1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 34 static struct kmem_cache *extent_buffer_cache; 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 38 { 39 struct btrfs_fs_info *fs_info = eb->fs_info; 40 unsigned long flags; 41 42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 43 list_add(&eb->leak_list, &fs_info->allocated_ebs); 44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 45 } 46 47 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 48 { 49 struct btrfs_fs_info *fs_info = eb->fs_info; 50 unsigned long flags; 51 52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 53 list_del(&eb->leak_list); 54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 55 } 56 57 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 58 { 59 struct extent_buffer *eb; 60 unsigned long flags; 61 62 /* 63 * If we didn't get into open_ctree our allocated_ebs will not be 64 * initialized, so just skip this. 65 */ 66 if (!fs_info->allocated_ebs.next) 67 return; 68 69 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 71 while (!list_empty(&fs_info->allocated_ebs)) { 72 eb = list_first_entry(&fs_info->allocated_ebs, 73 struct extent_buffer, leak_list); 74 pr_err( 75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 77 btrfs_header_owner(eb)); 78 list_del(&eb->leak_list); 79 kmem_cache_free(extent_buffer_cache, eb); 80 } 81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 82 } 83 #else 84 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 85 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 86 #endif 87 88 /* 89 * Structure to record info about the bio being assembled, and other info like 90 * how many bytes are there before stripe/ordered extent boundary. 91 */ 92 struct btrfs_bio_ctrl { 93 struct bio *bio; 94 int mirror_num; 95 enum btrfs_compression_type compress_type; 96 u32 len_to_stripe_boundary; 97 u32 len_to_oe_boundary; 98 btrfs_bio_end_io_t end_io_func; 99 }; 100 101 struct extent_page_data { 102 struct btrfs_bio_ctrl bio_ctrl; 103 /* tells writepage not to lock the state bits for this range 104 * it still does the unlocking 105 */ 106 unsigned int extent_locked:1; 107 108 /* tells the submit_bio code to use REQ_SYNC */ 109 unsigned int sync_io:1; 110 }; 111 112 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 113 { 114 struct bio *bio; 115 struct bio_vec *bv; 116 struct inode *inode; 117 int mirror_num; 118 119 if (!bio_ctrl->bio) 120 return; 121 122 bio = bio_ctrl->bio; 123 bv = bio_first_bvec_all(bio); 124 inode = bv->bv_page->mapping->host; 125 mirror_num = bio_ctrl->mirror_num; 126 127 /* Caller should ensure the bio has at least some range added */ 128 ASSERT(bio->bi_iter.bi_size); 129 130 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; 131 132 if (!is_data_inode(inode)) 133 btrfs_submit_metadata_bio(inode, bio, mirror_num); 134 else if (btrfs_op(bio) == BTRFS_MAP_WRITE) 135 btrfs_submit_data_write_bio(inode, bio, mirror_num); 136 else 137 btrfs_submit_data_read_bio(inode, bio, mirror_num, 138 bio_ctrl->compress_type); 139 140 /* The bio is owned by the end_io handler now */ 141 bio_ctrl->bio = NULL; 142 } 143 144 /* 145 * Submit or fail the current bio in an extent_page_data structure. 146 */ 147 static void submit_write_bio(struct extent_page_data *epd, int ret) 148 { 149 struct bio *bio = epd->bio_ctrl.bio; 150 151 if (!bio) 152 return; 153 154 if (ret) { 155 ASSERT(ret < 0); 156 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 157 /* The bio is owned by the end_io handler now */ 158 epd->bio_ctrl.bio = NULL; 159 } else { 160 submit_one_bio(&epd->bio_ctrl); 161 } 162 } 163 164 int __init extent_buffer_init_cachep(void) 165 { 166 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 167 sizeof(struct extent_buffer), 0, 168 SLAB_MEM_SPREAD, NULL); 169 if (!extent_buffer_cache) 170 return -ENOMEM; 171 172 return 0; 173 } 174 175 void __cold extent_buffer_free_cachep(void) 176 { 177 /* 178 * Make sure all delayed rcu free are flushed before we 179 * destroy caches. 180 */ 181 rcu_barrier(); 182 kmem_cache_destroy(extent_buffer_cache); 183 } 184 185 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 186 { 187 unsigned long index = start >> PAGE_SHIFT; 188 unsigned long end_index = end >> PAGE_SHIFT; 189 struct page *page; 190 191 while (index <= end_index) { 192 page = find_get_page(inode->i_mapping, index); 193 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 194 clear_page_dirty_for_io(page); 195 put_page(page); 196 index++; 197 } 198 } 199 200 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 201 { 202 struct address_space *mapping = inode->i_mapping; 203 unsigned long index = start >> PAGE_SHIFT; 204 unsigned long end_index = end >> PAGE_SHIFT; 205 struct folio *folio; 206 207 while (index <= end_index) { 208 folio = filemap_get_folio(mapping, index); 209 filemap_dirty_folio(mapping, folio); 210 folio_account_redirty(folio); 211 index += folio_nr_pages(folio); 212 folio_put(folio); 213 } 214 } 215 216 /* 217 * Process one page for __process_pages_contig(). 218 * 219 * Return >0 if we hit @page == @locked_page. 220 * Return 0 if we updated the page status. 221 * Return -EGAIN if the we need to try again. 222 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 223 */ 224 static int process_one_page(struct btrfs_fs_info *fs_info, 225 struct address_space *mapping, 226 struct page *page, struct page *locked_page, 227 unsigned long page_ops, u64 start, u64 end) 228 { 229 u32 len; 230 231 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 232 len = end + 1 - start; 233 234 if (page_ops & PAGE_SET_ORDERED) 235 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 236 if (page_ops & PAGE_SET_ERROR) 237 btrfs_page_clamp_set_error(fs_info, page, start, len); 238 if (page_ops & PAGE_START_WRITEBACK) { 239 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 240 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 241 } 242 if (page_ops & PAGE_END_WRITEBACK) 243 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 244 245 if (page == locked_page) 246 return 1; 247 248 if (page_ops & PAGE_LOCK) { 249 int ret; 250 251 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 252 if (ret) 253 return ret; 254 if (!PageDirty(page) || page->mapping != mapping) { 255 btrfs_page_end_writer_lock(fs_info, page, start, len); 256 return -EAGAIN; 257 } 258 } 259 if (page_ops & PAGE_UNLOCK) 260 btrfs_page_end_writer_lock(fs_info, page, start, len); 261 return 0; 262 } 263 264 static int __process_pages_contig(struct address_space *mapping, 265 struct page *locked_page, 266 u64 start, u64 end, unsigned long page_ops, 267 u64 *processed_end) 268 { 269 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 270 pgoff_t start_index = start >> PAGE_SHIFT; 271 pgoff_t end_index = end >> PAGE_SHIFT; 272 pgoff_t index = start_index; 273 unsigned long nr_pages = end_index - start_index + 1; 274 unsigned long pages_processed = 0; 275 struct page *pages[16]; 276 int err = 0; 277 int i; 278 279 if (page_ops & PAGE_LOCK) { 280 ASSERT(page_ops == PAGE_LOCK); 281 ASSERT(processed_end && *processed_end == start); 282 } 283 284 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 285 mapping_set_error(mapping, -EIO); 286 287 while (nr_pages > 0) { 288 int found_pages; 289 290 found_pages = find_get_pages_contig(mapping, index, 291 min_t(unsigned long, 292 nr_pages, ARRAY_SIZE(pages)), pages); 293 if (found_pages == 0) { 294 /* 295 * Only if we're going to lock these pages, we can find 296 * nothing at @index. 297 */ 298 ASSERT(page_ops & PAGE_LOCK); 299 err = -EAGAIN; 300 goto out; 301 } 302 303 for (i = 0; i < found_pages; i++) { 304 int process_ret; 305 306 process_ret = process_one_page(fs_info, mapping, 307 pages[i], locked_page, page_ops, 308 start, end); 309 if (process_ret < 0) { 310 for (; i < found_pages; i++) 311 put_page(pages[i]); 312 err = -EAGAIN; 313 goto out; 314 } 315 put_page(pages[i]); 316 pages_processed++; 317 } 318 nr_pages -= found_pages; 319 index += found_pages; 320 cond_resched(); 321 } 322 out: 323 if (err && processed_end) { 324 /* 325 * Update @processed_end. I know this is awful since it has 326 * two different return value patterns (inclusive vs exclusive). 327 * 328 * But the exclusive pattern is necessary if @start is 0, or we 329 * underflow and check against processed_end won't work as 330 * expected. 331 */ 332 if (pages_processed) 333 *processed_end = min(end, 334 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 335 else 336 *processed_end = start; 337 } 338 return err; 339 } 340 341 static noinline void __unlock_for_delalloc(struct inode *inode, 342 struct page *locked_page, 343 u64 start, u64 end) 344 { 345 unsigned long index = start >> PAGE_SHIFT; 346 unsigned long end_index = end >> PAGE_SHIFT; 347 348 ASSERT(locked_page); 349 if (index == locked_page->index && end_index == index) 350 return; 351 352 __process_pages_contig(inode->i_mapping, locked_page, start, end, 353 PAGE_UNLOCK, NULL); 354 } 355 356 static noinline int lock_delalloc_pages(struct inode *inode, 357 struct page *locked_page, 358 u64 delalloc_start, 359 u64 delalloc_end) 360 { 361 unsigned long index = delalloc_start >> PAGE_SHIFT; 362 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 363 u64 processed_end = delalloc_start; 364 int ret; 365 366 ASSERT(locked_page); 367 if (index == locked_page->index && index == end_index) 368 return 0; 369 370 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 371 delalloc_end, PAGE_LOCK, &processed_end); 372 if (ret == -EAGAIN && processed_end > delalloc_start) 373 __unlock_for_delalloc(inode, locked_page, delalloc_start, 374 processed_end); 375 return ret; 376 } 377 378 /* 379 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 380 * more than @max_bytes. 381 * 382 * @start: The original start bytenr to search. 383 * Will store the extent range start bytenr. 384 * @end: The original end bytenr of the search range 385 * Will store the extent range end bytenr. 386 * 387 * Return true if we find a delalloc range which starts inside the original 388 * range, and @start/@end will store the delalloc range start/end. 389 * 390 * Return false if we can't find any delalloc range which starts inside the 391 * original range, and @start/@end will be the non-delalloc range start/end. 392 */ 393 EXPORT_FOR_TESTS 394 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 395 struct page *locked_page, u64 *start, 396 u64 *end) 397 { 398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 399 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 400 const u64 orig_start = *start; 401 const u64 orig_end = *end; 402 /* The sanity tests may not set a valid fs_info. */ 403 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 404 u64 delalloc_start; 405 u64 delalloc_end; 406 bool found; 407 struct extent_state *cached_state = NULL; 408 int ret; 409 int loops = 0; 410 411 /* Caller should pass a valid @end to indicate the search range end */ 412 ASSERT(orig_end > orig_start); 413 414 /* The range should at least cover part of the page */ 415 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 416 orig_end <= page_offset(locked_page))); 417 again: 418 /* step one, find a bunch of delalloc bytes starting at start */ 419 delalloc_start = *start; 420 delalloc_end = 0; 421 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 422 max_bytes, &cached_state); 423 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 424 *start = delalloc_start; 425 426 /* @delalloc_end can be -1, never go beyond @orig_end */ 427 *end = min(delalloc_end, orig_end); 428 free_extent_state(cached_state); 429 return false; 430 } 431 432 /* 433 * start comes from the offset of locked_page. We have to lock 434 * pages in order, so we can't process delalloc bytes before 435 * locked_page 436 */ 437 if (delalloc_start < *start) 438 delalloc_start = *start; 439 440 /* 441 * make sure to limit the number of pages we try to lock down 442 */ 443 if (delalloc_end + 1 - delalloc_start > max_bytes) 444 delalloc_end = delalloc_start + max_bytes - 1; 445 446 /* step two, lock all the pages after the page that has start */ 447 ret = lock_delalloc_pages(inode, locked_page, 448 delalloc_start, delalloc_end); 449 ASSERT(!ret || ret == -EAGAIN); 450 if (ret == -EAGAIN) { 451 /* some of the pages are gone, lets avoid looping by 452 * shortening the size of the delalloc range we're searching 453 */ 454 free_extent_state(cached_state); 455 cached_state = NULL; 456 if (!loops) { 457 max_bytes = PAGE_SIZE; 458 loops = 1; 459 goto again; 460 } else { 461 found = false; 462 goto out_failed; 463 } 464 } 465 466 /* step three, lock the state bits for the whole range */ 467 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 468 469 /* then test to make sure it is all still delalloc */ 470 ret = test_range_bit(tree, delalloc_start, delalloc_end, 471 EXTENT_DELALLOC, 1, cached_state); 472 if (!ret) { 473 unlock_extent(tree, delalloc_start, delalloc_end, 474 &cached_state); 475 __unlock_for_delalloc(inode, locked_page, 476 delalloc_start, delalloc_end); 477 cond_resched(); 478 goto again; 479 } 480 free_extent_state(cached_state); 481 *start = delalloc_start; 482 *end = delalloc_end; 483 out_failed: 484 return found; 485 } 486 487 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 488 struct page *locked_page, 489 u32 clear_bits, unsigned long page_ops) 490 { 491 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 492 493 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 494 start, end, page_ops, NULL); 495 } 496 497 static int insert_failrec(struct btrfs_inode *inode, 498 struct io_failure_record *failrec) 499 { 500 struct rb_node *exist; 501 502 spin_lock(&inode->io_failure_lock); 503 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr, 504 &failrec->rb_node); 505 spin_unlock(&inode->io_failure_lock); 506 507 return (exist == NULL) ? 0 : -EEXIST; 508 } 509 510 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start) 511 { 512 struct rb_node *node; 513 struct io_failure_record *failrec = ERR_PTR(-ENOENT); 514 515 spin_lock(&inode->io_failure_lock); 516 node = rb_simple_search(&inode->io_failure_tree, start); 517 if (node) 518 failrec = rb_entry(node, struct io_failure_record, rb_node); 519 spin_unlock(&inode->io_failure_lock); 520 return failrec; 521 } 522 523 static void free_io_failure(struct btrfs_inode *inode, 524 struct io_failure_record *rec) 525 { 526 spin_lock(&inode->io_failure_lock); 527 rb_erase(&rec->rb_node, &inode->io_failure_tree); 528 spin_unlock(&inode->io_failure_lock); 529 530 kfree(rec); 531 } 532 533 /* 534 * this bypasses the standard btrfs submit functions deliberately, as 535 * the standard behavior is to write all copies in a raid setup. here we only 536 * want to write the one bad copy. so we do the mapping for ourselves and issue 537 * submit_bio directly. 538 * to avoid any synchronization issues, wait for the data after writing, which 539 * actually prevents the read that triggered the error from finishing. 540 * currently, there can be no more than two copies of every data bit. thus, 541 * exactly one rewrite is required. 542 */ 543 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 544 u64 length, u64 logical, struct page *page, 545 unsigned int pg_offset, int mirror_num) 546 { 547 struct btrfs_device *dev; 548 struct bio_vec bvec; 549 struct bio bio; 550 u64 map_length = 0; 551 u64 sector; 552 struct btrfs_io_context *bioc = NULL; 553 int ret = 0; 554 555 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 556 BUG_ON(!mirror_num); 557 558 if (btrfs_repair_one_zone(fs_info, logical)) 559 return 0; 560 561 map_length = length; 562 563 /* 564 * Avoid races with device replace and make sure our bioc has devices 565 * associated to its stripes that don't go away while we are doing the 566 * read repair operation. 567 */ 568 btrfs_bio_counter_inc_blocked(fs_info); 569 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 570 /* 571 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 572 * to update all raid stripes, but here we just want to correct 573 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 574 * stripe's dev and sector. 575 */ 576 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 577 &map_length, &bioc, 0); 578 if (ret) 579 goto out_counter_dec; 580 ASSERT(bioc->mirror_num == 1); 581 } else { 582 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 583 &map_length, &bioc, mirror_num); 584 if (ret) 585 goto out_counter_dec; 586 BUG_ON(mirror_num != bioc->mirror_num); 587 } 588 589 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 590 dev = bioc->stripes[bioc->mirror_num - 1].dev; 591 btrfs_put_bioc(bioc); 592 593 if (!dev || !dev->bdev || 594 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 595 ret = -EIO; 596 goto out_counter_dec; 597 } 598 599 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 600 bio.bi_iter.bi_sector = sector; 601 __bio_add_page(&bio, page, length, pg_offset); 602 603 btrfsic_check_bio(&bio); 604 ret = submit_bio_wait(&bio); 605 if (ret) { 606 /* try to remap that extent elsewhere? */ 607 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 608 goto out_bio_uninit; 609 } 610 611 btrfs_info_rl_in_rcu(fs_info, 612 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 613 ino, start, 614 rcu_str_deref(dev->name), sector); 615 ret = 0; 616 617 out_bio_uninit: 618 bio_uninit(&bio); 619 out_counter_dec: 620 btrfs_bio_counter_dec(fs_info); 621 return ret; 622 } 623 624 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 625 { 626 struct btrfs_fs_info *fs_info = eb->fs_info; 627 u64 start = eb->start; 628 int i, num_pages = num_extent_pages(eb); 629 int ret = 0; 630 631 if (sb_rdonly(fs_info->sb)) 632 return -EROFS; 633 634 for (i = 0; i < num_pages; i++) { 635 struct page *p = eb->pages[i]; 636 637 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 638 start - page_offset(p), mirror_num); 639 if (ret) 640 break; 641 start += PAGE_SIZE; 642 } 643 644 return ret; 645 } 646 647 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) 648 { 649 if (cur_mirror == failrec->num_copies) 650 return cur_mirror + 1 - failrec->num_copies; 651 return cur_mirror + 1; 652 } 653 654 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) 655 { 656 if (cur_mirror == 1) 657 return failrec->num_copies; 658 return cur_mirror - 1; 659 } 660 661 /* 662 * each time an IO finishes, we do a fast check in the IO failure tree 663 * to see if we need to process or clean up an io_failure_record 664 */ 665 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start, 666 struct page *page, unsigned int pg_offset) 667 { 668 struct btrfs_fs_info *fs_info = inode->root->fs_info; 669 struct extent_io_tree *io_tree = &inode->io_tree; 670 u64 ino = btrfs_ino(inode); 671 u64 locked_start, locked_end; 672 struct io_failure_record *failrec; 673 int mirror; 674 int ret; 675 676 failrec = get_failrec(inode, start); 677 if (IS_ERR(failrec)) 678 return 0; 679 680 BUG_ON(!failrec->this_mirror); 681 682 if (sb_rdonly(fs_info->sb)) 683 goto out; 684 685 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start, 686 &locked_end, EXTENT_LOCKED, NULL); 687 if (ret || locked_start > failrec->bytenr || 688 locked_end < failrec->bytenr + failrec->len - 1) 689 goto out; 690 691 mirror = failrec->this_mirror; 692 do { 693 mirror = prev_mirror(failrec, mirror); 694 repair_io_failure(fs_info, ino, start, failrec->len, 695 failrec->logical, page, pg_offset, mirror); 696 } while (mirror != failrec->failed_mirror); 697 698 out: 699 free_io_failure(inode, failrec); 700 return 0; 701 } 702 703 /* 704 * Can be called when 705 * - hold extent lock 706 * - under ordered extent 707 * - the inode is freeing 708 */ 709 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 710 { 711 struct io_failure_record *failrec; 712 struct rb_node *node, *next; 713 714 if (RB_EMPTY_ROOT(&inode->io_failure_tree)) 715 return; 716 717 spin_lock(&inode->io_failure_lock); 718 node = rb_simple_search_first(&inode->io_failure_tree, start); 719 while (node) { 720 failrec = rb_entry(node, struct io_failure_record, rb_node); 721 if (failrec->bytenr > end) 722 break; 723 724 next = rb_next(node); 725 rb_erase(&failrec->rb_node, &inode->io_failure_tree); 726 kfree(failrec); 727 728 node = next; 729 } 730 spin_unlock(&inode->io_failure_lock); 731 } 732 733 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 734 struct btrfs_bio *bbio, 735 unsigned int bio_offset) 736 { 737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 738 u64 start = bbio->file_offset + bio_offset; 739 struct io_failure_record *failrec; 740 const u32 sectorsize = fs_info->sectorsize; 741 int ret; 742 743 failrec = get_failrec(BTRFS_I(inode), start); 744 if (!IS_ERR(failrec)) { 745 btrfs_debug(fs_info, 746 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 747 failrec->logical, failrec->bytenr, failrec->len); 748 /* 749 * when data can be on disk more than twice, add to failrec here 750 * (e.g. with a list for failed_mirror) to make 751 * clean_io_failure() clean all those errors at once. 752 */ 753 ASSERT(failrec->this_mirror == bbio->mirror_num); 754 ASSERT(failrec->len == fs_info->sectorsize); 755 return failrec; 756 } 757 758 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 759 if (!failrec) 760 return ERR_PTR(-ENOMEM); 761 762 RB_CLEAR_NODE(&failrec->rb_node); 763 failrec->bytenr = start; 764 failrec->len = sectorsize; 765 failrec->failed_mirror = bbio->mirror_num; 766 failrec->this_mirror = bbio->mirror_num; 767 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; 768 769 btrfs_debug(fs_info, 770 "new io failure record logical %llu start %llu", 771 failrec->logical, start); 772 773 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); 774 if (failrec->num_copies == 1) { 775 /* 776 * We only have a single copy of the data, so don't bother with 777 * all the retry and error correction code that follows. No 778 * matter what the error is, it is very likely to persist. 779 */ 780 btrfs_debug(fs_info, 781 "cannot repair logical %llu num_copies %d", 782 failrec->logical, failrec->num_copies); 783 kfree(failrec); 784 return ERR_PTR(-EIO); 785 } 786 787 /* Set the bits in the private failure tree */ 788 ret = insert_failrec(BTRFS_I(inode), failrec); 789 if (ret) { 790 kfree(failrec); 791 return ERR_PTR(ret); 792 } 793 794 return failrec; 795 } 796 797 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio, 798 u32 bio_offset, struct page *page, unsigned int pgoff, 799 submit_bio_hook_t *submit_bio_hook) 800 { 801 u64 start = failed_bbio->file_offset + bio_offset; 802 struct io_failure_record *failrec; 803 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 804 struct bio *failed_bio = &failed_bbio->bio; 805 const int icsum = bio_offset >> fs_info->sectorsize_bits; 806 struct bio *repair_bio; 807 struct btrfs_bio *repair_bbio; 808 809 btrfs_debug(fs_info, 810 "repair read error: read error at %llu", start); 811 812 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 813 814 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset); 815 if (IS_ERR(failrec)) 816 return PTR_ERR(failrec); 817 818 /* 819 * There are two premises: 820 * a) deliver good data to the caller 821 * b) correct the bad sectors on disk 822 * 823 * Since we're only doing repair for one sector, we only need to get 824 * a good copy of the failed sector and if we succeed, we have setup 825 * everything for repair_io_failure to do the rest for us. 826 */ 827 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); 828 if (failrec->this_mirror == failrec->failed_mirror) { 829 btrfs_debug(fs_info, 830 "failed to repair num_copies %d this_mirror %d failed_mirror %d", 831 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); 832 free_io_failure(BTRFS_I(inode), failrec); 833 return -EIO; 834 } 835 836 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io, 837 failed_bbio->private); 838 repair_bbio = btrfs_bio(repair_bio); 839 repair_bbio->file_offset = start; 840 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 841 842 if (failed_bbio->csum) { 843 const u32 csum_size = fs_info->csum_size; 844 845 repair_bbio->csum = repair_bbio->csum_inline; 846 memcpy(repair_bbio->csum, 847 failed_bbio->csum + csum_size * icsum, csum_size); 848 } 849 850 bio_add_page(repair_bio, page, failrec->len, pgoff); 851 repair_bbio->iter = repair_bio->bi_iter; 852 853 btrfs_debug(btrfs_sb(inode->i_sb), 854 "repair read error: submitting new read to mirror %d", 855 failrec->this_mirror); 856 857 /* 858 * At this point we have a bio, so any errors from submit_bio_hook() 859 * will be handled by the endio on the repair_bio, so we can't return an 860 * error here. 861 */ 862 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0); 863 return BLK_STS_OK; 864 } 865 866 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 867 { 868 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 869 870 ASSERT(page_offset(page) <= start && 871 start + len <= page_offset(page) + PAGE_SIZE); 872 873 if (uptodate) { 874 if (fsverity_active(page->mapping->host) && 875 !PageError(page) && 876 !PageUptodate(page) && 877 start < i_size_read(page->mapping->host) && 878 !fsverity_verify_page(page)) { 879 btrfs_page_set_error(fs_info, page, start, len); 880 } else { 881 btrfs_page_set_uptodate(fs_info, page, start, len); 882 } 883 } else { 884 btrfs_page_clear_uptodate(fs_info, page, start, len); 885 btrfs_page_set_error(fs_info, page, start, len); 886 } 887 888 if (!btrfs_is_subpage(fs_info, page)) 889 unlock_page(page); 890 else 891 btrfs_subpage_end_reader(fs_info, page, start, len); 892 } 893 894 static void end_sector_io(struct page *page, u64 offset, bool uptodate) 895 { 896 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 897 const u32 sectorsize = inode->root->fs_info->sectorsize; 898 struct extent_state *cached = NULL; 899 900 end_page_read(page, uptodate, offset, sectorsize); 901 if (uptodate) 902 set_extent_uptodate(&inode->io_tree, offset, 903 offset + sectorsize - 1, &cached, GFP_ATOMIC); 904 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1, 905 &cached); 906 } 907 908 static void submit_data_read_repair(struct inode *inode, 909 struct btrfs_bio *failed_bbio, 910 u32 bio_offset, const struct bio_vec *bvec, 911 unsigned int error_bitmap) 912 { 913 const unsigned int pgoff = bvec->bv_offset; 914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 915 struct page *page = bvec->bv_page; 916 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; 917 const u64 end = start + bvec->bv_len - 1; 918 const u32 sectorsize = fs_info->sectorsize; 919 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 920 int i; 921 922 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); 923 924 /* This repair is only for data */ 925 ASSERT(is_data_inode(inode)); 926 927 /* We're here because we had some read errors or csum mismatch */ 928 ASSERT(error_bitmap); 929 930 /* 931 * We only get called on buffered IO, thus page must be mapped and bio 932 * must not be cloned. 933 */ 934 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); 935 936 /* Iterate through all the sectors in the range */ 937 for (i = 0; i < nr_bits; i++) { 938 const unsigned int offset = i * sectorsize; 939 bool uptodate = false; 940 int ret; 941 942 if (!(error_bitmap & (1U << i))) { 943 /* 944 * This sector has no error, just end the page read 945 * and unlock the range. 946 */ 947 uptodate = true; 948 goto next; 949 } 950 951 ret = btrfs_repair_one_sector(inode, failed_bbio, 952 bio_offset + offset, page, pgoff + offset, 953 btrfs_submit_data_read_bio); 954 if (!ret) { 955 /* 956 * We have submitted the read repair, the page release 957 * will be handled by the endio function of the 958 * submitted repair bio. 959 * Thus we don't need to do any thing here. 960 */ 961 continue; 962 } 963 /* 964 * Continue on failed repair, otherwise the remaining sectors 965 * will not be properly unlocked. 966 */ 967 next: 968 end_sector_io(page, start + offset, uptodate); 969 } 970 } 971 972 /* lots and lots of room for performance fixes in the end_bio funcs */ 973 974 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 975 { 976 struct btrfs_inode *inode; 977 const bool uptodate = (err == 0); 978 int ret = 0; 979 980 ASSERT(page && page->mapping); 981 inode = BTRFS_I(page->mapping->host); 982 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 983 984 if (!uptodate) { 985 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 986 u32 len; 987 988 ASSERT(end + 1 - start <= U32_MAX); 989 len = end + 1 - start; 990 991 btrfs_page_clear_uptodate(fs_info, page, start, len); 992 btrfs_page_set_error(fs_info, page, start, len); 993 ret = err < 0 ? err : -EIO; 994 mapping_set_error(page->mapping, ret); 995 } 996 } 997 998 /* 999 * after a writepage IO is done, we need to: 1000 * clear the uptodate bits on error 1001 * clear the writeback bits in the extent tree for this IO 1002 * end_page_writeback if the page has no more pending IO 1003 * 1004 * Scheduling is not allowed, so the extent state tree is expected 1005 * to have one and only one object corresponding to this IO. 1006 */ 1007 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 1008 { 1009 struct bio *bio = &bbio->bio; 1010 int error = blk_status_to_errno(bio->bi_status); 1011 struct bio_vec *bvec; 1012 u64 start; 1013 u64 end; 1014 struct bvec_iter_all iter_all; 1015 bool first_bvec = true; 1016 1017 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1018 bio_for_each_segment_all(bvec, bio, iter_all) { 1019 struct page *page = bvec->bv_page; 1020 struct inode *inode = page->mapping->host; 1021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1022 const u32 sectorsize = fs_info->sectorsize; 1023 1024 /* Our read/write should always be sector aligned. */ 1025 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1026 btrfs_err(fs_info, 1027 "partial page write in btrfs with offset %u and length %u", 1028 bvec->bv_offset, bvec->bv_len); 1029 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 1030 btrfs_info(fs_info, 1031 "incomplete page write with offset %u and length %u", 1032 bvec->bv_offset, bvec->bv_len); 1033 1034 start = page_offset(page) + bvec->bv_offset; 1035 end = start + bvec->bv_len - 1; 1036 1037 if (first_bvec) { 1038 btrfs_record_physical_zoned(inode, start, bio); 1039 first_bvec = false; 1040 } 1041 1042 end_extent_writepage(page, error, start, end); 1043 1044 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 1045 } 1046 1047 bio_put(bio); 1048 } 1049 1050 /* 1051 * Record previously processed extent range 1052 * 1053 * For endio_readpage_release_extent() to handle a full extent range, reducing 1054 * the extent io operations. 1055 */ 1056 struct processed_extent { 1057 struct btrfs_inode *inode; 1058 /* Start of the range in @inode */ 1059 u64 start; 1060 /* End of the range in @inode */ 1061 u64 end; 1062 bool uptodate; 1063 }; 1064 1065 /* 1066 * Try to release processed extent range 1067 * 1068 * May not release the extent range right now if the current range is 1069 * contiguous to processed extent. 1070 * 1071 * Will release processed extent when any of @inode, @uptodate, the range is 1072 * no longer contiguous to the processed range. 1073 * 1074 * Passing @inode == NULL will force processed extent to be released. 1075 */ 1076 static void endio_readpage_release_extent(struct processed_extent *processed, 1077 struct btrfs_inode *inode, u64 start, u64 end, 1078 bool uptodate) 1079 { 1080 struct extent_state *cached = NULL; 1081 struct extent_io_tree *tree; 1082 1083 /* The first extent, initialize @processed */ 1084 if (!processed->inode) 1085 goto update; 1086 1087 /* 1088 * Contiguous to processed extent, just uptodate the end. 1089 * 1090 * Several things to notice: 1091 * 1092 * - bio can be merged as long as on-disk bytenr is contiguous 1093 * This means we can have page belonging to other inodes, thus need to 1094 * check if the inode still matches. 1095 * - bvec can contain range beyond current page for multi-page bvec 1096 * Thus we need to do processed->end + 1 >= start check 1097 */ 1098 if (processed->inode == inode && processed->uptodate == uptodate && 1099 processed->end + 1 >= start && end >= processed->end) { 1100 processed->end = end; 1101 return; 1102 } 1103 1104 tree = &processed->inode->io_tree; 1105 /* 1106 * Now we don't have range contiguous to the processed range, release 1107 * the processed range now. 1108 */ 1109 unlock_extent_atomic(tree, processed->start, processed->end, &cached); 1110 1111 update: 1112 /* Update processed to current range */ 1113 processed->inode = inode; 1114 processed->start = start; 1115 processed->end = end; 1116 processed->uptodate = uptodate; 1117 } 1118 1119 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 1120 { 1121 ASSERT(PageLocked(page)); 1122 if (!btrfs_is_subpage(fs_info, page)) 1123 return; 1124 1125 ASSERT(PagePrivate(page)); 1126 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 1127 } 1128 1129 /* 1130 * Find extent buffer for a givne bytenr. 1131 * 1132 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 1133 * in endio context. 1134 */ 1135 static struct extent_buffer *find_extent_buffer_readpage( 1136 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 1137 { 1138 struct extent_buffer *eb; 1139 1140 /* 1141 * For regular sectorsize, we can use page->private to grab extent 1142 * buffer 1143 */ 1144 if (fs_info->nodesize >= PAGE_SIZE) { 1145 ASSERT(PagePrivate(page) && page->private); 1146 return (struct extent_buffer *)page->private; 1147 } 1148 1149 /* For subpage case, we need to lookup buffer radix tree */ 1150 rcu_read_lock(); 1151 eb = radix_tree_lookup(&fs_info->buffer_radix, 1152 bytenr >> fs_info->sectorsize_bits); 1153 rcu_read_unlock(); 1154 ASSERT(eb); 1155 return eb; 1156 } 1157 1158 /* 1159 * after a readpage IO is done, we need to: 1160 * clear the uptodate bits on error 1161 * set the uptodate bits if things worked 1162 * set the page up to date if all extents in the tree are uptodate 1163 * clear the lock bit in the extent tree 1164 * unlock the page if there are no other extents locked for it 1165 * 1166 * Scheduling is not allowed, so the extent state tree is expected 1167 * to have one and only one object corresponding to this IO. 1168 */ 1169 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 1170 { 1171 struct bio *bio = &bbio->bio; 1172 struct bio_vec *bvec; 1173 struct processed_extent processed = { 0 }; 1174 /* 1175 * The offset to the beginning of a bio, since one bio can never be 1176 * larger than UINT_MAX, u32 here is enough. 1177 */ 1178 u32 bio_offset = 0; 1179 int mirror; 1180 struct bvec_iter_all iter_all; 1181 1182 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1183 bio_for_each_segment_all(bvec, bio, iter_all) { 1184 bool uptodate = !bio->bi_status; 1185 struct page *page = bvec->bv_page; 1186 struct inode *inode = page->mapping->host; 1187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1188 const u32 sectorsize = fs_info->sectorsize; 1189 unsigned int error_bitmap = (unsigned int)-1; 1190 bool repair = false; 1191 u64 start; 1192 u64 end; 1193 u32 len; 1194 1195 btrfs_debug(fs_info, 1196 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 1197 bio->bi_iter.bi_sector, bio->bi_status, 1198 bbio->mirror_num); 1199 1200 /* 1201 * We always issue full-sector reads, but if some block in a 1202 * page fails to read, blk_update_request() will advance 1203 * bv_offset and adjust bv_len to compensate. Print a warning 1204 * for unaligned offsets, and an error if they don't add up to 1205 * a full sector. 1206 */ 1207 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1208 btrfs_err(fs_info, 1209 "partial page read in btrfs with offset %u and length %u", 1210 bvec->bv_offset, bvec->bv_len); 1211 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 1212 sectorsize)) 1213 btrfs_info(fs_info, 1214 "incomplete page read with offset %u and length %u", 1215 bvec->bv_offset, bvec->bv_len); 1216 1217 start = page_offset(page) + bvec->bv_offset; 1218 end = start + bvec->bv_len - 1; 1219 len = bvec->bv_len; 1220 1221 mirror = bbio->mirror_num; 1222 if (likely(uptodate)) { 1223 if (is_data_inode(inode)) { 1224 error_bitmap = btrfs_verify_data_csum(bbio, 1225 bio_offset, page, start, end); 1226 if (error_bitmap) 1227 uptodate = false; 1228 } else { 1229 if (btrfs_validate_metadata_buffer(bbio, 1230 page, start, end, mirror)) 1231 uptodate = false; 1232 } 1233 } 1234 1235 if (likely(uptodate)) { 1236 loff_t i_size = i_size_read(inode); 1237 pgoff_t end_index = i_size >> PAGE_SHIFT; 1238 1239 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0); 1240 1241 /* 1242 * Zero out the remaining part if this range straddles 1243 * i_size. 1244 * 1245 * Here we should only zero the range inside the bvec, 1246 * not touch anything else. 1247 * 1248 * NOTE: i_size is exclusive while end is inclusive. 1249 */ 1250 if (page->index == end_index && i_size <= end) { 1251 u32 zero_start = max(offset_in_page(i_size), 1252 offset_in_page(start)); 1253 1254 zero_user_segment(page, zero_start, 1255 offset_in_page(end) + 1); 1256 } 1257 } else if (is_data_inode(inode)) { 1258 /* 1259 * Only try to repair bios that actually made it to a 1260 * device. If the bio failed to be submitted mirror 1261 * is 0 and we need to fail it without retrying. 1262 * 1263 * This also includes the high level bios for compressed 1264 * extents - these never make it to a device and repair 1265 * is already handled on the lower compressed bio. 1266 */ 1267 if (mirror > 0) 1268 repair = true; 1269 } else { 1270 struct extent_buffer *eb; 1271 1272 eb = find_extent_buffer_readpage(fs_info, page, start); 1273 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 1274 eb->read_mirror = mirror; 1275 atomic_dec(&eb->io_pages); 1276 } 1277 1278 if (repair) { 1279 /* 1280 * submit_data_read_repair() will handle all the good 1281 * and bad sectors, we just continue to the next bvec. 1282 */ 1283 submit_data_read_repair(inode, bbio, bio_offset, bvec, 1284 error_bitmap); 1285 } else { 1286 /* Update page status and unlock */ 1287 end_page_read(page, uptodate, start, len); 1288 endio_readpage_release_extent(&processed, BTRFS_I(inode), 1289 start, end, PageUptodate(page)); 1290 } 1291 1292 ASSERT(bio_offset + len > bio_offset); 1293 bio_offset += len; 1294 1295 } 1296 /* Release the last extent */ 1297 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 1298 btrfs_bio_free_csum(bbio); 1299 bio_put(bio); 1300 } 1301 1302 /** 1303 * Populate every free slot in a provided array with pages. 1304 * 1305 * @nr_pages: number of pages to allocate 1306 * @page_array: the array to fill with pages; any existing non-null entries in 1307 * the array will be skipped 1308 * 1309 * Return: 0 if all pages were able to be allocated; 1310 * -ENOMEM otherwise, and the caller is responsible for freeing all 1311 * non-null page pointers in the array. 1312 */ 1313 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 1314 { 1315 unsigned int allocated; 1316 1317 for (allocated = 0; allocated < nr_pages;) { 1318 unsigned int last = allocated; 1319 1320 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 1321 1322 if (allocated == nr_pages) 1323 return 0; 1324 1325 /* 1326 * During this iteration, no page could be allocated, even 1327 * though alloc_pages_bulk_array() falls back to alloc_page() 1328 * if it could not bulk-allocate. So we must be out of memory. 1329 */ 1330 if (allocated == last) 1331 return -ENOMEM; 1332 1333 memalloc_retry_wait(GFP_NOFS); 1334 } 1335 return 0; 1336 } 1337 1338 /** 1339 * Attempt to add a page to bio 1340 * 1341 * @bio_ctrl: record both the bio, and its bio_flags 1342 * @page: page to add to the bio 1343 * @disk_bytenr: offset of the new bio or to check whether we are adding 1344 * a contiguous page to the previous one 1345 * @size: portion of page that we want to write 1346 * @pg_offset: starting offset in the page 1347 * @compress_type: compression type of the current bio to see if we can merge them 1348 * 1349 * Attempt to add a page to bio considering stripe alignment etc. 1350 * 1351 * Return >= 0 for the number of bytes added to the bio. 1352 * Can return 0 if the current bio is already at stripe/zone boundary. 1353 * Return <0 for error. 1354 */ 1355 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 1356 struct page *page, 1357 u64 disk_bytenr, unsigned int size, 1358 unsigned int pg_offset, 1359 enum btrfs_compression_type compress_type) 1360 { 1361 struct bio *bio = bio_ctrl->bio; 1362 u32 bio_size = bio->bi_iter.bi_size; 1363 u32 real_size; 1364 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 1365 bool contig = false; 1366 int ret; 1367 1368 ASSERT(bio); 1369 /* The limit should be calculated when bio_ctrl->bio is allocated */ 1370 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 1371 if (bio_ctrl->compress_type != compress_type) 1372 return 0; 1373 1374 1375 if (bio->bi_iter.bi_size == 0) { 1376 /* We can always add a page into an empty bio. */ 1377 contig = true; 1378 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 1379 struct bio_vec *bvec = bio_last_bvec_all(bio); 1380 1381 /* 1382 * The contig check requires the following conditions to be met: 1383 * 1) The pages are belonging to the same inode 1384 * This is implied by the call chain. 1385 * 1386 * 2) The range has adjacent logical bytenr 1387 * 1388 * 3) The range has adjacent file offset 1389 * This is required for the usage of btrfs_bio->file_offset. 1390 */ 1391 if (bio_end_sector(bio) == sector && 1392 page_offset(bvec->bv_page) + bvec->bv_offset + 1393 bvec->bv_len == page_offset(page) + pg_offset) 1394 contig = true; 1395 } else { 1396 /* 1397 * For compression, all IO should have its logical bytenr 1398 * set to the starting bytenr of the compressed extent. 1399 */ 1400 contig = bio->bi_iter.bi_sector == sector; 1401 } 1402 1403 if (!contig) 1404 return 0; 1405 1406 real_size = min(bio_ctrl->len_to_oe_boundary, 1407 bio_ctrl->len_to_stripe_boundary) - bio_size; 1408 real_size = min(real_size, size); 1409 1410 /* 1411 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 1412 * bio will still execute its endio function on the page! 1413 */ 1414 if (real_size == 0) 1415 return 0; 1416 1417 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1418 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 1419 else 1420 ret = bio_add_page(bio, page, real_size, pg_offset); 1421 1422 return ret; 1423 } 1424 1425 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 1426 struct btrfs_inode *inode, u64 file_offset) 1427 { 1428 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1429 struct btrfs_io_geometry geom; 1430 struct btrfs_ordered_extent *ordered; 1431 struct extent_map *em; 1432 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 1433 int ret; 1434 1435 /* 1436 * Pages for compressed extent are never submitted to disk directly, 1437 * thus it has no real boundary, just set them to U32_MAX. 1438 * 1439 * The split happens for real compressed bio, which happens in 1440 * btrfs_submit_compressed_read/write(). 1441 */ 1442 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 1443 bio_ctrl->len_to_oe_boundary = U32_MAX; 1444 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1445 return 0; 1446 } 1447 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 1448 if (IS_ERR(em)) 1449 return PTR_ERR(em); 1450 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 1451 logical, &geom); 1452 free_extent_map(em); 1453 if (ret < 0) { 1454 return ret; 1455 } 1456 if (geom.len > U32_MAX) 1457 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1458 else 1459 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 1460 1461 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 1462 bio_ctrl->len_to_oe_boundary = U32_MAX; 1463 return 0; 1464 } 1465 1466 /* Ordered extent not yet created, so we're good */ 1467 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 1468 if (!ordered) { 1469 bio_ctrl->len_to_oe_boundary = U32_MAX; 1470 return 0; 1471 } 1472 1473 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 1474 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 1475 btrfs_put_ordered_extent(ordered); 1476 return 0; 1477 } 1478 1479 static int alloc_new_bio(struct btrfs_inode *inode, 1480 struct btrfs_bio_ctrl *bio_ctrl, 1481 struct writeback_control *wbc, 1482 blk_opf_t opf, 1483 u64 disk_bytenr, u32 offset, u64 file_offset, 1484 enum btrfs_compression_type compress_type) 1485 { 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1487 struct bio *bio; 1488 int ret; 1489 1490 ASSERT(bio_ctrl->end_io_func); 1491 1492 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL); 1493 /* 1494 * For compressed page range, its disk_bytenr is always @disk_bytenr 1495 * passed in, no matter if we have added any range into previous bio. 1496 */ 1497 if (compress_type != BTRFS_COMPRESS_NONE) 1498 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 1499 else 1500 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 1501 bio_ctrl->bio = bio; 1502 bio_ctrl->compress_type = compress_type; 1503 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 1504 if (ret < 0) 1505 goto error; 1506 1507 if (wbc) { 1508 /* 1509 * For Zone append we need the correct block_device that we are 1510 * going to write to set in the bio to be able to respect the 1511 * hardware limitation. Look it up here: 1512 */ 1513 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1514 struct btrfs_device *dev; 1515 1516 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 1517 fs_info->sectorsize); 1518 if (IS_ERR(dev)) { 1519 ret = PTR_ERR(dev); 1520 goto error; 1521 } 1522 1523 bio_set_dev(bio, dev->bdev); 1524 } else { 1525 /* 1526 * Otherwise pick the last added device to support 1527 * cgroup writeback. For multi-device file systems this 1528 * means blk-cgroup policies have to always be set on the 1529 * last added/replaced device. This is a bit odd but has 1530 * been like that for a long time. 1531 */ 1532 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1533 } 1534 wbc_init_bio(wbc, bio); 1535 } else { 1536 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 1537 } 1538 return 0; 1539 error: 1540 bio_ctrl->bio = NULL; 1541 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 1542 return ret; 1543 } 1544 1545 /* 1546 * @opf: bio REQ_OP_* and REQ_* flags as one value 1547 * @wbc: optional writeback control for io accounting 1548 * @disk_bytenr: logical bytenr where the write will be 1549 * @page: page to add to the bio 1550 * @size: portion of page that we want to write to 1551 * @pg_offset: offset of the new bio or to check whether we are adding 1552 * a contiguous page to the previous one 1553 * @compress_type: compress type for current bio 1554 * 1555 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1556 * new one in @bio_ctrl->bio. 1557 * The mirror number for this IO should already be initizlied in 1558 * @bio_ctrl->mirror_num. 1559 */ 1560 static int submit_extent_page(blk_opf_t opf, 1561 struct writeback_control *wbc, 1562 struct btrfs_bio_ctrl *bio_ctrl, 1563 u64 disk_bytenr, struct page *page, 1564 size_t size, unsigned long pg_offset, 1565 enum btrfs_compression_type compress_type, 1566 bool force_bio_submit) 1567 { 1568 int ret = 0; 1569 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1570 unsigned int cur = pg_offset; 1571 1572 ASSERT(bio_ctrl); 1573 1574 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1575 pg_offset + size <= PAGE_SIZE); 1576 1577 ASSERT(bio_ctrl->end_io_func); 1578 1579 if (force_bio_submit) 1580 submit_one_bio(bio_ctrl); 1581 1582 while (cur < pg_offset + size) { 1583 u32 offset = cur - pg_offset; 1584 int added; 1585 1586 /* Allocate new bio if needed */ 1587 if (!bio_ctrl->bio) { 1588 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 1589 disk_bytenr, offset, 1590 page_offset(page) + cur, 1591 compress_type); 1592 if (ret < 0) 1593 return ret; 1594 } 1595 /* 1596 * We must go through btrfs_bio_add_page() to ensure each 1597 * page range won't cross various boundaries. 1598 */ 1599 if (compress_type != BTRFS_COMPRESS_NONE) 1600 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1601 size - offset, pg_offset + offset, 1602 compress_type); 1603 else 1604 added = btrfs_bio_add_page(bio_ctrl, page, 1605 disk_bytenr + offset, size - offset, 1606 pg_offset + offset, compress_type); 1607 1608 /* Metadata page range should never be split */ 1609 if (!is_data_inode(&inode->vfs_inode)) 1610 ASSERT(added == 0 || added == size - offset); 1611 1612 /* At least we added some page, update the account */ 1613 if (wbc && added) 1614 wbc_account_cgroup_owner(wbc, page, added); 1615 1616 /* We have reached boundary, submit right now */ 1617 if (added < size - offset) { 1618 /* The bio should contain some page(s) */ 1619 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1620 submit_one_bio(bio_ctrl); 1621 } 1622 cur += added; 1623 } 1624 return 0; 1625 } 1626 1627 static int attach_extent_buffer_page(struct extent_buffer *eb, 1628 struct page *page, 1629 struct btrfs_subpage *prealloc) 1630 { 1631 struct btrfs_fs_info *fs_info = eb->fs_info; 1632 int ret = 0; 1633 1634 /* 1635 * If the page is mapped to btree inode, we should hold the private 1636 * lock to prevent race. 1637 * For cloned or dummy extent buffers, their pages are not mapped and 1638 * will not race with any other ebs. 1639 */ 1640 if (page->mapping) 1641 lockdep_assert_held(&page->mapping->private_lock); 1642 1643 if (fs_info->nodesize >= PAGE_SIZE) { 1644 if (!PagePrivate(page)) 1645 attach_page_private(page, eb); 1646 else 1647 WARN_ON(page->private != (unsigned long)eb); 1648 return 0; 1649 } 1650 1651 /* Already mapped, just free prealloc */ 1652 if (PagePrivate(page)) { 1653 btrfs_free_subpage(prealloc); 1654 return 0; 1655 } 1656 1657 if (prealloc) 1658 /* Has preallocated memory for subpage */ 1659 attach_page_private(page, prealloc); 1660 else 1661 /* Do new allocation to attach subpage */ 1662 ret = btrfs_attach_subpage(fs_info, page, 1663 BTRFS_SUBPAGE_METADATA); 1664 return ret; 1665 } 1666 1667 int set_page_extent_mapped(struct page *page) 1668 { 1669 struct btrfs_fs_info *fs_info; 1670 1671 ASSERT(page->mapping); 1672 1673 if (PagePrivate(page)) 1674 return 0; 1675 1676 fs_info = btrfs_sb(page->mapping->host->i_sb); 1677 1678 if (btrfs_is_subpage(fs_info, page)) 1679 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1680 1681 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1682 return 0; 1683 } 1684 1685 void clear_page_extent_mapped(struct page *page) 1686 { 1687 struct btrfs_fs_info *fs_info; 1688 1689 ASSERT(page->mapping); 1690 1691 if (!PagePrivate(page)) 1692 return; 1693 1694 fs_info = btrfs_sb(page->mapping->host->i_sb); 1695 if (btrfs_is_subpage(fs_info, page)) 1696 return btrfs_detach_subpage(fs_info, page); 1697 1698 detach_page_private(page); 1699 } 1700 1701 static struct extent_map * 1702 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1703 u64 start, u64 len, struct extent_map **em_cached) 1704 { 1705 struct extent_map *em; 1706 1707 if (em_cached && *em_cached) { 1708 em = *em_cached; 1709 if (extent_map_in_tree(em) && start >= em->start && 1710 start < extent_map_end(em)) { 1711 refcount_inc(&em->refs); 1712 return em; 1713 } 1714 1715 free_extent_map(em); 1716 *em_cached = NULL; 1717 } 1718 1719 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1720 if (em_cached && !IS_ERR(em)) { 1721 BUG_ON(*em_cached); 1722 refcount_inc(&em->refs); 1723 *em_cached = em; 1724 } 1725 return em; 1726 } 1727 /* 1728 * basic readpage implementation. Locked extent state structs are inserted 1729 * into the tree that are removed when the IO is done (by the end_io 1730 * handlers) 1731 * XXX JDM: This needs looking at to ensure proper page locking 1732 * return 0 on success, otherwise return error 1733 */ 1734 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1735 struct btrfs_bio_ctrl *bio_ctrl, 1736 blk_opf_t read_flags, u64 *prev_em_start) 1737 { 1738 struct inode *inode = page->mapping->host; 1739 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1740 u64 start = page_offset(page); 1741 const u64 end = start + PAGE_SIZE - 1; 1742 u64 cur = start; 1743 u64 extent_offset; 1744 u64 last_byte = i_size_read(inode); 1745 u64 block_start; 1746 struct extent_map *em; 1747 int ret = 0; 1748 size_t pg_offset = 0; 1749 size_t iosize; 1750 size_t blocksize = inode->i_sb->s_blocksize; 1751 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1752 1753 ret = set_page_extent_mapped(page); 1754 if (ret < 0) { 1755 unlock_extent(tree, start, end, NULL); 1756 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1757 unlock_page(page); 1758 goto out; 1759 } 1760 1761 if (page->index == last_byte >> PAGE_SHIFT) { 1762 size_t zero_offset = offset_in_page(last_byte); 1763 1764 if (zero_offset) { 1765 iosize = PAGE_SIZE - zero_offset; 1766 memzero_page(page, zero_offset, iosize); 1767 } 1768 } 1769 bio_ctrl->end_io_func = end_bio_extent_readpage; 1770 begin_page_read(fs_info, page); 1771 while (cur <= end) { 1772 unsigned long this_bio_flag = 0; 1773 bool force_bio_submit = false; 1774 u64 disk_bytenr; 1775 1776 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1777 if (cur >= last_byte) { 1778 struct extent_state *cached = NULL; 1779 1780 iosize = PAGE_SIZE - pg_offset; 1781 memzero_page(page, pg_offset, iosize); 1782 set_extent_uptodate(tree, cur, cur + iosize - 1, 1783 &cached, GFP_NOFS); 1784 unlock_extent(tree, cur, cur + iosize - 1, &cached); 1785 end_page_read(page, true, cur, iosize); 1786 break; 1787 } 1788 em = __get_extent_map(inode, page, pg_offset, cur, 1789 end - cur + 1, em_cached); 1790 if (IS_ERR(em)) { 1791 unlock_extent(tree, cur, end, NULL); 1792 end_page_read(page, false, cur, end + 1 - cur); 1793 ret = PTR_ERR(em); 1794 break; 1795 } 1796 extent_offset = cur - em->start; 1797 BUG_ON(extent_map_end(em) <= cur); 1798 BUG_ON(end < cur); 1799 1800 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1801 this_bio_flag = em->compress_type; 1802 1803 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1804 iosize = ALIGN(iosize, blocksize); 1805 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1806 disk_bytenr = em->block_start; 1807 else 1808 disk_bytenr = em->block_start + extent_offset; 1809 block_start = em->block_start; 1810 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1811 block_start = EXTENT_MAP_HOLE; 1812 1813 /* 1814 * If we have a file range that points to a compressed extent 1815 * and it's followed by a consecutive file range that points 1816 * to the same compressed extent (possibly with a different 1817 * offset and/or length, so it either points to the whole extent 1818 * or only part of it), we must make sure we do not submit a 1819 * single bio to populate the pages for the 2 ranges because 1820 * this makes the compressed extent read zero out the pages 1821 * belonging to the 2nd range. Imagine the following scenario: 1822 * 1823 * File layout 1824 * [0 - 8K] [8K - 24K] 1825 * | | 1826 * | | 1827 * points to extent X, points to extent X, 1828 * offset 4K, length of 8K offset 0, length 16K 1829 * 1830 * [extent X, compressed length = 4K uncompressed length = 16K] 1831 * 1832 * If the bio to read the compressed extent covers both ranges, 1833 * it will decompress extent X into the pages belonging to the 1834 * first range and then it will stop, zeroing out the remaining 1835 * pages that belong to the other range that points to extent X. 1836 * So here we make sure we submit 2 bios, one for the first 1837 * range and another one for the third range. Both will target 1838 * the same physical extent from disk, but we can't currently 1839 * make the compressed bio endio callback populate the pages 1840 * for both ranges because each compressed bio is tightly 1841 * coupled with a single extent map, and each range can have 1842 * an extent map with a different offset value relative to the 1843 * uncompressed data of our extent and different lengths. This 1844 * is a corner case so we prioritize correctness over 1845 * non-optimal behavior (submitting 2 bios for the same extent). 1846 */ 1847 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1848 prev_em_start && *prev_em_start != (u64)-1 && 1849 *prev_em_start != em->start) 1850 force_bio_submit = true; 1851 1852 if (prev_em_start) 1853 *prev_em_start = em->start; 1854 1855 free_extent_map(em); 1856 em = NULL; 1857 1858 /* we've found a hole, just zero and go on */ 1859 if (block_start == EXTENT_MAP_HOLE) { 1860 struct extent_state *cached = NULL; 1861 1862 memzero_page(page, pg_offset, iosize); 1863 1864 set_extent_uptodate(tree, cur, cur + iosize - 1, 1865 &cached, GFP_NOFS); 1866 unlock_extent(tree, cur, cur + iosize - 1, &cached); 1867 end_page_read(page, true, cur, iosize); 1868 cur = cur + iosize; 1869 pg_offset += iosize; 1870 continue; 1871 } 1872 /* the get_extent function already copied into the page */ 1873 if (block_start == EXTENT_MAP_INLINE) { 1874 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1875 end_page_read(page, true, cur, iosize); 1876 cur = cur + iosize; 1877 pg_offset += iosize; 1878 continue; 1879 } 1880 1881 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1882 bio_ctrl, disk_bytenr, page, iosize, 1883 pg_offset, this_bio_flag, 1884 force_bio_submit); 1885 if (ret) { 1886 /* 1887 * We have to unlock the remaining range, or the page 1888 * will never be unlocked. 1889 */ 1890 unlock_extent(tree, cur, end, NULL); 1891 end_page_read(page, false, cur, end + 1 - cur); 1892 goto out; 1893 } 1894 cur = cur + iosize; 1895 pg_offset += iosize; 1896 } 1897 out: 1898 return ret; 1899 } 1900 1901 int btrfs_read_folio(struct file *file, struct folio *folio) 1902 { 1903 struct page *page = &folio->page; 1904 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1905 u64 start = page_offset(page); 1906 u64 end = start + PAGE_SIZE - 1; 1907 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1908 int ret; 1909 1910 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1911 1912 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1913 /* 1914 * If btrfs_do_readpage() failed we will want to submit the assembled 1915 * bio to do the cleanup. 1916 */ 1917 submit_one_bio(&bio_ctrl); 1918 return ret; 1919 } 1920 1921 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1922 u64 start, u64 end, 1923 struct extent_map **em_cached, 1924 struct btrfs_bio_ctrl *bio_ctrl, 1925 u64 *prev_em_start) 1926 { 1927 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1928 int index; 1929 1930 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1931 1932 for (index = 0; index < nr_pages; index++) { 1933 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1934 REQ_RAHEAD, prev_em_start); 1935 put_page(pages[index]); 1936 } 1937 } 1938 1939 /* 1940 * helper for __extent_writepage, doing all of the delayed allocation setup. 1941 * 1942 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1943 * to write the page (copy into inline extent). In this case the IO has 1944 * been started and the page is already unlocked. 1945 * 1946 * This returns 0 if all went well (page still locked) 1947 * This returns < 0 if there were errors (page still locked) 1948 */ 1949 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1950 struct page *page, struct writeback_control *wbc) 1951 { 1952 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1953 u64 delalloc_start = page_offset(page); 1954 u64 delalloc_to_write = 0; 1955 /* How many pages are started by btrfs_run_delalloc_range() */ 1956 unsigned long nr_written = 0; 1957 int ret; 1958 int page_started = 0; 1959 1960 while (delalloc_start < page_end) { 1961 u64 delalloc_end = page_end; 1962 bool found; 1963 1964 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1965 &delalloc_start, 1966 &delalloc_end); 1967 if (!found) { 1968 delalloc_start = delalloc_end + 1; 1969 continue; 1970 } 1971 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1972 delalloc_end, &page_started, &nr_written, wbc); 1973 if (ret) { 1974 btrfs_page_set_error(inode->root->fs_info, page, 1975 page_offset(page), PAGE_SIZE); 1976 return ret; 1977 } 1978 /* 1979 * delalloc_end is already one less than the total length, so 1980 * we don't subtract one from PAGE_SIZE 1981 */ 1982 delalloc_to_write += (delalloc_end - delalloc_start + 1983 PAGE_SIZE) >> PAGE_SHIFT; 1984 delalloc_start = delalloc_end + 1; 1985 } 1986 if (wbc->nr_to_write < delalloc_to_write) { 1987 int thresh = 8192; 1988 1989 if (delalloc_to_write < thresh * 2) 1990 thresh = delalloc_to_write; 1991 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1992 thresh); 1993 } 1994 1995 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1996 if (page_started) { 1997 /* 1998 * We've unlocked the page, so we can't update the mapping's 1999 * writeback index, just update nr_to_write. 2000 */ 2001 wbc->nr_to_write -= nr_written; 2002 return 1; 2003 } 2004 2005 return 0; 2006 } 2007 2008 /* 2009 * Find the first byte we need to write. 2010 * 2011 * For subpage, one page can contain several sectors, and 2012 * __extent_writepage_io() will just grab all extent maps in the page 2013 * range and try to submit all non-inline/non-compressed extents. 2014 * 2015 * This is a big problem for subpage, we shouldn't re-submit already written 2016 * data at all. 2017 * This function will lookup subpage dirty bit to find which range we really 2018 * need to submit. 2019 * 2020 * Return the next dirty range in [@start, @end). 2021 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 2022 */ 2023 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 2024 struct page *page, u64 *start, u64 *end) 2025 { 2026 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2027 struct btrfs_subpage_info *spi = fs_info->subpage_info; 2028 u64 orig_start = *start; 2029 /* Declare as unsigned long so we can use bitmap ops */ 2030 unsigned long flags; 2031 int range_start_bit; 2032 int range_end_bit; 2033 2034 /* 2035 * For regular sector size == page size case, since one page only 2036 * contains one sector, we return the page offset directly. 2037 */ 2038 if (!btrfs_is_subpage(fs_info, page)) { 2039 *start = page_offset(page); 2040 *end = page_offset(page) + PAGE_SIZE; 2041 return; 2042 } 2043 2044 range_start_bit = spi->dirty_offset + 2045 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 2046 2047 /* We should have the page locked, but just in case */ 2048 spin_lock_irqsave(&subpage->lock, flags); 2049 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 2050 spi->dirty_offset + spi->bitmap_nr_bits); 2051 spin_unlock_irqrestore(&subpage->lock, flags); 2052 2053 range_start_bit -= spi->dirty_offset; 2054 range_end_bit -= spi->dirty_offset; 2055 2056 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 2057 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 2058 } 2059 2060 /* 2061 * helper for __extent_writepage. This calls the writepage start hooks, 2062 * and does the loop to map the page into extents and bios. 2063 * 2064 * We return 1 if the IO is started and the page is unlocked, 2065 * 0 if all went well (page still locked) 2066 * < 0 if there were errors (page still locked) 2067 */ 2068 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 2069 struct page *page, 2070 struct writeback_control *wbc, 2071 struct extent_page_data *epd, 2072 loff_t i_size, 2073 int *nr_ret) 2074 { 2075 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2076 u64 cur = page_offset(page); 2077 u64 end = cur + PAGE_SIZE - 1; 2078 u64 extent_offset; 2079 u64 block_start; 2080 struct extent_map *em; 2081 int saved_ret = 0; 2082 int ret = 0; 2083 int nr = 0; 2084 enum req_op op = REQ_OP_WRITE; 2085 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 2086 bool has_error = false; 2087 bool compressed; 2088 2089 ret = btrfs_writepage_cow_fixup(page); 2090 if (ret) { 2091 /* Fixup worker will requeue */ 2092 redirty_page_for_writepage(wbc, page); 2093 unlock_page(page); 2094 return 1; 2095 } 2096 2097 /* 2098 * we don't want to touch the inode after unlocking the page, 2099 * so we update the mapping writeback index now 2100 */ 2101 wbc->nr_to_write--; 2102 2103 epd->bio_ctrl.end_io_func = end_bio_extent_writepage; 2104 while (cur <= end) { 2105 u64 disk_bytenr; 2106 u64 em_end; 2107 u64 dirty_range_start = cur; 2108 u64 dirty_range_end; 2109 u32 iosize; 2110 2111 if (cur >= i_size) { 2112 btrfs_writepage_endio_finish_ordered(inode, page, cur, 2113 end, true); 2114 /* 2115 * This range is beyond i_size, thus we don't need to 2116 * bother writing back. 2117 * But we still need to clear the dirty subpage bit, or 2118 * the next time the page gets dirtied, we will try to 2119 * writeback the sectors with subpage dirty bits, 2120 * causing writeback without ordered extent. 2121 */ 2122 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 2123 break; 2124 } 2125 2126 find_next_dirty_byte(fs_info, page, &dirty_range_start, 2127 &dirty_range_end); 2128 if (cur < dirty_range_start) { 2129 cur = dirty_range_start; 2130 continue; 2131 } 2132 2133 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 2134 if (IS_ERR(em)) { 2135 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 2136 ret = PTR_ERR_OR_ZERO(em); 2137 has_error = true; 2138 if (!saved_ret) 2139 saved_ret = ret; 2140 break; 2141 } 2142 2143 extent_offset = cur - em->start; 2144 em_end = extent_map_end(em); 2145 ASSERT(cur <= em_end); 2146 ASSERT(cur < end); 2147 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 2148 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 2149 block_start = em->block_start; 2150 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2151 disk_bytenr = em->block_start + extent_offset; 2152 2153 /* 2154 * Note that em_end from extent_map_end() and dirty_range_end from 2155 * find_next_dirty_byte() are all exclusive 2156 */ 2157 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 2158 2159 if (btrfs_use_zone_append(inode, em->block_start)) 2160 op = REQ_OP_ZONE_APPEND; 2161 2162 free_extent_map(em); 2163 em = NULL; 2164 2165 /* 2166 * compressed and inline extents are written through other 2167 * paths in the FS 2168 */ 2169 if (compressed || block_start == EXTENT_MAP_HOLE || 2170 block_start == EXTENT_MAP_INLINE) { 2171 if (compressed) 2172 nr++; 2173 else 2174 btrfs_writepage_endio_finish_ordered(inode, 2175 page, cur, cur + iosize - 1, true); 2176 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2177 cur += iosize; 2178 continue; 2179 } 2180 2181 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 2182 if (!PageWriteback(page)) { 2183 btrfs_err(inode->root->fs_info, 2184 "page %lu not writeback, cur %llu end %llu", 2185 page->index, cur, end); 2186 } 2187 2188 /* 2189 * Although the PageDirty bit is cleared before entering this 2190 * function, subpage dirty bit is not cleared. 2191 * So clear subpage dirty bit here so next time we won't submit 2192 * page for range already written to disk. 2193 */ 2194 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2195 2196 ret = submit_extent_page(op | write_flags, wbc, 2197 &epd->bio_ctrl, disk_bytenr, 2198 page, iosize, 2199 cur - page_offset(page), 2200 0, false); 2201 if (ret) { 2202 has_error = true; 2203 if (!saved_ret) 2204 saved_ret = ret; 2205 2206 btrfs_page_set_error(fs_info, page, cur, iosize); 2207 if (PageWriteback(page)) 2208 btrfs_page_clear_writeback(fs_info, page, cur, 2209 iosize); 2210 } 2211 2212 cur += iosize; 2213 nr++; 2214 } 2215 /* 2216 * If we finish without problem, we should not only clear page dirty, 2217 * but also empty subpage dirty bits 2218 */ 2219 if (!has_error) 2220 btrfs_page_assert_not_dirty(fs_info, page); 2221 else 2222 ret = saved_ret; 2223 *nr_ret = nr; 2224 return ret; 2225 } 2226 2227 /* 2228 * the writepage semantics are similar to regular writepage. extent 2229 * records are inserted to lock ranges in the tree, and as dirty areas 2230 * are found, they are marked writeback. Then the lock bits are removed 2231 * and the end_io handler clears the writeback ranges 2232 * 2233 * Return 0 if everything goes well. 2234 * Return <0 for error. 2235 */ 2236 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2237 struct extent_page_data *epd) 2238 { 2239 struct folio *folio = page_folio(page); 2240 struct inode *inode = page->mapping->host; 2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2242 const u64 page_start = page_offset(page); 2243 const u64 page_end = page_start + PAGE_SIZE - 1; 2244 int ret; 2245 int nr = 0; 2246 size_t pg_offset; 2247 loff_t i_size = i_size_read(inode); 2248 unsigned long end_index = i_size >> PAGE_SHIFT; 2249 2250 trace___extent_writepage(page, inode, wbc); 2251 2252 WARN_ON(!PageLocked(page)); 2253 2254 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 2255 page_offset(page), PAGE_SIZE); 2256 2257 pg_offset = offset_in_page(i_size); 2258 if (page->index > end_index || 2259 (page->index == end_index && !pg_offset)) { 2260 folio_invalidate(folio, 0, folio_size(folio)); 2261 folio_unlock(folio); 2262 return 0; 2263 } 2264 2265 if (page->index == end_index) 2266 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 2267 2268 ret = set_page_extent_mapped(page); 2269 if (ret < 0) { 2270 SetPageError(page); 2271 goto done; 2272 } 2273 2274 if (!epd->extent_locked) { 2275 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 2276 if (ret == 1) 2277 return 0; 2278 if (ret) 2279 goto done; 2280 } 2281 2282 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 2283 &nr); 2284 if (ret == 1) 2285 return 0; 2286 2287 done: 2288 if (nr == 0) { 2289 /* make sure the mapping tag for page dirty gets cleared */ 2290 set_page_writeback(page); 2291 end_page_writeback(page); 2292 } 2293 /* 2294 * Here we used to have a check for PageError() and then set @ret and 2295 * call end_extent_writepage(). 2296 * 2297 * But in fact setting @ret here will cause different error paths 2298 * between subpage and regular sectorsize. 2299 * 2300 * For regular page size, we never submit current page, but only add 2301 * current page to current bio. 2302 * The bio submission can only happen in next page. 2303 * Thus if we hit the PageError() branch, @ret is already set to 2304 * non-zero value and will not get updated for regular sectorsize. 2305 * 2306 * But for subpage case, it's possible we submit part of current page, 2307 * thus can get PageError() set by submitted bio of the same page, 2308 * while our @ret is still 0. 2309 * 2310 * So here we unify the behavior and don't set @ret. 2311 * Error can still be properly passed to higher layer as page will 2312 * be set error, here we just don't handle the IO failure. 2313 * 2314 * NOTE: This is just a hotfix for subpage. 2315 * The root fix will be properly ending ordered extent when we hit 2316 * an error during writeback. 2317 * 2318 * But that needs a bigger refactoring, as we not only need to grab the 2319 * submitted OE, but also need to know exactly at which bytenr we hit 2320 * the error. 2321 * Currently the full page based __extent_writepage_io() is not 2322 * capable of that. 2323 */ 2324 if (PageError(page)) 2325 end_extent_writepage(page, ret, page_start, page_end); 2326 if (epd->extent_locked) { 2327 /* 2328 * If epd->extent_locked, it's from extent_write_locked_range(), 2329 * the page can either be locked by lock_page() or 2330 * process_one_page(). 2331 * Let btrfs_page_unlock_writer() handle both cases. 2332 */ 2333 ASSERT(wbc); 2334 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 2335 wbc->range_end + 1 - wbc->range_start); 2336 } else { 2337 unlock_page(page); 2338 } 2339 ASSERT(ret <= 0); 2340 return ret; 2341 } 2342 2343 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 2344 { 2345 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 2346 TASK_UNINTERRUPTIBLE); 2347 } 2348 2349 static void end_extent_buffer_writeback(struct extent_buffer *eb) 2350 { 2351 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2352 smp_mb__after_atomic(); 2353 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 2354 } 2355 2356 /* 2357 * Lock extent buffer status and pages for writeback. 2358 * 2359 * May try to flush write bio if we can't get the lock. 2360 * 2361 * Return 0 if the extent buffer doesn't need to be submitted. 2362 * (E.g. the extent buffer is not dirty) 2363 * Return >0 is the extent buffer is submitted to bio. 2364 * Return <0 if something went wrong, no page is locked. 2365 */ 2366 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 2367 struct extent_page_data *epd) 2368 { 2369 struct btrfs_fs_info *fs_info = eb->fs_info; 2370 int i, num_pages; 2371 int flush = 0; 2372 int ret = 0; 2373 2374 if (!btrfs_try_tree_write_lock(eb)) { 2375 submit_write_bio(epd, 0); 2376 flush = 1; 2377 btrfs_tree_lock(eb); 2378 } 2379 2380 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 2381 btrfs_tree_unlock(eb); 2382 if (!epd->sync_io) 2383 return 0; 2384 if (!flush) { 2385 submit_write_bio(epd, 0); 2386 flush = 1; 2387 } 2388 while (1) { 2389 wait_on_extent_buffer_writeback(eb); 2390 btrfs_tree_lock(eb); 2391 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 2392 break; 2393 btrfs_tree_unlock(eb); 2394 } 2395 } 2396 2397 /* 2398 * We need to do this to prevent races in people who check if the eb is 2399 * under IO since we can end up having no IO bits set for a short period 2400 * of time. 2401 */ 2402 spin_lock(&eb->refs_lock); 2403 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2404 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2405 spin_unlock(&eb->refs_lock); 2406 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2407 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2408 -eb->len, 2409 fs_info->dirty_metadata_batch); 2410 ret = 1; 2411 } else { 2412 spin_unlock(&eb->refs_lock); 2413 } 2414 2415 btrfs_tree_unlock(eb); 2416 2417 /* 2418 * Either we don't need to submit any tree block, or we're submitting 2419 * subpage eb. 2420 * Subpage metadata doesn't use page locking at all, so we can skip 2421 * the page locking. 2422 */ 2423 if (!ret || fs_info->nodesize < PAGE_SIZE) 2424 return ret; 2425 2426 num_pages = num_extent_pages(eb); 2427 for (i = 0; i < num_pages; i++) { 2428 struct page *p = eb->pages[i]; 2429 2430 if (!trylock_page(p)) { 2431 if (!flush) { 2432 submit_write_bio(epd, 0); 2433 flush = 1; 2434 } 2435 lock_page(p); 2436 } 2437 } 2438 2439 return ret; 2440 } 2441 2442 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 2443 { 2444 struct btrfs_fs_info *fs_info = eb->fs_info; 2445 2446 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 2447 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 2448 return; 2449 2450 /* 2451 * A read may stumble upon this buffer later, make sure that it gets an 2452 * error and knows there was an error. 2453 */ 2454 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 2455 2456 /* 2457 * We need to set the mapping with the io error as well because a write 2458 * error will flip the file system readonly, and then syncfs() will 2459 * return a 0 because we are readonly if we don't modify the err seq for 2460 * the superblock. 2461 */ 2462 mapping_set_error(page->mapping, -EIO); 2463 2464 /* 2465 * If we error out, we should add back the dirty_metadata_bytes 2466 * to make it consistent. 2467 */ 2468 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2469 eb->len, fs_info->dirty_metadata_batch); 2470 2471 /* 2472 * If writeback for a btree extent that doesn't belong to a log tree 2473 * failed, increment the counter transaction->eb_write_errors. 2474 * We do this because while the transaction is running and before it's 2475 * committing (when we call filemap_fdata[write|wait]_range against 2476 * the btree inode), we might have 2477 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 2478 * returns an error or an error happens during writeback, when we're 2479 * committing the transaction we wouldn't know about it, since the pages 2480 * can be no longer dirty nor marked anymore for writeback (if a 2481 * subsequent modification to the extent buffer didn't happen before the 2482 * transaction commit), which makes filemap_fdata[write|wait]_range not 2483 * able to find the pages tagged with SetPageError at transaction 2484 * commit time. So if this happens we must abort the transaction, 2485 * otherwise we commit a super block with btree roots that point to 2486 * btree nodes/leafs whose content on disk is invalid - either garbage 2487 * or the content of some node/leaf from a past generation that got 2488 * cowed or deleted and is no longer valid. 2489 * 2490 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 2491 * not be enough - we need to distinguish between log tree extents vs 2492 * non-log tree extents, and the next filemap_fdatawait_range() call 2493 * will catch and clear such errors in the mapping - and that call might 2494 * be from a log sync and not from a transaction commit. Also, checking 2495 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 2496 * not done and would not be reliable - the eb might have been released 2497 * from memory and reading it back again means that flag would not be 2498 * set (since it's a runtime flag, not persisted on disk). 2499 * 2500 * Using the flags below in the btree inode also makes us achieve the 2501 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2502 * writeback for all dirty pages and before filemap_fdatawait_range() 2503 * is called, the writeback for all dirty pages had already finished 2504 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2505 * filemap_fdatawait_range() would return success, as it could not know 2506 * that writeback errors happened (the pages were no longer tagged for 2507 * writeback). 2508 */ 2509 switch (eb->log_index) { 2510 case -1: 2511 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2512 break; 2513 case 0: 2514 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2515 break; 2516 case 1: 2517 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2518 break; 2519 default: 2520 BUG(); /* unexpected, logic error */ 2521 } 2522 } 2523 2524 /* 2525 * The endio specific version which won't touch any unsafe spinlock in endio 2526 * context. 2527 */ 2528 static struct extent_buffer *find_extent_buffer_nolock( 2529 struct btrfs_fs_info *fs_info, u64 start) 2530 { 2531 struct extent_buffer *eb; 2532 2533 rcu_read_lock(); 2534 eb = radix_tree_lookup(&fs_info->buffer_radix, 2535 start >> fs_info->sectorsize_bits); 2536 if (eb && atomic_inc_not_zero(&eb->refs)) { 2537 rcu_read_unlock(); 2538 return eb; 2539 } 2540 rcu_read_unlock(); 2541 return NULL; 2542 } 2543 2544 /* 2545 * The endio function for subpage extent buffer write. 2546 * 2547 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 2548 * after all extent buffers in the page has finished their writeback. 2549 */ 2550 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 2551 { 2552 struct bio *bio = &bbio->bio; 2553 struct btrfs_fs_info *fs_info; 2554 struct bio_vec *bvec; 2555 struct bvec_iter_all iter_all; 2556 2557 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2558 ASSERT(fs_info->nodesize < PAGE_SIZE); 2559 2560 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2561 bio_for_each_segment_all(bvec, bio, iter_all) { 2562 struct page *page = bvec->bv_page; 2563 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2564 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2565 u64 cur_bytenr = bvec_start; 2566 2567 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2568 2569 /* Iterate through all extent buffers in the range */ 2570 while (cur_bytenr <= bvec_end) { 2571 struct extent_buffer *eb; 2572 int done; 2573 2574 /* 2575 * Here we can't use find_extent_buffer(), as it may 2576 * try to lock eb->refs_lock, which is not safe in endio 2577 * context. 2578 */ 2579 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2580 ASSERT(eb); 2581 2582 cur_bytenr = eb->start + eb->len; 2583 2584 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2585 done = atomic_dec_and_test(&eb->io_pages); 2586 ASSERT(done); 2587 2588 if (bio->bi_status || 2589 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2590 ClearPageUptodate(page); 2591 set_btree_ioerr(page, eb); 2592 } 2593 2594 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2595 eb->len); 2596 end_extent_buffer_writeback(eb); 2597 /* 2598 * free_extent_buffer() will grab spinlock which is not 2599 * safe in endio context. Thus here we manually dec 2600 * the ref. 2601 */ 2602 atomic_dec(&eb->refs); 2603 } 2604 } 2605 bio_put(bio); 2606 } 2607 2608 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2609 { 2610 struct bio *bio = &bbio->bio; 2611 struct bio_vec *bvec; 2612 struct extent_buffer *eb; 2613 int done; 2614 struct bvec_iter_all iter_all; 2615 2616 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2617 bio_for_each_segment_all(bvec, bio, iter_all) { 2618 struct page *page = bvec->bv_page; 2619 2620 eb = (struct extent_buffer *)page->private; 2621 BUG_ON(!eb); 2622 done = atomic_dec_and_test(&eb->io_pages); 2623 2624 if (bio->bi_status || 2625 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2626 ClearPageUptodate(page); 2627 set_btree_ioerr(page, eb); 2628 } 2629 2630 end_page_writeback(page); 2631 2632 if (!done) 2633 continue; 2634 2635 end_extent_buffer_writeback(eb); 2636 } 2637 2638 bio_put(bio); 2639 } 2640 2641 static void prepare_eb_write(struct extent_buffer *eb) 2642 { 2643 u32 nritems; 2644 unsigned long start; 2645 unsigned long end; 2646 2647 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2648 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2649 2650 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2651 nritems = btrfs_header_nritems(eb); 2652 if (btrfs_header_level(eb) > 0) { 2653 end = btrfs_node_key_ptr_offset(nritems); 2654 memzero_extent_buffer(eb, end, eb->len - end); 2655 } else { 2656 /* 2657 * Leaf: 2658 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2659 */ 2660 start = btrfs_item_nr_offset(nritems); 2661 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 2662 memzero_extent_buffer(eb, start, end - start); 2663 } 2664 } 2665 2666 /* 2667 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2668 * Page locking is only utilized at minimum to keep the VMM code happy. 2669 */ 2670 static int write_one_subpage_eb(struct extent_buffer *eb, 2671 struct writeback_control *wbc, 2672 struct extent_page_data *epd) 2673 { 2674 struct btrfs_fs_info *fs_info = eb->fs_info; 2675 struct page *page = eb->pages[0]; 2676 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2677 bool no_dirty_ebs = false; 2678 int ret; 2679 2680 prepare_eb_write(eb); 2681 2682 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2683 lock_page(page); 2684 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2685 2686 /* Check if this is the last dirty bit to update nr_written */ 2687 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2688 eb->start, eb->len); 2689 if (no_dirty_ebs) 2690 clear_page_dirty_for_io(page); 2691 2692 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage; 2693 2694 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2695 &epd->bio_ctrl, eb->start, page, eb->len, 2696 eb->start - page_offset(page), 0, false); 2697 if (ret) { 2698 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2699 set_btree_ioerr(page, eb); 2700 unlock_page(page); 2701 2702 if (atomic_dec_and_test(&eb->io_pages)) 2703 end_extent_buffer_writeback(eb); 2704 return -EIO; 2705 } 2706 unlock_page(page); 2707 /* 2708 * Submission finished without problem, if no range of the page is 2709 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2710 */ 2711 if (no_dirty_ebs) 2712 wbc->nr_to_write--; 2713 return ret; 2714 } 2715 2716 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2717 struct writeback_control *wbc, 2718 struct extent_page_data *epd) 2719 { 2720 u64 disk_bytenr = eb->start; 2721 int i, num_pages; 2722 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2723 int ret = 0; 2724 2725 prepare_eb_write(eb); 2726 2727 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage; 2728 2729 num_pages = num_extent_pages(eb); 2730 for (i = 0; i < num_pages; i++) { 2731 struct page *p = eb->pages[i]; 2732 2733 clear_page_dirty_for_io(p); 2734 set_page_writeback(p); 2735 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2736 &epd->bio_ctrl, disk_bytenr, p, 2737 PAGE_SIZE, 0, 0, false); 2738 if (ret) { 2739 set_btree_ioerr(p, eb); 2740 if (PageWriteback(p)) 2741 end_page_writeback(p); 2742 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2743 end_extent_buffer_writeback(eb); 2744 ret = -EIO; 2745 break; 2746 } 2747 disk_bytenr += PAGE_SIZE; 2748 wbc->nr_to_write--; 2749 unlock_page(p); 2750 } 2751 2752 if (unlikely(ret)) { 2753 for (; i < num_pages; i++) { 2754 struct page *p = eb->pages[i]; 2755 clear_page_dirty_for_io(p); 2756 unlock_page(p); 2757 } 2758 } 2759 2760 return ret; 2761 } 2762 2763 /* 2764 * Submit one subpage btree page. 2765 * 2766 * The main difference to submit_eb_page() is: 2767 * - Page locking 2768 * For subpage, we don't rely on page locking at all. 2769 * 2770 * - Flush write bio 2771 * We only flush bio if we may be unable to fit current extent buffers into 2772 * current bio. 2773 * 2774 * Return >=0 for the number of submitted extent buffers. 2775 * Return <0 for fatal error. 2776 */ 2777 static int submit_eb_subpage(struct page *page, 2778 struct writeback_control *wbc, 2779 struct extent_page_data *epd) 2780 { 2781 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2782 int submitted = 0; 2783 u64 page_start = page_offset(page); 2784 int bit_start = 0; 2785 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2786 int ret; 2787 2788 /* Lock and write each dirty extent buffers in the range */ 2789 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2790 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2791 struct extent_buffer *eb; 2792 unsigned long flags; 2793 u64 start; 2794 2795 /* 2796 * Take private lock to ensure the subpage won't be detached 2797 * in the meantime. 2798 */ 2799 spin_lock(&page->mapping->private_lock); 2800 if (!PagePrivate(page)) { 2801 spin_unlock(&page->mapping->private_lock); 2802 break; 2803 } 2804 spin_lock_irqsave(&subpage->lock, flags); 2805 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2806 subpage->bitmaps)) { 2807 spin_unlock_irqrestore(&subpage->lock, flags); 2808 spin_unlock(&page->mapping->private_lock); 2809 bit_start++; 2810 continue; 2811 } 2812 2813 start = page_start + bit_start * fs_info->sectorsize; 2814 bit_start += sectors_per_node; 2815 2816 /* 2817 * Here we just want to grab the eb without touching extra 2818 * spin locks, so call find_extent_buffer_nolock(). 2819 */ 2820 eb = find_extent_buffer_nolock(fs_info, start); 2821 spin_unlock_irqrestore(&subpage->lock, flags); 2822 spin_unlock(&page->mapping->private_lock); 2823 2824 /* 2825 * The eb has already reached 0 refs thus find_extent_buffer() 2826 * doesn't return it. We don't need to write back such eb 2827 * anyway. 2828 */ 2829 if (!eb) 2830 continue; 2831 2832 ret = lock_extent_buffer_for_io(eb, epd); 2833 if (ret == 0) { 2834 free_extent_buffer(eb); 2835 continue; 2836 } 2837 if (ret < 0) { 2838 free_extent_buffer(eb); 2839 goto cleanup; 2840 } 2841 ret = write_one_subpage_eb(eb, wbc, epd); 2842 free_extent_buffer(eb); 2843 if (ret < 0) 2844 goto cleanup; 2845 submitted++; 2846 } 2847 return submitted; 2848 2849 cleanup: 2850 /* We hit error, end bio for the submitted extent buffers */ 2851 submit_write_bio(epd, ret); 2852 return ret; 2853 } 2854 2855 /* 2856 * Submit all page(s) of one extent buffer. 2857 * 2858 * @page: the page of one extent buffer 2859 * @eb_context: to determine if we need to submit this page, if current page 2860 * belongs to this eb, we don't need to submit 2861 * 2862 * The caller should pass each page in their bytenr order, and here we use 2863 * @eb_context to determine if we have submitted pages of one extent buffer. 2864 * 2865 * If we have, we just skip until we hit a new page that doesn't belong to 2866 * current @eb_context. 2867 * 2868 * If not, we submit all the page(s) of the extent buffer. 2869 * 2870 * Return >0 if we have submitted the extent buffer successfully. 2871 * Return 0 if we don't need to submit the page, as it's already submitted by 2872 * previous call. 2873 * Return <0 for fatal error. 2874 */ 2875 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2876 struct extent_page_data *epd, 2877 struct extent_buffer **eb_context) 2878 { 2879 struct address_space *mapping = page->mapping; 2880 struct btrfs_block_group *cache = NULL; 2881 struct extent_buffer *eb; 2882 int ret; 2883 2884 if (!PagePrivate(page)) 2885 return 0; 2886 2887 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2888 return submit_eb_subpage(page, wbc, epd); 2889 2890 spin_lock(&mapping->private_lock); 2891 if (!PagePrivate(page)) { 2892 spin_unlock(&mapping->private_lock); 2893 return 0; 2894 } 2895 2896 eb = (struct extent_buffer *)page->private; 2897 2898 /* 2899 * Shouldn't happen and normally this would be a BUG_ON but no point 2900 * crashing the machine for something we can survive anyway. 2901 */ 2902 if (WARN_ON(!eb)) { 2903 spin_unlock(&mapping->private_lock); 2904 return 0; 2905 } 2906 2907 if (eb == *eb_context) { 2908 spin_unlock(&mapping->private_lock); 2909 return 0; 2910 } 2911 ret = atomic_inc_not_zero(&eb->refs); 2912 spin_unlock(&mapping->private_lock); 2913 if (!ret) 2914 return 0; 2915 2916 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2917 /* 2918 * If for_sync, this hole will be filled with 2919 * trasnsaction commit. 2920 */ 2921 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2922 ret = -EAGAIN; 2923 else 2924 ret = 0; 2925 free_extent_buffer(eb); 2926 return ret; 2927 } 2928 2929 *eb_context = eb; 2930 2931 ret = lock_extent_buffer_for_io(eb, epd); 2932 if (ret <= 0) { 2933 btrfs_revert_meta_write_pointer(cache, eb); 2934 if (cache) 2935 btrfs_put_block_group(cache); 2936 free_extent_buffer(eb); 2937 return ret; 2938 } 2939 if (cache) { 2940 /* 2941 * Implies write in zoned mode. Mark the last eb in a block group. 2942 */ 2943 btrfs_schedule_zone_finish_bg(cache, eb); 2944 btrfs_put_block_group(cache); 2945 } 2946 ret = write_one_eb(eb, wbc, epd); 2947 free_extent_buffer(eb); 2948 if (ret < 0) 2949 return ret; 2950 return 1; 2951 } 2952 2953 int btree_write_cache_pages(struct address_space *mapping, 2954 struct writeback_control *wbc) 2955 { 2956 struct extent_buffer *eb_context = NULL; 2957 struct extent_page_data epd = { 2958 .bio_ctrl = { 0 }, 2959 .extent_locked = 0, 2960 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2961 }; 2962 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2963 int ret = 0; 2964 int done = 0; 2965 int nr_to_write_done = 0; 2966 struct pagevec pvec; 2967 int nr_pages; 2968 pgoff_t index; 2969 pgoff_t end; /* Inclusive */ 2970 int scanned = 0; 2971 xa_mark_t tag; 2972 2973 pagevec_init(&pvec); 2974 if (wbc->range_cyclic) { 2975 index = mapping->writeback_index; /* Start from prev offset */ 2976 end = -1; 2977 /* 2978 * Start from the beginning does not need to cycle over the 2979 * range, mark it as scanned. 2980 */ 2981 scanned = (index == 0); 2982 } else { 2983 index = wbc->range_start >> PAGE_SHIFT; 2984 end = wbc->range_end >> PAGE_SHIFT; 2985 scanned = 1; 2986 } 2987 if (wbc->sync_mode == WB_SYNC_ALL) 2988 tag = PAGECACHE_TAG_TOWRITE; 2989 else 2990 tag = PAGECACHE_TAG_DIRTY; 2991 btrfs_zoned_meta_io_lock(fs_info); 2992 retry: 2993 if (wbc->sync_mode == WB_SYNC_ALL) 2994 tag_pages_for_writeback(mapping, index, end); 2995 while (!done && !nr_to_write_done && (index <= end) && 2996 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2997 tag))) { 2998 unsigned i; 2999 3000 for (i = 0; i < nr_pages; i++) { 3001 struct page *page = pvec.pages[i]; 3002 3003 ret = submit_eb_page(page, wbc, &epd, &eb_context); 3004 if (ret == 0) 3005 continue; 3006 if (ret < 0) { 3007 done = 1; 3008 break; 3009 } 3010 3011 /* 3012 * the filesystem may choose to bump up nr_to_write. 3013 * We have to make sure to honor the new nr_to_write 3014 * at any time 3015 */ 3016 nr_to_write_done = wbc->nr_to_write <= 0; 3017 } 3018 pagevec_release(&pvec); 3019 cond_resched(); 3020 } 3021 if (!scanned && !done) { 3022 /* 3023 * We hit the last page and there is more work to be done: wrap 3024 * back to the start of the file 3025 */ 3026 scanned = 1; 3027 index = 0; 3028 goto retry; 3029 } 3030 /* 3031 * If something went wrong, don't allow any metadata write bio to be 3032 * submitted. 3033 * 3034 * This would prevent use-after-free if we had dirty pages not 3035 * cleaned up, which can still happen by fuzzed images. 3036 * 3037 * - Bad extent tree 3038 * Allowing existing tree block to be allocated for other trees. 3039 * 3040 * - Log tree operations 3041 * Exiting tree blocks get allocated to log tree, bumps its 3042 * generation, then get cleaned in tree re-balance. 3043 * Such tree block will not be written back, since it's clean, 3044 * thus no WRITTEN flag set. 3045 * And after log writes back, this tree block is not traced by 3046 * any dirty extent_io_tree. 3047 * 3048 * - Offending tree block gets re-dirtied from its original owner 3049 * Since it has bumped generation, no WRITTEN flag, it can be 3050 * reused without COWing. This tree block will not be traced 3051 * by btrfs_transaction::dirty_pages. 3052 * 3053 * Now such dirty tree block will not be cleaned by any dirty 3054 * extent io tree. Thus we don't want to submit such wild eb 3055 * if the fs already has error. 3056 * 3057 * We can get ret > 0 from submit_extent_page() indicating how many ebs 3058 * were submitted. Reset it to 0 to avoid false alerts for the caller. 3059 */ 3060 if (ret > 0) 3061 ret = 0; 3062 if (!ret && BTRFS_FS_ERROR(fs_info)) 3063 ret = -EROFS; 3064 submit_write_bio(&epd, ret); 3065 3066 btrfs_zoned_meta_io_unlock(fs_info); 3067 return ret; 3068 } 3069 3070 /** 3071 * Walk the list of dirty pages of the given address space and write all of them. 3072 * 3073 * @mapping: address space structure to write 3074 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3075 * @epd: holds context for the write, namely the bio 3076 * 3077 * If a page is already under I/O, write_cache_pages() skips it, even 3078 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3079 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3080 * and msync() need to guarantee that all the data which was dirty at the time 3081 * the call was made get new I/O started against them. If wbc->sync_mode is 3082 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3083 * existing IO to complete. 3084 */ 3085 static int extent_write_cache_pages(struct address_space *mapping, 3086 struct writeback_control *wbc, 3087 struct extent_page_data *epd) 3088 { 3089 struct inode *inode = mapping->host; 3090 int ret = 0; 3091 int done = 0; 3092 int nr_to_write_done = 0; 3093 struct pagevec pvec; 3094 int nr_pages; 3095 pgoff_t index; 3096 pgoff_t end; /* Inclusive */ 3097 pgoff_t done_index; 3098 int range_whole = 0; 3099 int scanned = 0; 3100 xa_mark_t tag; 3101 3102 /* 3103 * We have to hold onto the inode so that ordered extents can do their 3104 * work when the IO finishes. The alternative to this is failing to add 3105 * an ordered extent if the igrab() fails there and that is a huge pain 3106 * to deal with, so instead just hold onto the inode throughout the 3107 * writepages operation. If it fails here we are freeing up the inode 3108 * anyway and we'd rather not waste our time writing out stuff that is 3109 * going to be truncated anyway. 3110 */ 3111 if (!igrab(inode)) 3112 return 0; 3113 3114 pagevec_init(&pvec); 3115 if (wbc->range_cyclic) { 3116 index = mapping->writeback_index; /* Start from prev offset */ 3117 end = -1; 3118 /* 3119 * Start from the beginning does not need to cycle over the 3120 * range, mark it as scanned. 3121 */ 3122 scanned = (index == 0); 3123 } else { 3124 index = wbc->range_start >> PAGE_SHIFT; 3125 end = wbc->range_end >> PAGE_SHIFT; 3126 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3127 range_whole = 1; 3128 scanned = 1; 3129 } 3130 3131 /* 3132 * We do the tagged writepage as long as the snapshot flush bit is set 3133 * and we are the first one who do the filemap_flush() on this inode. 3134 * 3135 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3136 * not race in and drop the bit. 3137 */ 3138 if (range_whole && wbc->nr_to_write == LONG_MAX && 3139 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3140 &BTRFS_I(inode)->runtime_flags)) 3141 wbc->tagged_writepages = 1; 3142 3143 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3144 tag = PAGECACHE_TAG_TOWRITE; 3145 else 3146 tag = PAGECACHE_TAG_DIRTY; 3147 retry: 3148 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3149 tag_pages_for_writeback(mapping, index, end); 3150 done_index = index; 3151 while (!done && !nr_to_write_done && (index <= end) && 3152 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3153 &index, end, tag))) { 3154 unsigned i; 3155 3156 for (i = 0; i < nr_pages; i++) { 3157 struct page *page = pvec.pages[i]; 3158 3159 done_index = page->index + 1; 3160 /* 3161 * At this point we hold neither the i_pages lock nor 3162 * the page lock: the page may be truncated or 3163 * invalidated (changing page->mapping to NULL), 3164 * or even swizzled back from swapper_space to 3165 * tmpfs file mapping 3166 */ 3167 if (!trylock_page(page)) { 3168 submit_write_bio(epd, 0); 3169 lock_page(page); 3170 } 3171 3172 if (unlikely(page->mapping != mapping)) { 3173 unlock_page(page); 3174 continue; 3175 } 3176 3177 if (wbc->sync_mode != WB_SYNC_NONE) { 3178 if (PageWriteback(page)) 3179 submit_write_bio(epd, 0); 3180 wait_on_page_writeback(page); 3181 } 3182 3183 if (PageWriteback(page) || 3184 !clear_page_dirty_for_io(page)) { 3185 unlock_page(page); 3186 continue; 3187 } 3188 3189 ret = __extent_writepage(page, wbc, epd); 3190 if (ret < 0) { 3191 done = 1; 3192 break; 3193 } 3194 3195 /* 3196 * the filesystem may choose to bump up nr_to_write. 3197 * We have to make sure to honor the new nr_to_write 3198 * at any time 3199 */ 3200 nr_to_write_done = wbc->nr_to_write <= 0; 3201 } 3202 pagevec_release(&pvec); 3203 cond_resched(); 3204 } 3205 if (!scanned && !done) { 3206 /* 3207 * We hit the last page and there is more work to be done: wrap 3208 * back to the start of the file 3209 */ 3210 scanned = 1; 3211 index = 0; 3212 3213 /* 3214 * If we're looping we could run into a page that is locked by a 3215 * writer and that writer could be waiting on writeback for a 3216 * page in our current bio, and thus deadlock, so flush the 3217 * write bio here. 3218 */ 3219 submit_write_bio(epd, 0); 3220 goto retry; 3221 } 3222 3223 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 3224 mapping->writeback_index = done_index; 3225 3226 btrfs_add_delayed_iput(inode); 3227 return ret; 3228 } 3229 3230 /* 3231 * Submit the pages in the range to bio for call sites which delalloc range has 3232 * already been ran (aka, ordered extent inserted) and all pages are still 3233 * locked. 3234 */ 3235 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 3236 { 3237 bool found_error = false; 3238 int first_error = 0; 3239 int ret = 0; 3240 struct address_space *mapping = inode->i_mapping; 3241 struct page *page; 3242 u64 cur = start; 3243 unsigned long nr_pages; 3244 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 3245 struct extent_page_data epd = { 3246 .bio_ctrl = { 0 }, 3247 .extent_locked = 1, 3248 .sync_io = 1, 3249 }; 3250 struct writeback_control wbc_writepages = { 3251 .sync_mode = WB_SYNC_ALL, 3252 .range_start = start, 3253 .range_end = end + 1, 3254 /* We're called from an async helper function */ 3255 .punt_to_cgroup = 1, 3256 .no_cgroup_owner = 1, 3257 }; 3258 3259 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 3260 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 3261 PAGE_SHIFT; 3262 wbc_writepages.nr_to_write = nr_pages * 2; 3263 3264 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 3265 while (cur <= end) { 3266 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 3267 3268 page = find_get_page(mapping, cur >> PAGE_SHIFT); 3269 /* 3270 * All pages in the range are locked since 3271 * btrfs_run_delalloc_range(), thus there is no way to clear 3272 * the page dirty flag. 3273 */ 3274 ASSERT(PageLocked(page)); 3275 ASSERT(PageDirty(page)); 3276 clear_page_dirty_for_io(page); 3277 ret = __extent_writepage(page, &wbc_writepages, &epd); 3278 ASSERT(ret <= 0); 3279 if (ret < 0) { 3280 found_error = true; 3281 first_error = ret; 3282 } 3283 put_page(page); 3284 cur = cur_end + 1; 3285 } 3286 3287 submit_write_bio(&epd, found_error ? ret : 0); 3288 3289 wbc_detach_inode(&wbc_writepages); 3290 if (found_error) 3291 return first_error; 3292 return ret; 3293 } 3294 3295 int extent_writepages(struct address_space *mapping, 3296 struct writeback_control *wbc) 3297 { 3298 struct inode *inode = mapping->host; 3299 int ret = 0; 3300 struct extent_page_data epd = { 3301 .bio_ctrl = { 0 }, 3302 .extent_locked = 0, 3303 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3304 }; 3305 3306 /* 3307 * Allow only a single thread to do the reloc work in zoned mode to 3308 * protect the write pointer updates. 3309 */ 3310 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 3311 ret = extent_write_cache_pages(mapping, wbc, &epd); 3312 submit_write_bio(&epd, ret); 3313 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 3314 return ret; 3315 } 3316 3317 void extent_readahead(struct readahead_control *rac) 3318 { 3319 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3320 struct page *pagepool[16]; 3321 struct extent_map *em_cached = NULL; 3322 u64 prev_em_start = (u64)-1; 3323 int nr; 3324 3325 while ((nr = readahead_page_batch(rac, pagepool))) { 3326 u64 contig_start = readahead_pos(rac); 3327 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 3328 3329 contiguous_readpages(pagepool, nr, contig_start, contig_end, 3330 &em_cached, &bio_ctrl, &prev_em_start); 3331 } 3332 3333 if (em_cached) 3334 free_extent_map(em_cached); 3335 submit_one_bio(&bio_ctrl); 3336 } 3337 3338 /* 3339 * basic invalidate_folio code, this waits on any locked or writeback 3340 * ranges corresponding to the folio, and then deletes any extent state 3341 * records from the tree 3342 */ 3343 int extent_invalidate_folio(struct extent_io_tree *tree, 3344 struct folio *folio, size_t offset) 3345 { 3346 struct extent_state *cached_state = NULL; 3347 u64 start = folio_pos(folio); 3348 u64 end = start + folio_size(folio) - 1; 3349 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 3350 3351 /* This function is only called for the btree inode */ 3352 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 3353 3354 start += ALIGN(offset, blocksize); 3355 if (start > end) 3356 return 0; 3357 3358 lock_extent(tree, start, end, &cached_state); 3359 folio_wait_writeback(folio); 3360 3361 /* 3362 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 3363 * so here we only need to unlock the extent range to free any 3364 * existing extent state. 3365 */ 3366 unlock_extent(tree, start, end, &cached_state); 3367 return 0; 3368 } 3369 3370 /* 3371 * a helper for release_folio, this tests for areas of the page that 3372 * are locked or under IO and drops the related state bits if it is safe 3373 * to drop the page. 3374 */ 3375 static int try_release_extent_state(struct extent_io_tree *tree, 3376 struct page *page, gfp_t mask) 3377 { 3378 u64 start = page_offset(page); 3379 u64 end = start + PAGE_SIZE - 1; 3380 int ret = 1; 3381 3382 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 3383 ret = 0; 3384 } else { 3385 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 3386 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 3387 3388 /* 3389 * At this point we can safely clear everything except the 3390 * locked bit, the nodatasum bit and the delalloc new bit. 3391 * The delalloc new bit will be cleared by ordered extent 3392 * completion. 3393 */ 3394 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 3395 mask, NULL); 3396 3397 /* if clear_extent_bit failed for enomem reasons, 3398 * we can't allow the release to continue. 3399 */ 3400 if (ret < 0) 3401 ret = 0; 3402 else 3403 ret = 1; 3404 } 3405 return ret; 3406 } 3407 3408 /* 3409 * a helper for release_folio. As long as there are no locked extents 3410 * in the range corresponding to the page, both state records and extent 3411 * map records are removed 3412 */ 3413 int try_release_extent_mapping(struct page *page, gfp_t mask) 3414 { 3415 struct extent_map *em; 3416 u64 start = page_offset(page); 3417 u64 end = start + PAGE_SIZE - 1; 3418 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 3419 struct extent_io_tree *tree = &btrfs_inode->io_tree; 3420 struct extent_map_tree *map = &btrfs_inode->extent_tree; 3421 3422 if (gfpflags_allow_blocking(mask) && 3423 page->mapping->host->i_size > SZ_16M) { 3424 u64 len; 3425 while (start <= end) { 3426 struct btrfs_fs_info *fs_info; 3427 u64 cur_gen; 3428 3429 len = end - start + 1; 3430 write_lock(&map->lock); 3431 em = lookup_extent_mapping(map, start, len); 3432 if (!em) { 3433 write_unlock(&map->lock); 3434 break; 3435 } 3436 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3437 em->start != start) { 3438 write_unlock(&map->lock); 3439 free_extent_map(em); 3440 break; 3441 } 3442 if (test_range_bit(tree, em->start, 3443 extent_map_end(em) - 1, 3444 EXTENT_LOCKED, 0, NULL)) 3445 goto next; 3446 /* 3447 * If it's not in the list of modified extents, used 3448 * by a fast fsync, we can remove it. If it's being 3449 * logged we can safely remove it since fsync took an 3450 * extra reference on the em. 3451 */ 3452 if (list_empty(&em->list) || 3453 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 3454 goto remove_em; 3455 /* 3456 * If it's in the list of modified extents, remove it 3457 * only if its generation is older then the current one, 3458 * in which case we don't need it for a fast fsync. 3459 * Otherwise don't remove it, we could be racing with an 3460 * ongoing fast fsync that could miss the new extent. 3461 */ 3462 fs_info = btrfs_inode->root->fs_info; 3463 spin_lock(&fs_info->trans_lock); 3464 cur_gen = fs_info->generation; 3465 spin_unlock(&fs_info->trans_lock); 3466 if (em->generation >= cur_gen) 3467 goto next; 3468 remove_em: 3469 /* 3470 * We only remove extent maps that are not in the list of 3471 * modified extents or that are in the list but with a 3472 * generation lower then the current generation, so there 3473 * is no need to set the full fsync flag on the inode (it 3474 * hurts the fsync performance for workloads with a data 3475 * size that exceeds or is close to the system's memory). 3476 */ 3477 remove_extent_mapping(map, em); 3478 /* once for the rb tree */ 3479 free_extent_map(em); 3480 next: 3481 start = extent_map_end(em); 3482 write_unlock(&map->lock); 3483 3484 /* once for us */ 3485 free_extent_map(em); 3486 3487 cond_resched(); /* Allow large-extent preemption. */ 3488 } 3489 } 3490 return try_release_extent_state(tree, page, mask); 3491 } 3492 3493 /* 3494 * To cache previous fiemap extent 3495 * 3496 * Will be used for merging fiemap extent 3497 */ 3498 struct fiemap_cache { 3499 u64 offset; 3500 u64 phys; 3501 u64 len; 3502 u32 flags; 3503 bool cached; 3504 }; 3505 3506 /* 3507 * Helper to submit fiemap extent. 3508 * 3509 * Will try to merge current fiemap extent specified by @offset, @phys, 3510 * @len and @flags with cached one. 3511 * And only when we fails to merge, cached one will be submitted as 3512 * fiemap extent. 3513 * 3514 * Return value is the same as fiemap_fill_next_extent(). 3515 */ 3516 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 3517 struct fiemap_cache *cache, 3518 u64 offset, u64 phys, u64 len, u32 flags) 3519 { 3520 int ret = 0; 3521 3522 /* Set at the end of extent_fiemap(). */ 3523 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 3524 3525 if (!cache->cached) 3526 goto assign; 3527 3528 /* 3529 * Sanity check, extent_fiemap() should have ensured that new 3530 * fiemap extent won't overlap with cached one. 3531 * Not recoverable. 3532 * 3533 * NOTE: Physical address can overlap, due to compression 3534 */ 3535 if (cache->offset + cache->len > offset) { 3536 WARN_ON(1); 3537 return -EINVAL; 3538 } 3539 3540 /* 3541 * Only merges fiemap extents if 3542 * 1) Their logical addresses are continuous 3543 * 3544 * 2) Their physical addresses are continuous 3545 * So truly compressed (physical size smaller than logical size) 3546 * extents won't get merged with each other 3547 * 3548 * 3) Share same flags 3549 */ 3550 if (cache->offset + cache->len == offset && 3551 cache->phys + cache->len == phys && 3552 cache->flags == flags) { 3553 cache->len += len; 3554 return 0; 3555 } 3556 3557 /* Not mergeable, need to submit cached one */ 3558 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3559 cache->len, cache->flags); 3560 cache->cached = false; 3561 if (ret) 3562 return ret; 3563 assign: 3564 cache->cached = true; 3565 cache->offset = offset; 3566 cache->phys = phys; 3567 cache->len = len; 3568 cache->flags = flags; 3569 3570 return 0; 3571 } 3572 3573 /* 3574 * Emit last fiemap cache 3575 * 3576 * The last fiemap cache may still be cached in the following case: 3577 * 0 4k 8k 3578 * |<- Fiemap range ->| 3579 * |<------------ First extent ----------->| 3580 * 3581 * In this case, the first extent range will be cached but not emitted. 3582 * So we must emit it before ending extent_fiemap(). 3583 */ 3584 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3585 struct fiemap_cache *cache) 3586 { 3587 int ret; 3588 3589 if (!cache->cached) 3590 return 0; 3591 3592 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3593 cache->len, cache->flags); 3594 cache->cached = false; 3595 if (ret > 0) 3596 ret = 0; 3597 return ret; 3598 } 3599 3600 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3601 { 3602 struct extent_buffer *clone; 3603 struct btrfs_key key; 3604 int slot; 3605 int ret; 3606 3607 path->slots[0]++; 3608 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3609 return 0; 3610 3611 ret = btrfs_next_leaf(inode->root, path); 3612 if (ret != 0) 3613 return ret; 3614 3615 /* 3616 * Don't bother with cloning if there are no more file extent items for 3617 * our inode. 3618 */ 3619 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3620 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3621 return 1; 3622 3623 /* See the comment at fiemap_search_slot() about why we clone. */ 3624 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3625 if (!clone) 3626 return -ENOMEM; 3627 3628 slot = path->slots[0]; 3629 btrfs_release_path(path); 3630 path->nodes[0] = clone; 3631 path->slots[0] = slot; 3632 3633 return 0; 3634 } 3635 3636 /* 3637 * Search for the first file extent item that starts at a given file offset or 3638 * the one that starts immediately before that offset. 3639 * Returns: 0 on success, < 0 on error, 1 if not found. 3640 */ 3641 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3642 u64 file_offset) 3643 { 3644 const u64 ino = btrfs_ino(inode); 3645 struct btrfs_root *root = inode->root; 3646 struct extent_buffer *clone; 3647 struct btrfs_key key; 3648 int slot; 3649 int ret; 3650 3651 key.objectid = ino; 3652 key.type = BTRFS_EXTENT_DATA_KEY; 3653 key.offset = file_offset; 3654 3655 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3656 if (ret < 0) 3657 return ret; 3658 3659 if (ret > 0 && path->slots[0] > 0) { 3660 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3661 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3662 path->slots[0]--; 3663 } 3664 3665 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3666 ret = btrfs_next_leaf(root, path); 3667 if (ret != 0) 3668 return ret; 3669 3670 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3671 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3672 return 1; 3673 } 3674 3675 /* 3676 * We clone the leaf and use it during fiemap. This is because while 3677 * using the leaf we do expensive things like checking if an extent is 3678 * shared, which can take a long time. In order to prevent blocking 3679 * other tasks for too long, we use a clone of the leaf. We have locked 3680 * the file range in the inode's io tree, so we know none of our file 3681 * extent items can change. This way we avoid blocking other tasks that 3682 * want to insert items for other inodes in the same leaf or b+tree 3683 * rebalance operations (triggered for example when someone is trying 3684 * to push items into this leaf when trying to insert an item in a 3685 * neighbour leaf). 3686 * We also need the private clone because holding a read lock on an 3687 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3688 * when we call fiemap_fill_next_extent(), because that may cause a page 3689 * fault when filling the user space buffer with fiemap data. 3690 */ 3691 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3692 if (!clone) 3693 return -ENOMEM; 3694 3695 slot = path->slots[0]; 3696 btrfs_release_path(path); 3697 path->nodes[0] = clone; 3698 path->slots[0] = slot; 3699 3700 return 0; 3701 } 3702 3703 /* 3704 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3705 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3706 * extent. The end offset (@end) is inclusive. 3707 */ 3708 static int fiemap_process_hole(struct btrfs_inode *inode, 3709 struct fiemap_extent_info *fieinfo, 3710 struct fiemap_cache *cache, 3711 struct btrfs_backref_shared_cache *backref_cache, 3712 u64 disk_bytenr, u64 extent_offset, 3713 u64 extent_gen, 3714 struct ulist *roots, struct ulist *tmp_ulist, 3715 u64 start, u64 end) 3716 { 3717 const u64 i_size = i_size_read(&inode->vfs_inode); 3718 const u64 ino = btrfs_ino(inode); 3719 u64 cur_offset = start; 3720 u64 last_delalloc_end = 0; 3721 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3722 bool checked_extent_shared = false; 3723 int ret; 3724 3725 /* 3726 * There can be no delalloc past i_size, so don't waste time looking for 3727 * it beyond i_size. 3728 */ 3729 while (cur_offset < end && cur_offset < i_size) { 3730 u64 delalloc_start; 3731 u64 delalloc_end; 3732 u64 prealloc_start; 3733 u64 prealloc_len = 0; 3734 bool delalloc; 3735 3736 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3737 &delalloc_start, 3738 &delalloc_end); 3739 if (!delalloc) 3740 break; 3741 3742 /* 3743 * If this is a prealloc extent we have to report every section 3744 * of it that has no delalloc. 3745 */ 3746 if (disk_bytenr != 0) { 3747 if (last_delalloc_end == 0) { 3748 prealloc_start = start; 3749 prealloc_len = delalloc_start - start; 3750 } else { 3751 prealloc_start = last_delalloc_end + 1; 3752 prealloc_len = delalloc_start - prealloc_start; 3753 } 3754 } 3755 3756 if (prealloc_len > 0) { 3757 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3758 ret = btrfs_is_data_extent_shared(inode->root, 3759 ino, disk_bytenr, 3760 extent_gen, roots, 3761 tmp_ulist, 3762 backref_cache); 3763 if (ret < 0) 3764 return ret; 3765 else if (ret > 0) 3766 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3767 3768 checked_extent_shared = true; 3769 } 3770 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3771 disk_bytenr + extent_offset, 3772 prealloc_len, prealloc_flags); 3773 if (ret) 3774 return ret; 3775 extent_offset += prealloc_len; 3776 } 3777 3778 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3779 delalloc_end + 1 - delalloc_start, 3780 FIEMAP_EXTENT_DELALLOC | 3781 FIEMAP_EXTENT_UNKNOWN); 3782 if (ret) 3783 return ret; 3784 3785 last_delalloc_end = delalloc_end; 3786 cur_offset = delalloc_end + 1; 3787 extent_offset += cur_offset - delalloc_start; 3788 cond_resched(); 3789 } 3790 3791 /* 3792 * Either we found no delalloc for the whole prealloc extent or we have 3793 * a prealloc extent that spans i_size or starts at or after i_size. 3794 */ 3795 if (disk_bytenr != 0 && last_delalloc_end < end) { 3796 u64 prealloc_start; 3797 u64 prealloc_len; 3798 3799 if (last_delalloc_end == 0) { 3800 prealloc_start = start; 3801 prealloc_len = end + 1 - start; 3802 } else { 3803 prealloc_start = last_delalloc_end + 1; 3804 prealloc_len = end + 1 - prealloc_start; 3805 } 3806 3807 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3808 ret = btrfs_is_data_extent_shared(inode->root, 3809 ino, disk_bytenr, 3810 extent_gen, roots, 3811 tmp_ulist, 3812 backref_cache); 3813 if (ret < 0) 3814 return ret; 3815 else if (ret > 0) 3816 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3817 } 3818 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3819 disk_bytenr + extent_offset, 3820 prealloc_len, prealloc_flags); 3821 if (ret) 3822 return ret; 3823 } 3824 3825 return 0; 3826 } 3827 3828 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3829 struct btrfs_path *path, 3830 u64 *last_extent_end_ret) 3831 { 3832 const u64 ino = btrfs_ino(inode); 3833 struct btrfs_root *root = inode->root; 3834 struct extent_buffer *leaf; 3835 struct btrfs_file_extent_item *ei; 3836 struct btrfs_key key; 3837 u64 disk_bytenr; 3838 int ret; 3839 3840 /* 3841 * Lookup the last file extent. We're not using i_size here because 3842 * there might be preallocation past i_size. 3843 */ 3844 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3845 /* There can't be a file extent item at offset (u64)-1 */ 3846 ASSERT(ret != 0); 3847 if (ret < 0) 3848 return ret; 3849 3850 /* 3851 * For a non-existing key, btrfs_search_slot() always leaves us at a 3852 * slot > 0, except if the btree is empty, which is impossible because 3853 * at least it has the inode item for this inode and all the items for 3854 * the root inode 256. 3855 */ 3856 ASSERT(path->slots[0] > 0); 3857 path->slots[0]--; 3858 leaf = path->nodes[0]; 3859 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3860 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3861 /* No file extent items in the subvolume tree. */ 3862 *last_extent_end_ret = 0; 3863 return 0; 3864 } 3865 3866 /* 3867 * For an inline extent, the disk_bytenr is where inline data starts at, 3868 * so first check if we have an inline extent item before checking if we 3869 * have an implicit hole (disk_bytenr == 0). 3870 */ 3871 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3872 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3873 *last_extent_end_ret = btrfs_file_extent_end(path); 3874 return 0; 3875 } 3876 3877 /* 3878 * Find the last file extent item that is not a hole (when NO_HOLES is 3879 * not enabled). This should take at most 2 iterations in the worst 3880 * case: we have one hole file extent item at slot 0 of a leaf and 3881 * another hole file extent item as the last item in the previous leaf. 3882 * This is because we merge file extent items that represent holes. 3883 */ 3884 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3885 while (disk_bytenr == 0) { 3886 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3887 if (ret < 0) { 3888 return ret; 3889 } else if (ret > 0) { 3890 /* No file extent items that are not holes. */ 3891 *last_extent_end_ret = 0; 3892 return 0; 3893 } 3894 leaf = path->nodes[0]; 3895 ei = btrfs_item_ptr(leaf, path->slots[0], 3896 struct btrfs_file_extent_item); 3897 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3898 } 3899 3900 *last_extent_end_ret = btrfs_file_extent_end(path); 3901 return 0; 3902 } 3903 3904 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3905 u64 start, u64 len) 3906 { 3907 const u64 ino = btrfs_ino(inode); 3908 struct extent_state *cached_state = NULL; 3909 struct btrfs_path *path; 3910 struct btrfs_root *root = inode->root; 3911 struct fiemap_cache cache = { 0 }; 3912 struct btrfs_backref_shared_cache *backref_cache; 3913 struct ulist *roots; 3914 struct ulist *tmp_ulist; 3915 u64 last_extent_end; 3916 u64 prev_extent_end; 3917 u64 lockstart; 3918 u64 lockend; 3919 bool stopped = false; 3920 int ret; 3921 3922 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL); 3923 path = btrfs_alloc_path(); 3924 roots = ulist_alloc(GFP_KERNEL); 3925 tmp_ulist = ulist_alloc(GFP_KERNEL); 3926 if (!backref_cache || !path || !roots || !tmp_ulist) { 3927 ret = -ENOMEM; 3928 goto out; 3929 } 3930 3931 lockstart = round_down(start, root->fs_info->sectorsize); 3932 lockend = round_up(start + len, root->fs_info->sectorsize); 3933 prev_extent_end = lockstart; 3934 3935 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3936 3937 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3938 if (ret < 0) 3939 goto out_unlock; 3940 btrfs_release_path(path); 3941 3942 path->reada = READA_FORWARD; 3943 ret = fiemap_search_slot(inode, path, lockstart); 3944 if (ret < 0) { 3945 goto out_unlock; 3946 } else if (ret > 0) { 3947 /* 3948 * No file extent item found, but we may have delalloc between 3949 * the current offset and i_size. So check for that. 3950 */ 3951 ret = 0; 3952 goto check_eof_delalloc; 3953 } 3954 3955 while (prev_extent_end < lockend) { 3956 struct extent_buffer *leaf = path->nodes[0]; 3957 struct btrfs_file_extent_item *ei; 3958 struct btrfs_key key; 3959 u64 extent_end; 3960 u64 extent_len; 3961 u64 extent_offset = 0; 3962 u64 extent_gen; 3963 u64 disk_bytenr = 0; 3964 u64 flags = 0; 3965 int extent_type; 3966 u8 compression; 3967 3968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3969 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3970 break; 3971 3972 extent_end = btrfs_file_extent_end(path); 3973 3974 /* 3975 * The first iteration can leave us at an extent item that ends 3976 * before our range's start. Move to the next item. 3977 */ 3978 if (extent_end <= lockstart) 3979 goto next_item; 3980 3981 /* We have in implicit hole (NO_HOLES feature enabled). */ 3982 if (prev_extent_end < key.offset) { 3983 const u64 range_end = min(key.offset, lockend) - 1; 3984 3985 ret = fiemap_process_hole(inode, fieinfo, &cache, 3986 backref_cache, 0, 0, 0, 3987 roots, tmp_ulist, 3988 prev_extent_end, range_end); 3989 if (ret < 0) { 3990 goto out_unlock; 3991 } else if (ret > 0) { 3992 /* fiemap_fill_next_extent() told us to stop. */ 3993 stopped = true; 3994 break; 3995 } 3996 3997 /* We've reached the end of the fiemap range, stop. */ 3998 if (key.offset >= lockend) { 3999 stopped = true; 4000 break; 4001 } 4002 } 4003 4004 extent_len = extent_end - key.offset; 4005 ei = btrfs_item_ptr(leaf, path->slots[0], 4006 struct btrfs_file_extent_item); 4007 compression = btrfs_file_extent_compression(leaf, ei); 4008 extent_type = btrfs_file_extent_type(leaf, ei); 4009 extent_gen = btrfs_file_extent_generation(leaf, ei); 4010 4011 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4012 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 4013 if (compression == BTRFS_COMPRESS_NONE) 4014 extent_offset = btrfs_file_extent_offset(leaf, ei); 4015 } 4016 4017 if (compression != BTRFS_COMPRESS_NONE) 4018 flags |= FIEMAP_EXTENT_ENCODED; 4019 4020 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4021 flags |= FIEMAP_EXTENT_DATA_INLINE; 4022 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 4023 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 4024 extent_len, flags); 4025 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 4026 ret = fiemap_process_hole(inode, fieinfo, &cache, 4027 backref_cache, 4028 disk_bytenr, extent_offset, 4029 extent_gen, roots, tmp_ulist, 4030 key.offset, extent_end - 1); 4031 } else if (disk_bytenr == 0) { 4032 /* We have an explicit hole. */ 4033 ret = fiemap_process_hole(inode, fieinfo, &cache, 4034 backref_cache, 0, 0, 0, 4035 roots, tmp_ulist, 4036 key.offset, extent_end - 1); 4037 } else { 4038 /* We have a regular extent. */ 4039 if (fieinfo->fi_extents_max) { 4040 ret = btrfs_is_data_extent_shared(root, ino, 4041 disk_bytenr, 4042 extent_gen, 4043 roots, 4044 tmp_ulist, 4045 backref_cache); 4046 if (ret < 0) 4047 goto out_unlock; 4048 else if (ret > 0) 4049 flags |= FIEMAP_EXTENT_SHARED; 4050 } 4051 4052 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 4053 disk_bytenr + extent_offset, 4054 extent_len, flags); 4055 } 4056 4057 if (ret < 0) { 4058 goto out_unlock; 4059 } else if (ret > 0) { 4060 /* fiemap_fill_next_extent() told us to stop. */ 4061 stopped = true; 4062 break; 4063 } 4064 4065 prev_extent_end = extent_end; 4066 next_item: 4067 if (fatal_signal_pending(current)) { 4068 ret = -EINTR; 4069 goto out_unlock; 4070 } 4071 4072 ret = fiemap_next_leaf_item(inode, path); 4073 if (ret < 0) { 4074 goto out_unlock; 4075 } else if (ret > 0) { 4076 /* No more file extent items for this inode. */ 4077 break; 4078 } 4079 cond_resched(); 4080 } 4081 4082 check_eof_delalloc: 4083 /* 4084 * Release (and free) the path before emitting any final entries to 4085 * fiemap_fill_next_extent() to keep lockdep happy. This is because 4086 * once we find no more file extent items exist, we may have a 4087 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 4088 * faults when copying data to the user space buffer. 4089 */ 4090 btrfs_free_path(path); 4091 path = NULL; 4092 4093 if (!stopped && prev_extent_end < lockend) { 4094 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache, 4095 0, 0, 0, roots, tmp_ulist, 4096 prev_extent_end, lockend - 1); 4097 if (ret < 0) 4098 goto out_unlock; 4099 prev_extent_end = lockend; 4100 } 4101 4102 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 4103 const u64 i_size = i_size_read(&inode->vfs_inode); 4104 4105 if (prev_extent_end < i_size) { 4106 u64 delalloc_start; 4107 u64 delalloc_end; 4108 bool delalloc; 4109 4110 delalloc = btrfs_find_delalloc_in_range(inode, 4111 prev_extent_end, 4112 i_size - 1, 4113 &delalloc_start, 4114 &delalloc_end); 4115 if (!delalloc) 4116 cache.flags |= FIEMAP_EXTENT_LAST; 4117 } else { 4118 cache.flags |= FIEMAP_EXTENT_LAST; 4119 } 4120 } 4121 4122 ret = emit_last_fiemap_cache(fieinfo, &cache); 4123 4124 out_unlock: 4125 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 4126 out: 4127 kfree(backref_cache); 4128 btrfs_free_path(path); 4129 ulist_free(roots); 4130 ulist_free(tmp_ulist); 4131 return ret; 4132 } 4133 4134 static void __free_extent_buffer(struct extent_buffer *eb) 4135 { 4136 kmem_cache_free(extent_buffer_cache, eb); 4137 } 4138 4139 int extent_buffer_under_io(const struct extent_buffer *eb) 4140 { 4141 return (atomic_read(&eb->io_pages) || 4142 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4143 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4144 } 4145 4146 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 4147 { 4148 struct btrfs_subpage *subpage; 4149 4150 lockdep_assert_held(&page->mapping->private_lock); 4151 4152 if (PagePrivate(page)) { 4153 subpage = (struct btrfs_subpage *)page->private; 4154 if (atomic_read(&subpage->eb_refs)) 4155 return true; 4156 /* 4157 * Even there is no eb refs here, we may still have 4158 * end_page_read() call relying on page::private. 4159 */ 4160 if (atomic_read(&subpage->readers)) 4161 return true; 4162 } 4163 return false; 4164 } 4165 4166 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 4167 { 4168 struct btrfs_fs_info *fs_info = eb->fs_info; 4169 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4170 4171 /* 4172 * For mapped eb, we're going to change the page private, which should 4173 * be done under the private_lock. 4174 */ 4175 if (mapped) 4176 spin_lock(&page->mapping->private_lock); 4177 4178 if (!PagePrivate(page)) { 4179 if (mapped) 4180 spin_unlock(&page->mapping->private_lock); 4181 return; 4182 } 4183 4184 if (fs_info->nodesize >= PAGE_SIZE) { 4185 /* 4186 * We do this since we'll remove the pages after we've 4187 * removed the eb from the radix tree, so we could race 4188 * and have this page now attached to the new eb. So 4189 * only clear page_private if it's still connected to 4190 * this eb. 4191 */ 4192 if (PagePrivate(page) && 4193 page->private == (unsigned long)eb) { 4194 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4195 BUG_ON(PageDirty(page)); 4196 BUG_ON(PageWriteback(page)); 4197 /* 4198 * We need to make sure we haven't be attached 4199 * to a new eb. 4200 */ 4201 detach_page_private(page); 4202 } 4203 if (mapped) 4204 spin_unlock(&page->mapping->private_lock); 4205 return; 4206 } 4207 4208 /* 4209 * For subpage, we can have dummy eb with page private. In this case, 4210 * we can directly detach the private as such page is only attached to 4211 * one dummy eb, no sharing. 4212 */ 4213 if (!mapped) { 4214 btrfs_detach_subpage(fs_info, page); 4215 return; 4216 } 4217 4218 btrfs_page_dec_eb_refs(fs_info, page); 4219 4220 /* 4221 * We can only detach the page private if there are no other ebs in the 4222 * page range and no unfinished IO. 4223 */ 4224 if (!page_range_has_eb(fs_info, page)) 4225 btrfs_detach_subpage(fs_info, page); 4226 4227 spin_unlock(&page->mapping->private_lock); 4228 } 4229 4230 /* Release all pages attached to the extent buffer */ 4231 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4232 { 4233 int i; 4234 int num_pages; 4235 4236 ASSERT(!extent_buffer_under_io(eb)); 4237 4238 num_pages = num_extent_pages(eb); 4239 for (i = 0; i < num_pages; i++) { 4240 struct page *page = eb->pages[i]; 4241 4242 if (!page) 4243 continue; 4244 4245 detach_extent_buffer_page(eb, page); 4246 4247 /* One for when we allocated the page */ 4248 put_page(page); 4249 } 4250 } 4251 4252 /* 4253 * Helper for releasing the extent buffer. 4254 */ 4255 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4256 { 4257 btrfs_release_extent_buffer_pages(eb); 4258 btrfs_leak_debug_del_eb(eb); 4259 __free_extent_buffer(eb); 4260 } 4261 4262 static struct extent_buffer * 4263 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4264 unsigned long len) 4265 { 4266 struct extent_buffer *eb = NULL; 4267 4268 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4269 eb->start = start; 4270 eb->len = len; 4271 eb->fs_info = fs_info; 4272 eb->bflags = 0; 4273 init_rwsem(&eb->lock); 4274 4275 btrfs_leak_debug_add_eb(eb); 4276 INIT_LIST_HEAD(&eb->release_list); 4277 4278 spin_lock_init(&eb->refs_lock); 4279 atomic_set(&eb->refs, 1); 4280 atomic_set(&eb->io_pages, 0); 4281 4282 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 4283 4284 return eb; 4285 } 4286 4287 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4288 { 4289 int i; 4290 struct extent_buffer *new; 4291 int num_pages = num_extent_pages(src); 4292 int ret; 4293 4294 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4295 if (new == NULL) 4296 return NULL; 4297 4298 /* 4299 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 4300 * btrfs_release_extent_buffer() have different behavior for 4301 * UNMAPPED subpage extent buffer. 4302 */ 4303 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4304 4305 memset(new->pages, 0, sizeof(*new->pages) * num_pages); 4306 ret = btrfs_alloc_page_array(num_pages, new->pages); 4307 if (ret) { 4308 btrfs_release_extent_buffer(new); 4309 return NULL; 4310 } 4311 4312 for (i = 0; i < num_pages; i++) { 4313 int ret; 4314 struct page *p = new->pages[i]; 4315 4316 ret = attach_extent_buffer_page(new, p, NULL); 4317 if (ret < 0) { 4318 btrfs_release_extent_buffer(new); 4319 return NULL; 4320 } 4321 WARN_ON(PageDirty(p)); 4322 copy_page(page_address(p), page_address(src->pages[i])); 4323 } 4324 set_extent_buffer_uptodate(new); 4325 4326 return new; 4327 } 4328 4329 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4330 u64 start, unsigned long len) 4331 { 4332 struct extent_buffer *eb; 4333 int num_pages; 4334 int i; 4335 int ret; 4336 4337 eb = __alloc_extent_buffer(fs_info, start, len); 4338 if (!eb) 4339 return NULL; 4340 4341 num_pages = num_extent_pages(eb); 4342 ret = btrfs_alloc_page_array(num_pages, eb->pages); 4343 if (ret) 4344 goto err; 4345 4346 for (i = 0; i < num_pages; i++) { 4347 struct page *p = eb->pages[i]; 4348 4349 ret = attach_extent_buffer_page(eb, p, NULL); 4350 if (ret < 0) 4351 goto err; 4352 } 4353 4354 set_extent_buffer_uptodate(eb); 4355 btrfs_set_header_nritems(eb, 0); 4356 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4357 4358 return eb; 4359 err: 4360 for (i = 0; i < num_pages; i++) { 4361 if (eb->pages[i]) { 4362 detach_extent_buffer_page(eb, eb->pages[i]); 4363 __free_page(eb->pages[i]); 4364 } 4365 } 4366 __free_extent_buffer(eb); 4367 return NULL; 4368 } 4369 4370 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4371 u64 start) 4372 { 4373 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4374 } 4375 4376 static void check_buffer_tree_ref(struct extent_buffer *eb) 4377 { 4378 int refs; 4379 /* 4380 * The TREE_REF bit is first set when the extent_buffer is added 4381 * to the radix tree. It is also reset, if unset, when a new reference 4382 * is created by find_extent_buffer. 4383 * 4384 * It is only cleared in two cases: freeing the last non-tree 4385 * reference to the extent_buffer when its STALE bit is set or 4386 * calling release_folio when the tree reference is the only reference. 4387 * 4388 * In both cases, care is taken to ensure that the extent_buffer's 4389 * pages are not under io. However, release_folio can be concurrently 4390 * called with creating new references, which is prone to race 4391 * conditions between the calls to check_buffer_tree_ref in those 4392 * codepaths and clearing TREE_REF in try_release_extent_buffer. 4393 * 4394 * The actual lifetime of the extent_buffer in the radix tree is 4395 * adequately protected by the refcount, but the TREE_REF bit and 4396 * its corresponding reference are not. To protect against this 4397 * class of races, we call check_buffer_tree_ref from the codepaths 4398 * which trigger io after they set eb->io_pages. Note that once io is 4399 * initiated, TREE_REF can no longer be cleared, so that is the 4400 * moment at which any such race is best fixed. 4401 */ 4402 refs = atomic_read(&eb->refs); 4403 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4404 return; 4405 4406 spin_lock(&eb->refs_lock); 4407 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4408 atomic_inc(&eb->refs); 4409 spin_unlock(&eb->refs_lock); 4410 } 4411 4412 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4413 struct page *accessed) 4414 { 4415 int num_pages, i; 4416 4417 check_buffer_tree_ref(eb); 4418 4419 num_pages = num_extent_pages(eb); 4420 for (i = 0; i < num_pages; i++) { 4421 struct page *p = eb->pages[i]; 4422 4423 if (p != accessed) 4424 mark_page_accessed(p); 4425 } 4426 } 4427 4428 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4429 u64 start) 4430 { 4431 struct extent_buffer *eb; 4432 4433 eb = find_extent_buffer_nolock(fs_info, start); 4434 if (!eb) 4435 return NULL; 4436 /* 4437 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 4438 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 4439 * another task running free_extent_buffer() might have seen that flag 4440 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 4441 * writeback flags not set) and it's still in the tree (flag 4442 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 4443 * decrementing the extent buffer's reference count twice. So here we 4444 * could race and increment the eb's reference count, clear its stale 4445 * flag, mark it as dirty and drop our reference before the other task 4446 * finishes executing free_extent_buffer, which would later result in 4447 * an attempt to free an extent buffer that is dirty. 4448 */ 4449 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4450 spin_lock(&eb->refs_lock); 4451 spin_unlock(&eb->refs_lock); 4452 } 4453 mark_extent_buffer_accessed(eb, NULL); 4454 return eb; 4455 } 4456 4457 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4458 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4459 u64 start) 4460 { 4461 struct extent_buffer *eb, *exists = NULL; 4462 int ret; 4463 4464 eb = find_extent_buffer(fs_info, start); 4465 if (eb) 4466 return eb; 4467 eb = alloc_dummy_extent_buffer(fs_info, start); 4468 if (!eb) 4469 return ERR_PTR(-ENOMEM); 4470 eb->fs_info = fs_info; 4471 again: 4472 ret = radix_tree_preload(GFP_NOFS); 4473 if (ret) { 4474 exists = ERR_PTR(ret); 4475 goto free_eb; 4476 } 4477 spin_lock(&fs_info->buffer_lock); 4478 ret = radix_tree_insert(&fs_info->buffer_radix, 4479 start >> fs_info->sectorsize_bits, eb); 4480 spin_unlock(&fs_info->buffer_lock); 4481 radix_tree_preload_end(); 4482 if (ret == -EEXIST) { 4483 exists = find_extent_buffer(fs_info, start); 4484 if (exists) 4485 goto free_eb; 4486 else 4487 goto again; 4488 } 4489 check_buffer_tree_ref(eb); 4490 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4491 4492 return eb; 4493 free_eb: 4494 btrfs_release_extent_buffer(eb); 4495 return exists; 4496 } 4497 #endif 4498 4499 static struct extent_buffer *grab_extent_buffer( 4500 struct btrfs_fs_info *fs_info, struct page *page) 4501 { 4502 struct extent_buffer *exists; 4503 4504 /* 4505 * For subpage case, we completely rely on radix tree to ensure we 4506 * don't try to insert two ebs for the same bytenr. So here we always 4507 * return NULL and just continue. 4508 */ 4509 if (fs_info->nodesize < PAGE_SIZE) 4510 return NULL; 4511 4512 /* Page not yet attached to an extent buffer */ 4513 if (!PagePrivate(page)) 4514 return NULL; 4515 4516 /* 4517 * We could have already allocated an eb for this page and attached one 4518 * so lets see if we can get a ref on the existing eb, and if we can we 4519 * know it's good and we can just return that one, else we know we can 4520 * just overwrite page->private. 4521 */ 4522 exists = (struct extent_buffer *)page->private; 4523 if (atomic_inc_not_zero(&exists->refs)) 4524 return exists; 4525 4526 WARN_ON(PageDirty(page)); 4527 detach_page_private(page); 4528 return NULL; 4529 } 4530 4531 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 4532 { 4533 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4534 btrfs_err(fs_info, "bad tree block start %llu", start); 4535 return -EINVAL; 4536 } 4537 4538 if (fs_info->nodesize < PAGE_SIZE && 4539 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 4540 btrfs_err(fs_info, 4541 "tree block crosses page boundary, start %llu nodesize %u", 4542 start, fs_info->nodesize); 4543 return -EINVAL; 4544 } 4545 if (fs_info->nodesize >= PAGE_SIZE && 4546 !PAGE_ALIGNED(start)) { 4547 btrfs_err(fs_info, 4548 "tree block is not page aligned, start %llu nodesize %u", 4549 start, fs_info->nodesize); 4550 return -EINVAL; 4551 } 4552 return 0; 4553 } 4554 4555 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4556 u64 start, u64 owner_root, int level) 4557 { 4558 unsigned long len = fs_info->nodesize; 4559 int num_pages; 4560 int i; 4561 unsigned long index = start >> PAGE_SHIFT; 4562 struct extent_buffer *eb; 4563 struct extent_buffer *exists = NULL; 4564 struct page *p; 4565 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4566 u64 lockdep_owner = owner_root; 4567 int uptodate = 1; 4568 int ret; 4569 4570 if (check_eb_alignment(fs_info, start)) 4571 return ERR_PTR(-EINVAL); 4572 4573 #if BITS_PER_LONG == 32 4574 if (start >= MAX_LFS_FILESIZE) { 4575 btrfs_err_rl(fs_info, 4576 "extent buffer %llu is beyond 32bit page cache limit", start); 4577 btrfs_err_32bit_limit(fs_info); 4578 return ERR_PTR(-EOVERFLOW); 4579 } 4580 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4581 btrfs_warn_32bit_limit(fs_info); 4582 #endif 4583 4584 eb = find_extent_buffer(fs_info, start); 4585 if (eb) 4586 return eb; 4587 4588 eb = __alloc_extent_buffer(fs_info, start, len); 4589 if (!eb) 4590 return ERR_PTR(-ENOMEM); 4591 4592 /* 4593 * The reloc trees are just snapshots, so we need them to appear to be 4594 * just like any other fs tree WRT lockdep. 4595 */ 4596 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4597 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4598 4599 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4600 4601 num_pages = num_extent_pages(eb); 4602 for (i = 0; i < num_pages; i++, index++) { 4603 struct btrfs_subpage *prealloc = NULL; 4604 4605 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4606 if (!p) { 4607 exists = ERR_PTR(-ENOMEM); 4608 goto free_eb; 4609 } 4610 4611 /* 4612 * Preallocate page->private for subpage case, so that we won't 4613 * allocate memory with private_lock hold. The memory will be 4614 * freed by attach_extent_buffer_page() or freed manually if 4615 * we exit earlier. 4616 * 4617 * Although we have ensured one subpage eb can only have one 4618 * page, but it may change in the future for 16K page size 4619 * support, so we still preallocate the memory in the loop. 4620 */ 4621 if (fs_info->nodesize < PAGE_SIZE) { 4622 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4623 if (IS_ERR(prealloc)) { 4624 ret = PTR_ERR(prealloc); 4625 unlock_page(p); 4626 put_page(p); 4627 exists = ERR_PTR(ret); 4628 goto free_eb; 4629 } 4630 } 4631 4632 spin_lock(&mapping->private_lock); 4633 exists = grab_extent_buffer(fs_info, p); 4634 if (exists) { 4635 spin_unlock(&mapping->private_lock); 4636 unlock_page(p); 4637 put_page(p); 4638 mark_extent_buffer_accessed(exists, p); 4639 btrfs_free_subpage(prealloc); 4640 goto free_eb; 4641 } 4642 /* Should not fail, as we have preallocated the memory */ 4643 ret = attach_extent_buffer_page(eb, p, prealloc); 4644 ASSERT(!ret); 4645 /* 4646 * To inform we have extra eb under allocation, so that 4647 * detach_extent_buffer_page() won't release the page private 4648 * when the eb hasn't yet been inserted into radix tree. 4649 * 4650 * The ref will be decreased when the eb released the page, in 4651 * detach_extent_buffer_page(). 4652 * Thus needs no special handling in error path. 4653 */ 4654 btrfs_page_inc_eb_refs(fs_info, p); 4655 spin_unlock(&mapping->private_lock); 4656 4657 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4658 eb->pages[i] = p; 4659 if (!PageUptodate(p)) 4660 uptodate = 0; 4661 4662 /* 4663 * We can't unlock the pages just yet since the extent buffer 4664 * hasn't been properly inserted in the radix tree, this 4665 * opens a race with btree_release_folio which can free a page 4666 * while we are still filling in all pages for the buffer and 4667 * we could crash. 4668 */ 4669 } 4670 if (uptodate) 4671 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4672 again: 4673 ret = radix_tree_preload(GFP_NOFS); 4674 if (ret) { 4675 exists = ERR_PTR(ret); 4676 goto free_eb; 4677 } 4678 4679 spin_lock(&fs_info->buffer_lock); 4680 ret = radix_tree_insert(&fs_info->buffer_radix, 4681 start >> fs_info->sectorsize_bits, eb); 4682 spin_unlock(&fs_info->buffer_lock); 4683 radix_tree_preload_end(); 4684 if (ret == -EEXIST) { 4685 exists = find_extent_buffer(fs_info, start); 4686 if (exists) 4687 goto free_eb; 4688 else 4689 goto again; 4690 } 4691 /* add one reference for the tree */ 4692 check_buffer_tree_ref(eb); 4693 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4694 4695 /* 4696 * Now it's safe to unlock the pages because any calls to 4697 * btree_release_folio will correctly detect that a page belongs to a 4698 * live buffer and won't free them prematurely. 4699 */ 4700 for (i = 0; i < num_pages; i++) 4701 unlock_page(eb->pages[i]); 4702 return eb; 4703 4704 free_eb: 4705 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4706 for (i = 0; i < num_pages; i++) { 4707 if (eb->pages[i]) 4708 unlock_page(eb->pages[i]); 4709 } 4710 4711 btrfs_release_extent_buffer(eb); 4712 return exists; 4713 } 4714 4715 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4716 { 4717 struct extent_buffer *eb = 4718 container_of(head, struct extent_buffer, rcu_head); 4719 4720 __free_extent_buffer(eb); 4721 } 4722 4723 static int release_extent_buffer(struct extent_buffer *eb) 4724 __releases(&eb->refs_lock) 4725 { 4726 lockdep_assert_held(&eb->refs_lock); 4727 4728 WARN_ON(atomic_read(&eb->refs) == 0); 4729 if (atomic_dec_and_test(&eb->refs)) { 4730 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4731 struct btrfs_fs_info *fs_info = eb->fs_info; 4732 4733 spin_unlock(&eb->refs_lock); 4734 4735 spin_lock(&fs_info->buffer_lock); 4736 radix_tree_delete(&fs_info->buffer_radix, 4737 eb->start >> fs_info->sectorsize_bits); 4738 spin_unlock(&fs_info->buffer_lock); 4739 } else { 4740 spin_unlock(&eb->refs_lock); 4741 } 4742 4743 btrfs_leak_debug_del_eb(eb); 4744 /* Should be safe to release our pages at this point */ 4745 btrfs_release_extent_buffer_pages(eb); 4746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4747 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4748 __free_extent_buffer(eb); 4749 return 1; 4750 } 4751 #endif 4752 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4753 return 1; 4754 } 4755 spin_unlock(&eb->refs_lock); 4756 4757 return 0; 4758 } 4759 4760 void free_extent_buffer(struct extent_buffer *eb) 4761 { 4762 int refs; 4763 if (!eb) 4764 return; 4765 4766 refs = atomic_read(&eb->refs); 4767 while (1) { 4768 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4769 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4770 refs == 1)) 4771 break; 4772 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4773 return; 4774 } 4775 4776 spin_lock(&eb->refs_lock); 4777 if (atomic_read(&eb->refs) == 2 && 4778 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4779 !extent_buffer_under_io(eb) && 4780 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4781 atomic_dec(&eb->refs); 4782 4783 /* 4784 * I know this is terrible, but it's temporary until we stop tracking 4785 * the uptodate bits and such for the extent buffers. 4786 */ 4787 release_extent_buffer(eb); 4788 } 4789 4790 void free_extent_buffer_stale(struct extent_buffer *eb) 4791 { 4792 if (!eb) 4793 return; 4794 4795 spin_lock(&eb->refs_lock); 4796 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4797 4798 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4799 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4800 atomic_dec(&eb->refs); 4801 release_extent_buffer(eb); 4802 } 4803 4804 static void btree_clear_page_dirty(struct page *page) 4805 { 4806 ASSERT(PageDirty(page)); 4807 ASSERT(PageLocked(page)); 4808 clear_page_dirty_for_io(page); 4809 xa_lock_irq(&page->mapping->i_pages); 4810 if (!PageDirty(page)) 4811 __xa_clear_mark(&page->mapping->i_pages, 4812 page_index(page), PAGECACHE_TAG_DIRTY); 4813 xa_unlock_irq(&page->mapping->i_pages); 4814 } 4815 4816 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4817 { 4818 struct btrfs_fs_info *fs_info = eb->fs_info; 4819 struct page *page = eb->pages[0]; 4820 bool last; 4821 4822 /* btree_clear_page_dirty() needs page locked */ 4823 lock_page(page); 4824 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4825 eb->len); 4826 if (last) 4827 btree_clear_page_dirty(page); 4828 unlock_page(page); 4829 WARN_ON(atomic_read(&eb->refs) == 0); 4830 } 4831 4832 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 4833 { 4834 int i; 4835 int num_pages; 4836 struct page *page; 4837 4838 if (eb->fs_info->nodesize < PAGE_SIZE) 4839 return clear_subpage_extent_buffer_dirty(eb); 4840 4841 num_pages = num_extent_pages(eb); 4842 4843 for (i = 0; i < num_pages; i++) { 4844 page = eb->pages[i]; 4845 if (!PageDirty(page)) 4846 continue; 4847 lock_page(page); 4848 btree_clear_page_dirty(page); 4849 ClearPageError(page); 4850 unlock_page(page); 4851 } 4852 WARN_ON(atomic_read(&eb->refs) == 0); 4853 } 4854 4855 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4856 { 4857 int i; 4858 int num_pages; 4859 bool was_dirty; 4860 4861 check_buffer_tree_ref(eb); 4862 4863 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4864 4865 num_pages = num_extent_pages(eb); 4866 WARN_ON(atomic_read(&eb->refs) == 0); 4867 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4868 4869 if (!was_dirty) { 4870 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4871 4872 /* 4873 * For subpage case, we can have other extent buffers in the 4874 * same page, and in clear_subpage_extent_buffer_dirty() we 4875 * have to clear page dirty without subpage lock held. 4876 * This can cause race where our page gets dirty cleared after 4877 * we just set it. 4878 * 4879 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4880 * its page for other reasons, we can use page lock to prevent 4881 * the above race. 4882 */ 4883 if (subpage) 4884 lock_page(eb->pages[0]); 4885 for (i = 0; i < num_pages; i++) 4886 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4887 eb->start, eb->len); 4888 if (subpage) 4889 unlock_page(eb->pages[0]); 4890 } 4891 #ifdef CONFIG_BTRFS_DEBUG 4892 for (i = 0; i < num_pages; i++) 4893 ASSERT(PageDirty(eb->pages[i])); 4894 #endif 4895 4896 return was_dirty; 4897 } 4898 4899 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4900 { 4901 struct btrfs_fs_info *fs_info = eb->fs_info; 4902 struct page *page; 4903 int num_pages; 4904 int i; 4905 4906 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4907 num_pages = num_extent_pages(eb); 4908 for (i = 0; i < num_pages; i++) { 4909 page = eb->pages[i]; 4910 if (!page) 4911 continue; 4912 4913 /* 4914 * This is special handling for metadata subpage, as regular 4915 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4916 */ 4917 if (fs_info->nodesize >= PAGE_SIZE) 4918 ClearPageUptodate(page); 4919 else 4920 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4921 eb->len); 4922 } 4923 } 4924 4925 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4926 { 4927 struct btrfs_fs_info *fs_info = eb->fs_info; 4928 struct page *page; 4929 int num_pages; 4930 int i; 4931 4932 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4933 num_pages = num_extent_pages(eb); 4934 for (i = 0; i < num_pages; i++) { 4935 page = eb->pages[i]; 4936 4937 /* 4938 * This is special handling for metadata subpage, as regular 4939 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4940 */ 4941 if (fs_info->nodesize >= PAGE_SIZE) 4942 SetPageUptodate(page); 4943 else 4944 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4945 eb->len); 4946 } 4947 } 4948 4949 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4950 int mirror_num) 4951 { 4952 struct btrfs_fs_info *fs_info = eb->fs_info; 4953 struct extent_io_tree *io_tree; 4954 struct page *page = eb->pages[0]; 4955 struct btrfs_bio_ctrl bio_ctrl = { 4956 .mirror_num = mirror_num, 4957 }; 4958 int ret = 0; 4959 4960 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4961 ASSERT(PagePrivate(page)); 4962 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4963 4964 if (wait == WAIT_NONE) { 4965 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 4966 return -EAGAIN; 4967 } else { 4968 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); 4969 if (ret < 0) 4970 return ret; 4971 } 4972 4973 ret = 0; 4974 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4975 PageUptodate(page) || 4976 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4977 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4978 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); 4979 return ret; 4980 } 4981 4982 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4983 eb->read_mirror = 0; 4984 atomic_set(&eb->io_pages, 1); 4985 check_buffer_tree_ref(eb); 4986 bio_ctrl.end_io_func = end_bio_extent_readpage; 4987 4988 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4989 4990 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4991 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4992 eb->start, page, eb->len, 4993 eb->start - page_offset(page), 0, true); 4994 if (ret) { 4995 /* 4996 * In the endio function, if we hit something wrong we will 4997 * increase the io_pages, so here we need to decrease it for 4998 * error path. 4999 */ 5000 atomic_dec(&eb->io_pages); 5001 } 5002 submit_one_bio(&bio_ctrl); 5003 if (ret || wait != WAIT_COMPLETE) 5004 return ret; 5005 5006 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 5007 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5008 ret = -EIO; 5009 return ret; 5010 } 5011 5012 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5013 { 5014 int i; 5015 struct page *page; 5016 int err; 5017 int ret = 0; 5018 int locked_pages = 0; 5019 int all_uptodate = 1; 5020 int num_pages; 5021 unsigned long num_reads = 0; 5022 struct btrfs_bio_ctrl bio_ctrl = { 5023 .mirror_num = mirror_num, 5024 }; 5025 5026 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5027 return 0; 5028 5029 /* 5030 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 5031 * operation, which could potentially still be in flight. In this case 5032 * we simply want to return an error. 5033 */ 5034 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 5035 return -EIO; 5036 5037 if (eb->fs_info->nodesize < PAGE_SIZE) 5038 return read_extent_buffer_subpage(eb, wait, mirror_num); 5039 5040 num_pages = num_extent_pages(eb); 5041 for (i = 0; i < num_pages; i++) { 5042 page = eb->pages[i]; 5043 if (wait == WAIT_NONE) { 5044 /* 5045 * WAIT_NONE is only utilized by readahead. If we can't 5046 * acquire the lock atomically it means either the eb 5047 * is being read out or under modification. 5048 * Either way the eb will be or has been cached, 5049 * readahead can exit safely. 5050 */ 5051 if (!trylock_page(page)) 5052 goto unlock_exit; 5053 } else { 5054 lock_page(page); 5055 } 5056 locked_pages++; 5057 } 5058 /* 5059 * We need to firstly lock all pages to make sure that 5060 * the uptodate bit of our pages won't be affected by 5061 * clear_extent_buffer_uptodate(). 5062 */ 5063 for (i = 0; i < num_pages; i++) { 5064 page = eb->pages[i]; 5065 if (!PageUptodate(page)) { 5066 num_reads++; 5067 all_uptodate = 0; 5068 } 5069 } 5070 5071 if (all_uptodate) { 5072 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5073 goto unlock_exit; 5074 } 5075 5076 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5077 eb->read_mirror = 0; 5078 atomic_set(&eb->io_pages, num_reads); 5079 /* 5080 * It is possible for release_folio to clear the TREE_REF bit before we 5081 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5082 */ 5083 check_buffer_tree_ref(eb); 5084 bio_ctrl.end_io_func = end_bio_extent_readpage; 5085 for (i = 0; i < num_pages; i++) { 5086 page = eb->pages[i]; 5087 5088 if (!PageUptodate(page)) { 5089 if (ret) { 5090 atomic_dec(&eb->io_pages); 5091 unlock_page(page); 5092 continue; 5093 } 5094 5095 ClearPageError(page); 5096 err = submit_extent_page(REQ_OP_READ, NULL, 5097 &bio_ctrl, page_offset(page), page, 5098 PAGE_SIZE, 0, 0, false); 5099 if (err) { 5100 /* 5101 * We failed to submit the bio so it's the 5102 * caller's responsibility to perform cleanup 5103 * i.e unlock page/set error bit. 5104 */ 5105 ret = err; 5106 SetPageError(page); 5107 unlock_page(page); 5108 atomic_dec(&eb->io_pages); 5109 } 5110 } else { 5111 unlock_page(page); 5112 } 5113 } 5114 5115 submit_one_bio(&bio_ctrl); 5116 5117 if (ret || wait != WAIT_COMPLETE) 5118 return ret; 5119 5120 for (i = 0; i < num_pages; i++) { 5121 page = eb->pages[i]; 5122 wait_on_page_locked(page); 5123 if (!PageUptodate(page)) 5124 ret = -EIO; 5125 } 5126 5127 return ret; 5128 5129 unlock_exit: 5130 while (locked_pages > 0) { 5131 locked_pages--; 5132 page = eb->pages[locked_pages]; 5133 unlock_page(page); 5134 } 5135 return ret; 5136 } 5137 5138 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5139 unsigned long len) 5140 { 5141 btrfs_warn(eb->fs_info, 5142 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5143 eb->start, eb->len, start, len); 5144 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5145 5146 return true; 5147 } 5148 5149 /* 5150 * Check if the [start, start + len) range is valid before reading/writing 5151 * the eb. 5152 * NOTE: @start and @len are offset inside the eb, not logical address. 5153 * 5154 * Caller should not touch the dst/src memory if this function returns error. 5155 */ 5156 static inline int check_eb_range(const struct extent_buffer *eb, 5157 unsigned long start, unsigned long len) 5158 { 5159 unsigned long offset; 5160 5161 /* start, start + len should not go beyond eb->len nor overflow */ 5162 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5163 return report_eb_range(eb, start, len); 5164 5165 return false; 5166 } 5167 5168 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5169 unsigned long start, unsigned long len) 5170 { 5171 size_t cur; 5172 size_t offset; 5173 struct page *page; 5174 char *kaddr; 5175 char *dst = (char *)dstv; 5176 unsigned long i = get_eb_page_index(start); 5177 5178 if (check_eb_range(eb, start, len)) 5179 return; 5180 5181 offset = get_eb_offset_in_page(eb, start); 5182 5183 while (len > 0) { 5184 page = eb->pages[i]; 5185 5186 cur = min(len, (PAGE_SIZE - offset)); 5187 kaddr = page_address(page); 5188 memcpy(dst, kaddr + offset, cur); 5189 5190 dst += cur; 5191 len -= cur; 5192 offset = 0; 5193 i++; 5194 } 5195 } 5196 5197 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5198 void __user *dstv, 5199 unsigned long start, unsigned long len) 5200 { 5201 size_t cur; 5202 size_t offset; 5203 struct page *page; 5204 char *kaddr; 5205 char __user *dst = (char __user *)dstv; 5206 unsigned long i = get_eb_page_index(start); 5207 int ret = 0; 5208 5209 WARN_ON(start > eb->len); 5210 WARN_ON(start + len > eb->start + eb->len); 5211 5212 offset = get_eb_offset_in_page(eb, start); 5213 5214 while (len > 0) { 5215 page = eb->pages[i]; 5216 5217 cur = min(len, (PAGE_SIZE - offset)); 5218 kaddr = page_address(page); 5219 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5220 ret = -EFAULT; 5221 break; 5222 } 5223 5224 dst += cur; 5225 len -= cur; 5226 offset = 0; 5227 i++; 5228 } 5229 5230 return ret; 5231 } 5232 5233 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5234 unsigned long start, unsigned long len) 5235 { 5236 size_t cur; 5237 size_t offset; 5238 struct page *page; 5239 char *kaddr; 5240 char *ptr = (char *)ptrv; 5241 unsigned long i = get_eb_page_index(start); 5242 int ret = 0; 5243 5244 if (check_eb_range(eb, start, len)) 5245 return -EINVAL; 5246 5247 offset = get_eb_offset_in_page(eb, start); 5248 5249 while (len > 0) { 5250 page = eb->pages[i]; 5251 5252 cur = min(len, (PAGE_SIZE - offset)); 5253 5254 kaddr = page_address(page); 5255 ret = memcmp(ptr, kaddr + offset, cur); 5256 if (ret) 5257 break; 5258 5259 ptr += cur; 5260 len -= cur; 5261 offset = 0; 5262 i++; 5263 } 5264 return ret; 5265 } 5266 5267 /* 5268 * Check that the extent buffer is uptodate. 5269 * 5270 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 5271 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 5272 */ 5273 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 5274 struct page *page) 5275 { 5276 struct btrfs_fs_info *fs_info = eb->fs_info; 5277 5278 /* 5279 * If we are using the commit root we could potentially clear a page 5280 * Uptodate while we're using the extent buffer that we've previously 5281 * looked up. We don't want to complain in this case, as the page was 5282 * valid before, we just didn't write it out. Instead we want to catch 5283 * the case where we didn't actually read the block properly, which 5284 * would have !PageUptodate && !PageError, as we clear PageError before 5285 * reading. 5286 */ 5287 if (fs_info->nodesize < PAGE_SIZE) { 5288 bool uptodate, error; 5289 5290 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 5291 eb->start, eb->len); 5292 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 5293 WARN_ON(!uptodate && !error); 5294 } else { 5295 WARN_ON(!PageUptodate(page) && !PageError(page)); 5296 } 5297 } 5298 5299 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5300 const void *srcv) 5301 { 5302 char *kaddr; 5303 5304 assert_eb_page_uptodate(eb, eb->pages[0]); 5305 kaddr = page_address(eb->pages[0]) + 5306 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 5307 chunk_tree_uuid)); 5308 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5309 } 5310 5311 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5312 { 5313 char *kaddr; 5314 5315 assert_eb_page_uptodate(eb, eb->pages[0]); 5316 kaddr = page_address(eb->pages[0]) + 5317 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 5318 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5319 } 5320 5321 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5322 unsigned long start, unsigned long len) 5323 { 5324 size_t cur; 5325 size_t offset; 5326 struct page *page; 5327 char *kaddr; 5328 char *src = (char *)srcv; 5329 unsigned long i = get_eb_page_index(start); 5330 5331 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 5332 5333 if (check_eb_range(eb, start, len)) 5334 return; 5335 5336 offset = get_eb_offset_in_page(eb, start); 5337 5338 while (len > 0) { 5339 page = eb->pages[i]; 5340 assert_eb_page_uptodate(eb, page); 5341 5342 cur = min(len, PAGE_SIZE - offset); 5343 kaddr = page_address(page); 5344 memcpy(kaddr + offset, src, cur); 5345 5346 src += cur; 5347 len -= cur; 5348 offset = 0; 5349 i++; 5350 } 5351 } 5352 5353 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5354 unsigned long len) 5355 { 5356 size_t cur; 5357 size_t offset; 5358 struct page *page; 5359 char *kaddr; 5360 unsigned long i = get_eb_page_index(start); 5361 5362 if (check_eb_range(eb, start, len)) 5363 return; 5364 5365 offset = get_eb_offset_in_page(eb, start); 5366 5367 while (len > 0) { 5368 page = eb->pages[i]; 5369 assert_eb_page_uptodate(eb, page); 5370 5371 cur = min(len, PAGE_SIZE - offset); 5372 kaddr = page_address(page); 5373 memset(kaddr + offset, 0, cur); 5374 5375 len -= cur; 5376 offset = 0; 5377 i++; 5378 } 5379 } 5380 5381 void copy_extent_buffer_full(const struct extent_buffer *dst, 5382 const struct extent_buffer *src) 5383 { 5384 int i; 5385 int num_pages; 5386 5387 ASSERT(dst->len == src->len); 5388 5389 if (dst->fs_info->nodesize >= PAGE_SIZE) { 5390 num_pages = num_extent_pages(dst); 5391 for (i = 0; i < num_pages; i++) 5392 copy_page(page_address(dst->pages[i]), 5393 page_address(src->pages[i])); 5394 } else { 5395 size_t src_offset = get_eb_offset_in_page(src, 0); 5396 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5397 5398 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 5399 memcpy(page_address(dst->pages[0]) + dst_offset, 5400 page_address(src->pages[0]) + src_offset, 5401 src->len); 5402 } 5403 } 5404 5405 void copy_extent_buffer(const struct extent_buffer *dst, 5406 const struct extent_buffer *src, 5407 unsigned long dst_offset, unsigned long src_offset, 5408 unsigned long len) 5409 { 5410 u64 dst_len = dst->len; 5411 size_t cur; 5412 size_t offset; 5413 struct page *page; 5414 char *kaddr; 5415 unsigned long i = get_eb_page_index(dst_offset); 5416 5417 if (check_eb_range(dst, dst_offset, len) || 5418 check_eb_range(src, src_offset, len)) 5419 return; 5420 5421 WARN_ON(src->len != dst_len); 5422 5423 offset = get_eb_offset_in_page(dst, dst_offset); 5424 5425 while (len > 0) { 5426 page = dst->pages[i]; 5427 assert_eb_page_uptodate(dst, page); 5428 5429 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5430 5431 kaddr = page_address(page); 5432 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5433 5434 src_offset += cur; 5435 len -= cur; 5436 offset = 0; 5437 i++; 5438 } 5439 } 5440 5441 /* 5442 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5443 * given bit number 5444 * @eb: the extent buffer 5445 * @start: offset of the bitmap item in the extent buffer 5446 * @nr: bit number 5447 * @page_index: return index of the page in the extent buffer that contains the 5448 * given bit number 5449 * @page_offset: return offset into the page given by page_index 5450 * 5451 * This helper hides the ugliness of finding the byte in an extent buffer which 5452 * contains a given bit. 5453 */ 5454 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5455 unsigned long start, unsigned long nr, 5456 unsigned long *page_index, 5457 size_t *page_offset) 5458 { 5459 size_t byte_offset = BIT_BYTE(nr); 5460 size_t offset; 5461 5462 /* 5463 * The byte we want is the offset of the extent buffer + the offset of 5464 * the bitmap item in the extent buffer + the offset of the byte in the 5465 * bitmap item. 5466 */ 5467 offset = start + offset_in_page(eb->start) + byte_offset; 5468 5469 *page_index = offset >> PAGE_SHIFT; 5470 *page_offset = offset_in_page(offset); 5471 } 5472 5473 /** 5474 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5475 * @eb: the extent buffer 5476 * @start: offset of the bitmap item in the extent buffer 5477 * @nr: bit number to test 5478 */ 5479 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5480 unsigned long nr) 5481 { 5482 u8 *kaddr; 5483 struct page *page; 5484 unsigned long i; 5485 size_t offset; 5486 5487 eb_bitmap_offset(eb, start, nr, &i, &offset); 5488 page = eb->pages[i]; 5489 assert_eb_page_uptodate(eb, page); 5490 kaddr = page_address(page); 5491 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5492 } 5493 5494 /** 5495 * extent_buffer_bitmap_set - set an area of a bitmap 5496 * @eb: the extent buffer 5497 * @start: offset of the bitmap item in the extent buffer 5498 * @pos: bit number of the first bit 5499 * @len: number of bits to set 5500 */ 5501 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5502 unsigned long pos, unsigned long len) 5503 { 5504 u8 *kaddr; 5505 struct page *page; 5506 unsigned long i; 5507 size_t offset; 5508 const unsigned int size = pos + len; 5509 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5510 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5511 5512 eb_bitmap_offset(eb, start, pos, &i, &offset); 5513 page = eb->pages[i]; 5514 assert_eb_page_uptodate(eb, page); 5515 kaddr = page_address(page); 5516 5517 while (len >= bits_to_set) { 5518 kaddr[offset] |= mask_to_set; 5519 len -= bits_to_set; 5520 bits_to_set = BITS_PER_BYTE; 5521 mask_to_set = ~0; 5522 if (++offset >= PAGE_SIZE && len > 0) { 5523 offset = 0; 5524 page = eb->pages[++i]; 5525 assert_eb_page_uptodate(eb, page); 5526 kaddr = page_address(page); 5527 } 5528 } 5529 if (len) { 5530 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5531 kaddr[offset] |= mask_to_set; 5532 } 5533 } 5534 5535 5536 /** 5537 * extent_buffer_bitmap_clear - clear an area of a bitmap 5538 * @eb: the extent buffer 5539 * @start: offset of the bitmap item in the extent buffer 5540 * @pos: bit number of the first bit 5541 * @len: number of bits to clear 5542 */ 5543 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5544 unsigned long start, unsigned long pos, 5545 unsigned long len) 5546 { 5547 u8 *kaddr; 5548 struct page *page; 5549 unsigned long i; 5550 size_t offset; 5551 const unsigned int size = pos + len; 5552 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5553 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5554 5555 eb_bitmap_offset(eb, start, pos, &i, &offset); 5556 page = eb->pages[i]; 5557 assert_eb_page_uptodate(eb, page); 5558 kaddr = page_address(page); 5559 5560 while (len >= bits_to_clear) { 5561 kaddr[offset] &= ~mask_to_clear; 5562 len -= bits_to_clear; 5563 bits_to_clear = BITS_PER_BYTE; 5564 mask_to_clear = ~0; 5565 if (++offset >= PAGE_SIZE && len > 0) { 5566 offset = 0; 5567 page = eb->pages[++i]; 5568 assert_eb_page_uptodate(eb, page); 5569 kaddr = page_address(page); 5570 } 5571 } 5572 if (len) { 5573 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5574 kaddr[offset] &= ~mask_to_clear; 5575 } 5576 } 5577 5578 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5579 { 5580 unsigned long distance = (src > dst) ? src - dst : dst - src; 5581 return distance < len; 5582 } 5583 5584 static void copy_pages(struct page *dst_page, struct page *src_page, 5585 unsigned long dst_off, unsigned long src_off, 5586 unsigned long len) 5587 { 5588 char *dst_kaddr = page_address(dst_page); 5589 char *src_kaddr; 5590 int must_memmove = 0; 5591 5592 if (dst_page != src_page) { 5593 src_kaddr = page_address(src_page); 5594 } else { 5595 src_kaddr = dst_kaddr; 5596 if (areas_overlap(src_off, dst_off, len)) 5597 must_memmove = 1; 5598 } 5599 5600 if (must_memmove) 5601 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5602 else 5603 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5604 } 5605 5606 void memcpy_extent_buffer(const struct extent_buffer *dst, 5607 unsigned long dst_offset, unsigned long src_offset, 5608 unsigned long len) 5609 { 5610 size_t cur; 5611 size_t dst_off_in_page; 5612 size_t src_off_in_page; 5613 unsigned long dst_i; 5614 unsigned long src_i; 5615 5616 if (check_eb_range(dst, dst_offset, len) || 5617 check_eb_range(dst, src_offset, len)) 5618 return; 5619 5620 while (len > 0) { 5621 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5622 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5623 5624 dst_i = get_eb_page_index(dst_offset); 5625 src_i = get_eb_page_index(src_offset); 5626 5627 cur = min(len, (unsigned long)(PAGE_SIZE - 5628 src_off_in_page)); 5629 cur = min_t(unsigned long, cur, 5630 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5631 5632 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5633 dst_off_in_page, src_off_in_page, cur); 5634 5635 src_offset += cur; 5636 dst_offset += cur; 5637 len -= cur; 5638 } 5639 } 5640 5641 void memmove_extent_buffer(const struct extent_buffer *dst, 5642 unsigned long dst_offset, unsigned long src_offset, 5643 unsigned long len) 5644 { 5645 size_t cur; 5646 size_t dst_off_in_page; 5647 size_t src_off_in_page; 5648 unsigned long dst_end = dst_offset + len - 1; 5649 unsigned long src_end = src_offset + len - 1; 5650 unsigned long dst_i; 5651 unsigned long src_i; 5652 5653 if (check_eb_range(dst, dst_offset, len) || 5654 check_eb_range(dst, src_offset, len)) 5655 return; 5656 if (dst_offset < src_offset) { 5657 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5658 return; 5659 } 5660 while (len > 0) { 5661 dst_i = get_eb_page_index(dst_end); 5662 src_i = get_eb_page_index(src_end); 5663 5664 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5665 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5666 5667 cur = min_t(unsigned long, len, src_off_in_page + 1); 5668 cur = min(cur, dst_off_in_page + 1); 5669 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5670 dst_off_in_page - cur + 1, 5671 src_off_in_page - cur + 1, cur); 5672 5673 dst_end -= cur; 5674 src_end -= cur; 5675 len -= cur; 5676 } 5677 } 5678 5679 #define GANG_LOOKUP_SIZE 16 5680 static struct extent_buffer *get_next_extent_buffer( 5681 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5682 { 5683 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5684 struct extent_buffer *found = NULL; 5685 u64 page_start = page_offset(page); 5686 u64 cur = page_start; 5687 5688 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5689 lockdep_assert_held(&fs_info->buffer_lock); 5690 5691 while (cur < page_start + PAGE_SIZE) { 5692 int ret; 5693 int i; 5694 5695 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5696 (void **)gang, cur >> fs_info->sectorsize_bits, 5697 min_t(unsigned int, GANG_LOOKUP_SIZE, 5698 PAGE_SIZE / fs_info->nodesize)); 5699 if (ret == 0) 5700 goto out; 5701 for (i = 0; i < ret; i++) { 5702 /* Already beyond page end */ 5703 if (gang[i]->start >= page_start + PAGE_SIZE) 5704 goto out; 5705 /* Found one */ 5706 if (gang[i]->start >= bytenr) { 5707 found = gang[i]; 5708 goto out; 5709 } 5710 } 5711 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5712 } 5713 out: 5714 return found; 5715 } 5716 5717 static int try_release_subpage_extent_buffer(struct page *page) 5718 { 5719 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5720 u64 cur = page_offset(page); 5721 const u64 end = page_offset(page) + PAGE_SIZE; 5722 int ret; 5723 5724 while (cur < end) { 5725 struct extent_buffer *eb = NULL; 5726 5727 /* 5728 * Unlike try_release_extent_buffer() which uses page->private 5729 * to grab buffer, for subpage case we rely on radix tree, thus 5730 * we need to ensure radix tree consistency. 5731 * 5732 * We also want an atomic snapshot of the radix tree, thus go 5733 * with spinlock rather than RCU. 5734 */ 5735 spin_lock(&fs_info->buffer_lock); 5736 eb = get_next_extent_buffer(fs_info, page, cur); 5737 if (!eb) { 5738 /* No more eb in the page range after or at cur */ 5739 spin_unlock(&fs_info->buffer_lock); 5740 break; 5741 } 5742 cur = eb->start + eb->len; 5743 5744 /* 5745 * The same as try_release_extent_buffer(), to ensure the eb 5746 * won't disappear out from under us. 5747 */ 5748 spin_lock(&eb->refs_lock); 5749 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5750 spin_unlock(&eb->refs_lock); 5751 spin_unlock(&fs_info->buffer_lock); 5752 break; 5753 } 5754 spin_unlock(&fs_info->buffer_lock); 5755 5756 /* 5757 * If tree ref isn't set then we know the ref on this eb is a 5758 * real ref, so just return, this eb will likely be freed soon 5759 * anyway. 5760 */ 5761 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5762 spin_unlock(&eb->refs_lock); 5763 break; 5764 } 5765 5766 /* 5767 * Here we don't care about the return value, we will always 5768 * check the page private at the end. And 5769 * release_extent_buffer() will release the refs_lock. 5770 */ 5771 release_extent_buffer(eb); 5772 } 5773 /* 5774 * Finally to check if we have cleared page private, as if we have 5775 * released all ebs in the page, the page private should be cleared now. 5776 */ 5777 spin_lock(&page->mapping->private_lock); 5778 if (!PagePrivate(page)) 5779 ret = 1; 5780 else 5781 ret = 0; 5782 spin_unlock(&page->mapping->private_lock); 5783 return ret; 5784 5785 } 5786 5787 int try_release_extent_buffer(struct page *page) 5788 { 5789 struct extent_buffer *eb; 5790 5791 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5792 return try_release_subpage_extent_buffer(page); 5793 5794 /* 5795 * We need to make sure nobody is changing page->private, as we rely on 5796 * page->private as the pointer to extent buffer. 5797 */ 5798 spin_lock(&page->mapping->private_lock); 5799 if (!PagePrivate(page)) { 5800 spin_unlock(&page->mapping->private_lock); 5801 return 1; 5802 } 5803 5804 eb = (struct extent_buffer *)page->private; 5805 BUG_ON(!eb); 5806 5807 /* 5808 * This is a little awful but should be ok, we need to make sure that 5809 * the eb doesn't disappear out from under us while we're looking at 5810 * this page. 5811 */ 5812 spin_lock(&eb->refs_lock); 5813 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5814 spin_unlock(&eb->refs_lock); 5815 spin_unlock(&page->mapping->private_lock); 5816 return 0; 5817 } 5818 spin_unlock(&page->mapping->private_lock); 5819 5820 /* 5821 * If tree ref isn't set then we know the ref on this eb is a real ref, 5822 * so just return, this page will likely be freed soon anyway. 5823 */ 5824 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5825 spin_unlock(&eb->refs_lock); 5826 return 0; 5827 } 5828 5829 return release_extent_buffer(eb); 5830 } 5831 5832 /* 5833 * btrfs_readahead_tree_block - attempt to readahead a child block 5834 * @fs_info: the fs_info 5835 * @bytenr: bytenr to read 5836 * @owner_root: objectid of the root that owns this eb 5837 * @gen: generation for the uptodate check, can be 0 5838 * @level: level for the eb 5839 * 5840 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5841 * normal uptodate check of the eb, without checking the generation. If we have 5842 * to read the block we will not block on anything. 5843 */ 5844 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5845 u64 bytenr, u64 owner_root, u64 gen, int level) 5846 { 5847 struct extent_buffer *eb; 5848 int ret; 5849 5850 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5851 if (IS_ERR(eb)) 5852 return; 5853 5854 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5855 free_extent_buffer(eb); 5856 return; 5857 } 5858 5859 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 5860 if (ret < 0) 5861 free_extent_buffer_stale(eb); 5862 else 5863 free_extent_buffer(eb); 5864 } 5865 5866 /* 5867 * btrfs_readahead_node_child - readahead a node's child block 5868 * @node: parent node we're reading from 5869 * @slot: slot in the parent node for the child we want to read 5870 * 5871 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5872 * the slot in the node provided. 5873 */ 5874 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5875 { 5876 btrfs_readahead_tree_block(node->fs_info, 5877 btrfs_node_blockptr(node, slot), 5878 btrfs_header_owner(node), 5879 btrfs_node_ptr_generation(node, slot), 5880 btrfs_header_level(node) - 1); 5881 } 5882