xref: /linux/fs/btrfs/extent_io.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	enum btrfs_compression_type compress_type;
100 	u32 len_to_oe_boundary;
101 	blk_opf_t opf;
102 	btrfs_bio_end_io_t end_io_func;
103 	struct writeback_control *wbc;
104 };
105 
106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
107 {
108 	struct btrfs_bio *bbio = bio_ctrl->bbio;
109 
110 	if (!bbio)
111 		return;
112 
113 	/* Caller should ensure the bio has at least some range added */
114 	ASSERT(bbio->bio.bi_iter.bi_size);
115 
116 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
117 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
118 		btrfs_submit_compressed_read(bbio);
119 	else
120 		btrfs_submit_bio(bbio, 0);
121 
122 	/* The bbio is owned by the end_io handler now */
123 	bio_ctrl->bbio = NULL;
124 }
125 
126 /*
127  * Submit or fail the current bio in the bio_ctrl structure.
128  */
129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
130 {
131 	struct btrfs_bio *bbio = bio_ctrl->bbio;
132 
133 	if (!bbio)
134 		return;
135 
136 	if (ret) {
137 		ASSERT(ret < 0);
138 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
139 		/* The bio is owned by the end_io handler now */
140 		bio_ctrl->bbio = NULL;
141 	} else {
142 		submit_one_bio(bio_ctrl);
143 	}
144 }
145 
146 int __init extent_buffer_init_cachep(void)
147 {
148 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
149 						sizeof(struct extent_buffer), 0, 0,
150 						NULL);
151 	if (!extent_buffer_cache)
152 		return -ENOMEM;
153 
154 	return 0;
155 }
156 
157 void __cold extent_buffer_free_cachep(void)
158 {
159 	/*
160 	 * Make sure all delayed rcu free are flushed before we
161 	 * destroy caches.
162 	 */
163 	rcu_barrier();
164 	kmem_cache_destroy(extent_buffer_cache);
165 }
166 
167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
168 {
169 	unsigned long index = start >> PAGE_SHIFT;
170 	unsigned long end_index = end >> PAGE_SHIFT;
171 	struct page *page;
172 
173 	while (index <= end_index) {
174 		page = find_get_page(inode->i_mapping, index);
175 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 		clear_page_dirty_for_io(page);
177 		put_page(page);
178 		index++;
179 	}
180 }
181 
182 static void process_one_page(struct btrfs_fs_info *fs_info,
183 			     struct page *page, struct page *locked_page,
184 			     unsigned long page_ops, u64 start, u64 end)
185 {
186 	struct folio *folio = page_folio(page);
187 	u32 len;
188 
189 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 	len = end + 1 - start;
191 
192 	if (page_ops & PAGE_SET_ORDERED)
193 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
194 	if (page_ops & PAGE_START_WRITEBACK) {
195 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
197 	}
198 	if (page_ops & PAGE_END_WRITEBACK)
199 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
200 
201 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
203 }
204 
205 static void __process_pages_contig(struct address_space *mapping,
206 				   struct page *locked_page, u64 start, u64 end,
207 				   unsigned long page_ops)
208 {
209 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
210 	pgoff_t start_index = start >> PAGE_SHIFT;
211 	pgoff_t end_index = end >> PAGE_SHIFT;
212 	pgoff_t index = start_index;
213 	struct folio_batch fbatch;
214 	int i;
215 
216 	folio_batch_init(&fbatch);
217 	while (index <= end_index) {
218 		int found_folios;
219 
220 		found_folios = filemap_get_folios_contig(mapping, &index,
221 				end_index, &fbatch);
222 		for (i = 0; i < found_folios; i++) {
223 			struct folio *folio = fbatch.folios[i];
224 
225 			process_one_page(fs_info, &folio->page, locked_page,
226 					 page_ops, start, end);
227 		}
228 		folio_batch_release(&fbatch);
229 		cond_resched();
230 	}
231 }
232 
233 static noinline void __unlock_for_delalloc(struct inode *inode,
234 					   struct page *locked_page,
235 					   u64 start, u64 end)
236 {
237 	unsigned long index = start >> PAGE_SHIFT;
238 	unsigned long end_index = end >> PAGE_SHIFT;
239 
240 	ASSERT(locked_page);
241 	if (index == locked_page->index && end_index == index)
242 		return;
243 
244 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
245 			       PAGE_UNLOCK);
246 }
247 
248 static noinline int lock_delalloc_pages(struct inode *inode,
249 					struct page *locked_page,
250 					u64 start,
251 					u64 end)
252 {
253 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 	struct address_space *mapping = inode->i_mapping;
255 	pgoff_t start_index = start >> PAGE_SHIFT;
256 	pgoff_t end_index = end >> PAGE_SHIFT;
257 	pgoff_t index = start_index;
258 	u64 processed_end = start;
259 	struct folio_batch fbatch;
260 
261 	if (index == locked_page->index && index == end_index)
262 		return 0;
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		unsigned int found_folios, i;
267 
268 		found_folios = filemap_get_folios_contig(mapping, &index,
269 				end_index, &fbatch);
270 		if (found_folios == 0)
271 			goto out;
272 
273 		for (i = 0; i < found_folios; i++) {
274 			struct folio *folio = fbatch.folios[i];
275 			struct page *page = folio_page(folio, 0);
276 			u32 len = end + 1 - start;
277 
278 			if (page == locked_page)
279 				continue;
280 
281 			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 							  len))
283 				goto out;
284 
285 			if (!PageDirty(page) || page->mapping != mapping) {
286 				btrfs_folio_end_writer_lock(fs_info, folio, start,
287 							    len);
288 				goto out;
289 			}
290 
291 			processed_end = page_offset(page) + PAGE_SIZE - 1;
292 		}
293 		folio_batch_release(&fbatch);
294 		cond_resched();
295 	}
296 
297 	return 0;
298 out:
299 	folio_batch_release(&fbatch);
300 	if (processed_end > start)
301 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302 	return -EAGAIN;
303 }
304 
305 /*
306  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307  * more than @max_bytes.
308  *
309  * @start:	The original start bytenr to search.
310  *		Will store the extent range start bytenr.
311  * @end:	The original end bytenr of the search range
312  *		Will store the extent range end bytenr.
313  *
314  * Return true if we find a delalloc range which starts inside the original
315  * range, and @start/@end will store the delalloc range start/end.
316  *
317  * Return false if we can't find any delalloc range which starts inside the
318  * original range, and @start/@end will be the non-delalloc range start/end.
319  */
320 EXPORT_FOR_TESTS
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 				    struct page *locked_page, u64 *start,
323 				    u64 *end)
324 {
325 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 	const u64 orig_start = *start;
328 	const u64 orig_end = *end;
329 	/* The sanity tests may not set a valid fs_info. */
330 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 	u64 delalloc_start;
332 	u64 delalloc_end;
333 	bool found;
334 	struct extent_state *cached_state = NULL;
335 	int ret;
336 	int loops = 0;
337 
338 	/* Caller should pass a valid @end to indicate the search range end */
339 	ASSERT(orig_end > orig_start);
340 
341 	/* The range should at least cover part of the page */
342 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 		 orig_end <= page_offset(locked_page)));
344 again:
345 	/* step one, find a bunch of delalloc bytes starting at start */
346 	delalloc_start = *start;
347 	delalloc_end = 0;
348 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 					  max_bytes, &cached_state);
350 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 		*start = delalloc_start;
352 
353 		/* @delalloc_end can be -1, never go beyond @orig_end */
354 		*end = min(delalloc_end, orig_end);
355 		free_extent_state(cached_state);
356 		return false;
357 	}
358 
359 	/*
360 	 * start comes from the offset of locked_page.  We have to lock
361 	 * pages in order, so we can't process delalloc bytes before
362 	 * locked_page
363 	 */
364 	if (delalloc_start < *start)
365 		delalloc_start = *start;
366 
367 	/*
368 	 * make sure to limit the number of pages we try to lock down
369 	 */
370 	if (delalloc_end + 1 - delalloc_start > max_bytes)
371 		delalloc_end = delalloc_start + max_bytes - 1;
372 
373 	/* step two, lock all the pages after the page that has start */
374 	ret = lock_delalloc_pages(inode, locked_page,
375 				  delalloc_start, delalloc_end);
376 	ASSERT(!ret || ret == -EAGAIN);
377 	if (ret == -EAGAIN) {
378 		/* some of the pages are gone, lets avoid looping by
379 		 * shortening the size of the delalloc range we're searching
380 		 */
381 		free_extent_state(cached_state);
382 		cached_state = NULL;
383 		if (!loops) {
384 			max_bytes = PAGE_SIZE;
385 			loops = 1;
386 			goto again;
387 		} else {
388 			found = false;
389 			goto out_failed;
390 		}
391 	}
392 
393 	/* step three, lock the state bits for the whole range */
394 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395 
396 	/* then test to make sure it is all still delalloc */
397 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 			     EXTENT_DELALLOC, cached_state);
399 	if (!ret) {
400 		unlock_extent(tree, delalloc_start, delalloc_end,
401 			      &cached_state);
402 		__unlock_for_delalloc(inode, locked_page,
403 			      delalloc_start, delalloc_end);
404 		cond_resched();
405 		goto again;
406 	}
407 	free_extent_state(cached_state);
408 	*start = delalloc_start;
409 	*end = delalloc_end;
410 out_failed:
411 	return found;
412 }
413 
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 				  struct page *locked_page,
416 				  u32 clear_bits, unsigned long page_ops)
417 {
418 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419 
420 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 			       start, end, page_ops);
422 }
423 
424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 	if (!fsverity_active(page->mapping->host) ||
427 	    PageUptodate(page) ||
428 	    start >= i_size_read(page->mapping->host))
429 		return true;
430 	return fsverity_verify_page(page);
431 }
432 
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
436 	struct folio *folio = page_folio(page);
437 
438 	ASSERT(page_offset(page) <= start &&
439 	       start + len <= page_offset(page) + PAGE_SIZE);
440 
441 	if (uptodate && btrfs_verify_page(page, start))
442 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
443 	else
444 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
445 
446 	if (!btrfs_is_subpage(fs_info, page->mapping))
447 		unlock_page(page);
448 	else
449 		btrfs_subpage_end_reader(fs_info, folio, start, len);
450 }
451 
452 /*
453  * After a write IO is done, we need to:
454  *
455  * - clear the uptodate bits on error
456  * - clear the writeback bits in the extent tree for the range
457  * - filio_end_writeback()  if there is no more pending io for the folio
458  *
459  * Scheduling is not allowed, so the extent state tree is expected
460  * to have one and only one object corresponding to this IO.
461  */
462 static void end_bbio_data_write(struct btrfs_bio *bbio)
463 {
464 	struct btrfs_fs_info *fs_info = bbio->fs_info;
465 	struct bio *bio = &bbio->bio;
466 	int error = blk_status_to_errno(bio->bi_status);
467 	struct folio_iter fi;
468 	const u32 sectorsize = fs_info->sectorsize;
469 
470 	ASSERT(!bio_flagged(bio, BIO_CLONED));
471 	bio_for_each_folio_all(fi, bio) {
472 		struct folio *folio = fi.folio;
473 		u64 start = folio_pos(folio) + fi.offset;
474 		u32 len = fi.length;
475 
476 		/* Only order 0 (single page) folios are allowed for data. */
477 		ASSERT(folio_order(folio) == 0);
478 
479 		/* Our read/write should always be sector aligned. */
480 		if (!IS_ALIGNED(fi.offset, sectorsize))
481 			btrfs_err(fs_info,
482 		"partial page write in btrfs with offset %zu and length %zu",
483 				  fi.offset, fi.length);
484 		else if (!IS_ALIGNED(fi.length, sectorsize))
485 			btrfs_info(fs_info,
486 		"incomplete page write with offset %zu and length %zu",
487 				   fi.offset, fi.length);
488 
489 		btrfs_finish_ordered_extent(bbio->ordered,
490 				folio_page(folio, 0), start, len, !error);
491 		if (error)
492 			mapping_set_error(folio->mapping, error);
493 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
494 	}
495 
496 	bio_put(bio);
497 }
498 
499 /*
500  * Record previously processed extent range
501  *
502  * For endio_readpage_release_extent() to handle a full extent range, reducing
503  * the extent io operations.
504  */
505 struct processed_extent {
506 	struct btrfs_inode *inode;
507 	/* Start of the range in @inode */
508 	u64 start;
509 	/* End of the range in @inode */
510 	u64 end;
511 	bool uptodate;
512 };
513 
514 /*
515  * Try to release processed extent range
516  *
517  * May not release the extent range right now if the current range is
518  * contiguous to processed extent.
519  *
520  * Will release processed extent when any of @inode, @uptodate, the range is
521  * no longer contiguous to the processed range.
522  *
523  * Passing @inode == NULL will force processed extent to be released.
524  */
525 static void endio_readpage_release_extent(struct processed_extent *processed,
526 			      struct btrfs_inode *inode, u64 start, u64 end,
527 			      bool uptodate)
528 {
529 	struct extent_state *cached = NULL;
530 	struct extent_io_tree *tree;
531 
532 	/* The first extent, initialize @processed */
533 	if (!processed->inode)
534 		goto update;
535 
536 	/*
537 	 * Contiguous to processed extent, just uptodate the end.
538 	 *
539 	 * Several things to notice:
540 	 *
541 	 * - bio can be merged as long as on-disk bytenr is contiguous
542 	 *   This means we can have page belonging to other inodes, thus need to
543 	 *   check if the inode still matches.
544 	 * - bvec can contain range beyond current page for multi-page bvec
545 	 *   Thus we need to do processed->end + 1 >= start check
546 	 */
547 	if (processed->inode == inode && processed->uptodate == uptodate &&
548 	    processed->end + 1 >= start && end >= processed->end) {
549 		processed->end = end;
550 		return;
551 	}
552 
553 	tree = &processed->inode->io_tree;
554 	/*
555 	 * Now we don't have range contiguous to the processed range, release
556 	 * the processed range now.
557 	 */
558 	unlock_extent(tree, processed->start, processed->end, &cached);
559 
560 update:
561 	/* Update processed to current range */
562 	processed->inode = inode;
563 	processed->start = start;
564 	processed->end = end;
565 	processed->uptodate = uptodate;
566 }
567 
568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
569 {
570 	struct folio *folio = page_folio(page);
571 
572 	ASSERT(folio_test_locked(folio));
573 	if (!btrfs_is_subpage(fs_info, folio->mapping))
574 		return;
575 
576 	ASSERT(folio_test_private(folio));
577 	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
578 }
579 
580 /*
581  * After a data read IO is done, we need to:
582  *
583  * - clear the uptodate bits on error
584  * - set the uptodate bits if things worked
585  * - set the folio up to date if all extents in the tree are uptodate
586  * - clear the lock bit in the extent tree
587  * - unlock the folio if there are no other extents locked for it
588  *
589  * Scheduling is not allowed, so the extent state tree is expected
590  * to have one and only one object corresponding to this IO.
591  */
592 static void end_bbio_data_read(struct btrfs_bio *bbio)
593 {
594 	struct btrfs_fs_info *fs_info = bbio->fs_info;
595 	struct bio *bio = &bbio->bio;
596 	struct processed_extent processed = { 0 };
597 	struct folio_iter fi;
598 	const u32 sectorsize = fs_info->sectorsize;
599 
600 	ASSERT(!bio_flagged(bio, BIO_CLONED));
601 	bio_for_each_folio_all(fi, &bbio->bio) {
602 		bool uptodate = !bio->bi_status;
603 		struct folio *folio = fi.folio;
604 		struct inode *inode = folio->mapping->host;
605 		u64 start;
606 		u64 end;
607 		u32 len;
608 
609 		/* For now only order 0 folios are supported for data. */
610 		ASSERT(folio_order(folio) == 0);
611 		btrfs_debug(fs_info,
612 			"%s: bi_sector=%llu, err=%d, mirror=%u",
613 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
614 			bbio->mirror_num);
615 
616 		/*
617 		 * We always issue full-sector reads, but if some block in a
618 		 * folio fails to read, blk_update_request() will advance
619 		 * bv_offset and adjust bv_len to compensate.  Print a warning
620 		 * for unaligned offsets, and an error if they don't add up to
621 		 * a full sector.
622 		 */
623 		if (!IS_ALIGNED(fi.offset, sectorsize))
624 			btrfs_err(fs_info,
625 		"partial page read in btrfs with offset %zu and length %zu",
626 				  fi.offset, fi.length);
627 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
628 			btrfs_info(fs_info,
629 		"incomplete page read with offset %zu and length %zu",
630 				   fi.offset, fi.length);
631 
632 		start = folio_pos(folio) + fi.offset;
633 		end = start + fi.length - 1;
634 		len = fi.length;
635 
636 		if (likely(uptodate)) {
637 			loff_t i_size = i_size_read(inode);
638 			pgoff_t end_index = i_size >> folio_shift(folio);
639 
640 			/*
641 			 * Zero out the remaining part if this range straddles
642 			 * i_size.
643 			 *
644 			 * Here we should only zero the range inside the folio,
645 			 * not touch anything else.
646 			 *
647 			 * NOTE: i_size is exclusive while end is inclusive.
648 			 */
649 			if (folio_index(folio) == end_index && i_size <= end) {
650 				u32 zero_start = max(offset_in_folio(folio, i_size),
651 						     offset_in_folio(folio, start));
652 				u32 zero_len = offset_in_folio(folio, end) + 1 -
653 					       zero_start;
654 
655 				folio_zero_range(folio, zero_start, zero_len);
656 			}
657 		}
658 
659 		/* Update page status and unlock. */
660 		end_page_read(folio_page(folio, 0), uptodate, start, len);
661 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
662 					      start, end, uptodate);
663 	}
664 	/* Release the last extent */
665 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 	bio_put(bio);
667 }
668 
669 /*
670  * Populate every free slot in a provided array with pages.
671  *
672  * @nr_pages:   number of pages to allocate
673  * @page_array: the array to fill with pages; any existing non-null entries in
674  * 		the array will be skipped
675  * @extra_gfp:	the extra GFP flags for the allocation.
676  *
677  * Return: 0        if all pages were able to be allocated;
678  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
679  *                  the array slots zeroed
680  */
681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
682 			   gfp_t extra_gfp)
683 {
684 	unsigned int allocated;
685 
686 	for (allocated = 0; allocated < nr_pages;) {
687 		unsigned int last = allocated;
688 
689 		allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
690 						   nr_pages, page_array);
691 
692 		if (allocated == nr_pages)
693 			return 0;
694 
695 		/*
696 		 * During this iteration, no page could be allocated, even
697 		 * though alloc_pages_bulk_array() falls back to alloc_page()
698 		 * if  it could not bulk-allocate. So we must be out of memory.
699 		 */
700 		if (allocated == last) {
701 			for (int i = 0; i < allocated; i++) {
702 				__free_page(page_array[i]);
703 				page_array[i] = NULL;
704 			}
705 			return -ENOMEM;
706 		}
707 
708 		memalloc_retry_wait(GFP_NOFS);
709 	}
710 	return 0;
711 }
712 
713 /*
714  * Populate needed folios for the extent buffer.
715  *
716  * For now, the folios populated are always in order 0 (aka, single page).
717  */
718 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
719 {
720 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
721 	int num_pages = num_extent_pages(eb);
722 	int ret;
723 
724 	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
725 	if (ret < 0)
726 		return ret;
727 
728 	for (int i = 0; i < num_pages; i++)
729 		eb->folios[i] = page_folio(page_array[i]);
730 	eb->folio_size = PAGE_SIZE;
731 	eb->folio_shift = PAGE_SHIFT;
732 	return 0;
733 }
734 
735 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
736 				struct page *page, u64 disk_bytenr,
737 				unsigned int pg_offset)
738 {
739 	struct bio *bio = &bio_ctrl->bbio->bio;
740 	struct bio_vec *bvec = bio_last_bvec_all(bio);
741 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
742 
743 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
744 		/*
745 		 * For compression, all IO should have its logical bytenr set
746 		 * to the starting bytenr of the compressed extent.
747 		 */
748 		return bio->bi_iter.bi_sector == sector;
749 	}
750 
751 	/*
752 	 * The contig check requires the following conditions to be met:
753 	 *
754 	 * 1) The pages are belonging to the same inode
755 	 *    This is implied by the call chain.
756 	 *
757 	 * 2) The range has adjacent logical bytenr
758 	 *
759 	 * 3) The range has adjacent file offset
760 	 *    This is required for the usage of btrfs_bio->file_offset.
761 	 */
762 	return bio_end_sector(bio) == sector &&
763 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
764 		page_offset(page) + pg_offset;
765 }
766 
767 static void alloc_new_bio(struct btrfs_inode *inode,
768 			  struct btrfs_bio_ctrl *bio_ctrl,
769 			  u64 disk_bytenr, u64 file_offset)
770 {
771 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
772 	struct btrfs_bio *bbio;
773 
774 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
775 			       bio_ctrl->end_io_func, NULL);
776 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
777 	bbio->inode = inode;
778 	bbio->file_offset = file_offset;
779 	bio_ctrl->bbio = bbio;
780 	bio_ctrl->len_to_oe_boundary = U32_MAX;
781 
782 	/* Limit data write bios to the ordered boundary. */
783 	if (bio_ctrl->wbc) {
784 		struct btrfs_ordered_extent *ordered;
785 
786 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
787 		if (ordered) {
788 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
789 					ordered->file_offset +
790 					ordered->disk_num_bytes - file_offset);
791 			bbio->ordered = ordered;
792 		}
793 
794 		/*
795 		 * Pick the last added device to support cgroup writeback.  For
796 		 * multi-device file systems this means blk-cgroup policies have
797 		 * to always be set on the last added/replaced device.
798 		 * This is a bit odd but has been like that for a long time.
799 		 */
800 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
801 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
802 	}
803 }
804 
805 /*
806  * @disk_bytenr: logical bytenr where the write will be
807  * @page:	page to add to the bio
808  * @size:	portion of page that we want to write to
809  * @pg_offset:	offset of the new bio or to check whether we are adding
810  *              a contiguous page to the previous one
811  *
812  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
813  * new one in @bio_ctrl->bbio.
814  * The mirror number for this IO should already be initizlied in
815  * @bio_ctrl->mirror_num.
816  */
817 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
818 			       u64 disk_bytenr, struct page *page,
819 			       size_t size, unsigned long pg_offset)
820 {
821 	struct btrfs_inode *inode = page_to_inode(page);
822 
823 	ASSERT(pg_offset + size <= PAGE_SIZE);
824 	ASSERT(bio_ctrl->end_io_func);
825 
826 	if (bio_ctrl->bbio &&
827 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
828 		submit_one_bio(bio_ctrl);
829 
830 	do {
831 		u32 len = size;
832 
833 		/* Allocate new bio if needed */
834 		if (!bio_ctrl->bbio) {
835 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
836 				      page_offset(page) + pg_offset);
837 		}
838 
839 		/* Cap to the current ordered extent boundary if there is one. */
840 		if (len > bio_ctrl->len_to_oe_boundary) {
841 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
842 			ASSERT(is_data_inode(&inode->vfs_inode));
843 			len = bio_ctrl->len_to_oe_boundary;
844 		}
845 
846 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
847 			/* bio full: move on to a new one */
848 			submit_one_bio(bio_ctrl);
849 			continue;
850 		}
851 
852 		if (bio_ctrl->wbc)
853 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
854 
855 		size -= len;
856 		pg_offset += len;
857 		disk_bytenr += len;
858 
859 		/*
860 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
861 		 * sector aligned.  alloc_new_bio() then sets it to the end of
862 		 * our ordered extent for writes into zoned devices.
863 		 *
864 		 * When len_to_oe_boundary is tracking an ordered extent, we
865 		 * trust the ordered extent code to align things properly, and
866 		 * the check above to cap our write to the ordered extent
867 		 * boundary is correct.
868 		 *
869 		 * When len_to_oe_boundary is U32_MAX, the cap above would
870 		 * result in a 4095 byte IO for the last page right before
871 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
872 		 * the checks required to make sure we don't overflow the bio,
873 		 * and we should just ignore len_to_oe_boundary completely
874 		 * unless we're using it to track an ordered extent.
875 		 *
876 		 * It's pretty hard to make a bio sized U32_MAX, but it can
877 		 * happen when the page cache is able to feed us contiguous
878 		 * pages for large extents.
879 		 */
880 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
881 			bio_ctrl->len_to_oe_boundary -= len;
882 
883 		/* Ordered extent boundary: move on to a new bio. */
884 		if (bio_ctrl->len_to_oe_boundary == 0)
885 			submit_one_bio(bio_ctrl);
886 	} while (size);
887 }
888 
889 static int attach_extent_buffer_folio(struct extent_buffer *eb,
890 				      struct folio *folio,
891 				      struct btrfs_subpage *prealloc)
892 {
893 	struct btrfs_fs_info *fs_info = eb->fs_info;
894 	int ret = 0;
895 
896 	/*
897 	 * If the page is mapped to btree inode, we should hold the private
898 	 * lock to prevent race.
899 	 * For cloned or dummy extent buffers, their pages are not mapped and
900 	 * will not race with any other ebs.
901 	 */
902 	if (folio->mapping)
903 		lockdep_assert_held(&folio->mapping->i_private_lock);
904 
905 	if (fs_info->nodesize >= PAGE_SIZE) {
906 		if (!folio_test_private(folio))
907 			folio_attach_private(folio, eb);
908 		else
909 			WARN_ON(folio_get_private(folio) != eb);
910 		return 0;
911 	}
912 
913 	/* Already mapped, just free prealloc */
914 	if (folio_test_private(folio)) {
915 		btrfs_free_subpage(prealloc);
916 		return 0;
917 	}
918 
919 	if (prealloc)
920 		/* Has preallocated memory for subpage */
921 		folio_attach_private(folio, prealloc);
922 	else
923 		/* Do new allocation to attach subpage */
924 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
925 	return ret;
926 }
927 
928 int set_page_extent_mapped(struct page *page)
929 {
930 	return set_folio_extent_mapped(page_folio(page));
931 }
932 
933 int set_folio_extent_mapped(struct folio *folio)
934 {
935 	struct btrfs_fs_info *fs_info;
936 
937 	ASSERT(folio->mapping);
938 
939 	if (folio_test_private(folio))
940 		return 0;
941 
942 	fs_info = folio_to_fs_info(folio);
943 
944 	if (btrfs_is_subpage(fs_info, folio->mapping))
945 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
946 
947 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
948 	return 0;
949 }
950 
951 void clear_page_extent_mapped(struct page *page)
952 {
953 	struct folio *folio = page_folio(page);
954 	struct btrfs_fs_info *fs_info;
955 
956 	ASSERT(page->mapping);
957 
958 	if (!folio_test_private(folio))
959 		return;
960 
961 	fs_info = page_to_fs_info(page);
962 	if (btrfs_is_subpage(fs_info, page->mapping))
963 		return btrfs_detach_subpage(fs_info, folio);
964 
965 	folio_detach_private(folio);
966 }
967 
968 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
969 		 u64 start, u64 len, struct extent_map **em_cached)
970 {
971 	struct extent_map *em;
972 
973 	ASSERT(em_cached);
974 
975 	if (*em_cached) {
976 		em = *em_cached;
977 		if (extent_map_in_tree(em) && start >= em->start &&
978 		    start < extent_map_end(em)) {
979 			refcount_inc(&em->refs);
980 			return em;
981 		}
982 
983 		free_extent_map(em);
984 		*em_cached = NULL;
985 	}
986 
987 	em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
988 	if (!IS_ERR(em)) {
989 		BUG_ON(*em_cached);
990 		refcount_inc(&em->refs);
991 		*em_cached = em;
992 	}
993 	return em;
994 }
995 /*
996  * basic readpage implementation.  Locked extent state structs are inserted
997  * into the tree that are removed when the IO is done (by the end_io
998  * handlers)
999  * XXX JDM: This needs looking at to ensure proper page locking
1000  * return 0 on success, otherwise return error
1001  */
1002 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1003 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
1004 {
1005 	struct inode *inode = page->mapping->host;
1006 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1007 	u64 start = page_offset(page);
1008 	const u64 end = start + PAGE_SIZE - 1;
1009 	u64 cur = start;
1010 	u64 extent_offset;
1011 	u64 last_byte = i_size_read(inode);
1012 	u64 block_start;
1013 	struct extent_map *em;
1014 	int ret = 0;
1015 	size_t pg_offset = 0;
1016 	size_t iosize;
1017 	size_t blocksize = fs_info->sectorsize;
1018 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1019 
1020 	ret = set_page_extent_mapped(page);
1021 	if (ret < 0) {
1022 		unlock_extent(tree, start, end, NULL);
1023 		unlock_page(page);
1024 		return ret;
1025 	}
1026 
1027 	if (page->index == last_byte >> PAGE_SHIFT) {
1028 		size_t zero_offset = offset_in_page(last_byte);
1029 
1030 		if (zero_offset) {
1031 			iosize = PAGE_SIZE - zero_offset;
1032 			memzero_page(page, zero_offset, iosize);
1033 		}
1034 	}
1035 	bio_ctrl->end_io_func = end_bbio_data_read;
1036 	begin_page_read(fs_info, page);
1037 	while (cur <= end) {
1038 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1039 		bool force_bio_submit = false;
1040 		u64 disk_bytenr;
1041 
1042 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1043 		if (cur >= last_byte) {
1044 			iosize = PAGE_SIZE - pg_offset;
1045 			memzero_page(page, pg_offset, iosize);
1046 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1047 			end_page_read(page, true, cur, iosize);
1048 			break;
1049 		}
1050 		em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1051 		if (IS_ERR(em)) {
1052 			unlock_extent(tree, cur, end, NULL);
1053 			end_page_read(page, false, cur, end + 1 - cur);
1054 			return PTR_ERR(em);
1055 		}
1056 		extent_offset = cur - em->start;
1057 		BUG_ON(extent_map_end(em) <= cur);
1058 		BUG_ON(end < cur);
1059 
1060 		compress_type = extent_map_compression(em);
1061 
1062 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1063 		iosize = ALIGN(iosize, blocksize);
1064 		if (compress_type != BTRFS_COMPRESS_NONE)
1065 			disk_bytenr = em->block_start;
1066 		else
1067 			disk_bytenr = em->block_start + extent_offset;
1068 		block_start = em->block_start;
1069 		if (em->flags & EXTENT_FLAG_PREALLOC)
1070 			block_start = EXTENT_MAP_HOLE;
1071 
1072 		/*
1073 		 * If we have a file range that points to a compressed extent
1074 		 * and it's followed by a consecutive file range that points
1075 		 * to the same compressed extent (possibly with a different
1076 		 * offset and/or length, so it either points to the whole extent
1077 		 * or only part of it), we must make sure we do not submit a
1078 		 * single bio to populate the pages for the 2 ranges because
1079 		 * this makes the compressed extent read zero out the pages
1080 		 * belonging to the 2nd range. Imagine the following scenario:
1081 		 *
1082 		 *  File layout
1083 		 *  [0 - 8K]                     [8K - 24K]
1084 		 *    |                               |
1085 		 *    |                               |
1086 		 * points to extent X,         points to extent X,
1087 		 * offset 4K, length of 8K     offset 0, length 16K
1088 		 *
1089 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1090 		 *
1091 		 * If the bio to read the compressed extent covers both ranges,
1092 		 * it will decompress extent X into the pages belonging to the
1093 		 * first range and then it will stop, zeroing out the remaining
1094 		 * pages that belong to the other range that points to extent X.
1095 		 * So here we make sure we submit 2 bios, one for the first
1096 		 * range and another one for the third range. Both will target
1097 		 * the same physical extent from disk, but we can't currently
1098 		 * make the compressed bio endio callback populate the pages
1099 		 * for both ranges because each compressed bio is tightly
1100 		 * coupled with a single extent map, and each range can have
1101 		 * an extent map with a different offset value relative to the
1102 		 * uncompressed data of our extent and different lengths. This
1103 		 * is a corner case so we prioritize correctness over
1104 		 * non-optimal behavior (submitting 2 bios for the same extent).
1105 		 */
1106 		if (compress_type != BTRFS_COMPRESS_NONE &&
1107 		    prev_em_start && *prev_em_start != (u64)-1 &&
1108 		    *prev_em_start != em->start)
1109 			force_bio_submit = true;
1110 
1111 		if (prev_em_start)
1112 			*prev_em_start = em->start;
1113 
1114 		free_extent_map(em);
1115 		em = NULL;
1116 
1117 		/* we've found a hole, just zero and go on */
1118 		if (block_start == EXTENT_MAP_HOLE) {
1119 			memzero_page(page, pg_offset, iosize);
1120 
1121 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1122 			end_page_read(page, true, cur, iosize);
1123 			cur = cur + iosize;
1124 			pg_offset += iosize;
1125 			continue;
1126 		}
1127 		/* the get_extent function already copied into the page */
1128 		if (block_start == EXTENT_MAP_INLINE) {
1129 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1130 			end_page_read(page, true, cur, iosize);
1131 			cur = cur + iosize;
1132 			pg_offset += iosize;
1133 			continue;
1134 		}
1135 
1136 		if (bio_ctrl->compress_type != compress_type) {
1137 			submit_one_bio(bio_ctrl);
1138 			bio_ctrl->compress_type = compress_type;
1139 		}
1140 
1141 		if (force_bio_submit)
1142 			submit_one_bio(bio_ctrl);
1143 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1144 				   pg_offset);
1145 		cur = cur + iosize;
1146 		pg_offset += iosize;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 int btrfs_read_folio(struct file *file, struct folio *folio)
1153 {
1154 	struct page *page = &folio->page;
1155 	struct btrfs_inode *inode = page_to_inode(page);
1156 	u64 start = page_offset(page);
1157 	u64 end = start + PAGE_SIZE - 1;
1158 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1159 	struct extent_map *em_cached = NULL;
1160 	int ret;
1161 
1162 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1163 
1164 	ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1165 	free_extent_map(em_cached);
1166 
1167 	/*
1168 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1169 	 * bio to do the cleanup.
1170 	 */
1171 	submit_one_bio(&bio_ctrl);
1172 	return ret;
1173 }
1174 
1175 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1176 					u64 start, u64 end,
1177 					struct extent_map **em_cached,
1178 					struct btrfs_bio_ctrl *bio_ctrl,
1179 					u64 *prev_em_start)
1180 {
1181 	struct btrfs_inode *inode = page_to_inode(pages[0]);
1182 	int index;
1183 
1184 	ASSERT(em_cached);
1185 
1186 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1187 
1188 	for (index = 0; index < nr_pages; index++) {
1189 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190 				  prev_em_start);
1191 		put_page(pages[index]);
1192 	}
1193 }
1194 
1195 /*
1196  * helper for __extent_writepage, doing all of the delayed allocation setup.
1197  *
1198  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199  * to write the page (copy into inline extent).  In this case the IO has
1200  * been started and the page is already unlocked.
1201  *
1202  * This returns 0 if all went well (page still locked)
1203  * This returns < 0 if there were errors (page still locked)
1204  */
1205 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206 		struct page *page, struct writeback_control *wbc)
1207 {
1208 	const u64 page_start = page_offset(page);
1209 	const u64 page_end = page_start + PAGE_SIZE - 1;
1210 	u64 delalloc_start = page_start;
1211 	u64 delalloc_end = page_end;
1212 	u64 delalloc_to_write = 0;
1213 	int ret = 0;
1214 
1215 	while (delalloc_start < page_end) {
1216 		delalloc_end = page_end;
1217 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218 					      &delalloc_start, &delalloc_end)) {
1219 			delalloc_start = delalloc_end + 1;
1220 			continue;
1221 		}
1222 
1223 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224 					       delalloc_end, wbc);
1225 		if (ret < 0)
1226 			return ret;
1227 
1228 		delalloc_start = delalloc_end + 1;
1229 	}
1230 
1231 	/*
1232 	 * delalloc_end is already one less than the total length, so
1233 	 * we don't subtract one from PAGE_SIZE
1234 	 */
1235 	delalloc_to_write +=
1236 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237 
1238 	/*
1239 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240 	 * the pages, we just need to account for them here.
1241 	 */
1242 	if (ret == 1) {
1243 		wbc->nr_to_write -= delalloc_to_write;
1244 		return 1;
1245 	}
1246 
1247 	if (wbc->nr_to_write < delalloc_to_write) {
1248 		int thresh = 8192;
1249 
1250 		if (delalloc_to_write < thresh * 2)
1251 			thresh = delalloc_to_write;
1252 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253 					 thresh);
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Find the first byte we need to write.
1261  *
1262  * For subpage, one page can contain several sectors, and
1263  * __extent_writepage_io() will just grab all extent maps in the page
1264  * range and try to submit all non-inline/non-compressed extents.
1265  *
1266  * This is a big problem for subpage, we shouldn't re-submit already written
1267  * data at all.
1268  * This function will lookup subpage dirty bit to find which range we really
1269  * need to submit.
1270  *
1271  * Return the next dirty range in [@start, @end).
1272  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273  */
1274 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275 				 struct page *page, u64 *start, u64 *end)
1276 {
1277 	struct folio *folio = page_folio(page);
1278 	struct btrfs_subpage *subpage = folio_get_private(folio);
1279 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280 	u64 orig_start = *start;
1281 	/* Declare as unsigned long so we can use bitmap ops */
1282 	unsigned long flags;
1283 	int range_start_bit;
1284 	int range_end_bit;
1285 
1286 	/*
1287 	 * For regular sector size == page size case, since one page only
1288 	 * contains one sector, we return the page offset directly.
1289 	 */
1290 	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291 		*start = page_offset(page);
1292 		*end = page_offset(page) + PAGE_SIZE;
1293 		return;
1294 	}
1295 
1296 	range_start_bit = spi->dirty_offset +
1297 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1298 
1299 	/* We should have the page locked, but just in case */
1300 	spin_lock_irqsave(&subpage->lock, flags);
1301 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302 			       spi->dirty_offset + spi->bitmap_nr_bits);
1303 	spin_unlock_irqrestore(&subpage->lock, flags);
1304 
1305 	range_start_bit -= spi->dirty_offset;
1306 	range_end_bit -= spi->dirty_offset;
1307 
1308 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1310 }
1311 
1312 /*
1313  * helper for __extent_writepage.  This calls the writepage start hooks,
1314  * and does the loop to map the page into extents and bios.
1315  *
1316  * We return 1 if the IO is started and the page is unlocked,
1317  * 0 if all went well (page still locked)
1318  * < 0 if there were errors (page still locked)
1319  */
1320 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321 				 struct page *page,
1322 				 struct btrfs_bio_ctrl *bio_ctrl,
1323 				 loff_t i_size,
1324 				 int *nr_ret)
1325 {
1326 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327 	u64 cur = page_offset(page);
1328 	u64 end = cur + PAGE_SIZE - 1;
1329 	u64 extent_offset;
1330 	u64 block_start;
1331 	struct extent_map *em;
1332 	int ret = 0;
1333 	int nr = 0;
1334 
1335 	ret = btrfs_writepage_cow_fixup(page);
1336 	if (ret) {
1337 		/* Fixup worker will requeue */
1338 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1339 		unlock_page(page);
1340 		return 1;
1341 	}
1342 
1343 	bio_ctrl->end_io_func = end_bbio_data_write;
1344 	while (cur <= end) {
1345 		u32 len = end - cur + 1;
1346 		u64 disk_bytenr;
1347 		u64 em_end;
1348 		u64 dirty_range_start = cur;
1349 		u64 dirty_range_end;
1350 		u32 iosize;
1351 
1352 		if (cur >= i_size) {
1353 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354 						       true);
1355 			/*
1356 			 * This range is beyond i_size, thus we don't need to
1357 			 * bother writing back.
1358 			 * But we still need to clear the dirty subpage bit, or
1359 			 * the next time the page gets dirtied, we will try to
1360 			 * writeback the sectors with subpage dirty bits,
1361 			 * causing writeback without ordered extent.
1362 			 */
1363 			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364 			break;
1365 		}
1366 
1367 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368 				     &dirty_range_end);
1369 		if (cur < dirty_range_start) {
1370 			cur = dirty_range_start;
1371 			continue;
1372 		}
1373 
1374 		em = btrfs_get_extent(inode, NULL, cur, len);
1375 		if (IS_ERR(em)) {
1376 			ret = PTR_ERR_OR_ZERO(em);
1377 			goto out_error;
1378 		}
1379 
1380 		extent_offset = cur - em->start;
1381 		em_end = extent_map_end(em);
1382 		ASSERT(cur <= em_end);
1383 		ASSERT(cur < end);
1384 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1386 
1387 		block_start = em->block_start;
1388 		disk_bytenr = em->block_start + extent_offset;
1389 
1390 		ASSERT(!extent_map_is_compressed(em));
1391 		ASSERT(block_start != EXTENT_MAP_HOLE);
1392 		ASSERT(block_start != EXTENT_MAP_INLINE);
1393 
1394 		/*
1395 		 * Note that em_end from extent_map_end() and dirty_range_end from
1396 		 * find_next_dirty_byte() are all exclusive
1397 		 */
1398 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1399 		free_extent_map(em);
1400 		em = NULL;
1401 
1402 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403 		if (!PageWriteback(page)) {
1404 			btrfs_err(inode->root->fs_info,
1405 				   "page %lu not writeback, cur %llu end %llu",
1406 			       page->index, cur, end);
1407 		}
1408 
1409 		/*
1410 		 * Although the PageDirty bit is cleared before entering this
1411 		 * function, subpage dirty bit is not cleared.
1412 		 * So clear subpage dirty bit here so next time we won't submit
1413 		 * page for range already written to disk.
1414 		 */
1415 		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1416 
1417 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418 				   cur - page_offset(page));
1419 		cur += iosize;
1420 		nr++;
1421 	}
1422 
1423 	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424 	*nr_ret = nr;
1425 	return 0;
1426 
1427 out_error:
1428 	/*
1429 	 * If we finish without problem, we should not only clear page dirty,
1430 	 * but also empty subpage dirty bits
1431 	 */
1432 	*nr_ret = nr;
1433 	return ret;
1434 }
1435 
1436 /*
1437  * the writepage semantics are similar to regular writepage.  extent
1438  * records are inserted to lock ranges in the tree, and as dirty areas
1439  * are found, they are marked writeback.  Then the lock bits are removed
1440  * and the end_io handler clears the writeback ranges
1441  *
1442  * Return 0 if everything goes well.
1443  * Return <0 for error.
1444  */
1445 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1446 {
1447 	struct folio *folio = page_folio(page);
1448 	struct inode *inode = page->mapping->host;
1449 	const u64 page_start = page_offset(page);
1450 	int ret;
1451 	int nr = 0;
1452 	size_t pg_offset;
1453 	loff_t i_size = i_size_read(inode);
1454 	unsigned long end_index = i_size >> PAGE_SHIFT;
1455 
1456 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1457 
1458 	WARN_ON(!PageLocked(page));
1459 
1460 	pg_offset = offset_in_page(i_size);
1461 	if (page->index > end_index ||
1462 	   (page->index == end_index && !pg_offset)) {
1463 		folio_invalidate(folio, 0, folio_size(folio));
1464 		folio_unlock(folio);
1465 		return 0;
1466 	}
1467 
1468 	if (page->index == end_index)
1469 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1470 
1471 	ret = set_page_extent_mapped(page);
1472 	if (ret < 0)
1473 		goto done;
1474 
1475 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476 	if (ret == 1)
1477 		return 0;
1478 	if (ret)
1479 		goto done;
1480 
1481 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1482 	if (ret == 1)
1483 		return 0;
1484 
1485 	bio_ctrl->wbc->nr_to_write--;
1486 
1487 done:
1488 	if (nr == 0) {
1489 		/* make sure the mapping tag for page dirty gets cleared */
1490 		set_page_writeback(page);
1491 		end_page_writeback(page);
1492 	}
1493 	if (ret) {
1494 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495 					       PAGE_SIZE, !ret);
1496 		mapping_set_error(page->mapping, ret);
1497 	}
1498 	unlock_page(page);
1499 	ASSERT(ret <= 0);
1500 	return ret;
1501 }
1502 
1503 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504 {
1505 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506 		       TASK_UNINTERRUPTIBLE);
1507 }
1508 
1509 /*
1510  * Lock extent buffer status and pages for writeback.
1511  *
1512  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513  * extent buffer is not dirty)
1514  * Return %true is the extent buffer is submitted to bio.
1515  */
1516 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517 			  struct writeback_control *wbc)
1518 {
1519 	struct btrfs_fs_info *fs_info = eb->fs_info;
1520 	bool ret = false;
1521 
1522 	btrfs_tree_lock(eb);
1523 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524 		btrfs_tree_unlock(eb);
1525 		if (wbc->sync_mode != WB_SYNC_ALL)
1526 			return false;
1527 		wait_on_extent_buffer_writeback(eb);
1528 		btrfs_tree_lock(eb);
1529 	}
1530 
1531 	/*
1532 	 * We need to do this to prevent races in people who check if the eb is
1533 	 * under IO since we can end up having no IO bits set for a short period
1534 	 * of time.
1535 	 */
1536 	spin_lock(&eb->refs_lock);
1537 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539 		spin_unlock(&eb->refs_lock);
1540 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542 					 -eb->len,
1543 					 fs_info->dirty_metadata_batch);
1544 		ret = true;
1545 	} else {
1546 		spin_unlock(&eb->refs_lock);
1547 	}
1548 	btrfs_tree_unlock(eb);
1549 	return ret;
1550 }
1551 
1552 static void set_btree_ioerr(struct extent_buffer *eb)
1553 {
1554 	struct btrfs_fs_info *fs_info = eb->fs_info;
1555 
1556 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1557 
1558 	/*
1559 	 * A read may stumble upon this buffer later, make sure that it gets an
1560 	 * error and knows there was an error.
1561 	 */
1562 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563 
1564 	/*
1565 	 * We need to set the mapping with the io error as well because a write
1566 	 * error will flip the file system readonly, and then syncfs() will
1567 	 * return a 0 because we are readonly if we don't modify the err seq for
1568 	 * the superblock.
1569 	 */
1570 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1571 
1572 	/*
1573 	 * If writeback for a btree extent that doesn't belong to a log tree
1574 	 * failed, increment the counter transaction->eb_write_errors.
1575 	 * We do this because while the transaction is running and before it's
1576 	 * committing (when we call filemap_fdata[write|wait]_range against
1577 	 * the btree inode), we might have
1578 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579 	 * returns an error or an error happens during writeback, when we're
1580 	 * committing the transaction we wouldn't know about it, since the pages
1581 	 * can be no longer dirty nor marked anymore for writeback (if a
1582 	 * subsequent modification to the extent buffer didn't happen before the
1583 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584 	 * able to find the pages tagged with SetPageError at transaction
1585 	 * commit time. So if this happens we must abort the transaction,
1586 	 * otherwise we commit a super block with btree roots that point to
1587 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1588 	 * or the content of some node/leaf from a past generation that got
1589 	 * cowed or deleted and is no longer valid.
1590 	 *
1591 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592 	 * not be enough - we need to distinguish between log tree extents vs
1593 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1594 	 * will catch and clear such errors in the mapping - and that call might
1595 	 * be from a log sync and not from a transaction commit. Also, checking
1596 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597 	 * not done and would not be reliable - the eb might have been released
1598 	 * from memory and reading it back again means that flag would not be
1599 	 * set (since it's a runtime flag, not persisted on disk).
1600 	 *
1601 	 * Using the flags below in the btree inode also makes us achieve the
1602 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1604 	 * is called, the writeback for all dirty pages had already finished
1605 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606 	 * filemap_fdatawait_range() would return success, as it could not know
1607 	 * that writeback errors happened (the pages were no longer tagged for
1608 	 * writeback).
1609 	 */
1610 	switch (eb->log_index) {
1611 	case -1:
1612 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613 		break;
1614 	case 0:
1615 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616 		break;
1617 	case 1:
1618 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619 		break;
1620 	default:
1621 		BUG(); /* unexpected, logic error */
1622 	}
1623 }
1624 
1625 /*
1626  * The endio specific version which won't touch any unsafe spinlock in endio
1627  * context.
1628  */
1629 static struct extent_buffer *find_extent_buffer_nolock(
1630 		struct btrfs_fs_info *fs_info, u64 start)
1631 {
1632 	struct extent_buffer *eb;
1633 
1634 	rcu_read_lock();
1635 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1636 			       start >> fs_info->sectorsize_bits);
1637 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1638 		rcu_read_unlock();
1639 		return eb;
1640 	}
1641 	rcu_read_unlock();
1642 	return NULL;
1643 }
1644 
1645 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1646 {
1647 	struct extent_buffer *eb = bbio->private;
1648 	struct btrfs_fs_info *fs_info = eb->fs_info;
1649 	bool uptodate = !bbio->bio.bi_status;
1650 	struct folio_iter fi;
1651 	u32 bio_offset = 0;
1652 
1653 	if (!uptodate)
1654 		set_btree_ioerr(eb);
1655 
1656 	bio_for_each_folio_all(fi, &bbio->bio) {
1657 		u64 start = eb->start + bio_offset;
1658 		struct folio *folio = fi.folio;
1659 		u32 len = fi.length;
1660 
1661 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662 		bio_offset += len;
1663 	}
1664 
1665 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666 	smp_mb__after_atomic();
1667 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1668 
1669 	bio_put(&bbio->bio);
1670 }
1671 
1672 static void prepare_eb_write(struct extent_buffer *eb)
1673 {
1674 	u32 nritems;
1675 	unsigned long start;
1676 	unsigned long end;
1677 
1678 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1679 
1680 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1681 	nritems = btrfs_header_nritems(eb);
1682 	if (btrfs_header_level(eb) > 0) {
1683 		end = btrfs_node_key_ptr_offset(eb, nritems);
1684 		memzero_extent_buffer(eb, end, eb->len - end);
1685 	} else {
1686 		/*
1687 		 * Leaf:
1688 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689 		 */
1690 		start = btrfs_item_nr_offset(eb, nritems);
1691 		end = btrfs_item_nr_offset(eb, 0);
1692 		if (nritems == 0)
1693 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694 		else
1695 			end += btrfs_item_offset(eb, nritems - 1);
1696 		memzero_extent_buffer(eb, start, end - start);
1697 	}
1698 }
1699 
1700 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701 					    struct writeback_control *wbc)
1702 {
1703 	struct btrfs_fs_info *fs_info = eb->fs_info;
1704 	struct btrfs_bio *bbio;
1705 
1706 	prepare_eb_write(eb);
1707 
1708 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710 			       eb->fs_info, end_bbio_meta_write, eb);
1711 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713 	wbc_init_bio(wbc, &bbio->bio);
1714 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715 	bbio->file_offset = eb->start;
1716 	if (fs_info->nodesize < PAGE_SIZE) {
1717 		struct folio *folio = eb->folios[0];
1718 		bool ret;
1719 
1720 		folio_lock(folio);
1721 		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722 		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723 						       eb->len)) {
1724 			folio_clear_dirty_for_io(folio);
1725 			wbc->nr_to_write--;
1726 		}
1727 		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728 				    eb->start - folio_pos(folio));
1729 		ASSERT(ret);
1730 		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731 		folio_unlock(folio);
1732 	} else {
1733 		int num_folios = num_extent_folios(eb);
1734 
1735 		for (int i = 0; i < num_folios; i++) {
1736 			struct folio *folio = eb->folios[i];
1737 			bool ret;
1738 
1739 			folio_lock(folio);
1740 			folio_clear_dirty_for_io(folio);
1741 			folio_start_writeback(folio);
1742 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1743 			ASSERT(ret);
1744 			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745 						 eb->folio_size);
1746 			wbc->nr_to_write -= folio_nr_pages(folio);
1747 			folio_unlock(folio);
1748 		}
1749 	}
1750 	btrfs_submit_bio(bbio, 0);
1751 }
1752 
1753 /*
1754  * Submit one subpage btree page.
1755  *
1756  * The main difference to submit_eb_page() is:
1757  * - Page locking
1758  *   For subpage, we don't rely on page locking at all.
1759  *
1760  * - Flush write bio
1761  *   We only flush bio if we may be unable to fit current extent buffers into
1762  *   current bio.
1763  *
1764  * Return >=0 for the number of submitted extent buffers.
1765  * Return <0 for fatal error.
1766  */
1767 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1768 {
1769 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1770 	struct folio *folio = page_folio(page);
1771 	int submitted = 0;
1772 	u64 page_start = page_offset(page);
1773 	int bit_start = 0;
1774 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1775 
1776 	/* Lock and write each dirty extent buffers in the range */
1777 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778 		struct btrfs_subpage *subpage = folio_get_private(folio);
1779 		struct extent_buffer *eb;
1780 		unsigned long flags;
1781 		u64 start;
1782 
1783 		/*
1784 		 * Take private lock to ensure the subpage won't be detached
1785 		 * in the meantime.
1786 		 */
1787 		spin_lock(&page->mapping->i_private_lock);
1788 		if (!folio_test_private(folio)) {
1789 			spin_unlock(&page->mapping->i_private_lock);
1790 			break;
1791 		}
1792 		spin_lock_irqsave(&subpage->lock, flags);
1793 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794 			      subpage->bitmaps)) {
1795 			spin_unlock_irqrestore(&subpage->lock, flags);
1796 			spin_unlock(&page->mapping->i_private_lock);
1797 			bit_start++;
1798 			continue;
1799 		}
1800 
1801 		start = page_start + bit_start * fs_info->sectorsize;
1802 		bit_start += sectors_per_node;
1803 
1804 		/*
1805 		 * Here we just want to grab the eb without touching extra
1806 		 * spin locks, so call find_extent_buffer_nolock().
1807 		 */
1808 		eb = find_extent_buffer_nolock(fs_info, start);
1809 		spin_unlock_irqrestore(&subpage->lock, flags);
1810 		spin_unlock(&page->mapping->i_private_lock);
1811 
1812 		/*
1813 		 * The eb has already reached 0 refs thus find_extent_buffer()
1814 		 * doesn't return it. We don't need to write back such eb
1815 		 * anyway.
1816 		 */
1817 		if (!eb)
1818 			continue;
1819 
1820 		if (lock_extent_buffer_for_io(eb, wbc)) {
1821 			write_one_eb(eb, wbc);
1822 			submitted++;
1823 		}
1824 		free_extent_buffer(eb);
1825 	}
1826 	return submitted;
1827 }
1828 
1829 /*
1830  * Submit all page(s) of one extent buffer.
1831  *
1832  * @page:	the page of one extent buffer
1833  * @eb_context:	to determine if we need to submit this page, if current page
1834  *		belongs to this eb, we don't need to submit
1835  *
1836  * The caller should pass each page in their bytenr order, and here we use
1837  * @eb_context to determine if we have submitted pages of one extent buffer.
1838  *
1839  * If we have, we just skip until we hit a new page that doesn't belong to
1840  * current @eb_context.
1841  *
1842  * If not, we submit all the page(s) of the extent buffer.
1843  *
1844  * Return >0 if we have submitted the extent buffer successfully.
1845  * Return 0 if we don't need to submit the page, as it's already submitted by
1846  * previous call.
1847  * Return <0 for fatal error.
1848  */
1849 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1850 {
1851 	struct writeback_control *wbc = ctx->wbc;
1852 	struct address_space *mapping = page->mapping;
1853 	struct folio *folio = page_folio(page);
1854 	struct extent_buffer *eb;
1855 	int ret;
1856 
1857 	if (!folio_test_private(folio))
1858 		return 0;
1859 
1860 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1861 		return submit_eb_subpage(page, wbc);
1862 
1863 	spin_lock(&mapping->i_private_lock);
1864 	if (!folio_test_private(folio)) {
1865 		spin_unlock(&mapping->i_private_lock);
1866 		return 0;
1867 	}
1868 
1869 	eb = folio_get_private(folio);
1870 
1871 	/*
1872 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1873 	 * crashing the machine for something we can survive anyway.
1874 	 */
1875 	if (WARN_ON(!eb)) {
1876 		spin_unlock(&mapping->i_private_lock);
1877 		return 0;
1878 	}
1879 
1880 	if (eb == ctx->eb) {
1881 		spin_unlock(&mapping->i_private_lock);
1882 		return 0;
1883 	}
1884 	ret = atomic_inc_not_zero(&eb->refs);
1885 	spin_unlock(&mapping->i_private_lock);
1886 	if (!ret)
1887 		return 0;
1888 
1889 	ctx->eb = eb;
1890 
1891 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892 	if (ret) {
1893 		if (ret == -EBUSY)
1894 			ret = 0;
1895 		free_extent_buffer(eb);
1896 		return ret;
1897 	}
1898 
1899 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1900 		free_extent_buffer(eb);
1901 		return 0;
1902 	}
1903 	/* Implies write in zoned mode. */
1904 	if (ctx->zoned_bg) {
1905 		/* Mark the last eb in the block group. */
1906 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907 		ctx->zoned_bg->meta_write_pointer += eb->len;
1908 	}
1909 	write_one_eb(eb, wbc);
1910 	free_extent_buffer(eb);
1911 	return 1;
1912 }
1913 
1914 int btree_write_cache_pages(struct address_space *mapping,
1915 				   struct writeback_control *wbc)
1916 {
1917 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1918 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1919 	int ret = 0;
1920 	int done = 0;
1921 	int nr_to_write_done = 0;
1922 	struct folio_batch fbatch;
1923 	unsigned int nr_folios;
1924 	pgoff_t index;
1925 	pgoff_t end;		/* Inclusive */
1926 	int scanned = 0;
1927 	xa_mark_t tag;
1928 
1929 	folio_batch_init(&fbatch);
1930 	if (wbc->range_cyclic) {
1931 		index = mapping->writeback_index; /* Start from prev offset */
1932 		end = -1;
1933 		/*
1934 		 * Start from the beginning does not need to cycle over the
1935 		 * range, mark it as scanned.
1936 		 */
1937 		scanned = (index == 0);
1938 	} else {
1939 		index = wbc->range_start >> PAGE_SHIFT;
1940 		end = wbc->range_end >> PAGE_SHIFT;
1941 		scanned = 1;
1942 	}
1943 	if (wbc->sync_mode == WB_SYNC_ALL)
1944 		tag = PAGECACHE_TAG_TOWRITE;
1945 	else
1946 		tag = PAGECACHE_TAG_DIRTY;
1947 	btrfs_zoned_meta_io_lock(fs_info);
1948 retry:
1949 	if (wbc->sync_mode == WB_SYNC_ALL)
1950 		tag_pages_for_writeback(mapping, index, end);
1951 	while (!done && !nr_to_write_done && (index <= end) &&
1952 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953 					    tag, &fbatch))) {
1954 		unsigned i;
1955 
1956 		for (i = 0; i < nr_folios; i++) {
1957 			struct folio *folio = fbatch.folios[i];
1958 
1959 			ret = submit_eb_page(&folio->page, &ctx);
1960 			if (ret == 0)
1961 				continue;
1962 			if (ret < 0) {
1963 				done = 1;
1964 				break;
1965 			}
1966 
1967 			/*
1968 			 * the filesystem may choose to bump up nr_to_write.
1969 			 * We have to make sure to honor the new nr_to_write
1970 			 * at any time
1971 			 */
1972 			nr_to_write_done = wbc->nr_to_write <= 0;
1973 		}
1974 		folio_batch_release(&fbatch);
1975 		cond_resched();
1976 	}
1977 	if (!scanned && !done) {
1978 		/*
1979 		 * We hit the last page and there is more work to be done: wrap
1980 		 * back to the start of the file
1981 		 */
1982 		scanned = 1;
1983 		index = 0;
1984 		goto retry;
1985 	}
1986 	/*
1987 	 * If something went wrong, don't allow any metadata write bio to be
1988 	 * submitted.
1989 	 *
1990 	 * This would prevent use-after-free if we had dirty pages not
1991 	 * cleaned up, which can still happen by fuzzed images.
1992 	 *
1993 	 * - Bad extent tree
1994 	 *   Allowing existing tree block to be allocated for other trees.
1995 	 *
1996 	 * - Log tree operations
1997 	 *   Exiting tree blocks get allocated to log tree, bumps its
1998 	 *   generation, then get cleaned in tree re-balance.
1999 	 *   Such tree block will not be written back, since it's clean,
2000 	 *   thus no WRITTEN flag set.
2001 	 *   And after log writes back, this tree block is not traced by
2002 	 *   any dirty extent_io_tree.
2003 	 *
2004 	 * - Offending tree block gets re-dirtied from its original owner
2005 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2006 	 *   reused without COWing. This tree block will not be traced
2007 	 *   by btrfs_transaction::dirty_pages.
2008 	 *
2009 	 *   Now such dirty tree block will not be cleaned by any dirty
2010 	 *   extent io tree. Thus we don't want to submit such wild eb
2011 	 *   if the fs already has error.
2012 	 *
2013 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015 	 */
2016 	if (ret > 0)
2017 		ret = 0;
2018 	if (!ret && BTRFS_FS_ERROR(fs_info))
2019 		ret = -EROFS;
2020 
2021 	if (ctx.zoned_bg)
2022 		btrfs_put_block_group(ctx.zoned_bg);
2023 	btrfs_zoned_meta_io_unlock(fs_info);
2024 	return ret;
2025 }
2026 
2027 /*
2028  * Walk the list of dirty pages of the given address space and write all of them.
2029  *
2030  * @mapping:   address space structure to write
2031  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2032  * @bio_ctrl:  holds context for the write, namely the bio
2033  *
2034  * If a page is already under I/O, write_cache_pages() skips it, even
2035  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2036  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2037  * and msync() need to guarantee that all the data which was dirty at the time
2038  * the call was made get new I/O started against them.  If wbc->sync_mode is
2039  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040  * existing IO to complete.
2041  */
2042 static int extent_write_cache_pages(struct address_space *mapping,
2043 			     struct btrfs_bio_ctrl *bio_ctrl)
2044 {
2045 	struct writeback_control *wbc = bio_ctrl->wbc;
2046 	struct inode *inode = mapping->host;
2047 	int ret = 0;
2048 	int done = 0;
2049 	int nr_to_write_done = 0;
2050 	struct folio_batch fbatch;
2051 	unsigned int nr_folios;
2052 	pgoff_t index;
2053 	pgoff_t end;		/* Inclusive */
2054 	pgoff_t done_index;
2055 	int range_whole = 0;
2056 	int scanned = 0;
2057 	xa_mark_t tag;
2058 
2059 	/*
2060 	 * We have to hold onto the inode so that ordered extents can do their
2061 	 * work when the IO finishes.  The alternative to this is failing to add
2062 	 * an ordered extent if the igrab() fails there and that is a huge pain
2063 	 * to deal with, so instead just hold onto the inode throughout the
2064 	 * writepages operation.  If it fails here we are freeing up the inode
2065 	 * anyway and we'd rather not waste our time writing out stuff that is
2066 	 * going to be truncated anyway.
2067 	 */
2068 	if (!igrab(inode))
2069 		return 0;
2070 
2071 	folio_batch_init(&fbatch);
2072 	if (wbc->range_cyclic) {
2073 		index = mapping->writeback_index; /* Start from prev offset */
2074 		end = -1;
2075 		/*
2076 		 * Start from the beginning does not need to cycle over the
2077 		 * range, mark it as scanned.
2078 		 */
2079 		scanned = (index == 0);
2080 	} else {
2081 		index = wbc->range_start >> PAGE_SHIFT;
2082 		end = wbc->range_end >> PAGE_SHIFT;
2083 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084 			range_whole = 1;
2085 		scanned = 1;
2086 	}
2087 
2088 	/*
2089 	 * We do the tagged writepage as long as the snapshot flush bit is set
2090 	 * and we are the first one who do the filemap_flush() on this inode.
2091 	 *
2092 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093 	 * not race in and drop the bit.
2094 	 */
2095 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097 			       &BTRFS_I(inode)->runtime_flags))
2098 		wbc->tagged_writepages = 1;
2099 
2100 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101 		tag = PAGECACHE_TAG_TOWRITE;
2102 	else
2103 		tag = PAGECACHE_TAG_DIRTY;
2104 retry:
2105 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106 		tag_pages_for_writeback(mapping, index, end);
2107 	done_index = index;
2108 	while (!done && !nr_to_write_done && (index <= end) &&
2109 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2110 							end, tag, &fbatch))) {
2111 		unsigned i;
2112 
2113 		for (i = 0; i < nr_folios; i++) {
2114 			struct folio *folio = fbatch.folios[i];
2115 
2116 			done_index = folio_next_index(folio);
2117 			/*
2118 			 * At this point we hold neither the i_pages lock nor
2119 			 * the page lock: the page may be truncated or
2120 			 * invalidated (changing page->mapping to NULL),
2121 			 * or even swizzled back from swapper_space to
2122 			 * tmpfs file mapping
2123 			 */
2124 			if (!folio_trylock(folio)) {
2125 				submit_write_bio(bio_ctrl, 0);
2126 				folio_lock(folio);
2127 			}
2128 
2129 			if (unlikely(folio->mapping != mapping)) {
2130 				folio_unlock(folio);
2131 				continue;
2132 			}
2133 
2134 			if (!folio_test_dirty(folio)) {
2135 				/* Someone wrote it for us. */
2136 				folio_unlock(folio);
2137 				continue;
2138 			}
2139 
2140 			if (wbc->sync_mode != WB_SYNC_NONE) {
2141 				if (folio_test_writeback(folio))
2142 					submit_write_bio(bio_ctrl, 0);
2143 				folio_wait_writeback(folio);
2144 			}
2145 
2146 			if (folio_test_writeback(folio) ||
2147 			    !folio_clear_dirty_for_io(folio)) {
2148 				folio_unlock(folio);
2149 				continue;
2150 			}
2151 
2152 			ret = __extent_writepage(&folio->page, bio_ctrl);
2153 			if (ret < 0) {
2154 				done = 1;
2155 				break;
2156 			}
2157 
2158 			/*
2159 			 * The filesystem may choose to bump up nr_to_write.
2160 			 * We have to make sure to honor the new nr_to_write
2161 			 * at any time.
2162 			 */
2163 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164 					    wbc->nr_to_write <= 0);
2165 		}
2166 		folio_batch_release(&fbatch);
2167 		cond_resched();
2168 	}
2169 	if (!scanned && !done) {
2170 		/*
2171 		 * We hit the last page and there is more work to be done: wrap
2172 		 * back to the start of the file
2173 		 */
2174 		scanned = 1;
2175 		index = 0;
2176 
2177 		/*
2178 		 * If we're looping we could run into a page that is locked by a
2179 		 * writer and that writer could be waiting on writeback for a
2180 		 * page in our current bio, and thus deadlock, so flush the
2181 		 * write bio here.
2182 		 */
2183 		submit_write_bio(bio_ctrl, 0);
2184 		goto retry;
2185 	}
2186 
2187 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188 		mapping->writeback_index = done_index;
2189 
2190 	btrfs_add_delayed_iput(BTRFS_I(inode));
2191 	return ret;
2192 }
2193 
2194 /*
2195  * Submit the pages in the range to bio for call sites which delalloc range has
2196  * already been ran (aka, ordered extent inserted) and all pages are still
2197  * locked.
2198  */
2199 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200 			       u64 start, u64 end, struct writeback_control *wbc,
2201 			       bool pages_dirty)
2202 {
2203 	bool found_error = false;
2204 	int ret = 0;
2205 	struct address_space *mapping = inode->i_mapping;
2206 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2207 	const u32 sectorsize = fs_info->sectorsize;
2208 	loff_t i_size = i_size_read(inode);
2209 	u64 cur = start;
2210 	struct btrfs_bio_ctrl bio_ctrl = {
2211 		.wbc = wbc,
2212 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2213 	};
2214 
2215 	if (wbc->no_cgroup_owner)
2216 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2217 
2218 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2219 
2220 	while (cur <= end) {
2221 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222 		u32 cur_len = cur_end + 1 - cur;
2223 		struct page *page;
2224 		int nr = 0;
2225 
2226 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227 		ASSERT(PageLocked(page));
2228 		if (pages_dirty && page != locked_page) {
2229 			ASSERT(PageDirty(page));
2230 			clear_page_dirty_for_io(page);
2231 		}
2232 
2233 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234 					    i_size, &nr);
2235 		if (ret == 1)
2236 			goto next_page;
2237 
2238 		/* Make sure the mapping tag for page dirty gets cleared. */
2239 		if (nr == 0) {
2240 			set_page_writeback(page);
2241 			end_page_writeback(page);
2242 		}
2243 		if (ret) {
2244 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245 						       cur, cur_len, !ret);
2246 			mapping_set_error(page->mapping, ret);
2247 		}
2248 		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249 		if (ret < 0)
2250 			found_error = true;
2251 next_page:
2252 		put_page(page);
2253 		cur = cur_end + 1;
2254 	}
2255 
2256 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2257 }
2258 
2259 int extent_writepages(struct address_space *mapping,
2260 		      struct writeback_control *wbc)
2261 {
2262 	struct inode *inode = mapping->host;
2263 	int ret = 0;
2264 	struct btrfs_bio_ctrl bio_ctrl = {
2265 		.wbc = wbc,
2266 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2267 	};
2268 
2269 	/*
2270 	 * Allow only a single thread to do the reloc work in zoned mode to
2271 	 * protect the write pointer updates.
2272 	 */
2273 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275 	submit_write_bio(&bio_ctrl, ret);
2276 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277 	return ret;
2278 }
2279 
2280 void extent_readahead(struct readahead_control *rac)
2281 {
2282 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2283 	struct page *pagepool[16];
2284 	struct extent_map *em_cached = NULL;
2285 	u64 prev_em_start = (u64)-1;
2286 	int nr;
2287 
2288 	while ((nr = readahead_page_batch(rac, pagepool))) {
2289 		u64 contig_start = readahead_pos(rac);
2290 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291 
2292 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293 				&em_cached, &bio_ctrl, &prev_em_start);
2294 	}
2295 
2296 	if (em_cached)
2297 		free_extent_map(em_cached);
2298 	submit_one_bio(&bio_ctrl);
2299 }
2300 
2301 /*
2302  * basic invalidate_folio code, this waits on any locked or writeback
2303  * ranges corresponding to the folio, and then deletes any extent state
2304  * records from the tree
2305  */
2306 int extent_invalidate_folio(struct extent_io_tree *tree,
2307 			  struct folio *folio, size_t offset)
2308 {
2309 	struct extent_state *cached_state = NULL;
2310 	u64 start = folio_pos(folio);
2311 	u64 end = start + folio_size(folio) - 1;
2312 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2313 
2314 	/* This function is only called for the btree inode */
2315 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316 
2317 	start += ALIGN(offset, blocksize);
2318 	if (start > end)
2319 		return 0;
2320 
2321 	lock_extent(tree, start, end, &cached_state);
2322 	folio_wait_writeback(folio);
2323 
2324 	/*
2325 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326 	 * so here we only need to unlock the extent range to free any
2327 	 * existing extent state.
2328 	 */
2329 	unlock_extent(tree, start, end, &cached_state);
2330 	return 0;
2331 }
2332 
2333 /*
2334  * a helper for release_folio, this tests for areas of the page that
2335  * are locked or under IO and drops the related state bits if it is safe
2336  * to drop the page.
2337  */
2338 static int try_release_extent_state(struct extent_io_tree *tree,
2339 				    struct page *page, gfp_t mask)
2340 {
2341 	u64 start = page_offset(page);
2342 	u64 end = start + PAGE_SIZE - 1;
2343 	int ret = 1;
2344 
2345 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2346 		ret = 0;
2347 	} else {
2348 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350 				   EXTENT_QGROUP_RESERVED);
2351 
2352 		/*
2353 		 * At this point we can safely clear everything except the
2354 		 * locked bit, the nodatasum bit and the delalloc new bit.
2355 		 * The delalloc new bit will be cleared by ordered extent
2356 		 * completion.
2357 		 */
2358 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2359 
2360 		/* if clear_extent_bit failed for enomem reasons,
2361 		 * we can't allow the release to continue.
2362 		 */
2363 		if (ret < 0)
2364 			ret = 0;
2365 		else
2366 			ret = 1;
2367 	}
2368 	return ret;
2369 }
2370 
2371 /*
2372  * a helper for release_folio.  As long as there are no locked extents
2373  * in the range corresponding to the page, both state records and extent
2374  * map records are removed
2375  */
2376 int try_release_extent_mapping(struct page *page, gfp_t mask)
2377 {
2378 	struct extent_map *em;
2379 	u64 start = page_offset(page);
2380 	u64 end = start + PAGE_SIZE - 1;
2381 	struct btrfs_inode *btrfs_inode = page_to_inode(page);
2382 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384 
2385 	if (gfpflags_allow_blocking(mask) &&
2386 	    page->mapping->host->i_size > SZ_16M) {
2387 		u64 len;
2388 		while (start <= end) {
2389 			struct btrfs_fs_info *fs_info;
2390 			u64 cur_gen;
2391 
2392 			len = end - start + 1;
2393 			write_lock(&map->lock);
2394 			em = lookup_extent_mapping(map, start, len);
2395 			if (!em) {
2396 				write_unlock(&map->lock);
2397 				break;
2398 			}
2399 			if ((em->flags & EXTENT_FLAG_PINNED) ||
2400 			    em->start != start) {
2401 				write_unlock(&map->lock);
2402 				free_extent_map(em);
2403 				break;
2404 			}
2405 			if (test_range_bit_exists(tree, em->start,
2406 						  extent_map_end(em) - 1,
2407 						  EXTENT_LOCKED))
2408 				goto next;
2409 			/*
2410 			 * If it's not in the list of modified extents, used
2411 			 * by a fast fsync, we can remove it. If it's being
2412 			 * logged we can safely remove it since fsync took an
2413 			 * extra reference on the em.
2414 			 */
2415 			if (list_empty(&em->list) ||
2416 			    (em->flags & EXTENT_FLAG_LOGGING))
2417 				goto remove_em;
2418 			/*
2419 			 * If it's in the list of modified extents, remove it
2420 			 * only if its generation is older then the current one,
2421 			 * in which case we don't need it for a fast fsync.
2422 			 * Otherwise don't remove it, we could be racing with an
2423 			 * ongoing fast fsync that could miss the new extent.
2424 			 */
2425 			fs_info = btrfs_inode->root->fs_info;
2426 			spin_lock(&fs_info->trans_lock);
2427 			cur_gen = fs_info->generation;
2428 			spin_unlock(&fs_info->trans_lock);
2429 			if (em->generation >= cur_gen)
2430 				goto next;
2431 remove_em:
2432 			/*
2433 			 * We only remove extent maps that are not in the list of
2434 			 * modified extents or that are in the list but with a
2435 			 * generation lower then the current generation, so there
2436 			 * is no need to set the full fsync flag on the inode (it
2437 			 * hurts the fsync performance for workloads with a data
2438 			 * size that exceeds or is close to the system's memory).
2439 			 */
2440 			remove_extent_mapping(map, em);
2441 			/* once for the rb tree */
2442 			free_extent_map(em);
2443 next:
2444 			start = extent_map_end(em);
2445 			write_unlock(&map->lock);
2446 
2447 			/* once for us */
2448 			free_extent_map(em);
2449 
2450 			cond_resched(); /* Allow large-extent preemption. */
2451 		}
2452 	}
2453 	return try_release_extent_state(tree, page, mask);
2454 }
2455 
2456 struct btrfs_fiemap_entry {
2457 	u64 offset;
2458 	u64 phys;
2459 	u64 len;
2460 	u32 flags;
2461 };
2462 
2463 /*
2464  * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2465  * range from the inode's io tree, unlock the subvolume tree search path, flush
2466  * the fiemap cache and relock the file range and research the subvolume tree.
2467  * The value here is something negative that can't be confused with a valid
2468  * errno value and different from 1 because that's also a return value from
2469  * fiemap_fill_next_extent() and also it's often used to mean some btree search
2470  * did not find a key, so make it some distinct negative value.
2471  */
2472 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2473 
2474 /*
2475  * Used to:
2476  *
2477  * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2478  *   merge extents that are contiguous and can be grouped as a single one;
2479  *
2480  * - Store extents ready to be written to the fiemap buffer in an intermediary
2481  *   buffer. This intermediary buffer is to ensure that in case the fiemap
2482  *   buffer is memory mapped to the fiemap target file, we don't deadlock
2483  *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
2484  *   an extent range in order to prevent races with delalloc flushing and
2485  *   ordered extent completion, which is needed in order to reliably detect
2486  *   delalloc in holes and prealloc extents. And this can lead to a deadlock
2487  *   if the fiemap buffer is memory mapped to the file we are running fiemap
2488  *   against (a silly, useless in practice scenario, but possible) because
2489  *   btrfs_page_mkwrite() will try to lock the same extent range.
2490  */
2491 struct fiemap_cache {
2492 	/* An array of ready fiemap entries. */
2493 	struct btrfs_fiemap_entry *entries;
2494 	/* Number of entries in the entries array. */
2495 	int entries_size;
2496 	/* Index of the next entry in the entries array to write to. */
2497 	int entries_pos;
2498 	/*
2499 	 * Once the entries array is full, this indicates what's the offset for
2500 	 * the next file extent item we must search for in the inode's subvolume
2501 	 * tree after unlocking the extent range in the inode's io tree and
2502 	 * releasing the search path.
2503 	 */
2504 	u64 next_search_offset;
2505 	/*
2506 	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2507 	 * to count ourselves emitted extents and stop instead of relying on
2508 	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2509 	 * the @entries array, and we want to stop as soon as we hit the max
2510 	 * amount of extents to map, not just to save time but also to make the
2511 	 * logic at extent_fiemap() simpler.
2512 	 */
2513 	unsigned int extents_mapped;
2514 	/* Fields for the cached extent (unsubmitted, not ready, extent). */
2515 	u64 offset;
2516 	u64 phys;
2517 	u64 len;
2518 	u32 flags;
2519 	bool cached;
2520 };
2521 
2522 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2523 			      struct fiemap_cache *cache)
2524 {
2525 	for (int i = 0; i < cache->entries_pos; i++) {
2526 		struct btrfs_fiemap_entry *entry = &cache->entries[i];
2527 		int ret;
2528 
2529 		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2530 					      entry->phys, entry->len,
2531 					      entry->flags);
2532 		/*
2533 		 * Ignore 1 (reached max entries) because we keep track of that
2534 		 * ourselves in emit_fiemap_extent().
2535 		 */
2536 		if (ret < 0)
2537 			return ret;
2538 	}
2539 	cache->entries_pos = 0;
2540 
2541 	return 0;
2542 }
2543 
2544 /*
2545  * Helper to submit fiemap extent.
2546  *
2547  * Will try to merge current fiemap extent specified by @offset, @phys,
2548  * @len and @flags with cached one.
2549  * And only when we fails to merge, cached one will be submitted as
2550  * fiemap extent.
2551  *
2552  * Return value is the same as fiemap_fill_next_extent().
2553  */
2554 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2555 				struct fiemap_cache *cache,
2556 				u64 offset, u64 phys, u64 len, u32 flags)
2557 {
2558 	struct btrfs_fiemap_entry *entry;
2559 	u64 cache_end;
2560 
2561 	/* Set at the end of extent_fiemap(). */
2562 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2563 
2564 	if (!cache->cached)
2565 		goto assign;
2566 
2567 	/*
2568 	 * When iterating the extents of the inode, at extent_fiemap(), we may
2569 	 * find an extent that starts at an offset behind the end offset of the
2570 	 * previous extent we processed. This happens if fiemap is called
2571 	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2572 	 * after we had to unlock the file range, release the search path, emit
2573 	 * the fiemap extents stored in the buffer (cache->entries array) and
2574 	 * the lock the remainder of the range and re-search the btree.
2575 	 *
2576 	 * For example we are in leaf X processing its last item, which is the
2577 	 * file extent item for file range [512K, 1M[, and after
2578 	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2579 	 * completes for the file range [768K, 2M[, and that results in trimming
2580 	 * the file extent item so that it now corresponds to the file range
2581 	 * [512K, 768K[ and a new file extent item is inserted for the file
2582 	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2583 	 * the first item of the next leaf - in either case btrfs_next_leaf()
2584 	 * will leave us with a path pointing to the new extent item, for the
2585 	 * file range [768K, 2M[, since that's the first key that follows the
2586 	 * last one we processed. So in order not to report overlapping extents
2587 	 * to user space, we trim the length of the previously cached extent and
2588 	 * emit it.
2589 	 *
2590 	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2591 	 * offset smaller than or equals to cache->offset, and this happens
2592 	 * when we had a hole or prealloc extent with several delalloc ranges in
2593 	 * it, but after btrfs_next_leaf() released the path, delalloc was
2594 	 * flushed and the resulting ordered extents were completed, so we can
2595 	 * now have found a file extent item for an offset that is smaller than
2596 	 * or equals to what we have in cache->offset. We deal with this as
2597 	 * described below.
2598 	 */
2599 	cache_end = cache->offset + cache->len;
2600 	if (cache_end > offset) {
2601 		if (offset == cache->offset) {
2602 			/*
2603 			 * We cached a dealloc range (found in the io tree) for
2604 			 * a hole or prealloc extent and we have now found a
2605 			 * file extent item for the same offset. What we have
2606 			 * now is more recent and up to date, so discard what
2607 			 * we had in the cache and use what we have just found.
2608 			 */
2609 			goto assign;
2610 		} else if (offset > cache->offset) {
2611 			/*
2612 			 * The extent range we previously found ends after the
2613 			 * offset of the file extent item we found and that
2614 			 * offset falls somewhere in the middle of that previous
2615 			 * extent range. So adjust the range we previously found
2616 			 * to end at the offset of the file extent item we have
2617 			 * just found, since this extent is more up to date.
2618 			 * Emit that adjusted range and cache the file extent
2619 			 * item we have just found. This corresponds to the case
2620 			 * where a previously found file extent item was split
2621 			 * due to an ordered extent completing.
2622 			 */
2623 			cache->len = offset - cache->offset;
2624 			goto emit;
2625 		} else {
2626 			const u64 range_end = offset + len;
2627 
2628 			/*
2629 			 * The offset of the file extent item we have just found
2630 			 * is behind the cached offset. This means we were
2631 			 * processing a hole or prealloc extent for which we
2632 			 * have found delalloc ranges (in the io tree), so what
2633 			 * we have in the cache is the last delalloc range we
2634 			 * found while the file extent item we found can be
2635 			 * either for a whole delalloc range we previously
2636 			 * emmitted or only a part of that range.
2637 			 *
2638 			 * We have two cases here:
2639 			 *
2640 			 * 1) The file extent item's range ends at or behind the
2641 			 *    cached extent's end. In this case just ignore the
2642 			 *    current file extent item because we don't want to
2643 			 *    overlap with previous ranges that may have been
2644 			 *    emmitted already;
2645 			 *
2646 			 * 2) The file extent item starts behind the currently
2647 			 *    cached extent but its end offset goes beyond the
2648 			 *    end offset of the cached extent. We don't want to
2649 			 *    overlap with a previous range that may have been
2650 			 *    emmitted already, so we emit the currently cached
2651 			 *    extent and then partially store the current file
2652 			 *    extent item's range in the cache, for the subrange
2653 			 *    going the cached extent's end to the end of the
2654 			 *    file extent item.
2655 			 */
2656 			if (range_end <= cache_end)
2657 				return 0;
2658 
2659 			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2660 				phys += cache_end - offset;
2661 
2662 			offset = cache_end;
2663 			len = range_end - cache_end;
2664 			goto emit;
2665 		}
2666 	}
2667 
2668 	/*
2669 	 * Only merges fiemap extents if
2670 	 * 1) Their logical addresses are continuous
2671 	 *
2672 	 * 2) Their physical addresses are continuous
2673 	 *    So truly compressed (physical size smaller than logical size)
2674 	 *    extents won't get merged with each other
2675 	 *
2676 	 * 3) Share same flags
2677 	 */
2678 	if (cache->offset + cache->len  == offset &&
2679 	    cache->phys + cache->len == phys  &&
2680 	    cache->flags == flags) {
2681 		cache->len += len;
2682 		return 0;
2683 	}
2684 
2685 emit:
2686 	/* Not mergeable, need to submit cached one */
2687 
2688 	if (cache->entries_pos == cache->entries_size) {
2689 		/*
2690 		 * We will need to research for the end offset of the last
2691 		 * stored extent and not from the current offset, because after
2692 		 * unlocking the range and releasing the path, if there's a hole
2693 		 * between that end offset and this current offset, a new extent
2694 		 * may have been inserted due to a new write, so we don't want
2695 		 * to miss it.
2696 		 */
2697 		entry = &cache->entries[cache->entries_size - 1];
2698 		cache->next_search_offset = entry->offset + entry->len;
2699 		cache->cached = false;
2700 
2701 		return BTRFS_FIEMAP_FLUSH_CACHE;
2702 	}
2703 
2704 	entry = &cache->entries[cache->entries_pos];
2705 	entry->offset = cache->offset;
2706 	entry->phys = cache->phys;
2707 	entry->len = cache->len;
2708 	entry->flags = cache->flags;
2709 	cache->entries_pos++;
2710 	cache->extents_mapped++;
2711 
2712 	if (cache->extents_mapped == fieinfo->fi_extents_max) {
2713 		cache->cached = false;
2714 		return 1;
2715 	}
2716 assign:
2717 	cache->cached = true;
2718 	cache->offset = offset;
2719 	cache->phys = phys;
2720 	cache->len = len;
2721 	cache->flags = flags;
2722 
2723 	return 0;
2724 }
2725 
2726 /*
2727  * Emit last fiemap cache
2728  *
2729  * The last fiemap cache may still be cached in the following case:
2730  * 0		      4k		    8k
2731  * |<- Fiemap range ->|
2732  * |<------------  First extent ----------->|
2733  *
2734  * In this case, the first extent range will be cached but not emitted.
2735  * So we must emit it before ending extent_fiemap().
2736  */
2737 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2738 				  struct fiemap_cache *cache)
2739 {
2740 	int ret;
2741 
2742 	if (!cache->cached)
2743 		return 0;
2744 
2745 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2746 				      cache->len, cache->flags);
2747 	cache->cached = false;
2748 	if (ret > 0)
2749 		ret = 0;
2750 	return ret;
2751 }
2752 
2753 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2754 {
2755 	struct extent_buffer *clone = path->nodes[0];
2756 	struct btrfs_key key;
2757 	int slot;
2758 	int ret;
2759 
2760 	path->slots[0]++;
2761 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2762 		return 0;
2763 
2764 	/*
2765 	 * Add a temporary extra ref to an already cloned extent buffer to
2766 	 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2767 	 * the cost of allocating a new one.
2768 	 */
2769 	ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2770 	atomic_inc(&clone->refs);
2771 
2772 	ret = btrfs_next_leaf(inode->root, path);
2773 	if (ret != 0)
2774 		goto out;
2775 
2776 	/*
2777 	 * Don't bother with cloning if there are no more file extent items for
2778 	 * our inode.
2779 	 */
2780 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2781 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2782 		ret = 1;
2783 		goto out;
2784 	}
2785 
2786 	/* See the comment at fiemap_search_slot() about why we clone. */
2787 	copy_extent_buffer_full(clone, path->nodes[0]);
2788 	/*
2789 	 * Important to preserve the start field, for the optimizations when
2790 	 * checking if extents are shared (see extent_fiemap()).
2791 	 */
2792 	clone->start = path->nodes[0]->start;
2793 
2794 	slot = path->slots[0];
2795 	btrfs_release_path(path);
2796 	path->nodes[0] = clone;
2797 	path->slots[0] = slot;
2798 out:
2799 	if (ret)
2800 		free_extent_buffer(clone);
2801 
2802 	return ret;
2803 }
2804 
2805 /*
2806  * Search for the first file extent item that starts at a given file offset or
2807  * the one that starts immediately before that offset.
2808  * Returns: 0 on success, < 0 on error, 1 if not found.
2809  */
2810 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2811 			      u64 file_offset)
2812 {
2813 	const u64 ino = btrfs_ino(inode);
2814 	struct btrfs_root *root = inode->root;
2815 	struct extent_buffer *clone;
2816 	struct btrfs_key key;
2817 	int slot;
2818 	int ret;
2819 
2820 	key.objectid = ino;
2821 	key.type = BTRFS_EXTENT_DATA_KEY;
2822 	key.offset = file_offset;
2823 
2824 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2825 	if (ret < 0)
2826 		return ret;
2827 
2828 	if (ret > 0 && path->slots[0] > 0) {
2829 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2830 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2831 			path->slots[0]--;
2832 	}
2833 
2834 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2835 		ret = btrfs_next_leaf(root, path);
2836 		if (ret != 0)
2837 			return ret;
2838 
2839 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2840 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2841 			return 1;
2842 	}
2843 
2844 	/*
2845 	 * We clone the leaf and use it during fiemap. This is because while
2846 	 * using the leaf we do expensive things like checking if an extent is
2847 	 * shared, which can take a long time. In order to prevent blocking
2848 	 * other tasks for too long, we use a clone of the leaf. We have locked
2849 	 * the file range in the inode's io tree, so we know none of our file
2850 	 * extent items can change. This way we avoid blocking other tasks that
2851 	 * want to insert items for other inodes in the same leaf or b+tree
2852 	 * rebalance operations (triggered for example when someone is trying
2853 	 * to push items into this leaf when trying to insert an item in a
2854 	 * neighbour leaf).
2855 	 * We also need the private clone because holding a read lock on an
2856 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2857 	 * when we check if extents are shared, as backref walking may need to
2858 	 * lock the same leaf we are processing.
2859 	 */
2860 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2861 	if (!clone)
2862 		return -ENOMEM;
2863 
2864 	slot = path->slots[0];
2865 	btrfs_release_path(path);
2866 	path->nodes[0] = clone;
2867 	path->slots[0] = slot;
2868 
2869 	return 0;
2870 }
2871 
2872 /*
2873  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2874  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2875  * extent. The end offset (@end) is inclusive.
2876  */
2877 static int fiemap_process_hole(struct btrfs_inode *inode,
2878 			       struct fiemap_extent_info *fieinfo,
2879 			       struct fiemap_cache *cache,
2880 			       struct extent_state **delalloc_cached_state,
2881 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2882 			       u64 disk_bytenr, u64 extent_offset,
2883 			       u64 extent_gen,
2884 			       u64 start, u64 end)
2885 {
2886 	const u64 i_size = i_size_read(&inode->vfs_inode);
2887 	u64 cur_offset = start;
2888 	u64 last_delalloc_end = 0;
2889 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2890 	bool checked_extent_shared = false;
2891 	int ret;
2892 
2893 	/*
2894 	 * There can be no delalloc past i_size, so don't waste time looking for
2895 	 * it beyond i_size.
2896 	 */
2897 	while (cur_offset < end && cur_offset < i_size) {
2898 		u64 delalloc_start;
2899 		u64 delalloc_end;
2900 		u64 prealloc_start;
2901 		u64 prealloc_len = 0;
2902 		bool delalloc;
2903 
2904 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2905 							delalloc_cached_state,
2906 							&delalloc_start,
2907 							&delalloc_end);
2908 		if (!delalloc)
2909 			break;
2910 
2911 		/*
2912 		 * If this is a prealloc extent we have to report every section
2913 		 * of it that has no delalloc.
2914 		 */
2915 		if (disk_bytenr != 0) {
2916 			if (last_delalloc_end == 0) {
2917 				prealloc_start = start;
2918 				prealloc_len = delalloc_start - start;
2919 			} else {
2920 				prealloc_start = last_delalloc_end + 1;
2921 				prealloc_len = delalloc_start - prealloc_start;
2922 			}
2923 		}
2924 
2925 		if (prealloc_len > 0) {
2926 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2927 				ret = btrfs_is_data_extent_shared(inode,
2928 								  disk_bytenr,
2929 								  extent_gen,
2930 								  backref_ctx);
2931 				if (ret < 0)
2932 					return ret;
2933 				else if (ret > 0)
2934 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2935 
2936 				checked_extent_shared = true;
2937 			}
2938 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2939 						 disk_bytenr + extent_offset,
2940 						 prealloc_len, prealloc_flags);
2941 			if (ret)
2942 				return ret;
2943 			extent_offset += prealloc_len;
2944 		}
2945 
2946 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2947 					 delalloc_end + 1 - delalloc_start,
2948 					 FIEMAP_EXTENT_DELALLOC |
2949 					 FIEMAP_EXTENT_UNKNOWN);
2950 		if (ret)
2951 			return ret;
2952 
2953 		last_delalloc_end = delalloc_end;
2954 		cur_offset = delalloc_end + 1;
2955 		extent_offset += cur_offset - delalloc_start;
2956 		cond_resched();
2957 	}
2958 
2959 	/*
2960 	 * Either we found no delalloc for the whole prealloc extent or we have
2961 	 * a prealloc extent that spans i_size or starts at or after i_size.
2962 	 */
2963 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2964 		u64 prealloc_start;
2965 		u64 prealloc_len;
2966 
2967 		if (last_delalloc_end == 0) {
2968 			prealloc_start = start;
2969 			prealloc_len = end + 1 - start;
2970 		} else {
2971 			prealloc_start = last_delalloc_end + 1;
2972 			prealloc_len = end + 1 - prealloc_start;
2973 		}
2974 
2975 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2976 			ret = btrfs_is_data_extent_shared(inode,
2977 							  disk_bytenr,
2978 							  extent_gen,
2979 							  backref_ctx);
2980 			if (ret < 0)
2981 				return ret;
2982 			else if (ret > 0)
2983 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2984 		}
2985 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2986 					 disk_bytenr + extent_offset,
2987 					 prealloc_len, prealloc_flags);
2988 		if (ret)
2989 			return ret;
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2996 					  struct btrfs_path *path,
2997 					  u64 *last_extent_end_ret)
2998 {
2999 	const u64 ino = btrfs_ino(inode);
3000 	struct btrfs_root *root = inode->root;
3001 	struct extent_buffer *leaf;
3002 	struct btrfs_file_extent_item *ei;
3003 	struct btrfs_key key;
3004 	u64 disk_bytenr;
3005 	int ret;
3006 
3007 	/*
3008 	 * Lookup the last file extent. We're not using i_size here because
3009 	 * there might be preallocation past i_size.
3010 	 */
3011 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3012 	/* There can't be a file extent item at offset (u64)-1 */
3013 	ASSERT(ret != 0);
3014 	if (ret < 0)
3015 		return ret;
3016 
3017 	/*
3018 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3019 	 * slot > 0, except if the btree is empty, which is impossible because
3020 	 * at least it has the inode item for this inode and all the items for
3021 	 * the root inode 256.
3022 	 */
3023 	ASSERT(path->slots[0] > 0);
3024 	path->slots[0]--;
3025 	leaf = path->nodes[0];
3026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3027 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3028 		/* No file extent items in the subvolume tree. */
3029 		*last_extent_end_ret = 0;
3030 		return 0;
3031 	}
3032 
3033 	/*
3034 	 * For an inline extent, the disk_bytenr is where inline data starts at,
3035 	 * so first check if we have an inline extent item before checking if we
3036 	 * have an implicit hole (disk_bytenr == 0).
3037 	 */
3038 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3039 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3040 		*last_extent_end_ret = btrfs_file_extent_end(path);
3041 		return 0;
3042 	}
3043 
3044 	/*
3045 	 * Find the last file extent item that is not a hole (when NO_HOLES is
3046 	 * not enabled). This should take at most 2 iterations in the worst
3047 	 * case: we have one hole file extent item at slot 0 of a leaf and
3048 	 * another hole file extent item as the last item in the previous leaf.
3049 	 * This is because we merge file extent items that represent holes.
3050 	 */
3051 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3052 	while (disk_bytenr == 0) {
3053 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3054 		if (ret < 0) {
3055 			return ret;
3056 		} else if (ret > 0) {
3057 			/* No file extent items that are not holes. */
3058 			*last_extent_end_ret = 0;
3059 			return 0;
3060 		}
3061 		leaf = path->nodes[0];
3062 		ei = btrfs_item_ptr(leaf, path->slots[0],
3063 				    struct btrfs_file_extent_item);
3064 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3065 	}
3066 
3067 	*last_extent_end_ret = btrfs_file_extent_end(path);
3068 	return 0;
3069 }
3070 
3071 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3072 		  u64 start, u64 len)
3073 {
3074 	const u64 ino = btrfs_ino(inode);
3075 	struct extent_state *cached_state = NULL;
3076 	struct extent_state *delalloc_cached_state = NULL;
3077 	struct btrfs_path *path;
3078 	struct fiemap_cache cache = { 0 };
3079 	struct btrfs_backref_share_check_ctx *backref_ctx;
3080 	u64 last_extent_end;
3081 	u64 prev_extent_end;
3082 	u64 range_start;
3083 	u64 range_end;
3084 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3085 	bool stopped = false;
3086 	int ret;
3087 
3088 	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3089 	cache.entries = kmalloc_array(cache.entries_size,
3090 				      sizeof(struct btrfs_fiemap_entry),
3091 				      GFP_KERNEL);
3092 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3093 	path = btrfs_alloc_path();
3094 	if (!cache.entries || !backref_ctx || !path) {
3095 		ret = -ENOMEM;
3096 		goto out;
3097 	}
3098 
3099 restart:
3100 	range_start = round_down(start, sectorsize);
3101 	range_end = round_up(start + len, sectorsize);
3102 	prev_extent_end = range_start;
3103 
3104 	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3105 
3106 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3107 	if (ret < 0)
3108 		goto out_unlock;
3109 	btrfs_release_path(path);
3110 
3111 	path->reada = READA_FORWARD;
3112 	ret = fiemap_search_slot(inode, path, range_start);
3113 	if (ret < 0) {
3114 		goto out_unlock;
3115 	} else if (ret > 0) {
3116 		/*
3117 		 * No file extent item found, but we may have delalloc between
3118 		 * the current offset and i_size. So check for that.
3119 		 */
3120 		ret = 0;
3121 		goto check_eof_delalloc;
3122 	}
3123 
3124 	while (prev_extent_end < range_end) {
3125 		struct extent_buffer *leaf = path->nodes[0];
3126 		struct btrfs_file_extent_item *ei;
3127 		struct btrfs_key key;
3128 		u64 extent_end;
3129 		u64 extent_len;
3130 		u64 extent_offset = 0;
3131 		u64 extent_gen;
3132 		u64 disk_bytenr = 0;
3133 		u64 flags = 0;
3134 		int extent_type;
3135 		u8 compression;
3136 
3137 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3138 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3139 			break;
3140 
3141 		extent_end = btrfs_file_extent_end(path);
3142 
3143 		/*
3144 		 * The first iteration can leave us at an extent item that ends
3145 		 * before our range's start. Move to the next item.
3146 		 */
3147 		if (extent_end <= range_start)
3148 			goto next_item;
3149 
3150 		backref_ctx->curr_leaf_bytenr = leaf->start;
3151 
3152 		/* We have in implicit hole (NO_HOLES feature enabled). */
3153 		if (prev_extent_end < key.offset) {
3154 			const u64 hole_end = min(key.offset, range_end) - 1;
3155 
3156 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3157 						  &delalloc_cached_state,
3158 						  backref_ctx, 0, 0, 0,
3159 						  prev_extent_end, hole_end);
3160 			if (ret < 0) {
3161 				goto out_unlock;
3162 			} else if (ret > 0) {
3163 				/* fiemap_fill_next_extent() told us to stop. */
3164 				stopped = true;
3165 				break;
3166 			}
3167 
3168 			/* We've reached the end of the fiemap range, stop. */
3169 			if (key.offset >= range_end) {
3170 				stopped = true;
3171 				break;
3172 			}
3173 		}
3174 
3175 		extent_len = extent_end - key.offset;
3176 		ei = btrfs_item_ptr(leaf, path->slots[0],
3177 				    struct btrfs_file_extent_item);
3178 		compression = btrfs_file_extent_compression(leaf, ei);
3179 		extent_type = btrfs_file_extent_type(leaf, ei);
3180 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3181 
3182 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3183 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3184 			if (compression == BTRFS_COMPRESS_NONE)
3185 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3186 		}
3187 
3188 		if (compression != BTRFS_COMPRESS_NONE)
3189 			flags |= FIEMAP_EXTENT_ENCODED;
3190 
3191 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3192 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3193 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3194 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3195 						 extent_len, flags);
3196 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3197 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3198 						  &delalloc_cached_state,
3199 						  backref_ctx,
3200 						  disk_bytenr, extent_offset,
3201 						  extent_gen, key.offset,
3202 						  extent_end - 1);
3203 		} else if (disk_bytenr == 0) {
3204 			/* We have an explicit hole. */
3205 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3206 						  &delalloc_cached_state,
3207 						  backref_ctx, 0, 0, 0,
3208 						  key.offset, extent_end - 1);
3209 		} else {
3210 			/* We have a regular extent. */
3211 			if (fieinfo->fi_extents_max) {
3212 				ret = btrfs_is_data_extent_shared(inode,
3213 								  disk_bytenr,
3214 								  extent_gen,
3215 								  backref_ctx);
3216 				if (ret < 0)
3217 					goto out_unlock;
3218 				else if (ret > 0)
3219 					flags |= FIEMAP_EXTENT_SHARED;
3220 			}
3221 
3222 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3223 						 disk_bytenr + extent_offset,
3224 						 extent_len, flags);
3225 		}
3226 
3227 		if (ret < 0) {
3228 			goto out_unlock;
3229 		} else if (ret > 0) {
3230 			/* emit_fiemap_extent() told us to stop. */
3231 			stopped = true;
3232 			break;
3233 		}
3234 
3235 		prev_extent_end = extent_end;
3236 next_item:
3237 		if (fatal_signal_pending(current)) {
3238 			ret = -EINTR;
3239 			goto out_unlock;
3240 		}
3241 
3242 		ret = fiemap_next_leaf_item(inode, path);
3243 		if (ret < 0) {
3244 			goto out_unlock;
3245 		} else if (ret > 0) {
3246 			/* No more file extent items for this inode. */
3247 			break;
3248 		}
3249 		cond_resched();
3250 	}
3251 
3252 check_eof_delalloc:
3253 	if (!stopped && prev_extent_end < range_end) {
3254 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3255 					  &delalloc_cached_state, backref_ctx,
3256 					  0, 0, 0, prev_extent_end, range_end - 1);
3257 		if (ret < 0)
3258 			goto out_unlock;
3259 		prev_extent_end = range_end;
3260 	}
3261 
3262 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3263 		const u64 i_size = i_size_read(&inode->vfs_inode);
3264 
3265 		if (prev_extent_end < i_size) {
3266 			u64 delalloc_start;
3267 			u64 delalloc_end;
3268 			bool delalloc;
3269 
3270 			delalloc = btrfs_find_delalloc_in_range(inode,
3271 								prev_extent_end,
3272 								i_size - 1,
3273 								&delalloc_cached_state,
3274 								&delalloc_start,
3275 								&delalloc_end);
3276 			if (!delalloc)
3277 				cache.flags |= FIEMAP_EXTENT_LAST;
3278 		} else {
3279 			cache.flags |= FIEMAP_EXTENT_LAST;
3280 		}
3281 	}
3282 
3283 out_unlock:
3284 	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3285 
3286 	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3287 		btrfs_release_path(path);
3288 		ret = flush_fiemap_cache(fieinfo, &cache);
3289 		if (ret)
3290 			goto out;
3291 		len -= cache.next_search_offset - start;
3292 		start = cache.next_search_offset;
3293 		goto restart;
3294 	} else if (ret < 0) {
3295 		goto out;
3296 	}
3297 
3298 	/*
3299 	 * Must free the path before emitting to the fiemap buffer because we
3300 	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3301 	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3302 	 * waiting for an ordered extent that in order to complete needs to
3303 	 * modify that leaf, therefore leading to a deadlock.
3304 	 */
3305 	btrfs_free_path(path);
3306 	path = NULL;
3307 
3308 	ret = flush_fiemap_cache(fieinfo, &cache);
3309 	if (ret)
3310 		goto out;
3311 
3312 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3313 out:
3314 	free_extent_state(delalloc_cached_state);
3315 	kfree(cache.entries);
3316 	btrfs_free_backref_share_ctx(backref_ctx);
3317 	btrfs_free_path(path);
3318 	return ret;
3319 }
3320 
3321 static void __free_extent_buffer(struct extent_buffer *eb)
3322 {
3323 	kmem_cache_free(extent_buffer_cache, eb);
3324 }
3325 
3326 static int extent_buffer_under_io(const struct extent_buffer *eb)
3327 {
3328 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3329 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3330 }
3331 
3332 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3333 {
3334 	struct btrfs_subpage *subpage;
3335 
3336 	lockdep_assert_held(&folio->mapping->i_private_lock);
3337 
3338 	if (folio_test_private(folio)) {
3339 		subpage = folio_get_private(folio);
3340 		if (atomic_read(&subpage->eb_refs))
3341 			return true;
3342 		/*
3343 		 * Even there is no eb refs here, we may still have
3344 		 * end_page_read() call relying on page::private.
3345 		 */
3346 		if (atomic_read(&subpage->readers))
3347 			return true;
3348 	}
3349 	return false;
3350 }
3351 
3352 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3353 {
3354 	struct btrfs_fs_info *fs_info = eb->fs_info;
3355 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3356 
3357 	/*
3358 	 * For mapped eb, we're going to change the folio private, which should
3359 	 * be done under the i_private_lock.
3360 	 */
3361 	if (mapped)
3362 		spin_lock(&folio->mapping->i_private_lock);
3363 
3364 	if (!folio_test_private(folio)) {
3365 		if (mapped)
3366 			spin_unlock(&folio->mapping->i_private_lock);
3367 		return;
3368 	}
3369 
3370 	if (fs_info->nodesize >= PAGE_SIZE) {
3371 		/*
3372 		 * We do this since we'll remove the pages after we've
3373 		 * removed the eb from the radix tree, so we could race
3374 		 * and have this page now attached to the new eb.  So
3375 		 * only clear folio if it's still connected to
3376 		 * this eb.
3377 		 */
3378 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3379 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3380 			BUG_ON(folio_test_dirty(folio));
3381 			BUG_ON(folio_test_writeback(folio));
3382 			/* We need to make sure we haven't be attached to a new eb. */
3383 			folio_detach_private(folio);
3384 		}
3385 		if (mapped)
3386 			spin_unlock(&folio->mapping->i_private_lock);
3387 		return;
3388 	}
3389 
3390 	/*
3391 	 * For subpage, we can have dummy eb with folio private attached.  In
3392 	 * this case, we can directly detach the private as such folio is only
3393 	 * attached to one dummy eb, no sharing.
3394 	 */
3395 	if (!mapped) {
3396 		btrfs_detach_subpage(fs_info, folio);
3397 		return;
3398 	}
3399 
3400 	btrfs_folio_dec_eb_refs(fs_info, folio);
3401 
3402 	/*
3403 	 * We can only detach the folio private if there are no other ebs in the
3404 	 * page range and no unfinished IO.
3405 	 */
3406 	if (!folio_range_has_eb(fs_info, folio))
3407 		btrfs_detach_subpage(fs_info, folio);
3408 
3409 	spin_unlock(&folio->mapping->i_private_lock);
3410 }
3411 
3412 /* Release all pages attached to the extent buffer */
3413 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3414 {
3415 	ASSERT(!extent_buffer_under_io(eb));
3416 
3417 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3418 		struct folio *folio = eb->folios[i];
3419 
3420 		if (!folio)
3421 			continue;
3422 
3423 		detach_extent_buffer_folio(eb, folio);
3424 
3425 		/* One for when we allocated the folio. */
3426 		folio_put(folio);
3427 	}
3428 }
3429 
3430 /*
3431  * Helper for releasing the extent buffer.
3432  */
3433 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3434 {
3435 	btrfs_release_extent_buffer_pages(eb);
3436 	btrfs_leak_debug_del_eb(eb);
3437 	__free_extent_buffer(eb);
3438 }
3439 
3440 static struct extent_buffer *
3441 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3442 		      unsigned long len)
3443 {
3444 	struct extent_buffer *eb = NULL;
3445 
3446 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3447 	eb->start = start;
3448 	eb->len = len;
3449 	eb->fs_info = fs_info;
3450 	init_rwsem(&eb->lock);
3451 
3452 	btrfs_leak_debug_add_eb(eb);
3453 
3454 	spin_lock_init(&eb->refs_lock);
3455 	atomic_set(&eb->refs, 1);
3456 
3457 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3458 
3459 	return eb;
3460 }
3461 
3462 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3463 {
3464 	struct extent_buffer *new;
3465 	int num_folios = num_extent_folios(src);
3466 	int ret;
3467 
3468 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3469 	if (new == NULL)
3470 		return NULL;
3471 
3472 	/*
3473 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3474 	 * btrfs_release_extent_buffer() have different behavior for
3475 	 * UNMAPPED subpage extent buffer.
3476 	 */
3477 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3478 
3479 	ret = alloc_eb_folio_array(new, 0);
3480 	if (ret) {
3481 		btrfs_release_extent_buffer(new);
3482 		return NULL;
3483 	}
3484 
3485 	for (int i = 0; i < num_folios; i++) {
3486 		struct folio *folio = new->folios[i];
3487 		int ret;
3488 
3489 		ret = attach_extent_buffer_folio(new, folio, NULL);
3490 		if (ret < 0) {
3491 			btrfs_release_extent_buffer(new);
3492 			return NULL;
3493 		}
3494 		WARN_ON(folio_test_dirty(folio));
3495 	}
3496 	copy_extent_buffer_full(new, src);
3497 	set_extent_buffer_uptodate(new);
3498 
3499 	return new;
3500 }
3501 
3502 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3503 						  u64 start, unsigned long len)
3504 {
3505 	struct extent_buffer *eb;
3506 	int num_folios = 0;
3507 	int ret;
3508 
3509 	eb = __alloc_extent_buffer(fs_info, start, len);
3510 	if (!eb)
3511 		return NULL;
3512 
3513 	ret = alloc_eb_folio_array(eb, 0);
3514 	if (ret)
3515 		goto err;
3516 
3517 	num_folios = num_extent_folios(eb);
3518 	for (int i = 0; i < num_folios; i++) {
3519 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3520 		if (ret < 0)
3521 			goto err;
3522 	}
3523 
3524 	set_extent_buffer_uptodate(eb);
3525 	btrfs_set_header_nritems(eb, 0);
3526 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3527 
3528 	return eb;
3529 err:
3530 	for (int i = 0; i < num_folios; i++) {
3531 		if (eb->folios[i]) {
3532 			detach_extent_buffer_folio(eb, eb->folios[i]);
3533 			__folio_put(eb->folios[i]);
3534 		}
3535 	}
3536 	__free_extent_buffer(eb);
3537 	return NULL;
3538 }
3539 
3540 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3541 						u64 start)
3542 {
3543 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3544 }
3545 
3546 static void check_buffer_tree_ref(struct extent_buffer *eb)
3547 {
3548 	int refs;
3549 	/*
3550 	 * The TREE_REF bit is first set when the extent_buffer is added
3551 	 * to the radix tree. It is also reset, if unset, when a new reference
3552 	 * is created by find_extent_buffer.
3553 	 *
3554 	 * It is only cleared in two cases: freeing the last non-tree
3555 	 * reference to the extent_buffer when its STALE bit is set or
3556 	 * calling release_folio when the tree reference is the only reference.
3557 	 *
3558 	 * In both cases, care is taken to ensure that the extent_buffer's
3559 	 * pages are not under io. However, release_folio can be concurrently
3560 	 * called with creating new references, which is prone to race
3561 	 * conditions between the calls to check_buffer_tree_ref in those
3562 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3563 	 *
3564 	 * The actual lifetime of the extent_buffer in the radix tree is
3565 	 * adequately protected by the refcount, but the TREE_REF bit and
3566 	 * its corresponding reference are not. To protect against this
3567 	 * class of races, we call check_buffer_tree_ref from the codepaths
3568 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3569 	 * longer be cleared, so that is the moment at which any such race is
3570 	 * best fixed.
3571 	 */
3572 	refs = atomic_read(&eb->refs);
3573 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3574 		return;
3575 
3576 	spin_lock(&eb->refs_lock);
3577 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3578 		atomic_inc(&eb->refs);
3579 	spin_unlock(&eb->refs_lock);
3580 }
3581 
3582 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3583 {
3584 	int num_folios= num_extent_folios(eb);
3585 
3586 	check_buffer_tree_ref(eb);
3587 
3588 	for (int i = 0; i < num_folios; i++)
3589 		folio_mark_accessed(eb->folios[i]);
3590 }
3591 
3592 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3593 					 u64 start)
3594 {
3595 	struct extent_buffer *eb;
3596 
3597 	eb = find_extent_buffer_nolock(fs_info, start);
3598 	if (!eb)
3599 		return NULL;
3600 	/*
3601 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3602 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3603 	 * another task running free_extent_buffer() might have seen that flag
3604 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3605 	 * writeback flags not set) and it's still in the tree (flag
3606 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3607 	 * decrementing the extent buffer's reference count twice.  So here we
3608 	 * could race and increment the eb's reference count, clear its stale
3609 	 * flag, mark it as dirty and drop our reference before the other task
3610 	 * finishes executing free_extent_buffer, which would later result in
3611 	 * an attempt to free an extent buffer that is dirty.
3612 	 */
3613 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3614 		spin_lock(&eb->refs_lock);
3615 		spin_unlock(&eb->refs_lock);
3616 	}
3617 	mark_extent_buffer_accessed(eb);
3618 	return eb;
3619 }
3620 
3621 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3622 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3623 					u64 start)
3624 {
3625 	struct extent_buffer *eb, *exists = NULL;
3626 	int ret;
3627 
3628 	eb = find_extent_buffer(fs_info, start);
3629 	if (eb)
3630 		return eb;
3631 	eb = alloc_dummy_extent_buffer(fs_info, start);
3632 	if (!eb)
3633 		return ERR_PTR(-ENOMEM);
3634 	eb->fs_info = fs_info;
3635 again:
3636 	ret = radix_tree_preload(GFP_NOFS);
3637 	if (ret) {
3638 		exists = ERR_PTR(ret);
3639 		goto free_eb;
3640 	}
3641 	spin_lock(&fs_info->buffer_lock);
3642 	ret = radix_tree_insert(&fs_info->buffer_radix,
3643 				start >> fs_info->sectorsize_bits, eb);
3644 	spin_unlock(&fs_info->buffer_lock);
3645 	radix_tree_preload_end();
3646 	if (ret == -EEXIST) {
3647 		exists = find_extent_buffer(fs_info, start);
3648 		if (exists)
3649 			goto free_eb;
3650 		else
3651 			goto again;
3652 	}
3653 	check_buffer_tree_ref(eb);
3654 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3655 
3656 	return eb;
3657 free_eb:
3658 	btrfs_release_extent_buffer(eb);
3659 	return exists;
3660 }
3661 #endif
3662 
3663 static struct extent_buffer *grab_extent_buffer(
3664 		struct btrfs_fs_info *fs_info, struct page *page)
3665 {
3666 	struct folio *folio = page_folio(page);
3667 	struct extent_buffer *exists;
3668 
3669 	/*
3670 	 * For subpage case, we completely rely on radix tree to ensure we
3671 	 * don't try to insert two ebs for the same bytenr.  So here we always
3672 	 * return NULL and just continue.
3673 	 */
3674 	if (fs_info->nodesize < PAGE_SIZE)
3675 		return NULL;
3676 
3677 	/* Page not yet attached to an extent buffer */
3678 	if (!folio_test_private(folio))
3679 		return NULL;
3680 
3681 	/*
3682 	 * We could have already allocated an eb for this page and attached one
3683 	 * so lets see if we can get a ref on the existing eb, and if we can we
3684 	 * know it's good and we can just return that one, else we know we can
3685 	 * just overwrite folio private.
3686 	 */
3687 	exists = folio_get_private(folio);
3688 	if (atomic_inc_not_zero(&exists->refs))
3689 		return exists;
3690 
3691 	WARN_ON(PageDirty(page));
3692 	folio_detach_private(folio);
3693 	return NULL;
3694 }
3695 
3696 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3697 {
3698 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3699 		btrfs_err(fs_info, "bad tree block start %llu", start);
3700 		return -EINVAL;
3701 	}
3702 
3703 	if (fs_info->nodesize < PAGE_SIZE &&
3704 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3705 		btrfs_err(fs_info,
3706 		"tree block crosses page boundary, start %llu nodesize %u",
3707 			  start, fs_info->nodesize);
3708 		return -EINVAL;
3709 	}
3710 	if (fs_info->nodesize >= PAGE_SIZE &&
3711 	    !PAGE_ALIGNED(start)) {
3712 		btrfs_err(fs_info,
3713 		"tree block is not page aligned, start %llu nodesize %u",
3714 			  start, fs_info->nodesize);
3715 		return -EINVAL;
3716 	}
3717 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3718 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3719 		btrfs_warn(fs_info,
3720 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3721 			      start, fs_info->nodesize);
3722 	}
3723 	return 0;
3724 }
3725 
3726 
3727 /*
3728  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3729  * Return >0 if there is already another extent buffer for the range,
3730  * and @found_eb_ret would be updated.
3731  * Return -EAGAIN if the filemap has an existing folio but with different size
3732  * than @eb.
3733  * The caller needs to free the existing folios and retry using the same order.
3734  */
3735 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3736 				      struct extent_buffer **found_eb_ret)
3737 {
3738 
3739 	struct btrfs_fs_info *fs_info = eb->fs_info;
3740 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3741 	const unsigned long index = eb->start >> PAGE_SHIFT;
3742 	struct folio *existing_folio;
3743 	int ret;
3744 
3745 	ASSERT(found_eb_ret);
3746 
3747 	/* Caller should ensure the folio exists. */
3748 	ASSERT(eb->folios[i]);
3749 
3750 retry:
3751 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3752 				GFP_NOFS | __GFP_NOFAIL);
3753 	if (!ret)
3754 		return 0;
3755 
3756 	existing_folio = filemap_lock_folio(mapping, index + i);
3757 	/* The page cache only exists for a very short time, just retry. */
3758 	if (IS_ERR(existing_folio))
3759 		goto retry;
3760 
3761 	/* For now, we should only have single-page folios for btree inode. */
3762 	ASSERT(folio_nr_pages(existing_folio) == 1);
3763 
3764 	if (folio_size(existing_folio) != eb->folio_size) {
3765 		folio_unlock(existing_folio);
3766 		folio_put(existing_folio);
3767 		return -EAGAIN;
3768 	}
3769 
3770 	if (fs_info->nodesize < PAGE_SIZE) {
3771 		/*
3772 		 * We're going to reuse the existing page, can drop our page
3773 		 * and subpage structure now.
3774 		 */
3775 		__free_page(folio_page(eb->folios[i], 0));
3776 		eb->folios[i] = existing_folio;
3777 	} else {
3778 		struct extent_buffer *existing_eb;
3779 
3780 		existing_eb = grab_extent_buffer(fs_info,
3781 						 folio_page(existing_folio, 0));
3782 		if (existing_eb) {
3783 			/* The extent buffer still exists, we can use it directly. */
3784 			*found_eb_ret = existing_eb;
3785 			folio_unlock(existing_folio);
3786 			folio_put(existing_folio);
3787 			return 1;
3788 		}
3789 		/* The extent buffer no longer exists, we can reuse the folio. */
3790 		__free_page(folio_page(eb->folios[i], 0));
3791 		eb->folios[i] = existing_folio;
3792 	}
3793 	return 0;
3794 }
3795 
3796 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3797 					  u64 start, u64 owner_root, int level)
3798 {
3799 	unsigned long len = fs_info->nodesize;
3800 	int num_folios;
3801 	int attached = 0;
3802 	struct extent_buffer *eb;
3803 	struct extent_buffer *existing_eb = NULL;
3804 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3805 	struct btrfs_subpage *prealloc = NULL;
3806 	u64 lockdep_owner = owner_root;
3807 	bool page_contig = true;
3808 	int uptodate = 1;
3809 	int ret;
3810 
3811 	if (check_eb_alignment(fs_info, start))
3812 		return ERR_PTR(-EINVAL);
3813 
3814 #if BITS_PER_LONG == 32
3815 	if (start >= MAX_LFS_FILESIZE) {
3816 		btrfs_err_rl(fs_info,
3817 		"extent buffer %llu is beyond 32bit page cache limit", start);
3818 		btrfs_err_32bit_limit(fs_info);
3819 		return ERR_PTR(-EOVERFLOW);
3820 	}
3821 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3822 		btrfs_warn_32bit_limit(fs_info);
3823 #endif
3824 
3825 	eb = find_extent_buffer(fs_info, start);
3826 	if (eb)
3827 		return eb;
3828 
3829 	eb = __alloc_extent_buffer(fs_info, start, len);
3830 	if (!eb)
3831 		return ERR_PTR(-ENOMEM);
3832 
3833 	/*
3834 	 * The reloc trees are just snapshots, so we need them to appear to be
3835 	 * just like any other fs tree WRT lockdep.
3836 	 */
3837 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3838 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3839 
3840 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3841 
3842 	/*
3843 	 * Preallocate folio private for subpage case, so that we won't
3844 	 * allocate memory with i_private_lock nor page lock hold.
3845 	 *
3846 	 * The memory will be freed by attach_extent_buffer_page() or freed
3847 	 * manually if we exit earlier.
3848 	 */
3849 	if (fs_info->nodesize < PAGE_SIZE) {
3850 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3851 		if (IS_ERR(prealloc)) {
3852 			ret = PTR_ERR(prealloc);
3853 			goto out;
3854 		}
3855 	}
3856 
3857 reallocate:
3858 	/* Allocate all pages first. */
3859 	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3860 	if (ret < 0) {
3861 		btrfs_free_subpage(prealloc);
3862 		goto out;
3863 	}
3864 
3865 	num_folios = num_extent_folios(eb);
3866 	/* Attach all pages to the filemap. */
3867 	for (int i = 0; i < num_folios; i++) {
3868 		struct folio *folio;
3869 
3870 		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3871 		if (ret > 0) {
3872 			ASSERT(existing_eb);
3873 			goto out;
3874 		}
3875 
3876 		/*
3877 		 * TODO: Special handling for a corner case where the order of
3878 		 * folios mismatch between the new eb and filemap.
3879 		 *
3880 		 * This happens when:
3881 		 *
3882 		 * - the new eb is using higher order folio
3883 		 *
3884 		 * - the filemap is still using 0-order folios for the range
3885 		 *   This can happen at the previous eb allocation, and we don't
3886 		 *   have higher order folio for the call.
3887 		 *
3888 		 * - the existing eb has already been freed
3889 		 *
3890 		 * In this case, we have to free the existing folios first, and
3891 		 * re-allocate using the same order.
3892 		 * Thankfully this is not going to happen yet, as we're still
3893 		 * using 0-order folios.
3894 		 */
3895 		if (unlikely(ret == -EAGAIN)) {
3896 			ASSERT(0);
3897 			goto reallocate;
3898 		}
3899 		attached++;
3900 
3901 		/*
3902 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3903 		 * reliable, as we may choose to reuse the existing page cache
3904 		 * and free the allocated page.
3905 		 */
3906 		folio = eb->folios[i];
3907 		eb->folio_size = folio_size(folio);
3908 		eb->folio_shift = folio_shift(folio);
3909 		spin_lock(&mapping->i_private_lock);
3910 		/* Should not fail, as we have preallocated the memory */
3911 		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3912 		ASSERT(!ret);
3913 		/*
3914 		 * To inform we have extra eb under allocation, so that
3915 		 * detach_extent_buffer_page() won't release the folio private
3916 		 * when the eb hasn't yet been inserted into radix tree.
3917 		 *
3918 		 * The ref will be decreased when the eb released the page, in
3919 		 * detach_extent_buffer_page().
3920 		 * Thus needs no special handling in error path.
3921 		 */
3922 		btrfs_folio_inc_eb_refs(fs_info, folio);
3923 		spin_unlock(&mapping->i_private_lock);
3924 
3925 		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3926 
3927 		/*
3928 		 * Check if the current page is physically contiguous with previous eb
3929 		 * page.
3930 		 * At this stage, either we allocated a large folio, thus @i
3931 		 * would only be 0, or we fall back to per-page allocation.
3932 		 */
3933 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3934 			page_contig = false;
3935 
3936 		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3937 			uptodate = 0;
3938 
3939 		/*
3940 		 * We can't unlock the pages just yet since the extent buffer
3941 		 * hasn't been properly inserted in the radix tree, this
3942 		 * opens a race with btree_release_folio which can free a page
3943 		 * while we are still filling in all pages for the buffer and
3944 		 * we could crash.
3945 		 */
3946 	}
3947 	if (uptodate)
3948 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3949 	/* All pages are physically contiguous, can skip cross page handling. */
3950 	if (page_contig)
3951 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3952 again:
3953 	ret = radix_tree_preload(GFP_NOFS);
3954 	if (ret)
3955 		goto out;
3956 
3957 	spin_lock(&fs_info->buffer_lock);
3958 	ret = radix_tree_insert(&fs_info->buffer_radix,
3959 				start >> fs_info->sectorsize_bits, eb);
3960 	spin_unlock(&fs_info->buffer_lock);
3961 	radix_tree_preload_end();
3962 	if (ret == -EEXIST) {
3963 		ret = 0;
3964 		existing_eb = find_extent_buffer(fs_info, start);
3965 		if (existing_eb)
3966 			goto out;
3967 		else
3968 			goto again;
3969 	}
3970 	/* add one reference for the tree */
3971 	check_buffer_tree_ref(eb);
3972 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3973 
3974 	/*
3975 	 * Now it's safe to unlock the pages because any calls to
3976 	 * btree_release_folio will correctly detect that a page belongs to a
3977 	 * live buffer and won't free them prematurely.
3978 	 */
3979 	for (int i = 0; i < num_folios; i++)
3980 		unlock_page(folio_page(eb->folios[i], 0));
3981 	return eb;
3982 
3983 out:
3984 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3985 
3986 	/*
3987 	 * Any attached folios need to be detached before we unlock them.  This
3988 	 * is because when we're inserting our new folios into the mapping, and
3989 	 * then attaching our eb to that folio.  If we fail to insert our folio
3990 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3991 	 * want that to grab this eb, as we're getting ready to free it.  So we
3992 	 * have to detach it first and then unlock it.
3993 	 *
3994 	 * We have to drop our reference and NULL it out here because in the
3995 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3996 	 * Below when we call btrfs_release_extent_buffer() we will call
3997 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3998 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3999 	 * double put our reference and be super sad.
4000 	 */
4001 	for (int i = 0; i < attached; i++) {
4002 		ASSERT(eb->folios[i]);
4003 		detach_extent_buffer_folio(eb, eb->folios[i]);
4004 		unlock_page(folio_page(eb->folios[i], 0));
4005 		folio_put(eb->folios[i]);
4006 		eb->folios[i] = NULL;
4007 	}
4008 	/*
4009 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4010 	 * so it can be cleaned up without utlizing page->mapping.
4011 	 */
4012 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4013 
4014 	btrfs_release_extent_buffer(eb);
4015 	if (ret < 0)
4016 		return ERR_PTR(ret);
4017 	ASSERT(existing_eb);
4018 	return existing_eb;
4019 }
4020 
4021 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4022 {
4023 	struct extent_buffer *eb =
4024 			container_of(head, struct extent_buffer, rcu_head);
4025 
4026 	__free_extent_buffer(eb);
4027 }
4028 
4029 static int release_extent_buffer(struct extent_buffer *eb)
4030 	__releases(&eb->refs_lock)
4031 {
4032 	lockdep_assert_held(&eb->refs_lock);
4033 
4034 	WARN_ON(atomic_read(&eb->refs) == 0);
4035 	if (atomic_dec_and_test(&eb->refs)) {
4036 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4037 			struct btrfs_fs_info *fs_info = eb->fs_info;
4038 
4039 			spin_unlock(&eb->refs_lock);
4040 
4041 			spin_lock(&fs_info->buffer_lock);
4042 			radix_tree_delete(&fs_info->buffer_radix,
4043 					  eb->start >> fs_info->sectorsize_bits);
4044 			spin_unlock(&fs_info->buffer_lock);
4045 		} else {
4046 			spin_unlock(&eb->refs_lock);
4047 		}
4048 
4049 		btrfs_leak_debug_del_eb(eb);
4050 		/* Should be safe to release our pages at this point */
4051 		btrfs_release_extent_buffer_pages(eb);
4052 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4053 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4054 			__free_extent_buffer(eb);
4055 			return 1;
4056 		}
4057 #endif
4058 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4059 		return 1;
4060 	}
4061 	spin_unlock(&eb->refs_lock);
4062 
4063 	return 0;
4064 }
4065 
4066 void free_extent_buffer(struct extent_buffer *eb)
4067 {
4068 	int refs;
4069 	if (!eb)
4070 		return;
4071 
4072 	refs = atomic_read(&eb->refs);
4073 	while (1) {
4074 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4075 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4076 			refs == 1))
4077 			break;
4078 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4079 			return;
4080 	}
4081 
4082 	spin_lock(&eb->refs_lock);
4083 	if (atomic_read(&eb->refs) == 2 &&
4084 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4085 	    !extent_buffer_under_io(eb) &&
4086 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4087 		atomic_dec(&eb->refs);
4088 
4089 	/*
4090 	 * I know this is terrible, but it's temporary until we stop tracking
4091 	 * the uptodate bits and such for the extent buffers.
4092 	 */
4093 	release_extent_buffer(eb);
4094 }
4095 
4096 void free_extent_buffer_stale(struct extent_buffer *eb)
4097 {
4098 	if (!eb)
4099 		return;
4100 
4101 	spin_lock(&eb->refs_lock);
4102 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4103 
4104 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4105 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4106 		atomic_dec(&eb->refs);
4107 	release_extent_buffer(eb);
4108 }
4109 
4110 static void btree_clear_folio_dirty(struct folio *folio)
4111 {
4112 	ASSERT(folio_test_dirty(folio));
4113 	ASSERT(folio_test_locked(folio));
4114 	folio_clear_dirty_for_io(folio);
4115 	xa_lock_irq(&folio->mapping->i_pages);
4116 	if (!folio_test_dirty(folio))
4117 		__xa_clear_mark(&folio->mapping->i_pages,
4118 				folio_index(folio), PAGECACHE_TAG_DIRTY);
4119 	xa_unlock_irq(&folio->mapping->i_pages);
4120 }
4121 
4122 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4123 {
4124 	struct btrfs_fs_info *fs_info = eb->fs_info;
4125 	struct folio *folio = eb->folios[0];
4126 	bool last;
4127 
4128 	/* btree_clear_folio_dirty() needs page locked. */
4129 	folio_lock(folio);
4130 	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4131 	if (last)
4132 		btree_clear_folio_dirty(folio);
4133 	folio_unlock(folio);
4134 	WARN_ON(atomic_read(&eb->refs) == 0);
4135 }
4136 
4137 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4138 			      struct extent_buffer *eb)
4139 {
4140 	struct btrfs_fs_info *fs_info = eb->fs_info;
4141 	int num_folios;
4142 
4143 	btrfs_assert_tree_write_locked(eb);
4144 
4145 	if (trans && btrfs_header_generation(eb) != trans->transid)
4146 		return;
4147 
4148 	/*
4149 	 * Instead of clearing the dirty flag off of the buffer, mark it as
4150 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4151 	 * write-ordering in zoned mode, without the need to later re-dirty
4152 	 * the extent_buffer.
4153 	 *
4154 	 * The actual zeroout of the buffer will happen later in
4155 	 * btree_csum_one_bio.
4156 	 */
4157 	if (btrfs_is_zoned(fs_info)) {
4158 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4159 		return;
4160 	}
4161 
4162 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4163 		return;
4164 
4165 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4166 				 fs_info->dirty_metadata_batch);
4167 
4168 	if (eb->fs_info->nodesize < PAGE_SIZE)
4169 		return clear_subpage_extent_buffer_dirty(eb);
4170 
4171 	num_folios = num_extent_folios(eb);
4172 	for (int i = 0; i < num_folios; i++) {
4173 		struct folio *folio = eb->folios[i];
4174 
4175 		if (!folio_test_dirty(folio))
4176 			continue;
4177 		folio_lock(folio);
4178 		btree_clear_folio_dirty(folio);
4179 		folio_unlock(folio);
4180 	}
4181 	WARN_ON(atomic_read(&eb->refs) == 0);
4182 }
4183 
4184 void set_extent_buffer_dirty(struct extent_buffer *eb)
4185 {
4186 	int num_folios;
4187 	bool was_dirty;
4188 
4189 	check_buffer_tree_ref(eb);
4190 
4191 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4192 
4193 	num_folios = num_extent_folios(eb);
4194 	WARN_ON(atomic_read(&eb->refs) == 0);
4195 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4196 
4197 	if (!was_dirty) {
4198 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4199 
4200 		/*
4201 		 * For subpage case, we can have other extent buffers in the
4202 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4203 		 * have to clear page dirty without subpage lock held.
4204 		 * This can cause race where our page gets dirty cleared after
4205 		 * we just set it.
4206 		 *
4207 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4208 		 * its page for other reasons, we can use page lock to prevent
4209 		 * the above race.
4210 		 */
4211 		if (subpage)
4212 			lock_page(folio_page(eb->folios[0], 0));
4213 		for (int i = 0; i < num_folios; i++)
4214 			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4215 					      eb->start, eb->len);
4216 		if (subpage)
4217 			unlock_page(folio_page(eb->folios[0], 0));
4218 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4219 					 eb->len,
4220 					 eb->fs_info->dirty_metadata_batch);
4221 	}
4222 #ifdef CONFIG_BTRFS_DEBUG
4223 	for (int i = 0; i < num_folios; i++)
4224 		ASSERT(folio_test_dirty(eb->folios[i]));
4225 #endif
4226 }
4227 
4228 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4229 {
4230 	struct btrfs_fs_info *fs_info = eb->fs_info;
4231 	int num_folios = num_extent_folios(eb);
4232 
4233 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4234 	for (int i = 0; i < num_folios; i++) {
4235 		struct folio *folio = eb->folios[i];
4236 
4237 		if (!folio)
4238 			continue;
4239 
4240 		/*
4241 		 * This is special handling for metadata subpage, as regular
4242 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4243 		 */
4244 		if (fs_info->nodesize >= PAGE_SIZE)
4245 			folio_clear_uptodate(folio);
4246 		else
4247 			btrfs_subpage_clear_uptodate(fs_info, folio,
4248 						     eb->start, eb->len);
4249 	}
4250 }
4251 
4252 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4253 {
4254 	struct btrfs_fs_info *fs_info = eb->fs_info;
4255 	int num_folios = num_extent_folios(eb);
4256 
4257 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4258 	for (int i = 0; i < num_folios; i++) {
4259 		struct folio *folio = eb->folios[i];
4260 
4261 		/*
4262 		 * This is special handling for metadata subpage, as regular
4263 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4264 		 */
4265 		if (fs_info->nodesize >= PAGE_SIZE)
4266 			folio_mark_uptodate(folio);
4267 		else
4268 			btrfs_subpage_set_uptodate(fs_info, folio,
4269 						   eb->start, eb->len);
4270 	}
4271 }
4272 
4273 static void end_bbio_meta_read(struct btrfs_bio *bbio)
4274 {
4275 	struct extent_buffer *eb = bbio->private;
4276 	struct btrfs_fs_info *fs_info = eb->fs_info;
4277 	bool uptodate = !bbio->bio.bi_status;
4278 	struct folio_iter fi;
4279 	u32 bio_offset = 0;
4280 
4281 	eb->read_mirror = bbio->mirror_num;
4282 
4283 	if (uptodate &&
4284 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4285 		uptodate = false;
4286 
4287 	if (uptodate) {
4288 		set_extent_buffer_uptodate(eb);
4289 	} else {
4290 		clear_extent_buffer_uptodate(eb);
4291 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4292 	}
4293 
4294 	bio_for_each_folio_all(fi, &bbio->bio) {
4295 		struct folio *folio = fi.folio;
4296 		u64 start = eb->start + bio_offset;
4297 		u32 len = fi.length;
4298 
4299 		if (uptodate)
4300 			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4301 		else
4302 			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4303 
4304 		bio_offset += len;
4305 	}
4306 
4307 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4308 	smp_mb__after_atomic();
4309 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4310 	free_extent_buffer(eb);
4311 
4312 	bio_put(&bbio->bio);
4313 }
4314 
4315 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4316 			     struct btrfs_tree_parent_check *check)
4317 {
4318 	struct btrfs_bio *bbio;
4319 	bool ret;
4320 
4321 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4322 		return 0;
4323 
4324 	/*
4325 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4326 	 * operation, which could potentially still be in flight.  In this case
4327 	 * we simply want to return an error.
4328 	 */
4329 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4330 		return -EIO;
4331 
4332 	/* Someone else is already reading the buffer, just wait for it. */
4333 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4334 		goto done;
4335 
4336 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4337 	eb->read_mirror = 0;
4338 	check_buffer_tree_ref(eb);
4339 	atomic_inc(&eb->refs);
4340 
4341 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4342 			       REQ_OP_READ | REQ_META, eb->fs_info,
4343 			       end_bbio_meta_read, eb);
4344 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4345 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4346 	bbio->file_offset = eb->start;
4347 	memcpy(&bbio->parent_check, check, sizeof(*check));
4348 	if (eb->fs_info->nodesize < PAGE_SIZE) {
4349 		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4350 				    eb->start - folio_pos(eb->folios[0]));
4351 		ASSERT(ret);
4352 	} else {
4353 		int num_folios = num_extent_folios(eb);
4354 
4355 		for (int i = 0; i < num_folios; i++) {
4356 			struct folio *folio = eb->folios[i];
4357 
4358 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4359 			ASSERT(ret);
4360 		}
4361 	}
4362 	btrfs_submit_bio(bbio, mirror_num);
4363 
4364 done:
4365 	if (wait == WAIT_COMPLETE) {
4366 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4367 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4368 			return -EIO;
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4375 			    unsigned long len)
4376 {
4377 	btrfs_warn(eb->fs_info,
4378 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
4379 		eb->start, eb->len, start, len);
4380 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4381 
4382 	return true;
4383 }
4384 
4385 /*
4386  * Check if the [start, start + len) range is valid before reading/writing
4387  * the eb.
4388  * NOTE: @start and @len are offset inside the eb, not logical address.
4389  *
4390  * Caller should not touch the dst/src memory if this function returns error.
4391  */
4392 static inline int check_eb_range(const struct extent_buffer *eb,
4393 				 unsigned long start, unsigned long len)
4394 {
4395 	unsigned long offset;
4396 
4397 	/* start, start + len should not go beyond eb->len nor overflow */
4398 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4399 		return report_eb_range(eb, start, len);
4400 
4401 	return false;
4402 }
4403 
4404 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4405 			unsigned long start, unsigned long len)
4406 {
4407 	const int unit_size = eb->folio_size;
4408 	size_t cur;
4409 	size_t offset;
4410 	char *dst = (char *)dstv;
4411 	unsigned long i = get_eb_folio_index(eb, start);
4412 
4413 	if (check_eb_range(eb, start, len)) {
4414 		/*
4415 		 * Invalid range hit, reset the memory, so callers won't get
4416 		 * some random garbage for their uninitialized memory.
4417 		 */
4418 		memset(dstv, 0, len);
4419 		return;
4420 	}
4421 
4422 	if (eb->addr) {
4423 		memcpy(dstv, eb->addr + start, len);
4424 		return;
4425 	}
4426 
4427 	offset = get_eb_offset_in_folio(eb, start);
4428 
4429 	while (len > 0) {
4430 		char *kaddr;
4431 
4432 		cur = min(len, unit_size - offset);
4433 		kaddr = folio_address(eb->folios[i]);
4434 		memcpy(dst, kaddr + offset, cur);
4435 
4436 		dst += cur;
4437 		len -= cur;
4438 		offset = 0;
4439 		i++;
4440 	}
4441 }
4442 
4443 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4444 				       void __user *dstv,
4445 				       unsigned long start, unsigned long len)
4446 {
4447 	const int unit_size = eb->folio_size;
4448 	size_t cur;
4449 	size_t offset;
4450 	char __user *dst = (char __user *)dstv;
4451 	unsigned long i = get_eb_folio_index(eb, start);
4452 	int ret = 0;
4453 
4454 	WARN_ON(start > eb->len);
4455 	WARN_ON(start + len > eb->start + eb->len);
4456 
4457 	if (eb->addr) {
4458 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4459 			ret = -EFAULT;
4460 		return ret;
4461 	}
4462 
4463 	offset = get_eb_offset_in_folio(eb, start);
4464 
4465 	while (len > 0) {
4466 		char *kaddr;
4467 
4468 		cur = min(len, unit_size - offset);
4469 		kaddr = folio_address(eb->folios[i]);
4470 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4471 			ret = -EFAULT;
4472 			break;
4473 		}
4474 
4475 		dst += cur;
4476 		len -= cur;
4477 		offset = 0;
4478 		i++;
4479 	}
4480 
4481 	return ret;
4482 }
4483 
4484 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4485 			 unsigned long start, unsigned long len)
4486 {
4487 	const int unit_size = eb->folio_size;
4488 	size_t cur;
4489 	size_t offset;
4490 	char *kaddr;
4491 	char *ptr = (char *)ptrv;
4492 	unsigned long i = get_eb_folio_index(eb, start);
4493 	int ret = 0;
4494 
4495 	if (check_eb_range(eb, start, len))
4496 		return -EINVAL;
4497 
4498 	if (eb->addr)
4499 		return memcmp(ptrv, eb->addr + start, len);
4500 
4501 	offset = get_eb_offset_in_folio(eb, start);
4502 
4503 	while (len > 0) {
4504 		cur = min(len, unit_size - offset);
4505 		kaddr = folio_address(eb->folios[i]);
4506 		ret = memcmp(ptr, kaddr + offset, cur);
4507 		if (ret)
4508 			break;
4509 
4510 		ptr += cur;
4511 		len -= cur;
4512 		offset = 0;
4513 		i++;
4514 	}
4515 	return ret;
4516 }
4517 
4518 /*
4519  * Check that the extent buffer is uptodate.
4520  *
4521  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4522  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4523  */
4524 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4525 {
4526 	struct btrfs_fs_info *fs_info = eb->fs_info;
4527 	struct folio *folio = eb->folios[i];
4528 
4529 	ASSERT(folio);
4530 
4531 	/*
4532 	 * If we are using the commit root we could potentially clear a page
4533 	 * Uptodate while we're using the extent buffer that we've previously
4534 	 * looked up.  We don't want to complain in this case, as the page was
4535 	 * valid before, we just didn't write it out.  Instead we want to catch
4536 	 * the case where we didn't actually read the block properly, which
4537 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4538 	 */
4539 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4540 		return;
4541 
4542 	if (fs_info->nodesize < PAGE_SIZE) {
4543 		struct folio *folio = eb->folios[0];
4544 
4545 		ASSERT(i == 0);
4546 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4547 							 eb->start, eb->len)))
4548 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4549 	} else {
4550 		WARN_ON(!folio_test_uptodate(folio));
4551 	}
4552 }
4553 
4554 static void __write_extent_buffer(const struct extent_buffer *eb,
4555 				  const void *srcv, unsigned long start,
4556 				  unsigned long len, bool use_memmove)
4557 {
4558 	const int unit_size = eb->folio_size;
4559 	size_t cur;
4560 	size_t offset;
4561 	char *kaddr;
4562 	char *src = (char *)srcv;
4563 	unsigned long i = get_eb_folio_index(eb, start);
4564 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4565 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4566 
4567 	if (check_eb_range(eb, start, len))
4568 		return;
4569 
4570 	if (eb->addr) {
4571 		if (use_memmove)
4572 			memmove(eb->addr + start, srcv, len);
4573 		else
4574 			memcpy(eb->addr + start, srcv, len);
4575 		return;
4576 	}
4577 
4578 	offset = get_eb_offset_in_folio(eb, start);
4579 
4580 	while (len > 0) {
4581 		if (check_uptodate)
4582 			assert_eb_folio_uptodate(eb, i);
4583 
4584 		cur = min(len, unit_size - offset);
4585 		kaddr = folio_address(eb->folios[i]);
4586 		if (use_memmove)
4587 			memmove(kaddr + offset, src, cur);
4588 		else
4589 			memcpy(kaddr + offset, src, cur);
4590 
4591 		src += cur;
4592 		len -= cur;
4593 		offset = 0;
4594 		i++;
4595 	}
4596 }
4597 
4598 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4599 			 unsigned long start, unsigned long len)
4600 {
4601 	return __write_extent_buffer(eb, srcv, start, len, false);
4602 }
4603 
4604 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4605 				 unsigned long start, unsigned long len)
4606 {
4607 	const int unit_size = eb->folio_size;
4608 	unsigned long cur = start;
4609 
4610 	if (eb->addr) {
4611 		memset(eb->addr + start, c, len);
4612 		return;
4613 	}
4614 
4615 	while (cur < start + len) {
4616 		unsigned long index = get_eb_folio_index(eb, cur);
4617 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4618 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4619 
4620 		assert_eb_folio_uptodate(eb, index);
4621 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4622 
4623 		cur += cur_len;
4624 	}
4625 }
4626 
4627 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4628 			   unsigned long len)
4629 {
4630 	if (check_eb_range(eb, start, len))
4631 		return;
4632 	return memset_extent_buffer(eb, 0, start, len);
4633 }
4634 
4635 void copy_extent_buffer_full(const struct extent_buffer *dst,
4636 			     const struct extent_buffer *src)
4637 {
4638 	const int unit_size = src->folio_size;
4639 	unsigned long cur = 0;
4640 
4641 	ASSERT(dst->len == src->len);
4642 
4643 	while (cur < src->len) {
4644 		unsigned long index = get_eb_folio_index(src, cur);
4645 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4646 		unsigned long cur_len = min(src->len, unit_size - offset);
4647 		void *addr = folio_address(src->folios[index]) + offset;
4648 
4649 		write_extent_buffer(dst, addr, cur, cur_len);
4650 
4651 		cur += cur_len;
4652 	}
4653 }
4654 
4655 void copy_extent_buffer(const struct extent_buffer *dst,
4656 			const struct extent_buffer *src,
4657 			unsigned long dst_offset, unsigned long src_offset,
4658 			unsigned long len)
4659 {
4660 	const int unit_size = dst->folio_size;
4661 	u64 dst_len = dst->len;
4662 	size_t cur;
4663 	size_t offset;
4664 	char *kaddr;
4665 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4666 
4667 	if (check_eb_range(dst, dst_offset, len) ||
4668 	    check_eb_range(src, src_offset, len))
4669 		return;
4670 
4671 	WARN_ON(src->len != dst_len);
4672 
4673 	offset = get_eb_offset_in_folio(dst, dst_offset);
4674 
4675 	while (len > 0) {
4676 		assert_eb_folio_uptodate(dst, i);
4677 
4678 		cur = min(len, (unsigned long)(unit_size - offset));
4679 
4680 		kaddr = folio_address(dst->folios[i]);
4681 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4682 
4683 		src_offset += cur;
4684 		len -= cur;
4685 		offset = 0;
4686 		i++;
4687 	}
4688 }
4689 
4690 /*
4691  * Calculate the folio and offset of the byte containing the given bit number.
4692  *
4693  * @eb:           the extent buffer
4694  * @start:        offset of the bitmap item in the extent buffer
4695  * @nr:           bit number
4696  * @folio_index:  return index of the folio in the extent buffer that contains
4697  *                the given bit number
4698  * @folio_offset: return offset into the folio given by folio_index
4699  *
4700  * This helper hides the ugliness of finding the byte in an extent buffer which
4701  * contains a given bit.
4702  */
4703 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4704 				    unsigned long start, unsigned long nr,
4705 				    unsigned long *folio_index,
4706 				    size_t *folio_offset)
4707 {
4708 	size_t byte_offset = BIT_BYTE(nr);
4709 	size_t offset;
4710 
4711 	/*
4712 	 * The byte we want is the offset of the extent buffer + the offset of
4713 	 * the bitmap item in the extent buffer + the offset of the byte in the
4714 	 * bitmap item.
4715 	 */
4716 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4717 
4718 	*folio_index = offset >> eb->folio_shift;
4719 	*folio_offset = offset_in_eb_folio(eb, offset);
4720 }
4721 
4722 /*
4723  * Determine whether a bit in a bitmap item is set.
4724  *
4725  * @eb:     the extent buffer
4726  * @start:  offset of the bitmap item in the extent buffer
4727  * @nr:     bit number to test
4728  */
4729 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4730 			   unsigned long nr)
4731 {
4732 	unsigned long i;
4733 	size_t offset;
4734 	u8 *kaddr;
4735 
4736 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4737 	assert_eb_folio_uptodate(eb, i);
4738 	kaddr = folio_address(eb->folios[i]);
4739 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4740 }
4741 
4742 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4743 {
4744 	unsigned long index = get_eb_folio_index(eb, bytenr);
4745 
4746 	if (check_eb_range(eb, bytenr, 1))
4747 		return NULL;
4748 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4749 }
4750 
4751 /*
4752  * Set an area of a bitmap to 1.
4753  *
4754  * @eb:     the extent buffer
4755  * @start:  offset of the bitmap item in the extent buffer
4756  * @pos:    bit number of the first bit
4757  * @len:    number of bits to set
4758  */
4759 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4760 			      unsigned long pos, unsigned long len)
4761 {
4762 	unsigned int first_byte = start + BIT_BYTE(pos);
4763 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4764 	const bool same_byte = (first_byte == last_byte);
4765 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4766 	u8 *kaddr;
4767 
4768 	if (same_byte)
4769 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4770 
4771 	/* Handle the first byte. */
4772 	kaddr = extent_buffer_get_byte(eb, first_byte);
4773 	*kaddr |= mask;
4774 	if (same_byte)
4775 		return;
4776 
4777 	/* Handle the byte aligned part. */
4778 	ASSERT(first_byte + 1 <= last_byte);
4779 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4780 
4781 	/* Handle the last byte. */
4782 	kaddr = extent_buffer_get_byte(eb, last_byte);
4783 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4784 }
4785 
4786 
4787 /*
4788  * Clear an area of a bitmap.
4789  *
4790  * @eb:     the extent buffer
4791  * @start:  offset of the bitmap item in the extent buffer
4792  * @pos:    bit number of the first bit
4793  * @len:    number of bits to clear
4794  */
4795 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4796 				unsigned long start, unsigned long pos,
4797 				unsigned long len)
4798 {
4799 	unsigned int first_byte = start + BIT_BYTE(pos);
4800 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4801 	const bool same_byte = (first_byte == last_byte);
4802 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4803 	u8 *kaddr;
4804 
4805 	if (same_byte)
4806 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4807 
4808 	/* Handle the first byte. */
4809 	kaddr = extent_buffer_get_byte(eb, first_byte);
4810 	*kaddr &= ~mask;
4811 	if (same_byte)
4812 		return;
4813 
4814 	/* Handle the byte aligned part. */
4815 	ASSERT(first_byte + 1 <= last_byte);
4816 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4817 
4818 	/* Handle the last byte. */
4819 	kaddr = extent_buffer_get_byte(eb, last_byte);
4820 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4821 }
4822 
4823 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4824 {
4825 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4826 	return distance < len;
4827 }
4828 
4829 void memcpy_extent_buffer(const struct extent_buffer *dst,
4830 			  unsigned long dst_offset, unsigned long src_offset,
4831 			  unsigned long len)
4832 {
4833 	const int unit_size = dst->folio_size;
4834 	unsigned long cur_off = 0;
4835 
4836 	if (check_eb_range(dst, dst_offset, len) ||
4837 	    check_eb_range(dst, src_offset, len))
4838 		return;
4839 
4840 	if (dst->addr) {
4841 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4842 
4843 		if (use_memmove)
4844 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4845 		else
4846 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4847 		return;
4848 	}
4849 
4850 	while (cur_off < len) {
4851 		unsigned long cur_src = cur_off + src_offset;
4852 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4853 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4854 		unsigned long cur_len = min(src_offset + len - cur_src,
4855 					    unit_size - folio_off);
4856 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4857 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4858 						       dst_offset + cur_off, cur_len);
4859 
4860 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4861 				      use_memmove);
4862 		cur_off += cur_len;
4863 	}
4864 }
4865 
4866 void memmove_extent_buffer(const struct extent_buffer *dst,
4867 			   unsigned long dst_offset, unsigned long src_offset,
4868 			   unsigned long len)
4869 {
4870 	unsigned long dst_end = dst_offset + len - 1;
4871 	unsigned long src_end = src_offset + len - 1;
4872 
4873 	if (check_eb_range(dst, dst_offset, len) ||
4874 	    check_eb_range(dst, src_offset, len))
4875 		return;
4876 
4877 	if (dst_offset < src_offset) {
4878 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4879 		return;
4880 	}
4881 
4882 	if (dst->addr) {
4883 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4884 		return;
4885 	}
4886 
4887 	while (len > 0) {
4888 		unsigned long src_i;
4889 		size_t cur;
4890 		size_t dst_off_in_folio;
4891 		size_t src_off_in_folio;
4892 		void *src_addr;
4893 		bool use_memmove;
4894 
4895 		src_i = get_eb_folio_index(dst, src_end);
4896 
4897 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4898 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4899 
4900 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4901 		cur = min(cur, dst_off_in_folio + 1);
4902 
4903 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4904 					 cur + 1;
4905 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4906 					    cur);
4907 
4908 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4909 				      use_memmove);
4910 
4911 		dst_end -= cur;
4912 		src_end -= cur;
4913 		len -= cur;
4914 	}
4915 }
4916 
4917 #define GANG_LOOKUP_SIZE	16
4918 static struct extent_buffer *get_next_extent_buffer(
4919 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4920 {
4921 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4922 	struct extent_buffer *found = NULL;
4923 	u64 page_start = page_offset(page);
4924 	u64 cur = page_start;
4925 
4926 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4927 	lockdep_assert_held(&fs_info->buffer_lock);
4928 
4929 	while (cur < page_start + PAGE_SIZE) {
4930 		int ret;
4931 		int i;
4932 
4933 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4934 				(void **)gang, cur >> fs_info->sectorsize_bits,
4935 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4936 				      PAGE_SIZE / fs_info->nodesize));
4937 		if (ret == 0)
4938 			goto out;
4939 		for (i = 0; i < ret; i++) {
4940 			/* Already beyond page end */
4941 			if (gang[i]->start >= page_start + PAGE_SIZE)
4942 				goto out;
4943 			/* Found one */
4944 			if (gang[i]->start >= bytenr) {
4945 				found = gang[i];
4946 				goto out;
4947 			}
4948 		}
4949 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4950 	}
4951 out:
4952 	return found;
4953 }
4954 
4955 static int try_release_subpage_extent_buffer(struct page *page)
4956 {
4957 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
4958 	u64 cur = page_offset(page);
4959 	const u64 end = page_offset(page) + PAGE_SIZE;
4960 	int ret;
4961 
4962 	while (cur < end) {
4963 		struct extent_buffer *eb = NULL;
4964 
4965 		/*
4966 		 * Unlike try_release_extent_buffer() which uses folio private
4967 		 * to grab buffer, for subpage case we rely on radix tree, thus
4968 		 * we need to ensure radix tree consistency.
4969 		 *
4970 		 * We also want an atomic snapshot of the radix tree, thus go
4971 		 * with spinlock rather than RCU.
4972 		 */
4973 		spin_lock(&fs_info->buffer_lock);
4974 		eb = get_next_extent_buffer(fs_info, page, cur);
4975 		if (!eb) {
4976 			/* No more eb in the page range after or at cur */
4977 			spin_unlock(&fs_info->buffer_lock);
4978 			break;
4979 		}
4980 		cur = eb->start + eb->len;
4981 
4982 		/*
4983 		 * The same as try_release_extent_buffer(), to ensure the eb
4984 		 * won't disappear out from under us.
4985 		 */
4986 		spin_lock(&eb->refs_lock);
4987 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4988 			spin_unlock(&eb->refs_lock);
4989 			spin_unlock(&fs_info->buffer_lock);
4990 			break;
4991 		}
4992 		spin_unlock(&fs_info->buffer_lock);
4993 
4994 		/*
4995 		 * If tree ref isn't set then we know the ref on this eb is a
4996 		 * real ref, so just return, this eb will likely be freed soon
4997 		 * anyway.
4998 		 */
4999 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5000 			spin_unlock(&eb->refs_lock);
5001 			break;
5002 		}
5003 
5004 		/*
5005 		 * Here we don't care about the return value, we will always
5006 		 * check the folio private at the end.  And
5007 		 * release_extent_buffer() will release the refs_lock.
5008 		 */
5009 		release_extent_buffer(eb);
5010 	}
5011 	/*
5012 	 * Finally to check if we have cleared folio private, as if we have
5013 	 * released all ebs in the page, the folio private should be cleared now.
5014 	 */
5015 	spin_lock(&page->mapping->i_private_lock);
5016 	if (!folio_test_private(page_folio(page)))
5017 		ret = 1;
5018 	else
5019 		ret = 0;
5020 	spin_unlock(&page->mapping->i_private_lock);
5021 	return ret;
5022 
5023 }
5024 
5025 int try_release_extent_buffer(struct page *page)
5026 {
5027 	struct folio *folio = page_folio(page);
5028 	struct extent_buffer *eb;
5029 
5030 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5031 		return try_release_subpage_extent_buffer(page);
5032 
5033 	/*
5034 	 * We need to make sure nobody is changing folio private, as we rely on
5035 	 * folio private as the pointer to extent buffer.
5036 	 */
5037 	spin_lock(&page->mapping->i_private_lock);
5038 	if (!folio_test_private(folio)) {
5039 		spin_unlock(&page->mapping->i_private_lock);
5040 		return 1;
5041 	}
5042 
5043 	eb = folio_get_private(folio);
5044 	BUG_ON(!eb);
5045 
5046 	/*
5047 	 * This is a little awful but should be ok, we need to make sure that
5048 	 * the eb doesn't disappear out from under us while we're looking at
5049 	 * this page.
5050 	 */
5051 	spin_lock(&eb->refs_lock);
5052 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5053 		spin_unlock(&eb->refs_lock);
5054 		spin_unlock(&page->mapping->i_private_lock);
5055 		return 0;
5056 	}
5057 	spin_unlock(&page->mapping->i_private_lock);
5058 
5059 	/*
5060 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5061 	 * so just return, this page will likely be freed soon anyway.
5062 	 */
5063 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5064 		spin_unlock(&eb->refs_lock);
5065 		return 0;
5066 	}
5067 
5068 	return release_extent_buffer(eb);
5069 }
5070 
5071 /*
5072  * Attempt to readahead a child block.
5073  *
5074  * @fs_info:	the fs_info
5075  * @bytenr:	bytenr to read
5076  * @owner_root: objectid of the root that owns this eb
5077  * @gen:	generation for the uptodate check, can be 0
5078  * @level:	level for the eb
5079  *
5080  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5081  * normal uptodate check of the eb, without checking the generation.  If we have
5082  * to read the block we will not block on anything.
5083  */
5084 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5085 				u64 bytenr, u64 owner_root, u64 gen, int level)
5086 {
5087 	struct btrfs_tree_parent_check check = {
5088 		.has_first_key = 0,
5089 		.level = level,
5090 		.transid = gen
5091 	};
5092 	struct extent_buffer *eb;
5093 	int ret;
5094 
5095 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5096 	if (IS_ERR(eb))
5097 		return;
5098 
5099 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5100 		free_extent_buffer(eb);
5101 		return;
5102 	}
5103 
5104 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5105 	if (ret < 0)
5106 		free_extent_buffer_stale(eb);
5107 	else
5108 		free_extent_buffer(eb);
5109 }
5110 
5111 /*
5112  * Readahead a node's child block.
5113  *
5114  * @node:	parent node we're reading from
5115  * @slot:	slot in the parent node for the child we want to read
5116  *
5117  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5118  * the slot in the node provided.
5119  */
5120 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5121 {
5122 	btrfs_readahead_tree_block(node->fs_info,
5123 				   btrfs_node_blockptr(node, slot),
5124 				   btrfs_header_owner(node),
5125 				   btrfs_node_ptr_generation(node, slot),
5126 				   btrfs_header_level(node) - 1);
5127 }
5128