1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 btrfs_err(fs_info, 79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu", 80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 107 /* 108 * The sectors of the page which are going to be submitted by 109 * extent_writepage_io(). 110 * This is to avoid touching ranges covered by compression/inline. 111 */ 112 unsigned long submit_bitmap; 113 struct readahead_control *ractl; 114 115 /* 116 * The start offset of the last used extent map by a read operation. 117 * 118 * This is for proper compressed read merge. 119 * U64_MAX means we are starting the read and have made no progress yet. 120 * 121 * The current btrfs_bio_is_contig() only uses disk_bytenr as 122 * the condition to check if the read can be merged with previous 123 * bio, which is not correct. E.g. two file extents pointing to the 124 * same extent but with different offset. 125 * 126 * So here we need to do extra checks to only merge reads that are 127 * covered by the same extent map. 128 * Just extent_map::start will be enough, as they are unique 129 * inside the same inode. 130 */ 131 u64 last_em_start; 132 }; 133 134 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 135 { 136 struct btrfs_bio *bbio = bio_ctrl->bbio; 137 138 if (!bbio) 139 return; 140 141 /* Caller should ensure the bio has at least some range added */ 142 ASSERT(bbio->bio.bi_iter.bi_size); 143 144 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 145 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 146 btrfs_submit_compressed_read(bbio); 147 else 148 btrfs_submit_bbio(bbio, 0); 149 150 /* The bbio is owned by the end_io handler now */ 151 bio_ctrl->bbio = NULL; 152 } 153 154 /* 155 * Submit or fail the current bio in the bio_ctrl structure. 156 */ 157 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 158 { 159 struct btrfs_bio *bbio = bio_ctrl->bbio; 160 161 if (!bbio) 162 return; 163 164 if (ret) { 165 ASSERT(ret < 0); 166 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 167 /* The bio is owned by the end_io handler now */ 168 bio_ctrl->bbio = NULL; 169 } else { 170 submit_one_bio(bio_ctrl); 171 } 172 } 173 174 int __init extent_buffer_init_cachep(void) 175 { 176 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 177 sizeof(struct extent_buffer), 0, 0, 178 NULL); 179 if (!extent_buffer_cache) 180 return -ENOMEM; 181 182 return 0; 183 } 184 185 void __cold extent_buffer_free_cachep(void) 186 { 187 /* 188 * Make sure all delayed rcu free are flushed before we 189 * destroy caches. 190 */ 191 rcu_barrier(); 192 kmem_cache_destroy(extent_buffer_cache); 193 } 194 195 static void process_one_folio(struct btrfs_fs_info *fs_info, 196 struct folio *folio, const struct folio *locked_folio, 197 unsigned long page_ops, u64 start, u64 end) 198 { 199 u32 len; 200 201 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 202 len = end + 1 - start; 203 204 if (page_ops & PAGE_SET_ORDERED) 205 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 206 if (page_ops & PAGE_START_WRITEBACK) { 207 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 208 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 209 } 210 if (page_ops & PAGE_END_WRITEBACK) 211 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 212 213 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 214 btrfs_folio_end_lock(fs_info, folio, start, len); 215 } 216 217 static void __process_folios_contig(struct address_space *mapping, 218 const struct folio *locked_folio, u64 start, 219 u64 end, unsigned long page_ops) 220 { 221 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 222 pgoff_t index = start >> PAGE_SHIFT; 223 pgoff_t end_index = end >> PAGE_SHIFT; 224 struct folio_batch fbatch; 225 int i; 226 227 folio_batch_init(&fbatch); 228 while (index <= end_index) { 229 int found_folios; 230 231 found_folios = filemap_get_folios_contig(mapping, &index, 232 end_index, &fbatch); 233 for (i = 0; i < found_folios; i++) { 234 struct folio *folio = fbatch.folios[i]; 235 236 process_one_folio(fs_info, folio, locked_folio, 237 page_ops, start, end); 238 } 239 folio_batch_release(&fbatch); 240 cond_resched(); 241 } 242 } 243 244 static noinline void unlock_delalloc_folio(const struct inode *inode, 245 struct folio *locked_folio, 246 u64 start, u64 end) 247 { 248 ASSERT(locked_folio); 249 250 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 251 PAGE_UNLOCK); 252 } 253 254 static noinline int lock_delalloc_folios(struct inode *inode, 255 struct folio *locked_folio, 256 u64 start, u64 end) 257 { 258 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 259 struct address_space *mapping = inode->i_mapping; 260 pgoff_t index = start >> PAGE_SHIFT; 261 pgoff_t end_index = end >> PAGE_SHIFT; 262 u64 processed_end = start; 263 struct folio_batch fbatch; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct folio *folio = fbatch.folios[i]; 276 u64 range_start; 277 u32 range_len; 278 279 if (folio == locked_folio) 280 continue; 281 282 folio_lock(folio); 283 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 284 folio_unlock(folio); 285 goto out; 286 } 287 range_start = max_t(u64, folio_pos(folio), start); 288 range_len = min_t(u64, folio_end(folio), end + 1) - range_start; 289 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 290 291 processed_end = range_start + range_len - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct folio *locked_folio, 323 u64 *start, u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the folio */ 342 ASSERT(!(orig_start >= folio_end(locked_folio) || 343 orig_end <= folio_pos(locked_folio))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 btrfs_free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_folio. We have to lock 361 * folios in order, so we can't process delalloc bytes before 362 * locked_folio 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of folios we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the folioss after the folios that has start */ 374 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 375 delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the folios are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 btrfs_free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, cached_state); 399 400 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 401 if (!ret) { 402 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 403 delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 *start = delalloc_start; 408 *end = delalloc_end; 409 out_failed: 410 return found; 411 } 412 413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 414 const struct folio *locked_folio, 415 struct extent_state **cached, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 419 420 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 421 end, page_ops); 422 } 423 424 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 425 { 426 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 427 428 if (!fsverity_active(folio->mapping->host) || 429 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 430 start >= i_size_read(folio->mapping->host)) 431 return true; 432 return fsverity_verify_folio(folio); 433 } 434 435 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 436 { 437 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 438 439 ASSERT(folio_pos(folio) <= start && 440 start + len <= folio_end(folio)); 441 442 if (uptodate && btrfs_verify_folio(folio, start, len)) 443 btrfs_folio_set_uptodate(fs_info, folio, start, len); 444 else 445 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 446 447 if (!btrfs_is_subpage(fs_info, folio)) 448 folio_unlock(folio); 449 else 450 btrfs_folio_end_lock(fs_info, folio, start, len); 451 } 452 453 /* 454 * After a write IO is done, we need to: 455 * 456 * - clear the uptodate bits on error 457 * - clear the writeback bits in the extent tree for the range 458 * - filio_end_writeback() if there is no more pending io for the folio 459 * 460 * Scheduling is not allowed, so the extent state tree is expected 461 * to have one and only one object corresponding to this IO. 462 */ 463 static void end_bbio_data_write(struct btrfs_bio *bbio) 464 { 465 struct btrfs_fs_info *fs_info = bbio->fs_info; 466 struct bio *bio = &bbio->bio; 467 int error = blk_status_to_errno(bio->bi_status); 468 struct folio_iter fi; 469 const u32 sectorsize = fs_info->sectorsize; 470 471 ASSERT(!bio_flagged(bio, BIO_CLONED)); 472 bio_for_each_folio_all(fi, bio) { 473 struct folio *folio = fi.folio; 474 u64 start = folio_pos(folio) + fi.offset; 475 u32 len = fi.length; 476 477 /* Our read/write should always be sector aligned. */ 478 if (!IS_ALIGNED(fi.offset, sectorsize)) 479 btrfs_err(fs_info, 480 "partial page write in btrfs with offset %zu and length %zu", 481 fi.offset, fi.length); 482 else if (!IS_ALIGNED(fi.length, sectorsize)) 483 btrfs_info(fs_info, 484 "incomplete page write with offset %zu and length %zu", 485 fi.offset, fi.length); 486 487 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 488 !error); 489 if (error) 490 mapping_set_error(folio->mapping, error); 491 btrfs_folio_clear_writeback(fs_info, folio, start, len); 492 } 493 494 bio_put(bio); 495 } 496 497 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 498 { 499 ASSERT(folio_test_locked(folio)); 500 if (!btrfs_is_subpage(fs_info, folio)) 501 return; 502 503 ASSERT(folio_test_private(folio)); 504 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 505 } 506 507 /* 508 * After a data read IO is done, we need to: 509 * 510 * - clear the uptodate bits on error 511 * - set the uptodate bits if things worked 512 * - set the folio up to date if all extents in the tree are uptodate 513 * - clear the lock bit in the extent tree 514 * - unlock the folio if there are no other extents locked for it 515 * 516 * Scheduling is not allowed, so the extent state tree is expected 517 * to have one and only one object corresponding to this IO. 518 */ 519 static void end_bbio_data_read(struct btrfs_bio *bbio) 520 { 521 struct btrfs_fs_info *fs_info = bbio->fs_info; 522 struct bio *bio = &bbio->bio; 523 struct folio_iter fi; 524 525 ASSERT(!bio_flagged(bio, BIO_CLONED)); 526 bio_for_each_folio_all(fi, &bbio->bio) { 527 bool uptodate = !bio->bi_status; 528 struct folio *folio = fi.folio; 529 struct inode *inode = folio->mapping->host; 530 u64 start = folio_pos(folio) + fi.offset; 531 532 btrfs_debug(fs_info, 533 "%s: bi_sector=%llu, err=%d, mirror=%u", 534 __func__, bio->bi_iter.bi_sector, bio->bi_status, 535 bbio->mirror_num); 536 537 538 if (likely(uptodate)) { 539 u64 end = start + fi.length - 1; 540 loff_t i_size = i_size_read(inode); 541 542 /* 543 * Zero out the remaining part if this range straddles 544 * i_size. 545 * 546 * Here we should only zero the range inside the folio, 547 * not touch anything else. 548 * 549 * NOTE: i_size is exclusive while end is inclusive and 550 * folio_contains() takes PAGE_SIZE units. 551 */ 552 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 553 i_size <= end) { 554 u32 zero_start = max(offset_in_folio(folio, i_size), 555 offset_in_folio(folio, start)); 556 u32 zero_len = offset_in_folio(folio, end) + 1 - 557 zero_start; 558 559 folio_zero_range(folio, zero_start, zero_len); 560 } 561 } 562 563 /* Update page status and unlock. */ 564 end_folio_read(folio, uptodate, start, fi.length); 565 } 566 bio_put(bio); 567 } 568 569 /* 570 * Populate every free slot in a provided array with folios using GFP_NOFS. 571 * 572 * @nr_folios: number of folios to allocate 573 * @folio_array: the array to fill with folios; any existing non-NULL entries in 574 * the array will be skipped 575 * 576 * Return: 0 if all folios were able to be allocated; 577 * -ENOMEM otherwise, the partially allocated folios would be freed and 578 * the array slots zeroed 579 */ 580 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 581 { 582 for (int i = 0; i < nr_folios; i++) { 583 if (folio_array[i]) 584 continue; 585 folio_array[i] = folio_alloc(GFP_NOFS, 0); 586 if (!folio_array[i]) 587 goto error; 588 } 589 return 0; 590 error: 591 for (int i = 0; i < nr_folios; i++) { 592 if (folio_array[i]) 593 folio_put(folio_array[i]); 594 } 595 return -ENOMEM; 596 } 597 598 /* 599 * Populate every free slot in a provided array with pages, using GFP_NOFS. 600 * 601 * @nr_pages: number of pages to allocate 602 * @page_array: the array to fill with pages; any existing non-null entries in 603 * the array will be skipped 604 * @nofail: whether using __GFP_NOFAIL flag 605 * 606 * Return: 0 if all pages were able to be allocated; 607 * -ENOMEM otherwise, the partially allocated pages would be freed and 608 * the array slots zeroed 609 */ 610 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 611 bool nofail) 612 { 613 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 614 unsigned int allocated; 615 616 for (allocated = 0; allocated < nr_pages;) { 617 unsigned int last = allocated; 618 619 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 620 if (unlikely(allocated == last)) { 621 /* No progress, fail and do cleanup. */ 622 for (int i = 0; i < allocated; i++) { 623 __free_page(page_array[i]); 624 page_array[i] = NULL; 625 } 626 return -ENOMEM; 627 } 628 } 629 return 0; 630 } 631 632 /* 633 * Populate needed folios for the extent buffer. 634 * 635 * For now, the folios populated are always in order 0 (aka, single page). 636 */ 637 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 638 { 639 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 640 int num_pages = num_extent_pages(eb); 641 int ret; 642 643 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 644 if (ret < 0) 645 return ret; 646 647 for (int i = 0; i < num_pages; i++) 648 eb->folios[i] = page_folio(page_array[i]); 649 eb->folio_size = PAGE_SIZE; 650 eb->folio_shift = PAGE_SHIFT; 651 return 0; 652 } 653 654 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 655 u64 disk_bytenr, loff_t file_offset) 656 { 657 struct bio *bio = &bio_ctrl->bbio->bio; 658 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 659 660 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 661 /* 662 * For compression, all IO should have its logical bytenr set 663 * to the starting bytenr of the compressed extent. 664 */ 665 return bio->bi_iter.bi_sector == sector; 666 } 667 668 /* 669 * To merge into a bio both the disk sector and the logical offset in 670 * the file need to be contiguous. 671 */ 672 return bio_ctrl->next_file_offset == file_offset && 673 bio_end_sector(bio) == sector; 674 } 675 676 static void alloc_new_bio(struct btrfs_inode *inode, 677 struct btrfs_bio_ctrl *bio_ctrl, 678 u64 disk_bytenr, u64 file_offset) 679 { 680 struct btrfs_fs_info *fs_info = inode->root->fs_info; 681 struct btrfs_bio *bbio; 682 683 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 684 bio_ctrl->end_io_func, NULL); 685 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 686 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 687 bbio->inode = inode; 688 bbio->file_offset = file_offset; 689 bio_ctrl->bbio = bbio; 690 bio_ctrl->len_to_oe_boundary = U32_MAX; 691 bio_ctrl->next_file_offset = file_offset; 692 693 /* Limit data write bios to the ordered boundary. */ 694 if (bio_ctrl->wbc) { 695 struct btrfs_ordered_extent *ordered; 696 697 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 698 if (ordered) { 699 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 700 ordered->file_offset + 701 ordered->disk_num_bytes - file_offset); 702 bbio->ordered = ordered; 703 } 704 705 /* 706 * Pick the last added device to support cgroup writeback. For 707 * multi-device file systems this means blk-cgroup policies have 708 * to always be set on the last added/replaced device. 709 * This is a bit odd but has been like that for a long time. 710 */ 711 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 712 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 713 } 714 } 715 716 /* 717 * @disk_bytenr: logical bytenr where the write will be 718 * @page: page to add to the bio 719 * @size: portion of page that we want to write to 720 * @pg_offset: offset of the new bio or to check whether we are adding 721 * a contiguous page to the previous one 722 * 723 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 724 * new one in @bio_ctrl->bbio. 725 * The mirror number for this IO should already be initizlied in 726 * @bio_ctrl->mirror_num. 727 */ 728 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 729 u64 disk_bytenr, struct folio *folio, 730 size_t size, unsigned long pg_offset) 731 { 732 struct btrfs_inode *inode = folio_to_inode(folio); 733 loff_t file_offset = folio_pos(folio) + pg_offset; 734 735 ASSERT(pg_offset + size <= folio_size(folio)); 736 ASSERT(bio_ctrl->end_io_func); 737 738 if (bio_ctrl->bbio && 739 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 740 submit_one_bio(bio_ctrl); 741 742 do { 743 u32 len = size; 744 745 /* Allocate new bio if needed */ 746 if (!bio_ctrl->bbio) 747 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 748 749 /* Cap to the current ordered extent boundary if there is one. */ 750 if (len > bio_ctrl->len_to_oe_boundary) { 751 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 752 ASSERT(is_data_inode(inode)); 753 len = bio_ctrl->len_to_oe_boundary; 754 } 755 756 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 757 /* bio full: move on to a new one */ 758 submit_one_bio(bio_ctrl); 759 continue; 760 } 761 bio_ctrl->next_file_offset += len; 762 763 if (bio_ctrl->wbc) 764 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 765 766 size -= len; 767 pg_offset += len; 768 disk_bytenr += len; 769 file_offset += len; 770 771 /* 772 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 773 * sector aligned. alloc_new_bio() then sets it to the end of 774 * our ordered extent for writes into zoned devices. 775 * 776 * When len_to_oe_boundary is tracking an ordered extent, we 777 * trust the ordered extent code to align things properly, and 778 * the check above to cap our write to the ordered extent 779 * boundary is correct. 780 * 781 * When len_to_oe_boundary is U32_MAX, the cap above would 782 * result in a 4095 byte IO for the last folio right before 783 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 784 * the checks required to make sure we don't overflow the bio, 785 * and we should just ignore len_to_oe_boundary completely 786 * unless we're using it to track an ordered extent. 787 * 788 * It's pretty hard to make a bio sized U32_MAX, but it can 789 * happen when the page cache is able to feed us contiguous 790 * folios for large extents. 791 */ 792 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 793 bio_ctrl->len_to_oe_boundary -= len; 794 795 /* Ordered extent boundary: move on to a new bio. */ 796 if (bio_ctrl->len_to_oe_boundary == 0) 797 submit_one_bio(bio_ctrl); 798 } while (size); 799 } 800 801 static int attach_extent_buffer_folio(struct extent_buffer *eb, 802 struct folio *folio, 803 struct btrfs_folio_state *prealloc) 804 { 805 struct btrfs_fs_info *fs_info = eb->fs_info; 806 int ret = 0; 807 808 /* 809 * If the page is mapped to btree inode, we should hold the private 810 * lock to prevent race. 811 * For cloned or dummy extent buffers, their pages are not mapped and 812 * will not race with any other ebs. 813 */ 814 if (folio->mapping) 815 lockdep_assert_held(&folio->mapping->i_private_lock); 816 817 if (!btrfs_meta_is_subpage(fs_info)) { 818 if (!folio_test_private(folio)) 819 folio_attach_private(folio, eb); 820 else 821 WARN_ON(folio_get_private(folio) != eb); 822 return 0; 823 } 824 825 /* Already mapped, just free prealloc */ 826 if (folio_test_private(folio)) { 827 btrfs_free_folio_state(prealloc); 828 return 0; 829 } 830 831 if (prealloc) 832 /* Has preallocated memory for subpage */ 833 folio_attach_private(folio, prealloc); 834 else 835 /* Do new allocation to attach subpage */ 836 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 837 return ret; 838 } 839 840 int set_folio_extent_mapped(struct folio *folio) 841 { 842 struct btrfs_fs_info *fs_info; 843 844 ASSERT(folio->mapping); 845 846 if (folio_test_private(folio)) 847 return 0; 848 849 fs_info = folio_to_fs_info(folio); 850 851 if (btrfs_is_subpage(fs_info, folio)) 852 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 853 854 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 855 return 0; 856 } 857 858 void clear_folio_extent_mapped(struct folio *folio) 859 { 860 struct btrfs_fs_info *fs_info; 861 862 ASSERT(folio->mapping); 863 864 if (!folio_test_private(folio)) 865 return; 866 867 fs_info = folio_to_fs_info(folio); 868 if (btrfs_is_subpage(fs_info, folio)) 869 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 870 871 folio_detach_private(folio); 872 } 873 874 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 875 struct folio *folio, u64 start, 876 u64 len, struct extent_map **em_cached) 877 { 878 struct extent_map *em; 879 880 ASSERT(em_cached); 881 882 if (*em_cached) { 883 em = *em_cached; 884 if (btrfs_extent_map_in_tree(em) && start >= em->start && 885 start < btrfs_extent_map_end(em)) { 886 refcount_inc(&em->refs); 887 return em; 888 } 889 890 btrfs_free_extent_map(em); 891 *em_cached = NULL; 892 } 893 894 em = btrfs_get_extent(inode, folio, start, len); 895 if (!IS_ERR(em)) { 896 BUG_ON(*em_cached); 897 refcount_inc(&em->refs); 898 *em_cached = em; 899 } 900 901 return em; 902 } 903 904 static void btrfs_readahead_expand(struct readahead_control *ractl, 905 const struct extent_map *em) 906 { 907 const u64 ra_pos = readahead_pos(ractl); 908 const u64 ra_end = ra_pos + readahead_length(ractl); 909 const u64 em_end = em->start + em->ram_bytes; 910 911 /* No expansion for holes and inline extents. */ 912 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) 913 return; 914 915 ASSERT(em_end >= ra_pos, 916 "extent_map %llu %llu ends before current readahead position %llu", 917 em->start, em->len, ra_pos); 918 if (em_end > ra_end) 919 readahead_expand(ractl, ra_pos, em_end - ra_pos); 920 } 921 922 /* 923 * basic readpage implementation. Locked extent state structs are inserted 924 * into the tree that are removed when the IO is done (by the end_io 925 * handlers) 926 * XXX JDM: This needs looking at to ensure proper page locking 927 * return 0 on success, otherwise return error 928 */ 929 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 930 struct btrfs_bio_ctrl *bio_ctrl) 931 { 932 struct inode *inode = folio->mapping->host; 933 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 934 u64 start = folio_pos(folio); 935 const u64 end = start + folio_size(folio) - 1; 936 u64 extent_offset; 937 u64 last_byte = i_size_read(inode); 938 struct extent_map *em; 939 int ret = 0; 940 const size_t blocksize = fs_info->sectorsize; 941 942 ret = set_folio_extent_mapped(folio); 943 if (ret < 0) { 944 folio_unlock(folio); 945 return ret; 946 } 947 948 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 949 size_t zero_offset = offset_in_folio(folio, last_byte); 950 951 if (zero_offset) 952 folio_zero_range(folio, zero_offset, 953 folio_size(folio) - zero_offset); 954 } 955 bio_ctrl->end_io_func = end_bbio_data_read; 956 begin_folio_read(fs_info, folio); 957 for (u64 cur = start; cur <= end; cur += blocksize) { 958 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 959 unsigned long pg_offset = offset_in_folio(folio, cur); 960 bool force_bio_submit = false; 961 u64 disk_bytenr; 962 u64 block_start; 963 964 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 965 if (cur >= last_byte) { 966 folio_zero_range(folio, pg_offset, end - cur + 1); 967 end_folio_read(folio, true, cur, end - cur + 1); 968 break; 969 } 970 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 971 end_folio_read(folio, true, cur, blocksize); 972 continue; 973 } 974 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 975 if (IS_ERR(em)) { 976 end_folio_read(folio, false, cur, end + 1 - cur); 977 return PTR_ERR(em); 978 } 979 extent_offset = cur - em->start; 980 BUG_ON(btrfs_extent_map_end(em) <= cur); 981 BUG_ON(end < cur); 982 983 compress_type = btrfs_extent_map_compression(em); 984 985 /* 986 * Only expand readahead for extents which are already creating 987 * the pages anyway in add_ra_bio_pages, which is compressed 988 * extents in the non subpage case. 989 */ 990 if (bio_ctrl->ractl && 991 !btrfs_is_subpage(fs_info, folio) && 992 compress_type != BTRFS_COMPRESS_NONE) 993 btrfs_readahead_expand(bio_ctrl->ractl, em); 994 995 if (compress_type != BTRFS_COMPRESS_NONE) 996 disk_bytenr = em->disk_bytenr; 997 else 998 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 999 1000 if (em->flags & EXTENT_FLAG_PREALLOC) 1001 block_start = EXTENT_MAP_HOLE; 1002 else 1003 block_start = btrfs_extent_map_block_start(em); 1004 1005 /* 1006 * If we have a file range that points to a compressed extent 1007 * and it's followed by a consecutive file range that points 1008 * to the same compressed extent (possibly with a different 1009 * offset and/or length, so it either points to the whole extent 1010 * or only part of it), we must make sure we do not submit a 1011 * single bio to populate the folios for the 2 ranges because 1012 * this makes the compressed extent read zero out the folios 1013 * belonging to the 2nd range. Imagine the following scenario: 1014 * 1015 * File layout 1016 * [0 - 8K] [8K - 24K] 1017 * | | 1018 * | | 1019 * points to extent X, points to extent X, 1020 * offset 4K, length of 8K offset 0, length 16K 1021 * 1022 * [extent X, compressed length = 4K uncompressed length = 16K] 1023 * 1024 * If the bio to read the compressed extent covers both ranges, 1025 * it will decompress extent X into the folios belonging to the 1026 * first range and then it will stop, zeroing out the remaining 1027 * folios that belong to the other range that points to extent X. 1028 * So here we make sure we submit 2 bios, one for the first 1029 * range and another one for the third range. Both will target 1030 * the same physical extent from disk, but we can't currently 1031 * make the compressed bio endio callback populate the folios 1032 * for both ranges because each compressed bio is tightly 1033 * coupled with a single extent map, and each range can have 1034 * an extent map with a different offset value relative to the 1035 * uncompressed data of our extent and different lengths. This 1036 * is a corner case so we prioritize correctness over 1037 * non-optimal behavior (submitting 2 bios for the same extent). 1038 */ 1039 if (compress_type != BTRFS_COMPRESS_NONE && 1040 bio_ctrl->last_em_start != U64_MAX && 1041 bio_ctrl->last_em_start != em->start) 1042 force_bio_submit = true; 1043 1044 bio_ctrl->last_em_start = em->start; 1045 1046 btrfs_free_extent_map(em); 1047 em = NULL; 1048 1049 /* we've found a hole, just zero and go on */ 1050 if (block_start == EXTENT_MAP_HOLE) { 1051 folio_zero_range(folio, pg_offset, blocksize); 1052 end_folio_read(folio, true, cur, blocksize); 1053 continue; 1054 } 1055 /* the get_extent function already copied into the folio */ 1056 if (block_start == EXTENT_MAP_INLINE) { 1057 end_folio_read(folio, true, cur, blocksize); 1058 continue; 1059 } 1060 1061 if (bio_ctrl->compress_type != compress_type) { 1062 submit_one_bio(bio_ctrl); 1063 bio_ctrl->compress_type = compress_type; 1064 } 1065 1066 if (force_bio_submit) 1067 submit_one_bio(bio_ctrl); 1068 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1069 pg_offset); 1070 } 1071 return 0; 1072 } 1073 1074 /* 1075 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1076 * 1077 * @fileoff: Both input and output. 1078 * Input as the file offset where the check should start at. 1079 * Output as where the next check should start at, 1080 * if the function returns true. 1081 * 1082 * Return true if we can skip to @fileoff. The caller needs to check the new 1083 * @fileoff value to make sure it covers the full range, before skipping the 1084 * full OE. 1085 * 1086 * Return false if we must wait for the ordered extent. 1087 */ 1088 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1089 struct btrfs_ordered_extent *ordered, 1090 u64 *fileoff) 1091 { 1092 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1093 struct folio *folio; 1094 const u32 blocksize = fs_info->sectorsize; 1095 u64 cur = *fileoff; 1096 bool ret; 1097 1098 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1099 1100 /* 1101 * We should have locked the folio(s) for range [start, end], thus 1102 * there must be a folio and it must be locked. 1103 */ 1104 ASSERT(!IS_ERR(folio)); 1105 ASSERT(folio_test_locked(folio)); 1106 1107 /* 1108 * There are several cases for the folio and OE combination: 1109 * 1110 * 1) Folio has no private flag 1111 * The OE has all its IO done but not yet finished, and folio got 1112 * invalidated. 1113 * 1114 * Have we have to wait for the OE to finish, as it may contain the 1115 * to-be-inserted data checksum. 1116 * Without the data checksum inserted into the csum tree, read will 1117 * just fail with missing csum. 1118 */ 1119 if (!folio_test_private(folio)) { 1120 ret = false; 1121 goto out; 1122 } 1123 1124 /* 1125 * 2) The first block is DIRTY. 1126 * 1127 * This means the OE is created by some other folios whose file pos is 1128 * before this one. And since we are holding the folio lock, the writeback 1129 * of this folio cannot start. 1130 * 1131 * We must skip the whole OE, because it will never start until we 1132 * finished our folio read and unlocked the folio. 1133 */ 1134 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1135 u64 range_len = min(folio_end(folio), 1136 ordered->file_offset + ordered->num_bytes) - cur; 1137 1138 ret = true; 1139 /* 1140 * At least inside the folio, all the remaining blocks should 1141 * also be dirty. 1142 */ 1143 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1144 *fileoff = ordered->file_offset + ordered->num_bytes; 1145 goto out; 1146 } 1147 1148 /* 1149 * 3) The first block is uptodate. 1150 * 1151 * At least the first block can be skipped, but we are still not fully 1152 * sure. E.g. if the OE has some other folios in the range that cannot 1153 * be skipped. 1154 * So we return true and update @next_ret to the OE/folio boundary. 1155 */ 1156 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1157 u64 range_len = min(folio_end(folio), 1158 ordered->file_offset + ordered->num_bytes) - cur; 1159 1160 /* 1161 * The whole range to the OE end or folio boundary should also 1162 * be uptodate. 1163 */ 1164 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1165 ret = true; 1166 *fileoff = cur + range_len; 1167 goto out; 1168 } 1169 1170 /* 1171 * 4) The first block is not uptodate. 1172 * 1173 * This means the folio is invalidated after the writeback was finished, 1174 * but by some other operations (e.g. block aligned buffered write) the 1175 * folio is inserted into filemap. 1176 * Very much the same as case 1). 1177 */ 1178 ret = false; 1179 out: 1180 folio_put(folio); 1181 return ret; 1182 } 1183 1184 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1185 struct btrfs_ordered_extent *ordered, 1186 u64 start, u64 end) 1187 { 1188 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1189 u64 cur = max(start, ordered->file_offset); 1190 1191 while (cur < range_end) { 1192 bool can_skip; 1193 1194 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1195 if (!can_skip) 1196 return false; 1197 } 1198 return true; 1199 } 1200 1201 /* 1202 * Locking helper to make sure we get a stable view of extent maps for the 1203 * involved range. 1204 * 1205 * This is for folio read paths (read and readahead), thus the involved range 1206 * should have all the folios locked. 1207 */ 1208 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1209 struct extent_state **cached_state) 1210 { 1211 u64 cur_pos; 1212 1213 /* Caller must provide a valid @cached_state. */ 1214 ASSERT(cached_state); 1215 1216 /* The range must at least be page aligned, as all read paths are folio based. */ 1217 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1218 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1219 1220 again: 1221 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1222 cur_pos = start; 1223 while (cur_pos < end) { 1224 struct btrfs_ordered_extent *ordered; 1225 1226 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1227 end - cur_pos + 1); 1228 /* 1229 * No ordered extents in the range, and we hold the extent lock, 1230 * no one can modify the extent maps in the range, we're safe to return. 1231 */ 1232 if (!ordered) 1233 break; 1234 1235 /* Check if we can skip waiting for the whole OE. */ 1236 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1237 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1238 end + 1); 1239 btrfs_put_ordered_extent(ordered); 1240 continue; 1241 } 1242 1243 /* Now wait for the OE to finish. */ 1244 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1245 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1246 btrfs_put_ordered_extent(ordered); 1247 /* We have unlocked the whole range, restart from the beginning. */ 1248 goto again; 1249 } 1250 } 1251 1252 int btrfs_read_folio(struct file *file, struct folio *folio) 1253 { 1254 struct btrfs_inode *inode = folio_to_inode(folio); 1255 const u64 start = folio_pos(folio); 1256 const u64 end = start + folio_size(folio) - 1; 1257 struct extent_state *cached_state = NULL; 1258 struct btrfs_bio_ctrl bio_ctrl = { 1259 .opf = REQ_OP_READ, 1260 .last_em_start = U64_MAX, 1261 }; 1262 struct extent_map *em_cached = NULL; 1263 int ret; 1264 1265 lock_extents_for_read(inode, start, end, &cached_state); 1266 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl); 1267 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1268 1269 btrfs_free_extent_map(em_cached); 1270 1271 /* 1272 * If btrfs_do_readpage() failed we will want to submit the assembled 1273 * bio to do the cleanup. 1274 */ 1275 submit_one_bio(&bio_ctrl); 1276 return ret; 1277 } 1278 1279 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1280 u64 start, u32 len) 1281 { 1282 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1283 const u64 folio_start = folio_pos(folio); 1284 unsigned int start_bit; 1285 unsigned int nbits; 1286 1287 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1288 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1289 nbits = len >> fs_info->sectorsize_bits; 1290 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1291 bitmap_set(delalloc_bitmap, start_bit, nbits); 1292 } 1293 1294 static bool find_next_delalloc_bitmap(struct folio *folio, 1295 unsigned long *delalloc_bitmap, u64 start, 1296 u64 *found_start, u32 *found_len) 1297 { 1298 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1299 const u64 folio_start = folio_pos(folio); 1300 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1301 unsigned int start_bit; 1302 unsigned int first_zero; 1303 unsigned int first_set; 1304 1305 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1306 1307 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1308 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1309 if (first_set >= bitmap_size) 1310 return false; 1311 1312 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1313 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1314 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1315 return true; 1316 } 1317 1318 /* 1319 * Do all of the delayed allocation setup. 1320 * 1321 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1322 * The @folio should no longer be touched (treat it as already unlocked). 1323 * 1324 * Return 0 if there is still dirty block that needs to be submitted through 1325 * extent_writepage_io(). 1326 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1327 * submitted, and @folio is still kept locked. 1328 * 1329 * Return <0 if there is any error hit. 1330 * Any allocated ordered extent range covering this folio will be marked 1331 * finished (IOERR), and @folio is still kept locked. 1332 */ 1333 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1334 struct folio *folio, 1335 struct btrfs_bio_ctrl *bio_ctrl) 1336 { 1337 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1338 struct writeback_control *wbc = bio_ctrl->wbc; 1339 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1340 const u64 page_start = folio_pos(folio); 1341 const u64 page_end = page_start + folio_size(folio) - 1; 1342 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1343 unsigned long delalloc_bitmap = 0; 1344 /* 1345 * Save the last found delalloc end. As the delalloc end can go beyond 1346 * page boundary, thus we cannot rely on subpage bitmap to locate the 1347 * last delalloc end. 1348 */ 1349 u64 last_delalloc_end = 0; 1350 /* 1351 * The range end (exclusive) of the last successfully finished delalloc 1352 * range. 1353 * Any range covered by ordered extent must either be manually marked 1354 * finished (error handling), or has IO submitted (and finish the 1355 * ordered extent normally). 1356 * 1357 * This records the end of ordered extent cleanup if we hit an error. 1358 */ 1359 u64 last_finished_delalloc_end = page_start; 1360 u64 delalloc_start = page_start; 1361 u64 delalloc_end = page_end; 1362 u64 delalloc_to_write = 0; 1363 int ret = 0; 1364 int bit; 1365 1366 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1367 if (btrfs_is_subpage(fs_info, folio)) { 1368 ASSERT(blocks_per_folio > 1); 1369 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1370 } else { 1371 bio_ctrl->submit_bitmap = 1; 1372 } 1373 1374 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1375 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1376 1377 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1378 } 1379 1380 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1381 while (delalloc_start < page_end) { 1382 delalloc_end = page_end; 1383 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1384 &delalloc_start, &delalloc_end)) { 1385 delalloc_start = delalloc_end + 1; 1386 continue; 1387 } 1388 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1389 min(delalloc_end, page_end) + 1 - delalloc_start); 1390 last_delalloc_end = delalloc_end; 1391 delalloc_start = delalloc_end + 1; 1392 } 1393 delalloc_start = page_start; 1394 1395 if (!last_delalloc_end) 1396 goto out; 1397 1398 /* Run the delalloc ranges for the above locked ranges. */ 1399 while (delalloc_start < page_end) { 1400 u64 found_start; 1401 u32 found_len; 1402 bool found; 1403 1404 if (!is_subpage) { 1405 /* 1406 * For non-subpage case, the found delalloc range must 1407 * cover this folio and there must be only one locked 1408 * delalloc range. 1409 */ 1410 found_start = page_start; 1411 found_len = last_delalloc_end + 1 - found_start; 1412 found = true; 1413 } else { 1414 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1415 delalloc_start, &found_start, &found_len); 1416 } 1417 if (!found) 1418 break; 1419 /* 1420 * The subpage range covers the last sector, the delalloc range may 1421 * end beyond the folio boundary, use the saved delalloc_end 1422 * instead. 1423 */ 1424 if (found_start + found_len >= page_end) 1425 found_len = last_delalloc_end + 1 - found_start; 1426 1427 if (ret >= 0) { 1428 /* 1429 * Some delalloc range may be created by previous folios. 1430 * Thus we still need to clean up this range during error 1431 * handling. 1432 */ 1433 last_finished_delalloc_end = found_start; 1434 /* No errors hit so far, run the current delalloc range. */ 1435 ret = btrfs_run_delalloc_range(inode, folio, 1436 found_start, 1437 found_start + found_len - 1, 1438 wbc); 1439 if (ret >= 0) 1440 last_finished_delalloc_end = found_start + found_len; 1441 if (unlikely(ret < 0)) 1442 btrfs_err_rl(fs_info, 1443 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1444 btrfs_root_id(inode->root), 1445 btrfs_ino(inode), 1446 folio_pos(folio), 1447 blocks_per_folio, 1448 &bio_ctrl->submit_bitmap, 1449 found_start, found_len, ret); 1450 } else { 1451 /* 1452 * We've hit an error during previous delalloc range, 1453 * have to cleanup the remaining locked ranges. 1454 */ 1455 btrfs_unlock_extent(&inode->io_tree, found_start, 1456 found_start + found_len - 1, NULL); 1457 unlock_delalloc_folio(&inode->vfs_inode, folio, 1458 found_start, 1459 found_start + found_len - 1); 1460 } 1461 1462 /* 1463 * We have some ranges that's going to be submitted asynchronously 1464 * (compression or inline). These range have their own control 1465 * on when to unlock the pages. We should not touch them 1466 * anymore, so clear the range from the submission bitmap. 1467 */ 1468 if (ret > 0) { 1469 unsigned int start_bit = (found_start - page_start) >> 1470 fs_info->sectorsize_bits; 1471 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1472 page_start) >> fs_info->sectorsize_bits; 1473 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1474 } 1475 /* 1476 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1477 * thus for the last range, we cannot touch the folio anymore. 1478 */ 1479 if (found_start + found_len >= last_delalloc_end + 1) 1480 break; 1481 1482 delalloc_start = found_start + found_len; 1483 } 1484 /* 1485 * It's possible we had some ordered extents created before we hit 1486 * an error, cleanup non-async successfully created delalloc ranges. 1487 */ 1488 if (unlikely(ret < 0)) { 1489 unsigned int bitmap_size = min( 1490 (last_finished_delalloc_end - page_start) >> 1491 fs_info->sectorsize_bits, 1492 blocks_per_folio); 1493 1494 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1495 btrfs_mark_ordered_io_finished(inode, folio, 1496 page_start + (bit << fs_info->sectorsize_bits), 1497 fs_info->sectorsize, false); 1498 return ret; 1499 } 1500 out: 1501 if (last_delalloc_end) 1502 delalloc_end = last_delalloc_end; 1503 else 1504 delalloc_end = page_end; 1505 /* 1506 * delalloc_end is already one less than the total length, so 1507 * we don't subtract one from PAGE_SIZE. 1508 */ 1509 delalloc_to_write += 1510 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1511 1512 /* 1513 * If all ranges are submitted asynchronously, we just need to account 1514 * for them here. 1515 */ 1516 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1517 wbc->nr_to_write -= delalloc_to_write; 1518 return 1; 1519 } 1520 1521 if (wbc->nr_to_write < delalloc_to_write) { 1522 int thresh = 8192; 1523 1524 if (delalloc_to_write < thresh * 2) 1525 thresh = delalloc_to_write; 1526 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1527 thresh); 1528 } 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * Return 0 if we have submitted or queued the sector for submission. 1535 * Return <0 for critical errors, and the sector will have its dirty flag cleared. 1536 * 1537 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1538 */ 1539 static int submit_one_sector(struct btrfs_inode *inode, 1540 struct folio *folio, 1541 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1542 loff_t i_size) 1543 { 1544 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1545 struct extent_map *em; 1546 u64 block_start; 1547 u64 disk_bytenr; 1548 u64 extent_offset; 1549 u64 em_end; 1550 const u32 sectorsize = fs_info->sectorsize; 1551 1552 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1553 1554 /* @filepos >= i_size case should be handled by the caller. */ 1555 ASSERT(filepos < i_size); 1556 1557 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1558 if (IS_ERR(em)) { 1559 /* 1560 * When submission failed, we should still clear the folio dirty. 1561 * Or the folio will be written back again but without any 1562 * ordered extent. 1563 */ 1564 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1565 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1566 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize); 1567 return PTR_ERR(em); 1568 } 1569 1570 extent_offset = filepos - em->start; 1571 em_end = btrfs_extent_map_end(em); 1572 ASSERT(filepos <= em_end); 1573 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1574 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1575 1576 block_start = btrfs_extent_map_block_start(em); 1577 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1578 1579 ASSERT(!btrfs_extent_map_is_compressed(em)); 1580 ASSERT(block_start != EXTENT_MAP_HOLE); 1581 ASSERT(block_start != EXTENT_MAP_INLINE); 1582 1583 btrfs_free_extent_map(em); 1584 em = NULL; 1585 1586 /* 1587 * Although the PageDirty bit is cleared before entering this 1588 * function, subpage dirty bit is not cleared. 1589 * So clear subpage dirty bit here so next time we won't submit 1590 * a folio for a range already written to disk. 1591 */ 1592 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1593 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1594 /* 1595 * Above call should set the whole folio with writeback flag, even 1596 * just for a single subpage sector. 1597 * As long as the folio is properly locked and the range is correct, 1598 * we should always get the folio with writeback flag. 1599 */ 1600 ASSERT(folio_test_writeback(folio)); 1601 1602 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1603 sectorsize, filepos - folio_pos(folio)); 1604 return 0; 1605 } 1606 1607 /* 1608 * Helper for extent_writepage(). This calls the writepage start hooks, 1609 * and does the loop to map the page into extents and bios. 1610 * 1611 * We return 1 if the IO is started and the page is unlocked, 1612 * 0 if all went well (page still locked) 1613 * < 0 if there were errors (page still locked) 1614 */ 1615 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1616 struct folio *folio, 1617 u64 start, u32 len, 1618 struct btrfs_bio_ctrl *bio_ctrl, 1619 loff_t i_size) 1620 { 1621 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1622 unsigned long range_bitmap = 0; 1623 bool submitted_io = false; 1624 bool error = false; 1625 const u64 folio_start = folio_pos(folio); 1626 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1627 u64 cur; 1628 int bit; 1629 int ret = 0; 1630 1631 ASSERT(start >= folio_start && 1632 start + len <= folio_start + folio_size(folio)); 1633 1634 ret = btrfs_writepage_cow_fixup(folio); 1635 if (ret == -EAGAIN) { 1636 /* Fixup worker will requeue */ 1637 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1638 folio_unlock(folio); 1639 return 1; 1640 } 1641 if (ret < 0) { 1642 btrfs_folio_clear_dirty(fs_info, folio, start, len); 1643 btrfs_folio_set_writeback(fs_info, folio, start, len); 1644 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1645 return ret; 1646 } 1647 1648 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1649 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1650 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1651 blocks_per_folio); 1652 1653 bio_ctrl->end_io_func = end_bbio_data_write; 1654 1655 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1656 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1657 1658 if (cur >= i_size) { 1659 btrfs_mark_ordered_io_finished(inode, folio, cur, 1660 start + len - cur, true); 1661 /* 1662 * This range is beyond i_size, thus we don't need to 1663 * bother writing back. 1664 * But we still need to clear the dirty subpage bit, or 1665 * the next time the folio gets dirtied, we will try to 1666 * writeback the sectors with subpage dirty bits, 1667 * causing writeback without ordered extent. 1668 */ 1669 btrfs_folio_clear_dirty(fs_info, folio, cur, 1670 start + len - cur); 1671 break; 1672 } 1673 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1674 if (unlikely(ret < 0)) { 1675 /* 1676 * bio_ctrl may contain a bio crossing several folios. 1677 * Submit it immediately so that the bio has a chance 1678 * to finish normally, other than marked as error. 1679 */ 1680 submit_one_bio(bio_ctrl); 1681 /* 1682 * Failed to grab the extent map which should be very rare. 1683 * Since there is no bio submitted to finish the ordered 1684 * extent, we have to manually finish this sector. 1685 */ 1686 btrfs_mark_ordered_io_finished(inode, folio, cur, 1687 fs_info->sectorsize, false); 1688 error = true; 1689 continue; 1690 } 1691 submitted_io = true; 1692 } 1693 1694 /* 1695 * If we didn't submitted any sector (>= i_size), folio dirty get 1696 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1697 * by folio_start_writeback() if the folio is not dirty). 1698 * 1699 * Here we set writeback and clear for the range. If the full folio 1700 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1701 * 1702 * If we hit any error, the corresponding sector will have its dirty 1703 * flag cleared and writeback finished, thus no need to handle the error case. 1704 */ 1705 if (!submitted_io && !error) { 1706 btrfs_folio_set_writeback(fs_info, folio, start, len); 1707 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1708 } 1709 return ret; 1710 } 1711 1712 /* 1713 * the writepage semantics are similar to regular writepage. extent 1714 * records are inserted to lock ranges in the tree, and as dirty areas 1715 * are found, they are marked writeback. Then the lock bits are removed 1716 * and the end_io handler clears the writeback ranges 1717 * 1718 * Return 0 if everything goes well. 1719 * Return <0 for error. 1720 */ 1721 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1722 { 1723 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1724 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1725 int ret; 1726 size_t pg_offset; 1727 loff_t i_size = i_size_read(&inode->vfs_inode); 1728 const pgoff_t end_index = i_size >> PAGE_SHIFT; 1729 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1730 1731 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1732 1733 WARN_ON(!folio_test_locked(folio)); 1734 1735 pg_offset = offset_in_folio(folio, i_size); 1736 if (folio->index > end_index || 1737 (folio->index == end_index && !pg_offset)) { 1738 folio_invalidate(folio, 0, folio_size(folio)); 1739 folio_unlock(folio); 1740 return 0; 1741 } 1742 1743 if (folio_contains(folio, end_index)) 1744 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1745 1746 /* 1747 * Default to unlock the whole folio. 1748 * The proper bitmap can only be initialized until writepage_delalloc(). 1749 */ 1750 bio_ctrl->submit_bitmap = (unsigned long)-1; 1751 1752 /* 1753 * If the page is dirty but without private set, it's marked dirty 1754 * without informing the fs. 1755 * Nowadays that is a bug, since the introduction of 1756 * pin_user_pages*(). 1757 * 1758 * So here we check if the page has private set to rule out such 1759 * case. 1760 * But we also have a long history of relying on the COW fixup, 1761 * so here we only enable this check for experimental builds until 1762 * we're sure it's safe. 1763 */ 1764 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1765 unlikely(!folio_test_private(folio))) { 1766 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1767 btrfs_err_rl(fs_info, 1768 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1769 btrfs_root_id(inode->root), 1770 btrfs_ino(inode), folio_pos(folio)); 1771 ret = -EUCLEAN; 1772 goto done; 1773 } 1774 1775 ret = set_folio_extent_mapped(folio); 1776 if (ret < 0) 1777 goto done; 1778 1779 ret = writepage_delalloc(inode, folio, bio_ctrl); 1780 if (ret == 1) 1781 return 0; 1782 if (ret) 1783 goto done; 1784 1785 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1786 folio_size(folio), bio_ctrl, i_size); 1787 if (ret == 1) 1788 return 0; 1789 if (ret < 0) 1790 btrfs_err_rl(fs_info, 1791 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1792 btrfs_root_id(inode->root), btrfs_ino(inode), 1793 folio_pos(folio), blocks_per_folio, 1794 &bio_ctrl->submit_bitmap, ret); 1795 1796 bio_ctrl->wbc->nr_to_write--; 1797 1798 done: 1799 if (ret < 0) 1800 mapping_set_error(folio->mapping, ret); 1801 /* 1802 * Only unlock ranges that are submitted. As there can be some async 1803 * submitted ranges inside the folio. 1804 */ 1805 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1806 ASSERT(ret <= 0); 1807 return ret; 1808 } 1809 1810 /* 1811 * Lock extent buffer status and pages for writeback. 1812 * 1813 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1814 * extent buffer is not dirty) 1815 * Return %true is the extent buffer is submitted to bio. 1816 */ 1817 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1818 struct writeback_control *wbc) 1819 { 1820 struct btrfs_fs_info *fs_info = eb->fs_info; 1821 bool ret = false; 1822 1823 btrfs_tree_lock(eb); 1824 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1825 btrfs_tree_unlock(eb); 1826 if (wbc->sync_mode != WB_SYNC_ALL) 1827 return false; 1828 wait_on_extent_buffer_writeback(eb); 1829 btrfs_tree_lock(eb); 1830 } 1831 1832 /* 1833 * We need to do this to prevent races in people who check if the eb is 1834 * under IO since we can end up having no IO bits set for a short period 1835 * of time. 1836 */ 1837 spin_lock(&eb->refs_lock); 1838 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1839 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1840 unsigned long flags; 1841 1842 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1843 spin_unlock(&eb->refs_lock); 1844 1845 xas_lock_irqsave(&xas, flags); 1846 xas_load(&xas); 1847 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1848 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1849 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 1850 xas_unlock_irqrestore(&xas, flags); 1851 1852 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1853 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1854 -eb->len, 1855 fs_info->dirty_metadata_batch); 1856 ret = true; 1857 } else { 1858 spin_unlock(&eb->refs_lock); 1859 } 1860 btrfs_tree_unlock(eb); 1861 return ret; 1862 } 1863 1864 static void set_btree_ioerr(struct extent_buffer *eb) 1865 { 1866 struct btrfs_fs_info *fs_info = eb->fs_info; 1867 1868 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1869 1870 /* 1871 * A read may stumble upon this buffer later, make sure that it gets an 1872 * error and knows there was an error. 1873 */ 1874 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1875 1876 /* 1877 * We need to set the mapping with the io error as well because a write 1878 * error will flip the file system readonly, and then syncfs() will 1879 * return a 0 because we are readonly if we don't modify the err seq for 1880 * the superblock. 1881 */ 1882 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1883 1884 /* 1885 * If writeback for a btree extent that doesn't belong to a log tree 1886 * failed, increment the counter transaction->eb_write_errors. 1887 * We do this because while the transaction is running and before it's 1888 * committing (when we call filemap_fdata[write|wait]_range against 1889 * the btree inode), we might have 1890 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1891 * returns an error or an error happens during writeback, when we're 1892 * committing the transaction we wouldn't know about it, since the pages 1893 * can be no longer dirty nor marked anymore for writeback (if a 1894 * subsequent modification to the extent buffer didn't happen before the 1895 * transaction commit), which makes filemap_fdata[write|wait]_range not 1896 * able to find the pages which contain errors at transaction 1897 * commit time. So if this happens we must abort the transaction, 1898 * otherwise we commit a super block with btree roots that point to 1899 * btree nodes/leafs whose content on disk is invalid - either garbage 1900 * or the content of some node/leaf from a past generation that got 1901 * cowed or deleted and is no longer valid. 1902 * 1903 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1904 * not be enough - we need to distinguish between log tree extents vs 1905 * non-log tree extents, and the next filemap_fdatawait_range() call 1906 * will catch and clear such errors in the mapping - and that call might 1907 * be from a log sync and not from a transaction commit. Also, checking 1908 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1909 * not done and would not be reliable - the eb might have been released 1910 * from memory and reading it back again means that flag would not be 1911 * set (since it's a runtime flag, not persisted on disk). 1912 * 1913 * Using the flags below in the btree inode also makes us achieve the 1914 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1915 * writeback for all dirty pages and before filemap_fdatawait_range() 1916 * is called, the writeback for all dirty pages had already finished 1917 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1918 * filemap_fdatawait_range() would return success, as it could not know 1919 * that writeback errors happened (the pages were no longer tagged for 1920 * writeback). 1921 */ 1922 switch (eb->log_index) { 1923 case -1: 1924 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1925 break; 1926 case 0: 1927 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1928 break; 1929 case 1: 1930 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1931 break; 1932 default: 1933 BUG(); /* unexpected, logic error */ 1934 } 1935 } 1936 1937 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 1938 { 1939 struct btrfs_fs_info *fs_info = eb->fs_info; 1940 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1941 unsigned long flags; 1942 1943 xas_lock_irqsave(&xas, flags); 1944 xas_load(&xas); 1945 xas_set_mark(&xas, mark); 1946 xas_unlock_irqrestore(&xas, flags); 1947 } 1948 1949 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 1950 { 1951 struct btrfs_fs_info *fs_info = eb->fs_info; 1952 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1953 unsigned long flags; 1954 1955 xas_lock_irqsave(&xas, flags); 1956 xas_load(&xas); 1957 xas_clear_mark(&xas, mark); 1958 xas_unlock_irqrestore(&xas, flags); 1959 } 1960 1961 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 1962 unsigned long start, unsigned long end) 1963 { 1964 XA_STATE(xas, &fs_info->buffer_tree, start); 1965 unsigned int tagged = 0; 1966 void *eb; 1967 1968 xas_lock_irq(&xas); 1969 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 1970 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 1971 if (++tagged % XA_CHECK_SCHED) 1972 continue; 1973 xas_pause(&xas); 1974 xas_unlock_irq(&xas); 1975 cond_resched(); 1976 xas_lock_irq(&xas); 1977 } 1978 xas_unlock_irq(&xas); 1979 } 1980 1981 struct eb_batch { 1982 unsigned int nr; 1983 unsigned int cur; 1984 struct extent_buffer *ebs[PAGEVEC_SIZE]; 1985 }; 1986 1987 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 1988 { 1989 batch->ebs[batch->nr++] = eb; 1990 return (batch->nr < PAGEVEC_SIZE); 1991 } 1992 1993 static inline void eb_batch_init(struct eb_batch *batch) 1994 { 1995 batch->nr = 0; 1996 batch->cur = 0; 1997 } 1998 1999 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 2000 { 2001 if (batch->cur >= batch->nr) 2002 return NULL; 2003 return batch->ebs[batch->cur++]; 2004 } 2005 2006 static inline void eb_batch_release(struct eb_batch *batch) 2007 { 2008 for (unsigned int i = 0; i < batch->nr; i++) 2009 free_extent_buffer(batch->ebs[i]); 2010 eb_batch_init(batch); 2011 } 2012 2013 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 2014 xa_mark_t mark) 2015 { 2016 struct extent_buffer *eb; 2017 2018 retry: 2019 eb = xas_find_marked(xas, max, mark); 2020 2021 if (xas_retry(xas, eb)) 2022 goto retry; 2023 2024 if (!eb) 2025 return NULL; 2026 2027 if (!refcount_inc_not_zero(&eb->refs)) { 2028 xas_reset(xas); 2029 goto retry; 2030 } 2031 2032 if (unlikely(eb != xas_reload(xas))) { 2033 free_extent_buffer(eb); 2034 xas_reset(xas); 2035 goto retry; 2036 } 2037 2038 return eb; 2039 } 2040 2041 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 2042 unsigned long *start, 2043 unsigned long end, xa_mark_t tag, 2044 struct eb_batch *batch) 2045 { 2046 XA_STATE(xas, &fs_info->buffer_tree, *start); 2047 struct extent_buffer *eb; 2048 2049 rcu_read_lock(); 2050 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 2051 if (!eb_batch_add(batch, eb)) { 2052 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); 2053 goto out; 2054 } 2055 } 2056 if (end == ULONG_MAX) 2057 *start = ULONG_MAX; 2058 else 2059 *start = end + 1; 2060 out: 2061 rcu_read_unlock(); 2062 2063 return batch->nr; 2064 } 2065 2066 /* 2067 * The endio specific version which won't touch any unsafe spinlock in endio 2068 * context. 2069 */ 2070 static struct extent_buffer *find_extent_buffer_nolock( 2071 struct btrfs_fs_info *fs_info, u64 start) 2072 { 2073 struct extent_buffer *eb; 2074 unsigned long index = (start >> fs_info->nodesize_bits); 2075 2076 rcu_read_lock(); 2077 eb = xa_load(&fs_info->buffer_tree, index); 2078 if (eb && !refcount_inc_not_zero(&eb->refs)) 2079 eb = NULL; 2080 rcu_read_unlock(); 2081 return eb; 2082 } 2083 2084 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2085 { 2086 struct extent_buffer *eb = bbio->private; 2087 struct folio_iter fi; 2088 2089 if (bbio->bio.bi_status != BLK_STS_OK) 2090 set_btree_ioerr(eb); 2091 2092 bio_for_each_folio_all(fi, &bbio->bio) { 2093 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2094 } 2095 2096 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2097 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2098 bio_put(&bbio->bio); 2099 } 2100 2101 static void prepare_eb_write(struct extent_buffer *eb) 2102 { 2103 u32 nritems; 2104 unsigned long start; 2105 unsigned long end; 2106 2107 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2108 2109 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2110 nritems = btrfs_header_nritems(eb); 2111 if (btrfs_header_level(eb) > 0) { 2112 end = btrfs_node_key_ptr_offset(eb, nritems); 2113 memzero_extent_buffer(eb, end, eb->len - end); 2114 } else { 2115 /* 2116 * Leaf: 2117 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2118 */ 2119 start = btrfs_item_nr_offset(eb, nritems); 2120 end = btrfs_item_nr_offset(eb, 0); 2121 if (nritems == 0) 2122 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2123 else 2124 end += btrfs_item_offset(eb, nritems - 1); 2125 memzero_extent_buffer(eb, start, end - start); 2126 } 2127 } 2128 2129 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2130 struct writeback_control *wbc) 2131 { 2132 struct btrfs_fs_info *fs_info = eb->fs_info; 2133 struct btrfs_bio *bbio; 2134 2135 prepare_eb_write(eb); 2136 2137 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2138 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2139 eb->fs_info, end_bbio_meta_write, eb); 2140 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2141 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2142 wbc_init_bio(wbc, &bbio->bio); 2143 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 2144 bbio->file_offset = eb->start; 2145 for (int i = 0; i < num_extent_folios(eb); i++) { 2146 struct folio *folio = eb->folios[i]; 2147 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2148 u32 range_len = min_t(u64, folio_end(folio), 2149 eb->start + eb->len) - range_start; 2150 2151 folio_lock(folio); 2152 btrfs_meta_folio_clear_dirty(folio, eb); 2153 btrfs_meta_folio_set_writeback(folio, eb); 2154 if (!folio_test_dirty(folio)) 2155 wbc->nr_to_write -= folio_nr_pages(folio); 2156 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2157 offset_in_folio(folio, range_start)); 2158 wbc_account_cgroup_owner(wbc, folio, range_len); 2159 folio_unlock(folio); 2160 } 2161 btrfs_submit_bbio(bbio, 0); 2162 } 2163 2164 /* 2165 * Wait for all eb writeback in the given range to finish. 2166 * 2167 * @fs_info: The fs_info for this file system. 2168 * @start: The offset of the range to start waiting on writeback. 2169 * @end: The end of the range, inclusive. This is meant to be used in 2170 * conjuction with wait_marked_extents, so this will usually be 2171 * the_next_eb->start - 1. 2172 */ 2173 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2174 u64 end) 2175 { 2176 struct eb_batch batch; 2177 unsigned long start_index = (start >> fs_info->nodesize_bits); 2178 unsigned long end_index = (end >> fs_info->nodesize_bits); 2179 2180 eb_batch_init(&batch); 2181 while (start_index <= end_index) { 2182 struct extent_buffer *eb; 2183 unsigned int nr_ebs; 2184 2185 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2186 PAGECACHE_TAG_WRITEBACK, &batch); 2187 if (!nr_ebs) 2188 break; 2189 2190 while ((eb = eb_batch_next(&batch)) != NULL) 2191 wait_on_extent_buffer_writeback(eb); 2192 eb_batch_release(&batch); 2193 cond_resched(); 2194 } 2195 } 2196 2197 int btree_write_cache_pages(struct address_space *mapping, 2198 struct writeback_control *wbc) 2199 { 2200 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2201 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2202 int ret = 0; 2203 int done = 0; 2204 int nr_to_write_done = 0; 2205 struct eb_batch batch; 2206 unsigned int nr_ebs; 2207 unsigned long index; 2208 unsigned long end; 2209 int scanned = 0; 2210 xa_mark_t tag; 2211 2212 eb_batch_init(&batch); 2213 if (wbc->range_cyclic) { 2214 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); 2215 end = -1; 2216 2217 /* 2218 * Start from the beginning does not need to cycle over the 2219 * range, mark it as scanned. 2220 */ 2221 scanned = (index == 0); 2222 } else { 2223 index = (wbc->range_start >> fs_info->nodesize_bits); 2224 end = (wbc->range_end >> fs_info->nodesize_bits); 2225 2226 scanned = 1; 2227 } 2228 if (wbc->sync_mode == WB_SYNC_ALL) 2229 tag = PAGECACHE_TAG_TOWRITE; 2230 else 2231 tag = PAGECACHE_TAG_DIRTY; 2232 btrfs_zoned_meta_io_lock(fs_info); 2233 retry: 2234 if (wbc->sync_mode == WB_SYNC_ALL) 2235 buffer_tree_tag_for_writeback(fs_info, index, end); 2236 while (!done && !nr_to_write_done && (index <= end) && 2237 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2238 struct extent_buffer *eb; 2239 2240 while ((eb = eb_batch_next(&batch)) != NULL) { 2241 ctx.eb = eb; 2242 2243 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2244 if (ret) { 2245 if (ret == -EBUSY) 2246 ret = 0; 2247 2248 if (ret) { 2249 done = 1; 2250 break; 2251 } 2252 continue; 2253 } 2254 2255 if (!lock_extent_buffer_for_io(eb, wbc)) 2256 continue; 2257 2258 /* Implies write in zoned mode. */ 2259 if (ctx.zoned_bg) { 2260 /* Mark the last eb in the block group. */ 2261 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2262 ctx.zoned_bg->meta_write_pointer += eb->len; 2263 } 2264 write_one_eb(eb, wbc); 2265 } 2266 nr_to_write_done = (wbc->nr_to_write <= 0); 2267 eb_batch_release(&batch); 2268 cond_resched(); 2269 } 2270 if (!scanned && !done) { 2271 /* 2272 * We hit the last page and there is more work to be done: wrap 2273 * back to the start of the file 2274 */ 2275 scanned = 1; 2276 index = 0; 2277 goto retry; 2278 } 2279 /* 2280 * If something went wrong, don't allow any metadata write bio to be 2281 * submitted. 2282 * 2283 * This would prevent use-after-free if we had dirty pages not 2284 * cleaned up, which can still happen by fuzzed images. 2285 * 2286 * - Bad extent tree 2287 * Allowing existing tree block to be allocated for other trees. 2288 * 2289 * - Log tree operations 2290 * Exiting tree blocks get allocated to log tree, bumps its 2291 * generation, then get cleaned in tree re-balance. 2292 * Such tree block will not be written back, since it's clean, 2293 * thus no WRITTEN flag set. 2294 * And after log writes back, this tree block is not traced by 2295 * any dirty extent_io_tree. 2296 * 2297 * - Offending tree block gets re-dirtied from its original owner 2298 * Since it has bumped generation, no WRITTEN flag, it can be 2299 * reused without COWing. This tree block will not be traced 2300 * by btrfs_transaction::dirty_pages. 2301 * 2302 * Now such dirty tree block will not be cleaned by any dirty 2303 * extent io tree. Thus we don't want to submit such wild eb 2304 * if the fs already has error. 2305 * 2306 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2307 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2308 */ 2309 if (ret > 0) 2310 ret = 0; 2311 if (!ret && BTRFS_FS_ERROR(fs_info)) 2312 ret = -EROFS; 2313 2314 if (ctx.zoned_bg) 2315 btrfs_put_block_group(ctx.zoned_bg); 2316 btrfs_zoned_meta_io_unlock(fs_info); 2317 return ret; 2318 } 2319 2320 /* 2321 * Walk the list of dirty pages of the given address space and write all of them. 2322 * 2323 * @mapping: address space structure to write 2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2325 * @bio_ctrl: holds context for the write, namely the bio 2326 * 2327 * If a page is already under I/O, write_cache_pages() skips it, even 2328 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2329 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2330 * and msync() need to guarantee that all the data which was dirty at the time 2331 * the call was made get new I/O started against them. If wbc->sync_mode is 2332 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2333 * existing IO to complete. 2334 */ 2335 static int extent_write_cache_pages(struct address_space *mapping, 2336 struct btrfs_bio_ctrl *bio_ctrl) 2337 { 2338 struct writeback_control *wbc = bio_ctrl->wbc; 2339 struct inode *inode = mapping->host; 2340 int ret = 0; 2341 int done = 0; 2342 int nr_to_write_done = 0; 2343 struct folio_batch fbatch; 2344 unsigned int nr_folios; 2345 pgoff_t index; 2346 pgoff_t end; /* Inclusive */ 2347 pgoff_t done_index; 2348 int range_whole = 0; 2349 int scanned = 0; 2350 xa_mark_t tag; 2351 2352 /* 2353 * We have to hold onto the inode so that ordered extents can do their 2354 * work when the IO finishes. The alternative to this is failing to add 2355 * an ordered extent if the igrab() fails there and that is a huge pain 2356 * to deal with, so instead just hold onto the inode throughout the 2357 * writepages operation. If it fails here we are freeing up the inode 2358 * anyway and we'd rather not waste our time writing out stuff that is 2359 * going to be truncated anyway. 2360 */ 2361 if (!igrab(inode)) 2362 return 0; 2363 2364 folio_batch_init(&fbatch); 2365 if (wbc->range_cyclic) { 2366 index = mapping->writeback_index; /* Start from prev offset */ 2367 end = -1; 2368 /* 2369 * Start from the beginning does not need to cycle over the 2370 * range, mark it as scanned. 2371 */ 2372 scanned = (index == 0); 2373 } else { 2374 index = wbc->range_start >> PAGE_SHIFT; 2375 end = wbc->range_end >> PAGE_SHIFT; 2376 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2377 range_whole = 1; 2378 scanned = 1; 2379 } 2380 2381 /* 2382 * We do the tagged writepage as long as the snapshot flush bit is set 2383 * and we are the first one who do the filemap_flush() on this inode. 2384 * 2385 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2386 * not race in and drop the bit. 2387 */ 2388 if (range_whole && wbc->nr_to_write == LONG_MAX && 2389 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2390 &BTRFS_I(inode)->runtime_flags)) 2391 wbc->tagged_writepages = 1; 2392 2393 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2394 tag = PAGECACHE_TAG_TOWRITE; 2395 else 2396 tag = PAGECACHE_TAG_DIRTY; 2397 retry: 2398 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2399 tag_pages_for_writeback(mapping, index, end); 2400 done_index = index; 2401 while (!done && !nr_to_write_done && (index <= end) && 2402 (nr_folios = filemap_get_folios_tag(mapping, &index, 2403 end, tag, &fbatch))) { 2404 unsigned i; 2405 2406 for (i = 0; i < nr_folios; i++) { 2407 struct folio *folio = fbatch.folios[i]; 2408 2409 done_index = folio_next_index(folio); 2410 /* 2411 * At this point we hold neither the i_pages lock nor 2412 * the folio lock: the folio may be truncated or 2413 * invalidated (changing folio->mapping to NULL). 2414 */ 2415 if (!folio_trylock(folio)) { 2416 submit_write_bio(bio_ctrl, 0); 2417 folio_lock(folio); 2418 } 2419 2420 if (unlikely(folio->mapping != mapping)) { 2421 folio_unlock(folio); 2422 continue; 2423 } 2424 2425 if (!folio_test_dirty(folio)) { 2426 /* Someone wrote it for us. */ 2427 folio_unlock(folio); 2428 continue; 2429 } 2430 2431 /* 2432 * For subpage case, compression can lead to mixed 2433 * writeback and dirty flags, e.g: 2434 * 0 32K 64K 96K 128K 2435 * | |//////||/////| |//| 2436 * 2437 * In above case, [32K, 96K) is asynchronously submitted 2438 * for compression, and [124K, 128K) needs to be written back. 2439 * 2440 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2441 * won't be submitted as the page still has writeback flag 2442 * and will be skipped in the next check. 2443 * 2444 * This mixed writeback and dirty case is only possible for 2445 * subpage case. 2446 * 2447 * TODO: Remove this check after migrating compression to 2448 * regular submission. 2449 */ 2450 if (wbc->sync_mode != WB_SYNC_NONE || 2451 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2452 if (folio_test_writeback(folio)) 2453 submit_write_bio(bio_ctrl, 0); 2454 folio_wait_writeback(folio); 2455 } 2456 2457 if (folio_test_writeback(folio) || 2458 !folio_clear_dirty_for_io(folio)) { 2459 folio_unlock(folio); 2460 continue; 2461 } 2462 2463 ret = extent_writepage(folio, bio_ctrl); 2464 if (ret < 0) { 2465 done = 1; 2466 break; 2467 } 2468 2469 /* 2470 * The filesystem may choose to bump up nr_to_write. 2471 * We have to make sure to honor the new nr_to_write 2472 * at any time. 2473 */ 2474 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2475 wbc->nr_to_write <= 0); 2476 } 2477 folio_batch_release(&fbatch); 2478 cond_resched(); 2479 } 2480 if (!scanned && !done) { 2481 /* 2482 * We hit the last page and there is more work to be done: wrap 2483 * back to the start of the file 2484 */ 2485 scanned = 1; 2486 index = 0; 2487 2488 /* 2489 * If we're looping we could run into a page that is locked by a 2490 * writer and that writer could be waiting on writeback for a 2491 * page in our current bio, and thus deadlock, so flush the 2492 * write bio here. 2493 */ 2494 submit_write_bio(bio_ctrl, 0); 2495 goto retry; 2496 } 2497 2498 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2499 mapping->writeback_index = done_index; 2500 2501 btrfs_add_delayed_iput(BTRFS_I(inode)); 2502 return ret; 2503 } 2504 2505 /* 2506 * Submit the pages in the range to bio for call sites which delalloc range has 2507 * already been ran (aka, ordered extent inserted) and all pages are still 2508 * locked. 2509 */ 2510 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2511 u64 start, u64 end, struct writeback_control *wbc, 2512 bool pages_dirty) 2513 { 2514 bool found_error = false; 2515 int ret = 0; 2516 struct address_space *mapping = inode->i_mapping; 2517 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2518 const u32 sectorsize = fs_info->sectorsize; 2519 loff_t i_size = i_size_read(inode); 2520 u64 cur = start; 2521 struct btrfs_bio_ctrl bio_ctrl = { 2522 .wbc = wbc, 2523 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2524 }; 2525 2526 if (wbc->no_cgroup_owner) 2527 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2528 2529 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2530 2531 while (cur <= end) { 2532 u64 cur_end; 2533 u32 cur_len; 2534 struct folio *folio; 2535 2536 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2537 2538 /* 2539 * This shouldn't happen, the pages are pinned and locked, this 2540 * code is just in case, but shouldn't actually be run. 2541 */ 2542 if (IS_ERR(folio)) { 2543 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2544 cur_len = cur_end + 1 - cur; 2545 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2546 cur, cur_len, false); 2547 mapping_set_error(mapping, PTR_ERR(folio)); 2548 cur = cur_end; 2549 continue; 2550 } 2551 2552 cur_end = min_t(u64, folio_end(folio) - 1, end); 2553 cur_len = cur_end + 1 - cur; 2554 2555 ASSERT(folio_test_locked(folio)); 2556 if (pages_dirty && folio != locked_folio) 2557 ASSERT(folio_test_dirty(folio)); 2558 2559 /* 2560 * Set the submission bitmap to submit all sectors. 2561 * extent_writepage_io() will do the truncation correctly. 2562 */ 2563 bio_ctrl.submit_bitmap = (unsigned long)-1; 2564 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2565 &bio_ctrl, i_size); 2566 if (ret == 1) 2567 goto next_page; 2568 2569 if (ret) 2570 mapping_set_error(mapping, ret); 2571 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2572 if (ret < 0) 2573 found_error = true; 2574 next_page: 2575 folio_put(folio); 2576 cur = cur_end + 1; 2577 } 2578 2579 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2580 } 2581 2582 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2583 { 2584 struct inode *inode = mapping->host; 2585 int ret = 0; 2586 struct btrfs_bio_ctrl bio_ctrl = { 2587 .wbc = wbc, 2588 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2589 }; 2590 2591 /* 2592 * Allow only a single thread to do the reloc work in zoned mode to 2593 * protect the write pointer updates. 2594 */ 2595 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2596 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2597 submit_write_bio(&bio_ctrl, ret); 2598 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2599 return ret; 2600 } 2601 2602 void btrfs_readahead(struct readahead_control *rac) 2603 { 2604 struct btrfs_bio_ctrl bio_ctrl = { 2605 .opf = REQ_OP_READ | REQ_RAHEAD, 2606 .ractl = rac, 2607 .last_em_start = U64_MAX, 2608 }; 2609 struct folio *folio; 2610 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2611 const u64 start = readahead_pos(rac); 2612 const u64 end = start + readahead_length(rac) - 1; 2613 struct extent_state *cached_state = NULL; 2614 struct extent_map *em_cached = NULL; 2615 2616 lock_extents_for_read(inode, start, end, &cached_state); 2617 2618 while ((folio = readahead_folio(rac)) != NULL) 2619 btrfs_do_readpage(folio, &em_cached, &bio_ctrl); 2620 2621 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2622 2623 if (em_cached) 2624 btrfs_free_extent_map(em_cached); 2625 submit_one_bio(&bio_ctrl); 2626 } 2627 2628 /* 2629 * basic invalidate_folio code, this waits on any locked or writeback 2630 * ranges corresponding to the folio, and then deletes any extent state 2631 * records from the tree 2632 */ 2633 int extent_invalidate_folio(struct extent_io_tree *tree, 2634 struct folio *folio, size_t offset) 2635 { 2636 struct extent_state *cached_state = NULL; 2637 u64 start = folio_pos(folio); 2638 u64 end = start + folio_size(folio) - 1; 2639 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2640 2641 /* This function is only called for the btree inode */ 2642 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2643 2644 start += ALIGN(offset, blocksize); 2645 if (start > end) 2646 return 0; 2647 2648 btrfs_lock_extent(tree, start, end, &cached_state); 2649 folio_wait_writeback(folio); 2650 2651 /* 2652 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2653 * so here we only need to unlock the extent range to free any 2654 * existing extent state. 2655 */ 2656 btrfs_unlock_extent(tree, start, end, &cached_state); 2657 return 0; 2658 } 2659 2660 /* 2661 * A helper for struct address_space_operations::release_folio, this tests for 2662 * areas of the folio that are locked or under IO and drops the related state 2663 * bits if it is safe to drop the folio. 2664 */ 2665 static bool try_release_extent_state(struct extent_io_tree *tree, 2666 struct folio *folio) 2667 { 2668 struct extent_state *cached_state = NULL; 2669 u64 start = folio_pos(folio); 2670 u64 end = start + folio_size(folio) - 1; 2671 u32 range_bits; 2672 u32 clear_bits; 2673 bool ret = false; 2674 int ret2; 2675 2676 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2677 2678 /* 2679 * We can release the folio if it's locked only for ordered extent 2680 * completion, since that doesn't require using the folio. 2681 */ 2682 if ((range_bits & EXTENT_LOCKED) && 2683 !(range_bits & EXTENT_FINISHING_ORDERED)) 2684 goto out; 2685 2686 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2687 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2688 EXTENT_FINISHING_ORDERED); 2689 /* 2690 * At this point we can safely clear everything except the locked, 2691 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2692 * bit will be cleared by ordered extent completion. 2693 */ 2694 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2695 /* 2696 * If clear_extent_bit failed for enomem reasons, we can't allow the 2697 * release to continue. 2698 */ 2699 if (ret2 == 0) 2700 ret = true; 2701 out: 2702 btrfs_free_extent_state(cached_state); 2703 2704 return ret; 2705 } 2706 2707 /* 2708 * a helper for release_folio. As long as there are no locked extents 2709 * in the range corresponding to the page, both state records and extent 2710 * map records are removed 2711 */ 2712 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2713 { 2714 u64 start = folio_pos(folio); 2715 u64 end = start + folio_size(folio) - 1; 2716 struct btrfs_inode *inode = folio_to_inode(folio); 2717 struct extent_io_tree *io_tree = &inode->io_tree; 2718 2719 while (start <= end) { 2720 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2721 const u64 len = end - start + 1; 2722 struct extent_map_tree *extent_tree = &inode->extent_tree; 2723 struct extent_map *em; 2724 2725 write_lock(&extent_tree->lock); 2726 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2727 if (!em) { 2728 write_unlock(&extent_tree->lock); 2729 break; 2730 } 2731 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2732 write_unlock(&extent_tree->lock); 2733 btrfs_free_extent_map(em); 2734 break; 2735 } 2736 if (btrfs_test_range_bit_exists(io_tree, em->start, 2737 btrfs_extent_map_end(em) - 1, 2738 EXTENT_LOCKED)) 2739 goto next; 2740 /* 2741 * If it's not in the list of modified extents, used by a fast 2742 * fsync, we can remove it. If it's being logged we can safely 2743 * remove it since fsync took an extra reference on the em. 2744 */ 2745 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2746 goto remove_em; 2747 /* 2748 * If it's in the list of modified extents, remove it only if 2749 * its generation is older then the current one, in which case 2750 * we don't need it for a fast fsync. Otherwise don't remove it, 2751 * we could be racing with an ongoing fast fsync that could miss 2752 * the new extent. 2753 */ 2754 if (em->generation >= cur_gen) 2755 goto next; 2756 remove_em: 2757 /* 2758 * We only remove extent maps that are not in the list of 2759 * modified extents or that are in the list but with a 2760 * generation lower then the current generation, so there is no 2761 * need to set the full fsync flag on the inode (it hurts the 2762 * fsync performance for workloads with a data size that exceeds 2763 * or is close to the system's memory). 2764 */ 2765 btrfs_remove_extent_mapping(inode, em); 2766 /* Once for the inode's extent map tree. */ 2767 btrfs_free_extent_map(em); 2768 next: 2769 start = btrfs_extent_map_end(em); 2770 write_unlock(&extent_tree->lock); 2771 2772 /* Once for us, for the lookup_extent_mapping() reference. */ 2773 btrfs_free_extent_map(em); 2774 2775 if (need_resched()) { 2776 /* 2777 * If we need to resched but we can't block just exit 2778 * and leave any remaining extent maps. 2779 */ 2780 if (!gfpflags_allow_blocking(mask)) 2781 break; 2782 2783 cond_resched(); 2784 } 2785 } 2786 return try_release_extent_state(io_tree, folio); 2787 } 2788 2789 static int extent_buffer_under_io(const struct extent_buffer *eb) 2790 { 2791 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2792 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2793 } 2794 2795 static bool folio_range_has_eb(struct folio *folio) 2796 { 2797 struct btrfs_folio_state *bfs; 2798 2799 lockdep_assert_held(&folio->mapping->i_private_lock); 2800 2801 if (folio_test_private(folio)) { 2802 bfs = folio_get_private(folio); 2803 if (atomic_read(&bfs->eb_refs)) 2804 return true; 2805 } 2806 return false; 2807 } 2808 2809 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2810 { 2811 struct btrfs_fs_info *fs_info = eb->fs_info; 2812 struct address_space *mapping = folio->mapping; 2813 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2814 2815 /* 2816 * For mapped eb, we're going to change the folio private, which should 2817 * be done under the i_private_lock. 2818 */ 2819 if (mapped) 2820 spin_lock(&mapping->i_private_lock); 2821 2822 if (!folio_test_private(folio)) { 2823 if (mapped) 2824 spin_unlock(&mapping->i_private_lock); 2825 return; 2826 } 2827 2828 if (!btrfs_meta_is_subpage(fs_info)) { 2829 /* 2830 * We do this since we'll remove the pages after we've removed 2831 * the eb from the xarray, so we could race and have this page 2832 * now attached to the new eb. So only clear folio if it's 2833 * still connected to this eb. 2834 */ 2835 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2836 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2837 BUG_ON(folio_test_dirty(folio)); 2838 BUG_ON(folio_test_writeback(folio)); 2839 /* We need to make sure we haven't be attached to a new eb. */ 2840 folio_detach_private(folio); 2841 } 2842 if (mapped) 2843 spin_unlock(&mapping->i_private_lock); 2844 return; 2845 } 2846 2847 /* 2848 * For subpage, we can have dummy eb with folio private attached. In 2849 * this case, we can directly detach the private as such folio is only 2850 * attached to one dummy eb, no sharing. 2851 */ 2852 if (!mapped) { 2853 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2854 return; 2855 } 2856 2857 btrfs_folio_dec_eb_refs(fs_info, folio); 2858 2859 /* 2860 * We can only detach the folio private if there are no other ebs in the 2861 * page range and no unfinished IO. 2862 */ 2863 if (!folio_range_has_eb(folio)) 2864 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2865 2866 spin_unlock(&mapping->i_private_lock); 2867 } 2868 2869 /* Release all folios attached to the extent buffer */ 2870 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2871 { 2872 ASSERT(!extent_buffer_under_io(eb)); 2873 2874 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2875 struct folio *folio = eb->folios[i]; 2876 2877 if (!folio) 2878 continue; 2879 2880 detach_extent_buffer_folio(eb, folio); 2881 } 2882 } 2883 2884 /* 2885 * Helper for releasing the extent buffer. 2886 */ 2887 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2888 { 2889 btrfs_release_extent_buffer_folios(eb); 2890 btrfs_leak_debug_del_eb(eb); 2891 kmem_cache_free(extent_buffer_cache, eb); 2892 } 2893 2894 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2895 u64 start) 2896 { 2897 struct extent_buffer *eb = NULL; 2898 2899 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2900 eb->start = start; 2901 eb->len = fs_info->nodesize; 2902 eb->fs_info = fs_info; 2903 init_rwsem(&eb->lock); 2904 2905 btrfs_leak_debug_add_eb(eb); 2906 2907 spin_lock_init(&eb->refs_lock); 2908 refcount_set(&eb->refs, 1); 2909 2910 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2911 2912 return eb; 2913 } 2914 2915 /* 2916 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 2917 * does not call folio_put(), and we need to set the folios to NULL so that 2918 * btrfs_release_extent_buffer() will not detach them a second time. 2919 */ 2920 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 2921 { 2922 const int num_folios = num_extent_folios(eb); 2923 2924 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */ 2925 for (int i = 0; i < num_folios; i++) { 2926 ASSERT(eb->folios[i]); 2927 detach_extent_buffer_folio(eb, eb->folios[i]); 2928 folio_put(eb->folios[i]); 2929 eb->folios[i] = NULL; 2930 } 2931 } 2932 2933 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2934 { 2935 struct extent_buffer *new; 2936 int num_folios; 2937 int ret; 2938 2939 new = __alloc_extent_buffer(src->fs_info, src->start); 2940 if (new == NULL) 2941 return NULL; 2942 2943 /* 2944 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2945 * btrfs_release_extent_buffer() have different behavior for 2946 * UNMAPPED subpage extent buffer. 2947 */ 2948 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2949 2950 ret = alloc_eb_folio_array(new, false); 2951 if (ret) 2952 goto release_eb; 2953 2954 ASSERT(num_extent_folios(src) == num_extent_folios(new), 2955 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 2956 /* Explicitly use the cached num_extent value from now on. */ 2957 num_folios = num_extent_folios(src); 2958 for (int i = 0; i < num_folios; i++) { 2959 struct folio *folio = new->folios[i]; 2960 2961 ret = attach_extent_buffer_folio(new, folio, NULL); 2962 if (ret < 0) 2963 goto cleanup_folios; 2964 WARN_ON(folio_test_dirty(folio)); 2965 } 2966 for (int i = 0; i < num_folios; i++) 2967 folio_put(new->folios[i]); 2968 2969 copy_extent_buffer_full(new, src); 2970 set_extent_buffer_uptodate(new); 2971 2972 return new; 2973 2974 cleanup_folios: 2975 cleanup_extent_buffer_folios(new); 2976 release_eb: 2977 btrfs_release_extent_buffer(new); 2978 return NULL; 2979 } 2980 2981 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2982 u64 start) 2983 { 2984 struct extent_buffer *eb; 2985 int ret; 2986 2987 eb = __alloc_extent_buffer(fs_info, start); 2988 if (!eb) 2989 return NULL; 2990 2991 ret = alloc_eb_folio_array(eb, false); 2992 if (ret) 2993 goto release_eb; 2994 2995 for (int i = 0; i < num_extent_folios(eb); i++) { 2996 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2997 if (ret < 0) 2998 goto cleanup_folios; 2999 } 3000 for (int i = 0; i < num_extent_folios(eb); i++) 3001 folio_put(eb->folios[i]); 3002 3003 set_extent_buffer_uptodate(eb); 3004 btrfs_set_header_nritems(eb, 0); 3005 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3006 3007 return eb; 3008 3009 cleanup_folios: 3010 cleanup_extent_buffer_folios(eb); 3011 release_eb: 3012 btrfs_release_extent_buffer(eb); 3013 return NULL; 3014 } 3015 3016 static void check_buffer_tree_ref(struct extent_buffer *eb) 3017 { 3018 int refs; 3019 /* 3020 * The TREE_REF bit is first set when the extent_buffer is added to the 3021 * xarray. It is also reset, if unset, when a new reference is created 3022 * by find_extent_buffer. 3023 * 3024 * It is only cleared in two cases: freeing the last non-tree 3025 * reference to the extent_buffer when its STALE bit is set or 3026 * calling release_folio when the tree reference is the only reference. 3027 * 3028 * In both cases, care is taken to ensure that the extent_buffer's 3029 * pages are not under io. However, release_folio can be concurrently 3030 * called with creating new references, which is prone to race 3031 * conditions between the calls to check_buffer_tree_ref in those 3032 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3033 * 3034 * The actual lifetime of the extent_buffer in the xarray is adequately 3035 * protected by the refcount, but the TREE_REF bit and its corresponding 3036 * reference are not. To protect against this class of races, we call 3037 * check_buffer_tree_ref() from the code paths which trigger io. Note that 3038 * once io is initiated, TREE_REF can no longer be cleared, so that is 3039 * the moment at which any such race is best fixed. 3040 */ 3041 refs = refcount_read(&eb->refs); 3042 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3043 return; 3044 3045 spin_lock(&eb->refs_lock); 3046 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3047 refcount_inc(&eb->refs); 3048 spin_unlock(&eb->refs_lock); 3049 } 3050 3051 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3052 { 3053 check_buffer_tree_ref(eb); 3054 3055 for (int i = 0; i < num_extent_folios(eb); i++) 3056 folio_mark_accessed(eb->folios[i]); 3057 } 3058 3059 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3060 u64 start) 3061 { 3062 struct extent_buffer *eb; 3063 3064 eb = find_extent_buffer_nolock(fs_info, start); 3065 if (!eb) 3066 return NULL; 3067 /* 3068 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3069 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3070 * another task running free_extent_buffer() might have seen that flag 3071 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3072 * writeback flags not set) and it's still in the tree (flag 3073 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3074 * decrementing the extent buffer's reference count twice. So here we 3075 * could race and increment the eb's reference count, clear its stale 3076 * flag, mark it as dirty and drop our reference before the other task 3077 * finishes executing free_extent_buffer, which would later result in 3078 * an attempt to free an extent buffer that is dirty. 3079 */ 3080 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3081 spin_lock(&eb->refs_lock); 3082 spin_unlock(&eb->refs_lock); 3083 } 3084 mark_extent_buffer_accessed(eb); 3085 return eb; 3086 } 3087 3088 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3089 u64 start) 3090 { 3091 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3092 struct extent_buffer *eb, *exists = NULL; 3093 int ret; 3094 3095 eb = find_extent_buffer(fs_info, start); 3096 if (eb) 3097 return eb; 3098 eb = alloc_dummy_extent_buffer(fs_info, start); 3099 if (!eb) 3100 return ERR_PTR(-ENOMEM); 3101 eb->fs_info = fs_info; 3102 again: 3103 xa_lock_irq(&fs_info->buffer_tree); 3104 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, 3105 NULL, eb, GFP_NOFS); 3106 if (xa_is_err(exists)) { 3107 ret = xa_err(exists); 3108 xa_unlock_irq(&fs_info->buffer_tree); 3109 btrfs_release_extent_buffer(eb); 3110 return ERR_PTR(ret); 3111 } 3112 if (exists) { 3113 if (!refcount_inc_not_zero(&exists->refs)) { 3114 /* The extent buffer is being freed, retry. */ 3115 xa_unlock_irq(&fs_info->buffer_tree); 3116 goto again; 3117 } 3118 xa_unlock_irq(&fs_info->buffer_tree); 3119 btrfs_release_extent_buffer(eb); 3120 return exists; 3121 } 3122 xa_unlock_irq(&fs_info->buffer_tree); 3123 check_buffer_tree_ref(eb); 3124 3125 return eb; 3126 #else 3127 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3128 return NULL; 3129 #endif 3130 } 3131 3132 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3133 struct folio *folio) 3134 { 3135 struct extent_buffer *exists; 3136 3137 lockdep_assert_held(&folio->mapping->i_private_lock); 3138 3139 /* 3140 * For subpage case, we completely rely on xarray to ensure we don't try 3141 * to insert two ebs for the same bytenr. So here we always return NULL 3142 * and just continue. 3143 */ 3144 if (btrfs_meta_is_subpage(fs_info)) 3145 return NULL; 3146 3147 /* Page not yet attached to an extent buffer */ 3148 if (!folio_test_private(folio)) 3149 return NULL; 3150 3151 /* 3152 * We could have already allocated an eb for this folio and attached one 3153 * so lets see if we can get a ref on the existing eb, and if we can we 3154 * know it's good and we can just return that one, else we know we can 3155 * just overwrite folio private. 3156 */ 3157 exists = folio_get_private(folio); 3158 if (refcount_inc_not_zero(&exists->refs)) 3159 return exists; 3160 3161 WARN_ON(folio_test_dirty(folio)); 3162 folio_detach_private(folio); 3163 return NULL; 3164 } 3165 3166 /* 3167 * Validate alignment constraints of eb at logical address @start. 3168 */ 3169 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3170 { 3171 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3172 btrfs_err(fs_info, "bad tree block start %llu", start); 3173 return true; 3174 } 3175 3176 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) { 3177 btrfs_err(fs_info, 3178 "tree block is not nodesize aligned, start %llu nodesize %u", 3179 start, fs_info->nodesize); 3180 return true; 3181 } 3182 if (fs_info->nodesize >= PAGE_SIZE && 3183 !PAGE_ALIGNED(start)) { 3184 btrfs_err(fs_info, 3185 "tree block is not page aligned, start %llu nodesize %u", 3186 start, fs_info->nodesize); 3187 return true; 3188 } 3189 if (!IS_ALIGNED(start, fs_info->nodesize) && 3190 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3191 btrfs_warn(fs_info, 3192 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3193 start, fs_info->nodesize); 3194 } 3195 return false; 3196 } 3197 3198 /* 3199 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3200 * Return >0 if there is already another extent buffer for the range, 3201 * and @found_eb_ret would be updated. 3202 * Return -EAGAIN if the filemap has an existing folio but with different size 3203 * than @eb. 3204 * The caller needs to free the existing folios and retry using the same order. 3205 */ 3206 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3207 struct btrfs_folio_state *prealloc, 3208 struct extent_buffer **found_eb_ret) 3209 { 3210 3211 struct btrfs_fs_info *fs_info = eb->fs_info; 3212 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3213 const pgoff_t index = eb->start >> PAGE_SHIFT; 3214 struct folio *existing_folio; 3215 int ret; 3216 3217 ASSERT(found_eb_ret); 3218 3219 /* Caller should ensure the folio exists. */ 3220 ASSERT(eb->folios[i]); 3221 3222 retry: 3223 existing_folio = NULL; 3224 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3225 GFP_NOFS | __GFP_NOFAIL); 3226 if (!ret) 3227 goto finish; 3228 3229 existing_folio = filemap_lock_folio(mapping, index + i); 3230 /* The page cache only exists for a very short time, just retry. */ 3231 if (IS_ERR(existing_folio)) 3232 goto retry; 3233 3234 /* For now, we should only have single-page folios for btree inode. */ 3235 ASSERT(folio_nr_pages(existing_folio) == 1); 3236 3237 if (folio_size(existing_folio) != eb->folio_size) { 3238 folio_unlock(existing_folio); 3239 folio_put(existing_folio); 3240 return -EAGAIN; 3241 } 3242 3243 finish: 3244 spin_lock(&mapping->i_private_lock); 3245 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3246 /* We're going to reuse the existing page, can drop our folio now. */ 3247 __free_page(folio_page(eb->folios[i], 0)); 3248 eb->folios[i] = existing_folio; 3249 } else if (existing_folio) { 3250 struct extent_buffer *existing_eb; 3251 3252 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3253 if (existing_eb) { 3254 /* The extent buffer still exists, we can use it directly. */ 3255 *found_eb_ret = existing_eb; 3256 spin_unlock(&mapping->i_private_lock); 3257 folio_unlock(existing_folio); 3258 folio_put(existing_folio); 3259 return 1; 3260 } 3261 /* The extent buffer no longer exists, we can reuse the folio. */ 3262 __free_page(folio_page(eb->folios[i], 0)); 3263 eb->folios[i] = existing_folio; 3264 } 3265 eb->folio_size = folio_size(eb->folios[i]); 3266 eb->folio_shift = folio_shift(eb->folios[i]); 3267 /* Should not fail, as we have preallocated the memory. */ 3268 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3269 ASSERT(!ret); 3270 /* 3271 * To inform we have an extra eb under allocation, so that 3272 * detach_extent_buffer_page() won't release the folio private when the 3273 * eb hasn't been inserted into the xarray yet. 3274 * 3275 * The ref will be decreased when the eb releases the page, in 3276 * detach_extent_buffer_page(). Thus needs no special handling in the 3277 * error path. 3278 */ 3279 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3280 spin_unlock(&mapping->i_private_lock); 3281 return 0; 3282 } 3283 3284 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3285 u64 start, u64 owner_root, int level) 3286 { 3287 int attached = 0; 3288 struct extent_buffer *eb; 3289 struct extent_buffer *existing_eb = NULL; 3290 struct btrfs_folio_state *prealloc = NULL; 3291 u64 lockdep_owner = owner_root; 3292 bool page_contig = true; 3293 int uptodate = 1; 3294 int ret; 3295 3296 if (check_eb_alignment(fs_info, start)) 3297 return ERR_PTR(-EINVAL); 3298 3299 #if BITS_PER_LONG == 32 3300 if (start >= MAX_LFS_FILESIZE) { 3301 btrfs_err_rl(fs_info, 3302 "extent buffer %llu is beyond 32bit page cache limit", start); 3303 btrfs_err_32bit_limit(fs_info); 3304 return ERR_PTR(-EOVERFLOW); 3305 } 3306 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3307 btrfs_warn_32bit_limit(fs_info); 3308 #endif 3309 3310 eb = find_extent_buffer(fs_info, start); 3311 if (eb) 3312 return eb; 3313 3314 eb = __alloc_extent_buffer(fs_info, start); 3315 if (!eb) 3316 return ERR_PTR(-ENOMEM); 3317 3318 /* 3319 * The reloc trees are just snapshots, so we need them to appear to be 3320 * just like any other fs tree WRT lockdep. 3321 */ 3322 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3323 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3324 3325 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3326 3327 /* 3328 * Preallocate folio private for subpage case, so that we won't 3329 * allocate memory with i_private_lock nor page lock hold. 3330 * 3331 * The memory will be freed by attach_extent_buffer_page() or freed 3332 * manually if we exit earlier. 3333 */ 3334 if (btrfs_meta_is_subpage(fs_info)) { 3335 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3336 if (IS_ERR(prealloc)) { 3337 ret = PTR_ERR(prealloc); 3338 goto out; 3339 } 3340 } 3341 3342 reallocate: 3343 /* Allocate all pages first. */ 3344 ret = alloc_eb_folio_array(eb, true); 3345 if (ret < 0) { 3346 btrfs_free_folio_state(prealloc); 3347 goto out; 3348 } 3349 3350 /* Attach all pages to the filemap. */ 3351 for (int i = 0; i < num_extent_folios(eb); i++) { 3352 struct folio *folio; 3353 3354 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3355 if (ret > 0) { 3356 ASSERT(existing_eb); 3357 goto out; 3358 } 3359 3360 /* 3361 * TODO: Special handling for a corner case where the order of 3362 * folios mismatch between the new eb and filemap. 3363 * 3364 * This happens when: 3365 * 3366 * - the new eb is using higher order folio 3367 * 3368 * - the filemap is still using 0-order folios for the range 3369 * This can happen at the previous eb allocation, and we don't 3370 * have higher order folio for the call. 3371 * 3372 * - the existing eb has already been freed 3373 * 3374 * In this case, we have to free the existing folios first, and 3375 * re-allocate using the same order. 3376 * Thankfully this is not going to happen yet, as we're still 3377 * using 0-order folios. 3378 */ 3379 if (unlikely(ret == -EAGAIN)) { 3380 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3381 goto reallocate; 3382 } 3383 attached++; 3384 3385 /* 3386 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3387 * reliable, as we may choose to reuse the existing page cache 3388 * and free the allocated page. 3389 */ 3390 folio = eb->folios[i]; 3391 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3392 3393 /* 3394 * Check if the current page is physically contiguous with previous eb 3395 * page. 3396 * At this stage, either we allocated a large folio, thus @i 3397 * would only be 0, or we fall back to per-page allocation. 3398 */ 3399 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3400 page_contig = false; 3401 3402 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3403 uptodate = 0; 3404 3405 /* 3406 * We can't unlock the pages just yet since the extent buffer 3407 * hasn't been properly inserted into the xarray, this opens a 3408 * race with btree_release_folio() which can free a page while we 3409 * are still filling in all pages for the buffer and we could crash. 3410 */ 3411 } 3412 if (uptodate) 3413 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3414 /* All pages are physically contiguous, can skip cross page handling. */ 3415 if (page_contig) 3416 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3417 again: 3418 xa_lock_irq(&fs_info->buffer_tree); 3419 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3420 start >> fs_info->nodesize_bits, NULL, eb, 3421 GFP_NOFS); 3422 if (xa_is_err(existing_eb)) { 3423 ret = xa_err(existing_eb); 3424 xa_unlock_irq(&fs_info->buffer_tree); 3425 goto out; 3426 } 3427 if (existing_eb) { 3428 if (!refcount_inc_not_zero(&existing_eb->refs)) { 3429 xa_unlock_irq(&fs_info->buffer_tree); 3430 goto again; 3431 } 3432 xa_unlock_irq(&fs_info->buffer_tree); 3433 goto out; 3434 } 3435 xa_unlock_irq(&fs_info->buffer_tree); 3436 3437 /* add one reference for the tree */ 3438 check_buffer_tree_ref(eb); 3439 3440 /* 3441 * Now it's safe to unlock the pages because any calls to 3442 * btree_release_folio will correctly detect that a page belongs to a 3443 * live buffer and won't free them prematurely. 3444 */ 3445 for (int i = 0; i < num_extent_folios(eb); i++) { 3446 folio_unlock(eb->folios[i]); 3447 /* 3448 * A folio that has been added to an address_space mapping 3449 * should not continue holding the refcount from its original 3450 * allocation indefinitely. 3451 */ 3452 folio_put(eb->folios[i]); 3453 } 3454 return eb; 3455 3456 out: 3457 WARN_ON(!refcount_dec_and_test(&eb->refs)); 3458 3459 /* 3460 * Any attached folios need to be detached before we unlock them. This 3461 * is because when we're inserting our new folios into the mapping, and 3462 * then attaching our eb to that folio. If we fail to insert our folio 3463 * we'll lookup the folio for that index, and grab that EB. We do not 3464 * want that to grab this eb, as we're getting ready to free it. So we 3465 * have to detach it first and then unlock it. 3466 * 3467 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3468 */ 3469 for (int i = 0; i < num_extent_pages(eb); i++) { 3470 struct folio *folio = eb->folios[i]; 3471 3472 if (i < attached) { 3473 ASSERT(folio); 3474 detach_extent_buffer_folio(eb, folio); 3475 folio_unlock(folio); 3476 } else if (!folio) { 3477 continue; 3478 } 3479 3480 folio_put(folio); 3481 eb->folios[i] = NULL; 3482 } 3483 btrfs_release_extent_buffer(eb); 3484 if (ret < 0) 3485 return ERR_PTR(ret); 3486 ASSERT(existing_eb); 3487 return existing_eb; 3488 } 3489 3490 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3491 { 3492 struct extent_buffer *eb = 3493 container_of(head, struct extent_buffer, rcu_head); 3494 3495 kmem_cache_free(extent_buffer_cache, eb); 3496 } 3497 3498 static int release_extent_buffer(struct extent_buffer *eb) 3499 __releases(&eb->refs_lock) 3500 { 3501 lockdep_assert_held(&eb->refs_lock); 3502 3503 if (refcount_dec_and_test(&eb->refs)) { 3504 struct btrfs_fs_info *fs_info = eb->fs_info; 3505 3506 spin_unlock(&eb->refs_lock); 3507 3508 /* 3509 * We're erasing, theoretically there will be no allocations, so 3510 * just use GFP_ATOMIC. 3511 * 3512 * We use cmpxchg instead of erase because we do not know if 3513 * this eb is actually in the tree or not, we could be cleaning 3514 * up an eb that we allocated but never inserted into the tree. 3515 * Thus use cmpxchg to remove it from the tree if it is there, 3516 * or leave the other entry if this isn't in the tree. 3517 * 3518 * The documentation says that putting a NULL value is the same 3519 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3520 * in this case. 3521 */ 3522 xa_cmpxchg_irq(&fs_info->buffer_tree, 3523 eb->start >> fs_info->nodesize_bits, eb, NULL, 3524 GFP_ATOMIC); 3525 3526 btrfs_leak_debug_del_eb(eb); 3527 /* Should be safe to release folios at this point. */ 3528 btrfs_release_extent_buffer_folios(eb); 3529 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3530 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3531 kmem_cache_free(extent_buffer_cache, eb); 3532 return 1; 3533 } 3534 #endif 3535 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3536 return 1; 3537 } 3538 spin_unlock(&eb->refs_lock); 3539 3540 return 0; 3541 } 3542 3543 void free_extent_buffer(struct extent_buffer *eb) 3544 { 3545 int refs; 3546 if (!eb) 3547 return; 3548 3549 refs = refcount_read(&eb->refs); 3550 while (1) { 3551 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { 3552 if (refs == 1) 3553 break; 3554 } else if (refs <= 3) { 3555 break; 3556 } 3557 3558 /* Optimization to avoid locking eb->refs_lock. */ 3559 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) 3560 return; 3561 } 3562 3563 spin_lock(&eb->refs_lock); 3564 if (refcount_read(&eb->refs) == 2 && 3565 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3566 !extent_buffer_under_io(eb) && 3567 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3568 refcount_dec(&eb->refs); 3569 3570 /* 3571 * I know this is terrible, but it's temporary until we stop tracking 3572 * the uptodate bits and such for the extent buffers. 3573 */ 3574 release_extent_buffer(eb); 3575 } 3576 3577 void free_extent_buffer_stale(struct extent_buffer *eb) 3578 { 3579 if (!eb) 3580 return; 3581 3582 spin_lock(&eb->refs_lock); 3583 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3584 3585 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3586 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3587 refcount_dec(&eb->refs); 3588 release_extent_buffer(eb); 3589 } 3590 3591 static void btree_clear_folio_dirty_tag(struct folio *folio) 3592 { 3593 ASSERT(!folio_test_dirty(folio)); 3594 ASSERT(folio_test_locked(folio)); 3595 xa_lock_irq(&folio->mapping->i_pages); 3596 if (!folio_test_dirty(folio)) 3597 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3598 PAGECACHE_TAG_DIRTY); 3599 xa_unlock_irq(&folio->mapping->i_pages); 3600 } 3601 3602 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3603 struct extent_buffer *eb) 3604 { 3605 struct btrfs_fs_info *fs_info = eb->fs_info; 3606 3607 btrfs_assert_tree_write_locked(eb); 3608 3609 if (trans && btrfs_header_generation(eb) != trans->transid) 3610 return; 3611 3612 /* 3613 * Instead of clearing the dirty flag off of the buffer, mark it as 3614 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3615 * write-ordering in zoned mode, without the need to later re-dirty 3616 * the extent_buffer. 3617 * 3618 * The actual zeroout of the buffer will happen later in 3619 * btree_csum_one_bio. 3620 */ 3621 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3622 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3623 return; 3624 } 3625 3626 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3627 return; 3628 3629 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3630 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3631 fs_info->dirty_metadata_batch); 3632 3633 for (int i = 0; i < num_extent_folios(eb); i++) { 3634 struct folio *folio = eb->folios[i]; 3635 bool last; 3636 3637 if (!folio_test_dirty(folio)) 3638 continue; 3639 folio_lock(folio); 3640 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3641 if (last) 3642 btree_clear_folio_dirty_tag(folio); 3643 folio_unlock(folio); 3644 } 3645 WARN_ON(refcount_read(&eb->refs) == 0); 3646 } 3647 3648 void set_extent_buffer_dirty(struct extent_buffer *eb) 3649 { 3650 bool was_dirty; 3651 3652 check_buffer_tree_ref(eb); 3653 3654 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3655 3656 WARN_ON(refcount_read(&eb->refs) == 0); 3657 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3658 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3659 3660 if (!was_dirty) { 3661 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3662 3663 /* 3664 * For subpage case, we can have other extent buffers in the 3665 * same page, and in clear_extent_buffer_dirty() we 3666 * have to clear page dirty without subpage lock held. 3667 * This can cause race where our page gets dirty cleared after 3668 * we just set it. 3669 * 3670 * Thankfully, clear_extent_buffer_dirty() has locked 3671 * its page for other reasons, we can use page lock to prevent 3672 * the above race. 3673 */ 3674 if (subpage) 3675 folio_lock(eb->folios[0]); 3676 for (int i = 0; i < num_extent_folios(eb); i++) 3677 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3678 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3679 if (subpage) 3680 folio_unlock(eb->folios[0]); 3681 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3682 eb->len, 3683 eb->fs_info->dirty_metadata_batch); 3684 } 3685 #ifdef CONFIG_BTRFS_DEBUG 3686 for (int i = 0; i < num_extent_folios(eb); i++) 3687 ASSERT(folio_test_dirty(eb->folios[i])); 3688 #endif 3689 } 3690 3691 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3692 { 3693 3694 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3695 for (int i = 0; i < num_extent_folios(eb); i++) { 3696 struct folio *folio = eb->folios[i]; 3697 3698 if (!folio) 3699 continue; 3700 3701 btrfs_meta_folio_clear_uptodate(folio, eb); 3702 } 3703 } 3704 3705 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3706 { 3707 3708 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3709 for (int i = 0; i < num_extent_folios(eb); i++) 3710 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3711 } 3712 3713 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3714 { 3715 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); 3716 } 3717 3718 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3719 { 3720 struct extent_buffer *eb = bbio->private; 3721 bool uptodate = !bbio->bio.bi_status; 3722 3723 /* 3724 * If the extent buffer is marked UPTODATE before the read operation 3725 * completes, other calls to read_extent_buffer_pages() will return 3726 * early without waiting for the read to finish, causing data races. 3727 */ 3728 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3729 3730 eb->read_mirror = bbio->mirror_num; 3731 3732 if (uptodate && 3733 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3734 uptodate = false; 3735 3736 if (uptodate) 3737 set_extent_buffer_uptodate(eb); 3738 else 3739 clear_extent_buffer_uptodate(eb); 3740 3741 clear_extent_buffer_reading(eb); 3742 free_extent_buffer(eb); 3743 3744 bio_put(&bbio->bio); 3745 } 3746 3747 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3748 const struct btrfs_tree_parent_check *check) 3749 { 3750 struct btrfs_bio *bbio; 3751 3752 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3753 return 0; 3754 3755 /* 3756 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3757 * operation, which could potentially still be in flight. In this case 3758 * we simply want to return an error. 3759 */ 3760 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3761 return -EIO; 3762 3763 /* Someone else is already reading the buffer, just wait for it. */ 3764 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3765 return 0; 3766 3767 /* 3768 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3769 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3770 * started and finished reading the same eb. In this case, UPTODATE 3771 * will now be set, and we shouldn't read it in again. 3772 */ 3773 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3774 clear_extent_buffer_reading(eb); 3775 return 0; 3776 } 3777 3778 eb->read_mirror = 0; 3779 check_buffer_tree_ref(eb); 3780 refcount_inc(&eb->refs); 3781 3782 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3783 REQ_OP_READ | REQ_META, eb->fs_info, 3784 end_bbio_meta_read, eb); 3785 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3786 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3787 bbio->file_offset = eb->start; 3788 memcpy(&bbio->parent_check, check, sizeof(*check)); 3789 for (int i = 0; i < num_extent_folios(eb); i++) { 3790 struct folio *folio = eb->folios[i]; 3791 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3792 u32 range_len = min_t(u64, folio_end(folio), 3793 eb->start + eb->len) - range_start; 3794 3795 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3796 offset_in_folio(folio, range_start)); 3797 } 3798 btrfs_submit_bbio(bbio, mirror_num); 3799 return 0; 3800 } 3801 3802 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3803 const struct btrfs_tree_parent_check *check) 3804 { 3805 int ret; 3806 3807 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3808 if (ret < 0) 3809 return ret; 3810 3811 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3812 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3813 return -EIO; 3814 return 0; 3815 } 3816 3817 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3818 unsigned long len) 3819 { 3820 btrfs_warn(eb->fs_info, 3821 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3822 eb->start, eb->len, start, len); 3823 DEBUG_WARN(); 3824 3825 return true; 3826 } 3827 3828 /* 3829 * Check if the [start, start + len) range is valid before reading/writing 3830 * the eb. 3831 * NOTE: @start and @len are offset inside the eb, not logical address. 3832 * 3833 * Caller should not touch the dst/src memory if this function returns error. 3834 */ 3835 static inline int check_eb_range(const struct extent_buffer *eb, 3836 unsigned long start, unsigned long len) 3837 { 3838 unsigned long offset; 3839 3840 /* start, start + len should not go beyond eb->len nor overflow */ 3841 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3842 return report_eb_range(eb, start, len); 3843 3844 return false; 3845 } 3846 3847 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3848 unsigned long start, unsigned long len) 3849 { 3850 const int unit_size = eb->folio_size; 3851 size_t cur; 3852 size_t offset; 3853 char *dst = (char *)dstv; 3854 unsigned long i = get_eb_folio_index(eb, start); 3855 3856 if (check_eb_range(eb, start, len)) { 3857 /* 3858 * Invalid range hit, reset the memory, so callers won't get 3859 * some random garbage for their uninitialized memory. 3860 */ 3861 memset(dstv, 0, len); 3862 return; 3863 } 3864 3865 if (eb->addr) { 3866 memcpy(dstv, eb->addr + start, len); 3867 return; 3868 } 3869 3870 offset = get_eb_offset_in_folio(eb, start); 3871 3872 while (len > 0) { 3873 char *kaddr; 3874 3875 cur = min(len, unit_size - offset); 3876 kaddr = folio_address(eb->folios[i]); 3877 memcpy(dst, kaddr + offset, cur); 3878 3879 dst += cur; 3880 len -= cur; 3881 offset = 0; 3882 i++; 3883 } 3884 } 3885 3886 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3887 void __user *dstv, 3888 unsigned long start, unsigned long len) 3889 { 3890 const int unit_size = eb->folio_size; 3891 size_t cur; 3892 size_t offset; 3893 char __user *dst = (char __user *)dstv; 3894 unsigned long i = get_eb_folio_index(eb, start); 3895 int ret = 0; 3896 3897 WARN_ON(start > eb->len); 3898 WARN_ON(start + len > eb->start + eb->len); 3899 3900 if (eb->addr) { 3901 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3902 ret = -EFAULT; 3903 return ret; 3904 } 3905 3906 offset = get_eb_offset_in_folio(eb, start); 3907 3908 while (len > 0) { 3909 char *kaddr; 3910 3911 cur = min(len, unit_size - offset); 3912 kaddr = folio_address(eb->folios[i]); 3913 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3914 ret = -EFAULT; 3915 break; 3916 } 3917 3918 dst += cur; 3919 len -= cur; 3920 offset = 0; 3921 i++; 3922 } 3923 3924 return ret; 3925 } 3926 3927 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3928 unsigned long start, unsigned long len) 3929 { 3930 const int unit_size = eb->folio_size; 3931 size_t cur; 3932 size_t offset; 3933 char *kaddr; 3934 char *ptr = (char *)ptrv; 3935 unsigned long i = get_eb_folio_index(eb, start); 3936 int ret = 0; 3937 3938 if (check_eb_range(eb, start, len)) 3939 return -EINVAL; 3940 3941 if (eb->addr) 3942 return memcmp(ptrv, eb->addr + start, len); 3943 3944 offset = get_eb_offset_in_folio(eb, start); 3945 3946 while (len > 0) { 3947 cur = min(len, unit_size - offset); 3948 kaddr = folio_address(eb->folios[i]); 3949 ret = memcmp(ptr, kaddr + offset, cur); 3950 if (ret) 3951 break; 3952 3953 ptr += cur; 3954 len -= cur; 3955 offset = 0; 3956 i++; 3957 } 3958 return ret; 3959 } 3960 3961 /* 3962 * Check that the extent buffer is uptodate. 3963 * 3964 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3965 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3966 */ 3967 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3968 { 3969 struct btrfs_fs_info *fs_info = eb->fs_info; 3970 struct folio *folio = eb->folios[i]; 3971 3972 ASSERT(folio); 3973 3974 /* 3975 * If we are using the commit root we could potentially clear a page 3976 * Uptodate while we're using the extent buffer that we've previously 3977 * looked up. We don't want to complain in this case, as the page was 3978 * valid before, we just didn't write it out. Instead we want to catch 3979 * the case where we didn't actually read the block properly, which 3980 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3981 */ 3982 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3983 return; 3984 3985 if (btrfs_meta_is_subpage(fs_info)) { 3986 folio = eb->folios[0]; 3987 ASSERT(i == 0); 3988 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3989 eb->start, eb->len))) 3990 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3991 } else { 3992 WARN_ON(!folio_test_uptodate(folio)); 3993 } 3994 } 3995 3996 static void __write_extent_buffer(const struct extent_buffer *eb, 3997 const void *srcv, unsigned long start, 3998 unsigned long len, bool use_memmove) 3999 { 4000 const int unit_size = eb->folio_size; 4001 size_t cur; 4002 size_t offset; 4003 char *kaddr; 4004 const char *src = (const char *)srcv; 4005 unsigned long i = get_eb_folio_index(eb, start); 4006 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4007 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4008 4009 if (check_eb_range(eb, start, len)) 4010 return; 4011 4012 if (eb->addr) { 4013 if (use_memmove) 4014 memmove(eb->addr + start, srcv, len); 4015 else 4016 memcpy(eb->addr + start, srcv, len); 4017 return; 4018 } 4019 4020 offset = get_eb_offset_in_folio(eb, start); 4021 4022 while (len > 0) { 4023 if (check_uptodate) 4024 assert_eb_folio_uptodate(eb, i); 4025 4026 cur = min(len, unit_size - offset); 4027 kaddr = folio_address(eb->folios[i]); 4028 if (use_memmove) 4029 memmove(kaddr + offset, src, cur); 4030 else 4031 memcpy(kaddr + offset, src, cur); 4032 4033 src += cur; 4034 len -= cur; 4035 offset = 0; 4036 i++; 4037 } 4038 } 4039 4040 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4041 unsigned long start, unsigned long len) 4042 { 4043 return __write_extent_buffer(eb, srcv, start, len, false); 4044 } 4045 4046 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4047 unsigned long start, unsigned long len) 4048 { 4049 const int unit_size = eb->folio_size; 4050 unsigned long cur = start; 4051 4052 if (eb->addr) { 4053 memset(eb->addr + start, c, len); 4054 return; 4055 } 4056 4057 while (cur < start + len) { 4058 unsigned long index = get_eb_folio_index(eb, cur); 4059 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4060 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4061 4062 assert_eb_folio_uptodate(eb, index); 4063 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4064 4065 cur += cur_len; 4066 } 4067 } 4068 4069 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4070 unsigned long len) 4071 { 4072 if (check_eb_range(eb, start, len)) 4073 return; 4074 return memset_extent_buffer(eb, 0, start, len); 4075 } 4076 4077 void copy_extent_buffer_full(const struct extent_buffer *dst, 4078 const struct extent_buffer *src) 4079 { 4080 const int unit_size = src->folio_size; 4081 unsigned long cur = 0; 4082 4083 ASSERT(dst->len == src->len); 4084 4085 while (cur < src->len) { 4086 unsigned long index = get_eb_folio_index(src, cur); 4087 unsigned long offset = get_eb_offset_in_folio(src, cur); 4088 unsigned long cur_len = min(src->len, unit_size - offset); 4089 void *addr = folio_address(src->folios[index]) + offset; 4090 4091 write_extent_buffer(dst, addr, cur, cur_len); 4092 4093 cur += cur_len; 4094 } 4095 } 4096 4097 void copy_extent_buffer(const struct extent_buffer *dst, 4098 const struct extent_buffer *src, 4099 unsigned long dst_offset, unsigned long src_offset, 4100 unsigned long len) 4101 { 4102 const int unit_size = dst->folio_size; 4103 u64 dst_len = dst->len; 4104 size_t cur; 4105 size_t offset; 4106 char *kaddr; 4107 unsigned long i = get_eb_folio_index(dst, dst_offset); 4108 4109 if (check_eb_range(dst, dst_offset, len) || 4110 check_eb_range(src, src_offset, len)) 4111 return; 4112 4113 WARN_ON(src->len != dst_len); 4114 4115 offset = get_eb_offset_in_folio(dst, dst_offset); 4116 4117 while (len > 0) { 4118 assert_eb_folio_uptodate(dst, i); 4119 4120 cur = min(len, (unsigned long)(unit_size - offset)); 4121 4122 kaddr = folio_address(dst->folios[i]); 4123 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4124 4125 src_offset += cur; 4126 len -= cur; 4127 offset = 0; 4128 i++; 4129 } 4130 } 4131 4132 /* 4133 * Calculate the folio and offset of the byte containing the given bit number. 4134 * 4135 * @eb: the extent buffer 4136 * @start: offset of the bitmap item in the extent buffer 4137 * @nr: bit number 4138 * @folio_index: return index of the folio in the extent buffer that contains 4139 * the given bit number 4140 * @folio_offset: return offset into the folio given by folio_index 4141 * 4142 * This helper hides the ugliness of finding the byte in an extent buffer which 4143 * contains a given bit. 4144 */ 4145 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4146 unsigned long start, unsigned long nr, 4147 unsigned long *folio_index, 4148 size_t *folio_offset) 4149 { 4150 size_t byte_offset = BIT_BYTE(nr); 4151 size_t offset; 4152 4153 /* 4154 * The byte we want is the offset of the extent buffer + the offset of 4155 * the bitmap item in the extent buffer + the offset of the byte in the 4156 * bitmap item. 4157 */ 4158 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4159 4160 *folio_index = offset >> eb->folio_shift; 4161 *folio_offset = offset_in_eb_folio(eb, offset); 4162 } 4163 4164 /* 4165 * Determine whether a bit in a bitmap item is set. 4166 * 4167 * @eb: the extent buffer 4168 * @start: offset of the bitmap item in the extent buffer 4169 * @nr: bit number to test 4170 */ 4171 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4172 unsigned long nr) 4173 { 4174 unsigned long i; 4175 size_t offset; 4176 u8 *kaddr; 4177 4178 eb_bitmap_offset(eb, start, nr, &i, &offset); 4179 assert_eb_folio_uptodate(eb, i); 4180 kaddr = folio_address(eb->folios[i]); 4181 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4182 } 4183 4184 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4185 { 4186 unsigned long index = get_eb_folio_index(eb, bytenr); 4187 4188 if (check_eb_range(eb, bytenr, 1)) 4189 return NULL; 4190 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4191 } 4192 4193 /* 4194 * Set an area of a bitmap to 1. 4195 * 4196 * @eb: the extent buffer 4197 * @start: offset of the bitmap item in the extent buffer 4198 * @pos: bit number of the first bit 4199 * @len: number of bits to set 4200 */ 4201 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4202 unsigned long pos, unsigned long len) 4203 { 4204 unsigned int first_byte = start + BIT_BYTE(pos); 4205 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4206 const bool same_byte = (first_byte == last_byte); 4207 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4208 u8 *kaddr; 4209 4210 if (same_byte) 4211 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4212 4213 /* Handle the first byte. */ 4214 kaddr = extent_buffer_get_byte(eb, first_byte); 4215 *kaddr |= mask; 4216 if (same_byte) 4217 return; 4218 4219 /* Handle the byte aligned part. */ 4220 ASSERT(first_byte + 1 <= last_byte); 4221 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4222 4223 /* Handle the last byte. */ 4224 kaddr = extent_buffer_get_byte(eb, last_byte); 4225 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4226 } 4227 4228 4229 /* 4230 * Clear an area of a bitmap. 4231 * 4232 * @eb: the extent buffer 4233 * @start: offset of the bitmap item in the extent buffer 4234 * @pos: bit number of the first bit 4235 * @len: number of bits to clear 4236 */ 4237 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4238 unsigned long start, unsigned long pos, 4239 unsigned long len) 4240 { 4241 unsigned int first_byte = start + BIT_BYTE(pos); 4242 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4243 const bool same_byte = (first_byte == last_byte); 4244 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4245 u8 *kaddr; 4246 4247 if (same_byte) 4248 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4249 4250 /* Handle the first byte. */ 4251 kaddr = extent_buffer_get_byte(eb, first_byte); 4252 *kaddr &= ~mask; 4253 if (same_byte) 4254 return; 4255 4256 /* Handle the byte aligned part. */ 4257 ASSERT(first_byte + 1 <= last_byte); 4258 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4259 4260 /* Handle the last byte. */ 4261 kaddr = extent_buffer_get_byte(eb, last_byte); 4262 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4263 } 4264 4265 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4266 { 4267 unsigned long distance = (src > dst) ? src - dst : dst - src; 4268 return distance < len; 4269 } 4270 4271 void memcpy_extent_buffer(const struct extent_buffer *dst, 4272 unsigned long dst_offset, unsigned long src_offset, 4273 unsigned long len) 4274 { 4275 const int unit_size = dst->folio_size; 4276 unsigned long cur_off = 0; 4277 4278 if (check_eb_range(dst, dst_offset, len) || 4279 check_eb_range(dst, src_offset, len)) 4280 return; 4281 4282 if (dst->addr) { 4283 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4284 4285 if (use_memmove) 4286 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4287 else 4288 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4289 return; 4290 } 4291 4292 while (cur_off < len) { 4293 unsigned long cur_src = cur_off + src_offset; 4294 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4295 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4296 unsigned long cur_len = min(src_offset + len - cur_src, 4297 unit_size - folio_off); 4298 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4299 const bool use_memmove = areas_overlap(src_offset + cur_off, 4300 dst_offset + cur_off, cur_len); 4301 4302 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4303 use_memmove); 4304 cur_off += cur_len; 4305 } 4306 } 4307 4308 void memmove_extent_buffer(const struct extent_buffer *dst, 4309 unsigned long dst_offset, unsigned long src_offset, 4310 unsigned long len) 4311 { 4312 unsigned long dst_end = dst_offset + len - 1; 4313 unsigned long src_end = src_offset + len - 1; 4314 4315 if (check_eb_range(dst, dst_offset, len) || 4316 check_eb_range(dst, src_offset, len)) 4317 return; 4318 4319 if (dst_offset < src_offset) { 4320 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4321 return; 4322 } 4323 4324 if (dst->addr) { 4325 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4326 return; 4327 } 4328 4329 while (len > 0) { 4330 unsigned long src_i; 4331 size_t cur; 4332 size_t dst_off_in_folio; 4333 size_t src_off_in_folio; 4334 void *src_addr; 4335 bool use_memmove; 4336 4337 src_i = get_eb_folio_index(dst, src_end); 4338 4339 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4340 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4341 4342 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4343 cur = min(cur, dst_off_in_folio + 1); 4344 4345 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4346 cur + 1; 4347 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4348 cur); 4349 4350 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4351 use_memmove); 4352 4353 dst_end -= cur; 4354 src_end -= cur; 4355 len -= cur; 4356 } 4357 } 4358 4359 static int try_release_subpage_extent_buffer(struct folio *folio) 4360 { 4361 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4362 struct extent_buffer *eb; 4363 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); 4364 unsigned long index = start; 4365 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; 4366 int ret; 4367 4368 rcu_read_lock(); 4369 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4370 /* 4371 * The same as try_release_extent_buffer(), to ensure the eb 4372 * won't disappear out from under us. 4373 */ 4374 spin_lock(&eb->refs_lock); 4375 rcu_read_unlock(); 4376 4377 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4378 spin_unlock(&eb->refs_lock); 4379 rcu_read_lock(); 4380 continue; 4381 } 4382 4383 /* 4384 * If tree ref isn't set then we know the ref on this eb is a 4385 * real ref, so just return, this eb will likely be freed soon 4386 * anyway. 4387 */ 4388 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4389 spin_unlock(&eb->refs_lock); 4390 break; 4391 } 4392 4393 /* 4394 * Here we don't care about the return value, we will always 4395 * check the folio private at the end. And 4396 * release_extent_buffer() will release the refs_lock. 4397 */ 4398 release_extent_buffer(eb); 4399 rcu_read_lock(); 4400 } 4401 rcu_read_unlock(); 4402 4403 /* 4404 * Finally to check if we have cleared folio private, as if we have 4405 * released all ebs in the page, the folio private should be cleared now. 4406 */ 4407 spin_lock(&folio->mapping->i_private_lock); 4408 if (!folio_test_private(folio)) 4409 ret = 1; 4410 else 4411 ret = 0; 4412 spin_unlock(&folio->mapping->i_private_lock); 4413 return ret; 4414 } 4415 4416 int try_release_extent_buffer(struct folio *folio) 4417 { 4418 struct extent_buffer *eb; 4419 4420 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4421 return try_release_subpage_extent_buffer(folio); 4422 4423 /* 4424 * We need to make sure nobody is changing folio private, as we rely on 4425 * folio private as the pointer to extent buffer. 4426 */ 4427 spin_lock(&folio->mapping->i_private_lock); 4428 if (!folio_test_private(folio)) { 4429 spin_unlock(&folio->mapping->i_private_lock); 4430 return 1; 4431 } 4432 4433 eb = folio_get_private(folio); 4434 BUG_ON(!eb); 4435 4436 /* 4437 * This is a little awful but should be ok, we need to make sure that 4438 * the eb doesn't disappear out from under us while we're looking at 4439 * this page. 4440 */ 4441 spin_lock(&eb->refs_lock); 4442 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4443 spin_unlock(&eb->refs_lock); 4444 spin_unlock(&folio->mapping->i_private_lock); 4445 return 0; 4446 } 4447 spin_unlock(&folio->mapping->i_private_lock); 4448 4449 /* 4450 * If tree ref isn't set then we know the ref on this eb is a real ref, 4451 * so just return, this page will likely be freed soon anyway. 4452 */ 4453 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4454 spin_unlock(&eb->refs_lock); 4455 return 0; 4456 } 4457 4458 return release_extent_buffer(eb); 4459 } 4460 4461 /* 4462 * Attempt to readahead a child block. 4463 * 4464 * @fs_info: the fs_info 4465 * @bytenr: bytenr to read 4466 * @owner_root: objectid of the root that owns this eb 4467 * @gen: generation for the uptodate check, can be 0 4468 * @level: level for the eb 4469 * 4470 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4471 * normal uptodate check of the eb, without checking the generation. If we have 4472 * to read the block we will not block on anything. 4473 */ 4474 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4475 u64 bytenr, u64 owner_root, u64 gen, int level) 4476 { 4477 struct btrfs_tree_parent_check check = { 4478 .level = level, 4479 .transid = gen 4480 }; 4481 struct extent_buffer *eb; 4482 int ret; 4483 4484 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4485 if (IS_ERR(eb)) 4486 return; 4487 4488 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4489 free_extent_buffer(eb); 4490 return; 4491 } 4492 4493 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4494 if (ret < 0) 4495 free_extent_buffer_stale(eb); 4496 else 4497 free_extent_buffer(eb); 4498 } 4499 4500 /* 4501 * Readahead a node's child block. 4502 * 4503 * @node: parent node we're reading from 4504 * @slot: slot in the parent node for the child we want to read 4505 * 4506 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4507 * the slot in the node provided. 4508 */ 4509 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4510 { 4511 btrfs_readahead_tree_block(node->fs_info, 4512 btrfs_node_blockptr(node, slot), 4513 btrfs_header_owner(node), 4514 btrfs_node_ptr_generation(node, slot), 4515 btrfs_header_level(node) - 1); 4516 } 4517