1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793 { 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279 { 1280 int wake = 0; 1281 1282 if (bits & EXTENT_LOCKED) 1283 wake = 1; 1284 1285 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask); 1286 } 1287 1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1289 struct extent_state **cached_state, gfp_t mask) 1290 { 1291 return set_extent_bit(tree, start, end, 1292 EXTENT_DELALLOC | EXTENT_UPTODATE, 1293 NULL, cached_state, mask); 1294 } 1295 1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1297 struct extent_state **cached_state, gfp_t mask) 1298 { 1299 return set_extent_bit(tree, start, end, 1300 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1301 NULL, cached_state, mask); 1302 } 1303 1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1305 gfp_t mask) 1306 { 1307 return clear_extent_bit(tree, start, end, 1308 EXTENT_DIRTY | EXTENT_DELALLOC | 1309 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1310 } 1311 1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1313 gfp_t mask) 1314 { 1315 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1316 NULL, mask); 1317 } 1318 1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1320 struct extent_state **cached_state, gfp_t mask) 1321 { 1322 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1323 cached_state, mask); 1324 } 1325 1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1327 struct extent_state **cached_state, gfp_t mask) 1328 { 1329 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1330 cached_state, mask); 1331 } 1332 1333 /* 1334 * either insert or lock state struct between start and end use mask to tell 1335 * us if waiting is desired. 1336 */ 1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1338 unsigned bits, struct extent_state **cached_state) 1339 { 1340 int err; 1341 u64 failed_start; 1342 1343 while (1) { 1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1345 EXTENT_LOCKED, &failed_start, 1346 cached_state, GFP_NOFS); 1347 if (err == -EEXIST) { 1348 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1349 start = failed_start; 1350 } else 1351 break; 1352 WARN_ON(start > end); 1353 } 1354 return err; 1355 } 1356 1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 return lock_extent_bits(tree, start, end, 0, NULL); 1360 } 1361 1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1363 { 1364 int err; 1365 u64 failed_start; 1366 1367 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1368 &failed_start, NULL, GFP_NOFS); 1369 if (err == -EEXIST) { 1370 if (failed_start > start) 1371 clear_extent_bit(tree, start, failed_start - 1, 1372 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1373 return 0; 1374 } 1375 return 1; 1376 } 1377 1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1379 struct extent_state **cached, gfp_t mask) 1380 { 1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1382 mask); 1383 } 1384 1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1386 { 1387 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1388 GFP_NOFS); 1389 } 1390 1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1392 { 1393 unsigned long index = start >> PAGE_CACHE_SHIFT; 1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1395 struct page *page; 1396 1397 while (index <= end_index) { 1398 page = find_get_page(inode->i_mapping, index); 1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1400 clear_page_dirty_for_io(page); 1401 page_cache_release(page); 1402 index++; 1403 } 1404 return 0; 1405 } 1406 1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1408 { 1409 unsigned long index = start >> PAGE_CACHE_SHIFT; 1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1411 struct page *page; 1412 1413 while (index <= end_index) { 1414 page = find_get_page(inode->i_mapping, index); 1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1416 __set_page_dirty_nobuffers(page); 1417 account_page_redirty(page); 1418 page_cache_release(page); 1419 index++; 1420 } 1421 return 0; 1422 } 1423 1424 /* 1425 * helper function to set both pages and extents in the tree writeback 1426 */ 1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1428 { 1429 unsigned long index = start >> PAGE_CACHE_SHIFT; 1430 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1431 struct page *page; 1432 1433 while (index <= end_index) { 1434 page = find_get_page(tree->mapping, index); 1435 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1436 set_page_writeback(page); 1437 page_cache_release(page); 1438 index++; 1439 } 1440 return 0; 1441 } 1442 1443 /* find the first state struct with 'bits' set after 'start', and 1444 * return it. tree->lock must be held. NULL will returned if 1445 * nothing was found after 'start' 1446 */ 1447 static struct extent_state * 1448 find_first_extent_bit_state(struct extent_io_tree *tree, 1449 u64 start, unsigned bits) 1450 { 1451 struct rb_node *node; 1452 struct extent_state *state; 1453 1454 /* 1455 * this search will find all the extents that end after 1456 * our range starts. 1457 */ 1458 node = tree_search(tree, start); 1459 if (!node) 1460 goto out; 1461 1462 while (1) { 1463 state = rb_entry(node, struct extent_state, rb_node); 1464 if (state->end >= start && (state->state & bits)) 1465 return state; 1466 1467 node = rb_next(node); 1468 if (!node) 1469 break; 1470 } 1471 out: 1472 return NULL; 1473 } 1474 1475 /* 1476 * find the first offset in the io tree with 'bits' set. zero is 1477 * returned if we find something, and *start_ret and *end_ret are 1478 * set to reflect the state struct that was found. 1479 * 1480 * If nothing was found, 1 is returned. If found something, return 0. 1481 */ 1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1483 u64 *start_ret, u64 *end_ret, unsigned bits, 1484 struct extent_state **cached_state) 1485 { 1486 struct extent_state *state; 1487 struct rb_node *n; 1488 int ret = 1; 1489 1490 spin_lock(&tree->lock); 1491 if (cached_state && *cached_state) { 1492 state = *cached_state; 1493 if (state->end == start - 1 && extent_state_in_tree(state)) { 1494 n = rb_next(&state->rb_node); 1495 while (n) { 1496 state = rb_entry(n, struct extent_state, 1497 rb_node); 1498 if (state->state & bits) 1499 goto got_it; 1500 n = rb_next(n); 1501 } 1502 free_extent_state(*cached_state); 1503 *cached_state = NULL; 1504 goto out; 1505 } 1506 free_extent_state(*cached_state); 1507 *cached_state = NULL; 1508 } 1509 1510 state = find_first_extent_bit_state(tree, start, bits); 1511 got_it: 1512 if (state) { 1513 cache_state_if_flags(state, cached_state, 0); 1514 *start_ret = state->start; 1515 *end_ret = state->end; 1516 ret = 0; 1517 } 1518 out: 1519 spin_unlock(&tree->lock); 1520 return ret; 1521 } 1522 1523 /* 1524 * find a contiguous range of bytes in the file marked as delalloc, not 1525 * more than 'max_bytes'. start and end are used to return the range, 1526 * 1527 * 1 is returned if we find something, 0 if nothing was in the tree 1528 */ 1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1530 u64 *start, u64 *end, u64 max_bytes, 1531 struct extent_state **cached_state) 1532 { 1533 struct rb_node *node; 1534 struct extent_state *state; 1535 u64 cur_start = *start; 1536 u64 found = 0; 1537 u64 total_bytes = 0; 1538 1539 spin_lock(&tree->lock); 1540 1541 /* 1542 * this search will find all the extents that end after 1543 * our range starts. 1544 */ 1545 node = tree_search(tree, cur_start); 1546 if (!node) { 1547 if (!found) 1548 *end = (u64)-1; 1549 goto out; 1550 } 1551 1552 while (1) { 1553 state = rb_entry(node, struct extent_state, rb_node); 1554 if (found && (state->start != cur_start || 1555 (state->state & EXTENT_BOUNDARY))) { 1556 goto out; 1557 } 1558 if (!(state->state & EXTENT_DELALLOC)) { 1559 if (!found) 1560 *end = state->end; 1561 goto out; 1562 } 1563 if (!found) { 1564 *start = state->start; 1565 *cached_state = state; 1566 atomic_inc(&state->refs); 1567 } 1568 found++; 1569 *end = state->end; 1570 cur_start = state->end + 1; 1571 node = rb_next(node); 1572 total_bytes += state->end - state->start + 1; 1573 if (total_bytes >= max_bytes) 1574 break; 1575 if (!node) 1576 break; 1577 } 1578 out: 1579 spin_unlock(&tree->lock); 1580 return found; 1581 } 1582 1583 static noinline void __unlock_for_delalloc(struct inode *inode, 1584 struct page *locked_page, 1585 u64 start, u64 end) 1586 { 1587 int ret; 1588 struct page *pages[16]; 1589 unsigned long index = start >> PAGE_CACHE_SHIFT; 1590 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1591 unsigned long nr_pages = end_index - index + 1; 1592 int i; 1593 1594 if (index == locked_page->index && end_index == index) 1595 return; 1596 1597 while (nr_pages > 0) { 1598 ret = find_get_pages_contig(inode->i_mapping, index, 1599 min_t(unsigned long, nr_pages, 1600 ARRAY_SIZE(pages)), pages); 1601 for (i = 0; i < ret; i++) { 1602 if (pages[i] != locked_page) 1603 unlock_page(pages[i]); 1604 page_cache_release(pages[i]); 1605 } 1606 nr_pages -= ret; 1607 index += ret; 1608 cond_resched(); 1609 } 1610 } 1611 1612 static noinline int lock_delalloc_pages(struct inode *inode, 1613 struct page *locked_page, 1614 u64 delalloc_start, 1615 u64 delalloc_end) 1616 { 1617 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1618 unsigned long start_index = index; 1619 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1620 unsigned long pages_locked = 0; 1621 struct page *pages[16]; 1622 unsigned long nrpages; 1623 int ret; 1624 int i; 1625 1626 /* the caller is responsible for locking the start index */ 1627 if (index == locked_page->index && index == end_index) 1628 return 0; 1629 1630 /* skip the page at the start index */ 1631 nrpages = end_index - index + 1; 1632 while (nrpages > 0) { 1633 ret = find_get_pages_contig(inode->i_mapping, index, 1634 min_t(unsigned long, 1635 nrpages, ARRAY_SIZE(pages)), pages); 1636 if (ret == 0) { 1637 ret = -EAGAIN; 1638 goto done; 1639 } 1640 /* now we have an array of pages, lock them all */ 1641 for (i = 0; i < ret; i++) { 1642 /* 1643 * the caller is taking responsibility for 1644 * locked_page 1645 */ 1646 if (pages[i] != locked_page) { 1647 lock_page(pages[i]); 1648 if (!PageDirty(pages[i]) || 1649 pages[i]->mapping != inode->i_mapping) { 1650 ret = -EAGAIN; 1651 unlock_page(pages[i]); 1652 page_cache_release(pages[i]); 1653 goto done; 1654 } 1655 } 1656 page_cache_release(pages[i]); 1657 pages_locked++; 1658 } 1659 nrpages -= ret; 1660 index += ret; 1661 cond_resched(); 1662 } 1663 ret = 0; 1664 done: 1665 if (ret && pages_locked) { 1666 __unlock_for_delalloc(inode, locked_page, 1667 delalloc_start, 1668 ((u64)(start_index + pages_locked - 1)) << 1669 PAGE_CACHE_SHIFT); 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * find a contiguous range of bytes in the file marked as delalloc, not 1676 * more than 'max_bytes'. start and end are used to return the range, 1677 * 1678 * 1 is returned if we find something, 0 if nothing was in the tree 1679 */ 1680 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1681 struct extent_io_tree *tree, 1682 struct page *locked_page, u64 *start, 1683 u64 *end, u64 max_bytes) 1684 { 1685 u64 delalloc_start; 1686 u64 delalloc_end; 1687 u64 found; 1688 struct extent_state *cached_state = NULL; 1689 int ret; 1690 int loops = 0; 1691 1692 again: 1693 /* step one, find a bunch of delalloc bytes starting at start */ 1694 delalloc_start = *start; 1695 delalloc_end = 0; 1696 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1697 max_bytes, &cached_state); 1698 if (!found || delalloc_end <= *start) { 1699 *start = delalloc_start; 1700 *end = delalloc_end; 1701 free_extent_state(cached_state); 1702 return 0; 1703 } 1704 1705 /* 1706 * start comes from the offset of locked_page. We have to lock 1707 * pages in order, so we can't process delalloc bytes before 1708 * locked_page 1709 */ 1710 if (delalloc_start < *start) 1711 delalloc_start = *start; 1712 1713 /* 1714 * make sure to limit the number of pages we try to lock down 1715 */ 1716 if (delalloc_end + 1 - delalloc_start > max_bytes) 1717 delalloc_end = delalloc_start + max_bytes - 1; 1718 1719 /* step two, lock all the pages after the page that has start */ 1720 ret = lock_delalloc_pages(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 if (ret == -EAGAIN) { 1723 /* some of the pages are gone, lets avoid looping by 1724 * shortening the size of the delalloc range we're searching 1725 */ 1726 free_extent_state(cached_state); 1727 cached_state = NULL; 1728 if (!loops) { 1729 max_bytes = PAGE_CACHE_SIZE; 1730 loops = 1; 1731 goto again; 1732 } else { 1733 found = 0; 1734 goto out_failed; 1735 } 1736 } 1737 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1738 1739 /* step three, lock the state bits for the whole range */ 1740 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1741 1742 /* then test to make sure it is all still delalloc */ 1743 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1744 EXTENT_DELALLOC, 1, cached_state); 1745 if (!ret) { 1746 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1747 &cached_state, GFP_NOFS); 1748 __unlock_for_delalloc(inode, locked_page, 1749 delalloc_start, delalloc_end); 1750 cond_resched(); 1751 goto again; 1752 } 1753 free_extent_state(cached_state); 1754 *start = delalloc_start; 1755 *end = delalloc_end; 1756 out_failed: 1757 return found; 1758 } 1759 1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1761 struct page *locked_page, 1762 unsigned clear_bits, 1763 unsigned long page_ops) 1764 { 1765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1766 int ret; 1767 struct page *pages[16]; 1768 unsigned long index = start >> PAGE_CACHE_SHIFT; 1769 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1770 unsigned long nr_pages = end_index - index + 1; 1771 int i; 1772 1773 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1774 if (page_ops == 0) 1775 return 0; 1776 1777 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1778 mapping_set_error(inode->i_mapping, -EIO); 1779 1780 while (nr_pages > 0) { 1781 ret = find_get_pages_contig(inode->i_mapping, index, 1782 min_t(unsigned long, 1783 nr_pages, ARRAY_SIZE(pages)), pages); 1784 for (i = 0; i < ret; i++) { 1785 1786 if (page_ops & PAGE_SET_PRIVATE2) 1787 SetPagePrivate2(pages[i]); 1788 1789 if (pages[i] == locked_page) { 1790 page_cache_release(pages[i]); 1791 continue; 1792 } 1793 if (page_ops & PAGE_CLEAR_DIRTY) 1794 clear_page_dirty_for_io(pages[i]); 1795 if (page_ops & PAGE_SET_WRITEBACK) 1796 set_page_writeback(pages[i]); 1797 if (page_ops & PAGE_SET_ERROR) 1798 SetPageError(pages[i]); 1799 if (page_ops & PAGE_END_WRITEBACK) 1800 end_page_writeback(pages[i]); 1801 if (page_ops & PAGE_UNLOCK) 1802 unlock_page(pages[i]); 1803 page_cache_release(pages[i]); 1804 } 1805 nr_pages -= ret; 1806 index += ret; 1807 cond_resched(); 1808 } 1809 return 0; 1810 } 1811 1812 /* 1813 * count the number of bytes in the tree that have a given bit(s) 1814 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1815 * cached. The total number found is returned. 1816 */ 1817 u64 count_range_bits(struct extent_io_tree *tree, 1818 u64 *start, u64 search_end, u64 max_bytes, 1819 unsigned bits, int contig) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 u64 cur_start = *start; 1824 u64 total_bytes = 0; 1825 u64 last = 0; 1826 int found = 0; 1827 1828 if (WARN_ON(search_end <= cur_start)) 1829 return 0; 1830 1831 spin_lock(&tree->lock); 1832 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1833 total_bytes = tree->dirty_bytes; 1834 goto out; 1835 } 1836 /* 1837 * this search will find all the extents that end after 1838 * our range starts. 1839 */ 1840 node = tree_search(tree, cur_start); 1841 if (!node) 1842 goto out; 1843 1844 while (1) { 1845 state = rb_entry(node, struct extent_state, rb_node); 1846 if (state->start > search_end) 1847 break; 1848 if (contig && found && state->start > last + 1) 1849 break; 1850 if (state->end >= cur_start && (state->state & bits) == bits) { 1851 total_bytes += min(search_end, state->end) + 1 - 1852 max(cur_start, state->start); 1853 if (total_bytes >= max_bytes) 1854 break; 1855 if (!found) { 1856 *start = max(cur_start, state->start); 1857 found = 1; 1858 } 1859 last = state->end; 1860 } else if (contig && found) { 1861 break; 1862 } 1863 node = rb_next(node); 1864 if (!node) 1865 break; 1866 } 1867 out: 1868 spin_unlock(&tree->lock); 1869 return total_bytes; 1870 } 1871 1872 /* 1873 * set the private field for a given byte offset in the tree. If there isn't 1874 * an extent_state there already, this does nothing. 1875 */ 1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1877 { 1878 struct rb_node *node; 1879 struct extent_state *state; 1880 int ret = 0; 1881 1882 spin_lock(&tree->lock); 1883 /* 1884 * this search will find all the extents that end after 1885 * our range starts. 1886 */ 1887 node = tree_search(tree, start); 1888 if (!node) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state = rb_entry(node, struct extent_state, rb_node); 1893 if (state->start != start) { 1894 ret = -ENOENT; 1895 goto out; 1896 } 1897 state->private = private; 1898 out: 1899 spin_unlock(&tree->lock); 1900 return ret; 1901 } 1902 1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1904 { 1905 struct rb_node *node; 1906 struct extent_state *state; 1907 int ret = 0; 1908 1909 spin_lock(&tree->lock); 1910 /* 1911 * this search will find all the extents that end after 1912 * our range starts. 1913 */ 1914 node = tree_search(tree, start); 1915 if (!node) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 state = rb_entry(node, struct extent_state, rb_node); 1920 if (state->start != start) { 1921 ret = -ENOENT; 1922 goto out; 1923 } 1924 *private = state->private; 1925 out: 1926 spin_unlock(&tree->lock); 1927 return ret; 1928 } 1929 1930 /* 1931 * searches a range in the state tree for a given mask. 1932 * If 'filled' == 1, this returns 1 only if every extent in the tree 1933 * has the bits set. Otherwise, 1 is returned if any bit in the 1934 * range is found set. 1935 */ 1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1937 unsigned bits, int filled, struct extent_state *cached) 1938 { 1939 struct extent_state *state = NULL; 1940 struct rb_node *node; 1941 int bitset = 0; 1942 1943 spin_lock(&tree->lock); 1944 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1945 cached->end > start) 1946 node = &cached->rb_node; 1947 else 1948 node = tree_search(tree, start); 1949 while (node && start <= end) { 1950 state = rb_entry(node, struct extent_state, rb_node); 1951 1952 if (filled && state->start > start) { 1953 bitset = 0; 1954 break; 1955 } 1956 1957 if (state->start > end) 1958 break; 1959 1960 if (state->state & bits) { 1961 bitset = 1; 1962 if (!filled) 1963 break; 1964 } else if (filled) { 1965 bitset = 0; 1966 break; 1967 } 1968 1969 if (state->end == (u64)-1) 1970 break; 1971 1972 start = state->end + 1; 1973 if (start > end) 1974 break; 1975 node = rb_next(node); 1976 if (!node) { 1977 if (filled) 1978 bitset = 0; 1979 break; 1980 } 1981 } 1982 spin_unlock(&tree->lock); 1983 return bitset; 1984 } 1985 1986 /* 1987 * helper function to set a given page up to date if all the 1988 * extents in the tree for that page are up to date 1989 */ 1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1991 { 1992 u64 start = page_offset(page); 1993 u64 end = start + PAGE_CACHE_SIZE - 1; 1994 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1995 SetPageUptodate(page); 1996 } 1997 1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1999 { 2000 int ret; 2001 int err = 0; 2002 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2003 2004 set_state_private(failure_tree, rec->start, 0); 2005 ret = clear_extent_bits(failure_tree, rec->start, 2006 rec->start + rec->len - 1, 2007 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2008 if (ret) 2009 err = ret; 2010 2011 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2012 rec->start + rec->len - 1, 2013 EXTENT_DAMAGED, GFP_NOFS); 2014 if (ret && !err) 2015 err = ret; 2016 2017 kfree(rec); 2018 return err; 2019 } 2020 2021 /* 2022 * this bypasses the standard btrfs submit functions deliberately, as 2023 * the standard behavior is to write all copies in a raid setup. here we only 2024 * want to write the one bad copy. so we do the mapping for ourselves and issue 2025 * submit_bio directly. 2026 * to avoid any synchronization issues, wait for the data after writing, which 2027 * actually prevents the read that triggered the error from finishing. 2028 * currently, there can be no more than two copies of every data bit. thus, 2029 * exactly one rewrite is required. 2030 */ 2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2032 struct page *page, unsigned int pg_offset, int mirror_num) 2033 { 2034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2035 struct bio *bio; 2036 struct btrfs_device *dev; 2037 u64 map_length = 0; 2038 u64 sector; 2039 struct btrfs_bio *bbio = NULL; 2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2041 int ret; 2042 2043 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2044 BUG_ON(!mirror_num); 2045 2046 /* we can't repair anything in raid56 yet */ 2047 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2048 return 0; 2049 2050 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2051 if (!bio) 2052 return -EIO; 2053 bio->bi_iter.bi_size = 0; 2054 map_length = length; 2055 2056 ret = btrfs_map_block(fs_info, WRITE, logical, 2057 &map_length, &bbio, mirror_num); 2058 if (ret) { 2059 bio_put(bio); 2060 return -EIO; 2061 } 2062 BUG_ON(mirror_num != bbio->mirror_num); 2063 sector = bbio->stripes[mirror_num-1].physical >> 9; 2064 bio->bi_iter.bi_sector = sector; 2065 dev = bbio->stripes[mirror_num-1].dev; 2066 btrfs_put_bbio(bbio); 2067 if (!dev || !dev->bdev || !dev->writeable) { 2068 bio_put(bio); 2069 return -EIO; 2070 } 2071 bio->bi_bdev = dev->bdev; 2072 bio_add_page(bio, page, length, pg_offset); 2073 2074 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2075 /* try to remap that extent elsewhere? */ 2076 bio_put(bio); 2077 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2078 return -EIO; 2079 } 2080 2081 printk_ratelimited_in_rcu(KERN_INFO 2082 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2083 btrfs_ino(inode), start, 2084 rcu_str_deref(dev->name), sector); 2085 bio_put(bio); 2086 return 0; 2087 } 2088 2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2090 int mirror_num) 2091 { 2092 u64 start = eb->start; 2093 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2094 int ret = 0; 2095 2096 if (root->fs_info->sb->s_flags & MS_RDONLY) 2097 return -EROFS; 2098 2099 for (i = 0; i < num_pages; i++) { 2100 struct page *p = eb->pages[i]; 2101 2102 ret = repair_io_failure(root->fs_info->btree_inode, start, 2103 PAGE_CACHE_SIZE, start, p, 2104 start - page_offset(p), mirror_num); 2105 if (ret) 2106 break; 2107 start += PAGE_CACHE_SIZE; 2108 } 2109 2110 return ret; 2111 } 2112 2113 /* 2114 * each time an IO finishes, we do a fast check in the IO failure tree 2115 * to see if we need to process or clean up an io_failure_record 2116 */ 2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2118 unsigned int pg_offset) 2119 { 2120 u64 private; 2121 u64 private_failure; 2122 struct io_failure_record *failrec; 2123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2124 struct extent_state *state; 2125 int num_copies; 2126 int ret; 2127 2128 private = 0; 2129 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2130 (u64)-1, 1, EXTENT_DIRTY, 0); 2131 if (!ret) 2132 return 0; 2133 2134 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2135 &private_failure); 2136 if (ret) 2137 return 0; 2138 2139 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2140 BUG_ON(!failrec->this_mirror); 2141 2142 if (failrec->in_validation) { 2143 /* there was no real error, just free the record */ 2144 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2145 failrec->start); 2146 goto out; 2147 } 2148 if (fs_info->sb->s_flags & MS_RDONLY) 2149 goto out; 2150 2151 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2152 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2153 failrec->start, 2154 EXTENT_LOCKED); 2155 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2156 2157 if (state && state->start <= failrec->start && 2158 state->end >= failrec->start + failrec->len - 1) { 2159 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2160 failrec->len); 2161 if (num_copies > 1) { 2162 repair_io_failure(inode, start, failrec->len, 2163 failrec->logical, page, 2164 pg_offset, failrec->failed_mirror); 2165 } 2166 } 2167 2168 out: 2169 free_io_failure(inode, failrec); 2170 2171 return 0; 2172 } 2173 2174 /* 2175 * Can be called when 2176 * - hold extent lock 2177 * - under ordered extent 2178 * - the inode is freeing 2179 */ 2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2181 { 2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2183 struct io_failure_record *failrec; 2184 struct extent_state *state, *next; 2185 2186 if (RB_EMPTY_ROOT(&failure_tree->state)) 2187 return; 2188 2189 spin_lock(&failure_tree->lock); 2190 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2191 while (state) { 2192 if (state->start > end) 2193 break; 2194 2195 ASSERT(state->end <= end); 2196 2197 next = next_state(state); 2198 2199 failrec = (struct io_failure_record *)(unsigned long)state->private; 2200 free_extent_state(state); 2201 kfree(failrec); 2202 2203 state = next; 2204 } 2205 spin_unlock(&failure_tree->lock); 2206 } 2207 2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2209 struct io_failure_record **failrec_ret) 2210 { 2211 struct io_failure_record *failrec; 2212 u64 private; 2213 struct extent_map *em; 2214 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2216 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2217 int ret; 2218 u64 logical; 2219 2220 ret = get_state_private(failure_tree, start, &private); 2221 if (ret) { 2222 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2223 if (!failrec) 2224 return -ENOMEM; 2225 2226 failrec->start = start; 2227 failrec->len = end - start + 1; 2228 failrec->this_mirror = 0; 2229 failrec->bio_flags = 0; 2230 failrec->in_validation = 0; 2231 2232 read_lock(&em_tree->lock); 2233 em = lookup_extent_mapping(em_tree, start, failrec->len); 2234 if (!em) { 2235 read_unlock(&em_tree->lock); 2236 kfree(failrec); 2237 return -EIO; 2238 } 2239 2240 if (em->start > start || em->start + em->len <= start) { 2241 free_extent_map(em); 2242 em = NULL; 2243 } 2244 read_unlock(&em_tree->lock); 2245 if (!em) { 2246 kfree(failrec); 2247 return -EIO; 2248 } 2249 2250 logical = start - em->start; 2251 logical = em->block_start + logical; 2252 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2253 logical = em->block_start; 2254 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2255 extent_set_compress_type(&failrec->bio_flags, 2256 em->compress_type); 2257 } 2258 2259 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2260 logical, start, failrec->len); 2261 2262 failrec->logical = logical; 2263 free_extent_map(em); 2264 2265 /* set the bits in the private failure tree */ 2266 ret = set_extent_bits(failure_tree, start, end, 2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2268 if (ret >= 0) 2269 ret = set_state_private(failure_tree, start, 2270 (u64)(unsigned long)failrec); 2271 /* set the bits in the inode's tree */ 2272 if (ret >= 0) 2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2274 GFP_NOFS); 2275 if (ret < 0) { 2276 kfree(failrec); 2277 return ret; 2278 } 2279 } else { 2280 failrec = (struct io_failure_record *)(unsigned long)private; 2281 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2282 failrec->logical, failrec->start, failrec->len, 2283 failrec->in_validation); 2284 /* 2285 * when data can be on disk more than twice, add to failrec here 2286 * (e.g. with a list for failed_mirror) to make 2287 * clean_io_failure() clean all those errors at once. 2288 */ 2289 } 2290 2291 *failrec_ret = failrec; 2292 2293 return 0; 2294 } 2295 2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2297 struct io_failure_record *failrec, int failed_mirror) 2298 { 2299 int num_copies; 2300 2301 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2302 failrec->logical, failrec->len); 2303 if (num_copies == 1) { 2304 /* 2305 * we only have a single copy of the data, so don't bother with 2306 * all the retry and error correction code that follows. no 2307 * matter what the error is, it is very likely to persist. 2308 */ 2309 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2310 num_copies, failrec->this_mirror, failed_mirror); 2311 return 0; 2312 } 2313 2314 /* 2315 * there are two premises: 2316 * a) deliver good data to the caller 2317 * b) correct the bad sectors on disk 2318 */ 2319 if (failed_bio->bi_vcnt > 1) { 2320 /* 2321 * to fulfill b), we need to know the exact failing sectors, as 2322 * we don't want to rewrite any more than the failed ones. thus, 2323 * we need separate read requests for the failed bio 2324 * 2325 * if the following BUG_ON triggers, our validation request got 2326 * merged. we need separate requests for our algorithm to work. 2327 */ 2328 BUG_ON(failrec->in_validation); 2329 failrec->in_validation = 1; 2330 failrec->this_mirror = failed_mirror; 2331 } else { 2332 /* 2333 * we're ready to fulfill a) and b) alongside. get a good copy 2334 * of the failed sector and if we succeed, we have setup 2335 * everything for repair_io_failure to do the rest for us. 2336 */ 2337 if (failrec->in_validation) { 2338 BUG_ON(failrec->this_mirror != failed_mirror); 2339 failrec->in_validation = 0; 2340 failrec->this_mirror = 0; 2341 } 2342 failrec->failed_mirror = failed_mirror; 2343 failrec->this_mirror++; 2344 if (failrec->this_mirror == failed_mirror) 2345 failrec->this_mirror++; 2346 } 2347 2348 if (failrec->this_mirror > num_copies) { 2349 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2350 num_copies, failrec->this_mirror, failed_mirror); 2351 return 0; 2352 } 2353 2354 return 1; 2355 } 2356 2357 2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2359 struct io_failure_record *failrec, 2360 struct page *page, int pg_offset, int icsum, 2361 bio_end_io_t *endio_func, void *data) 2362 { 2363 struct bio *bio; 2364 struct btrfs_io_bio *btrfs_failed_bio; 2365 struct btrfs_io_bio *btrfs_bio; 2366 2367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2368 if (!bio) 2369 return NULL; 2370 2371 bio->bi_end_io = endio_func; 2372 bio->bi_iter.bi_sector = failrec->logical >> 9; 2373 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2374 bio->bi_iter.bi_size = 0; 2375 bio->bi_private = data; 2376 2377 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2378 if (btrfs_failed_bio->csum) { 2379 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2380 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2381 2382 btrfs_bio = btrfs_io_bio(bio); 2383 btrfs_bio->csum = btrfs_bio->csum_inline; 2384 icsum *= csum_size; 2385 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2386 csum_size); 2387 } 2388 2389 bio_add_page(bio, page, failrec->len, pg_offset); 2390 2391 return bio; 2392 } 2393 2394 /* 2395 * this is a generic handler for readpage errors (default 2396 * readpage_io_failed_hook). if other copies exist, read those and write back 2397 * good data to the failed position. does not investigate in remapping the 2398 * failed extent elsewhere, hoping the device will be smart enough to do this as 2399 * needed 2400 */ 2401 2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2403 struct page *page, u64 start, u64 end, 2404 int failed_mirror) 2405 { 2406 struct io_failure_record *failrec; 2407 struct inode *inode = page->mapping->host; 2408 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2409 struct bio *bio; 2410 int read_mode; 2411 int ret; 2412 2413 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2414 2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2416 if (ret) 2417 return ret; 2418 2419 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2420 if (!ret) { 2421 free_io_failure(inode, failrec); 2422 return -EIO; 2423 } 2424 2425 if (failed_bio->bi_vcnt > 1) 2426 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2427 else 2428 read_mode = READ_SYNC; 2429 2430 phy_offset >>= inode->i_sb->s_blocksize_bits; 2431 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2432 start - page_offset(page), 2433 (int)phy_offset, failed_bio->bi_end_io, 2434 NULL); 2435 if (!bio) { 2436 free_io_failure(inode, failrec); 2437 return -EIO; 2438 } 2439 2440 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2441 read_mode, failrec->this_mirror, failrec->in_validation); 2442 2443 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2444 failrec->this_mirror, 2445 failrec->bio_flags, 0); 2446 if (ret) { 2447 free_io_failure(inode, failrec); 2448 bio_put(bio); 2449 } 2450 2451 return ret; 2452 } 2453 2454 /* lots and lots of room for performance fixes in the end_bio funcs */ 2455 2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2457 { 2458 int uptodate = (err == 0); 2459 struct extent_io_tree *tree; 2460 int ret = 0; 2461 2462 tree = &BTRFS_I(page->mapping->host)->io_tree; 2463 2464 if (tree->ops && tree->ops->writepage_end_io_hook) { 2465 ret = tree->ops->writepage_end_io_hook(page, start, 2466 end, NULL, uptodate); 2467 if (ret) 2468 uptodate = 0; 2469 } 2470 2471 if (!uptodate) { 2472 ClearPageUptodate(page); 2473 SetPageError(page); 2474 ret = ret < 0 ? ret : -EIO; 2475 mapping_set_error(page->mapping, ret); 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * after a writepage IO is done, we need to: 2482 * clear the uptodate bits on error 2483 * clear the writeback bits in the extent tree for this IO 2484 * end_page_writeback if the page has no more pending IO 2485 * 2486 * Scheduling is not allowed, so the extent state tree is expected 2487 * to have one and only one object corresponding to this IO. 2488 */ 2489 static void end_bio_extent_writepage(struct bio *bio, int err) 2490 { 2491 struct bio_vec *bvec; 2492 u64 start; 2493 u64 end; 2494 int i; 2495 2496 bio_for_each_segment_all(bvec, bio, i) { 2497 struct page *page = bvec->bv_page; 2498 2499 /* We always issue full-page reads, but if some block 2500 * in a page fails to read, blk_update_request() will 2501 * advance bv_offset and adjust bv_len to compensate. 2502 * Print a warning for nonzero offsets, and an error 2503 * if they don't add up to a full page. */ 2504 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2505 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2506 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2507 "partial page write in btrfs with offset %u and length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 else 2510 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2511 "incomplete page write in btrfs with offset %u and " 2512 "length %u", 2513 bvec->bv_offset, bvec->bv_len); 2514 } 2515 2516 start = page_offset(page); 2517 end = start + bvec->bv_offset + bvec->bv_len - 1; 2518 2519 if (end_extent_writepage(page, err, start, end)) 2520 continue; 2521 2522 end_page_writeback(page); 2523 } 2524 2525 bio_put(bio); 2526 } 2527 2528 static void 2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2530 int uptodate) 2531 { 2532 struct extent_state *cached = NULL; 2533 u64 end = start + len - 1; 2534 2535 if (uptodate && tree->track_uptodate) 2536 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2537 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2538 } 2539 2540 /* 2541 * after a readpage IO is done, we need to: 2542 * clear the uptodate bits on error 2543 * set the uptodate bits if things worked 2544 * set the page up to date if all extents in the tree are uptodate 2545 * clear the lock bit in the extent tree 2546 * unlock the page if there are no other extents locked for it 2547 * 2548 * Scheduling is not allowed, so the extent state tree is expected 2549 * to have one and only one object corresponding to this IO. 2550 */ 2551 static void end_bio_extent_readpage(struct bio *bio, int err) 2552 { 2553 struct bio_vec *bvec; 2554 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2556 struct extent_io_tree *tree; 2557 u64 offset = 0; 2558 u64 start; 2559 u64 end; 2560 u64 len; 2561 u64 extent_start = 0; 2562 u64 extent_len = 0; 2563 int mirror; 2564 int ret; 2565 int i; 2566 2567 if (err) 2568 uptodate = 0; 2569 2570 bio_for_each_segment_all(bvec, bio, i) { 2571 struct page *page = bvec->bv_page; 2572 struct inode *inode = page->mapping->host; 2573 2574 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2575 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2576 io_bio->mirror_num); 2577 tree = &BTRFS_I(inode)->io_tree; 2578 2579 /* We always issue full-page reads, but if some block 2580 * in a page fails to read, blk_update_request() will 2581 * advance bv_offset and adjust bv_len to compensate. 2582 * Print a warning for nonzero offsets, and an error 2583 * if they don't add up to a full page. */ 2584 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2585 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2586 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2587 "partial page read in btrfs with offset %u and length %u", 2588 bvec->bv_offset, bvec->bv_len); 2589 else 2590 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2591 "incomplete page read in btrfs with offset %u and " 2592 "length %u", 2593 bvec->bv_offset, bvec->bv_len); 2594 } 2595 2596 start = page_offset(page); 2597 end = start + bvec->bv_offset + bvec->bv_len - 1; 2598 len = bvec->bv_len; 2599 2600 mirror = io_bio->mirror_num; 2601 if (likely(uptodate && tree->ops && 2602 tree->ops->readpage_end_io_hook)) { 2603 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2604 page, start, end, 2605 mirror); 2606 if (ret) 2607 uptodate = 0; 2608 else 2609 clean_io_failure(inode, start, page, 0); 2610 } 2611 2612 if (likely(uptodate)) 2613 goto readpage_ok; 2614 2615 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2616 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2617 if (!ret && !err && 2618 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2619 uptodate = 1; 2620 } else { 2621 /* 2622 * The generic bio_readpage_error handles errors the 2623 * following way: If possible, new read requests are 2624 * created and submitted and will end up in 2625 * end_bio_extent_readpage as well (if we're lucky, not 2626 * in the !uptodate case). In that case it returns 0 and 2627 * we just go on with the next page in our bio. If it 2628 * can't handle the error it will return -EIO and we 2629 * remain responsible for that page. 2630 */ 2631 ret = bio_readpage_error(bio, offset, page, start, end, 2632 mirror); 2633 if (ret == 0) { 2634 uptodate = 2635 test_bit(BIO_UPTODATE, &bio->bi_flags); 2636 if (err) 2637 uptodate = 0; 2638 offset += len; 2639 continue; 2640 } 2641 } 2642 readpage_ok: 2643 if (likely(uptodate)) { 2644 loff_t i_size = i_size_read(inode); 2645 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2646 unsigned off; 2647 2648 /* Zero out the end if this page straddles i_size */ 2649 off = i_size & (PAGE_CACHE_SIZE-1); 2650 if (page->index == end_index && off) 2651 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2652 SetPageUptodate(page); 2653 } else { 2654 ClearPageUptodate(page); 2655 SetPageError(page); 2656 } 2657 unlock_page(page); 2658 offset += len; 2659 2660 if (unlikely(!uptodate)) { 2661 if (extent_len) { 2662 endio_readpage_release_extent(tree, 2663 extent_start, 2664 extent_len, 1); 2665 extent_start = 0; 2666 extent_len = 0; 2667 } 2668 endio_readpage_release_extent(tree, start, 2669 end - start + 1, 0); 2670 } else if (!extent_len) { 2671 extent_start = start; 2672 extent_len = end + 1 - start; 2673 } else if (extent_start + extent_len == start) { 2674 extent_len += end + 1 - start; 2675 } else { 2676 endio_readpage_release_extent(tree, extent_start, 2677 extent_len, uptodate); 2678 extent_start = start; 2679 extent_len = end + 1 - start; 2680 } 2681 } 2682 2683 if (extent_len) 2684 endio_readpage_release_extent(tree, extent_start, extent_len, 2685 uptodate); 2686 if (io_bio->end_io) 2687 io_bio->end_io(io_bio, err); 2688 bio_put(bio); 2689 } 2690 2691 /* 2692 * this allocates from the btrfs_bioset. We're returning a bio right now 2693 * but you can call btrfs_io_bio for the appropriate container_of magic 2694 */ 2695 struct bio * 2696 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2697 gfp_t gfp_flags) 2698 { 2699 struct btrfs_io_bio *btrfs_bio; 2700 struct bio *bio; 2701 2702 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2703 2704 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2705 while (!bio && (nr_vecs /= 2)) { 2706 bio = bio_alloc_bioset(gfp_flags, 2707 nr_vecs, btrfs_bioset); 2708 } 2709 } 2710 2711 if (bio) { 2712 bio->bi_bdev = bdev; 2713 bio->bi_iter.bi_sector = first_sector; 2714 btrfs_bio = btrfs_io_bio(bio); 2715 btrfs_bio->csum = NULL; 2716 btrfs_bio->csum_allocated = NULL; 2717 btrfs_bio->end_io = NULL; 2718 } 2719 return bio; 2720 } 2721 2722 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2723 { 2724 struct btrfs_io_bio *btrfs_bio; 2725 struct bio *new; 2726 2727 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2728 if (new) { 2729 btrfs_bio = btrfs_io_bio(new); 2730 btrfs_bio->csum = NULL; 2731 btrfs_bio->csum_allocated = NULL; 2732 btrfs_bio->end_io = NULL; 2733 } 2734 return new; 2735 } 2736 2737 /* this also allocates from the btrfs_bioset */ 2738 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2739 { 2740 struct btrfs_io_bio *btrfs_bio; 2741 struct bio *bio; 2742 2743 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2744 if (bio) { 2745 btrfs_bio = btrfs_io_bio(bio); 2746 btrfs_bio->csum = NULL; 2747 btrfs_bio->csum_allocated = NULL; 2748 btrfs_bio->end_io = NULL; 2749 } 2750 return bio; 2751 } 2752 2753 2754 static int __must_check submit_one_bio(int rw, struct bio *bio, 2755 int mirror_num, unsigned long bio_flags) 2756 { 2757 int ret = 0; 2758 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2759 struct page *page = bvec->bv_page; 2760 struct extent_io_tree *tree = bio->bi_private; 2761 u64 start; 2762 2763 start = page_offset(page) + bvec->bv_offset; 2764 2765 bio->bi_private = NULL; 2766 2767 bio_get(bio); 2768 2769 if (tree->ops && tree->ops->submit_bio_hook) 2770 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2771 mirror_num, bio_flags, start); 2772 else 2773 btrfsic_submit_bio(rw, bio); 2774 2775 bio_put(bio); 2776 return ret; 2777 } 2778 2779 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2780 unsigned long offset, size_t size, struct bio *bio, 2781 unsigned long bio_flags) 2782 { 2783 int ret = 0; 2784 if (tree->ops && tree->ops->merge_bio_hook) 2785 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2786 bio_flags); 2787 BUG_ON(ret < 0); 2788 return ret; 2789 2790 } 2791 2792 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2793 struct page *page, sector_t sector, 2794 size_t size, unsigned long offset, 2795 struct block_device *bdev, 2796 struct bio **bio_ret, 2797 unsigned long max_pages, 2798 bio_end_io_t end_io_func, 2799 int mirror_num, 2800 unsigned long prev_bio_flags, 2801 unsigned long bio_flags) 2802 { 2803 int ret = 0; 2804 struct bio *bio; 2805 int nr; 2806 int contig = 0; 2807 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2808 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2809 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2810 2811 if (bio_ret && *bio_ret) { 2812 bio = *bio_ret; 2813 if (old_compressed) 2814 contig = bio->bi_iter.bi_sector == sector; 2815 else 2816 contig = bio_end_sector(bio) == sector; 2817 2818 if (prev_bio_flags != bio_flags || !contig || 2819 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2820 bio_add_page(bio, page, page_size, offset) < page_size) { 2821 ret = submit_one_bio(rw, bio, mirror_num, 2822 prev_bio_flags); 2823 if (ret < 0) { 2824 *bio_ret = NULL; 2825 return ret; 2826 } 2827 bio = NULL; 2828 } else { 2829 return 0; 2830 } 2831 } 2832 if (this_compressed) 2833 nr = BIO_MAX_PAGES; 2834 else 2835 nr = bio_get_nr_vecs(bdev); 2836 2837 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2838 if (!bio) 2839 return -ENOMEM; 2840 2841 bio_add_page(bio, page, page_size, offset); 2842 bio->bi_end_io = end_io_func; 2843 bio->bi_private = tree; 2844 2845 if (bio_ret) 2846 *bio_ret = bio; 2847 else 2848 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2849 2850 return ret; 2851 } 2852 2853 static void attach_extent_buffer_page(struct extent_buffer *eb, 2854 struct page *page) 2855 { 2856 if (!PagePrivate(page)) { 2857 SetPagePrivate(page); 2858 page_cache_get(page); 2859 set_page_private(page, (unsigned long)eb); 2860 } else { 2861 WARN_ON(page->private != (unsigned long)eb); 2862 } 2863 } 2864 2865 void set_page_extent_mapped(struct page *page) 2866 { 2867 if (!PagePrivate(page)) { 2868 SetPagePrivate(page); 2869 page_cache_get(page); 2870 set_page_private(page, EXTENT_PAGE_PRIVATE); 2871 } 2872 } 2873 2874 static struct extent_map * 2875 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2876 u64 start, u64 len, get_extent_t *get_extent, 2877 struct extent_map **em_cached) 2878 { 2879 struct extent_map *em; 2880 2881 if (em_cached && *em_cached) { 2882 em = *em_cached; 2883 if (extent_map_in_tree(em) && start >= em->start && 2884 start < extent_map_end(em)) { 2885 atomic_inc(&em->refs); 2886 return em; 2887 } 2888 2889 free_extent_map(em); 2890 *em_cached = NULL; 2891 } 2892 2893 em = get_extent(inode, page, pg_offset, start, len, 0); 2894 if (em_cached && !IS_ERR_OR_NULL(em)) { 2895 BUG_ON(*em_cached); 2896 atomic_inc(&em->refs); 2897 *em_cached = em; 2898 } 2899 return em; 2900 } 2901 /* 2902 * basic readpage implementation. Locked extent state structs are inserted 2903 * into the tree that are removed when the IO is done (by the end_io 2904 * handlers) 2905 * XXX JDM: This needs looking at to ensure proper page locking 2906 */ 2907 static int __do_readpage(struct extent_io_tree *tree, 2908 struct page *page, 2909 get_extent_t *get_extent, 2910 struct extent_map **em_cached, 2911 struct bio **bio, int mirror_num, 2912 unsigned long *bio_flags, int rw) 2913 { 2914 struct inode *inode = page->mapping->host; 2915 u64 start = page_offset(page); 2916 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2917 u64 end; 2918 u64 cur = start; 2919 u64 extent_offset; 2920 u64 last_byte = i_size_read(inode); 2921 u64 block_start; 2922 u64 cur_end; 2923 sector_t sector; 2924 struct extent_map *em; 2925 struct block_device *bdev; 2926 int ret; 2927 int nr = 0; 2928 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2929 size_t pg_offset = 0; 2930 size_t iosize; 2931 size_t disk_io_size; 2932 size_t blocksize = inode->i_sb->s_blocksize; 2933 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2934 2935 set_page_extent_mapped(page); 2936 2937 end = page_end; 2938 if (!PageUptodate(page)) { 2939 if (cleancache_get_page(page) == 0) { 2940 BUG_ON(blocksize != PAGE_SIZE); 2941 unlock_extent(tree, start, end); 2942 goto out; 2943 } 2944 } 2945 2946 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2947 char *userpage; 2948 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2949 2950 if (zero_offset) { 2951 iosize = PAGE_CACHE_SIZE - zero_offset; 2952 userpage = kmap_atomic(page); 2953 memset(userpage + zero_offset, 0, iosize); 2954 flush_dcache_page(page); 2955 kunmap_atomic(userpage); 2956 } 2957 } 2958 while (cur <= end) { 2959 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2960 2961 if (cur >= last_byte) { 2962 char *userpage; 2963 struct extent_state *cached = NULL; 2964 2965 iosize = PAGE_CACHE_SIZE - pg_offset; 2966 userpage = kmap_atomic(page); 2967 memset(userpage + pg_offset, 0, iosize); 2968 flush_dcache_page(page); 2969 kunmap_atomic(userpage); 2970 set_extent_uptodate(tree, cur, cur + iosize - 1, 2971 &cached, GFP_NOFS); 2972 if (!parent_locked) 2973 unlock_extent_cached(tree, cur, 2974 cur + iosize - 1, 2975 &cached, GFP_NOFS); 2976 break; 2977 } 2978 em = __get_extent_map(inode, page, pg_offset, cur, 2979 end - cur + 1, get_extent, em_cached); 2980 if (IS_ERR_OR_NULL(em)) { 2981 SetPageError(page); 2982 if (!parent_locked) 2983 unlock_extent(tree, cur, end); 2984 break; 2985 } 2986 extent_offset = cur - em->start; 2987 BUG_ON(extent_map_end(em) <= cur); 2988 BUG_ON(end < cur); 2989 2990 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2991 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2992 extent_set_compress_type(&this_bio_flag, 2993 em->compress_type); 2994 } 2995 2996 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2997 cur_end = min(extent_map_end(em) - 1, end); 2998 iosize = ALIGN(iosize, blocksize); 2999 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3000 disk_io_size = em->block_len; 3001 sector = em->block_start >> 9; 3002 } else { 3003 sector = (em->block_start + extent_offset) >> 9; 3004 disk_io_size = iosize; 3005 } 3006 bdev = em->bdev; 3007 block_start = em->block_start; 3008 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3009 block_start = EXTENT_MAP_HOLE; 3010 free_extent_map(em); 3011 em = NULL; 3012 3013 /* we've found a hole, just zero and go on */ 3014 if (block_start == EXTENT_MAP_HOLE) { 3015 char *userpage; 3016 struct extent_state *cached = NULL; 3017 3018 userpage = kmap_atomic(page); 3019 memset(userpage + pg_offset, 0, iosize); 3020 flush_dcache_page(page); 3021 kunmap_atomic(userpage); 3022 3023 set_extent_uptodate(tree, cur, cur + iosize - 1, 3024 &cached, GFP_NOFS); 3025 unlock_extent_cached(tree, cur, cur + iosize - 1, 3026 &cached, GFP_NOFS); 3027 cur = cur + iosize; 3028 pg_offset += iosize; 3029 continue; 3030 } 3031 /* the get_extent function already copied into the page */ 3032 if (test_range_bit(tree, cur, cur_end, 3033 EXTENT_UPTODATE, 1, NULL)) { 3034 check_page_uptodate(tree, page); 3035 if (!parent_locked) 3036 unlock_extent(tree, cur, cur + iosize - 1); 3037 cur = cur + iosize; 3038 pg_offset += iosize; 3039 continue; 3040 } 3041 /* we have an inline extent but it didn't get marked up 3042 * to date. Error out 3043 */ 3044 if (block_start == EXTENT_MAP_INLINE) { 3045 SetPageError(page); 3046 if (!parent_locked) 3047 unlock_extent(tree, cur, cur + iosize - 1); 3048 cur = cur + iosize; 3049 pg_offset += iosize; 3050 continue; 3051 } 3052 3053 pnr -= page->index; 3054 ret = submit_extent_page(rw, tree, page, 3055 sector, disk_io_size, pg_offset, 3056 bdev, bio, pnr, 3057 end_bio_extent_readpage, mirror_num, 3058 *bio_flags, 3059 this_bio_flag); 3060 if (!ret) { 3061 nr++; 3062 *bio_flags = this_bio_flag; 3063 } else { 3064 SetPageError(page); 3065 if (!parent_locked) 3066 unlock_extent(tree, cur, cur + iosize - 1); 3067 } 3068 cur = cur + iosize; 3069 pg_offset += iosize; 3070 } 3071 out: 3072 if (!nr) { 3073 if (!PageError(page)) 3074 SetPageUptodate(page); 3075 unlock_page(page); 3076 } 3077 return 0; 3078 } 3079 3080 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3081 struct page *pages[], int nr_pages, 3082 u64 start, u64 end, 3083 get_extent_t *get_extent, 3084 struct extent_map **em_cached, 3085 struct bio **bio, int mirror_num, 3086 unsigned long *bio_flags, int rw) 3087 { 3088 struct inode *inode; 3089 struct btrfs_ordered_extent *ordered; 3090 int index; 3091 3092 inode = pages[0]->mapping->host; 3093 while (1) { 3094 lock_extent(tree, start, end); 3095 ordered = btrfs_lookup_ordered_range(inode, start, 3096 end - start + 1); 3097 if (!ordered) 3098 break; 3099 unlock_extent(tree, start, end); 3100 btrfs_start_ordered_extent(inode, ordered, 1); 3101 btrfs_put_ordered_extent(ordered); 3102 } 3103 3104 for (index = 0; index < nr_pages; index++) { 3105 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3106 mirror_num, bio_flags, rw); 3107 page_cache_release(pages[index]); 3108 } 3109 } 3110 3111 static void __extent_readpages(struct extent_io_tree *tree, 3112 struct page *pages[], 3113 int nr_pages, get_extent_t *get_extent, 3114 struct extent_map **em_cached, 3115 struct bio **bio, int mirror_num, 3116 unsigned long *bio_flags, int rw) 3117 { 3118 u64 start = 0; 3119 u64 end = 0; 3120 u64 page_start; 3121 int index; 3122 int first_index = 0; 3123 3124 for (index = 0; index < nr_pages; index++) { 3125 page_start = page_offset(pages[index]); 3126 if (!end) { 3127 start = page_start; 3128 end = start + PAGE_CACHE_SIZE - 1; 3129 first_index = index; 3130 } else if (end + 1 == page_start) { 3131 end += PAGE_CACHE_SIZE; 3132 } else { 3133 __do_contiguous_readpages(tree, &pages[first_index], 3134 index - first_index, start, 3135 end, get_extent, em_cached, 3136 bio, mirror_num, bio_flags, 3137 rw); 3138 start = page_start; 3139 end = start + PAGE_CACHE_SIZE - 1; 3140 first_index = index; 3141 } 3142 } 3143 3144 if (end) 3145 __do_contiguous_readpages(tree, &pages[first_index], 3146 index - first_index, start, 3147 end, get_extent, em_cached, bio, 3148 mirror_num, bio_flags, rw); 3149 } 3150 3151 static int __extent_read_full_page(struct extent_io_tree *tree, 3152 struct page *page, 3153 get_extent_t *get_extent, 3154 struct bio **bio, int mirror_num, 3155 unsigned long *bio_flags, int rw) 3156 { 3157 struct inode *inode = page->mapping->host; 3158 struct btrfs_ordered_extent *ordered; 3159 u64 start = page_offset(page); 3160 u64 end = start + PAGE_CACHE_SIZE - 1; 3161 int ret; 3162 3163 while (1) { 3164 lock_extent(tree, start, end); 3165 ordered = btrfs_lookup_ordered_extent(inode, start); 3166 if (!ordered) 3167 break; 3168 unlock_extent(tree, start, end); 3169 btrfs_start_ordered_extent(inode, ordered, 1); 3170 btrfs_put_ordered_extent(ordered); 3171 } 3172 3173 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3174 bio_flags, rw); 3175 return ret; 3176 } 3177 3178 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3179 get_extent_t *get_extent, int mirror_num) 3180 { 3181 struct bio *bio = NULL; 3182 unsigned long bio_flags = 0; 3183 int ret; 3184 3185 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3186 &bio_flags, READ); 3187 if (bio) 3188 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3189 return ret; 3190 } 3191 3192 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3193 get_extent_t *get_extent, int mirror_num) 3194 { 3195 struct bio *bio = NULL; 3196 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3197 int ret; 3198 3199 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3200 &bio_flags, READ); 3201 if (bio) 3202 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3203 return ret; 3204 } 3205 3206 static noinline void update_nr_written(struct page *page, 3207 struct writeback_control *wbc, 3208 unsigned long nr_written) 3209 { 3210 wbc->nr_to_write -= nr_written; 3211 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3212 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3213 page->mapping->writeback_index = page->index + nr_written; 3214 } 3215 3216 /* 3217 * helper for __extent_writepage, doing all of the delayed allocation setup. 3218 * 3219 * This returns 1 if our fill_delalloc function did all the work required 3220 * to write the page (copy into inline extent). In this case the IO has 3221 * been started and the page is already unlocked. 3222 * 3223 * This returns 0 if all went well (page still locked) 3224 * This returns < 0 if there were errors (page still locked) 3225 */ 3226 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3227 struct page *page, struct writeback_control *wbc, 3228 struct extent_page_data *epd, 3229 u64 delalloc_start, 3230 unsigned long *nr_written) 3231 { 3232 struct extent_io_tree *tree = epd->tree; 3233 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3234 u64 nr_delalloc; 3235 u64 delalloc_to_write = 0; 3236 u64 delalloc_end = 0; 3237 int ret; 3238 int page_started = 0; 3239 3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3241 return 0; 3242 3243 while (delalloc_end < page_end) { 3244 nr_delalloc = find_lock_delalloc_range(inode, tree, 3245 page, 3246 &delalloc_start, 3247 &delalloc_end, 3248 BTRFS_MAX_EXTENT_SIZE); 3249 if (nr_delalloc == 0) { 3250 delalloc_start = delalloc_end + 1; 3251 continue; 3252 } 3253 ret = tree->ops->fill_delalloc(inode, page, 3254 delalloc_start, 3255 delalloc_end, 3256 &page_started, 3257 nr_written); 3258 /* File system has been set read-only */ 3259 if (ret) { 3260 SetPageError(page); 3261 /* fill_delalloc should be return < 0 for error 3262 * but just in case, we use > 0 here meaning the 3263 * IO is started, so we don't want to return > 0 3264 * unless things are going well. 3265 */ 3266 ret = ret < 0 ? ret : -EIO; 3267 goto done; 3268 } 3269 /* 3270 * delalloc_end is already one less than the total 3271 * length, so we don't subtract one from 3272 * PAGE_CACHE_SIZE 3273 */ 3274 delalloc_to_write += (delalloc_end - delalloc_start + 3275 PAGE_CACHE_SIZE) >> 3276 PAGE_CACHE_SHIFT; 3277 delalloc_start = delalloc_end + 1; 3278 } 3279 if (wbc->nr_to_write < delalloc_to_write) { 3280 int thresh = 8192; 3281 3282 if (delalloc_to_write < thresh * 2) 3283 thresh = delalloc_to_write; 3284 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3285 thresh); 3286 } 3287 3288 /* did the fill delalloc function already unlock and start 3289 * the IO? 3290 */ 3291 if (page_started) { 3292 /* 3293 * we've unlocked the page, so we can't update 3294 * the mapping's writeback index, just update 3295 * nr_to_write. 3296 */ 3297 wbc->nr_to_write -= *nr_written; 3298 return 1; 3299 } 3300 3301 ret = 0; 3302 3303 done: 3304 return ret; 3305 } 3306 3307 /* 3308 * helper for __extent_writepage. This calls the writepage start hooks, 3309 * and does the loop to map the page into extents and bios. 3310 * 3311 * We return 1 if the IO is started and the page is unlocked, 3312 * 0 if all went well (page still locked) 3313 * < 0 if there were errors (page still locked) 3314 */ 3315 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3316 struct page *page, 3317 struct writeback_control *wbc, 3318 struct extent_page_data *epd, 3319 loff_t i_size, 3320 unsigned long nr_written, 3321 int write_flags, int *nr_ret) 3322 { 3323 struct extent_io_tree *tree = epd->tree; 3324 u64 start = page_offset(page); 3325 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3326 u64 end; 3327 u64 cur = start; 3328 u64 extent_offset; 3329 u64 block_start; 3330 u64 iosize; 3331 sector_t sector; 3332 struct extent_state *cached_state = NULL; 3333 struct extent_map *em; 3334 struct block_device *bdev; 3335 size_t pg_offset = 0; 3336 size_t blocksize; 3337 int ret = 0; 3338 int nr = 0; 3339 bool compressed; 3340 3341 if (tree->ops && tree->ops->writepage_start_hook) { 3342 ret = tree->ops->writepage_start_hook(page, start, 3343 page_end); 3344 if (ret) { 3345 /* Fixup worker will requeue */ 3346 if (ret == -EBUSY) 3347 wbc->pages_skipped++; 3348 else 3349 redirty_page_for_writepage(wbc, page); 3350 3351 update_nr_written(page, wbc, nr_written); 3352 unlock_page(page); 3353 ret = 1; 3354 goto done_unlocked; 3355 } 3356 } 3357 3358 /* 3359 * we don't want to touch the inode after unlocking the page, 3360 * so we update the mapping writeback index now 3361 */ 3362 update_nr_written(page, wbc, nr_written + 1); 3363 3364 end = page_end; 3365 if (i_size <= start) { 3366 if (tree->ops && tree->ops->writepage_end_io_hook) 3367 tree->ops->writepage_end_io_hook(page, start, 3368 page_end, NULL, 1); 3369 goto done; 3370 } 3371 3372 blocksize = inode->i_sb->s_blocksize; 3373 3374 while (cur <= end) { 3375 u64 em_end; 3376 if (cur >= i_size) { 3377 if (tree->ops && tree->ops->writepage_end_io_hook) 3378 tree->ops->writepage_end_io_hook(page, cur, 3379 page_end, NULL, 1); 3380 break; 3381 } 3382 em = epd->get_extent(inode, page, pg_offset, cur, 3383 end - cur + 1, 1); 3384 if (IS_ERR_OR_NULL(em)) { 3385 SetPageError(page); 3386 ret = PTR_ERR_OR_ZERO(em); 3387 break; 3388 } 3389 3390 extent_offset = cur - em->start; 3391 em_end = extent_map_end(em); 3392 BUG_ON(em_end <= cur); 3393 BUG_ON(end < cur); 3394 iosize = min(em_end - cur, end - cur + 1); 3395 iosize = ALIGN(iosize, blocksize); 3396 sector = (em->block_start + extent_offset) >> 9; 3397 bdev = em->bdev; 3398 block_start = em->block_start; 3399 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3400 free_extent_map(em); 3401 em = NULL; 3402 3403 /* 3404 * compressed and inline extents are written through other 3405 * paths in the FS 3406 */ 3407 if (compressed || block_start == EXTENT_MAP_HOLE || 3408 block_start == EXTENT_MAP_INLINE) { 3409 /* 3410 * end_io notification does not happen here for 3411 * compressed extents 3412 */ 3413 if (!compressed && tree->ops && 3414 tree->ops->writepage_end_io_hook) 3415 tree->ops->writepage_end_io_hook(page, cur, 3416 cur + iosize - 1, 3417 NULL, 1); 3418 else if (compressed) { 3419 /* we don't want to end_page_writeback on 3420 * a compressed extent. this happens 3421 * elsewhere 3422 */ 3423 nr++; 3424 } 3425 3426 cur += iosize; 3427 pg_offset += iosize; 3428 continue; 3429 } 3430 3431 if (tree->ops && tree->ops->writepage_io_hook) { 3432 ret = tree->ops->writepage_io_hook(page, cur, 3433 cur + iosize - 1); 3434 } else { 3435 ret = 0; 3436 } 3437 if (ret) { 3438 SetPageError(page); 3439 } else { 3440 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3441 3442 set_range_writeback(tree, cur, cur + iosize - 1); 3443 if (!PageWriteback(page)) { 3444 btrfs_err(BTRFS_I(inode)->root->fs_info, 3445 "page %lu not writeback, cur %llu end %llu", 3446 page->index, cur, end); 3447 } 3448 3449 ret = submit_extent_page(write_flags, tree, page, 3450 sector, iosize, pg_offset, 3451 bdev, &epd->bio, max_nr, 3452 end_bio_extent_writepage, 3453 0, 0, 0); 3454 if (ret) 3455 SetPageError(page); 3456 } 3457 cur = cur + iosize; 3458 pg_offset += iosize; 3459 nr++; 3460 } 3461 done: 3462 *nr_ret = nr; 3463 3464 done_unlocked: 3465 3466 /* drop our reference on any cached states */ 3467 free_extent_state(cached_state); 3468 return ret; 3469 } 3470 3471 /* 3472 * the writepage semantics are similar to regular writepage. extent 3473 * records are inserted to lock ranges in the tree, and as dirty areas 3474 * are found, they are marked writeback. Then the lock bits are removed 3475 * and the end_io handler clears the writeback ranges 3476 */ 3477 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3478 void *data) 3479 { 3480 struct inode *inode = page->mapping->host; 3481 struct extent_page_data *epd = data; 3482 u64 start = page_offset(page); 3483 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3484 int ret; 3485 int nr = 0; 3486 size_t pg_offset = 0; 3487 loff_t i_size = i_size_read(inode); 3488 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3489 int write_flags; 3490 unsigned long nr_written = 0; 3491 3492 if (wbc->sync_mode == WB_SYNC_ALL) 3493 write_flags = WRITE_SYNC; 3494 else 3495 write_flags = WRITE; 3496 3497 trace___extent_writepage(page, inode, wbc); 3498 3499 WARN_ON(!PageLocked(page)); 3500 3501 ClearPageError(page); 3502 3503 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3504 if (page->index > end_index || 3505 (page->index == end_index && !pg_offset)) { 3506 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3507 unlock_page(page); 3508 return 0; 3509 } 3510 3511 if (page->index == end_index) { 3512 char *userpage; 3513 3514 userpage = kmap_atomic(page); 3515 memset(userpage + pg_offset, 0, 3516 PAGE_CACHE_SIZE - pg_offset); 3517 kunmap_atomic(userpage); 3518 flush_dcache_page(page); 3519 } 3520 3521 pg_offset = 0; 3522 3523 set_page_extent_mapped(page); 3524 3525 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3526 if (ret == 1) 3527 goto done_unlocked; 3528 if (ret) 3529 goto done; 3530 3531 ret = __extent_writepage_io(inode, page, wbc, epd, 3532 i_size, nr_written, write_flags, &nr); 3533 if (ret == 1) 3534 goto done_unlocked; 3535 3536 done: 3537 if (nr == 0) { 3538 /* make sure the mapping tag for page dirty gets cleared */ 3539 set_page_writeback(page); 3540 end_page_writeback(page); 3541 } 3542 if (PageError(page)) { 3543 ret = ret < 0 ? ret : -EIO; 3544 end_extent_writepage(page, ret, start, page_end); 3545 } 3546 unlock_page(page); 3547 return ret; 3548 3549 done_unlocked: 3550 return 0; 3551 } 3552 3553 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3554 { 3555 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3556 TASK_UNINTERRUPTIBLE); 3557 } 3558 3559 static noinline_for_stack int 3560 lock_extent_buffer_for_io(struct extent_buffer *eb, 3561 struct btrfs_fs_info *fs_info, 3562 struct extent_page_data *epd) 3563 { 3564 unsigned long i, num_pages; 3565 int flush = 0; 3566 int ret = 0; 3567 3568 if (!btrfs_try_tree_write_lock(eb)) { 3569 flush = 1; 3570 flush_write_bio(epd); 3571 btrfs_tree_lock(eb); 3572 } 3573 3574 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3575 btrfs_tree_unlock(eb); 3576 if (!epd->sync_io) 3577 return 0; 3578 if (!flush) { 3579 flush_write_bio(epd); 3580 flush = 1; 3581 } 3582 while (1) { 3583 wait_on_extent_buffer_writeback(eb); 3584 btrfs_tree_lock(eb); 3585 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3586 break; 3587 btrfs_tree_unlock(eb); 3588 } 3589 } 3590 3591 /* 3592 * We need to do this to prevent races in people who check if the eb is 3593 * under IO since we can end up having no IO bits set for a short period 3594 * of time. 3595 */ 3596 spin_lock(&eb->refs_lock); 3597 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3598 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3599 spin_unlock(&eb->refs_lock); 3600 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3601 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3602 -eb->len, 3603 fs_info->dirty_metadata_batch); 3604 ret = 1; 3605 } else { 3606 spin_unlock(&eb->refs_lock); 3607 } 3608 3609 btrfs_tree_unlock(eb); 3610 3611 if (!ret) 3612 return ret; 3613 3614 num_pages = num_extent_pages(eb->start, eb->len); 3615 for (i = 0; i < num_pages; i++) { 3616 struct page *p = eb->pages[i]; 3617 3618 if (!trylock_page(p)) { 3619 if (!flush) { 3620 flush_write_bio(epd); 3621 flush = 1; 3622 } 3623 lock_page(p); 3624 } 3625 } 3626 3627 return ret; 3628 } 3629 3630 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3631 { 3632 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3633 smp_mb__after_atomic(); 3634 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3635 } 3636 3637 static void set_btree_ioerr(struct page *page) 3638 { 3639 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3640 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3641 3642 SetPageError(page); 3643 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3644 return; 3645 3646 /* 3647 * If writeback for a btree extent that doesn't belong to a log tree 3648 * failed, increment the counter transaction->eb_write_errors. 3649 * We do this because while the transaction is running and before it's 3650 * committing (when we call filemap_fdata[write|wait]_range against 3651 * the btree inode), we might have 3652 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3653 * returns an error or an error happens during writeback, when we're 3654 * committing the transaction we wouldn't know about it, since the pages 3655 * can be no longer dirty nor marked anymore for writeback (if a 3656 * subsequent modification to the extent buffer didn't happen before the 3657 * transaction commit), which makes filemap_fdata[write|wait]_range not 3658 * able to find the pages tagged with SetPageError at transaction 3659 * commit time. So if this happens we must abort the transaction, 3660 * otherwise we commit a super block with btree roots that point to 3661 * btree nodes/leafs whose content on disk is invalid - either garbage 3662 * or the content of some node/leaf from a past generation that got 3663 * cowed or deleted and is no longer valid. 3664 * 3665 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3666 * not be enough - we need to distinguish between log tree extents vs 3667 * non-log tree extents, and the next filemap_fdatawait_range() call 3668 * will catch and clear such errors in the mapping - and that call might 3669 * be from a log sync and not from a transaction commit. Also, checking 3670 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3671 * not done and would not be reliable - the eb might have been released 3672 * from memory and reading it back again means that flag would not be 3673 * set (since it's a runtime flag, not persisted on disk). 3674 * 3675 * Using the flags below in the btree inode also makes us achieve the 3676 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3677 * writeback for all dirty pages and before filemap_fdatawait_range() 3678 * is called, the writeback for all dirty pages had already finished 3679 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3680 * filemap_fdatawait_range() would return success, as it could not know 3681 * that writeback errors happened (the pages were no longer tagged for 3682 * writeback). 3683 */ 3684 switch (eb->log_index) { 3685 case -1: 3686 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3687 break; 3688 case 0: 3689 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3690 break; 3691 case 1: 3692 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3693 break; 3694 default: 3695 BUG(); /* unexpected, logic error */ 3696 } 3697 } 3698 3699 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3700 { 3701 struct bio_vec *bvec; 3702 struct extent_buffer *eb; 3703 int i, done; 3704 3705 bio_for_each_segment_all(bvec, bio, i) { 3706 struct page *page = bvec->bv_page; 3707 3708 eb = (struct extent_buffer *)page->private; 3709 BUG_ON(!eb); 3710 done = atomic_dec_and_test(&eb->io_pages); 3711 3712 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3713 ClearPageUptodate(page); 3714 set_btree_ioerr(page); 3715 } 3716 3717 end_page_writeback(page); 3718 3719 if (!done) 3720 continue; 3721 3722 end_extent_buffer_writeback(eb); 3723 } 3724 3725 bio_put(bio); 3726 } 3727 3728 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3729 struct btrfs_fs_info *fs_info, 3730 struct writeback_control *wbc, 3731 struct extent_page_data *epd) 3732 { 3733 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3734 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3735 u64 offset = eb->start; 3736 unsigned long i, num_pages; 3737 unsigned long bio_flags = 0; 3738 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3739 int ret = 0; 3740 3741 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3742 num_pages = num_extent_pages(eb->start, eb->len); 3743 atomic_set(&eb->io_pages, num_pages); 3744 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3745 bio_flags = EXTENT_BIO_TREE_LOG; 3746 3747 for (i = 0; i < num_pages; i++) { 3748 struct page *p = eb->pages[i]; 3749 3750 clear_page_dirty_for_io(p); 3751 set_page_writeback(p); 3752 ret = submit_extent_page(rw, tree, p, offset >> 9, 3753 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3754 -1, end_bio_extent_buffer_writepage, 3755 0, epd->bio_flags, bio_flags); 3756 epd->bio_flags = bio_flags; 3757 if (ret) { 3758 set_btree_ioerr(p); 3759 end_page_writeback(p); 3760 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3761 end_extent_buffer_writeback(eb); 3762 ret = -EIO; 3763 break; 3764 } 3765 offset += PAGE_CACHE_SIZE; 3766 update_nr_written(p, wbc, 1); 3767 unlock_page(p); 3768 } 3769 3770 if (unlikely(ret)) { 3771 for (; i < num_pages; i++) { 3772 struct page *p = eb->pages[i]; 3773 clear_page_dirty_for_io(p); 3774 unlock_page(p); 3775 } 3776 } 3777 3778 return ret; 3779 } 3780 3781 int btree_write_cache_pages(struct address_space *mapping, 3782 struct writeback_control *wbc) 3783 { 3784 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3785 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3786 struct extent_buffer *eb, *prev_eb = NULL; 3787 struct extent_page_data epd = { 3788 .bio = NULL, 3789 .tree = tree, 3790 .extent_locked = 0, 3791 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3792 .bio_flags = 0, 3793 }; 3794 int ret = 0; 3795 int done = 0; 3796 int nr_to_write_done = 0; 3797 struct pagevec pvec; 3798 int nr_pages; 3799 pgoff_t index; 3800 pgoff_t end; /* Inclusive */ 3801 int scanned = 0; 3802 int tag; 3803 3804 pagevec_init(&pvec, 0); 3805 if (wbc->range_cyclic) { 3806 index = mapping->writeback_index; /* Start from prev offset */ 3807 end = -1; 3808 } else { 3809 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3810 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3811 scanned = 1; 3812 } 3813 if (wbc->sync_mode == WB_SYNC_ALL) 3814 tag = PAGECACHE_TAG_TOWRITE; 3815 else 3816 tag = PAGECACHE_TAG_DIRTY; 3817 retry: 3818 if (wbc->sync_mode == WB_SYNC_ALL) 3819 tag_pages_for_writeback(mapping, index, end); 3820 while (!done && !nr_to_write_done && (index <= end) && 3821 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3823 unsigned i; 3824 3825 scanned = 1; 3826 for (i = 0; i < nr_pages; i++) { 3827 struct page *page = pvec.pages[i]; 3828 3829 if (!PagePrivate(page)) 3830 continue; 3831 3832 if (!wbc->range_cyclic && page->index > end) { 3833 done = 1; 3834 break; 3835 } 3836 3837 spin_lock(&mapping->private_lock); 3838 if (!PagePrivate(page)) { 3839 spin_unlock(&mapping->private_lock); 3840 continue; 3841 } 3842 3843 eb = (struct extent_buffer *)page->private; 3844 3845 /* 3846 * Shouldn't happen and normally this would be a BUG_ON 3847 * but no sense in crashing the users box for something 3848 * we can survive anyway. 3849 */ 3850 if (WARN_ON(!eb)) { 3851 spin_unlock(&mapping->private_lock); 3852 continue; 3853 } 3854 3855 if (eb == prev_eb) { 3856 spin_unlock(&mapping->private_lock); 3857 continue; 3858 } 3859 3860 ret = atomic_inc_not_zero(&eb->refs); 3861 spin_unlock(&mapping->private_lock); 3862 if (!ret) 3863 continue; 3864 3865 prev_eb = eb; 3866 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3867 if (!ret) { 3868 free_extent_buffer(eb); 3869 continue; 3870 } 3871 3872 ret = write_one_eb(eb, fs_info, wbc, &epd); 3873 if (ret) { 3874 done = 1; 3875 free_extent_buffer(eb); 3876 break; 3877 } 3878 free_extent_buffer(eb); 3879 3880 /* 3881 * the filesystem may choose to bump up nr_to_write. 3882 * We have to make sure to honor the new nr_to_write 3883 * at any time 3884 */ 3885 nr_to_write_done = wbc->nr_to_write <= 0; 3886 } 3887 pagevec_release(&pvec); 3888 cond_resched(); 3889 } 3890 if (!scanned && !done) { 3891 /* 3892 * We hit the last page and there is more work to be done: wrap 3893 * back to the start of the file 3894 */ 3895 scanned = 1; 3896 index = 0; 3897 goto retry; 3898 } 3899 flush_write_bio(&epd); 3900 return ret; 3901 } 3902 3903 /** 3904 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3905 * @mapping: address space structure to write 3906 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3907 * @writepage: function called for each page 3908 * @data: data passed to writepage function 3909 * 3910 * If a page is already under I/O, write_cache_pages() skips it, even 3911 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3912 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3913 * and msync() need to guarantee that all the data which was dirty at the time 3914 * the call was made get new I/O started against them. If wbc->sync_mode is 3915 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3916 * existing IO to complete. 3917 */ 3918 static int extent_write_cache_pages(struct extent_io_tree *tree, 3919 struct address_space *mapping, 3920 struct writeback_control *wbc, 3921 writepage_t writepage, void *data, 3922 void (*flush_fn)(void *)) 3923 { 3924 struct inode *inode = mapping->host; 3925 int ret = 0; 3926 int done = 0; 3927 int err = 0; 3928 int nr_to_write_done = 0; 3929 struct pagevec pvec; 3930 int nr_pages; 3931 pgoff_t index; 3932 pgoff_t end; /* Inclusive */ 3933 int scanned = 0; 3934 int tag; 3935 3936 /* 3937 * We have to hold onto the inode so that ordered extents can do their 3938 * work when the IO finishes. The alternative to this is failing to add 3939 * an ordered extent if the igrab() fails there and that is a huge pain 3940 * to deal with, so instead just hold onto the inode throughout the 3941 * writepages operation. If it fails here we are freeing up the inode 3942 * anyway and we'd rather not waste our time writing out stuff that is 3943 * going to be truncated anyway. 3944 */ 3945 if (!igrab(inode)) 3946 return 0; 3947 3948 pagevec_init(&pvec, 0); 3949 if (wbc->range_cyclic) { 3950 index = mapping->writeback_index; /* Start from prev offset */ 3951 end = -1; 3952 } else { 3953 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3954 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3955 scanned = 1; 3956 } 3957 if (wbc->sync_mode == WB_SYNC_ALL) 3958 tag = PAGECACHE_TAG_TOWRITE; 3959 else 3960 tag = PAGECACHE_TAG_DIRTY; 3961 retry: 3962 if (wbc->sync_mode == WB_SYNC_ALL) 3963 tag_pages_for_writeback(mapping, index, end); 3964 while (!done && !nr_to_write_done && (index <= end) && 3965 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3966 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3967 unsigned i; 3968 3969 scanned = 1; 3970 for (i = 0; i < nr_pages; i++) { 3971 struct page *page = pvec.pages[i]; 3972 3973 /* 3974 * At this point we hold neither mapping->tree_lock nor 3975 * lock on the page itself: the page may be truncated or 3976 * invalidated (changing page->mapping to NULL), or even 3977 * swizzled back from swapper_space to tmpfs file 3978 * mapping 3979 */ 3980 if (!trylock_page(page)) { 3981 flush_fn(data); 3982 lock_page(page); 3983 } 3984 3985 if (unlikely(page->mapping != mapping)) { 3986 unlock_page(page); 3987 continue; 3988 } 3989 3990 if (!wbc->range_cyclic && page->index > end) { 3991 done = 1; 3992 unlock_page(page); 3993 continue; 3994 } 3995 3996 if (wbc->sync_mode != WB_SYNC_NONE) { 3997 if (PageWriteback(page)) 3998 flush_fn(data); 3999 wait_on_page_writeback(page); 4000 } 4001 4002 if (PageWriteback(page) || 4003 !clear_page_dirty_for_io(page)) { 4004 unlock_page(page); 4005 continue; 4006 } 4007 4008 ret = (*writepage)(page, wbc, data); 4009 4010 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4011 unlock_page(page); 4012 ret = 0; 4013 } 4014 if (!err && ret < 0) 4015 err = ret; 4016 4017 /* 4018 * the filesystem may choose to bump up nr_to_write. 4019 * We have to make sure to honor the new nr_to_write 4020 * at any time 4021 */ 4022 nr_to_write_done = wbc->nr_to_write <= 0; 4023 } 4024 pagevec_release(&pvec); 4025 cond_resched(); 4026 } 4027 if (!scanned && !done && !err) { 4028 /* 4029 * We hit the last page and there is more work to be done: wrap 4030 * back to the start of the file 4031 */ 4032 scanned = 1; 4033 index = 0; 4034 goto retry; 4035 } 4036 btrfs_add_delayed_iput(inode); 4037 return err; 4038 } 4039 4040 static void flush_epd_write_bio(struct extent_page_data *epd) 4041 { 4042 if (epd->bio) { 4043 int rw = WRITE; 4044 int ret; 4045 4046 if (epd->sync_io) 4047 rw = WRITE_SYNC; 4048 4049 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4050 BUG_ON(ret < 0); /* -ENOMEM */ 4051 epd->bio = NULL; 4052 } 4053 } 4054 4055 static noinline void flush_write_bio(void *data) 4056 { 4057 struct extent_page_data *epd = data; 4058 flush_epd_write_bio(epd); 4059 } 4060 4061 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4062 get_extent_t *get_extent, 4063 struct writeback_control *wbc) 4064 { 4065 int ret; 4066 struct extent_page_data epd = { 4067 .bio = NULL, 4068 .tree = tree, 4069 .get_extent = get_extent, 4070 .extent_locked = 0, 4071 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4072 .bio_flags = 0, 4073 }; 4074 4075 ret = __extent_writepage(page, wbc, &epd); 4076 4077 flush_epd_write_bio(&epd); 4078 return ret; 4079 } 4080 4081 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4082 u64 start, u64 end, get_extent_t *get_extent, 4083 int mode) 4084 { 4085 int ret = 0; 4086 struct address_space *mapping = inode->i_mapping; 4087 struct page *page; 4088 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4089 PAGE_CACHE_SHIFT; 4090 4091 struct extent_page_data epd = { 4092 .bio = NULL, 4093 .tree = tree, 4094 .get_extent = get_extent, 4095 .extent_locked = 1, 4096 .sync_io = mode == WB_SYNC_ALL, 4097 .bio_flags = 0, 4098 }; 4099 struct writeback_control wbc_writepages = { 4100 .sync_mode = mode, 4101 .nr_to_write = nr_pages * 2, 4102 .range_start = start, 4103 .range_end = end + 1, 4104 }; 4105 4106 while (start <= end) { 4107 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4108 if (clear_page_dirty_for_io(page)) 4109 ret = __extent_writepage(page, &wbc_writepages, &epd); 4110 else { 4111 if (tree->ops && tree->ops->writepage_end_io_hook) 4112 tree->ops->writepage_end_io_hook(page, start, 4113 start + PAGE_CACHE_SIZE - 1, 4114 NULL, 1); 4115 unlock_page(page); 4116 } 4117 page_cache_release(page); 4118 start += PAGE_CACHE_SIZE; 4119 } 4120 4121 flush_epd_write_bio(&epd); 4122 return ret; 4123 } 4124 4125 int extent_writepages(struct extent_io_tree *tree, 4126 struct address_space *mapping, 4127 get_extent_t *get_extent, 4128 struct writeback_control *wbc) 4129 { 4130 int ret = 0; 4131 struct extent_page_data epd = { 4132 .bio = NULL, 4133 .tree = tree, 4134 .get_extent = get_extent, 4135 .extent_locked = 0, 4136 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4137 .bio_flags = 0, 4138 }; 4139 4140 ret = extent_write_cache_pages(tree, mapping, wbc, 4141 __extent_writepage, &epd, 4142 flush_write_bio); 4143 flush_epd_write_bio(&epd); 4144 return ret; 4145 } 4146 4147 int extent_readpages(struct extent_io_tree *tree, 4148 struct address_space *mapping, 4149 struct list_head *pages, unsigned nr_pages, 4150 get_extent_t get_extent) 4151 { 4152 struct bio *bio = NULL; 4153 unsigned page_idx; 4154 unsigned long bio_flags = 0; 4155 struct page *pagepool[16]; 4156 struct page *page; 4157 struct extent_map *em_cached = NULL; 4158 int nr = 0; 4159 4160 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4161 page = list_entry(pages->prev, struct page, lru); 4162 4163 prefetchw(&page->flags); 4164 list_del(&page->lru); 4165 if (add_to_page_cache_lru(page, mapping, 4166 page->index, GFP_NOFS)) { 4167 page_cache_release(page); 4168 continue; 4169 } 4170 4171 pagepool[nr++] = page; 4172 if (nr < ARRAY_SIZE(pagepool)) 4173 continue; 4174 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4175 &bio, 0, &bio_flags, READ); 4176 nr = 0; 4177 } 4178 if (nr) 4179 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4180 &bio, 0, &bio_flags, READ); 4181 4182 if (em_cached) 4183 free_extent_map(em_cached); 4184 4185 BUG_ON(!list_empty(pages)); 4186 if (bio) 4187 return submit_one_bio(READ, bio, 0, bio_flags); 4188 return 0; 4189 } 4190 4191 /* 4192 * basic invalidatepage code, this waits on any locked or writeback 4193 * ranges corresponding to the page, and then deletes any extent state 4194 * records from the tree 4195 */ 4196 int extent_invalidatepage(struct extent_io_tree *tree, 4197 struct page *page, unsigned long offset) 4198 { 4199 struct extent_state *cached_state = NULL; 4200 u64 start = page_offset(page); 4201 u64 end = start + PAGE_CACHE_SIZE - 1; 4202 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4203 4204 start += ALIGN(offset, blocksize); 4205 if (start > end) 4206 return 0; 4207 4208 lock_extent_bits(tree, start, end, 0, &cached_state); 4209 wait_on_page_writeback(page); 4210 clear_extent_bit(tree, start, end, 4211 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4212 EXTENT_DO_ACCOUNTING, 4213 1, 1, &cached_state, GFP_NOFS); 4214 return 0; 4215 } 4216 4217 /* 4218 * a helper for releasepage, this tests for areas of the page that 4219 * are locked or under IO and drops the related state bits if it is safe 4220 * to drop the page. 4221 */ 4222 static int try_release_extent_state(struct extent_map_tree *map, 4223 struct extent_io_tree *tree, 4224 struct page *page, gfp_t mask) 4225 { 4226 u64 start = page_offset(page); 4227 u64 end = start + PAGE_CACHE_SIZE - 1; 4228 int ret = 1; 4229 4230 if (test_range_bit(tree, start, end, 4231 EXTENT_IOBITS, 0, NULL)) 4232 ret = 0; 4233 else { 4234 if ((mask & GFP_NOFS) == GFP_NOFS) 4235 mask = GFP_NOFS; 4236 /* 4237 * at this point we can safely clear everything except the 4238 * locked bit and the nodatasum bit 4239 */ 4240 ret = clear_extent_bit(tree, start, end, 4241 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4242 0, 0, NULL, mask); 4243 4244 /* if clear_extent_bit failed for enomem reasons, 4245 * we can't allow the release to continue. 4246 */ 4247 if (ret < 0) 4248 ret = 0; 4249 else 4250 ret = 1; 4251 } 4252 return ret; 4253 } 4254 4255 /* 4256 * a helper for releasepage. As long as there are no locked extents 4257 * in the range corresponding to the page, both state records and extent 4258 * map records are removed 4259 */ 4260 int try_release_extent_mapping(struct extent_map_tree *map, 4261 struct extent_io_tree *tree, struct page *page, 4262 gfp_t mask) 4263 { 4264 struct extent_map *em; 4265 u64 start = page_offset(page); 4266 u64 end = start + PAGE_CACHE_SIZE - 1; 4267 4268 if ((mask & __GFP_WAIT) && 4269 page->mapping->host->i_size > 16 * 1024 * 1024) { 4270 u64 len; 4271 while (start <= end) { 4272 len = end - start + 1; 4273 write_lock(&map->lock); 4274 em = lookup_extent_mapping(map, start, len); 4275 if (!em) { 4276 write_unlock(&map->lock); 4277 break; 4278 } 4279 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4280 em->start != start) { 4281 write_unlock(&map->lock); 4282 free_extent_map(em); 4283 break; 4284 } 4285 if (!test_range_bit(tree, em->start, 4286 extent_map_end(em) - 1, 4287 EXTENT_LOCKED | EXTENT_WRITEBACK, 4288 0, NULL)) { 4289 remove_extent_mapping(map, em); 4290 /* once for the rb tree */ 4291 free_extent_map(em); 4292 } 4293 start = extent_map_end(em); 4294 write_unlock(&map->lock); 4295 4296 /* once for us */ 4297 free_extent_map(em); 4298 } 4299 } 4300 return try_release_extent_state(map, tree, page, mask); 4301 } 4302 4303 /* 4304 * helper function for fiemap, which doesn't want to see any holes. 4305 * This maps until we find something past 'last' 4306 */ 4307 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4308 u64 offset, 4309 u64 last, 4310 get_extent_t *get_extent) 4311 { 4312 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4313 struct extent_map *em; 4314 u64 len; 4315 4316 if (offset >= last) 4317 return NULL; 4318 4319 while (1) { 4320 len = last - offset; 4321 if (len == 0) 4322 break; 4323 len = ALIGN(len, sectorsize); 4324 em = get_extent(inode, NULL, 0, offset, len, 0); 4325 if (IS_ERR_OR_NULL(em)) 4326 return em; 4327 4328 /* if this isn't a hole return it */ 4329 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4330 em->block_start != EXTENT_MAP_HOLE) { 4331 return em; 4332 } 4333 4334 /* this is a hole, advance to the next extent */ 4335 offset = extent_map_end(em); 4336 free_extent_map(em); 4337 if (offset >= last) 4338 break; 4339 } 4340 return NULL; 4341 } 4342 4343 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4344 __u64 start, __u64 len, get_extent_t *get_extent) 4345 { 4346 int ret = 0; 4347 u64 off = start; 4348 u64 max = start + len; 4349 u32 flags = 0; 4350 u32 found_type; 4351 u64 last; 4352 u64 last_for_get_extent = 0; 4353 u64 disko = 0; 4354 u64 isize = i_size_read(inode); 4355 struct btrfs_key found_key; 4356 struct extent_map *em = NULL; 4357 struct extent_state *cached_state = NULL; 4358 struct btrfs_path *path; 4359 struct btrfs_root *root = BTRFS_I(inode)->root; 4360 int end = 0; 4361 u64 em_start = 0; 4362 u64 em_len = 0; 4363 u64 em_end = 0; 4364 4365 if (len == 0) 4366 return -EINVAL; 4367 4368 path = btrfs_alloc_path(); 4369 if (!path) 4370 return -ENOMEM; 4371 path->leave_spinning = 1; 4372 4373 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4374 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4375 4376 /* 4377 * lookup the last file extent. We're not using i_size here 4378 * because there might be preallocation past i_size 4379 */ 4380 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4381 0); 4382 if (ret < 0) { 4383 btrfs_free_path(path); 4384 return ret; 4385 } 4386 WARN_ON(!ret); 4387 path->slots[0]--; 4388 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4389 found_type = found_key.type; 4390 4391 /* No extents, but there might be delalloc bits */ 4392 if (found_key.objectid != btrfs_ino(inode) || 4393 found_type != BTRFS_EXTENT_DATA_KEY) { 4394 /* have to trust i_size as the end */ 4395 last = (u64)-1; 4396 last_for_get_extent = isize; 4397 } else { 4398 /* 4399 * remember the start of the last extent. There are a 4400 * bunch of different factors that go into the length of the 4401 * extent, so its much less complex to remember where it started 4402 */ 4403 last = found_key.offset; 4404 last_for_get_extent = last + 1; 4405 } 4406 btrfs_release_path(path); 4407 4408 /* 4409 * we might have some extents allocated but more delalloc past those 4410 * extents. so, we trust isize unless the start of the last extent is 4411 * beyond isize 4412 */ 4413 if (last < isize) { 4414 last = (u64)-1; 4415 last_for_get_extent = isize; 4416 } 4417 4418 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4419 &cached_state); 4420 4421 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4422 get_extent); 4423 if (!em) 4424 goto out; 4425 if (IS_ERR(em)) { 4426 ret = PTR_ERR(em); 4427 goto out; 4428 } 4429 4430 while (!end) { 4431 u64 offset_in_extent = 0; 4432 4433 /* break if the extent we found is outside the range */ 4434 if (em->start >= max || extent_map_end(em) < off) 4435 break; 4436 4437 /* 4438 * get_extent may return an extent that starts before our 4439 * requested range. We have to make sure the ranges 4440 * we return to fiemap always move forward and don't 4441 * overlap, so adjust the offsets here 4442 */ 4443 em_start = max(em->start, off); 4444 4445 /* 4446 * record the offset from the start of the extent 4447 * for adjusting the disk offset below. Only do this if the 4448 * extent isn't compressed since our in ram offset may be past 4449 * what we have actually allocated on disk. 4450 */ 4451 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4452 offset_in_extent = em_start - em->start; 4453 em_end = extent_map_end(em); 4454 em_len = em_end - em_start; 4455 disko = 0; 4456 flags = 0; 4457 4458 /* 4459 * bump off for our next call to get_extent 4460 */ 4461 off = extent_map_end(em); 4462 if (off >= max) 4463 end = 1; 4464 4465 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4466 end = 1; 4467 flags |= FIEMAP_EXTENT_LAST; 4468 } else if (em->block_start == EXTENT_MAP_INLINE) { 4469 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4470 FIEMAP_EXTENT_NOT_ALIGNED); 4471 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4472 flags |= (FIEMAP_EXTENT_DELALLOC | 4473 FIEMAP_EXTENT_UNKNOWN); 4474 } else if (fieinfo->fi_extents_max) { 4475 u64 bytenr = em->block_start - 4476 (em->start - em->orig_start); 4477 4478 disko = em->block_start + offset_in_extent; 4479 4480 /* 4481 * As btrfs supports shared space, this information 4482 * can be exported to userspace tools via 4483 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4484 * then we're just getting a count and we can skip the 4485 * lookup stuff. 4486 */ 4487 ret = btrfs_check_shared(NULL, root->fs_info, 4488 root->objectid, 4489 btrfs_ino(inode), bytenr); 4490 if (ret < 0) 4491 goto out_free; 4492 if (ret) 4493 flags |= FIEMAP_EXTENT_SHARED; 4494 ret = 0; 4495 } 4496 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4497 flags |= FIEMAP_EXTENT_ENCODED; 4498 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4499 flags |= FIEMAP_EXTENT_UNWRITTEN; 4500 4501 free_extent_map(em); 4502 em = NULL; 4503 if ((em_start >= last) || em_len == (u64)-1 || 4504 (last == (u64)-1 && isize <= em_end)) { 4505 flags |= FIEMAP_EXTENT_LAST; 4506 end = 1; 4507 } 4508 4509 /* now scan forward to see if this is really the last extent. */ 4510 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4511 get_extent); 4512 if (IS_ERR(em)) { 4513 ret = PTR_ERR(em); 4514 goto out; 4515 } 4516 if (!em) { 4517 flags |= FIEMAP_EXTENT_LAST; 4518 end = 1; 4519 } 4520 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4521 em_len, flags); 4522 if (ret) { 4523 if (ret == 1) 4524 ret = 0; 4525 goto out_free; 4526 } 4527 } 4528 out_free: 4529 free_extent_map(em); 4530 out: 4531 btrfs_free_path(path); 4532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4533 &cached_state, GFP_NOFS); 4534 return ret; 4535 } 4536 4537 static void __free_extent_buffer(struct extent_buffer *eb) 4538 { 4539 btrfs_leak_debug_del(&eb->leak_list); 4540 kmem_cache_free(extent_buffer_cache, eb); 4541 } 4542 4543 int extent_buffer_under_io(struct extent_buffer *eb) 4544 { 4545 return (atomic_read(&eb->io_pages) || 4546 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4547 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4548 } 4549 4550 /* 4551 * Helper for releasing extent buffer page. 4552 */ 4553 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4554 { 4555 unsigned long index; 4556 struct page *page; 4557 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4558 4559 BUG_ON(extent_buffer_under_io(eb)); 4560 4561 index = num_extent_pages(eb->start, eb->len); 4562 if (index == 0) 4563 return; 4564 4565 do { 4566 index--; 4567 page = eb->pages[index]; 4568 if (!page) 4569 continue; 4570 if (mapped) 4571 spin_lock(&page->mapping->private_lock); 4572 /* 4573 * We do this since we'll remove the pages after we've 4574 * removed the eb from the radix tree, so we could race 4575 * and have this page now attached to the new eb. So 4576 * only clear page_private if it's still connected to 4577 * this eb. 4578 */ 4579 if (PagePrivate(page) && 4580 page->private == (unsigned long)eb) { 4581 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4582 BUG_ON(PageDirty(page)); 4583 BUG_ON(PageWriteback(page)); 4584 /* 4585 * We need to make sure we haven't be attached 4586 * to a new eb. 4587 */ 4588 ClearPagePrivate(page); 4589 set_page_private(page, 0); 4590 /* One for the page private */ 4591 page_cache_release(page); 4592 } 4593 4594 if (mapped) 4595 spin_unlock(&page->mapping->private_lock); 4596 4597 /* One for when we alloced the page */ 4598 page_cache_release(page); 4599 } while (index != 0); 4600 } 4601 4602 /* 4603 * Helper for releasing the extent buffer. 4604 */ 4605 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4606 { 4607 btrfs_release_extent_buffer_page(eb); 4608 __free_extent_buffer(eb); 4609 } 4610 4611 static struct extent_buffer * 4612 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4613 unsigned long len) 4614 { 4615 struct extent_buffer *eb = NULL; 4616 4617 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS); 4618 if (eb == NULL) 4619 return NULL; 4620 eb->start = start; 4621 eb->len = len; 4622 eb->fs_info = fs_info; 4623 eb->bflags = 0; 4624 rwlock_init(&eb->lock); 4625 atomic_set(&eb->write_locks, 0); 4626 atomic_set(&eb->read_locks, 0); 4627 atomic_set(&eb->blocking_readers, 0); 4628 atomic_set(&eb->blocking_writers, 0); 4629 atomic_set(&eb->spinning_readers, 0); 4630 atomic_set(&eb->spinning_writers, 0); 4631 eb->lock_nested = 0; 4632 init_waitqueue_head(&eb->write_lock_wq); 4633 init_waitqueue_head(&eb->read_lock_wq); 4634 4635 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4636 4637 spin_lock_init(&eb->refs_lock); 4638 atomic_set(&eb->refs, 1); 4639 atomic_set(&eb->io_pages, 0); 4640 4641 /* 4642 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4643 */ 4644 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4645 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4646 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4647 4648 return eb; 4649 } 4650 4651 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4652 { 4653 unsigned long i; 4654 struct page *p; 4655 struct extent_buffer *new; 4656 unsigned long num_pages = num_extent_pages(src->start, src->len); 4657 4658 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4659 if (new == NULL) 4660 return NULL; 4661 4662 for (i = 0; i < num_pages; i++) { 4663 p = alloc_page(GFP_NOFS); 4664 if (!p) { 4665 btrfs_release_extent_buffer(new); 4666 return NULL; 4667 } 4668 attach_extent_buffer_page(new, p); 4669 WARN_ON(PageDirty(p)); 4670 SetPageUptodate(p); 4671 new->pages[i] = p; 4672 } 4673 4674 copy_extent_buffer(new, src, 0, 0, src->len); 4675 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4676 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4677 4678 return new; 4679 } 4680 4681 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4682 u64 start) 4683 { 4684 struct extent_buffer *eb; 4685 unsigned long len; 4686 unsigned long num_pages; 4687 unsigned long i; 4688 4689 if (!fs_info) { 4690 /* 4691 * Called only from tests that don't always have a fs_info 4692 * available, but we know that nodesize is 4096 4693 */ 4694 len = 4096; 4695 } else { 4696 len = fs_info->tree_root->nodesize; 4697 } 4698 num_pages = num_extent_pages(0, len); 4699 4700 eb = __alloc_extent_buffer(fs_info, start, len); 4701 if (!eb) 4702 return NULL; 4703 4704 for (i = 0; i < num_pages; i++) { 4705 eb->pages[i] = alloc_page(GFP_NOFS); 4706 if (!eb->pages[i]) 4707 goto err; 4708 } 4709 set_extent_buffer_uptodate(eb); 4710 btrfs_set_header_nritems(eb, 0); 4711 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4712 4713 return eb; 4714 err: 4715 for (; i > 0; i--) 4716 __free_page(eb->pages[i - 1]); 4717 __free_extent_buffer(eb); 4718 return NULL; 4719 } 4720 4721 static void check_buffer_tree_ref(struct extent_buffer *eb) 4722 { 4723 int refs; 4724 /* the ref bit is tricky. We have to make sure it is set 4725 * if we have the buffer dirty. Otherwise the 4726 * code to free a buffer can end up dropping a dirty 4727 * page 4728 * 4729 * Once the ref bit is set, it won't go away while the 4730 * buffer is dirty or in writeback, and it also won't 4731 * go away while we have the reference count on the 4732 * eb bumped. 4733 * 4734 * We can't just set the ref bit without bumping the 4735 * ref on the eb because free_extent_buffer might 4736 * see the ref bit and try to clear it. If this happens 4737 * free_extent_buffer might end up dropping our original 4738 * ref by mistake and freeing the page before we are able 4739 * to add one more ref. 4740 * 4741 * So bump the ref count first, then set the bit. If someone 4742 * beat us to it, drop the ref we added. 4743 */ 4744 refs = atomic_read(&eb->refs); 4745 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4746 return; 4747 4748 spin_lock(&eb->refs_lock); 4749 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4750 atomic_inc(&eb->refs); 4751 spin_unlock(&eb->refs_lock); 4752 } 4753 4754 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4755 struct page *accessed) 4756 { 4757 unsigned long num_pages, i; 4758 4759 check_buffer_tree_ref(eb); 4760 4761 num_pages = num_extent_pages(eb->start, eb->len); 4762 for (i = 0; i < num_pages; i++) { 4763 struct page *p = eb->pages[i]; 4764 4765 if (p != accessed) 4766 mark_page_accessed(p); 4767 } 4768 } 4769 4770 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4771 u64 start) 4772 { 4773 struct extent_buffer *eb; 4774 4775 rcu_read_lock(); 4776 eb = radix_tree_lookup(&fs_info->buffer_radix, 4777 start >> PAGE_CACHE_SHIFT); 4778 if (eb && atomic_inc_not_zero(&eb->refs)) { 4779 rcu_read_unlock(); 4780 /* 4781 * Lock our eb's refs_lock to avoid races with 4782 * free_extent_buffer. When we get our eb it might be flagged 4783 * with EXTENT_BUFFER_STALE and another task running 4784 * free_extent_buffer might have seen that flag set, 4785 * eb->refs == 2, that the buffer isn't under IO (dirty and 4786 * writeback flags not set) and it's still in the tree (flag 4787 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4788 * of decrementing the extent buffer's reference count twice. 4789 * So here we could race and increment the eb's reference count, 4790 * clear its stale flag, mark it as dirty and drop our reference 4791 * before the other task finishes executing free_extent_buffer, 4792 * which would later result in an attempt to free an extent 4793 * buffer that is dirty. 4794 */ 4795 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4796 spin_lock(&eb->refs_lock); 4797 spin_unlock(&eb->refs_lock); 4798 } 4799 mark_extent_buffer_accessed(eb, NULL); 4800 return eb; 4801 } 4802 rcu_read_unlock(); 4803 4804 return NULL; 4805 } 4806 4807 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4808 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4809 u64 start) 4810 { 4811 struct extent_buffer *eb, *exists = NULL; 4812 int ret; 4813 4814 eb = find_extent_buffer(fs_info, start); 4815 if (eb) 4816 return eb; 4817 eb = alloc_dummy_extent_buffer(fs_info, start); 4818 if (!eb) 4819 return NULL; 4820 eb->fs_info = fs_info; 4821 again: 4822 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4823 if (ret) 4824 goto free_eb; 4825 spin_lock(&fs_info->buffer_lock); 4826 ret = radix_tree_insert(&fs_info->buffer_radix, 4827 start >> PAGE_CACHE_SHIFT, eb); 4828 spin_unlock(&fs_info->buffer_lock); 4829 radix_tree_preload_end(); 4830 if (ret == -EEXIST) { 4831 exists = find_extent_buffer(fs_info, start); 4832 if (exists) 4833 goto free_eb; 4834 else 4835 goto again; 4836 } 4837 check_buffer_tree_ref(eb); 4838 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4839 4840 /* 4841 * We will free dummy extent buffer's if they come into 4842 * free_extent_buffer with a ref count of 2, but if we are using this we 4843 * want the buffers to stay in memory until we're done with them, so 4844 * bump the ref count again. 4845 */ 4846 atomic_inc(&eb->refs); 4847 return eb; 4848 free_eb: 4849 btrfs_release_extent_buffer(eb); 4850 return exists; 4851 } 4852 #endif 4853 4854 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4855 u64 start) 4856 { 4857 unsigned long len = fs_info->tree_root->nodesize; 4858 unsigned long num_pages = num_extent_pages(start, len); 4859 unsigned long i; 4860 unsigned long index = start >> PAGE_CACHE_SHIFT; 4861 struct extent_buffer *eb; 4862 struct extent_buffer *exists = NULL; 4863 struct page *p; 4864 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4865 int uptodate = 1; 4866 int ret; 4867 4868 eb = find_extent_buffer(fs_info, start); 4869 if (eb) 4870 return eb; 4871 4872 eb = __alloc_extent_buffer(fs_info, start, len); 4873 if (!eb) 4874 return NULL; 4875 4876 for (i = 0; i < num_pages; i++, index++) { 4877 p = find_or_create_page(mapping, index, GFP_NOFS); 4878 if (!p) 4879 goto free_eb; 4880 4881 spin_lock(&mapping->private_lock); 4882 if (PagePrivate(p)) { 4883 /* 4884 * We could have already allocated an eb for this page 4885 * and attached one so lets see if we can get a ref on 4886 * the existing eb, and if we can we know it's good and 4887 * we can just return that one, else we know we can just 4888 * overwrite page->private. 4889 */ 4890 exists = (struct extent_buffer *)p->private; 4891 if (atomic_inc_not_zero(&exists->refs)) { 4892 spin_unlock(&mapping->private_lock); 4893 unlock_page(p); 4894 page_cache_release(p); 4895 mark_extent_buffer_accessed(exists, p); 4896 goto free_eb; 4897 } 4898 exists = NULL; 4899 4900 /* 4901 * Do this so attach doesn't complain and we need to 4902 * drop the ref the old guy had. 4903 */ 4904 ClearPagePrivate(p); 4905 WARN_ON(PageDirty(p)); 4906 page_cache_release(p); 4907 } 4908 attach_extent_buffer_page(eb, p); 4909 spin_unlock(&mapping->private_lock); 4910 WARN_ON(PageDirty(p)); 4911 eb->pages[i] = p; 4912 if (!PageUptodate(p)) 4913 uptodate = 0; 4914 4915 /* 4916 * see below about how we avoid a nasty race with release page 4917 * and why we unlock later 4918 */ 4919 } 4920 if (uptodate) 4921 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4922 again: 4923 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4924 if (ret) 4925 goto free_eb; 4926 4927 spin_lock(&fs_info->buffer_lock); 4928 ret = radix_tree_insert(&fs_info->buffer_radix, 4929 start >> PAGE_CACHE_SHIFT, eb); 4930 spin_unlock(&fs_info->buffer_lock); 4931 radix_tree_preload_end(); 4932 if (ret == -EEXIST) { 4933 exists = find_extent_buffer(fs_info, start); 4934 if (exists) 4935 goto free_eb; 4936 else 4937 goto again; 4938 } 4939 /* add one reference for the tree */ 4940 check_buffer_tree_ref(eb); 4941 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4942 4943 /* 4944 * there is a race where release page may have 4945 * tried to find this extent buffer in the radix 4946 * but failed. It will tell the VM it is safe to 4947 * reclaim the, and it will clear the page private bit. 4948 * We must make sure to set the page private bit properly 4949 * after the extent buffer is in the radix tree so 4950 * it doesn't get lost 4951 */ 4952 SetPageChecked(eb->pages[0]); 4953 for (i = 1; i < num_pages; i++) { 4954 p = eb->pages[i]; 4955 ClearPageChecked(p); 4956 unlock_page(p); 4957 } 4958 unlock_page(eb->pages[0]); 4959 return eb; 4960 4961 free_eb: 4962 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4963 for (i = 0; i < num_pages; i++) { 4964 if (eb->pages[i]) 4965 unlock_page(eb->pages[i]); 4966 } 4967 4968 btrfs_release_extent_buffer(eb); 4969 return exists; 4970 } 4971 4972 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4973 { 4974 struct extent_buffer *eb = 4975 container_of(head, struct extent_buffer, rcu_head); 4976 4977 __free_extent_buffer(eb); 4978 } 4979 4980 /* Expects to have eb->eb_lock already held */ 4981 static int release_extent_buffer(struct extent_buffer *eb) 4982 { 4983 WARN_ON(atomic_read(&eb->refs) == 0); 4984 if (atomic_dec_and_test(&eb->refs)) { 4985 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4986 struct btrfs_fs_info *fs_info = eb->fs_info; 4987 4988 spin_unlock(&eb->refs_lock); 4989 4990 spin_lock(&fs_info->buffer_lock); 4991 radix_tree_delete(&fs_info->buffer_radix, 4992 eb->start >> PAGE_CACHE_SHIFT); 4993 spin_unlock(&fs_info->buffer_lock); 4994 } else { 4995 spin_unlock(&eb->refs_lock); 4996 } 4997 4998 /* Should be safe to release our pages at this point */ 4999 btrfs_release_extent_buffer_page(eb); 5000 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5001 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5002 __free_extent_buffer(eb); 5003 return 1; 5004 } 5005 #endif 5006 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5007 return 1; 5008 } 5009 spin_unlock(&eb->refs_lock); 5010 5011 return 0; 5012 } 5013 5014 void free_extent_buffer(struct extent_buffer *eb) 5015 { 5016 int refs; 5017 int old; 5018 if (!eb) 5019 return; 5020 5021 while (1) { 5022 refs = atomic_read(&eb->refs); 5023 if (refs <= 3) 5024 break; 5025 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5026 if (old == refs) 5027 return; 5028 } 5029 5030 spin_lock(&eb->refs_lock); 5031 if (atomic_read(&eb->refs) == 2 && 5032 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5033 atomic_dec(&eb->refs); 5034 5035 if (atomic_read(&eb->refs) == 2 && 5036 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5037 !extent_buffer_under_io(eb) && 5038 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5039 atomic_dec(&eb->refs); 5040 5041 /* 5042 * I know this is terrible, but it's temporary until we stop tracking 5043 * the uptodate bits and such for the extent buffers. 5044 */ 5045 release_extent_buffer(eb); 5046 } 5047 5048 void free_extent_buffer_stale(struct extent_buffer *eb) 5049 { 5050 if (!eb) 5051 return; 5052 5053 spin_lock(&eb->refs_lock); 5054 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5055 5056 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5057 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5058 atomic_dec(&eb->refs); 5059 release_extent_buffer(eb); 5060 } 5061 5062 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5063 { 5064 unsigned long i; 5065 unsigned long num_pages; 5066 struct page *page; 5067 5068 num_pages = num_extent_pages(eb->start, eb->len); 5069 5070 for (i = 0; i < num_pages; i++) { 5071 page = eb->pages[i]; 5072 if (!PageDirty(page)) 5073 continue; 5074 5075 lock_page(page); 5076 WARN_ON(!PagePrivate(page)); 5077 5078 clear_page_dirty_for_io(page); 5079 spin_lock_irq(&page->mapping->tree_lock); 5080 if (!PageDirty(page)) { 5081 radix_tree_tag_clear(&page->mapping->page_tree, 5082 page_index(page), 5083 PAGECACHE_TAG_DIRTY); 5084 } 5085 spin_unlock_irq(&page->mapping->tree_lock); 5086 ClearPageError(page); 5087 unlock_page(page); 5088 } 5089 WARN_ON(atomic_read(&eb->refs) == 0); 5090 } 5091 5092 int set_extent_buffer_dirty(struct extent_buffer *eb) 5093 { 5094 unsigned long i; 5095 unsigned long num_pages; 5096 int was_dirty = 0; 5097 5098 check_buffer_tree_ref(eb); 5099 5100 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5101 5102 num_pages = num_extent_pages(eb->start, eb->len); 5103 WARN_ON(atomic_read(&eb->refs) == 0); 5104 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5105 5106 for (i = 0; i < num_pages; i++) 5107 set_page_dirty(eb->pages[i]); 5108 return was_dirty; 5109 } 5110 5111 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5112 { 5113 unsigned long i; 5114 struct page *page; 5115 unsigned long num_pages; 5116 5117 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5118 num_pages = num_extent_pages(eb->start, eb->len); 5119 for (i = 0; i < num_pages; i++) { 5120 page = eb->pages[i]; 5121 if (page) 5122 ClearPageUptodate(page); 5123 } 5124 return 0; 5125 } 5126 5127 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5128 { 5129 unsigned long i; 5130 struct page *page; 5131 unsigned long num_pages; 5132 5133 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5134 num_pages = num_extent_pages(eb->start, eb->len); 5135 for (i = 0; i < num_pages; i++) { 5136 page = eb->pages[i]; 5137 SetPageUptodate(page); 5138 } 5139 return 0; 5140 } 5141 5142 int extent_buffer_uptodate(struct extent_buffer *eb) 5143 { 5144 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5145 } 5146 5147 int read_extent_buffer_pages(struct extent_io_tree *tree, 5148 struct extent_buffer *eb, u64 start, int wait, 5149 get_extent_t *get_extent, int mirror_num) 5150 { 5151 unsigned long i; 5152 unsigned long start_i; 5153 struct page *page; 5154 int err; 5155 int ret = 0; 5156 int locked_pages = 0; 5157 int all_uptodate = 1; 5158 unsigned long num_pages; 5159 unsigned long num_reads = 0; 5160 struct bio *bio = NULL; 5161 unsigned long bio_flags = 0; 5162 5163 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5164 return 0; 5165 5166 if (start) { 5167 WARN_ON(start < eb->start); 5168 start_i = (start >> PAGE_CACHE_SHIFT) - 5169 (eb->start >> PAGE_CACHE_SHIFT); 5170 } else { 5171 start_i = 0; 5172 } 5173 5174 num_pages = num_extent_pages(eb->start, eb->len); 5175 for (i = start_i; i < num_pages; i++) { 5176 page = eb->pages[i]; 5177 if (wait == WAIT_NONE) { 5178 if (!trylock_page(page)) 5179 goto unlock_exit; 5180 } else { 5181 lock_page(page); 5182 } 5183 locked_pages++; 5184 if (!PageUptodate(page)) { 5185 num_reads++; 5186 all_uptodate = 0; 5187 } 5188 } 5189 if (all_uptodate) { 5190 if (start_i == 0) 5191 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5192 goto unlock_exit; 5193 } 5194 5195 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5196 eb->read_mirror = 0; 5197 atomic_set(&eb->io_pages, num_reads); 5198 for (i = start_i; i < num_pages; i++) { 5199 page = eb->pages[i]; 5200 if (!PageUptodate(page)) { 5201 ClearPageError(page); 5202 err = __extent_read_full_page(tree, page, 5203 get_extent, &bio, 5204 mirror_num, &bio_flags, 5205 READ | REQ_META); 5206 if (err) 5207 ret = err; 5208 } else { 5209 unlock_page(page); 5210 } 5211 } 5212 5213 if (bio) { 5214 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5215 bio_flags); 5216 if (err) 5217 return err; 5218 } 5219 5220 if (ret || wait != WAIT_COMPLETE) 5221 return ret; 5222 5223 for (i = start_i; i < num_pages; i++) { 5224 page = eb->pages[i]; 5225 wait_on_page_locked(page); 5226 if (!PageUptodate(page)) 5227 ret = -EIO; 5228 } 5229 5230 return ret; 5231 5232 unlock_exit: 5233 i = start_i; 5234 while (locked_pages > 0) { 5235 page = eb->pages[i]; 5236 i++; 5237 unlock_page(page); 5238 locked_pages--; 5239 } 5240 return ret; 5241 } 5242 5243 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5244 unsigned long start, 5245 unsigned long len) 5246 { 5247 size_t cur; 5248 size_t offset; 5249 struct page *page; 5250 char *kaddr; 5251 char *dst = (char *)dstv; 5252 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5253 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5254 5255 WARN_ON(start > eb->len); 5256 WARN_ON(start + len > eb->start + eb->len); 5257 5258 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5259 5260 while (len > 0) { 5261 page = eb->pages[i]; 5262 5263 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5264 kaddr = page_address(page); 5265 memcpy(dst, kaddr + offset, cur); 5266 5267 dst += cur; 5268 len -= cur; 5269 offset = 0; 5270 i++; 5271 } 5272 } 5273 5274 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5275 unsigned long start, 5276 unsigned long len) 5277 { 5278 size_t cur; 5279 size_t offset; 5280 struct page *page; 5281 char *kaddr; 5282 char __user *dst = (char __user *)dstv; 5283 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5284 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5285 int ret = 0; 5286 5287 WARN_ON(start > eb->len); 5288 WARN_ON(start + len > eb->start + eb->len); 5289 5290 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5291 5292 while (len > 0) { 5293 page = eb->pages[i]; 5294 5295 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5296 kaddr = page_address(page); 5297 if (copy_to_user(dst, kaddr + offset, cur)) { 5298 ret = -EFAULT; 5299 break; 5300 } 5301 5302 dst += cur; 5303 len -= cur; 5304 offset = 0; 5305 i++; 5306 } 5307 5308 return ret; 5309 } 5310 5311 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5312 unsigned long min_len, char **map, 5313 unsigned long *map_start, 5314 unsigned long *map_len) 5315 { 5316 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5317 char *kaddr; 5318 struct page *p; 5319 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5320 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5321 unsigned long end_i = (start_offset + start + min_len - 1) >> 5322 PAGE_CACHE_SHIFT; 5323 5324 if (i != end_i) 5325 return -EINVAL; 5326 5327 if (i == 0) { 5328 offset = start_offset; 5329 *map_start = 0; 5330 } else { 5331 offset = 0; 5332 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5333 } 5334 5335 if (start + min_len > eb->len) { 5336 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5337 "wanted %lu %lu\n", 5338 eb->start, eb->len, start, min_len); 5339 return -EINVAL; 5340 } 5341 5342 p = eb->pages[i]; 5343 kaddr = page_address(p); 5344 *map = kaddr + offset; 5345 *map_len = PAGE_CACHE_SIZE - offset; 5346 return 0; 5347 } 5348 5349 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5350 unsigned long start, 5351 unsigned long len) 5352 { 5353 size_t cur; 5354 size_t offset; 5355 struct page *page; 5356 char *kaddr; 5357 char *ptr = (char *)ptrv; 5358 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5359 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5360 int ret = 0; 5361 5362 WARN_ON(start > eb->len); 5363 WARN_ON(start + len > eb->start + eb->len); 5364 5365 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5366 5367 while (len > 0) { 5368 page = eb->pages[i]; 5369 5370 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5371 5372 kaddr = page_address(page); 5373 ret = memcmp(ptr, kaddr + offset, cur); 5374 if (ret) 5375 break; 5376 5377 ptr += cur; 5378 len -= cur; 5379 offset = 0; 5380 i++; 5381 } 5382 return ret; 5383 } 5384 5385 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5386 unsigned long start, unsigned long len) 5387 { 5388 size_t cur; 5389 size_t offset; 5390 struct page *page; 5391 char *kaddr; 5392 char *src = (char *)srcv; 5393 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5394 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5395 5396 WARN_ON(start > eb->len); 5397 WARN_ON(start + len > eb->start + eb->len); 5398 5399 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5400 5401 while (len > 0) { 5402 page = eb->pages[i]; 5403 WARN_ON(!PageUptodate(page)); 5404 5405 cur = min(len, PAGE_CACHE_SIZE - offset); 5406 kaddr = page_address(page); 5407 memcpy(kaddr + offset, src, cur); 5408 5409 src += cur; 5410 len -= cur; 5411 offset = 0; 5412 i++; 5413 } 5414 } 5415 5416 void memset_extent_buffer(struct extent_buffer *eb, char c, 5417 unsigned long start, unsigned long len) 5418 { 5419 size_t cur; 5420 size_t offset; 5421 struct page *page; 5422 char *kaddr; 5423 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5424 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5425 5426 WARN_ON(start > eb->len); 5427 WARN_ON(start + len > eb->start + eb->len); 5428 5429 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5430 5431 while (len > 0) { 5432 page = eb->pages[i]; 5433 WARN_ON(!PageUptodate(page)); 5434 5435 cur = min(len, PAGE_CACHE_SIZE - offset); 5436 kaddr = page_address(page); 5437 memset(kaddr + offset, c, cur); 5438 5439 len -= cur; 5440 offset = 0; 5441 i++; 5442 } 5443 } 5444 5445 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5446 unsigned long dst_offset, unsigned long src_offset, 5447 unsigned long len) 5448 { 5449 u64 dst_len = dst->len; 5450 size_t cur; 5451 size_t offset; 5452 struct page *page; 5453 char *kaddr; 5454 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5455 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5456 5457 WARN_ON(src->len != dst_len); 5458 5459 offset = (start_offset + dst_offset) & 5460 (PAGE_CACHE_SIZE - 1); 5461 5462 while (len > 0) { 5463 page = dst->pages[i]; 5464 WARN_ON(!PageUptodate(page)); 5465 5466 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5467 5468 kaddr = page_address(page); 5469 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5470 5471 src_offset += cur; 5472 len -= cur; 5473 offset = 0; 5474 i++; 5475 } 5476 } 5477 5478 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5479 { 5480 unsigned long distance = (src > dst) ? src - dst : dst - src; 5481 return distance < len; 5482 } 5483 5484 static void copy_pages(struct page *dst_page, struct page *src_page, 5485 unsigned long dst_off, unsigned long src_off, 5486 unsigned long len) 5487 { 5488 char *dst_kaddr = page_address(dst_page); 5489 char *src_kaddr; 5490 int must_memmove = 0; 5491 5492 if (dst_page != src_page) { 5493 src_kaddr = page_address(src_page); 5494 } else { 5495 src_kaddr = dst_kaddr; 5496 if (areas_overlap(src_off, dst_off, len)) 5497 must_memmove = 1; 5498 } 5499 5500 if (must_memmove) 5501 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5502 else 5503 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5504 } 5505 5506 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5507 unsigned long src_offset, unsigned long len) 5508 { 5509 size_t cur; 5510 size_t dst_off_in_page; 5511 size_t src_off_in_page; 5512 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5513 unsigned long dst_i; 5514 unsigned long src_i; 5515 5516 if (src_offset + len > dst->len) { 5517 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5518 "len %lu dst len %lu\n", src_offset, len, dst->len); 5519 BUG_ON(1); 5520 } 5521 if (dst_offset + len > dst->len) { 5522 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5523 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5524 BUG_ON(1); 5525 } 5526 5527 while (len > 0) { 5528 dst_off_in_page = (start_offset + dst_offset) & 5529 (PAGE_CACHE_SIZE - 1); 5530 src_off_in_page = (start_offset + src_offset) & 5531 (PAGE_CACHE_SIZE - 1); 5532 5533 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5534 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5535 5536 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5537 src_off_in_page)); 5538 cur = min_t(unsigned long, cur, 5539 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5540 5541 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5542 dst_off_in_page, src_off_in_page, cur); 5543 5544 src_offset += cur; 5545 dst_offset += cur; 5546 len -= cur; 5547 } 5548 } 5549 5550 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5551 unsigned long src_offset, unsigned long len) 5552 { 5553 size_t cur; 5554 size_t dst_off_in_page; 5555 size_t src_off_in_page; 5556 unsigned long dst_end = dst_offset + len - 1; 5557 unsigned long src_end = src_offset + len - 1; 5558 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5559 unsigned long dst_i; 5560 unsigned long src_i; 5561 5562 if (src_offset + len > dst->len) { 5563 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5564 "len %lu len %lu\n", src_offset, len, dst->len); 5565 BUG_ON(1); 5566 } 5567 if (dst_offset + len > dst->len) { 5568 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5569 "len %lu len %lu\n", dst_offset, len, dst->len); 5570 BUG_ON(1); 5571 } 5572 if (dst_offset < src_offset) { 5573 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5574 return; 5575 } 5576 while (len > 0) { 5577 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5578 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5579 5580 dst_off_in_page = (start_offset + dst_end) & 5581 (PAGE_CACHE_SIZE - 1); 5582 src_off_in_page = (start_offset + src_end) & 5583 (PAGE_CACHE_SIZE - 1); 5584 5585 cur = min_t(unsigned long, len, src_off_in_page + 1); 5586 cur = min(cur, dst_off_in_page + 1); 5587 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5588 dst_off_in_page - cur + 1, 5589 src_off_in_page - cur + 1, cur); 5590 5591 dst_end -= cur; 5592 src_end -= cur; 5593 len -= cur; 5594 } 5595 } 5596 5597 int try_release_extent_buffer(struct page *page) 5598 { 5599 struct extent_buffer *eb; 5600 5601 /* 5602 * We need to make sure noboody is attaching this page to an eb right 5603 * now. 5604 */ 5605 spin_lock(&page->mapping->private_lock); 5606 if (!PagePrivate(page)) { 5607 spin_unlock(&page->mapping->private_lock); 5608 return 1; 5609 } 5610 5611 eb = (struct extent_buffer *)page->private; 5612 BUG_ON(!eb); 5613 5614 /* 5615 * This is a little awful but should be ok, we need to make sure that 5616 * the eb doesn't disappear out from under us while we're looking at 5617 * this page. 5618 */ 5619 spin_lock(&eb->refs_lock); 5620 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5621 spin_unlock(&eb->refs_lock); 5622 spin_unlock(&page->mapping->private_lock); 5623 return 0; 5624 } 5625 spin_unlock(&page->mapping->private_lock); 5626 5627 /* 5628 * If tree ref isn't set then we know the ref on this eb is a real ref, 5629 * so just return, this page will likely be freed soon anyway. 5630 */ 5631 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5632 spin_unlock(&eb->refs_lock); 5633 return 0; 5634 } 5635 5636 return release_extent_buffer(eb); 5637 } 5638