1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 if (extent_state_cache) 210 kmem_cache_destroy(extent_state_cache); 211 if (extent_buffer_cache) 212 kmem_cache_destroy(extent_buffer_cache); 213 if (btrfs_bioset) 214 bioset_free(btrfs_bioset); 215 } 216 217 void extent_io_tree_init(struct extent_io_tree *tree, 218 struct address_space *mapping) 219 { 220 tree->state = RB_ROOT; 221 tree->ops = NULL; 222 tree->dirty_bytes = 0; 223 spin_lock_init(&tree->lock); 224 tree->mapping = mapping; 225 } 226 227 static struct extent_state *alloc_extent_state(gfp_t mask) 228 { 229 struct extent_state *state; 230 231 state = kmem_cache_alloc(extent_state_cache, mask); 232 if (!state) 233 return state; 234 state->state = 0; 235 state->private = 0; 236 RB_CLEAR_NODE(&state->rb_node); 237 btrfs_leak_debug_add(&state->leak_list, &states); 238 atomic_set(&state->refs, 1); 239 init_waitqueue_head(&state->wq); 240 trace_alloc_extent_state(state, mask, _RET_IP_); 241 return state; 242 } 243 244 void free_extent_state(struct extent_state *state) 245 { 246 if (!state) 247 return; 248 if (atomic_dec_and_test(&state->refs)) { 249 WARN_ON(extent_state_in_tree(state)); 250 btrfs_leak_debug_del(&state->leak_list); 251 trace_free_extent_state(state, _RET_IP_); 252 kmem_cache_free(extent_state_cache, state); 253 } 254 } 255 256 static struct rb_node *tree_insert(struct rb_root *root, 257 struct rb_node *search_start, 258 u64 offset, 259 struct rb_node *node, 260 struct rb_node ***p_in, 261 struct rb_node **parent_in) 262 { 263 struct rb_node **p; 264 struct rb_node *parent = NULL; 265 struct tree_entry *entry; 266 267 if (p_in && parent_in) { 268 p = *p_in; 269 parent = *parent_in; 270 goto do_insert; 271 } 272 273 p = search_start ? &search_start : &root->rb_node; 274 while (*p) { 275 parent = *p; 276 entry = rb_entry(parent, struct tree_entry, rb_node); 277 278 if (offset < entry->start) 279 p = &(*p)->rb_left; 280 else if (offset > entry->end) 281 p = &(*p)->rb_right; 282 else 283 return parent; 284 } 285 286 do_insert: 287 rb_link_node(node, parent, p); 288 rb_insert_color(node, root); 289 return NULL; 290 } 291 292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 293 struct rb_node **prev_ret, 294 struct rb_node **next_ret, 295 struct rb_node ***p_ret, 296 struct rb_node **parent_ret) 297 { 298 struct rb_root *root = &tree->state; 299 struct rb_node **n = &root->rb_node; 300 struct rb_node *prev = NULL; 301 struct rb_node *orig_prev = NULL; 302 struct tree_entry *entry; 303 struct tree_entry *prev_entry = NULL; 304 305 while (*n) { 306 prev = *n; 307 entry = rb_entry(prev, struct tree_entry, rb_node); 308 prev_entry = entry; 309 310 if (offset < entry->start) 311 n = &(*n)->rb_left; 312 else if (offset > entry->end) 313 n = &(*n)->rb_right; 314 else 315 return *n; 316 } 317 318 if (p_ret) 319 *p_ret = n; 320 if (parent_ret) 321 *parent_ret = prev; 322 323 if (prev_ret) { 324 orig_prev = prev; 325 while (prev && offset > prev_entry->end) { 326 prev = rb_next(prev); 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 } 329 *prev_ret = prev; 330 prev = orig_prev; 331 } 332 333 if (next_ret) { 334 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 335 while (prev && offset < prev_entry->start) { 336 prev = rb_prev(prev); 337 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 338 } 339 *next_ret = prev; 340 } 341 return NULL; 342 } 343 344 static inline struct rb_node * 345 tree_search_for_insert(struct extent_io_tree *tree, 346 u64 offset, 347 struct rb_node ***p_ret, 348 struct rb_node **parent_ret) 349 { 350 struct rb_node *prev = NULL; 351 struct rb_node *ret; 352 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 354 if (!ret) 355 return prev; 356 return ret; 357 } 358 359 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 360 u64 offset) 361 { 362 return tree_search_for_insert(tree, offset, NULL, NULL); 363 } 364 365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 366 struct extent_state *other) 367 { 368 if (tree->ops && tree->ops->merge_extent_hook) 369 tree->ops->merge_extent_hook(tree->mapping->host, new, 370 other); 371 } 372 373 /* 374 * utility function to look for merge candidates inside a given range. 375 * Any extents with matching state are merged together into a single 376 * extent in the tree. Extents with EXTENT_IO in their state field 377 * are not merged because the end_io handlers need to be able to do 378 * operations on them without sleeping (or doing allocations/splits). 379 * 380 * This should be called with the tree lock held. 381 */ 382 static void merge_state(struct extent_io_tree *tree, 383 struct extent_state *state) 384 { 385 struct extent_state *other; 386 struct rb_node *other_node; 387 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 389 return; 390 391 other_node = rb_prev(&state->rb_node); 392 if (other_node) { 393 other = rb_entry(other_node, struct extent_state, rb_node); 394 if (other->end == state->start - 1 && 395 other->state == state->state) { 396 merge_cb(tree, state, other); 397 state->start = other->start; 398 rb_erase(&other->rb_node, &tree->state); 399 RB_CLEAR_NODE(&other->rb_node); 400 free_extent_state(other); 401 } 402 } 403 other_node = rb_next(&state->rb_node); 404 if (other_node) { 405 other = rb_entry(other_node, struct extent_state, rb_node); 406 if (other->start == state->end + 1 && 407 other->state == state->state) { 408 merge_cb(tree, state, other); 409 state->end = other->end; 410 rb_erase(&other->rb_node, &tree->state); 411 RB_CLEAR_NODE(&other->rb_node); 412 free_extent_state(other); 413 } 414 } 415 } 416 417 static void set_state_cb(struct extent_io_tree *tree, 418 struct extent_state *state, unsigned *bits) 419 { 420 if (tree->ops && tree->ops->set_bit_hook) 421 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 422 } 423 424 static void clear_state_cb(struct extent_io_tree *tree, 425 struct extent_state *state, unsigned *bits) 426 { 427 if (tree->ops && tree->ops->clear_bit_hook) 428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 429 } 430 431 static void set_state_bits(struct extent_io_tree *tree, 432 struct extent_state *state, unsigned *bits, 433 struct extent_changeset *changeset); 434 435 /* 436 * insert an extent_state struct into the tree. 'bits' are set on the 437 * struct before it is inserted. 438 * 439 * This may return -EEXIST if the extent is already there, in which case the 440 * state struct is freed. 441 * 442 * The tree lock is not taken internally. This is a utility function and 443 * probably isn't what you want to call (see set/clear_extent_bit). 444 */ 445 static int insert_state(struct extent_io_tree *tree, 446 struct extent_state *state, u64 start, u64 end, 447 struct rb_node ***p, 448 struct rb_node **parent, 449 unsigned *bits, struct extent_changeset *changeset) 450 { 451 struct rb_node *node; 452 453 if (end < start) 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 455 end, start); 456 state->start = start; 457 state->end = end; 458 459 set_state_bits(tree, state, bits, changeset); 460 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 462 if (node) { 463 struct extent_state *found; 464 found = rb_entry(node, struct extent_state, rb_node); 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 466 "%llu %llu\n", 467 found->start, found->end, start, end); 468 return -EEXIST; 469 } 470 merge_state(tree, state); 471 return 0; 472 } 473 474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 475 u64 split) 476 { 477 if (tree->ops && tree->ops->split_extent_hook) 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 479 } 480 481 /* 482 * split a given extent state struct in two, inserting the preallocated 483 * struct 'prealloc' as the newly created second half. 'split' indicates an 484 * offset inside 'orig' where it should be split. 485 * 486 * Before calling, 487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 488 * are two extent state structs in the tree: 489 * prealloc: [orig->start, split - 1] 490 * orig: [ split, orig->end ] 491 * 492 * The tree locks are not taken by this function. They need to be held 493 * by the caller. 494 */ 495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 496 struct extent_state *prealloc, u64 split) 497 { 498 struct rb_node *node; 499 500 split_cb(tree, orig, split); 501 502 prealloc->start = orig->start; 503 prealloc->end = split - 1; 504 prealloc->state = orig->state; 505 orig->start = split; 506 507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 508 &prealloc->rb_node, NULL, NULL); 509 if (node) { 510 free_extent_state(prealloc); 511 return -EEXIST; 512 } 513 return 0; 514 } 515 516 static struct extent_state *next_state(struct extent_state *state) 517 { 518 struct rb_node *next = rb_next(&state->rb_node); 519 if (next) 520 return rb_entry(next, struct extent_state, rb_node); 521 else 522 return NULL; 523 } 524 525 /* 526 * utility function to clear some bits in an extent state struct. 527 * it will optionally wake up any one waiting on this state (wake == 1). 528 * 529 * If no bits are set on the state struct after clearing things, the 530 * struct is freed and removed from the tree 531 */ 532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 533 struct extent_state *state, 534 unsigned *bits, int wake, 535 struct extent_changeset *changeset) 536 { 537 struct extent_state *next; 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 539 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 541 u64 range = state->end - state->start + 1; 542 WARN_ON(range > tree->dirty_bytes); 543 tree->dirty_bytes -= range; 544 } 545 clear_state_cb(tree, state, bits); 546 add_extent_changeset(state, bits_to_clear, changeset, 0); 547 state->state &= ~bits_to_clear; 548 if (wake) 549 wake_up(&state->wq); 550 if (state->state == 0) { 551 next = next_state(state); 552 if (extent_state_in_tree(state)) { 553 rb_erase(&state->rb_node, &tree->state); 554 RB_CLEAR_NODE(&state->rb_node); 555 free_extent_state(state); 556 } else { 557 WARN_ON(1); 558 } 559 } else { 560 merge_state(tree, state); 561 next = next_state(state); 562 } 563 return next; 564 } 565 566 static struct extent_state * 567 alloc_extent_state_atomic(struct extent_state *prealloc) 568 { 569 if (!prealloc) 570 prealloc = alloc_extent_state(GFP_ATOMIC); 571 572 return prealloc; 573 } 574 575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 576 { 577 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 578 "Extent tree was modified by another " 579 "thread while locked."); 580 } 581 582 /* 583 * clear some bits on a range in the tree. This may require splitting 584 * or inserting elements in the tree, so the gfp mask is used to 585 * indicate which allocations or sleeping are allowed. 586 * 587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 588 * the given range from the tree regardless of state (ie for truncate). 589 * 590 * the range [start, end] is inclusive. 591 * 592 * This takes the tree lock, and returns 0 on success and < 0 on error. 593 */ 594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 595 unsigned bits, int wake, int delete, 596 struct extent_state **cached_state, 597 gfp_t mask, struct extent_changeset *changeset) 598 { 599 struct extent_state *state; 600 struct extent_state *cached; 601 struct extent_state *prealloc = NULL; 602 struct rb_node *node; 603 u64 last_end; 604 int err; 605 int clear = 0; 606 607 btrfs_debug_check_extent_io_range(tree, start, end); 608 609 if (bits & EXTENT_DELALLOC) 610 bits |= EXTENT_NORESERVE; 611 612 if (delete) 613 bits |= ~EXTENT_CTLBITS; 614 bits |= EXTENT_FIRST_DELALLOC; 615 616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 617 clear = 1; 618 again: 619 if (!prealloc && gfpflags_allow_blocking(mask)) { 620 /* 621 * Don't care for allocation failure here because we might end 622 * up not needing the pre-allocated extent state at all, which 623 * is the case if we only have in the tree extent states that 624 * cover our input range and don't cover too any other range. 625 * If we end up needing a new extent state we allocate it later. 626 */ 627 prealloc = alloc_extent_state(mask); 628 } 629 630 spin_lock(&tree->lock); 631 if (cached_state) { 632 cached = *cached_state; 633 634 if (clear) { 635 *cached_state = NULL; 636 cached_state = NULL; 637 } 638 639 if (cached && extent_state_in_tree(cached) && 640 cached->start <= start && cached->end > start) { 641 if (clear) 642 atomic_dec(&cached->refs); 643 state = cached; 644 goto hit_next; 645 } 646 if (clear) 647 free_extent_state(cached); 648 } 649 /* 650 * this search will find the extents that end after 651 * our range starts 652 */ 653 node = tree_search(tree, start); 654 if (!node) 655 goto out; 656 state = rb_entry(node, struct extent_state, rb_node); 657 hit_next: 658 if (state->start > end) 659 goto out; 660 WARN_ON(state->end < start); 661 last_end = state->end; 662 663 /* the state doesn't have the wanted bits, go ahead */ 664 if (!(state->state & bits)) { 665 state = next_state(state); 666 goto next; 667 } 668 669 /* 670 * | ---- desired range ---- | 671 * | state | or 672 * | ------------- state -------------- | 673 * 674 * We need to split the extent we found, and may flip 675 * bits on second half. 676 * 677 * If the extent we found extends past our range, we 678 * just split and search again. It'll get split again 679 * the next time though. 680 * 681 * If the extent we found is inside our range, we clear 682 * the desired bit on it. 683 */ 684 685 if (state->start < start) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, start); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 prealloc = NULL; 693 if (err) 694 goto out; 695 if (state->end <= end) { 696 state = clear_state_bit(tree, state, &bits, wake, 697 changeset); 698 goto next; 699 } 700 goto search_again; 701 } 702 /* 703 * | ---- desired range ---- | 704 * | state | 705 * We need to split the extent, and clear the bit 706 * on the first half 707 */ 708 if (state->start <= end && state->end > end) { 709 prealloc = alloc_extent_state_atomic(prealloc); 710 BUG_ON(!prealloc); 711 err = split_state(tree, state, prealloc, end + 1); 712 if (err) 713 extent_io_tree_panic(tree, err); 714 715 if (wake) 716 wake_up(&state->wq); 717 718 clear_state_bit(tree, prealloc, &bits, wake, changeset); 719 720 prealloc = NULL; 721 goto out; 722 } 723 724 state = clear_state_bit(tree, state, &bits, wake, changeset); 725 next: 726 if (last_end == (u64)-1) 727 goto out; 728 start = last_end + 1; 729 if (start <= end && state && !need_resched()) 730 goto hit_next; 731 goto search_again; 732 733 out: 734 spin_unlock(&tree->lock); 735 if (prealloc) 736 free_extent_state(prealloc); 737 738 return 0; 739 740 search_again: 741 if (start > end) 742 goto out; 743 spin_unlock(&tree->lock); 744 if (gfpflags_allow_blocking(mask)) 745 cond_resched(); 746 goto again; 747 } 748 749 static void wait_on_state(struct extent_io_tree *tree, 750 struct extent_state *state) 751 __releases(tree->lock) 752 __acquires(tree->lock) 753 { 754 DEFINE_WAIT(wait); 755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 756 spin_unlock(&tree->lock); 757 schedule(); 758 spin_lock(&tree->lock); 759 finish_wait(&state->wq, &wait); 760 } 761 762 /* 763 * waits for one or more bits to clear on a range in the state tree. 764 * The range [start, end] is inclusive. 765 * The tree lock is taken by this function 766 */ 767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 768 unsigned long bits) 769 { 770 struct extent_state *state; 771 struct rb_node *node; 772 773 btrfs_debug_check_extent_io_range(tree, start, end); 774 775 spin_lock(&tree->lock); 776 again: 777 while (1) { 778 /* 779 * this search will find all the extents that end after 780 * our range starts 781 */ 782 node = tree_search(tree, start); 783 process_node: 784 if (!node) 785 break; 786 787 state = rb_entry(node, struct extent_state, rb_node); 788 789 if (state->start > end) 790 goto out; 791 792 if (state->state & bits) { 793 start = state->start; 794 atomic_inc(&state->refs); 795 wait_on_state(tree, state); 796 free_extent_state(state); 797 goto again; 798 } 799 start = state->end + 1; 800 801 if (start > end) 802 break; 803 804 if (!cond_resched_lock(&tree->lock)) { 805 node = rb_next(node); 806 goto process_node; 807 } 808 } 809 out: 810 spin_unlock(&tree->lock); 811 } 812 813 static void set_state_bits(struct extent_io_tree *tree, 814 struct extent_state *state, 815 unsigned *bits, struct extent_changeset *changeset) 816 { 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 818 819 set_state_cb(tree, state, bits); 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 821 u64 range = state->end - state->start + 1; 822 tree->dirty_bytes += range; 823 } 824 add_extent_changeset(state, bits_to_set, changeset, 1); 825 state->state |= bits_to_set; 826 } 827 828 static void cache_state_if_flags(struct extent_state *state, 829 struct extent_state **cached_ptr, 830 unsigned flags) 831 { 832 if (cached_ptr && !(*cached_ptr)) { 833 if (!flags || (state->state & flags)) { 834 *cached_ptr = state; 835 atomic_inc(&state->refs); 836 } 837 } 838 } 839 840 static void cache_state(struct extent_state *state, 841 struct extent_state **cached_ptr) 842 { 843 return cache_state_if_flags(state, cached_ptr, 844 EXTENT_IOBITS | EXTENT_BOUNDARY); 845 } 846 847 /* 848 * set some bits on a range in the tree. This may require allocations or 849 * sleeping, so the gfp mask is used to indicate what is allowed. 850 * 851 * If any of the exclusive bits are set, this will fail with -EEXIST if some 852 * part of the range already has the desired bits set. The start of the 853 * existing range is returned in failed_start in this case. 854 * 855 * [start, end] is inclusive This takes the tree lock. 856 */ 857 858 static int __must_check 859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 860 unsigned bits, unsigned exclusive_bits, 861 u64 *failed_start, struct extent_state **cached_state, 862 gfp_t mask, struct extent_changeset *changeset) 863 { 864 struct extent_state *state; 865 struct extent_state *prealloc = NULL; 866 struct rb_node *node; 867 struct rb_node **p; 868 struct rb_node *parent; 869 int err = 0; 870 u64 last_start; 871 u64 last_end; 872 873 btrfs_debug_check_extent_io_range(tree, start, end); 874 875 bits |= EXTENT_FIRST_DELALLOC; 876 again: 877 if (!prealloc && gfpflags_allow_blocking(mask)) { 878 prealloc = alloc_extent_state(mask); 879 BUG_ON(!prealloc); 880 } 881 882 spin_lock(&tree->lock); 883 if (cached_state && *cached_state) { 884 state = *cached_state; 885 if (state->start <= start && state->end > start && 886 extent_state_in_tree(state)) { 887 node = &state->rb_node; 888 goto hit_next; 889 } 890 } 891 /* 892 * this search will find all the extents that end after 893 * our range starts. 894 */ 895 node = tree_search_for_insert(tree, start, &p, &parent); 896 if (!node) { 897 prealloc = alloc_extent_state_atomic(prealloc); 898 BUG_ON(!prealloc); 899 err = insert_state(tree, prealloc, start, end, 900 &p, &parent, &bits, changeset); 901 if (err) 902 extent_io_tree_panic(tree, err); 903 904 cache_state(prealloc, cached_state); 905 prealloc = NULL; 906 goto out; 907 } 908 state = rb_entry(node, struct extent_state, rb_node); 909 hit_next: 910 last_start = state->start; 911 last_end = state->end; 912 913 /* 914 * | ---- desired range ---- | 915 * | state | 916 * 917 * Just lock what we found and keep going 918 */ 919 if (state->start == start && state->end <= end) { 920 if (state->state & exclusive_bits) { 921 *failed_start = state->start; 922 err = -EEXIST; 923 goto out; 924 } 925 926 set_state_bits(tree, state, &bits, changeset); 927 cache_state(state, cached_state); 928 merge_state(tree, state); 929 if (last_end == (u64)-1) 930 goto out; 931 start = last_end + 1; 932 state = next_state(state); 933 if (start < end && state && state->start == start && 934 !need_resched()) 935 goto hit_next; 936 goto search_again; 937 } 938 939 /* 940 * | ---- desired range ---- | 941 * | state | 942 * or 943 * | ------------- state -------------- | 944 * 945 * We need to split the extent we found, and may flip bits on 946 * second half. 947 * 948 * If the extent we found extends past our 949 * range, we just split and search again. It'll get split 950 * again the next time though. 951 * 952 * If the extent we found is inside our range, we set the 953 * desired bit on it. 954 */ 955 if (state->start < start) { 956 if (state->state & exclusive_bits) { 957 *failed_start = start; 958 err = -EEXIST; 959 goto out; 960 } 961 962 prealloc = alloc_extent_state_atomic(prealloc); 963 BUG_ON(!prealloc); 964 err = split_state(tree, state, prealloc, start); 965 if (err) 966 extent_io_tree_panic(tree, err); 967 968 prealloc = NULL; 969 if (err) 970 goto out; 971 if (state->end <= end) { 972 set_state_bits(tree, state, &bits, changeset); 973 cache_state(state, cached_state); 974 merge_state(tree, state); 975 if (last_end == (u64)-1) 976 goto out; 977 start = last_end + 1; 978 state = next_state(state); 979 if (start < end && state && state->start == start && 980 !need_resched()) 981 goto hit_next; 982 } 983 goto search_again; 984 } 985 /* 986 * | ---- desired range ---- | 987 * | state | or | state | 988 * 989 * There's a hole, we need to insert something in it and 990 * ignore the extent we found. 991 */ 992 if (state->start > start) { 993 u64 this_end; 994 if (end < last_start) 995 this_end = end; 996 else 997 this_end = last_start - 1; 998 999 prealloc = alloc_extent_state_atomic(prealloc); 1000 BUG_ON(!prealloc); 1001 1002 /* 1003 * Avoid to free 'prealloc' if it can be merged with 1004 * the later extent. 1005 */ 1006 err = insert_state(tree, prealloc, start, this_end, 1007 NULL, NULL, &bits, changeset); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 cache_state(prealloc, cached_state); 1012 prealloc = NULL; 1013 start = this_end + 1; 1014 goto search_again; 1015 } 1016 /* 1017 * | ---- desired range ---- | 1018 * | state | 1019 * We need to split the extent, and set the bit 1020 * on the first half 1021 */ 1022 if (state->start <= end && state->end > end) { 1023 if (state->state & exclusive_bits) { 1024 *failed_start = start; 1025 err = -EEXIST; 1026 goto out; 1027 } 1028 1029 prealloc = alloc_extent_state_atomic(prealloc); 1030 BUG_ON(!prealloc); 1031 err = split_state(tree, state, prealloc, end + 1); 1032 if (err) 1033 extent_io_tree_panic(tree, err); 1034 1035 set_state_bits(tree, prealloc, &bits, changeset); 1036 cache_state(prealloc, cached_state); 1037 merge_state(tree, prealloc); 1038 prealloc = NULL; 1039 goto out; 1040 } 1041 1042 goto search_again; 1043 1044 out: 1045 spin_unlock(&tree->lock); 1046 if (prealloc) 1047 free_extent_state(prealloc); 1048 1049 return err; 1050 1051 search_again: 1052 if (start > end) 1053 goto out; 1054 spin_unlock(&tree->lock); 1055 if (gfpflags_allow_blocking(mask)) 1056 cond_resched(); 1057 goto again; 1058 } 1059 1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1061 unsigned bits, u64 * failed_start, 1062 struct extent_state **cached_state, gfp_t mask) 1063 { 1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1065 cached_state, mask, NULL); 1066 } 1067 1068 1069 /** 1070 * convert_extent_bit - convert all bits in a given range from one bit to 1071 * another 1072 * @tree: the io tree to search 1073 * @start: the start offset in bytes 1074 * @end: the end offset in bytes (inclusive) 1075 * @bits: the bits to set in this range 1076 * @clear_bits: the bits to clear in this range 1077 * @cached_state: state that we're going to cache 1078 * @mask: the allocation mask 1079 * 1080 * This will go through and set bits for the given range. If any states exist 1081 * already in this range they are set with the given bit and cleared of the 1082 * clear_bits. This is only meant to be used by things that are mergeable, ie 1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1084 * boundary bits like LOCK. 1085 */ 1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1087 unsigned bits, unsigned clear_bits, 1088 struct extent_state **cached_state, gfp_t mask) 1089 { 1090 struct extent_state *state; 1091 struct extent_state *prealloc = NULL; 1092 struct rb_node *node; 1093 struct rb_node **p; 1094 struct rb_node *parent; 1095 int err = 0; 1096 u64 last_start; 1097 u64 last_end; 1098 bool first_iteration = true; 1099 1100 btrfs_debug_check_extent_io_range(tree, start, end); 1101 1102 again: 1103 if (!prealloc && gfpflags_allow_blocking(mask)) { 1104 /* 1105 * Best effort, don't worry if extent state allocation fails 1106 * here for the first iteration. We might have a cached state 1107 * that matches exactly the target range, in which case no 1108 * extent state allocations are needed. We'll only know this 1109 * after locking the tree. 1110 */ 1111 prealloc = alloc_extent_state(mask); 1112 if (!prealloc && !first_iteration) 1113 return -ENOMEM; 1114 } 1115 1116 spin_lock(&tree->lock); 1117 if (cached_state && *cached_state) { 1118 state = *cached_state; 1119 if (state->start <= start && state->end > start && 1120 extent_state_in_tree(state)) { 1121 node = &state->rb_node; 1122 goto hit_next; 1123 } 1124 } 1125 1126 /* 1127 * this search will find all the extents that end after 1128 * our range starts. 1129 */ 1130 node = tree_search_for_insert(tree, start, &p, &parent); 1131 if (!node) { 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 if (!prealloc) { 1134 err = -ENOMEM; 1135 goto out; 1136 } 1137 err = insert_state(tree, prealloc, start, end, 1138 &p, &parent, &bits, NULL); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 goto out; 1144 } 1145 state = rb_entry(node, struct extent_state, rb_node); 1146 hit_next: 1147 last_start = state->start; 1148 last_end = state->end; 1149 1150 /* 1151 * | ---- desired range ---- | 1152 * | state | 1153 * 1154 * Just lock what we found and keep going 1155 */ 1156 if (state->start == start && state->end <= end) { 1157 set_state_bits(tree, state, &bits, NULL); 1158 cache_state(state, cached_state); 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1160 if (last_end == (u64)-1) 1161 goto out; 1162 start = last_end + 1; 1163 if (start < end && state && state->start == start && 1164 !need_resched()) 1165 goto hit_next; 1166 goto search_again; 1167 } 1168 1169 /* 1170 * | ---- desired range ---- | 1171 * | state | 1172 * or 1173 * | ------------- state -------------- | 1174 * 1175 * We need to split the extent we found, and may flip bits on 1176 * second half. 1177 * 1178 * If the extent we found extends past our 1179 * range, we just split and search again. It'll get split 1180 * again the next time though. 1181 * 1182 * If the extent we found is inside our range, we set the 1183 * desired bit on it. 1184 */ 1185 if (state->start < start) { 1186 prealloc = alloc_extent_state_atomic(prealloc); 1187 if (!prealloc) { 1188 err = -ENOMEM; 1189 goto out; 1190 } 1191 err = split_state(tree, state, prealloc, start); 1192 if (err) 1193 extent_io_tree_panic(tree, err); 1194 prealloc = NULL; 1195 if (err) 1196 goto out; 1197 if (state->end <= end) { 1198 set_state_bits(tree, state, &bits, NULL); 1199 cache_state(state, cached_state); 1200 state = clear_state_bit(tree, state, &clear_bits, 0, 1201 NULL); 1202 if (last_end == (u64)-1) 1203 goto out; 1204 start = last_end + 1; 1205 if (start < end && state && state->start == start && 1206 !need_resched()) 1207 goto hit_next; 1208 } 1209 goto search_again; 1210 } 1211 /* 1212 * | ---- desired range ---- | 1213 * | state | or | state | 1214 * 1215 * There's a hole, we need to insert something in it and 1216 * ignore the extent we found. 1217 */ 1218 if (state->start > start) { 1219 u64 this_end; 1220 if (end < last_start) 1221 this_end = end; 1222 else 1223 this_end = last_start - 1; 1224 1225 prealloc = alloc_extent_state_atomic(prealloc); 1226 if (!prealloc) { 1227 err = -ENOMEM; 1228 goto out; 1229 } 1230 1231 /* 1232 * Avoid to free 'prealloc' if it can be merged with 1233 * the later extent. 1234 */ 1235 err = insert_state(tree, prealloc, start, this_end, 1236 NULL, NULL, &bits, NULL); 1237 if (err) 1238 extent_io_tree_panic(tree, err); 1239 cache_state(prealloc, cached_state); 1240 prealloc = NULL; 1241 start = this_end + 1; 1242 goto search_again; 1243 } 1244 /* 1245 * | ---- desired range ---- | 1246 * | state | 1247 * We need to split the extent, and set the bit 1248 * on the first half 1249 */ 1250 if (state->start <= end && state->end > end) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 1257 err = split_state(tree, state, prealloc, end + 1); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 1261 set_state_bits(tree, prealloc, &bits, NULL); 1262 cache_state(prealloc, cached_state); 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1264 prealloc = NULL; 1265 goto out; 1266 } 1267 1268 goto search_again; 1269 1270 out: 1271 spin_unlock(&tree->lock); 1272 if (prealloc) 1273 free_extent_state(prealloc); 1274 1275 return err; 1276 1277 search_again: 1278 if (start > end) 1279 goto out; 1280 spin_unlock(&tree->lock); 1281 if (gfpflags_allow_blocking(mask)) 1282 cond_resched(); 1283 first_iteration = false; 1284 goto again; 1285 } 1286 1287 /* wrappers around set/clear extent bit */ 1288 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1289 unsigned bits, gfp_t mask, 1290 struct extent_changeset *changeset) 1291 { 1292 /* 1293 * We don't support EXTENT_LOCKED yet, as current changeset will 1294 * record any bits changed, so for EXTENT_LOCKED case, it will 1295 * either fail with -EEXIST or changeset will record the whole 1296 * range. 1297 */ 1298 BUG_ON(bits & EXTENT_LOCKED); 1299 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask, 1301 changeset); 1302 } 1303 1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, int wake, int delete, 1306 struct extent_state **cached, gfp_t mask) 1307 { 1308 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1309 cached, mask, NULL); 1310 } 1311 1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1313 unsigned bits, gfp_t mask, 1314 struct extent_changeset *changeset) 1315 { 1316 /* 1317 * Don't support EXTENT_LOCKED case, same reason as 1318 * set_record_extent_bits(). 1319 */ 1320 BUG_ON(bits & EXTENT_LOCKED); 1321 1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask, 1323 changeset); 1324 } 1325 1326 /* 1327 * either insert or lock state struct between start and end use mask to tell 1328 * us if waiting is desired. 1329 */ 1330 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1331 struct extent_state **cached_state) 1332 { 1333 int err; 1334 u64 failed_start; 1335 1336 while (1) { 1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1338 EXTENT_LOCKED, &failed_start, 1339 cached_state, GFP_NOFS, NULL); 1340 if (err == -EEXIST) { 1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1342 start = failed_start; 1343 } else 1344 break; 1345 WARN_ON(start > end); 1346 } 1347 return err; 1348 } 1349 1350 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1351 { 1352 int err; 1353 u64 failed_start; 1354 1355 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1356 &failed_start, NULL, GFP_NOFS, NULL); 1357 if (err == -EEXIST) { 1358 if (failed_start > start) 1359 clear_extent_bit(tree, start, failed_start - 1, 1360 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1361 return 0; 1362 } 1363 return 1; 1364 } 1365 1366 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1367 { 1368 unsigned long index = start >> PAGE_CACHE_SHIFT; 1369 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1370 struct page *page; 1371 1372 while (index <= end_index) { 1373 page = find_get_page(inode->i_mapping, index); 1374 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1375 clear_page_dirty_for_io(page); 1376 page_cache_release(page); 1377 index++; 1378 } 1379 } 1380 1381 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1382 { 1383 unsigned long index = start >> PAGE_CACHE_SHIFT; 1384 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1385 struct page *page; 1386 1387 while (index <= end_index) { 1388 page = find_get_page(inode->i_mapping, index); 1389 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1390 __set_page_dirty_nobuffers(page); 1391 account_page_redirty(page); 1392 page_cache_release(page); 1393 index++; 1394 } 1395 } 1396 1397 /* 1398 * helper function to set both pages and extents in the tree writeback 1399 */ 1400 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1401 { 1402 unsigned long index = start >> PAGE_CACHE_SHIFT; 1403 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1404 struct page *page; 1405 1406 while (index <= end_index) { 1407 page = find_get_page(tree->mapping, index); 1408 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1409 set_page_writeback(page); 1410 page_cache_release(page); 1411 index++; 1412 } 1413 } 1414 1415 /* find the first state struct with 'bits' set after 'start', and 1416 * return it. tree->lock must be held. NULL will returned if 1417 * nothing was found after 'start' 1418 */ 1419 static struct extent_state * 1420 find_first_extent_bit_state(struct extent_io_tree *tree, 1421 u64 start, unsigned bits) 1422 { 1423 struct rb_node *node; 1424 struct extent_state *state; 1425 1426 /* 1427 * this search will find all the extents that end after 1428 * our range starts. 1429 */ 1430 node = tree_search(tree, start); 1431 if (!node) 1432 goto out; 1433 1434 while (1) { 1435 state = rb_entry(node, struct extent_state, rb_node); 1436 if (state->end >= start && (state->state & bits)) 1437 return state; 1438 1439 node = rb_next(node); 1440 if (!node) 1441 break; 1442 } 1443 out: 1444 return NULL; 1445 } 1446 1447 /* 1448 * find the first offset in the io tree with 'bits' set. zero is 1449 * returned if we find something, and *start_ret and *end_ret are 1450 * set to reflect the state struct that was found. 1451 * 1452 * If nothing was found, 1 is returned. If found something, return 0. 1453 */ 1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1455 u64 *start_ret, u64 *end_ret, unsigned bits, 1456 struct extent_state **cached_state) 1457 { 1458 struct extent_state *state; 1459 struct rb_node *n; 1460 int ret = 1; 1461 1462 spin_lock(&tree->lock); 1463 if (cached_state && *cached_state) { 1464 state = *cached_state; 1465 if (state->end == start - 1 && extent_state_in_tree(state)) { 1466 n = rb_next(&state->rb_node); 1467 while (n) { 1468 state = rb_entry(n, struct extent_state, 1469 rb_node); 1470 if (state->state & bits) 1471 goto got_it; 1472 n = rb_next(n); 1473 } 1474 free_extent_state(*cached_state); 1475 *cached_state = NULL; 1476 goto out; 1477 } 1478 free_extent_state(*cached_state); 1479 *cached_state = NULL; 1480 } 1481 1482 state = find_first_extent_bit_state(tree, start, bits); 1483 got_it: 1484 if (state) { 1485 cache_state_if_flags(state, cached_state, 0); 1486 *start_ret = state->start; 1487 *end_ret = state->end; 1488 ret = 0; 1489 } 1490 out: 1491 spin_unlock(&tree->lock); 1492 return ret; 1493 } 1494 1495 /* 1496 * find a contiguous range of bytes in the file marked as delalloc, not 1497 * more than 'max_bytes'. start and end are used to return the range, 1498 * 1499 * 1 is returned if we find something, 0 if nothing was in the tree 1500 */ 1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1502 u64 *start, u64 *end, u64 max_bytes, 1503 struct extent_state **cached_state) 1504 { 1505 struct rb_node *node; 1506 struct extent_state *state; 1507 u64 cur_start = *start; 1508 u64 found = 0; 1509 u64 total_bytes = 0; 1510 1511 spin_lock(&tree->lock); 1512 1513 /* 1514 * this search will find all the extents that end after 1515 * our range starts. 1516 */ 1517 node = tree_search(tree, cur_start); 1518 if (!node) { 1519 if (!found) 1520 *end = (u64)-1; 1521 goto out; 1522 } 1523 1524 while (1) { 1525 state = rb_entry(node, struct extent_state, rb_node); 1526 if (found && (state->start != cur_start || 1527 (state->state & EXTENT_BOUNDARY))) { 1528 goto out; 1529 } 1530 if (!(state->state & EXTENT_DELALLOC)) { 1531 if (!found) 1532 *end = state->end; 1533 goto out; 1534 } 1535 if (!found) { 1536 *start = state->start; 1537 *cached_state = state; 1538 atomic_inc(&state->refs); 1539 } 1540 found++; 1541 *end = state->end; 1542 cur_start = state->end + 1; 1543 node = rb_next(node); 1544 total_bytes += state->end - state->start + 1; 1545 if (total_bytes >= max_bytes) 1546 break; 1547 if (!node) 1548 break; 1549 } 1550 out: 1551 spin_unlock(&tree->lock); 1552 return found; 1553 } 1554 1555 static noinline void __unlock_for_delalloc(struct inode *inode, 1556 struct page *locked_page, 1557 u64 start, u64 end) 1558 { 1559 int ret; 1560 struct page *pages[16]; 1561 unsigned long index = start >> PAGE_CACHE_SHIFT; 1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1563 unsigned long nr_pages = end_index - index + 1; 1564 int i; 1565 1566 if (index == locked_page->index && end_index == index) 1567 return; 1568 1569 while (nr_pages > 0) { 1570 ret = find_get_pages_contig(inode->i_mapping, index, 1571 min_t(unsigned long, nr_pages, 1572 ARRAY_SIZE(pages)), pages); 1573 for (i = 0; i < ret; i++) { 1574 if (pages[i] != locked_page) 1575 unlock_page(pages[i]); 1576 page_cache_release(pages[i]); 1577 } 1578 nr_pages -= ret; 1579 index += ret; 1580 cond_resched(); 1581 } 1582 } 1583 1584 static noinline int lock_delalloc_pages(struct inode *inode, 1585 struct page *locked_page, 1586 u64 delalloc_start, 1587 u64 delalloc_end) 1588 { 1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1590 unsigned long start_index = index; 1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1592 unsigned long pages_locked = 0; 1593 struct page *pages[16]; 1594 unsigned long nrpages; 1595 int ret; 1596 int i; 1597 1598 /* the caller is responsible for locking the start index */ 1599 if (index == locked_page->index && index == end_index) 1600 return 0; 1601 1602 /* skip the page at the start index */ 1603 nrpages = end_index - index + 1; 1604 while (nrpages > 0) { 1605 ret = find_get_pages_contig(inode->i_mapping, index, 1606 min_t(unsigned long, 1607 nrpages, ARRAY_SIZE(pages)), pages); 1608 if (ret == 0) { 1609 ret = -EAGAIN; 1610 goto done; 1611 } 1612 /* now we have an array of pages, lock them all */ 1613 for (i = 0; i < ret; i++) { 1614 /* 1615 * the caller is taking responsibility for 1616 * locked_page 1617 */ 1618 if (pages[i] != locked_page) { 1619 lock_page(pages[i]); 1620 if (!PageDirty(pages[i]) || 1621 pages[i]->mapping != inode->i_mapping) { 1622 ret = -EAGAIN; 1623 unlock_page(pages[i]); 1624 page_cache_release(pages[i]); 1625 goto done; 1626 } 1627 } 1628 page_cache_release(pages[i]); 1629 pages_locked++; 1630 } 1631 nrpages -= ret; 1632 index += ret; 1633 cond_resched(); 1634 } 1635 ret = 0; 1636 done: 1637 if (ret && pages_locked) { 1638 __unlock_for_delalloc(inode, locked_page, 1639 delalloc_start, 1640 ((u64)(start_index + pages_locked - 1)) << 1641 PAGE_CACHE_SHIFT); 1642 } 1643 return ret; 1644 } 1645 1646 /* 1647 * find a contiguous range of bytes in the file marked as delalloc, not 1648 * more than 'max_bytes'. start and end are used to return the range, 1649 * 1650 * 1 is returned if we find something, 0 if nothing was in the tree 1651 */ 1652 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1653 struct extent_io_tree *tree, 1654 struct page *locked_page, u64 *start, 1655 u64 *end, u64 max_bytes) 1656 { 1657 u64 delalloc_start; 1658 u64 delalloc_end; 1659 u64 found; 1660 struct extent_state *cached_state = NULL; 1661 int ret; 1662 int loops = 0; 1663 1664 again: 1665 /* step one, find a bunch of delalloc bytes starting at start */ 1666 delalloc_start = *start; 1667 delalloc_end = 0; 1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1669 max_bytes, &cached_state); 1670 if (!found || delalloc_end <= *start) { 1671 *start = delalloc_start; 1672 *end = delalloc_end; 1673 free_extent_state(cached_state); 1674 return 0; 1675 } 1676 1677 /* 1678 * start comes from the offset of locked_page. We have to lock 1679 * pages in order, so we can't process delalloc bytes before 1680 * locked_page 1681 */ 1682 if (delalloc_start < *start) 1683 delalloc_start = *start; 1684 1685 /* 1686 * make sure to limit the number of pages we try to lock down 1687 */ 1688 if (delalloc_end + 1 - delalloc_start > max_bytes) 1689 delalloc_end = delalloc_start + max_bytes - 1; 1690 1691 /* step two, lock all the pages after the page that has start */ 1692 ret = lock_delalloc_pages(inode, locked_page, 1693 delalloc_start, delalloc_end); 1694 if (ret == -EAGAIN) { 1695 /* some of the pages are gone, lets avoid looping by 1696 * shortening the size of the delalloc range we're searching 1697 */ 1698 free_extent_state(cached_state); 1699 cached_state = NULL; 1700 if (!loops) { 1701 max_bytes = PAGE_CACHE_SIZE; 1702 loops = 1; 1703 goto again; 1704 } else { 1705 found = 0; 1706 goto out_failed; 1707 } 1708 } 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1710 1711 /* step three, lock the state bits for the whole range */ 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1713 1714 /* then test to make sure it is all still delalloc */ 1715 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1716 EXTENT_DELALLOC, 1, cached_state); 1717 if (!ret) { 1718 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1719 &cached_state, GFP_NOFS); 1720 __unlock_for_delalloc(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 cond_resched(); 1723 goto again; 1724 } 1725 free_extent_state(cached_state); 1726 *start = delalloc_start; 1727 *end = delalloc_end; 1728 out_failed: 1729 return found; 1730 } 1731 1732 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1733 struct page *locked_page, 1734 unsigned clear_bits, 1735 unsigned long page_ops) 1736 { 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1738 int ret; 1739 struct page *pages[16]; 1740 unsigned long index = start >> PAGE_CACHE_SHIFT; 1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1742 unsigned long nr_pages = end_index - index + 1; 1743 int i; 1744 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1746 if (page_ops == 0) 1747 return; 1748 1749 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1750 mapping_set_error(inode->i_mapping, -EIO); 1751 1752 while (nr_pages > 0) { 1753 ret = find_get_pages_contig(inode->i_mapping, index, 1754 min_t(unsigned long, 1755 nr_pages, ARRAY_SIZE(pages)), pages); 1756 for (i = 0; i < ret; i++) { 1757 1758 if (page_ops & PAGE_SET_PRIVATE2) 1759 SetPagePrivate2(pages[i]); 1760 1761 if (pages[i] == locked_page) { 1762 page_cache_release(pages[i]); 1763 continue; 1764 } 1765 if (page_ops & PAGE_CLEAR_DIRTY) 1766 clear_page_dirty_for_io(pages[i]); 1767 if (page_ops & PAGE_SET_WRITEBACK) 1768 set_page_writeback(pages[i]); 1769 if (page_ops & PAGE_SET_ERROR) 1770 SetPageError(pages[i]); 1771 if (page_ops & PAGE_END_WRITEBACK) 1772 end_page_writeback(pages[i]); 1773 if (page_ops & PAGE_UNLOCK) 1774 unlock_page(pages[i]); 1775 page_cache_release(pages[i]); 1776 } 1777 nr_pages -= ret; 1778 index += ret; 1779 cond_resched(); 1780 } 1781 } 1782 1783 /* 1784 * count the number of bytes in the tree that have a given bit(s) 1785 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1786 * cached. The total number found is returned. 1787 */ 1788 u64 count_range_bits(struct extent_io_tree *tree, 1789 u64 *start, u64 search_end, u64 max_bytes, 1790 unsigned bits, int contig) 1791 { 1792 struct rb_node *node; 1793 struct extent_state *state; 1794 u64 cur_start = *start; 1795 u64 total_bytes = 0; 1796 u64 last = 0; 1797 int found = 0; 1798 1799 if (WARN_ON(search_end <= cur_start)) 1800 return 0; 1801 1802 spin_lock(&tree->lock); 1803 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1804 total_bytes = tree->dirty_bytes; 1805 goto out; 1806 } 1807 /* 1808 * this search will find all the extents that end after 1809 * our range starts. 1810 */ 1811 node = tree_search(tree, cur_start); 1812 if (!node) 1813 goto out; 1814 1815 while (1) { 1816 state = rb_entry(node, struct extent_state, rb_node); 1817 if (state->start > search_end) 1818 break; 1819 if (contig && found && state->start > last + 1) 1820 break; 1821 if (state->end >= cur_start && (state->state & bits) == bits) { 1822 total_bytes += min(search_end, state->end) + 1 - 1823 max(cur_start, state->start); 1824 if (total_bytes >= max_bytes) 1825 break; 1826 if (!found) { 1827 *start = max(cur_start, state->start); 1828 found = 1; 1829 } 1830 last = state->end; 1831 } else if (contig && found) { 1832 break; 1833 } 1834 node = rb_next(node); 1835 if (!node) 1836 break; 1837 } 1838 out: 1839 spin_unlock(&tree->lock); 1840 return total_bytes; 1841 } 1842 1843 /* 1844 * set the private field for a given byte offset in the tree. If there isn't 1845 * an extent_state there already, this does nothing. 1846 */ 1847 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 state->private = private; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1875 { 1876 struct rb_node *node; 1877 struct extent_state *state; 1878 int ret = 0; 1879 1880 spin_lock(&tree->lock); 1881 /* 1882 * this search will find all the extents that end after 1883 * our range starts. 1884 */ 1885 node = tree_search(tree, start); 1886 if (!node) { 1887 ret = -ENOENT; 1888 goto out; 1889 } 1890 state = rb_entry(node, struct extent_state, rb_node); 1891 if (state->start != start) { 1892 ret = -ENOENT; 1893 goto out; 1894 } 1895 *private = state->private; 1896 out: 1897 spin_unlock(&tree->lock); 1898 return ret; 1899 } 1900 1901 /* 1902 * searches a range in the state tree for a given mask. 1903 * If 'filled' == 1, this returns 1 only if every extent in the tree 1904 * has the bits set. Otherwise, 1 is returned if any bit in the 1905 * range is found set. 1906 */ 1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1908 unsigned bits, int filled, struct extent_state *cached) 1909 { 1910 struct extent_state *state = NULL; 1911 struct rb_node *node; 1912 int bitset = 0; 1913 1914 spin_lock(&tree->lock); 1915 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1916 cached->end > start) 1917 node = &cached->rb_node; 1918 else 1919 node = tree_search(tree, start); 1920 while (node && start <= end) { 1921 state = rb_entry(node, struct extent_state, rb_node); 1922 1923 if (filled && state->start > start) { 1924 bitset = 0; 1925 break; 1926 } 1927 1928 if (state->start > end) 1929 break; 1930 1931 if (state->state & bits) { 1932 bitset = 1; 1933 if (!filled) 1934 break; 1935 } else if (filled) { 1936 bitset = 0; 1937 break; 1938 } 1939 1940 if (state->end == (u64)-1) 1941 break; 1942 1943 start = state->end + 1; 1944 if (start > end) 1945 break; 1946 node = rb_next(node); 1947 if (!node) { 1948 if (filled) 1949 bitset = 0; 1950 break; 1951 } 1952 } 1953 spin_unlock(&tree->lock); 1954 return bitset; 1955 } 1956 1957 /* 1958 * helper function to set a given page up to date if all the 1959 * extents in the tree for that page are up to date 1960 */ 1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1962 { 1963 u64 start = page_offset(page); 1964 u64 end = start + PAGE_CACHE_SIZE - 1; 1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1966 SetPageUptodate(page); 1967 } 1968 1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1970 { 1971 int ret; 1972 int err = 0; 1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1974 1975 set_state_private(failure_tree, rec->start, 0); 1976 ret = clear_extent_bits(failure_tree, rec->start, 1977 rec->start + rec->len - 1, 1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1979 if (ret) 1980 err = ret; 1981 1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1983 rec->start + rec->len - 1, 1984 EXTENT_DAMAGED, GFP_NOFS); 1985 if (ret && !err) 1986 err = ret; 1987 1988 kfree(rec); 1989 return err; 1990 } 1991 1992 /* 1993 * this bypasses the standard btrfs submit functions deliberately, as 1994 * the standard behavior is to write all copies in a raid setup. here we only 1995 * want to write the one bad copy. so we do the mapping for ourselves and issue 1996 * submit_bio directly. 1997 * to avoid any synchronization issues, wait for the data after writing, which 1998 * actually prevents the read that triggered the error from finishing. 1999 * currently, there can be no more than two copies of every data bit. thus, 2000 * exactly one rewrite is required. 2001 */ 2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2003 struct page *page, unsigned int pg_offset, int mirror_num) 2004 { 2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2006 struct bio *bio; 2007 struct btrfs_device *dev; 2008 u64 map_length = 0; 2009 u64 sector; 2010 struct btrfs_bio *bbio = NULL; 2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2012 int ret; 2013 2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2015 BUG_ON(!mirror_num); 2016 2017 /* we can't repair anything in raid56 yet */ 2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2019 return 0; 2020 2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2022 if (!bio) 2023 return -EIO; 2024 bio->bi_iter.bi_size = 0; 2025 map_length = length; 2026 2027 ret = btrfs_map_block(fs_info, WRITE, logical, 2028 &map_length, &bbio, mirror_num); 2029 if (ret) { 2030 bio_put(bio); 2031 return -EIO; 2032 } 2033 BUG_ON(mirror_num != bbio->mirror_num); 2034 sector = bbio->stripes[mirror_num-1].physical >> 9; 2035 bio->bi_iter.bi_sector = sector; 2036 dev = bbio->stripes[mirror_num-1].dev; 2037 btrfs_put_bbio(bbio); 2038 if (!dev || !dev->bdev || !dev->writeable) { 2039 bio_put(bio); 2040 return -EIO; 2041 } 2042 bio->bi_bdev = dev->bdev; 2043 bio_add_page(bio, page, length, pg_offset); 2044 2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2046 /* try to remap that extent elsewhere? */ 2047 bio_put(bio); 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2049 return -EIO; 2050 } 2051 2052 btrfs_info_rl_in_rcu(fs_info, 2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2054 btrfs_ino(inode), start, 2055 rcu_str_deref(dev->name), sector); 2056 bio_put(bio); 2057 return 0; 2058 } 2059 2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2061 int mirror_num) 2062 { 2063 u64 start = eb->start; 2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2065 int ret = 0; 2066 2067 if (root->fs_info->sb->s_flags & MS_RDONLY) 2068 return -EROFS; 2069 2070 for (i = 0; i < num_pages; i++) { 2071 struct page *p = eb->pages[i]; 2072 2073 ret = repair_io_failure(root->fs_info->btree_inode, start, 2074 PAGE_CACHE_SIZE, start, p, 2075 start - page_offset(p), mirror_num); 2076 if (ret) 2077 break; 2078 start += PAGE_CACHE_SIZE; 2079 } 2080 2081 return ret; 2082 } 2083 2084 /* 2085 * each time an IO finishes, we do a fast check in the IO failure tree 2086 * to see if we need to process or clean up an io_failure_record 2087 */ 2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2089 unsigned int pg_offset) 2090 { 2091 u64 private; 2092 u64 private_failure; 2093 struct io_failure_record *failrec; 2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2095 struct extent_state *state; 2096 int num_copies; 2097 int ret; 2098 2099 private = 0; 2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2101 (u64)-1, 1, EXTENT_DIRTY, 0); 2102 if (!ret) 2103 return 0; 2104 2105 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2106 &private_failure); 2107 if (ret) 2108 return 0; 2109 2110 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2111 BUG_ON(!failrec->this_mirror); 2112 2113 if (failrec->in_validation) { 2114 /* there was no real error, just free the record */ 2115 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2116 failrec->start); 2117 goto out; 2118 } 2119 if (fs_info->sb->s_flags & MS_RDONLY) 2120 goto out; 2121 2122 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2123 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2124 failrec->start, 2125 EXTENT_LOCKED); 2126 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2127 2128 if (state && state->start <= failrec->start && 2129 state->end >= failrec->start + failrec->len - 1) { 2130 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2131 failrec->len); 2132 if (num_copies > 1) { 2133 repair_io_failure(inode, start, failrec->len, 2134 failrec->logical, page, 2135 pg_offset, failrec->failed_mirror); 2136 } 2137 } 2138 2139 out: 2140 free_io_failure(inode, failrec); 2141 2142 return 0; 2143 } 2144 2145 /* 2146 * Can be called when 2147 * - hold extent lock 2148 * - under ordered extent 2149 * - the inode is freeing 2150 */ 2151 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2152 { 2153 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2154 struct io_failure_record *failrec; 2155 struct extent_state *state, *next; 2156 2157 if (RB_EMPTY_ROOT(&failure_tree->state)) 2158 return; 2159 2160 spin_lock(&failure_tree->lock); 2161 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2162 while (state) { 2163 if (state->start > end) 2164 break; 2165 2166 ASSERT(state->end <= end); 2167 2168 next = next_state(state); 2169 2170 failrec = (struct io_failure_record *)(unsigned long)state->private; 2171 free_extent_state(state); 2172 kfree(failrec); 2173 2174 state = next; 2175 } 2176 spin_unlock(&failure_tree->lock); 2177 } 2178 2179 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2180 struct io_failure_record **failrec_ret) 2181 { 2182 struct io_failure_record *failrec; 2183 u64 private; 2184 struct extent_map *em; 2185 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2186 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2187 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2188 int ret; 2189 u64 logical; 2190 2191 ret = get_state_private(failure_tree, start, &private); 2192 if (ret) { 2193 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2194 if (!failrec) 2195 return -ENOMEM; 2196 2197 failrec->start = start; 2198 failrec->len = end - start + 1; 2199 failrec->this_mirror = 0; 2200 failrec->bio_flags = 0; 2201 failrec->in_validation = 0; 2202 2203 read_lock(&em_tree->lock); 2204 em = lookup_extent_mapping(em_tree, start, failrec->len); 2205 if (!em) { 2206 read_unlock(&em_tree->lock); 2207 kfree(failrec); 2208 return -EIO; 2209 } 2210 2211 if (em->start > start || em->start + em->len <= start) { 2212 free_extent_map(em); 2213 em = NULL; 2214 } 2215 read_unlock(&em_tree->lock); 2216 if (!em) { 2217 kfree(failrec); 2218 return -EIO; 2219 } 2220 2221 logical = start - em->start; 2222 logical = em->block_start + logical; 2223 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2224 logical = em->block_start; 2225 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2226 extent_set_compress_type(&failrec->bio_flags, 2227 em->compress_type); 2228 } 2229 2230 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2231 logical, start, failrec->len); 2232 2233 failrec->logical = logical; 2234 free_extent_map(em); 2235 2236 /* set the bits in the private failure tree */ 2237 ret = set_extent_bits(failure_tree, start, end, 2238 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2239 if (ret >= 0) 2240 ret = set_state_private(failure_tree, start, 2241 (u64)(unsigned long)failrec); 2242 /* set the bits in the inode's tree */ 2243 if (ret >= 0) 2244 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2245 GFP_NOFS); 2246 if (ret < 0) { 2247 kfree(failrec); 2248 return ret; 2249 } 2250 } else { 2251 failrec = (struct io_failure_record *)(unsigned long)private; 2252 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2253 failrec->logical, failrec->start, failrec->len, 2254 failrec->in_validation); 2255 /* 2256 * when data can be on disk more than twice, add to failrec here 2257 * (e.g. with a list for failed_mirror) to make 2258 * clean_io_failure() clean all those errors at once. 2259 */ 2260 } 2261 2262 *failrec_ret = failrec; 2263 2264 return 0; 2265 } 2266 2267 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2268 struct io_failure_record *failrec, int failed_mirror) 2269 { 2270 int num_copies; 2271 2272 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2273 failrec->logical, failrec->len); 2274 if (num_copies == 1) { 2275 /* 2276 * we only have a single copy of the data, so don't bother with 2277 * all the retry and error correction code that follows. no 2278 * matter what the error is, it is very likely to persist. 2279 */ 2280 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2281 num_copies, failrec->this_mirror, failed_mirror); 2282 return 0; 2283 } 2284 2285 /* 2286 * there are two premises: 2287 * a) deliver good data to the caller 2288 * b) correct the bad sectors on disk 2289 */ 2290 if (failed_bio->bi_vcnt > 1) { 2291 /* 2292 * to fulfill b), we need to know the exact failing sectors, as 2293 * we don't want to rewrite any more than the failed ones. thus, 2294 * we need separate read requests for the failed bio 2295 * 2296 * if the following BUG_ON triggers, our validation request got 2297 * merged. we need separate requests for our algorithm to work. 2298 */ 2299 BUG_ON(failrec->in_validation); 2300 failrec->in_validation = 1; 2301 failrec->this_mirror = failed_mirror; 2302 } else { 2303 /* 2304 * we're ready to fulfill a) and b) alongside. get a good copy 2305 * of the failed sector and if we succeed, we have setup 2306 * everything for repair_io_failure to do the rest for us. 2307 */ 2308 if (failrec->in_validation) { 2309 BUG_ON(failrec->this_mirror != failed_mirror); 2310 failrec->in_validation = 0; 2311 failrec->this_mirror = 0; 2312 } 2313 failrec->failed_mirror = failed_mirror; 2314 failrec->this_mirror++; 2315 if (failrec->this_mirror == failed_mirror) 2316 failrec->this_mirror++; 2317 } 2318 2319 if (failrec->this_mirror > num_copies) { 2320 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2321 num_copies, failrec->this_mirror, failed_mirror); 2322 return 0; 2323 } 2324 2325 return 1; 2326 } 2327 2328 2329 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2330 struct io_failure_record *failrec, 2331 struct page *page, int pg_offset, int icsum, 2332 bio_end_io_t *endio_func, void *data) 2333 { 2334 struct bio *bio; 2335 struct btrfs_io_bio *btrfs_failed_bio; 2336 struct btrfs_io_bio *btrfs_bio; 2337 2338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2339 if (!bio) 2340 return NULL; 2341 2342 bio->bi_end_io = endio_func; 2343 bio->bi_iter.bi_sector = failrec->logical >> 9; 2344 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2345 bio->bi_iter.bi_size = 0; 2346 bio->bi_private = data; 2347 2348 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2349 if (btrfs_failed_bio->csum) { 2350 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2351 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2352 2353 btrfs_bio = btrfs_io_bio(bio); 2354 btrfs_bio->csum = btrfs_bio->csum_inline; 2355 icsum *= csum_size; 2356 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2357 csum_size); 2358 } 2359 2360 bio_add_page(bio, page, failrec->len, pg_offset); 2361 2362 return bio; 2363 } 2364 2365 /* 2366 * this is a generic handler for readpage errors (default 2367 * readpage_io_failed_hook). if other copies exist, read those and write back 2368 * good data to the failed position. does not investigate in remapping the 2369 * failed extent elsewhere, hoping the device will be smart enough to do this as 2370 * needed 2371 */ 2372 2373 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2374 struct page *page, u64 start, u64 end, 2375 int failed_mirror) 2376 { 2377 struct io_failure_record *failrec; 2378 struct inode *inode = page->mapping->host; 2379 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2380 struct bio *bio; 2381 int read_mode; 2382 int ret; 2383 2384 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2385 2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2387 if (ret) 2388 return ret; 2389 2390 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2391 if (!ret) { 2392 free_io_failure(inode, failrec); 2393 return -EIO; 2394 } 2395 2396 if (failed_bio->bi_vcnt > 1) 2397 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2398 else 2399 read_mode = READ_SYNC; 2400 2401 phy_offset >>= inode->i_sb->s_blocksize_bits; 2402 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2403 start - page_offset(page), 2404 (int)phy_offset, failed_bio->bi_end_io, 2405 NULL); 2406 if (!bio) { 2407 free_io_failure(inode, failrec); 2408 return -EIO; 2409 } 2410 2411 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2412 read_mode, failrec->this_mirror, failrec->in_validation); 2413 2414 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2415 failrec->this_mirror, 2416 failrec->bio_flags, 0); 2417 if (ret) { 2418 free_io_failure(inode, failrec); 2419 bio_put(bio); 2420 } 2421 2422 return ret; 2423 } 2424 2425 /* lots and lots of room for performance fixes in the end_bio funcs */ 2426 2427 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2428 { 2429 int uptodate = (err == 0); 2430 struct extent_io_tree *tree; 2431 int ret = 0; 2432 2433 tree = &BTRFS_I(page->mapping->host)->io_tree; 2434 2435 if (tree->ops && tree->ops->writepage_end_io_hook) { 2436 ret = tree->ops->writepage_end_io_hook(page, start, 2437 end, NULL, uptodate); 2438 if (ret) 2439 uptodate = 0; 2440 } 2441 2442 if (!uptodate) { 2443 ClearPageUptodate(page); 2444 SetPageError(page); 2445 ret = ret < 0 ? ret : -EIO; 2446 mapping_set_error(page->mapping, ret); 2447 } 2448 } 2449 2450 /* 2451 * after a writepage IO is done, we need to: 2452 * clear the uptodate bits on error 2453 * clear the writeback bits in the extent tree for this IO 2454 * end_page_writeback if the page has no more pending IO 2455 * 2456 * Scheduling is not allowed, so the extent state tree is expected 2457 * to have one and only one object corresponding to this IO. 2458 */ 2459 static void end_bio_extent_writepage(struct bio *bio) 2460 { 2461 struct bio_vec *bvec; 2462 u64 start; 2463 u64 end; 2464 int i; 2465 2466 bio_for_each_segment_all(bvec, bio, i) { 2467 struct page *page = bvec->bv_page; 2468 2469 /* We always issue full-page reads, but if some block 2470 * in a page fails to read, blk_update_request() will 2471 * advance bv_offset and adjust bv_len to compensate. 2472 * Print a warning for nonzero offsets, and an error 2473 * if they don't add up to a full page. */ 2474 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2475 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2476 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2477 "partial page write in btrfs with offset %u and length %u", 2478 bvec->bv_offset, bvec->bv_len); 2479 else 2480 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2481 "incomplete page write in btrfs with offset %u and " 2482 "length %u", 2483 bvec->bv_offset, bvec->bv_len); 2484 } 2485 2486 start = page_offset(page); 2487 end = start + bvec->bv_offset + bvec->bv_len - 1; 2488 2489 end_extent_writepage(page, bio->bi_error, start, end); 2490 end_page_writeback(page); 2491 } 2492 2493 bio_put(bio); 2494 } 2495 2496 static void 2497 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2498 int uptodate) 2499 { 2500 struct extent_state *cached = NULL; 2501 u64 end = start + len - 1; 2502 2503 if (uptodate && tree->track_uptodate) 2504 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2505 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2506 } 2507 2508 /* 2509 * after a readpage IO is done, we need to: 2510 * clear the uptodate bits on error 2511 * set the uptodate bits if things worked 2512 * set the page up to date if all extents in the tree are uptodate 2513 * clear the lock bit in the extent tree 2514 * unlock the page if there are no other extents locked for it 2515 * 2516 * Scheduling is not allowed, so the extent state tree is expected 2517 * to have one and only one object corresponding to this IO. 2518 */ 2519 static void end_bio_extent_readpage(struct bio *bio) 2520 { 2521 struct bio_vec *bvec; 2522 int uptodate = !bio->bi_error; 2523 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2524 struct extent_io_tree *tree; 2525 u64 offset = 0; 2526 u64 start; 2527 u64 end; 2528 u64 len; 2529 u64 extent_start = 0; 2530 u64 extent_len = 0; 2531 int mirror; 2532 int ret; 2533 int i; 2534 2535 bio_for_each_segment_all(bvec, bio, i) { 2536 struct page *page = bvec->bv_page; 2537 struct inode *inode = page->mapping->host; 2538 2539 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2540 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2541 bio->bi_error, io_bio->mirror_num); 2542 tree = &BTRFS_I(inode)->io_tree; 2543 2544 /* We always issue full-page reads, but if some block 2545 * in a page fails to read, blk_update_request() will 2546 * advance bv_offset and adjust bv_len to compensate. 2547 * Print a warning for nonzero offsets, and an error 2548 * if they don't add up to a full page. */ 2549 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2550 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2551 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2552 "partial page read in btrfs with offset %u and length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 else 2555 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2556 "incomplete page read in btrfs with offset %u and " 2557 "length %u", 2558 bvec->bv_offset, bvec->bv_len); 2559 } 2560 2561 start = page_offset(page); 2562 end = start + bvec->bv_offset + bvec->bv_len - 1; 2563 len = bvec->bv_len; 2564 2565 mirror = io_bio->mirror_num; 2566 if (likely(uptodate && tree->ops && 2567 tree->ops->readpage_end_io_hook)) { 2568 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2569 page, start, end, 2570 mirror); 2571 if (ret) 2572 uptodate = 0; 2573 else 2574 clean_io_failure(inode, start, page, 0); 2575 } 2576 2577 if (likely(uptodate)) 2578 goto readpage_ok; 2579 2580 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2581 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2582 if (!ret && !bio->bi_error) 2583 uptodate = 1; 2584 } else { 2585 /* 2586 * The generic bio_readpage_error handles errors the 2587 * following way: If possible, new read requests are 2588 * created and submitted and will end up in 2589 * end_bio_extent_readpage as well (if we're lucky, not 2590 * in the !uptodate case). In that case it returns 0 and 2591 * we just go on with the next page in our bio. If it 2592 * can't handle the error it will return -EIO and we 2593 * remain responsible for that page. 2594 */ 2595 ret = bio_readpage_error(bio, offset, page, start, end, 2596 mirror); 2597 if (ret == 0) { 2598 uptodate = !bio->bi_error; 2599 offset += len; 2600 continue; 2601 } 2602 } 2603 readpage_ok: 2604 if (likely(uptodate)) { 2605 loff_t i_size = i_size_read(inode); 2606 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2607 unsigned off; 2608 2609 /* Zero out the end if this page straddles i_size */ 2610 off = i_size & (PAGE_CACHE_SIZE-1); 2611 if (page->index == end_index && off) 2612 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2613 SetPageUptodate(page); 2614 } else { 2615 ClearPageUptodate(page); 2616 SetPageError(page); 2617 } 2618 unlock_page(page); 2619 offset += len; 2620 2621 if (unlikely(!uptodate)) { 2622 if (extent_len) { 2623 endio_readpage_release_extent(tree, 2624 extent_start, 2625 extent_len, 1); 2626 extent_start = 0; 2627 extent_len = 0; 2628 } 2629 endio_readpage_release_extent(tree, start, 2630 end - start + 1, 0); 2631 } else if (!extent_len) { 2632 extent_start = start; 2633 extent_len = end + 1 - start; 2634 } else if (extent_start + extent_len == start) { 2635 extent_len += end + 1 - start; 2636 } else { 2637 endio_readpage_release_extent(tree, extent_start, 2638 extent_len, uptodate); 2639 extent_start = start; 2640 extent_len = end + 1 - start; 2641 } 2642 } 2643 2644 if (extent_len) 2645 endio_readpage_release_extent(tree, extent_start, extent_len, 2646 uptodate); 2647 if (io_bio->end_io) 2648 io_bio->end_io(io_bio, bio->bi_error); 2649 bio_put(bio); 2650 } 2651 2652 /* 2653 * this allocates from the btrfs_bioset. We're returning a bio right now 2654 * but you can call btrfs_io_bio for the appropriate container_of magic 2655 */ 2656 struct bio * 2657 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2658 gfp_t gfp_flags) 2659 { 2660 struct btrfs_io_bio *btrfs_bio; 2661 struct bio *bio; 2662 2663 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2664 2665 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2666 while (!bio && (nr_vecs /= 2)) { 2667 bio = bio_alloc_bioset(gfp_flags, 2668 nr_vecs, btrfs_bioset); 2669 } 2670 } 2671 2672 if (bio) { 2673 bio->bi_bdev = bdev; 2674 bio->bi_iter.bi_sector = first_sector; 2675 btrfs_bio = btrfs_io_bio(bio); 2676 btrfs_bio->csum = NULL; 2677 btrfs_bio->csum_allocated = NULL; 2678 btrfs_bio->end_io = NULL; 2679 } 2680 return bio; 2681 } 2682 2683 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2684 { 2685 struct btrfs_io_bio *btrfs_bio; 2686 struct bio *new; 2687 2688 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2689 if (new) { 2690 btrfs_bio = btrfs_io_bio(new); 2691 btrfs_bio->csum = NULL; 2692 btrfs_bio->csum_allocated = NULL; 2693 btrfs_bio->end_io = NULL; 2694 2695 #ifdef CONFIG_BLK_CGROUP 2696 /* FIXME, put this into bio_clone_bioset */ 2697 if (bio->bi_css) 2698 bio_associate_blkcg(new, bio->bi_css); 2699 #endif 2700 } 2701 return new; 2702 } 2703 2704 /* this also allocates from the btrfs_bioset */ 2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2706 { 2707 struct btrfs_io_bio *btrfs_bio; 2708 struct bio *bio; 2709 2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2711 if (bio) { 2712 btrfs_bio = btrfs_io_bio(bio); 2713 btrfs_bio->csum = NULL; 2714 btrfs_bio->csum_allocated = NULL; 2715 btrfs_bio->end_io = NULL; 2716 } 2717 return bio; 2718 } 2719 2720 2721 static int __must_check submit_one_bio(int rw, struct bio *bio, 2722 int mirror_num, unsigned long bio_flags) 2723 { 2724 int ret = 0; 2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2726 struct page *page = bvec->bv_page; 2727 struct extent_io_tree *tree = bio->bi_private; 2728 u64 start; 2729 2730 start = page_offset(page) + bvec->bv_offset; 2731 2732 bio->bi_private = NULL; 2733 2734 bio_get(bio); 2735 2736 if (tree->ops && tree->ops->submit_bio_hook) 2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2738 mirror_num, bio_flags, start); 2739 else 2740 btrfsic_submit_bio(rw, bio); 2741 2742 bio_put(bio); 2743 return ret; 2744 } 2745 2746 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2747 unsigned long offset, size_t size, struct bio *bio, 2748 unsigned long bio_flags) 2749 { 2750 int ret = 0; 2751 if (tree->ops && tree->ops->merge_bio_hook) 2752 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2753 bio_flags); 2754 BUG_ON(ret < 0); 2755 return ret; 2756 2757 } 2758 2759 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2760 struct writeback_control *wbc, 2761 struct page *page, sector_t sector, 2762 size_t size, unsigned long offset, 2763 struct block_device *bdev, 2764 struct bio **bio_ret, 2765 unsigned long max_pages, 2766 bio_end_io_t end_io_func, 2767 int mirror_num, 2768 unsigned long prev_bio_flags, 2769 unsigned long bio_flags, 2770 bool force_bio_submit) 2771 { 2772 int ret = 0; 2773 struct bio *bio; 2774 int contig = 0; 2775 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2776 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2777 2778 if (bio_ret && *bio_ret) { 2779 bio = *bio_ret; 2780 if (old_compressed) 2781 contig = bio->bi_iter.bi_sector == sector; 2782 else 2783 contig = bio_end_sector(bio) == sector; 2784 2785 if (prev_bio_flags != bio_flags || !contig || 2786 force_bio_submit || 2787 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2788 bio_add_page(bio, page, page_size, offset) < page_size) { 2789 ret = submit_one_bio(rw, bio, mirror_num, 2790 prev_bio_flags); 2791 if (ret < 0) { 2792 *bio_ret = NULL; 2793 return ret; 2794 } 2795 bio = NULL; 2796 } else { 2797 if (wbc) 2798 wbc_account_io(wbc, page, page_size); 2799 return 0; 2800 } 2801 } 2802 2803 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2804 GFP_NOFS | __GFP_HIGH); 2805 if (!bio) 2806 return -ENOMEM; 2807 2808 bio_add_page(bio, page, page_size, offset); 2809 bio->bi_end_io = end_io_func; 2810 bio->bi_private = tree; 2811 if (wbc) { 2812 wbc_init_bio(wbc, bio); 2813 wbc_account_io(wbc, page, page_size); 2814 } 2815 2816 if (bio_ret) 2817 *bio_ret = bio; 2818 else 2819 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2820 2821 return ret; 2822 } 2823 2824 static void attach_extent_buffer_page(struct extent_buffer *eb, 2825 struct page *page) 2826 { 2827 if (!PagePrivate(page)) { 2828 SetPagePrivate(page); 2829 page_cache_get(page); 2830 set_page_private(page, (unsigned long)eb); 2831 } else { 2832 WARN_ON(page->private != (unsigned long)eb); 2833 } 2834 } 2835 2836 void set_page_extent_mapped(struct page *page) 2837 { 2838 if (!PagePrivate(page)) { 2839 SetPagePrivate(page); 2840 page_cache_get(page); 2841 set_page_private(page, EXTENT_PAGE_PRIVATE); 2842 } 2843 } 2844 2845 static struct extent_map * 2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2847 u64 start, u64 len, get_extent_t *get_extent, 2848 struct extent_map **em_cached) 2849 { 2850 struct extent_map *em; 2851 2852 if (em_cached && *em_cached) { 2853 em = *em_cached; 2854 if (extent_map_in_tree(em) && start >= em->start && 2855 start < extent_map_end(em)) { 2856 atomic_inc(&em->refs); 2857 return em; 2858 } 2859 2860 free_extent_map(em); 2861 *em_cached = NULL; 2862 } 2863 2864 em = get_extent(inode, page, pg_offset, start, len, 0); 2865 if (em_cached && !IS_ERR_OR_NULL(em)) { 2866 BUG_ON(*em_cached); 2867 atomic_inc(&em->refs); 2868 *em_cached = em; 2869 } 2870 return em; 2871 } 2872 /* 2873 * basic readpage implementation. Locked extent state structs are inserted 2874 * into the tree that are removed when the IO is done (by the end_io 2875 * handlers) 2876 * XXX JDM: This needs looking at to ensure proper page locking 2877 */ 2878 static int __do_readpage(struct extent_io_tree *tree, 2879 struct page *page, 2880 get_extent_t *get_extent, 2881 struct extent_map **em_cached, 2882 struct bio **bio, int mirror_num, 2883 unsigned long *bio_flags, int rw, 2884 u64 *prev_em_start) 2885 { 2886 struct inode *inode = page->mapping->host; 2887 u64 start = page_offset(page); 2888 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2889 u64 end; 2890 u64 cur = start; 2891 u64 extent_offset; 2892 u64 last_byte = i_size_read(inode); 2893 u64 block_start; 2894 u64 cur_end; 2895 sector_t sector; 2896 struct extent_map *em; 2897 struct block_device *bdev; 2898 int ret; 2899 int nr = 0; 2900 size_t pg_offset = 0; 2901 size_t iosize; 2902 size_t disk_io_size; 2903 size_t blocksize = inode->i_sb->s_blocksize; 2904 unsigned long this_bio_flag = 0; 2905 2906 set_page_extent_mapped(page); 2907 2908 end = page_end; 2909 if (!PageUptodate(page)) { 2910 if (cleancache_get_page(page) == 0) { 2911 BUG_ON(blocksize != PAGE_SIZE); 2912 unlock_extent(tree, start, end); 2913 goto out; 2914 } 2915 } 2916 2917 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2918 char *userpage; 2919 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2920 2921 if (zero_offset) { 2922 iosize = PAGE_CACHE_SIZE - zero_offset; 2923 userpage = kmap_atomic(page); 2924 memset(userpage + zero_offset, 0, iosize); 2925 flush_dcache_page(page); 2926 kunmap_atomic(userpage); 2927 } 2928 } 2929 while (cur <= end) { 2930 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2931 bool force_bio_submit = false; 2932 2933 if (cur >= last_byte) { 2934 char *userpage; 2935 struct extent_state *cached = NULL; 2936 2937 iosize = PAGE_CACHE_SIZE - pg_offset; 2938 userpage = kmap_atomic(page); 2939 memset(userpage + pg_offset, 0, iosize); 2940 flush_dcache_page(page); 2941 kunmap_atomic(userpage); 2942 set_extent_uptodate(tree, cur, cur + iosize - 1, 2943 &cached, GFP_NOFS); 2944 unlock_extent_cached(tree, cur, 2945 cur + iosize - 1, 2946 &cached, GFP_NOFS); 2947 break; 2948 } 2949 em = __get_extent_map(inode, page, pg_offset, cur, 2950 end - cur + 1, get_extent, em_cached); 2951 if (IS_ERR_OR_NULL(em)) { 2952 SetPageError(page); 2953 unlock_extent(tree, cur, end); 2954 break; 2955 } 2956 extent_offset = cur - em->start; 2957 BUG_ON(extent_map_end(em) <= cur); 2958 BUG_ON(end < cur); 2959 2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2961 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2962 extent_set_compress_type(&this_bio_flag, 2963 em->compress_type); 2964 } 2965 2966 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2967 cur_end = min(extent_map_end(em) - 1, end); 2968 iosize = ALIGN(iosize, blocksize); 2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2970 disk_io_size = em->block_len; 2971 sector = em->block_start >> 9; 2972 } else { 2973 sector = (em->block_start + extent_offset) >> 9; 2974 disk_io_size = iosize; 2975 } 2976 bdev = em->bdev; 2977 block_start = em->block_start; 2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2979 block_start = EXTENT_MAP_HOLE; 2980 2981 /* 2982 * If we have a file range that points to a compressed extent 2983 * and it's followed by a consecutive file range that points to 2984 * to the same compressed extent (possibly with a different 2985 * offset and/or length, so it either points to the whole extent 2986 * or only part of it), we must make sure we do not submit a 2987 * single bio to populate the pages for the 2 ranges because 2988 * this makes the compressed extent read zero out the pages 2989 * belonging to the 2nd range. Imagine the following scenario: 2990 * 2991 * File layout 2992 * [0 - 8K] [8K - 24K] 2993 * | | 2994 * | | 2995 * points to extent X, points to extent X, 2996 * offset 4K, length of 8K offset 0, length 16K 2997 * 2998 * [extent X, compressed length = 4K uncompressed length = 16K] 2999 * 3000 * If the bio to read the compressed extent covers both ranges, 3001 * it will decompress extent X into the pages belonging to the 3002 * first range and then it will stop, zeroing out the remaining 3003 * pages that belong to the other range that points to extent X. 3004 * So here we make sure we submit 2 bios, one for the first 3005 * range and another one for the third range. Both will target 3006 * the same physical extent from disk, but we can't currently 3007 * make the compressed bio endio callback populate the pages 3008 * for both ranges because each compressed bio is tightly 3009 * coupled with a single extent map, and each range can have 3010 * an extent map with a different offset value relative to the 3011 * uncompressed data of our extent and different lengths. This 3012 * is a corner case so we prioritize correctness over 3013 * non-optimal behavior (submitting 2 bios for the same extent). 3014 */ 3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3016 prev_em_start && *prev_em_start != (u64)-1 && 3017 *prev_em_start != em->orig_start) 3018 force_bio_submit = true; 3019 3020 if (prev_em_start) 3021 *prev_em_start = em->orig_start; 3022 3023 free_extent_map(em); 3024 em = NULL; 3025 3026 /* we've found a hole, just zero and go on */ 3027 if (block_start == EXTENT_MAP_HOLE) { 3028 char *userpage; 3029 struct extent_state *cached = NULL; 3030 3031 userpage = kmap_atomic(page); 3032 memset(userpage + pg_offset, 0, iosize); 3033 flush_dcache_page(page); 3034 kunmap_atomic(userpage); 3035 3036 set_extent_uptodate(tree, cur, cur + iosize - 1, 3037 &cached, GFP_NOFS); 3038 unlock_extent_cached(tree, cur, 3039 cur + iosize - 1, 3040 &cached, GFP_NOFS); 3041 cur = cur + iosize; 3042 pg_offset += iosize; 3043 continue; 3044 } 3045 /* the get_extent function already copied into the page */ 3046 if (test_range_bit(tree, cur, cur_end, 3047 EXTENT_UPTODATE, 1, NULL)) { 3048 check_page_uptodate(tree, page); 3049 unlock_extent(tree, cur, cur + iosize - 1); 3050 cur = cur + iosize; 3051 pg_offset += iosize; 3052 continue; 3053 } 3054 /* we have an inline extent but it didn't get marked up 3055 * to date. Error out 3056 */ 3057 if (block_start == EXTENT_MAP_INLINE) { 3058 SetPageError(page); 3059 unlock_extent(tree, cur, cur + iosize - 1); 3060 cur = cur + iosize; 3061 pg_offset += iosize; 3062 continue; 3063 } 3064 3065 pnr -= page->index; 3066 ret = submit_extent_page(rw, tree, NULL, page, 3067 sector, disk_io_size, pg_offset, 3068 bdev, bio, pnr, 3069 end_bio_extent_readpage, mirror_num, 3070 *bio_flags, 3071 this_bio_flag, 3072 force_bio_submit); 3073 if (!ret) { 3074 nr++; 3075 *bio_flags = this_bio_flag; 3076 } else { 3077 SetPageError(page); 3078 unlock_extent(tree, cur, cur + iosize - 1); 3079 } 3080 cur = cur + iosize; 3081 pg_offset += iosize; 3082 } 3083 out: 3084 if (!nr) { 3085 if (!PageError(page)) 3086 SetPageUptodate(page); 3087 unlock_page(page); 3088 } 3089 return 0; 3090 } 3091 3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3093 struct page *pages[], int nr_pages, 3094 u64 start, u64 end, 3095 get_extent_t *get_extent, 3096 struct extent_map **em_cached, 3097 struct bio **bio, int mirror_num, 3098 unsigned long *bio_flags, int rw, 3099 u64 *prev_em_start) 3100 { 3101 struct inode *inode; 3102 struct btrfs_ordered_extent *ordered; 3103 int index; 3104 3105 inode = pages[0]->mapping->host; 3106 while (1) { 3107 lock_extent(tree, start, end); 3108 ordered = btrfs_lookup_ordered_range(inode, start, 3109 end - start + 1); 3110 if (!ordered) 3111 break; 3112 unlock_extent(tree, start, end); 3113 btrfs_start_ordered_extent(inode, ordered, 1); 3114 btrfs_put_ordered_extent(ordered); 3115 } 3116 3117 for (index = 0; index < nr_pages; index++) { 3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3119 mirror_num, bio_flags, rw, prev_em_start); 3120 page_cache_release(pages[index]); 3121 } 3122 } 3123 3124 static void __extent_readpages(struct extent_io_tree *tree, 3125 struct page *pages[], 3126 int nr_pages, get_extent_t *get_extent, 3127 struct extent_map **em_cached, 3128 struct bio **bio, int mirror_num, 3129 unsigned long *bio_flags, int rw, 3130 u64 *prev_em_start) 3131 { 3132 u64 start = 0; 3133 u64 end = 0; 3134 u64 page_start; 3135 int index; 3136 int first_index = 0; 3137 3138 for (index = 0; index < nr_pages; index++) { 3139 page_start = page_offset(pages[index]); 3140 if (!end) { 3141 start = page_start; 3142 end = start + PAGE_CACHE_SIZE - 1; 3143 first_index = index; 3144 } else if (end + 1 == page_start) { 3145 end += PAGE_CACHE_SIZE; 3146 } else { 3147 __do_contiguous_readpages(tree, &pages[first_index], 3148 index - first_index, start, 3149 end, get_extent, em_cached, 3150 bio, mirror_num, bio_flags, 3151 rw, prev_em_start); 3152 start = page_start; 3153 end = start + PAGE_CACHE_SIZE - 1; 3154 first_index = index; 3155 } 3156 } 3157 3158 if (end) 3159 __do_contiguous_readpages(tree, &pages[first_index], 3160 index - first_index, start, 3161 end, get_extent, em_cached, bio, 3162 mirror_num, bio_flags, rw, 3163 prev_em_start); 3164 } 3165 3166 static int __extent_read_full_page(struct extent_io_tree *tree, 3167 struct page *page, 3168 get_extent_t *get_extent, 3169 struct bio **bio, int mirror_num, 3170 unsigned long *bio_flags, int rw) 3171 { 3172 struct inode *inode = page->mapping->host; 3173 struct btrfs_ordered_extent *ordered; 3174 u64 start = page_offset(page); 3175 u64 end = start + PAGE_CACHE_SIZE - 1; 3176 int ret; 3177 3178 while (1) { 3179 lock_extent(tree, start, end); 3180 ordered = btrfs_lookup_ordered_extent(inode, start); 3181 if (!ordered) 3182 break; 3183 unlock_extent(tree, start, end); 3184 btrfs_start_ordered_extent(inode, ordered, 1); 3185 btrfs_put_ordered_extent(ordered); 3186 } 3187 3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3189 bio_flags, rw, NULL); 3190 return ret; 3191 } 3192 3193 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3194 get_extent_t *get_extent, int mirror_num) 3195 { 3196 struct bio *bio = NULL; 3197 unsigned long bio_flags = 0; 3198 int ret; 3199 3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3201 &bio_flags, READ); 3202 if (bio) 3203 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3204 return ret; 3205 } 3206 3207 static noinline void update_nr_written(struct page *page, 3208 struct writeback_control *wbc, 3209 unsigned long nr_written) 3210 { 3211 wbc->nr_to_write -= nr_written; 3212 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3213 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3214 page->mapping->writeback_index = page->index + nr_written; 3215 } 3216 3217 /* 3218 * helper for __extent_writepage, doing all of the delayed allocation setup. 3219 * 3220 * This returns 1 if our fill_delalloc function did all the work required 3221 * to write the page (copy into inline extent). In this case the IO has 3222 * been started and the page is already unlocked. 3223 * 3224 * This returns 0 if all went well (page still locked) 3225 * This returns < 0 if there were errors (page still locked) 3226 */ 3227 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3228 struct page *page, struct writeback_control *wbc, 3229 struct extent_page_data *epd, 3230 u64 delalloc_start, 3231 unsigned long *nr_written) 3232 { 3233 struct extent_io_tree *tree = epd->tree; 3234 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3235 u64 nr_delalloc; 3236 u64 delalloc_to_write = 0; 3237 u64 delalloc_end = 0; 3238 int ret; 3239 int page_started = 0; 3240 3241 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3242 return 0; 3243 3244 while (delalloc_end < page_end) { 3245 nr_delalloc = find_lock_delalloc_range(inode, tree, 3246 page, 3247 &delalloc_start, 3248 &delalloc_end, 3249 BTRFS_MAX_EXTENT_SIZE); 3250 if (nr_delalloc == 0) { 3251 delalloc_start = delalloc_end + 1; 3252 continue; 3253 } 3254 ret = tree->ops->fill_delalloc(inode, page, 3255 delalloc_start, 3256 delalloc_end, 3257 &page_started, 3258 nr_written); 3259 /* File system has been set read-only */ 3260 if (ret) { 3261 SetPageError(page); 3262 /* fill_delalloc should be return < 0 for error 3263 * but just in case, we use > 0 here meaning the 3264 * IO is started, so we don't want to return > 0 3265 * unless things are going well. 3266 */ 3267 ret = ret < 0 ? ret : -EIO; 3268 goto done; 3269 } 3270 /* 3271 * delalloc_end is already one less than the total 3272 * length, so we don't subtract one from 3273 * PAGE_CACHE_SIZE 3274 */ 3275 delalloc_to_write += (delalloc_end - delalloc_start + 3276 PAGE_CACHE_SIZE) >> 3277 PAGE_CACHE_SHIFT; 3278 delalloc_start = delalloc_end + 1; 3279 } 3280 if (wbc->nr_to_write < delalloc_to_write) { 3281 int thresh = 8192; 3282 3283 if (delalloc_to_write < thresh * 2) 3284 thresh = delalloc_to_write; 3285 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3286 thresh); 3287 } 3288 3289 /* did the fill delalloc function already unlock and start 3290 * the IO? 3291 */ 3292 if (page_started) { 3293 /* 3294 * we've unlocked the page, so we can't update 3295 * the mapping's writeback index, just update 3296 * nr_to_write. 3297 */ 3298 wbc->nr_to_write -= *nr_written; 3299 return 1; 3300 } 3301 3302 ret = 0; 3303 3304 done: 3305 return ret; 3306 } 3307 3308 /* 3309 * helper for __extent_writepage. This calls the writepage start hooks, 3310 * and does the loop to map the page into extents and bios. 3311 * 3312 * We return 1 if the IO is started and the page is unlocked, 3313 * 0 if all went well (page still locked) 3314 * < 0 if there were errors (page still locked) 3315 */ 3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3317 struct page *page, 3318 struct writeback_control *wbc, 3319 struct extent_page_data *epd, 3320 loff_t i_size, 3321 unsigned long nr_written, 3322 int write_flags, int *nr_ret) 3323 { 3324 struct extent_io_tree *tree = epd->tree; 3325 u64 start = page_offset(page); 3326 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3327 u64 end; 3328 u64 cur = start; 3329 u64 extent_offset; 3330 u64 block_start; 3331 u64 iosize; 3332 sector_t sector; 3333 struct extent_state *cached_state = NULL; 3334 struct extent_map *em; 3335 struct block_device *bdev; 3336 size_t pg_offset = 0; 3337 size_t blocksize; 3338 int ret = 0; 3339 int nr = 0; 3340 bool compressed; 3341 3342 if (tree->ops && tree->ops->writepage_start_hook) { 3343 ret = tree->ops->writepage_start_hook(page, start, 3344 page_end); 3345 if (ret) { 3346 /* Fixup worker will requeue */ 3347 if (ret == -EBUSY) 3348 wbc->pages_skipped++; 3349 else 3350 redirty_page_for_writepage(wbc, page); 3351 3352 update_nr_written(page, wbc, nr_written); 3353 unlock_page(page); 3354 ret = 1; 3355 goto done_unlocked; 3356 } 3357 } 3358 3359 /* 3360 * we don't want to touch the inode after unlocking the page, 3361 * so we update the mapping writeback index now 3362 */ 3363 update_nr_written(page, wbc, nr_written + 1); 3364 3365 end = page_end; 3366 if (i_size <= start) { 3367 if (tree->ops && tree->ops->writepage_end_io_hook) 3368 tree->ops->writepage_end_io_hook(page, start, 3369 page_end, NULL, 1); 3370 goto done; 3371 } 3372 3373 blocksize = inode->i_sb->s_blocksize; 3374 3375 while (cur <= end) { 3376 u64 em_end; 3377 if (cur >= i_size) { 3378 if (tree->ops && tree->ops->writepage_end_io_hook) 3379 tree->ops->writepage_end_io_hook(page, cur, 3380 page_end, NULL, 1); 3381 break; 3382 } 3383 em = epd->get_extent(inode, page, pg_offset, cur, 3384 end - cur + 1, 1); 3385 if (IS_ERR_OR_NULL(em)) { 3386 SetPageError(page); 3387 ret = PTR_ERR_OR_ZERO(em); 3388 break; 3389 } 3390 3391 extent_offset = cur - em->start; 3392 em_end = extent_map_end(em); 3393 BUG_ON(em_end <= cur); 3394 BUG_ON(end < cur); 3395 iosize = min(em_end - cur, end - cur + 1); 3396 iosize = ALIGN(iosize, blocksize); 3397 sector = (em->block_start + extent_offset) >> 9; 3398 bdev = em->bdev; 3399 block_start = em->block_start; 3400 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3401 free_extent_map(em); 3402 em = NULL; 3403 3404 /* 3405 * compressed and inline extents are written through other 3406 * paths in the FS 3407 */ 3408 if (compressed || block_start == EXTENT_MAP_HOLE || 3409 block_start == EXTENT_MAP_INLINE) { 3410 /* 3411 * end_io notification does not happen here for 3412 * compressed extents 3413 */ 3414 if (!compressed && tree->ops && 3415 tree->ops->writepage_end_io_hook) 3416 tree->ops->writepage_end_io_hook(page, cur, 3417 cur + iosize - 1, 3418 NULL, 1); 3419 else if (compressed) { 3420 /* we don't want to end_page_writeback on 3421 * a compressed extent. this happens 3422 * elsewhere 3423 */ 3424 nr++; 3425 } 3426 3427 cur += iosize; 3428 pg_offset += iosize; 3429 continue; 3430 } 3431 3432 if (tree->ops && tree->ops->writepage_io_hook) { 3433 ret = tree->ops->writepage_io_hook(page, cur, 3434 cur + iosize - 1); 3435 } else { 3436 ret = 0; 3437 } 3438 if (ret) { 3439 SetPageError(page); 3440 } else { 3441 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3442 3443 set_range_writeback(tree, cur, cur + iosize - 1); 3444 if (!PageWriteback(page)) { 3445 btrfs_err(BTRFS_I(inode)->root->fs_info, 3446 "page %lu not writeback, cur %llu end %llu", 3447 page->index, cur, end); 3448 } 3449 3450 ret = submit_extent_page(write_flags, tree, wbc, page, 3451 sector, iosize, pg_offset, 3452 bdev, &epd->bio, max_nr, 3453 end_bio_extent_writepage, 3454 0, 0, 0, false); 3455 if (ret) 3456 SetPageError(page); 3457 } 3458 cur = cur + iosize; 3459 pg_offset += iosize; 3460 nr++; 3461 } 3462 done: 3463 *nr_ret = nr; 3464 3465 done_unlocked: 3466 3467 /* drop our reference on any cached states */ 3468 free_extent_state(cached_state); 3469 return ret; 3470 } 3471 3472 /* 3473 * the writepage semantics are similar to regular writepage. extent 3474 * records are inserted to lock ranges in the tree, and as dirty areas 3475 * are found, they are marked writeback. Then the lock bits are removed 3476 * and the end_io handler clears the writeback ranges 3477 */ 3478 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3479 void *data) 3480 { 3481 struct inode *inode = page->mapping->host; 3482 struct extent_page_data *epd = data; 3483 u64 start = page_offset(page); 3484 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3485 int ret; 3486 int nr = 0; 3487 size_t pg_offset = 0; 3488 loff_t i_size = i_size_read(inode); 3489 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3490 int write_flags; 3491 unsigned long nr_written = 0; 3492 3493 if (wbc->sync_mode == WB_SYNC_ALL) 3494 write_flags = WRITE_SYNC; 3495 else 3496 write_flags = WRITE; 3497 3498 trace___extent_writepage(page, inode, wbc); 3499 3500 WARN_ON(!PageLocked(page)); 3501 3502 ClearPageError(page); 3503 3504 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3505 if (page->index > end_index || 3506 (page->index == end_index && !pg_offset)) { 3507 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3508 unlock_page(page); 3509 return 0; 3510 } 3511 3512 if (page->index == end_index) { 3513 char *userpage; 3514 3515 userpage = kmap_atomic(page); 3516 memset(userpage + pg_offset, 0, 3517 PAGE_CACHE_SIZE - pg_offset); 3518 kunmap_atomic(userpage); 3519 flush_dcache_page(page); 3520 } 3521 3522 pg_offset = 0; 3523 3524 set_page_extent_mapped(page); 3525 3526 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3527 if (ret == 1) 3528 goto done_unlocked; 3529 if (ret) 3530 goto done; 3531 3532 ret = __extent_writepage_io(inode, page, wbc, epd, 3533 i_size, nr_written, write_flags, &nr); 3534 if (ret == 1) 3535 goto done_unlocked; 3536 3537 done: 3538 if (nr == 0) { 3539 /* make sure the mapping tag for page dirty gets cleared */ 3540 set_page_writeback(page); 3541 end_page_writeback(page); 3542 } 3543 if (PageError(page)) { 3544 ret = ret < 0 ? ret : -EIO; 3545 end_extent_writepage(page, ret, start, page_end); 3546 } 3547 unlock_page(page); 3548 return ret; 3549 3550 done_unlocked: 3551 return 0; 3552 } 3553 3554 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3555 { 3556 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3557 TASK_UNINTERRUPTIBLE); 3558 } 3559 3560 static noinline_for_stack int 3561 lock_extent_buffer_for_io(struct extent_buffer *eb, 3562 struct btrfs_fs_info *fs_info, 3563 struct extent_page_data *epd) 3564 { 3565 unsigned long i, num_pages; 3566 int flush = 0; 3567 int ret = 0; 3568 3569 if (!btrfs_try_tree_write_lock(eb)) { 3570 flush = 1; 3571 flush_write_bio(epd); 3572 btrfs_tree_lock(eb); 3573 } 3574 3575 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3576 btrfs_tree_unlock(eb); 3577 if (!epd->sync_io) 3578 return 0; 3579 if (!flush) { 3580 flush_write_bio(epd); 3581 flush = 1; 3582 } 3583 while (1) { 3584 wait_on_extent_buffer_writeback(eb); 3585 btrfs_tree_lock(eb); 3586 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3587 break; 3588 btrfs_tree_unlock(eb); 3589 } 3590 } 3591 3592 /* 3593 * We need to do this to prevent races in people who check if the eb is 3594 * under IO since we can end up having no IO bits set for a short period 3595 * of time. 3596 */ 3597 spin_lock(&eb->refs_lock); 3598 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3599 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3600 spin_unlock(&eb->refs_lock); 3601 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3602 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3603 -eb->len, 3604 fs_info->dirty_metadata_batch); 3605 ret = 1; 3606 } else { 3607 spin_unlock(&eb->refs_lock); 3608 } 3609 3610 btrfs_tree_unlock(eb); 3611 3612 if (!ret) 3613 return ret; 3614 3615 num_pages = num_extent_pages(eb->start, eb->len); 3616 for (i = 0; i < num_pages; i++) { 3617 struct page *p = eb->pages[i]; 3618 3619 if (!trylock_page(p)) { 3620 if (!flush) { 3621 flush_write_bio(epd); 3622 flush = 1; 3623 } 3624 lock_page(p); 3625 } 3626 } 3627 3628 return ret; 3629 } 3630 3631 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3632 { 3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3634 smp_mb__after_atomic(); 3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3636 } 3637 3638 static void set_btree_ioerr(struct page *page) 3639 { 3640 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3641 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3642 3643 SetPageError(page); 3644 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3645 return; 3646 3647 /* 3648 * If writeback for a btree extent that doesn't belong to a log tree 3649 * failed, increment the counter transaction->eb_write_errors. 3650 * We do this because while the transaction is running and before it's 3651 * committing (when we call filemap_fdata[write|wait]_range against 3652 * the btree inode), we might have 3653 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3654 * returns an error or an error happens during writeback, when we're 3655 * committing the transaction we wouldn't know about it, since the pages 3656 * can be no longer dirty nor marked anymore for writeback (if a 3657 * subsequent modification to the extent buffer didn't happen before the 3658 * transaction commit), which makes filemap_fdata[write|wait]_range not 3659 * able to find the pages tagged with SetPageError at transaction 3660 * commit time. So if this happens we must abort the transaction, 3661 * otherwise we commit a super block with btree roots that point to 3662 * btree nodes/leafs whose content on disk is invalid - either garbage 3663 * or the content of some node/leaf from a past generation that got 3664 * cowed or deleted and is no longer valid. 3665 * 3666 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3667 * not be enough - we need to distinguish between log tree extents vs 3668 * non-log tree extents, and the next filemap_fdatawait_range() call 3669 * will catch and clear such errors in the mapping - and that call might 3670 * be from a log sync and not from a transaction commit. Also, checking 3671 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3672 * not done and would not be reliable - the eb might have been released 3673 * from memory and reading it back again means that flag would not be 3674 * set (since it's a runtime flag, not persisted on disk). 3675 * 3676 * Using the flags below in the btree inode also makes us achieve the 3677 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3678 * writeback for all dirty pages and before filemap_fdatawait_range() 3679 * is called, the writeback for all dirty pages had already finished 3680 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3681 * filemap_fdatawait_range() would return success, as it could not know 3682 * that writeback errors happened (the pages were no longer tagged for 3683 * writeback). 3684 */ 3685 switch (eb->log_index) { 3686 case -1: 3687 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3688 break; 3689 case 0: 3690 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3691 break; 3692 case 1: 3693 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3694 break; 3695 default: 3696 BUG(); /* unexpected, logic error */ 3697 } 3698 } 3699 3700 static void end_bio_extent_buffer_writepage(struct bio *bio) 3701 { 3702 struct bio_vec *bvec; 3703 struct extent_buffer *eb; 3704 int i, done; 3705 3706 bio_for_each_segment_all(bvec, bio, i) { 3707 struct page *page = bvec->bv_page; 3708 3709 eb = (struct extent_buffer *)page->private; 3710 BUG_ON(!eb); 3711 done = atomic_dec_and_test(&eb->io_pages); 3712 3713 if (bio->bi_error || 3714 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3715 ClearPageUptodate(page); 3716 set_btree_ioerr(page); 3717 } 3718 3719 end_page_writeback(page); 3720 3721 if (!done) 3722 continue; 3723 3724 end_extent_buffer_writeback(eb); 3725 } 3726 3727 bio_put(bio); 3728 } 3729 3730 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3731 struct btrfs_fs_info *fs_info, 3732 struct writeback_control *wbc, 3733 struct extent_page_data *epd) 3734 { 3735 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3736 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3737 u64 offset = eb->start; 3738 unsigned long i, num_pages; 3739 unsigned long bio_flags = 0; 3740 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3741 int ret = 0; 3742 3743 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3744 num_pages = num_extent_pages(eb->start, eb->len); 3745 atomic_set(&eb->io_pages, num_pages); 3746 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3747 bio_flags = EXTENT_BIO_TREE_LOG; 3748 3749 for (i = 0; i < num_pages; i++) { 3750 struct page *p = eb->pages[i]; 3751 3752 clear_page_dirty_for_io(p); 3753 set_page_writeback(p); 3754 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3755 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3756 -1, end_bio_extent_buffer_writepage, 3757 0, epd->bio_flags, bio_flags, false); 3758 epd->bio_flags = bio_flags; 3759 if (ret) { 3760 set_btree_ioerr(p); 3761 end_page_writeback(p); 3762 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3763 end_extent_buffer_writeback(eb); 3764 ret = -EIO; 3765 break; 3766 } 3767 offset += PAGE_CACHE_SIZE; 3768 update_nr_written(p, wbc, 1); 3769 unlock_page(p); 3770 } 3771 3772 if (unlikely(ret)) { 3773 for (; i < num_pages; i++) { 3774 struct page *p = eb->pages[i]; 3775 clear_page_dirty_for_io(p); 3776 unlock_page(p); 3777 } 3778 } 3779 3780 return ret; 3781 } 3782 3783 int btree_write_cache_pages(struct address_space *mapping, 3784 struct writeback_control *wbc) 3785 { 3786 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3787 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3788 struct extent_buffer *eb, *prev_eb = NULL; 3789 struct extent_page_data epd = { 3790 .bio = NULL, 3791 .tree = tree, 3792 .extent_locked = 0, 3793 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3794 .bio_flags = 0, 3795 }; 3796 int ret = 0; 3797 int done = 0; 3798 int nr_to_write_done = 0; 3799 struct pagevec pvec; 3800 int nr_pages; 3801 pgoff_t index; 3802 pgoff_t end; /* Inclusive */ 3803 int scanned = 0; 3804 int tag; 3805 3806 pagevec_init(&pvec, 0); 3807 if (wbc->range_cyclic) { 3808 index = mapping->writeback_index; /* Start from prev offset */ 3809 end = -1; 3810 } else { 3811 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3812 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3813 scanned = 1; 3814 } 3815 if (wbc->sync_mode == WB_SYNC_ALL) 3816 tag = PAGECACHE_TAG_TOWRITE; 3817 else 3818 tag = PAGECACHE_TAG_DIRTY; 3819 retry: 3820 if (wbc->sync_mode == WB_SYNC_ALL) 3821 tag_pages_for_writeback(mapping, index, end); 3822 while (!done && !nr_to_write_done && (index <= end) && 3823 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3824 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3825 unsigned i; 3826 3827 scanned = 1; 3828 for (i = 0; i < nr_pages; i++) { 3829 struct page *page = pvec.pages[i]; 3830 3831 if (!PagePrivate(page)) 3832 continue; 3833 3834 if (!wbc->range_cyclic && page->index > end) { 3835 done = 1; 3836 break; 3837 } 3838 3839 spin_lock(&mapping->private_lock); 3840 if (!PagePrivate(page)) { 3841 spin_unlock(&mapping->private_lock); 3842 continue; 3843 } 3844 3845 eb = (struct extent_buffer *)page->private; 3846 3847 /* 3848 * Shouldn't happen and normally this would be a BUG_ON 3849 * but no sense in crashing the users box for something 3850 * we can survive anyway. 3851 */ 3852 if (WARN_ON(!eb)) { 3853 spin_unlock(&mapping->private_lock); 3854 continue; 3855 } 3856 3857 if (eb == prev_eb) { 3858 spin_unlock(&mapping->private_lock); 3859 continue; 3860 } 3861 3862 ret = atomic_inc_not_zero(&eb->refs); 3863 spin_unlock(&mapping->private_lock); 3864 if (!ret) 3865 continue; 3866 3867 prev_eb = eb; 3868 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3869 if (!ret) { 3870 free_extent_buffer(eb); 3871 continue; 3872 } 3873 3874 ret = write_one_eb(eb, fs_info, wbc, &epd); 3875 if (ret) { 3876 done = 1; 3877 free_extent_buffer(eb); 3878 break; 3879 } 3880 free_extent_buffer(eb); 3881 3882 /* 3883 * the filesystem may choose to bump up nr_to_write. 3884 * We have to make sure to honor the new nr_to_write 3885 * at any time 3886 */ 3887 nr_to_write_done = wbc->nr_to_write <= 0; 3888 } 3889 pagevec_release(&pvec); 3890 cond_resched(); 3891 } 3892 if (!scanned && !done) { 3893 /* 3894 * We hit the last page and there is more work to be done: wrap 3895 * back to the start of the file 3896 */ 3897 scanned = 1; 3898 index = 0; 3899 goto retry; 3900 } 3901 flush_write_bio(&epd); 3902 return ret; 3903 } 3904 3905 /** 3906 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3907 * @mapping: address space structure to write 3908 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3909 * @writepage: function called for each page 3910 * @data: data passed to writepage function 3911 * 3912 * If a page is already under I/O, write_cache_pages() skips it, even 3913 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3914 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3915 * and msync() need to guarantee that all the data which was dirty at the time 3916 * the call was made get new I/O started against them. If wbc->sync_mode is 3917 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3918 * existing IO to complete. 3919 */ 3920 static int extent_write_cache_pages(struct extent_io_tree *tree, 3921 struct address_space *mapping, 3922 struct writeback_control *wbc, 3923 writepage_t writepage, void *data, 3924 void (*flush_fn)(void *)) 3925 { 3926 struct inode *inode = mapping->host; 3927 int ret = 0; 3928 int done = 0; 3929 int err = 0; 3930 int nr_to_write_done = 0; 3931 struct pagevec pvec; 3932 int nr_pages; 3933 pgoff_t index; 3934 pgoff_t end; /* Inclusive */ 3935 int scanned = 0; 3936 int tag; 3937 3938 /* 3939 * We have to hold onto the inode so that ordered extents can do their 3940 * work when the IO finishes. The alternative to this is failing to add 3941 * an ordered extent if the igrab() fails there and that is a huge pain 3942 * to deal with, so instead just hold onto the inode throughout the 3943 * writepages operation. If it fails here we are freeing up the inode 3944 * anyway and we'd rather not waste our time writing out stuff that is 3945 * going to be truncated anyway. 3946 */ 3947 if (!igrab(inode)) 3948 return 0; 3949 3950 pagevec_init(&pvec, 0); 3951 if (wbc->range_cyclic) { 3952 index = mapping->writeback_index; /* Start from prev offset */ 3953 end = -1; 3954 } else { 3955 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3956 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3957 scanned = 1; 3958 } 3959 if (wbc->sync_mode == WB_SYNC_ALL) 3960 tag = PAGECACHE_TAG_TOWRITE; 3961 else 3962 tag = PAGECACHE_TAG_DIRTY; 3963 retry: 3964 if (wbc->sync_mode == WB_SYNC_ALL) 3965 tag_pages_for_writeback(mapping, index, end); 3966 while (!done && !nr_to_write_done && (index <= end) && 3967 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3968 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3969 unsigned i; 3970 3971 scanned = 1; 3972 for (i = 0; i < nr_pages; i++) { 3973 struct page *page = pvec.pages[i]; 3974 3975 /* 3976 * At this point we hold neither mapping->tree_lock nor 3977 * lock on the page itself: the page may be truncated or 3978 * invalidated (changing page->mapping to NULL), or even 3979 * swizzled back from swapper_space to tmpfs file 3980 * mapping 3981 */ 3982 if (!trylock_page(page)) { 3983 flush_fn(data); 3984 lock_page(page); 3985 } 3986 3987 if (unlikely(page->mapping != mapping)) { 3988 unlock_page(page); 3989 continue; 3990 } 3991 3992 if (!wbc->range_cyclic && page->index > end) { 3993 done = 1; 3994 unlock_page(page); 3995 continue; 3996 } 3997 3998 if (wbc->sync_mode != WB_SYNC_NONE) { 3999 if (PageWriteback(page)) 4000 flush_fn(data); 4001 wait_on_page_writeback(page); 4002 } 4003 4004 if (PageWriteback(page) || 4005 !clear_page_dirty_for_io(page)) { 4006 unlock_page(page); 4007 continue; 4008 } 4009 4010 ret = (*writepage)(page, wbc, data); 4011 4012 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4013 unlock_page(page); 4014 ret = 0; 4015 } 4016 if (!err && ret < 0) 4017 err = ret; 4018 4019 /* 4020 * the filesystem may choose to bump up nr_to_write. 4021 * We have to make sure to honor the new nr_to_write 4022 * at any time 4023 */ 4024 nr_to_write_done = wbc->nr_to_write <= 0; 4025 } 4026 pagevec_release(&pvec); 4027 cond_resched(); 4028 } 4029 if (!scanned && !done && !err) { 4030 /* 4031 * We hit the last page and there is more work to be done: wrap 4032 * back to the start of the file 4033 */ 4034 scanned = 1; 4035 index = 0; 4036 goto retry; 4037 } 4038 btrfs_add_delayed_iput(inode); 4039 return err; 4040 } 4041 4042 static void flush_epd_write_bio(struct extent_page_data *epd) 4043 { 4044 if (epd->bio) { 4045 int rw = WRITE; 4046 int ret; 4047 4048 if (epd->sync_io) 4049 rw = WRITE_SYNC; 4050 4051 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4052 BUG_ON(ret < 0); /* -ENOMEM */ 4053 epd->bio = NULL; 4054 } 4055 } 4056 4057 static noinline void flush_write_bio(void *data) 4058 { 4059 struct extent_page_data *epd = data; 4060 flush_epd_write_bio(epd); 4061 } 4062 4063 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4064 get_extent_t *get_extent, 4065 struct writeback_control *wbc) 4066 { 4067 int ret; 4068 struct extent_page_data epd = { 4069 .bio = NULL, 4070 .tree = tree, 4071 .get_extent = get_extent, 4072 .extent_locked = 0, 4073 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4074 .bio_flags = 0, 4075 }; 4076 4077 ret = __extent_writepage(page, wbc, &epd); 4078 4079 flush_epd_write_bio(&epd); 4080 return ret; 4081 } 4082 4083 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4084 u64 start, u64 end, get_extent_t *get_extent, 4085 int mode) 4086 { 4087 int ret = 0; 4088 struct address_space *mapping = inode->i_mapping; 4089 struct page *page; 4090 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4091 PAGE_CACHE_SHIFT; 4092 4093 struct extent_page_data epd = { 4094 .bio = NULL, 4095 .tree = tree, 4096 .get_extent = get_extent, 4097 .extent_locked = 1, 4098 .sync_io = mode == WB_SYNC_ALL, 4099 .bio_flags = 0, 4100 }; 4101 struct writeback_control wbc_writepages = { 4102 .sync_mode = mode, 4103 .nr_to_write = nr_pages * 2, 4104 .range_start = start, 4105 .range_end = end + 1, 4106 }; 4107 4108 while (start <= end) { 4109 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4110 if (clear_page_dirty_for_io(page)) 4111 ret = __extent_writepage(page, &wbc_writepages, &epd); 4112 else { 4113 if (tree->ops && tree->ops->writepage_end_io_hook) 4114 tree->ops->writepage_end_io_hook(page, start, 4115 start + PAGE_CACHE_SIZE - 1, 4116 NULL, 1); 4117 unlock_page(page); 4118 } 4119 page_cache_release(page); 4120 start += PAGE_CACHE_SIZE; 4121 } 4122 4123 flush_epd_write_bio(&epd); 4124 return ret; 4125 } 4126 4127 int extent_writepages(struct extent_io_tree *tree, 4128 struct address_space *mapping, 4129 get_extent_t *get_extent, 4130 struct writeback_control *wbc) 4131 { 4132 int ret = 0; 4133 struct extent_page_data epd = { 4134 .bio = NULL, 4135 .tree = tree, 4136 .get_extent = get_extent, 4137 .extent_locked = 0, 4138 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4139 .bio_flags = 0, 4140 }; 4141 4142 ret = extent_write_cache_pages(tree, mapping, wbc, 4143 __extent_writepage, &epd, 4144 flush_write_bio); 4145 flush_epd_write_bio(&epd); 4146 return ret; 4147 } 4148 4149 int extent_readpages(struct extent_io_tree *tree, 4150 struct address_space *mapping, 4151 struct list_head *pages, unsigned nr_pages, 4152 get_extent_t get_extent) 4153 { 4154 struct bio *bio = NULL; 4155 unsigned page_idx; 4156 unsigned long bio_flags = 0; 4157 struct page *pagepool[16]; 4158 struct page *page; 4159 struct extent_map *em_cached = NULL; 4160 int nr = 0; 4161 u64 prev_em_start = (u64)-1; 4162 4163 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4164 page = list_entry(pages->prev, struct page, lru); 4165 4166 prefetchw(&page->flags); 4167 list_del(&page->lru); 4168 if (add_to_page_cache_lru(page, mapping, 4169 page->index, GFP_NOFS)) { 4170 page_cache_release(page); 4171 continue; 4172 } 4173 4174 pagepool[nr++] = page; 4175 if (nr < ARRAY_SIZE(pagepool)) 4176 continue; 4177 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4178 &bio, 0, &bio_flags, READ, &prev_em_start); 4179 nr = 0; 4180 } 4181 if (nr) 4182 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4183 &bio, 0, &bio_flags, READ, &prev_em_start); 4184 4185 if (em_cached) 4186 free_extent_map(em_cached); 4187 4188 BUG_ON(!list_empty(pages)); 4189 if (bio) 4190 return submit_one_bio(READ, bio, 0, bio_flags); 4191 return 0; 4192 } 4193 4194 /* 4195 * basic invalidatepage code, this waits on any locked or writeback 4196 * ranges corresponding to the page, and then deletes any extent state 4197 * records from the tree 4198 */ 4199 int extent_invalidatepage(struct extent_io_tree *tree, 4200 struct page *page, unsigned long offset) 4201 { 4202 struct extent_state *cached_state = NULL; 4203 u64 start = page_offset(page); 4204 u64 end = start + PAGE_CACHE_SIZE - 1; 4205 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4206 4207 start += ALIGN(offset, blocksize); 4208 if (start > end) 4209 return 0; 4210 4211 lock_extent_bits(tree, start, end, &cached_state); 4212 wait_on_page_writeback(page); 4213 clear_extent_bit(tree, start, end, 4214 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4215 EXTENT_DO_ACCOUNTING, 4216 1, 1, &cached_state, GFP_NOFS); 4217 return 0; 4218 } 4219 4220 /* 4221 * a helper for releasepage, this tests for areas of the page that 4222 * are locked or under IO and drops the related state bits if it is safe 4223 * to drop the page. 4224 */ 4225 static int try_release_extent_state(struct extent_map_tree *map, 4226 struct extent_io_tree *tree, 4227 struct page *page, gfp_t mask) 4228 { 4229 u64 start = page_offset(page); 4230 u64 end = start + PAGE_CACHE_SIZE - 1; 4231 int ret = 1; 4232 4233 if (test_range_bit(tree, start, end, 4234 EXTENT_IOBITS, 0, NULL)) 4235 ret = 0; 4236 else { 4237 if ((mask & GFP_NOFS) == GFP_NOFS) 4238 mask = GFP_NOFS; 4239 /* 4240 * at this point we can safely clear everything except the 4241 * locked bit and the nodatasum bit 4242 */ 4243 ret = clear_extent_bit(tree, start, end, 4244 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4245 0, 0, NULL, mask); 4246 4247 /* if clear_extent_bit failed for enomem reasons, 4248 * we can't allow the release to continue. 4249 */ 4250 if (ret < 0) 4251 ret = 0; 4252 else 4253 ret = 1; 4254 } 4255 return ret; 4256 } 4257 4258 /* 4259 * a helper for releasepage. As long as there are no locked extents 4260 * in the range corresponding to the page, both state records and extent 4261 * map records are removed 4262 */ 4263 int try_release_extent_mapping(struct extent_map_tree *map, 4264 struct extent_io_tree *tree, struct page *page, 4265 gfp_t mask) 4266 { 4267 struct extent_map *em; 4268 u64 start = page_offset(page); 4269 u64 end = start + PAGE_CACHE_SIZE - 1; 4270 4271 if (gfpflags_allow_blocking(mask) && 4272 page->mapping->host->i_size > SZ_16M) { 4273 u64 len; 4274 while (start <= end) { 4275 len = end - start + 1; 4276 write_lock(&map->lock); 4277 em = lookup_extent_mapping(map, start, len); 4278 if (!em) { 4279 write_unlock(&map->lock); 4280 break; 4281 } 4282 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4283 em->start != start) { 4284 write_unlock(&map->lock); 4285 free_extent_map(em); 4286 break; 4287 } 4288 if (!test_range_bit(tree, em->start, 4289 extent_map_end(em) - 1, 4290 EXTENT_LOCKED | EXTENT_WRITEBACK, 4291 0, NULL)) { 4292 remove_extent_mapping(map, em); 4293 /* once for the rb tree */ 4294 free_extent_map(em); 4295 } 4296 start = extent_map_end(em); 4297 write_unlock(&map->lock); 4298 4299 /* once for us */ 4300 free_extent_map(em); 4301 } 4302 } 4303 return try_release_extent_state(map, tree, page, mask); 4304 } 4305 4306 /* 4307 * helper function for fiemap, which doesn't want to see any holes. 4308 * This maps until we find something past 'last' 4309 */ 4310 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4311 u64 offset, 4312 u64 last, 4313 get_extent_t *get_extent) 4314 { 4315 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4316 struct extent_map *em; 4317 u64 len; 4318 4319 if (offset >= last) 4320 return NULL; 4321 4322 while (1) { 4323 len = last - offset; 4324 if (len == 0) 4325 break; 4326 len = ALIGN(len, sectorsize); 4327 em = get_extent(inode, NULL, 0, offset, len, 0); 4328 if (IS_ERR_OR_NULL(em)) 4329 return em; 4330 4331 /* if this isn't a hole return it */ 4332 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4333 em->block_start != EXTENT_MAP_HOLE) { 4334 return em; 4335 } 4336 4337 /* this is a hole, advance to the next extent */ 4338 offset = extent_map_end(em); 4339 free_extent_map(em); 4340 if (offset >= last) 4341 break; 4342 } 4343 return NULL; 4344 } 4345 4346 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4347 __u64 start, __u64 len, get_extent_t *get_extent) 4348 { 4349 int ret = 0; 4350 u64 off = start; 4351 u64 max = start + len; 4352 u32 flags = 0; 4353 u32 found_type; 4354 u64 last; 4355 u64 last_for_get_extent = 0; 4356 u64 disko = 0; 4357 u64 isize = i_size_read(inode); 4358 struct btrfs_key found_key; 4359 struct extent_map *em = NULL; 4360 struct extent_state *cached_state = NULL; 4361 struct btrfs_path *path; 4362 struct btrfs_root *root = BTRFS_I(inode)->root; 4363 int end = 0; 4364 u64 em_start = 0; 4365 u64 em_len = 0; 4366 u64 em_end = 0; 4367 4368 if (len == 0) 4369 return -EINVAL; 4370 4371 path = btrfs_alloc_path(); 4372 if (!path) 4373 return -ENOMEM; 4374 path->leave_spinning = 1; 4375 4376 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4377 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4378 4379 /* 4380 * lookup the last file extent. We're not using i_size here 4381 * because there might be preallocation past i_size 4382 */ 4383 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4384 0); 4385 if (ret < 0) { 4386 btrfs_free_path(path); 4387 return ret; 4388 } 4389 WARN_ON(!ret); 4390 path->slots[0]--; 4391 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4392 found_type = found_key.type; 4393 4394 /* No extents, but there might be delalloc bits */ 4395 if (found_key.objectid != btrfs_ino(inode) || 4396 found_type != BTRFS_EXTENT_DATA_KEY) { 4397 /* have to trust i_size as the end */ 4398 last = (u64)-1; 4399 last_for_get_extent = isize; 4400 } else { 4401 /* 4402 * remember the start of the last extent. There are a 4403 * bunch of different factors that go into the length of the 4404 * extent, so its much less complex to remember where it started 4405 */ 4406 last = found_key.offset; 4407 last_for_get_extent = last + 1; 4408 } 4409 btrfs_release_path(path); 4410 4411 /* 4412 * we might have some extents allocated but more delalloc past those 4413 * extents. so, we trust isize unless the start of the last extent is 4414 * beyond isize 4415 */ 4416 if (last < isize) { 4417 last = (u64)-1; 4418 last_for_get_extent = isize; 4419 } 4420 4421 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4422 &cached_state); 4423 4424 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4425 get_extent); 4426 if (!em) 4427 goto out; 4428 if (IS_ERR(em)) { 4429 ret = PTR_ERR(em); 4430 goto out; 4431 } 4432 4433 while (!end) { 4434 u64 offset_in_extent = 0; 4435 4436 /* break if the extent we found is outside the range */ 4437 if (em->start >= max || extent_map_end(em) < off) 4438 break; 4439 4440 /* 4441 * get_extent may return an extent that starts before our 4442 * requested range. We have to make sure the ranges 4443 * we return to fiemap always move forward and don't 4444 * overlap, so adjust the offsets here 4445 */ 4446 em_start = max(em->start, off); 4447 4448 /* 4449 * record the offset from the start of the extent 4450 * for adjusting the disk offset below. Only do this if the 4451 * extent isn't compressed since our in ram offset may be past 4452 * what we have actually allocated on disk. 4453 */ 4454 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4455 offset_in_extent = em_start - em->start; 4456 em_end = extent_map_end(em); 4457 em_len = em_end - em_start; 4458 disko = 0; 4459 flags = 0; 4460 4461 /* 4462 * bump off for our next call to get_extent 4463 */ 4464 off = extent_map_end(em); 4465 if (off >= max) 4466 end = 1; 4467 4468 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4469 end = 1; 4470 flags |= FIEMAP_EXTENT_LAST; 4471 } else if (em->block_start == EXTENT_MAP_INLINE) { 4472 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4473 FIEMAP_EXTENT_NOT_ALIGNED); 4474 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4475 flags |= (FIEMAP_EXTENT_DELALLOC | 4476 FIEMAP_EXTENT_UNKNOWN); 4477 } else if (fieinfo->fi_extents_max) { 4478 u64 bytenr = em->block_start - 4479 (em->start - em->orig_start); 4480 4481 disko = em->block_start + offset_in_extent; 4482 4483 /* 4484 * As btrfs supports shared space, this information 4485 * can be exported to userspace tools via 4486 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4487 * then we're just getting a count and we can skip the 4488 * lookup stuff. 4489 */ 4490 ret = btrfs_check_shared(NULL, root->fs_info, 4491 root->objectid, 4492 btrfs_ino(inode), bytenr); 4493 if (ret < 0) 4494 goto out_free; 4495 if (ret) 4496 flags |= FIEMAP_EXTENT_SHARED; 4497 ret = 0; 4498 } 4499 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4500 flags |= FIEMAP_EXTENT_ENCODED; 4501 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4502 flags |= FIEMAP_EXTENT_UNWRITTEN; 4503 4504 free_extent_map(em); 4505 em = NULL; 4506 if ((em_start >= last) || em_len == (u64)-1 || 4507 (last == (u64)-1 && isize <= em_end)) { 4508 flags |= FIEMAP_EXTENT_LAST; 4509 end = 1; 4510 } 4511 4512 /* now scan forward to see if this is really the last extent. */ 4513 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4514 get_extent); 4515 if (IS_ERR(em)) { 4516 ret = PTR_ERR(em); 4517 goto out; 4518 } 4519 if (!em) { 4520 flags |= FIEMAP_EXTENT_LAST; 4521 end = 1; 4522 } 4523 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4524 em_len, flags); 4525 if (ret) { 4526 if (ret == 1) 4527 ret = 0; 4528 goto out_free; 4529 } 4530 } 4531 out_free: 4532 free_extent_map(em); 4533 out: 4534 btrfs_free_path(path); 4535 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4536 &cached_state, GFP_NOFS); 4537 return ret; 4538 } 4539 4540 static void __free_extent_buffer(struct extent_buffer *eb) 4541 { 4542 btrfs_leak_debug_del(&eb->leak_list); 4543 kmem_cache_free(extent_buffer_cache, eb); 4544 } 4545 4546 int extent_buffer_under_io(struct extent_buffer *eb) 4547 { 4548 return (atomic_read(&eb->io_pages) || 4549 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4550 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4551 } 4552 4553 /* 4554 * Helper for releasing extent buffer page. 4555 */ 4556 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4557 { 4558 unsigned long index; 4559 struct page *page; 4560 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4561 4562 BUG_ON(extent_buffer_under_io(eb)); 4563 4564 index = num_extent_pages(eb->start, eb->len); 4565 if (index == 0) 4566 return; 4567 4568 do { 4569 index--; 4570 page = eb->pages[index]; 4571 if (!page) 4572 continue; 4573 if (mapped) 4574 spin_lock(&page->mapping->private_lock); 4575 /* 4576 * We do this since we'll remove the pages after we've 4577 * removed the eb from the radix tree, so we could race 4578 * and have this page now attached to the new eb. So 4579 * only clear page_private if it's still connected to 4580 * this eb. 4581 */ 4582 if (PagePrivate(page) && 4583 page->private == (unsigned long)eb) { 4584 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4585 BUG_ON(PageDirty(page)); 4586 BUG_ON(PageWriteback(page)); 4587 /* 4588 * We need to make sure we haven't be attached 4589 * to a new eb. 4590 */ 4591 ClearPagePrivate(page); 4592 set_page_private(page, 0); 4593 /* One for the page private */ 4594 page_cache_release(page); 4595 } 4596 4597 if (mapped) 4598 spin_unlock(&page->mapping->private_lock); 4599 4600 /* One for when we alloced the page */ 4601 page_cache_release(page); 4602 } while (index != 0); 4603 } 4604 4605 /* 4606 * Helper for releasing the extent buffer. 4607 */ 4608 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4609 { 4610 btrfs_release_extent_buffer_page(eb); 4611 __free_extent_buffer(eb); 4612 } 4613 4614 static struct extent_buffer * 4615 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4616 unsigned long len) 4617 { 4618 struct extent_buffer *eb = NULL; 4619 4620 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4621 eb->start = start; 4622 eb->len = len; 4623 eb->fs_info = fs_info; 4624 eb->bflags = 0; 4625 rwlock_init(&eb->lock); 4626 atomic_set(&eb->write_locks, 0); 4627 atomic_set(&eb->read_locks, 0); 4628 atomic_set(&eb->blocking_readers, 0); 4629 atomic_set(&eb->blocking_writers, 0); 4630 atomic_set(&eb->spinning_readers, 0); 4631 atomic_set(&eb->spinning_writers, 0); 4632 eb->lock_nested = 0; 4633 init_waitqueue_head(&eb->write_lock_wq); 4634 init_waitqueue_head(&eb->read_lock_wq); 4635 4636 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4637 4638 spin_lock_init(&eb->refs_lock); 4639 atomic_set(&eb->refs, 1); 4640 atomic_set(&eb->io_pages, 0); 4641 4642 /* 4643 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4644 */ 4645 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4646 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4647 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4648 4649 return eb; 4650 } 4651 4652 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4653 { 4654 unsigned long i; 4655 struct page *p; 4656 struct extent_buffer *new; 4657 unsigned long num_pages = num_extent_pages(src->start, src->len); 4658 4659 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4660 if (new == NULL) 4661 return NULL; 4662 4663 for (i = 0; i < num_pages; i++) { 4664 p = alloc_page(GFP_NOFS); 4665 if (!p) { 4666 btrfs_release_extent_buffer(new); 4667 return NULL; 4668 } 4669 attach_extent_buffer_page(new, p); 4670 WARN_ON(PageDirty(p)); 4671 SetPageUptodate(p); 4672 new->pages[i] = p; 4673 } 4674 4675 copy_extent_buffer(new, src, 0, 0, src->len); 4676 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4677 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4678 4679 return new; 4680 } 4681 4682 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4683 u64 start, unsigned long len) 4684 { 4685 struct extent_buffer *eb; 4686 unsigned long num_pages; 4687 unsigned long i; 4688 4689 num_pages = num_extent_pages(start, len); 4690 4691 eb = __alloc_extent_buffer(fs_info, start, len); 4692 if (!eb) 4693 return NULL; 4694 4695 for (i = 0; i < num_pages; i++) { 4696 eb->pages[i] = alloc_page(GFP_NOFS); 4697 if (!eb->pages[i]) 4698 goto err; 4699 } 4700 set_extent_buffer_uptodate(eb); 4701 btrfs_set_header_nritems(eb, 0); 4702 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4703 4704 return eb; 4705 err: 4706 for (; i > 0; i--) 4707 __free_page(eb->pages[i - 1]); 4708 __free_extent_buffer(eb); 4709 return NULL; 4710 } 4711 4712 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4713 u64 start) 4714 { 4715 unsigned long len; 4716 4717 if (!fs_info) { 4718 /* 4719 * Called only from tests that don't always have a fs_info 4720 * available, but we know that nodesize is 4096 4721 */ 4722 len = 4096; 4723 } else { 4724 len = fs_info->tree_root->nodesize; 4725 } 4726 4727 return __alloc_dummy_extent_buffer(fs_info, start, len); 4728 } 4729 4730 static void check_buffer_tree_ref(struct extent_buffer *eb) 4731 { 4732 int refs; 4733 /* the ref bit is tricky. We have to make sure it is set 4734 * if we have the buffer dirty. Otherwise the 4735 * code to free a buffer can end up dropping a dirty 4736 * page 4737 * 4738 * Once the ref bit is set, it won't go away while the 4739 * buffer is dirty or in writeback, and it also won't 4740 * go away while we have the reference count on the 4741 * eb bumped. 4742 * 4743 * We can't just set the ref bit without bumping the 4744 * ref on the eb because free_extent_buffer might 4745 * see the ref bit and try to clear it. If this happens 4746 * free_extent_buffer might end up dropping our original 4747 * ref by mistake and freeing the page before we are able 4748 * to add one more ref. 4749 * 4750 * So bump the ref count first, then set the bit. If someone 4751 * beat us to it, drop the ref we added. 4752 */ 4753 refs = atomic_read(&eb->refs); 4754 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4755 return; 4756 4757 spin_lock(&eb->refs_lock); 4758 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4759 atomic_inc(&eb->refs); 4760 spin_unlock(&eb->refs_lock); 4761 } 4762 4763 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4764 struct page *accessed) 4765 { 4766 unsigned long num_pages, i; 4767 4768 check_buffer_tree_ref(eb); 4769 4770 num_pages = num_extent_pages(eb->start, eb->len); 4771 for (i = 0; i < num_pages; i++) { 4772 struct page *p = eb->pages[i]; 4773 4774 if (p != accessed) 4775 mark_page_accessed(p); 4776 } 4777 } 4778 4779 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4780 u64 start) 4781 { 4782 struct extent_buffer *eb; 4783 4784 rcu_read_lock(); 4785 eb = radix_tree_lookup(&fs_info->buffer_radix, 4786 start >> PAGE_CACHE_SHIFT); 4787 if (eb && atomic_inc_not_zero(&eb->refs)) { 4788 rcu_read_unlock(); 4789 /* 4790 * Lock our eb's refs_lock to avoid races with 4791 * free_extent_buffer. When we get our eb it might be flagged 4792 * with EXTENT_BUFFER_STALE and another task running 4793 * free_extent_buffer might have seen that flag set, 4794 * eb->refs == 2, that the buffer isn't under IO (dirty and 4795 * writeback flags not set) and it's still in the tree (flag 4796 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4797 * of decrementing the extent buffer's reference count twice. 4798 * So here we could race and increment the eb's reference count, 4799 * clear its stale flag, mark it as dirty and drop our reference 4800 * before the other task finishes executing free_extent_buffer, 4801 * which would later result in an attempt to free an extent 4802 * buffer that is dirty. 4803 */ 4804 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4805 spin_lock(&eb->refs_lock); 4806 spin_unlock(&eb->refs_lock); 4807 } 4808 mark_extent_buffer_accessed(eb, NULL); 4809 return eb; 4810 } 4811 rcu_read_unlock(); 4812 4813 return NULL; 4814 } 4815 4816 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4817 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4818 u64 start) 4819 { 4820 struct extent_buffer *eb, *exists = NULL; 4821 int ret; 4822 4823 eb = find_extent_buffer(fs_info, start); 4824 if (eb) 4825 return eb; 4826 eb = alloc_dummy_extent_buffer(fs_info, start); 4827 if (!eb) 4828 return NULL; 4829 eb->fs_info = fs_info; 4830 again: 4831 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4832 if (ret) 4833 goto free_eb; 4834 spin_lock(&fs_info->buffer_lock); 4835 ret = radix_tree_insert(&fs_info->buffer_radix, 4836 start >> PAGE_CACHE_SHIFT, eb); 4837 spin_unlock(&fs_info->buffer_lock); 4838 radix_tree_preload_end(); 4839 if (ret == -EEXIST) { 4840 exists = find_extent_buffer(fs_info, start); 4841 if (exists) 4842 goto free_eb; 4843 else 4844 goto again; 4845 } 4846 check_buffer_tree_ref(eb); 4847 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4848 4849 /* 4850 * We will free dummy extent buffer's if they come into 4851 * free_extent_buffer with a ref count of 2, but if we are using this we 4852 * want the buffers to stay in memory until we're done with them, so 4853 * bump the ref count again. 4854 */ 4855 atomic_inc(&eb->refs); 4856 return eb; 4857 free_eb: 4858 btrfs_release_extent_buffer(eb); 4859 return exists; 4860 } 4861 #endif 4862 4863 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4864 u64 start) 4865 { 4866 unsigned long len = fs_info->tree_root->nodesize; 4867 unsigned long num_pages = num_extent_pages(start, len); 4868 unsigned long i; 4869 unsigned long index = start >> PAGE_CACHE_SHIFT; 4870 struct extent_buffer *eb; 4871 struct extent_buffer *exists = NULL; 4872 struct page *p; 4873 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4874 int uptodate = 1; 4875 int ret; 4876 4877 eb = find_extent_buffer(fs_info, start); 4878 if (eb) 4879 return eb; 4880 4881 eb = __alloc_extent_buffer(fs_info, start, len); 4882 if (!eb) 4883 return NULL; 4884 4885 for (i = 0; i < num_pages; i++, index++) { 4886 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4887 if (!p) 4888 goto free_eb; 4889 4890 spin_lock(&mapping->private_lock); 4891 if (PagePrivate(p)) { 4892 /* 4893 * We could have already allocated an eb for this page 4894 * and attached one so lets see if we can get a ref on 4895 * the existing eb, and if we can we know it's good and 4896 * we can just return that one, else we know we can just 4897 * overwrite page->private. 4898 */ 4899 exists = (struct extent_buffer *)p->private; 4900 if (atomic_inc_not_zero(&exists->refs)) { 4901 spin_unlock(&mapping->private_lock); 4902 unlock_page(p); 4903 page_cache_release(p); 4904 mark_extent_buffer_accessed(exists, p); 4905 goto free_eb; 4906 } 4907 exists = NULL; 4908 4909 /* 4910 * Do this so attach doesn't complain and we need to 4911 * drop the ref the old guy had. 4912 */ 4913 ClearPagePrivate(p); 4914 WARN_ON(PageDirty(p)); 4915 page_cache_release(p); 4916 } 4917 attach_extent_buffer_page(eb, p); 4918 spin_unlock(&mapping->private_lock); 4919 WARN_ON(PageDirty(p)); 4920 eb->pages[i] = p; 4921 if (!PageUptodate(p)) 4922 uptodate = 0; 4923 4924 /* 4925 * see below about how we avoid a nasty race with release page 4926 * and why we unlock later 4927 */ 4928 } 4929 if (uptodate) 4930 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4931 again: 4932 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4933 if (ret) 4934 goto free_eb; 4935 4936 spin_lock(&fs_info->buffer_lock); 4937 ret = radix_tree_insert(&fs_info->buffer_radix, 4938 start >> PAGE_CACHE_SHIFT, eb); 4939 spin_unlock(&fs_info->buffer_lock); 4940 radix_tree_preload_end(); 4941 if (ret == -EEXIST) { 4942 exists = find_extent_buffer(fs_info, start); 4943 if (exists) 4944 goto free_eb; 4945 else 4946 goto again; 4947 } 4948 /* add one reference for the tree */ 4949 check_buffer_tree_ref(eb); 4950 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4951 4952 /* 4953 * there is a race where release page may have 4954 * tried to find this extent buffer in the radix 4955 * but failed. It will tell the VM it is safe to 4956 * reclaim the, and it will clear the page private bit. 4957 * We must make sure to set the page private bit properly 4958 * after the extent buffer is in the radix tree so 4959 * it doesn't get lost 4960 */ 4961 SetPageChecked(eb->pages[0]); 4962 for (i = 1; i < num_pages; i++) { 4963 p = eb->pages[i]; 4964 ClearPageChecked(p); 4965 unlock_page(p); 4966 } 4967 unlock_page(eb->pages[0]); 4968 return eb; 4969 4970 free_eb: 4971 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4972 for (i = 0; i < num_pages; i++) { 4973 if (eb->pages[i]) 4974 unlock_page(eb->pages[i]); 4975 } 4976 4977 btrfs_release_extent_buffer(eb); 4978 return exists; 4979 } 4980 4981 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4982 { 4983 struct extent_buffer *eb = 4984 container_of(head, struct extent_buffer, rcu_head); 4985 4986 __free_extent_buffer(eb); 4987 } 4988 4989 /* Expects to have eb->eb_lock already held */ 4990 static int release_extent_buffer(struct extent_buffer *eb) 4991 { 4992 WARN_ON(atomic_read(&eb->refs) == 0); 4993 if (atomic_dec_and_test(&eb->refs)) { 4994 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4995 struct btrfs_fs_info *fs_info = eb->fs_info; 4996 4997 spin_unlock(&eb->refs_lock); 4998 4999 spin_lock(&fs_info->buffer_lock); 5000 radix_tree_delete(&fs_info->buffer_radix, 5001 eb->start >> PAGE_CACHE_SHIFT); 5002 spin_unlock(&fs_info->buffer_lock); 5003 } else { 5004 spin_unlock(&eb->refs_lock); 5005 } 5006 5007 /* Should be safe to release our pages at this point */ 5008 btrfs_release_extent_buffer_page(eb); 5009 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5010 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5011 __free_extent_buffer(eb); 5012 return 1; 5013 } 5014 #endif 5015 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5016 return 1; 5017 } 5018 spin_unlock(&eb->refs_lock); 5019 5020 return 0; 5021 } 5022 5023 void free_extent_buffer(struct extent_buffer *eb) 5024 { 5025 int refs; 5026 int old; 5027 if (!eb) 5028 return; 5029 5030 while (1) { 5031 refs = atomic_read(&eb->refs); 5032 if (refs <= 3) 5033 break; 5034 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5035 if (old == refs) 5036 return; 5037 } 5038 5039 spin_lock(&eb->refs_lock); 5040 if (atomic_read(&eb->refs) == 2 && 5041 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5042 atomic_dec(&eb->refs); 5043 5044 if (atomic_read(&eb->refs) == 2 && 5045 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5046 !extent_buffer_under_io(eb) && 5047 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5048 atomic_dec(&eb->refs); 5049 5050 /* 5051 * I know this is terrible, but it's temporary until we stop tracking 5052 * the uptodate bits and such for the extent buffers. 5053 */ 5054 release_extent_buffer(eb); 5055 } 5056 5057 void free_extent_buffer_stale(struct extent_buffer *eb) 5058 { 5059 if (!eb) 5060 return; 5061 5062 spin_lock(&eb->refs_lock); 5063 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5064 5065 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5066 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5067 atomic_dec(&eb->refs); 5068 release_extent_buffer(eb); 5069 } 5070 5071 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5072 { 5073 unsigned long i; 5074 unsigned long num_pages; 5075 struct page *page; 5076 5077 num_pages = num_extent_pages(eb->start, eb->len); 5078 5079 for (i = 0; i < num_pages; i++) { 5080 page = eb->pages[i]; 5081 if (!PageDirty(page)) 5082 continue; 5083 5084 lock_page(page); 5085 WARN_ON(!PagePrivate(page)); 5086 5087 clear_page_dirty_for_io(page); 5088 spin_lock_irq(&page->mapping->tree_lock); 5089 if (!PageDirty(page)) { 5090 radix_tree_tag_clear(&page->mapping->page_tree, 5091 page_index(page), 5092 PAGECACHE_TAG_DIRTY); 5093 } 5094 spin_unlock_irq(&page->mapping->tree_lock); 5095 ClearPageError(page); 5096 unlock_page(page); 5097 } 5098 WARN_ON(atomic_read(&eb->refs) == 0); 5099 } 5100 5101 int set_extent_buffer_dirty(struct extent_buffer *eb) 5102 { 5103 unsigned long i; 5104 unsigned long num_pages; 5105 int was_dirty = 0; 5106 5107 check_buffer_tree_ref(eb); 5108 5109 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5110 5111 num_pages = num_extent_pages(eb->start, eb->len); 5112 WARN_ON(atomic_read(&eb->refs) == 0); 5113 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5114 5115 for (i = 0; i < num_pages; i++) 5116 set_page_dirty(eb->pages[i]); 5117 return was_dirty; 5118 } 5119 5120 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5121 { 5122 unsigned long i; 5123 struct page *page; 5124 unsigned long num_pages; 5125 5126 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5127 num_pages = num_extent_pages(eb->start, eb->len); 5128 for (i = 0; i < num_pages; i++) { 5129 page = eb->pages[i]; 5130 if (page) 5131 ClearPageUptodate(page); 5132 } 5133 } 5134 5135 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5136 { 5137 unsigned long i; 5138 struct page *page; 5139 unsigned long num_pages; 5140 5141 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5142 num_pages = num_extent_pages(eb->start, eb->len); 5143 for (i = 0; i < num_pages; i++) { 5144 page = eb->pages[i]; 5145 SetPageUptodate(page); 5146 } 5147 } 5148 5149 int extent_buffer_uptodate(struct extent_buffer *eb) 5150 { 5151 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5152 } 5153 5154 int read_extent_buffer_pages(struct extent_io_tree *tree, 5155 struct extent_buffer *eb, u64 start, int wait, 5156 get_extent_t *get_extent, int mirror_num) 5157 { 5158 unsigned long i; 5159 unsigned long start_i; 5160 struct page *page; 5161 int err; 5162 int ret = 0; 5163 int locked_pages = 0; 5164 int all_uptodate = 1; 5165 unsigned long num_pages; 5166 unsigned long num_reads = 0; 5167 struct bio *bio = NULL; 5168 unsigned long bio_flags = 0; 5169 5170 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5171 return 0; 5172 5173 if (start) { 5174 WARN_ON(start < eb->start); 5175 start_i = (start >> PAGE_CACHE_SHIFT) - 5176 (eb->start >> PAGE_CACHE_SHIFT); 5177 } else { 5178 start_i = 0; 5179 } 5180 5181 num_pages = num_extent_pages(eb->start, eb->len); 5182 for (i = start_i; i < num_pages; i++) { 5183 page = eb->pages[i]; 5184 if (wait == WAIT_NONE) { 5185 if (!trylock_page(page)) 5186 goto unlock_exit; 5187 } else { 5188 lock_page(page); 5189 } 5190 locked_pages++; 5191 if (!PageUptodate(page)) { 5192 num_reads++; 5193 all_uptodate = 0; 5194 } 5195 } 5196 if (all_uptodate) { 5197 if (start_i == 0) 5198 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5199 goto unlock_exit; 5200 } 5201 5202 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5203 eb->read_mirror = 0; 5204 atomic_set(&eb->io_pages, num_reads); 5205 for (i = start_i; i < num_pages; i++) { 5206 page = eb->pages[i]; 5207 if (!PageUptodate(page)) { 5208 ClearPageError(page); 5209 err = __extent_read_full_page(tree, page, 5210 get_extent, &bio, 5211 mirror_num, &bio_flags, 5212 READ | REQ_META); 5213 if (err) 5214 ret = err; 5215 } else { 5216 unlock_page(page); 5217 } 5218 } 5219 5220 if (bio) { 5221 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5222 bio_flags); 5223 if (err) 5224 return err; 5225 } 5226 5227 if (ret || wait != WAIT_COMPLETE) 5228 return ret; 5229 5230 for (i = start_i; i < num_pages; i++) { 5231 page = eb->pages[i]; 5232 wait_on_page_locked(page); 5233 if (!PageUptodate(page)) 5234 ret = -EIO; 5235 } 5236 5237 return ret; 5238 5239 unlock_exit: 5240 i = start_i; 5241 while (locked_pages > 0) { 5242 page = eb->pages[i]; 5243 i++; 5244 unlock_page(page); 5245 locked_pages--; 5246 } 5247 return ret; 5248 } 5249 5250 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5251 unsigned long start, 5252 unsigned long len) 5253 { 5254 size_t cur; 5255 size_t offset; 5256 struct page *page; 5257 char *kaddr; 5258 char *dst = (char *)dstv; 5259 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5260 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5261 5262 WARN_ON(start > eb->len); 5263 WARN_ON(start + len > eb->start + eb->len); 5264 5265 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5266 5267 while (len > 0) { 5268 page = eb->pages[i]; 5269 5270 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5271 kaddr = page_address(page); 5272 memcpy(dst, kaddr + offset, cur); 5273 5274 dst += cur; 5275 len -= cur; 5276 offset = 0; 5277 i++; 5278 } 5279 } 5280 5281 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5282 unsigned long start, 5283 unsigned long len) 5284 { 5285 size_t cur; 5286 size_t offset; 5287 struct page *page; 5288 char *kaddr; 5289 char __user *dst = (char __user *)dstv; 5290 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5291 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5292 int ret = 0; 5293 5294 WARN_ON(start > eb->len); 5295 WARN_ON(start + len > eb->start + eb->len); 5296 5297 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5298 5299 while (len > 0) { 5300 page = eb->pages[i]; 5301 5302 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5303 kaddr = page_address(page); 5304 if (copy_to_user(dst, kaddr + offset, cur)) { 5305 ret = -EFAULT; 5306 break; 5307 } 5308 5309 dst += cur; 5310 len -= cur; 5311 offset = 0; 5312 i++; 5313 } 5314 5315 return ret; 5316 } 5317 5318 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5319 unsigned long min_len, char **map, 5320 unsigned long *map_start, 5321 unsigned long *map_len) 5322 { 5323 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5324 char *kaddr; 5325 struct page *p; 5326 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5327 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5328 unsigned long end_i = (start_offset + start + min_len - 1) >> 5329 PAGE_CACHE_SHIFT; 5330 5331 if (i != end_i) 5332 return -EINVAL; 5333 5334 if (i == 0) { 5335 offset = start_offset; 5336 *map_start = 0; 5337 } else { 5338 offset = 0; 5339 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5340 } 5341 5342 if (start + min_len > eb->len) { 5343 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5344 "wanted %lu %lu\n", 5345 eb->start, eb->len, start, min_len); 5346 return -EINVAL; 5347 } 5348 5349 p = eb->pages[i]; 5350 kaddr = page_address(p); 5351 *map = kaddr + offset; 5352 *map_len = PAGE_CACHE_SIZE - offset; 5353 return 0; 5354 } 5355 5356 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5357 unsigned long start, 5358 unsigned long len) 5359 { 5360 size_t cur; 5361 size_t offset; 5362 struct page *page; 5363 char *kaddr; 5364 char *ptr = (char *)ptrv; 5365 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5366 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5367 int ret = 0; 5368 5369 WARN_ON(start > eb->len); 5370 WARN_ON(start + len > eb->start + eb->len); 5371 5372 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5373 5374 while (len > 0) { 5375 page = eb->pages[i]; 5376 5377 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5378 5379 kaddr = page_address(page); 5380 ret = memcmp(ptr, kaddr + offset, cur); 5381 if (ret) 5382 break; 5383 5384 ptr += cur; 5385 len -= cur; 5386 offset = 0; 5387 i++; 5388 } 5389 return ret; 5390 } 5391 5392 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5393 unsigned long start, unsigned long len) 5394 { 5395 size_t cur; 5396 size_t offset; 5397 struct page *page; 5398 char *kaddr; 5399 char *src = (char *)srcv; 5400 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5401 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5402 5403 WARN_ON(start > eb->len); 5404 WARN_ON(start + len > eb->start + eb->len); 5405 5406 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5407 5408 while (len > 0) { 5409 page = eb->pages[i]; 5410 WARN_ON(!PageUptodate(page)); 5411 5412 cur = min(len, PAGE_CACHE_SIZE - offset); 5413 kaddr = page_address(page); 5414 memcpy(kaddr + offset, src, cur); 5415 5416 src += cur; 5417 len -= cur; 5418 offset = 0; 5419 i++; 5420 } 5421 } 5422 5423 void memset_extent_buffer(struct extent_buffer *eb, char c, 5424 unsigned long start, unsigned long len) 5425 { 5426 size_t cur; 5427 size_t offset; 5428 struct page *page; 5429 char *kaddr; 5430 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5431 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5432 5433 WARN_ON(start > eb->len); 5434 WARN_ON(start + len > eb->start + eb->len); 5435 5436 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5437 5438 while (len > 0) { 5439 page = eb->pages[i]; 5440 WARN_ON(!PageUptodate(page)); 5441 5442 cur = min(len, PAGE_CACHE_SIZE - offset); 5443 kaddr = page_address(page); 5444 memset(kaddr + offset, c, cur); 5445 5446 len -= cur; 5447 offset = 0; 5448 i++; 5449 } 5450 } 5451 5452 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5453 unsigned long dst_offset, unsigned long src_offset, 5454 unsigned long len) 5455 { 5456 u64 dst_len = dst->len; 5457 size_t cur; 5458 size_t offset; 5459 struct page *page; 5460 char *kaddr; 5461 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5462 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5463 5464 WARN_ON(src->len != dst_len); 5465 5466 offset = (start_offset + dst_offset) & 5467 (PAGE_CACHE_SIZE - 1); 5468 5469 while (len > 0) { 5470 page = dst->pages[i]; 5471 WARN_ON(!PageUptodate(page)); 5472 5473 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5474 5475 kaddr = page_address(page); 5476 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5477 5478 src_offset += cur; 5479 len -= cur; 5480 offset = 0; 5481 i++; 5482 } 5483 } 5484 5485 /* 5486 * The extent buffer bitmap operations are done with byte granularity because 5487 * bitmap items are not guaranteed to be aligned to a word and therefore a 5488 * single word in a bitmap may straddle two pages in the extent buffer. 5489 */ 5490 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE) 5491 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1) 5492 #define BITMAP_FIRST_BYTE_MASK(start) \ 5493 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK) 5494 #define BITMAP_LAST_BYTE_MASK(nbits) \ 5495 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1))) 5496 5497 /* 5498 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5499 * given bit number 5500 * @eb: the extent buffer 5501 * @start: offset of the bitmap item in the extent buffer 5502 * @nr: bit number 5503 * @page_index: return index of the page in the extent buffer that contains the 5504 * given bit number 5505 * @page_offset: return offset into the page given by page_index 5506 * 5507 * This helper hides the ugliness of finding the byte in an extent buffer which 5508 * contains a given bit. 5509 */ 5510 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5511 unsigned long start, unsigned long nr, 5512 unsigned long *page_index, 5513 size_t *page_offset) 5514 { 5515 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5516 size_t byte_offset = BIT_BYTE(nr); 5517 size_t offset; 5518 5519 /* 5520 * The byte we want is the offset of the extent buffer + the offset of 5521 * the bitmap item in the extent buffer + the offset of the byte in the 5522 * bitmap item. 5523 */ 5524 offset = start_offset + start + byte_offset; 5525 5526 *page_index = offset >> PAGE_CACHE_SHIFT; 5527 *page_offset = offset & (PAGE_CACHE_SIZE - 1); 5528 } 5529 5530 /** 5531 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5532 * @eb: the extent buffer 5533 * @start: offset of the bitmap item in the extent buffer 5534 * @nr: bit number to test 5535 */ 5536 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5537 unsigned long nr) 5538 { 5539 char *kaddr; 5540 struct page *page; 5541 unsigned long i; 5542 size_t offset; 5543 5544 eb_bitmap_offset(eb, start, nr, &i, &offset); 5545 page = eb->pages[i]; 5546 WARN_ON(!PageUptodate(page)); 5547 kaddr = page_address(page); 5548 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5549 } 5550 5551 /** 5552 * extent_buffer_bitmap_set - set an area of a bitmap 5553 * @eb: the extent buffer 5554 * @start: offset of the bitmap item in the extent buffer 5555 * @pos: bit number of the first bit 5556 * @len: number of bits to set 5557 */ 5558 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5559 unsigned long pos, unsigned long len) 5560 { 5561 char *kaddr; 5562 struct page *page; 5563 unsigned long i; 5564 size_t offset; 5565 const unsigned int size = pos + len; 5566 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5567 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5568 5569 eb_bitmap_offset(eb, start, pos, &i, &offset); 5570 page = eb->pages[i]; 5571 WARN_ON(!PageUptodate(page)); 5572 kaddr = page_address(page); 5573 5574 while (len >= bits_to_set) { 5575 kaddr[offset] |= mask_to_set; 5576 len -= bits_to_set; 5577 bits_to_set = BITS_PER_BYTE; 5578 mask_to_set = ~0U; 5579 if (++offset >= PAGE_CACHE_SIZE && len > 0) { 5580 offset = 0; 5581 page = eb->pages[++i]; 5582 WARN_ON(!PageUptodate(page)); 5583 kaddr = page_address(page); 5584 } 5585 } 5586 if (len) { 5587 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5588 kaddr[offset] |= mask_to_set; 5589 } 5590 } 5591 5592 5593 /** 5594 * extent_buffer_bitmap_clear - clear an area of a bitmap 5595 * @eb: the extent buffer 5596 * @start: offset of the bitmap item in the extent buffer 5597 * @pos: bit number of the first bit 5598 * @len: number of bits to clear 5599 */ 5600 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5601 unsigned long pos, unsigned long len) 5602 { 5603 char *kaddr; 5604 struct page *page; 5605 unsigned long i; 5606 size_t offset; 5607 const unsigned int size = pos + len; 5608 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5609 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5610 5611 eb_bitmap_offset(eb, start, pos, &i, &offset); 5612 page = eb->pages[i]; 5613 WARN_ON(!PageUptodate(page)); 5614 kaddr = page_address(page); 5615 5616 while (len >= bits_to_clear) { 5617 kaddr[offset] &= ~mask_to_clear; 5618 len -= bits_to_clear; 5619 bits_to_clear = BITS_PER_BYTE; 5620 mask_to_clear = ~0U; 5621 if (++offset >= PAGE_CACHE_SIZE && len > 0) { 5622 offset = 0; 5623 page = eb->pages[++i]; 5624 WARN_ON(!PageUptodate(page)); 5625 kaddr = page_address(page); 5626 } 5627 } 5628 if (len) { 5629 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5630 kaddr[offset] &= ~mask_to_clear; 5631 } 5632 } 5633 5634 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5635 { 5636 unsigned long distance = (src > dst) ? src - dst : dst - src; 5637 return distance < len; 5638 } 5639 5640 static void copy_pages(struct page *dst_page, struct page *src_page, 5641 unsigned long dst_off, unsigned long src_off, 5642 unsigned long len) 5643 { 5644 char *dst_kaddr = page_address(dst_page); 5645 char *src_kaddr; 5646 int must_memmove = 0; 5647 5648 if (dst_page != src_page) { 5649 src_kaddr = page_address(src_page); 5650 } else { 5651 src_kaddr = dst_kaddr; 5652 if (areas_overlap(src_off, dst_off, len)) 5653 must_memmove = 1; 5654 } 5655 5656 if (must_memmove) 5657 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5658 else 5659 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5660 } 5661 5662 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5663 unsigned long src_offset, unsigned long len) 5664 { 5665 size_t cur; 5666 size_t dst_off_in_page; 5667 size_t src_off_in_page; 5668 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5669 unsigned long dst_i; 5670 unsigned long src_i; 5671 5672 if (src_offset + len > dst->len) { 5673 btrfs_err(dst->fs_info, 5674 "memmove bogus src_offset %lu move " 5675 "len %lu dst len %lu", src_offset, len, dst->len); 5676 BUG_ON(1); 5677 } 5678 if (dst_offset + len > dst->len) { 5679 btrfs_err(dst->fs_info, 5680 "memmove bogus dst_offset %lu move " 5681 "len %lu dst len %lu", dst_offset, len, dst->len); 5682 BUG_ON(1); 5683 } 5684 5685 while (len > 0) { 5686 dst_off_in_page = (start_offset + dst_offset) & 5687 (PAGE_CACHE_SIZE - 1); 5688 src_off_in_page = (start_offset + src_offset) & 5689 (PAGE_CACHE_SIZE - 1); 5690 5691 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5692 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5693 5694 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5695 src_off_in_page)); 5696 cur = min_t(unsigned long, cur, 5697 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5698 5699 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5700 dst_off_in_page, src_off_in_page, cur); 5701 5702 src_offset += cur; 5703 dst_offset += cur; 5704 len -= cur; 5705 } 5706 } 5707 5708 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5709 unsigned long src_offset, unsigned long len) 5710 { 5711 size_t cur; 5712 size_t dst_off_in_page; 5713 size_t src_off_in_page; 5714 unsigned long dst_end = dst_offset + len - 1; 5715 unsigned long src_end = src_offset + len - 1; 5716 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5717 unsigned long dst_i; 5718 unsigned long src_i; 5719 5720 if (src_offset + len > dst->len) { 5721 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5722 "len %lu len %lu", src_offset, len, dst->len); 5723 BUG_ON(1); 5724 } 5725 if (dst_offset + len > dst->len) { 5726 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5727 "len %lu len %lu", dst_offset, len, dst->len); 5728 BUG_ON(1); 5729 } 5730 if (dst_offset < src_offset) { 5731 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5732 return; 5733 } 5734 while (len > 0) { 5735 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5736 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5737 5738 dst_off_in_page = (start_offset + dst_end) & 5739 (PAGE_CACHE_SIZE - 1); 5740 src_off_in_page = (start_offset + src_end) & 5741 (PAGE_CACHE_SIZE - 1); 5742 5743 cur = min_t(unsigned long, len, src_off_in_page + 1); 5744 cur = min(cur, dst_off_in_page + 1); 5745 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5746 dst_off_in_page - cur + 1, 5747 src_off_in_page - cur + 1, cur); 5748 5749 dst_end -= cur; 5750 src_end -= cur; 5751 len -= cur; 5752 } 5753 } 5754 5755 int try_release_extent_buffer(struct page *page) 5756 { 5757 struct extent_buffer *eb; 5758 5759 /* 5760 * We need to make sure noboody is attaching this page to an eb right 5761 * now. 5762 */ 5763 spin_lock(&page->mapping->private_lock); 5764 if (!PagePrivate(page)) { 5765 spin_unlock(&page->mapping->private_lock); 5766 return 1; 5767 } 5768 5769 eb = (struct extent_buffer *)page->private; 5770 BUG_ON(!eb); 5771 5772 /* 5773 * This is a little awful but should be ok, we need to make sure that 5774 * the eb doesn't disappear out from under us while we're looking at 5775 * this page. 5776 */ 5777 spin_lock(&eb->refs_lock); 5778 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5779 spin_unlock(&eb->refs_lock); 5780 spin_unlock(&page->mapping->private_lock); 5781 return 0; 5782 } 5783 spin_unlock(&page->mapping->private_lock); 5784 5785 /* 5786 * If tree ref isn't set then we know the ref on this eb is a real ref, 5787 * so just return, this page will likely be freed soon anyway. 5788 */ 5789 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5790 spin_unlock(&eb->refs_lock); 5791 return 0; 5792 } 5793 5794 return release_extent_buffer(eb); 5795 } 5796