xref: /linux/fs/btrfs/extent_io.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct inode *inode, u64 start, u64 end)
84 {
85 	u64 isize = i_size_read(inode);
86 
87 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 		printk_ratelimited(KERN_DEBUG
89 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 				caller, btrfs_ino(inode), isize, start, end);
91 	}
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head)	do {} while (0)
95 #define btrfs_leak_debug_del(entry)	do {} while (0)
96 #define btrfs_leak_debug_check()	do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
98 #endif
99 
100 #define BUFFER_LRU_MAX 64
101 
102 struct tree_entry {
103 	u64 start;
104 	u64 end;
105 	struct rb_node rb_node;
106 };
107 
108 struct extent_page_data {
109 	struct bio *bio;
110 	struct extent_io_tree *tree;
111 	get_extent_t *get_extent;
112 	unsigned long bio_flags;
113 
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use a WRITE_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127 	return btrfs_sb(tree->mapping->host->i_sb);
128 }
129 
130 int __init extent_io_init(void)
131 {
132 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 			sizeof(struct extent_state), 0,
134 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 	if (!extent_state_cache)
136 		return -ENOMEM;
137 
138 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 			sizeof(struct extent_buffer), 0,
140 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 	if (!extent_buffer_cache)
142 		goto free_state_cache;
143 
144 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 				     offsetof(struct btrfs_io_bio, bio));
146 	if (!btrfs_bioset)
147 		goto free_buffer_cache;
148 	return 0;
149 
150 free_buffer_cache:
151 	kmem_cache_destroy(extent_buffer_cache);
152 	extent_buffer_cache = NULL;
153 
154 free_state_cache:
155 	kmem_cache_destroy(extent_state_cache);
156 	extent_state_cache = NULL;
157 	return -ENOMEM;
158 }
159 
160 void extent_io_exit(void)
161 {
162 	btrfs_leak_debug_check();
163 
164 	/*
165 	 * Make sure all delayed rcu free are flushed before we
166 	 * destroy caches.
167 	 */
168 	rcu_barrier();
169 	if (extent_state_cache)
170 		kmem_cache_destroy(extent_state_cache);
171 	if (extent_buffer_cache)
172 		kmem_cache_destroy(extent_buffer_cache);
173 	if (btrfs_bioset)
174 		bioset_free(btrfs_bioset);
175 }
176 
177 void extent_io_tree_init(struct extent_io_tree *tree,
178 			 struct address_space *mapping)
179 {
180 	tree->state = RB_ROOT;
181 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
182 	tree->ops = NULL;
183 	tree->dirty_bytes = 0;
184 	spin_lock_init(&tree->lock);
185 	spin_lock_init(&tree->buffer_lock);
186 	tree->mapping = mapping;
187 }
188 
189 static struct extent_state *alloc_extent_state(gfp_t mask)
190 {
191 	struct extent_state *state;
192 
193 	state = kmem_cache_alloc(extent_state_cache, mask);
194 	if (!state)
195 		return state;
196 	state->state = 0;
197 	state->private = 0;
198 	state->tree = NULL;
199 	btrfs_leak_debug_add(&state->leak_list, &states);
200 	atomic_set(&state->refs, 1);
201 	init_waitqueue_head(&state->wq);
202 	trace_alloc_extent_state(state, mask, _RET_IP_);
203 	return state;
204 }
205 
206 void free_extent_state(struct extent_state *state)
207 {
208 	if (!state)
209 		return;
210 	if (atomic_dec_and_test(&state->refs)) {
211 		WARN_ON(state->tree);
212 		btrfs_leak_debug_del(&state->leak_list);
213 		trace_free_extent_state(state, _RET_IP_);
214 		kmem_cache_free(extent_state_cache, state);
215 	}
216 }
217 
218 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
219 				   struct rb_node *node)
220 {
221 	struct rb_node **p = &root->rb_node;
222 	struct rb_node *parent = NULL;
223 	struct tree_entry *entry;
224 
225 	while (*p) {
226 		parent = *p;
227 		entry = rb_entry(parent, struct tree_entry, rb_node);
228 
229 		if (offset < entry->start)
230 			p = &(*p)->rb_left;
231 		else if (offset > entry->end)
232 			p = &(*p)->rb_right;
233 		else
234 			return parent;
235 	}
236 
237 	rb_link_node(node, parent, p);
238 	rb_insert_color(node, root);
239 	return NULL;
240 }
241 
242 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
243 				     struct rb_node **prev_ret,
244 				     struct rb_node **next_ret)
245 {
246 	struct rb_root *root = &tree->state;
247 	struct rb_node *n = root->rb_node;
248 	struct rb_node *prev = NULL;
249 	struct rb_node *orig_prev = NULL;
250 	struct tree_entry *entry;
251 	struct tree_entry *prev_entry = NULL;
252 
253 	while (n) {
254 		entry = rb_entry(n, struct tree_entry, rb_node);
255 		prev = n;
256 		prev_entry = entry;
257 
258 		if (offset < entry->start)
259 			n = n->rb_left;
260 		else if (offset > entry->end)
261 			n = n->rb_right;
262 		else
263 			return n;
264 	}
265 
266 	if (prev_ret) {
267 		orig_prev = prev;
268 		while (prev && offset > prev_entry->end) {
269 			prev = rb_next(prev);
270 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
271 		}
272 		*prev_ret = prev;
273 		prev = orig_prev;
274 	}
275 
276 	if (next_ret) {
277 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
278 		while (prev && offset < prev_entry->start) {
279 			prev = rb_prev(prev);
280 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
281 		}
282 		*next_ret = prev;
283 	}
284 	return NULL;
285 }
286 
287 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
288 					  u64 offset)
289 {
290 	struct rb_node *prev = NULL;
291 	struct rb_node *ret;
292 
293 	ret = __etree_search(tree, offset, &prev, NULL);
294 	if (!ret)
295 		return prev;
296 	return ret;
297 }
298 
299 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
300 		     struct extent_state *other)
301 {
302 	if (tree->ops && tree->ops->merge_extent_hook)
303 		tree->ops->merge_extent_hook(tree->mapping->host, new,
304 					     other);
305 }
306 
307 /*
308  * utility function to look for merge candidates inside a given range.
309  * Any extents with matching state are merged together into a single
310  * extent in the tree.  Extents with EXTENT_IO in their state field
311  * are not merged because the end_io handlers need to be able to do
312  * operations on them without sleeping (or doing allocations/splits).
313  *
314  * This should be called with the tree lock held.
315  */
316 static void merge_state(struct extent_io_tree *tree,
317 		        struct extent_state *state)
318 {
319 	struct extent_state *other;
320 	struct rb_node *other_node;
321 
322 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
323 		return;
324 
325 	other_node = rb_prev(&state->rb_node);
326 	if (other_node) {
327 		other = rb_entry(other_node, struct extent_state, rb_node);
328 		if (other->end == state->start - 1 &&
329 		    other->state == state->state) {
330 			merge_cb(tree, state, other);
331 			state->start = other->start;
332 			other->tree = NULL;
333 			rb_erase(&other->rb_node, &tree->state);
334 			free_extent_state(other);
335 		}
336 	}
337 	other_node = rb_next(&state->rb_node);
338 	if (other_node) {
339 		other = rb_entry(other_node, struct extent_state, rb_node);
340 		if (other->start == state->end + 1 &&
341 		    other->state == state->state) {
342 			merge_cb(tree, state, other);
343 			state->end = other->end;
344 			other->tree = NULL;
345 			rb_erase(&other->rb_node, &tree->state);
346 			free_extent_state(other);
347 		}
348 	}
349 }
350 
351 static void set_state_cb(struct extent_io_tree *tree,
352 			 struct extent_state *state, unsigned long *bits)
353 {
354 	if (tree->ops && tree->ops->set_bit_hook)
355 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
356 }
357 
358 static void clear_state_cb(struct extent_io_tree *tree,
359 			   struct extent_state *state, unsigned long *bits)
360 {
361 	if (tree->ops && tree->ops->clear_bit_hook)
362 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
363 }
364 
365 static void set_state_bits(struct extent_io_tree *tree,
366 			   struct extent_state *state, unsigned long *bits);
367 
368 /*
369  * insert an extent_state struct into the tree.  'bits' are set on the
370  * struct before it is inserted.
371  *
372  * This may return -EEXIST if the extent is already there, in which case the
373  * state struct is freed.
374  *
375  * The tree lock is not taken internally.  This is a utility function and
376  * probably isn't what you want to call (see set/clear_extent_bit).
377  */
378 static int insert_state(struct extent_io_tree *tree,
379 			struct extent_state *state, u64 start, u64 end,
380 			unsigned long *bits)
381 {
382 	struct rb_node *node;
383 
384 	if (end < start)
385 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
386 		       end, start);
387 	state->start = start;
388 	state->end = end;
389 
390 	set_state_bits(tree, state, bits);
391 
392 	node = tree_insert(&tree->state, end, &state->rb_node);
393 	if (node) {
394 		struct extent_state *found;
395 		found = rb_entry(node, struct extent_state, rb_node);
396 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
397 		       "%llu %llu\n",
398 		       found->start, found->end, start, end);
399 		return -EEXIST;
400 	}
401 	state->tree = tree;
402 	merge_state(tree, state);
403 	return 0;
404 }
405 
406 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
407 		     u64 split)
408 {
409 	if (tree->ops && tree->ops->split_extent_hook)
410 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
411 }
412 
413 /*
414  * split a given extent state struct in two, inserting the preallocated
415  * struct 'prealloc' as the newly created second half.  'split' indicates an
416  * offset inside 'orig' where it should be split.
417  *
418  * Before calling,
419  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
420  * are two extent state structs in the tree:
421  * prealloc: [orig->start, split - 1]
422  * orig: [ split, orig->end ]
423  *
424  * The tree locks are not taken by this function. They need to be held
425  * by the caller.
426  */
427 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
428 		       struct extent_state *prealloc, u64 split)
429 {
430 	struct rb_node *node;
431 
432 	split_cb(tree, orig, split);
433 
434 	prealloc->start = orig->start;
435 	prealloc->end = split - 1;
436 	prealloc->state = orig->state;
437 	orig->start = split;
438 
439 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
440 	if (node) {
441 		free_extent_state(prealloc);
442 		return -EEXIST;
443 	}
444 	prealloc->tree = tree;
445 	return 0;
446 }
447 
448 static struct extent_state *next_state(struct extent_state *state)
449 {
450 	struct rb_node *next = rb_next(&state->rb_node);
451 	if (next)
452 		return rb_entry(next, struct extent_state, rb_node);
453 	else
454 		return NULL;
455 }
456 
457 /*
458  * utility function to clear some bits in an extent state struct.
459  * it will optionally wake up any one waiting on this state (wake == 1).
460  *
461  * If no bits are set on the state struct after clearing things, the
462  * struct is freed and removed from the tree
463  */
464 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
465 					    struct extent_state *state,
466 					    unsigned long *bits, int wake)
467 {
468 	struct extent_state *next;
469 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
470 
471 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
472 		u64 range = state->end - state->start + 1;
473 		WARN_ON(range > tree->dirty_bytes);
474 		tree->dirty_bytes -= range;
475 	}
476 	clear_state_cb(tree, state, bits);
477 	state->state &= ~bits_to_clear;
478 	if (wake)
479 		wake_up(&state->wq);
480 	if (state->state == 0) {
481 		next = next_state(state);
482 		if (state->tree) {
483 			rb_erase(&state->rb_node, &tree->state);
484 			state->tree = NULL;
485 			free_extent_state(state);
486 		} else {
487 			WARN_ON(1);
488 		}
489 	} else {
490 		merge_state(tree, state);
491 		next = next_state(state);
492 	}
493 	return next;
494 }
495 
496 static struct extent_state *
497 alloc_extent_state_atomic(struct extent_state *prealloc)
498 {
499 	if (!prealloc)
500 		prealloc = alloc_extent_state(GFP_ATOMIC);
501 
502 	return prealloc;
503 }
504 
505 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
506 {
507 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
508 		    "Extent tree was modified by another "
509 		    "thread while locked.");
510 }
511 
512 /*
513  * clear some bits on a range in the tree.  This may require splitting
514  * or inserting elements in the tree, so the gfp mask is used to
515  * indicate which allocations or sleeping are allowed.
516  *
517  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
518  * the given range from the tree regardless of state (ie for truncate).
519  *
520  * the range [start, end] is inclusive.
521  *
522  * This takes the tree lock, and returns 0 on success and < 0 on error.
523  */
524 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
525 		     unsigned long bits, int wake, int delete,
526 		     struct extent_state **cached_state,
527 		     gfp_t mask)
528 {
529 	struct extent_state *state;
530 	struct extent_state *cached;
531 	struct extent_state *prealloc = NULL;
532 	struct rb_node *node;
533 	u64 last_end;
534 	int err;
535 	int clear = 0;
536 
537 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
538 
539 	if (bits & EXTENT_DELALLOC)
540 		bits |= EXTENT_NORESERVE;
541 
542 	if (delete)
543 		bits |= ~EXTENT_CTLBITS;
544 	bits |= EXTENT_FIRST_DELALLOC;
545 
546 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
547 		clear = 1;
548 again:
549 	if (!prealloc && (mask & __GFP_WAIT)) {
550 		prealloc = alloc_extent_state(mask);
551 		if (!prealloc)
552 			return -ENOMEM;
553 	}
554 
555 	spin_lock(&tree->lock);
556 	if (cached_state) {
557 		cached = *cached_state;
558 
559 		if (clear) {
560 			*cached_state = NULL;
561 			cached_state = NULL;
562 		}
563 
564 		if (cached && cached->tree && cached->start <= start &&
565 		    cached->end > start) {
566 			if (clear)
567 				atomic_dec(&cached->refs);
568 			state = cached;
569 			goto hit_next;
570 		}
571 		if (clear)
572 			free_extent_state(cached);
573 	}
574 	/*
575 	 * this search will find the extents that end after
576 	 * our range starts
577 	 */
578 	node = tree_search(tree, start);
579 	if (!node)
580 		goto out;
581 	state = rb_entry(node, struct extent_state, rb_node);
582 hit_next:
583 	if (state->start > end)
584 		goto out;
585 	WARN_ON(state->end < start);
586 	last_end = state->end;
587 
588 	/* the state doesn't have the wanted bits, go ahead */
589 	if (!(state->state & bits)) {
590 		state = next_state(state);
591 		goto next;
592 	}
593 
594 	/*
595 	 *     | ---- desired range ---- |
596 	 *  | state | or
597 	 *  | ------------- state -------------- |
598 	 *
599 	 * We need to split the extent we found, and may flip
600 	 * bits on second half.
601 	 *
602 	 * If the extent we found extends past our range, we
603 	 * just split and search again.  It'll get split again
604 	 * the next time though.
605 	 *
606 	 * If the extent we found is inside our range, we clear
607 	 * the desired bit on it.
608 	 */
609 
610 	if (state->start < start) {
611 		prealloc = alloc_extent_state_atomic(prealloc);
612 		BUG_ON(!prealloc);
613 		err = split_state(tree, state, prealloc, start);
614 		if (err)
615 			extent_io_tree_panic(tree, err);
616 
617 		prealloc = NULL;
618 		if (err)
619 			goto out;
620 		if (state->end <= end) {
621 			state = clear_state_bit(tree, state, &bits, wake);
622 			goto next;
623 		}
624 		goto search_again;
625 	}
626 	/*
627 	 * | ---- desired range ---- |
628 	 *                        | state |
629 	 * We need to split the extent, and clear the bit
630 	 * on the first half
631 	 */
632 	if (state->start <= end && state->end > end) {
633 		prealloc = alloc_extent_state_atomic(prealloc);
634 		BUG_ON(!prealloc);
635 		err = split_state(tree, state, prealloc, end + 1);
636 		if (err)
637 			extent_io_tree_panic(tree, err);
638 
639 		if (wake)
640 			wake_up(&state->wq);
641 
642 		clear_state_bit(tree, prealloc, &bits, wake);
643 
644 		prealloc = NULL;
645 		goto out;
646 	}
647 
648 	state = clear_state_bit(tree, state, &bits, wake);
649 next:
650 	if (last_end == (u64)-1)
651 		goto out;
652 	start = last_end + 1;
653 	if (start <= end && state && !need_resched())
654 		goto hit_next;
655 	goto search_again;
656 
657 out:
658 	spin_unlock(&tree->lock);
659 	if (prealloc)
660 		free_extent_state(prealloc);
661 
662 	return 0;
663 
664 search_again:
665 	if (start > end)
666 		goto out;
667 	spin_unlock(&tree->lock);
668 	if (mask & __GFP_WAIT)
669 		cond_resched();
670 	goto again;
671 }
672 
673 static void wait_on_state(struct extent_io_tree *tree,
674 			  struct extent_state *state)
675 		__releases(tree->lock)
676 		__acquires(tree->lock)
677 {
678 	DEFINE_WAIT(wait);
679 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
680 	spin_unlock(&tree->lock);
681 	schedule();
682 	spin_lock(&tree->lock);
683 	finish_wait(&state->wq, &wait);
684 }
685 
686 /*
687  * waits for one or more bits to clear on a range in the state tree.
688  * The range [start, end] is inclusive.
689  * The tree lock is taken by this function
690  */
691 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
692 			    unsigned long bits)
693 {
694 	struct extent_state *state;
695 	struct rb_node *node;
696 
697 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
698 
699 	spin_lock(&tree->lock);
700 again:
701 	while (1) {
702 		/*
703 		 * this search will find all the extents that end after
704 		 * our range starts
705 		 */
706 		node = tree_search(tree, start);
707 		if (!node)
708 			break;
709 
710 		state = rb_entry(node, struct extent_state, rb_node);
711 
712 		if (state->start > end)
713 			goto out;
714 
715 		if (state->state & bits) {
716 			start = state->start;
717 			atomic_inc(&state->refs);
718 			wait_on_state(tree, state);
719 			free_extent_state(state);
720 			goto again;
721 		}
722 		start = state->end + 1;
723 
724 		if (start > end)
725 			break;
726 
727 		cond_resched_lock(&tree->lock);
728 	}
729 out:
730 	spin_unlock(&tree->lock);
731 }
732 
733 static void set_state_bits(struct extent_io_tree *tree,
734 			   struct extent_state *state,
735 			   unsigned long *bits)
736 {
737 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
738 
739 	set_state_cb(tree, state, bits);
740 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
741 		u64 range = state->end - state->start + 1;
742 		tree->dirty_bytes += range;
743 	}
744 	state->state |= bits_to_set;
745 }
746 
747 static void cache_state(struct extent_state *state,
748 			struct extent_state **cached_ptr)
749 {
750 	if (cached_ptr && !(*cached_ptr)) {
751 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
752 			*cached_ptr = state;
753 			atomic_inc(&state->refs);
754 		}
755 	}
756 }
757 
758 /*
759  * set some bits on a range in the tree.  This may require allocations or
760  * sleeping, so the gfp mask is used to indicate what is allowed.
761  *
762  * If any of the exclusive bits are set, this will fail with -EEXIST if some
763  * part of the range already has the desired bits set.  The start of the
764  * existing range is returned in failed_start in this case.
765  *
766  * [start, end] is inclusive This takes the tree lock.
767  */
768 
769 static int __must_check
770 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
771 		 unsigned long bits, unsigned long exclusive_bits,
772 		 u64 *failed_start, struct extent_state **cached_state,
773 		 gfp_t mask)
774 {
775 	struct extent_state *state;
776 	struct extent_state *prealloc = NULL;
777 	struct rb_node *node;
778 	int err = 0;
779 	u64 last_start;
780 	u64 last_end;
781 
782 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
783 
784 	bits |= EXTENT_FIRST_DELALLOC;
785 again:
786 	if (!prealloc && (mask & __GFP_WAIT)) {
787 		prealloc = alloc_extent_state(mask);
788 		BUG_ON(!prealloc);
789 	}
790 
791 	spin_lock(&tree->lock);
792 	if (cached_state && *cached_state) {
793 		state = *cached_state;
794 		if (state->start <= start && state->end > start &&
795 		    state->tree) {
796 			node = &state->rb_node;
797 			goto hit_next;
798 		}
799 	}
800 	/*
801 	 * this search will find all the extents that end after
802 	 * our range starts.
803 	 */
804 	node = tree_search(tree, start);
805 	if (!node) {
806 		prealloc = alloc_extent_state_atomic(prealloc);
807 		BUG_ON(!prealloc);
808 		err = insert_state(tree, prealloc, start, end, &bits);
809 		if (err)
810 			extent_io_tree_panic(tree, err);
811 
812 		prealloc = NULL;
813 		goto out;
814 	}
815 	state = rb_entry(node, struct extent_state, rb_node);
816 hit_next:
817 	last_start = state->start;
818 	last_end = state->end;
819 
820 	/*
821 	 * | ---- desired range ---- |
822 	 * | state |
823 	 *
824 	 * Just lock what we found and keep going
825 	 */
826 	if (state->start == start && state->end <= end) {
827 		if (state->state & exclusive_bits) {
828 			*failed_start = state->start;
829 			err = -EEXIST;
830 			goto out;
831 		}
832 
833 		set_state_bits(tree, state, &bits);
834 		cache_state(state, cached_state);
835 		merge_state(tree, state);
836 		if (last_end == (u64)-1)
837 			goto out;
838 		start = last_end + 1;
839 		state = next_state(state);
840 		if (start < end && state && state->start == start &&
841 		    !need_resched())
842 			goto hit_next;
843 		goto search_again;
844 	}
845 
846 	/*
847 	 *     | ---- desired range ---- |
848 	 * | state |
849 	 *   or
850 	 * | ------------- state -------------- |
851 	 *
852 	 * We need to split the extent we found, and may flip bits on
853 	 * second half.
854 	 *
855 	 * If the extent we found extends past our
856 	 * range, we just split and search again.  It'll get split
857 	 * again the next time though.
858 	 *
859 	 * If the extent we found is inside our range, we set the
860 	 * desired bit on it.
861 	 */
862 	if (state->start < start) {
863 		if (state->state & exclusive_bits) {
864 			*failed_start = start;
865 			err = -EEXIST;
866 			goto out;
867 		}
868 
869 		prealloc = alloc_extent_state_atomic(prealloc);
870 		BUG_ON(!prealloc);
871 		err = split_state(tree, state, prealloc, start);
872 		if (err)
873 			extent_io_tree_panic(tree, err);
874 
875 		prealloc = NULL;
876 		if (err)
877 			goto out;
878 		if (state->end <= end) {
879 			set_state_bits(tree, state, &bits);
880 			cache_state(state, cached_state);
881 			merge_state(tree, state);
882 			if (last_end == (u64)-1)
883 				goto out;
884 			start = last_end + 1;
885 			state = next_state(state);
886 			if (start < end && state && state->start == start &&
887 			    !need_resched())
888 				goto hit_next;
889 		}
890 		goto search_again;
891 	}
892 	/*
893 	 * | ---- desired range ---- |
894 	 *     | state | or               | state |
895 	 *
896 	 * There's a hole, we need to insert something in it and
897 	 * ignore the extent we found.
898 	 */
899 	if (state->start > start) {
900 		u64 this_end;
901 		if (end < last_start)
902 			this_end = end;
903 		else
904 			this_end = last_start - 1;
905 
906 		prealloc = alloc_extent_state_atomic(prealloc);
907 		BUG_ON(!prealloc);
908 
909 		/*
910 		 * Avoid to free 'prealloc' if it can be merged with
911 		 * the later extent.
912 		 */
913 		err = insert_state(tree, prealloc, start, this_end,
914 				   &bits);
915 		if (err)
916 			extent_io_tree_panic(tree, err);
917 
918 		cache_state(prealloc, cached_state);
919 		prealloc = NULL;
920 		start = this_end + 1;
921 		goto search_again;
922 	}
923 	/*
924 	 * | ---- desired range ---- |
925 	 *                        | state |
926 	 * We need to split the extent, and set the bit
927 	 * on the first half
928 	 */
929 	if (state->start <= end && state->end > end) {
930 		if (state->state & exclusive_bits) {
931 			*failed_start = start;
932 			err = -EEXIST;
933 			goto out;
934 		}
935 
936 		prealloc = alloc_extent_state_atomic(prealloc);
937 		BUG_ON(!prealloc);
938 		err = split_state(tree, state, prealloc, end + 1);
939 		if (err)
940 			extent_io_tree_panic(tree, err);
941 
942 		set_state_bits(tree, prealloc, &bits);
943 		cache_state(prealloc, cached_state);
944 		merge_state(tree, prealloc);
945 		prealloc = NULL;
946 		goto out;
947 	}
948 
949 	goto search_again;
950 
951 out:
952 	spin_unlock(&tree->lock);
953 	if (prealloc)
954 		free_extent_state(prealloc);
955 
956 	return err;
957 
958 search_again:
959 	if (start > end)
960 		goto out;
961 	spin_unlock(&tree->lock);
962 	if (mask & __GFP_WAIT)
963 		cond_resched();
964 	goto again;
965 }
966 
967 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
968 		   unsigned long bits, u64 * failed_start,
969 		   struct extent_state **cached_state, gfp_t mask)
970 {
971 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
972 				cached_state, mask);
973 }
974 
975 
976 /**
977  * convert_extent_bit - convert all bits in a given range from one bit to
978  * 			another
979  * @tree:	the io tree to search
980  * @start:	the start offset in bytes
981  * @end:	the end offset in bytes (inclusive)
982  * @bits:	the bits to set in this range
983  * @clear_bits:	the bits to clear in this range
984  * @cached_state:	state that we're going to cache
985  * @mask:	the allocation mask
986  *
987  * This will go through and set bits for the given range.  If any states exist
988  * already in this range they are set with the given bit and cleared of the
989  * clear_bits.  This is only meant to be used by things that are mergeable, ie
990  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
991  * boundary bits like LOCK.
992  */
993 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
994 		       unsigned long bits, unsigned long clear_bits,
995 		       struct extent_state **cached_state, gfp_t mask)
996 {
997 	struct extent_state *state;
998 	struct extent_state *prealloc = NULL;
999 	struct rb_node *node;
1000 	int err = 0;
1001 	u64 last_start;
1002 	u64 last_end;
1003 
1004 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1005 
1006 again:
1007 	if (!prealloc && (mask & __GFP_WAIT)) {
1008 		prealloc = alloc_extent_state(mask);
1009 		if (!prealloc)
1010 			return -ENOMEM;
1011 	}
1012 
1013 	spin_lock(&tree->lock);
1014 	if (cached_state && *cached_state) {
1015 		state = *cached_state;
1016 		if (state->start <= start && state->end > start &&
1017 		    state->tree) {
1018 			node = &state->rb_node;
1019 			goto hit_next;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * this search will find all the extents that end after
1025 	 * our range starts.
1026 	 */
1027 	node = tree_search(tree, start);
1028 	if (!node) {
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		if (!prealloc) {
1031 			err = -ENOMEM;
1032 			goto out;
1033 		}
1034 		err = insert_state(tree, prealloc, start, end, &bits);
1035 		prealloc = NULL;
1036 		if (err)
1037 			extent_io_tree_panic(tree, err);
1038 		goto out;
1039 	}
1040 	state = rb_entry(node, struct extent_state, rb_node);
1041 hit_next:
1042 	last_start = state->start;
1043 	last_end = state->end;
1044 
1045 	/*
1046 	 * | ---- desired range ---- |
1047 	 * | state |
1048 	 *
1049 	 * Just lock what we found and keep going
1050 	 */
1051 	if (state->start == start && state->end <= end) {
1052 		set_state_bits(tree, state, &bits);
1053 		cache_state(state, cached_state);
1054 		state = clear_state_bit(tree, state, &clear_bits, 0);
1055 		if (last_end == (u64)-1)
1056 			goto out;
1057 		start = last_end + 1;
1058 		if (start < end && state && state->start == start &&
1059 		    !need_resched())
1060 			goto hit_next;
1061 		goto search_again;
1062 	}
1063 
1064 	/*
1065 	 *     | ---- desired range ---- |
1066 	 * | state |
1067 	 *   or
1068 	 * | ------------- state -------------- |
1069 	 *
1070 	 * We need to split the extent we found, and may flip bits on
1071 	 * second half.
1072 	 *
1073 	 * If the extent we found extends past our
1074 	 * range, we just split and search again.  It'll get split
1075 	 * again the next time though.
1076 	 *
1077 	 * If the extent we found is inside our range, we set the
1078 	 * desired bit on it.
1079 	 */
1080 	if (state->start < start) {
1081 		prealloc = alloc_extent_state_atomic(prealloc);
1082 		if (!prealloc) {
1083 			err = -ENOMEM;
1084 			goto out;
1085 		}
1086 		err = split_state(tree, state, prealloc, start);
1087 		if (err)
1088 			extent_io_tree_panic(tree, err);
1089 		prealloc = NULL;
1090 		if (err)
1091 			goto out;
1092 		if (state->end <= end) {
1093 			set_state_bits(tree, state, &bits);
1094 			cache_state(state, cached_state);
1095 			state = clear_state_bit(tree, state, &clear_bits, 0);
1096 			if (last_end == (u64)-1)
1097 				goto out;
1098 			start = last_end + 1;
1099 			if (start < end && state && state->start == start &&
1100 			    !need_resched())
1101 				goto hit_next;
1102 		}
1103 		goto search_again;
1104 	}
1105 	/*
1106 	 * | ---- desired range ---- |
1107 	 *     | state | or               | state |
1108 	 *
1109 	 * There's a hole, we need to insert something in it and
1110 	 * ignore the extent we found.
1111 	 */
1112 	if (state->start > start) {
1113 		u64 this_end;
1114 		if (end < last_start)
1115 			this_end = end;
1116 		else
1117 			this_end = last_start - 1;
1118 
1119 		prealloc = alloc_extent_state_atomic(prealloc);
1120 		if (!prealloc) {
1121 			err = -ENOMEM;
1122 			goto out;
1123 		}
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   &bits);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 		cache_state(prealloc, cached_state);
1134 		prealloc = NULL;
1135 		start = this_end + 1;
1136 		goto search_again;
1137 	}
1138 	/*
1139 	 * | ---- desired range ---- |
1140 	 *                        | state |
1141 	 * We need to split the extent, and set the bit
1142 	 * on the first half
1143 	 */
1144 	if (state->start <= end && state->end > end) {
1145 		prealloc = alloc_extent_state_atomic(prealloc);
1146 		if (!prealloc) {
1147 			err = -ENOMEM;
1148 			goto out;
1149 		}
1150 
1151 		err = split_state(tree, state, prealloc, end + 1);
1152 		if (err)
1153 			extent_io_tree_panic(tree, err);
1154 
1155 		set_state_bits(tree, prealloc, &bits);
1156 		cache_state(prealloc, cached_state);
1157 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1158 		prealloc = NULL;
1159 		goto out;
1160 	}
1161 
1162 	goto search_again;
1163 
1164 out:
1165 	spin_unlock(&tree->lock);
1166 	if (prealloc)
1167 		free_extent_state(prealloc);
1168 
1169 	return err;
1170 
1171 search_again:
1172 	if (start > end)
1173 		goto out;
1174 	spin_unlock(&tree->lock);
1175 	if (mask & __GFP_WAIT)
1176 		cond_resched();
1177 	goto again;
1178 }
1179 
1180 /* wrappers around set/clear extent bit */
1181 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1182 		     gfp_t mask)
1183 {
1184 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1185 			      NULL, mask);
1186 }
1187 
1188 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1189 		    unsigned long bits, gfp_t mask)
1190 {
1191 	return set_extent_bit(tree, start, end, bits, NULL,
1192 			      NULL, mask);
1193 }
1194 
1195 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1196 		      unsigned long bits, gfp_t mask)
1197 {
1198 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1199 }
1200 
1201 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1202 			struct extent_state **cached_state, gfp_t mask)
1203 {
1204 	return set_extent_bit(tree, start, end,
1205 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1206 			      NULL, cached_state, mask);
1207 }
1208 
1209 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1210 		      struct extent_state **cached_state, gfp_t mask)
1211 {
1212 	return set_extent_bit(tree, start, end,
1213 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1214 			      NULL, cached_state, mask);
1215 }
1216 
1217 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1218 		       gfp_t mask)
1219 {
1220 	return clear_extent_bit(tree, start, end,
1221 				EXTENT_DIRTY | EXTENT_DELALLOC |
1222 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1223 }
1224 
1225 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1226 		     gfp_t mask)
1227 {
1228 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1229 			      NULL, mask);
1230 }
1231 
1232 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1233 			struct extent_state **cached_state, gfp_t mask)
1234 {
1235 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1236 			      cached_state, mask);
1237 }
1238 
1239 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1240 			  struct extent_state **cached_state, gfp_t mask)
1241 {
1242 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1243 				cached_state, mask);
1244 }
1245 
1246 /*
1247  * either insert or lock state struct between start and end use mask to tell
1248  * us if waiting is desired.
1249  */
1250 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1251 		     unsigned long bits, struct extent_state **cached_state)
1252 {
1253 	int err;
1254 	u64 failed_start;
1255 	while (1) {
1256 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1257 				       EXTENT_LOCKED, &failed_start,
1258 				       cached_state, GFP_NOFS);
1259 		if (err == -EEXIST) {
1260 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1261 			start = failed_start;
1262 		} else
1263 			break;
1264 		WARN_ON(start > end);
1265 	}
1266 	return err;
1267 }
1268 
1269 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1270 {
1271 	return lock_extent_bits(tree, start, end, 0, NULL);
1272 }
1273 
1274 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1275 {
1276 	int err;
1277 	u64 failed_start;
1278 
1279 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1280 			       &failed_start, NULL, GFP_NOFS);
1281 	if (err == -EEXIST) {
1282 		if (failed_start > start)
1283 			clear_extent_bit(tree, start, failed_start - 1,
1284 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1285 		return 0;
1286 	}
1287 	return 1;
1288 }
1289 
1290 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1291 			 struct extent_state **cached, gfp_t mask)
1292 {
1293 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1294 				mask);
1295 }
1296 
1297 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1298 {
1299 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1300 				GFP_NOFS);
1301 }
1302 
1303 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1304 {
1305 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1306 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1307 	struct page *page;
1308 
1309 	while (index <= end_index) {
1310 		page = find_get_page(inode->i_mapping, index);
1311 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1312 		clear_page_dirty_for_io(page);
1313 		page_cache_release(page);
1314 		index++;
1315 	}
1316 	return 0;
1317 }
1318 
1319 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 	struct page *page;
1324 
1325 	while (index <= end_index) {
1326 		page = find_get_page(inode->i_mapping, index);
1327 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 		account_page_redirty(page);
1329 		__set_page_dirty_nobuffers(page);
1330 		page_cache_release(page);
1331 		index++;
1332 	}
1333 	return 0;
1334 }
1335 
1336 /*
1337  * helper function to set both pages and extents in the tree writeback
1338  */
1339 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1340 {
1341 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1342 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1343 	struct page *page;
1344 
1345 	while (index <= end_index) {
1346 		page = find_get_page(tree->mapping, index);
1347 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1348 		set_page_writeback(page);
1349 		page_cache_release(page);
1350 		index++;
1351 	}
1352 	return 0;
1353 }
1354 
1355 /* find the first state struct with 'bits' set after 'start', and
1356  * return it.  tree->lock must be held.  NULL will returned if
1357  * nothing was found after 'start'
1358  */
1359 static struct extent_state *
1360 find_first_extent_bit_state(struct extent_io_tree *tree,
1361 			    u64 start, unsigned long bits)
1362 {
1363 	struct rb_node *node;
1364 	struct extent_state *state;
1365 
1366 	/*
1367 	 * this search will find all the extents that end after
1368 	 * our range starts.
1369 	 */
1370 	node = tree_search(tree, start);
1371 	if (!node)
1372 		goto out;
1373 
1374 	while (1) {
1375 		state = rb_entry(node, struct extent_state, rb_node);
1376 		if (state->end >= start && (state->state & bits))
1377 			return state;
1378 
1379 		node = rb_next(node);
1380 		if (!node)
1381 			break;
1382 	}
1383 out:
1384 	return NULL;
1385 }
1386 
1387 /*
1388  * find the first offset in the io tree with 'bits' set. zero is
1389  * returned if we find something, and *start_ret and *end_ret are
1390  * set to reflect the state struct that was found.
1391  *
1392  * If nothing was found, 1 is returned. If found something, return 0.
1393  */
1394 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1395 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1396 			  struct extent_state **cached_state)
1397 {
1398 	struct extent_state *state;
1399 	struct rb_node *n;
1400 	int ret = 1;
1401 
1402 	spin_lock(&tree->lock);
1403 	if (cached_state && *cached_state) {
1404 		state = *cached_state;
1405 		if (state->end == start - 1 && state->tree) {
1406 			n = rb_next(&state->rb_node);
1407 			while (n) {
1408 				state = rb_entry(n, struct extent_state,
1409 						 rb_node);
1410 				if (state->state & bits)
1411 					goto got_it;
1412 				n = rb_next(n);
1413 			}
1414 			free_extent_state(*cached_state);
1415 			*cached_state = NULL;
1416 			goto out;
1417 		}
1418 		free_extent_state(*cached_state);
1419 		*cached_state = NULL;
1420 	}
1421 
1422 	state = find_first_extent_bit_state(tree, start, bits);
1423 got_it:
1424 	if (state) {
1425 		cache_state(state, cached_state);
1426 		*start_ret = state->start;
1427 		*end_ret = state->end;
1428 		ret = 0;
1429 	}
1430 out:
1431 	spin_unlock(&tree->lock);
1432 	return ret;
1433 }
1434 
1435 /*
1436  * find a contiguous range of bytes in the file marked as delalloc, not
1437  * more than 'max_bytes'.  start and end are used to return the range,
1438  *
1439  * 1 is returned if we find something, 0 if nothing was in the tree
1440  */
1441 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1442 					u64 *start, u64 *end, u64 max_bytes,
1443 					struct extent_state **cached_state)
1444 {
1445 	struct rb_node *node;
1446 	struct extent_state *state;
1447 	u64 cur_start = *start;
1448 	u64 found = 0;
1449 	u64 total_bytes = 0;
1450 
1451 	spin_lock(&tree->lock);
1452 
1453 	/*
1454 	 * this search will find all the extents that end after
1455 	 * our range starts.
1456 	 */
1457 	node = tree_search(tree, cur_start);
1458 	if (!node) {
1459 		if (!found)
1460 			*end = (u64)-1;
1461 		goto out;
1462 	}
1463 
1464 	while (1) {
1465 		state = rb_entry(node, struct extent_state, rb_node);
1466 		if (found && (state->start != cur_start ||
1467 			      (state->state & EXTENT_BOUNDARY))) {
1468 			goto out;
1469 		}
1470 		if (!(state->state & EXTENT_DELALLOC)) {
1471 			if (!found)
1472 				*end = state->end;
1473 			goto out;
1474 		}
1475 		if (!found) {
1476 			*start = state->start;
1477 			*cached_state = state;
1478 			atomic_inc(&state->refs);
1479 		}
1480 		found++;
1481 		*end = state->end;
1482 		cur_start = state->end + 1;
1483 		node = rb_next(node);
1484 		if (!node)
1485 			break;
1486 		total_bytes += state->end - state->start + 1;
1487 		if (total_bytes >= max_bytes)
1488 			break;
1489 	}
1490 out:
1491 	spin_unlock(&tree->lock);
1492 	return found;
1493 }
1494 
1495 static noinline void __unlock_for_delalloc(struct inode *inode,
1496 					   struct page *locked_page,
1497 					   u64 start, u64 end)
1498 {
1499 	int ret;
1500 	struct page *pages[16];
1501 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1502 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1503 	unsigned long nr_pages = end_index - index + 1;
1504 	int i;
1505 
1506 	if (index == locked_page->index && end_index == index)
1507 		return;
1508 
1509 	while (nr_pages > 0) {
1510 		ret = find_get_pages_contig(inode->i_mapping, index,
1511 				     min_t(unsigned long, nr_pages,
1512 				     ARRAY_SIZE(pages)), pages);
1513 		for (i = 0; i < ret; i++) {
1514 			if (pages[i] != locked_page)
1515 				unlock_page(pages[i]);
1516 			page_cache_release(pages[i]);
1517 		}
1518 		nr_pages -= ret;
1519 		index += ret;
1520 		cond_resched();
1521 	}
1522 }
1523 
1524 static noinline int lock_delalloc_pages(struct inode *inode,
1525 					struct page *locked_page,
1526 					u64 delalloc_start,
1527 					u64 delalloc_end)
1528 {
1529 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1530 	unsigned long start_index = index;
1531 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1532 	unsigned long pages_locked = 0;
1533 	struct page *pages[16];
1534 	unsigned long nrpages;
1535 	int ret;
1536 	int i;
1537 
1538 	/* the caller is responsible for locking the start index */
1539 	if (index == locked_page->index && index == end_index)
1540 		return 0;
1541 
1542 	/* skip the page at the start index */
1543 	nrpages = end_index - index + 1;
1544 	while (nrpages > 0) {
1545 		ret = find_get_pages_contig(inode->i_mapping, index,
1546 				     min_t(unsigned long,
1547 				     nrpages, ARRAY_SIZE(pages)), pages);
1548 		if (ret == 0) {
1549 			ret = -EAGAIN;
1550 			goto done;
1551 		}
1552 		/* now we have an array of pages, lock them all */
1553 		for (i = 0; i < ret; i++) {
1554 			/*
1555 			 * the caller is taking responsibility for
1556 			 * locked_page
1557 			 */
1558 			if (pages[i] != locked_page) {
1559 				lock_page(pages[i]);
1560 				if (!PageDirty(pages[i]) ||
1561 				    pages[i]->mapping != inode->i_mapping) {
1562 					ret = -EAGAIN;
1563 					unlock_page(pages[i]);
1564 					page_cache_release(pages[i]);
1565 					goto done;
1566 				}
1567 			}
1568 			page_cache_release(pages[i]);
1569 			pages_locked++;
1570 		}
1571 		nrpages -= ret;
1572 		index += ret;
1573 		cond_resched();
1574 	}
1575 	ret = 0;
1576 done:
1577 	if (ret && pages_locked) {
1578 		__unlock_for_delalloc(inode, locked_page,
1579 			      delalloc_start,
1580 			      ((u64)(start_index + pages_locked - 1)) <<
1581 			      PAGE_CACHE_SHIFT);
1582 	}
1583 	return ret;
1584 }
1585 
1586 /*
1587  * find a contiguous range of bytes in the file marked as delalloc, not
1588  * more than 'max_bytes'.  start and end are used to return the range,
1589  *
1590  * 1 is returned if we find something, 0 if nothing was in the tree
1591  */
1592 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1593 					     struct extent_io_tree *tree,
1594 					     struct page *locked_page,
1595 					     u64 *start, u64 *end,
1596 					     u64 max_bytes)
1597 {
1598 	u64 delalloc_start;
1599 	u64 delalloc_end;
1600 	u64 found;
1601 	struct extent_state *cached_state = NULL;
1602 	int ret;
1603 	int loops = 0;
1604 
1605 again:
1606 	/* step one, find a bunch of delalloc bytes starting at start */
1607 	delalloc_start = *start;
1608 	delalloc_end = 0;
1609 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1610 				    max_bytes, &cached_state);
1611 	if (!found || delalloc_end <= *start) {
1612 		*start = delalloc_start;
1613 		*end = delalloc_end;
1614 		free_extent_state(cached_state);
1615 		return found;
1616 	}
1617 
1618 	/*
1619 	 * start comes from the offset of locked_page.  We have to lock
1620 	 * pages in order, so we can't process delalloc bytes before
1621 	 * locked_page
1622 	 */
1623 	if (delalloc_start < *start)
1624 		delalloc_start = *start;
1625 
1626 	/*
1627 	 * make sure to limit the number of pages we try to lock down
1628 	 * if we're looping.
1629 	 */
1630 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1631 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1632 
1633 	/* step two, lock all the pages after the page that has start */
1634 	ret = lock_delalloc_pages(inode, locked_page,
1635 				  delalloc_start, delalloc_end);
1636 	if (ret == -EAGAIN) {
1637 		/* some of the pages are gone, lets avoid looping by
1638 		 * shortening the size of the delalloc range we're searching
1639 		 */
1640 		free_extent_state(cached_state);
1641 		if (!loops) {
1642 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1643 			max_bytes = PAGE_CACHE_SIZE - offset;
1644 			loops = 1;
1645 			goto again;
1646 		} else {
1647 			found = 0;
1648 			goto out_failed;
1649 		}
1650 	}
1651 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1652 
1653 	/* step three, lock the state bits for the whole range */
1654 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1655 
1656 	/* then test to make sure it is all still delalloc */
1657 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1658 			     EXTENT_DELALLOC, 1, cached_state);
1659 	if (!ret) {
1660 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1661 				     &cached_state, GFP_NOFS);
1662 		__unlock_for_delalloc(inode, locked_page,
1663 			      delalloc_start, delalloc_end);
1664 		cond_resched();
1665 		goto again;
1666 	}
1667 	free_extent_state(cached_state);
1668 	*start = delalloc_start;
1669 	*end = delalloc_end;
1670 out_failed:
1671 	return found;
1672 }
1673 
1674 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1675 				 struct page *locked_page,
1676 				 unsigned long clear_bits,
1677 				 unsigned long page_ops)
1678 {
1679 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1680 	int ret;
1681 	struct page *pages[16];
1682 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1683 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1684 	unsigned long nr_pages = end_index - index + 1;
1685 	int i;
1686 
1687 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1688 	if (page_ops == 0)
1689 		return 0;
1690 
1691 	while (nr_pages > 0) {
1692 		ret = find_get_pages_contig(inode->i_mapping, index,
1693 				     min_t(unsigned long,
1694 				     nr_pages, ARRAY_SIZE(pages)), pages);
1695 		for (i = 0; i < ret; i++) {
1696 
1697 			if (page_ops & PAGE_SET_PRIVATE2)
1698 				SetPagePrivate2(pages[i]);
1699 
1700 			if (pages[i] == locked_page) {
1701 				page_cache_release(pages[i]);
1702 				continue;
1703 			}
1704 			if (page_ops & PAGE_CLEAR_DIRTY)
1705 				clear_page_dirty_for_io(pages[i]);
1706 			if (page_ops & PAGE_SET_WRITEBACK)
1707 				set_page_writeback(pages[i]);
1708 			if (page_ops & PAGE_END_WRITEBACK)
1709 				end_page_writeback(pages[i]);
1710 			if (page_ops & PAGE_UNLOCK)
1711 				unlock_page(pages[i]);
1712 			page_cache_release(pages[i]);
1713 		}
1714 		nr_pages -= ret;
1715 		index += ret;
1716 		cond_resched();
1717 	}
1718 	return 0;
1719 }
1720 
1721 /*
1722  * count the number of bytes in the tree that have a given bit(s)
1723  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1724  * cached.  The total number found is returned.
1725  */
1726 u64 count_range_bits(struct extent_io_tree *tree,
1727 		     u64 *start, u64 search_end, u64 max_bytes,
1728 		     unsigned long bits, int contig)
1729 {
1730 	struct rb_node *node;
1731 	struct extent_state *state;
1732 	u64 cur_start = *start;
1733 	u64 total_bytes = 0;
1734 	u64 last = 0;
1735 	int found = 0;
1736 
1737 	if (search_end <= cur_start) {
1738 		WARN_ON(1);
1739 		return 0;
1740 	}
1741 
1742 	spin_lock(&tree->lock);
1743 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1744 		total_bytes = tree->dirty_bytes;
1745 		goto out;
1746 	}
1747 	/*
1748 	 * this search will find all the extents that end after
1749 	 * our range starts.
1750 	 */
1751 	node = tree_search(tree, cur_start);
1752 	if (!node)
1753 		goto out;
1754 
1755 	while (1) {
1756 		state = rb_entry(node, struct extent_state, rb_node);
1757 		if (state->start > search_end)
1758 			break;
1759 		if (contig && found && state->start > last + 1)
1760 			break;
1761 		if (state->end >= cur_start && (state->state & bits) == bits) {
1762 			total_bytes += min(search_end, state->end) + 1 -
1763 				       max(cur_start, state->start);
1764 			if (total_bytes >= max_bytes)
1765 				break;
1766 			if (!found) {
1767 				*start = max(cur_start, state->start);
1768 				found = 1;
1769 			}
1770 			last = state->end;
1771 		} else if (contig && found) {
1772 			break;
1773 		}
1774 		node = rb_next(node);
1775 		if (!node)
1776 			break;
1777 	}
1778 out:
1779 	spin_unlock(&tree->lock);
1780 	return total_bytes;
1781 }
1782 
1783 /*
1784  * set the private field for a given byte offset in the tree.  If there isn't
1785  * an extent_state there already, this does nothing.
1786  */
1787 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1788 {
1789 	struct rb_node *node;
1790 	struct extent_state *state;
1791 	int ret = 0;
1792 
1793 	spin_lock(&tree->lock);
1794 	/*
1795 	 * this search will find all the extents that end after
1796 	 * our range starts.
1797 	 */
1798 	node = tree_search(tree, start);
1799 	if (!node) {
1800 		ret = -ENOENT;
1801 		goto out;
1802 	}
1803 	state = rb_entry(node, struct extent_state, rb_node);
1804 	if (state->start != start) {
1805 		ret = -ENOENT;
1806 		goto out;
1807 	}
1808 	state->private = private;
1809 out:
1810 	spin_unlock(&tree->lock);
1811 	return ret;
1812 }
1813 
1814 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1815 {
1816 	struct rb_node *node;
1817 	struct extent_state *state;
1818 	int ret = 0;
1819 
1820 	spin_lock(&tree->lock);
1821 	/*
1822 	 * this search will find all the extents that end after
1823 	 * our range starts.
1824 	 */
1825 	node = tree_search(tree, start);
1826 	if (!node) {
1827 		ret = -ENOENT;
1828 		goto out;
1829 	}
1830 	state = rb_entry(node, struct extent_state, rb_node);
1831 	if (state->start != start) {
1832 		ret = -ENOENT;
1833 		goto out;
1834 	}
1835 	*private = state->private;
1836 out:
1837 	spin_unlock(&tree->lock);
1838 	return ret;
1839 }
1840 
1841 /*
1842  * searches a range in the state tree for a given mask.
1843  * If 'filled' == 1, this returns 1 only if every extent in the tree
1844  * has the bits set.  Otherwise, 1 is returned if any bit in the
1845  * range is found set.
1846  */
1847 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1848 		   unsigned long bits, int filled, struct extent_state *cached)
1849 {
1850 	struct extent_state *state = NULL;
1851 	struct rb_node *node;
1852 	int bitset = 0;
1853 
1854 	spin_lock(&tree->lock);
1855 	if (cached && cached->tree && cached->start <= start &&
1856 	    cached->end > start)
1857 		node = &cached->rb_node;
1858 	else
1859 		node = tree_search(tree, start);
1860 	while (node && start <= end) {
1861 		state = rb_entry(node, struct extent_state, rb_node);
1862 
1863 		if (filled && state->start > start) {
1864 			bitset = 0;
1865 			break;
1866 		}
1867 
1868 		if (state->start > end)
1869 			break;
1870 
1871 		if (state->state & bits) {
1872 			bitset = 1;
1873 			if (!filled)
1874 				break;
1875 		} else if (filled) {
1876 			bitset = 0;
1877 			break;
1878 		}
1879 
1880 		if (state->end == (u64)-1)
1881 			break;
1882 
1883 		start = state->end + 1;
1884 		if (start > end)
1885 			break;
1886 		node = rb_next(node);
1887 		if (!node) {
1888 			if (filled)
1889 				bitset = 0;
1890 			break;
1891 		}
1892 	}
1893 	spin_unlock(&tree->lock);
1894 	return bitset;
1895 }
1896 
1897 /*
1898  * helper function to set a given page up to date if all the
1899  * extents in the tree for that page are up to date
1900  */
1901 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1902 {
1903 	u64 start = page_offset(page);
1904 	u64 end = start + PAGE_CACHE_SIZE - 1;
1905 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1906 		SetPageUptodate(page);
1907 }
1908 
1909 /*
1910  * When IO fails, either with EIO or csum verification fails, we
1911  * try other mirrors that might have a good copy of the data.  This
1912  * io_failure_record is used to record state as we go through all the
1913  * mirrors.  If another mirror has good data, the page is set up to date
1914  * and things continue.  If a good mirror can't be found, the original
1915  * bio end_io callback is called to indicate things have failed.
1916  */
1917 struct io_failure_record {
1918 	struct page *page;
1919 	u64 start;
1920 	u64 len;
1921 	u64 logical;
1922 	unsigned long bio_flags;
1923 	int this_mirror;
1924 	int failed_mirror;
1925 	int in_validation;
1926 };
1927 
1928 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1929 				int did_repair)
1930 {
1931 	int ret;
1932 	int err = 0;
1933 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1934 
1935 	set_state_private(failure_tree, rec->start, 0);
1936 	ret = clear_extent_bits(failure_tree, rec->start,
1937 				rec->start + rec->len - 1,
1938 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1939 	if (ret)
1940 		err = ret;
1941 
1942 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1943 				rec->start + rec->len - 1,
1944 				EXTENT_DAMAGED, GFP_NOFS);
1945 	if (ret && !err)
1946 		err = ret;
1947 
1948 	kfree(rec);
1949 	return err;
1950 }
1951 
1952 static void repair_io_failure_callback(struct bio *bio, int err)
1953 {
1954 	complete(bio->bi_private);
1955 }
1956 
1957 /*
1958  * this bypasses the standard btrfs submit functions deliberately, as
1959  * the standard behavior is to write all copies in a raid setup. here we only
1960  * want to write the one bad copy. so we do the mapping for ourselves and issue
1961  * submit_bio directly.
1962  * to avoid any synchronization issues, wait for the data after writing, which
1963  * actually prevents the read that triggered the error from finishing.
1964  * currently, there can be no more than two copies of every data bit. thus,
1965  * exactly one rewrite is required.
1966  */
1967 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1968 			u64 length, u64 logical, struct page *page,
1969 			int mirror_num)
1970 {
1971 	struct bio *bio;
1972 	struct btrfs_device *dev;
1973 	DECLARE_COMPLETION_ONSTACK(compl);
1974 	u64 map_length = 0;
1975 	u64 sector;
1976 	struct btrfs_bio *bbio = NULL;
1977 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1978 	int ret;
1979 
1980 	BUG_ON(!mirror_num);
1981 
1982 	/* we can't repair anything in raid56 yet */
1983 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1984 		return 0;
1985 
1986 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1987 	if (!bio)
1988 		return -EIO;
1989 	bio->bi_private = &compl;
1990 	bio->bi_end_io = repair_io_failure_callback;
1991 	bio->bi_size = 0;
1992 	map_length = length;
1993 
1994 	ret = btrfs_map_block(fs_info, WRITE, logical,
1995 			      &map_length, &bbio, mirror_num);
1996 	if (ret) {
1997 		bio_put(bio);
1998 		return -EIO;
1999 	}
2000 	BUG_ON(mirror_num != bbio->mirror_num);
2001 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2002 	bio->bi_sector = sector;
2003 	dev = bbio->stripes[mirror_num-1].dev;
2004 	kfree(bbio);
2005 	if (!dev || !dev->bdev || !dev->writeable) {
2006 		bio_put(bio);
2007 		return -EIO;
2008 	}
2009 	bio->bi_bdev = dev->bdev;
2010 	bio_add_page(bio, page, length, start - page_offset(page));
2011 	btrfsic_submit_bio(WRITE_SYNC, bio);
2012 	wait_for_completion(&compl);
2013 
2014 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2015 		/* try to remap that extent elsewhere? */
2016 		bio_put(bio);
2017 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2018 		return -EIO;
2019 	}
2020 
2021 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2022 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2023 		      start, rcu_str_deref(dev->name), sector);
2024 
2025 	bio_put(bio);
2026 	return 0;
2027 }
2028 
2029 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2030 			 int mirror_num)
2031 {
2032 	u64 start = eb->start;
2033 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2034 	int ret = 0;
2035 
2036 	for (i = 0; i < num_pages; i++) {
2037 		struct page *p = extent_buffer_page(eb, i);
2038 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2039 					start, p, mirror_num);
2040 		if (ret)
2041 			break;
2042 		start += PAGE_CACHE_SIZE;
2043 	}
2044 
2045 	return ret;
2046 }
2047 
2048 /*
2049  * each time an IO finishes, we do a fast check in the IO failure tree
2050  * to see if we need to process or clean up an io_failure_record
2051  */
2052 static int clean_io_failure(u64 start, struct page *page)
2053 {
2054 	u64 private;
2055 	u64 private_failure;
2056 	struct io_failure_record *failrec;
2057 	struct btrfs_fs_info *fs_info;
2058 	struct extent_state *state;
2059 	int num_copies;
2060 	int did_repair = 0;
2061 	int ret;
2062 	struct inode *inode = page->mapping->host;
2063 
2064 	private = 0;
2065 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2066 				(u64)-1, 1, EXTENT_DIRTY, 0);
2067 	if (!ret)
2068 		return 0;
2069 
2070 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2071 				&private_failure);
2072 	if (ret)
2073 		return 0;
2074 
2075 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2076 	BUG_ON(!failrec->this_mirror);
2077 
2078 	if (failrec->in_validation) {
2079 		/* there was no real error, just free the record */
2080 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2081 			 failrec->start);
2082 		did_repair = 1;
2083 		goto out;
2084 	}
2085 
2086 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2087 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2088 					    failrec->start,
2089 					    EXTENT_LOCKED);
2090 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2091 
2092 	if (state && state->start <= failrec->start &&
2093 	    state->end >= failrec->start + failrec->len - 1) {
2094 		fs_info = BTRFS_I(inode)->root->fs_info;
2095 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2096 					      failrec->len);
2097 		if (num_copies > 1)  {
2098 			ret = repair_io_failure(fs_info, start, failrec->len,
2099 						failrec->logical, page,
2100 						failrec->failed_mirror);
2101 			did_repair = !ret;
2102 		}
2103 		ret = 0;
2104 	}
2105 
2106 out:
2107 	if (!ret)
2108 		ret = free_io_failure(inode, failrec, did_repair);
2109 
2110 	return ret;
2111 }
2112 
2113 /*
2114  * this is a generic handler for readpage errors (default
2115  * readpage_io_failed_hook). if other copies exist, read those and write back
2116  * good data to the failed position. does not investigate in remapping the
2117  * failed extent elsewhere, hoping the device will be smart enough to do this as
2118  * needed
2119  */
2120 
2121 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2122 			      struct page *page, u64 start, u64 end,
2123 			      int failed_mirror)
2124 {
2125 	struct io_failure_record *failrec = NULL;
2126 	u64 private;
2127 	struct extent_map *em;
2128 	struct inode *inode = page->mapping->host;
2129 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2130 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2131 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2132 	struct bio *bio;
2133 	struct btrfs_io_bio *btrfs_failed_bio;
2134 	struct btrfs_io_bio *btrfs_bio;
2135 	int num_copies;
2136 	int ret;
2137 	int read_mode;
2138 	u64 logical;
2139 
2140 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2141 
2142 	ret = get_state_private(failure_tree, start, &private);
2143 	if (ret) {
2144 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2145 		if (!failrec)
2146 			return -ENOMEM;
2147 		failrec->start = start;
2148 		failrec->len = end - start + 1;
2149 		failrec->this_mirror = 0;
2150 		failrec->bio_flags = 0;
2151 		failrec->in_validation = 0;
2152 
2153 		read_lock(&em_tree->lock);
2154 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2155 		if (!em) {
2156 			read_unlock(&em_tree->lock);
2157 			kfree(failrec);
2158 			return -EIO;
2159 		}
2160 
2161 		if (em->start > start || em->start + em->len < start) {
2162 			free_extent_map(em);
2163 			em = NULL;
2164 		}
2165 		read_unlock(&em_tree->lock);
2166 
2167 		if (!em) {
2168 			kfree(failrec);
2169 			return -EIO;
2170 		}
2171 		logical = start - em->start;
2172 		logical = em->block_start + logical;
2173 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2174 			logical = em->block_start;
2175 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2176 			extent_set_compress_type(&failrec->bio_flags,
2177 						 em->compress_type);
2178 		}
2179 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2180 			 "len=%llu\n", logical, start, failrec->len);
2181 		failrec->logical = logical;
2182 		free_extent_map(em);
2183 
2184 		/* set the bits in the private failure tree */
2185 		ret = set_extent_bits(failure_tree, start, end,
2186 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2187 		if (ret >= 0)
2188 			ret = set_state_private(failure_tree, start,
2189 						(u64)(unsigned long)failrec);
2190 		/* set the bits in the inode's tree */
2191 		if (ret >= 0)
2192 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2193 						GFP_NOFS);
2194 		if (ret < 0) {
2195 			kfree(failrec);
2196 			return ret;
2197 		}
2198 	} else {
2199 		failrec = (struct io_failure_record *)(unsigned long)private;
2200 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2201 			 "start=%llu, len=%llu, validation=%d\n",
2202 			 failrec->logical, failrec->start, failrec->len,
2203 			 failrec->in_validation);
2204 		/*
2205 		 * when data can be on disk more than twice, add to failrec here
2206 		 * (e.g. with a list for failed_mirror) to make
2207 		 * clean_io_failure() clean all those errors at once.
2208 		 */
2209 	}
2210 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2211 				      failrec->logical, failrec->len);
2212 	if (num_copies == 1) {
2213 		/*
2214 		 * we only have a single copy of the data, so don't bother with
2215 		 * all the retry and error correction code that follows. no
2216 		 * matter what the error is, it is very likely to persist.
2217 		 */
2218 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2219 			 num_copies, failrec->this_mirror, failed_mirror);
2220 		free_io_failure(inode, failrec, 0);
2221 		return -EIO;
2222 	}
2223 
2224 	/*
2225 	 * there are two premises:
2226 	 *	a) deliver good data to the caller
2227 	 *	b) correct the bad sectors on disk
2228 	 */
2229 	if (failed_bio->bi_vcnt > 1) {
2230 		/*
2231 		 * to fulfill b), we need to know the exact failing sectors, as
2232 		 * we don't want to rewrite any more than the failed ones. thus,
2233 		 * we need separate read requests for the failed bio
2234 		 *
2235 		 * if the following BUG_ON triggers, our validation request got
2236 		 * merged. we need separate requests for our algorithm to work.
2237 		 */
2238 		BUG_ON(failrec->in_validation);
2239 		failrec->in_validation = 1;
2240 		failrec->this_mirror = failed_mirror;
2241 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2242 	} else {
2243 		/*
2244 		 * we're ready to fulfill a) and b) alongside. get a good copy
2245 		 * of the failed sector and if we succeed, we have setup
2246 		 * everything for repair_io_failure to do the rest for us.
2247 		 */
2248 		if (failrec->in_validation) {
2249 			BUG_ON(failrec->this_mirror != failed_mirror);
2250 			failrec->in_validation = 0;
2251 			failrec->this_mirror = 0;
2252 		}
2253 		failrec->failed_mirror = failed_mirror;
2254 		failrec->this_mirror++;
2255 		if (failrec->this_mirror == failed_mirror)
2256 			failrec->this_mirror++;
2257 		read_mode = READ_SYNC;
2258 	}
2259 
2260 	if (failrec->this_mirror > num_copies) {
2261 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2262 			 num_copies, failrec->this_mirror, failed_mirror);
2263 		free_io_failure(inode, failrec, 0);
2264 		return -EIO;
2265 	}
2266 
2267 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2268 	if (!bio) {
2269 		free_io_failure(inode, failrec, 0);
2270 		return -EIO;
2271 	}
2272 	bio->bi_end_io = failed_bio->bi_end_io;
2273 	bio->bi_sector = failrec->logical >> 9;
2274 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2275 	bio->bi_size = 0;
2276 
2277 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2278 	if (btrfs_failed_bio->csum) {
2279 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2280 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2281 
2282 		btrfs_bio = btrfs_io_bio(bio);
2283 		btrfs_bio->csum = btrfs_bio->csum_inline;
2284 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2285 		phy_offset *= csum_size;
2286 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2287 		       csum_size);
2288 	}
2289 
2290 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2291 
2292 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2293 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2294 		 failrec->this_mirror, num_copies, failrec->in_validation);
2295 
2296 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2297 					 failrec->this_mirror,
2298 					 failrec->bio_flags, 0);
2299 	return ret;
2300 }
2301 
2302 /* lots and lots of room for performance fixes in the end_bio funcs */
2303 
2304 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2305 {
2306 	int uptodate = (err == 0);
2307 	struct extent_io_tree *tree;
2308 	int ret;
2309 
2310 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2311 
2312 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2313 		ret = tree->ops->writepage_end_io_hook(page, start,
2314 					       end, NULL, uptodate);
2315 		if (ret)
2316 			uptodate = 0;
2317 	}
2318 
2319 	if (!uptodate) {
2320 		ClearPageUptodate(page);
2321 		SetPageError(page);
2322 	}
2323 	return 0;
2324 }
2325 
2326 /*
2327  * after a writepage IO is done, we need to:
2328  * clear the uptodate bits on error
2329  * clear the writeback bits in the extent tree for this IO
2330  * end_page_writeback if the page has no more pending IO
2331  *
2332  * Scheduling is not allowed, so the extent state tree is expected
2333  * to have one and only one object corresponding to this IO.
2334  */
2335 static void end_bio_extent_writepage(struct bio *bio, int err)
2336 {
2337 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2338 	struct extent_io_tree *tree;
2339 	u64 start;
2340 	u64 end;
2341 
2342 	do {
2343 		struct page *page = bvec->bv_page;
2344 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2345 
2346 		/* We always issue full-page reads, but if some block
2347 		 * in a page fails to read, blk_update_request() will
2348 		 * advance bv_offset and adjust bv_len to compensate.
2349 		 * Print a warning for nonzero offsets, and an error
2350 		 * if they don't add up to a full page.  */
2351 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2352 			printk("%s page write in btrfs with offset %u and length %u\n",
2353 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2354 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2355 			       bvec->bv_offset, bvec->bv_len);
2356 
2357 		start = page_offset(page);
2358 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2359 
2360 		if (--bvec >= bio->bi_io_vec)
2361 			prefetchw(&bvec->bv_page->flags);
2362 
2363 		if (end_extent_writepage(page, err, start, end))
2364 			continue;
2365 
2366 		end_page_writeback(page);
2367 	} while (bvec >= bio->bi_io_vec);
2368 
2369 	bio_put(bio);
2370 }
2371 
2372 static void
2373 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2374 			      int uptodate)
2375 {
2376 	struct extent_state *cached = NULL;
2377 	u64 end = start + len - 1;
2378 
2379 	if (uptodate && tree->track_uptodate)
2380 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2381 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2382 }
2383 
2384 /*
2385  * after a readpage IO is done, we need to:
2386  * clear the uptodate bits on error
2387  * set the uptodate bits if things worked
2388  * set the page up to date if all extents in the tree are uptodate
2389  * clear the lock bit in the extent tree
2390  * unlock the page if there are no other extents locked for it
2391  *
2392  * Scheduling is not allowed, so the extent state tree is expected
2393  * to have one and only one object corresponding to this IO.
2394  */
2395 static void end_bio_extent_readpage(struct bio *bio, int err)
2396 {
2397 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2398 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2399 	struct bio_vec *bvec = bio->bi_io_vec;
2400 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2401 	struct extent_io_tree *tree;
2402 	u64 offset = 0;
2403 	u64 start;
2404 	u64 end;
2405 	u64 len;
2406 	u64 extent_start = 0;
2407 	u64 extent_len = 0;
2408 	int mirror;
2409 	int ret;
2410 
2411 	if (err)
2412 		uptodate = 0;
2413 
2414 	do {
2415 		struct page *page = bvec->bv_page;
2416 		struct inode *inode = page->mapping->host;
2417 
2418 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2419 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2420 			 io_bio->mirror_num);
2421 		tree = &BTRFS_I(inode)->io_tree;
2422 
2423 		/* We always issue full-page reads, but if some block
2424 		 * in a page fails to read, blk_update_request() will
2425 		 * advance bv_offset and adjust bv_len to compensate.
2426 		 * Print a warning for nonzero offsets, and an error
2427 		 * if they don't add up to a full page.  */
2428 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2429 			printk("%s page read in btrfs with offset %u and length %u\n",
2430 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2431 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2432 			       bvec->bv_offset, bvec->bv_len);
2433 
2434 		start = page_offset(page);
2435 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2436 		len = bvec->bv_len;
2437 
2438 		if (++bvec <= bvec_end)
2439 			prefetchw(&bvec->bv_page->flags);
2440 
2441 		mirror = io_bio->mirror_num;
2442 		if (likely(uptodate && tree->ops &&
2443 			   tree->ops->readpage_end_io_hook)) {
2444 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2445 							      page, start, end,
2446 							      mirror);
2447 			if (ret)
2448 				uptodate = 0;
2449 			else
2450 				clean_io_failure(start, page);
2451 		}
2452 
2453 		if (likely(uptodate))
2454 			goto readpage_ok;
2455 
2456 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2457 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2458 			if (!ret && !err &&
2459 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2460 				uptodate = 1;
2461 		} else {
2462 			/*
2463 			 * The generic bio_readpage_error handles errors the
2464 			 * following way: If possible, new read requests are
2465 			 * created and submitted and will end up in
2466 			 * end_bio_extent_readpage as well (if we're lucky, not
2467 			 * in the !uptodate case). In that case it returns 0 and
2468 			 * we just go on with the next page in our bio. If it
2469 			 * can't handle the error it will return -EIO and we
2470 			 * remain responsible for that page.
2471 			 */
2472 			ret = bio_readpage_error(bio, offset, page, start, end,
2473 						 mirror);
2474 			if (ret == 0) {
2475 				uptodate =
2476 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2477 				if (err)
2478 					uptodate = 0;
2479 				continue;
2480 			}
2481 		}
2482 readpage_ok:
2483 		if (likely(uptodate)) {
2484 			loff_t i_size = i_size_read(inode);
2485 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2486 			unsigned offset;
2487 
2488 			/* Zero out the end if this page straddles i_size */
2489 			offset = i_size & (PAGE_CACHE_SIZE-1);
2490 			if (page->index == end_index && offset)
2491 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2492 			SetPageUptodate(page);
2493 		} else {
2494 			ClearPageUptodate(page);
2495 			SetPageError(page);
2496 		}
2497 		unlock_page(page);
2498 		offset += len;
2499 
2500 		if (unlikely(!uptodate)) {
2501 			if (extent_len) {
2502 				endio_readpage_release_extent(tree,
2503 							      extent_start,
2504 							      extent_len, 1);
2505 				extent_start = 0;
2506 				extent_len = 0;
2507 			}
2508 			endio_readpage_release_extent(tree, start,
2509 						      end - start + 1, 0);
2510 		} else if (!extent_len) {
2511 			extent_start = start;
2512 			extent_len = end + 1 - start;
2513 		} else if (extent_start + extent_len == start) {
2514 			extent_len += end + 1 - start;
2515 		} else {
2516 			endio_readpage_release_extent(tree, extent_start,
2517 						      extent_len, uptodate);
2518 			extent_start = start;
2519 			extent_len = end + 1 - start;
2520 		}
2521 	} while (bvec <= bvec_end);
2522 
2523 	if (extent_len)
2524 		endio_readpage_release_extent(tree, extent_start, extent_len,
2525 					      uptodate);
2526 	if (io_bio->end_io)
2527 		io_bio->end_io(io_bio, err);
2528 	bio_put(bio);
2529 }
2530 
2531 /*
2532  * this allocates from the btrfs_bioset.  We're returning a bio right now
2533  * but you can call btrfs_io_bio for the appropriate container_of magic
2534  */
2535 struct bio *
2536 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2537 		gfp_t gfp_flags)
2538 {
2539 	struct btrfs_io_bio *btrfs_bio;
2540 	struct bio *bio;
2541 
2542 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2543 
2544 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2545 		while (!bio && (nr_vecs /= 2)) {
2546 			bio = bio_alloc_bioset(gfp_flags,
2547 					       nr_vecs, btrfs_bioset);
2548 		}
2549 	}
2550 
2551 	if (bio) {
2552 		bio->bi_size = 0;
2553 		bio->bi_bdev = bdev;
2554 		bio->bi_sector = first_sector;
2555 		btrfs_bio = btrfs_io_bio(bio);
2556 		btrfs_bio->csum = NULL;
2557 		btrfs_bio->csum_allocated = NULL;
2558 		btrfs_bio->end_io = NULL;
2559 	}
2560 	return bio;
2561 }
2562 
2563 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2564 {
2565 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2566 }
2567 
2568 
2569 /* this also allocates from the btrfs_bioset */
2570 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2571 {
2572 	struct btrfs_io_bio *btrfs_bio;
2573 	struct bio *bio;
2574 
2575 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2576 	if (bio) {
2577 		btrfs_bio = btrfs_io_bio(bio);
2578 		btrfs_bio->csum = NULL;
2579 		btrfs_bio->csum_allocated = NULL;
2580 		btrfs_bio->end_io = NULL;
2581 	}
2582 	return bio;
2583 }
2584 
2585 
2586 static int __must_check submit_one_bio(int rw, struct bio *bio,
2587 				       int mirror_num, unsigned long bio_flags)
2588 {
2589 	int ret = 0;
2590 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2591 	struct page *page = bvec->bv_page;
2592 	struct extent_io_tree *tree = bio->bi_private;
2593 	u64 start;
2594 
2595 	start = page_offset(page) + bvec->bv_offset;
2596 
2597 	bio->bi_private = NULL;
2598 
2599 	bio_get(bio);
2600 
2601 	if (tree->ops && tree->ops->submit_bio_hook)
2602 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2603 					   mirror_num, bio_flags, start);
2604 	else
2605 		btrfsic_submit_bio(rw, bio);
2606 
2607 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2608 		ret = -EOPNOTSUPP;
2609 	bio_put(bio);
2610 	return ret;
2611 }
2612 
2613 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2614 		     unsigned long offset, size_t size, struct bio *bio,
2615 		     unsigned long bio_flags)
2616 {
2617 	int ret = 0;
2618 	if (tree->ops && tree->ops->merge_bio_hook)
2619 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2620 						bio_flags);
2621 	BUG_ON(ret < 0);
2622 	return ret;
2623 
2624 }
2625 
2626 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2627 			      struct page *page, sector_t sector,
2628 			      size_t size, unsigned long offset,
2629 			      struct block_device *bdev,
2630 			      struct bio **bio_ret,
2631 			      unsigned long max_pages,
2632 			      bio_end_io_t end_io_func,
2633 			      int mirror_num,
2634 			      unsigned long prev_bio_flags,
2635 			      unsigned long bio_flags)
2636 {
2637 	int ret = 0;
2638 	struct bio *bio;
2639 	int nr;
2640 	int contig = 0;
2641 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2642 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2643 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2644 
2645 	if (bio_ret && *bio_ret) {
2646 		bio = *bio_ret;
2647 		if (old_compressed)
2648 			contig = bio->bi_sector == sector;
2649 		else
2650 			contig = bio_end_sector(bio) == sector;
2651 
2652 		if (prev_bio_flags != bio_flags || !contig ||
2653 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2654 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2655 			ret = submit_one_bio(rw, bio, mirror_num,
2656 					     prev_bio_flags);
2657 			if (ret < 0)
2658 				return ret;
2659 			bio = NULL;
2660 		} else {
2661 			return 0;
2662 		}
2663 	}
2664 	if (this_compressed)
2665 		nr = BIO_MAX_PAGES;
2666 	else
2667 		nr = bio_get_nr_vecs(bdev);
2668 
2669 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2670 	if (!bio)
2671 		return -ENOMEM;
2672 
2673 	bio_add_page(bio, page, page_size, offset);
2674 	bio->bi_end_io = end_io_func;
2675 	bio->bi_private = tree;
2676 
2677 	if (bio_ret)
2678 		*bio_ret = bio;
2679 	else
2680 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2681 
2682 	return ret;
2683 }
2684 
2685 static void attach_extent_buffer_page(struct extent_buffer *eb,
2686 				      struct page *page)
2687 {
2688 	if (!PagePrivate(page)) {
2689 		SetPagePrivate(page);
2690 		page_cache_get(page);
2691 		set_page_private(page, (unsigned long)eb);
2692 	} else {
2693 		WARN_ON(page->private != (unsigned long)eb);
2694 	}
2695 }
2696 
2697 void set_page_extent_mapped(struct page *page)
2698 {
2699 	if (!PagePrivate(page)) {
2700 		SetPagePrivate(page);
2701 		page_cache_get(page);
2702 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2703 	}
2704 }
2705 
2706 static struct extent_map *
2707 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2708 		 u64 start, u64 len, get_extent_t *get_extent,
2709 		 struct extent_map **em_cached)
2710 {
2711 	struct extent_map *em;
2712 
2713 	if (em_cached && *em_cached) {
2714 		em = *em_cached;
2715 		if (em->in_tree && start >= em->start &&
2716 		    start < extent_map_end(em)) {
2717 			atomic_inc(&em->refs);
2718 			return em;
2719 		}
2720 
2721 		free_extent_map(em);
2722 		*em_cached = NULL;
2723 	}
2724 
2725 	em = get_extent(inode, page, pg_offset, start, len, 0);
2726 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2727 		BUG_ON(*em_cached);
2728 		atomic_inc(&em->refs);
2729 		*em_cached = em;
2730 	}
2731 	return em;
2732 }
2733 /*
2734  * basic readpage implementation.  Locked extent state structs are inserted
2735  * into the tree that are removed when the IO is done (by the end_io
2736  * handlers)
2737  * XXX JDM: This needs looking at to ensure proper page locking
2738  */
2739 static int __do_readpage(struct extent_io_tree *tree,
2740 			 struct page *page,
2741 			 get_extent_t *get_extent,
2742 			 struct extent_map **em_cached,
2743 			 struct bio **bio, int mirror_num,
2744 			 unsigned long *bio_flags, int rw)
2745 {
2746 	struct inode *inode = page->mapping->host;
2747 	u64 start = page_offset(page);
2748 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2749 	u64 end;
2750 	u64 cur = start;
2751 	u64 extent_offset;
2752 	u64 last_byte = i_size_read(inode);
2753 	u64 block_start;
2754 	u64 cur_end;
2755 	sector_t sector;
2756 	struct extent_map *em;
2757 	struct block_device *bdev;
2758 	int ret;
2759 	int nr = 0;
2760 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2761 	size_t pg_offset = 0;
2762 	size_t iosize;
2763 	size_t disk_io_size;
2764 	size_t blocksize = inode->i_sb->s_blocksize;
2765 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2766 
2767 	set_page_extent_mapped(page);
2768 
2769 	end = page_end;
2770 	if (!PageUptodate(page)) {
2771 		if (cleancache_get_page(page) == 0) {
2772 			BUG_ON(blocksize != PAGE_SIZE);
2773 			unlock_extent(tree, start, end);
2774 			goto out;
2775 		}
2776 	}
2777 
2778 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2779 		char *userpage;
2780 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2781 
2782 		if (zero_offset) {
2783 			iosize = PAGE_CACHE_SIZE - zero_offset;
2784 			userpage = kmap_atomic(page);
2785 			memset(userpage + zero_offset, 0, iosize);
2786 			flush_dcache_page(page);
2787 			kunmap_atomic(userpage);
2788 		}
2789 	}
2790 	while (cur <= end) {
2791 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2792 
2793 		if (cur >= last_byte) {
2794 			char *userpage;
2795 			struct extent_state *cached = NULL;
2796 
2797 			iosize = PAGE_CACHE_SIZE - pg_offset;
2798 			userpage = kmap_atomic(page);
2799 			memset(userpage + pg_offset, 0, iosize);
2800 			flush_dcache_page(page);
2801 			kunmap_atomic(userpage);
2802 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2803 					    &cached, GFP_NOFS);
2804 			if (!parent_locked)
2805 				unlock_extent_cached(tree, cur,
2806 						     cur + iosize - 1,
2807 						     &cached, GFP_NOFS);
2808 			break;
2809 		}
2810 		em = __get_extent_map(inode, page, pg_offset, cur,
2811 				      end - cur + 1, get_extent, em_cached);
2812 		if (IS_ERR_OR_NULL(em)) {
2813 			SetPageError(page);
2814 			if (!parent_locked)
2815 				unlock_extent(tree, cur, end);
2816 			break;
2817 		}
2818 		extent_offset = cur - em->start;
2819 		BUG_ON(extent_map_end(em) <= cur);
2820 		BUG_ON(end < cur);
2821 
2822 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2823 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2824 			extent_set_compress_type(&this_bio_flag,
2825 						 em->compress_type);
2826 		}
2827 
2828 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2829 		cur_end = min(extent_map_end(em) - 1, end);
2830 		iosize = ALIGN(iosize, blocksize);
2831 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2832 			disk_io_size = em->block_len;
2833 			sector = em->block_start >> 9;
2834 		} else {
2835 			sector = (em->block_start + extent_offset) >> 9;
2836 			disk_io_size = iosize;
2837 		}
2838 		bdev = em->bdev;
2839 		block_start = em->block_start;
2840 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2841 			block_start = EXTENT_MAP_HOLE;
2842 		free_extent_map(em);
2843 		em = NULL;
2844 
2845 		/* we've found a hole, just zero and go on */
2846 		if (block_start == EXTENT_MAP_HOLE) {
2847 			char *userpage;
2848 			struct extent_state *cached = NULL;
2849 
2850 			userpage = kmap_atomic(page);
2851 			memset(userpage + pg_offset, 0, iosize);
2852 			flush_dcache_page(page);
2853 			kunmap_atomic(userpage);
2854 
2855 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2856 					    &cached, GFP_NOFS);
2857 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2858 			                     &cached, GFP_NOFS);
2859 			cur = cur + iosize;
2860 			pg_offset += iosize;
2861 			continue;
2862 		}
2863 		/* the get_extent function already copied into the page */
2864 		if (test_range_bit(tree, cur, cur_end,
2865 				   EXTENT_UPTODATE, 1, NULL)) {
2866 			check_page_uptodate(tree, page);
2867 			if (!parent_locked)
2868 				unlock_extent(tree, cur, cur + iosize - 1);
2869 			cur = cur + iosize;
2870 			pg_offset += iosize;
2871 			continue;
2872 		}
2873 		/* we have an inline extent but it didn't get marked up
2874 		 * to date.  Error out
2875 		 */
2876 		if (block_start == EXTENT_MAP_INLINE) {
2877 			SetPageError(page);
2878 			if (!parent_locked)
2879 				unlock_extent(tree, cur, cur + iosize - 1);
2880 			cur = cur + iosize;
2881 			pg_offset += iosize;
2882 			continue;
2883 		}
2884 
2885 		pnr -= page->index;
2886 		ret = submit_extent_page(rw, tree, page,
2887 					 sector, disk_io_size, pg_offset,
2888 					 bdev, bio, pnr,
2889 					 end_bio_extent_readpage, mirror_num,
2890 					 *bio_flags,
2891 					 this_bio_flag);
2892 		if (!ret) {
2893 			nr++;
2894 			*bio_flags = this_bio_flag;
2895 		} else {
2896 			SetPageError(page);
2897 			if (!parent_locked)
2898 				unlock_extent(tree, cur, cur + iosize - 1);
2899 		}
2900 		cur = cur + iosize;
2901 		pg_offset += iosize;
2902 	}
2903 out:
2904 	if (!nr) {
2905 		if (!PageError(page))
2906 			SetPageUptodate(page);
2907 		unlock_page(page);
2908 	}
2909 	return 0;
2910 }
2911 
2912 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2913 					     struct page *pages[], int nr_pages,
2914 					     u64 start, u64 end,
2915 					     get_extent_t *get_extent,
2916 					     struct extent_map **em_cached,
2917 					     struct bio **bio, int mirror_num,
2918 					     unsigned long *bio_flags, int rw)
2919 {
2920 	struct inode *inode;
2921 	struct btrfs_ordered_extent *ordered;
2922 	int index;
2923 
2924 	inode = pages[0]->mapping->host;
2925 	while (1) {
2926 		lock_extent(tree, start, end);
2927 		ordered = btrfs_lookup_ordered_range(inode, start,
2928 						     end - start + 1);
2929 		if (!ordered)
2930 			break;
2931 		unlock_extent(tree, start, end);
2932 		btrfs_start_ordered_extent(inode, ordered, 1);
2933 		btrfs_put_ordered_extent(ordered);
2934 	}
2935 
2936 	for (index = 0; index < nr_pages; index++) {
2937 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2938 			      mirror_num, bio_flags, rw);
2939 		page_cache_release(pages[index]);
2940 	}
2941 }
2942 
2943 static void __extent_readpages(struct extent_io_tree *tree,
2944 			       struct page *pages[],
2945 			       int nr_pages, get_extent_t *get_extent,
2946 			       struct extent_map **em_cached,
2947 			       struct bio **bio, int mirror_num,
2948 			       unsigned long *bio_flags, int rw)
2949 {
2950 	u64 start = 0;
2951 	u64 end = 0;
2952 	u64 page_start;
2953 	int index;
2954 	int first_index = 0;
2955 
2956 	for (index = 0; index < nr_pages; index++) {
2957 		page_start = page_offset(pages[index]);
2958 		if (!end) {
2959 			start = page_start;
2960 			end = start + PAGE_CACHE_SIZE - 1;
2961 			first_index = index;
2962 		} else if (end + 1 == page_start) {
2963 			end += PAGE_CACHE_SIZE;
2964 		} else {
2965 			__do_contiguous_readpages(tree, &pages[first_index],
2966 						  index - first_index, start,
2967 						  end, get_extent, em_cached,
2968 						  bio, mirror_num, bio_flags,
2969 						  rw);
2970 			start = page_start;
2971 			end = start + PAGE_CACHE_SIZE - 1;
2972 			first_index = index;
2973 		}
2974 	}
2975 
2976 	if (end)
2977 		__do_contiguous_readpages(tree, &pages[first_index],
2978 					  index - first_index, start,
2979 					  end, get_extent, em_cached, bio,
2980 					  mirror_num, bio_flags, rw);
2981 }
2982 
2983 static int __extent_read_full_page(struct extent_io_tree *tree,
2984 				   struct page *page,
2985 				   get_extent_t *get_extent,
2986 				   struct bio **bio, int mirror_num,
2987 				   unsigned long *bio_flags, int rw)
2988 {
2989 	struct inode *inode = page->mapping->host;
2990 	struct btrfs_ordered_extent *ordered;
2991 	u64 start = page_offset(page);
2992 	u64 end = start + PAGE_CACHE_SIZE - 1;
2993 	int ret;
2994 
2995 	while (1) {
2996 		lock_extent(tree, start, end);
2997 		ordered = btrfs_lookup_ordered_extent(inode, start);
2998 		if (!ordered)
2999 			break;
3000 		unlock_extent(tree, start, end);
3001 		btrfs_start_ordered_extent(inode, ordered, 1);
3002 		btrfs_put_ordered_extent(ordered);
3003 	}
3004 
3005 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3006 			    bio_flags, rw);
3007 	return ret;
3008 }
3009 
3010 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3011 			    get_extent_t *get_extent, int mirror_num)
3012 {
3013 	struct bio *bio = NULL;
3014 	unsigned long bio_flags = 0;
3015 	int ret;
3016 
3017 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3018 				      &bio_flags, READ);
3019 	if (bio)
3020 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3021 	return ret;
3022 }
3023 
3024 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3025 				 get_extent_t *get_extent, int mirror_num)
3026 {
3027 	struct bio *bio = NULL;
3028 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3029 	int ret;
3030 
3031 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3032 				      &bio_flags, READ);
3033 	if (bio)
3034 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3035 	return ret;
3036 }
3037 
3038 static noinline void update_nr_written(struct page *page,
3039 				      struct writeback_control *wbc,
3040 				      unsigned long nr_written)
3041 {
3042 	wbc->nr_to_write -= nr_written;
3043 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3044 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3045 		page->mapping->writeback_index = page->index + nr_written;
3046 }
3047 
3048 /*
3049  * the writepage semantics are similar to regular writepage.  extent
3050  * records are inserted to lock ranges in the tree, and as dirty areas
3051  * are found, they are marked writeback.  Then the lock bits are removed
3052  * and the end_io handler clears the writeback ranges
3053  */
3054 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3055 			      void *data)
3056 {
3057 	struct inode *inode = page->mapping->host;
3058 	struct extent_page_data *epd = data;
3059 	struct extent_io_tree *tree = epd->tree;
3060 	u64 start = page_offset(page);
3061 	u64 delalloc_start;
3062 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3063 	u64 end;
3064 	u64 cur = start;
3065 	u64 extent_offset;
3066 	u64 last_byte = i_size_read(inode);
3067 	u64 block_start;
3068 	u64 iosize;
3069 	sector_t sector;
3070 	struct extent_state *cached_state = NULL;
3071 	struct extent_map *em;
3072 	struct block_device *bdev;
3073 	int ret;
3074 	int nr = 0;
3075 	size_t pg_offset = 0;
3076 	size_t blocksize;
3077 	loff_t i_size = i_size_read(inode);
3078 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3079 	u64 nr_delalloc;
3080 	u64 delalloc_end;
3081 	int page_started;
3082 	int compressed;
3083 	int write_flags;
3084 	unsigned long nr_written = 0;
3085 	bool fill_delalloc = true;
3086 
3087 	if (wbc->sync_mode == WB_SYNC_ALL)
3088 		write_flags = WRITE_SYNC;
3089 	else
3090 		write_flags = WRITE;
3091 
3092 	trace___extent_writepage(page, inode, wbc);
3093 
3094 	WARN_ON(!PageLocked(page));
3095 
3096 	ClearPageError(page);
3097 
3098 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3099 	if (page->index > end_index ||
3100 	   (page->index == end_index && !pg_offset)) {
3101 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3102 		unlock_page(page);
3103 		return 0;
3104 	}
3105 
3106 	if (page->index == end_index) {
3107 		char *userpage;
3108 
3109 		userpage = kmap_atomic(page);
3110 		memset(userpage + pg_offset, 0,
3111 		       PAGE_CACHE_SIZE - pg_offset);
3112 		kunmap_atomic(userpage);
3113 		flush_dcache_page(page);
3114 	}
3115 	pg_offset = 0;
3116 
3117 	set_page_extent_mapped(page);
3118 
3119 	if (!tree->ops || !tree->ops->fill_delalloc)
3120 		fill_delalloc = false;
3121 
3122 	delalloc_start = start;
3123 	delalloc_end = 0;
3124 	page_started = 0;
3125 	if (!epd->extent_locked && fill_delalloc) {
3126 		u64 delalloc_to_write = 0;
3127 		/*
3128 		 * make sure the wbc mapping index is at least updated
3129 		 * to this page.
3130 		 */
3131 		update_nr_written(page, wbc, 0);
3132 
3133 		while (delalloc_end < page_end) {
3134 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3135 						       page,
3136 						       &delalloc_start,
3137 						       &delalloc_end,
3138 						       128 * 1024 * 1024);
3139 			if (nr_delalloc == 0) {
3140 				delalloc_start = delalloc_end + 1;
3141 				continue;
3142 			}
3143 			ret = tree->ops->fill_delalloc(inode, page,
3144 						       delalloc_start,
3145 						       delalloc_end,
3146 						       &page_started,
3147 						       &nr_written);
3148 			/* File system has been set read-only */
3149 			if (ret) {
3150 				SetPageError(page);
3151 				goto done;
3152 			}
3153 			/*
3154 			 * delalloc_end is already one less than the total
3155 			 * length, so we don't subtract one from
3156 			 * PAGE_CACHE_SIZE
3157 			 */
3158 			delalloc_to_write += (delalloc_end - delalloc_start +
3159 					      PAGE_CACHE_SIZE) >>
3160 					      PAGE_CACHE_SHIFT;
3161 			delalloc_start = delalloc_end + 1;
3162 		}
3163 		if (wbc->nr_to_write < delalloc_to_write) {
3164 			int thresh = 8192;
3165 
3166 			if (delalloc_to_write < thresh * 2)
3167 				thresh = delalloc_to_write;
3168 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3169 						 thresh);
3170 		}
3171 
3172 		/* did the fill delalloc function already unlock and start
3173 		 * the IO?
3174 		 */
3175 		if (page_started) {
3176 			ret = 0;
3177 			/*
3178 			 * we've unlocked the page, so we can't update
3179 			 * the mapping's writeback index, just update
3180 			 * nr_to_write.
3181 			 */
3182 			wbc->nr_to_write -= nr_written;
3183 			goto done_unlocked;
3184 		}
3185 	}
3186 	if (tree->ops && tree->ops->writepage_start_hook) {
3187 		ret = tree->ops->writepage_start_hook(page, start,
3188 						      page_end);
3189 		if (ret) {
3190 			/* Fixup worker will requeue */
3191 			if (ret == -EBUSY)
3192 				wbc->pages_skipped++;
3193 			else
3194 				redirty_page_for_writepage(wbc, page);
3195 			update_nr_written(page, wbc, nr_written);
3196 			unlock_page(page);
3197 			ret = 0;
3198 			goto done_unlocked;
3199 		}
3200 	}
3201 
3202 	/*
3203 	 * we don't want to touch the inode after unlocking the page,
3204 	 * so we update the mapping writeback index now
3205 	 */
3206 	update_nr_written(page, wbc, nr_written + 1);
3207 
3208 	end = page_end;
3209 	if (last_byte <= start) {
3210 		if (tree->ops && tree->ops->writepage_end_io_hook)
3211 			tree->ops->writepage_end_io_hook(page, start,
3212 							 page_end, NULL, 1);
3213 		goto done;
3214 	}
3215 
3216 	blocksize = inode->i_sb->s_blocksize;
3217 
3218 	while (cur <= end) {
3219 		if (cur >= last_byte) {
3220 			if (tree->ops && tree->ops->writepage_end_io_hook)
3221 				tree->ops->writepage_end_io_hook(page, cur,
3222 							 page_end, NULL, 1);
3223 			break;
3224 		}
3225 		em = epd->get_extent(inode, page, pg_offset, cur,
3226 				     end - cur + 1, 1);
3227 		if (IS_ERR_OR_NULL(em)) {
3228 			SetPageError(page);
3229 			break;
3230 		}
3231 
3232 		extent_offset = cur - em->start;
3233 		BUG_ON(extent_map_end(em) <= cur);
3234 		BUG_ON(end < cur);
3235 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3236 		iosize = ALIGN(iosize, blocksize);
3237 		sector = (em->block_start + extent_offset) >> 9;
3238 		bdev = em->bdev;
3239 		block_start = em->block_start;
3240 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3241 		free_extent_map(em);
3242 		em = NULL;
3243 
3244 		/*
3245 		 * compressed and inline extents are written through other
3246 		 * paths in the FS
3247 		 */
3248 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3249 		    block_start == EXTENT_MAP_INLINE) {
3250 			/*
3251 			 * end_io notification does not happen here for
3252 			 * compressed extents
3253 			 */
3254 			if (!compressed && tree->ops &&
3255 			    tree->ops->writepage_end_io_hook)
3256 				tree->ops->writepage_end_io_hook(page, cur,
3257 							 cur + iosize - 1,
3258 							 NULL, 1);
3259 			else if (compressed) {
3260 				/* we don't want to end_page_writeback on
3261 				 * a compressed extent.  this happens
3262 				 * elsewhere
3263 				 */
3264 				nr++;
3265 			}
3266 
3267 			cur += iosize;
3268 			pg_offset += iosize;
3269 			continue;
3270 		}
3271 		/* leave this out until we have a page_mkwrite call */
3272 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3273 				   EXTENT_DIRTY, 0, NULL)) {
3274 			cur = cur + iosize;
3275 			pg_offset += iosize;
3276 			continue;
3277 		}
3278 
3279 		if (tree->ops && tree->ops->writepage_io_hook) {
3280 			ret = tree->ops->writepage_io_hook(page, cur,
3281 						cur + iosize - 1);
3282 		} else {
3283 			ret = 0;
3284 		}
3285 		if (ret) {
3286 			SetPageError(page);
3287 		} else {
3288 			unsigned long max_nr = end_index + 1;
3289 
3290 			set_range_writeback(tree, cur, cur + iosize - 1);
3291 			if (!PageWriteback(page)) {
3292 				printk(KERN_ERR "btrfs warning page %lu not "
3293 				       "writeback, cur %llu end %llu\n",
3294 				       page->index, cur, end);
3295 			}
3296 
3297 			ret = submit_extent_page(write_flags, tree, page,
3298 						 sector, iosize, pg_offset,
3299 						 bdev, &epd->bio, max_nr,
3300 						 end_bio_extent_writepage,
3301 						 0, 0, 0);
3302 			if (ret)
3303 				SetPageError(page);
3304 		}
3305 		cur = cur + iosize;
3306 		pg_offset += iosize;
3307 		nr++;
3308 	}
3309 done:
3310 	if (nr == 0) {
3311 		/* make sure the mapping tag for page dirty gets cleared */
3312 		set_page_writeback(page);
3313 		end_page_writeback(page);
3314 	}
3315 	unlock_page(page);
3316 
3317 done_unlocked:
3318 
3319 	/* drop our reference on any cached states */
3320 	free_extent_state(cached_state);
3321 	return 0;
3322 }
3323 
3324 static int eb_wait(void *word)
3325 {
3326 	io_schedule();
3327 	return 0;
3328 }
3329 
3330 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3331 {
3332 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3333 		    TASK_UNINTERRUPTIBLE);
3334 }
3335 
3336 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3337 				     struct btrfs_fs_info *fs_info,
3338 				     struct extent_page_data *epd)
3339 {
3340 	unsigned long i, num_pages;
3341 	int flush = 0;
3342 	int ret = 0;
3343 
3344 	if (!btrfs_try_tree_write_lock(eb)) {
3345 		flush = 1;
3346 		flush_write_bio(epd);
3347 		btrfs_tree_lock(eb);
3348 	}
3349 
3350 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3351 		btrfs_tree_unlock(eb);
3352 		if (!epd->sync_io)
3353 			return 0;
3354 		if (!flush) {
3355 			flush_write_bio(epd);
3356 			flush = 1;
3357 		}
3358 		while (1) {
3359 			wait_on_extent_buffer_writeback(eb);
3360 			btrfs_tree_lock(eb);
3361 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3362 				break;
3363 			btrfs_tree_unlock(eb);
3364 		}
3365 	}
3366 
3367 	/*
3368 	 * We need to do this to prevent races in people who check if the eb is
3369 	 * under IO since we can end up having no IO bits set for a short period
3370 	 * of time.
3371 	 */
3372 	spin_lock(&eb->refs_lock);
3373 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3374 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3375 		spin_unlock(&eb->refs_lock);
3376 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3377 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3378 				     -eb->len,
3379 				     fs_info->dirty_metadata_batch);
3380 		ret = 1;
3381 	} else {
3382 		spin_unlock(&eb->refs_lock);
3383 	}
3384 
3385 	btrfs_tree_unlock(eb);
3386 
3387 	if (!ret)
3388 		return ret;
3389 
3390 	num_pages = num_extent_pages(eb->start, eb->len);
3391 	for (i = 0; i < num_pages; i++) {
3392 		struct page *p = extent_buffer_page(eb, i);
3393 
3394 		if (!trylock_page(p)) {
3395 			if (!flush) {
3396 				flush_write_bio(epd);
3397 				flush = 1;
3398 			}
3399 			lock_page(p);
3400 		}
3401 	}
3402 
3403 	return ret;
3404 }
3405 
3406 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3407 {
3408 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3409 	smp_mb__after_clear_bit();
3410 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3411 }
3412 
3413 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3414 {
3415 	int uptodate = err == 0;
3416 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3417 	struct extent_buffer *eb;
3418 	int done;
3419 
3420 	do {
3421 		struct page *page = bvec->bv_page;
3422 
3423 		bvec--;
3424 		eb = (struct extent_buffer *)page->private;
3425 		BUG_ON(!eb);
3426 		done = atomic_dec_and_test(&eb->io_pages);
3427 
3428 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3429 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3430 			ClearPageUptodate(page);
3431 			SetPageError(page);
3432 		}
3433 
3434 		end_page_writeback(page);
3435 
3436 		if (!done)
3437 			continue;
3438 
3439 		end_extent_buffer_writeback(eb);
3440 	} while (bvec >= bio->bi_io_vec);
3441 
3442 	bio_put(bio);
3443 
3444 }
3445 
3446 static int write_one_eb(struct extent_buffer *eb,
3447 			struct btrfs_fs_info *fs_info,
3448 			struct writeback_control *wbc,
3449 			struct extent_page_data *epd)
3450 {
3451 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3452 	u64 offset = eb->start;
3453 	unsigned long i, num_pages;
3454 	unsigned long bio_flags = 0;
3455 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3456 	int ret = 0;
3457 
3458 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3459 	num_pages = num_extent_pages(eb->start, eb->len);
3460 	atomic_set(&eb->io_pages, num_pages);
3461 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3462 		bio_flags = EXTENT_BIO_TREE_LOG;
3463 
3464 	for (i = 0; i < num_pages; i++) {
3465 		struct page *p = extent_buffer_page(eb, i);
3466 
3467 		clear_page_dirty_for_io(p);
3468 		set_page_writeback(p);
3469 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3470 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3471 					 -1, end_bio_extent_buffer_writepage,
3472 					 0, epd->bio_flags, bio_flags);
3473 		epd->bio_flags = bio_flags;
3474 		if (ret) {
3475 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3476 			SetPageError(p);
3477 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3478 				end_extent_buffer_writeback(eb);
3479 			ret = -EIO;
3480 			break;
3481 		}
3482 		offset += PAGE_CACHE_SIZE;
3483 		update_nr_written(p, wbc, 1);
3484 		unlock_page(p);
3485 	}
3486 
3487 	if (unlikely(ret)) {
3488 		for (; i < num_pages; i++) {
3489 			struct page *p = extent_buffer_page(eb, i);
3490 			unlock_page(p);
3491 		}
3492 	}
3493 
3494 	return ret;
3495 }
3496 
3497 int btree_write_cache_pages(struct address_space *mapping,
3498 				   struct writeback_control *wbc)
3499 {
3500 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3501 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3502 	struct extent_buffer *eb, *prev_eb = NULL;
3503 	struct extent_page_data epd = {
3504 		.bio = NULL,
3505 		.tree = tree,
3506 		.extent_locked = 0,
3507 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3508 		.bio_flags = 0,
3509 	};
3510 	int ret = 0;
3511 	int done = 0;
3512 	int nr_to_write_done = 0;
3513 	struct pagevec pvec;
3514 	int nr_pages;
3515 	pgoff_t index;
3516 	pgoff_t end;		/* Inclusive */
3517 	int scanned = 0;
3518 	int tag;
3519 
3520 	pagevec_init(&pvec, 0);
3521 	if (wbc->range_cyclic) {
3522 		index = mapping->writeback_index; /* Start from prev offset */
3523 		end = -1;
3524 	} else {
3525 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3526 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3527 		scanned = 1;
3528 	}
3529 	if (wbc->sync_mode == WB_SYNC_ALL)
3530 		tag = PAGECACHE_TAG_TOWRITE;
3531 	else
3532 		tag = PAGECACHE_TAG_DIRTY;
3533 retry:
3534 	if (wbc->sync_mode == WB_SYNC_ALL)
3535 		tag_pages_for_writeback(mapping, index, end);
3536 	while (!done && !nr_to_write_done && (index <= end) &&
3537 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3538 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3539 		unsigned i;
3540 
3541 		scanned = 1;
3542 		for (i = 0; i < nr_pages; i++) {
3543 			struct page *page = pvec.pages[i];
3544 
3545 			if (!PagePrivate(page))
3546 				continue;
3547 
3548 			if (!wbc->range_cyclic && page->index > end) {
3549 				done = 1;
3550 				break;
3551 			}
3552 
3553 			spin_lock(&mapping->private_lock);
3554 			if (!PagePrivate(page)) {
3555 				spin_unlock(&mapping->private_lock);
3556 				continue;
3557 			}
3558 
3559 			eb = (struct extent_buffer *)page->private;
3560 
3561 			/*
3562 			 * Shouldn't happen and normally this would be a BUG_ON
3563 			 * but no sense in crashing the users box for something
3564 			 * we can survive anyway.
3565 			 */
3566 			if (!eb) {
3567 				spin_unlock(&mapping->private_lock);
3568 				WARN_ON(1);
3569 				continue;
3570 			}
3571 
3572 			if (eb == prev_eb) {
3573 				spin_unlock(&mapping->private_lock);
3574 				continue;
3575 			}
3576 
3577 			ret = atomic_inc_not_zero(&eb->refs);
3578 			spin_unlock(&mapping->private_lock);
3579 			if (!ret)
3580 				continue;
3581 
3582 			prev_eb = eb;
3583 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3584 			if (!ret) {
3585 				free_extent_buffer(eb);
3586 				continue;
3587 			}
3588 
3589 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3590 			if (ret) {
3591 				done = 1;
3592 				free_extent_buffer(eb);
3593 				break;
3594 			}
3595 			free_extent_buffer(eb);
3596 
3597 			/*
3598 			 * the filesystem may choose to bump up nr_to_write.
3599 			 * We have to make sure to honor the new nr_to_write
3600 			 * at any time
3601 			 */
3602 			nr_to_write_done = wbc->nr_to_write <= 0;
3603 		}
3604 		pagevec_release(&pvec);
3605 		cond_resched();
3606 	}
3607 	if (!scanned && !done) {
3608 		/*
3609 		 * We hit the last page and there is more work to be done: wrap
3610 		 * back to the start of the file
3611 		 */
3612 		scanned = 1;
3613 		index = 0;
3614 		goto retry;
3615 	}
3616 	flush_write_bio(&epd);
3617 	return ret;
3618 }
3619 
3620 /**
3621  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3622  * @mapping: address space structure to write
3623  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3624  * @writepage: function called for each page
3625  * @data: data passed to writepage function
3626  *
3627  * If a page is already under I/O, write_cache_pages() skips it, even
3628  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3629  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3630  * and msync() need to guarantee that all the data which was dirty at the time
3631  * the call was made get new I/O started against them.  If wbc->sync_mode is
3632  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3633  * existing IO to complete.
3634  */
3635 static int extent_write_cache_pages(struct extent_io_tree *tree,
3636 			     struct address_space *mapping,
3637 			     struct writeback_control *wbc,
3638 			     writepage_t writepage, void *data,
3639 			     void (*flush_fn)(void *))
3640 {
3641 	struct inode *inode = mapping->host;
3642 	int ret = 0;
3643 	int done = 0;
3644 	int nr_to_write_done = 0;
3645 	struct pagevec pvec;
3646 	int nr_pages;
3647 	pgoff_t index;
3648 	pgoff_t end;		/* Inclusive */
3649 	int scanned = 0;
3650 	int tag;
3651 
3652 	/*
3653 	 * We have to hold onto the inode so that ordered extents can do their
3654 	 * work when the IO finishes.  The alternative to this is failing to add
3655 	 * an ordered extent if the igrab() fails there and that is a huge pain
3656 	 * to deal with, so instead just hold onto the inode throughout the
3657 	 * writepages operation.  If it fails here we are freeing up the inode
3658 	 * anyway and we'd rather not waste our time writing out stuff that is
3659 	 * going to be truncated anyway.
3660 	 */
3661 	if (!igrab(inode))
3662 		return 0;
3663 
3664 	pagevec_init(&pvec, 0);
3665 	if (wbc->range_cyclic) {
3666 		index = mapping->writeback_index; /* Start from prev offset */
3667 		end = -1;
3668 	} else {
3669 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3670 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3671 		scanned = 1;
3672 	}
3673 	if (wbc->sync_mode == WB_SYNC_ALL)
3674 		tag = PAGECACHE_TAG_TOWRITE;
3675 	else
3676 		tag = PAGECACHE_TAG_DIRTY;
3677 retry:
3678 	if (wbc->sync_mode == WB_SYNC_ALL)
3679 		tag_pages_for_writeback(mapping, index, end);
3680 	while (!done && !nr_to_write_done && (index <= end) &&
3681 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3682 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3683 		unsigned i;
3684 
3685 		scanned = 1;
3686 		for (i = 0; i < nr_pages; i++) {
3687 			struct page *page = pvec.pages[i];
3688 
3689 			/*
3690 			 * At this point we hold neither mapping->tree_lock nor
3691 			 * lock on the page itself: the page may be truncated or
3692 			 * invalidated (changing page->mapping to NULL), or even
3693 			 * swizzled back from swapper_space to tmpfs file
3694 			 * mapping
3695 			 */
3696 			if (!trylock_page(page)) {
3697 				flush_fn(data);
3698 				lock_page(page);
3699 			}
3700 
3701 			if (unlikely(page->mapping != mapping)) {
3702 				unlock_page(page);
3703 				continue;
3704 			}
3705 
3706 			if (!wbc->range_cyclic && page->index > end) {
3707 				done = 1;
3708 				unlock_page(page);
3709 				continue;
3710 			}
3711 
3712 			if (wbc->sync_mode != WB_SYNC_NONE) {
3713 				if (PageWriteback(page))
3714 					flush_fn(data);
3715 				wait_on_page_writeback(page);
3716 			}
3717 
3718 			if (PageWriteback(page) ||
3719 			    !clear_page_dirty_for_io(page)) {
3720 				unlock_page(page);
3721 				continue;
3722 			}
3723 
3724 			ret = (*writepage)(page, wbc, data);
3725 
3726 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3727 				unlock_page(page);
3728 				ret = 0;
3729 			}
3730 			if (ret)
3731 				done = 1;
3732 
3733 			/*
3734 			 * the filesystem may choose to bump up nr_to_write.
3735 			 * We have to make sure to honor the new nr_to_write
3736 			 * at any time
3737 			 */
3738 			nr_to_write_done = wbc->nr_to_write <= 0;
3739 		}
3740 		pagevec_release(&pvec);
3741 		cond_resched();
3742 	}
3743 	if (!scanned && !done) {
3744 		/*
3745 		 * We hit the last page and there is more work to be done: wrap
3746 		 * back to the start of the file
3747 		 */
3748 		scanned = 1;
3749 		index = 0;
3750 		goto retry;
3751 	}
3752 	btrfs_add_delayed_iput(inode);
3753 	return ret;
3754 }
3755 
3756 static void flush_epd_write_bio(struct extent_page_data *epd)
3757 {
3758 	if (epd->bio) {
3759 		int rw = WRITE;
3760 		int ret;
3761 
3762 		if (epd->sync_io)
3763 			rw = WRITE_SYNC;
3764 
3765 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3766 		BUG_ON(ret < 0); /* -ENOMEM */
3767 		epd->bio = NULL;
3768 	}
3769 }
3770 
3771 static noinline void flush_write_bio(void *data)
3772 {
3773 	struct extent_page_data *epd = data;
3774 	flush_epd_write_bio(epd);
3775 }
3776 
3777 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3778 			  get_extent_t *get_extent,
3779 			  struct writeback_control *wbc)
3780 {
3781 	int ret;
3782 	struct extent_page_data epd = {
3783 		.bio = NULL,
3784 		.tree = tree,
3785 		.get_extent = get_extent,
3786 		.extent_locked = 0,
3787 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788 		.bio_flags = 0,
3789 	};
3790 
3791 	ret = __extent_writepage(page, wbc, &epd);
3792 
3793 	flush_epd_write_bio(&epd);
3794 	return ret;
3795 }
3796 
3797 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3798 			      u64 start, u64 end, get_extent_t *get_extent,
3799 			      int mode)
3800 {
3801 	int ret = 0;
3802 	struct address_space *mapping = inode->i_mapping;
3803 	struct page *page;
3804 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3805 		PAGE_CACHE_SHIFT;
3806 
3807 	struct extent_page_data epd = {
3808 		.bio = NULL,
3809 		.tree = tree,
3810 		.get_extent = get_extent,
3811 		.extent_locked = 1,
3812 		.sync_io = mode == WB_SYNC_ALL,
3813 		.bio_flags = 0,
3814 	};
3815 	struct writeback_control wbc_writepages = {
3816 		.sync_mode	= mode,
3817 		.nr_to_write	= nr_pages * 2,
3818 		.range_start	= start,
3819 		.range_end	= end + 1,
3820 	};
3821 
3822 	while (start <= end) {
3823 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3824 		if (clear_page_dirty_for_io(page))
3825 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3826 		else {
3827 			if (tree->ops && tree->ops->writepage_end_io_hook)
3828 				tree->ops->writepage_end_io_hook(page, start,
3829 						 start + PAGE_CACHE_SIZE - 1,
3830 						 NULL, 1);
3831 			unlock_page(page);
3832 		}
3833 		page_cache_release(page);
3834 		start += PAGE_CACHE_SIZE;
3835 	}
3836 
3837 	flush_epd_write_bio(&epd);
3838 	return ret;
3839 }
3840 
3841 int extent_writepages(struct extent_io_tree *tree,
3842 		      struct address_space *mapping,
3843 		      get_extent_t *get_extent,
3844 		      struct writeback_control *wbc)
3845 {
3846 	int ret = 0;
3847 	struct extent_page_data epd = {
3848 		.bio = NULL,
3849 		.tree = tree,
3850 		.get_extent = get_extent,
3851 		.extent_locked = 0,
3852 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3853 		.bio_flags = 0,
3854 	};
3855 
3856 	ret = extent_write_cache_pages(tree, mapping, wbc,
3857 				       __extent_writepage, &epd,
3858 				       flush_write_bio);
3859 	flush_epd_write_bio(&epd);
3860 	return ret;
3861 }
3862 
3863 int extent_readpages(struct extent_io_tree *tree,
3864 		     struct address_space *mapping,
3865 		     struct list_head *pages, unsigned nr_pages,
3866 		     get_extent_t get_extent)
3867 {
3868 	struct bio *bio = NULL;
3869 	unsigned page_idx;
3870 	unsigned long bio_flags = 0;
3871 	struct page *pagepool[16];
3872 	struct page *page;
3873 	struct extent_map *em_cached = NULL;
3874 	int nr = 0;
3875 
3876 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3877 		page = list_entry(pages->prev, struct page, lru);
3878 
3879 		prefetchw(&page->flags);
3880 		list_del(&page->lru);
3881 		if (add_to_page_cache_lru(page, mapping,
3882 					page->index, GFP_NOFS)) {
3883 			page_cache_release(page);
3884 			continue;
3885 		}
3886 
3887 		pagepool[nr++] = page;
3888 		if (nr < ARRAY_SIZE(pagepool))
3889 			continue;
3890 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3891 				   &bio, 0, &bio_flags, READ);
3892 		nr = 0;
3893 	}
3894 	if (nr)
3895 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3896 				   &bio, 0, &bio_flags, READ);
3897 
3898 	if (em_cached)
3899 		free_extent_map(em_cached);
3900 
3901 	BUG_ON(!list_empty(pages));
3902 	if (bio)
3903 		return submit_one_bio(READ, bio, 0, bio_flags);
3904 	return 0;
3905 }
3906 
3907 /*
3908  * basic invalidatepage code, this waits on any locked or writeback
3909  * ranges corresponding to the page, and then deletes any extent state
3910  * records from the tree
3911  */
3912 int extent_invalidatepage(struct extent_io_tree *tree,
3913 			  struct page *page, unsigned long offset)
3914 {
3915 	struct extent_state *cached_state = NULL;
3916 	u64 start = page_offset(page);
3917 	u64 end = start + PAGE_CACHE_SIZE - 1;
3918 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3919 
3920 	start += ALIGN(offset, blocksize);
3921 	if (start > end)
3922 		return 0;
3923 
3924 	lock_extent_bits(tree, start, end, 0, &cached_state);
3925 	wait_on_page_writeback(page);
3926 	clear_extent_bit(tree, start, end,
3927 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3928 			 EXTENT_DO_ACCOUNTING,
3929 			 1, 1, &cached_state, GFP_NOFS);
3930 	return 0;
3931 }
3932 
3933 /*
3934  * a helper for releasepage, this tests for areas of the page that
3935  * are locked or under IO and drops the related state bits if it is safe
3936  * to drop the page.
3937  */
3938 static int try_release_extent_state(struct extent_map_tree *map,
3939 				    struct extent_io_tree *tree,
3940 				    struct page *page, gfp_t mask)
3941 {
3942 	u64 start = page_offset(page);
3943 	u64 end = start + PAGE_CACHE_SIZE - 1;
3944 	int ret = 1;
3945 
3946 	if (test_range_bit(tree, start, end,
3947 			   EXTENT_IOBITS, 0, NULL))
3948 		ret = 0;
3949 	else {
3950 		if ((mask & GFP_NOFS) == GFP_NOFS)
3951 			mask = GFP_NOFS;
3952 		/*
3953 		 * at this point we can safely clear everything except the
3954 		 * locked bit and the nodatasum bit
3955 		 */
3956 		ret = clear_extent_bit(tree, start, end,
3957 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3958 				 0, 0, NULL, mask);
3959 
3960 		/* if clear_extent_bit failed for enomem reasons,
3961 		 * we can't allow the release to continue.
3962 		 */
3963 		if (ret < 0)
3964 			ret = 0;
3965 		else
3966 			ret = 1;
3967 	}
3968 	return ret;
3969 }
3970 
3971 /*
3972  * a helper for releasepage.  As long as there are no locked extents
3973  * in the range corresponding to the page, both state records and extent
3974  * map records are removed
3975  */
3976 int try_release_extent_mapping(struct extent_map_tree *map,
3977 			       struct extent_io_tree *tree, struct page *page,
3978 			       gfp_t mask)
3979 {
3980 	struct extent_map *em;
3981 	u64 start = page_offset(page);
3982 	u64 end = start + PAGE_CACHE_SIZE - 1;
3983 
3984 	if ((mask & __GFP_WAIT) &&
3985 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3986 		u64 len;
3987 		while (start <= end) {
3988 			len = end - start + 1;
3989 			write_lock(&map->lock);
3990 			em = lookup_extent_mapping(map, start, len);
3991 			if (!em) {
3992 				write_unlock(&map->lock);
3993 				break;
3994 			}
3995 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3996 			    em->start != start) {
3997 				write_unlock(&map->lock);
3998 				free_extent_map(em);
3999 				break;
4000 			}
4001 			if (!test_range_bit(tree, em->start,
4002 					    extent_map_end(em) - 1,
4003 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4004 					    0, NULL)) {
4005 				remove_extent_mapping(map, em);
4006 				/* once for the rb tree */
4007 				free_extent_map(em);
4008 			}
4009 			start = extent_map_end(em);
4010 			write_unlock(&map->lock);
4011 
4012 			/* once for us */
4013 			free_extent_map(em);
4014 		}
4015 	}
4016 	return try_release_extent_state(map, tree, page, mask);
4017 }
4018 
4019 /*
4020  * helper function for fiemap, which doesn't want to see any holes.
4021  * This maps until we find something past 'last'
4022  */
4023 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4024 						u64 offset,
4025 						u64 last,
4026 						get_extent_t *get_extent)
4027 {
4028 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4029 	struct extent_map *em;
4030 	u64 len;
4031 
4032 	if (offset >= last)
4033 		return NULL;
4034 
4035 	while(1) {
4036 		len = last - offset;
4037 		if (len == 0)
4038 			break;
4039 		len = ALIGN(len, sectorsize);
4040 		em = get_extent(inode, NULL, 0, offset, len, 0);
4041 		if (IS_ERR_OR_NULL(em))
4042 			return em;
4043 
4044 		/* if this isn't a hole return it */
4045 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4046 		    em->block_start != EXTENT_MAP_HOLE) {
4047 			return em;
4048 		}
4049 
4050 		/* this is a hole, advance to the next extent */
4051 		offset = extent_map_end(em);
4052 		free_extent_map(em);
4053 		if (offset >= last)
4054 			break;
4055 	}
4056 	return NULL;
4057 }
4058 
4059 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4060 		__u64 start, __u64 len, get_extent_t *get_extent)
4061 {
4062 	int ret = 0;
4063 	u64 off = start;
4064 	u64 max = start + len;
4065 	u32 flags = 0;
4066 	u32 found_type;
4067 	u64 last;
4068 	u64 last_for_get_extent = 0;
4069 	u64 disko = 0;
4070 	u64 isize = i_size_read(inode);
4071 	struct btrfs_key found_key;
4072 	struct extent_map *em = NULL;
4073 	struct extent_state *cached_state = NULL;
4074 	struct btrfs_path *path;
4075 	struct btrfs_file_extent_item *item;
4076 	int end = 0;
4077 	u64 em_start = 0;
4078 	u64 em_len = 0;
4079 	u64 em_end = 0;
4080 	unsigned long emflags;
4081 
4082 	if (len == 0)
4083 		return -EINVAL;
4084 
4085 	path = btrfs_alloc_path();
4086 	if (!path)
4087 		return -ENOMEM;
4088 	path->leave_spinning = 1;
4089 
4090 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4091 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4092 
4093 	/*
4094 	 * lookup the last file extent.  We're not using i_size here
4095 	 * because there might be preallocation past i_size
4096 	 */
4097 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4098 				       path, btrfs_ino(inode), -1, 0);
4099 	if (ret < 0) {
4100 		btrfs_free_path(path);
4101 		return ret;
4102 	}
4103 	WARN_ON(!ret);
4104 	path->slots[0]--;
4105 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4106 			      struct btrfs_file_extent_item);
4107 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4108 	found_type = btrfs_key_type(&found_key);
4109 
4110 	/* No extents, but there might be delalloc bits */
4111 	if (found_key.objectid != btrfs_ino(inode) ||
4112 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4113 		/* have to trust i_size as the end */
4114 		last = (u64)-1;
4115 		last_for_get_extent = isize;
4116 	} else {
4117 		/*
4118 		 * remember the start of the last extent.  There are a
4119 		 * bunch of different factors that go into the length of the
4120 		 * extent, so its much less complex to remember where it started
4121 		 */
4122 		last = found_key.offset;
4123 		last_for_get_extent = last + 1;
4124 	}
4125 	btrfs_free_path(path);
4126 
4127 	/*
4128 	 * we might have some extents allocated but more delalloc past those
4129 	 * extents.  so, we trust isize unless the start of the last extent is
4130 	 * beyond isize
4131 	 */
4132 	if (last < isize) {
4133 		last = (u64)-1;
4134 		last_for_get_extent = isize;
4135 	}
4136 
4137 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4138 			 &cached_state);
4139 
4140 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4141 				   get_extent);
4142 	if (!em)
4143 		goto out;
4144 	if (IS_ERR(em)) {
4145 		ret = PTR_ERR(em);
4146 		goto out;
4147 	}
4148 
4149 	while (!end) {
4150 		u64 offset_in_extent = 0;
4151 
4152 		/* break if the extent we found is outside the range */
4153 		if (em->start >= max || extent_map_end(em) < off)
4154 			break;
4155 
4156 		/*
4157 		 * get_extent may return an extent that starts before our
4158 		 * requested range.  We have to make sure the ranges
4159 		 * we return to fiemap always move forward and don't
4160 		 * overlap, so adjust the offsets here
4161 		 */
4162 		em_start = max(em->start, off);
4163 
4164 		/*
4165 		 * record the offset from the start of the extent
4166 		 * for adjusting the disk offset below.  Only do this if the
4167 		 * extent isn't compressed since our in ram offset may be past
4168 		 * what we have actually allocated on disk.
4169 		 */
4170 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4171 			offset_in_extent = em_start - em->start;
4172 		em_end = extent_map_end(em);
4173 		em_len = em_end - em_start;
4174 		emflags = em->flags;
4175 		disko = 0;
4176 		flags = 0;
4177 
4178 		/*
4179 		 * bump off for our next call to get_extent
4180 		 */
4181 		off = extent_map_end(em);
4182 		if (off >= max)
4183 			end = 1;
4184 
4185 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4186 			end = 1;
4187 			flags |= FIEMAP_EXTENT_LAST;
4188 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4189 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4190 				  FIEMAP_EXTENT_NOT_ALIGNED);
4191 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4192 			flags |= (FIEMAP_EXTENT_DELALLOC |
4193 				  FIEMAP_EXTENT_UNKNOWN);
4194 		} else {
4195 			disko = em->block_start + offset_in_extent;
4196 		}
4197 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4198 			flags |= FIEMAP_EXTENT_ENCODED;
4199 
4200 		free_extent_map(em);
4201 		em = NULL;
4202 		if ((em_start >= last) || em_len == (u64)-1 ||
4203 		   (last == (u64)-1 && isize <= em_end)) {
4204 			flags |= FIEMAP_EXTENT_LAST;
4205 			end = 1;
4206 		}
4207 
4208 		/* now scan forward to see if this is really the last extent. */
4209 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4210 					   get_extent);
4211 		if (IS_ERR(em)) {
4212 			ret = PTR_ERR(em);
4213 			goto out;
4214 		}
4215 		if (!em) {
4216 			flags |= FIEMAP_EXTENT_LAST;
4217 			end = 1;
4218 		}
4219 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4220 					      em_len, flags);
4221 		if (ret)
4222 			goto out_free;
4223 	}
4224 out_free:
4225 	free_extent_map(em);
4226 out:
4227 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4228 			     &cached_state, GFP_NOFS);
4229 	return ret;
4230 }
4231 
4232 static void __free_extent_buffer(struct extent_buffer *eb)
4233 {
4234 	btrfs_leak_debug_del(&eb->leak_list);
4235 	kmem_cache_free(extent_buffer_cache, eb);
4236 }
4237 
4238 static int extent_buffer_under_io(struct extent_buffer *eb)
4239 {
4240 	return (atomic_read(&eb->io_pages) ||
4241 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4242 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4243 }
4244 
4245 /*
4246  * Helper for releasing extent buffer page.
4247  */
4248 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4249 						unsigned long start_idx)
4250 {
4251 	unsigned long index;
4252 	unsigned long num_pages;
4253 	struct page *page;
4254 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4255 
4256 	BUG_ON(extent_buffer_under_io(eb));
4257 
4258 	num_pages = num_extent_pages(eb->start, eb->len);
4259 	index = start_idx + num_pages;
4260 	if (start_idx >= index)
4261 		return;
4262 
4263 	do {
4264 		index--;
4265 		page = extent_buffer_page(eb, index);
4266 		if (page && mapped) {
4267 			spin_lock(&page->mapping->private_lock);
4268 			/*
4269 			 * We do this since we'll remove the pages after we've
4270 			 * removed the eb from the radix tree, so we could race
4271 			 * and have this page now attached to the new eb.  So
4272 			 * only clear page_private if it's still connected to
4273 			 * this eb.
4274 			 */
4275 			if (PagePrivate(page) &&
4276 			    page->private == (unsigned long)eb) {
4277 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4278 				BUG_ON(PageDirty(page));
4279 				BUG_ON(PageWriteback(page));
4280 				/*
4281 				 * We need to make sure we haven't be attached
4282 				 * to a new eb.
4283 				 */
4284 				ClearPagePrivate(page);
4285 				set_page_private(page, 0);
4286 				/* One for the page private */
4287 				page_cache_release(page);
4288 			}
4289 			spin_unlock(&page->mapping->private_lock);
4290 
4291 		}
4292 		if (page) {
4293 			/* One for when we alloced the page */
4294 			page_cache_release(page);
4295 		}
4296 	} while (index != start_idx);
4297 }
4298 
4299 /*
4300  * Helper for releasing the extent buffer.
4301  */
4302 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4303 {
4304 	btrfs_release_extent_buffer_page(eb, 0);
4305 	__free_extent_buffer(eb);
4306 }
4307 
4308 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4309 						   u64 start,
4310 						   unsigned long len,
4311 						   gfp_t mask)
4312 {
4313 	struct extent_buffer *eb = NULL;
4314 
4315 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4316 	if (eb == NULL)
4317 		return NULL;
4318 	eb->start = start;
4319 	eb->len = len;
4320 	eb->tree = tree;
4321 	eb->bflags = 0;
4322 	rwlock_init(&eb->lock);
4323 	atomic_set(&eb->write_locks, 0);
4324 	atomic_set(&eb->read_locks, 0);
4325 	atomic_set(&eb->blocking_readers, 0);
4326 	atomic_set(&eb->blocking_writers, 0);
4327 	atomic_set(&eb->spinning_readers, 0);
4328 	atomic_set(&eb->spinning_writers, 0);
4329 	eb->lock_nested = 0;
4330 	init_waitqueue_head(&eb->write_lock_wq);
4331 	init_waitqueue_head(&eb->read_lock_wq);
4332 
4333 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4334 
4335 	spin_lock_init(&eb->refs_lock);
4336 	atomic_set(&eb->refs, 1);
4337 	atomic_set(&eb->io_pages, 0);
4338 
4339 	/*
4340 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4341 	 */
4342 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4343 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4344 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4345 
4346 	return eb;
4347 }
4348 
4349 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4350 {
4351 	unsigned long i;
4352 	struct page *p;
4353 	struct extent_buffer *new;
4354 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4355 
4356 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4357 	if (new == NULL)
4358 		return NULL;
4359 
4360 	for (i = 0; i < num_pages; i++) {
4361 		p = alloc_page(GFP_NOFS);
4362 		if (!p) {
4363 			btrfs_release_extent_buffer(new);
4364 			return NULL;
4365 		}
4366 		attach_extent_buffer_page(new, p);
4367 		WARN_ON(PageDirty(p));
4368 		SetPageUptodate(p);
4369 		new->pages[i] = p;
4370 	}
4371 
4372 	copy_extent_buffer(new, src, 0, 0, src->len);
4373 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4374 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4375 
4376 	return new;
4377 }
4378 
4379 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4380 {
4381 	struct extent_buffer *eb;
4382 	unsigned long num_pages = num_extent_pages(0, len);
4383 	unsigned long i;
4384 
4385 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4386 	if (!eb)
4387 		return NULL;
4388 
4389 	for (i = 0; i < num_pages; i++) {
4390 		eb->pages[i] = alloc_page(GFP_NOFS);
4391 		if (!eb->pages[i])
4392 			goto err;
4393 	}
4394 	set_extent_buffer_uptodate(eb);
4395 	btrfs_set_header_nritems(eb, 0);
4396 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4397 
4398 	return eb;
4399 err:
4400 	for (; i > 0; i--)
4401 		__free_page(eb->pages[i - 1]);
4402 	__free_extent_buffer(eb);
4403 	return NULL;
4404 }
4405 
4406 static void check_buffer_tree_ref(struct extent_buffer *eb)
4407 {
4408 	int refs;
4409 	/* the ref bit is tricky.  We have to make sure it is set
4410 	 * if we have the buffer dirty.   Otherwise the
4411 	 * code to free a buffer can end up dropping a dirty
4412 	 * page
4413 	 *
4414 	 * Once the ref bit is set, it won't go away while the
4415 	 * buffer is dirty or in writeback, and it also won't
4416 	 * go away while we have the reference count on the
4417 	 * eb bumped.
4418 	 *
4419 	 * We can't just set the ref bit without bumping the
4420 	 * ref on the eb because free_extent_buffer might
4421 	 * see the ref bit and try to clear it.  If this happens
4422 	 * free_extent_buffer might end up dropping our original
4423 	 * ref by mistake and freeing the page before we are able
4424 	 * to add one more ref.
4425 	 *
4426 	 * So bump the ref count first, then set the bit.  If someone
4427 	 * beat us to it, drop the ref we added.
4428 	 */
4429 	refs = atomic_read(&eb->refs);
4430 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4431 		return;
4432 
4433 	spin_lock(&eb->refs_lock);
4434 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4435 		atomic_inc(&eb->refs);
4436 	spin_unlock(&eb->refs_lock);
4437 }
4438 
4439 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4440 {
4441 	unsigned long num_pages, i;
4442 
4443 	check_buffer_tree_ref(eb);
4444 
4445 	num_pages = num_extent_pages(eb->start, eb->len);
4446 	for (i = 0; i < num_pages; i++) {
4447 		struct page *p = extent_buffer_page(eb, i);
4448 		mark_page_accessed(p);
4449 	}
4450 }
4451 
4452 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4453 					  u64 start, unsigned long len)
4454 {
4455 	unsigned long num_pages = num_extent_pages(start, len);
4456 	unsigned long i;
4457 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4458 	struct extent_buffer *eb;
4459 	struct extent_buffer *exists = NULL;
4460 	struct page *p;
4461 	struct address_space *mapping = tree->mapping;
4462 	int uptodate = 1;
4463 	int ret;
4464 
4465 	rcu_read_lock();
4466 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4467 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4468 		rcu_read_unlock();
4469 		mark_extent_buffer_accessed(eb);
4470 		return eb;
4471 	}
4472 	rcu_read_unlock();
4473 
4474 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4475 	if (!eb)
4476 		return NULL;
4477 
4478 	for (i = 0; i < num_pages; i++, index++) {
4479 		p = find_or_create_page(mapping, index, GFP_NOFS);
4480 		if (!p)
4481 			goto free_eb;
4482 
4483 		spin_lock(&mapping->private_lock);
4484 		if (PagePrivate(p)) {
4485 			/*
4486 			 * We could have already allocated an eb for this page
4487 			 * and attached one so lets see if we can get a ref on
4488 			 * the existing eb, and if we can we know it's good and
4489 			 * we can just return that one, else we know we can just
4490 			 * overwrite page->private.
4491 			 */
4492 			exists = (struct extent_buffer *)p->private;
4493 			if (atomic_inc_not_zero(&exists->refs)) {
4494 				spin_unlock(&mapping->private_lock);
4495 				unlock_page(p);
4496 				page_cache_release(p);
4497 				mark_extent_buffer_accessed(exists);
4498 				goto free_eb;
4499 			}
4500 
4501 			/*
4502 			 * Do this so attach doesn't complain and we need to
4503 			 * drop the ref the old guy had.
4504 			 */
4505 			ClearPagePrivate(p);
4506 			WARN_ON(PageDirty(p));
4507 			page_cache_release(p);
4508 		}
4509 		attach_extent_buffer_page(eb, p);
4510 		spin_unlock(&mapping->private_lock);
4511 		WARN_ON(PageDirty(p));
4512 		mark_page_accessed(p);
4513 		eb->pages[i] = p;
4514 		if (!PageUptodate(p))
4515 			uptodate = 0;
4516 
4517 		/*
4518 		 * see below about how we avoid a nasty race with release page
4519 		 * and why we unlock later
4520 		 */
4521 	}
4522 	if (uptodate)
4523 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4524 again:
4525 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4526 	if (ret)
4527 		goto free_eb;
4528 
4529 	spin_lock(&tree->buffer_lock);
4530 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4531 	if (ret == -EEXIST) {
4532 		exists = radix_tree_lookup(&tree->buffer,
4533 						start >> PAGE_CACHE_SHIFT);
4534 		if (!atomic_inc_not_zero(&exists->refs)) {
4535 			spin_unlock(&tree->buffer_lock);
4536 			radix_tree_preload_end();
4537 			exists = NULL;
4538 			goto again;
4539 		}
4540 		spin_unlock(&tree->buffer_lock);
4541 		radix_tree_preload_end();
4542 		mark_extent_buffer_accessed(exists);
4543 		goto free_eb;
4544 	}
4545 	/* add one reference for the tree */
4546 	check_buffer_tree_ref(eb);
4547 	spin_unlock(&tree->buffer_lock);
4548 	radix_tree_preload_end();
4549 
4550 	/*
4551 	 * there is a race where release page may have
4552 	 * tried to find this extent buffer in the radix
4553 	 * but failed.  It will tell the VM it is safe to
4554 	 * reclaim the, and it will clear the page private bit.
4555 	 * We must make sure to set the page private bit properly
4556 	 * after the extent buffer is in the radix tree so
4557 	 * it doesn't get lost
4558 	 */
4559 	SetPageChecked(eb->pages[0]);
4560 	for (i = 1; i < num_pages; i++) {
4561 		p = extent_buffer_page(eb, i);
4562 		ClearPageChecked(p);
4563 		unlock_page(p);
4564 	}
4565 	unlock_page(eb->pages[0]);
4566 	return eb;
4567 
4568 free_eb:
4569 	for (i = 0; i < num_pages; i++) {
4570 		if (eb->pages[i])
4571 			unlock_page(eb->pages[i]);
4572 	}
4573 
4574 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4575 	btrfs_release_extent_buffer(eb);
4576 	return exists;
4577 }
4578 
4579 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4580 					 u64 start, unsigned long len)
4581 {
4582 	struct extent_buffer *eb;
4583 
4584 	rcu_read_lock();
4585 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4586 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4587 		rcu_read_unlock();
4588 		mark_extent_buffer_accessed(eb);
4589 		return eb;
4590 	}
4591 	rcu_read_unlock();
4592 
4593 	return NULL;
4594 }
4595 
4596 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4597 {
4598 	struct extent_buffer *eb =
4599 			container_of(head, struct extent_buffer, rcu_head);
4600 
4601 	__free_extent_buffer(eb);
4602 }
4603 
4604 /* Expects to have eb->eb_lock already held */
4605 static int release_extent_buffer(struct extent_buffer *eb)
4606 {
4607 	WARN_ON(atomic_read(&eb->refs) == 0);
4608 	if (atomic_dec_and_test(&eb->refs)) {
4609 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4610 			spin_unlock(&eb->refs_lock);
4611 		} else {
4612 			struct extent_io_tree *tree = eb->tree;
4613 
4614 			spin_unlock(&eb->refs_lock);
4615 
4616 			spin_lock(&tree->buffer_lock);
4617 			radix_tree_delete(&tree->buffer,
4618 					  eb->start >> PAGE_CACHE_SHIFT);
4619 			spin_unlock(&tree->buffer_lock);
4620 		}
4621 
4622 		/* Should be safe to release our pages at this point */
4623 		btrfs_release_extent_buffer_page(eb, 0);
4624 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4625 		return 1;
4626 	}
4627 	spin_unlock(&eb->refs_lock);
4628 
4629 	return 0;
4630 }
4631 
4632 void free_extent_buffer(struct extent_buffer *eb)
4633 {
4634 	int refs;
4635 	int old;
4636 	if (!eb)
4637 		return;
4638 
4639 	while (1) {
4640 		refs = atomic_read(&eb->refs);
4641 		if (refs <= 3)
4642 			break;
4643 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4644 		if (old == refs)
4645 			return;
4646 	}
4647 
4648 	spin_lock(&eb->refs_lock);
4649 	if (atomic_read(&eb->refs) == 2 &&
4650 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4651 		atomic_dec(&eb->refs);
4652 
4653 	if (atomic_read(&eb->refs) == 2 &&
4654 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4655 	    !extent_buffer_under_io(eb) &&
4656 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4657 		atomic_dec(&eb->refs);
4658 
4659 	/*
4660 	 * I know this is terrible, but it's temporary until we stop tracking
4661 	 * the uptodate bits and such for the extent buffers.
4662 	 */
4663 	release_extent_buffer(eb);
4664 }
4665 
4666 void free_extent_buffer_stale(struct extent_buffer *eb)
4667 {
4668 	if (!eb)
4669 		return;
4670 
4671 	spin_lock(&eb->refs_lock);
4672 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4673 
4674 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4675 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4676 		atomic_dec(&eb->refs);
4677 	release_extent_buffer(eb);
4678 }
4679 
4680 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4681 {
4682 	unsigned long i;
4683 	unsigned long num_pages;
4684 	struct page *page;
4685 
4686 	num_pages = num_extent_pages(eb->start, eb->len);
4687 
4688 	for (i = 0; i < num_pages; i++) {
4689 		page = extent_buffer_page(eb, i);
4690 		if (!PageDirty(page))
4691 			continue;
4692 
4693 		lock_page(page);
4694 		WARN_ON(!PagePrivate(page));
4695 
4696 		clear_page_dirty_for_io(page);
4697 		spin_lock_irq(&page->mapping->tree_lock);
4698 		if (!PageDirty(page)) {
4699 			radix_tree_tag_clear(&page->mapping->page_tree,
4700 						page_index(page),
4701 						PAGECACHE_TAG_DIRTY);
4702 		}
4703 		spin_unlock_irq(&page->mapping->tree_lock);
4704 		ClearPageError(page);
4705 		unlock_page(page);
4706 	}
4707 	WARN_ON(atomic_read(&eb->refs) == 0);
4708 }
4709 
4710 int set_extent_buffer_dirty(struct extent_buffer *eb)
4711 {
4712 	unsigned long i;
4713 	unsigned long num_pages;
4714 	int was_dirty = 0;
4715 
4716 	check_buffer_tree_ref(eb);
4717 
4718 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4719 
4720 	num_pages = num_extent_pages(eb->start, eb->len);
4721 	WARN_ON(atomic_read(&eb->refs) == 0);
4722 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4723 
4724 	for (i = 0; i < num_pages; i++)
4725 		set_page_dirty(extent_buffer_page(eb, i));
4726 	return was_dirty;
4727 }
4728 
4729 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4730 {
4731 	unsigned long i;
4732 	struct page *page;
4733 	unsigned long num_pages;
4734 
4735 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4736 	num_pages = num_extent_pages(eb->start, eb->len);
4737 	for (i = 0; i < num_pages; i++) {
4738 		page = extent_buffer_page(eb, i);
4739 		if (page)
4740 			ClearPageUptodate(page);
4741 	}
4742 	return 0;
4743 }
4744 
4745 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4746 {
4747 	unsigned long i;
4748 	struct page *page;
4749 	unsigned long num_pages;
4750 
4751 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4752 	num_pages = num_extent_pages(eb->start, eb->len);
4753 	for (i = 0; i < num_pages; i++) {
4754 		page = extent_buffer_page(eb, i);
4755 		SetPageUptodate(page);
4756 	}
4757 	return 0;
4758 }
4759 
4760 int extent_buffer_uptodate(struct extent_buffer *eb)
4761 {
4762 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4763 }
4764 
4765 int read_extent_buffer_pages(struct extent_io_tree *tree,
4766 			     struct extent_buffer *eb, u64 start, int wait,
4767 			     get_extent_t *get_extent, int mirror_num)
4768 {
4769 	unsigned long i;
4770 	unsigned long start_i;
4771 	struct page *page;
4772 	int err;
4773 	int ret = 0;
4774 	int locked_pages = 0;
4775 	int all_uptodate = 1;
4776 	unsigned long num_pages;
4777 	unsigned long num_reads = 0;
4778 	struct bio *bio = NULL;
4779 	unsigned long bio_flags = 0;
4780 
4781 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4782 		return 0;
4783 
4784 	if (start) {
4785 		WARN_ON(start < eb->start);
4786 		start_i = (start >> PAGE_CACHE_SHIFT) -
4787 			(eb->start >> PAGE_CACHE_SHIFT);
4788 	} else {
4789 		start_i = 0;
4790 	}
4791 
4792 	num_pages = num_extent_pages(eb->start, eb->len);
4793 	for (i = start_i; i < num_pages; i++) {
4794 		page = extent_buffer_page(eb, i);
4795 		if (wait == WAIT_NONE) {
4796 			if (!trylock_page(page))
4797 				goto unlock_exit;
4798 		} else {
4799 			lock_page(page);
4800 		}
4801 		locked_pages++;
4802 		if (!PageUptodate(page)) {
4803 			num_reads++;
4804 			all_uptodate = 0;
4805 		}
4806 	}
4807 	if (all_uptodate) {
4808 		if (start_i == 0)
4809 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4810 		goto unlock_exit;
4811 	}
4812 
4813 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4814 	eb->read_mirror = 0;
4815 	atomic_set(&eb->io_pages, num_reads);
4816 	for (i = start_i; i < num_pages; i++) {
4817 		page = extent_buffer_page(eb, i);
4818 		if (!PageUptodate(page)) {
4819 			ClearPageError(page);
4820 			err = __extent_read_full_page(tree, page,
4821 						      get_extent, &bio,
4822 						      mirror_num, &bio_flags,
4823 						      READ | REQ_META);
4824 			if (err)
4825 				ret = err;
4826 		} else {
4827 			unlock_page(page);
4828 		}
4829 	}
4830 
4831 	if (bio) {
4832 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4833 				     bio_flags);
4834 		if (err)
4835 			return err;
4836 	}
4837 
4838 	if (ret || wait != WAIT_COMPLETE)
4839 		return ret;
4840 
4841 	for (i = start_i; i < num_pages; i++) {
4842 		page = extent_buffer_page(eb, i);
4843 		wait_on_page_locked(page);
4844 		if (!PageUptodate(page))
4845 			ret = -EIO;
4846 	}
4847 
4848 	return ret;
4849 
4850 unlock_exit:
4851 	i = start_i;
4852 	while (locked_pages > 0) {
4853 		page = extent_buffer_page(eb, i);
4854 		i++;
4855 		unlock_page(page);
4856 		locked_pages--;
4857 	}
4858 	return ret;
4859 }
4860 
4861 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4862 			unsigned long start,
4863 			unsigned long len)
4864 {
4865 	size_t cur;
4866 	size_t offset;
4867 	struct page *page;
4868 	char *kaddr;
4869 	char *dst = (char *)dstv;
4870 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4871 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4872 
4873 	WARN_ON(start > eb->len);
4874 	WARN_ON(start + len > eb->start + eb->len);
4875 
4876 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4877 
4878 	while (len > 0) {
4879 		page = extent_buffer_page(eb, i);
4880 
4881 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4882 		kaddr = page_address(page);
4883 		memcpy(dst, kaddr + offset, cur);
4884 
4885 		dst += cur;
4886 		len -= cur;
4887 		offset = 0;
4888 		i++;
4889 	}
4890 }
4891 
4892 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4893 			       unsigned long min_len, char **map,
4894 			       unsigned long *map_start,
4895 			       unsigned long *map_len)
4896 {
4897 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4898 	char *kaddr;
4899 	struct page *p;
4900 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4901 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4902 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4903 		PAGE_CACHE_SHIFT;
4904 
4905 	if (i != end_i)
4906 		return -EINVAL;
4907 
4908 	if (i == 0) {
4909 		offset = start_offset;
4910 		*map_start = 0;
4911 	} else {
4912 		offset = 0;
4913 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4914 	}
4915 
4916 	if (start + min_len > eb->len) {
4917 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4918 		       "wanted %lu %lu\n",
4919 		       eb->start, eb->len, start, min_len);
4920 		return -EINVAL;
4921 	}
4922 
4923 	p = extent_buffer_page(eb, i);
4924 	kaddr = page_address(p);
4925 	*map = kaddr + offset;
4926 	*map_len = PAGE_CACHE_SIZE - offset;
4927 	return 0;
4928 }
4929 
4930 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4931 			  unsigned long start,
4932 			  unsigned long len)
4933 {
4934 	size_t cur;
4935 	size_t offset;
4936 	struct page *page;
4937 	char *kaddr;
4938 	char *ptr = (char *)ptrv;
4939 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4940 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4941 	int ret = 0;
4942 
4943 	WARN_ON(start > eb->len);
4944 	WARN_ON(start + len > eb->start + eb->len);
4945 
4946 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4947 
4948 	while (len > 0) {
4949 		page = extent_buffer_page(eb, i);
4950 
4951 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4952 
4953 		kaddr = page_address(page);
4954 		ret = memcmp(ptr, kaddr + offset, cur);
4955 		if (ret)
4956 			break;
4957 
4958 		ptr += cur;
4959 		len -= cur;
4960 		offset = 0;
4961 		i++;
4962 	}
4963 	return ret;
4964 }
4965 
4966 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4967 			 unsigned long start, unsigned long len)
4968 {
4969 	size_t cur;
4970 	size_t offset;
4971 	struct page *page;
4972 	char *kaddr;
4973 	char *src = (char *)srcv;
4974 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4975 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4976 
4977 	WARN_ON(start > eb->len);
4978 	WARN_ON(start + len > eb->start + eb->len);
4979 
4980 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4981 
4982 	while (len > 0) {
4983 		page = extent_buffer_page(eb, i);
4984 		WARN_ON(!PageUptodate(page));
4985 
4986 		cur = min(len, PAGE_CACHE_SIZE - offset);
4987 		kaddr = page_address(page);
4988 		memcpy(kaddr + offset, src, cur);
4989 
4990 		src += cur;
4991 		len -= cur;
4992 		offset = 0;
4993 		i++;
4994 	}
4995 }
4996 
4997 void memset_extent_buffer(struct extent_buffer *eb, char c,
4998 			  unsigned long start, unsigned long len)
4999 {
5000 	size_t cur;
5001 	size_t offset;
5002 	struct page *page;
5003 	char *kaddr;
5004 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5005 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5006 
5007 	WARN_ON(start > eb->len);
5008 	WARN_ON(start + len > eb->start + eb->len);
5009 
5010 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5011 
5012 	while (len > 0) {
5013 		page = extent_buffer_page(eb, i);
5014 		WARN_ON(!PageUptodate(page));
5015 
5016 		cur = min(len, PAGE_CACHE_SIZE - offset);
5017 		kaddr = page_address(page);
5018 		memset(kaddr + offset, c, cur);
5019 
5020 		len -= cur;
5021 		offset = 0;
5022 		i++;
5023 	}
5024 }
5025 
5026 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5027 			unsigned long dst_offset, unsigned long src_offset,
5028 			unsigned long len)
5029 {
5030 	u64 dst_len = dst->len;
5031 	size_t cur;
5032 	size_t offset;
5033 	struct page *page;
5034 	char *kaddr;
5035 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5036 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5037 
5038 	WARN_ON(src->len != dst_len);
5039 
5040 	offset = (start_offset + dst_offset) &
5041 		(PAGE_CACHE_SIZE - 1);
5042 
5043 	while (len > 0) {
5044 		page = extent_buffer_page(dst, i);
5045 		WARN_ON(!PageUptodate(page));
5046 
5047 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5048 
5049 		kaddr = page_address(page);
5050 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5051 
5052 		src_offset += cur;
5053 		len -= cur;
5054 		offset = 0;
5055 		i++;
5056 	}
5057 }
5058 
5059 static void move_pages(struct page *dst_page, struct page *src_page,
5060 		       unsigned long dst_off, unsigned long src_off,
5061 		       unsigned long len)
5062 {
5063 	char *dst_kaddr = page_address(dst_page);
5064 	if (dst_page == src_page) {
5065 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5066 	} else {
5067 		char *src_kaddr = page_address(src_page);
5068 		char *p = dst_kaddr + dst_off + len;
5069 		char *s = src_kaddr + src_off + len;
5070 
5071 		while (len--)
5072 			*--p = *--s;
5073 	}
5074 }
5075 
5076 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5077 {
5078 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5079 	return distance < len;
5080 }
5081 
5082 static void copy_pages(struct page *dst_page, struct page *src_page,
5083 		       unsigned long dst_off, unsigned long src_off,
5084 		       unsigned long len)
5085 {
5086 	char *dst_kaddr = page_address(dst_page);
5087 	char *src_kaddr;
5088 	int must_memmove = 0;
5089 
5090 	if (dst_page != src_page) {
5091 		src_kaddr = page_address(src_page);
5092 	} else {
5093 		src_kaddr = dst_kaddr;
5094 		if (areas_overlap(src_off, dst_off, len))
5095 			must_memmove = 1;
5096 	}
5097 
5098 	if (must_memmove)
5099 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5100 	else
5101 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5102 }
5103 
5104 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5105 			   unsigned long src_offset, unsigned long len)
5106 {
5107 	size_t cur;
5108 	size_t dst_off_in_page;
5109 	size_t src_off_in_page;
5110 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5111 	unsigned long dst_i;
5112 	unsigned long src_i;
5113 
5114 	if (src_offset + len > dst->len) {
5115 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5116 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5117 		BUG_ON(1);
5118 	}
5119 	if (dst_offset + len > dst->len) {
5120 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5121 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5122 		BUG_ON(1);
5123 	}
5124 
5125 	while (len > 0) {
5126 		dst_off_in_page = (start_offset + dst_offset) &
5127 			(PAGE_CACHE_SIZE - 1);
5128 		src_off_in_page = (start_offset + src_offset) &
5129 			(PAGE_CACHE_SIZE - 1);
5130 
5131 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5132 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5133 
5134 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5135 					       src_off_in_page));
5136 		cur = min_t(unsigned long, cur,
5137 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5138 
5139 		copy_pages(extent_buffer_page(dst, dst_i),
5140 			   extent_buffer_page(dst, src_i),
5141 			   dst_off_in_page, src_off_in_page, cur);
5142 
5143 		src_offset += cur;
5144 		dst_offset += cur;
5145 		len -= cur;
5146 	}
5147 }
5148 
5149 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5150 			   unsigned long src_offset, unsigned long len)
5151 {
5152 	size_t cur;
5153 	size_t dst_off_in_page;
5154 	size_t src_off_in_page;
5155 	unsigned long dst_end = dst_offset + len - 1;
5156 	unsigned long src_end = src_offset + len - 1;
5157 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5158 	unsigned long dst_i;
5159 	unsigned long src_i;
5160 
5161 	if (src_offset + len > dst->len) {
5162 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5163 		       "len %lu len %lu\n", src_offset, len, dst->len);
5164 		BUG_ON(1);
5165 	}
5166 	if (dst_offset + len > dst->len) {
5167 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5168 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5169 		BUG_ON(1);
5170 	}
5171 	if (dst_offset < src_offset) {
5172 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5173 		return;
5174 	}
5175 	while (len > 0) {
5176 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5177 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5178 
5179 		dst_off_in_page = (start_offset + dst_end) &
5180 			(PAGE_CACHE_SIZE - 1);
5181 		src_off_in_page = (start_offset + src_end) &
5182 			(PAGE_CACHE_SIZE - 1);
5183 
5184 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5185 		cur = min(cur, dst_off_in_page + 1);
5186 		move_pages(extent_buffer_page(dst, dst_i),
5187 			   extent_buffer_page(dst, src_i),
5188 			   dst_off_in_page - cur + 1,
5189 			   src_off_in_page - cur + 1, cur);
5190 
5191 		dst_end -= cur;
5192 		src_end -= cur;
5193 		len -= cur;
5194 	}
5195 }
5196 
5197 int try_release_extent_buffer(struct page *page)
5198 {
5199 	struct extent_buffer *eb;
5200 
5201 	/*
5202 	 * We need to make sure noboody is attaching this page to an eb right
5203 	 * now.
5204 	 */
5205 	spin_lock(&page->mapping->private_lock);
5206 	if (!PagePrivate(page)) {
5207 		spin_unlock(&page->mapping->private_lock);
5208 		return 1;
5209 	}
5210 
5211 	eb = (struct extent_buffer *)page->private;
5212 	BUG_ON(!eb);
5213 
5214 	/*
5215 	 * This is a little awful but should be ok, we need to make sure that
5216 	 * the eb doesn't disappear out from under us while we're looking at
5217 	 * this page.
5218 	 */
5219 	spin_lock(&eb->refs_lock);
5220 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5221 		spin_unlock(&eb->refs_lock);
5222 		spin_unlock(&page->mapping->private_lock);
5223 		return 0;
5224 	}
5225 	spin_unlock(&page->mapping->private_lock);
5226 
5227 	/*
5228 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5229 	 * so just return, this page will likely be freed soon anyway.
5230 	 */
5231 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5232 		spin_unlock(&eb->refs_lock);
5233 		return 0;
5234 	}
5235 
5236 	return release_extent_buffer(eb);
5237 }
5238