xref: /linux/fs/btrfs/extent_io.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "misc.h"
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "volumes.h"
23 #include "check-integrity.h"
24 #include "locking.h"
25 #include "rcu-string.h"
26 #include "backref.h"
27 #include "disk-io.h"
28 #include "subpage.h"
29 #include "zoned.h"
30 #include "block-group.h"
31 
32 static struct kmem_cache *extent_state_cache;
33 static struct kmem_cache *extent_buffer_cache;
34 static struct bio_set btrfs_bioset;
35 
36 static inline bool extent_state_in_tree(const struct extent_state *state)
37 {
38 	return !RB_EMPTY_NODE(&state->rb_node);
39 }
40 
41 #ifdef CONFIG_BTRFS_DEBUG
42 static LIST_HEAD(states);
43 static DEFINE_SPINLOCK(leak_lock);
44 
45 static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 					struct list_head *new,
47 					struct list_head *head)
48 {
49 	unsigned long flags;
50 
51 	spin_lock_irqsave(lock, flags);
52 	list_add(new, head);
53 	spin_unlock_irqrestore(lock, flags);
54 }
55 
56 static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 					struct list_head *entry)
58 {
59 	unsigned long flags;
60 
61 	spin_lock_irqsave(lock, flags);
62 	list_del(entry);
63 	spin_unlock_irqrestore(lock, flags);
64 }
65 
66 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 {
68 	struct extent_buffer *eb;
69 	unsigned long flags;
70 
71 	/*
72 	 * If we didn't get into open_ctree our allocated_ebs will not be
73 	 * initialized, so just skip this.
74 	 */
75 	if (!fs_info->allocated_ebs.next)
76 		return;
77 
78 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 	while (!list_empty(&fs_info->allocated_ebs)) {
80 		eb = list_first_entry(&fs_info->allocated_ebs,
81 				      struct extent_buffer, leak_list);
82 		pr_err(
83 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 		       btrfs_header_owner(eb));
86 		list_del(&eb->leak_list);
87 		kmem_cache_free(extent_buffer_cache, eb);
88 	}
89 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 }
91 
92 static inline void btrfs_extent_state_leak_debug_check(void)
93 {
94 	struct extent_state *state;
95 
96 	while (!list_empty(&states)) {
97 		state = list_entry(states.next, struct extent_state, leak_list);
98 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 		       state->start, state->end, state->state,
100 		       extent_state_in_tree(state),
101 		       refcount_read(&state->refs));
102 		list_del(&state->leak_list);
103 		kmem_cache_free(extent_state_cache, state);
104 	}
105 }
106 
107 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
108 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110 		struct extent_io_tree *tree, u64 start, u64 end)
111 {
112 	struct inode *inode = tree->private_data;
113 	u64 isize;
114 
115 	if (!inode || !is_data_inode(inode))
116 		return;
117 
118 	isize = i_size_read(inode);
119 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 	}
124 }
125 #else
126 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
127 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
129 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
130 #endif
131 
132 struct tree_entry {
133 	u64 start;
134 	u64 end;
135 	struct rb_node rb_node;
136 };
137 
138 struct extent_page_data {
139 	struct btrfs_bio_ctrl bio_ctrl;
140 	/* tells writepage not to lock the state bits for this range
141 	 * it still does the unlocking
142 	 */
143 	unsigned int extent_locked:1;
144 
145 	/* tells the submit_bio code to use REQ_SYNC */
146 	unsigned int sync_io:1;
147 };
148 
149 static int add_extent_changeset(struct extent_state *state, u32 bits,
150 				 struct extent_changeset *changeset,
151 				 int set)
152 {
153 	int ret;
154 
155 	if (!changeset)
156 		return 0;
157 	if (set && (state->state & bits) == bits)
158 		return 0;
159 	if (!set && (state->state & bits) == 0)
160 		return 0;
161 	changeset->bytes_changed += state->end - state->start + 1;
162 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163 			GFP_ATOMIC);
164 	return ret;
165 }
166 
167 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 				unsigned long bio_flags)
169 {
170 	blk_status_t ret = 0;
171 	struct extent_io_tree *tree = bio->bi_private;
172 
173 	bio->bi_private = NULL;
174 
175 	if (is_data_inode(tree->private_data))
176 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
177 					    bio_flags);
178 	else
179 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
180 						mirror_num, bio_flags);
181 
182 	return blk_status_to_errno(ret);
183 }
184 
185 /* Cleanup unsubmitted bios */
186 static void end_write_bio(struct extent_page_data *epd, int ret)
187 {
188 	struct bio *bio = epd->bio_ctrl.bio;
189 
190 	if (bio) {
191 		bio->bi_status = errno_to_blk_status(ret);
192 		bio_endio(bio);
193 		epd->bio_ctrl.bio = NULL;
194 	}
195 }
196 
197 /*
198  * Submit bio from extent page data via submit_one_bio
199  *
200  * Return 0 if everything is OK.
201  * Return <0 for error.
202  */
203 static int __must_check flush_write_bio(struct extent_page_data *epd)
204 {
205 	int ret = 0;
206 	struct bio *bio = epd->bio_ctrl.bio;
207 
208 	if (bio) {
209 		ret = submit_one_bio(bio, 0, 0);
210 		/*
211 		 * Clean up of epd->bio is handled by its endio function.
212 		 * And endio is either triggered by successful bio execution
213 		 * or the error handler of submit bio hook.
214 		 * So at this point, no matter what happened, we don't need
215 		 * to clean up epd->bio.
216 		 */
217 		epd->bio_ctrl.bio = NULL;
218 	}
219 	return ret;
220 }
221 
222 int __init extent_state_cache_init(void)
223 {
224 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
225 			sizeof(struct extent_state), 0,
226 			SLAB_MEM_SPREAD, NULL);
227 	if (!extent_state_cache)
228 		return -ENOMEM;
229 	return 0;
230 }
231 
232 int __init extent_io_init(void)
233 {
234 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235 			sizeof(struct extent_buffer), 0,
236 			SLAB_MEM_SPREAD, NULL);
237 	if (!extent_buffer_cache)
238 		return -ENOMEM;
239 
240 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
241 			offsetof(struct btrfs_io_bio, bio),
242 			BIOSET_NEED_BVECS))
243 		goto free_buffer_cache;
244 
245 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 		goto free_bioset;
247 
248 	return 0;
249 
250 free_bioset:
251 	bioset_exit(&btrfs_bioset);
252 
253 free_buffer_cache:
254 	kmem_cache_destroy(extent_buffer_cache);
255 	extent_buffer_cache = NULL;
256 	return -ENOMEM;
257 }
258 
259 void __cold extent_state_cache_exit(void)
260 {
261 	btrfs_extent_state_leak_debug_check();
262 	kmem_cache_destroy(extent_state_cache);
263 }
264 
265 void __cold extent_io_exit(void)
266 {
267 	/*
268 	 * Make sure all delayed rcu free are flushed before we
269 	 * destroy caches.
270 	 */
271 	rcu_barrier();
272 	kmem_cache_destroy(extent_buffer_cache);
273 	bioset_exit(&btrfs_bioset);
274 }
275 
276 /*
277  * For the file_extent_tree, we want to hold the inode lock when we lookup and
278  * update the disk_i_size, but lockdep will complain because our io_tree we hold
279  * the tree lock and get the inode lock when setting delalloc.  These two things
280  * are unrelated, so make a class for the file_extent_tree so we don't get the
281  * two locking patterns mixed up.
282  */
283 static struct lock_class_key file_extent_tree_class;
284 
285 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 			 struct extent_io_tree *tree, unsigned int owner,
287 			 void *private_data)
288 {
289 	tree->fs_info = fs_info;
290 	tree->state = RB_ROOT;
291 	tree->dirty_bytes = 0;
292 	spin_lock_init(&tree->lock);
293 	tree->private_data = private_data;
294 	tree->owner = owner;
295 	if (owner == IO_TREE_INODE_FILE_EXTENT)
296 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
297 }
298 
299 void extent_io_tree_release(struct extent_io_tree *tree)
300 {
301 	spin_lock(&tree->lock);
302 	/*
303 	 * Do a single barrier for the waitqueue_active check here, the state
304 	 * of the waitqueue should not change once extent_io_tree_release is
305 	 * called.
306 	 */
307 	smp_mb();
308 	while (!RB_EMPTY_ROOT(&tree->state)) {
309 		struct rb_node *node;
310 		struct extent_state *state;
311 
312 		node = rb_first(&tree->state);
313 		state = rb_entry(node, struct extent_state, rb_node);
314 		rb_erase(&state->rb_node, &tree->state);
315 		RB_CLEAR_NODE(&state->rb_node);
316 		/*
317 		 * btree io trees aren't supposed to have tasks waiting for
318 		 * changes in the flags of extent states ever.
319 		 */
320 		ASSERT(!waitqueue_active(&state->wq));
321 		free_extent_state(state);
322 
323 		cond_resched_lock(&tree->lock);
324 	}
325 	spin_unlock(&tree->lock);
326 }
327 
328 static struct extent_state *alloc_extent_state(gfp_t mask)
329 {
330 	struct extent_state *state;
331 
332 	/*
333 	 * The given mask might be not appropriate for the slab allocator,
334 	 * drop the unsupported bits
335 	 */
336 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337 	state = kmem_cache_alloc(extent_state_cache, mask);
338 	if (!state)
339 		return state;
340 	state->state = 0;
341 	state->failrec = NULL;
342 	RB_CLEAR_NODE(&state->rb_node);
343 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344 	refcount_set(&state->refs, 1);
345 	init_waitqueue_head(&state->wq);
346 	trace_alloc_extent_state(state, mask, _RET_IP_);
347 	return state;
348 }
349 
350 void free_extent_state(struct extent_state *state)
351 {
352 	if (!state)
353 		return;
354 	if (refcount_dec_and_test(&state->refs)) {
355 		WARN_ON(extent_state_in_tree(state));
356 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357 		trace_free_extent_state(state, _RET_IP_);
358 		kmem_cache_free(extent_state_cache, state);
359 	}
360 }
361 
362 static struct rb_node *tree_insert(struct rb_root *root,
363 				   struct rb_node *search_start,
364 				   u64 offset,
365 				   struct rb_node *node,
366 				   struct rb_node ***p_in,
367 				   struct rb_node **parent_in)
368 {
369 	struct rb_node **p;
370 	struct rb_node *parent = NULL;
371 	struct tree_entry *entry;
372 
373 	if (p_in && parent_in) {
374 		p = *p_in;
375 		parent = *parent_in;
376 		goto do_insert;
377 	}
378 
379 	p = search_start ? &search_start : &root->rb_node;
380 	while (*p) {
381 		parent = *p;
382 		entry = rb_entry(parent, struct tree_entry, rb_node);
383 
384 		if (offset < entry->start)
385 			p = &(*p)->rb_left;
386 		else if (offset > entry->end)
387 			p = &(*p)->rb_right;
388 		else
389 			return parent;
390 	}
391 
392 do_insert:
393 	rb_link_node(node, parent, p);
394 	rb_insert_color(node, root);
395 	return NULL;
396 }
397 
398 /**
399  * Search @tree for an entry that contains @offset. Such entry would have
400  * entry->start <= offset && entry->end >= offset.
401  *
402  * @tree:       the tree to search
403  * @offset:     offset that should fall within an entry in @tree
404  * @next_ret:   pointer to the first entry whose range ends after @offset
405  * @prev_ret:   pointer to the first entry whose range begins before @offset
406  * @p_ret:      pointer where new node should be anchored (used when inserting an
407  *	        entry in the tree)
408  * @parent_ret: points to entry which would have been the parent of the entry,
409  *               containing @offset
410  *
411  * This function returns a pointer to the entry that contains @offset byte
412  * address. If no such entry exists, then NULL is returned and the other
413  * pointer arguments to the function are filled, otherwise the found entry is
414  * returned and other pointers are left untouched.
415  */
416 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417 				      struct rb_node **next_ret,
418 				      struct rb_node **prev_ret,
419 				      struct rb_node ***p_ret,
420 				      struct rb_node **parent_ret)
421 {
422 	struct rb_root *root = &tree->state;
423 	struct rb_node **n = &root->rb_node;
424 	struct rb_node *prev = NULL;
425 	struct rb_node *orig_prev = NULL;
426 	struct tree_entry *entry;
427 	struct tree_entry *prev_entry = NULL;
428 
429 	while (*n) {
430 		prev = *n;
431 		entry = rb_entry(prev, struct tree_entry, rb_node);
432 		prev_entry = entry;
433 
434 		if (offset < entry->start)
435 			n = &(*n)->rb_left;
436 		else if (offset > entry->end)
437 			n = &(*n)->rb_right;
438 		else
439 			return *n;
440 	}
441 
442 	if (p_ret)
443 		*p_ret = n;
444 	if (parent_ret)
445 		*parent_ret = prev;
446 
447 	if (next_ret) {
448 		orig_prev = prev;
449 		while (prev && offset > prev_entry->end) {
450 			prev = rb_next(prev);
451 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		}
453 		*next_ret = prev;
454 		prev = orig_prev;
455 	}
456 
457 	if (prev_ret) {
458 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
459 		while (prev && offset < prev_entry->start) {
460 			prev = rb_prev(prev);
461 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 		}
463 		*prev_ret = prev;
464 	}
465 	return NULL;
466 }
467 
468 static inline struct rb_node *
469 tree_search_for_insert(struct extent_io_tree *tree,
470 		       u64 offset,
471 		       struct rb_node ***p_ret,
472 		       struct rb_node **parent_ret)
473 {
474 	struct rb_node *next= NULL;
475 	struct rb_node *ret;
476 
477 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
478 	if (!ret)
479 		return next;
480 	return ret;
481 }
482 
483 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
484 					  u64 offset)
485 {
486 	return tree_search_for_insert(tree, offset, NULL, NULL);
487 }
488 
489 /*
490  * utility function to look for merge candidates inside a given range.
491  * Any extents with matching state are merged together into a single
492  * extent in the tree.  Extents with EXTENT_IO in their state field
493  * are not merged because the end_io handlers need to be able to do
494  * operations on them without sleeping (or doing allocations/splits).
495  *
496  * This should be called with the tree lock held.
497  */
498 static void merge_state(struct extent_io_tree *tree,
499 		        struct extent_state *state)
500 {
501 	struct extent_state *other;
502 	struct rb_node *other_node;
503 
504 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505 		return;
506 
507 	other_node = rb_prev(&state->rb_node);
508 	if (other_node) {
509 		other = rb_entry(other_node, struct extent_state, rb_node);
510 		if (other->end == state->start - 1 &&
511 		    other->state == state->state) {
512 			if (tree->private_data &&
513 			    is_data_inode(tree->private_data))
514 				btrfs_merge_delalloc_extent(tree->private_data,
515 							    state, other);
516 			state->start = other->start;
517 			rb_erase(&other->rb_node, &tree->state);
518 			RB_CLEAR_NODE(&other->rb_node);
519 			free_extent_state(other);
520 		}
521 	}
522 	other_node = rb_next(&state->rb_node);
523 	if (other_node) {
524 		other = rb_entry(other_node, struct extent_state, rb_node);
525 		if (other->start == state->end + 1 &&
526 		    other->state == state->state) {
527 			if (tree->private_data &&
528 			    is_data_inode(tree->private_data))
529 				btrfs_merge_delalloc_extent(tree->private_data,
530 							    state, other);
531 			state->end = other->end;
532 			rb_erase(&other->rb_node, &tree->state);
533 			RB_CLEAR_NODE(&other->rb_node);
534 			free_extent_state(other);
535 		}
536 	}
537 }
538 
539 static void set_state_bits(struct extent_io_tree *tree,
540 			   struct extent_state *state, u32 *bits,
541 			   struct extent_changeset *changeset);
542 
543 /*
544  * insert an extent_state struct into the tree.  'bits' are set on the
545  * struct before it is inserted.
546  *
547  * This may return -EEXIST if the extent is already there, in which case the
548  * state struct is freed.
549  *
550  * The tree lock is not taken internally.  This is a utility function and
551  * probably isn't what you want to call (see set/clear_extent_bit).
552  */
553 static int insert_state(struct extent_io_tree *tree,
554 			struct extent_state *state, u64 start, u64 end,
555 			struct rb_node ***p,
556 			struct rb_node **parent,
557 			u32 *bits, struct extent_changeset *changeset)
558 {
559 	struct rb_node *node;
560 
561 	if (end < start) {
562 		btrfs_err(tree->fs_info,
563 			"insert state: end < start %llu %llu", end, start);
564 		WARN_ON(1);
565 	}
566 	state->start = start;
567 	state->end = end;
568 
569 	set_state_bits(tree, state, bits, changeset);
570 
571 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 	if (node) {
573 		struct extent_state *found;
574 		found = rb_entry(node, struct extent_state, rb_node);
575 		btrfs_err(tree->fs_info,
576 		       "found node %llu %llu on insert of %llu %llu",
577 		       found->start, found->end, start, end);
578 		return -EEXIST;
579 	}
580 	merge_state(tree, state);
581 	return 0;
582 }
583 
584 /*
585  * split a given extent state struct in two, inserting the preallocated
586  * struct 'prealloc' as the newly created second half.  'split' indicates an
587  * offset inside 'orig' where it should be split.
588  *
589  * Before calling,
590  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
591  * are two extent state structs in the tree:
592  * prealloc: [orig->start, split - 1]
593  * orig: [ split, orig->end ]
594  *
595  * The tree locks are not taken by this function. They need to be held
596  * by the caller.
597  */
598 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
599 		       struct extent_state *prealloc, u64 split)
600 {
601 	struct rb_node *node;
602 
603 	if (tree->private_data && is_data_inode(tree->private_data))
604 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
605 
606 	prealloc->start = orig->start;
607 	prealloc->end = split - 1;
608 	prealloc->state = orig->state;
609 	orig->start = split;
610 
611 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
612 			   &prealloc->rb_node, NULL, NULL);
613 	if (node) {
614 		free_extent_state(prealloc);
615 		return -EEXIST;
616 	}
617 	return 0;
618 }
619 
620 static struct extent_state *next_state(struct extent_state *state)
621 {
622 	struct rb_node *next = rb_next(&state->rb_node);
623 	if (next)
624 		return rb_entry(next, struct extent_state, rb_node);
625 	else
626 		return NULL;
627 }
628 
629 /*
630  * utility function to clear some bits in an extent state struct.
631  * it will optionally wake up anyone waiting on this state (wake == 1).
632  *
633  * If no bits are set on the state struct after clearing things, the
634  * struct is freed and removed from the tree
635  */
636 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
637 					    struct extent_state *state,
638 					    u32 *bits, int wake,
639 					    struct extent_changeset *changeset)
640 {
641 	struct extent_state *next;
642 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643 	int ret;
644 
645 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 		u64 range = state->end - state->start + 1;
647 		WARN_ON(range > tree->dirty_bytes);
648 		tree->dirty_bytes -= range;
649 	}
650 
651 	if (tree->private_data && is_data_inode(tree->private_data))
652 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
653 
654 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
655 	BUG_ON(ret < 0);
656 	state->state &= ~bits_to_clear;
657 	if (wake)
658 		wake_up(&state->wq);
659 	if (state->state == 0) {
660 		next = next_state(state);
661 		if (extent_state_in_tree(state)) {
662 			rb_erase(&state->rb_node, &tree->state);
663 			RB_CLEAR_NODE(&state->rb_node);
664 			free_extent_state(state);
665 		} else {
666 			WARN_ON(1);
667 		}
668 	} else {
669 		merge_state(tree, state);
670 		next = next_state(state);
671 	}
672 	return next;
673 }
674 
675 static struct extent_state *
676 alloc_extent_state_atomic(struct extent_state *prealloc)
677 {
678 	if (!prealloc)
679 		prealloc = alloc_extent_state(GFP_ATOMIC);
680 
681 	return prealloc;
682 }
683 
684 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685 {
686 	btrfs_panic(tree->fs_info, err,
687 	"locking error: extent tree was modified by another thread while locked");
688 }
689 
690 /*
691  * clear some bits on a range in the tree.  This may require splitting
692  * or inserting elements in the tree, so the gfp mask is used to
693  * indicate which allocations or sleeping are allowed.
694  *
695  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
696  * the given range from the tree regardless of state (ie for truncate).
697  *
698  * the range [start, end] is inclusive.
699  *
700  * This takes the tree lock, and returns 0 on success and < 0 on error.
701  */
702 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 		       u32 bits, int wake, int delete,
704 		       struct extent_state **cached_state,
705 		       gfp_t mask, struct extent_changeset *changeset)
706 {
707 	struct extent_state *state;
708 	struct extent_state *cached;
709 	struct extent_state *prealloc = NULL;
710 	struct rb_node *node;
711 	u64 last_end;
712 	int err;
713 	int clear = 0;
714 
715 	btrfs_debug_check_extent_io_range(tree, start, end);
716 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717 
718 	if (bits & EXTENT_DELALLOC)
719 		bits |= EXTENT_NORESERVE;
720 
721 	if (delete)
722 		bits |= ~EXTENT_CTLBITS;
723 
724 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725 		clear = 1;
726 again:
727 	if (!prealloc && gfpflags_allow_blocking(mask)) {
728 		/*
729 		 * Don't care for allocation failure here because we might end
730 		 * up not needing the pre-allocated extent state at all, which
731 		 * is the case if we only have in the tree extent states that
732 		 * cover our input range and don't cover too any other range.
733 		 * If we end up needing a new extent state we allocate it later.
734 		 */
735 		prealloc = alloc_extent_state(mask);
736 	}
737 
738 	spin_lock(&tree->lock);
739 	if (cached_state) {
740 		cached = *cached_state;
741 
742 		if (clear) {
743 			*cached_state = NULL;
744 			cached_state = NULL;
745 		}
746 
747 		if (cached && extent_state_in_tree(cached) &&
748 		    cached->start <= start && cached->end > start) {
749 			if (clear)
750 				refcount_dec(&cached->refs);
751 			state = cached;
752 			goto hit_next;
753 		}
754 		if (clear)
755 			free_extent_state(cached);
756 	}
757 	/*
758 	 * this search will find the extents that end after
759 	 * our range starts
760 	 */
761 	node = tree_search(tree, start);
762 	if (!node)
763 		goto out;
764 	state = rb_entry(node, struct extent_state, rb_node);
765 hit_next:
766 	if (state->start > end)
767 		goto out;
768 	WARN_ON(state->end < start);
769 	last_end = state->end;
770 
771 	/* the state doesn't have the wanted bits, go ahead */
772 	if (!(state->state & bits)) {
773 		state = next_state(state);
774 		goto next;
775 	}
776 
777 	/*
778 	 *     | ---- desired range ---- |
779 	 *  | state | or
780 	 *  | ------------- state -------------- |
781 	 *
782 	 * We need to split the extent we found, and may flip
783 	 * bits on second half.
784 	 *
785 	 * If the extent we found extends past our range, we
786 	 * just split and search again.  It'll get split again
787 	 * the next time though.
788 	 *
789 	 * If the extent we found is inside our range, we clear
790 	 * the desired bit on it.
791 	 */
792 
793 	if (state->start < start) {
794 		prealloc = alloc_extent_state_atomic(prealloc);
795 		BUG_ON(!prealloc);
796 		err = split_state(tree, state, prealloc, start);
797 		if (err)
798 			extent_io_tree_panic(tree, err);
799 
800 		prealloc = NULL;
801 		if (err)
802 			goto out;
803 		if (state->end <= end) {
804 			state = clear_state_bit(tree, state, &bits, wake,
805 						changeset);
806 			goto next;
807 		}
808 		goto search_again;
809 	}
810 	/*
811 	 * | ---- desired range ---- |
812 	 *                        | state |
813 	 * We need to split the extent, and clear the bit
814 	 * on the first half
815 	 */
816 	if (state->start <= end && state->end > end) {
817 		prealloc = alloc_extent_state_atomic(prealloc);
818 		BUG_ON(!prealloc);
819 		err = split_state(tree, state, prealloc, end + 1);
820 		if (err)
821 			extent_io_tree_panic(tree, err);
822 
823 		if (wake)
824 			wake_up(&state->wq);
825 
826 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
827 
828 		prealloc = NULL;
829 		goto out;
830 	}
831 
832 	state = clear_state_bit(tree, state, &bits, wake, changeset);
833 next:
834 	if (last_end == (u64)-1)
835 		goto out;
836 	start = last_end + 1;
837 	if (start <= end && state && !need_resched())
838 		goto hit_next;
839 
840 search_again:
841 	if (start > end)
842 		goto out;
843 	spin_unlock(&tree->lock);
844 	if (gfpflags_allow_blocking(mask))
845 		cond_resched();
846 	goto again;
847 
848 out:
849 	spin_unlock(&tree->lock);
850 	if (prealloc)
851 		free_extent_state(prealloc);
852 
853 	return 0;
854 
855 }
856 
857 static void wait_on_state(struct extent_io_tree *tree,
858 			  struct extent_state *state)
859 		__releases(tree->lock)
860 		__acquires(tree->lock)
861 {
862 	DEFINE_WAIT(wait);
863 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864 	spin_unlock(&tree->lock);
865 	schedule();
866 	spin_lock(&tree->lock);
867 	finish_wait(&state->wq, &wait);
868 }
869 
870 /*
871  * waits for one or more bits to clear on a range in the state tree.
872  * The range [start, end] is inclusive.
873  * The tree lock is taken by this function
874  */
875 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876 			    u32 bits)
877 {
878 	struct extent_state *state;
879 	struct rb_node *node;
880 
881 	btrfs_debug_check_extent_io_range(tree, start, end);
882 
883 	spin_lock(&tree->lock);
884 again:
885 	while (1) {
886 		/*
887 		 * this search will find all the extents that end after
888 		 * our range starts
889 		 */
890 		node = tree_search(tree, start);
891 process_node:
892 		if (!node)
893 			break;
894 
895 		state = rb_entry(node, struct extent_state, rb_node);
896 
897 		if (state->start > end)
898 			goto out;
899 
900 		if (state->state & bits) {
901 			start = state->start;
902 			refcount_inc(&state->refs);
903 			wait_on_state(tree, state);
904 			free_extent_state(state);
905 			goto again;
906 		}
907 		start = state->end + 1;
908 
909 		if (start > end)
910 			break;
911 
912 		if (!cond_resched_lock(&tree->lock)) {
913 			node = rb_next(node);
914 			goto process_node;
915 		}
916 	}
917 out:
918 	spin_unlock(&tree->lock);
919 }
920 
921 static void set_state_bits(struct extent_io_tree *tree,
922 			   struct extent_state *state,
923 			   u32 *bits, struct extent_changeset *changeset)
924 {
925 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926 	int ret;
927 
928 	if (tree->private_data && is_data_inode(tree->private_data))
929 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
930 
931 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 		u64 range = state->end - state->start + 1;
933 		tree->dirty_bytes += range;
934 	}
935 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
936 	BUG_ON(ret < 0);
937 	state->state |= bits_to_set;
938 }
939 
940 static void cache_state_if_flags(struct extent_state *state,
941 				 struct extent_state **cached_ptr,
942 				 unsigned flags)
943 {
944 	if (cached_ptr && !(*cached_ptr)) {
945 		if (!flags || (state->state & flags)) {
946 			*cached_ptr = state;
947 			refcount_inc(&state->refs);
948 		}
949 	}
950 }
951 
952 static void cache_state(struct extent_state *state,
953 			struct extent_state **cached_ptr)
954 {
955 	return cache_state_if_flags(state, cached_ptr,
956 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
957 }
958 
959 /*
960  * set some bits on a range in the tree.  This may require allocations or
961  * sleeping, so the gfp mask is used to indicate what is allowed.
962  *
963  * If any of the exclusive bits are set, this will fail with -EEXIST if some
964  * part of the range already has the desired bits set.  The start of the
965  * existing range is returned in failed_start in this case.
966  *
967  * [start, end] is inclusive This takes the tree lock.
968  */
969 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
970 		   u32 exclusive_bits, u64 *failed_start,
971 		   struct extent_state **cached_state, gfp_t mask,
972 		   struct extent_changeset *changeset)
973 {
974 	struct extent_state *state;
975 	struct extent_state *prealloc = NULL;
976 	struct rb_node *node;
977 	struct rb_node **p;
978 	struct rb_node *parent;
979 	int err = 0;
980 	u64 last_start;
981 	u64 last_end;
982 
983 	btrfs_debug_check_extent_io_range(tree, start, end);
984 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985 
986 	if (exclusive_bits)
987 		ASSERT(failed_start);
988 	else
989 		ASSERT(failed_start == NULL);
990 again:
991 	if (!prealloc && gfpflags_allow_blocking(mask)) {
992 		/*
993 		 * Don't care for allocation failure here because we might end
994 		 * up not needing the pre-allocated extent state at all, which
995 		 * is the case if we only have in the tree extent states that
996 		 * cover our input range and don't cover too any other range.
997 		 * If we end up needing a new extent state we allocate it later.
998 		 */
999 		prealloc = alloc_extent_state(mask);
1000 	}
1001 
1002 	spin_lock(&tree->lock);
1003 	if (cached_state && *cached_state) {
1004 		state = *cached_state;
1005 		if (state->start <= start && state->end > start &&
1006 		    extent_state_in_tree(state)) {
1007 			node = &state->rb_node;
1008 			goto hit_next;
1009 		}
1010 	}
1011 	/*
1012 	 * this search will find all the extents that end after
1013 	 * our range starts.
1014 	 */
1015 	node = tree_search_for_insert(tree, start, &p, &parent);
1016 	if (!node) {
1017 		prealloc = alloc_extent_state_atomic(prealloc);
1018 		BUG_ON(!prealloc);
1019 		err = insert_state(tree, prealloc, start, end,
1020 				   &p, &parent, &bits, changeset);
1021 		if (err)
1022 			extent_io_tree_panic(tree, err);
1023 
1024 		cache_state(prealloc, cached_state);
1025 		prealloc = NULL;
1026 		goto out;
1027 	}
1028 	state = rb_entry(node, struct extent_state, rb_node);
1029 hit_next:
1030 	last_start = state->start;
1031 	last_end = state->end;
1032 
1033 	/*
1034 	 * | ---- desired range ---- |
1035 	 * | state |
1036 	 *
1037 	 * Just lock what we found and keep going
1038 	 */
1039 	if (state->start == start && state->end <= end) {
1040 		if (state->state & exclusive_bits) {
1041 			*failed_start = state->start;
1042 			err = -EEXIST;
1043 			goto out;
1044 		}
1045 
1046 		set_state_bits(tree, state, &bits, changeset);
1047 		cache_state(state, cached_state);
1048 		merge_state(tree, state);
1049 		if (last_end == (u64)-1)
1050 			goto out;
1051 		start = last_end + 1;
1052 		state = next_state(state);
1053 		if (start < end && state && state->start == start &&
1054 		    !need_resched())
1055 			goto hit_next;
1056 		goto search_again;
1057 	}
1058 
1059 	/*
1060 	 *     | ---- desired range ---- |
1061 	 * | state |
1062 	 *   or
1063 	 * | ------------- state -------------- |
1064 	 *
1065 	 * We need to split the extent we found, and may flip bits on
1066 	 * second half.
1067 	 *
1068 	 * If the extent we found extends past our
1069 	 * range, we just split and search again.  It'll get split
1070 	 * again the next time though.
1071 	 *
1072 	 * If the extent we found is inside our range, we set the
1073 	 * desired bit on it.
1074 	 */
1075 	if (state->start < start) {
1076 		if (state->state & exclusive_bits) {
1077 			*failed_start = start;
1078 			err = -EEXIST;
1079 			goto out;
1080 		}
1081 
1082 		/*
1083 		 * If this extent already has all the bits we want set, then
1084 		 * skip it, not necessary to split it or do anything with it.
1085 		 */
1086 		if ((state->state & bits) == bits) {
1087 			start = state->end + 1;
1088 			cache_state(state, cached_state);
1089 			goto search_again;
1090 		}
1091 
1092 		prealloc = alloc_extent_state_atomic(prealloc);
1093 		BUG_ON(!prealloc);
1094 		err = split_state(tree, state, prealloc, start);
1095 		if (err)
1096 			extent_io_tree_panic(tree, err);
1097 
1098 		prealloc = NULL;
1099 		if (err)
1100 			goto out;
1101 		if (state->end <= end) {
1102 			set_state_bits(tree, state, &bits, changeset);
1103 			cache_state(state, cached_state);
1104 			merge_state(tree, state);
1105 			if (last_end == (u64)-1)
1106 				goto out;
1107 			start = last_end + 1;
1108 			state = next_state(state);
1109 			if (start < end && state && state->start == start &&
1110 			    !need_resched())
1111 				goto hit_next;
1112 		}
1113 		goto search_again;
1114 	}
1115 	/*
1116 	 * | ---- desired range ---- |
1117 	 *     | state | or               | state |
1118 	 *
1119 	 * There's a hole, we need to insert something in it and
1120 	 * ignore the extent we found.
1121 	 */
1122 	if (state->start > start) {
1123 		u64 this_end;
1124 		if (end < last_start)
1125 			this_end = end;
1126 		else
1127 			this_end = last_start - 1;
1128 
1129 		prealloc = alloc_extent_state_atomic(prealloc);
1130 		BUG_ON(!prealloc);
1131 
1132 		/*
1133 		 * Avoid to free 'prealloc' if it can be merged with
1134 		 * the later extent.
1135 		 */
1136 		err = insert_state(tree, prealloc, start, this_end,
1137 				   NULL, NULL, &bits, changeset);
1138 		if (err)
1139 			extent_io_tree_panic(tree, err);
1140 
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		start = this_end + 1;
1144 		goto search_again;
1145 	}
1146 	/*
1147 	 * | ---- desired range ---- |
1148 	 *                        | state |
1149 	 * We need to split the extent, and set the bit
1150 	 * on the first half
1151 	 */
1152 	if (state->start <= end && state->end > end) {
1153 		if (state->state & exclusive_bits) {
1154 			*failed_start = start;
1155 			err = -EEXIST;
1156 			goto out;
1157 		}
1158 
1159 		prealloc = alloc_extent_state_atomic(prealloc);
1160 		BUG_ON(!prealloc);
1161 		err = split_state(tree, state, prealloc, end + 1);
1162 		if (err)
1163 			extent_io_tree_panic(tree, err);
1164 
1165 		set_state_bits(tree, prealloc, &bits, changeset);
1166 		cache_state(prealloc, cached_state);
1167 		merge_state(tree, prealloc);
1168 		prealloc = NULL;
1169 		goto out;
1170 	}
1171 
1172 search_again:
1173 	if (start > end)
1174 		goto out;
1175 	spin_unlock(&tree->lock);
1176 	if (gfpflags_allow_blocking(mask))
1177 		cond_resched();
1178 	goto again;
1179 
1180 out:
1181 	spin_unlock(&tree->lock);
1182 	if (prealloc)
1183 		free_extent_state(prealloc);
1184 
1185 	return err;
1186 
1187 }
1188 
1189 /**
1190  * convert_extent_bit - convert all bits in a given range from one bit to
1191  * 			another
1192  * @tree:	the io tree to search
1193  * @start:	the start offset in bytes
1194  * @end:	the end offset in bytes (inclusive)
1195  * @bits:	the bits to set in this range
1196  * @clear_bits:	the bits to clear in this range
1197  * @cached_state:	state that we're going to cache
1198  *
1199  * This will go through and set bits for the given range.  If any states exist
1200  * already in this range they are set with the given bit and cleared of the
1201  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203  * boundary bits like LOCK.
1204  *
1205  * All allocations are done with GFP_NOFS.
1206  */
1207 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208 		       u32 bits, u32 clear_bits,
1209 		       struct extent_state **cached_state)
1210 {
1211 	struct extent_state *state;
1212 	struct extent_state *prealloc = NULL;
1213 	struct rb_node *node;
1214 	struct rb_node **p;
1215 	struct rb_node *parent;
1216 	int err = 0;
1217 	u64 last_start;
1218 	u64 last_end;
1219 	bool first_iteration = true;
1220 
1221 	btrfs_debug_check_extent_io_range(tree, start, end);
1222 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 				       clear_bits);
1224 
1225 again:
1226 	if (!prealloc) {
1227 		/*
1228 		 * Best effort, don't worry if extent state allocation fails
1229 		 * here for the first iteration. We might have a cached state
1230 		 * that matches exactly the target range, in which case no
1231 		 * extent state allocations are needed. We'll only know this
1232 		 * after locking the tree.
1233 		 */
1234 		prealloc = alloc_extent_state(GFP_NOFS);
1235 		if (!prealloc && !first_iteration)
1236 			return -ENOMEM;
1237 	}
1238 
1239 	spin_lock(&tree->lock);
1240 	if (cached_state && *cached_state) {
1241 		state = *cached_state;
1242 		if (state->start <= start && state->end > start &&
1243 		    extent_state_in_tree(state)) {
1244 			node = &state->rb_node;
1245 			goto hit_next;
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * this search will find all the extents that end after
1251 	 * our range starts.
1252 	 */
1253 	node = tree_search_for_insert(tree, start, &p, &parent);
1254 	if (!node) {
1255 		prealloc = alloc_extent_state_atomic(prealloc);
1256 		if (!prealloc) {
1257 			err = -ENOMEM;
1258 			goto out;
1259 		}
1260 		err = insert_state(tree, prealloc, start, end,
1261 				   &p, &parent, &bits, NULL);
1262 		if (err)
1263 			extent_io_tree_panic(tree, err);
1264 		cache_state(prealloc, cached_state);
1265 		prealloc = NULL;
1266 		goto out;
1267 	}
1268 	state = rb_entry(node, struct extent_state, rb_node);
1269 hit_next:
1270 	last_start = state->start;
1271 	last_end = state->end;
1272 
1273 	/*
1274 	 * | ---- desired range ---- |
1275 	 * | state |
1276 	 *
1277 	 * Just lock what we found and keep going
1278 	 */
1279 	if (state->start == start && state->end <= end) {
1280 		set_state_bits(tree, state, &bits, NULL);
1281 		cache_state(state, cached_state);
1282 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283 		if (last_end == (u64)-1)
1284 			goto out;
1285 		start = last_end + 1;
1286 		if (start < end && state && state->start == start &&
1287 		    !need_resched())
1288 			goto hit_next;
1289 		goto search_again;
1290 	}
1291 
1292 	/*
1293 	 *     | ---- desired range ---- |
1294 	 * | state |
1295 	 *   or
1296 	 * | ------------- state -------------- |
1297 	 *
1298 	 * We need to split the extent we found, and may flip bits on
1299 	 * second half.
1300 	 *
1301 	 * If the extent we found extends past our
1302 	 * range, we just split and search again.  It'll get split
1303 	 * again the next time though.
1304 	 *
1305 	 * If the extent we found is inside our range, we set the
1306 	 * desired bit on it.
1307 	 */
1308 	if (state->start < start) {
1309 		prealloc = alloc_extent_state_atomic(prealloc);
1310 		if (!prealloc) {
1311 			err = -ENOMEM;
1312 			goto out;
1313 		}
1314 		err = split_state(tree, state, prealloc, start);
1315 		if (err)
1316 			extent_io_tree_panic(tree, err);
1317 		prealloc = NULL;
1318 		if (err)
1319 			goto out;
1320 		if (state->end <= end) {
1321 			set_state_bits(tree, state, &bits, NULL);
1322 			cache_state(state, cached_state);
1323 			state = clear_state_bit(tree, state, &clear_bits, 0,
1324 						NULL);
1325 			if (last_end == (u64)-1)
1326 				goto out;
1327 			start = last_end + 1;
1328 			if (start < end && state && state->start == start &&
1329 			    !need_resched())
1330 				goto hit_next;
1331 		}
1332 		goto search_again;
1333 	}
1334 	/*
1335 	 * | ---- desired range ---- |
1336 	 *     | state | or               | state |
1337 	 *
1338 	 * There's a hole, we need to insert something in it and
1339 	 * ignore the extent we found.
1340 	 */
1341 	if (state->start > start) {
1342 		u64 this_end;
1343 		if (end < last_start)
1344 			this_end = end;
1345 		else
1346 			this_end = last_start - 1;
1347 
1348 		prealloc = alloc_extent_state_atomic(prealloc);
1349 		if (!prealloc) {
1350 			err = -ENOMEM;
1351 			goto out;
1352 		}
1353 
1354 		/*
1355 		 * Avoid to free 'prealloc' if it can be merged with
1356 		 * the later extent.
1357 		 */
1358 		err = insert_state(tree, prealloc, start, this_end,
1359 				   NULL, NULL, &bits, NULL);
1360 		if (err)
1361 			extent_io_tree_panic(tree, err);
1362 		cache_state(prealloc, cached_state);
1363 		prealloc = NULL;
1364 		start = this_end + 1;
1365 		goto search_again;
1366 	}
1367 	/*
1368 	 * | ---- desired range ---- |
1369 	 *                        | state |
1370 	 * We need to split the extent, and set the bit
1371 	 * on the first half
1372 	 */
1373 	if (state->start <= end && state->end > end) {
1374 		prealloc = alloc_extent_state_atomic(prealloc);
1375 		if (!prealloc) {
1376 			err = -ENOMEM;
1377 			goto out;
1378 		}
1379 
1380 		err = split_state(tree, state, prealloc, end + 1);
1381 		if (err)
1382 			extent_io_tree_panic(tree, err);
1383 
1384 		set_state_bits(tree, prealloc, &bits, NULL);
1385 		cache_state(prealloc, cached_state);
1386 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387 		prealloc = NULL;
1388 		goto out;
1389 	}
1390 
1391 search_again:
1392 	if (start > end)
1393 		goto out;
1394 	spin_unlock(&tree->lock);
1395 	cond_resched();
1396 	first_iteration = false;
1397 	goto again;
1398 
1399 out:
1400 	spin_unlock(&tree->lock);
1401 	if (prealloc)
1402 		free_extent_state(prealloc);
1403 
1404 	return err;
1405 }
1406 
1407 /* wrappers around set/clear extent bit */
1408 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409 			   u32 bits, struct extent_changeset *changeset)
1410 {
1411 	/*
1412 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 	 * either fail with -EEXIST or changeset will record the whole
1415 	 * range.
1416 	 */
1417 	BUG_ON(bits & EXTENT_LOCKED);
1418 
1419 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 			      changeset);
1421 }
1422 
1423 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424 			   u32 bits)
1425 {
1426 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 			      GFP_NOWAIT, NULL);
1428 }
1429 
1430 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431 		     u32 bits, int wake, int delete,
1432 		     struct extent_state **cached)
1433 {
1434 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435 				  cached, GFP_NOFS, NULL);
1436 }
1437 
1438 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439 		u32 bits, struct extent_changeset *changeset)
1440 {
1441 	/*
1442 	 * Don't support EXTENT_LOCKED case, same reason as
1443 	 * set_record_extent_bits().
1444 	 */
1445 	BUG_ON(bits & EXTENT_LOCKED);
1446 
1447 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 				  changeset);
1449 }
1450 
1451 /*
1452  * either insert or lock state struct between start and end use mask to tell
1453  * us if waiting is desired.
1454  */
1455 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 		     struct extent_state **cached_state)
1457 {
1458 	int err;
1459 	u64 failed_start;
1460 
1461 	while (1) {
1462 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 				     EXTENT_LOCKED, &failed_start,
1464 				     cached_state, GFP_NOFS, NULL);
1465 		if (err == -EEXIST) {
1466 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 			start = failed_start;
1468 		} else
1469 			break;
1470 		WARN_ON(start > end);
1471 	}
1472 	return err;
1473 }
1474 
1475 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 {
1477 	int err;
1478 	u64 failed_start;
1479 
1480 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 			     &failed_start, NULL, GFP_NOFS, NULL);
1482 	if (err == -EEXIST) {
1483 		if (failed_start > start)
1484 			clear_extent_bit(tree, start, failed_start - 1,
1485 					 EXTENT_LOCKED, 1, 0, NULL);
1486 		return 0;
1487 	}
1488 	return 1;
1489 }
1490 
1491 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492 {
1493 	unsigned long index = start >> PAGE_SHIFT;
1494 	unsigned long end_index = end >> PAGE_SHIFT;
1495 	struct page *page;
1496 
1497 	while (index <= end_index) {
1498 		page = find_get_page(inode->i_mapping, index);
1499 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 		clear_page_dirty_for_io(page);
1501 		put_page(page);
1502 		index++;
1503 	}
1504 }
1505 
1506 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507 {
1508 	unsigned long index = start >> PAGE_SHIFT;
1509 	unsigned long end_index = end >> PAGE_SHIFT;
1510 	struct page *page;
1511 
1512 	while (index <= end_index) {
1513 		page = find_get_page(inode->i_mapping, index);
1514 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515 		__set_page_dirty_nobuffers(page);
1516 		account_page_redirty(page);
1517 		put_page(page);
1518 		index++;
1519 	}
1520 }
1521 
1522 /* find the first state struct with 'bits' set after 'start', and
1523  * return it.  tree->lock must be held.  NULL will returned if
1524  * nothing was found after 'start'
1525  */
1526 static struct extent_state *
1527 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1528 {
1529 	struct rb_node *node;
1530 	struct extent_state *state;
1531 
1532 	/*
1533 	 * this search will find all the extents that end after
1534 	 * our range starts.
1535 	 */
1536 	node = tree_search(tree, start);
1537 	if (!node)
1538 		goto out;
1539 
1540 	while (1) {
1541 		state = rb_entry(node, struct extent_state, rb_node);
1542 		if (state->end >= start && (state->state & bits))
1543 			return state;
1544 
1545 		node = rb_next(node);
1546 		if (!node)
1547 			break;
1548 	}
1549 out:
1550 	return NULL;
1551 }
1552 
1553 /*
1554  * Find the first offset in the io tree with one or more @bits set.
1555  *
1556  * Note: If there are multiple bits set in @bits, any of them will match.
1557  *
1558  * Return 0 if we find something, and update @start_ret and @end_ret.
1559  * Return 1 if we found nothing.
1560  */
1561 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562 			  u64 *start_ret, u64 *end_ret, u32 bits,
1563 			  struct extent_state **cached_state)
1564 {
1565 	struct extent_state *state;
1566 	int ret = 1;
1567 
1568 	spin_lock(&tree->lock);
1569 	if (cached_state && *cached_state) {
1570 		state = *cached_state;
1571 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572 			while ((state = next_state(state)) != NULL) {
1573 				if (state->state & bits)
1574 					goto got_it;
1575 			}
1576 			free_extent_state(*cached_state);
1577 			*cached_state = NULL;
1578 			goto out;
1579 		}
1580 		free_extent_state(*cached_state);
1581 		*cached_state = NULL;
1582 	}
1583 
1584 	state = find_first_extent_bit_state(tree, start, bits);
1585 got_it:
1586 	if (state) {
1587 		cache_state_if_flags(state, cached_state, 0);
1588 		*start_ret = state->start;
1589 		*end_ret = state->end;
1590 		ret = 0;
1591 	}
1592 out:
1593 	spin_unlock(&tree->lock);
1594 	return ret;
1595 }
1596 
1597 /**
1598  * Find a contiguous area of bits
1599  *
1600  * @tree:      io tree to check
1601  * @start:     offset to start the search from
1602  * @start_ret: the first offset we found with the bits set
1603  * @end_ret:   the final contiguous range of the bits that were set
1604  * @bits:      bits to look for
1605  *
1606  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607  * to set bits appropriately, and then merge them again.  During this time it
1608  * will drop the tree->lock, so use this helper if you want to find the actual
1609  * contiguous area for given bits.  We will search to the first bit we find, and
1610  * then walk down the tree until we find a non-contiguous area.  The area
1611  * returned will be the full contiguous area with the bits set.
1612  */
1613 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614 			       u64 *start_ret, u64 *end_ret, u32 bits)
1615 {
1616 	struct extent_state *state;
1617 	int ret = 1;
1618 
1619 	spin_lock(&tree->lock);
1620 	state = find_first_extent_bit_state(tree, start, bits);
1621 	if (state) {
1622 		*start_ret = state->start;
1623 		*end_ret = state->end;
1624 		while ((state = next_state(state)) != NULL) {
1625 			if (state->start > (*end_ret + 1))
1626 				break;
1627 			*end_ret = state->end;
1628 		}
1629 		ret = 0;
1630 	}
1631 	spin_unlock(&tree->lock);
1632 	return ret;
1633 }
1634 
1635 /**
1636  * Find the first range that has @bits not set. This range could start before
1637  * @start.
1638  *
1639  * @tree:      the tree to search
1640  * @start:     offset at/after which the found extent should start
1641  * @start_ret: records the beginning of the range
1642  * @end_ret:   records the end of the range (inclusive)
1643  * @bits:      the set of bits which must be unset
1644  *
1645  * Since unallocated range is also considered one which doesn't have the bits
1646  * set it's possible that @end_ret contains -1, this happens in case the range
1647  * spans (last_range_end, end of device]. In this case it's up to the caller to
1648  * trim @end_ret to the appropriate size.
1649  */
1650 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651 				 u64 *start_ret, u64 *end_ret, u32 bits)
1652 {
1653 	struct extent_state *state;
1654 	struct rb_node *node, *prev = NULL, *next;
1655 
1656 	spin_lock(&tree->lock);
1657 
1658 	/* Find first extent with bits cleared */
1659 	while (1) {
1660 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 		if (!node && !next && !prev) {
1662 			/*
1663 			 * Tree is completely empty, send full range and let
1664 			 * caller deal with it
1665 			 */
1666 			*start_ret = 0;
1667 			*end_ret = -1;
1668 			goto out;
1669 		} else if (!node && !next) {
1670 			/*
1671 			 * We are past the last allocated chunk, set start at
1672 			 * the end of the last extent.
1673 			 */
1674 			state = rb_entry(prev, struct extent_state, rb_node);
1675 			*start_ret = state->end + 1;
1676 			*end_ret = -1;
1677 			goto out;
1678 		} else if (!node) {
1679 			node = next;
1680 		}
1681 		/*
1682 		 * At this point 'node' either contains 'start' or start is
1683 		 * before 'node'
1684 		 */
1685 		state = rb_entry(node, struct extent_state, rb_node);
1686 
1687 		if (in_range(start, state->start, state->end - state->start + 1)) {
1688 			if (state->state & bits) {
1689 				/*
1690 				 * |--range with bits sets--|
1691 				 *    |
1692 				 *    start
1693 				 */
1694 				start = state->end + 1;
1695 			} else {
1696 				/*
1697 				 * 'start' falls within a range that doesn't
1698 				 * have the bits set, so take its start as
1699 				 * the beginning of the desired range
1700 				 *
1701 				 * |--range with bits cleared----|
1702 				 *      |
1703 				 *      start
1704 				 */
1705 				*start_ret = state->start;
1706 				break;
1707 			}
1708 		} else {
1709 			/*
1710 			 * |---prev range---|---hole/unset---|---node range---|
1711 			 *                          |
1712 			 *                        start
1713 			 *
1714 			 *                        or
1715 			 *
1716 			 * |---hole/unset--||--first node--|
1717 			 * 0   |
1718 			 *    start
1719 			 */
1720 			if (prev) {
1721 				state = rb_entry(prev, struct extent_state,
1722 						 rb_node);
1723 				*start_ret = state->end + 1;
1724 			} else {
1725 				*start_ret = 0;
1726 			}
1727 			break;
1728 		}
1729 	}
1730 
1731 	/*
1732 	 * Find the longest stretch from start until an entry which has the
1733 	 * bits set
1734 	 */
1735 	while (1) {
1736 		state = rb_entry(node, struct extent_state, rb_node);
1737 		if (state->end >= start && !(state->state & bits)) {
1738 			*end_ret = state->end;
1739 		} else {
1740 			*end_ret = state->start - 1;
1741 			break;
1742 		}
1743 
1744 		node = rb_next(node);
1745 		if (!node)
1746 			break;
1747 	}
1748 out:
1749 	spin_unlock(&tree->lock);
1750 }
1751 
1752 /*
1753  * find a contiguous range of bytes in the file marked as delalloc, not
1754  * more than 'max_bytes'.  start and end are used to return the range,
1755  *
1756  * true is returned if we find something, false if nothing was in the tree
1757  */
1758 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759 			       u64 *end, u64 max_bytes,
1760 			       struct extent_state **cached_state)
1761 {
1762 	struct rb_node *node;
1763 	struct extent_state *state;
1764 	u64 cur_start = *start;
1765 	bool found = false;
1766 	u64 total_bytes = 0;
1767 
1768 	spin_lock(&tree->lock);
1769 
1770 	/*
1771 	 * this search will find all the extents that end after
1772 	 * our range starts.
1773 	 */
1774 	node = tree_search(tree, cur_start);
1775 	if (!node) {
1776 		*end = (u64)-1;
1777 		goto out;
1778 	}
1779 
1780 	while (1) {
1781 		state = rb_entry(node, struct extent_state, rb_node);
1782 		if (found && (state->start != cur_start ||
1783 			      (state->state & EXTENT_BOUNDARY))) {
1784 			goto out;
1785 		}
1786 		if (!(state->state & EXTENT_DELALLOC)) {
1787 			if (!found)
1788 				*end = state->end;
1789 			goto out;
1790 		}
1791 		if (!found) {
1792 			*start = state->start;
1793 			*cached_state = state;
1794 			refcount_inc(&state->refs);
1795 		}
1796 		found = true;
1797 		*end = state->end;
1798 		cur_start = state->end + 1;
1799 		node = rb_next(node);
1800 		total_bytes += state->end - state->start + 1;
1801 		if (total_bytes >= max_bytes)
1802 			break;
1803 		if (!node)
1804 			break;
1805 	}
1806 out:
1807 	spin_unlock(&tree->lock);
1808 	return found;
1809 }
1810 
1811 /*
1812  * Process one page for __process_pages_contig().
1813  *
1814  * Return >0 if we hit @page == @locked_page.
1815  * Return 0 if we updated the page status.
1816  * Return -EGAIN if the we need to try again.
1817  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818  */
1819 static int process_one_page(struct btrfs_fs_info *fs_info,
1820 			    struct address_space *mapping,
1821 			    struct page *page, struct page *locked_page,
1822 			    unsigned long page_ops, u64 start, u64 end)
1823 {
1824 	u32 len;
1825 
1826 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827 	len = end + 1 - start;
1828 
1829 	if (page_ops & PAGE_SET_ORDERED)
1830 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831 	if (page_ops & PAGE_SET_ERROR)
1832 		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833 	if (page_ops & PAGE_START_WRITEBACK) {
1834 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836 	}
1837 	if (page_ops & PAGE_END_WRITEBACK)
1838 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839 
1840 	if (page == locked_page)
1841 		return 1;
1842 
1843 	if (page_ops & PAGE_LOCK) {
1844 		int ret;
1845 
1846 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847 		if (ret)
1848 			return ret;
1849 		if (!PageDirty(page) || page->mapping != mapping) {
1850 			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851 			return -EAGAIN;
1852 		}
1853 	}
1854 	if (page_ops & PAGE_UNLOCK)
1855 		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856 	return 0;
1857 }
1858 
1859 static int __process_pages_contig(struct address_space *mapping,
1860 				  struct page *locked_page,
1861 				  u64 start, u64 end, unsigned long page_ops,
1862 				  u64 *processed_end)
1863 {
1864 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865 	pgoff_t start_index = start >> PAGE_SHIFT;
1866 	pgoff_t end_index = end >> PAGE_SHIFT;
1867 	pgoff_t index = start_index;
1868 	unsigned long nr_pages = end_index - start_index + 1;
1869 	unsigned long pages_processed = 0;
1870 	struct page *pages[16];
1871 	int err = 0;
1872 	int i;
1873 
1874 	if (page_ops & PAGE_LOCK) {
1875 		ASSERT(page_ops == PAGE_LOCK);
1876 		ASSERT(processed_end && *processed_end == start);
1877 	}
1878 
1879 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880 		mapping_set_error(mapping, -EIO);
1881 
1882 	while (nr_pages > 0) {
1883 		int found_pages;
1884 
1885 		found_pages = find_get_pages_contig(mapping, index,
1886 				     min_t(unsigned long,
1887 				     nr_pages, ARRAY_SIZE(pages)), pages);
1888 		if (found_pages == 0) {
1889 			/*
1890 			 * Only if we're going to lock these pages, we can find
1891 			 * nothing at @index.
1892 			 */
1893 			ASSERT(page_ops & PAGE_LOCK);
1894 			err = -EAGAIN;
1895 			goto out;
1896 		}
1897 
1898 		for (i = 0; i < found_pages; i++) {
1899 			int process_ret;
1900 
1901 			process_ret = process_one_page(fs_info, mapping,
1902 					pages[i], locked_page, page_ops,
1903 					start, end);
1904 			if (process_ret < 0) {
1905 				for (; i < found_pages; i++)
1906 					put_page(pages[i]);
1907 				err = -EAGAIN;
1908 				goto out;
1909 			}
1910 			put_page(pages[i]);
1911 			pages_processed++;
1912 		}
1913 		nr_pages -= found_pages;
1914 		index += found_pages;
1915 		cond_resched();
1916 	}
1917 out:
1918 	if (err && processed_end) {
1919 		/*
1920 		 * Update @processed_end. I know this is awful since it has
1921 		 * two different return value patterns (inclusive vs exclusive).
1922 		 *
1923 		 * But the exclusive pattern is necessary if @start is 0, or we
1924 		 * underflow and check against processed_end won't work as
1925 		 * expected.
1926 		 */
1927 		if (pages_processed)
1928 			*processed_end = min(end,
1929 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930 		else
1931 			*processed_end = start;
1932 	}
1933 	return err;
1934 }
1935 
1936 static noinline void __unlock_for_delalloc(struct inode *inode,
1937 					   struct page *locked_page,
1938 					   u64 start, u64 end)
1939 {
1940 	unsigned long index = start >> PAGE_SHIFT;
1941 	unsigned long end_index = end >> PAGE_SHIFT;
1942 
1943 	ASSERT(locked_page);
1944 	if (index == locked_page->index && end_index == index)
1945 		return;
1946 
1947 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948 			       PAGE_UNLOCK, NULL);
1949 }
1950 
1951 static noinline int lock_delalloc_pages(struct inode *inode,
1952 					struct page *locked_page,
1953 					u64 delalloc_start,
1954 					u64 delalloc_end)
1955 {
1956 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1957 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958 	u64 processed_end = delalloc_start;
1959 	int ret;
1960 
1961 	ASSERT(locked_page);
1962 	if (index == locked_page->index && index == end_index)
1963 		return 0;
1964 
1965 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966 				     delalloc_end, PAGE_LOCK, &processed_end);
1967 	if (ret == -EAGAIN && processed_end > delalloc_start)
1968 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969 				      processed_end);
1970 	return ret;
1971 }
1972 
1973 /*
1974  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975  * more than @max_bytes.  @Start and @end are used to return the range,
1976  *
1977  * Return: true if we find something
1978  *         false if nothing was in the tree
1979  */
1980 EXPORT_FOR_TESTS
1981 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982 				    struct page *locked_page, u64 *start,
1983 				    u64 *end)
1984 {
1985 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1987 	u64 delalloc_start;
1988 	u64 delalloc_end;
1989 	bool found;
1990 	struct extent_state *cached_state = NULL;
1991 	int ret;
1992 	int loops = 0;
1993 
1994 again:
1995 	/* step one, find a bunch of delalloc bytes starting at start */
1996 	delalloc_start = *start;
1997 	delalloc_end = 0;
1998 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999 					  max_bytes, &cached_state);
2000 	if (!found || delalloc_end <= *start) {
2001 		*start = delalloc_start;
2002 		*end = delalloc_end;
2003 		free_extent_state(cached_state);
2004 		return false;
2005 	}
2006 
2007 	/*
2008 	 * start comes from the offset of locked_page.  We have to lock
2009 	 * pages in order, so we can't process delalloc bytes before
2010 	 * locked_page
2011 	 */
2012 	if (delalloc_start < *start)
2013 		delalloc_start = *start;
2014 
2015 	/*
2016 	 * make sure to limit the number of pages we try to lock down
2017 	 */
2018 	if (delalloc_end + 1 - delalloc_start > max_bytes)
2019 		delalloc_end = delalloc_start + max_bytes - 1;
2020 
2021 	/* step two, lock all the pages after the page that has start */
2022 	ret = lock_delalloc_pages(inode, locked_page,
2023 				  delalloc_start, delalloc_end);
2024 	ASSERT(!ret || ret == -EAGAIN);
2025 	if (ret == -EAGAIN) {
2026 		/* some of the pages are gone, lets avoid looping by
2027 		 * shortening the size of the delalloc range we're searching
2028 		 */
2029 		free_extent_state(cached_state);
2030 		cached_state = NULL;
2031 		if (!loops) {
2032 			max_bytes = PAGE_SIZE;
2033 			loops = 1;
2034 			goto again;
2035 		} else {
2036 			found = false;
2037 			goto out_failed;
2038 		}
2039 	}
2040 
2041 	/* step three, lock the state bits for the whole range */
2042 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043 
2044 	/* then test to make sure it is all still delalloc */
2045 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046 			     EXTENT_DELALLOC, 1, cached_state);
2047 	if (!ret) {
2048 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049 				     &cached_state);
2050 		__unlock_for_delalloc(inode, locked_page,
2051 			      delalloc_start, delalloc_end);
2052 		cond_resched();
2053 		goto again;
2054 	}
2055 	free_extent_state(cached_state);
2056 	*start = delalloc_start;
2057 	*end = delalloc_end;
2058 out_failed:
2059 	return found;
2060 }
2061 
2062 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063 				  struct page *locked_page,
2064 				  u32 clear_bits, unsigned long page_ops)
2065 {
2066 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067 
2068 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069 			       start, end, page_ops, NULL);
2070 }
2071 
2072 /*
2073  * count the number of bytes in the tree that have a given bit(s)
2074  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2075  * cached.  The total number found is returned.
2076  */
2077 u64 count_range_bits(struct extent_io_tree *tree,
2078 		     u64 *start, u64 search_end, u64 max_bytes,
2079 		     u32 bits, int contig)
2080 {
2081 	struct rb_node *node;
2082 	struct extent_state *state;
2083 	u64 cur_start = *start;
2084 	u64 total_bytes = 0;
2085 	u64 last = 0;
2086 	int found = 0;
2087 
2088 	if (WARN_ON(search_end <= cur_start))
2089 		return 0;
2090 
2091 	spin_lock(&tree->lock);
2092 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093 		total_bytes = tree->dirty_bytes;
2094 		goto out;
2095 	}
2096 	/*
2097 	 * this search will find all the extents that end after
2098 	 * our range starts.
2099 	 */
2100 	node = tree_search(tree, cur_start);
2101 	if (!node)
2102 		goto out;
2103 
2104 	while (1) {
2105 		state = rb_entry(node, struct extent_state, rb_node);
2106 		if (state->start > search_end)
2107 			break;
2108 		if (contig && found && state->start > last + 1)
2109 			break;
2110 		if (state->end >= cur_start && (state->state & bits) == bits) {
2111 			total_bytes += min(search_end, state->end) + 1 -
2112 				       max(cur_start, state->start);
2113 			if (total_bytes >= max_bytes)
2114 				break;
2115 			if (!found) {
2116 				*start = max(cur_start, state->start);
2117 				found = 1;
2118 			}
2119 			last = state->end;
2120 		} else if (contig && found) {
2121 			break;
2122 		}
2123 		node = rb_next(node);
2124 		if (!node)
2125 			break;
2126 	}
2127 out:
2128 	spin_unlock(&tree->lock);
2129 	return total_bytes;
2130 }
2131 
2132 /*
2133  * set the private field for a given byte offset in the tree.  If there isn't
2134  * an extent_state there already, this does nothing.
2135  */
2136 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137 		      struct io_failure_record *failrec)
2138 {
2139 	struct rb_node *node;
2140 	struct extent_state *state;
2141 	int ret = 0;
2142 
2143 	spin_lock(&tree->lock);
2144 	/*
2145 	 * this search will find all the extents that end after
2146 	 * our range starts.
2147 	 */
2148 	node = tree_search(tree, start);
2149 	if (!node) {
2150 		ret = -ENOENT;
2151 		goto out;
2152 	}
2153 	state = rb_entry(node, struct extent_state, rb_node);
2154 	if (state->start != start) {
2155 		ret = -ENOENT;
2156 		goto out;
2157 	}
2158 	state->failrec = failrec;
2159 out:
2160 	spin_unlock(&tree->lock);
2161 	return ret;
2162 }
2163 
2164 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165 {
2166 	struct rb_node *node;
2167 	struct extent_state *state;
2168 	struct io_failure_record *failrec;
2169 
2170 	spin_lock(&tree->lock);
2171 	/*
2172 	 * this search will find all the extents that end after
2173 	 * our range starts.
2174 	 */
2175 	node = tree_search(tree, start);
2176 	if (!node) {
2177 		failrec = ERR_PTR(-ENOENT);
2178 		goto out;
2179 	}
2180 	state = rb_entry(node, struct extent_state, rb_node);
2181 	if (state->start != start) {
2182 		failrec = ERR_PTR(-ENOENT);
2183 		goto out;
2184 	}
2185 
2186 	failrec = state->failrec;
2187 out:
2188 	spin_unlock(&tree->lock);
2189 	return failrec;
2190 }
2191 
2192 /*
2193  * searches a range in the state tree for a given mask.
2194  * If 'filled' == 1, this returns 1 only if every extent in the tree
2195  * has the bits set.  Otherwise, 1 is returned if any bit in the
2196  * range is found set.
2197  */
2198 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199 		   u32 bits, int filled, struct extent_state *cached)
2200 {
2201 	struct extent_state *state = NULL;
2202 	struct rb_node *node;
2203 	int bitset = 0;
2204 
2205 	spin_lock(&tree->lock);
2206 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207 	    cached->end > start)
2208 		node = &cached->rb_node;
2209 	else
2210 		node = tree_search(tree, start);
2211 	while (node && start <= end) {
2212 		state = rb_entry(node, struct extent_state, rb_node);
2213 
2214 		if (filled && state->start > start) {
2215 			bitset = 0;
2216 			break;
2217 		}
2218 
2219 		if (state->start > end)
2220 			break;
2221 
2222 		if (state->state & bits) {
2223 			bitset = 1;
2224 			if (!filled)
2225 				break;
2226 		} else if (filled) {
2227 			bitset = 0;
2228 			break;
2229 		}
2230 
2231 		if (state->end == (u64)-1)
2232 			break;
2233 
2234 		start = state->end + 1;
2235 		if (start > end)
2236 			break;
2237 		node = rb_next(node);
2238 		if (!node) {
2239 			if (filled)
2240 				bitset = 0;
2241 			break;
2242 		}
2243 	}
2244 	spin_unlock(&tree->lock);
2245 	return bitset;
2246 }
2247 
2248 /*
2249  * helper function to set a given page up to date if all the
2250  * extents in the tree for that page are up to date
2251  */
2252 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253 {
2254 	u64 start = page_offset(page);
2255 	u64 end = start + PAGE_SIZE - 1;
2256 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257 		SetPageUptodate(page);
2258 }
2259 
2260 int free_io_failure(struct extent_io_tree *failure_tree,
2261 		    struct extent_io_tree *io_tree,
2262 		    struct io_failure_record *rec)
2263 {
2264 	int ret;
2265 	int err = 0;
2266 
2267 	set_state_failrec(failure_tree, rec->start, NULL);
2268 	ret = clear_extent_bits(failure_tree, rec->start,
2269 				rec->start + rec->len - 1,
2270 				EXTENT_LOCKED | EXTENT_DIRTY);
2271 	if (ret)
2272 		err = ret;
2273 
2274 	ret = clear_extent_bits(io_tree, rec->start,
2275 				rec->start + rec->len - 1,
2276 				EXTENT_DAMAGED);
2277 	if (ret && !err)
2278 		err = ret;
2279 
2280 	kfree(rec);
2281 	return err;
2282 }
2283 
2284 /*
2285  * this bypasses the standard btrfs submit functions deliberately, as
2286  * the standard behavior is to write all copies in a raid setup. here we only
2287  * want to write the one bad copy. so we do the mapping for ourselves and issue
2288  * submit_bio directly.
2289  * to avoid any synchronization issues, wait for the data after writing, which
2290  * actually prevents the read that triggered the error from finishing.
2291  * currently, there can be no more than two copies of every data bit. thus,
2292  * exactly one rewrite is required.
2293  */
2294 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295 		      u64 length, u64 logical, struct page *page,
2296 		      unsigned int pg_offset, int mirror_num)
2297 {
2298 	struct bio *bio;
2299 	struct btrfs_device *dev;
2300 	u64 map_length = 0;
2301 	u64 sector;
2302 	struct btrfs_bio *bbio = NULL;
2303 	int ret;
2304 
2305 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306 	BUG_ON(!mirror_num);
2307 
2308 	if (btrfs_is_zoned(fs_info))
2309 		return btrfs_repair_one_zone(fs_info, logical);
2310 
2311 	bio = btrfs_io_bio_alloc(1);
2312 	bio->bi_iter.bi_size = 0;
2313 	map_length = length;
2314 
2315 	/*
2316 	 * Avoid races with device replace and make sure our bbio has devices
2317 	 * associated to its stripes that don't go away while we are doing the
2318 	 * read repair operation.
2319 	 */
2320 	btrfs_bio_counter_inc_blocked(fs_info);
2321 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322 		/*
2323 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324 		 * to update all raid stripes, but here we just want to correct
2325 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326 		 * stripe's dev and sector.
2327 		 */
2328 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329 				      &map_length, &bbio, 0);
2330 		if (ret) {
2331 			btrfs_bio_counter_dec(fs_info);
2332 			bio_put(bio);
2333 			return -EIO;
2334 		}
2335 		ASSERT(bbio->mirror_num == 1);
2336 	} else {
2337 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338 				      &map_length, &bbio, mirror_num);
2339 		if (ret) {
2340 			btrfs_bio_counter_dec(fs_info);
2341 			bio_put(bio);
2342 			return -EIO;
2343 		}
2344 		BUG_ON(mirror_num != bbio->mirror_num);
2345 	}
2346 
2347 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348 	bio->bi_iter.bi_sector = sector;
2349 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350 	btrfs_put_bbio(bbio);
2351 	if (!dev || !dev->bdev ||
2352 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353 		btrfs_bio_counter_dec(fs_info);
2354 		bio_put(bio);
2355 		return -EIO;
2356 	}
2357 	bio_set_dev(bio, dev->bdev);
2358 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359 	bio_add_page(bio, page, length, pg_offset);
2360 
2361 	if (btrfsic_submit_bio_wait(bio)) {
2362 		/* try to remap that extent elsewhere? */
2363 		btrfs_bio_counter_dec(fs_info);
2364 		bio_put(bio);
2365 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366 		return -EIO;
2367 	}
2368 
2369 	btrfs_info_rl_in_rcu(fs_info,
2370 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371 				  ino, start,
2372 				  rcu_str_deref(dev->name), sector);
2373 	btrfs_bio_counter_dec(fs_info);
2374 	bio_put(bio);
2375 	return 0;
2376 }
2377 
2378 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379 {
2380 	struct btrfs_fs_info *fs_info = eb->fs_info;
2381 	u64 start = eb->start;
2382 	int i, num_pages = num_extent_pages(eb);
2383 	int ret = 0;
2384 
2385 	if (sb_rdonly(fs_info->sb))
2386 		return -EROFS;
2387 
2388 	for (i = 0; i < num_pages; i++) {
2389 		struct page *p = eb->pages[i];
2390 
2391 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392 					start - page_offset(p), mirror_num);
2393 		if (ret)
2394 			break;
2395 		start += PAGE_SIZE;
2396 	}
2397 
2398 	return ret;
2399 }
2400 
2401 /*
2402  * each time an IO finishes, we do a fast check in the IO failure tree
2403  * to see if we need to process or clean up an io_failure_record
2404  */
2405 int clean_io_failure(struct btrfs_fs_info *fs_info,
2406 		     struct extent_io_tree *failure_tree,
2407 		     struct extent_io_tree *io_tree, u64 start,
2408 		     struct page *page, u64 ino, unsigned int pg_offset)
2409 {
2410 	u64 private;
2411 	struct io_failure_record *failrec;
2412 	struct extent_state *state;
2413 	int num_copies;
2414 	int ret;
2415 
2416 	private = 0;
2417 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418 			       EXTENT_DIRTY, 0);
2419 	if (!ret)
2420 		return 0;
2421 
2422 	failrec = get_state_failrec(failure_tree, start);
2423 	if (IS_ERR(failrec))
2424 		return 0;
2425 
2426 	BUG_ON(!failrec->this_mirror);
2427 
2428 	if (sb_rdonly(fs_info->sb))
2429 		goto out;
2430 
2431 	spin_lock(&io_tree->lock);
2432 	state = find_first_extent_bit_state(io_tree,
2433 					    failrec->start,
2434 					    EXTENT_LOCKED);
2435 	spin_unlock(&io_tree->lock);
2436 
2437 	if (state && state->start <= failrec->start &&
2438 	    state->end >= failrec->start + failrec->len - 1) {
2439 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440 					      failrec->len);
2441 		if (num_copies > 1)  {
2442 			repair_io_failure(fs_info, ino, start, failrec->len,
2443 					  failrec->logical, page, pg_offset,
2444 					  failrec->failed_mirror);
2445 		}
2446 	}
2447 
2448 out:
2449 	free_io_failure(failure_tree, io_tree, failrec);
2450 
2451 	return 0;
2452 }
2453 
2454 /*
2455  * Can be called when
2456  * - hold extent lock
2457  * - under ordered extent
2458  * - the inode is freeing
2459  */
2460 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461 {
2462 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463 	struct io_failure_record *failrec;
2464 	struct extent_state *state, *next;
2465 
2466 	if (RB_EMPTY_ROOT(&failure_tree->state))
2467 		return;
2468 
2469 	spin_lock(&failure_tree->lock);
2470 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471 	while (state) {
2472 		if (state->start > end)
2473 			break;
2474 
2475 		ASSERT(state->end <= end);
2476 
2477 		next = next_state(state);
2478 
2479 		failrec = state->failrec;
2480 		free_extent_state(state);
2481 		kfree(failrec);
2482 
2483 		state = next;
2484 	}
2485 	spin_unlock(&failure_tree->lock);
2486 }
2487 
2488 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489 							     u64 start)
2490 {
2491 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492 	struct io_failure_record *failrec;
2493 	struct extent_map *em;
2494 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497 	const u32 sectorsize = fs_info->sectorsize;
2498 	int ret;
2499 	u64 logical;
2500 
2501 	failrec = get_state_failrec(failure_tree, start);
2502 	if (!IS_ERR(failrec)) {
2503 		btrfs_debug(fs_info,
2504 	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505 			failrec->logical, failrec->start, failrec->len);
2506 		/*
2507 		 * when data can be on disk more than twice, add to failrec here
2508 		 * (e.g. with a list for failed_mirror) to make
2509 		 * clean_io_failure() clean all those errors at once.
2510 		 */
2511 
2512 		return failrec;
2513 	}
2514 
2515 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516 	if (!failrec)
2517 		return ERR_PTR(-ENOMEM);
2518 
2519 	failrec->start = start;
2520 	failrec->len = sectorsize;
2521 	failrec->this_mirror = 0;
2522 	failrec->bio_flags = 0;
2523 
2524 	read_lock(&em_tree->lock);
2525 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2526 	if (!em) {
2527 		read_unlock(&em_tree->lock);
2528 		kfree(failrec);
2529 		return ERR_PTR(-EIO);
2530 	}
2531 
2532 	if (em->start > start || em->start + em->len <= start) {
2533 		free_extent_map(em);
2534 		em = NULL;
2535 	}
2536 	read_unlock(&em_tree->lock);
2537 	if (!em) {
2538 		kfree(failrec);
2539 		return ERR_PTR(-EIO);
2540 	}
2541 
2542 	logical = start - em->start;
2543 	logical = em->block_start + logical;
2544 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545 		logical = em->block_start;
2546 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548 	}
2549 
2550 	btrfs_debug(fs_info,
2551 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552 		    logical, start, failrec->len);
2553 
2554 	failrec->logical = logical;
2555 	free_extent_map(em);
2556 
2557 	/* Set the bits in the private failure tree */
2558 	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559 			      EXTENT_LOCKED | EXTENT_DIRTY);
2560 	if (ret >= 0) {
2561 		ret = set_state_failrec(failure_tree, start, failrec);
2562 		/* Set the bits in the inode's tree */
2563 		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564 				      EXTENT_DAMAGED);
2565 	} else if (ret < 0) {
2566 		kfree(failrec);
2567 		return ERR_PTR(ret);
2568 	}
2569 
2570 	return failrec;
2571 }
2572 
2573 static bool btrfs_check_repairable(struct inode *inode,
2574 				   struct io_failure_record *failrec,
2575 				   int failed_mirror)
2576 {
2577 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578 	int num_copies;
2579 
2580 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581 	if (num_copies == 1) {
2582 		/*
2583 		 * we only have a single copy of the data, so don't bother with
2584 		 * all the retry and error correction code that follows. no
2585 		 * matter what the error is, it is very likely to persist.
2586 		 */
2587 		btrfs_debug(fs_info,
2588 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589 			num_copies, failrec->this_mirror, failed_mirror);
2590 		return false;
2591 	}
2592 
2593 	/* The failure record should only contain one sector */
2594 	ASSERT(failrec->len == fs_info->sectorsize);
2595 
2596 	/*
2597 	 * There are two premises:
2598 	 * a) deliver good data to the caller
2599 	 * b) correct the bad sectors on disk
2600 	 *
2601 	 * Since we're only doing repair for one sector, we only need to get
2602 	 * a good copy of the failed sector and if we succeed, we have setup
2603 	 * everything for repair_io_failure to do the rest for us.
2604 	 */
2605 	failrec->failed_mirror = failed_mirror;
2606 	failrec->this_mirror++;
2607 	if (failrec->this_mirror == failed_mirror)
2608 		failrec->this_mirror++;
2609 
2610 	if (failrec->this_mirror > num_copies) {
2611 		btrfs_debug(fs_info,
2612 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613 			num_copies, failrec->this_mirror, failed_mirror);
2614 		return false;
2615 	}
2616 
2617 	return true;
2618 }
2619 
2620 int btrfs_repair_one_sector(struct inode *inode,
2621 			    struct bio *failed_bio, u32 bio_offset,
2622 			    struct page *page, unsigned int pgoff,
2623 			    u64 start, int failed_mirror,
2624 			    submit_bio_hook_t *submit_bio_hook)
2625 {
2626 	struct io_failure_record *failrec;
2627 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632 	struct bio *repair_bio;
2633 	struct btrfs_io_bio *repair_io_bio;
2634 	blk_status_t status;
2635 
2636 	btrfs_debug(fs_info,
2637 		   "repair read error: read error at %llu", start);
2638 
2639 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640 
2641 	failrec = btrfs_get_io_failure_record(inode, start);
2642 	if (IS_ERR(failrec))
2643 		return PTR_ERR(failrec);
2644 
2645 
2646 	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647 		free_io_failure(failure_tree, tree, failrec);
2648 		return -EIO;
2649 	}
2650 
2651 	repair_bio = btrfs_io_bio_alloc(1);
2652 	repair_io_bio = btrfs_io_bio(repair_bio);
2653 	repair_bio->bi_opf = REQ_OP_READ;
2654 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2655 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656 	repair_bio->bi_private = failed_bio->bi_private;
2657 
2658 	if (failed_io_bio->csum) {
2659 		const u32 csum_size = fs_info->csum_size;
2660 
2661 		repair_io_bio->csum = repair_io_bio->csum_inline;
2662 		memcpy(repair_io_bio->csum,
2663 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2664 	}
2665 
2666 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2667 	repair_io_bio->logical = failrec->start;
2668 	repair_io_bio->iter = repair_bio->bi_iter;
2669 
2670 	btrfs_debug(btrfs_sb(inode->i_sb),
2671 		    "repair read error: submitting new read to mirror %d",
2672 		    failrec->this_mirror);
2673 
2674 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675 				 failrec->bio_flags);
2676 	if (status) {
2677 		free_io_failure(failure_tree, tree, failrec);
2678 		bio_put(repair_bio);
2679 	}
2680 	return blk_status_to_errno(status);
2681 }
2682 
2683 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684 {
2685 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686 
2687 	ASSERT(page_offset(page) <= start &&
2688 	       start + len <= page_offset(page) + PAGE_SIZE);
2689 
2690 	if (uptodate) {
2691 		btrfs_page_set_uptodate(fs_info, page, start, len);
2692 	} else {
2693 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2694 		btrfs_page_set_error(fs_info, page, start, len);
2695 	}
2696 
2697 	if (fs_info->sectorsize == PAGE_SIZE)
2698 		unlock_page(page);
2699 	else
2700 		btrfs_subpage_end_reader(fs_info, page, start, len);
2701 }
2702 
2703 static blk_status_t submit_read_repair(struct inode *inode,
2704 				      struct bio *failed_bio, u32 bio_offset,
2705 				      struct page *page, unsigned int pgoff,
2706 				      u64 start, u64 end, int failed_mirror,
2707 				      unsigned int error_bitmap,
2708 				      submit_bio_hook_t *submit_bio_hook)
2709 {
2710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711 	const u32 sectorsize = fs_info->sectorsize;
2712 	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713 	int error = 0;
2714 	int i;
2715 
2716 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717 
2718 	/* We're here because we had some read errors or csum mismatch */
2719 	ASSERT(error_bitmap);
2720 
2721 	/*
2722 	 * We only get called on buffered IO, thus page must be mapped and bio
2723 	 * must not be cloned.
2724 	 */
2725 	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726 
2727 	/* Iterate through all the sectors in the range */
2728 	for (i = 0; i < nr_bits; i++) {
2729 		const unsigned int offset = i * sectorsize;
2730 		struct extent_state *cached = NULL;
2731 		bool uptodate = false;
2732 		int ret;
2733 
2734 		if (!(error_bitmap & (1U << i))) {
2735 			/*
2736 			 * This sector has no error, just end the page read
2737 			 * and unlock the range.
2738 			 */
2739 			uptodate = true;
2740 			goto next;
2741 		}
2742 
2743 		ret = btrfs_repair_one_sector(inode, failed_bio,
2744 				bio_offset + offset,
2745 				page, pgoff + offset, start + offset,
2746 				failed_mirror, submit_bio_hook);
2747 		if (!ret) {
2748 			/*
2749 			 * We have submitted the read repair, the page release
2750 			 * will be handled by the endio function of the
2751 			 * submitted repair bio.
2752 			 * Thus we don't need to do any thing here.
2753 			 */
2754 			continue;
2755 		}
2756 		/*
2757 		 * Repair failed, just record the error but still continue.
2758 		 * Or the remaining sectors will not be properly unlocked.
2759 		 */
2760 		if (!error)
2761 			error = ret;
2762 next:
2763 		end_page_read(page, uptodate, start + offset, sectorsize);
2764 		if (uptodate)
2765 			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766 					start + offset,
2767 					start + offset + sectorsize - 1,
2768 					&cached, GFP_ATOMIC);
2769 		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770 				start + offset,
2771 				start + offset + sectorsize - 1,
2772 				&cached);
2773 	}
2774 	return errno_to_blk_status(error);
2775 }
2776 
2777 /* lots and lots of room for performance fixes in the end_bio funcs */
2778 
2779 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780 {
2781 	struct btrfs_inode *inode;
2782 	int uptodate = (err == 0);
2783 	int ret = 0;
2784 
2785 	ASSERT(page && page->mapping);
2786 	inode = BTRFS_I(page->mapping->host);
2787 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788 
2789 	if (!uptodate) {
2790 		ClearPageUptodate(page);
2791 		SetPageError(page);
2792 		ret = err < 0 ? err : -EIO;
2793 		mapping_set_error(page->mapping, ret);
2794 	}
2795 }
2796 
2797 /*
2798  * after a writepage IO is done, we need to:
2799  * clear the uptodate bits on error
2800  * clear the writeback bits in the extent tree for this IO
2801  * end_page_writeback if the page has no more pending IO
2802  *
2803  * Scheduling is not allowed, so the extent state tree is expected
2804  * to have one and only one object corresponding to this IO.
2805  */
2806 static void end_bio_extent_writepage(struct bio *bio)
2807 {
2808 	int error = blk_status_to_errno(bio->bi_status);
2809 	struct bio_vec *bvec;
2810 	u64 start;
2811 	u64 end;
2812 	struct bvec_iter_all iter_all;
2813 	bool first_bvec = true;
2814 
2815 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816 	bio_for_each_segment_all(bvec, bio, iter_all) {
2817 		struct page *page = bvec->bv_page;
2818 		struct inode *inode = page->mapping->host;
2819 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 		const u32 sectorsize = fs_info->sectorsize;
2821 
2822 		/* Our read/write should always be sector aligned. */
2823 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824 			btrfs_err(fs_info,
2825 		"partial page write in btrfs with offset %u and length %u",
2826 				  bvec->bv_offset, bvec->bv_len);
2827 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828 			btrfs_info(fs_info,
2829 		"incomplete page write with offset %u and length %u",
2830 				   bvec->bv_offset, bvec->bv_len);
2831 
2832 		start = page_offset(page) + bvec->bv_offset;
2833 		end = start + bvec->bv_len - 1;
2834 
2835 		if (first_bvec) {
2836 			btrfs_record_physical_zoned(inode, start, bio);
2837 			first_bvec = false;
2838 		}
2839 
2840 		end_extent_writepage(page, error, start, end);
2841 
2842 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843 	}
2844 
2845 	bio_put(bio);
2846 }
2847 
2848 /*
2849  * Record previously processed extent range
2850  *
2851  * For endio_readpage_release_extent() to handle a full extent range, reducing
2852  * the extent io operations.
2853  */
2854 struct processed_extent {
2855 	struct btrfs_inode *inode;
2856 	/* Start of the range in @inode */
2857 	u64 start;
2858 	/* End of the range in @inode */
2859 	u64 end;
2860 	bool uptodate;
2861 };
2862 
2863 /*
2864  * Try to release processed extent range
2865  *
2866  * May not release the extent range right now if the current range is
2867  * contiguous to processed extent.
2868  *
2869  * Will release processed extent when any of @inode, @uptodate, the range is
2870  * no longer contiguous to the processed range.
2871  *
2872  * Passing @inode == NULL will force processed extent to be released.
2873  */
2874 static void endio_readpage_release_extent(struct processed_extent *processed,
2875 			      struct btrfs_inode *inode, u64 start, u64 end,
2876 			      bool uptodate)
2877 {
2878 	struct extent_state *cached = NULL;
2879 	struct extent_io_tree *tree;
2880 
2881 	/* The first extent, initialize @processed */
2882 	if (!processed->inode)
2883 		goto update;
2884 
2885 	/*
2886 	 * Contiguous to processed extent, just uptodate the end.
2887 	 *
2888 	 * Several things to notice:
2889 	 *
2890 	 * - bio can be merged as long as on-disk bytenr is contiguous
2891 	 *   This means we can have page belonging to other inodes, thus need to
2892 	 *   check if the inode still matches.
2893 	 * - bvec can contain range beyond current page for multi-page bvec
2894 	 *   Thus we need to do processed->end + 1 >= start check
2895 	 */
2896 	if (processed->inode == inode && processed->uptodate == uptodate &&
2897 	    processed->end + 1 >= start && end >= processed->end) {
2898 		processed->end = end;
2899 		return;
2900 	}
2901 
2902 	tree = &processed->inode->io_tree;
2903 	/*
2904 	 * Now we don't have range contiguous to the processed range, release
2905 	 * the processed range now.
2906 	 */
2907 	if (processed->uptodate && tree->track_uptodate)
2908 		set_extent_uptodate(tree, processed->start, processed->end,
2909 				    &cached, GFP_ATOMIC);
2910 	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911 				    &cached);
2912 
2913 update:
2914 	/* Update processed to current range */
2915 	processed->inode = inode;
2916 	processed->start = start;
2917 	processed->end = end;
2918 	processed->uptodate = uptodate;
2919 }
2920 
2921 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922 {
2923 	ASSERT(PageLocked(page));
2924 	if (fs_info->sectorsize == PAGE_SIZE)
2925 		return;
2926 
2927 	ASSERT(PagePrivate(page));
2928 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929 }
2930 
2931 /*
2932  * Find extent buffer for a givne bytenr.
2933  *
2934  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935  * in endio context.
2936  */
2937 static struct extent_buffer *find_extent_buffer_readpage(
2938 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939 {
2940 	struct extent_buffer *eb;
2941 
2942 	/*
2943 	 * For regular sectorsize, we can use page->private to grab extent
2944 	 * buffer
2945 	 */
2946 	if (fs_info->sectorsize == PAGE_SIZE) {
2947 		ASSERT(PagePrivate(page) && page->private);
2948 		return (struct extent_buffer *)page->private;
2949 	}
2950 
2951 	/* For subpage case, we need to lookup buffer radix tree */
2952 	rcu_read_lock();
2953 	eb = radix_tree_lookup(&fs_info->buffer_radix,
2954 			       bytenr >> fs_info->sectorsize_bits);
2955 	rcu_read_unlock();
2956 	ASSERT(eb);
2957 	return eb;
2958 }
2959 
2960 /*
2961  * after a readpage IO is done, we need to:
2962  * clear the uptodate bits on error
2963  * set the uptodate bits if things worked
2964  * set the page up to date if all extents in the tree are uptodate
2965  * clear the lock bit in the extent tree
2966  * unlock the page if there are no other extents locked for it
2967  *
2968  * Scheduling is not allowed, so the extent state tree is expected
2969  * to have one and only one object corresponding to this IO.
2970  */
2971 static void end_bio_extent_readpage(struct bio *bio)
2972 {
2973 	struct bio_vec *bvec;
2974 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975 	struct extent_io_tree *tree, *failure_tree;
2976 	struct processed_extent processed = { 0 };
2977 	/*
2978 	 * The offset to the beginning of a bio, since one bio can never be
2979 	 * larger than UINT_MAX, u32 here is enough.
2980 	 */
2981 	u32 bio_offset = 0;
2982 	int mirror;
2983 	int ret;
2984 	struct bvec_iter_all iter_all;
2985 
2986 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987 	bio_for_each_segment_all(bvec, bio, iter_all) {
2988 		bool uptodate = !bio->bi_status;
2989 		struct page *page = bvec->bv_page;
2990 		struct inode *inode = page->mapping->host;
2991 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992 		const u32 sectorsize = fs_info->sectorsize;
2993 		unsigned int error_bitmap = (unsigned int)-1;
2994 		u64 start;
2995 		u64 end;
2996 		u32 len;
2997 
2998 		btrfs_debug(fs_info,
2999 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000 			bio->bi_iter.bi_sector, bio->bi_status,
3001 			io_bio->mirror_num);
3002 		tree = &BTRFS_I(inode)->io_tree;
3003 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004 
3005 		/*
3006 		 * We always issue full-sector reads, but if some block in a
3007 		 * page fails to read, blk_update_request() will advance
3008 		 * bv_offset and adjust bv_len to compensate.  Print a warning
3009 		 * for unaligned offsets, and an error if they don't add up to
3010 		 * a full sector.
3011 		 */
3012 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013 			btrfs_err(fs_info,
3014 		"partial page read in btrfs with offset %u and length %u",
3015 				  bvec->bv_offset, bvec->bv_len);
3016 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017 				     sectorsize))
3018 			btrfs_info(fs_info,
3019 		"incomplete page read with offset %u and length %u",
3020 				   bvec->bv_offset, bvec->bv_len);
3021 
3022 		start = page_offset(page) + bvec->bv_offset;
3023 		end = start + bvec->bv_len - 1;
3024 		len = bvec->bv_len;
3025 
3026 		mirror = io_bio->mirror_num;
3027 		if (likely(uptodate)) {
3028 			if (is_data_inode(inode)) {
3029 				error_bitmap = btrfs_verify_data_csum(io_bio,
3030 						bio_offset, page, start, end);
3031 				ret = error_bitmap;
3032 			} else {
3033 				ret = btrfs_validate_metadata_buffer(io_bio,
3034 					page, start, end, mirror);
3035 			}
3036 			if (ret)
3037 				uptodate = false;
3038 			else
3039 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040 						 failure_tree, tree, start,
3041 						 page,
3042 						 btrfs_ino(BTRFS_I(inode)), 0);
3043 		}
3044 
3045 		if (likely(uptodate))
3046 			goto readpage_ok;
3047 
3048 		if (is_data_inode(inode)) {
3049 			/*
3050 			 * btrfs_submit_read_repair() will handle all the good
3051 			 * and bad sectors, we just continue to the next bvec.
3052 			 */
3053 			submit_read_repair(inode, bio, bio_offset, page,
3054 					   start - page_offset(page), start,
3055 					   end, mirror, error_bitmap,
3056 					   btrfs_submit_data_bio);
3057 
3058 			ASSERT(bio_offset + len > bio_offset);
3059 			bio_offset += len;
3060 			continue;
3061 		} else {
3062 			struct extent_buffer *eb;
3063 
3064 			eb = find_extent_buffer_readpage(fs_info, page, start);
3065 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066 			eb->read_mirror = mirror;
3067 			atomic_dec(&eb->io_pages);
3068 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069 					       &eb->bflags))
3070 				btree_readahead_hook(eb, -EIO);
3071 		}
3072 readpage_ok:
3073 		if (likely(uptodate)) {
3074 			loff_t i_size = i_size_read(inode);
3075 			pgoff_t end_index = i_size >> PAGE_SHIFT;
3076 
3077 			/*
3078 			 * Zero out the remaining part if this range straddles
3079 			 * i_size.
3080 			 *
3081 			 * Here we should only zero the range inside the bvec,
3082 			 * not touch anything else.
3083 			 *
3084 			 * NOTE: i_size is exclusive while end is inclusive.
3085 			 */
3086 			if (page->index == end_index && i_size <= end) {
3087 				u32 zero_start = max(offset_in_page(i_size),
3088 						     offset_in_page(start));
3089 
3090 				zero_user_segment(page, zero_start,
3091 						  offset_in_page(end) + 1);
3092 			}
3093 		}
3094 		ASSERT(bio_offset + len > bio_offset);
3095 		bio_offset += len;
3096 
3097 		/* Update page status and unlock */
3098 		end_page_read(page, uptodate, start, len);
3099 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100 					      start, end, uptodate);
3101 	}
3102 	/* Release the last extent */
3103 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104 	btrfs_io_bio_free_csum(io_bio);
3105 	bio_put(bio);
3106 }
3107 
3108 /*
3109  * Initialize the members up to but not including 'bio'. Use after allocating a
3110  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111  * 'bio' because use of __GFP_ZERO is not supported.
3112  */
3113 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114 {
3115 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116 }
3117 
3118 /*
3119  * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3121  * for the appropriate container_of magic
3122  */
3123 struct bio *btrfs_bio_alloc(u64 first_byte)
3124 {
3125 	struct bio *bio;
3126 
3127 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128 	bio->bi_iter.bi_sector = first_byte >> 9;
3129 	btrfs_io_bio_init(btrfs_io_bio(bio));
3130 	return bio;
3131 }
3132 
3133 struct bio *btrfs_bio_clone(struct bio *bio)
3134 {
3135 	struct btrfs_io_bio *btrfs_bio;
3136 	struct bio *new;
3137 
3138 	/* Bio allocation backed by a bioset does not fail */
3139 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140 	btrfs_bio = btrfs_io_bio(new);
3141 	btrfs_io_bio_init(btrfs_bio);
3142 	btrfs_bio->iter = bio->bi_iter;
3143 	return new;
3144 }
3145 
3146 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147 {
3148 	struct bio *bio;
3149 
3150 	/* Bio allocation backed by a bioset does not fail */
3151 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152 	btrfs_io_bio_init(btrfs_io_bio(bio));
3153 	return bio;
3154 }
3155 
3156 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157 {
3158 	struct bio *bio;
3159 	struct btrfs_io_bio *btrfs_bio;
3160 
3161 	/* this will never fail when it's backed by a bioset */
3162 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163 	ASSERT(bio);
3164 
3165 	btrfs_bio = btrfs_io_bio(bio);
3166 	btrfs_io_bio_init(btrfs_bio);
3167 
3168 	bio_trim(bio, offset >> 9, size >> 9);
3169 	btrfs_bio->iter = bio->bi_iter;
3170 	return bio;
3171 }
3172 
3173 /**
3174  * Attempt to add a page to bio
3175  *
3176  * @bio:	destination bio
3177  * @page:	page to add to the bio
3178  * @disk_bytenr:  offset of the new bio or to check whether we are adding
3179  *                a contiguous page to the previous one
3180  * @pg_offset:	starting offset in the page
3181  * @size:	portion of page that we want to write
3182  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3183  * @bio_flags:	flags of the current bio to see if we can merge them
3184  * @return:	true if page was added, false otherwise
3185  *
3186  * Attempt to add a page to bio considering stripe alignment etc.
3187  *
3188  * Return true if successfully page added. Otherwise, return false.
3189  */
3190 static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191 			       struct page *page,
3192 			       u64 disk_bytenr, unsigned int size,
3193 			       unsigned int pg_offset,
3194 			       unsigned long bio_flags)
3195 {
3196 	struct bio *bio = bio_ctrl->bio;
3197 	u32 bio_size = bio->bi_iter.bi_size;
3198 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199 	bool contig;
3200 	int ret;
3201 
3202 	ASSERT(bio);
3203 	/* The limit should be calculated when bio_ctrl->bio is allocated */
3204 	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205 	if (bio_ctrl->bio_flags != bio_flags)
3206 		return false;
3207 
3208 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209 		contig = bio->bi_iter.bi_sector == sector;
3210 	else
3211 		contig = bio_end_sector(bio) == sector;
3212 	if (!contig)
3213 		return false;
3214 
3215 	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216 	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217 		return false;
3218 
3219 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220 		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221 	else
3222 		ret = bio_add_page(bio, page, size, pg_offset);
3223 
3224 	return ret == size;
3225 }
3226 
3227 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228 			       struct btrfs_inode *inode)
3229 {
3230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231 	struct btrfs_io_geometry geom;
3232 	struct btrfs_ordered_extent *ordered;
3233 	struct extent_map *em;
3234 	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235 	int ret;
3236 
3237 	/*
3238 	 * Pages for compressed extent are never submitted to disk directly,
3239 	 * thus it has no real boundary, just set them to U32_MAX.
3240 	 *
3241 	 * The split happens for real compressed bio, which happens in
3242 	 * btrfs_submit_compressed_read/write().
3243 	 */
3244 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3246 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247 		return 0;
3248 	}
3249 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250 	if (IS_ERR(em))
3251 		return PTR_ERR(em);
3252 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253 				    logical, &geom);
3254 	free_extent_map(em);
3255 	if (ret < 0) {
3256 		return ret;
3257 	}
3258 	if (geom.len > U32_MAX)
3259 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260 	else
3261 		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262 
3263 	if (!btrfs_is_zoned(fs_info) ||
3264 	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3266 		return 0;
3267 	}
3268 
3269 	ASSERT(fs_info->max_zone_append_size > 0);
3270 	/* Ordered extent not yet created, so we're good */
3271 	ordered = btrfs_lookup_ordered_extent(inode, logical);
3272 	if (!ordered) {
3273 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3274 		return 0;
3275 	}
3276 
3277 	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278 		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279 	btrfs_put_ordered_extent(ordered);
3280 	return 0;
3281 }
3282 
3283 /*
3284  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3285  * @wbc:	optional writeback control for io accounting
3286  * @page:	page to add to the bio
3287  * @disk_bytenr: logical bytenr where the write will be
3288  * @size:	portion of page that we want to write to
3289  * @pg_offset:	offset of the new bio or to check whether we are adding
3290  *              a contiguous page to the previous one
3291  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3292  * @end_io_func:     end_io callback for new bio
3293  * @mirror_num:	     desired mirror to read/write
3294  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3295  * @bio_flags:	flags of the current bio to see if we can merge them
3296  */
3297 static int submit_extent_page(unsigned int opf,
3298 			      struct writeback_control *wbc,
3299 			      struct btrfs_bio_ctrl *bio_ctrl,
3300 			      struct page *page, u64 disk_bytenr,
3301 			      size_t size, unsigned long pg_offset,
3302 			      bio_end_io_t end_io_func,
3303 			      int mirror_num,
3304 			      unsigned long bio_flags,
3305 			      bool force_bio_submit)
3306 {
3307 	int ret = 0;
3308 	struct bio *bio;
3309 	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311 	struct extent_io_tree *tree = &inode->io_tree;
3312 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313 
3314 	ASSERT(bio_ctrl);
3315 
3316 	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317 	       pg_offset + size <= PAGE_SIZE);
3318 	if (bio_ctrl->bio) {
3319 		bio = bio_ctrl->bio;
3320 		if (force_bio_submit ||
3321 		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322 					pg_offset, bio_flags)) {
3323 			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324 			bio_ctrl->bio = NULL;
3325 			if (ret < 0)
3326 				return ret;
3327 		} else {
3328 			if (wbc)
3329 				wbc_account_cgroup_owner(wbc, page, io_size);
3330 			return 0;
3331 		}
3332 	}
3333 
3334 	bio = btrfs_bio_alloc(disk_bytenr);
3335 	bio_add_page(bio, page, io_size, pg_offset);
3336 	bio->bi_end_io = end_io_func;
3337 	bio->bi_private = tree;
3338 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3339 	bio->bi_opf = opf;
3340 	if (wbc) {
3341 		struct block_device *bdev;
3342 
3343 		bdev = fs_info->fs_devices->latest_bdev;
3344 		bio_set_dev(bio, bdev);
3345 		wbc_init_bio(wbc, bio);
3346 		wbc_account_cgroup_owner(wbc, page, io_size);
3347 	}
3348 	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349 		struct btrfs_device *device;
3350 
3351 		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352 		if (IS_ERR(device))
3353 			return PTR_ERR(device);
3354 
3355 		btrfs_io_bio(bio)->device = device;
3356 	}
3357 
3358 	bio_ctrl->bio = bio;
3359 	bio_ctrl->bio_flags = bio_flags;
3360 	ret = calc_bio_boundaries(bio_ctrl, inode);
3361 
3362 	return ret;
3363 }
3364 
3365 static int attach_extent_buffer_page(struct extent_buffer *eb,
3366 				     struct page *page,
3367 				     struct btrfs_subpage *prealloc)
3368 {
3369 	struct btrfs_fs_info *fs_info = eb->fs_info;
3370 	int ret = 0;
3371 
3372 	/*
3373 	 * If the page is mapped to btree inode, we should hold the private
3374 	 * lock to prevent race.
3375 	 * For cloned or dummy extent buffers, their pages are not mapped and
3376 	 * will not race with any other ebs.
3377 	 */
3378 	if (page->mapping)
3379 		lockdep_assert_held(&page->mapping->private_lock);
3380 
3381 	if (fs_info->sectorsize == PAGE_SIZE) {
3382 		if (!PagePrivate(page))
3383 			attach_page_private(page, eb);
3384 		else
3385 			WARN_ON(page->private != (unsigned long)eb);
3386 		return 0;
3387 	}
3388 
3389 	/* Already mapped, just free prealloc */
3390 	if (PagePrivate(page)) {
3391 		btrfs_free_subpage(prealloc);
3392 		return 0;
3393 	}
3394 
3395 	if (prealloc)
3396 		/* Has preallocated memory for subpage */
3397 		attach_page_private(page, prealloc);
3398 	else
3399 		/* Do new allocation to attach subpage */
3400 		ret = btrfs_attach_subpage(fs_info, page,
3401 					   BTRFS_SUBPAGE_METADATA);
3402 	return ret;
3403 }
3404 
3405 int set_page_extent_mapped(struct page *page)
3406 {
3407 	struct btrfs_fs_info *fs_info;
3408 
3409 	ASSERT(page->mapping);
3410 
3411 	if (PagePrivate(page))
3412 		return 0;
3413 
3414 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3415 
3416 	if (fs_info->sectorsize < PAGE_SIZE)
3417 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418 
3419 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420 	return 0;
3421 }
3422 
3423 void clear_page_extent_mapped(struct page *page)
3424 {
3425 	struct btrfs_fs_info *fs_info;
3426 
3427 	ASSERT(page->mapping);
3428 
3429 	if (!PagePrivate(page))
3430 		return;
3431 
3432 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3433 	if (fs_info->sectorsize < PAGE_SIZE)
3434 		return btrfs_detach_subpage(fs_info, page);
3435 
3436 	detach_page_private(page);
3437 }
3438 
3439 static struct extent_map *
3440 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441 		 u64 start, u64 len, struct extent_map **em_cached)
3442 {
3443 	struct extent_map *em;
3444 
3445 	if (em_cached && *em_cached) {
3446 		em = *em_cached;
3447 		if (extent_map_in_tree(em) && start >= em->start &&
3448 		    start < extent_map_end(em)) {
3449 			refcount_inc(&em->refs);
3450 			return em;
3451 		}
3452 
3453 		free_extent_map(em);
3454 		*em_cached = NULL;
3455 	}
3456 
3457 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3459 		BUG_ON(*em_cached);
3460 		refcount_inc(&em->refs);
3461 		*em_cached = em;
3462 	}
3463 	return em;
3464 }
3465 /*
3466  * basic readpage implementation.  Locked extent state structs are inserted
3467  * into the tree that are removed when the IO is done (by the end_io
3468  * handlers)
3469  * XXX JDM: This needs looking at to ensure proper page locking
3470  * return 0 on success, otherwise return error
3471  */
3472 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473 		      struct btrfs_bio_ctrl *bio_ctrl,
3474 		      unsigned int read_flags, u64 *prev_em_start)
3475 {
3476 	struct inode *inode = page->mapping->host;
3477 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478 	u64 start = page_offset(page);
3479 	const u64 end = start + PAGE_SIZE - 1;
3480 	u64 cur = start;
3481 	u64 extent_offset;
3482 	u64 last_byte = i_size_read(inode);
3483 	u64 block_start;
3484 	u64 cur_end;
3485 	struct extent_map *em;
3486 	int ret = 0;
3487 	int nr = 0;
3488 	size_t pg_offset = 0;
3489 	size_t iosize;
3490 	size_t blocksize = inode->i_sb->s_blocksize;
3491 	unsigned long this_bio_flag = 0;
3492 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493 
3494 	ret = set_page_extent_mapped(page);
3495 	if (ret < 0) {
3496 		unlock_extent(tree, start, end);
3497 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498 		unlock_page(page);
3499 		goto out;
3500 	}
3501 
3502 	if (!PageUptodate(page)) {
3503 		if (cleancache_get_page(page) == 0) {
3504 			BUG_ON(blocksize != PAGE_SIZE);
3505 			unlock_extent(tree, start, end);
3506 			unlock_page(page);
3507 			goto out;
3508 		}
3509 	}
3510 
3511 	if (page->index == last_byte >> PAGE_SHIFT) {
3512 		size_t zero_offset = offset_in_page(last_byte);
3513 
3514 		if (zero_offset) {
3515 			iosize = PAGE_SIZE - zero_offset;
3516 			memzero_page(page, zero_offset, iosize);
3517 			flush_dcache_page(page);
3518 		}
3519 	}
3520 	begin_page_read(fs_info, page);
3521 	while (cur <= end) {
3522 		bool force_bio_submit = false;
3523 		u64 disk_bytenr;
3524 
3525 		if (cur >= last_byte) {
3526 			struct extent_state *cached = NULL;
3527 
3528 			iosize = PAGE_SIZE - pg_offset;
3529 			memzero_page(page, pg_offset, iosize);
3530 			flush_dcache_page(page);
3531 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3532 					    &cached, GFP_NOFS);
3533 			unlock_extent_cached(tree, cur,
3534 					     cur + iosize - 1, &cached);
3535 			end_page_read(page, true, cur, iosize);
3536 			break;
3537 		}
3538 		em = __get_extent_map(inode, page, pg_offset, cur,
3539 				      end - cur + 1, em_cached);
3540 		if (IS_ERR_OR_NULL(em)) {
3541 			unlock_extent(tree, cur, end);
3542 			end_page_read(page, false, cur, end + 1 - cur);
3543 			break;
3544 		}
3545 		extent_offset = cur - em->start;
3546 		BUG_ON(extent_map_end(em) <= cur);
3547 		BUG_ON(end < cur);
3548 
3549 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551 			extent_set_compress_type(&this_bio_flag,
3552 						 em->compress_type);
3553 		}
3554 
3555 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556 		cur_end = min(extent_map_end(em) - 1, end);
3557 		iosize = ALIGN(iosize, blocksize);
3558 		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559 			disk_bytenr = em->block_start;
3560 		else
3561 			disk_bytenr = em->block_start + extent_offset;
3562 		block_start = em->block_start;
3563 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564 			block_start = EXTENT_MAP_HOLE;
3565 
3566 		/*
3567 		 * If we have a file range that points to a compressed extent
3568 		 * and it's followed by a consecutive file range that points
3569 		 * to the same compressed extent (possibly with a different
3570 		 * offset and/or length, so it either points to the whole extent
3571 		 * or only part of it), we must make sure we do not submit a
3572 		 * single bio to populate the pages for the 2 ranges because
3573 		 * this makes the compressed extent read zero out the pages
3574 		 * belonging to the 2nd range. Imagine the following scenario:
3575 		 *
3576 		 *  File layout
3577 		 *  [0 - 8K]                     [8K - 24K]
3578 		 *    |                               |
3579 		 *    |                               |
3580 		 * points to extent X,         points to extent X,
3581 		 * offset 4K, length of 8K     offset 0, length 16K
3582 		 *
3583 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3584 		 *
3585 		 * If the bio to read the compressed extent covers both ranges,
3586 		 * it will decompress extent X into the pages belonging to the
3587 		 * first range and then it will stop, zeroing out the remaining
3588 		 * pages that belong to the other range that points to extent X.
3589 		 * So here we make sure we submit 2 bios, one for the first
3590 		 * range and another one for the third range. Both will target
3591 		 * the same physical extent from disk, but we can't currently
3592 		 * make the compressed bio endio callback populate the pages
3593 		 * for both ranges because each compressed bio is tightly
3594 		 * coupled with a single extent map, and each range can have
3595 		 * an extent map with a different offset value relative to the
3596 		 * uncompressed data of our extent and different lengths. This
3597 		 * is a corner case so we prioritize correctness over
3598 		 * non-optimal behavior (submitting 2 bios for the same extent).
3599 		 */
3600 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601 		    prev_em_start && *prev_em_start != (u64)-1 &&
3602 		    *prev_em_start != em->start)
3603 			force_bio_submit = true;
3604 
3605 		if (prev_em_start)
3606 			*prev_em_start = em->start;
3607 
3608 		free_extent_map(em);
3609 		em = NULL;
3610 
3611 		/* we've found a hole, just zero and go on */
3612 		if (block_start == EXTENT_MAP_HOLE) {
3613 			struct extent_state *cached = NULL;
3614 
3615 			memzero_page(page, pg_offset, iosize);
3616 			flush_dcache_page(page);
3617 
3618 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3619 					    &cached, GFP_NOFS);
3620 			unlock_extent_cached(tree, cur,
3621 					     cur + iosize - 1, &cached);
3622 			end_page_read(page, true, cur, iosize);
3623 			cur = cur + iosize;
3624 			pg_offset += iosize;
3625 			continue;
3626 		}
3627 		/* the get_extent function already copied into the page */
3628 		if (test_range_bit(tree, cur, cur_end,
3629 				   EXTENT_UPTODATE, 1, NULL)) {
3630 			check_page_uptodate(tree, page);
3631 			unlock_extent(tree, cur, cur + iosize - 1);
3632 			end_page_read(page, true, cur, iosize);
3633 			cur = cur + iosize;
3634 			pg_offset += iosize;
3635 			continue;
3636 		}
3637 		/* we have an inline extent but it didn't get marked up
3638 		 * to date.  Error out
3639 		 */
3640 		if (block_start == EXTENT_MAP_INLINE) {
3641 			unlock_extent(tree, cur, cur + iosize - 1);
3642 			end_page_read(page, false, cur, iosize);
3643 			cur = cur + iosize;
3644 			pg_offset += iosize;
3645 			continue;
3646 		}
3647 
3648 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649 					 bio_ctrl, page, disk_bytenr, iosize,
3650 					 pg_offset,
3651 					 end_bio_extent_readpage, 0,
3652 					 this_bio_flag,
3653 					 force_bio_submit);
3654 		if (!ret) {
3655 			nr++;
3656 		} else {
3657 			unlock_extent(tree, cur, cur + iosize - 1);
3658 			end_page_read(page, false, cur, iosize);
3659 			goto out;
3660 		}
3661 		cur = cur + iosize;
3662 		pg_offset += iosize;
3663 	}
3664 out:
3665 	return ret;
3666 }
3667 
3668 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669 					u64 start, u64 end,
3670 					struct extent_map **em_cached,
3671 					struct btrfs_bio_ctrl *bio_ctrl,
3672 					u64 *prev_em_start)
3673 {
3674 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675 	int index;
3676 
3677 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678 
3679 	for (index = 0; index < nr_pages; index++) {
3680 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681 				  REQ_RAHEAD, prev_em_start);
3682 		put_page(pages[index]);
3683 	}
3684 }
3685 
3686 static void update_nr_written(struct writeback_control *wbc,
3687 			      unsigned long nr_written)
3688 {
3689 	wbc->nr_to_write -= nr_written;
3690 }
3691 
3692 /*
3693  * helper for __extent_writepage, doing all of the delayed allocation setup.
3694  *
3695  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696  * to write the page (copy into inline extent).  In this case the IO has
3697  * been started and the page is already unlocked.
3698  *
3699  * This returns 0 if all went well (page still locked)
3700  * This returns < 0 if there were errors (page still locked)
3701  */
3702 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703 		struct page *page, struct writeback_control *wbc,
3704 		u64 delalloc_start, unsigned long *nr_written)
3705 {
3706 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707 	bool found;
3708 	u64 delalloc_to_write = 0;
3709 	u64 delalloc_end = 0;
3710 	int ret;
3711 	int page_started = 0;
3712 
3713 
3714 	while (delalloc_end < page_end) {
3715 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716 					       &delalloc_start,
3717 					       &delalloc_end);
3718 		if (!found) {
3719 			delalloc_start = delalloc_end + 1;
3720 			continue;
3721 		}
3722 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723 				delalloc_end, &page_started, nr_written, wbc);
3724 		if (ret) {
3725 			SetPageError(page);
3726 			/*
3727 			 * btrfs_run_delalloc_range should return < 0 for error
3728 			 * but just in case, we use > 0 here meaning the IO is
3729 			 * started, so we don't want to return > 0 unless
3730 			 * things are going well.
3731 			 */
3732 			return ret < 0 ? ret : -EIO;
3733 		}
3734 		/*
3735 		 * delalloc_end is already one less than the total length, so
3736 		 * we don't subtract one from PAGE_SIZE
3737 		 */
3738 		delalloc_to_write += (delalloc_end - delalloc_start +
3739 				      PAGE_SIZE) >> PAGE_SHIFT;
3740 		delalloc_start = delalloc_end + 1;
3741 	}
3742 	if (wbc->nr_to_write < delalloc_to_write) {
3743 		int thresh = 8192;
3744 
3745 		if (delalloc_to_write < thresh * 2)
3746 			thresh = delalloc_to_write;
3747 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748 					 thresh);
3749 	}
3750 
3751 	/* did the fill delalloc function already unlock and start
3752 	 * the IO?
3753 	 */
3754 	if (page_started) {
3755 		/*
3756 		 * we've unlocked the page, so we can't update
3757 		 * the mapping's writeback index, just update
3758 		 * nr_to_write.
3759 		 */
3760 		wbc->nr_to_write -= *nr_written;
3761 		return 1;
3762 	}
3763 
3764 	return 0;
3765 }
3766 
3767 /*
3768  * Find the first byte we need to write.
3769  *
3770  * For subpage, one page can contain several sectors, and
3771  * __extent_writepage_io() will just grab all extent maps in the page
3772  * range and try to submit all non-inline/non-compressed extents.
3773  *
3774  * This is a big problem for subpage, we shouldn't re-submit already written
3775  * data at all.
3776  * This function will lookup subpage dirty bit to find which range we really
3777  * need to submit.
3778  *
3779  * Return the next dirty range in [@start, @end).
3780  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781  */
3782 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783 				 struct page *page, u64 *start, u64 *end)
3784 {
3785 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786 	u64 orig_start = *start;
3787 	/* Declare as unsigned long so we can use bitmap ops */
3788 	unsigned long dirty_bitmap;
3789 	unsigned long flags;
3790 	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791 	int range_start_bit = nbits;
3792 	int range_end_bit;
3793 
3794 	/*
3795 	 * For regular sector size == page size case, since one page only
3796 	 * contains one sector, we return the page offset directly.
3797 	 */
3798 	if (fs_info->sectorsize == PAGE_SIZE) {
3799 		*start = page_offset(page);
3800 		*end = page_offset(page) + PAGE_SIZE;
3801 		return;
3802 	}
3803 
3804 	/* We should have the page locked, but just in case */
3805 	spin_lock_irqsave(&subpage->lock, flags);
3806 	dirty_bitmap = subpage->dirty_bitmap;
3807 	spin_unlock_irqrestore(&subpage->lock, flags);
3808 
3809 	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810 			       BTRFS_SUBPAGE_BITMAP_SIZE);
3811 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813 }
3814 
3815 /*
3816  * helper for __extent_writepage.  This calls the writepage start hooks,
3817  * and does the loop to map the page into extents and bios.
3818  *
3819  * We return 1 if the IO is started and the page is unlocked,
3820  * 0 if all went well (page still locked)
3821  * < 0 if there were errors (page still locked)
3822  */
3823 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824 				 struct page *page,
3825 				 struct writeback_control *wbc,
3826 				 struct extent_page_data *epd,
3827 				 loff_t i_size,
3828 				 unsigned long nr_written,
3829 				 int *nr_ret)
3830 {
3831 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832 	u64 start = page_offset(page);
3833 	u64 end = start + PAGE_SIZE - 1;
3834 	u64 cur = start;
3835 	u64 extent_offset;
3836 	u64 block_start;
3837 	struct extent_map *em;
3838 	int ret = 0;
3839 	int nr = 0;
3840 	u32 opf = REQ_OP_WRITE;
3841 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3842 	bool compressed;
3843 
3844 	ret = btrfs_writepage_cow_fixup(page, start, end);
3845 	if (ret) {
3846 		/* Fixup worker will requeue */
3847 		redirty_page_for_writepage(wbc, page);
3848 		update_nr_written(wbc, nr_written);
3849 		unlock_page(page);
3850 		return 1;
3851 	}
3852 
3853 	/*
3854 	 * we don't want to touch the inode after unlocking the page,
3855 	 * so we update the mapping writeback index now
3856 	 */
3857 	update_nr_written(wbc, nr_written + 1);
3858 
3859 	while (cur <= end) {
3860 		u64 disk_bytenr;
3861 		u64 em_end;
3862 		u64 dirty_range_start = cur;
3863 		u64 dirty_range_end;
3864 		u32 iosize;
3865 
3866 		if (cur >= i_size) {
3867 			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868 							     end, 1);
3869 			break;
3870 		}
3871 
3872 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873 				     &dirty_range_end);
3874 		if (cur < dirty_range_start) {
3875 			cur = dirty_range_start;
3876 			continue;
3877 		}
3878 
3879 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880 		if (IS_ERR_OR_NULL(em)) {
3881 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882 			ret = PTR_ERR_OR_ZERO(em);
3883 			break;
3884 		}
3885 
3886 		extent_offset = cur - em->start;
3887 		em_end = extent_map_end(em);
3888 		ASSERT(cur <= em_end);
3889 		ASSERT(cur < end);
3890 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3892 		block_start = em->block_start;
3893 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894 		disk_bytenr = em->block_start + extent_offset;
3895 
3896 		/*
3897 		 * Note that em_end from extent_map_end() and dirty_range_end from
3898 		 * find_next_dirty_byte() are all exclusive
3899 		 */
3900 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901 
3902 		if (btrfs_use_zone_append(inode, em->block_start))
3903 			opf = REQ_OP_ZONE_APPEND;
3904 
3905 		free_extent_map(em);
3906 		em = NULL;
3907 
3908 		/*
3909 		 * compressed and inline extents are written through other
3910 		 * paths in the FS
3911 		 */
3912 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3913 		    block_start == EXTENT_MAP_INLINE) {
3914 			if (compressed)
3915 				nr++;
3916 			else
3917 				btrfs_writepage_endio_finish_ordered(inode,
3918 						page, cur, cur + iosize - 1, 1);
3919 			cur += iosize;
3920 			continue;
3921 		}
3922 
3923 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924 		if (!PageWriteback(page)) {
3925 			btrfs_err(inode->root->fs_info,
3926 				   "page %lu not writeback, cur %llu end %llu",
3927 			       page->index, cur, end);
3928 		}
3929 
3930 		/*
3931 		 * Although the PageDirty bit is cleared before entering this
3932 		 * function, subpage dirty bit is not cleared.
3933 		 * So clear subpage dirty bit here so next time we won't submit
3934 		 * page for range already written to disk.
3935 		 */
3936 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937 
3938 		ret = submit_extent_page(opf | write_flags, wbc,
3939 					 &epd->bio_ctrl, page,
3940 					 disk_bytenr, iosize,
3941 					 cur - page_offset(page),
3942 					 end_bio_extent_writepage,
3943 					 0, 0, false);
3944 		if (ret) {
3945 			btrfs_page_set_error(fs_info, page, cur, iosize);
3946 			if (PageWriteback(page))
3947 				btrfs_page_clear_writeback(fs_info, page, cur,
3948 							   iosize);
3949 		}
3950 
3951 		cur += iosize;
3952 		nr++;
3953 	}
3954 	*nr_ret = nr;
3955 	return ret;
3956 }
3957 
3958 /*
3959  * the writepage semantics are similar to regular writepage.  extent
3960  * records are inserted to lock ranges in the tree, and as dirty areas
3961  * are found, they are marked writeback.  Then the lock bits are removed
3962  * and the end_io handler clears the writeback ranges
3963  *
3964  * Return 0 if everything goes well.
3965  * Return <0 for error.
3966  */
3967 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968 			      struct extent_page_data *epd)
3969 {
3970 	struct inode *inode = page->mapping->host;
3971 	u64 start = page_offset(page);
3972 	u64 page_end = start + PAGE_SIZE - 1;
3973 	int ret;
3974 	int nr = 0;
3975 	size_t pg_offset;
3976 	loff_t i_size = i_size_read(inode);
3977 	unsigned long end_index = i_size >> PAGE_SHIFT;
3978 	unsigned long nr_written = 0;
3979 
3980 	trace___extent_writepage(page, inode, wbc);
3981 
3982 	WARN_ON(!PageLocked(page));
3983 
3984 	ClearPageError(page);
3985 
3986 	pg_offset = offset_in_page(i_size);
3987 	if (page->index > end_index ||
3988 	   (page->index == end_index && !pg_offset)) {
3989 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990 		unlock_page(page);
3991 		return 0;
3992 	}
3993 
3994 	if (page->index == end_index) {
3995 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3996 		flush_dcache_page(page);
3997 	}
3998 
3999 	ret = set_page_extent_mapped(page);
4000 	if (ret < 0) {
4001 		SetPageError(page);
4002 		goto done;
4003 	}
4004 
4005 	if (!epd->extent_locked) {
4006 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007 					 &nr_written);
4008 		if (ret == 1)
4009 			return 0;
4010 		if (ret)
4011 			goto done;
4012 	}
4013 
4014 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015 				    nr_written, &nr);
4016 	if (ret == 1)
4017 		return 0;
4018 
4019 done:
4020 	if (nr == 0) {
4021 		/* make sure the mapping tag for page dirty gets cleared */
4022 		set_page_writeback(page);
4023 		end_page_writeback(page);
4024 	}
4025 	if (PageError(page)) {
4026 		ret = ret < 0 ? ret : -EIO;
4027 		end_extent_writepage(page, ret, start, page_end);
4028 	}
4029 	unlock_page(page);
4030 	ASSERT(ret <= 0);
4031 	return ret;
4032 }
4033 
4034 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035 {
4036 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037 		       TASK_UNINTERRUPTIBLE);
4038 }
4039 
4040 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041 {
4042 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043 	smp_mb__after_atomic();
4044 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045 }
4046 
4047 /*
4048  * Lock extent buffer status and pages for writeback.
4049  *
4050  * May try to flush write bio if we can't get the lock.
4051  *
4052  * Return  0 if the extent buffer doesn't need to be submitted.
4053  *           (E.g. the extent buffer is not dirty)
4054  * Return >0 is the extent buffer is submitted to bio.
4055  * Return <0 if something went wrong, no page is locked.
4056  */
4057 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058 			  struct extent_page_data *epd)
4059 {
4060 	struct btrfs_fs_info *fs_info = eb->fs_info;
4061 	int i, num_pages, failed_page_nr;
4062 	int flush = 0;
4063 	int ret = 0;
4064 
4065 	if (!btrfs_try_tree_write_lock(eb)) {
4066 		ret = flush_write_bio(epd);
4067 		if (ret < 0)
4068 			return ret;
4069 		flush = 1;
4070 		btrfs_tree_lock(eb);
4071 	}
4072 
4073 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074 		btrfs_tree_unlock(eb);
4075 		if (!epd->sync_io)
4076 			return 0;
4077 		if (!flush) {
4078 			ret = flush_write_bio(epd);
4079 			if (ret < 0)
4080 				return ret;
4081 			flush = 1;
4082 		}
4083 		while (1) {
4084 			wait_on_extent_buffer_writeback(eb);
4085 			btrfs_tree_lock(eb);
4086 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087 				break;
4088 			btrfs_tree_unlock(eb);
4089 		}
4090 	}
4091 
4092 	/*
4093 	 * We need to do this to prevent races in people who check if the eb is
4094 	 * under IO since we can end up having no IO bits set for a short period
4095 	 * of time.
4096 	 */
4097 	spin_lock(&eb->refs_lock);
4098 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100 		spin_unlock(&eb->refs_lock);
4101 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103 					 -eb->len,
4104 					 fs_info->dirty_metadata_batch);
4105 		ret = 1;
4106 	} else {
4107 		spin_unlock(&eb->refs_lock);
4108 	}
4109 
4110 	btrfs_tree_unlock(eb);
4111 
4112 	/*
4113 	 * Either we don't need to submit any tree block, or we're submitting
4114 	 * subpage eb.
4115 	 * Subpage metadata doesn't use page locking at all, so we can skip
4116 	 * the page locking.
4117 	 */
4118 	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119 		return ret;
4120 
4121 	num_pages = num_extent_pages(eb);
4122 	for (i = 0; i < num_pages; i++) {
4123 		struct page *p = eb->pages[i];
4124 
4125 		if (!trylock_page(p)) {
4126 			if (!flush) {
4127 				int err;
4128 
4129 				err = flush_write_bio(epd);
4130 				if (err < 0) {
4131 					ret = err;
4132 					failed_page_nr = i;
4133 					goto err_unlock;
4134 				}
4135 				flush = 1;
4136 			}
4137 			lock_page(p);
4138 		}
4139 	}
4140 
4141 	return ret;
4142 err_unlock:
4143 	/* Unlock already locked pages */
4144 	for (i = 0; i < failed_page_nr; i++)
4145 		unlock_page(eb->pages[i]);
4146 	/*
4147 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149 	 * be made and undo everything done before.
4150 	 */
4151 	btrfs_tree_lock(eb);
4152 	spin_lock(&eb->refs_lock);
4153 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154 	end_extent_buffer_writeback(eb);
4155 	spin_unlock(&eb->refs_lock);
4156 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157 				 fs_info->dirty_metadata_batch);
4158 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159 	btrfs_tree_unlock(eb);
4160 	return ret;
4161 }
4162 
4163 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164 {
4165 	struct btrfs_fs_info *fs_info = eb->fs_info;
4166 
4167 	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169 		return;
4170 
4171 	/*
4172 	 * If we error out, we should add back the dirty_metadata_bytes
4173 	 * to make it consistent.
4174 	 */
4175 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176 				 eb->len, fs_info->dirty_metadata_batch);
4177 
4178 	/*
4179 	 * If writeback for a btree extent that doesn't belong to a log tree
4180 	 * failed, increment the counter transaction->eb_write_errors.
4181 	 * We do this because while the transaction is running and before it's
4182 	 * committing (when we call filemap_fdata[write|wait]_range against
4183 	 * the btree inode), we might have
4184 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185 	 * returns an error or an error happens during writeback, when we're
4186 	 * committing the transaction we wouldn't know about it, since the pages
4187 	 * can be no longer dirty nor marked anymore for writeback (if a
4188 	 * subsequent modification to the extent buffer didn't happen before the
4189 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190 	 * able to find the pages tagged with SetPageError at transaction
4191 	 * commit time. So if this happens we must abort the transaction,
4192 	 * otherwise we commit a super block with btree roots that point to
4193 	 * btree nodes/leafs whose content on disk is invalid - either garbage
4194 	 * or the content of some node/leaf from a past generation that got
4195 	 * cowed or deleted and is no longer valid.
4196 	 *
4197 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198 	 * not be enough - we need to distinguish between log tree extents vs
4199 	 * non-log tree extents, and the next filemap_fdatawait_range() call
4200 	 * will catch and clear such errors in the mapping - and that call might
4201 	 * be from a log sync and not from a transaction commit. Also, checking
4202 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203 	 * not done and would not be reliable - the eb might have been released
4204 	 * from memory and reading it back again means that flag would not be
4205 	 * set (since it's a runtime flag, not persisted on disk).
4206 	 *
4207 	 * Using the flags below in the btree inode also makes us achieve the
4208 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209 	 * writeback for all dirty pages and before filemap_fdatawait_range()
4210 	 * is called, the writeback for all dirty pages had already finished
4211 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212 	 * filemap_fdatawait_range() would return success, as it could not know
4213 	 * that writeback errors happened (the pages were no longer tagged for
4214 	 * writeback).
4215 	 */
4216 	switch (eb->log_index) {
4217 	case -1:
4218 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219 		break;
4220 	case 0:
4221 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222 		break;
4223 	case 1:
4224 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225 		break;
4226 	default:
4227 		BUG(); /* unexpected, logic error */
4228 	}
4229 }
4230 
4231 /*
4232  * The endio specific version which won't touch any unsafe spinlock in endio
4233  * context.
4234  */
4235 static struct extent_buffer *find_extent_buffer_nolock(
4236 		struct btrfs_fs_info *fs_info, u64 start)
4237 {
4238 	struct extent_buffer *eb;
4239 
4240 	rcu_read_lock();
4241 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4242 			       start >> fs_info->sectorsize_bits);
4243 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4244 		rcu_read_unlock();
4245 		return eb;
4246 	}
4247 	rcu_read_unlock();
4248 	return NULL;
4249 }
4250 
4251 /*
4252  * The endio function for subpage extent buffer write.
4253  *
4254  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255  * after all extent buffers in the page has finished their writeback.
4256  */
4257 static void end_bio_subpage_eb_writepage(struct bio *bio)
4258 {
4259 	struct btrfs_fs_info *fs_info;
4260 	struct bio_vec *bvec;
4261 	struct bvec_iter_all iter_all;
4262 
4263 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265 
4266 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4267 	bio_for_each_segment_all(bvec, bio, iter_all) {
4268 		struct page *page = bvec->bv_page;
4269 		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270 		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271 		u64 cur_bytenr = bvec_start;
4272 
4273 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274 
4275 		/* Iterate through all extent buffers in the range */
4276 		while (cur_bytenr <= bvec_end) {
4277 			struct extent_buffer *eb;
4278 			int done;
4279 
4280 			/*
4281 			 * Here we can't use find_extent_buffer(), as it may
4282 			 * try to lock eb->refs_lock, which is not safe in endio
4283 			 * context.
4284 			 */
4285 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286 			ASSERT(eb);
4287 
4288 			cur_bytenr = eb->start + eb->len;
4289 
4290 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291 			done = atomic_dec_and_test(&eb->io_pages);
4292 			ASSERT(done);
4293 
4294 			if (bio->bi_status ||
4295 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296 				ClearPageUptodate(page);
4297 				set_btree_ioerr(page, eb);
4298 			}
4299 
4300 			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301 						      eb->len);
4302 			end_extent_buffer_writeback(eb);
4303 			/*
4304 			 * free_extent_buffer() will grab spinlock which is not
4305 			 * safe in endio context. Thus here we manually dec
4306 			 * the ref.
4307 			 */
4308 			atomic_dec(&eb->refs);
4309 		}
4310 	}
4311 	bio_put(bio);
4312 }
4313 
4314 static void end_bio_extent_buffer_writepage(struct bio *bio)
4315 {
4316 	struct bio_vec *bvec;
4317 	struct extent_buffer *eb;
4318 	int done;
4319 	struct bvec_iter_all iter_all;
4320 
4321 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4322 	bio_for_each_segment_all(bvec, bio, iter_all) {
4323 		struct page *page = bvec->bv_page;
4324 
4325 		eb = (struct extent_buffer *)page->private;
4326 		BUG_ON(!eb);
4327 		done = atomic_dec_and_test(&eb->io_pages);
4328 
4329 		if (bio->bi_status ||
4330 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331 			ClearPageUptodate(page);
4332 			set_btree_ioerr(page, eb);
4333 		}
4334 
4335 		end_page_writeback(page);
4336 
4337 		if (!done)
4338 			continue;
4339 
4340 		end_extent_buffer_writeback(eb);
4341 	}
4342 
4343 	bio_put(bio);
4344 }
4345 
4346 static void prepare_eb_write(struct extent_buffer *eb)
4347 {
4348 	u32 nritems;
4349 	unsigned long start;
4350 	unsigned long end;
4351 
4352 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353 	atomic_set(&eb->io_pages, num_extent_pages(eb));
4354 
4355 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4356 	nritems = btrfs_header_nritems(eb);
4357 	if (btrfs_header_level(eb) > 0) {
4358 		end = btrfs_node_key_ptr_offset(nritems);
4359 		memzero_extent_buffer(eb, end, eb->len - end);
4360 	} else {
4361 		/*
4362 		 * Leaf:
4363 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364 		 */
4365 		start = btrfs_item_nr_offset(nritems);
4366 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4367 		memzero_extent_buffer(eb, start, end - start);
4368 	}
4369 }
4370 
4371 /*
4372  * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373  * Page locking is only utilized at minimum to keep the VMM code happy.
4374  */
4375 static int write_one_subpage_eb(struct extent_buffer *eb,
4376 				struct writeback_control *wbc,
4377 				struct extent_page_data *epd)
4378 {
4379 	struct btrfs_fs_info *fs_info = eb->fs_info;
4380 	struct page *page = eb->pages[0];
4381 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382 	bool no_dirty_ebs = false;
4383 	int ret;
4384 
4385 	prepare_eb_write(eb);
4386 
4387 	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4388 	lock_page(page);
4389 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390 
4391 	/* Check if this is the last dirty bit to update nr_written */
4392 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393 							  eb->start, eb->len);
4394 	if (no_dirty_ebs)
4395 		clear_page_dirty_for_io(page);
4396 
4397 	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398 			&epd->bio_ctrl, page, eb->start, eb->len,
4399 			eb->start - page_offset(page),
4400 			end_bio_subpage_eb_writepage, 0, 0, false);
4401 	if (ret) {
4402 		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403 		set_btree_ioerr(page, eb);
4404 		unlock_page(page);
4405 
4406 		if (atomic_dec_and_test(&eb->io_pages))
4407 			end_extent_buffer_writeback(eb);
4408 		return -EIO;
4409 	}
4410 	unlock_page(page);
4411 	/*
4412 	 * Submission finished without problem, if no range of the page is
4413 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4414 	 */
4415 	if (no_dirty_ebs)
4416 		update_nr_written(wbc, 1);
4417 	return ret;
4418 }
4419 
4420 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421 			struct writeback_control *wbc,
4422 			struct extent_page_data *epd)
4423 {
4424 	u64 disk_bytenr = eb->start;
4425 	int i, num_pages;
4426 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427 	int ret = 0;
4428 
4429 	prepare_eb_write(eb);
4430 
4431 	num_pages = num_extent_pages(eb);
4432 	for (i = 0; i < num_pages; i++) {
4433 		struct page *p = eb->pages[i];
4434 
4435 		clear_page_dirty_for_io(p);
4436 		set_page_writeback(p);
4437 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438 					 &epd->bio_ctrl, p, disk_bytenr,
4439 					 PAGE_SIZE, 0,
4440 					 end_bio_extent_buffer_writepage,
4441 					 0, 0, false);
4442 		if (ret) {
4443 			set_btree_ioerr(p, eb);
4444 			if (PageWriteback(p))
4445 				end_page_writeback(p);
4446 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447 				end_extent_buffer_writeback(eb);
4448 			ret = -EIO;
4449 			break;
4450 		}
4451 		disk_bytenr += PAGE_SIZE;
4452 		update_nr_written(wbc, 1);
4453 		unlock_page(p);
4454 	}
4455 
4456 	if (unlikely(ret)) {
4457 		for (; i < num_pages; i++) {
4458 			struct page *p = eb->pages[i];
4459 			clear_page_dirty_for_io(p);
4460 			unlock_page(p);
4461 		}
4462 	}
4463 
4464 	return ret;
4465 }
4466 
4467 /*
4468  * Submit one subpage btree page.
4469  *
4470  * The main difference to submit_eb_page() is:
4471  * - Page locking
4472  *   For subpage, we don't rely on page locking at all.
4473  *
4474  * - Flush write bio
4475  *   We only flush bio if we may be unable to fit current extent buffers into
4476  *   current bio.
4477  *
4478  * Return >=0 for the number of submitted extent buffers.
4479  * Return <0 for fatal error.
4480  */
4481 static int submit_eb_subpage(struct page *page,
4482 			     struct writeback_control *wbc,
4483 			     struct extent_page_data *epd)
4484 {
4485 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486 	int submitted = 0;
4487 	u64 page_start = page_offset(page);
4488 	int bit_start = 0;
4489 	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491 	int ret;
4492 
4493 	/* Lock and write each dirty extent buffers in the range */
4494 	while (bit_start < nbits) {
4495 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496 		struct extent_buffer *eb;
4497 		unsigned long flags;
4498 		u64 start;
4499 
4500 		/*
4501 		 * Take private lock to ensure the subpage won't be detached
4502 		 * in the meantime.
4503 		 */
4504 		spin_lock(&page->mapping->private_lock);
4505 		if (!PagePrivate(page)) {
4506 			spin_unlock(&page->mapping->private_lock);
4507 			break;
4508 		}
4509 		spin_lock_irqsave(&subpage->lock, flags);
4510 		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4511 			spin_unlock_irqrestore(&subpage->lock, flags);
4512 			spin_unlock(&page->mapping->private_lock);
4513 			bit_start++;
4514 			continue;
4515 		}
4516 
4517 		start = page_start + bit_start * fs_info->sectorsize;
4518 		bit_start += sectors_per_node;
4519 
4520 		/*
4521 		 * Here we just want to grab the eb without touching extra
4522 		 * spin locks, so call find_extent_buffer_nolock().
4523 		 */
4524 		eb = find_extent_buffer_nolock(fs_info, start);
4525 		spin_unlock_irqrestore(&subpage->lock, flags);
4526 		spin_unlock(&page->mapping->private_lock);
4527 
4528 		/*
4529 		 * The eb has already reached 0 refs thus find_extent_buffer()
4530 		 * doesn't return it. We don't need to write back such eb
4531 		 * anyway.
4532 		 */
4533 		if (!eb)
4534 			continue;
4535 
4536 		ret = lock_extent_buffer_for_io(eb, epd);
4537 		if (ret == 0) {
4538 			free_extent_buffer(eb);
4539 			continue;
4540 		}
4541 		if (ret < 0) {
4542 			free_extent_buffer(eb);
4543 			goto cleanup;
4544 		}
4545 		ret = write_one_subpage_eb(eb, wbc, epd);
4546 		free_extent_buffer(eb);
4547 		if (ret < 0)
4548 			goto cleanup;
4549 		submitted++;
4550 	}
4551 	return submitted;
4552 
4553 cleanup:
4554 	/* We hit error, end bio for the submitted extent buffers */
4555 	end_write_bio(epd, ret);
4556 	return ret;
4557 }
4558 
4559 /*
4560  * Submit all page(s) of one extent buffer.
4561  *
4562  * @page:	the page of one extent buffer
4563  * @eb_context:	to determine if we need to submit this page, if current page
4564  *		belongs to this eb, we don't need to submit
4565  *
4566  * The caller should pass each page in their bytenr order, and here we use
4567  * @eb_context to determine if we have submitted pages of one extent buffer.
4568  *
4569  * If we have, we just skip until we hit a new page that doesn't belong to
4570  * current @eb_context.
4571  *
4572  * If not, we submit all the page(s) of the extent buffer.
4573  *
4574  * Return >0 if we have submitted the extent buffer successfully.
4575  * Return 0 if we don't need to submit the page, as it's already submitted by
4576  * previous call.
4577  * Return <0 for fatal error.
4578  */
4579 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580 			  struct extent_page_data *epd,
4581 			  struct extent_buffer **eb_context)
4582 {
4583 	struct address_space *mapping = page->mapping;
4584 	struct btrfs_block_group *cache = NULL;
4585 	struct extent_buffer *eb;
4586 	int ret;
4587 
4588 	if (!PagePrivate(page))
4589 		return 0;
4590 
4591 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592 		return submit_eb_subpage(page, wbc, epd);
4593 
4594 	spin_lock(&mapping->private_lock);
4595 	if (!PagePrivate(page)) {
4596 		spin_unlock(&mapping->private_lock);
4597 		return 0;
4598 	}
4599 
4600 	eb = (struct extent_buffer *)page->private;
4601 
4602 	/*
4603 	 * Shouldn't happen and normally this would be a BUG_ON but no point
4604 	 * crashing the machine for something we can survive anyway.
4605 	 */
4606 	if (WARN_ON(!eb)) {
4607 		spin_unlock(&mapping->private_lock);
4608 		return 0;
4609 	}
4610 
4611 	if (eb == *eb_context) {
4612 		spin_unlock(&mapping->private_lock);
4613 		return 0;
4614 	}
4615 	ret = atomic_inc_not_zero(&eb->refs);
4616 	spin_unlock(&mapping->private_lock);
4617 	if (!ret)
4618 		return 0;
4619 
4620 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621 		/*
4622 		 * If for_sync, this hole will be filled with
4623 		 * trasnsaction commit.
4624 		 */
4625 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626 			ret = -EAGAIN;
4627 		else
4628 			ret = 0;
4629 		free_extent_buffer(eb);
4630 		return ret;
4631 	}
4632 
4633 	*eb_context = eb;
4634 
4635 	ret = lock_extent_buffer_for_io(eb, epd);
4636 	if (ret <= 0) {
4637 		btrfs_revert_meta_write_pointer(cache, eb);
4638 		if (cache)
4639 			btrfs_put_block_group(cache);
4640 		free_extent_buffer(eb);
4641 		return ret;
4642 	}
4643 	if (cache)
4644 		btrfs_put_block_group(cache);
4645 	ret = write_one_eb(eb, wbc, epd);
4646 	free_extent_buffer(eb);
4647 	if (ret < 0)
4648 		return ret;
4649 	return 1;
4650 }
4651 
4652 int btree_write_cache_pages(struct address_space *mapping,
4653 				   struct writeback_control *wbc)
4654 {
4655 	struct extent_buffer *eb_context = NULL;
4656 	struct extent_page_data epd = {
4657 		.bio_ctrl = { 0 },
4658 		.extent_locked = 0,
4659 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660 	};
4661 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662 	int ret = 0;
4663 	int done = 0;
4664 	int nr_to_write_done = 0;
4665 	struct pagevec pvec;
4666 	int nr_pages;
4667 	pgoff_t index;
4668 	pgoff_t end;		/* Inclusive */
4669 	int scanned = 0;
4670 	xa_mark_t tag;
4671 
4672 	pagevec_init(&pvec);
4673 	if (wbc->range_cyclic) {
4674 		index = mapping->writeback_index; /* Start from prev offset */
4675 		end = -1;
4676 		/*
4677 		 * Start from the beginning does not need to cycle over the
4678 		 * range, mark it as scanned.
4679 		 */
4680 		scanned = (index == 0);
4681 	} else {
4682 		index = wbc->range_start >> PAGE_SHIFT;
4683 		end = wbc->range_end >> PAGE_SHIFT;
4684 		scanned = 1;
4685 	}
4686 	if (wbc->sync_mode == WB_SYNC_ALL)
4687 		tag = PAGECACHE_TAG_TOWRITE;
4688 	else
4689 		tag = PAGECACHE_TAG_DIRTY;
4690 	btrfs_zoned_meta_io_lock(fs_info);
4691 retry:
4692 	if (wbc->sync_mode == WB_SYNC_ALL)
4693 		tag_pages_for_writeback(mapping, index, end);
4694 	while (!done && !nr_to_write_done && (index <= end) &&
4695 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696 			tag))) {
4697 		unsigned i;
4698 
4699 		for (i = 0; i < nr_pages; i++) {
4700 			struct page *page = pvec.pages[i];
4701 
4702 			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703 			if (ret == 0)
4704 				continue;
4705 			if (ret < 0) {
4706 				done = 1;
4707 				break;
4708 			}
4709 
4710 			/*
4711 			 * the filesystem may choose to bump up nr_to_write.
4712 			 * We have to make sure to honor the new nr_to_write
4713 			 * at any time
4714 			 */
4715 			nr_to_write_done = wbc->nr_to_write <= 0;
4716 		}
4717 		pagevec_release(&pvec);
4718 		cond_resched();
4719 	}
4720 	if (!scanned && !done) {
4721 		/*
4722 		 * We hit the last page and there is more work to be done: wrap
4723 		 * back to the start of the file
4724 		 */
4725 		scanned = 1;
4726 		index = 0;
4727 		goto retry;
4728 	}
4729 	if (ret < 0) {
4730 		end_write_bio(&epd, ret);
4731 		goto out;
4732 	}
4733 	/*
4734 	 * If something went wrong, don't allow any metadata write bio to be
4735 	 * submitted.
4736 	 *
4737 	 * This would prevent use-after-free if we had dirty pages not
4738 	 * cleaned up, which can still happen by fuzzed images.
4739 	 *
4740 	 * - Bad extent tree
4741 	 *   Allowing existing tree block to be allocated for other trees.
4742 	 *
4743 	 * - Log tree operations
4744 	 *   Exiting tree blocks get allocated to log tree, bumps its
4745 	 *   generation, then get cleaned in tree re-balance.
4746 	 *   Such tree block will not be written back, since it's clean,
4747 	 *   thus no WRITTEN flag set.
4748 	 *   And after log writes back, this tree block is not traced by
4749 	 *   any dirty extent_io_tree.
4750 	 *
4751 	 * - Offending tree block gets re-dirtied from its original owner
4752 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4753 	 *   reused without COWing. This tree block will not be traced
4754 	 *   by btrfs_transaction::dirty_pages.
4755 	 *
4756 	 *   Now such dirty tree block will not be cleaned by any dirty
4757 	 *   extent io tree. Thus we don't want to submit such wild eb
4758 	 *   if the fs already has error.
4759 	 */
4760 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761 		ret = flush_write_bio(&epd);
4762 	} else {
4763 		ret = -EROFS;
4764 		end_write_bio(&epd, ret);
4765 	}
4766 out:
4767 	btrfs_zoned_meta_io_unlock(fs_info);
4768 	return ret;
4769 }
4770 
4771 /**
4772  * Walk the list of dirty pages of the given address space and write all of them.
4773  *
4774  * @mapping: address space structure to write
4775  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4776  * @epd:     holds context for the write, namely the bio
4777  *
4778  * If a page is already under I/O, write_cache_pages() skips it, even
4779  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4780  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4781  * and msync() need to guarantee that all the data which was dirty at the time
4782  * the call was made get new I/O started against them.  If wbc->sync_mode is
4783  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784  * existing IO to complete.
4785  */
4786 static int extent_write_cache_pages(struct address_space *mapping,
4787 			     struct writeback_control *wbc,
4788 			     struct extent_page_data *epd)
4789 {
4790 	struct inode *inode = mapping->host;
4791 	int ret = 0;
4792 	int done = 0;
4793 	int nr_to_write_done = 0;
4794 	struct pagevec pvec;
4795 	int nr_pages;
4796 	pgoff_t index;
4797 	pgoff_t end;		/* Inclusive */
4798 	pgoff_t done_index;
4799 	int range_whole = 0;
4800 	int scanned = 0;
4801 	xa_mark_t tag;
4802 
4803 	/*
4804 	 * We have to hold onto the inode so that ordered extents can do their
4805 	 * work when the IO finishes.  The alternative to this is failing to add
4806 	 * an ordered extent if the igrab() fails there and that is a huge pain
4807 	 * to deal with, so instead just hold onto the inode throughout the
4808 	 * writepages operation.  If it fails here we are freeing up the inode
4809 	 * anyway and we'd rather not waste our time writing out stuff that is
4810 	 * going to be truncated anyway.
4811 	 */
4812 	if (!igrab(inode))
4813 		return 0;
4814 
4815 	pagevec_init(&pvec);
4816 	if (wbc->range_cyclic) {
4817 		index = mapping->writeback_index; /* Start from prev offset */
4818 		end = -1;
4819 		/*
4820 		 * Start from the beginning does not need to cycle over the
4821 		 * range, mark it as scanned.
4822 		 */
4823 		scanned = (index == 0);
4824 	} else {
4825 		index = wbc->range_start >> PAGE_SHIFT;
4826 		end = wbc->range_end >> PAGE_SHIFT;
4827 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828 			range_whole = 1;
4829 		scanned = 1;
4830 	}
4831 
4832 	/*
4833 	 * We do the tagged writepage as long as the snapshot flush bit is set
4834 	 * and we are the first one who do the filemap_flush() on this inode.
4835 	 *
4836 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837 	 * not race in and drop the bit.
4838 	 */
4839 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841 			       &BTRFS_I(inode)->runtime_flags))
4842 		wbc->tagged_writepages = 1;
4843 
4844 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845 		tag = PAGECACHE_TAG_TOWRITE;
4846 	else
4847 		tag = PAGECACHE_TAG_DIRTY;
4848 retry:
4849 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850 		tag_pages_for_writeback(mapping, index, end);
4851 	done_index = index;
4852 	while (!done && !nr_to_write_done && (index <= end) &&
4853 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854 						&index, end, tag))) {
4855 		unsigned i;
4856 
4857 		for (i = 0; i < nr_pages; i++) {
4858 			struct page *page = pvec.pages[i];
4859 
4860 			done_index = page->index + 1;
4861 			/*
4862 			 * At this point we hold neither the i_pages lock nor
4863 			 * the page lock: the page may be truncated or
4864 			 * invalidated (changing page->mapping to NULL),
4865 			 * or even swizzled back from swapper_space to
4866 			 * tmpfs file mapping
4867 			 */
4868 			if (!trylock_page(page)) {
4869 				ret = flush_write_bio(epd);
4870 				BUG_ON(ret < 0);
4871 				lock_page(page);
4872 			}
4873 
4874 			if (unlikely(page->mapping != mapping)) {
4875 				unlock_page(page);
4876 				continue;
4877 			}
4878 
4879 			if (wbc->sync_mode != WB_SYNC_NONE) {
4880 				if (PageWriteback(page)) {
4881 					ret = flush_write_bio(epd);
4882 					BUG_ON(ret < 0);
4883 				}
4884 				wait_on_page_writeback(page);
4885 			}
4886 
4887 			if (PageWriteback(page) ||
4888 			    !clear_page_dirty_for_io(page)) {
4889 				unlock_page(page);
4890 				continue;
4891 			}
4892 
4893 			ret = __extent_writepage(page, wbc, epd);
4894 			if (ret < 0) {
4895 				done = 1;
4896 				break;
4897 			}
4898 
4899 			/*
4900 			 * the filesystem may choose to bump up nr_to_write.
4901 			 * We have to make sure to honor the new nr_to_write
4902 			 * at any time
4903 			 */
4904 			nr_to_write_done = wbc->nr_to_write <= 0;
4905 		}
4906 		pagevec_release(&pvec);
4907 		cond_resched();
4908 	}
4909 	if (!scanned && !done) {
4910 		/*
4911 		 * We hit the last page and there is more work to be done: wrap
4912 		 * back to the start of the file
4913 		 */
4914 		scanned = 1;
4915 		index = 0;
4916 
4917 		/*
4918 		 * If we're looping we could run into a page that is locked by a
4919 		 * writer and that writer could be waiting on writeback for a
4920 		 * page in our current bio, and thus deadlock, so flush the
4921 		 * write bio here.
4922 		 */
4923 		ret = flush_write_bio(epd);
4924 		if (!ret)
4925 			goto retry;
4926 	}
4927 
4928 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929 		mapping->writeback_index = done_index;
4930 
4931 	btrfs_add_delayed_iput(inode);
4932 	return ret;
4933 }
4934 
4935 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4936 {
4937 	int ret;
4938 	struct extent_page_data epd = {
4939 		.bio_ctrl = { 0 },
4940 		.extent_locked = 0,
4941 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4942 	};
4943 
4944 	ret = __extent_writepage(page, wbc, &epd);
4945 	ASSERT(ret <= 0);
4946 	if (ret < 0) {
4947 		end_write_bio(&epd, ret);
4948 		return ret;
4949 	}
4950 
4951 	ret = flush_write_bio(&epd);
4952 	ASSERT(ret <= 0);
4953 	return ret;
4954 }
4955 
4956 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957 			      int mode)
4958 {
4959 	int ret = 0;
4960 	struct address_space *mapping = inode->i_mapping;
4961 	struct page *page;
4962 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963 		PAGE_SHIFT;
4964 
4965 	struct extent_page_data epd = {
4966 		.bio_ctrl = { 0 },
4967 		.extent_locked = 1,
4968 		.sync_io = mode == WB_SYNC_ALL,
4969 	};
4970 	struct writeback_control wbc_writepages = {
4971 		.sync_mode	= mode,
4972 		.nr_to_write	= nr_pages * 2,
4973 		.range_start	= start,
4974 		.range_end	= end + 1,
4975 		/* We're called from an async helper function */
4976 		.punt_to_cgroup	= 1,
4977 		.no_cgroup_owner = 1,
4978 	};
4979 
4980 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981 	while (start <= end) {
4982 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4983 		if (clear_page_dirty_for_io(page))
4984 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4985 		else {
4986 			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987 					page, start, start + PAGE_SIZE - 1, 1);
4988 			unlock_page(page);
4989 		}
4990 		put_page(page);
4991 		start += PAGE_SIZE;
4992 	}
4993 
4994 	ASSERT(ret <= 0);
4995 	if (ret == 0)
4996 		ret = flush_write_bio(&epd);
4997 	else
4998 		end_write_bio(&epd, ret);
4999 
5000 	wbc_detach_inode(&wbc_writepages);
5001 	return ret;
5002 }
5003 
5004 int extent_writepages(struct address_space *mapping,
5005 		      struct writeback_control *wbc)
5006 {
5007 	int ret = 0;
5008 	struct extent_page_data epd = {
5009 		.bio_ctrl = { 0 },
5010 		.extent_locked = 0,
5011 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012 	};
5013 
5014 	ret = extent_write_cache_pages(mapping, wbc, &epd);
5015 	ASSERT(ret <= 0);
5016 	if (ret < 0) {
5017 		end_write_bio(&epd, ret);
5018 		return ret;
5019 	}
5020 	ret = flush_write_bio(&epd);
5021 	return ret;
5022 }
5023 
5024 void extent_readahead(struct readahead_control *rac)
5025 {
5026 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5027 	struct page *pagepool[16];
5028 	struct extent_map *em_cached = NULL;
5029 	u64 prev_em_start = (u64)-1;
5030 	int nr;
5031 
5032 	while ((nr = readahead_page_batch(rac, pagepool))) {
5033 		u64 contig_start = readahead_pos(rac);
5034 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5035 
5036 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037 				&em_cached, &bio_ctrl, &prev_em_start);
5038 	}
5039 
5040 	if (em_cached)
5041 		free_extent_map(em_cached);
5042 
5043 	if (bio_ctrl.bio) {
5044 		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045 			return;
5046 	}
5047 }
5048 
5049 /*
5050  * basic invalidatepage code, this waits on any locked or writeback
5051  * ranges corresponding to the page, and then deletes any extent state
5052  * records from the tree
5053  */
5054 int extent_invalidatepage(struct extent_io_tree *tree,
5055 			  struct page *page, unsigned long offset)
5056 {
5057 	struct extent_state *cached_state = NULL;
5058 	u64 start = page_offset(page);
5059 	u64 end = start + PAGE_SIZE - 1;
5060 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061 
5062 	/* This function is only called for the btree inode */
5063 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064 
5065 	start += ALIGN(offset, blocksize);
5066 	if (start > end)
5067 		return 0;
5068 
5069 	lock_extent_bits(tree, start, end, &cached_state);
5070 	wait_on_page_writeback(page);
5071 
5072 	/*
5073 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074 	 * so here we only need to unlock the extent range to free any
5075 	 * existing extent state.
5076 	 */
5077 	unlock_extent_cached(tree, start, end, &cached_state);
5078 	return 0;
5079 }
5080 
5081 /*
5082  * a helper for releasepage, this tests for areas of the page that
5083  * are locked or under IO and drops the related state bits if it is safe
5084  * to drop the page.
5085  */
5086 static int try_release_extent_state(struct extent_io_tree *tree,
5087 				    struct page *page, gfp_t mask)
5088 {
5089 	u64 start = page_offset(page);
5090 	u64 end = start + PAGE_SIZE - 1;
5091 	int ret = 1;
5092 
5093 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094 		ret = 0;
5095 	} else {
5096 		/*
5097 		 * At this point we can safely clear everything except the
5098 		 * locked bit, the nodatasum bit and the delalloc new bit.
5099 		 * The delalloc new bit will be cleared by ordered extent
5100 		 * completion.
5101 		 */
5102 		ret = __clear_extent_bit(tree, start, end,
5103 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104 			 0, 0, NULL, mask, NULL);
5105 
5106 		/* if clear_extent_bit failed for enomem reasons,
5107 		 * we can't allow the release to continue.
5108 		 */
5109 		if (ret < 0)
5110 			ret = 0;
5111 		else
5112 			ret = 1;
5113 	}
5114 	return ret;
5115 }
5116 
5117 /*
5118  * a helper for releasepage.  As long as there are no locked extents
5119  * in the range corresponding to the page, both state records and extent
5120  * map records are removed
5121  */
5122 int try_release_extent_mapping(struct page *page, gfp_t mask)
5123 {
5124 	struct extent_map *em;
5125 	u64 start = page_offset(page);
5126 	u64 end = start + PAGE_SIZE - 1;
5127 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130 
5131 	if (gfpflags_allow_blocking(mask) &&
5132 	    page->mapping->host->i_size > SZ_16M) {
5133 		u64 len;
5134 		while (start <= end) {
5135 			struct btrfs_fs_info *fs_info;
5136 			u64 cur_gen;
5137 
5138 			len = end - start + 1;
5139 			write_lock(&map->lock);
5140 			em = lookup_extent_mapping(map, start, len);
5141 			if (!em) {
5142 				write_unlock(&map->lock);
5143 				break;
5144 			}
5145 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146 			    em->start != start) {
5147 				write_unlock(&map->lock);
5148 				free_extent_map(em);
5149 				break;
5150 			}
5151 			if (test_range_bit(tree, em->start,
5152 					   extent_map_end(em) - 1,
5153 					   EXTENT_LOCKED, 0, NULL))
5154 				goto next;
5155 			/*
5156 			 * If it's not in the list of modified extents, used
5157 			 * by a fast fsync, we can remove it. If it's being
5158 			 * logged we can safely remove it since fsync took an
5159 			 * extra reference on the em.
5160 			 */
5161 			if (list_empty(&em->list) ||
5162 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163 				goto remove_em;
5164 			/*
5165 			 * If it's in the list of modified extents, remove it
5166 			 * only if its generation is older then the current one,
5167 			 * in which case we don't need it for a fast fsync.
5168 			 * Otherwise don't remove it, we could be racing with an
5169 			 * ongoing fast fsync that could miss the new extent.
5170 			 */
5171 			fs_info = btrfs_inode->root->fs_info;
5172 			spin_lock(&fs_info->trans_lock);
5173 			cur_gen = fs_info->generation;
5174 			spin_unlock(&fs_info->trans_lock);
5175 			if (em->generation >= cur_gen)
5176 				goto next;
5177 remove_em:
5178 			/*
5179 			 * We only remove extent maps that are not in the list of
5180 			 * modified extents or that are in the list but with a
5181 			 * generation lower then the current generation, so there
5182 			 * is no need to set the full fsync flag on the inode (it
5183 			 * hurts the fsync performance for workloads with a data
5184 			 * size that exceeds or is close to the system's memory).
5185 			 */
5186 			remove_extent_mapping(map, em);
5187 			/* once for the rb tree */
5188 			free_extent_map(em);
5189 next:
5190 			start = extent_map_end(em);
5191 			write_unlock(&map->lock);
5192 
5193 			/* once for us */
5194 			free_extent_map(em);
5195 
5196 			cond_resched(); /* Allow large-extent preemption. */
5197 		}
5198 	}
5199 	return try_release_extent_state(tree, page, mask);
5200 }
5201 
5202 /*
5203  * helper function for fiemap, which doesn't want to see any holes.
5204  * This maps until we find something past 'last'
5205  */
5206 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207 						u64 offset, u64 last)
5208 {
5209 	u64 sectorsize = btrfs_inode_sectorsize(inode);
5210 	struct extent_map *em;
5211 	u64 len;
5212 
5213 	if (offset >= last)
5214 		return NULL;
5215 
5216 	while (1) {
5217 		len = last - offset;
5218 		if (len == 0)
5219 			break;
5220 		len = ALIGN(len, sectorsize);
5221 		em = btrfs_get_extent_fiemap(inode, offset, len);
5222 		if (IS_ERR_OR_NULL(em))
5223 			return em;
5224 
5225 		/* if this isn't a hole return it */
5226 		if (em->block_start != EXTENT_MAP_HOLE)
5227 			return em;
5228 
5229 		/* this is a hole, advance to the next extent */
5230 		offset = extent_map_end(em);
5231 		free_extent_map(em);
5232 		if (offset >= last)
5233 			break;
5234 	}
5235 	return NULL;
5236 }
5237 
5238 /*
5239  * To cache previous fiemap extent
5240  *
5241  * Will be used for merging fiemap extent
5242  */
5243 struct fiemap_cache {
5244 	u64 offset;
5245 	u64 phys;
5246 	u64 len;
5247 	u32 flags;
5248 	bool cached;
5249 };
5250 
5251 /*
5252  * Helper to submit fiemap extent.
5253  *
5254  * Will try to merge current fiemap extent specified by @offset, @phys,
5255  * @len and @flags with cached one.
5256  * And only when we fails to merge, cached one will be submitted as
5257  * fiemap extent.
5258  *
5259  * Return value is the same as fiemap_fill_next_extent().
5260  */
5261 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262 				struct fiemap_cache *cache,
5263 				u64 offset, u64 phys, u64 len, u32 flags)
5264 {
5265 	int ret = 0;
5266 
5267 	if (!cache->cached)
5268 		goto assign;
5269 
5270 	/*
5271 	 * Sanity check, extent_fiemap() should have ensured that new
5272 	 * fiemap extent won't overlap with cached one.
5273 	 * Not recoverable.
5274 	 *
5275 	 * NOTE: Physical address can overlap, due to compression
5276 	 */
5277 	if (cache->offset + cache->len > offset) {
5278 		WARN_ON(1);
5279 		return -EINVAL;
5280 	}
5281 
5282 	/*
5283 	 * Only merges fiemap extents if
5284 	 * 1) Their logical addresses are continuous
5285 	 *
5286 	 * 2) Their physical addresses are continuous
5287 	 *    So truly compressed (physical size smaller than logical size)
5288 	 *    extents won't get merged with each other
5289 	 *
5290 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291 	 *    So regular extent won't get merged with prealloc extent
5292 	 */
5293 	if (cache->offset + cache->len  == offset &&
5294 	    cache->phys + cache->len == phys  &&
5295 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296 			(flags & ~FIEMAP_EXTENT_LAST)) {
5297 		cache->len += len;
5298 		cache->flags |= flags;
5299 		goto try_submit_last;
5300 	}
5301 
5302 	/* Not mergeable, need to submit cached one */
5303 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304 				      cache->len, cache->flags);
5305 	cache->cached = false;
5306 	if (ret)
5307 		return ret;
5308 assign:
5309 	cache->cached = true;
5310 	cache->offset = offset;
5311 	cache->phys = phys;
5312 	cache->len = len;
5313 	cache->flags = flags;
5314 try_submit_last:
5315 	if (cache->flags & FIEMAP_EXTENT_LAST) {
5316 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317 				cache->phys, cache->len, cache->flags);
5318 		cache->cached = false;
5319 	}
5320 	return ret;
5321 }
5322 
5323 /*
5324  * Emit last fiemap cache
5325  *
5326  * The last fiemap cache may still be cached in the following case:
5327  * 0		      4k		    8k
5328  * |<- Fiemap range ->|
5329  * |<------------  First extent ----------->|
5330  *
5331  * In this case, the first extent range will be cached but not emitted.
5332  * So we must emit it before ending extent_fiemap().
5333  */
5334 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335 				  struct fiemap_cache *cache)
5336 {
5337 	int ret;
5338 
5339 	if (!cache->cached)
5340 		return 0;
5341 
5342 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343 				      cache->len, cache->flags);
5344 	cache->cached = false;
5345 	if (ret > 0)
5346 		ret = 0;
5347 	return ret;
5348 }
5349 
5350 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351 		  u64 start, u64 len)
5352 {
5353 	int ret = 0;
5354 	u64 off;
5355 	u64 max = start + len;
5356 	u32 flags = 0;
5357 	u32 found_type;
5358 	u64 last;
5359 	u64 last_for_get_extent = 0;
5360 	u64 disko = 0;
5361 	u64 isize = i_size_read(&inode->vfs_inode);
5362 	struct btrfs_key found_key;
5363 	struct extent_map *em = NULL;
5364 	struct extent_state *cached_state = NULL;
5365 	struct btrfs_path *path;
5366 	struct btrfs_root *root = inode->root;
5367 	struct fiemap_cache cache = { 0 };
5368 	struct ulist *roots;
5369 	struct ulist *tmp_ulist;
5370 	int end = 0;
5371 	u64 em_start = 0;
5372 	u64 em_len = 0;
5373 	u64 em_end = 0;
5374 
5375 	if (len == 0)
5376 		return -EINVAL;
5377 
5378 	path = btrfs_alloc_path();
5379 	if (!path)
5380 		return -ENOMEM;
5381 
5382 	roots = ulist_alloc(GFP_KERNEL);
5383 	tmp_ulist = ulist_alloc(GFP_KERNEL);
5384 	if (!roots || !tmp_ulist) {
5385 		ret = -ENOMEM;
5386 		goto out_free_ulist;
5387 	}
5388 
5389 	/*
5390 	 * We can't initialize that to 'start' as this could miss extents due
5391 	 * to extent item merging
5392 	 */
5393 	off = 0;
5394 	start = round_down(start, btrfs_inode_sectorsize(inode));
5395 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396 
5397 	/*
5398 	 * lookup the last file extent.  We're not using i_size here
5399 	 * because there might be preallocation past i_size
5400 	 */
5401 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402 				       0);
5403 	if (ret < 0) {
5404 		goto out_free_ulist;
5405 	} else {
5406 		WARN_ON(!ret);
5407 		if (ret == 1)
5408 			ret = 0;
5409 	}
5410 
5411 	path->slots[0]--;
5412 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413 	found_type = found_key.type;
5414 
5415 	/* No extents, but there might be delalloc bits */
5416 	if (found_key.objectid != btrfs_ino(inode) ||
5417 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5418 		/* have to trust i_size as the end */
5419 		last = (u64)-1;
5420 		last_for_get_extent = isize;
5421 	} else {
5422 		/*
5423 		 * remember the start of the last extent.  There are a
5424 		 * bunch of different factors that go into the length of the
5425 		 * extent, so its much less complex to remember where it started
5426 		 */
5427 		last = found_key.offset;
5428 		last_for_get_extent = last + 1;
5429 	}
5430 	btrfs_release_path(path);
5431 
5432 	/*
5433 	 * we might have some extents allocated but more delalloc past those
5434 	 * extents.  so, we trust isize unless the start of the last extent is
5435 	 * beyond isize
5436 	 */
5437 	if (last < isize) {
5438 		last = (u64)-1;
5439 		last_for_get_extent = isize;
5440 	}
5441 
5442 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443 			 &cached_state);
5444 
5445 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446 	if (!em)
5447 		goto out;
5448 	if (IS_ERR(em)) {
5449 		ret = PTR_ERR(em);
5450 		goto out;
5451 	}
5452 
5453 	while (!end) {
5454 		u64 offset_in_extent = 0;
5455 
5456 		/* break if the extent we found is outside the range */
5457 		if (em->start >= max || extent_map_end(em) < off)
5458 			break;
5459 
5460 		/*
5461 		 * get_extent may return an extent that starts before our
5462 		 * requested range.  We have to make sure the ranges
5463 		 * we return to fiemap always move forward and don't
5464 		 * overlap, so adjust the offsets here
5465 		 */
5466 		em_start = max(em->start, off);
5467 
5468 		/*
5469 		 * record the offset from the start of the extent
5470 		 * for adjusting the disk offset below.  Only do this if the
5471 		 * extent isn't compressed since our in ram offset may be past
5472 		 * what we have actually allocated on disk.
5473 		 */
5474 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475 			offset_in_extent = em_start - em->start;
5476 		em_end = extent_map_end(em);
5477 		em_len = em_end - em_start;
5478 		flags = 0;
5479 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480 			disko = em->block_start + offset_in_extent;
5481 		else
5482 			disko = 0;
5483 
5484 		/*
5485 		 * bump off for our next call to get_extent
5486 		 */
5487 		off = extent_map_end(em);
5488 		if (off >= max)
5489 			end = 1;
5490 
5491 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492 			end = 1;
5493 			flags |= FIEMAP_EXTENT_LAST;
5494 		} else if (em->block_start == EXTENT_MAP_INLINE) {
5495 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496 				  FIEMAP_EXTENT_NOT_ALIGNED);
5497 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498 			flags |= (FIEMAP_EXTENT_DELALLOC |
5499 				  FIEMAP_EXTENT_UNKNOWN);
5500 		} else if (fieinfo->fi_extents_max) {
5501 			u64 bytenr = em->block_start -
5502 				(em->start - em->orig_start);
5503 
5504 			/*
5505 			 * As btrfs supports shared space, this information
5506 			 * can be exported to userspace tools via
5507 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5508 			 * then we're just getting a count and we can skip the
5509 			 * lookup stuff.
5510 			 */
5511 			ret = btrfs_check_shared(root, btrfs_ino(inode),
5512 						 bytenr, roots, tmp_ulist);
5513 			if (ret < 0)
5514 				goto out_free;
5515 			if (ret)
5516 				flags |= FIEMAP_EXTENT_SHARED;
5517 			ret = 0;
5518 		}
5519 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520 			flags |= FIEMAP_EXTENT_ENCODED;
5521 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522 			flags |= FIEMAP_EXTENT_UNWRITTEN;
5523 
5524 		free_extent_map(em);
5525 		em = NULL;
5526 		if ((em_start >= last) || em_len == (u64)-1 ||
5527 		   (last == (u64)-1 && isize <= em_end)) {
5528 			flags |= FIEMAP_EXTENT_LAST;
5529 			end = 1;
5530 		}
5531 
5532 		/* now scan forward to see if this is really the last extent. */
5533 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534 		if (IS_ERR(em)) {
5535 			ret = PTR_ERR(em);
5536 			goto out;
5537 		}
5538 		if (!em) {
5539 			flags |= FIEMAP_EXTENT_LAST;
5540 			end = 1;
5541 		}
5542 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543 					   em_len, flags);
5544 		if (ret) {
5545 			if (ret == 1)
5546 				ret = 0;
5547 			goto out_free;
5548 		}
5549 	}
5550 out_free:
5551 	if (!ret)
5552 		ret = emit_last_fiemap_cache(fieinfo, &cache);
5553 	free_extent_map(em);
5554 out:
5555 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556 			     &cached_state);
5557 
5558 out_free_ulist:
5559 	btrfs_free_path(path);
5560 	ulist_free(roots);
5561 	ulist_free(tmp_ulist);
5562 	return ret;
5563 }
5564 
5565 static void __free_extent_buffer(struct extent_buffer *eb)
5566 {
5567 	kmem_cache_free(extent_buffer_cache, eb);
5568 }
5569 
5570 int extent_buffer_under_io(const struct extent_buffer *eb)
5571 {
5572 	return (atomic_read(&eb->io_pages) ||
5573 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575 }
5576 
5577 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5578 {
5579 	struct btrfs_subpage *subpage;
5580 
5581 	lockdep_assert_held(&page->mapping->private_lock);
5582 
5583 	if (PagePrivate(page)) {
5584 		subpage = (struct btrfs_subpage *)page->private;
5585 		if (atomic_read(&subpage->eb_refs))
5586 			return true;
5587 		/*
5588 		 * Even there is no eb refs here, we may still have
5589 		 * end_page_read() call relying on page::private.
5590 		 */
5591 		if (atomic_read(&subpage->readers))
5592 			return true;
5593 	}
5594 	return false;
5595 }
5596 
5597 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598 {
5599 	struct btrfs_fs_info *fs_info = eb->fs_info;
5600 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601 
5602 	/*
5603 	 * For mapped eb, we're going to change the page private, which should
5604 	 * be done under the private_lock.
5605 	 */
5606 	if (mapped)
5607 		spin_lock(&page->mapping->private_lock);
5608 
5609 	if (!PagePrivate(page)) {
5610 		if (mapped)
5611 			spin_unlock(&page->mapping->private_lock);
5612 		return;
5613 	}
5614 
5615 	if (fs_info->sectorsize == PAGE_SIZE) {
5616 		/*
5617 		 * We do this since we'll remove the pages after we've
5618 		 * removed the eb from the radix tree, so we could race
5619 		 * and have this page now attached to the new eb.  So
5620 		 * only clear page_private if it's still connected to
5621 		 * this eb.
5622 		 */
5623 		if (PagePrivate(page) &&
5624 		    page->private == (unsigned long)eb) {
5625 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626 			BUG_ON(PageDirty(page));
5627 			BUG_ON(PageWriteback(page));
5628 			/*
5629 			 * We need to make sure we haven't be attached
5630 			 * to a new eb.
5631 			 */
5632 			detach_page_private(page);
5633 		}
5634 		if (mapped)
5635 			spin_unlock(&page->mapping->private_lock);
5636 		return;
5637 	}
5638 
5639 	/*
5640 	 * For subpage, we can have dummy eb with page private.  In this case,
5641 	 * we can directly detach the private as such page is only attached to
5642 	 * one dummy eb, no sharing.
5643 	 */
5644 	if (!mapped) {
5645 		btrfs_detach_subpage(fs_info, page);
5646 		return;
5647 	}
5648 
5649 	btrfs_page_dec_eb_refs(fs_info, page);
5650 
5651 	/*
5652 	 * We can only detach the page private if there are no other ebs in the
5653 	 * page range and no unfinished IO.
5654 	 */
5655 	if (!page_range_has_eb(fs_info, page))
5656 		btrfs_detach_subpage(fs_info, page);
5657 
5658 	spin_unlock(&page->mapping->private_lock);
5659 }
5660 
5661 /* Release all pages attached to the extent buffer */
5662 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663 {
5664 	int i;
5665 	int num_pages;
5666 
5667 	ASSERT(!extent_buffer_under_io(eb));
5668 
5669 	num_pages = num_extent_pages(eb);
5670 	for (i = 0; i < num_pages; i++) {
5671 		struct page *page = eb->pages[i];
5672 
5673 		if (!page)
5674 			continue;
5675 
5676 		detach_extent_buffer_page(eb, page);
5677 
5678 		/* One for when we allocated the page */
5679 		put_page(page);
5680 	}
5681 }
5682 
5683 /*
5684  * Helper for releasing the extent buffer.
5685  */
5686 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687 {
5688 	btrfs_release_extent_buffer_pages(eb);
5689 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690 	__free_extent_buffer(eb);
5691 }
5692 
5693 static struct extent_buffer *
5694 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695 		      unsigned long len)
5696 {
5697 	struct extent_buffer *eb = NULL;
5698 
5699 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700 	eb->start = start;
5701 	eb->len = len;
5702 	eb->fs_info = fs_info;
5703 	eb->bflags = 0;
5704 	init_rwsem(&eb->lock);
5705 
5706 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707 			     &fs_info->allocated_ebs);
5708 	INIT_LIST_HEAD(&eb->release_list);
5709 
5710 	spin_lock_init(&eb->refs_lock);
5711 	atomic_set(&eb->refs, 1);
5712 	atomic_set(&eb->io_pages, 0);
5713 
5714 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5715 
5716 	return eb;
5717 }
5718 
5719 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720 {
5721 	int i;
5722 	struct page *p;
5723 	struct extent_buffer *new;
5724 	int num_pages = num_extent_pages(src);
5725 
5726 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727 	if (new == NULL)
5728 		return NULL;
5729 
5730 	/*
5731 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732 	 * btrfs_release_extent_buffer() have different behavior for
5733 	 * UNMAPPED subpage extent buffer.
5734 	 */
5735 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736 
5737 	for (i = 0; i < num_pages; i++) {
5738 		int ret;
5739 
5740 		p = alloc_page(GFP_NOFS);
5741 		if (!p) {
5742 			btrfs_release_extent_buffer(new);
5743 			return NULL;
5744 		}
5745 		ret = attach_extent_buffer_page(new, p, NULL);
5746 		if (ret < 0) {
5747 			put_page(p);
5748 			btrfs_release_extent_buffer(new);
5749 			return NULL;
5750 		}
5751 		WARN_ON(PageDirty(p));
5752 		new->pages[i] = p;
5753 		copy_page(page_address(p), page_address(src->pages[i]));
5754 	}
5755 	set_extent_buffer_uptodate(new);
5756 
5757 	return new;
5758 }
5759 
5760 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761 						  u64 start, unsigned long len)
5762 {
5763 	struct extent_buffer *eb;
5764 	int num_pages;
5765 	int i;
5766 
5767 	eb = __alloc_extent_buffer(fs_info, start, len);
5768 	if (!eb)
5769 		return NULL;
5770 
5771 	num_pages = num_extent_pages(eb);
5772 	for (i = 0; i < num_pages; i++) {
5773 		int ret;
5774 
5775 		eb->pages[i] = alloc_page(GFP_NOFS);
5776 		if (!eb->pages[i])
5777 			goto err;
5778 		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779 		if (ret < 0)
5780 			goto err;
5781 	}
5782 	set_extent_buffer_uptodate(eb);
5783 	btrfs_set_header_nritems(eb, 0);
5784 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785 
5786 	return eb;
5787 err:
5788 	for (; i > 0; i--) {
5789 		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790 		__free_page(eb->pages[i - 1]);
5791 	}
5792 	__free_extent_buffer(eb);
5793 	return NULL;
5794 }
5795 
5796 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797 						u64 start)
5798 {
5799 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800 }
5801 
5802 static void check_buffer_tree_ref(struct extent_buffer *eb)
5803 {
5804 	int refs;
5805 	/*
5806 	 * The TREE_REF bit is first set when the extent_buffer is added
5807 	 * to the radix tree. It is also reset, if unset, when a new reference
5808 	 * is created by find_extent_buffer.
5809 	 *
5810 	 * It is only cleared in two cases: freeing the last non-tree
5811 	 * reference to the extent_buffer when its STALE bit is set or
5812 	 * calling releasepage when the tree reference is the only reference.
5813 	 *
5814 	 * In both cases, care is taken to ensure that the extent_buffer's
5815 	 * pages are not under io. However, releasepage can be concurrently
5816 	 * called with creating new references, which is prone to race
5817 	 * conditions between the calls to check_buffer_tree_ref in those
5818 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5819 	 *
5820 	 * The actual lifetime of the extent_buffer in the radix tree is
5821 	 * adequately protected by the refcount, but the TREE_REF bit and
5822 	 * its corresponding reference are not. To protect against this
5823 	 * class of races, we call check_buffer_tree_ref from the codepaths
5824 	 * which trigger io after they set eb->io_pages. Note that once io is
5825 	 * initiated, TREE_REF can no longer be cleared, so that is the
5826 	 * moment at which any such race is best fixed.
5827 	 */
5828 	refs = atomic_read(&eb->refs);
5829 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830 		return;
5831 
5832 	spin_lock(&eb->refs_lock);
5833 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834 		atomic_inc(&eb->refs);
5835 	spin_unlock(&eb->refs_lock);
5836 }
5837 
5838 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839 		struct page *accessed)
5840 {
5841 	int num_pages, i;
5842 
5843 	check_buffer_tree_ref(eb);
5844 
5845 	num_pages = num_extent_pages(eb);
5846 	for (i = 0; i < num_pages; i++) {
5847 		struct page *p = eb->pages[i];
5848 
5849 		if (p != accessed)
5850 			mark_page_accessed(p);
5851 	}
5852 }
5853 
5854 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855 					 u64 start)
5856 {
5857 	struct extent_buffer *eb;
5858 
5859 	eb = find_extent_buffer_nolock(fs_info, start);
5860 	if (!eb)
5861 		return NULL;
5862 	/*
5863 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865 	 * another task running free_extent_buffer() might have seen that flag
5866 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867 	 * writeback flags not set) and it's still in the tree (flag
5868 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869 	 * decrementing the extent buffer's reference count twice.  So here we
5870 	 * could race and increment the eb's reference count, clear its stale
5871 	 * flag, mark it as dirty and drop our reference before the other task
5872 	 * finishes executing free_extent_buffer, which would later result in
5873 	 * an attempt to free an extent buffer that is dirty.
5874 	 */
5875 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876 		spin_lock(&eb->refs_lock);
5877 		spin_unlock(&eb->refs_lock);
5878 	}
5879 	mark_extent_buffer_accessed(eb, NULL);
5880 	return eb;
5881 }
5882 
5883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885 					u64 start)
5886 {
5887 	struct extent_buffer *eb, *exists = NULL;
5888 	int ret;
5889 
5890 	eb = find_extent_buffer(fs_info, start);
5891 	if (eb)
5892 		return eb;
5893 	eb = alloc_dummy_extent_buffer(fs_info, start);
5894 	if (!eb)
5895 		return ERR_PTR(-ENOMEM);
5896 	eb->fs_info = fs_info;
5897 again:
5898 	ret = radix_tree_preload(GFP_NOFS);
5899 	if (ret) {
5900 		exists = ERR_PTR(ret);
5901 		goto free_eb;
5902 	}
5903 	spin_lock(&fs_info->buffer_lock);
5904 	ret = radix_tree_insert(&fs_info->buffer_radix,
5905 				start >> fs_info->sectorsize_bits, eb);
5906 	spin_unlock(&fs_info->buffer_lock);
5907 	radix_tree_preload_end();
5908 	if (ret == -EEXIST) {
5909 		exists = find_extent_buffer(fs_info, start);
5910 		if (exists)
5911 			goto free_eb;
5912 		else
5913 			goto again;
5914 	}
5915 	check_buffer_tree_ref(eb);
5916 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917 
5918 	return eb;
5919 free_eb:
5920 	btrfs_release_extent_buffer(eb);
5921 	return exists;
5922 }
5923 #endif
5924 
5925 static struct extent_buffer *grab_extent_buffer(
5926 		struct btrfs_fs_info *fs_info, struct page *page)
5927 {
5928 	struct extent_buffer *exists;
5929 
5930 	/*
5931 	 * For subpage case, we completely rely on radix tree to ensure we
5932 	 * don't try to insert two ebs for the same bytenr.  So here we always
5933 	 * return NULL and just continue.
5934 	 */
5935 	if (fs_info->sectorsize < PAGE_SIZE)
5936 		return NULL;
5937 
5938 	/* Page not yet attached to an extent buffer */
5939 	if (!PagePrivate(page))
5940 		return NULL;
5941 
5942 	/*
5943 	 * We could have already allocated an eb for this page and attached one
5944 	 * so lets see if we can get a ref on the existing eb, and if we can we
5945 	 * know it's good and we can just return that one, else we know we can
5946 	 * just overwrite page->private.
5947 	 */
5948 	exists = (struct extent_buffer *)page->private;
5949 	if (atomic_inc_not_zero(&exists->refs))
5950 		return exists;
5951 
5952 	WARN_ON(PageDirty(page));
5953 	detach_page_private(page);
5954 	return NULL;
5955 }
5956 
5957 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958 					  u64 start, u64 owner_root, int level)
5959 {
5960 	unsigned long len = fs_info->nodesize;
5961 	int num_pages;
5962 	int i;
5963 	unsigned long index = start >> PAGE_SHIFT;
5964 	struct extent_buffer *eb;
5965 	struct extent_buffer *exists = NULL;
5966 	struct page *p;
5967 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5968 	int uptodate = 1;
5969 	int ret;
5970 
5971 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972 		btrfs_err(fs_info, "bad tree block start %llu", start);
5973 		return ERR_PTR(-EINVAL);
5974 	}
5975 
5976 #if BITS_PER_LONG == 32
5977 	if (start >= MAX_LFS_FILESIZE) {
5978 		btrfs_err_rl(fs_info,
5979 		"extent buffer %llu is beyond 32bit page cache limit", start);
5980 		btrfs_err_32bit_limit(fs_info);
5981 		return ERR_PTR(-EOVERFLOW);
5982 	}
5983 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984 		btrfs_warn_32bit_limit(fs_info);
5985 #endif
5986 
5987 	if (fs_info->sectorsize < PAGE_SIZE &&
5988 	    offset_in_page(start) + len > PAGE_SIZE) {
5989 		btrfs_err(fs_info,
5990 		"tree block crosses page boundary, start %llu nodesize %lu",
5991 			  start, len);
5992 		return ERR_PTR(-EINVAL);
5993 	}
5994 
5995 	eb = find_extent_buffer(fs_info, start);
5996 	if (eb)
5997 		return eb;
5998 
5999 	eb = __alloc_extent_buffer(fs_info, start, len);
6000 	if (!eb)
6001 		return ERR_PTR(-ENOMEM);
6002 	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003 
6004 	num_pages = num_extent_pages(eb);
6005 	for (i = 0; i < num_pages; i++, index++) {
6006 		struct btrfs_subpage *prealloc = NULL;
6007 
6008 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009 		if (!p) {
6010 			exists = ERR_PTR(-ENOMEM);
6011 			goto free_eb;
6012 		}
6013 
6014 		/*
6015 		 * Preallocate page->private for subpage case, so that we won't
6016 		 * allocate memory with private_lock hold.  The memory will be
6017 		 * freed by attach_extent_buffer_page() or freed manually if
6018 		 * we exit earlier.
6019 		 *
6020 		 * Although we have ensured one subpage eb can only have one
6021 		 * page, but it may change in the future for 16K page size
6022 		 * support, so we still preallocate the memory in the loop.
6023 		 */
6024 		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025 					  BTRFS_SUBPAGE_METADATA);
6026 		if (ret < 0) {
6027 			unlock_page(p);
6028 			put_page(p);
6029 			exists = ERR_PTR(ret);
6030 			goto free_eb;
6031 		}
6032 
6033 		spin_lock(&mapping->private_lock);
6034 		exists = grab_extent_buffer(fs_info, p);
6035 		if (exists) {
6036 			spin_unlock(&mapping->private_lock);
6037 			unlock_page(p);
6038 			put_page(p);
6039 			mark_extent_buffer_accessed(exists, p);
6040 			btrfs_free_subpage(prealloc);
6041 			goto free_eb;
6042 		}
6043 		/* Should not fail, as we have preallocated the memory */
6044 		ret = attach_extent_buffer_page(eb, p, prealloc);
6045 		ASSERT(!ret);
6046 		/*
6047 		 * To inform we have extra eb under allocation, so that
6048 		 * detach_extent_buffer_page() won't release the page private
6049 		 * when the eb hasn't yet been inserted into radix tree.
6050 		 *
6051 		 * The ref will be decreased when the eb released the page, in
6052 		 * detach_extent_buffer_page().
6053 		 * Thus needs no special handling in error path.
6054 		 */
6055 		btrfs_page_inc_eb_refs(fs_info, p);
6056 		spin_unlock(&mapping->private_lock);
6057 
6058 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059 		eb->pages[i] = p;
6060 		if (!PageUptodate(p))
6061 			uptodate = 0;
6062 
6063 		/*
6064 		 * We can't unlock the pages just yet since the extent buffer
6065 		 * hasn't been properly inserted in the radix tree, this
6066 		 * opens a race with btree_releasepage which can free a page
6067 		 * while we are still filling in all pages for the buffer and
6068 		 * we could crash.
6069 		 */
6070 	}
6071 	if (uptodate)
6072 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6073 again:
6074 	ret = radix_tree_preload(GFP_NOFS);
6075 	if (ret) {
6076 		exists = ERR_PTR(ret);
6077 		goto free_eb;
6078 	}
6079 
6080 	spin_lock(&fs_info->buffer_lock);
6081 	ret = radix_tree_insert(&fs_info->buffer_radix,
6082 				start >> fs_info->sectorsize_bits, eb);
6083 	spin_unlock(&fs_info->buffer_lock);
6084 	radix_tree_preload_end();
6085 	if (ret == -EEXIST) {
6086 		exists = find_extent_buffer(fs_info, start);
6087 		if (exists)
6088 			goto free_eb;
6089 		else
6090 			goto again;
6091 	}
6092 	/* add one reference for the tree */
6093 	check_buffer_tree_ref(eb);
6094 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095 
6096 	/*
6097 	 * Now it's safe to unlock the pages because any calls to
6098 	 * btree_releasepage will correctly detect that a page belongs to a
6099 	 * live buffer and won't free them prematurely.
6100 	 */
6101 	for (i = 0; i < num_pages; i++)
6102 		unlock_page(eb->pages[i]);
6103 	return eb;
6104 
6105 free_eb:
6106 	WARN_ON(!atomic_dec_and_test(&eb->refs));
6107 	for (i = 0; i < num_pages; i++) {
6108 		if (eb->pages[i])
6109 			unlock_page(eb->pages[i]);
6110 	}
6111 
6112 	btrfs_release_extent_buffer(eb);
6113 	return exists;
6114 }
6115 
6116 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117 {
6118 	struct extent_buffer *eb =
6119 			container_of(head, struct extent_buffer, rcu_head);
6120 
6121 	__free_extent_buffer(eb);
6122 }
6123 
6124 static int release_extent_buffer(struct extent_buffer *eb)
6125 	__releases(&eb->refs_lock)
6126 {
6127 	lockdep_assert_held(&eb->refs_lock);
6128 
6129 	WARN_ON(atomic_read(&eb->refs) == 0);
6130 	if (atomic_dec_and_test(&eb->refs)) {
6131 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132 			struct btrfs_fs_info *fs_info = eb->fs_info;
6133 
6134 			spin_unlock(&eb->refs_lock);
6135 
6136 			spin_lock(&fs_info->buffer_lock);
6137 			radix_tree_delete(&fs_info->buffer_radix,
6138 					  eb->start >> fs_info->sectorsize_bits);
6139 			spin_unlock(&fs_info->buffer_lock);
6140 		} else {
6141 			spin_unlock(&eb->refs_lock);
6142 		}
6143 
6144 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145 		/* Should be safe to release our pages at this point */
6146 		btrfs_release_extent_buffer_pages(eb);
6147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149 			__free_extent_buffer(eb);
6150 			return 1;
6151 		}
6152 #endif
6153 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154 		return 1;
6155 	}
6156 	spin_unlock(&eb->refs_lock);
6157 
6158 	return 0;
6159 }
6160 
6161 void free_extent_buffer(struct extent_buffer *eb)
6162 {
6163 	int refs;
6164 	int old;
6165 	if (!eb)
6166 		return;
6167 
6168 	while (1) {
6169 		refs = atomic_read(&eb->refs);
6170 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172 			refs == 1))
6173 			break;
6174 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175 		if (old == refs)
6176 			return;
6177 	}
6178 
6179 	spin_lock(&eb->refs_lock);
6180 	if (atomic_read(&eb->refs) == 2 &&
6181 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182 	    !extent_buffer_under_io(eb) &&
6183 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184 		atomic_dec(&eb->refs);
6185 
6186 	/*
6187 	 * I know this is terrible, but it's temporary until we stop tracking
6188 	 * the uptodate bits and such for the extent buffers.
6189 	 */
6190 	release_extent_buffer(eb);
6191 }
6192 
6193 void free_extent_buffer_stale(struct extent_buffer *eb)
6194 {
6195 	if (!eb)
6196 		return;
6197 
6198 	spin_lock(&eb->refs_lock);
6199 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200 
6201 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203 		atomic_dec(&eb->refs);
6204 	release_extent_buffer(eb);
6205 }
6206 
6207 static void btree_clear_page_dirty(struct page *page)
6208 {
6209 	ASSERT(PageDirty(page));
6210 	ASSERT(PageLocked(page));
6211 	clear_page_dirty_for_io(page);
6212 	xa_lock_irq(&page->mapping->i_pages);
6213 	if (!PageDirty(page))
6214 		__xa_clear_mark(&page->mapping->i_pages,
6215 				page_index(page), PAGECACHE_TAG_DIRTY);
6216 	xa_unlock_irq(&page->mapping->i_pages);
6217 }
6218 
6219 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220 {
6221 	struct btrfs_fs_info *fs_info = eb->fs_info;
6222 	struct page *page = eb->pages[0];
6223 	bool last;
6224 
6225 	/* btree_clear_page_dirty() needs page locked */
6226 	lock_page(page);
6227 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228 						  eb->len);
6229 	if (last)
6230 		btree_clear_page_dirty(page);
6231 	unlock_page(page);
6232 	WARN_ON(atomic_read(&eb->refs) == 0);
6233 }
6234 
6235 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6236 {
6237 	int i;
6238 	int num_pages;
6239 	struct page *page;
6240 
6241 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6242 		return clear_subpage_extent_buffer_dirty(eb);
6243 
6244 	num_pages = num_extent_pages(eb);
6245 
6246 	for (i = 0; i < num_pages; i++) {
6247 		page = eb->pages[i];
6248 		if (!PageDirty(page))
6249 			continue;
6250 		lock_page(page);
6251 		btree_clear_page_dirty(page);
6252 		ClearPageError(page);
6253 		unlock_page(page);
6254 	}
6255 	WARN_ON(atomic_read(&eb->refs) == 0);
6256 }
6257 
6258 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259 {
6260 	int i;
6261 	int num_pages;
6262 	bool was_dirty;
6263 
6264 	check_buffer_tree_ref(eb);
6265 
6266 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267 
6268 	num_pages = num_extent_pages(eb);
6269 	WARN_ON(atomic_read(&eb->refs) == 0);
6270 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271 
6272 	if (!was_dirty) {
6273 		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274 
6275 		/*
6276 		 * For subpage case, we can have other extent buffers in the
6277 		 * same page, and in clear_subpage_extent_buffer_dirty() we
6278 		 * have to clear page dirty without subpage lock held.
6279 		 * This can cause race where our page gets dirty cleared after
6280 		 * we just set it.
6281 		 *
6282 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283 		 * its page for other reasons, we can use page lock to prevent
6284 		 * the above race.
6285 		 */
6286 		if (subpage)
6287 			lock_page(eb->pages[0]);
6288 		for (i = 0; i < num_pages; i++)
6289 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290 					     eb->start, eb->len);
6291 		if (subpage)
6292 			unlock_page(eb->pages[0]);
6293 	}
6294 #ifdef CONFIG_BTRFS_DEBUG
6295 	for (i = 0; i < num_pages; i++)
6296 		ASSERT(PageDirty(eb->pages[i]));
6297 #endif
6298 
6299 	return was_dirty;
6300 }
6301 
6302 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303 {
6304 	struct btrfs_fs_info *fs_info = eb->fs_info;
6305 	struct page *page;
6306 	int num_pages;
6307 	int i;
6308 
6309 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310 	num_pages = num_extent_pages(eb);
6311 	for (i = 0; i < num_pages; i++) {
6312 		page = eb->pages[i];
6313 		if (page)
6314 			btrfs_page_clear_uptodate(fs_info, page,
6315 						  eb->start, eb->len);
6316 	}
6317 }
6318 
6319 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320 {
6321 	struct btrfs_fs_info *fs_info = eb->fs_info;
6322 	struct page *page;
6323 	int num_pages;
6324 	int i;
6325 
6326 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327 	num_pages = num_extent_pages(eb);
6328 	for (i = 0; i < num_pages; i++) {
6329 		page = eb->pages[i];
6330 		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6331 	}
6332 }
6333 
6334 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335 				      int mirror_num)
6336 {
6337 	struct btrfs_fs_info *fs_info = eb->fs_info;
6338 	struct extent_io_tree *io_tree;
6339 	struct page *page = eb->pages[0];
6340 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341 	int ret = 0;
6342 
6343 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344 	ASSERT(PagePrivate(page));
6345 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346 
6347 	if (wait == WAIT_NONE) {
6348 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349 			return -EAGAIN;
6350 	} else {
6351 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352 		if (ret < 0)
6353 			return ret;
6354 	}
6355 
6356 	ret = 0;
6357 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358 	    PageUptodate(page) ||
6359 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362 		return ret;
6363 	}
6364 
6365 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366 	eb->read_mirror = 0;
6367 	atomic_set(&eb->io_pages, 1);
6368 	check_buffer_tree_ref(eb);
6369 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370 
6371 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372 	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373 				 page, eb->start, eb->len,
6374 				 eb->start - page_offset(page),
6375 				 end_bio_extent_readpage, mirror_num, 0,
6376 				 true);
6377 	if (ret) {
6378 		/*
6379 		 * In the endio function, if we hit something wrong we will
6380 		 * increase the io_pages, so here we need to decrease it for
6381 		 * error path.
6382 		 */
6383 		atomic_dec(&eb->io_pages);
6384 	}
6385 	if (bio_ctrl.bio) {
6386 		int tmp;
6387 
6388 		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389 		bio_ctrl.bio = NULL;
6390 		if (tmp < 0)
6391 			return tmp;
6392 	}
6393 	if (ret || wait != WAIT_COMPLETE)
6394 		return ret;
6395 
6396 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398 		ret = -EIO;
6399 	return ret;
6400 }
6401 
6402 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6403 {
6404 	int i;
6405 	struct page *page;
6406 	int err;
6407 	int ret = 0;
6408 	int locked_pages = 0;
6409 	int all_uptodate = 1;
6410 	int num_pages;
6411 	unsigned long num_reads = 0;
6412 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6413 
6414 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415 		return 0;
6416 
6417 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6418 		return read_extent_buffer_subpage(eb, wait, mirror_num);
6419 
6420 	num_pages = num_extent_pages(eb);
6421 	for (i = 0; i < num_pages; i++) {
6422 		page = eb->pages[i];
6423 		if (wait == WAIT_NONE) {
6424 			/*
6425 			 * WAIT_NONE is only utilized by readahead. If we can't
6426 			 * acquire the lock atomically it means either the eb
6427 			 * is being read out or under modification.
6428 			 * Either way the eb will be or has been cached,
6429 			 * readahead can exit safely.
6430 			 */
6431 			if (!trylock_page(page))
6432 				goto unlock_exit;
6433 		} else {
6434 			lock_page(page);
6435 		}
6436 		locked_pages++;
6437 	}
6438 	/*
6439 	 * We need to firstly lock all pages to make sure that
6440 	 * the uptodate bit of our pages won't be affected by
6441 	 * clear_extent_buffer_uptodate().
6442 	 */
6443 	for (i = 0; i < num_pages; i++) {
6444 		page = eb->pages[i];
6445 		if (!PageUptodate(page)) {
6446 			num_reads++;
6447 			all_uptodate = 0;
6448 		}
6449 	}
6450 
6451 	if (all_uptodate) {
6452 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453 		goto unlock_exit;
6454 	}
6455 
6456 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457 	eb->read_mirror = 0;
6458 	atomic_set(&eb->io_pages, num_reads);
6459 	/*
6460 	 * It is possible for releasepage to clear the TREE_REF bit before we
6461 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462 	 */
6463 	check_buffer_tree_ref(eb);
6464 	for (i = 0; i < num_pages; i++) {
6465 		page = eb->pages[i];
6466 
6467 		if (!PageUptodate(page)) {
6468 			if (ret) {
6469 				atomic_dec(&eb->io_pages);
6470 				unlock_page(page);
6471 				continue;
6472 			}
6473 
6474 			ClearPageError(page);
6475 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476 					 &bio_ctrl, page, page_offset(page),
6477 					 PAGE_SIZE, 0, end_bio_extent_readpage,
6478 					 mirror_num, 0, false);
6479 			if (err) {
6480 				/*
6481 				 * We failed to submit the bio so it's the
6482 				 * caller's responsibility to perform cleanup
6483 				 * i.e unlock page/set error bit.
6484 				 */
6485 				ret = err;
6486 				SetPageError(page);
6487 				unlock_page(page);
6488 				atomic_dec(&eb->io_pages);
6489 			}
6490 		} else {
6491 			unlock_page(page);
6492 		}
6493 	}
6494 
6495 	if (bio_ctrl.bio) {
6496 		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497 		bio_ctrl.bio = NULL;
6498 		if (err)
6499 			return err;
6500 	}
6501 
6502 	if (ret || wait != WAIT_COMPLETE)
6503 		return ret;
6504 
6505 	for (i = 0; i < num_pages; i++) {
6506 		page = eb->pages[i];
6507 		wait_on_page_locked(page);
6508 		if (!PageUptodate(page))
6509 			ret = -EIO;
6510 	}
6511 
6512 	return ret;
6513 
6514 unlock_exit:
6515 	while (locked_pages > 0) {
6516 		locked_pages--;
6517 		page = eb->pages[locked_pages];
6518 		unlock_page(page);
6519 	}
6520 	return ret;
6521 }
6522 
6523 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524 			    unsigned long len)
6525 {
6526 	btrfs_warn(eb->fs_info,
6527 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528 		eb->start, eb->len, start, len);
6529 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530 
6531 	return true;
6532 }
6533 
6534 /*
6535  * Check if the [start, start + len) range is valid before reading/writing
6536  * the eb.
6537  * NOTE: @start and @len are offset inside the eb, not logical address.
6538  *
6539  * Caller should not touch the dst/src memory if this function returns error.
6540  */
6541 static inline int check_eb_range(const struct extent_buffer *eb,
6542 				 unsigned long start, unsigned long len)
6543 {
6544 	unsigned long offset;
6545 
6546 	/* start, start + len should not go beyond eb->len nor overflow */
6547 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548 		return report_eb_range(eb, start, len);
6549 
6550 	return false;
6551 }
6552 
6553 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554 			unsigned long start, unsigned long len)
6555 {
6556 	size_t cur;
6557 	size_t offset;
6558 	struct page *page;
6559 	char *kaddr;
6560 	char *dst = (char *)dstv;
6561 	unsigned long i = get_eb_page_index(start);
6562 
6563 	if (check_eb_range(eb, start, len))
6564 		return;
6565 
6566 	offset = get_eb_offset_in_page(eb, start);
6567 
6568 	while (len > 0) {
6569 		page = eb->pages[i];
6570 
6571 		cur = min(len, (PAGE_SIZE - offset));
6572 		kaddr = page_address(page);
6573 		memcpy(dst, kaddr + offset, cur);
6574 
6575 		dst += cur;
6576 		len -= cur;
6577 		offset = 0;
6578 		i++;
6579 	}
6580 }
6581 
6582 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583 				       void __user *dstv,
6584 				       unsigned long start, unsigned long len)
6585 {
6586 	size_t cur;
6587 	size_t offset;
6588 	struct page *page;
6589 	char *kaddr;
6590 	char __user *dst = (char __user *)dstv;
6591 	unsigned long i = get_eb_page_index(start);
6592 	int ret = 0;
6593 
6594 	WARN_ON(start > eb->len);
6595 	WARN_ON(start + len > eb->start + eb->len);
6596 
6597 	offset = get_eb_offset_in_page(eb, start);
6598 
6599 	while (len > 0) {
6600 		page = eb->pages[i];
6601 
6602 		cur = min(len, (PAGE_SIZE - offset));
6603 		kaddr = page_address(page);
6604 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605 			ret = -EFAULT;
6606 			break;
6607 		}
6608 
6609 		dst += cur;
6610 		len -= cur;
6611 		offset = 0;
6612 		i++;
6613 	}
6614 
6615 	return ret;
6616 }
6617 
6618 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619 			 unsigned long start, unsigned long len)
6620 {
6621 	size_t cur;
6622 	size_t offset;
6623 	struct page *page;
6624 	char *kaddr;
6625 	char *ptr = (char *)ptrv;
6626 	unsigned long i = get_eb_page_index(start);
6627 	int ret = 0;
6628 
6629 	if (check_eb_range(eb, start, len))
6630 		return -EINVAL;
6631 
6632 	offset = get_eb_offset_in_page(eb, start);
6633 
6634 	while (len > 0) {
6635 		page = eb->pages[i];
6636 
6637 		cur = min(len, (PAGE_SIZE - offset));
6638 
6639 		kaddr = page_address(page);
6640 		ret = memcmp(ptr, kaddr + offset, cur);
6641 		if (ret)
6642 			break;
6643 
6644 		ptr += cur;
6645 		len -= cur;
6646 		offset = 0;
6647 		i++;
6648 	}
6649 	return ret;
6650 }
6651 
6652 /*
6653  * Check that the extent buffer is uptodate.
6654  *
6655  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657  */
6658 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659 				    struct page *page)
6660 {
6661 	struct btrfs_fs_info *fs_info = eb->fs_info;
6662 
6663 	if (fs_info->sectorsize < PAGE_SIZE) {
6664 		bool uptodate;
6665 
6666 		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667 						       eb->start, eb->len);
6668 		WARN_ON(!uptodate);
6669 	} else {
6670 		WARN_ON(!PageUptodate(page));
6671 	}
6672 }
6673 
6674 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675 		const void *srcv)
6676 {
6677 	char *kaddr;
6678 
6679 	assert_eb_page_uptodate(eb, eb->pages[0]);
6680 	kaddr = page_address(eb->pages[0]) +
6681 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682 						   chunk_tree_uuid));
6683 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684 }
6685 
6686 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687 {
6688 	char *kaddr;
6689 
6690 	assert_eb_page_uptodate(eb, eb->pages[0]);
6691 	kaddr = page_address(eb->pages[0]) +
6692 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694 }
6695 
6696 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697 			 unsigned long start, unsigned long len)
6698 {
6699 	size_t cur;
6700 	size_t offset;
6701 	struct page *page;
6702 	char *kaddr;
6703 	char *src = (char *)srcv;
6704 	unsigned long i = get_eb_page_index(start);
6705 
6706 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6707 
6708 	if (check_eb_range(eb, start, len))
6709 		return;
6710 
6711 	offset = get_eb_offset_in_page(eb, start);
6712 
6713 	while (len > 0) {
6714 		page = eb->pages[i];
6715 		assert_eb_page_uptodate(eb, page);
6716 
6717 		cur = min(len, PAGE_SIZE - offset);
6718 		kaddr = page_address(page);
6719 		memcpy(kaddr + offset, src, cur);
6720 
6721 		src += cur;
6722 		len -= cur;
6723 		offset = 0;
6724 		i++;
6725 	}
6726 }
6727 
6728 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729 		unsigned long len)
6730 {
6731 	size_t cur;
6732 	size_t offset;
6733 	struct page *page;
6734 	char *kaddr;
6735 	unsigned long i = get_eb_page_index(start);
6736 
6737 	if (check_eb_range(eb, start, len))
6738 		return;
6739 
6740 	offset = get_eb_offset_in_page(eb, start);
6741 
6742 	while (len > 0) {
6743 		page = eb->pages[i];
6744 		assert_eb_page_uptodate(eb, page);
6745 
6746 		cur = min(len, PAGE_SIZE - offset);
6747 		kaddr = page_address(page);
6748 		memset(kaddr + offset, 0, cur);
6749 
6750 		len -= cur;
6751 		offset = 0;
6752 		i++;
6753 	}
6754 }
6755 
6756 void copy_extent_buffer_full(const struct extent_buffer *dst,
6757 			     const struct extent_buffer *src)
6758 {
6759 	int i;
6760 	int num_pages;
6761 
6762 	ASSERT(dst->len == src->len);
6763 
6764 	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765 		num_pages = num_extent_pages(dst);
6766 		for (i = 0; i < num_pages; i++)
6767 			copy_page(page_address(dst->pages[i]),
6768 				  page_address(src->pages[i]));
6769 	} else {
6770 		size_t src_offset = get_eb_offset_in_page(src, 0);
6771 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772 
6773 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774 		memcpy(page_address(dst->pages[0]) + dst_offset,
6775 		       page_address(src->pages[0]) + src_offset,
6776 		       src->len);
6777 	}
6778 }
6779 
6780 void copy_extent_buffer(const struct extent_buffer *dst,
6781 			const struct extent_buffer *src,
6782 			unsigned long dst_offset, unsigned long src_offset,
6783 			unsigned long len)
6784 {
6785 	u64 dst_len = dst->len;
6786 	size_t cur;
6787 	size_t offset;
6788 	struct page *page;
6789 	char *kaddr;
6790 	unsigned long i = get_eb_page_index(dst_offset);
6791 
6792 	if (check_eb_range(dst, dst_offset, len) ||
6793 	    check_eb_range(src, src_offset, len))
6794 		return;
6795 
6796 	WARN_ON(src->len != dst_len);
6797 
6798 	offset = get_eb_offset_in_page(dst, dst_offset);
6799 
6800 	while (len > 0) {
6801 		page = dst->pages[i];
6802 		assert_eb_page_uptodate(dst, page);
6803 
6804 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805 
6806 		kaddr = page_address(page);
6807 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808 
6809 		src_offset += cur;
6810 		len -= cur;
6811 		offset = 0;
6812 		i++;
6813 	}
6814 }
6815 
6816 /*
6817  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818  * given bit number
6819  * @eb: the extent buffer
6820  * @start: offset of the bitmap item in the extent buffer
6821  * @nr: bit number
6822  * @page_index: return index of the page in the extent buffer that contains the
6823  * given bit number
6824  * @page_offset: return offset into the page given by page_index
6825  *
6826  * This helper hides the ugliness of finding the byte in an extent buffer which
6827  * contains a given bit.
6828  */
6829 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830 				    unsigned long start, unsigned long nr,
6831 				    unsigned long *page_index,
6832 				    size_t *page_offset)
6833 {
6834 	size_t byte_offset = BIT_BYTE(nr);
6835 	size_t offset;
6836 
6837 	/*
6838 	 * The byte we want is the offset of the extent buffer + the offset of
6839 	 * the bitmap item in the extent buffer + the offset of the byte in the
6840 	 * bitmap item.
6841 	 */
6842 	offset = start + offset_in_page(eb->start) + byte_offset;
6843 
6844 	*page_index = offset >> PAGE_SHIFT;
6845 	*page_offset = offset_in_page(offset);
6846 }
6847 
6848 /**
6849  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850  * @eb: the extent buffer
6851  * @start: offset of the bitmap item in the extent buffer
6852  * @nr: bit number to test
6853  */
6854 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855 			   unsigned long nr)
6856 {
6857 	u8 *kaddr;
6858 	struct page *page;
6859 	unsigned long i;
6860 	size_t offset;
6861 
6862 	eb_bitmap_offset(eb, start, nr, &i, &offset);
6863 	page = eb->pages[i];
6864 	assert_eb_page_uptodate(eb, page);
6865 	kaddr = page_address(page);
6866 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867 }
6868 
6869 /**
6870  * extent_buffer_bitmap_set - set an area of a bitmap
6871  * @eb: the extent buffer
6872  * @start: offset of the bitmap item in the extent buffer
6873  * @pos: bit number of the first bit
6874  * @len: number of bits to set
6875  */
6876 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877 			      unsigned long pos, unsigned long len)
6878 {
6879 	u8 *kaddr;
6880 	struct page *page;
6881 	unsigned long i;
6882 	size_t offset;
6883 	const unsigned int size = pos + len;
6884 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886 
6887 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6888 	page = eb->pages[i];
6889 	assert_eb_page_uptodate(eb, page);
6890 	kaddr = page_address(page);
6891 
6892 	while (len >= bits_to_set) {
6893 		kaddr[offset] |= mask_to_set;
6894 		len -= bits_to_set;
6895 		bits_to_set = BITS_PER_BYTE;
6896 		mask_to_set = ~0;
6897 		if (++offset >= PAGE_SIZE && len > 0) {
6898 			offset = 0;
6899 			page = eb->pages[++i];
6900 			assert_eb_page_uptodate(eb, page);
6901 			kaddr = page_address(page);
6902 		}
6903 	}
6904 	if (len) {
6905 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906 		kaddr[offset] |= mask_to_set;
6907 	}
6908 }
6909 
6910 
6911 /**
6912  * extent_buffer_bitmap_clear - clear an area of a bitmap
6913  * @eb: the extent buffer
6914  * @start: offset of the bitmap item in the extent buffer
6915  * @pos: bit number of the first bit
6916  * @len: number of bits to clear
6917  */
6918 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919 				unsigned long start, unsigned long pos,
6920 				unsigned long len)
6921 {
6922 	u8 *kaddr;
6923 	struct page *page;
6924 	unsigned long i;
6925 	size_t offset;
6926 	const unsigned int size = pos + len;
6927 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929 
6930 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6931 	page = eb->pages[i];
6932 	assert_eb_page_uptodate(eb, page);
6933 	kaddr = page_address(page);
6934 
6935 	while (len >= bits_to_clear) {
6936 		kaddr[offset] &= ~mask_to_clear;
6937 		len -= bits_to_clear;
6938 		bits_to_clear = BITS_PER_BYTE;
6939 		mask_to_clear = ~0;
6940 		if (++offset >= PAGE_SIZE && len > 0) {
6941 			offset = 0;
6942 			page = eb->pages[++i];
6943 			assert_eb_page_uptodate(eb, page);
6944 			kaddr = page_address(page);
6945 		}
6946 	}
6947 	if (len) {
6948 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949 		kaddr[offset] &= ~mask_to_clear;
6950 	}
6951 }
6952 
6953 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954 {
6955 	unsigned long distance = (src > dst) ? src - dst : dst - src;
6956 	return distance < len;
6957 }
6958 
6959 static void copy_pages(struct page *dst_page, struct page *src_page,
6960 		       unsigned long dst_off, unsigned long src_off,
6961 		       unsigned long len)
6962 {
6963 	char *dst_kaddr = page_address(dst_page);
6964 	char *src_kaddr;
6965 	int must_memmove = 0;
6966 
6967 	if (dst_page != src_page) {
6968 		src_kaddr = page_address(src_page);
6969 	} else {
6970 		src_kaddr = dst_kaddr;
6971 		if (areas_overlap(src_off, dst_off, len))
6972 			must_memmove = 1;
6973 	}
6974 
6975 	if (must_memmove)
6976 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977 	else
6978 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979 }
6980 
6981 void memcpy_extent_buffer(const struct extent_buffer *dst,
6982 			  unsigned long dst_offset, unsigned long src_offset,
6983 			  unsigned long len)
6984 {
6985 	size_t cur;
6986 	size_t dst_off_in_page;
6987 	size_t src_off_in_page;
6988 	unsigned long dst_i;
6989 	unsigned long src_i;
6990 
6991 	if (check_eb_range(dst, dst_offset, len) ||
6992 	    check_eb_range(dst, src_offset, len))
6993 		return;
6994 
6995 	while (len > 0) {
6996 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998 
6999 		dst_i = get_eb_page_index(dst_offset);
7000 		src_i = get_eb_page_index(src_offset);
7001 
7002 		cur = min(len, (unsigned long)(PAGE_SIZE -
7003 					       src_off_in_page));
7004 		cur = min_t(unsigned long, cur,
7005 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7006 
7007 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008 			   dst_off_in_page, src_off_in_page, cur);
7009 
7010 		src_offset += cur;
7011 		dst_offset += cur;
7012 		len -= cur;
7013 	}
7014 }
7015 
7016 void memmove_extent_buffer(const struct extent_buffer *dst,
7017 			   unsigned long dst_offset, unsigned long src_offset,
7018 			   unsigned long len)
7019 {
7020 	size_t cur;
7021 	size_t dst_off_in_page;
7022 	size_t src_off_in_page;
7023 	unsigned long dst_end = dst_offset + len - 1;
7024 	unsigned long src_end = src_offset + len - 1;
7025 	unsigned long dst_i;
7026 	unsigned long src_i;
7027 
7028 	if (check_eb_range(dst, dst_offset, len) ||
7029 	    check_eb_range(dst, src_offset, len))
7030 		return;
7031 	if (dst_offset < src_offset) {
7032 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033 		return;
7034 	}
7035 	while (len > 0) {
7036 		dst_i = get_eb_page_index(dst_end);
7037 		src_i = get_eb_page_index(src_end);
7038 
7039 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041 
7042 		cur = min_t(unsigned long, len, src_off_in_page + 1);
7043 		cur = min(cur, dst_off_in_page + 1);
7044 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045 			   dst_off_in_page - cur + 1,
7046 			   src_off_in_page - cur + 1, cur);
7047 
7048 		dst_end -= cur;
7049 		src_end -= cur;
7050 		len -= cur;
7051 	}
7052 }
7053 
7054 static struct extent_buffer *get_next_extent_buffer(
7055 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056 {
7057 	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058 	struct extent_buffer *found = NULL;
7059 	u64 page_start = page_offset(page);
7060 	int ret;
7061 	int i;
7062 
7063 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064 	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065 	lockdep_assert_held(&fs_info->buffer_lock);
7066 
7067 	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068 			bytenr >> fs_info->sectorsize_bits,
7069 			PAGE_SIZE / fs_info->nodesize);
7070 	for (i = 0; i < ret; i++) {
7071 		/* Already beyond page end */
7072 		if (gang[i]->start >= page_start + PAGE_SIZE)
7073 			break;
7074 		/* Found one */
7075 		if (gang[i]->start >= bytenr) {
7076 			found = gang[i];
7077 			break;
7078 		}
7079 	}
7080 	return found;
7081 }
7082 
7083 static int try_release_subpage_extent_buffer(struct page *page)
7084 {
7085 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086 	u64 cur = page_offset(page);
7087 	const u64 end = page_offset(page) + PAGE_SIZE;
7088 	int ret;
7089 
7090 	while (cur < end) {
7091 		struct extent_buffer *eb = NULL;
7092 
7093 		/*
7094 		 * Unlike try_release_extent_buffer() which uses page->private
7095 		 * to grab buffer, for subpage case we rely on radix tree, thus
7096 		 * we need to ensure radix tree consistency.
7097 		 *
7098 		 * We also want an atomic snapshot of the radix tree, thus go
7099 		 * with spinlock rather than RCU.
7100 		 */
7101 		spin_lock(&fs_info->buffer_lock);
7102 		eb = get_next_extent_buffer(fs_info, page, cur);
7103 		if (!eb) {
7104 			/* No more eb in the page range after or at cur */
7105 			spin_unlock(&fs_info->buffer_lock);
7106 			break;
7107 		}
7108 		cur = eb->start + eb->len;
7109 
7110 		/*
7111 		 * The same as try_release_extent_buffer(), to ensure the eb
7112 		 * won't disappear out from under us.
7113 		 */
7114 		spin_lock(&eb->refs_lock);
7115 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116 			spin_unlock(&eb->refs_lock);
7117 			spin_unlock(&fs_info->buffer_lock);
7118 			break;
7119 		}
7120 		spin_unlock(&fs_info->buffer_lock);
7121 
7122 		/*
7123 		 * If tree ref isn't set then we know the ref on this eb is a
7124 		 * real ref, so just return, this eb will likely be freed soon
7125 		 * anyway.
7126 		 */
7127 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128 			spin_unlock(&eb->refs_lock);
7129 			break;
7130 		}
7131 
7132 		/*
7133 		 * Here we don't care about the return value, we will always
7134 		 * check the page private at the end.  And
7135 		 * release_extent_buffer() will release the refs_lock.
7136 		 */
7137 		release_extent_buffer(eb);
7138 	}
7139 	/*
7140 	 * Finally to check if we have cleared page private, as if we have
7141 	 * released all ebs in the page, the page private should be cleared now.
7142 	 */
7143 	spin_lock(&page->mapping->private_lock);
7144 	if (!PagePrivate(page))
7145 		ret = 1;
7146 	else
7147 		ret = 0;
7148 	spin_unlock(&page->mapping->private_lock);
7149 	return ret;
7150 
7151 }
7152 
7153 int try_release_extent_buffer(struct page *page)
7154 {
7155 	struct extent_buffer *eb;
7156 
7157 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158 		return try_release_subpage_extent_buffer(page);
7159 
7160 	/*
7161 	 * We need to make sure nobody is changing page->private, as we rely on
7162 	 * page->private as the pointer to extent buffer.
7163 	 */
7164 	spin_lock(&page->mapping->private_lock);
7165 	if (!PagePrivate(page)) {
7166 		spin_unlock(&page->mapping->private_lock);
7167 		return 1;
7168 	}
7169 
7170 	eb = (struct extent_buffer *)page->private;
7171 	BUG_ON(!eb);
7172 
7173 	/*
7174 	 * This is a little awful but should be ok, we need to make sure that
7175 	 * the eb doesn't disappear out from under us while we're looking at
7176 	 * this page.
7177 	 */
7178 	spin_lock(&eb->refs_lock);
7179 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180 		spin_unlock(&eb->refs_lock);
7181 		spin_unlock(&page->mapping->private_lock);
7182 		return 0;
7183 	}
7184 	spin_unlock(&page->mapping->private_lock);
7185 
7186 	/*
7187 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188 	 * so just return, this page will likely be freed soon anyway.
7189 	 */
7190 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191 		spin_unlock(&eb->refs_lock);
7192 		return 0;
7193 	}
7194 
7195 	return release_extent_buffer(eb);
7196 }
7197 
7198 /*
7199  * btrfs_readahead_tree_block - attempt to readahead a child block
7200  * @fs_info:	the fs_info
7201  * @bytenr:	bytenr to read
7202  * @owner_root: objectid of the root that owns this eb
7203  * @gen:	generation for the uptodate check, can be 0
7204  * @level:	level for the eb
7205  *
7206  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7207  * normal uptodate check of the eb, without checking the generation.  If we have
7208  * to read the block we will not block on anything.
7209  */
7210 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211 				u64 bytenr, u64 owner_root, u64 gen, int level)
7212 {
7213 	struct extent_buffer *eb;
7214 	int ret;
7215 
7216 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217 	if (IS_ERR(eb))
7218 		return;
7219 
7220 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221 		free_extent_buffer(eb);
7222 		return;
7223 	}
7224 
7225 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226 	if (ret < 0)
7227 		free_extent_buffer_stale(eb);
7228 	else
7229 		free_extent_buffer(eb);
7230 }
7231 
7232 /*
7233  * btrfs_readahead_node_child - readahead a node's child block
7234  * @node:	parent node we're reading from
7235  * @slot:	slot in the parent node for the child we want to read
7236  *
7237  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238  * the slot in the node provided.
7239  */
7240 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241 {
7242 	btrfs_readahead_tree_block(node->fs_info,
7243 				   btrfs_node_blockptr(node, slot),
7244 				   btrfs_header_owner(node),
7245 				   btrfs_node_ptr_generation(node, slot),
7246 				   btrfs_header_level(node) - 1);
7247 }
7248