1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 27 static LIST_HEAD(buffers); 28 static LIST_HEAD(states); 29 30 #define LEAK_DEBUG 0 31 #if LEAK_DEBUG 32 static DEFINE_SPINLOCK(leak_lock); 33 #endif 34 35 #define BUFFER_LRU_MAX 64 36 37 struct tree_entry { 38 u64 start; 39 u64 end; 40 struct rb_node rb_node; 41 }; 42 43 struct extent_page_data { 44 struct bio *bio; 45 struct extent_io_tree *tree; 46 get_extent_t *get_extent; 47 unsigned long bio_flags; 48 49 /* tells writepage not to lock the state bits for this range 50 * it still does the unlocking 51 */ 52 unsigned int extent_locked:1; 53 54 /* tells the submit_bio code to use a WRITE_SYNC */ 55 unsigned int sync_io:1; 56 }; 57 58 static noinline void flush_write_bio(void *data); 59 static inline struct btrfs_fs_info * 60 tree_fs_info(struct extent_io_tree *tree) 61 { 62 return btrfs_sb(tree->mapping->host->i_sb); 63 } 64 65 int __init extent_io_init(void) 66 { 67 extent_state_cache = kmem_cache_create("btrfs_extent_state", 68 sizeof(struct extent_state), 0, 69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 70 if (!extent_state_cache) 71 return -ENOMEM; 72 73 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 74 sizeof(struct extent_buffer), 0, 75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 76 if (!extent_buffer_cache) 77 goto free_state_cache; 78 return 0; 79 80 free_state_cache: 81 kmem_cache_destroy(extent_state_cache); 82 return -ENOMEM; 83 } 84 85 void extent_io_exit(void) 86 { 87 struct extent_state *state; 88 struct extent_buffer *eb; 89 90 while (!list_empty(&states)) { 91 state = list_entry(states.next, struct extent_state, leak_list); 92 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 93 "state %lu in tree %p refs %d\n", 94 (unsigned long long)state->start, 95 (unsigned long long)state->end, 96 state->state, state->tree, atomic_read(&state->refs)); 97 list_del(&state->leak_list); 98 kmem_cache_free(extent_state_cache, state); 99 100 } 101 102 while (!list_empty(&buffers)) { 103 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 105 "refs %d\n", (unsigned long long)eb->start, 106 eb->len, atomic_read(&eb->refs)); 107 list_del(&eb->leak_list); 108 kmem_cache_free(extent_buffer_cache, eb); 109 } 110 111 /* 112 * Make sure all delayed rcu free are flushed before we 113 * destroy caches. 114 */ 115 rcu_barrier(); 116 if (extent_state_cache) 117 kmem_cache_destroy(extent_state_cache); 118 if (extent_buffer_cache) 119 kmem_cache_destroy(extent_buffer_cache); 120 } 121 122 void extent_io_tree_init(struct extent_io_tree *tree, 123 struct address_space *mapping) 124 { 125 tree->state = RB_ROOT; 126 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 127 tree->ops = NULL; 128 tree->dirty_bytes = 0; 129 spin_lock_init(&tree->lock); 130 spin_lock_init(&tree->buffer_lock); 131 tree->mapping = mapping; 132 } 133 134 static struct extent_state *alloc_extent_state(gfp_t mask) 135 { 136 struct extent_state *state; 137 #if LEAK_DEBUG 138 unsigned long flags; 139 #endif 140 141 state = kmem_cache_alloc(extent_state_cache, mask); 142 if (!state) 143 return state; 144 state->state = 0; 145 state->private = 0; 146 state->tree = NULL; 147 #if LEAK_DEBUG 148 spin_lock_irqsave(&leak_lock, flags); 149 list_add(&state->leak_list, &states); 150 spin_unlock_irqrestore(&leak_lock, flags); 151 #endif 152 atomic_set(&state->refs, 1); 153 init_waitqueue_head(&state->wq); 154 trace_alloc_extent_state(state, mask, _RET_IP_); 155 return state; 156 } 157 158 void free_extent_state(struct extent_state *state) 159 { 160 if (!state) 161 return; 162 if (atomic_dec_and_test(&state->refs)) { 163 #if LEAK_DEBUG 164 unsigned long flags; 165 #endif 166 WARN_ON(state->tree); 167 #if LEAK_DEBUG 168 spin_lock_irqsave(&leak_lock, flags); 169 list_del(&state->leak_list); 170 spin_unlock_irqrestore(&leak_lock, flags); 171 #endif 172 trace_free_extent_state(state, _RET_IP_); 173 kmem_cache_free(extent_state_cache, state); 174 } 175 } 176 177 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 178 struct rb_node *node) 179 { 180 struct rb_node **p = &root->rb_node; 181 struct rb_node *parent = NULL; 182 struct tree_entry *entry; 183 184 while (*p) { 185 parent = *p; 186 entry = rb_entry(parent, struct tree_entry, rb_node); 187 188 if (offset < entry->start) 189 p = &(*p)->rb_left; 190 else if (offset > entry->end) 191 p = &(*p)->rb_right; 192 else 193 return parent; 194 } 195 196 rb_link_node(node, parent, p); 197 rb_insert_color(node, root); 198 return NULL; 199 } 200 201 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 202 struct rb_node **prev_ret, 203 struct rb_node **next_ret) 204 { 205 struct rb_root *root = &tree->state; 206 struct rb_node *n = root->rb_node; 207 struct rb_node *prev = NULL; 208 struct rb_node *orig_prev = NULL; 209 struct tree_entry *entry; 210 struct tree_entry *prev_entry = NULL; 211 212 while (n) { 213 entry = rb_entry(n, struct tree_entry, rb_node); 214 prev = n; 215 prev_entry = entry; 216 217 if (offset < entry->start) 218 n = n->rb_left; 219 else if (offset > entry->end) 220 n = n->rb_right; 221 else 222 return n; 223 } 224 225 if (prev_ret) { 226 orig_prev = prev; 227 while (prev && offset > prev_entry->end) { 228 prev = rb_next(prev); 229 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 230 } 231 *prev_ret = prev; 232 prev = orig_prev; 233 } 234 235 if (next_ret) { 236 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 237 while (prev && offset < prev_entry->start) { 238 prev = rb_prev(prev); 239 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 240 } 241 *next_ret = prev; 242 } 243 return NULL; 244 } 245 246 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 247 u64 offset) 248 { 249 struct rb_node *prev = NULL; 250 struct rb_node *ret; 251 252 ret = __etree_search(tree, offset, &prev, NULL); 253 if (!ret) 254 return prev; 255 return ret; 256 } 257 258 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 259 struct extent_state *other) 260 { 261 if (tree->ops && tree->ops->merge_extent_hook) 262 tree->ops->merge_extent_hook(tree->mapping->host, new, 263 other); 264 } 265 266 /* 267 * utility function to look for merge candidates inside a given range. 268 * Any extents with matching state are merged together into a single 269 * extent in the tree. Extents with EXTENT_IO in their state field 270 * are not merged because the end_io handlers need to be able to do 271 * operations on them without sleeping (or doing allocations/splits). 272 * 273 * This should be called with the tree lock held. 274 */ 275 static void merge_state(struct extent_io_tree *tree, 276 struct extent_state *state) 277 { 278 struct extent_state *other; 279 struct rb_node *other_node; 280 281 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 282 return; 283 284 other_node = rb_prev(&state->rb_node); 285 if (other_node) { 286 other = rb_entry(other_node, struct extent_state, rb_node); 287 if (other->end == state->start - 1 && 288 other->state == state->state) { 289 merge_cb(tree, state, other); 290 state->start = other->start; 291 other->tree = NULL; 292 rb_erase(&other->rb_node, &tree->state); 293 free_extent_state(other); 294 } 295 } 296 other_node = rb_next(&state->rb_node); 297 if (other_node) { 298 other = rb_entry(other_node, struct extent_state, rb_node); 299 if (other->start == state->end + 1 && 300 other->state == state->state) { 301 merge_cb(tree, state, other); 302 state->end = other->end; 303 other->tree = NULL; 304 rb_erase(&other->rb_node, &tree->state); 305 free_extent_state(other); 306 } 307 } 308 } 309 310 static void set_state_cb(struct extent_io_tree *tree, 311 struct extent_state *state, int *bits) 312 { 313 if (tree->ops && tree->ops->set_bit_hook) 314 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 315 } 316 317 static void clear_state_cb(struct extent_io_tree *tree, 318 struct extent_state *state, int *bits) 319 { 320 if (tree->ops && tree->ops->clear_bit_hook) 321 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 322 } 323 324 static void set_state_bits(struct extent_io_tree *tree, 325 struct extent_state *state, int *bits); 326 327 /* 328 * insert an extent_state struct into the tree. 'bits' are set on the 329 * struct before it is inserted. 330 * 331 * This may return -EEXIST if the extent is already there, in which case the 332 * state struct is freed. 333 * 334 * The tree lock is not taken internally. This is a utility function and 335 * probably isn't what you want to call (see set/clear_extent_bit). 336 */ 337 static int insert_state(struct extent_io_tree *tree, 338 struct extent_state *state, u64 start, u64 end, 339 int *bits) 340 { 341 struct rb_node *node; 342 343 if (end < start) 344 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 345 (unsigned long long)end, 346 (unsigned long long)start); 347 state->start = start; 348 state->end = end; 349 350 set_state_bits(tree, state, bits); 351 352 node = tree_insert(&tree->state, end, &state->rb_node); 353 if (node) { 354 struct extent_state *found; 355 found = rb_entry(node, struct extent_state, rb_node); 356 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 357 "%llu %llu\n", (unsigned long long)found->start, 358 (unsigned long long)found->end, 359 (unsigned long long)start, (unsigned long long)end); 360 return -EEXIST; 361 } 362 state->tree = tree; 363 merge_state(tree, state); 364 return 0; 365 } 366 367 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 368 u64 split) 369 { 370 if (tree->ops && tree->ops->split_extent_hook) 371 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 372 } 373 374 /* 375 * split a given extent state struct in two, inserting the preallocated 376 * struct 'prealloc' as the newly created second half. 'split' indicates an 377 * offset inside 'orig' where it should be split. 378 * 379 * Before calling, 380 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 381 * are two extent state structs in the tree: 382 * prealloc: [orig->start, split - 1] 383 * orig: [ split, orig->end ] 384 * 385 * The tree locks are not taken by this function. They need to be held 386 * by the caller. 387 */ 388 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 389 struct extent_state *prealloc, u64 split) 390 { 391 struct rb_node *node; 392 393 split_cb(tree, orig, split); 394 395 prealloc->start = orig->start; 396 prealloc->end = split - 1; 397 prealloc->state = orig->state; 398 orig->start = split; 399 400 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 401 if (node) { 402 free_extent_state(prealloc); 403 return -EEXIST; 404 } 405 prealloc->tree = tree; 406 return 0; 407 } 408 409 static struct extent_state *next_state(struct extent_state *state) 410 { 411 struct rb_node *next = rb_next(&state->rb_node); 412 if (next) 413 return rb_entry(next, struct extent_state, rb_node); 414 else 415 return NULL; 416 } 417 418 /* 419 * utility function to clear some bits in an extent state struct. 420 * it will optionally wake up any one waiting on this state (wake == 1). 421 * 422 * If no bits are set on the state struct after clearing things, the 423 * struct is freed and removed from the tree 424 */ 425 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 426 struct extent_state *state, 427 int *bits, int wake) 428 { 429 struct extent_state *next; 430 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 431 432 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 433 u64 range = state->end - state->start + 1; 434 WARN_ON(range > tree->dirty_bytes); 435 tree->dirty_bytes -= range; 436 } 437 clear_state_cb(tree, state, bits); 438 state->state &= ~bits_to_clear; 439 if (wake) 440 wake_up(&state->wq); 441 if (state->state == 0) { 442 next = next_state(state); 443 if (state->tree) { 444 rb_erase(&state->rb_node, &tree->state); 445 state->tree = NULL; 446 free_extent_state(state); 447 } else { 448 WARN_ON(1); 449 } 450 } else { 451 merge_state(tree, state); 452 next = next_state(state); 453 } 454 return next; 455 } 456 457 static struct extent_state * 458 alloc_extent_state_atomic(struct extent_state *prealloc) 459 { 460 if (!prealloc) 461 prealloc = alloc_extent_state(GFP_ATOMIC); 462 463 return prealloc; 464 } 465 466 void extent_io_tree_panic(struct extent_io_tree *tree, int err) 467 { 468 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 469 "Extent tree was modified by another " 470 "thread while locked."); 471 } 472 473 /* 474 * clear some bits on a range in the tree. This may require splitting 475 * or inserting elements in the tree, so the gfp mask is used to 476 * indicate which allocations or sleeping are allowed. 477 * 478 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 479 * the given range from the tree regardless of state (ie for truncate). 480 * 481 * the range [start, end] is inclusive. 482 * 483 * This takes the tree lock, and returns 0 on success and < 0 on error. 484 */ 485 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 486 int bits, int wake, int delete, 487 struct extent_state **cached_state, 488 gfp_t mask) 489 { 490 struct extent_state *state; 491 struct extent_state *cached; 492 struct extent_state *prealloc = NULL; 493 struct rb_node *node; 494 u64 last_end; 495 int err; 496 int clear = 0; 497 498 if (delete) 499 bits |= ~EXTENT_CTLBITS; 500 bits |= EXTENT_FIRST_DELALLOC; 501 502 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 503 clear = 1; 504 again: 505 if (!prealloc && (mask & __GFP_WAIT)) { 506 prealloc = alloc_extent_state(mask); 507 if (!prealloc) 508 return -ENOMEM; 509 } 510 511 spin_lock(&tree->lock); 512 if (cached_state) { 513 cached = *cached_state; 514 515 if (clear) { 516 *cached_state = NULL; 517 cached_state = NULL; 518 } 519 520 if (cached && cached->tree && cached->start <= start && 521 cached->end > start) { 522 if (clear) 523 atomic_dec(&cached->refs); 524 state = cached; 525 goto hit_next; 526 } 527 if (clear) 528 free_extent_state(cached); 529 } 530 /* 531 * this search will find the extents that end after 532 * our range starts 533 */ 534 node = tree_search(tree, start); 535 if (!node) 536 goto out; 537 state = rb_entry(node, struct extent_state, rb_node); 538 hit_next: 539 if (state->start > end) 540 goto out; 541 WARN_ON(state->end < start); 542 last_end = state->end; 543 544 /* the state doesn't have the wanted bits, go ahead */ 545 if (!(state->state & bits)) { 546 state = next_state(state); 547 goto next; 548 } 549 550 /* 551 * | ---- desired range ---- | 552 * | state | or 553 * | ------------- state -------------- | 554 * 555 * We need to split the extent we found, and may flip 556 * bits on second half. 557 * 558 * If the extent we found extends past our range, we 559 * just split and search again. It'll get split again 560 * the next time though. 561 * 562 * If the extent we found is inside our range, we clear 563 * the desired bit on it. 564 */ 565 566 if (state->start < start) { 567 prealloc = alloc_extent_state_atomic(prealloc); 568 BUG_ON(!prealloc); 569 err = split_state(tree, state, prealloc, start); 570 if (err) 571 extent_io_tree_panic(tree, err); 572 573 prealloc = NULL; 574 if (err) 575 goto out; 576 if (state->end <= end) { 577 state = clear_state_bit(tree, state, &bits, wake); 578 goto next; 579 } 580 goto search_again; 581 } 582 /* 583 * | ---- desired range ---- | 584 * | state | 585 * We need to split the extent, and clear the bit 586 * on the first half 587 */ 588 if (state->start <= end && state->end > end) { 589 prealloc = alloc_extent_state_atomic(prealloc); 590 BUG_ON(!prealloc); 591 err = split_state(tree, state, prealloc, end + 1); 592 if (err) 593 extent_io_tree_panic(tree, err); 594 595 if (wake) 596 wake_up(&state->wq); 597 598 clear_state_bit(tree, prealloc, &bits, wake); 599 600 prealloc = NULL; 601 goto out; 602 } 603 604 state = clear_state_bit(tree, state, &bits, wake); 605 next: 606 if (last_end == (u64)-1) 607 goto out; 608 start = last_end + 1; 609 if (start <= end && state && !need_resched()) 610 goto hit_next; 611 goto search_again; 612 613 out: 614 spin_unlock(&tree->lock); 615 if (prealloc) 616 free_extent_state(prealloc); 617 618 return 0; 619 620 search_again: 621 if (start > end) 622 goto out; 623 spin_unlock(&tree->lock); 624 if (mask & __GFP_WAIT) 625 cond_resched(); 626 goto again; 627 } 628 629 static void wait_on_state(struct extent_io_tree *tree, 630 struct extent_state *state) 631 __releases(tree->lock) 632 __acquires(tree->lock) 633 { 634 DEFINE_WAIT(wait); 635 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 636 spin_unlock(&tree->lock); 637 schedule(); 638 spin_lock(&tree->lock); 639 finish_wait(&state->wq, &wait); 640 } 641 642 /* 643 * waits for one or more bits to clear on a range in the state tree. 644 * The range [start, end] is inclusive. 645 * The tree lock is taken by this function 646 */ 647 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 648 { 649 struct extent_state *state; 650 struct rb_node *node; 651 652 spin_lock(&tree->lock); 653 again: 654 while (1) { 655 /* 656 * this search will find all the extents that end after 657 * our range starts 658 */ 659 node = tree_search(tree, start); 660 if (!node) 661 break; 662 663 state = rb_entry(node, struct extent_state, rb_node); 664 665 if (state->start > end) 666 goto out; 667 668 if (state->state & bits) { 669 start = state->start; 670 atomic_inc(&state->refs); 671 wait_on_state(tree, state); 672 free_extent_state(state); 673 goto again; 674 } 675 start = state->end + 1; 676 677 if (start > end) 678 break; 679 680 cond_resched_lock(&tree->lock); 681 } 682 out: 683 spin_unlock(&tree->lock); 684 } 685 686 static void set_state_bits(struct extent_io_tree *tree, 687 struct extent_state *state, 688 int *bits) 689 { 690 int bits_to_set = *bits & ~EXTENT_CTLBITS; 691 692 set_state_cb(tree, state, bits); 693 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 694 u64 range = state->end - state->start + 1; 695 tree->dirty_bytes += range; 696 } 697 state->state |= bits_to_set; 698 } 699 700 static void cache_state(struct extent_state *state, 701 struct extent_state **cached_ptr) 702 { 703 if (cached_ptr && !(*cached_ptr)) { 704 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 705 *cached_ptr = state; 706 atomic_inc(&state->refs); 707 } 708 } 709 } 710 711 static void uncache_state(struct extent_state **cached_ptr) 712 { 713 if (cached_ptr && (*cached_ptr)) { 714 struct extent_state *state = *cached_ptr; 715 *cached_ptr = NULL; 716 free_extent_state(state); 717 } 718 } 719 720 /* 721 * set some bits on a range in the tree. This may require allocations or 722 * sleeping, so the gfp mask is used to indicate what is allowed. 723 * 724 * If any of the exclusive bits are set, this will fail with -EEXIST if some 725 * part of the range already has the desired bits set. The start of the 726 * existing range is returned in failed_start in this case. 727 * 728 * [start, end] is inclusive This takes the tree lock. 729 */ 730 731 static int __must_check 732 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 733 int bits, int exclusive_bits, u64 *failed_start, 734 struct extent_state **cached_state, gfp_t mask) 735 { 736 struct extent_state *state; 737 struct extent_state *prealloc = NULL; 738 struct rb_node *node; 739 int err = 0; 740 u64 last_start; 741 u64 last_end; 742 743 bits |= EXTENT_FIRST_DELALLOC; 744 again: 745 if (!prealloc && (mask & __GFP_WAIT)) { 746 prealloc = alloc_extent_state(mask); 747 BUG_ON(!prealloc); 748 } 749 750 spin_lock(&tree->lock); 751 if (cached_state && *cached_state) { 752 state = *cached_state; 753 if (state->start <= start && state->end > start && 754 state->tree) { 755 node = &state->rb_node; 756 goto hit_next; 757 } 758 } 759 /* 760 * this search will find all the extents that end after 761 * our range starts. 762 */ 763 node = tree_search(tree, start); 764 if (!node) { 765 prealloc = alloc_extent_state_atomic(prealloc); 766 BUG_ON(!prealloc); 767 err = insert_state(tree, prealloc, start, end, &bits); 768 if (err) 769 extent_io_tree_panic(tree, err); 770 771 prealloc = NULL; 772 goto out; 773 } 774 state = rb_entry(node, struct extent_state, rb_node); 775 hit_next: 776 last_start = state->start; 777 last_end = state->end; 778 779 /* 780 * | ---- desired range ---- | 781 * | state | 782 * 783 * Just lock what we found and keep going 784 */ 785 if (state->start == start && state->end <= end) { 786 if (state->state & exclusive_bits) { 787 *failed_start = state->start; 788 err = -EEXIST; 789 goto out; 790 } 791 792 set_state_bits(tree, state, &bits); 793 cache_state(state, cached_state); 794 merge_state(tree, state); 795 if (last_end == (u64)-1) 796 goto out; 797 start = last_end + 1; 798 state = next_state(state); 799 if (start < end && state && state->start == start && 800 !need_resched()) 801 goto hit_next; 802 goto search_again; 803 } 804 805 /* 806 * | ---- desired range ---- | 807 * | state | 808 * or 809 * | ------------- state -------------- | 810 * 811 * We need to split the extent we found, and may flip bits on 812 * second half. 813 * 814 * If the extent we found extends past our 815 * range, we just split and search again. It'll get split 816 * again the next time though. 817 * 818 * If the extent we found is inside our range, we set the 819 * desired bit on it. 820 */ 821 if (state->start < start) { 822 if (state->state & exclusive_bits) { 823 *failed_start = start; 824 err = -EEXIST; 825 goto out; 826 } 827 828 prealloc = alloc_extent_state_atomic(prealloc); 829 BUG_ON(!prealloc); 830 err = split_state(tree, state, prealloc, start); 831 if (err) 832 extent_io_tree_panic(tree, err); 833 834 prealloc = NULL; 835 if (err) 836 goto out; 837 if (state->end <= end) { 838 set_state_bits(tree, state, &bits); 839 cache_state(state, cached_state); 840 merge_state(tree, state); 841 if (last_end == (u64)-1) 842 goto out; 843 start = last_end + 1; 844 state = next_state(state); 845 if (start < end && state && state->start == start && 846 !need_resched()) 847 goto hit_next; 848 } 849 goto search_again; 850 } 851 /* 852 * | ---- desired range ---- | 853 * | state | or | state | 854 * 855 * There's a hole, we need to insert something in it and 856 * ignore the extent we found. 857 */ 858 if (state->start > start) { 859 u64 this_end; 860 if (end < last_start) 861 this_end = end; 862 else 863 this_end = last_start - 1; 864 865 prealloc = alloc_extent_state_atomic(prealloc); 866 BUG_ON(!prealloc); 867 868 /* 869 * Avoid to free 'prealloc' if it can be merged with 870 * the later extent. 871 */ 872 err = insert_state(tree, prealloc, start, this_end, 873 &bits); 874 if (err) 875 extent_io_tree_panic(tree, err); 876 877 cache_state(prealloc, cached_state); 878 prealloc = NULL; 879 start = this_end + 1; 880 goto search_again; 881 } 882 /* 883 * | ---- desired range ---- | 884 * | state | 885 * We need to split the extent, and set the bit 886 * on the first half 887 */ 888 if (state->start <= end && state->end > end) { 889 if (state->state & exclusive_bits) { 890 *failed_start = start; 891 err = -EEXIST; 892 goto out; 893 } 894 895 prealloc = alloc_extent_state_atomic(prealloc); 896 BUG_ON(!prealloc); 897 err = split_state(tree, state, prealloc, end + 1); 898 if (err) 899 extent_io_tree_panic(tree, err); 900 901 set_state_bits(tree, prealloc, &bits); 902 cache_state(prealloc, cached_state); 903 merge_state(tree, prealloc); 904 prealloc = NULL; 905 goto out; 906 } 907 908 goto search_again; 909 910 out: 911 spin_unlock(&tree->lock); 912 if (prealloc) 913 free_extent_state(prealloc); 914 915 return err; 916 917 search_again: 918 if (start > end) 919 goto out; 920 spin_unlock(&tree->lock); 921 if (mask & __GFP_WAIT) 922 cond_resched(); 923 goto again; 924 } 925 926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, 927 u64 *failed_start, struct extent_state **cached_state, 928 gfp_t mask) 929 { 930 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 931 cached_state, mask); 932 } 933 934 935 /** 936 * convert_extent_bit - convert all bits in a given range from one bit to 937 * another 938 * @tree: the io tree to search 939 * @start: the start offset in bytes 940 * @end: the end offset in bytes (inclusive) 941 * @bits: the bits to set in this range 942 * @clear_bits: the bits to clear in this range 943 * @cached_state: state that we're going to cache 944 * @mask: the allocation mask 945 * 946 * This will go through and set bits for the given range. If any states exist 947 * already in this range they are set with the given bit and cleared of the 948 * clear_bits. This is only meant to be used by things that are mergeable, ie 949 * converting from say DELALLOC to DIRTY. This is not meant to be used with 950 * boundary bits like LOCK. 951 */ 952 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 953 int bits, int clear_bits, 954 struct extent_state **cached_state, gfp_t mask) 955 { 956 struct extent_state *state; 957 struct extent_state *prealloc = NULL; 958 struct rb_node *node; 959 int err = 0; 960 u64 last_start; 961 u64 last_end; 962 963 again: 964 if (!prealloc && (mask & __GFP_WAIT)) { 965 prealloc = alloc_extent_state(mask); 966 if (!prealloc) 967 return -ENOMEM; 968 } 969 970 spin_lock(&tree->lock); 971 if (cached_state && *cached_state) { 972 state = *cached_state; 973 if (state->start <= start && state->end > start && 974 state->tree) { 975 node = &state->rb_node; 976 goto hit_next; 977 } 978 } 979 980 /* 981 * this search will find all the extents that end after 982 * our range starts. 983 */ 984 node = tree_search(tree, start); 985 if (!node) { 986 prealloc = alloc_extent_state_atomic(prealloc); 987 if (!prealloc) { 988 err = -ENOMEM; 989 goto out; 990 } 991 err = insert_state(tree, prealloc, start, end, &bits); 992 prealloc = NULL; 993 if (err) 994 extent_io_tree_panic(tree, err); 995 goto out; 996 } 997 state = rb_entry(node, struct extent_state, rb_node); 998 hit_next: 999 last_start = state->start; 1000 last_end = state->end; 1001 1002 /* 1003 * | ---- desired range ---- | 1004 * | state | 1005 * 1006 * Just lock what we found and keep going 1007 */ 1008 if (state->start == start && state->end <= end) { 1009 set_state_bits(tree, state, &bits); 1010 cache_state(state, cached_state); 1011 state = clear_state_bit(tree, state, &clear_bits, 0); 1012 if (last_end == (u64)-1) 1013 goto out; 1014 start = last_end + 1; 1015 if (start < end && state && state->start == start && 1016 !need_resched()) 1017 goto hit_next; 1018 goto search_again; 1019 } 1020 1021 /* 1022 * | ---- desired range ---- | 1023 * | state | 1024 * or 1025 * | ------------- state -------------- | 1026 * 1027 * We need to split the extent we found, and may flip bits on 1028 * second half. 1029 * 1030 * If the extent we found extends past our 1031 * range, we just split and search again. It'll get split 1032 * again the next time though. 1033 * 1034 * If the extent we found is inside our range, we set the 1035 * desired bit on it. 1036 */ 1037 if (state->start < start) { 1038 prealloc = alloc_extent_state_atomic(prealloc); 1039 if (!prealloc) { 1040 err = -ENOMEM; 1041 goto out; 1042 } 1043 err = split_state(tree, state, prealloc, start); 1044 if (err) 1045 extent_io_tree_panic(tree, err); 1046 prealloc = NULL; 1047 if (err) 1048 goto out; 1049 if (state->end <= end) { 1050 set_state_bits(tree, state, &bits); 1051 cache_state(state, cached_state); 1052 state = clear_state_bit(tree, state, &clear_bits, 0); 1053 if (last_end == (u64)-1) 1054 goto out; 1055 start = last_end + 1; 1056 if (start < end && state && state->start == start && 1057 !need_resched()) 1058 goto hit_next; 1059 } 1060 goto search_again; 1061 } 1062 /* 1063 * | ---- desired range ---- | 1064 * | state | or | state | 1065 * 1066 * There's a hole, we need to insert something in it and 1067 * ignore the extent we found. 1068 */ 1069 if (state->start > start) { 1070 u64 this_end; 1071 if (end < last_start) 1072 this_end = end; 1073 else 1074 this_end = last_start - 1; 1075 1076 prealloc = alloc_extent_state_atomic(prealloc); 1077 if (!prealloc) { 1078 err = -ENOMEM; 1079 goto out; 1080 } 1081 1082 /* 1083 * Avoid to free 'prealloc' if it can be merged with 1084 * the later extent. 1085 */ 1086 err = insert_state(tree, prealloc, start, this_end, 1087 &bits); 1088 if (err) 1089 extent_io_tree_panic(tree, err); 1090 cache_state(prealloc, cached_state); 1091 prealloc = NULL; 1092 start = this_end + 1; 1093 goto search_again; 1094 } 1095 /* 1096 * | ---- desired range ---- | 1097 * | state | 1098 * We need to split the extent, and set the bit 1099 * on the first half 1100 */ 1101 if (state->start <= end && state->end > end) { 1102 prealloc = alloc_extent_state_atomic(prealloc); 1103 if (!prealloc) { 1104 err = -ENOMEM; 1105 goto out; 1106 } 1107 1108 err = split_state(tree, state, prealloc, end + 1); 1109 if (err) 1110 extent_io_tree_panic(tree, err); 1111 1112 set_state_bits(tree, prealloc, &bits); 1113 cache_state(prealloc, cached_state); 1114 clear_state_bit(tree, prealloc, &clear_bits, 0); 1115 prealloc = NULL; 1116 goto out; 1117 } 1118 1119 goto search_again; 1120 1121 out: 1122 spin_unlock(&tree->lock); 1123 if (prealloc) 1124 free_extent_state(prealloc); 1125 1126 return err; 1127 1128 search_again: 1129 if (start > end) 1130 goto out; 1131 spin_unlock(&tree->lock); 1132 if (mask & __GFP_WAIT) 1133 cond_resched(); 1134 goto again; 1135 } 1136 1137 /* wrappers around set/clear extent bit */ 1138 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1139 gfp_t mask) 1140 { 1141 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1142 NULL, mask); 1143 } 1144 1145 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1146 int bits, gfp_t mask) 1147 { 1148 return set_extent_bit(tree, start, end, bits, NULL, 1149 NULL, mask); 1150 } 1151 1152 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1153 int bits, gfp_t mask) 1154 { 1155 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1156 } 1157 1158 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1159 struct extent_state **cached_state, gfp_t mask) 1160 { 1161 return set_extent_bit(tree, start, end, 1162 EXTENT_DELALLOC | EXTENT_UPTODATE, 1163 NULL, cached_state, mask); 1164 } 1165 1166 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1167 struct extent_state **cached_state, gfp_t mask) 1168 { 1169 return set_extent_bit(tree, start, end, 1170 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1171 NULL, cached_state, mask); 1172 } 1173 1174 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1175 gfp_t mask) 1176 { 1177 return clear_extent_bit(tree, start, end, 1178 EXTENT_DIRTY | EXTENT_DELALLOC | 1179 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1180 } 1181 1182 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1183 gfp_t mask) 1184 { 1185 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1186 NULL, mask); 1187 } 1188 1189 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1190 struct extent_state **cached_state, gfp_t mask) 1191 { 1192 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 1193 cached_state, mask); 1194 } 1195 1196 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1197 struct extent_state **cached_state, gfp_t mask) 1198 { 1199 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1200 cached_state, mask); 1201 } 1202 1203 /* 1204 * either insert or lock state struct between start and end use mask to tell 1205 * us if waiting is desired. 1206 */ 1207 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1208 int bits, struct extent_state **cached_state) 1209 { 1210 int err; 1211 u64 failed_start; 1212 while (1) { 1213 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1214 EXTENT_LOCKED, &failed_start, 1215 cached_state, GFP_NOFS); 1216 if (err == -EEXIST) { 1217 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1218 start = failed_start; 1219 } else 1220 break; 1221 WARN_ON(start > end); 1222 } 1223 return err; 1224 } 1225 1226 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1227 { 1228 return lock_extent_bits(tree, start, end, 0, NULL); 1229 } 1230 1231 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1232 { 1233 int err; 1234 u64 failed_start; 1235 1236 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1237 &failed_start, NULL, GFP_NOFS); 1238 if (err == -EEXIST) { 1239 if (failed_start > start) 1240 clear_extent_bit(tree, start, failed_start - 1, 1241 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1242 return 0; 1243 } 1244 return 1; 1245 } 1246 1247 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1248 struct extent_state **cached, gfp_t mask) 1249 { 1250 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1251 mask); 1252 } 1253 1254 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1255 { 1256 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1257 GFP_NOFS); 1258 } 1259 1260 /* 1261 * helper function to set both pages and extents in the tree writeback 1262 */ 1263 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1264 { 1265 unsigned long index = start >> PAGE_CACHE_SHIFT; 1266 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1267 struct page *page; 1268 1269 while (index <= end_index) { 1270 page = find_get_page(tree->mapping, index); 1271 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1272 set_page_writeback(page); 1273 page_cache_release(page); 1274 index++; 1275 } 1276 return 0; 1277 } 1278 1279 /* find the first state struct with 'bits' set after 'start', and 1280 * return it. tree->lock must be held. NULL will returned if 1281 * nothing was found after 'start' 1282 */ 1283 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1284 u64 start, int bits) 1285 { 1286 struct rb_node *node; 1287 struct extent_state *state; 1288 1289 /* 1290 * this search will find all the extents that end after 1291 * our range starts. 1292 */ 1293 node = tree_search(tree, start); 1294 if (!node) 1295 goto out; 1296 1297 while (1) { 1298 state = rb_entry(node, struct extent_state, rb_node); 1299 if (state->end >= start && (state->state & bits)) 1300 return state; 1301 1302 node = rb_next(node); 1303 if (!node) 1304 break; 1305 } 1306 out: 1307 return NULL; 1308 } 1309 1310 /* 1311 * find the first offset in the io tree with 'bits' set. zero is 1312 * returned if we find something, and *start_ret and *end_ret are 1313 * set to reflect the state struct that was found. 1314 * 1315 * If nothing was found, 1 is returned. If found something, return 0. 1316 */ 1317 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1318 u64 *start_ret, u64 *end_ret, int bits, 1319 struct extent_state **cached_state) 1320 { 1321 struct extent_state *state; 1322 struct rb_node *n; 1323 int ret = 1; 1324 1325 spin_lock(&tree->lock); 1326 if (cached_state && *cached_state) { 1327 state = *cached_state; 1328 if (state->end == start - 1 && state->tree) { 1329 n = rb_next(&state->rb_node); 1330 while (n) { 1331 state = rb_entry(n, struct extent_state, 1332 rb_node); 1333 if (state->state & bits) 1334 goto got_it; 1335 n = rb_next(n); 1336 } 1337 free_extent_state(*cached_state); 1338 *cached_state = NULL; 1339 goto out; 1340 } 1341 free_extent_state(*cached_state); 1342 *cached_state = NULL; 1343 } 1344 1345 state = find_first_extent_bit_state(tree, start, bits); 1346 got_it: 1347 if (state) { 1348 cache_state(state, cached_state); 1349 *start_ret = state->start; 1350 *end_ret = state->end; 1351 ret = 0; 1352 } 1353 out: 1354 spin_unlock(&tree->lock); 1355 return ret; 1356 } 1357 1358 /* 1359 * find a contiguous range of bytes in the file marked as delalloc, not 1360 * more than 'max_bytes'. start and end are used to return the range, 1361 * 1362 * 1 is returned if we find something, 0 if nothing was in the tree 1363 */ 1364 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1365 u64 *start, u64 *end, u64 max_bytes, 1366 struct extent_state **cached_state) 1367 { 1368 struct rb_node *node; 1369 struct extent_state *state; 1370 u64 cur_start = *start; 1371 u64 found = 0; 1372 u64 total_bytes = 0; 1373 1374 spin_lock(&tree->lock); 1375 1376 /* 1377 * this search will find all the extents that end after 1378 * our range starts. 1379 */ 1380 node = tree_search(tree, cur_start); 1381 if (!node) { 1382 if (!found) 1383 *end = (u64)-1; 1384 goto out; 1385 } 1386 1387 while (1) { 1388 state = rb_entry(node, struct extent_state, rb_node); 1389 if (found && (state->start != cur_start || 1390 (state->state & EXTENT_BOUNDARY))) { 1391 goto out; 1392 } 1393 if (!(state->state & EXTENT_DELALLOC)) { 1394 if (!found) 1395 *end = state->end; 1396 goto out; 1397 } 1398 if (!found) { 1399 *start = state->start; 1400 *cached_state = state; 1401 atomic_inc(&state->refs); 1402 } 1403 found++; 1404 *end = state->end; 1405 cur_start = state->end + 1; 1406 node = rb_next(node); 1407 if (!node) 1408 break; 1409 total_bytes += state->end - state->start + 1; 1410 if (total_bytes >= max_bytes) 1411 break; 1412 } 1413 out: 1414 spin_unlock(&tree->lock); 1415 return found; 1416 } 1417 1418 static noinline void __unlock_for_delalloc(struct inode *inode, 1419 struct page *locked_page, 1420 u64 start, u64 end) 1421 { 1422 int ret; 1423 struct page *pages[16]; 1424 unsigned long index = start >> PAGE_CACHE_SHIFT; 1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1426 unsigned long nr_pages = end_index - index + 1; 1427 int i; 1428 1429 if (index == locked_page->index && end_index == index) 1430 return; 1431 1432 while (nr_pages > 0) { 1433 ret = find_get_pages_contig(inode->i_mapping, index, 1434 min_t(unsigned long, nr_pages, 1435 ARRAY_SIZE(pages)), pages); 1436 for (i = 0; i < ret; i++) { 1437 if (pages[i] != locked_page) 1438 unlock_page(pages[i]); 1439 page_cache_release(pages[i]); 1440 } 1441 nr_pages -= ret; 1442 index += ret; 1443 cond_resched(); 1444 } 1445 } 1446 1447 static noinline int lock_delalloc_pages(struct inode *inode, 1448 struct page *locked_page, 1449 u64 delalloc_start, 1450 u64 delalloc_end) 1451 { 1452 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1453 unsigned long start_index = index; 1454 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1455 unsigned long pages_locked = 0; 1456 struct page *pages[16]; 1457 unsigned long nrpages; 1458 int ret; 1459 int i; 1460 1461 /* the caller is responsible for locking the start index */ 1462 if (index == locked_page->index && index == end_index) 1463 return 0; 1464 1465 /* skip the page at the start index */ 1466 nrpages = end_index - index + 1; 1467 while (nrpages > 0) { 1468 ret = find_get_pages_contig(inode->i_mapping, index, 1469 min_t(unsigned long, 1470 nrpages, ARRAY_SIZE(pages)), pages); 1471 if (ret == 0) { 1472 ret = -EAGAIN; 1473 goto done; 1474 } 1475 /* now we have an array of pages, lock them all */ 1476 for (i = 0; i < ret; i++) { 1477 /* 1478 * the caller is taking responsibility for 1479 * locked_page 1480 */ 1481 if (pages[i] != locked_page) { 1482 lock_page(pages[i]); 1483 if (!PageDirty(pages[i]) || 1484 pages[i]->mapping != inode->i_mapping) { 1485 ret = -EAGAIN; 1486 unlock_page(pages[i]); 1487 page_cache_release(pages[i]); 1488 goto done; 1489 } 1490 } 1491 page_cache_release(pages[i]); 1492 pages_locked++; 1493 } 1494 nrpages -= ret; 1495 index += ret; 1496 cond_resched(); 1497 } 1498 ret = 0; 1499 done: 1500 if (ret && pages_locked) { 1501 __unlock_for_delalloc(inode, locked_page, 1502 delalloc_start, 1503 ((u64)(start_index + pages_locked - 1)) << 1504 PAGE_CACHE_SHIFT); 1505 } 1506 return ret; 1507 } 1508 1509 /* 1510 * find a contiguous range of bytes in the file marked as delalloc, not 1511 * more than 'max_bytes'. start and end are used to return the range, 1512 * 1513 * 1 is returned if we find something, 0 if nothing was in the tree 1514 */ 1515 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1516 struct extent_io_tree *tree, 1517 struct page *locked_page, 1518 u64 *start, u64 *end, 1519 u64 max_bytes) 1520 { 1521 u64 delalloc_start; 1522 u64 delalloc_end; 1523 u64 found; 1524 struct extent_state *cached_state = NULL; 1525 int ret; 1526 int loops = 0; 1527 1528 again: 1529 /* step one, find a bunch of delalloc bytes starting at start */ 1530 delalloc_start = *start; 1531 delalloc_end = 0; 1532 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1533 max_bytes, &cached_state); 1534 if (!found || delalloc_end <= *start) { 1535 *start = delalloc_start; 1536 *end = delalloc_end; 1537 free_extent_state(cached_state); 1538 return found; 1539 } 1540 1541 /* 1542 * start comes from the offset of locked_page. We have to lock 1543 * pages in order, so we can't process delalloc bytes before 1544 * locked_page 1545 */ 1546 if (delalloc_start < *start) 1547 delalloc_start = *start; 1548 1549 /* 1550 * make sure to limit the number of pages we try to lock down 1551 * if we're looping. 1552 */ 1553 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1554 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1555 1556 /* step two, lock all the pages after the page that has start */ 1557 ret = lock_delalloc_pages(inode, locked_page, 1558 delalloc_start, delalloc_end); 1559 if (ret == -EAGAIN) { 1560 /* some of the pages are gone, lets avoid looping by 1561 * shortening the size of the delalloc range we're searching 1562 */ 1563 free_extent_state(cached_state); 1564 if (!loops) { 1565 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1566 max_bytes = PAGE_CACHE_SIZE - offset; 1567 loops = 1; 1568 goto again; 1569 } else { 1570 found = 0; 1571 goto out_failed; 1572 } 1573 } 1574 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1575 1576 /* step three, lock the state bits for the whole range */ 1577 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1578 1579 /* then test to make sure it is all still delalloc */ 1580 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1581 EXTENT_DELALLOC, 1, cached_state); 1582 if (!ret) { 1583 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1584 &cached_state, GFP_NOFS); 1585 __unlock_for_delalloc(inode, locked_page, 1586 delalloc_start, delalloc_end); 1587 cond_resched(); 1588 goto again; 1589 } 1590 free_extent_state(cached_state); 1591 *start = delalloc_start; 1592 *end = delalloc_end; 1593 out_failed: 1594 return found; 1595 } 1596 1597 int extent_clear_unlock_delalloc(struct inode *inode, 1598 struct extent_io_tree *tree, 1599 u64 start, u64 end, struct page *locked_page, 1600 unsigned long op) 1601 { 1602 int ret; 1603 struct page *pages[16]; 1604 unsigned long index = start >> PAGE_CACHE_SHIFT; 1605 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1606 unsigned long nr_pages = end_index - index + 1; 1607 int i; 1608 int clear_bits = 0; 1609 1610 if (op & EXTENT_CLEAR_UNLOCK) 1611 clear_bits |= EXTENT_LOCKED; 1612 if (op & EXTENT_CLEAR_DIRTY) 1613 clear_bits |= EXTENT_DIRTY; 1614 1615 if (op & EXTENT_CLEAR_DELALLOC) 1616 clear_bits |= EXTENT_DELALLOC; 1617 1618 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1619 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1620 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1621 EXTENT_SET_PRIVATE2))) 1622 return 0; 1623 1624 while (nr_pages > 0) { 1625 ret = find_get_pages_contig(inode->i_mapping, index, 1626 min_t(unsigned long, 1627 nr_pages, ARRAY_SIZE(pages)), pages); 1628 for (i = 0; i < ret; i++) { 1629 1630 if (op & EXTENT_SET_PRIVATE2) 1631 SetPagePrivate2(pages[i]); 1632 1633 if (pages[i] == locked_page) { 1634 page_cache_release(pages[i]); 1635 continue; 1636 } 1637 if (op & EXTENT_CLEAR_DIRTY) 1638 clear_page_dirty_for_io(pages[i]); 1639 if (op & EXTENT_SET_WRITEBACK) 1640 set_page_writeback(pages[i]); 1641 if (op & EXTENT_END_WRITEBACK) 1642 end_page_writeback(pages[i]); 1643 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1644 unlock_page(pages[i]); 1645 page_cache_release(pages[i]); 1646 } 1647 nr_pages -= ret; 1648 index += ret; 1649 cond_resched(); 1650 } 1651 return 0; 1652 } 1653 1654 /* 1655 * count the number of bytes in the tree that have a given bit(s) 1656 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1657 * cached. The total number found is returned. 1658 */ 1659 u64 count_range_bits(struct extent_io_tree *tree, 1660 u64 *start, u64 search_end, u64 max_bytes, 1661 unsigned long bits, int contig) 1662 { 1663 struct rb_node *node; 1664 struct extent_state *state; 1665 u64 cur_start = *start; 1666 u64 total_bytes = 0; 1667 u64 last = 0; 1668 int found = 0; 1669 1670 if (search_end <= cur_start) { 1671 WARN_ON(1); 1672 return 0; 1673 } 1674 1675 spin_lock(&tree->lock); 1676 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1677 total_bytes = tree->dirty_bytes; 1678 goto out; 1679 } 1680 /* 1681 * this search will find all the extents that end after 1682 * our range starts. 1683 */ 1684 node = tree_search(tree, cur_start); 1685 if (!node) 1686 goto out; 1687 1688 while (1) { 1689 state = rb_entry(node, struct extent_state, rb_node); 1690 if (state->start > search_end) 1691 break; 1692 if (contig && found && state->start > last + 1) 1693 break; 1694 if (state->end >= cur_start && (state->state & bits) == bits) { 1695 total_bytes += min(search_end, state->end) + 1 - 1696 max(cur_start, state->start); 1697 if (total_bytes >= max_bytes) 1698 break; 1699 if (!found) { 1700 *start = max(cur_start, state->start); 1701 found = 1; 1702 } 1703 last = state->end; 1704 } else if (contig && found) { 1705 break; 1706 } 1707 node = rb_next(node); 1708 if (!node) 1709 break; 1710 } 1711 out: 1712 spin_unlock(&tree->lock); 1713 return total_bytes; 1714 } 1715 1716 /* 1717 * set the private field for a given byte offset in the tree. If there isn't 1718 * an extent_state there already, this does nothing. 1719 */ 1720 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1721 { 1722 struct rb_node *node; 1723 struct extent_state *state; 1724 int ret = 0; 1725 1726 spin_lock(&tree->lock); 1727 /* 1728 * this search will find all the extents that end after 1729 * our range starts. 1730 */ 1731 node = tree_search(tree, start); 1732 if (!node) { 1733 ret = -ENOENT; 1734 goto out; 1735 } 1736 state = rb_entry(node, struct extent_state, rb_node); 1737 if (state->start != start) { 1738 ret = -ENOENT; 1739 goto out; 1740 } 1741 state->private = private; 1742 out: 1743 spin_unlock(&tree->lock); 1744 return ret; 1745 } 1746 1747 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1748 { 1749 struct rb_node *node; 1750 struct extent_state *state; 1751 int ret = 0; 1752 1753 spin_lock(&tree->lock); 1754 /* 1755 * this search will find all the extents that end after 1756 * our range starts. 1757 */ 1758 node = tree_search(tree, start); 1759 if (!node) { 1760 ret = -ENOENT; 1761 goto out; 1762 } 1763 state = rb_entry(node, struct extent_state, rb_node); 1764 if (state->start != start) { 1765 ret = -ENOENT; 1766 goto out; 1767 } 1768 *private = state->private; 1769 out: 1770 spin_unlock(&tree->lock); 1771 return ret; 1772 } 1773 1774 /* 1775 * searches a range in the state tree for a given mask. 1776 * If 'filled' == 1, this returns 1 only if every extent in the tree 1777 * has the bits set. Otherwise, 1 is returned if any bit in the 1778 * range is found set. 1779 */ 1780 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1781 int bits, int filled, struct extent_state *cached) 1782 { 1783 struct extent_state *state = NULL; 1784 struct rb_node *node; 1785 int bitset = 0; 1786 1787 spin_lock(&tree->lock); 1788 if (cached && cached->tree && cached->start <= start && 1789 cached->end > start) 1790 node = &cached->rb_node; 1791 else 1792 node = tree_search(tree, start); 1793 while (node && start <= end) { 1794 state = rb_entry(node, struct extent_state, rb_node); 1795 1796 if (filled && state->start > start) { 1797 bitset = 0; 1798 break; 1799 } 1800 1801 if (state->start > end) 1802 break; 1803 1804 if (state->state & bits) { 1805 bitset = 1; 1806 if (!filled) 1807 break; 1808 } else if (filled) { 1809 bitset = 0; 1810 break; 1811 } 1812 1813 if (state->end == (u64)-1) 1814 break; 1815 1816 start = state->end + 1; 1817 if (start > end) 1818 break; 1819 node = rb_next(node); 1820 if (!node) { 1821 if (filled) 1822 bitset = 0; 1823 break; 1824 } 1825 } 1826 spin_unlock(&tree->lock); 1827 return bitset; 1828 } 1829 1830 /* 1831 * helper function to set a given page up to date if all the 1832 * extents in the tree for that page are up to date 1833 */ 1834 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1835 { 1836 u64 start = page_offset(page); 1837 u64 end = start + PAGE_CACHE_SIZE - 1; 1838 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1839 SetPageUptodate(page); 1840 } 1841 1842 /* 1843 * helper function to unlock a page if all the extents in the tree 1844 * for that page are unlocked 1845 */ 1846 static void check_page_locked(struct extent_io_tree *tree, struct page *page) 1847 { 1848 u64 start = page_offset(page); 1849 u64 end = start + PAGE_CACHE_SIZE - 1; 1850 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1851 unlock_page(page); 1852 } 1853 1854 /* 1855 * helper function to end page writeback if all the extents 1856 * in the tree for that page are done with writeback 1857 */ 1858 static void check_page_writeback(struct extent_io_tree *tree, 1859 struct page *page) 1860 { 1861 end_page_writeback(page); 1862 } 1863 1864 /* 1865 * When IO fails, either with EIO or csum verification fails, we 1866 * try other mirrors that might have a good copy of the data. This 1867 * io_failure_record is used to record state as we go through all the 1868 * mirrors. If another mirror has good data, the page is set up to date 1869 * and things continue. If a good mirror can't be found, the original 1870 * bio end_io callback is called to indicate things have failed. 1871 */ 1872 struct io_failure_record { 1873 struct page *page; 1874 u64 start; 1875 u64 len; 1876 u64 logical; 1877 unsigned long bio_flags; 1878 int this_mirror; 1879 int failed_mirror; 1880 int in_validation; 1881 }; 1882 1883 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1884 int did_repair) 1885 { 1886 int ret; 1887 int err = 0; 1888 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1889 1890 set_state_private(failure_tree, rec->start, 0); 1891 ret = clear_extent_bits(failure_tree, rec->start, 1892 rec->start + rec->len - 1, 1893 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1894 if (ret) 1895 err = ret; 1896 1897 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1898 rec->start + rec->len - 1, 1899 EXTENT_DAMAGED, GFP_NOFS); 1900 if (ret && !err) 1901 err = ret; 1902 1903 kfree(rec); 1904 return err; 1905 } 1906 1907 static void repair_io_failure_callback(struct bio *bio, int err) 1908 { 1909 complete(bio->bi_private); 1910 } 1911 1912 /* 1913 * this bypasses the standard btrfs submit functions deliberately, as 1914 * the standard behavior is to write all copies in a raid setup. here we only 1915 * want to write the one bad copy. so we do the mapping for ourselves and issue 1916 * submit_bio directly. 1917 * to avoid any synchronization issues, wait for the data after writing, which 1918 * actually prevents the read that triggered the error from finishing. 1919 * currently, there can be no more than two copies of every data bit. thus, 1920 * exactly one rewrite is required. 1921 */ 1922 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1923 u64 length, u64 logical, struct page *page, 1924 int mirror_num) 1925 { 1926 struct bio *bio; 1927 struct btrfs_device *dev; 1928 DECLARE_COMPLETION_ONSTACK(compl); 1929 u64 map_length = 0; 1930 u64 sector; 1931 struct btrfs_bio *bbio = NULL; 1932 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1933 int ret; 1934 1935 BUG_ON(!mirror_num); 1936 1937 /* we can't repair anything in raid56 yet */ 1938 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1939 return 0; 1940 1941 bio = bio_alloc(GFP_NOFS, 1); 1942 if (!bio) 1943 return -EIO; 1944 bio->bi_private = &compl; 1945 bio->bi_end_io = repair_io_failure_callback; 1946 bio->bi_size = 0; 1947 map_length = length; 1948 1949 ret = btrfs_map_block(fs_info, WRITE, logical, 1950 &map_length, &bbio, mirror_num); 1951 if (ret) { 1952 bio_put(bio); 1953 return -EIO; 1954 } 1955 BUG_ON(mirror_num != bbio->mirror_num); 1956 sector = bbio->stripes[mirror_num-1].physical >> 9; 1957 bio->bi_sector = sector; 1958 dev = bbio->stripes[mirror_num-1].dev; 1959 kfree(bbio); 1960 if (!dev || !dev->bdev || !dev->writeable) { 1961 bio_put(bio); 1962 return -EIO; 1963 } 1964 bio->bi_bdev = dev->bdev; 1965 bio_add_page(bio, page, length, start - page_offset(page)); 1966 btrfsic_submit_bio(WRITE_SYNC, bio); 1967 wait_for_completion(&compl); 1968 1969 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 1970 /* try to remap that extent elsewhere? */ 1971 bio_put(bio); 1972 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 1973 return -EIO; 1974 } 1975 1976 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 1977 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 1978 start, rcu_str_deref(dev->name), sector); 1979 1980 bio_put(bio); 1981 return 0; 1982 } 1983 1984 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 1985 int mirror_num) 1986 { 1987 u64 start = eb->start; 1988 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 1989 int ret = 0; 1990 1991 for (i = 0; i < num_pages; i++) { 1992 struct page *p = extent_buffer_page(eb, i); 1993 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 1994 start, p, mirror_num); 1995 if (ret) 1996 break; 1997 start += PAGE_CACHE_SIZE; 1998 } 1999 2000 return ret; 2001 } 2002 2003 /* 2004 * each time an IO finishes, we do a fast check in the IO failure tree 2005 * to see if we need to process or clean up an io_failure_record 2006 */ 2007 static int clean_io_failure(u64 start, struct page *page) 2008 { 2009 u64 private; 2010 u64 private_failure; 2011 struct io_failure_record *failrec; 2012 struct btrfs_fs_info *fs_info; 2013 struct extent_state *state; 2014 int num_copies; 2015 int did_repair = 0; 2016 int ret; 2017 struct inode *inode = page->mapping->host; 2018 2019 private = 0; 2020 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2021 (u64)-1, 1, EXTENT_DIRTY, 0); 2022 if (!ret) 2023 return 0; 2024 2025 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2026 &private_failure); 2027 if (ret) 2028 return 0; 2029 2030 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2031 BUG_ON(!failrec->this_mirror); 2032 2033 if (failrec->in_validation) { 2034 /* there was no real error, just free the record */ 2035 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2036 failrec->start); 2037 did_repair = 1; 2038 goto out; 2039 } 2040 2041 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2042 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2043 failrec->start, 2044 EXTENT_LOCKED); 2045 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2046 2047 if (state && state->start == failrec->start) { 2048 fs_info = BTRFS_I(inode)->root->fs_info; 2049 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2050 failrec->len); 2051 if (num_copies > 1) { 2052 ret = repair_io_failure(fs_info, start, failrec->len, 2053 failrec->logical, page, 2054 failrec->failed_mirror); 2055 did_repair = !ret; 2056 } 2057 ret = 0; 2058 } 2059 2060 out: 2061 if (!ret) 2062 ret = free_io_failure(inode, failrec, did_repair); 2063 2064 return ret; 2065 } 2066 2067 /* 2068 * this is a generic handler for readpage errors (default 2069 * readpage_io_failed_hook). if other copies exist, read those and write back 2070 * good data to the failed position. does not investigate in remapping the 2071 * failed extent elsewhere, hoping the device will be smart enough to do this as 2072 * needed 2073 */ 2074 2075 static int bio_readpage_error(struct bio *failed_bio, struct page *page, 2076 u64 start, u64 end, int failed_mirror, 2077 struct extent_state *state) 2078 { 2079 struct io_failure_record *failrec = NULL; 2080 u64 private; 2081 struct extent_map *em; 2082 struct inode *inode = page->mapping->host; 2083 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2084 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2085 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2086 struct bio *bio; 2087 int num_copies; 2088 int ret; 2089 int read_mode; 2090 u64 logical; 2091 2092 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2093 2094 ret = get_state_private(failure_tree, start, &private); 2095 if (ret) { 2096 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2097 if (!failrec) 2098 return -ENOMEM; 2099 failrec->start = start; 2100 failrec->len = end - start + 1; 2101 failrec->this_mirror = 0; 2102 failrec->bio_flags = 0; 2103 failrec->in_validation = 0; 2104 2105 read_lock(&em_tree->lock); 2106 em = lookup_extent_mapping(em_tree, start, failrec->len); 2107 if (!em) { 2108 read_unlock(&em_tree->lock); 2109 kfree(failrec); 2110 return -EIO; 2111 } 2112 2113 if (em->start > start || em->start + em->len < start) { 2114 free_extent_map(em); 2115 em = NULL; 2116 } 2117 read_unlock(&em_tree->lock); 2118 2119 if (!em) { 2120 kfree(failrec); 2121 return -EIO; 2122 } 2123 logical = start - em->start; 2124 logical = em->block_start + logical; 2125 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2126 logical = em->block_start; 2127 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2128 extent_set_compress_type(&failrec->bio_flags, 2129 em->compress_type); 2130 } 2131 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2132 "len=%llu\n", logical, start, failrec->len); 2133 failrec->logical = logical; 2134 free_extent_map(em); 2135 2136 /* set the bits in the private failure tree */ 2137 ret = set_extent_bits(failure_tree, start, end, 2138 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2139 if (ret >= 0) 2140 ret = set_state_private(failure_tree, start, 2141 (u64)(unsigned long)failrec); 2142 /* set the bits in the inode's tree */ 2143 if (ret >= 0) 2144 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2145 GFP_NOFS); 2146 if (ret < 0) { 2147 kfree(failrec); 2148 return ret; 2149 } 2150 } else { 2151 failrec = (struct io_failure_record *)(unsigned long)private; 2152 pr_debug("bio_readpage_error: (found) logical=%llu, " 2153 "start=%llu, len=%llu, validation=%d\n", 2154 failrec->logical, failrec->start, failrec->len, 2155 failrec->in_validation); 2156 /* 2157 * when data can be on disk more than twice, add to failrec here 2158 * (e.g. with a list for failed_mirror) to make 2159 * clean_io_failure() clean all those errors at once. 2160 */ 2161 } 2162 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2163 failrec->logical, failrec->len); 2164 if (num_copies == 1) { 2165 /* 2166 * we only have a single copy of the data, so don't bother with 2167 * all the retry and error correction code that follows. no 2168 * matter what the error is, it is very likely to persist. 2169 */ 2170 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " 2171 "state=%p, num_copies=%d, next_mirror %d, " 2172 "failed_mirror %d\n", state, num_copies, 2173 failrec->this_mirror, failed_mirror); 2174 free_io_failure(inode, failrec, 0); 2175 return -EIO; 2176 } 2177 2178 if (!state) { 2179 spin_lock(&tree->lock); 2180 state = find_first_extent_bit_state(tree, failrec->start, 2181 EXTENT_LOCKED); 2182 if (state && state->start != failrec->start) 2183 state = NULL; 2184 spin_unlock(&tree->lock); 2185 } 2186 2187 /* 2188 * there are two premises: 2189 * a) deliver good data to the caller 2190 * b) correct the bad sectors on disk 2191 */ 2192 if (failed_bio->bi_vcnt > 1) { 2193 /* 2194 * to fulfill b), we need to know the exact failing sectors, as 2195 * we don't want to rewrite any more than the failed ones. thus, 2196 * we need separate read requests for the failed bio 2197 * 2198 * if the following BUG_ON triggers, our validation request got 2199 * merged. we need separate requests for our algorithm to work. 2200 */ 2201 BUG_ON(failrec->in_validation); 2202 failrec->in_validation = 1; 2203 failrec->this_mirror = failed_mirror; 2204 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2205 } else { 2206 /* 2207 * we're ready to fulfill a) and b) alongside. get a good copy 2208 * of the failed sector and if we succeed, we have setup 2209 * everything for repair_io_failure to do the rest for us. 2210 */ 2211 if (failrec->in_validation) { 2212 BUG_ON(failrec->this_mirror != failed_mirror); 2213 failrec->in_validation = 0; 2214 failrec->this_mirror = 0; 2215 } 2216 failrec->failed_mirror = failed_mirror; 2217 failrec->this_mirror++; 2218 if (failrec->this_mirror == failed_mirror) 2219 failrec->this_mirror++; 2220 read_mode = READ_SYNC; 2221 } 2222 2223 if (!state || failrec->this_mirror > num_copies) { 2224 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " 2225 "next_mirror %d, failed_mirror %d\n", state, 2226 num_copies, failrec->this_mirror, failed_mirror); 2227 free_io_failure(inode, failrec, 0); 2228 return -EIO; 2229 } 2230 2231 bio = bio_alloc(GFP_NOFS, 1); 2232 if (!bio) { 2233 free_io_failure(inode, failrec, 0); 2234 return -EIO; 2235 } 2236 bio->bi_private = state; 2237 bio->bi_end_io = failed_bio->bi_end_io; 2238 bio->bi_sector = failrec->logical >> 9; 2239 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2240 bio->bi_size = 0; 2241 2242 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2243 2244 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2245 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2246 failrec->this_mirror, num_copies, failrec->in_validation); 2247 2248 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2249 failrec->this_mirror, 2250 failrec->bio_flags, 0); 2251 return ret; 2252 } 2253 2254 /* lots and lots of room for performance fixes in the end_bio funcs */ 2255 2256 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2257 { 2258 int uptodate = (err == 0); 2259 struct extent_io_tree *tree; 2260 int ret; 2261 2262 tree = &BTRFS_I(page->mapping->host)->io_tree; 2263 2264 if (tree->ops && tree->ops->writepage_end_io_hook) { 2265 ret = tree->ops->writepage_end_io_hook(page, start, 2266 end, NULL, uptodate); 2267 if (ret) 2268 uptodate = 0; 2269 } 2270 2271 if (!uptodate) { 2272 ClearPageUptodate(page); 2273 SetPageError(page); 2274 } 2275 return 0; 2276 } 2277 2278 /* 2279 * after a writepage IO is done, we need to: 2280 * clear the uptodate bits on error 2281 * clear the writeback bits in the extent tree for this IO 2282 * end_page_writeback if the page has no more pending IO 2283 * 2284 * Scheduling is not allowed, so the extent state tree is expected 2285 * to have one and only one object corresponding to this IO. 2286 */ 2287 static void end_bio_extent_writepage(struct bio *bio, int err) 2288 { 2289 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2290 struct extent_io_tree *tree; 2291 u64 start; 2292 u64 end; 2293 int whole_page; 2294 2295 do { 2296 struct page *page = bvec->bv_page; 2297 tree = &BTRFS_I(page->mapping->host)->io_tree; 2298 2299 start = page_offset(page) + bvec->bv_offset; 2300 end = start + bvec->bv_len - 1; 2301 2302 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2303 whole_page = 1; 2304 else 2305 whole_page = 0; 2306 2307 if (--bvec >= bio->bi_io_vec) 2308 prefetchw(&bvec->bv_page->flags); 2309 2310 if (end_extent_writepage(page, err, start, end)) 2311 continue; 2312 2313 if (whole_page) 2314 end_page_writeback(page); 2315 else 2316 check_page_writeback(tree, page); 2317 } while (bvec >= bio->bi_io_vec); 2318 2319 bio_put(bio); 2320 } 2321 2322 /* 2323 * after a readpage IO is done, we need to: 2324 * clear the uptodate bits on error 2325 * set the uptodate bits if things worked 2326 * set the page up to date if all extents in the tree are uptodate 2327 * clear the lock bit in the extent tree 2328 * unlock the page if there are no other extents locked for it 2329 * 2330 * Scheduling is not allowed, so the extent state tree is expected 2331 * to have one and only one object corresponding to this IO. 2332 */ 2333 static void end_bio_extent_readpage(struct bio *bio, int err) 2334 { 2335 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2336 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2337 struct bio_vec *bvec = bio->bi_io_vec; 2338 struct extent_io_tree *tree; 2339 u64 start; 2340 u64 end; 2341 int whole_page; 2342 int mirror; 2343 int ret; 2344 2345 if (err) 2346 uptodate = 0; 2347 2348 do { 2349 struct page *page = bvec->bv_page; 2350 struct extent_state *cached = NULL; 2351 struct extent_state *state; 2352 2353 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2354 "mirror=%ld\n", (u64)bio->bi_sector, err, 2355 (long int)bio->bi_bdev); 2356 tree = &BTRFS_I(page->mapping->host)->io_tree; 2357 2358 start = page_offset(page) + bvec->bv_offset; 2359 end = start + bvec->bv_len - 1; 2360 2361 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2362 whole_page = 1; 2363 else 2364 whole_page = 0; 2365 2366 if (++bvec <= bvec_end) 2367 prefetchw(&bvec->bv_page->flags); 2368 2369 spin_lock(&tree->lock); 2370 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 2371 if (state && state->start == start) { 2372 /* 2373 * take a reference on the state, unlock will drop 2374 * the ref 2375 */ 2376 cache_state(state, &cached); 2377 } 2378 spin_unlock(&tree->lock); 2379 2380 mirror = (int)(unsigned long)bio->bi_bdev; 2381 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 2382 ret = tree->ops->readpage_end_io_hook(page, start, end, 2383 state, mirror); 2384 if (ret) 2385 uptodate = 0; 2386 else 2387 clean_io_failure(start, page); 2388 } 2389 2390 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { 2391 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2392 if (!ret && !err && 2393 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2394 uptodate = 1; 2395 } else if (!uptodate) { 2396 /* 2397 * The generic bio_readpage_error handles errors the 2398 * following way: If possible, new read requests are 2399 * created and submitted and will end up in 2400 * end_bio_extent_readpage as well (if we're lucky, not 2401 * in the !uptodate case). In that case it returns 0 and 2402 * we just go on with the next page in our bio. If it 2403 * can't handle the error it will return -EIO and we 2404 * remain responsible for that page. 2405 */ 2406 ret = bio_readpage_error(bio, page, start, end, mirror, NULL); 2407 if (ret == 0) { 2408 uptodate = 2409 test_bit(BIO_UPTODATE, &bio->bi_flags); 2410 if (err) 2411 uptodate = 0; 2412 uncache_state(&cached); 2413 continue; 2414 } 2415 } 2416 2417 if (uptodate && tree->track_uptodate) { 2418 set_extent_uptodate(tree, start, end, &cached, 2419 GFP_ATOMIC); 2420 } 2421 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2422 2423 if (whole_page) { 2424 if (uptodate) { 2425 SetPageUptodate(page); 2426 } else { 2427 ClearPageUptodate(page); 2428 SetPageError(page); 2429 } 2430 unlock_page(page); 2431 } else { 2432 if (uptodate) { 2433 check_page_uptodate(tree, page); 2434 } else { 2435 ClearPageUptodate(page); 2436 SetPageError(page); 2437 } 2438 check_page_locked(tree, page); 2439 } 2440 } while (bvec <= bvec_end); 2441 2442 bio_put(bio); 2443 } 2444 2445 struct bio * 2446 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2447 gfp_t gfp_flags) 2448 { 2449 struct bio *bio; 2450 2451 bio = bio_alloc(gfp_flags, nr_vecs); 2452 2453 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2454 while (!bio && (nr_vecs /= 2)) 2455 bio = bio_alloc(gfp_flags, nr_vecs); 2456 } 2457 2458 if (bio) { 2459 bio->bi_size = 0; 2460 bio->bi_bdev = bdev; 2461 bio->bi_sector = first_sector; 2462 } 2463 return bio; 2464 } 2465 2466 static int __must_check submit_one_bio(int rw, struct bio *bio, 2467 int mirror_num, unsigned long bio_flags) 2468 { 2469 int ret = 0; 2470 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2471 struct page *page = bvec->bv_page; 2472 struct extent_io_tree *tree = bio->bi_private; 2473 u64 start; 2474 2475 start = page_offset(page) + bvec->bv_offset; 2476 2477 bio->bi_private = NULL; 2478 2479 bio_get(bio); 2480 2481 if (tree->ops && tree->ops->submit_bio_hook) 2482 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2483 mirror_num, bio_flags, start); 2484 else 2485 btrfsic_submit_bio(rw, bio); 2486 2487 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2488 ret = -EOPNOTSUPP; 2489 bio_put(bio); 2490 return ret; 2491 } 2492 2493 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2494 unsigned long offset, size_t size, struct bio *bio, 2495 unsigned long bio_flags) 2496 { 2497 int ret = 0; 2498 if (tree->ops && tree->ops->merge_bio_hook) 2499 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2500 bio_flags); 2501 BUG_ON(ret < 0); 2502 return ret; 2503 2504 } 2505 2506 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2507 struct page *page, sector_t sector, 2508 size_t size, unsigned long offset, 2509 struct block_device *bdev, 2510 struct bio **bio_ret, 2511 unsigned long max_pages, 2512 bio_end_io_t end_io_func, 2513 int mirror_num, 2514 unsigned long prev_bio_flags, 2515 unsigned long bio_flags) 2516 { 2517 int ret = 0; 2518 struct bio *bio; 2519 int nr; 2520 int contig = 0; 2521 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2522 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2523 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2524 2525 if (bio_ret && *bio_ret) { 2526 bio = *bio_ret; 2527 if (old_compressed) 2528 contig = bio->bi_sector == sector; 2529 else 2530 contig = bio->bi_sector + (bio->bi_size >> 9) == 2531 sector; 2532 2533 if (prev_bio_flags != bio_flags || !contig || 2534 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2535 bio_add_page(bio, page, page_size, offset) < page_size) { 2536 ret = submit_one_bio(rw, bio, mirror_num, 2537 prev_bio_flags); 2538 if (ret < 0) 2539 return ret; 2540 bio = NULL; 2541 } else { 2542 return 0; 2543 } 2544 } 2545 if (this_compressed) 2546 nr = BIO_MAX_PAGES; 2547 else 2548 nr = bio_get_nr_vecs(bdev); 2549 2550 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2551 if (!bio) 2552 return -ENOMEM; 2553 2554 bio_add_page(bio, page, page_size, offset); 2555 bio->bi_end_io = end_io_func; 2556 bio->bi_private = tree; 2557 2558 if (bio_ret) 2559 *bio_ret = bio; 2560 else 2561 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2562 2563 return ret; 2564 } 2565 2566 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 2567 { 2568 if (!PagePrivate(page)) { 2569 SetPagePrivate(page); 2570 page_cache_get(page); 2571 set_page_private(page, (unsigned long)eb); 2572 } else { 2573 WARN_ON(page->private != (unsigned long)eb); 2574 } 2575 } 2576 2577 void set_page_extent_mapped(struct page *page) 2578 { 2579 if (!PagePrivate(page)) { 2580 SetPagePrivate(page); 2581 page_cache_get(page); 2582 set_page_private(page, EXTENT_PAGE_PRIVATE); 2583 } 2584 } 2585 2586 /* 2587 * basic readpage implementation. Locked extent state structs are inserted 2588 * into the tree that are removed when the IO is done (by the end_io 2589 * handlers) 2590 * XXX JDM: This needs looking at to ensure proper page locking 2591 */ 2592 static int __extent_read_full_page(struct extent_io_tree *tree, 2593 struct page *page, 2594 get_extent_t *get_extent, 2595 struct bio **bio, int mirror_num, 2596 unsigned long *bio_flags) 2597 { 2598 struct inode *inode = page->mapping->host; 2599 u64 start = page_offset(page); 2600 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2601 u64 end; 2602 u64 cur = start; 2603 u64 extent_offset; 2604 u64 last_byte = i_size_read(inode); 2605 u64 block_start; 2606 u64 cur_end; 2607 sector_t sector; 2608 struct extent_map *em; 2609 struct block_device *bdev; 2610 struct btrfs_ordered_extent *ordered; 2611 int ret; 2612 int nr = 0; 2613 size_t pg_offset = 0; 2614 size_t iosize; 2615 size_t disk_io_size; 2616 size_t blocksize = inode->i_sb->s_blocksize; 2617 unsigned long this_bio_flag = 0; 2618 2619 set_page_extent_mapped(page); 2620 2621 if (!PageUptodate(page)) { 2622 if (cleancache_get_page(page) == 0) { 2623 BUG_ON(blocksize != PAGE_SIZE); 2624 goto out; 2625 } 2626 } 2627 2628 end = page_end; 2629 while (1) { 2630 lock_extent(tree, start, end); 2631 ordered = btrfs_lookup_ordered_extent(inode, start); 2632 if (!ordered) 2633 break; 2634 unlock_extent(tree, start, end); 2635 btrfs_start_ordered_extent(inode, ordered, 1); 2636 btrfs_put_ordered_extent(ordered); 2637 } 2638 2639 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2640 char *userpage; 2641 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2642 2643 if (zero_offset) { 2644 iosize = PAGE_CACHE_SIZE - zero_offset; 2645 userpage = kmap_atomic(page); 2646 memset(userpage + zero_offset, 0, iosize); 2647 flush_dcache_page(page); 2648 kunmap_atomic(userpage); 2649 } 2650 } 2651 while (cur <= end) { 2652 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2653 2654 if (cur >= last_byte) { 2655 char *userpage; 2656 struct extent_state *cached = NULL; 2657 2658 iosize = PAGE_CACHE_SIZE - pg_offset; 2659 userpage = kmap_atomic(page); 2660 memset(userpage + pg_offset, 0, iosize); 2661 flush_dcache_page(page); 2662 kunmap_atomic(userpage); 2663 set_extent_uptodate(tree, cur, cur + iosize - 1, 2664 &cached, GFP_NOFS); 2665 unlock_extent_cached(tree, cur, cur + iosize - 1, 2666 &cached, GFP_NOFS); 2667 break; 2668 } 2669 em = get_extent(inode, page, pg_offset, cur, 2670 end - cur + 1, 0); 2671 if (IS_ERR_OR_NULL(em)) { 2672 SetPageError(page); 2673 unlock_extent(tree, cur, end); 2674 break; 2675 } 2676 extent_offset = cur - em->start; 2677 BUG_ON(extent_map_end(em) <= cur); 2678 BUG_ON(end < cur); 2679 2680 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2681 this_bio_flag = EXTENT_BIO_COMPRESSED; 2682 extent_set_compress_type(&this_bio_flag, 2683 em->compress_type); 2684 } 2685 2686 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2687 cur_end = min(extent_map_end(em) - 1, end); 2688 iosize = ALIGN(iosize, blocksize); 2689 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2690 disk_io_size = em->block_len; 2691 sector = em->block_start >> 9; 2692 } else { 2693 sector = (em->block_start + extent_offset) >> 9; 2694 disk_io_size = iosize; 2695 } 2696 bdev = em->bdev; 2697 block_start = em->block_start; 2698 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2699 block_start = EXTENT_MAP_HOLE; 2700 free_extent_map(em); 2701 em = NULL; 2702 2703 /* we've found a hole, just zero and go on */ 2704 if (block_start == EXTENT_MAP_HOLE) { 2705 char *userpage; 2706 struct extent_state *cached = NULL; 2707 2708 userpage = kmap_atomic(page); 2709 memset(userpage + pg_offset, 0, iosize); 2710 flush_dcache_page(page); 2711 kunmap_atomic(userpage); 2712 2713 set_extent_uptodate(tree, cur, cur + iosize - 1, 2714 &cached, GFP_NOFS); 2715 unlock_extent_cached(tree, cur, cur + iosize - 1, 2716 &cached, GFP_NOFS); 2717 cur = cur + iosize; 2718 pg_offset += iosize; 2719 continue; 2720 } 2721 /* the get_extent function already copied into the page */ 2722 if (test_range_bit(tree, cur, cur_end, 2723 EXTENT_UPTODATE, 1, NULL)) { 2724 check_page_uptodate(tree, page); 2725 unlock_extent(tree, cur, cur + iosize - 1); 2726 cur = cur + iosize; 2727 pg_offset += iosize; 2728 continue; 2729 } 2730 /* we have an inline extent but it didn't get marked up 2731 * to date. Error out 2732 */ 2733 if (block_start == EXTENT_MAP_INLINE) { 2734 SetPageError(page); 2735 unlock_extent(tree, cur, cur + iosize - 1); 2736 cur = cur + iosize; 2737 pg_offset += iosize; 2738 continue; 2739 } 2740 2741 pnr -= page->index; 2742 ret = submit_extent_page(READ, tree, page, 2743 sector, disk_io_size, pg_offset, 2744 bdev, bio, pnr, 2745 end_bio_extent_readpage, mirror_num, 2746 *bio_flags, 2747 this_bio_flag); 2748 if (!ret) { 2749 nr++; 2750 *bio_flags = this_bio_flag; 2751 } else { 2752 SetPageError(page); 2753 unlock_extent(tree, cur, cur + iosize - 1); 2754 } 2755 cur = cur + iosize; 2756 pg_offset += iosize; 2757 } 2758 out: 2759 if (!nr) { 2760 if (!PageError(page)) 2761 SetPageUptodate(page); 2762 unlock_page(page); 2763 } 2764 return 0; 2765 } 2766 2767 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2768 get_extent_t *get_extent, int mirror_num) 2769 { 2770 struct bio *bio = NULL; 2771 unsigned long bio_flags = 0; 2772 int ret; 2773 2774 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 2775 &bio_flags); 2776 if (bio) 2777 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 2778 return ret; 2779 } 2780 2781 static noinline void update_nr_written(struct page *page, 2782 struct writeback_control *wbc, 2783 unsigned long nr_written) 2784 { 2785 wbc->nr_to_write -= nr_written; 2786 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2787 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2788 page->mapping->writeback_index = page->index + nr_written; 2789 } 2790 2791 /* 2792 * the writepage semantics are similar to regular writepage. extent 2793 * records are inserted to lock ranges in the tree, and as dirty areas 2794 * are found, they are marked writeback. Then the lock bits are removed 2795 * and the end_io handler clears the writeback ranges 2796 */ 2797 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2798 void *data) 2799 { 2800 struct inode *inode = page->mapping->host; 2801 struct extent_page_data *epd = data; 2802 struct extent_io_tree *tree = epd->tree; 2803 u64 start = page_offset(page); 2804 u64 delalloc_start; 2805 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2806 u64 end; 2807 u64 cur = start; 2808 u64 extent_offset; 2809 u64 last_byte = i_size_read(inode); 2810 u64 block_start; 2811 u64 iosize; 2812 sector_t sector; 2813 struct extent_state *cached_state = NULL; 2814 struct extent_map *em; 2815 struct block_device *bdev; 2816 int ret; 2817 int nr = 0; 2818 size_t pg_offset = 0; 2819 size_t blocksize; 2820 loff_t i_size = i_size_read(inode); 2821 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2822 u64 nr_delalloc; 2823 u64 delalloc_end; 2824 int page_started; 2825 int compressed; 2826 int write_flags; 2827 unsigned long nr_written = 0; 2828 bool fill_delalloc = true; 2829 2830 if (wbc->sync_mode == WB_SYNC_ALL) 2831 write_flags = WRITE_SYNC; 2832 else 2833 write_flags = WRITE; 2834 2835 trace___extent_writepage(page, inode, wbc); 2836 2837 WARN_ON(!PageLocked(page)); 2838 2839 ClearPageError(page); 2840 2841 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2842 if (page->index > end_index || 2843 (page->index == end_index && !pg_offset)) { 2844 page->mapping->a_ops->invalidatepage(page, 0); 2845 unlock_page(page); 2846 return 0; 2847 } 2848 2849 if (page->index == end_index) { 2850 char *userpage; 2851 2852 userpage = kmap_atomic(page); 2853 memset(userpage + pg_offset, 0, 2854 PAGE_CACHE_SIZE - pg_offset); 2855 kunmap_atomic(userpage); 2856 flush_dcache_page(page); 2857 } 2858 pg_offset = 0; 2859 2860 set_page_extent_mapped(page); 2861 2862 if (!tree->ops || !tree->ops->fill_delalloc) 2863 fill_delalloc = false; 2864 2865 delalloc_start = start; 2866 delalloc_end = 0; 2867 page_started = 0; 2868 if (!epd->extent_locked && fill_delalloc) { 2869 u64 delalloc_to_write = 0; 2870 /* 2871 * make sure the wbc mapping index is at least updated 2872 * to this page. 2873 */ 2874 update_nr_written(page, wbc, 0); 2875 2876 while (delalloc_end < page_end) { 2877 nr_delalloc = find_lock_delalloc_range(inode, tree, 2878 page, 2879 &delalloc_start, 2880 &delalloc_end, 2881 128 * 1024 * 1024); 2882 if (nr_delalloc == 0) { 2883 delalloc_start = delalloc_end + 1; 2884 continue; 2885 } 2886 ret = tree->ops->fill_delalloc(inode, page, 2887 delalloc_start, 2888 delalloc_end, 2889 &page_started, 2890 &nr_written); 2891 /* File system has been set read-only */ 2892 if (ret) { 2893 SetPageError(page); 2894 goto done; 2895 } 2896 /* 2897 * delalloc_end is already one less than the total 2898 * length, so we don't subtract one from 2899 * PAGE_CACHE_SIZE 2900 */ 2901 delalloc_to_write += (delalloc_end - delalloc_start + 2902 PAGE_CACHE_SIZE) >> 2903 PAGE_CACHE_SHIFT; 2904 delalloc_start = delalloc_end + 1; 2905 } 2906 if (wbc->nr_to_write < delalloc_to_write) { 2907 int thresh = 8192; 2908 2909 if (delalloc_to_write < thresh * 2) 2910 thresh = delalloc_to_write; 2911 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2912 thresh); 2913 } 2914 2915 /* did the fill delalloc function already unlock and start 2916 * the IO? 2917 */ 2918 if (page_started) { 2919 ret = 0; 2920 /* 2921 * we've unlocked the page, so we can't update 2922 * the mapping's writeback index, just update 2923 * nr_to_write. 2924 */ 2925 wbc->nr_to_write -= nr_written; 2926 goto done_unlocked; 2927 } 2928 } 2929 if (tree->ops && tree->ops->writepage_start_hook) { 2930 ret = tree->ops->writepage_start_hook(page, start, 2931 page_end); 2932 if (ret) { 2933 /* Fixup worker will requeue */ 2934 if (ret == -EBUSY) 2935 wbc->pages_skipped++; 2936 else 2937 redirty_page_for_writepage(wbc, page); 2938 update_nr_written(page, wbc, nr_written); 2939 unlock_page(page); 2940 ret = 0; 2941 goto done_unlocked; 2942 } 2943 } 2944 2945 /* 2946 * we don't want to touch the inode after unlocking the page, 2947 * so we update the mapping writeback index now 2948 */ 2949 update_nr_written(page, wbc, nr_written + 1); 2950 2951 end = page_end; 2952 if (last_byte <= start) { 2953 if (tree->ops && tree->ops->writepage_end_io_hook) 2954 tree->ops->writepage_end_io_hook(page, start, 2955 page_end, NULL, 1); 2956 goto done; 2957 } 2958 2959 blocksize = inode->i_sb->s_blocksize; 2960 2961 while (cur <= end) { 2962 if (cur >= last_byte) { 2963 if (tree->ops && tree->ops->writepage_end_io_hook) 2964 tree->ops->writepage_end_io_hook(page, cur, 2965 page_end, NULL, 1); 2966 break; 2967 } 2968 em = epd->get_extent(inode, page, pg_offset, cur, 2969 end - cur + 1, 1); 2970 if (IS_ERR_OR_NULL(em)) { 2971 SetPageError(page); 2972 break; 2973 } 2974 2975 extent_offset = cur - em->start; 2976 BUG_ON(extent_map_end(em) <= cur); 2977 BUG_ON(end < cur); 2978 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2979 iosize = ALIGN(iosize, blocksize); 2980 sector = (em->block_start + extent_offset) >> 9; 2981 bdev = em->bdev; 2982 block_start = em->block_start; 2983 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2984 free_extent_map(em); 2985 em = NULL; 2986 2987 /* 2988 * compressed and inline extents are written through other 2989 * paths in the FS 2990 */ 2991 if (compressed || block_start == EXTENT_MAP_HOLE || 2992 block_start == EXTENT_MAP_INLINE) { 2993 /* 2994 * end_io notification does not happen here for 2995 * compressed extents 2996 */ 2997 if (!compressed && tree->ops && 2998 tree->ops->writepage_end_io_hook) 2999 tree->ops->writepage_end_io_hook(page, cur, 3000 cur + iosize - 1, 3001 NULL, 1); 3002 else if (compressed) { 3003 /* we don't want to end_page_writeback on 3004 * a compressed extent. this happens 3005 * elsewhere 3006 */ 3007 nr++; 3008 } 3009 3010 cur += iosize; 3011 pg_offset += iosize; 3012 continue; 3013 } 3014 /* leave this out until we have a page_mkwrite call */ 3015 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3016 EXTENT_DIRTY, 0, NULL)) { 3017 cur = cur + iosize; 3018 pg_offset += iosize; 3019 continue; 3020 } 3021 3022 if (tree->ops && tree->ops->writepage_io_hook) { 3023 ret = tree->ops->writepage_io_hook(page, cur, 3024 cur + iosize - 1); 3025 } else { 3026 ret = 0; 3027 } 3028 if (ret) { 3029 SetPageError(page); 3030 } else { 3031 unsigned long max_nr = end_index + 1; 3032 3033 set_range_writeback(tree, cur, cur + iosize - 1); 3034 if (!PageWriteback(page)) { 3035 printk(KERN_ERR "btrfs warning page %lu not " 3036 "writeback, cur %llu end %llu\n", 3037 page->index, (unsigned long long)cur, 3038 (unsigned long long)end); 3039 } 3040 3041 ret = submit_extent_page(write_flags, tree, page, 3042 sector, iosize, pg_offset, 3043 bdev, &epd->bio, max_nr, 3044 end_bio_extent_writepage, 3045 0, 0, 0); 3046 if (ret) 3047 SetPageError(page); 3048 } 3049 cur = cur + iosize; 3050 pg_offset += iosize; 3051 nr++; 3052 } 3053 done: 3054 if (nr == 0) { 3055 /* make sure the mapping tag for page dirty gets cleared */ 3056 set_page_writeback(page); 3057 end_page_writeback(page); 3058 } 3059 unlock_page(page); 3060 3061 done_unlocked: 3062 3063 /* drop our reference on any cached states */ 3064 free_extent_state(cached_state); 3065 return 0; 3066 } 3067 3068 static int eb_wait(void *word) 3069 { 3070 io_schedule(); 3071 return 0; 3072 } 3073 3074 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3075 { 3076 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3077 TASK_UNINTERRUPTIBLE); 3078 } 3079 3080 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3081 struct btrfs_fs_info *fs_info, 3082 struct extent_page_data *epd) 3083 { 3084 unsigned long i, num_pages; 3085 int flush = 0; 3086 int ret = 0; 3087 3088 if (!btrfs_try_tree_write_lock(eb)) { 3089 flush = 1; 3090 flush_write_bio(epd); 3091 btrfs_tree_lock(eb); 3092 } 3093 3094 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3095 btrfs_tree_unlock(eb); 3096 if (!epd->sync_io) 3097 return 0; 3098 if (!flush) { 3099 flush_write_bio(epd); 3100 flush = 1; 3101 } 3102 while (1) { 3103 wait_on_extent_buffer_writeback(eb); 3104 btrfs_tree_lock(eb); 3105 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3106 break; 3107 btrfs_tree_unlock(eb); 3108 } 3109 } 3110 3111 /* 3112 * We need to do this to prevent races in people who check if the eb is 3113 * under IO since we can end up having no IO bits set for a short period 3114 * of time. 3115 */ 3116 spin_lock(&eb->refs_lock); 3117 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3118 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3119 spin_unlock(&eb->refs_lock); 3120 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3121 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3122 -eb->len, 3123 fs_info->dirty_metadata_batch); 3124 ret = 1; 3125 } else { 3126 spin_unlock(&eb->refs_lock); 3127 } 3128 3129 btrfs_tree_unlock(eb); 3130 3131 if (!ret) 3132 return ret; 3133 3134 num_pages = num_extent_pages(eb->start, eb->len); 3135 for (i = 0; i < num_pages; i++) { 3136 struct page *p = extent_buffer_page(eb, i); 3137 3138 if (!trylock_page(p)) { 3139 if (!flush) { 3140 flush_write_bio(epd); 3141 flush = 1; 3142 } 3143 lock_page(p); 3144 } 3145 } 3146 3147 return ret; 3148 } 3149 3150 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3151 { 3152 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3153 smp_mb__after_clear_bit(); 3154 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3155 } 3156 3157 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3158 { 3159 int uptodate = err == 0; 3160 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3161 struct extent_buffer *eb; 3162 int done; 3163 3164 do { 3165 struct page *page = bvec->bv_page; 3166 3167 bvec--; 3168 eb = (struct extent_buffer *)page->private; 3169 BUG_ON(!eb); 3170 done = atomic_dec_and_test(&eb->io_pages); 3171 3172 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3173 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3174 ClearPageUptodate(page); 3175 SetPageError(page); 3176 } 3177 3178 end_page_writeback(page); 3179 3180 if (!done) 3181 continue; 3182 3183 end_extent_buffer_writeback(eb); 3184 } while (bvec >= bio->bi_io_vec); 3185 3186 bio_put(bio); 3187 3188 } 3189 3190 static int write_one_eb(struct extent_buffer *eb, 3191 struct btrfs_fs_info *fs_info, 3192 struct writeback_control *wbc, 3193 struct extent_page_data *epd) 3194 { 3195 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3196 u64 offset = eb->start; 3197 unsigned long i, num_pages; 3198 unsigned long bio_flags = 0; 3199 int rw = (epd->sync_io ? WRITE_SYNC : WRITE); 3200 int ret = 0; 3201 3202 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3203 num_pages = num_extent_pages(eb->start, eb->len); 3204 atomic_set(&eb->io_pages, num_pages); 3205 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3206 bio_flags = EXTENT_BIO_TREE_LOG; 3207 3208 for (i = 0; i < num_pages; i++) { 3209 struct page *p = extent_buffer_page(eb, i); 3210 3211 clear_page_dirty_for_io(p); 3212 set_page_writeback(p); 3213 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3214 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3215 -1, end_bio_extent_buffer_writepage, 3216 0, epd->bio_flags, bio_flags); 3217 epd->bio_flags = bio_flags; 3218 if (ret) { 3219 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3220 SetPageError(p); 3221 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3222 end_extent_buffer_writeback(eb); 3223 ret = -EIO; 3224 break; 3225 } 3226 offset += PAGE_CACHE_SIZE; 3227 update_nr_written(p, wbc, 1); 3228 unlock_page(p); 3229 } 3230 3231 if (unlikely(ret)) { 3232 for (; i < num_pages; i++) { 3233 struct page *p = extent_buffer_page(eb, i); 3234 unlock_page(p); 3235 } 3236 } 3237 3238 return ret; 3239 } 3240 3241 int btree_write_cache_pages(struct address_space *mapping, 3242 struct writeback_control *wbc) 3243 { 3244 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3245 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3246 struct extent_buffer *eb, *prev_eb = NULL; 3247 struct extent_page_data epd = { 3248 .bio = NULL, 3249 .tree = tree, 3250 .extent_locked = 0, 3251 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3252 .bio_flags = 0, 3253 }; 3254 int ret = 0; 3255 int done = 0; 3256 int nr_to_write_done = 0; 3257 struct pagevec pvec; 3258 int nr_pages; 3259 pgoff_t index; 3260 pgoff_t end; /* Inclusive */ 3261 int scanned = 0; 3262 int tag; 3263 3264 pagevec_init(&pvec, 0); 3265 if (wbc->range_cyclic) { 3266 index = mapping->writeback_index; /* Start from prev offset */ 3267 end = -1; 3268 } else { 3269 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3270 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3271 scanned = 1; 3272 } 3273 if (wbc->sync_mode == WB_SYNC_ALL) 3274 tag = PAGECACHE_TAG_TOWRITE; 3275 else 3276 tag = PAGECACHE_TAG_DIRTY; 3277 retry: 3278 if (wbc->sync_mode == WB_SYNC_ALL) 3279 tag_pages_for_writeback(mapping, index, end); 3280 while (!done && !nr_to_write_done && (index <= end) && 3281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3283 unsigned i; 3284 3285 scanned = 1; 3286 for (i = 0; i < nr_pages; i++) { 3287 struct page *page = pvec.pages[i]; 3288 3289 if (!PagePrivate(page)) 3290 continue; 3291 3292 if (!wbc->range_cyclic && page->index > end) { 3293 done = 1; 3294 break; 3295 } 3296 3297 spin_lock(&mapping->private_lock); 3298 if (!PagePrivate(page)) { 3299 spin_unlock(&mapping->private_lock); 3300 continue; 3301 } 3302 3303 eb = (struct extent_buffer *)page->private; 3304 3305 /* 3306 * Shouldn't happen and normally this would be a BUG_ON 3307 * but no sense in crashing the users box for something 3308 * we can survive anyway. 3309 */ 3310 if (!eb) { 3311 spin_unlock(&mapping->private_lock); 3312 WARN_ON(1); 3313 continue; 3314 } 3315 3316 if (eb == prev_eb) { 3317 spin_unlock(&mapping->private_lock); 3318 continue; 3319 } 3320 3321 ret = atomic_inc_not_zero(&eb->refs); 3322 spin_unlock(&mapping->private_lock); 3323 if (!ret) 3324 continue; 3325 3326 prev_eb = eb; 3327 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3328 if (!ret) { 3329 free_extent_buffer(eb); 3330 continue; 3331 } 3332 3333 ret = write_one_eb(eb, fs_info, wbc, &epd); 3334 if (ret) { 3335 done = 1; 3336 free_extent_buffer(eb); 3337 break; 3338 } 3339 free_extent_buffer(eb); 3340 3341 /* 3342 * the filesystem may choose to bump up nr_to_write. 3343 * We have to make sure to honor the new nr_to_write 3344 * at any time 3345 */ 3346 nr_to_write_done = wbc->nr_to_write <= 0; 3347 } 3348 pagevec_release(&pvec); 3349 cond_resched(); 3350 } 3351 if (!scanned && !done) { 3352 /* 3353 * We hit the last page and there is more work to be done: wrap 3354 * back to the start of the file 3355 */ 3356 scanned = 1; 3357 index = 0; 3358 goto retry; 3359 } 3360 flush_write_bio(&epd); 3361 return ret; 3362 } 3363 3364 /** 3365 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3366 * @mapping: address space structure to write 3367 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3368 * @writepage: function called for each page 3369 * @data: data passed to writepage function 3370 * 3371 * If a page is already under I/O, write_cache_pages() skips it, even 3372 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3373 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3374 * and msync() need to guarantee that all the data which was dirty at the time 3375 * the call was made get new I/O started against them. If wbc->sync_mode is 3376 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3377 * existing IO to complete. 3378 */ 3379 static int extent_write_cache_pages(struct extent_io_tree *tree, 3380 struct address_space *mapping, 3381 struct writeback_control *wbc, 3382 writepage_t writepage, void *data, 3383 void (*flush_fn)(void *)) 3384 { 3385 struct inode *inode = mapping->host; 3386 int ret = 0; 3387 int done = 0; 3388 int nr_to_write_done = 0; 3389 struct pagevec pvec; 3390 int nr_pages; 3391 pgoff_t index; 3392 pgoff_t end; /* Inclusive */ 3393 int scanned = 0; 3394 int tag; 3395 3396 /* 3397 * We have to hold onto the inode so that ordered extents can do their 3398 * work when the IO finishes. The alternative to this is failing to add 3399 * an ordered extent if the igrab() fails there and that is a huge pain 3400 * to deal with, so instead just hold onto the inode throughout the 3401 * writepages operation. If it fails here we are freeing up the inode 3402 * anyway and we'd rather not waste our time writing out stuff that is 3403 * going to be truncated anyway. 3404 */ 3405 if (!igrab(inode)) 3406 return 0; 3407 3408 pagevec_init(&pvec, 0); 3409 if (wbc->range_cyclic) { 3410 index = mapping->writeback_index; /* Start from prev offset */ 3411 end = -1; 3412 } else { 3413 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3414 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3415 scanned = 1; 3416 } 3417 if (wbc->sync_mode == WB_SYNC_ALL) 3418 tag = PAGECACHE_TAG_TOWRITE; 3419 else 3420 tag = PAGECACHE_TAG_DIRTY; 3421 retry: 3422 if (wbc->sync_mode == WB_SYNC_ALL) 3423 tag_pages_for_writeback(mapping, index, end); 3424 while (!done && !nr_to_write_done && (index <= end) && 3425 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3427 unsigned i; 3428 3429 scanned = 1; 3430 for (i = 0; i < nr_pages; i++) { 3431 struct page *page = pvec.pages[i]; 3432 3433 /* 3434 * At this point we hold neither mapping->tree_lock nor 3435 * lock on the page itself: the page may be truncated or 3436 * invalidated (changing page->mapping to NULL), or even 3437 * swizzled back from swapper_space to tmpfs file 3438 * mapping 3439 */ 3440 if (!trylock_page(page)) { 3441 flush_fn(data); 3442 lock_page(page); 3443 } 3444 3445 if (unlikely(page->mapping != mapping)) { 3446 unlock_page(page); 3447 continue; 3448 } 3449 3450 if (!wbc->range_cyclic && page->index > end) { 3451 done = 1; 3452 unlock_page(page); 3453 continue; 3454 } 3455 3456 if (wbc->sync_mode != WB_SYNC_NONE) { 3457 if (PageWriteback(page)) 3458 flush_fn(data); 3459 wait_on_page_writeback(page); 3460 } 3461 3462 if (PageWriteback(page) || 3463 !clear_page_dirty_for_io(page)) { 3464 unlock_page(page); 3465 continue; 3466 } 3467 3468 ret = (*writepage)(page, wbc, data); 3469 3470 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3471 unlock_page(page); 3472 ret = 0; 3473 } 3474 if (ret) 3475 done = 1; 3476 3477 /* 3478 * the filesystem may choose to bump up nr_to_write. 3479 * We have to make sure to honor the new nr_to_write 3480 * at any time 3481 */ 3482 nr_to_write_done = wbc->nr_to_write <= 0; 3483 } 3484 pagevec_release(&pvec); 3485 cond_resched(); 3486 } 3487 if (!scanned && !done) { 3488 /* 3489 * We hit the last page and there is more work to be done: wrap 3490 * back to the start of the file 3491 */ 3492 scanned = 1; 3493 index = 0; 3494 goto retry; 3495 } 3496 btrfs_add_delayed_iput(inode); 3497 return ret; 3498 } 3499 3500 static void flush_epd_write_bio(struct extent_page_data *epd) 3501 { 3502 if (epd->bio) { 3503 int rw = WRITE; 3504 int ret; 3505 3506 if (epd->sync_io) 3507 rw = WRITE_SYNC; 3508 3509 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3510 BUG_ON(ret < 0); /* -ENOMEM */ 3511 epd->bio = NULL; 3512 } 3513 } 3514 3515 static noinline void flush_write_bio(void *data) 3516 { 3517 struct extent_page_data *epd = data; 3518 flush_epd_write_bio(epd); 3519 } 3520 3521 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3522 get_extent_t *get_extent, 3523 struct writeback_control *wbc) 3524 { 3525 int ret; 3526 struct extent_page_data epd = { 3527 .bio = NULL, 3528 .tree = tree, 3529 .get_extent = get_extent, 3530 .extent_locked = 0, 3531 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3532 .bio_flags = 0, 3533 }; 3534 3535 ret = __extent_writepage(page, wbc, &epd); 3536 3537 flush_epd_write_bio(&epd); 3538 return ret; 3539 } 3540 3541 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3542 u64 start, u64 end, get_extent_t *get_extent, 3543 int mode) 3544 { 3545 int ret = 0; 3546 struct address_space *mapping = inode->i_mapping; 3547 struct page *page; 3548 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3549 PAGE_CACHE_SHIFT; 3550 3551 struct extent_page_data epd = { 3552 .bio = NULL, 3553 .tree = tree, 3554 .get_extent = get_extent, 3555 .extent_locked = 1, 3556 .sync_io = mode == WB_SYNC_ALL, 3557 .bio_flags = 0, 3558 }; 3559 struct writeback_control wbc_writepages = { 3560 .sync_mode = mode, 3561 .nr_to_write = nr_pages * 2, 3562 .range_start = start, 3563 .range_end = end + 1, 3564 }; 3565 3566 while (start <= end) { 3567 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3568 if (clear_page_dirty_for_io(page)) 3569 ret = __extent_writepage(page, &wbc_writepages, &epd); 3570 else { 3571 if (tree->ops && tree->ops->writepage_end_io_hook) 3572 tree->ops->writepage_end_io_hook(page, start, 3573 start + PAGE_CACHE_SIZE - 1, 3574 NULL, 1); 3575 unlock_page(page); 3576 } 3577 page_cache_release(page); 3578 start += PAGE_CACHE_SIZE; 3579 } 3580 3581 flush_epd_write_bio(&epd); 3582 return ret; 3583 } 3584 3585 int extent_writepages(struct extent_io_tree *tree, 3586 struct address_space *mapping, 3587 get_extent_t *get_extent, 3588 struct writeback_control *wbc) 3589 { 3590 int ret = 0; 3591 struct extent_page_data epd = { 3592 .bio = NULL, 3593 .tree = tree, 3594 .get_extent = get_extent, 3595 .extent_locked = 0, 3596 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3597 .bio_flags = 0, 3598 }; 3599 3600 ret = extent_write_cache_pages(tree, mapping, wbc, 3601 __extent_writepage, &epd, 3602 flush_write_bio); 3603 flush_epd_write_bio(&epd); 3604 return ret; 3605 } 3606 3607 int extent_readpages(struct extent_io_tree *tree, 3608 struct address_space *mapping, 3609 struct list_head *pages, unsigned nr_pages, 3610 get_extent_t get_extent) 3611 { 3612 struct bio *bio = NULL; 3613 unsigned page_idx; 3614 unsigned long bio_flags = 0; 3615 struct page *pagepool[16]; 3616 struct page *page; 3617 int i = 0; 3618 int nr = 0; 3619 3620 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3621 page = list_entry(pages->prev, struct page, lru); 3622 3623 prefetchw(&page->flags); 3624 list_del(&page->lru); 3625 if (add_to_page_cache_lru(page, mapping, 3626 page->index, GFP_NOFS)) { 3627 page_cache_release(page); 3628 continue; 3629 } 3630 3631 pagepool[nr++] = page; 3632 if (nr < ARRAY_SIZE(pagepool)) 3633 continue; 3634 for (i = 0; i < nr; i++) { 3635 __extent_read_full_page(tree, pagepool[i], get_extent, 3636 &bio, 0, &bio_flags); 3637 page_cache_release(pagepool[i]); 3638 } 3639 nr = 0; 3640 } 3641 for (i = 0; i < nr; i++) { 3642 __extent_read_full_page(tree, pagepool[i], get_extent, 3643 &bio, 0, &bio_flags); 3644 page_cache_release(pagepool[i]); 3645 } 3646 3647 BUG_ON(!list_empty(pages)); 3648 if (bio) 3649 return submit_one_bio(READ, bio, 0, bio_flags); 3650 return 0; 3651 } 3652 3653 /* 3654 * basic invalidatepage code, this waits on any locked or writeback 3655 * ranges corresponding to the page, and then deletes any extent state 3656 * records from the tree 3657 */ 3658 int extent_invalidatepage(struct extent_io_tree *tree, 3659 struct page *page, unsigned long offset) 3660 { 3661 struct extent_state *cached_state = NULL; 3662 u64 start = page_offset(page); 3663 u64 end = start + PAGE_CACHE_SIZE - 1; 3664 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3665 3666 start += ALIGN(offset, blocksize); 3667 if (start > end) 3668 return 0; 3669 3670 lock_extent_bits(tree, start, end, 0, &cached_state); 3671 wait_on_page_writeback(page); 3672 clear_extent_bit(tree, start, end, 3673 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3674 EXTENT_DO_ACCOUNTING, 3675 1, 1, &cached_state, GFP_NOFS); 3676 return 0; 3677 } 3678 3679 /* 3680 * a helper for releasepage, this tests for areas of the page that 3681 * are locked or under IO and drops the related state bits if it is safe 3682 * to drop the page. 3683 */ 3684 int try_release_extent_state(struct extent_map_tree *map, 3685 struct extent_io_tree *tree, struct page *page, 3686 gfp_t mask) 3687 { 3688 u64 start = page_offset(page); 3689 u64 end = start + PAGE_CACHE_SIZE - 1; 3690 int ret = 1; 3691 3692 if (test_range_bit(tree, start, end, 3693 EXTENT_IOBITS, 0, NULL)) 3694 ret = 0; 3695 else { 3696 if ((mask & GFP_NOFS) == GFP_NOFS) 3697 mask = GFP_NOFS; 3698 /* 3699 * at this point we can safely clear everything except the 3700 * locked bit and the nodatasum bit 3701 */ 3702 ret = clear_extent_bit(tree, start, end, 3703 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3704 0, 0, NULL, mask); 3705 3706 /* if clear_extent_bit failed for enomem reasons, 3707 * we can't allow the release to continue. 3708 */ 3709 if (ret < 0) 3710 ret = 0; 3711 else 3712 ret = 1; 3713 } 3714 return ret; 3715 } 3716 3717 /* 3718 * a helper for releasepage. As long as there are no locked extents 3719 * in the range corresponding to the page, both state records and extent 3720 * map records are removed 3721 */ 3722 int try_release_extent_mapping(struct extent_map_tree *map, 3723 struct extent_io_tree *tree, struct page *page, 3724 gfp_t mask) 3725 { 3726 struct extent_map *em; 3727 u64 start = page_offset(page); 3728 u64 end = start + PAGE_CACHE_SIZE - 1; 3729 3730 if ((mask & __GFP_WAIT) && 3731 page->mapping->host->i_size > 16 * 1024 * 1024) { 3732 u64 len; 3733 while (start <= end) { 3734 len = end - start + 1; 3735 write_lock(&map->lock); 3736 em = lookup_extent_mapping(map, start, len); 3737 if (!em) { 3738 write_unlock(&map->lock); 3739 break; 3740 } 3741 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3742 em->start != start) { 3743 write_unlock(&map->lock); 3744 free_extent_map(em); 3745 break; 3746 } 3747 if (!test_range_bit(tree, em->start, 3748 extent_map_end(em) - 1, 3749 EXTENT_LOCKED | EXTENT_WRITEBACK, 3750 0, NULL)) { 3751 remove_extent_mapping(map, em); 3752 /* once for the rb tree */ 3753 free_extent_map(em); 3754 } 3755 start = extent_map_end(em); 3756 write_unlock(&map->lock); 3757 3758 /* once for us */ 3759 free_extent_map(em); 3760 } 3761 } 3762 return try_release_extent_state(map, tree, page, mask); 3763 } 3764 3765 /* 3766 * helper function for fiemap, which doesn't want to see any holes. 3767 * This maps until we find something past 'last' 3768 */ 3769 static struct extent_map *get_extent_skip_holes(struct inode *inode, 3770 u64 offset, 3771 u64 last, 3772 get_extent_t *get_extent) 3773 { 3774 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 3775 struct extent_map *em; 3776 u64 len; 3777 3778 if (offset >= last) 3779 return NULL; 3780 3781 while(1) { 3782 len = last - offset; 3783 if (len == 0) 3784 break; 3785 len = ALIGN(len, sectorsize); 3786 em = get_extent(inode, NULL, 0, offset, len, 0); 3787 if (IS_ERR_OR_NULL(em)) 3788 return em; 3789 3790 /* if this isn't a hole return it */ 3791 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 3792 em->block_start != EXTENT_MAP_HOLE) { 3793 return em; 3794 } 3795 3796 /* this is a hole, advance to the next extent */ 3797 offset = extent_map_end(em); 3798 free_extent_map(em); 3799 if (offset >= last) 3800 break; 3801 } 3802 return NULL; 3803 } 3804 3805 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3806 __u64 start, __u64 len, get_extent_t *get_extent) 3807 { 3808 int ret = 0; 3809 u64 off = start; 3810 u64 max = start + len; 3811 u32 flags = 0; 3812 u32 found_type; 3813 u64 last; 3814 u64 last_for_get_extent = 0; 3815 u64 disko = 0; 3816 u64 isize = i_size_read(inode); 3817 struct btrfs_key found_key; 3818 struct extent_map *em = NULL; 3819 struct extent_state *cached_state = NULL; 3820 struct btrfs_path *path; 3821 struct btrfs_file_extent_item *item; 3822 int end = 0; 3823 u64 em_start = 0; 3824 u64 em_len = 0; 3825 u64 em_end = 0; 3826 unsigned long emflags; 3827 3828 if (len == 0) 3829 return -EINVAL; 3830 3831 path = btrfs_alloc_path(); 3832 if (!path) 3833 return -ENOMEM; 3834 path->leave_spinning = 1; 3835 3836 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 3837 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 3838 3839 /* 3840 * lookup the last file extent. We're not using i_size here 3841 * because there might be preallocation past i_size 3842 */ 3843 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 3844 path, btrfs_ino(inode), -1, 0); 3845 if (ret < 0) { 3846 btrfs_free_path(path); 3847 return ret; 3848 } 3849 WARN_ON(!ret); 3850 path->slots[0]--; 3851 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3852 struct btrfs_file_extent_item); 3853 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 3854 found_type = btrfs_key_type(&found_key); 3855 3856 /* No extents, but there might be delalloc bits */ 3857 if (found_key.objectid != btrfs_ino(inode) || 3858 found_type != BTRFS_EXTENT_DATA_KEY) { 3859 /* have to trust i_size as the end */ 3860 last = (u64)-1; 3861 last_for_get_extent = isize; 3862 } else { 3863 /* 3864 * remember the start of the last extent. There are a 3865 * bunch of different factors that go into the length of the 3866 * extent, so its much less complex to remember where it started 3867 */ 3868 last = found_key.offset; 3869 last_for_get_extent = last + 1; 3870 } 3871 btrfs_free_path(path); 3872 3873 /* 3874 * we might have some extents allocated but more delalloc past those 3875 * extents. so, we trust isize unless the start of the last extent is 3876 * beyond isize 3877 */ 3878 if (last < isize) { 3879 last = (u64)-1; 3880 last_for_get_extent = isize; 3881 } 3882 3883 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 3884 &cached_state); 3885 3886 em = get_extent_skip_holes(inode, start, last_for_get_extent, 3887 get_extent); 3888 if (!em) 3889 goto out; 3890 if (IS_ERR(em)) { 3891 ret = PTR_ERR(em); 3892 goto out; 3893 } 3894 3895 while (!end) { 3896 u64 offset_in_extent; 3897 3898 /* break if the extent we found is outside the range */ 3899 if (em->start >= max || extent_map_end(em) < off) 3900 break; 3901 3902 /* 3903 * get_extent may return an extent that starts before our 3904 * requested range. We have to make sure the ranges 3905 * we return to fiemap always move forward and don't 3906 * overlap, so adjust the offsets here 3907 */ 3908 em_start = max(em->start, off); 3909 3910 /* 3911 * record the offset from the start of the extent 3912 * for adjusting the disk offset below 3913 */ 3914 offset_in_extent = em_start - em->start; 3915 em_end = extent_map_end(em); 3916 em_len = em_end - em_start; 3917 emflags = em->flags; 3918 disko = 0; 3919 flags = 0; 3920 3921 /* 3922 * bump off for our next call to get_extent 3923 */ 3924 off = extent_map_end(em); 3925 if (off >= max) 3926 end = 1; 3927 3928 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 3929 end = 1; 3930 flags |= FIEMAP_EXTENT_LAST; 3931 } else if (em->block_start == EXTENT_MAP_INLINE) { 3932 flags |= (FIEMAP_EXTENT_DATA_INLINE | 3933 FIEMAP_EXTENT_NOT_ALIGNED); 3934 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 3935 flags |= (FIEMAP_EXTENT_DELALLOC | 3936 FIEMAP_EXTENT_UNKNOWN); 3937 } else { 3938 disko = em->block_start + offset_in_extent; 3939 } 3940 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3941 flags |= FIEMAP_EXTENT_ENCODED; 3942 3943 free_extent_map(em); 3944 em = NULL; 3945 if ((em_start >= last) || em_len == (u64)-1 || 3946 (last == (u64)-1 && isize <= em_end)) { 3947 flags |= FIEMAP_EXTENT_LAST; 3948 end = 1; 3949 } 3950 3951 /* now scan forward to see if this is really the last extent. */ 3952 em = get_extent_skip_holes(inode, off, last_for_get_extent, 3953 get_extent); 3954 if (IS_ERR(em)) { 3955 ret = PTR_ERR(em); 3956 goto out; 3957 } 3958 if (!em) { 3959 flags |= FIEMAP_EXTENT_LAST; 3960 end = 1; 3961 } 3962 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3963 em_len, flags); 3964 if (ret) 3965 goto out_free; 3966 } 3967 out_free: 3968 free_extent_map(em); 3969 out: 3970 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 3971 &cached_state, GFP_NOFS); 3972 return ret; 3973 } 3974 3975 static void __free_extent_buffer(struct extent_buffer *eb) 3976 { 3977 #if LEAK_DEBUG 3978 unsigned long flags; 3979 spin_lock_irqsave(&leak_lock, flags); 3980 list_del(&eb->leak_list); 3981 spin_unlock_irqrestore(&leak_lock, flags); 3982 #endif 3983 kmem_cache_free(extent_buffer_cache, eb); 3984 } 3985 3986 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3987 u64 start, 3988 unsigned long len, 3989 gfp_t mask) 3990 { 3991 struct extent_buffer *eb = NULL; 3992 #if LEAK_DEBUG 3993 unsigned long flags; 3994 #endif 3995 3996 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3997 if (eb == NULL) 3998 return NULL; 3999 eb->start = start; 4000 eb->len = len; 4001 eb->tree = tree; 4002 eb->bflags = 0; 4003 rwlock_init(&eb->lock); 4004 atomic_set(&eb->write_locks, 0); 4005 atomic_set(&eb->read_locks, 0); 4006 atomic_set(&eb->blocking_readers, 0); 4007 atomic_set(&eb->blocking_writers, 0); 4008 atomic_set(&eb->spinning_readers, 0); 4009 atomic_set(&eb->spinning_writers, 0); 4010 eb->lock_nested = 0; 4011 init_waitqueue_head(&eb->write_lock_wq); 4012 init_waitqueue_head(&eb->read_lock_wq); 4013 4014 #if LEAK_DEBUG 4015 spin_lock_irqsave(&leak_lock, flags); 4016 list_add(&eb->leak_list, &buffers); 4017 spin_unlock_irqrestore(&leak_lock, flags); 4018 #endif 4019 spin_lock_init(&eb->refs_lock); 4020 atomic_set(&eb->refs, 1); 4021 atomic_set(&eb->io_pages, 0); 4022 4023 /* 4024 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4025 */ 4026 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4027 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4028 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4029 4030 return eb; 4031 } 4032 4033 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4034 { 4035 unsigned long i; 4036 struct page *p; 4037 struct extent_buffer *new; 4038 unsigned long num_pages = num_extent_pages(src->start, src->len); 4039 4040 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC); 4041 if (new == NULL) 4042 return NULL; 4043 4044 for (i = 0; i < num_pages; i++) { 4045 p = alloc_page(GFP_ATOMIC); 4046 BUG_ON(!p); 4047 attach_extent_buffer_page(new, p); 4048 WARN_ON(PageDirty(p)); 4049 SetPageUptodate(p); 4050 new->pages[i] = p; 4051 } 4052 4053 copy_extent_buffer(new, src, 0, 0, src->len); 4054 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4055 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4056 4057 return new; 4058 } 4059 4060 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4061 { 4062 struct extent_buffer *eb; 4063 unsigned long num_pages = num_extent_pages(0, len); 4064 unsigned long i; 4065 4066 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC); 4067 if (!eb) 4068 return NULL; 4069 4070 for (i = 0; i < num_pages; i++) { 4071 eb->pages[i] = alloc_page(GFP_ATOMIC); 4072 if (!eb->pages[i]) 4073 goto err; 4074 } 4075 set_extent_buffer_uptodate(eb); 4076 btrfs_set_header_nritems(eb, 0); 4077 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4078 4079 return eb; 4080 err: 4081 for (; i > 0; i--) 4082 __free_page(eb->pages[i - 1]); 4083 __free_extent_buffer(eb); 4084 return NULL; 4085 } 4086 4087 static int extent_buffer_under_io(struct extent_buffer *eb) 4088 { 4089 return (atomic_read(&eb->io_pages) || 4090 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4091 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4092 } 4093 4094 /* 4095 * Helper for releasing extent buffer page. 4096 */ 4097 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4098 unsigned long start_idx) 4099 { 4100 unsigned long index; 4101 unsigned long num_pages; 4102 struct page *page; 4103 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4104 4105 BUG_ON(extent_buffer_under_io(eb)); 4106 4107 num_pages = num_extent_pages(eb->start, eb->len); 4108 index = start_idx + num_pages; 4109 if (start_idx >= index) 4110 return; 4111 4112 do { 4113 index--; 4114 page = extent_buffer_page(eb, index); 4115 if (page && mapped) { 4116 spin_lock(&page->mapping->private_lock); 4117 /* 4118 * We do this since we'll remove the pages after we've 4119 * removed the eb from the radix tree, so we could race 4120 * and have this page now attached to the new eb. So 4121 * only clear page_private if it's still connected to 4122 * this eb. 4123 */ 4124 if (PagePrivate(page) && 4125 page->private == (unsigned long)eb) { 4126 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4127 BUG_ON(PageDirty(page)); 4128 BUG_ON(PageWriteback(page)); 4129 /* 4130 * We need to make sure we haven't be attached 4131 * to a new eb. 4132 */ 4133 ClearPagePrivate(page); 4134 set_page_private(page, 0); 4135 /* One for the page private */ 4136 page_cache_release(page); 4137 } 4138 spin_unlock(&page->mapping->private_lock); 4139 4140 } 4141 if (page) { 4142 /* One for when we alloced the page */ 4143 page_cache_release(page); 4144 } 4145 } while (index != start_idx); 4146 } 4147 4148 /* 4149 * Helper for releasing the extent buffer. 4150 */ 4151 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4152 { 4153 btrfs_release_extent_buffer_page(eb, 0); 4154 __free_extent_buffer(eb); 4155 } 4156 4157 static void check_buffer_tree_ref(struct extent_buffer *eb) 4158 { 4159 int refs; 4160 /* the ref bit is tricky. We have to make sure it is set 4161 * if we have the buffer dirty. Otherwise the 4162 * code to free a buffer can end up dropping a dirty 4163 * page 4164 * 4165 * Once the ref bit is set, it won't go away while the 4166 * buffer is dirty or in writeback, and it also won't 4167 * go away while we have the reference count on the 4168 * eb bumped. 4169 * 4170 * We can't just set the ref bit without bumping the 4171 * ref on the eb because free_extent_buffer might 4172 * see the ref bit and try to clear it. If this happens 4173 * free_extent_buffer might end up dropping our original 4174 * ref by mistake and freeing the page before we are able 4175 * to add one more ref. 4176 * 4177 * So bump the ref count first, then set the bit. If someone 4178 * beat us to it, drop the ref we added. 4179 */ 4180 refs = atomic_read(&eb->refs); 4181 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4182 return; 4183 4184 spin_lock(&eb->refs_lock); 4185 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4186 atomic_inc(&eb->refs); 4187 spin_unlock(&eb->refs_lock); 4188 } 4189 4190 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4191 { 4192 unsigned long num_pages, i; 4193 4194 check_buffer_tree_ref(eb); 4195 4196 num_pages = num_extent_pages(eb->start, eb->len); 4197 for (i = 0; i < num_pages; i++) { 4198 struct page *p = extent_buffer_page(eb, i); 4199 mark_page_accessed(p); 4200 } 4201 } 4202 4203 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4204 u64 start, unsigned long len) 4205 { 4206 unsigned long num_pages = num_extent_pages(start, len); 4207 unsigned long i; 4208 unsigned long index = start >> PAGE_CACHE_SHIFT; 4209 struct extent_buffer *eb; 4210 struct extent_buffer *exists = NULL; 4211 struct page *p; 4212 struct address_space *mapping = tree->mapping; 4213 int uptodate = 1; 4214 int ret; 4215 4216 rcu_read_lock(); 4217 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4218 if (eb && atomic_inc_not_zero(&eb->refs)) { 4219 rcu_read_unlock(); 4220 mark_extent_buffer_accessed(eb); 4221 return eb; 4222 } 4223 rcu_read_unlock(); 4224 4225 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4226 if (!eb) 4227 return NULL; 4228 4229 for (i = 0; i < num_pages; i++, index++) { 4230 p = find_or_create_page(mapping, index, GFP_NOFS); 4231 if (!p) 4232 goto free_eb; 4233 4234 spin_lock(&mapping->private_lock); 4235 if (PagePrivate(p)) { 4236 /* 4237 * We could have already allocated an eb for this page 4238 * and attached one so lets see if we can get a ref on 4239 * the existing eb, and if we can we know it's good and 4240 * we can just return that one, else we know we can just 4241 * overwrite page->private. 4242 */ 4243 exists = (struct extent_buffer *)p->private; 4244 if (atomic_inc_not_zero(&exists->refs)) { 4245 spin_unlock(&mapping->private_lock); 4246 unlock_page(p); 4247 page_cache_release(p); 4248 mark_extent_buffer_accessed(exists); 4249 goto free_eb; 4250 } 4251 4252 /* 4253 * Do this so attach doesn't complain and we need to 4254 * drop the ref the old guy had. 4255 */ 4256 ClearPagePrivate(p); 4257 WARN_ON(PageDirty(p)); 4258 page_cache_release(p); 4259 } 4260 attach_extent_buffer_page(eb, p); 4261 spin_unlock(&mapping->private_lock); 4262 WARN_ON(PageDirty(p)); 4263 mark_page_accessed(p); 4264 eb->pages[i] = p; 4265 if (!PageUptodate(p)) 4266 uptodate = 0; 4267 4268 /* 4269 * see below about how we avoid a nasty race with release page 4270 * and why we unlock later 4271 */ 4272 } 4273 if (uptodate) 4274 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4275 again: 4276 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4277 if (ret) 4278 goto free_eb; 4279 4280 spin_lock(&tree->buffer_lock); 4281 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4282 if (ret == -EEXIST) { 4283 exists = radix_tree_lookup(&tree->buffer, 4284 start >> PAGE_CACHE_SHIFT); 4285 if (!atomic_inc_not_zero(&exists->refs)) { 4286 spin_unlock(&tree->buffer_lock); 4287 radix_tree_preload_end(); 4288 exists = NULL; 4289 goto again; 4290 } 4291 spin_unlock(&tree->buffer_lock); 4292 radix_tree_preload_end(); 4293 mark_extent_buffer_accessed(exists); 4294 goto free_eb; 4295 } 4296 /* add one reference for the tree */ 4297 check_buffer_tree_ref(eb); 4298 spin_unlock(&tree->buffer_lock); 4299 radix_tree_preload_end(); 4300 4301 /* 4302 * there is a race where release page may have 4303 * tried to find this extent buffer in the radix 4304 * but failed. It will tell the VM it is safe to 4305 * reclaim the, and it will clear the page private bit. 4306 * We must make sure to set the page private bit properly 4307 * after the extent buffer is in the radix tree so 4308 * it doesn't get lost 4309 */ 4310 SetPageChecked(eb->pages[0]); 4311 for (i = 1; i < num_pages; i++) { 4312 p = extent_buffer_page(eb, i); 4313 ClearPageChecked(p); 4314 unlock_page(p); 4315 } 4316 unlock_page(eb->pages[0]); 4317 return eb; 4318 4319 free_eb: 4320 for (i = 0; i < num_pages; i++) { 4321 if (eb->pages[i]) 4322 unlock_page(eb->pages[i]); 4323 } 4324 4325 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4326 btrfs_release_extent_buffer(eb); 4327 return exists; 4328 } 4329 4330 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4331 u64 start, unsigned long len) 4332 { 4333 struct extent_buffer *eb; 4334 4335 rcu_read_lock(); 4336 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4337 if (eb && atomic_inc_not_zero(&eb->refs)) { 4338 rcu_read_unlock(); 4339 mark_extent_buffer_accessed(eb); 4340 return eb; 4341 } 4342 rcu_read_unlock(); 4343 4344 return NULL; 4345 } 4346 4347 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4348 { 4349 struct extent_buffer *eb = 4350 container_of(head, struct extent_buffer, rcu_head); 4351 4352 __free_extent_buffer(eb); 4353 } 4354 4355 /* Expects to have eb->eb_lock already held */ 4356 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask) 4357 { 4358 WARN_ON(atomic_read(&eb->refs) == 0); 4359 if (atomic_dec_and_test(&eb->refs)) { 4360 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4361 spin_unlock(&eb->refs_lock); 4362 } else { 4363 struct extent_io_tree *tree = eb->tree; 4364 4365 spin_unlock(&eb->refs_lock); 4366 4367 spin_lock(&tree->buffer_lock); 4368 radix_tree_delete(&tree->buffer, 4369 eb->start >> PAGE_CACHE_SHIFT); 4370 spin_unlock(&tree->buffer_lock); 4371 } 4372 4373 /* Should be safe to release our pages at this point */ 4374 btrfs_release_extent_buffer_page(eb, 0); 4375 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4376 return 1; 4377 } 4378 spin_unlock(&eb->refs_lock); 4379 4380 return 0; 4381 } 4382 4383 void free_extent_buffer(struct extent_buffer *eb) 4384 { 4385 int refs; 4386 int old; 4387 if (!eb) 4388 return; 4389 4390 while (1) { 4391 refs = atomic_read(&eb->refs); 4392 if (refs <= 3) 4393 break; 4394 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4395 if (old == refs) 4396 return; 4397 } 4398 4399 spin_lock(&eb->refs_lock); 4400 if (atomic_read(&eb->refs) == 2 && 4401 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4402 atomic_dec(&eb->refs); 4403 4404 if (atomic_read(&eb->refs) == 2 && 4405 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4406 !extent_buffer_under_io(eb) && 4407 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4408 atomic_dec(&eb->refs); 4409 4410 /* 4411 * I know this is terrible, but it's temporary until we stop tracking 4412 * the uptodate bits and such for the extent buffers. 4413 */ 4414 release_extent_buffer(eb, GFP_ATOMIC); 4415 } 4416 4417 void free_extent_buffer_stale(struct extent_buffer *eb) 4418 { 4419 if (!eb) 4420 return; 4421 4422 spin_lock(&eb->refs_lock); 4423 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4424 4425 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4426 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4427 atomic_dec(&eb->refs); 4428 release_extent_buffer(eb, GFP_NOFS); 4429 } 4430 4431 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4432 { 4433 unsigned long i; 4434 unsigned long num_pages; 4435 struct page *page; 4436 4437 num_pages = num_extent_pages(eb->start, eb->len); 4438 4439 for (i = 0; i < num_pages; i++) { 4440 page = extent_buffer_page(eb, i); 4441 if (!PageDirty(page)) 4442 continue; 4443 4444 lock_page(page); 4445 WARN_ON(!PagePrivate(page)); 4446 4447 clear_page_dirty_for_io(page); 4448 spin_lock_irq(&page->mapping->tree_lock); 4449 if (!PageDirty(page)) { 4450 radix_tree_tag_clear(&page->mapping->page_tree, 4451 page_index(page), 4452 PAGECACHE_TAG_DIRTY); 4453 } 4454 spin_unlock_irq(&page->mapping->tree_lock); 4455 ClearPageError(page); 4456 unlock_page(page); 4457 } 4458 WARN_ON(atomic_read(&eb->refs) == 0); 4459 } 4460 4461 int set_extent_buffer_dirty(struct extent_buffer *eb) 4462 { 4463 unsigned long i; 4464 unsigned long num_pages; 4465 int was_dirty = 0; 4466 4467 check_buffer_tree_ref(eb); 4468 4469 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4470 4471 num_pages = num_extent_pages(eb->start, eb->len); 4472 WARN_ON(atomic_read(&eb->refs) == 0); 4473 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4474 4475 for (i = 0; i < num_pages; i++) 4476 set_page_dirty(extent_buffer_page(eb, i)); 4477 return was_dirty; 4478 } 4479 4480 static int range_straddles_pages(u64 start, u64 len) 4481 { 4482 if (len < PAGE_CACHE_SIZE) 4483 return 1; 4484 if (start & (PAGE_CACHE_SIZE - 1)) 4485 return 1; 4486 if ((start + len) & (PAGE_CACHE_SIZE - 1)) 4487 return 1; 4488 return 0; 4489 } 4490 4491 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4492 { 4493 unsigned long i; 4494 struct page *page; 4495 unsigned long num_pages; 4496 4497 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4498 num_pages = num_extent_pages(eb->start, eb->len); 4499 for (i = 0; i < num_pages; i++) { 4500 page = extent_buffer_page(eb, i); 4501 if (page) 4502 ClearPageUptodate(page); 4503 } 4504 return 0; 4505 } 4506 4507 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4508 { 4509 unsigned long i; 4510 struct page *page; 4511 unsigned long num_pages; 4512 4513 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4514 num_pages = num_extent_pages(eb->start, eb->len); 4515 for (i = 0; i < num_pages; i++) { 4516 page = extent_buffer_page(eb, i); 4517 SetPageUptodate(page); 4518 } 4519 return 0; 4520 } 4521 4522 int extent_range_uptodate(struct extent_io_tree *tree, 4523 u64 start, u64 end) 4524 { 4525 struct page *page; 4526 int ret; 4527 int pg_uptodate = 1; 4528 int uptodate; 4529 unsigned long index; 4530 4531 if (range_straddles_pages(start, end - start + 1)) { 4532 ret = test_range_bit(tree, start, end, 4533 EXTENT_UPTODATE, 1, NULL); 4534 if (ret) 4535 return 1; 4536 } 4537 while (start <= end) { 4538 index = start >> PAGE_CACHE_SHIFT; 4539 page = find_get_page(tree->mapping, index); 4540 if (!page) 4541 return 1; 4542 uptodate = PageUptodate(page); 4543 page_cache_release(page); 4544 if (!uptodate) { 4545 pg_uptodate = 0; 4546 break; 4547 } 4548 start += PAGE_CACHE_SIZE; 4549 } 4550 return pg_uptodate; 4551 } 4552 4553 int extent_buffer_uptodate(struct extent_buffer *eb) 4554 { 4555 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4556 } 4557 4558 int read_extent_buffer_pages(struct extent_io_tree *tree, 4559 struct extent_buffer *eb, u64 start, int wait, 4560 get_extent_t *get_extent, int mirror_num) 4561 { 4562 unsigned long i; 4563 unsigned long start_i; 4564 struct page *page; 4565 int err; 4566 int ret = 0; 4567 int locked_pages = 0; 4568 int all_uptodate = 1; 4569 unsigned long num_pages; 4570 unsigned long num_reads = 0; 4571 struct bio *bio = NULL; 4572 unsigned long bio_flags = 0; 4573 4574 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4575 return 0; 4576 4577 if (start) { 4578 WARN_ON(start < eb->start); 4579 start_i = (start >> PAGE_CACHE_SHIFT) - 4580 (eb->start >> PAGE_CACHE_SHIFT); 4581 } else { 4582 start_i = 0; 4583 } 4584 4585 num_pages = num_extent_pages(eb->start, eb->len); 4586 for (i = start_i; i < num_pages; i++) { 4587 page = extent_buffer_page(eb, i); 4588 if (wait == WAIT_NONE) { 4589 if (!trylock_page(page)) 4590 goto unlock_exit; 4591 } else { 4592 lock_page(page); 4593 } 4594 locked_pages++; 4595 if (!PageUptodate(page)) { 4596 num_reads++; 4597 all_uptodate = 0; 4598 } 4599 } 4600 if (all_uptodate) { 4601 if (start_i == 0) 4602 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4603 goto unlock_exit; 4604 } 4605 4606 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4607 eb->read_mirror = 0; 4608 atomic_set(&eb->io_pages, num_reads); 4609 for (i = start_i; i < num_pages; i++) { 4610 page = extent_buffer_page(eb, i); 4611 if (!PageUptodate(page)) { 4612 ClearPageError(page); 4613 err = __extent_read_full_page(tree, page, 4614 get_extent, &bio, 4615 mirror_num, &bio_flags); 4616 if (err) 4617 ret = err; 4618 } else { 4619 unlock_page(page); 4620 } 4621 } 4622 4623 if (bio) { 4624 err = submit_one_bio(READ, bio, mirror_num, bio_flags); 4625 if (err) 4626 return err; 4627 } 4628 4629 if (ret || wait != WAIT_COMPLETE) 4630 return ret; 4631 4632 for (i = start_i; i < num_pages; i++) { 4633 page = extent_buffer_page(eb, i); 4634 wait_on_page_locked(page); 4635 if (!PageUptodate(page)) 4636 ret = -EIO; 4637 } 4638 4639 return ret; 4640 4641 unlock_exit: 4642 i = start_i; 4643 while (locked_pages > 0) { 4644 page = extent_buffer_page(eb, i); 4645 i++; 4646 unlock_page(page); 4647 locked_pages--; 4648 } 4649 return ret; 4650 } 4651 4652 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4653 unsigned long start, 4654 unsigned long len) 4655 { 4656 size_t cur; 4657 size_t offset; 4658 struct page *page; 4659 char *kaddr; 4660 char *dst = (char *)dstv; 4661 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4662 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4663 4664 WARN_ON(start > eb->len); 4665 WARN_ON(start + len > eb->start + eb->len); 4666 4667 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4668 4669 while (len > 0) { 4670 page = extent_buffer_page(eb, i); 4671 4672 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4673 kaddr = page_address(page); 4674 memcpy(dst, kaddr + offset, cur); 4675 4676 dst += cur; 4677 len -= cur; 4678 offset = 0; 4679 i++; 4680 } 4681 } 4682 4683 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4684 unsigned long min_len, char **map, 4685 unsigned long *map_start, 4686 unsigned long *map_len) 4687 { 4688 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4689 char *kaddr; 4690 struct page *p; 4691 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4692 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4693 unsigned long end_i = (start_offset + start + min_len - 1) >> 4694 PAGE_CACHE_SHIFT; 4695 4696 if (i != end_i) 4697 return -EINVAL; 4698 4699 if (i == 0) { 4700 offset = start_offset; 4701 *map_start = 0; 4702 } else { 4703 offset = 0; 4704 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4705 } 4706 4707 if (start + min_len > eb->len) { 4708 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4709 "wanted %lu %lu\n", (unsigned long long)eb->start, 4710 eb->len, start, min_len); 4711 return -EINVAL; 4712 } 4713 4714 p = extent_buffer_page(eb, i); 4715 kaddr = page_address(p); 4716 *map = kaddr + offset; 4717 *map_len = PAGE_CACHE_SIZE - offset; 4718 return 0; 4719 } 4720 4721 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4722 unsigned long start, 4723 unsigned long len) 4724 { 4725 size_t cur; 4726 size_t offset; 4727 struct page *page; 4728 char *kaddr; 4729 char *ptr = (char *)ptrv; 4730 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4731 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4732 int ret = 0; 4733 4734 WARN_ON(start > eb->len); 4735 WARN_ON(start + len > eb->start + eb->len); 4736 4737 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4738 4739 while (len > 0) { 4740 page = extent_buffer_page(eb, i); 4741 4742 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4743 4744 kaddr = page_address(page); 4745 ret = memcmp(ptr, kaddr + offset, cur); 4746 if (ret) 4747 break; 4748 4749 ptr += cur; 4750 len -= cur; 4751 offset = 0; 4752 i++; 4753 } 4754 return ret; 4755 } 4756 4757 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4758 unsigned long start, unsigned long len) 4759 { 4760 size_t cur; 4761 size_t offset; 4762 struct page *page; 4763 char *kaddr; 4764 char *src = (char *)srcv; 4765 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4766 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4767 4768 WARN_ON(start > eb->len); 4769 WARN_ON(start + len > eb->start + eb->len); 4770 4771 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4772 4773 while (len > 0) { 4774 page = extent_buffer_page(eb, i); 4775 WARN_ON(!PageUptodate(page)); 4776 4777 cur = min(len, PAGE_CACHE_SIZE - offset); 4778 kaddr = page_address(page); 4779 memcpy(kaddr + offset, src, cur); 4780 4781 src += cur; 4782 len -= cur; 4783 offset = 0; 4784 i++; 4785 } 4786 } 4787 4788 void memset_extent_buffer(struct extent_buffer *eb, char c, 4789 unsigned long start, unsigned long len) 4790 { 4791 size_t cur; 4792 size_t offset; 4793 struct page *page; 4794 char *kaddr; 4795 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4796 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4797 4798 WARN_ON(start > eb->len); 4799 WARN_ON(start + len > eb->start + eb->len); 4800 4801 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4802 4803 while (len > 0) { 4804 page = extent_buffer_page(eb, i); 4805 WARN_ON(!PageUptodate(page)); 4806 4807 cur = min(len, PAGE_CACHE_SIZE - offset); 4808 kaddr = page_address(page); 4809 memset(kaddr + offset, c, cur); 4810 4811 len -= cur; 4812 offset = 0; 4813 i++; 4814 } 4815 } 4816 4817 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 4818 unsigned long dst_offset, unsigned long src_offset, 4819 unsigned long len) 4820 { 4821 u64 dst_len = dst->len; 4822 size_t cur; 4823 size_t offset; 4824 struct page *page; 4825 char *kaddr; 4826 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4827 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4828 4829 WARN_ON(src->len != dst_len); 4830 4831 offset = (start_offset + dst_offset) & 4832 ((unsigned long)PAGE_CACHE_SIZE - 1); 4833 4834 while (len > 0) { 4835 page = extent_buffer_page(dst, i); 4836 WARN_ON(!PageUptodate(page)); 4837 4838 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 4839 4840 kaddr = page_address(page); 4841 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4842 4843 src_offset += cur; 4844 len -= cur; 4845 offset = 0; 4846 i++; 4847 } 4848 } 4849 4850 static void move_pages(struct page *dst_page, struct page *src_page, 4851 unsigned long dst_off, unsigned long src_off, 4852 unsigned long len) 4853 { 4854 char *dst_kaddr = page_address(dst_page); 4855 if (dst_page == src_page) { 4856 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 4857 } else { 4858 char *src_kaddr = page_address(src_page); 4859 char *p = dst_kaddr + dst_off + len; 4860 char *s = src_kaddr + src_off + len; 4861 4862 while (len--) 4863 *--p = *--s; 4864 } 4865 } 4866 4867 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4868 { 4869 unsigned long distance = (src > dst) ? src - dst : dst - src; 4870 return distance < len; 4871 } 4872 4873 static void copy_pages(struct page *dst_page, struct page *src_page, 4874 unsigned long dst_off, unsigned long src_off, 4875 unsigned long len) 4876 { 4877 char *dst_kaddr = page_address(dst_page); 4878 char *src_kaddr; 4879 int must_memmove = 0; 4880 4881 if (dst_page != src_page) { 4882 src_kaddr = page_address(src_page); 4883 } else { 4884 src_kaddr = dst_kaddr; 4885 if (areas_overlap(src_off, dst_off, len)) 4886 must_memmove = 1; 4887 } 4888 4889 if (must_memmove) 4890 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4891 else 4892 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4893 } 4894 4895 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4896 unsigned long src_offset, unsigned long len) 4897 { 4898 size_t cur; 4899 size_t dst_off_in_page; 4900 size_t src_off_in_page; 4901 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4902 unsigned long dst_i; 4903 unsigned long src_i; 4904 4905 if (src_offset + len > dst->len) { 4906 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4907 "len %lu dst len %lu\n", src_offset, len, dst->len); 4908 BUG_ON(1); 4909 } 4910 if (dst_offset + len > dst->len) { 4911 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4912 "len %lu dst len %lu\n", dst_offset, len, dst->len); 4913 BUG_ON(1); 4914 } 4915 4916 while (len > 0) { 4917 dst_off_in_page = (start_offset + dst_offset) & 4918 ((unsigned long)PAGE_CACHE_SIZE - 1); 4919 src_off_in_page = (start_offset + src_offset) & 4920 ((unsigned long)PAGE_CACHE_SIZE - 1); 4921 4922 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4923 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 4924 4925 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 4926 src_off_in_page)); 4927 cur = min_t(unsigned long, cur, 4928 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 4929 4930 copy_pages(extent_buffer_page(dst, dst_i), 4931 extent_buffer_page(dst, src_i), 4932 dst_off_in_page, src_off_in_page, cur); 4933 4934 src_offset += cur; 4935 dst_offset += cur; 4936 len -= cur; 4937 } 4938 } 4939 4940 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4941 unsigned long src_offset, unsigned long len) 4942 { 4943 size_t cur; 4944 size_t dst_off_in_page; 4945 size_t src_off_in_page; 4946 unsigned long dst_end = dst_offset + len - 1; 4947 unsigned long src_end = src_offset + len - 1; 4948 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4949 unsigned long dst_i; 4950 unsigned long src_i; 4951 4952 if (src_offset + len > dst->len) { 4953 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4954 "len %lu len %lu\n", src_offset, len, dst->len); 4955 BUG_ON(1); 4956 } 4957 if (dst_offset + len > dst->len) { 4958 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4959 "len %lu len %lu\n", dst_offset, len, dst->len); 4960 BUG_ON(1); 4961 } 4962 if (dst_offset < src_offset) { 4963 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4964 return; 4965 } 4966 while (len > 0) { 4967 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 4968 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 4969 4970 dst_off_in_page = (start_offset + dst_end) & 4971 ((unsigned long)PAGE_CACHE_SIZE - 1); 4972 src_off_in_page = (start_offset + src_end) & 4973 ((unsigned long)PAGE_CACHE_SIZE - 1); 4974 4975 cur = min_t(unsigned long, len, src_off_in_page + 1); 4976 cur = min(cur, dst_off_in_page + 1); 4977 move_pages(extent_buffer_page(dst, dst_i), 4978 extent_buffer_page(dst, src_i), 4979 dst_off_in_page - cur + 1, 4980 src_off_in_page - cur + 1, cur); 4981 4982 dst_end -= cur; 4983 src_end -= cur; 4984 len -= cur; 4985 } 4986 } 4987 4988 int try_release_extent_buffer(struct page *page, gfp_t mask) 4989 { 4990 struct extent_buffer *eb; 4991 4992 /* 4993 * We need to make sure noboody is attaching this page to an eb right 4994 * now. 4995 */ 4996 spin_lock(&page->mapping->private_lock); 4997 if (!PagePrivate(page)) { 4998 spin_unlock(&page->mapping->private_lock); 4999 return 1; 5000 } 5001 5002 eb = (struct extent_buffer *)page->private; 5003 BUG_ON(!eb); 5004 5005 /* 5006 * This is a little awful but should be ok, we need to make sure that 5007 * the eb doesn't disappear out from under us while we're looking at 5008 * this page. 5009 */ 5010 spin_lock(&eb->refs_lock); 5011 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5012 spin_unlock(&eb->refs_lock); 5013 spin_unlock(&page->mapping->private_lock); 5014 return 0; 5015 } 5016 spin_unlock(&page->mapping->private_lock); 5017 5018 if ((mask & GFP_NOFS) == GFP_NOFS) 5019 mask = GFP_NOFS; 5020 5021 /* 5022 * If tree ref isn't set then we know the ref on this eb is a real ref, 5023 * so just return, this page will likely be freed soon anyway. 5024 */ 5025 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5026 spin_unlock(&eb->refs_lock); 5027 return 0; 5028 } 5029 5030 return release_extent_buffer(eb, mask); 5031 } 5032