return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345 
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 		     struct extent_state *other)
348 {
349 	if (tree->ops && tree->ops->merge_extent_hook)
350 		tree->ops->merge_extent_hook(tree->mapping->host, new,
351 					     other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned *bits);
414 
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426 			struct extent_state *state, u64 start, u64 end,
427 			struct rb_node ***p,
428 			struct rb_node **parent,
429 			unsigned *bits)
430 {
431 	struct rb_node *node;
432 
433 	if (end < start)
434 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 		       end, start);
436 	state->start = start;
437 	state->end = end;
438 
439 	set_state_bits(tree, state, bits);
440 
441 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 	if (node) {
443 		struct extent_state *found;
444 		found = rb_entry(node, struct extent_state, rb_node);
445 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 		       "%llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned *bits, int wake)
515 {
516 	struct extent_state *next;
517 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
518 
519 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 		u64 range = state->end - state->start + 1;
521 		WARN_ON(range > tree->dirty_bytes);
522 		tree->dirty_bytes -= range;
523 	}
524 	clear_state_cb(tree, state, bits);
525 	state->state &= ~bits_to_clear;
526 	if (wake)
527 		wake_up(&state->wq);
528 	if (state->state == 0) {
529 		next = next_state(state);
530 		if (extent_state_in_tree(state)) {
531 			rb_erase(&state->rb_node, &tree->state);
532 			RB_CLEAR_NODE(&state->rb_node);
533 			free_extent_state(state);
534 		} else {
535 			WARN_ON(1);
536 		}
537 	} else {
538 		merge_state(tree, state);
539 		next = next_state(state);
540 	}
541 	return next;
542 }
543 
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 	if (!prealloc)
548 		prealloc = alloc_extent_state(GFP_ATOMIC);
549 
550 	return prealloc;
551 }
552 
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 		    "Extent tree was modified by another "
557 		    "thread while locked.");
558 }
559 
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 		     unsigned bits, int wake, int delete,
574 		     struct extent_state **cached_state,
575 		     gfp_t mask)
576 {
577 	struct extent_state *state;
578 	struct extent_state *cached;
579 	struct extent_state *prealloc = NULL;
580 	struct rb_node *node;
581 	u64 last_end;
582 	int err;
583 	int clear = 0;
584 
585 	btrfs_debug_check_extent_io_range(tree, start, end);
586 
587 	if (bits & EXTENT_DELALLOC)
588 		bits |= EXTENT_NORESERVE;
589 
590 	if (delete)
591 		bits |= ~EXTENT_CTLBITS;
592 	bits |= EXTENT_FIRST_DELALLOC;
593 
594 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 		clear = 1;
596 again:
597 	if (!prealloc && (mask & __GFP_WAIT)) {
598 		/*
599 		 * Don't care for allocation failure here because we might end
600 		 * up not needing the pre-allocated extent state at all, which
601 		 * is the case if we only have in the tree extent states that
602 		 * cover our input range and don't cover too any other range.
603 		 * If we end up needing a new extent state we allocate it later.
604 		 */
605 		prealloc = alloc_extent_state(mask);
606 	}
607 
608 	spin_lock(&tree->lock);
609 	if (cached_state) {
610 		cached = *cached_state;
611 
612 		if (clear) {
613 			*cached_state = NULL;
614 			cached_state = NULL;
615 		}
616 
617 		if (cached && extent_state_in_tree(cached) &&
618 		    cached->start <= start && cached->end > start) {
619 			if (clear)
620 				atomic_dec(&cached->refs);
621 			state = cached;
622 			goto hit_next;
623 		}
624 		if (clear)
625 			free_extent_state(cached);
626 	}
627 	/*
628 	 * this search will find the extents that end after
629 	 * our range starts
630 	 */
631 	node = tree_search(tree, start);
632 	if (!node)
633 		goto out;
634 	state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636 	if (state->start > end)
637 		goto out;
638 	WARN_ON(state->end < start);
639 	last_end = state->end;
640 
641 	/* the state doesn't have the wanted bits, go ahead */
642 	if (!(state->state & bits)) {
643 		state = next_state(state);
644 		goto next;
645 	}
646 
647 	/*
648 	 *     | ---- desired range ---- |
649 	 *  | state | or
650 	 *  | ------------- state -------------- |
651 	 *
652 	 * We need to split the extent we found, and may flip
653 	 * bits on second half.
654 	 *
655 	 * If the extent we found extends past our range, we
656 	 * just split and search again.  It'll get split again
657 	 * the next time though.
658 	 *
659 	 * If the extent we found is inside our range, we clear
660 	 * the desired bit on it.
661 	 */
662 
663 	if (state->start < start) {
664 		prealloc = alloc_extent_state_atomic(prealloc);
665 		BUG_ON(!prealloc);
666 		err = split_state(tree, state, prealloc, start);
667 		if (err)
668 			extent_io_tree_panic(tree, err);
669 
670 		prealloc = NULL;
671 		if (err)
672 			goto out;
673 		if (state->end <= end) {
674 			state = clear_state_bit(tree, state, &bits, wake);
675 			goto next;
676 		}
677 		goto search_again;
678 	}
679 	/*
680 	 * | ---- desired range ---- |
681 	 *                        | state |
682 	 * We need to split the extent, and clear the bit
683 	 * on the first half
684 	 */
685 	if (state->start <= end && state->end > end) {
686 		prealloc = alloc_extent_state_atomic(prealloc);
687 		BUG_ON(!prealloc);
688 		err = split_state(tree, state, prealloc, end + 1);
689 		if (err)
690 			extent_io_tree_panic(tree, err);
691 
692 		if (wake)
693 			wake_up(&state->wq);
694 
695 		clear_state_bit(tree, prealloc, &bits, wake);
696 
697 		prealloc = NULL;
698 		goto out;
699 	}
700 
701 	state = clear_state_bit(tree, state, &bits, wake);
702 next:
703 	if (last_end == (u64)-1)
704 		goto out;
705 	start = last_end + 1;
706 	if (start <= end && state && !need_resched())
707 		goto hit_next;
708 	goto search_again;
709 
710 out:
711 	spin_unlock(&tree->lock);
712 	if (prealloc)
713 		free_extent_state(prealloc);
714 
715 	return 0;
716 
717 search_again:
718 	if (start > end)
719 		goto out;
720 	spin_unlock(&tree->lock);
721 	if (mask & __GFP_WAIT)
722 		cond_resched();
723 	goto again;
724 }
725 
726 static void wait_on_state(struct extent_io_tree *tree,
727 			  struct extent_state *state)
728 		__releases(tree->lock)
729 		__acquires(tree->lock)
730 {
731 	DEFINE_WAIT(wait);
732 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 	spin_unlock(&tree->lock);
734 	schedule();
735 	spin_lock(&tree->lock);
736 	finish_wait(&state->wq, &wait);
737 }
738 
739 /*
740  * waits for one or more bits to clear on a range in the state tree.
741  * The range [start, end] is inclusive.
742  * The tree lock is taken by this function
743  */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 			    unsigned long bits)
746 {
747 	struct extent_state *state;
748 	struct rb_node *node;
749 
750 	btrfs_debug_check_extent_io_range(tree, start, end);
751 
752 	spin_lock(&tree->lock);
753 again:
754 	while (1) {
755 		/*
756 		 * this search will find all the extents that end after
757 		 * our range starts
758 		 */
759 		node = tree_search(tree, start);
760 process_node:
761 		if (!node)
762 			break;
763 
764 		state = rb_entry(node, struct extent_state, rb_node);
765 
766 		if (state->start > end)
767 			goto out;
768 
769 		if (state->state & bits) {
770 			start = state->start;
771 			atomic_inc(&state->refs);
772 			wait_on_state(tree, state);
773 			free_extent_state(state);
774 			goto again;
775 		}
776 		start = state->end + 1;
777 
778 		if (start > end)
779 			break;
780 
781 		if (!cond_resched_lock(&tree->lock)) {
782 			node = rb_next(node);
783 			goto process_node;
784 		}
785 	}
786 out:
787 	spin_unlock(&tree->lock);
788 }
789 
790 static void set_state_bits(struct extent_io_tree *tree,
791 			   struct extent_state *state,
792 			   unsigned *bits)
793 {
794 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
795 
796 	set_state_cb(tree, state, bits);
797 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 		u64 range = state->end - state->start + 1;
799 		tree->dirty_bytes += range;
800 	}
801 	state->state |= bits_to_set;
802 }
803 
804 static void cache_state_if_flags(struct extent_state *state,
805 				 struct extent_state **cached_ptr,
806 				 unsigned flags)
807 {
808 	if (cached_ptr && !(*cached_ptr)) {
809 		if (!flags || (state->state & flags)) {
810 			*cached_ptr = state;
811 			atomic_inc(&state->refs);
812 		}
813 	}
814 }
815 
816 static void cache_state(struct extent_state *state,
817 			struct extent_state **cached_ptr)
818 {
819 	return cache_state_if_flags(state, cached_ptr,
820 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822 
823 /*
824  * set some bits on a range in the tree.  This may require allocations or
825  * sleeping, so the gfp mask is used to indicate what is allowed.
826  *
827  * If any of the exclusive bits are set, this will fail with -EEXIST if some
828  * part of the range already has the desired bits set.  The start of the
829  * existing range is returned in failed_start in this case.
830  *
831  * [start, end] is inclusive This takes the tree lock.
832  */
833 
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 		 unsigned bits, unsigned exclusive_bits,
837 		 u64 *failed_start, struct extent_state **cached_state,
838 		 gfp_t mask)
839 {
840 	struct extent_state *state;
841 	struct extent_state *prealloc = NULL;
842 	struct rb_node *node;
843 	struct rb_node **p;
844 	struct rb_node *parent;
845 	int err = 0;
846 	u64 last_start;
847 	u64 last_end;
848 
849 	btrfs_debug_check_extent_io_range(tree, start, end);
850 
851 	bits |= EXTENT_FIRST_DELALLOC;
852 again:
853 	if (!prealloc && (mask & __GFP_WAIT)) {
854 		prealloc = alloc_extent_state(mask);
855 		BUG_ON(!prealloc);
856 	}
857 
858 	spin_lock(&tree->lock);
859 	if (cached_state && *cached_state) {
860 		state = *cached_state;
861 		if (state->start <= start && state->end > start &&
862 		    extent_state_in_tree(state)) {
863 			node = &state->rb_node;
864 			goto hit_next;
865 		}
866 	}
867 	/*
868 	 * this search will find all the extents that end after
869 	 * our range starts.
870 	 */
871 	node = tree_search_for_insert(tree, start, &p, &parent);
872 	if (!node) {
873 		prealloc = alloc_extent_state_atomic(prealloc);
874 		BUG_ON(!prealloc);
875 		err = insert_state(tree, prealloc, start, end,
876 				   &p, &parent, &bits);
877 		if (err)
878 			extent_io_tree_panic(tree, err);
879 
880 		cache_state(prealloc, cached_state);
881 		prealloc = NULL;
882 		goto out;
883 	}
884 	state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886 	last_start = state->start;
887 	last_end = state->end;
888 
889 	/*
890 	 * | ---- desired range ---- |
891 	 * | state |
892 	 *
893 	 * Just lock what we found and keep going
894 	 */
895 	if (state->start == start && state->end <= end) {
896 		if (state->state & exclusive_bits) {
897 			*failed_start = state->start;
898 			err = -EEXIST;
899 			goto out;
900 		}
901 
902 		set_state_bits(tree, state, &bits);
903 		cache_state(state, cached_state);
904 		merge_state(tree, state);
905 		if (last_end == (u64)-1)
906 			goto out;
907 		start = last_end + 1;
908 		state = next_state(state);
909 		if (start < end && state && state->start == start &&
910 		    !need_resched())
911 			goto hit_next;
912 		goto search_again;
913 	}
914 
915 	/*
916 	 *     | ---- desired range ---- |
917 	 * | state |
918 	 *   or
919 	 * | ------------- state -------------- |
920 	 *
921 	 * We need to split the extent we found, and may flip bits on
922 	 * second half.
923 	 *
924 	 * If the extent we found extends past our
925 	 * range, we just split and search again.  It'll get split
926 	 * again the next time though.
927 	 *
928 	 * If the extent we found is inside our range, we set the
929 	 * desired bit on it.
930 	 */
931 	if (state->start < start) {
932 		if (state->state & exclusive_bits) {
933 			*failed_start = start;
934 			err = -EEXIST;
935 			goto out;
936 		}
937 
938 		prealloc = alloc_extent_state_atomic(prealloc);
939 		BUG_ON(!prealloc);
940 		err = split_state(tree, state, prealloc, start);
941 		if (err)
942 			extent_io_tree_panic(tree, err);
943 
944 		prealloc = NULL;
945 		if (err)
946 			goto out;
947 		if (state->end <= end) {
948 			set_state_bits(tree, state, &bits);
949 			cache_state(state, cached_state);
950 			merge_state(tree, state);
951 			if (last_end == (u64)-1)
952 				goto out;
953 			start = last_end + 1;
954 			state = next_state(state);
955 			if (start < end && state && state->start == start &&
956 			    !need_resched())
957 				goto hit_next;
958 		}
959 		goto search_again;
960 	}
961 	/*
962 	 * | ---- desired range ---- |
963 	 *     | state | or               | state |
964 	 *
965 	 * There's a hole, we need to insert something in it and
966 	 * ignore the extent we found.
967 	 */
968 	if (state->start > start) {
969 		u64 this_end;
970 		if (end < last_start)
971 			this_end = end;
972 		else
973 			this_end = last_start - 1;
974 
975 		prealloc = alloc_extent_state_atomic(prealloc);
976 		BUG_ON(!prealloc);
977 
978 		/*
979 		 * Avoid to free 'prealloc' if it can be merged with
980 		 * the later extent.
981 		 */
982 		err = insert_state(tree, prealloc, start, this_end,
983 				   NULL, NULL, &bits);
984 		if (err)
985 			extent_io_tree_panic(tree, err);
986 
987 		cache_state(prealloc, cached_state);
988 		prealloc = NULL;
989 		start = this_end + 1;
990 		goto search_again;
991 	}
992 	/*
993 	 * | ---- desired range ---- |
994 	 *                        | state |
995 	 * We need to split the extent, and set the bit
996 	 * on the first half
997 	 */
998 	if (state->start <= end && state->end > end) {
999 		if (state->state & exclusive_bits) {
1000 			*failed_start = start;
1001 			err = -EEXIST;
1002 			goto out;
1003 		}
1004 
1005 		prealloc = alloc_extent_state_atomic(prealloc);
1006 		BUG_ON(!prealloc);
1007 		err = split_state(tree, state, prealloc, end + 1);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		set_state_bits(tree, prealloc, &bits);
1012 		cache_state(prealloc, cached_state);
1013 		merge_state(tree, prealloc);
1014 		prealloc = NULL;
1015 		goto out;
1016 	}
1017 
1018 	goto search_again;
1019 
1020 out:
1021 	spin_unlock(&tree->lock);
1022 	if (prealloc)
1023 		free_extent_state(prealloc);
1024 
1025 	return err;
1026 
1027 search_again:
1028 	if (start > end)
1029 		goto out;
1030 	spin_unlock(&tree->lock);
1031 	if (mask & __GFP_WAIT)
1032 		cond_resched();
1033 	goto again;
1034 }
1035 
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 		   unsigned bits, u64 * failed_start,
1038 		   struct extent_state **cached_state, gfp_t mask)
1039 {
1040 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 				cached_state, mask);
1042 }
1043 
1044 
1045 /**
1046  * convert_extent_bit - convert all bits in a given range from one bit to
1047  * 			another
1048  * @tree:	the io tree to search
1049  * @start:	the start offset in bytes
1050  * @end:	the end offset in bytes (inclusive)
1051  * @bits:	the bits to set in this range
1052  * @clear_bits:	the bits to clear in this range
1053  * @cached_state:	state that we're going to cache
1054  * @mask:	the allocation mask
1055  *
1056  * This will go through and set bits for the given range.  If any states exist
1057  * already in this range they are set with the given bit and cleared of the
1058  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060  * boundary bits like LOCK.
1061  */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 		       unsigned bits, unsigned clear_bits,
1064 		       struct extent_state **cached_state, gfp_t mask)
1065 {
1066 	struct extent_state *state;
1067 	struct extent_state *prealloc = NULL;
1068 	struct rb_node *node;
1069 	struct rb_node **p;
1070 	struct rb_node *parent;
1071 	int err = 0;
1072 	u64 last_start;
1073 	u64 last_end;
1074 	bool first_iteration = true;
1075 
1076 	btrfs_debug_check_extent_io_range(tree, start, end);
1077 
1078 again:
1079 	if (!prealloc && (mask & __GFP_WAIT)) {
1080 		/*
1081 		 * Best effort, don't worry if extent state allocation fails
1082 		 * here for the first iteration. We might have a cached state
1083 		 * that matches exactly the target range, in which case no
1084 		 * extent state allocations are needed. We'll only know this
1085 		 * after locking the tree.
1086 		 */
1087 		prealloc = alloc_extent_state(mask);
1088 		if (!prealloc && !first_iteration)
1089 			return -ENOMEM;
1090 	}
1091 
1092 	spin_lock(&tree->lock);
1093 	if (cached_state && *cached_state) {
1094 		state = *cached_state;
1095 		if (state->start <= start && state->end > start &&
1096 		    extent_state_in_tree(state)) {
1097 			node = &state->rb_node;
1098 			goto hit_next;
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * this search will find all the extents that end after
1104 	 * our range starts.
1105 	 */
1106 	node = tree_search_for_insert(tree, start, &p, &parent);
1107 	if (!node) {
1108 		prealloc = alloc_extent_state_atomic(prealloc);
1109 		if (!prealloc) {
1110 			err = -ENOMEM;
1111 			goto out;
1112 		}
1113 		err = insert_state(tree, prealloc, start, end,
1114 				   &p, &parent, &bits);
1115 		if (err)
1116 			extent_io_tree_panic(tree, err);
1117 		cache_state(prealloc, cached_state);
1118 		prealloc = NULL;
1119 		goto out;
1120 	}
1121 	state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123 	last_start = state->start;
1124 	last_end = state->end;
1125 
1126 	/*
1127 	 * | ---- desired range ---- |
1128 	 * | state |
1129 	 *
1130 	 * Just lock what we found and keep going
1131 	 */
1132 	if (state->start == start && state->end <= end) {
1133 		set_state_bits(tree, state, &bits);
1134 		cache_state(state, cached_state);
1135 		state = clear_state_bit(tree, state, &clear_bits, 0);
1136 		if (last_end == (u64)-1)
1137 			goto out;
1138 		start = last_end + 1;
1139 		if (start < end && state && state->start == start &&
1140 		    !need_resched())
1141 			goto hit_next;
1142 		goto search_again;
1143 	}
1144 
1145 	/*
1146 	 *     | ---- desired range ---- |
1147 	 * | state |
1148 	 *   or
1149 	 * | ------------- state -------------- |
1150 	 *
1151 	 * We need to split the extent we found, and may flip bits on
1152 	 * second half.
1153 	 *
1154 	 * If the extent we found extends past our
1155 	 * range, we just split and search again.  It'll get split
1156 	 * again the next time though.
1157 	 *
1158 	 * If the extent we found is inside our range, we set the
1159 	 * desired bit on it.
1160 	 */
1161 	if (state->start < start) {
1162 		prealloc = alloc_extent_state_atomic(prealloc);
1163 		if (!prealloc) {
1164 			err = -ENOMEM;
1165 			goto out;
1166 		}
1167 		err = split_state(tree, state, prealloc, start);
1168 		if (err)
1169 			extent_io_tree_panic(tree, err);
1170 		prealloc = NULL;
1171 		if (err)
1172 			goto out;
1173 		if (state->end <= end) {
1174 			set_state_bits(tree, state, &bits);
1175 			cache_state(state, cached_state);
1176 			state = clear_state_bit(tree, state, &clear_bits, 0);
1177 			if (last_end == (u64)-1)
1178 				goto out;
1179 			start = last_end + 1;
1180 			if (start < end && state && state->start == start &&
1181 			    !need_resched())
1182 				goto hit_next;
1183 		}
1184 		goto search_again;
1185 	}
1186 	/*
1187 	 * | ---- desired range ---- |
1188 	 *     | state | or               | state |
1189 	 *
1190 	 * There's a hole, we need to insert something in it and
1191 	 * ignore the extent we found.
1192 	 */
1193 	if (state->start > start) {
1194 		u64 this_end;
1195 		if (end < last_start)
1196 			this_end = end;
1197 		else
1198 			this_end = last_start - 1;
1199 
1200 		prealloc = alloc_extent_state_atomic(prealloc);
1201 		if (!prealloc) {
1202 			err = -ENOMEM;
1203 			goto out;
1204 		}
1205 
1206 		/*
1207 		 * Avoid to free 'prealloc' if it can be merged with
1208 		 * the later extent.
1209 		 */
1210 		err = insert_state(tree, prealloc, start, this_end,
1211 				   NULL, NULL, &bits);
1212 		if (err)
1213 			extent_io_tree_panic(tree, err);
1214 		cache_state(prealloc, cached_state);
1215 		prealloc = NULL;
1216 		start = this_end + 1;
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *                        | state |
1222 	 * We need to split the extent, and set the bit
1223 	 * on the first half
1224 	 */
1225 	if (state->start <= end && state->end > end) {
1226 		prealloc = alloc_extent_state_atomic(prealloc);
1227 		if (!prealloc) {
1228 			err = -ENOMEM;
1229 			goto out;
1230 		}
1231 
1232 		err = split_state(tree, state, prealloc, end + 1);
1233 		if (err)
1234 			extent_io_tree_panic(tree, err);
1235 
1236 		set_state_bits(tree, prealloc, &bits);
1237 		cache_state(prealloc, cached_state);
1238 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1239 		prealloc = NULL;
1240 		goto out;
1241 	}
1242 
1243 	goto search_again;
1244 
1245 out:
1246 	spin_unlock(&tree->lock);
1247 	if (prealloc)
1248 		free_extent_state(prealloc);
1249 
1250 	return err;
1251 
1252 search_again:
1253 	if (start > end)
1254 		goto out;
1255 	spin_unlock(&tree->lock);
1256 	if (mask & __GFP_WAIT)
1257 		cond_resched();
1258 	first_iteration = false;
1259 	goto again;
1260 }
1261 
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 		     gfp_t mask)
1265 {
1266 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267 			      NULL, mask);
1268 }
1269 
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 		    unsigned bits, gfp_t mask)
1272 {
1273 	return set_extent_bit(tree, start, end, bits, NULL,
1274 			      NULL, mask);
1275 }
1276 
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 		      unsigned bits, gfp_t mask)
1279 {
1280 	int wake = 0;
1281 
1282 	if (bits & EXTENT_LOCKED)
1283 		wake = 1;
1284 
1285 	return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1286 }
1287 
1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289 			struct extent_state **cached_state, gfp_t mask)
1290 {
1291 	return set_extent_bit(tree, start, end,
1292 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1293 			      NULL, cached_state, mask);
1294 }
1295 
1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297 		      struct extent_state **cached_state, gfp_t mask)
1298 {
1299 	return set_extent_bit(tree, start, end,
1300 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301 			      NULL, cached_state, mask);
1302 }
1303 
1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305 		       gfp_t mask)
1306 {
1307 	return clear_extent_bit(tree, start, end,
1308 				EXTENT_DIRTY | EXTENT_DELALLOC |
1309 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1310 }
1311 
1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313 		     gfp_t mask)
1314 {
1315 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1316 			      NULL, mask);
1317 }
1318 
1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320 			struct extent_state **cached_state, gfp_t mask)
1321 {
1322 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323 			      cached_state, mask);
1324 }
1325 
1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327 			  struct extent_state **cached_state, gfp_t mask)
1328 {
1329 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330 				cached_state, mask);
1331 }
1332 
1333 /*
1334  * either insert or lock state struct between start and end use mask to tell
1335  * us if waiting is desired.
1336  */
1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 		     unsigned bits, struct extent_state **cached_state)
1339 {
1340 	int err;
1341 	u64 failed_start;
1342 
1343 	while (1) {
1344 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345 				       EXTENT_LOCKED, &failed_start,
1346 				       cached_state, GFP_NOFS);
1347 		if (err == -EEXIST) {
1348 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349 			start = failed_start;
1350 		} else
1351 			break;
1352 		WARN_ON(start > end);
1353 	}
1354 	return err;
1355 }
1356 
1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 	return lock_extent_bits(tree, start, end, 0, NULL);
1360 }
1361 
1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363 {
1364 	int err;
1365 	u64 failed_start;
1366 
1367 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368 			       &failed_start, NULL, GFP_NOFS);
1369 	if (err == -EEXIST) {
1370 		if (failed_start > start)
1371 			clear_extent_bit(tree, start, failed_start - 1,
1372 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1373 		return 0;
1374 	}
1375 	return 1;
1376 }
1377 
1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379 			 struct extent_state **cached, gfp_t mask)
1380 {
1381 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382 				mask);
1383 }
1384 
1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1386 {
1387 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1388 				GFP_NOFS);
1389 }
1390 
1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392 {
1393 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395 	struct page *page;
1396 
1397 	while (index <= end_index) {
1398 		page = find_get_page(inode->i_mapping, index);
1399 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400 		clear_page_dirty_for_io(page);
1401 		page_cache_release(page);
1402 		index++;
1403 	}
1404 	return 0;
1405 }
1406 
1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408 {
1409 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 	struct page *page;
1412 
1413 	while (index <= end_index) {
1414 		page = find_get_page(inode->i_mapping, index);
1415 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416 		__set_page_dirty_nobuffers(page);
1417 		account_page_redirty(page);
1418 		page_cache_release(page);
1419 		index++;
1420 	}
1421 	return 0;
1422 }
1423 
1424 /*
1425  * helper function to set both pages and extents in the tree writeback
1426  */
1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1428 {
1429 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1430 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431 	struct page *page;
1432 
1433 	while (index <= end_index) {
1434 		page = find_get_page(tree->mapping, index);
1435 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436 		set_page_writeback(page);
1437 		page_cache_release(page);
1438 		index++;
1439 	}
1440 	return 0;
1441 }
1442 
1443 /* find the first state struct with 'bits' set after 'start', and
1444  * return it.  tree->lock must be held.  NULL will returned if
1445  * nothing was found after 'start'
1446  */
1447 static struct extent_state *
1448 find_first_extent_bit_state(struct extent_io_tree *tree,
1449 			    u64 start, unsigned bits)
1450 {
1451 	struct rb_node *node;
1452 	struct extent_state *state;
1453 
1454 	/*
1455 	 * this search will find all the extents that end after
1456 	 * our range starts.
1457 	 */
1458 	node = tree_search(tree, start);
1459 	if (!node)
1460 		goto out;
1461 
1462 	while (1) {
1463 		state = rb_entry(node, struct extent_state, rb_node);
1464 		if (state->end >= start && (state->state & bits))
1465 			return state;
1466 
1467 		node = rb_next(node);
1468 		if (!node)
1469 			break;
1470 	}
1471 out:
1472 	return NULL;
1473 }
1474 
1475 /*
1476  * find the first offset in the io tree with 'bits' set. zero is
1477  * returned if we find something, and *start_ret and *end_ret are
1478  * set to reflect the state struct that was found.
1479  *
1480  * If nothing was found, 1 is returned. If found something, return 0.
1481  */
1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1484 			  struct extent_state **cached_state)
1485 {
1486 	struct extent_state *state;
1487 	struct rb_node *n;
1488 	int ret = 1;
1489 
1490 	spin_lock(&tree->lock);
1491 	if (cached_state && *cached_state) {
1492 		state = *cached_state;
1493 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1494 			n = rb_next(&state->rb_node);
1495 			while (n) {
1496 				state = rb_entry(n, struct extent_state,
1497 						 rb_node);
1498 				if (state->state & bits)
1499 					goto got_it;
1500 				n = rb_next(n);
1501 			}
1502 			free_extent_state(*cached_state);
1503 			*cached_state = NULL;
1504 			goto out;
1505 		}
1506 		free_extent_state(*cached_state);
1507 		*cached_state = NULL;
1508 	}
1509 
1510 	state = find_first_extent_bit_state(tree, start, bits);
1511 got_it:
1512 	if (state) {
1513 		cache_state_if_flags(state, cached_state, 0);
1514 		*start_ret = state->start;
1515 		*end_ret = state->end;
1516 		ret = 0;
1517 	}
1518 out:
1519 	spin_unlock(&tree->lock);
1520 	return ret;
1521 }
1522 
1523 /*
1524  * find a contiguous range of bytes in the file marked as delalloc, not
1525  * more than 'max_bytes'.  start and end are used to return the range,
1526  *
1527  * 1 is returned if we find something, 0 if nothing was in the tree
1528  */
1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530 					u64 *start, u64 *end, u64 max_bytes,
1531 					struct extent_state **cached_state)
1532 {
1533 	struct rb_node *node;
1534 	struct extent_state *state;
1535 	u64 cur_start = *start;
1536 	u64 found = 0;
1537 	u64 total_bytes = 0;
1538 
1539 	spin_lock(&tree->lock);
1540 
1541 	/*
1542 	 * this search will find all the extents that end after
1543 	 * our range starts.
1544 	 */
1545 	node = tree_search(tree, cur_start);
1546 	if (!node) {
1547 		if (!found)
1548 			*end = (u64)-1;
1549 		goto out;
1550 	}
1551 
1552 	while (1) {
1553 		state = rb_entry(node, struct extent_state, rb_node);
1554 		if (found && (state->start != cur_start ||
1555 			      (state->state & EXTENT_BOUNDARY))) {
1556 			goto out;
1557 		}
1558 		if (!(state->state & EXTENT_DELALLOC)) {
1559 			if (!found)
1560 				*end = state->end;
1561 			goto out;
1562 		}
1563 		if (!found) {
1564 			*start = state->start;
1565 			*cached_state = state;
1566 			atomic_inc(&state->refs);
1567 		}
1568 		found++;
1569 		*end = state->end;
1570 		cur_start = state->end + 1;
1571 		node = rb_next(node);
1572 		total_bytes += state->end - state->start + 1;
1573 		if (total_bytes >= max_bytes)
1574 			break;
1575 		if (!node)
1576 			break;
1577 	}
1578 out:
1579 	spin_unlock(&tree->lock);
1580 	return found;
1581 }
1582 
1583 static noinline void __unlock_for_delalloc(struct inode *inode,
1584 					   struct page *locked_page,
1585 					   u64 start, u64 end)
1586 {
1587 	int ret;
1588 	struct page *pages[16];
1589 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1590 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591 	unsigned long nr_pages = end_index - index + 1;
1592 	int i;
1593 
1594 	if (index == locked_page->index && end_index == index)
1595 		return;
1596 
1597 	while (nr_pages > 0) {
1598 		ret = find_get_pages_contig(inode->i_mapping, index,
1599 				     min_t(unsigned long, nr_pages,
1600 				     ARRAY_SIZE(pages)), pages);
1601 		for (i = 0; i < ret; i++) {
1602 			if (pages[i] != locked_page)
1603 				unlock_page(pages[i]);
1604 			page_cache_release(pages[i]);
1605 		}
1606 		nr_pages -= ret;
1607 		index += ret;
1608 		cond_resched();
1609 	}
1610 }
1611 
1612 static noinline int lock_delalloc_pages(struct inode *inode,
1613 					struct page *locked_page,
1614 					u64 delalloc_start,
1615 					u64 delalloc_end)
1616 {
1617 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618 	unsigned long start_index = index;
1619 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620 	unsigned long pages_locked = 0;
1621 	struct page *pages[16];
1622 	unsigned long nrpages;
1623 	int ret;
1624 	int i;
1625 
1626 	/* the caller is responsible for locking the start index */
1627 	if (index == locked_page->index && index == end_index)
1628 		return 0;
1629 
1630 	/* skip the page at the start index */
1631 	nrpages = end_index - index + 1;
1632 	while (nrpages > 0) {
1633 		ret = find_get_pages_contig(inode->i_mapping, index,
1634 				     min_t(unsigned long,
1635 				     nrpages, ARRAY_SIZE(pages)), pages);
1636 		if (ret == 0) {
1637 			ret = -EAGAIN;
1638 			goto done;
1639 		}
1640 		/* now we have an array of pages, lock them all */
1641 		for (i = 0; i < ret; i++) {
1642 			/*
1643 			 * the caller is taking responsibility for
1644 			 * locked_page
1645 			 */
1646 			if (pages[i] != locked_page) {
1647 				lock_page(pages[i]);
1648 				if (!PageDirty(pages[i]) ||
1649 				    pages[i]->mapping != inode->i_mapping) {
1650 					ret = -EAGAIN;
1651 					unlock_page(pages[i]);
1652 					page_cache_release(pages[i]);
1653 					goto done;
1654 				}
1655 			}
1656 			page_cache_release(pages[i]);
1657 			pages_locked++;
1658 		}
1659 		nrpages -= ret;
1660 		index += ret;
1661 		cond_resched();
1662 	}
1663 	ret = 0;
1664 done:
1665 	if (ret && pages_locked) {
1666 		__unlock_for_delalloc(inode, locked_page,
1667 			      delalloc_start,
1668 			      ((u64)(start_index + pages_locked - 1)) <<
1669 			      PAGE_CACHE_SHIFT);
1670 	}
1671 	return ret;
1672 }
1673 
1674 /*
1675  * find a contiguous range of bytes in the file marked as delalloc, not
1676  * more than 'max_bytes'.  start and end are used to return the range,
1677  *
1678  * 1 is returned if we find something, 0 if nothing was in the tree
1679  */
1680 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681 				    struct extent_io_tree *tree,
1682 				    struct page *locked_page, u64 *start,
1683 				    u64 *end, u64 max_bytes)
1684 {
1685 	u64 delalloc_start;
1686 	u64 delalloc_end;
1687 	u64 found;
1688 	struct extent_state *cached_state = NULL;
1689 	int ret;
1690 	int loops = 0;
1691 
1692 again:
1693 	/* step one, find a bunch of delalloc bytes starting at start */
1694 	delalloc_start = *start;
1695 	delalloc_end = 0;
1696 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697 				    max_bytes, &cached_state);
1698 	if (!found || delalloc_end <= *start) {
1699 		*start = delalloc_start;
1700 		*end = delalloc_end;
1701 		free_extent_state(cached_state);
1702 		return 0;
1703 	}
1704 
1705 	/*
1706 	 * start comes from the offset of locked_page.  We have to lock
1707 	 * pages in order, so we can't process delalloc bytes before
1708 	 * locked_page
1709 	 */
1710 	if (delalloc_start < *start)
1711 		delalloc_start = *start;
1712 
1713 	/*
1714 	 * make sure to limit the number of pages we try to lock down
1715 	 */
1716 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1717 		delalloc_end = delalloc_start + max_bytes - 1;
1718 
1719 	/* step two, lock all the pages after the page that has start */
1720 	ret = lock_delalloc_pages(inode, locked_page,
1721 				  delalloc_start, delalloc_end);
1722 	if (ret == -EAGAIN) {
1723 		/* some of the pages are gone, lets avoid looping by
1724 		 * shortening the size of the delalloc range we're searching
1725 		 */
1726 		free_extent_state(cached_state);
1727 		cached_state = NULL;
1728 		if (!loops) {
1729 			max_bytes = PAGE_CACHE_SIZE;
1730 			loops = 1;
1731 			goto again;
1732 		} else {
1733 			found = 0;
1734 			goto out_failed;
1735 		}
1736 	}
1737 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1738 
1739 	/* step three, lock the state bits for the whole range */
1740 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1741 
1742 	/* then test to make sure it is all still delalloc */
1743 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744 			     EXTENT_DELALLOC, 1, cached_state);
1745 	if (!ret) {
1746 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747 				     &cached_state, GFP_NOFS);
1748 		__unlock_for_delalloc(inode, locked_page,
1749 			      delalloc_start, delalloc_end);
1750 		cond_resched();
1751 		goto again;
1752 	}
1753 	free_extent_state(cached_state);
1754 	*start = delalloc_start;
1755 	*end = delalloc_end;
1756 out_failed:
1757 	return found;
1758 }
1759 
1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761 				 struct page *locked_page,
1762 				 unsigned clear_bits,
1763 				 unsigned long page_ops)
1764 {
1765 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1766 	int ret;
1767 	struct page *pages[16];
1768 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1769 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770 	unsigned long nr_pages = end_index - index + 1;
1771 	int i;
1772 
1773 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1774 	if (page_ops == 0)
1775 		return 0;
1776 
1777 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778 		mapping_set_error(inode->i_mapping, -EIO);
1779 
1780 	while (nr_pages > 0) {
1781 		ret = find_get_pages_contig(inode->i_mapping, index,
1782 				     min_t(unsigned long,
1783 				     nr_pages, ARRAY_SIZE(pages)), pages);
1784 		for (i = 0; i < ret; i++) {
1785 
1786 			if (page_ops & PAGE_SET_PRIVATE2)
1787 				SetPagePrivate2(pages[i]);
1788 
1789 			if (pages[i] == locked_page) {
1790 				page_cache_release(pages[i]);
1791 				continue;
1792 			}
1793 			if (page_ops & PAGE_CLEAR_DIRTY)
1794 				clear_page_dirty_for_io(pages[i]);
1795 			if (page_ops & PAGE_SET_WRITEBACK)
1796 				set_page_writeback(pages[i]);
1797 			if (page_ops & PAGE_SET_ERROR)
1798 				SetPageError(pages[i]);
1799 			if (page_ops & PAGE_END_WRITEBACK)
1800 				end_page_writeback(pages[i]);
1801 			if (page_ops & PAGE_UNLOCK)
1802 				unlock_page(pages[i]);
1803 			page_cache_release(pages[i]);
1804 		}
1805 		nr_pages -= ret;
1806 		index += ret;
1807 		cond_resched();
1808 	}
1809 	return 0;
1810 }
1811 
1812 /*
1813  * count the number of bytes in the tree that have a given bit(s)
1814  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1815  * cached.  The total number found is returned.
1816  */
1817 u64 count_range_bits(struct extent_io_tree *tree,
1818 		     u64 *start, u64 search_end, u64 max_bytes,
1819 		     unsigned bits, int contig)
1820 {
1821 	struct rb_node *node;
1822 	struct extent_state *state;
1823 	u64 cur_start = *start;
1824 	u64 total_bytes = 0;
1825 	u64 last = 0;
1826 	int found = 0;
1827 
1828 	if (WARN_ON(search_end <= cur_start))
1829 		return 0;
1830 
1831 	spin_lock(&tree->lock);
1832 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833 		total_bytes = tree->dirty_bytes;
1834 		goto out;
1835 	}
1836 	/*
1837 	 * this search will find all the extents that end after
1838 	 * our range starts.
1839 	 */
1840 	node = tree_search(tree, cur_start);
1841 	if (!node)
1842 		goto out;
1843 
1844 	while (1) {
1845 		state = rb_entry(node, struct extent_state, rb_node);
1846 		if (state->start > search_end)
1847 			break;
1848 		if (contig && found && state->start > last + 1)
1849 			break;
1850 		if (state->end >= cur_start && (state->state & bits) == bits) {
1851 			total_bytes += min(search_end, state->end) + 1 -
1852 				       max(cur_start, state->start);
1853 			if (total_bytes >= max_bytes)
1854 				break;
1855 			if (!found) {
1856 				*start = max(cur_start, state->start);
1857 				found = 1;
1858 			}
1859 			last = state->end;
1860 		} else if (contig && found) {
1861 			break;
1862 		}
1863 		node = rb_next(node);
1864 		if (!node)
1865 			break;
1866 	}
1867 out:
1868 	spin_unlock(&tree->lock);
1869 	return total_bytes;
1870 }
1871 
1872 /*
1873  * set the private field for a given byte offset in the tree.  If there isn't
1874  * an extent_state there already, this does nothing.
1875  */
1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1877 {
1878 	struct rb_node *node;
1879 	struct extent_state *state;
1880 	int ret = 0;
1881 
1882 	spin_lock(&tree->lock);
1883 	/*
1884 	 * this search will find all the extents that end after
1885 	 * our range starts.
1886 	 */
1887 	node = tree_search(tree, start);
1888 	if (!node) {
1889 		ret = -ENOENT;
1890 		goto out;
1891 	}
1892 	state = rb_entry(node, struct extent_state, rb_node);
1893 	if (state->start != start) {
1894 		ret = -ENOENT;
1895 		goto out;
1896 	}
1897 	state->private = private;
1898 out:
1899 	spin_unlock(&tree->lock);
1900 	return ret;
1901 }
1902 
1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904 {
1905 	struct rb_node *node;
1906 	struct extent_state *state;
1907 	int ret = 0;
1908 
1909 	spin_lock(&tree->lock);
1910 	/*
1911 	 * this search will find all the extents that end after
1912 	 * our range starts.
1913 	 */
1914 	node = tree_search(tree, start);
1915 	if (!node) {
1916 		ret = -ENOENT;
1917 		goto out;
1918 	}
1919 	state = rb_entry(node, struct extent_state, rb_node);
1920 	if (state->start != start) {
1921 		ret = -ENOENT;
1922 		goto out;
1923 	}
1924 	*private = state->private;
1925 out:
1926 	spin_unlock(&tree->lock);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * searches a range in the state tree for a given mask.
1932  * If 'filled' == 1, this returns 1 only if every extent in the tree
1933  * has the bits set.  Otherwise, 1 is returned if any bit in the
1934  * range is found set.
1935  */
1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937 		   unsigned bits, int filled, struct extent_state *cached)
1938 {
1939 	struct extent_state *state = NULL;
1940 	struct rb_node *node;
1941 	int bitset = 0;
1942 
1943 	spin_lock(&tree->lock);
1944 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945 	    cached->end > start)
1946 		node = &cached->rb_node;
1947 	else
1948 		node = tree_search(tree, start);
1949 	while (node && start <= end) {
1950 		state = rb_entry(node, struct extent_state, rb_node);
1951 
1952 		if (filled && state->start > start) {
1953 			bitset = 0;
1954 			break;
1955 		}
1956 
1957 		if (state->start > end)
1958 			break;
1959 
1960 		if (state->state & bits) {
1961 			bitset = 1;
1962 			if (!filled)
1963 				break;
1964 		} else if (filled) {
1965 			bitset = 0;
1966 			break;
1967 		}
1968 
1969 		if (state->end == (u64)-1)
1970 			break;
1971 
1972 		start = state->end + 1;
1973 		if (start > end)
1974 			break;
1975 		node = rb_next(node);
1976 		if (!node) {
1977 			if (filled)
1978 				bitset = 0;
1979 			break;
1980 		}
1981 	}
1982 	spin_unlock(&tree->lock);
1983 	return bitset;
1984 }
1985 
1986 /*
1987  * helper function to set a given page up to date if all the
1988  * extents in the tree for that page are up to date
1989  */
1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1991 {
1992 	u64 start = page_offset(page);
1993 	u64 end = start + PAGE_CACHE_SIZE - 1;
1994 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995 		SetPageUptodate(page);
1996 }
1997 
1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1999 {
2000 	int ret;
2001 	int err = 0;
2002 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003 
2004 	set_state_private(failure_tree, rec->start, 0);
2005 	ret = clear_extent_bits(failure_tree, rec->start,
2006 				rec->start + rec->len - 1,
2007 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008 	if (ret)
2009 		err = ret;
2010 
2011 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012 				rec->start + rec->len - 1,
2013 				EXTENT_DAMAGED, GFP_NOFS);
2014 	if (ret && !err)
2015 		err = ret;
2016 
2017 	kfree(rec);
2018 	return err;
2019 }
2020 
2021 /*
2022  * this bypasses the standard btrfs submit functions deliberately, as
2023  * the standard behavior is to write all copies in a raid setup. here we only
2024  * want to write the one bad copy. so we do the mapping for ourselves and issue
2025  * submit_bio directly.
2026  * to avoid any synchronization issues, wait for the data after writing, which
2027  * actually prevents the read that triggered the error from finishing.
2028  * currently, there can be no more than two copies of every data bit. thus,
2029  * exactly one rewrite is required.
2030  */
2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032 		      struct page *page, unsigned int pg_offset, int mirror_num)
2033 {
2034 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2035 	struct bio *bio;
2036 	struct btrfs_device *dev;
2037 	u64 map_length = 0;
2038 	u64 sector;
2039 	struct btrfs_bio *bbio = NULL;
2040 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041 	int ret;
2042 
2043 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044 	BUG_ON(!mirror_num);
2045 
2046 	/* we can't repair anything in raid56 yet */
2047 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048 		return 0;
2049 
2050 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2051 	if (!bio)
2052 		return -EIO;
2053 	bio->bi_iter.bi_size = 0;
2054 	map_length = length;
2055 
2056 	ret = btrfs_map_block(fs_info, WRITE, logical,
2057 			      &map_length, &bbio, mirror_num);
2058 	if (ret) {
2059 		bio_put(bio);
2060 		return -EIO;
2061 	}
2062 	BUG_ON(mirror_num != bbio->mirror_num);
2063 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2064 	bio->bi_iter.bi_sector = sector;
2065 	dev = bbio->stripes[mirror_num-1].dev;
2066 	btrfs_put_bbio(bbio);
2067 	if (!dev || !dev->bdev || !dev->writeable) {
2068 		bio_put(bio);
2069 		return -EIO;
2070 	}
2071 	bio->bi_bdev = dev->bdev;
2072 	bio_add_page(bio, page, length, pg_offset);
2073 
2074 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075 		/* try to remap that extent elsewhere? */
2076 		bio_put(bio);
2077 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2078 		return -EIO;
2079 	}
2080 
2081 	printk_ratelimited_in_rcu(KERN_INFO
2082 				  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083 				  btrfs_ino(inode), start,
2084 				  rcu_str_deref(dev->name), sector);
2085 	bio_put(bio);
2086 	return 0;
2087 }
2088 
2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090 			 int mirror_num)
2091 {
2092 	u64 start = eb->start;
2093 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2094 	int ret = 0;
2095 
2096 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2097 		return -EROFS;
2098 
2099 	for (i = 0; i < num_pages; i++) {
2100 		struct page *p = eb->pages[i];
2101 
2102 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2103 					PAGE_CACHE_SIZE, start, p,
2104 					start - page_offset(p), mirror_num);
2105 		if (ret)
2106 			break;
2107 		start += PAGE_CACHE_SIZE;
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 /*
2114  * each time an IO finishes, we do a fast check in the IO failure tree
2115  * to see if we need to process or clean up an io_failure_record
2116  */
2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118 		     unsigned int pg_offset)
2119 {
2120 	u64 private;
2121 	u64 private_failure;
2122 	struct io_failure_record *failrec;
2123 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124 	struct extent_state *state;
2125 	int num_copies;
2126 	int ret;
2127 
2128 	private = 0;
2129 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130 				(u64)-1, 1, EXTENT_DIRTY, 0);
2131 	if (!ret)
2132 		return 0;
2133 
2134 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135 				&private_failure);
2136 	if (ret)
2137 		return 0;
2138 
2139 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140 	BUG_ON(!failrec->this_mirror);
2141 
2142 	if (failrec->in_validation) {
2143 		/* there was no real error, just free the record */
2144 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145 			 failrec->start);
2146 		goto out;
2147 	}
2148 	if (fs_info->sb->s_flags & MS_RDONLY)
2149 		goto out;
2150 
2151 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153 					    failrec->start,
2154 					    EXTENT_LOCKED);
2155 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156 
2157 	if (state && state->start <= failrec->start &&
2158 	    state->end >= failrec->start + failrec->len - 1) {
2159 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160 					      failrec->len);
2161 		if (num_copies > 1)  {
2162 			repair_io_failure(inode, start, failrec->len,
2163 					  failrec->logical, page,
2164 					  pg_offset, failrec->failed_mirror);
2165 		}
2166 	}
2167 
2168 out:
2169 	free_io_failure(inode, failrec);
2170 
2171 	return 0;
2172 }
2173 
2174 /*
2175  * Can be called when
2176  * - hold extent lock
2177  * - under ordered extent
2178  * - the inode is freeing
2179  */
2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181 {
2182 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 	struct io_failure_record *failrec;
2184 	struct extent_state *state, *next;
2185 
2186 	if (RB_EMPTY_ROOT(&failure_tree->state))
2187 		return;
2188 
2189 	spin_lock(&failure_tree->lock);
2190 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191 	while (state) {
2192 		if (state->start > end)
2193 			break;
2194 
2195 		ASSERT(state->end <= end);
2196 
2197 		next = next_state(state);
2198 
2199 		failrec = (struct io_failure_record *)(unsigned long)state->private;
2200 		free_extent_state(state);
2201 		kfree(failrec);
2202 
2203 		state = next;
2204 	}
2205 	spin_unlock(&failure_tree->lock);
2206 }
2207 
2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209 				struct io_failure_record **failrec_ret)
2210 {
2211 	struct io_failure_record *failrec;
2212 	u64 private;
2213 	struct extent_map *em;
2214 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2217 	int ret;
2218 	u64 logical;
2219 
2220 	ret = get_state_private(failure_tree, start, &private);
2221 	if (ret) {
2222 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223 		if (!failrec)
2224 			return -ENOMEM;
2225 
2226 		failrec->start = start;
2227 		failrec->len = end - start + 1;
2228 		failrec->this_mirror = 0;
2229 		failrec->bio_flags = 0;
2230 		failrec->in_validation = 0;
2231 
2232 		read_lock(&em_tree->lock);
2233 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2234 		if (!em) {
2235 			read_unlock(&em_tree->lock);
2236 			kfree(failrec);
2237 			return -EIO;
2238 		}
2239 
2240 		if (em->start > start || em->start + em->len <= start) {
2241 			free_extent_map(em);
2242 			em = NULL;
2243 		}
2244 		read_unlock(&em_tree->lock);
2245 		if (!em) {
2246 			kfree(failrec);
2247 			return -EIO;
2248 		}
2249 
2250 		logical = start - em->start;
2251 		logical = em->block_start + logical;
2252 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253 			logical = em->block_start;
2254 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255 			extent_set_compress_type(&failrec->bio_flags,
2256 						 em->compress_type);
2257 		}
2258 
2259 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260 			 logical, start, failrec->len);
2261 
2262 		failrec->logical = logical;
2263 		free_extent_map(em);
2264 
2265 		/* set the bits in the private failure tree */
2266 		ret = set_extent_bits(failure_tree, start, end,
2267 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 		if (ret >= 0)
2269 			ret = set_state_private(failure_tree, start,
2270 						(u64)(unsigned long)failrec);
2271 		/* set the bits in the inode's tree */
2272 		if (ret >= 0)
2273 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 						GFP_NOFS);
2275 		if (ret < 0) {
2276 			kfree(failrec);
2277 			return ret;
2278 		}
2279 	} else {
2280 		failrec = (struct io_failure_record *)(unsigned long)private;
2281 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282 			 failrec->logical, failrec->start, failrec->len,
2283 			 failrec->in_validation);
2284 		/*
2285 		 * when data can be on disk more than twice, add to failrec here
2286 		 * (e.g. with a list for failed_mirror) to make
2287 		 * clean_io_failure() clean all those errors at once.
2288 		 */
2289 	}
2290 
2291 	*failrec_ret = failrec;
2292 
2293 	return 0;
2294 }
2295 
2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297 			   struct io_failure_record *failrec, int failed_mirror)
2298 {
2299 	int num_copies;
2300 
2301 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302 				      failrec->logical, failrec->len);
2303 	if (num_copies == 1) {
2304 		/*
2305 		 * we only have a single copy of the data, so don't bother with
2306 		 * all the retry and error correction code that follows. no
2307 		 * matter what the error is, it is very likely to persist.
2308 		 */
2309 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310 			 num_copies, failrec->this_mirror, failed_mirror);
2311 		return 0;
2312 	}
2313 
2314 	/*
2315 	 * there are two premises:
2316 	 *	a) deliver good data to the caller
2317 	 *	b) correct the bad sectors on disk
2318 	 */
2319 	if (failed_bio->bi_vcnt > 1) {
2320 		/*
2321 		 * to fulfill b), we need to know the exact failing sectors, as
2322 		 * we don't want to rewrite any more than the failed ones. thus,
2323 		 * we need separate read requests for the failed bio
2324 		 *
2325 		 * if the following BUG_ON triggers, our validation request got
2326 		 * merged. we need separate requests for our algorithm to work.
2327 		 */
2328 		BUG_ON(failrec->in_validation);
2329 		failrec->in_validation = 1;
2330 		failrec->this_mirror = failed_mirror;
2331 	} else {
2332 		/*
2333 		 * we're ready to fulfill a) and b) alongside. get a good copy
2334 		 * of the failed sector and if we succeed, we have setup
2335 		 * everything for repair_io_failure to do the rest for us.
2336 		 */
2337 		if (failrec->in_validation) {
2338 			BUG_ON(failrec->this_mirror != failed_mirror);
2339 			failrec->in_validation = 0;
2340 			failrec->this_mirror = 0;
2341 		}
2342 		failrec->failed_mirror = failed_mirror;
2343 		failrec->this_mirror++;
2344 		if (failrec->this_mirror == failed_mirror)
2345 			failrec->this_mirror++;
2346 	}
2347 
2348 	if (failrec->this_mirror > num_copies) {
2349 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350 			 num_copies, failrec->this_mirror, failed_mirror);
2351 		return 0;
2352 	}
2353 
2354 	return 1;
2355 }
2356 
2357 
2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359 				    struct io_failure_record *failrec,
2360 				    struct page *page, int pg_offset, int icsum,
2361 				    bio_end_io_t *endio_func, void *data)
2362 {
2363 	struct bio *bio;
2364 	struct btrfs_io_bio *btrfs_failed_bio;
2365 	struct btrfs_io_bio *btrfs_bio;
2366 
2367 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2368 	if (!bio)
2369 		return NULL;
2370 
2371 	bio->bi_end_io = endio_func;
2372 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2373 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374 	bio->bi_iter.bi_size = 0;
2375 	bio->bi_private = data;
2376 
2377 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378 	if (btrfs_failed_bio->csum) {
2379 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381 
2382 		btrfs_bio = btrfs_io_bio(bio);
2383 		btrfs_bio->csum = btrfs_bio->csum_inline;
2384 		icsum *= csum_size;
2385 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2386 		       csum_size);
2387 	}
2388 
2389 	bio_add_page(bio, page, failrec->len, pg_offset);
2390 
2391 	return bio;
2392 }
2393 
2394 /*
2395  * this is a generic handler for readpage errors (default
2396  * readpage_io_failed_hook). if other copies exist, read those and write back
2397  * good data to the failed position. does not investigate in remapping the
2398  * failed extent elsewhere, hoping the device will be smart enough to do this as
2399  * needed
2400  */
2401 
2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403 			      struct page *page, u64 start, u64 end,
2404 			      int failed_mirror)
2405 {
2406 	struct io_failure_record *failrec;
2407 	struct inode *inode = page->mapping->host;
2408 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409 	struct bio *bio;
2410 	int read_mode;
2411 	int ret;
2412 
2413 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414 
2415 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416 	if (ret)
2417 		return ret;
2418 
2419 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420 	if (!ret) {
2421 		free_io_failure(inode, failrec);
2422 		return -EIO;
2423 	}
2424 
2425 	if (failed_bio->bi_vcnt > 1)
2426 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427 	else
2428 		read_mode = READ_SYNC;
2429 
2430 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2431 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432 				      start - page_offset(page),
2433 				      (int)phy_offset, failed_bio->bi_end_io,
2434 				      NULL);
2435 	if (!bio) {
2436 		free_io_failure(inode, failrec);
2437 		return -EIO;
2438 	}
2439 
2440 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441 		 read_mode, failrec->this_mirror, failrec->in_validation);
2442 
2443 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444 					 failrec->this_mirror,
2445 					 failrec->bio_flags, 0);
2446 	if (ret) {
2447 		free_io_failure(inode, failrec);
2448 		bio_put(bio);
2449 	}
2450 
2451 	return ret;
2452 }
2453 
2454 /* lots and lots of room for performance fixes in the end_bio funcs */
2455 
2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457 {
2458 	int uptodate = (err == 0);
2459 	struct extent_io_tree *tree;
2460 	int ret = 0;
2461 
2462 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2463 
2464 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2465 		ret = tree->ops->writepage_end_io_hook(page, start,
2466 					       end, NULL, uptodate);
2467 		if (ret)
2468 			uptodate = 0;
2469 	}
2470 
2471 	if (!uptodate) {
2472 		ClearPageUptodate(page);
2473 		SetPageError(page);
2474 		ret = ret < 0 ? ret : -EIO;
2475 		mapping_set_error(page->mapping, ret);
2476 	}
2477 	return 0;
2478 }
2479 
2480 /*
2481  * after a writepage IO is done, we need to:
2482  * clear the uptodate bits on error
2483  * clear the writeback bits in the extent tree for this IO
2484  * end_page_writeback if the page has no more pending IO
2485  *
2486  * Scheduling is not allowed, so the extent state tree is expected
2487  * to have one and only one object corresponding to this IO.
2488  */
2489 static void end_bio_extent_writepage(struct bio *bio)
2490 {
2491 	struct bio_vec *bvec;
2492 	u64 start;
2493 	u64 end;
2494 	int i;
2495 
2496 	bio_for_each_segment_all(bvec, bio, i) {
2497 		struct page *page = bvec->bv_page;
2498 
2499 		/* We always issue full-page reads, but if some block
2500 		 * in a page fails to read, blk_update_request() will
2501 		 * advance bv_offset and adjust bv_len to compensate.
2502 		 * Print a warning for nonzero offsets, and an error
2503 		 * if they don't add up to a full page.  */
2504 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507 				   "partial page write in btrfs with offset %u and length %u",
2508 					bvec->bv_offset, bvec->bv_len);
2509 			else
2510 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511 				   "incomplete page write in btrfs with offset %u and "
2512 				   "length %u",
2513 					bvec->bv_offset, bvec->bv_len);
2514 		}
2515 
2516 		start = page_offset(page);
2517 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2518 
2519 		if (end_extent_writepage(page, bio->bi_error, start, end))
2520 			continue;
2521 
2522 		end_page_writeback(page);
2523 	}
2524 
2525 	bio_put(bio);
2526 }
2527 
2528 static void
2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530 			      int uptodate)
2531 {
2532 	struct extent_state *cached = NULL;
2533 	u64 end = start + len - 1;
2534 
2535 	if (uptodate && tree->track_uptodate)
2536 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538 }
2539 
2540 /*
2541  * after a readpage IO is done, we need to:
2542  * clear the uptodate bits on error
2543  * set the uptodate bits if things worked
2544  * set the page up to date if all extents in the tree are uptodate
2545  * clear the lock bit in the extent tree
2546  * unlock the page if there are no other extents locked for it
2547  *
2548  * Scheduling is not allowed, so the extent state tree is expected
2549  * to have one and only one object corresponding to this IO.
2550  */
2551 static void end_bio_extent_readpage(struct bio *bio)
2552 {
2553 	struct bio_vec *bvec;
2554 	int uptodate = !bio->bi_error;
2555 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556 	struct extent_io_tree *tree;
2557 	u64 offset = 0;
2558 	u64 start;
2559 	u64 end;
2560 	u64 len;
2561 	u64 extent_start = 0;
2562 	u64 extent_len = 0;
2563 	int mirror;
2564 	int ret;
2565 	int i;
2566 
2567 	bio_for_each_segment_all(bvec, bio, i) {
2568 		struct page *page = bvec->bv_page;
2569 		struct inode *inode = page->mapping->host;
2570 
2571 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2572 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2573 			 bio->bi_error, io_bio->mirror_num);
2574 		tree = &BTRFS_I(inode)->io_tree;
2575 
2576 		/* We always issue full-page reads, but if some block
2577 		 * in a page fails to read, blk_update_request() will
2578 		 * advance bv_offset and adjust bv_len to compensate.
2579 		 * Print a warning for nonzero offsets, and an error
2580 		 * if they don't add up to a full page.  */
2581 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2582 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2583 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2584 				   "partial page read in btrfs with offset %u and length %u",
2585 					bvec->bv_offset, bvec->bv_len);
2586 			else
2587 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2588 				   "incomplete page read in btrfs with offset %u and "
2589 				   "length %u",
2590 					bvec->bv_offset, bvec->bv_len);
2591 		}
2592 
2593 		start = page_offset(page);
2594 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2595 		len = bvec->bv_len;
2596 
2597 		mirror = io_bio->mirror_num;
2598 		if (likely(uptodate && tree->ops &&
2599 			   tree->ops->readpage_end_io_hook)) {
2600 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2601 							      page, start, end,
2602 							      mirror);
2603 			if (ret)
2604 				uptodate = 0;
2605 			else
2606 				clean_io_failure(inode, start, page, 0);
2607 		}
2608 
2609 		if (likely(uptodate))
2610 			goto readpage_ok;
2611 
2612 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2613 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2614 			if (!ret && !bio->bi_error)
2615 				uptodate = 1;
2616 		} else {
2617 			/*
2618 			 * The generic bio_readpage_error handles errors the
2619 			 * following way: If possible, new read requests are
2620 			 * created and submitted and will end up in
2621 			 * end_bio_extent_readpage as well (if we're lucky, not
2622 			 * in the !uptodate case). In that case it returns 0 and
2623 			 * we just go on with the next page in our bio. If it
2624 			 * can't handle the error it will return -EIO and we
2625 			 * remain responsible for that page.
2626 			 */
2627 			ret = bio_readpage_error(bio, offset, page, start, end,
2628 						 mirror);
2629 			if (ret == 0) {
2630 				uptodate = !bio->bi_error;
2631 				offset += len;
2632 				continue;
2633 			}
2634 		}
2635 readpage_ok:
2636 		if (likely(uptodate)) {
2637 			loff_t i_size = i_size_read(inode);
2638 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639 			unsigned off;
2640 
2641 			/* Zero out the end if this page straddles i_size */
2642 			off = i_size & (PAGE_CACHE_SIZE-1);
2643 			if (page->index == end_index && off)
2644 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2645 			SetPageUptodate(page);
2646 		} else {
2647 			ClearPageUptodate(page);
2648 			SetPageError(page);
2649 		}
2650 		unlock_page(page);
2651 		offset += len;
2652 
2653 		if (unlikely(!uptodate)) {
2654 			if (extent_len) {
2655 				endio_readpage_release_extent(tree,
2656 							      extent_start,
2657 							      extent_len, 1);
2658 				extent_start = 0;
2659 				extent_len = 0;
2660 			}
2661 			endio_readpage_release_extent(tree, start,
2662 						      end - start + 1, 0);
2663 		} else if (!extent_len) {
2664 			extent_start = start;
2665 			extent_len = end + 1 - start;
2666 		} else if (extent_start + extent_len == start) {
2667 			extent_len += end + 1 - start;
2668 		} else {
2669 			endio_readpage_release_extent(tree, extent_start,
2670 						      extent_len, uptodate);
2671 			extent_start = start;
2672 			extent_len = end + 1 - start;
2673 		}
2674 	}
2675 
2676 	if (extent_len)
2677 		endio_readpage_release_extent(tree, extent_start, extent_len,
2678 					      uptodate);
2679 	if (io_bio->end_io)
2680 		io_bio->end_io(io_bio, bio->bi_error);
2681 	bio_put(bio);
2682 }
2683 
2684 /*
2685  * this allocates from the btrfs_bioset.  We're returning a bio right now
2686  * but you can call btrfs_io_bio for the appropriate container_of magic
2687  */
2688 struct bio *
2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2690 		gfp_t gfp_flags)
2691 {
2692 	struct btrfs_io_bio *btrfs_bio;
2693 	struct bio *bio;
2694 
2695 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2696 
2697 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698 		while (!bio && (nr_vecs /= 2)) {
2699 			bio = bio_alloc_bioset(gfp_flags,
2700 					       nr_vecs, btrfs_bioset);
2701 		}
2702 	}
2703 
2704 	if (bio) {
2705 		bio->bi_bdev = bdev;
2706 		bio->bi_iter.bi_sector = first_sector;
2707 		btrfs_bio = btrfs_io_bio(bio);
2708 		btrfs_bio->csum = NULL;
2709 		btrfs_bio->csum_allocated = NULL;
2710 		btrfs_bio->end_io = NULL;
2711 	}
2712 	return bio;
2713 }
2714 
2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2716 {
2717 	struct btrfs_io_bio *btrfs_bio;
2718 	struct bio *new;
2719 
2720 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2721 	if (new) {
2722 		btrfs_bio = btrfs_io_bio(new);
2723 		btrfs_bio->csum = NULL;
2724 		btrfs_bio->csum_allocated = NULL;
2725 		btrfs_bio->end_io = NULL;
2726 	}
2727 	return new;
2728 }
2729 
2730 /* this also allocates from the btrfs_bioset */
2731 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2732 {
2733 	struct btrfs_io_bio *btrfs_bio;
2734 	struct bio *bio;
2735 
2736 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2737 	if (bio) {
2738 		btrfs_bio = btrfs_io_bio(bio);
2739 		btrfs_bio->csum = NULL;
2740 		btrfs_bio->csum_allocated = NULL;
2741 		btrfs_bio->end_io = NULL;
2742 	}
2743 	return bio;
2744 }
2745 
2746 
2747 static int __must_check submit_one_bio(int rw, struct bio *bio,
2748 				       int mirror_num, unsigned long bio_flags)
2749 {
2750 	int ret = 0;
2751 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2752 	struct page *page = bvec->bv_page;
2753 	struct extent_io_tree *tree = bio->bi_private;
2754 	u64 start;
2755 
2756 	start = page_offset(page) + bvec->bv_offset;
2757 
2758 	bio->bi_private = NULL;
2759 
2760 	bio_get(bio);
2761 
2762 	if (tree->ops && tree->ops->submit_bio_hook)
2763 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2764 					   mirror_num, bio_flags, start);
2765 	else
2766 		btrfsic_submit_bio(rw, bio);
2767 
2768 	bio_put(bio);
2769 	return ret;
2770 }
2771 
2772 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2773 		     unsigned long offset, size_t size, struct bio *bio,
2774 		     unsigned long bio_flags)
2775 {
2776 	int ret = 0;
2777 	if (tree->ops && tree->ops->merge_bio_hook)
2778 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2779 						bio_flags);
2780 	BUG_ON(ret < 0);
2781 	return ret;
2782 
2783 }
2784 
2785 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2786 			      struct page *page, sector_t sector,
2787 			      size_t size, unsigned long offset,
2788 			      struct block_device *bdev,
2789 			      struct bio **bio_ret,
2790 			      unsigned long max_pages,
2791 			      bio_end_io_t end_io_func,
2792 			      int mirror_num,
2793 			      unsigned long prev_bio_flags,
2794 			      unsigned long bio_flags)
2795 {
2796 	int ret = 0;
2797 	struct bio *bio;
2798 	int contig = 0;
2799 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2800 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2801 
2802 	if (bio_ret && *bio_ret) {
2803 		bio = *bio_ret;
2804 		if (old_compressed)
2805 			contig = bio->bi_iter.bi_sector == sector;
2806 		else
2807 			contig = bio_end_sector(bio) == sector;
2808 
2809 		if (prev_bio_flags != bio_flags || !contig ||
2810 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2811 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2812 			ret = submit_one_bio(rw, bio, mirror_num,
2813 					     prev_bio_flags);
2814 			if (ret < 0) {
2815 				*bio_ret = NULL;
2816 				return ret;
2817 			}
2818 			bio = NULL;
2819 		} else {
2820 			return 0;
2821 		}
2822 	}
2823 
2824 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2825 			GFP_NOFS | __GFP_HIGH);
2826 	if (!bio)
2827 		return -ENOMEM;
2828 
2829 	bio_add_page(bio, page, page_size, offset);
2830 	bio->bi_end_io = end_io_func;
2831 	bio->bi_private = tree;
2832 
2833 	if (bio_ret)
2834 		*bio_ret = bio;
2835 	else
2836 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2837 
2838 	return ret;
2839 }
2840 
2841 static void attach_extent_buffer_page(struct extent_buffer *eb,
2842 				      struct page *page)
2843 {
2844 	if (!PagePrivate(page)) {
2845 		SetPagePrivate(page);
2846 		page_cache_get(page);
2847 		set_page_private(page, (unsigned long)eb);
2848 	} else {
2849 		WARN_ON(page->private != (unsigned long)eb);
2850 	}
2851 }
2852 
2853 void set_page_extent_mapped(struct page *page)
2854 {
2855 	if (!PagePrivate(page)) {
2856 		SetPagePrivate(page);
2857 		page_cache_get(page);
2858 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2859 	}
2860 }
2861 
2862 static struct extent_map *
2863 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2864 		 u64 start, u64 len, get_extent_t *get_extent,
2865 		 struct extent_map **em_cached)
2866 {
2867 	struct extent_map *em;
2868 
2869 	if (em_cached && *em_cached) {
2870 		em = *em_cached;
2871 		if (extent_map_in_tree(em) && start >= em->start &&
2872 		    start < extent_map_end(em)) {
2873 			atomic_inc(&em->refs);
2874 			return em;
2875 		}
2876 
2877 		free_extent_map(em);
2878 		*em_cached = NULL;
2879 	}
2880 
2881 	em = get_extent(inode, page, pg_offset, start, len, 0);
2882 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2883 		BUG_ON(*em_cached);
2884 		atomic_inc(&em->refs);
2885 		*em_cached = em;
2886 	}
2887 	return em;
2888 }
2889 /*
2890  * basic readpage implementation.  Locked extent state structs are inserted
2891  * into the tree that are removed when the IO is done (by the end_io
2892  * handlers)
2893  * XXX JDM: This needs looking at to ensure proper page locking
2894  */
2895 static int __do_readpage(struct extent_io_tree *tree,
2896 			 struct page *page,
2897 			 get_extent_t *get_extent,
2898 			 struct extent_map **em_cached,
2899 			 struct bio **bio, int mirror_num,
2900 			 unsigned long *bio_flags, int rw)
2901 {
2902 	struct inode *inode = page->mapping->host;
2903 	u64 start = page_offset(page);
2904 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2905 	u64 end;
2906 	u64 cur = start;
2907 	u64 extent_offset;
2908 	u64 last_byte = i_size_read(inode);
2909 	u64 block_start;
2910 	u64 cur_end;
2911 	sector_t sector;
2912 	struct extent_map *em;
2913 	struct block_device *bdev;
2914 	int ret;
2915 	int nr = 0;
2916 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2917 	size_t pg_offset = 0;
2918 	size_t iosize;
2919 	size_t disk_io_size;
2920 	size_t blocksize = inode->i_sb->s_blocksize;
2921 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2922 
2923 	set_page_extent_mapped(page);
2924 
2925 	end = page_end;
2926 	if (!PageUptodate(page)) {
2927 		if (cleancache_get_page(page) == 0) {
2928 			BUG_ON(blocksize != PAGE_SIZE);
2929 			unlock_extent(tree, start, end);
2930 			goto out;
2931 		}
2932 	}
2933 
2934 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2935 		char *userpage;
2936 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2937 
2938 		if (zero_offset) {
2939 			iosize = PAGE_CACHE_SIZE - zero_offset;
2940 			userpage = kmap_atomic(page);
2941 			memset(userpage + zero_offset, 0, iosize);
2942 			flush_dcache_page(page);
2943 			kunmap_atomic(userpage);
2944 		}
2945 	}
2946 	while (cur <= end) {
2947 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2948 
2949 		if (cur >= last_byte) {
2950 			char *userpage;
2951 			struct extent_state *cached = NULL;
2952 
2953 			iosize = PAGE_CACHE_SIZE - pg_offset;
2954 			userpage = kmap_atomic(page);
2955 			memset(userpage + pg_offset, 0, iosize);
2956 			flush_dcache_page(page);
2957 			kunmap_atomic(userpage);
2958 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2959 					    &cached, GFP_NOFS);
2960 			if (!parent_locked)
2961 				unlock_extent_cached(tree, cur,
2962 						     cur + iosize - 1,
2963 						     &cached, GFP_NOFS);
2964 			break;
2965 		}
2966 		em = __get_extent_map(inode, page, pg_offset, cur,
2967 				      end - cur + 1, get_extent, em_cached);
2968 		if (IS_ERR_OR_NULL(em)) {
2969 			SetPageError(page);
2970 			if (!parent_locked)
2971 				unlock_extent(tree, cur, end);
2972 			break;
2973 		}
2974 		extent_offset = cur - em->start;
2975 		BUG_ON(extent_map_end(em) <= cur);
2976 		BUG_ON(end < cur);
2977 
2978 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2979 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2980 			extent_set_compress_type(&this_bio_flag,
2981 						 em->compress_type);
2982 		}
2983 
2984 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2985 		cur_end = min(extent_map_end(em) - 1, end);
2986 		iosize = ALIGN(iosize, blocksize);
2987 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2988 			disk_io_size = em->block_len;
2989 			sector = em->block_start >> 9;
2990 		} else {
2991 			sector = (em->block_start + extent_offset) >> 9;
2992 			disk_io_size = iosize;
2993 		}
2994 		bdev = em->bdev;
2995 		block_start = em->block_start;
2996 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2997 			block_start = EXTENT_MAP_HOLE;
2998 		free_extent_map(em);
2999 		em = NULL;
3000 
3001 		/* we've found a hole, just zero and go on */
3002 		if (block_start == EXTENT_MAP_HOLE) {
3003 			char *userpage;
3004 			struct extent_state *cached = NULL;
3005 
3006 			userpage = kmap_atomic(page);
3007 			memset(userpage + pg_offset, 0, iosize);
3008 			flush_dcache_page(page);
3009 			kunmap_atomic(userpage);
3010 
3011 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3012 					    &cached, GFP_NOFS);
3013 			unlock_extent_cached(tree, cur, cur + iosize - 1,
3014 			                     &cached, GFP_NOFS);
3015 			cur = cur + iosize;
3016 			pg_offset += iosize;
3017 			continue;
3018 		}
3019 		/* the get_extent function already copied into the page */
3020 		if (test_range_bit(tree, cur, cur_end,
3021 				   EXTENT_UPTODATE, 1, NULL)) {
3022 			check_page_uptodate(tree, page);
3023 			if (!parent_locked)
3024 				unlock_extent(tree, cur, cur + iosize - 1);
3025 			cur = cur + iosize;
3026 			pg_offset += iosize;
3027 			continue;
3028 		}
3029 		/* we have an inline extent but it didn't get marked up
3030 		 * to date.  Error out
3031 		 */
3032 		if (block_start == EXTENT_MAP_INLINE) {
3033 			SetPageError(page);
3034 			if (!parent_locked)
3035 				unlock_extent(tree, cur, cur + iosize - 1);
3036 			cur = cur + iosize;
3037 			pg_offset += iosize;
3038 			continue;
3039 		}
3040 
3041 		pnr -= page->index;
3042 		ret = submit_extent_page(rw, tree, page,
3043 					 sector, disk_io_size, pg_offset,
3044 					 bdev, bio, pnr,
3045 					 end_bio_extent_readpage, mirror_num,
3046 					 *bio_flags,
3047 					 this_bio_flag);
3048 		if (!ret) {
3049 			nr++;
3050 			*bio_flags = this_bio_flag;
3051 		} else {
3052 			SetPageError(page);
3053 			if (!parent_locked)
3054 				unlock_extent(tree, cur, cur + iosize - 1);
3055 		}
3056 		cur = cur + iosize;
3057 		pg_offset += iosize;
3058 	}
3059 out:
3060 	if (!nr) {
3061 		if (!PageError(page))
3062 			SetPageUptodate(page);
3063 		unlock_page(page);
3064 	}
3065 	return 0;
3066 }
3067 
3068 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3069 					     struct page *pages[], int nr_pages,
3070 					     u64 start, u64 end,
3071 					     get_extent_t *get_extent,
3072 					     struct extent_map **em_cached,
3073 					     struct bio **bio, int mirror_num,
3074 					     unsigned long *bio_flags, int rw)
3075 {
3076 	struct inode *inode;
3077 	struct btrfs_ordered_extent *ordered;
3078 	int index;
3079 
3080 	inode = pages[0]->mapping->host;
3081 	while (1) {
3082 		lock_extent(tree, start, end);
3083 		ordered = btrfs_lookup_ordered_range(inode, start,
3084 						     end - start + 1);
3085 		if (!ordered)
3086 			break;
3087 		unlock_extent(tree, start, end);
3088 		btrfs_start_ordered_extent(inode, ordered, 1);
3089 		btrfs_put_ordered_extent(ordered);
3090 	}
3091 
3092 	for (index = 0; index < nr_pages; index++) {
3093 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3094 			      mirror_num, bio_flags, rw);
3095 		page_cache_release(pages[index]);
3096 	}
3097 }
3098 
3099 static void __extent_readpages(struct extent_io_tree *tree,
3100 			       struct page *pages[],
3101 			       int nr_pages, get_extent_t *get_extent,
3102 			       struct extent_map **em_cached,
3103 			       struct bio **bio, int mirror_num,
3104 			       unsigned long *bio_flags, int rw)
3105 {
3106 	u64 start = 0;
3107 	u64 end = 0;
3108 	u64 page_start;
3109 	int index;
3110 	int first_index = 0;
3111 
3112 	for (index = 0; index < nr_pages; index++) {
3113 		page_start = page_offset(pages[index]);
3114 		if (!end) {
3115 			start = page_start;
3116 			end = start + PAGE_CACHE_SIZE - 1;
3117 			first_index = index;
3118 		} else if (end + 1 == page_start) {
3119 			end += PAGE_CACHE_SIZE;
3120 		} else {
3121 			__do_contiguous_readpages(tree, &pages[first_index],
3122 						  index - first_index, start,
3123 						  end, get_extent, em_cached,
3124 						  bio, mirror_num, bio_flags,
3125 						  rw);
3126 			start = page_start;
3127 			end = start + PAGE_CACHE_SIZE - 1;
3128 			first_index = index;
3129 		}
3130 	}
3131 
3132 	if (end)
3133 		__do_contiguous_readpages(tree, &pages[first_index],
3134 					  index - first_index, start,
3135 					  end, get_extent, em_cached, bio,
3136 					  mirror_num, bio_flags, rw);
3137 }
3138 
3139 static int __extent_read_full_page(struct extent_io_tree *tree,
3140 				   struct page *page,
3141 				   get_extent_t *get_extent,
3142 				   struct bio **bio, int mirror_num,
3143 				   unsigned long *bio_flags, int rw)
3144 {
3145 	struct inode *inode = page->mapping->host;
3146 	struct btrfs_ordered_extent *ordered;
3147 	u64 start = page_offset(page);
3148 	u64 end = start + PAGE_CACHE_SIZE - 1;
3149 	int ret;
3150 
3151 	while (1) {
3152 		lock_extent(tree, start, end);
3153 		ordered = btrfs_lookup_ordered_extent(inode, start);
3154 		if (!ordered)
3155 			break;
3156 		unlock_extent(tree, start, end);
3157 		btrfs_start_ordered_extent(inode, ordered, 1);
3158 		btrfs_put_ordered_extent(ordered);
3159 	}
3160 
3161 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3162 			    bio_flags, rw);
3163 	return ret;
3164 }
3165 
3166 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3167 			    get_extent_t *get_extent, int mirror_num)
3168 {
3169 	struct bio *bio = NULL;
3170 	unsigned long bio_flags = 0;
3171 	int ret;
3172 
3173 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3174 				      &bio_flags, READ);
3175 	if (bio)
3176 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3177 	return ret;
3178 }
3179 
3180 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3181 				 get_extent_t *get_extent, int mirror_num)
3182 {
3183 	struct bio *bio = NULL;
3184 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3185 	int ret;
3186 
3187 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3188 				      &bio_flags, READ);
3189 	if (bio)
3190 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3191 	return ret;
3192 }
3193 
3194 static noinline void update_nr_written(struct page *page,
3195 				      struct writeback_control *wbc,
3196 				      unsigned long nr_written)
3197 {
3198 	wbc->nr_to_write -= nr_written;
3199 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3200 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3201 		page->mapping->writeback_index = page->index + nr_written;
3202 }
3203 
3204 /*
3205  * helper for __extent_writepage, doing all of the delayed allocation setup.
3206  *
3207  * This returns 1 if our fill_delalloc function did all the work required
3208  * to write the page (copy into inline extent).  In this case the IO has
3209  * been started and the page is already unlocked.
3210  *
3211  * This returns 0 if all went well (page still locked)
3212  * This returns < 0 if there were errors (page still locked)
3213  */
3214 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3215 			      struct page *page, struct writeback_control *wbc,
3216 			      struct extent_page_data *epd,
3217 			      u64 delalloc_start,
3218 			      unsigned long *nr_written)
3219 {
3220 	struct extent_io_tree *tree = epd->tree;
3221 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3222 	u64 nr_delalloc;
3223 	u64 delalloc_to_write = 0;
3224 	u64 delalloc_end = 0;
3225 	int ret;
3226 	int page_started = 0;
3227 
3228 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3229 		return 0;
3230 
3231 	while (delalloc_end < page_end) {
3232 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3233 					       page,
3234 					       &delalloc_start,
3235 					       &delalloc_end,
3236 					       BTRFS_MAX_EXTENT_SIZE);
3237 		if (nr_delalloc == 0) {
3238 			delalloc_start = delalloc_end + 1;
3239 			continue;
3240 		}
3241 		ret = tree->ops->fill_delalloc(inode, page,
3242 					       delalloc_start,
3243 					       delalloc_end,
3244 					       &page_started,
3245 					       nr_written);
3246 		/* File system has been set read-only */
3247 		if (ret) {
3248 			SetPageError(page);
3249 			/* fill_delalloc should be return < 0 for error
3250 			 * but just in case, we use > 0 here meaning the
3251 			 * IO is started, so we don't want to return > 0
3252 			 * unless things are going well.
3253 			 */
3254 			ret = ret < 0 ? ret : -EIO;
3255 			goto done;
3256 		}
3257 		/*
3258 		 * delalloc_end is already one less than the total
3259 		 * length, so we don't subtract one from
3260 		 * PAGE_CACHE_SIZE
3261 		 */
3262 		delalloc_to_write += (delalloc_end - delalloc_start +
3263 				      PAGE_CACHE_SIZE) >>
3264 				      PAGE_CACHE_SHIFT;
3265 		delalloc_start = delalloc_end + 1;
3266 	}
3267 	if (wbc->nr_to_write < delalloc_to_write) {
3268 		int thresh = 8192;
3269 
3270 		if (delalloc_to_write < thresh * 2)
3271 			thresh = delalloc_to_write;
3272 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3273 					 thresh);
3274 	}
3275 
3276 	/* did the fill delalloc function already unlock and start
3277 	 * the IO?
3278 	 */
3279 	if (page_started) {
3280 		/*
3281 		 * we've unlocked the page, so we can't update
3282 		 * the mapping's writeback index, just update
3283 		 * nr_to_write.
3284 		 */
3285 		wbc->nr_to_write -= *nr_written;
3286 		return 1;
3287 	}
3288 
3289 	ret = 0;
3290 
3291 done:
3292 	return ret;
3293 }
3294 
3295 /*
3296  * helper for __extent_writepage.  This calls the writepage start hooks,
3297  * and does the loop to map the page into extents and bios.
3298  *
3299  * We return 1 if the IO is started and the page is unlocked,
3300  * 0 if all went well (page still locked)
3301  * < 0 if there were errors (page still locked)
3302  */
3303 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3304 				 struct page *page,
3305 				 struct writeback_control *wbc,
3306 				 struct extent_page_data *epd,
3307 				 loff_t i_size,
3308 				 unsigned long nr_written,
3309 				 int write_flags, int *nr_ret)
3310 {
3311 	struct extent_io_tree *tree = epd->tree;
3312 	u64 start = page_offset(page);
3313 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3314 	u64 end;
3315 	u64 cur = start;
3316 	u64 extent_offset;
3317 	u64 block_start;
3318 	u64 iosize;
3319 	sector_t sector;
3320 	struct extent_state *cached_state = NULL;
3321 	struct extent_map *em;
3322 	struct block_device *bdev;
3323 	size_t pg_offset = 0;
3324 	size_t blocksize;
3325 	int ret = 0;
3326 	int nr = 0;
3327 	bool compressed;
3328 
3329 	if (tree->ops && tree->ops->writepage_start_hook) {
3330 		ret = tree->ops->writepage_start_hook(page, start,
3331 						      page_end);
3332 		if (ret) {
3333 			/* Fixup worker will requeue */
3334 			if (ret == -EBUSY)
3335 				wbc->pages_skipped++;
3336 			else
3337 				redirty_page_for_writepage(wbc, page);
3338 
3339 			update_nr_written(page, wbc, nr_written);
3340 			unlock_page(page);
3341 			ret = 1;
3342 			goto done_unlocked;
3343 		}
3344 	}
3345 
3346 	/*
3347 	 * we don't want to touch the inode after unlocking the page,
3348 	 * so we update the mapping writeback index now
3349 	 */
3350 	update_nr_written(page, wbc, nr_written + 1);
3351 
3352 	end = page_end;
3353 	if (i_size <= start) {
3354 		if (tree->ops && tree->ops->writepage_end_io_hook)
3355 			tree->ops->writepage_end_io_hook(page, start,
3356 							 page_end, NULL, 1);
3357 		goto done;
3358 	}
3359 
3360 	blocksize = inode->i_sb->s_blocksize;
3361 
3362 	while (cur <= end) {
3363 		u64 em_end;
3364 		if (cur >= i_size) {
3365 			if (tree->ops && tree->ops->writepage_end_io_hook)
3366 				tree->ops->writepage_end_io_hook(page, cur,
3367 							 page_end, NULL, 1);
3368 			break;
3369 		}
3370 		em = epd->get_extent(inode, page, pg_offset, cur,
3371 				     end - cur + 1, 1);
3372 		if (IS_ERR_OR_NULL(em)) {
3373 			SetPageError(page);
3374 			ret = PTR_ERR_OR_ZERO(em);
3375 			break;
3376 		}
3377 
3378 		extent_offset = cur - em->start;
3379 		em_end = extent_map_end(em);
3380 		BUG_ON(em_end <= cur);
3381 		BUG_ON(end < cur);
3382 		iosize = min(em_end - cur, end - cur + 1);
3383 		iosize = ALIGN(iosize, blocksize);
3384 		sector = (em->block_start + extent_offset) >> 9;
3385 		bdev = em->bdev;
3386 		block_start = em->block_start;
3387 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3388 		free_extent_map(em);
3389 		em = NULL;
3390 
3391 		/*
3392 		 * compressed and inline extents are written through other
3393 		 * paths in the FS
3394 		 */
3395 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3396 		    block_start == EXTENT_MAP_INLINE) {
3397 			/*
3398 			 * end_io notification does not happen here for
3399 			 * compressed extents
3400 			 */
3401 			if (!compressed && tree->ops &&
3402 			    tree->ops->writepage_end_io_hook)
3403 				tree->ops->writepage_end_io_hook(page, cur,
3404 							 cur + iosize - 1,
3405 							 NULL, 1);
3406 			else if (compressed) {
3407 				/* we don't want to end_page_writeback on
3408 				 * a compressed extent.  this happens
3409 				 * elsewhere
3410 				 */
3411 				nr++;
3412 			}
3413 
3414 			cur += iosize;
3415 			pg_offset += iosize;
3416 			continue;
3417 		}
3418 
3419 		if (tree->ops && tree->ops->writepage_io_hook) {
3420 			ret = tree->ops->writepage_io_hook(page, cur,
3421 						cur + iosize - 1);
3422 		} else {
3423 			ret = 0;
3424 		}
3425 		if (ret) {
3426 			SetPageError(page);
3427 		} else {
3428 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3429 
3430 			set_range_writeback(tree, cur, cur + iosize - 1);
3431 			if (!PageWriteback(page)) {
3432 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3433 					   "page %lu not writeback, cur %llu end %llu",
3434 				       page->index, cur, end);
3435 			}
3436 
3437 			ret = submit_extent_page(write_flags, tree, page,
3438 						 sector, iosize, pg_offset,
3439 						 bdev, &epd->bio, max_nr,
3440 						 end_bio_extent_writepage,
3441 						 0, 0, 0);
3442 			if (ret)
3443 				SetPageError(page);
3444 		}
3445 		cur = cur + iosize;
3446 		pg_offset += iosize;
3447 		nr++;
3448 	}
3449 done:
3450 	*nr_ret = nr;
3451 
3452 done_unlocked:
3453 
3454 	/* drop our reference on any cached states */
3455 	free_extent_state(cached_state);
3456 	return ret;
3457 }
3458 
3459 /*
3460  * the writepage semantics are similar to regular writepage.  extent
3461  * records are inserted to lock ranges in the tree, and as dirty areas
3462  * are found, they are marked writeback.  Then the lock bits are removed
3463  * and the end_io handler clears the writeback ranges
3464  */
3465 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3466 			      void *data)
3467 {
3468 	struct inode *inode = page->mapping->host;
3469 	struct extent_page_data *epd = data;
3470 	u64 start = page_offset(page);
3471 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3472 	int ret;
3473 	int nr = 0;
3474 	size_t pg_offset = 0;
3475 	loff_t i_size = i_size_read(inode);
3476 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3477 	int write_flags;
3478 	unsigned long nr_written = 0;
3479 
3480 	if (wbc->sync_mode == WB_SYNC_ALL)
3481 		write_flags = WRITE_SYNC;
3482 	else
3483 		write_flags = WRITE;
3484 
3485 	trace___extent_writepage(page, inode, wbc);
3486 
3487 	WARN_ON(!PageLocked(page));
3488 
3489 	ClearPageError(page);
3490 
3491 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3492 	if (page->index > end_index ||
3493 	   (page->index == end_index && !pg_offset)) {
3494 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3495 		unlock_page(page);
3496 		return 0;
3497 	}
3498 
3499 	if (page->index == end_index) {
3500 		char *userpage;
3501 
3502 		userpage = kmap_atomic(page);
3503 		memset(userpage + pg_offset, 0,
3504 		       PAGE_CACHE_SIZE - pg_offset);
3505 		kunmap_atomic(userpage);
3506 		flush_dcache_page(page);
3507 	}
3508 
3509 	pg_offset = 0;
3510 
3511 	set_page_extent_mapped(page);
3512 
3513 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3514 	if (ret == 1)
3515 		goto done_unlocked;
3516 	if (ret)
3517 		goto done;
3518 
3519 	ret = __extent_writepage_io(inode, page, wbc, epd,
3520 				    i_size, nr_written, write_flags, &nr);
3521 	if (ret == 1)
3522 		goto done_unlocked;
3523 
3524 done:
3525 	if (nr == 0) {
3526 		/* make sure the mapping tag for page dirty gets cleared */
3527 		set_page_writeback(page);
3528 		end_page_writeback(page);
3529 	}
3530 	if (PageError(page)) {
3531 		ret = ret < 0 ? ret : -EIO;
3532 		end_extent_writepage(page, ret, start, page_end);
3533 	}
3534 	unlock_page(page);
3535 	return ret;
3536 
3537 done_unlocked:
3538 	return 0;
3539 }
3540 
3541 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3542 {
3543 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3544 		       TASK_UNINTERRUPTIBLE);
3545 }
3546 
3547 static noinline_for_stack int
3548 lock_extent_buffer_for_io(struct extent_buffer *eb,
3549 			  struct btrfs_fs_info *fs_info,
3550 			  struct extent_page_data *epd)
3551 {
3552 	unsigned long i, num_pages;
3553 	int flush = 0;
3554 	int ret = 0;
3555 
3556 	if (!btrfs_try_tree_write_lock(eb)) {
3557 		flush = 1;
3558 		flush_write_bio(epd);
3559 		btrfs_tree_lock(eb);
3560 	}
3561 
3562 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3563 		btrfs_tree_unlock(eb);
3564 		if (!epd->sync_io)
3565 			return 0;
3566 		if (!flush) {
3567 			flush_write_bio(epd);
3568 			flush = 1;
3569 		}
3570 		while (1) {
3571 			wait_on_extent_buffer_writeback(eb);
3572 			btrfs_tree_lock(eb);
3573 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3574 				break;
3575 			btrfs_tree_unlock(eb);
3576 		}
3577 	}
3578 
3579 	/*
3580 	 * We need to do this to prevent races in people who check if the eb is
3581 	 * under IO since we can end up having no IO bits set for a short period
3582 	 * of time.
3583 	 */
3584 	spin_lock(&eb->refs_lock);
3585 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3586 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3587 		spin_unlock(&eb->refs_lock);
3588 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3589 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3590 				     -eb->len,
3591 				     fs_info->dirty_metadata_batch);
3592 		ret = 1;
3593 	} else {
3594 		spin_unlock(&eb->refs_lock);
3595 	}
3596 
3597 	btrfs_tree_unlock(eb);
3598 
3599 	if (!ret)
3600 		return ret;
3601 
3602 	num_pages = num_extent_pages(eb->start, eb->len);
3603 	for (i = 0; i < num_pages; i++) {
3604 		struct page *p = eb->pages[i];
3605 
3606 		if (!trylock_page(p)) {
3607 			if (!flush) {
3608 				flush_write_bio(epd);
3609 				flush = 1;
3610 			}
3611 			lock_page(p);
3612 		}
3613 	}
3614 
3615 	return ret;
3616 }
3617 
3618 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3619 {
3620 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3621 	smp_mb__after_atomic();
3622 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3623 }
3624 
3625 static void set_btree_ioerr(struct page *page)
3626 {
3627 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3628 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3629 
3630 	SetPageError(page);
3631 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3632 		return;
3633 
3634 	/*
3635 	 * If writeback for a btree extent that doesn't belong to a log tree
3636 	 * failed, increment the counter transaction->eb_write_errors.
3637 	 * We do this because while the transaction is running and before it's
3638 	 * committing (when we call filemap_fdata[write|wait]_range against
3639 	 * the btree inode), we might have
3640 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3641 	 * returns an error or an error happens during writeback, when we're
3642 	 * committing the transaction we wouldn't know about it, since the pages
3643 	 * can be no longer dirty nor marked anymore for writeback (if a
3644 	 * subsequent modification to the extent buffer didn't happen before the
3645 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3646 	 * able to find the pages tagged with SetPageError at transaction
3647 	 * commit time. So if this happens we must abort the transaction,
3648 	 * otherwise we commit a super block with btree roots that point to
3649 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3650 	 * or the content of some node/leaf from a past generation that got
3651 	 * cowed or deleted and is no longer valid.
3652 	 *
3653 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3654 	 * not be enough - we need to distinguish between log tree extents vs
3655 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3656 	 * will catch and clear such errors in the mapping - and that call might
3657 	 * be from a log sync and not from a transaction commit. Also, checking
3658 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3659 	 * not done and would not be reliable - the eb might have been released
3660 	 * from memory and reading it back again means that flag would not be
3661 	 * set (since it's a runtime flag, not persisted on disk).
3662 	 *
3663 	 * Using the flags below in the btree inode also makes us achieve the
3664 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3665 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3666 	 * is called, the writeback for all dirty pages had already finished
3667 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3668 	 * filemap_fdatawait_range() would return success, as it could not know
3669 	 * that writeback errors happened (the pages were no longer tagged for
3670 	 * writeback).
3671 	 */
3672 	switch (eb->log_index) {
3673 	case -1:
3674 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3675 		break;
3676 	case 0:
3677 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3678 		break;
3679 	case 1:
3680 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3681 		break;
3682 	default:
3683 		BUG(); /* unexpected, logic error */
3684 	}
3685 }
3686 
3687 static void end_bio_extent_buffer_writepage(struct bio *bio)
3688 {
3689 	struct bio_vec *bvec;
3690 	struct extent_buffer *eb;
3691 	int i, done;
3692 
3693 	bio_for_each_segment_all(bvec, bio, i) {
3694 		struct page *page = bvec->bv_page;
3695 
3696 		eb = (struct extent_buffer *)page->private;
3697 		BUG_ON(!eb);
3698 		done = atomic_dec_and_test(&eb->io_pages);
3699 
3700 		if (bio->bi_error ||
3701 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3702 			ClearPageUptodate(page);
3703 			set_btree_ioerr(page);
3704 		}
3705 
3706 		end_page_writeback(page);
3707 
3708 		if (!done)
3709 			continue;
3710 
3711 		end_extent_buffer_writeback(eb);
3712 	}
3713 
3714 	bio_put(bio);
3715 }
3716 
3717 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3718 			struct btrfs_fs_info *fs_info,
3719 			struct writeback_control *wbc,
3720 			struct extent_page_data *epd)
3721 {
3722 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3723 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3724 	u64 offset = eb->start;
3725 	unsigned long i, num_pages;
3726 	unsigned long bio_flags = 0;
3727 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3728 	int ret = 0;
3729 
3730 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3731 	num_pages = num_extent_pages(eb->start, eb->len);
3732 	atomic_set(&eb->io_pages, num_pages);
3733 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3734 		bio_flags = EXTENT_BIO_TREE_LOG;
3735 
3736 	for (i = 0; i < num_pages; i++) {
3737 		struct page *p = eb->pages[i];
3738 
3739 		clear_page_dirty_for_io(p);
3740 		set_page_writeback(p);
3741 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3742 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3743 					 -1, end_bio_extent_buffer_writepage,
3744 					 0, epd->bio_flags, bio_flags);
3745 		epd->bio_flags = bio_flags;
3746 		if (ret) {
3747 			set_btree_ioerr(p);
3748 			end_page_writeback(p);
3749 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3750 				end_extent_buffer_writeback(eb);
3751 			ret = -EIO;
3752 			break;
3753 		}
3754 		offset += PAGE_CACHE_SIZE;
3755 		update_nr_written(p, wbc, 1);
3756 		unlock_page(p);
3757 	}
3758 
3759 	if (unlikely(ret)) {
3760 		for (; i < num_pages; i++) {
3761 			struct page *p = eb->pages[i];
3762 			clear_page_dirty_for_io(p);
3763 			unlock_page(p);
3764 		}
3765 	}
3766 
3767 	return ret;
3768 }
3769 
3770 int btree_write_cache_pages(struct address_space *mapping,
3771 				   struct writeback_control *wbc)
3772 {
3773 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3774 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3775 	struct extent_buffer *eb, *prev_eb = NULL;
3776 	struct extent_page_data epd = {
3777 		.bio = NULL,
3778 		.tree = tree,
3779 		.extent_locked = 0,
3780 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3781 		.bio_flags = 0,
3782 	};
3783 	int ret = 0;
3784 	int done = 0;
3785 	int nr_to_write_done = 0;
3786 	struct pagevec pvec;
3787 	int nr_pages;
3788 	pgoff_t index;
3789 	pgoff_t end;		/* Inclusive */
3790 	int scanned = 0;
3791 	int tag;
3792 
3793 	pagevec_init(&pvec, 0);
3794 	if (wbc->range_cyclic) {
3795 		index = mapping->writeback_index; /* Start from prev offset */
3796 		end = -1;
3797 	} else {
3798 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3799 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3800 		scanned = 1;
3801 	}
3802 	if (wbc->sync_mode == WB_SYNC_ALL)
3803 		tag = PAGECACHE_TAG_TOWRITE;
3804 	else
3805 		tag = PAGECACHE_TAG_DIRTY;
3806 retry:
3807 	if (wbc->sync_mode == WB_SYNC_ALL)
3808 		tag_pages_for_writeback(mapping, index, end);
3809 	while (!done && !nr_to_write_done && (index <= end) &&
3810 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3811 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3812 		unsigned i;
3813 
3814 		scanned = 1;
3815 		for (i = 0; i < nr_pages; i++) {
3816 			struct page *page = pvec.pages[i];
3817 
3818 			if (!PagePrivate(page))
3819 				continue;
3820 
3821 			if (!wbc->range_cyclic && page->index > end) {
3822 				done = 1;
3823 				break;
3824 			}
3825 
3826 			spin_lock(&mapping->private_lock);
3827 			if (!PagePrivate(page)) {
3828 				spin_unlock(&mapping->private_lock);
3829 				continue;
3830 			}
3831 
3832 			eb = (struct extent_buffer *)page->private;
3833 
3834 			/*
3835 			 * Shouldn't happen and normally this would be a BUG_ON
3836 			 * but no sense in crashing the users box for something
3837 			 * we can survive anyway.
3838 			 */
3839 			if (WARN_ON(!eb)) {
3840 				spin_unlock(&mapping->private_lock);
3841 				continue;
3842 			}
3843 
3844 			if (eb == prev_eb) {
3845 				spin_unlock(&mapping->private_lock);
3846 				continue;
3847 			}
3848 
3849 			ret = atomic_inc_not_zero(&eb->refs);
3850 			spin_unlock(&mapping->private_lock);
3851 			if (!ret)
3852 				continue;
3853 
3854 			prev_eb = eb;
3855 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3856 			if (!ret) {
3857 				free_extent_buffer(eb);
3858 				continue;
3859 			}
3860 
3861 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3862 			if (ret) {
3863 				done = 1;
3864 				free_extent_buffer(eb);
3865 				break;
3866 			}
3867 			free_extent_buffer(eb);
3868 
3869 			/*
3870 			 * the filesystem may choose to bump up nr_to_write.
3871 			 * We have to make sure to honor the new nr_to_write
3872 			 * at any time
3873 			 */
3874 			nr_to_write_done = wbc->nr_to_write <= 0;
3875 		}
3876 		pagevec_release(&pvec);
3877 		cond_resched();
3878 	}
3879 	if (!scanned && !done) {
3880 		/*
3881 		 * We hit the last page and there is more work to be done: wrap
3882 		 * back to the start of the file
3883 		 */
3884 		scanned = 1;
3885 		index = 0;
3886 		goto retry;
3887 	}
3888 	flush_write_bio(&epd);
3889 	return ret;
3890 }
3891 
3892 /**
3893  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3894  * @mapping: address space structure to write
3895  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3896  * @writepage: function called for each page
3897  * @data: data passed to writepage function
3898  *
3899  * If a page is already under I/O, write_cache_pages() skips it, even
3900  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3901  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3902  * and msync() need to guarantee that all the data which was dirty at the time
3903  * the call was made get new I/O started against them.  If wbc->sync_mode is
3904  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3905  * existing IO to complete.
3906  */
3907 static int extent_write_cache_pages(struct extent_io_tree *tree,
3908 			     struct address_space *mapping,
3909 			     struct writeback_control *wbc,
3910 			     writepage_t writepage, void *data,
3911 			     void (*flush_fn)(void *))
3912 {
3913 	struct inode *inode = mapping->host;
3914 	int ret = 0;
3915 	int done = 0;
3916 	int err = 0;
3917 	int nr_to_write_done = 0;
3918 	struct pagevec pvec;
3919 	int nr_pages;
3920 	pgoff_t index;
3921 	pgoff_t end;		/* Inclusive */
3922 	int scanned = 0;
3923 	int tag;
3924 
3925 	/*
3926 	 * We have to hold onto the inode so that ordered extents can do their
3927 	 * work when the IO finishes.  The alternative to this is failing to add
3928 	 * an ordered extent if the igrab() fails there and that is a huge pain
3929 	 * to deal with, so instead just hold onto the inode throughout the
3930 	 * writepages operation.  If it fails here we are freeing up the inode
3931 	 * anyway and we'd rather not waste our time writing out stuff that is
3932 	 * going to be truncated anyway.
3933 	 */
3934 	if (!igrab(inode))
3935 		return 0;
3936 
3937 	pagevec_init(&pvec, 0);
3938 	if (wbc->range_cyclic) {
3939 		index = mapping->writeback_index; /* Start from prev offset */
3940 		end = -1;
3941 	} else {
3942 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3943 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3944 		scanned = 1;
3945 	}
3946 	if (wbc->sync_mode == WB_SYNC_ALL)
3947 		tag = PAGECACHE_TAG_TOWRITE;
3948 	else
3949 		tag = PAGECACHE_TAG_DIRTY;
3950 retry:
3951 	if (wbc->sync_mode == WB_SYNC_ALL)
3952 		tag_pages_for_writeback(mapping, index, end);
3953 	while (!done && !nr_to_write_done && (index <= end) &&
3954 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 		unsigned i;
3957 
3958 		scanned = 1;
3959 		for (i = 0; i < nr_pages; i++) {
3960 			struct page *page = pvec.pages[i];
3961 
3962 			/*
3963 			 * At this point we hold neither mapping->tree_lock nor
3964 			 * lock on the page itself: the page may be truncated or
3965 			 * invalidated (changing page->mapping to NULL), or even
3966 			 * swizzled back from swapper_space to tmpfs file
3967 			 * mapping
3968 			 */
3969 			if (!trylock_page(page)) {
3970 				flush_fn(data);
3971 				lock_page(page);
3972 			}
3973 
3974 			if (unlikely(page->mapping != mapping)) {
3975 				unlock_page(page);
3976 				continue;
3977 			}
3978 
3979 			if (!wbc->range_cyclic && page->index > end) {
3980 				done = 1;
3981 				unlock_page(page);
3982 				continue;
3983 			}
3984 
3985 			if (wbc->sync_mode != WB_SYNC_NONE) {
3986 				if (PageWriteback(page))
3987 					flush_fn(data);
3988 				wait_on_page_writeback(page);
3989 			}
3990 
3991 			if (PageWriteback(page) ||
3992 			    !clear_page_dirty_for_io(page)) {
3993 				unlock_page(page);
3994 				continue;
3995 			}
3996 
3997 			ret = (*writepage)(page, wbc, data);
3998 
3999 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4000 				unlock_page(page);
4001 				ret = 0;
4002 			}
4003 			if (!err && ret < 0)
4004 				err = ret;
4005 
4006 			/*
4007 			 * the filesystem may choose to bump up nr_to_write.
4008 			 * We have to make sure to honor the new nr_to_write
4009 			 * at any time
4010 			 */
4011 			nr_to_write_done = wbc->nr_to_write <= 0;
4012 		}
4013 		pagevec_release(&pvec);
4014 		cond_resched();
4015 	}
4016 	if (!scanned && !done && !err) {
4017 		/*
4018 		 * We hit the last page and there is more work to be done: wrap
4019 		 * back to the start of the file
4020 		 */
4021 		scanned = 1;
4022 		index = 0;
4023 		goto retry;
4024 	}
4025 	btrfs_add_delayed_iput(inode);
4026 	return err;
4027 }
4028 
4029 static void flush_epd_write_bio(struct extent_page_data *epd)
4030 {
4031 	if (epd->bio) {
4032 		int rw = WRITE;
4033 		int ret;
4034 
4035 		if (epd->sync_io)
4036 			rw = WRITE_SYNC;
4037 
4038 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4039 		BUG_ON(ret < 0); /* -ENOMEM */
4040 		epd->bio = NULL;
4041 	}
4042 }
4043 
4044 static noinline void flush_write_bio(void *data)
4045 {
4046 	struct extent_page_data *epd = data;
4047 	flush_epd_write_bio(epd);
4048 }
4049 
4050 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4051 			  get_extent_t *get_extent,
4052 			  struct writeback_control *wbc)
4053 {
4054 	int ret;
4055 	struct extent_page_data epd = {
4056 		.bio = NULL,
4057 		.tree = tree,
4058 		.get_extent = get_extent,
4059 		.extent_locked = 0,
4060 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4061 		.bio_flags = 0,
4062 	};
4063 
4064 	ret = __extent_writepage(page, wbc, &epd);
4065 
4066 	flush_epd_write_bio(&epd);
4067 	return ret;
4068 }
4069 
4070 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4071 			      u64 start, u64 end, get_extent_t *get_extent,
4072 			      int mode)
4073 {
4074 	int ret = 0;
4075 	struct address_space *mapping = inode->i_mapping;
4076 	struct page *page;
4077 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4078 		PAGE_CACHE_SHIFT;
4079 
4080 	struct extent_page_data epd = {
4081 		.bio = NULL,
4082 		.tree = tree,
4083 		.get_extent = get_extent,
4084 		.extent_locked = 1,
4085 		.sync_io = mode == WB_SYNC_ALL,
4086 		.bio_flags = 0,
4087 	};
4088 	struct writeback_control wbc_writepages = {
4089 		.sync_mode	= mode,
4090 		.nr_to_write	= nr_pages * 2,
4091 		.range_start	= start,
4092 		.range_end	= end + 1,
4093 	};
4094 
4095 	while (start <= end) {
4096 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4097 		if (clear_page_dirty_for_io(page))
4098 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4099 		else {
4100 			if (tree->ops && tree->ops->writepage_end_io_hook)
4101 				tree->ops->writepage_end_io_hook(page, start,
4102 						 start + PAGE_CACHE_SIZE - 1,
4103 						 NULL, 1);
4104 			unlock_page(page);
4105 		}
4106 		page_cache_release(page);
4107 		start += PAGE_CACHE_SIZE;
4108 	}
4109 
4110 	flush_epd_write_bio(&epd);
4111 	return ret;
4112 }
4113 
4114 int extent_writepages(struct extent_io_tree *tree,
4115 		      struct address_space *mapping,
4116 		      get_extent_t *get_extent,
4117 		      struct writeback_control *wbc)
4118 {
4119 	int ret = 0;
4120 	struct extent_page_data epd = {
4121 		.bio = NULL,
4122 		.tree = tree,
4123 		.get_extent = get_extent,
4124 		.extent_locked = 0,
4125 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4126 		.bio_flags = 0,
4127 	};
4128 
4129 	ret = extent_write_cache_pages(tree, mapping, wbc,
4130 				       __extent_writepage, &epd,
4131 				       flush_write_bio);
4132 	flush_epd_write_bio(&epd);
4133 	return ret;
4134 }
4135 
4136 int extent_readpages(struct extent_io_tree *tree,
4137 		     struct address_space *mapping,
4138 		     struct list_head *pages, unsigned nr_pages,
4139 		     get_extent_t get_extent)
4140 {
4141 	struct bio *bio = NULL;
4142 	unsigned page_idx;
4143 	unsigned long bio_flags = 0;
4144 	struct page *pagepool[16];
4145 	struct page *page;
4146 	struct extent_map *em_cached = NULL;
4147 	int nr = 0;
4148 
4149 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4150 		page = list_entry(pages->prev, struct page, lru);
4151 
4152 		prefetchw(&page->flags);
4153 		list_del(&page->lru);
4154 		if (add_to_page_cache_lru(page, mapping,
4155 					page->index, GFP_NOFS)) {
4156 			page_cache_release(page);
4157 			continue;
4158 		}
4159 
4160 		pagepool[nr++] = page;
4161 		if (nr < ARRAY_SIZE(pagepool))
4162 			continue;
4163 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4164 				   &bio, 0, &bio_flags, READ);
4165 		nr = 0;
4166 	}
4167 	if (nr)
4168 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4169 				   &bio, 0, &bio_flags, READ);
4170 
4171 	if (em_cached)
4172 		free_extent_map(em_cached);
4173 
4174 	BUG_ON(!list_empty(pages));
4175 	if (bio)
4176 		return submit_one_bio(READ, bio, 0, bio_flags);
4177 	return 0;
4178 }
4179 
4180 /*
4181  * basic invalidatepage code, this waits on any locked or writeback
4182  * ranges corresponding to the page, and then deletes any extent state
4183  * records from the tree
4184  */
4185 int extent_invalidatepage(struct extent_io_tree *tree,
4186 			  struct page *page, unsigned long offset)
4187 {
4188 	struct extent_state *cached_state = NULL;
4189 	u64 start = page_offset(page);
4190 	u64 end = start + PAGE_CACHE_SIZE - 1;
4191 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4192 
4193 	start += ALIGN(offset, blocksize);
4194 	if (start > end)
4195 		return 0;
4196 
4197 	lock_extent_bits(tree, start, end, 0, &cached_state);
4198 	wait_on_page_writeback(page);
4199 	clear_extent_bit(tree, start, end,
4200 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4201 			 EXTENT_DO_ACCOUNTING,
4202 			 1, 1, &cached_state, GFP_NOFS);
4203 	return 0;
4204 }
4205 
4206 /*
4207  * a helper for releasepage, this tests for areas of the page that
4208  * are locked or under IO and drops the related state bits if it is safe
4209  * to drop the page.
4210  */
4211 static int try_release_extent_state(struct extent_map_tree *map,
4212 				    struct extent_io_tree *tree,
4213 				    struct page *page, gfp_t mask)
4214 {
4215 	u64 start = page_offset(page);
4216 	u64 end = start + PAGE_CACHE_SIZE - 1;
4217 	int ret = 1;
4218 
4219 	if (test_range_bit(tree, start, end,
4220 			   EXTENT_IOBITS, 0, NULL))
4221 		ret = 0;
4222 	else {
4223 		if ((mask & GFP_NOFS) == GFP_NOFS)
4224 			mask = GFP_NOFS;
4225 		/*
4226 		 * at this point we can safely clear everything except the
4227 		 * locked bit and the nodatasum bit
4228 		 */
4229 		ret = clear_extent_bit(tree, start, end,
4230 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4231 				 0, 0, NULL, mask);
4232 
4233 		/* if clear_extent_bit failed for enomem reasons,
4234 		 * we can't allow the release to continue.
4235 		 */
4236 		if (ret < 0)
4237 			ret = 0;
4238 		else
4239 			ret = 1;
4240 	}
4241 	return ret;
4242 }
4243 
4244 /*
4245  * a helper for releasepage.  As long as there are no locked extents
4246  * in the range corresponding to the page, both state records and extent
4247  * map records are removed
4248  */
4249 int try_release_extent_mapping(struct extent_map_tree *map,
4250 			       struct extent_io_tree *tree, struct page *page,
4251 			       gfp_t mask)
4252 {
4253 	struct extent_map *em;
4254 	u64 start = page_offset(page);
4255 	u64 end = start + PAGE_CACHE_SIZE - 1;
4256 
4257 	if ((mask & __GFP_WAIT) &&
4258 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4259 		u64 len;
4260 		while (start <= end) {
4261 			len = end - start + 1;
4262 			write_lock(&map->lock);
4263 			em = lookup_extent_mapping(map, start, len);
4264 			if (!em) {
4265 				write_unlock(&map->lock);
4266 				break;
4267 			}
4268 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4269 			    em->start != start) {
4270 				write_unlock(&map->lock);
4271 				free_extent_map(em);
4272 				break;
4273 			}
4274 			if (!test_range_bit(tree, em->start,
4275 					    extent_map_end(em) - 1,
4276 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4277 					    0, NULL)) {
4278 				remove_extent_mapping(map, em);
4279 				/* once for the rb tree */
4280 				free_extent_map(em);
4281 			}
4282 			start = extent_map_end(em);
4283 			write_unlock(&map->lock);
4284 
4285 			/* once for us */
4286 			free_extent_map(em);
4287 		}
4288 	}
4289 	return try_release_extent_state(map, tree, page, mask);
4290 }
4291 
4292 /*
4293  * helper function for fiemap, which doesn't want to see any holes.
4294  * This maps until we find something past 'last'
4295  */
4296 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4297 						u64 offset,
4298 						u64 last,
4299 						get_extent_t *get_extent)
4300 {
4301 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4302 	struct extent_map *em;
4303 	u64 len;
4304 
4305 	if (offset >= last)
4306 		return NULL;
4307 
4308 	while (1) {
4309 		len = last - offset;
4310 		if (len == 0)
4311 			break;
4312 		len = ALIGN(len, sectorsize);
4313 		em = get_extent(inode, NULL, 0, offset, len, 0);
4314 		if (IS_ERR_OR_NULL(em))
4315 			return em;
4316 
4317 		/* if this isn't a hole return it */
4318 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4319 		    em->block_start != EXTENT_MAP_HOLE) {
4320 			return em;
4321 		}
4322 
4323 		/* this is a hole, advance to the next extent */
4324 		offset = extent_map_end(em);
4325 		free_extent_map(em);
4326 		if (offset >= last)
4327 			break;
4328 	}
4329 	return NULL;
4330 }
4331 
4332 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4333 		__u64 start, __u64 len, get_extent_t *get_extent)
4334 {
4335 	int ret = 0;
4336 	u64 off = start;
4337 	u64 max = start + len;
4338 	u32 flags = 0;
4339 	u32 found_type;
4340 	u64 last;
4341 	u64 last_for_get_extent = 0;
4342 	u64 disko = 0;
4343 	u64 isize = i_size_read(inode);
4344 	struct btrfs_key found_key;
4345 	struct extent_map *em = NULL;
4346 	struct extent_state *cached_state = NULL;
4347 	struct btrfs_path *path;
4348 	struct btrfs_root *root = BTRFS_I(inode)->root;
4349 	int end = 0;
4350 	u64 em_start = 0;
4351 	u64 em_len = 0;
4352 	u64 em_end = 0;
4353 
4354 	if (len == 0)
4355 		return -EINVAL;
4356 
4357 	path = btrfs_alloc_path();
4358 	if (!path)
4359 		return -ENOMEM;
4360 	path->leave_spinning = 1;
4361 
4362 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4363 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4364 
4365 	/*
4366 	 * lookup the last file extent.  We're not using i_size here
4367 	 * because there might be preallocation past i_size
4368 	 */
4369 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4370 				       0);
4371 	if (ret < 0) {
4372 		btrfs_free_path(path);
4373 		return ret;
4374 	}
4375 	WARN_ON(!ret);
4376 	path->slots[0]--;
4377 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4378 	found_type = found_key.type;
4379 
4380 	/* No extents, but there might be delalloc bits */
4381 	if (found_key.objectid != btrfs_ino(inode) ||
4382 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4383 		/* have to trust i_size as the end */
4384 		last = (u64)-1;
4385 		last_for_get_extent = isize;
4386 	} else {
4387 		/*
4388 		 * remember the start of the last extent.  There are a
4389 		 * bunch of different factors that go into the length of the
4390 		 * extent, so its much less complex to remember where it started
4391 		 */
4392 		last = found_key.offset;
4393 		last_for_get_extent = last + 1;
4394 	}
4395 	btrfs_release_path(path);
4396 
4397 	/*
4398 	 * we might have some extents allocated but more delalloc past those
4399 	 * extents.  so, we trust isize unless the start of the last extent is
4400 	 * beyond isize
4401 	 */
4402 	if (last < isize) {
4403 		last = (u64)-1;
4404 		last_for_get_extent = isize;
4405 	}
4406 
4407 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4408 			 &cached_state);
4409 
4410 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4411 				   get_extent);
4412 	if (!em)
4413 		goto out;
4414 	if (IS_ERR(em)) {
4415 		ret = PTR_ERR(em);
4416 		goto out;
4417 	}
4418 
4419 	while (!end) {
4420 		u64 offset_in_extent = 0;
4421 
4422 		/* break if the extent we found is outside the range */
4423 		if (em->start >= max || extent_map_end(em) < off)
4424 			break;
4425 
4426 		/*
4427 		 * get_extent may return an extent that starts before our
4428 		 * requested range.  We have to make sure the ranges
4429 		 * we return to fiemap always move forward and don't
4430 		 * overlap, so adjust the offsets here
4431 		 */
4432 		em_start = max(em->start, off);
4433 
4434 		/*
4435 		 * record the offset from the start of the extent
4436 		 * for adjusting the disk offset below.  Only do this if the
4437 		 * extent isn't compressed since our in ram offset may be past
4438 		 * what we have actually allocated on disk.
4439 		 */
4440 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4441 			offset_in_extent = em_start - em->start;
4442 		em_end = extent_map_end(em);
4443 		em_len = em_end - em_start;
4444 		disko = 0;
4445 		flags = 0;
4446 
4447 		/*
4448 		 * bump off for our next call to get_extent
4449 		 */
4450 		off = extent_map_end(em);
4451 		if (off >= max)
4452 			end = 1;
4453 
4454 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4455 			end = 1;
4456 			flags |= FIEMAP_EXTENT_LAST;
4457 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4458 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4459 				  FIEMAP_EXTENT_NOT_ALIGNED);
4460 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4461 			flags |= (FIEMAP_EXTENT_DELALLOC |
4462 				  FIEMAP_EXTENT_UNKNOWN);
4463 		} else if (fieinfo->fi_extents_max) {
4464 			u64 bytenr = em->block_start -
4465 				(em->start - em->orig_start);
4466 
4467 			disko = em->block_start + offset_in_extent;
4468 
4469 			/*
4470 			 * As btrfs supports shared space, this information
4471 			 * can be exported to userspace tools via
4472 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4473 			 * then we're just getting a count and we can skip the
4474 			 * lookup stuff.
4475 			 */
4476 			ret = btrfs_check_shared(NULL, root->fs_info,
4477 						 root->objectid,
4478 						 btrfs_ino(inode), bytenr);
4479 			if (ret < 0)
4480 				goto out_free;
4481 			if (ret)
4482 				flags |= FIEMAP_EXTENT_SHARED;
4483 			ret = 0;
4484 		}
4485 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4486 			flags |= FIEMAP_EXTENT_ENCODED;
4487 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4488 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4489 
4490 		free_extent_map(em);
4491 		em = NULL;
4492 		if ((em_start >= last) || em_len == (u64)-1 ||
4493 		   (last == (u64)-1 && isize <= em_end)) {
4494 			flags |= FIEMAP_EXTENT_LAST;
4495 			end = 1;
4496 		}
4497 
4498 		/* now scan forward to see if this is really the last extent. */
4499 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4500 					   get_extent);
4501 		if (IS_ERR(em)) {
4502 			ret = PTR_ERR(em);
4503 			goto out;
4504 		}
4505 		if (!em) {
4506 			flags |= FIEMAP_EXTENT_LAST;
4507 			end = 1;
4508 		}
4509 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4510 					      em_len, flags);
4511 		if (ret) {
4512 			if (ret == 1)
4513 				ret = 0;
4514 			goto out_free;
4515 		}
4516 	}
4517 out_free:
4518 	free_extent_map(em);
4519 out:
4520 	btrfs_free_path(path);
4521 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4522 			     &cached_state, GFP_NOFS);
4523 	return ret;
4524 }
4525 
4526 static void __free_extent_buffer(struct extent_buffer *eb)
4527 {
4528 	btrfs_leak_debug_del(&eb->leak_list);
4529 	kmem_cache_free(extent_buffer_cache, eb);
4530 }
4531 
4532 int extent_buffer_under_io(struct extent_buffer *eb)
4533 {
4534 	return (atomic_read(&eb->io_pages) ||
4535 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4536 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4537 }
4538 
4539 /*
4540  * Helper for releasing extent buffer page.
4541  */
4542 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4543 {
4544 	unsigned long index;
4545 	struct page *page;
4546 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4547 
4548 	BUG_ON(extent_buffer_under_io(eb));
4549 
4550 	index = num_extent_pages(eb->start, eb->len);
4551 	if (index == 0)
4552 		return;
4553 
4554 	do {
4555 		index--;
4556 		page = eb->pages[index];
4557 		if (!page)
4558 			continue;
4559 		if (mapped)
4560 			spin_lock(&page->mapping->private_lock);
4561 		/*
4562 		 * We do this since we'll remove the pages after we've
4563 		 * removed the eb from the radix tree, so we could race
4564 		 * and have this page now attached to the new eb.  So
4565 		 * only clear page_private if it's still connected to
4566 		 * this eb.
4567 		 */
4568 		if (PagePrivate(page) &&
4569 		    page->private == (unsigned long)eb) {
4570 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4571 			BUG_ON(PageDirty(page));
4572 			BUG_ON(PageWriteback(page));
4573 			/*
4574 			 * We need to make sure we haven't be attached
4575 			 * to a new eb.
4576 			 */
4577 			ClearPagePrivate(page);
4578 			set_page_private(page, 0);
4579 			/* One for the page private */
4580 			page_cache_release(page);
4581 		}
4582 
4583 		if (mapped)
4584 			spin_unlock(&page->mapping->private_lock);
4585 
4586 		/* One for when we alloced the page */
4587 		page_cache_release(page);
4588 	} while (index != 0);
4589 }
4590 
4591 /*
4592  * Helper for releasing the extent buffer.
4593  */
4594 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4595 {
4596 	btrfs_release_extent_buffer_page(eb);
4597 	__free_extent_buffer(eb);
4598 }
4599 
4600 static struct extent_buffer *
4601 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4602 		      unsigned long len)
4603 {
4604 	struct extent_buffer *eb = NULL;
4605 
4606 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4607 	if (eb == NULL)
4608 		return NULL;
4609 	eb->start = start;
4610 	eb->len = len;
4611 	eb->fs_info = fs_info;
4612 	eb->bflags = 0;
4613 	rwlock_init(&eb->lock);
4614 	atomic_set(&eb->write_locks, 0);
4615 	atomic_set(&eb->read_locks, 0);
4616 	atomic_set(&eb->blocking_readers, 0);
4617 	atomic_set(&eb->blocking_writers, 0);
4618 	atomic_set(&eb->spinning_readers, 0);
4619 	atomic_set(&eb->spinning_writers, 0);
4620 	eb->lock_nested = 0;
4621 	init_waitqueue_head(&eb->write_lock_wq);
4622 	init_waitqueue_head(&eb->read_lock_wq);
4623 
4624 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4625 
4626 	spin_lock_init(&eb->refs_lock);
4627 	atomic_set(&eb->refs, 1);
4628 	atomic_set(&eb->io_pages, 0);
4629 
4630 	/*
4631 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4632 	 */
4633 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4634 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4635 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4636 
4637 	return eb;
4638 }
4639 
4640 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4641 {
4642 	unsigned long i;
4643 	struct page *p;
4644 	struct extent_buffer *new;
4645 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4646 
4647 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4648 	if (new == NULL)
4649 		return NULL;
4650 
4651 	for (i = 0; i < num_pages; i++) {
4652 		p = alloc_page(GFP_NOFS);
4653 		if (!p) {
4654 			btrfs_release_extent_buffer(new);
4655 			return NULL;
4656 		}
4657 		attach_extent_buffer_page(new, p);
4658 		WARN_ON(PageDirty(p));
4659 		SetPageUptodate(p);
4660 		new->pages[i] = p;
4661 	}
4662 
4663 	copy_extent_buffer(new, src, 0, 0, src->len);
4664 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4665 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4666 
4667 	return new;
4668 }
4669 
4670 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4671 						u64 start)
4672 {
4673 	struct extent_buffer *eb;
4674 	unsigned long len;
4675 	unsigned long num_pages;
4676 	unsigned long i;
4677 
4678 	if (!fs_info) {
4679 		/*
4680 		 * Called only from tests that don't always have a fs_info
4681 		 * available, but we know that nodesize is 4096
4682 		 */
4683 		len = 4096;
4684 	} else {
4685 		len = fs_info->tree_root->nodesize;
4686 	}
4687 	num_pages = num_extent_pages(0, len);
4688 
4689 	eb = __alloc_extent_buffer(fs_info, start, len);
4690 	if (!eb)
4691 		return NULL;
4692 
4693 	for (i = 0; i < num_pages; i++) {
4694 		eb->pages[i] = alloc_page(GFP_NOFS);
4695 		if (!eb->pages[i])
4696 			goto err;
4697 	}
4698 	set_extent_buffer_uptodate(eb);
4699 	btrfs_set_header_nritems(eb, 0);
4700 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4701 
4702 	return eb;
4703 err:
4704 	for (; i > 0; i--)
4705 		__free_page(eb->pages[i - 1]);
4706 	__free_extent_buffer(eb);
4707 	return NULL;
4708 }
4709 
4710 static void check_buffer_tree_ref(struct extent_buffer *eb)
4711 {
4712 	int refs;
4713 	/* the ref bit is tricky.  We have to make sure it is set
4714 	 * if we have the buffer dirty.   Otherwise the
4715 	 * code to free a buffer can end up dropping a dirty
4716 	 * page
4717 	 *
4718 	 * Once the ref bit is set, it won't go away while the
4719 	 * buffer is dirty or in writeback, and it also won't
4720 	 * go away while we have the reference count on the
4721 	 * eb bumped.
4722 	 *
4723 	 * We can't just set the ref bit without bumping the
4724 	 * ref on the eb because free_extent_buffer might
4725 	 * see the ref bit and try to clear it.  If this happens
4726 	 * free_extent_buffer might end up dropping our original
4727 	 * ref by mistake and freeing the page before we are able
4728 	 * to add one more ref.
4729 	 *
4730 	 * So bump the ref count first, then set the bit.  If someone
4731 	 * beat us to it, drop the ref we added.
4732 	 */
4733 	refs = atomic_read(&eb->refs);
4734 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4735 		return;
4736 
4737 	spin_lock(&eb->refs_lock);
4738 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4739 		atomic_inc(&eb->refs);
4740 	spin_unlock(&eb->refs_lock);
4741 }
4742 
4743 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4744 		struct page *accessed)
4745 {
4746 	unsigned long num_pages, i;
4747 
4748 	check_buffer_tree_ref(eb);
4749 
4750 	num_pages = num_extent_pages(eb->start, eb->len);
4751 	for (i = 0; i < num_pages; i++) {
4752 		struct page *p = eb->pages[i];
4753 
4754 		if (p != accessed)
4755 			mark_page_accessed(p);
4756 	}
4757 }
4758 
4759 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4760 					 u64 start)
4761 {
4762 	struct extent_buffer *eb;
4763 
4764 	rcu_read_lock();
4765 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4766 			       start >> PAGE_CACHE_SHIFT);
4767 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4768 		rcu_read_unlock();
4769 		/*
4770 		 * Lock our eb's refs_lock to avoid races with
4771 		 * free_extent_buffer. When we get our eb it might be flagged
4772 		 * with EXTENT_BUFFER_STALE and another task running
4773 		 * free_extent_buffer might have seen that flag set,
4774 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4775 		 * writeback flags not set) and it's still in the tree (flag
4776 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4777 		 * of decrementing the extent buffer's reference count twice.
4778 		 * So here we could race and increment the eb's reference count,
4779 		 * clear its stale flag, mark it as dirty and drop our reference
4780 		 * before the other task finishes executing free_extent_buffer,
4781 		 * which would later result in an attempt to free an extent
4782 		 * buffer that is dirty.
4783 		 */
4784 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4785 			spin_lock(&eb->refs_lock);
4786 			spin_unlock(&eb->refs_lock);
4787 		}
4788 		mark_extent_buffer_accessed(eb, NULL);
4789 		return eb;
4790 	}
4791 	rcu_read_unlock();
4792 
4793 	return NULL;
4794 }
4795 
4796 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4797 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4798 					       u64 start)
4799 {
4800 	struct extent_buffer *eb, *exists = NULL;
4801 	int ret;
4802 
4803 	eb = find_extent_buffer(fs_info, start);
4804 	if (eb)
4805 		return eb;
4806 	eb = alloc_dummy_extent_buffer(fs_info, start);
4807 	if (!eb)
4808 		return NULL;
4809 	eb->fs_info = fs_info;
4810 again:
4811 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4812 	if (ret)
4813 		goto free_eb;
4814 	spin_lock(&fs_info->buffer_lock);
4815 	ret = radix_tree_insert(&fs_info->buffer_radix,
4816 				start >> PAGE_CACHE_SHIFT, eb);
4817 	spin_unlock(&fs_info->buffer_lock);
4818 	radix_tree_preload_end();
4819 	if (ret == -EEXIST) {
4820 		exists = find_extent_buffer(fs_info, start);
4821 		if (exists)
4822 			goto free_eb;
4823 		else
4824 			goto again;
4825 	}
4826 	check_buffer_tree_ref(eb);
4827 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4828 
4829 	/*
4830 	 * We will free dummy extent buffer's if they come into
4831 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4832 	 * want the buffers to stay in memory until we're done with them, so
4833 	 * bump the ref count again.
4834 	 */
4835 	atomic_inc(&eb->refs);
4836 	return eb;
4837 free_eb:
4838 	btrfs_release_extent_buffer(eb);
4839 	return exists;
4840 }
4841 #endif
4842 
4843 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4844 					  u64 start)
4845 {
4846 	unsigned long len = fs_info->tree_root->nodesize;
4847 	unsigned long num_pages = num_extent_pages(start, len);
4848 	unsigned long i;
4849 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4850 	struct extent_buffer *eb;
4851 	struct extent_buffer *exists = NULL;
4852 	struct page *p;
4853 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4854 	int uptodate = 1;
4855 	int ret;
4856 
4857 	eb = find_extent_buffer(fs_info, start);
4858 	if (eb)
4859 		return eb;
4860 
4861 	eb = __alloc_extent_buffer(fs_info, start, len);
4862 	if (!eb)
4863 		return NULL;
4864 
4865 	for (i = 0; i < num_pages; i++, index++) {
4866 		p = find_or_create_page(mapping, index, GFP_NOFS);
4867 		if (!p)
4868 			goto free_eb;
4869 
4870 		spin_lock(&mapping->private_lock);
4871 		if (PagePrivate(p)) {
4872 			/*
4873 			 * We could have already allocated an eb for this page
4874 			 * and attached one so lets see if we can get a ref on
4875 			 * the existing eb, and if we can we know it's good and
4876 			 * we can just return that one, else we know we can just
4877 			 * overwrite page->private.
4878 			 */
4879 			exists = (struct extent_buffer *)p->private;
4880 			if (atomic_inc_not_zero(&exists->refs)) {
4881 				spin_unlock(&mapping->private_lock);
4882 				unlock_page(p);
4883 				page_cache_release(p);
4884 				mark_extent_buffer_accessed(exists, p);
4885 				goto free_eb;
4886 			}
4887 			exists = NULL;
4888 
4889 			/*
4890 			 * Do this so attach doesn't complain and we need to
4891 			 * drop the ref the old guy had.
4892 			 */
4893 			ClearPagePrivate(p);
4894 			WARN_ON(PageDirty(p));
4895 			page_cache_release(p);
4896 		}
4897 		attach_extent_buffer_page(eb, p);
4898 		spin_unlock(&mapping->private_lock);
4899 		WARN_ON(PageDirty(p));
4900 		eb->pages[i] = p;
4901 		if (!PageUptodate(p))
4902 			uptodate = 0;
4903 
4904 		/*
4905 		 * see below about how we avoid a nasty race with release page
4906 		 * and why we unlock later
4907 		 */
4908 	}
4909 	if (uptodate)
4910 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4911 again:
4912 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4913 	if (ret)
4914 		goto free_eb;
4915 
4916 	spin_lock(&fs_info->buffer_lock);
4917 	ret = radix_tree_insert(&fs_info->buffer_radix,
4918 				start >> PAGE_CACHE_SHIFT, eb);
4919 	spin_unlock(&fs_info->buffer_lock);
4920 	radix_tree_preload_end();
4921 	if (ret == -EEXIST) {
4922 		exists = find_extent_buffer(fs_info, start);
4923 		if (exists)
4924 			goto free_eb;
4925 		else
4926 			goto again;
4927 	}
4928 	/* add one reference for the tree */
4929 	check_buffer_tree_ref(eb);
4930 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4931 
4932 	/*
4933 	 * there is a race where release page may have
4934 	 * tried to find this extent buffer in the radix
4935 	 * but failed.  It will tell the VM it is safe to
4936 	 * reclaim the, and it will clear the page private bit.
4937 	 * We must make sure to set the page private bit properly
4938 	 * after the extent buffer is in the radix tree so
4939 	 * it doesn't get lost
4940 	 */
4941 	SetPageChecked(eb->pages[0]);
4942 	for (i = 1; i < num_pages; i++) {
4943 		p = eb->pages[i];
4944 		ClearPageChecked(p);
4945 		unlock_page(p);
4946 	}
4947 	unlock_page(eb->pages[0]);
4948 	return eb;
4949 
4950 free_eb:
4951 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4952 	for (i = 0; i < num_pages; i++) {
4953 		if (eb->pages[i])
4954 			unlock_page(eb->pages[i]);
4955 	}
4956 
4957 	btrfs_release_extent_buffer(eb);
4958 	return exists;
4959 }
4960 
4961 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4962 {
4963 	struct extent_buffer *eb =
4964 			container_of(head, struct extent_buffer, rcu_head);
4965 
4966 	__free_extent_buffer(eb);
4967 }
4968 
4969 /* Expects to have eb->eb_lock already held */
4970 static int release_extent_buffer(struct extent_buffer *eb)
4971 {
4972 	WARN_ON(atomic_read(&eb->refs) == 0);
4973 	if (atomic_dec_and_test(&eb->refs)) {
4974 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4975 			struct btrfs_fs_info *fs_info = eb->fs_info;
4976 
4977 			spin_unlock(&eb->refs_lock);
4978 
4979 			spin_lock(&fs_info->buffer_lock);
4980 			radix_tree_delete(&fs_info->buffer_radix,
4981 					  eb->start >> PAGE_CACHE_SHIFT);
4982 			spin_unlock(&fs_info->buffer_lock);
4983 		} else {
4984 			spin_unlock(&eb->refs_lock);
4985 		}
4986 
4987 		/* Should be safe to release our pages at this point */
4988 		btrfs_release_extent_buffer_page(eb);
4989 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4990 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
4991 			__free_extent_buffer(eb);
4992 			return 1;
4993 		}
4994 #endif
4995 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4996 		return 1;
4997 	}
4998 	spin_unlock(&eb->refs_lock);
4999 
5000 	return 0;
5001 }
5002 
5003 void free_extent_buffer(struct extent_buffer *eb)
5004 {
5005 	int refs;
5006 	int old;
5007 	if (!eb)
5008 		return;
5009 
5010 	while (1) {
5011 		refs = atomic_read(&eb->refs);
5012 		if (refs <= 3)
5013 			break;
5014 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5015 		if (old == refs)
5016 			return;
5017 	}
5018 
5019 	spin_lock(&eb->refs_lock);
5020 	if (atomic_read(&eb->refs) == 2 &&
5021 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5022 		atomic_dec(&eb->refs);
5023 
5024 	if (atomic_read(&eb->refs) == 2 &&
5025 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5026 	    !extent_buffer_under_io(eb) &&
5027 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5028 		atomic_dec(&eb->refs);
5029 
5030 	/*
5031 	 * I know this is terrible, but it's temporary until we stop tracking
5032 	 * the uptodate bits and such for the extent buffers.
5033 	 */
5034 	release_extent_buffer(eb);
5035 }
5036 
5037 void free_extent_buffer_stale(struct extent_buffer *eb)
5038 {
5039 	if (!eb)
5040 		return;
5041 
5042 	spin_lock(&eb->refs_lock);
5043 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5044 
5045 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5046 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5047 		atomic_dec(&eb->refs);
5048 	release_extent_buffer(eb);
5049 }
5050 
5051 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5052 {
5053 	unsigned long i;
5054 	unsigned long num_pages;
5055 	struct page *page;
5056 
5057 	num_pages = num_extent_pages(eb->start, eb->len);
5058 
5059 	for (i = 0; i < num_pages; i++) {
5060 		page = eb->pages[i];
5061 		if (!PageDirty(page))
5062 			continue;
5063 
5064 		lock_page(page);
5065 		WARN_ON(!PagePrivate(page));
5066 
5067 		clear_page_dirty_for_io(page);
5068 		spin_lock_irq(&page->mapping->tree_lock);
5069 		if (!PageDirty(page)) {
5070 			radix_tree_tag_clear(&page->mapping->page_tree,
5071 						page_index(page),
5072 						PAGECACHE_TAG_DIRTY);
5073 		}
5074 		spin_unlock_irq(&page->mapping->tree_lock);
5075 		ClearPageError(page);
5076 		unlock_page(page);
5077 	}
5078 	WARN_ON(atomic_read(&eb->refs) == 0);
5079 }
5080 
5081 int set_extent_buffer_dirty(struct extent_buffer *eb)
5082 {
5083 	unsigned long i;
5084 	unsigned long num_pages;
5085 	int was_dirty = 0;
5086 
5087 	check_buffer_tree_ref(eb);
5088 
5089 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5090 
5091 	num_pages = num_extent_pages(eb->start, eb->len);
5092 	WARN_ON(atomic_read(&eb->refs) == 0);
5093 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5094 
5095 	for (i = 0; i < num_pages; i++)
5096 		set_page_dirty(eb->pages[i]);
5097 	return was_dirty;
5098 }
5099 
5100 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5101 {
5102 	unsigned long i;
5103 	struct page *page;
5104 	unsigned long num_pages;
5105 
5106 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5107 	num_pages = num_extent_pages(eb->start, eb->len);
5108 	for (i = 0; i < num_pages; i++) {
5109 		page = eb->pages[i];
5110 		if (page)
5111 			ClearPageUptodate(page);
5112 	}
5113 	return 0;
5114 }
5115 
5116 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5117 {
5118 	unsigned long i;
5119 	struct page *page;
5120 	unsigned long num_pages;
5121 
5122 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5123 	num_pages = num_extent_pages(eb->start, eb->len);
5124 	for (i = 0; i < num_pages; i++) {
5125 		page = eb->pages[i];
5126 		SetPageUptodate(page);
5127 	}
5128 	return 0;
5129 }
5130 
5131 int extent_buffer_uptodate(struct extent_buffer *eb)
5132 {
5133 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5134 }
5135 
5136 int read_extent_buffer_pages(struct extent_io_tree *tree,
5137 			     struct extent_buffer *eb, u64 start, int wait,
5138 			     get_extent_t *get_extent, int mirror_num)
5139 {
5140 	unsigned long i;
5141 	unsigned long start_i;
5142 	struct page *page;
5143 	int err;
5144 	int ret = 0;
5145 	int locked_pages = 0;
5146 	int all_uptodate = 1;
5147 	unsigned long num_pages;
5148 	unsigned long num_reads = 0;
5149 	struct bio *bio = NULL;
5150 	unsigned long bio_flags = 0;
5151 
5152 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5153 		return 0;
5154 
5155 	if (start) {
5156 		WARN_ON(start < eb->start);
5157 		start_i = (start >> PAGE_CACHE_SHIFT) -
5158 			(eb->start >> PAGE_CACHE_SHIFT);
5159 	} else {
5160 		start_i = 0;
5161 	}
5162 
5163 	num_pages = num_extent_pages(eb->start, eb->len);
5164 	for (i = start_i; i < num_pages; i++) {
5165 		page = eb->pages[i];
5166 		if (wait == WAIT_NONE) {
5167 			if (!trylock_page(page))
5168 				goto unlock_exit;
5169 		} else {
5170 			lock_page(page);
5171 		}
5172 		locked_pages++;
5173 		if (!PageUptodate(page)) {
5174 			num_reads++;
5175 			all_uptodate = 0;
5176 		}
5177 	}
5178 	if (all_uptodate) {
5179 		if (start_i == 0)
5180 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 		goto unlock_exit;
5182 	}
5183 
5184 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5185 	eb->read_mirror = 0;
5186 	atomic_set(&eb->io_pages, num_reads);
5187 	for (i = start_i; i < num_pages; i++) {
5188 		page = eb->pages[i];
5189 		if (!PageUptodate(page)) {
5190 			ClearPageError(page);
5191 			err = __extent_read_full_page(tree, page,
5192 						      get_extent, &bio,
5193 						      mirror_num, &bio_flags,
5194 						      READ | REQ_META);
5195 			if (err)
5196 				ret = err;
5197 		} else {
5198 			unlock_page(page);
5199 		}
5200 	}
5201 
5202 	if (bio) {
5203 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5204 				     bio_flags);
5205 		if (err)
5206 			return err;
5207 	}
5208 
5209 	if (ret || wait != WAIT_COMPLETE)
5210 		return ret;
5211 
5212 	for (i = start_i; i < num_pages; i++) {
5213 		page = eb->pages[i];
5214 		wait_on_page_locked(page);
5215 		if (!PageUptodate(page))
5216 			ret = -EIO;
5217 	}
5218 
5219 	return ret;
5220 
5221 unlock_exit:
5222 	i = start_i;
5223 	while (locked_pages > 0) {
5224 		page = eb->pages[i];
5225 		i++;
5226 		unlock_page(page);
5227 		locked_pages--;
5228 	}
5229 	return ret;
5230 }
5231 
5232 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5233 			unsigned long start,
5234 			unsigned long len)
5235 {
5236 	size_t cur;
5237 	size_t offset;
5238 	struct page *page;
5239 	char *kaddr;
5240 	char *dst = (char *)dstv;
5241 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5242 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5243 
5244 	WARN_ON(start > eb->len);
5245 	WARN_ON(start + len > eb->start + eb->len);
5246 
5247 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5248 
5249 	while (len > 0) {
5250 		page = eb->pages[i];
5251 
5252 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5253 		kaddr = page_address(page);
5254 		memcpy(dst, kaddr + offset, cur);
5255 
5256 		dst += cur;
5257 		len -= cur;
5258 		offset = 0;
5259 		i++;
5260 	}
5261 }
5262 
5263 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5264 			unsigned long start,
5265 			unsigned long len)
5266 {
5267 	size_t cur;
5268 	size_t offset;
5269 	struct page *page;
5270 	char *kaddr;
5271 	char __user *dst = (char __user *)dstv;
5272 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5273 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5274 	int ret = 0;
5275 
5276 	WARN_ON(start > eb->len);
5277 	WARN_ON(start + len > eb->start + eb->len);
5278 
5279 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5280 
5281 	while (len > 0) {
5282 		page = eb->pages[i];
5283 
5284 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5285 		kaddr = page_address(page);
5286 		if (copy_to_user(dst, kaddr + offset, cur)) {
5287 			ret = -EFAULT;
5288 			break;
5289 		}
5290 
5291 		dst += cur;
5292 		len -= cur;
5293 		offset = 0;
5294 		i++;
5295 	}
5296 
5297 	return ret;
5298 }
5299 
5300 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5301 			       unsigned long min_len, char **map,
5302 			       unsigned long *map_start,
5303 			       unsigned long *map_len)
5304 {
5305 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5306 	char *kaddr;
5307 	struct page *p;
5308 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5309 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5310 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5311 		PAGE_CACHE_SHIFT;
5312 
5313 	if (i != end_i)
5314 		return -EINVAL;
5315 
5316 	if (i == 0) {
5317 		offset = start_offset;
5318 		*map_start = 0;
5319 	} else {
5320 		offset = 0;
5321 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5322 	}
5323 
5324 	if (start + min_len > eb->len) {
5325 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5326 		       "wanted %lu %lu\n",
5327 		       eb->start, eb->len, start, min_len);
5328 		return -EINVAL;
5329 	}
5330 
5331 	p = eb->pages[i];
5332 	kaddr = page_address(p);
5333 	*map = kaddr + offset;
5334 	*map_len = PAGE_CACHE_SIZE - offset;
5335 	return 0;
5336 }
5337 
5338 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5339 			  unsigned long start,
5340 			  unsigned long len)
5341 {
5342 	size_t cur;
5343 	size_t offset;
5344 	struct page *page;
5345 	char *kaddr;
5346 	char *ptr = (char *)ptrv;
5347 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5348 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5349 	int ret = 0;
5350 
5351 	WARN_ON(start > eb->len);
5352 	WARN_ON(start + len > eb->start + eb->len);
5353 
5354 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5355 
5356 	while (len > 0) {
5357 		page = eb->pages[i];
5358 
5359 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5360 
5361 		kaddr = page_address(page);
5362 		ret = memcmp(ptr, kaddr + offset, cur);
5363 		if (ret)
5364 			break;
5365 
5366 		ptr += cur;
5367 		len -= cur;
5368 		offset = 0;
5369 		i++;
5370 	}
5371 	return ret;
5372 }
5373 
5374 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5375 			 unsigned long start, unsigned long len)
5376 {
5377 	size_t cur;
5378 	size_t offset;
5379 	struct page *page;
5380 	char *kaddr;
5381 	char *src = (char *)srcv;
5382 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5383 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5384 
5385 	WARN_ON(start > eb->len);
5386 	WARN_ON(start + len > eb->start + eb->len);
5387 
5388 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5389 
5390 	while (len > 0) {
5391 		page = eb->pages[i];
5392 		WARN_ON(!PageUptodate(page));
5393 
5394 		cur = min(len, PAGE_CACHE_SIZE - offset);
5395 		kaddr = page_address(page);
5396 		memcpy(kaddr + offset, src, cur);
5397 
5398 		src += cur;
5399 		len -= cur;
5400 		offset = 0;
5401 		i++;
5402 	}
5403 }
5404 
5405 void memset_extent_buffer(struct extent_buffer *eb, char c,
5406 			  unsigned long start, unsigned long len)
5407 {
5408 	size_t cur;
5409 	size_t offset;
5410 	struct page *page;
5411 	char *kaddr;
5412 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5413 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5414 
5415 	WARN_ON(start > eb->len);
5416 	WARN_ON(start + len > eb->start + eb->len);
5417 
5418 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5419 
5420 	while (len > 0) {
5421 		page = eb->pages[i];
5422 		WARN_ON(!PageUptodate(page));
5423 
5424 		cur = min(len, PAGE_CACHE_SIZE - offset);
5425 		kaddr = page_address(page);
5426 		memset(kaddr + offset, c, cur);
5427 
5428 		len -= cur;
5429 		offset = 0;
5430 		i++;
5431 	}
5432 }
5433 
5434 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5435 			unsigned long dst_offset, unsigned long src_offset,
5436 			unsigned long len)
5437 {
5438 	u64 dst_len = dst->len;
5439 	size_t cur;
5440 	size_t offset;
5441 	struct page *page;
5442 	char *kaddr;
5443 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5444 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5445 
5446 	WARN_ON(src->len != dst_len);
5447 
5448 	offset = (start_offset + dst_offset) &
5449 		(PAGE_CACHE_SIZE - 1);
5450 
5451 	while (len > 0) {
5452 		page = dst->pages[i];
5453 		WARN_ON(!PageUptodate(page));
5454 
5455 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5456 
5457 		kaddr = page_address(page);
5458 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5459 
5460 		src_offset += cur;
5461 		len -= cur;
5462 		offset = 0;
5463 		i++;
5464 	}
5465 }
5466 
5467 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5468 {
5469 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5470 	return distance < len;
5471 }
5472 
5473 static void copy_pages(struct page *dst_page, struct page *src_page,
5474 		       unsigned long dst_off, unsigned long src_off,
5475 		       unsigned long len)
5476 {
5477 	char *dst_kaddr = page_address(dst_page);
5478 	char *src_kaddr;
5479 	int must_memmove = 0;
5480 
5481 	if (dst_page != src_page) {
5482 		src_kaddr = page_address(src_page);
5483 	} else {
5484 		src_kaddr = dst_kaddr;
5485 		if (areas_overlap(src_off, dst_off, len))
5486 			must_memmove = 1;
5487 	}
5488 
5489 	if (must_memmove)
5490 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5491 	else
5492 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5493 }
5494 
5495 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5496 			   unsigned long src_offset, unsigned long len)
5497 {
5498 	size_t cur;
5499 	size_t dst_off_in_page;
5500 	size_t src_off_in_page;
5501 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5502 	unsigned long dst_i;
5503 	unsigned long src_i;
5504 
5505 	if (src_offset + len > dst->len) {
5506 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5507 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5508 		BUG_ON(1);
5509 	}
5510 	if (dst_offset + len > dst->len) {
5511 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5512 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5513 		BUG_ON(1);
5514 	}
5515 
5516 	while (len > 0) {
5517 		dst_off_in_page = (start_offset + dst_offset) &
5518 			(PAGE_CACHE_SIZE - 1);
5519 		src_off_in_page = (start_offset + src_offset) &
5520 			(PAGE_CACHE_SIZE - 1);
5521 
5522 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5523 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5524 
5525 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5526 					       src_off_in_page));
5527 		cur = min_t(unsigned long, cur,
5528 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5529 
5530 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5531 			   dst_off_in_page, src_off_in_page, cur);
5532 
5533 		src_offset += cur;
5534 		dst_offset += cur;
5535 		len -= cur;
5536 	}
5537 }
5538 
5539 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5540 			   unsigned long src_offset, unsigned long len)
5541 {
5542 	size_t cur;
5543 	size_t dst_off_in_page;
5544 	size_t src_off_in_page;
5545 	unsigned long dst_end = dst_offset + len - 1;
5546 	unsigned long src_end = src_offset + len - 1;
5547 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5548 	unsigned long dst_i;
5549 	unsigned long src_i;
5550 
5551 	if (src_offset + len > dst->len) {
5552 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5553 		       "len %lu len %lu\n", src_offset, len, dst->len);
5554 		BUG_ON(1);
5555 	}
5556 	if (dst_offset + len > dst->len) {
5557 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5558 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5559 		BUG_ON(1);
5560 	}
5561 	if (dst_offset < src_offset) {
5562 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5563 		return;
5564 	}
5565 	while (len > 0) {
5566 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5567 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5568 
5569 		dst_off_in_page = (start_offset + dst_end) &
5570 			(PAGE_CACHE_SIZE - 1);
5571 		src_off_in_page = (start_offset + src_end) &
5572 			(PAGE_CACHE_SIZE - 1);
5573 
5574 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5575 		cur = min(cur, dst_off_in_page + 1);
5576 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5577 			   dst_off_in_page - cur + 1,
5578 			   src_off_in_page - cur + 1, cur);
5579 
5580 		dst_end -= cur;
5581 		src_end -= cur;
5582 		len -= cur;
5583 	}
5584 }
5585 
5586 int try_release_extent_buffer(struct page *page)
5587 {
5588 	struct extent_buffer *eb;
5589 
5590 	/*
5591 	 * We need to make sure noboody is attaching this page to an eb right
5592 	 * now.
5593 	 */
5594 	spin_lock(&page->mapping->private_lock);
5595 	if (!PagePrivate(page)) {
5596 		spin_unlock(&page->mapping->private_lock);
5597 		return 1;
5598 	}
5599 
5600 	eb = (struct extent_buffer *)page->private;
5601 	BUG_ON(!eb);
5602 
5603 	/*
5604 	 * This is a little awful but should be ok, we need to make sure that
5605 	 * the eb doesn't disappear out from under us while we're looking at
5606 	 * this page.
5607 	 */
5608 	spin_lock(&eb->refs_lock);
5609 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5610 		spin_unlock(&eb->refs_lock);
5611 		spin_unlock(&page->mapping->private_lock);
5612 		return 0;
5613 	}
5614 	spin_unlock(&page->mapping->private_lock);
5615 
5616 	/*
5617 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5618 	 * so just return, this page will likely be freed soon anyway.
5619 	 */
5620 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5621 		spin_unlock(&eb->refs_lock);
5622 		return 0;
5623 	}
5624 
5625 	return release_extent_buffer(eb);
5626 }
5627