1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 }; 105 106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 107 { 108 struct btrfs_bio *bbio = bio_ctrl->bbio; 109 110 if (!bbio) 111 return; 112 113 /* Caller should ensure the bio has at least some range added */ 114 ASSERT(bbio->bio.bi_iter.bi_size); 115 116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 118 btrfs_submit_compressed_read(bbio); 119 else 120 btrfs_submit_bio(bbio, 0); 121 122 /* The bbio is owned by the end_io handler now */ 123 bio_ctrl->bbio = NULL; 124 } 125 126 /* 127 * Submit or fail the current bio in the bio_ctrl structure. 128 */ 129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 130 { 131 struct btrfs_bio *bbio = bio_ctrl->bbio; 132 133 if (!bbio) 134 return; 135 136 if (ret) { 137 ASSERT(ret < 0); 138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 139 /* The bio is owned by the end_io handler now */ 140 bio_ctrl->bbio = NULL; 141 } else { 142 submit_one_bio(bio_ctrl); 143 } 144 } 145 146 int __init extent_buffer_init_cachep(void) 147 { 148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 149 sizeof(struct extent_buffer), 0, 0, 150 NULL); 151 if (!extent_buffer_cache) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 void __cold extent_buffer_free_cachep(void) 158 { 159 /* 160 * Make sure all delayed rcu free are flushed before we 161 * destroy caches. 162 */ 163 rcu_barrier(); 164 kmem_cache_destroy(extent_buffer_cache); 165 } 166 167 static void process_one_page(struct btrfs_fs_info *fs_info, 168 struct page *page, const struct page *locked_page, 169 unsigned long page_ops, u64 start, u64 end) 170 { 171 struct folio *folio = page_folio(page); 172 u32 len; 173 174 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 175 len = end + 1 - start; 176 177 if (page_ops & PAGE_SET_ORDERED) 178 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 179 if (page_ops & PAGE_START_WRITEBACK) { 180 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 181 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 182 } 183 if (page_ops & PAGE_END_WRITEBACK) 184 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 185 186 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 187 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 188 } 189 190 static void __process_pages_contig(struct address_space *mapping, 191 const struct page *locked_page, u64 start, u64 end, 192 unsigned long page_ops) 193 { 194 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 195 pgoff_t start_index = start >> PAGE_SHIFT; 196 pgoff_t end_index = end >> PAGE_SHIFT; 197 pgoff_t index = start_index; 198 struct folio_batch fbatch; 199 int i; 200 201 folio_batch_init(&fbatch); 202 while (index <= end_index) { 203 int found_folios; 204 205 found_folios = filemap_get_folios_contig(mapping, &index, 206 end_index, &fbatch); 207 for (i = 0; i < found_folios; i++) { 208 struct folio *folio = fbatch.folios[i]; 209 210 process_one_page(fs_info, &folio->page, locked_page, 211 page_ops, start, end); 212 } 213 folio_batch_release(&fbatch); 214 cond_resched(); 215 } 216 } 217 218 static noinline void __unlock_for_delalloc(const struct inode *inode, 219 const struct page *locked_page, 220 u64 start, u64 end) 221 { 222 unsigned long index = start >> PAGE_SHIFT; 223 unsigned long end_index = end >> PAGE_SHIFT; 224 225 ASSERT(locked_page); 226 if (index == locked_page->index && end_index == index) 227 return; 228 229 __process_pages_contig(inode->i_mapping, locked_page, start, end, 230 PAGE_UNLOCK); 231 } 232 233 static noinline int lock_delalloc_pages(struct inode *inode, 234 const struct page *locked_page, 235 u64 start, 236 u64 end) 237 { 238 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 239 struct address_space *mapping = inode->i_mapping; 240 pgoff_t start_index = start >> PAGE_SHIFT; 241 pgoff_t end_index = end >> PAGE_SHIFT; 242 pgoff_t index = start_index; 243 u64 processed_end = start; 244 struct folio_batch fbatch; 245 246 if (index == locked_page->index && index == end_index) 247 return 0; 248 249 folio_batch_init(&fbatch); 250 while (index <= end_index) { 251 unsigned int found_folios, i; 252 253 found_folios = filemap_get_folios_contig(mapping, &index, 254 end_index, &fbatch); 255 if (found_folios == 0) 256 goto out; 257 258 for (i = 0; i < found_folios; i++) { 259 struct folio *folio = fbatch.folios[i]; 260 struct page *page = folio_page(folio, 0); 261 u32 len = end + 1 - start; 262 263 if (page == locked_page) 264 continue; 265 266 if (btrfs_folio_start_writer_lock(fs_info, folio, start, 267 len)) 268 goto out; 269 270 if (!PageDirty(page) || page->mapping != mapping) { 271 btrfs_folio_end_writer_lock(fs_info, folio, start, 272 len); 273 goto out; 274 } 275 276 processed_end = page_offset(page) + PAGE_SIZE - 1; 277 } 278 folio_batch_release(&fbatch); 279 cond_resched(); 280 } 281 282 return 0; 283 out: 284 folio_batch_release(&fbatch); 285 if (processed_end > start) 286 __unlock_for_delalloc(inode, locked_page, start, processed_end); 287 return -EAGAIN; 288 } 289 290 /* 291 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 292 * more than @max_bytes. 293 * 294 * @start: The original start bytenr to search. 295 * Will store the extent range start bytenr. 296 * @end: The original end bytenr of the search range 297 * Will store the extent range end bytenr. 298 * 299 * Return true if we find a delalloc range which starts inside the original 300 * range, and @start/@end will store the delalloc range start/end. 301 * 302 * Return false if we can't find any delalloc range which starts inside the 303 * original range, and @start/@end will be the non-delalloc range start/end. 304 */ 305 EXPORT_FOR_TESTS 306 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 307 struct page *locked_page, u64 *start, 308 u64 *end) 309 { 310 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 311 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 312 const u64 orig_start = *start; 313 const u64 orig_end = *end; 314 /* The sanity tests may not set a valid fs_info. */ 315 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 316 u64 delalloc_start; 317 u64 delalloc_end; 318 bool found; 319 struct extent_state *cached_state = NULL; 320 int ret; 321 int loops = 0; 322 323 /* Caller should pass a valid @end to indicate the search range end */ 324 ASSERT(orig_end > orig_start); 325 326 /* The range should at least cover part of the page */ 327 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 328 orig_end <= page_offset(locked_page))); 329 again: 330 /* step one, find a bunch of delalloc bytes starting at start */ 331 delalloc_start = *start; 332 delalloc_end = 0; 333 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 334 max_bytes, &cached_state); 335 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 336 *start = delalloc_start; 337 338 /* @delalloc_end can be -1, never go beyond @orig_end */ 339 *end = min(delalloc_end, orig_end); 340 free_extent_state(cached_state); 341 return false; 342 } 343 344 /* 345 * start comes from the offset of locked_page. We have to lock 346 * pages in order, so we can't process delalloc bytes before 347 * locked_page 348 */ 349 if (delalloc_start < *start) 350 delalloc_start = *start; 351 352 /* 353 * make sure to limit the number of pages we try to lock down 354 */ 355 if (delalloc_end + 1 - delalloc_start > max_bytes) 356 delalloc_end = delalloc_start + max_bytes - 1; 357 358 /* step two, lock all the pages after the page that has start */ 359 ret = lock_delalloc_pages(inode, locked_page, 360 delalloc_start, delalloc_end); 361 ASSERT(!ret || ret == -EAGAIN); 362 if (ret == -EAGAIN) { 363 /* some of the pages are gone, lets avoid looping by 364 * shortening the size of the delalloc range we're searching 365 */ 366 free_extent_state(cached_state); 367 cached_state = NULL; 368 if (!loops) { 369 max_bytes = PAGE_SIZE; 370 loops = 1; 371 goto again; 372 } else { 373 found = false; 374 goto out_failed; 375 } 376 } 377 378 /* step three, lock the state bits for the whole range */ 379 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 380 381 /* then test to make sure it is all still delalloc */ 382 ret = test_range_bit(tree, delalloc_start, delalloc_end, 383 EXTENT_DELALLOC, cached_state); 384 385 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 386 if (!ret) { 387 __unlock_for_delalloc(inode, locked_page, 388 delalloc_start, delalloc_end); 389 cond_resched(); 390 goto again; 391 } 392 *start = delalloc_start; 393 *end = delalloc_end; 394 out_failed: 395 return found; 396 } 397 398 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 399 const struct page *locked_page, 400 struct extent_state **cached, 401 u32 clear_bits, unsigned long page_ops) 402 { 403 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 404 405 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 406 start, end, page_ops); 407 } 408 409 static bool btrfs_verify_page(struct page *page, u64 start) 410 { 411 if (!fsverity_active(page->mapping->host) || 412 PageUptodate(page) || 413 start >= i_size_read(page->mapping->host)) 414 return true; 415 return fsverity_verify_page(page); 416 } 417 418 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 419 { 420 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 421 struct folio *folio = page_folio(page); 422 423 ASSERT(page_offset(page) <= start && 424 start + len <= page_offset(page) + PAGE_SIZE); 425 426 if (uptodate && btrfs_verify_page(page, start)) 427 btrfs_folio_set_uptodate(fs_info, folio, start, len); 428 else 429 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 430 431 if (!btrfs_is_subpage(fs_info, page->mapping)) 432 unlock_page(page); 433 else 434 btrfs_subpage_end_reader(fs_info, folio, start, len); 435 } 436 437 /* 438 * After a write IO is done, we need to: 439 * 440 * - clear the uptodate bits on error 441 * - clear the writeback bits in the extent tree for the range 442 * - filio_end_writeback() if there is no more pending io for the folio 443 * 444 * Scheduling is not allowed, so the extent state tree is expected 445 * to have one and only one object corresponding to this IO. 446 */ 447 static void end_bbio_data_write(struct btrfs_bio *bbio) 448 { 449 struct btrfs_fs_info *fs_info = bbio->fs_info; 450 struct bio *bio = &bbio->bio; 451 int error = blk_status_to_errno(bio->bi_status); 452 struct folio_iter fi; 453 const u32 sectorsize = fs_info->sectorsize; 454 455 ASSERT(!bio_flagged(bio, BIO_CLONED)); 456 bio_for_each_folio_all(fi, bio) { 457 struct folio *folio = fi.folio; 458 u64 start = folio_pos(folio) + fi.offset; 459 u32 len = fi.length; 460 461 /* Only order 0 (single page) folios are allowed for data. */ 462 ASSERT(folio_order(folio) == 0); 463 464 /* Our read/write should always be sector aligned. */ 465 if (!IS_ALIGNED(fi.offset, sectorsize)) 466 btrfs_err(fs_info, 467 "partial page write in btrfs with offset %zu and length %zu", 468 fi.offset, fi.length); 469 else if (!IS_ALIGNED(fi.length, sectorsize)) 470 btrfs_info(fs_info, 471 "incomplete page write with offset %zu and length %zu", 472 fi.offset, fi.length); 473 474 btrfs_finish_ordered_extent(bbio->ordered, 475 folio_page(folio, 0), start, len, !error); 476 if (error) 477 mapping_set_error(folio->mapping, error); 478 btrfs_folio_clear_writeback(fs_info, folio, start, len); 479 } 480 481 bio_put(bio); 482 } 483 484 /* 485 * Record previously processed extent range 486 * 487 * For endio_readpage_release_extent() to handle a full extent range, reducing 488 * the extent io operations. 489 */ 490 struct processed_extent { 491 struct btrfs_inode *inode; 492 /* Start of the range in @inode */ 493 u64 start; 494 /* End of the range in @inode */ 495 u64 end; 496 bool uptodate; 497 }; 498 499 /* 500 * Try to release processed extent range 501 * 502 * May not release the extent range right now if the current range is 503 * contiguous to processed extent. 504 * 505 * Will release processed extent when any of @inode, @uptodate, the range is 506 * no longer contiguous to the processed range. 507 * 508 * Passing @inode == NULL will force processed extent to be released. 509 */ 510 static void endio_readpage_release_extent(struct processed_extent *processed, 511 struct btrfs_inode *inode, u64 start, u64 end, 512 bool uptodate) 513 { 514 struct extent_state *cached = NULL; 515 struct extent_io_tree *tree; 516 517 /* The first extent, initialize @processed */ 518 if (!processed->inode) 519 goto update; 520 521 /* 522 * Contiguous to processed extent, just uptodate the end. 523 * 524 * Several things to notice: 525 * 526 * - bio can be merged as long as on-disk bytenr is contiguous 527 * This means we can have page belonging to other inodes, thus need to 528 * check if the inode still matches. 529 * - bvec can contain range beyond current page for multi-page bvec 530 * Thus we need to do processed->end + 1 >= start check 531 */ 532 if (processed->inode == inode && processed->uptodate == uptodate && 533 processed->end + 1 >= start && end >= processed->end) { 534 processed->end = end; 535 return; 536 } 537 538 tree = &processed->inode->io_tree; 539 /* 540 * Now we don't have range contiguous to the processed range, release 541 * the processed range now. 542 */ 543 unlock_extent(tree, processed->start, processed->end, &cached); 544 545 update: 546 /* Update processed to current range */ 547 processed->inode = inode; 548 processed->start = start; 549 processed->end = end; 550 processed->uptodate = uptodate; 551 } 552 553 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 554 { 555 struct folio *folio = page_folio(page); 556 557 ASSERT(folio_test_locked(folio)); 558 if (!btrfs_is_subpage(fs_info, folio->mapping)) 559 return; 560 561 ASSERT(folio_test_private(folio)); 562 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE); 563 } 564 565 /* 566 * After a data read IO is done, we need to: 567 * 568 * - clear the uptodate bits on error 569 * - set the uptodate bits if things worked 570 * - set the folio up to date if all extents in the tree are uptodate 571 * - clear the lock bit in the extent tree 572 * - unlock the folio if there are no other extents locked for it 573 * 574 * Scheduling is not allowed, so the extent state tree is expected 575 * to have one and only one object corresponding to this IO. 576 */ 577 static void end_bbio_data_read(struct btrfs_bio *bbio) 578 { 579 struct btrfs_fs_info *fs_info = bbio->fs_info; 580 struct bio *bio = &bbio->bio; 581 struct processed_extent processed = { 0 }; 582 struct folio_iter fi; 583 const u32 sectorsize = fs_info->sectorsize; 584 585 ASSERT(!bio_flagged(bio, BIO_CLONED)); 586 bio_for_each_folio_all(fi, &bbio->bio) { 587 bool uptodate = !bio->bi_status; 588 struct folio *folio = fi.folio; 589 struct inode *inode = folio->mapping->host; 590 u64 start; 591 u64 end; 592 u32 len; 593 594 /* For now only order 0 folios are supported for data. */ 595 ASSERT(folio_order(folio) == 0); 596 btrfs_debug(fs_info, 597 "%s: bi_sector=%llu, err=%d, mirror=%u", 598 __func__, bio->bi_iter.bi_sector, bio->bi_status, 599 bbio->mirror_num); 600 601 /* 602 * We always issue full-sector reads, but if some block in a 603 * folio fails to read, blk_update_request() will advance 604 * bv_offset and adjust bv_len to compensate. Print a warning 605 * for unaligned offsets, and an error if they don't add up to 606 * a full sector. 607 */ 608 if (!IS_ALIGNED(fi.offset, sectorsize)) 609 btrfs_err(fs_info, 610 "partial page read in btrfs with offset %zu and length %zu", 611 fi.offset, fi.length); 612 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 613 btrfs_info(fs_info, 614 "incomplete page read with offset %zu and length %zu", 615 fi.offset, fi.length); 616 617 start = folio_pos(folio) + fi.offset; 618 end = start + fi.length - 1; 619 len = fi.length; 620 621 if (likely(uptodate)) { 622 loff_t i_size = i_size_read(inode); 623 pgoff_t end_index = i_size >> folio_shift(folio); 624 625 /* 626 * Zero out the remaining part if this range straddles 627 * i_size. 628 * 629 * Here we should only zero the range inside the folio, 630 * not touch anything else. 631 * 632 * NOTE: i_size is exclusive while end is inclusive. 633 */ 634 if (folio_index(folio) == end_index && i_size <= end) { 635 u32 zero_start = max(offset_in_folio(folio, i_size), 636 offset_in_folio(folio, start)); 637 u32 zero_len = offset_in_folio(folio, end) + 1 - 638 zero_start; 639 640 folio_zero_range(folio, zero_start, zero_len); 641 } 642 } 643 644 /* Update page status and unlock. */ 645 end_page_read(folio_page(folio, 0), uptodate, start, len); 646 endio_readpage_release_extent(&processed, BTRFS_I(inode), 647 start, end, uptodate); 648 } 649 /* Release the last extent */ 650 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 651 bio_put(bio); 652 } 653 654 /* 655 * Populate every free slot in a provided array with folios using GFP_NOFS. 656 * 657 * @nr_folios: number of folios to allocate 658 * @folio_array: the array to fill with folios; any existing non-NULL entries in 659 * the array will be skipped 660 * 661 * Return: 0 if all folios were able to be allocated; 662 * -ENOMEM otherwise, the partially allocated folios would be freed and 663 * the array slots zeroed 664 */ 665 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 666 { 667 for (int i = 0; i < nr_folios; i++) { 668 if (folio_array[i]) 669 continue; 670 folio_array[i] = folio_alloc(GFP_NOFS, 0); 671 if (!folio_array[i]) 672 goto error; 673 } 674 return 0; 675 error: 676 for (int i = 0; i < nr_folios; i++) { 677 if (folio_array[i]) 678 folio_put(folio_array[i]); 679 } 680 return -ENOMEM; 681 } 682 683 /* 684 * Populate every free slot in a provided array with pages, using GFP_NOFS. 685 * 686 * @nr_pages: number of pages to allocate 687 * @page_array: the array to fill with pages; any existing non-null entries in 688 * the array will be skipped 689 * @nofail: whether using __GFP_NOFAIL flag 690 * 691 * Return: 0 if all pages were able to be allocated; 692 * -ENOMEM otherwise, the partially allocated pages would be freed and 693 * the array slots zeroed 694 */ 695 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 696 bool nofail) 697 { 698 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 699 unsigned int allocated; 700 701 for (allocated = 0; allocated < nr_pages;) { 702 unsigned int last = allocated; 703 704 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 705 if (unlikely(allocated == last)) { 706 /* No progress, fail and do cleanup. */ 707 for (int i = 0; i < allocated; i++) { 708 __free_page(page_array[i]); 709 page_array[i] = NULL; 710 } 711 return -ENOMEM; 712 } 713 } 714 return 0; 715 } 716 717 /* 718 * Populate needed folios for the extent buffer. 719 * 720 * For now, the folios populated are always in order 0 (aka, single page). 721 */ 722 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 723 { 724 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 725 int num_pages = num_extent_pages(eb); 726 int ret; 727 728 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 729 if (ret < 0) 730 return ret; 731 732 for (int i = 0; i < num_pages; i++) 733 eb->folios[i] = page_folio(page_array[i]); 734 eb->folio_size = PAGE_SIZE; 735 eb->folio_shift = PAGE_SHIFT; 736 return 0; 737 } 738 739 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 740 struct page *page, u64 disk_bytenr, 741 unsigned int pg_offset) 742 { 743 struct bio *bio = &bio_ctrl->bbio->bio; 744 struct bio_vec *bvec = bio_last_bvec_all(bio); 745 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 746 747 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 748 /* 749 * For compression, all IO should have its logical bytenr set 750 * to the starting bytenr of the compressed extent. 751 */ 752 return bio->bi_iter.bi_sector == sector; 753 } 754 755 /* 756 * The contig check requires the following conditions to be met: 757 * 758 * 1) The pages are belonging to the same inode 759 * This is implied by the call chain. 760 * 761 * 2) The range has adjacent logical bytenr 762 * 763 * 3) The range has adjacent file offset 764 * This is required for the usage of btrfs_bio->file_offset. 765 */ 766 return bio_end_sector(bio) == sector && 767 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 768 page_offset(page) + pg_offset; 769 } 770 771 static void alloc_new_bio(struct btrfs_inode *inode, 772 struct btrfs_bio_ctrl *bio_ctrl, 773 u64 disk_bytenr, u64 file_offset) 774 { 775 struct btrfs_fs_info *fs_info = inode->root->fs_info; 776 struct btrfs_bio *bbio; 777 778 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 779 bio_ctrl->end_io_func, NULL); 780 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 781 bbio->inode = inode; 782 bbio->file_offset = file_offset; 783 bio_ctrl->bbio = bbio; 784 bio_ctrl->len_to_oe_boundary = U32_MAX; 785 786 /* Limit data write bios to the ordered boundary. */ 787 if (bio_ctrl->wbc) { 788 struct btrfs_ordered_extent *ordered; 789 790 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 791 if (ordered) { 792 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 793 ordered->file_offset + 794 ordered->disk_num_bytes - file_offset); 795 bbio->ordered = ordered; 796 } 797 798 /* 799 * Pick the last added device to support cgroup writeback. For 800 * multi-device file systems this means blk-cgroup policies have 801 * to always be set on the last added/replaced device. 802 * This is a bit odd but has been like that for a long time. 803 */ 804 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 805 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 806 } 807 } 808 809 /* 810 * @disk_bytenr: logical bytenr where the write will be 811 * @page: page to add to the bio 812 * @size: portion of page that we want to write to 813 * @pg_offset: offset of the new bio or to check whether we are adding 814 * a contiguous page to the previous one 815 * 816 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 817 * new one in @bio_ctrl->bbio. 818 * The mirror number for this IO should already be initizlied in 819 * @bio_ctrl->mirror_num. 820 */ 821 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 822 u64 disk_bytenr, struct page *page, 823 size_t size, unsigned long pg_offset) 824 { 825 struct btrfs_inode *inode = page_to_inode(page); 826 827 ASSERT(pg_offset + size <= PAGE_SIZE); 828 ASSERT(bio_ctrl->end_io_func); 829 830 if (bio_ctrl->bbio && 831 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 832 submit_one_bio(bio_ctrl); 833 834 do { 835 u32 len = size; 836 837 /* Allocate new bio if needed */ 838 if (!bio_ctrl->bbio) { 839 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 840 page_offset(page) + pg_offset); 841 } 842 843 /* Cap to the current ordered extent boundary if there is one. */ 844 if (len > bio_ctrl->len_to_oe_boundary) { 845 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 846 ASSERT(is_data_inode(inode)); 847 len = bio_ctrl->len_to_oe_boundary; 848 } 849 850 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 851 /* bio full: move on to a new one */ 852 submit_one_bio(bio_ctrl); 853 continue; 854 } 855 856 if (bio_ctrl->wbc) 857 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 858 859 size -= len; 860 pg_offset += len; 861 disk_bytenr += len; 862 863 /* 864 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 865 * sector aligned. alloc_new_bio() then sets it to the end of 866 * our ordered extent for writes into zoned devices. 867 * 868 * When len_to_oe_boundary is tracking an ordered extent, we 869 * trust the ordered extent code to align things properly, and 870 * the check above to cap our write to the ordered extent 871 * boundary is correct. 872 * 873 * When len_to_oe_boundary is U32_MAX, the cap above would 874 * result in a 4095 byte IO for the last page right before 875 * we hit the bio limit of UINT_MAX. bio_add_page() has all 876 * the checks required to make sure we don't overflow the bio, 877 * and we should just ignore len_to_oe_boundary completely 878 * unless we're using it to track an ordered extent. 879 * 880 * It's pretty hard to make a bio sized U32_MAX, but it can 881 * happen when the page cache is able to feed us contiguous 882 * pages for large extents. 883 */ 884 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 885 bio_ctrl->len_to_oe_boundary -= len; 886 887 /* Ordered extent boundary: move on to a new bio. */ 888 if (bio_ctrl->len_to_oe_boundary == 0) 889 submit_one_bio(bio_ctrl); 890 } while (size); 891 } 892 893 static int attach_extent_buffer_folio(struct extent_buffer *eb, 894 struct folio *folio, 895 struct btrfs_subpage *prealloc) 896 { 897 struct btrfs_fs_info *fs_info = eb->fs_info; 898 int ret = 0; 899 900 /* 901 * If the page is mapped to btree inode, we should hold the private 902 * lock to prevent race. 903 * For cloned or dummy extent buffers, their pages are not mapped and 904 * will not race with any other ebs. 905 */ 906 if (folio->mapping) 907 lockdep_assert_held(&folio->mapping->i_private_lock); 908 909 if (fs_info->nodesize >= PAGE_SIZE) { 910 if (!folio_test_private(folio)) 911 folio_attach_private(folio, eb); 912 else 913 WARN_ON(folio_get_private(folio) != eb); 914 return 0; 915 } 916 917 /* Already mapped, just free prealloc */ 918 if (folio_test_private(folio)) { 919 btrfs_free_subpage(prealloc); 920 return 0; 921 } 922 923 if (prealloc) 924 /* Has preallocated memory for subpage */ 925 folio_attach_private(folio, prealloc); 926 else 927 /* Do new allocation to attach subpage */ 928 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 929 return ret; 930 } 931 932 int set_page_extent_mapped(struct page *page) 933 { 934 return set_folio_extent_mapped(page_folio(page)); 935 } 936 937 int set_folio_extent_mapped(struct folio *folio) 938 { 939 struct btrfs_fs_info *fs_info; 940 941 ASSERT(folio->mapping); 942 943 if (folio_test_private(folio)) 944 return 0; 945 946 fs_info = folio_to_fs_info(folio); 947 948 if (btrfs_is_subpage(fs_info, folio->mapping)) 949 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 950 951 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 952 return 0; 953 } 954 955 void clear_page_extent_mapped(struct page *page) 956 { 957 struct folio *folio = page_folio(page); 958 struct btrfs_fs_info *fs_info; 959 960 ASSERT(page->mapping); 961 962 if (!folio_test_private(folio)) 963 return; 964 965 fs_info = page_to_fs_info(page); 966 if (btrfs_is_subpage(fs_info, page->mapping)) 967 return btrfs_detach_subpage(fs_info, folio); 968 969 folio_detach_private(folio); 970 } 971 972 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page, 973 u64 start, u64 len, struct extent_map **em_cached) 974 { 975 struct extent_map *em; 976 977 ASSERT(em_cached); 978 979 if (*em_cached) { 980 em = *em_cached; 981 if (extent_map_in_tree(em) && start >= em->start && 982 start < extent_map_end(em)) { 983 refcount_inc(&em->refs); 984 return em; 985 } 986 987 free_extent_map(em); 988 *em_cached = NULL; 989 } 990 991 em = btrfs_get_extent(BTRFS_I(inode), page, start, len); 992 if (!IS_ERR(em)) { 993 BUG_ON(*em_cached); 994 refcount_inc(&em->refs); 995 *em_cached = em; 996 } 997 return em; 998 } 999 /* 1000 * basic readpage implementation. Locked extent state structs are inserted 1001 * into the tree that are removed when the IO is done (by the end_io 1002 * handlers) 1003 * XXX JDM: This needs looking at to ensure proper page locking 1004 * return 0 on success, otherwise return error 1005 */ 1006 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1007 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1008 { 1009 struct inode *inode = page->mapping->host; 1010 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1011 u64 start = page_offset(page); 1012 const u64 end = start + PAGE_SIZE - 1; 1013 u64 cur = start; 1014 u64 extent_offset; 1015 u64 last_byte = i_size_read(inode); 1016 u64 block_start; 1017 struct extent_map *em; 1018 int ret = 0; 1019 size_t pg_offset = 0; 1020 size_t iosize; 1021 size_t blocksize = fs_info->sectorsize; 1022 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1023 1024 ret = set_page_extent_mapped(page); 1025 if (ret < 0) { 1026 unlock_extent(tree, start, end, NULL); 1027 unlock_page(page); 1028 return ret; 1029 } 1030 1031 if (page->index == last_byte >> PAGE_SHIFT) { 1032 size_t zero_offset = offset_in_page(last_byte); 1033 1034 if (zero_offset) { 1035 iosize = PAGE_SIZE - zero_offset; 1036 memzero_page(page, zero_offset, iosize); 1037 } 1038 } 1039 bio_ctrl->end_io_func = end_bbio_data_read; 1040 begin_page_read(fs_info, page); 1041 while (cur <= end) { 1042 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1043 bool force_bio_submit = false; 1044 u64 disk_bytenr; 1045 1046 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1047 if (cur >= last_byte) { 1048 iosize = PAGE_SIZE - pg_offset; 1049 memzero_page(page, pg_offset, iosize); 1050 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1051 end_page_read(page, true, cur, iosize); 1052 break; 1053 } 1054 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached); 1055 if (IS_ERR(em)) { 1056 unlock_extent(tree, cur, end, NULL); 1057 end_page_read(page, false, cur, end + 1 - cur); 1058 return PTR_ERR(em); 1059 } 1060 extent_offset = cur - em->start; 1061 BUG_ON(extent_map_end(em) <= cur); 1062 BUG_ON(end < cur); 1063 1064 compress_type = extent_map_compression(em); 1065 1066 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1067 iosize = ALIGN(iosize, blocksize); 1068 if (compress_type != BTRFS_COMPRESS_NONE) 1069 disk_bytenr = em->disk_bytenr; 1070 else 1071 disk_bytenr = extent_map_block_start(em) + extent_offset; 1072 block_start = extent_map_block_start(em); 1073 if (em->flags & EXTENT_FLAG_PREALLOC) 1074 block_start = EXTENT_MAP_HOLE; 1075 1076 /* 1077 * If we have a file range that points to a compressed extent 1078 * and it's followed by a consecutive file range that points 1079 * to the same compressed extent (possibly with a different 1080 * offset and/or length, so it either points to the whole extent 1081 * or only part of it), we must make sure we do not submit a 1082 * single bio to populate the pages for the 2 ranges because 1083 * this makes the compressed extent read zero out the pages 1084 * belonging to the 2nd range. Imagine the following scenario: 1085 * 1086 * File layout 1087 * [0 - 8K] [8K - 24K] 1088 * | | 1089 * | | 1090 * points to extent X, points to extent X, 1091 * offset 4K, length of 8K offset 0, length 16K 1092 * 1093 * [extent X, compressed length = 4K uncompressed length = 16K] 1094 * 1095 * If the bio to read the compressed extent covers both ranges, 1096 * it will decompress extent X into the pages belonging to the 1097 * first range and then it will stop, zeroing out the remaining 1098 * pages that belong to the other range that points to extent X. 1099 * So here we make sure we submit 2 bios, one for the first 1100 * range and another one for the third range. Both will target 1101 * the same physical extent from disk, but we can't currently 1102 * make the compressed bio endio callback populate the pages 1103 * for both ranges because each compressed bio is tightly 1104 * coupled with a single extent map, and each range can have 1105 * an extent map with a different offset value relative to the 1106 * uncompressed data of our extent and different lengths. This 1107 * is a corner case so we prioritize correctness over 1108 * non-optimal behavior (submitting 2 bios for the same extent). 1109 */ 1110 if (compress_type != BTRFS_COMPRESS_NONE && 1111 prev_em_start && *prev_em_start != (u64)-1 && 1112 *prev_em_start != em->start) 1113 force_bio_submit = true; 1114 1115 if (prev_em_start) 1116 *prev_em_start = em->start; 1117 1118 free_extent_map(em); 1119 em = NULL; 1120 1121 /* we've found a hole, just zero and go on */ 1122 if (block_start == EXTENT_MAP_HOLE) { 1123 memzero_page(page, pg_offset, iosize); 1124 1125 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1126 end_page_read(page, true, cur, iosize); 1127 cur = cur + iosize; 1128 pg_offset += iosize; 1129 continue; 1130 } 1131 /* the get_extent function already copied into the page */ 1132 if (block_start == EXTENT_MAP_INLINE) { 1133 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1134 end_page_read(page, true, cur, iosize); 1135 cur = cur + iosize; 1136 pg_offset += iosize; 1137 continue; 1138 } 1139 1140 if (bio_ctrl->compress_type != compress_type) { 1141 submit_one_bio(bio_ctrl); 1142 bio_ctrl->compress_type = compress_type; 1143 } 1144 1145 if (force_bio_submit) 1146 submit_one_bio(bio_ctrl); 1147 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1148 pg_offset); 1149 cur = cur + iosize; 1150 pg_offset += iosize; 1151 } 1152 1153 return 0; 1154 } 1155 1156 int btrfs_read_folio(struct file *file, struct folio *folio) 1157 { 1158 struct page *page = &folio->page; 1159 struct btrfs_inode *inode = page_to_inode(page); 1160 u64 start = page_offset(page); 1161 u64 end = start + PAGE_SIZE - 1; 1162 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1163 struct extent_map *em_cached = NULL; 1164 int ret; 1165 1166 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1167 1168 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL); 1169 free_extent_map(em_cached); 1170 1171 /* 1172 * If btrfs_do_readpage() failed we will want to submit the assembled 1173 * bio to do the cleanup. 1174 */ 1175 submit_one_bio(&bio_ctrl); 1176 return ret; 1177 } 1178 1179 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1180 u64 start, u64 end, 1181 struct extent_map **em_cached, 1182 struct btrfs_bio_ctrl *bio_ctrl, 1183 u64 *prev_em_start) 1184 { 1185 struct btrfs_inode *inode = page_to_inode(pages[0]); 1186 int index; 1187 1188 ASSERT(em_cached); 1189 1190 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1191 1192 for (index = 0; index < nr_pages; index++) { 1193 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1194 prev_em_start); 1195 put_page(pages[index]); 1196 } 1197 } 1198 1199 /* 1200 * helper for __extent_writepage, doing all of the delayed allocation setup. 1201 * 1202 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1203 * to write the page (copy into inline extent). In this case the IO has 1204 * been started and the page is already unlocked. 1205 * 1206 * This returns 0 if all went well (page still locked) 1207 * This returns < 0 if there were errors (page still locked) 1208 */ 1209 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1210 struct page *page, struct writeback_control *wbc) 1211 { 1212 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1213 struct folio *folio = page_folio(page); 1214 const bool is_subpage = btrfs_is_subpage(fs_info, page->mapping); 1215 const u64 page_start = page_offset(page); 1216 const u64 page_end = page_start + PAGE_SIZE - 1; 1217 /* 1218 * Save the last found delalloc end. As the delalloc end can go beyond 1219 * page boundary, thus we cannot rely on subpage bitmap to locate the 1220 * last delalloc end. 1221 */ 1222 u64 last_delalloc_end = 0; 1223 u64 delalloc_start = page_start; 1224 u64 delalloc_end = page_end; 1225 u64 delalloc_to_write = 0; 1226 int ret = 0; 1227 1228 /* Lock all (subpage) delalloc ranges inside the page first. */ 1229 while (delalloc_start < page_end) { 1230 delalloc_end = page_end; 1231 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1232 &delalloc_start, &delalloc_end)) { 1233 delalloc_start = delalloc_end + 1; 1234 continue; 1235 } 1236 btrfs_folio_set_writer_lock(fs_info, folio, delalloc_start, 1237 min(delalloc_end, page_end) + 1 - 1238 delalloc_start); 1239 last_delalloc_end = delalloc_end; 1240 delalloc_start = delalloc_end + 1; 1241 } 1242 delalloc_start = page_start; 1243 1244 if (!last_delalloc_end) 1245 goto out; 1246 1247 /* Run the delalloc ranges for the above locked ranges. */ 1248 while (delalloc_start < page_end) { 1249 u64 found_start; 1250 u32 found_len; 1251 bool found; 1252 1253 if (!is_subpage) { 1254 /* 1255 * For non-subpage case, the found delalloc range must 1256 * cover this page and there must be only one locked 1257 * delalloc range. 1258 */ 1259 found_start = page_start; 1260 found_len = last_delalloc_end + 1 - found_start; 1261 found = true; 1262 } else { 1263 found = btrfs_subpage_find_writer_locked(fs_info, folio, 1264 delalloc_start, &found_start, &found_len); 1265 } 1266 if (!found) 1267 break; 1268 /* 1269 * The subpage range covers the last sector, the delalloc range may 1270 * end beyond the page boundary, use the saved delalloc_end 1271 * instead. 1272 */ 1273 if (found_start + found_len >= page_end) 1274 found_len = last_delalloc_end + 1 - found_start; 1275 1276 if (ret >= 0) { 1277 /* No errors hit so far, run the current delalloc range. */ 1278 ret = btrfs_run_delalloc_range(inode, page, found_start, 1279 found_start + found_len - 1, 1280 wbc); 1281 } else { 1282 /* 1283 * We've hit an error during previous delalloc range, 1284 * have to cleanup the remaining locked ranges. 1285 */ 1286 unlock_extent(&inode->io_tree, found_start, 1287 found_start + found_len - 1, NULL); 1288 __unlock_for_delalloc(&inode->vfs_inode, page, found_start, 1289 found_start + found_len - 1); 1290 } 1291 1292 /* 1293 * We can hit btrfs_run_delalloc_range() with >0 return value. 1294 * 1295 * This happens when either the IO is already done and page 1296 * unlocked (inline) or the IO submission and page unlock would 1297 * be handled as async (compression). 1298 * 1299 * Inline is only possible for regular sectorsize for now. 1300 * 1301 * Compression is possible for both subpage and regular cases, 1302 * but even for subpage compression only happens for page aligned 1303 * range, thus the found delalloc range must go beyond current 1304 * page. 1305 */ 1306 if (ret > 0) 1307 ASSERT(!is_subpage || found_start + found_len >= page_end); 1308 1309 /* 1310 * Above btrfs_run_delalloc_range() may have unlocked the page, 1311 * thus for the last range, we cannot touch the page anymore. 1312 */ 1313 if (found_start + found_len >= last_delalloc_end + 1) 1314 break; 1315 1316 delalloc_start = found_start + found_len; 1317 } 1318 if (ret < 0) 1319 return ret; 1320 out: 1321 if (last_delalloc_end) 1322 delalloc_end = last_delalloc_end; 1323 else 1324 delalloc_end = page_end; 1325 /* 1326 * delalloc_end is already one less than the total length, so 1327 * we don't subtract one from PAGE_SIZE 1328 */ 1329 delalloc_to_write += 1330 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1331 1332 /* 1333 * If btrfs_run_dealloc_range() already started I/O and unlocked 1334 * the pages, we just need to account for them here. 1335 */ 1336 if (ret == 1) { 1337 wbc->nr_to_write -= delalloc_to_write; 1338 return 1; 1339 } 1340 1341 if (wbc->nr_to_write < delalloc_to_write) { 1342 int thresh = 8192; 1343 1344 if (delalloc_to_write < thresh * 2) 1345 thresh = delalloc_to_write; 1346 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1347 thresh); 1348 } 1349 1350 return 0; 1351 } 1352 1353 /* 1354 * Find the first byte we need to write. 1355 * 1356 * For subpage, one page can contain several sectors, and 1357 * __extent_writepage_io() will just grab all extent maps in the page 1358 * range and try to submit all non-inline/non-compressed extents. 1359 * 1360 * This is a big problem for subpage, we shouldn't re-submit already written 1361 * data at all. 1362 * This function will lookup subpage dirty bit to find which range we really 1363 * need to submit. 1364 * 1365 * Return the next dirty range in [@start, @end). 1366 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1367 */ 1368 static void find_next_dirty_byte(const struct btrfs_fs_info *fs_info, 1369 struct page *page, u64 *start, u64 *end) 1370 { 1371 struct folio *folio = page_folio(page); 1372 struct btrfs_subpage *subpage = folio_get_private(folio); 1373 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1374 u64 orig_start = *start; 1375 /* Declare as unsigned long so we can use bitmap ops */ 1376 unsigned long flags; 1377 int range_start_bit; 1378 int range_end_bit; 1379 1380 /* 1381 * For regular sector size == page size case, since one page only 1382 * contains one sector, we return the page offset directly. 1383 */ 1384 if (!btrfs_is_subpage(fs_info, page->mapping)) { 1385 *start = page_offset(page); 1386 *end = page_offset(page) + PAGE_SIZE; 1387 return; 1388 } 1389 1390 range_start_bit = spi->dirty_offset + 1391 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1392 1393 /* We should have the page locked, but just in case */ 1394 spin_lock_irqsave(&subpage->lock, flags); 1395 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1396 spi->dirty_offset + spi->bitmap_nr_bits); 1397 spin_unlock_irqrestore(&subpage->lock, flags); 1398 1399 range_start_bit -= spi->dirty_offset; 1400 range_end_bit -= spi->dirty_offset; 1401 1402 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1403 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1404 } 1405 1406 /* 1407 * helper for __extent_writepage. This calls the writepage start hooks, 1408 * and does the loop to map the page into extents and bios. 1409 * 1410 * We return 1 if the IO is started and the page is unlocked, 1411 * 0 if all went well (page still locked) 1412 * < 0 if there were errors (page still locked) 1413 */ 1414 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1415 struct page *page, u64 start, u32 len, 1416 struct btrfs_bio_ctrl *bio_ctrl, 1417 loff_t i_size, 1418 int *nr_ret) 1419 { 1420 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1421 u64 cur = start; 1422 u64 end = start + len - 1; 1423 u64 extent_offset; 1424 u64 block_start; 1425 struct extent_map *em; 1426 int ret = 0; 1427 int nr = 0; 1428 1429 ASSERT(start >= page_offset(page) && 1430 start + len <= page_offset(page) + PAGE_SIZE); 1431 1432 ret = btrfs_writepage_cow_fixup(page); 1433 if (ret) { 1434 /* Fixup worker will requeue */ 1435 redirty_page_for_writepage(bio_ctrl->wbc, page); 1436 unlock_page(page); 1437 return 1; 1438 } 1439 1440 bio_ctrl->end_io_func = end_bbio_data_write; 1441 while (cur <= end) { 1442 u32 len = end - cur + 1; 1443 u64 disk_bytenr; 1444 u64 em_end; 1445 u64 dirty_range_start = cur; 1446 u64 dirty_range_end; 1447 u32 iosize; 1448 1449 if (cur >= i_size) { 1450 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1451 true); 1452 /* 1453 * This range is beyond i_size, thus we don't need to 1454 * bother writing back. 1455 * But we still need to clear the dirty subpage bit, or 1456 * the next time the page gets dirtied, we will try to 1457 * writeback the sectors with subpage dirty bits, 1458 * causing writeback without ordered extent. 1459 */ 1460 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len); 1461 break; 1462 } 1463 1464 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1465 &dirty_range_end); 1466 if (cur < dirty_range_start) { 1467 cur = dirty_range_start; 1468 continue; 1469 } 1470 1471 em = btrfs_get_extent(inode, NULL, cur, len); 1472 if (IS_ERR(em)) { 1473 ret = PTR_ERR_OR_ZERO(em); 1474 goto out_error; 1475 } 1476 1477 extent_offset = cur - em->start; 1478 em_end = extent_map_end(em); 1479 ASSERT(cur <= em_end); 1480 ASSERT(cur < end); 1481 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1482 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1483 1484 block_start = extent_map_block_start(em); 1485 disk_bytenr = extent_map_block_start(em) + extent_offset; 1486 1487 ASSERT(!extent_map_is_compressed(em)); 1488 ASSERT(block_start != EXTENT_MAP_HOLE); 1489 ASSERT(block_start != EXTENT_MAP_INLINE); 1490 1491 /* 1492 * Note that em_end from extent_map_end() and dirty_range_end from 1493 * find_next_dirty_byte() are all exclusive 1494 */ 1495 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1496 free_extent_map(em); 1497 em = NULL; 1498 1499 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1500 if (!PageWriteback(page)) { 1501 btrfs_err(inode->root->fs_info, 1502 "page %lu not writeback, cur %llu end %llu", 1503 page->index, cur, end); 1504 } 1505 1506 /* 1507 * Although the PageDirty bit is cleared before entering this 1508 * function, subpage dirty bit is not cleared. 1509 * So clear subpage dirty bit here so next time we won't submit 1510 * page for range already written to disk. 1511 */ 1512 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize); 1513 1514 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1515 cur - page_offset(page)); 1516 cur += iosize; 1517 nr++; 1518 } 1519 1520 btrfs_folio_assert_not_dirty(fs_info, page_folio(page), start, len); 1521 *nr_ret = nr; 1522 return 0; 1523 1524 out_error: 1525 /* 1526 * If we finish without problem, we should not only clear page dirty, 1527 * but also empty subpage dirty bits 1528 */ 1529 *nr_ret = nr; 1530 return ret; 1531 } 1532 1533 /* 1534 * the writepage semantics are similar to regular writepage. extent 1535 * records are inserted to lock ranges in the tree, and as dirty areas 1536 * are found, they are marked writeback. Then the lock bits are removed 1537 * and the end_io handler clears the writeback ranges 1538 * 1539 * Return 0 if everything goes well. 1540 * Return <0 for error. 1541 */ 1542 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1543 { 1544 struct folio *folio = page_folio(page); 1545 struct inode *inode = page->mapping->host; 1546 const u64 page_start = page_offset(page); 1547 int ret; 1548 int nr = 0; 1549 size_t pg_offset; 1550 loff_t i_size = i_size_read(inode); 1551 unsigned long end_index = i_size >> PAGE_SHIFT; 1552 1553 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1554 1555 WARN_ON(!PageLocked(page)); 1556 1557 pg_offset = offset_in_page(i_size); 1558 if (page->index > end_index || 1559 (page->index == end_index && !pg_offset)) { 1560 folio_invalidate(folio, 0, folio_size(folio)); 1561 folio_unlock(folio); 1562 return 0; 1563 } 1564 1565 if (page->index == end_index) 1566 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1567 1568 ret = set_page_extent_mapped(page); 1569 if (ret < 0) 1570 goto done; 1571 1572 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1573 if (ret == 1) 1574 return 0; 1575 if (ret) 1576 goto done; 1577 1578 ret = __extent_writepage_io(BTRFS_I(inode), page, page_offset(page), 1579 PAGE_SIZE, bio_ctrl, i_size, &nr); 1580 if (ret == 1) 1581 return 0; 1582 1583 bio_ctrl->wbc->nr_to_write--; 1584 1585 done: 1586 if (nr == 0) { 1587 /* make sure the mapping tag for page dirty gets cleared */ 1588 set_page_writeback(page); 1589 end_page_writeback(page); 1590 } 1591 if (ret) { 1592 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1593 PAGE_SIZE, !ret); 1594 mapping_set_error(page->mapping, ret); 1595 } 1596 1597 btrfs_folio_end_all_writers(inode_to_fs_info(inode), folio); 1598 ASSERT(ret <= 0); 1599 return ret; 1600 } 1601 1602 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1603 { 1604 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1605 TASK_UNINTERRUPTIBLE); 1606 } 1607 1608 /* 1609 * Lock extent buffer status and pages for writeback. 1610 * 1611 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1612 * extent buffer is not dirty) 1613 * Return %true is the extent buffer is submitted to bio. 1614 */ 1615 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1616 struct writeback_control *wbc) 1617 { 1618 struct btrfs_fs_info *fs_info = eb->fs_info; 1619 bool ret = false; 1620 1621 btrfs_tree_lock(eb); 1622 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1623 btrfs_tree_unlock(eb); 1624 if (wbc->sync_mode != WB_SYNC_ALL) 1625 return false; 1626 wait_on_extent_buffer_writeback(eb); 1627 btrfs_tree_lock(eb); 1628 } 1629 1630 /* 1631 * We need to do this to prevent races in people who check if the eb is 1632 * under IO since we can end up having no IO bits set for a short period 1633 * of time. 1634 */ 1635 spin_lock(&eb->refs_lock); 1636 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1637 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1638 spin_unlock(&eb->refs_lock); 1639 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1640 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1641 -eb->len, 1642 fs_info->dirty_metadata_batch); 1643 ret = true; 1644 } else { 1645 spin_unlock(&eb->refs_lock); 1646 } 1647 btrfs_tree_unlock(eb); 1648 return ret; 1649 } 1650 1651 static void set_btree_ioerr(struct extent_buffer *eb) 1652 { 1653 struct btrfs_fs_info *fs_info = eb->fs_info; 1654 1655 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1656 1657 /* 1658 * A read may stumble upon this buffer later, make sure that it gets an 1659 * error and knows there was an error. 1660 */ 1661 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1662 1663 /* 1664 * We need to set the mapping with the io error as well because a write 1665 * error will flip the file system readonly, and then syncfs() will 1666 * return a 0 because we are readonly if we don't modify the err seq for 1667 * the superblock. 1668 */ 1669 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1670 1671 /* 1672 * If writeback for a btree extent that doesn't belong to a log tree 1673 * failed, increment the counter transaction->eb_write_errors. 1674 * We do this because while the transaction is running and before it's 1675 * committing (when we call filemap_fdata[write|wait]_range against 1676 * the btree inode), we might have 1677 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1678 * returns an error or an error happens during writeback, when we're 1679 * committing the transaction we wouldn't know about it, since the pages 1680 * can be no longer dirty nor marked anymore for writeback (if a 1681 * subsequent modification to the extent buffer didn't happen before the 1682 * transaction commit), which makes filemap_fdata[write|wait]_range not 1683 * able to find the pages which contain errors at transaction 1684 * commit time. So if this happens we must abort the transaction, 1685 * otherwise we commit a super block with btree roots that point to 1686 * btree nodes/leafs whose content on disk is invalid - either garbage 1687 * or the content of some node/leaf from a past generation that got 1688 * cowed or deleted and is no longer valid. 1689 * 1690 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1691 * not be enough - we need to distinguish between log tree extents vs 1692 * non-log tree extents, and the next filemap_fdatawait_range() call 1693 * will catch and clear such errors in the mapping - and that call might 1694 * be from a log sync and not from a transaction commit. Also, checking 1695 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1696 * not done and would not be reliable - the eb might have been released 1697 * from memory and reading it back again means that flag would not be 1698 * set (since it's a runtime flag, not persisted on disk). 1699 * 1700 * Using the flags below in the btree inode also makes us achieve the 1701 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1702 * writeback for all dirty pages and before filemap_fdatawait_range() 1703 * is called, the writeback for all dirty pages had already finished 1704 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1705 * filemap_fdatawait_range() would return success, as it could not know 1706 * that writeback errors happened (the pages were no longer tagged for 1707 * writeback). 1708 */ 1709 switch (eb->log_index) { 1710 case -1: 1711 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1712 break; 1713 case 0: 1714 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1715 break; 1716 case 1: 1717 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1718 break; 1719 default: 1720 BUG(); /* unexpected, logic error */ 1721 } 1722 } 1723 1724 /* 1725 * The endio specific version which won't touch any unsafe spinlock in endio 1726 * context. 1727 */ 1728 static struct extent_buffer *find_extent_buffer_nolock( 1729 const struct btrfs_fs_info *fs_info, u64 start) 1730 { 1731 struct extent_buffer *eb; 1732 1733 rcu_read_lock(); 1734 eb = radix_tree_lookup(&fs_info->buffer_radix, 1735 start >> fs_info->sectorsize_bits); 1736 if (eb && atomic_inc_not_zero(&eb->refs)) { 1737 rcu_read_unlock(); 1738 return eb; 1739 } 1740 rcu_read_unlock(); 1741 return NULL; 1742 } 1743 1744 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1745 { 1746 struct extent_buffer *eb = bbio->private; 1747 struct btrfs_fs_info *fs_info = eb->fs_info; 1748 bool uptodate = !bbio->bio.bi_status; 1749 struct folio_iter fi; 1750 u32 bio_offset = 0; 1751 1752 if (!uptodate) 1753 set_btree_ioerr(eb); 1754 1755 bio_for_each_folio_all(fi, &bbio->bio) { 1756 u64 start = eb->start + bio_offset; 1757 struct folio *folio = fi.folio; 1758 u32 len = fi.length; 1759 1760 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1761 bio_offset += len; 1762 } 1763 1764 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1765 smp_mb__after_atomic(); 1766 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1767 1768 bio_put(&bbio->bio); 1769 } 1770 1771 static void prepare_eb_write(struct extent_buffer *eb) 1772 { 1773 u32 nritems; 1774 unsigned long start; 1775 unsigned long end; 1776 1777 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1778 1779 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1780 nritems = btrfs_header_nritems(eb); 1781 if (btrfs_header_level(eb) > 0) { 1782 end = btrfs_node_key_ptr_offset(eb, nritems); 1783 memzero_extent_buffer(eb, end, eb->len - end); 1784 } else { 1785 /* 1786 * Leaf: 1787 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1788 */ 1789 start = btrfs_item_nr_offset(eb, nritems); 1790 end = btrfs_item_nr_offset(eb, 0); 1791 if (nritems == 0) 1792 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1793 else 1794 end += btrfs_item_offset(eb, nritems - 1); 1795 memzero_extent_buffer(eb, start, end - start); 1796 } 1797 } 1798 1799 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1800 struct writeback_control *wbc) 1801 { 1802 struct btrfs_fs_info *fs_info = eb->fs_info; 1803 struct btrfs_bio *bbio; 1804 1805 prepare_eb_write(eb); 1806 1807 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1808 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1809 eb->fs_info, end_bbio_meta_write, eb); 1810 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1811 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1812 wbc_init_bio(wbc, &bbio->bio); 1813 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1814 bbio->file_offset = eb->start; 1815 if (fs_info->nodesize < PAGE_SIZE) { 1816 struct folio *folio = eb->folios[0]; 1817 bool ret; 1818 1819 folio_lock(folio); 1820 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1821 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1822 eb->len)) { 1823 folio_clear_dirty_for_io(folio); 1824 wbc->nr_to_write--; 1825 } 1826 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1827 eb->start - folio_pos(folio)); 1828 ASSERT(ret); 1829 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1830 folio_unlock(folio); 1831 } else { 1832 int num_folios = num_extent_folios(eb); 1833 1834 for (int i = 0; i < num_folios; i++) { 1835 struct folio *folio = eb->folios[i]; 1836 bool ret; 1837 1838 folio_lock(folio); 1839 folio_clear_dirty_for_io(folio); 1840 folio_start_writeback(folio); 1841 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1842 ASSERT(ret); 1843 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1844 eb->folio_size); 1845 wbc->nr_to_write -= folio_nr_pages(folio); 1846 folio_unlock(folio); 1847 } 1848 } 1849 btrfs_submit_bio(bbio, 0); 1850 } 1851 1852 /* 1853 * Submit one subpage btree page. 1854 * 1855 * The main difference to submit_eb_page() is: 1856 * - Page locking 1857 * For subpage, we don't rely on page locking at all. 1858 * 1859 * - Flush write bio 1860 * We only flush bio if we may be unable to fit current extent buffers into 1861 * current bio. 1862 * 1863 * Return >=0 for the number of submitted extent buffers. 1864 * Return <0 for fatal error. 1865 */ 1866 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1867 { 1868 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 1869 struct folio *folio = page_folio(page); 1870 int submitted = 0; 1871 u64 page_start = page_offset(page); 1872 int bit_start = 0; 1873 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1874 1875 /* Lock and write each dirty extent buffers in the range */ 1876 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1877 struct btrfs_subpage *subpage = folio_get_private(folio); 1878 struct extent_buffer *eb; 1879 unsigned long flags; 1880 u64 start; 1881 1882 /* 1883 * Take private lock to ensure the subpage won't be detached 1884 * in the meantime. 1885 */ 1886 spin_lock(&page->mapping->i_private_lock); 1887 if (!folio_test_private(folio)) { 1888 spin_unlock(&page->mapping->i_private_lock); 1889 break; 1890 } 1891 spin_lock_irqsave(&subpage->lock, flags); 1892 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1893 subpage->bitmaps)) { 1894 spin_unlock_irqrestore(&subpage->lock, flags); 1895 spin_unlock(&page->mapping->i_private_lock); 1896 bit_start++; 1897 continue; 1898 } 1899 1900 start = page_start + bit_start * fs_info->sectorsize; 1901 bit_start += sectors_per_node; 1902 1903 /* 1904 * Here we just want to grab the eb without touching extra 1905 * spin locks, so call find_extent_buffer_nolock(). 1906 */ 1907 eb = find_extent_buffer_nolock(fs_info, start); 1908 spin_unlock_irqrestore(&subpage->lock, flags); 1909 spin_unlock(&page->mapping->i_private_lock); 1910 1911 /* 1912 * The eb has already reached 0 refs thus find_extent_buffer() 1913 * doesn't return it. We don't need to write back such eb 1914 * anyway. 1915 */ 1916 if (!eb) 1917 continue; 1918 1919 if (lock_extent_buffer_for_io(eb, wbc)) { 1920 write_one_eb(eb, wbc); 1921 submitted++; 1922 } 1923 free_extent_buffer(eb); 1924 } 1925 return submitted; 1926 } 1927 1928 /* 1929 * Submit all page(s) of one extent buffer. 1930 * 1931 * @page: the page of one extent buffer 1932 * @eb_context: to determine if we need to submit this page, if current page 1933 * belongs to this eb, we don't need to submit 1934 * 1935 * The caller should pass each page in their bytenr order, and here we use 1936 * @eb_context to determine if we have submitted pages of one extent buffer. 1937 * 1938 * If we have, we just skip until we hit a new page that doesn't belong to 1939 * current @eb_context. 1940 * 1941 * If not, we submit all the page(s) of the extent buffer. 1942 * 1943 * Return >0 if we have submitted the extent buffer successfully. 1944 * Return 0 if we don't need to submit the page, as it's already submitted by 1945 * previous call. 1946 * Return <0 for fatal error. 1947 */ 1948 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1949 { 1950 struct writeback_control *wbc = ctx->wbc; 1951 struct address_space *mapping = page->mapping; 1952 struct folio *folio = page_folio(page); 1953 struct extent_buffer *eb; 1954 int ret; 1955 1956 if (!folio_test_private(folio)) 1957 return 0; 1958 1959 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 1960 return submit_eb_subpage(page, wbc); 1961 1962 spin_lock(&mapping->i_private_lock); 1963 if (!folio_test_private(folio)) { 1964 spin_unlock(&mapping->i_private_lock); 1965 return 0; 1966 } 1967 1968 eb = folio_get_private(folio); 1969 1970 /* 1971 * Shouldn't happen and normally this would be a BUG_ON but no point 1972 * crashing the machine for something we can survive anyway. 1973 */ 1974 if (WARN_ON(!eb)) { 1975 spin_unlock(&mapping->i_private_lock); 1976 return 0; 1977 } 1978 1979 if (eb == ctx->eb) { 1980 spin_unlock(&mapping->i_private_lock); 1981 return 0; 1982 } 1983 ret = atomic_inc_not_zero(&eb->refs); 1984 spin_unlock(&mapping->i_private_lock); 1985 if (!ret) 1986 return 0; 1987 1988 ctx->eb = eb; 1989 1990 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1991 if (ret) { 1992 if (ret == -EBUSY) 1993 ret = 0; 1994 free_extent_buffer(eb); 1995 return ret; 1996 } 1997 1998 if (!lock_extent_buffer_for_io(eb, wbc)) { 1999 free_extent_buffer(eb); 2000 return 0; 2001 } 2002 /* Implies write in zoned mode. */ 2003 if (ctx->zoned_bg) { 2004 /* Mark the last eb in the block group. */ 2005 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 2006 ctx->zoned_bg->meta_write_pointer += eb->len; 2007 } 2008 write_one_eb(eb, wbc); 2009 free_extent_buffer(eb); 2010 return 1; 2011 } 2012 2013 int btree_write_cache_pages(struct address_space *mapping, 2014 struct writeback_control *wbc) 2015 { 2016 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2017 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2018 int ret = 0; 2019 int done = 0; 2020 int nr_to_write_done = 0; 2021 struct folio_batch fbatch; 2022 unsigned int nr_folios; 2023 pgoff_t index; 2024 pgoff_t end; /* Inclusive */ 2025 int scanned = 0; 2026 xa_mark_t tag; 2027 2028 folio_batch_init(&fbatch); 2029 if (wbc->range_cyclic) { 2030 index = mapping->writeback_index; /* Start from prev offset */ 2031 end = -1; 2032 /* 2033 * Start from the beginning does not need to cycle over the 2034 * range, mark it as scanned. 2035 */ 2036 scanned = (index == 0); 2037 } else { 2038 index = wbc->range_start >> PAGE_SHIFT; 2039 end = wbc->range_end >> PAGE_SHIFT; 2040 scanned = 1; 2041 } 2042 if (wbc->sync_mode == WB_SYNC_ALL) 2043 tag = PAGECACHE_TAG_TOWRITE; 2044 else 2045 tag = PAGECACHE_TAG_DIRTY; 2046 btrfs_zoned_meta_io_lock(fs_info); 2047 retry: 2048 if (wbc->sync_mode == WB_SYNC_ALL) 2049 tag_pages_for_writeback(mapping, index, end); 2050 while (!done && !nr_to_write_done && (index <= end) && 2051 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 2052 tag, &fbatch))) { 2053 unsigned i; 2054 2055 for (i = 0; i < nr_folios; i++) { 2056 struct folio *folio = fbatch.folios[i]; 2057 2058 ret = submit_eb_page(&folio->page, &ctx); 2059 if (ret == 0) 2060 continue; 2061 if (ret < 0) { 2062 done = 1; 2063 break; 2064 } 2065 2066 /* 2067 * the filesystem may choose to bump up nr_to_write. 2068 * We have to make sure to honor the new nr_to_write 2069 * at any time 2070 */ 2071 nr_to_write_done = wbc->nr_to_write <= 0; 2072 } 2073 folio_batch_release(&fbatch); 2074 cond_resched(); 2075 } 2076 if (!scanned && !done) { 2077 /* 2078 * We hit the last page and there is more work to be done: wrap 2079 * back to the start of the file 2080 */ 2081 scanned = 1; 2082 index = 0; 2083 goto retry; 2084 } 2085 /* 2086 * If something went wrong, don't allow any metadata write bio to be 2087 * submitted. 2088 * 2089 * This would prevent use-after-free if we had dirty pages not 2090 * cleaned up, which can still happen by fuzzed images. 2091 * 2092 * - Bad extent tree 2093 * Allowing existing tree block to be allocated for other trees. 2094 * 2095 * - Log tree operations 2096 * Exiting tree blocks get allocated to log tree, bumps its 2097 * generation, then get cleaned in tree re-balance. 2098 * Such tree block will not be written back, since it's clean, 2099 * thus no WRITTEN flag set. 2100 * And after log writes back, this tree block is not traced by 2101 * any dirty extent_io_tree. 2102 * 2103 * - Offending tree block gets re-dirtied from its original owner 2104 * Since it has bumped generation, no WRITTEN flag, it can be 2105 * reused without COWing. This tree block will not be traced 2106 * by btrfs_transaction::dirty_pages. 2107 * 2108 * Now such dirty tree block will not be cleaned by any dirty 2109 * extent io tree. Thus we don't want to submit such wild eb 2110 * if the fs already has error. 2111 * 2112 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2113 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2114 */ 2115 if (ret > 0) 2116 ret = 0; 2117 if (!ret && BTRFS_FS_ERROR(fs_info)) 2118 ret = -EROFS; 2119 2120 if (ctx.zoned_bg) 2121 btrfs_put_block_group(ctx.zoned_bg); 2122 btrfs_zoned_meta_io_unlock(fs_info); 2123 return ret; 2124 } 2125 2126 /* 2127 * Walk the list of dirty pages of the given address space and write all of them. 2128 * 2129 * @mapping: address space structure to write 2130 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2131 * @bio_ctrl: holds context for the write, namely the bio 2132 * 2133 * If a page is already under I/O, write_cache_pages() skips it, even 2134 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2135 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2136 * and msync() need to guarantee that all the data which was dirty at the time 2137 * the call was made get new I/O started against them. If wbc->sync_mode is 2138 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2139 * existing IO to complete. 2140 */ 2141 static int extent_write_cache_pages(struct address_space *mapping, 2142 struct btrfs_bio_ctrl *bio_ctrl) 2143 { 2144 struct writeback_control *wbc = bio_ctrl->wbc; 2145 struct inode *inode = mapping->host; 2146 int ret = 0; 2147 int done = 0; 2148 int nr_to_write_done = 0; 2149 struct folio_batch fbatch; 2150 unsigned int nr_folios; 2151 pgoff_t index; 2152 pgoff_t end; /* Inclusive */ 2153 pgoff_t done_index; 2154 int range_whole = 0; 2155 int scanned = 0; 2156 xa_mark_t tag; 2157 2158 /* 2159 * We have to hold onto the inode so that ordered extents can do their 2160 * work when the IO finishes. The alternative to this is failing to add 2161 * an ordered extent if the igrab() fails there and that is a huge pain 2162 * to deal with, so instead just hold onto the inode throughout the 2163 * writepages operation. If it fails here we are freeing up the inode 2164 * anyway and we'd rather not waste our time writing out stuff that is 2165 * going to be truncated anyway. 2166 */ 2167 if (!igrab(inode)) 2168 return 0; 2169 2170 folio_batch_init(&fbatch); 2171 if (wbc->range_cyclic) { 2172 index = mapping->writeback_index; /* Start from prev offset */ 2173 end = -1; 2174 /* 2175 * Start from the beginning does not need to cycle over the 2176 * range, mark it as scanned. 2177 */ 2178 scanned = (index == 0); 2179 } else { 2180 index = wbc->range_start >> PAGE_SHIFT; 2181 end = wbc->range_end >> PAGE_SHIFT; 2182 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2183 range_whole = 1; 2184 scanned = 1; 2185 } 2186 2187 /* 2188 * We do the tagged writepage as long as the snapshot flush bit is set 2189 * and we are the first one who do the filemap_flush() on this inode. 2190 * 2191 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2192 * not race in and drop the bit. 2193 */ 2194 if (range_whole && wbc->nr_to_write == LONG_MAX && 2195 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2196 &BTRFS_I(inode)->runtime_flags)) 2197 wbc->tagged_writepages = 1; 2198 2199 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2200 tag = PAGECACHE_TAG_TOWRITE; 2201 else 2202 tag = PAGECACHE_TAG_DIRTY; 2203 retry: 2204 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2205 tag_pages_for_writeback(mapping, index, end); 2206 done_index = index; 2207 while (!done && !nr_to_write_done && (index <= end) && 2208 (nr_folios = filemap_get_folios_tag(mapping, &index, 2209 end, tag, &fbatch))) { 2210 unsigned i; 2211 2212 for (i = 0; i < nr_folios; i++) { 2213 struct folio *folio = fbatch.folios[i]; 2214 2215 done_index = folio_next_index(folio); 2216 /* 2217 * At this point we hold neither the i_pages lock nor 2218 * the page lock: the page may be truncated or 2219 * invalidated (changing page->mapping to NULL), 2220 * or even swizzled back from swapper_space to 2221 * tmpfs file mapping 2222 */ 2223 if (!folio_trylock(folio)) { 2224 submit_write_bio(bio_ctrl, 0); 2225 folio_lock(folio); 2226 } 2227 2228 if (unlikely(folio->mapping != mapping)) { 2229 folio_unlock(folio); 2230 continue; 2231 } 2232 2233 if (!folio_test_dirty(folio)) { 2234 /* Someone wrote it for us. */ 2235 folio_unlock(folio); 2236 continue; 2237 } 2238 2239 if (wbc->sync_mode != WB_SYNC_NONE) { 2240 if (folio_test_writeback(folio)) 2241 submit_write_bio(bio_ctrl, 0); 2242 folio_wait_writeback(folio); 2243 } 2244 2245 if (folio_test_writeback(folio) || 2246 !folio_clear_dirty_for_io(folio)) { 2247 folio_unlock(folio); 2248 continue; 2249 } 2250 2251 ret = __extent_writepage(&folio->page, bio_ctrl); 2252 if (ret < 0) { 2253 done = 1; 2254 break; 2255 } 2256 2257 /* 2258 * The filesystem may choose to bump up nr_to_write. 2259 * We have to make sure to honor the new nr_to_write 2260 * at any time. 2261 */ 2262 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2263 wbc->nr_to_write <= 0); 2264 } 2265 folio_batch_release(&fbatch); 2266 cond_resched(); 2267 } 2268 if (!scanned && !done) { 2269 /* 2270 * We hit the last page and there is more work to be done: wrap 2271 * back to the start of the file 2272 */ 2273 scanned = 1; 2274 index = 0; 2275 2276 /* 2277 * If we're looping we could run into a page that is locked by a 2278 * writer and that writer could be waiting on writeback for a 2279 * page in our current bio, and thus deadlock, so flush the 2280 * write bio here. 2281 */ 2282 submit_write_bio(bio_ctrl, 0); 2283 goto retry; 2284 } 2285 2286 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2287 mapping->writeback_index = done_index; 2288 2289 btrfs_add_delayed_iput(BTRFS_I(inode)); 2290 return ret; 2291 } 2292 2293 /* 2294 * Submit the pages in the range to bio for call sites which delalloc range has 2295 * already been ran (aka, ordered extent inserted) and all pages are still 2296 * locked. 2297 */ 2298 void extent_write_locked_range(struct inode *inode, const struct page *locked_page, 2299 u64 start, u64 end, struct writeback_control *wbc, 2300 bool pages_dirty) 2301 { 2302 bool found_error = false; 2303 int ret = 0; 2304 struct address_space *mapping = inode->i_mapping; 2305 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2306 const u32 sectorsize = fs_info->sectorsize; 2307 loff_t i_size = i_size_read(inode); 2308 u64 cur = start; 2309 struct btrfs_bio_ctrl bio_ctrl = { 2310 .wbc = wbc, 2311 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2312 }; 2313 2314 if (wbc->no_cgroup_owner) 2315 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2316 2317 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2318 2319 while (cur <= end) { 2320 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2321 u32 cur_len = cur_end + 1 - cur; 2322 struct page *page; 2323 int nr = 0; 2324 2325 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2326 ASSERT(PageLocked(page)); 2327 if (pages_dirty && page != locked_page) 2328 ASSERT(PageDirty(page)); 2329 2330 ret = __extent_writepage_io(BTRFS_I(inode), page, cur, cur_len, 2331 &bio_ctrl, i_size, &nr); 2332 if (ret == 1) 2333 goto next_page; 2334 2335 /* Make sure the mapping tag for page dirty gets cleared. */ 2336 if (nr == 0) { 2337 struct folio *folio; 2338 2339 folio = page_folio(page); 2340 btrfs_folio_set_writeback(fs_info, folio, cur, cur_len); 2341 btrfs_folio_clear_writeback(fs_info, folio, cur, cur_len); 2342 } 2343 if (ret) { 2344 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2345 cur, cur_len, !ret); 2346 mapping_set_error(page->mapping, ret); 2347 } 2348 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len); 2349 if (ret < 0) 2350 found_error = true; 2351 next_page: 2352 put_page(page); 2353 cur = cur_end + 1; 2354 } 2355 2356 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2357 } 2358 2359 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2360 { 2361 struct inode *inode = mapping->host; 2362 int ret = 0; 2363 struct btrfs_bio_ctrl bio_ctrl = { 2364 .wbc = wbc, 2365 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2366 }; 2367 2368 /* 2369 * Allow only a single thread to do the reloc work in zoned mode to 2370 * protect the write pointer updates. 2371 */ 2372 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2373 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2374 submit_write_bio(&bio_ctrl, ret); 2375 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2376 return ret; 2377 } 2378 2379 void btrfs_readahead(struct readahead_control *rac) 2380 { 2381 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2382 struct page *pagepool[16]; 2383 struct extent_map *em_cached = NULL; 2384 u64 prev_em_start = (u64)-1; 2385 int nr; 2386 2387 while ((nr = readahead_page_batch(rac, pagepool))) { 2388 u64 contig_start = readahead_pos(rac); 2389 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2390 2391 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2392 &em_cached, &bio_ctrl, &prev_em_start); 2393 } 2394 2395 if (em_cached) 2396 free_extent_map(em_cached); 2397 submit_one_bio(&bio_ctrl); 2398 } 2399 2400 /* 2401 * basic invalidate_folio code, this waits on any locked or writeback 2402 * ranges corresponding to the folio, and then deletes any extent state 2403 * records from the tree 2404 */ 2405 int extent_invalidate_folio(struct extent_io_tree *tree, 2406 struct folio *folio, size_t offset) 2407 { 2408 struct extent_state *cached_state = NULL; 2409 u64 start = folio_pos(folio); 2410 u64 end = start + folio_size(folio) - 1; 2411 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2412 2413 /* This function is only called for the btree inode */ 2414 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2415 2416 start += ALIGN(offset, blocksize); 2417 if (start > end) 2418 return 0; 2419 2420 lock_extent(tree, start, end, &cached_state); 2421 folio_wait_writeback(folio); 2422 2423 /* 2424 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2425 * so here we only need to unlock the extent range to free any 2426 * existing extent state. 2427 */ 2428 unlock_extent(tree, start, end, &cached_state); 2429 return 0; 2430 } 2431 2432 /* 2433 * a helper for release_folio, this tests for areas of the page that 2434 * are locked or under IO and drops the related state bits if it is safe 2435 * to drop the page. 2436 */ 2437 static bool try_release_extent_state(struct extent_io_tree *tree, 2438 struct page *page, gfp_t mask) 2439 { 2440 u64 start = page_offset(page); 2441 u64 end = start + PAGE_SIZE - 1; 2442 bool ret; 2443 2444 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2445 ret = false; 2446 } else { 2447 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2448 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2449 EXTENT_QGROUP_RESERVED); 2450 int ret2; 2451 2452 /* 2453 * At this point we can safely clear everything except the 2454 * locked bit, the nodatasum bit and the delalloc new bit. 2455 * The delalloc new bit will be cleared by ordered extent 2456 * completion. 2457 */ 2458 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2459 2460 /* if clear_extent_bit failed for enomem reasons, 2461 * we can't allow the release to continue. 2462 */ 2463 if (ret2 < 0) 2464 ret = false; 2465 else 2466 ret = true; 2467 } 2468 return ret; 2469 } 2470 2471 /* 2472 * a helper for release_folio. As long as there are no locked extents 2473 * in the range corresponding to the page, both state records and extent 2474 * map records are removed 2475 */ 2476 bool try_release_extent_mapping(struct page *page, gfp_t mask) 2477 { 2478 u64 start = page_offset(page); 2479 u64 end = start + PAGE_SIZE - 1; 2480 struct btrfs_inode *inode = page_to_inode(page); 2481 struct extent_io_tree *io_tree = &inode->io_tree; 2482 2483 while (start <= end) { 2484 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2485 const u64 len = end - start + 1; 2486 struct extent_map_tree *extent_tree = &inode->extent_tree; 2487 struct extent_map *em; 2488 2489 write_lock(&extent_tree->lock); 2490 em = lookup_extent_mapping(extent_tree, start, len); 2491 if (!em) { 2492 write_unlock(&extent_tree->lock); 2493 break; 2494 } 2495 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2496 write_unlock(&extent_tree->lock); 2497 free_extent_map(em); 2498 break; 2499 } 2500 if (test_range_bit_exists(io_tree, em->start, 2501 extent_map_end(em) - 1, EXTENT_LOCKED)) 2502 goto next; 2503 /* 2504 * If it's not in the list of modified extents, used by a fast 2505 * fsync, we can remove it. If it's being logged we can safely 2506 * remove it since fsync took an extra reference on the em. 2507 */ 2508 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2509 goto remove_em; 2510 /* 2511 * If it's in the list of modified extents, remove it only if 2512 * its generation is older then the current one, in which case 2513 * we don't need it for a fast fsync. Otherwise don't remove it, 2514 * we could be racing with an ongoing fast fsync that could miss 2515 * the new extent. 2516 */ 2517 if (em->generation >= cur_gen) 2518 goto next; 2519 remove_em: 2520 /* 2521 * We only remove extent maps that are not in the list of 2522 * modified extents or that are in the list but with a 2523 * generation lower then the current generation, so there is no 2524 * need to set the full fsync flag on the inode (it hurts the 2525 * fsync performance for workloads with a data size that exceeds 2526 * or is close to the system's memory). 2527 */ 2528 remove_extent_mapping(inode, em); 2529 /* Once for the inode's extent map tree. */ 2530 free_extent_map(em); 2531 next: 2532 start = extent_map_end(em); 2533 write_unlock(&extent_tree->lock); 2534 2535 /* Once for us, for the lookup_extent_mapping() reference. */ 2536 free_extent_map(em); 2537 2538 if (need_resched()) { 2539 /* 2540 * If we need to resched but we can't block just exit 2541 * and leave any remaining extent maps. 2542 */ 2543 if (!gfpflags_allow_blocking(mask)) 2544 break; 2545 2546 cond_resched(); 2547 } 2548 } 2549 return try_release_extent_state(io_tree, page, mask); 2550 } 2551 2552 static void __free_extent_buffer(struct extent_buffer *eb) 2553 { 2554 kmem_cache_free(extent_buffer_cache, eb); 2555 } 2556 2557 static int extent_buffer_under_io(const struct extent_buffer *eb) 2558 { 2559 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2560 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2561 } 2562 2563 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 2564 { 2565 struct btrfs_subpage *subpage; 2566 2567 lockdep_assert_held(&folio->mapping->i_private_lock); 2568 2569 if (folio_test_private(folio)) { 2570 subpage = folio_get_private(folio); 2571 if (atomic_read(&subpage->eb_refs)) 2572 return true; 2573 /* 2574 * Even there is no eb refs here, we may still have 2575 * end_page_read() call relying on page::private. 2576 */ 2577 if (atomic_read(&subpage->readers)) 2578 return true; 2579 } 2580 return false; 2581 } 2582 2583 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2584 { 2585 struct btrfs_fs_info *fs_info = eb->fs_info; 2586 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2587 2588 /* 2589 * For mapped eb, we're going to change the folio private, which should 2590 * be done under the i_private_lock. 2591 */ 2592 if (mapped) 2593 spin_lock(&folio->mapping->i_private_lock); 2594 2595 if (!folio_test_private(folio)) { 2596 if (mapped) 2597 spin_unlock(&folio->mapping->i_private_lock); 2598 return; 2599 } 2600 2601 if (fs_info->nodesize >= PAGE_SIZE) { 2602 /* 2603 * We do this since we'll remove the pages after we've 2604 * removed the eb from the radix tree, so we could race 2605 * and have this page now attached to the new eb. So 2606 * only clear folio if it's still connected to 2607 * this eb. 2608 */ 2609 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2610 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2611 BUG_ON(folio_test_dirty(folio)); 2612 BUG_ON(folio_test_writeback(folio)); 2613 /* We need to make sure we haven't be attached to a new eb. */ 2614 folio_detach_private(folio); 2615 } 2616 if (mapped) 2617 spin_unlock(&folio->mapping->i_private_lock); 2618 return; 2619 } 2620 2621 /* 2622 * For subpage, we can have dummy eb with folio private attached. In 2623 * this case, we can directly detach the private as such folio is only 2624 * attached to one dummy eb, no sharing. 2625 */ 2626 if (!mapped) { 2627 btrfs_detach_subpage(fs_info, folio); 2628 return; 2629 } 2630 2631 btrfs_folio_dec_eb_refs(fs_info, folio); 2632 2633 /* 2634 * We can only detach the folio private if there are no other ebs in the 2635 * page range and no unfinished IO. 2636 */ 2637 if (!folio_range_has_eb(fs_info, folio)) 2638 btrfs_detach_subpage(fs_info, folio); 2639 2640 spin_unlock(&folio->mapping->i_private_lock); 2641 } 2642 2643 /* Release all pages attached to the extent buffer */ 2644 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb) 2645 { 2646 ASSERT(!extent_buffer_under_io(eb)); 2647 2648 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2649 struct folio *folio = eb->folios[i]; 2650 2651 if (!folio) 2652 continue; 2653 2654 detach_extent_buffer_folio(eb, folio); 2655 2656 /* One for when we allocated the folio. */ 2657 folio_put(folio); 2658 } 2659 } 2660 2661 /* 2662 * Helper for releasing the extent buffer. 2663 */ 2664 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2665 { 2666 btrfs_release_extent_buffer_pages(eb); 2667 btrfs_leak_debug_del_eb(eb); 2668 __free_extent_buffer(eb); 2669 } 2670 2671 static struct extent_buffer * 2672 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 2673 unsigned long len) 2674 { 2675 struct extent_buffer *eb = NULL; 2676 2677 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2678 eb->start = start; 2679 eb->len = len; 2680 eb->fs_info = fs_info; 2681 init_rwsem(&eb->lock); 2682 2683 btrfs_leak_debug_add_eb(eb); 2684 2685 spin_lock_init(&eb->refs_lock); 2686 atomic_set(&eb->refs, 1); 2687 2688 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2689 2690 return eb; 2691 } 2692 2693 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2694 { 2695 struct extent_buffer *new; 2696 int num_folios = num_extent_folios(src); 2697 int ret; 2698 2699 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 2700 if (new == NULL) 2701 return NULL; 2702 2703 /* 2704 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2705 * btrfs_release_extent_buffer() have different behavior for 2706 * UNMAPPED subpage extent buffer. 2707 */ 2708 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2709 2710 ret = alloc_eb_folio_array(new, false); 2711 if (ret) { 2712 btrfs_release_extent_buffer(new); 2713 return NULL; 2714 } 2715 2716 for (int i = 0; i < num_folios; i++) { 2717 struct folio *folio = new->folios[i]; 2718 2719 ret = attach_extent_buffer_folio(new, folio, NULL); 2720 if (ret < 0) { 2721 btrfs_release_extent_buffer(new); 2722 return NULL; 2723 } 2724 WARN_ON(folio_test_dirty(folio)); 2725 } 2726 copy_extent_buffer_full(new, src); 2727 set_extent_buffer_uptodate(new); 2728 2729 return new; 2730 } 2731 2732 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2733 u64 start, unsigned long len) 2734 { 2735 struct extent_buffer *eb; 2736 int num_folios = 0; 2737 int ret; 2738 2739 eb = __alloc_extent_buffer(fs_info, start, len); 2740 if (!eb) 2741 return NULL; 2742 2743 ret = alloc_eb_folio_array(eb, false); 2744 if (ret) 2745 goto err; 2746 2747 num_folios = num_extent_folios(eb); 2748 for (int i = 0; i < num_folios; i++) { 2749 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2750 if (ret < 0) 2751 goto err; 2752 } 2753 2754 set_extent_buffer_uptodate(eb); 2755 btrfs_set_header_nritems(eb, 0); 2756 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2757 2758 return eb; 2759 err: 2760 for (int i = 0; i < num_folios; i++) { 2761 if (eb->folios[i]) { 2762 detach_extent_buffer_folio(eb, eb->folios[i]); 2763 folio_put(eb->folios[i]); 2764 } 2765 } 2766 __free_extent_buffer(eb); 2767 return NULL; 2768 } 2769 2770 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2771 u64 start) 2772 { 2773 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 2774 } 2775 2776 static void check_buffer_tree_ref(struct extent_buffer *eb) 2777 { 2778 int refs; 2779 /* 2780 * The TREE_REF bit is first set when the extent_buffer is added 2781 * to the radix tree. It is also reset, if unset, when a new reference 2782 * is created by find_extent_buffer. 2783 * 2784 * It is only cleared in two cases: freeing the last non-tree 2785 * reference to the extent_buffer when its STALE bit is set or 2786 * calling release_folio when the tree reference is the only reference. 2787 * 2788 * In both cases, care is taken to ensure that the extent_buffer's 2789 * pages are not under io. However, release_folio can be concurrently 2790 * called with creating new references, which is prone to race 2791 * conditions between the calls to check_buffer_tree_ref in those 2792 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2793 * 2794 * The actual lifetime of the extent_buffer in the radix tree is 2795 * adequately protected by the refcount, but the TREE_REF bit and 2796 * its corresponding reference are not. To protect against this 2797 * class of races, we call check_buffer_tree_ref from the codepaths 2798 * which trigger io. Note that once io is initiated, TREE_REF can no 2799 * longer be cleared, so that is the moment at which any such race is 2800 * best fixed. 2801 */ 2802 refs = atomic_read(&eb->refs); 2803 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2804 return; 2805 2806 spin_lock(&eb->refs_lock); 2807 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2808 atomic_inc(&eb->refs); 2809 spin_unlock(&eb->refs_lock); 2810 } 2811 2812 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2813 { 2814 int num_folios= num_extent_folios(eb); 2815 2816 check_buffer_tree_ref(eb); 2817 2818 for (int i = 0; i < num_folios; i++) 2819 folio_mark_accessed(eb->folios[i]); 2820 } 2821 2822 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2823 u64 start) 2824 { 2825 struct extent_buffer *eb; 2826 2827 eb = find_extent_buffer_nolock(fs_info, start); 2828 if (!eb) 2829 return NULL; 2830 /* 2831 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 2832 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 2833 * another task running free_extent_buffer() might have seen that flag 2834 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 2835 * writeback flags not set) and it's still in the tree (flag 2836 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 2837 * decrementing the extent buffer's reference count twice. So here we 2838 * could race and increment the eb's reference count, clear its stale 2839 * flag, mark it as dirty and drop our reference before the other task 2840 * finishes executing free_extent_buffer, which would later result in 2841 * an attempt to free an extent buffer that is dirty. 2842 */ 2843 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 2844 spin_lock(&eb->refs_lock); 2845 spin_unlock(&eb->refs_lock); 2846 } 2847 mark_extent_buffer_accessed(eb); 2848 return eb; 2849 } 2850 2851 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2852 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 2853 u64 start) 2854 { 2855 struct extent_buffer *eb, *exists = NULL; 2856 int ret; 2857 2858 eb = find_extent_buffer(fs_info, start); 2859 if (eb) 2860 return eb; 2861 eb = alloc_dummy_extent_buffer(fs_info, start); 2862 if (!eb) 2863 return ERR_PTR(-ENOMEM); 2864 eb->fs_info = fs_info; 2865 again: 2866 ret = radix_tree_preload(GFP_NOFS); 2867 if (ret) { 2868 exists = ERR_PTR(ret); 2869 goto free_eb; 2870 } 2871 spin_lock(&fs_info->buffer_lock); 2872 ret = radix_tree_insert(&fs_info->buffer_radix, 2873 start >> fs_info->sectorsize_bits, eb); 2874 spin_unlock(&fs_info->buffer_lock); 2875 radix_tree_preload_end(); 2876 if (ret == -EEXIST) { 2877 exists = find_extent_buffer(fs_info, start); 2878 if (exists) 2879 goto free_eb; 2880 else 2881 goto again; 2882 } 2883 check_buffer_tree_ref(eb); 2884 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 2885 2886 return eb; 2887 free_eb: 2888 btrfs_release_extent_buffer(eb); 2889 return exists; 2890 } 2891 #endif 2892 2893 static struct extent_buffer *grab_extent_buffer( 2894 struct btrfs_fs_info *fs_info, struct page *page) 2895 { 2896 struct folio *folio = page_folio(page); 2897 struct extent_buffer *exists; 2898 2899 lockdep_assert_held(&page->mapping->i_private_lock); 2900 2901 /* 2902 * For subpage case, we completely rely on radix tree to ensure we 2903 * don't try to insert two ebs for the same bytenr. So here we always 2904 * return NULL and just continue. 2905 */ 2906 if (fs_info->nodesize < PAGE_SIZE) 2907 return NULL; 2908 2909 /* Page not yet attached to an extent buffer */ 2910 if (!folio_test_private(folio)) 2911 return NULL; 2912 2913 /* 2914 * We could have already allocated an eb for this page and attached one 2915 * so lets see if we can get a ref on the existing eb, and if we can we 2916 * know it's good and we can just return that one, else we know we can 2917 * just overwrite folio private. 2918 */ 2919 exists = folio_get_private(folio); 2920 if (atomic_inc_not_zero(&exists->refs)) 2921 return exists; 2922 2923 WARN_ON(PageDirty(page)); 2924 folio_detach_private(folio); 2925 return NULL; 2926 } 2927 2928 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 2929 { 2930 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 2931 btrfs_err(fs_info, "bad tree block start %llu", start); 2932 return -EINVAL; 2933 } 2934 2935 if (fs_info->nodesize < PAGE_SIZE && 2936 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 2937 btrfs_err(fs_info, 2938 "tree block crosses page boundary, start %llu nodesize %u", 2939 start, fs_info->nodesize); 2940 return -EINVAL; 2941 } 2942 if (fs_info->nodesize >= PAGE_SIZE && 2943 !PAGE_ALIGNED(start)) { 2944 btrfs_err(fs_info, 2945 "tree block is not page aligned, start %llu nodesize %u", 2946 start, fs_info->nodesize); 2947 return -EINVAL; 2948 } 2949 if (!IS_ALIGNED(start, fs_info->nodesize) && 2950 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 2951 btrfs_warn(fs_info, 2952 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 2953 start, fs_info->nodesize); 2954 } 2955 return 0; 2956 } 2957 2958 2959 /* 2960 * Return 0 if eb->folios[i] is attached to btree inode successfully. 2961 * Return >0 if there is already another extent buffer for the range, 2962 * and @found_eb_ret would be updated. 2963 * Return -EAGAIN if the filemap has an existing folio but with different size 2964 * than @eb. 2965 * The caller needs to free the existing folios and retry using the same order. 2966 */ 2967 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 2968 struct btrfs_subpage *prealloc, 2969 struct extent_buffer **found_eb_ret) 2970 { 2971 2972 struct btrfs_fs_info *fs_info = eb->fs_info; 2973 struct address_space *mapping = fs_info->btree_inode->i_mapping; 2974 const unsigned long index = eb->start >> PAGE_SHIFT; 2975 struct folio *existing_folio = NULL; 2976 int ret; 2977 2978 ASSERT(found_eb_ret); 2979 2980 /* Caller should ensure the folio exists. */ 2981 ASSERT(eb->folios[i]); 2982 2983 retry: 2984 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 2985 GFP_NOFS | __GFP_NOFAIL); 2986 if (!ret) 2987 goto finish; 2988 2989 existing_folio = filemap_lock_folio(mapping, index + i); 2990 /* The page cache only exists for a very short time, just retry. */ 2991 if (IS_ERR(existing_folio)) { 2992 existing_folio = NULL; 2993 goto retry; 2994 } 2995 2996 /* For now, we should only have single-page folios for btree inode. */ 2997 ASSERT(folio_nr_pages(existing_folio) == 1); 2998 2999 if (folio_size(existing_folio) != eb->folio_size) { 3000 folio_unlock(existing_folio); 3001 folio_put(existing_folio); 3002 return -EAGAIN; 3003 } 3004 3005 finish: 3006 spin_lock(&mapping->i_private_lock); 3007 if (existing_folio && fs_info->nodesize < PAGE_SIZE) { 3008 /* We're going to reuse the existing page, can drop our folio now. */ 3009 __free_page(folio_page(eb->folios[i], 0)); 3010 eb->folios[i] = existing_folio; 3011 } else if (existing_folio) { 3012 struct extent_buffer *existing_eb; 3013 3014 existing_eb = grab_extent_buffer(fs_info, 3015 folio_page(existing_folio, 0)); 3016 if (existing_eb) { 3017 /* The extent buffer still exists, we can use it directly. */ 3018 *found_eb_ret = existing_eb; 3019 spin_unlock(&mapping->i_private_lock); 3020 folio_unlock(existing_folio); 3021 folio_put(existing_folio); 3022 return 1; 3023 } 3024 /* The extent buffer no longer exists, we can reuse the folio. */ 3025 __free_page(folio_page(eb->folios[i], 0)); 3026 eb->folios[i] = existing_folio; 3027 } 3028 eb->folio_size = folio_size(eb->folios[i]); 3029 eb->folio_shift = folio_shift(eb->folios[i]); 3030 /* Should not fail, as we have preallocated the memory. */ 3031 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3032 ASSERT(!ret); 3033 /* 3034 * To inform we have an extra eb under allocation, so that 3035 * detach_extent_buffer_page() won't release the folio private when the 3036 * eb hasn't been inserted into radix tree yet. 3037 * 3038 * The ref will be decreased when the eb releases the page, in 3039 * detach_extent_buffer_page(). Thus needs no special handling in the 3040 * error path. 3041 */ 3042 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3043 spin_unlock(&mapping->i_private_lock); 3044 return 0; 3045 } 3046 3047 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3048 u64 start, u64 owner_root, int level) 3049 { 3050 unsigned long len = fs_info->nodesize; 3051 int num_folios; 3052 int attached = 0; 3053 struct extent_buffer *eb; 3054 struct extent_buffer *existing_eb = NULL; 3055 struct btrfs_subpage *prealloc = NULL; 3056 u64 lockdep_owner = owner_root; 3057 bool page_contig = true; 3058 int uptodate = 1; 3059 int ret; 3060 3061 if (check_eb_alignment(fs_info, start)) 3062 return ERR_PTR(-EINVAL); 3063 3064 #if BITS_PER_LONG == 32 3065 if (start >= MAX_LFS_FILESIZE) { 3066 btrfs_err_rl(fs_info, 3067 "extent buffer %llu is beyond 32bit page cache limit", start); 3068 btrfs_err_32bit_limit(fs_info); 3069 return ERR_PTR(-EOVERFLOW); 3070 } 3071 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3072 btrfs_warn_32bit_limit(fs_info); 3073 #endif 3074 3075 eb = find_extent_buffer(fs_info, start); 3076 if (eb) 3077 return eb; 3078 3079 eb = __alloc_extent_buffer(fs_info, start, len); 3080 if (!eb) 3081 return ERR_PTR(-ENOMEM); 3082 3083 /* 3084 * The reloc trees are just snapshots, so we need them to appear to be 3085 * just like any other fs tree WRT lockdep. 3086 */ 3087 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3088 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3089 3090 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3091 3092 /* 3093 * Preallocate folio private for subpage case, so that we won't 3094 * allocate memory with i_private_lock nor page lock hold. 3095 * 3096 * The memory will be freed by attach_extent_buffer_page() or freed 3097 * manually if we exit earlier. 3098 */ 3099 if (fs_info->nodesize < PAGE_SIZE) { 3100 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3101 if (IS_ERR(prealloc)) { 3102 ret = PTR_ERR(prealloc); 3103 goto out; 3104 } 3105 } 3106 3107 reallocate: 3108 /* Allocate all pages first. */ 3109 ret = alloc_eb_folio_array(eb, true); 3110 if (ret < 0) { 3111 btrfs_free_subpage(prealloc); 3112 goto out; 3113 } 3114 3115 num_folios = num_extent_folios(eb); 3116 /* Attach all pages to the filemap. */ 3117 for (int i = 0; i < num_folios; i++) { 3118 struct folio *folio; 3119 3120 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3121 if (ret > 0) { 3122 ASSERT(existing_eb); 3123 goto out; 3124 } 3125 3126 /* 3127 * TODO: Special handling for a corner case where the order of 3128 * folios mismatch between the new eb and filemap. 3129 * 3130 * This happens when: 3131 * 3132 * - the new eb is using higher order folio 3133 * 3134 * - the filemap is still using 0-order folios for the range 3135 * This can happen at the previous eb allocation, and we don't 3136 * have higher order folio for the call. 3137 * 3138 * - the existing eb has already been freed 3139 * 3140 * In this case, we have to free the existing folios first, and 3141 * re-allocate using the same order. 3142 * Thankfully this is not going to happen yet, as we're still 3143 * using 0-order folios. 3144 */ 3145 if (unlikely(ret == -EAGAIN)) { 3146 ASSERT(0); 3147 goto reallocate; 3148 } 3149 attached++; 3150 3151 /* 3152 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3153 * reliable, as we may choose to reuse the existing page cache 3154 * and free the allocated page. 3155 */ 3156 folio = eb->folios[i]; 3157 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3158 3159 /* 3160 * Check if the current page is physically contiguous with previous eb 3161 * page. 3162 * At this stage, either we allocated a large folio, thus @i 3163 * would only be 0, or we fall back to per-page allocation. 3164 */ 3165 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3166 page_contig = false; 3167 3168 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3169 uptodate = 0; 3170 3171 /* 3172 * We can't unlock the pages just yet since the extent buffer 3173 * hasn't been properly inserted in the radix tree, this 3174 * opens a race with btree_release_folio which can free a page 3175 * while we are still filling in all pages for the buffer and 3176 * we could crash. 3177 */ 3178 } 3179 if (uptodate) 3180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3181 /* All pages are physically contiguous, can skip cross page handling. */ 3182 if (page_contig) 3183 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3184 again: 3185 ret = radix_tree_preload(GFP_NOFS); 3186 if (ret) 3187 goto out; 3188 3189 spin_lock(&fs_info->buffer_lock); 3190 ret = radix_tree_insert(&fs_info->buffer_radix, 3191 start >> fs_info->sectorsize_bits, eb); 3192 spin_unlock(&fs_info->buffer_lock); 3193 radix_tree_preload_end(); 3194 if (ret == -EEXIST) { 3195 ret = 0; 3196 existing_eb = find_extent_buffer(fs_info, start); 3197 if (existing_eb) 3198 goto out; 3199 else 3200 goto again; 3201 } 3202 /* add one reference for the tree */ 3203 check_buffer_tree_ref(eb); 3204 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3205 3206 /* 3207 * Now it's safe to unlock the pages because any calls to 3208 * btree_release_folio will correctly detect that a page belongs to a 3209 * live buffer and won't free them prematurely. 3210 */ 3211 for (int i = 0; i < num_folios; i++) 3212 unlock_page(folio_page(eb->folios[i], 0)); 3213 return eb; 3214 3215 out: 3216 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3217 3218 /* 3219 * Any attached folios need to be detached before we unlock them. This 3220 * is because when we're inserting our new folios into the mapping, and 3221 * then attaching our eb to that folio. If we fail to insert our folio 3222 * we'll lookup the folio for that index, and grab that EB. We do not 3223 * want that to grab this eb, as we're getting ready to free it. So we 3224 * have to detach it first and then unlock it. 3225 * 3226 * We have to drop our reference and NULL it out here because in the 3227 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3228 * Below when we call btrfs_release_extent_buffer() we will call 3229 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3230 * case. If we left eb->folios[i] populated in the subpage case we'd 3231 * double put our reference and be super sad. 3232 */ 3233 for (int i = 0; i < attached; i++) { 3234 ASSERT(eb->folios[i]); 3235 detach_extent_buffer_folio(eb, eb->folios[i]); 3236 unlock_page(folio_page(eb->folios[i], 0)); 3237 folio_put(eb->folios[i]); 3238 eb->folios[i] = NULL; 3239 } 3240 /* 3241 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3242 * so it can be cleaned up without utlizing page->mapping. 3243 */ 3244 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3245 3246 btrfs_release_extent_buffer(eb); 3247 if (ret < 0) 3248 return ERR_PTR(ret); 3249 ASSERT(existing_eb); 3250 return existing_eb; 3251 } 3252 3253 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3254 { 3255 struct extent_buffer *eb = 3256 container_of(head, struct extent_buffer, rcu_head); 3257 3258 __free_extent_buffer(eb); 3259 } 3260 3261 static int release_extent_buffer(struct extent_buffer *eb) 3262 __releases(&eb->refs_lock) 3263 { 3264 lockdep_assert_held(&eb->refs_lock); 3265 3266 WARN_ON(atomic_read(&eb->refs) == 0); 3267 if (atomic_dec_and_test(&eb->refs)) { 3268 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3269 struct btrfs_fs_info *fs_info = eb->fs_info; 3270 3271 spin_unlock(&eb->refs_lock); 3272 3273 spin_lock(&fs_info->buffer_lock); 3274 radix_tree_delete(&fs_info->buffer_radix, 3275 eb->start >> fs_info->sectorsize_bits); 3276 spin_unlock(&fs_info->buffer_lock); 3277 } else { 3278 spin_unlock(&eb->refs_lock); 3279 } 3280 3281 btrfs_leak_debug_del_eb(eb); 3282 /* Should be safe to release our pages at this point */ 3283 btrfs_release_extent_buffer_pages(eb); 3284 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3285 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3286 __free_extent_buffer(eb); 3287 return 1; 3288 } 3289 #endif 3290 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3291 return 1; 3292 } 3293 spin_unlock(&eb->refs_lock); 3294 3295 return 0; 3296 } 3297 3298 void free_extent_buffer(struct extent_buffer *eb) 3299 { 3300 int refs; 3301 if (!eb) 3302 return; 3303 3304 refs = atomic_read(&eb->refs); 3305 while (1) { 3306 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3307 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3308 refs == 1)) 3309 break; 3310 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3311 return; 3312 } 3313 3314 spin_lock(&eb->refs_lock); 3315 if (atomic_read(&eb->refs) == 2 && 3316 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3317 !extent_buffer_under_io(eb) && 3318 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3319 atomic_dec(&eb->refs); 3320 3321 /* 3322 * I know this is terrible, but it's temporary until we stop tracking 3323 * the uptodate bits and such for the extent buffers. 3324 */ 3325 release_extent_buffer(eb); 3326 } 3327 3328 void free_extent_buffer_stale(struct extent_buffer *eb) 3329 { 3330 if (!eb) 3331 return; 3332 3333 spin_lock(&eb->refs_lock); 3334 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3335 3336 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3337 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3338 atomic_dec(&eb->refs); 3339 release_extent_buffer(eb); 3340 } 3341 3342 static void btree_clear_folio_dirty(struct folio *folio) 3343 { 3344 ASSERT(folio_test_dirty(folio)); 3345 ASSERT(folio_test_locked(folio)); 3346 folio_clear_dirty_for_io(folio); 3347 xa_lock_irq(&folio->mapping->i_pages); 3348 if (!folio_test_dirty(folio)) 3349 __xa_clear_mark(&folio->mapping->i_pages, 3350 folio_index(folio), PAGECACHE_TAG_DIRTY); 3351 xa_unlock_irq(&folio->mapping->i_pages); 3352 } 3353 3354 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3355 { 3356 struct btrfs_fs_info *fs_info = eb->fs_info; 3357 struct folio *folio = eb->folios[0]; 3358 bool last; 3359 3360 /* btree_clear_folio_dirty() needs page locked. */ 3361 folio_lock(folio); 3362 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 3363 if (last) 3364 btree_clear_folio_dirty(folio); 3365 folio_unlock(folio); 3366 WARN_ON(atomic_read(&eb->refs) == 0); 3367 } 3368 3369 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3370 struct extent_buffer *eb) 3371 { 3372 struct btrfs_fs_info *fs_info = eb->fs_info; 3373 int num_folios; 3374 3375 btrfs_assert_tree_write_locked(eb); 3376 3377 if (trans && btrfs_header_generation(eb) != trans->transid) 3378 return; 3379 3380 /* 3381 * Instead of clearing the dirty flag off of the buffer, mark it as 3382 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3383 * write-ordering in zoned mode, without the need to later re-dirty 3384 * the extent_buffer. 3385 * 3386 * The actual zeroout of the buffer will happen later in 3387 * btree_csum_one_bio. 3388 */ 3389 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3390 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3391 return; 3392 } 3393 3394 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3395 return; 3396 3397 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3398 fs_info->dirty_metadata_batch); 3399 3400 if (eb->fs_info->nodesize < PAGE_SIZE) 3401 return clear_subpage_extent_buffer_dirty(eb); 3402 3403 num_folios = num_extent_folios(eb); 3404 for (int i = 0; i < num_folios; i++) { 3405 struct folio *folio = eb->folios[i]; 3406 3407 if (!folio_test_dirty(folio)) 3408 continue; 3409 folio_lock(folio); 3410 btree_clear_folio_dirty(folio); 3411 folio_unlock(folio); 3412 } 3413 WARN_ON(atomic_read(&eb->refs) == 0); 3414 } 3415 3416 void set_extent_buffer_dirty(struct extent_buffer *eb) 3417 { 3418 int num_folios; 3419 bool was_dirty; 3420 3421 check_buffer_tree_ref(eb); 3422 3423 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3424 3425 num_folios = num_extent_folios(eb); 3426 WARN_ON(atomic_read(&eb->refs) == 0); 3427 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3428 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3429 3430 if (!was_dirty) { 3431 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3432 3433 /* 3434 * For subpage case, we can have other extent buffers in the 3435 * same page, and in clear_subpage_extent_buffer_dirty() we 3436 * have to clear page dirty without subpage lock held. 3437 * This can cause race where our page gets dirty cleared after 3438 * we just set it. 3439 * 3440 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3441 * its page for other reasons, we can use page lock to prevent 3442 * the above race. 3443 */ 3444 if (subpage) 3445 lock_page(folio_page(eb->folios[0], 0)); 3446 for (int i = 0; i < num_folios; i++) 3447 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 3448 eb->start, eb->len); 3449 if (subpage) 3450 unlock_page(folio_page(eb->folios[0], 0)); 3451 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3452 eb->len, 3453 eb->fs_info->dirty_metadata_batch); 3454 } 3455 #ifdef CONFIG_BTRFS_DEBUG 3456 for (int i = 0; i < num_folios; i++) 3457 ASSERT(folio_test_dirty(eb->folios[i])); 3458 #endif 3459 } 3460 3461 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3462 { 3463 struct btrfs_fs_info *fs_info = eb->fs_info; 3464 int num_folios = num_extent_folios(eb); 3465 3466 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3467 for (int i = 0; i < num_folios; i++) { 3468 struct folio *folio = eb->folios[i]; 3469 3470 if (!folio) 3471 continue; 3472 3473 /* 3474 * This is special handling for metadata subpage, as regular 3475 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3476 */ 3477 if (fs_info->nodesize >= PAGE_SIZE) 3478 folio_clear_uptodate(folio); 3479 else 3480 btrfs_subpage_clear_uptodate(fs_info, folio, 3481 eb->start, eb->len); 3482 } 3483 } 3484 3485 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3486 { 3487 struct btrfs_fs_info *fs_info = eb->fs_info; 3488 int num_folios = num_extent_folios(eb); 3489 3490 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3491 for (int i = 0; i < num_folios; i++) { 3492 struct folio *folio = eb->folios[i]; 3493 3494 /* 3495 * This is special handling for metadata subpage, as regular 3496 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3497 */ 3498 if (fs_info->nodesize >= PAGE_SIZE) 3499 folio_mark_uptodate(folio); 3500 else 3501 btrfs_subpage_set_uptodate(fs_info, folio, 3502 eb->start, eb->len); 3503 } 3504 } 3505 3506 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3507 { 3508 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3509 smp_mb__after_atomic(); 3510 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3511 } 3512 3513 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3514 { 3515 struct extent_buffer *eb = bbio->private; 3516 struct btrfs_fs_info *fs_info = eb->fs_info; 3517 bool uptodate = !bbio->bio.bi_status; 3518 struct folio_iter fi; 3519 u32 bio_offset = 0; 3520 3521 /* 3522 * If the extent buffer is marked UPTODATE before the read operation 3523 * completes, other calls to read_extent_buffer_pages() will return 3524 * early without waiting for the read to finish, causing data races. 3525 */ 3526 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3527 3528 eb->read_mirror = bbio->mirror_num; 3529 3530 if (uptodate && 3531 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3532 uptodate = false; 3533 3534 if (uptodate) { 3535 set_extent_buffer_uptodate(eb); 3536 } else { 3537 clear_extent_buffer_uptodate(eb); 3538 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3539 } 3540 3541 bio_for_each_folio_all(fi, &bbio->bio) { 3542 struct folio *folio = fi.folio; 3543 u64 start = eb->start + bio_offset; 3544 u32 len = fi.length; 3545 3546 if (uptodate) 3547 btrfs_folio_set_uptodate(fs_info, folio, start, len); 3548 else 3549 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 3550 3551 bio_offset += len; 3552 } 3553 3554 clear_extent_buffer_reading(eb); 3555 free_extent_buffer(eb); 3556 3557 bio_put(&bbio->bio); 3558 } 3559 3560 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3561 const struct btrfs_tree_parent_check *check) 3562 { 3563 struct btrfs_bio *bbio; 3564 bool ret; 3565 3566 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3567 return 0; 3568 3569 /* 3570 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3571 * operation, which could potentially still be in flight. In this case 3572 * we simply want to return an error. 3573 */ 3574 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3575 return -EIO; 3576 3577 /* Someone else is already reading the buffer, just wait for it. */ 3578 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3579 goto done; 3580 3581 /* 3582 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3583 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3584 * started and finished reading the same eb. In this case, UPTODATE 3585 * will now be set, and we shouldn't read it in again. 3586 */ 3587 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3588 clear_extent_buffer_reading(eb); 3589 return 0; 3590 } 3591 3592 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3593 eb->read_mirror = 0; 3594 check_buffer_tree_ref(eb); 3595 atomic_inc(&eb->refs); 3596 3597 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3598 REQ_OP_READ | REQ_META, eb->fs_info, 3599 end_bbio_meta_read, eb); 3600 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3601 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3602 bbio->file_offset = eb->start; 3603 memcpy(&bbio->parent_check, check, sizeof(*check)); 3604 if (eb->fs_info->nodesize < PAGE_SIZE) { 3605 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 3606 eb->start - folio_pos(eb->folios[0])); 3607 ASSERT(ret); 3608 } else { 3609 int num_folios = num_extent_folios(eb); 3610 3611 for (int i = 0; i < num_folios; i++) { 3612 struct folio *folio = eb->folios[i]; 3613 3614 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 3615 ASSERT(ret); 3616 } 3617 } 3618 btrfs_submit_bio(bbio, mirror_num); 3619 3620 done: 3621 if (wait == WAIT_COMPLETE) { 3622 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3623 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3624 return -EIO; 3625 } 3626 3627 return 0; 3628 } 3629 3630 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3631 unsigned long len) 3632 { 3633 btrfs_warn(eb->fs_info, 3634 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3635 eb->start, eb->len, start, len); 3636 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3637 3638 return true; 3639 } 3640 3641 /* 3642 * Check if the [start, start + len) range is valid before reading/writing 3643 * the eb. 3644 * NOTE: @start and @len are offset inside the eb, not logical address. 3645 * 3646 * Caller should not touch the dst/src memory if this function returns error. 3647 */ 3648 static inline int check_eb_range(const struct extent_buffer *eb, 3649 unsigned long start, unsigned long len) 3650 { 3651 unsigned long offset; 3652 3653 /* start, start + len should not go beyond eb->len nor overflow */ 3654 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3655 return report_eb_range(eb, start, len); 3656 3657 return false; 3658 } 3659 3660 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3661 unsigned long start, unsigned long len) 3662 { 3663 const int unit_size = eb->folio_size; 3664 size_t cur; 3665 size_t offset; 3666 char *dst = (char *)dstv; 3667 unsigned long i = get_eb_folio_index(eb, start); 3668 3669 if (check_eb_range(eb, start, len)) { 3670 /* 3671 * Invalid range hit, reset the memory, so callers won't get 3672 * some random garbage for their uninitialized memory. 3673 */ 3674 memset(dstv, 0, len); 3675 return; 3676 } 3677 3678 if (eb->addr) { 3679 memcpy(dstv, eb->addr + start, len); 3680 return; 3681 } 3682 3683 offset = get_eb_offset_in_folio(eb, start); 3684 3685 while (len > 0) { 3686 char *kaddr; 3687 3688 cur = min(len, unit_size - offset); 3689 kaddr = folio_address(eb->folios[i]); 3690 memcpy(dst, kaddr + offset, cur); 3691 3692 dst += cur; 3693 len -= cur; 3694 offset = 0; 3695 i++; 3696 } 3697 } 3698 3699 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3700 void __user *dstv, 3701 unsigned long start, unsigned long len) 3702 { 3703 const int unit_size = eb->folio_size; 3704 size_t cur; 3705 size_t offset; 3706 char __user *dst = (char __user *)dstv; 3707 unsigned long i = get_eb_folio_index(eb, start); 3708 int ret = 0; 3709 3710 WARN_ON(start > eb->len); 3711 WARN_ON(start + len > eb->start + eb->len); 3712 3713 if (eb->addr) { 3714 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3715 ret = -EFAULT; 3716 return ret; 3717 } 3718 3719 offset = get_eb_offset_in_folio(eb, start); 3720 3721 while (len > 0) { 3722 char *kaddr; 3723 3724 cur = min(len, unit_size - offset); 3725 kaddr = folio_address(eb->folios[i]); 3726 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3727 ret = -EFAULT; 3728 break; 3729 } 3730 3731 dst += cur; 3732 len -= cur; 3733 offset = 0; 3734 i++; 3735 } 3736 3737 return ret; 3738 } 3739 3740 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3741 unsigned long start, unsigned long len) 3742 { 3743 const int unit_size = eb->folio_size; 3744 size_t cur; 3745 size_t offset; 3746 char *kaddr; 3747 char *ptr = (char *)ptrv; 3748 unsigned long i = get_eb_folio_index(eb, start); 3749 int ret = 0; 3750 3751 if (check_eb_range(eb, start, len)) 3752 return -EINVAL; 3753 3754 if (eb->addr) 3755 return memcmp(ptrv, eb->addr + start, len); 3756 3757 offset = get_eb_offset_in_folio(eb, start); 3758 3759 while (len > 0) { 3760 cur = min(len, unit_size - offset); 3761 kaddr = folio_address(eb->folios[i]); 3762 ret = memcmp(ptr, kaddr + offset, cur); 3763 if (ret) 3764 break; 3765 3766 ptr += cur; 3767 len -= cur; 3768 offset = 0; 3769 i++; 3770 } 3771 return ret; 3772 } 3773 3774 /* 3775 * Check that the extent buffer is uptodate. 3776 * 3777 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3778 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3779 */ 3780 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3781 { 3782 struct btrfs_fs_info *fs_info = eb->fs_info; 3783 struct folio *folio = eb->folios[i]; 3784 3785 ASSERT(folio); 3786 3787 /* 3788 * If we are using the commit root we could potentially clear a page 3789 * Uptodate while we're using the extent buffer that we've previously 3790 * looked up. We don't want to complain in this case, as the page was 3791 * valid before, we just didn't write it out. Instead we want to catch 3792 * the case where we didn't actually read the block properly, which 3793 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3794 */ 3795 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3796 return; 3797 3798 if (fs_info->nodesize < PAGE_SIZE) { 3799 folio = eb->folios[0]; 3800 ASSERT(i == 0); 3801 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3802 eb->start, eb->len))) 3803 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3804 } else { 3805 WARN_ON(!folio_test_uptodate(folio)); 3806 } 3807 } 3808 3809 static void __write_extent_buffer(const struct extent_buffer *eb, 3810 const void *srcv, unsigned long start, 3811 unsigned long len, bool use_memmove) 3812 { 3813 const int unit_size = eb->folio_size; 3814 size_t cur; 3815 size_t offset; 3816 char *kaddr; 3817 const char *src = (const char *)srcv; 3818 unsigned long i = get_eb_folio_index(eb, start); 3819 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3820 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3821 3822 if (check_eb_range(eb, start, len)) 3823 return; 3824 3825 if (eb->addr) { 3826 if (use_memmove) 3827 memmove(eb->addr + start, srcv, len); 3828 else 3829 memcpy(eb->addr + start, srcv, len); 3830 return; 3831 } 3832 3833 offset = get_eb_offset_in_folio(eb, start); 3834 3835 while (len > 0) { 3836 if (check_uptodate) 3837 assert_eb_folio_uptodate(eb, i); 3838 3839 cur = min(len, unit_size - offset); 3840 kaddr = folio_address(eb->folios[i]); 3841 if (use_memmove) 3842 memmove(kaddr + offset, src, cur); 3843 else 3844 memcpy(kaddr + offset, src, cur); 3845 3846 src += cur; 3847 len -= cur; 3848 offset = 0; 3849 i++; 3850 } 3851 } 3852 3853 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3854 unsigned long start, unsigned long len) 3855 { 3856 return __write_extent_buffer(eb, srcv, start, len, false); 3857 } 3858 3859 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3860 unsigned long start, unsigned long len) 3861 { 3862 const int unit_size = eb->folio_size; 3863 unsigned long cur = start; 3864 3865 if (eb->addr) { 3866 memset(eb->addr + start, c, len); 3867 return; 3868 } 3869 3870 while (cur < start + len) { 3871 unsigned long index = get_eb_folio_index(eb, cur); 3872 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3873 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3874 3875 assert_eb_folio_uptodate(eb, index); 3876 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 3877 3878 cur += cur_len; 3879 } 3880 } 3881 3882 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 3883 unsigned long len) 3884 { 3885 if (check_eb_range(eb, start, len)) 3886 return; 3887 return memset_extent_buffer(eb, 0, start, len); 3888 } 3889 3890 void copy_extent_buffer_full(const struct extent_buffer *dst, 3891 const struct extent_buffer *src) 3892 { 3893 const int unit_size = src->folio_size; 3894 unsigned long cur = 0; 3895 3896 ASSERT(dst->len == src->len); 3897 3898 while (cur < src->len) { 3899 unsigned long index = get_eb_folio_index(src, cur); 3900 unsigned long offset = get_eb_offset_in_folio(src, cur); 3901 unsigned long cur_len = min(src->len, unit_size - offset); 3902 void *addr = folio_address(src->folios[index]) + offset; 3903 3904 write_extent_buffer(dst, addr, cur, cur_len); 3905 3906 cur += cur_len; 3907 } 3908 } 3909 3910 void copy_extent_buffer(const struct extent_buffer *dst, 3911 const struct extent_buffer *src, 3912 unsigned long dst_offset, unsigned long src_offset, 3913 unsigned long len) 3914 { 3915 const int unit_size = dst->folio_size; 3916 u64 dst_len = dst->len; 3917 size_t cur; 3918 size_t offset; 3919 char *kaddr; 3920 unsigned long i = get_eb_folio_index(dst, dst_offset); 3921 3922 if (check_eb_range(dst, dst_offset, len) || 3923 check_eb_range(src, src_offset, len)) 3924 return; 3925 3926 WARN_ON(src->len != dst_len); 3927 3928 offset = get_eb_offset_in_folio(dst, dst_offset); 3929 3930 while (len > 0) { 3931 assert_eb_folio_uptodate(dst, i); 3932 3933 cur = min(len, (unsigned long)(unit_size - offset)); 3934 3935 kaddr = folio_address(dst->folios[i]); 3936 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3937 3938 src_offset += cur; 3939 len -= cur; 3940 offset = 0; 3941 i++; 3942 } 3943 } 3944 3945 /* 3946 * Calculate the folio and offset of the byte containing the given bit number. 3947 * 3948 * @eb: the extent buffer 3949 * @start: offset of the bitmap item in the extent buffer 3950 * @nr: bit number 3951 * @folio_index: return index of the folio in the extent buffer that contains 3952 * the given bit number 3953 * @folio_offset: return offset into the folio given by folio_index 3954 * 3955 * This helper hides the ugliness of finding the byte in an extent buffer which 3956 * contains a given bit. 3957 */ 3958 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 3959 unsigned long start, unsigned long nr, 3960 unsigned long *folio_index, 3961 size_t *folio_offset) 3962 { 3963 size_t byte_offset = BIT_BYTE(nr); 3964 size_t offset; 3965 3966 /* 3967 * The byte we want is the offset of the extent buffer + the offset of 3968 * the bitmap item in the extent buffer + the offset of the byte in the 3969 * bitmap item. 3970 */ 3971 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 3972 3973 *folio_index = offset >> eb->folio_shift; 3974 *folio_offset = offset_in_eb_folio(eb, offset); 3975 } 3976 3977 /* 3978 * Determine whether a bit in a bitmap item is set. 3979 * 3980 * @eb: the extent buffer 3981 * @start: offset of the bitmap item in the extent buffer 3982 * @nr: bit number to test 3983 */ 3984 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 3985 unsigned long nr) 3986 { 3987 unsigned long i; 3988 size_t offset; 3989 u8 *kaddr; 3990 3991 eb_bitmap_offset(eb, start, nr, &i, &offset); 3992 assert_eb_folio_uptodate(eb, i); 3993 kaddr = folio_address(eb->folios[i]); 3994 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 3995 } 3996 3997 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 3998 { 3999 unsigned long index = get_eb_folio_index(eb, bytenr); 4000 4001 if (check_eb_range(eb, bytenr, 1)) 4002 return NULL; 4003 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4004 } 4005 4006 /* 4007 * Set an area of a bitmap to 1. 4008 * 4009 * @eb: the extent buffer 4010 * @start: offset of the bitmap item in the extent buffer 4011 * @pos: bit number of the first bit 4012 * @len: number of bits to set 4013 */ 4014 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4015 unsigned long pos, unsigned long len) 4016 { 4017 unsigned int first_byte = start + BIT_BYTE(pos); 4018 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4019 const bool same_byte = (first_byte == last_byte); 4020 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4021 u8 *kaddr; 4022 4023 if (same_byte) 4024 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4025 4026 /* Handle the first byte. */ 4027 kaddr = extent_buffer_get_byte(eb, first_byte); 4028 *kaddr |= mask; 4029 if (same_byte) 4030 return; 4031 4032 /* Handle the byte aligned part. */ 4033 ASSERT(first_byte + 1 <= last_byte); 4034 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4035 4036 /* Handle the last byte. */ 4037 kaddr = extent_buffer_get_byte(eb, last_byte); 4038 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4039 } 4040 4041 4042 /* 4043 * Clear an area of a bitmap. 4044 * 4045 * @eb: the extent buffer 4046 * @start: offset of the bitmap item in the extent buffer 4047 * @pos: bit number of the first bit 4048 * @len: number of bits to clear 4049 */ 4050 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4051 unsigned long start, unsigned long pos, 4052 unsigned long len) 4053 { 4054 unsigned int first_byte = start + BIT_BYTE(pos); 4055 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4056 const bool same_byte = (first_byte == last_byte); 4057 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4058 u8 *kaddr; 4059 4060 if (same_byte) 4061 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4062 4063 /* Handle the first byte. */ 4064 kaddr = extent_buffer_get_byte(eb, first_byte); 4065 *kaddr &= ~mask; 4066 if (same_byte) 4067 return; 4068 4069 /* Handle the byte aligned part. */ 4070 ASSERT(first_byte + 1 <= last_byte); 4071 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4072 4073 /* Handle the last byte. */ 4074 kaddr = extent_buffer_get_byte(eb, last_byte); 4075 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4076 } 4077 4078 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4079 { 4080 unsigned long distance = (src > dst) ? src - dst : dst - src; 4081 return distance < len; 4082 } 4083 4084 void memcpy_extent_buffer(const struct extent_buffer *dst, 4085 unsigned long dst_offset, unsigned long src_offset, 4086 unsigned long len) 4087 { 4088 const int unit_size = dst->folio_size; 4089 unsigned long cur_off = 0; 4090 4091 if (check_eb_range(dst, dst_offset, len) || 4092 check_eb_range(dst, src_offset, len)) 4093 return; 4094 4095 if (dst->addr) { 4096 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4097 4098 if (use_memmove) 4099 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4100 else 4101 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4102 return; 4103 } 4104 4105 while (cur_off < len) { 4106 unsigned long cur_src = cur_off + src_offset; 4107 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4108 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4109 unsigned long cur_len = min(src_offset + len - cur_src, 4110 unit_size - folio_off); 4111 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4112 const bool use_memmove = areas_overlap(src_offset + cur_off, 4113 dst_offset + cur_off, cur_len); 4114 4115 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4116 use_memmove); 4117 cur_off += cur_len; 4118 } 4119 } 4120 4121 void memmove_extent_buffer(const struct extent_buffer *dst, 4122 unsigned long dst_offset, unsigned long src_offset, 4123 unsigned long len) 4124 { 4125 unsigned long dst_end = dst_offset + len - 1; 4126 unsigned long src_end = src_offset + len - 1; 4127 4128 if (check_eb_range(dst, dst_offset, len) || 4129 check_eb_range(dst, src_offset, len)) 4130 return; 4131 4132 if (dst_offset < src_offset) { 4133 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4134 return; 4135 } 4136 4137 if (dst->addr) { 4138 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4139 return; 4140 } 4141 4142 while (len > 0) { 4143 unsigned long src_i; 4144 size_t cur; 4145 size_t dst_off_in_folio; 4146 size_t src_off_in_folio; 4147 void *src_addr; 4148 bool use_memmove; 4149 4150 src_i = get_eb_folio_index(dst, src_end); 4151 4152 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4153 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4154 4155 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4156 cur = min(cur, dst_off_in_folio + 1); 4157 4158 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4159 cur + 1; 4160 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4161 cur); 4162 4163 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4164 use_memmove); 4165 4166 dst_end -= cur; 4167 src_end -= cur; 4168 len -= cur; 4169 } 4170 } 4171 4172 #define GANG_LOOKUP_SIZE 16 4173 static struct extent_buffer *get_next_extent_buffer( 4174 const struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4175 { 4176 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4177 struct extent_buffer *found = NULL; 4178 u64 page_start = page_offset(page); 4179 u64 cur = page_start; 4180 4181 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4182 lockdep_assert_held(&fs_info->buffer_lock); 4183 4184 while (cur < page_start + PAGE_SIZE) { 4185 int ret; 4186 int i; 4187 4188 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4189 (void **)gang, cur >> fs_info->sectorsize_bits, 4190 min_t(unsigned int, GANG_LOOKUP_SIZE, 4191 PAGE_SIZE / fs_info->nodesize)); 4192 if (ret == 0) 4193 goto out; 4194 for (i = 0; i < ret; i++) { 4195 /* Already beyond page end */ 4196 if (gang[i]->start >= page_start + PAGE_SIZE) 4197 goto out; 4198 /* Found one */ 4199 if (gang[i]->start >= bytenr) { 4200 found = gang[i]; 4201 goto out; 4202 } 4203 } 4204 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4205 } 4206 out: 4207 return found; 4208 } 4209 4210 static int try_release_subpage_extent_buffer(struct page *page) 4211 { 4212 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 4213 u64 cur = page_offset(page); 4214 const u64 end = page_offset(page) + PAGE_SIZE; 4215 int ret; 4216 4217 while (cur < end) { 4218 struct extent_buffer *eb = NULL; 4219 4220 /* 4221 * Unlike try_release_extent_buffer() which uses folio private 4222 * to grab buffer, for subpage case we rely on radix tree, thus 4223 * we need to ensure radix tree consistency. 4224 * 4225 * We also want an atomic snapshot of the radix tree, thus go 4226 * with spinlock rather than RCU. 4227 */ 4228 spin_lock(&fs_info->buffer_lock); 4229 eb = get_next_extent_buffer(fs_info, page, cur); 4230 if (!eb) { 4231 /* No more eb in the page range after or at cur */ 4232 spin_unlock(&fs_info->buffer_lock); 4233 break; 4234 } 4235 cur = eb->start + eb->len; 4236 4237 /* 4238 * The same as try_release_extent_buffer(), to ensure the eb 4239 * won't disappear out from under us. 4240 */ 4241 spin_lock(&eb->refs_lock); 4242 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4243 spin_unlock(&eb->refs_lock); 4244 spin_unlock(&fs_info->buffer_lock); 4245 break; 4246 } 4247 spin_unlock(&fs_info->buffer_lock); 4248 4249 /* 4250 * If tree ref isn't set then we know the ref on this eb is a 4251 * real ref, so just return, this eb will likely be freed soon 4252 * anyway. 4253 */ 4254 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4255 spin_unlock(&eb->refs_lock); 4256 break; 4257 } 4258 4259 /* 4260 * Here we don't care about the return value, we will always 4261 * check the folio private at the end. And 4262 * release_extent_buffer() will release the refs_lock. 4263 */ 4264 release_extent_buffer(eb); 4265 } 4266 /* 4267 * Finally to check if we have cleared folio private, as if we have 4268 * released all ebs in the page, the folio private should be cleared now. 4269 */ 4270 spin_lock(&page->mapping->i_private_lock); 4271 if (!folio_test_private(page_folio(page))) 4272 ret = 1; 4273 else 4274 ret = 0; 4275 spin_unlock(&page->mapping->i_private_lock); 4276 return ret; 4277 4278 } 4279 4280 int try_release_extent_buffer(struct page *page) 4281 { 4282 struct folio *folio = page_folio(page); 4283 struct extent_buffer *eb; 4284 4285 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 4286 return try_release_subpage_extent_buffer(page); 4287 4288 /* 4289 * We need to make sure nobody is changing folio private, as we rely on 4290 * folio private as the pointer to extent buffer. 4291 */ 4292 spin_lock(&page->mapping->i_private_lock); 4293 if (!folio_test_private(folio)) { 4294 spin_unlock(&page->mapping->i_private_lock); 4295 return 1; 4296 } 4297 4298 eb = folio_get_private(folio); 4299 BUG_ON(!eb); 4300 4301 /* 4302 * This is a little awful but should be ok, we need to make sure that 4303 * the eb doesn't disappear out from under us while we're looking at 4304 * this page. 4305 */ 4306 spin_lock(&eb->refs_lock); 4307 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4308 spin_unlock(&eb->refs_lock); 4309 spin_unlock(&page->mapping->i_private_lock); 4310 return 0; 4311 } 4312 spin_unlock(&page->mapping->i_private_lock); 4313 4314 /* 4315 * If tree ref isn't set then we know the ref on this eb is a real ref, 4316 * so just return, this page will likely be freed soon anyway. 4317 */ 4318 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4319 spin_unlock(&eb->refs_lock); 4320 return 0; 4321 } 4322 4323 return release_extent_buffer(eb); 4324 } 4325 4326 /* 4327 * Attempt to readahead a child block. 4328 * 4329 * @fs_info: the fs_info 4330 * @bytenr: bytenr to read 4331 * @owner_root: objectid of the root that owns this eb 4332 * @gen: generation for the uptodate check, can be 0 4333 * @level: level for the eb 4334 * 4335 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4336 * normal uptodate check of the eb, without checking the generation. If we have 4337 * to read the block we will not block on anything. 4338 */ 4339 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4340 u64 bytenr, u64 owner_root, u64 gen, int level) 4341 { 4342 struct btrfs_tree_parent_check check = { 4343 .has_first_key = 0, 4344 .level = level, 4345 .transid = gen 4346 }; 4347 struct extent_buffer *eb; 4348 int ret; 4349 4350 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4351 if (IS_ERR(eb)) 4352 return; 4353 4354 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4355 free_extent_buffer(eb); 4356 return; 4357 } 4358 4359 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4360 if (ret < 0) 4361 free_extent_buffer_stale(eb); 4362 else 4363 free_extent_buffer(eb); 4364 } 4365 4366 /* 4367 * Readahead a node's child block. 4368 * 4369 * @node: parent node we're reading from 4370 * @slot: slot in the parent node for the child we want to read 4371 * 4372 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4373 * the slot in the node provided. 4374 */ 4375 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4376 { 4377 btrfs_readahead_tree_block(node->fs_info, 4378 btrfs_node_blockptr(node, slot), 4379 btrfs_header_owner(node), 4380 btrfs_node_ptr_generation(node, slot), 4381 btrfs_header_level(node) - 1); 4382 } 4383