1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/gfp.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/module.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 20 static struct kmem_cache *extent_state_cache; 21 static struct kmem_cache *extent_buffer_cache; 22 23 static LIST_HEAD(buffers); 24 static LIST_HEAD(states); 25 26 #define LEAK_DEBUG 0 27 #if LEAK_DEBUG 28 static DEFINE_SPINLOCK(leak_lock); 29 #endif 30 31 #define BUFFER_LRU_MAX 64 32 33 struct tree_entry { 34 u64 start; 35 u64 end; 36 struct rb_node rb_node; 37 }; 38 39 struct extent_page_data { 40 struct bio *bio; 41 struct extent_io_tree *tree; 42 get_extent_t *get_extent; 43 44 /* tells writepage not to lock the state bits for this range 45 * it still does the unlocking 46 */ 47 unsigned int extent_locked:1; 48 49 /* tells the submit_bio code to use a WRITE_SYNC */ 50 unsigned int sync_io:1; 51 }; 52 53 int __init extent_io_init(void) 54 { 55 extent_state_cache = kmem_cache_create("extent_state", 56 sizeof(struct extent_state), 0, 57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 58 if (!extent_state_cache) 59 return -ENOMEM; 60 61 extent_buffer_cache = kmem_cache_create("extent_buffers", 62 sizeof(struct extent_buffer), 0, 63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 64 if (!extent_buffer_cache) 65 goto free_state_cache; 66 return 0; 67 68 free_state_cache: 69 kmem_cache_destroy(extent_state_cache); 70 return -ENOMEM; 71 } 72 73 void extent_io_exit(void) 74 { 75 struct extent_state *state; 76 struct extent_buffer *eb; 77 78 while (!list_empty(&states)) { 79 state = list_entry(states.next, struct extent_state, leak_list); 80 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 81 "state %lu in tree %p refs %d\n", 82 (unsigned long long)state->start, 83 (unsigned long long)state->end, 84 state->state, state->tree, atomic_read(&state->refs)); 85 list_del(&state->leak_list); 86 kmem_cache_free(extent_state_cache, state); 87 88 } 89 90 while (!list_empty(&buffers)) { 91 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 93 "refs %d\n", (unsigned long long)eb->start, 94 eb->len, atomic_read(&eb->refs)); 95 list_del(&eb->leak_list); 96 kmem_cache_free(extent_buffer_cache, eb); 97 } 98 if (extent_state_cache) 99 kmem_cache_destroy(extent_state_cache); 100 if (extent_buffer_cache) 101 kmem_cache_destroy(extent_buffer_cache); 102 } 103 104 void extent_io_tree_init(struct extent_io_tree *tree, 105 struct address_space *mapping, gfp_t mask) 106 { 107 tree->state.rb_node = NULL; 108 tree->buffer.rb_node = NULL; 109 tree->ops = NULL; 110 tree->dirty_bytes = 0; 111 spin_lock_init(&tree->lock); 112 spin_lock_init(&tree->buffer_lock); 113 tree->mapping = mapping; 114 } 115 116 static struct extent_state *alloc_extent_state(gfp_t mask) 117 { 118 struct extent_state *state; 119 #if LEAK_DEBUG 120 unsigned long flags; 121 #endif 122 123 state = kmem_cache_alloc(extent_state_cache, mask); 124 if (!state) 125 return state; 126 state->state = 0; 127 state->private = 0; 128 state->tree = NULL; 129 #if LEAK_DEBUG 130 spin_lock_irqsave(&leak_lock, flags); 131 list_add(&state->leak_list, &states); 132 spin_unlock_irqrestore(&leak_lock, flags); 133 #endif 134 atomic_set(&state->refs, 1); 135 init_waitqueue_head(&state->wq); 136 return state; 137 } 138 139 static void free_extent_state(struct extent_state *state) 140 { 141 if (!state) 142 return; 143 if (atomic_dec_and_test(&state->refs)) { 144 #if LEAK_DEBUG 145 unsigned long flags; 146 #endif 147 WARN_ON(state->tree); 148 #if LEAK_DEBUG 149 spin_lock_irqsave(&leak_lock, flags); 150 list_del(&state->leak_list); 151 spin_unlock_irqrestore(&leak_lock, flags); 152 #endif 153 kmem_cache_free(extent_state_cache, state); 154 } 155 } 156 157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 158 struct rb_node *node) 159 { 160 struct rb_node **p = &root->rb_node; 161 struct rb_node *parent = NULL; 162 struct tree_entry *entry; 163 164 while (*p) { 165 parent = *p; 166 entry = rb_entry(parent, struct tree_entry, rb_node); 167 168 if (offset < entry->start) 169 p = &(*p)->rb_left; 170 else if (offset > entry->end) 171 p = &(*p)->rb_right; 172 else 173 return parent; 174 } 175 176 entry = rb_entry(node, struct tree_entry, rb_node); 177 rb_link_node(node, parent, p); 178 rb_insert_color(node, root); 179 return NULL; 180 } 181 182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 183 struct rb_node **prev_ret, 184 struct rb_node **next_ret) 185 { 186 struct rb_root *root = &tree->state; 187 struct rb_node *n = root->rb_node; 188 struct rb_node *prev = NULL; 189 struct rb_node *orig_prev = NULL; 190 struct tree_entry *entry; 191 struct tree_entry *prev_entry = NULL; 192 193 while (n) { 194 entry = rb_entry(n, struct tree_entry, rb_node); 195 prev = n; 196 prev_entry = entry; 197 198 if (offset < entry->start) 199 n = n->rb_left; 200 else if (offset > entry->end) 201 n = n->rb_right; 202 else 203 return n; 204 } 205 206 if (prev_ret) { 207 orig_prev = prev; 208 while (prev && offset > prev_entry->end) { 209 prev = rb_next(prev); 210 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 211 } 212 *prev_ret = prev; 213 prev = orig_prev; 214 } 215 216 if (next_ret) { 217 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 218 while (prev && offset < prev_entry->start) { 219 prev = rb_prev(prev); 220 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 221 } 222 *next_ret = prev; 223 } 224 return NULL; 225 } 226 227 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 228 u64 offset) 229 { 230 struct rb_node *prev = NULL; 231 struct rb_node *ret; 232 233 ret = __etree_search(tree, offset, &prev, NULL); 234 if (!ret) 235 return prev; 236 return ret; 237 } 238 239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree, 240 u64 offset, struct rb_node *node) 241 { 242 struct rb_root *root = &tree->buffer; 243 struct rb_node **p = &root->rb_node; 244 struct rb_node *parent = NULL; 245 struct extent_buffer *eb; 246 247 while (*p) { 248 parent = *p; 249 eb = rb_entry(parent, struct extent_buffer, rb_node); 250 251 if (offset < eb->start) 252 p = &(*p)->rb_left; 253 else if (offset > eb->start) 254 p = &(*p)->rb_right; 255 else 256 return eb; 257 } 258 259 rb_link_node(node, parent, p); 260 rb_insert_color(node, root); 261 return NULL; 262 } 263 264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree, 265 u64 offset) 266 { 267 struct rb_root *root = &tree->buffer; 268 struct rb_node *n = root->rb_node; 269 struct extent_buffer *eb; 270 271 while (n) { 272 eb = rb_entry(n, struct extent_buffer, rb_node); 273 if (offset < eb->start) 274 n = n->rb_left; 275 else if (offset > eb->start) 276 n = n->rb_right; 277 else 278 return eb; 279 } 280 return NULL; 281 } 282 283 /* 284 * utility function to look for merge candidates inside a given range. 285 * Any extents with matching state are merged together into a single 286 * extent in the tree. Extents with EXTENT_IO in their state field 287 * are not merged because the end_io handlers need to be able to do 288 * operations on them without sleeping (or doing allocations/splits). 289 * 290 * This should be called with the tree lock held. 291 */ 292 static int merge_state(struct extent_io_tree *tree, 293 struct extent_state *state) 294 { 295 struct extent_state *other; 296 struct rb_node *other_node; 297 298 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 299 return 0; 300 301 other_node = rb_prev(&state->rb_node); 302 if (other_node) { 303 other = rb_entry(other_node, struct extent_state, rb_node); 304 if (other->end == state->start - 1 && 305 other->state == state->state) { 306 state->start = other->start; 307 other->tree = NULL; 308 rb_erase(&other->rb_node, &tree->state); 309 free_extent_state(other); 310 } 311 } 312 other_node = rb_next(&state->rb_node); 313 if (other_node) { 314 other = rb_entry(other_node, struct extent_state, rb_node); 315 if (other->start == state->end + 1 && 316 other->state == state->state) { 317 other->start = state->start; 318 state->tree = NULL; 319 rb_erase(&state->rb_node, &tree->state); 320 free_extent_state(state); 321 } 322 } 323 return 0; 324 } 325 326 static void set_state_cb(struct extent_io_tree *tree, 327 struct extent_state *state, 328 unsigned long bits) 329 { 330 if (tree->ops && tree->ops->set_bit_hook) { 331 tree->ops->set_bit_hook(tree->mapping->host, state->start, 332 state->end, state->state, bits); 333 } 334 } 335 336 static void clear_state_cb(struct extent_io_tree *tree, 337 struct extent_state *state, 338 unsigned long bits) 339 { 340 if (tree->ops && tree->ops->clear_bit_hook) { 341 tree->ops->clear_bit_hook(tree->mapping->host, state->start, 342 state->end, state->state, bits); 343 } 344 } 345 346 /* 347 * insert an extent_state struct into the tree. 'bits' are set on the 348 * struct before it is inserted. 349 * 350 * This may return -EEXIST if the extent is already there, in which case the 351 * state struct is freed. 352 * 353 * The tree lock is not taken internally. This is a utility function and 354 * probably isn't what you want to call (see set/clear_extent_bit). 355 */ 356 static int insert_state(struct extent_io_tree *tree, 357 struct extent_state *state, u64 start, u64 end, 358 int bits) 359 { 360 struct rb_node *node; 361 362 if (end < start) { 363 printk(KERN_ERR "btrfs end < start %llu %llu\n", 364 (unsigned long long)end, 365 (unsigned long long)start); 366 WARN_ON(1); 367 } 368 if (bits & EXTENT_DIRTY) 369 tree->dirty_bytes += end - start + 1; 370 set_state_cb(tree, state, bits); 371 state->state |= bits; 372 state->start = start; 373 state->end = end; 374 node = tree_insert(&tree->state, end, &state->rb_node); 375 if (node) { 376 struct extent_state *found; 377 found = rb_entry(node, struct extent_state, rb_node); 378 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 379 "%llu %llu\n", (unsigned long long)found->start, 380 (unsigned long long)found->end, 381 (unsigned long long)start, (unsigned long long)end); 382 free_extent_state(state); 383 return -EEXIST; 384 } 385 state->tree = tree; 386 merge_state(tree, state); 387 return 0; 388 } 389 390 /* 391 * split a given extent state struct in two, inserting the preallocated 392 * struct 'prealloc' as the newly created second half. 'split' indicates an 393 * offset inside 'orig' where it should be split. 394 * 395 * Before calling, 396 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 397 * are two extent state structs in the tree: 398 * prealloc: [orig->start, split - 1] 399 * orig: [ split, orig->end ] 400 * 401 * The tree locks are not taken by this function. They need to be held 402 * by the caller. 403 */ 404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 405 struct extent_state *prealloc, u64 split) 406 { 407 struct rb_node *node; 408 prealloc->start = orig->start; 409 prealloc->end = split - 1; 410 prealloc->state = orig->state; 411 orig->start = split; 412 413 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 414 if (node) { 415 free_extent_state(prealloc); 416 return -EEXIST; 417 } 418 prealloc->tree = tree; 419 return 0; 420 } 421 422 /* 423 * utility function to clear some bits in an extent state struct. 424 * it will optionally wake up any one waiting on this state (wake == 1), or 425 * forcibly remove the state from the tree (delete == 1). 426 * 427 * If no bits are set on the state struct after clearing things, the 428 * struct is freed and removed from the tree 429 */ 430 static int clear_state_bit(struct extent_io_tree *tree, 431 struct extent_state *state, int bits, int wake, 432 int delete) 433 { 434 int ret = state->state & bits; 435 436 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 437 u64 range = state->end - state->start + 1; 438 WARN_ON(range > tree->dirty_bytes); 439 tree->dirty_bytes -= range; 440 } 441 clear_state_cb(tree, state, bits); 442 state->state &= ~bits; 443 if (wake) 444 wake_up(&state->wq); 445 if (delete || state->state == 0) { 446 if (state->tree) { 447 clear_state_cb(tree, state, state->state); 448 rb_erase(&state->rb_node, &tree->state); 449 state->tree = NULL; 450 free_extent_state(state); 451 } else { 452 WARN_ON(1); 453 } 454 } else { 455 merge_state(tree, state); 456 } 457 return ret; 458 } 459 460 /* 461 * clear some bits on a range in the tree. This may require splitting 462 * or inserting elements in the tree, so the gfp mask is used to 463 * indicate which allocations or sleeping are allowed. 464 * 465 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 466 * the given range from the tree regardless of state (ie for truncate). 467 * 468 * the range [start, end] is inclusive. 469 * 470 * This takes the tree lock, and returns < 0 on error, > 0 if any of the 471 * bits were already set, or zero if none of the bits were already set. 472 */ 473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 474 int bits, int wake, int delete, gfp_t mask) 475 { 476 struct extent_state *state; 477 struct extent_state *prealloc = NULL; 478 struct rb_node *node; 479 int err; 480 int set = 0; 481 482 again: 483 if (!prealloc && (mask & __GFP_WAIT)) { 484 prealloc = alloc_extent_state(mask); 485 if (!prealloc) 486 return -ENOMEM; 487 } 488 489 spin_lock(&tree->lock); 490 /* 491 * this search will find the extents that end after 492 * our range starts 493 */ 494 node = tree_search(tree, start); 495 if (!node) 496 goto out; 497 state = rb_entry(node, struct extent_state, rb_node); 498 if (state->start > end) 499 goto out; 500 WARN_ON(state->end < start); 501 502 /* 503 * | ---- desired range ---- | 504 * | state | or 505 * | ------------- state -------------- | 506 * 507 * We need to split the extent we found, and may flip 508 * bits on second half. 509 * 510 * If the extent we found extends past our range, we 511 * just split and search again. It'll get split again 512 * the next time though. 513 * 514 * If the extent we found is inside our range, we clear 515 * the desired bit on it. 516 */ 517 518 if (state->start < start) { 519 if (!prealloc) 520 prealloc = alloc_extent_state(GFP_ATOMIC); 521 err = split_state(tree, state, prealloc, start); 522 BUG_ON(err == -EEXIST); 523 prealloc = NULL; 524 if (err) 525 goto out; 526 if (state->end <= end) { 527 start = state->end + 1; 528 set |= clear_state_bit(tree, state, bits, 529 wake, delete); 530 } else { 531 start = state->start; 532 } 533 goto search_again; 534 } 535 /* 536 * | ---- desired range ---- | 537 * | state | 538 * We need to split the extent, and clear the bit 539 * on the first half 540 */ 541 if (state->start <= end && state->end > end) { 542 if (!prealloc) 543 prealloc = alloc_extent_state(GFP_ATOMIC); 544 err = split_state(tree, state, prealloc, end + 1); 545 BUG_ON(err == -EEXIST); 546 547 if (wake) 548 wake_up(&state->wq); 549 set |= clear_state_bit(tree, prealloc, bits, 550 wake, delete); 551 prealloc = NULL; 552 goto out; 553 } 554 555 start = state->end + 1; 556 set |= clear_state_bit(tree, state, bits, wake, delete); 557 goto search_again; 558 559 out: 560 spin_unlock(&tree->lock); 561 if (prealloc) 562 free_extent_state(prealloc); 563 564 return set; 565 566 search_again: 567 if (start > end) 568 goto out; 569 spin_unlock(&tree->lock); 570 if (mask & __GFP_WAIT) 571 cond_resched(); 572 goto again; 573 } 574 575 static int wait_on_state(struct extent_io_tree *tree, 576 struct extent_state *state) 577 __releases(tree->lock) 578 __acquires(tree->lock) 579 { 580 DEFINE_WAIT(wait); 581 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 582 spin_unlock(&tree->lock); 583 schedule(); 584 spin_lock(&tree->lock); 585 finish_wait(&state->wq, &wait); 586 return 0; 587 } 588 589 /* 590 * waits for one or more bits to clear on a range in the state tree. 591 * The range [start, end] is inclusive. 592 * The tree lock is taken by this function 593 */ 594 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 595 { 596 struct extent_state *state; 597 struct rb_node *node; 598 599 spin_lock(&tree->lock); 600 again: 601 while (1) { 602 /* 603 * this search will find all the extents that end after 604 * our range starts 605 */ 606 node = tree_search(tree, start); 607 if (!node) 608 break; 609 610 state = rb_entry(node, struct extent_state, rb_node); 611 612 if (state->start > end) 613 goto out; 614 615 if (state->state & bits) { 616 start = state->start; 617 atomic_inc(&state->refs); 618 wait_on_state(tree, state); 619 free_extent_state(state); 620 goto again; 621 } 622 start = state->end + 1; 623 624 if (start > end) 625 break; 626 627 if (need_resched()) { 628 spin_unlock(&tree->lock); 629 cond_resched(); 630 spin_lock(&tree->lock); 631 } 632 } 633 out: 634 spin_unlock(&tree->lock); 635 return 0; 636 } 637 638 static void set_state_bits(struct extent_io_tree *tree, 639 struct extent_state *state, 640 int bits) 641 { 642 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 643 u64 range = state->end - state->start + 1; 644 tree->dirty_bytes += range; 645 } 646 set_state_cb(tree, state, bits); 647 state->state |= bits; 648 } 649 650 /* 651 * set some bits on a range in the tree. This may require allocations 652 * or sleeping, so the gfp mask is used to indicate what is allowed. 653 * 654 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the 655 * range already has the desired bits set. The start of the existing 656 * range is returned in failed_start in this case. 657 * 658 * [start, end] is inclusive 659 * This takes the tree lock. 660 */ 661 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 662 int bits, int exclusive, u64 *failed_start, 663 gfp_t mask) 664 { 665 struct extent_state *state; 666 struct extent_state *prealloc = NULL; 667 struct rb_node *node; 668 int err = 0; 669 int set; 670 u64 last_start; 671 u64 last_end; 672 again: 673 if (!prealloc && (mask & __GFP_WAIT)) { 674 prealloc = alloc_extent_state(mask); 675 if (!prealloc) 676 return -ENOMEM; 677 } 678 679 spin_lock(&tree->lock); 680 /* 681 * this search will find all the extents that end after 682 * our range starts. 683 */ 684 node = tree_search(tree, start); 685 if (!node) { 686 err = insert_state(tree, prealloc, start, end, bits); 687 prealloc = NULL; 688 BUG_ON(err == -EEXIST); 689 goto out; 690 } 691 692 state = rb_entry(node, struct extent_state, rb_node); 693 last_start = state->start; 694 last_end = state->end; 695 696 /* 697 * | ---- desired range ---- | 698 * | state | 699 * 700 * Just lock what we found and keep going 701 */ 702 if (state->start == start && state->end <= end) { 703 set = state->state & bits; 704 if (set && exclusive) { 705 *failed_start = state->start; 706 err = -EEXIST; 707 goto out; 708 } 709 set_state_bits(tree, state, bits); 710 start = state->end + 1; 711 merge_state(tree, state); 712 goto search_again; 713 } 714 715 /* 716 * | ---- desired range ---- | 717 * | state | 718 * or 719 * | ------------- state -------------- | 720 * 721 * We need to split the extent we found, and may flip bits on 722 * second half. 723 * 724 * If the extent we found extends past our 725 * range, we just split and search again. It'll get split 726 * again the next time though. 727 * 728 * If the extent we found is inside our range, we set the 729 * desired bit on it. 730 */ 731 if (state->start < start) { 732 set = state->state & bits; 733 if (exclusive && set) { 734 *failed_start = start; 735 err = -EEXIST; 736 goto out; 737 } 738 err = split_state(tree, state, prealloc, start); 739 BUG_ON(err == -EEXIST); 740 prealloc = NULL; 741 if (err) 742 goto out; 743 if (state->end <= end) { 744 set_state_bits(tree, state, bits); 745 start = state->end + 1; 746 merge_state(tree, state); 747 } else { 748 start = state->start; 749 } 750 goto search_again; 751 } 752 /* 753 * | ---- desired range ---- | 754 * | state | or | state | 755 * 756 * There's a hole, we need to insert something in it and 757 * ignore the extent we found. 758 */ 759 if (state->start > start) { 760 u64 this_end; 761 if (end < last_start) 762 this_end = end; 763 else 764 this_end = last_start - 1; 765 err = insert_state(tree, prealloc, start, this_end, 766 bits); 767 prealloc = NULL; 768 BUG_ON(err == -EEXIST); 769 if (err) 770 goto out; 771 start = this_end + 1; 772 goto search_again; 773 } 774 /* 775 * | ---- desired range ---- | 776 * | state | 777 * We need to split the extent, and set the bit 778 * on the first half 779 */ 780 if (state->start <= end && state->end > end) { 781 set = state->state & bits; 782 if (exclusive && set) { 783 *failed_start = start; 784 err = -EEXIST; 785 goto out; 786 } 787 err = split_state(tree, state, prealloc, end + 1); 788 BUG_ON(err == -EEXIST); 789 790 set_state_bits(tree, prealloc, bits); 791 merge_state(tree, prealloc); 792 prealloc = NULL; 793 goto out; 794 } 795 796 goto search_again; 797 798 out: 799 spin_unlock(&tree->lock); 800 if (prealloc) 801 free_extent_state(prealloc); 802 803 return err; 804 805 search_again: 806 if (start > end) 807 goto out; 808 spin_unlock(&tree->lock); 809 if (mask & __GFP_WAIT) 810 cond_resched(); 811 goto again; 812 } 813 814 /* wrappers around set/clear extent bit */ 815 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 816 gfp_t mask) 817 { 818 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, 819 mask); 820 } 821 822 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, 823 gfp_t mask) 824 { 825 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask); 826 } 827 828 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 829 int bits, gfp_t mask) 830 { 831 return set_extent_bit(tree, start, end, bits, 0, NULL, 832 mask); 833 } 834 835 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 836 int bits, gfp_t mask) 837 { 838 return clear_extent_bit(tree, start, end, bits, 0, 0, mask); 839 } 840 841 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 842 gfp_t mask) 843 { 844 return set_extent_bit(tree, start, end, 845 EXTENT_DELALLOC | EXTENT_DIRTY, 846 0, NULL, mask); 847 } 848 849 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 850 gfp_t mask) 851 { 852 return clear_extent_bit(tree, start, end, 853 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); 854 } 855 856 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, 857 gfp_t mask) 858 { 859 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask); 860 } 861 862 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 863 gfp_t mask) 864 { 865 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, 866 mask); 867 } 868 869 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 870 gfp_t mask) 871 { 872 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); 873 } 874 875 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 876 gfp_t mask) 877 { 878 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, 879 mask); 880 } 881 882 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 883 u64 end, gfp_t mask) 884 { 885 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); 886 } 887 888 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, 889 gfp_t mask) 890 { 891 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, 892 0, NULL, mask); 893 } 894 895 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start, 896 u64 end, gfp_t mask) 897 { 898 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); 899 } 900 901 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) 902 { 903 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); 904 } 905 906 /* 907 * either insert or lock state struct between start and end use mask to tell 908 * us if waiting is desired. 909 */ 910 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 911 { 912 int err; 913 u64 failed_start; 914 while (1) { 915 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 916 &failed_start, mask); 917 if (err == -EEXIST && (mask & __GFP_WAIT)) { 918 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 919 start = failed_start; 920 } else { 921 break; 922 } 923 WARN_ON(start > end); 924 } 925 return err; 926 } 927 928 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, 929 gfp_t mask) 930 { 931 int err; 932 u64 failed_start; 933 934 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 935 &failed_start, mask); 936 if (err == -EEXIST) { 937 if (failed_start > start) 938 clear_extent_bit(tree, start, failed_start - 1, 939 EXTENT_LOCKED, 1, 0, mask); 940 return 0; 941 } 942 return 1; 943 } 944 945 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, 946 gfp_t mask) 947 { 948 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); 949 } 950 951 /* 952 * helper function to set pages and extents in the tree dirty 953 */ 954 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) 955 { 956 unsigned long index = start >> PAGE_CACHE_SHIFT; 957 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 958 struct page *page; 959 960 while (index <= end_index) { 961 page = find_get_page(tree->mapping, index); 962 BUG_ON(!page); 963 __set_page_dirty_nobuffers(page); 964 page_cache_release(page); 965 index++; 966 } 967 set_extent_dirty(tree, start, end, GFP_NOFS); 968 return 0; 969 } 970 971 /* 972 * helper function to set both pages and extents in the tree writeback 973 */ 974 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 975 { 976 unsigned long index = start >> PAGE_CACHE_SHIFT; 977 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 978 struct page *page; 979 980 while (index <= end_index) { 981 page = find_get_page(tree->mapping, index); 982 BUG_ON(!page); 983 set_page_writeback(page); 984 page_cache_release(page); 985 index++; 986 } 987 set_extent_writeback(tree, start, end, GFP_NOFS); 988 return 0; 989 } 990 991 /* 992 * find the first offset in the io tree with 'bits' set. zero is 993 * returned if we find something, and *start_ret and *end_ret are 994 * set to reflect the state struct that was found. 995 * 996 * If nothing was found, 1 is returned, < 0 on error 997 */ 998 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 999 u64 *start_ret, u64 *end_ret, int bits) 1000 { 1001 struct rb_node *node; 1002 struct extent_state *state; 1003 int ret = 1; 1004 1005 spin_lock(&tree->lock); 1006 /* 1007 * this search will find all the extents that end after 1008 * our range starts. 1009 */ 1010 node = tree_search(tree, start); 1011 if (!node) 1012 goto out; 1013 1014 while (1) { 1015 state = rb_entry(node, struct extent_state, rb_node); 1016 if (state->end >= start && (state->state & bits)) { 1017 *start_ret = state->start; 1018 *end_ret = state->end; 1019 ret = 0; 1020 break; 1021 } 1022 node = rb_next(node); 1023 if (!node) 1024 break; 1025 } 1026 out: 1027 spin_unlock(&tree->lock); 1028 return ret; 1029 } 1030 1031 /* find the first state struct with 'bits' set after 'start', and 1032 * return it. tree->lock must be held. NULL will returned if 1033 * nothing was found after 'start' 1034 */ 1035 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1036 u64 start, int bits) 1037 { 1038 struct rb_node *node; 1039 struct extent_state *state; 1040 1041 /* 1042 * this search will find all the extents that end after 1043 * our range starts. 1044 */ 1045 node = tree_search(tree, start); 1046 if (!node) 1047 goto out; 1048 1049 while (1) { 1050 state = rb_entry(node, struct extent_state, rb_node); 1051 if (state->end >= start && (state->state & bits)) 1052 return state; 1053 1054 node = rb_next(node); 1055 if (!node) 1056 break; 1057 } 1058 out: 1059 return NULL; 1060 } 1061 1062 /* 1063 * find a contiguous range of bytes in the file marked as delalloc, not 1064 * more than 'max_bytes'. start and end are used to return the range, 1065 * 1066 * 1 is returned if we find something, 0 if nothing was in the tree 1067 */ 1068 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1069 u64 *start, u64 *end, u64 max_bytes) 1070 { 1071 struct rb_node *node; 1072 struct extent_state *state; 1073 u64 cur_start = *start; 1074 u64 found = 0; 1075 u64 total_bytes = 0; 1076 1077 spin_lock(&tree->lock); 1078 1079 /* 1080 * this search will find all the extents that end after 1081 * our range starts. 1082 */ 1083 node = tree_search(tree, cur_start); 1084 if (!node) { 1085 if (!found) 1086 *end = (u64)-1; 1087 goto out; 1088 } 1089 1090 while (1) { 1091 state = rb_entry(node, struct extent_state, rb_node); 1092 if (found && (state->start != cur_start || 1093 (state->state & EXTENT_BOUNDARY))) { 1094 goto out; 1095 } 1096 if (!(state->state & EXTENT_DELALLOC)) { 1097 if (!found) 1098 *end = state->end; 1099 goto out; 1100 } 1101 if (!found) 1102 *start = state->start; 1103 found++; 1104 *end = state->end; 1105 cur_start = state->end + 1; 1106 node = rb_next(node); 1107 if (!node) 1108 break; 1109 total_bytes += state->end - state->start + 1; 1110 if (total_bytes >= max_bytes) 1111 break; 1112 } 1113 out: 1114 spin_unlock(&tree->lock); 1115 return found; 1116 } 1117 1118 static noinline int __unlock_for_delalloc(struct inode *inode, 1119 struct page *locked_page, 1120 u64 start, u64 end) 1121 { 1122 int ret; 1123 struct page *pages[16]; 1124 unsigned long index = start >> PAGE_CACHE_SHIFT; 1125 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1126 unsigned long nr_pages = end_index - index + 1; 1127 int i; 1128 1129 if (index == locked_page->index && end_index == index) 1130 return 0; 1131 1132 while (nr_pages > 0) { 1133 ret = find_get_pages_contig(inode->i_mapping, index, 1134 min_t(unsigned long, nr_pages, 1135 ARRAY_SIZE(pages)), pages); 1136 for (i = 0; i < ret; i++) { 1137 if (pages[i] != locked_page) 1138 unlock_page(pages[i]); 1139 page_cache_release(pages[i]); 1140 } 1141 nr_pages -= ret; 1142 index += ret; 1143 cond_resched(); 1144 } 1145 return 0; 1146 } 1147 1148 static noinline int lock_delalloc_pages(struct inode *inode, 1149 struct page *locked_page, 1150 u64 delalloc_start, 1151 u64 delalloc_end) 1152 { 1153 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1154 unsigned long start_index = index; 1155 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1156 unsigned long pages_locked = 0; 1157 struct page *pages[16]; 1158 unsigned long nrpages; 1159 int ret; 1160 int i; 1161 1162 /* the caller is responsible for locking the start index */ 1163 if (index == locked_page->index && index == end_index) 1164 return 0; 1165 1166 /* skip the page at the start index */ 1167 nrpages = end_index - index + 1; 1168 while (nrpages > 0) { 1169 ret = find_get_pages_contig(inode->i_mapping, index, 1170 min_t(unsigned long, 1171 nrpages, ARRAY_SIZE(pages)), pages); 1172 if (ret == 0) { 1173 ret = -EAGAIN; 1174 goto done; 1175 } 1176 /* now we have an array of pages, lock them all */ 1177 for (i = 0; i < ret; i++) { 1178 /* 1179 * the caller is taking responsibility for 1180 * locked_page 1181 */ 1182 if (pages[i] != locked_page) { 1183 lock_page(pages[i]); 1184 if (!PageDirty(pages[i]) || 1185 pages[i]->mapping != inode->i_mapping) { 1186 ret = -EAGAIN; 1187 unlock_page(pages[i]); 1188 page_cache_release(pages[i]); 1189 goto done; 1190 } 1191 } 1192 page_cache_release(pages[i]); 1193 pages_locked++; 1194 } 1195 nrpages -= ret; 1196 index += ret; 1197 cond_resched(); 1198 } 1199 ret = 0; 1200 done: 1201 if (ret && pages_locked) { 1202 __unlock_for_delalloc(inode, locked_page, 1203 delalloc_start, 1204 ((u64)(start_index + pages_locked - 1)) << 1205 PAGE_CACHE_SHIFT); 1206 } 1207 return ret; 1208 } 1209 1210 /* 1211 * find a contiguous range of bytes in the file marked as delalloc, not 1212 * more than 'max_bytes'. start and end are used to return the range, 1213 * 1214 * 1 is returned if we find something, 0 if nothing was in the tree 1215 */ 1216 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1217 struct extent_io_tree *tree, 1218 struct page *locked_page, 1219 u64 *start, u64 *end, 1220 u64 max_bytes) 1221 { 1222 u64 delalloc_start; 1223 u64 delalloc_end; 1224 u64 found; 1225 int ret; 1226 int loops = 0; 1227 1228 again: 1229 /* step one, find a bunch of delalloc bytes starting at start */ 1230 delalloc_start = *start; 1231 delalloc_end = 0; 1232 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1233 max_bytes); 1234 if (!found || delalloc_end <= *start) { 1235 *start = delalloc_start; 1236 *end = delalloc_end; 1237 return found; 1238 } 1239 1240 /* 1241 * start comes from the offset of locked_page. We have to lock 1242 * pages in order, so we can't process delalloc bytes before 1243 * locked_page 1244 */ 1245 if (delalloc_start < *start) 1246 delalloc_start = *start; 1247 1248 /* 1249 * make sure to limit the number of pages we try to lock down 1250 * if we're looping. 1251 */ 1252 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1253 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1254 1255 /* step two, lock all the pages after the page that has start */ 1256 ret = lock_delalloc_pages(inode, locked_page, 1257 delalloc_start, delalloc_end); 1258 if (ret == -EAGAIN) { 1259 /* some of the pages are gone, lets avoid looping by 1260 * shortening the size of the delalloc range we're searching 1261 */ 1262 if (!loops) { 1263 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1264 max_bytes = PAGE_CACHE_SIZE - offset; 1265 loops = 1; 1266 goto again; 1267 } else { 1268 found = 0; 1269 goto out_failed; 1270 } 1271 } 1272 BUG_ON(ret); 1273 1274 /* step three, lock the state bits for the whole range */ 1275 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); 1276 1277 /* then test to make sure it is all still delalloc */ 1278 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1279 EXTENT_DELALLOC, 1); 1280 if (!ret) { 1281 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); 1282 __unlock_for_delalloc(inode, locked_page, 1283 delalloc_start, delalloc_end); 1284 cond_resched(); 1285 goto again; 1286 } 1287 *start = delalloc_start; 1288 *end = delalloc_end; 1289 out_failed: 1290 return found; 1291 } 1292 1293 int extent_clear_unlock_delalloc(struct inode *inode, 1294 struct extent_io_tree *tree, 1295 u64 start, u64 end, struct page *locked_page, 1296 int unlock_pages, 1297 int clear_unlock, 1298 int clear_delalloc, int clear_dirty, 1299 int set_writeback, 1300 int end_writeback) 1301 { 1302 int ret; 1303 struct page *pages[16]; 1304 unsigned long index = start >> PAGE_CACHE_SHIFT; 1305 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1306 unsigned long nr_pages = end_index - index + 1; 1307 int i; 1308 int clear_bits = 0; 1309 1310 if (clear_unlock) 1311 clear_bits |= EXTENT_LOCKED; 1312 if (clear_dirty) 1313 clear_bits |= EXTENT_DIRTY; 1314 1315 if (clear_delalloc) 1316 clear_bits |= EXTENT_DELALLOC; 1317 1318 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS); 1319 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback)) 1320 return 0; 1321 1322 while (nr_pages > 0) { 1323 ret = find_get_pages_contig(inode->i_mapping, index, 1324 min_t(unsigned long, 1325 nr_pages, ARRAY_SIZE(pages)), pages); 1326 for (i = 0; i < ret; i++) { 1327 if (pages[i] == locked_page) { 1328 page_cache_release(pages[i]); 1329 continue; 1330 } 1331 if (clear_dirty) 1332 clear_page_dirty_for_io(pages[i]); 1333 if (set_writeback) 1334 set_page_writeback(pages[i]); 1335 if (end_writeback) 1336 end_page_writeback(pages[i]); 1337 if (unlock_pages) 1338 unlock_page(pages[i]); 1339 page_cache_release(pages[i]); 1340 } 1341 nr_pages -= ret; 1342 index += ret; 1343 cond_resched(); 1344 } 1345 return 0; 1346 } 1347 1348 /* 1349 * count the number of bytes in the tree that have a given bit(s) 1350 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1351 * cached. The total number found is returned. 1352 */ 1353 u64 count_range_bits(struct extent_io_tree *tree, 1354 u64 *start, u64 search_end, u64 max_bytes, 1355 unsigned long bits) 1356 { 1357 struct rb_node *node; 1358 struct extent_state *state; 1359 u64 cur_start = *start; 1360 u64 total_bytes = 0; 1361 int found = 0; 1362 1363 if (search_end <= cur_start) { 1364 WARN_ON(1); 1365 return 0; 1366 } 1367 1368 spin_lock(&tree->lock); 1369 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1370 total_bytes = tree->dirty_bytes; 1371 goto out; 1372 } 1373 /* 1374 * this search will find all the extents that end after 1375 * our range starts. 1376 */ 1377 node = tree_search(tree, cur_start); 1378 if (!node) 1379 goto out; 1380 1381 while (1) { 1382 state = rb_entry(node, struct extent_state, rb_node); 1383 if (state->start > search_end) 1384 break; 1385 if (state->end >= cur_start && (state->state & bits)) { 1386 total_bytes += min(search_end, state->end) + 1 - 1387 max(cur_start, state->start); 1388 if (total_bytes >= max_bytes) 1389 break; 1390 if (!found) { 1391 *start = state->start; 1392 found = 1; 1393 } 1394 } 1395 node = rb_next(node); 1396 if (!node) 1397 break; 1398 } 1399 out: 1400 spin_unlock(&tree->lock); 1401 return total_bytes; 1402 } 1403 1404 #if 0 1405 /* 1406 * helper function to lock both pages and extents in the tree. 1407 * pages must be locked first. 1408 */ 1409 static int lock_range(struct extent_io_tree *tree, u64 start, u64 end) 1410 { 1411 unsigned long index = start >> PAGE_CACHE_SHIFT; 1412 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1413 struct page *page; 1414 int err; 1415 1416 while (index <= end_index) { 1417 page = grab_cache_page(tree->mapping, index); 1418 if (!page) { 1419 err = -ENOMEM; 1420 goto failed; 1421 } 1422 if (IS_ERR(page)) { 1423 err = PTR_ERR(page); 1424 goto failed; 1425 } 1426 index++; 1427 } 1428 lock_extent(tree, start, end, GFP_NOFS); 1429 return 0; 1430 1431 failed: 1432 /* 1433 * we failed above in getting the page at 'index', so we undo here 1434 * up to but not including the page at 'index' 1435 */ 1436 end_index = index; 1437 index = start >> PAGE_CACHE_SHIFT; 1438 while (index < end_index) { 1439 page = find_get_page(tree->mapping, index); 1440 unlock_page(page); 1441 page_cache_release(page); 1442 index++; 1443 } 1444 return err; 1445 } 1446 1447 /* 1448 * helper function to unlock both pages and extents in the tree. 1449 */ 1450 static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end) 1451 { 1452 unsigned long index = start >> PAGE_CACHE_SHIFT; 1453 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1454 struct page *page; 1455 1456 while (index <= end_index) { 1457 page = find_get_page(tree->mapping, index); 1458 unlock_page(page); 1459 page_cache_release(page); 1460 index++; 1461 } 1462 unlock_extent(tree, start, end, GFP_NOFS); 1463 return 0; 1464 } 1465 #endif 1466 1467 /* 1468 * set the private field for a given byte offset in the tree. If there isn't 1469 * an extent_state there already, this does nothing. 1470 */ 1471 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1472 { 1473 struct rb_node *node; 1474 struct extent_state *state; 1475 int ret = 0; 1476 1477 spin_lock(&tree->lock); 1478 /* 1479 * this search will find all the extents that end after 1480 * our range starts. 1481 */ 1482 node = tree_search(tree, start); 1483 if (!node) { 1484 ret = -ENOENT; 1485 goto out; 1486 } 1487 state = rb_entry(node, struct extent_state, rb_node); 1488 if (state->start != start) { 1489 ret = -ENOENT; 1490 goto out; 1491 } 1492 state->private = private; 1493 out: 1494 spin_unlock(&tree->lock); 1495 return ret; 1496 } 1497 1498 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1499 { 1500 struct rb_node *node; 1501 struct extent_state *state; 1502 int ret = 0; 1503 1504 spin_lock(&tree->lock); 1505 /* 1506 * this search will find all the extents that end after 1507 * our range starts. 1508 */ 1509 node = tree_search(tree, start); 1510 if (!node) { 1511 ret = -ENOENT; 1512 goto out; 1513 } 1514 state = rb_entry(node, struct extent_state, rb_node); 1515 if (state->start != start) { 1516 ret = -ENOENT; 1517 goto out; 1518 } 1519 *private = state->private; 1520 out: 1521 spin_unlock(&tree->lock); 1522 return ret; 1523 } 1524 1525 /* 1526 * searches a range in the state tree for a given mask. 1527 * If 'filled' == 1, this returns 1 only if every extent in the tree 1528 * has the bits set. Otherwise, 1 is returned if any bit in the 1529 * range is found set. 1530 */ 1531 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1532 int bits, int filled) 1533 { 1534 struct extent_state *state = NULL; 1535 struct rb_node *node; 1536 int bitset = 0; 1537 1538 spin_lock(&tree->lock); 1539 node = tree_search(tree, start); 1540 while (node && start <= end) { 1541 state = rb_entry(node, struct extent_state, rb_node); 1542 1543 if (filled && state->start > start) { 1544 bitset = 0; 1545 break; 1546 } 1547 1548 if (state->start > end) 1549 break; 1550 1551 if (state->state & bits) { 1552 bitset = 1; 1553 if (!filled) 1554 break; 1555 } else if (filled) { 1556 bitset = 0; 1557 break; 1558 } 1559 start = state->end + 1; 1560 if (start > end) 1561 break; 1562 node = rb_next(node); 1563 if (!node) { 1564 if (filled) 1565 bitset = 0; 1566 break; 1567 } 1568 } 1569 spin_unlock(&tree->lock); 1570 return bitset; 1571 } 1572 1573 /* 1574 * helper function to set a given page up to date if all the 1575 * extents in the tree for that page are up to date 1576 */ 1577 static int check_page_uptodate(struct extent_io_tree *tree, 1578 struct page *page) 1579 { 1580 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1581 u64 end = start + PAGE_CACHE_SIZE - 1; 1582 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) 1583 SetPageUptodate(page); 1584 return 0; 1585 } 1586 1587 /* 1588 * helper function to unlock a page if all the extents in the tree 1589 * for that page are unlocked 1590 */ 1591 static int check_page_locked(struct extent_io_tree *tree, 1592 struct page *page) 1593 { 1594 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1595 u64 end = start + PAGE_CACHE_SIZE - 1; 1596 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) 1597 unlock_page(page); 1598 return 0; 1599 } 1600 1601 /* 1602 * helper function to end page writeback if all the extents 1603 * in the tree for that page are done with writeback 1604 */ 1605 static int check_page_writeback(struct extent_io_tree *tree, 1606 struct page *page) 1607 { 1608 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1609 u64 end = start + PAGE_CACHE_SIZE - 1; 1610 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) 1611 end_page_writeback(page); 1612 return 0; 1613 } 1614 1615 /* lots and lots of room for performance fixes in the end_bio funcs */ 1616 1617 /* 1618 * after a writepage IO is done, we need to: 1619 * clear the uptodate bits on error 1620 * clear the writeback bits in the extent tree for this IO 1621 * end_page_writeback if the page has no more pending IO 1622 * 1623 * Scheduling is not allowed, so the extent state tree is expected 1624 * to have one and only one object corresponding to this IO. 1625 */ 1626 static void end_bio_extent_writepage(struct bio *bio, int err) 1627 { 1628 int uptodate = err == 0; 1629 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1630 struct extent_io_tree *tree; 1631 u64 start; 1632 u64 end; 1633 int whole_page; 1634 int ret; 1635 1636 do { 1637 struct page *page = bvec->bv_page; 1638 tree = &BTRFS_I(page->mapping->host)->io_tree; 1639 1640 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1641 bvec->bv_offset; 1642 end = start + bvec->bv_len - 1; 1643 1644 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1645 whole_page = 1; 1646 else 1647 whole_page = 0; 1648 1649 if (--bvec >= bio->bi_io_vec) 1650 prefetchw(&bvec->bv_page->flags); 1651 if (tree->ops && tree->ops->writepage_end_io_hook) { 1652 ret = tree->ops->writepage_end_io_hook(page, start, 1653 end, NULL, uptodate); 1654 if (ret) 1655 uptodate = 0; 1656 } 1657 1658 if (!uptodate && tree->ops && 1659 tree->ops->writepage_io_failed_hook) { 1660 ret = tree->ops->writepage_io_failed_hook(bio, page, 1661 start, end, NULL); 1662 if (ret == 0) { 1663 uptodate = (err == 0); 1664 continue; 1665 } 1666 } 1667 1668 if (!uptodate) { 1669 clear_extent_uptodate(tree, start, end, GFP_ATOMIC); 1670 ClearPageUptodate(page); 1671 SetPageError(page); 1672 } 1673 1674 clear_extent_writeback(tree, start, end, GFP_ATOMIC); 1675 1676 if (whole_page) 1677 end_page_writeback(page); 1678 else 1679 check_page_writeback(tree, page); 1680 } while (bvec >= bio->bi_io_vec); 1681 1682 bio_put(bio); 1683 } 1684 1685 /* 1686 * after a readpage IO is done, we need to: 1687 * clear the uptodate bits on error 1688 * set the uptodate bits if things worked 1689 * set the page up to date if all extents in the tree are uptodate 1690 * clear the lock bit in the extent tree 1691 * unlock the page if there are no other extents locked for it 1692 * 1693 * Scheduling is not allowed, so the extent state tree is expected 1694 * to have one and only one object corresponding to this IO. 1695 */ 1696 static void end_bio_extent_readpage(struct bio *bio, int err) 1697 { 1698 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1699 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1700 struct extent_io_tree *tree; 1701 u64 start; 1702 u64 end; 1703 int whole_page; 1704 int ret; 1705 1706 if (err) 1707 uptodate = 0; 1708 1709 do { 1710 struct page *page = bvec->bv_page; 1711 tree = &BTRFS_I(page->mapping->host)->io_tree; 1712 1713 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1714 bvec->bv_offset; 1715 end = start + bvec->bv_len - 1; 1716 1717 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1718 whole_page = 1; 1719 else 1720 whole_page = 0; 1721 1722 if (--bvec >= bio->bi_io_vec) 1723 prefetchw(&bvec->bv_page->flags); 1724 1725 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 1726 ret = tree->ops->readpage_end_io_hook(page, start, end, 1727 NULL); 1728 if (ret) 1729 uptodate = 0; 1730 } 1731 if (!uptodate && tree->ops && 1732 tree->ops->readpage_io_failed_hook) { 1733 ret = tree->ops->readpage_io_failed_hook(bio, page, 1734 start, end, NULL); 1735 if (ret == 0) { 1736 uptodate = 1737 test_bit(BIO_UPTODATE, &bio->bi_flags); 1738 if (err) 1739 uptodate = 0; 1740 continue; 1741 } 1742 } 1743 1744 if (uptodate) { 1745 set_extent_uptodate(tree, start, end, 1746 GFP_ATOMIC); 1747 } 1748 unlock_extent(tree, start, end, GFP_ATOMIC); 1749 1750 if (whole_page) { 1751 if (uptodate) { 1752 SetPageUptodate(page); 1753 } else { 1754 ClearPageUptodate(page); 1755 SetPageError(page); 1756 } 1757 unlock_page(page); 1758 } else { 1759 if (uptodate) { 1760 check_page_uptodate(tree, page); 1761 } else { 1762 ClearPageUptodate(page); 1763 SetPageError(page); 1764 } 1765 check_page_locked(tree, page); 1766 } 1767 } while (bvec >= bio->bi_io_vec); 1768 1769 bio_put(bio); 1770 } 1771 1772 /* 1773 * IO done from prepare_write is pretty simple, we just unlock 1774 * the structs in the extent tree when done, and set the uptodate bits 1775 * as appropriate. 1776 */ 1777 static void end_bio_extent_preparewrite(struct bio *bio, int err) 1778 { 1779 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1780 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1781 struct extent_io_tree *tree; 1782 u64 start; 1783 u64 end; 1784 1785 do { 1786 struct page *page = bvec->bv_page; 1787 tree = &BTRFS_I(page->mapping->host)->io_tree; 1788 1789 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1790 bvec->bv_offset; 1791 end = start + bvec->bv_len - 1; 1792 1793 if (--bvec >= bio->bi_io_vec) 1794 prefetchw(&bvec->bv_page->flags); 1795 1796 if (uptodate) { 1797 set_extent_uptodate(tree, start, end, GFP_ATOMIC); 1798 } else { 1799 ClearPageUptodate(page); 1800 SetPageError(page); 1801 } 1802 1803 unlock_extent(tree, start, end, GFP_ATOMIC); 1804 1805 } while (bvec >= bio->bi_io_vec); 1806 1807 bio_put(bio); 1808 } 1809 1810 static struct bio * 1811 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 1812 gfp_t gfp_flags) 1813 { 1814 struct bio *bio; 1815 1816 bio = bio_alloc(gfp_flags, nr_vecs); 1817 1818 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 1819 while (!bio && (nr_vecs /= 2)) 1820 bio = bio_alloc(gfp_flags, nr_vecs); 1821 } 1822 1823 if (bio) { 1824 bio->bi_size = 0; 1825 bio->bi_bdev = bdev; 1826 bio->bi_sector = first_sector; 1827 } 1828 return bio; 1829 } 1830 1831 static int submit_one_bio(int rw, struct bio *bio, int mirror_num, 1832 unsigned long bio_flags) 1833 { 1834 int ret = 0; 1835 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1836 struct page *page = bvec->bv_page; 1837 struct extent_io_tree *tree = bio->bi_private; 1838 u64 start; 1839 u64 end; 1840 1841 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 1842 end = start + bvec->bv_len - 1; 1843 1844 bio->bi_private = NULL; 1845 1846 bio_get(bio); 1847 1848 if (tree->ops && tree->ops->submit_bio_hook) 1849 tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 1850 mirror_num, bio_flags); 1851 else 1852 submit_bio(rw, bio); 1853 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 1854 ret = -EOPNOTSUPP; 1855 bio_put(bio); 1856 return ret; 1857 } 1858 1859 static int submit_extent_page(int rw, struct extent_io_tree *tree, 1860 struct page *page, sector_t sector, 1861 size_t size, unsigned long offset, 1862 struct block_device *bdev, 1863 struct bio **bio_ret, 1864 unsigned long max_pages, 1865 bio_end_io_t end_io_func, 1866 int mirror_num, 1867 unsigned long prev_bio_flags, 1868 unsigned long bio_flags) 1869 { 1870 int ret = 0; 1871 struct bio *bio; 1872 int nr; 1873 int contig = 0; 1874 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 1875 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 1876 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 1877 1878 if (bio_ret && *bio_ret) { 1879 bio = *bio_ret; 1880 if (old_compressed) 1881 contig = bio->bi_sector == sector; 1882 else 1883 contig = bio->bi_sector + (bio->bi_size >> 9) == 1884 sector; 1885 1886 if (prev_bio_flags != bio_flags || !contig || 1887 (tree->ops && tree->ops->merge_bio_hook && 1888 tree->ops->merge_bio_hook(page, offset, page_size, bio, 1889 bio_flags)) || 1890 bio_add_page(bio, page, page_size, offset) < page_size) { 1891 ret = submit_one_bio(rw, bio, mirror_num, 1892 prev_bio_flags); 1893 bio = NULL; 1894 } else { 1895 return 0; 1896 } 1897 } 1898 if (this_compressed) 1899 nr = BIO_MAX_PAGES; 1900 else 1901 nr = bio_get_nr_vecs(bdev); 1902 1903 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 1904 1905 bio_add_page(bio, page, page_size, offset); 1906 bio->bi_end_io = end_io_func; 1907 bio->bi_private = tree; 1908 1909 if (bio_ret) 1910 *bio_ret = bio; 1911 else 1912 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 1913 1914 return ret; 1915 } 1916 1917 void set_page_extent_mapped(struct page *page) 1918 { 1919 if (!PagePrivate(page)) { 1920 SetPagePrivate(page); 1921 page_cache_get(page); 1922 set_page_private(page, EXTENT_PAGE_PRIVATE); 1923 } 1924 } 1925 1926 static void set_page_extent_head(struct page *page, unsigned long len) 1927 { 1928 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); 1929 } 1930 1931 /* 1932 * basic readpage implementation. Locked extent state structs are inserted 1933 * into the tree that are removed when the IO is done (by the end_io 1934 * handlers) 1935 */ 1936 static int __extent_read_full_page(struct extent_io_tree *tree, 1937 struct page *page, 1938 get_extent_t *get_extent, 1939 struct bio **bio, int mirror_num, 1940 unsigned long *bio_flags) 1941 { 1942 struct inode *inode = page->mapping->host; 1943 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1944 u64 page_end = start + PAGE_CACHE_SIZE - 1; 1945 u64 end; 1946 u64 cur = start; 1947 u64 extent_offset; 1948 u64 last_byte = i_size_read(inode); 1949 u64 block_start; 1950 u64 cur_end; 1951 sector_t sector; 1952 struct extent_map *em; 1953 struct block_device *bdev; 1954 int ret; 1955 int nr = 0; 1956 size_t page_offset = 0; 1957 size_t iosize; 1958 size_t disk_io_size; 1959 size_t blocksize = inode->i_sb->s_blocksize; 1960 unsigned long this_bio_flag = 0; 1961 1962 set_page_extent_mapped(page); 1963 1964 end = page_end; 1965 lock_extent(tree, start, end, GFP_NOFS); 1966 1967 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 1968 char *userpage; 1969 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 1970 1971 if (zero_offset) { 1972 iosize = PAGE_CACHE_SIZE - zero_offset; 1973 userpage = kmap_atomic(page, KM_USER0); 1974 memset(userpage + zero_offset, 0, iosize); 1975 flush_dcache_page(page); 1976 kunmap_atomic(userpage, KM_USER0); 1977 } 1978 } 1979 while (cur <= end) { 1980 if (cur >= last_byte) { 1981 char *userpage; 1982 iosize = PAGE_CACHE_SIZE - page_offset; 1983 userpage = kmap_atomic(page, KM_USER0); 1984 memset(userpage + page_offset, 0, iosize); 1985 flush_dcache_page(page); 1986 kunmap_atomic(userpage, KM_USER0); 1987 set_extent_uptodate(tree, cur, cur + iosize - 1, 1988 GFP_NOFS); 1989 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 1990 break; 1991 } 1992 em = get_extent(inode, page, page_offset, cur, 1993 end - cur + 1, 0); 1994 if (IS_ERR(em) || !em) { 1995 SetPageError(page); 1996 unlock_extent(tree, cur, end, GFP_NOFS); 1997 break; 1998 } 1999 extent_offset = cur - em->start; 2000 BUG_ON(extent_map_end(em) <= cur); 2001 BUG_ON(end < cur); 2002 2003 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2004 this_bio_flag = EXTENT_BIO_COMPRESSED; 2005 2006 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2007 cur_end = min(extent_map_end(em) - 1, end); 2008 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2009 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2010 disk_io_size = em->block_len; 2011 sector = em->block_start >> 9; 2012 } else { 2013 sector = (em->block_start + extent_offset) >> 9; 2014 disk_io_size = iosize; 2015 } 2016 bdev = em->bdev; 2017 block_start = em->block_start; 2018 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2019 block_start = EXTENT_MAP_HOLE; 2020 free_extent_map(em); 2021 em = NULL; 2022 2023 /* we've found a hole, just zero and go on */ 2024 if (block_start == EXTENT_MAP_HOLE) { 2025 char *userpage; 2026 userpage = kmap_atomic(page, KM_USER0); 2027 memset(userpage + page_offset, 0, iosize); 2028 flush_dcache_page(page); 2029 kunmap_atomic(userpage, KM_USER0); 2030 2031 set_extent_uptodate(tree, cur, cur + iosize - 1, 2032 GFP_NOFS); 2033 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2034 cur = cur + iosize; 2035 page_offset += iosize; 2036 continue; 2037 } 2038 /* the get_extent function already copied into the page */ 2039 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { 2040 check_page_uptodate(tree, page); 2041 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2042 cur = cur + iosize; 2043 page_offset += iosize; 2044 continue; 2045 } 2046 /* we have an inline extent but it didn't get marked up 2047 * to date. Error out 2048 */ 2049 if (block_start == EXTENT_MAP_INLINE) { 2050 SetPageError(page); 2051 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2052 cur = cur + iosize; 2053 page_offset += iosize; 2054 continue; 2055 } 2056 2057 ret = 0; 2058 if (tree->ops && tree->ops->readpage_io_hook) { 2059 ret = tree->ops->readpage_io_hook(page, cur, 2060 cur + iosize - 1); 2061 } 2062 if (!ret) { 2063 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2064 pnr -= page->index; 2065 ret = submit_extent_page(READ, tree, page, 2066 sector, disk_io_size, page_offset, 2067 bdev, bio, pnr, 2068 end_bio_extent_readpage, mirror_num, 2069 *bio_flags, 2070 this_bio_flag); 2071 nr++; 2072 *bio_flags = this_bio_flag; 2073 } 2074 if (ret) 2075 SetPageError(page); 2076 cur = cur + iosize; 2077 page_offset += iosize; 2078 } 2079 if (!nr) { 2080 if (!PageError(page)) 2081 SetPageUptodate(page); 2082 unlock_page(page); 2083 } 2084 return 0; 2085 } 2086 2087 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2088 get_extent_t *get_extent) 2089 { 2090 struct bio *bio = NULL; 2091 unsigned long bio_flags = 0; 2092 int ret; 2093 2094 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, 2095 &bio_flags); 2096 if (bio) 2097 submit_one_bio(READ, bio, 0, bio_flags); 2098 return ret; 2099 } 2100 2101 static noinline void update_nr_written(struct page *page, 2102 struct writeback_control *wbc, 2103 unsigned long nr_written) 2104 { 2105 wbc->nr_to_write -= nr_written; 2106 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2107 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2108 page->mapping->writeback_index = page->index + nr_written; 2109 } 2110 2111 /* 2112 * the writepage semantics are similar to regular writepage. extent 2113 * records are inserted to lock ranges in the tree, and as dirty areas 2114 * are found, they are marked writeback. Then the lock bits are removed 2115 * and the end_io handler clears the writeback ranges 2116 */ 2117 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2118 void *data) 2119 { 2120 struct inode *inode = page->mapping->host; 2121 struct extent_page_data *epd = data; 2122 struct extent_io_tree *tree = epd->tree; 2123 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2124 u64 delalloc_start; 2125 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2126 u64 end; 2127 u64 cur = start; 2128 u64 extent_offset; 2129 u64 last_byte = i_size_read(inode); 2130 u64 block_start; 2131 u64 iosize; 2132 u64 unlock_start; 2133 sector_t sector; 2134 struct extent_map *em; 2135 struct block_device *bdev; 2136 int ret; 2137 int nr = 0; 2138 size_t pg_offset = 0; 2139 size_t blocksize; 2140 loff_t i_size = i_size_read(inode); 2141 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2142 u64 nr_delalloc; 2143 u64 delalloc_end; 2144 int page_started; 2145 int compressed; 2146 int write_flags; 2147 unsigned long nr_written = 0; 2148 2149 if (wbc->sync_mode == WB_SYNC_ALL) 2150 write_flags = WRITE_SYNC_PLUG; 2151 else 2152 write_flags = WRITE; 2153 2154 WARN_ON(!PageLocked(page)); 2155 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2156 if (page->index > end_index || 2157 (page->index == end_index && !pg_offset)) { 2158 page->mapping->a_ops->invalidatepage(page, 0); 2159 unlock_page(page); 2160 return 0; 2161 } 2162 2163 if (page->index == end_index) { 2164 char *userpage; 2165 2166 userpage = kmap_atomic(page, KM_USER0); 2167 memset(userpage + pg_offset, 0, 2168 PAGE_CACHE_SIZE - pg_offset); 2169 kunmap_atomic(userpage, KM_USER0); 2170 flush_dcache_page(page); 2171 } 2172 pg_offset = 0; 2173 2174 set_page_extent_mapped(page); 2175 2176 delalloc_start = start; 2177 delalloc_end = 0; 2178 page_started = 0; 2179 if (!epd->extent_locked) { 2180 /* 2181 * make sure the wbc mapping index is at least updated 2182 * to this page. 2183 */ 2184 update_nr_written(page, wbc, 0); 2185 2186 while (delalloc_end < page_end) { 2187 nr_delalloc = find_lock_delalloc_range(inode, tree, 2188 page, 2189 &delalloc_start, 2190 &delalloc_end, 2191 128 * 1024 * 1024); 2192 if (nr_delalloc == 0) { 2193 delalloc_start = delalloc_end + 1; 2194 continue; 2195 } 2196 tree->ops->fill_delalloc(inode, page, delalloc_start, 2197 delalloc_end, &page_started, 2198 &nr_written); 2199 delalloc_start = delalloc_end + 1; 2200 } 2201 2202 /* did the fill delalloc function already unlock and start 2203 * the IO? 2204 */ 2205 if (page_started) { 2206 ret = 0; 2207 /* 2208 * we've unlocked the page, so we can't update 2209 * the mapping's writeback index, just update 2210 * nr_to_write. 2211 */ 2212 wbc->nr_to_write -= nr_written; 2213 goto done_unlocked; 2214 } 2215 } 2216 lock_extent(tree, start, page_end, GFP_NOFS); 2217 2218 unlock_start = start; 2219 2220 if (tree->ops && tree->ops->writepage_start_hook) { 2221 ret = tree->ops->writepage_start_hook(page, start, 2222 page_end); 2223 if (ret == -EAGAIN) { 2224 unlock_extent(tree, start, page_end, GFP_NOFS); 2225 redirty_page_for_writepage(wbc, page); 2226 update_nr_written(page, wbc, nr_written); 2227 unlock_page(page); 2228 ret = 0; 2229 goto done_unlocked; 2230 } 2231 } 2232 2233 /* 2234 * we don't want to touch the inode after unlocking the page, 2235 * so we update the mapping writeback index now 2236 */ 2237 update_nr_written(page, wbc, nr_written + 1); 2238 2239 end = page_end; 2240 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) 2241 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n"); 2242 2243 if (last_byte <= start) { 2244 clear_extent_dirty(tree, start, page_end, GFP_NOFS); 2245 unlock_extent(tree, start, page_end, GFP_NOFS); 2246 if (tree->ops && tree->ops->writepage_end_io_hook) 2247 tree->ops->writepage_end_io_hook(page, start, 2248 page_end, NULL, 1); 2249 unlock_start = page_end + 1; 2250 goto done; 2251 } 2252 2253 set_extent_uptodate(tree, start, page_end, GFP_NOFS); 2254 blocksize = inode->i_sb->s_blocksize; 2255 2256 while (cur <= end) { 2257 if (cur >= last_byte) { 2258 clear_extent_dirty(tree, cur, page_end, GFP_NOFS); 2259 unlock_extent(tree, unlock_start, page_end, GFP_NOFS); 2260 if (tree->ops && tree->ops->writepage_end_io_hook) 2261 tree->ops->writepage_end_io_hook(page, cur, 2262 page_end, NULL, 1); 2263 unlock_start = page_end + 1; 2264 break; 2265 } 2266 em = epd->get_extent(inode, page, pg_offset, cur, 2267 end - cur + 1, 1); 2268 if (IS_ERR(em) || !em) { 2269 SetPageError(page); 2270 break; 2271 } 2272 2273 extent_offset = cur - em->start; 2274 BUG_ON(extent_map_end(em) <= cur); 2275 BUG_ON(end < cur); 2276 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2277 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2278 sector = (em->block_start + extent_offset) >> 9; 2279 bdev = em->bdev; 2280 block_start = em->block_start; 2281 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2282 free_extent_map(em); 2283 em = NULL; 2284 2285 /* 2286 * compressed and inline extents are written through other 2287 * paths in the FS 2288 */ 2289 if (compressed || block_start == EXTENT_MAP_HOLE || 2290 block_start == EXTENT_MAP_INLINE) { 2291 clear_extent_dirty(tree, cur, 2292 cur + iosize - 1, GFP_NOFS); 2293 2294 unlock_extent(tree, unlock_start, cur + iosize - 1, 2295 GFP_NOFS); 2296 2297 /* 2298 * end_io notification does not happen here for 2299 * compressed extents 2300 */ 2301 if (!compressed && tree->ops && 2302 tree->ops->writepage_end_io_hook) 2303 tree->ops->writepage_end_io_hook(page, cur, 2304 cur + iosize - 1, 2305 NULL, 1); 2306 else if (compressed) { 2307 /* we don't want to end_page_writeback on 2308 * a compressed extent. this happens 2309 * elsewhere 2310 */ 2311 nr++; 2312 } 2313 2314 cur += iosize; 2315 pg_offset += iosize; 2316 unlock_start = cur; 2317 continue; 2318 } 2319 /* leave this out until we have a page_mkwrite call */ 2320 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2321 EXTENT_DIRTY, 0)) { 2322 cur = cur + iosize; 2323 pg_offset += iosize; 2324 continue; 2325 } 2326 2327 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); 2328 if (tree->ops && tree->ops->writepage_io_hook) { 2329 ret = tree->ops->writepage_io_hook(page, cur, 2330 cur + iosize - 1); 2331 } else { 2332 ret = 0; 2333 } 2334 if (ret) { 2335 SetPageError(page); 2336 } else { 2337 unsigned long max_nr = end_index + 1; 2338 2339 set_range_writeback(tree, cur, cur + iosize - 1); 2340 if (!PageWriteback(page)) { 2341 printk(KERN_ERR "btrfs warning page %lu not " 2342 "writeback, cur %llu end %llu\n", 2343 page->index, (unsigned long long)cur, 2344 (unsigned long long)end); 2345 } 2346 2347 ret = submit_extent_page(write_flags, tree, page, 2348 sector, iosize, pg_offset, 2349 bdev, &epd->bio, max_nr, 2350 end_bio_extent_writepage, 2351 0, 0, 0); 2352 if (ret) 2353 SetPageError(page); 2354 } 2355 cur = cur + iosize; 2356 pg_offset += iosize; 2357 nr++; 2358 } 2359 done: 2360 if (nr == 0) { 2361 /* make sure the mapping tag for page dirty gets cleared */ 2362 set_page_writeback(page); 2363 end_page_writeback(page); 2364 } 2365 if (unlock_start <= page_end) 2366 unlock_extent(tree, unlock_start, page_end, GFP_NOFS); 2367 unlock_page(page); 2368 2369 done_unlocked: 2370 2371 return 0; 2372 } 2373 2374 /** 2375 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2376 * @mapping: address space structure to write 2377 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2378 * @writepage: function called for each page 2379 * @data: data passed to writepage function 2380 * 2381 * If a page is already under I/O, write_cache_pages() skips it, even 2382 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2383 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2384 * and msync() need to guarantee that all the data which was dirty at the time 2385 * the call was made get new I/O started against them. If wbc->sync_mode is 2386 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2387 * existing IO to complete. 2388 */ 2389 static int extent_write_cache_pages(struct extent_io_tree *tree, 2390 struct address_space *mapping, 2391 struct writeback_control *wbc, 2392 writepage_t writepage, void *data, 2393 void (*flush_fn)(void *)) 2394 { 2395 struct backing_dev_info *bdi = mapping->backing_dev_info; 2396 int ret = 0; 2397 int done = 0; 2398 struct pagevec pvec; 2399 int nr_pages; 2400 pgoff_t index; 2401 pgoff_t end; /* Inclusive */ 2402 int scanned = 0; 2403 int range_whole = 0; 2404 2405 pagevec_init(&pvec, 0); 2406 if (wbc->range_cyclic) { 2407 index = mapping->writeback_index; /* Start from prev offset */ 2408 end = -1; 2409 } else { 2410 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2411 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2412 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2413 range_whole = 1; 2414 scanned = 1; 2415 } 2416 retry: 2417 while (!done && (index <= end) && 2418 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2419 PAGECACHE_TAG_DIRTY, min(end - index, 2420 (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 2421 unsigned i; 2422 2423 scanned = 1; 2424 for (i = 0; i < nr_pages; i++) { 2425 struct page *page = pvec.pages[i]; 2426 2427 /* 2428 * At this point we hold neither mapping->tree_lock nor 2429 * lock on the page itself: the page may be truncated or 2430 * invalidated (changing page->mapping to NULL), or even 2431 * swizzled back from swapper_space to tmpfs file 2432 * mapping 2433 */ 2434 if (tree->ops && tree->ops->write_cache_pages_lock_hook) 2435 tree->ops->write_cache_pages_lock_hook(page); 2436 else 2437 lock_page(page); 2438 2439 if (unlikely(page->mapping != mapping)) { 2440 unlock_page(page); 2441 continue; 2442 } 2443 2444 if (!wbc->range_cyclic && page->index > end) { 2445 done = 1; 2446 unlock_page(page); 2447 continue; 2448 } 2449 2450 if (wbc->sync_mode != WB_SYNC_NONE) { 2451 if (PageWriteback(page)) 2452 flush_fn(data); 2453 wait_on_page_writeback(page); 2454 } 2455 2456 if (PageWriteback(page) || 2457 !clear_page_dirty_for_io(page)) { 2458 unlock_page(page); 2459 continue; 2460 } 2461 2462 ret = (*writepage)(page, wbc, data); 2463 2464 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 2465 unlock_page(page); 2466 ret = 0; 2467 } 2468 if (ret || wbc->nr_to_write <= 0) 2469 done = 1; 2470 if (wbc->nonblocking && bdi_write_congested(bdi)) { 2471 wbc->encountered_congestion = 1; 2472 done = 1; 2473 } 2474 } 2475 pagevec_release(&pvec); 2476 cond_resched(); 2477 } 2478 if (!scanned && !done) { 2479 /* 2480 * We hit the last page and there is more work to be done: wrap 2481 * back to the start of the file 2482 */ 2483 scanned = 1; 2484 index = 0; 2485 goto retry; 2486 } 2487 return ret; 2488 } 2489 2490 static void flush_epd_write_bio(struct extent_page_data *epd) 2491 { 2492 if (epd->bio) { 2493 if (epd->sync_io) 2494 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); 2495 else 2496 submit_one_bio(WRITE, epd->bio, 0, 0); 2497 epd->bio = NULL; 2498 } 2499 } 2500 2501 static noinline void flush_write_bio(void *data) 2502 { 2503 struct extent_page_data *epd = data; 2504 flush_epd_write_bio(epd); 2505 } 2506 2507 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 2508 get_extent_t *get_extent, 2509 struct writeback_control *wbc) 2510 { 2511 int ret; 2512 struct address_space *mapping = page->mapping; 2513 struct extent_page_data epd = { 2514 .bio = NULL, 2515 .tree = tree, 2516 .get_extent = get_extent, 2517 .extent_locked = 0, 2518 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2519 }; 2520 struct writeback_control wbc_writepages = { 2521 .bdi = wbc->bdi, 2522 .sync_mode = wbc->sync_mode, 2523 .older_than_this = NULL, 2524 .nr_to_write = 64, 2525 .range_start = page_offset(page) + PAGE_CACHE_SIZE, 2526 .range_end = (loff_t)-1, 2527 }; 2528 2529 ret = __extent_writepage(page, wbc, &epd); 2530 2531 extent_write_cache_pages(tree, mapping, &wbc_writepages, 2532 __extent_writepage, &epd, flush_write_bio); 2533 flush_epd_write_bio(&epd); 2534 return ret; 2535 } 2536 2537 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 2538 u64 start, u64 end, get_extent_t *get_extent, 2539 int mode) 2540 { 2541 int ret = 0; 2542 struct address_space *mapping = inode->i_mapping; 2543 struct page *page; 2544 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 2545 PAGE_CACHE_SHIFT; 2546 2547 struct extent_page_data epd = { 2548 .bio = NULL, 2549 .tree = tree, 2550 .get_extent = get_extent, 2551 .extent_locked = 1, 2552 .sync_io = mode == WB_SYNC_ALL, 2553 }; 2554 struct writeback_control wbc_writepages = { 2555 .bdi = inode->i_mapping->backing_dev_info, 2556 .sync_mode = mode, 2557 .older_than_this = NULL, 2558 .nr_to_write = nr_pages * 2, 2559 .range_start = start, 2560 .range_end = end + 1, 2561 }; 2562 2563 while (start <= end) { 2564 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 2565 if (clear_page_dirty_for_io(page)) 2566 ret = __extent_writepage(page, &wbc_writepages, &epd); 2567 else { 2568 if (tree->ops && tree->ops->writepage_end_io_hook) 2569 tree->ops->writepage_end_io_hook(page, start, 2570 start + PAGE_CACHE_SIZE - 1, 2571 NULL, 1); 2572 unlock_page(page); 2573 } 2574 page_cache_release(page); 2575 start += PAGE_CACHE_SIZE; 2576 } 2577 2578 flush_epd_write_bio(&epd); 2579 return ret; 2580 } 2581 2582 int extent_writepages(struct extent_io_tree *tree, 2583 struct address_space *mapping, 2584 get_extent_t *get_extent, 2585 struct writeback_control *wbc) 2586 { 2587 int ret = 0; 2588 struct extent_page_data epd = { 2589 .bio = NULL, 2590 .tree = tree, 2591 .get_extent = get_extent, 2592 .extent_locked = 0, 2593 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2594 }; 2595 2596 ret = extent_write_cache_pages(tree, mapping, wbc, 2597 __extent_writepage, &epd, 2598 flush_write_bio); 2599 flush_epd_write_bio(&epd); 2600 return ret; 2601 } 2602 2603 int extent_readpages(struct extent_io_tree *tree, 2604 struct address_space *mapping, 2605 struct list_head *pages, unsigned nr_pages, 2606 get_extent_t get_extent) 2607 { 2608 struct bio *bio = NULL; 2609 unsigned page_idx; 2610 struct pagevec pvec; 2611 unsigned long bio_flags = 0; 2612 2613 pagevec_init(&pvec, 0); 2614 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 2615 struct page *page = list_entry(pages->prev, struct page, lru); 2616 2617 prefetchw(&page->flags); 2618 list_del(&page->lru); 2619 /* 2620 * what we want to do here is call add_to_page_cache_lru, 2621 * but that isn't exported, so we reproduce it here 2622 */ 2623 if (!add_to_page_cache(page, mapping, 2624 page->index, GFP_KERNEL)) { 2625 2626 /* open coding of lru_cache_add, also not exported */ 2627 page_cache_get(page); 2628 if (!pagevec_add(&pvec, page)) 2629 __pagevec_lru_add_file(&pvec); 2630 __extent_read_full_page(tree, page, get_extent, 2631 &bio, 0, &bio_flags); 2632 } 2633 page_cache_release(page); 2634 } 2635 if (pagevec_count(&pvec)) 2636 __pagevec_lru_add_file(&pvec); 2637 BUG_ON(!list_empty(pages)); 2638 if (bio) 2639 submit_one_bio(READ, bio, 0, bio_flags); 2640 return 0; 2641 } 2642 2643 /* 2644 * basic invalidatepage code, this waits on any locked or writeback 2645 * ranges corresponding to the page, and then deletes any extent state 2646 * records from the tree 2647 */ 2648 int extent_invalidatepage(struct extent_io_tree *tree, 2649 struct page *page, unsigned long offset) 2650 { 2651 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 2652 u64 end = start + PAGE_CACHE_SIZE - 1; 2653 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 2654 2655 start += (offset + blocksize - 1) & ~(blocksize - 1); 2656 if (start > end) 2657 return 0; 2658 2659 lock_extent(tree, start, end, GFP_NOFS); 2660 wait_on_extent_writeback(tree, start, end); 2661 clear_extent_bit(tree, start, end, 2662 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, 2663 1, 1, GFP_NOFS); 2664 return 0; 2665 } 2666 2667 /* 2668 * simple commit_write call, set_range_dirty is used to mark both 2669 * the pages and the extent records as dirty 2670 */ 2671 int extent_commit_write(struct extent_io_tree *tree, 2672 struct inode *inode, struct page *page, 2673 unsigned from, unsigned to) 2674 { 2675 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2676 2677 set_page_extent_mapped(page); 2678 set_page_dirty(page); 2679 2680 if (pos > inode->i_size) { 2681 i_size_write(inode, pos); 2682 mark_inode_dirty(inode); 2683 } 2684 return 0; 2685 } 2686 2687 int extent_prepare_write(struct extent_io_tree *tree, 2688 struct inode *inode, struct page *page, 2689 unsigned from, unsigned to, get_extent_t *get_extent) 2690 { 2691 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2692 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 2693 u64 block_start; 2694 u64 orig_block_start; 2695 u64 block_end; 2696 u64 cur_end; 2697 struct extent_map *em; 2698 unsigned blocksize = 1 << inode->i_blkbits; 2699 size_t page_offset = 0; 2700 size_t block_off_start; 2701 size_t block_off_end; 2702 int err = 0; 2703 int iocount = 0; 2704 int ret = 0; 2705 int isnew; 2706 2707 set_page_extent_mapped(page); 2708 2709 block_start = (page_start + from) & ~((u64)blocksize - 1); 2710 block_end = (page_start + to - 1) | (blocksize - 1); 2711 orig_block_start = block_start; 2712 2713 lock_extent(tree, page_start, page_end, GFP_NOFS); 2714 while (block_start <= block_end) { 2715 em = get_extent(inode, page, page_offset, block_start, 2716 block_end - block_start + 1, 1); 2717 if (IS_ERR(em) || !em) 2718 goto err; 2719 2720 cur_end = min(block_end, extent_map_end(em) - 1); 2721 block_off_start = block_start & (PAGE_CACHE_SIZE - 1); 2722 block_off_end = block_off_start + blocksize; 2723 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); 2724 2725 if (!PageUptodate(page) && isnew && 2726 (block_off_end > to || block_off_start < from)) { 2727 void *kaddr; 2728 2729 kaddr = kmap_atomic(page, KM_USER0); 2730 if (block_off_end > to) 2731 memset(kaddr + to, 0, block_off_end - to); 2732 if (block_off_start < from) 2733 memset(kaddr + block_off_start, 0, 2734 from - block_off_start); 2735 flush_dcache_page(page); 2736 kunmap_atomic(kaddr, KM_USER0); 2737 } 2738 if ((em->block_start != EXTENT_MAP_HOLE && 2739 em->block_start != EXTENT_MAP_INLINE) && 2740 !isnew && !PageUptodate(page) && 2741 (block_off_end > to || block_off_start < from) && 2742 !test_range_bit(tree, block_start, cur_end, 2743 EXTENT_UPTODATE, 1)) { 2744 u64 sector; 2745 u64 extent_offset = block_start - em->start; 2746 size_t iosize; 2747 sector = (em->block_start + extent_offset) >> 9; 2748 iosize = (cur_end - block_start + blocksize) & 2749 ~((u64)blocksize - 1); 2750 /* 2751 * we've already got the extent locked, but we 2752 * need to split the state such that our end_bio 2753 * handler can clear the lock. 2754 */ 2755 set_extent_bit(tree, block_start, 2756 block_start + iosize - 1, 2757 EXTENT_LOCKED, 0, NULL, GFP_NOFS); 2758 ret = submit_extent_page(READ, tree, page, 2759 sector, iosize, page_offset, em->bdev, 2760 NULL, 1, 2761 end_bio_extent_preparewrite, 0, 2762 0, 0); 2763 iocount++; 2764 block_start = block_start + iosize; 2765 } else { 2766 set_extent_uptodate(tree, block_start, cur_end, 2767 GFP_NOFS); 2768 unlock_extent(tree, block_start, cur_end, GFP_NOFS); 2769 block_start = cur_end + 1; 2770 } 2771 page_offset = block_start & (PAGE_CACHE_SIZE - 1); 2772 free_extent_map(em); 2773 } 2774 if (iocount) { 2775 wait_extent_bit(tree, orig_block_start, 2776 block_end, EXTENT_LOCKED); 2777 } 2778 check_page_uptodate(tree, page); 2779 err: 2780 /* FIXME, zero out newly allocated blocks on error */ 2781 return err; 2782 } 2783 2784 /* 2785 * a helper for releasepage, this tests for areas of the page that 2786 * are locked or under IO and drops the related state bits if it is safe 2787 * to drop the page. 2788 */ 2789 int try_release_extent_state(struct extent_map_tree *map, 2790 struct extent_io_tree *tree, struct page *page, 2791 gfp_t mask) 2792 { 2793 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2794 u64 end = start + PAGE_CACHE_SIZE - 1; 2795 int ret = 1; 2796 2797 if (test_range_bit(tree, start, end, 2798 EXTENT_IOBITS | EXTENT_ORDERED, 0)) 2799 ret = 0; 2800 else { 2801 if ((mask & GFP_NOFS) == GFP_NOFS) 2802 mask = GFP_NOFS; 2803 clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 2804 1, 1, mask); 2805 } 2806 return ret; 2807 } 2808 2809 /* 2810 * a helper for releasepage. As long as there are no locked extents 2811 * in the range corresponding to the page, both state records and extent 2812 * map records are removed 2813 */ 2814 int try_release_extent_mapping(struct extent_map_tree *map, 2815 struct extent_io_tree *tree, struct page *page, 2816 gfp_t mask) 2817 { 2818 struct extent_map *em; 2819 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2820 u64 end = start + PAGE_CACHE_SIZE - 1; 2821 2822 if ((mask & __GFP_WAIT) && 2823 page->mapping->host->i_size > 16 * 1024 * 1024) { 2824 u64 len; 2825 while (start <= end) { 2826 len = end - start + 1; 2827 spin_lock(&map->lock); 2828 em = lookup_extent_mapping(map, start, len); 2829 if (!em || IS_ERR(em)) { 2830 spin_unlock(&map->lock); 2831 break; 2832 } 2833 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2834 em->start != start) { 2835 spin_unlock(&map->lock); 2836 free_extent_map(em); 2837 break; 2838 } 2839 if (!test_range_bit(tree, em->start, 2840 extent_map_end(em) - 1, 2841 EXTENT_LOCKED | EXTENT_WRITEBACK | 2842 EXTENT_ORDERED, 2843 0)) { 2844 remove_extent_mapping(map, em); 2845 /* once for the rb tree */ 2846 free_extent_map(em); 2847 } 2848 start = extent_map_end(em); 2849 spin_unlock(&map->lock); 2850 2851 /* once for us */ 2852 free_extent_map(em); 2853 } 2854 } 2855 return try_release_extent_state(map, tree, page, mask); 2856 } 2857 2858 sector_t extent_bmap(struct address_space *mapping, sector_t iblock, 2859 get_extent_t *get_extent) 2860 { 2861 struct inode *inode = mapping->host; 2862 u64 start = iblock << inode->i_blkbits; 2863 sector_t sector = 0; 2864 size_t blksize = (1 << inode->i_blkbits); 2865 struct extent_map *em; 2866 2867 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2868 GFP_NOFS); 2869 em = get_extent(inode, NULL, 0, start, blksize, 0); 2870 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2871 GFP_NOFS); 2872 if (!em || IS_ERR(em)) 2873 return 0; 2874 2875 if (em->block_start > EXTENT_MAP_LAST_BYTE) 2876 goto out; 2877 2878 sector = (em->block_start + start - em->start) >> inode->i_blkbits; 2879 out: 2880 free_extent_map(em); 2881 return sector; 2882 } 2883 2884 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2885 __u64 start, __u64 len, get_extent_t *get_extent) 2886 { 2887 int ret; 2888 u64 off = start; 2889 u64 max = start + len; 2890 u32 flags = 0; 2891 u64 disko = 0; 2892 struct extent_map *em = NULL; 2893 int end = 0; 2894 u64 em_start = 0, em_len = 0; 2895 unsigned long emflags; 2896 ret = 0; 2897 2898 if (len == 0) 2899 return -EINVAL; 2900 2901 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 2902 GFP_NOFS); 2903 em = get_extent(inode, NULL, 0, off, max - off, 0); 2904 if (!em) 2905 goto out; 2906 if (IS_ERR(em)) { 2907 ret = PTR_ERR(em); 2908 goto out; 2909 } 2910 while (!end) { 2911 off = em->start + em->len; 2912 if (off >= max) 2913 end = 1; 2914 2915 em_start = em->start; 2916 em_len = em->len; 2917 2918 disko = 0; 2919 flags = 0; 2920 2921 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 2922 end = 1; 2923 flags |= FIEMAP_EXTENT_LAST; 2924 } else if (em->block_start == EXTENT_MAP_HOLE) { 2925 flags |= FIEMAP_EXTENT_UNWRITTEN; 2926 } else if (em->block_start == EXTENT_MAP_INLINE) { 2927 flags |= (FIEMAP_EXTENT_DATA_INLINE | 2928 FIEMAP_EXTENT_NOT_ALIGNED); 2929 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 2930 flags |= (FIEMAP_EXTENT_DELALLOC | 2931 FIEMAP_EXTENT_UNKNOWN); 2932 } else { 2933 disko = em->block_start; 2934 } 2935 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2936 flags |= FIEMAP_EXTENT_ENCODED; 2937 2938 emflags = em->flags; 2939 free_extent_map(em); 2940 em = NULL; 2941 2942 if (!end) { 2943 em = get_extent(inode, NULL, 0, off, max - off, 0); 2944 if (!em) 2945 goto out; 2946 if (IS_ERR(em)) { 2947 ret = PTR_ERR(em); 2948 goto out; 2949 } 2950 emflags = em->flags; 2951 } 2952 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) { 2953 flags |= FIEMAP_EXTENT_LAST; 2954 end = 1; 2955 } 2956 2957 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 2958 em_len, flags); 2959 if (ret) 2960 goto out_free; 2961 } 2962 out_free: 2963 free_extent_map(em); 2964 out: 2965 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 2966 GFP_NOFS); 2967 return ret; 2968 } 2969 2970 static inline struct page *extent_buffer_page(struct extent_buffer *eb, 2971 unsigned long i) 2972 { 2973 struct page *p; 2974 struct address_space *mapping; 2975 2976 if (i == 0) 2977 return eb->first_page; 2978 i += eb->start >> PAGE_CACHE_SHIFT; 2979 mapping = eb->first_page->mapping; 2980 if (!mapping) 2981 return NULL; 2982 2983 /* 2984 * extent_buffer_page is only called after pinning the page 2985 * by increasing the reference count. So we know the page must 2986 * be in the radix tree. 2987 */ 2988 rcu_read_lock(); 2989 p = radix_tree_lookup(&mapping->page_tree, i); 2990 rcu_read_unlock(); 2991 2992 return p; 2993 } 2994 2995 static inline unsigned long num_extent_pages(u64 start, u64 len) 2996 { 2997 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 2998 (start >> PAGE_CACHE_SHIFT); 2999 } 3000 3001 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3002 u64 start, 3003 unsigned long len, 3004 gfp_t mask) 3005 { 3006 struct extent_buffer *eb = NULL; 3007 #if LEAK_DEBUG 3008 unsigned long flags; 3009 #endif 3010 3011 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3012 eb->start = start; 3013 eb->len = len; 3014 spin_lock_init(&eb->lock); 3015 init_waitqueue_head(&eb->lock_wq); 3016 3017 #if LEAK_DEBUG 3018 spin_lock_irqsave(&leak_lock, flags); 3019 list_add(&eb->leak_list, &buffers); 3020 spin_unlock_irqrestore(&leak_lock, flags); 3021 #endif 3022 atomic_set(&eb->refs, 1); 3023 3024 return eb; 3025 } 3026 3027 static void __free_extent_buffer(struct extent_buffer *eb) 3028 { 3029 #if LEAK_DEBUG 3030 unsigned long flags; 3031 spin_lock_irqsave(&leak_lock, flags); 3032 list_del(&eb->leak_list); 3033 spin_unlock_irqrestore(&leak_lock, flags); 3034 #endif 3035 kmem_cache_free(extent_buffer_cache, eb); 3036 } 3037 3038 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 3039 u64 start, unsigned long len, 3040 struct page *page0, 3041 gfp_t mask) 3042 { 3043 unsigned long num_pages = num_extent_pages(start, len); 3044 unsigned long i; 3045 unsigned long index = start >> PAGE_CACHE_SHIFT; 3046 struct extent_buffer *eb; 3047 struct extent_buffer *exists = NULL; 3048 struct page *p; 3049 struct address_space *mapping = tree->mapping; 3050 int uptodate = 1; 3051 3052 spin_lock(&tree->buffer_lock); 3053 eb = buffer_search(tree, start); 3054 if (eb) { 3055 atomic_inc(&eb->refs); 3056 spin_unlock(&tree->buffer_lock); 3057 mark_page_accessed(eb->first_page); 3058 return eb; 3059 } 3060 spin_unlock(&tree->buffer_lock); 3061 3062 eb = __alloc_extent_buffer(tree, start, len, mask); 3063 if (!eb) 3064 return NULL; 3065 3066 if (page0) { 3067 eb->first_page = page0; 3068 i = 1; 3069 index++; 3070 page_cache_get(page0); 3071 mark_page_accessed(page0); 3072 set_page_extent_mapped(page0); 3073 set_page_extent_head(page0, len); 3074 uptodate = PageUptodate(page0); 3075 } else { 3076 i = 0; 3077 } 3078 for (; i < num_pages; i++, index++) { 3079 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); 3080 if (!p) { 3081 WARN_ON(1); 3082 goto free_eb; 3083 } 3084 set_page_extent_mapped(p); 3085 mark_page_accessed(p); 3086 if (i == 0) { 3087 eb->first_page = p; 3088 set_page_extent_head(p, len); 3089 } else { 3090 set_page_private(p, EXTENT_PAGE_PRIVATE); 3091 } 3092 if (!PageUptodate(p)) 3093 uptodate = 0; 3094 unlock_page(p); 3095 } 3096 if (uptodate) 3097 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3098 3099 spin_lock(&tree->buffer_lock); 3100 exists = buffer_tree_insert(tree, start, &eb->rb_node); 3101 if (exists) { 3102 /* add one reference for the caller */ 3103 atomic_inc(&exists->refs); 3104 spin_unlock(&tree->buffer_lock); 3105 goto free_eb; 3106 } 3107 spin_unlock(&tree->buffer_lock); 3108 3109 /* add one reference for the tree */ 3110 atomic_inc(&eb->refs); 3111 return eb; 3112 3113 free_eb: 3114 if (!atomic_dec_and_test(&eb->refs)) 3115 return exists; 3116 for (index = 1; index < i; index++) 3117 page_cache_release(extent_buffer_page(eb, index)); 3118 page_cache_release(extent_buffer_page(eb, 0)); 3119 __free_extent_buffer(eb); 3120 return exists; 3121 } 3122 3123 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 3124 u64 start, unsigned long len, 3125 gfp_t mask) 3126 { 3127 struct extent_buffer *eb; 3128 3129 spin_lock(&tree->buffer_lock); 3130 eb = buffer_search(tree, start); 3131 if (eb) 3132 atomic_inc(&eb->refs); 3133 spin_unlock(&tree->buffer_lock); 3134 3135 if (eb) 3136 mark_page_accessed(eb->first_page); 3137 3138 return eb; 3139 } 3140 3141 void free_extent_buffer(struct extent_buffer *eb) 3142 { 3143 if (!eb) 3144 return; 3145 3146 if (!atomic_dec_and_test(&eb->refs)) 3147 return; 3148 3149 WARN_ON(1); 3150 } 3151 3152 int clear_extent_buffer_dirty(struct extent_io_tree *tree, 3153 struct extent_buffer *eb) 3154 { 3155 unsigned long i; 3156 unsigned long num_pages; 3157 struct page *page; 3158 3159 num_pages = num_extent_pages(eb->start, eb->len); 3160 3161 for (i = 0; i < num_pages; i++) { 3162 page = extent_buffer_page(eb, i); 3163 if (!PageDirty(page)) 3164 continue; 3165 3166 lock_page(page); 3167 if (i == 0) 3168 set_page_extent_head(page, eb->len); 3169 else 3170 set_page_private(page, EXTENT_PAGE_PRIVATE); 3171 3172 clear_page_dirty_for_io(page); 3173 spin_lock_irq(&page->mapping->tree_lock); 3174 if (!PageDirty(page)) { 3175 radix_tree_tag_clear(&page->mapping->page_tree, 3176 page_index(page), 3177 PAGECACHE_TAG_DIRTY); 3178 } 3179 spin_unlock_irq(&page->mapping->tree_lock); 3180 unlock_page(page); 3181 } 3182 return 0; 3183 } 3184 3185 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, 3186 struct extent_buffer *eb) 3187 { 3188 return wait_on_extent_writeback(tree, eb->start, 3189 eb->start + eb->len - 1); 3190 } 3191 3192 int set_extent_buffer_dirty(struct extent_io_tree *tree, 3193 struct extent_buffer *eb) 3194 { 3195 unsigned long i; 3196 unsigned long num_pages; 3197 int was_dirty = 0; 3198 3199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3200 num_pages = num_extent_pages(eb->start, eb->len); 3201 for (i = 0; i < num_pages; i++) 3202 __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); 3203 return was_dirty; 3204 } 3205 3206 int clear_extent_buffer_uptodate(struct extent_io_tree *tree, 3207 struct extent_buffer *eb) 3208 { 3209 unsigned long i; 3210 struct page *page; 3211 unsigned long num_pages; 3212 3213 num_pages = num_extent_pages(eb->start, eb->len); 3214 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3215 3216 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3217 GFP_NOFS); 3218 for (i = 0; i < num_pages; i++) { 3219 page = extent_buffer_page(eb, i); 3220 if (page) 3221 ClearPageUptodate(page); 3222 } 3223 return 0; 3224 } 3225 3226 int set_extent_buffer_uptodate(struct extent_io_tree *tree, 3227 struct extent_buffer *eb) 3228 { 3229 unsigned long i; 3230 struct page *page; 3231 unsigned long num_pages; 3232 3233 num_pages = num_extent_pages(eb->start, eb->len); 3234 3235 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3236 GFP_NOFS); 3237 for (i = 0; i < num_pages; i++) { 3238 page = extent_buffer_page(eb, i); 3239 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || 3240 ((i == num_pages - 1) && 3241 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { 3242 check_page_uptodate(tree, page); 3243 continue; 3244 } 3245 SetPageUptodate(page); 3246 } 3247 return 0; 3248 } 3249 3250 int extent_range_uptodate(struct extent_io_tree *tree, 3251 u64 start, u64 end) 3252 { 3253 struct page *page; 3254 int ret; 3255 int pg_uptodate = 1; 3256 int uptodate; 3257 unsigned long index; 3258 3259 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1); 3260 if (ret) 3261 return 1; 3262 while (start <= end) { 3263 index = start >> PAGE_CACHE_SHIFT; 3264 page = find_get_page(tree->mapping, index); 3265 uptodate = PageUptodate(page); 3266 page_cache_release(page); 3267 if (!uptodate) { 3268 pg_uptodate = 0; 3269 break; 3270 } 3271 start += PAGE_CACHE_SIZE; 3272 } 3273 return pg_uptodate; 3274 } 3275 3276 int extent_buffer_uptodate(struct extent_io_tree *tree, 3277 struct extent_buffer *eb) 3278 { 3279 int ret = 0; 3280 unsigned long num_pages; 3281 unsigned long i; 3282 struct page *page; 3283 int pg_uptodate = 1; 3284 3285 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3286 return 1; 3287 3288 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3289 EXTENT_UPTODATE, 1); 3290 if (ret) 3291 return ret; 3292 3293 num_pages = num_extent_pages(eb->start, eb->len); 3294 for (i = 0; i < num_pages; i++) { 3295 page = extent_buffer_page(eb, i); 3296 if (!PageUptodate(page)) { 3297 pg_uptodate = 0; 3298 break; 3299 } 3300 } 3301 return pg_uptodate; 3302 } 3303 3304 int read_extent_buffer_pages(struct extent_io_tree *tree, 3305 struct extent_buffer *eb, 3306 u64 start, int wait, 3307 get_extent_t *get_extent, int mirror_num) 3308 { 3309 unsigned long i; 3310 unsigned long start_i; 3311 struct page *page; 3312 int err; 3313 int ret = 0; 3314 int locked_pages = 0; 3315 int all_uptodate = 1; 3316 int inc_all_pages = 0; 3317 unsigned long num_pages; 3318 struct bio *bio = NULL; 3319 unsigned long bio_flags = 0; 3320 3321 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3322 return 0; 3323 3324 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3325 EXTENT_UPTODATE, 1)) { 3326 return 0; 3327 } 3328 3329 if (start) { 3330 WARN_ON(start < eb->start); 3331 start_i = (start >> PAGE_CACHE_SHIFT) - 3332 (eb->start >> PAGE_CACHE_SHIFT); 3333 } else { 3334 start_i = 0; 3335 } 3336 3337 num_pages = num_extent_pages(eb->start, eb->len); 3338 for (i = start_i; i < num_pages; i++) { 3339 page = extent_buffer_page(eb, i); 3340 if (!wait) { 3341 if (!trylock_page(page)) 3342 goto unlock_exit; 3343 } else { 3344 lock_page(page); 3345 } 3346 locked_pages++; 3347 if (!PageUptodate(page)) 3348 all_uptodate = 0; 3349 } 3350 if (all_uptodate) { 3351 if (start_i == 0) 3352 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3353 goto unlock_exit; 3354 } 3355 3356 for (i = start_i; i < num_pages; i++) { 3357 page = extent_buffer_page(eb, i); 3358 if (inc_all_pages) 3359 page_cache_get(page); 3360 if (!PageUptodate(page)) { 3361 if (start_i == 0) 3362 inc_all_pages = 1; 3363 ClearPageError(page); 3364 err = __extent_read_full_page(tree, page, 3365 get_extent, &bio, 3366 mirror_num, &bio_flags); 3367 if (err) 3368 ret = err; 3369 } else { 3370 unlock_page(page); 3371 } 3372 } 3373 3374 if (bio) 3375 submit_one_bio(READ, bio, mirror_num, bio_flags); 3376 3377 if (ret || !wait) 3378 return ret; 3379 3380 for (i = start_i; i < num_pages; i++) { 3381 page = extent_buffer_page(eb, i); 3382 wait_on_page_locked(page); 3383 if (!PageUptodate(page)) 3384 ret = -EIO; 3385 } 3386 3387 if (!ret) 3388 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3389 return ret; 3390 3391 unlock_exit: 3392 i = start_i; 3393 while (locked_pages > 0) { 3394 page = extent_buffer_page(eb, i); 3395 i++; 3396 unlock_page(page); 3397 locked_pages--; 3398 } 3399 return ret; 3400 } 3401 3402 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 3403 unsigned long start, 3404 unsigned long len) 3405 { 3406 size_t cur; 3407 size_t offset; 3408 struct page *page; 3409 char *kaddr; 3410 char *dst = (char *)dstv; 3411 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3412 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3413 3414 WARN_ON(start > eb->len); 3415 WARN_ON(start + len > eb->start + eb->len); 3416 3417 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3418 3419 while (len > 0) { 3420 page = extent_buffer_page(eb, i); 3421 3422 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3423 kaddr = kmap_atomic(page, KM_USER1); 3424 memcpy(dst, kaddr + offset, cur); 3425 kunmap_atomic(kaddr, KM_USER1); 3426 3427 dst += cur; 3428 len -= cur; 3429 offset = 0; 3430 i++; 3431 } 3432 } 3433 3434 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 3435 unsigned long min_len, char **token, char **map, 3436 unsigned long *map_start, 3437 unsigned long *map_len, int km) 3438 { 3439 size_t offset = start & (PAGE_CACHE_SIZE - 1); 3440 char *kaddr; 3441 struct page *p; 3442 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3443 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3444 unsigned long end_i = (start_offset + start + min_len - 1) >> 3445 PAGE_CACHE_SHIFT; 3446 3447 if (i != end_i) 3448 return -EINVAL; 3449 3450 if (i == 0) { 3451 offset = start_offset; 3452 *map_start = 0; 3453 } else { 3454 offset = 0; 3455 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 3456 } 3457 3458 if (start + min_len > eb->len) { 3459 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 3460 "wanted %lu %lu\n", (unsigned long long)eb->start, 3461 eb->len, start, min_len); 3462 WARN_ON(1); 3463 } 3464 3465 p = extent_buffer_page(eb, i); 3466 kaddr = kmap_atomic(p, km); 3467 *token = kaddr; 3468 *map = kaddr + offset; 3469 *map_len = PAGE_CACHE_SIZE - offset; 3470 return 0; 3471 } 3472 3473 int map_extent_buffer(struct extent_buffer *eb, unsigned long start, 3474 unsigned long min_len, 3475 char **token, char **map, 3476 unsigned long *map_start, 3477 unsigned long *map_len, int km) 3478 { 3479 int err; 3480 int save = 0; 3481 if (eb->map_token) { 3482 unmap_extent_buffer(eb, eb->map_token, km); 3483 eb->map_token = NULL; 3484 save = 1; 3485 } 3486 err = map_private_extent_buffer(eb, start, min_len, token, map, 3487 map_start, map_len, km); 3488 if (!err && save) { 3489 eb->map_token = *token; 3490 eb->kaddr = *map; 3491 eb->map_start = *map_start; 3492 eb->map_len = *map_len; 3493 } 3494 return err; 3495 } 3496 3497 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) 3498 { 3499 kunmap_atomic(token, km); 3500 } 3501 3502 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 3503 unsigned long start, 3504 unsigned long len) 3505 { 3506 size_t cur; 3507 size_t offset; 3508 struct page *page; 3509 char *kaddr; 3510 char *ptr = (char *)ptrv; 3511 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3512 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3513 int ret = 0; 3514 3515 WARN_ON(start > eb->len); 3516 WARN_ON(start + len > eb->start + eb->len); 3517 3518 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3519 3520 while (len > 0) { 3521 page = extent_buffer_page(eb, i); 3522 3523 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3524 3525 kaddr = kmap_atomic(page, KM_USER0); 3526 ret = memcmp(ptr, kaddr + offset, cur); 3527 kunmap_atomic(kaddr, KM_USER0); 3528 if (ret) 3529 break; 3530 3531 ptr += cur; 3532 len -= cur; 3533 offset = 0; 3534 i++; 3535 } 3536 return ret; 3537 } 3538 3539 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 3540 unsigned long start, unsigned long len) 3541 { 3542 size_t cur; 3543 size_t offset; 3544 struct page *page; 3545 char *kaddr; 3546 char *src = (char *)srcv; 3547 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3548 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3549 3550 WARN_ON(start > eb->len); 3551 WARN_ON(start + len > eb->start + eb->len); 3552 3553 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3554 3555 while (len > 0) { 3556 page = extent_buffer_page(eb, i); 3557 WARN_ON(!PageUptodate(page)); 3558 3559 cur = min(len, PAGE_CACHE_SIZE - offset); 3560 kaddr = kmap_atomic(page, KM_USER1); 3561 memcpy(kaddr + offset, src, cur); 3562 kunmap_atomic(kaddr, KM_USER1); 3563 3564 src += cur; 3565 len -= cur; 3566 offset = 0; 3567 i++; 3568 } 3569 } 3570 3571 void memset_extent_buffer(struct extent_buffer *eb, char c, 3572 unsigned long start, unsigned long len) 3573 { 3574 size_t cur; 3575 size_t offset; 3576 struct page *page; 3577 char *kaddr; 3578 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3579 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3580 3581 WARN_ON(start > eb->len); 3582 WARN_ON(start + len > eb->start + eb->len); 3583 3584 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3585 3586 while (len > 0) { 3587 page = extent_buffer_page(eb, i); 3588 WARN_ON(!PageUptodate(page)); 3589 3590 cur = min(len, PAGE_CACHE_SIZE - offset); 3591 kaddr = kmap_atomic(page, KM_USER0); 3592 memset(kaddr + offset, c, cur); 3593 kunmap_atomic(kaddr, KM_USER0); 3594 3595 len -= cur; 3596 offset = 0; 3597 i++; 3598 } 3599 } 3600 3601 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 3602 unsigned long dst_offset, unsigned long src_offset, 3603 unsigned long len) 3604 { 3605 u64 dst_len = dst->len; 3606 size_t cur; 3607 size_t offset; 3608 struct page *page; 3609 char *kaddr; 3610 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3611 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3612 3613 WARN_ON(src->len != dst_len); 3614 3615 offset = (start_offset + dst_offset) & 3616 ((unsigned long)PAGE_CACHE_SIZE - 1); 3617 3618 while (len > 0) { 3619 page = extent_buffer_page(dst, i); 3620 WARN_ON(!PageUptodate(page)); 3621 3622 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 3623 3624 kaddr = kmap_atomic(page, KM_USER0); 3625 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3626 kunmap_atomic(kaddr, KM_USER0); 3627 3628 src_offset += cur; 3629 len -= cur; 3630 offset = 0; 3631 i++; 3632 } 3633 } 3634 3635 static void move_pages(struct page *dst_page, struct page *src_page, 3636 unsigned long dst_off, unsigned long src_off, 3637 unsigned long len) 3638 { 3639 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3640 if (dst_page == src_page) { 3641 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 3642 } else { 3643 char *src_kaddr = kmap_atomic(src_page, KM_USER1); 3644 char *p = dst_kaddr + dst_off + len; 3645 char *s = src_kaddr + src_off + len; 3646 3647 while (len--) 3648 *--p = *--s; 3649 3650 kunmap_atomic(src_kaddr, KM_USER1); 3651 } 3652 kunmap_atomic(dst_kaddr, KM_USER0); 3653 } 3654 3655 static void copy_pages(struct page *dst_page, struct page *src_page, 3656 unsigned long dst_off, unsigned long src_off, 3657 unsigned long len) 3658 { 3659 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3660 char *src_kaddr; 3661 3662 if (dst_page != src_page) 3663 src_kaddr = kmap_atomic(src_page, KM_USER1); 3664 else 3665 src_kaddr = dst_kaddr; 3666 3667 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 3668 kunmap_atomic(dst_kaddr, KM_USER0); 3669 if (dst_page != src_page) 3670 kunmap_atomic(src_kaddr, KM_USER1); 3671 } 3672 3673 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3674 unsigned long src_offset, unsigned long len) 3675 { 3676 size_t cur; 3677 size_t dst_off_in_page; 3678 size_t src_off_in_page; 3679 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3680 unsigned long dst_i; 3681 unsigned long src_i; 3682 3683 if (src_offset + len > dst->len) { 3684 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3685 "len %lu dst len %lu\n", src_offset, len, dst->len); 3686 BUG_ON(1); 3687 } 3688 if (dst_offset + len > dst->len) { 3689 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3690 "len %lu dst len %lu\n", dst_offset, len, dst->len); 3691 BUG_ON(1); 3692 } 3693 3694 while (len > 0) { 3695 dst_off_in_page = (start_offset + dst_offset) & 3696 ((unsigned long)PAGE_CACHE_SIZE - 1); 3697 src_off_in_page = (start_offset + src_offset) & 3698 ((unsigned long)PAGE_CACHE_SIZE - 1); 3699 3700 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3701 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 3702 3703 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 3704 src_off_in_page)); 3705 cur = min_t(unsigned long, cur, 3706 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 3707 3708 copy_pages(extent_buffer_page(dst, dst_i), 3709 extent_buffer_page(dst, src_i), 3710 dst_off_in_page, src_off_in_page, cur); 3711 3712 src_offset += cur; 3713 dst_offset += cur; 3714 len -= cur; 3715 } 3716 } 3717 3718 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3719 unsigned long src_offset, unsigned long len) 3720 { 3721 size_t cur; 3722 size_t dst_off_in_page; 3723 size_t src_off_in_page; 3724 unsigned long dst_end = dst_offset + len - 1; 3725 unsigned long src_end = src_offset + len - 1; 3726 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3727 unsigned long dst_i; 3728 unsigned long src_i; 3729 3730 if (src_offset + len > dst->len) { 3731 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3732 "len %lu len %lu\n", src_offset, len, dst->len); 3733 BUG_ON(1); 3734 } 3735 if (dst_offset + len > dst->len) { 3736 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3737 "len %lu len %lu\n", dst_offset, len, dst->len); 3738 BUG_ON(1); 3739 } 3740 if (dst_offset < src_offset) { 3741 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 3742 return; 3743 } 3744 while (len > 0) { 3745 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 3746 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 3747 3748 dst_off_in_page = (start_offset + dst_end) & 3749 ((unsigned long)PAGE_CACHE_SIZE - 1); 3750 src_off_in_page = (start_offset + src_end) & 3751 ((unsigned long)PAGE_CACHE_SIZE - 1); 3752 3753 cur = min_t(unsigned long, len, src_off_in_page + 1); 3754 cur = min(cur, dst_off_in_page + 1); 3755 move_pages(extent_buffer_page(dst, dst_i), 3756 extent_buffer_page(dst, src_i), 3757 dst_off_in_page - cur + 1, 3758 src_off_in_page - cur + 1, cur); 3759 3760 dst_end -= cur; 3761 src_end -= cur; 3762 len -= cur; 3763 } 3764 } 3765 3766 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) 3767 { 3768 u64 start = page_offset(page); 3769 struct extent_buffer *eb; 3770 int ret = 1; 3771 unsigned long i; 3772 unsigned long num_pages; 3773 3774 spin_lock(&tree->buffer_lock); 3775 eb = buffer_search(tree, start); 3776 if (!eb) 3777 goto out; 3778 3779 if (atomic_read(&eb->refs) > 1) { 3780 ret = 0; 3781 goto out; 3782 } 3783 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3784 ret = 0; 3785 goto out; 3786 } 3787 /* at this point we can safely release the extent buffer */ 3788 num_pages = num_extent_pages(eb->start, eb->len); 3789 for (i = 0; i < num_pages; i++) 3790 page_cache_release(extent_buffer_page(eb, i)); 3791 rb_erase(&eb->rb_node, &tree->buffer); 3792 __free_extent_buffer(eb); 3793 out: 3794 spin_unlock(&tree->buffer_lock); 3795 return ret; 3796 } 3797