xref: /linux/fs/btrfs/extent_io.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	enum btrfs_compression_type compress_type;
100 	u32 len_to_oe_boundary;
101 	blk_opf_t opf;
102 	btrfs_bio_end_io_t end_io_func;
103 	struct writeback_control *wbc;
104 };
105 
106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
107 {
108 	struct btrfs_bio *bbio = bio_ctrl->bbio;
109 
110 	if (!bbio)
111 		return;
112 
113 	/* Caller should ensure the bio has at least some range added */
114 	ASSERT(bbio->bio.bi_iter.bi_size);
115 
116 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
117 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
118 		btrfs_submit_compressed_read(bbio);
119 	else
120 		btrfs_submit_bio(bbio, 0);
121 
122 	/* The bbio is owned by the end_io handler now */
123 	bio_ctrl->bbio = NULL;
124 }
125 
126 /*
127  * Submit or fail the current bio in the bio_ctrl structure.
128  */
129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
130 {
131 	struct btrfs_bio *bbio = bio_ctrl->bbio;
132 
133 	if (!bbio)
134 		return;
135 
136 	if (ret) {
137 		ASSERT(ret < 0);
138 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
139 		/* The bio is owned by the end_io handler now */
140 		bio_ctrl->bbio = NULL;
141 	} else {
142 		submit_one_bio(bio_ctrl);
143 	}
144 }
145 
146 int __init extent_buffer_init_cachep(void)
147 {
148 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
149 						sizeof(struct extent_buffer), 0, 0,
150 						NULL);
151 	if (!extent_buffer_cache)
152 		return -ENOMEM;
153 
154 	return 0;
155 }
156 
157 void __cold extent_buffer_free_cachep(void)
158 {
159 	/*
160 	 * Make sure all delayed rcu free are flushed before we
161 	 * destroy caches.
162 	 */
163 	rcu_barrier();
164 	kmem_cache_destroy(extent_buffer_cache);
165 }
166 
167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
168 {
169 	unsigned long index = start >> PAGE_SHIFT;
170 	unsigned long end_index = end >> PAGE_SHIFT;
171 	struct page *page;
172 
173 	while (index <= end_index) {
174 		page = find_get_page(inode->i_mapping, index);
175 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 		clear_page_dirty_for_io(page);
177 		put_page(page);
178 		index++;
179 	}
180 }
181 
182 static void process_one_page(struct btrfs_fs_info *fs_info,
183 			     struct page *page, struct page *locked_page,
184 			     unsigned long page_ops, u64 start, u64 end)
185 {
186 	struct folio *folio = page_folio(page);
187 	u32 len;
188 
189 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 	len = end + 1 - start;
191 
192 	if (page_ops & PAGE_SET_ORDERED)
193 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
194 	if (page_ops & PAGE_START_WRITEBACK) {
195 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
197 	}
198 	if (page_ops & PAGE_END_WRITEBACK)
199 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
200 
201 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
203 }
204 
205 static void __process_pages_contig(struct address_space *mapping,
206 				   struct page *locked_page, u64 start, u64 end,
207 				   unsigned long page_ops)
208 {
209 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
210 	pgoff_t start_index = start >> PAGE_SHIFT;
211 	pgoff_t end_index = end >> PAGE_SHIFT;
212 	pgoff_t index = start_index;
213 	struct folio_batch fbatch;
214 	int i;
215 
216 	folio_batch_init(&fbatch);
217 	while (index <= end_index) {
218 		int found_folios;
219 
220 		found_folios = filemap_get_folios_contig(mapping, &index,
221 				end_index, &fbatch);
222 		for (i = 0; i < found_folios; i++) {
223 			struct folio *folio = fbatch.folios[i];
224 
225 			process_one_page(fs_info, &folio->page, locked_page,
226 					 page_ops, start, end);
227 		}
228 		folio_batch_release(&fbatch);
229 		cond_resched();
230 	}
231 }
232 
233 static noinline void __unlock_for_delalloc(struct inode *inode,
234 					   struct page *locked_page,
235 					   u64 start, u64 end)
236 {
237 	unsigned long index = start >> PAGE_SHIFT;
238 	unsigned long end_index = end >> PAGE_SHIFT;
239 
240 	ASSERT(locked_page);
241 	if (index == locked_page->index && end_index == index)
242 		return;
243 
244 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
245 			       PAGE_UNLOCK);
246 }
247 
248 static noinline int lock_delalloc_pages(struct inode *inode,
249 					struct page *locked_page,
250 					u64 start,
251 					u64 end)
252 {
253 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 	struct address_space *mapping = inode->i_mapping;
255 	pgoff_t start_index = start >> PAGE_SHIFT;
256 	pgoff_t end_index = end >> PAGE_SHIFT;
257 	pgoff_t index = start_index;
258 	u64 processed_end = start;
259 	struct folio_batch fbatch;
260 
261 	if (index == locked_page->index && index == end_index)
262 		return 0;
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		unsigned int found_folios, i;
267 
268 		found_folios = filemap_get_folios_contig(mapping, &index,
269 				end_index, &fbatch);
270 		if (found_folios == 0)
271 			goto out;
272 
273 		for (i = 0; i < found_folios; i++) {
274 			struct folio *folio = fbatch.folios[i];
275 			struct page *page = folio_page(folio, 0);
276 			u32 len = end + 1 - start;
277 
278 			if (page == locked_page)
279 				continue;
280 
281 			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 							  len))
283 				goto out;
284 
285 			if (!PageDirty(page) || page->mapping != mapping) {
286 				btrfs_folio_end_writer_lock(fs_info, folio, start,
287 							    len);
288 				goto out;
289 			}
290 
291 			processed_end = page_offset(page) + PAGE_SIZE - 1;
292 		}
293 		folio_batch_release(&fbatch);
294 		cond_resched();
295 	}
296 
297 	return 0;
298 out:
299 	folio_batch_release(&fbatch);
300 	if (processed_end > start)
301 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302 	return -EAGAIN;
303 }
304 
305 /*
306  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307  * more than @max_bytes.
308  *
309  * @start:	The original start bytenr to search.
310  *		Will store the extent range start bytenr.
311  * @end:	The original end bytenr of the search range
312  *		Will store the extent range end bytenr.
313  *
314  * Return true if we find a delalloc range which starts inside the original
315  * range, and @start/@end will store the delalloc range start/end.
316  *
317  * Return false if we can't find any delalloc range which starts inside the
318  * original range, and @start/@end will be the non-delalloc range start/end.
319  */
320 EXPORT_FOR_TESTS
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 				    struct page *locked_page, u64 *start,
323 				    u64 *end)
324 {
325 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 	const u64 orig_start = *start;
328 	const u64 orig_end = *end;
329 	/* The sanity tests may not set a valid fs_info. */
330 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 	u64 delalloc_start;
332 	u64 delalloc_end;
333 	bool found;
334 	struct extent_state *cached_state = NULL;
335 	int ret;
336 	int loops = 0;
337 
338 	/* Caller should pass a valid @end to indicate the search range end */
339 	ASSERT(orig_end > orig_start);
340 
341 	/* The range should at least cover part of the page */
342 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 		 orig_end <= page_offset(locked_page)));
344 again:
345 	/* step one, find a bunch of delalloc bytes starting at start */
346 	delalloc_start = *start;
347 	delalloc_end = 0;
348 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 					  max_bytes, &cached_state);
350 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 		*start = delalloc_start;
352 
353 		/* @delalloc_end can be -1, never go beyond @orig_end */
354 		*end = min(delalloc_end, orig_end);
355 		free_extent_state(cached_state);
356 		return false;
357 	}
358 
359 	/*
360 	 * start comes from the offset of locked_page.  We have to lock
361 	 * pages in order, so we can't process delalloc bytes before
362 	 * locked_page
363 	 */
364 	if (delalloc_start < *start)
365 		delalloc_start = *start;
366 
367 	/*
368 	 * make sure to limit the number of pages we try to lock down
369 	 */
370 	if (delalloc_end + 1 - delalloc_start > max_bytes)
371 		delalloc_end = delalloc_start + max_bytes - 1;
372 
373 	/* step two, lock all the pages after the page that has start */
374 	ret = lock_delalloc_pages(inode, locked_page,
375 				  delalloc_start, delalloc_end);
376 	ASSERT(!ret || ret == -EAGAIN);
377 	if (ret == -EAGAIN) {
378 		/* some of the pages are gone, lets avoid looping by
379 		 * shortening the size of the delalloc range we're searching
380 		 */
381 		free_extent_state(cached_state);
382 		cached_state = NULL;
383 		if (!loops) {
384 			max_bytes = PAGE_SIZE;
385 			loops = 1;
386 			goto again;
387 		} else {
388 			found = false;
389 			goto out_failed;
390 		}
391 	}
392 
393 	/* step three, lock the state bits for the whole range */
394 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395 
396 	/* then test to make sure it is all still delalloc */
397 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 			     EXTENT_DELALLOC, cached_state);
399 
400 	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
401 	if (!ret) {
402 		__unlock_for_delalloc(inode, locked_page,
403 			      delalloc_start, delalloc_end);
404 		cond_resched();
405 		goto again;
406 	}
407 	*start = delalloc_start;
408 	*end = delalloc_end;
409 out_failed:
410 	return found;
411 }
412 
413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
414 				  struct page *locked_page,
415 				  struct extent_state **cached,
416 				  u32 clear_bits, unsigned long page_ops)
417 {
418 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
419 
420 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 			       start, end, page_ops);
422 }
423 
424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 	if (!fsverity_active(page->mapping->host) ||
427 	    PageUptodate(page) ||
428 	    start >= i_size_read(page->mapping->host))
429 		return true;
430 	return fsverity_verify_page(page);
431 }
432 
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
436 	struct folio *folio = page_folio(page);
437 
438 	ASSERT(page_offset(page) <= start &&
439 	       start + len <= page_offset(page) + PAGE_SIZE);
440 
441 	if (uptodate && btrfs_verify_page(page, start))
442 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
443 	else
444 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
445 
446 	if (!btrfs_is_subpage(fs_info, page->mapping))
447 		unlock_page(page);
448 	else
449 		btrfs_subpage_end_reader(fs_info, folio, start, len);
450 }
451 
452 /*
453  * After a write IO is done, we need to:
454  *
455  * - clear the uptodate bits on error
456  * - clear the writeback bits in the extent tree for the range
457  * - filio_end_writeback()  if there is no more pending io for the folio
458  *
459  * Scheduling is not allowed, so the extent state tree is expected
460  * to have one and only one object corresponding to this IO.
461  */
462 static void end_bbio_data_write(struct btrfs_bio *bbio)
463 {
464 	struct btrfs_fs_info *fs_info = bbio->fs_info;
465 	struct bio *bio = &bbio->bio;
466 	int error = blk_status_to_errno(bio->bi_status);
467 	struct folio_iter fi;
468 	const u32 sectorsize = fs_info->sectorsize;
469 
470 	ASSERT(!bio_flagged(bio, BIO_CLONED));
471 	bio_for_each_folio_all(fi, bio) {
472 		struct folio *folio = fi.folio;
473 		u64 start = folio_pos(folio) + fi.offset;
474 		u32 len = fi.length;
475 
476 		/* Only order 0 (single page) folios are allowed for data. */
477 		ASSERT(folio_order(folio) == 0);
478 
479 		/* Our read/write should always be sector aligned. */
480 		if (!IS_ALIGNED(fi.offset, sectorsize))
481 			btrfs_err(fs_info,
482 		"partial page write in btrfs with offset %zu and length %zu",
483 				  fi.offset, fi.length);
484 		else if (!IS_ALIGNED(fi.length, sectorsize))
485 			btrfs_info(fs_info,
486 		"incomplete page write with offset %zu and length %zu",
487 				   fi.offset, fi.length);
488 
489 		btrfs_finish_ordered_extent(bbio->ordered,
490 				folio_page(folio, 0), start, len, !error);
491 		if (error)
492 			mapping_set_error(folio->mapping, error);
493 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
494 	}
495 
496 	bio_put(bio);
497 }
498 
499 /*
500  * Record previously processed extent range
501  *
502  * For endio_readpage_release_extent() to handle a full extent range, reducing
503  * the extent io operations.
504  */
505 struct processed_extent {
506 	struct btrfs_inode *inode;
507 	/* Start of the range in @inode */
508 	u64 start;
509 	/* End of the range in @inode */
510 	u64 end;
511 	bool uptodate;
512 };
513 
514 /*
515  * Try to release processed extent range
516  *
517  * May not release the extent range right now if the current range is
518  * contiguous to processed extent.
519  *
520  * Will release processed extent when any of @inode, @uptodate, the range is
521  * no longer contiguous to the processed range.
522  *
523  * Passing @inode == NULL will force processed extent to be released.
524  */
525 static void endio_readpage_release_extent(struct processed_extent *processed,
526 			      struct btrfs_inode *inode, u64 start, u64 end,
527 			      bool uptodate)
528 {
529 	struct extent_state *cached = NULL;
530 	struct extent_io_tree *tree;
531 
532 	/* The first extent, initialize @processed */
533 	if (!processed->inode)
534 		goto update;
535 
536 	/*
537 	 * Contiguous to processed extent, just uptodate the end.
538 	 *
539 	 * Several things to notice:
540 	 *
541 	 * - bio can be merged as long as on-disk bytenr is contiguous
542 	 *   This means we can have page belonging to other inodes, thus need to
543 	 *   check if the inode still matches.
544 	 * - bvec can contain range beyond current page for multi-page bvec
545 	 *   Thus we need to do processed->end + 1 >= start check
546 	 */
547 	if (processed->inode == inode && processed->uptodate == uptodate &&
548 	    processed->end + 1 >= start && end >= processed->end) {
549 		processed->end = end;
550 		return;
551 	}
552 
553 	tree = &processed->inode->io_tree;
554 	/*
555 	 * Now we don't have range contiguous to the processed range, release
556 	 * the processed range now.
557 	 */
558 	unlock_extent(tree, processed->start, processed->end, &cached);
559 
560 update:
561 	/* Update processed to current range */
562 	processed->inode = inode;
563 	processed->start = start;
564 	processed->end = end;
565 	processed->uptodate = uptodate;
566 }
567 
568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
569 {
570 	struct folio *folio = page_folio(page);
571 
572 	ASSERT(folio_test_locked(folio));
573 	if (!btrfs_is_subpage(fs_info, folio->mapping))
574 		return;
575 
576 	ASSERT(folio_test_private(folio));
577 	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
578 }
579 
580 /*
581  * After a data read IO is done, we need to:
582  *
583  * - clear the uptodate bits on error
584  * - set the uptodate bits if things worked
585  * - set the folio up to date if all extents in the tree are uptodate
586  * - clear the lock bit in the extent tree
587  * - unlock the folio if there are no other extents locked for it
588  *
589  * Scheduling is not allowed, so the extent state tree is expected
590  * to have one and only one object corresponding to this IO.
591  */
592 static void end_bbio_data_read(struct btrfs_bio *bbio)
593 {
594 	struct btrfs_fs_info *fs_info = bbio->fs_info;
595 	struct bio *bio = &bbio->bio;
596 	struct processed_extent processed = { 0 };
597 	struct folio_iter fi;
598 	const u32 sectorsize = fs_info->sectorsize;
599 
600 	ASSERT(!bio_flagged(bio, BIO_CLONED));
601 	bio_for_each_folio_all(fi, &bbio->bio) {
602 		bool uptodate = !bio->bi_status;
603 		struct folio *folio = fi.folio;
604 		struct inode *inode = folio->mapping->host;
605 		u64 start;
606 		u64 end;
607 		u32 len;
608 
609 		/* For now only order 0 folios are supported for data. */
610 		ASSERT(folio_order(folio) == 0);
611 		btrfs_debug(fs_info,
612 			"%s: bi_sector=%llu, err=%d, mirror=%u",
613 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
614 			bbio->mirror_num);
615 
616 		/*
617 		 * We always issue full-sector reads, but if some block in a
618 		 * folio fails to read, blk_update_request() will advance
619 		 * bv_offset and adjust bv_len to compensate.  Print a warning
620 		 * for unaligned offsets, and an error if they don't add up to
621 		 * a full sector.
622 		 */
623 		if (!IS_ALIGNED(fi.offset, sectorsize))
624 			btrfs_err(fs_info,
625 		"partial page read in btrfs with offset %zu and length %zu",
626 				  fi.offset, fi.length);
627 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
628 			btrfs_info(fs_info,
629 		"incomplete page read with offset %zu and length %zu",
630 				   fi.offset, fi.length);
631 
632 		start = folio_pos(folio) + fi.offset;
633 		end = start + fi.length - 1;
634 		len = fi.length;
635 
636 		if (likely(uptodate)) {
637 			loff_t i_size = i_size_read(inode);
638 			pgoff_t end_index = i_size >> folio_shift(folio);
639 
640 			/*
641 			 * Zero out the remaining part if this range straddles
642 			 * i_size.
643 			 *
644 			 * Here we should only zero the range inside the folio,
645 			 * not touch anything else.
646 			 *
647 			 * NOTE: i_size is exclusive while end is inclusive.
648 			 */
649 			if (folio_index(folio) == end_index && i_size <= end) {
650 				u32 zero_start = max(offset_in_folio(folio, i_size),
651 						     offset_in_folio(folio, start));
652 				u32 zero_len = offset_in_folio(folio, end) + 1 -
653 					       zero_start;
654 
655 				folio_zero_range(folio, zero_start, zero_len);
656 			}
657 		}
658 
659 		/* Update page status and unlock. */
660 		end_page_read(folio_page(folio, 0), uptodate, start, len);
661 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
662 					      start, end, uptodate);
663 	}
664 	/* Release the last extent */
665 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 	bio_put(bio);
667 }
668 
669 /*
670  * Populate every free slot in a provided array with folios.
671  *
672  * @nr_folios:   number of folios to allocate
673  * @folio_array: the array to fill with folios; any existing non-NULL entries in
674  *		 the array will be skipped
675  * @extra_gfp:	 the extra GFP flags for the allocation
676  *
677  * Return: 0        if all folios were able to be allocated;
678  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
679  *                  the array slots zeroed
680  */
681 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array,
682 			    gfp_t extra_gfp)
683 {
684 	for (int i = 0; i < nr_folios; i++) {
685 		if (folio_array[i])
686 			continue;
687 		folio_array[i] = folio_alloc(GFP_NOFS | extra_gfp, 0);
688 		if (!folio_array[i])
689 			goto error;
690 	}
691 	return 0;
692 error:
693 	for (int i = 0; i < nr_folios; i++) {
694 		if (folio_array[i])
695 			folio_put(folio_array[i]);
696 	}
697 	return -ENOMEM;
698 }
699 
700 /*
701  * Populate every free slot in a provided array with pages.
702  *
703  * @nr_pages:   number of pages to allocate
704  * @page_array: the array to fill with pages; any existing non-null entries in
705  * 		the array will be skipped
706  * @extra_gfp:	the extra GFP flags for the allocation.
707  *
708  * Return: 0        if all pages were able to be allocated;
709  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
710  *                  the array slots zeroed
711  */
712 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
713 			   gfp_t extra_gfp)
714 {
715 	const gfp_t gfp = GFP_NOFS | extra_gfp;
716 	unsigned int allocated;
717 
718 	for (allocated = 0; allocated < nr_pages;) {
719 		unsigned int last = allocated;
720 
721 		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
722 		if (unlikely(allocated == last)) {
723 			/* No progress, fail and do cleanup. */
724 			for (int i = 0; i < allocated; i++) {
725 				__free_page(page_array[i]);
726 				page_array[i] = NULL;
727 			}
728 			return -ENOMEM;
729 		}
730 	}
731 	return 0;
732 }
733 
734 /*
735  * Populate needed folios for the extent buffer.
736  *
737  * For now, the folios populated are always in order 0 (aka, single page).
738  */
739 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
740 {
741 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
742 	int num_pages = num_extent_pages(eb);
743 	int ret;
744 
745 	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
746 	if (ret < 0)
747 		return ret;
748 
749 	for (int i = 0; i < num_pages; i++)
750 		eb->folios[i] = page_folio(page_array[i]);
751 	eb->folio_size = PAGE_SIZE;
752 	eb->folio_shift = PAGE_SHIFT;
753 	return 0;
754 }
755 
756 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
757 				struct page *page, u64 disk_bytenr,
758 				unsigned int pg_offset)
759 {
760 	struct bio *bio = &bio_ctrl->bbio->bio;
761 	struct bio_vec *bvec = bio_last_bvec_all(bio);
762 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
763 
764 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
765 		/*
766 		 * For compression, all IO should have its logical bytenr set
767 		 * to the starting bytenr of the compressed extent.
768 		 */
769 		return bio->bi_iter.bi_sector == sector;
770 	}
771 
772 	/*
773 	 * The contig check requires the following conditions to be met:
774 	 *
775 	 * 1) The pages are belonging to the same inode
776 	 *    This is implied by the call chain.
777 	 *
778 	 * 2) The range has adjacent logical bytenr
779 	 *
780 	 * 3) The range has adjacent file offset
781 	 *    This is required for the usage of btrfs_bio->file_offset.
782 	 */
783 	return bio_end_sector(bio) == sector &&
784 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
785 		page_offset(page) + pg_offset;
786 }
787 
788 static void alloc_new_bio(struct btrfs_inode *inode,
789 			  struct btrfs_bio_ctrl *bio_ctrl,
790 			  u64 disk_bytenr, u64 file_offset)
791 {
792 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
793 	struct btrfs_bio *bbio;
794 
795 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
796 			       bio_ctrl->end_io_func, NULL);
797 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
798 	bbio->inode = inode;
799 	bbio->file_offset = file_offset;
800 	bio_ctrl->bbio = bbio;
801 	bio_ctrl->len_to_oe_boundary = U32_MAX;
802 
803 	/* Limit data write bios to the ordered boundary. */
804 	if (bio_ctrl->wbc) {
805 		struct btrfs_ordered_extent *ordered;
806 
807 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
808 		if (ordered) {
809 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
810 					ordered->file_offset +
811 					ordered->disk_num_bytes - file_offset);
812 			bbio->ordered = ordered;
813 		}
814 
815 		/*
816 		 * Pick the last added device to support cgroup writeback.  For
817 		 * multi-device file systems this means blk-cgroup policies have
818 		 * to always be set on the last added/replaced device.
819 		 * This is a bit odd but has been like that for a long time.
820 		 */
821 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
822 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
823 	}
824 }
825 
826 /*
827  * @disk_bytenr: logical bytenr where the write will be
828  * @page:	page to add to the bio
829  * @size:	portion of page that we want to write to
830  * @pg_offset:	offset of the new bio or to check whether we are adding
831  *              a contiguous page to the previous one
832  *
833  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
834  * new one in @bio_ctrl->bbio.
835  * The mirror number for this IO should already be initizlied in
836  * @bio_ctrl->mirror_num.
837  */
838 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
839 			       u64 disk_bytenr, struct page *page,
840 			       size_t size, unsigned long pg_offset)
841 {
842 	struct btrfs_inode *inode = page_to_inode(page);
843 
844 	ASSERT(pg_offset + size <= PAGE_SIZE);
845 	ASSERT(bio_ctrl->end_io_func);
846 
847 	if (bio_ctrl->bbio &&
848 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
849 		submit_one_bio(bio_ctrl);
850 
851 	do {
852 		u32 len = size;
853 
854 		/* Allocate new bio if needed */
855 		if (!bio_ctrl->bbio) {
856 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
857 				      page_offset(page) + pg_offset);
858 		}
859 
860 		/* Cap to the current ordered extent boundary if there is one. */
861 		if (len > bio_ctrl->len_to_oe_boundary) {
862 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
863 			ASSERT(is_data_inode(&inode->vfs_inode));
864 			len = bio_ctrl->len_to_oe_boundary;
865 		}
866 
867 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
868 			/* bio full: move on to a new one */
869 			submit_one_bio(bio_ctrl);
870 			continue;
871 		}
872 
873 		if (bio_ctrl->wbc)
874 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
875 
876 		size -= len;
877 		pg_offset += len;
878 		disk_bytenr += len;
879 
880 		/*
881 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
882 		 * sector aligned.  alloc_new_bio() then sets it to the end of
883 		 * our ordered extent for writes into zoned devices.
884 		 *
885 		 * When len_to_oe_boundary is tracking an ordered extent, we
886 		 * trust the ordered extent code to align things properly, and
887 		 * the check above to cap our write to the ordered extent
888 		 * boundary is correct.
889 		 *
890 		 * When len_to_oe_boundary is U32_MAX, the cap above would
891 		 * result in a 4095 byte IO for the last page right before
892 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
893 		 * the checks required to make sure we don't overflow the bio,
894 		 * and we should just ignore len_to_oe_boundary completely
895 		 * unless we're using it to track an ordered extent.
896 		 *
897 		 * It's pretty hard to make a bio sized U32_MAX, but it can
898 		 * happen when the page cache is able to feed us contiguous
899 		 * pages for large extents.
900 		 */
901 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
902 			bio_ctrl->len_to_oe_boundary -= len;
903 
904 		/* Ordered extent boundary: move on to a new bio. */
905 		if (bio_ctrl->len_to_oe_boundary == 0)
906 			submit_one_bio(bio_ctrl);
907 	} while (size);
908 }
909 
910 static int attach_extent_buffer_folio(struct extent_buffer *eb,
911 				      struct folio *folio,
912 				      struct btrfs_subpage *prealloc)
913 {
914 	struct btrfs_fs_info *fs_info = eb->fs_info;
915 	int ret = 0;
916 
917 	/*
918 	 * If the page is mapped to btree inode, we should hold the private
919 	 * lock to prevent race.
920 	 * For cloned or dummy extent buffers, their pages are not mapped and
921 	 * will not race with any other ebs.
922 	 */
923 	if (folio->mapping)
924 		lockdep_assert_held(&folio->mapping->i_private_lock);
925 
926 	if (fs_info->nodesize >= PAGE_SIZE) {
927 		if (!folio_test_private(folio))
928 			folio_attach_private(folio, eb);
929 		else
930 			WARN_ON(folio_get_private(folio) != eb);
931 		return 0;
932 	}
933 
934 	/* Already mapped, just free prealloc */
935 	if (folio_test_private(folio)) {
936 		btrfs_free_subpage(prealloc);
937 		return 0;
938 	}
939 
940 	if (prealloc)
941 		/* Has preallocated memory for subpage */
942 		folio_attach_private(folio, prealloc);
943 	else
944 		/* Do new allocation to attach subpage */
945 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
946 	return ret;
947 }
948 
949 int set_page_extent_mapped(struct page *page)
950 {
951 	return set_folio_extent_mapped(page_folio(page));
952 }
953 
954 int set_folio_extent_mapped(struct folio *folio)
955 {
956 	struct btrfs_fs_info *fs_info;
957 
958 	ASSERT(folio->mapping);
959 
960 	if (folio_test_private(folio))
961 		return 0;
962 
963 	fs_info = folio_to_fs_info(folio);
964 
965 	if (btrfs_is_subpage(fs_info, folio->mapping))
966 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
967 
968 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
969 	return 0;
970 }
971 
972 void clear_page_extent_mapped(struct page *page)
973 {
974 	struct folio *folio = page_folio(page);
975 	struct btrfs_fs_info *fs_info;
976 
977 	ASSERT(page->mapping);
978 
979 	if (!folio_test_private(folio))
980 		return;
981 
982 	fs_info = page_to_fs_info(page);
983 	if (btrfs_is_subpage(fs_info, page->mapping))
984 		return btrfs_detach_subpage(fs_info, folio);
985 
986 	folio_detach_private(folio);
987 }
988 
989 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
990 		 u64 start, u64 len, struct extent_map **em_cached)
991 {
992 	struct extent_map *em;
993 
994 	ASSERT(em_cached);
995 
996 	if (*em_cached) {
997 		em = *em_cached;
998 		if (extent_map_in_tree(em) && start >= em->start &&
999 		    start < extent_map_end(em)) {
1000 			refcount_inc(&em->refs);
1001 			return em;
1002 		}
1003 
1004 		free_extent_map(em);
1005 		*em_cached = NULL;
1006 	}
1007 
1008 	em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
1009 	if (!IS_ERR(em)) {
1010 		BUG_ON(*em_cached);
1011 		refcount_inc(&em->refs);
1012 		*em_cached = em;
1013 	}
1014 	return em;
1015 }
1016 /*
1017  * basic readpage implementation.  Locked extent state structs are inserted
1018  * into the tree that are removed when the IO is done (by the end_io
1019  * handlers)
1020  * XXX JDM: This needs looking at to ensure proper page locking
1021  * return 0 on success, otherwise return error
1022  */
1023 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1024 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
1025 {
1026 	struct inode *inode = page->mapping->host;
1027 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1028 	u64 start = page_offset(page);
1029 	const u64 end = start + PAGE_SIZE - 1;
1030 	u64 cur = start;
1031 	u64 extent_offset;
1032 	u64 last_byte = i_size_read(inode);
1033 	u64 block_start;
1034 	struct extent_map *em;
1035 	int ret = 0;
1036 	size_t pg_offset = 0;
1037 	size_t iosize;
1038 	size_t blocksize = fs_info->sectorsize;
1039 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1040 
1041 	ret = set_page_extent_mapped(page);
1042 	if (ret < 0) {
1043 		unlock_extent(tree, start, end, NULL);
1044 		unlock_page(page);
1045 		return ret;
1046 	}
1047 
1048 	if (page->index == last_byte >> PAGE_SHIFT) {
1049 		size_t zero_offset = offset_in_page(last_byte);
1050 
1051 		if (zero_offset) {
1052 			iosize = PAGE_SIZE - zero_offset;
1053 			memzero_page(page, zero_offset, iosize);
1054 		}
1055 	}
1056 	bio_ctrl->end_io_func = end_bbio_data_read;
1057 	begin_page_read(fs_info, page);
1058 	while (cur <= end) {
1059 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1060 		bool force_bio_submit = false;
1061 		u64 disk_bytenr;
1062 
1063 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1064 		if (cur >= last_byte) {
1065 			iosize = PAGE_SIZE - pg_offset;
1066 			memzero_page(page, pg_offset, iosize);
1067 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1068 			end_page_read(page, true, cur, iosize);
1069 			break;
1070 		}
1071 		em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1072 		if (IS_ERR(em)) {
1073 			unlock_extent(tree, cur, end, NULL);
1074 			end_page_read(page, false, cur, end + 1 - cur);
1075 			return PTR_ERR(em);
1076 		}
1077 		extent_offset = cur - em->start;
1078 		BUG_ON(extent_map_end(em) <= cur);
1079 		BUG_ON(end < cur);
1080 
1081 		compress_type = extent_map_compression(em);
1082 
1083 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1084 		iosize = ALIGN(iosize, blocksize);
1085 		if (compress_type != BTRFS_COMPRESS_NONE)
1086 			disk_bytenr = em->block_start;
1087 		else
1088 			disk_bytenr = em->block_start + extent_offset;
1089 		block_start = em->block_start;
1090 		if (em->flags & EXTENT_FLAG_PREALLOC)
1091 			block_start = EXTENT_MAP_HOLE;
1092 
1093 		/*
1094 		 * If we have a file range that points to a compressed extent
1095 		 * and it's followed by a consecutive file range that points
1096 		 * to the same compressed extent (possibly with a different
1097 		 * offset and/or length, so it either points to the whole extent
1098 		 * or only part of it), we must make sure we do not submit a
1099 		 * single bio to populate the pages for the 2 ranges because
1100 		 * this makes the compressed extent read zero out the pages
1101 		 * belonging to the 2nd range. Imagine the following scenario:
1102 		 *
1103 		 *  File layout
1104 		 *  [0 - 8K]                     [8K - 24K]
1105 		 *    |                               |
1106 		 *    |                               |
1107 		 * points to extent X,         points to extent X,
1108 		 * offset 4K, length of 8K     offset 0, length 16K
1109 		 *
1110 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1111 		 *
1112 		 * If the bio to read the compressed extent covers both ranges,
1113 		 * it will decompress extent X into the pages belonging to the
1114 		 * first range and then it will stop, zeroing out the remaining
1115 		 * pages that belong to the other range that points to extent X.
1116 		 * So here we make sure we submit 2 bios, one for the first
1117 		 * range and another one for the third range. Both will target
1118 		 * the same physical extent from disk, but we can't currently
1119 		 * make the compressed bio endio callback populate the pages
1120 		 * for both ranges because each compressed bio is tightly
1121 		 * coupled with a single extent map, and each range can have
1122 		 * an extent map with a different offset value relative to the
1123 		 * uncompressed data of our extent and different lengths. This
1124 		 * is a corner case so we prioritize correctness over
1125 		 * non-optimal behavior (submitting 2 bios for the same extent).
1126 		 */
1127 		if (compress_type != BTRFS_COMPRESS_NONE &&
1128 		    prev_em_start && *prev_em_start != (u64)-1 &&
1129 		    *prev_em_start != em->start)
1130 			force_bio_submit = true;
1131 
1132 		if (prev_em_start)
1133 			*prev_em_start = em->start;
1134 
1135 		free_extent_map(em);
1136 		em = NULL;
1137 
1138 		/* we've found a hole, just zero and go on */
1139 		if (block_start == EXTENT_MAP_HOLE) {
1140 			memzero_page(page, pg_offset, iosize);
1141 
1142 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1143 			end_page_read(page, true, cur, iosize);
1144 			cur = cur + iosize;
1145 			pg_offset += iosize;
1146 			continue;
1147 		}
1148 		/* the get_extent function already copied into the page */
1149 		if (block_start == EXTENT_MAP_INLINE) {
1150 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1151 			end_page_read(page, true, cur, iosize);
1152 			cur = cur + iosize;
1153 			pg_offset += iosize;
1154 			continue;
1155 		}
1156 
1157 		if (bio_ctrl->compress_type != compress_type) {
1158 			submit_one_bio(bio_ctrl);
1159 			bio_ctrl->compress_type = compress_type;
1160 		}
1161 
1162 		if (force_bio_submit)
1163 			submit_one_bio(bio_ctrl);
1164 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1165 				   pg_offset);
1166 		cur = cur + iosize;
1167 		pg_offset += iosize;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 int btrfs_read_folio(struct file *file, struct folio *folio)
1174 {
1175 	struct page *page = &folio->page;
1176 	struct btrfs_inode *inode = page_to_inode(page);
1177 	u64 start = page_offset(page);
1178 	u64 end = start + PAGE_SIZE - 1;
1179 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1180 	struct extent_map *em_cached = NULL;
1181 	int ret;
1182 
1183 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1184 
1185 	ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1186 	free_extent_map(em_cached);
1187 
1188 	/*
1189 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1190 	 * bio to do the cleanup.
1191 	 */
1192 	submit_one_bio(&bio_ctrl);
1193 	return ret;
1194 }
1195 
1196 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1197 					u64 start, u64 end,
1198 					struct extent_map **em_cached,
1199 					struct btrfs_bio_ctrl *bio_ctrl,
1200 					u64 *prev_em_start)
1201 {
1202 	struct btrfs_inode *inode = page_to_inode(pages[0]);
1203 	int index;
1204 
1205 	ASSERT(em_cached);
1206 
1207 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1208 
1209 	for (index = 0; index < nr_pages; index++) {
1210 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1211 				  prev_em_start);
1212 		put_page(pages[index]);
1213 	}
1214 }
1215 
1216 /*
1217  * helper for __extent_writepage, doing all of the delayed allocation setup.
1218  *
1219  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1220  * to write the page (copy into inline extent).  In this case the IO has
1221  * been started and the page is already unlocked.
1222  *
1223  * This returns 0 if all went well (page still locked)
1224  * This returns < 0 if there were errors (page still locked)
1225  */
1226 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1227 		struct page *page, struct writeback_control *wbc)
1228 {
1229 	const u64 page_start = page_offset(page);
1230 	const u64 page_end = page_start + PAGE_SIZE - 1;
1231 	u64 delalloc_start = page_start;
1232 	u64 delalloc_end = page_end;
1233 	u64 delalloc_to_write = 0;
1234 	int ret = 0;
1235 
1236 	while (delalloc_start < page_end) {
1237 		delalloc_end = page_end;
1238 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1239 					      &delalloc_start, &delalloc_end)) {
1240 			delalloc_start = delalloc_end + 1;
1241 			continue;
1242 		}
1243 
1244 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1245 					       delalloc_end, wbc);
1246 		if (ret < 0)
1247 			return ret;
1248 
1249 		delalloc_start = delalloc_end + 1;
1250 	}
1251 
1252 	/*
1253 	 * delalloc_end is already one less than the total length, so
1254 	 * we don't subtract one from PAGE_SIZE
1255 	 */
1256 	delalloc_to_write +=
1257 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1258 
1259 	/*
1260 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1261 	 * the pages, we just need to account for them here.
1262 	 */
1263 	if (ret == 1) {
1264 		wbc->nr_to_write -= delalloc_to_write;
1265 		return 1;
1266 	}
1267 
1268 	if (wbc->nr_to_write < delalloc_to_write) {
1269 		int thresh = 8192;
1270 
1271 		if (delalloc_to_write < thresh * 2)
1272 			thresh = delalloc_to_write;
1273 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1274 					 thresh);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Find the first byte we need to write.
1282  *
1283  * For subpage, one page can contain several sectors, and
1284  * __extent_writepage_io() will just grab all extent maps in the page
1285  * range and try to submit all non-inline/non-compressed extents.
1286  *
1287  * This is a big problem for subpage, we shouldn't re-submit already written
1288  * data at all.
1289  * This function will lookup subpage dirty bit to find which range we really
1290  * need to submit.
1291  *
1292  * Return the next dirty range in [@start, @end).
1293  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1294  */
1295 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1296 				 struct page *page, u64 *start, u64 *end)
1297 {
1298 	struct folio *folio = page_folio(page);
1299 	struct btrfs_subpage *subpage = folio_get_private(folio);
1300 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1301 	u64 orig_start = *start;
1302 	/* Declare as unsigned long so we can use bitmap ops */
1303 	unsigned long flags;
1304 	int range_start_bit;
1305 	int range_end_bit;
1306 
1307 	/*
1308 	 * For regular sector size == page size case, since one page only
1309 	 * contains one sector, we return the page offset directly.
1310 	 */
1311 	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1312 		*start = page_offset(page);
1313 		*end = page_offset(page) + PAGE_SIZE;
1314 		return;
1315 	}
1316 
1317 	range_start_bit = spi->dirty_offset +
1318 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1319 
1320 	/* We should have the page locked, but just in case */
1321 	spin_lock_irqsave(&subpage->lock, flags);
1322 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1323 			       spi->dirty_offset + spi->bitmap_nr_bits);
1324 	spin_unlock_irqrestore(&subpage->lock, flags);
1325 
1326 	range_start_bit -= spi->dirty_offset;
1327 	range_end_bit -= spi->dirty_offset;
1328 
1329 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1330 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1331 }
1332 
1333 /*
1334  * helper for __extent_writepage.  This calls the writepage start hooks,
1335  * and does the loop to map the page into extents and bios.
1336  *
1337  * We return 1 if the IO is started and the page is unlocked,
1338  * 0 if all went well (page still locked)
1339  * < 0 if there were errors (page still locked)
1340  */
1341 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1342 				 struct page *page,
1343 				 struct btrfs_bio_ctrl *bio_ctrl,
1344 				 loff_t i_size,
1345 				 int *nr_ret)
1346 {
1347 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1348 	u64 cur = page_offset(page);
1349 	u64 end = cur + PAGE_SIZE - 1;
1350 	u64 extent_offset;
1351 	u64 block_start;
1352 	struct extent_map *em;
1353 	int ret = 0;
1354 	int nr = 0;
1355 
1356 	ret = btrfs_writepage_cow_fixup(page);
1357 	if (ret) {
1358 		/* Fixup worker will requeue */
1359 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1360 		unlock_page(page);
1361 		return 1;
1362 	}
1363 
1364 	bio_ctrl->end_io_func = end_bbio_data_write;
1365 	while (cur <= end) {
1366 		u32 len = end - cur + 1;
1367 		u64 disk_bytenr;
1368 		u64 em_end;
1369 		u64 dirty_range_start = cur;
1370 		u64 dirty_range_end;
1371 		u32 iosize;
1372 
1373 		if (cur >= i_size) {
1374 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1375 						       true);
1376 			/*
1377 			 * This range is beyond i_size, thus we don't need to
1378 			 * bother writing back.
1379 			 * But we still need to clear the dirty subpage bit, or
1380 			 * the next time the page gets dirtied, we will try to
1381 			 * writeback the sectors with subpage dirty bits,
1382 			 * causing writeback without ordered extent.
1383 			 */
1384 			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1385 			break;
1386 		}
1387 
1388 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1389 				     &dirty_range_end);
1390 		if (cur < dirty_range_start) {
1391 			cur = dirty_range_start;
1392 			continue;
1393 		}
1394 
1395 		em = btrfs_get_extent(inode, NULL, cur, len);
1396 		if (IS_ERR(em)) {
1397 			ret = PTR_ERR_OR_ZERO(em);
1398 			goto out_error;
1399 		}
1400 
1401 		extent_offset = cur - em->start;
1402 		em_end = extent_map_end(em);
1403 		ASSERT(cur <= em_end);
1404 		ASSERT(cur < end);
1405 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1406 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1407 
1408 		block_start = em->block_start;
1409 		disk_bytenr = em->block_start + extent_offset;
1410 
1411 		ASSERT(!extent_map_is_compressed(em));
1412 		ASSERT(block_start != EXTENT_MAP_HOLE);
1413 		ASSERT(block_start != EXTENT_MAP_INLINE);
1414 
1415 		/*
1416 		 * Note that em_end from extent_map_end() and dirty_range_end from
1417 		 * find_next_dirty_byte() are all exclusive
1418 		 */
1419 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1420 		free_extent_map(em);
1421 		em = NULL;
1422 
1423 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1424 		if (!PageWriteback(page)) {
1425 			btrfs_err(inode->root->fs_info,
1426 				   "page %lu not writeback, cur %llu end %llu",
1427 			       page->index, cur, end);
1428 		}
1429 
1430 		/*
1431 		 * Although the PageDirty bit is cleared before entering this
1432 		 * function, subpage dirty bit is not cleared.
1433 		 * So clear subpage dirty bit here so next time we won't submit
1434 		 * page for range already written to disk.
1435 		 */
1436 		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1437 
1438 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1439 				   cur - page_offset(page));
1440 		cur += iosize;
1441 		nr++;
1442 	}
1443 
1444 	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1445 	*nr_ret = nr;
1446 	return 0;
1447 
1448 out_error:
1449 	/*
1450 	 * If we finish without problem, we should not only clear page dirty,
1451 	 * but also empty subpage dirty bits
1452 	 */
1453 	*nr_ret = nr;
1454 	return ret;
1455 }
1456 
1457 /*
1458  * the writepage semantics are similar to regular writepage.  extent
1459  * records are inserted to lock ranges in the tree, and as dirty areas
1460  * are found, they are marked writeback.  Then the lock bits are removed
1461  * and the end_io handler clears the writeback ranges
1462  *
1463  * Return 0 if everything goes well.
1464  * Return <0 for error.
1465  */
1466 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1467 {
1468 	struct folio *folio = page_folio(page);
1469 	struct inode *inode = page->mapping->host;
1470 	const u64 page_start = page_offset(page);
1471 	int ret;
1472 	int nr = 0;
1473 	size_t pg_offset;
1474 	loff_t i_size = i_size_read(inode);
1475 	unsigned long end_index = i_size >> PAGE_SHIFT;
1476 
1477 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1478 
1479 	WARN_ON(!PageLocked(page));
1480 
1481 	pg_offset = offset_in_page(i_size);
1482 	if (page->index > end_index ||
1483 	   (page->index == end_index && !pg_offset)) {
1484 		folio_invalidate(folio, 0, folio_size(folio));
1485 		folio_unlock(folio);
1486 		return 0;
1487 	}
1488 
1489 	if (page->index == end_index)
1490 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1491 
1492 	ret = set_page_extent_mapped(page);
1493 	if (ret < 0)
1494 		goto done;
1495 
1496 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1497 	if (ret == 1)
1498 		return 0;
1499 	if (ret)
1500 		goto done;
1501 
1502 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1503 	if (ret == 1)
1504 		return 0;
1505 
1506 	bio_ctrl->wbc->nr_to_write--;
1507 
1508 done:
1509 	if (nr == 0) {
1510 		/* make sure the mapping tag for page dirty gets cleared */
1511 		set_page_writeback(page);
1512 		end_page_writeback(page);
1513 	}
1514 	if (ret) {
1515 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1516 					       PAGE_SIZE, !ret);
1517 		mapping_set_error(page->mapping, ret);
1518 	}
1519 	unlock_page(page);
1520 	ASSERT(ret <= 0);
1521 	return ret;
1522 }
1523 
1524 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1525 {
1526 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1527 		       TASK_UNINTERRUPTIBLE);
1528 }
1529 
1530 /*
1531  * Lock extent buffer status and pages for writeback.
1532  *
1533  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1534  * extent buffer is not dirty)
1535  * Return %true is the extent buffer is submitted to bio.
1536  */
1537 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1538 			  struct writeback_control *wbc)
1539 {
1540 	struct btrfs_fs_info *fs_info = eb->fs_info;
1541 	bool ret = false;
1542 
1543 	btrfs_tree_lock(eb);
1544 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1545 		btrfs_tree_unlock(eb);
1546 		if (wbc->sync_mode != WB_SYNC_ALL)
1547 			return false;
1548 		wait_on_extent_buffer_writeback(eb);
1549 		btrfs_tree_lock(eb);
1550 	}
1551 
1552 	/*
1553 	 * We need to do this to prevent races in people who check if the eb is
1554 	 * under IO since we can end up having no IO bits set for a short period
1555 	 * of time.
1556 	 */
1557 	spin_lock(&eb->refs_lock);
1558 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1559 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1560 		spin_unlock(&eb->refs_lock);
1561 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1562 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1563 					 -eb->len,
1564 					 fs_info->dirty_metadata_batch);
1565 		ret = true;
1566 	} else {
1567 		spin_unlock(&eb->refs_lock);
1568 	}
1569 	btrfs_tree_unlock(eb);
1570 	return ret;
1571 }
1572 
1573 static void set_btree_ioerr(struct extent_buffer *eb)
1574 {
1575 	struct btrfs_fs_info *fs_info = eb->fs_info;
1576 
1577 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1578 
1579 	/*
1580 	 * A read may stumble upon this buffer later, make sure that it gets an
1581 	 * error and knows there was an error.
1582 	 */
1583 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1584 
1585 	/*
1586 	 * We need to set the mapping with the io error as well because a write
1587 	 * error will flip the file system readonly, and then syncfs() will
1588 	 * return a 0 because we are readonly if we don't modify the err seq for
1589 	 * the superblock.
1590 	 */
1591 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1592 
1593 	/*
1594 	 * If writeback for a btree extent that doesn't belong to a log tree
1595 	 * failed, increment the counter transaction->eb_write_errors.
1596 	 * We do this because while the transaction is running and before it's
1597 	 * committing (when we call filemap_fdata[write|wait]_range against
1598 	 * the btree inode), we might have
1599 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1600 	 * returns an error or an error happens during writeback, when we're
1601 	 * committing the transaction we wouldn't know about it, since the pages
1602 	 * can be no longer dirty nor marked anymore for writeback (if a
1603 	 * subsequent modification to the extent buffer didn't happen before the
1604 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1605 	 * able to find the pages which contain errors at transaction
1606 	 * commit time. So if this happens we must abort the transaction,
1607 	 * otherwise we commit a super block with btree roots that point to
1608 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1609 	 * or the content of some node/leaf from a past generation that got
1610 	 * cowed or deleted and is no longer valid.
1611 	 *
1612 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1613 	 * not be enough - we need to distinguish between log tree extents vs
1614 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1615 	 * will catch and clear such errors in the mapping - and that call might
1616 	 * be from a log sync and not from a transaction commit. Also, checking
1617 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1618 	 * not done and would not be reliable - the eb might have been released
1619 	 * from memory and reading it back again means that flag would not be
1620 	 * set (since it's a runtime flag, not persisted on disk).
1621 	 *
1622 	 * Using the flags below in the btree inode also makes us achieve the
1623 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1624 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1625 	 * is called, the writeback for all dirty pages had already finished
1626 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1627 	 * filemap_fdatawait_range() would return success, as it could not know
1628 	 * that writeback errors happened (the pages were no longer tagged for
1629 	 * writeback).
1630 	 */
1631 	switch (eb->log_index) {
1632 	case -1:
1633 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1634 		break;
1635 	case 0:
1636 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1637 		break;
1638 	case 1:
1639 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1640 		break;
1641 	default:
1642 		BUG(); /* unexpected, logic error */
1643 	}
1644 }
1645 
1646 /*
1647  * The endio specific version which won't touch any unsafe spinlock in endio
1648  * context.
1649  */
1650 static struct extent_buffer *find_extent_buffer_nolock(
1651 		struct btrfs_fs_info *fs_info, u64 start)
1652 {
1653 	struct extent_buffer *eb;
1654 
1655 	rcu_read_lock();
1656 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1657 			       start >> fs_info->sectorsize_bits);
1658 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1659 		rcu_read_unlock();
1660 		return eb;
1661 	}
1662 	rcu_read_unlock();
1663 	return NULL;
1664 }
1665 
1666 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1667 {
1668 	struct extent_buffer *eb = bbio->private;
1669 	struct btrfs_fs_info *fs_info = eb->fs_info;
1670 	bool uptodate = !bbio->bio.bi_status;
1671 	struct folio_iter fi;
1672 	u32 bio_offset = 0;
1673 
1674 	if (!uptodate)
1675 		set_btree_ioerr(eb);
1676 
1677 	bio_for_each_folio_all(fi, &bbio->bio) {
1678 		u64 start = eb->start + bio_offset;
1679 		struct folio *folio = fi.folio;
1680 		u32 len = fi.length;
1681 
1682 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1683 		bio_offset += len;
1684 	}
1685 
1686 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1687 	smp_mb__after_atomic();
1688 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1689 
1690 	bio_put(&bbio->bio);
1691 }
1692 
1693 static void prepare_eb_write(struct extent_buffer *eb)
1694 {
1695 	u32 nritems;
1696 	unsigned long start;
1697 	unsigned long end;
1698 
1699 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1700 
1701 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1702 	nritems = btrfs_header_nritems(eb);
1703 	if (btrfs_header_level(eb) > 0) {
1704 		end = btrfs_node_key_ptr_offset(eb, nritems);
1705 		memzero_extent_buffer(eb, end, eb->len - end);
1706 	} else {
1707 		/*
1708 		 * Leaf:
1709 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1710 		 */
1711 		start = btrfs_item_nr_offset(eb, nritems);
1712 		end = btrfs_item_nr_offset(eb, 0);
1713 		if (nritems == 0)
1714 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1715 		else
1716 			end += btrfs_item_offset(eb, nritems - 1);
1717 		memzero_extent_buffer(eb, start, end - start);
1718 	}
1719 }
1720 
1721 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1722 					    struct writeback_control *wbc)
1723 {
1724 	struct btrfs_fs_info *fs_info = eb->fs_info;
1725 	struct btrfs_bio *bbio;
1726 
1727 	prepare_eb_write(eb);
1728 
1729 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1730 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1731 			       eb->fs_info, end_bbio_meta_write, eb);
1732 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1733 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1734 	wbc_init_bio(wbc, &bbio->bio);
1735 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1736 	bbio->file_offset = eb->start;
1737 	if (fs_info->nodesize < PAGE_SIZE) {
1738 		struct folio *folio = eb->folios[0];
1739 		bool ret;
1740 
1741 		folio_lock(folio);
1742 		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1743 		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1744 						       eb->len)) {
1745 			folio_clear_dirty_for_io(folio);
1746 			wbc->nr_to_write--;
1747 		}
1748 		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1749 				    eb->start - folio_pos(folio));
1750 		ASSERT(ret);
1751 		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1752 		folio_unlock(folio);
1753 	} else {
1754 		int num_folios = num_extent_folios(eb);
1755 
1756 		for (int i = 0; i < num_folios; i++) {
1757 			struct folio *folio = eb->folios[i];
1758 			bool ret;
1759 
1760 			folio_lock(folio);
1761 			folio_clear_dirty_for_io(folio);
1762 			folio_start_writeback(folio);
1763 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1764 			ASSERT(ret);
1765 			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1766 						 eb->folio_size);
1767 			wbc->nr_to_write -= folio_nr_pages(folio);
1768 			folio_unlock(folio);
1769 		}
1770 	}
1771 	btrfs_submit_bio(bbio, 0);
1772 }
1773 
1774 /*
1775  * Submit one subpage btree page.
1776  *
1777  * The main difference to submit_eb_page() is:
1778  * - Page locking
1779  *   For subpage, we don't rely on page locking at all.
1780  *
1781  * - Flush write bio
1782  *   We only flush bio if we may be unable to fit current extent buffers into
1783  *   current bio.
1784  *
1785  * Return >=0 for the number of submitted extent buffers.
1786  * Return <0 for fatal error.
1787  */
1788 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1789 {
1790 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1791 	struct folio *folio = page_folio(page);
1792 	int submitted = 0;
1793 	u64 page_start = page_offset(page);
1794 	int bit_start = 0;
1795 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1796 
1797 	/* Lock and write each dirty extent buffers in the range */
1798 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1799 		struct btrfs_subpage *subpage = folio_get_private(folio);
1800 		struct extent_buffer *eb;
1801 		unsigned long flags;
1802 		u64 start;
1803 
1804 		/*
1805 		 * Take private lock to ensure the subpage won't be detached
1806 		 * in the meantime.
1807 		 */
1808 		spin_lock(&page->mapping->i_private_lock);
1809 		if (!folio_test_private(folio)) {
1810 			spin_unlock(&page->mapping->i_private_lock);
1811 			break;
1812 		}
1813 		spin_lock_irqsave(&subpage->lock, flags);
1814 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1815 			      subpage->bitmaps)) {
1816 			spin_unlock_irqrestore(&subpage->lock, flags);
1817 			spin_unlock(&page->mapping->i_private_lock);
1818 			bit_start++;
1819 			continue;
1820 		}
1821 
1822 		start = page_start + bit_start * fs_info->sectorsize;
1823 		bit_start += sectors_per_node;
1824 
1825 		/*
1826 		 * Here we just want to grab the eb without touching extra
1827 		 * spin locks, so call find_extent_buffer_nolock().
1828 		 */
1829 		eb = find_extent_buffer_nolock(fs_info, start);
1830 		spin_unlock_irqrestore(&subpage->lock, flags);
1831 		spin_unlock(&page->mapping->i_private_lock);
1832 
1833 		/*
1834 		 * The eb has already reached 0 refs thus find_extent_buffer()
1835 		 * doesn't return it. We don't need to write back such eb
1836 		 * anyway.
1837 		 */
1838 		if (!eb)
1839 			continue;
1840 
1841 		if (lock_extent_buffer_for_io(eb, wbc)) {
1842 			write_one_eb(eb, wbc);
1843 			submitted++;
1844 		}
1845 		free_extent_buffer(eb);
1846 	}
1847 	return submitted;
1848 }
1849 
1850 /*
1851  * Submit all page(s) of one extent buffer.
1852  *
1853  * @page:	the page of one extent buffer
1854  * @eb_context:	to determine if we need to submit this page, if current page
1855  *		belongs to this eb, we don't need to submit
1856  *
1857  * The caller should pass each page in their bytenr order, and here we use
1858  * @eb_context to determine if we have submitted pages of one extent buffer.
1859  *
1860  * If we have, we just skip until we hit a new page that doesn't belong to
1861  * current @eb_context.
1862  *
1863  * If not, we submit all the page(s) of the extent buffer.
1864  *
1865  * Return >0 if we have submitted the extent buffer successfully.
1866  * Return 0 if we don't need to submit the page, as it's already submitted by
1867  * previous call.
1868  * Return <0 for fatal error.
1869  */
1870 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1871 {
1872 	struct writeback_control *wbc = ctx->wbc;
1873 	struct address_space *mapping = page->mapping;
1874 	struct folio *folio = page_folio(page);
1875 	struct extent_buffer *eb;
1876 	int ret;
1877 
1878 	if (!folio_test_private(folio))
1879 		return 0;
1880 
1881 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1882 		return submit_eb_subpage(page, wbc);
1883 
1884 	spin_lock(&mapping->i_private_lock);
1885 	if (!folio_test_private(folio)) {
1886 		spin_unlock(&mapping->i_private_lock);
1887 		return 0;
1888 	}
1889 
1890 	eb = folio_get_private(folio);
1891 
1892 	/*
1893 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1894 	 * crashing the machine for something we can survive anyway.
1895 	 */
1896 	if (WARN_ON(!eb)) {
1897 		spin_unlock(&mapping->i_private_lock);
1898 		return 0;
1899 	}
1900 
1901 	if (eb == ctx->eb) {
1902 		spin_unlock(&mapping->i_private_lock);
1903 		return 0;
1904 	}
1905 	ret = atomic_inc_not_zero(&eb->refs);
1906 	spin_unlock(&mapping->i_private_lock);
1907 	if (!ret)
1908 		return 0;
1909 
1910 	ctx->eb = eb;
1911 
1912 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1913 	if (ret) {
1914 		if (ret == -EBUSY)
1915 			ret = 0;
1916 		free_extent_buffer(eb);
1917 		return ret;
1918 	}
1919 
1920 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1921 		free_extent_buffer(eb);
1922 		return 0;
1923 	}
1924 	/* Implies write in zoned mode. */
1925 	if (ctx->zoned_bg) {
1926 		/* Mark the last eb in the block group. */
1927 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1928 		ctx->zoned_bg->meta_write_pointer += eb->len;
1929 	}
1930 	write_one_eb(eb, wbc);
1931 	free_extent_buffer(eb);
1932 	return 1;
1933 }
1934 
1935 int btree_write_cache_pages(struct address_space *mapping,
1936 				   struct writeback_control *wbc)
1937 {
1938 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1939 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1940 	int ret = 0;
1941 	int done = 0;
1942 	int nr_to_write_done = 0;
1943 	struct folio_batch fbatch;
1944 	unsigned int nr_folios;
1945 	pgoff_t index;
1946 	pgoff_t end;		/* Inclusive */
1947 	int scanned = 0;
1948 	xa_mark_t tag;
1949 
1950 	folio_batch_init(&fbatch);
1951 	if (wbc->range_cyclic) {
1952 		index = mapping->writeback_index; /* Start from prev offset */
1953 		end = -1;
1954 		/*
1955 		 * Start from the beginning does not need to cycle over the
1956 		 * range, mark it as scanned.
1957 		 */
1958 		scanned = (index == 0);
1959 	} else {
1960 		index = wbc->range_start >> PAGE_SHIFT;
1961 		end = wbc->range_end >> PAGE_SHIFT;
1962 		scanned = 1;
1963 	}
1964 	if (wbc->sync_mode == WB_SYNC_ALL)
1965 		tag = PAGECACHE_TAG_TOWRITE;
1966 	else
1967 		tag = PAGECACHE_TAG_DIRTY;
1968 	btrfs_zoned_meta_io_lock(fs_info);
1969 retry:
1970 	if (wbc->sync_mode == WB_SYNC_ALL)
1971 		tag_pages_for_writeback(mapping, index, end);
1972 	while (!done && !nr_to_write_done && (index <= end) &&
1973 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1974 					    tag, &fbatch))) {
1975 		unsigned i;
1976 
1977 		for (i = 0; i < nr_folios; i++) {
1978 			struct folio *folio = fbatch.folios[i];
1979 
1980 			ret = submit_eb_page(&folio->page, &ctx);
1981 			if (ret == 0)
1982 				continue;
1983 			if (ret < 0) {
1984 				done = 1;
1985 				break;
1986 			}
1987 
1988 			/*
1989 			 * the filesystem may choose to bump up nr_to_write.
1990 			 * We have to make sure to honor the new nr_to_write
1991 			 * at any time
1992 			 */
1993 			nr_to_write_done = wbc->nr_to_write <= 0;
1994 		}
1995 		folio_batch_release(&fbatch);
1996 		cond_resched();
1997 	}
1998 	if (!scanned && !done) {
1999 		/*
2000 		 * We hit the last page and there is more work to be done: wrap
2001 		 * back to the start of the file
2002 		 */
2003 		scanned = 1;
2004 		index = 0;
2005 		goto retry;
2006 	}
2007 	/*
2008 	 * If something went wrong, don't allow any metadata write bio to be
2009 	 * submitted.
2010 	 *
2011 	 * This would prevent use-after-free if we had dirty pages not
2012 	 * cleaned up, which can still happen by fuzzed images.
2013 	 *
2014 	 * - Bad extent tree
2015 	 *   Allowing existing tree block to be allocated for other trees.
2016 	 *
2017 	 * - Log tree operations
2018 	 *   Exiting tree blocks get allocated to log tree, bumps its
2019 	 *   generation, then get cleaned in tree re-balance.
2020 	 *   Such tree block will not be written back, since it's clean,
2021 	 *   thus no WRITTEN flag set.
2022 	 *   And after log writes back, this tree block is not traced by
2023 	 *   any dirty extent_io_tree.
2024 	 *
2025 	 * - Offending tree block gets re-dirtied from its original owner
2026 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2027 	 *   reused without COWing. This tree block will not be traced
2028 	 *   by btrfs_transaction::dirty_pages.
2029 	 *
2030 	 *   Now such dirty tree block will not be cleaned by any dirty
2031 	 *   extent io tree. Thus we don't want to submit such wild eb
2032 	 *   if the fs already has error.
2033 	 *
2034 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2035 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2036 	 */
2037 	if (ret > 0)
2038 		ret = 0;
2039 	if (!ret && BTRFS_FS_ERROR(fs_info))
2040 		ret = -EROFS;
2041 
2042 	if (ctx.zoned_bg)
2043 		btrfs_put_block_group(ctx.zoned_bg);
2044 	btrfs_zoned_meta_io_unlock(fs_info);
2045 	return ret;
2046 }
2047 
2048 /*
2049  * Walk the list of dirty pages of the given address space and write all of them.
2050  *
2051  * @mapping:   address space structure to write
2052  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2053  * @bio_ctrl:  holds context for the write, namely the bio
2054  *
2055  * If a page is already under I/O, write_cache_pages() skips it, even
2056  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2057  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2058  * and msync() need to guarantee that all the data which was dirty at the time
2059  * the call was made get new I/O started against them.  If wbc->sync_mode is
2060  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2061  * existing IO to complete.
2062  */
2063 static int extent_write_cache_pages(struct address_space *mapping,
2064 			     struct btrfs_bio_ctrl *bio_ctrl)
2065 {
2066 	struct writeback_control *wbc = bio_ctrl->wbc;
2067 	struct inode *inode = mapping->host;
2068 	int ret = 0;
2069 	int done = 0;
2070 	int nr_to_write_done = 0;
2071 	struct folio_batch fbatch;
2072 	unsigned int nr_folios;
2073 	pgoff_t index;
2074 	pgoff_t end;		/* Inclusive */
2075 	pgoff_t done_index;
2076 	int range_whole = 0;
2077 	int scanned = 0;
2078 	xa_mark_t tag;
2079 
2080 	/*
2081 	 * We have to hold onto the inode so that ordered extents can do their
2082 	 * work when the IO finishes.  The alternative to this is failing to add
2083 	 * an ordered extent if the igrab() fails there and that is a huge pain
2084 	 * to deal with, so instead just hold onto the inode throughout the
2085 	 * writepages operation.  If it fails here we are freeing up the inode
2086 	 * anyway and we'd rather not waste our time writing out stuff that is
2087 	 * going to be truncated anyway.
2088 	 */
2089 	if (!igrab(inode))
2090 		return 0;
2091 
2092 	folio_batch_init(&fbatch);
2093 	if (wbc->range_cyclic) {
2094 		index = mapping->writeback_index; /* Start from prev offset */
2095 		end = -1;
2096 		/*
2097 		 * Start from the beginning does not need to cycle over the
2098 		 * range, mark it as scanned.
2099 		 */
2100 		scanned = (index == 0);
2101 	} else {
2102 		index = wbc->range_start >> PAGE_SHIFT;
2103 		end = wbc->range_end >> PAGE_SHIFT;
2104 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2105 			range_whole = 1;
2106 		scanned = 1;
2107 	}
2108 
2109 	/*
2110 	 * We do the tagged writepage as long as the snapshot flush bit is set
2111 	 * and we are the first one who do the filemap_flush() on this inode.
2112 	 *
2113 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2114 	 * not race in and drop the bit.
2115 	 */
2116 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2117 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2118 			       &BTRFS_I(inode)->runtime_flags))
2119 		wbc->tagged_writepages = 1;
2120 
2121 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2122 		tag = PAGECACHE_TAG_TOWRITE;
2123 	else
2124 		tag = PAGECACHE_TAG_DIRTY;
2125 retry:
2126 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2127 		tag_pages_for_writeback(mapping, index, end);
2128 	done_index = index;
2129 	while (!done && !nr_to_write_done && (index <= end) &&
2130 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2131 							end, tag, &fbatch))) {
2132 		unsigned i;
2133 
2134 		for (i = 0; i < nr_folios; i++) {
2135 			struct folio *folio = fbatch.folios[i];
2136 
2137 			done_index = folio_next_index(folio);
2138 			/*
2139 			 * At this point we hold neither the i_pages lock nor
2140 			 * the page lock: the page may be truncated or
2141 			 * invalidated (changing page->mapping to NULL),
2142 			 * or even swizzled back from swapper_space to
2143 			 * tmpfs file mapping
2144 			 */
2145 			if (!folio_trylock(folio)) {
2146 				submit_write_bio(bio_ctrl, 0);
2147 				folio_lock(folio);
2148 			}
2149 
2150 			if (unlikely(folio->mapping != mapping)) {
2151 				folio_unlock(folio);
2152 				continue;
2153 			}
2154 
2155 			if (!folio_test_dirty(folio)) {
2156 				/* Someone wrote it for us. */
2157 				folio_unlock(folio);
2158 				continue;
2159 			}
2160 
2161 			if (wbc->sync_mode != WB_SYNC_NONE) {
2162 				if (folio_test_writeback(folio))
2163 					submit_write_bio(bio_ctrl, 0);
2164 				folio_wait_writeback(folio);
2165 			}
2166 
2167 			if (folio_test_writeback(folio) ||
2168 			    !folio_clear_dirty_for_io(folio)) {
2169 				folio_unlock(folio);
2170 				continue;
2171 			}
2172 
2173 			ret = __extent_writepage(&folio->page, bio_ctrl);
2174 			if (ret < 0) {
2175 				done = 1;
2176 				break;
2177 			}
2178 
2179 			/*
2180 			 * The filesystem may choose to bump up nr_to_write.
2181 			 * We have to make sure to honor the new nr_to_write
2182 			 * at any time.
2183 			 */
2184 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2185 					    wbc->nr_to_write <= 0);
2186 		}
2187 		folio_batch_release(&fbatch);
2188 		cond_resched();
2189 	}
2190 	if (!scanned && !done) {
2191 		/*
2192 		 * We hit the last page and there is more work to be done: wrap
2193 		 * back to the start of the file
2194 		 */
2195 		scanned = 1;
2196 		index = 0;
2197 
2198 		/*
2199 		 * If we're looping we could run into a page that is locked by a
2200 		 * writer and that writer could be waiting on writeback for a
2201 		 * page in our current bio, and thus deadlock, so flush the
2202 		 * write bio here.
2203 		 */
2204 		submit_write_bio(bio_ctrl, 0);
2205 		goto retry;
2206 	}
2207 
2208 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2209 		mapping->writeback_index = done_index;
2210 
2211 	btrfs_add_delayed_iput(BTRFS_I(inode));
2212 	return ret;
2213 }
2214 
2215 /*
2216  * Submit the pages in the range to bio for call sites which delalloc range has
2217  * already been ran (aka, ordered extent inserted) and all pages are still
2218  * locked.
2219  */
2220 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2221 			       u64 start, u64 end, struct writeback_control *wbc,
2222 			       bool pages_dirty)
2223 {
2224 	bool found_error = false;
2225 	int ret = 0;
2226 	struct address_space *mapping = inode->i_mapping;
2227 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2228 	const u32 sectorsize = fs_info->sectorsize;
2229 	loff_t i_size = i_size_read(inode);
2230 	u64 cur = start;
2231 	struct btrfs_bio_ctrl bio_ctrl = {
2232 		.wbc = wbc,
2233 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2234 	};
2235 
2236 	if (wbc->no_cgroup_owner)
2237 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2238 
2239 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2240 
2241 	while (cur <= end) {
2242 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2243 		u32 cur_len = cur_end + 1 - cur;
2244 		struct page *page;
2245 		int nr = 0;
2246 
2247 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2248 		ASSERT(PageLocked(page));
2249 		if (pages_dirty && page != locked_page) {
2250 			ASSERT(PageDirty(page));
2251 			clear_page_dirty_for_io(page);
2252 		}
2253 
2254 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2255 					    i_size, &nr);
2256 		if (ret == 1)
2257 			goto next_page;
2258 
2259 		/* Make sure the mapping tag for page dirty gets cleared. */
2260 		if (nr == 0) {
2261 			set_page_writeback(page);
2262 			end_page_writeback(page);
2263 		}
2264 		if (ret) {
2265 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2266 						       cur, cur_len, !ret);
2267 			mapping_set_error(page->mapping, ret);
2268 		}
2269 		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2270 		if (ret < 0)
2271 			found_error = true;
2272 next_page:
2273 		put_page(page);
2274 		cur = cur_end + 1;
2275 	}
2276 
2277 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2278 }
2279 
2280 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2281 {
2282 	struct inode *inode = mapping->host;
2283 	int ret = 0;
2284 	struct btrfs_bio_ctrl bio_ctrl = {
2285 		.wbc = wbc,
2286 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2287 	};
2288 
2289 	/*
2290 	 * Allow only a single thread to do the reloc work in zoned mode to
2291 	 * protect the write pointer updates.
2292 	 */
2293 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2294 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2295 	submit_write_bio(&bio_ctrl, ret);
2296 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2297 	return ret;
2298 }
2299 
2300 void btrfs_readahead(struct readahead_control *rac)
2301 {
2302 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2303 	struct page *pagepool[16];
2304 	struct extent_map *em_cached = NULL;
2305 	u64 prev_em_start = (u64)-1;
2306 	int nr;
2307 
2308 	while ((nr = readahead_page_batch(rac, pagepool))) {
2309 		u64 contig_start = readahead_pos(rac);
2310 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2311 
2312 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2313 				&em_cached, &bio_ctrl, &prev_em_start);
2314 	}
2315 
2316 	if (em_cached)
2317 		free_extent_map(em_cached);
2318 	submit_one_bio(&bio_ctrl);
2319 }
2320 
2321 /*
2322  * basic invalidate_folio code, this waits on any locked or writeback
2323  * ranges corresponding to the folio, and then deletes any extent state
2324  * records from the tree
2325  */
2326 int extent_invalidate_folio(struct extent_io_tree *tree,
2327 			  struct folio *folio, size_t offset)
2328 {
2329 	struct extent_state *cached_state = NULL;
2330 	u64 start = folio_pos(folio);
2331 	u64 end = start + folio_size(folio) - 1;
2332 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2333 
2334 	/* This function is only called for the btree inode */
2335 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2336 
2337 	start += ALIGN(offset, blocksize);
2338 	if (start > end)
2339 		return 0;
2340 
2341 	lock_extent(tree, start, end, &cached_state);
2342 	folio_wait_writeback(folio);
2343 
2344 	/*
2345 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2346 	 * so here we only need to unlock the extent range to free any
2347 	 * existing extent state.
2348 	 */
2349 	unlock_extent(tree, start, end, &cached_state);
2350 	return 0;
2351 }
2352 
2353 /*
2354  * a helper for release_folio, this tests for areas of the page that
2355  * are locked or under IO and drops the related state bits if it is safe
2356  * to drop the page.
2357  */
2358 static bool try_release_extent_state(struct extent_io_tree *tree,
2359 				    struct page *page, gfp_t mask)
2360 {
2361 	u64 start = page_offset(page);
2362 	u64 end = start + PAGE_SIZE - 1;
2363 	bool ret;
2364 
2365 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2366 		ret = false;
2367 	} else {
2368 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2369 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2370 				   EXTENT_QGROUP_RESERVED);
2371 		int ret2;
2372 
2373 		/*
2374 		 * At this point we can safely clear everything except the
2375 		 * locked bit, the nodatasum bit and the delalloc new bit.
2376 		 * The delalloc new bit will be cleared by ordered extent
2377 		 * completion.
2378 		 */
2379 		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2380 
2381 		/* if clear_extent_bit failed for enomem reasons,
2382 		 * we can't allow the release to continue.
2383 		 */
2384 		if (ret2 < 0)
2385 			ret = false;
2386 		else
2387 			ret = true;
2388 	}
2389 	return ret;
2390 }
2391 
2392 /*
2393  * a helper for release_folio.  As long as there are no locked extents
2394  * in the range corresponding to the page, both state records and extent
2395  * map records are removed
2396  */
2397 bool try_release_extent_mapping(struct page *page, gfp_t mask)
2398 {
2399 	u64 start = page_offset(page);
2400 	u64 end = start + PAGE_SIZE - 1;
2401 	struct btrfs_inode *inode = page_to_inode(page);
2402 	struct extent_io_tree *io_tree = &inode->io_tree;
2403 
2404 	while (start <= end) {
2405 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2406 		const u64 len = end - start + 1;
2407 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2408 		struct extent_map *em;
2409 
2410 		write_lock(&extent_tree->lock);
2411 		em = lookup_extent_mapping(extent_tree, start, len);
2412 		if (!em) {
2413 			write_unlock(&extent_tree->lock);
2414 			break;
2415 		}
2416 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2417 			write_unlock(&extent_tree->lock);
2418 			free_extent_map(em);
2419 			break;
2420 		}
2421 		if (test_range_bit_exists(io_tree, em->start,
2422 					  extent_map_end(em) - 1, EXTENT_LOCKED))
2423 			goto next;
2424 		/*
2425 		 * If it's not in the list of modified extents, used by a fast
2426 		 * fsync, we can remove it. If it's being logged we can safely
2427 		 * remove it since fsync took an extra reference on the em.
2428 		 */
2429 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2430 			goto remove_em;
2431 		/*
2432 		 * If it's in the list of modified extents, remove it only if
2433 		 * its generation is older then the current one, in which case
2434 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2435 		 * we could be racing with an ongoing fast fsync that could miss
2436 		 * the new extent.
2437 		 */
2438 		if (em->generation >= cur_gen)
2439 			goto next;
2440 remove_em:
2441 		/*
2442 		 * We only remove extent maps that are not in the list of
2443 		 * modified extents or that are in the list but with a
2444 		 * generation lower then the current generation, so there is no
2445 		 * need to set the full fsync flag on the inode (it hurts the
2446 		 * fsync performance for workloads with a data size that exceeds
2447 		 * or is close to the system's memory).
2448 		 */
2449 		remove_extent_mapping(inode, em);
2450 		/* Once for the inode's extent map tree. */
2451 		free_extent_map(em);
2452 next:
2453 		start = extent_map_end(em);
2454 		write_unlock(&extent_tree->lock);
2455 
2456 		/* Once for us, for the lookup_extent_mapping() reference. */
2457 		free_extent_map(em);
2458 
2459 		if (need_resched()) {
2460 			/*
2461 			 * If we need to resched but we can't block just exit
2462 			 * and leave any remaining extent maps.
2463 			 */
2464 			if (!gfpflags_allow_blocking(mask))
2465 				break;
2466 
2467 			cond_resched();
2468 		}
2469 	}
2470 	return try_release_extent_state(io_tree, page, mask);
2471 }
2472 
2473 struct btrfs_fiemap_entry {
2474 	u64 offset;
2475 	u64 phys;
2476 	u64 len;
2477 	u32 flags;
2478 };
2479 
2480 /*
2481  * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2482  * range from the inode's io tree, unlock the subvolume tree search path, flush
2483  * the fiemap cache and relock the file range and research the subvolume tree.
2484  * The value here is something negative that can't be confused with a valid
2485  * errno value and different from 1 because that's also a return value from
2486  * fiemap_fill_next_extent() and also it's often used to mean some btree search
2487  * did not find a key, so make it some distinct negative value.
2488  */
2489 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2490 
2491 /*
2492  * Used to:
2493  *
2494  * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2495  *   merge extents that are contiguous and can be grouped as a single one;
2496  *
2497  * - Store extents ready to be written to the fiemap buffer in an intermediary
2498  *   buffer. This intermediary buffer is to ensure that in case the fiemap
2499  *   buffer is memory mapped to the fiemap target file, we don't deadlock
2500  *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
2501  *   an extent range in order to prevent races with delalloc flushing and
2502  *   ordered extent completion, which is needed in order to reliably detect
2503  *   delalloc in holes and prealloc extents. And this can lead to a deadlock
2504  *   if the fiemap buffer is memory mapped to the file we are running fiemap
2505  *   against (a silly, useless in practice scenario, but possible) because
2506  *   btrfs_page_mkwrite() will try to lock the same extent range.
2507  */
2508 struct fiemap_cache {
2509 	/* An array of ready fiemap entries. */
2510 	struct btrfs_fiemap_entry *entries;
2511 	/* Number of entries in the entries array. */
2512 	int entries_size;
2513 	/* Index of the next entry in the entries array to write to. */
2514 	int entries_pos;
2515 	/*
2516 	 * Once the entries array is full, this indicates what's the offset for
2517 	 * the next file extent item we must search for in the inode's subvolume
2518 	 * tree after unlocking the extent range in the inode's io tree and
2519 	 * releasing the search path.
2520 	 */
2521 	u64 next_search_offset;
2522 	/*
2523 	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2524 	 * to count ourselves emitted extents and stop instead of relying on
2525 	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2526 	 * the @entries array, and we want to stop as soon as we hit the max
2527 	 * amount of extents to map, not just to save time but also to make the
2528 	 * logic at extent_fiemap() simpler.
2529 	 */
2530 	unsigned int extents_mapped;
2531 	/* Fields for the cached extent (unsubmitted, not ready, extent). */
2532 	u64 offset;
2533 	u64 phys;
2534 	u64 len;
2535 	u32 flags;
2536 	bool cached;
2537 };
2538 
2539 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2540 			      struct fiemap_cache *cache)
2541 {
2542 	for (int i = 0; i < cache->entries_pos; i++) {
2543 		struct btrfs_fiemap_entry *entry = &cache->entries[i];
2544 		int ret;
2545 
2546 		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2547 					      entry->phys, entry->len,
2548 					      entry->flags);
2549 		/*
2550 		 * Ignore 1 (reached max entries) because we keep track of that
2551 		 * ourselves in emit_fiemap_extent().
2552 		 */
2553 		if (ret < 0)
2554 			return ret;
2555 	}
2556 	cache->entries_pos = 0;
2557 
2558 	return 0;
2559 }
2560 
2561 /*
2562  * Helper to submit fiemap extent.
2563  *
2564  * Will try to merge current fiemap extent specified by @offset, @phys,
2565  * @len and @flags with cached one.
2566  * And only when we fails to merge, cached one will be submitted as
2567  * fiemap extent.
2568  *
2569  * Return value is the same as fiemap_fill_next_extent().
2570  */
2571 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2572 				struct fiemap_cache *cache,
2573 				u64 offset, u64 phys, u64 len, u32 flags)
2574 {
2575 	struct btrfs_fiemap_entry *entry;
2576 	u64 cache_end;
2577 
2578 	/* Set at the end of extent_fiemap(). */
2579 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2580 
2581 	if (!cache->cached)
2582 		goto assign;
2583 
2584 	/*
2585 	 * When iterating the extents of the inode, at extent_fiemap(), we may
2586 	 * find an extent that starts at an offset behind the end offset of the
2587 	 * previous extent we processed. This happens if fiemap is called
2588 	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2589 	 * after we had to unlock the file range, release the search path, emit
2590 	 * the fiemap extents stored in the buffer (cache->entries array) and
2591 	 * the lock the remainder of the range and re-search the btree.
2592 	 *
2593 	 * For example we are in leaf X processing its last item, which is the
2594 	 * file extent item for file range [512K, 1M[, and after
2595 	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2596 	 * completes for the file range [768K, 2M[, and that results in trimming
2597 	 * the file extent item so that it now corresponds to the file range
2598 	 * [512K, 768K[ and a new file extent item is inserted for the file
2599 	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2600 	 * the first item of the next leaf - in either case btrfs_next_leaf()
2601 	 * will leave us with a path pointing to the new extent item, for the
2602 	 * file range [768K, 2M[, since that's the first key that follows the
2603 	 * last one we processed. So in order not to report overlapping extents
2604 	 * to user space, we trim the length of the previously cached extent and
2605 	 * emit it.
2606 	 *
2607 	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2608 	 * offset smaller than or equals to cache->offset, and this happens
2609 	 * when we had a hole or prealloc extent with several delalloc ranges in
2610 	 * it, but after btrfs_next_leaf() released the path, delalloc was
2611 	 * flushed and the resulting ordered extents were completed, so we can
2612 	 * now have found a file extent item for an offset that is smaller than
2613 	 * or equals to what we have in cache->offset. We deal with this as
2614 	 * described below.
2615 	 */
2616 	cache_end = cache->offset + cache->len;
2617 	if (cache_end > offset) {
2618 		if (offset == cache->offset) {
2619 			/*
2620 			 * We cached a dealloc range (found in the io tree) for
2621 			 * a hole or prealloc extent and we have now found a
2622 			 * file extent item for the same offset. What we have
2623 			 * now is more recent and up to date, so discard what
2624 			 * we had in the cache and use what we have just found.
2625 			 */
2626 			goto assign;
2627 		} else if (offset > cache->offset) {
2628 			/*
2629 			 * The extent range we previously found ends after the
2630 			 * offset of the file extent item we found and that
2631 			 * offset falls somewhere in the middle of that previous
2632 			 * extent range. So adjust the range we previously found
2633 			 * to end at the offset of the file extent item we have
2634 			 * just found, since this extent is more up to date.
2635 			 * Emit that adjusted range and cache the file extent
2636 			 * item we have just found. This corresponds to the case
2637 			 * where a previously found file extent item was split
2638 			 * due to an ordered extent completing.
2639 			 */
2640 			cache->len = offset - cache->offset;
2641 			goto emit;
2642 		} else {
2643 			const u64 range_end = offset + len;
2644 
2645 			/*
2646 			 * The offset of the file extent item we have just found
2647 			 * is behind the cached offset. This means we were
2648 			 * processing a hole or prealloc extent for which we
2649 			 * have found delalloc ranges (in the io tree), so what
2650 			 * we have in the cache is the last delalloc range we
2651 			 * found while the file extent item we found can be
2652 			 * either for a whole delalloc range we previously
2653 			 * emmitted or only a part of that range.
2654 			 *
2655 			 * We have two cases here:
2656 			 *
2657 			 * 1) The file extent item's range ends at or behind the
2658 			 *    cached extent's end. In this case just ignore the
2659 			 *    current file extent item because we don't want to
2660 			 *    overlap with previous ranges that may have been
2661 			 *    emmitted already;
2662 			 *
2663 			 * 2) The file extent item starts behind the currently
2664 			 *    cached extent but its end offset goes beyond the
2665 			 *    end offset of the cached extent. We don't want to
2666 			 *    overlap with a previous range that may have been
2667 			 *    emmitted already, so we emit the currently cached
2668 			 *    extent and then partially store the current file
2669 			 *    extent item's range in the cache, for the subrange
2670 			 *    going the cached extent's end to the end of the
2671 			 *    file extent item.
2672 			 */
2673 			if (range_end <= cache_end)
2674 				return 0;
2675 
2676 			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2677 				phys += cache_end - offset;
2678 
2679 			offset = cache_end;
2680 			len = range_end - cache_end;
2681 			goto emit;
2682 		}
2683 	}
2684 
2685 	/*
2686 	 * Only merges fiemap extents if
2687 	 * 1) Their logical addresses are continuous
2688 	 *
2689 	 * 2) Their physical addresses are continuous
2690 	 *    So truly compressed (physical size smaller than logical size)
2691 	 *    extents won't get merged with each other
2692 	 *
2693 	 * 3) Share same flags
2694 	 */
2695 	if (cache->offset + cache->len  == offset &&
2696 	    cache->phys + cache->len == phys  &&
2697 	    cache->flags == flags) {
2698 		cache->len += len;
2699 		return 0;
2700 	}
2701 
2702 emit:
2703 	/* Not mergeable, need to submit cached one */
2704 
2705 	if (cache->entries_pos == cache->entries_size) {
2706 		/*
2707 		 * We will need to research for the end offset of the last
2708 		 * stored extent and not from the current offset, because after
2709 		 * unlocking the range and releasing the path, if there's a hole
2710 		 * between that end offset and this current offset, a new extent
2711 		 * may have been inserted due to a new write, so we don't want
2712 		 * to miss it.
2713 		 */
2714 		entry = &cache->entries[cache->entries_size - 1];
2715 		cache->next_search_offset = entry->offset + entry->len;
2716 		cache->cached = false;
2717 
2718 		return BTRFS_FIEMAP_FLUSH_CACHE;
2719 	}
2720 
2721 	entry = &cache->entries[cache->entries_pos];
2722 	entry->offset = cache->offset;
2723 	entry->phys = cache->phys;
2724 	entry->len = cache->len;
2725 	entry->flags = cache->flags;
2726 	cache->entries_pos++;
2727 	cache->extents_mapped++;
2728 
2729 	if (cache->extents_mapped == fieinfo->fi_extents_max) {
2730 		cache->cached = false;
2731 		return 1;
2732 	}
2733 assign:
2734 	cache->cached = true;
2735 	cache->offset = offset;
2736 	cache->phys = phys;
2737 	cache->len = len;
2738 	cache->flags = flags;
2739 
2740 	return 0;
2741 }
2742 
2743 /*
2744  * Emit last fiemap cache
2745  *
2746  * The last fiemap cache may still be cached in the following case:
2747  * 0		      4k		    8k
2748  * |<- Fiemap range ->|
2749  * |<------------  First extent ----------->|
2750  *
2751  * In this case, the first extent range will be cached but not emitted.
2752  * So we must emit it before ending extent_fiemap().
2753  */
2754 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2755 				  struct fiemap_cache *cache)
2756 {
2757 	int ret;
2758 
2759 	if (!cache->cached)
2760 		return 0;
2761 
2762 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2763 				      cache->len, cache->flags);
2764 	cache->cached = false;
2765 	if (ret > 0)
2766 		ret = 0;
2767 	return ret;
2768 }
2769 
2770 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2771 {
2772 	struct extent_buffer *clone = path->nodes[0];
2773 	struct btrfs_key key;
2774 	int slot;
2775 	int ret;
2776 
2777 	path->slots[0]++;
2778 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2779 		return 0;
2780 
2781 	/*
2782 	 * Add a temporary extra ref to an already cloned extent buffer to
2783 	 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2784 	 * the cost of allocating a new one.
2785 	 */
2786 	ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2787 	atomic_inc(&clone->refs);
2788 
2789 	ret = btrfs_next_leaf(inode->root, path);
2790 	if (ret != 0)
2791 		goto out;
2792 
2793 	/*
2794 	 * Don't bother with cloning if there are no more file extent items for
2795 	 * our inode.
2796 	 */
2797 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2798 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2799 		ret = 1;
2800 		goto out;
2801 	}
2802 
2803 	/*
2804 	 * Important to preserve the start field, for the optimizations when
2805 	 * checking if extents are shared (see extent_fiemap()).
2806 	 *
2807 	 * We must set ->start before calling copy_extent_buffer_full().  If we
2808 	 * are on sub-pagesize blocksize, we use ->start to determine the offset
2809 	 * into the folio where our eb exists, and if we update ->start after
2810 	 * the fact then any subsequent reads of the eb may read from a
2811 	 * different offset in the folio than where we originally copied into.
2812 	 */
2813 	clone->start = path->nodes[0]->start;
2814 	/* See the comment at fiemap_search_slot() about why we clone. */
2815 	copy_extent_buffer_full(clone, path->nodes[0]);
2816 
2817 	slot = path->slots[0];
2818 	btrfs_release_path(path);
2819 	path->nodes[0] = clone;
2820 	path->slots[0] = slot;
2821 out:
2822 	if (ret)
2823 		free_extent_buffer(clone);
2824 
2825 	return ret;
2826 }
2827 
2828 /*
2829  * Search for the first file extent item that starts at a given file offset or
2830  * the one that starts immediately before that offset.
2831  * Returns: 0 on success, < 0 on error, 1 if not found.
2832  */
2833 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2834 			      u64 file_offset)
2835 {
2836 	const u64 ino = btrfs_ino(inode);
2837 	struct btrfs_root *root = inode->root;
2838 	struct extent_buffer *clone;
2839 	struct btrfs_key key;
2840 	int slot;
2841 	int ret;
2842 
2843 	key.objectid = ino;
2844 	key.type = BTRFS_EXTENT_DATA_KEY;
2845 	key.offset = file_offset;
2846 
2847 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2848 	if (ret < 0)
2849 		return ret;
2850 
2851 	if (ret > 0 && path->slots[0] > 0) {
2852 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2853 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2854 			path->slots[0]--;
2855 	}
2856 
2857 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2858 		ret = btrfs_next_leaf(root, path);
2859 		if (ret != 0)
2860 			return ret;
2861 
2862 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2863 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2864 			return 1;
2865 	}
2866 
2867 	/*
2868 	 * We clone the leaf and use it during fiemap. This is because while
2869 	 * using the leaf we do expensive things like checking if an extent is
2870 	 * shared, which can take a long time. In order to prevent blocking
2871 	 * other tasks for too long, we use a clone of the leaf. We have locked
2872 	 * the file range in the inode's io tree, so we know none of our file
2873 	 * extent items can change. This way we avoid blocking other tasks that
2874 	 * want to insert items for other inodes in the same leaf or b+tree
2875 	 * rebalance operations (triggered for example when someone is trying
2876 	 * to push items into this leaf when trying to insert an item in a
2877 	 * neighbour leaf).
2878 	 * We also need the private clone because holding a read lock on an
2879 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2880 	 * when we check if extents are shared, as backref walking may need to
2881 	 * lock the same leaf we are processing.
2882 	 */
2883 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2884 	if (!clone)
2885 		return -ENOMEM;
2886 
2887 	slot = path->slots[0];
2888 	btrfs_release_path(path);
2889 	path->nodes[0] = clone;
2890 	path->slots[0] = slot;
2891 
2892 	return 0;
2893 }
2894 
2895 /*
2896  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2897  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2898  * extent. The end offset (@end) is inclusive.
2899  */
2900 static int fiemap_process_hole(struct btrfs_inode *inode,
2901 			       struct fiemap_extent_info *fieinfo,
2902 			       struct fiemap_cache *cache,
2903 			       struct extent_state **delalloc_cached_state,
2904 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2905 			       u64 disk_bytenr, u64 extent_offset,
2906 			       u64 extent_gen,
2907 			       u64 start, u64 end)
2908 {
2909 	const u64 i_size = i_size_read(&inode->vfs_inode);
2910 	u64 cur_offset = start;
2911 	u64 last_delalloc_end = 0;
2912 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2913 	bool checked_extent_shared = false;
2914 	int ret;
2915 
2916 	/*
2917 	 * There can be no delalloc past i_size, so don't waste time looking for
2918 	 * it beyond i_size.
2919 	 */
2920 	while (cur_offset < end && cur_offset < i_size) {
2921 		u64 delalloc_start;
2922 		u64 delalloc_end;
2923 		u64 prealloc_start;
2924 		u64 prealloc_len = 0;
2925 		bool delalloc;
2926 
2927 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2928 							delalloc_cached_state,
2929 							&delalloc_start,
2930 							&delalloc_end);
2931 		if (!delalloc)
2932 			break;
2933 
2934 		/*
2935 		 * If this is a prealloc extent we have to report every section
2936 		 * of it that has no delalloc.
2937 		 */
2938 		if (disk_bytenr != 0) {
2939 			if (last_delalloc_end == 0) {
2940 				prealloc_start = start;
2941 				prealloc_len = delalloc_start - start;
2942 			} else {
2943 				prealloc_start = last_delalloc_end + 1;
2944 				prealloc_len = delalloc_start - prealloc_start;
2945 			}
2946 		}
2947 
2948 		if (prealloc_len > 0) {
2949 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2950 				ret = btrfs_is_data_extent_shared(inode,
2951 								  disk_bytenr,
2952 								  extent_gen,
2953 								  backref_ctx);
2954 				if (ret < 0)
2955 					return ret;
2956 				else if (ret > 0)
2957 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2958 
2959 				checked_extent_shared = true;
2960 			}
2961 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2962 						 disk_bytenr + extent_offset,
2963 						 prealloc_len, prealloc_flags);
2964 			if (ret)
2965 				return ret;
2966 			extent_offset += prealloc_len;
2967 		}
2968 
2969 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2970 					 delalloc_end + 1 - delalloc_start,
2971 					 FIEMAP_EXTENT_DELALLOC |
2972 					 FIEMAP_EXTENT_UNKNOWN);
2973 		if (ret)
2974 			return ret;
2975 
2976 		last_delalloc_end = delalloc_end;
2977 		cur_offset = delalloc_end + 1;
2978 		extent_offset += cur_offset - delalloc_start;
2979 		cond_resched();
2980 	}
2981 
2982 	/*
2983 	 * Either we found no delalloc for the whole prealloc extent or we have
2984 	 * a prealloc extent that spans i_size or starts at or after i_size.
2985 	 */
2986 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2987 		u64 prealloc_start;
2988 		u64 prealloc_len;
2989 
2990 		if (last_delalloc_end == 0) {
2991 			prealloc_start = start;
2992 			prealloc_len = end + 1 - start;
2993 		} else {
2994 			prealloc_start = last_delalloc_end + 1;
2995 			prealloc_len = end + 1 - prealloc_start;
2996 		}
2997 
2998 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2999 			ret = btrfs_is_data_extent_shared(inode,
3000 							  disk_bytenr,
3001 							  extent_gen,
3002 							  backref_ctx);
3003 			if (ret < 0)
3004 				return ret;
3005 			else if (ret > 0)
3006 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
3007 		}
3008 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3009 					 disk_bytenr + extent_offset,
3010 					 prealloc_len, prealloc_flags);
3011 		if (ret)
3012 			return ret;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3019 					  struct btrfs_path *path,
3020 					  u64 *last_extent_end_ret)
3021 {
3022 	const u64 ino = btrfs_ino(inode);
3023 	struct btrfs_root *root = inode->root;
3024 	struct extent_buffer *leaf;
3025 	struct btrfs_file_extent_item *ei;
3026 	struct btrfs_key key;
3027 	u64 disk_bytenr;
3028 	int ret;
3029 
3030 	/*
3031 	 * Lookup the last file extent. We're not using i_size here because
3032 	 * there might be preallocation past i_size.
3033 	 */
3034 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3035 	/* There can't be a file extent item at offset (u64)-1 */
3036 	ASSERT(ret != 0);
3037 	if (ret < 0)
3038 		return ret;
3039 
3040 	/*
3041 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3042 	 * slot > 0, except if the btree is empty, which is impossible because
3043 	 * at least it has the inode item for this inode and all the items for
3044 	 * the root inode 256.
3045 	 */
3046 	ASSERT(path->slots[0] > 0);
3047 	path->slots[0]--;
3048 	leaf = path->nodes[0];
3049 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3050 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3051 		/* No file extent items in the subvolume tree. */
3052 		*last_extent_end_ret = 0;
3053 		return 0;
3054 	}
3055 
3056 	/*
3057 	 * For an inline extent, the disk_bytenr is where inline data starts at,
3058 	 * so first check if we have an inline extent item before checking if we
3059 	 * have an implicit hole (disk_bytenr == 0).
3060 	 */
3061 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3062 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3063 		*last_extent_end_ret = btrfs_file_extent_end(path);
3064 		return 0;
3065 	}
3066 
3067 	/*
3068 	 * Find the last file extent item that is not a hole (when NO_HOLES is
3069 	 * not enabled). This should take at most 2 iterations in the worst
3070 	 * case: we have one hole file extent item at slot 0 of a leaf and
3071 	 * another hole file extent item as the last item in the previous leaf.
3072 	 * This is because we merge file extent items that represent holes.
3073 	 */
3074 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3075 	while (disk_bytenr == 0) {
3076 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3077 		if (ret < 0) {
3078 			return ret;
3079 		} else if (ret > 0) {
3080 			/* No file extent items that are not holes. */
3081 			*last_extent_end_ret = 0;
3082 			return 0;
3083 		}
3084 		leaf = path->nodes[0];
3085 		ei = btrfs_item_ptr(leaf, path->slots[0],
3086 				    struct btrfs_file_extent_item);
3087 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3088 	}
3089 
3090 	*last_extent_end_ret = btrfs_file_extent_end(path);
3091 	return 0;
3092 }
3093 
3094 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3095 		  u64 start, u64 len)
3096 {
3097 	const u64 ino = btrfs_ino(inode);
3098 	struct extent_state *cached_state = NULL;
3099 	struct extent_state *delalloc_cached_state = NULL;
3100 	struct btrfs_path *path;
3101 	struct fiemap_cache cache = { 0 };
3102 	struct btrfs_backref_share_check_ctx *backref_ctx;
3103 	u64 last_extent_end;
3104 	u64 prev_extent_end;
3105 	u64 range_start;
3106 	u64 range_end;
3107 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3108 	bool stopped = false;
3109 	int ret;
3110 
3111 	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3112 	cache.entries = kmalloc_array(cache.entries_size,
3113 				      sizeof(struct btrfs_fiemap_entry),
3114 				      GFP_KERNEL);
3115 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3116 	path = btrfs_alloc_path();
3117 	if (!cache.entries || !backref_ctx || !path) {
3118 		ret = -ENOMEM;
3119 		goto out;
3120 	}
3121 
3122 restart:
3123 	range_start = round_down(start, sectorsize);
3124 	range_end = round_up(start + len, sectorsize);
3125 	prev_extent_end = range_start;
3126 
3127 	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3128 
3129 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3130 	if (ret < 0)
3131 		goto out_unlock;
3132 	btrfs_release_path(path);
3133 
3134 	path->reada = READA_FORWARD;
3135 	ret = fiemap_search_slot(inode, path, range_start);
3136 	if (ret < 0) {
3137 		goto out_unlock;
3138 	} else if (ret > 0) {
3139 		/*
3140 		 * No file extent item found, but we may have delalloc between
3141 		 * the current offset and i_size. So check for that.
3142 		 */
3143 		ret = 0;
3144 		goto check_eof_delalloc;
3145 	}
3146 
3147 	while (prev_extent_end < range_end) {
3148 		struct extent_buffer *leaf = path->nodes[0];
3149 		struct btrfs_file_extent_item *ei;
3150 		struct btrfs_key key;
3151 		u64 extent_end;
3152 		u64 extent_len;
3153 		u64 extent_offset = 0;
3154 		u64 extent_gen;
3155 		u64 disk_bytenr = 0;
3156 		u64 flags = 0;
3157 		int extent_type;
3158 		u8 compression;
3159 
3160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3161 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3162 			break;
3163 
3164 		extent_end = btrfs_file_extent_end(path);
3165 
3166 		/*
3167 		 * The first iteration can leave us at an extent item that ends
3168 		 * before our range's start. Move to the next item.
3169 		 */
3170 		if (extent_end <= range_start)
3171 			goto next_item;
3172 
3173 		backref_ctx->curr_leaf_bytenr = leaf->start;
3174 
3175 		/* We have in implicit hole (NO_HOLES feature enabled). */
3176 		if (prev_extent_end < key.offset) {
3177 			const u64 hole_end = min(key.offset, range_end) - 1;
3178 
3179 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3180 						  &delalloc_cached_state,
3181 						  backref_ctx, 0, 0, 0,
3182 						  prev_extent_end, hole_end);
3183 			if (ret < 0) {
3184 				goto out_unlock;
3185 			} else if (ret > 0) {
3186 				/* fiemap_fill_next_extent() told us to stop. */
3187 				stopped = true;
3188 				break;
3189 			}
3190 
3191 			/* We've reached the end of the fiemap range, stop. */
3192 			if (key.offset >= range_end) {
3193 				stopped = true;
3194 				break;
3195 			}
3196 		}
3197 
3198 		extent_len = extent_end - key.offset;
3199 		ei = btrfs_item_ptr(leaf, path->slots[0],
3200 				    struct btrfs_file_extent_item);
3201 		compression = btrfs_file_extent_compression(leaf, ei);
3202 		extent_type = btrfs_file_extent_type(leaf, ei);
3203 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3204 
3205 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3206 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3207 			if (compression == BTRFS_COMPRESS_NONE)
3208 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3209 		}
3210 
3211 		if (compression != BTRFS_COMPRESS_NONE)
3212 			flags |= FIEMAP_EXTENT_ENCODED;
3213 
3214 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3215 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3216 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3217 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3218 						 extent_len, flags);
3219 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3220 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3221 						  &delalloc_cached_state,
3222 						  backref_ctx,
3223 						  disk_bytenr, extent_offset,
3224 						  extent_gen, key.offset,
3225 						  extent_end - 1);
3226 		} else if (disk_bytenr == 0) {
3227 			/* We have an explicit hole. */
3228 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3229 						  &delalloc_cached_state,
3230 						  backref_ctx, 0, 0, 0,
3231 						  key.offset, extent_end - 1);
3232 		} else {
3233 			/* We have a regular extent. */
3234 			if (fieinfo->fi_extents_max) {
3235 				ret = btrfs_is_data_extent_shared(inode,
3236 								  disk_bytenr,
3237 								  extent_gen,
3238 								  backref_ctx);
3239 				if (ret < 0)
3240 					goto out_unlock;
3241 				else if (ret > 0)
3242 					flags |= FIEMAP_EXTENT_SHARED;
3243 			}
3244 
3245 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3246 						 disk_bytenr + extent_offset,
3247 						 extent_len, flags);
3248 		}
3249 
3250 		if (ret < 0) {
3251 			goto out_unlock;
3252 		} else if (ret > 0) {
3253 			/* emit_fiemap_extent() told us to stop. */
3254 			stopped = true;
3255 			break;
3256 		}
3257 
3258 		prev_extent_end = extent_end;
3259 next_item:
3260 		if (fatal_signal_pending(current)) {
3261 			ret = -EINTR;
3262 			goto out_unlock;
3263 		}
3264 
3265 		ret = fiemap_next_leaf_item(inode, path);
3266 		if (ret < 0) {
3267 			goto out_unlock;
3268 		} else if (ret > 0) {
3269 			/* No more file extent items for this inode. */
3270 			break;
3271 		}
3272 		cond_resched();
3273 	}
3274 
3275 check_eof_delalloc:
3276 	if (!stopped && prev_extent_end < range_end) {
3277 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3278 					  &delalloc_cached_state, backref_ctx,
3279 					  0, 0, 0, prev_extent_end, range_end - 1);
3280 		if (ret < 0)
3281 			goto out_unlock;
3282 		prev_extent_end = range_end;
3283 	}
3284 
3285 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3286 		const u64 i_size = i_size_read(&inode->vfs_inode);
3287 
3288 		if (prev_extent_end < i_size) {
3289 			u64 delalloc_start;
3290 			u64 delalloc_end;
3291 			bool delalloc;
3292 
3293 			delalloc = btrfs_find_delalloc_in_range(inode,
3294 								prev_extent_end,
3295 								i_size - 1,
3296 								&delalloc_cached_state,
3297 								&delalloc_start,
3298 								&delalloc_end);
3299 			if (!delalloc)
3300 				cache.flags |= FIEMAP_EXTENT_LAST;
3301 		} else {
3302 			cache.flags |= FIEMAP_EXTENT_LAST;
3303 		}
3304 	}
3305 
3306 out_unlock:
3307 	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3308 
3309 	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3310 		btrfs_release_path(path);
3311 		ret = flush_fiemap_cache(fieinfo, &cache);
3312 		if (ret)
3313 			goto out;
3314 		len -= cache.next_search_offset - start;
3315 		start = cache.next_search_offset;
3316 		goto restart;
3317 	} else if (ret < 0) {
3318 		goto out;
3319 	}
3320 
3321 	/*
3322 	 * Must free the path before emitting to the fiemap buffer because we
3323 	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3324 	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3325 	 * waiting for an ordered extent that in order to complete needs to
3326 	 * modify that leaf, therefore leading to a deadlock.
3327 	 */
3328 	btrfs_free_path(path);
3329 	path = NULL;
3330 
3331 	ret = flush_fiemap_cache(fieinfo, &cache);
3332 	if (ret)
3333 		goto out;
3334 
3335 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3336 out:
3337 	free_extent_state(delalloc_cached_state);
3338 	kfree(cache.entries);
3339 	btrfs_free_backref_share_ctx(backref_ctx);
3340 	btrfs_free_path(path);
3341 	return ret;
3342 }
3343 
3344 static void __free_extent_buffer(struct extent_buffer *eb)
3345 {
3346 	kmem_cache_free(extent_buffer_cache, eb);
3347 }
3348 
3349 static int extent_buffer_under_io(const struct extent_buffer *eb)
3350 {
3351 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3352 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3353 }
3354 
3355 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3356 {
3357 	struct btrfs_subpage *subpage;
3358 
3359 	lockdep_assert_held(&folio->mapping->i_private_lock);
3360 
3361 	if (folio_test_private(folio)) {
3362 		subpage = folio_get_private(folio);
3363 		if (atomic_read(&subpage->eb_refs))
3364 			return true;
3365 		/*
3366 		 * Even there is no eb refs here, we may still have
3367 		 * end_page_read() call relying on page::private.
3368 		 */
3369 		if (atomic_read(&subpage->readers))
3370 			return true;
3371 	}
3372 	return false;
3373 }
3374 
3375 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3376 {
3377 	struct btrfs_fs_info *fs_info = eb->fs_info;
3378 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3379 
3380 	/*
3381 	 * For mapped eb, we're going to change the folio private, which should
3382 	 * be done under the i_private_lock.
3383 	 */
3384 	if (mapped)
3385 		spin_lock(&folio->mapping->i_private_lock);
3386 
3387 	if (!folio_test_private(folio)) {
3388 		if (mapped)
3389 			spin_unlock(&folio->mapping->i_private_lock);
3390 		return;
3391 	}
3392 
3393 	if (fs_info->nodesize >= PAGE_SIZE) {
3394 		/*
3395 		 * We do this since we'll remove the pages after we've
3396 		 * removed the eb from the radix tree, so we could race
3397 		 * and have this page now attached to the new eb.  So
3398 		 * only clear folio if it's still connected to
3399 		 * this eb.
3400 		 */
3401 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3402 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3403 			BUG_ON(folio_test_dirty(folio));
3404 			BUG_ON(folio_test_writeback(folio));
3405 			/* We need to make sure we haven't be attached to a new eb. */
3406 			folio_detach_private(folio);
3407 		}
3408 		if (mapped)
3409 			spin_unlock(&folio->mapping->i_private_lock);
3410 		return;
3411 	}
3412 
3413 	/*
3414 	 * For subpage, we can have dummy eb with folio private attached.  In
3415 	 * this case, we can directly detach the private as such folio is only
3416 	 * attached to one dummy eb, no sharing.
3417 	 */
3418 	if (!mapped) {
3419 		btrfs_detach_subpage(fs_info, folio);
3420 		return;
3421 	}
3422 
3423 	btrfs_folio_dec_eb_refs(fs_info, folio);
3424 
3425 	/*
3426 	 * We can only detach the folio private if there are no other ebs in the
3427 	 * page range and no unfinished IO.
3428 	 */
3429 	if (!folio_range_has_eb(fs_info, folio))
3430 		btrfs_detach_subpage(fs_info, folio);
3431 
3432 	spin_unlock(&folio->mapping->i_private_lock);
3433 }
3434 
3435 /* Release all pages attached to the extent buffer */
3436 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3437 {
3438 	ASSERT(!extent_buffer_under_io(eb));
3439 
3440 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3441 		struct folio *folio = eb->folios[i];
3442 
3443 		if (!folio)
3444 			continue;
3445 
3446 		detach_extent_buffer_folio(eb, folio);
3447 
3448 		/* One for when we allocated the folio. */
3449 		folio_put(folio);
3450 	}
3451 }
3452 
3453 /*
3454  * Helper for releasing the extent buffer.
3455  */
3456 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3457 {
3458 	btrfs_release_extent_buffer_pages(eb);
3459 	btrfs_leak_debug_del_eb(eb);
3460 	__free_extent_buffer(eb);
3461 }
3462 
3463 static struct extent_buffer *
3464 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3465 		      unsigned long len)
3466 {
3467 	struct extent_buffer *eb = NULL;
3468 
3469 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3470 	eb->start = start;
3471 	eb->len = len;
3472 	eb->fs_info = fs_info;
3473 	init_rwsem(&eb->lock);
3474 
3475 	btrfs_leak_debug_add_eb(eb);
3476 
3477 	spin_lock_init(&eb->refs_lock);
3478 	atomic_set(&eb->refs, 1);
3479 
3480 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3481 
3482 	return eb;
3483 }
3484 
3485 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3486 {
3487 	struct extent_buffer *new;
3488 	int num_folios = num_extent_folios(src);
3489 	int ret;
3490 
3491 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3492 	if (new == NULL)
3493 		return NULL;
3494 
3495 	/*
3496 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3497 	 * btrfs_release_extent_buffer() have different behavior for
3498 	 * UNMAPPED subpage extent buffer.
3499 	 */
3500 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3501 
3502 	ret = alloc_eb_folio_array(new, 0);
3503 	if (ret) {
3504 		btrfs_release_extent_buffer(new);
3505 		return NULL;
3506 	}
3507 
3508 	for (int i = 0; i < num_folios; i++) {
3509 		struct folio *folio = new->folios[i];
3510 		int ret;
3511 
3512 		ret = attach_extent_buffer_folio(new, folio, NULL);
3513 		if (ret < 0) {
3514 			btrfs_release_extent_buffer(new);
3515 			return NULL;
3516 		}
3517 		WARN_ON(folio_test_dirty(folio));
3518 	}
3519 	copy_extent_buffer_full(new, src);
3520 	set_extent_buffer_uptodate(new);
3521 
3522 	return new;
3523 }
3524 
3525 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3526 						  u64 start, unsigned long len)
3527 {
3528 	struct extent_buffer *eb;
3529 	int num_folios = 0;
3530 	int ret;
3531 
3532 	eb = __alloc_extent_buffer(fs_info, start, len);
3533 	if (!eb)
3534 		return NULL;
3535 
3536 	ret = alloc_eb_folio_array(eb, 0);
3537 	if (ret)
3538 		goto err;
3539 
3540 	num_folios = num_extent_folios(eb);
3541 	for (int i = 0; i < num_folios; i++) {
3542 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3543 		if (ret < 0)
3544 			goto err;
3545 	}
3546 
3547 	set_extent_buffer_uptodate(eb);
3548 	btrfs_set_header_nritems(eb, 0);
3549 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3550 
3551 	return eb;
3552 err:
3553 	for (int i = 0; i < num_folios; i++) {
3554 		if (eb->folios[i]) {
3555 			detach_extent_buffer_folio(eb, eb->folios[i]);
3556 			__folio_put(eb->folios[i]);
3557 		}
3558 	}
3559 	__free_extent_buffer(eb);
3560 	return NULL;
3561 }
3562 
3563 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3564 						u64 start)
3565 {
3566 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3567 }
3568 
3569 static void check_buffer_tree_ref(struct extent_buffer *eb)
3570 {
3571 	int refs;
3572 	/*
3573 	 * The TREE_REF bit is first set when the extent_buffer is added
3574 	 * to the radix tree. It is also reset, if unset, when a new reference
3575 	 * is created by find_extent_buffer.
3576 	 *
3577 	 * It is only cleared in two cases: freeing the last non-tree
3578 	 * reference to the extent_buffer when its STALE bit is set or
3579 	 * calling release_folio when the tree reference is the only reference.
3580 	 *
3581 	 * In both cases, care is taken to ensure that the extent_buffer's
3582 	 * pages are not under io. However, release_folio can be concurrently
3583 	 * called with creating new references, which is prone to race
3584 	 * conditions between the calls to check_buffer_tree_ref in those
3585 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3586 	 *
3587 	 * The actual lifetime of the extent_buffer in the radix tree is
3588 	 * adequately protected by the refcount, but the TREE_REF bit and
3589 	 * its corresponding reference are not. To protect against this
3590 	 * class of races, we call check_buffer_tree_ref from the codepaths
3591 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3592 	 * longer be cleared, so that is the moment at which any such race is
3593 	 * best fixed.
3594 	 */
3595 	refs = atomic_read(&eb->refs);
3596 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3597 		return;
3598 
3599 	spin_lock(&eb->refs_lock);
3600 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3601 		atomic_inc(&eb->refs);
3602 	spin_unlock(&eb->refs_lock);
3603 }
3604 
3605 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3606 {
3607 	int num_folios= num_extent_folios(eb);
3608 
3609 	check_buffer_tree_ref(eb);
3610 
3611 	for (int i = 0; i < num_folios; i++)
3612 		folio_mark_accessed(eb->folios[i]);
3613 }
3614 
3615 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3616 					 u64 start)
3617 {
3618 	struct extent_buffer *eb;
3619 
3620 	eb = find_extent_buffer_nolock(fs_info, start);
3621 	if (!eb)
3622 		return NULL;
3623 	/*
3624 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3625 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3626 	 * another task running free_extent_buffer() might have seen that flag
3627 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3628 	 * writeback flags not set) and it's still in the tree (flag
3629 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3630 	 * decrementing the extent buffer's reference count twice.  So here we
3631 	 * could race and increment the eb's reference count, clear its stale
3632 	 * flag, mark it as dirty and drop our reference before the other task
3633 	 * finishes executing free_extent_buffer, which would later result in
3634 	 * an attempt to free an extent buffer that is dirty.
3635 	 */
3636 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3637 		spin_lock(&eb->refs_lock);
3638 		spin_unlock(&eb->refs_lock);
3639 	}
3640 	mark_extent_buffer_accessed(eb);
3641 	return eb;
3642 }
3643 
3644 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3645 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3646 					u64 start)
3647 {
3648 	struct extent_buffer *eb, *exists = NULL;
3649 	int ret;
3650 
3651 	eb = find_extent_buffer(fs_info, start);
3652 	if (eb)
3653 		return eb;
3654 	eb = alloc_dummy_extent_buffer(fs_info, start);
3655 	if (!eb)
3656 		return ERR_PTR(-ENOMEM);
3657 	eb->fs_info = fs_info;
3658 again:
3659 	ret = radix_tree_preload(GFP_NOFS);
3660 	if (ret) {
3661 		exists = ERR_PTR(ret);
3662 		goto free_eb;
3663 	}
3664 	spin_lock(&fs_info->buffer_lock);
3665 	ret = radix_tree_insert(&fs_info->buffer_radix,
3666 				start >> fs_info->sectorsize_bits, eb);
3667 	spin_unlock(&fs_info->buffer_lock);
3668 	radix_tree_preload_end();
3669 	if (ret == -EEXIST) {
3670 		exists = find_extent_buffer(fs_info, start);
3671 		if (exists)
3672 			goto free_eb;
3673 		else
3674 			goto again;
3675 	}
3676 	check_buffer_tree_ref(eb);
3677 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3678 
3679 	return eb;
3680 free_eb:
3681 	btrfs_release_extent_buffer(eb);
3682 	return exists;
3683 }
3684 #endif
3685 
3686 static struct extent_buffer *grab_extent_buffer(
3687 		struct btrfs_fs_info *fs_info, struct page *page)
3688 {
3689 	struct folio *folio = page_folio(page);
3690 	struct extent_buffer *exists;
3691 
3692 	lockdep_assert_held(&page->mapping->i_private_lock);
3693 
3694 	/*
3695 	 * For subpage case, we completely rely on radix tree to ensure we
3696 	 * don't try to insert two ebs for the same bytenr.  So here we always
3697 	 * return NULL and just continue.
3698 	 */
3699 	if (fs_info->nodesize < PAGE_SIZE)
3700 		return NULL;
3701 
3702 	/* Page not yet attached to an extent buffer */
3703 	if (!folio_test_private(folio))
3704 		return NULL;
3705 
3706 	/*
3707 	 * We could have already allocated an eb for this page and attached one
3708 	 * so lets see if we can get a ref on the existing eb, and if we can we
3709 	 * know it's good and we can just return that one, else we know we can
3710 	 * just overwrite folio private.
3711 	 */
3712 	exists = folio_get_private(folio);
3713 	if (atomic_inc_not_zero(&exists->refs))
3714 		return exists;
3715 
3716 	WARN_ON(PageDirty(page));
3717 	folio_detach_private(folio);
3718 	return NULL;
3719 }
3720 
3721 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3722 {
3723 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3724 		btrfs_err(fs_info, "bad tree block start %llu", start);
3725 		return -EINVAL;
3726 	}
3727 
3728 	if (fs_info->nodesize < PAGE_SIZE &&
3729 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3730 		btrfs_err(fs_info,
3731 		"tree block crosses page boundary, start %llu nodesize %u",
3732 			  start, fs_info->nodesize);
3733 		return -EINVAL;
3734 	}
3735 	if (fs_info->nodesize >= PAGE_SIZE &&
3736 	    !PAGE_ALIGNED(start)) {
3737 		btrfs_err(fs_info,
3738 		"tree block is not page aligned, start %llu nodesize %u",
3739 			  start, fs_info->nodesize);
3740 		return -EINVAL;
3741 	}
3742 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3743 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3744 		btrfs_warn(fs_info,
3745 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3746 			      start, fs_info->nodesize);
3747 	}
3748 	return 0;
3749 }
3750 
3751 
3752 /*
3753  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3754  * Return >0 if there is already another extent buffer for the range,
3755  * and @found_eb_ret would be updated.
3756  * Return -EAGAIN if the filemap has an existing folio but with different size
3757  * than @eb.
3758  * The caller needs to free the existing folios and retry using the same order.
3759  */
3760 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3761 				      struct btrfs_subpage *prealloc,
3762 				      struct extent_buffer **found_eb_ret)
3763 {
3764 
3765 	struct btrfs_fs_info *fs_info = eb->fs_info;
3766 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3767 	const unsigned long index = eb->start >> PAGE_SHIFT;
3768 	struct folio *existing_folio = NULL;
3769 	int ret;
3770 
3771 	ASSERT(found_eb_ret);
3772 
3773 	/* Caller should ensure the folio exists. */
3774 	ASSERT(eb->folios[i]);
3775 
3776 retry:
3777 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3778 				GFP_NOFS | __GFP_NOFAIL);
3779 	if (!ret)
3780 		goto finish;
3781 
3782 	existing_folio = filemap_lock_folio(mapping, index + i);
3783 	/* The page cache only exists for a very short time, just retry. */
3784 	if (IS_ERR(existing_folio)) {
3785 		existing_folio = NULL;
3786 		goto retry;
3787 	}
3788 
3789 	/* For now, we should only have single-page folios for btree inode. */
3790 	ASSERT(folio_nr_pages(existing_folio) == 1);
3791 
3792 	if (folio_size(existing_folio) != eb->folio_size) {
3793 		folio_unlock(existing_folio);
3794 		folio_put(existing_folio);
3795 		return -EAGAIN;
3796 	}
3797 
3798 finish:
3799 	spin_lock(&mapping->i_private_lock);
3800 	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3801 		/* We're going to reuse the existing page, can drop our folio now. */
3802 		__free_page(folio_page(eb->folios[i], 0));
3803 		eb->folios[i] = existing_folio;
3804 	} else if (existing_folio) {
3805 		struct extent_buffer *existing_eb;
3806 
3807 		existing_eb = grab_extent_buffer(fs_info,
3808 						 folio_page(existing_folio, 0));
3809 		if (existing_eb) {
3810 			/* The extent buffer still exists, we can use it directly. */
3811 			*found_eb_ret = existing_eb;
3812 			spin_unlock(&mapping->i_private_lock);
3813 			folio_unlock(existing_folio);
3814 			folio_put(existing_folio);
3815 			return 1;
3816 		}
3817 		/* The extent buffer no longer exists, we can reuse the folio. */
3818 		__free_page(folio_page(eb->folios[i], 0));
3819 		eb->folios[i] = existing_folio;
3820 	}
3821 	eb->folio_size = folio_size(eb->folios[i]);
3822 	eb->folio_shift = folio_shift(eb->folios[i]);
3823 	/* Should not fail, as we have preallocated the memory. */
3824 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3825 	ASSERT(!ret);
3826 	/*
3827 	 * To inform we have an extra eb under allocation, so that
3828 	 * detach_extent_buffer_page() won't release the folio private when the
3829 	 * eb hasn't been inserted into radix tree yet.
3830 	 *
3831 	 * The ref will be decreased when the eb releases the page, in
3832 	 * detach_extent_buffer_page().  Thus needs no special handling in the
3833 	 * error path.
3834 	 */
3835 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3836 	spin_unlock(&mapping->i_private_lock);
3837 	return 0;
3838 }
3839 
3840 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3841 					  u64 start, u64 owner_root, int level)
3842 {
3843 	unsigned long len = fs_info->nodesize;
3844 	int num_folios;
3845 	int attached = 0;
3846 	struct extent_buffer *eb;
3847 	struct extent_buffer *existing_eb = NULL;
3848 	struct btrfs_subpage *prealloc = NULL;
3849 	u64 lockdep_owner = owner_root;
3850 	bool page_contig = true;
3851 	int uptodate = 1;
3852 	int ret;
3853 
3854 	if (check_eb_alignment(fs_info, start))
3855 		return ERR_PTR(-EINVAL);
3856 
3857 #if BITS_PER_LONG == 32
3858 	if (start >= MAX_LFS_FILESIZE) {
3859 		btrfs_err_rl(fs_info,
3860 		"extent buffer %llu is beyond 32bit page cache limit", start);
3861 		btrfs_err_32bit_limit(fs_info);
3862 		return ERR_PTR(-EOVERFLOW);
3863 	}
3864 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3865 		btrfs_warn_32bit_limit(fs_info);
3866 #endif
3867 
3868 	eb = find_extent_buffer(fs_info, start);
3869 	if (eb)
3870 		return eb;
3871 
3872 	eb = __alloc_extent_buffer(fs_info, start, len);
3873 	if (!eb)
3874 		return ERR_PTR(-ENOMEM);
3875 
3876 	/*
3877 	 * The reloc trees are just snapshots, so we need them to appear to be
3878 	 * just like any other fs tree WRT lockdep.
3879 	 */
3880 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3881 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3882 
3883 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3884 
3885 	/*
3886 	 * Preallocate folio private for subpage case, so that we won't
3887 	 * allocate memory with i_private_lock nor page lock hold.
3888 	 *
3889 	 * The memory will be freed by attach_extent_buffer_page() or freed
3890 	 * manually if we exit earlier.
3891 	 */
3892 	if (fs_info->nodesize < PAGE_SIZE) {
3893 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3894 		if (IS_ERR(prealloc)) {
3895 			ret = PTR_ERR(prealloc);
3896 			goto out;
3897 		}
3898 	}
3899 
3900 reallocate:
3901 	/* Allocate all pages first. */
3902 	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3903 	if (ret < 0) {
3904 		btrfs_free_subpage(prealloc);
3905 		goto out;
3906 	}
3907 
3908 	num_folios = num_extent_folios(eb);
3909 	/* Attach all pages to the filemap. */
3910 	for (int i = 0; i < num_folios; i++) {
3911 		struct folio *folio;
3912 
3913 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3914 		if (ret > 0) {
3915 			ASSERT(existing_eb);
3916 			goto out;
3917 		}
3918 
3919 		/*
3920 		 * TODO: Special handling for a corner case where the order of
3921 		 * folios mismatch between the new eb and filemap.
3922 		 *
3923 		 * This happens when:
3924 		 *
3925 		 * - the new eb is using higher order folio
3926 		 *
3927 		 * - the filemap is still using 0-order folios for the range
3928 		 *   This can happen at the previous eb allocation, and we don't
3929 		 *   have higher order folio for the call.
3930 		 *
3931 		 * - the existing eb has already been freed
3932 		 *
3933 		 * In this case, we have to free the existing folios first, and
3934 		 * re-allocate using the same order.
3935 		 * Thankfully this is not going to happen yet, as we're still
3936 		 * using 0-order folios.
3937 		 */
3938 		if (unlikely(ret == -EAGAIN)) {
3939 			ASSERT(0);
3940 			goto reallocate;
3941 		}
3942 		attached++;
3943 
3944 		/*
3945 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3946 		 * reliable, as we may choose to reuse the existing page cache
3947 		 * and free the allocated page.
3948 		 */
3949 		folio = eb->folios[i];
3950 		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3951 
3952 		/*
3953 		 * Check if the current page is physically contiguous with previous eb
3954 		 * page.
3955 		 * At this stage, either we allocated a large folio, thus @i
3956 		 * would only be 0, or we fall back to per-page allocation.
3957 		 */
3958 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3959 			page_contig = false;
3960 
3961 		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3962 			uptodate = 0;
3963 
3964 		/*
3965 		 * We can't unlock the pages just yet since the extent buffer
3966 		 * hasn't been properly inserted in the radix tree, this
3967 		 * opens a race with btree_release_folio which can free a page
3968 		 * while we are still filling in all pages for the buffer and
3969 		 * we could crash.
3970 		 */
3971 	}
3972 	if (uptodate)
3973 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3974 	/* All pages are physically contiguous, can skip cross page handling. */
3975 	if (page_contig)
3976 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3977 again:
3978 	ret = radix_tree_preload(GFP_NOFS);
3979 	if (ret)
3980 		goto out;
3981 
3982 	spin_lock(&fs_info->buffer_lock);
3983 	ret = radix_tree_insert(&fs_info->buffer_radix,
3984 				start >> fs_info->sectorsize_bits, eb);
3985 	spin_unlock(&fs_info->buffer_lock);
3986 	radix_tree_preload_end();
3987 	if (ret == -EEXIST) {
3988 		ret = 0;
3989 		existing_eb = find_extent_buffer(fs_info, start);
3990 		if (existing_eb)
3991 			goto out;
3992 		else
3993 			goto again;
3994 	}
3995 	/* add one reference for the tree */
3996 	check_buffer_tree_ref(eb);
3997 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3998 
3999 	/*
4000 	 * Now it's safe to unlock the pages because any calls to
4001 	 * btree_release_folio will correctly detect that a page belongs to a
4002 	 * live buffer and won't free them prematurely.
4003 	 */
4004 	for (int i = 0; i < num_folios; i++)
4005 		unlock_page(folio_page(eb->folios[i], 0));
4006 	return eb;
4007 
4008 out:
4009 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4010 
4011 	/*
4012 	 * Any attached folios need to be detached before we unlock them.  This
4013 	 * is because when we're inserting our new folios into the mapping, and
4014 	 * then attaching our eb to that folio.  If we fail to insert our folio
4015 	 * we'll lookup the folio for that index, and grab that EB.  We do not
4016 	 * want that to grab this eb, as we're getting ready to free it.  So we
4017 	 * have to detach it first and then unlock it.
4018 	 *
4019 	 * We have to drop our reference and NULL it out here because in the
4020 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
4021 	 * Below when we call btrfs_release_extent_buffer() we will call
4022 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
4023 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
4024 	 * double put our reference and be super sad.
4025 	 */
4026 	for (int i = 0; i < attached; i++) {
4027 		ASSERT(eb->folios[i]);
4028 		detach_extent_buffer_folio(eb, eb->folios[i]);
4029 		unlock_page(folio_page(eb->folios[i], 0));
4030 		folio_put(eb->folios[i]);
4031 		eb->folios[i] = NULL;
4032 	}
4033 	/*
4034 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4035 	 * so it can be cleaned up without utlizing page->mapping.
4036 	 */
4037 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4038 
4039 	btrfs_release_extent_buffer(eb);
4040 	if (ret < 0)
4041 		return ERR_PTR(ret);
4042 	ASSERT(existing_eb);
4043 	return existing_eb;
4044 }
4045 
4046 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4047 {
4048 	struct extent_buffer *eb =
4049 			container_of(head, struct extent_buffer, rcu_head);
4050 
4051 	__free_extent_buffer(eb);
4052 }
4053 
4054 static int release_extent_buffer(struct extent_buffer *eb)
4055 	__releases(&eb->refs_lock)
4056 {
4057 	lockdep_assert_held(&eb->refs_lock);
4058 
4059 	WARN_ON(atomic_read(&eb->refs) == 0);
4060 	if (atomic_dec_and_test(&eb->refs)) {
4061 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4062 			struct btrfs_fs_info *fs_info = eb->fs_info;
4063 
4064 			spin_unlock(&eb->refs_lock);
4065 
4066 			spin_lock(&fs_info->buffer_lock);
4067 			radix_tree_delete(&fs_info->buffer_radix,
4068 					  eb->start >> fs_info->sectorsize_bits);
4069 			spin_unlock(&fs_info->buffer_lock);
4070 		} else {
4071 			spin_unlock(&eb->refs_lock);
4072 		}
4073 
4074 		btrfs_leak_debug_del_eb(eb);
4075 		/* Should be safe to release our pages at this point */
4076 		btrfs_release_extent_buffer_pages(eb);
4077 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4078 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4079 			__free_extent_buffer(eb);
4080 			return 1;
4081 		}
4082 #endif
4083 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4084 		return 1;
4085 	}
4086 	spin_unlock(&eb->refs_lock);
4087 
4088 	return 0;
4089 }
4090 
4091 void free_extent_buffer(struct extent_buffer *eb)
4092 {
4093 	int refs;
4094 	if (!eb)
4095 		return;
4096 
4097 	refs = atomic_read(&eb->refs);
4098 	while (1) {
4099 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4100 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4101 			refs == 1))
4102 			break;
4103 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4104 			return;
4105 	}
4106 
4107 	spin_lock(&eb->refs_lock);
4108 	if (atomic_read(&eb->refs) == 2 &&
4109 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4110 	    !extent_buffer_under_io(eb) &&
4111 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4112 		atomic_dec(&eb->refs);
4113 
4114 	/*
4115 	 * I know this is terrible, but it's temporary until we stop tracking
4116 	 * the uptodate bits and such for the extent buffers.
4117 	 */
4118 	release_extent_buffer(eb);
4119 }
4120 
4121 void free_extent_buffer_stale(struct extent_buffer *eb)
4122 {
4123 	if (!eb)
4124 		return;
4125 
4126 	spin_lock(&eb->refs_lock);
4127 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4128 
4129 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4130 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4131 		atomic_dec(&eb->refs);
4132 	release_extent_buffer(eb);
4133 }
4134 
4135 static void btree_clear_folio_dirty(struct folio *folio)
4136 {
4137 	ASSERT(folio_test_dirty(folio));
4138 	ASSERT(folio_test_locked(folio));
4139 	folio_clear_dirty_for_io(folio);
4140 	xa_lock_irq(&folio->mapping->i_pages);
4141 	if (!folio_test_dirty(folio))
4142 		__xa_clear_mark(&folio->mapping->i_pages,
4143 				folio_index(folio), PAGECACHE_TAG_DIRTY);
4144 	xa_unlock_irq(&folio->mapping->i_pages);
4145 }
4146 
4147 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4148 {
4149 	struct btrfs_fs_info *fs_info = eb->fs_info;
4150 	struct folio *folio = eb->folios[0];
4151 	bool last;
4152 
4153 	/* btree_clear_folio_dirty() needs page locked. */
4154 	folio_lock(folio);
4155 	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4156 	if (last)
4157 		btree_clear_folio_dirty(folio);
4158 	folio_unlock(folio);
4159 	WARN_ON(atomic_read(&eb->refs) == 0);
4160 }
4161 
4162 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4163 			      struct extent_buffer *eb)
4164 {
4165 	struct btrfs_fs_info *fs_info = eb->fs_info;
4166 	int num_folios;
4167 
4168 	btrfs_assert_tree_write_locked(eb);
4169 
4170 	if (trans && btrfs_header_generation(eb) != trans->transid)
4171 		return;
4172 
4173 	/*
4174 	 * Instead of clearing the dirty flag off of the buffer, mark it as
4175 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4176 	 * write-ordering in zoned mode, without the need to later re-dirty
4177 	 * the extent_buffer.
4178 	 *
4179 	 * The actual zeroout of the buffer will happen later in
4180 	 * btree_csum_one_bio.
4181 	 */
4182 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4183 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4184 		return;
4185 	}
4186 
4187 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4188 		return;
4189 
4190 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4191 				 fs_info->dirty_metadata_batch);
4192 
4193 	if (eb->fs_info->nodesize < PAGE_SIZE)
4194 		return clear_subpage_extent_buffer_dirty(eb);
4195 
4196 	num_folios = num_extent_folios(eb);
4197 	for (int i = 0; i < num_folios; i++) {
4198 		struct folio *folio = eb->folios[i];
4199 
4200 		if (!folio_test_dirty(folio))
4201 			continue;
4202 		folio_lock(folio);
4203 		btree_clear_folio_dirty(folio);
4204 		folio_unlock(folio);
4205 	}
4206 	WARN_ON(atomic_read(&eb->refs) == 0);
4207 }
4208 
4209 void set_extent_buffer_dirty(struct extent_buffer *eb)
4210 {
4211 	int num_folios;
4212 	bool was_dirty;
4213 
4214 	check_buffer_tree_ref(eb);
4215 
4216 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4217 
4218 	num_folios = num_extent_folios(eb);
4219 	WARN_ON(atomic_read(&eb->refs) == 0);
4220 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4221 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
4222 
4223 	if (!was_dirty) {
4224 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4225 
4226 		/*
4227 		 * For subpage case, we can have other extent buffers in the
4228 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4229 		 * have to clear page dirty without subpage lock held.
4230 		 * This can cause race where our page gets dirty cleared after
4231 		 * we just set it.
4232 		 *
4233 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4234 		 * its page for other reasons, we can use page lock to prevent
4235 		 * the above race.
4236 		 */
4237 		if (subpage)
4238 			lock_page(folio_page(eb->folios[0], 0));
4239 		for (int i = 0; i < num_folios; i++)
4240 			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4241 					      eb->start, eb->len);
4242 		if (subpage)
4243 			unlock_page(folio_page(eb->folios[0], 0));
4244 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4245 					 eb->len,
4246 					 eb->fs_info->dirty_metadata_batch);
4247 	}
4248 #ifdef CONFIG_BTRFS_DEBUG
4249 	for (int i = 0; i < num_folios; i++)
4250 		ASSERT(folio_test_dirty(eb->folios[i]));
4251 #endif
4252 }
4253 
4254 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4255 {
4256 	struct btrfs_fs_info *fs_info = eb->fs_info;
4257 	int num_folios = num_extent_folios(eb);
4258 
4259 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4260 	for (int i = 0; i < num_folios; i++) {
4261 		struct folio *folio = eb->folios[i];
4262 
4263 		if (!folio)
4264 			continue;
4265 
4266 		/*
4267 		 * This is special handling for metadata subpage, as regular
4268 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4269 		 */
4270 		if (fs_info->nodesize >= PAGE_SIZE)
4271 			folio_clear_uptodate(folio);
4272 		else
4273 			btrfs_subpage_clear_uptodate(fs_info, folio,
4274 						     eb->start, eb->len);
4275 	}
4276 }
4277 
4278 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4279 {
4280 	struct btrfs_fs_info *fs_info = eb->fs_info;
4281 	int num_folios = num_extent_folios(eb);
4282 
4283 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4284 	for (int i = 0; i < num_folios; i++) {
4285 		struct folio *folio = eb->folios[i];
4286 
4287 		/*
4288 		 * This is special handling for metadata subpage, as regular
4289 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4290 		 */
4291 		if (fs_info->nodesize >= PAGE_SIZE)
4292 			folio_mark_uptodate(folio);
4293 		else
4294 			btrfs_subpage_set_uptodate(fs_info, folio,
4295 						   eb->start, eb->len);
4296 	}
4297 }
4298 
4299 static void clear_extent_buffer_reading(struct extent_buffer *eb)
4300 {
4301 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4302 	smp_mb__after_atomic();
4303 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4304 }
4305 
4306 static void end_bbio_meta_read(struct btrfs_bio *bbio)
4307 {
4308 	struct extent_buffer *eb = bbio->private;
4309 	struct btrfs_fs_info *fs_info = eb->fs_info;
4310 	bool uptodate = !bbio->bio.bi_status;
4311 	struct folio_iter fi;
4312 	u32 bio_offset = 0;
4313 
4314 	/*
4315 	 * If the extent buffer is marked UPTODATE before the read operation
4316 	 * completes, other calls to read_extent_buffer_pages() will return
4317 	 * early without waiting for the read to finish, causing data races.
4318 	 */
4319 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
4320 
4321 	eb->read_mirror = bbio->mirror_num;
4322 
4323 	if (uptodate &&
4324 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4325 		uptodate = false;
4326 
4327 	if (uptodate) {
4328 		set_extent_buffer_uptodate(eb);
4329 	} else {
4330 		clear_extent_buffer_uptodate(eb);
4331 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4332 	}
4333 
4334 	bio_for_each_folio_all(fi, &bbio->bio) {
4335 		struct folio *folio = fi.folio;
4336 		u64 start = eb->start + bio_offset;
4337 		u32 len = fi.length;
4338 
4339 		if (uptodate)
4340 			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4341 		else
4342 			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4343 
4344 		bio_offset += len;
4345 	}
4346 
4347 	clear_extent_buffer_reading(eb);
4348 	free_extent_buffer(eb);
4349 
4350 	bio_put(&bbio->bio);
4351 }
4352 
4353 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4354 			     struct btrfs_tree_parent_check *check)
4355 {
4356 	struct btrfs_bio *bbio;
4357 	bool ret;
4358 
4359 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4360 		return 0;
4361 
4362 	/*
4363 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4364 	 * operation, which could potentially still be in flight.  In this case
4365 	 * we simply want to return an error.
4366 	 */
4367 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4368 		return -EIO;
4369 
4370 	/* Someone else is already reading the buffer, just wait for it. */
4371 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4372 		goto done;
4373 
4374 	/*
4375 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4376 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4377 	 * started and finished reading the same eb.  In this case, UPTODATE
4378 	 * will now be set, and we shouldn't read it in again.
4379 	 */
4380 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4381 		clear_extent_buffer_reading(eb);
4382 		return 0;
4383 	}
4384 
4385 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4386 	eb->read_mirror = 0;
4387 	check_buffer_tree_ref(eb);
4388 	atomic_inc(&eb->refs);
4389 
4390 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4391 			       REQ_OP_READ | REQ_META, eb->fs_info,
4392 			       end_bbio_meta_read, eb);
4393 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4394 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4395 	bbio->file_offset = eb->start;
4396 	memcpy(&bbio->parent_check, check, sizeof(*check));
4397 	if (eb->fs_info->nodesize < PAGE_SIZE) {
4398 		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4399 				    eb->start - folio_pos(eb->folios[0]));
4400 		ASSERT(ret);
4401 	} else {
4402 		int num_folios = num_extent_folios(eb);
4403 
4404 		for (int i = 0; i < num_folios; i++) {
4405 			struct folio *folio = eb->folios[i];
4406 
4407 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4408 			ASSERT(ret);
4409 		}
4410 	}
4411 	btrfs_submit_bio(bbio, mirror_num);
4412 
4413 done:
4414 	if (wait == WAIT_COMPLETE) {
4415 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4416 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4417 			return -EIO;
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4424 			    unsigned long len)
4425 {
4426 	btrfs_warn(eb->fs_info,
4427 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
4428 		eb->start, eb->len, start, len);
4429 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4430 
4431 	return true;
4432 }
4433 
4434 /*
4435  * Check if the [start, start + len) range is valid before reading/writing
4436  * the eb.
4437  * NOTE: @start and @len are offset inside the eb, not logical address.
4438  *
4439  * Caller should not touch the dst/src memory if this function returns error.
4440  */
4441 static inline int check_eb_range(const struct extent_buffer *eb,
4442 				 unsigned long start, unsigned long len)
4443 {
4444 	unsigned long offset;
4445 
4446 	/* start, start + len should not go beyond eb->len nor overflow */
4447 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4448 		return report_eb_range(eb, start, len);
4449 
4450 	return false;
4451 }
4452 
4453 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4454 			unsigned long start, unsigned long len)
4455 {
4456 	const int unit_size = eb->folio_size;
4457 	size_t cur;
4458 	size_t offset;
4459 	char *dst = (char *)dstv;
4460 	unsigned long i = get_eb_folio_index(eb, start);
4461 
4462 	if (check_eb_range(eb, start, len)) {
4463 		/*
4464 		 * Invalid range hit, reset the memory, so callers won't get
4465 		 * some random garbage for their uninitialized memory.
4466 		 */
4467 		memset(dstv, 0, len);
4468 		return;
4469 	}
4470 
4471 	if (eb->addr) {
4472 		memcpy(dstv, eb->addr + start, len);
4473 		return;
4474 	}
4475 
4476 	offset = get_eb_offset_in_folio(eb, start);
4477 
4478 	while (len > 0) {
4479 		char *kaddr;
4480 
4481 		cur = min(len, unit_size - offset);
4482 		kaddr = folio_address(eb->folios[i]);
4483 		memcpy(dst, kaddr + offset, cur);
4484 
4485 		dst += cur;
4486 		len -= cur;
4487 		offset = 0;
4488 		i++;
4489 	}
4490 }
4491 
4492 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4493 				       void __user *dstv,
4494 				       unsigned long start, unsigned long len)
4495 {
4496 	const int unit_size = eb->folio_size;
4497 	size_t cur;
4498 	size_t offset;
4499 	char __user *dst = (char __user *)dstv;
4500 	unsigned long i = get_eb_folio_index(eb, start);
4501 	int ret = 0;
4502 
4503 	WARN_ON(start > eb->len);
4504 	WARN_ON(start + len > eb->start + eb->len);
4505 
4506 	if (eb->addr) {
4507 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4508 			ret = -EFAULT;
4509 		return ret;
4510 	}
4511 
4512 	offset = get_eb_offset_in_folio(eb, start);
4513 
4514 	while (len > 0) {
4515 		char *kaddr;
4516 
4517 		cur = min(len, unit_size - offset);
4518 		kaddr = folio_address(eb->folios[i]);
4519 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4520 			ret = -EFAULT;
4521 			break;
4522 		}
4523 
4524 		dst += cur;
4525 		len -= cur;
4526 		offset = 0;
4527 		i++;
4528 	}
4529 
4530 	return ret;
4531 }
4532 
4533 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4534 			 unsigned long start, unsigned long len)
4535 {
4536 	const int unit_size = eb->folio_size;
4537 	size_t cur;
4538 	size_t offset;
4539 	char *kaddr;
4540 	char *ptr = (char *)ptrv;
4541 	unsigned long i = get_eb_folio_index(eb, start);
4542 	int ret = 0;
4543 
4544 	if (check_eb_range(eb, start, len))
4545 		return -EINVAL;
4546 
4547 	if (eb->addr)
4548 		return memcmp(ptrv, eb->addr + start, len);
4549 
4550 	offset = get_eb_offset_in_folio(eb, start);
4551 
4552 	while (len > 0) {
4553 		cur = min(len, unit_size - offset);
4554 		kaddr = folio_address(eb->folios[i]);
4555 		ret = memcmp(ptr, kaddr + offset, cur);
4556 		if (ret)
4557 			break;
4558 
4559 		ptr += cur;
4560 		len -= cur;
4561 		offset = 0;
4562 		i++;
4563 	}
4564 	return ret;
4565 }
4566 
4567 /*
4568  * Check that the extent buffer is uptodate.
4569  *
4570  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4571  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4572  */
4573 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4574 {
4575 	struct btrfs_fs_info *fs_info = eb->fs_info;
4576 	struct folio *folio = eb->folios[i];
4577 
4578 	ASSERT(folio);
4579 
4580 	/*
4581 	 * If we are using the commit root we could potentially clear a page
4582 	 * Uptodate while we're using the extent buffer that we've previously
4583 	 * looked up.  We don't want to complain in this case, as the page was
4584 	 * valid before, we just didn't write it out.  Instead we want to catch
4585 	 * the case where we didn't actually read the block properly, which
4586 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4587 	 */
4588 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4589 		return;
4590 
4591 	if (fs_info->nodesize < PAGE_SIZE) {
4592 		struct folio *folio = eb->folios[0];
4593 
4594 		ASSERT(i == 0);
4595 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4596 							 eb->start, eb->len)))
4597 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4598 	} else {
4599 		WARN_ON(!folio_test_uptodate(folio));
4600 	}
4601 }
4602 
4603 static void __write_extent_buffer(const struct extent_buffer *eb,
4604 				  const void *srcv, unsigned long start,
4605 				  unsigned long len, bool use_memmove)
4606 {
4607 	const int unit_size = eb->folio_size;
4608 	size_t cur;
4609 	size_t offset;
4610 	char *kaddr;
4611 	char *src = (char *)srcv;
4612 	unsigned long i = get_eb_folio_index(eb, start);
4613 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4614 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4615 
4616 	if (check_eb_range(eb, start, len))
4617 		return;
4618 
4619 	if (eb->addr) {
4620 		if (use_memmove)
4621 			memmove(eb->addr + start, srcv, len);
4622 		else
4623 			memcpy(eb->addr + start, srcv, len);
4624 		return;
4625 	}
4626 
4627 	offset = get_eb_offset_in_folio(eb, start);
4628 
4629 	while (len > 0) {
4630 		if (check_uptodate)
4631 			assert_eb_folio_uptodate(eb, i);
4632 
4633 		cur = min(len, unit_size - offset);
4634 		kaddr = folio_address(eb->folios[i]);
4635 		if (use_memmove)
4636 			memmove(kaddr + offset, src, cur);
4637 		else
4638 			memcpy(kaddr + offset, src, cur);
4639 
4640 		src += cur;
4641 		len -= cur;
4642 		offset = 0;
4643 		i++;
4644 	}
4645 }
4646 
4647 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4648 			 unsigned long start, unsigned long len)
4649 {
4650 	return __write_extent_buffer(eb, srcv, start, len, false);
4651 }
4652 
4653 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4654 				 unsigned long start, unsigned long len)
4655 {
4656 	const int unit_size = eb->folio_size;
4657 	unsigned long cur = start;
4658 
4659 	if (eb->addr) {
4660 		memset(eb->addr + start, c, len);
4661 		return;
4662 	}
4663 
4664 	while (cur < start + len) {
4665 		unsigned long index = get_eb_folio_index(eb, cur);
4666 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4667 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4668 
4669 		assert_eb_folio_uptodate(eb, index);
4670 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4671 
4672 		cur += cur_len;
4673 	}
4674 }
4675 
4676 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4677 			   unsigned long len)
4678 {
4679 	if (check_eb_range(eb, start, len))
4680 		return;
4681 	return memset_extent_buffer(eb, 0, start, len);
4682 }
4683 
4684 void copy_extent_buffer_full(const struct extent_buffer *dst,
4685 			     const struct extent_buffer *src)
4686 {
4687 	const int unit_size = src->folio_size;
4688 	unsigned long cur = 0;
4689 
4690 	ASSERT(dst->len == src->len);
4691 
4692 	while (cur < src->len) {
4693 		unsigned long index = get_eb_folio_index(src, cur);
4694 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4695 		unsigned long cur_len = min(src->len, unit_size - offset);
4696 		void *addr = folio_address(src->folios[index]) + offset;
4697 
4698 		write_extent_buffer(dst, addr, cur, cur_len);
4699 
4700 		cur += cur_len;
4701 	}
4702 }
4703 
4704 void copy_extent_buffer(const struct extent_buffer *dst,
4705 			const struct extent_buffer *src,
4706 			unsigned long dst_offset, unsigned long src_offset,
4707 			unsigned long len)
4708 {
4709 	const int unit_size = dst->folio_size;
4710 	u64 dst_len = dst->len;
4711 	size_t cur;
4712 	size_t offset;
4713 	char *kaddr;
4714 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4715 
4716 	if (check_eb_range(dst, dst_offset, len) ||
4717 	    check_eb_range(src, src_offset, len))
4718 		return;
4719 
4720 	WARN_ON(src->len != dst_len);
4721 
4722 	offset = get_eb_offset_in_folio(dst, dst_offset);
4723 
4724 	while (len > 0) {
4725 		assert_eb_folio_uptodate(dst, i);
4726 
4727 		cur = min(len, (unsigned long)(unit_size - offset));
4728 
4729 		kaddr = folio_address(dst->folios[i]);
4730 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4731 
4732 		src_offset += cur;
4733 		len -= cur;
4734 		offset = 0;
4735 		i++;
4736 	}
4737 }
4738 
4739 /*
4740  * Calculate the folio and offset of the byte containing the given bit number.
4741  *
4742  * @eb:           the extent buffer
4743  * @start:        offset of the bitmap item in the extent buffer
4744  * @nr:           bit number
4745  * @folio_index:  return index of the folio in the extent buffer that contains
4746  *                the given bit number
4747  * @folio_offset: return offset into the folio given by folio_index
4748  *
4749  * This helper hides the ugliness of finding the byte in an extent buffer which
4750  * contains a given bit.
4751  */
4752 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4753 				    unsigned long start, unsigned long nr,
4754 				    unsigned long *folio_index,
4755 				    size_t *folio_offset)
4756 {
4757 	size_t byte_offset = BIT_BYTE(nr);
4758 	size_t offset;
4759 
4760 	/*
4761 	 * The byte we want is the offset of the extent buffer + the offset of
4762 	 * the bitmap item in the extent buffer + the offset of the byte in the
4763 	 * bitmap item.
4764 	 */
4765 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4766 
4767 	*folio_index = offset >> eb->folio_shift;
4768 	*folio_offset = offset_in_eb_folio(eb, offset);
4769 }
4770 
4771 /*
4772  * Determine whether a bit in a bitmap item is set.
4773  *
4774  * @eb:     the extent buffer
4775  * @start:  offset of the bitmap item in the extent buffer
4776  * @nr:     bit number to test
4777  */
4778 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4779 			   unsigned long nr)
4780 {
4781 	unsigned long i;
4782 	size_t offset;
4783 	u8 *kaddr;
4784 
4785 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4786 	assert_eb_folio_uptodate(eb, i);
4787 	kaddr = folio_address(eb->folios[i]);
4788 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4789 }
4790 
4791 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4792 {
4793 	unsigned long index = get_eb_folio_index(eb, bytenr);
4794 
4795 	if (check_eb_range(eb, bytenr, 1))
4796 		return NULL;
4797 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4798 }
4799 
4800 /*
4801  * Set an area of a bitmap to 1.
4802  *
4803  * @eb:     the extent buffer
4804  * @start:  offset of the bitmap item in the extent buffer
4805  * @pos:    bit number of the first bit
4806  * @len:    number of bits to set
4807  */
4808 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4809 			      unsigned long pos, unsigned long len)
4810 {
4811 	unsigned int first_byte = start + BIT_BYTE(pos);
4812 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4813 	const bool same_byte = (first_byte == last_byte);
4814 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4815 	u8 *kaddr;
4816 
4817 	if (same_byte)
4818 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4819 
4820 	/* Handle the first byte. */
4821 	kaddr = extent_buffer_get_byte(eb, first_byte);
4822 	*kaddr |= mask;
4823 	if (same_byte)
4824 		return;
4825 
4826 	/* Handle the byte aligned part. */
4827 	ASSERT(first_byte + 1 <= last_byte);
4828 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4829 
4830 	/* Handle the last byte. */
4831 	kaddr = extent_buffer_get_byte(eb, last_byte);
4832 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4833 }
4834 
4835 
4836 /*
4837  * Clear an area of a bitmap.
4838  *
4839  * @eb:     the extent buffer
4840  * @start:  offset of the bitmap item in the extent buffer
4841  * @pos:    bit number of the first bit
4842  * @len:    number of bits to clear
4843  */
4844 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4845 				unsigned long start, unsigned long pos,
4846 				unsigned long len)
4847 {
4848 	unsigned int first_byte = start + BIT_BYTE(pos);
4849 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4850 	const bool same_byte = (first_byte == last_byte);
4851 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4852 	u8 *kaddr;
4853 
4854 	if (same_byte)
4855 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4856 
4857 	/* Handle the first byte. */
4858 	kaddr = extent_buffer_get_byte(eb, first_byte);
4859 	*kaddr &= ~mask;
4860 	if (same_byte)
4861 		return;
4862 
4863 	/* Handle the byte aligned part. */
4864 	ASSERT(first_byte + 1 <= last_byte);
4865 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4866 
4867 	/* Handle the last byte. */
4868 	kaddr = extent_buffer_get_byte(eb, last_byte);
4869 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4870 }
4871 
4872 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4873 {
4874 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4875 	return distance < len;
4876 }
4877 
4878 void memcpy_extent_buffer(const struct extent_buffer *dst,
4879 			  unsigned long dst_offset, unsigned long src_offset,
4880 			  unsigned long len)
4881 {
4882 	const int unit_size = dst->folio_size;
4883 	unsigned long cur_off = 0;
4884 
4885 	if (check_eb_range(dst, dst_offset, len) ||
4886 	    check_eb_range(dst, src_offset, len))
4887 		return;
4888 
4889 	if (dst->addr) {
4890 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4891 
4892 		if (use_memmove)
4893 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4894 		else
4895 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4896 		return;
4897 	}
4898 
4899 	while (cur_off < len) {
4900 		unsigned long cur_src = cur_off + src_offset;
4901 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4902 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4903 		unsigned long cur_len = min(src_offset + len - cur_src,
4904 					    unit_size - folio_off);
4905 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4906 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4907 						       dst_offset + cur_off, cur_len);
4908 
4909 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4910 				      use_memmove);
4911 		cur_off += cur_len;
4912 	}
4913 }
4914 
4915 void memmove_extent_buffer(const struct extent_buffer *dst,
4916 			   unsigned long dst_offset, unsigned long src_offset,
4917 			   unsigned long len)
4918 {
4919 	unsigned long dst_end = dst_offset + len - 1;
4920 	unsigned long src_end = src_offset + len - 1;
4921 
4922 	if (check_eb_range(dst, dst_offset, len) ||
4923 	    check_eb_range(dst, src_offset, len))
4924 		return;
4925 
4926 	if (dst_offset < src_offset) {
4927 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4928 		return;
4929 	}
4930 
4931 	if (dst->addr) {
4932 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4933 		return;
4934 	}
4935 
4936 	while (len > 0) {
4937 		unsigned long src_i;
4938 		size_t cur;
4939 		size_t dst_off_in_folio;
4940 		size_t src_off_in_folio;
4941 		void *src_addr;
4942 		bool use_memmove;
4943 
4944 		src_i = get_eb_folio_index(dst, src_end);
4945 
4946 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4947 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4948 
4949 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4950 		cur = min(cur, dst_off_in_folio + 1);
4951 
4952 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4953 					 cur + 1;
4954 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4955 					    cur);
4956 
4957 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4958 				      use_memmove);
4959 
4960 		dst_end -= cur;
4961 		src_end -= cur;
4962 		len -= cur;
4963 	}
4964 }
4965 
4966 #define GANG_LOOKUP_SIZE	16
4967 static struct extent_buffer *get_next_extent_buffer(
4968 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4969 {
4970 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4971 	struct extent_buffer *found = NULL;
4972 	u64 page_start = page_offset(page);
4973 	u64 cur = page_start;
4974 
4975 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4976 	lockdep_assert_held(&fs_info->buffer_lock);
4977 
4978 	while (cur < page_start + PAGE_SIZE) {
4979 		int ret;
4980 		int i;
4981 
4982 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4983 				(void **)gang, cur >> fs_info->sectorsize_bits,
4984 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4985 				      PAGE_SIZE / fs_info->nodesize));
4986 		if (ret == 0)
4987 			goto out;
4988 		for (i = 0; i < ret; i++) {
4989 			/* Already beyond page end */
4990 			if (gang[i]->start >= page_start + PAGE_SIZE)
4991 				goto out;
4992 			/* Found one */
4993 			if (gang[i]->start >= bytenr) {
4994 				found = gang[i];
4995 				goto out;
4996 			}
4997 		}
4998 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4999 	}
5000 out:
5001 	return found;
5002 }
5003 
5004 static int try_release_subpage_extent_buffer(struct page *page)
5005 {
5006 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
5007 	u64 cur = page_offset(page);
5008 	const u64 end = page_offset(page) + PAGE_SIZE;
5009 	int ret;
5010 
5011 	while (cur < end) {
5012 		struct extent_buffer *eb = NULL;
5013 
5014 		/*
5015 		 * Unlike try_release_extent_buffer() which uses folio private
5016 		 * to grab buffer, for subpage case we rely on radix tree, thus
5017 		 * we need to ensure radix tree consistency.
5018 		 *
5019 		 * We also want an atomic snapshot of the radix tree, thus go
5020 		 * with spinlock rather than RCU.
5021 		 */
5022 		spin_lock(&fs_info->buffer_lock);
5023 		eb = get_next_extent_buffer(fs_info, page, cur);
5024 		if (!eb) {
5025 			/* No more eb in the page range after or at cur */
5026 			spin_unlock(&fs_info->buffer_lock);
5027 			break;
5028 		}
5029 		cur = eb->start + eb->len;
5030 
5031 		/*
5032 		 * The same as try_release_extent_buffer(), to ensure the eb
5033 		 * won't disappear out from under us.
5034 		 */
5035 		spin_lock(&eb->refs_lock);
5036 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5037 			spin_unlock(&eb->refs_lock);
5038 			spin_unlock(&fs_info->buffer_lock);
5039 			break;
5040 		}
5041 		spin_unlock(&fs_info->buffer_lock);
5042 
5043 		/*
5044 		 * If tree ref isn't set then we know the ref on this eb is a
5045 		 * real ref, so just return, this eb will likely be freed soon
5046 		 * anyway.
5047 		 */
5048 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5049 			spin_unlock(&eb->refs_lock);
5050 			break;
5051 		}
5052 
5053 		/*
5054 		 * Here we don't care about the return value, we will always
5055 		 * check the folio private at the end.  And
5056 		 * release_extent_buffer() will release the refs_lock.
5057 		 */
5058 		release_extent_buffer(eb);
5059 	}
5060 	/*
5061 	 * Finally to check if we have cleared folio private, as if we have
5062 	 * released all ebs in the page, the folio private should be cleared now.
5063 	 */
5064 	spin_lock(&page->mapping->i_private_lock);
5065 	if (!folio_test_private(page_folio(page)))
5066 		ret = 1;
5067 	else
5068 		ret = 0;
5069 	spin_unlock(&page->mapping->i_private_lock);
5070 	return ret;
5071 
5072 }
5073 
5074 int try_release_extent_buffer(struct page *page)
5075 {
5076 	struct folio *folio = page_folio(page);
5077 	struct extent_buffer *eb;
5078 
5079 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5080 		return try_release_subpage_extent_buffer(page);
5081 
5082 	/*
5083 	 * We need to make sure nobody is changing folio private, as we rely on
5084 	 * folio private as the pointer to extent buffer.
5085 	 */
5086 	spin_lock(&page->mapping->i_private_lock);
5087 	if (!folio_test_private(folio)) {
5088 		spin_unlock(&page->mapping->i_private_lock);
5089 		return 1;
5090 	}
5091 
5092 	eb = folio_get_private(folio);
5093 	BUG_ON(!eb);
5094 
5095 	/*
5096 	 * This is a little awful but should be ok, we need to make sure that
5097 	 * the eb doesn't disappear out from under us while we're looking at
5098 	 * this page.
5099 	 */
5100 	spin_lock(&eb->refs_lock);
5101 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5102 		spin_unlock(&eb->refs_lock);
5103 		spin_unlock(&page->mapping->i_private_lock);
5104 		return 0;
5105 	}
5106 	spin_unlock(&page->mapping->i_private_lock);
5107 
5108 	/*
5109 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5110 	 * so just return, this page will likely be freed soon anyway.
5111 	 */
5112 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5113 		spin_unlock(&eb->refs_lock);
5114 		return 0;
5115 	}
5116 
5117 	return release_extent_buffer(eb);
5118 }
5119 
5120 /*
5121  * Attempt to readahead a child block.
5122  *
5123  * @fs_info:	the fs_info
5124  * @bytenr:	bytenr to read
5125  * @owner_root: objectid of the root that owns this eb
5126  * @gen:	generation for the uptodate check, can be 0
5127  * @level:	level for the eb
5128  *
5129  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5130  * normal uptodate check of the eb, without checking the generation.  If we have
5131  * to read the block we will not block on anything.
5132  */
5133 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5134 				u64 bytenr, u64 owner_root, u64 gen, int level)
5135 {
5136 	struct btrfs_tree_parent_check check = {
5137 		.has_first_key = 0,
5138 		.level = level,
5139 		.transid = gen
5140 	};
5141 	struct extent_buffer *eb;
5142 	int ret;
5143 
5144 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5145 	if (IS_ERR(eb))
5146 		return;
5147 
5148 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5149 		free_extent_buffer(eb);
5150 		return;
5151 	}
5152 
5153 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5154 	if (ret < 0)
5155 		free_extent_buffer_stale(eb);
5156 	else
5157 		free_extent_buffer(eb);
5158 }
5159 
5160 /*
5161  * Readahead a node's child block.
5162  *
5163  * @node:	parent node we're reading from
5164  * @slot:	slot in the parent node for the child we want to read
5165  *
5166  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5167  * the slot in the node provided.
5168  */
5169 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5170 {
5171 	btrfs_readahead_tree_block(node->fs_info,
5172 				   btrfs_node_blockptr(node, slot),
5173 				   btrfs_header_owner(node),
5174 				   btrfs_node_ptr_generation(node, slot),
5175 				   btrfs_header_level(node) - 1);
5176 }
5177