xref: /linux/fs/btrfs/extent_io.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	struct inode *inode = tree->private_data;
93 	u64 isize;
94 
95 	if (!inode || !is_data_inode(inode))
96 		return;
97 
98 	isize = i_size_read(inode);
99 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 	}
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head)	do {} while (0)
107 #define btrfs_leak_debug_del(entry)	do {} while (0)
108 #define btrfs_leak_debug_check()	do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
110 #endif
111 
112 struct tree_entry {
113 	u64 start;
114 	u64 end;
115 	struct rb_node rb_node;
116 };
117 
118 struct extent_page_data {
119 	struct bio *bio;
120 	struct extent_io_tree *tree;
121 	/* tells writepage not to lock the state bits for this range
122 	 * it still does the unlocking
123 	 */
124 	unsigned int extent_locked:1;
125 
126 	/* tells the submit_bio code to use REQ_SYNC */
127 	unsigned int sync_io:1;
128 };
129 
130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 				 struct extent_changeset *changeset,
132 				 int set)
133 {
134 	int ret;
135 
136 	if (!changeset)
137 		return 0;
138 	if (set && (state->state & bits) == bits)
139 		return 0;
140 	if (!set && (state->state & bits) == 0)
141 		return 0;
142 	changeset->bytes_changed += state->end - state->start + 1;
143 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 			GFP_ATOMIC);
145 	return ret;
146 }
147 
148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 				       unsigned long bio_flags)
150 {
151 	blk_status_t ret = 0;
152 	struct extent_io_tree *tree = bio->bi_private;
153 
154 	bio->bi_private = NULL;
155 
156 	if (tree->ops)
157 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 						 mirror_num, bio_flags);
159 	else
160 		btrfsic_submit_bio(bio);
161 
162 	return blk_status_to_errno(ret);
163 }
164 
165 /* Cleanup unsubmitted bios */
166 static void end_write_bio(struct extent_page_data *epd, int ret)
167 {
168 	if (epd->bio) {
169 		epd->bio->bi_status = errno_to_blk_status(ret);
170 		bio_endio(epd->bio);
171 		epd->bio = NULL;
172 	}
173 }
174 
175 /*
176  * Submit bio from extent page data via submit_one_bio
177  *
178  * Return 0 if everything is OK.
179  * Return <0 for error.
180  */
181 static int __must_check flush_write_bio(struct extent_page_data *epd)
182 {
183 	int ret = 0;
184 
185 	if (epd->bio) {
186 		ret = submit_one_bio(epd->bio, 0, 0);
187 		/*
188 		 * Clean up of epd->bio is handled by its endio function.
189 		 * And endio is either triggered by successful bio execution
190 		 * or the error handler of submit bio hook.
191 		 * So at this point, no matter what happened, we don't need
192 		 * to clean up epd->bio.
193 		 */
194 		epd->bio = NULL;
195 	}
196 	return ret;
197 }
198 
199 int __init extent_io_init(void)
200 {
201 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 			sizeof(struct extent_state), 0,
203 			SLAB_MEM_SPREAD, NULL);
204 	if (!extent_state_cache)
205 		return -ENOMEM;
206 
207 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 			sizeof(struct extent_buffer), 0,
209 			SLAB_MEM_SPREAD, NULL);
210 	if (!extent_buffer_cache)
211 		goto free_state_cache;
212 
213 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 			offsetof(struct btrfs_io_bio, bio),
215 			BIOSET_NEED_BVECS))
216 		goto free_buffer_cache;
217 
218 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 		goto free_bioset;
220 
221 	return 0;
222 
223 free_bioset:
224 	bioset_exit(&btrfs_bioset);
225 
226 free_buffer_cache:
227 	kmem_cache_destroy(extent_buffer_cache);
228 	extent_buffer_cache = NULL;
229 
230 free_state_cache:
231 	kmem_cache_destroy(extent_state_cache);
232 	extent_state_cache = NULL;
233 	return -ENOMEM;
234 }
235 
236 void __cold extent_io_exit(void)
237 {
238 	btrfs_leak_debug_check();
239 
240 	/*
241 	 * Make sure all delayed rcu free are flushed before we
242 	 * destroy caches.
243 	 */
244 	rcu_barrier();
245 	kmem_cache_destroy(extent_state_cache);
246 	kmem_cache_destroy(extent_buffer_cache);
247 	bioset_exit(&btrfs_bioset);
248 }
249 
250 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 			 struct extent_io_tree *tree, unsigned int owner,
252 			 void *private_data)
253 {
254 	tree->fs_info = fs_info;
255 	tree->state = RB_ROOT;
256 	tree->ops = NULL;
257 	tree->dirty_bytes = 0;
258 	spin_lock_init(&tree->lock);
259 	tree->private_data = private_data;
260 	tree->owner = owner;
261 }
262 
263 void extent_io_tree_release(struct extent_io_tree *tree)
264 {
265 	spin_lock(&tree->lock);
266 	/*
267 	 * Do a single barrier for the waitqueue_active check here, the state
268 	 * of the waitqueue should not change once extent_io_tree_release is
269 	 * called.
270 	 */
271 	smp_mb();
272 	while (!RB_EMPTY_ROOT(&tree->state)) {
273 		struct rb_node *node;
274 		struct extent_state *state;
275 
276 		node = rb_first(&tree->state);
277 		state = rb_entry(node, struct extent_state, rb_node);
278 		rb_erase(&state->rb_node, &tree->state);
279 		RB_CLEAR_NODE(&state->rb_node);
280 		/*
281 		 * btree io trees aren't supposed to have tasks waiting for
282 		 * changes in the flags of extent states ever.
283 		 */
284 		ASSERT(!waitqueue_active(&state->wq));
285 		free_extent_state(state);
286 
287 		cond_resched_lock(&tree->lock);
288 	}
289 	spin_unlock(&tree->lock);
290 }
291 
292 static struct extent_state *alloc_extent_state(gfp_t mask)
293 {
294 	struct extent_state *state;
295 
296 	/*
297 	 * The given mask might be not appropriate for the slab allocator,
298 	 * drop the unsupported bits
299 	 */
300 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 	state = kmem_cache_alloc(extent_state_cache, mask);
302 	if (!state)
303 		return state;
304 	state->state = 0;
305 	state->failrec = NULL;
306 	RB_CLEAR_NODE(&state->rb_node);
307 	btrfs_leak_debug_add(&state->leak_list, &states);
308 	refcount_set(&state->refs, 1);
309 	init_waitqueue_head(&state->wq);
310 	trace_alloc_extent_state(state, mask, _RET_IP_);
311 	return state;
312 }
313 
314 void free_extent_state(struct extent_state *state)
315 {
316 	if (!state)
317 		return;
318 	if (refcount_dec_and_test(&state->refs)) {
319 		WARN_ON(extent_state_in_tree(state));
320 		btrfs_leak_debug_del(&state->leak_list);
321 		trace_free_extent_state(state, _RET_IP_);
322 		kmem_cache_free(extent_state_cache, state);
323 	}
324 }
325 
326 static struct rb_node *tree_insert(struct rb_root *root,
327 				   struct rb_node *search_start,
328 				   u64 offset,
329 				   struct rb_node *node,
330 				   struct rb_node ***p_in,
331 				   struct rb_node **parent_in)
332 {
333 	struct rb_node **p;
334 	struct rb_node *parent = NULL;
335 	struct tree_entry *entry;
336 
337 	if (p_in && parent_in) {
338 		p = *p_in;
339 		parent = *parent_in;
340 		goto do_insert;
341 	}
342 
343 	p = search_start ? &search_start : &root->rb_node;
344 	while (*p) {
345 		parent = *p;
346 		entry = rb_entry(parent, struct tree_entry, rb_node);
347 
348 		if (offset < entry->start)
349 			p = &(*p)->rb_left;
350 		else if (offset > entry->end)
351 			p = &(*p)->rb_right;
352 		else
353 			return parent;
354 	}
355 
356 do_insert:
357 	rb_link_node(node, parent, p);
358 	rb_insert_color(node, root);
359 	return NULL;
360 }
361 
362 /**
363  * __etree_search - searche @tree for an entry that contains @offset. Such
364  * entry would have entry->start <= offset && entry->end >= offset.
365  *
366  * @tree - the tree to search
367  * @offset - offset that should fall within an entry in @tree
368  * @next_ret - pointer to the first entry whose range ends after @offset
369  * @prev - pointer to the first entry whose range begins before @offset
370  * @p_ret - pointer where new node should be anchored (used when inserting an
371  *	    entry in the tree)
372  * @parent_ret - points to entry which would have been the parent of the entry,
373  *               containing @offset
374  *
375  * This function returns a pointer to the entry that contains @offset byte
376  * address. If no such entry exists, then NULL is returned and the other
377  * pointer arguments to the function are filled, otherwise the found entry is
378  * returned and other pointers are left untouched.
379  */
380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381 				      struct rb_node **next_ret,
382 				      struct rb_node **prev_ret,
383 				      struct rb_node ***p_ret,
384 				      struct rb_node **parent_ret)
385 {
386 	struct rb_root *root = &tree->state;
387 	struct rb_node **n = &root->rb_node;
388 	struct rb_node *prev = NULL;
389 	struct rb_node *orig_prev = NULL;
390 	struct tree_entry *entry;
391 	struct tree_entry *prev_entry = NULL;
392 
393 	while (*n) {
394 		prev = *n;
395 		entry = rb_entry(prev, struct tree_entry, rb_node);
396 		prev_entry = entry;
397 
398 		if (offset < entry->start)
399 			n = &(*n)->rb_left;
400 		else if (offset > entry->end)
401 			n = &(*n)->rb_right;
402 		else
403 			return *n;
404 	}
405 
406 	if (p_ret)
407 		*p_ret = n;
408 	if (parent_ret)
409 		*parent_ret = prev;
410 
411 	if (next_ret) {
412 		orig_prev = prev;
413 		while (prev && offset > prev_entry->end) {
414 			prev = rb_next(prev);
415 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 		}
417 		*next_ret = prev;
418 		prev = orig_prev;
419 	}
420 
421 	if (prev_ret) {
422 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423 		while (prev && offset < prev_entry->start) {
424 			prev = rb_prev(prev);
425 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 		}
427 		*prev_ret = prev;
428 	}
429 	return NULL;
430 }
431 
432 static inline struct rb_node *
433 tree_search_for_insert(struct extent_io_tree *tree,
434 		       u64 offset,
435 		       struct rb_node ***p_ret,
436 		       struct rb_node **parent_ret)
437 {
438 	struct rb_node *next= NULL;
439 	struct rb_node *ret;
440 
441 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442 	if (!ret)
443 		return next;
444 	return ret;
445 }
446 
447 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 					  u64 offset)
449 {
450 	return tree_search_for_insert(tree, offset, NULL, NULL);
451 }
452 
453 /*
454  * utility function to look for merge candidates inside a given range.
455  * Any extents with matching state are merged together into a single
456  * extent in the tree.  Extents with EXTENT_IO in their state field
457  * are not merged because the end_io handlers need to be able to do
458  * operations on them without sleeping (or doing allocations/splits).
459  *
460  * This should be called with the tree lock held.
461  */
462 static void merge_state(struct extent_io_tree *tree,
463 		        struct extent_state *state)
464 {
465 	struct extent_state *other;
466 	struct rb_node *other_node;
467 
468 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469 		return;
470 
471 	other_node = rb_prev(&state->rb_node);
472 	if (other_node) {
473 		other = rb_entry(other_node, struct extent_state, rb_node);
474 		if (other->end == state->start - 1 &&
475 		    other->state == state->state) {
476 			if (tree->private_data &&
477 			    is_data_inode(tree->private_data))
478 				btrfs_merge_delalloc_extent(tree->private_data,
479 							    state, other);
480 			state->start = other->start;
481 			rb_erase(&other->rb_node, &tree->state);
482 			RB_CLEAR_NODE(&other->rb_node);
483 			free_extent_state(other);
484 		}
485 	}
486 	other_node = rb_next(&state->rb_node);
487 	if (other_node) {
488 		other = rb_entry(other_node, struct extent_state, rb_node);
489 		if (other->start == state->end + 1 &&
490 		    other->state == state->state) {
491 			if (tree->private_data &&
492 			    is_data_inode(tree->private_data))
493 				btrfs_merge_delalloc_extent(tree->private_data,
494 							    state, other);
495 			state->end = other->end;
496 			rb_erase(&other->rb_node, &tree->state);
497 			RB_CLEAR_NODE(&other->rb_node);
498 			free_extent_state(other);
499 		}
500 	}
501 }
502 
503 static void set_state_bits(struct extent_io_tree *tree,
504 			   struct extent_state *state, unsigned *bits,
505 			   struct extent_changeset *changeset);
506 
507 /*
508  * insert an extent_state struct into the tree.  'bits' are set on the
509  * struct before it is inserted.
510  *
511  * This may return -EEXIST if the extent is already there, in which case the
512  * state struct is freed.
513  *
514  * The tree lock is not taken internally.  This is a utility function and
515  * probably isn't what you want to call (see set/clear_extent_bit).
516  */
517 static int insert_state(struct extent_io_tree *tree,
518 			struct extent_state *state, u64 start, u64 end,
519 			struct rb_node ***p,
520 			struct rb_node **parent,
521 			unsigned *bits, struct extent_changeset *changeset)
522 {
523 	struct rb_node *node;
524 
525 	if (end < start) {
526 		btrfs_err(tree->fs_info,
527 			"insert state: end < start %llu %llu", end, start);
528 		WARN_ON(1);
529 	}
530 	state->start = start;
531 	state->end = end;
532 
533 	set_state_bits(tree, state, bits, changeset);
534 
535 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536 	if (node) {
537 		struct extent_state *found;
538 		found = rb_entry(node, struct extent_state, rb_node);
539 		btrfs_err(tree->fs_info,
540 		       "found node %llu %llu on insert of %llu %llu",
541 		       found->start, found->end, start, end);
542 		return -EEXIST;
543 	}
544 	merge_state(tree, state);
545 	return 0;
546 }
547 
548 /*
549  * split a given extent state struct in two, inserting the preallocated
550  * struct 'prealloc' as the newly created second half.  'split' indicates an
551  * offset inside 'orig' where it should be split.
552  *
553  * Before calling,
554  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
555  * are two extent state structs in the tree:
556  * prealloc: [orig->start, split - 1]
557  * orig: [ split, orig->end ]
558  *
559  * The tree locks are not taken by this function. They need to be held
560  * by the caller.
561  */
562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 		       struct extent_state *prealloc, u64 split)
564 {
565 	struct rb_node *node;
566 
567 	if (tree->private_data && is_data_inode(tree->private_data))
568 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
569 
570 	prealloc->start = orig->start;
571 	prealloc->end = split - 1;
572 	prealloc->state = orig->state;
573 	orig->start = split;
574 
575 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 			   &prealloc->rb_node, NULL, NULL);
577 	if (node) {
578 		free_extent_state(prealloc);
579 		return -EEXIST;
580 	}
581 	return 0;
582 }
583 
584 static struct extent_state *next_state(struct extent_state *state)
585 {
586 	struct rb_node *next = rb_next(&state->rb_node);
587 	if (next)
588 		return rb_entry(next, struct extent_state, rb_node);
589 	else
590 		return NULL;
591 }
592 
593 /*
594  * utility function to clear some bits in an extent state struct.
595  * it will optionally wake up anyone waiting on this state (wake == 1).
596  *
597  * If no bits are set on the state struct after clearing things, the
598  * struct is freed and removed from the tree
599  */
600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 					    struct extent_state *state,
602 					    unsigned *bits, int wake,
603 					    struct extent_changeset *changeset)
604 {
605 	struct extent_state *next;
606 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607 	int ret;
608 
609 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610 		u64 range = state->end - state->start + 1;
611 		WARN_ON(range > tree->dirty_bytes);
612 		tree->dirty_bytes -= range;
613 	}
614 
615 	if (tree->private_data && is_data_inode(tree->private_data))
616 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617 
618 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 	BUG_ON(ret < 0);
620 	state->state &= ~bits_to_clear;
621 	if (wake)
622 		wake_up(&state->wq);
623 	if (state->state == 0) {
624 		next = next_state(state);
625 		if (extent_state_in_tree(state)) {
626 			rb_erase(&state->rb_node, &tree->state);
627 			RB_CLEAR_NODE(&state->rb_node);
628 			free_extent_state(state);
629 		} else {
630 			WARN_ON(1);
631 		}
632 	} else {
633 		merge_state(tree, state);
634 		next = next_state(state);
635 	}
636 	return next;
637 }
638 
639 static struct extent_state *
640 alloc_extent_state_atomic(struct extent_state *prealloc)
641 {
642 	if (!prealloc)
643 		prealloc = alloc_extent_state(GFP_ATOMIC);
644 
645 	return prealloc;
646 }
647 
648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649 {
650 	struct inode *inode = tree->private_data;
651 
652 	btrfs_panic(btrfs_sb(inode->i_sb), err,
653 	"locking error: extent tree was modified by another thread while locked");
654 }
655 
656 /*
657  * clear some bits on a range in the tree.  This may require splitting
658  * or inserting elements in the tree, so the gfp mask is used to
659  * indicate which allocations or sleeping are allowed.
660  *
661  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662  * the given range from the tree regardless of state (ie for truncate).
663  *
664  * the range [start, end] is inclusive.
665  *
666  * This takes the tree lock, and returns 0 on success and < 0 on error.
667  */
668 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
669 			      unsigned bits, int wake, int delete,
670 			      struct extent_state **cached_state,
671 			      gfp_t mask, struct extent_changeset *changeset)
672 {
673 	struct extent_state *state;
674 	struct extent_state *cached;
675 	struct extent_state *prealloc = NULL;
676 	struct rb_node *node;
677 	u64 last_end;
678 	int err;
679 	int clear = 0;
680 
681 	btrfs_debug_check_extent_io_range(tree, start, end);
682 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
683 
684 	if (bits & EXTENT_DELALLOC)
685 		bits |= EXTENT_NORESERVE;
686 
687 	if (delete)
688 		bits |= ~EXTENT_CTLBITS;
689 
690 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
691 		clear = 1;
692 again:
693 	if (!prealloc && gfpflags_allow_blocking(mask)) {
694 		/*
695 		 * Don't care for allocation failure here because we might end
696 		 * up not needing the pre-allocated extent state at all, which
697 		 * is the case if we only have in the tree extent states that
698 		 * cover our input range and don't cover too any other range.
699 		 * If we end up needing a new extent state we allocate it later.
700 		 */
701 		prealloc = alloc_extent_state(mask);
702 	}
703 
704 	spin_lock(&tree->lock);
705 	if (cached_state) {
706 		cached = *cached_state;
707 
708 		if (clear) {
709 			*cached_state = NULL;
710 			cached_state = NULL;
711 		}
712 
713 		if (cached && extent_state_in_tree(cached) &&
714 		    cached->start <= start && cached->end > start) {
715 			if (clear)
716 				refcount_dec(&cached->refs);
717 			state = cached;
718 			goto hit_next;
719 		}
720 		if (clear)
721 			free_extent_state(cached);
722 	}
723 	/*
724 	 * this search will find the extents that end after
725 	 * our range starts
726 	 */
727 	node = tree_search(tree, start);
728 	if (!node)
729 		goto out;
730 	state = rb_entry(node, struct extent_state, rb_node);
731 hit_next:
732 	if (state->start > end)
733 		goto out;
734 	WARN_ON(state->end < start);
735 	last_end = state->end;
736 
737 	/* the state doesn't have the wanted bits, go ahead */
738 	if (!(state->state & bits)) {
739 		state = next_state(state);
740 		goto next;
741 	}
742 
743 	/*
744 	 *     | ---- desired range ---- |
745 	 *  | state | or
746 	 *  | ------------- state -------------- |
747 	 *
748 	 * We need to split the extent we found, and may flip
749 	 * bits on second half.
750 	 *
751 	 * If the extent we found extends past our range, we
752 	 * just split and search again.  It'll get split again
753 	 * the next time though.
754 	 *
755 	 * If the extent we found is inside our range, we clear
756 	 * the desired bit on it.
757 	 */
758 
759 	if (state->start < start) {
760 		prealloc = alloc_extent_state_atomic(prealloc);
761 		BUG_ON(!prealloc);
762 		err = split_state(tree, state, prealloc, start);
763 		if (err)
764 			extent_io_tree_panic(tree, err);
765 
766 		prealloc = NULL;
767 		if (err)
768 			goto out;
769 		if (state->end <= end) {
770 			state = clear_state_bit(tree, state, &bits, wake,
771 						changeset);
772 			goto next;
773 		}
774 		goto search_again;
775 	}
776 	/*
777 	 * | ---- desired range ---- |
778 	 *                        | state |
779 	 * We need to split the extent, and clear the bit
780 	 * on the first half
781 	 */
782 	if (state->start <= end && state->end > end) {
783 		prealloc = alloc_extent_state_atomic(prealloc);
784 		BUG_ON(!prealloc);
785 		err = split_state(tree, state, prealloc, end + 1);
786 		if (err)
787 			extent_io_tree_panic(tree, err);
788 
789 		if (wake)
790 			wake_up(&state->wq);
791 
792 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
793 
794 		prealloc = NULL;
795 		goto out;
796 	}
797 
798 	state = clear_state_bit(tree, state, &bits, wake, changeset);
799 next:
800 	if (last_end == (u64)-1)
801 		goto out;
802 	start = last_end + 1;
803 	if (start <= end && state && !need_resched())
804 		goto hit_next;
805 
806 search_again:
807 	if (start > end)
808 		goto out;
809 	spin_unlock(&tree->lock);
810 	if (gfpflags_allow_blocking(mask))
811 		cond_resched();
812 	goto again;
813 
814 out:
815 	spin_unlock(&tree->lock);
816 	if (prealloc)
817 		free_extent_state(prealloc);
818 
819 	return 0;
820 
821 }
822 
823 static void wait_on_state(struct extent_io_tree *tree,
824 			  struct extent_state *state)
825 		__releases(tree->lock)
826 		__acquires(tree->lock)
827 {
828 	DEFINE_WAIT(wait);
829 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
830 	spin_unlock(&tree->lock);
831 	schedule();
832 	spin_lock(&tree->lock);
833 	finish_wait(&state->wq, &wait);
834 }
835 
836 /*
837  * waits for one or more bits to clear on a range in the state tree.
838  * The range [start, end] is inclusive.
839  * The tree lock is taken by this function
840  */
841 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842 			    unsigned long bits)
843 {
844 	struct extent_state *state;
845 	struct rb_node *node;
846 
847 	btrfs_debug_check_extent_io_range(tree, start, end);
848 
849 	spin_lock(&tree->lock);
850 again:
851 	while (1) {
852 		/*
853 		 * this search will find all the extents that end after
854 		 * our range starts
855 		 */
856 		node = tree_search(tree, start);
857 process_node:
858 		if (!node)
859 			break;
860 
861 		state = rb_entry(node, struct extent_state, rb_node);
862 
863 		if (state->start > end)
864 			goto out;
865 
866 		if (state->state & bits) {
867 			start = state->start;
868 			refcount_inc(&state->refs);
869 			wait_on_state(tree, state);
870 			free_extent_state(state);
871 			goto again;
872 		}
873 		start = state->end + 1;
874 
875 		if (start > end)
876 			break;
877 
878 		if (!cond_resched_lock(&tree->lock)) {
879 			node = rb_next(node);
880 			goto process_node;
881 		}
882 	}
883 out:
884 	spin_unlock(&tree->lock);
885 }
886 
887 static void set_state_bits(struct extent_io_tree *tree,
888 			   struct extent_state *state,
889 			   unsigned *bits, struct extent_changeset *changeset)
890 {
891 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
892 	int ret;
893 
894 	if (tree->private_data && is_data_inode(tree->private_data))
895 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
896 
897 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
898 		u64 range = state->end - state->start + 1;
899 		tree->dirty_bytes += range;
900 	}
901 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902 	BUG_ON(ret < 0);
903 	state->state |= bits_to_set;
904 }
905 
906 static void cache_state_if_flags(struct extent_state *state,
907 				 struct extent_state **cached_ptr,
908 				 unsigned flags)
909 {
910 	if (cached_ptr && !(*cached_ptr)) {
911 		if (!flags || (state->state & flags)) {
912 			*cached_ptr = state;
913 			refcount_inc(&state->refs);
914 		}
915 	}
916 }
917 
918 static void cache_state(struct extent_state *state,
919 			struct extent_state **cached_ptr)
920 {
921 	return cache_state_if_flags(state, cached_ptr,
922 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
923 }
924 
925 /*
926  * set some bits on a range in the tree.  This may require allocations or
927  * sleeping, so the gfp mask is used to indicate what is allowed.
928  *
929  * If any of the exclusive bits are set, this will fail with -EEXIST if some
930  * part of the range already has the desired bits set.  The start of the
931  * existing range is returned in failed_start in this case.
932  *
933  * [start, end] is inclusive This takes the tree lock.
934  */
935 
936 static int __must_check
937 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
938 		 unsigned bits, unsigned exclusive_bits,
939 		 u64 *failed_start, struct extent_state **cached_state,
940 		 gfp_t mask, struct extent_changeset *changeset)
941 {
942 	struct extent_state *state;
943 	struct extent_state *prealloc = NULL;
944 	struct rb_node *node;
945 	struct rb_node **p;
946 	struct rb_node *parent;
947 	int err = 0;
948 	u64 last_start;
949 	u64 last_end;
950 
951 	btrfs_debug_check_extent_io_range(tree, start, end);
952 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
953 
954 again:
955 	if (!prealloc && gfpflags_allow_blocking(mask)) {
956 		/*
957 		 * Don't care for allocation failure here because we might end
958 		 * up not needing the pre-allocated extent state at all, which
959 		 * is the case if we only have in the tree extent states that
960 		 * cover our input range and don't cover too any other range.
961 		 * If we end up needing a new extent state we allocate it later.
962 		 */
963 		prealloc = alloc_extent_state(mask);
964 	}
965 
966 	spin_lock(&tree->lock);
967 	if (cached_state && *cached_state) {
968 		state = *cached_state;
969 		if (state->start <= start && state->end > start &&
970 		    extent_state_in_tree(state)) {
971 			node = &state->rb_node;
972 			goto hit_next;
973 		}
974 	}
975 	/*
976 	 * this search will find all the extents that end after
977 	 * our range starts.
978 	 */
979 	node = tree_search_for_insert(tree, start, &p, &parent);
980 	if (!node) {
981 		prealloc = alloc_extent_state_atomic(prealloc);
982 		BUG_ON(!prealloc);
983 		err = insert_state(tree, prealloc, start, end,
984 				   &p, &parent, &bits, changeset);
985 		if (err)
986 			extent_io_tree_panic(tree, err);
987 
988 		cache_state(prealloc, cached_state);
989 		prealloc = NULL;
990 		goto out;
991 	}
992 	state = rb_entry(node, struct extent_state, rb_node);
993 hit_next:
994 	last_start = state->start;
995 	last_end = state->end;
996 
997 	/*
998 	 * | ---- desired range ---- |
999 	 * | state |
1000 	 *
1001 	 * Just lock what we found and keep going
1002 	 */
1003 	if (state->start == start && state->end <= end) {
1004 		if (state->state & exclusive_bits) {
1005 			*failed_start = state->start;
1006 			err = -EEXIST;
1007 			goto out;
1008 		}
1009 
1010 		set_state_bits(tree, state, &bits, changeset);
1011 		cache_state(state, cached_state);
1012 		merge_state(tree, state);
1013 		if (last_end == (u64)-1)
1014 			goto out;
1015 		start = last_end + 1;
1016 		state = next_state(state);
1017 		if (start < end && state && state->start == start &&
1018 		    !need_resched())
1019 			goto hit_next;
1020 		goto search_again;
1021 	}
1022 
1023 	/*
1024 	 *     | ---- desired range ---- |
1025 	 * | state |
1026 	 *   or
1027 	 * | ------------- state -------------- |
1028 	 *
1029 	 * We need to split the extent we found, and may flip bits on
1030 	 * second half.
1031 	 *
1032 	 * If the extent we found extends past our
1033 	 * range, we just split and search again.  It'll get split
1034 	 * again the next time though.
1035 	 *
1036 	 * If the extent we found is inside our range, we set the
1037 	 * desired bit on it.
1038 	 */
1039 	if (state->start < start) {
1040 		if (state->state & exclusive_bits) {
1041 			*failed_start = start;
1042 			err = -EEXIST;
1043 			goto out;
1044 		}
1045 
1046 		prealloc = alloc_extent_state_atomic(prealloc);
1047 		BUG_ON(!prealloc);
1048 		err = split_state(tree, state, prealloc, start);
1049 		if (err)
1050 			extent_io_tree_panic(tree, err);
1051 
1052 		prealloc = NULL;
1053 		if (err)
1054 			goto out;
1055 		if (state->end <= end) {
1056 			set_state_bits(tree, state, &bits, changeset);
1057 			cache_state(state, cached_state);
1058 			merge_state(tree, state);
1059 			if (last_end == (u64)-1)
1060 				goto out;
1061 			start = last_end + 1;
1062 			state = next_state(state);
1063 			if (start < end && state && state->start == start &&
1064 			    !need_resched())
1065 				goto hit_next;
1066 		}
1067 		goto search_again;
1068 	}
1069 	/*
1070 	 * | ---- desired range ---- |
1071 	 *     | state | or               | state |
1072 	 *
1073 	 * There's a hole, we need to insert something in it and
1074 	 * ignore the extent we found.
1075 	 */
1076 	if (state->start > start) {
1077 		u64 this_end;
1078 		if (end < last_start)
1079 			this_end = end;
1080 		else
1081 			this_end = last_start - 1;
1082 
1083 		prealloc = alloc_extent_state_atomic(prealloc);
1084 		BUG_ON(!prealloc);
1085 
1086 		/*
1087 		 * Avoid to free 'prealloc' if it can be merged with
1088 		 * the later extent.
1089 		 */
1090 		err = insert_state(tree, prealloc, start, this_end,
1091 				   NULL, NULL, &bits, changeset);
1092 		if (err)
1093 			extent_io_tree_panic(tree, err);
1094 
1095 		cache_state(prealloc, cached_state);
1096 		prealloc = NULL;
1097 		start = this_end + 1;
1098 		goto search_again;
1099 	}
1100 	/*
1101 	 * | ---- desired range ---- |
1102 	 *                        | state |
1103 	 * We need to split the extent, and set the bit
1104 	 * on the first half
1105 	 */
1106 	if (state->start <= end && state->end > end) {
1107 		if (state->state & exclusive_bits) {
1108 			*failed_start = start;
1109 			err = -EEXIST;
1110 			goto out;
1111 		}
1112 
1113 		prealloc = alloc_extent_state_atomic(prealloc);
1114 		BUG_ON(!prealloc);
1115 		err = split_state(tree, state, prealloc, end + 1);
1116 		if (err)
1117 			extent_io_tree_panic(tree, err);
1118 
1119 		set_state_bits(tree, prealloc, &bits, changeset);
1120 		cache_state(prealloc, cached_state);
1121 		merge_state(tree, prealloc);
1122 		prealloc = NULL;
1123 		goto out;
1124 	}
1125 
1126 search_again:
1127 	if (start > end)
1128 		goto out;
1129 	spin_unlock(&tree->lock);
1130 	if (gfpflags_allow_blocking(mask))
1131 		cond_resched();
1132 	goto again;
1133 
1134 out:
1135 	spin_unlock(&tree->lock);
1136 	if (prealloc)
1137 		free_extent_state(prealloc);
1138 
1139 	return err;
1140 
1141 }
1142 
1143 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144 		   unsigned bits, u64 * failed_start,
1145 		   struct extent_state **cached_state, gfp_t mask)
1146 {
1147 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148 				cached_state, mask, NULL);
1149 }
1150 
1151 
1152 /**
1153  * convert_extent_bit - convert all bits in a given range from one bit to
1154  * 			another
1155  * @tree:	the io tree to search
1156  * @start:	the start offset in bytes
1157  * @end:	the end offset in bytes (inclusive)
1158  * @bits:	the bits to set in this range
1159  * @clear_bits:	the bits to clear in this range
1160  * @cached_state:	state that we're going to cache
1161  *
1162  * This will go through and set bits for the given range.  If any states exist
1163  * already in this range they are set with the given bit and cleared of the
1164  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1165  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1166  * boundary bits like LOCK.
1167  *
1168  * All allocations are done with GFP_NOFS.
1169  */
1170 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171 		       unsigned bits, unsigned clear_bits,
1172 		       struct extent_state **cached_state)
1173 {
1174 	struct extent_state *state;
1175 	struct extent_state *prealloc = NULL;
1176 	struct rb_node *node;
1177 	struct rb_node **p;
1178 	struct rb_node *parent;
1179 	int err = 0;
1180 	u64 last_start;
1181 	u64 last_end;
1182 	bool first_iteration = true;
1183 
1184 	btrfs_debug_check_extent_io_range(tree, start, end);
1185 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186 				       clear_bits);
1187 
1188 again:
1189 	if (!prealloc) {
1190 		/*
1191 		 * Best effort, don't worry if extent state allocation fails
1192 		 * here for the first iteration. We might have a cached state
1193 		 * that matches exactly the target range, in which case no
1194 		 * extent state allocations are needed. We'll only know this
1195 		 * after locking the tree.
1196 		 */
1197 		prealloc = alloc_extent_state(GFP_NOFS);
1198 		if (!prealloc && !first_iteration)
1199 			return -ENOMEM;
1200 	}
1201 
1202 	spin_lock(&tree->lock);
1203 	if (cached_state && *cached_state) {
1204 		state = *cached_state;
1205 		if (state->start <= start && state->end > start &&
1206 		    extent_state_in_tree(state)) {
1207 			node = &state->rb_node;
1208 			goto hit_next;
1209 		}
1210 	}
1211 
1212 	/*
1213 	 * this search will find all the extents that end after
1214 	 * our range starts.
1215 	 */
1216 	node = tree_search_for_insert(tree, start, &p, &parent);
1217 	if (!node) {
1218 		prealloc = alloc_extent_state_atomic(prealloc);
1219 		if (!prealloc) {
1220 			err = -ENOMEM;
1221 			goto out;
1222 		}
1223 		err = insert_state(tree, prealloc, start, end,
1224 				   &p, &parent, &bits, NULL);
1225 		if (err)
1226 			extent_io_tree_panic(tree, err);
1227 		cache_state(prealloc, cached_state);
1228 		prealloc = NULL;
1229 		goto out;
1230 	}
1231 	state = rb_entry(node, struct extent_state, rb_node);
1232 hit_next:
1233 	last_start = state->start;
1234 	last_end = state->end;
1235 
1236 	/*
1237 	 * | ---- desired range ---- |
1238 	 * | state |
1239 	 *
1240 	 * Just lock what we found and keep going
1241 	 */
1242 	if (state->start == start && state->end <= end) {
1243 		set_state_bits(tree, state, &bits, NULL);
1244 		cache_state(state, cached_state);
1245 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246 		if (last_end == (u64)-1)
1247 			goto out;
1248 		start = last_end + 1;
1249 		if (start < end && state && state->start == start &&
1250 		    !need_resched())
1251 			goto hit_next;
1252 		goto search_again;
1253 	}
1254 
1255 	/*
1256 	 *     | ---- desired range ---- |
1257 	 * | state |
1258 	 *   or
1259 	 * | ------------- state -------------- |
1260 	 *
1261 	 * We need to split the extent we found, and may flip bits on
1262 	 * second half.
1263 	 *
1264 	 * If the extent we found extends past our
1265 	 * range, we just split and search again.  It'll get split
1266 	 * again the next time though.
1267 	 *
1268 	 * If the extent we found is inside our range, we set the
1269 	 * desired bit on it.
1270 	 */
1271 	if (state->start < start) {
1272 		prealloc = alloc_extent_state_atomic(prealloc);
1273 		if (!prealloc) {
1274 			err = -ENOMEM;
1275 			goto out;
1276 		}
1277 		err = split_state(tree, state, prealloc, start);
1278 		if (err)
1279 			extent_io_tree_panic(tree, err);
1280 		prealloc = NULL;
1281 		if (err)
1282 			goto out;
1283 		if (state->end <= end) {
1284 			set_state_bits(tree, state, &bits, NULL);
1285 			cache_state(state, cached_state);
1286 			state = clear_state_bit(tree, state, &clear_bits, 0,
1287 						NULL);
1288 			if (last_end == (u64)-1)
1289 				goto out;
1290 			start = last_end + 1;
1291 			if (start < end && state && state->start == start &&
1292 			    !need_resched())
1293 				goto hit_next;
1294 		}
1295 		goto search_again;
1296 	}
1297 	/*
1298 	 * | ---- desired range ---- |
1299 	 *     | state | or               | state |
1300 	 *
1301 	 * There's a hole, we need to insert something in it and
1302 	 * ignore the extent we found.
1303 	 */
1304 	if (state->start > start) {
1305 		u64 this_end;
1306 		if (end < last_start)
1307 			this_end = end;
1308 		else
1309 			this_end = last_start - 1;
1310 
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 
1317 		/*
1318 		 * Avoid to free 'prealloc' if it can be merged with
1319 		 * the later extent.
1320 		 */
1321 		err = insert_state(tree, prealloc, start, this_end,
1322 				   NULL, NULL, &bits, NULL);
1323 		if (err)
1324 			extent_io_tree_panic(tree, err);
1325 		cache_state(prealloc, cached_state);
1326 		prealloc = NULL;
1327 		start = this_end + 1;
1328 		goto search_again;
1329 	}
1330 	/*
1331 	 * | ---- desired range ---- |
1332 	 *                        | state |
1333 	 * We need to split the extent, and set the bit
1334 	 * on the first half
1335 	 */
1336 	if (state->start <= end && state->end > end) {
1337 		prealloc = alloc_extent_state_atomic(prealloc);
1338 		if (!prealloc) {
1339 			err = -ENOMEM;
1340 			goto out;
1341 		}
1342 
1343 		err = split_state(tree, state, prealloc, end + 1);
1344 		if (err)
1345 			extent_io_tree_panic(tree, err);
1346 
1347 		set_state_bits(tree, prealloc, &bits, NULL);
1348 		cache_state(prealloc, cached_state);
1349 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350 		prealloc = NULL;
1351 		goto out;
1352 	}
1353 
1354 search_again:
1355 	if (start > end)
1356 		goto out;
1357 	spin_unlock(&tree->lock);
1358 	cond_resched();
1359 	first_iteration = false;
1360 	goto again;
1361 
1362 out:
1363 	spin_unlock(&tree->lock);
1364 	if (prealloc)
1365 		free_extent_state(prealloc);
1366 
1367 	return err;
1368 }
1369 
1370 /* wrappers around set/clear extent bit */
1371 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372 			   unsigned bits, struct extent_changeset *changeset)
1373 {
1374 	/*
1375 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1376 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1377 	 * either fail with -EEXIST or changeset will record the whole
1378 	 * range.
1379 	 */
1380 	BUG_ON(bits & EXTENT_LOCKED);
1381 
1382 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383 				changeset);
1384 }
1385 
1386 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387 			   unsigned bits)
1388 {
1389 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390 				GFP_NOWAIT, NULL);
1391 }
1392 
1393 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394 		     unsigned bits, int wake, int delete,
1395 		     struct extent_state **cached)
1396 {
1397 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398 				  cached, GFP_NOFS, NULL);
1399 }
1400 
1401 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402 		unsigned bits, struct extent_changeset *changeset)
1403 {
1404 	/*
1405 	 * Don't support EXTENT_LOCKED case, same reason as
1406 	 * set_record_extent_bits().
1407 	 */
1408 	BUG_ON(bits & EXTENT_LOCKED);
1409 
1410 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411 				  changeset);
1412 }
1413 
1414 /*
1415  * either insert or lock state struct between start and end use mask to tell
1416  * us if waiting is desired.
1417  */
1418 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419 		     struct extent_state **cached_state)
1420 {
1421 	int err;
1422 	u64 failed_start;
1423 
1424 	while (1) {
1425 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426 				       EXTENT_LOCKED, &failed_start,
1427 				       cached_state, GFP_NOFS, NULL);
1428 		if (err == -EEXIST) {
1429 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430 			start = failed_start;
1431 		} else
1432 			break;
1433 		WARN_ON(start > end);
1434 	}
1435 	return err;
1436 }
1437 
1438 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439 {
1440 	int err;
1441 	u64 failed_start;
1442 
1443 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444 			       &failed_start, NULL, GFP_NOFS, NULL);
1445 	if (err == -EEXIST) {
1446 		if (failed_start > start)
1447 			clear_extent_bit(tree, start, failed_start - 1,
1448 					 EXTENT_LOCKED, 1, 0, NULL);
1449 		return 0;
1450 	}
1451 	return 1;
1452 }
1453 
1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 	unsigned long index = start >> PAGE_SHIFT;
1457 	unsigned long end_index = end >> PAGE_SHIFT;
1458 	struct page *page;
1459 
1460 	while (index <= end_index) {
1461 		page = find_get_page(inode->i_mapping, index);
1462 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 		clear_page_dirty_for_io(page);
1464 		put_page(page);
1465 		index++;
1466 	}
1467 }
1468 
1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470 {
1471 	unsigned long index = start >> PAGE_SHIFT;
1472 	unsigned long end_index = end >> PAGE_SHIFT;
1473 	struct page *page;
1474 
1475 	while (index <= end_index) {
1476 		page = find_get_page(inode->i_mapping, index);
1477 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 		__set_page_dirty_nobuffers(page);
1479 		account_page_redirty(page);
1480 		put_page(page);
1481 		index++;
1482 	}
1483 }
1484 
1485 /* find the first state struct with 'bits' set after 'start', and
1486  * return it.  tree->lock must be held.  NULL will returned if
1487  * nothing was found after 'start'
1488  */
1489 static struct extent_state *
1490 find_first_extent_bit_state(struct extent_io_tree *tree,
1491 			    u64 start, unsigned bits)
1492 {
1493 	struct rb_node *node;
1494 	struct extent_state *state;
1495 
1496 	/*
1497 	 * this search will find all the extents that end after
1498 	 * our range starts.
1499 	 */
1500 	node = tree_search(tree, start);
1501 	if (!node)
1502 		goto out;
1503 
1504 	while (1) {
1505 		state = rb_entry(node, struct extent_state, rb_node);
1506 		if (state->end >= start && (state->state & bits))
1507 			return state;
1508 
1509 		node = rb_next(node);
1510 		if (!node)
1511 			break;
1512 	}
1513 out:
1514 	return NULL;
1515 }
1516 
1517 /*
1518  * find the first offset in the io tree with 'bits' set. zero is
1519  * returned if we find something, and *start_ret and *end_ret are
1520  * set to reflect the state struct that was found.
1521  *
1522  * If nothing was found, 1 is returned. If found something, return 0.
1523  */
1524 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1526 			  struct extent_state **cached_state)
1527 {
1528 	struct extent_state *state;
1529 	int ret = 1;
1530 
1531 	spin_lock(&tree->lock);
1532 	if (cached_state && *cached_state) {
1533 		state = *cached_state;
1534 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1535 			while ((state = next_state(state)) != NULL) {
1536 				if (state->state & bits)
1537 					goto got_it;
1538 			}
1539 			free_extent_state(*cached_state);
1540 			*cached_state = NULL;
1541 			goto out;
1542 		}
1543 		free_extent_state(*cached_state);
1544 		*cached_state = NULL;
1545 	}
1546 
1547 	state = find_first_extent_bit_state(tree, start, bits);
1548 got_it:
1549 	if (state) {
1550 		cache_state_if_flags(state, cached_state, 0);
1551 		*start_ret = state->start;
1552 		*end_ret = state->end;
1553 		ret = 0;
1554 	}
1555 out:
1556 	spin_unlock(&tree->lock);
1557 	return ret;
1558 }
1559 
1560 /**
1561  * find_first_clear_extent_bit - find the first range that has @bits not set.
1562  * This range could start before @start.
1563  *
1564  * @tree - the tree to search
1565  * @start - the offset at/after which the found extent should start
1566  * @start_ret - records the beginning of the range
1567  * @end_ret - records the end of the range (inclusive)
1568  * @bits - the set of bits which must be unset
1569  *
1570  * Since unallocated range is also considered one which doesn't have the bits
1571  * set it's possible that @end_ret contains -1, this happens in case the range
1572  * spans (last_range_end, end of device]. In this case it's up to the caller to
1573  * trim @end_ret to the appropriate size.
1574  */
1575 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1577 {
1578 	struct extent_state *state;
1579 	struct rb_node *node, *prev = NULL, *next;
1580 
1581 	spin_lock(&tree->lock);
1582 
1583 	/* Find first extent with bits cleared */
1584 	while (1) {
1585 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586 		if (!node) {
1587 			node = next;
1588 			if (!node) {
1589 				/*
1590 				 * We are past the last allocated chunk,
1591 				 * set start at the end of the last extent. The
1592 				 * device alloc tree should never be empty so
1593 				 * prev is always set.
1594 				 */
1595 				ASSERT(prev);
1596 				state = rb_entry(prev, struct extent_state, rb_node);
1597 				*start_ret = state->end + 1;
1598 				*end_ret = -1;
1599 				goto out;
1600 			}
1601 		}
1602 		/*
1603 		 * At this point 'node' either contains 'start' or start is
1604 		 * before 'node'
1605 		 */
1606 		state = rb_entry(node, struct extent_state, rb_node);
1607 
1608 		if (in_range(start, state->start, state->end - state->start + 1)) {
1609 			if (state->state & bits) {
1610 				/*
1611 				 * |--range with bits sets--|
1612 				 *    |
1613 				 *    start
1614 				 */
1615 				start = state->end + 1;
1616 			} else {
1617 				/*
1618 				 * 'start' falls within a range that doesn't
1619 				 * have the bits set, so take its start as
1620 				 * the beginning of the desired range
1621 				 *
1622 				 * |--range with bits cleared----|
1623 				 *      |
1624 				 *      start
1625 				 */
1626 				*start_ret = state->start;
1627 				break;
1628 			}
1629 		} else {
1630 			/*
1631 			 * |---prev range---|---hole/unset---|---node range---|
1632 			 *                          |
1633 			 *                        start
1634 			 *
1635 			 *                        or
1636 			 *
1637 			 * |---hole/unset--||--first node--|
1638 			 * 0   |
1639 			 *    start
1640 			 */
1641 			if (prev) {
1642 				state = rb_entry(prev, struct extent_state,
1643 						 rb_node);
1644 				*start_ret = state->end + 1;
1645 			} else {
1646 				*start_ret = 0;
1647 			}
1648 			break;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Find the longest stretch from start until an entry which has the
1654 	 * bits set
1655 	 */
1656 	while (1) {
1657 		state = rb_entry(node, struct extent_state, rb_node);
1658 		if (state->end >= start && !(state->state & bits)) {
1659 			*end_ret = state->end;
1660 		} else {
1661 			*end_ret = state->start - 1;
1662 			break;
1663 		}
1664 
1665 		node = rb_next(node);
1666 		if (!node)
1667 			break;
1668 	}
1669 out:
1670 	spin_unlock(&tree->lock);
1671 }
1672 
1673 /*
1674  * find a contiguous range of bytes in the file marked as delalloc, not
1675  * more than 'max_bytes'.  start and end are used to return the range,
1676  *
1677  * true is returned if we find something, false if nothing was in the tree
1678  */
1679 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680 					u64 *start, u64 *end, u64 max_bytes,
1681 					struct extent_state **cached_state)
1682 {
1683 	struct rb_node *node;
1684 	struct extent_state *state;
1685 	u64 cur_start = *start;
1686 	bool found = false;
1687 	u64 total_bytes = 0;
1688 
1689 	spin_lock(&tree->lock);
1690 
1691 	/*
1692 	 * this search will find all the extents that end after
1693 	 * our range starts.
1694 	 */
1695 	node = tree_search(tree, cur_start);
1696 	if (!node) {
1697 		*end = (u64)-1;
1698 		goto out;
1699 	}
1700 
1701 	while (1) {
1702 		state = rb_entry(node, struct extent_state, rb_node);
1703 		if (found && (state->start != cur_start ||
1704 			      (state->state & EXTENT_BOUNDARY))) {
1705 			goto out;
1706 		}
1707 		if (!(state->state & EXTENT_DELALLOC)) {
1708 			if (!found)
1709 				*end = state->end;
1710 			goto out;
1711 		}
1712 		if (!found) {
1713 			*start = state->start;
1714 			*cached_state = state;
1715 			refcount_inc(&state->refs);
1716 		}
1717 		found = true;
1718 		*end = state->end;
1719 		cur_start = state->end + 1;
1720 		node = rb_next(node);
1721 		total_bytes += state->end - state->start + 1;
1722 		if (total_bytes >= max_bytes)
1723 			break;
1724 		if (!node)
1725 			break;
1726 	}
1727 out:
1728 	spin_unlock(&tree->lock);
1729 	return found;
1730 }
1731 
1732 static int __process_pages_contig(struct address_space *mapping,
1733 				  struct page *locked_page,
1734 				  pgoff_t start_index, pgoff_t end_index,
1735 				  unsigned long page_ops, pgoff_t *index_ret);
1736 
1737 static noinline void __unlock_for_delalloc(struct inode *inode,
1738 					   struct page *locked_page,
1739 					   u64 start, u64 end)
1740 {
1741 	unsigned long index = start >> PAGE_SHIFT;
1742 	unsigned long end_index = end >> PAGE_SHIFT;
1743 
1744 	ASSERT(locked_page);
1745 	if (index == locked_page->index && end_index == index)
1746 		return;
1747 
1748 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749 			       PAGE_UNLOCK, NULL);
1750 }
1751 
1752 static noinline int lock_delalloc_pages(struct inode *inode,
1753 					struct page *locked_page,
1754 					u64 delalloc_start,
1755 					u64 delalloc_end)
1756 {
1757 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1758 	unsigned long index_ret = index;
1759 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760 	int ret;
1761 
1762 	ASSERT(locked_page);
1763 	if (index == locked_page->index && index == end_index)
1764 		return 0;
1765 
1766 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767 				     end_index, PAGE_LOCK, &index_ret);
1768 	if (ret == -EAGAIN)
1769 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1770 				      (u64)index_ret << PAGE_SHIFT);
1771 	return ret;
1772 }
1773 
1774 /*
1775  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776  * more than @max_bytes.  @Start and @end are used to return the range,
1777  *
1778  * Return: true if we find something
1779  *         false if nothing was in the tree
1780  */
1781 EXPORT_FOR_TESTS
1782 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783 				    struct page *locked_page, u64 *start,
1784 				    u64 *end)
1785 {
1786 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788 	u64 delalloc_start;
1789 	u64 delalloc_end;
1790 	bool found;
1791 	struct extent_state *cached_state = NULL;
1792 	int ret;
1793 	int loops = 0;
1794 
1795 again:
1796 	/* step one, find a bunch of delalloc bytes starting at start */
1797 	delalloc_start = *start;
1798 	delalloc_end = 0;
1799 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800 				    max_bytes, &cached_state);
1801 	if (!found || delalloc_end <= *start) {
1802 		*start = delalloc_start;
1803 		*end = delalloc_end;
1804 		free_extent_state(cached_state);
1805 		return false;
1806 	}
1807 
1808 	/*
1809 	 * start comes from the offset of locked_page.  We have to lock
1810 	 * pages in order, so we can't process delalloc bytes before
1811 	 * locked_page
1812 	 */
1813 	if (delalloc_start < *start)
1814 		delalloc_start = *start;
1815 
1816 	/*
1817 	 * make sure to limit the number of pages we try to lock down
1818 	 */
1819 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1820 		delalloc_end = delalloc_start + max_bytes - 1;
1821 
1822 	/* step two, lock all the pages after the page that has start */
1823 	ret = lock_delalloc_pages(inode, locked_page,
1824 				  delalloc_start, delalloc_end);
1825 	ASSERT(!ret || ret == -EAGAIN);
1826 	if (ret == -EAGAIN) {
1827 		/* some of the pages are gone, lets avoid looping by
1828 		 * shortening the size of the delalloc range we're searching
1829 		 */
1830 		free_extent_state(cached_state);
1831 		cached_state = NULL;
1832 		if (!loops) {
1833 			max_bytes = PAGE_SIZE;
1834 			loops = 1;
1835 			goto again;
1836 		} else {
1837 			found = false;
1838 			goto out_failed;
1839 		}
1840 	}
1841 
1842 	/* step three, lock the state bits for the whole range */
1843 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844 
1845 	/* then test to make sure it is all still delalloc */
1846 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847 			     EXTENT_DELALLOC, 1, cached_state);
1848 	if (!ret) {
1849 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850 				     &cached_state);
1851 		__unlock_for_delalloc(inode, locked_page,
1852 			      delalloc_start, delalloc_end);
1853 		cond_resched();
1854 		goto again;
1855 	}
1856 	free_extent_state(cached_state);
1857 	*start = delalloc_start;
1858 	*end = delalloc_end;
1859 out_failed:
1860 	return found;
1861 }
1862 
1863 static int __process_pages_contig(struct address_space *mapping,
1864 				  struct page *locked_page,
1865 				  pgoff_t start_index, pgoff_t end_index,
1866 				  unsigned long page_ops, pgoff_t *index_ret)
1867 {
1868 	unsigned long nr_pages = end_index - start_index + 1;
1869 	unsigned long pages_locked = 0;
1870 	pgoff_t index = start_index;
1871 	struct page *pages[16];
1872 	unsigned ret;
1873 	int err = 0;
1874 	int i;
1875 
1876 	if (page_ops & PAGE_LOCK) {
1877 		ASSERT(page_ops == PAGE_LOCK);
1878 		ASSERT(index_ret && *index_ret == start_index);
1879 	}
1880 
1881 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 		mapping_set_error(mapping, -EIO);
1883 
1884 	while (nr_pages > 0) {
1885 		ret = find_get_pages_contig(mapping, index,
1886 				     min_t(unsigned long,
1887 				     nr_pages, ARRAY_SIZE(pages)), pages);
1888 		if (ret == 0) {
1889 			/*
1890 			 * Only if we're going to lock these pages,
1891 			 * can we find nothing at @index.
1892 			 */
1893 			ASSERT(page_ops & PAGE_LOCK);
1894 			err = -EAGAIN;
1895 			goto out;
1896 		}
1897 
1898 		for (i = 0; i < ret; i++) {
1899 			if (page_ops & PAGE_SET_PRIVATE2)
1900 				SetPagePrivate2(pages[i]);
1901 
1902 			if (pages[i] == locked_page) {
1903 				put_page(pages[i]);
1904 				pages_locked++;
1905 				continue;
1906 			}
1907 			if (page_ops & PAGE_CLEAR_DIRTY)
1908 				clear_page_dirty_for_io(pages[i]);
1909 			if (page_ops & PAGE_SET_WRITEBACK)
1910 				set_page_writeback(pages[i]);
1911 			if (page_ops & PAGE_SET_ERROR)
1912 				SetPageError(pages[i]);
1913 			if (page_ops & PAGE_END_WRITEBACK)
1914 				end_page_writeback(pages[i]);
1915 			if (page_ops & PAGE_UNLOCK)
1916 				unlock_page(pages[i]);
1917 			if (page_ops & PAGE_LOCK) {
1918 				lock_page(pages[i]);
1919 				if (!PageDirty(pages[i]) ||
1920 				    pages[i]->mapping != mapping) {
1921 					unlock_page(pages[i]);
1922 					put_page(pages[i]);
1923 					err = -EAGAIN;
1924 					goto out;
1925 				}
1926 			}
1927 			put_page(pages[i]);
1928 			pages_locked++;
1929 		}
1930 		nr_pages -= ret;
1931 		index += ret;
1932 		cond_resched();
1933 	}
1934 out:
1935 	if (err && index_ret)
1936 		*index_ret = start_index + pages_locked - 1;
1937 	return err;
1938 }
1939 
1940 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941 				 u64 delalloc_end, struct page *locked_page,
1942 				 unsigned clear_bits,
1943 				 unsigned long page_ops)
1944 {
1945 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946 			 NULL);
1947 
1948 	__process_pages_contig(inode->i_mapping, locked_page,
1949 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950 			       page_ops, NULL);
1951 }
1952 
1953 /*
1954  * count the number of bytes in the tree that have a given bit(s)
1955  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1956  * cached.  The total number found is returned.
1957  */
1958 u64 count_range_bits(struct extent_io_tree *tree,
1959 		     u64 *start, u64 search_end, u64 max_bytes,
1960 		     unsigned bits, int contig)
1961 {
1962 	struct rb_node *node;
1963 	struct extent_state *state;
1964 	u64 cur_start = *start;
1965 	u64 total_bytes = 0;
1966 	u64 last = 0;
1967 	int found = 0;
1968 
1969 	if (WARN_ON(search_end <= cur_start))
1970 		return 0;
1971 
1972 	spin_lock(&tree->lock);
1973 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974 		total_bytes = tree->dirty_bytes;
1975 		goto out;
1976 	}
1977 	/*
1978 	 * this search will find all the extents that end after
1979 	 * our range starts.
1980 	 */
1981 	node = tree_search(tree, cur_start);
1982 	if (!node)
1983 		goto out;
1984 
1985 	while (1) {
1986 		state = rb_entry(node, struct extent_state, rb_node);
1987 		if (state->start > search_end)
1988 			break;
1989 		if (contig && found && state->start > last + 1)
1990 			break;
1991 		if (state->end >= cur_start && (state->state & bits) == bits) {
1992 			total_bytes += min(search_end, state->end) + 1 -
1993 				       max(cur_start, state->start);
1994 			if (total_bytes >= max_bytes)
1995 				break;
1996 			if (!found) {
1997 				*start = max(cur_start, state->start);
1998 				found = 1;
1999 			}
2000 			last = state->end;
2001 		} else if (contig && found) {
2002 			break;
2003 		}
2004 		node = rb_next(node);
2005 		if (!node)
2006 			break;
2007 	}
2008 out:
2009 	spin_unlock(&tree->lock);
2010 	return total_bytes;
2011 }
2012 
2013 /*
2014  * set the private field for a given byte offset in the tree.  If there isn't
2015  * an extent_state there already, this does nothing.
2016  */
2017 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018 		struct io_failure_record *failrec)
2019 {
2020 	struct rb_node *node;
2021 	struct extent_state *state;
2022 	int ret = 0;
2023 
2024 	spin_lock(&tree->lock);
2025 	/*
2026 	 * this search will find all the extents that end after
2027 	 * our range starts.
2028 	 */
2029 	node = tree_search(tree, start);
2030 	if (!node) {
2031 		ret = -ENOENT;
2032 		goto out;
2033 	}
2034 	state = rb_entry(node, struct extent_state, rb_node);
2035 	if (state->start != start) {
2036 		ret = -ENOENT;
2037 		goto out;
2038 	}
2039 	state->failrec = failrec;
2040 out:
2041 	spin_unlock(&tree->lock);
2042 	return ret;
2043 }
2044 
2045 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046 		struct io_failure_record **failrec)
2047 {
2048 	struct rb_node *node;
2049 	struct extent_state *state;
2050 	int ret = 0;
2051 
2052 	spin_lock(&tree->lock);
2053 	/*
2054 	 * this search will find all the extents that end after
2055 	 * our range starts.
2056 	 */
2057 	node = tree_search(tree, start);
2058 	if (!node) {
2059 		ret = -ENOENT;
2060 		goto out;
2061 	}
2062 	state = rb_entry(node, struct extent_state, rb_node);
2063 	if (state->start != start) {
2064 		ret = -ENOENT;
2065 		goto out;
2066 	}
2067 	*failrec = state->failrec;
2068 out:
2069 	spin_unlock(&tree->lock);
2070 	return ret;
2071 }
2072 
2073 /*
2074  * searches a range in the state tree for a given mask.
2075  * If 'filled' == 1, this returns 1 only if every extent in the tree
2076  * has the bits set.  Otherwise, 1 is returned if any bit in the
2077  * range is found set.
2078  */
2079 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080 		   unsigned bits, int filled, struct extent_state *cached)
2081 {
2082 	struct extent_state *state = NULL;
2083 	struct rb_node *node;
2084 	int bitset = 0;
2085 
2086 	spin_lock(&tree->lock);
2087 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088 	    cached->end > start)
2089 		node = &cached->rb_node;
2090 	else
2091 		node = tree_search(tree, start);
2092 	while (node && start <= end) {
2093 		state = rb_entry(node, struct extent_state, rb_node);
2094 
2095 		if (filled && state->start > start) {
2096 			bitset = 0;
2097 			break;
2098 		}
2099 
2100 		if (state->start > end)
2101 			break;
2102 
2103 		if (state->state & bits) {
2104 			bitset = 1;
2105 			if (!filled)
2106 				break;
2107 		} else if (filled) {
2108 			bitset = 0;
2109 			break;
2110 		}
2111 
2112 		if (state->end == (u64)-1)
2113 			break;
2114 
2115 		start = state->end + 1;
2116 		if (start > end)
2117 			break;
2118 		node = rb_next(node);
2119 		if (!node) {
2120 			if (filled)
2121 				bitset = 0;
2122 			break;
2123 		}
2124 	}
2125 	spin_unlock(&tree->lock);
2126 	return bitset;
2127 }
2128 
2129 /*
2130  * helper function to set a given page up to date if all the
2131  * extents in the tree for that page are up to date
2132  */
2133 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134 {
2135 	u64 start = page_offset(page);
2136 	u64 end = start + PAGE_SIZE - 1;
2137 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138 		SetPageUptodate(page);
2139 }
2140 
2141 int free_io_failure(struct extent_io_tree *failure_tree,
2142 		    struct extent_io_tree *io_tree,
2143 		    struct io_failure_record *rec)
2144 {
2145 	int ret;
2146 	int err = 0;
2147 
2148 	set_state_failrec(failure_tree, rec->start, NULL);
2149 	ret = clear_extent_bits(failure_tree, rec->start,
2150 				rec->start + rec->len - 1,
2151 				EXTENT_LOCKED | EXTENT_DIRTY);
2152 	if (ret)
2153 		err = ret;
2154 
2155 	ret = clear_extent_bits(io_tree, rec->start,
2156 				rec->start + rec->len - 1,
2157 				EXTENT_DAMAGED);
2158 	if (ret && !err)
2159 		err = ret;
2160 
2161 	kfree(rec);
2162 	return err;
2163 }
2164 
2165 /*
2166  * this bypasses the standard btrfs submit functions deliberately, as
2167  * the standard behavior is to write all copies in a raid setup. here we only
2168  * want to write the one bad copy. so we do the mapping for ourselves and issue
2169  * submit_bio directly.
2170  * to avoid any synchronization issues, wait for the data after writing, which
2171  * actually prevents the read that triggered the error from finishing.
2172  * currently, there can be no more than two copies of every data bit. thus,
2173  * exactly one rewrite is required.
2174  */
2175 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176 		      u64 length, u64 logical, struct page *page,
2177 		      unsigned int pg_offset, int mirror_num)
2178 {
2179 	struct bio *bio;
2180 	struct btrfs_device *dev;
2181 	u64 map_length = 0;
2182 	u64 sector;
2183 	struct btrfs_bio *bbio = NULL;
2184 	int ret;
2185 
2186 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187 	BUG_ON(!mirror_num);
2188 
2189 	bio = btrfs_io_bio_alloc(1);
2190 	bio->bi_iter.bi_size = 0;
2191 	map_length = length;
2192 
2193 	/*
2194 	 * Avoid races with device replace and make sure our bbio has devices
2195 	 * associated to its stripes that don't go away while we are doing the
2196 	 * read repair operation.
2197 	 */
2198 	btrfs_bio_counter_inc_blocked(fs_info);
2199 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200 		/*
2201 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202 		 * to update all raid stripes, but here we just want to correct
2203 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204 		 * stripe's dev and sector.
2205 		 */
2206 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207 				      &map_length, &bbio, 0);
2208 		if (ret) {
2209 			btrfs_bio_counter_dec(fs_info);
2210 			bio_put(bio);
2211 			return -EIO;
2212 		}
2213 		ASSERT(bbio->mirror_num == 1);
2214 	} else {
2215 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216 				      &map_length, &bbio, mirror_num);
2217 		if (ret) {
2218 			btrfs_bio_counter_dec(fs_info);
2219 			bio_put(bio);
2220 			return -EIO;
2221 		}
2222 		BUG_ON(mirror_num != bbio->mirror_num);
2223 	}
2224 
2225 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226 	bio->bi_iter.bi_sector = sector;
2227 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228 	btrfs_put_bbio(bbio);
2229 	if (!dev || !dev->bdev ||
2230 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231 		btrfs_bio_counter_dec(fs_info);
2232 		bio_put(bio);
2233 		return -EIO;
2234 	}
2235 	bio_set_dev(bio, dev->bdev);
2236 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237 	bio_add_page(bio, page, length, pg_offset);
2238 
2239 	if (btrfsic_submit_bio_wait(bio)) {
2240 		/* try to remap that extent elsewhere? */
2241 		btrfs_bio_counter_dec(fs_info);
2242 		bio_put(bio);
2243 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244 		return -EIO;
2245 	}
2246 
2247 	btrfs_info_rl_in_rcu(fs_info,
2248 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249 				  ino, start,
2250 				  rcu_str_deref(dev->name), sector);
2251 	btrfs_bio_counter_dec(fs_info);
2252 	bio_put(bio);
2253 	return 0;
2254 }
2255 
2256 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257 {
2258 	struct btrfs_fs_info *fs_info = eb->fs_info;
2259 	u64 start = eb->start;
2260 	int i, num_pages = num_extent_pages(eb);
2261 	int ret = 0;
2262 
2263 	if (sb_rdonly(fs_info->sb))
2264 		return -EROFS;
2265 
2266 	for (i = 0; i < num_pages; i++) {
2267 		struct page *p = eb->pages[i];
2268 
2269 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270 					start - page_offset(p), mirror_num);
2271 		if (ret)
2272 			break;
2273 		start += PAGE_SIZE;
2274 	}
2275 
2276 	return ret;
2277 }
2278 
2279 /*
2280  * each time an IO finishes, we do a fast check in the IO failure tree
2281  * to see if we need to process or clean up an io_failure_record
2282  */
2283 int clean_io_failure(struct btrfs_fs_info *fs_info,
2284 		     struct extent_io_tree *failure_tree,
2285 		     struct extent_io_tree *io_tree, u64 start,
2286 		     struct page *page, u64 ino, unsigned int pg_offset)
2287 {
2288 	u64 private;
2289 	struct io_failure_record *failrec;
2290 	struct extent_state *state;
2291 	int num_copies;
2292 	int ret;
2293 
2294 	private = 0;
2295 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296 			       EXTENT_DIRTY, 0);
2297 	if (!ret)
2298 		return 0;
2299 
2300 	ret = get_state_failrec(failure_tree, start, &failrec);
2301 	if (ret)
2302 		return 0;
2303 
2304 	BUG_ON(!failrec->this_mirror);
2305 
2306 	if (failrec->in_validation) {
2307 		/* there was no real error, just free the record */
2308 		btrfs_debug(fs_info,
2309 			"clean_io_failure: freeing dummy error at %llu",
2310 			failrec->start);
2311 		goto out;
2312 	}
2313 	if (sb_rdonly(fs_info->sb))
2314 		goto out;
2315 
2316 	spin_lock(&io_tree->lock);
2317 	state = find_first_extent_bit_state(io_tree,
2318 					    failrec->start,
2319 					    EXTENT_LOCKED);
2320 	spin_unlock(&io_tree->lock);
2321 
2322 	if (state && state->start <= failrec->start &&
2323 	    state->end >= failrec->start + failrec->len - 1) {
2324 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325 					      failrec->len);
2326 		if (num_copies > 1)  {
2327 			repair_io_failure(fs_info, ino, start, failrec->len,
2328 					  failrec->logical, page, pg_offset,
2329 					  failrec->failed_mirror);
2330 		}
2331 	}
2332 
2333 out:
2334 	free_io_failure(failure_tree, io_tree, failrec);
2335 
2336 	return 0;
2337 }
2338 
2339 /*
2340  * Can be called when
2341  * - hold extent lock
2342  * - under ordered extent
2343  * - the inode is freeing
2344  */
2345 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346 {
2347 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348 	struct io_failure_record *failrec;
2349 	struct extent_state *state, *next;
2350 
2351 	if (RB_EMPTY_ROOT(&failure_tree->state))
2352 		return;
2353 
2354 	spin_lock(&failure_tree->lock);
2355 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356 	while (state) {
2357 		if (state->start > end)
2358 			break;
2359 
2360 		ASSERT(state->end <= end);
2361 
2362 		next = next_state(state);
2363 
2364 		failrec = state->failrec;
2365 		free_extent_state(state);
2366 		kfree(failrec);
2367 
2368 		state = next;
2369 	}
2370 	spin_unlock(&failure_tree->lock);
2371 }
2372 
2373 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374 		struct io_failure_record **failrec_ret)
2375 {
2376 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 	struct io_failure_record *failrec;
2378 	struct extent_map *em;
2379 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382 	int ret;
2383 	u64 logical;
2384 
2385 	ret = get_state_failrec(failure_tree, start, &failrec);
2386 	if (ret) {
2387 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388 		if (!failrec)
2389 			return -ENOMEM;
2390 
2391 		failrec->start = start;
2392 		failrec->len = end - start + 1;
2393 		failrec->this_mirror = 0;
2394 		failrec->bio_flags = 0;
2395 		failrec->in_validation = 0;
2396 
2397 		read_lock(&em_tree->lock);
2398 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2399 		if (!em) {
2400 			read_unlock(&em_tree->lock);
2401 			kfree(failrec);
2402 			return -EIO;
2403 		}
2404 
2405 		if (em->start > start || em->start + em->len <= start) {
2406 			free_extent_map(em);
2407 			em = NULL;
2408 		}
2409 		read_unlock(&em_tree->lock);
2410 		if (!em) {
2411 			kfree(failrec);
2412 			return -EIO;
2413 		}
2414 
2415 		logical = start - em->start;
2416 		logical = em->block_start + logical;
2417 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418 			logical = em->block_start;
2419 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420 			extent_set_compress_type(&failrec->bio_flags,
2421 						 em->compress_type);
2422 		}
2423 
2424 		btrfs_debug(fs_info,
2425 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426 			logical, start, failrec->len);
2427 
2428 		failrec->logical = logical;
2429 		free_extent_map(em);
2430 
2431 		/* set the bits in the private failure tree */
2432 		ret = set_extent_bits(failure_tree, start, end,
2433 					EXTENT_LOCKED | EXTENT_DIRTY);
2434 		if (ret >= 0)
2435 			ret = set_state_failrec(failure_tree, start, failrec);
2436 		/* set the bits in the inode's tree */
2437 		if (ret >= 0)
2438 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439 		if (ret < 0) {
2440 			kfree(failrec);
2441 			return ret;
2442 		}
2443 	} else {
2444 		btrfs_debug(fs_info,
2445 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446 			failrec->logical, failrec->start, failrec->len,
2447 			failrec->in_validation);
2448 		/*
2449 		 * when data can be on disk more than twice, add to failrec here
2450 		 * (e.g. with a list for failed_mirror) to make
2451 		 * clean_io_failure() clean all those errors at once.
2452 		 */
2453 	}
2454 
2455 	*failrec_ret = failrec;
2456 
2457 	return 0;
2458 }
2459 
2460 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461 			   struct io_failure_record *failrec, int failed_mirror)
2462 {
2463 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464 	int num_copies;
2465 
2466 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467 	if (num_copies == 1) {
2468 		/*
2469 		 * we only have a single copy of the data, so don't bother with
2470 		 * all the retry and error correction code that follows. no
2471 		 * matter what the error is, it is very likely to persist.
2472 		 */
2473 		btrfs_debug(fs_info,
2474 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475 			num_copies, failrec->this_mirror, failed_mirror);
2476 		return false;
2477 	}
2478 
2479 	/*
2480 	 * there are two premises:
2481 	 *	a) deliver good data to the caller
2482 	 *	b) correct the bad sectors on disk
2483 	 */
2484 	if (failed_bio_pages > 1) {
2485 		/*
2486 		 * to fulfill b), we need to know the exact failing sectors, as
2487 		 * we don't want to rewrite any more than the failed ones. thus,
2488 		 * we need separate read requests for the failed bio
2489 		 *
2490 		 * if the following BUG_ON triggers, our validation request got
2491 		 * merged. we need separate requests for our algorithm to work.
2492 		 */
2493 		BUG_ON(failrec->in_validation);
2494 		failrec->in_validation = 1;
2495 		failrec->this_mirror = failed_mirror;
2496 	} else {
2497 		/*
2498 		 * we're ready to fulfill a) and b) alongside. get a good copy
2499 		 * of the failed sector and if we succeed, we have setup
2500 		 * everything for repair_io_failure to do the rest for us.
2501 		 */
2502 		if (failrec->in_validation) {
2503 			BUG_ON(failrec->this_mirror != failed_mirror);
2504 			failrec->in_validation = 0;
2505 			failrec->this_mirror = 0;
2506 		}
2507 		failrec->failed_mirror = failed_mirror;
2508 		failrec->this_mirror++;
2509 		if (failrec->this_mirror == failed_mirror)
2510 			failrec->this_mirror++;
2511 	}
2512 
2513 	if (failrec->this_mirror > num_copies) {
2514 		btrfs_debug(fs_info,
2515 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516 			num_copies, failrec->this_mirror, failed_mirror);
2517 		return false;
2518 	}
2519 
2520 	return true;
2521 }
2522 
2523 
2524 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525 				    struct io_failure_record *failrec,
2526 				    struct page *page, int pg_offset, int icsum,
2527 				    bio_end_io_t *endio_func, void *data)
2528 {
2529 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530 	struct bio *bio;
2531 	struct btrfs_io_bio *btrfs_failed_bio;
2532 	struct btrfs_io_bio *btrfs_bio;
2533 
2534 	bio = btrfs_io_bio_alloc(1);
2535 	bio->bi_end_io = endio_func;
2536 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2537 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538 	bio->bi_iter.bi_size = 0;
2539 	bio->bi_private = data;
2540 
2541 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542 	if (btrfs_failed_bio->csum) {
2543 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544 
2545 		btrfs_bio = btrfs_io_bio(bio);
2546 		btrfs_bio->csum = btrfs_bio->csum_inline;
2547 		icsum *= csum_size;
2548 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549 		       csum_size);
2550 	}
2551 
2552 	bio_add_page(bio, page, failrec->len, pg_offset);
2553 
2554 	return bio;
2555 }
2556 
2557 /*
2558  * This is a generic handler for readpage errors. If other copies exist, read
2559  * those and write back good data to the failed position. Does not investigate
2560  * in remapping the failed extent elsewhere, hoping the device will be smart
2561  * enough to do this as needed
2562  */
2563 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564 			      struct page *page, u64 start, u64 end,
2565 			      int failed_mirror)
2566 {
2567 	struct io_failure_record *failrec;
2568 	struct inode *inode = page->mapping->host;
2569 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571 	struct bio *bio;
2572 	int read_mode = 0;
2573 	blk_status_t status;
2574 	int ret;
2575 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576 
2577 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578 
2579 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580 	if (ret)
2581 		return ret;
2582 
2583 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584 				    failed_mirror)) {
2585 		free_io_failure(failure_tree, tree, failrec);
2586 		return -EIO;
2587 	}
2588 
2589 	if (failed_bio_pages > 1)
2590 		read_mode |= REQ_FAILFAST_DEV;
2591 
2592 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2593 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594 				      start - page_offset(page),
2595 				      (int)phy_offset, failed_bio->bi_end_io,
2596 				      NULL);
2597 	bio->bi_opf = REQ_OP_READ | read_mode;
2598 
2599 	btrfs_debug(btrfs_sb(inode->i_sb),
2600 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601 		read_mode, failrec->this_mirror, failrec->in_validation);
2602 
2603 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604 					 failrec->bio_flags);
2605 	if (status) {
2606 		free_io_failure(failure_tree, tree, failrec);
2607 		bio_put(bio);
2608 		ret = blk_status_to_errno(status);
2609 	}
2610 
2611 	return ret;
2612 }
2613 
2614 /* lots and lots of room for performance fixes in the end_bio funcs */
2615 
2616 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617 {
2618 	int uptodate = (err == 0);
2619 	int ret = 0;
2620 
2621 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2622 
2623 	if (!uptodate) {
2624 		ClearPageUptodate(page);
2625 		SetPageError(page);
2626 		ret = err < 0 ? err : -EIO;
2627 		mapping_set_error(page->mapping, ret);
2628 	}
2629 }
2630 
2631 /*
2632  * after a writepage IO is done, we need to:
2633  * clear the uptodate bits on error
2634  * clear the writeback bits in the extent tree for this IO
2635  * end_page_writeback if the page has no more pending IO
2636  *
2637  * Scheduling is not allowed, so the extent state tree is expected
2638  * to have one and only one object corresponding to this IO.
2639  */
2640 static void end_bio_extent_writepage(struct bio *bio)
2641 {
2642 	int error = blk_status_to_errno(bio->bi_status);
2643 	struct bio_vec *bvec;
2644 	u64 start;
2645 	u64 end;
2646 	struct bvec_iter_all iter_all;
2647 
2648 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2649 	bio_for_each_segment_all(bvec, bio, iter_all) {
2650 		struct page *page = bvec->bv_page;
2651 		struct inode *inode = page->mapping->host;
2652 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653 
2654 		/* We always issue full-page reads, but if some block
2655 		 * in a page fails to read, blk_update_request() will
2656 		 * advance bv_offset and adjust bv_len to compensate.
2657 		 * Print a warning for nonzero offsets, and an error
2658 		 * if they don't add up to a full page.  */
2659 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661 				btrfs_err(fs_info,
2662 				   "partial page write in btrfs with offset %u and length %u",
2663 					bvec->bv_offset, bvec->bv_len);
2664 			else
2665 				btrfs_info(fs_info,
2666 				   "incomplete page write in btrfs with offset %u and length %u",
2667 					bvec->bv_offset, bvec->bv_len);
2668 		}
2669 
2670 		start = page_offset(page);
2671 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2672 
2673 		end_extent_writepage(page, error, start, end);
2674 		end_page_writeback(page);
2675 	}
2676 
2677 	bio_put(bio);
2678 }
2679 
2680 static void
2681 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682 			      int uptodate)
2683 {
2684 	struct extent_state *cached = NULL;
2685 	u64 end = start + len - 1;
2686 
2687 	if (uptodate && tree->track_uptodate)
2688 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689 	unlock_extent_cached_atomic(tree, start, end, &cached);
2690 }
2691 
2692 /*
2693  * after a readpage IO is done, we need to:
2694  * clear the uptodate bits on error
2695  * set the uptodate bits if things worked
2696  * set the page up to date if all extents in the tree are uptodate
2697  * clear the lock bit in the extent tree
2698  * unlock the page if there are no other extents locked for it
2699  *
2700  * Scheduling is not allowed, so the extent state tree is expected
2701  * to have one and only one object corresponding to this IO.
2702  */
2703 static void end_bio_extent_readpage(struct bio *bio)
2704 {
2705 	struct bio_vec *bvec;
2706 	int uptodate = !bio->bi_status;
2707 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708 	struct extent_io_tree *tree, *failure_tree;
2709 	u64 offset = 0;
2710 	u64 start;
2711 	u64 end;
2712 	u64 len;
2713 	u64 extent_start = 0;
2714 	u64 extent_len = 0;
2715 	int mirror;
2716 	int ret;
2717 	struct bvec_iter_all iter_all;
2718 
2719 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2720 	bio_for_each_segment_all(bvec, bio, iter_all) {
2721 		struct page *page = bvec->bv_page;
2722 		struct inode *inode = page->mapping->host;
2723 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2725 			!= BTRFS_BTREE_INODE_OBJECTID;
2726 
2727 		btrfs_debug(fs_info,
2728 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2730 			io_bio->mirror_num);
2731 		tree = &BTRFS_I(inode)->io_tree;
2732 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733 
2734 		/* We always issue full-page reads, but if some block
2735 		 * in a page fails to read, blk_update_request() will
2736 		 * advance bv_offset and adjust bv_len to compensate.
2737 		 * Print a warning for nonzero offsets, and an error
2738 		 * if they don't add up to a full page.  */
2739 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741 				btrfs_err(fs_info,
2742 					"partial page read in btrfs with offset %u and length %u",
2743 					bvec->bv_offset, bvec->bv_len);
2744 			else
2745 				btrfs_info(fs_info,
2746 					"incomplete page read in btrfs with offset %u and length %u",
2747 					bvec->bv_offset, bvec->bv_len);
2748 		}
2749 
2750 		start = page_offset(page);
2751 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2752 		len = bvec->bv_len;
2753 
2754 		mirror = io_bio->mirror_num;
2755 		if (likely(uptodate)) {
2756 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757 							      page, start, end,
2758 							      mirror);
2759 			if (ret)
2760 				uptodate = 0;
2761 			else
2762 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763 						 failure_tree, tree, start,
2764 						 page,
2765 						 btrfs_ino(BTRFS_I(inode)), 0);
2766 		}
2767 
2768 		if (likely(uptodate))
2769 			goto readpage_ok;
2770 
2771 		if (data_inode) {
2772 
2773 			/*
2774 			 * The generic bio_readpage_error handles errors the
2775 			 * following way: If possible, new read requests are
2776 			 * created and submitted and will end up in
2777 			 * end_bio_extent_readpage as well (if we're lucky,
2778 			 * not in the !uptodate case). In that case it returns
2779 			 * 0 and we just go on with the next page in our bio.
2780 			 * If it can't handle the error it will return -EIO and
2781 			 * we remain responsible for that page.
2782 			 */
2783 			ret = bio_readpage_error(bio, offset, page, start, end,
2784 						 mirror);
2785 			if (ret == 0) {
2786 				uptodate = !bio->bi_status;
2787 				offset += len;
2788 				continue;
2789 			}
2790 		} else {
2791 			struct extent_buffer *eb;
2792 
2793 			eb = (struct extent_buffer *)page->private;
2794 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795 			eb->read_mirror = mirror;
2796 			atomic_dec(&eb->io_pages);
2797 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798 					       &eb->bflags))
2799 				btree_readahead_hook(eb, -EIO);
2800 		}
2801 readpage_ok:
2802 		if (likely(uptodate)) {
2803 			loff_t i_size = i_size_read(inode);
2804 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2805 			unsigned off;
2806 
2807 			/* Zero out the end if this page straddles i_size */
2808 			off = offset_in_page(i_size);
2809 			if (page->index == end_index && off)
2810 				zero_user_segment(page, off, PAGE_SIZE);
2811 			SetPageUptodate(page);
2812 		} else {
2813 			ClearPageUptodate(page);
2814 			SetPageError(page);
2815 		}
2816 		unlock_page(page);
2817 		offset += len;
2818 
2819 		if (unlikely(!uptodate)) {
2820 			if (extent_len) {
2821 				endio_readpage_release_extent(tree,
2822 							      extent_start,
2823 							      extent_len, 1);
2824 				extent_start = 0;
2825 				extent_len = 0;
2826 			}
2827 			endio_readpage_release_extent(tree, start,
2828 						      end - start + 1, 0);
2829 		} else if (!extent_len) {
2830 			extent_start = start;
2831 			extent_len = end + 1 - start;
2832 		} else if (extent_start + extent_len == start) {
2833 			extent_len += end + 1 - start;
2834 		} else {
2835 			endio_readpage_release_extent(tree, extent_start,
2836 						      extent_len, uptodate);
2837 			extent_start = start;
2838 			extent_len = end + 1 - start;
2839 		}
2840 	}
2841 
2842 	if (extent_len)
2843 		endio_readpage_release_extent(tree, extent_start, extent_len,
2844 					      uptodate);
2845 	btrfs_io_bio_free_csum(io_bio);
2846 	bio_put(bio);
2847 }
2848 
2849 /*
2850  * Initialize the members up to but not including 'bio'. Use after allocating a
2851  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852  * 'bio' because use of __GFP_ZERO is not supported.
2853  */
2854 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855 {
2856 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857 }
2858 
2859 /*
2860  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2862  * for the appropriate container_of magic
2863  */
2864 struct bio *btrfs_bio_alloc(u64 first_byte)
2865 {
2866 	struct bio *bio;
2867 
2868 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869 	bio->bi_iter.bi_sector = first_byte >> 9;
2870 	btrfs_io_bio_init(btrfs_io_bio(bio));
2871 	return bio;
2872 }
2873 
2874 struct bio *btrfs_bio_clone(struct bio *bio)
2875 {
2876 	struct btrfs_io_bio *btrfs_bio;
2877 	struct bio *new;
2878 
2879 	/* Bio allocation backed by a bioset does not fail */
2880 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881 	btrfs_bio = btrfs_io_bio(new);
2882 	btrfs_io_bio_init(btrfs_bio);
2883 	btrfs_bio->iter = bio->bi_iter;
2884 	return new;
2885 }
2886 
2887 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888 {
2889 	struct bio *bio;
2890 
2891 	/* Bio allocation backed by a bioset does not fail */
2892 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893 	btrfs_io_bio_init(btrfs_io_bio(bio));
2894 	return bio;
2895 }
2896 
2897 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898 {
2899 	struct bio *bio;
2900 	struct btrfs_io_bio *btrfs_bio;
2901 
2902 	/* this will never fail when it's backed by a bioset */
2903 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904 	ASSERT(bio);
2905 
2906 	btrfs_bio = btrfs_io_bio(bio);
2907 	btrfs_io_bio_init(btrfs_bio);
2908 
2909 	bio_trim(bio, offset >> 9, size >> 9);
2910 	btrfs_bio->iter = bio->bi_iter;
2911 	return bio;
2912 }
2913 
2914 /*
2915  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2916  * @tree:	tree so we can call our merge_bio hook
2917  * @wbc:	optional writeback control for io accounting
2918  * @page:	page to add to the bio
2919  * @pg_offset:	offset of the new bio or to check whether we are adding
2920  *              a contiguous page to the previous one
2921  * @size:	portion of page that we want to write
2922  * @offset:	starting offset in the page
2923  * @bdev:	attach newly created bios to this bdev
2924  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2925  * @end_io_func:     end_io callback for new bio
2926  * @mirror_num:	     desired mirror to read/write
2927  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2928  * @bio_flags:	flags of the current bio to see if we can merge them
2929  */
2930 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931 			      struct writeback_control *wbc,
2932 			      struct page *page, u64 offset,
2933 			      size_t size, unsigned long pg_offset,
2934 			      struct block_device *bdev,
2935 			      struct bio **bio_ret,
2936 			      bio_end_io_t end_io_func,
2937 			      int mirror_num,
2938 			      unsigned long prev_bio_flags,
2939 			      unsigned long bio_flags,
2940 			      bool force_bio_submit)
2941 {
2942 	int ret = 0;
2943 	struct bio *bio;
2944 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945 	sector_t sector = offset >> 9;
2946 
2947 	ASSERT(bio_ret);
2948 
2949 	if (*bio_ret) {
2950 		bool contig;
2951 		bool can_merge = true;
2952 
2953 		bio = *bio_ret;
2954 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955 			contig = bio->bi_iter.bi_sector == sector;
2956 		else
2957 			contig = bio_end_sector(bio) == sector;
2958 
2959 		ASSERT(tree->ops);
2960 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961 			can_merge = false;
2962 
2963 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964 		    force_bio_submit ||
2965 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967 			if (ret < 0) {
2968 				*bio_ret = NULL;
2969 				return ret;
2970 			}
2971 			bio = NULL;
2972 		} else {
2973 			if (wbc)
2974 				wbc_account_cgroup_owner(wbc, page, page_size);
2975 			return 0;
2976 		}
2977 	}
2978 
2979 	bio = btrfs_bio_alloc(offset);
2980 	bio_set_dev(bio, bdev);
2981 	bio_add_page(bio, page, page_size, pg_offset);
2982 	bio->bi_end_io = end_io_func;
2983 	bio->bi_private = tree;
2984 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2985 	bio->bi_opf = opf;
2986 	if (wbc) {
2987 		wbc_init_bio(wbc, bio);
2988 		wbc_account_cgroup_owner(wbc, page, page_size);
2989 	}
2990 
2991 	*bio_ret = bio;
2992 
2993 	return ret;
2994 }
2995 
2996 static void attach_extent_buffer_page(struct extent_buffer *eb,
2997 				      struct page *page)
2998 {
2999 	if (!PagePrivate(page)) {
3000 		SetPagePrivate(page);
3001 		get_page(page);
3002 		set_page_private(page, (unsigned long)eb);
3003 	} else {
3004 		WARN_ON(page->private != (unsigned long)eb);
3005 	}
3006 }
3007 
3008 void set_page_extent_mapped(struct page *page)
3009 {
3010 	if (!PagePrivate(page)) {
3011 		SetPagePrivate(page);
3012 		get_page(page);
3013 		set_page_private(page, EXTENT_PAGE_PRIVATE);
3014 	}
3015 }
3016 
3017 static struct extent_map *
3018 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019 		 u64 start, u64 len, get_extent_t *get_extent,
3020 		 struct extent_map **em_cached)
3021 {
3022 	struct extent_map *em;
3023 
3024 	if (em_cached && *em_cached) {
3025 		em = *em_cached;
3026 		if (extent_map_in_tree(em) && start >= em->start &&
3027 		    start < extent_map_end(em)) {
3028 			refcount_inc(&em->refs);
3029 			return em;
3030 		}
3031 
3032 		free_extent_map(em);
3033 		*em_cached = NULL;
3034 	}
3035 
3036 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3038 		BUG_ON(*em_cached);
3039 		refcount_inc(&em->refs);
3040 		*em_cached = em;
3041 	}
3042 	return em;
3043 }
3044 /*
3045  * basic readpage implementation.  Locked extent state structs are inserted
3046  * into the tree that are removed when the IO is done (by the end_io
3047  * handlers)
3048  * XXX JDM: This needs looking at to ensure proper page locking
3049  * return 0 on success, otherwise return error
3050  */
3051 static int __do_readpage(struct extent_io_tree *tree,
3052 			 struct page *page,
3053 			 get_extent_t *get_extent,
3054 			 struct extent_map **em_cached,
3055 			 struct bio **bio, int mirror_num,
3056 			 unsigned long *bio_flags, unsigned int read_flags,
3057 			 u64 *prev_em_start)
3058 {
3059 	struct inode *inode = page->mapping->host;
3060 	u64 start = page_offset(page);
3061 	const u64 end = start + PAGE_SIZE - 1;
3062 	u64 cur = start;
3063 	u64 extent_offset;
3064 	u64 last_byte = i_size_read(inode);
3065 	u64 block_start;
3066 	u64 cur_end;
3067 	struct extent_map *em;
3068 	struct block_device *bdev;
3069 	int ret = 0;
3070 	int nr = 0;
3071 	size_t pg_offset = 0;
3072 	size_t iosize;
3073 	size_t disk_io_size;
3074 	size_t blocksize = inode->i_sb->s_blocksize;
3075 	unsigned long this_bio_flag = 0;
3076 
3077 	set_page_extent_mapped(page);
3078 
3079 	if (!PageUptodate(page)) {
3080 		if (cleancache_get_page(page) == 0) {
3081 			BUG_ON(blocksize != PAGE_SIZE);
3082 			unlock_extent(tree, start, end);
3083 			goto out;
3084 		}
3085 	}
3086 
3087 	if (page->index == last_byte >> PAGE_SHIFT) {
3088 		char *userpage;
3089 		size_t zero_offset = offset_in_page(last_byte);
3090 
3091 		if (zero_offset) {
3092 			iosize = PAGE_SIZE - zero_offset;
3093 			userpage = kmap_atomic(page);
3094 			memset(userpage + zero_offset, 0, iosize);
3095 			flush_dcache_page(page);
3096 			kunmap_atomic(userpage);
3097 		}
3098 	}
3099 	while (cur <= end) {
3100 		bool force_bio_submit = false;
3101 		u64 offset;
3102 
3103 		if (cur >= last_byte) {
3104 			char *userpage;
3105 			struct extent_state *cached = NULL;
3106 
3107 			iosize = PAGE_SIZE - pg_offset;
3108 			userpage = kmap_atomic(page);
3109 			memset(userpage + pg_offset, 0, iosize);
3110 			flush_dcache_page(page);
3111 			kunmap_atomic(userpage);
3112 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3113 					    &cached, GFP_NOFS);
3114 			unlock_extent_cached(tree, cur,
3115 					     cur + iosize - 1, &cached);
3116 			break;
3117 		}
3118 		em = __get_extent_map(inode, page, pg_offset, cur,
3119 				      end - cur + 1, get_extent, em_cached);
3120 		if (IS_ERR_OR_NULL(em)) {
3121 			SetPageError(page);
3122 			unlock_extent(tree, cur, end);
3123 			break;
3124 		}
3125 		extent_offset = cur - em->start;
3126 		BUG_ON(extent_map_end(em) <= cur);
3127 		BUG_ON(end < cur);
3128 
3129 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131 			extent_set_compress_type(&this_bio_flag,
3132 						 em->compress_type);
3133 		}
3134 
3135 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136 		cur_end = min(extent_map_end(em) - 1, end);
3137 		iosize = ALIGN(iosize, blocksize);
3138 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139 			disk_io_size = em->block_len;
3140 			offset = em->block_start;
3141 		} else {
3142 			offset = em->block_start + extent_offset;
3143 			disk_io_size = iosize;
3144 		}
3145 		bdev = em->bdev;
3146 		block_start = em->block_start;
3147 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148 			block_start = EXTENT_MAP_HOLE;
3149 
3150 		/*
3151 		 * If we have a file range that points to a compressed extent
3152 		 * and it's followed by a consecutive file range that points to
3153 		 * to the same compressed extent (possibly with a different
3154 		 * offset and/or length, so it either points to the whole extent
3155 		 * or only part of it), we must make sure we do not submit a
3156 		 * single bio to populate the pages for the 2 ranges because
3157 		 * this makes the compressed extent read zero out the pages
3158 		 * belonging to the 2nd range. Imagine the following scenario:
3159 		 *
3160 		 *  File layout
3161 		 *  [0 - 8K]                     [8K - 24K]
3162 		 *    |                               |
3163 		 *    |                               |
3164 		 * points to extent X,         points to extent X,
3165 		 * offset 4K, length of 8K     offset 0, length 16K
3166 		 *
3167 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3168 		 *
3169 		 * If the bio to read the compressed extent covers both ranges,
3170 		 * it will decompress extent X into the pages belonging to the
3171 		 * first range and then it will stop, zeroing out the remaining
3172 		 * pages that belong to the other range that points to extent X.
3173 		 * So here we make sure we submit 2 bios, one for the first
3174 		 * range and another one for the third range. Both will target
3175 		 * the same physical extent from disk, but we can't currently
3176 		 * make the compressed bio endio callback populate the pages
3177 		 * for both ranges because each compressed bio is tightly
3178 		 * coupled with a single extent map, and each range can have
3179 		 * an extent map with a different offset value relative to the
3180 		 * uncompressed data of our extent and different lengths. This
3181 		 * is a corner case so we prioritize correctness over
3182 		 * non-optimal behavior (submitting 2 bios for the same extent).
3183 		 */
3184 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185 		    prev_em_start && *prev_em_start != (u64)-1 &&
3186 		    *prev_em_start != em->start)
3187 			force_bio_submit = true;
3188 
3189 		if (prev_em_start)
3190 			*prev_em_start = em->start;
3191 
3192 		free_extent_map(em);
3193 		em = NULL;
3194 
3195 		/* we've found a hole, just zero and go on */
3196 		if (block_start == EXTENT_MAP_HOLE) {
3197 			char *userpage;
3198 			struct extent_state *cached = NULL;
3199 
3200 			userpage = kmap_atomic(page);
3201 			memset(userpage + pg_offset, 0, iosize);
3202 			flush_dcache_page(page);
3203 			kunmap_atomic(userpage);
3204 
3205 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 					    &cached, GFP_NOFS);
3207 			unlock_extent_cached(tree, cur,
3208 					     cur + iosize - 1, &cached);
3209 			cur = cur + iosize;
3210 			pg_offset += iosize;
3211 			continue;
3212 		}
3213 		/* the get_extent function already copied into the page */
3214 		if (test_range_bit(tree, cur, cur_end,
3215 				   EXTENT_UPTODATE, 1, NULL)) {
3216 			check_page_uptodate(tree, page);
3217 			unlock_extent(tree, cur, cur + iosize - 1);
3218 			cur = cur + iosize;
3219 			pg_offset += iosize;
3220 			continue;
3221 		}
3222 		/* we have an inline extent but it didn't get marked up
3223 		 * to date.  Error out
3224 		 */
3225 		if (block_start == EXTENT_MAP_INLINE) {
3226 			SetPageError(page);
3227 			unlock_extent(tree, cur, cur + iosize - 1);
3228 			cur = cur + iosize;
3229 			pg_offset += iosize;
3230 			continue;
3231 		}
3232 
3233 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234 					 page, offset, disk_io_size,
3235 					 pg_offset, bdev, bio,
3236 					 end_bio_extent_readpage, mirror_num,
3237 					 *bio_flags,
3238 					 this_bio_flag,
3239 					 force_bio_submit);
3240 		if (!ret) {
3241 			nr++;
3242 			*bio_flags = this_bio_flag;
3243 		} else {
3244 			SetPageError(page);
3245 			unlock_extent(tree, cur, cur + iosize - 1);
3246 			goto out;
3247 		}
3248 		cur = cur + iosize;
3249 		pg_offset += iosize;
3250 	}
3251 out:
3252 	if (!nr) {
3253 		if (!PageError(page))
3254 			SetPageUptodate(page);
3255 		unlock_page(page);
3256 	}
3257 	return ret;
3258 }
3259 
3260 static inline void contiguous_readpages(struct extent_io_tree *tree,
3261 					     struct page *pages[], int nr_pages,
3262 					     u64 start, u64 end,
3263 					     struct extent_map **em_cached,
3264 					     struct bio **bio,
3265 					     unsigned long *bio_flags,
3266 					     u64 *prev_em_start)
3267 {
3268 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269 	int index;
3270 
3271 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272 
3273 	for (index = 0; index < nr_pages; index++) {
3274 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276 		put_page(pages[index]);
3277 	}
3278 }
3279 
3280 static int __extent_read_full_page(struct extent_io_tree *tree,
3281 				   struct page *page,
3282 				   get_extent_t *get_extent,
3283 				   struct bio **bio, int mirror_num,
3284 				   unsigned long *bio_flags,
3285 				   unsigned int read_flags)
3286 {
3287 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288 	u64 start = page_offset(page);
3289 	u64 end = start + PAGE_SIZE - 1;
3290 	int ret;
3291 
3292 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293 
3294 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295 			    bio_flags, read_flags, NULL);
3296 	return ret;
3297 }
3298 
3299 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300 			    get_extent_t *get_extent, int mirror_num)
3301 {
3302 	struct bio *bio = NULL;
3303 	unsigned long bio_flags = 0;
3304 	int ret;
3305 
3306 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307 				      &bio_flags, 0);
3308 	if (bio)
3309 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3310 	return ret;
3311 }
3312 
3313 static void update_nr_written(struct writeback_control *wbc,
3314 			      unsigned long nr_written)
3315 {
3316 	wbc->nr_to_write -= nr_written;
3317 }
3318 
3319 /*
3320  * helper for __extent_writepage, doing all of the delayed allocation setup.
3321  *
3322  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323  * to write the page (copy into inline extent).  In this case the IO has
3324  * been started and the page is already unlocked.
3325  *
3326  * This returns 0 if all went well (page still locked)
3327  * This returns < 0 if there were errors (page still locked)
3328  */
3329 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330 		struct page *page, struct writeback_control *wbc,
3331 		u64 delalloc_start, unsigned long *nr_written)
3332 {
3333 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334 	bool found;
3335 	u64 delalloc_to_write = 0;
3336 	u64 delalloc_end = 0;
3337 	int ret;
3338 	int page_started = 0;
3339 
3340 
3341 	while (delalloc_end < page_end) {
3342 		found = find_lock_delalloc_range(inode, page,
3343 					       &delalloc_start,
3344 					       &delalloc_end);
3345 		if (!found) {
3346 			delalloc_start = delalloc_end + 1;
3347 			continue;
3348 		}
3349 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350 				delalloc_end, &page_started, nr_written, wbc);
3351 		if (ret) {
3352 			SetPageError(page);
3353 			/*
3354 			 * btrfs_run_delalloc_range should return < 0 for error
3355 			 * but just in case, we use > 0 here meaning the IO is
3356 			 * started, so we don't want to return > 0 unless
3357 			 * things are going well.
3358 			 */
3359 			ret = ret < 0 ? ret : -EIO;
3360 			goto done;
3361 		}
3362 		/*
3363 		 * delalloc_end is already one less than the total length, so
3364 		 * we don't subtract one from PAGE_SIZE
3365 		 */
3366 		delalloc_to_write += (delalloc_end - delalloc_start +
3367 				      PAGE_SIZE) >> PAGE_SHIFT;
3368 		delalloc_start = delalloc_end + 1;
3369 	}
3370 	if (wbc->nr_to_write < delalloc_to_write) {
3371 		int thresh = 8192;
3372 
3373 		if (delalloc_to_write < thresh * 2)
3374 			thresh = delalloc_to_write;
3375 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376 					 thresh);
3377 	}
3378 
3379 	/* did the fill delalloc function already unlock and start
3380 	 * the IO?
3381 	 */
3382 	if (page_started) {
3383 		/*
3384 		 * we've unlocked the page, so we can't update
3385 		 * the mapping's writeback index, just update
3386 		 * nr_to_write.
3387 		 */
3388 		wbc->nr_to_write -= *nr_written;
3389 		return 1;
3390 	}
3391 
3392 	ret = 0;
3393 
3394 done:
3395 	return ret;
3396 }
3397 
3398 /*
3399  * helper for __extent_writepage.  This calls the writepage start hooks,
3400  * and does the loop to map the page into extents and bios.
3401  *
3402  * We return 1 if the IO is started and the page is unlocked,
3403  * 0 if all went well (page still locked)
3404  * < 0 if there were errors (page still locked)
3405  */
3406 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407 				 struct page *page,
3408 				 struct writeback_control *wbc,
3409 				 struct extent_page_data *epd,
3410 				 loff_t i_size,
3411 				 unsigned long nr_written,
3412 				 unsigned int write_flags, int *nr_ret)
3413 {
3414 	struct extent_io_tree *tree = epd->tree;
3415 	u64 start = page_offset(page);
3416 	u64 page_end = start + PAGE_SIZE - 1;
3417 	u64 end;
3418 	u64 cur = start;
3419 	u64 extent_offset;
3420 	u64 block_start;
3421 	u64 iosize;
3422 	struct extent_map *em;
3423 	struct block_device *bdev;
3424 	size_t pg_offset = 0;
3425 	size_t blocksize;
3426 	int ret = 0;
3427 	int nr = 0;
3428 	bool compressed;
3429 
3430 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431 	if (ret) {
3432 		/* Fixup worker will requeue */
3433 		if (ret == -EBUSY)
3434 			wbc->pages_skipped++;
3435 		else
3436 			redirty_page_for_writepage(wbc, page);
3437 
3438 		update_nr_written(wbc, nr_written);
3439 		unlock_page(page);
3440 		return 1;
3441 	}
3442 
3443 	/*
3444 	 * we don't want to touch the inode after unlocking the page,
3445 	 * so we update the mapping writeback index now
3446 	 */
3447 	update_nr_written(wbc, nr_written + 1);
3448 
3449 	end = page_end;
3450 	if (i_size <= start) {
3451 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452 		goto done;
3453 	}
3454 
3455 	blocksize = inode->i_sb->s_blocksize;
3456 
3457 	while (cur <= end) {
3458 		u64 em_end;
3459 		u64 offset;
3460 
3461 		if (cur >= i_size) {
3462 			btrfs_writepage_endio_finish_ordered(page, cur,
3463 							     page_end, 1);
3464 			break;
3465 		}
3466 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467 				     end - cur + 1, 1);
3468 		if (IS_ERR_OR_NULL(em)) {
3469 			SetPageError(page);
3470 			ret = PTR_ERR_OR_ZERO(em);
3471 			break;
3472 		}
3473 
3474 		extent_offset = cur - em->start;
3475 		em_end = extent_map_end(em);
3476 		BUG_ON(em_end <= cur);
3477 		BUG_ON(end < cur);
3478 		iosize = min(em_end - cur, end - cur + 1);
3479 		iosize = ALIGN(iosize, blocksize);
3480 		offset = em->block_start + extent_offset;
3481 		bdev = em->bdev;
3482 		block_start = em->block_start;
3483 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484 		free_extent_map(em);
3485 		em = NULL;
3486 
3487 		/*
3488 		 * compressed and inline extents are written through other
3489 		 * paths in the FS
3490 		 */
3491 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3492 		    block_start == EXTENT_MAP_INLINE) {
3493 			/*
3494 			 * end_io notification does not happen here for
3495 			 * compressed extents
3496 			 */
3497 			if (!compressed)
3498 				btrfs_writepage_endio_finish_ordered(page, cur,
3499 							    cur + iosize - 1,
3500 							    1);
3501 			else if (compressed) {
3502 				/* we don't want to end_page_writeback on
3503 				 * a compressed extent.  this happens
3504 				 * elsewhere
3505 				 */
3506 				nr++;
3507 			}
3508 
3509 			cur += iosize;
3510 			pg_offset += iosize;
3511 			continue;
3512 		}
3513 
3514 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515 		if (!PageWriteback(page)) {
3516 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3517 				   "page %lu not writeback, cur %llu end %llu",
3518 			       page->index, cur, end);
3519 		}
3520 
3521 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522 					 page, offset, iosize, pg_offset,
3523 					 bdev, &epd->bio,
3524 					 end_bio_extent_writepage,
3525 					 0, 0, 0, false);
3526 		if (ret) {
3527 			SetPageError(page);
3528 			if (PageWriteback(page))
3529 				end_page_writeback(page);
3530 		}
3531 
3532 		cur = cur + iosize;
3533 		pg_offset += iosize;
3534 		nr++;
3535 	}
3536 done:
3537 	*nr_ret = nr;
3538 	return ret;
3539 }
3540 
3541 /*
3542  * the writepage semantics are similar to regular writepage.  extent
3543  * records are inserted to lock ranges in the tree, and as dirty areas
3544  * are found, they are marked writeback.  Then the lock bits are removed
3545  * and the end_io handler clears the writeback ranges
3546  *
3547  * Return 0 if everything goes well.
3548  * Return <0 for error.
3549  */
3550 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551 			      struct extent_page_data *epd)
3552 {
3553 	struct inode *inode = page->mapping->host;
3554 	u64 start = page_offset(page);
3555 	u64 page_end = start + PAGE_SIZE - 1;
3556 	int ret;
3557 	int nr = 0;
3558 	size_t pg_offset = 0;
3559 	loff_t i_size = i_size_read(inode);
3560 	unsigned long end_index = i_size >> PAGE_SHIFT;
3561 	unsigned int write_flags = 0;
3562 	unsigned long nr_written = 0;
3563 
3564 	write_flags = wbc_to_write_flags(wbc);
3565 
3566 	trace___extent_writepage(page, inode, wbc);
3567 
3568 	WARN_ON(!PageLocked(page));
3569 
3570 	ClearPageError(page);
3571 
3572 	pg_offset = offset_in_page(i_size);
3573 	if (page->index > end_index ||
3574 	   (page->index == end_index && !pg_offset)) {
3575 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576 		unlock_page(page);
3577 		return 0;
3578 	}
3579 
3580 	if (page->index == end_index) {
3581 		char *userpage;
3582 
3583 		userpage = kmap_atomic(page);
3584 		memset(userpage + pg_offset, 0,
3585 		       PAGE_SIZE - pg_offset);
3586 		kunmap_atomic(userpage);
3587 		flush_dcache_page(page);
3588 	}
3589 
3590 	pg_offset = 0;
3591 
3592 	set_page_extent_mapped(page);
3593 
3594 	if (!epd->extent_locked) {
3595 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596 		if (ret == 1)
3597 			goto done_unlocked;
3598 		if (ret)
3599 			goto done;
3600 	}
3601 
3602 	ret = __extent_writepage_io(inode, page, wbc, epd,
3603 				    i_size, nr_written, write_flags, &nr);
3604 	if (ret == 1)
3605 		goto done_unlocked;
3606 
3607 done:
3608 	if (nr == 0) {
3609 		/* make sure the mapping tag for page dirty gets cleared */
3610 		set_page_writeback(page);
3611 		end_page_writeback(page);
3612 	}
3613 	if (PageError(page)) {
3614 		ret = ret < 0 ? ret : -EIO;
3615 		end_extent_writepage(page, ret, start, page_end);
3616 	}
3617 	unlock_page(page);
3618 	ASSERT(ret <= 0);
3619 	return ret;
3620 
3621 done_unlocked:
3622 	return 0;
3623 }
3624 
3625 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626 {
3627 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628 		       TASK_UNINTERRUPTIBLE);
3629 }
3630 
3631 /*
3632  * Lock eb pages and flush the bio if we can't the locks
3633  *
3634  * Return  0 if nothing went wrong
3635  * Return >0 is same as 0, except bio is not submitted
3636  * Return <0 if something went wrong, no page is locked
3637  */
3638 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3639 			  struct extent_page_data *epd)
3640 {
3641 	struct btrfs_fs_info *fs_info = eb->fs_info;
3642 	int i, num_pages, failed_page_nr;
3643 	int flush = 0;
3644 	int ret = 0;
3645 
3646 	if (!btrfs_try_tree_write_lock(eb)) {
3647 		ret = flush_write_bio(epd);
3648 		if (ret < 0)
3649 			return ret;
3650 		flush = 1;
3651 		btrfs_tree_lock(eb);
3652 	}
3653 
3654 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3655 		btrfs_tree_unlock(eb);
3656 		if (!epd->sync_io)
3657 			return 0;
3658 		if (!flush) {
3659 			ret = flush_write_bio(epd);
3660 			if (ret < 0)
3661 				return ret;
3662 			flush = 1;
3663 		}
3664 		while (1) {
3665 			wait_on_extent_buffer_writeback(eb);
3666 			btrfs_tree_lock(eb);
3667 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3668 				break;
3669 			btrfs_tree_unlock(eb);
3670 		}
3671 	}
3672 
3673 	/*
3674 	 * We need to do this to prevent races in people who check if the eb is
3675 	 * under IO since we can end up having no IO bits set for a short period
3676 	 * of time.
3677 	 */
3678 	spin_lock(&eb->refs_lock);
3679 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3680 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3681 		spin_unlock(&eb->refs_lock);
3682 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3683 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3684 					 -eb->len,
3685 					 fs_info->dirty_metadata_batch);
3686 		ret = 1;
3687 	} else {
3688 		spin_unlock(&eb->refs_lock);
3689 	}
3690 
3691 	btrfs_tree_unlock(eb);
3692 
3693 	if (!ret)
3694 		return ret;
3695 
3696 	num_pages = num_extent_pages(eb);
3697 	for (i = 0; i < num_pages; i++) {
3698 		struct page *p = eb->pages[i];
3699 
3700 		if (!trylock_page(p)) {
3701 			if (!flush) {
3702 				ret = flush_write_bio(epd);
3703 				if (ret < 0) {
3704 					failed_page_nr = i;
3705 					goto err_unlock;
3706 				}
3707 				flush = 1;
3708 			}
3709 			lock_page(p);
3710 		}
3711 	}
3712 
3713 	return ret;
3714 err_unlock:
3715 	/* Unlock already locked pages */
3716 	for (i = 0; i < failed_page_nr; i++)
3717 		unlock_page(eb->pages[i]);
3718 	return ret;
3719 }
3720 
3721 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3722 {
3723 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3724 	smp_mb__after_atomic();
3725 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3726 }
3727 
3728 static void set_btree_ioerr(struct page *page)
3729 {
3730 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3731 
3732 	SetPageError(page);
3733 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3734 		return;
3735 
3736 	/*
3737 	 * If writeback for a btree extent that doesn't belong to a log tree
3738 	 * failed, increment the counter transaction->eb_write_errors.
3739 	 * We do this because while the transaction is running and before it's
3740 	 * committing (when we call filemap_fdata[write|wait]_range against
3741 	 * the btree inode), we might have
3742 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3743 	 * returns an error or an error happens during writeback, when we're
3744 	 * committing the transaction we wouldn't know about it, since the pages
3745 	 * can be no longer dirty nor marked anymore for writeback (if a
3746 	 * subsequent modification to the extent buffer didn't happen before the
3747 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3748 	 * able to find the pages tagged with SetPageError at transaction
3749 	 * commit time. So if this happens we must abort the transaction,
3750 	 * otherwise we commit a super block with btree roots that point to
3751 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3752 	 * or the content of some node/leaf from a past generation that got
3753 	 * cowed or deleted and is no longer valid.
3754 	 *
3755 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3756 	 * not be enough - we need to distinguish between log tree extents vs
3757 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3758 	 * will catch and clear such errors in the mapping - and that call might
3759 	 * be from a log sync and not from a transaction commit. Also, checking
3760 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3761 	 * not done and would not be reliable - the eb might have been released
3762 	 * from memory and reading it back again means that flag would not be
3763 	 * set (since it's a runtime flag, not persisted on disk).
3764 	 *
3765 	 * Using the flags below in the btree inode also makes us achieve the
3766 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3767 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3768 	 * is called, the writeback for all dirty pages had already finished
3769 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3770 	 * filemap_fdatawait_range() would return success, as it could not know
3771 	 * that writeback errors happened (the pages were no longer tagged for
3772 	 * writeback).
3773 	 */
3774 	switch (eb->log_index) {
3775 	case -1:
3776 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3777 		break;
3778 	case 0:
3779 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3780 		break;
3781 	case 1:
3782 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3783 		break;
3784 	default:
3785 		BUG(); /* unexpected, logic error */
3786 	}
3787 }
3788 
3789 static void end_bio_extent_buffer_writepage(struct bio *bio)
3790 {
3791 	struct bio_vec *bvec;
3792 	struct extent_buffer *eb;
3793 	int done;
3794 	struct bvec_iter_all iter_all;
3795 
3796 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3797 	bio_for_each_segment_all(bvec, bio, iter_all) {
3798 		struct page *page = bvec->bv_page;
3799 
3800 		eb = (struct extent_buffer *)page->private;
3801 		BUG_ON(!eb);
3802 		done = atomic_dec_and_test(&eb->io_pages);
3803 
3804 		if (bio->bi_status ||
3805 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3806 			ClearPageUptodate(page);
3807 			set_btree_ioerr(page);
3808 		}
3809 
3810 		end_page_writeback(page);
3811 
3812 		if (!done)
3813 			continue;
3814 
3815 		end_extent_buffer_writeback(eb);
3816 	}
3817 
3818 	bio_put(bio);
3819 }
3820 
3821 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3822 			struct writeback_control *wbc,
3823 			struct extent_page_data *epd)
3824 {
3825 	struct btrfs_fs_info *fs_info = eb->fs_info;
3826 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3827 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3828 	u64 offset = eb->start;
3829 	u32 nritems;
3830 	int i, num_pages;
3831 	unsigned long start, end;
3832 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3833 	int ret = 0;
3834 
3835 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3836 	num_pages = num_extent_pages(eb);
3837 	atomic_set(&eb->io_pages, num_pages);
3838 
3839 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3840 	nritems = btrfs_header_nritems(eb);
3841 	if (btrfs_header_level(eb) > 0) {
3842 		end = btrfs_node_key_ptr_offset(nritems);
3843 
3844 		memzero_extent_buffer(eb, end, eb->len - end);
3845 	} else {
3846 		/*
3847 		 * leaf:
3848 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3849 		 */
3850 		start = btrfs_item_nr_offset(nritems);
3851 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3852 		memzero_extent_buffer(eb, start, end - start);
3853 	}
3854 
3855 	for (i = 0; i < num_pages; i++) {
3856 		struct page *p = eb->pages[i];
3857 
3858 		clear_page_dirty_for_io(p);
3859 		set_page_writeback(p);
3860 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3861 					 p, offset, PAGE_SIZE, 0, bdev,
3862 					 &epd->bio,
3863 					 end_bio_extent_buffer_writepage,
3864 					 0, 0, 0, false);
3865 		if (ret) {
3866 			set_btree_ioerr(p);
3867 			if (PageWriteback(p))
3868 				end_page_writeback(p);
3869 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3870 				end_extent_buffer_writeback(eb);
3871 			ret = -EIO;
3872 			break;
3873 		}
3874 		offset += PAGE_SIZE;
3875 		update_nr_written(wbc, 1);
3876 		unlock_page(p);
3877 	}
3878 
3879 	if (unlikely(ret)) {
3880 		for (; i < num_pages; i++) {
3881 			struct page *p = eb->pages[i];
3882 			clear_page_dirty_for_io(p);
3883 			unlock_page(p);
3884 		}
3885 	}
3886 
3887 	return ret;
3888 }
3889 
3890 int btree_write_cache_pages(struct address_space *mapping,
3891 				   struct writeback_control *wbc)
3892 {
3893 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3894 	struct extent_buffer *eb, *prev_eb = NULL;
3895 	struct extent_page_data epd = {
3896 		.bio = NULL,
3897 		.tree = tree,
3898 		.extent_locked = 0,
3899 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3900 	};
3901 	int ret = 0;
3902 	int done = 0;
3903 	int nr_to_write_done = 0;
3904 	struct pagevec pvec;
3905 	int nr_pages;
3906 	pgoff_t index;
3907 	pgoff_t end;		/* Inclusive */
3908 	int scanned = 0;
3909 	xa_mark_t tag;
3910 
3911 	pagevec_init(&pvec);
3912 	if (wbc->range_cyclic) {
3913 		index = mapping->writeback_index; /* Start from prev offset */
3914 		end = -1;
3915 	} else {
3916 		index = wbc->range_start >> PAGE_SHIFT;
3917 		end = wbc->range_end >> PAGE_SHIFT;
3918 		scanned = 1;
3919 	}
3920 	if (wbc->sync_mode == WB_SYNC_ALL)
3921 		tag = PAGECACHE_TAG_TOWRITE;
3922 	else
3923 		tag = PAGECACHE_TAG_DIRTY;
3924 retry:
3925 	if (wbc->sync_mode == WB_SYNC_ALL)
3926 		tag_pages_for_writeback(mapping, index, end);
3927 	while (!done && !nr_to_write_done && (index <= end) &&
3928 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3929 			tag))) {
3930 		unsigned i;
3931 
3932 		scanned = 1;
3933 		for (i = 0; i < nr_pages; i++) {
3934 			struct page *page = pvec.pages[i];
3935 
3936 			if (!PagePrivate(page))
3937 				continue;
3938 
3939 			spin_lock(&mapping->private_lock);
3940 			if (!PagePrivate(page)) {
3941 				spin_unlock(&mapping->private_lock);
3942 				continue;
3943 			}
3944 
3945 			eb = (struct extent_buffer *)page->private;
3946 
3947 			/*
3948 			 * Shouldn't happen and normally this would be a BUG_ON
3949 			 * but no sense in crashing the users box for something
3950 			 * we can survive anyway.
3951 			 */
3952 			if (WARN_ON(!eb)) {
3953 				spin_unlock(&mapping->private_lock);
3954 				continue;
3955 			}
3956 
3957 			if (eb == prev_eb) {
3958 				spin_unlock(&mapping->private_lock);
3959 				continue;
3960 			}
3961 
3962 			ret = atomic_inc_not_zero(&eb->refs);
3963 			spin_unlock(&mapping->private_lock);
3964 			if (!ret)
3965 				continue;
3966 
3967 			prev_eb = eb;
3968 			ret = lock_extent_buffer_for_io(eb, &epd);
3969 			if (!ret) {
3970 				free_extent_buffer(eb);
3971 				continue;
3972 			}
3973 
3974 			ret = write_one_eb(eb, wbc, &epd);
3975 			if (ret) {
3976 				done = 1;
3977 				free_extent_buffer(eb);
3978 				break;
3979 			}
3980 			free_extent_buffer(eb);
3981 
3982 			/*
3983 			 * the filesystem may choose to bump up nr_to_write.
3984 			 * We have to make sure to honor the new nr_to_write
3985 			 * at any time
3986 			 */
3987 			nr_to_write_done = wbc->nr_to_write <= 0;
3988 		}
3989 		pagevec_release(&pvec);
3990 		cond_resched();
3991 	}
3992 	if (!scanned && !done) {
3993 		/*
3994 		 * We hit the last page and there is more work to be done: wrap
3995 		 * back to the start of the file
3996 		 */
3997 		scanned = 1;
3998 		index = 0;
3999 		goto retry;
4000 	}
4001 	ASSERT(ret <= 0);
4002 	if (ret < 0) {
4003 		end_write_bio(&epd, ret);
4004 		return ret;
4005 	}
4006 	ret = flush_write_bio(&epd);
4007 	return ret;
4008 }
4009 
4010 /**
4011  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4012  * @mapping: address space structure to write
4013  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4014  * @data: data passed to __extent_writepage function
4015  *
4016  * If a page is already under I/O, write_cache_pages() skips it, even
4017  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4018  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4019  * and msync() need to guarantee that all the data which was dirty at the time
4020  * the call was made get new I/O started against them.  If wbc->sync_mode is
4021  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4022  * existing IO to complete.
4023  */
4024 static int extent_write_cache_pages(struct address_space *mapping,
4025 			     struct writeback_control *wbc,
4026 			     struct extent_page_data *epd)
4027 {
4028 	struct inode *inode = mapping->host;
4029 	int ret = 0;
4030 	int done = 0;
4031 	int nr_to_write_done = 0;
4032 	struct pagevec pvec;
4033 	int nr_pages;
4034 	pgoff_t index;
4035 	pgoff_t end;		/* Inclusive */
4036 	pgoff_t done_index;
4037 	int range_whole = 0;
4038 	int scanned = 0;
4039 	xa_mark_t tag;
4040 
4041 	/*
4042 	 * We have to hold onto the inode so that ordered extents can do their
4043 	 * work when the IO finishes.  The alternative to this is failing to add
4044 	 * an ordered extent if the igrab() fails there and that is a huge pain
4045 	 * to deal with, so instead just hold onto the inode throughout the
4046 	 * writepages operation.  If it fails here we are freeing up the inode
4047 	 * anyway and we'd rather not waste our time writing out stuff that is
4048 	 * going to be truncated anyway.
4049 	 */
4050 	if (!igrab(inode))
4051 		return 0;
4052 
4053 	pagevec_init(&pvec);
4054 	if (wbc->range_cyclic) {
4055 		index = mapping->writeback_index; /* Start from prev offset */
4056 		end = -1;
4057 	} else {
4058 		index = wbc->range_start >> PAGE_SHIFT;
4059 		end = wbc->range_end >> PAGE_SHIFT;
4060 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4061 			range_whole = 1;
4062 		scanned = 1;
4063 	}
4064 
4065 	/*
4066 	 * We do the tagged writepage as long as the snapshot flush bit is set
4067 	 * and we are the first one who do the filemap_flush() on this inode.
4068 	 *
4069 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4070 	 * not race in and drop the bit.
4071 	 */
4072 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4073 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4074 			       &BTRFS_I(inode)->runtime_flags))
4075 		wbc->tagged_writepages = 1;
4076 
4077 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4078 		tag = PAGECACHE_TAG_TOWRITE;
4079 	else
4080 		tag = PAGECACHE_TAG_DIRTY;
4081 retry:
4082 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4083 		tag_pages_for_writeback(mapping, index, end);
4084 	done_index = index;
4085 	while (!done && !nr_to_write_done && (index <= end) &&
4086 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4087 						&index, end, tag))) {
4088 		unsigned i;
4089 
4090 		scanned = 1;
4091 		for (i = 0; i < nr_pages; i++) {
4092 			struct page *page = pvec.pages[i];
4093 
4094 			done_index = page->index;
4095 			/*
4096 			 * At this point we hold neither the i_pages lock nor
4097 			 * the page lock: the page may be truncated or
4098 			 * invalidated (changing page->mapping to NULL),
4099 			 * or even swizzled back from swapper_space to
4100 			 * tmpfs file mapping
4101 			 */
4102 			if (!trylock_page(page)) {
4103 				ret = flush_write_bio(epd);
4104 				BUG_ON(ret < 0);
4105 				lock_page(page);
4106 			}
4107 
4108 			if (unlikely(page->mapping != mapping)) {
4109 				unlock_page(page);
4110 				continue;
4111 			}
4112 
4113 			if (wbc->sync_mode != WB_SYNC_NONE) {
4114 				if (PageWriteback(page)) {
4115 					ret = flush_write_bio(epd);
4116 					BUG_ON(ret < 0);
4117 				}
4118 				wait_on_page_writeback(page);
4119 			}
4120 
4121 			if (PageWriteback(page) ||
4122 			    !clear_page_dirty_for_io(page)) {
4123 				unlock_page(page);
4124 				continue;
4125 			}
4126 
4127 			ret = __extent_writepage(page, wbc, epd);
4128 			if (ret < 0) {
4129 				/*
4130 				 * done_index is set past this page,
4131 				 * so media errors will not choke
4132 				 * background writeout for the entire
4133 				 * file. This has consequences for
4134 				 * range_cyclic semantics (ie. it may
4135 				 * not be suitable for data integrity
4136 				 * writeout).
4137 				 */
4138 				done_index = page->index + 1;
4139 				done = 1;
4140 				break;
4141 			}
4142 
4143 			/*
4144 			 * the filesystem may choose to bump up nr_to_write.
4145 			 * We have to make sure to honor the new nr_to_write
4146 			 * at any time
4147 			 */
4148 			nr_to_write_done = wbc->nr_to_write <= 0;
4149 		}
4150 		pagevec_release(&pvec);
4151 		cond_resched();
4152 	}
4153 	if (!scanned && !done) {
4154 		/*
4155 		 * We hit the last page and there is more work to be done: wrap
4156 		 * back to the start of the file
4157 		 */
4158 		scanned = 1;
4159 		index = 0;
4160 		goto retry;
4161 	}
4162 
4163 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4164 		mapping->writeback_index = done_index;
4165 
4166 	btrfs_add_delayed_iput(inode);
4167 	return ret;
4168 }
4169 
4170 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4171 {
4172 	int ret;
4173 	struct extent_page_data epd = {
4174 		.bio = NULL,
4175 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4176 		.extent_locked = 0,
4177 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4178 	};
4179 
4180 	ret = __extent_writepage(page, wbc, &epd);
4181 	ASSERT(ret <= 0);
4182 	if (ret < 0) {
4183 		end_write_bio(&epd, ret);
4184 		return ret;
4185 	}
4186 
4187 	ret = flush_write_bio(&epd);
4188 	ASSERT(ret <= 0);
4189 	return ret;
4190 }
4191 
4192 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4193 			      int mode)
4194 {
4195 	int ret = 0;
4196 	struct address_space *mapping = inode->i_mapping;
4197 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4198 	struct page *page;
4199 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4200 		PAGE_SHIFT;
4201 
4202 	struct extent_page_data epd = {
4203 		.bio = NULL,
4204 		.tree = tree,
4205 		.extent_locked = 1,
4206 		.sync_io = mode == WB_SYNC_ALL,
4207 	};
4208 	struct writeback_control wbc_writepages = {
4209 		.sync_mode	= mode,
4210 		.nr_to_write	= nr_pages * 2,
4211 		.range_start	= start,
4212 		.range_end	= end + 1,
4213 	};
4214 
4215 	while (start <= end) {
4216 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4217 		if (clear_page_dirty_for_io(page))
4218 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4219 		else {
4220 			btrfs_writepage_endio_finish_ordered(page, start,
4221 						    start + PAGE_SIZE - 1, 1);
4222 			unlock_page(page);
4223 		}
4224 		put_page(page);
4225 		start += PAGE_SIZE;
4226 	}
4227 
4228 	ASSERT(ret <= 0);
4229 	if (ret < 0) {
4230 		end_write_bio(&epd, ret);
4231 		return ret;
4232 	}
4233 	ret = flush_write_bio(&epd);
4234 	return ret;
4235 }
4236 
4237 int extent_writepages(struct address_space *mapping,
4238 		      struct writeback_control *wbc)
4239 {
4240 	int ret = 0;
4241 	struct extent_page_data epd = {
4242 		.bio = NULL,
4243 		.tree = &BTRFS_I(mapping->host)->io_tree,
4244 		.extent_locked = 0,
4245 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4246 	};
4247 
4248 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4249 	ASSERT(ret <= 0);
4250 	if (ret < 0) {
4251 		end_write_bio(&epd, ret);
4252 		return ret;
4253 	}
4254 	ret = flush_write_bio(&epd);
4255 	return ret;
4256 }
4257 
4258 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4259 		     unsigned nr_pages)
4260 {
4261 	struct bio *bio = NULL;
4262 	unsigned long bio_flags = 0;
4263 	struct page *pagepool[16];
4264 	struct extent_map *em_cached = NULL;
4265 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4266 	int nr = 0;
4267 	u64 prev_em_start = (u64)-1;
4268 
4269 	while (!list_empty(pages)) {
4270 		u64 contig_end = 0;
4271 
4272 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4273 			struct page *page = lru_to_page(pages);
4274 
4275 			prefetchw(&page->flags);
4276 			list_del(&page->lru);
4277 			if (add_to_page_cache_lru(page, mapping, page->index,
4278 						readahead_gfp_mask(mapping))) {
4279 				put_page(page);
4280 				break;
4281 			}
4282 
4283 			pagepool[nr++] = page;
4284 			contig_end = page_offset(page) + PAGE_SIZE - 1;
4285 		}
4286 
4287 		if (nr) {
4288 			u64 contig_start = page_offset(pagepool[0]);
4289 
4290 			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4291 
4292 			contiguous_readpages(tree, pagepool, nr, contig_start,
4293 				     contig_end, &em_cached, &bio, &bio_flags,
4294 				     &prev_em_start);
4295 		}
4296 	}
4297 
4298 	if (em_cached)
4299 		free_extent_map(em_cached);
4300 
4301 	if (bio)
4302 		return submit_one_bio(bio, 0, bio_flags);
4303 	return 0;
4304 }
4305 
4306 /*
4307  * basic invalidatepage code, this waits on any locked or writeback
4308  * ranges corresponding to the page, and then deletes any extent state
4309  * records from the tree
4310  */
4311 int extent_invalidatepage(struct extent_io_tree *tree,
4312 			  struct page *page, unsigned long offset)
4313 {
4314 	struct extent_state *cached_state = NULL;
4315 	u64 start = page_offset(page);
4316 	u64 end = start + PAGE_SIZE - 1;
4317 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4318 
4319 	start += ALIGN(offset, blocksize);
4320 	if (start > end)
4321 		return 0;
4322 
4323 	lock_extent_bits(tree, start, end, &cached_state);
4324 	wait_on_page_writeback(page);
4325 	clear_extent_bit(tree, start, end,
4326 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4327 			 EXTENT_DO_ACCOUNTING,
4328 			 1, 1, &cached_state);
4329 	return 0;
4330 }
4331 
4332 /*
4333  * a helper for releasepage, this tests for areas of the page that
4334  * are locked or under IO and drops the related state bits if it is safe
4335  * to drop the page.
4336  */
4337 static int try_release_extent_state(struct extent_io_tree *tree,
4338 				    struct page *page, gfp_t mask)
4339 {
4340 	u64 start = page_offset(page);
4341 	u64 end = start + PAGE_SIZE - 1;
4342 	int ret = 1;
4343 
4344 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4345 		ret = 0;
4346 	} else {
4347 		/*
4348 		 * at this point we can safely clear everything except the
4349 		 * locked bit and the nodatasum bit
4350 		 */
4351 		ret = __clear_extent_bit(tree, start, end,
4352 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4353 				 0, 0, NULL, mask, NULL);
4354 
4355 		/* if clear_extent_bit failed for enomem reasons,
4356 		 * we can't allow the release to continue.
4357 		 */
4358 		if (ret < 0)
4359 			ret = 0;
4360 		else
4361 			ret = 1;
4362 	}
4363 	return ret;
4364 }
4365 
4366 /*
4367  * a helper for releasepage.  As long as there are no locked extents
4368  * in the range corresponding to the page, both state records and extent
4369  * map records are removed
4370  */
4371 int try_release_extent_mapping(struct page *page, gfp_t mask)
4372 {
4373 	struct extent_map *em;
4374 	u64 start = page_offset(page);
4375 	u64 end = start + PAGE_SIZE - 1;
4376 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4377 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4378 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4379 
4380 	if (gfpflags_allow_blocking(mask) &&
4381 	    page->mapping->host->i_size > SZ_16M) {
4382 		u64 len;
4383 		while (start <= end) {
4384 			len = end - start + 1;
4385 			write_lock(&map->lock);
4386 			em = lookup_extent_mapping(map, start, len);
4387 			if (!em) {
4388 				write_unlock(&map->lock);
4389 				break;
4390 			}
4391 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4392 			    em->start != start) {
4393 				write_unlock(&map->lock);
4394 				free_extent_map(em);
4395 				break;
4396 			}
4397 			if (!test_range_bit(tree, em->start,
4398 					    extent_map_end(em) - 1,
4399 					    EXTENT_LOCKED, 0, NULL)) {
4400 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4401 					&btrfs_inode->runtime_flags);
4402 				remove_extent_mapping(map, em);
4403 				/* once for the rb tree */
4404 				free_extent_map(em);
4405 			}
4406 			start = extent_map_end(em);
4407 			write_unlock(&map->lock);
4408 
4409 			/* once for us */
4410 			free_extent_map(em);
4411 		}
4412 	}
4413 	return try_release_extent_state(tree, page, mask);
4414 }
4415 
4416 /*
4417  * helper function for fiemap, which doesn't want to see any holes.
4418  * This maps until we find something past 'last'
4419  */
4420 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4421 						u64 offset, u64 last)
4422 {
4423 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4424 	struct extent_map *em;
4425 	u64 len;
4426 
4427 	if (offset >= last)
4428 		return NULL;
4429 
4430 	while (1) {
4431 		len = last - offset;
4432 		if (len == 0)
4433 			break;
4434 		len = ALIGN(len, sectorsize);
4435 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4436 		if (IS_ERR_OR_NULL(em))
4437 			return em;
4438 
4439 		/* if this isn't a hole return it */
4440 		if (em->block_start != EXTENT_MAP_HOLE)
4441 			return em;
4442 
4443 		/* this is a hole, advance to the next extent */
4444 		offset = extent_map_end(em);
4445 		free_extent_map(em);
4446 		if (offset >= last)
4447 			break;
4448 	}
4449 	return NULL;
4450 }
4451 
4452 /*
4453  * To cache previous fiemap extent
4454  *
4455  * Will be used for merging fiemap extent
4456  */
4457 struct fiemap_cache {
4458 	u64 offset;
4459 	u64 phys;
4460 	u64 len;
4461 	u32 flags;
4462 	bool cached;
4463 };
4464 
4465 /*
4466  * Helper to submit fiemap extent.
4467  *
4468  * Will try to merge current fiemap extent specified by @offset, @phys,
4469  * @len and @flags with cached one.
4470  * And only when we fails to merge, cached one will be submitted as
4471  * fiemap extent.
4472  *
4473  * Return value is the same as fiemap_fill_next_extent().
4474  */
4475 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4476 				struct fiemap_cache *cache,
4477 				u64 offset, u64 phys, u64 len, u32 flags)
4478 {
4479 	int ret = 0;
4480 
4481 	if (!cache->cached)
4482 		goto assign;
4483 
4484 	/*
4485 	 * Sanity check, extent_fiemap() should have ensured that new
4486 	 * fiemap extent won't overlap with cached one.
4487 	 * Not recoverable.
4488 	 *
4489 	 * NOTE: Physical address can overlap, due to compression
4490 	 */
4491 	if (cache->offset + cache->len > offset) {
4492 		WARN_ON(1);
4493 		return -EINVAL;
4494 	}
4495 
4496 	/*
4497 	 * Only merges fiemap extents if
4498 	 * 1) Their logical addresses are continuous
4499 	 *
4500 	 * 2) Their physical addresses are continuous
4501 	 *    So truly compressed (physical size smaller than logical size)
4502 	 *    extents won't get merged with each other
4503 	 *
4504 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4505 	 *    So regular extent won't get merged with prealloc extent
4506 	 */
4507 	if (cache->offset + cache->len  == offset &&
4508 	    cache->phys + cache->len == phys  &&
4509 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4510 			(flags & ~FIEMAP_EXTENT_LAST)) {
4511 		cache->len += len;
4512 		cache->flags |= flags;
4513 		goto try_submit_last;
4514 	}
4515 
4516 	/* Not mergeable, need to submit cached one */
4517 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4518 				      cache->len, cache->flags);
4519 	cache->cached = false;
4520 	if (ret)
4521 		return ret;
4522 assign:
4523 	cache->cached = true;
4524 	cache->offset = offset;
4525 	cache->phys = phys;
4526 	cache->len = len;
4527 	cache->flags = flags;
4528 try_submit_last:
4529 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4530 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4531 				cache->phys, cache->len, cache->flags);
4532 		cache->cached = false;
4533 	}
4534 	return ret;
4535 }
4536 
4537 /*
4538  * Emit last fiemap cache
4539  *
4540  * The last fiemap cache may still be cached in the following case:
4541  * 0		      4k		    8k
4542  * |<- Fiemap range ->|
4543  * |<------------  First extent ----------->|
4544  *
4545  * In this case, the first extent range will be cached but not emitted.
4546  * So we must emit it before ending extent_fiemap().
4547  */
4548 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4549 				  struct fiemap_cache *cache)
4550 {
4551 	int ret;
4552 
4553 	if (!cache->cached)
4554 		return 0;
4555 
4556 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4557 				      cache->len, cache->flags);
4558 	cache->cached = false;
4559 	if (ret > 0)
4560 		ret = 0;
4561 	return ret;
4562 }
4563 
4564 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4565 		__u64 start, __u64 len)
4566 {
4567 	int ret = 0;
4568 	u64 off = start;
4569 	u64 max = start + len;
4570 	u32 flags = 0;
4571 	u32 found_type;
4572 	u64 last;
4573 	u64 last_for_get_extent = 0;
4574 	u64 disko = 0;
4575 	u64 isize = i_size_read(inode);
4576 	struct btrfs_key found_key;
4577 	struct extent_map *em = NULL;
4578 	struct extent_state *cached_state = NULL;
4579 	struct btrfs_path *path;
4580 	struct btrfs_root *root = BTRFS_I(inode)->root;
4581 	struct fiemap_cache cache = { 0 };
4582 	struct ulist *roots;
4583 	struct ulist *tmp_ulist;
4584 	int end = 0;
4585 	u64 em_start = 0;
4586 	u64 em_len = 0;
4587 	u64 em_end = 0;
4588 
4589 	if (len == 0)
4590 		return -EINVAL;
4591 
4592 	path = btrfs_alloc_path();
4593 	if (!path)
4594 		return -ENOMEM;
4595 	path->leave_spinning = 1;
4596 
4597 	roots = ulist_alloc(GFP_KERNEL);
4598 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4599 	if (!roots || !tmp_ulist) {
4600 		ret = -ENOMEM;
4601 		goto out_free_ulist;
4602 	}
4603 
4604 	start = round_down(start, btrfs_inode_sectorsize(inode));
4605 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4606 
4607 	/*
4608 	 * lookup the last file extent.  We're not using i_size here
4609 	 * because there might be preallocation past i_size
4610 	 */
4611 	ret = btrfs_lookup_file_extent(NULL, root, path,
4612 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4613 	if (ret < 0) {
4614 		goto out_free_ulist;
4615 	} else {
4616 		WARN_ON(!ret);
4617 		if (ret == 1)
4618 			ret = 0;
4619 	}
4620 
4621 	path->slots[0]--;
4622 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4623 	found_type = found_key.type;
4624 
4625 	/* No extents, but there might be delalloc bits */
4626 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4627 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4628 		/* have to trust i_size as the end */
4629 		last = (u64)-1;
4630 		last_for_get_extent = isize;
4631 	} else {
4632 		/*
4633 		 * remember the start of the last extent.  There are a
4634 		 * bunch of different factors that go into the length of the
4635 		 * extent, so its much less complex to remember where it started
4636 		 */
4637 		last = found_key.offset;
4638 		last_for_get_extent = last + 1;
4639 	}
4640 	btrfs_release_path(path);
4641 
4642 	/*
4643 	 * we might have some extents allocated but more delalloc past those
4644 	 * extents.  so, we trust isize unless the start of the last extent is
4645 	 * beyond isize
4646 	 */
4647 	if (last < isize) {
4648 		last = (u64)-1;
4649 		last_for_get_extent = isize;
4650 	}
4651 
4652 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4653 			 &cached_state);
4654 
4655 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4656 	if (!em)
4657 		goto out;
4658 	if (IS_ERR(em)) {
4659 		ret = PTR_ERR(em);
4660 		goto out;
4661 	}
4662 
4663 	while (!end) {
4664 		u64 offset_in_extent = 0;
4665 
4666 		/* break if the extent we found is outside the range */
4667 		if (em->start >= max || extent_map_end(em) < off)
4668 			break;
4669 
4670 		/*
4671 		 * get_extent may return an extent that starts before our
4672 		 * requested range.  We have to make sure the ranges
4673 		 * we return to fiemap always move forward and don't
4674 		 * overlap, so adjust the offsets here
4675 		 */
4676 		em_start = max(em->start, off);
4677 
4678 		/*
4679 		 * record the offset from the start of the extent
4680 		 * for adjusting the disk offset below.  Only do this if the
4681 		 * extent isn't compressed since our in ram offset may be past
4682 		 * what we have actually allocated on disk.
4683 		 */
4684 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4685 			offset_in_extent = em_start - em->start;
4686 		em_end = extent_map_end(em);
4687 		em_len = em_end - em_start;
4688 		flags = 0;
4689 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4690 			disko = em->block_start + offset_in_extent;
4691 		else
4692 			disko = 0;
4693 
4694 		/*
4695 		 * bump off for our next call to get_extent
4696 		 */
4697 		off = extent_map_end(em);
4698 		if (off >= max)
4699 			end = 1;
4700 
4701 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4702 			end = 1;
4703 			flags |= FIEMAP_EXTENT_LAST;
4704 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4705 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4706 				  FIEMAP_EXTENT_NOT_ALIGNED);
4707 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4708 			flags |= (FIEMAP_EXTENT_DELALLOC |
4709 				  FIEMAP_EXTENT_UNKNOWN);
4710 		} else if (fieinfo->fi_extents_max) {
4711 			u64 bytenr = em->block_start -
4712 				(em->start - em->orig_start);
4713 
4714 			/*
4715 			 * As btrfs supports shared space, this information
4716 			 * can be exported to userspace tools via
4717 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4718 			 * then we're just getting a count and we can skip the
4719 			 * lookup stuff.
4720 			 */
4721 			ret = btrfs_check_shared(root,
4722 						 btrfs_ino(BTRFS_I(inode)),
4723 						 bytenr, roots, tmp_ulist);
4724 			if (ret < 0)
4725 				goto out_free;
4726 			if (ret)
4727 				flags |= FIEMAP_EXTENT_SHARED;
4728 			ret = 0;
4729 		}
4730 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4731 			flags |= FIEMAP_EXTENT_ENCODED;
4732 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4733 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4734 
4735 		free_extent_map(em);
4736 		em = NULL;
4737 		if ((em_start >= last) || em_len == (u64)-1 ||
4738 		   (last == (u64)-1 && isize <= em_end)) {
4739 			flags |= FIEMAP_EXTENT_LAST;
4740 			end = 1;
4741 		}
4742 
4743 		/* now scan forward to see if this is really the last extent. */
4744 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4745 		if (IS_ERR(em)) {
4746 			ret = PTR_ERR(em);
4747 			goto out;
4748 		}
4749 		if (!em) {
4750 			flags |= FIEMAP_EXTENT_LAST;
4751 			end = 1;
4752 		}
4753 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4754 					   em_len, flags);
4755 		if (ret) {
4756 			if (ret == 1)
4757 				ret = 0;
4758 			goto out_free;
4759 		}
4760 	}
4761 out_free:
4762 	if (!ret)
4763 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4764 	free_extent_map(em);
4765 out:
4766 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4767 			     &cached_state);
4768 
4769 out_free_ulist:
4770 	btrfs_free_path(path);
4771 	ulist_free(roots);
4772 	ulist_free(tmp_ulist);
4773 	return ret;
4774 }
4775 
4776 static void __free_extent_buffer(struct extent_buffer *eb)
4777 {
4778 	btrfs_leak_debug_del(&eb->leak_list);
4779 	kmem_cache_free(extent_buffer_cache, eb);
4780 }
4781 
4782 int extent_buffer_under_io(struct extent_buffer *eb)
4783 {
4784 	return (atomic_read(&eb->io_pages) ||
4785 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4786 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4787 }
4788 
4789 /*
4790  * Release all pages attached to the extent buffer.
4791  */
4792 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4793 {
4794 	int i;
4795 	int num_pages;
4796 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4797 
4798 	BUG_ON(extent_buffer_under_io(eb));
4799 
4800 	num_pages = num_extent_pages(eb);
4801 	for (i = 0; i < num_pages; i++) {
4802 		struct page *page = eb->pages[i];
4803 
4804 		if (!page)
4805 			continue;
4806 		if (mapped)
4807 			spin_lock(&page->mapping->private_lock);
4808 		/*
4809 		 * We do this since we'll remove the pages after we've
4810 		 * removed the eb from the radix tree, so we could race
4811 		 * and have this page now attached to the new eb.  So
4812 		 * only clear page_private if it's still connected to
4813 		 * this eb.
4814 		 */
4815 		if (PagePrivate(page) &&
4816 		    page->private == (unsigned long)eb) {
4817 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4818 			BUG_ON(PageDirty(page));
4819 			BUG_ON(PageWriteback(page));
4820 			/*
4821 			 * We need to make sure we haven't be attached
4822 			 * to a new eb.
4823 			 */
4824 			ClearPagePrivate(page);
4825 			set_page_private(page, 0);
4826 			/* One for the page private */
4827 			put_page(page);
4828 		}
4829 
4830 		if (mapped)
4831 			spin_unlock(&page->mapping->private_lock);
4832 
4833 		/* One for when we allocated the page */
4834 		put_page(page);
4835 	}
4836 }
4837 
4838 /*
4839  * Helper for releasing the extent buffer.
4840  */
4841 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4842 {
4843 	btrfs_release_extent_buffer_pages(eb);
4844 	__free_extent_buffer(eb);
4845 }
4846 
4847 static struct extent_buffer *
4848 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4849 		      unsigned long len)
4850 {
4851 	struct extent_buffer *eb = NULL;
4852 
4853 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4854 	eb->start = start;
4855 	eb->len = len;
4856 	eb->fs_info = fs_info;
4857 	eb->bflags = 0;
4858 	rwlock_init(&eb->lock);
4859 	atomic_set(&eb->blocking_readers, 0);
4860 	eb->blocking_writers = 0;
4861 	eb->lock_nested = false;
4862 	init_waitqueue_head(&eb->write_lock_wq);
4863 	init_waitqueue_head(&eb->read_lock_wq);
4864 
4865 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4866 
4867 	spin_lock_init(&eb->refs_lock);
4868 	atomic_set(&eb->refs, 1);
4869 	atomic_set(&eb->io_pages, 0);
4870 
4871 	/*
4872 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4873 	 */
4874 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4875 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4876 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4877 
4878 #ifdef CONFIG_BTRFS_DEBUG
4879 	eb->spinning_writers = 0;
4880 	atomic_set(&eb->spinning_readers, 0);
4881 	atomic_set(&eb->read_locks, 0);
4882 	eb->write_locks = 0;
4883 #endif
4884 
4885 	return eb;
4886 }
4887 
4888 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4889 {
4890 	int i;
4891 	struct page *p;
4892 	struct extent_buffer *new;
4893 	int num_pages = num_extent_pages(src);
4894 
4895 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4896 	if (new == NULL)
4897 		return NULL;
4898 
4899 	for (i = 0; i < num_pages; i++) {
4900 		p = alloc_page(GFP_NOFS);
4901 		if (!p) {
4902 			btrfs_release_extent_buffer(new);
4903 			return NULL;
4904 		}
4905 		attach_extent_buffer_page(new, p);
4906 		WARN_ON(PageDirty(p));
4907 		SetPageUptodate(p);
4908 		new->pages[i] = p;
4909 		copy_page(page_address(p), page_address(src->pages[i]));
4910 	}
4911 
4912 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4913 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4914 
4915 	return new;
4916 }
4917 
4918 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4919 						  u64 start, unsigned long len)
4920 {
4921 	struct extent_buffer *eb;
4922 	int num_pages;
4923 	int i;
4924 
4925 	eb = __alloc_extent_buffer(fs_info, start, len);
4926 	if (!eb)
4927 		return NULL;
4928 
4929 	num_pages = num_extent_pages(eb);
4930 	for (i = 0; i < num_pages; i++) {
4931 		eb->pages[i] = alloc_page(GFP_NOFS);
4932 		if (!eb->pages[i])
4933 			goto err;
4934 	}
4935 	set_extent_buffer_uptodate(eb);
4936 	btrfs_set_header_nritems(eb, 0);
4937 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4938 
4939 	return eb;
4940 err:
4941 	for (; i > 0; i--)
4942 		__free_page(eb->pages[i - 1]);
4943 	__free_extent_buffer(eb);
4944 	return NULL;
4945 }
4946 
4947 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4948 						u64 start)
4949 {
4950 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4951 }
4952 
4953 static void check_buffer_tree_ref(struct extent_buffer *eb)
4954 {
4955 	int refs;
4956 	/* the ref bit is tricky.  We have to make sure it is set
4957 	 * if we have the buffer dirty.   Otherwise the
4958 	 * code to free a buffer can end up dropping a dirty
4959 	 * page
4960 	 *
4961 	 * Once the ref bit is set, it won't go away while the
4962 	 * buffer is dirty or in writeback, and it also won't
4963 	 * go away while we have the reference count on the
4964 	 * eb bumped.
4965 	 *
4966 	 * We can't just set the ref bit without bumping the
4967 	 * ref on the eb because free_extent_buffer might
4968 	 * see the ref bit and try to clear it.  If this happens
4969 	 * free_extent_buffer might end up dropping our original
4970 	 * ref by mistake and freeing the page before we are able
4971 	 * to add one more ref.
4972 	 *
4973 	 * So bump the ref count first, then set the bit.  If someone
4974 	 * beat us to it, drop the ref we added.
4975 	 */
4976 	refs = atomic_read(&eb->refs);
4977 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4978 		return;
4979 
4980 	spin_lock(&eb->refs_lock);
4981 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4982 		atomic_inc(&eb->refs);
4983 	spin_unlock(&eb->refs_lock);
4984 }
4985 
4986 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4987 		struct page *accessed)
4988 {
4989 	int num_pages, i;
4990 
4991 	check_buffer_tree_ref(eb);
4992 
4993 	num_pages = num_extent_pages(eb);
4994 	for (i = 0; i < num_pages; i++) {
4995 		struct page *p = eb->pages[i];
4996 
4997 		if (p != accessed)
4998 			mark_page_accessed(p);
4999 	}
5000 }
5001 
5002 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5003 					 u64 start)
5004 {
5005 	struct extent_buffer *eb;
5006 
5007 	rcu_read_lock();
5008 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5009 			       start >> PAGE_SHIFT);
5010 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5011 		rcu_read_unlock();
5012 		/*
5013 		 * Lock our eb's refs_lock to avoid races with
5014 		 * free_extent_buffer. When we get our eb it might be flagged
5015 		 * with EXTENT_BUFFER_STALE and another task running
5016 		 * free_extent_buffer might have seen that flag set,
5017 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5018 		 * writeback flags not set) and it's still in the tree (flag
5019 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5020 		 * of decrementing the extent buffer's reference count twice.
5021 		 * So here we could race and increment the eb's reference count,
5022 		 * clear its stale flag, mark it as dirty and drop our reference
5023 		 * before the other task finishes executing free_extent_buffer,
5024 		 * which would later result in an attempt to free an extent
5025 		 * buffer that is dirty.
5026 		 */
5027 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5028 			spin_lock(&eb->refs_lock);
5029 			spin_unlock(&eb->refs_lock);
5030 		}
5031 		mark_extent_buffer_accessed(eb, NULL);
5032 		return eb;
5033 	}
5034 	rcu_read_unlock();
5035 
5036 	return NULL;
5037 }
5038 
5039 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5040 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5041 					u64 start)
5042 {
5043 	struct extent_buffer *eb, *exists = NULL;
5044 	int ret;
5045 
5046 	eb = find_extent_buffer(fs_info, start);
5047 	if (eb)
5048 		return eb;
5049 	eb = alloc_dummy_extent_buffer(fs_info, start);
5050 	if (!eb)
5051 		return NULL;
5052 	eb->fs_info = fs_info;
5053 again:
5054 	ret = radix_tree_preload(GFP_NOFS);
5055 	if (ret)
5056 		goto free_eb;
5057 	spin_lock(&fs_info->buffer_lock);
5058 	ret = radix_tree_insert(&fs_info->buffer_radix,
5059 				start >> PAGE_SHIFT, eb);
5060 	spin_unlock(&fs_info->buffer_lock);
5061 	radix_tree_preload_end();
5062 	if (ret == -EEXIST) {
5063 		exists = find_extent_buffer(fs_info, start);
5064 		if (exists)
5065 			goto free_eb;
5066 		else
5067 			goto again;
5068 	}
5069 	check_buffer_tree_ref(eb);
5070 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5071 
5072 	return eb;
5073 free_eb:
5074 	btrfs_release_extent_buffer(eb);
5075 	return exists;
5076 }
5077 #endif
5078 
5079 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5080 					  u64 start)
5081 {
5082 	unsigned long len = fs_info->nodesize;
5083 	int num_pages;
5084 	int i;
5085 	unsigned long index = start >> PAGE_SHIFT;
5086 	struct extent_buffer *eb;
5087 	struct extent_buffer *exists = NULL;
5088 	struct page *p;
5089 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5090 	int uptodate = 1;
5091 	int ret;
5092 
5093 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5094 		btrfs_err(fs_info, "bad tree block start %llu", start);
5095 		return ERR_PTR(-EINVAL);
5096 	}
5097 
5098 	eb = find_extent_buffer(fs_info, start);
5099 	if (eb)
5100 		return eb;
5101 
5102 	eb = __alloc_extent_buffer(fs_info, start, len);
5103 	if (!eb)
5104 		return ERR_PTR(-ENOMEM);
5105 
5106 	num_pages = num_extent_pages(eb);
5107 	for (i = 0; i < num_pages; i++, index++) {
5108 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5109 		if (!p) {
5110 			exists = ERR_PTR(-ENOMEM);
5111 			goto free_eb;
5112 		}
5113 
5114 		spin_lock(&mapping->private_lock);
5115 		if (PagePrivate(p)) {
5116 			/*
5117 			 * We could have already allocated an eb for this page
5118 			 * and attached one so lets see if we can get a ref on
5119 			 * the existing eb, and if we can we know it's good and
5120 			 * we can just return that one, else we know we can just
5121 			 * overwrite page->private.
5122 			 */
5123 			exists = (struct extent_buffer *)p->private;
5124 			if (atomic_inc_not_zero(&exists->refs)) {
5125 				spin_unlock(&mapping->private_lock);
5126 				unlock_page(p);
5127 				put_page(p);
5128 				mark_extent_buffer_accessed(exists, p);
5129 				goto free_eb;
5130 			}
5131 			exists = NULL;
5132 
5133 			/*
5134 			 * Do this so attach doesn't complain and we need to
5135 			 * drop the ref the old guy had.
5136 			 */
5137 			ClearPagePrivate(p);
5138 			WARN_ON(PageDirty(p));
5139 			put_page(p);
5140 		}
5141 		attach_extent_buffer_page(eb, p);
5142 		spin_unlock(&mapping->private_lock);
5143 		WARN_ON(PageDirty(p));
5144 		eb->pages[i] = p;
5145 		if (!PageUptodate(p))
5146 			uptodate = 0;
5147 
5148 		/*
5149 		 * We can't unlock the pages just yet since the extent buffer
5150 		 * hasn't been properly inserted in the radix tree, this
5151 		 * opens a race with btree_releasepage which can free a page
5152 		 * while we are still filling in all pages for the buffer and
5153 		 * we could crash.
5154 		 */
5155 	}
5156 	if (uptodate)
5157 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5158 again:
5159 	ret = radix_tree_preload(GFP_NOFS);
5160 	if (ret) {
5161 		exists = ERR_PTR(ret);
5162 		goto free_eb;
5163 	}
5164 
5165 	spin_lock(&fs_info->buffer_lock);
5166 	ret = radix_tree_insert(&fs_info->buffer_radix,
5167 				start >> PAGE_SHIFT, eb);
5168 	spin_unlock(&fs_info->buffer_lock);
5169 	radix_tree_preload_end();
5170 	if (ret == -EEXIST) {
5171 		exists = find_extent_buffer(fs_info, start);
5172 		if (exists)
5173 			goto free_eb;
5174 		else
5175 			goto again;
5176 	}
5177 	/* add one reference for the tree */
5178 	check_buffer_tree_ref(eb);
5179 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5180 
5181 	/*
5182 	 * Now it's safe to unlock the pages because any calls to
5183 	 * btree_releasepage will correctly detect that a page belongs to a
5184 	 * live buffer and won't free them prematurely.
5185 	 */
5186 	for (i = 0; i < num_pages; i++)
5187 		unlock_page(eb->pages[i]);
5188 	return eb;
5189 
5190 free_eb:
5191 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5192 	for (i = 0; i < num_pages; i++) {
5193 		if (eb->pages[i])
5194 			unlock_page(eb->pages[i]);
5195 	}
5196 
5197 	btrfs_release_extent_buffer(eb);
5198 	return exists;
5199 }
5200 
5201 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5202 {
5203 	struct extent_buffer *eb =
5204 			container_of(head, struct extent_buffer, rcu_head);
5205 
5206 	__free_extent_buffer(eb);
5207 }
5208 
5209 static int release_extent_buffer(struct extent_buffer *eb)
5210 {
5211 	lockdep_assert_held(&eb->refs_lock);
5212 
5213 	WARN_ON(atomic_read(&eb->refs) == 0);
5214 	if (atomic_dec_and_test(&eb->refs)) {
5215 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5216 			struct btrfs_fs_info *fs_info = eb->fs_info;
5217 
5218 			spin_unlock(&eb->refs_lock);
5219 
5220 			spin_lock(&fs_info->buffer_lock);
5221 			radix_tree_delete(&fs_info->buffer_radix,
5222 					  eb->start >> PAGE_SHIFT);
5223 			spin_unlock(&fs_info->buffer_lock);
5224 		} else {
5225 			spin_unlock(&eb->refs_lock);
5226 		}
5227 
5228 		/* Should be safe to release our pages at this point */
5229 		btrfs_release_extent_buffer_pages(eb);
5230 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5231 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5232 			__free_extent_buffer(eb);
5233 			return 1;
5234 		}
5235 #endif
5236 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5237 		return 1;
5238 	}
5239 	spin_unlock(&eb->refs_lock);
5240 
5241 	return 0;
5242 }
5243 
5244 void free_extent_buffer(struct extent_buffer *eb)
5245 {
5246 	int refs;
5247 	int old;
5248 	if (!eb)
5249 		return;
5250 
5251 	while (1) {
5252 		refs = atomic_read(&eb->refs);
5253 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5254 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5255 			refs == 1))
5256 			break;
5257 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5258 		if (old == refs)
5259 			return;
5260 	}
5261 
5262 	spin_lock(&eb->refs_lock);
5263 	if (atomic_read(&eb->refs) == 2 &&
5264 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5265 	    !extent_buffer_under_io(eb) &&
5266 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5267 		atomic_dec(&eb->refs);
5268 
5269 	/*
5270 	 * I know this is terrible, but it's temporary until we stop tracking
5271 	 * the uptodate bits and such for the extent buffers.
5272 	 */
5273 	release_extent_buffer(eb);
5274 }
5275 
5276 void free_extent_buffer_stale(struct extent_buffer *eb)
5277 {
5278 	if (!eb)
5279 		return;
5280 
5281 	spin_lock(&eb->refs_lock);
5282 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5283 
5284 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5285 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5286 		atomic_dec(&eb->refs);
5287 	release_extent_buffer(eb);
5288 }
5289 
5290 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5291 {
5292 	int i;
5293 	int num_pages;
5294 	struct page *page;
5295 
5296 	num_pages = num_extent_pages(eb);
5297 
5298 	for (i = 0; i < num_pages; i++) {
5299 		page = eb->pages[i];
5300 		if (!PageDirty(page))
5301 			continue;
5302 
5303 		lock_page(page);
5304 		WARN_ON(!PagePrivate(page));
5305 
5306 		clear_page_dirty_for_io(page);
5307 		xa_lock_irq(&page->mapping->i_pages);
5308 		if (!PageDirty(page))
5309 			__xa_clear_mark(&page->mapping->i_pages,
5310 					page_index(page), PAGECACHE_TAG_DIRTY);
5311 		xa_unlock_irq(&page->mapping->i_pages);
5312 		ClearPageError(page);
5313 		unlock_page(page);
5314 	}
5315 	WARN_ON(atomic_read(&eb->refs) == 0);
5316 }
5317 
5318 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5319 {
5320 	int i;
5321 	int num_pages;
5322 	bool was_dirty;
5323 
5324 	check_buffer_tree_ref(eb);
5325 
5326 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5327 
5328 	num_pages = num_extent_pages(eb);
5329 	WARN_ON(atomic_read(&eb->refs) == 0);
5330 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5331 
5332 	if (!was_dirty)
5333 		for (i = 0; i < num_pages; i++)
5334 			set_page_dirty(eb->pages[i]);
5335 
5336 #ifdef CONFIG_BTRFS_DEBUG
5337 	for (i = 0; i < num_pages; i++)
5338 		ASSERT(PageDirty(eb->pages[i]));
5339 #endif
5340 
5341 	return was_dirty;
5342 }
5343 
5344 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5345 {
5346 	int i;
5347 	struct page *page;
5348 	int num_pages;
5349 
5350 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5351 	num_pages = num_extent_pages(eb);
5352 	for (i = 0; i < num_pages; i++) {
5353 		page = eb->pages[i];
5354 		if (page)
5355 			ClearPageUptodate(page);
5356 	}
5357 }
5358 
5359 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5360 {
5361 	int i;
5362 	struct page *page;
5363 	int num_pages;
5364 
5365 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5366 	num_pages = num_extent_pages(eb);
5367 	for (i = 0; i < num_pages; i++) {
5368 		page = eb->pages[i];
5369 		SetPageUptodate(page);
5370 	}
5371 }
5372 
5373 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5374 {
5375 	int i;
5376 	struct page *page;
5377 	int err;
5378 	int ret = 0;
5379 	int locked_pages = 0;
5380 	int all_uptodate = 1;
5381 	int num_pages;
5382 	unsigned long num_reads = 0;
5383 	struct bio *bio = NULL;
5384 	unsigned long bio_flags = 0;
5385 	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5386 
5387 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5388 		return 0;
5389 
5390 	num_pages = num_extent_pages(eb);
5391 	for (i = 0; i < num_pages; i++) {
5392 		page = eb->pages[i];
5393 		if (wait == WAIT_NONE) {
5394 			if (!trylock_page(page))
5395 				goto unlock_exit;
5396 		} else {
5397 			lock_page(page);
5398 		}
5399 		locked_pages++;
5400 	}
5401 	/*
5402 	 * We need to firstly lock all pages to make sure that
5403 	 * the uptodate bit of our pages won't be affected by
5404 	 * clear_extent_buffer_uptodate().
5405 	 */
5406 	for (i = 0; i < num_pages; i++) {
5407 		page = eb->pages[i];
5408 		if (!PageUptodate(page)) {
5409 			num_reads++;
5410 			all_uptodate = 0;
5411 		}
5412 	}
5413 
5414 	if (all_uptodate) {
5415 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5416 		goto unlock_exit;
5417 	}
5418 
5419 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5420 	eb->read_mirror = 0;
5421 	atomic_set(&eb->io_pages, num_reads);
5422 	for (i = 0; i < num_pages; i++) {
5423 		page = eb->pages[i];
5424 
5425 		if (!PageUptodate(page)) {
5426 			if (ret) {
5427 				atomic_dec(&eb->io_pages);
5428 				unlock_page(page);
5429 				continue;
5430 			}
5431 
5432 			ClearPageError(page);
5433 			err = __extent_read_full_page(tree, page,
5434 						      btree_get_extent, &bio,
5435 						      mirror_num, &bio_flags,
5436 						      REQ_META);
5437 			if (err) {
5438 				ret = err;
5439 				/*
5440 				 * We use &bio in above __extent_read_full_page,
5441 				 * so we ensure that if it returns error, the
5442 				 * current page fails to add itself to bio and
5443 				 * it's been unlocked.
5444 				 *
5445 				 * We must dec io_pages by ourselves.
5446 				 */
5447 				atomic_dec(&eb->io_pages);
5448 			}
5449 		} else {
5450 			unlock_page(page);
5451 		}
5452 	}
5453 
5454 	if (bio) {
5455 		err = submit_one_bio(bio, mirror_num, bio_flags);
5456 		if (err)
5457 			return err;
5458 	}
5459 
5460 	if (ret || wait != WAIT_COMPLETE)
5461 		return ret;
5462 
5463 	for (i = 0; i < num_pages; i++) {
5464 		page = eb->pages[i];
5465 		wait_on_page_locked(page);
5466 		if (!PageUptodate(page))
5467 			ret = -EIO;
5468 	}
5469 
5470 	return ret;
5471 
5472 unlock_exit:
5473 	while (locked_pages > 0) {
5474 		locked_pages--;
5475 		page = eb->pages[locked_pages];
5476 		unlock_page(page);
5477 	}
5478 	return ret;
5479 }
5480 
5481 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5482 			unsigned long start, unsigned long len)
5483 {
5484 	size_t cur;
5485 	size_t offset;
5486 	struct page *page;
5487 	char *kaddr;
5488 	char *dst = (char *)dstv;
5489 	size_t start_offset = offset_in_page(eb->start);
5490 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5491 
5492 	if (start + len > eb->len) {
5493 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5494 		     eb->start, eb->len, start, len);
5495 		memset(dst, 0, len);
5496 		return;
5497 	}
5498 
5499 	offset = offset_in_page(start_offset + start);
5500 
5501 	while (len > 0) {
5502 		page = eb->pages[i];
5503 
5504 		cur = min(len, (PAGE_SIZE - offset));
5505 		kaddr = page_address(page);
5506 		memcpy(dst, kaddr + offset, cur);
5507 
5508 		dst += cur;
5509 		len -= cur;
5510 		offset = 0;
5511 		i++;
5512 	}
5513 }
5514 
5515 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5516 			       void __user *dstv,
5517 			       unsigned long start, unsigned long len)
5518 {
5519 	size_t cur;
5520 	size_t offset;
5521 	struct page *page;
5522 	char *kaddr;
5523 	char __user *dst = (char __user *)dstv;
5524 	size_t start_offset = offset_in_page(eb->start);
5525 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526 	int ret = 0;
5527 
5528 	WARN_ON(start > eb->len);
5529 	WARN_ON(start + len > eb->start + eb->len);
5530 
5531 	offset = offset_in_page(start_offset + start);
5532 
5533 	while (len > 0) {
5534 		page = eb->pages[i];
5535 
5536 		cur = min(len, (PAGE_SIZE - offset));
5537 		kaddr = page_address(page);
5538 		if (copy_to_user(dst, kaddr + offset, cur)) {
5539 			ret = -EFAULT;
5540 			break;
5541 		}
5542 
5543 		dst += cur;
5544 		len -= cur;
5545 		offset = 0;
5546 		i++;
5547 	}
5548 
5549 	return ret;
5550 }
5551 
5552 /*
5553  * return 0 if the item is found within a page.
5554  * return 1 if the item spans two pages.
5555  * return -EINVAL otherwise.
5556  */
5557 int map_private_extent_buffer(const struct extent_buffer *eb,
5558 			      unsigned long start, unsigned long min_len,
5559 			      char **map, unsigned long *map_start,
5560 			      unsigned long *map_len)
5561 {
5562 	size_t offset;
5563 	char *kaddr;
5564 	struct page *p;
5565 	size_t start_offset = offset_in_page(eb->start);
5566 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5567 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5568 		PAGE_SHIFT;
5569 
5570 	if (start + min_len > eb->len) {
5571 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5572 		       eb->start, eb->len, start, min_len);
5573 		return -EINVAL;
5574 	}
5575 
5576 	if (i != end_i)
5577 		return 1;
5578 
5579 	if (i == 0) {
5580 		offset = start_offset;
5581 		*map_start = 0;
5582 	} else {
5583 		offset = 0;
5584 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5585 	}
5586 
5587 	p = eb->pages[i];
5588 	kaddr = page_address(p);
5589 	*map = kaddr + offset;
5590 	*map_len = PAGE_SIZE - offset;
5591 	return 0;
5592 }
5593 
5594 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5595 			 unsigned long start, unsigned long len)
5596 {
5597 	size_t cur;
5598 	size_t offset;
5599 	struct page *page;
5600 	char *kaddr;
5601 	char *ptr = (char *)ptrv;
5602 	size_t start_offset = offset_in_page(eb->start);
5603 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5604 	int ret = 0;
5605 
5606 	WARN_ON(start > eb->len);
5607 	WARN_ON(start + len > eb->start + eb->len);
5608 
5609 	offset = offset_in_page(start_offset + start);
5610 
5611 	while (len > 0) {
5612 		page = eb->pages[i];
5613 
5614 		cur = min(len, (PAGE_SIZE - offset));
5615 
5616 		kaddr = page_address(page);
5617 		ret = memcmp(ptr, kaddr + offset, cur);
5618 		if (ret)
5619 			break;
5620 
5621 		ptr += cur;
5622 		len -= cur;
5623 		offset = 0;
5624 		i++;
5625 	}
5626 	return ret;
5627 }
5628 
5629 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5630 		const void *srcv)
5631 {
5632 	char *kaddr;
5633 
5634 	WARN_ON(!PageUptodate(eb->pages[0]));
5635 	kaddr = page_address(eb->pages[0]);
5636 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5637 			BTRFS_FSID_SIZE);
5638 }
5639 
5640 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5641 {
5642 	char *kaddr;
5643 
5644 	WARN_ON(!PageUptodate(eb->pages[0]));
5645 	kaddr = page_address(eb->pages[0]);
5646 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5647 			BTRFS_FSID_SIZE);
5648 }
5649 
5650 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5651 			 unsigned long start, unsigned long len)
5652 {
5653 	size_t cur;
5654 	size_t offset;
5655 	struct page *page;
5656 	char *kaddr;
5657 	char *src = (char *)srcv;
5658 	size_t start_offset = offset_in_page(eb->start);
5659 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5660 
5661 	WARN_ON(start > eb->len);
5662 	WARN_ON(start + len > eb->start + eb->len);
5663 
5664 	offset = offset_in_page(start_offset + start);
5665 
5666 	while (len > 0) {
5667 		page = eb->pages[i];
5668 		WARN_ON(!PageUptodate(page));
5669 
5670 		cur = min(len, PAGE_SIZE - offset);
5671 		kaddr = page_address(page);
5672 		memcpy(kaddr + offset, src, cur);
5673 
5674 		src += cur;
5675 		len -= cur;
5676 		offset = 0;
5677 		i++;
5678 	}
5679 }
5680 
5681 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5682 		unsigned long len)
5683 {
5684 	size_t cur;
5685 	size_t offset;
5686 	struct page *page;
5687 	char *kaddr;
5688 	size_t start_offset = offset_in_page(eb->start);
5689 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5690 
5691 	WARN_ON(start > eb->len);
5692 	WARN_ON(start + len > eb->start + eb->len);
5693 
5694 	offset = offset_in_page(start_offset + start);
5695 
5696 	while (len > 0) {
5697 		page = eb->pages[i];
5698 		WARN_ON(!PageUptodate(page));
5699 
5700 		cur = min(len, PAGE_SIZE - offset);
5701 		kaddr = page_address(page);
5702 		memset(kaddr + offset, 0, cur);
5703 
5704 		len -= cur;
5705 		offset = 0;
5706 		i++;
5707 	}
5708 }
5709 
5710 void copy_extent_buffer_full(struct extent_buffer *dst,
5711 			     struct extent_buffer *src)
5712 {
5713 	int i;
5714 	int num_pages;
5715 
5716 	ASSERT(dst->len == src->len);
5717 
5718 	num_pages = num_extent_pages(dst);
5719 	for (i = 0; i < num_pages; i++)
5720 		copy_page(page_address(dst->pages[i]),
5721 				page_address(src->pages[i]));
5722 }
5723 
5724 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5725 			unsigned long dst_offset, unsigned long src_offset,
5726 			unsigned long len)
5727 {
5728 	u64 dst_len = dst->len;
5729 	size_t cur;
5730 	size_t offset;
5731 	struct page *page;
5732 	char *kaddr;
5733 	size_t start_offset = offset_in_page(dst->start);
5734 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5735 
5736 	WARN_ON(src->len != dst_len);
5737 
5738 	offset = offset_in_page(start_offset + dst_offset);
5739 
5740 	while (len > 0) {
5741 		page = dst->pages[i];
5742 		WARN_ON(!PageUptodate(page));
5743 
5744 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5745 
5746 		kaddr = page_address(page);
5747 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5748 
5749 		src_offset += cur;
5750 		len -= cur;
5751 		offset = 0;
5752 		i++;
5753 	}
5754 }
5755 
5756 /*
5757  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5758  * given bit number
5759  * @eb: the extent buffer
5760  * @start: offset of the bitmap item in the extent buffer
5761  * @nr: bit number
5762  * @page_index: return index of the page in the extent buffer that contains the
5763  * given bit number
5764  * @page_offset: return offset into the page given by page_index
5765  *
5766  * This helper hides the ugliness of finding the byte in an extent buffer which
5767  * contains a given bit.
5768  */
5769 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5770 				    unsigned long start, unsigned long nr,
5771 				    unsigned long *page_index,
5772 				    size_t *page_offset)
5773 {
5774 	size_t start_offset = offset_in_page(eb->start);
5775 	size_t byte_offset = BIT_BYTE(nr);
5776 	size_t offset;
5777 
5778 	/*
5779 	 * The byte we want is the offset of the extent buffer + the offset of
5780 	 * the bitmap item in the extent buffer + the offset of the byte in the
5781 	 * bitmap item.
5782 	 */
5783 	offset = start_offset + start + byte_offset;
5784 
5785 	*page_index = offset >> PAGE_SHIFT;
5786 	*page_offset = offset_in_page(offset);
5787 }
5788 
5789 /**
5790  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5791  * @eb: the extent buffer
5792  * @start: offset of the bitmap item in the extent buffer
5793  * @nr: bit number to test
5794  */
5795 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5796 			   unsigned long nr)
5797 {
5798 	u8 *kaddr;
5799 	struct page *page;
5800 	unsigned long i;
5801 	size_t offset;
5802 
5803 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5804 	page = eb->pages[i];
5805 	WARN_ON(!PageUptodate(page));
5806 	kaddr = page_address(page);
5807 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5808 }
5809 
5810 /**
5811  * extent_buffer_bitmap_set - set an area of a bitmap
5812  * @eb: the extent buffer
5813  * @start: offset of the bitmap item in the extent buffer
5814  * @pos: bit number of the first bit
5815  * @len: number of bits to set
5816  */
5817 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5818 			      unsigned long pos, unsigned long len)
5819 {
5820 	u8 *kaddr;
5821 	struct page *page;
5822 	unsigned long i;
5823 	size_t offset;
5824 	const unsigned int size = pos + len;
5825 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5826 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5827 
5828 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5829 	page = eb->pages[i];
5830 	WARN_ON(!PageUptodate(page));
5831 	kaddr = page_address(page);
5832 
5833 	while (len >= bits_to_set) {
5834 		kaddr[offset] |= mask_to_set;
5835 		len -= bits_to_set;
5836 		bits_to_set = BITS_PER_BYTE;
5837 		mask_to_set = ~0;
5838 		if (++offset >= PAGE_SIZE && len > 0) {
5839 			offset = 0;
5840 			page = eb->pages[++i];
5841 			WARN_ON(!PageUptodate(page));
5842 			kaddr = page_address(page);
5843 		}
5844 	}
5845 	if (len) {
5846 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5847 		kaddr[offset] |= mask_to_set;
5848 	}
5849 }
5850 
5851 
5852 /**
5853  * extent_buffer_bitmap_clear - clear an area of a bitmap
5854  * @eb: the extent buffer
5855  * @start: offset of the bitmap item in the extent buffer
5856  * @pos: bit number of the first bit
5857  * @len: number of bits to clear
5858  */
5859 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5860 				unsigned long pos, unsigned long len)
5861 {
5862 	u8 *kaddr;
5863 	struct page *page;
5864 	unsigned long i;
5865 	size_t offset;
5866 	const unsigned int size = pos + len;
5867 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5868 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5869 
5870 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5871 	page = eb->pages[i];
5872 	WARN_ON(!PageUptodate(page));
5873 	kaddr = page_address(page);
5874 
5875 	while (len >= bits_to_clear) {
5876 		kaddr[offset] &= ~mask_to_clear;
5877 		len -= bits_to_clear;
5878 		bits_to_clear = BITS_PER_BYTE;
5879 		mask_to_clear = ~0;
5880 		if (++offset >= PAGE_SIZE && len > 0) {
5881 			offset = 0;
5882 			page = eb->pages[++i];
5883 			WARN_ON(!PageUptodate(page));
5884 			kaddr = page_address(page);
5885 		}
5886 	}
5887 	if (len) {
5888 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5889 		kaddr[offset] &= ~mask_to_clear;
5890 	}
5891 }
5892 
5893 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5894 {
5895 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5896 	return distance < len;
5897 }
5898 
5899 static void copy_pages(struct page *dst_page, struct page *src_page,
5900 		       unsigned long dst_off, unsigned long src_off,
5901 		       unsigned long len)
5902 {
5903 	char *dst_kaddr = page_address(dst_page);
5904 	char *src_kaddr;
5905 	int must_memmove = 0;
5906 
5907 	if (dst_page != src_page) {
5908 		src_kaddr = page_address(src_page);
5909 	} else {
5910 		src_kaddr = dst_kaddr;
5911 		if (areas_overlap(src_off, dst_off, len))
5912 			must_memmove = 1;
5913 	}
5914 
5915 	if (must_memmove)
5916 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5917 	else
5918 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5919 }
5920 
5921 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5922 			   unsigned long src_offset, unsigned long len)
5923 {
5924 	struct btrfs_fs_info *fs_info = dst->fs_info;
5925 	size_t cur;
5926 	size_t dst_off_in_page;
5927 	size_t src_off_in_page;
5928 	size_t start_offset = offset_in_page(dst->start);
5929 	unsigned long dst_i;
5930 	unsigned long src_i;
5931 
5932 	if (src_offset + len > dst->len) {
5933 		btrfs_err(fs_info,
5934 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5935 			 src_offset, len, dst->len);
5936 		BUG();
5937 	}
5938 	if (dst_offset + len > dst->len) {
5939 		btrfs_err(fs_info,
5940 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5941 			 dst_offset, len, dst->len);
5942 		BUG();
5943 	}
5944 
5945 	while (len > 0) {
5946 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5947 		src_off_in_page = offset_in_page(start_offset + src_offset);
5948 
5949 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5950 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5951 
5952 		cur = min(len, (unsigned long)(PAGE_SIZE -
5953 					       src_off_in_page));
5954 		cur = min_t(unsigned long, cur,
5955 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5956 
5957 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5958 			   dst_off_in_page, src_off_in_page, cur);
5959 
5960 		src_offset += cur;
5961 		dst_offset += cur;
5962 		len -= cur;
5963 	}
5964 }
5965 
5966 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5967 			   unsigned long src_offset, unsigned long len)
5968 {
5969 	struct btrfs_fs_info *fs_info = dst->fs_info;
5970 	size_t cur;
5971 	size_t dst_off_in_page;
5972 	size_t src_off_in_page;
5973 	unsigned long dst_end = dst_offset + len - 1;
5974 	unsigned long src_end = src_offset + len - 1;
5975 	size_t start_offset = offset_in_page(dst->start);
5976 	unsigned long dst_i;
5977 	unsigned long src_i;
5978 
5979 	if (src_offset + len > dst->len) {
5980 		btrfs_err(fs_info,
5981 			  "memmove bogus src_offset %lu move len %lu len %lu",
5982 			  src_offset, len, dst->len);
5983 		BUG();
5984 	}
5985 	if (dst_offset + len > dst->len) {
5986 		btrfs_err(fs_info,
5987 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5988 			  dst_offset, len, dst->len);
5989 		BUG();
5990 	}
5991 	if (dst_offset < src_offset) {
5992 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5993 		return;
5994 	}
5995 	while (len > 0) {
5996 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5997 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5998 
5999 		dst_off_in_page = offset_in_page(start_offset + dst_end);
6000 		src_off_in_page = offset_in_page(start_offset + src_end);
6001 
6002 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6003 		cur = min(cur, dst_off_in_page + 1);
6004 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6005 			   dst_off_in_page - cur + 1,
6006 			   src_off_in_page - cur + 1, cur);
6007 
6008 		dst_end -= cur;
6009 		src_end -= cur;
6010 		len -= cur;
6011 	}
6012 }
6013 
6014 int try_release_extent_buffer(struct page *page)
6015 {
6016 	struct extent_buffer *eb;
6017 
6018 	/*
6019 	 * We need to make sure nobody is attaching this page to an eb right
6020 	 * now.
6021 	 */
6022 	spin_lock(&page->mapping->private_lock);
6023 	if (!PagePrivate(page)) {
6024 		spin_unlock(&page->mapping->private_lock);
6025 		return 1;
6026 	}
6027 
6028 	eb = (struct extent_buffer *)page->private;
6029 	BUG_ON(!eb);
6030 
6031 	/*
6032 	 * This is a little awful but should be ok, we need to make sure that
6033 	 * the eb doesn't disappear out from under us while we're looking at
6034 	 * this page.
6035 	 */
6036 	spin_lock(&eb->refs_lock);
6037 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6038 		spin_unlock(&eb->refs_lock);
6039 		spin_unlock(&page->mapping->private_lock);
6040 		return 0;
6041 	}
6042 	spin_unlock(&page->mapping->private_lock);
6043 
6044 	/*
6045 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6046 	 * so just return, this page will likely be freed soon anyway.
6047 	 */
6048 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6049 		spin_unlock(&eb->refs_lock);
6050 		return 0;
6051 	}
6052 
6053 	return release_extent_buffer(eb);
6054 }
6055