xref: /linux/fs/btrfs/extent_io.c (revision 8f0d91f41000e769f16b62a4b44f1f6da6db905b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	enum btrfs_compression_type compress_type;
100 	u32 len_to_oe_boundary;
101 	blk_opf_t opf;
102 	btrfs_bio_end_io_t end_io_func;
103 	struct writeback_control *wbc;
104 
105 	/*
106 	 * The sectors of the page which are going to be submitted by
107 	 * extent_writepage_io().
108 	 * This is to avoid touching ranges covered by compression/inline.
109 	 */
110 	unsigned long submit_bitmap;
111 };
112 
113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114 {
115 	struct btrfs_bio *bbio = bio_ctrl->bbio;
116 
117 	if (!bbio)
118 		return;
119 
120 	/* Caller should ensure the bio has at least some range added */
121 	ASSERT(bbio->bio.bi_iter.bi_size);
122 
123 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 		btrfs_submit_compressed_read(bbio);
126 	else
127 		btrfs_submit_bbio(bbio, 0);
128 
129 	/* The bbio is owned by the end_io handler now */
130 	bio_ctrl->bbio = NULL;
131 }
132 
133 /*
134  * Submit or fail the current bio in the bio_ctrl structure.
135  */
136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137 {
138 	struct btrfs_bio *bbio = bio_ctrl->bbio;
139 
140 	if (!bbio)
141 		return;
142 
143 	if (ret) {
144 		ASSERT(ret < 0);
145 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 		/* The bio is owned by the end_io handler now */
147 		bio_ctrl->bbio = NULL;
148 	} else {
149 		submit_one_bio(bio_ctrl);
150 	}
151 }
152 
153 int __init extent_buffer_init_cachep(void)
154 {
155 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 						sizeof(struct extent_buffer), 0, 0,
157 						NULL);
158 	if (!extent_buffer_cache)
159 		return -ENOMEM;
160 
161 	return 0;
162 }
163 
164 void __cold extent_buffer_free_cachep(void)
165 {
166 	/*
167 	 * Make sure all delayed rcu free are flushed before we
168 	 * destroy caches.
169 	 */
170 	rcu_barrier();
171 	kmem_cache_destroy(extent_buffer_cache);
172 }
173 
174 static void process_one_folio(struct btrfs_fs_info *fs_info,
175 			      struct folio *folio, const struct folio *locked_folio,
176 			      unsigned long page_ops, u64 start, u64 end)
177 {
178 	u32 len;
179 
180 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 	len = end + 1 - start;
182 
183 	if (page_ops & PAGE_SET_ORDERED)
184 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 	if (page_ops & PAGE_START_WRITEBACK) {
186 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 	}
189 	if (page_ops & PAGE_END_WRITEBACK)
190 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191 
192 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
194 }
195 
196 static void __process_folios_contig(struct address_space *mapping,
197 				    const struct folio *locked_folio, u64 start,
198 				    u64 end, unsigned long page_ops)
199 {
200 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 	pgoff_t start_index = start >> PAGE_SHIFT;
202 	pgoff_t end_index = end >> PAGE_SHIFT;
203 	pgoff_t index = start_index;
204 	struct folio_batch fbatch;
205 	int i;
206 
207 	folio_batch_init(&fbatch);
208 	while (index <= end_index) {
209 		int found_folios;
210 
211 		found_folios = filemap_get_folios_contig(mapping, &index,
212 				end_index, &fbatch);
213 		for (i = 0; i < found_folios; i++) {
214 			struct folio *folio = fbatch.folios[i];
215 
216 			process_one_folio(fs_info, folio, locked_folio,
217 					  page_ops, start, end);
218 		}
219 		folio_batch_release(&fbatch);
220 		cond_resched();
221 	}
222 }
223 
224 static noinline void __unlock_for_delalloc(const struct inode *inode,
225 					   const struct folio *locked_folio,
226 					   u64 start, u64 end)
227 {
228 	unsigned long index = start >> PAGE_SHIFT;
229 	unsigned long end_index = end >> PAGE_SHIFT;
230 
231 	ASSERT(locked_folio);
232 	if (index == locked_folio->index && end_index == index)
233 		return;
234 
235 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
236 				PAGE_UNLOCK);
237 }
238 
239 static noinline int lock_delalloc_folios(struct inode *inode,
240 					 const struct folio *locked_folio,
241 					 u64 start, u64 end)
242 {
243 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
244 	struct address_space *mapping = inode->i_mapping;
245 	pgoff_t start_index = start >> PAGE_SHIFT;
246 	pgoff_t end_index = end >> PAGE_SHIFT;
247 	pgoff_t index = start_index;
248 	u64 processed_end = start;
249 	struct folio_batch fbatch;
250 
251 	if (index == locked_folio->index && index == end_index)
252 		return 0;
253 
254 	folio_batch_init(&fbatch);
255 	while (index <= end_index) {
256 		unsigned int found_folios, i;
257 
258 		found_folios = filemap_get_folios_contig(mapping, &index,
259 				end_index, &fbatch);
260 		if (found_folios == 0)
261 			goto out;
262 
263 		for (i = 0; i < found_folios; i++) {
264 			struct folio *folio = fbatch.folios[i];
265 			u64 range_start;
266 			u32 range_len;
267 
268 			if (folio == locked_folio)
269 				continue;
270 
271 			folio_lock(folio);
272 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
273 				folio_unlock(folio);
274 				goto out;
275 			}
276 			range_start = max_t(u64, folio_pos(folio), start);
277 			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
278 					  end + 1) - range_start;
279 			btrfs_folio_set_writer_lock(fs_info, folio, range_start, range_len);
280 
281 			processed_end = range_start + range_len - 1;
282 		}
283 		folio_batch_release(&fbatch);
284 		cond_resched();
285 	}
286 
287 	return 0;
288 out:
289 	folio_batch_release(&fbatch);
290 	if (processed_end > start)
291 		__unlock_for_delalloc(inode, locked_folio, start,
292 				      processed_end);
293 	return -EAGAIN;
294 }
295 
296 /*
297  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
298  * more than @max_bytes.
299  *
300  * @start:	The original start bytenr to search.
301  *		Will store the extent range start bytenr.
302  * @end:	The original end bytenr of the search range
303  *		Will store the extent range end bytenr.
304  *
305  * Return true if we find a delalloc range which starts inside the original
306  * range, and @start/@end will store the delalloc range start/end.
307  *
308  * Return false if we can't find any delalloc range which starts inside the
309  * original range, and @start/@end will be the non-delalloc range start/end.
310  */
311 EXPORT_FOR_TESTS
312 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
313 						 struct folio *locked_folio,
314 						 u64 *start, u64 *end)
315 {
316 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
317 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
318 	const u64 orig_start = *start;
319 	const u64 orig_end = *end;
320 	/* The sanity tests may not set a valid fs_info. */
321 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
322 	u64 delalloc_start;
323 	u64 delalloc_end;
324 	bool found;
325 	struct extent_state *cached_state = NULL;
326 	int ret;
327 	int loops = 0;
328 
329 	/* Caller should pass a valid @end to indicate the search range end */
330 	ASSERT(orig_end > orig_start);
331 
332 	/* The range should at least cover part of the folio */
333 	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
334 		 orig_end <= folio_pos(locked_folio)));
335 again:
336 	/* step one, find a bunch of delalloc bytes starting at start */
337 	delalloc_start = *start;
338 	delalloc_end = 0;
339 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
340 					  max_bytes, &cached_state);
341 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
342 		*start = delalloc_start;
343 
344 		/* @delalloc_end can be -1, never go beyond @orig_end */
345 		*end = min(delalloc_end, orig_end);
346 		free_extent_state(cached_state);
347 		return false;
348 	}
349 
350 	/*
351 	 * start comes from the offset of locked_folio.  We have to lock
352 	 * folios in order, so we can't process delalloc bytes before
353 	 * locked_folio
354 	 */
355 	if (delalloc_start < *start)
356 		delalloc_start = *start;
357 
358 	/*
359 	 * make sure to limit the number of folios we try to lock down
360 	 */
361 	if (delalloc_end + 1 - delalloc_start > max_bytes)
362 		delalloc_end = delalloc_start + max_bytes - 1;
363 
364 	/* step two, lock all the folioss after the folios that has start */
365 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
366 				   delalloc_end);
367 	ASSERT(!ret || ret == -EAGAIN);
368 	if (ret == -EAGAIN) {
369 		/* some of the folios are gone, lets avoid looping by
370 		 * shortening the size of the delalloc range we're searching
371 		 */
372 		free_extent_state(cached_state);
373 		cached_state = NULL;
374 		if (!loops) {
375 			max_bytes = PAGE_SIZE;
376 			loops = 1;
377 			goto again;
378 		} else {
379 			found = false;
380 			goto out_failed;
381 		}
382 	}
383 
384 	/* step three, lock the state bits for the whole range */
385 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
386 
387 	/* then test to make sure it is all still delalloc */
388 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
389 			     EXTENT_DELALLOC, cached_state);
390 
391 	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
392 	if (!ret) {
393 		__unlock_for_delalloc(inode, locked_folio, delalloc_start,
394 				      delalloc_end);
395 		cond_resched();
396 		goto again;
397 	}
398 	*start = delalloc_start;
399 	*end = delalloc_end;
400 out_failed:
401 	return found;
402 }
403 
404 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
405 				  const struct folio *locked_folio,
406 				  struct extent_state **cached,
407 				  u32 clear_bits, unsigned long page_ops)
408 {
409 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
410 
411 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
412 				end, page_ops);
413 }
414 
415 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
416 {
417 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
418 
419 	if (!fsverity_active(folio->mapping->host) ||
420 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
421 	    start >= i_size_read(folio->mapping->host))
422 		return true;
423 	return fsverity_verify_folio(folio);
424 }
425 
426 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
427 {
428 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
429 
430 	ASSERT(folio_pos(folio) <= start &&
431 	       start + len <= folio_pos(folio) + PAGE_SIZE);
432 
433 	if (uptodate && btrfs_verify_folio(folio, start, len))
434 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
435 	else
436 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
437 
438 	if (!btrfs_is_subpage(fs_info, folio->mapping))
439 		folio_unlock(folio);
440 	else
441 		btrfs_subpage_end_reader(fs_info, folio, start, len);
442 }
443 
444 /*
445  * After a write IO is done, we need to:
446  *
447  * - clear the uptodate bits on error
448  * - clear the writeback bits in the extent tree for the range
449  * - filio_end_writeback()  if there is no more pending io for the folio
450  *
451  * Scheduling is not allowed, so the extent state tree is expected
452  * to have one and only one object corresponding to this IO.
453  */
454 static void end_bbio_data_write(struct btrfs_bio *bbio)
455 {
456 	struct btrfs_fs_info *fs_info = bbio->fs_info;
457 	struct bio *bio = &bbio->bio;
458 	int error = blk_status_to_errno(bio->bi_status);
459 	struct folio_iter fi;
460 	const u32 sectorsize = fs_info->sectorsize;
461 
462 	ASSERT(!bio_flagged(bio, BIO_CLONED));
463 	bio_for_each_folio_all(fi, bio) {
464 		struct folio *folio = fi.folio;
465 		u64 start = folio_pos(folio) + fi.offset;
466 		u32 len = fi.length;
467 
468 		/* Only order 0 (single page) folios are allowed for data. */
469 		ASSERT(folio_order(folio) == 0);
470 
471 		/* Our read/write should always be sector aligned. */
472 		if (!IS_ALIGNED(fi.offset, sectorsize))
473 			btrfs_err(fs_info,
474 		"partial page write in btrfs with offset %zu and length %zu",
475 				  fi.offset, fi.length);
476 		else if (!IS_ALIGNED(fi.length, sectorsize))
477 			btrfs_info(fs_info,
478 		"incomplete page write with offset %zu and length %zu",
479 				   fi.offset, fi.length);
480 
481 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
482 					    !error);
483 		if (error)
484 			mapping_set_error(folio->mapping, error);
485 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
486 	}
487 
488 	bio_put(bio);
489 }
490 
491 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
492 {
493 	ASSERT(folio_test_locked(folio));
494 	if (!btrfs_is_subpage(fs_info, folio->mapping))
495 		return;
496 
497 	ASSERT(folio_test_private(folio));
498 	btrfs_subpage_start_reader(fs_info, folio, folio_pos(folio), PAGE_SIZE);
499 }
500 
501 /*
502  * After a data read IO is done, we need to:
503  *
504  * - clear the uptodate bits on error
505  * - set the uptodate bits if things worked
506  * - set the folio up to date if all extents in the tree are uptodate
507  * - clear the lock bit in the extent tree
508  * - unlock the folio if there are no other extents locked for it
509  *
510  * Scheduling is not allowed, so the extent state tree is expected
511  * to have one and only one object corresponding to this IO.
512  */
513 static void end_bbio_data_read(struct btrfs_bio *bbio)
514 {
515 	struct btrfs_fs_info *fs_info = bbio->fs_info;
516 	struct bio *bio = &bbio->bio;
517 	struct folio_iter fi;
518 	const u32 sectorsize = fs_info->sectorsize;
519 
520 	ASSERT(!bio_flagged(bio, BIO_CLONED));
521 	bio_for_each_folio_all(fi, &bbio->bio) {
522 		bool uptodate = !bio->bi_status;
523 		struct folio *folio = fi.folio;
524 		struct inode *inode = folio->mapping->host;
525 		u64 start;
526 		u64 end;
527 		u32 len;
528 
529 		/* For now only order 0 folios are supported for data. */
530 		ASSERT(folio_order(folio) == 0);
531 		btrfs_debug(fs_info,
532 			"%s: bi_sector=%llu, err=%d, mirror=%u",
533 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
534 			bbio->mirror_num);
535 
536 		/*
537 		 * We always issue full-sector reads, but if some block in a
538 		 * folio fails to read, blk_update_request() will advance
539 		 * bv_offset and adjust bv_len to compensate.  Print a warning
540 		 * for unaligned offsets, and an error if they don't add up to
541 		 * a full sector.
542 		 */
543 		if (!IS_ALIGNED(fi.offset, sectorsize))
544 			btrfs_err(fs_info,
545 		"partial page read in btrfs with offset %zu and length %zu",
546 				  fi.offset, fi.length);
547 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
548 			btrfs_info(fs_info,
549 		"incomplete page read with offset %zu and length %zu",
550 				   fi.offset, fi.length);
551 
552 		start = folio_pos(folio) + fi.offset;
553 		end = start + fi.length - 1;
554 		len = fi.length;
555 
556 		if (likely(uptodate)) {
557 			loff_t i_size = i_size_read(inode);
558 			pgoff_t end_index = i_size >> folio_shift(folio);
559 
560 			/*
561 			 * Zero out the remaining part if this range straddles
562 			 * i_size.
563 			 *
564 			 * Here we should only zero the range inside the folio,
565 			 * not touch anything else.
566 			 *
567 			 * NOTE: i_size is exclusive while end is inclusive.
568 			 */
569 			if (folio_index(folio) == end_index && i_size <= end) {
570 				u32 zero_start = max(offset_in_folio(folio, i_size),
571 						     offset_in_folio(folio, start));
572 				u32 zero_len = offset_in_folio(folio, end) + 1 -
573 					       zero_start;
574 
575 				folio_zero_range(folio, zero_start, zero_len);
576 			}
577 		}
578 
579 		/* Update page status and unlock. */
580 		end_folio_read(folio, uptodate, start, len);
581 	}
582 	bio_put(bio);
583 }
584 
585 /*
586  * Populate every free slot in a provided array with folios using GFP_NOFS.
587  *
588  * @nr_folios:   number of folios to allocate
589  * @folio_array: the array to fill with folios; any existing non-NULL entries in
590  *		 the array will be skipped
591  *
592  * Return: 0        if all folios were able to be allocated;
593  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
594  *                  the array slots zeroed
595  */
596 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
597 {
598 	for (int i = 0; i < nr_folios; i++) {
599 		if (folio_array[i])
600 			continue;
601 		folio_array[i] = folio_alloc(GFP_NOFS, 0);
602 		if (!folio_array[i])
603 			goto error;
604 	}
605 	return 0;
606 error:
607 	for (int i = 0; i < nr_folios; i++) {
608 		if (folio_array[i])
609 			folio_put(folio_array[i]);
610 	}
611 	return -ENOMEM;
612 }
613 
614 /*
615  * Populate every free slot in a provided array with pages, using GFP_NOFS.
616  *
617  * @nr_pages:   number of pages to allocate
618  * @page_array: the array to fill with pages; any existing non-null entries in
619  *		the array will be skipped
620  * @nofail:	whether using __GFP_NOFAIL flag
621  *
622  * Return: 0        if all pages were able to be allocated;
623  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
624  *                  the array slots zeroed
625  */
626 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
627 			   bool nofail)
628 {
629 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
630 	unsigned int allocated;
631 
632 	for (allocated = 0; allocated < nr_pages;) {
633 		unsigned int last = allocated;
634 
635 		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
636 		if (unlikely(allocated == last)) {
637 			/* No progress, fail and do cleanup. */
638 			for (int i = 0; i < allocated; i++) {
639 				__free_page(page_array[i]);
640 				page_array[i] = NULL;
641 			}
642 			return -ENOMEM;
643 		}
644 	}
645 	return 0;
646 }
647 
648 /*
649  * Populate needed folios for the extent buffer.
650  *
651  * For now, the folios populated are always in order 0 (aka, single page).
652  */
653 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
654 {
655 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
656 	int num_pages = num_extent_pages(eb);
657 	int ret;
658 
659 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
660 	if (ret < 0)
661 		return ret;
662 
663 	for (int i = 0; i < num_pages; i++)
664 		eb->folios[i] = page_folio(page_array[i]);
665 	eb->folio_size = PAGE_SIZE;
666 	eb->folio_shift = PAGE_SHIFT;
667 	return 0;
668 }
669 
670 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
671 				struct folio *folio, u64 disk_bytenr,
672 				unsigned int pg_offset)
673 {
674 	struct bio *bio = &bio_ctrl->bbio->bio;
675 	struct bio_vec *bvec = bio_last_bvec_all(bio);
676 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
677 	struct folio *bv_folio = page_folio(bvec->bv_page);
678 
679 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
680 		/*
681 		 * For compression, all IO should have its logical bytenr set
682 		 * to the starting bytenr of the compressed extent.
683 		 */
684 		return bio->bi_iter.bi_sector == sector;
685 	}
686 
687 	/*
688 	 * The contig check requires the following conditions to be met:
689 	 *
690 	 * 1) The folios are belonging to the same inode
691 	 *    This is implied by the call chain.
692 	 *
693 	 * 2) The range has adjacent logical bytenr
694 	 *
695 	 * 3) The range has adjacent file offset
696 	 *    This is required for the usage of btrfs_bio->file_offset.
697 	 */
698 	return bio_end_sector(bio) == sector &&
699 		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
700 		folio_pos(folio) + pg_offset;
701 }
702 
703 static void alloc_new_bio(struct btrfs_inode *inode,
704 			  struct btrfs_bio_ctrl *bio_ctrl,
705 			  u64 disk_bytenr, u64 file_offset)
706 {
707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
708 	struct btrfs_bio *bbio;
709 
710 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
711 			       bio_ctrl->end_io_func, NULL);
712 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
713 	bbio->inode = inode;
714 	bbio->file_offset = file_offset;
715 	bio_ctrl->bbio = bbio;
716 	bio_ctrl->len_to_oe_boundary = U32_MAX;
717 
718 	/* Limit data write bios to the ordered boundary. */
719 	if (bio_ctrl->wbc) {
720 		struct btrfs_ordered_extent *ordered;
721 
722 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
723 		if (ordered) {
724 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
725 					ordered->file_offset +
726 					ordered->disk_num_bytes - file_offset);
727 			bbio->ordered = ordered;
728 		}
729 
730 		/*
731 		 * Pick the last added device to support cgroup writeback.  For
732 		 * multi-device file systems this means blk-cgroup policies have
733 		 * to always be set on the last added/replaced device.
734 		 * This is a bit odd but has been like that for a long time.
735 		 */
736 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
737 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
738 	}
739 }
740 
741 /*
742  * @disk_bytenr: logical bytenr where the write will be
743  * @page:	page to add to the bio
744  * @size:	portion of page that we want to write to
745  * @pg_offset:	offset of the new bio or to check whether we are adding
746  *              a contiguous page to the previous one
747  *
748  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
749  * new one in @bio_ctrl->bbio.
750  * The mirror number for this IO should already be initizlied in
751  * @bio_ctrl->mirror_num.
752  */
753 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
754 			       u64 disk_bytenr, struct folio *folio,
755 			       size_t size, unsigned long pg_offset)
756 {
757 	struct btrfs_inode *inode = folio_to_inode(folio);
758 
759 	ASSERT(pg_offset + size <= PAGE_SIZE);
760 	ASSERT(bio_ctrl->end_io_func);
761 
762 	if (bio_ctrl->bbio &&
763 	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
764 		submit_one_bio(bio_ctrl);
765 
766 	do {
767 		u32 len = size;
768 
769 		/* Allocate new bio if needed */
770 		if (!bio_ctrl->bbio) {
771 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
772 				      folio_pos(folio) + pg_offset);
773 		}
774 
775 		/* Cap to the current ordered extent boundary if there is one. */
776 		if (len > bio_ctrl->len_to_oe_boundary) {
777 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
778 			ASSERT(is_data_inode(inode));
779 			len = bio_ctrl->len_to_oe_boundary;
780 		}
781 
782 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
783 			/* bio full: move on to a new one */
784 			submit_one_bio(bio_ctrl);
785 			continue;
786 		}
787 
788 		if (bio_ctrl->wbc)
789 			wbc_account_cgroup_owner(bio_ctrl->wbc, &folio->page,
790 						 len);
791 
792 		size -= len;
793 		pg_offset += len;
794 		disk_bytenr += len;
795 
796 		/*
797 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
798 		 * sector aligned.  alloc_new_bio() then sets it to the end of
799 		 * our ordered extent for writes into zoned devices.
800 		 *
801 		 * When len_to_oe_boundary is tracking an ordered extent, we
802 		 * trust the ordered extent code to align things properly, and
803 		 * the check above to cap our write to the ordered extent
804 		 * boundary is correct.
805 		 *
806 		 * When len_to_oe_boundary is U32_MAX, the cap above would
807 		 * result in a 4095 byte IO for the last folio right before
808 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
809 		 * the checks required to make sure we don't overflow the bio,
810 		 * and we should just ignore len_to_oe_boundary completely
811 		 * unless we're using it to track an ordered extent.
812 		 *
813 		 * It's pretty hard to make a bio sized U32_MAX, but it can
814 		 * happen when the page cache is able to feed us contiguous
815 		 * folios for large extents.
816 		 */
817 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
818 			bio_ctrl->len_to_oe_boundary -= len;
819 
820 		/* Ordered extent boundary: move on to a new bio. */
821 		if (bio_ctrl->len_to_oe_boundary == 0)
822 			submit_one_bio(bio_ctrl);
823 	} while (size);
824 }
825 
826 static int attach_extent_buffer_folio(struct extent_buffer *eb,
827 				      struct folio *folio,
828 				      struct btrfs_subpage *prealloc)
829 {
830 	struct btrfs_fs_info *fs_info = eb->fs_info;
831 	int ret = 0;
832 
833 	/*
834 	 * If the page is mapped to btree inode, we should hold the private
835 	 * lock to prevent race.
836 	 * For cloned or dummy extent buffers, their pages are not mapped and
837 	 * will not race with any other ebs.
838 	 */
839 	if (folio->mapping)
840 		lockdep_assert_held(&folio->mapping->i_private_lock);
841 
842 	if (fs_info->nodesize >= PAGE_SIZE) {
843 		if (!folio_test_private(folio))
844 			folio_attach_private(folio, eb);
845 		else
846 			WARN_ON(folio_get_private(folio) != eb);
847 		return 0;
848 	}
849 
850 	/* Already mapped, just free prealloc */
851 	if (folio_test_private(folio)) {
852 		btrfs_free_subpage(prealloc);
853 		return 0;
854 	}
855 
856 	if (prealloc)
857 		/* Has preallocated memory for subpage */
858 		folio_attach_private(folio, prealloc);
859 	else
860 		/* Do new allocation to attach subpage */
861 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
862 	return ret;
863 }
864 
865 int set_page_extent_mapped(struct page *page)
866 {
867 	return set_folio_extent_mapped(page_folio(page));
868 }
869 
870 int set_folio_extent_mapped(struct folio *folio)
871 {
872 	struct btrfs_fs_info *fs_info;
873 
874 	ASSERT(folio->mapping);
875 
876 	if (folio_test_private(folio))
877 		return 0;
878 
879 	fs_info = folio_to_fs_info(folio);
880 
881 	if (btrfs_is_subpage(fs_info, folio->mapping))
882 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
883 
884 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
885 	return 0;
886 }
887 
888 void clear_folio_extent_mapped(struct folio *folio)
889 {
890 	struct btrfs_fs_info *fs_info;
891 
892 	ASSERT(folio->mapping);
893 
894 	if (!folio_test_private(folio))
895 		return;
896 
897 	fs_info = folio_to_fs_info(folio);
898 	if (btrfs_is_subpage(fs_info, folio->mapping))
899 		return btrfs_detach_subpage(fs_info, folio);
900 
901 	folio_detach_private(folio);
902 }
903 
904 static struct extent_map *__get_extent_map(struct inode *inode,
905 					   struct folio *folio, u64 start,
906 					   u64 len, struct extent_map **em_cached)
907 {
908 	struct extent_map *em;
909 	struct extent_state *cached_state = NULL;
910 
911 	ASSERT(em_cached);
912 
913 	if (*em_cached) {
914 		em = *em_cached;
915 		if (extent_map_in_tree(em) && start >= em->start &&
916 		    start < extent_map_end(em)) {
917 			refcount_inc(&em->refs);
918 			return em;
919 		}
920 
921 		free_extent_map(em);
922 		*em_cached = NULL;
923 	}
924 
925 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), start, start + len - 1, &cached_state);
926 	em = btrfs_get_extent(BTRFS_I(inode), folio, start, len);
927 	if (!IS_ERR(em)) {
928 		BUG_ON(*em_cached);
929 		refcount_inc(&em->refs);
930 		*em_cached = em;
931 	}
932 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len - 1, &cached_state);
933 
934 	return em;
935 }
936 /*
937  * basic readpage implementation.  Locked extent state structs are inserted
938  * into the tree that are removed when the IO is done (by the end_io
939  * handlers)
940  * XXX JDM: This needs looking at to ensure proper page locking
941  * return 0 on success, otherwise return error
942  */
943 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
944 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
945 {
946 	struct inode *inode = folio->mapping->host;
947 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
948 	u64 start = folio_pos(folio);
949 	const u64 end = start + PAGE_SIZE - 1;
950 	u64 cur = start;
951 	u64 extent_offset;
952 	u64 last_byte = i_size_read(inode);
953 	u64 block_start;
954 	struct extent_map *em;
955 	int ret = 0;
956 	size_t pg_offset = 0;
957 	size_t iosize;
958 	size_t blocksize = fs_info->sectorsize;
959 
960 	ret = set_folio_extent_mapped(folio);
961 	if (ret < 0) {
962 		folio_unlock(folio);
963 		return ret;
964 	}
965 
966 	if (folio->index == last_byte >> folio_shift(folio)) {
967 		size_t zero_offset = offset_in_folio(folio, last_byte);
968 
969 		if (zero_offset) {
970 			iosize = folio_size(folio) - zero_offset;
971 			folio_zero_range(folio, zero_offset, iosize);
972 		}
973 	}
974 	bio_ctrl->end_io_func = end_bbio_data_read;
975 	begin_folio_read(fs_info, folio);
976 	while (cur <= end) {
977 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
978 		bool force_bio_submit = false;
979 		u64 disk_bytenr;
980 
981 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
982 		if (cur >= last_byte) {
983 			iosize = folio_size(folio) - pg_offset;
984 			folio_zero_range(folio, pg_offset, iosize);
985 			end_folio_read(folio, true, cur, iosize);
986 			break;
987 		}
988 		em = __get_extent_map(inode, folio, cur, end - cur + 1,
989 				      em_cached);
990 		if (IS_ERR(em)) {
991 			end_folio_read(folio, false, cur, end + 1 - cur);
992 			return PTR_ERR(em);
993 		}
994 		extent_offset = cur - em->start;
995 		BUG_ON(extent_map_end(em) <= cur);
996 		BUG_ON(end < cur);
997 
998 		compress_type = extent_map_compression(em);
999 
1000 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1001 		iosize = ALIGN(iosize, blocksize);
1002 		if (compress_type != BTRFS_COMPRESS_NONE)
1003 			disk_bytenr = em->disk_bytenr;
1004 		else
1005 			disk_bytenr = extent_map_block_start(em) + extent_offset;
1006 		block_start = extent_map_block_start(em);
1007 		if (em->flags & EXTENT_FLAG_PREALLOC)
1008 			block_start = EXTENT_MAP_HOLE;
1009 
1010 		/*
1011 		 * If we have a file range that points to a compressed extent
1012 		 * and it's followed by a consecutive file range that points
1013 		 * to the same compressed extent (possibly with a different
1014 		 * offset and/or length, so it either points to the whole extent
1015 		 * or only part of it), we must make sure we do not submit a
1016 		 * single bio to populate the folios for the 2 ranges because
1017 		 * this makes the compressed extent read zero out the folios
1018 		 * belonging to the 2nd range. Imagine the following scenario:
1019 		 *
1020 		 *  File layout
1021 		 *  [0 - 8K]                     [8K - 24K]
1022 		 *    |                               |
1023 		 *    |                               |
1024 		 * points to extent X,         points to extent X,
1025 		 * offset 4K, length of 8K     offset 0, length 16K
1026 		 *
1027 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1028 		 *
1029 		 * If the bio to read the compressed extent covers both ranges,
1030 		 * it will decompress extent X into the folios belonging to the
1031 		 * first range and then it will stop, zeroing out the remaining
1032 		 * folios that belong to the other range that points to extent X.
1033 		 * So here we make sure we submit 2 bios, one for the first
1034 		 * range and another one for the third range. Both will target
1035 		 * the same physical extent from disk, but we can't currently
1036 		 * make the compressed bio endio callback populate the folios
1037 		 * for both ranges because each compressed bio is tightly
1038 		 * coupled with a single extent map, and each range can have
1039 		 * an extent map with a different offset value relative to the
1040 		 * uncompressed data of our extent and different lengths. This
1041 		 * is a corner case so we prioritize correctness over
1042 		 * non-optimal behavior (submitting 2 bios for the same extent).
1043 		 */
1044 		if (compress_type != BTRFS_COMPRESS_NONE &&
1045 		    prev_em_start && *prev_em_start != (u64)-1 &&
1046 		    *prev_em_start != em->start)
1047 			force_bio_submit = true;
1048 
1049 		if (prev_em_start)
1050 			*prev_em_start = em->start;
1051 
1052 		free_extent_map(em);
1053 		em = NULL;
1054 
1055 		/* we've found a hole, just zero and go on */
1056 		if (block_start == EXTENT_MAP_HOLE) {
1057 			folio_zero_range(folio, pg_offset, iosize);
1058 
1059 			end_folio_read(folio, true, cur, iosize);
1060 			cur = cur + iosize;
1061 			pg_offset += iosize;
1062 			continue;
1063 		}
1064 		/* the get_extent function already copied into the folio */
1065 		if (block_start == EXTENT_MAP_INLINE) {
1066 			end_folio_read(folio, true, cur, iosize);
1067 			cur = cur + iosize;
1068 			pg_offset += iosize;
1069 			continue;
1070 		}
1071 
1072 		if (bio_ctrl->compress_type != compress_type) {
1073 			submit_one_bio(bio_ctrl);
1074 			bio_ctrl->compress_type = compress_type;
1075 		}
1076 
1077 		if (force_bio_submit)
1078 			submit_one_bio(bio_ctrl);
1079 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1080 				    pg_offset);
1081 		cur = cur + iosize;
1082 		pg_offset += iosize;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 int btrfs_read_folio(struct file *file, struct folio *folio)
1089 {
1090 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091 	struct extent_map *em_cached = NULL;
1092 	int ret;
1093 
1094 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1095 	free_extent_map(em_cached);
1096 
1097 	/*
1098 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1099 	 * bio to do the cleanup.
1100 	 */
1101 	submit_one_bio(&bio_ctrl);
1102 	return ret;
1103 }
1104 
1105 /*
1106  * helper for extent_writepage(), doing all of the delayed allocation setup.
1107  *
1108  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1109  * to write the page (copy into inline extent).  In this case the IO has
1110  * been started and the page is already unlocked.
1111  *
1112  * This returns 0 if all went well (page still locked)
1113  * This returns < 0 if there were errors (page still locked)
1114  */
1115 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1116 						 struct folio *folio,
1117 						 struct btrfs_bio_ctrl *bio_ctrl)
1118 {
1119 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1120 	struct writeback_control *wbc = bio_ctrl->wbc;
1121 	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1122 	const u64 page_start = folio_pos(folio);
1123 	const u64 page_end = page_start + folio_size(folio) - 1;
1124 	/*
1125 	 * Save the last found delalloc end. As the delalloc end can go beyond
1126 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1127 	 * last delalloc end.
1128 	 */
1129 	u64 last_delalloc_end = 0;
1130 	u64 delalloc_start = page_start;
1131 	u64 delalloc_end = page_end;
1132 	u64 delalloc_to_write = 0;
1133 	int ret = 0;
1134 
1135 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1136 	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1137 		ASSERT(fs_info->sectors_per_page > 1);
1138 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1139 	} else {
1140 		bio_ctrl->submit_bitmap = 1;
1141 	}
1142 
1143 	/* Lock all (subpage) delalloc ranges inside the folio first. */
1144 	while (delalloc_start < page_end) {
1145 		delalloc_end = page_end;
1146 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1147 					      &delalloc_start, &delalloc_end)) {
1148 			delalloc_start = delalloc_end + 1;
1149 			continue;
1150 		}
1151 		btrfs_folio_set_writer_lock(fs_info, folio, delalloc_start,
1152 					    min(delalloc_end, page_end) + 1 -
1153 					    delalloc_start);
1154 		last_delalloc_end = delalloc_end;
1155 		delalloc_start = delalloc_end + 1;
1156 	}
1157 	delalloc_start = page_start;
1158 
1159 	if (!last_delalloc_end)
1160 		goto out;
1161 
1162 	/* Run the delalloc ranges for the above locked ranges. */
1163 	while (delalloc_start < page_end) {
1164 		u64 found_start;
1165 		u32 found_len;
1166 		bool found;
1167 
1168 		if (!is_subpage) {
1169 			/*
1170 			 * For non-subpage case, the found delalloc range must
1171 			 * cover this folio and there must be only one locked
1172 			 * delalloc range.
1173 			 */
1174 			found_start = page_start;
1175 			found_len = last_delalloc_end + 1 - found_start;
1176 			found = true;
1177 		} else {
1178 			found = btrfs_subpage_find_writer_locked(fs_info, folio,
1179 					delalloc_start, &found_start, &found_len);
1180 		}
1181 		if (!found)
1182 			break;
1183 		/*
1184 		 * The subpage range covers the last sector, the delalloc range may
1185 		 * end beyond the folio boundary, use the saved delalloc_end
1186 		 * instead.
1187 		 */
1188 		if (found_start + found_len >= page_end)
1189 			found_len = last_delalloc_end + 1 - found_start;
1190 
1191 		if (ret >= 0) {
1192 			/* No errors hit so far, run the current delalloc range. */
1193 			ret = btrfs_run_delalloc_range(inode, folio,
1194 						       found_start,
1195 						       found_start + found_len - 1,
1196 						       wbc);
1197 		} else {
1198 			/*
1199 			 * We've hit an error during previous delalloc range,
1200 			 * have to cleanup the remaining locked ranges.
1201 			 */
1202 			unlock_extent(&inode->io_tree, found_start,
1203 				      found_start + found_len - 1, NULL);
1204 			__unlock_for_delalloc(&inode->vfs_inode, folio,
1205 					      found_start,
1206 					      found_start + found_len - 1);
1207 		}
1208 
1209 		/*
1210 		 * We have some ranges that's going to be submitted asynchronously
1211 		 * (compression or inline).  These range have their own control
1212 		 * on when to unlock the pages.  We should not touch them
1213 		 * anymore, so clear the range from the submission bitmap.
1214 		 */
1215 		if (ret > 0) {
1216 			unsigned int start_bit = (found_start - page_start) >>
1217 						 fs_info->sectorsize_bits;
1218 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1219 						page_start) >> fs_info->sectorsize_bits;
1220 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1221 		}
1222 		/*
1223 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1224 		 * thus for the last range, we cannot touch the folio anymore.
1225 		 */
1226 		if (found_start + found_len >= last_delalloc_end + 1)
1227 			break;
1228 
1229 		delalloc_start = found_start + found_len;
1230 	}
1231 	if (ret < 0)
1232 		return ret;
1233 out:
1234 	if (last_delalloc_end)
1235 		delalloc_end = last_delalloc_end;
1236 	else
1237 		delalloc_end = page_end;
1238 	/*
1239 	 * delalloc_end is already one less than the total length, so
1240 	 * we don't subtract one from PAGE_SIZE
1241 	 */
1242 	delalloc_to_write +=
1243 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1244 
1245 	/*
1246 	 * If all ranges are submitted asynchronously, we just need to account
1247 	 * for them here.
1248 	 */
1249 	if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1250 		wbc->nr_to_write -= delalloc_to_write;
1251 		return 1;
1252 	}
1253 
1254 	if (wbc->nr_to_write < delalloc_to_write) {
1255 		int thresh = 8192;
1256 
1257 		if (delalloc_to_write < thresh * 2)
1258 			thresh = delalloc_to_write;
1259 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1260 					 thresh);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Return 0 if we have submitted or queued the sector for submission.
1268  * Return <0 for critical errors.
1269  *
1270  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1271  */
1272 static int submit_one_sector(struct btrfs_inode *inode,
1273 			     struct folio *folio,
1274 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1275 			     loff_t i_size)
1276 {
1277 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1278 	struct extent_map *em;
1279 	u64 block_start;
1280 	u64 disk_bytenr;
1281 	u64 extent_offset;
1282 	u64 em_end;
1283 	const u32 sectorsize = fs_info->sectorsize;
1284 
1285 	ASSERT(IS_ALIGNED(filepos, sectorsize));
1286 
1287 	/* @filepos >= i_size case should be handled by the caller. */
1288 	ASSERT(filepos < i_size);
1289 
1290 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1291 	if (IS_ERR(em))
1292 		return PTR_ERR_OR_ZERO(em);
1293 
1294 	extent_offset = filepos - em->start;
1295 	em_end = extent_map_end(em);
1296 	ASSERT(filepos <= em_end);
1297 	ASSERT(IS_ALIGNED(em->start, sectorsize));
1298 	ASSERT(IS_ALIGNED(em->len, sectorsize));
1299 
1300 	block_start = extent_map_block_start(em);
1301 	disk_bytenr = extent_map_block_start(em) + extent_offset;
1302 
1303 	ASSERT(!extent_map_is_compressed(em));
1304 	ASSERT(block_start != EXTENT_MAP_HOLE);
1305 	ASSERT(block_start != EXTENT_MAP_INLINE);
1306 
1307 	free_extent_map(em);
1308 	em = NULL;
1309 
1310 	/*
1311 	 * Although the PageDirty bit is cleared before entering this
1312 	 * function, subpage dirty bit is not cleared.
1313 	 * So clear subpage dirty bit here so next time we won't submit
1314 	 * a folio for a range already written to disk.
1315 	 */
1316 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1317 	btrfs_set_range_writeback(inode, filepos, filepos + sectorsize - 1);
1318 	/*
1319 	 * Above call should set the whole folio with writeback flag, even
1320 	 * just for a single subpage sector.
1321 	 * As long as the folio is properly locked and the range is correct,
1322 	 * we should always get the folio with writeback flag.
1323 	 */
1324 	ASSERT(folio_test_writeback(folio));
1325 
1326 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1327 			    sectorsize, filepos - folio_pos(folio));
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Helper for extent_writepage().  This calls the writepage start hooks,
1333  * and does the loop to map the page into extents and bios.
1334  *
1335  * We return 1 if the IO is started and the page is unlocked,
1336  * 0 if all went well (page still locked)
1337  * < 0 if there were errors (page still locked)
1338  */
1339 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1340 						  struct folio *folio,
1341 						  u64 start, u32 len,
1342 						  struct btrfs_bio_ctrl *bio_ctrl,
1343 						  loff_t i_size)
1344 {
1345 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1346 	unsigned long range_bitmap = 0;
1347 	bool submitted_io = false;
1348 	const u64 folio_start = folio_pos(folio);
1349 	u64 cur;
1350 	int bit;
1351 	int ret = 0;
1352 
1353 	ASSERT(start >= folio_start &&
1354 	       start + len <= folio_start + folio_size(folio));
1355 
1356 	ret = btrfs_writepage_cow_fixup(folio);
1357 	if (ret) {
1358 		/* Fixup worker will requeue */
1359 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1360 		folio_unlock(folio);
1361 		return 1;
1362 	}
1363 
1364 	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1365 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1366 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1367 		   fs_info->sectors_per_page);
1368 
1369 	bio_ctrl->end_io_func = end_bbio_data_write;
1370 
1371 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1372 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1373 
1374 		if (cur >= i_size) {
1375 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1376 						       start + len - cur, true);
1377 			/*
1378 			 * This range is beyond i_size, thus we don't need to
1379 			 * bother writing back.
1380 			 * But we still need to clear the dirty subpage bit, or
1381 			 * the next time the folio gets dirtied, we will try to
1382 			 * writeback the sectors with subpage dirty bits,
1383 			 * causing writeback without ordered extent.
1384 			 */
1385 			btrfs_folio_clear_dirty(fs_info, folio, cur,
1386 						start + len - cur);
1387 			break;
1388 		}
1389 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1390 		if (ret < 0)
1391 			goto out;
1392 		submitted_io = true;
1393 	}
1394 
1395 	btrfs_folio_assert_not_dirty(fs_info, folio, start, len);
1396 out:
1397 	/*
1398 	 * If we didn't submitted any sector (>= i_size), folio dirty get
1399 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1400 	 * by folio_start_writeback() if the folio is not dirty).
1401 	 *
1402 	 * Here we set writeback and clear for the range. If the full folio
1403 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1404 	 */
1405 	if (!submitted_io) {
1406 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1407 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1408 	}
1409 	return ret;
1410 }
1411 
1412 /*
1413  * the writepage semantics are similar to regular writepage.  extent
1414  * records are inserted to lock ranges in the tree, and as dirty areas
1415  * are found, they are marked writeback.  Then the lock bits are removed
1416  * and the end_io handler clears the writeback ranges
1417  *
1418  * Return 0 if everything goes well.
1419  * Return <0 for error.
1420  */
1421 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1422 {
1423 	struct inode *inode = folio->mapping->host;
1424 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1425 	const u64 page_start = folio_pos(folio);
1426 	int ret;
1427 	size_t pg_offset;
1428 	loff_t i_size = i_size_read(inode);
1429 	unsigned long end_index = i_size >> PAGE_SHIFT;
1430 
1431 	trace_extent_writepage(folio, inode, bio_ctrl->wbc);
1432 
1433 	WARN_ON(!folio_test_locked(folio));
1434 
1435 	pg_offset = offset_in_folio(folio, i_size);
1436 	if (folio->index > end_index ||
1437 	   (folio->index == end_index && !pg_offset)) {
1438 		folio_invalidate(folio, 0, folio_size(folio));
1439 		folio_unlock(folio);
1440 		return 0;
1441 	}
1442 
1443 	if (folio->index == end_index)
1444 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1445 
1446 	/*
1447 	 * Default to unlock the whole folio.
1448 	 * The proper bitmap can only be initialized until writepage_delalloc().
1449 	 */
1450 	bio_ctrl->submit_bitmap = (unsigned long)-1;
1451 	ret = set_folio_extent_mapped(folio);
1452 	if (ret < 0)
1453 		goto done;
1454 
1455 	ret = writepage_delalloc(BTRFS_I(inode), folio, bio_ctrl);
1456 	if (ret == 1)
1457 		return 0;
1458 	if (ret)
1459 		goto done;
1460 
1461 	ret = extent_writepage_io(BTRFS_I(inode), folio, folio_pos(folio),
1462 				  PAGE_SIZE, bio_ctrl, i_size);
1463 	if (ret == 1)
1464 		return 0;
1465 
1466 	bio_ctrl->wbc->nr_to_write--;
1467 
1468 done:
1469 	if (ret) {
1470 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio,
1471 					       page_start, PAGE_SIZE, !ret);
1472 		mapping_set_error(folio->mapping, ret);
1473 	}
1474 
1475 	/*
1476 	 * Only unlock ranges that are submitted. As there can be some async
1477 	 * submitted ranges inside the folio.
1478 	 */
1479 	btrfs_folio_end_writer_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1480 	ASSERT(ret <= 0);
1481 	return ret;
1482 }
1483 
1484 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1485 {
1486 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1487 		       TASK_UNINTERRUPTIBLE);
1488 }
1489 
1490 /*
1491  * Lock extent buffer status and pages for writeback.
1492  *
1493  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1494  * extent buffer is not dirty)
1495  * Return %true is the extent buffer is submitted to bio.
1496  */
1497 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1498 			  struct writeback_control *wbc)
1499 {
1500 	struct btrfs_fs_info *fs_info = eb->fs_info;
1501 	bool ret = false;
1502 
1503 	btrfs_tree_lock(eb);
1504 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1505 		btrfs_tree_unlock(eb);
1506 		if (wbc->sync_mode != WB_SYNC_ALL)
1507 			return false;
1508 		wait_on_extent_buffer_writeback(eb);
1509 		btrfs_tree_lock(eb);
1510 	}
1511 
1512 	/*
1513 	 * We need to do this to prevent races in people who check if the eb is
1514 	 * under IO since we can end up having no IO bits set for a short period
1515 	 * of time.
1516 	 */
1517 	spin_lock(&eb->refs_lock);
1518 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1519 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1520 		spin_unlock(&eb->refs_lock);
1521 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1522 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1523 					 -eb->len,
1524 					 fs_info->dirty_metadata_batch);
1525 		ret = true;
1526 	} else {
1527 		spin_unlock(&eb->refs_lock);
1528 	}
1529 	btrfs_tree_unlock(eb);
1530 	return ret;
1531 }
1532 
1533 static void set_btree_ioerr(struct extent_buffer *eb)
1534 {
1535 	struct btrfs_fs_info *fs_info = eb->fs_info;
1536 
1537 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1538 
1539 	/*
1540 	 * A read may stumble upon this buffer later, make sure that it gets an
1541 	 * error and knows there was an error.
1542 	 */
1543 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1544 
1545 	/*
1546 	 * We need to set the mapping with the io error as well because a write
1547 	 * error will flip the file system readonly, and then syncfs() will
1548 	 * return a 0 because we are readonly if we don't modify the err seq for
1549 	 * the superblock.
1550 	 */
1551 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1552 
1553 	/*
1554 	 * If writeback for a btree extent that doesn't belong to a log tree
1555 	 * failed, increment the counter transaction->eb_write_errors.
1556 	 * We do this because while the transaction is running and before it's
1557 	 * committing (when we call filemap_fdata[write|wait]_range against
1558 	 * the btree inode), we might have
1559 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1560 	 * returns an error or an error happens during writeback, when we're
1561 	 * committing the transaction we wouldn't know about it, since the pages
1562 	 * can be no longer dirty nor marked anymore for writeback (if a
1563 	 * subsequent modification to the extent buffer didn't happen before the
1564 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1565 	 * able to find the pages which contain errors at transaction
1566 	 * commit time. So if this happens we must abort the transaction,
1567 	 * otherwise we commit a super block with btree roots that point to
1568 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1569 	 * or the content of some node/leaf from a past generation that got
1570 	 * cowed or deleted and is no longer valid.
1571 	 *
1572 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1573 	 * not be enough - we need to distinguish between log tree extents vs
1574 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1575 	 * will catch and clear such errors in the mapping - and that call might
1576 	 * be from a log sync and not from a transaction commit. Also, checking
1577 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1578 	 * not done and would not be reliable - the eb might have been released
1579 	 * from memory and reading it back again means that flag would not be
1580 	 * set (since it's a runtime flag, not persisted on disk).
1581 	 *
1582 	 * Using the flags below in the btree inode also makes us achieve the
1583 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1584 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1585 	 * is called, the writeback for all dirty pages had already finished
1586 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1587 	 * filemap_fdatawait_range() would return success, as it could not know
1588 	 * that writeback errors happened (the pages were no longer tagged for
1589 	 * writeback).
1590 	 */
1591 	switch (eb->log_index) {
1592 	case -1:
1593 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1594 		break;
1595 	case 0:
1596 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1597 		break;
1598 	case 1:
1599 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1600 		break;
1601 	default:
1602 		BUG(); /* unexpected, logic error */
1603 	}
1604 }
1605 
1606 /*
1607  * The endio specific version which won't touch any unsafe spinlock in endio
1608  * context.
1609  */
1610 static struct extent_buffer *find_extent_buffer_nolock(
1611 		const struct btrfs_fs_info *fs_info, u64 start)
1612 {
1613 	struct extent_buffer *eb;
1614 
1615 	rcu_read_lock();
1616 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1617 			       start >> fs_info->sectorsize_bits);
1618 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1619 		rcu_read_unlock();
1620 		return eb;
1621 	}
1622 	rcu_read_unlock();
1623 	return NULL;
1624 }
1625 
1626 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1627 {
1628 	struct extent_buffer *eb = bbio->private;
1629 	struct btrfs_fs_info *fs_info = eb->fs_info;
1630 	bool uptodate = !bbio->bio.bi_status;
1631 	struct folio_iter fi;
1632 	u32 bio_offset = 0;
1633 
1634 	if (!uptodate)
1635 		set_btree_ioerr(eb);
1636 
1637 	bio_for_each_folio_all(fi, &bbio->bio) {
1638 		u64 start = eb->start + bio_offset;
1639 		struct folio *folio = fi.folio;
1640 		u32 len = fi.length;
1641 
1642 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1643 		bio_offset += len;
1644 	}
1645 
1646 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1647 	smp_mb__after_atomic();
1648 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1649 
1650 	bio_put(&bbio->bio);
1651 }
1652 
1653 static void prepare_eb_write(struct extent_buffer *eb)
1654 {
1655 	u32 nritems;
1656 	unsigned long start;
1657 	unsigned long end;
1658 
1659 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1660 
1661 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1662 	nritems = btrfs_header_nritems(eb);
1663 	if (btrfs_header_level(eb) > 0) {
1664 		end = btrfs_node_key_ptr_offset(eb, nritems);
1665 		memzero_extent_buffer(eb, end, eb->len - end);
1666 	} else {
1667 		/*
1668 		 * Leaf:
1669 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1670 		 */
1671 		start = btrfs_item_nr_offset(eb, nritems);
1672 		end = btrfs_item_nr_offset(eb, 0);
1673 		if (nritems == 0)
1674 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1675 		else
1676 			end += btrfs_item_offset(eb, nritems - 1);
1677 		memzero_extent_buffer(eb, start, end - start);
1678 	}
1679 }
1680 
1681 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1682 					    struct writeback_control *wbc)
1683 {
1684 	struct btrfs_fs_info *fs_info = eb->fs_info;
1685 	struct btrfs_bio *bbio;
1686 
1687 	prepare_eb_write(eb);
1688 
1689 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1690 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1691 			       eb->fs_info, end_bbio_meta_write, eb);
1692 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1693 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1694 	wbc_init_bio(wbc, &bbio->bio);
1695 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1696 	bbio->file_offset = eb->start;
1697 	if (fs_info->nodesize < PAGE_SIZE) {
1698 		struct folio *folio = eb->folios[0];
1699 		bool ret;
1700 
1701 		folio_lock(folio);
1702 		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1703 		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1704 						       eb->len)) {
1705 			folio_clear_dirty_for_io(folio);
1706 			wbc->nr_to_write--;
1707 		}
1708 		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1709 				    eb->start - folio_pos(folio));
1710 		ASSERT(ret);
1711 		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1712 		folio_unlock(folio);
1713 	} else {
1714 		int num_folios = num_extent_folios(eb);
1715 
1716 		for (int i = 0; i < num_folios; i++) {
1717 			struct folio *folio = eb->folios[i];
1718 			bool ret;
1719 
1720 			folio_lock(folio);
1721 			folio_clear_dirty_for_io(folio);
1722 			folio_start_writeback(folio);
1723 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1724 			ASSERT(ret);
1725 			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1726 						 eb->folio_size);
1727 			wbc->nr_to_write -= folio_nr_pages(folio);
1728 			folio_unlock(folio);
1729 		}
1730 	}
1731 	btrfs_submit_bbio(bbio, 0);
1732 }
1733 
1734 /*
1735  * Submit one subpage btree page.
1736  *
1737  * The main difference to submit_eb_page() is:
1738  * - Page locking
1739  *   For subpage, we don't rely on page locking at all.
1740  *
1741  * - Flush write bio
1742  *   We only flush bio if we may be unable to fit current extent buffers into
1743  *   current bio.
1744  *
1745  * Return >=0 for the number of submitted extent buffers.
1746  * Return <0 for fatal error.
1747  */
1748 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1749 {
1750 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1751 	int submitted = 0;
1752 	u64 folio_start = folio_pos(folio);
1753 	int bit_start = 0;
1754 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1755 
1756 	/* Lock and write each dirty extent buffers in the range */
1757 	while (bit_start < fs_info->sectors_per_page) {
1758 		struct btrfs_subpage *subpage = folio_get_private(folio);
1759 		struct extent_buffer *eb;
1760 		unsigned long flags;
1761 		u64 start;
1762 
1763 		/*
1764 		 * Take private lock to ensure the subpage won't be detached
1765 		 * in the meantime.
1766 		 */
1767 		spin_lock(&folio->mapping->i_private_lock);
1768 		if (!folio_test_private(folio)) {
1769 			spin_unlock(&folio->mapping->i_private_lock);
1770 			break;
1771 		}
1772 		spin_lock_irqsave(&subpage->lock, flags);
1773 		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1774 			      subpage->bitmaps)) {
1775 			spin_unlock_irqrestore(&subpage->lock, flags);
1776 			spin_unlock(&folio->mapping->i_private_lock);
1777 			bit_start++;
1778 			continue;
1779 		}
1780 
1781 		start = folio_start + bit_start * fs_info->sectorsize;
1782 		bit_start += sectors_per_node;
1783 
1784 		/*
1785 		 * Here we just want to grab the eb without touching extra
1786 		 * spin locks, so call find_extent_buffer_nolock().
1787 		 */
1788 		eb = find_extent_buffer_nolock(fs_info, start);
1789 		spin_unlock_irqrestore(&subpage->lock, flags);
1790 		spin_unlock(&folio->mapping->i_private_lock);
1791 
1792 		/*
1793 		 * The eb has already reached 0 refs thus find_extent_buffer()
1794 		 * doesn't return it. We don't need to write back such eb
1795 		 * anyway.
1796 		 */
1797 		if (!eb)
1798 			continue;
1799 
1800 		if (lock_extent_buffer_for_io(eb, wbc)) {
1801 			write_one_eb(eb, wbc);
1802 			submitted++;
1803 		}
1804 		free_extent_buffer(eb);
1805 	}
1806 	return submitted;
1807 }
1808 
1809 /*
1810  * Submit all page(s) of one extent buffer.
1811  *
1812  * @page:	the page of one extent buffer
1813  * @eb_context:	to determine if we need to submit this page, if current page
1814  *		belongs to this eb, we don't need to submit
1815  *
1816  * The caller should pass each page in their bytenr order, and here we use
1817  * @eb_context to determine if we have submitted pages of one extent buffer.
1818  *
1819  * If we have, we just skip until we hit a new page that doesn't belong to
1820  * current @eb_context.
1821  *
1822  * If not, we submit all the page(s) of the extent buffer.
1823  *
1824  * Return >0 if we have submitted the extent buffer successfully.
1825  * Return 0 if we don't need to submit the page, as it's already submitted by
1826  * previous call.
1827  * Return <0 for fatal error.
1828  */
1829 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1830 {
1831 	struct writeback_control *wbc = ctx->wbc;
1832 	struct address_space *mapping = folio->mapping;
1833 	struct extent_buffer *eb;
1834 	int ret;
1835 
1836 	if (!folio_test_private(folio))
1837 		return 0;
1838 
1839 	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1840 		return submit_eb_subpage(folio, wbc);
1841 
1842 	spin_lock(&mapping->i_private_lock);
1843 	if (!folio_test_private(folio)) {
1844 		spin_unlock(&mapping->i_private_lock);
1845 		return 0;
1846 	}
1847 
1848 	eb = folio_get_private(folio);
1849 
1850 	/*
1851 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1852 	 * crashing the machine for something we can survive anyway.
1853 	 */
1854 	if (WARN_ON(!eb)) {
1855 		spin_unlock(&mapping->i_private_lock);
1856 		return 0;
1857 	}
1858 
1859 	if (eb == ctx->eb) {
1860 		spin_unlock(&mapping->i_private_lock);
1861 		return 0;
1862 	}
1863 	ret = atomic_inc_not_zero(&eb->refs);
1864 	spin_unlock(&mapping->i_private_lock);
1865 	if (!ret)
1866 		return 0;
1867 
1868 	ctx->eb = eb;
1869 
1870 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1871 	if (ret) {
1872 		if (ret == -EBUSY)
1873 			ret = 0;
1874 		free_extent_buffer(eb);
1875 		return ret;
1876 	}
1877 
1878 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1879 		free_extent_buffer(eb);
1880 		return 0;
1881 	}
1882 	/* Implies write in zoned mode. */
1883 	if (ctx->zoned_bg) {
1884 		/* Mark the last eb in the block group. */
1885 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1886 		ctx->zoned_bg->meta_write_pointer += eb->len;
1887 	}
1888 	write_one_eb(eb, wbc);
1889 	free_extent_buffer(eb);
1890 	return 1;
1891 }
1892 
1893 int btree_write_cache_pages(struct address_space *mapping,
1894 				   struct writeback_control *wbc)
1895 {
1896 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1897 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1898 	int ret = 0;
1899 	int done = 0;
1900 	int nr_to_write_done = 0;
1901 	struct folio_batch fbatch;
1902 	unsigned int nr_folios;
1903 	pgoff_t index;
1904 	pgoff_t end;		/* Inclusive */
1905 	int scanned = 0;
1906 	xa_mark_t tag;
1907 
1908 	folio_batch_init(&fbatch);
1909 	if (wbc->range_cyclic) {
1910 		index = mapping->writeback_index; /* Start from prev offset */
1911 		end = -1;
1912 		/*
1913 		 * Start from the beginning does not need to cycle over the
1914 		 * range, mark it as scanned.
1915 		 */
1916 		scanned = (index == 0);
1917 	} else {
1918 		index = wbc->range_start >> PAGE_SHIFT;
1919 		end = wbc->range_end >> PAGE_SHIFT;
1920 		scanned = 1;
1921 	}
1922 	if (wbc->sync_mode == WB_SYNC_ALL)
1923 		tag = PAGECACHE_TAG_TOWRITE;
1924 	else
1925 		tag = PAGECACHE_TAG_DIRTY;
1926 	btrfs_zoned_meta_io_lock(fs_info);
1927 retry:
1928 	if (wbc->sync_mode == WB_SYNC_ALL)
1929 		tag_pages_for_writeback(mapping, index, end);
1930 	while (!done && !nr_to_write_done && (index <= end) &&
1931 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1932 					    tag, &fbatch))) {
1933 		unsigned i;
1934 
1935 		for (i = 0; i < nr_folios; i++) {
1936 			struct folio *folio = fbatch.folios[i];
1937 
1938 			ret = submit_eb_page(folio, &ctx);
1939 			if (ret == 0)
1940 				continue;
1941 			if (ret < 0) {
1942 				done = 1;
1943 				break;
1944 			}
1945 
1946 			/*
1947 			 * the filesystem may choose to bump up nr_to_write.
1948 			 * We have to make sure to honor the new nr_to_write
1949 			 * at any time
1950 			 */
1951 			nr_to_write_done = wbc->nr_to_write <= 0;
1952 		}
1953 		folio_batch_release(&fbatch);
1954 		cond_resched();
1955 	}
1956 	if (!scanned && !done) {
1957 		/*
1958 		 * We hit the last page and there is more work to be done: wrap
1959 		 * back to the start of the file
1960 		 */
1961 		scanned = 1;
1962 		index = 0;
1963 		goto retry;
1964 	}
1965 	/*
1966 	 * If something went wrong, don't allow any metadata write bio to be
1967 	 * submitted.
1968 	 *
1969 	 * This would prevent use-after-free if we had dirty pages not
1970 	 * cleaned up, which can still happen by fuzzed images.
1971 	 *
1972 	 * - Bad extent tree
1973 	 *   Allowing existing tree block to be allocated for other trees.
1974 	 *
1975 	 * - Log tree operations
1976 	 *   Exiting tree blocks get allocated to log tree, bumps its
1977 	 *   generation, then get cleaned in tree re-balance.
1978 	 *   Such tree block will not be written back, since it's clean,
1979 	 *   thus no WRITTEN flag set.
1980 	 *   And after log writes back, this tree block is not traced by
1981 	 *   any dirty extent_io_tree.
1982 	 *
1983 	 * - Offending tree block gets re-dirtied from its original owner
1984 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1985 	 *   reused without COWing. This tree block will not be traced
1986 	 *   by btrfs_transaction::dirty_pages.
1987 	 *
1988 	 *   Now such dirty tree block will not be cleaned by any dirty
1989 	 *   extent io tree. Thus we don't want to submit such wild eb
1990 	 *   if the fs already has error.
1991 	 *
1992 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
1993 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1994 	 */
1995 	if (ret > 0)
1996 		ret = 0;
1997 	if (!ret && BTRFS_FS_ERROR(fs_info))
1998 		ret = -EROFS;
1999 
2000 	if (ctx.zoned_bg)
2001 		btrfs_put_block_group(ctx.zoned_bg);
2002 	btrfs_zoned_meta_io_unlock(fs_info);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Walk the list of dirty pages of the given address space and write all of them.
2008  *
2009  * @mapping:   address space structure to write
2010  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2011  * @bio_ctrl:  holds context for the write, namely the bio
2012  *
2013  * If a page is already under I/O, write_cache_pages() skips it, even
2014  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2015  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2016  * and msync() need to guarantee that all the data which was dirty at the time
2017  * the call was made get new I/O started against them.  If wbc->sync_mode is
2018  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2019  * existing IO to complete.
2020  */
2021 static int extent_write_cache_pages(struct address_space *mapping,
2022 			     struct btrfs_bio_ctrl *bio_ctrl)
2023 {
2024 	struct writeback_control *wbc = bio_ctrl->wbc;
2025 	struct inode *inode = mapping->host;
2026 	int ret = 0;
2027 	int done = 0;
2028 	int nr_to_write_done = 0;
2029 	struct folio_batch fbatch;
2030 	unsigned int nr_folios;
2031 	pgoff_t index;
2032 	pgoff_t end;		/* Inclusive */
2033 	pgoff_t done_index;
2034 	int range_whole = 0;
2035 	int scanned = 0;
2036 	xa_mark_t tag;
2037 
2038 	/*
2039 	 * We have to hold onto the inode so that ordered extents can do their
2040 	 * work when the IO finishes.  The alternative to this is failing to add
2041 	 * an ordered extent if the igrab() fails there and that is a huge pain
2042 	 * to deal with, so instead just hold onto the inode throughout the
2043 	 * writepages operation.  If it fails here we are freeing up the inode
2044 	 * anyway and we'd rather not waste our time writing out stuff that is
2045 	 * going to be truncated anyway.
2046 	 */
2047 	if (!igrab(inode))
2048 		return 0;
2049 
2050 	folio_batch_init(&fbatch);
2051 	if (wbc->range_cyclic) {
2052 		index = mapping->writeback_index; /* Start from prev offset */
2053 		end = -1;
2054 		/*
2055 		 * Start from the beginning does not need to cycle over the
2056 		 * range, mark it as scanned.
2057 		 */
2058 		scanned = (index == 0);
2059 	} else {
2060 		index = wbc->range_start >> PAGE_SHIFT;
2061 		end = wbc->range_end >> PAGE_SHIFT;
2062 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2063 			range_whole = 1;
2064 		scanned = 1;
2065 	}
2066 
2067 	/*
2068 	 * We do the tagged writepage as long as the snapshot flush bit is set
2069 	 * and we are the first one who do the filemap_flush() on this inode.
2070 	 *
2071 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2072 	 * not race in and drop the bit.
2073 	 */
2074 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2075 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2076 			       &BTRFS_I(inode)->runtime_flags))
2077 		wbc->tagged_writepages = 1;
2078 
2079 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2080 		tag = PAGECACHE_TAG_TOWRITE;
2081 	else
2082 		tag = PAGECACHE_TAG_DIRTY;
2083 retry:
2084 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2085 		tag_pages_for_writeback(mapping, index, end);
2086 	done_index = index;
2087 	while (!done && !nr_to_write_done && (index <= end) &&
2088 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2089 							end, tag, &fbatch))) {
2090 		unsigned i;
2091 
2092 		for (i = 0; i < nr_folios; i++) {
2093 			struct folio *folio = fbatch.folios[i];
2094 
2095 			done_index = folio_next_index(folio);
2096 			/*
2097 			 * At this point we hold neither the i_pages lock nor
2098 			 * the page lock: the page may be truncated or
2099 			 * invalidated (changing page->mapping to NULL),
2100 			 * or even swizzled back from swapper_space to
2101 			 * tmpfs file mapping
2102 			 */
2103 			if (!folio_trylock(folio)) {
2104 				submit_write_bio(bio_ctrl, 0);
2105 				folio_lock(folio);
2106 			}
2107 
2108 			if (unlikely(folio->mapping != mapping)) {
2109 				folio_unlock(folio);
2110 				continue;
2111 			}
2112 
2113 			if (!folio_test_dirty(folio)) {
2114 				/* Someone wrote it for us. */
2115 				folio_unlock(folio);
2116 				continue;
2117 			}
2118 
2119 			if (wbc->sync_mode != WB_SYNC_NONE) {
2120 				if (folio_test_writeback(folio))
2121 					submit_write_bio(bio_ctrl, 0);
2122 				folio_wait_writeback(folio);
2123 			}
2124 
2125 			if (folio_test_writeback(folio) ||
2126 			    !folio_clear_dirty_for_io(folio)) {
2127 				folio_unlock(folio);
2128 				continue;
2129 			}
2130 
2131 			ret = extent_writepage(folio, bio_ctrl);
2132 			if (ret < 0) {
2133 				done = 1;
2134 				break;
2135 			}
2136 
2137 			/*
2138 			 * The filesystem may choose to bump up nr_to_write.
2139 			 * We have to make sure to honor the new nr_to_write
2140 			 * at any time.
2141 			 */
2142 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2143 					    wbc->nr_to_write <= 0);
2144 		}
2145 		folio_batch_release(&fbatch);
2146 		cond_resched();
2147 	}
2148 	if (!scanned && !done) {
2149 		/*
2150 		 * We hit the last page and there is more work to be done: wrap
2151 		 * back to the start of the file
2152 		 */
2153 		scanned = 1;
2154 		index = 0;
2155 
2156 		/*
2157 		 * If we're looping we could run into a page that is locked by a
2158 		 * writer and that writer could be waiting on writeback for a
2159 		 * page in our current bio, and thus deadlock, so flush the
2160 		 * write bio here.
2161 		 */
2162 		submit_write_bio(bio_ctrl, 0);
2163 		goto retry;
2164 	}
2165 
2166 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2167 		mapping->writeback_index = done_index;
2168 
2169 	btrfs_add_delayed_iput(BTRFS_I(inode));
2170 	return ret;
2171 }
2172 
2173 /*
2174  * Submit the pages in the range to bio for call sites which delalloc range has
2175  * already been ran (aka, ordered extent inserted) and all pages are still
2176  * locked.
2177  */
2178 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2179 			       u64 start, u64 end, struct writeback_control *wbc,
2180 			       bool pages_dirty)
2181 {
2182 	bool found_error = false;
2183 	int ret = 0;
2184 	struct address_space *mapping = inode->i_mapping;
2185 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2186 	const u32 sectorsize = fs_info->sectorsize;
2187 	loff_t i_size = i_size_read(inode);
2188 	u64 cur = start;
2189 	struct btrfs_bio_ctrl bio_ctrl = {
2190 		.wbc = wbc,
2191 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2192 	};
2193 
2194 	if (wbc->no_cgroup_owner)
2195 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2196 
2197 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2198 
2199 	while (cur <= end) {
2200 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2201 		u32 cur_len = cur_end + 1 - cur;
2202 		struct folio *folio;
2203 
2204 		folio = __filemap_get_folio(mapping, cur >> PAGE_SHIFT, 0, 0);
2205 
2206 		/*
2207 		 * This shouldn't happen, the pages are pinned and locked, this
2208 		 * code is just in case, but shouldn't actually be run.
2209 		 */
2210 		if (IS_ERR(folio)) {
2211 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2212 						       cur, cur_len, false);
2213 			mapping_set_error(mapping, PTR_ERR(folio));
2214 			cur = cur_end + 1;
2215 			continue;
2216 		}
2217 
2218 		ASSERT(folio_test_locked(folio));
2219 		if (pages_dirty && folio != locked_folio)
2220 			ASSERT(folio_test_dirty(folio));
2221 
2222 		/*
2223 		 * Set the submission bitmap to submit all sectors.
2224 		 * extent_writepage_io() will do the truncation correctly.
2225 		 */
2226 		bio_ctrl.submit_bitmap = (unsigned long)-1;
2227 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2228 					  &bio_ctrl, i_size);
2229 		if (ret == 1)
2230 			goto next_page;
2231 
2232 		if (ret) {
2233 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio,
2234 						       cur, cur_len, !ret);
2235 			mapping_set_error(mapping, ret);
2236 		}
2237 		btrfs_folio_end_writer_lock(fs_info, folio, cur, cur_len);
2238 		if (ret < 0)
2239 			found_error = true;
2240 next_page:
2241 		folio_put(folio);
2242 		cur = cur_end + 1;
2243 	}
2244 
2245 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2246 }
2247 
2248 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2249 {
2250 	struct inode *inode = mapping->host;
2251 	int ret = 0;
2252 	struct btrfs_bio_ctrl bio_ctrl = {
2253 		.wbc = wbc,
2254 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2255 	};
2256 
2257 	/*
2258 	 * Allow only a single thread to do the reloc work in zoned mode to
2259 	 * protect the write pointer updates.
2260 	 */
2261 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2262 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2263 	submit_write_bio(&bio_ctrl, ret);
2264 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2265 	return ret;
2266 }
2267 
2268 void btrfs_readahead(struct readahead_control *rac)
2269 {
2270 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2271 	struct folio *folio;
2272 	struct extent_map *em_cached = NULL;
2273 	u64 prev_em_start = (u64)-1;
2274 
2275 	while ((folio = readahead_folio(rac)) != NULL)
2276 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2277 
2278 	if (em_cached)
2279 		free_extent_map(em_cached);
2280 	submit_one_bio(&bio_ctrl);
2281 }
2282 
2283 /*
2284  * basic invalidate_folio code, this waits on any locked or writeback
2285  * ranges corresponding to the folio, and then deletes any extent state
2286  * records from the tree
2287  */
2288 int extent_invalidate_folio(struct extent_io_tree *tree,
2289 			  struct folio *folio, size_t offset)
2290 {
2291 	struct extent_state *cached_state = NULL;
2292 	u64 start = folio_pos(folio);
2293 	u64 end = start + folio_size(folio) - 1;
2294 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2295 
2296 	/* This function is only called for the btree inode */
2297 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2298 
2299 	start += ALIGN(offset, blocksize);
2300 	if (start > end)
2301 		return 0;
2302 
2303 	lock_extent(tree, start, end, &cached_state);
2304 	folio_wait_writeback(folio);
2305 
2306 	/*
2307 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2308 	 * so here we only need to unlock the extent range to free any
2309 	 * existing extent state.
2310 	 */
2311 	unlock_extent(tree, start, end, &cached_state);
2312 	return 0;
2313 }
2314 
2315 /*
2316  * a helper for release_folio, this tests for areas of the page that
2317  * are locked or under IO and drops the related state bits if it is safe
2318  * to drop the page.
2319  */
2320 static bool try_release_extent_state(struct extent_io_tree *tree,
2321 				    struct folio *folio, gfp_t mask)
2322 {
2323 	u64 start = folio_pos(folio);
2324 	u64 end = start + PAGE_SIZE - 1;
2325 	bool ret;
2326 
2327 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2328 		ret = false;
2329 	} else {
2330 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2331 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2332 				   EXTENT_QGROUP_RESERVED);
2333 		int ret2;
2334 
2335 		/*
2336 		 * At this point we can safely clear everything except the
2337 		 * locked bit, the nodatasum bit and the delalloc new bit.
2338 		 * The delalloc new bit will be cleared by ordered extent
2339 		 * completion.
2340 		 */
2341 		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2342 
2343 		/* if clear_extent_bit failed for enomem reasons,
2344 		 * we can't allow the release to continue.
2345 		 */
2346 		if (ret2 < 0)
2347 			ret = false;
2348 		else
2349 			ret = true;
2350 	}
2351 	return ret;
2352 }
2353 
2354 /*
2355  * a helper for release_folio.  As long as there are no locked extents
2356  * in the range corresponding to the page, both state records and extent
2357  * map records are removed
2358  */
2359 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2360 {
2361 	u64 start = folio_pos(folio);
2362 	u64 end = start + PAGE_SIZE - 1;
2363 	struct btrfs_inode *inode = folio_to_inode(folio);
2364 	struct extent_io_tree *io_tree = &inode->io_tree;
2365 
2366 	while (start <= end) {
2367 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2368 		const u64 len = end - start + 1;
2369 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2370 		struct extent_map *em;
2371 
2372 		write_lock(&extent_tree->lock);
2373 		em = lookup_extent_mapping(extent_tree, start, len);
2374 		if (!em) {
2375 			write_unlock(&extent_tree->lock);
2376 			break;
2377 		}
2378 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2379 			write_unlock(&extent_tree->lock);
2380 			free_extent_map(em);
2381 			break;
2382 		}
2383 		if (test_range_bit_exists(io_tree, em->start,
2384 					  extent_map_end(em) - 1, EXTENT_LOCKED))
2385 			goto next;
2386 		/*
2387 		 * If it's not in the list of modified extents, used by a fast
2388 		 * fsync, we can remove it. If it's being logged we can safely
2389 		 * remove it since fsync took an extra reference on the em.
2390 		 */
2391 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2392 			goto remove_em;
2393 		/*
2394 		 * If it's in the list of modified extents, remove it only if
2395 		 * its generation is older then the current one, in which case
2396 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2397 		 * we could be racing with an ongoing fast fsync that could miss
2398 		 * the new extent.
2399 		 */
2400 		if (em->generation >= cur_gen)
2401 			goto next;
2402 remove_em:
2403 		/*
2404 		 * We only remove extent maps that are not in the list of
2405 		 * modified extents or that are in the list but with a
2406 		 * generation lower then the current generation, so there is no
2407 		 * need to set the full fsync flag on the inode (it hurts the
2408 		 * fsync performance for workloads with a data size that exceeds
2409 		 * or is close to the system's memory).
2410 		 */
2411 		remove_extent_mapping(inode, em);
2412 		/* Once for the inode's extent map tree. */
2413 		free_extent_map(em);
2414 next:
2415 		start = extent_map_end(em);
2416 		write_unlock(&extent_tree->lock);
2417 
2418 		/* Once for us, for the lookup_extent_mapping() reference. */
2419 		free_extent_map(em);
2420 
2421 		if (need_resched()) {
2422 			/*
2423 			 * If we need to resched but we can't block just exit
2424 			 * and leave any remaining extent maps.
2425 			 */
2426 			if (!gfpflags_allow_blocking(mask))
2427 				break;
2428 
2429 			cond_resched();
2430 		}
2431 	}
2432 	return try_release_extent_state(io_tree, folio, mask);
2433 }
2434 
2435 static void __free_extent_buffer(struct extent_buffer *eb)
2436 {
2437 	kmem_cache_free(extent_buffer_cache, eb);
2438 }
2439 
2440 static int extent_buffer_under_io(const struct extent_buffer *eb)
2441 {
2442 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2443 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2444 }
2445 
2446 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
2447 {
2448 	struct btrfs_subpage *subpage;
2449 
2450 	lockdep_assert_held(&folio->mapping->i_private_lock);
2451 
2452 	if (folio_test_private(folio)) {
2453 		subpage = folio_get_private(folio);
2454 		if (atomic_read(&subpage->eb_refs))
2455 			return true;
2456 		/*
2457 		 * Even there is no eb refs here, we may still have
2458 		 * end_folio_read() call relying on page::private.
2459 		 */
2460 		if (atomic_read(&subpage->readers))
2461 			return true;
2462 	}
2463 	return false;
2464 }
2465 
2466 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2467 {
2468 	struct btrfs_fs_info *fs_info = eb->fs_info;
2469 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2470 
2471 	/*
2472 	 * For mapped eb, we're going to change the folio private, which should
2473 	 * be done under the i_private_lock.
2474 	 */
2475 	if (mapped)
2476 		spin_lock(&folio->mapping->i_private_lock);
2477 
2478 	if (!folio_test_private(folio)) {
2479 		if (mapped)
2480 			spin_unlock(&folio->mapping->i_private_lock);
2481 		return;
2482 	}
2483 
2484 	if (fs_info->nodesize >= PAGE_SIZE) {
2485 		/*
2486 		 * We do this since we'll remove the pages after we've
2487 		 * removed the eb from the radix tree, so we could race
2488 		 * and have this page now attached to the new eb.  So
2489 		 * only clear folio if it's still connected to
2490 		 * this eb.
2491 		 */
2492 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2493 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2494 			BUG_ON(folio_test_dirty(folio));
2495 			BUG_ON(folio_test_writeback(folio));
2496 			/* We need to make sure we haven't be attached to a new eb. */
2497 			folio_detach_private(folio);
2498 		}
2499 		if (mapped)
2500 			spin_unlock(&folio->mapping->i_private_lock);
2501 		return;
2502 	}
2503 
2504 	/*
2505 	 * For subpage, we can have dummy eb with folio private attached.  In
2506 	 * this case, we can directly detach the private as such folio is only
2507 	 * attached to one dummy eb, no sharing.
2508 	 */
2509 	if (!mapped) {
2510 		btrfs_detach_subpage(fs_info, folio);
2511 		return;
2512 	}
2513 
2514 	btrfs_folio_dec_eb_refs(fs_info, folio);
2515 
2516 	/*
2517 	 * We can only detach the folio private if there are no other ebs in the
2518 	 * page range and no unfinished IO.
2519 	 */
2520 	if (!folio_range_has_eb(fs_info, folio))
2521 		btrfs_detach_subpage(fs_info, folio);
2522 
2523 	spin_unlock(&folio->mapping->i_private_lock);
2524 }
2525 
2526 /* Release all pages attached to the extent buffer */
2527 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2528 {
2529 	ASSERT(!extent_buffer_under_io(eb));
2530 
2531 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2532 		struct folio *folio = eb->folios[i];
2533 
2534 		if (!folio)
2535 			continue;
2536 
2537 		detach_extent_buffer_folio(eb, folio);
2538 
2539 		/* One for when we allocated the folio. */
2540 		folio_put(folio);
2541 	}
2542 }
2543 
2544 /*
2545  * Helper for releasing the extent buffer.
2546  */
2547 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2548 {
2549 	btrfs_release_extent_buffer_pages(eb);
2550 	btrfs_leak_debug_del_eb(eb);
2551 	__free_extent_buffer(eb);
2552 }
2553 
2554 static struct extent_buffer *
2555 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2556 		      unsigned long len)
2557 {
2558 	struct extent_buffer *eb = NULL;
2559 
2560 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2561 	eb->start = start;
2562 	eb->len = len;
2563 	eb->fs_info = fs_info;
2564 	init_rwsem(&eb->lock);
2565 
2566 	btrfs_leak_debug_add_eb(eb);
2567 
2568 	spin_lock_init(&eb->refs_lock);
2569 	atomic_set(&eb->refs, 1);
2570 
2571 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2572 
2573 	return eb;
2574 }
2575 
2576 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2577 {
2578 	struct extent_buffer *new;
2579 	int num_folios = num_extent_folios(src);
2580 	int ret;
2581 
2582 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2583 	if (new == NULL)
2584 		return NULL;
2585 
2586 	/*
2587 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2588 	 * btrfs_release_extent_buffer() have different behavior for
2589 	 * UNMAPPED subpage extent buffer.
2590 	 */
2591 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2592 
2593 	ret = alloc_eb_folio_array(new, false);
2594 	if (ret) {
2595 		btrfs_release_extent_buffer(new);
2596 		return NULL;
2597 	}
2598 
2599 	for (int i = 0; i < num_folios; i++) {
2600 		struct folio *folio = new->folios[i];
2601 
2602 		ret = attach_extent_buffer_folio(new, folio, NULL);
2603 		if (ret < 0) {
2604 			btrfs_release_extent_buffer(new);
2605 			return NULL;
2606 		}
2607 		WARN_ON(folio_test_dirty(folio));
2608 	}
2609 	copy_extent_buffer_full(new, src);
2610 	set_extent_buffer_uptodate(new);
2611 
2612 	return new;
2613 }
2614 
2615 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2616 						  u64 start, unsigned long len)
2617 {
2618 	struct extent_buffer *eb;
2619 	int num_folios = 0;
2620 	int ret;
2621 
2622 	eb = __alloc_extent_buffer(fs_info, start, len);
2623 	if (!eb)
2624 		return NULL;
2625 
2626 	ret = alloc_eb_folio_array(eb, false);
2627 	if (ret)
2628 		goto err;
2629 
2630 	num_folios = num_extent_folios(eb);
2631 	for (int i = 0; i < num_folios; i++) {
2632 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2633 		if (ret < 0)
2634 			goto err;
2635 	}
2636 
2637 	set_extent_buffer_uptodate(eb);
2638 	btrfs_set_header_nritems(eb, 0);
2639 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2640 
2641 	return eb;
2642 err:
2643 	for (int i = 0; i < num_folios; i++) {
2644 		if (eb->folios[i]) {
2645 			detach_extent_buffer_folio(eb, eb->folios[i]);
2646 			folio_put(eb->folios[i]);
2647 		}
2648 	}
2649 	__free_extent_buffer(eb);
2650 	return NULL;
2651 }
2652 
2653 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2654 						u64 start)
2655 {
2656 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2657 }
2658 
2659 static void check_buffer_tree_ref(struct extent_buffer *eb)
2660 {
2661 	int refs;
2662 	/*
2663 	 * The TREE_REF bit is first set when the extent_buffer is added
2664 	 * to the radix tree. It is also reset, if unset, when a new reference
2665 	 * is created by find_extent_buffer.
2666 	 *
2667 	 * It is only cleared in two cases: freeing the last non-tree
2668 	 * reference to the extent_buffer when its STALE bit is set or
2669 	 * calling release_folio when the tree reference is the only reference.
2670 	 *
2671 	 * In both cases, care is taken to ensure that the extent_buffer's
2672 	 * pages are not under io. However, release_folio can be concurrently
2673 	 * called with creating new references, which is prone to race
2674 	 * conditions between the calls to check_buffer_tree_ref in those
2675 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2676 	 *
2677 	 * The actual lifetime of the extent_buffer in the radix tree is
2678 	 * adequately protected by the refcount, but the TREE_REF bit and
2679 	 * its corresponding reference are not. To protect against this
2680 	 * class of races, we call check_buffer_tree_ref from the codepaths
2681 	 * which trigger io. Note that once io is initiated, TREE_REF can no
2682 	 * longer be cleared, so that is the moment at which any such race is
2683 	 * best fixed.
2684 	 */
2685 	refs = atomic_read(&eb->refs);
2686 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2687 		return;
2688 
2689 	spin_lock(&eb->refs_lock);
2690 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2691 		atomic_inc(&eb->refs);
2692 	spin_unlock(&eb->refs_lock);
2693 }
2694 
2695 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2696 {
2697 	int num_folios= num_extent_folios(eb);
2698 
2699 	check_buffer_tree_ref(eb);
2700 
2701 	for (int i = 0; i < num_folios; i++)
2702 		folio_mark_accessed(eb->folios[i]);
2703 }
2704 
2705 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2706 					 u64 start)
2707 {
2708 	struct extent_buffer *eb;
2709 
2710 	eb = find_extent_buffer_nolock(fs_info, start);
2711 	if (!eb)
2712 		return NULL;
2713 	/*
2714 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2715 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2716 	 * another task running free_extent_buffer() might have seen that flag
2717 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2718 	 * writeback flags not set) and it's still in the tree (flag
2719 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2720 	 * decrementing the extent buffer's reference count twice.  So here we
2721 	 * could race and increment the eb's reference count, clear its stale
2722 	 * flag, mark it as dirty and drop our reference before the other task
2723 	 * finishes executing free_extent_buffer, which would later result in
2724 	 * an attempt to free an extent buffer that is dirty.
2725 	 */
2726 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2727 		spin_lock(&eb->refs_lock);
2728 		spin_unlock(&eb->refs_lock);
2729 	}
2730 	mark_extent_buffer_accessed(eb);
2731 	return eb;
2732 }
2733 
2734 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2735 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2736 					u64 start)
2737 {
2738 	struct extent_buffer *eb, *exists = NULL;
2739 	int ret;
2740 
2741 	eb = find_extent_buffer(fs_info, start);
2742 	if (eb)
2743 		return eb;
2744 	eb = alloc_dummy_extent_buffer(fs_info, start);
2745 	if (!eb)
2746 		return ERR_PTR(-ENOMEM);
2747 	eb->fs_info = fs_info;
2748 again:
2749 	ret = radix_tree_preload(GFP_NOFS);
2750 	if (ret) {
2751 		exists = ERR_PTR(ret);
2752 		goto free_eb;
2753 	}
2754 	spin_lock(&fs_info->buffer_lock);
2755 	ret = radix_tree_insert(&fs_info->buffer_radix,
2756 				start >> fs_info->sectorsize_bits, eb);
2757 	spin_unlock(&fs_info->buffer_lock);
2758 	radix_tree_preload_end();
2759 	if (ret == -EEXIST) {
2760 		exists = find_extent_buffer(fs_info, start);
2761 		if (exists)
2762 			goto free_eb;
2763 		else
2764 			goto again;
2765 	}
2766 	check_buffer_tree_ref(eb);
2767 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2768 
2769 	return eb;
2770 free_eb:
2771 	btrfs_release_extent_buffer(eb);
2772 	return exists;
2773 }
2774 #endif
2775 
2776 static struct extent_buffer *grab_extent_buffer(
2777 		struct btrfs_fs_info *fs_info, struct page *page)
2778 {
2779 	struct folio *folio = page_folio(page);
2780 	struct extent_buffer *exists;
2781 
2782 	lockdep_assert_held(&page->mapping->i_private_lock);
2783 
2784 	/*
2785 	 * For subpage case, we completely rely on radix tree to ensure we
2786 	 * don't try to insert two ebs for the same bytenr.  So here we always
2787 	 * return NULL and just continue.
2788 	 */
2789 	if (fs_info->nodesize < PAGE_SIZE)
2790 		return NULL;
2791 
2792 	/* Page not yet attached to an extent buffer */
2793 	if (!folio_test_private(folio))
2794 		return NULL;
2795 
2796 	/*
2797 	 * We could have already allocated an eb for this page and attached one
2798 	 * so lets see if we can get a ref on the existing eb, and if we can we
2799 	 * know it's good and we can just return that one, else we know we can
2800 	 * just overwrite folio private.
2801 	 */
2802 	exists = folio_get_private(folio);
2803 	if (atomic_inc_not_zero(&exists->refs))
2804 		return exists;
2805 
2806 	WARN_ON(PageDirty(page));
2807 	folio_detach_private(folio);
2808 	return NULL;
2809 }
2810 
2811 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2812 {
2813 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2814 		btrfs_err(fs_info, "bad tree block start %llu", start);
2815 		return -EINVAL;
2816 	}
2817 
2818 	if (fs_info->nodesize < PAGE_SIZE &&
2819 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2820 		btrfs_err(fs_info,
2821 		"tree block crosses page boundary, start %llu nodesize %u",
2822 			  start, fs_info->nodesize);
2823 		return -EINVAL;
2824 	}
2825 	if (fs_info->nodesize >= PAGE_SIZE &&
2826 	    !PAGE_ALIGNED(start)) {
2827 		btrfs_err(fs_info,
2828 		"tree block is not page aligned, start %llu nodesize %u",
2829 			  start, fs_info->nodesize);
2830 		return -EINVAL;
2831 	}
2832 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
2833 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2834 		btrfs_warn(fs_info,
2835 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2836 			      start, fs_info->nodesize);
2837 	}
2838 	return 0;
2839 }
2840 
2841 
2842 /*
2843  * Return 0 if eb->folios[i] is attached to btree inode successfully.
2844  * Return >0 if there is already another extent buffer for the range,
2845  * and @found_eb_ret would be updated.
2846  * Return -EAGAIN if the filemap has an existing folio but with different size
2847  * than @eb.
2848  * The caller needs to free the existing folios and retry using the same order.
2849  */
2850 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2851 				      struct btrfs_subpage *prealloc,
2852 				      struct extent_buffer **found_eb_ret)
2853 {
2854 
2855 	struct btrfs_fs_info *fs_info = eb->fs_info;
2856 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
2857 	const unsigned long index = eb->start >> PAGE_SHIFT;
2858 	struct folio *existing_folio = NULL;
2859 	int ret;
2860 
2861 	ASSERT(found_eb_ret);
2862 
2863 	/* Caller should ensure the folio exists. */
2864 	ASSERT(eb->folios[i]);
2865 
2866 retry:
2867 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2868 				GFP_NOFS | __GFP_NOFAIL);
2869 	if (!ret)
2870 		goto finish;
2871 
2872 	existing_folio = filemap_lock_folio(mapping, index + i);
2873 	/* The page cache only exists for a very short time, just retry. */
2874 	if (IS_ERR(existing_folio)) {
2875 		existing_folio = NULL;
2876 		goto retry;
2877 	}
2878 
2879 	/* For now, we should only have single-page folios for btree inode. */
2880 	ASSERT(folio_nr_pages(existing_folio) == 1);
2881 
2882 	if (folio_size(existing_folio) != eb->folio_size) {
2883 		folio_unlock(existing_folio);
2884 		folio_put(existing_folio);
2885 		return -EAGAIN;
2886 	}
2887 
2888 finish:
2889 	spin_lock(&mapping->i_private_lock);
2890 	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
2891 		/* We're going to reuse the existing page, can drop our folio now. */
2892 		__free_page(folio_page(eb->folios[i], 0));
2893 		eb->folios[i] = existing_folio;
2894 	} else if (existing_folio) {
2895 		struct extent_buffer *existing_eb;
2896 
2897 		existing_eb = grab_extent_buffer(fs_info,
2898 						 folio_page(existing_folio, 0));
2899 		if (existing_eb) {
2900 			/* The extent buffer still exists, we can use it directly. */
2901 			*found_eb_ret = existing_eb;
2902 			spin_unlock(&mapping->i_private_lock);
2903 			folio_unlock(existing_folio);
2904 			folio_put(existing_folio);
2905 			return 1;
2906 		}
2907 		/* The extent buffer no longer exists, we can reuse the folio. */
2908 		__free_page(folio_page(eb->folios[i], 0));
2909 		eb->folios[i] = existing_folio;
2910 	}
2911 	eb->folio_size = folio_size(eb->folios[i]);
2912 	eb->folio_shift = folio_shift(eb->folios[i]);
2913 	/* Should not fail, as we have preallocated the memory. */
2914 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
2915 	ASSERT(!ret);
2916 	/*
2917 	 * To inform we have an extra eb under allocation, so that
2918 	 * detach_extent_buffer_page() won't release the folio private when the
2919 	 * eb hasn't been inserted into radix tree yet.
2920 	 *
2921 	 * The ref will be decreased when the eb releases the page, in
2922 	 * detach_extent_buffer_page().  Thus needs no special handling in the
2923 	 * error path.
2924 	 */
2925 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
2926 	spin_unlock(&mapping->i_private_lock);
2927 	return 0;
2928 }
2929 
2930 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2931 					  u64 start, u64 owner_root, int level)
2932 {
2933 	unsigned long len = fs_info->nodesize;
2934 	int num_folios;
2935 	int attached = 0;
2936 	struct extent_buffer *eb;
2937 	struct extent_buffer *existing_eb = NULL;
2938 	struct btrfs_subpage *prealloc = NULL;
2939 	u64 lockdep_owner = owner_root;
2940 	bool page_contig = true;
2941 	int uptodate = 1;
2942 	int ret;
2943 
2944 	if (check_eb_alignment(fs_info, start))
2945 		return ERR_PTR(-EINVAL);
2946 
2947 #if BITS_PER_LONG == 32
2948 	if (start >= MAX_LFS_FILESIZE) {
2949 		btrfs_err_rl(fs_info,
2950 		"extent buffer %llu is beyond 32bit page cache limit", start);
2951 		btrfs_err_32bit_limit(fs_info);
2952 		return ERR_PTR(-EOVERFLOW);
2953 	}
2954 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
2955 		btrfs_warn_32bit_limit(fs_info);
2956 #endif
2957 
2958 	eb = find_extent_buffer(fs_info, start);
2959 	if (eb)
2960 		return eb;
2961 
2962 	eb = __alloc_extent_buffer(fs_info, start, len);
2963 	if (!eb)
2964 		return ERR_PTR(-ENOMEM);
2965 
2966 	/*
2967 	 * The reloc trees are just snapshots, so we need them to appear to be
2968 	 * just like any other fs tree WRT lockdep.
2969 	 */
2970 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
2971 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
2972 
2973 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
2974 
2975 	/*
2976 	 * Preallocate folio private for subpage case, so that we won't
2977 	 * allocate memory with i_private_lock nor page lock hold.
2978 	 *
2979 	 * The memory will be freed by attach_extent_buffer_page() or freed
2980 	 * manually if we exit earlier.
2981 	 */
2982 	if (fs_info->nodesize < PAGE_SIZE) {
2983 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
2984 		if (IS_ERR(prealloc)) {
2985 			ret = PTR_ERR(prealloc);
2986 			goto out;
2987 		}
2988 	}
2989 
2990 reallocate:
2991 	/* Allocate all pages first. */
2992 	ret = alloc_eb_folio_array(eb, true);
2993 	if (ret < 0) {
2994 		btrfs_free_subpage(prealloc);
2995 		goto out;
2996 	}
2997 
2998 	num_folios = num_extent_folios(eb);
2999 	/* Attach all pages to the filemap. */
3000 	for (int i = 0; i < num_folios; i++) {
3001 		struct folio *folio;
3002 
3003 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3004 		if (ret > 0) {
3005 			ASSERT(existing_eb);
3006 			goto out;
3007 		}
3008 
3009 		/*
3010 		 * TODO: Special handling for a corner case where the order of
3011 		 * folios mismatch between the new eb and filemap.
3012 		 *
3013 		 * This happens when:
3014 		 *
3015 		 * - the new eb is using higher order folio
3016 		 *
3017 		 * - the filemap is still using 0-order folios for the range
3018 		 *   This can happen at the previous eb allocation, and we don't
3019 		 *   have higher order folio for the call.
3020 		 *
3021 		 * - the existing eb has already been freed
3022 		 *
3023 		 * In this case, we have to free the existing folios first, and
3024 		 * re-allocate using the same order.
3025 		 * Thankfully this is not going to happen yet, as we're still
3026 		 * using 0-order folios.
3027 		 */
3028 		if (unlikely(ret == -EAGAIN)) {
3029 			ASSERT(0);
3030 			goto reallocate;
3031 		}
3032 		attached++;
3033 
3034 		/*
3035 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3036 		 * reliable, as we may choose to reuse the existing page cache
3037 		 * and free the allocated page.
3038 		 */
3039 		folio = eb->folios[i];
3040 		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3041 
3042 		/*
3043 		 * Check if the current page is physically contiguous with previous eb
3044 		 * page.
3045 		 * At this stage, either we allocated a large folio, thus @i
3046 		 * would only be 0, or we fall back to per-page allocation.
3047 		 */
3048 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3049 			page_contig = false;
3050 
3051 		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3052 			uptodate = 0;
3053 
3054 		/*
3055 		 * We can't unlock the pages just yet since the extent buffer
3056 		 * hasn't been properly inserted in the radix tree, this
3057 		 * opens a race with btree_release_folio which can free a page
3058 		 * while we are still filling in all pages for the buffer and
3059 		 * we could crash.
3060 		 */
3061 	}
3062 	if (uptodate)
3063 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3064 	/* All pages are physically contiguous, can skip cross page handling. */
3065 	if (page_contig)
3066 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3067 again:
3068 	ret = radix_tree_preload(GFP_NOFS);
3069 	if (ret)
3070 		goto out;
3071 
3072 	spin_lock(&fs_info->buffer_lock);
3073 	ret = radix_tree_insert(&fs_info->buffer_radix,
3074 				start >> fs_info->sectorsize_bits, eb);
3075 	spin_unlock(&fs_info->buffer_lock);
3076 	radix_tree_preload_end();
3077 	if (ret == -EEXIST) {
3078 		ret = 0;
3079 		existing_eb = find_extent_buffer(fs_info, start);
3080 		if (existing_eb)
3081 			goto out;
3082 		else
3083 			goto again;
3084 	}
3085 	/* add one reference for the tree */
3086 	check_buffer_tree_ref(eb);
3087 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3088 
3089 	/*
3090 	 * Now it's safe to unlock the pages because any calls to
3091 	 * btree_release_folio will correctly detect that a page belongs to a
3092 	 * live buffer and won't free them prematurely.
3093 	 */
3094 	for (int i = 0; i < num_folios; i++)
3095 		unlock_page(folio_page(eb->folios[i], 0));
3096 	return eb;
3097 
3098 out:
3099 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3100 
3101 	/*
3102 	 * Any attached folios need to be detached before we unlock them.  This
3103 	 * is because when we're inserting our new folios into the mapping, and
3104 	 * then attaching our eb to that folio.  If we fail to insert our folio
3105 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3106 	 * want that to grab this eb, as we're getting ready to free it.  So we
3107 	 * have to detach it first and then unlock it.
3108 	 *
3109 	 * We have to drop our reference and NULL it out here because in the
3110 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3111 	 * Below when we call btrfs_release_extent_buffer() we will call
3112 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3113 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3114 	 * double put our reference and be super sad.
3115 	 */
3116 	for (int i = 0; i < attached; i++) {
3117 		ASSERT(eb->folios[i]);
3118 		detach_extent_buffer_folio(eb, eb->folios[i]);
3119 		unlock_page(folio_page(eb->folios[i], 0));
3120 		folio_put(eb->folios[i]);
3121 		eb->folios[i] = NULL;
3122 	}
3123 	/*
3124 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3125 	 * so it can be cleaned up without utlizing page->mapping.
3126 	 */
3127 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3128 
3129 	btrfs_release_extent_buffer(eb);
3130 	if (ret < 0)
3131 		return ERR_PTR(ret);
3132 	ASSERT(existing_eb);
3133 	return existing_eb;
3134 }
3135 
3136 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3137 {
3138 	struct extent_buffer *eb =
3139 			container_of(head, struct extent_buffer, rcu_head);
3140 
3141 	__free_extent_buffer(eb);
3142 }
3143 
3144 static int release_extent_buffer(struct extent_buffer *eb)
3145 	__releases(&eb->refs_lock)
3146 {
3147 	lockdep_assert_held(&eb->refs_lock);
3148 
3149 	WARN_ON(atomic_read(&eb->refs) == 0);
3150 	if (atomic_dec_and_test(&eb->refs)) {
3151 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3152 			struct btrfs_fs_info *fs_info = eb->fs_info;
3153 
3154 			spin_unlock(&eb->refs_lock);
3155 
3156 			spin_lock(&fs_info->buffer_lock);
3157 			radix_tree_delete(&fs_info->buffer_radix,
3158 					  eb->start >> fs_info->sectorsize_bits);
3159 			spin_unlock(&fs_info->buffer_lock);
3160 		} else {
3161 			spin_unlock(&eb->refs_lock);
3162 		}
3163 
3164 		btrfs_leak_debug_del_eb(eb);
3165 		/* Should be safe to release our pages at this point */
3166 		btrfs_release_extent_buffer_pages(eb);
3167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3168 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3169 			__free_extent_buffer(eb);
3170 			return 1;
3171 		}
3172 #endif
3173 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3174 		return 1;
3175 	}
3176 	spin_unlock(&eb->refs_lock);
3177 
3178 	return 0;
3179 }
3180 
3181 void free_extent_buffer(struct extent_buffer *eb)
3182 {
3183 	int refs;
3184 	if (!eb)
3185 		return;
3186 
3187 	refs = atomic_read(&eb->refs);
3188 	while (1) {
3189 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3190 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3191 			refs == 1))
3192 			break;
3193 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3194 			return;
3195 	}
3196 
3197 	spin_lock(&eb->refs_lock);
3198 	if (atomic_read(&eb->refs) == 2 &&
3199 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3200 	    !extent_buffer_under_io(eb) &&
3201 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3202 		atomic_dec(&eb->refs);
3203 
3204 	/*
3205 	 * I know this is terrible, but it's temporary until we stop tracking
3206 	 * the uptodate bits and such for the extent buffers.
3207 	 */
3208 	release_extent_buffer(eb);
3209 }
3210 
3211 void free_extent_buffer_stale(struct extent_buffer *eb)
3212 {
3213 	if (!eb)
3214 		return;
3215 
3216 	spin_lock(&eb->refs_lock);
3217 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3218 
3219 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3220 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3221 		atomic_dec(&eb->refs);
3222 	release_extent_buffer(eb);
3223 }
3224 
3225 static void btree_clear_folio_dirty(struct folio *folio)
3226 {
3227 	ASSERT(folio_test_dirty(folio));
3228 	ASSERT(folio_test_locked(folio));
3229 	folio_clear_dirty_for_io(folio);
3230 	xa_lock_irq(&folio->mapping->i_pages);
3231 	if (!folio_test_dirty(folio))
3232 		__xa_clear_mark(&folio->mapping->i_pages,
3233 				folio_index(folio), PAGECACHE_TAG_DIRTY);
3234 	xa_unlock_irq(&folio->mapping->i_pages);
3235 }
3236 
3237 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3238 {
3239 	struct btrfs_fs_info *fs_info = eb->fs_info;
3240 	struct folio *folio = eb->folios[0];
3241 	bool last;
3242 
3243 	/* btree_clear_folio_dirty() needs page locked. */
3244 	folio_lock(folio);
3245 	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3246 	if (last)
3247 		btree_clear_folio_dirty(folio);
3248 	folio_unlock(folio);
3249 	WARN_ON(atomic_read(&eb->refs) == 0);
3250 }
3251 
3252 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3253 			      struct extent_buffer *eb)
3254 {
3255 	struct btrfs_fs_info *fs_info = eb->fs_info;
3256 	int num_folios;
3257 
3258 	btrfs_assert_tree_write_locked(eb);
3259 
3260 	if (trans && btrfs_header_generation(eb) != trans->transid)
3261 		return;
3262 
3263 	/*
3264 	 * Instead of clearing the dirty flag off of the buffer, mark it as
3265 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3266 	 * write-ordering in zoned mode, without the need to later re-dirty
3267 	 * the extent_buffer.
3268 	 *
3269 	 * The actual zeroout of the buffer will happen later in
3270 	 * btree_csum_one_bio.
3271 	 */
3272 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3273 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3274 		return;
3275 	}
3276 
3277 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3278 		return;
3279 
3280 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3281 				 fs_info->dirty_metadata_batch);
3282 
3283 	if (eb->fs_info->nodesize < PAGE_SIZE)
3284 		return clear_subpage_extent_buffer_dirty(eb);
3285 
3286 	num_folios = num_extent_folios(eb);
3287 	for (int i = 0; i < num_folios; i++) {
3288 		struct folio *folio = eb->folios[i];
3289 
3290 		if (!folio_test_dirty(folio))
3291 			continue;
3292 		folio_lock(folio);
3293 		btree_clear_folio_dirty(folio);
3294 		folio_unlock(folio);
3295 	}
3296 	WARN_ON(atomic_read(&eb->refs) == 0);
3297 }
3298 
3299 void set_extent_buffer_dirty(struct extent_buffer *eb)
3300 {
3301 	int num_folios;
3302 	bool was_dirty;
3303 
3304 	check_buffer_tree_ref(eb);
3305 
3306 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3307 
3308 	num_folios = num_extent_folios(eb);
3309 	WARN_ON(atomic_read(&eb->refs) == 0);
3310 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3311 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3312 
3313 	if (!was_dirty) {
3314 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3315 
3316 		/*
3317 		 * For subpage case, we can have other extent buffers in the
3318 		 * same page, and in clear_subpage_extent_buffer_dirty() we
3319 		 * have to clear page dirty without subpage lock held.
3320 		 * This can cause race where our page gets dirty cleared after
3321 		 * we just set it.
3322 		 *
3323 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3324 		 * its page for other reasons, we can use page lock to prevent
3325 		 * the above race.
3326 		 */
3327 		if (subpage)
3328 			lock_page(folio_page(eb->folios[0], 0));
3329 		for (int i = 0; i < num_folios; i++)
3330 			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3331 					      eb->start, eb->len);
3332 		if (subpage)
3333 			unlock_page(folio_page(eb->folios[0], 0));
3334 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3335 					 eb->len,
3336 					 eb->fs_info->dirty_metadata_batch);
3337 	}
3338 #ifdef CONFIG_BTRFS_DEBUG
3339 	for (int i = 0; i < num_folios; i++)
3340 		ASSERT(folio_test_dirty(eb->folios[i]));
3341 #endif
3342 }
3343 
3344 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3345 {
3346 	struct btrfs_fs_info *fs_info = eb->fs_info;
3347 	int num_folios = num_extent_folios(eb);
3348 
3349 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3350 	for (int i = 0; i < num_folios; i++) {
3351 		struct folio *folio = eb->folios[i];
3352 
3353 		if (!folio)
3354 			continue;
3355 
3356 		/*
3357 		 * This is special handling for metadata subpage, as regular
3358 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3359 		 */
3360 		if (fs_info->nodesize >= PAGE_SIZE)
3361 			folio_clear_uptodate(folio);
3362 		else
3363 			btrfs_subpage_clear_uptodate(fs_info, folio,
3364 						     eb->start, eb->len);
3365 	}
3366 }
3367 
3368 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3369 {
3370 	struct btrfs_fs_info *fs_info = eb->fs_info;
3371 	int num_folios = num_extent_folios(eb);
3372 
3373 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3374 	for (int i = 0; i < num_folios; i++) {
3375 		struct folio *folio = eb->folios[i];
3376 
3377 		/*
3378 		 * This is special handling for metadata subpage, as regular
3379 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3380 		 */
3381 		if (fs_info->nodesize >= PAGE_SIZE)
3382 			folio_mark_uptodate(folio);
3383 		else
3384 			btrfs_subpage_set_uptodate(fs_info, folio,
3385 						   eb->start, eb->len);
3386 	}
3387 }
3388 
3389 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3390 {
3391 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3392 	smp_mb__after_atomic();
3393 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3394 }
3395 
3396 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3397 {
3398 	struct extent_buffer *eb = bbio->private;
3399 	struct btrfs_fs_info *fs_info = eb->fs_info;
3400 	bool uptodate = !bbio->bio.bi_status;
3401 	struct folio_iter fi;
3402 	u32 bio_offset = 0;
3403 
3404 	/*
3405 	 * If the extent buffer is marked UPTODATE before the read operation
3406 	 * completes, other calls to read_extent_buffer_pages() will return
3407 	 * early without waiting for the read to finish, causing data races.
3408 	 */
3409 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3410 
3411 	eb->read_mirror = bbio->mirror_num;
3412 
3413 	if (uptodate &&
3414 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3415 		uptodate = false;
3416 
3417 	if (uptodate) {
3418 		set_extent_buffer_uptodate(eb);
3419 	} else {
3420 		clear_extent_buffer_uptodate(eb);
3421 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3422 	}
3423 
3424 	bio_for_each_folio_all(fi, &bbio->bio) {
3425 		struct folio *folio = fi.folio;
3426 		u64 start = eb->start + bio_offset;
3427 		u32 len = fi.length;
3428 
3429 		if (uptodate)
3430 			btrfs_folio_set_uptodate(fs_info, folio, start, len);
3431 		else
3432 			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3433 
3434 		bio_offset += len;
3435 	}
3436 
3437 	clear_extent_buffer_reading(eb);
3438 	free_extent_buffer(eb);
3439 
3440 	bio_put(&bbio->bio);
3441 }
3442 
3443 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3444 			     const struct btrfs_tree_parent_check *check)
3445 {
3446 	struct btrfs_bio *bbio;
3447 	bool ret;
3448 
3449 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3450 		return 0;
3451 
3452 	/*
3453 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3454 	 * operation, which could potentially still be in flight.  In this case
3455 	 * we simply want to return an error.
3456 	 */
3457 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3458 		return -EIO;
3459 
3460 	/* Someone else is already reading the buffer, just wait for it. */
3461 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3462 		goto done;
3463 
3464 	/*
3465 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3466 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3467 	 * started and finished reading the same eb.  In this case, UPTODATE
3468 	 * will now be set, and we shouldn't read it in again.
3469 	 */
3470 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3471 		clear_extent_buffer_reading(eb);
3472 		return 0;
3473 	}
3474 
3475 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3476 	eb->read_mirror = 0;
3477 	check_buffer_tree_ref(eb);
3478 	atomic_inc(&eb->refs);
3479 
3480 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3481 			       REQ_OP_READ | REQ_META, eb->fs_info,
3482 			       end_bbio_meta_read, eb);
3483 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3484 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3485 	bbio->file_offset = eb->start;
3486 	memcpy(&bbio->parent_check, check, sizeof(*check));
3487 	if (eb->fs_info->nodesize < PAGE_SIZE) {
3488 		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3489 				    eb->start - folio_pos(eb->folios[0]));
3490 		ASSERT(ret);
3491 	} else {
3492 		int num_folios = num_extent_folios(eb);
3493 
3494 		for (int i = 0; i < num_folios; i++) {
3495 			struct folio *folio = eb->folios[i];
3496 
3497 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3498 			ASSERT(ret);
3499 		}
3500 	}
3501 	btrfs_submit_bbio(bbio, mirror_num);
3502 
3503 done:
3504 	if (wait == WAIT_COMPLETE) {
3505 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3506 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3507 			return -EIO;
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3514 			    unsigned long len)
3515 {
3516 	btrfs_warn(eb->fs_info,
3517 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3518 		eb->start, eb->len, start, len);
3519 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3520 
3521 	return true;
3522 }
3523 
3524 /*
3525  * Check if the [start, start + len) range is valid before reading/writing
3526  * the eb.
3527  * NOTE: @start and @len are offset inside the eb, not logical address.
3528  *
3529  * Caller should not touch the dst/src memory if this function returns error.
3530  */
3531 static inline int check_eb_range(const struct extent_buffer *eb,
3532 				 unsigned long start, unsigned long len)
3533 {
3534 	unsigned long offset;
3535 
3536 	/* start, start + len should not go beyond eb->len nor overflow */
3537 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3538 		return report_eb_range(eb, start, len);
3539 
3540 	return false;
3541 }
3542 
3543 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3544 			unsigned long start, unsigned long len)
3545 {
3546 	const int unit_size = eb->folio_size;
3547 	size_t cur;
3548 	size_t offset;
3549 	char *dst = (char *)dstv;
3550 	unsigned long i = get_eb_folio_index(eb, start);
3551 
3552 	if (check_eb_range(eb, start, len)) {
3553 		/*
3554 		 * Invalid range hit, reset the memory, so callers won't get
3555 		 * some random garbage for their uninitialized memory.
3556 		 */
3557 		memset(dstv, 0, len);
3558 		return;
3559 	}
3560 
3561 	if (eb->addr) {
3562 		memcpy(dstv, eb->addr + start, len);
3563 		return;
3564 	}
3565 
3566 	offset = get_eb_offset_in_folio(eb, start);
3567 
3568 	while (len > 0) {
3569 		char *kaddr;
3570 
3571 		cur = min(len, unit_size - offset);
3572 		kaddr = folio_address(eb->folios[i]);
3573 		memcpy(dst, kaddr + offset, cur);
3574 
3575 		dst += cur;
3576 		len -= cur;
3577 		offset = 0;
3578 		i++;
3579 	}
3580 }
3581 
3582 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3583 				       void __user *dstv,
3584 				       unsigned long start, unsigned long len)
3585 {
3586 	const int unit_size = eb->folio_size;
3587 	size_t cur;
3588 	size_t offset;
3589 	char __user *dst = (char __user *)dstv;
3590 	unsigned long i = get_eb_folio_index(eb, start);
3591 	int ret = 0;
3592 
3593 	WARN_ON(start > eb->len);
3594 	WARN_ON(start + len > eb->start + eb->len);
3595 
3596 	if (eb->addr) {
3597 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3598 			ret = -EFAULT;
3599 		return ret;
3600 	}
3601 
3602 	offset = get_eb_offset_in_folio(eb, start);
3603 
3604 	while (len > 0) {
3605 		char *kaddr;
3606 
3607 		cur = min(len, unit_size - offset);
3608 		kaddr = folio_address(eb->folios[i]);
3609 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3610 			ret = -EFAULT;
3611 			break;
3612 		}
3613 
3614 		dst += cur;
3615 		len -= cur;
3616 		offset = 0;
3617 		i++;
3618 	}
3619 
3620 	return ret;
3621 }
3622 
3623 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3624 			 unsigned long start, unsigned long len)
3625 {
3626 	const int unit_size = eb->folio_size;
3627 	size_t cur;
3628 	size_t offset;
3629 	char *kaddr;
3630 	char *ptr = (char *)ptrv;
3631 	unsigned long i = get_eb_folio_index(eb, start);
3632 	int ret = 0;
3633 
3634 	if (check_eb_range(eb, start, len))
3635 		return -EINVAL;
3636 
3637 	if (eb->addr)
3638 		return memcmp(ptrv, eb->addr + start, len);
3639 
3640 	offset = get_eb_offset_in_folio(eb, start);
3641 
3642 	while (len > 0) {
3643 		cur = min(len, unit_size - offset);
3644 		kaddr = folio_address(eb->folios[i]);
3645 		ret = memcmp(ptr, kaddr + offset, cur);
3646 		if (ret)
3647 			break;
3648 
3649 		ptr += cur;
3650 		len -= cur;
3651 		offset = 0;
3652 		i++;
3653 	}
3654 	return ret;
3655 }
3656 
3657 /*
3658  * Check that the extent buffer is uptodate.
3659  *
3660  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3661  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3662  */
3663 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3664 {
3665 	struct btrfs_fs_info *fs_info = eb->fs_info;
3666 	struct folio *folio = eb->folios[i];
3667 
3668 	ASSERT(folio);
3669 
3670 	/*
3671 	 * If we are using the commit root we could potentially clear a page
3672 	 * Uptodate while we're using the extent buffer that we've previously
3673 	 * looked up.  We don't want to complain in this case, as the page was
3674 	 * valid before, we just didn't write it out.  Instead we want to catch
3675 	 * the case where we didn't actually read the block properly, which
3676 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3677 	 */
3678 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3679 		return;
3680 
3681 	if (fs_info->nodesize < PAGE_SIZE) {
3682 		folio = eb->folios[0];
3683 		ASSERT(i == 0);
3684 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3685 							 eb->start, eb->len)))
3686 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3687 	} else {
3688 		WARN_ON(!folio_test_uptodate(folio));
3689 	}
3690 }
3691 
3692 static void __write_extent_buffer(const struct extent_buffer *eb,
3693 				  const void *srcv, unsigned long start,
3694 				  unsigned long len, bool use_memmove)
3695 {
3696 	const int unit_size = eb->folio_size;
3697 	size_t cur;
3698 	size_t offset;
3699 	char *kaddr;
3700 	const char *src = (const char *)srcv;
3701 	unsigned long i = get_eb_folio_index(eb, start);
3702 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3703 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3704 
3705 	if (check_eb_range(eb, start, len))
3706 		return;
3707 
3708 	if (eb->addr) {
3709 		if (use_memmove)
3710 			memmove(eb->addr + start, srcv, len);
3711 		else
3712 			memcpy(eb->addr + start, srcv, len);
3713 		return;
3714 	}
3715 
3716 	offset = get_eb_offset_in_folio(eb, start);
3717 
3718 	while (len > 0) {
3719 		if (check_uptodate)
3720 			assert_eb_folio_uptodate(eb, i);
3721 
3722 		cur = min(len, unit_size - offset);
3723 		kaddr = folio_address(eb->folios[i]);
3724 		if (use_memmove)
3725 			memmove(kaddr + offset, src, cur);
3726 		else
3727 			memcpy(kaddr + offset, src, cur);
3728 
3729 		src += cur;
3730 		len -= cur;
3731 		offset = 0;
3732 		i++;
3733 	}
3734 }
3735 
3736 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3737 			 unsigned long start, unsigned long len)
3738 {
3739 	return __write_extent_buffer(eb, srcv, start, len, false);
3740 }
3741 
3742 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3743 				 unsigned long start, unsigned long len)
3744 {
3745 	const int unit_size = eb->folio_size;
3746 	unsigned long cur = start;
3747 
3748 	if (eb->addr) {
3749 		memset(eb->addr + start, c, len);
3750 		return;
3751 	}
3752 
3753 	while (cur < start + len) {
3754 		unsigned long index = get_eb_folio_index(eb, cur);
3755 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
3756 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
3757 
3758 		assert_eb_folio_uptodate(eb, index);
3759 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3760 
3761 		cur += cur_len;
3762 	}
3763 }
3764 
3765 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3766 			   unsigned long len)
3767 {
3768 	if (check_eb_range(eb, start, len))
3769 		return;
3770 	return memset_extent_buffer(eb, 0, start, len);
3771 }
3772 
3773 void copy_extent_buffer_full(const struct extent_buffer *dst,
3774 			     const struct extent_buffer *src)
3775 {
3776 	const int unit_size = src->folio_size;
3777 	unsigned long cur = 0;
3778 
3779 	ASSERT(dst->len == src->len);
3780 
3781 	while (cur < src->len) {
3782 		unsigned long index = get_eb_folio_index(src, cur);
3783 		unsigned long offset = get_eb_offset_in_folio(src, cur);
3784 		unsigned long cur_len = min(src->len, unit_size - offset);
3785 		void *addr = folio_address(src->folios[index]) + offset;
3786 
3787 		write_extent_buffer(dst, addr, cur, cur_len);
3788 
3789 		cur += cur_len;
3790 	}
3791 }
3792 
3793 void copy_extent_buffer(const struct extent_buffer *dst,
3794 			const struct extent_buffer *src,
3795 			unsigned long dst_offset, unsigned long src_offset,
3796 			unsigned long len)
3797 {
3798 	const int unit_size = dst->folio_size;
3799 	u64 dst_len = dst->len;
3800 	size_t cur;
3801 	size_t offset;
3802 	char *kaddr;
3803 	unsigned long i = get_eb_folio_index(dst, dst_offset);
3804 
3805 	if (check_eb_range(dst, dst_offset, len) ||
3806 	    check_eb_range(src, src_offset, len))
3807 		return;
3808 
3809 	WARN_ON(src->len != dst_len);
3810 
3811 	offset = get_eb_offset_in_folio(dst, dst_offset);
3812 
3813 	while (len > 0) {
3814 		assert_eb_folio_uptodate(dst, i);
3815 
3816 		cur = min(len, (unsigned long)(unit_size - offset));
3817 
3818 		kaddr = folio_address(dst->folios[i]);
3819 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3820 
3821 		src_offset += cur;
3822 		len -= cur;
3823 		offset = 0;
3824 		i++;
3825 	}
3826 }
3827 
3828 /*
3829  * Calculate the folio and offset of the byte containing the given bit number.
3830  *
3831  * @eb:           the extent buffer
3832  * @start:        offset of the bitmap item in the extent buffer
3833  * @nr:           bit number
3834  * @folio_index:  return index of the folio in the extent buffer that contains
3835  *                the given bit number
3836  * @folio_offset: return offset into the folio given by folio_index
3837  *
3838  * This helper hides the ugliness of finding the byte in an extent buffer which
3839  * contains a given bit.
3840  */
3841 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3842 				    unsigned long start, unsigned long nr,
3843 				    unsigned long *folio_index,
3844 				    size_t *folio_offset)
3845 {
3846 	size_t byte_offset = BIT_BYTE(nr);
3847 	size_t offset;
3848 
3849 	/*
3850 	 * The byte we want is the offset of the extent buffer + the offset of
3851 	 * the bitmap item in the extent buffer + the offset of the byte in the
3852 	 * bitmap item.
3853 	 */
3854 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3855 
3856 	*folio_index = offset >> eb->folio_shift;
3857 	*folio_offset = offset_in_eb_folio(eb, offset);
3858 }
3859 
3860 /*
3861  * Determine whether a bit in a bitmap item is set.
3862  *
3863  * @eb:     the extent buffer
3864  * @start:  offset of the bitmap item in the extent buffer
3865  * @nr:     bit number to test
3866  */
3867 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3868 			   unsigned long nr)
3869 {
3870 	unsigned long i;
3871 	size_t offset;
3872 	u8 *kaddr;
3873 
3874 	eb_bitmap_offset(eb, start, nr, &i, &offset);
3875 	assert_eb_folio_uptodate(eb, i);
3876 	kaddr = folio_address(eb->folios[i]);
3877 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3878 }
3879 
3880 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3881 {
3882 	unsigned long index = get_eb_folio_index(eb, bytenr);
3883 
3884 	if (check_eb_range(eb, bytenr, 1))
3885 		return NULL;
3886 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
3887 }
3888 
3889 /*
3890  * Set an area of a bitmap to 1.
3891  *
3892  * @eb:     the extent buffer
3893  * @start:  offset of the bitmap item in the extent buffer
3894  * @pos:    bit number of the first bit
3895  * @len:    number of bits to set
3896  */
3897 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3898 			      unsigned long pos, unsigned long len)
3899 {
3900 	unsigned int first_byte = start + BIT_BYTE(pos);
3901 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
3902 	const bool same_byte = (first_byte == last_byte);
3903 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
3904 	u8 *kaddr;
3905 
3906 	if (same_byte)
3907 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3908 
3909 	/* Handle the first byte. */
3910 	kaddr = extent_buffer_get_byte(eb, first_byte);
3911 	*kaddr |= mask;
3912 	if (same_byte)
3913 		return;
3914 
3915 	/* Handle the byte aligned part. */
3916 	ASSERT(first_byte + 1 <= last_byte);
3917 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
3918 
3919 	/* Handle the last byte. */
3920 	kaddr = extent_buffer_get_byte(eb, last_byte);
3921 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
3922 }
3923 
3924 
3925 /*
3926  * Clear an area of a bitmap.
3927  *
3928  * @eb:     the extent buffer
3929  * @start:  offset of the bitmap item in the extent buffer
3930  * @pos:    bit number of the first bit
3931  * @len:    number of bits to clear
3932  */
3933 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
3934 				unsigned long start, unsigned long pos,
3935 				unsigned long len)
3936 {
3937 	unsigned int first_byte = start + BIT_BYTE(pos);
3938 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
3939 	const bool same_byte = (first_byte == last_byte);
3940 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
3941 	u8 *kaddr;
3942 
3943 	if (same_byte)
3944 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3945 
3946 	/* Handle the first byte. */
3947 	kaddr = extent_buffer_get_byte(eb, first_byte);
3948 	*kaddr &= ~mask;
3949 	if (same_byte)
3950 		return;
3951 
3952 	/* Handle the byte aligned part. */
3953 	ASSERT(first_byte + 1 <= last_byte);
3954 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
3955 
3956 	/* Handle the last byte. */
3957 	kaddr = extent_buffer_get_byte(eb, last_byte);
3958 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
3959 }
3960 
3961 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3962 {
3963 	unsigned long distance = (src > dst) ? src - dst : dst - src;
3964 	return distance < len;
3965 }
3966 
3967 void memcpy_extent_buffer(const struct extent_buffer *dst,
3968 			  unsigned long dst_offset, unsigned long src_offset,
3969 			  unsigned long len)
3970 {
3971 	const int unit_size = dst->folio_size;
3972 	unsigned long cur_off = 0;
3973 
3974 	if (check_eb_range(dst, dst_offset, len) ||
3975 	    check_eb_range(dst, src_offset, len))
3976 		return;
3977 
3978 	if (dst->addr) {
3979 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
3980 
3981 		if (use_memmove)
3982 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
3983 		else
3984 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
3985 		return;
3986 	}
3987 
3988 	while (cur_off < len) {
3989 		unsigned long cur_src = cur_off + src_offset;
3990 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
3991 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
3992 		unsigned long cur_len = min(src_offset + len - cur_src,
3993 					    unit_size - folio_off);
3994 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
3995 		const bool use_memmove = areas_overlap(src_offset + cur_off,
3996 						       dst_offset + cur_off, cur_len);
3997 
3998 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
3999 				      use_memmove);
4000 		cur_off += cur_len;
4001 	}
4002 }
4003 
4004 void memmove_extent_buffer(const struct extent_buffer *dst,
4005 			   unsigned long dst_offset, unsigned long src_offset,
4006 			   unsigned long len)
4007 {
4008 	unsigned long dst_end = dst_offset + len - 1;
4009 	unsigned long src_end = src_offset + len - 1;
4010 
4011 	if (check_eb_range(dst, dst_offset, len) ||
4012 	    check_eb_range(dst, src_offset, len))
4013 		return;
4014 
4015 	if (dst_offset < src_offset) {
4016 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4017 		return;
4018 	}
4019 
4020 	if (dst->addr) {
4021 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4022 		return;
4023 	}
4024 
4025 	while (len > 0) {
4026 		unsigned long src_i;
4027 		size_t cur;
4028 		size_t dst_off_in_folio;
4029 		size_t src_off_in_folio;
4030 		void *src_addr;
4031 		bool use_memmove;
4032 
4033 		src_i = get_eb_folio_index(dst, src_end);
4034 
4035 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4036 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4037 
4038 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4039 		cur = min(cur, dst_off_in_folio + 1);
4040 
4041 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4042 					 cur + 1;
4043 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4044 					    cur);
4045 
4046 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4047 				      use_memmove);
4048 
4049 		dst_end -= cur;
4050 		src_end -= cur;
4051 		len -= cur;
4052 	}
4053 }
4054 
4055 #define GANG_LOOKUP_SIZE	16
4056 static struct extent_buffer *get_next_extent_buffer(
4057 		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4058 {
4059 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4060 	struct extent_buffer *found = NULL;
4061 	u64 folio_start = folio_pos(folio);
4062 	u64 cur = folio_start;
4063 
4064 	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4065 	lockdep_assert_held(&fs_info->buffer_lock);
4066 
4067 	while (cur < folio_start + PAGE_SIZE) {
4068 		int ret;
4069 		int i;
4070 
4071 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4072 				(void **)gang, cur >> fs_info->sectorsize_bits,
4073 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4074 				      PAGE_SIZE / fs_info->nodesize));
4075 		if (ret == 0)
4076 			goto out;
4077 		for (i = 0; i < ret; i++) {
4078 			/* Already beyond page end */
4079 			if (gang[i]->start >= folio_start + PAGE_SIZE)
4080 				goto out;
4081 			/* Found one */
4082 			if (gang[i]->start >= bytenr) {
4083 				found = gang[i];
4084 				goto out;
4085 			}
4086 		}
4087 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4088 	}
4089 out:
4090 	return found;
4091 }
4092 
4093 static int try_release_subpage_extent_buffer(struct folio *folio)
4094 {
4095 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4096 	u64 cur = folio_pos(folio);
4097 	const u64 end = cur + PAGE_SIZE;
4098 	int ret;
4099 
4100 	while (cur < end) {
4101 		struct extent_buffer *eb = NULL;
4102 
4103 		/*
4104 		 * Unlike try_release_extent_buffer() which uses folio private
4105 		 * to grab buffer, for subpage case we rely on radix tree, thus
4106 		 * we need to ensure radix tree consistency.
4107 		 *
4108 		 * We also want an atomic snapshot of the radix tree, thus go
4109 		 * with spinlock rather than RCU.
4110 		 */
4111 		spin_lock(&fs_info->buffer_lock);
4112 		eb = get_next_extent_buffer(fs_info, folio, cur);
4113 		if (!eb) {
4114 			/* No more eb in the page range after or at cur */
4115 			spin_unlock(&fs_info->buffer_lock);
4116 			break;
4117 		}
4118 		cur = eb->start + eb->len;
4119 
4120 		/*
4121 		 * The same as try_release_extent_buffer(), to ensure the eb
4122 		 * won't disappear out from under us.
4123 		 */
4124 		spin_lock(&eb->refs_lock);
4125 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4126 			spin_unlock(&eb->refs_lock);
4127 			spin_unlock(&fs_info->buffer_lock);
4128 			break;
4129 		}
4130 		spin_unlock(&fs_info->buffer_lock);
4131 
4132 		/*
4133 		 * If tree ref isn't set then we know the ref on this eb is a
4134 		 * real ref, so just return, this eb will likely be freed soon
4135 		 * anyway.
4136 		 */
4137 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4138 			spin_unlock(&eb->refs_lock);
4139 			break;
4140 		}
4141 
4142 		/*
4143 		 * Here we don't care about the return value, we will always
4144 		 * check the folio private at the end.  And
4145 		 * release_extent_buffer() will release the refs_lock.
4146 		 */
4147 		release_extent_buffer(eb);
4148 	}
4149 	/*
4150 	 * Finally to check if we have cleared folio private, as if we have
4151 	 * released all ebs in the page, the folio private should be cleared now.
4152 	 */
4153 	spin_lock(&folio->mapping->i_private_lock);
4154 	if (!folio_test_private(folio))
4155 		ret = 1;
4156 	else
4157 		ret = 0;
4158 	spin_unlock(&folio->mapping->i_private_lock);
4159 	return ret;
4160 
4161 }
4162 
4163 int try_release_extent_buffer(struct folio *folio)
4164 {
4165 	struct extent_buffer *eb;
4166 
4167 	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4168 		return try_release_subpage_extent_buffer(folio);
4169 
4170 	/*
4171 	 * We need to make sure nobody is changing folio private, as we rely on
4172 	 * folio private as the pointer to extent buffer.
4173 	 */
4174 	spin_lock(&folio->mapping->i_private_lock);
4175 	if (!folio_test_private(folio)) {
4176 		spin_unlock(&folio->mapping->i_private_lock);
4177 		return 1;
4178 	}
4179 
4180 	eb = folio_get_private(folio);
4181 	BUG_ON(!eb);
4182 
4183 	/*
4184 	 * This is a little awful but should be ok, we need to make sure that
4185 	 * the eb doesn't disappear out from under us while we're looking at
4186 	 * this page.
4187 	 */
4188 	spin_lock(&eb->refs_lock);
4189 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4190 		spin_unlock(&eb->refs_lock);
4191 		spin_unlock(&folio->mapping->i_private_lock);
4192 		return 0;
4193 	}
4194 	spin_unlock(&folio->mapping->i_private_lock);
4195 
4196 	/*
4197 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4198 	 * so just return, this page will likely be freed soon anyway.
4199 	 */
4200 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4201 		spin_unlock(&eb->refs_lock);
4202 		return 0;
4203 	}
4204 
4205 	return release_extent_buffer(eb);
4206 }
4207 
4208 /*
4209  * Attempt to readahead a child block.
4210  *
4211  * @fs_info:	the fs_info
4212  * @bytenr:	bytenr to read
4213  * @owner_root: objectid of the root that owns this eb
4214  * @gen:	generation for the uptodate check, can be 0
4215  * @level:	level for the eb
4216  *
4217  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4218  * normal uptodate check of the eb, without checking the generation.  If we have
4219  * to read the block we will not block on anything.
4220  */
4221 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4222 				u64 bytenr, u64 owner_root, u64 gen, int level)
4223 {
4224 	struct btrfs_tree_parent_check check = {
4225 		.has_first_key = 0,
4226 		.level = level,
4227 		.transid = gen
4228 	};
4229 	struct extent_buffer *eb;
4230 	int ret;
4231 
4232 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4233 	if (IS_ERR(eb))
4234 		return;
4235 
4236 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4237 		free_extent_buffer(eb);
4238 		return;
4239 	}
4240 
4241 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4242 	if (ret < 0)
4243 		free_extent_buffer_stale(eb);
4244 	else
4245 		free_extent_buffer(eb);
4246 }
4247 
4248 /*
4249  * Readahead a node's child block.
4250  *
4251  * @node:	parent node we're reading from
4252  * @slot:	slot in the parent node for the child we want to read
4253  *
4254  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4255  * the slot in the node provided.
4256  */
4257 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4258 {
4259 	btrfs_readahead_tree_block(node->fs_info,
4260 				   btrfs_node_blockptr(node, slot),
4261 				   btrfs_header_owner(node),
4262 				   btrfs_node_ptr_generation(node, slot),
4263 				   btrfs_header_level(node) - 1);
4264 }
4265