1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 struct inode *inode = tree->private_data; 93 u64 isize; 94 95 if (!inode || !is_data_inode(inode)) 96 return; 97 98 isize = i_size_read(inode); 99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 101 "%s: ino %llu isize %llu odd range [%llu,%llu]", 102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 103 } 104 } 105 #else 106 #define btrfs_leak_debug_add(new, head) do {} while (0) 107 #define btrfs_leak_debug_del(entry) do {} while (0) 108 #define btrfs_leak_debug_check() do {} while (0) 109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 110 #endif 111 112 struct tree_entry { 113 u64 start; 114 u64 end; 115 struct rb_node rb_node; 116 }; 117 118 struct extent_page_data { 119 struct bio *bio; 120 struct extent_io_tree *tree; 121 /* tells writepage not to lock the state bits for this range 122 * it still does the unlocking 123 */ 124 unsigned int extent_locked:1; 125 126 /* tells the submit_bio code to use REQ_SYNC */ 127 unsigned int sync_io:1; 128 }; 129 130 static int add_extent_changeset(struct extent_state *state, unsigned bits, 131 struct extent_changeset *changeset, 132 int set) 133 { 134 int ret; 135 136 if (!changeset) 137 return 0; 138 if (set && (state->state & bits) == bits) 139 return 0; 140 if (!set && (state->state & bits) == 0) 141 return 0; 142 changeset->bytes_changed += state->end - state->start + 1; 143 ret = ulist_add(&changeset->range_changed, state->start, state->end, 144 GFP_ATOMIC); 145 return ret; 146 } 147 148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 149 unsigned long bio_flags) 150 { 151 blk_status_t ret = 0; 152 struct extent_io_tree *tree = bio->bi_private; 153 154 bio->bi_private = NULL; 155 156 if (tree->ops) 157 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 158 mirror_num, bio_flags); 159 else 160 btrfsic_submit_bio(bio); 161 162 return blk_status_to_errno(ret); 163 } 164 165 /* Cleanup unsubmitted bios */ 166 static void end_write_bio(struct extent_page_data *epd, int ret) 167 { 168 if (epd->bio) { 169 epd->bio->bi_status = errno_to_blk_status(ret); 170 bio_endio(epd->bio); 171 epd->bio = NULL; 172 } 173 } 174 175 /* 176 * Submit bio from extent page data via submit_one_bio 177 * 178 * Return 0 if everything is OK. 179 * Return <0 for error. 180 */ 181 static int __must_check flush_write_bio(struct extent_page_data *epd) 182 { 183 int ret = 0; 184 185 if (epd->bio) { 186 ret = submit_one_bio(epd->bio, 0, 0); 187 /* 188 * Clean up of epd->bio is handled by its endio function. 189 * And endio is either triggered by successful bio execution 190 * or the error handler of submit bio hook. 191 * So at this point, no matter what happened, we don't need 192 * to clean up epd->bio. 193 */ 194 epd->bio = NULL; 195 } 196 return ret; 197 } 198 199 int __init extent_io_init(void) 200 { 201 extent_state_cache = kmem_cache_create("btrfs_extent_state", 202 sizeof(struct extent_state), 0, 203 SLAB_MEM_SPREAD, NULL); 204 if (!extent_state_cache) 205 return -ENOMEM; 206 207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 208 sizeof(struct extent_buffer), 0, 209 SLAB_MEM_SPREAD, NULL); 210 if (!extent_buffer_cache) 211 goto free_state_cache; 212 213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 214 offsetof(struct btrfs_io_bio, bio), 215 BIOSET_NEED_BVECS)) 216 goto free_buffer_cache; 217 218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 219 goto free_bioset; 220 221 return 0; 222 223 free_bioset: 224 bioset_exit(&btrfs_bioset); 225 226 free_buffer_cache: 227 kmem_cache_destroy(extent_buffer_cache); 228 extent_buffer_cache = NULL; 229 230 free_state_cache: 231 kmem_cache_destroy(extent_state_cache); 232 extent_state_cache = NULL; 233 return -ENOMEM; 234 } 235 236 void __cold extent_io_exit(void) 237 { 238 btrfs_leak_debug_check(); 239 240 /* 241 * Make sure all delayed rcu free are flushed before we 242 * destroy caches. 243 */ 244 rcu_barrier(); 245 kmem_cache_destroy(extent_state_cache); 246 kmem_cache_destroy(extent_buffer_cache); 247 bioset_exit(&btrfs_bioset); 248 } 249 250 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 251 struct extent_io_tree *tree, unsigned int owner, 252 void *private_data) 253 { 254 tree->fs_info = fs_info; 255 tree->state = RB_ROOT; 256 tree->ops = NULL; 257 tree->dirty_bytes = 0; 258 spin_lock_init(&tree->lock); 259 tree->private_data = private_data; 260 tree->owner = owner; 261 } 262 263 void extent_io_tree_release(struct extent_io_tree *tree) 264 { 265 spin_lock(&tree->lock); 266 /* 267 * Do a single barrier for the waitqueue_active check here, the state 268 * of the waitqueue should not change once extent_io_tree_release is 269 * called. 270 */ 271 smp_mb(); 272 while (!RB_EMPTY_ROOT(&tree->state)) { 273 struct rb_node *node; 274 struct extent_state *state; 275 276 node = rb_first(&tree->state); 277 state = rb_entry(node, struct extent_state, rb_node); 278 rb_erase(&state->rb_node, &tree->state); 279 RB_CLEAR_NODE(&state->rb_node); 280 /* 281 * btree io trees aren't supposed to have tasks waiting for 282 * changes in the flags of extent states ever. 283 */ 284 ASSERT(!waitqueue_active(&state->wq)); 285 free_extent_state(state); 286 287 cond_resched_lock(&tree->lock); 288 } 289 spin_unlock(&tree->lock); 290 } 291 292 static struct extent_state *alloc_extent_state(gfp_t mask) 293 { 294 struct extent_state *state; 295 296 /* 297 * The given mask might be not appropriate for the slab allocator, 298 * drop the unsupported bits 299 */ 300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 301 state = kmem_cache_alloc(extent_state_cache, mask); 302 if (!state) 303 return state; 304 state->state = 0; 305 state->failrec = NULL; 306 RB_CLEAR_NODE(&state->rb_node); 307 btrfs_leak_debug_add(&state->leak_list, &states); 308 refcount_set(&state->refs, 1); 309 init_waitqueue_head(&state->wq); 310 trace_alloc_extent_state(state, mask, _RET_IP_); 311 return state; 312 } 313 314 void free_extent_state(struct extent_state *state) 315 { 316 if (!state) 317 return; 318 if (refcount_dec_and_test(&state->refs)) { 319 WARN_ON(extent_state_in_tree(state)); 320 btrfs_leak_debug_del(&state->leak_list); 321 trace_free_extent_state(state, _RET_IP_); 322 kmem_cache_free(extent_state_cache, state); 323 } 324 } 325 326 static struct rb_node *tree_insert(struct rb_root *root, 327 struct rb_node *search_start, 328 u64 offset, 329 struct rb_node *node, 330 struct rb_node ***p_in, 331 struct rb_node **parent_in) 332 { 333 struct rb_node **p; 334 struct rb_node *parent = NULL; 335 struct tree_entry *entry; 336 337 if (p_in && parent_in) { 338 p = *p_in; 339 parent = *parent_in; 340 goto do_insert; 341 } 342 343 p = search_start ? &search_start : &root->rb_node; 344 while (*p) { 345 parent = *p; 346 entry = rb_entry(parent, struct tree_entry, rb_node); 347 348 if (offset < entry->start) 349 p = &(*p)->rb_left; 350 else if (offset > entry->end) 351 p = &(*p)->rb_right; 352 else 353 return parent; 354 } 355 356 do_insert: 357 rb_link_node(node, parent, p); 358 rb_insert_color(node, root); 359 return NULL; 360 } 361 362 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 363 struct rb_node **next_ret, 364 struct rb_node **prev_ret, 365 struct rb_node ***p_ret, 366 struct rb_node **parent_ret) 367 { 368 struct rb_root *root = &tree->state; 369 struct rb_node **n = &root->rb_node; 370 struct rb_node *prev = NULL; 371 struct rb_node *orig_prev = NULL; 372 struct tree_entry *entry; 373 struct tree_entry *prev_entry = NULL; 374 375 while (*n) { 376 prev = *n; 377 entry = rb_entry(prev, struct tree_entry, rb_node); 378 prev_entry = entry; 379 380 if (offset < entry->start) 381 n = &(*n)->rb_left; 382 else if (offset > entry->end) 383 n = &(*n)->rb_right; 384 else 385 return *n; 386 } 387 388 if (p_ret) 389 *p_ret = n; 390 if (parent_ret) 391 *parent_ret = prev; 392 393 if (next_ret) { 394 orig_prev = prev; 395 while (prev && offset > prev_entry->end) { 396 prev = rb_next(prev); 397 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 398 } 399 *next_ret = prev; 400 prev = orig_prev; 401 } 402 403 if (prev_ret) { 404 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 405 while (prev && offset < prev_entry->start) { 406 prev = rb_prev(prev); 407 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 408 } 409 *prev_ret = prev; 410 } 411 return NULL; 412 } 413 414 static inline struct rb_node * 415 tree_search_for_insert(struct extent_io_tree *tree, 416 u64 offset, 417 struct rb_node ***p_ret, 418 struct rb_node **parent_ret) 419 { 420 struct rb_node *next= NULL; 421 struct rb_node *ret; 422 423 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 424 if (!ret) 425 return next; 426 return ret; 427 } 428 429 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 430 u64 offset) 431 { 432 return tree_search_for_insert(tree, offset, NULL, NULL); 433 } 434 435 /* 436 * utility function to look for merge candidates inside a given range. 437 * Any extents with matching state are merged together into a single 438 * extent in the tree. Extents with EXTENT_IO in their state field 439 * are not merged because the end_io handlers need to be able to do 440 * operations on them without sleeping (or doing allocations/splits). 441 * 442 * This should be called with the tree lock held. 443 */ 444 static void merge_state(struct extent_io_tree *tree, 445 struct extent_state *state) 446 { 447 struct extent_state *other; 448 struct rb_node *other_node; 449 450 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 451 return; 452 453 other_node = rb_prev(&state->rb_node); 454 if (other_node) { 455 other = rb_entry(other_node, struct extent_state, rb_node); 456 if (other->end == state->start - 1 && 457 other->state == state->state) { 458 if (tree->private_data && 459 is_data_inode(tree->private_data)) 460 btrfs_merge_delalloc_extent(tree->private_data, 461 state, other); 462 state->start = other->start; 463 rb_erase(&other->rb_node, &tree->state); 464 RB_CLEAR_NODE(&other->rb_node); 465 free_extent_state(other); 466 } 467 } 468 other_node = rb_next(&state->rb_node); 469 if (other_node) { 470 other = rb_entry(other_node, struct extent_state, rb_node); 471 if (other->start == state->end + 1 && 472 other->state == state->state) { 473 if (tree->private_data && 474 is_data_inode(tree->private_data)) 475 btrfs_merge_delalloc_extent(tree->private_data, 476 state, other); 477 state->end = other->end; 478 rb_erase(&other->rb_node, &tree->state); 479 RB_CLEAR_NODE(&other->rb_node); 480 free_extent_state(other); 481 } 482 } 483 } 484 485 static void set_state_bits(struct extent_io_tree *tree, 486 struct extent_state *state, unsigned *bits, 487 struct extent_changeset *changeset); 488 489 /* 490 * insert an extent_state struct into the tree. 'bits' are set on the 491 * struct before it is inserted. 492 * 493 * This may return -EEXIST if the extent is already there, in which case the 494 * state struct is freed. 495 * 496 * The tree lock is not taken internally. This is a utility function and 497 * probably isn't what you want to call (see set/clear_extent_bit). 498 */ 499 static int insert_state(struct extent_io_tree *tree, 500 struct extent_state *state, u64 start, u64 end, 501 struct rb_node ***p, 502 struct rb_node **parent, 503 unsigned *bits, struct extent_changeset *changeset) 504 { 505 struct rb_node *node; 506 507 if (end < start) 508 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 509 end, start); 510 state->start = start; 511 state->end = end; 512 513 set_state_bits(tree, state, bits, changeset); 514 515 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 516 if (node) { 517 struct extent_state *found; 518 found = rb_entry(node, struct extent_state, rb_node); 519 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 520 found->start, found->end, start, end); 521 return -EEXIST; 522 } 523 merge_state(tree, state); 524 return 0; 525 } 526 527 /* 528 * split a given extent state struct in two, inserting the preallocated 529 * struct 'prealloc' as the newly created second half. 'split' indicates an 530 * offset inside 'orig' where it should be split. 531 * 532 * Before calling, 533 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 534 * are two extent state structs in the tree: 535 * prealloc: [orig->start, split - 1] 536 * orig: [ split, orig->end ] 537 * 538 * The tree locks are not taken by this function. They need to be held 539 * by the caller. 540 */ 541 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 542 struct extent_state *prealloc, u64 split) 543 { 544 struct rb_node *node; 545 546 if (tree->private_data && is_data_inode(tree->private_data)) 547 btrfs_split_delalloc_extent(tree->private_data, orig, split); 548 549 prealloc->start = orig->start; 550 prealloc->end = split - 1; 551 prealloc->state = orig->state; 552 orig->start = split; 553 554 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 555 &prealloc->rb_node, NULL, NULL); 556 if (node) { 557 free_extent_state(prealloc); 558 return -EEXIST; 559 } 560 return 0; 561 } 562 563 static struct extent_state *next_state(struct extent_state *state) 564 { 565 struct rb_node *next = rb_next(&state->rb_node); 566 if (next) 567 return rb_entry(next, struct extent_state, rb_node); 568 else 569 return NULL; 570 } 571 572 /* 573 * utility function to clear some bits in an extent state struct. 574 * it will optionally wake up anyone waiting on this state (wake == 1). 575 * 576 * If no bits are set on the state struct after clearing things, the 577 * struct is freed and removed from the tree 578 */ 579 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 580 struct extent_state *state, 581 unsigned *bits, int wake, 582 struct extent_changeset *changeset) 583 { 584 struct extent_state *next; 585 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 586 int ret; 587 588 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 589 u64 range = state->end - state->start + 1; 590 WARN_ON(range > tree->dirty_bytes); 591 tree->dirty_bytes -= range; 592 } 593 594 if (tree->private_data && is_data_inode(tree->private_data)) 595 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 596 597 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 598 BUG_ON(ret < 0); 599 state->state &= ~bits_to_clear; 600 if (wake) 601 wake_up(&state->wq); 602 if (state->state == 0) { 603 next = next_state(state); 604 if (extent_state_in_tree(state)) { 605 rb_erase(&state->rb_node, &tree->state); 606 RB_CLEAR_NODE(&state->rb_node); 607 free_extent_state(state); 608 } else { 609 WARN_ON(1); 610 } 611 } else { 612 merge_state(tree, state); 613 next = next_state(state); 614 } 615 return next; 616 } 617 618 static struct extent_state * 619 alloc_extent_state_atomic(struct extent_state *prealloc) 620 { 621 if (!prealloc) 622 prealloc = alloc_extent_state(GFP_ATOMIC); 623 624 return prealloc; 625 } 626 627 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 628 { 629 struct inode *inode = tree->private_data; 630 631 btrfs_panic(btrfs_sb(inode->i_sb), err, 632 "locking error: extent tree was modified by another thread while locked"); 633 } 634 635 /* 636 * clear some bits on a range in the tree. This may require splitting 637 * or inserting elements in the tree, so the gfp mask is used to 638 * indicate which allocations or sleeping are allowed. 639 * 640 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 641 * the given range from the tree regardless of state (ie for truncate). 642 * 643 * the range [start, end] is inclusive. 644 * 645 * This takes the tree lock, and returns 0 on success and < 0 on error. 646 */ 647 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 648 unsigned bits, int wake, int delete, 649 struct extent_state **cached_state, 650 gfp_t mask, struct extent_changeset *changeset) 651 { 652 struct extent_state *state; 653 struct extent_state *cached; 654 struct extent_state *prealloc = NULL; 655 struct rb_node *node; 656 u64 last_end; 657 int err; 658 int clear = 0; 659 660 btrfs_debug_check_extent_io_range(tree, start, end); 661 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 662 663 if (bits & EXTENT_DELALLOC) 664 bits |= EXTENT_NORESERVE; 665 666 if (delete) 667 bits |= ~EXTENT_CTLBITS; 668 669 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 670 clear = 1; 671 again: 672 if (!prealloc && gfpflags_allow_blocking(mask)) { 673 /* 674 * Don't care for allocation failure here because we might end 675 * up not needing the pre-allocated extent state at all, which 676 * is the case if we only have in the tree extent states that 677 * cover our input range and don't cover too any other range. 678 * If we end up needing a new extent state we allocate it later. 679 */ 680 prealloc = alloc_extent_state(mask); 681 } 682 683 spin_lock(&tree->lock); 684 if (cached_state) { 685 cached = *cached_state; 686 687 if (clear) { 688 *cached_state = NULL; 689 cached_state = NULL; 690 } 691 692 if (cached && extent_state_in_tree(cached) && 693 cached->start <= start && cached->end > start) { 694 if (clear) 695 refcount_dec(&cached->refs); 696 state = cached; 697 goto hit_next; 698 } 699 if (clear) 700 free_extent_state(cached); 701 } 702 /* 703 * this search will find the extents that end after 704 * our range starts 705 */ 706 node = tree_search(tree, start); 707 if (!node) 708 goto out; 709 state = rb_entry(node, struct extent_state, rb_node); 710 hit_next: 711 if (state->start > end) 712 goto out; 713 WARN_ON(state->end < start); 714 last_end = state->end; 715 716 /* the state doesn't have the wanted bits, go ahead */ 717 if (!(state->state & bits)) { 718 state = next_state(state); 719 goto next; 720 } 721 722 /* 723 * | ---- desired range ---- | 724 * | state | or 725 * | ------------- state -------------- | 726 * 727 * We need to split the extent we found, and may flip 728 * bits on second half. 729 * 730 * If the extent we found extends past our range, we 731 * just split and search again. It'll get split again 732 * the next time though. 733 * 734 * If the extent we found is inside our range, we clear 735 * the desired bit on it. 736 */ 737 738 if (state->start < start) { 739 prealloc = alloc_extent_state_atomic(prealloc); 740 BUG_ON(!prealloc); 741 err = split_state(tree, state, prealloc, start); 742 if (err) 743 extent_io_tree_panic(tree, err); 744 745 prealloc = NULL; 746 if (err) 747 goto out; 748 if (state->end <= end) { 749 state = clear_state_bit(tree, state, &bits, wake, 750 changeset); 751 goto next; 752 } 753 goto search_again; 754 } 755 /* 756 * | ---- desired range ---- | 757 * | state | 758 * We need to split the extent, and clear the bit 759 * on the first half 760 */ 761 if (state->start <= end && state->end > end) { 762 prealloc = alloc_extent_state_atomic(prealloc); 763 BUG_ON(!prealloc); 764 err = split_state(tree, state, prealloc, end + 1); 765 if (err) 766 extent_io_tree_panic(tree, err); 767 768 if (wake) 769 wake_up(&state->wq); 770 771 clear_state_bit(tree, prealloc, &bits, wake, changeset); 772 773 prealloc = NULL; 774 goto out; 775 } 776 777 state = clear_state_bit(tree, state, &bits, wake, changeset); 778 next: 779 if (last_end == (u64)-1) 780 goto out; 781 start = last_end + 1; 782 if (start <= end && state && !need_resched()) 783 goto hit_next; 784 785 search_again: 786 if (start > end) 787 goto out; 788 spin_unlock(&tree->lock); 789 if (gfpflags_allow_blocking(mask)) 790 cond_resched(); 791 goto again; 792 793 out: 794 spin_unlock(&tree->lock); 795 if (prealloc) 796 free_extent_state(prealloc); 797 798 return 0; 799 800 } 801 802 static void wait_on_state(struct extent_io_tree *tree, 803 struct extent_state *state) 804 __releases(tree->lock) 805 __acquires(tree->lock) 806 { 807 DEFINE_WAIT(wait); 808 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 809 spin_unlock(&tree->lock); 810 schedule(); 811 spin_lock(&tree->lock); 812 finish_wait(&state->wq, &wait); 813 } 814 815 /* 816 * waits for one or more bits to clear on a range in the state tree. 817 * The range [start, end] is inclusive. 818 * The tree lock is taken by this function 819 */ 820 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 821 unsigned long bits) 822 { 823 struct extent_state *state; 824 struct rb_node *node; 825 826 btrfs_debug_check_extent_io_range(tree, start, end); 827 828 spin_lock(&tree->lock); 829 again: 830 while (1) { 831 /* 832 * this search will find all the extents that end after 833 * our range starts 834 */ 835 node = tree_search(tree, start); 836 process_node: 837 if (!node) 838 break; 839 840 state = rb_entry(node, struct extent_state, rb_node); 841 842 if (state->start > end) 843 goto out; 844 845 if (state->state & bits) { 846 start = state->start; 847 refcount_inc(&state->refs); 848 wait_on_state(tree, state); 849 free_extent_state(state); 850 goto again; 851 } 852 start = state->end + 1; 853 854 if (start > end) 855 break; 856 857 if (!cond_resched_lock(&tree->lock)) { 858 node = rb_next(node); 859 goto process_node; 860 } 861 } 862 out: 863 spin_unlock(&tree->lock); 864 } 865 866 static void set_state_bits(struct extent_io_tree *tree, 867 struct extent_state *state, 868 unsigned *bits, struct extent_changeset *changeset) 869 { 870 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 871 int ret; 872 873 if (tree->private_data && is_data_inode(tree->private_data)) 874 btrfs_set_delalloc_extent(tree->private_data, state, bits); 875 876 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 877 u64 range = state->end - state->start + 1; 878 tree->dirty_bytes += range; 879 } 880 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 881 BUG_ON(ret < 0); 882 state->state |= bits_to_set; 883 } 884 885 static void cache_state_if_flags(struct extent_state *state, 886 struct extent_state **cached_ptr, 887 unsigned flags) 888 { 889 if (cached_ptr && !(*cached_ptr)) { 890 if (!flags || (state->state & flags)) { 891 *cached_ptr = state; 892 refcount_inc(&state->refs); 893 } 894 } 895 } 896 897 static void cache_state(struct extent_state *state, 898 struct extent_state **cached_ptr) 899 { 900 return cache_state_if_flags(state, cached_ptr, 901 EXTENT_LOCKED | EXTENT_BOUNDARY); 902 } 903 904 /* 905 * set some bits on a range in the tree. This may require allocations or 906 * sleeping, so the gfp mask is used to indicate what is allowed. 907 * 908 * If any of the exclusive bits are set, this will fail with -EEXIST if some 909 * part of the range already has the desired bits set. The start of the 910 * existing range is returned in failed_start in this case. 911 * 912 * [start, end] is inclusive This takes the tree lock. 913 */ 914 915 static int __must_check 916 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 917 unsigned bits, unsigned exclusive_bits, 918 u64 *failed_start, struct extent_state **cached_state, 919 gfp_t mask, struct extent_changeset *changeset) 920 { 921 struct extent_state *state; 922 struct extent_state *prealloc = NULL; 923 struct rb_node *node; 924 struct rb_node **p; 925 struct rb_node *parent; 926 int err = 0; 927 u64 last_start; 928 u64 last_end; 929 930 btrfs_debug_check_extent_io_range(tree, start, end); 931 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 932 933 again: 934 if (!prealloc && gfpflags_allow_blocking(mask)) { 935 /* 936 * Don't care for allocation failure here because we might end 937 * up not needing the pre-allocated extent state at all, which 938 * is the case if we only have in the tree extent states that 939 * cover our input range and don't cover too any other range. 940 * If we end up needing a new extent state we allocate it later. 941 */ 942 prealloc = alloc_extent_state(mask); 943 } 944 945 spin_lock(&tree->lock); 946 if (cached_state && *cached_state) { 947 state = *cached_state; 948 if (state->start <= start && state->end > start && 949 extent_state_in_tree(state)) { 950 node = &state->rb_node; 951 goto hit_next; 952 } 953 } 954 /* 955 * this search will find all the extents that end after 956 * our range starts. 957 */ 958 node = tree_search_for_insert(tree, start, &p, &parent); 959 if (!node) { 960 prealloc = alloc_extent_state_atomic(prealloc); 961 BUG_ON(!prealloc); 962 err = insert_state(tree, prealloc, start, end, 963 &p, &parent, &bits, changeset); 964 if (err) 965 extent_io_tree_panic(tree, err); 966 967 cache_state(prealloc, cached_state); 968 prealloc = NULL; 969 goto out; 970 } 971 state = rb_entry(node, struct extent_state, rb_node); 972 hit_next: 973 last_start = state->start; 974 last_end = state->end; 975 976 /* 977 * | ---- desired range ---- | 978 * | state | 979 * 980 * Just lock what we found and keep going 981 */ 982 if (state->start == start && state->end <= end) { 983 if (state->state & exclusive_bits) { 984 *failed_start = state->start; 985 err = -EEXIST; 986 goto out; 987 } 988 989 set_state_bits(tree, state, &bits, changeset); 990 cache_state(state, cached_state); 991 merge_state(tree, state); 992 if (last_end == (u64)-1) 993 goto out; 994 start = last_end + 1; 995 state = next_state(state); 996 if (start < end && state && state->start == start && 997 !need_resched()) 998 goto hit_next; 999 goto search_again; 1000 } 1001 1002 /* 1003 * | ---- desired range ---- | 1004 * | state | 1005 * or 1006 * | ------------- state -------------- | 1007 * 1008 * We need to split the extent we found, and may flip bits on 1009 * second half. 1010 * 1011 * If the extent we found extends past our 1012 * range, we just split and search again. It'll get split 1013 * again the next time though. 1014 * 1015 * If the extent we found is inside our range, we set the 1016 * desired bit on it. 1017 */ 1018 if (state->start < start) { 1019 if (state->state & exclusive_bits) { 1020 *failed_start = start; 1021 err = -EEXIST; 1022 goto out; 1023 } 1024 1025 prealloc = alloc_extent_state_atomic(prealloc); 1026 BUG_ON(!prealloc); 1027 err = split_state(tree, state, prealloc, start); 1028 if (err) 1029 extent_io_tree_panic(tree, err); 1030 1031 prealloc = NULL; 1032 if (err) 1033 goto out; 1034 if (state->end <= end) { 1035 set_state_bits(tree, state, &bits, changeset); 1036 cache_state(state, cached_state); 1037 merge_state(tree, state); 1038 if (last_end == (u64)-1) 1039 goto out; 1040 start = last_end + 1; 1041 state = next_state(state); 1042 if (start < end && state && state->start == start && 1043 !need_resched()) 1044 goto hit_next; 1045 } 1046 goto search_again; 1047 } 1048 /* 1049 * | ---- desired range ---- | 1050 * | state | or | state | 1051 * 1052 * There's a hole, we need to insert something in it and 1053 * ignore the extent we found. 1054 */ 1055 if (state->start > start) { 1056 u64 this_end; 1057 if (end < last_start) 1058 this_end = end; 1059 else 1060 this_end = last_start - 1; 1061 1062 prealloc = alloc_extent_state_atomic(prealloc); 1063 BUG_ON(!prealloc); 1064 1065 /* 1066 * Avoid to free 'prealloc' if it can be merged with 1067 * the later extent. 1068 */ 1069 err = insert_state(tree, prealloc, start, this_end, 1070 NULL, NULL, &bits, changeset); 1071 if (err) 1072 extent_io_tree_panic(tree, err); 1073 1074 cache_state(prealloc, cached_state); 1075 prealloc = NULL; 1076 start = this_end + 1; 1077 goto search_again; 1078 } 1079 /* 1080 * | ---- desired range ---- | 1081 * | state | 1082 * We need to split the extent, and set the bit 1083 * on the first half 1084 */ 1085 if (state->start <= end && state->end > end) { 1086 if (state->state & exclusive_bits) { 1087 *failed_start = start; 1088 err = -EEXIST; 1089 goto out; 1090 } 1091 1092 prealloc = alloc_extent_state_atomic(prealloc); 1093 BUG_ON(!prealloc); 1094 err = split_state(tree, state, prealloc, end + 1); 1095 if (err) 1096 extent_io_tree_panic(tree, err); 1097 1098 set_state_bits(tree, prealloc, &bits, changeset); 1099 cache_state(prealloc, cached_state); 1100 merge_state(tree, prealloc); 1101 prealloc = NULL; 1102 goto out; 1103 } 1104 1105 search_again: 1106 if (start > end) 1107 goto out; 1108 spin_unlock(&tree->lock); 1109 if (gfpflags_allow_blocking(mask)) 1110 cond_resched(); 1111 goto again; 1112 1113 out: 1114 spin_unlock(&tree->lock); 1115 if (prealloc) 1116 free_extent_state(prealloc); 1117 1118 return err; 1119 1120 } 1121 1122 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1123 unsigned bits, u64 * failed_start, 1124 struct extent_state **cached_state, gfp_t mask) 1125 { 1126 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1127 cached_state, mask, NULL); 1128 } 1129 1130 1131 /** 1132 * convert_extent_bit - convert all bits in a given range from one bit to 1133 * another 1134 * @tree: the io tree to search 1135 * @start: the start offset in bytes 1136 * @end: the end offset in bytes (inclusive) 1137 * @bits: the bits to set in this range 1138 * @clear_bits: the bits to clear in this range 1139 * @cached_state: state that we're going to cache 1140 * 1141 * This will go through and set bits for the given range. If any states exist 1142 * already in this range they are set with the given bit and cleared of the 1143 * clear_bits. This is only meant to be used by things that are mergeable, ie 1144 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1145 * boundary bits like LOCK. 1146 * 1147 * All allocations are done with GFP_NOFS. 1148 */ 1149 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1150 unsigned bits, unsigned clear_bits, 1151 struct extent_state **cached_state) 1152 { 1153 struct extent_state *state; 1154 struct extent_state *prealloc = NULL; 1155 struct rb_node *node; 1156 struct rb_node **p; 1157 struct rb_node *parent; 1158 int err = 0; 1159 u64 last_start; 1160 u64 last_end; 1161 bool first_iteration = true; 1162 1163 btrfs_debug_check_extent_io_range(tree, start, end); 1164 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1165 clear_bits); 1166 1167 again: 1168 if (!prealloc) { 1169 /* 1170 * Best effort, don't worry if extent state allocation fails 1171 * here for the first iteration. We might have a cached state 1172 * that matches exactly the target range, in which case no 1173 * extent state allocations are needed. We'll only know this 1174 * after locking the tree. 1175 */ 1176 prealloc = alloc_extent_state(GFP_NOFS); 1177 if (!prealloc && !first_iteration) 1178 return -ENOMEM; 1179 } 1180 1181 spin_lock(&tree->lock); 1182 if (cached_state && *cached_state) { 1183 state = *cached_state; 1184 if (state->start <= start && state->end > start && 1185 extent_state_in_tree(state)) { 1186 node = &state->rb_node; 1187 goto hit_next; 1188 } 1189 } 1190 1191 /* 1192 * this search will find all the extents that end after 1193 * our range starts. 1194 */ 1195 node = tree_search_for_insert(tree, start, &p, &parent); 1196 if (!node) { 1197 prealloc = alloc_extent_state_atomic(prealloc); 1198 if (!prealloc) { 1199 err = -ENOMEM; 1200 goto out; 1201 } 1202 err = insert_state(tree, prealloc, start, end, 1203 &p, &parent, &bits, NULL); 1204 if (err) 1205 extent_io_tree_panic(tree, err); 1206 cache_state(prealloc, cached_state); 1207 prealloc = NULL; 1208 goto out; 1209 } 1210 state = rb_entry(node, struct extent_state, rb_node); 1211 hit_next: 1212 last_start = state->start; 1213 last_end = state->end; 1214 1215 /* 1216 * | ---- desired range ---- | 1217 * | state | 1218 * 1219 * Just lock what we found and keep going 1220 */ 1221 if (state->start == start && state->end <= end) { 1222 set_state_bits(tree, state, &bits, NULL); 1223 cache_state(state, cached_state); 1224 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1225 if (last_end == (u64)-1) 1226 goto out; 1227 start = last_end + 1; 1228 if (start < end && state && state->start == start && 1229 !need_resched()) 1230 goto hit_next; 1231 goto search_again; 1232 } 1233 1234 /* 1235 * | ---- desired range ---- | 1236 * | state | 1237 * or 1238 * | ------------- state -------------- | 1239 * 1240 * We need to split the extent we found, and may flip bits on 1241 * second half. 1242 * 1243 * If the extent we found extends past our 1244 * range, we just split and search again. It'll get split 1245 * again the next time though. 1246 * 1247 * If the extent we found is inside our range, we set the 1248 * desired bit on it. 1249 */ 1250 if (state->start < start) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 err = split_state(tree, state, prealloc, start); 1257 if (err) 1258 extent_io_tree_panic(tree, err); 1259 prealloc = NULL; 1260 if (err) 1261 goto out; 1262 if (state->end <= end) { 1263 set_state_bits(tree, state, &bits, NULL); 1264 cache_state(state, cached_state); 1265 state = clear_state_bit(tree, state, &clear_bits, 0, 1266 NULL); 1267 if (last_end == (u64)-1) 1268 goto out; 1269 start = last_end + 1; 1270 if (start < end && state && state->start == start && 1271 !need_resched()) 1272 goto hit_next; 1273 } 1274 goto search_again; 1275 } 1276 /* 1277 * | ---- desired range ---- | 1278 * | state | or | state | 1279 * 1280 * There's a hole, we need to insert something in it and 1281 * ignore the extent we found. 1282 */ 1283 if (state->start > start) { 1284 u64 this_end; 1285 if (end < last_start) 1286 this_end = end; 1287 else 1288 this_end = last_start - 1; 1289 1290 prealloc = alloc_extent_state_atomic(prealloc); 1291 if (!prealloc) { 1292 err = -ENOMEM; 1293 goto out; 1294 } 1295 1296 /* 1297 * Avoid to free 'prealloc' if it can be merged with 1298 * the later extent. 1299 */ 1300 err = insert_state(tree, prealloc, start, this_end, 1301 NULL, NULL, &bits, NULL); 1302 if (err) 1303 extent_io_tree_panic(tree, err); 1304 cache_state(prealloc, cached_state); 1305 prealloc = NULL; 1306 start = this_end + 1; 1307 goto search_again; 1308 } 1309 /* 1310 * | ---- desired range ---- | 1311 * | state | 1312 * We need to split the extent, and set the bit 1313 * on the first half 1314 */ 1315 if (state->start <= end && state->end > end) { 1316 prealloc = alloc_extent_state_atomic(prealloc); 1317 if (!prealloc) { 1318 err = -ENOMEM; 1319 goto out; 1320 } 1321 1322 err = split_state(tree, state, prealloc, end + 1); 1323 if (err) 1324 extent_io_tree_panic(tree, err); 1325 1326 set_state_bits(tree, prealloc, &bits, NULL); 1327 cache_state(prealloc, cached_state); 1328 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1329 prealloc = NULL; 1330 goto out; 1331 } 1332 1333 search_again: 1334 if (start > end) 1335 goto out; 1336 spin_unlock(&tree->lock); 1337 cond_resched(); 1338 first_iteration = false; 1339 goto again; 1340 1341 out: 1342 spin_unlock(&tree->lock); 1343 if (prealloc) 1344 free_extent_state(prealloc); 1345 1346 return err; 1347 } 1348 1349 /* wrappers around set/clear extent bit */ 1350 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1351 unsigned bits, struct extent_changeset *changeset) 1352 { 1353 /* 1354 * We don't support EXTENT_LOCKED yet, as current changeset will 1355 * record any bits changed, so for EXTENT_LOCKED case, it will 1356 * either fail with -EEXIST or changeset will record the whole 1357 * range. 1358 */ 1359 BUG_ON(bits & EXTENT_LOCKED); 1360 1361 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1362 changeset); 1363 } 1364 1365 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1366 unsigned bits) 1367 { 1368 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1369 GFP_NOWAIT, NULL); 1370 } 1371 1372 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1373 unsigned bits, int wake, int delete, 1374 struct extent_state **cached) 1375 { 1376 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1377 cached, GFP_NOFS, NULL); 1378 } 1379 1380 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1381 unsigned bits, struct extent_changeset *changeset) 1382 { 1383 /* 1384 * Don't support EXTENT_LOCKED case, same reason as 1385 * set_record_extent_bits(). 1386 */ 1387 BUG_ON(bits & EXTENT_LOCKED); 1388 1389 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1390 changeset); 1391 } 1392 1393 /* 1394 * either insert or lock state struct between start and end use mask to tell 1395 * us if waiting is desired. 1396 */ 1397 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1398 struct extent_state **cached_state) 1399 { 1400 int err; 1401 u64 failed_start; 1402 1403 while (1) { 1404 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1405 EXTENT_LOCKED, &failed_start, 1406 cached_state, GFP_NOFS, NULL); 1407 if (err == -EEXIST) { 1408 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1409 start = failed_start; 1410 } else 1411 break; 1412 WARN_ON(start > end); 1413 } 1414 return err; 1415 } 1416 1417 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1418 { 1419 int err; 1420 u64 failed_start; 1421 1422 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1423 &failed_start, NULL, GFP_NOFS, NULL); 1424 if (err == -EEXIST) { 1425 if (failed_start > start) 1426 clear_extent_bit(tree, start, failed_start - 1, 1427 EXTENT_LOCKED, 1, 0, NULL); 1428 return 0; 1429 } 1430 return 1; 1431 } 1432 1433 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1434 { 1435 unsigned long index = start >> PAGE_SHIFT; 1436 unsigned long end_index = end >> PAGE_SHIFT; 1437 struct page *page; 1438 1439 while (index <= end_index) { 1440 page = find_get_page(inode->i_mapping, index); 1441 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1442 clear_page_dirty_for_io(page); 1443 put_page(page); 1444 index++; 1445 } 1446 } 1447 1448 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1449 { 1450 unsigned long index = start >> PAGE_SHIFT; 1451 unsigned long end_index = end >> PAGE_SHIFT; 1452 struct page *page; 1453 1454 while (index <= end_index) { 1455 page = find_get_page(inode->i_mapping, index); 1456 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1457 __set_page_dirty_nobuffers(page); 1458 account_page_redirty(page); 1459 put_page(page); 1460 index++; 1461 } 1462 } 1463 1464 /* find the first state struct with 'bits' set after 'start', and 1465 * return it. tree->lock must be held. NULL will returned if 1466 * nothing was found after 'start' 1467 */ 1468 static struct extent_state * 1469 find_first_extent_bit_state(struct extent_io_tree *tree, 1470 u64 start, unsigned bits) 1471 { 1472 struct rb_node *node; 1473 struct extent_state *state; 1474 1475 /* 1476 * this search will find all the extents that end after 1477 * our range starts. 1478 */ 1479 node = tree_search(tree, start); 1480 if (!node) 1481 goto out; 1482 1483 while (1) { 1484 state = rb_entry(node, struct extent_state, rb_node); 1485 if (state->end >= start && (state->state & bits)) 1486 return state; 1487 1488 node = rb_next(node); 1489 if (!node) 1490 break; 1491 } 1492 out: 1493 return NULL; 1494 } 1495 1496 /* 1497 * find the first offset in the io tree with 'bits' set. zero is 1498 * returned if we find something, and *start_ret and *end_ret are 1499 * set to reflect the state struct that was found. 1500 * 1501 * If nothing was found, 1 is returned. If found something, return 0. 1502 */ 1503 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1504 u64 *start_ret, u64 *end_ret, unsigned bits, 1505 struct extent_state **cached_state) 1506 { 1507 struct extent_state *state; 1508 int ret = 1; 1509 1510 spin_lock(&tree->lock); 1511 if (cached_state && *cached_state) { 1512 state = *cached_state; 1513 if (state->end == start - 1 && extent_state_in_tree(state)) { 1514 while ((state = next_state(state)) != NULL) { 1515 if (state->state & bits) 1516 goto got_it; 1517 } 1518 free_extent_state(*cached_state); 1519 *cached_state = NULL; 1520 goto out; 1521 } 1522 free_extent_state(*cached_state); 1523 *cached_state = NULL; 1524 } 1525 1526 state = find_first_extent_bit_state(tree, start, bits); 1527 got_it: 1528 if (state) { 1529 cache_state_if_flags(state, cached_state, 0); 1530 *start_ret = state->start; 1531 *end_ret = state->end; 1532 ret = 0; 1533 } 1534 out: 1535 spin_unlock(&tree->lock); 1536 return ret; 1537 } 1538 1539 /** 1540 * find_first_clear_extent_bit - finds the first range that has @bits not set 1541 * and that starts after @start 1542 * 1543 * @tree - the tree to search 1544 * @start - the offset at/after which the found extent should start 1545 * @start_ret - records the beginning of the range 1546 * @end_ret - records the end of the range (inclusive) 1547 * @bits - the set of bits which must be unset 1548 * 1549 * Since unallocated range is also considered one which doesn't have the bits 1550 * set it's possible that @end_ret contains -1, this happens in case the range 1551 * spans (last_range_end, end of device]. In this case it's up to the caller to 1552 * trim @end_ret to the appropriate size. 1553 */ 1554 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1555 u64 *start_ret, u64 *end_ret, unsigned bits) 1556 { 1557 struct extent_state *state; 1558 struct rb_node *node, *prev = NULL, *next; 1559 1560 spin_lock(&tree->lock); 1561 1562 /* Find first extent with bits cleared */ 1563 while (1) { 1564 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1565 if (!node) { 1566 node = next; 1567 if (!node) { 1568 /* 1569 * We are past the last allocated chunk, 1570 * set start at the end of the last extent. The 1571 * device alloc tree should never be empty so 1572 * prev is always set. 1573 */ 1574 ASSERT(prev); 1575 state = rb_entry(prev, struct extent_state, rb_node); 1576 *start_ret = state->end + 1; 1577 *end_ret = -1; 1578 goto out; 1579 } 1580 } 1581 state = rb_entry(node, struct extent_state, rb_node); 1582 if (in_range(start, state->start, state->end - state->start + 1) && 1583 (state->state & bits)) { 1584 start = state->end + 1; 1585 } else { 1586 *start_ret = start; 1587 break; 1588 } 1589 } 1590 1591 /* 1592 * Find the longest stretch from start until an entry which has the 1593 * bits set 1594 */ 1595 while (1) { 1596 state = rb_entry(node, struct extent_state, rb_node); 1597 if (state->end >= start && !(state->state & bits)) { 1598 *end_ret = state->end; 1599 } else { 1600 *end_ret = state->start - 1; 1601 break; 1602 } 1603 1604 node = rb_next(node); 1605 if (!node) 1606 break; 1607 } 1608 out: 1609 spin_unlock(&tree->lock); 1610 } 1611 1612 /* 1613 * find a contiguous range of bytes in the file marked as delalloc, not 1614 * more than 'max_bytes'. start and end are used to return the range, 1615 * 1616 * true is returned if we find something, false if nothing was in the tree 1617 */ 1618 static noinline bool find_delalloc_range(struct extent_io_tree *tree, 1619 u64 *start, u64 *end, u64 max_bytes, 1620 struct extent_state **cached_state) 1621 { 1622 struct rb_node *node; 1623 struct extent_state *state; 1624 u64 cur_start = *start; 1625 bool found = false; 1626 u64 total_bytes = 0; 1627 1628 spin_lock(&tree->lock); 1629 1630 /* 1631 * this search will find all the extents that end after 1632 * our range starts. 1633 */ 1634 node = tree_search(tree, cur_start); 1635 if (!node) { 1636 *end = (u64)-1; 1637 goto out; 1638 } 1639 1640 while (1) { 1641 state = rb_entry(node, struct extent_state, rb_node); 1642 if (found && (state->start != cur_start || 1643 (state->state & EXTENT_BOUNDARY))) { 1644 goto out; 1645 } 1646 if (!(state->state & EXTENT_DELALLOC)) { 1647 if (!found) 1648 *end = state->end; 1649 goto out; 1650 } 1651 if (!found) { 1652 *start = state->start; 1653 *cached_state = state; 1654 refcount_inc(&state->refs); 1655 } 1656 found = true; 1657 *end = state->end; 1658 cur_start = state->end + 1; 1659 node = rb_next(node); 1660 total_bytes += state->end - state->start + 1; 1661 if (total_bytes >= max_bytes) 1662 break; 1663 if (!node) 1664 break; 1665 } 1666 out: 1667 spin_unlock(&tree->lock); 1668 return found; 1669 } 1670 1671 static int __process_pages_contig(struct address_space *mapping, 1672 struct page *locked_page, 1673 pgoff_t start_index, pgoff_t end_index, 1674 unsigned long page_ops, pgoff_t *index_ret); 1675 1676 static noinline void __unlock_for_delalloc(struct inode *inode, 1677 struct page *locked_page, 1678 u64 start, u64 end) 1679 { 1680 unsigned long index = start >> PAGE_SHIFT; 1681 unsigned long end_index = end >> PAGE_SHIFT; 1682 1683 ASSERT(locked_page); 1684 if (index == locked_page->index && end_index == index) 1685 return; 1686 1687 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1688 PAGE_UNLOCK, NULL); 1689 } 1690 1691 static noinline int lock_delalloc_pages(struct inode *inode, 1692 struct page *locked_page, 1693 u64 delalloc_start, 1694 u64 delalloc_end) 1695 { 1696 unsigned long index = delalloc_start >> PAGE_SHIFT; 1697 unsigned long index_ret = index; 1698 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1699 int ret; 1700 1701 ASSERT(locked_page); 1702 if (index == locked_page->index && index == end_index) 1703 return 0; 1704 1705 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1706 end_index, PAGE_LOCK, &index_ret); 1707 if (ret == -EAGAIN) 1708 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1709 (u64)index_ret << PAGE_SHIFT); 1710 return ret; 1711 } 1712 1713 /* 1714 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1715 * more than @max_bytes. @Start and @end are used to return the range, 1716 * 1717 * Return: true if we find something 1718 * false if nothing was in the tree 1719 */ 1720 EXPORT_FOR_TESTS 1721 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1722 struct extent_io_tree *tree, 1723 struct page *locked_page, u64 *start, 1724 u64 *end) 1725 { 1726 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1727 u64 delalloc_start; 1728 u64 delalloc_end; 1729 bool found; 1730 struct extent_state *cached_state = NULL; 1731 int ret; 1732 int loops = 0; 1733 1734 again: 1735 /* step one, find a bunch of delalloc bytes starting at start */ 1736 delalloc_start = *start; 1737 delalloc_end = 0; 1738 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1739 max_bytes, &cached_state); 1740 if (!found || delalloc_end <= *start) { 1741 *start = delalloc_start; 1742 *end = delalloc_end; 1743 free_extent_state(cached_state); 1744 return false; 1745 } 1746 1747 /* 1748 * start comes from the offset of locked_page. We have to lock 1749 * pages in order, so we can't process delalloc bytes before 1750 * locked_page 1751 */ 1752 if (delalloc_start < *start) 1753 delalloc_start = *start; 1754 1755 /* 1756 * make sure to limit the number of pages we try to lock down 1757 */ 1758 if (delalloc_end + 1 - delalloc_start > max_bytes) 1759 delalloc_end = delalloc_start + max_bytes - 1; 1760 1761 /* step two, lock all the pages after the page that has start */ 1762 ret = lock_delalloc_pages(inode, locked_page, 1763 delalloc_start, delalloc_end); 1764 ASSERT(!ret || ret == -EAGAIN); 1765 if (ret == -EAGAIN) { 1766 /* some of the pages are gone, lets avoid looping by 1767 * shortening the size of the delalloc range we're searching 1768 */ 1769 free_extent_state(cached_state); 1770 cached_state = NULL; 1771 if (!loops) { 1772 max_bytes = PAGE_SIZE; 1773 loops = 1; 1774 goto again; 1775 } else { 1776 found = false; 1777 goto out_failed; 1778 } 1779 } 1780 1781 /* step three, lock the state bits for the whole range */ 1782 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1783 1784 /* then test to make sure it is all still delalloc */ 1785 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1786 EXTENT_DELALLOC, 1, cached_state); 1787 if (!ret) { 1788 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1789 &cached_state); 1790 __unlock_for_delalloc(inode, locked_page, 1791 delalloc_start, delalloc_end); 1792 cond_resched(); 1793 goto again; 1794 } 1795 free_extent_state(cached_state); 1796 *start = delalloc_start; 1797 *end = delalloc_end; 1798 out_failed: 1799 return found; 1800 } 1801 1802 static int __process_pages_contig(struct address_space *mapping, 1803 struct page *locked_page, 1804 pgoff_t start_index, pgoff_t end_index, 1805 unsigned long page_ops, pgoff_t *index_ret) 1806 { 1807 unsigned long nr_pages = end_index - start_index + 1; 1808 unsigned long pages_locked = 0; 1809 pgoff_t index = start_index; 1810 struct page *pages[16]; 1811 unsigned ret; 1812 int err = 0; 1813 int i; 1814 1815 if (page_ops & PAGE_LOCK) { 1816 ASSERT(page_ops == PAGE_LOCK); 1817 ASSERT(index_ret && *index_ret == start_index); 1818 } 1819 1820 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1821 mapping_set_error(mapping, -EIO); 1822 1823 while (nr_pages > 0) { 1824 ret = find_get_pages_contig(mapping, index, 1825 min_t(unsigned long, 1826 nr_pages, ARRAY_SIZE(pages)), pages); 1827 if (ret == 0) { 1828 /* 1829 * Only if we're going to lock these pages, 1830 * can we find nothing at @index. 1831 */ 1832 ASSERT(page_ops & PAGE_LOCK); 1833 err = -EAGAIN; 1834 goto out; 1835 } 1836 1837 for (i = 0; i < ret; i++) { 1838 if (page_ops & PAGE_SET_PRIVATE2) 1839 SetPagePrivate2(pages[i]); 1840 1841 if (pages[i] == locked_page) { 1842 put_page(pages[i]); 1843 pages_locked++; 1844 continue; 1845 } 1846 if (page_ops & PAGE_CLEAR_DIRTY) 1847 clear_page_dirty_for_io(pages[i]); 1848 if (page_ops & PAGE_SET_WRITEBACK) 1849 set_page_writeback(pages[i]); 1850 if (page_ops & PAGE_SET_ERROR) 1851 SetPageError(pages[i]); 1852 if (page_ops & PAGE_END_WRITEBACK) 1853 end_page_writeback(pages[i]); 1854 if (page_ops & PAGE_UNLOCK) 1855 unlock_page(pages[i]); 1856 if (page_ops & PAGE_LOCK) { 1857 lock_page(pages[i]); 1858 if (!PageDirty(pages[i]) || 1859 pages[i]->mapping != mapping) { 1860 unlock_page(pages[i]); 1861 put_page(pages[i]); 1862 err = -EAGAIN; 1863 goto out; 1864 } 1865 } 1866 put_page(pages[i]); 1867 pages_locked++; 1868 } 1869 nr_pages -= ret; 1870 index += ret; 1871 cond_resched(); 1872 } 1873 out: 1874 if (err && index_ret) 1875 *index_ret = start_index + pages_locked - 1; 1876 return err; 1877 } 1878 1879 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1880 u64 delalloc_end, struct page *locked_page, 1881 unsigned clear_bits, 1882 unsigned long page_ops) 1883 { 1884 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1885 NULL); 1886 1887 __process_pages_contig(inode->i_mapping, locked_page, 1888 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1889 page_ops, NULL); 1890 } 1891 1892 /* 1893 * count the number of bytes in the tree that have a given bit(s) 1894 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1895 * cached. The total number found is returned. 1896 */ 1897 u64 count_range_bits(struct extent_io_tree *tree, 1898 u64 *start, u64 search_end, u64 max_bytes, 1899 unsigned bits, int contig) 1900 { 1901 struct rb_node *node; 1902 struct extent_state *state; 1903 u64 cur_start = *start; 1904 u64 total_bytes = 0; 1905 u64 last = 0; 1906 int found = 0; 1907 1908 if (WARN_ON(search_end <= cur_start)) 1909 return 0; 1910 1911 spin_lock(&tree->lock); 1912 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1913 total_bytes = tree->dirty_bytes; 1914 goto out; 1915 } 1916 /* 1917 * this search will find all the extents that end after 1918 * our range starts. 1919 */ 1920 node = tree_search(tree, cur_start); 1921 if (!node) 1922 goto out; 1923 1924 while (1) { 1925 state = rb_entry(node, struct extent_state, rb_node); 1926 if (state->start > search_end) 1927 break; 1928 if (contig && found && state->start > last + 1) 1929 break; 1930 if (state->end >= cur_start && (state->state & bits) == bits) { 1931 total_bytes += min(search_end, state->end) + 1 - 1932 max(cur_start, state->start); 1933 if (total_bytes >= max_bytes) 1934 break; 1935 if (!found) { 1936 *start = max(cur_start, state->start); 1937 found = 1; 1938 } 1939 last = state->end; 1940 } else if (contig && found) { 1941 break; 1942 } 1943 node = rb_next(node); 1944 if (!node) 1945 break; 1946 } 1947 out: 1948 spin_unlock(&tree->lock); 1949 return total_bytes; 1950 } 1951 1952 /* 1953 * set the private field for a given byte offset in the tree. If there isn't 1954 * an extent_state there already, this does nothing. 1955 */ 1956 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1957 struct io_failure_record *failrec) 1958 { 1959 struct rb_node *node; 1960 struct extent_state *state; 1961 int ret = 0; 1962 1963 spin_lock(&tree->lock); 1964 /* 1965 * this search will find all the extents that end after 1966 * our range starts. 1967 */ 1968 node = tree_search(tree, start); 1969 if (!node) { 1970 ret = -ENOENT; 1971 goto out; 1972 } 1973 state = rb_entry(node, struct extent_state, rb_node); 1974 if (state->start != start) { 1975 ret = -ENOENT; 1976 goto out; 1977 } 1978 state->failrec = failrec; 1979 out: 1980 spin_unlock(&tree->lock); 1981 return ret; 1982 } 1983 1984 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1985 struct io_failure_record **failrec) 1986 { 1987 struct rb_node *node; 1988 struct extent_state *state; 1989 int ret = 0; 1990 1991 spin_lock(&tree->lock); 1992 /* 1993 * this search will find all the extents that end after 1994 * our range starts. 1995 */ 1996 node = tree_search(tree, start); 1997 if (!node) { 1998 ret = -ENOENT; 1999 goto out; 2000 } 2001 state = rb_entry(node, struct extent_state, rb_node); 2002 if (state->start != start) { 2003 ret = -ENOENT; 2004 goto out; 2005 } 2006 *failrec = state->failrec; 2007 out: 2008 spin_unlock(&tree->lock); 2009 return ret; 2010 } 2011 2012 /* 2013 * searches a range in the state tree for a given mask. 2014 * If 'filled' == 1, this returns 1 only if every extent in the tree 2015 * has the bits set. Otherwise, 1 is returned if any bit in the 2016 * range is found set. 2017 */ 2018 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2019 unsigned bits, int filled, struct extent_state *cached) 2020 { 2021 struct extent_state *state = NULL; 2022 struct rb_node *node; 2023 int bitset = 0; 2024 2025 spin_lock(&tree->lock); 2026 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2027 cached->end > start) 2028 node = &cached->rb_node; 2029 else 2030 node = tree_search(tree, start); 2031 while (node && start <= end) { 2032 state = rb_entry(node, struct extent_state, rb_node); 2033 2034 if (filled && state->start > start) { 2035 bitset = 0; 2036 break; 2037 } 2038 2039 if (state->start > end) 2040 break; 2041 2042 if (state->state & bits) { 2043 bitset = 1; 2044 if (!filled) 2045 break; 2046 } else if (filled) { 2047 bitset = 0; 2048 break; 2049 } 2050 2051 if (state->end == (u64)-1) 2052 break; 2053 2054 start = state->end + 1; 2055 if (start > end) 2056 break; 2057 node = rb_next(node); 2058 if (!node) { 2059 if (filled) 2060 bitset = 0; 2061 break; 2062 } 2063 } 2064 spin_unlock(&tree->lock); 2065 return bitset; 2066 } 2067 2068 /* 2069 * helper function to set a given page up to date if all the 2070 * extents in the tree for that page are up to date 2071 */ 2072 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2073 { 2074 u64 start = page_offset(page); 2075 u64 end = start + PAGE_SIZE - 1; 2076 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2077 SetPageUptodate(page); 2078 } 2079 2080 int free_io_failure(struct extent_io_tree *failure_tree, 2081 struct extent_io_tree *io_tree, 2082 struct io_failure_record *rec) 2083 { 2084 int ret; 2085 int err = 0; 2086 2087 set_state_failrec(failure_tree, rec->start, NULL); 2088 ret = clear_extent_bits(failure_tree, rec->start, 2089 rec->start + rec->len - 1, 2090 EXTENT_LOCKED | EXTENT_DIRTY); 2091 if (ret) 2092 err = ret; 2093 2094 ret = clear_extent_bits(io_tree, rec->start, 2095 rec->start + rec->len - 1, 2096 EXTENT_DAMAGED); 2097 if (ret && !err) 2098 err = ret; 2099 2100 kfree(rec); 2101 return err; 2102 } 2103 2104 /* 2105 * this bypasses the standard btrfs submit functions deliberately, as 2106 * the standard behavior is to write all copies in a raid setup. here we only 2107 * want to write the one bad copy. so we do the mapping for ourselves and issue 2108 * submit_bio directly. 2109 * to avoid any synchronization issues, wait for the data after writing, which 2110 * actually prevents the read that triggered the error from finishing. 2111 * currently, there can be no more than two copies of every data bit. thus, 2112 * exactly one rewrite is required. 2113 */ 2114 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2115 u64 length, u64 logical, struct page *page, 2116 unsigned int pg_offset, int mirror_num) 2117 { 2118 struct bio *bio; 2119 struct btrfs_device *dev; 2120 u64 map_length = 0; 2121 u64 sector; 2122 struct btrfs_bio *bbio = NULL; 2123 int ret; 2124 2125 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2126 BUG_ON(!mirror_num); 2127 2128 bio = btrfs_io_bio_alloc(1); 2129 bio->bi_iter.bi_size = 0; 2130 map_length = length; 2131 2132 /* 2133 * Avoid races with device replace and make sure our bbio has devices 2134 * associated to its stripes that don't go away while we are doing the 2135 * read repair operation. 2136 */ 2137 btrfs_bio_counter_inc_blocked(fs_info); 2138 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2139 /* 2140 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2141 * to update all raid stripes, but here we just want to correct 2142 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2143 * stripe's dev and sector. 2144 */ 2145 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2146 &map_length, &bbio, 0); 2147 if (ret) { 2148 btrfs_bio_counter_dec(fs_info); 2149 bio_put(bio); 2150 return -EIO; 2151 } 2152 ASSERT(bbio->mirror_num == 1); 2153 } else { 2154 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2155 &map_length, &bbio, mirror_num); 2156 if (ret) { 2157 btrfs_bio_counter_dec(fs_info); 2158 bio_put(bio); 2159 return -EIO; 2160 } 2161 BUG_ON(mirror_num != bbio->mirror_num); 2162 } 2163 2164 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2165 bio->bi_iter.bi_sector = sector; 2166 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2167 btrfs_put_bbio(bbio); 2168 if (!dev || !dev->bdev || 2169 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2170 btrfs_bio_counter_dec(fs_info); 2171 bio_put(bio); 2172 return -EIO; 2173 } 2174 bio_set_dev(bio, dev->bdev); 2175 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2176 bio_add_page(bio, page, length, pg_offset); 2177 2178 if (btrfsic_submit_bio_wait(bio)) { 2179 /* try to remap that extent elsewhere? */ 2180 btrfs_bio_counter_dec(fs_info); 2181 bio_put(bio); 2182 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2183 return -EIO; 2184 } 2185 2186 btrfs_info_rl_in_rcu(fs_info, 2187 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2188 ino, start, 2189 rcu_str_deref(dev->name), sector); 2190 btrfs_bio_counter_dec(fs_info); 2191 bio_put(bio); 2192 return 0; 2193 } 2194 2195 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num) 2196 { 2197 struct btrfs_fs_info *fs_info = eb->fs_info; 2198 u64 start = eb->start; 2199 int i, num_pages = num_extent_pages(eb); 2200 int ret = 0; 2201 2202 if (sb_rdonly(fs_info->sb)) 2203 return -EROFS; 2204 2205 for (i = 0; i < num_pages; i++) { 2206 struct page *p = eb->pages[i]; 2207 2208 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2209 start - page_offset(p), mirror_num); 2210 if (ret) 2211 break; 2212 start += PAGE_SIZE; 2213 } 2214 2215 return ret; 2216 } 2217 2218 /* 2219 * each time an IO finishes, we do a fast check in the IO failure tree 2220 * to see if we need to process or clean up an io_failure_record 2221 */ 2222 int clean_io_failure(struct btrfs_fs_info *fs_info, 2223 struct extent_io_tree *failure_tree, 2224 struct extent_io_tree *io_tree, u64 start, 2225 struct page *page, u64 ino, unsigned int pg_offset) 2226 { 2227 u64 private; 2228 struct io_failure_record *failrec; 2229 struct extent_state *state; 2230 int num_copies; 2231 int ret; 2232 2233 private = 0; 2234 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2235 EXTENT_DIRTY, 0); 2236 if (!ret) 2237 return 0; 2238 2239 ret = get_state_failrec(failure_tree, start, &failrec); 2240 if (ret) 2241 return 0; 2242 2243 BUG_ON(!failrec->this_mirror); 2244 2245 if (failrec->in_validation) { 2246 /* there was no real error, just free the record */ 2247 btrfs_debug(fs_info, 2248 "clean_io_failure: freeing dummy error at %llu", 2249 failrec->start); 2250 goto out; 2251 } 2252 if (sb_rdonly(fs_info->sb)) 2253 goto out; 2254 2255 spin_lock(&io_tree->lock); 2256 state = find_first_extent_bit_state(io_tree, 2257 failrec->start, 2258 EXTENT_LOCKED); 2259 spin_unlock(&io_tree->lock); 2260 2261 if (state && state->start <= failrec->start && 2262 state->end >= failrec->start + failrec->len - 1) { 2263 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2264 failrec->len); 2265 if (num_copies > 1) { 2266 repair_io_failure(fs_info, ino, start, failrec->len, 2267 failrec->logical, page, pg_offset, 2268 failrec->failed_mirror); 2269 } 2270 } 2271 2272 out: 2273 free_io_failure(failure_tree, io_tree, failrec); 2274 2275 return 0; 2276 } 2277 2278 /* 2279 * Can be called when 2280 * - hold extent lock 2281 * - under ordered extent 2282 * - the inode is freeing 2283 */ 2284 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2285 { 2286 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2287 struct io_failure_record *failrec; 2288 struct extent_state *state, *next; 2289 2290 if (RB_EMPTY_ROOT(&failure_tree->state)) 2291 return; 2292 2293 spin_lock(&failure_tree->lock); 2294 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2295 while (state) { 2296 if (state->start > end) 2297 break; 2298 2299 ASSERT(state->end <= end); 2300 2301 next = next_state(state); 2302 2303 failrec = state->failrec; 2304 free_extent_state(state); 2305 kfree(failrec); 2306 2307 state = next; 2308 } 2309 spin_unlock(&failure_tree->lock); 2310 } 2311 2312 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2313 struct io_failure_record **failrec_ret) 2314 { 2315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2316 struct io_failure_record *failrec; 2317 struct extent_map *em; 2318 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2319 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2320 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2321 int ret; 2322 u64 logical; 2323 2324 ret = get_state_failrec(failure_tree, start, &failrec); 2325 if (ret) { 2326 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2327 if (!failrec) 2328 return -ENOMEM; 2329 2330 failrec->start = start; 2331 failrec->len = end - start + 1; 2332 failrec->this_mirror = 0; 2333 failrec->bio_flags = 0; 2334 failrec->in_validation = 0; 2335 2336 read_lock(&em_tree->lock); 2337 em = lookup_extent_mapping(em_tree, start, failrec->len); 2338 if (!em) { 2339 read_unlock(&em_tree->lock); 2340 kfree(failrec); 2341 return -EIO; 2342 } 2343 2344 if (em->start > start || em->start + em->len <= start) { 2345 free_extent_map(em); 2346 em = NULL; 2347 } 2348 read_unlock(&em_tree->lock); 2349 if (!em) { 2350 kfree(failrec); 2351 return -EIO; 2352 } 2353 2354 logical = start - em->start; 2355 logical = em->block_start + logical; 2356 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2357 logical = em->block_start; 2358 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2359 extent_set_compress_type(&failrec->bio_flags, 2360 em->compress_type); 2361 } 2362 2363 btrfs_debug(fs_info, 2364 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2365 logical, start, failrec->len); 2366 2367 failrec->logical = logical; 2368 free_extent_map(em); 2369 2370 /* set the bits in the private failure tree */ 2371 ret = set_extent_bits(failure_tree, start, end, 2372 EXTENT_LOCKED | EXTENT_DIRTY); 2373 if (ret >= 0) 2374 ret = set_state_failrec(failure_tree, start, failrec); 2375 /* set the bits in the inode's tree */ 2376 if (ret >= 0) 2377 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2378 if (ret < 0) { 2379 kfree(failrec); 2380 return ret; 2381 } 2382 } else { 2383 btrfs_debug(fs_info, 2384 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2385 failrec->logical, failrec->start, failrec->len, 2386 failrec->in_validation); 2387 /* 2388 * when data can be on disk more than twice, add to failrec here 2389 * (e.g. with a list for failed_mirror) to make 2390 * clean_io_failure() clean all those errors at once. 2391 */ 2392 } 2393 2394 *failrec_ret = failrec; 2395 2396 return 0; 2397 } 2398 2399 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2400 struct io_failure_record *failrec, int failed_mirror) 2401 { 2402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2403 int num_copies; 2404 2405 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2406 if (num_copies == 1) { 2407 /* 2408 * we only have a single copy of the data, so don't bother with 2409 * all the retry and error correction code that follows. no 2410 * matter what the error is, it is very likely to persist. 2411 */ 2412 btrfs_debug(fs_info, 2413 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2414 num_copies, failrec->this_mirror, failed_mirror); 2415 return false; 2416 } 2417 2418 /* 2419 * there are two premises: 2420 * a) deliver good data to the caller 2421 * b) correct the bad sectors on disk 2422 */ 2423 if (failed_bio_pages > 1) { 2424 /* 2425 * to fulfill b), we need to know the exact failing sectors, as 2426 * we don't want to rewrite any more than the failed ones. thus, 2427 * we need separate read requests for the failed bio 2428 * 2429 * if the following BUG_ON triggers, our validation request got 2430 * merged. we need separate requests for our algorithm to work. 2431 */ 2432 BUG_ON(failrec->in_validation); 2433 failrec->in_validation = 1; 2434 failrec->this_mirror = failed_mirror; 2435 } else { 2436 /* 2437 * we're ready to fulfill a) and b) alongside. get a good copy 2438 * of the failed sector and if we succeed, we have setup 2439 * everything for repair_io_failure to do the rest for us. 2440 */ 2441 if (failrec->in_validation) { 2442 BUG_ON(failrec->this_mirror != failed_mirror); 2443 failrec->in_validation = 0; 2444 failrec->this_mirror = 0; 2445 } 2446 failrec->failed_mirror = failed_mirror; 2447 failrec->this_mirror++; 2448 if (failrec->this_mirror == failed_mirror) 2449 failrec->this_mirror++; 2450 } 2451 2452 if (failrec->this_mirror > num_copies) { 2453 btrfs_debug(fs_info, 2454 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2455 num_copies, failrec->this_mirror, failed_mirror); 2456 return false; 2457 } 2458 2459 return true; 2460 } 2461 2462 2463 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2464 struct io_failure_record *failrec, 2465 struct page *page, int pg_offset, int icsum, 2466 bio_end_io_t *endio_func, void *data) 2467 { 2468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2469 struct bio *bio; 2470 struct btrfs_io_bio *btrfs_failed_bio; 2471 struct btrfs_io_bio *btrfs_bio; 2472 2473 bio = btrfs_io_bio_alloc(1); 2474 bio->bi_end_io = endio_func; 2475 bio->bi_iter.bi_sector = failrec->logical >> 9; 2476 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2477 bio->bi_iter.bi_size = 0; 2478 bio->bi_private = data; 2479 2480 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2481 if (btrfs_failed_bio->csum) { 2482 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2483 2484 btrfs_bio = btrfs_io_bio(bio); 2485 btrfs_bio->csum = btrfs_bio->csum_inline; 2486 icsum *= csum_size; 2487 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2488 csum_size); 2489 } 2490 2491 bio_add_page(bio, page, failrec->len, pg_offset); 2492 2493 return bio; 2494 } 2495 2496 /* 2497 * This is a generic handler for readpage errors. If other copies exist, read 2498 * those and write back good data to the failed position. Does not investigate 2499 * in remapping the failed extent elsewhere, hoping the device will be smart 2500 * enough to do this as needed 2501 */ 2502 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2503 struct page *page, u64 start, u64 end, 2504 int failed_mirror) 2505 { 2506 struct io_failure_record *failrec; 2507 struct inode *inode = page->mapping->host; 2508 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2509 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2510 struct bio *bio; 2511 int read_mode = 0; 2512 blk_status_t status; 2513 int ret; 2514 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; 2515 2516 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2517 2518 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2519 if (ret) 2520 return ret; 2521 2522 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2523 failed_mirror)) { 2524 free_io_failure(failure_tree, tree, failrec); 2525 return -EIO; 2526 } 2527 2528 if (failed_bio_pages > 1) 2529 read_mode |= REQ_FAILFAST_DEV; 2530 2531 phy_offset >>= inode->i_sb->s_blocksize_bits; 2532 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2533 start - page_offset(page), 2534 (int)phy_offset, failed_bio->bi_end_io, 2535 NULL); 2536 bio->bi_opf = REQ_OP_READ | read_mode; 2537 2538 btrfs_debug(btrfs_sb(inode->i_sb), 2539 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2540 read_mode, failrec->this_mirror, failrec->in_validation); 2541 2542 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2543 failrec->bio_flags); 2544 if (status) { 2545 free_io_failure(failure_tree, tree, failrec); 2546 bio_put(bio); 2547 ret = blk_status_to_errno(status); 2548 } 2549 2550 return ret; 2551 } 2552 2553 /* lots and lots of room for performance fixes in the end_bio funcs */ 2554 2555 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2556 { 2557 int uptodate = (err == 0); 2558 int ret = 0; 2559 2560 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2561 2562 if (!uptodate) { 2563 ClearPageUptodate(page); 2564 SetPageError(page); 2565 ret = err < 0 ? err : -EIO; 2566 mapping_set_error(page->mapping, ret); 2567 } 2568 } 2569 2570 /* 2571 * after a writepage IO is done, we need to: 2572 * clear the uptodate bits on error 2573 * clear the writeback bits in the extent tree for this IO 2574 * end_page_writeback if the page has no more pending IO 2575 * 2576 * Scheduling is not allowed, so the extent state tree is expected 2577 * to have one and only one object corresponding to this IO. 2578 */ 2579 static void end_bio_extent_writepage(struct bio *bio) 2580 { 2581 int error = blk_status_to_errno(bio->bi_status); 2582 struct bio_vec *bvec; 2583 u64 start; 2584 u64 end; 2585 struct bvec_iter_all iter_all; 2586 2587 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2588 bio_for_each_segment_all(bvec, bio, iter_all) { 2589 struct page *page = bvec->bv_page; 2590 struct inode *inode = page->mapping->host; 2591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2592 2593 /* We always issue full-page reads, but if some block 2594 * in a page fails to read, blk_update_request() will 2595 * advance bv_offset and adjust bv_len to compensate. 2596 * Print a warning for nonzero offsets, and an error 2597 * if they don't add up to a full page. */ 2598 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2599 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2600 btrfs_err(fs_info, 2601 "partial page write in btrfs with offset %u and length %u", 2602 bvec->bv_offset, bvec->bv_len); 2603 else 2604 btrfs_info(fs_info, 2605 "incomplete page write in btrfs with offset %u and length %u", 2606 bvec->bv_offset, bvec->bv_len); 2607 } 2608 2609 start = page_offset(page); 2610 end = start + bvec->bv_offset + bvec->bv_len - 1; 2611 2612 end_extent_writepage(page, error, start, end); 2613 end_page_writeback(page); 2614 } 2615 2616 bio_put(bio); 2617 } 2618 2619 static void 2620 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2621 int uptodate) 2622 { 2623 struct extent_state *cached = NULL; 2624 u64 end = start + len - 1; 2625 2626 if (uptodate && tree->track_uptodate) 2627 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2628 unlock_extent_cached_atomic(tree, start, end, &cached); 2629 } 2630 2631 /* 2632 * after a readpage IO is done, we need to: 2633 * clear the uptodate bits on error 2634 * set the uptodate bits if things worked 2635 * set the page up to date if all extents in the tree are uptodate 2636 * clear the lock bit in the extent tree 2637 * unlock the page if there are no other extents locked for it 2638 * 2639 * Scheduling is not allowed, so the extent state tree is expected 2640 * to have one and only one object corresponding to this IO. 2641 */ 2642 static void end_bio_extent_readpage(struct bio *bio) 2643 { 2644 struct bio_vec *bvec; 2645 int uptodate = !bio->bi_status; 2646 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2647 struct extent_io_tree *tree, *failure_tree; 2648 u64 offset = 0; 2649 u64 start; 2650 u64 end; 2651 u64 len; 2652 u64 extent_start = 0; 2653 u64 extent_len = 0; 2654 int mirror; 2655 int ret; 2656 struct bvec_iter_all iter_all; 2657 2658 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2659 bio_for_each_segment_all(bvec, bio, iter_all) { 2660 struct page *page = bvec->bv_page; 2661 struct inode *inode = page->mapping->host; 2662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2663 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2664 != BTRFS_BTREE_INODE_OBJECTID; 2665 2666 btrfs_debug(fs_info, 2667 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2668 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2669 io_bio->mirror_num); 2670 tree = &BTRFS_I(inode)->io_tree; 2671 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2672 2673 /* We always issue full-page reads, but if some block 2674 * in a page fails to read, blk_update_request() will 2675 * advance bv_offset and adjust bv_len to compensate. 2676 * Print a warning for nonzero offsets, and an error 2677 * if they don't add up to a full page. */ 2678 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2679 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2680 btrfs_err(fs_info, 2681 "partial page read in btrfs with offset %u and length %u", 2682 bvec->bv_offset, bvec->bv_len); 2683 else 2684 btrfs_info(fs_info, 2685 "incomplete page read in btrfs with offset %u and length %u", 2686 bvec->bv_offset, bvec->bv_len); 2687 } 2688 2689 start = page_offset(page); 2690 end = start + bvec->bv_offset + bvec->bv_len - 1; 2691 len = bvec->bv_len; 2692 2693 mirror = io_bio->mirror_num; 2694 if (likely(uptodate)) { 2695 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2696 page, start, end, 2697 mirror); 2698 if (ret) 2699 uptodate = 0; 2700 else 2701 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2702 failure_tree, tree, start, 2703 page, 2704 btrfs_ino(BTRFS_I(inode)), 0); 2705 } 2706 2707 if (likely(uptodate)) 2708 goto readpage_ok; 2709 2710 if (data_inode) { 2711 2712 /* 2713 * The generic bio_readpage_error handles errors the 2714 * following way: If possible, new read requests are 2715 * created and submitted and will end up in 2716 * end_bio_extent_readpage as well (if we're lucky, 2717 * not in the !uptodate case). In that case it returns 2718 * 0 and we just go on with the next page in our bio. 2719 * If it can't handle the error it will return -EIO and 2720 * we remain responsible for that page. 2721 */ 2722 ret = bio_readpage_error(bio, offset, page, start, end, 2723 mirror); 2724 if (ret == 0) { 2725 uptodate = !bio->bi_status; 2726 offset += len; 2727 continue; 2728 } 2729 } else { 2730 struct extent_buffer *eb; 2731 2732 eb = (struct extent_buffer *)page->private; 2733 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2734 eb->read_mirror = mirror; 2735 atomic_dec(&eb->io_pages); 2736 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2737 &eb->bflags)) 2738 btree_readahead_hook(eb, -EIO); 2739 } 2740 readpage_ok: 2741 if (likely(uptodate)) { 2742 loff_t i_size = i_size_read(inode); 2743 pgoff_t end_index = i_size >> PAGE_SHIFT; 2744 unsigned off; 2745 2746 /* Zero out the end if this page straddles i_size */ 2747 off = offset_in_page(i_size); 2748 if (page->index == end_index && off) 2749 zero_user_segment(page, off, PAGE_SIZE); 2750 SetPageUptodate(page); 2751 } else { 2752 ClearPageUptodate(page); 2753 SetPageError(page); 2754 } 2755 unlock_page(page); 2756 offset += len; 2757 2758 if (unlikely(!uptodate)) { 2759 if (extent_len) { 2760 endio_readpage_release_extent(tree, 2761 extent_start, 2762 extent_len, 1); 2763 extent_start = 0; 2764 extent_len = 0; 2765 } 2766 endio_readpage_release_extent(tree, start, 2767 end - start + 1, 0); 2768 } else if (!extent_len) { 2769 extent_start = start; 2770 extent_len = end + 1 - start; 2771 } else if (extent_start + extent_len == start) { 2772 extent_len += end + 1 - start; 2773 } else { 2774 endio_readpage_release_extent(tree, extent_start, 2775 extent_len, uptodate); 2776 extent_start = start; 2777 extent_len = end + 1 - start; 2778 } 2779 } 2780 2781 if (extent_len) 2782 endio_readpage_release_extent(tree, extent_start, extent_len, 2783 uptodate); 2784 btrfs_io_bio_free_csum(io_bio); 2785 bio_put(bio); 2786 } 2787 2788 /* 2789 * Initialize the members up to but not including 'bio'. Use after allocating a 2790 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2791 * 'bio' because use of __GFP_ZERO is not supported. 2792 */ 2793 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2794 { 2795 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2796 } 2797 2798 /* 2799 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2800 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2801 * for the appropriate container_of magic 2802 */ 2803 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2804 { 2805 struct bio *bio; 2806 2807 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2808 bio_set_dev(bio, bdev); 2809 bio->bi_iter.bi_sector = first_byte >> 9; 2810 btrfs_io_bio_init(btrfs_io_bio(bio)); 2811 return bio; 2812 } 2813 2814 struct bio *btrfs_bio_clone(struct bio *bio) 2815 { 2816 struct btrfs_io_bio *btrfs_bio; 2817 struct bio *new; 2818 2819 /* Bio allocation backed by a bioset does not fail */ 2820 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2821 btrfs_bio = btrfs_io_bio(new); 2822 btrfs_io_bio_init(btrfs_bio); 2823 btrfs_bio->iter = bio->bi_iter; 2824 return new; 2825 } 2826 2827 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2828 { 2829 struct bio *bio; 2830 2831 /* Bio allocation backed by a bioset does not fail */ 2832 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2833 btrfs_io_bio_init(btrfs_io_bio(bio)); 2834 return bio; 2835 } 2836 2837 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2838 { 2839 struct bio *bio; 2840 struct btrfs_io_bio *btrfs_bio; 2841 2842 /* this will never fail when it's backed by a bioset */ 2843 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2844 ASSERT(bio); 2845 2846 btrfs_bio = btrfs_io_bio(bio); 2847 btrfs_io_bio_init(btrfs_bio); 2848 2849 bio_trim(bio, offset >> 9, size >> 9); 2850 btrfs_bio->iter = bio->bi_iter; 2851 return bio; 2852 } 2853 2854 /* 2855 * @opf: bio REQ_OP_* and REQ_* flags as one value 2856 * @tree: tree so we can call our merge_bio hook 2857 * @wbc: optional writeback control for io accounting 2858 * @page: page to add to the bio 2859 * @pg_offset: offset of the new bio or to check whether we are adding 2860 * a contiguous page to the previous one 2861 * @size: portion of page that we want to write 2862 * @offset: starting offset in the page 2863 * @bdev: attach newly created bios to this bdev 2864 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2865 * @end_io_func: end_io callback for new bio 2866 * @mirror_num: desired mirror to read/write 2867 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2868 * @bio_flags: flags of the current bio to see if we can merge them 2869 */ 2870 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2871 struct writeback_control *wbc, 2872 struct page *page, u64 offset, 2873 size_t size, unsigned long pg_offset, 2874 struct block_device *bdev, 2875 struct bio **bio_ret, 2876 bio_end_io_t end_io_func, 2877 int mirror_num, 2878 unsigned long prev_bio_flags, 2879 unsigned long bio_flags, 2880 bool force_bio_submit) 2881 { 2882 int ret = 0; 2883 struct bio *bio; 2884 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2885 sector_t sector = offset >> 9; 2886 2887 ASSERT(bio_ret); 2888 2889 if (*bio_ret) { 2890 bool contig; 2891 bool can_merge = true; 2892 2893 bio = *bio_ret; 2894 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2895 contig = bio->bi_iter.bi_sector == sector; 2896 else 2897 contig = bio_end_sector(bio) == sector; 2898 2899 ASSERT(tree->ops); 2900 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 2901 can_merge = false; 2902 2903 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2904 force_bio_submit || 2905 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2906 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2907 if (ret < 0) { 2908 *bio_ret = NULL; 2909 return ret; 2910 } 2911 bio = NULL; 2912 } else { 2913 if (wbc) 2914 wbc_account_io(wbc, page, page_size); 2915 return 0; 2916 } 2917 } 2918 2919 bio = btrfs_bio_alloc(bdev, offset); 2920 bio_add_page(bio, page, page_size, pg_offset); 2921 bio->bi_end_io = end_io_func; 2922 bio->bi_private = tree; 2923 bio->bi_write_hint = page->mapping->host->i_write_hint; 2924 bio->bi_opf = opf; 2925 if (wbc) { 2926 wbc_init_bio(wbc, bio); 2927 wbc_account_io(wbc, page, page_size); 2928 } 2929 2930 *bio_ret = bio; 2931 2932 return ret; 2933 } 2934 2935 static void attach_extent_buffer_page(struct extent_buffer *eb, 2936 struct page *page) 2937 { 2938 if (!PagePrivate(page)) { 2939 SetPagePrivate(page); 2940 get_page(page); 2941 set_page_private(page, (unsigned long)eb); 2942 } else { 2943 WARN_ON(page->private != (unsigned long)eb); 2944 } 2945 } 2946 2947 void set_page_extent_mapped(struct page *page) 2948 { 2949 if (!PagePrivate(page)) { 2950 SetPagePrivate(page); 2951 get_page(page); 2952 set_page_private(page, EXTENT_PAGE_PRIVATE); 2953 } 2954 } 2955 2956 static struct extent_map * 2957 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2958 u64 start, u64 len, get_extent_t *get_extent, 2959 struct extent_map **em_cached) 2960 { 2961 struct extent_map *em; 2962 2963 if (em_cached && *em_cached) { 2964 em = *em_cached; 2965 if (extent_map_in_tree(em) && start >= em->start && 2966 start < extent_map_end(em)) { 2967 refcount_inc(&em->refs); 2968 return em; 2969 } 2970 2971 free_extent_map(em); 2972 *em_cached = NULL; 2973 } 2974 2975 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2976 if (em_cached && !IS_ERR_OR_NULL(em)) { 2977 BUG_ON(*em_cached); 2978 refcount_inc(&em->refs); 2979 *em_cached = em; 2980 } 2981 return em; 2982 } 2983 /* 2984 * basic readpage implementation. Locked extent state structs are inserted 2985 * into the tree that are removed when the IO is done (by the end_io 2986 * handlers) 2987 * XXX JDM: This needs looking at to ensure proper page locking 2988 * return 0 on success, otherwise return error 2989 */ 2990 static int __do_readpage(struct extent_io_tree *tree, 2991 struct page *page, 2992 get_extent_t *get_extent, 2993 struct extent_map **em_cached, 2994 struct bio **bio, int mirror_num, 2995 unsigned long *bio_flags, unsigned int read_flags, 2996 u64 *prev_em_start) 2997 { 2998 struct inode *inode = page->mapping->host; 2999 u64 start = page_offset(page); 3000 const u64 end = start + PAGE_SIZE - 1; 3001 u64 cur = start; 3002 u64 extent_offset; 3003 u64 last_byte = i_size_read(inode); 3004 u64 block_start; 3005 u64 cur_end; 3006 struct extent_map *em; 3007 struct block_device *bdev; 3008 int ret = 0; 3009 int nr = 0; 3010 size_t pg_offset = 0; 3011 size_t iosize; 3012 size_t disk_io_size; 3013 size_t blocksize = inode->i_sb->s_blocksize; 3014 unsigned long this_bio_flag = 0; 3015 3016 set_page_extent_mapped(page); 3017 3018 if (!PageUptodate(page)) { 3019 if (cleancache_get_page(page) == 0) { 3020 BUG_ON(blocksize != PAGE_SIZE); 3021 unlock_extent(tree, start, end); 3022 goto out; 3023 } 3024 } 3025 3026 if (page->index == last_byte >> PAGE_SHIFT) { 3027 char *userpage; 3028 size_t zero_offset = offset_in_page(last_byte); 3029 3030 if (zero_offset) { 3031 iosize = PAGE_SIZE - zero_offset; 3032 userpage = kmap_atomic(page); 3033 memset(userpage + zero_offset, 0, iosize); 3034 flush_dcache_page(page); 3035 kunmap_atomic(userpage); 3036 } 3037 } 3038 while (cur <= end) { 3039 bool force_bio_submit = false; 3040 u64 offset; 3041 3042 if (cur >= last_byte) { 3043 char *userpage; 3044 struct extent_state *cached = NULL; 3045 3046 iosize = PAGE_SIZE - pg_offset; 3047 userpage = kmap_atomic(page); 3048 memset(userpage + pg_offset, 0, iosize); 3049 flush_dcache_page(page); 3050 kunmap_atomic(userpage); 3051 set_extent_uptodate(tree, cur, cur + iosize - 1, 3052 &cached, GFP_NOFS); 3053 unlock_extent_cached(tree, cur, 3054 cur + iosize - 1, &cached); 3055 break; 3056 } 3057 em = __get_extent_map(inode, page, pg_offset, cur, 3058 end - cur + 1, get_extent, em_cached); 3059 if (IS_ERR_OR_NULL(em)) { 3060 SetPageError(page); 3061 unlock_extent(tree, cur, end); 3062 break; 3063 } 3064 extent_offset = cur - em->start; 3065 BUG_ON(extent_map_end(em) <= cur); 3066 BUG_ON(end < cur); 3067 3068 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3069 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3070 extent_set_compress_type(&this_bio_flag, 3071 em->compress_type); 3072 } 3073 3074 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3075 cur_end = min(extent_map_end(em) - 1, end); 3076 iosize = ALIGN(iosize, blocksize); 3077 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3078 disk_io_size = em->block_len; 3079 offset = em->block_start; 3080 } else { 3081 offset = em->block_start + extent_offset; 3082 disk_io_size = iosize; 3083 } 3084 bdev = em->bdev; 3085 block_start = em->block_start; 3086 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3087 block_start = EXTENT_MAP_HOLE; 3088 3089 /* 3090 * If we have a file range that points to a compressed extent 3091 * and it's followed by a consecutive file range that points to 3092 * to the same compressed extent (possibly with a different 3093 * offset and/or length, so it either points to the whole extent 3094 * or only part of it), we must make sure we do not submit a 3095 * single bio to populate the pages for the 2 ranges because 3096 * this makes the compressed extent read zero out the pages 3097 * belonging to the 2nd range. Imagine the following scenario: 3098 * 3099 * File layout 3100 * [0 - 8K] [8K - 24K] 3101 * | | 3102 * | | 3103 * points to extent X, points to extent X, 3104 * offset 4K, length of 8K offset 0, length 16K 3105 * 3106 * [extent X, compressed length = 4K uncompressed length = 16K] 3107 * 3108 * If the bio to read the compressed extent covers both ranges, 3109 * it will decompress extent X into the pages belonging to the 3110 * first range and then it will stop, zeroing out the remaining 3111 * pages that belong to the other range that points to extent X. 3112 * So here we make sure we submit 2 bios, one for the first 3113 * range and another one for the third range. Both will target 3114 * the same physical extent from disk, but we can't currently 3115 * make the compressed bio endio callback populate the pages 3116 * for both ranges because each compressed bio is tightly 3117 * coupled with a single extent map, and each range can have 3118 * an extent map with a different offset value relative to the 3119 * uncompressed data of our extent and different lengths. This 3120 * is a corner case so we prioritize correctness over 3121 * non-optimal behavior (submitting 2 bios for the same extent). 3122 */ 3123 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3124 prev_em_start && *prev_em_start != (u64)-1 && 3125 *prev_em_start != em->start) 3126 force_bio_submit = true; 3127 3128 if (prev_em_start) 3129 *prev_em_start = em->start; 3130 3131 free_extent_map(em); 3132 em = NULL; 3133 3134 /* we've found a hole, just zero and go on */ 3135 if (block_start == EXTENT_MAP_HOLE) { 3136 char *userpage; 3137 struct extent_state *cached = NULL; 3138 3139 userpage = kmap_atomic(page); 3140 memset(userpage + pg_offset, 0, iosize); 3141 flush_dcache_page(page); 3142 kunmap_atomic(userpage); 3143 3144 set_extent_uptodate(tree, cur, cur + iosize - 1, 3145 &cached, GFP_NOFS); 3146 unlock_extent_cached(tree, cur, 3147 cur + iosize - 1, &cached); 3148 cur = cur + iosize; 3149 pg_offset += iosize; 3150 continue; 3151 } 3152 /* the get_extent function already copied into the page */ 3153 if (test_range_bit(tree, cur, cur_end, 3154 EXTENT_UPTODATE, 1, NULL)) { 3155 check_page_uptodate(tree, page); 3156 unlock_extent(tree, cur, cur + iosize - 1); 3157 cur = cur + iosize; 3158 pg_offset += iosize; 3159 continue; 3160 } 3161 /* we have an inline extent but it didn't get marked up 3162 * to date. Error out 3163 */ 3164 if (block_start == EXTENT_MAP_INLINE) { 3165 SetPageError(page); 3166 unlock_extent(tree, cur, cur + iosize - 1); 3167 cur = cur + iosize; 3168 pg_offset += iosize; 3169 continue; 3170 } 3171 3172 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3173 page, offset, disk_io_size, 3174 pg_offset, bdev, bio, 3175 end_bio_extent_readpage, mirror_num, 3176 *bio_flags, 3177 this_bio_flag, 3178 force_bio_submit); 3179 if (!ret) { 3180 nr++; 3181 *bio_flags = this_bio_flag; 3182 } else { 3183 SetPageError(page); 3184 unlock_extent(tree, cur, cur + iosize - 1); 3185 goto out; 3186 } 3187 cur = cur + iosize; 3188 pg_offset += iosize; 3189 } 3190 out: 3191 if (!nr) { 3192 if (!PageError(page)) 3193 SetPageUptodate(page); 3194 unlock_page(page); 3195 } 3196 return ret; 3197 } 3198 3199 static inline void contiguous_readpages(struct extent_io_tree *tree, 3200 struct page *pages[], int nr_pages, 3201 u64 start, u64 end, 3202 struct extent_map **em_cached, 3203 struct bio **bio, 3204 unsigned long *bio_flags, 3205 u64 *prev_em_start) 3206 { 3207 struct inode *inode; 3208 struct btrfs_ordered_extent *ordered; 3209 int index; 3210 3211 inode = pages[0]->mapping->host; 3212 while (1) { 3213 lock_extent(tree, start, end); 3214 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3215 end - start + 1); 3216 if (!ordered) 3217 break; 3218 unlock_extent(tree, start, end); 3219 btrfs_start_ordered_extent(inode, ordered, 1); 3220 btrfs_put_ordered_extent(ordered); 3221 } 3222 3223 for (index = 0; index < nr_pages; index++) { 3224 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3225 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3226 put_page(pages[index]); 3227 } 3228 } 3229 3230 static int __extent_read_full_page(struct extent_io_tree *tree, 3231 struct page *page, 3232 get_extent_t *get_extent, 3233 struct bio **bio, int mirror_num, 3234 unsigned long *bio_flags, 3235 unsigned int read_flags) 3236 { 3237 struct inode *inode = page->mapping->host; 3238 struct btrfs_ordered_extent *ordered; 3239 u64 start = page_offset(page); 3240 u64 end = start + PAGE_SIZE - 1; 3241 int ret; 3242 3243 while (1) { 3244 lock_extent(tree, start, end); 3245 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3246 PAGE_SIZE); 3247 if (!ordered) 3248 break; 3249 unlock_extent(tree, start, end); 3250 btrfs_start_ordered_extent(inode, ordered, 1); 3251 btrfs_put_ordered_extent(ordered); 3252 } 3253 3254 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3255 bio_flags, read_flags, NULL); 3256 return ret; 3257 } 3258 3259 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3260 get_extent_t *get_extent, int mirror_num) 3261 { 3262 struct bio *bio = NULL; 3263 unsigned long bio_flags = 0; 3264 int ret; 3265 3266 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3267 &bio_flags, 0); 3268 if (bio) 3269 ret = submit_one_bio(bio, mirror_num, bio_flags); 3270 return ret; 3271 } 3272 3273 static void update_nr_written(struct writeback_control *wbc, 3274 unsigned long nr_written) 3275 { 3276 wbc->nr_to_write -= nr_written; 3277 } 3278 3279 /* 3280 * helper for __extent_writepage, doing all of the delayed allocation setup. 3281 * 3282 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3283 * to write the page (copy into inline extent). In this case the IO has 3284 * been started and the page is already unlocked. 3285 * 3286 * This returns 0 if all went well (page still locked) 3287 * This returns < 0 if there were errors (page still locked) 3288 */ 3289 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3290 struct page *page, struct writeback_control *wbc, 3291 u64 delalloc_start, unsigned long *nr_written) 3292 { 3293 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3294 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3295 bool found; 3296 u64 delalloc_to_write = 0; 3297 u64 delalloc_end = 0; 3298 int ret; 3299 int page_started = 0; 3300 3301 3302 while (delalloc_end < page_end) { 3303 found = find_lock_delalloc_range(inode, tree, 3304 page, 3305 &delalloc_start, 3306 &delalloc_end); 3307 if (!found) { 3308 delalloc_start = delalloc_end + 1; 3309 continue; 3310 } 3311 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3312 delalloc_end, &page_started, nr_written, wbc); 3313 /* File system has been set read-only */ 3314 if (ret) { 3315 SetPageError(page); 3316 /* 3317 * btrfs_run_delalloc_range should return < 0 for error 3318 * but just in case, we use > 0 here meaning the IO is 3319 * started, so we don't want to return > 0 unless 3320 * things are going well. 3321 */ 3322 ret = ret < 0 ? ret : -EIO; 3323 goto done; 3324 } 3325 /* 3326 * delalloc_end is already one less than the total length, so 3327 * we don't subtract one from PAGE_SIZE 3328 */ 3329 delalloc_to_write += (delalloc_end - delalloc_start + 3330 PAGE_SIZE) >> PAGE_SHIFT; 3331 delalloc_start = delalloc_end + 1; 3332 } 3333 if (wbc->nr_to_write < delalloc_to_write) { 3334 int thresh = 8192; 3335 3336 if (delalloc_to_write < thresh * 2) 3337 thresh = delalloc_to_write; 3338 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3339 thresh); 3340 } 3341 3342 /* did the fill delalloc function already unlock and start 3343 * the IO? 3344 */ 3345 if (page_started) { 3346 /* 3347 * we've unlocked the page, so we can't update 3348 * the mapping's writeback index, just update 3349 * nr_to_write. 3350 */ 3351 wbc->nr_to_write -= *nr_written; 3352 return 1; 3353 } 3354 3355 ret = 0; 3356 3357 done: 3358 return ret; 3359 } 3360 3361 /* 3362 * helper for __extent_writepage. This calls the writepage start hooks, 3363 * and does the loop to map the page into extents and bios. 3364 * 3365 * We return 1 if the IO is started and the page is unlocked, 3366 * 0 if all went well (page still locked) 3367 * < 0 if there were errors (page still locked) 3368 */ 3369 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3370 struct page *page, 3371 struct writeback_control *wbc, 3372 struct extent_page_data *epd, 3373 loff_t i_size, 3374 unsigned long nr_written, 3375 unsigned int write_flags, int *nr_ret) 3376 { 3377 struct extent_io_tree *tree = epd->tree; 3378 u64 start = page_offset(page); 3379 u64 page_end = start + PAGE_SIZE - 1; 3380 u64 end; 3381 u64 cur = start; 3382 u64 extent_offset; 3383 u64 block_start; 3384 u64 iosize; 3385 struct extent_map *em; 3386 struct block_device *bdev; 3387 size_t pg_offset = 0; 3388 size_t blocksize; 3389 int ret = 0; 3390 int nr = 0; 3391 bool compressed; 3392 3393 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3394 if (ret) { 3395 /* Fixup worker will requeue */ 3396 if (ret == -EBUSY) 3397 wbc->pages_skipped++; 3398 else 3399 redirty_page_for_writepage(wbc, page); 3400 3401 update_nr_written(wbc, nr_written); 3402 unlock_page(page); 3403 return 1; 3404 } 3405 3406 /* 3407 * we don't want to touch the inode after unlocking the page, 3408 * so we update the mapping writeback index now 3409 */ 3410 update_nr_written(wbc, nr_written + 1); 3411 3412 end = page_end; 3413 if (i_size <= start) { 3414 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); 3415 goto done; 3416 } 3417 3418 blocksize = inode->i_sb->s_blocksize; 3419 3420 while (cur <= end) { 3421 u64 em_end; 3422 u64 offset; 3423 3424 if (cur >= i_size) { 3425 btrfs_writepage_endio_finish_ordered(page, cur, 3426 page_end, 1); 3427 break; 3428 } 3429 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3430 end - cur + 1, 1); 3431 if (IS_ERR_OR_NULL(em)) { 3432 SetPageError(page); 3433 ret = PTR_ERR_OR_ZERO(em); 3434 break; 3435 } 3436 3437 extent_offset = cur - em->start; 3438 em_end = extent_map_end(em); 3439 BUG_ON(em_end <= cur); 3440 BUG_ON(end < cur); 3441 iosize = min(em_end - cur, end - cur + 1); 3442 iosize = ALIGN(iosize, blocksize); 3443 offset = em->block_start + extent_offset; 3444 bdev = em->bdev; 3445 block_start = em->block_start; 3446 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3447 free_extent_map(em); 3448 em = NULL; 3449 3450 /* 3451 * compressed and inline extents are written through other 3452 * paths in the FS 3453 */ 3454 if (compressed || block_start == EXTENT_MAP_HOLE || 3455 block_start == EXTENT_MAP_INLINE) { 3456 /* 3457 * end_io notification does not happen here for 3458 * compressed extents 3459 */ 3460 if (!compressed) 3461 btrfs_writepage_endio_finish_ordered(page, cur, 3462 cur + iosize - 1, 3463 1); 3464 else if (compressed) { 3465 /* we don't want to end_page_writeback on 3466 * a compressed extent. this happens 3467 * elsewhere 3468 */ 3469 nr++; 3470 } 3471 3472 cur += iosize; 3473 pg_offset += iosize; 3474 continue; 3475 } 3476 3477 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3478 if (!PageWriteback(page)) { 3479 btrfs_err(BTRFS_I(inode)->root->fs_info, 3480 "page %lu not writeback, cur %llu end %llu", 3481 page->index, cur, end); 3482 } 3483 3484 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3485 page, offset, iosize, pg_offset, 3486 bdev, &epd->bio, 3487 end_bio_extent_writepage, 3488 0, 0, 0, false); 3489 if (ret) { 3490 SetPageError(page); 3491 if (PageWriteback(page)) 3492 end_page_writeback(page); 3493 } 3494 3495 cur = cur + iosize; 3496 pg_offset += iosize; 3497 nr++; 3498 } 3499 done: 3500 *nr_ret = nr; 3501 return ret; 3502 } 3503 3504 /* 3505 * the writepage semantics are similar to regular writepage. extent 3506 * records are inserted to lock ranges in the tree, and as dirty areas 3507 * are found, they are marked writeback. Then the lock bits are removed 3508 * and the end_io handler clears the writeback ranges 3509 * 3510 * Return 0 if everything goes well. 3511 * Return <0 for error. 3512 */ 3513 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3514 struct extent_page_data *epd) 3515 { 3516 struct inode *inode = page->mapping->host; 3517 u64 start = page_offset(page); 3518 u64 page_end = start + PAGE_SIZE - 1; 3519 int ret; 3520 int nr = 0; 3521 size_t pg_offset = 0; 3522 loff_t i_size = i_size_read(inode); 3523 unsigned long end_index = i_size >> PAGE_SHIFT; 3524 unsigned int write_flags = 0; 3525 unsigned long nr_written = 0; 3526 3527 write_flags = wbc_to_write_flags(wbc); 3528 3529 trace___extent_writepage(page, inode, wbc); 3530 3531 WARN_ON(!PageLocked(page)); 3532 3533 ClearPageError(page); 3534 3535 pg_offset = offset_in_page(i_size); 3536 if (page->index > end_index || 3537 (page->index == end_index && !pg_offset)) { 3538 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3539 unlock_page(page); 3540 return 0; 3541 } 3542 3543 if (page->index == end_index) { 3544 char *userpage; 3545 3546 userpage = kmap_atomic(page); 3547 memset(userpage + pg_offset, 0, 3548 PAGE_SIZE - pg_offset); 3549 kunmap_atomic(userpage); 3550 flush_dcache_page(page); 3551 } 3552 3553 pg_offset = 0; 3554 3555 set_page_extent_mapped(page); 3556 3557 if (!epd->extent_locked) { 3558 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3559 if (ret == 1) 3560 goto done_unlocked; 3561 if (ret) 3562 goto done; 3563 } 3564 3565 ret = __extent_writepage_io(inode, page, wbc, epd, 3566 i_size, nr_written, write_flags, &nr); 3567 if (ret == 1) 3568 goto done_unlocked; 3569 3570 done: 3571 if (nr == 0) { 3572 /* make sure the mapping tag for page dirty gets cleared */ 3573 set_page_writeback(page); 3574 end_page_writeback(page); 3575 } 3576 if (PageError(page)) { 3577 ret = ret < 0 ? ret : -EIO; 3578 end_extent_writepage(page, ret, start, page_end); 3579 } 3580 unlock_page(page); 3581 ASSERT(ret <= 0); 3582 return ret; 3583 3584 done_unlocked: 3585 return 0; 3586 } 3587 3588 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3589 { 3590 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3591 TASK_UNINTERRUPTIBLE); 3592 } 3593 3594 /* 3595 * Lock eb pages and flush the bio if we can't the locks 3596 * 3597 * Return 0 if nothing went wrong 3598 * Return >0 is same as 0, except bio is not submitted 3599 * Return <0 if something went wrong, no page is locked 3600 */ 3601 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3602 struct extent_page_data *epd) 3603 { 3604 struct btrfs_fs_info *fs_info = eb->fs_info; 3605 int i, num_pages, failed_page_nr; 3606 int flush = 0; 3607 int ret = 0; 3608 3609 if (!btrfs_try_tree_write_lock(eb)) { 3610 ret = flush_write_bio(epd); 3611 if (ret < 0) 3612 return ret; 3613 flush = 1; 3614 btrfs_tree_lock(eb); 3615 } 3616 3617 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3618 btrfs_tree_unlock(eb); 3619 if (!epd->sync_io) 3620 return 0; 3621 if (!flush) { 3622 ret = flush_write_bio(epd); 3623 if (ret < 0) 3624 return ret; 3625 flush = 1; 3626 } 3627 while (1) { 3628 wait_on_extent_buffer_writeback(eb); 3629 btrfs_tree_lock(eb); 3630 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3631 break; 3632 btrfs_tree_unlock(eb); 3633 } 3634 } 3635 3636 /* 3637 * We need to do this to prevent races in people who check if the eb is 3638 * under IO since we can end up having no IO bits set for a short period 3639 * of time. 3640 */ 3641 spin_lock(&eb->refs_lock); 3642 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3643 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3644 spin_unlock(&eb->refs_lock); 3645 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3646 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3647 -eb->len, 3648 fs_info->dirty_metadata_batch); 3649 ret = 1; 3650 } else { 3651 spin_unlock(&eb->refs_lock); 3652 } 3653 3654 btrfs_tree_unlock(eb); 3655 3656 if (!ret) 3657 return ret; 3658 3659 num_pages = num_extent_pages(eb); 3660 for (i = 0; i < num_pages; i++) { 3661 struct page *p = eb->pages[i]; 3662 3663 if (!trylock_page(p)) { 3664 if (!flush) { 3665 ret = flush_write_bio(epd); 3666 if (ret < 0) { 3667 failed_page_nr = i; 3668 goto err_unlock; 3669 } 3670 flush = 1; 3671 } 3672 lock_page(p); 3673 } 3674 } 3675 3676 return ret; 3677 err_unlock: 3678 /* Unlock already locked pages */ 3679 for (i = 0; i < failed_page_nr; i++) 3680 unlock_page(eb->pages[i]); 3681 return ret; 3682 } 3683 3684 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3685 { 3686 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3687 smp_mb__after_atomic(); 3688 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3689 } 3690 3691 static void set_btree_ioerr(struct page *page) 3692 { 3693 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3694 3695 SetPageError(page); 3696 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3697 return; 3698 3699 /* 3700 * If writeback for a btree extent that doesn't belong to a log tree 3701 * failed, increment the counter transaction->eb_write_errors. 3702 * We do this because while the transaction is running and before it's 3703 * committing (when we call filemap_fdata[write|wait]_range against 3704 * the btree inode), we might have 3705 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3706 * returns an error or an error happens during writeback, when we're 3707 * committing the transaction we wouldn't know about it, since the pages 3708 * can be no longer dirty nor marked anymore for writeback (if a 3709 * subsequent modification to the extent buffer didn't happen before the 3710 * transaction commit), which makes filemap_fdata[write|wait]_range not 3711 * able to find the pages tagged with SetPageError at transaction 3712 * commit time. So if this happens we must abort the transaction, 3713 * otherwise we commit a super block with btree roots that point to 3714 * btree nodes/leafs whose content on disk is invalid - either garbage 3715 * or the content of some node/leaf from a past generation that got 3716 * cowed or deleted and is no longer valid. 3717 * 3718 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3719 * not be enough - we need to distinguish between log tree extents vs 3720 * non-log tree extents, and the next filemap_fdatawait_range() call 3721 * will catch and clear such errors in the mapping - and that call might 3722 * be from a log sync and not from a transaction commit. Also, checking 3723 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3724 * not done and would not be reliable - the eb might have been released 3725 * from memory and reading it back again means that flag would not be 3726 * set (since it's a runtime flag, not persisted on disk). 3727 * 3728 * Using the flags below in the btree inode also makes us achieve the 3729 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3730 * writeback for all dirty pages and before filemap_fdatawait_range() 3731 * is called, the writeback for all dirty pages had already finished 3732 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3733 * filemap_fdatawait_range() would return success, as it could not know 3734 * that writeback errors happened (the pages were no longer tagged for 3735 * writeback). 3736 */ 3737 switch (eb->log_index) { 3738 case -1: 3739 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3740 break; 3741 case 0: 3742 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3743 break; 3744 case 1: 3745 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3746 break; 3747 default: 3748 BUG(); /* unexpected, logic error */ 3749 } 3750 } 3751 3752 static void end_bio_extent_buffer_writepage(struct bio *bio) 3753 { 3754 struct bio_vec *bvec; 3755 struct extent_buffer *eb; 3756 int done; 3757 struct bvec_iter_all iter_all; 3758 3759 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3760 bio_for_each_segment_all(bvec, bio, iter_all) { 3761 struct page *page = bvec->bv_page; 3762 3763 eb = (struct extent_buffer *)page->private; 3764 BUG_ON(!eb); 3765 done = atomic_dec_and_test(&eb->io_pages); 3766 3767 if (bio->bi_status || 3768 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3769 ClearPageUptodate(page); 3770 set_btree_ioerr(page); 3771 } 3772 3773 end_page_writeback(page); 3774 3775 if (!done) 3776 continue; 3777 3778 end_extent_buffer_writeback(eb); 3779 } 3780 3781 bio_put(bio); 3782 } 3783 3784 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3785 struct writeback_control *wbc, 3786 struct extent_page_data *epd) 3787 { 3788 struct btrfs_fs_info *fs_info = eb->fs_info; 3789 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3790 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3791 u64 offset = eb->start; 3792 u32 nritems; 3793 int i, num_pages; 3794 unsigned long start, end; 3795 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3796 int ret = 0; 3797 3798 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3799 num_pages = num_extent_pages(eb); 3800 atomic_set(&eb->io_pages, num_pages); 3801 3802 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3803 nritems = btrfs_header_nritems(eb); 3804 if (btrfs_header_level(eb) > 0) { 3805 end = btrfs_node_key_ptr_offset(nritems); 3806 3807 memzero_extent_buffer(eb, end, eb->len - end); 3808 } else { 3809 /* 3810 * leaf: 3811 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3812 */ 3813 start = btrfs_item_nr_offset(nritems); 3814 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3815 memzero_extent_buffer(eb, start, end - start); 3816 } 3817 3818 for (i = 0; i < num_pages; i++) { 3819 struct page *p = eb->pages[i]; 3820 3821 clear_page_dirty_for_io(p); 3822 set_page_writeback(p); 3823 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3824 p, offset, PAGE_SIZE, 0, bdev, 3825 &epd->bio, 3826 end_bio_extent_buffer_writepage, 3827 0, 0, 0, false); 3828 if (ret) { 3829 set_btree_ioerr(p); 3830 if (PageWriteback(p)) 3831 end_page_writeback(p); 3832 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3833 end_extent_buffer_writeback(eb); 3834 ret = -EIO; 3835 break; 3836 } 3837 offset += PAGE_SIZE; 3838 update_nr_written(wbc, 1); 3839 unlock_page(p); 3840 } 3841 3842 if (unlikely(ret)) { 3843 for (; i < num_pages; i++) { 3844 struct page *p = eb->pages[i]; 3845 clear_page_dirty_for_io(p); 3846 unlock_page(p); 3847 } 3848 } 3849 3850 return ret; 3851 } 3852 3853 int btree_write_cache_pages(struct address_space *mapping, 3854 struct writeback_control *wbc) 3855 { 3856 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3857 struct extent_buffer *eb, *prev_eb = NULL; 3858 struct extent_page_data epd = { 3859 .bio = NULL, 3860 .tree = tree, 3861 .extent_locked = 0, 3862 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3863 }; 3864 int ret = 0; 3865 int done = 0; 3866 int nr_to_write_done = 0; 3867 struct pagevec pvec; 3868 int nr_pages; 3869 pgoff_t index; 3870 pgoff_t end; /* Inclusive */ 3871 int scanned = 0; 3872 xa_mark_t tag; 3873 3874 pagevec_init(&pvec); 3875 if (wbc->range_cyclic) { 3876 index = mapping->writeback_index; /* Start from prev offset */ 3877 end = -1; 3878 } else { 3879 index = wbc->range_start >> PAGE_SHIFT; 3880 end = wbc->range_end >> PAGE_SHIFT; 3881 scanned = 1; 3882 } 3883 if (wbc->sync_mode == WB_SYNC_ALL) 3884 tag = PAGECACHE_TAG_TOWRITE; 3885 else 3886 tag = PAGECACHE_TAG_DIRTY; 3887 retry: 3888 if (wbc->sync_mode == WB_SYNC_ALL) 3889 tag_pages_for_writeback(mapping, index, end); 3890 while (!done && !nr_to_write_done && (index <= end) && 3891 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3892 tag))) { 3893 unsigned i; 3894 3895 scanned = 1; 3896 for (i = 0; i < nr_pages; i++) { 3897 struct page *page = pvec.pages[i]; 3898 3899 if (!PagePrivate(page)) 3900 continue; 3901 3902 spin_lock(&mapping->private_lock); 3903 if (!PagePrivate(page)) { 3904 spin_unlock(&mapping->private_lock); 3905 continue; 3906 } 3907 3908 eb = (struct extent_buffer *)page->private; 3909 3910 /* 3911 * Shouldn't happen and normally this would be a BUG_ON 3912 * but no sense in crashing the users box for something 3913 * we can survive anyway. 3914 */ 3915 if (WARN_ON(!eb)) { 3916 spin_unlock(&mapping->private_lock); 3917 continue; 3918 } 3919 3920 if (eb == prev_eb) { 3921 spin_unlock(&mapping->private_lock); 3922 continue; 3923 } 3924 3925 ret = atomic_inc_not_zero(&eb->refs); 3926 spin_unlock(&mapping->private_lock); 3927 if (!ret) 3928 continue; 3929 3930 prev_eb = eb; 3931 ret = lock_extent_buffer_for_io(eb, &epd); 3932 if (!ret) { 3933 free_extent_buffer(eb); 3934 continue; 3935 } 3936 3937 ret = write_one_eb(eb, wbc, &epd); 3938 if (ret) { 3939 done = 1; 3940 free_extent_buffer(eb); 3941 break; 3942 } 3943 free_extent_buffer(eb); 3944 3945 /* 3946 * the filesystem may choose to bump up nr_to_write. 3947 * We have to make sure to honor the new nr_to_write 3948 * at any time 3949 */ 3950 nr_to_write_done = wbc->nr_to_write <= 0; 3951 } 3952 pagevec_release(&pvec); 3953 cond_resched(); 3954 } 3955 if (!scanned && !done) { 3956 /* 3957 * We hit the last page and there is more work to be done: wrap 3958 * back to the start of the file 3959 */ 3960 scanned = 1; 3961 index = 0; 3962 goto retry; 3963 } 3964 ASSERT(ret <= 0); 3965 if (ret < 0) { 3966 end_write_bio(&epd, ret); 3967 return ret; 3968 } 3969 ret = flush_write_bio(&epd); 3970 return ret; 3971 } 3972 3973 /** 3974 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3975 * @mapping: address space structure to write 3976 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3977 * @data: data passed to __extent_writepage function 3978 * 3979 * If a page is already under I/O, write_cache_pages() skips it, even 3980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3982 * and msync() need to guarantee that all the data which was dirty at the time 3983 * the call was made get new I/O started against them. If wbc->sync_mode is 3984 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3985 * existing IO to complete. 3986 */ 3987 static int extent_write_cache_pages(struct address_space *mapping, 3988 struct writeback_control *wbc, 3989 struct extent_page_data *epd) 3990 { 3991 struct inode *inode = mapping->host; 3992 int ret = 0; 3993 int done = 0; 3994 int nr_to_write_done = 0; 3995 struct pagevec pvec; 3996 int nr_pages; 3997 pgoff_t index; 3998 pgoff_t end; /* Inclusive */ 3999 pgoff_t done_index; 4000 int range_whole = 0; 4001 int scanned = 0; 4002 xa_mark_t tag; 4003 4004 /* 4005 * We have to hold onto the inode so that ordered extents can do their 4006 * work when the IO finishes. The alternative to this is failing to add 4007 * an ordered extent if the igrab() fails there and that is a huge pain 4008 * to deal with, so instead just hold onto the inode throughout the 4009 * writepages operation. If it fails here we are freeing up the inode 4010 * anyway and we'd rather not waste our time writing out stuff that is 4011 * going to be truncated anyway. 4012 */ 4013 if (!igrab(inode)) 4014 return 0; 4015 4016 pagevec_init(&pvec); 4017 if (wbc->range_cyclic) { 4018 index = mapping->writeback_index; /* Start from prev offset */ 4019 end = -1; 4020 } else { 4021 index = wbc->range_start >> PAGE_SHIFT; 4022 end = wbc->range_end >> PAGE_SHIFT; 4023 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4024 range_whole = 1; 4025 scanned = 1; 4026 } 4027 4028 /* 4029 * We do the tagged writepage as long as the snapshot flush bit is set 4030 * and we are the first one who do the filemap_flush() on this inode. 4031 * 4032 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4033 * not race in and drop the bit. 4034 */ 4035 if (range_whole && wbc->nr_to_write == LONG_MAX && 4036 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4037 &BTRFS_I(inode)->runtime_flags)) 4038 wbc->tagged_writepages = 1; 4039 4040 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4041 tag = PAGECACHE_TAG_TOWRITE; 4042 else 4043 tag = PAGECACHE_TAG_DIRTY; 4044 retry: 4045 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4046 tag_pages_for_writeback(mapping, index, end); 4047 done_index = index; 4048 while (!done && !nr_to_write_done && (index <= end) && 4049 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4050 &index, end, tag))) { 4051 unsigned i; 4052 4053 scanned = 1; 4054 for (i = 0; i < nr_pages; i++) { 4055 struct page *page = pvec.pages[i]; 4056 4057 done_index = page->index; 4058 /* 4059 * At this point we hold neither the i_pages lock nor 4060 * the page lock: the page may be truncated or 4061 * invalidated (changing page->mapping to NULL), 4062 * or even swizzled back from swapper_space to 4063 * tmpfs file mapping 4064 */ 4065 if (!trylock_page(page)) { 4066 ret = flush_write_bio(epd); 4067 BUG_ON(ret < 0); 4068 lock_page(page); 4069 } 4070 4071 if (unlikely(page->mapping != mapping)) { 4072 unlock_page(page); 4073 continue; 4074 } 4075 4076 if (wbc->sync_mode != WB_SYNC_NONE) { 4077 if (PageWriteback(page)) { 4078 ret = flush_write_bio(epd); 4079 BUG_ON(ret < 0); 4080 } 4081 wait_on_page_writeback(page); 4082 } 4083 4084 if (PageWriteback(page) || 4085 !clear_page_dirty_for_io(page)) { 4086 unlock_page(page); 4087 continue; 4088 } 4089 4090 ret = __extent_writepage(page, wbc, epd); 4091 if (ret < 0) { 4092 /* 4093 * done_index is set past this page, 4094 * so media errors will not choke 4095 * background writeout for the entire 4096 * file. This has consequences for 4097 * range_cyclic semantics (ie. it may 4098 * not be suitable for data integrity 4099 * writeout). 4100 */ 4101 done_index = page->index + 1; 4102 done = 1; 4103 break; 4104 } 4105 4106 /* 4107 * the filesystem may choose to bump up nr_to_write. 4108 * We have to make sure to honor the new nr_to_write 4109 * at any time 4110 */ 4111 nr_to_write_done = wbc->nr_to_write <= 0; 4112 } 4113 pagevec_release(&pvec); 4114 cond_resched(); 4115 } 4116 if (!scanned && !done) { 4117 /* 4118 * We hit the last page and there is more work to be done: wrap 4119 * back to the start of the file 4120 */ 4121 scanned = 1; 4122 index = 0; 4123 goto retry; 4124 } 4125 4126 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4127 mapping->writeback_index = done_index; 4128 4129 btrfs_add_delayed_iput(inode); 4130 return ret; 4131 } 4132 4133 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4134 { 4135 int ret; 4136 struct extent_page_data epd = { 4137 .bio = NULL, 4138 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4139 .extent_locked = 0, 4140 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4141 }; 4142 4143 ret = __extent_writepage(page, wbc, &epd); 4144 ASSERT(ret <= 0); 4145 if (ret < 0) { 4146 end_write_bio(&epd, ret); 4147 return ret; 4148 } 4149 4150 ret = flush_write_bio(&epd); 4151 ASSERT(ret <= 0); 4152 return ret; 4153 } 4154 4155 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4156 int mode) 4157 { 4158 int ret = 0; 4159 struct address_space *mapping = inode->i_mapping; 4160 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4161 struct page *page; 4162 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4163 PAGE_SHIFT; 4164 4165 struct extent_page_data epd = { 4166 .bio = NULL, 4167 .tree = tree, 4168 .extent_locked = 1, 4169 .sync_io = mode == WB_SYNC_ALL, 4170 }; 4171 struct writeback_control wbc_writepages = { 4172 .sync_mode = mode, 4173 .nr_to_write = nr_pages * 2, 4174 .range_start = start, 4175 .range_end = end + 1, 4176 }; 4177 4178 while (start <= end) { 4179 page = find_get_page(mapping, start >> PAGE_SHIFT); 4180 if (clear_page_dirty_for_io(page)) 4181 ret = __extent_writepage(page, &wbc_writepages, &epd); 4182 else { 4183 btrfs_writepage_endio_finish_ordered(page, start, 4184 start + PAGE_SIZE - 1, 1); 4185 unlock_page(page); 4186 } 4187 put_page(page); 4188 start += PAGE_SIZE; 4189 } 4190 4191 ASSERT(ret <= 0); 4192 if (ret < 0) { 4193 end_write_bio(&epd, ret); 4194 return ret; 4195 } 4196 ret = flush_write_bio(&epd); 4197 return ret; 4198 } 4199 4200 int extent_writepages(struct address_space *mapping, 4201 struct writeback_control *wbc) 4202 { 4203 int ret = 0; 4204 struct extent_page_data epd = { 4205 .bio = NULL, 4206 .tree = &BTRFS_I(mapping->host)->io_tree, 4207 .extent_locked = 0, 4208 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4209 }; 4210 4211 ret = extent_write_cache_pages(mapping, wbc, &epd); 4212 ASSERT(ret <= 0); 4213 if (ret < 0) { 4214 end_write_bio(&epd, ret); 4215 return ret; 4216 } 4217 ret = flush_write_bio(&epd); 4218 return ret; 4219 } 4220 4221 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4222 unsigned nr_pages) 4223 { 4224 struct bio *bio = NULL; 4225 unsigned long bio_flags = 0; 4226 struct page *pagepool[16]; 4227 struct extent_map *em_cached = NULL; 4228 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4229 int nr = 0; 4230 u64 prev_em_start = (u64)-1; 4231 4232 while (!list_empty(pages)) { 4233 u64 contig_end = 0; 4234 4235 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { 4236 struct page *page = lru_to_page(pages); 4237 4238 prefetchw(&page->flags); 4239 list_del(&page->lru); 4240 if (add_to_page_cache_lru(page, mapping, page->index, 4241 readahead_gfp_mask(mapping))) { 4242 put_page(page); 4243 break; 4244 } 4245 4246 pagepool[nr++] = page; 4247 contig_end = page_offset(page) + PAGE_SIZE - 1; 4248 } 4249 4250 if (nr) { 4251 u64 contig_start = page_offset(pagepool[0]); 4252 4253 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4254 4255 contiguous_readpages(tree, pagepool, nr, contig_start, 4256 contig_end, &em_cached, &bio, &bio_flags, 4257 &prev_em_start); 4258 } 4259 } 4260 4261 if (em_cached) 4262 free_extent_map(em_cached); 4263 4264 if (bio) 4265 return submit_one_bio(bio, 0, bio_flags); 4266 return 0; 4267 } 4268 4269 /* 4270 * basic invalidatepage code, this waits on any locked or writeback 4271 * ranges corresponding to the page, and then deletes any extent state 4272 * records from the tree 4273 */ 4274 int extent_invalidatepage(struct extent_io_tree *tree, 4275 struct page *page, unsigned long offset) 4276 { 4277 struct extent_state *cached_state = NULL; 4278 u64 start = page_offset(page); 4279 u64 end = start + PAGE_SIZE - 1; 4280 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4281 4282 start += ALIGN(offset, blocksize); 4283 if (start > end) 4284 return 0; 4285 4286 lock_extent_bits(tree, start, end, &cached_state); 4287 wait_on_page_writeback(page); 4288 clear_extent_bit(tree, start, end, 4289 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4290 EXTENT_DO_ACCOUNTING, 4291 1, 1, &cached_state); 4292 return 0; 4293 } 4294 4295 /* 4296 * a helper for releasepage, this tests for areas of the page that 4297 * are locked or under IO and drops the related state bits if it is safe 4298 * to drop the page. 4299 */ 4300 static int try_release_extent_state(struct extent_io_tree *tree, 4301 struct page *page, gfp_t mask) 4302 { 4303 u64 start = page_offset(page); 4304 u64 end = start + PAGE_SIZE - 1; 4305 int ret = 1; 4306 4307 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4308 ret = 0; 4309 } else { 4310 /* 4311 * at this point we can safely clear everything except the 4312 * locked bit and the nodatasum bit 4313 */ 4314 ret = __clear_extent_bit(tree, start, end, 4315 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4316 0, 0, NULL, mask, NULL); 4317 4318 /* if clear_extent_bit failed for enomem reasons, 4319 * we can't allow the release to continue. 4320 */ 4321 if (ret < 0) 4322 ret = 0; 4323 else 4324 ret = 1; 4325 } 4326 return ret; 4327 } 4328 4329 /* 4330 * a helper for releasepage. As long as there are no locked extents 4331 * in the range corresponding to the page, both state records and extent 4332 * map records are removed 4333 */ 4334 int try_release_extent_mapping(struct page *page, gfp_t mask) 4335 { 4336 struct extent_map *em; 4337 u64 start = page_offset(page); 4338 u64 end = start + PAGE_SIZE - 1; 4339 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4340 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4341 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4342 4343 if (gfpflags_allow_blocking(mask) && 4344 page->mapping->host->i_size > SZ_16M) { 4345 u64 len; 4346 while (start <= end) { 4347 len = end - start + 1; 4348 write_lock(&map->lock); 4349 em = lookup_extent_mapping(map, start, len); 4350 if (!em) { 4351 write_unlock(&map->lock); 4352 break; 4353 } 4354 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4355 em->start != start) { 4356 write_unlock(&map->lock); 4357 free_extent_map(em); 4358 break; 4359 } 4360 if (!test_range_bit(tree, em->start, 4361 extent_map_end(em) - 1, 4362 EXTENT_LOCKED, 0, NULL)) { 4363 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4364 &btrfs_inode->runtime_flags); 4365 remove_extent_mapping(map, em); 4366 /* once for the rb tree */ 4367 free_extent_map(em); 4368 } 4369 start = extent_map_end(em); 4370 write_unlock(&map->lock); 4371 4372 /* once for us */ 4373 free_extent_map(em); 4374 } 4375 } 4376 return try_release_extent_state(tree, page, mask); 4377 } 4378 4379 /* 4380 * helper function for fiemap, which doesn't want to see any holes. 4381 * This maps until we find something past 'last' 4382 */ 4383 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4384 u64 offset, u64 last) 4385 { 4386 u64 sectorsize = btrfs_inode_sectorsize(inode); 4387 struct extent_map *em; 4388 u64 len; 4389 4390 if (offset >= last) 4391 return NULL; 4392 4393 while (1) { 4394 len = last - offset; 4395 if (len == 0) 4396 break; 4397 len = ALIGN(len, sectorsize); 4398 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4399 if (IS_ERR_OR_NULL(em)) 4400 return em; 4401 4402 /* if this isn't a hole return it */ 4403 if (em->block_start != EXTENT_MAP_HOLE) 4404 return em; 4405 4406 /* this is a hole, advance to the next extent */ 4407 offset = extent_map_end(em); 4408 free_extent_map(em); 4409 if (offset >= last) 4410 break; 4411 } 4412 return NULL; 4413 } 4414 4415 /* 4416 * To cache previous fiemap extent 4417 * 4418 * Will be used for merging fiemap extent 4419 */ 4420 struct fiemap_cache { 4421 u64 offset; 4422 u64 phys; 4423 u64 len; 4424 u32 flags; 4425 bool cached; 4426 }; 4427 4428 /* 4429 * Helper to submit fiemap extent. 4430 * 4431 * Will try to merge current fiemap extent specified by @offset, @phys, 4432 * @len and @flags with cached one. 4433 * And only when we fails to merge, cached one will be submitted as 4434 * fiemap extent. 4435 * 4436 * Return value is the same as fiemap_fill_next_extent(). 4437 */ 4438 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4439 struct fiemap_cache *cache, 4440 u64 offset, u64 phys, u64 len, u32 flags) 4441 { 4442 int ret = 0; 4443 4444 if (!cache->cached) 4445 goto assign; 4446 4447 /* 4448 * Sanity check, extent_fiemap() should have ensured that new 4449 * fiemap extent won't overlap with cached one. 4450 * Not recoverable. 4451 * 4452 * NOTE: Physical address can overlap, due to compression 4453 */ 4454 if (cache->offset + cache->len > offset) { 4455 WARN_ON(1); 4456 return -EINVAL; 4457 } 4458 4459 /* 4460 * Only merges fiemap extents if 4461 * 1) Their logical addresses are continuous 4462 * 4463 * 2) Their physical addresses are continuous 4464 * So truly compressed (physical size smaller than logical size) 4465 * extents won't get merged with each other 4466 * 4467 * 3) Share same flags except FIEMAP_EXTENT_LAST 4468 * So regular extent won't get merged with prealloc extent 4469 */ 4470 if (cache->offset + cache->len == offset && 4471 cache->phys + cache->len == phys && 4472 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4473 (flags & ~FIEMAP_EXTENT_LAST)) { 4474 cache->len += len; 4475 cache->flags |= flags; 4476 goto try_submit_last; 4477 } 4478 4479 /* Not mergeable, need to submit cached one */ 4480 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4481 cache->len, cache->flags); 4482 cache->cached = false; 4483 if (ret) 4484 return ret; 4485 assign: 4486 cache->cached = true; 4487 cache->offset = offset; 4488 cache->phys = phys; 4489 cache->len = len; 4490 cache->flags = flags; 4491 try_submit_last: 4492 if (cache->flags & FIEMAP_EXTENT_LAST) { 4493 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4494 cache->phys, cache->len, cache->flags); 4495 cache->cached = false; 4496 } 4497 return ret; 4498 } 4499 4500 /* 4501 * Emit last fiemap cache 4502 * 4503 * The last fiemap cache may still be cached in the following case: 4504 * 0 4k 8k 4505 * |<- Fiemap range ->| 4506 * |<------------ First extent ----------->| 4507 * 4508 * In this case, the first extent range will be cached but not emitted. 4509 * So we must emit it before ending extent_fiemap(). 4510 */ 4511 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4512 struct fiemap_cache *cache) 4513 { 4514 int ret; 4515 4516 if (!cache->cached) 4517 return 0; 4518 4519 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4520 cache->len, cache->flags); 4521 cache->cached = false; 4522 if (ret > 0) 4523 ret = 0; 4524 return ret; 4525 } 4526 4527 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4528 __u64 start, __u64 len) 4529 { 4530 int ret = 0; 4531 u64 off = start; 4532 u64 max = start + len; 4533 u32 flags = 0; 4534 u32 found_type; 4535 u64 last; 4536 u64 last_for_get_extent = 0; 4537 u64 disko = 0; 4538 u64 isize = i_size_read(inode); 4539 struct btrfs_key found_key; 4540 struct extent_map *em = NULL; 4541 struct extent_state *cached_state = NULL; 4542 struct btrfs_path *path; 4543 struct btrfs_root *root = BTRFS_I(inode)->root; 4544 struct fiemap_cache cache = { 0 }; 4545 int end = 0; 4546 u64 em_start = 0; 4547 u64 em_len = 0; 4548 u64 em_end = 0; 4549 4550 if (len == 0) 4551 return -EINVAL; 4552 4553 path = btrfs_alloc_path(); 4554 if (!path) 4555 return -ENOMEM; 4556 path->leave_spinning = 1; 4557 4558 start = round_down(start, btrfs_inode_sectorsize(inode)); 4559 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4560 4561 /* 4562 * lookup the last file extent. We're not using i_size here 4563 * because there might be preallocation past i_size 4564 */ 4565 ret = btrfs_lookup_file_extent(NULL, root, path, 4566 btrfs_ino(BTRFS_I(inode)), -1, 0); 4567 if (ret < 0) { 4568 btrfs_free_path(path); 4569 return ret; 4570 } else { 4571 WARN_ON(!ret); 4572 if (ret == 1) 4573 ret = 0; 4574 } 4575 4576 path->slots[0]--; 4577 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4578 found_type = found_key.type; 4579 4580 /* No extents, but there might be delalloc bits */ 4581 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4582 found_type != BTRFS_EXTENT_DATA_KEY) { 4583 /* have to trust i_size as the end */ 4584 last = (u64)-1; 4585 last_for_get_extent = isize; 4586 } else { 4587 /* 4588 * remember the start of the last extent. There are a 4589 * bunch of different factors that go into the length of the 4590 * extent, so its much less complex to remember where it started 4591 */ 4592 last = found_key.offset; 4593 last_for_get_extent = last + 1; 4594 } 4595 btrfs_release_path(path); 4596 4597 /* 4598 * we might have some extents allocated but more delalloc past those 4599 * extents. so, we trust isize unless the start of the last extent is 4600 * beyond isize 4601 */ 4602 if (last < isize) { 4603 last = (u64)-1; 4604 last_for_get_extent = isize; 4605 } 4606 4607 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4608 &cached_state); 4609 4610 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4611 if (!em) 4612 goto out; 4613 if (IS_ERR(em)) { 4614 ret = PTR_ERR(em); 4615 goto out; 4616 } 4617 4618 while (!end) { 4619 u64 offset_in_extent = 0; 4620 4621 /* break if the extent we found is outside the range */ 4622 if (em->start >= max || extent_map_end(em) < off) 4623 break; 4624 4625 /* 4626 * get_extent may return an extent that starts before our 4627 * requested range. We have to make sure the ranges 4628 * we return to fiemap always move forward and don't 4629 * overlap, so adjust the offsets here 4630 */ 4631 em_start = max(em->start, off); 4632 4633 /* 4634 * record the offset from the start of the extent 4635 * for adjusting the disk offset below. Only do this if the 4636 * extent isn't compressed since our in ram offset may be past 4637 * what we have actually allocated on disk. 4638 */ 4639 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4640 offset_in_extent = em_start - em->start; 4641 em_end = extent_map_end(em); 4642 em_len = em_end - em_start; 4643 flags = 0; 4644 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4645 disko = em->block_start + offset_in_extent; 4646 else 4647 disko = 0; 4648 4649 /* 4650 * bump off for our next call to get_extent 4651 */ 4652 off = extent_map_end(em); 4653 if (off >= max) 4654 end = 1; 4655 4656 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4657 end = 1; 4658 flags |= FIEMAP_EXTENT_LAST; 4659 } else if (em->block_start == EXTENT_MAP_INLINE) { 4660 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4661 FIEMAP_EXTENT_NOT_ALIGNED); 4662 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4663 flags |= (FIEMAP_EXTENT_DELALLOC | 4664 FIEMAP_EXTENT_UNKNOWN); 4665 } else if (fieinfo->fi_extents_max) { 4666 u64 bytenr = em->block_start - 4667 (em->start - em->orig_start); 4668 4669 /* 4670 * As btrfs supports shared space, this information 4671 * can be exported to userspace tools via 4672 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4673 * then we're just getting a count and we can skip the 4674 * lookup stuff. 4675 */ 4676 ret = btrfs_check_shared(root, 4677 btrfs_ino(BTRFS_I(inode)), 4678 bytenr); 4679 if (ret < 0) 4680 goto out_free; 4681 if (ret) 4682 flags |= FIEMAP_EXTENT_SHARED; 4683 ret = 0; 4684 } 4685 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4686 flags |= FIEMAP_EXTENT_ENCODED; 4687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4688 flags |= FIEMAP_EXTENT_UNWRITTEN; 4689 4690 free_extent_map(em); 4691 em = NULL; 4692 if ((em_start >= last) || em_len == (u64)-1 || 4693 (last == (u64)-1 && isize <= em_end)) { 4694 flags |= FIEMAP_EXTENT_LAST; 4695 end = 1; 4696 } 4697 4698 /* now scan forward to see if this is really the last extent. */ 4699 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4700 if (IS_ERR(em)) { 4701 ret = PTR_ERR(em); 4702 goto out; 4703 } 4704 if (!em) { 4705 flags |= FIEMAP_EXTENT_LAST; 4706 end = 1; 4707 } 4708 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4709 em_len, flags); 4710 if (ret) { 4711 if (ret == 1) 4712 ret = 0; 4713 goto out_free; 4714 } 4715 } 4716 out_free: 4717 if (!ret) 4718 ret = emit_last_fiemap_cache(fieinfo, &cache); 4719 free_extent_map(em); 4720 out: 4721 btrfs_free_path(path); 4722 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4723 &cached_state); 4724 return ret; 4725 } 4726 4727 static void __free_extent_buffer(struct extent_buffer *eb) 4728 { 4729 btrfs_leak_debug_del(&eb->leak_list); 4730 kmem_cache_free(extent_buffer_cache, eb); 4731 } 4732 4733 int extent_buffer_under_io(struct extent_buffer *eb) 4734 { 4735 return (atomic_read(&eb->io_pages) || 4736 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4737 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4738 } 4739 4740 /* 4741 * Release all pages attached to the extent buffer. 4742 */ 4743 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4744 { 4745 int i; 4746 int num_pages; 4747 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4748 4749 BUG_ON(extent_buffer_under_io(eb)); 4750 4751 num_pages = num_extent_pages(eb); 4752 for (i = 0; i < num_pages; i++) { 4753 struct page *page = eb->pages[i]; 4754 4755 if (!page) 4756 continue; 4757 if (mapped) 4758 spin_lock(&page->mapping->private_lock); 4759 /* 4760 * We do this since we'll remove the pages after we've 4761 * removed the eb from the radix tree, so we could race 4762 * and have this page now attached to the new eb. So 4763 * only clear page_private if it's still connected to 4764 * this eb. 4765 */ 4766 if (PagePrivate(page) && 4767 page->private == (unsigned long)eb) { 4768 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4769 BUG_ON(PageDirty(page)); 4770 BUG_ON(PageWriteback(page)); 4771 /* 4772 * We need to make sure we haven't be attached 4773 * to a new eb. 4774 */ 4775 ClearPagePrivate(page); 4776 set_page_private(page, 0); 4777 /* One for the page private */ 4778 put_page(page); 4779 } 4780 4781 if (mapped) 4782 spin_unlock(&page->mapping->private_lock); 4783 4784 /* One for when we allocated the page */ 4785 put_page(page); 4786 } 4787 } 4788 4789 /* 4790 * Helper for releasing the extent buffer. 4791 */ 4792 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4793 { 4794 btrfs_release_extent_buffer_pages(eb); 4795 __free_extent_buffer(eb); 4796 } 4797 4798 static struct extent_buffer * 4799 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4800 unsigned long len) 4801 { 4802 struct extent_buffer *eb = NULL; 4803 4804 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4805 eb->start = start; 4806 eb->len = len; 4807 eb->fs_info = fs_info; 4808 eb->bflags = 0; 4809 rwlock_init(&eb->lock); 4810 atomic_set(&eb->blocking_readers, 0); 4811 atomic_set(&eb->blocking_writers, 0); 4812 eb->lock_nested = false; 4813 init_waitqueue_head(&eb->write_lock_wq); 4814 init_waitqueue_head(&eb->read_lock_wq); 4815 4816 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4817 4818 spin_lock_init(&eb->refs_lock); 4819 atomic_set(&eb->refs, 1); 4820 atomic_set(&eb->io_pages, 0); 4821 4822 /* 4823 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4824 */ 4825 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4826 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4827 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4828 4829 #ifdef CONFIG_BTRFS_DEBUG 4830 atomic_set(&eb->spinning_writers, 0); 4831 atomic_set(&eb->spinning_readers, 0); 4832 atomic_set(&eb->read_locks, 0); 4833 atomic_set(&eb->write_locks, 0); 4834 #endif 4835 4836 return eb; 4837 } 4838 4839 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4840 { 4841 int i; 4842 struct page *p; 4843 struct extent_buffer *new; 4844 int num_pages = num_extent_pages(src); 4845 4846 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4847 if (new == NULL) 4848 return NULL; 4849 4850 for (i = 0; i < num_pages; i++) { 4851 p = alloc_page(GFP_NOFS); 4852 if (!p) { 4853 btrfs_release_extent_buffer(new); 4854 return NULL; 4855 } 4856 attach_extent_buffer_page(new, p); 4857 WARN_ON(PageDirty(p)); 4858 SetPageUptodate(p); 4859 new->pages[i] = p; 4860 copy_page(page_address(p), page_address(src->pages[i])); 4861 } 4862 4863 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4864 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4865 4866 return new; 4867 } 4868 4869 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4870 u64 start, unsigned long len) 4871 { 4872 struct extent_buffer *eb; 4873 int num_pages; 4874 int i; 4875 4876 eb = __alloc_extent_buffer(fs_info, start, len); 4877 if (!eb) 4878 return NULL; 4879 4880 num_pages = num_extent_pages(eb); 4881 for (i = 0; i < num_pages; i++) { 4882 eb->pages[i] = alloc_page(GFP_NOFS); 4883 if (!eb->pages[i]) 4884 goto err; 4885 } 4886 set_extent_buffer_uptodate(eb); 4887 btrfs_set_header_nritems(eb, 0); 4888 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4889 4890 return eb; 4891 err: 4892 for (; i > 0; i--) 4893 __free_page(eb->pages[i - 1]); 4894 __free_extent_buffer(eb); 4895 return NULL; 4896 } 4897 4898 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4899 u64 start) 4900 { 4901 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4902 } 4903 4904 static void check_buffer_tree_ref(struct extent_buffer *eb) 4905 { 4906 int refs; 4907 /* the ref bit is tricky. We have to make sure it is set 4908 * if we have the buffer dirty. Otherwise the 4909 * code to free a buffer can end up dropping a dirty 4910 * page 4911 * 4912 * Once the ref bit is set, it won't go away while the 4913 * buffer is dirty or in writeback, and it also won't 4914 * go away while we have the reference count on the 4915 * eb bumped. 4916 * 4917 * We can't just set the ref bit without bumping the 4918 * ref on the eb because free_extent_buffer might 4919 * see the ref bit and try to clear it. If this happens 4920 * free_extent_buffer might end up dropping our original 4921 * ref by mistake and freeing the page before we are able 4922 * to add one more ref. 4923 * 4924 * So bump the ref count first, then set the bit. If someone 4925 * beat us to it, drop the ref we added. 4926 */ 4927 refs = atomic_read(&eb->refs); 4928 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4929 return; 4930 4931 spin_lock(&eb->refs_lock); 4932 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4933 atomic_inc(&eb->refs); 4934 spin_unlock(&eb->refs_lock); 4935 } 4936 4937 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4938 struct page *accessed) 4939 { 4940 int num_pages, i; 4941 4942 check_buffer_tree_ref(eb); 4943 4944 num_pages = num_extent_pages(eb); 4945 for (i = 0; i < num_pages; i++) { 4946 struct page *p = eb->pages[i]; 4947 4948 if (p != accessed) 4949 mark_page_accessed(p); 4950 } 4951 } 4952 4953 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4954 u64 start) 4955 { 4956 struct extent_buffer *eb; 4957 4958 rcu_read_lock(); 4959 eb = radix_tree_lookup(&fs_info->buffer_radix, 4960 start >> PAGE_SHIFT); 4961 if (eb && atomic_inc_not_zero(&eb->refs)) { 4962 rcu_read_unlock(); 4963 /* 4964 * Lock our eb's refs_lock to avoid races with 4965 * free_extent_buffer. When we get our eb it might be flagged 4966 * with EXTENT_BUFFER_STALE and another task running 4967 * free_extent_buffer might have seen that flag set, 4968 * eb->refs == 2, that the buffer isn't under IO (dirty and 4969 * writeback flags not set) and it's still in the tree (flag 4970 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4971 * of decrementing the extent buffer's reference count twice. 4972 * So here we could race and increment the eb's reference count, 4973 * clear its stale flag, mark it as dirty and drop our reference 4974 * before the other task finishes executing free_extent_buffer, 4975 * which would later result in an attempt to free an extent 4976 * buffer that is dirty. 4977 */ 4978 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4979 spin_lock(&eb->refs_lock); 4980 spin_unlock(&eb->refs_lock); 4981 } 4982 mark_extent_buffer_accessed(eb, NULL); 4983 return eb; 4984 } 4985 rcu_read_unlock(); 4986 4987 return NULL; 4988 } 4989 4990 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4991 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4992 u64 start) 4993 { 4994 struct extent_buffer *eb, *exists = NULL; 4995 int ret; 4996 4997 eb = find_extent_buffer(fs_info, start); 4998 if (eb) 4999 return eb; 5000 eb = alloc_dummy_extent_buffer(fs_info, start); 5001 if (!eb) 5002 return NULL; 5003 eb->fs_info = fs_info; 5004 again: 5005 ret = radix_tree_preload(GFP_NOFS); 5006 if (ret) 5007 goto free_eb; 5008 spin_lock(&fs_info->buffer_lock); 5009 ret = radix_tree_insert(&fs_info->buffer_radix, 5010 start >> PAGE_SHIFT, eb); 5011 spin_unlock(&fs_info->buffer_lock); 5012 radix_tree_preload_end(); 5013 if (ret == -EEXIST) { 5014 exists = find_extent_buffer(fs_info, start); 5015 if (exists) 5016 goto free_eb; 5017 else 5018 goto again; 5019 } 5020 check_buffer_tree_ref(eb); 5021 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5022 5023 return eb; 5024 free_eb: 5025 btrfs_release_extent_buffer(eb); 5026 return exists; 5027 } 5028 #endif 5029 5030 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5031 u64 start) 5032 { 5033 unsigned long len = fs_info->nodesize; 5034 int num_pages; 5035 int i; 5036 unsigned long index = start >> PAGE_SHIFT; 5037 struct extent_buffer *eb; 5038 struct extent_buffer *exists = NULL; 5039 struct page *p; 5040 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5041 int uptodate = 1; 5042 int ret; 5043 5044 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5045 btrfs_err(fs_info, "bad tree block start %llu", start); 5046 return ERR_PTR(-EINVAL); 5047 } 5048 5049 eb = find_extent_buffer(fs_info, start); 5050 if (eb) 5051 return eb; 5052 5053 eb = __alloc_extent_buffer(fs_info, start, len); 5054 if (!eb) 5055 return ERR_PTR(-ENOMEM); 5056 5057 num_pages = num_extent_pages(eb); 5058 for (i = 0; i < num_pages; i++, index++) { 5059 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5060 if (!p) { 5061 exists = ERR_PTR(-ENOMEM); 5062 goto free_eb; 5063 } 5064 5065 spin_lock(&mapping->private_lock); 5066 if (PagePrivate(p)) { 5067 /* 5068 * We could have already allocated an eb for this page 5069 * and attached one so lets see if we can get a ref on 5070 * the existing eb, and if we can we know it's good and 5071 * we can just return that one, else we know we can just 5072 * overwrite page->private. 5073 */ 5074 exists = (struct extent_buffer *)p->private; 5075 if (atomic_inc_not_zero(&exists->refs)) { 5076 spin_unlock(&mapping->private_lock); 5077 unlock_page(p); 5078 put_page(p); 5079 mark_extent_buffer_accessed(exists, p); 5080 goto free_eb; 5081 } 5082 exists = NULL; 5083 5084 /* 5085 * Do this so attach doesn't complain and we need to 5086 * drop the ref the old guy had. 5087 */ 5088 ClearPagePrivate(p); 5089 WARN_ON(PageDirty(p)); 5090 put_page(p); 5091 } 5092 attach_extent_buffer_page(eb, p); 5093 spin_unlock(&mapping->private_lock); 5094 WARN_ON(PageDirty(p)); 5095 eb->pages[i] = p; 5096 if (!PageUptodate(p)) 5097 uptodate = 0; 5098 5099 /* 5100 * We can't unlock the pages just yet since the extent buffer 5101 * hasn't been properly inserted in the radix tree, this 5102 * opens a race with btree_releasepage which can free a page 5103 * while we are still filling in all pages for the buffer and 5104 * we could crash. 5105 */ 5106 } 5107 if (uptodate) 5108 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5109 again: 5110 ret = radix_tree_preload(GFP_NOFS); 5111 if (ret) { 5112 exists = ERR_PTR(ret); 5113 goto free_eb; 5114 } 5115 5116 spin_lock(&fs_info->buffer_lock); 5117 ret = radix_tree_insert(&fs_info->buffer_radix, 5118 start >> PAGE_SHIFT, eb); 5119 spin_unlock(&fs_info->buffer_lock); 5120 radix_tree_preload_end(); 5121 if (ret == -EEXIST) { 5122 exists = find_extent_buffer(fs_info, start); 5123 if (exists) 5124 goto free_eb; 5125 else 5126 goto again; 5127 } 5128 /* add one reference for the tree */ 5129 check_buffer_tree_ref(eb); 5130 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5131 5132 /* 5133 * Now it's safe to unlock the pages because any calls to 5134 * btree_releasepage will correctly detect that a page belongs to a 5135 * live buffer and won't free them prematurely. 5136 */ 5137 for (i = 0; i < num_pages; i++) 5138 unlock_page(eb->pages[i]); 5139 return eb; 5140 5141 free_eb: 5142 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5143 for (i = 0; i < num_pages; i++) { 5144 if (eb->pages[i]) 5145 unlock_page(eb->pages[i]); 5146 } 5147 5148 btrfs_release_extent_buffer(eb); 5149 return exists; 5150 } 5151 5152 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5153 { 5154 struct extent_buffer *eb = 5155 container_of(head, struct extent_buffer, rcu_head); 5156 5157 __free_extent_buffer(eb); 5158 } 5159 5160 static int release_extent_buffer(struct extent_buffer *eb) 5161 { 5162 lockdep_assert_held(&eb->refs_lock); 5163 5164 WARN_ON(atomic_read(&eb->refs) == 0); 5165 if (atomic_dec_and_test(&eb->refs)) { 5166 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5167 struct btrfs_fs_info *fs_info = eb->fs_info; 5168 5169 spin_unlock(&eb->refs_lock); 5170 5171 spin_lock(&fs_info->buffer_lock); 5172 radix_tree_delete(&fs_info->buffer_radix, 5173 eb->start >> PAGE_SHIFT); 5174 spin_unlock(&fs_info->buffer_lock); 5175 } else { 5176 spin_unlock(&eb->refs_lock); 5177 } 5178 5179 /* Should be safe to release our pages at this point */ 5180 btrfs_release_extent_buffer_pages(eb); 5181 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5182 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5183 __free_extent_buffer(eb); 5184 return 1; 5185 } 5186 #endif 5187 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5188 return 1; 5189 } 5190 spin_unlock(&eb->refs_lock); 5191 5192 return 0; 5193 } 5194 5195 void free_extent_buffer(struct extent_buffer *eb) 5196 { 5197 int refs; 5198 int old; 5199 if (!eb) 5200 return; 5201 5202 while (1) { 5203 refs = atomic_read(&eb->refs); 5204 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5205 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5206 refs == 1)) 5207 break; 5208 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5209 if (old == refs) 5210 return; 5211 } 5212 5213 spin_lock(&eb->refs_lock); 5214 if (atomic_read(&eb->refs) == 2 && 5215 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5216 !extent_buffer_under_io(eb) && 5217 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5218 atomic_dec(&eb->refs); 5219 5220 /* 5221 * I know this is terrible, but it's temporary until we stop tracking 5222 * the uptodate bits and such for the extent buffers. 5223 */ 5224 release_extent_buffer(eb); 5225 } 5226 5227 void free_extent_buffer_stale(struct extent_buffer *eb) 5228 { 5229 if (!eb) 5230 return; 5231 5232 spin_lock(&eb->refs_lock); 5233 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5234 5235 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5236 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5237 atomic_dec(&eb->refs); 5238 release_extent_buffer(eb); 5239 } 5240 5241 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5242 { 5243 int i; 5244 int num_pages; 5245 struct page *page; 5246 5247 num_pages = num_extent_pages(eb); 5248 5249 for (i = 0; i < num_pages; i++) { 5250 page = eb->pages[i]; 5251 if (!PageDirty(page)) 5252 continue; 5253 5254 lock_page(page); 5255 WARN_ON(!PagePrivate(page)); 5256 5257 clear_page_dirty_for_io(page); 5258 xa_lock_irq(&page->mapping->i_pages); 5259 if (!PageDirty(page)) 5260 __xa_clear_mark(&page->mapping->i_pages, 5261 page_index(page), PAGECACHE_TAG_DIRTY); 5262 xa_unlock_irq(&page->mapping->i_pages); 5263 ClearPageError(page); 5264 unlock_page(page); 5265 } 5266 WARN_ON(atomic_read(&eb->refs) == 0); 5267 } 5268 5269 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5270 { 5271 int i; 5272 int num_pages; 5273 bool was_dirty; 5274 5275 check_buffer_tree_ref(eb); 5276 5277 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5278 5279 num_pages = num_extent_pages(eb); 5280 WARN_ON(atomic_read(&eb->refs) == 0); 5281 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5282 5283 if (!was_dirty) 5284 for (i = 0; i < num_pages; i++) 5285 set_page_dirty(eb->pages[i]); 5286 5287 #ifdef CONFIG_BTRFS_DEBUG 5288 for (i = 0; i < num_pages; i++) 5289 ASSERT(PageDirty(eb->pages[i])); 5290 #endif 5291 5292 return was_dirty; 5293 } 5294 5295 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5296 { 5297 int i; 5298 struct page *page; 5299 int num_pages; 5300 5301 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5302 num_pages = num_extent_pages(eb); 5303 for (i = 0; i < num_pages; i++) { 5304 page = eb->pages[i]; 5305 if (page) 5306 ClearPageUptodate(page); 5307 } 5308 } 5309 5310 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5311 { 5312 int i; 5313 struct page *page; 5314 int num_pages; 5315 5316 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5317 num_pages = num_extent_pages(eb); 5318 for (i = 0; i < num_pages; i++) { 5319 page = eb->pages[i]; 5320 SetPageUptodate(page); 5321 } 5322 } 5323 5324 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5325 { 5326 int i; 5327 struct page *page; 5328 int err; 5329 int ret = 0; 5330 int locked_pages = 0; 5331 int all_uptodate = 1; 5332 int num_pages; 5333 unsigned long num_reads = 0; 5334 struct bio *bio = NULL; 5335 unsigned long bio_flags = 0; 5336 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree; 5337 5338 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5339 return 0; 5340 5341 num_pages = num_extent_pages(eb); 5342 for (i = 0; i < num_pages; i++) { 5343 page = eb->pages[i]; 5344 if (wait == WAIT_NONE) { 5345 if (!trylock_page(page)) 5346 goto unlock_exit; 5347 } else { 5348 lock_page(page); 5349 } 5350 locked_pages++; 5351 } 5352 /* 5353 * We need to firstly lock all pages to make sure that 5354 * the uptodate bit of our pages won't be affected by 5355 * clear_extent_buffer_uptodate(). 5356 */ 5357 for (i = 0; i < num_pages; i++) { 5358 page = eb->pages[i]; 5359 if (!PageUptodate(page)) { 5360 num_reads++; 5361 all_uptodate = 0; 5362 } 5363 } 5364 5365 if (all_uptodate) { 5366 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5367 goto unlock_exit; 5368 } 5369 5370 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5371 eb->read_mirror = 0; 5372 atomic_set(&eb->io_pages, num_reads); 5373 for (i = 0; i < num_pages; i++) { 5374 page = eb->pages[i]; 5375 5376 if (!PageUptodate(page)) { 5377 if (ret) { 5378 atomic_dec(&eb->io_pages); 5379 unlock_page(page); 5380 continue; 5381 } 5382 5383 ClearPageError(page); 5384 err = __extent_read_full_page(tree, page, 5385 btree_get_extent, &bio, 5386 mirror_num, &bio_flags, 5387 REQ_META); 5388 if (err) { 5389 ret = err; 5390 /* 5391 * We use &bio in above __extent_read_full_page, 5392 * so we ensure that if it returns error, the 5393 * current page fails to add itself to bio and 5394 * it's been unlocked. 5395 * 5396 * We must dec io_pages by ourselves. 5397 */ 5398 atomic_dec(&eb->io_pages); 5399 } 5400 } else { 5401 unlock_page(page); 5402 } 5403 } 5404 5405 if (bio) { 5406 err = submit_one_bio(bio, mirror_num, bio_flags); 5407 if (err) 5408 return err; 5409 } 5410 5411 if (ret || wait != WAIT_COMPLETE) 5412 return ret; 5413 5414 for (i = 0; i < num_pages; i++) { 5415 page = eb->pages[i]; 5416 wait_on_page_locked(page); 5417 if (!PageUptodate(page)) 5418 ret = -EIO; 5419 } 5420 5421 return ret; 5422 5423 unlock_exit: 5424 while (locked_pages > 0) { 5425 locked_pages--; 5426 page = eb->pages[locked_pages]; 5427 unlock_page(page); 5428 } 5429 return ret; 5430 } 5431 5432 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5433 unsigned long start, unsigned long len) 5434 { 5435 size_t cur; 5436 size_t offset; 5437 struct page *page; 5438 char *kaddr; 5439 char *dst = (char *)dstv; 5440 size_t start_offset = offset_in_page(eb->start); 5441 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5442 5443 if (start + len > eb->len) { 5444 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5445 eb->start, eb->len, start, len); 5446 memset(dst, 0, len); 5447 return; 5448 } 5449 5450 offset = offset_in_page(start_offset + start); 5451 5452 while (len > 0) { 5453 page = eb->pages[i]; 5454 5455 cur = min(len, (PAGE_SIZE - offset)); 5456 kaddr = page_address(page); 5457 memcpy(dst, kaddr + offset, cur); 5458 5459 dst += cur; 5460 len -= cur; 5461 offset = 0; 5462 i++; 5463 } 5464 } 5465 5466 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5467 void __user *dstv, 5468 unsigned long start, unsigned long len) 5469 { 5470 size_t cur; 5471 size_t offset; 5472 struct page *page; 5473 char *kaddr; 5474 char __user *dst = (char __user *)dstv; 5475 size_t start_offset = offset_in_page(eb->start); 5476 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5477 int ret = 0; 5478 5479 WARN_ON(start > eb->len); 5480 WARN_ON(start + len > eb->start + eb->len); 5481 5482 offset = offset_in_page(start_offset + start); 5483 5484 while (len > 0) { 5485 page = eb->pages[i]; 5486 5487 cur = min(len, (PAGE_SIZE - offset)); 5488 kaddr = page_address(page); 5489 if (copy_to_user(dst, kaddr + offset, cur)) { 5490 ret = -EFAULT; 5491 break; 5492 } 5493 5494 dst += cur; 5495 len -= cur; 5496 offset = 0; 5497 i++; 5498 } 5499 5500 return ret; 5501 } 5502 5503 /* 5504 * return 0 if the item is found within a page. 5505 * return 1 if the item spans two pages. 5506 * return -EINVAL otherwise. 5507 */ 5508 int map_private_extent_buffer(const struct extent_buffer *eb, 5509 unsigned long start, unsigned long min_len, 5510 char **map, unsigned long *map_start, 5511 unsigned long *map_len) 5512 { 5513 size_t offset; 5514 char *kaddr; 5515 struct page *p; 5516 size_t start_offset = offset_in_page(eb->start); 5517 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5518 unsigned long end_i = (start_offset + start + min_len - 1) >> 5519 PAGE_SHIFT; 5520 5521 if (start + min_len > eb->len) { 5522 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5523 eb->start, eb->len, start, min_len); 5524 return -EINVAL; 5525 } 5526 5527 if (i != end_i) 5528 return 1; 5529 5530 if (i == 0) { 5531 offset = start_offset; 5532 *map_start = 0; 5533 } else { 5534 offset = 0; 5535 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5536 } 5537 5538 p = eb->pages[i]; 5539 kaddr = page_address(p); 5540 *map = kaddr + offset; 5541 *map_len = PAGE_SIZE - offset; 5542 return 0; 5543 } 5544 5545 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5546 unsigned long start, unsigned long len) 5547 { 5548 size_t cur; 5549 size_t offset; 5550 struct page *page; 5551 char *kaddr; 5552 char *ptr = (char *)ptrv; 5553 size_t start_offset = offset_in_page(eb->start); 5554 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5555 int ret = 0; 5556 5557 WARN_ON(start > eb->len); 5558 WARN_ON(start + len > eb->start + eb->len); 5559 5560 offset = offset_in_page(start_offset + start); 5561 5562 while (len > 0) { 5563 page = eb->pages[i]; 5564 5565 cur = min(len, (PAGE_SIZE - offset)); 5566 5567 kaddr = page_address(page); 5568 ret = memcmp(ptr, kaddr + offset, cur); 5569 if (ret) 5570 break; 5571 5572 ptr += cur; 5573 len -= cur; 5574 offset = 0; 5575 i++; 5576 } 5577 return ret; 5578 } 5579 5580 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5581 const void *srcv) 5582 { 5583 char *kaddr; 5584 5585 WARN_ON(!PageUptodate(eb->pages[0])); 5586 kaddr = page_address(eb->pages[0]); 5587 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5588 BTRFS_FSID_SIZE); 5589 } 5590 5591 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5592 { 5593 char *kaddr; 5594 5595 WARN_ON(!PageUptodate(eb->pages[0])); 5596 kaddr = page_address(eb->pages[0]); 5597 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5598 BTRFS_FSID_SIZE); 5599 } 5600 5601 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5602 unsigned long start, unsigned long len) 5603 { 5604 size_t cur; 5605 size_t offset; 5606 struct page *page; 5607 char *kaddr; 5608 char *src = (char *)srcv; 5609 size_t start_offset = offset_in_page(eb->start); 5610 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5611 5612 WARN_ON(start > eb->len); 5613 WARN_ON(start + len > eb->start + eb->len); 5614 5615 offset = offset_in_page(start_offset + start); 5616 5617 while (len > 0) { 5618 page = eb->pages[i]; 5619 WARN_ON(!PageUptodate(page)); 5620 5621 cur = min(len, PAGE_SIZE - offset); 5622 kaddr = page_address(page); 5623 memcpy(kaddr + offset, src, cur); 5624 5625 src += cur; 5626 len -= cur; 5627 offset = 0; 5628 i++; 5629 } 5630 } 5631 5632 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5633 unsigned long len) 5634 { 5635 size_t cur; 5636 size_t offset; 5637 struct page *page; 5638 char *kaddr; 5639 size_t start_offset = offset_in_page(eb->start); 5640 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5641 5642 WARN_ON(start > eb->len); 5643 WARN_ON(start + len > eb->start + eb->len); 5644 5645 offset = offset_in_page(start_offset + start); 5646 5647 while (len > 0) { 5648 page = eb->pages[i]; 5649 WARN_ON(!PageUptodate(page)); 5650 5651 cur = min(len, PAGE_SIZE - offset); 5652 kaddr = page_address(page); 5653 memset(kaddr + offset, 0, cur); 5654 5655 len -= cur; 5656 offset = 0; 5657 i++; 5658 } 5659 } 5660 5661 void copy_extent_buffer_full(struct extent_buffer *dst, 5662 struct extent_buffer *src) 5663 { 5664 int i; 5665 int num_pages; 5666 5667 ASSERT(dst->len == src->len); 5668 5669 num_pages = num_extent_pages(dst); 5670 for (i = 0; i < num_pages; i++) 5671 copy_page(page_address(dst->pages[i]), 5672 page_address(src->pages[i])); 5673 } 5674 5675 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5676 unsigned long dst_offset, unsigned long src_offset, 5677 unsigned long len) 5678 { 5679 u64 dst_len = dst->len; 5680 size_t cur; 5681 size_t offset; 5682 struct page *page; 5683 char *kaddr; 5684 size_t start_offset = offset_in_page(dst->start); 5685 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5686 5687 WARN_ON(src->len != dst_len); 5688 5689 offset = offset_in_page(start_offset + dst_offset); 5690 5691 while (len > 0) { 5692 page = dst->pages[i]; 5693 WARN_ON(!PageUptodate(page)); 5694 5695 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5696 5697 kaddr = page_address(page); 5698 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5699 5700 src_offset += cur; 5701 len -= cur; 5702 offset = 0; 5703 i++; 5704 } 5705 } 5706 5707 /* 5708 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5709 * given bit number 5710 * @eb: the extent buffer 5711 * @start: offset of the bitmap item in the extent buffer 5712 * @nr: bit number 5713 * @page_index: return index of the page in the extent buffer that contains the 5714 * given bit number 5715 * @page_offset: return offset into the page given by page_index 5716 * 5717 * This helper hides the ugliness of finding the byte in an extent buffer which 5718 * contains a given bit. 5719 */ 5720 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5721 unsigned long start, unsigned long nr, 5722 unsigned long *page_index, 5723 size_t *page_offset) 5724 { 5725 size_t start_offset = offset_in_page(eb->start); 5726 size_t byte_offset = BIT_BYTE(nr); 5727 size_t offset; 5728 5729 /* 5730 * The byte we want is the offset of the extent buffer + the offset of 5731 * the bitmap item in the extent buffer + the offset of the byte in the 5732 * bitmap item. 5733 */ 5734 offset = start_offset + start + byte_offset; 5735 5736 *page_index = offset >> PAGE_SHIFT; 5737 *page_offset = offset_in_page(offset); 5738 } 5739 5740 /** 5741 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5742 * @eb: the extent buffer 5743 * @start: offset of the bitmap item in the extent buffer 5744 * @nr: bit number to test 5745 */ 5746 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5747 unsigned long nr) 5748 { 5749 u8 *kaddr; 5750 struct page *page; 5751 unsigned long i; 5752 size_t offset; 5753 5754 eb_bitmap_offset(eb, start, nr, &i, &offset); 5755 page = eb->pages[i]; 5756 WARN_ON(!PageUptodate(page)); 5757 kaddr = page_address(page); 5758 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5759 } 5760 5761 /** 5762 * extent_buffer_bitmap_set - set an area of a bitmap 5763 * @eb: the extent buffer 5764 * @start: offset of the bitmap item in the extent buffer 5765 * @pos: bit number of the first bit 5766 * @len: number of bits to set 5767 */ 5768 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5769 unsigned long pos, unsigned long len) 5770 { 5771 u8 *kaddr; 5772 struct page *page; 5773 unsigned long i; 5774 size_t offset; 5775 const unsigned int size = pos + len; 5776 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5777 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5778 5779 eb_bitmap_offset(eb, start, pos, &i, &offset); 5780 page = eb->pages[i]; 5781 WARN_ON(!PageUptodate(page)); 5782 kaddr = page_address(page); 5783 5784 while (len >= bits_to_set) { 5785 kaddr[offset] |= mask_to_set; 5786 len -= bits_to_set; 5787 bits_to_set = BITS_PER_BYTE; 5788 mask_to_set = ~0; 5789 if (++offset >= PAGE_SIZE && len > 0) { 5790 offset = 0; 5791 page = eb->pages[++i]; 5792 WARN_ON(!PageUptodate(page)); 5793 kaddr = page_address(page); 5794 } 5795 } 5796 if (len) { 5797 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5798 kaddr[offset] |= mask_to_set; 5799 } 5800 } 5801 5802 5803 /** 5804 * extent_buffer_bitmap_clear - clear an area of a bitmap 5805 * @eb: the extent buffer 5806 * @start: offset of the bitmap item in the extent buffer 5807 * @pos: bit number of the first bit 5808 * @len: number of bits to clear 5809 */ 5810 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5811 unsigned long pos, unsigned long len) 5812 { 5813 u8 *kaddr; 5814 struct page *page; 5815 unsigned long i; 5816 size_t offset; 5817 const unsigned int size = pos + len; 5818 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5819 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5820 5821 eb_bitmap_offset(eb, start, pos, &i, &offset); 5822 page = eb->pages[i]; 5823 WARN_ON(!PageUptodate(page)); 5824 kaddr = page_address(page); 5825 5826 while (len >= bits_to_clear) { 5827 kaddr[offset] &= ~mask_to_clear; 5828 len -= bits_to_clear; 5829 bits_to_clear = BITS_PER_BYTE; 5830 mask_to_clear = ~0; 5831 if (++offset >= PAGE_SIZE && len > 0) { 5832 offset = 0; 5833 page = eb->pages[++i]; 5834 WARN_ON(!PageUptodate(page)); 5835 kaddr = page_address(page); 5836 } 5837 } 5838 if (len) { 5839 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5840 kaddr[offset] &= ~mask_to_clear; 5841 } 5842 } 5843 5844 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5845 { 5846 unsigned long distance = (src > dst) ? src - dst : dst - src; 5847 return distance < len; 5848 } 5849 5850 static void copy_pages(struct page *dst_page, struct page *src_page, 5851 unsigned long dst_off, unsigned long src_off, 5852 unsigned long len) 5853 { 5854 char *dst_kaddr = page_address(dst_page); 5855 char *src_kaddr; 5856 int must_memmove = 0; 5857 5858 if (dst_page != src_page) { 5859 src_kaddr = page_address(src_page); 5860 } else { 5861 src_kaddr = dst_kaddr; 5862 if (areas_overlap(src_off, dst_off, len)) 5863 must_memmove = 1; 5864 } 5865 5866 if (must_memmove) 5867 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5868 else 5869 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5870 } 5871 5872 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5873 unsigned long src_offset, unsigned long len) 5874 { 5875 struct btrfs_fs_info *fs_info = dst->fs_info; 5876 size_t cur; 5877 size_t dst_off_in_page; 5878 size_t src_off_in_page; 5879 size_t start_offset = offset_in_page(dst->start); 5880 unsigned long dst_i; 5881 unsigned long src_i; 5882 5883 if (src_offset + len > dst->len) { 5884 btrfs_err(fs_info, 5885 "memmove bogus src_offset %lu move len %lu dst len %lu", 5886 src_offset, len, dst->len); 5887 BUG(); 5888 } 5889 if (dst_offset + len > dst->len) { 5890 btrfs_err(fs_info, 5891 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5892 dst_offset, len, dst->len); 5893 BUG(); 5894 } 5895 5896 while (len > 0) { 5897 dst_off_in_page = offset_in_page(start_offset + dst_offset); 5898 src_off_in_page = offset_in_page(start_offset + src_offset); 5899 5900 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5901 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5902 5903 cur = min(len, (unsigned long)(PAGE_SIZE - 5904 src_off_in_page)); 5905 cur = min_t(unsigned long, cur, 5906 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5907 5908 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5909 dst_off_in_page, src_off_in_page, cur); 5910 5911 src_offset += cur; 5912 dst_offset += cur; 5913 len -= cur; 5914 } 5915 } 5916 5917 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5918 unsigned long src_offset, unsigned long len) 5919 { 5920 struct btrfs_fs_info *fs_info = dst->fs_info; 5921 size_t cur; 5922 size_t dst_off_in_page; 5923 size_t src_off_in_page; 5924 unsigned long dst_end = dst_offset + len - 1; 5925 unsigned long src_end = src_offset + len - 1; 5926 size_t start_offset = offset_in_page(dst->start); 5927 unsigned long dst_i; 5928 unsigned long src_i; 5929 5930 if (src_offset + len > dst->len) { 5931 btrfs_err(fs_info, 5932 "memmove bogus src_offset %lu move len %lu len %lu", 5933 src_offset, len, dst->len); 5934 BUG(); 5935 } 5936 if (dst_offset + len > dst->len) { 5937 btrfs_err(fs_info, 5938 "memmove bogus dst_offset %lu move len %lu len %lu", 5939 dst_offset, len, dst->len); 5940 BUG(); 5941 } 5942 if (dst_offset < src_offset) { 5943 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5944 return; 5945 } 5946 while (len > 0) { 5947 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5948 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5949 5950 dst_off_in_page = offset_in_page(start_offset + dst_end); 5951 src_off_in_page = offset_in_page(start_offset + src_end); 5952 5953 cur = min_t(unsigned long, len, src_off_in_page + 1); 5954 cur = min(cur, dst_off_in_page + 1); 5955 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5956 dst_off_in_page - cur + 1, 5957 src_off_in_page - cur + 1, cur); 5958 5959 dst_end -= cur; 5960 src_end -= cur; 5961 len -= cur; 5962 } 5963 } 5964 5965 int try_release_extent_buffer(struct page *page) 5966 { 5967 struct extent_buffer *eb; 5968 5969 /* 5970 * We need to make sure nobody is attaching this page to an eb right 5971 * now. 5972 */ 5973 spin_lock(&page->mapping->private_lock); 5974 if (!PagePrivate(page)) { 5975 spin_unlock(&page->mapping->private_lock); 5976 return 1; 5977 } 5978 5979 eb = (struct extent_buffer *)page->private; 5980 BUG_ON(!eb); 5981 5982 /* 5983 * This is a little awful but should be ok, we need to make sure that 5984 * the eb doesn't disappear out from under us while we're looking at 5985 * this page. 5986 */ 5987 spin_lock(&eb->refs_lock); 5988 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5989 spin_unlock(&eb->refs_lock); 5990 spin_unlock(&page->mapping->private_lock); 5991 return 0; 5992 } 5993 spin_unlock(&page->mapping->private_lock); 5994 5995 /* 5996 * If tree ref isn't set then we know the ref on this eb is a real ref, 5997 * so just return, this page will likely be freed soon anyway. 5998 */ 5999 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6000 spin_unlock(&eb->refs_lock); 6001 return 0; 6002 } 6003 6004 return release_extent_buffer(eb); 6005 } 6006