1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct inode *inode, u64 start, u64 end) 84 { 85 u64 isize = i_size_read(inode); 86 87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 88 printk_ratelimited(KERN_DEBUG 89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 90 caller, btrfs_ino(inode), isize, start, end); 91 } 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use a WRITE_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static noinline void flush_write_bio(void *data); 124 static inline struct btrfs_fs_info * 125 tree_fs_info(struct extent_io_tree *tree) 126 { 127 return btrfs_sb(tree->mapping->host->i_sb); 128 } 129 130 int __init extent_io_init(void) 131 { 132 extent_state_cache = kmem_cache_create("btrfs_extent_state", 133 sizeof(struct extent_state), 0, 134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 135 if (!extent_state_cache) 136 return -ENOMEM; 137 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 139 sizeof(struct extent_buffer), 0, 140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 141 if (!extent_buffer_cache) 142 goto free_state_cache; 143 144 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 145 offsetof(struct btrfs_io_bio, bio)); 146 if (!btrfs_bioset) 147 goto free_buffer_cache; 148 return 0; 149 150 free_buffer_cache: 151 kmem_cache_destroy(extent_buffer_cache); 152 extent_buffer_cache = NULL; 153 154 free_state_cache: 155 kmem_cache_destroy(extent_state_cache); 156 extent_state_cache = NULL; 157 return -ENOMEM; 158 } 159 160 void extent_io_exit(void) 161 { 162 btrfs_leak_debug_check(); 163 164 /* 165 * Make sure all delayed rcu free are flushed before we 166 * destroy caches. 167 */ 168 rcu_barrier(); 169 if (extent_state_cache) 170 kmem_cache_destroy(extent_state_cache); 171 if (extent_buffer_cache) 172 kmem_cache_destroy(extent_buffer_cache); 173 if (btrfs_bioset) 174 bioset_free(btrfs_bioset); 175 } 176 177 void extent_io_tree_init(struct extent_io_tree *tree, 178 struct address_space *mapping) 179 { 180 tree->state = RB_ROOT; 181 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 182 tree->ops = NULL; 183 tree->dirty_bytes = 0; 184 spin_lock_init(&tree->lock); 185 spin_lock_init(&tree->buffer_lock); 186 tree->mapping = mapping; 187 } 188 189 static struct extent_state *alloc_extent_state(gfp_t mask) 190 { 191 struct extent_state *state; 192 193 state = kmem_cache_alloc(extent_state_cache, mask); 194 if (!state) 195 return state; 196 state->state = 0; 197 state->private = 0; 198 state->tree = NULL; 199 btrfs_leak_debug_add(&state->leak_list, &states); 200 atomic_set(&state->refs, 1); 201 init_waitqueue_head(&state->wq); 202 trace_alloc_extent_state(state, mask, _RET_IP_); 203 return state; 204 } 205 206 void free_extent_state(struct extent_state *state) 207 { 208 if (!state) 209 return; 210 if (atomic_dec_and_test(&state->refs)) { 211 WARN_ON(state->tree); 212 btrfs_leak_debug_del(&state->leak_list); 213 trace_free_extent_state(state, _RET_IP_); 214 kmem_cache_free(extent_state_cache, state); 215 } 216 } 217 218 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 219 struct rb_node *node) 220 { 221 struct rb_node **p = &root->rb_node; 222 struct rb_node *parent = NULL; 223 struct tree_entry *entry; 224 225 while (*p) { 226 parent = *p; 227 entry = rb_entry(parent, struct tree_entry, rb_node); 228 229 if (offset < entry->start) 230 p = &(*p)->rb_left; 231 else if (offset > entry->end) 232 p = &(*p)->rb_right; 233 else 234 return parent; 235 } 236 237 rb_link_node(node, parent, p); 238 rb_insert_color(node, root); 239 return NULL; 240 } 241 242 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 243 struct rb_node **prev_ret, 244 struct rb_node **next_ret) 245 { 246 struct rb_root *root = &tree->state; 247 struct rb_node *n = root->rb_node; 248 struct rb_node *prev = NULL; 249 struct rb_node *orig_prev = NULL; 250 struct tree_entry *entry; 251 struct tree_entry *prev_entry = NULL; 252 253 while (n) { 254 entry = rb_entry(n, struct tree_entry, rb_node); 255 prev = n; 256 prev_entry = entry; 257 258 if (offset < entry->start) 259 n = n->rb_left; 260 else if (offset > entry->end) 261 n = n->rb_right; 262 else 263 return n; 264 } 265 266 if (prev_ret) { 267 orig_prev = prev; 268 while (prev && offset > prev_entry->end) { 269 prev = rb_next(prev); 270 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 271 } 272 *prev_ret = prev; 273 prev = orig_prev; 274 } 275 276 if (next_ret) { 277 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 278 while (prev && offset < prev_entry->start) { 279 prev = rb_prev(prev); 280 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 281 } 282 *next_ret = prev; 283 } 284 return NULL; 285 } 286 287 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 288 u64 offset) 289 { 290 struct rb_node *prev = NULL; 291 struct rb_node *ret; 292 293 ret = __etree_search(tree, offset, &prev, NULL); 294 if (!ret) 295 return prev; 296 return ret; 297 } 298 299 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 300 struct extent_state *other) 301 { 302 if (tree->ops && tree->ops->merge_extent_hook) 303 tree->ops->merge_extent_hook(tree->mapping->host, new, 304 other); 305 } 306 307 /* 308 * utility function to look for merge candidates inside a given range. 309 * Any extents with matching state are merged together into a single 310 * extent in the tree. Extents with EXTENT_IO in their state field 311 * are not merged because the end_io handlers need to be able to do 312 * operations on them without sleeping (or doing allocations/splits). 313 * 314 * This should be called with the tree lock held. 315 */ 316 static void merge_state(struct extent_io_tree *tree, 317 struct extent_state *state) 318 { 319 struct extent_state *other; 320 struct rb_node *other_node; 321 322 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 323 return; 324 325 other_node = rb_prev(&state->rb_node); 326 if (other_node) { 327 other = rb_entry(other_node, struct extent_state, rb_node); 328 if (other->end == state->start - 1 && 329 other->state == state->state) { 330 merge_cb(tree, state, other); 331 state->start = other->start; 332 other->tree = NULL; 333 rb_erase(&other->rb_node, &tree->state); 334 free_extent_state(other); 335 } 336 } 337 other_node = rb_next(&state->rb_node); 338 if (other_node) { 339 other = rb_entry(other_node, struct extent_state, rb_node); 340 if (other->start == state->end + 1 && 341 other->state == state->state) { 342 merge_cb(tree, state, other); 343 state->end = other->end; 344 other->tree = NULL; 345 rb_erase(&other->rb_node, &tree->state); 346 free_extent_state(other); 347 } 348 } 349 } 350 351 static void set_state_cb(struct extent_io_tree *tree, 352 struct extent_state *state, unsigned long *bits) 353 { 354 if (tree->ops && tree->ops->set_bit_hook) 355 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 356 } 357 358 static void clear_state_cb(struct extent_io_tree *tree, 359 struct extent_state *state, unsigned long *bits) 360 { 361 if (tree->ops && tree->ops->clear_bit_hook) 362 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 363 } 364 365 static void set_state_bits(struct extent_io_tree *tree, 366 struct extent_state *state, unsigned long *bits); 367 368 /* 369 * insert an extent_state struct into the tree. 'bits' are set on the 370 * struct before it is inserted. 371 * 372 * This may return -EEXIST if the extent is already there, in which case the 373 * state struct is freed. 374 * 375 * The tree lock is not taken internally. This is a utility function and 376 * probably isn't what you want to call (see set/clear_extent_bit). 377 */ 378 static int insert_state(struct extent_io_tree *tree, 379 struct extent_state *state, u64 start, u64 end, 380 unsigned long *bits) 381 { 382 struct rb_node *node; 383 384 if (end < start) 385 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 386 end, start); 387 state->start = start; 388 state->end = end; 389 390 set_state_bits(tree, state, bits); 391 392 node = tree_insert(&tree->state, end, &state->rb_node); 393 if (node) { 394 struct extent_state *found; 395 found = rb_entry(node, struct extent_state, rb_node); 396 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 397 "%llu %llu\n", 398 found->start, found->end, start, end); 399 return -EEXIST; 400 } 401 state->tree = tree; 402 merge_state(tree, state); 403 return 0; 404 } 405 406 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 407 u64 split) 408 { 409 if (tree->ops && tree->ops->split_extent_hook) 410 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 411 } 412 413 /* 414 * split a given extent state struct in two, inserting the preallocated 415 * struct 'prealloc' as the newly created second half. 'split' indicates an 416 * offset inside 'orig' where it should be split. 417 * 418 * Before calling, 419 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 420 * are two extent state structs in the tree: 421 * prealloc: [orig->start, split - 1] 422 * orig: [ split, orig->end ] 423 * 424 * The tree locks are not taken by this function. They need to be held 425 * by the caller. 426 */ 427 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 428 struct extent_state *prealloc, u64 split) 429 { 430 struct rb_node *node; 431 432 split_cb(tree, orig, split); 433 434 prealloc->start = orig->start; 435 prealloc->end = split - 1; 436 prealloc->state = orig->state; 437 orig->start = split; 438 439 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 440 if (node) { 441 free_extent_state(prealloc); 442 return -EEXIST; 443 } 444 prealloc->tree = tree; 445 return 0; 446 } 447 448 static struct extent_state *next_state(struct extent_state *state) 449 { 450 struct rb_node *next = rb_next(&state->rb_node); 451 if (next) 452 return rb_entry(next, struct extent_state, rb_node); 453 else 454 return NULL; 455 } 456 457 /* 458 * utility function to clear some bits in an extent state struct. 459 * it will optionally wake up any one waiting on this state (wake == 1). 460 * 461 * If no bits are set on the state struct after clearing things, the 462 * struct is freed and removed from the tree 463 */ 464 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 465 struct extent_state *state, 466 unsigned long *bits, int wake) 467 { 468 struct extent_state *next; 469 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 470 471 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 472 u64 range = state->end - state->start + 1; 473 WARN_ON(range > tree->dirty_bytes); 474 tree->dirty_bytes -= range; 475 } 476 clear_state_cb(tree, state, bits); 477 state->state &= ~bits_to_clear; 478 if (wake) 479 wake_up(&state->wq); 480 if (state->state == 0) { 481 next = next_state(state); 482 if (state->tree) { 483 rb_erase(&state->rb_node, &tree->state); 484 state->tree = NULL; 485 free_extent_state(state); 486 } else { 487 WARN_ON(1); 488 } 489 } else { 490 merge_state(tree, state); 491 next = next_state(state); 492 } 493 return next; 494 } 495 496 static struct extent_state * 497 alloc_extent_state_atomic(struct extent_state *prealloc) 498 { 499 if (!prealloc) 500 prealloc = alloc_extent_state(GFP_ATOMIC); 501 502 return prealloc; 503 } 504 505 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 506 { 507 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 508 "Extent tree was modified by another " 509 "thread while locked."); 510 } 511 512 /* 513 * clear some bits on a range in the tree. This may require splitting 514 * or inserting elements in the tree, so the gfp mask is used to 515 * indicate which allocations or sleeping are allowed. 516 * 517 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 518 * the given range from the tree regardless of state (ie for truncate). 519 * 520 * the range [start, end] is inclusive. 521 * 522 * This takes the tree lock, and returns 0 on success and < 0 on error. 523 */ 524 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 525 unsigned long bits, int wake, int delete, 526 struct extent_state **cached_state, 527 gfp_t mask) 528 { 529 struct extent_state *state; 530 struct extent_state *cached; 531 struct extent_state *prealloc = NULL; 532 struct rb_node *node; 533 u64 last_end; 534 int err; 535 int clear = 0; 536 537 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 538 539 if (bits & EXTENT_DELALLOC) 540 bits |= EXTENT_NORESERVE; 541 542 if (delete) 543 bits |= ~EXTENT_CTLBITS; 544 bits |= EXTENT_FIRST_DELALLOC; 545 546 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 547 clear = 1; 548 again: 549 if (!prealloc && (mask & __GFP_WAIT)) { 550 prealloc = alloc_extent_state(mask); 551 if (!prealloc) 552 return -ENOMEM; 553 } 554 555 spin_lock(&tree->lock); 556 if (cached_state) { 557 cached = *cached_state; 558 559 if (clear) { 560 *cached_state = NULL; 561 cached_state = NULL; 562 } 563 564 if (cached && cached->tree && cached->start <= start && 565 cached->end > start) { 566 if (clear) 567 atomic_dec(&cached->refs); 568 state = cached; 569 goto hit_next; 570 } 571 if (clear) 572 free_extent_state(cached); 573 } 574 /* 575 * this search will find the extents that end after 576 * our range starts 577 */ 578 node = tree_search(tree, start); 579 if (!node) 580 goto out; 581 state = rb_entry(node, struct extent_state, rb_node); 582 hit_next: 583 if (state->start > end) 584 goto out; 585 WARN_ON(state->end < start); 586 last_end = state->end; 587 588 /* the state doesn't have the wanted bits, go ahead */ 589 if (!(state->state & bits)) { 590 state = next_state(state); 591 goto next; 592 } 593 594 /* 595 * | ---- desired range ---- | 596 * | state | or 597 * | ------------- state -------------- | 598 * 599 * We need to split the extent we found, and may flip 600 * bits on second half. 601 * 602 * If the extent we found extends past our range, we 603 * just split and search again. It'll get split again 604 * the next time though. 605 * 606 * If the extent we found is inside our range, we clear 607 * the desired bit on it. 608 */ 609 610 if (state->start < start) { 611 prealloc = alloc_extent_state_atomic(prealloc); 612 BUG_ON(!prealloc); 613 err = split_state(tree, state, prealloc, start); 614 if (err) 615 extent_io_tree_panic(tree, err); 616 617 prealloc = NULL; 618 if (err) 619 goto out; 620 if (state->end <= end) { 621 state = clear_state_bit(tree, state, &bits, wake); 622 goto next; 623 } 624 goto search_again; 625 } 626 /* 627 * | ---- desired range ---- | 628 * | state | 629 * We need to split the extent, and clear the bit 630 * on the first half 631 */ 632 if (state->start <= end && state->end > end) { 633 prealloc = alloc_extent_state_atomic(prealloc); 634 BUG_ON(!prealloc); 635 err = split_state(tree, state, prealloc, end + 1); 636 if (err) 637 extent_io_tree_panic(tree, err); 638 639 if (wake) 640 wake_up(&state->wq); 641 642 clear_state_bit(tree, prealloc, &bits, wake); 643 644 prealloc = NULL; 645 goto out; 646 } 647 648 state = clear_state_bit(tree, state, &bits, wake); 649 next: 650 if (last_end == (u64)-1) 651 goto out; 652 start = last_end + 1; 653 if (start <= end && state && !need_resched()) 654 goto hit_next; 655 goto search_again; 656 657 out: 658 spin_unlock(&tree->lock); 659 if (prealloc) 660 free_extent_state(prealloc); 661 662 return 0; 663 664 search_again: 665 if (start > end) 666 goto out; 667 spin_unlock(&tree->lock); 668 if (mask & __GFP_WAIT) 669 cond_resched(); 670 goto again; 671 } 672 673 static void wait_on_state(struct extent_io_tree *tree, 674 struct extent_state *state) 675 __releases(tree->lock) 676 __acquires(tree->lock) 677 { 678 DEFINE_WAIT(wait); 679 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 680 spin_unlock(&tree->lock); 681 schedule(); 682 spin_lock(&tree->lock); 683 finish_wait(&state->wq, &wait); 684 } 685 686 /* 687 * waits for one or more bits to clear on a range in the state tree. 688 * The range [start, end] is inclusive. 689 * The tree lock is taken by this function 690 */ 691 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 692 unsigned long bits) 693 { 694 struct extent_state *state; 695 struct rb_node *node; 696 697 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 698 699 spin_lock(&tree->lock); 700 again: 701 while (1) { 702 /* 703 * this search will find all the extents that end after 704 * our range starts 705 */ 706 node = tree_search(tree, start); 707 if (!node) 708 break; 709 710 state = rb_entry(node, struct extent_state, rb_node); 711 712 if (state->start > end) 713 goto out; 714 715 if (state->state & bits) { 716 start = state->start; 717 atomic_inc(&state->refs); 718 wait_on_state(tree, state); 719 free_extent_state(state); 720 goto again; 721 } 722 start = state->end + 1; 723 724 if (start > end) 725 break; 726 727 cond_resched_lock(&tree->lock); 728 } 729 out: 730 spin_unlock(&tree->lock); 731 } 732 733 static void set_state_bits(struct extent_io_tree *tree, 734 struct extent_state *state, 735 unsigned long *bits) 736 { 737 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 738 739 set_state_cb(tree, state, bits); 740 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 741 u64 range = state->end - state->start + 1; 742 tree->dirty_bytes += range; 743 } 744 state->state |= bits_to_set; 745 } 746 747 static void cache_state(struct extent_state *state, 748 struct extent_state **cached_ptr) 749 { 750 if (cached_ptr && !(*cached_ptr)) { 751 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 752 *cached_ptr = state; 753 atomic_inc(&state->refs); 754 } 755 } 756 } 757 758 /* 759 * set some bits on a range in the tree. This may require allocations or 760 * sleeping, so the gfp mask is used to indicate what is allowed. 761 * 762 * If any of the exclusive bits are set, this will fail with -EEXIST if some 763 * part of the range already has the desired bits set. The start of the 764 * existing range is returned in failed_start in this case. 765 * 766 * [start, end] is inclusive This takes the tree lock. 767 */ 768 769 static int __must_check 770 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 771 unsigned long bits, unsigned long exclusive_bits, 772 u64 *failed_start, struct extent_state **cached_state, 773 gfp_t mask) 774 { 775 struct extent_state *state; 776 struct extent_state *prealloc = NULL; 777 struct rb_node *node; 778 int err = 0; 779 u64 last_start; 780 u64 last_end; 781 782 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 783 784 bits |= EXTENT_FIRST_DELALLOC; 785 again: 786 if (!prealloc && (mask & __GFP_WAIT)) { 787 prealloc = alloc_extent_state(mask); 788 BUG_ON(!prealloc); 789 } 790 791 spin_lock(&tree->lock); 792 if (cached_state && *cached_state) { 793 state = *cached_state; 794 if (state->start <= start && state->end > start && 795 state->tree) { 796 node = &state->rb_node; 797 goto hit_next; 798 } 799 } 800 /* 801 * this search will find all the extents that end after 802 * our range starts. 803 */ 804 node = tree_search(tree, start); 805 if (!node) { 806 prealloc = alloc_extent_state_atomic(prealloc); 807 BUG_ON(!prealloc); 808 err = insert_state(tree, prealloc, start, end, &bits); 809 if (err) 810 extent_io_tree_panic(tree, err); 811 812 prealloc = NULL; 813 goto out; 814 } 815 state = rb_entry(node, struct extent_state, rb_node); 816 hit_next: 817 last_start = state->start; 818 last_end = state->end; 819 820 /* 821 * | ---- desired range ---- | 822 * | state | 823 * 824 * Just lock what we found and keep going 825 */ 826 if (state->start == start && state->end <= end) { 827 if (state->state & exclusive_bits) { 828 *failed_start = state->start; 829 err = -EEXIST; 830 goto out; 831 } 832 833 set_state_bits(tree, state, &bits); 834 cache_state(state, cached_state); 835 merge_state(tree, state); 836 if (last_end == (u64)-1) 837 goto out; 838 start = last_end + 1; 839 state = next_state(state); 840 if (start < end && state && state->start == start && 841 !need_resched()) 842 goto hit_next; 843 goto search_again; 844 } 845 846 /* 847 * | ---- desired range ---- | 848 * | state | 849 * or 850 * | ------------- state -------------- | 851 * 852 * We need to split the extent we found, and may flip bits on 853 * second half. 854 * 855 * If the extent we found extends past our 856 * range, we just split and search again. It'll get split 857 * again the next time though. 858 * 859 * If the extent we found is inside our range, we set the 860 * desired bit on it. 861 */ 862 if (state->start < start) { 863 if (state->state & exclusive_bits) { 864 *failed_start = start; 865 err = -EEXIST; 866 goto out; 867 } 868 869 prealloc = alloc_extent_state_atomic(prealloc); 870 BUG_ON(!prealloc); 871 err = split_state(tree, state, prealloc, start); 872 if (err) 873 extent_io_tree_panic(tree, err); 874 875 prealloc = NULL; 876 if (err) 877 goto out; 878 if (state->end <= end) { 879 set_state_bits(tree, state, &bits); 880 cache_state(state, cached_state); 881 merge_state(tree, state); 882 if (last_end == (u64)-1) 883 goto out; 884 start = last_end + 1; 885 state = next_state(state); 886 if (start < end && state && state->start == start && 887 !need_resched()) 888 goto hit_next; 889 } 890 goto search_again; 891 } 892 /* 893 * | ---- desired range ---- | 894 * | state | or | state | 895 * 896 * There's a hole, we need to insert something in it and 897 * ignore the extent we found. 898 */ 899 if (state->start > start) { 900 u64 this_end; 901 if (end < last_start) 902 this_end = end; 903 else 904 this_end = last_start - 1; 905 906 prealloc = alloc_extent_state_atomic(prealloc); 907 BUG_ON(!prealloc); 908 909 /* 910 * Avoid to free 'prealloc' if it can be merged with 911 * the later extent. 912 */ 913 err = insert_state(tree, prealloc, start, this_end, 914 &bits); 915 if (err) 916 extent_io_tree_panic(tree, err); 917 918 cache_state(prealloc, cached_state); 919 prealloc = NULL; 920 start = this_end + 1; 921 goto search_again; 922 } 923 /* 924 * | ---- desired range ---- | 925 * | state | 926 * We need to split the extent, and set the bit 927 * on the first half 928 */ 929 if (state->start <= end && state->end > end) { 930 if (state->state & exclusive_bits) { 931 *failed_start = start; 932 err = -EEXIST; 933 goto out; 934 } 935 936 prealloc = alloc_extent_state_atomic(prealloc); 937 BUG_ON(!prealloc); 938 err = split_state(tree, state, prealloc, end + 1); 939 if (err) 940 extent_io_tree_panic(tree, err); 941 942 set_state_bits(tree, prealloc, &bits); 943 cache_state(prealloc, cached_state); 944 merge_state(tree, prealloc); 945 prealloc = NULL; 946 goto out; 947 } 948 949 goto search_again; 950 951 out: 952 spin_unlock(&tree->lock); 953 if (prealloc) 954 free_extent_state(prealloc); 955 956 return err; 957 958 search_again: 959 if (start > end) 960 goto out; 961 spin_unlock(&tree->lock); 962 if (mask & __GFP_WAIT) 963 cond_resched(); 964 goto again; 965 } 966 967 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 968 unsigned long bits, u64 * failed_start, 969 struct extent_state **cached_state, gfp_t mask) 970 { 971 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 972 cached_state, mask); 973 } 974 975 976 /** 977 * convert_extent_bit - convert all bits in a given range from one bit to 978 * another 979 * @tree: the io tree to search 980 * @start: the start offset in bytes 981 * @end: the end offset in bytes (inclusive) 982 * @bits: the bits to set in this range 983 * @clear_bits: the bits to clear in this range 984 * @cached_state: state that we're going to cache 985 * @mask: the allocation mask 986 * 987 * This will go through and set bits for the given range. If any states exist 988 * already in this range they are set with the given bit and cleared of the 989 * clear_bits. This is only meant to be used by things that are mergeable, ie 990 * converting from say DELALLOC to DIRTY. This is not meant to be used with 991 * boundary bits like LOCK. 992 */ 993 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 994 unsigned long bits, unsigned long clear_bits, 995 struct extent_state **cached_state, gfp_t mask) 996 { 997 struct extent_state *state; 998 struct extent_state *prealloc = NULL; 999 struct rb_node *node; 1000 int err = 0; 1001 u64 last_start; 1002 u64 last_end; 1003 1004 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1005 1006 again: 1007 if (!prealloc && (mask & __GFP_WAIT)) { 1008 prealloc = alloc_extent_state(mask); 1009 if (!prealloc) 1010 return -ENOMEM; 1011 } 1012 1013 spin_lock(&tree->lock); 1014 if (cached_state && *cached_state) { 1015 state = *cached_state; 1016 if (state->start <= start && state->end > start && 1017 state->tree) { 1018 node = &state->rb_node; 1019 goto hit_next; 1020 } 1021 } 1022 1023 /* 1024 * this search will find all the extents that end after 1025 * our range starts. 1026 */ 1027 node = tree_search(tree, start); 1028 if (!node) { 1029 prealloc = alloc_extent_state_atomic(prealloc); 1030 if (!prealloc) { 1031 err = -ENOMEM; 1032 goto out; 1033 } 1034 err = insert_state(tree, prealloc, start, end, &bits); 1035 prealloc = NULL; 1036 if (err) 1037 extent_io_tree_panic(tree, err); 1038 goto out; 1039 } 1040 state = rb_entry(node, struct extent_state, rb_node); 1041 hit_next: 1042 last_start = state->start; 1043 last_end = state->end; 1044 1045 /* 1046 * | ---- desired range ---- | 1047 * | state | 1048 * 1049 * Just lock what we found and keep going 1050 */ 1051 if (state->start == start && state->end <= end) { 1052 set_state_bits(tree, state, &bits); 1053 cache_state(state, cached_state); 1054 state = clear_state_bit(tree, state, &clear_bits, 0); 1055 if (last_end == (u64)-1) 1056 goto out; 1057 start = last_end + 1; 1058 if (start < end && state && state->start == start && 1059 !need_resched()) 1060 goto hit_next; 1061 goto search_again; 1062 } 1063 1064 /* 1065 * | ---- desired range ---- | 1066 * | state | 1067 * or 1068 * | ------------- state -------------- | 1069 * 1070 * We need to split the extent we found, and may flip bits on 1071 * second half. 1072 * 1073 * If the extent we found extends past our 1074 * range, we just split and search again. It'll get split 1075 * again the next time though. 1076 * 1077 * If the extent we found is inside our range, we set the 1078 * desired bit on it. 1079 */ 1080 if (state->start < start) { 1081 prealloc = alloc_extent_state_atomic(prealloc); 1082 if (!prealloc) { 1083 err = -ENOMEM; 1084 goto out; 1085 } 1086 err = split_state(tree, state, prealloc, start); 1087 if (err) 1088 extent_io_tree_panic(tree, err); 1089 prealloc = NULL; 1090 if (err) 1091 goto out; 1092 if (state->end <= end) { 1093 set_state_bits(tree, state, &bits); 1094 cache_state(state, cached_state); 1095 state = clear_state_bit(tree, state, &clear_bits, 0); 1096 if (last_end == (u64)-1) 1097 goto out; 1098 start = last_end + 1; 1099 if (start < end && state && state->start == start && 1100 !need_resched()) 1101 goto hit_next; 1102 } 1103 goto search_again; 1104 } 1105 /* 1106 * | ---- desired range ---- | 1107 * | state | or | state | 1108 * 1109 * There's a hole, we need to insert something in it and 1110 * ignore the extent we found. 1111 */ 1112 if (state->start > start) { 1113 u64 this_end; 1114 if (end < last_start) 1115 this_end = end; 1116 else 1117 this_end = last_start - 1; 1118 1119 prealloc = alloc_extent_state_atomic(prealloc); 1120 if (!prealloc) { 1121 err = -ENOMEM; 1122 goto out; 1123 } 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 &bits); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 cache_state(prealloc, cached_state); 1134 prealloc = NULL; 1135 start = this_end + 1; 1136 goto search_again; 1137 } 1138 /* 1139 * | ---- desired range ---- | 1140 * | state | 1141 * We need to split the extent, and set the bit 1142 * on the first half 1143 */ 1144 if (state->start <= end && state->end > end) { 1145 prealloc = alloc_extent_state_atomic(prealloc); 1146 if (!prealloc) { 1147 err = -ENOMEM; 1148 goto out; 1149 } 1150 1151 err = split_state(tree, state, prealloc, end + 1); 1152 if (err) 1153 extent_io_tree_panic(tree, err); 1154 1155 set_state_bits(tree, prealloc, &bits); 1156 cache_state(prealloc, cached_state); 1157 clear_state_bit(tree, prealloc, &clear_bits, 0); 1158 prealloc = NULL; 1159 goto out; 1160 } 1161 1162 goto search_again; 1163 1164 out: 1165 spin_unlock(&tree->lock); 1166 if (prealloc) 1167 free_extent_state(prealloc); 1168 1169 return err; 1170 1171 search_again: 1172 if (start > end) 1173 goto out; 1174 spin_unlock(&tree->lock); 1175 if (mask & __GFP_WAIT) 1176 cond_resched(); 1177 goto again; 1178 } 1179 1180 /* wrappers around set/clear extent bit */ 1181 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1182 gfp_t mask) 1183 { 1184 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1185 NULL, mask); 1186 } 1187 1188 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1189 unsigned long bits, gfp_t mask) 1190 { 1191 return set_extent_bit(tree, start, end, bits, NULL, 1192 NULL, mask); 1193 } 1194 1195 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1196 unsigned long bits, gfp_t mask) 1197 { 1198 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1199 } 1200 1201 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1202 struct extent_state **cached_state, gfp_t mask) 1203 { 1204 return set_extent_bit(tree, start, end, 1205 EXTENT_DELALLOC | EXTENT_UPTODATE, 1206 NULL, cached_state, mask); 1207 } 1208 1209 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1210 struct extent_state **cached_state, gfp_t mask) 1211 { 1212 return set_extent_bit(tree, start, end, 1213 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1214 NULL, cached_state, mask); 1215 } 1216 1217 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1218 gfp_t mask) 1219 { 1220 return clear_extent_bit(tree, start, end, 1221 EXTENT_DIRTY | EXTENT_DELALLOC | 1222 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1223 } 1224 1225 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1226 gfp_t mask) 1227 { 1228 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1229 NULL, mask); 1230 } 1231 1232 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1233 struct extent_state **cached_state, gfp_t mask) 1234 { 1235 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1236 cached_state, mask); 1237 } 1238 1239 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1240 struct extent_state **cached_state, gfp_t mask) 1241 { 1242 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1243 cached_state, mask); 1244 } 1245 1246 /* 1247 * either insert or lock state struct between start and end use mask to tell 1248 * us if waiting is desired. 1249 */ 1250 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1251 unsigned long bits, struct extent_state **cached_state) 1252 { 1253 int err; 1254 u64 failed_start; 1255 while (1) { 1256 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1257 EXTENT_LOCKED, &failed_start, 1258 cached_state, GFP_NOFS); 1259 if (err == -EEXIST) { 1260 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1261 start = failed_start; 1262 } else 1263 break; 1264 WARN_ON(start > end); 1265 } 1266 return err; 1267 } 1268 1269 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1270 { 1271 return lock_extent_bits(tree, start, end, 0, NULL); 1272 } 1273 1274 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1275 { 1276 int err; 1277 u64 failed_start; 1278 1279 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1280 &failed_start, NULL, GFP_NOFS); 1281 if (err == -EEXIST) { 1282 if (failed_start > start) 1283 clear_extent_bit(tree, start, failed_start - 1, 1284 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1285 return 0; 1286 } 1287 return 1; 1288 } 1289 1290 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1291 struct extent_state **cached, gfp_t mask) 1292 { 1293 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1294 mask); 1295 } 1296 1297 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1298 { 1299 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1300 GFP_NOFS); 1301 } 1302 1303 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1304 { 1305 unsigned long index = start >> PAGE_CACHE_SHIFT; 1306 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1307 struct page *page; 1308 1309 while (index <= end_index) { 1310 page = find_get_page(inode->i_mapping, index); 1311 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1312 clear_page_dirty_for_io(page); 1313 page_cache_release(page); 1314 index++; 1315 } 1316 return 0; 1317 } 1318 1319 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1320 { 1321 unsigned long index = start >> PAGE_CACHE_SHIFT; 1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1323 struct page *page; 1324 1325 while (index <= end_index) { 1326 page = find_get_page(inode->i_mapping, index); 1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1328 account_page_redirty(page); 1329 __set_page_dirty_nobuffers(page); 1330 page_cache_release(page); 1331 index++; 1332 } 1333 return 0; 1334 } 1335 1336 /* 1337 * helper function to set both pages and extents in the tree writeback 1338 */ 1339 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1340 { 1341 unsigned long index = start >> PAGE_CACHE_SHIFT; 1342 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1343 struct page *page; 1344 1345 while (index <= end_index) { 1346 page = find_get_page(tree->mapping, index); 1347 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1348 set_page_writeback(page); 1349 page_cache_release(page); 1350 index++; 1351 } 1352 return 0; 1353 } 1354 1355 /* find the first state struct with 'bits' set after 'start', and 1356 * return it. tree->lock must be held. NULL will returned if 1357 * nothing was found after 'start' 1358 */ 1359 static struct extent_state * 1360 find_first_extent_bit_state(struct extent_io_tree *tree, 1361 u64 start, unsigned long bits) 1362 { 1363 struct rb_node *node; 1364 struct extent_state *state; 1365 1366 /* 1367 * this search will find all the extents that end after 1368 * our range starts. 1369 */ 1370 node = tree_search(tree, start); 1371 if (!node) 1372 goto out; 1373 1374 while (1) { 1375 state = rb_entry(node, struct extent_state, rb_node); 1376 if (state->end >= start && (state->state & bits)) 1377 return state; 1378 1379 node = rb_next(node); 1380 if (!node) 1381 break; 1382 } 1383 out: 1384 return NULL; 1385 } 1386 1387 /* 1388 * find the first offset in the io tree with 'bits' set. zero is 1389 * returned if we find something, and *start_ret and *end_ret are 1390 * set to reflect the state struct that was found. 1391 * 1392 * If nothing was found, 1 is returned. If found something, return 0. 1393 */ 1394 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1395 u64 *start_ret, u64 *end_ret, unsigned long bits, 1396 struct extent_state **cached_state) 1397 { 1398 struct extent_state *state; 1399 struct rb_node *n; 1400 int ret = 1; 1401 1402 spin_lock(&tree->lock); 1403 if (cached_state && *cached_state) { 1404 state = *cached_state; 1405 if (state->end == start - 1 && state->tree) { 1406 n = rb_next(&state->rb_node); 1407 while (n) { 1408 state = rb_entry(n, struct extent_state, 1409 rb_node); 1410 if (state->state & bits) 1411 goto got_it; 1412 n = rb_next(n); 1413 } 1414 free_extent_state(*cached_state); 1415 *cached_state = NULL; 1416 goto out; 1417 } 1418 free_extent_state(*cached_state); 1419 *cached_state = NULL; 1420 } 1421 1422 state = find_first_extent_bit_state(tree, start, bits); 1423 got_it: 1424 if (state) { 1425 cache_state(state, cached_state); 1426 *start_ret = state->start; 1427 *end_ret = state->end; 1428 ret = 0; 1429 } 1430 out: 1431 spin_unlock(&tree->lock); 1432 return ret; 1433 } 1434 1435 /* 1436 * find a contiguous range of bytes in the file marked as delalloc, not 1437 * more than 'max_bytes'. start and end are used to return the range, 1438 * 1439 * 1 is returned if we find something, 0 if nothing was in the tree 1440 */ 1441 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1442 u64 *start, u64 *end, u64 max_bytes, 1443 struct extent_state **cached_state) 1444 { 1445 struct rb_node *node; 1446 struct extent_state *state; 1447 u64 cur_start = *start; 1448 u64 found = 0; 1449 u64 total_bytes = 0; 1450 1451 spin_lock(&tree->lock); 1452 1453 /* 1454 * this search will find all the extents that end after 1455 * our range starts. 1456 */ 1457 node = tree_search(tree, cur_start); 1458 if (!node) { 1459 if (!found) 1460 *end = (u64)-1; 1461 goto out; 1462 } 1463 1464 while (1) { 1465 state = rb_entry(node, struct extent_state, rb_node); 1466 if (found && (state->start != cur_start || 1467 (state->state & EXTENT_BOUNDARY))) { 1468 goto out; 1469 } 1470 if (!(state->state & EXTENT_DELALLOC)) { 1471 if (!found) 1472 *end = state->end; 1473 goto out; 1474 } 1475 if (!found) { 1476 *start = state->start; 1477 *cached_state = state; 1478 atomic_inc(&state->refs); 1479 } 1480 found++; 1481 *end = state->end; 1482 cur_start = state->end + 1; 1483 node = rb_next(node); 1484 if (!node) 1485 break; 1486 total_bytes += state->end - state->start + 1; 1487 if (total_bytes >= max_bytes) 1488 break; 1489 } 1490 out: 1491 spin_unlock(&tree->lock); 1492 return found; 1493 } 1494 1495 static noinline void __unlock_for_delalloc(struct inode *inode, 1496 struct page *locked_page, 1497 u64 start, u64 end) 1498 { 1499 int ret; 1500 struct page *pages[16]; 1501 unsigned long index = start >> PAGE_CACHE_SHIFT; 1502 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1503 unsigned long nr_pages = end_index - index + 1; 1504 int i; 1505 1506 if (index == locked_page->index && end_index == index) 1507 return; 1508 1509 while (nr_pages > 0) { 1510 ret = find_get_pages_contig(inode->i_mapping, index, 1511 min_t(unsigned long, nr_pages, 1512 ARRAY_SIZE(pages)), pages); 1513 for (i = 0; i < ret; i++) { 1514 if (pages[i] != locked_page) 1515 unlock_page(pages[i]); 1516 page_cache_release(pages[i]); 1517 } 1518 nr_pages -= ret; 1519 index += ret; 1520 cond_resched(); 1521 } 1522 } 1523 1524 static noinline int lock_delalloc_pages(struct inode *inode, 1525 struct page *locked_page, 1526 u64 delalloc_start, 1527 u64 delalloc_end) 1528 { 1529 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1530 unsigned long start_index = index; 1531 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1532 unsigned long pages_locked = 0; 1533 struct page *pages[16]; 1534 unsigned long nrpages; 1535 int ret; 1536 int i; 1537 1538 /* the caller is responsible for locking the start index */ 1539 if (index == locked_page->index && index == end_index) 1540 return 0; 1541 1542 /* skip the page at the start index */ 1543 nrpages = end_index - index + 1; 1544 while (nrpages > 0) { 1545 ret = find_get_pages_contig(inode->i_mapping, index, 1546 min_t(unsigned long, 1547 nrpages, ARRAY_SIZE(pages)), pages); 1548 if (ret == 0) { 1549 ret = -EAGAIN; 1550 goto done; 1551 } 1552 /* now we have an array of pages, lock them all */ 1553 for (i = 0; i < ret; i++) { 1554 /* 1555 * the caller is taking responsibility for 1556 * locked_page 1557 */ 1558 if (pages[i] != locked_page) { 1559 lock_page(pages[i]); 1560 if (!PageDirty(pages[i]) || 1561 pages[i]->mapping != inode->i_mapping) { 1562 ret = -EAGAIN; 1563 unlock_page(pages[i]); 1564 page_cache_release(pages[i]); 1565 goto done; 1566 } 1567 } 1568 page_cache_release(pages[i]); 1569 pages_locked++; 1570 } 1571 nrpages -= ret; 1572 index += ret; 1573 cond_resched(); 1574 } 1575 ret = 0; 1576 done: 1577 if (ret && pages_locked) { 1578 __unlock_for_delalloc(inode, locked_page, 1579 delalloc_start, 1580 ((u64)(start_index + pages_locked - 1)) << 1581 PAGE_CACHE_SHIFT); 1582 } 1583 return ret; 1584 } 1585 1586 /* 1587 * find a contiguous range of bytes in the file marked as delalloc, not 1588 * more than 'max_bytes'. start and end are used to return the range, 1589 * 1590 * 1 is returned if we find something, 0 if nothing was in the tree 1591 */ 1592 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1593 struct extent_io_tree *tree, 1594 struct page *locked_page, 1595 u64 *start, u64 *end, 1596 u64 max_bytes) 1597 { 1598 u64 delalloc_start; 1599 u64 delalloc_end; 1600 u64 found; 1601 struct extent_state *cached_state = NULL; 1602 int ret; 1603 int loops = 0; 1604 1605 again: 1606 /* step one, find a bunch of delalloc bytes starting at start */ 1607 delalloc_start = *start; 1608 delalloc_end = 0; 1609 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1610 max_bytes, &cached_state); 1611 if (!found || delalloc_end <= *start) { 1612 *start = delalloc_start; 1613 *end = delalloc_end; 1614 free_extent_state(cached_state); 1615 return found; 1616 } 1617 1618 /* 1619 * start comes from the offset of locked_page. We have to lock 1620 * pages in order, so we can't process delalloc bytes before 1621 * locked_page 1622 */ 1623 if (delalloc_start < *start) 1624 delalloc_start = *start; 1625 1626 /* 1627 * make sure to limit the number of pages we try to lock down 1628 * if we're looping. 1629 */ 1630 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1631 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1632 1633 /* step two, lock all the pages after the page that has start */ 1634 ret = lock_delalloc_pages(inode, locked_page, 1635 delalloc_start, delalloc_end); 1636 if (ret == -EAGAIN) { 1637 /* some of the pages are gone, lets avoid looping by 1638 * shortening the size of the delalloc range we're searching 1639 */ 1640 free_extent_state(cached_state); 1641 if (!loops) { 1642 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1643 max_bytes = PAGE_CACHE_SIZE - offset; 1644 loops = 1; 1645 goto again; 1646 } else { 1647 found = 0; 1648 goto out_failed; 1649 } 1650 } 1651 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1652 1653 /* step three, lock the state bits for the whole range */ 1654 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1655 1656 /* then test to make sure it is all still delalloc */ 1657 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1658 EXTENT_DELALLOC, 1, cached_state); 1659 if (!ret) { 1660 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1661 &cached_state, GFP_NOFS); 1662 __unlock_for_delalloc(inode, locked_page, 1663 delalloc_start, delalloc_end); 1664 cond_resched(); 1665 goto again; 1666 } 1667 free_extent_state(cached_state); 1668 *start = delalloc_start; 1669 *end = delalloc_end; 1670 out_failed: 1671 return found; 1672 } 1673 1674 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1675 struct page *locked_page, 1676 unsigned long clear_bits, 1677 unsigned long page_ops) 1678 { 1679 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1680 int ret; 1681 struct page *pages[16]; 1682 unsigned long index = start >> PAGE_CACHE_SHIFT; 1683 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1684 unsigned long nr_pages = end_index - index + 1; 1685 int i; 1686 1687 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1688 if (page_ops == 0) 1689 return 0; 1690 1691 while (nr_pages > 0) { 1692 ret = find_get_pages_contig(inode->i_mapping, index, 1693 min_t(unsigned long, 1694 nr_pages, ARRAY_SIZE(pages)), pages); 1695 for (i = 0; i < ret; i++) { 1696 1697 if (page_ops & PAGE_SET_PRIVATE2) 1698 SetPagePrivate2(pages[i]); 1699 1700 if (pages[i] == locked_page) { 1701 page_cache_release(pages[i]); 1702 continue; 1703 } 1704 if (page_ops & PAGE_CLEAR_DIRTY) 1705 clear_page_dirty_for_io(pages[i]); 1706 if (page_ops & PAGE_SET_WRITEBACK) 1707 set_page_writeback(pages[i]); 1708 if (page_ops & PAGE_END_WRITEBACK) 1709 end_page_writeback(pages[i]); 1710 if (page_ops & PAGE_UNLOCK) 1711 unlock_page(pages[i]); 1712 page_cache_release(pages[i]); 1713 } 1714 nr_pages -= ret; 1715 index += ret; 1716 cond_resched(); 1717 } 1718 return 0; 1719 } 1720 1721 /* 1722 * count the number of bytes in the tree that have a given bit(s) 1723 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1724 * cached. The total number found is returned. 1725 */ 1726 u64 count_range_bits(struct extent_io_tree *tree, 1727 u64 *start, u64 search_end, u64 max_bytes, 1728 unsigned long bits, int contig) 1729 { 1730 struct rb_node *node; 1731 struct extent_state *state; 1732 u64 cur_start = *start; 1733 u64 total_bytes = 0; 1734 u64 last = 0; 1735 int found = 0; 1736 1737 if (search_end <= cur_start) { 1738 WARN_ON(1); 1739 return 0; 1740 } 1741 1742 spin_lock(&tree->lock); 1743 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1744 total_bytes = tree->dirty_bytes; 1745 goto out; 1746 } 1747 /* 1748 * this search will find all the extents that end after 1749 * our range starts. 1750 */ 1751 node = tree_search(tree, cur_start); 1752 if (!node) 1753 goto out; 1754 1755 while (1) { 1756 state = rb_entry(node, struct extent_state, rb_node); 1757 if (state->start > search_end) 1758 break; 1759 if (contig && found && state->start > last + 1) 1760 break; 1761 if (state->end >= cur_start && (state->state & bits) == bits) { 1762 total_bytes += min(search_end, state->end) + 1 - 1763 max(cur_start, state->start); 1764 if (total_bytes >= max_bytes) 1765 break; 1766 if (!found) { 1767 *start = max(cur_start, state->start); 1768 found = 1; 1769 } 1770 last = state->end; 1771 } else if (contig && found) { 1772 break; 1773 } 1774 node = rb_next(node); 1775 if (!node) 1776 break; 1777 } 1778 out: 1779 spin_unlock(&tree->lock); 1780 return total_bytes; 1781 } 1782 1783 /* 1784 * set the private field for a given byte offset in the tree. If there isn't 1785 * an extent_state there already, this does nothing. 1786 */ 1787 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1788 { 1789 struct rb_node *node; 1790 struct extent_state *state; 1791 int ret = 0; 1792 1793 spin_lock(&tree->lock); 1794 /* 1795 * this search will find all the extents that end after 1796 * our range starts. 1797 */ 1798 node = tree_search(tree, start); 1799 if (!node) { 1800 ret = -ENOENT; 1801 goto out; 1802 } 1803 state = rb_entry(node, struct extent_state, rb_node); 1804 if (state->start != start) { 1805 ret = -ENOENT; 1806 goto out; 1807 } 1808 state->private = private; 1809 out: 1810 spin_unlock(&tree->lock); 1811 return ret; 1812 } 1813 1814 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1815 { 1816 struct rb_node *node; 1817 struct extent_state *state; 1818 int ret = 0; 1819 1820 spin_lock(&tree->lock); 1821 /* 1822 * this search will find all the extents that end after 1823 * our range starts. 1824 */ 1825 node = tree_search(tree, start); 1826 if (!node) { 1827 ret = -ENOENT; 1828 goto out; 1829 } 1830 state = rb_entry(node, struct extent_state, rb_node); 1831 if (state->start != start) { 1832 ret = -ENOENT; 1833 goto out; 1834 } 1835 *private = state->private; 1836 out: 1837 spin_unlock(&tree->lock); 1838 return ret; 1839 } 1840 1841 /* 1842 * searches a range in the state tree for a given mask. 1843 * If 'filled' == 1, this returns 1 only if every extent in the tree 1844 * has the bits set. Otherwise, 1 is returned if any bit in the 1845 * range is found set. 1846 */ 1847 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1848 unsigned long bits, int filled, struct extent_state *cached) 1849 { 1850 struct extent_state *state = NULL; 1851 struct rb_node *node; 1852 int bitset = 0; 1853 1854 spin_lock(&tree->lock); 1855 if (cached && cached->tree && cached->start <= start && 1856 cached->end > start) 1857 node = &cached->rb_node; 1858 else 1859 node = tree_search(tree, start); 1860 while (node && start <= end) { 1861 state = rb_entry(node, struct extent_state, rb_node); 1862 1863 if (filled && state->start > start) { 1864 bitset = 0; 1865 break; 1866 } 1867 1868 if (state->start > end) 1869 break; 1870 1871 if (state->state & bits) { 1872 bitset = 1; 1873 if (!filled) 1874 break; 1875 } else if (filled) { 1876 bitset = 0; 1877 break; 1878 } 1879 1880 if (state->end == (u64)-1) 1881 break; 1882 1883 start = state->end + 1; 1884 if (start > end) 1885 break; 1886 node = rb_next(node); 1887 if (!node) { 1888 if (filled) 1889 bitset = 0; 1890 break; 1891 } 1892 } 1893 spin_unlock(&tree->lock); 1894 return bitset; 1895 } 1896 1897 /* 1898 * helper function to set a given page up to date if all the 1899 * extents in the tree for that page are up to date 1900 */ 1901 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1902 { 1903 u64 start = page_offset(page); 1904 u64 end = start + PAGE_CACHE_SIZE - 1; 1905 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1906 SetPageUptodate(page); 1907 } 1908 1909 /* 1910 * When IO fails, either with EIO or csum verification fails, we 1911 * try other mirrors that might have a good copy of the data. This 1912 * io_failure_record is used to record state as we go through all the 1913 * mirrors. If another mirror has good data, the page is set up to date 1914 * and things continue. If a good mirror can't be found, the original 1915 * bio end_io callback is called to indicate things have failed. 1916 */ 1917 struct io_failure_record { 1918 struct page *page; 1919 u64 start; 1920 u64 len; 1921 u64 logical; 1922 unsigned long bio_flags; 1923 int this_mirror; 1924 int failed_mirror; 1925 int in_validation; 1926 }; 1927 1928 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1929 int did_repair) 1930 { 1931 int ret; 1932 int err = 0; 1933 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1934 1935 set_state_private(failure_tree, rec->start, 0); 1936 ret = clear_extent_bits(failure_tree, rec->start, 1937 rec->start + rec->len - 1, 1938 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1939 if (ret) 1940 err = ret; 1941 1942 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1943 rec->start + rec->len - 1, 1944 EXTENT_DAMAGED, GFP_NOFS); 1945 if (ret && !err) 1946 err = ret; 1947 1948 kfree(rec); 1949 return err; 1950 } 1951 1952 static void repair_io_failure_callback(struct bio *bio, int err) 1953 { 1954 complete(bio->bi_private); 1955 } 1956 1957 /* 1958 * this bypasses the standard btrfs submit functions deliberately, as 1959 * the standard behavior is to write all copies in a raid setup. here we only 1960 * want to write the one bad copy. so we do the mapping for ourselves and issue 1961 * submit_bio directly. 1962 * to avoid any synchronization issues, wait for the data after writing, which 1963 * actually prevents the read that triggered the error from finishing. 1964 * currently, there can be no more than two copies of every data bit. thus, 1965 * exactly one rewrite is required. 1966 */ 1967 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1968 u64 length, u64 logical, struct page *page, 1969 int mirror_num) 1970 { 1971 struct bio *bio; 1972 struct btrfs_device *dev; 1973 DECLARE_COMPLETION_ONSTACK(compl); 1974 u64 map_length = 0; 1975 u64 sector; 1976 struct btrfs_bio *bbio = NULL; 1977 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1978 int ret; 1979 1980 BUG_ON(!mirror_num); 1981 1982 /* we can't repair anything in raid56 yet */ 1983 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1984 return 0; 1985 1986 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1987 if (!bio) 1988 return -EIO; 1989 bio->bi_private = &compl; 1990 bio->bi_end_io = repair_io_failure_callback; 1991 bio->bi_size = 0; 1992 map_length = length; 1993 1994 ret = btrfs_map_block(fs_info, WRITE, logical, 1995 &map_length, &bbio, mirror_num); 1996 if (ret) { 1997 bio_put(bio); 1998 return -EIO; 1999 } 2000 BUG_ON(mirror_num != bbio->mirror_num); 2001 sector = bbio->stripes[mirror_num-1].physical >> 9; 2002 bio->bi_sector = sector; 2003 dev = bbio->stripes[mirror_num-1].dev; 2004 kfree(bbio); 2005 if (!dev || !dev->bdev || !dev->writeable) { 2006 bio_put(bio); 2007 return -EIO; 2008 } 2009 bio->bi_bdev = dev->bdev; 2010 bio_add_page(bio, page, length, start - page_offset(page)); 2011 btrfsic_submit_bio(WRITE_SYNC, bio); 2012 wait_for_completion(&compl); 2013 2014 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2015 /* try to remap that extent elsewhere? */ 2016 bio_put(bio); 2017 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2018 return -EIO; 2019 } 2020 2021 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2022 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2023 start, rcu_str_deref(dev->name), sector); 2024 2025 bio_put(bio); 2026 return 0; 2027 } 2028 2029 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2030 int mirror_num) 2031 { 2032 u64 start = eb->start; 2033 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2034 int ret = 0; 2035 2036 for (i = 0; i < num_pages; i++) { 2037 struct page *p = extent_buffer_page(eb, i); 2038 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2039 start, p, mirror_num); 2040 if (ret) 2041 break; 2042 start += PAGE_CACHE_SIZE; 2043 } 2044 2045 return ret; 2046 } 2047 2048 /* 2049 * each time an IO finishes, we do a fast check in the IO failure tree 2050 * to see if we need to process or clean up an io_failure_record 2051 */ 2052 static int clean_io_failure(u64 start, struct page *page) 2053 { 2054 u64 private; 2055 u64 private_failure; 2056 struct io_failure_record *failrec; 2057 struct btrfs_fs_info *fs_info; 2058 struct extent_state *state; 2059 int num_copies; 2060 int did_repair = 0; 2061 int ret; 2062 struct inode *inode = page->mapping->host; 2063 2064 private = 0; 2065 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2066 (u64)-1, 1, EXTENT_DIRTY, 0); 2067 if (!ret) 2068 return 0; 2069 2070 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2071 &private_failure); 2072 if (ret) 2073 return 0; 2074 2075 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2076 BUG_ON(!failrec->this_mirror); 2077 2078 if (failrec->in_validation) { 2079 /* there was no real error, just free the record */ 2080 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2081 failrec->start); 2082 did_repair = 1; 2083 goto out; 2084 } 2085 2086 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2087 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2088 failrec->start, 2089 EXTENT_LOCKED); 2090 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2091 2092 if (state && state->start <= failrec->start && 2093 state->end >= failrec->start + failrec->len - 1) { 2094 fs_info = BTRFS_I(inode)->root->fs_info; 2095 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2096 failrec->len); 2097 if (num_copies > 1) { 2098 ret = repair_io_failure(fs_info, start, failrec->len, 2099 failrec->logical, page, 2100 failrec->failed_mirror); 2101 did_repair = !ret; 2102 } 2103 ret = 0; 2104 } 2105 2106 out: 2107 if (!ret) 2108 ret = free_io_failure(inode, failrec, did_repair); 2109 2110 return ret; 2111 } 2112 2113 /* 2114 * this is a generic handler for readpage errors (default 2115 * readpage_io_failed_hook). if other copies exist, read those and write back 2116 * good data to the failed position. does not investigate in remapping the 2117 * failed extent elsewhere, hoping the device will be smart enough to do this as 2118 * needed 2119 */ 2120 2121 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2122 struct page *page, u64 start, u64 end, 2123 int failed_mirror) 2124 { 2125 struct io_failure_record *failrec = NULL; 2126 u64 private; 2127 struct extent_map *em; 2128 struct inode *inode = page->mapping->host; 2129 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2130 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2131 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2132 struct bio *bio; 2133 struct btrfs_io_bio *btrfs_failed_bio; 2134 struct btrfs_io_bio *btrfs_bio; 2135 int num_copies; 2136 int ret; 2137 int read_mode; 2138 u64 logical; 2139 2140 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2141 2142 ret = get_state_private(failure_tree, start, &private); 2143 if (ret) { 2144 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2145 if (!failrec) 2146 return -ENOMEM; 2147 failrec->start = start; 2148 failrec->len = end - start + 1; 2149 failrec->this_mirror = 0; 2150 failrec->bio_flags = 0; 2151 failrec->in_validation = 0; 2152 2153 read_lock(&em_tree->lock); 2154 em = lookup_extent_mapping(em_tree, start, failrec->len); 2155 if (!em) { 2156 read_unlock(&em_tree->lock); 2157 kfree(failrec); 2158 return -EIO; 2159 } 2160 2161 if (em->start > start || em->start + em->len < start) { 2162 free_extent_map(em); 2163 em = NULL; 2164 } 2165 read_unlock(&em_tree->lock); 2166 2167 if (!em) { 2168 kfree(failrec); 2169 return -EIO; 2170 } 2171 logical = start - em->start; 2172 logical = em->block_start + logical; 2173 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2174 logical = em->block_start; 2175 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2176 extent_set_compress_type(&failrec->bio_flags, 2177 em->compress_type); 2178 } 2179 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2180 "len=%llu\n", logical, start, failrec->len); 2181 failrec->logical = logical; 2182 free_extent_map(em); 2183 2184 /* set the bits in the private failure tree */ 2185 ret = set_extent_bits(failure_tree, start, end, 2186 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2187 if (ret >= 0) 2188 ret = set_state_private(failure_tree, start, 2189 (u64)(unsigned long)failrec); 2190 /* set the bits in the inode's tree */ 2191 if (ret >= 0) 2192 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2193 GFP_NOFS); 2194 if (ret < 0) { 2195 kfree(failrec); 2196 return ret; 2197 } 2198 } else { 2199 failrec = (struct io_failure_record *)(unsigned long)private; 2200 pr_debug("bio_readpage_error: (found) logical=%llu, " 2201 "start=%llu, len=%llu, validation=%d\n", 2202 failrec->logical, failrec->start, failrec->len, 2203 failrec->in_validation); 2204 /* 2205 * when data can be on disk more than twice, add to failrec here 2206 * (e.g. with a list for failed_mirror) to make 2207 * clean_io_failure() clean all those errors at once. 2208 */ 2209 } 2210 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2211 failrec->logical, failrec->len); 2212 if (num_copies == 1) { 2213 /* 2214 * we only have a single copy of the data, so don't bother with 2215 * all the retry and error correction code that follows. no 2216 * matter what the error is, it is very likely to persist. 2217 */ 2218 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2219 num_copies, failrec->this_mirror, failed_mirror); 2220 free_io_failure(inode, failrec, 0); 2221 return -EIO; 2222 } 2223 2224 /* 2225 * there are two premises: 2226 * a) deliver good data to the caller 2227 * b) correct the bad sectors on disk 2228 */ 2229 if (failed_bio->bi_vcnt > 1) { 2230 /* 2231 * to fulfill b), we need to know the exact failing sectors, as 2232 * we don't want to rewrite any more than the failed ones. thus, 2233 * we need separate read requests for the failed bio 2234 * 2235 * if the following BUG_ON triggers, our validation request got 2236 * merged. we need separate requests for our algorithm to work. 2237 */ 2238 BUG_ON(failrec->in_validation); 2239 failrec->in_validation = 1; 2240 failrec->this_mirror = failed_mirror; 2241 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2242 } else { 2243 /* 2244 * we're ready to fulfill a) and b) alongside. get a good copy 2245 * of the failed sector and if we succeed, we have setup 2246 * everything for repair_io_failure to do the rest for us. 2247 */ 2248 if (failrec->in_validation) { 2249 BUG_ON(failrec->this_mirror != failed_mirror); 2250 failrec->in_validation = 0; 2251 failrec->this_mirror = 0; 2252 } 2253 failrec->failed_mirror = failed_mirror; 2254 failrec->this_mirror++; 2255 if (failrec->this_mirror == failed_mirror) 2256 failrec->this_mirror++; 2257 read_mode = READ_SYNC; 2258 } 2259 2260 if (failrec->this_mirror > num_copies) { 2261 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2262 num_copies, failrec->this_mirror, failed_mirror); 2263 free_io_failure(inode, failrec, 0); 2264 return -EIO; 2265 } 2266 2267 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2268 if (!bio) { 2269 free_io_failure(inode, failrec, 0); 2270 return -EIO; 2271 } 2272 bio->bi_end_io = failed_bio->bi_end_io; 2273 bio->bi_sector = failrec->logical >> 9; 2274 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2275 bio->bi_size = 0; 2276 2277 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2278 if (btrfs_failed_bio->csum) { 2279 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2280 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2281 2282 btrfs_bio = btrfs_io_bio(bio); 2283 btrfs_bio->csum = btrfs_bio->csum_inline; 2284 phy_offset >>= inode->i_sb->s_blocksize_bits; 2285 phy_offset *= csum_size; 2286 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2287 csum_size); 2288 } 2289 2290 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2291 2292 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2293 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2294 failrec->this_mirror, num_copies, failrec->in_validation); 2295 2296 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2297 failrec->this_mirror, 2298 failrec->bio_flags, 0); 2299 return ret; 2300 } 2301 2302 /* lots and lots of room for performance fixes in the end_bio funcs */ 2303 2304 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2305 { 2306 int uptodate = (err == 0); 2307 struct extent_io_tree *tree; 2308 int ret; 2309 2310 tree = &BTRFS_I(page->mapping->host)->io_tree; 2311 2312 if (tree->ops && tree->ops->writepage_end_io_hook) { 2313 ret = tree->ops->writepage_end_io_hook(page, start, 2314 end, NULL, uptodate); 2315 if (ret) 2316 uptodate = 0; 2317 } 2318 2319 if (!uptodate) { 2320 ClearPageUptodate(page); 2321 SetPageError(page); 2322 } 2323 return 0; 2324 } 2325 2326 /* 2327 * after a writepage IO is done, we need to: 2328 * clear the uptodate bits on error 2329 * clear the writeback bits in the extent tree for this IO 2330 * end_page_writeback if the page has no more pending IO 2331 * 2332 * Scheduling is not allowed, so the extent state tree is expected 2333 * to have one and only one object corresponding to this IO. 2334 */ 2335 static void end_bio_extent_writepage(struct bio *bio, int err) 2336 { 2337 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2338 struct extent_io_tree *tree; 2339 u64 start; 2340 u64 end; 2341 2342 do { 2343 struct page *page = bvec->bv_page; 2344 tree = &BTRFS_I(page->mapping->host)->io_tree; 2345 2346 /* We always issue full-page reads, but if some block 2347 * in a page fails to read, blk_update_request() will 2348 * advance bv_offset and adjust bv_len to compensate. 2349 * Print a warning for nonzero offsets, and an error 2350 * if they don't add up to a full page. */ 2351 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2352 printk("%s page write in btrfs with offset %u and length %u\n", 2353 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2354 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2355 bvec->bv_offset, bvec->bv_len); 2356 2357 start = page_offset(page); 2358 end = start + bvec->bv_offset + bvec->bv_len - 1; 2359 2360 if (--bvec >= bio->bi_io_vec) 2361 prefetchw(&bvec->bv_page->flags); 2362 2363 if (end_extent_writepage(page, err, start, end)) 2364 continue; 2365 2366 end_page_writeback(page); 2367 } while (bvec >= bio->bi_io_vec); 2368 2369 bio_put(bio); 2370 } 2371 2372 static void 2373 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2374 int uptodate) 2375 { 2376 struct extent_state *cached = NULL; 2377 u64 end = start + len - 1; 2378 2379 if (uptodate && tree->track_uptodate) 2380 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2381 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2382 } 2383 2384 /* 2385 * after a readpage IO is done, we need to: 2386 * clear the uptodate bits on error 2387 * set the uptodate bits if things worked 2388 * set the page up to date if all extents in the tree are uptodate 2389 * clear the lock bit in the extent tree 2390 * unlock the page if there are no other extents locked for it 2391 * 2392 * Scheduling is not allowed, so the extent state tree is expected 2393 * to have one and only one object corresponding to this IO. 2394 */ 2395 static void end_bio_extent_readpage(struct bio *bio, int err) 2396 { 2397 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2398 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2399 struct bio_vec *bvec = bio->bi_io_vec; 2400 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2401 struct extent_io_tree *tree; 2402 u64 offset = 0; 2403 u64 start; 2404 u64 end; 2405 u64 len; 2406 u64 extent_start = 0; 2407 u64 extent_len = 0; 2408 int mirror; 2409 int ret; 2410 2411 if (err) 2412 uptodate = 0; 2413 2414 do { 2415 struct page *page = bvec->bv_page; 2416 struct inode *inode = page->mapping->host; 2417 2418 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2419 "mirror=%lu\n", (u64)bio->bi_sector, err, 2420 io_bio->mirror_num); 2421 tree = &BTRFS_I(inode)->io_tree; 2422 2423 /* We always issue full-page reads, but if some block 2424 * in a page fails to read, blk_update_request() will 2425 * advance bv_offset and adjust bv_len to compensate. 2426 * Print a warning for nonzero offsets, and an error 2427 * if they don't add up to a full page. */ 2428 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2429 printk("%s page read in btrfs with offset %u and length %u\n", 2430 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2431 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2432 bvec->bv_offset, bvec->bv_len); 2433 2434 start = page_offset(page); 2435 end = start + bvec->bv_offset + bvec->bv_len - 1; 2436 len = bvec->bv_len; 2437 2438 if (++bvec <= bvec_end) 2439 prefetchw(&bvec->bv_page->flags); 2440 2441 mirror = io_bio->mirror_num; 2442 if (likely(uptodate && tree->ops && 2443 tree->ops->readpage_end_io_hook)) { 2444 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2445 page, start, end, 2446 mirror); 2447 if (ret) 2448 uptodate = 0; 2449 else 2450 clean_io_failure(start, page); 2451 } 2452 2453 if (likely(uptodate)) 2454 goto readpage_ok; 2455 2456 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2457 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2458 if (!ret && !err && 2459 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2460 uptodate = 1; 2461 } else { 2462 /* 2463 * The generic bio_readpage_error handles errors the 2464 * following way: If possible, new read requests are 2465 * created and submitted and will end up in 2466 * end_bio_extent_readpage as well (if we're lucky, not 2467 * in the !uptodate case). In that case it returns 0 and 2468 * we just go on with the next page in our bio. If it 2469 * can't handle the error it will return -EIO and we 2470 * remain responsible for that page. 2471 */ 2472 ret = bio_readpage_error(bio, offset, page, start, end, 2473 mirror); 2474 if (ret == 0) { 2475 uptodate = 2476 test_bit(BIO_UPTODATE, &bio->bi_flags); 2477 if (err) 2478 uptodate = 0; 2479 continue; 2480 } 2481 } 2482 readpage_ok: 2483 if (likely(uptodate)) { 2484 loff_t i_size = i_size_read(inode); 2485 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2486 unsigned offset; 2487 2488 /* Zero out the end if this page straddles i_size */ 2489 offset = i_size & (PAGE_CACHE_SIZE-1); 2490 if (page->index == end_index && offset) 2491 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2492 SetPageUptodate(page); 2493 } else { 2494 ClearPageUptodate(page); 2495 SetPageError(page); 2496 } 2497 unlock_page(page); 2498 offset += len; 2499 2500 if (unlikely(!uptodate)) { 2501 if (extent_len) { 2502 endio_readpage_release_extent(tree, 2503 extent_start, 2504 extent_len, 1); 2505 extent_start = 0; 2506 extent_len = 0; 2507 } 2508 endio_readpage_release_extent(tree, start, 2509 end - start + 1, 0); 2510 } else if (!extent_len) { 2511 extent_start = start; 2512 extent_len = end + 1 - start; 2513 } else if (extent_start + extent_len == start) { 2514 extent_len += end + 1 - start; 2515 } else { 2516 endio_readpage_release_extent(tree, extent_start, 2517 extent_len, uptodate); 2518 extent_start = start; 2519 extent_len = end + 1 - start; 2520 } 2521 } while (bvec <= bvec_end); 2522 2523 if (extent_len) 2524 endio_readpage_release_extent(tree, extent_start, extent_len, 2525 uptodate); 2526 if (io_bio->end_io) 2527 io_bio->end_io(io_bio, err); 2528 bio_put(bio); 2529 } 2530 2531 /* 2532 * this allocates from the btrfs_bioset. We're returning a bio right now 2533 * but you can call btrfs_io_bio for the appropriate container_of magic 2534 */ 2535 struct bio * 2536 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2537 gfp_t gfp_flags) 2538 { 2539 struct btrfs_io_bio *btrfs_bio; 2540 struct bio *bio; 2541 2542 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2543 2544 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2545 while (!bio && (nr_vecs /= 2)) { 2546 bio = bio_alloc_bioset(gfp_flags, 2547 nr_vecs, btrfs_bioset); 2548 } 2549 } 2550 2551 if (bio) { 2552 bio->bi_size = 0; 2553 bio->bi_bdev = bdev; 2554 bio->bi_sector = first_sector; 2555 btrfs_bio = btrfs_io_bio(bio); 2556 btrfs_bio->csum = NULL; 2557 btrfs_bio->csum_allocated = NULL; 2558 btrfs_bio->end_io = NULL; 2559 } 2560 return bio; 2561 } 2562 2563 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2564 { 2565 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2566 } 2567 2568 2569 /* this also allocates from the btrfs_bioset */ 2570 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2571 { 2572 struct btrfs_io_bio *btrfs_bio; 2573 struct bio *bio; 2574 2575 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2576 if (bio) { 2577 btrfs_bio = btrfs_io_bio(bio); 2578 btrfs_bio->csum = NULL; 2579 btrfs_bio->csum_allocated = NULL; 2580 btrfs_bio->end_io = NULL; 2581 } 2582 return bio; 2583 } 2584 2585 2586 static int __must_check submit_one_bio(int rw, struct bio *bio, 2587 int mirror_num, unsigned long bio_flags) 2588 { 2589 int ret = 0; 2590 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2591 struct page *page = bvec->bv_page; 2592 struct extent_io_tree *tree = bio->bi_private; 2593 u64 start; 2594 2595 start = page_offset(page) + bvec->bv_offset; 2596 2597 bio->bi_private = NULL; 2598 2599 bio_get(bio); 2600 2601 if (tree->ops && tree->ops->submit_bio_hook) 2602 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2603 mirror_num, bio_flags, start); 2604 else 2605 btrfsic_submit_bio(rw, bio); 2606 2607 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2608 ret = -EOPNOTSUPP; 2609 bio_put(bio); 2610 return ret; 2611 } 2612 2613 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2614 unsigned long offset, size_t size, struct bio *bio, 2615 unsigned long bio_flags) 2616 { 2617 int ret = 0; 2618 if (tree->ops && tree->ops->merge_bio_hook) 2619 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2620 bio_flags); 2621 BUG_ON(ret < 0); 2622 return ret; 2623 2624 } 2625 2626 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2627 struct page *page, sector_t sector, 2628 size_t size, unsigned long offset, 2629 struct block_device *bdev, 2630 struct bio **bio_ret, 2631 unsigned long max_pages, 2632 bio_end_io_t end_io_func, 2633 int mirror_num, 2634 unsigned long prev_bio_flags, 2635 unsigned long bio_flags) 2636 { 2637 int ret = 0; 2638 struct bio *bio; 2639 int nr; 2640 int contig = 0; 2641 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2642 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2643 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2644 2645 if (bio_ret && *bio_ret) { 2646 bio = *bio_ret; 2647 if (old_compressed) 2648 contig = bio->bi_sector == sector; 2649 else 2650 contig = bio_end_sector(bio) == sector; 2651 2652 if (prev_bio_flags != bio_flags || !contig || 2653 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2654 bio_add_page(bio, page, page_size, offset) < page_size) { 2655 ret = submit_one_bio(rw, bio, mirror_num, 2656 prev_bio_flags); 2657 if (ret < 0) 2658 return ret; 2659 bio = NULL; 2660 } else { 2661 return 0; 2662 } 2663 } 2664 if (this_compressed) 2665 nr = BIO_MAX_PAGES; 2666 else 2667 nr = bio_get_nr_vecs(bdev); 2668 2669 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2670 if (!bio) 2671 return -ENOMEM; 2672 2673 bio_add_page(bio, page, page_size, offset); 2674 bio->bi_end_io = end_io_func; 2675 bio->bi_private = tree; 2676 2677 if (bio_ret) 2678 *bio_ret = bio; 2679 else 2680 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2681 2682 return ret; 2683 } 2684 2685 static void attach_extent_buffer_page(struct extent_buffer *eb, 2686 struct page *page) 2687 { 2688 if (!PagePrivate(page)) { 2689 SetPagePrivate(page); 2690 page_cache_get(page); 2691 set_page_private(page, (unsigned long)eb); 2692 } else { 2693 WARN_ON(page->private != (unsigned long)eb); 2694 } 2695 } 2696 2697 void set_page_extent_mapped(struct page *page) 2698 { 2699 if (!PagePrivate(page)) { 2700 SetPagePrivate(page); 2701 page_cache_get(page); 2702 set_page_private(page, EXTENT_PAGE_PRIVATE); 2703 } 2704 } 2705 2706 static struct extent_map * 2707 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2708 u64 start, u64 len, get_extent_t *get_extent, 2709 struct extent_map **em_cached) 2710 { 2711 struct extent_map *em; 2712 2713 if (em_cached && *em_cached) { 2714 em = *em_cached; 2715 if (em->in_tree && start >= em->start && 2716 start < extent_map_end(em)) { 2717 atomic_inc(&em->refs); 2718 return em; 2719 } 2720 2721 free_extent_map(em); 2722 *em_cached = NULL; 2723 } 2724 2725 em = get_extent(inode, page, pg_offset, start, len, 0); 2726 if (em_cached && !IS_ERR_OR_NULL(em)) { 2727 BUG_ON(*em_cached); 2728 atomic_inc(&em->refs); 2729 *em_cached = em; 2730 } 2731 return em; 2732 } 2733 /* 2734 * basic readpage implementation. Locked extent state structs are inserted 2735 * into the tree that are removed when the IO is done (by the end_io 2736 * handlers) 2737 * XXX JDM: This needs looking at to ensure proper page locking 2738 */ 2739 static int __do_readpage(struct extent_io_tree *tree, 2740 struct page *page, 2741 get_extent_t *get_extent, 2742 struct extent_map **em_cached, 2743 struct bio **bio, int mirror_num, 2744 unsigned long *bio_flags, int rw) 2745 { 2746 struct inode *inode = page->mapping->host; 2747 u64 start = page_offset(page); 2748 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2749 u64 end; 2750 u64 cur = start; 2751 u64 extent_offset; 2752 u64 last_byte = i_size_read(inode); 2753 u64 block_start; 2754 u64 cur_end; 2755 sector_t sector; 2756 struct extent_map *em; 2757 struct block_device *bdev; 2758 int ret; 2759 int nr = 0; 2760 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2761 size_t pg_offset = 0; 2762 size_t iosize; 2763 size_t disk_io_size; 2764 size_t blocksize = inode->i_sb->s_blocksize; 2765 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2766 2767 set_page_extent_mapped(page); 2768 2769 end = page_end; 2770 if (!PageUptodate(page)) { 2771 if (cleancache_get_page(page) == 0) { 2772 BUG_ON(blocksize != PAGE_SIZE); 2773 unlock_extent(tree, start, end); 2774 goto out; 2775 } 2776 } 2777 2778 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2779 char *userpage; 2780 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2781 2782 if (zero_offset) { 2783 iosize = PAGE_CACHE_SIZE - zero_offset; 2784 userpage = kmap_atomic(page); 2785 memset(userpage + zero_offset, 0, iosize); 2786 flush_dcache_page(page); 2787 kunmap_atomic(userpage); 2788 } 2789 } 2790 while (cur <= end) { 2791 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2792 2793 if (cur >= last_byte) { 2794 char *userpage; 2795 struct extent_state *cached = NULL; 2796 2797 iosize = PAGE_CACHE_SIZE - pg_offset; 2798 userpage = kmap_atomic(page); 2799 memset(userpage + pg_offset, 0, iosize); 2800 flush_dcache_page(page); 2801 kunmap_atomic(userpage); 2802 set_extent_uptodate(tree, cur, cur + iosize - 1, 2803 &cached, GFP_NOFS); 2804 if (!parent_locked) 2805 unlock_extent_cached(tree, cur, 2806 cur + iosize - 1, 2807 &cached, GFP_NOFS); 2808 break; 2809 } 2810 em = __get_extent_map(inode, page, pg_offset, cur, 2811 end - cur + 1, get_extent, em_cached); 2812 if (IS_ERR_OR_NULL(em)) { 2813 SetPageError(page); 2814 if (!parent_locked) 2815 unlock_extent(tree, cur, end); 2816 break; 2817 } 2818 extent_offset = cur - em->start; 2819 BUG_ON(extent_map_end(em) <= cur); 2820 BUG_ON(end < cur); 2821 2822 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2823 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2824 extent_set_compress_type(&this_bio_flag, 2825 em->compress_type); 2826 } 2827 2828 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2829 cur_end = min(extent_map_end(em) - 1, end); 2830 iosize = ALIGN(iosize, blocksize); 2831 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2832 disk_io_size = em->block_len; 2833 sector = em->block_start >> 9; 2834 } else { 2835 sector = (em->block_start + extent_offset) >> 9; 2836 disk_io_size = iosize; 2837 } 2838 bdev = em->bdev; 2839 block_start = em->block_start; 2840 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2841 block_start = EXTENT_MAP_HOLE; 2842 free_extent_map(em); 2843 em = NULL; 2844 2845 /* we've found a hole, just zero and go on */ 2846 if (block_start == EXTENT_MAP_HOLE) { 2847 char *userpage; 2848 struct extent_state *cached = NULL; 2849 2850 userpage = kmap_atomic(page); 2851 memset(userpage + pg_offset, 0, iosize); 2852 flush_dcache_page(page); 2853 kunmap_atomic(userpage); 2854 2855 set_extent_uptodate(tree, cur, cur + iosize - 1, 2856 &cached, GFP_NOFS); 2857 unlock_extent_cached(tree, cur, cur + iosize - 1, 2858 &cached, GFP_NOFS); 2859 cur = cur + iosize; 2860 pg_offset += iosize; 2861 continue; 2862 } 2863 /* the get_extent function already copied into the page */ 2864 if (test_range_bit(tree, cur, cur_end, 2865 EXTENT_UPTODATE, 1, NULL)) { 2866 check_page_uptodate(tree, page); 2867 if (!parent_locked) 2868 unlock_extent(tree, cur, cur + iosize - 1); 2869 cur = cur + iosize; 2870 pg_offset += iosize; 2871 continue; 2872 } 2873 /* we have an inline extent but it didn't get marked up 2874 * to date. Error out 2875 */ 2876 if (block_start == EXTENT_MAP_INLINE) { 2877 SetPageError(page); 2878 if (!parent_locked) 2879 unlock_extent(tree, cur, cur + iosize - 1); 2880 cur = cur + iosize; 2881 pg_offset += iosize; 2882 continue; 2883 } 2884 2885 pnr -= page->index; 2886 ret = submit_extent_page(rw, tree, page, 2887 sector, disk_io_size, pg_offset, 2888 bdev, bio, pnr, 2889 end_bio_extent_readpage, mirror_num, 2890 *bio_flags, 2891 this_bio_flag); 2892 if (!ret) { 2893 nr++; 2894 *bio_flags = this_bio_flag; 2895 } else { 2896 SetPageError(page); 2897 if (!parent_locked) 2898 unlock_extent(tree, cur, cur + iosize - 1); 2899 } 2900 cur = cur + iosize; 2901 pg_offset += iosize; 2902 } 2903 out: 2904 if (!nr) { 2905 if (!PageError(page)) 2906 SetPageUptodate(page); 2907 unlock_page(page); 2908 } 2909 return 0; 2910 } 2911 2912 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2913 struct page *pages[], int nr_pages, 2914 u64 start, u64 end, 2915 get_extent_t *get_extent, 2916 struct extent_map **em_cached, 2917 struct bio **bio, int mirror_num, 2918 unsigned long *bio_flags, int rw) 2919 { 2920 struct inode *inode; 2921 struct btrfs_ordered_extent *ordered; 2922 int index; 2923 2924 inode = pages[0]->mapping->host; 2925 while (1) { 2926 lock_extent(tree, start, end); 2927 ordered = btrfs_lookup_ordered_range(inode, start, 2928 end - start + 1); 2929 if (!ordered) 2930 break; 2931 unlock_extent(tree, start, end); 2932 btrfs_start_ordered_extent(inode, ordered, 1); 2933 btrfs_put_ordered_extent(ordered); 2934 } 2935 2936 for (index = 0; index < nr_pages; index++) { 2937 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2938 mirror_num, bio_flags, rw); 2939 page_cache_release(pages[index]); 2940 } 2941 } 2942 2943 static void __extent_readpages(struct extent_io_tree *tree, 2944 struct page *pages[], 2945 int nr_pages, get_extent_t *get_extent, 2946 struct extent_map **em_cached, 2947 struct bio **bio, int mirror_num, 2948 unsigned long *bio_flags, int rw) 2949 { 2950 u64 start = 0; 2951 u64 end = 0; 2952 u64 page_start; 2953 int index; 2954 int first_index = 0; 2955 2956 for (index = 0; index < nr_pages; index++) { 2957 page_start = page_offset(pages[index]); 2958 if (!end) { 2959 start = page_start; 2960 end = start + PAGE_CACHE_SIZE - 1; 2961 first_index = index; 2962 } else if (end + 1 == page_start) { 2963 end += PAGE_CACHE_SIZE; 2964 } else { 2965 __do_contiguous_readpages(tree, &pages[first_index], 2966 index - first_index, start, 2967 end, get_extent, em_cached, 2968 bio, mirror_num, bio_flags, 2969 rw); 2970 start = page_start; 2971 end = start + PAGE_CACHE_SIZE - 1; 2972 first_index = index; 2973 } 2974 } 2975 2976 if (end) 2977 __do_contiguous_readpages(tree, &pages[first_index], 2978 index - first_index, start, 2979 end, get_extent, em_cached, bio, 2980 mirror_num, bio_flags, rw); 2981 } 2982 2983 static int __extent_read_full_page(struct extent_io_tree *tree, 2984 struct page *page, 2985 get_extent_t *get_extent, 2986 struct bio **bio, int mirror_num, 2987 unsigned long *bio_flags, int rw) 2988 { 2989 struct inode *inode = page->mapping->host; 2990 struct btrfs_ordered_extent *ordered; 2991 u64 start = page_offset(page); 2992 u64 end = start + PAGE_CACHE_SIZE - 1; 2993 int ret; 2994 2995 while (1) { 2996 lock_extent(tree, start, end); 2997 ordered = btrfs_lookup_ordered_extent(inode, start); 2998 if (!ordered) 2999 break; 3000 unlock_extent(tree, start, end); 3001 btrfs_start_ordered_extent(inode, ordered, 1); 3002 btrfs_put_ordered_extent(ordered); 3003 } 3004 3005 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3006 bio_flags, rw); 3007 return ret; 3008 } 3009 3010 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3011 get_extent_t *get_extent, int mirror_num) 3012 { 3013 struct bio *bio = NULL; 3014 unsigned long bio_flags = 0; 3015 int ret; 3016 3017 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3018 &bio_flags, READ); 3019 if (bio) 3020 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3021 return ret; 3022 } 3023 3024 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3025 get_extent_t *get_extent, int mirror_num) 3026 { 3027 struct bio *bio = NULL; 3028 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3029 int ret; 3030 3031 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3032 &bio_flags, READ); 3033 if (bio) 3034 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3035 return ret; 3036 } 3037 3038 static noinline void update_nr_written(struct page *page, 3039 struct writeback_control *wbc, 3040 unsigned long nr_written) 3041 { 3042 wbc->nr_to_write -= nr_written; 3043 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3044 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3045 page->mapping->writeback_index = page->index + nr_written; 3046 } 3047 3048 /* 3049 * the writepage semantics are similar to regular writepage. extent 3050 * records are inserted to lock ranges in the tree, and as dirty areas 3051 * are found, they are marked writeback. Then the lock bits are removed 3052 * and the end_io handler clears the writeback ranges 3053 */ 3054 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3055 void *data) 3056 { 3057 struct inode *inode = page->mapping->host; 3058 struct extent_page_data *epd = data; 3059 struct extent_io_tree *tree = epd->tree; 3060 u64 start = page_offset(page); 3061 u64 delalloc_start; 3062 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3063 u64 end; 3064 u64 cur = start; 3065 u64 extent_offset; 3066 u64 last_byte = i_size_read(inode); 3067 u64 block_start; 3068 u64 iosize; 3069 sector_t sector; 3070 struct extent_state *cached_state = NULL; 3071 struct extent_map *em; 3072 struct block_device *bdev; 3073 int ret; 3074 int nr = 0; 3075 size_t pg_offset = 0; 3076 size_t blocksize; 3077 loff_t i_size = i_size_read(inode); 3078 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3079 u64 nr_delalloc; 3080 u64 delalloc_end; 3081 int page_started; 3082 int compressed; 3083 int write_flags; 3084 unsigned long nr_written = 0; 3085 bool fill_delalloc = true; 3086 3087 if (wbc->sync_mode == WB_SYNC_ALL) 3088 write_flags = WRITE_SYNC; 3089 else 3090 write_flags = WRITE; 3091 3092 trace___extent_writepage(page, inode, wbc); 3093 3094 WARN_ON(!PageLocked(page)); 3095 3096 ClearPageError(page); 3097 3098 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3099 if (page->index > end_index || 3100 (page->index == end_index && !pg_offset)) { 3101 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3102 unlock_page(page); 3103 return 0; 3104 } 3105 3106 if (page->index == end_index) { 3107 char *userpage; 3108 3109 userpage = kmap_atomic(page); 3110 memset(userpage + pg_offset, 0, 3111 PAGE_CACHE_SIZE - pg_offset); 3112 kunmap_atomic(userpage); 3113 flush_dcache_page(page); 3114 } 3115 pg_offset = 0; 3116 3117 set_page_extent_mapped(page); 3118 3119 if (!tree->ops || !tree->ops->fill_delalloc) 3120 fill_delalloc = false; 3121 3122 delalloc_start = start; 3123 delalloc_end = 0; 3124 page_started = 0; 3125 if (!epd->extent_locked && fill_delalloc) { 3126 u64 delalloc_to_write = 0; 3127 /* 3128 * make sure the wbc mapping index is at least updated 3129 * to this page. 3130 */ 3131 update_nr_written(page, wbc, 0); 3132 3133 while (delalloc_end < page_end) { 3134 nr_delalloc = find_lock_delalloc_range(inode, tree, 3135 page, 3136 &delalloc_start, 3137 &delalloc_end, 3138 128 * 1024 * 1024); 3139 if (nr_delalloc == 0) { 3140 delalloc_start = delalloc_end + 1; 3141 continue; 3142 } 3143 ret = tree->ops->fill_delalloc(inode, page, 3144 delalloc_start, 3145 delalloc_end, 3146 &page_started, 3147 &nr_written); 3148 /* File system has been set read-only */ 3149 if (ret) { 3150 SetPageError(page); 3151 goto done; 3152 } 3153 /* 3154 * delalloc_end is already one less than the total 3155 * length, so we don't subtract one from 3156 * PAGE_CACHE_SIZE 3157 */ 3158 delalloc_to_write += (delalloc_end - delalloc_start + 3159 PAGE_CACHE_SIZE) >> 3160 PAGE_CACHE_SHIFT; 3161 delalloc_start = delalloc_end + 1; 3162 } 3163 if (wbc->nr_to_write < delalloc_to_write) { 3164 int thresh = 8192; 3165 3166 if (delalloc_to_write < thresh * 2) 3167 thresh = delalloc_to_write; 3168 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3169 thresh); 3170 } 3171 3172 /* did the fill delalloc function already unlock and start 3173 * the IO? 3174 */ 3175 if (page_started) { 3176 ret = 0; 3177 /* 3178 * we've unlocked the page, so we can't update 3179 * the mapping's writeback index, just update 3180 * nr_to_write. 3181 */ 3182 wbc->nr_to_write -= nr_written; 3183 goto done_unlocked; 3184 } 3185 } 3186 if (tree->ops && tree->ops->writepage_start_hook) { 3187 ret = tree->ops->writepage_start_hook(page, start, 3188 page_end); 3189 if (ret) { 3190 /* Fixup worker will requeue */ 3191 if (ret == -EBUSY) 3192 wbc->pages_skipped++; 3193 else 3194 redirty_page_for_writepage(wbc, page); 3195 update_nr_written(page, wbc, nr_written); 3196 unlock_page(page); 3197 ret = 0; 3198 goto done_unlocked; 3199 } 3200 } 3201 3202 /* 3203 * we don't want to touch the inode after unlocking the page, 3204 * so we update the mapping writeback index now 3205 */ 3206 update_nr_written(page, wbc, nr_written + 1); 3207 3208 end = page_end; 3209 if (last_byte <= start) { 3210 if (tree->ops && tree->ops->writepage_end_io_hook) 3211 tree->ops->writepage_end_io_hook(page, start, 3212 page_end, NULL, 1); 3213 goto done; 3214 } 3215 3216 blocksize = inode->i_sb->s_blocksize; 3217 3218 while (cur <= end) { 3219 if (cur >= last_byte) { 3220 if (tree->ops && tree->ops->writepage_end_io_hook) 3221 tree->ops->writepage_end_io_hook(page, cur, 3222 page_end, NULL, 1); 3223 break; 3224 } 3225 em = epd->get_extent(inode, page, pg_offset, cur, 3226 end - cur + 1, 1); 3227 if (IS_ERR_OR_NULL(em)) { 3228 SetPageError(page); 3229 break; 3230 } 3231 3232 extent_offset = cur - em->start; 3233 BUG_ON(extent_map_end(em) <= cur); 3234 BUG_ON(end < cur); 3235 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3236 iosize = ALIGN(iosize, blocksize); 3237 sector = (em->block_start + extent_offset) >> 9; 3238 bdev = em->bdev; 3239 block_start = em->block_start; 3240 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3241 free_extent_map(em); 3242 em = NULL; 3243 3244 /* 3245 * compressed and inline extents are written through other 3246 * paths in the FS 3247 */ 3248 if (compressed || block_start == EXTENT_MAP_HOLE || 3249 block_start == EXTENT_MAP_INLINE) { 3250 /* 3251 * end_io notification does not happen here for 3252 * compressed extents 3253 */ 3254 if (!compressed && tree->ops && 3255 tree->ops->writepage_end_io_hook) 3256 tree->ops->writepage_end_io_hook(page, cur, 3257 cur + iosize - 1, 3258 NULL, 1); 3259 else if (compressed) { 3260 /* we don't want to end_page_writeback on 3261 * a compressed extent. this happens 3262 * elsewhere 3263 */ 3264 nr++; 3265 } 3266 3267 cur += iosize; 3268 pg_offset += iosize; 3269 continue; 3270 } 3271 /* leave this out until we have a page_mkwrite call */ 3272 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3273 EXTENT_DIRTY, 0, NULL)) { 3274 cur = cur + iosize; 3275 pg_offset += iosize; 3276 continue; 3277 } 3278 3279 if (tree->ops && tree->ops->writepage_io_hook) { 3280 ret = tree->ops->writepage_io_hook(page, cur, 3281 cur + iosize - 1); 3282 } else { 3283 ret = 0; 3284 } 3285 if (ret) { 3286 SetPageError(page); 3287 } else { 3288 unsigned long max_nr = end_index + 1; 3289 3290 set_range_writeback(tree, cur, cur + iosize - 1); 3291 if (!PageWriteback(page)) { 3292 printk(KERN_ERR "btrfs warning page %lu not " 3293 "writeback, cur %llu end %llu\n", 3294 page->index, cur, end); 3295 } 3296 3297 ret = submit_extent_page(write_flags, tree, page, 3298 sector, iosize, pg_offset, 3299 bdev, &epd->bio, max_nr, 3300 end_bio_extent_writepage, 3301 0, 0, 0); 3302 if (ret) 3303 SetPageError(page); 3304 } 3305 cur = cur + iosize; 3306 pg_offset += iosize; 3307 nr++; 3308 } 3309 done: 3310 if (nr == 0) { 3311 /* make sure the mapping tag for page dirty gets cleared */ 3312 set_page_writeback(page); 3313 end_page_writeback(page); 3314 } 3315 unlock_page(page); 3316 3317 done_unlocked: 3318 3319 /* drop our reference on any cached states */ 3320 free_extent_state(cached_state); 3321 return 0; 3322 } 3323 3324 static int eb_wait(void *word) 3325 { 3326 io_schedule(); 3327 return 0; 3328 } 3329 3330 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3331 { 3332 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3333 TASK_UNINTERRUPTIBLE); 3334 } 3335 3336 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3337 struct btrfs_fs_info *fs_info, 3338 struct extent_page_data *epd) 3339 { 3340 unsigned long i, num_pages; 3341 int flush = 0; 3342 int ret = 0; 3343 3344 if (!btrfs_try_tree_write_lock(eb)) { 3345 flush = 1; 3346 flush_write_bio(epd); 3347 btrfs_tree_lock(eb); 3348 } 3349 3350 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3351 btrfs_tree_unlock(eb); 3352 if (!epd->sync_io) 3353 return 0; 3354 if (!flush) { 3355 flush_write_bio(epd); 3356 flush = 1; 3357 } 3358 while (1) { 3359 wait_on_extent_buffer_writeback(eb); 3360 btrfs_tree_lock(eb); 3361 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3362 break; 3363 btrfs_tree_unlock(eb); 3364 } 3365 } 3366 3367 /* 3368 * We need to do this to prevent races in people who check if the eb is 3369 * under IO since we can end up having no IO bits set for a short period 3370 * of time. 3371 */ 3372 spin_lock(&eb->refs_lock); 3373 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3374 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3375 spin_unlock(&eb->refs_lock); 3376 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3377 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3378 -eb->len, 3379 fs_info->dirty_metadata_batch); 3380 ret = 1; 3381 } else { 3382 spin_unlock(&eb->refs_lock); 3383 } 3384 3385 btrfs_tree_unlock(eb); 3386 3387 if (!ret) 3388 return ret; 3389 3390 num_pages = num_extent_pages(eb->start, eb->len); 3391 for (i = 0; i < num_pages; i++) { 3392 struct page *p = extent_buffer_page(eb, i); 3393 3394 if (!trylock_page(p)) { 3395 if (!flush) { 3396 flush_write_bio(epd); 3397 flush = 1; 3398 } 3399 lock_page(p); 3400 } 3401 } 3402 3403 return ret; 3404 } 3405 3406 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3407 { 3408 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3409 smp_mb__after_clear_bit(); 3410 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3411 } 3412 3413 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3414 { 3415 int uptodate = err == 0; 3416 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3417 struct extent_buffer *eb; 3418 int done; 3419 3420 do { 3421 struct page *page = bvec->bv_page; 3422 3423 bvec--; 3424 eb = (struct extent_buffer *)page->private; 3425 BUG_ON(!eb); 3426 done = atomic_dec_and_test(&eb->io_pages); 3427 3428 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3429 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3430 ClearPageUptodate(page); 3431 SetPageError(page); 3432 } 3433 3434 end_page_writeback(page); 3435 3436 if (!done) 3437 continue; 3438 3439 end_extent_buffer_writeback(eb); 3440 } while (bvec >= bio->bi_io_vec); 3441 3442 bio_put(bio); 3443 3444 } 3445 3446 static int write_one_eb(struct extent_buffer *eb, 3447 struct btrfs_fs_info *fs_info, 3448 struct writeback_control *wbc, 3449 struct extent_page_data *epd) 3450 { 3451 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3452 u64 offset = eb->start; 3453 unsigned long i, num_pages; 3454 unsigned long bio_flags = 0; 3455 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3456 int ret = 0; 3457 3458 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3459 num_pages = num_extent_pages(eb->start, eb->len); 3460 atomic_set(&eb->io_pages, num_pages); 3461 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3462 bio_flags = EXTENT_BIO_TREE_LOG; 3463 3464 for (i = 0; i < num_pages; i++) { 3465 struct page *p = extent_buffer_page(eb, i); 3466 3467 clear_page_dirty_for_io(p); 3468 set_page_writeback(p); 3469 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3470 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3471 -1, end_bio_extent_buffer_writepage, 3472 0, epd->bio_flags, bio_flags); 3473 epd->bio_flags = bio_flags; 3474 if (ret) { 3475 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3476 SetPageError(p); 3477 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3478 end_extent_buffer_writeback(eb); 3479 ret = -EIO; 3480 break; 3481 } 3482 offset += PAGE_CACHE_SIZE; 3483 update_nr_written(p, wbc, 1); 3484 unlock_page(p); 3485 } 3486 3487 if (unlikely(ret)) { 3488 for (; i < num_pages; i++) { 3489 struct page *p = extent_buffer_page(eb, i); 3490 unlock_page(p); 3491 } 3492 } 3493 3494 return ret; 3495 } 3496 3497 int btree_write_cache_pages(struct address_space *mapping, 3498 struct writeback_control *wbc) 3499 { 3500 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3501 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3502 struct extent_buffer *eb, *prev_eb = NULL; 3503 struct extent_page_data epd = { 3504 .bio = NULL, 3505 .tree = tree, 3506 .extent_locked = 0, 3507 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3508 .bio_flags = 0, 3509 }; 3510 int ret = 0; 3511 int done = 0; 3512 int nr_to_write_done = 0; 3513 struct pagevec pvec; 3514 int nr_pages; 3515 pgoff_t index; 3516 pgoff_t end; /* Inclusive */ 3517 int scanned = 0; 3518 int tag; 3519 3520 pagevec_init(&pvec, 0); 3521 if (wbc->range_cyclic) { 3522 index = mapping->writeback_index; /* Start from prev offset */ 3523 end = -1; 3524 } else { 3525 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3526 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3527 scanned = 1; 3528 } 3529 if (wbc->sync_mode == WB_SYNC_ALL) 3530 tag = PAGECACHE_TAG_TOWRITE; 3531 else 3532 tag = PAGECACHE_TAG_DIRTY; 3533 retry: 3534 if (wbc->sync_mode == WB_SYNC_ALL) 3535 tag_pages_for_writeback(mapping, index, end); 3536 while (!done && !nr_to_write_done && (index <= end) && 3537 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3538 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3539 unsigned i; 3540 3541 scanned = 1; 3542 for (i = 0; i < nr_pages; i++) { 3543 struct page *page = pvec.pages[i]; 3544 3545 if (!PagePrivate(page)) 3546 continue; 3547 3548 if (!wbc->range_cyclic && page->index > end) { 3549 done = 1; 3550 break; 3551 } 3552 3553 spin_lock(&mapping->private_lock); 3554 if (!PagePrivate(page)) { 3555 spin_unlock(&mapping->private_lock); 3556 continue; 3557 } 3558 3559 eb = (struct extent_buffer *)page->private; 3560 3561 /* 3562 * Shouldn't happen and normally this would be a BUG_ON 3563 * but no sense in crashing the users box for something 3564 * we can survive anyway. 3565 */ 3566 if (!eb) { 3567 spin_unlock(&mapping->private_lock); 3568 WARN_ON(1); 3569 continue; 3570 } 3571 3572 if (eb == prev_eb) { 3573 spin_unlock(&mapping->private_lock); 3574 continue; 3575 } 3576 3577 ret = atomic_inc_not_zero(&eb->refs); 3578 spin_unlock(&mapping->private_lock); 3579 if (!ret) 3580 continue; 3581 3582 prev_eb = eb; 3583 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3584 if (!ret) { 3585 free_extent_buffer(eb); 3586 continue; 3587 } 3588 3589 ret = write_one_eb(eb, fs_info, wbc, &epd); 3590 if (ret) { 3591 done = 1; 3592 free_extent_buffer(eb); 3593 break; 3594 } 3595 free_extent_buffer(eb); 3596 3597 /* 3598 * the filesystem may choose to bump up nr_to_write. 3599 * We have to make sure to honor the new nr_to_write 3600 * at any time 3601 */ 3602 nr_to_write_done = wbc->nr_to_write <= 0; 3603 } 3604 pagevec_release(&pvec); 3605 cond_resched(); 3606 } 3607 if (!scanned && !done) { 3608 /* 3609 * We hit the last page and there is more work to be done: wrap 3610 * back to the start of the file 3611 */ 3612 scanned = 1; 3613 index = 0; 3614 goto retry; 3615 } 3616 flush_write_bio(&epd); 3617 return ret; 3618 } 3619 3620 /** 3621 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3622 * @mapping: address space structure to write 3623 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3624 * @writepage: function called for each page 3625 * @data: data passed to writepage function 3626 * 3627 * If a page is already under I/O, write_cache_pages() skips it, even 3628 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3629 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3630 * and msync() need to guarantee that all the data which was dirty at the time 3631 * the call was made get new I/O started against them. If wbc->sync_mode is 3632 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3633 * existing IO to complete. 3634 */ 3635 static int extent_write_cache_pages(struct extent_io_tree *tree, 3636 struct address_space *mapping, 3637 struct writeback_control *wbc, 3638 writepage_t writepage, void *data, 3639 void (*flush_fn)(void *)) 3640 { 3641 struct inode *inode = mapping->host; 3642 int ret = 0; 3643 int done = 0; 3644 int nr_to_write_done = 0; 3645 struct pagevec pvec; 3646 int nr_pages; 3647 pgoff_t index; 3648 pgoff_t end; /* Inclusive */ 3649 int scanned = 0; 3650 int tag; 3651 3652 /* 3653 * We have to hold onto the inode so that ordered extents can do their 3654 * work when the IO finishes. The alternative to this is failing to add 3655 * an ordered extent if the igrab() fails there and that is a huge pain 3656 * to deal with, so instead just hold onto the inode throughout the 3657 * writepages operation. If it fails here we are freeing up the inode 3658 * anyway and we'd rather not waste our time writing out stuff that is 3659 * going to be truncated anyway. 3660 */ 3661 if (!igrab(inode)) 3662 return 0; 3663 3664 pagevec_init(&pvec, 0); 3665 if (wbc->range_cyclic) { 3666 index = mapping->writeback_index; /* Start from prev offset */ 3667 end = -1; 3668 } else { 3669 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3670 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3671 scanned = 1; 3672 } 3673 if (wbc->sync_mode == WB_SYNC_ALL) 3674 tag = PAGECACHE_TAG_TOWRITE; 3675 else 3676 tag = PAGECACHE_TAG_DIRTY; 3677 retry: 3678 if (wbc->sync_mode == WB_SYNC_ALL) 3679 tag_pages_for_writeback(mapping, index, end); 3680 while (!done && !nr_to_write_done && (index <= end) && 3681 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3682 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3683 unsigned i; 3684 3685 scanned = 1; 3686 for (i = 0; i < nr_pages; i++) { 3687 struct page *page = pvec.pages[i]; 3688 3689 /* 3690 * At this point we hold neither mapping->tree_lock nor 3691 * lock on the page itself: the page may be truncated or 3692 * invalidated (changing page->mapping to NULL), or even 3693 * swizzled back from swapper_space to tmpfs file 3694 * mapping 3695 */ 3696 if (!trylock_page(page)) { 3697 flush_fn(data); 3698 lock_page(page); 3699 } 3700 3701 if (unlikely(page->mapping != mapping)) { 3702 unlock_page(page); 3703 continue; 3704 } 3705 3706 if (!wbc->range_cyclic && page->index > end) { 3707 done = 1; 3708 unlock_page(page); 3709 continue; 3710 } 3711 3712 if (wbc->sync_mode != WB_SYNC_NONE) { 3713 if (PageWriteback(page)) 3714 flush_fn(data); 3715 wait_on_page_writeback(page); 3716 } 3717 3718 if (PageWriteback(page) || 3719 !clear_page_dirty_for_io(page)) { 3720 unlock_page(page); 3721 continue; 3722 } 3723 3724 ret = (*writepage)(page, wbc, data); 3725 3726 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3727 unlock_page(page); 3728 ret = 0; 3729 } 3730 if (ret) 3731 done = 1; 3732 3733 /* 3734 * the filesystem may choose to bump up nr_to_write. 3735 * We have to make sure to honor the new nr_to_write 3736 * at any time 3737 */ 3738 nr_to_write_done = wbc->nr_to_write <= 0; 3739 } 3740 pagevec_release(&pvec); 3741 cond_resched(); 3742 } 3743 if (!scanned && !done) { 3744 /* 3745 * We hit the last page and there is more work to be done: wrap 3746 * back to the start of the file 3747 */ 3748 scanned = 1; 3749 index = 0; 3750 goto retry; 3751 } 3752 btrfs_add_delayed_iput(inode); 3753 return ret; 3754 } 3755 3756 static void flush_epd_write_bio(struct extent_page_data *epd) 3757 { 3758 if (epd->bio) { 3759 int rw = WRITE; 3760 int ret; 3761 3762 if (epd->sync_io) 3763 rw = WRITE_SYNC; 3764 3765 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3766 BUG_ON(ret < 0); /* -ENOMEM */ 3767 epd->bio = NULL; 3768 } 3769 } 3770 3771 static noinline void flush_write_bio(void *data) 3772 { 3773 struct extent_page_data *epd = data; 3774 flush_epd_write_bio(epd); 3775 } 3776 3777 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3778 get_extent_t *get_extent, 3779 struct writeback_control *wbc) 3780 { 3781 int ret; 3782 struct extent_page_data epd = { 3783 .bio = NULL, 3784 .tree = tree, 3785 .get_extent = get_extent, 3786 .extent_locked = 0, 3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3788 .bio_flags = 0, 3789 }; 3790 3791 ret = __extent_writepage(page, wbc, &epd); 3792 3793 flush_epd_write_bio(&epd); 3794 return ret; 3795 } 3796 3797 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3798 u64 start, u64 end, get_extent_t *get_extent, 3799 int mode) 3800 { 3801 int ret = 0; 3802 struct address_space *mapping = inode->i_mapping; 3803 struct page *page; 3804 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3805 PAGE_CACHE_SHIFT; 3806 3807 struct extent_page_data epd = { 3808 .bio = NULL, 3809 .tree = tree, 3810 .get_extent = get_extent, 3811 .extent_locked = 1, 3812 .sync_io = mode == WB_SYNC_ALL, 3813 .bio_flags = 0, 3814 }; 3815 struct writeback_control wbc_writepages = { 3816 .sync_mode = mode, 3817 .nr_to_write = nr_pages * 2, 3818 .range_start = start, 3819 .range_end = end + 1, 3820 }; 3821 3822 while (start <= end) { 3823 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3824 if (clear_page_dirty_for_io(page)) 3825 ret = __extent_writepage(page, &wbc_writepages, &epd); 3826 else { 3827 if (tree->ops && tree->ops->writepage_end_io_hook) 3828 tree->ops->writepage_end_io_hook(page, start, 3829 start + PAGE_CACHE_SIZE - 1, 3830 NULL, 1); 3831 unlock_page(page); 3832 } 3833 page_cache_release(page); 3834 start += PAGE_CACHE_SIZE; 3835 } 3836 3837 flush_epd_write_bio(&epd); 3838 return ret; 3839 } 3840 3841 int extent_writepages(struct extent_io_tree *tree, 3842 struct address_space *mapping, 3843 get_extent_t *get_extent, 3844 struct writeback_control *wbc) 3845 { 3846 int ret = 0; 3847 struct extent_page_data epd = { 3848 .bio = NULL, 3849 .tree = tree, 3850 .get_extent = get_extent, 3851 .extent_locked = 0, 3852 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3853 .bio_flags = 0, 3854 }; 3855 3856 ret = extent_write_cache_pages(tree, mapping, wbc, 3857 __extent_writepage, &epd, 3858 flush_write_bio); 3859 flush_epd_write_bio(&epd); 3860 return ret; 3861 } 3862 3863 int extent_readpages(struct extent_io_tree *tree, 3864 struct address_space *mapping, 3865 struct list_head *pages, unsigned nr_pages, 3866 get_extent_t get_extent) 3867 { 3868 struct bio *bio = NULL; 3869 unsigned page_idx; 3870 unsigned long bio_flags = 0; 3871 struct page *pagepool[16]; 3872 struct page *page; 3873 struct extent_map *em_cached = NULL; 3874 int nr = 0; 3875 3876 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3877 page = list_entry(pages->prev, struct page, lru); 3878 3879 prefetchw(&page->flags); 3880 list_del(&page->lru); 3881 if (add_to_page_cache_lru(page, mapping, 3882 page->index, GFP_NOFS)) { 3883 page_cache_release(page); 3884 continue; 3885 } 3886 3887 pagepool[nr++] = page; 3888 if (nr < ARRAY_SIZE(pagepool)) 3889 continue; 3890 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3891 &bio, 0, &bio_flags, READ); 3892 nr = 0; 3893 } 3894 if (nr) 3895 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3896 &bio, 0, &bio_flags, READ); 3897 3898 if (em_cached) 3899 free_extent_map(em_cached); 3900 3901 BUG_ON(!list_empty(pages)); 3902 if (bio) 3903 return submit_one_bio(READ, bio, 0, bio_flags); 3904 return 0; 3905 } 3906 3907 /* 3908 * basic invalidatepage code, this waits on any locked or writeback 3909 * ranges corresponding to the page, and then deletes any extent state 3910 * records from the tree 3911 */ 3912 int extent_invalidatepage(struct extent_io_tree *tree, 3913 struct page *page, unsigned long offset) 3914 { 3915 struct extent_state *cached_state = NULL; 3916 u64 start = page_offset(page); 3917 u64 end = start + PAGE_CACHE_SIZE - 1; 3918 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3919 3920 start += ALIGN(offset, blocksize); 3921 if (start > end) 3922 return 0; 3923 3924 lock_extent_bits(tree, start, end, 0, &cached_state); 3925 wait_on_page_writeback(page); 3926 clear_extent_bit(tree, start, end, 3927 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3928 EXTENT_DO_ACCOUNTING, 3929 1, 1, &cached_state, GFP_NOFS); 3930 return 0; 3931 } 3932 3933 /* 3934 * a helper for releasepage, this tests for areas of the page that 3935 * are locked or under IO and drops the related state bits if it is safe 3936 * to drop the page. 3937 */ 3938 static int try_release_extent_state(struct extent_map_tree *map, 3939 struct extent_io_tree *tree, 3940 struct page *page, gfp_t mask) 3941 { 3942 u64 start = page_offset(page); 3943 u64 end = start + PAGE_CACHE_SIZE - 1; 3944 int ret = 1; 3945 3946 if (test_range_bit(tree, start, end, 3947 EXTENT_IOBITS, 0, NULL)) 3948 ret = 0; 3949 else { 3950 if ((mask & GFP_NOFS) == GFP_NOFS) 3951 mask = GFP_NOFS; 3952 /* 3953 * at this point we can safely clear everything except the 3954 * locked bit and the nodatasum bit 3955 */ 3956 ret = clear_extent_bit(tree, start, end, 3957 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3958 0, 0, NULL, mask); 3959 3960 /* if clear_extent_bit failed for enomem reasons, 3961 * we can't allow the release to continue. 3962 */ 3963 if (ret < 0) 3964 ret = 0; 3965 else 3966 ret = 1; 3967 } 3968 return ret; 3969 } 3970 3971 /* 3972 * a helper for releasepage. As long as there are no locked extents 3973 * in the range corresponding to the page, both state records and extent 3974 * map records are removed 3975 */ 3976 int try_release_extent_mapping(struct extent_map_tree *map, 3977 struct extent_io_tree *tree, struct page *page, 3978 gfp_t mask) 3979 { 3980 struct extent_map *em; 3981 u64 start = page_offset(page); 3982 u64 end = start + PAGE_CACHE_SIZE - 1; 3983 3984 if ((mask & __GFP_WAIT) && 3985 page->mapping->host->i_size > 16 * 1024 * 1024) { 3986 u64 len; 3987 while (start <= end) { 3988 len = end - start + 1; 3989 write_lock(&map->lock); 3990 em = lookup_extent_mapping(map, start, len); 3991 if (!em) { 3992 write_unlock(&map->lock); 3993 break; 3994 } 3995 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3996 em->start != start) { 3997 write_unlock(&map->lock); 3998 free_extent_map(em); 3999 break; 4000 } 4001 if (!test_range_bit(tree, em->start, 4002 extent_map_end(em) - 1, 4003 EXTENT_LOCKED | EXTENT_WRITEBACK, 4004 0, NULL)) { 4005 remove_extent_mapping(map, em); 4006 /* once for the rb tree */ 4007 free_extent_map(em); 4008 } 4009 start = extent_map_end(em); 4010 write_unlock(&map->lock); 4011 4012 /* once for us */ 4013 free_extent_map(em); 4014 } 4015 } 4016 return try_release_extent_state(map, tree, page, mask); 4017 } 4018 4019 /* 4020 * helper function for fiemap, which doesn't want to see any holes. 4021 * This maps until we find something past 'last' 4022 */ 4023 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4024 u64 offset, 4025 u64 last, 4026 get_extent_t *get_extent) 4027 { 4028 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4029 struct extent_map *em; 4030 u64 len; 4031 4032 if (offset >= last) 4033 return NULL; 4034 4035 while(1) { 4036 len = last - offset; 4037 if (len == 0) 4038 break; 4039 len = ALIGN(len, sectorsize); 4040 em = get_extent(inode, NULL, 0, offset, len, 0); 4041 if (IS_ERR_OR_NULL(em)) 4042 return em; 4043 4044 /* if this isn't a hole return it */ 4045 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4046 em->block_start != EXTENT_MAP_HOLE) { 4047 return em; 4048 } 4049 4050 /* this is a hole, advance to the next extent */ 4051 offset = extent_map_end(em); 4052 free_extent_map(em); 4053 if (offset >= last) 4054 break; 4055 } 4056 return NULL; 4057 } 4058 4059 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4060 __u64 start, __u64 len, get_extent_t *get_extent) 4061 { 4062 int ret = 0; 4063 u64 off = start; 4064 u64 max = start + len; 4065 u32 flags = 0; 4066 u32 found_type; 4067 u64 last; 4068 u64 last_for_get_extent = 0; 4069 u64 disko = 0; 4070 u64 isize = i_size_read(inode); 4071 struct btrfs_key found_key; 4072 struct extent_map *em = NULL; 4073 struct extent_state *cached_state = NULL; 4074 struct btrfs_path *path; 4075 struct btrfs_file_extent_item *item; 4076 int end = 0; 4077 u64 em_start = 0; 4078 u64 em_len = 0; 4079 u64 em_end = 0; 4080 unsigned long emflags; 4081 4082 if (len == 0) 4083 return -EINVAL; 4084 4085 path = btrfs_alloc_path(); 4086 if (!path) 4087 return -ENOMEM; 4088 path->leave_spinning = 1; 4089 4090 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4091 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4092 4093 /* 4094 * lookup the last file extent. We're not using i_size here 4095 * because there might be preallocation past i_size 4096 */ 4097 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4098 path, btrfs_ino(inode), -1, 0); 4099 if (ret < 0) { 4100 btrfs_free_path(path); 4101 return ret; 4102 } 4103 WARN_ON(!ret); 4104 path->slots[0]--; 4105 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4106 struct btrfs_file_extent_item); 4107 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4108 found_type = btrfs_key_type(&found_key); 4109 4110 /* No extents, but there might be delalloc bits */ 4111 if (found_key.objectid != btrfs_ino(inode) || 4112 found_type != BTRFS_EXTENT_DATA_KEY) { 4113 /* have to trust i_size as the end */ 4114 last = (u64)-1; 4115 last_for_get_extent = isize; 4116 } else { 4117 /* 4118 * remember the start of the last extent. There are a 4119 * bunch of different factors that go into the length of the 4120 * extent, so its much less complex to remember where it started 4121 */ 4122 last = found_key.offset; 4123 last_for_get_extent = last + 1; 4124 } 4125 btrfs_free_path(path); 4126 4127 /* 4128 * we might have some extents allocated but more delalloc past those 4129 * extents. so, we trust isize unless the start of the last extent is 4130 * beyond isize 4131 */ 4132 if (last < isize) { 4133 last = (u64)-1; 4134 last_for_get_extent = isize; 4135 } 4136 4137 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4138 &cached_state); 4139 4140 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4141 get_extent); 4142 if (!em) 4143 goto out; 4144 if (IS_ERR(em)) { 4145 ret = PTR_ERR(em); 4146 goto out; 4147 } 4148 4149 while (!end) { 4150 u64 offset_in_extent = 0; 4151 4152 /* break if the extent we found is outside the range */ 4153 if (em->start >= max || extent_map_end(em) < off) 4154 break; 4155 4156 /* 4157 * get_extent may return an extent that starts before our 4158 * requested range. We have to make sure the ranges 4159 * we return to fiemap always move forward and don't 4160 * overlap, so adjust the offsets here 4161 */ 4162 em_start = max(em->start, off); 4163 4164 /* 4165 * record the offset from the start of the extent 4166 * for adjusting the disk offset below. Only do this if the 4167 * extent isn't compressed since our in ram offset may be past 4168 * what we have actually allocated on disk. 4169 */ 4170 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4171 offset_in_extent = em_start - em->start; 4172 em_end = extent_map_end(em); 4173 em_len = em_end - em_start; 4174 emflags = em->flags; 4175 disko = 0; 4176 flags = 0; 4177 4178 /* 4179 * bump off for our next call to get_extent 4180 */ 4181 off = extent_map_end(em); 4182 if (off >= max) 4183 end = 1; 4184 4185 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4186 end = 1; 4187 flags |= FIEMAP_EXTENT_LAST; 4188 } else if (em->block_start == EXTENT_MAP_INLINE) { 4189 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4190 FIEMAP_EXTENT_NOT_ALIGNED); 4191 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4192 flags |= (FIEMAP_EXTENT_DELALLOC | 4193 FIEMAP_EXTENT_UNKNOWN); 4194 } else { 4195 disko = em->block_start + offset_in_extent; 4196 } 4197 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4198 flags |= FIEMAP_EXTENT_ENCODED; 4199 4200 free_extent_map(em); 4201 em = NULL; 4202 if ((em_start >= last) || em_len == (u64)-1 || 4203 (last == (u64)-1 && isize <= em_end)) { 4204 flags |= FIEMAP_EXTENT_LAST; 4205 end = 1; 4206 } 4207 4208 /* now scan forward to see if this is really the last extent. */ 4209 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4210 get_extent); 4211 if (IS_ERR(em)) { 4212 ret = PTR_ERR(em); 4213 goto out; 4214 } 4215 if (!em) { 4216 flags |= FIEMAP_EXTENT_LAST; 4217 end = 1; 4218 } 4219 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4220 em_len, flags); 4221 if (ret) 4222 goto out_free; 4223 } 4224 out_free: 4225 free_extent_map(em); 4226 out: 4227 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4228 &cached_state, GFP_NOFS); 4229 return ret; 4230 } 4231 4232 static void __free_extent_buffer(struct extent_buffer *eb) 4233 { 4234 btrfs_leak_debug_del(&eb->leak_list); 4235 kmem_cache_free(extent_buffer_cache, eb); 4236 } 4237 4238 static int extent_buffer_under_io(struct extent_buffer *eb) 4239 { 4240 return (atomic_read(&eb->io_pages) || 4241 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4242 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4243 } 4244 4245 /* 4246 * Helper for releasing extent buffer page. 4247 */ 4248 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4249 unsigned long start_idx) 4250 { 4251 unsigned long index; 4252 unsigned long num_pages; 4253 struct page *page; 4254 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4255 4256 BUG_ON(extent_buffer_under_io(eb)); 4257 4258 num_pages = num_extent_pages(eb->start, eb->len); 4259 index = start_idx + num_pages; 4260 if (start_idx >= index) 4261 return; 4262 4263 do { 4264 index--; 4265 page = extent_buffer_page(eb, index); 4266 if (page && mapped) { 4267 spin_lock(&page->mapping->private_lock); 4268 /* 4269 * We do this since we'll remove the pages after we've 4270 * removed the eb from the radix tree, so we could race 4271 * and have this page now attached to the new eb. So 4272 * only clear page_private if it's still connected to 4273 * this eb. 4274 */ 4275 if (PagePrivate(page) && 4276 page->private == (unsigned long)eb) { 4277 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4278 BUG_ON(PageDirty(page)); 4279 BUG_ON(PageWriteback(page)); 4280 /* 4281 * We need to make sure we haven't be attached 4282 * to a new eb. 4283 */ 4284 ClearPagePrivate(page); 4285 set_page_private(page, 0); 4286 /* One for the page private */ 4287 page_cache_release(page); 4288 } 4289 spin_unlock(&page->mapping->private_lock); 4290 4291 } 4292 if (page) { 4293 /* One for when we alloced the page */ 4294 page_cache_release(page); 4295 } 4296 } while (index != start_idx); 4297 } 4298 4299 /* 4300 * Helper for releasing the extent buffer. 4301 */ 4302 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4303 { 4304 btrfs_release_extent_buffer_page(eb, 0); 4305 __free_extent_buffer(eb); 4306 } 4307 4308 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4309 u64 start, 4310 unsigned long len, 4311 gfp_t mask) 4312 { 4313 struct extent_buffer *eb = NULL; 4314 4315 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4316 if (eb == NULL) 4317 return NULL; 4318 eb->start = start; 4319 eb->len = len; 4320 eb->tree = tree; 4321 eb->bflags = 0; 4322 rwlock_init(&eb->lock); 4323 atomic_set(&eb->write_locks, 0); 4324 atomic_set(&eb->read_locks, 0); 4325 atomic_set(&eb->blocking_readers, 0); 4326 atomic_set(&eb->blocking_writers, 0); 4327 atomic_set(&eb->spinning_readers, 0); 4328 atomic_set(&eb->spinning_writers, 0); 4329 eb->lock_nested = 0; 4330 init_waitqueue_head(&eb->write_lock_wq); 4331 init_waitqueue_head(&eb->read_lock_wq); 4332 4333 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4334 4335 spin_lock_init(&eb->refs_lock); 4336 atomic_set(&eb->refs, 1); 4337 atomic_set(&eb->io_pages, 0); 4338 4339 /* 4340 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4341 */ 4342 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4343 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4344 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4345 4346 return eb; 4347 } 4348 4349 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4350 { 4351 unsigned long i; 4352 struct page *p; 4353 struct extent_buffer *new; 4354 unsigned long num_pages = num_extent_pages(src->start, src->len); 4355 4356 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4357 if (new == NULL) 4358 return NULL; 4359 4360 for (i = 0; i < num_pages; i++) { 4361 p = alloc_page(GFP_NOFS); 4362 if (!p) { 4363 btrfs_release_extent_buffer(new); 4364 return NULL; 4365 } 4366 attach_extent_buffer_page(new, p); 4367 WARN_ON(PageDirty(p)); 4368 SetPageUptodate(p); 4369 new->pages[i] = p; 4370 } 4371 4372 copy_extent_buffer(new, src, 0, 0, src->len); 4373 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4374 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4375 4376 return new; 4377 } 4378 4379 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4380 { 4381 struct extent_buffer *eb; 4382 unsigned long num_pages = num_extent_pages(0, len); 4383 unsigned long i; 4384 4385 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4386 if (!eb) 4387 return NULL; 4388 4389 for (i = 0; i < num_pages; i++) { 4390 eb->pages[i] = alloc_page(GFP_NOFS); 4391 if (!eb->pages[i]) 4392 goto err; 4393 } 4394 set_extent_buffer_uptodate(eb); 4395 btrfs_set_header_nritems(eb, 0); 4396 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4397 4398 return eb; 4399 err: 4400 for (; i > 0; i--) 4401 __free_page(eb->pages[i - 1]); 4402 __free_extent_buffer(eb); 4403 return NULL; 4404 } 4405 4406 static void check_buffer_tree_ref(struct extent_buffer *eb) 4407 { 4408 int refs; 4409 /* the ref bit is tricky. We have to make sure it is set 4410 * if we have the buffer dirty. Otherwise the 4411 * code to free a buffer can end up dropping a dirty 4412 * page 4413 * 4414 * Once the ref bit is set, it won't go away while the 4415 * buffer is dirty or in writeback, and it also won't 4416 * go away while we have the reference count on the 4417 * eb bumped. 4418 * 4419 * We can't just set the ref bit without bumping the 4420 * ref on the eb because free_extent_buffer might 4421 * see the ref bit and try to clear it. If this happens 4422 * free_extent_buffer might end up dropping our original 4423 * ref by mistake and freeing the page before we are able 4424 * to add one more ref. 4425 * 4426 * So bump the ref count first, then set the bit. If someone 4427 * beat us to it, drop the ref we added. 4428 */ 4429 refs = atomic_read(&eb->refs); 4430 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4431 return; 4432 4433 spin_lock(&eb->refs_lock); 4434 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4435 atomic_inc(&eb->refs); 4436 spin_unlock(&eb->refs_lock); 4437 } 4438 4439 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4440 { 4441 unsigned long num_pages, i; 4442 4443 check_buffer_tree_ref(eb); 4444 4445 num_pages = num_extent_pages(eb->start, eb->len); 4446 for (i = 0; i < num_pages; i++) { 4447 struct page *p = extent_buffer_page(eb, i); 4448 mark_page_accessed(p); 4449 } 4450 } 4451 4452 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4453 u64 start, unsigned long len) 4454 { 4455 unsigned long num_pages = num_extent_pages(start, len); 4456 unsigned long i; 4457 unsigned long index = start >> PAGE_CACHE_SHIFT; 4458 struct extent_buffer *eb; 4459 struct extent_buffer *exists = NULL; 4460 struct page *p; 4461 struct address_space *mapping = tree->mapping; 4462 int uptodate = 1; 4463 int ret; 4464 4465 rcu_read_lock(); 4466 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4467 if (eb && atomic_inc_not_zero(&eb->refs)) { 4468 rcu_read_unlock(); 4469 mark_extent_buffer_accessed(eb); 4470 return eb; 4471 } 4472 rcu_read_unlock(); 4473 4474 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4475 if (!eb) 4476 return NULL; 4477 4478 for (i = 0; i < num_pages; i++, index++) { 4479 p = find_or_create_page(mapping, index, GFP_NOFS); 4480 if (!p) 4481 goto free_eb; 4482 4483 spin_lock(&mapping->private_lock); 4484 if (PagePrivate(p)) { 4485 /* 4486 * We could have already allocated an eb for this page 4487 * and attached one so lets see if we can get a ref on 4488 * the existing eb, and if we can we know it's good and 4489 * we can just return that one, else we know we can just 4490 * overwrite page->private. 4491 */ 4492 exists = (struct extent_buffer *)p->private; 4493 if (atomic_inc_not_zero(&exists->refs)) { 4494 spin_unlock(&mapping->private_lock); 4495 unlock_page(p); 4496 page_cache_release(p); 4497 mark_extent_buffer_accessed(exists); 4498 goto free_eb; 4499 } 4500 4501 /* 4502 * Do this so attach doesn't complain and we need to 4503 * drop the ref the old guy had. 4504 */ 4505 ClearPagePrivate(p); 4506 WARN_ON(PageDirty(p)); 4507 page_cache_release(p); 4508 } 4509 attach_extent_buffer_page(eb, p); 4510 spin_unlock(&mapping->private_lock); 4511 WARN_ON(PageDirty(p)); 4512 mark_page_accessed(p); 4513 eb->pages[i] = p; 4514 if (!PageUptodate(p)) 4515 uptodate = 0; 4516 4517 /* 4518 * see below about how we avoid a nasty race with release page 4519 * and why we unlock later 4520 */ 4521 } 4522 if (uptodate) 4523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4524 again: 4525 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4526 if (ret) 4527 goto free_eb; 4528 4529 spin_lock(&tree->buffer_lock); 4530 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4531 if (ret == -EEXIST) { 4532 exists = radix_tree_lookup(&tree->buffer, 4533 start >> PAGE_CACHE_SHIFT); 4534 if (!atomic_inc_not_zero(&exists->refs)) { 4535 spin_unlock(&tree->buffer_lock); 4536 radix_tree_preload_end(); 4537 exists = NULL; 4538 goto again; 4539 } 4540 spin_unlock(&tree->buffer_lock); 4541 radix_tree_preload_end(); 4542 mark_extent_buffer_accessed(exists); 4543 goto free_eb; 4544 } 4545 /* add one reference for the tree */ 4546 check_buffer_tree_ref(eb); 4547 spin_unlock(&tree->buffer_lock); 4548 radix_tree_preload_end(); 4549 4550 /* 4551 * there is a race where release page may have 4552 * tried to find this extent buffer in the radix 4553 * but failed. It will tell the VM it is safe to 4554 * reclaim the, and it will clear the page private bit. 4555 * We must make sure to set the page private bit properly 4556 * after the extent buffer is in the radix tree so 4557 * it doesn't get lost 4558 */ 4559 SetPageChecked(eb->pages[0]); 4560 for (i = 1; i < num_pages; i++) { 4561 p = extent_buffer_page(eb, i); 4562 ClearPageChecked(p); 4563 unlock_page(p); 4564 } 4565 unlock_page(eb->pages[0]); 4566 return eb; 4567 4568 free_eb: 4569 for (i = 0; i < num_pages; i++) { 4570 if (eb->pages[i]) 4571 unlock_page(eb->pages[i]); 4572 } 4573 4574 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4575 btrfs_release_extent_buffer(eb); 4576 return exists; 4577 } 4578 4579 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4580 u64 start, unsigned long len) 4581 { 4582 struct extent_buffer *eb; 4583 4584 rcu_read_lock(); 4585 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4586 if (eb && atomic_inc_not_zero(&eb->refs)) { 4587 rcu_read_unlock(); 4588 mark_extent_buffer_accessed(eb); 4589 return eb; 4590 } 4591 rcu_read_unlock(); 4592 4593 return NULL; 4594 } 4595 4596 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4597 { 4598 struct extent_buffer *eb = 4599 container_of(head, struct extent_buffer, rcu_head); 4600 4601 __free_extent_buffer(eb); 4602 } 4603 4604 /* Expects to have eb->eb_lock already held */ 4605 static int release_extent_buffer(struct extent_buffer *eb) 4606 { 4607 WARN_ON(atomic_read(&eb->refs) == 0); 4608 if (atomic_dec_and_test(&eb->refs)) { 4609 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4610 spin_unlock(&eb->refs_lock); 4611 } else { 4612 struct extent_io_tree *tree = eb->tree; 4613 4614 spin_unlock(&eb->refs_lock); 4615 4616 spin_lock(&tree->buffer_lock); 4617 radix_tree_delete(&tree->buffer, 4618 eb->start >> PAGE_CACHE_SHIFT); 4619 spin_unlock(&tree->buffer_lock); 4620 } 4621 4622 /* Should be safe to release our pages at this point */ 4623 btrfs_release_extent_buffer_page(eb, 0); 4624 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4625 return 1; 4626 } 4627 spin_unlock(&eb->refs_lock); 4628 4629 return 0; 4630 } 4631 4632 void free_extent_buffer(struct extent_buffer *eb) 4633 { 4634 int refs; 4635 int old; 4636 if (!eb) 4637 return; 4638 4639 while (1) { 4640 refs = atomic_read(&eb->refs); 4641 if (refs <= 3) 4642 break; 4643 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4644 if (old == refs) 4645 return; 4646 } 4647 4648 spin_lock(&eb->refs_lock); 4649 if (atomic_read(&eb->refs) == 2 && 4650 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4651 atomic_dec(&eb->refs); 4652 4653 if (atomic_read(&eb->refs) == 2 && 4654 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4655 !extent_buffer_under_io(eb) && 4656 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4657 atomic_dec(&eb->refs); 4658 4659 /* 4660 * I know this is terrible, but it's temporary until we stop tracking 4661 * the uptodate bits and such for the extent buffers. 4662 */ 4663 release_extent_buffer(eb); 4664 } 4665 4666 void free_extent_buffer_stale(struct extent_buffer *eb) 4667 { 4668 if (!eb) 4669 return; 4670 4671 spin_lock(&eb->refs_lock); 4672 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4673 4674 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4675 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4676 atomic_dec(&eb->refs); 4677 release_extent_buffer(eb); 4678 } 4679 4680 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4681 { 4682 unsigned long i; 4683 unsigned long num_pages; 4684 struct page *page; 4685 4686 num_pages = num_extent_pages(eb->start, eb->len); 4687 4688 for (i = 0; i < num_pages; i++) { 4689 page = extent_buffer_page(eb, i); 4690 if (!PageDirty(page)) 4691 continue; 4692 4693 lock_page(page); 4694 WARN_ON(!PagePrivate(page)); 4695 4696 clear_page_dirty_for_io(page); 4697 spin_lock_irq(&page->mapping->tree_lock); 4698 if (!PageDirty(page)) { 4699 radix_tree_tag_clear(&page->mapping->page_tree, 4700 page_index(page), 4701 PAGECACHE_TAG_DIRTY); 4702 } 4703 spin_unlock_irq(&page->mapping->tree_lock); 4704 ClearPageError(page); 4705 unlock_page(page); 4706 } 4707 WARN_ON(atomic_read(&eb->refs) == 0); 4708 } 4709 4710 int set_extent_buffer_dirty(struct extent_buffer *eb) 4711 { 4712 unsigned long i; 4713 unsigned long num_pages; 4714 int was_dirty = 0; 4715 4716 check_buffer_tree_ref(eb); 4717 4718 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4719 4720 num_pages = num_extent_pages(eb->start, eb->len); 4721 WARN_ON(atomic_read(&eb->refs) == 0); 4722 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4723 4724 for (i = 0; i < num_pages; i++) 4725 set_page_dirty(extent_buffer_page(eb, i)); 4726 return was_dirty; 4727 } 4728 4729 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4730 { 4731 unsigned long i; 4732 struct page *page; 4733 unsigned long num_pages; 4734 4735 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4736 num_pages = num_extent_pages(eb->start, eb->len); 4737 for (i = 0; i < num_pages; i++) { 4738 page = extent_buffer_page(eb, i); 4739 if (page) 4740 ClearPageUptodate(page); 4741 } 4742 return 0; 4743 } 4744 4745 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4746 { 4747 unsigned long i; 4748 struct page *page; 4749 unsigned long num_pages; 4750 4751 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4752 num_pages = num_extent_pages(eb->start, eb->len); 4753 for (i = 0; i < num_pages; i++) { 4754 page = extent_buffer_page(eb, i); 4755 SetPageUptodate(page); 4756 } 4757 return 0; 4758 } 4759 4760 int extent_buffer_uptodate(struct extent_buffer *eb) 4761 { 4762 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4763 } 4764 4765 int read_extent_buffer_pages(struct extent_io_tree *tree, 4766 struct extent_buffer *eb, u64 start, int wait, 4767 get_extent_t *get_extent, int mirror_num) 4768 { 4769 unsigned long i; 4770 unsigned long start_i; 4771 struct page *page; 4772 int err; 4773 int ret = 0; 4774 int locked_pages = 0; 4775 int all_uptodate = 1; 4776 unsigned long num_pages; 4777 unsigned long num_reads = 0; 4778 struct bio *bio = NULL; 4779 unsigned long bio_flags = 0; 4780 4781 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4782 return 0; 4783 4784 if (start) { 4785 WARN_ON(start < eb->start); 4786 start_i = (start >> PAGE_CACHE_SHIFT) - 4787 (eb->start >> PAGE_CACHE_SHIFT); 4788 } else { 4789 start_i = 0; 4790 } 4791 4792 num_pages = num_extent_pages(eb->start, eb->len); 4793 for (i = start_i; i < num_pages; i++) { 4794 page = extent_buffer_page(eb, i); 4795 if (wait == WAIT_NONE) { 4796 if (!trylock_page(page)) 4797 goto unlock_exit; 4798 } else { 4799 lock_page(page); 4800 } 4801 locked_pages++; 4802 if (!PageUptodate(page)) { 4803 num_reads++; 4804 all_uptodate = 0; 4805 } 4806 } 4807 if (all_uptodate) { 4808 if (start_i == 0) 4809 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4810 goto unlock_exit; 4811 } 4812 4813 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4814 eb->read_mirror = 0; 4815 atomic_set(&eb->io_pages, num_reads); 4816 for (i = start_i; i < num_pages; i++) { 4817 page = extent_buffer_page(eb, i); 4818 if (!PageUptodate(page)) { 4819 ClearPageError(page); 4820 err = __extent_read_full_page(tree, page, 4821 get_extent, &bio, 4822 mirror_num, &bio_flags, 4823 READ | REQ_META); 4824 if (err) 4825 ret = err; 4826 } else { 4827 unlock_page(page); 4828 } 4829 } 4830 4831 if (bio) { 4832 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4833 bio_flags); 4834 if (err) 4835 return err; 4836 } 4837 4838 if (ret || wait != WAIT_COMPLETE) 4839 return ret; 4840 4841 for (i = start_i; i < num_pages; i++) { 4842 page = extent_buffer_page(eb, i); 4843 wait_on_page_locked(page); 4844 if (!PageUptodate(page)) 4845 ret = -EIO; 4846 } 4847 4848 return ret; 4849 4850 unlock_exit: 4851 i = start_i; 4852 while (locked_pages > 0) { 4853 page = extent_buffer_page(eb, i); 4854 i++; 4855 unlock_page(page); 4856 locked_pages--; 4857 } 4858 return ret; 4859 } 4860 4861 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4862 unsigned long start, 4863 unsigned long len) 4864 { 4865 size_t cur; 4866 size_t offset; 4867 struct page *page; 4868 char *kaddr; 4869 char *dst = (char *)dstv; 4870 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4871 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4872 4873 WARN_ON(start > eb->len); 4874 WARN_ON(start + len > eb->start + eb->len); 4875 4876 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4877 4878 while (len > 0) { 4879 page = extent_buffer_page(eb, i); 4880 4881 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4882 kaddr = page_address(page); 4883 memcpy(dst, kaddr + offset, cur); 4884 4885 dst += cur; 4886 len -= cur; 4887 offset = 0; 4888 i++; 4889 } 4890 } 4891 4892 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4893 unsigned long min_len, char **map, 4894 unsigned long *map_start, 4895 unsigned long *map_len) 4896 { 4897 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4898 char *kaddr; 4899 struct page *p; 4900 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4901 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4902 unsigned long end_i = (start_offset + start + min_len - 1) >> 4903 PAGE_CACHE_SHIFT; 4904 4905 if (i != end_i) 4906 return -EINVAL; 4907 4908 if (i == 0) { 4909 offset = start_offset; 4910 *map_start = 0; 4911 } else { 4912 offset = 0; 4913 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4914 } 4915 4916 if (start + min_len > eb->len) { 4917 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4918 "wanted %lu %lu\n", 4919 eb->start, eb->len, start, min_len); 4920 return -EINVAL; 4921 } 4922 4923 p = extent_buffer_page(eb, i); 4924 kaddr = page_address(p); 4925 *map = kaddr + offset; 4926 *map_len = PAGE_CACHE_SIZE - offset; 4927 return 0; 4928 } 4929 4930 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4931 unsigned long start, 4932 unsigned long len) 4933 { 4934 size_t cur; 4935 size_t offset; 4936 struct page *page; 4937 char *kaddr; 4938 char *ptr = (char *)ptrv; 4939 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4940 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4941 int ret = 0; 4942 4943 WARN_ON(start > eb->len); 4944 WARN_ON(start + len > eb->start + eb->len); 4945 4946 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4947 4948 while (len > 0) { 4949 page = extent_buffer_page(eb, i); 4950 4951 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4952 4953 kaddr = page_address(page); 4954 ret = memcmp(ptr, kaddr + offset, cur); 4955 if (ret) 4956 break; 4957 4958 ptr += cur; 4959 len -= cur; 4960 offset = 0; 4961 i++; 4962 } 4963 return ret; 4964 } 4965 4966 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4967 unsigned long start, unsigned long len) 4968 { 4969 size_t cur; 4970 size_t offset; 4971 struct page *page; 4972 char *kaddr; 4973 char *src = (char *)srcv; 4974 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4975 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4976 4977 WARN_ON(start > eb->len); 4978 WARN_ON(start + len > eb->start + eb->len); 4979 4980 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4981 4982 while (len > 0) { 4983 page = extent_buffer_page(eb, i); 4984 WARN_ON(!PageUptodate(page)); 4985 4986 cur = min(len, PAGE_CACHE_SIZE - offset); 4987 kaddr = page_address(page); 4988 memcpy(kaddr + offset, src, cur); 4989 4990 src += cur; 4991 len -= cur; 4992 offset = 0; 4993 i++; 4994 } 4995 } 4996 4997 void memset_extent_buffer(struct extent_buffer *eb, char c, 4998 unsigned long start, unsigned long len) 4999 { 5000 size_t cur; 5001 size_t offset; 5002 struct page *page; 5003 char *kaddr; 5004 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5005 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5006 5007 WARN_ON(start > eb->len); 5008 WARN_ON(start + len > eb->start + eb->len); 5009 5010 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5011 5012 while (len > 0) { 5013 page = extent_buffer_page(eb, i); 5014 WARN_ON(!PageUptodate(page)); 5015 5016 cur = min(len, PAGE_CACHE_SIZE - offset); 5017 kaddr = page_address(page); 5018 memset(kaddr + offset, c, cur); 5019 5020 len -= cur; 5021 offset = 0; 5022 i++; 5023 } 5024 } 5025 5026 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5027 unsigned long dst_offset, unsigned long src_offset, 5028 unsigned long len) 5029 { 5030 u64 dst_len = dst->len; 5031 size_t cur; 5032 size_t offset; 5033 struct page *page; 5034 char *kaddr; 5035 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5036 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5037 5038 WARN_ON(src->len != dst_len); 5039 5040 offset = (start_offset + dst_offset) & 5041 (PAGE_CACHE_SIZE - 1); 5042 5043 while (len > 0) { 5044 page = extent_buffer_page(dst, i); 5045 WARN_ON(!PageUptodate(page)); 5046 5047 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5048 5049 kaddr = page_address(page); 5050 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5051 5052 src_offset += cur; 5053 len -= cur; 5054 offset = 0; 5055 i++; 5056 } 5057 } 5058 5059 static void move_pages(struct page *dst_page, struct page *src_page, 5060 unsigned long dst_off, unsigned long src_off, 5061 unsigned long len) 5062 { 5063 char *dst_kaddr = page_address(dst_page); 5064 if (dst_page == src_page) { 5065 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 5066 } else { 5067 char *src_kaddr = page_address(src_page); 5068 char *p = dst_kaddr + dst_off + len; 5069 char *s = src_kaddr + src_off + len; 5070 5071 while (len--) 5072 *--p = *--s; 5073 } 5074 } 5075 5076 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5077 { 5078 unsigned long distance = (src > dst) ? src - dst : dst - src; 5079 return distance < len; 5080 } 5081 5082 static void copy_pages(struct page *dst_page, struct page *src_page, 5083 unsigned long dst_off, unsigned long src_off, 5084 unsigned long len) 5085 { 5086 char *dst_kaddr = page_address(dst_page); 5087 char *src_kaddr; 5088 int must_memmove = 0; 5089 5090 if (dst_page != src_page) { 5091 src_kaddr = page_address(src_page); 5092 } else { 5093 src_kaddr = dst_kaddr; 5094 if (areas_overlap(src_off, dst_off, len)) 5095 must_memmove = 1; 5096 } 5097 5098 if (must_memmove) 5099 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5100 else 5101 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5102 } 5103 5104 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5105 unsigned long src_offset, unsigned long len) 5106 { 5107 size_t cur; 5108 size_t dst_off_in_page; 5109 size_t src_off_in_page; 5110 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5111 unsigned long dst_i; 5112 unsigned long src_i; 5113 5114 if (src_offset + len > dst->len) { 5115 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5116 "len %lu dst len %lu\n", src_offset, len, dst->len); 5117 BUG_ON(1); 5118 } 5119 if (dst_offset + len > dst->len) { 5120 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5121 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5122 BUG_ON(1); 5123 } 5124 5125 while (len > 0) { 5126 dst_off_in_page = (start_offset + dst_offset) & 5127 (PAGE_CACHE_SIZE - 1); 5128 src_off_in_page = (start_offset + src_offset) & 5129 (PAGE_CACHE_SIZE - 1); 5130 5131 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5132 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5133 5134 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5135 src_off_in_page)); 5136 cur = min_t(unsigned long, cur, 5137 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5138 5139 copy_pages(extent_buffer_page(dst, dst_i), 5140 extent_buffer_page(dst, src_i), 5141 dst_off_in_page, src_off_in_page, cur); 5142 5143 src_offset += cur; 5144 dst_offset += cur; 5145 len -= cur; 5146 } 5147 } 5148 5149 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5150 unsigned long src_offset, unsigned long len) 5151 { 5152 size_t cur; 5153 size_t dst_off_in_page; 5154 size_t src_off_in_page; 5155 unsigned long dst_end = dst_offset + len - 1; 5156 unsigned long src_end = src_offset + len - 1; 5157 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5158 unsigned long dst_i; 5159 unsigned long src_i; 5160 5161 if (src_offset + len > dst->len) { 5162 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5163 "len %lu len %lu\n", src_offset, len, dst->len); 5164 BUG_ON(1); 5165 } 5166 if (dst_offset + len > dst->len) { 5167 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5168 "len %lu len %lu\n", dst_offset, len, dst->len); 5169 BUG_ON(1); 5170 } 5171 if (dst_offset < src_offset) { 5172 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5173 return; 5174 } 5175 while (len > 0) { 5176 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5177 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5178 5179 dst_off_in_page = (start_offset + dst_end) & 5180 (PAGE_CACHE_SIZE - 1); 5181 src_off_in_page = (start_offset + src_end) & 5182 (PAGE_CACHE_SIZE - 1); 5183 5184 cur = min_t(unsigned long, len, src_off_in_page + 1); 5185 cur = min(cur, dst_off_in_page + 1); 5186 move_pages(extent_buffer_page(dst, dst_i), 5187 extent_buffer_page(dst, src_i), 5188 dst_off_in_page - cur + 1, 5189 src_off_in_page - cur + 1, cur); 5190 5191 dst_end -= cur; 5192 src_end -= cur; 5193 len -= cur; 5194 } 5195 } 5196 5197 int try_release_extent_buffer(struct page *page) 5198 { 5199 struct extent_buffer *eb; 5200 5201 /* 5202 * We need to make sure noboody is attaching this page to an eb right 5203 * now. 5204 */ 5205 spin_lock(&page->mapping->private_lock); 5206 if (!PagePrivate(page)) { 5207 spin_unlock(&page->mapping->private_lock); 5208 return 1; 5209 } 5210 5211 eb = (struct extent_buffer *)page->private; 5212 BUG_ON(!eb); 5213 5214 /* 5215 * This is a little awful but should be ok, we need to make sure that 5216 * the eb doesn't disappear out from under us while we're looking at 5217 * this page. 5218 */ 5219 spin_lock(&eb->refs_lock); 5220 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5221 spin_unlock(&eb->refs_lock); 5222 spin_unlock(&page->mapping->private_lock); 5223 return 0; 5224 } 5225 spin_unlock(&page->mapping->private_lock); 5226 5227 /* 5228 * If tree ref isn't set then we know the ref on this eb is a real ref, 5229 * so just return, this page will likely be freed soon anyway. 5230 */ 5231 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5232 spin_unlock(&eb->refs_lock); 5233 return 0; 5234 } 5235 5236 return release_extent_buffer(eb); 5237 } 5238