xref: /linux/fs/btrfs/extent_io.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		printk_ratelimited(KERN_DEBUG
100 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 	if (!tree->mapping)
139 		return NULL;
140 	return btrfs_sb(tree->mapping->host->i_sb);
141 }
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 				     offsetof(struct btrfs_io_bio, bio));
159 	if (!btrfs_bioset)
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_free(btrfs_bioset);
169 	btrfs_bioset = NULL;
170 
171 free_buffer_cache:
172 	kmem_cache_destroy(extent_buffer_cache);
173 	extent_buffer_cache = NULL;
174 
175 free_state_cache:
176 	kmem_cache_destroy(extent_state_cache);
177 	extent_state_cache = NULL;
178 	return -ENOMEM;
179 }
180 
181 void extent_io_exit(void)
182 {
183 	btrfs_leak_debug_check();
184 
185 	/*
186 	 * Make sure all delayed rcu free are flushed before we
187 	 * destroy caches.
188 	 */
189 	rcu_barrier();
190 	if (extent_state_cache)
191 		kmem_cache_destroy(extent_state_cache);
192 	if (extent_buffer_cache)
193 		kmem_cache_destroy(extent_buffer_cache);
194 	if (btrfs_bioset)
195 		bioset_free(btrfs_bioset);
196 }
197 
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 			 struct address_space *mapping)
200 {
201 	tree->state = RB_ROOT;
202 	tree->ops = NULL;
203 	tree->dirty_bytes = 0;
204 	spin_lock_init(&tree->lock);
205 	tree->mapping = mapping;
206 }
207 
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 	struct extent_state *state;
211 
212 	state = kmem_cache_alloc(extent_state_cache, mask);
213 	if (!state)
214 		return state;
215 	state->state = 0;
216 	state->private = 0;
217 	RB_CLEAR_NODE(&state->rb_node);
218 	btrfs_leak_debug_add(&state->leak_list, &states);
219 	atomic_set(&state->refs, 1);
220 	init_waitqueue_head(&state->wq);
221 	trace_alloc_extent_state(state, mask, _RET_IP_);
222 	return state;
223 }
224 
225 void free_extent_state(struct extent_state *state)
226 {
227 	if (!state)
228 		return;
229 	if (atomic_dec_and_test(&state->refs)) {
230 		WARN_ON(extent_state_in_tree(state));
231 		btrfs_leak_debug_del(&state->leak_list);
232 		trace_free_extent_state(state, _RET_IP_);
233 		kmem_cache_free(extent_state_cache, state);
234 	}
235 }
236 
237 static struct rb_node *tree_insert(struct rb_root *root,
238 				   struct rb_node *search_start,
239 				   u64 offset,
240 				   struct rb_node *node,
241 				   struct rb_node ***p_in,
242 				   struct rb_node **parent_in)
243 {
244 	struct rb_node **p;
245 	struct rb_node *parent = NULL;
246 	struct tree_entry *entry;
247 
248 	if (p_in && parent_in) {
249 		p = *p_in;
250 		parent = *parent_in;
251 		goto do_insert;
252 	}
253 
254 	p = search_start ? &search_start : &root->rb_node;
255 	while (*p) {
256 		parent = *p;
257 		entry = rb_entry(parent, struct tree_entry, rb_node);
258 
259 		if (offset < entry->start)
260 			p = &(*p)->rb_left;
261 		else if (offset > entry->end)
262 			p = &(*p)->rb_right;
263 		else
264 			return parent;
265 	}
266 
267 do_insert:
268 	rb_link_node(node, parent, p);
269 	rb_insert_color(node, root);
270 	return NULL;
271 }
272 
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 				      struct rb_node **prev_ret,
275 				      struct rb_node **next_ret,
276 				      struct rb_node ***p_ret,
277 				      struct rb_node **parent_ret)
278 {
279 	struct rb_root *root = &tree->state;
280 	struct rb_node **n = &root->rb_node;
281 	struct rb_node *prev = NULL;
282 	struct rb_node *orig_prev = NULL;
283 	struct tree_entry *entry;
284 	struct tree_entry *prev_entry = NULL;
285 
286 	while (*n) {
287 		prev = *n;
288 		entry = rb_entry(prev, struct tree_entry, rb_node);
289 		prev_entry = entry;
290 
291 		if (offset < entry->start)
292 			n = &(*n)->rb_left;
293 		else if (offset > entry->end)
294 			n = &(*n)->rb_right;
295 		else
296 			return *n;
297 	}
298 
299 	if (p_ret)
300 		*p_ret = n;
301 	if (parent_ret)
302 		*parent_ret = prev;
303 
304 	if (prev_ret) {
305 		orig_prev = prev;
306 		while (prev && offset > prev_entry->end) {
307 			prev = rb_next(prev);
308 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 		}
310 		*prev_ret = prev;
311 		prev = orig_prev;
312 	}
313 
314 	if (next_ret) {
315 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 		while (prev && offset < prev_entry->start) {
317 			prev = rb_prev(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*next_ret = prev;
321 	}
322 	return NULL;
323 }
324 
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 		       u64 offset,
328 		       struct rb_node ***p_ret,
329 		       struct rb_node **parent_ret)
330 {
331 	struct rb_node *prev = NULL;
332 	struct rb_node *ret;
333 
334 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 	if (!ret)
336 		return prev;
337 	return ret;
338 }
339 
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 					  u64 offset)
342 {
343 	return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345 
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 		     struct extent_state *other)
348 {
349 	if (tree->ops && tree->ops->merge_extent_hook)
350 		tree->ops->merge_extent_hook(tree->mapping->host, new,
351 					     other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned *bits);
414 
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426 			struct extent_state *state, u64 start, u64 end,
427 			struct rb_node ***p,
428 			struct rb_node **parent,
429 			unsigned *bits)
430 {
431 	struct rb_node *node;
432 
433 	if (end < start)
434 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 		       end, start);
436 	state->start = start;
437 	state->end = end;
438 
439 	set_state_bits(tree, state, bits);
440 
441 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 	if (node) {
443 		struct extent_state *found;
444 		found = rb_entry(node, struct extent_state, rb_node);
445 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 		       "%llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned *bits, int wake)
515 {
516 	struct extent_state *next;
517 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
518 
519 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 		u64 range = state->end - state->start + 1;
521 		WARN_ON(range > tree->dirty_bytes);
522 		tree->dirty_bytes -= range;
523 	}
524 	clear_state_cb(tree, state, bits);
525 	state->state &= ~bits_to_clear;
526 	if (wake)
527 		wake_up(&state->wq);
528 	if (state->state == 0) {
529 		next = next_state(state);
530 		if (extent_state_in_tree(state)) {
531 			rb_erase(&state->rb_node, &tree->state);
532 			RB_CLEAR_NODE(&state->rb_node);
533 			free_extent_state(state);
534 		} else {
535 			WARN_ON(1);
536 		}
537 	} else {
538 		merge_state(tree, state);
539 		next = next_state(state);
540 	}
541 	return next;
542 }
543 
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 	if (!prealloc)
548 		prealloc = alloc_extent_state(GFP_ATOMIC);
549 
550 	return prealloc;
551 }
552 
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 		    "Extent tree was modified by another "
557 		    "thread while locked.");
558 }
559 
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 		     unsigned bits, int wake, int delete,
574 		     struct extent_state **cached_state,
575 		     gfp_t mask)
576 {
577 	struct extent_state *state;
578 	struct extent_state *cached;
579 	struct extent_state *prealloc = NULL;
580 	struct rb_node *node;
581 	u64 last_end;
582 	int err;
583 	int clear = 0;
584 
585 	btrfs_debug_check_extent_io_range(tree, start, end);
586 
587 	if (bits & EXTENT_DELALLOC)
588 		bits |= EXTENT_NORESERVE;
589 
590 	if (delete)
591 		bits |= ~EXTENT_CTLBITS;
592 	bits |= EXTENT_FIRST_DELALLOC;
593 
594 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 		clear = 1;
596 again:
597 	if (!prealloc && (mask & __GFP_WAIT)) {
598 		/*
599 		 * Don't care for allocation failure here because we might end
600 		 * up not needing the pre-allocated extent state at all, which
601 		 * is the case if we only have in the tree extent states that
602 		 * cover our input range and don't cover too any other range.
603 		 * If we end up needing a new extent state we allocate it later.
604 		 */
605 		prealloc = alloc_extent_state(mask);
606 	}
607 
608 	spin_lock(&tree->lock);
609 	if (cached_state) {
610 		cached = *cached_state;
611 
612 		if (clear) {
613 			*cached_state = NULL;
614 			cached_state = NULL;
615 		}
616 
617 		if (cached && extent_state_in_tree(cached) &&
618 		    cached->start <= start && cached->end > start) {
619 			if (clear)
620 				atomic_dec(&cached->refs);
621 			state = cached;
622 			goto hit_next;
623 		}
624 		if (clear)
625 			free_extent_state(cached);
626 	}
627 	/*
628 	 * this search will find the extents that end after
629 	 * our range starts
630 	 */
631 	node = tree_search(tree, start);
632 	if (!node)
633 		goto out;
634 	state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636 	if (state->start > end)
637 		goto out;
638 	WARN_ON(state->end < start);
639 	last_end = state->end;
640 
641 	/* the state doesn't have the wanted bits, go ahead */
642 	if (!(state->state & bits)) {
643 		state = next_state(state);
644 		goto next;
645 	}
646 
647 	/*
648 	 *     | ---- desired range ---- |
649 	 *  | state | or
650 	 *  | ------------- state -------------- |
651 	 *
652 	 * We need to split the extent we found, and may flip
653 	 * bits on second half.
654 	 *
655 	 * If the extent we found extends past our range, we
656 	 * just split and search again.  It'll get split again
657 	 * the next time though.
658 	 *
659 	 * If the extent we found is inside our range, we clear
660 	 * the desired bit on it.
661 	 */
662 
663 	if (state->start < start) {
664 		prealloc = alloc_extent_state_atomic(prealloc);
665 		BUG_ON(!prealloc);
666 		err = split_state(tree, state, prealloc, start);
667 		if (err)
668 			extent_io_tree_panic(tree, err);
669 
670 		prealloc = NULL;
671 		if (err)
672 			goto out;
673 		if (state->end <= end) {
674 			state = clear_state_bit(tree, state, &bits, wake);
675 			goto next;
676 		}
677 		goto search_again;
678 	}
679 	/*
680 	 * | ---- desired range ---- |
681 	 *                        | state |
682 	 * We need to split the extent, and clear the bit
683 	 * on the first half
684 	 */
685 	if (state->start <= end && state->end > end) {
686 		prealloc = alloc_extent_state_atomic(prealloc);
687 		BUG_ON(!prealloc);
688 		err = split_state(tree, state, prealloc, end + 1);
689 		if (err)
690 			extent_io_tree_panic(tree, err);
691 
692 		if (wake)
693 			wake_up(&state->wq);
694 
695 		clear_state_bit(tree, prealloc, &bits, wake);
696 
697 		prealloc = NULL;
698 		goto out;
699 	}
700 
701 	state = clear_state_bit(tree, state, &bits, wake);
702 next:
703 	if (last_end == (u64)-1)
704 		goto out;
705 	start = last_end + 1;
706 	if (start <= end && state && !need_resched())
707 		goto hit_next;
708 	goto search_again;
709 
710 out:
711 	spin_unlock(&tree->lock);
712 	if (prealloc)
713 		free_extent_state(prealloc);
714 
715 	return 0;
716 
717 search_again:
718 	if (start > end)
719 		goto out;
720 	spin_unlock(&tree->lock);
721 	if (mask & __GFP_WAIT)
722 		cond_resched();
723 	goto again;
724 }
725 
726 static void wait_on_state(struct extent_io_tree *tree,
727 			  struct extent_state *state)
728 		__releases(tree->lock)
729 		__acquires(tree->lock)
730 {
731 	DEFINE_WAIT(wait);
732 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 	spin_unlock(&tree->lock);
734 	schedule();
735 	spin_lock(&tree->lock);
736 	finish_wait(&state->wq, &wait);
737 }
738 
739 /*
740  * waits for one or more bits to clear on a range in the state tree.
741  * The range [start, end] is inclusive.
742  * The tree lock is taken by this function
743  */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 			    unsigned long bits)
746 {
747 	struct extent_state *state;
748 	struct rb_node *node;
749 
750 	btrfs_debug_check_extent_io_range(tree, start, end);
751 
752 	spin_lock(&tree->lock);
753 again:
754 	while (1) {
755 		/*
756 		 * this search will find all the extents that end after
757 		 * our range starts
758 		 */
759 		node = tree_search(tree, start);
760 process_node:
761 		if (!node)
762 			break;
763 
764 		state = rb_entry(node, struct extent_state, rb_node);
765 
766 		if (state->start > end)
767 			goto out;
768 
769 		if (state->state & bits) {
770 			start = state->start;
771 			atomic_inc(&state->refs);
772 			wait_on_state(tree, state);
773 			free_extent_state(state);
774 			goto again;
775 		}
776 		start = state->end + 1;
777 
778 		if (start > end)
779 			break;
780 
781 		if (!cond_resched_lock(&tree->lock)) {
782 			node = rb_next(node);
783 			goto process_node;
784 		}
785 	}
786 out:
787 	spin_unlock(&tree->lock);
788 }
789 
790 static void set_state_bits(struct extent_io_tree *tree,
791 			   struct extent_state *state,
792 			   unsigned *bits)
793 {
794 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
795 
796 	set_state_cb(tree, state, bits);
797 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 		u64 range = state->end - state->start + 1;
799 		tree->dirty_bytes += range;
800 	}
801 	state->state |= bits_to_set;
802 }
803 
804 static void cache_state_if_flags(struct extent_state *state,
805 				 struct extent_state **cached_ptr,
806 				 unsigned flags)
807 {
808 	if (cached_ptr && !(*cached_ptr)) {
809 		if (!flags || (state->state & flags)) {
810 			*cached_ptr = state;
811 			atomic_inc(&state->refs);
812 		}
813 	}
814 }
815 
816 static void cache_state(struct extent_state *state,
817 			struct extent_state **cached_ptr)
818 {
819 	return cache_state_if_flags(state, cached_ptr,
820 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822 
823 /*
824  * set some bits on a range in the tree.  This may require allocations or
825  * sleeping, so the gfp mask is used to indicate what is allowed.
826  *
827  * If any of the exclusive bits are set, this will fail with -EEXIST if some
828  * part of the range already has the desired bits set.  The start of the
829  * existing range is returned in failed_start in this case.
830  *
831  * [start, end] is inclusive This takes the tree lock.
832  */
833 
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 		 unsigned bits, unsigned exclusive_bits,
837 		 u64 *failed_start, struct extent_state **cached_state,
838 		 gfp_t mask)
839 {
840 	struct extent_state *state;
841 	struct extent_state *prealloc = NULL;
842 	struct rb_node *node;
843 	struct rb_node **p;
844 	struct rb_node *parent;
845 	int err = 0;
846 	u64 last_start;
847 	u64 last_end;
848 
849 	btrfs_debug_check_extent_io_range(tree, start, end);
850 
851 	bits |= EXTENT_FIRST_DELALLOC;
852 again:
853 	if (!prealloc && (mask & __GFP_WAIT)) {
854 		prealloc = alloc_extent_state(mask);
855 		BUG_ON(!prealloc);
856 	}
857 
858 	spin_lock(&tree->lock);
859 	if (cached_state && *cached_state) {
860 		state = *cached_state;
861 		if (state->start <= start && state->end > start &&
862 		    extent_state_in_tree(state)) {
863 			node = &state->rb_node;
864 			goto hit_next;
865 		}
866 	}
867 	/*
868 	 * this search will find all the extents that end after
869 	 * our range starts.
870 	 */
871 	node = tree_search_for_insert(tree, start, &p, &parent);
872 	if (!node) {
873 		prealloc = alloc_extent_state_atomic(prealloc);
874 		BUG_ON(!prealloc);
875 		err = insert_state(tree, prealloc, start, end,
876 				   &p, &parent, &bits);
877 		if (err)
878 			extent_io_tree_panic(tree, err);
879 
880 		cache_state(prealloc, cached_state);
881 		prealloc = NULL;
882 		goto out;
883 	}
884 	state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886 	last_start = state->start;
887 	last_end = state->end;
888 
889 	/*
890 	 * | ---- desired range ---- |
891 	 * | state |
892 	 *
893 	 * Just lock what we found and keep going
894 	 */
895 	if (state->start == start && state->end <= end) {
896 		if (state->state & exclusive_bits) {
897 			*failed_start = state->start;
898 			err = -EEXIST;
899 			goto out;
900 		}
901 
902 		set_state_bits(tree, state, &bits);
903 		cache_state(state, cached_state);
904 		merge_state(tree, state);
905 		if (last_end == (u64)-1)
906 			goto out;
907 		start = last_end + 1;
908 		state = next_state(state);
909 		if (start < end && state && state->start == start &&
910 		    !need_resched())
911 			goto hit_next;
912 		goto search_again;
913 	}
914 
915 	/*
916 	 *     | ---- desired range ---- |
917 	 * | state |
918 	 *   or
919 	 * | ------------- state -------------- |
920 	 *
921 	 * We need to split the extent we found, and may flip bits on
922 	 * second half.
923 	 *
924 	 * If the extent we found extends past our
925 	 * range, we just split and search again.  It'll get split
926 	 * again the next time though.
927 	 *
928 	 * If the extent we found is inside our range, we set the
929 	 * desired bit on it.
930 	 */
931 	if (state->start < start) {
932 		if (state->state & exclusive_bits) {
933 			*failed_start = start;
934 			err = -EEXIST;
935 			goto out;
936 		}
937 
938 		prealloc = alloc_extent_state_atomic(prealloc);
939 		BUG_ON(!prealloc);
940 		err = split_state(tree, state, prealloc, start);
941 		if (err)
942 			extent_io_tree_panic(tree, err);
943 
944 		prealloc = NULL;
945 		if (err)
946 			goto out;
947 		if (state->end <= end) {
948 			set_state_bits(tree, state, &bits);
949 			cache_state(state, cached_state);
950 			merge_state(tree, state);
951 			if (last_end == (u64)-1)
952 				goto out;
953 			start = last_end + 1;
954 			state = next_state(state);
955 			if (start < end && state && state->start == start &&
956 			    !need_resched())
957 				goto hit_next;
958 		}
959 		goto search_again;
960 	}
961 	/*
962 	 * | ---- desired range ---- |
963 	 *     | state | or               | state |
964 	 *
965 	 * There's a hole, we need to insert something in it and
966 	 * ignore the extent we found.
967 	 */
968 	if (state->start > start) {
969 		u64 this_end;
970 		if (end < last_start)
971 			this_end = end;
972 		else
973 			this_end = last_start - 1;
974 
975 		prealloc = alloc_extent_state_atomic(prealloc);
976 		BUG_ON(!prealloc);
977 
978 		/*
979 		 * Avoid to free 'prealloc' if it can be merged with
980 		 * the later extent.
981 		 */
982 		err = insert_state(tree, prealloc, start, this_end,
983 				   NULL, NULL, &bits);
984 		if (err)
985 			extent_io_tree_panic(tree, err);
986 
987 		cache_state(prealloc, cached_state);
988 		prealloc = NULL;
989 		start = this_end + 1;
990 		goto search_again;
991 	}
992 	/*
993 	 * | ---- desired range ---- |
994 	 *                        | state |
995 	 * We need to split the extent, and set the bit
996 	 * on the first half
997 	 */
998 	if (state->start <= end && state->end > end) {
999 		if (state->state & exclusive_bits) {
1000 			*failed_start = start;
1001 			err = -EEXIST;
1002 			goto out;
1003 		}
1004 
1005 		prealloc = alloc_extent_state_atomic(prealloc);
1006 		BUG_ON(!prealloc);
1007 		err = split_state(tree, state, prealloc, end + 1);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		set_state_bits(tree, prealloc, &bits);
1012 		cache_state(prealloc, cached_state);
1013 		merge_state(tree, prealloc);
1014 		prealloc = NULL;
1015 		goto out;
1016 	}
1017 
1018 	goto search_again;
1019 
1020 out:
1021 	spin_unlock(&tree->lock);
1022 	if (prealloc)
1023 		free_extent_state(prealloc);
1024 
1025 	return err;
1026 
1027 search_again:
1028 	if (start > end)
1029 		goto out;
1030 	spin_unlock(&tree->lock);
1031 	if (mask & __GFP_WAIT)
1032 		cond_resched();
1033 	goto again;
1034 }
1035 
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 		   unsigned bits, u64 * failed_start,
1038 		   struct extent_state **cached_state, gfp_t mask)
1039 {
1040 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 				cached_state, mask);
1042 }
1043 
1044 
1045 /**
1046  * convert_extent_bit - convert all bits in a given range from one bit to
1047  * 			another
1048  * @tree:	the io tree to search
1049  * @start:	the start offset in bytes
1050  * @end:	the end offset in bytes (inclusive)
1051  * @bits:	the bits to set in this range
1052  * @clear_bits:	the bits to clear in this range
1053  * @cached_state:	state that we're going to cache
1054  * @mask:	the allocation mask
1055  *
1056  * This will go through and set bits for the given range.  If any states exist
1057  * already in this range they are set with the given bit and cleared of the
1058  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060  * boundary bits like LOCK.
1061  */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 		       unsigned bits, unsigned clear_bits,
1064 		       struct extent_state **cached_state, gfp_t mask)
1065 {
1066 	struct extent_state *state;
1067 	struct extent_state *prealloc = NULL;
1068 	struct rb_node *node;
1069 	struct rb_node **p;
1070 	struct rb_node *parent;
1071 	int err = 0;
1072 	u64 last_start;
1073 	u64 last_end;
1074 	bool first_iteration = true;
1075 
1076 	btrfs_debug_check_extent_io_range(tree, start, end);
1077 
1078 again:
1079 	if (!prealloc && (mask & __GFP_WAIT)) {
1080 		/*
1081 		 * Best effort, don't worry if extent state allocation fails
1082 		 * here for the first iteration. We might have a cached state
1083 		 * that matches exactly the target range, in which case no
1084 		 * extent state allocations are needed. We'll only know this
1085 		 * after locking the tree.
1086 		 */
1087 		prealloc = alloc_extent_state(mask);
1088 		if (!prealloc && !first_iteration)
1089 			return -ENOMEM;
1090 	}
1091 
1092 	spin_lock(&tree->lock);
1093 	if (cached_state && *cached_state) {
1094 		state = *cached_state;
1095 		if (state->start <= start && state->end > start &&
1096 		    extent_state_in_tree(state)) {
1097 			node = &state->rb_node;
1098 			goto hit_next;
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * this search will find all the extents that end after
1104 	 * our range starts.
1105 	 */
1106 	node = tree_search_for_insert(tree, start, &p, &parent);
1107 	if (!node) {
1108 		prealloc = alloc_extent_state_atomic(prealloc);
1109 		if (!prealloc) {
1110 			err = -ENOMEM;
1111 			goto out;
1112 		}
1113 		err = insert_state(tree, prealloc, start, end,
1114 				   &p, &parent, &bits);
1115 		if (err)
1116 			extent_io_tree_panic(tree, err);
1117 		cache_state(prealloc, cached_state);
1118 		prealloc = NULL;
1119 		goto out;
1120 	}
1121 	state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123 	last_start = state->start;
1124 	last_end = state->end;
1125 
1126 	/*
1127 	 * | ---- desired range ---- |
1128 	 * | state |
1129 	 *
1130 	 * Just lock what we found and keep going
1131 	 */
1132 	if (state->start == start && state->end <= end) {
1133 		set_state_bits(tree, state, &bits);
1134 		cache_state(state, cached_state);
1135 		state = clear_state_bit(tree, state, &clear_bits, 0);
1136 		if (last_end == (u64)-1)
1137 			goto out;
1138 		start = last_end + 1;
1139 		if (start < end && state && state->start == start &&
1140 		    !need_resched())
1141 			goto hit_next;
1142 		goto search_again;
1143 	}
1144 
1145 	/*
1146 	 *     | ---- desired range ---- |
1147 	 * | state |
1148 	 *   or
1149 	 * | ------------- state -------------- |
1150 	 *
1151 	 * We need to split the extent we found, and may flip bits on
1152 	 * second half.
1153 	 *
1154 	 * If the extent we found extends past our
1155 	 * range, we just split and search again.  It'll get split
1156 	 * again the next time though.
1157 	 *
1158 	 * If the extent we found is inside our range, we set the
1159 	 * desired bit on it.
1160 	 */
1161 	if (state->start < start) {
1162 		prealloc = alloc_extent_state_atomic(prealloc);
1163 		if (!prealloc) {
1164 			err = -ENOMEM;
1165 			goto out;
1166 		}
1167 		err = split_state(tree, state, prealloc, start);
1168 		if (err)
1169 			extent_io_tree_panic(tree, err);
1170 		prealloc = NULL;
1171 		if (err)
1172 			goto out;
1173 		if (state->end <= end) {
1174 			set_state_bits(tree, state, &bits);
1175 			cache_state(state, cached_state);
1176 			state = clear_state_bit(tree, state, &clear_bits, 0);
1177 			if (last_end == (u64)-1)
1178 				goto out;
1179 			start = last_end + 1;
1180 			if (start < end && state && state->start == start &&
1181 			    !need_resched())
1182 				goto hit_next;
1183 		}
1184 		goto search_again;
1185 	}
1186 	/*
1187 	 * | ---- desired range ---- |
1188 	 *     | state | or               | state |
1189 	 *
1190 	 * There's a hole, we need to insert something in it and
1191 	 * ignore the extent we found.
1192 	 */
1193 	if (state->start > start) {
1194 		u64 this_end;
1195 		if (end < last_start)
1196 			this_end = end;
1197 		else
1198 			this_end = last_start - 1;
1199 
1200 		prealloc = alloc_extent_state_atomic(prealloc);
1201 		if (!prealloc) {
1202 			err = -ENOMEM;
1203 			goto out;
1204 		}
1205 
1206 		/*
1207 		 * Avoid to free 'prealloc' if it can be merged with
1208 		 * the later extent.
1209 		 */
1210 		err = insert_state(tree, prealloc, start, this_end,
1211 				   NULL, NULL, &bits);
1212 		if (err)
1213 			extent_io_tree_panic(tree, err);
1214 		cache_state(prealloc, cached_state);
1215 		prealloc = NULL;
1216 		start = this_end + 1;
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *                        | state |
1222 	 * We need to split the extent, and set the bit
1223 	 * on the first half
1224 	 */
1225 	if (state->start <= end && state->end > end) {
1226 		prealloc = alloc_extent_state_atomic(prealloc);
1227 		if (!prealloc) {
1228 			err = -ENOMEM;
1229 			goto out;
1230 		}
1231 
1232 		err = split_state(tree, state, prealloc, end + 1);
1233 		if (err)
1234 			extent_io_tree_panic(tree, err);
1235 
1236 		set_state_bits(tree, prealloc, &bits);
1237 		cache_state(prealloc, cached_state);
1238 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1239 		prealloc = NULL;
1240 		goto out;
1241 	}
1242 
1243 	goto search_again;
1244 
1245 out:
1246 	spin_unlock(&tree->lock);
1247 	if (prealloc)
1248 		free_extent_state(prealloc);
1249 
1250 	return err;
1251 
1252 search_again:
1253 	if (start > end)
1254 		goto out;
1255 	spin_unlock(&tree->lock);
1256 	if (mask & __GFP_WAIT)
1257 		cond_resched();
1258 	first_iteration = false;
1259 	goto again;
1260 }
1261 
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 		     gfp_t mask)
1265 {
1266 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267 			      NULL, mask);
1268 }
1269 
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 		    unsigned bits, gfp_t mask)
1272 {
1273 	return set_extent_bit(tree, start, end, bits, NULL,
1274 			      NULL, mask);
1275 }
1276 
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 		      unsigned bits, gfp_t mask)
1279 {
1280 	int wake = 0;
1281 
1282 	if (bits & EXTENT_LOCKED)
1283 		wake = 1;
1284 
1285 	return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1286 }
1287 
1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289 			struct extent_state **cached_state, gfp_t mask)
1290 {
1291 	return set_extent_bit(tree, start, end,
1292 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1293 			      NULL, cached_state, mask);
1294 }
1295 
1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297 		      struct extent_state **cached_state, gfp_t mask)
1298 {
1299 	return set_extent_bit(tree, start, end,
1300 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301 			      NULL, cached_state, mask);
1302 }
1303 
1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305 		       gfp_t mask)
1306 {
1307 	return clear_extent_bit(tree, start, end,
1308 				EXTENT_DIRTY | EXTENT_DELALLOC |
1309 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1310 }
1311 
1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313 		     gfp_t mask)
1314 {
1315 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1316 			      NULL, mask);
1317 }
1318 
1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320 			struct extent_state **cached_state, gfp_t mask)
1321 {
1322 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323 			      cached_state, mask);
1324 }
1325 
1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327 			  struct extent_state **cached_state, gfp_t mask)
1328 {
1329 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330 				cached_state, mask);
1331 }
1332 
1333 /*
1334  * either insert or lock state struct between start and end use mask to tell
1335  * us if waiting is desired.
1336  */
1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 		     unsigned bits, struct extent_state **cached_state)
1339 {
1340 	int err;
1341 	u64 failed_start;
1342 
1343 	while (1) {
1344 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345 				       EXTENT_LOCKED, &failed_start,
1346 				       cached_state, GFP_NOFS);
1347 		if (err == -EEXIST) {
1348 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349 			start = failed_start;
1350 		} else
1351 			break;
1352 		WARN_ON(start > end);
1353 	}
1354 	return err;
1355 }
1356 
1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 	return lock_extent_bits(tree, start, end, 0, NULL);
1360 }
1361 
1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363 {
1364 	int err;
1365 	u64 failed_start;
1366 
1367 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368 			       &failed_start, NULL, GFP_NOFS);
1369 	if (err == -EEXIST) {
1370 		if (failed_start > start)
1371 			clear_extent_bit(tree, start, failed_start - 1,
1372 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1373 		return 0;
1374 	}
1375 	return 1;
1376 }
1377 
1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379 			 struct extent_state **cached, gfp_t mask)
1380 {
1381 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382 				mask);
1383 }
1384 
1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1386 {
1387 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1388 				GFP_NOFS);
1389 }
1390 
1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392 {
1393 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395 	struct page *page;
1396 
1397 	while (index <= end_index) {
1398 		page = find_get_page(inode->i_mapping, index);
1399 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400 		clear_page_dirty_for_io(page);
1401 		page_cache_release(page);
1402 		index++;
1403 	}
1404 	return 0;
1405 }
1406 
1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408 {
1409 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 	struct page *page;
1412 
1413 	while (index <= end_index) {
1414 		page = find_get_page(inode->i_mapping, index);
1415 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416 		__set_page_dirty_nobuffers(page);
1417 		account_page_redirty(page);
1418 		page_cache_release(page);
1419 		index++;
1420 	}
1421 	return 0;
1422 }
1423 
1424 /*
1425  * helper function to set both pages and extents in the tree writeback
1426  */
1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1428 {
1429 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1430 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431 	struct page *page;
1432 
1433 	while (index <= end_index) {
1434 		page = find_get_page(tree->mapping, index);
1435 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436 		set_page_writeback(page);
1437 		page_cache_release(page);
1438 		index++;
1439 	}
1440 	return 0;
1441 }
1442 
1443 /* find the first state struct with 'bits' set after 'start', and
1444  * return it.  tree->lock must be held.  NULL will returned if
1445  * nothing was found after 'start'
1446  */
1447 static struct extent_state *
1448 find_first_extent_bit_state(struct extent_io_tree *tree,
1449 			    u64 start, unsigned bits)
1450 {
1451 	struct rb_node *node;
1452 	struct extent_state *state;
1453 
1454 	/*
1455 	 * this search will find all the extents that end after
1456 	 * our range starts.
1457 	 */
1458 	node = tree_search(tree, start);
1459 	if (!node)
1460 		goto out;
1461 
1462 	while (1) {
1463 		state = rb_entry(node, struct extent_state, rb_node);
1464 		if (state->end >= start && (state->state & bits))
1465 			return state;
1466 
1467 		node = rb_next(node);
1468 		if (!node)
1469 			break;
1470 	}
1471 out:
1472 	return NULL;
1473 }
1474 
1475 /*
1476  * find the first offset in the io tree with 'bits' set. zero is
1477  * returned if we find something, and *start_ret and *end_ret are
1478  * set to reflect the state struct that was found.
1479  *
1480  * If nothing was found, 1 is returned. If found something, return 0.
1481  */
1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1484 			  struct extent_state **cached_state)
1485 {
1486 	struct extent_state *state;
1487 	struct rb_node *n;
1488 	int ret = 1;
1489 
1490 	spin_lock(&tree->lock);
1491 	if (cached_state && *cached_state) {
1492 		state = *cached_state;
1493 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1494 			n = rb_next(&state->rb_node);
1495 			while (n) {
1496 				state = rb_entry(n, struct extent_state,
1497 						 rb_node);
1498 				if (state->state & bits)
1499 					goto got_it;
1500 				n = rb_next(n);
1501 			}
1502 			free_extent_state(*cached_state);
1503 			*cached_state = NULL;
1504 			goto out;
1505 		}
1506 		free_extent_state(*cached_state);
1507 		*cached_state = NULL;
1508 	}
1509 
1510 	state = find_first_extent_bit_state(tree, start, bits);
1511 got_it:
1512 	if (state) {
1513 		cache_state_if_flags(state, cached_state, 0);
1514 		*start_ret = state->start;
1515 		*end_ret = state->end;
1516 		ret = 0;
1517 	}
1518 out:
1519 	spin_unlock(&tree->lock);
1520 	return ret;
1521 }
1522 
1523 /*
1524  * find a contiguous range of bytes in the file marked as delalloc, not
1525  * more than 'max_bytes'.  start and end are used to return the range,
1526  *
1527  * 1 is returned if we find something, 0 if nothing was in the tree
1528  */
1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530 					u64 *start, u64 *end, u64 max_bytes,
1531 					struct extent_state **cached_state)
1532 {
1533 	struct rb_node *node;
1534 	struct extent_state *state;
1535 	u64 cur_start = *start;
1536 	u64 found = 0;
1537 	u64 total_bytes = 0;
1538 
1539 	spin_lock(&tree->lock);
1540 
1541 	/*
1542 	 * this search will find all the extents that end after
1543 	 * our range starts.
1544 	 */
1545 	node = tree_search(tree, cur_start);
1546 	if (!node) {
1547 		if (!found)
1548 			*end = (u64)-1;
1549 		goto out;
1550 	}
1551 
1552 	while (1) {
1553 		state = rb_entry(node, struct extent_state, rb_node);
1554 		if (found && (state->start != cur_start ||
1555 			      (state->state & EXTENT_BOUNDARY))) {
1556 			goto out;
1557 		}
1558 		if (!(state->state & EXTENT_DELALLOC)) {
1559 			if (!found)
1560 				*end = state->end;
1561 			goto out;
1562 		}
1563 		if (!found) {
1564 			*start = state->start;
1565 			*cached_state = state;
1566 			atomic_inc(&state->refs);
1567 		}
1568 		found++;
1569 		*end = state->end;
1570 		cur_start = state->end + 1;
1571 		node = rb_next(node);
1572 		total_bytes += state->end - state->start + 1;
1573 		if (total_bytes >= max_bytes)
1574 			break;
1575 		if (!node)
1576 			break;
1577 	}
1578 out:
1579 	spin_unlock(&tree->lock);
1580 	return found;
1581 }
1582 
1583 static noinline void __unlock_for_delalloc(struct inode *inode,
1584 					   struct page *locked_page,
1585 					   u64 start, u64 end)
1586 {
1587 	int ret;
1588 	struct page *pages[16];
1589 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1590 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591 	unsigned long nr_pages = end_index - index + 1;
1592 	int i;
1593 
1594 	if (index == locked_page->index && end_index == index)
1595 		return;
1596 
1597 	while (nr_pages > 0) {
1598 		ret = find_get_pages_contig(inode->i_mapping, index,
1599 				     min_t(unsigned long, nr_pages,
1600 				     ARRAY_SIZE(pages)), pages);
1601 		for (i = 0; i < ret; i++) {
1602 			if (pages[i] != locked_page)
1603 				unlock_page(pages[i]);
1604 			page_cache_release(pages[i]);
1605 		}
1606 		nr_pages -= ret;
1607 		index += ret;
1608 		cond_resched();
1609 	}
1610 }
1611 
1612 static noinline int lock_delalloc_pages(struct inode *inode,
1613 					struct page *locked_page,
1614 					u64 delalloc_start,
1615 					u64 delalloc_end)
1616 {
1617 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618 	unsigned long start_index = index;
1619 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620 	unsigned long pages_locked = 0;
1621 	struct page *pages[16];
1622 	unsigned long nrpages;
1623 	int ret;
1624 	int i;
1625 
1626 	/* the caller is responsible for locking the start index */
1627 	if (index == locked_page->index && index == end_index)
1628 		return 0;
1629 
1630 	/* skip the page at the start index */
1631 	nrpages = end_index - index + 1;
1632 	while (nrpages > 0) {
1633 		ret = find_get_pages_contig(inode->i_mapping, index,
1634 				     min_t(unsigned long,
1635 				     nrpages, ARRAY_SIZE(pages)), pages);
1636 		if (ret == 0) {
1637 			ret = -EAGAIN;
1638 			goto done;
1639 		}
1640 		/* now we have an array of pages, lock them all */
1641 		for (i = 0; i < ret; i++) {
1642 			/*
1643 			 * the caller is taking responsibility for
1644 			 * locked_page
1645 			 */
1646 			if (pages[i] != locked_page) {
1647 				lock_page(pages[i]);
1648 				if (!PageDirty(pages[i]) ||
1649 				    pages[i]->mapping != inode->i_mapping) {
1650 					ret = -EAGAIN;
1651 					unlock_page(pages[i]);
1652 					page_cache_release(pages[i]);
1653 					goto done;
1654 				}
1655 			}
1656 			page_cache_release(pages[i]);
1657 			pages_locked++;
1658 		}
1659 		nrpages -= ret;
1660 		index += ret;
1661 		cond_resched();
1662 	}
1663 	ret = 0;
1664 done:
1665 	if (ret && pages_locked) {
1666 		__unlock_for_delalloc(inode, locked_page,
1667 			      delalloc_start,
1668 			      ((u64)(start_index + pages_locked - 1)) <<
1669 			      PAGE_CACHE_SHIFT);
1670 	}
1671 	return ret;
1672 }
1673 
1674 /*
1675  * find a contiguous range of bytes in the file marked as delalloc, not
1676  * more than 'max_bytes'.  start and end are used to return the range,
1677  *
1678  * 1 is returned if we find something, 0 if nothing was in the tree
1679  */
1680 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681 				    struct extent_io_tree *tree,
1682 				    struct page *locked_page, u64 *start,
1683 				    u64 *end, u64 max_bytes)
1684 {
1685 	u64 delalloc_start;
1686 	u64 delalloc_end;
1687 	u64 found;
1688 	struct extent_state *cached_state = NULL;
1689 	int ret;
1690 	int loops = 0;
1691 
1692 again:
1693 	/* step one, find a bunch of delalloc bytes starting at start */
1694 	delalloc_start = *start;
1695 	delalloc_end = 0;
1696 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697 				    max_bytes, &cached_state);
1698 	if (!found || delalloc_end <= *start) {
1699 		*start = delalloc_start;
1700 		*end = delalloc_end;
1701 		free_extent_state(cached_state);
1702 		return 0;
1703 	}
1704 
1705 	/*
1706 	 * start comes from the offset of locked_page.  We have to lock
1707 	 * pages in order, so we can't process delalloc bytes before
1708 	 * locked_page
1709 	 */
1710 	if (delalloc_start < *start)
1711 		delalloc_start = *start;
1712 
1713 	/*
1714 	 * make sure to limit the number of pages we try to lock down
1715 	 */
1716 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1717 		delalloc_end = delalloc_start + max_bytes - 1;
1718 
1719 	/* step two, lock all the pages after the page that has start */
1720 	ret = lock_delalloc_pages(inode, locked_page,
1721 				  delalloc_start, delalloc_end);
1722 	if (ret == -EAGAIN) {
1723 		/* some of the pages are gone, lets avoid looping by
1724 		 * shortening the size of the delalloc range we're searching
1725 		 */
1726 		free_extent_state(cached_state);
1727 		cached_state = NULL;
1728 		if (!loops) {
1729 			max_bytes = PAGE_CACHE_SIZE;
1730 			loops = 1;
1731 			goto again;
1732 		} else {
1733 			found = 0;
1734 			goto out_failed;
1735 		}
1736 	}
1737 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1738 
1739 	/* step three, lock the state bits for the whole range */
1740 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1741 
1742 	/* then test to make sure it is all still delalloc */
1743 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744 			     EXTENT_DELALLOC, 1, cached_state);
1745 	if (!ret) {
1746 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747 				     &cached_state, GFP_NOFS);
1748 		__unlock_for_delalloc(inode, locked_page,
1749 			      delalloc_start, delalloc_end);
1750 		cond_resched();
1751 		goto again;
1752 	}
1753 	free_extent_state(cached_state);
1754 	*start = delalloc_start;
1755 	*end = delalloc_end;
1756 out_failed:
1757 	return found;
1758 }
1759 
1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761 				 struct page *locked_page,
1762 				 unsigned clear_bits,
1763 				 unsigned long page_ops)
1764 {
1765 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1766 	int ret;
1767 	struct page *pages[16];
1768 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1769 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770 	unsigned long nr_pages = end_index - index + 1;
1771 	int i;
1772 
1773 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1774 	if (page_ops == 0)
1775 		return 0;
1776 
1777 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778 		mapping_set_error(inode->i_mapping, -EIO);
1779 
1780 	while (nr_pages > 0) {
1781 		ret = find_get_pages_contig(inode->i_mapping, index,
1782 				     min_t(unsigned long,
1783 				     nr_pages, ARRAY_SIZE(pages)), pages);
1784 		for (i = 0; i < ret; i++) {
1785 
1786 			if (page_ops & PAGE_SET_PRIVATE2)
1787 				SetPagePrivate2(pages[i]);
1788 
1789 			if (pages[i] == locked_page) {
1790 				page_cache_release(pages[i]);
1791 				continue;
1792 			}
1793 			if (page_ops & PAGE_CLEAR_DIRTY)
1794 				clear_page_dirty_for_io(pages[i]);
1795 			if (page_ops & PAGE_SET_WRITEBACK)
1796 				set_page_writeback(pages[i]);
1797 			if (page_ops & PAGE_SET_ERROR)
1798 				SetPageError(pages[i]);
1799 			if (page_ops & PAGE_END_WRITEBACK)
1800 				end_page_writeback(pages[i]);
1801 			if (page_ops & PAGE_UNLOCK)
1802 				unlock_page(pages[i]);
1803 			page_cache_release(pages[i]);
1804 		}
1805 		nr_pages -= ret;
1806 		index += ret;
1807 		cond_resched();
1808 	}
1809 	return 0;
1810 }
1811 
1812 /*
1813  * count the number of bytes in the tree that have a given bit(s)
1814  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1815  * cached.  The total number found is returned.
1816  */
1817 u64 count_range_bits(struct extent_io_tree *tree,
1818 		     u64 *start, u64 search_end, u64 max_bytes,
1819 		     unsigned bits, int contig)
1820 {
1821 	struct rb_node *node;
1822 	struct extent_state *state;
1823 	u64 cur_start = *start;
1824 	u64 total_bytes = 0;
1825 	u64 last = 0;
1826 	int found = 0;
1827 
1828 	if (WARN_ON(search_end <= cur_start))
1829 		return 0;
1830 
1831 	spin_lock(&tree->lock);
1832 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833 		total_bytes = tree->dirty_bytes;
1834 		goto out;
1835 	}
1836 	/*
1837 	 * this search will find all the extents that end after
1838 	 * our range starts.
1839 	 */
1840 	node = tree_search(tree, cur_start);
1841 	if (!node)
1842 		goto out;
1843 
1844 	while (1) {
1845 		state = rb_entry(node, struct extent_state, rb_node);
1846 		if (state->start > search_end)
1847 			break;
1848 		if (contig && found && state->start > last + 1)
1849 			break;
1850 		if (state->end >= cur_start && (state->state & bits) == bits) {
1851 			total_bytes += min(search_end, state->end) + 1 -
1852 				       max(cur_start, state->start);
1853 			if (total_bytes >= max_bytes)
1854 				break;
1855 			if (!found) {
1856 				*start = max(cur_start, state->start);
1857 				found = 1;
1858 			}
1859 			last = state->end;
1860 		} else if (contig && found) {
1861 			break;
1862 		}
1863 		node = rb_next(node);
1864 		if (!node)
1865 			break;
1866 	}
1867 out:
1868 	spin_unlock(&tree->lock);
1869 	return total_bytes;
1870 }
1871 
1872 /*
1873  * set the private field for a given byte offset in the tree.  If there isn't
1874  * an extent_state there already, this does nothing.
1875  */
1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1877 {
1878 	struct rb_node *node;
1879 	struct extent_state *state;
1880 	int ret = 0;
1881 
1882 	spin_lock(&tree->lock);
1883 	/*
1884 	 * this search will find all the extents that end after
1885 	 * our range starts.
1886 	 */
1887 	node = tree_search(tree, start);
1888 	if (!node) {
1889 		ret = -ENOENT;
1890 		goto out;
1891 	}
1892 	state = rb_entry(node, struct extent_state, rb_node);
1893 	if (state->start != start) {
1894 		ret = -ENOENT;
1895 		goto out;
1896 	}
1897 	state->private = private;
1898 out:
1899 	spin_unlock(&tree->lock);
1900 	return ret;
1901 }
1902 
1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904 {
1905 	struct rb_node *node;
1906 	struct extent_state *state;
1907 	int ret = 0;
1908 
1909 	spin_lock(&tree->lock);
1910 	/*
1911 	 * this search will find all the extents that end after
1912 	 * our range starts.
1913 	 */
1914 	node = tree_search(tree, start);
1915 	if (!node) {
1916 		ret = -ENOENT;
1917 		goto out;
1918 	}
1919 	state = rb_entry(node, struct extent_state, rb_node);
1920 	if (state->start != start) {
1921 		ret = -ENOENT;
1922 		goto out;
1923 	}
1924 	*private = state->private;
1925 out:
1926 	spin_unlock(&tree->lock);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * searches a range in the state tree for a given mask.
1932  * If 'filled' == 1, this returns 1 only if every extent in the tree
1933  * has the bits set.  Otherwise, 1 is returned if any bit in the
1934  * range is found set.
1935  */
1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937 		   unsigned bits, int filled, struct extent_state *cached)
1938 {
1939 	struct extent_state *state = NULL;
1940 	struct rb_node *node;
1941 	int bitset = 0;
1942 
1943 	spin_lock(&tree->lock);
1944 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945 	    cached->end > start)
1946 		node = &cached->rb_node;
1947 	else
1948 		node = tree_search(tree, start);
1949 	while (node && start <= end) {
1950 		state = rb_entry(node, struct extent_state, rb_node);
1951 
1952 		if (filled && state->start > start) {
1953 			bitset = 0;
1954 			break;
1955 		}
1956 
1957 		if (state->start > end)
1958 			break;
1959 
1960 		if (state->state & bits) {
1961 			bitset = 1;
1962 			if (!filled)
1963 				break;
1964 		} else if (filled) {
1965 			bitset = 0;
1966 			break;
1967 		}
1968 
1969 		if (state->end == (u64)-1)
1970 			break;
1971 
1972 		start = state->end + 1;
1973 		if (start > end)
1974 			break;
1975 		node = rb_next(node);
1976 		if (!node) {
1977 			if (filled)
1978 				bitset = 0;
1979 			break;
1980 		}
1981 	}
1982 	spin_unlock(&tree->lock);
1983 	return bitset;
1984 }
1985 
1986 /*
1987  * helper function to set a given page up to date if all the
1988  * extents in the tree for that page are up to date
1989  */
1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1991 {
1992 	u64 start = page_offset(page);
1993 	u64 end = start + PAGE_CACHE_SIZE - 1;
1994 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995 		SetPageUptodate(page);
1996 }
1997 
1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1999 {
2000 	int ret;
2001 	int err = 0;
2002 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003 
2004 	set_state_private(failure_tree, rec->start, 0);
2005 	ret = clear_extent_bits(failure_tree, rec->start,
2006 				rec->start + rec->len - 1,
2007 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008 	if (ret)
2009 		err = ret;
2010 
2011 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012 				rec->start + rec->len - 1,
2013 				EXTENT_DAMAGED, GFP_NOFS);
2014 	if (ret && !err)
2015 		err = ret;
2016 
2017 	kfree(rec);
2018 	return err;
2019 }
2020 
2021 /*
2022  * this bypasses the standard btrfs submit functions deliberately, as
2023  * the standard behavior is to write all copies in a raid setup. here we only
2024  * want to write the one bad copy. so we do the mapping for ourselves and issue
2025  * submit_bio directly.
2026  * to avoid any synchronization issues, wait for the data after writing, which
2027  * actually prevents the read that triggered the error from finishing.
2028  * currently, there can be no more than two copies of every data bit. thus,
2029  * exactly one rewrite is required.
2030  */
2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032 		      struct page *page, unsigned int pg_offset, int mirror_num)
2033 {
2034 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2035 	struct bio *bio;
2036 	struct btrfs_device *dev;
2037 	u64 map_length = 0;
2038 	u64 sector;
2039 	struct btrfs_bio *bbio = NULL;
2040 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041 	int ret;
2042 
2043 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044 	BUG_ON(!mirror_num);
2045 
2046 	/* we can't repair anything in raid56 yet */
2047 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048 		return 0;
2049 
2050 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2051 	if (!bio)
2052 		return -EIO;
2053 	bio->bi_iter.bi_size = 0;
2054 	map_length = length;
2055 
2056 	ret = btrfs_map_block(fs_info, WRITE, logical,
2057 			      &map_length, &bbio, mirror_num);
2058 	if (ret) {
2059 		bio_put(bio);
2060 		return -EIO;
2061 	}
2062 	BUG_ON(mirror_num != bbio->mirror_num);
2063 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2064 	bio->bi_iter.bi_sector = sector;
2065 	dev = bbio->stripes[mirror_num-1].dev;
2066 	btrfs_put_bbio(bbio);
2067 	if (!dev || !dev->bdev || !dev->writeable) {
2068 		bio_put(bio);
2069 		return -EIO;
2070 	}
2071 	bio->bi_bdev = dev->bdev;
2072 	bio_add_page(bio, page, length, pg_offset);
2073 
2074 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075 		/* try to remap that extent elsewhere? */
2076 		bio_put(bio);
2077 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2078 		return -EIO;
2079 	}
2080 
2081 	printk_ratelimited_in_rcu(KERN_INFO
2082 				  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083 				  btrfs_ino(inode), start,
2084 				  rcu_str_deref(dev->name), sector);
2085 	bio_put(bio);
2086 	return 0;
2087 }
2088 
2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090 			 int mirror_num)
2091 {
2092 	u64 start = eb->start;
2093 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2094 	int ret = 0;
2095 
2096 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2097 		return -EROFS;
2098 
2099 	for (i = 0; i < num_pages; i++) {
2100 		struct page *p = eb->pages[i];
2101 
2102 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2103 					PAGE_CACHE_SIZE, start, p,
2104 					start - page_offset(p), mirror_num);
2105 		if (ret)
2106 			break;
2107 		start += PAGE_CACHE_SIZE;
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 /*
2114  * each time an IO finishes, we do a fast check in the IO failure tree
2115  * to see if we need to process or clean up an io_failure_record
2116  */
2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118 		     unsigned int pg_offset)
2119 {
2120 	u64 private;
2121 	u64 private_failure;
2122 	struct io_failure_record *failrec;
2123 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124 	struct extent_state *state;
2125 	int num_copies;
2126 	int ret;
2127 
2128 	private = 0;
2129 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130 				(u64)-1, 1, EXTENT_DIRTY, 0);
2131 	if (!ret)
2132 		return 0;
2133 
2134 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135 				&private_failure);
2136 	if (ret)
2137 		return 0;
2138 
2139 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140 	BUG_ON(!failrec->this_mirror);
2141 
2142 	if (failrec->in_validation) {
2143 		/* there was no real error, just free the record */
2144 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145 			 failrec->start);
2146 		goto out;
2147 	}
2148 	if (fs_info->sb->s_flags & MS_RDONLY)
2149 		goto out;
2150 
2151 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153 					    failrec->start,
2154 					    EXTENT_LOCKED);
2155 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156 
2157 	if (state && state->start <= failrec->start &&
2158 	    state->end >= failrec->start + failrec->len - 1) {
2159 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160 					      failrec->len);
2161 		if (num_copies > 1)  {
2162 			repair_io_failure(inode, start, failrec->len,
2163 					  failrec->logical, page,
2164 					  pg_offset, failrec->failed_mirror);
2165 		}
2166 	}
2167 
2168 out:
2169 	free_io_failure(inode, failrec);
2170 
2171 	return 0;
2172 }
2173 
2174 /*
2175  * Can be called when
2176  * - hold extent lock
2177  * - under ordered extent
2178  * - the inode is freeing
2179  */
2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181 {
2182 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 	struct io_failure_record *failrec;
2184 	struct extent_state *state, *next;
2185 
2186 	if (RB_EMPTY_ROOT(&failure_tree->state))
2187 		return;
2188 
2189 	spin_lock(&failure_tree->lock);
2190 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191 	while (state) {
2192 		if (state->start > end)
2193 			break;
2194 
2195 		ASSERT(state->end <= end);
2196 
2197 		next = next_state(state);
2198 
2199 		failrec = (struct io_failure_record *)(unsigned long)state->private;
2200 		free_extent_state(state);
2201 		kfree(failrec);
2202 
2203 		state = next;
2204 	}
2205 	spin_unlock(&failure_tree->lock);
2206 }
2207 
2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209 				struct io_failure_record **failrec_ret)
2210 {
2211 	struct io_failure_record *failrec;
2212 	u64 private;
2213 	struct extent_map *em;
2214 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2217 	int ret;
2218 	u64 logical;
2219 
2220 	ret = get_state_private(failure_tree, start, &private);
2221 	if (ret) {
2222 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223 		if (!failrec)
2224 			return -ENOMEM;
2225 
2226 		failrec->start = start;
2227 		failrec->len = end - start + 1;
2228 		failrec->this_mirror = 0;
2229 		failrec->bio_flags = 0;
2230 		failrec->in_validation = 0;
2231 
2232 		read_lock(&em_tree->lock);
2233 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2234 		if (!em) {
2235 			read_unlock(&em_tree->lock);
2236 			kfree(failrec);
2237 			return -EIO;
2238 		}
2239 
2240 		if (em->start > start || em->start + em->len <= start) {
2241 			free_extent_map(em);
2242 			em = NULL;
2243 		}
2244 		read_unlock(&em_tree->lock);
2245 		if (!em) {
2246 			kfree(failrec);
2247 			return -EIO;
2248 		}
2249 
2250 		logical = start - em->start;
2251 		logical = em->block_start + logical;
2252 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253 			logical = em->block_start;
2254 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255 			extent_set_compress_type(&failrec->bio_flags,
2256 						 em->compress_type);
2257 		}
2258 
2259 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260 			 logical, start, failrec->len);
2261 
2262 		failrec->logical = logical;
2263 		free_extent_map(em);
2264 
2265 		/* set the bits in the private failure tree */
2266 		ret = set_extent_bits(failure_tree, start, end,
2267 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 		if (ret >= 0)
2269 			ret = set_state_private(failure_tree, start,
2270 						(u64)(unsigned long)failrec);
2271 		/* set the bits in the inode's tree */
2272 		if (ret >= 0)
2273 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 						GFP_NOFS);
2275 		if (ret < 0) {
2276 			kfree(failrec);
2277 			return ret;
2278 		}
2279 	} else {
2280 		failrec = (struct io_failure_record *)(unsigned long)private;
2281 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282 			 failrec->logical, failrec->start, failrec->len,
2283 			 failrec->in_validation);
2284 		/*
2285 		 * when data can be on disk more than twice, add to failrec here
2286 		 * (e.g. with a list for failed_mirror) to make
2287 		 * clean_io_failure() clean all those errors at once.
2288 		 */
2289 	}
2290 
2291 	*failrec_ret = failrec;
2292 
2293 	return 0;
2294 }
2295 
2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297 			   struct io_failure_record *failrec, int failed_mirror)
2298 {
2299 	int num_copies;
2300 
2301 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302 				      failrec->logical, failrec->len);
2303 	if (num_copies == 1) {
2304 		/*
2305 		 * we only have a single copy of the data, so don't bother with
2306 		 * all the retry and error correction code that follows. no
2307 		 * matter what the error is, it is very likely to persist.
2308 		 */
2309 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310 			 num_copies, failrec->this_mirror, failed_mirror);
2311 		return 0;
2312 	}
2313 
2314 	/*
2315 	 * there are two premises:
2316 	 *	a) deliver good data to the caller
2317 	 *	b) correct the bad sectors on disk
2318 	 */
2319 	if (failed_bio->bi_vcnt > 1) {
2320 		/*
2321 		 * to fulfill b), we need to know the exact failing sectors, as
2322 		 * we don't want to rewrite any more than the failed ones. thus,
2323 		 * we need separate read requests for the failed bio
2324 		 *
2325 		 * if the following BUG_ON triggers, our validation request got
2326 		 * merged. we need separate requests for our algorithm to work.
2327 		 */
2328 		BUG_ON(failrec->in_validation);
2329 		failrec->in_validation = 1;
2330 		failrec->this_mirror = failed_mirror;
2331 	} else {
2332 		/*
2333 		 * we're ready to fulfill a) and b) alongside. get a good copy
2334 		 * of the failed sector and if we succeed, we have setup
2335 		 * everything for repair_io_failure to do the rest for us.
2336 		 */
2337 		if (failrec->in_validation) {
2338 			BUG_ON(failrec->this_mirror != failed_mirror);
2339 			failrec->in_validation = 0;
2340 			failrec->this_mirror = 0;
2341 		}
2342 		failrec->failed_mirror = failed_mirror;
2343 		failrec->this_mirror++;
2344 		if (failrec->this_mirror == failed_mirror)
2345 			failrec->this_mirror++;
2346 	}
2347 
2348 	if (failrec->this_mirror > num_copies) {
2349 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350 			 num_copies, failrec->this_mirror, failed_mirror);
2351 		return 0;
2352 	}
2353 
2354 	return 1;
2355 }
2356 
2357 
2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359 				    struct io_failure_record *failrec,
2360 				    struct page *page, int pg_offset, int icsum,
2361 				    bio_end_io_t *endio_func, void *data)
2362 {
2363 	struct bio *bio;
2364 	struct btrfs_io_bio *btrfs_failed_bio;
2365 	struct btrfs_io_bio *btrfs_bio;
2366 
2367 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2368 	if (!bio)
2369 		return NULL;
2370 
2371 	bio->bi_end_io = endio_func;
2372 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2373 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374 	bio->bi_iter.bi_size = 0;
2375 	bio->bi_private = data;
2376 
2377 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378 	if (btrfs_failed_bio->csum) {
2379 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381 
2382 		btrfs_bio = btrfs_io_bio(bio);
2383 		btrfs_bio->csum = btrfs_bio->csum_inline;
2384 		icsum *= csum_size;
2385 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2386 		       csum_size);
2387 	}
2388 
2389 	bio_add_page(bio, page, failrec->len, pg_offset);
2390 
2391 	return bio;
2392 }
2393 
2394 /*
2395  * this is a generic handler for readpage errors (default
2396  * readpage_io_failed_hook). if other copies exist, read those and write back
2397  * good data to the failed position. does not investigate in remapping the
2398  * failed extent elsewhere, hoping the device will be smart enough to do this as
2399  * needed
2400  */
2401 
2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403 			      struct page *page, u64 start, u64 end,
2404 			      int failed_mirror)
2405 {
2406 	struct io_failure_record *failrec;
2407 	struct inode *inode = page->mapping->host;
2408 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409 	struct bio *bio;
2410 	int read_mode;
2411 	int ret;
2412 
2413 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414 
2415 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416 	if (ret)
2417 		return ret;
2418 
2419 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420 	if (!ret) {
2421 		free_io_failure(inode, failrec);
2422 		return -EIO;
2423 	}
2424 
2425 	if (failed_bio->bi_vcnt > 1)
2426 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427 	else
2428 		read_mode = READ_SYNC;
2429 
2430 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2431 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432 				      start - page_offset(page),
2433 				      (int)phy_offset, failed_bio->bi_end_io,
2434 				      NULL);
2435 	if (!bio) {
2436 		free_io_failure(inode, failrec);
2437 		return -EIO;
2438 	}
2439 
2440 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441 		 read_mode, failrec->this_mirror, failrec->in_validation);
2442 
2443 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444 					 failrec->this_mirror,
2445 					 failrec->bio_flags, 0);
2446 	if (ret) {
2447 		free_io_failure(inode, failrec);
2448 		bio_put(bio);
2449 	}
2450 
2451 	return ret;
2452 }
2453 
2454 /* lots and lots of room for performance fixes in the end_bio funcs */
2455 
2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457 {
2458 	int uptodate = (err == 0);
2459 	struct extent_io_tree *tree;
2460 	int ret = 0;
2461 
2462 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2463 
2464 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2465 		ret = tree->ops->writepage_end_io_hook(page, start,
2466 					       end, NULL, uptodate);
2467 		if (ret)
2468 			uptodate = 0;
2469 	}
2470 
2471 	if (!uptodate) {
2472 		ClearPageUptodate(page);
2473 		SetPageError(page);
2474 		ret = ret < 0 ? ret : -EIO;
2475 		mapping_set_error(page->mapping, ret);
2476 	}
2477 	return 0;
2478 }
2479 
2480 /*
2481  * after a writepage IO is done, we need to:
2482  * clear the uptodate bits on error
2483  * clear the writeback bits in the extent tree for this IO
2484  * end_page_writeback if the page has no more pending IO
2485  *
2486  * Scheduling is not allowed, so the extent state tree is expected
2487  * to have one and only one object corresponding to this IO.
2488  */
2489 static void end_bio_extent_writepage(struct bio *bio, int err)
2490 {
2491 	struct bio_vec *bvec;
2492 	u64 start;
2493 	u64 end;
2494 	int i;
2495 
2496 	bio_for_each_segment_all(bvec, bio, i) {
2497 		struct page *page = bvec->bv_page;
2498 
2499 		/* We always issue full-page reads, but if some block
2500 		 * in a page fails to read, blk_update_request() will
2501 		 * advance bv_offset and adjust bv_len to compensate.
2502 		 * Print a warning for nonzero offsets, and an error
2503 		 * if they don't add up to a full page.  */
2504 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507 				   "partial page write in btrfs with offset %u and length %u",
2508 					bvec->bv_offset, bvec->bv_len);
2509 			else
2510 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511 				   "incomplete page write in btrfs with offset %u and "
2512 				   "length %u",
2513 					bvec->bv_offset, bvec->bv_len);
2514 		}
2515 
2516 		start = page_offset(page);
2517 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2518 
2519 		if (end_extent_writepage(page, err, start, end))
2520 			continue;
2521 
2522 		end_page_writeback(page);
2523 	}
2524 
2525 	bio_put(bio);
2526 }
2527 
2528 static void
2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530 			      int uptodate)
2531 {
2532 	struct extent_state *cached = NULL;
2533 	u64 end = start + len - 1;
2534 
2535 	if (uptodate && tree->track_uptodate)
2536 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538 }
2539 
2540 /*
2541  * after a readpage IO is done, we need to:
2542  * clear the uptodate bits on error
2543  * set the uptodate bits if things worked
2544  * set the page up to date if all extents in the tree are uptodate
2545  * clear the lock bit in the extent tree
2546  * unlock the page if there are no other extents locked for it
2547  *
2548  * Scheduling is not allowed, so the extent state tree is expected
2549  * to have one and only one object corresponding to this IO.
2550  */
2551 static void end_bio_extent_readpage(struct bio *bio, int err)
2552 {
2553 	struct bio_vec *bvec;
2554 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2555 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556 	struct extent_io_tree *tree;
2557 	u64 offset = 0;
2558 	u64 start;
2559 	u64 end;
2560 	u64 len;
2561 	u64 extent_start = 0;
2562 	u64 extent_len = 0;
2563 	int mirror;
2564 	int ret;
2565 	int i;
2566 
2567 	if (err)
2568 		uptodate = 0;
2569 
2570 	bio_for_each_segment_all(bvec, bio, i) {
2571 		struct page *page = bvec->bv_page;
2572 		struct inode *inode = page->mapping->host;
2573 
2574 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2575 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2576 			 io_bio->mirror_num);
2577 		tree = &BTRFS_I(inode)->io_tree;
2578 
2579 		/* We always issue full-page reads, but if some block
2580 		 * in a page fails to read, blk_update_request() will
2581 		 * advance bv_offset and adjust bv_len to compensate.
2582 		 * Print a warning for nonzero offsets, and an error
2583 		 * if they don't add up to a full page.  */
2584 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2585 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2586 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2587 				   "partial page read in btrfs with offset %u and length %u",
2588 					bvec->bv_offset, bvec->bv_len);
2589 			else
2590 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2591 				   "incomplete page read in btrfs with offset %u and "
2592 				   "length %u",
2593 					bvec->bv_offset, bvec->bv_len);
2594 		}
2595 
2596 		start = page_offset(page);
2597 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2598 		len = bvec->bv_len;
2599 
2600 		mirror = io_bio->mirror_num;
2601 		if (likely(uptodate && tree->ops &&
2602 			   tree->ops->readpage_end_io_hook)) {
2603 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2604 							      page, start, end,
2605 							      mirror);
2606 			if (ret)
2607 				uptodate = 0;
2608 			else
2609 				clean_io_failure(inode, start, page, 0);
2610 		}
2611 
2612 		if (likely(uptodate))
2613 			goto readpage_ok;
2614 
2615 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2616 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2617 			if (!ret && !err &&
2618 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2619 				uptodate = 1;
2620 		} else {
2621 			/*
2622 			 * The generic bio_readpage_error handles errors the
2623 			 * following way: If possible, new read requests are
2624 			 * created and submitted and will end up in
2625 			 * end_bio_extent_readpage as well (if we're lucky, not
2626 			 * in the !uptodate case). In that case it returns 0 and
2627 			 * we just go on with the next page in our bio. If it
2628 			 * can't handle the error it will return -EIO and we
2629 			 * remain responsible for that page.
2630 			 */
2631 			ret = bio_readpage_error(bio, offset, page, start, end,
2632 						 mirror);
2633 			if (ret == 0) {
2634 				uptodate =
2635 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2636 				if (err)
2637 					uptodate = 0;
2638 				offset += len;
2639 				continue;
2640 			}
2641 		}
2642 readpage_ok:
2643 		if (likely(uptodate)) {
2644 			loff_t i_size = i_size_read(inode);
2645 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2646 			unsigned off;
2647 
2648 			/* Zero out the end if this page straddles i_size */
2649 			off = i_size & (PAGE_CACHE_SIZE-1);
2650 			if (page->index == end_index && off)
2651 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2652 			SetPageUptodate(page);
2653 		} else {
2654 			ClearPageUptodate(page);
2655 			SetPageError(page);
2656 		}
2657 		unlock_page(page);
2658 		offset += len;
2659 
2660 		if (unlikely(!uptodate)) {
2661 			if (extent_len) {
2662 				endio_readpage_release_extent(tree,
2663 							      extent_start,
2664 							      extent_len, 1);
2665 				extent_start = 0;
2666 				extent_len = 0;
2667 			}
2668 			endio_readpage_release_extent(tree, start,
2669 						      end - start + 1, 0);
2670 		} else if (!extent_len) {
2671 			extent_start = start;
2672 			extent_len = end + 1 - start;
2673 		} else if (extent_start + extent_len == start) {
2674 			extent_len += end + 1 - start;
2675 		} else {
2676 			endio_readpage_release_extent(tree, extent_start,
2677 						      extent_len, uptodate);
2678 			extent_start = start;
2679 			extent_len = end + 1 - start;
2680 		}
2681 	}
2682 
2683 	if (extent_len)
2684 		endio_readpage_release_extent(tree, extent_start, extent_len,
2685 					      uptodate);
2686 	if (io_bio->end_io)
2687 		io_bio->end_io(io_bio, err);
2688 	bio_put(bio);
2689 }
2690 
2691 /*
2692  * this allocates from the btrfs_bioset.  We're returning a bio right now
2693  * but you can call btrfs_io_bio for the appropriate container_of magic
2694  */
2695 struct bio *
2696 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2697 		gfp_t gfp_flags)
2698 {
2699 	struct btrfs_io_bio *btrfs_bio;
2700 	struct bio *bio;
2701 
2702 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2703 
2704 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2705 		while (!bio && (nr_vecs /= 2)) {
2706 			bio = bio_alloc_bioset(gfp_flags,
2707 					       nr_vecs, btrfs_bioset);
2708 		}
2709 	}
2710 
2711 	if (bio) {
2712 		bio->bi_bdev = bdev;
2713 		bio->bi_iter.bi_sector = first_sector;
2714 		btrfs_bio = btrfs_io_bio(bio);
2715 		btrfs_bio->csum = NULL;
2716 		btrfs_bio->csum_allocated = NULL;
2717 		btrfs_bio->end_io = NULL;
2718 	}
2719 	return bio;
2720 }
2721 
2722 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2723 {
2724 	struct btrfs_io_bio *btrfs_bio;
2725 	struct bio *new;
2726 
2727 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2728 	if (new) {
2729 		btrfs_bio = btrfs_io_bio(new);
2730 		btrfs_bio->csum = NULL;
2731 		btrfs_bio->csum_allocated = NULL;
2732 		btrfs_bio->end_io = NULL;
2733 	}
2734 	return new;
2735 }
2736 
2737 /* this also allocates from the btrfs_bioset */
2738 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2739 {
2740 	struct btrfs_io_bio *btrfs_bio;
2741 	struct bio *bio;
2742 
2743 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2744 	if (bio) {
2745 		btrfs_bio = btrfs_io_bio(bio);
2746 		btrfs_bio->csum = NULL;
2747 		btrfs_bio->csum_allocated = NULL;
2748 		btrfs_bio->end_io = NULL;
2749 	}
2750 	return bio;
2751 }
2752 
2753 
2754 static int __must_check submit_one_bio(int rw, struct bio *bio,
2755 				       int mirror_num, unsigned long bio_flags)
2756 {
2757 	int ret = 0;
2758 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2759 	struct page *page = bvec->bv_page;
2760 	struct extent_io_tree *tree = bio->bi_private;
2761 	u64 start;
2762 
2763 	start = page_offset(page) + bvec->bv_offset;
2764 
2765 	bio->bi_private = NULL;
2766 
2767 	bio_get(bio);
2768 
2769 	if (tree->ops && tree->ops->submit_bio_hook)
2770 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2771 					   mirror_num, bio_flags, start);
2772 	else
2773 		btrfsic_submit_bio(rw, bio);
2774 
2775 	bio_put(bio);
2776 	return ret;
2777 }
2778 
2779 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2780 		     unsigned long offset, size_t size, struct bio *bio,
2781 		     unsigned long bio_flags)
2782 {
2783 	int ret = 0;
2784 	if (tree->ops && tree->ops->merge_bio_hook)
2785 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2786 						bio_flags);
2787 	BUG_ON(ret < 0);
2788 	return ret;
2789 
2790 }
2791 
2792 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2793 			      struct page *page, sector_t sector,
2794 			      size_t size, unsigned long offset,
2795 			      struct block_device *bdev,
2796 			      struct bio **bio_ret,
2797 			      unsigned long max_pages,
2798 			      bio_end_io_t end_io_func,
2799 			      int mirror_num,
2800 			      unsigned long prev_bio_flags,
2801 			      unsigned long bio_flags)
2802 {
2803 	int ret = 0;
2804 	struct bio *bio;
2805 	int nr;
2806 	int contig = 0;
2807 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2808 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2809 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2810 
2811 	if (bio_ret && *bio_ret) {
2812 		bio = *bio_ret;
2813 		if (old_compressed)
2814 			contig = bio->bi_iter.bi_sector == sector;
2815 		else
2816 			contig = bio_end_sector(bio) == sector;
2817 
2818 		if (prev_bio_flags != bio_flags || !contig ||
2819 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2820 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2821 			ret = submit_one_bio(rw, bio, mirror_num,
2822 					     prev_bio_flags);
2823 			if (ret < 0) {
2824 				*bio_ret = NULL;
2825 				return ret;
2826 			}
2827 			bio = NULL;
2828 		} else {
2829 			return 0;
2830 		}
2831 	}
2832 	if (this_compressed)
2833 		nr = BIO_MAX_PAGES;
2834 	else
2835 		nr = bio_get_nr_vecs(bdev);
2836 
2837 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2838 	if (!bio)
2839 		return -ENOMEM;
2840 
2841 	bio_add_page(bio, page, page_size, offset);
2842 	bio->bi_end_io = end_io_func;
2843 	bio->bi_private = tree;
2844 
2845 	if (bio_ret)
2846 		*bio_ret = bio;
2847 	else
2848 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2849 
2850 	return ret;
2851 }
2852 
2853 static void attach_extent_buffer_page(struct extent_buffer *eb,
2854 				      struct page *page)
2855 {
2856 	if (!PagePrivate(page)) {
2857 		SetPagePrivate(page);
2858 		page_cache_get(page);
2859 		set_page_private(page, (unsigned long)eb);
2860 	} else {
2861 		WARN_ON(page->private != (unsigned long)eb);
2862 	}
2863 }
2864 
2865 void set_page_extent_mapped(struct page *page)
2866 {
2867 	if (!PagePrivate(page)) {
2868 		SetPagePrivate(page);
2869 		page_cache_get(page);
2870 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2871 	}
2872 }
2873 
2874 static struct extent_map *
2875 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2876 		 u64 start, u64 len, get_extent_t *get_extent,
2877 		 struct extent_map **em_cached)
2878 {
2879 	struct extent_map *em;
2880 
2881 	if (em_cached && *em_cached) {
2882 		em = *em_cached;
2883 		if (extent_map_in_tree(em) && start >= em->start &&
2884 		    start < extent_map_end(em)) {
2885 			atomic_inc(&em->refs);
2886 			return em;
2887 		}
2888 
2889 		free_extent_map(em);
2890 		*em_cached = NULL;
2891 	}
2892 
2893 	em = get_extent(inode, page, pg_offset, start, len, 0);
2894 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2895 		BUG_ON(*em_cached);
2896 		atomic_inc(&em->refs);
2897 		*em_cached = em;
2898 	}
2899 	return em;
2900 }
2901 /*
2902  * basic readpage implementation.  Locked extent state structs are inserted
2903  * into the tree that are removed when the IO is done (by the end_io
2904  * handlers)
2905  * XXX JDM: This needs looking at to ensure proper page locking
2906  */
2907 static int __do_readpage(struct extent_io_tree *tree,
2908 			 struct page *page,
2909 			 get_extent_t *get_extent,
2910 			 struct extent_map **em_cached,
2911 			 struct bio **bio, int mirror_num,
2912 			 unsigned long *bio_flags, int rw)
2913 {
2914 	struct inode *inode = page->mapping->host;
2915 	u64 start = page_offset(page);
2916 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2917 	u64 end;
2918 	u64 cur = start;
2919 	u64 extent_offset;
2920 	u64 last_byte = i_size_read(inode);
2921 	u64 block_start;
2922 	u64 cur_end;
2923 	sector_t sector;
2924 	struct extent_map *em;
2925 	struct block_device *bdev;
2926 	int ret;
2927 	int nr = 0;
2928 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2929 	size_t pg_offset = 0;
2930 	size_t iosize;
2931 	size_t disk_io_size;
2932 	size_t blocksize = inode->i_sb->s_blocksize;
2933 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2934 
2935 	set_page_extent_mapped(page);
2936 
2937 	end = page_end;
2938 	if (!PageUptodate(page)) {
2939 		if (cleancache_get_page(page) == 0) {
2940 			BUG_ON(blocksize != PAGE_SIZE);
2941 			unlock_extent(tree, start, end);
2942 			goto out;
2943 		}
2944 	}
2945 
2946 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2947 		char *userpage;
2948 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2949 
2950 		if (zero_offset) {
2951 			iosize = PAGE_CACHE_SIZE - zero_offset;
2952 			userpage = kmap_atomic(page);
2953 			memset(userpage + zero_offset, 0, iosize);
2954 			flush_dcache_page(page);
2955 			kunmap_atomic(userpage);
2956 		}
2957 	}
2958 	while (cur <= end) {
2959 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2960 
2961 		if (cur >= last_byte) {
2962 			char *userpage;
2963 			struct extent_state *cached = NULL;
2964 
2965 			iosize = PAGE_CACHE_SIZE - pg_offset;
2966 			userpage = kmap_atomic(page);
2967 			memset(userpage + pg_offset, 0, iosize);
2968 			flush_dcache_page(page);
2969 			kunmap_atomic(userpage);
2970 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2971 					    &cached, GFP_NOFS);
2972 			if (!parent_locked)
2973 				unlock_extent_cached(tree, cur,
2974 						     cur + iosize - 1,
2975 						     &cached, GFP_NOFS);
2976 			break;
2977 		}
2978 		em = __get_extent_map(inode, page, pg_offset, cur,
2979 				      end - cur + 1, get_extent, em_cached);
2980 		if (IS_ERR_OR_NULL(em)) {
2981 			SetPageError(page);
2982 			if (!parent_locked)
2983 				unlock_extent(tree, cur, end);
2984 			break;
2985 		}
2986 		extent_offset = cur - em->start;
2987 		BUG_ON(extent_map_end(em) <= cur);
2988 		BUG_ON(end < cur);
2989 
2990 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2991 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2992 			extent_set_compress_type(&this_bio_flag,
2993 						 em->compress_type);
2994 		}
2995 
2996 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2997 		cur_end = min(extent_map_end(em) - 1, end);
2998 		iosize = ALIGN(iosize, blocksize);
2999 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3000 			disk_io_size = em->block_len;
3001 			sector = em->block_start >> 9;
3002 		} else {
3003 			sector = (em->block_start + extent_offset) >> 9;
3004 			disk_io_size = iosize;
3005 		}
3006 		bdev = em->bdev;
3007 		block_start = em->block_start;
3008 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3009 			block_start = EXTENT_MAP_HOLE;
3010 		free_extent_map(em);
3011 		em = NULL;
3012 
3013 		/* we've found a hole, just zero and go on */
3014 		if (block_start == EXTENT_MAP_HOLE) {
3015 			char *userpage;
3016 			struct extent_state *cached = NULL;
3017 
3018 			userpage = kmap_atomic(page);
3019 			memset(userpage + pg_offset, 0, iosize);
3020 			flush_dcache_page(page);
3021 			kunmap_atomic(userpage);
3022 
3023 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3024 					    &cached, GFP_NOFS);
3025 			unlock_extent_cached(tree, cur, cur + iosize - 1,
3026 			                     &cached, GFP_NOFS);
3027 			cur = cur + iosize;
3028 			pg_offset += iosize;
3029 			continue;
3030 		}
3031 		/* the get_extent function already copied into the page */
3032 		if (test_range_bit(tree, cur, cur_end,
3033 				   EXTENT_UPTODATE, 1, NULL)) {
3034 			check_page_uptodate(tree, page);
3035 			if (!parent_locked)
3036 				unlock_extent(tree, cur, cur + iosize - 1);
3037 			cur = cur + iosize;
3038 			pg_offset += iosize;
3039 			continue;
3040 		}
3041 		/* we have an inline extent but it didn't get marked up
3042 		 * to date.  Error out
3043 		 */
3044 		if (block_start == EXTENT_MAP_INLINE) {
3045 			SetPageError(page);
3046 			if (!parent_locked)
3047 				unlock_extent(tree, cur, cur + iosize - 1);
3048 			cur = cur + iosize;
3049 			pg_offset += iosize;
3050 			continue;
3051 		}
3052 
3053 		pnr -= page->index;
3054 		ret = submit_extent_page(rw, tree, page,
3055 					 sector, disk_io_size, pg_offset,
3056 					 bdev, bio, pnr,
3057 					 end_bio_extent_readpage, mirror_num,
3058 					 *bio_flags,
3059 					 this_bio_flag);
3060 		if (!ret) {
3061 			nr++;
3062 			*bio_flags = this_bio_flag;
3063 		} else {
3064 			SetPageError(page);
3065 			if (!parent_locked)
3066 				unlock_extent(tree, cur, cur + iosize - 1);
3067 		}
3068 		cur = cur + iosize;
3069 		pg_offset += iosize;
3070 	}
3071 out:
3072 	if (!nr) {
3073 		if (!PageError(page))
3074 			SetPageUptodate(page);
3075 		unlock_page(page);
3076 	}
3077 	return 0;
3078 }
3079 
3080 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3081 					     struct page *pages[], int nr_pages,
3082 					     u64 start, u64 end,
3083 					     get_extent_t *get_extent,
3084 					     struct extent_map **em_cached,
3085 					     struct bio **bio, int mirror_num,
3086 					     unsigned long *bio_flags, int rw)
3087 {
3088 	struct inode *inode;
3089 	struct btrfs_ordered_extent *ordered;
3090 	int index;
3091 
3092 	inode = pages[0]->mapping->host;
3093 	while (1) {
3094 		lock_extent(tree, start, end);
3095 		ordered = btrfs_lookup_ordered_range(inode, start,
3096 						     end - start + 1);
3097 		if (!ordered)
3098 			break;
3099 		unlock_extent(tree, start, end);
3100 		btrfs_start_ordered_extent(inode, ordered, 1);
3101 		btrfs_put_ordered_extent(ordered);
3102 	}
3103 
3104 	for (index = 0; index < nr_pages; index++) {
3105 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3106 			      mirror_num, bio_flags, rw);
3107 		page_cache_release(pages[index]);
3108 	}
3109 }
3110 
3111 static void __extent_readpages(struct extent_io_tree *tree,
3112 			       struct page *pages[],
3113 			       int nr_pages, get_extent_t *get_extent,
3114 			       struct extent_map **em_cached,
3115 			       struct bio **bio, int mirror_num,
3116 			       unsigned long *bio_flags, int rw)
3117 {
3118 	u64 start = 0;
3119 	u64 end = 0;
3120 	u64 page_start;
3121 	int index;
3122 	int first_index = 0;
3123 
3124 	for (index = 0; index < nr_pages; index++) {
3125 		page_start = page_offset(pages[index]);
3126 		if (!end) {
3127 			start = page_start;
3128 			end = start + PAGE_CACHE_SIZE - 1;
3129 			first_index = index;
3130 		} else if (end + 1 == page_start) {
3131 			end += PAGE_CACHE_SIZE;
3132 		} else {
3133 			__do_contiguous_readpages(tree, &pages[first_index],
3134 						  index - first_index, start,
3135 						  end, get_extent, em_cached,
3136 						  bio, mirror_num, bio_flags,
3137 						  rw);
3138 			start = page_start;
3139 			end = start + PAGE_CACHE_SIZE - 1;
3140 			first_index = index;
3141 		}
3142 	}
3143 
3144 	if (end)
3145 		__do_contiguous_readpages(tree, &pages[first_index],
3146 					  index - first_index, start,
3147 					  end, get_extent, em_cached, bio,
3148 					  mirror_num, bio_flags, rw);
3149 }
3150 
3151 static int __extent_read_full_page(struct extent_io_tree *tree,
3152 				   struct page *page,
3153 				   get_extent_t *get_extent,
3154 				   struct bio **bio, int mirror_num,
3155 				   unsigned long *bio_flags, int rw)
3156 {
3157 	struct inode *inode = page->mapping->host;
3158 	struct btrfs_ordered_extent *ordered;
3159 	u64 start = page_offset(page);
3160 	u64 end = start + PAGE_CACHE_SIZE - 1;
3161 	int ret;
3162 
3163 	while (1) {
3164 		lock_extent(tree, start, end);
3165 		ordered = btrfs_lookup_ordered_extent(inode, start);
3166 		if (!ordered)
3167 			break;
3168 		unlock_extent(tree, start, end);
3169 		btrfs_start_ordered_extent(inode, ordered, 1);
3170 		btrfs_put_ordered_extent(ordered);
3171 	}
3172 
3173 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3174 			    bio_flags, rw);
3175 	return ret;
3176 }
3177 
3178 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3179 			    get_extent_t *get_extent, int mirror_num)
3180 {
3181 	struct bio *bio = NULL;
3182 	unsigned long bio_flags = 0;
3183 	int ret;
3184 
3185 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3186 				      &bio_flags, READ);
3187 	if (bio)
3188 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3189 	return ret;
3190 }
3191 
3192 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3193 				 get_extent_t *get_extent, int mirror_num)
3194 {
3195 	struct bio *bio = NULL;
3196 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3197 	int ret;
3198 
3199 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3200 				      &bio_flags, READ);
3201 	if (bio)
3202 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3203 	return ret;
3204 }
3205 
3206 static noinline void update_nr_written(struct page *page,
3207 				      struct writeback_control *wbc,
3208 				      unsigned long nr_written)
3209 {
3210 	wbc->nr_to_write -= nr_written;
3211 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3212 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3213 		page->mapping->writeback_index = page->index + nr_written;
3214 }
3215 
3216 /*
3217  * helper for __extent_writepage, doing all of the delayed allocation setup.
3218  *
3219  * This returns 1 if our fill_delalloc function did all the work required
3220  * to write the page (copy into inline extent).  In this case the IO has
3221  * been started and the page is already unlocked.
3222  *
3223  * This returns 0 if all went well (page still locked)
3224  * This returns < 0 if there were errors (page still locked)
3225  */
3226 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 			      struct page *page, struct writeback_control *wbc,
3228 			      struct extent_page_data *epd,
3229 			      u64 delalloc_start,
3230 			      unsigned long *nr_written)
3231 {
3232 	struct extent_io_tree *tree = epd->tree;
3233 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3234 	u64 nr_delalloc;
3235 	u64 delalloc_to_write = 0;
3236 	u64 delalloc_end = 0;
3237 	int ret;
3238 	int page_started = 0;
3239 
3240 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 		return 0;
3242 
3243 	while (delalloc_end < page_end) {
3244 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 					       page,
3246 					       &delalloc_start,
3247 					       &delalloc_end,
3248 					       BTRFS_MAX_EXTENT_SIZE);
3249 		if (nr_delalloc == 0) {
3250 			delalloc_start = delalloc_end + 1;
3251 			continue;
3252 		}
3253 		ret = tree->ops->fill_delalloc(inode, page,
3254 					       delalloc_start,
3255 					       delalloc_end,
3256 					       &page_started,
3257 					       nr_written);
3258 		/* File system has been set read-only */
3259 		if (ret) {
3260 			SetPageError(page);
3261 			/* fill_delalloc should be return < 0 for error
3262 			 * but just in case, we use > 0 here meaning the
3263 			 * IO is started, so we don't want to return > 0
3264 			 * unless things are going well.
3265 			 */
3266 			ret = ret < 0 ? ret : -EIO;
3267 			goto done;
3268 		}
3269 		/*
3270 		 * delalloc_end is already one less than the total
3271 		 * length, so we don't subtract one from
3272 		 * PAGE_CACHE_SIZE
3273 		 */
3274 		delalloc_to_write += (delalloc_end - delalloc_start +
3275 				      PAGE_CACHE_SIZE) >>
3276 				      PAGE_CACHE_SHIFT;
3277 		delalloc_start = delalloc_end + 1;
3278 	}
3279 	if (wbc->nr_to_write < delalloc_to_write) {
3280 		int thresh = 8192;
3281 
3282 		if (delalloc_to_write < thresh * 2)
3283 			thresh = delalloc_to_write;
3284 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3285 					 thresh);
3286 	}
3287 
3288 	/* did the fill delalloc function already unlock and start
3289 	 * the IO?
3290 	 */
3291 	if (page_started) {
3292 		/*
3293 		 * we've unlocked the page, so we can't update
3294 		 * the mapping's writeback index, just update
3295 		 * nr_to_write.
3296 		 */
3297 		wbc->nr_to_write -= *nr_written;
3298 		return 1;
3299 	}
3300 
3301 	ret = 0;
3302 
3303 done:
3304 	return ret;
3305 }
3306 
3307 /*
3308  * helper for __extent_writepage.  This calls the writepage start hooks,
3309  * and does the loop to map the page into extents and bios.
3310  *
3311  * We return 1 if the IO is started and the page is unlocked,
3312  * 0 if all went well (page still locked)
3313  * < 0 if there were errors (page still locked)
3314  */
3315 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3316 				 struct page *page,
3317 				 struct writeback_control *wbc,
3318 				 struct extent_page_data *epd,
3319 				 loff_t i_size,
3320 				 unsigned long nr_written,
3321 				 int write_flags, int *nr_ret)
3322 {
3323 	struct extent_io_tree *tree = epd->tree;
3324 	u64 start = page_offset(page);
3325 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3326 	u64 end;
3327 	u64 cur = start;
3328 	u64 extent_offset;
3329 	u64 block_start;
3330 	u64 iosize;
3331 	sector_t sector;
3332 	struct extent_state *cached_state = NULL;
3333 	struct extent_map *em;
3334 	struct block_device *bdev;
3335 	size_t pg_offset = 0;
3336 	size_t blocksize;
3337 	int ret = 0;
3338 	int nr = 0;
3339 	bool compressed;
3340 
3341 	if (tree->ops && tree->ops->writepage_start_hook) {
3342 		ret = tree->ops->writepage_start_hook(page, start,
3343 						      page_end);
3344 		if (ret) {
3345 			/* Fixup worker will requeue */
3346 			if (ret == -EBUSY)
3347 				wbc->pages_skipped++;
3348 			else
3349 				redirty_page_for_writepage(wbc, page);
3350 
3351 			update_nr_written(page, wbc, nr_written);
3352 			unlock_page(page);
3353 			ret = 1;
3354 			goto done_unlocked;
3355 		}
3356 	}
3357 
3358 	/*
3359 	 * we don't want to touch the inode after unlocking the page,
3360 	 * so we update the mapping writeback index now
3361 	 */
3362 	update_nr_written(page, wbc, nr_written + 1);
3363 
3364 	end = page_end;
3365 	if (i_size <= start) {
3366 		if (tree->ops && tree->ops->writepage_end_io_hook)
3367 			tree->ops->writepage_end_io_hook(page, start,
3368 							 page_end, NULL, 1);
3369 		goto done;
3370 	}
3371 
3372 	blocksize = inode->i_sb->s_blocksize;
3373 
3374 	while (cur <= end) {
3375 		u64 em_end;
3376 		if (cur >= i_size) {
3377 			if (tree->ops && tree->ops->writepage_end_io_hook)
3378 				tree->ops->writepage_end_io_hook(page, cur,
3379 							 page_end, NULL, 1);
3380 			break;
3381 		}
3382 		em = epd->get_extent(inode, page, pg_offset, cur,
3383 				     end - cur + 1, 1);
3384 		if (IS_ERR_OR_NULL(em)) {
3385 			SetPageError(page);
3386 			ret = PTR_ERR_OR_ZERO(em);
3387 			break;
3388 		}
3389 
3390 		extent_offset = cur - em->start;
3391 		em_end = extent_map_end(em);
3392 		BUG_ON(em_end <= cur);
3393 		BUG_ON(end < cur);
3394 		iosize = min(em_end - cur, end - cur + 1);
3395 		iosize = ALIGN(iosize, blocksize);
3396 		sector = (em->block_start + extent_offset) >> 9;
3397 		bdev = em->bdev;
3398 		block_start = em->block_start;
3399 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3400 		free_extent_map(em);
3401 		em = NULL;
3402 
3403 		/*
3404 		 * compressed and inline extents are written through other
3405 		 * paths in the FS
3406 		 */
3407 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3408 		    block_start == EXTENT_MAP_INLINE) {
3409 			/*
3410 			 * end_io notification does not happen here for
3411 			 * compressed extents
3412 			 */
3413 			if (!compressed && tree->ops &&
3414 			    tree->ops->writepage_end_io_hook)
3415 				tree->ops->writepage_end_io_hook(page, cur,
3416 							 cur + iosize - 1,
3417 							 NULL, 1);
3418 			else if (compressed) {
3419 				/* we don't want to end_page_writeback on
3420 				 * a compressed extent.  this happens
3421 				 * elsewhere
3422 				 */
3423 				nr++;
3424 			}
3425 
3426 			cur += iosize;
3427 			pg_offset += iosize;
3428 			continue;
3429 		}
3430 
3431 		if (tree->ops && tree->ops->writepage_io_hook) {
3432 			ret = tree->ops->writepage_io_hook(page, cur,
3433 						cur + iosize - 1);
3434 		} else {
3435 			ret = 0;
3436 		}
3437 		if (ret) {
3438 			SetPageError(page);
3439 		} else {
3440 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3441 
3442 			set_range_writeback(tree, cur, cur + iosize - 1);
3443 			if (!PageWriteback(page)) {
3444 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3445 					   "page %lu not writeback, cur %llu end %llu",
3446 				       page->index, cur, end);
3447 			}
3448 
3449 			ret = submit_extent_page(write_flags, tree, page,
3450 						 sector, iosize, pg_offset,
3451 						 bdev, &epd->bio, max_nr,
3452 						 end_bio_extent_writepage,
3453 						 0, 0, 0);
3454 			if (ret)
3455 				SetPageError(page);
3456 		}
3457 		cur = cur + iosize;
3458 		pg_offset += iosize;
3459 		nr++;
3460 	}
3461 done:
3462 	*nr_ret = nr;
3463 
3464 done_unlocked:
3465 
3466 	/* drop our reference on any cached states */
3467 	free_extent_state(cached_state);
3468 	return ret;
3469 }
3470 
3471 /*
3472  * the writepage semantics are similar to regular writepage.  extent
3473  * records are inserted to lock ranges in the tree, and as dirty areas
3474  * are found, they are marked writeback.  Then the lock bits are removed
3475  * and the end_io handler clears the writeback ranges
3476  */
3477 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3478 			      void *data)
3479 {
3480 	struct inode *inode = page->mapping->host;
3481 	struct extent_page_data *epd = data;
3482 	u64 start = page_offset(page);
3483 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3484 	int ret;
3485 	int nr = 0;
3486 	size_t pg_offset = 0;
3487 	loff_t i_size = i_size_read(inode);
3488 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3489 	int write_flags;
3490 	unsigned long nr_written = 0;
3491 
3492 	if (wbc->sync_mode == WB_SYNC_ALL)
3493 		write_flags = WRITE_SYNC;
3494 	else
3495 		write_flags = WRITE;
3496 
3497 	trace___extent_writepage(page, inode, wbc);
3498 
3499 	WARN_ON(!PageLocked(page));
3500 
3501 	ClearPageError(page);
3502 
3503 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3504 	if (page->index > end_index ||
3505 	   (page->index == end_index && !pg_offset)) {
3506 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3507 		unlock_page(page);
3508 		return 0;
3509 	}
3510 
3511 	if (page->index == end_index) {
3512 		char *userpage;
3513 
3514 		userpage = kmap_atomic(page);
3515 		memset(userpage + pg_offset, 0,
3516 		       PAGE_CACHE_SIZE - pg_offset);
3517 		kunmap_atomic(userpage);
3518 		flush_dcache_page(page);
3519 	}
3520 
3521 	pg_offset = 0;
3522 
3523 	set_page_extent_mapped(page);
3524 
3525 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3526 	if (ret == 1)
3527 		goto done_unlocked;
3528 	if (ret)
3529 		goto done;
3530 
3531 	ret = __extent_writepage_io(inode, page, wbc, epd,
3532 				    i_size, nr_written, write_flags, &nr);
3533 	if (ret == 1)
3534 		goto done_unlocked;
3535 
3536 done:
3537 	if (nr == 0) {
3538 		/* make sure the mapping tag for page dirty gets cleared */
3539 		set_page_writeback(page);
3540 		end_page_writeback(page);
3541 	}
3542 	if (PageError(page)) {
3543 		ret = ret < 0 ? ret : -EIO;
3544 		end_extent_writepage(page, ret, start, page_end);
3545 	}
3546 	unlock_page(page);
3547 	return ret;
3548 
3549 done_unlocked:
3550 	return 0;
3551 }
3552 
3553 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3554 {
3555 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3556 		       TASK_UNINTERRUPTIBLE);
3557 }
3558 
3559 static noinline_for_stack int
3560 lock_extent_buffer_for_io(struct extent_buffer *eb,
3561 			  struct btrfs_fs_info *fs_info,
3562 			  struct extent_page_data *epd)
3563 {
3564 	unsigned long i, num_pages;
3565 	int flush = 0;
3566 	int ret = 0;
3567 
3568 	if (!btrfs_try_tree_write_lock(eb)) {
3569 		flush = 1;
3570 		flush_write_bio(epd);
3571 		btrfs_tree_lock(eb);
3572 	}
3573 
3574 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3575 		btrfs_tree_unlock(eb);
3576 		if (!epd->sync_io)
3577 			return 0;
3578 		if (!flush) {
3579 			flush_write_bio(epd);
3580 			flush = 1;
3581 		}
3582 		while (1) {
3583 			wait_on_extent_buffer_writeback(eb);
3584 			btrfs_tree_lock(eb);
3585 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3586 				break;
3587 			btrfs_tree_unlock(eb);
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * We need to do this to prevent races in people who check if the eb is
3593 	 * under IO since we can end up having no IO bits set for a short period
3594 	 * of time.
3595 	 */
3596 	spin_lock(&eb->refs_lock);
3597 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3598 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3599 		spin_unlock(&eb->refs_lock);
3600 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3601 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3602 				     -eb->len,
3603 				     fs_info->dirty_metadata_batch);
3604 		ret = 1;
3605 	} else {
3606 		spin_unlock(&eb->refs_lock);
3607 	}
3608 
3609 	btrfs_tree_unlock(eb);
3610 
3611 	if (!ret)
3612 		return ret;
3613 
3614 	num_pages = num_extent_pages(eb->start, eb->len);
3615 	for (i = 0; i < num_pages; i++) {
3616 		struct page *p = eb->pages[i];
3617 
3618 		if (!trylock_page(p)) {
3619 			if (!flush) {
3620 				flush_write_bio(epd);
3621 				flush = 1;
3622 			}
3623 			lock_page(p);
3624 		}
3625 	}
3626 
3627 	return ret;
3628 }
3629 
3630 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3631 {
3632 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3633 	smp_mb__after_atomic();
3634 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3635 }
3636 
3637 static void set_btree_ioerr(struct page *page)
3638 {
3639 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3640 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3641 
3642 	SetPageError(page);
3643 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3644 		return;
3645 
3646 	/*
3647 	 * If writeback for a btree extent that doesn't belong to a log tree
3648 	 * failed, increment the counter transaction->eb_write_errors.
3649 	 * We do this because while the transaction is running and before it's
3650 	 * committing (when we call filemap_fdata[write|wait]_range against
3651 	 * the btree inode), we might have
3652 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3653 	 * returns an error or an error happens during writeback, when we're
3654 	 * committing the transaction we wouldn't know about it, since the pages
3655 	 * can be no longer dirty nor marked anymore for writeback (if a
3656 	 * subsequent modification to the extent buffer didn't happen before the
3657 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3658 	 * able to find the pages tagged with SetPageError at transaction
3659 	 * commit time. So if this happens we must abort the transaction,
3660 	 * otherwise we commit a super block with btree roots that point to
3661 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3662 	 * or the content of some node/leaf from a past generation that got
3663 	 * cowed or deleted and is no longer valid.
3664 	 *
3665 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3666 	 * not be enough - we need to distinguish between log tree extents vs
3667 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3668 	 * will catch and clear such errors in the mapping - and that call might
3669 	 * be from a log sync and not from a transaction commit. Also, checking
3670 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3671 	 * not done and would not be reliable - the eb might have been released
3672 	 * from memory and reading it back again means that flag would not be
3673 	 * set (since it's a runtime flag, not persisted on disk).
3674 	 *
3675 	 * Using the flags below in the btree inode also makes us achieve the
3676 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3677 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3678 	 * is called, the writeback for all dirty pages had already finished
3679 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3680 	 * filemap_fdatawait_range() would return success, as it could not know
3681 	 * that writeback errors happened (the pages were no longer tagged for
3682 	 * writeback).
3683 	 */
3684 	switch (eb->log_index) {
3685 	case -1:
3686 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3687 		break;
3688 	case 0:
3689 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3690 		break;
3691 	case 1:
3692 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3693 		break;
3694 	default:
3695 		BUG(); /* unexpected, logic error */
3696 	}
3697 }
3698 
3699 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3700 {
3701 	struct bio_vec *bvec;
3702 	struct extent_buffer *eb;
3703 	int i, done;
3704 
3705 	bio_for_each_segment_all(bvec, bio, i) {
3706 		struct page *page = bvec->bv_page;
3707 
3708 		eb = (struct extent_buffer *)page->private;
3709 		BUG_ON(!eb);
3710 		done = atomic_dec_and_test(&eb->io_pages);
3711 
3712 		if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3713 			ClearPageUptodate(page);
3714 			set_btree_ioerr(page);
3715 		}
3716 
3717 		end_page_writeback(page);
3718 
3719 		if (!done)
3720 			continue;
3721 
3722 		end_extent_buffer_writeback(eb);
3723 	}
3724 
3725 	bio_put(bio);
3726 }
3727 
3728 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3729 			struct btrfs_fs_info *fs_info,
3730 			struct writeback_control *wbc,
3731 			struct extent_page_data *epd)
3732 {
3733 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3734 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3735 	u64 offset = eb->start;
3736 	unsigned long i, num_pages;
3737 	unsigned long bio_flags = 0;
3738 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3739 	int ret = 0;
3740 
3741 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3742 	num_pages = num_extent_pages(eb->start, eb->len);
3743 	atomic_set(&eb->io_pages, num_pages);
3744 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3745 		bio_flags = EXTENT_BIO_TREE_LOG;
3746 
3747 	for (i = 0; i < num_pages; i++) {
3748 		struct page *p = eb->pages[i];
3749 
3750 		clear_page_dirty_for_io(p);
3751 		set_page_writeback(p);
3752 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3753 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3754 					 -1, end_bio_extent_buffer_writepage,
3755 					 0, epd->bio_flags, bio_flags);
3756 		epd->bio_flags = bio_flags;
3757 		if (ret) {
3758 			set_btree_ioerr(p);
3759 			end_page_writeback(p);
3760 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3761 				end_extent_buffer_writeback(eb);
3762 			ret = -EIO;
3763 			break;
3764 		}
3765 		offset += PAGE_CACHE_SIZE;
3766 		update_nr_written(p, wbc, 1);
3767 		unlock_page(p);
3768 	}
3769 
3770 	if (unlikely(ret)) {
3771 		for (; i < num_pages; i++) {
3772 			struct page *p = eb->pages[i];
3773 			clear_page_dirty_for_io(p);
3774 			unlock_page(p);
3775 		}
3776 	}
3777 
3778 	return ret;
3779 }
3780 
3781 int btree_write_cache_pages(struct address_space *mapping,
3782 				   struct writeback_control *wbc)
3783 {
3784 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3785 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3786 	struct extent_buffer *eb, *prev_eb = NULL;
3787 	struct extent_page_data epd = {
3788 		.bio = NULL,
3789 		.tree = tree,
3790 		.extent_locked = 0,
3791 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3792 		.bio_flags = 0,
3793 	};
3794 	int ret = 0;
3795 	int done = 0;
3796 	int nr_to_write_done = 0;
3797 	struct pagevec pvec;
3798 	int nr_pages;
3799 	pgoff_t index;
3800 	pgoff_t end;		/* Inclusive */
3801 	int scanned = 0;
3802 	int tag;
3803 
3804 	pagevec_init(&pvec, 0);
3805 	if (wbc->range_cyclic) {
3806 		index = mapping->writeback_index; /* Start from prev offset */
3807 		end = -1;
3808 	} else {
3809 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3810 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3811 		scanned = 1;
3812 	}
3813 	if (wbc->sync_mode == WB_SYNC_ALL)
3814 		tag = PAGECACHE_TAG_TOWRITE;
3815 	else
3816 		tag = PAGECACHE_TAG_DIRTY;
3817 retry:
3818 	if (wbc->sync_mode == WB_SYNC_ALL)
3819 		tag_pages_for_writeback(mapping, index, end);
3820 	while (!done && !nr_to_write_done && (index <= end) &&
3821 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3822 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3823 		unsigned i;
3824 
3825 		scanned = 1;
3826 		for (i = 0; i < nr_pages; i++) {
3827 			struct page *page = pvec.pages[i];
3828 
3829 			if (!PagePrivate(page))
3830 				continue;
3831 
3832 			if (!wbc->range_cyclic && page->index > end) {
3833 				done = 1;
3834 				break;
3835 			}
3836 
3837 			spin_lock(&mapping->private_lock);
3838 			if (!PagePrivate(page)) {
3839 				spin_unlock(&mapping->private_lock);
3840 				continue;
3841 			}
3842 
3843 			eb = (struct extent_buffer *)page->private;
3844 
3845 			/*
3846 			 * Shouldn't happen and normally this would be a BUG_ON
3847 			 * but no sense in crashing the users box for something
3848 			 * we can survive anyway.
3849 			 */
3850 			if (WARN_ON(!eb)) {
3851 				spin_unlock(&mapping->private_lock);
3852 				continue;
3853 			}
3854 
3855 			if (eb == prev_eb) {
3856 				spin_unlock(&mapping->private_lock);
3857 				continue;
3858 			}
3859 
3860 			ret = atomic_inc_not_zero(&eb->refs);
3861 			spin_unlock(&mapping->private_lock);
3862 			if (!ret)
3863 				continue;
3864 
3865 			prev_eb = eb;
3866 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3867 			if (!ret) {
3868 				free_extent_buffer(eb);
3869 				continue;
3870 			}
3871 
3872 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3873 			if (ret) {
3874 				done = 1;
3875 				free_extent_buffer(eb);
3876 				break;
3877 			}
3878 			free_extent_buffer(eb);
3879 
3880 			/*
3881 			 * the filesystem may choose to bump up nr_to_write.
3882 			 * We have to make sure to honor the new nr_to_write
3883 			 * at any time
3884 			 */
3885 			nr_to_write_done = wbc->nr_to_write <= 0;
3886 		}
3887 		pagevec_release(&pvec);
3888 		cond_resched();
3889 	}
3890 	if (!scanned && !done) {
3891 		/*
3892 		 * We hit the last page and there is more work to be done: wrap
3893 		 * back to the start of the file
3894 		 */
3895 		scanned = 1;
3896 		index = 0;
3897 		goto retry;
3898 	}
3899 	flush_write_bio(&epd);
3900 	return ret;
3901 }
3902 
3903 /**
3904  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3905  * @mapping: address space structure to write
3906  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3907  * @writepage: function called for each page
3908  * @data: data passed to writepage function
3909  *
3910  * If a page is already under I/O, write_cache_pages() skips it, even
3911  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3912  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3913  * and msync() need to guarantee that all the data which was dirty at the time
3914  * the call was made get new I/O started against them.  If wbc->sync_mode is
3915  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3916  * existing IO to complete.
3917  */
3918 static int extent_write_cache_pages(struct extent_io_tree *tree,
3919 			     struct address_space *mapping,
3920 			     struct writeback_control *wbc,
3921 			     writepage_t writepage, void *data,
3922 			     void (*flush_fn)(void *))
3923 {
3924 	struct inode *inode = mapping->host;
3925 	int ret = 0;
3926 	int done = 0;
3927 	int err = 0;
3928 	int nr_to_write_done = 0;
3929 	struct pagevec pvec;
3930 	int nr_pages;
3931 	pgoff_t index;
3932 	pgoff_t end;		/* Inclusive */
3933 	int scanned = 0;
3934 	int tag;
3935 
3936 	/*
3937 	 * We have to hold onto the inode so that ordered extents can do their
3938 	 * work when the IO finishes.  The alternative to this is failing to add
3939 	 * an ordered extent if the igrab() fails there and that is a huge pain
3940 	 * to deal with, so instead just hold onto the inode throughout the
3941 	 * writepages operation.  If it fails here we are freeing up the inode
3942 	 * anyway and we'd rather not waste our time writing out stuff that is
3943 	 * going to be truncated anyway.
3944 	 */
3945 	if (!igrab(inode))
3946 		return 0;
3947 
3948 	pagevec_init(&pvec, 0);
3949 	if (wbc->range_cyclic) {
3950 		index = mapping->writeback_index; /* Start from prev offset */
3951 		end = -1;
3952 	} else {
3953 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3954 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3955 		scanned = 1;
3956 	}
3957 	if (wbc->sync_mode == WB_SYNC_ALL)
3958 		tag = PAGECACHE_TAG_TOWRITE;
3959 	else
3960 		tag = PAGECACHE_TAG_DIRTY;
3961 retry:
3962 	if (wbc->sync_mode == WB_SYNC_ALL)
3963 		tag_pages_for_writeback(mapping, index, end);
3964 	while (!done && !nr_to_write_done && (index <= end) &&
3965 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3966 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3967 		unsigned i;
3968 
3969 		scanned = 1;
3970 		for (i = 0; i < nr_pages; i++) {
3971 			struct page *page = pvec.pages[i];
3972 
3973 			/*
3974 			 * At this point we hold neither mapping->tree_lock nor
3975 			 * lock on the page itself: the page may be truncated or
3976 			 * invalidated (changing page->mapping to NULL), or even
3977 			 * swizzled back from swapper_space to tmpfs file
3978 			 * mapping
3979 			 */
3980 			if (!trylock_page(page)) {
3981 				flush_fn(data);
3982 				lock_page(page);
3983 			}
3984 
3985 			if (unlikely(page->mapping != mapping)) {
3986 				unlock_page(page);
3987 				continue;
3988 			}
3989 
3990 			if (!wbc->range_cyclic && page->index > end) {
3991 				done = 1;
3992 				unlock_page(page);
3993 				continue;
3994 			}
3995 
3996 			if (wbc->sync_mode != WB_SYNC_NONE) {
3997 				if (PageWriteback(page))
3998 					flush_fn(data);
3999 				wait_on_page_writeback(page);
4000 			}
4001 
4002 			if (PageWriteback(page) ||
4003 			    !clear_page_dirty_for_io(page)) {
4004 				unlock_page(page);
4005 				continue;
4006 			}
4007 
4008 			ret = (*writepage)(page, wbc, data);
4009 
4010 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011 				unlock_page(page);
4012 				ret = 0;
4013 			}
4014 			if (!err && ret < 0)
4015 				err = ret;
4016 
4017 			/*
4018 			 * the filesystem may choose to bump up nr_to_write.
4019 			 * We have to make sure to honor the new nr_to_write
4020 			 * at any time
4021 			 */
4022 			nr_to_write_done = wbc->nr_to_write <= 0;
4023 		}
4024 		pagevec_release(&pvec);
4025 		cond_resched();
4026 	}
4027 	if (!scanned && !done && !err) {
4028 		/*
4029 		 * We hit the last page and there is more work to be done: wrap
4030 		 * back to the start of the file
4031 		 */
4032 		scanned = 1;
4033 		index = 0;
4034 		goto retry;
4035 	}
4036 	btrfs_add_delayed_iput(inode);
4037 	return err;
4038 }
4039 
4040 static void flush_epd_write_bio(struct extent_page_data *epd)
4041 {
4042 	if (epd->bio) {
4043 		int rw = WRITE;
4044 		int ret;
4045 
4046 		if (epd->sync_io)
4047 			rw = WRITE_SYNC;
4048 
4049 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4050 		BUG_ON(ret < 0); /* -ENOMEM */
4051 		epd->bio = NULL;
4052 	}
4053 }
4054 
4055 static noinline void flush_write_bio(void *data)
4056 {
4057 	struct extent_page_data *epd = data;
4058 	flush_epd_write_bio(epd);
4059 }
4060 
4061 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4062 			  get_extent_t *get_extent,
4063 			  struct writeback_control *wbc)
4064 {
4065 	int ret;
4066 	struct extent_page_data epd = {
4067 		.bio = NULL,
4068 		.tree = tree,
4069 		.get_extent = get_extent,
4070 		.extent_locked = 0,
4071 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4072 		.bio_flags = 0,
4073 	};
4074 
4075 	ret = __extent_writepage(page, wbc, &epd);
4076 
4077 	flush_epd_write_bio(&epd);
4078 	return ret;
4079 }
4080 
4081 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4082 			      u64 start, u64 end, get_extent_t *get_extent,
4083 			      int mode)
4084 {
4085 	int ret = 0;
4086 	struct address_space *mapping = inode->i_mapping;
4087 	struct page *page;
4088 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4089 		PAGE_CACHE_SHIFT;
4090 
4091 	struct extent_page_data epd = {
4092 		.bio = NULL,
4093 		.tree = tree,
4094 		.get_extent = get_extent,
4095 		.extent_locked = 1,
4096 		.sync_io = mode == WB_SYNC_ALL,
4097 		.bio_flags = 0,
4098 	};
4099 	struct writeback_control wbc_writepages = {
4100 		.sync_mode	= mode,
4101 		.nr_to_write	= nr_pages * 2,
4102 		.range_start	= start,
4103 		.range_end	= end + 1,
4104 	};
4105 
4106 	while (start <= end) {
4107 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4108 		if (clear_page_dirty_for_io(page))
4109 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4110 		else {
4111 			if (tree->ops && tree->ops->writepage_end_io_hook)
4112 				tree->ops->writepage_end_io_hook(page, start,
4113 						 start + PAGE_CACHE_SIZE - 1,
4114 						 NULL, 1);
4115 			unlock_page(page);
4116 		}
4117 		page_cache_release(page);
4118 		start += PAGE_CACHE_SIZE;
4119 	}
4120 
4121 	flush_epd_write_bio(&epd);
4122 	return ret;
4123 }
4124 
4125 int extent_writepages(struct extent_io_tree *tree,
4126 		      struct address_space *mapping,
4127 		      get_extent_t *get_extent,
4128 		      struct writeback_control *wbc)
4129 {
4130 	int ret = 0;
4131 	struct extent_page_data epd = {
4132 		.bio = NULL,
4133 		.tree = tree,
4134 		.get_extent = get_extent,
4135 		.extent_locked = 0,
4136 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4137 		.bio_flags = 0,
4138 	};
4139 
4140 	ret = extent_write_cache_pages(tree, mapping, wbc,
4141 				       __extent_writepage, &epd,
4142 				       flush_write_bio);
4143 	flush_epd_write_bio(&epd);
4144 	return ret;
4145 }
4146 
4147 int extent_readpages(struct extent_io_tree *tree,
4148 		     struct address_space *mapping,
4149 		     struct list_head *pages, unsigned nr_pages,
4150 		     get_extent_t get_extent)
4151 {
4152 	struct bio *bio = NULL;
4153 	unsigned page_idx;
4154 	unsigned long bio_flags = 0;
4155 	struct page *pagepool[16];
4156 	struct page *page;
4157 	struct extent_map *em_cached = NULL;
4158 	int nr = 0;
4159 
4160 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4161 		page = list_entry(pages->prev, struct page, lru);
4162 
4163 		prefetchw(&page->flags);
4164 		list_del(&page->lru);
4165 		if (add_to_page_cache_lru(page, mapping,
4166 					page->index, GFP_NOFS)) {
4167 			page_cache_release(page);
4168 			continue;
4169 		}
4170 
4171 		pagepool[nr++] = page;
4172 		if (nr < ARRAY_SIZE(pagepool))
4173 			continue;
4174 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4175 				   &bio, 0, &bio_flags, READ);
4176 		nr = 0;
4177 	}
4178 	if (nr)
4179 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4180 				   &bio, 0, &bio_flags, READ);
4181 
4182 	if (em_cached)
4183 		free_extent_map(em_cached);
4184 
4185 	BUG_ON(!list_empty(pages));
4186 	if (bio)
4187 		return submit_one_bio(READ, bio, 0, bio_flags);
4188 	return 0;
4189 }
4190 
4191 /*
4192  * basic invalidatepage code, this waits on any locked or writeback
4193  * ranges corresponding to the page, and then deletes any extent state
4194  * records from the tree
4195  */
4196 int extent_invalidatepage(struct extent_io_tree *tree,
4197 			  struct page *page, unsigned long offset)
4198 {
4199 	struct extent_state *cached_state = NULL;
4200 	u64 start = page_offset(page);
4201 	u64 end = start + PAGE_CACHE_SIZE - 1;
4202 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4203 
4204 	start += ALIGN(offset, blocksize);
4205 	if (start > end)
4206 		return 0;
4207 
4208 	lock_extent_bits(tree, start, end, 0, &cached_state);
4209 	wait_on_page_writeback(page);
4210 	clear_extent_bit(tree, start, end,
4211 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4212 			 EXTENT_DO_ACCOUNTING,
4213 			 1, 1, &cached_state, GFP_NOFS);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * a helper for releasepage, this tests for areas of the page that
4219  * are locked or under IO and drops the related state bits if it is safe
4220  * to drop the page.
4221  */
4222 static int try_release_extent_state(struct extent_map_tree *map,
4223 				    struct extent_io_tree *tree,
4224 				    struct page *page, gfp_t mask)
4225 {
4226 	u64 start = page_offset(page);
4227 	u64 end = start + PAGE_CACHE_SIZE - 1;
4228 	int ret = 1;
4229 
4230 	if (test_range_bit(tree, start, end,
4231 			   EXTENT_IOBITS, 0, NULL))
4232 		ret = 0;
4233 	else {
4234 		if ((mask & GFP_NOFS) == GFP_NOFS)
4235 			mask = GFP_NOFS;
4236 		/*
4237 		 * at this point we can safely clear everything except the
4238 		 * locked bit and the nodatasum bit
4239 		 */
4240 		ret = clear_extent_bit(tree, start, end,
4241 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4242 				 0, 0, NULL, mask);
4243 
4244 		/* if clear_extent_bit failed for enomem reasons,
4245 		 * we can't allow the release to continue.
4246 		 */
4247 		if (ret < 0)
4248 			ret = 0;
4249 		else
4250 			ret = 1;
4251 	}
4252 	return ret;
4253 }
4254 
4255 /*
4256  * a helper for releasepage.  As long as there are no locked extents
4257  * in the range corresponding to the page, both state records and extent
4258  * map records are removed
4259  */
4260 int try_release_extent_mapping(struct extent_map_tree *map,
4261 			       struct extent_io_tree *tree, struct page *page,
4262 			       gfp_t mask)
4263 {
4264 	struct extent_map *em;
4265 	u64 start = page_offset(page);
4266 	u64 end = start + PAGE_CACHE_SIZE - 1;
4267 
4268 	if ((mask & __GFP_WAIT) &&
4269 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4270 		u64 len;
4271 		while (start <= end) {
4272 			len = end - start + 1;
4273 			write_lock(&map->lock);
4274 			em = lookup_extent_mapping(map, start, len);
4275 			if (!em) {
4276 				write_unlock(&map->lock);
4277 				break;
4278 			}
4279 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4280 			    em->start != start) {
4281 				write_unlock(&map->lock);
4282 				free_extent_map(em);
4283 				break;
4284 			}
4285 			if (!test_range_bit(tree, em->start,
4286 					    extent_map_end(em) - 1,
4287 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4288 					    0, NULL)) {
4289 				remove_extent_mapping(map, em);
4290 				/* once for the rb tree */
4291 				free_extent_map(em);
4292 			}
4293 			start = extent_map_end(em);
4294 			write_unlock(&map->lock);
4295 
4296 			/* once for us */
4297 			free_extent_map(em);
4298 		}
4299 	}
4300 	return try_release_extent_state(map, tree, page, mask);
4301 }
4302 
4303 /*
4304  * helper function for fiemap, which doesn't want to see any holes.
4305  * This maps until we find something past 'last'
4306  */
4307 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4308 						u64 offset,
4309 						u64 last,
4310 						get_extent_t *get_extent)
4311 {
4312 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4313 	struct extent_map *em;
4314 	u64 len;
4315 
4316 	if (offset >= last)
4317 		return NULL;
4318 
4319 	while (1) {
4320 		len = last - offset;
4321 		if (len == 0)
4322 			break;
4323 		len = ALIGN(len, sectorsize);
4324 		em = get_extent(inode, NULL, 0, offset, len, 0);
4325 		if (IS_ERR_OR_NULL(em))
4326 			return em;
4327 
4328 		/* if this isn't a hole return it */
4329 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4330 		    em->block_start != EXTENT_MAP_HOLE) {
4331 			return em;
4332 		}
4333 
4334 		/* this is a hole, advance to the next extent */
4335 		offset = extent_map_end(em);
4336 		free_extent_map(em);
4337 		if (offset >= last)
4338 			break;
4339 	}
4340 	return NULL;
4341 }
4342 
4343 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4344 		__u64 start, __u64 len, get_extent_t *get_extent)
4345 {
4346 	int ret = 0;
4347 	u64 off = start;
4348 	u64 max = start + len;
4349 	u32 flags = 0;
4350 	u32 found_type;
4351 	u64 last;
4352 	u64 last_for_get_extent = 0;
4353 	u64 disko = 0;
4354 	u64 isize = i_size_read(inode);
4355 	struct btrfs_key found_key;
4356 	struct extent_map *em = NULL;
4357 	struct extent_state *cached_state = NULL;
4358 	struct btrfs_path *path;
4359 	struct btrfs_root *root = BTRFS_I(inode)->root;
4360 	int end = 0;
4361 	u64 em_start = 0;
4362 	u64 em_len = 0;
4363 	u64 em_end = 0;
4364 
4365 	if (len == 0)
4366 		return -EINVAL;
4367 
4368 	path = btrfs_alloc_path();
4369 	if (!path)
4370 		return -ENOMEM;
4371 	path->leave_spinning = 1;
4372 
4373 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4374 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4375 
4376 	/*
4377 	 * lookup the last file extent.  We're not using i_size here
4378 	 * because there might be preallocation past i_size
4379 	 */
4380 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4381 				       0);
4382 	if (ret < 0) {
4383 		btrfs_free_path(path);
4384 		return ret;
4385 	}
4386 	WARN_ON(!ret);
4387 	path->slots[0]--;
4388 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4389 	found_type = found_key.type;
4390 
4391 	/* No extents, but there might be delalloc bits */
4392 	if (found_key.objectid != btrfs_ino(inode) ||
4393 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4394 		/* have to trust i_size as the end */
4395 		last = (u64)-1;
4396 		last_for_get_extent = isize;
4397 	} else {
4398 		/*
4399 		 * remember the start of the last extent.  There are a
4400 		 * bunch of different factors that go into the length of the
4401 		 * extent, so its much less complex to remember where it started
4402 		 */
4403 		last = found_key.offset;
4404 		last_for_get_extent = last + 1;
4405 	}
4406 	btrfs_release_path(path);
4407 
4408 	/*
4409 	 * we might have some extents allocated but more delalloc past those
4410 	 * extents.  so, we trust isize unless the start of the last extent is
4411 	 * beyond isize
4412 	 */
4413 	if (last < isize) {
4414 		last = (u64)-1;
4415 		last_for_get_extent = isize;
4416 	}
4417 
4418 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4419 			 &cached_state);
4420 
4421 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4422 				   get_extent);
4423 	if (!em)
4424 		goto out;
4425 	if (IS_ERR(em)) {
4426 		ret = PTR_ERR(em);
4427 		goto out;
4428 	}
4429 
4430 	while (!end) {
4431 		u64 offset_in_extent = 0;
4432 
4433 		/* break if the extent we found is outside the range */
4434 		if (em->start >= max || extent_map_end(em) < off)
4435 			break;
4436 
4437 		/*
4438 		 * get_extent may return an extent that starts before our
4439 		 * requested range.  We have to make sure the ranges
4440 		 * we return to fiemap always move forward and don't
4441 		 * overlap, so adjust the offsets here
4442 		 */
4443 		em_start = max(em->start, off);
4444 
4445 		/*
4446 		 * record the offset from the start of the extent
4447 		 * for adjusting the disk offset below.  Only do this if the
4448 		 * extent isn't compressed since our in ram offset may be past
4449 		 * what we have actually allocated on disk.
4450 		 */
4451 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4452 			offset_in_extent = em_start - em->start;
4453 		em_end = extent_map_end(em);
4454 		em_len = em_end - em_start;
4455 		disko = 0;
4456 		flags = 0;
4457 
4458 		/*
4459 		 * bump off for our next call to get_extent
4460 		 */
4461 		off = extent_map_end(em);
4462 		if (off >= max)
4463 			end = 1;
4464 
4465 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4466 			end = 1;
4467 			flags |= FIEMAP_EXTENT_LAST;
4468 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4469 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4470 				  FIEMAP_EXTENT_NOT_ALIGNED);
4471 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4472 			flags |= (FIEMAP_EXTENT_DELALLOC |
4473 				  FIEMAP_EXTENT_UNKNOWN);
4474 		} else if (fieinfo->fi_extents_max) {
4475 			u64 bytenr = em->block_start -
4476 				(em->start - em->orig_start);
4477 
4478 			disko = em->block_start + offset_in_extent;
4479 
4480 			/*
4481 			 * As btrfs supports shared space, this information
4482 			 * can be exported to userspace tools via
4483 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4484 			 * then we're just getting a count and we can skip the
4485 			 * lookup stuff.
4486 			 */
4487 			ret = btrfs_check_shared(NULL, root->fs_info,
4488 						 root->objectid,
4489 						 btrfs_ino(inode), bytenr);
4490 			if (ret < 0)
4491 				goto out_free;
4492 			if (ret)
4493 				flags |= FIEMAP_EXTENT_SHARED;
4494 			ret = 0;
4495 		}
4496 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4497 			flags |= FIEMAP_EXTENT_ENCODED;
4498 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4499 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4500 
4501 		free_extent_map(em);
4502 		em = NULL;
4503 		if ((em_start >= last) || em_len == (u64)-1 ||
4504 		   (last == (u64)-1 && isize <= em_end)) {
4505 			flags |= FIEMAP_EXTENT_LAST;
4506 			end = 1;
4507 		}
4508 
4509 		/* now scan forward to see if this is really the last extent. */
4510 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4511 					   get_extent);
4512 		if (IS_ERR(em)) {
4513 			ret = PTR_ERR(em);
4514 			goto out;
4515 		}
4516 		if (!em) {
4517 			flags |= FIEMAP_EXTENT_LAST;
4518 			end = 1;
4519 		}
4520 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4521 					      em_len, flags);
4522 		if (ret) {
4523 			if (ret == 1)
4524 				ret = 0;
4525 			goto out_free;
4526 		}
4527 	}
4528 out_free:
4529 	free_extent_map(em);
4530 out:
4531 	btrfs_free_path(path);
4532 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4533 			     &cached_state, GFP_NOFS);
4534 	return ret;
4535 }
4536 
4537 static void __free_extent_buffer(struct extent_buffer *eb)
4538 {
4539 	btrfs_leak_debug_del(&eb->leak_list);
4540 	kmem_cache_free(extent_buffer_cache, eb);
4541 }
4542 
4543 int extent_buffer_under_io(struct extent_buffer *eb)
4544 {
4545 	return (atomic_read(&eb->io_pages) ||
4546 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4547 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4548 }
4549 
4550 /*
4551  * Helper for releasing extent buffer page.
4552  */
4553 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4554 {
4555 	unsigned long index;
4556 	struct page *page;
4557 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4558 
4559 	BUG_ON(extent_buffer_under_io(eb));
4560 
4561 	index = num_extent_pages(eb->start, eb->len);
4562 	if (index == 0)
4563 		return;
4564 
4565 	do {
4566 		index--;
4567 		page = eb->pages[index];
4568 		if (!page)
4569 			continue;
4570 		if (mapped)
4571 			spin_lock(&page->mapping->private_lock);
4572 		/*
4573 		 * We do this since we'll remove the pages after we've
4574 		 * removed the eb from the radix tree, so we could race
4575 		 * and have this page now attached to the new eb.  So
4576 		 * only clear page_private if it's still connected to
4577 		 * this eb.
4578 		 */
4579 		if (PagePrivate(page) &&
4580 		    page->private == (unsigned long)eb) {
4581 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4582 			BUG_ON(PageDirty(page));
4583 			BUG_ON(PageWriteback(page));
4584 			/*
4585 			 * We need to make sure we haven't be attached
4586 			 * to a new eb.
4587 			 */
4588 			ClearPagePrivate(page);
4589 			set_page_private(page, 0);
4590 			/* One for the page private */
4591 			page_cache_release(page);
4592 		}
4593 
4594 		if (mapped)
4595 			spin_unlock(&page->mapping->private_lock);
4596 
4597 		/* One for when we alloced the page */
4598 		page_cache_release(page);
4599 	} while (index != 0);
4600 }
4601 
4602 /*
4603  * Helper for releasing the extent buffer.
4604  */
4605 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4606 {
4607 	btrfs_release_extent_buffer_page(eb);
4608 	__free_extent_buffer(eb);
4609 }
4610 
4611 static struct extent_buffer *
4612 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4613 		      unsigned long len)
4614 {
4615 	struct extent_buffer *eb = NULL;
4616 
4617 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4618 	if (eb == NULL)
4619 		return NULL;
4620 	eb->start = start;
4621 	eb->len = len;
4622 	eb->fs_info = fs_info;
4623 	eb->bflags = 0;
4624 	rwlock_init(&eb->lock);
4625 	atomic_set(&eb->write_locks, 0);
4626 	atomic_set(&eb->read_locks, 0);
4627 	atomic_set(&eb->blocking_readers, 0);
4628 	atomic_set(&eb->blocking_writers, 0);
4629 	atomic_set(&eb->spinning_readers, 0);
4630 	atomic_set(&eb->spinning_writers, 0);
4631 	eb->lock_nested = 0;
4632 	init_waitqueue_head(&eb->write_lock_wq);
4633 	init_waitqueue_head(&eb->read_lock_wq);
4634 
4635 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4636 
4637 	spin_lock_init(&eb->refs_lock);
4638 	atomic_set(&eb->refs, 1);
4639 	atomic_set(&eb->io_pages, 0);
4640 
4641 	/*
4642 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4643 	 */
4644 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4645 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4646 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4647 
4648 	return eb;
4649 }
4650 
4651 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4652 {
4653 	unsigned long i;
4654 	struct page *p;
4655 	struct extent_buffer *new;
4656 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4657 
4658 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4659 	if (new == NULL)
4660 		return NULL;
4661 
4662 	for (i = 0; i < num_pages; i++) {
4663 		p = alloc_page(GFP_NOFS);
4664 		if (!p) {
4665 			btrfs_release_extent_buffer(new);
4666 			return NULL;
4667 		}
4668 		attach_extent_buffer_page(new, p);
4669 		WARN_ON(PageDirty(p));
4670 		SetPageUptodate(p);
4671 		new->pages[i] = p;
4672 	}
4673 
4674 	copy_extent_buffer(new, src, 0, 0, src->len);
4675 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4676 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4677 
4678 	return new;
4679 }
4680 
4681 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4682 						u64 start)
4683 {
4684 	struct extent_buffer *eb;
4685 	unsigned long len;
4686 	unsigned long num_pages;
4687 	unsigned long i;
4688 
4689 	if (!fs_info) {
4690 		/*
4691 		 * Called only from tests that don't always have a fs_info
4692 		 * available, but we know that nodesize is 4096
4693 		 */
4694 		len = 4096;
4695 	} else {
4696 		len = fs_info->tree_root->nodesize;
4697 	}
4698 	num_pages = num_extent_pages(0, len);
4699 
4700 	eb = __alloc_extent_buffer(fs_info, start, len);
4701 	if (!eb)
4702 		return NULL;
4703 
4704 	for (i = 0; i < num_pages; i++) {
4705 		eb->pages[i] = alloc_page(GFP_NOFS);
4706 		if (!eb->pages[i])
4707 			goto err;
4708 	}
4709 	set_extent_buffer_uptodate(eb);
4710 	btrfs_set_header_nritems(eb, 0);
4711 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4712 
4713 	return eb;
4714 err:
4715 	for (; i > 0; i--)
4716 		__free_page(eb->pages[i - 1]);
4717 	__free_extent_buffer(eb);
4718 	return NULL;
4719 }
4720 
4721 static void check_buffer_tree_ref(struct extent_buffer *eb)
4722 {
4723 	int refs;
4724 	/* the ref bit is tricky.  We have to make sure it is set
4725 	 * if we have the buffer dirty.   Otherwise the
4726 	 * code to free a buffer can end up dropping a dirty
4727 	 * page
4728 	 *
4729 	 * Once the ref bit is set, it won't go away while the
4730 	 * buffer is dirty or in writeback, and it also won't
4731 	 * go away while we have the reference count on the
4732 	 * eb bumped.
4733 	 *
4734 	 * We can't just set the ref bit without bumping the
4735 	 * ref on the eb because free_extent_buffer might
4736 	 * see the ref bit and try to clear it.  If this happens
4737 	 * free_extent_buffer might end up dropping our original
4738 	 * ref by mistake and freeing the page before we are able
4739 	 * to add one more ref.
4740 	 *
4741 	 * So bump the ref count first, then set the bit.  If someone
4742 	 * beat us to it, drop the ref we added.
4743 	 */
4744 	refs = atomic_read(&eb->refs);
4745 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4746 		return;
4747 
4748 	spin_lock(&eb->refs_lock);
4749 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4750 		atomic_inc(&eb->refs);
4751 	spin_unlock(&eb->refs_lock);
4752 }
4753 
4754 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4755 		struct page *accessed)
4756 {
4757 	unsigned long num_pages, i;
4758 
4759 	check_buffer_tree_ref(eb);
4760 
4761 	num_pages = num_extent_pages(eb->start, eb->len);
4762 	for (i = 0; i < num_pages; i++) {
4763 		struct page *p = eb->pages[i];
4764 
4765 		if (p != accessed)
4766 			mark_page_accessed(p);
4767 	}
4768 }
4769 
4770 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4771 					 u64 start)
4772 {
4773 	struct extent_buffer *eb;
4774 
4775 	rcu_read_lock();
4776 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4777 			       start >> PAGE_CACHE_SHIFT);
4778 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4779 		rcu_read_unlock();
4780 		/*
4781 		 * Lock our eb's refs_lock to avoid races with
4782 		 * free_extent_buffer. When we get our eb it might be flagged
4783 		 * with EXTENT_BUFFER_STALE and another task running
4784 		 * free_extent_buffer might have seen that flag set,
4785 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4786 		 * writeback flags not set) and it's still in the tree (flag
4787 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4788 		 * of decrementing the extent buffer's reference count twice.
4789 		 * So here we could race and increment the eb's reference count,
4790 		 * clear its stale flag, mark it as dirty and drop our reference
4791 		 * before the other task finishes executing free_extent_buffer,
4792 		 * which would later result in an attempt to free an extent
4793 		 * buffer that is dirty.
4794 		 */
4795 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4796 			spin_lock(&eb->refs_lock);
4797 			spin_unlock(&eb->refs_lock);
4798 		}
4799 		mark_extent_buffer_accessed(eb, NULL);
4800 		return eb;
4801 	}
4802 	rcu_read_unlock();
4803 
4804 	return NULL;
4805 }
4806 
4807 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4808 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4809 					       u64 start)
4810 {
4811 	struct extent_buffer *eb, *exists = NULL;
4812 	int ret;
4813 
4814 	eb = find_extent_buffer(fs_info, start);
4815 	if (eb)
4816 		return eb;
4817 	eb = alloc_dummy_extent_buffer(fs_info, start);
4818 	if (!eb)
4819 		return NULL;
4820 	eb->fs_info = fs_info;
4821 again:
4822 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4823 	if (ret)
4824 		goto free_eb;
4825 	spin_lock(&fs_info->buffer_lock);
4826 	ret = radix_tree_insert(&fs_info->buffer_radix,
4827 				start >> PAGE_CACHE_SHIFT, eb);
4828 	spin_unlock(&fs_info->buffer_lock);
4829 	radix_tree_preload_end();
4830 	if (ret == -EEXIST) {
4831 		exists = find_extent_buffer(fs_info, start);
4832 		if (exists)
4833 			goto free_eb;
4834 		else
4835 			goto again;
4836 	}
4837 	check_buffer_tree_ref(eb);
4838 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4839 
4840 	/*
4841 	 * We will free dummy extent buffer's if they come into
4842 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4843 	 * want the buffers to stay in memory until we're done with them, so
4844 	 * bump the ref count again.
4845 	 */
4846 	atomic_inc(&eb->refs);
4847 	return eb;
4848 free_eb:
4849 	btrfs_release_extent_buffer(eb);
4850 	return exists;
4851 }
4852 #endif
4853 
4854 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4855 					  u64 start)
4856 {
4857 	unsigned long len = fs_info->tree_root->nodesize;
4858 	unsigned long num_pages = num_extent_pages(start, len);
4859 	unsigned long i;
4860 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4861 	struct extent_buffer *eb;
4862 	struct extent_buffer *exists = NULL;
4863 	struct page *p;
4864 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4865 	int uptodate = 1;
4866 	int ret;
4867 
4868 	eb = find_extent_buffer(fs_info, start);
4869 	if (eb)
4870 		return eb;
4871 
4872 	eb = __alloc_extent_buffer(fs_info, start, len);
4873 	if (!eb)
4874 		return NULL;
4875 
4876 	for (i = 0; i < num_pages; i++, index++) {
4877 		p = find_or_create_page(mapping, index, GFP_NOFS);
4878 		if (!p)
4879 			goto free_eb;
4880 
4881 		spin_lock(&mapping->private_lock);
4882 		if (PagePrivate(p)) {
4883 			/*
4884 			 * We could have already allocated an eb for this page
4885 			 * and attached one so lets see if we can get a ref on
4886 			 * the existing eb, and if we can we know it's good and
4887 			 * we can just return that one, else we know we can just
4888 			 * overwrite page->private.
4889 			 */
4890 			exists = (struct extent_buffer *)p->private;
4891 			if (atomic_inc_not_zero(&exists->refs)) {
4892 				spin_unlock(&mapping->private_lock);
4893 				unlock_page(p);
4894 				page_cache_release(p);
4895 				mark_extent_buffer_accessed(exists, p);
4896 				goto free_eb;
4897 			}
4898 			exists = NULL;
4899 
4900 			/*
4901 			 * Do this so attach doesn't complain and we need to
4902 			 * drop the ref the old guy had.
4903 			 */
4904 			ClearPagePrivate(p);
4905 			WARN_ON(PageDirty(p));
4906 			page_cache_release(p);
4907 		}
4908 		attach_extent_buffer_page(eb, p);
4909 		spin_unlock(&mapping->private_lock);
4910 		WARN_ON(PageDirty(p));
4911 		eb->pages[i] = p;
4912 		if (!PageUptodate(p))
4913 			uptodate = 0;
4914 
4915 		/*
4916 		 * see below about how we avoid a nasty race with release page
4917 		 * and why we unlock later
4918 		 */
4919 	}
4920 	if (uptodate)
4921 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4922 again:
4923 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4924 	if (ret)
4925 		goto free_eb;
4926 
4927 	spin_lock(&fs_info->buffer_lock);
4928 	ret = radix_tree_insert(&fs_info->buffer_radix,
4929 				start >> PAGE_CACHE_SHIFT, eb);
4930 	spin_unlock(&fs_info->buffer_lock);
4931 	radix_tree_preload_end();
4932 	if (ret == -EEXIST) {
4933 		exists = find_extent_buffer(fs_info, start);
4934 		if (exists)
4935 			goto free_eb;
4936 		else
4937 			goto again;
4938 	}
4939 	/* add one reference for the tree */
4940 	check_buffer_tree_ref(eb);
4941 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4942 
4943 	/*
4944 	 * there is a race where release page may have
4945 	 * tried to find this extent buffer in the radix
4946 	 * but failed.  It will tell the VM it is safe to
4947 	 * reclaim the, and it will clear the page private bit.
4948 	 * We must make sure to set the page private bit properly
4949 	 * after the extent buffer is in the radix tree so
4950 	 * it doesn't get lost
4951 	 */
4952 	SetPageChecked(eb->pages[0]);
4953 	for (i = 1; i < num_pages; i++) {
4954 		p = eb->pages[i];
4955 		ClearPageChecked(p);
4956 		unlock_page(p);
4957 	}
4958 	unlock_page(eb->pages[0]);
4959 	return eb;
4960 
4961 free_eb:
4962 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4963 	for (i = 0; i < num_pages; i++) {
4964 		if (eb->pages[i])
4965 			unlock_page(eb->pages[i]);
4966 	}
4967 
4968 	btrfs_release_extent_buffer(eb);
4969 	return exists;
4970 }
4971 
4972 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4973 {
4974 	struct extent_buffer *eb =
4975 			container_of(head, struct extent_buffer, rcu_head);
4976 
4977 	__free_extent_buffer(eb);
4978 }
4979 
4980 /* Expects to have eb->eb_lock already held */
4981 static int release_extent_buffer(struct extent_buffer *eb)
4982 {
4983 	WARN_ON(atomic_read(&eb->refs) == 0);
4984 	if (atomic_dec_and_test(&eb->refs)) {
4985 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4986 			struct btrfs_fs_info *fs_info = eb->fs_info;
4987 
4988 			spin_unlock(&eb->refs_lock);
4989 
4990 			spin_lock(&fs_info->buffer_lock);
4991 			radix_tree_delete(&fs_info->buffer_radix,
4992 					  eb->start >> PAGE_CACHE_SHIFT);
4993 			spin_unlock(&fs_info->buffer_lock);
4994 		} else {
4995 			spin_unlock(&eb->refs_lock);
4996 		}
4997 
4998 		/* Should be safe to release our pages at this point */
4999 		btrfs_release_extent_buffer_page(eb);
5000 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5001 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5002 			__free_extent_buffer(eb);
5003 			return 1;
5004 		}
5005 #endif
5006 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5007 		return 1;
5008 	}
5009 	spin_unlock(&eb->refs_lock);
5010 
5011 	return 0;
5012 }
5013 
5014 void free_extent_buffer(struct extent_buffer *eb)
5015 {
5016 	int refs;
5017 	int old;
5018 	if (!eb)
5019 		return;
5020 
5021 	while (1) {
5022 		refs = atomic_read(&eb->refs);
5023 		if (refs <= 3)
5024 			break;
5025 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5026 		if (old == refs)
5027 			return;
5028 	}
5029 
5030 	spin_lock(&eb->refs_lock);
5031 	if (atomic_read(&eb->refs) == 2 &&
5032 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5033 		atomic_dec(&eb->refs);
5034 
5035 	if (atomic_read(&eb->refs) == 2 &&
5036 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5037 	    !extent_buffer_under_io(eb) &&
5038 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5039 		atomic_dec(&eb->refs);
5040 
5041 	/*
5042 	 * I know this is terrible, but it's temporary until we stop tracking
5043 	 * the uptodate bits and such for the extent buffers.
5044 	 */
5045 	release_extent_buffer(eb);
5046 }
5047 
5048 void free_extent_buffer_stale(struct extent_buffer *eb)
5049 {
5050 	if (!eb)
5051 		return;
5052 
5053 	spin_lock(&eb->refs_lock);
5054 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5055 
5056 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5057 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5058 		atomic_dec(&eb->refs);
5059 	release_extent_buffer(eb);
5060 }
5061 
5062 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5063 {
5064 	unsigned long i;
5065 	unsigned long num_pages;
5066 	struct page *page;
5067 
5068 	num_pages = num_extent_pages(eb->start, eb->len);
5069 
5070 	for (i = 0; i < num_pages; i++) {
5071 		page = eb->pages[i];
5072 		if (!PageDirty(page))
5073 			continue;
5074 
5075 		lock_page(page);
5076 		WARN_ON(!PagePrivate(page));
5077 
5078 		clear_page_dirty_for_io(page);
5079 		spin_lock_irq(&page->mapping->tree_lock);
5080 		if (!PageDirty(page)) {
5081 			radix_tree_tag_clear(&page->mapping->page_tree,
5082 						page_index(page),
5083 						PAGECACHE_TAG_DIRTY);
5084 		}
5085 		spin_unlock_irq(&page->mapping->tree_lock);
5086 		ClearPageError(page);
5087 		unlock_page(page);
5088 	}
5089 	WARN_ON(atomic_read(&eb->refs) == 0);
5090 }
5091 
5092 int set_extent_buffer_dirty(struct extent_buffer *eb)
5093 {
5094 	unsigned long i;
5095 	unsigned long num_pages;
5096 	int was_dirty = 0;
5097 
5098 	check_buffer_tree_ref(eb);
5099 
5100 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5101 
5102 	num_pages = num_extent_pages(eb->start, eb->len);
5103 	WARN_ON(atomic_read(&eb->refs) == 0);
5104 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5105 
5106 	for (i = 0; i < num_pages; i++)
5107 		set_page_dirty(eb->pages[i]);
5108 	return was_dirty;
5109 }
5110 
5111 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5112 {
5113 	unsigned long i;
5114 	struct page *page;
5115 	unsigned long num_pages;
5116 
5117 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5118 	num_pages = num_extent_pages(eb->start, eb->len);
5119 	for (i = 0; i < num_pages; i++) {
5120 		page = eb->pages[i];
5121 		if (page)
5122 			ClearPageUptodate(page);
5123 	}
5124 	return 0;
5125 }
5126 
5127 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5128 {
5129 	unsigned long i;
5130 	struct page *page;
5131 	unsigned long num_pages;
5132 
5133 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5134 	num_pages = num_extent_pages(eb->start, eb->len);
5135 	for (i = 0; i < num_pages; i++) {
5136 		page = eb->pages[i];
5137 		SetPageUptodate(page);
5138 	}
5139 	return 0;
5140 }
5141 
5142 int extent_buffer_uptodate(struct extent_buffer *eb)
5143 {
5144 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5145 }
5146 
5147 int read_extent_buffer_pages(struct extent_io_tree *tree,
5148 			     struct extent_buffer *eb, u64 start, int wait,
5149 			     get_extent_t *get_extent, int mirror_num)
5150 {
5151 	unsigned long i;
5152 	unsigned long start_i;
5153 	struct page *page;
5154 	int err;
5155 	int ret = 0;
5156 	int locked_pages = 0;
5157 	int all_uptodate = 1;
5158 	unsigned long num_pages;
5159 	unsigned long num_reads = 0;
5160 	struct bio *bio = NULL;
5161 	unsigned long bio_flags = 0;
5162 
5163 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5164 		return 0;
5165 
5166 	if (start) {
5167 		WARN_ON(start < eb->start);
5168 		start_i = (start >> PAGE_CACHE_SHIFT) -
5169 			(eb->start >> PAGE_CACHE_SHIFT);
5170 	} else {
5171 		start_i = 0;
5172 	}
5173 
5174 	num_pages = num_extent_pages(eb->start, eb->len);
5175 	for (i = start_i; i < num_pages; i++) {
5176 		page = eb->pages[i];
5177 		if (wait == WAIT_NONE) {
5178 			if (!trylock_page(page))
5179 				goto unlock_exit;
5180 		} else {
5181 			lock_page(page);
5182 		}
5183 		locked_pages++;
5184 		if (!PageUptodate(page)) {
5185 			num_reads++;
5186 			all_uptodate = 0;
5187 		}
5188 	}
5189 	if (all_uptodate) {
5190 		if (start_i == 0)
5191 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5192 		goto unlock_exit;
5193 	}
5194 
5195 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5196 	eb->read_mirror = 0;
5197 	atomic_set(&eb->io_pages, num_reads);
5198 	for (i = start_i; i < num_pages; i++) {
5199 		page = eb->pages[i];
5200 		if (!PageUptodate(page)) {
5201 			ClearPageError(page);
5202 			err = __extent_read_full_page(tree, page,
5203 						      get_extent, &bio,
5204 						      mirror_num, &bio_flags,
5205 						      READ | REQ_META);
5206 			if (err)
5207 				ret = err;
5208 		} else {
5209 			unlock_page(page);
5210 		}
5211 	}
5212 
5213 	if (bio) {
5214 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5215 				     bio_flags);
5216 		if (err)
5217 			return err;
5218 	}
5219 
5220 	if (ret || wait != WAIT_COMPLETE)
5221 		return ret;
5222 
5223 	for (i = start_i; i < num_pages; i++) {
5224 		page = eb->pages[i];
5225 		wait_on_page_locked(page);
5226 		if (!PageUptodate(page))
5227 			ret = -EIO;
5228 	}
5229 
5230 	return ret;
5231 
5232 unlock_exit:
5233 	i = start_i;
5234 	while (locked_pages > 0) {
5235 		page = eb->pages[i];
5236 		i++;
5237 		unlock_page(page);
5238 		locked_pages--;
5239 	}
5240 	return ret;
5241 }
5242 
5243 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5244 			unsigned long start,
5245 			unsigned long len)
5246 {
5247 	size_t cur;
5248 	size_t offset;
5249 	struct page *page;
5250 	char *kaddr;
5251 	char *dst = (char *)dstv;
5252 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5253 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5254 
5255 	WARN_ON(start > eb->len);
5256 	WARN_ON(start + len > eb->start + eb->len);
5257 
5258 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5259 
5260 	while (len > 0) {
5261 		page = eb->pages[i];
5262 
5263 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5264 		kaddr = page_address(page);
5265 		memcpy(dst, kaddr + offset, cur);
5266 
5267 		dst += cur;
5268 		len -= cur;
5269 		offset = 0;
5270 		i++;
5271 	}
5272 }
5273 
5274 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5275 			unsigned long start,
5276 			unsigned long len)
5277 {
5278 	size_t cur;
5279 	size_t offset;
5280 	struct page *page;
5281 	char *kaddr;
5282 	char __user *dst = (char __user *)dstv;
5283 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5284 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5285 	int ret = 0;
5286 
5287 	WARN_ON(start > eb->len);
5288 	WARN_ON(start + len > eb->start + eb->len);
5289 
5290 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5291 
5292 	while (len > 0) {
5293 		page = eb->pages[i];
5294 
5295 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5296 		kaddr = page_address(page);
5297 		if (copy_to_user(dst, kaddr + offset, cur)) {
5298 			ret = -EFAULT;
5299 			break;
5300 		}
5301 
5302 		dst += cur;
5303 		len -= cur;
5304 		offset = 0;
5305 		i++;
5306 	}
5307 
5308 	return ret;
5309 }
5310 
5311 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5312 			       unsigned long min_len, char **map,
5313 			       unsigned long *map_start,
5314 			       unsigned long *map_len)
5315 {
5316 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5317 	char *kaddr;
5318 	struct page *p;
5319 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5320 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5321 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5322 		PAGE_CACHE_SHIFT;
5323 
5324 	if (i != end_i)
5325 		return -EINVAL;
5326 
5327 	if (i == 0) {
5328 		offset = start_offset;
5329 		*map_start = 0;
5330 	} else {
5331 		offset = 0;
5332 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5333 	}
5334 
5335 	if (start + min_len > eb->len) {
5336 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5337 		       "wanted %lu %lu\n",
5338 		       eb->start, eb->len, start, min_len);
5339 		return -EINVAL;
5340 	}
5341 
5342 	p = eb->pages[i];
5343 	kaddr = page_address(p);
5344 	*map = kaddr + offset;
5345 	*map_len = PAGE_CACHE_SIZE - offset;
5346 	return 0;
5347 }
5348 
5349 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5350 			  unsigned long start,
5351 			  unsigned long len)
5352 {
5353 	size_t cur;
5354 	size_t offset;
5355 	struct page *page;
5356 	char *kaddr;
5357 	char *ptr = (char *)ptrv;
5358 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5359 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5360 	int ret = 0;
5361 
5362 	WARN_ON(start > eb->len);
5363 	WARN_ON(start + len > eb->start + eb->len);
5364 
5365 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5366 
5367 	while (len > 0) {
5368 		page = eb->pages[i];
5369 
5370 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5371 
5372 		kaddr = page_address(page);
5373 		ret = memcmp(ptr, kaddr + offset, cur);
5374 		if (ret)
5375 			break;
5376 
5377 		ptr += cur;
5378 		len -= cur;
5379 		offset = 0;
5380 		i++;
5381 	}
5382 	return ret;
5383 }
5384 
5385 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5386 			 unsigned long start, unsigned long len)
5387 {
5388 	size_t cur;
5389 	size_t offset;
5390 	struct page *page;
5391 	char *kaddr;
5392 	char *src = (char *)srcv;
5393 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5394 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5395 
5396 	WARN_ON(start > eb->len);
5397 	WARN_ON(start + len > eb->start + eb->len);
5398 
5399 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5400 
5401 	while (len > 0) {
5402 		page = eb->pages[i];
5403 		WARN_ON(!PageUptodate(page));
5404 
5405 		cur = min(len, PAGE_CACHE_SIZE - offset);
5406 		kaddr = page_address(page);
5407 		memcpy(kaddr + offset, src, cur);
5408 
5409 		src += cur;
5410 		len -= cur;
5411 		offset = 0;
5412 		i++;
5413 	}
5414 }
5415 
5416 void memset_extent_buffer(struct extent_buffer *eb, char c,
5417 			  unsigned long start, unsigned long len)
5418 {
5419 	size_t cur;
5420 	size_t offset;
5421 	struct page *page;
5422 	char *kaddr;
5423 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5424 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5425 
5426 	WARN_ON(start > eb->len);
5427 	WARN_ON(start + len > eb->start + eb->len);
5428 
5429 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5430 
5431 	while (len > 0) {
5432 		page = eb->pages[i];
5433 		WARN_ON(!PageUptodate(page));
5434 
5435 		cur = min(len, PAGE_CACHE_SIZE - offset);
5436 		kaddr = page_address(page);
5437 		memset(kaddr + offset, c, cur);
5438 
5439 		len -= cur;
5440 		offset = 0;
5441 		i++;
5442 	}
5443 }
5444 
5445 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5446 			unsigned long dst_offset, unsigned long src_offset,
5447 			unsigned long len)
5448 {
5449 	u64 dst_len = dst->len;
5450 	size_t cur;
5451 	size_t offset;
5452 	struct page *page;
5453 	char *kaddr;
5454 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5455 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5456 
5457 	WARN_ON(src->len != dst_len);
5458 
5459 	offset = (start_offset + dst_offset) &
5460 		(PAGE_CACHE_SIZE - 1);
5461 
5462 	while (len > 0) {
5463 		page = dst->pages[i];
5464 		WARN_ON(!PageUptodate(page));
5465 
5466 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5467 
5468 		kaddr = page_address(page);
5469 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5470 
5471 		src_offset += cur;
5472 		len -= cur;
5473 		offset = 0;
5474 		i++;
5475 	}
5476 }
5477 
5478 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5479 {
5480 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5481 	return distance < len;
5482 }
5483 
5484 static void copy_pages(struct page *dst_page, struct page *src_page,
5485 		       unsigned long dst_off, unsigned long src_off,
5486 		       unsigned long len)
5487 {
5488 	char *dst_kaddr = page_address(dst_page);
5489 	char *src_kaddr;
5490 	int must_memmove = 0;
5491 
5492 	if (dst_page != src_page) {
5493 		src_kaddr = page_address(src_page);
5494 	} else {
5495 		src_kaddr = dst_kaddr;
5496 		if (areas_overlap(src_off, dst_off, len))
5497 			must_memmove = 1;
5498 	}
5499 
5500 	if (must_memmove)
5501 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5502 	else
5503 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5504 }
5505 
5506 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5507 			   unsigned long src_offset, unsigned long len)
5508 {
5509 	size_t cur;
5510 	size_t dst_off_in_page;
5511 	size_t src_off_in_page;
5512 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5513 	unsigned long dst_i;
5514 	unsigned long src_i;
5515 
5516 	if (src_offset + len > dst->len) {
5517 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5518 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5519 		BUG_ON(1);
5520 	}
5521 	if (dst_offset + len > dst->len) {
5522 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5523 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5524 		BUG_ON(1);
5525 	}
5526 
5527 	while (len > 0) {
5528 		dst_off_in_page = (start_offset + dst_offset) &
5529 			(PAGE_CACHE_SIZE - 1);
5530 		src_off_in_page = (start_offset + src_offset) &
5531 			(PAGE_CACHE_SIZE - 1);
5532 
5533 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5534 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5535 
5536 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5537 					       src_off_in_page));
5538 		cur = min_t(unsigned long, cur,
5539 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5540 
5541 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5542 			   dst_off_in_page, src_off_in_page, cur);
5543 
5544 		src_offset += cur;
5545 		dst_offset += cur;
5546 		len -= cur;
5547 	}
5548 }
5549 
5550 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5551 			   unsigned long src_offset, unsigned long len)
5552 {
5553 	size_t cur;
5554 	size_t dst_off_in_page;
5555 	size_t src_off_in_page;
5556 	unsigned long dst_end = dst_offset + len - 1;
5557 	unsigned long src_end = src_offset + len - 1;
5558 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5559 	unsigned long dst_i;
5560 	unsigned long src_i;
5561 
5562 	if (src_offset + len > dst->len) {
5563 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5564 		       "len %lu len %lu\n", src_offset, len, dst->len);
5565 		BUG_ON(1);
5566 	}
5567 	if (dst_offset + len > dst->len) {
5568 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5569 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5570 		BUG_ON(1);
5571 	}
5572 	if (dst_offset < src_offset) {
5573 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5574 		return;
5575 	}
5576 	while (len > 0) {
5577 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5578 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5579 
5580 		dst_off_in_page = (start_offset + dst_end) &
5581 			(PAGE_CACHE_SIZE - 1);
5582 		src_off_in_page = (start_offset + src_end) &
5583 			(PAGE_CACHE_SIZE - 1);
5584 
5585 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5586 		cur = min(cur, dst_off_in_page + 1);
5587 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5588 			   dst_off_in_page - cur + 1,
5589 			   src_off_in_page - cur + 1, cur);
5590 
5591 		dst_end -= cur;
5592 		src_end -= cur;
5593 		len -= cur;
5594 	}
5595 }
5596 
5597 int try_release_extent_buffer(struct page *page)
5598 {
5599 	struct extent_buffer *eb;
5600 
5601 	/*
5602 	 * We need to make sure noboody is attaching this page to an eb right
5603 	 * now.
5604 	 */
5605 	spin_lock(&page->mapping->private_lock);
5606 	if (!PagePrivate(page)) {
5607 		spin_unlock(&page->mapping->private_lock);
5608 		return 1;
5609 	}
5610 
5611 	eb = (struct extent_buffer *)page->private;
5612 	BUG_ON(!eb);
5613 
5614 	/*
5615 	 * This is a little awful but should be ok, we need to make sure that
5616 	 * the eb doesn't disappear out from under us while we're looking at
5617 	 * this page.
5618 	 */
5619 	spin_lock(&eb->refs_lock);
5620 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5621 		spin_unlock(&eb->refs_lock);
5622 		spin_unlock(&page->mapping->private_lock);
5623 		return 0;
5624 	}
5625 	spin_unlock(&page->mapping->private_lock);
5626 
5627 	/*
5628 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5629 	 * so just return, this page will likely be freed soon anyway.
5630 	 */
5631 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5632 		spin_unlock(&eb->refs_lock);
5633 		return 0;
5634 	}
5635 
5636 	return release_extent_buffer(eb);
5637 }
5638