1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 btrfs_err(fs_info, 79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu", 80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 /* 105 * For data read bios, we attempt to optimize csum lookups if the extent 106 * generation is older than the current one. To make this possible, we 107 * need to track the maximum generation of an extent in a bio_ctrl to 108 * make the decision when submitting the bio. 109 * 110 * The pattern between do_readpage(), submit_one_bio() and 111 * submit_extent_folio() is quite subtle, so tracking this is tricky. 112 * 113 * As we process extent E, we might submit a bio with existing built up 114 * extents before adding E to a new bio, or we might just add E to the 115 * bio. As a result, E's generation could apply to the current bio or 116 * to the next one, so we need to be careful to update the bio_ctrl's 117 * generation with E's only when we are sure E is added to bio_ctrl->bbio 118 * in submit_extent_folio(). 119 * 120 * See the comment in btrfs_lookup_bio_sums() for more detail on the 121 * need for this optimization. 122 */ 123 u64 generation; 124 btrfs_bio_end_io_t end_io_func; 125 struct writeback_control *wbc; 126 127 /* 128 * The sectors of the page which are going to be submitted by 129 * extent_writepage_io(). 130 * This is to avoid touching ranges covered by compression/inline. 131 */ 132 unsigned long submit_bitmap; 133 struct readahead_control *ractl; 134 135 /* 136 * The start offset of the last used extent map by a read operation. 137 * 138 * This is for proper compressed read merge. 139 * U64_MAX means we are starting the read and have made no progress yet. 140 * 141 * The current btrfs_bio_is_contig() only uses disk_bytenr as 142 * the condition to check if the read can be merged with previous 143 * bio, which is not correct. E.g. two file extents pointing to the 144 * same extent but with different offset. 145 * 146 * So here we need to do extra checks to only merge reads that are 147 * covered by the same extent map. 148 * Just extent_map::start will be enough, as they are unique 149 * inside the same inode. 150 */ 151 u64 last_em_start; 152 }; 153 154 /* 155 * Helper to set the csum search commit root option for a bio_ctrl's bbio 156 * before submitting the bio. 157 * 158 * Only for use by submit_one_bio(). 159 */ 160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl) 161 { 162 struct btrfs_bio *bbio = bio_ctrl->bbio; 163 164 ASSERT(bbio); 165 166 if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode))) 167 return; 168 169 bio_ctrl->bbio->csum_search_commit_root = 170 (bio_ctrl->generation && 171 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info)); 172 } 173 174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 175 { 176 struct btrfs_bio *bbio = bio_ctrl->bbio; 177 178 if (!bbio) 179 return; 180 181 /* Caller should ensure the bio has at least some range added */ 182 ASSERT(bbio->bio.bi_iter.bi_size); 183 184 bio_set_csum_search_commit_root(bio_ctrl); 185 186 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 187 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 188 btrfs_submit_compressed_read(bbio); 189 else 190 btrfs_submit_bbio(bbio, 0); 191 192 /* The bbio is owned by the end_io handler now */ 193 bio_ctrl->bbio = NULL; 194 /* 195 * We used the generation to decide whether to lookup csums in the 196 * commit_root or not when we called bio_set_csum_search_commit_root() 197 * above. Now, reset the generation for the next bio. 198 */ 199 bio_ctrl->generation = 0; 200 } 201 202 /* 203 * Submit or fail the current bio in the bio_ctrl structure. 204 */ 205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 206 { 207 struct btrfs_bio *bbio = bio_ctrl->bbio; 208 209 if (!bbio) 210 return; 211 212 if (ret) { 213 ASSERT(ret < 0); 214 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 215 /* The bio is owned by the end_io handler now */ 216 bio_ctrl->bbio = NULL; 217 } else { 218 submit_one_bio(bio_ctrl); 219 } 220 } 221 222 int __init extent_buffer_init_cachep(void) 223 { 224 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 225 sizeof(struct extent_buffer), 0, 0, 226 NULL); 227 if (!extent_buffer_cache) 228 return -ENOMEM; 229 230 return 0; 231 } 232 233 void __cold extent_buffer_free_cachep(void) 234 { 235 /* 236 * Make sure all delayed rcu free are flushed before we 237 * destroy caches. 238 */ 239 rcu_barrier(); 240 kmem_cache_destroy(extent_buffer_cache); 241 } 242 243 static void process_one_folio(struct btrfs_fs_info *fs_info, 244 struct folio *folio, const struct folio *locked_folio, 245 unsigned long page_ops, u64 start, u64 end) 246 { 247 u32 len; 248 249 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 250 len = end + 1 - start; 251 252 if (page_ops & PAGE_SET_ORDERED) 253 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 254 if (page_ops & PAGE_START_WRITEBACK) { 255 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 256 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 257 } 258 if (page_ops & PAGE_END_WRITEBACK) 259 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 260 261 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 262 btrfs_folio_end_lock(fs_info, folio, start, len); 263 } 264 265 static void __process_folios_contig(struct address_space *mapping, 266 const struct folio *locked_folio, u64 start, 267 u64 end, unsigned long page_ops) 268 { 269 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 270 pgoff_t index = start >> PAGE_SHIFT; 271 pgoff_t end_index = end >> PAGE_SHIFT; 272 struct folio_batch fbatch; 273 int i; 274 275 folio_batch_init(&fbatch); 276 while (index <= end_index) { 277 int found_folios; 278 279 found_folios = filemap_get_folios_contig(mapping, &index, 280 end_index, &fbatch); 281 for (i = 0; i < found_folios; i++) { 282 struct folio *folio = fbatch.folios[i]; 283 284 process_one_folio(fs_info, folio, locked_folio, 285 page_ops, start, end); 286 } 287 folio_batch_release(&fbatch); 288 cond_resched(); 289 } 290 } 291 292 static noinline void unlock_delalloc_folio(const struct inode *inode, 293 struct folio *locked_folio, 294 u64 start, u64 end) 295 { 296 ASSERT(locked_folio); 297 298 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 299 PAGE_UNLOCK); 300 } 301 302 static noinline int lock_delalloc_folios(struct inode *inode, 303 struct folio *locked_folio, 304 u64 start, u64 end) 305 { 306 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 307 struct address_space *mapping = inode->i_mapping; 308 pgoff_t index = start >> PAGE_SHIFT; 309 pgoff_t end_index = end >> PAGE_SHIFT; 310 u64 processed_end = start; 311 struct folio_batch fbatch; 312 313 folio_batch_init(&fbatch); 314 while (index <= end_index) { 315 unsigned int found_folios, i; 316 317 found_folios = filemap_get_folios_contig(mapping, &index, 318 end_index, &fbatch); 319 if (found_folios == 0) 320 goto out; 321 322 for (i = 0; i < found_folios; i++) { 323 struct folio *folio = fbatch.folios[i]; 324 u64 range_start; 325 u32 range_len; 326 327 if (folio == locked_folio) 328 continue; 329 330 folio_lock(folio); 331 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 332 folio_unlock(folio); 333 goto out; 334 } 335 range_start = max_t(u64, folio_pos(folio), start); 336 range_len = min_t(u64, folio_next_pos(folio), end + 1) - range_start; 337 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 338 339 processed_end = range_start + range_len - 1; 340 } 341 folio_batch_release(&fbatch); 342 cond_resched(); 343 } 344 345 return 0; 346 out: 347 folio_batch_release(&fbatch); 348 if (processed_end > start) 349 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 350 return -EAGAIN; 351 } 352 353 /* 354 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 355 * more than @max_bytes. 356 * 357 * @start: The original start bytenr to search. 358 * Will store the extent range start bytenr. 359 * @end: The original end bytenr of the search range 360 * Will store the extent range end bytenr. 361 * 362 * Return true if we find a delalloc range which starts inside the original 363 * range, and @start/@end will store the delalloc range start/end. 364 * 365 * Return false if we can't find any delalloc range which starts inside the 366 * original range, and @start/@end will be the non-delalloc range start/end. 367 */ 368 EXPORT_FOR_TESTS 369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 370 struct folio *locked_folio, 371 u64 *start, u64 *end) 372 { 373 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 375 const u64 orig_start = *start; 376 const u64 orig_end = *end; 377 u64 max_bytes = fs_info->max_extent_size; 378 u64 delalloc_start; 379 u64 delalloc_end; 380 bool found; 381 struct extent_state *cached_state = NULL; 382 int ret; 383 int loops = 0; 384 385 /* Caller should pass a valid @end to indicate the search range end */ 386 ASSERT(orig_end > orig_start); 387 388 /* The range should at least cover part of the folio */ 389 ASSERT(!(orig_start >= folio_next_pos(locked_folio) || 390 orig_end <= folio_pos(locked_folio))); 391 again: 392 /* step one, find a bunch of delalloc bytes starting at start */ 393 delalloc_start = *start; 394 delalloc_end = 0; 395 396 /* 397 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can 398 * return early without handling any dirty ranges. 399 */ 400 ASSERT(max_bytes >= fs_info->sectorsize); 401 402 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 403 max_bytes, &cached_state); 404 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 405 *start = delalloc_start; 406 407 /* @delalloc_end can be -1, never go beyond @orig_end */ 408 *end = min(delalloc_end, orig_end); 409 btrfs_free_extent_state(cached_state); 410 return false; 411 } 412 413 /* 414 * start comes from the offset of locked_folio. We have to lock 415 * folios in order, so we can't process delalloc bytes before 416 * locked_folio 417 */ 418 if (delalloc_start < *start) 419 delalloc_start = *start; 420 421 /* 422 * make sure to limit the number of folios we try to lock down 423 */ 424 if (delalloc_end + 1 - delalloc_start > max_bytes) 425 delalloc_end = delalloc_start + max_bytes - 1; 426 427 /* step two, lock all the folios after the folios that has start */ 428 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 429 delalloc_end); 430 ASSERT(!ret || ret == -EAGAIN); 431 if (ret == -EAGAIN) { 432 /* 433 * Some of the folios are gone, lets avoid looping by 434 * shortening the size of the delalloc range we're searching. 435 */ 436 btrfs_free_extent_state(cached_state); 437 cached_state = NULL; 438 if (!loops) { 439 max_bytes = fs_info->sectorsize; 440 loops = 1; 441 goto again; 442 } else { 443 found = false; 444 goto out_failed; 445 } 446 } 447 448 /* step three, lock the state bits for the whole range */ 449 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 450 451 /* then test to make sure it is all still delalloc */ 452 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 453 EXTENT_DELALLOC, cached_state); 454 455 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 456 if (!ret) { 457 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 458 delalloc_end); 459 cond_resched(); 460 goto again; 461 } 462 *start = delalloc_start; 463 *end = delalloc_end; 464 out_failed: 465 return found; 466 } 467 468 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 469 const struct folio *locked_folio, 470 struct extent_state **cached, 471 u32 clear_bits, unsigned long page_ops) 472 { 473 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 474 475 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 476 end, page_ops); 477 } 478 479 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 480 { 481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 482 483 if (!fsverity_active(folio->mapping->host) || 484 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 485 start >= i_size_read(folio->mapping->host)) 486 return true; 487 return fsverity_verify_folio(folio); 488 } 489 490 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 491 { 492 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 493 494 ASSERT(folio_pos(folio) <= start && 495 start + len <= folio_next_pos(folio)); 496 497 if (uptodate && btrfs_verify_folio(folio, start, len)) 498 btrfs_folio_set_uptodate(fs_info, folio, start, len); 499 else 500 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 501 502 if (!btrfs_is_subpage(fs_info, folio)) 503 folio_unlock(folio); 504 else 505 btrfs_folio_end_lock(fs_info, folio, start, len); 506 } 507 508 /* 509 * After a write IO is done, we need to: 510 * 511 * - clear the uptodate bits on error 512 * - clear the writeback bits in the extent tree for the range 513 * - filio_end_writeback() if there is no more pending io for the folio 514 * 515 * Scheduling is not allowed, so the extent state tree is expected 516 * to have one and only one object corresponding to this IO. 517 */ 518 static void end_bbio_data_write(struct btrfs_bio *bbio) 519 { 520 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 521 struct bio *bio = &bbio->bio; 522 int error = blk_status_to_errno(bio->bi_status); 523 struct folio_iter fi; 524 const u32 sectorsize = fs_info->sectorsize; 525 526 ASSERT(!bio_flagged(bio, BIO_CLONED)); 527 bio_for_each_folio_all(fi, bio) { 528 struct folio *folio = fi.folio; 529 u64 start = folio_pos(folio) + fi.offset; 530 u32 len = fi.length; 531 532 /* Our read/write should always be sector aligned. */ 533 if (!IS_ALIGNED(fi.offset, sectorsize)) 534 btrfs_err(fs_info, 535 "partial page write in btrfs with offset %zu and length %zu", 536 fi.offset, fi.length); 537 else if (!IS_ALIGNED(fi.length, sectorsize)) 538 btrfs_info(fs_info, 539 "incomplete page write with offset %zu and length %zu", 540 fi.offset, fi.length); 541 542 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 543 !error); 544 if (error) 545 mapping_set_error(folio->mapping, error); 546 btrfs_folio_clear_writeback(fs_info, folio, start, len); 547 } 548 549 bio_put(bio); 550 } 551 552 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 553 { 554 ASSERT(folio_test_locked(folio)); 555 if (!btrfs_is_subpage(fs_info, folio)) 556 return; 557 558 ASSERT(folio_test_private(folio)); 559 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 560 } 561 562 /* 563 * After a data read IO is done, we need to: 564 * 565 * - clear the uptodate bits on error 566 * - set the uptodate bits if things worked 567 * - set the folio up to date if all extents in the tree are uptodate 568 * - clear the lock bit in the extent tree 569 * - unlock the folio if there are no other extents locked for it 570 * 571 * Scheduling is not allowed, so the extent state tree is expected 572 * to have one and only one object corresponding to this IO. 573 */ 574 static void end_bbio_data_read(struct btrfs_bio *bbio) 575 { 576 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 577 struct bio *bio = &bbio->bio; 578 struct folio_iter fi; 579 580 ASSERT(!bio_flagged(bio, BIO_CLONED)); 581 bio_for_each_folio_all(fi, &bbio->bio) { 582 bool uptodate = !bio->bi_status; 583 struct folio *folio = fi.folio; 584 struct inode *inode = folio->mapping->host; 585 u64 start = folio_pos(folio) + fi.offset; 586 587 btrfs_debug(fs_info, 588 "%s: bi_sector=%llu, err=%d, mirror=%u", 589 __func__, bio->bi_iter.bi_sector, bio->bi_status, 590 bbio->mirror_num); 591 592 593 if (likely(uptodate)) { 594 u64 end = start + fi.length - 1; 595 loff_t i_size = i_size_read(inode); 596 597 /* 598 * Zero out the remaining part if this range straddles 599 * i_size. 600 * 601 * Here we should only zero the range inside the folio, 602 * not touch anything else. 603 * 604 * NOTE: i_size is exclusive while end is inclusive and 605 * folio_contains() takes PAGE_SIZE units. 606 */ 607 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 608 i_size <= end) { 609 u32 zero_start = max(offset_in_folio(folio, i_size), 610 offset_in_folio(folio, start)); 611 u32 zero_len = offset_in_folio(folio, end) + 1 - 612 zero_start; 613 614 folio_zero_range(folio, zero_start, zero_len); 615 } 616 } 617 618 /* Update page status and unlock. */ 619 end_folio_read(folio, uptodate, start, fi.length); 620 } 621 bio_put(bio); 622 } 623 624 /* 625 * Populate every free slot in a provided array with folios using GFP_NOFS. 626 * 627 * @nr_folios: number of folios to allocate 628 * @order: the order of the folios to be allocated 629 * @folio_array: the array to fill with folios; any existing non-NULL entries in 630 * the array will be skipped 631 * 632 * Return: 0 if all folios were able to be allocated; 633 * -ENOMEM otherwise, the partially allocated folios would be freed and 634 * the array slots zeroed 635 */ 636 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order, 637 struct folio **folio_array) 638 { 639 for (int i = 0; i < nr_folios; i++) { 640 if (folio_array[i]) 641 continue; 642 folio_array[i] = folio_alloc(GFP_NOFS, order); 643 if (!folio_array[i]) 644 goto error; 645 } 646 return 0; 647 error: 648 for (int i = 0; i < nr_folios; i++) { 649 if (folio_array[i]) 650 folio_put(folio_array[i]); 651 folio_array[i] = NULL; 652 } 653 return -ENOMEM; 654 } 655 656 /* 657 * Populate every free slot in a provided array with pages, using GFP_NOFS. 658 * 659 * @nr_pages: number of pages to allocate 660 * @page_array: the array to fill with pages; any existing non-null entries in 661 * the array will be skipped 662 * @nofail: whether using __GFP_NOFAIL flag 663 * 664 * Return: 0 if all pages were able to be allocated; 665 * -ENOMEM otherwise, the partially allocated pages would be freed and 666 * the array slots zeroed 667 */ 668 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 669 bool nofail) 670 { 671 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 672 unsigned int allocated; 673 674 for (allocated = 0; allocated < nr_pages;) { 675 unsigned int last = allocated; 676 677 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 678 if (unlikely(allocated == last)) { 679 /* No progress, fail and do cleanup. */ 680 for (int i = 0; i < allocated; i++) { 681 __free_page(page_array[i]); 682 page_array[i] = NULL; 683 } 684 return -ENOMEM; 685 } 686 } 687 return 0; 688 } 689 690 /* 691 * Populate needed folios for the extent buffer. 692 * 693 * For now, the folios populated are always in order 0 (aka, single page). 694 */ 695 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 696 { 697 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 698 int num_pages = num_extent_pages(eb); 699 int ret; 700 701 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 702 if (ret < 0) 703 return ret; 704 705 for (int i = 0; i < num_pages; i++) 706 eb->folios[i] = page_folio(page_array[i]); 707 eb->folio_size = PAGE_SIZE; 708 eb->folio_shift = PAGE_SHIFT; 709 return 0; 710 } 711 712 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 713 u64 disk_bytenr, loff_t file_offset) 714 { 715 struct bio *bio = &bio_ctrl->bbio->bio; 716 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 717 718 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 719 /* 720 * For compression, all IO should have its logical bytenr set 721 * to the starting bytenr of the compressed extent. 722 */ 723 return bio->bi_iter.bi_sector == sector; 724 } 725 726 /* 727 * To merge into a bio both the disk sector and the logical offset in 728 * the file need to be contiguous. 729 */ 730 return bio_ctrl->next_file_offset == file_offset && 731 bio_end_sector(bio) == sector; 732 } 733 734 static void alloc_new_bio(struct btrfs_inode *inode, 735 struct btrfs_bio_ctrl *bio_ctrl, 736 u64 disk_bytenr, u64 file_offset) 737 { 738 struct btrfs_fs_info *fs_info = inode->root->fs_info; 739 struct btrfs_bio *bbio; 740 741 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, inode, 742 file_offset, bio_ctrl->end_io_func, NULL); 743 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 744 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 745 bio_ctrl->bbio = bbio; 746 bio_ctrl->len_to_oe_boundary = U32_MAX; 747 bio_ctrl->next_file_offset = file_offset; 748 749 /* Limit data write bios to the ordered boundary. */ 750 if (bio_ctrl->wbc) { 751 struct btrfs_ordered_extent *ordered; 752 753 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 754 if (ordered) { 755 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 756 ordered->file_offset + 757 ordered->disk_num_bytes - file_offset); 758 bbio->ordered = ordered; 759 } 760 761 /* 762 * Pick the last added device to support cgroup writeback. For 763 * multi-device file systems this means blk-cgroup policies have 764 * to always be set on the last added/replaced device. 765 * This is a bit odd but has been like that for a long time. 766 */ 767 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 768 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 769 } 770 } 771 772 /* 773 * @disk_bytenr: logical bytenr where the write will be 774 * @page: page to add to the bio 775 * @size: portion of page that we want to write to 776 * @pg_offset: offset of the new bio or to check whether we are adding 777 * a contiguous page to the previous one 778 * @read_em_generation: generation of the extent_map we are submitting 779 * (only used for read) 780 * 781 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 782 * new one in @bio_ctrl->bbio. 783 * The mirror number for this IO should already be initialized in 784 * @bio_ctrl->mirror_num. 785 */ 786 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 787 u64 disk_bytenr, struct folio *folio, 788 size_t size, unsigned long pg_offset, 789 u64 read_em_generation) 790 { 791 struct btrfs_inode *inode = folio_to_inode(folio); 792 loff_t file_offset = folio_pos(folio) + pg_offset; 793 794 ASSERT(pg_offset + size <= folio_size(folio)); 795 ASSERT(bio_ctrl->end_io_func); 796 797 if (bio_ctrl->bbio && 798 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 799 submit_one_bio(bio_ctrl); 800 801 do { 802 u32 len = size; 803 804 /* Allocate new bio if needed */ 805 if (!bio_ctrl->bbio) 806 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 807 808 /* Cap to the current ordered extent boundary if there is one. */ 809 if (len > bio_ctrl->len_to_oe_boundary) { 810 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 811 ASSERT(is_data_inode(inode)); 812 len = bio_ctrl->len_to_oe_boundary; 813 } 814 815 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 816 /* bio full: move on to a new one */ 817 submit_one_bio(bio_ctrl); 818 continue; 819 } 820 /* 821 * Now that the folio is definitely added to the bio, include its 822 * generation in the max generation calculation. 823 */ 824 bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation); 825 bio_ctrl->next_file_offset += len; 826 827 if (bio_ctrl->wbc) 828 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 829 830 size -= len; 831 pg_offset += len; 832 disk_bytenr += len; 833 file_offset += len; 834 835 /* 836 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 837 * sector aligned. alloc_new_bio() then sets it to the end of 838 * our ordered extent for writes into zoned devices. 839 * 840 * When len_to_oe_boundary is tracking an ordered extent, we 841 * trust the ordered extent code to align things properly, and 842 * the check above to cap our write to the ordered extent 843 * boundary is correct. 844 * 845 * When len_to_oe_boundary is U32_MAX, the cap above would 846 * result in a 4095 byte IO for the last folio right before 847 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 848 * the checks required to make sure we don't overflow the bio, 849 * and we should just ignore len_to_oe_boundary completely 850 * unless we're using it to track an ordered extent. 851 * 852 * It's pretty hard to make a bio sized U32_MAX, but it can 853 * happen when the page cache is able to feed us contiguous 854 * folios for large extents. 855 */ 856 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 857 bio_ctrl->len_to_oe_boundary -= len; 858 859 /* Ordered extent boundary: move on to a new bio. */ 860 if (bio_ctrl->len_to_oe_boundary == 0) 861 submit_one_bio(bio_ctrl); 862 } while (size); 863 } 864 865 static int attach_extent_buffer_folio(struct extent_buffer *eb, 866 struct folio *folio, 867 struct btrfs_folio_state *prealloc) 868 { 869 struct btrfs_fs_info *fs_info = eb->fs_info; 870 int ret = 0; 871 872 /* 873 * If the page is mapped to btree inode, we should hold the private 874 * lock to prevent race. 875 * For cloned or dummy extent buffers, their pages are not mapped and 876 * will not race with any other ebs. 877 */ 878 if (folio->mapping) 879 lockdep_assert_held(&folio->mapping->i_private_lock); 880 881 if (!btrfs_meta_is_subpage(fs_info)) { 882 if (!folio_test_private(folio)) 883 folio_attach_private(folio, eb); 884 else 885 WARN_ON(folio_get_private(folio) != eb); 886 return 0; 887 } 888 889 /* Already mapped, just free prealloc */ 890 if (folio_test_private(folio)) { 891 btrfs_free_folio_state(prealloc); 892 return 0; 893 } 894 895 if (prealloc) 896 /* Has preallocated memory for subpage */ 897 folio_attach_private(folio, prealloc); 898 else 899 /* Do new allocation to attach subpage */ 900 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 901 return ret; 902 } 903 904 int set_folio_extent_mapped(struct folio *folio) 905 { 906 struct btrfs_fs_info *fs_info; 907 908 ASSERT(folio->mapping); 909 910 if (folio_test_private(folio)) 911 return 0; 912 913 fs_info = folio_to_fs_info(folio); 914 915 if (btrfs_is_subpage(fs_info, folio)) 916 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 917 918 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 919 return 0; 920 } 921 922 void clear_folio_extent_mapped(struct folio *folio) 923 { 924 struct btrfs_fs_info *fs_info; 925 926 ASSERT(folio->mapping); 927 928 if (!folio_test_private(folio)) 929 return; 930 931 fs_info = folio_to_fs_info(folio); 932 if (btrfs_is_subpage(fs_info, folio)) 933 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 934 935 folio_detach_private(folio); 936 } 937 938 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 939 struct folio *folio, u64 start, 940 u64 len, struct extent_map **em_cached) 941 { 942 struct extent_map *em; 943 944 ASSERT(em_cached); 945 946 if (*em_cached) { 947 em = *em_cached; 948 if (btrfs_extent_map_in_tree(em) && start >= em->start && 949 start < btrfs_extent_map_end(em)) { 950 refcount_inc(&em->refs); 951 return em; 952 } 953 954 btrfs_free_extent_map(em); 955 *em_cached = NULL; 956 } 957 958 em = btrfs_get_extent(inode, folio, start, len); 959 if (!IS_ERR(em)) { 960 BUG_ON(*em_cached); 961 refcount_inc(&em->refs); 962 *em_cached = em; 963 } 964 965 return em; 966 } 967 968 static void btrfs_readahead_expand(struct readahead_control *ractl, 969 const struct extent_map *em) 970 { 971 const u64 ra_pos = readahead_pos(ractl); 972 const u64 ra_end = ra_pos + readahead_length(ractl); 973 const u64 em_end = em->start + em->len; 974 975 /* No expansion for holes and inline extents. */ 976 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) 977 return; 978 979 ASSERT(em_end >= ra_pos, 980 "extent_map %llu %llu ends before current readahead position %llu", 981 em->start, em->len, ra_pos); 982 if (em_end > ra_end) 983 readahead_expand(ractl, ra_pos, em_end - ra_pos); 984 } 985 986 /* 987 * basic readpage implementation. Locked extent state structs are inserted 988 * into the tree that are removed when the IO is done (by the end_io 989 * handlers) 990 * XXX JDM: This needs looking at to ensure proper page locking 991 * return 0 on success, otherwise return error 992 */ 993 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 994 struct btrfs_bio_ctrl *bio_ctrl) 995 { 996 struct inode *inode = folio->mapping->host; 997 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 998 u64 start = folio_pos(folio); 999 const u64 end = start + folio_size(folio) - 1; 1000 u64 extent_offset; 1001 u64 last_byte = i_size_read(inode); 1002 struct extent_map *em; 1003 int ret = 0; 1004 const size_t blocksize = fs_info->sectorsize; 1005 1006 ret = set_folio_extent_mapped(folio); 1007 if (ret < 0) { 1008 folio_unlock(folio); 1009 return ret; 1010 } 1011 1012 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 1013 size_t zero_offset = offset_in_folio(folio, last_byte); 1014 1015 if (zero_offset) 1016 folio_zero_range(folio, zero_offset, 1017 folio_size(folio) - zero_offset); 1018 } 1019 bio_ctrl->end_io_func = end_bbio_data_read; 1020 begin_folio_read(fs_info, folio); 1021 for (u64 cur = start; cur <= end; cur += blocksize) { 1022 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1023 unsigned long pg_offset = offset_in_folio(folio, cur); 1024 bool force_bio_submit = false; 1025 u64 disk_bytenr; 1026 u64 block_start; 1027 u64 em_gen; 1028 1029 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1030 if (cur >= last_byte) { 1031 folio_zero_range(folio, pg_offset, end - cur + 1); 1032 end_folio_read(folio, true, cur, end - cur + 1); 1033 break; 1034 } 1035 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1036 end_folio_read(folio, true, cur, blocksize); 1037 continue; 1038 } 1039 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 1040 if (IS_ERR(em)) { 1041 end_folio_read(folio, false, cur, end + 1 - cur); 1042 return PTR_ERR(em); 1043 } 1044 extent_offset = cur - em->start; 1045 BUG_ON(btrfs_extent_map_end(em) <= cur); 1046 BUG_ON(end < cur); 1047 1048 compress_type = btrfs_extent_map_compression(em); 1049 1050 /* 1051 * Only expand readahead for extents which are already creating 1052 * the pages anyway in add_ra_bio_pages, which is compressed 1053 * extents in the non subpage case. 1054 */ 1055 if (bio_ctrl->ractl && 1056 !btrfs_is_subpage(fs_info, folio) && 1057 compress_type != BTRFS_COMPRESS_NONE) 1058 btrfs_readahead_expand(bio_ctrl->ractl, em); 1059 1060 if (compress_type != BTRFS_COMPRESS_NONE) 1061 disk_bytenr = em->disk_bytenr; 1062 else 1063 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1064 1065 if (em->flags & EXTENT_FLAG_PREALLOC) 1066 block_start = EXTENT_MAP_HOLE; 1067 else 1068 block_start = btrfs_extent_map_block_start(em); 1069 1070 /* 1071 * If we have a file range that points to a compressed extent 1072 * and it's followed by a consecutive file range that points 1073 * to the same compressed extent (possibly with a different 1074 * offset and/or length, so it either points to the whole extent 1075 * or only part of it), we must make sure we do not submit a 1076 * single bio to populate the folios for the 2 ranges because 1077 * this makes the compressed extent read zero out the folios 1078 * belonging to the 2nd range. Imagine the following scenario: 1079 * 1080 * File layout 1081 * [0 - 8K] [8K - 24K] 1082 * | | 1083 * | | 1084 * points to extent X, points to extent X, 1085 * offset 4K, length of 8K offset 0, length 16K 1086 * 1087 * [extent X, compressed length = 4K uncompressed length = 16K] 1088 * 1089 * If the bio to read the compressed extent covers both ranges, 1090 * it will decompress extent X into the folios belonging to the 1091 * first range and then it will stop, zeroing out the remaining 1092 * folios that belong to the other range that points to extent X. 1093 * So here we make sure we submit 2 bios, one for the first 1094 * range and another one for the third range. Both will target 1095 * the same physical extent from disk, but we can't currently 1096 * make the compressed bio endio callback populate the folios 1097 * for both ranges because each compressed bio is tightly 1098 * coupled with a single extent map, and each range can have 1099 * an extent map with a different offset value relative to the 1100 * uncompressed data of our extent and different lengths. This 1101 * is a corner case so we prioritize correctness over 1102 * non-optimal behavior (submitting 2 bios for the same extent). 1103 */ 1104 if (compress_type != BTRFS_COMPRESS_NONE && 1105 bio_ctrl->last_em_start != U64_MAX && 1106 bio_ctrl->last_em_start != em->start) 1107 force_bio_submit = true; 1108 1109 bio_ctrl->last_em_start = em->start; 1110 1111 em_gen = em->generation; 1112 btrfs_free_extent_map(em); 1113 em = NULL; 1114 1115 /* we've found a hole, just zero and go on */ 1116 if (block_start == EXTENT_MAP_HOLE) { 1117 folio_zero_range(folio, pg_offset, blocksize); 1118 end_folio_read(folio, true, cur, blocksize); 1119 continue; 1120 } 1121 /* the get_extent function already copied into the folio */ 1122 if (block_start == EXTENT_MAP_INLINE) { 1123 end_folio_read(folio, true, cur, blocksize); 1124 continue; 1125 } 1126 1127 if (bio_ctrl->compress_type != compress_type) { 1128 submit_one_bio(bio_ctrl); 1129 bio_ctrl->compress_type = compress_type; 1130 } 1131 1132 if (force_bio_submit) 1133 submit_one_bio(bio_ctrl); 1134 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1135 pg_offset, em_gen); 1136 } 1137 return 0; 1138 } 1139 1140 /* 1141 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1142 * 1143 * @fileoff: Both input and output. 1144 * Input as the file offset where the check should start at. 1145 * Output as where the next check should start at, 1146 * if the function returns true. 1147 * 1148 * Return true if we can skip to @fileoff. The caller needs to check the new 1149 * @fileoff value to make sure it covers the full range, before skipping the 1150 * full OE. 1151 * 1152 * Return false if we must wait for the ordered extent. 1153 */ 1154 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1155 struct btrfs_ordered_extent *ordered, 1156 u64 *fileoff) 1157 { 1158 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1159 struct folio *folio; 1160 const u32 blocksize = fs_info->sectorsize; 1161 u64 cur = *fileoff; 1162 bool ret; 1163 1164 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1165 1166 /* 1167 * We should have locked the folio(s) for range [start, end], thus 1168 * there must be a folio and it must be locked. 1169 */ 1170 ASSERT(!IS_ERR(folio)); 1171 ASSERT(folio_test_locked(folio)); 1172 1173 /* 1174 * There are several cases for the folio and OE combination: 1175 * 1176 * 1) Folio has no private flag 1177 * The OE has all its IO done but not yet finished, and folio got 1178 * invalidated. 1179 * 1180 * Have we have to wait for the OE to finish, as it may contain the 1181 * to-be-inserted data checksum. 1182 * Without the data checksum inserted into the csum tree, read will 1183 * just fail with missing csum. 1184 */ 1185 if (!folio_test_private(folio)) { 1186 ret = false; 1187 goto out; 1188 } 1189 1190 /* 1191 * 2) The first block is DIRTY. 1192 * 1193 * This means the OE is created by some other folios whose file pos is 1194 * before this one. And since we are holding the folio lock, the writeback 1195 * of this folio cannot start. 1196 * 1197 * We must skip the whole OE, because it will never start until we 1198 * finished our folio read and unlocked the folio. 1199 */ 1200 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1201 u64 range_len = umin(folio_next_pos(folio), 1202 ordered->file_offset + ordered->num_bytes) - cur; 1203 1204 ret = true; 1205 /* 1206 * At least inside the folio, all the remaining blocks should 1207 * also be dirty. 1208 */ 1209 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1210 *fileoff = ordered->file_offset + ordered->num_bytes; 1211 goto out; 1212 } 1213 1214 /* 1215 * 3) The first block is uptodate. 1216 * 1217 * At least the first block can be skipped, but we are still not fully 1218 * sure. E.g. if the OE has some other folios in the range that cannot 1219 * be skipped. 1220 * So we return true and update @next_ret to the OE/folio boundary. 1221 */ 1222 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1223 u64 range_len = umin(folio_next_pos(folio), 1224 ordered->file_offset + ordered->num_bytes) - cur; 1225 1226 /* 1227 * The whole range to the OE end or folio boundary should also 1228 * be uptodate. 1229 */ 1230 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1231 ret = true; 1232 *fileoff = cur + range_len; 1233 goto out; 1234 } 1235 1236 /* 1237 * 4) The first block is not uptodate. 1238 * 1239 * This means the folio is invalidated after the writeback was finished, 1240 * but by some other operations (e.g. block aligned buffered write) the 1241 * folio is inserted into filemap. 1242 * Very much the same as case 1). 1243 */ 1244 ret = false; 1245 out: 1246 folio_put(folio); 1247 return ret; 1248 } 1249 1250 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1251 struct btrfs_ordered_extent *ordered, 1252 u64 start, u64 end) 1253 { 1254 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1255 u64 cur = max(start, ordered->file_offset); 1256 1257 while (cur < range_end) { 1258 bool can_skip; 1259 1260 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1261 if (!can_skip) 1262 return false; 1263 } 1264 return true; 1265 } 1266 1267 /* 1268 * Locking helper to make sure we get a stable view of extent maps for the 1269 * involved range. 1270 * 1271 * This is for folio read paths (read and readahead), thus the involved range 1272 * should have all the folios locked. 1273 */ 1274 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1275 struct extent_state **cached_state) 1276 { 1277 u64 cur_pos; 1278 1279 /* Caller must provide a valid @cached_state. */ 1280 ASSERT(cached_state); 1281 1282 /* The range must at least be page aligned, as all read paths are folio based. */ 1283 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1284 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1285 1286 again: 1287 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1288 cur_pos = start; 1289 while (cur_pos < end) { 1290 struct btrfs_ordered_extent *ordered; 1291 1292 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1293 end - cur_pos + 1); 1294 /* 1295 * No ordered extents in the range, and we hold the extent lock, 1296 * no one can modify the extent maps in the range, we're safe to return. 1297 */ 1298 if (!ordered) 1299 break; 1300 1301 /* Check if we can skip waiting for the whole OE. */ 1302 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1303 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1304 end + 1); 1305 btrfs_put_ordered_extent(ordered); 1306 continue; 1307 } 1308 1309 /* Now wait for the OE to finish. */ 1310 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1311 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1312 btrfs_put_ordered_extent(ordered); 1313 /* We have unlocked the whole range, restart from the beginning. */ 1314 goto again; 1315 } 1316 } 1317 1318 int btrfs_read_folio(struct file *file, struct folio *folio) 1319 { 1320 struct btrfs_inode *inode = folio_to_inode(folio); 1321 const u64 start = folio_pos(folio); 1322 const u64 end = start + folio_size(folio) - 1; 1323 struct extent_state *cached_state = NULL; 1324 struct btrfs_bio_ctrl bio_ctrl = { 1325 .opf = REQ_OP_READ, 1326 .last_em_start = U64_MAX, 1327 }; 1328 struct extent_map *em_cached = NULL; 1329 int ret; 1330 1331 lock_extents_for_read(inode, start, end, &cached_state); 1332 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl); 1333 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1334 1335 btrfs_free_extent_map(em_cached); 1336 1337 /* 1338 * If btrfs_do_readpage() failed we will want to submit the assembled 1339 * bio to do the cleanup. 1340 */ 1341 submit_one_bio(&bio_ctrl); 1342 return ret; 1343 } 1344 1345 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1346 u64 start, u32 len) 1347 { 1348 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1349 const u64 folio_start = folio_pos(folio); 1350 unsigned int start_bit; 1351 unsigned int nbits; 1352 1353 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1354 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1355 nbits = len >> fs_info->sectorsize_bits; 1356 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1357 bitmap_set(delalloc_bitmap, start_bit, nbits); 1358 } 1359 1360 static bool find_next_delalloc_bitmap(struct folio *folio, 1361 unsigned long *delalloc_bitmap, u64 start, 1362 u64 *found_start, u32 *found_len) 1363 { 1364 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1365 const u64 folio_start = folio_pos(folio); 1366 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1367 unsigned int start_bit; 1368 unsigned int first_zero; 1369 unsigned int first_set; 1370 1371 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1372 1373 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1374 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1375 if (first_set >= bitmap_size) 1376 return false; 1377 1378 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1379 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1380 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1381 return true; 1382 } 1383 1384 /* 1385 * Do all of the delayed allocation setup. 1386 * 1387 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1388 * The @folio should no longer be touched (treat it as already unlocked). 1389 * 1390 * Return 0 if there is still dirty block that needs to be submitted through 1391 * extent_writepage_io(). 1392 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1393 * submitted, and @folio is still kept locked. 1394 * 1395 * Return <0 if there is any error hit. 1396 * Any allocated ordered extent range covering this folio will be marked 1397 * finished (IOERR), and @folio is still kept locked. 1398 */ 1399 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1400 struct folio *folio, 1401 struct btrfs_bio_ctrl *bio_ctrl) 1402 { 1403 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1404 struct writeback_control *wbc = bio_ctrl->wbc; 1405 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1406 const u64 page_start = folio_pos(folio); 1407 const u64 page_end = page_start + folio_size(folio) - 1; 1408 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1409 unsigned long delalloc_bitmap = 0; 1410 /* 1411 * Save the last found delalloc end. As the delalloc end can go beyond 1412 * page boundary, thus we cannot rely on subpage bitmap to locate the 1413 * last delalloc end. 1414 */ 1415 u64 last_delalloc_end = 0; 1416 /* 1417 * The range end (exclusive) of the last successfully finished delalloc 1418 * range. 1419 * Any range covered by ordered extent must either be manually marked 1420 * finished (error handling), or has IO submitted (and finish the 1421 * ordered extent normally). 1422 * 1423 * This records the end of ordered extent cleanup if we hit an error. 1424 */ 1425 u64 last_finished_delalloc_end = page_start; 1426 u64 delalloc_start = page_start; 1427 u64 delalloc_end = page_end; 1428 u64 delalloc_to_write = 0; 1429 int ret = 0; 1430 int bit; 1431 1432 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1433 if (btrfs_is_subpage(fs_info, folio)) { 1434 ASSERT(blocks_per_folio > 1); 1435 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1436 } else { 1437 bio_ctrl->submit_bitmap = 1; 1438 } 1439 1440 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1441 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1442 1443 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1444 } 1445 1446 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1447 while (delalloc_start < page_end) { 1448 delalloc_end = page_end; 1449 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1450 &delalloc_start, &delalloc_end)) { 1451 delalloc_start = delalloc_end + 1; 1452 continue; 1453 } 1454 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1455 min(delalloc_end, page_end) + 1 - delalloc_start); 1456 last_delalloc_end = delalloc_end; 1457 delalloc_start = delalloc_end + 1; 1458 } 1459 delalloc_start = page_start; 1460 1461 if (!last_delalloc_end) 1462 goto out; 1463 1464 /* Run the delalloc ranges for the above locked ranges. */ 1465 while (delalloc_start < page_end) { 1466 u64 found_start; 1467 u32 found_len; 1468 bool found; 1469 1470 if (!is_subpage) { 1471 /* 1472 * For non-subpage case, the found delalloc range must 1473 * cover this folio and there must be only one locked 1474 * delalloc range. 1475 */ 1476 found_start = page_start; 1477 found_len = last_delalloc_end + 1 - found_start; 1478 found = true; 1479 } else { 1480 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1481 delalloc_start, &found_start, &found_len); 1482 } 1483 if (!found) 1484 break; 1485 /* 1486 * The subpage range covers the last sector, the delalloc range may 1487 * end beyond the folio boundary, use the saved delalloc_end 1488 * instead. 1489 */ 1490 if (found_start + found_len >= page_end) 1491 found_len = last_delalloc_end + 1 - found_start; 1492 1493 if (ret >= 0) { 1494 /* 1495 * Some delalloc range may be created by previous folios. 1496 * Thus we still need to clean up this range during error 1497 * handling. 1498 */ 1499 last_finished_delalloc_end = found_start; 1500 /* No errors hit so far, run the current delalloc range. */ 1501 ret = btrfs_run_delalloc_range(inode, folio, 1502 found_start, 1503 found_start + found_len - 1, 1504 wbc); 1505 if (ret >= 0) 1506 last_finished_delalloc_end = found_start + found_len; 1507 if (unlikely(ret < 0)) 1508 btrfs_err_rl(fs_info, 1509 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1510 btrfs_root_id(inode->root), 1511 btrfs_ino(inode), 1512 folio_pos(folio), 1513 blocks_per_folio, 1514 &bio_ctrl->submit_bitmap, 1515 found_start, found_len, ret); 1516 } else { 1517 /* 1518 * We've hit an error during previous delalloc range, 1519 * have to cleanup the remaining locked ranges. 1520 */ 1521 btrfs_unlock_extent(&inode->io_tree, found_start, 1522 found_start + found_len - 1, NULL); 1523 unlock_delalloc_folio(&inode->vfs_inode, folio, 1524 found_start, 1525 found_start + found_len - 1); 1526 } 1527 1528 /* 1529 * We have some ranges that's going to be submitted asynchronously 1530 * (compression or inline). These range have their own control 1531 * on when to unlock the pages. We should not touch them 1532 * anymore, so clear the range from the submission bitmap. 1533 */ 1534 if (ret > 0) { 1535 unsigned int start_bit = (found_start - page_start) >> 1536 fs_info->sectorsize_bits; 1537 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1538 page_start) >> fs_info->sectorsize_bits; 1539 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1540 } 1541 /* 1542 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1543 * thus for the last range, we cannot touch the folio anymore. 1544 */ 1545 if (found_start + found_len >= last_delalloc_end + 1) 1546 break; 1547 1548 delalloc_start = found_start + found_len; 1549 } 1550 /* 1551 * It's possible we had some ordered extents created before we hit 1552 * an error, cleanup non-async successfully created delalloc ranges. 1553 */ 1554 if (unlikely(ret < 0)) { 1555 unsigned int bitmap_size = min( 1556 (last_finished_delalloc_end - page_start) >> 1557 fs_info->sectorsize_bits, 1558 blocks_per_folio); 1559 1560 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1561 btrfs_mark_ordered_io_finished(inode, folio, 1562 page_start + (bit << fs_info->sectorsize_bits), 1563 fs_info->sectorsize, false); 1564 return ret; 1565 } 1566 out: 1567 if (last_delalloc_end) 1568 delalloc_end = last_delalloc_end; 1569 else 1570 delalloc_end = page_end; 1571 /* 1572 * delalloc_end is already one less than the total length, so 1573 * we don't subtract one from PAGE_SIZE. 1574 */ 1575 delalloc_to_write += 1576 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1577 1578 /* 1579 * If all ranges are submitted asynchronously, we just need to account 1580 * for them here. 1581 */ 1582 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1583 wbc->nr_to_write -= delalloc_to_write; 1584 return 1; 1585 } 1586 1587 if (wbc->nr_to_write < delalloc_to_write) { 1588 int thresh = 8192; 1589 1590 if (delalloc_to_write < thresh * 2) 1591 thresh = delalloc_to_write; 1592 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1593 thresh); 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Return 0 if we have submitted or queued the sector for submission. 1601 * Return <0 for critical errors, and the sector will have its dirty flag cleared. 1602 * 1603 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1604 */ 1605 static int submit_one_sector(struct btrfs_inode *inode, 1606 struct folio *folio, 1607 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1608 loff_t i_size) 1609 { 1610 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1611 struct extent_map *em; 1612 u64 block_start; 1613 u64 disk_bytenr; 1614 u64 extent_offset; 1615 u64 em_end; 1616 const u32 sectorsize = fs_info->sectorsize; 1617 1618 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1619 1620 /* @filepos >= i_size case should be handled by the caller. */ 1621 ASSERT(filepos < i_size); 1622 1623 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1624 if (IS_ERR(em)) { 1625 /* 1626 * When submission failed, we should still clear the folio dirty. 1627 * Or the folio will be written back again but without any 1628 * ordered extent. 1629 */ 1630 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1631 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1632 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize); 1633 return PTR_ERR(em); 1634 } 1635 1636 extent_offset = filepos - em->start; 1637 em_end = btrfs_extent_map_end(em); 1638 ASSERT(filepos <= em_end); 1639 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1640 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1641 1642 block_start = btrfs_extent_map_block_start(em); 1643 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1644 1645 ASSERT(!btrfs_extent_map_is_compressed(em)); 1646 ASSERT(block_start != EXTENT_MAP_HOLE); 1647 ASSERT(block_start != EXTENT_MAP_INLINE); 1648 1649 btrfs_free_extent_map(em); 1650 em = NULL; 1651 1652 /* 1653 * Although the PageDirty bit is cleared before entering this 1654 * function, subpage dirty bit is not cleared. 1655 * So clear subpage dirty bit here so next time we won't submit 1656 * a folio for a range already written to disk. 1657 */ 1658 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1659 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1660 /* 1661 * Above call should set the whole folio with writeback flag, even 1662 * just for a single subpage sector. 1663 * As long as the folio is properly locked and the range is correct, 1664 * we should always get the folio with writeback flag. 1665 */ 1666 ASSERT(folio_test_writeback(folio)); 1667 1668 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1669 sectorsize, filepos - folio_pos(folio), 0); 1670 return 0; 1671 } 1672 1673 /* 1674 * Helper for extent_writepage(). This calls the writepage start hooks, 1675 * and does the loop to map the page into extents and bios. 1676 * 1677 * We return 1 if the IO is started and the page is unlocked, 1678 * 0 if all went well (page still locked) 1679 * < 0 if there were errors (page still locked) 1680 */ 1681 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1682 struct folio *folio, 1683 u64 start, u32 len, 1684 struct btrfs_bio_ctrl *bio_ctrl, 1685 loff_t i_size) 1686 { 1687 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1688 unsigned long range_bitmap = 0; 1689 bool submitted_io = false; 1690 int found_error = 0; 1691 const u64 end = start + len; 1692 const u64 folio_start = folio_pos(folio); 1693 const u64 folio_end = folio_start + folio_size(folio); 1694 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1695 u64 cur; 1696 int bit; 1697 int ret = 0; 1698 1699 ASSERT(start >= folio_start, "start=%llu folio_start=%llu", start, folio_start); 1700 ASSERT(end <= folio_end, "start=%llu len=%u folio_start=%llu folio_size=%zu", 1701 start, len, folio_start, folio_size(folio)); 1702 1703 ret = btrfs_writepage_cow_fixup(folio); 1704 if (ret == -EAGAIN) { 1705 /* Fixup worker will requeue */ 1706 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1707 folio_unlock(folio); 1708 return 1; 1709 } 1710 if (ret < 0) { 1711 btrfs_folio_clear_dirty(fs_info, folio, start, len); 1712 btrfs_folio_set_writeback(fs_info, folio, start, len); 1713 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1714 return ret; 1715 } 1716 1717 for (cur = start; cur < end; cur += fs_info->sectorsize) 1718 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1719 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1720 blocks_per_folio); 1721 1722 bio_ctrl->end_io_func = end_bbio_data_write; 1723 1724 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1725 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1726 1727 if (cur >= i_size) { 1728 struct btrfs_ordered_extent *ordered; 1729 1730 ordered = btrfs_lookup_first_ordered_range(inode, cur, 1731 folio_end - cur); 1732 /* 1733 * We have just run delalloc before getting here, so 1734 * there must be an ordered extent. 1735 */ 1736 ASSERT(ordered != NULL); 1737 spin_lock(&inode->ordered_tree_lock); 1738 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 1739 ordered->truncated_len = min(ordered->truncated_len, 1740 cur - ordered->file_offset); 1741 spin_unlock(&inode->ordered_tree_lock); 1742 btrfs_put_ordered_extent(ordered); 1743 1744 btrfs_mark_ordered_io_finished(inode, folio, cur, 1745 end - cur, true); 1746 /* 1747 * This range is beyond i_size, thus we don't need to 1748 * bother writing back. 1749 * But we still need to clear the dirty subpage bit, or 1750 * the next time the folio gets dirtied, we will try to 1751 * writeback the sectors with subpage dirty bits, 1752 * causing writeback without ordered extent. 1753 */ 1754 btrfs_folio_clear_dirty(fs_info, folio, cur, end - cur); 1755 break; 1756 } 1757 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1758 if (unlikely(ret < 0)) { 1759 /* 1760 * bio_ctrl may contain a bio crossing several folios. 1761 * Submit it immediately so that the bio has a chance 1762 * to finish normally, other than marked as error. 1763 */ 1764 submit_one_bio(bio_ctrl); 1765 /* 1766 * Failed to grab the extent map which should be very rare. 1767 * Since there is no bio submitted to finish the ordered 1768 * extent, we have to manually finish this sector. 1769 */ 1770 btrfs_mark_ordered_io_finished(inode, folio, cur, 1771 fs_info->sectorsize, false); 1772 if (!found_error) 1773 found_error = ret; 1774 continue; 1775 } 1776 submitted_io = true; 1777 } 1778 1779 /* 1780 * If we didn't submitted any sector (>= i_size), folio dirty get 1781 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1782 * by folio_start_writeback() if the folio is not dirty). 1783 * 1784 * Here we set writeback and clear for the range. If the full folio 1785 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1786 * 1787 * If we hit any error, the corresponding sector will have its dirty 1788 * flag cleared and writeback finished, thus no need to handle the error case. 1789 */ 1790 if (!submitted_io && !found_error) { 1791 btrfs_folio_set_writeback(fs_info, folio, start, len); 1792 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1793 } 1794 return found_error; 1795 } 1796 1797 /* 1798 * the writepage semantics are similar to regular writepage. extent 1799 * records are inserted to lock ranges in the tree, and as dirty areas 1800 * are found, they are marked writeback. Then the lock bits are removed 1801 * and the end_io handler clears the writeback ranges 1802 * 1803 * Return 0 if everything goes well. 1804 * Return <0 for error. 1805 */ 1806 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1807 { 1808 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1809 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1810 int ret; 1811 size_t pg_offset; 1812 loff_t i_size = i_size_read(&inode->vfs_inode); 1813 const pgoff_t end_index = i_size >> PAGE_SHIFT; 1814 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1815 1816 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1817 1818 WARN_ON(!folio_test_locked(folio)); 1819 1820 pg_offset = offset_in_folio(folio, i_size); 1821 if (folio->index > end_index || 1822 (folio->index == end_index && !pg_offset)) { 1823 folio_invalidate(folio, 0, folio_size(folio)); 1824 folio_unlock(folio); 1825 return 0; 1826 } 1827 1828 if (folio_contains(folio, end_index)) 1829 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1830 1831 /* 1832 * Default to unlock the whole folio. 1833 * The proper bitmap can only be initialized until writepage_delalloc(). 1834 */ 1835 bio_ctrl->submit_bitmap = (unsigned long)-1; 1836 1837 /* 1838 * If the page is dirty but without private set, it's marked dirty 1839 * without informing the fs. 1840 * Nowadays that is a bug, since the introduction of 1841 * pin_user_pages*(). 1842 * 1843 * So here we check if the page has private set to rule out such 1844 * case. 1845 * But we also have a long history of relying on the COW fixup, 1846 * so here we only enable this check for experimental builds until 1847 * we're sure it's safe. 1848 */ 1849 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1850 unlikely(!folio_test_private(folio))) { 1851 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1852 btrfs_err_rl(fs_info, 1853 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1854 btrfs_root_id(inode->root), 1855 btrfs_ino(inode), folio_pos(folio)); 1856 ret = -EUCLEAN; 1857 goto done; 1858 } 1859 1860 ret = set_folio_extent_mapped(folio); 1861 if (ret < 0) 1862 goto done; 1863 1864 ret = writepage_delalloc(inode, folio, bio_ctrl); 1865 if (ret == 1) 1866 return 0; 1867 if (ret) 1868 goto done; 1869 1870 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1871 folio_size(folio), bio_ctrl, i_size); 1872 if (ret == 1) 1873 return 0; 1874 if (unlikely(ret < 0)) 1875 btrfs_err_rl(fs_info, 1876 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1877 btrfs_root_id(inode->root), btrfs_ino(inode), 1878 folio_pos(folio), blocks_per_folio, 1879 &bio_ctrl->submit_bitmap, ret); 1880 1881 bio_ctrl->wbc->nr_to_write--; 1882 1883 done: 1884 if (ret < 0) 1885 mapping_set_error(folio->mapping, ret); 1886 /* 1887 * Only unlock ranges that are submitted. As there can be some async 1888 * submitted ranges inside the folio. 1889 */ 1890 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1891 ASSERT(ret <= 0); 1892 return ret; 1893 } 1894 1895 /* 1896 * Lock extent buffer status and pages for writeback. 1897 * 1898 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1899 * extent buffer is not dirty) 1900 * Return %true is the extent buffer is submitted to bio. 1901 */ 1902 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1903 struct writeback_control *wbc) 1904 { 1905 struct btrfs_fs_info *fs_info = eb->fs_info; 1906 bool ret = false; 1907 1908 btrfs_tree_lock(eb); 1909 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1910 btrfs_tree_unlock(eb); 1911 if (wbc->sync_mode != WB_SYNC_ALL) 1912 return false; 1913 wait_on_extent_buffer_writeback(eb); 1914 btrfs_tree_lock(eb); 1915 } 1916 1917 /* 1918 * We need to do this to prevent races in people who check if the eb is 1919 * under IO since we can end up having no IO bits set for a short period 1920 * of time. 1921 */ 1922 spin_lock(&eb->refs_lock); 1923 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1924 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1925 unsigned long flags; 1926 1927 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1928 spin_unlock(&eb->refs_lock); 1929 1930 xas_lock_irqsave(&xas, flags); 1931 xas_load(&xas); 1932 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1933 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1934 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 1935 xas_unlock_irqrestore(&xas, flags); 1936 1937 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1938 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1939 -eb->len, 1940 fs_info->dirty_metadata_batch); 1941 ret = true; 1942 } else { 1943 spin_unlock(&eb->refs_lock); 1944 } 1945 btrfs_tree_unlock(eb); 1946 return ret; 1947 } 1948 1949 static void set_btree_ioerr(struct extent_buffer *eb) 1950 { 1951 struct btrfs_fs_info *fs_info = eb->fs_info; 1952 1953 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1954 1955 /* 1956 * A read may stumble upon this buffer later, make sure that it gets an 1957 * error and knows there was an error. 1958 */ 1959 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1960 1961 /* 1962 * We need to set the mapping with the io error as well because a write 1963 * error will flip the file system readonly, and then syncfs() will 1964 * return a 0 because we are readonly if we don't modify the err seq for 1965 * the superblock. 1966 */ 1967 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1968 1969 /* 1970 * If writeback for a btree extent that doesn't belong to a log tree 1971 * failed, increment the counter transaction->eb_write_errors. 1972 * We do this because while the transaction is running and before it's 1973 * committing (when we call filemap_fdata[write|wait]_range against 1974 * the btree inode), we might have 1975 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1976 * returns an error or an error happens during writeback, when we're 1977 * committing the transaction we wouldn't know about it, since the pages 1978 * can be no longer dirty nor marked anymore for writeback (if a 1979 * subsequent modification to the extent buffer didn't happen before the 1980 * transaction commit), which makes filemap_fdata[write|wait]_range not 1981 * able to find the pages which contain errors at transaction 1982 * commit time. So if this happens we must abort the transaction, 1983 * otherwise we commit a super block with btree roots that point to 1984 * btree nodes/leafs whose content on disk is invalid - either garbage 1985 * or the content of some node/leaf from a past generation that got 1986 * cowed or deleted and is no longer valid. 1987 * 1988 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1989 * not be enough - we need to distinguish between log tree extents vs 1990 * non-log tree extents, and the next filemap_fdatawait_range() call 1991 * will catch and clear such errors in the mapping - and that call might 1992 * be from a log sync and not from a transaction commit. Also, checking 1993 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1994 * not done and would not be reliable - the eb might have been released 1995 * from memory and reading it back again means that flag would not be 1996 * set (since it's a runtime flag, not persisted on disk). 1997 * 1998 * Using the flags below in the btree inode also makes us achieve the 1999 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2000 * writeback for all dirty pages and before filemap_fdatawait_range() 2001 * is called, the writeback for all dirty pages had already finished 2002 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2003 * filemap_fdatawait_range() would return success, as it could not know 2004 * that writeback errors happened (the pages were no longer tagged for 2005 * writeback). 2006 */ 2007 switch (eb->log_index) { 2008 case -1: 2009 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2010 break; 2011 case 0: 2012 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2013 break; 2014 case 1: 2015 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2016 break; 2017 default: 2018 BUG(); /* unexpected, logic error */ 2019 } 2020 } 2021 2022 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 2023 { 2024 struct btrfs_fs_info *fs_info = eb->fs_info; 2025 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 2026 unsigned long flags; 2027 2028 xas_lock_irqsave(&xas, flags); 2029 xas_load(&xas); 2030 xas_set_mark(&xas, mark); 2031 xas_unlock_irqrestore(&xas, flags); 2032 } 2033 2034 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 2035 { 2036 struct btrfs_fs_info *fs_info = eb->fs_info; 2037 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 2038 unsigned long flags; 2039 2040 xas_lock_irqsave(&xas, flags); 2041 xas_load(&xas); 2042 xas_clear_mark(&xas, mark); 2043 xas_unlock_irqrestore(&xas, flags); 2044 } 2045 2046 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 2047 unsigned long start, unsigned long end) 2048 { 2049 XA_STATE(xas, &fs_info->buffer_tree, start); 2050 unsigned int tagged = 0; 2051 void *eb; 2052 2053 xas_lock_irq(&xas); 2054 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 2055 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2056 if (++tagged % XA_CHECK_SCHED) 2057 continue; 2058 xas_pause(&xas); 2059 xas_unlock_irq(&xas); 2060 cond_resched(); 2061 xas_lock_irq(&xas); 2062 } 2063 xas_unlock_irq(&xas); 2064 } 2065 2066 struct eb_batch { 2067 unsigned int nr; 2068 unsigned int cur; 2069 struct extent_buffer *ebs[PAGEVEC_SIZE]; 2070 }; 2071 2072 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 2073 { 2074 batch->ebs[batch->nr++] = eb; 2075 return (batch->nr < PAGEVEC_SIZE); 2076 } 2077 2078 static inline void eb_batch_init(struct eb_batch *batch) 2079 { 2080 batch->nr = 0; 2081 batch->cur = 0; 2082 } 2083 2084 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 2085 { 2086 if (batch->cur >= batch->nr) 2087 return NULL; 2088 return batch->ebs[batch->cur++]; 2089 } 2090 2091 static inline void eb_batch_release(struct eb_batch *batch) 2092 { 2093 for (unsigned int i = 0; i < batch->nr; i++) 2094 free_extent_buffer(batch->ebs[i]); 2095 eb_batch_init(batch); 2096 } 2097 2098 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 2099 xa_mark_t mark) 2100 { 2101 struct extent_buffer *eb; 2102 2103 retry: 2104 eb = xas_find_marked(xas, max, mark); 2105 2106 if (xas_retry(xas, eb)) 2107 goto retry; 2108 2109 if (!eb) 2110 return NULL; 2111 2112 if (!refcount_inc_not_zero(&eb->refs)) { 2113 xas_reset(xas); 2114 goto retry; 2115 } 2116 2117 if (unlikely(eb != xas_reload(xas))) { 2118 free_extent_buffer(eb); 2119 xas_reset(xas); 2120 goto retry; 2121 } 2122 2123 return eb; 2124 } 2125 2126 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 2127 unsigned long *start, 2128 unsigned long end, xa_mark_t tag, 2129 struct eb_batch *batch) 2130 { 2131 XA_STATE(xas, &fs_info->buffer_tree, *start); 2132 struct extent_buffer *eb; 2133 2134 rcu_read_lock(); 2135 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 2136 if (!eb_batch_add(batch, eb)) { 2137 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); 2138 goto out; 2139 } 2140 } 2141 if (end == ULONG_MAX) 2142 *start = ULONG_MAX; 2143 else 2144 *start = end + 1; 2145 out: 2146 rcu_read_unlock(); 2147 2148 return batch->nr; 2149 } 2150 2151 /* 2152 * The endio specific version which won't touch any unsafe spinlock in endio 2153 * context. 2154 */ 2155 static struct extent_buffer *find_extent_buffer_nolock( 2156 struct btrfs_fs_info *fs_info, u64 start) 2157 { 2158 struct extent_buffer *eb; 2159 unsigned long index = (start >> fs_info->nodesize_bits); 2160 2161 rcu_read_lock(); 2162 eb = xa_load(&fs_info->buffer_tree, index); 2163 if (eb && !refcount_inc_not_zero(&eb->refs)) 2164 eb = NULL; 2165 rcu_read_unlock(); 2166 return eb; 2167 } 2168 2169 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2170 { 2171 struct extent_buffer *eb = bbio->private; 2172 struct folio_iter fi; 2173 2174 if (bbio->bio.bi_status != BLK_STS_OK) 2175 set_btree_ioerr(eb); 2176 2177 bio_for_each_folio_all(fi, &bbio->bio) { 2178 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2179 } 2180 2181 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2182 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2183 bio_put(&bbio->bio); 2184 } 2185 2186 static void prepare_eb_write(struct extent_buffer *eb) 2187 { 2188 u32 nritems; 2189 unsigned long start; 2190 unsigned long end; 2191 2192 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2193 2194 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2195 nritems = btrfs_header_nritems(eb); 2196 if (btrfs_header_level(eb) > 0) { 2197 end = btrfs_node_key_ptr_offset(eb, nritems); 2198 memzero_extent_buffer(eb, end, eb->len - end); 2199 } else { 2200 /* 2201 * Leaf: 2202 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2203 */ 2204 start = btrfs_item_nr_offset(eb, nritems); 2205 end = btrfs_item_nr_offset(eb, 0); 2206 if (nritems == 0) 2207 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2208 else 2209 end += btrfs_item_offset(eb, nritems - 1); 2210 memzero_extent_buffer(eb, start, end - start); 2211 } 2212 } 2213 2214 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2215 struct writeback_control *wbc) 2216 { 2217 struct btrfs_fs_info *fs_info = eb->fs_info; 2218 struct btrfs_bio *bbio; 2219 2220 prepare_eb_write(eb); 2221 2222 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2223 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2224 BTRFS_I(fs_info->btree_inode), eb->start, 2225 end_bbio_meta_write, eb); 2226 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2227 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2228 wbc_init_bio(wbc, &bbio->bio); 2229 for (int i = 0; i < num_extent_folios(eb); i++) { 2230 struct folio *folio = eb->folios[i]; 2231 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2232 u32 range_len = min_t(u64, folio_next_pos(folio), 2233 eb->start + eb->len) - range_start; 2234 2235 folio_lock(folio); 2236 btrfs_meta_folio_clear_dirty(folio, eb); 2237 btrfs_meta_folio_set_writeback(folio, eb); 2238 if (!folio_test_dirty(folio)) 2239 wbc->nr_to_write -= folio_nr_pages(folio); 2240 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2241 offset_in_folio(folio, range_start)); 2242 wbc_account_cgroup_owner(wbc, folio, range_len); 2243 folio_unlock(folio); 2244 } 2245 /* 2246 * If the fs is already in error status, do not submit any writeback 2247 * but immediately finish it. 2248 */ 2249 if (unlikely(BTRFS_FS_ERROR(fs_info))) { 2250 btrfs_bio_end_io(bbio, errno_to_blk_status(BTRFS_FS_ERROR(fs_info))); 2251 return; 2252 } 2253 btrfs_submit_bbio(bbio, 0); 2254 } 2255 2256 /* 2257 * Wait for all eb writeback in the given range to finish. 2258 * 2259 * @fs_info: The fs_info for this file system. 2260 * @start: The offset of the range to start waiting on writeback. 2261 * @end: The end of the range, inclusive. This is meant to be used in 2262 * conjunction with wait_marked_extents, so this will usually be 2263 * the_next_eb->start - 1. 2264 */ 2265 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2266 u64 end) 2267 { 2268 struct eb_batch batch; 2269 unsigned long start_index = (start >> fs_info->nodesize_bits); 2270 unsigned long end_index = (end >> fs_info->nodesize_bits); 2271 2272 eb_batch_init(&batch); 2273 while (start_index <= end_index) { 2274 struct extent_buffer *eb; 2275 unsigned int nr_ebs; 2276 2277 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2278 PAGECACHE_TAG_WRITEBACK, &batch); 2279 if (!nr_ebs) 2280 break; 2281 2282 while ((eb = eb_batch_next(&batch)) != NULL) 2283 wait_on_extent_buffer_writeback(eb); 2284 eb_batch_release(&batch); 2285 cond_resched(); 2286 } 2287 } 2288 2289 int btree_write_cache_pages(struct address_space *mapping, 2290 struct writeback_control *wbc) 2291 { 2292 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2293 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2294 int ret = 0; 2295 int done = 0; 2296 int nr_to_write_done = 0; 2297 struct eb_batch batch; 2298 unsigned int nr_ebs; 2299 unsigned long index; 2300 unsigned long end; 2301 int scanned = 0; 2302 xa_mark_t tag; 2303 2304 eb_batch_init(&batch); 2305 if (wbc->range_cyclic) { 2306 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); 2307 end = -1; 2308 2309 /* 2310 * Start from the beginning does not need to cycle over the 2311 * range, mark it as scanned. 2312 */ 2313 scanned = (index == 0); 2314 } else { 2315 index = (wbc->range_start >> fs_info->nodesize_bits); 2316 end = (wbc->range_end >> fs_info->nodesize_bits); 2317 2318 scanned = 1; 2319 } 2320 if (wbc->sync_mode == WB_SYNC_ALL) 2321 tag = PAGECACHE_TAG_TOWRITE; 2322 else 2323 tag = PAGECACHE_TAG_DIRTY; 2324 btrfs_zoned_meta_io_lock(fs_info); 2325 retry: 2326 if (wbc->sync_mode == WB_SYNC_ALL) 2327 buffer_tree_tag_for_writeback(fs_info, index, end); 2328 while (!done && !nr_to_write_done && (index <= end) && 2329 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2330 struct extent_buffer *eb; 2331 2332 while ((eb = eb_batch_next(&batch)) != NULL) { 2333 ctx.eb = eb; 2334 2335 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2336 if (ret) { 2337 if (ret == -EBUSY) 2338 ret = 0; 2339 2340 if (ret) { 2341 done = 1; 2342 break; 2343 } 2344 continue; 2345 } 2346 2347 if (!lock_extent_buffer_for_io(eb, wbc)) 2348 continue; 2349 2350 /* Implies write in zoned mode. */ 2351 if (ctx.zoned_bg) { 2352 /* Mark the last eb in the block group. */ 2353 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2354 ctx.zoned_bg->meta_write_pointer += eb->len; 2355 } 2356 write_one_eb(eb, wbc); 2357 } 2358 nr_to_write_done = (wbc->nr_to_write <= 0); 2359 eb_batch_release(&batch); 2360 cond_resched(); 2361 } 2362 if (!scanned && !done) { 2363 /* 2364 * We hit the last page and there is more work to be done: wrap 2365 * back to the start of the file 2366 */ 2367 scanned = 1; 2368 index = 0; 2369 goto retry; 2370 } 2371 /* 2372 * If something went wrong, don't allow any metadata write bio to be 2373 * submitted. 2374 * 2375 * This would prevent use-after-free if we had dirty pages not 2376 * cleaned up, which can still happen by fuzzed images. 2377 * 2378 * - Bad extent tree 2379 * Allowing existing tree block to be allocated for other trees. 2380 * 2381 * - Log tree operations 2382 * Exiting tree blocks get allocated to log tree, bumps its 2383 * generation, then get cleaned in tree re-balance. 2384 * Such tree block will not be written back, since it's clean, 2385 * thus no WRITTEN flag set. 2386 * And after log writes back, this tree block is not traced by 2387 * any dirty extent_io_tree. 2388 * 2389 * - Offending tree block gets re-dirtied from its original owner 2390 * Since it has bumped generation, no WRITTEN flag, it can be 2391 * reused without COWing. This tree block will not be traced 2392 * by btrfs_transaction::dirty_pages. 2393 * 2394 * Now such dirty tree block will not be cleaned by any dirty 2395 * extent io tree. Thus we don't want to submit such wild eb 2396 * if the fs already has error. 2397 * 2398 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2399 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2400 */ 2401 if (ret > 0) 2402 ret = 0; 2403 if (!ret && BTRFS_FS_ERROR(fs_info)) 2404 ret = -EROFS; 2405 2406 if (ctx.zoned_bg) 2407 btrfs_put_block_group(ctx.zoned_bg); 2408 btrfs_zoned_meta_io_unlock(fs_info); 2409 return ret; 2410 } 2411 2412 /* 2413 * Walk the list of dirty pages of the given address space and write all of them. 2414 * 2415 * @mapping: address space structure to write 2416 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2417 * @bio_ctrl: holds context for the write, namely the bio 2418 * 2419 * If a page is already under I/O, write_cache_pages() skips it, even 2420 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2421 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2422 * and msync() need to guarantee that all the data which was dirty at the time 2423 * the call was made get new I/O started against them. If wbc->sync_mode is 2424 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2425 * existing IO to complete. 2426 */ 2427 static int extent_write_cache_pages(struct address_space *mapping, 2428 struct btrfs_bio_ctrl *bio_ctrl) 2429 { 2430 struct writeback_control *wbc = bio_ctrl->wbc; 2431 struct inode *inode = mapping->host; 2432 int ret = 0; 2433 int done = 0; 2434 int nr_to_write_done = 0; 2435 struct folio_batch fbatch; 2436 unsigned int nr_folios; 2437 pgoff_t index; 2438 pgoff_t end; /* Inclusive */ 2439 pgoff_t done_index; 2440 int range_whole = 0; 2441 int scanned = 0; 2442 xa_mark_t tag; 2443 2444 /* 2445 * We have to hold onto the inode so that ordered extents can do their 2446 * work when the IO finishes. The alternative to this is failing to add 2447 * an ordered extent if the igrab() fails there and that is a huge pain 2448 * to deal with, so instead just hold onto the inode throughout the 2449 * writepages operation. If it fails here we are freeing up the inode 2450 * anyway and we'd rather not waste our time writing out stuff that is 2451 * going to be truncated anyway. 2452 */ 2453 if (!igrab(inode)) 2454 return 0; 2455 2456 folio_batch_init(&fbatch); 2457 if (wbc->range_cyclic) { 2458 index = mapping->writeback_index; /* Start from prev offset */ 2459 end = -1; 2460 /* 2461 * Start from the beginning does not need to cycle over the 2462 * range, mark it as scanned. 2463 */ 2464 scanned = (index == 0); 2465 } else { 2466 index = wbc->range_start >> PAGE_SHIFT; 2467 end = wbc->range_end >> PAGE_SHIFT; 2468 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2469 range_whole = 1; 2470 scanned = 1; 2471 } 2472 2473 /* 2474 * We do the tagged writepage as long as the snapshot flush bit is set 2475 * and we are the first one who do the filemap_flush() on this inode. 2476 * 2477 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2478 * not race in and drop the bit. 2479 */ 2480 if (range_whole && wbc->nr_to_write == LONG_MAX && 2481 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2482 &BTRFS_I(inode)->runtime_flags)) 2483 wbc->tagged_writepages = 1; 2484 2485 tag = wbc_to_tag(wbc); 2486 retry: 2487 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2488 tag_pages_for_writeback(mapping, index, end); 2489 done_index = index; 2490 while (!done && !nr_to_write_done && (index <= end) && 2491 (nr_folios = filemap_get_folios_tag(mapping, &index, 2492 end, tag, &fbatch))) { 2493 unsigned i; 2494 2495 for (i = 0; i < nr_folios; i++) { 2496 struct folio *folio = fbatch.folios[i]; 2497 2498 done_index = folio_next_index(folio); 2499 /* 2500 * At this point we hold neither the i_pages lock nor 2501 * the folio lock: the folio may be truncated or 2502 * invalidated (changing folio->mapping to NULL). 2503 */ 2504 if (!folio_trylock(folio)) { 2505 submit_write_bio(bio_ctrl, 0); 2506 folio_lock(folio); 2507 } 2508 2509 if (unlikely(folio->mapping != mapping)) { 2510 folio_unlock(folio); 2511 continue; 2512 } 2513 2514 if (!folio_test_dirty(folio)) { 2515 /* Someone wrote it for us. */ 2516 folio_unlock(folio); 2517 continue; 2518 } 2519 2520 /* 2521 * For subpage case, compression can lead to mixed 2522 * writeback and dirty flags, e.g: 2523 * 0 32K 64K 96K 128K 2524 * | |//////||/////| |//| 2525 * 2526 * In above case, [32K, 96K) is asynchronously submitted 2527 * for compression, and [124K, 128K) needs to be written back. 2528 * 2529 * If we didn't wait writeback for page 64K, [128K, 128K) 2530 * won't be submitted as the page still has writeback flag 2531 * and will be skipped in the next check. 2532 * 2533 * This mixed writeback and dirty case is only possible for 2534 * subpage case. 2535 * 2536 * TODO: Remove this check after migrating compression to 2537 * regular submission. 2538 */ 2539 if (wbc->sync_mode != WB_SYNC_NONE || 2540 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2541 if (folio_test_writeback(folio)) 2542 submit_write_bio(bio_ctrl, 0); 2543 folio_wait_writeback(folio); 2544 } 2545 2546 if (folio_test_writeback(folio) || 2547 !folio_clear_dirty_for_io(folio)) { 2548 folio_unlock(folio); 2549 continue; 2550 } 2551 2552 ret = extent_writepage(folio, bio_ctrl); 2553 if (ret < 0) { 2554 done = 1; 2555 break; 2556 } 2557 2558 /* 2559 * The filesystem may choose to bump up nr_to_write. 2560 * We have to make sure to honor the new nr_to_write 2561 * at any time. 2562 */ 2563 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2564 wbc->nr_to_write <= 0); 2565 } 2566 folio_batch_release(&fbatch); 2567 cond_resched(); 2568 } 2569 if (!scanned && !done) { 2570 /* 2571 * We hit the last page and there is more work to be done: wrap 2572 * back to the start of the file 2573 */ 2574 scanned = 1; 2575 index = 0; 2576 2577 /* 2578 * If we're looping we could run into a page that is locked by a 2579 * writer and that writer could be waiting on writeback for a 2580 * page in our current bio, and thus deadlock, so flush the 2581 * write bio here. 2582 */ 2583 submit_write_bio(bio_ctrl, 0); 2584 goto retry; 2585 } 2586 2587 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2588 mapping->writeback_index = done_index; 2589 2590 btrfs_add_delayed_iput(BTRFS_I(inode)); 2591 return ret; 2592 } 2593 2594 /* 2595 * Submit the pages in the range to bio for call sites which delalloc range has 2596 * already been ran (aka, ordered extent inserted) and all pages are still 2597 * locked. 2598 */ 2599 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2600 u64 start, u64 end, struct writeback_control *wbc, 2601 bool pages_dirty) 2602 { 2603 bool found_error = false; 2604 int ret = 0; 2605 struct address_space *mapping = inode->i_mapping; 2606 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2607 const u32 sectorsize = fs_info->sectorsize; 2608 loff_t i_size = i_size_read(inode); 2609 u64 cur = start; 2610 struct btrfs_bio_ctrl bio_ctrl = { 2611 .wbc = wbc, 2612 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2613 }; 2614 2615 if (wbc->no_cgroup_owner) 2616 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2617 2618 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2619 2620 while (cur <= end) { 2621 u64 cur_end; 2622 u32 cur_len; 2623 struct folio *folio; 2624 2625 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2626 2627 /* 2628 * This shouldn't happen, the pages are pinned and locked, this 2629 * code is just in case, but shouldn't actually be run. 2630 */ 2631 if (IS_ERR(folio)) { 2632 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2633 cur_len = cur_end + 1 - cur; 2634 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2635 cur, cur_len, false); 2636 mapping_set_error(mapping, PTR_ERR(folio)); 2637 cur = cur_end; 2638 continue; 2639 } 2640 2641 cur_end = min_t(u64, folio_next_pos(folio) - 1, end); 2642 cur_len = cur_end + 1 - cur; 2643 2644 ASSERT(folio_test_locked(folio)); 2645 if (pages_dirty && folio != locked_folio) 2646 ASSERT(folio_test_dirty(folio)); 2647 2648 /* 2649 * Set the submission bitmap to submit all sectors. 2650 * extent_writepage_io() will do the truncation correctly. 2651 */ 2652 bio_ctrl.submit_bitmap = (unsigned long)-1; 2653 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2654 &bio_ctrl, i_size); 2655 if (ret == 1) 2656 goto next_page; 2657 2658 if (ret) 2659 mapping_set_error(mapping, ret); 2660 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2661 if (ret < 0) 2662 found_error = true; 2663 next_page: 2664 folio_put(folio); 2665 cur = cur_end + 1; 2666 } 2667 2668 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2669 } 2670 2671 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2672 { 2673 struct inode *inode = mapping->host; 2674 int ret = 0; 2675 struct btrfs_bio_ctrl bio_ctrl = { 2676 .wbc = wbc, 2677 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2678 }; 2679 2680 /* 2681 * Allow only a single thread to do the reloc work in zoned mode to 2682 * protect the write pointer updates. 2683 */ 2684 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2685 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2686 submit_write_bio(&bio_ctrl, ret); 2687 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2688 return ret; 2689 } 2690 2691 void btrfs_readahead(struct readahead_control *rac) 2692 { 2693 struct btrfs_bio_ctrl bio_ctrl = { 2694 .opf = REQ_OP_READ | REQ_RAHEAD, 2695 .ractl = rac, 2696 .last_em_start = U64_MAX, 2697 }; 2698 struct folio *folio; 2699 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2700 const u64 start = readahead_pos(rac); 2701 const u64 end = start + readahead_length(rac) - 1; 2702 struct extent_state *cached_state = NULL; 2703 struct extent_map *em_cached = NULL; 2704 2705 lock_extents_for_read(inode, start, end, &cached_state); 2706 2707 while ((folio = readahead_folio(rac)) != NULL) 2708 btrfs_do_readpage(folio, &em_cached, &bio_ctrl); 2709 2710 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2711 2712 if (em_cached) 2713 btrfs_free_extent_map(em_cached); 2714 submit_one_bio(&bio_ctrl); 2715 } 2716 2717 /* 2718 * basic invalidate_folio code, this waits on any locked or writeback 2719 * ranges corresponding to the folio, and then deletes any extent state 2720 * records from the tree 2721 */ 2722 int extent_invalidate_folio(struct extent_io_tree *tree, 2723 struct folio *folio, size_t offset) 2724 { 2725 struct extent_state *cached_state = NULL; 2726 u64 start = folio_pos(folio); 2727 u64 end = start + folio_size(folio) - 1; 2728 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2729 2730 /* This function is only called for the btree inode */ 2731 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2732 2733 start += ALIGN(offset, blocksize); 2734 if (start > end) 2735 return 0; 2736 2737 btrfs_lock_extent(tree, start, end, &cached_state); 2738 folio_wait_writeback(folio); 2739 2740 /* 2741 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2742 * so here we only need to unlock the extent range to free any 2743 * existing extent state. 2744 */ 2745 btrfs_unlock_extent(tree, start, end, &cached_state); 2746 return 0; 2747 } 2748 2749 /* 2750 * A helper for struct address_space_operations::release_folio, this tests for 2751 * areas of the folio that are locked or under IO and drops the related state 2752 * bits if it is safe to drop the folio. 2753 */ 2754 static bool try_release_extent_state(struct extent_io_tree *tree, 2755 struct folio *folio) 2756 { 2757 struct extent_state *cached_state = NULL; 2758 u64 start = folio_pos(folio); 2759 u64 end = start + folio_size(folio) - 1; 2760 u32 range_bits; 2761 u32 clear_bits; 2762 bool ret = false; 2763 int ret2; 2764 2765 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2766 2767 /* 2768 * We can release the folio if it's locked only for ordered extent 2769 * completion, since that doesn't require using the folio. 2770 */ 2771 if ((range_bits & EXTENT_LOCKED) && 2772 !(range_bits & EXTENT_FINISHING_ORDERED)) 2773 goto out; 2774 2775 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2776 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2777 EXTENT_FINISHING_ORDERED); 2778 /* 2779 * At this point we can safely clear everything except the locked, 2780 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2781 * bit will be cleared by ordered extent completion. 2782 */ 2783 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2784 /* 2785 * If clear_extent_bit failed for enomem reasons, we can't allow the 2786 * release to continue. 2787 */ 2788 if (ret2 == 0) 2789 ret = true; 2790 out: 2791 btrfs_free_extent_state(cached_state); 2792 2793 return ret; 2794 } 2795 2796 /* 2797 * a helper for release_folio. As long as there are no locked extents 2798 * in the range corresponding to the page, both state records and extent 2799 * map records are removed 2800 */ 2801 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2802 { 2803 u64 start = folio_pos(folio); 2804 u64 end = start + folio_size(folio) - 1; 2805 struct btrfs_inode *inode = folio_to_inode(folio); 2806 struct extent_io_tree *io_tree = &inode->io_tree; 2807 2808 while (start <= end) { 2809 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2810 const u64 len = end - start + 1; 2811 struct extent_map_tree *extent_tree = &inode->extent_tree; 2812 struct extent_map *em; 2813 2814 write_lock(&extent_tree->lock); 2815 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2816 if (!em) { 2817 write_unlock(&extent_tree->lock); 2818 break; 2819 } 2820 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2821 write_unlock(&extent_tree->lock); 2822 btrfs_free_extent_map(em); 2823 break; 2824 } 2825 if (btrfs_test_range_bit_exists(io_tree, em->start, 2826 btrfs_extent_map_end(em) - 1, 2827 EXTENT_LOCKED)) 2828 goto next; 2829 /* 2830 * If it's not in the list of modified extents, used by a fast 2831 * fsync, we can remove it. If it's being logged we can safely 2832 * remove it since fsync took an extra reference on the em. 2833 */ 2834 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2835 goto remove_em; 2836 /* 2837 * If it's in the list of modified extents, remove it only if 2838 * its generation is older then the current one, in which case 2839 * we don't need it for a fast fsync. Otherwise don't remove it, 2840 * we could be racing with an ongoing fast fsync that could miss 2841 * the new extent. 2842 */ 2843 if (em->generation >= cur_gen) 2844 goto next; 2845 remove_em: 2846 /* 2847 * We only remove extent maps that are not in the list of 2848 * modified extents or that are in the list but with a 2849 * generation lower then the current generation, so there is no 2850 * need to set the full fsync flag on the inode (it hurts the 2851 * fsync performance for workloads with a data size that exceeds 2852 * or is close to the system's memory). 2853 */ 2854 btrfs_remove_extent_mapping(inode, em); 2855 /* Once for the inode's extent map tree. */ 2856 btrfs_free_extent_map(em); 2857 next: 2858 start = btrfs_extent_map_end(em); 2859 write_unlock(&extent_tree->lock); 2860 2861 /* Once for us, for the lookup_extent_mapping() reference. */ 2862 btrfs_free_extent_map(em); 2863 2864 if (need_resched()) { 2865 /* 2866 * If we need to resched but we can't block just exit 2867 * and leave any remaining extent maps. 2868 */ 2869 if (!gfpflags_allow_blocking(mask)) 2870 break; 2871 2872 cond_resched(); 2873 } 2874 } 2875 return try_release_extent_state(io_tree, folio); 2876 } 2877 2878 static int extent_buffer_under_io(const struct extent_buffer *eb) 2879 { 2880 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2881 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2882 } 2883 2884 static bool folio_range_has_eb(struct folio *folio) 2885 { 2886 struct btrfs_folio_state *bfs; 2887 2888 lockdep_assert_held(&folio->mapping->i_private_lock); 2889 2890 if (folio_test_private(folio)) { 2891 bfs = folio_get_private(folio); 2892 if (atomic_read(&bfs->eb_refs)) 2893 return true; 2894 } 2895 return false; 2896 } 2897 2898 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2899 { 2900 struct btrfs_fs_info *fs_info = eb->fs_info; 2901 struct address_space *mapping = folio->mapping; 2902 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2903 2904 /* 2905 * For mapped eb, we're going to change the folio private, which should 2906 * be done under the i_private_lock. 2907 */ 2908 if (mapped) 2909 spin_lock(&mapping->i_private_lock); 2910 2911 if (!folio_test_private(folio)) { 2912 if (mapped) 2913 spin_unlock(&mapping->i_private_lock); 2914 return; 2915 } 2916 2917 if (!btrfs_meta_is_subpage(fs_info)) { 2918 /* 2919 * We do this since we'll remove the pages after we've removed 2920 * the eb from the xarray, so we could race and have this page 2921 * now attached to the new eb. So only clear folio if it's 2922 * still connected to this eb. 2923 */ 2924 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2925 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2926 BUG_ON(folio_test_dirty(folio)); 2927 BUG_ON(folio_test_writeback(folio)); 2928 /* We need to make sure we haven't be attached to a new eb. */ 2929 folio_detach_private(folio); 2930 } 2931 if (mapped) 2932 spin_unlock(&mapping->i_private_lock); 2933 return; 2934 } 2935 2936 /* 2937 * For subpage, we can have dummy eb with folio private attached. In 2938 * this case, we can directly detach the private as such folio is only 2939 * attached to one dummy eb, no sharing. 2940 */ 2941 if (!mapped) { 2942 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2943 return; 2944 } 2945 2946 btrfs_folio_dec_eb_refs(fs_info, folio); 2947 2948 /* 2949 * We can only detach the folio private if there are no other ebs in the 2950 * page range and no unfinished IO. 2951 */ 2952 if (!folio_range_has_eb(folio)) 2953 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2954 2955 spin_unlock(&mapping->i_private_lock); 2956 } 2957 2958 /* Release all folios attached to the extent buffer */ 2959 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2960 { 2961 ASSERT(!extent_buffer_under_io(eb)); 2962 2963 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2964 struct folio *folio = eb->folios[i]; 2965 2966 if (!folio) 2967 continue; 2968 2969 detach_extent_buffer_folio(eb, folio); 2970 } 2971 } 2972 2973 /* 2974 * Helper for releasing the extent buffer. 2975 */ 2976 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2977 { 2978 btrfs_release_extent_buffer_folios(eb); 2979 btrfs_leak_debug_del_eb(eb); 2980 kmem_cache_free(extent_buffer_cache, eb); 2981 } 2982 2983 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2984 u64 start) 2985 { 2986 struct extent_buffer *eb = NULL; 2987 2988 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2989 eb->start = start; 2990 eb->len = fs_info->nodesize; 2991 eb->fs_info = fs_info; 2992 init_rwsem(&eb->lock); 2993 2994 btrfs_leak_debug_add_eb(eb); 2995 2996 spin_lock_init(&eb->refs_lock); 2997 refcount_set(&eb->refs, 1); 2998 2999 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3000 3001 return eb; 3002 } 3003 3004 /* 3005 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 3006 * does not call folio_put(), and we need to set the folios to NULL so that 3007 * btrfs_release_extent_buffer() will not detach them a second time. 3008 */ 3009 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 3010 { 3011 const int num_folios = num_extent_folios(eb); 3012 3013 /* We cannot use num_extent_folios() as loop bound as eb->folios changes. */ 3014 for (int i = 0; i < num_folios; i++) { 3015 ASSERT(eb->folios[i]); 3016 detach_extent_buffer_folio(eb, eb->folios[i]); 3017 folio_put(eb->folios[i]); 3018 eb->folios[i] = NULL; 3019 } 3020 } 3021 3022 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3023 { 3024 struct extent_buffer *new; 3025 int num_folios; 3026 int ret; 3027 3028 new = __alloc_extent_buffer(src->fs_info, src->start); 3029 if (new == NULL) 3030 return NULL; 3031 3032 /* 3033 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3034 * btrfs_release_extent_buffer() have different behavior for 3035 * UNMAPPED subpage extent buffer. 3036 */ 3037 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3038 3039 ret = alloc_eb_folio_array(new, false); 3040 if (ret) 3041 goto release_eb; 3042 3043 ASSERT(num_extent_folios(src) == num_extent_folios(new), 3044 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 3045 /* Explicitly use the cached num_extent value from now on. */ 3046 num_folios = num_extent_folios(src); 3047 for (int i = 0; i < num_folios; i++) { 3048 struct folio *folio = new->folios[i]; 3049 3050 ret = attach_extent_buffer_folio(new, folio, NULL); 3051 if (ret < 0) 3052 goto cleanup_folios; 3053 WARN_ON(folio_test_dirty(folio)); 3054 } 3055 for (int i = 0; i < num_folios; i++) 3056 folio_put(new->folios[i]); 3057 3058 copy_extent_buffer_full(new, src); 3059 set_extent_buffer_uptodate(new); 3060 3061 return new; 3062 3063 cleanup_folios: 3064 cleanup_extent_buffer_folios(new); 3065 release_eb: 3066 btrfs_release_extent_buffer(new); 3067 return NULL; 3068 } 3069 3070 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3071 u64 start) 3072 { 3073 struct extent_buffer *eb; 3074 int ret; 3075 3076 eb = __alloc_extent_buffer(fs_info, start); 3077 if (!eb) 3078 return NULL; 3079 3080 ret = alloc_eb_folio_array(eb, false); 3081 if (ret) 3082 goto release_eb; 3083 3084 for (int i = 0; i < num_extent_folios(eb); i++) { 3085 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3086 if (ret < 0) 3087 goto cleanup_folios; 3088 } 3089 for (int i = 0; i < num_extent_folios(eb); i++) 3090 folio_put(eb->folios[i]); 3091 3092 set_extent_buffer_uptodate(eb); 3093 btrfs_set_header_nritems(eb, 0); 3094 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3095 3096 return eb; 3097 3098 cleanup_folios: 3099 cleanup_extent_buffer_folios(eb); 3100 release_eb: 3101 btrfs_release_extent_buffer(eb); 3102 return NULL; 3103 } 3104 3105 static void check_buffer_tree_ref(struct extent_buffer *eb) 3106 { 3107 int refs; 3108 /* 3109 * The TREE_REF bit is first set when the extent_buffer is added to the 3110 * xarray. It is also reset, if unset, when a new reference is created 3111 * by find_extent_buffer. 3112 * 3113 * It is only cleared in two cases: freeing the last non-tree 3114 * reference to the extent_buffer when its STALE bit is set or 3115 * calling release_folio when the tree reference is the only reference. 3116 * 3117 * In both cases, care is taken to ensure that the extent_buffer's 3118 * pages are not under io. However, release_folio can be concurrently 3119 * called with creating new references, which is prone to race 3120 * conditions between the calls to check_buffer_tree_ref in those 3121 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3122 * 3123 * The actual lifetime of the extent_buffer in the xarray is adequately 3124 * protected by the refcount, but the TREE_REF bit and its corresponding 3125 * reference are not. To protect against this class of races, we call 3126 * check_buffer_tree_ref() from the code paths which trigger io. Note that 3127 * once io is initiated, TREE_REF can no longer be cleared, so that is 3128 * the moment at which any such race is best fixed. 3129 */ 3130 refs = refcount_read(&eb->refs); 3131 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3132 return; 3133 3134 spin_lock(&eb->refs_lock); 3135 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3136 refcount_inc(&eb->refs); 3137 spin_unlock(&eb->refs_lock); 3138 } 3139 3140 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3141 { 3142 check_buffer_tree_ref(eb); 3143 3144 for (int i = 0; i < num_extent_folios(eb); i++) 3145 folio_mark_accessed(eb->folios[i]); 3146 } 3147 3148 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3149 u64 start) 3150 { 3151 struct extent_buffer *eb; 3152 3153 eb = find_extent_buffer_nolock(fs_info, start); 3154 if (!eb) 3155 return NULL; 3156 /* 3157 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3158 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3159 * another task running free_extent_buffer() might have seen that flag 3160 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3161 * writeback flags not set) and it's still in the tree (flag 3162 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3163 * decrementing the extent buffer's reference count twice. So here we 3164 * could race and increment the eb's reference count, clear its stale 3165 * flag, mark it as dirty and drop our reference before the other task 3166 * finishes executing free_extent_buffer, which would later result in 3167 * an attempt to free an extent buffer that is dirty. 3168 */ 3169 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3170 spin_lock(&eb->refs_lock); 3171 spin_unlock(&eb->refs_lock); 3172 } 3173 mark_extent_buffer_accessed(eb); 3174 return eb; 3175 } 3176 3177 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3178 u64 start) 3179 { 3180 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3181 struct extent_buffer *eb, *exists = NULL; 3182 int ret; 3183 3184 eb = find_extent_buffer(fs_info, start); 3185 if (eb) 3186 return eb; 3187 eb = alloc_dummy_extent_buffer(fs_info, start); 3188 if (!eb) 3189 return ERR_PTR(-ENOMEM); 3190 eb->fs_info = fs_info; 3191 again: 3192 xa_lock_irq(&fs_info->buffer_tree); 3193 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, 3194 NULL, eb, GFP_NOFS); 3195 if (xa_is_err(exists)) { 3196 ret = xa_err(exists); 3197 xa_unlock_irq(&fs_info->buffer_tree); 3198 btrfs_release_extent_buffer(eb); 3199 return ERR_PTR(ret); 3200 } 3201 if (exists) { 3202 if (!refcount_inc_not_zero(&exists->refs)) { 3203 /* The extent buffer is being freed, retry. */ 3204 xa_unlock_irq(&fs_info->buffer_tree); 3205 goto again; 3206 } 3207 xa_unlock_irq(&fs_info->buffer_tree); 3208 btrfs_release_extent_buffer(eb); 3209 return exists; 3210 } 3211 xa_unlock_irq(&fs_info->buffer_tree); 3212 check_buffer_tree_ref(eb); 3213 3214 return eb; 3215 #else 3216 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3217 return NULL; 3218 #endif 3219 } 3220 3221 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3222 struct folio *folio) 3223 { 3224 struct extent_buffer *exists; 3225 3226 lockdep_assert_held(&folio->mapping->i_private_lock); 3227 3228 /* 3229 * For subpage case, we completely rely on xarray to ensure we don't try 3230 * to insert two ebs for the same bytenr. So here we always return NULL 3231 * and just continue. 3232 */ 3233 if (btrfs_meta_is_subpage(fs_info)) 3234 return NULL; 3235 3236 /* Page not yet attached to an extent buffer */ 3237 if (!folio_test_private(folio)) 3238 return NULL; 3239 3240 /* 3241 * We could have already allocated an eb for this folio and attached one 3242 * so lets see if we can get a ref on the existing eb, and if we can we 3243 * know it's good and we can just return that one, else we know we can 3244 * just overwrite folio private. 3245 */ 3246 exists = folio_get_private(folio); 3247 if (refcount_inc_not_zero(&exists->refs)) 3248 return exists; 3249 3250 WARN_ON(folio_test_dirty(folio)); 3251 folio_detach_private(folio); 3252 return NULL; 3253 } 3254 3255 /* 3256 * Validate alignment constraints of eb at logical address @start. 3257 */ 3258 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3259 { 3260 const u32 nodesize = fs_info->nodesize; 3261 3262 if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) { 3263 btrfs_err(fs_info, "bad tree block start %llu", start); 3264 return true; 3265 } 3266 3267 if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) { 3268 btrfs_err(fs_info, 3269 "tree block is not nodesize aligned, start %llu nodesize %u", 3270 start, nodesize); 3271 return true; 3272 } 3273 if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) { 3274 btrfs_err(fs_info, 3275 "tree block is not page aligned, start %llu nodesize %u", 3276 start, nodesize); 3277 return true; 3278 } 3279 if (unlikely(!IS_ALIGNED(start, nodesize) && 3280 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) { 3281 btrfs_warn(fs_info, 3282 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3283 start, nodesize); 3284 } 3285 return false; 3286 } 3287 3288 /* 3289 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3290 * Return >0 if there is already another extent buffer for the range, 3291 * and @found_eb_ret would be updated. 3292 * Return -EAGAIN if the filemap has an existing folio but with different size 3293 * than @eb. 3294 * The caller needs to free the existing folios and retry using the same order. 3295 */ 3296 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3297 struct btrfs_folio_state *prealloc, 3298 struct extent_buffer **found_eb_ret) 3299 { 3300 3301 struct btrfs_fs_info *fs_info = eb->fs_info; 3302 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3303 const pgoff_t index = eb->start >> PAGE_SHIFT; 3304 struct folio *existing_folio; 3305 int ret; 3306 3307 ASSERT(found_eb_ret); 3308 3309 /* Caller should ensure the folio exists. */ 3310 ASSERT(eb->folios[i]); 3311 3312 retry: 3313 existing_folio = NULL; 3314 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3315 GFP_NOFS | __GFP_NOFAIL); 3316 if (!ret) 3317 goto finish; 3318 3319 existing_folio = filemap_lock_folio(mapping, index + i); 3320 /* The page cache only exists for a very short time, just retry. */ 3321 if (IS_ERR(existing_folio)) 3322 goto retry; 3323 3324 /* For now, we should only have single-page folios for btree inode. */ 3325 ASSERT(folio_nr_pages(existing_folio) == 1); 3326 3327 if (folio_size(existing_folio) != eb->folio_size) { 3328 folio_unlock(existing_folio); 3329 folio_put(existing_folio); 3330 return -EAGAIN; 3331 } 3332 3333 finish: 3334 spin_lock(&mapping->i_private_lock); 3335 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3336 /* We're going to reuse the existing page, can drop our folio now. */ 3337 __free_page(folio_page(eb->folios[i], 0)); 3338 eb->folios[i] = existing_folio; 3339 } else if (existing_folio) { 3340 struct extent_buffer *existing_eb; 3341 3342 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3343 if (existing_eb) { 3344 /* The extent buffer still exists, we can use it directly. */ 3345 *found_eb_ret = existing_eb; 3346 spin_unlock(&mapping->i_private_lock); 3347 folio_unlock(existing_folio); 3348 folio_put(existing_folio); 3349 return 1; 3350 } 3351 /* The extent buffer no longer exists, we can reuse the folio. */ 3352 __free_page(folio_page(eb->folios[i], 0)); 3353 eb->folios[i] = existing_folio; 3354 } 3355 eb->folio_size = folio_size(eb->folios[i]); 3356 eb->folio_shift = folio_shift(eb->folios[i]); 3357 /* Should not fail, as we have preallocated the memory. */ 3358 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3359 ASSERT(!ret); 3360 /* 3361 * To inform we have an extra eb under allocation, so that 3362 * detach_extent_buffer_page() won't release the folio private when the 3363 * eb hasn't been inserted into the xarray yet. 3364 * 3365 * The ref will be decreased when the eb releases the page, in 3366 * detach_extent_buffer_page(). Thus needs no special handling in the 3367 * error path. 3368 */ 3369 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3370 spin_unlock(&mapping->i_private_lock); 3371 return 0; 3372 } 3373 3374 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3375 u64 start, u64 owner_root, int level) 3376 { 3377 int attached = 0; 3378 struct extent_buffer *eb; 3379 struct extent_buffer *existing_eb = NULL; 3380 struct btrfs_folio_state *prealloc = NULL; 3381 u64 lockdep_owner = owner_root; 3382 bool page_contig = true; 3383 int uptodate = 1; 3384 int ret; 3385 3386 if (check_eb_alignment(fs_info, start)) 3387 return ERR_PTR(-EINVAL); 3388 3389 #if BITS_PER_LONG == 32 3390 if (start >= MAX_LFS_FILESIZE) { 3391 btrfs_err_rl(fs_info, 3392 "extent buffer %llu is beyond 32bit page cache limit", start); 3393 btrfs_err_32bit_limit(fs_info); 3394 return ERR_PTR(-EOVERFLOW); 3395 } 3396 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3397 btrfs_warn_32bit_limit(fs_info); 3398 #endif 3399 3400 eb = find_extent_buffer(fs_info, start); 3401 if (eb) 3402 return eb; 3403 3404 eb = __alloc_extent_buffer(fs_info, start); 3405 if (!eb) 3406 return ERR_PTR(-ENOMEM); 3407 3408 /* 3409 * The reloc trees are just snapshots, so we need them to appear to be 3410 * just like any other fs tree WRT lockdep. 3411 */ 3412 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3413 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3414 3415 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3416 3417 /* 3418 * Preallocate folio private for subpage case, so that we won't 3419 * allocate memory with i_private_lock nor page lock hold. 3420 * 3421 * The memory will be freed by attach_extent_buffer_page() or freed 3422 * manually if we exit earlier. 3423 */ 3424 if (btrfs_meta_is_subpage(fs_info)) { 3425 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3426 if (IS_ERR(prealloc)) { 3427 ret = PTR_ERR(prealloc); 3428 goto out; 3429 } 3430 } 3431 3432 reallocate: 3433 /* Allocate all pages first. */ 3434 ret = alloc_eb_folio_array(eb, true); 3435 if (ret < 0) { 3436 btrfs_free_folio_state(prealloc); 3437 goto out; 3438 } 3439 3440 /* Attach all pages to the filemap. */ 3441 for (int i = 0; i < num_extent_folios(eb); i++) { 3442 struct folio *folio; 3443 3444 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3445 if (ret > 0) { 3446 ASSERT(existing_eb); 3447 goto out; 3448 } 3449 3450 /* 3451 * TODO: Special handling for a corner case where the order of 3452 * folios mismatch between the new eb and filemap. 3453 * 3454 * This happens when: 3455 * 3456 * - the new eb is using higher order folio 3457 * 3458 * - the filemap is still using 0-order folios for the range 3459 * This can happen at the previous eb allocation, and we don't 3460 * have higher order folio for the call. 3461 * 3462 * - the existing eb has already been freed 3463 * 3464 * In this case, we have to free the existing folios first, and 3465 * re-allocate using the same order. 3466 * Thankfully this is not going to happen yet, as we're still 3467 * using 0-order folios. 3468 */ 3469 if (unlikely(ret == -EAGAIN)) { 3470 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3471 goto reallocate; 3472 } 3473 attached++; 3474 3475 /* 3476 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3477 * reliable, as we may choose to reuse the existing page cache 3478 * and free the allocated page. 3479 */ 3480 folio = eb->folios[i]; 3481 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3482 3483 /* 3484 * Check if the current page is physically contiguous with previous eb 3485 * page. 3486 * At this stage, either we allocated a large folio, thus @i 3487 * would only be 0, or we fall back to per-page allocation. 3488 */ 3489 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3490 page_contig = false; 3491 3492 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3493 uptodate = 0; 3494 3495 /* 3496 * We can't unlock the pages just yet since the extent buffer 3497 * hasn't been properly inserted into the xarray, this opens a 3498 * race with btree_release_folio() which can free a page while we 3499 * are still filling in all pages for the buffer and we could crash. 3500 */ 3501 } 3502 if (uptodate) 3503 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3504 /* All pages are physically contiguous, can skip cross page handling. */ 3505 if (page_contig) 3506 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3507 again: 3508 xa_lock_irq(&fs_info->buffer_tree); 3509 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3510 start >> fs_info->nodesize_bits, NULL, eb, 3511 GFP_NOFS); 3512 if (xa_is_err(existing_eb)) { 3513 ret = xa_err(existing_eb); 3514 xa_unlock_irq(&fs_info->buffer_tree); 3515 goto out; 3516 } 3517 if (existing_eb) { 3518 if (!refcount_inc_not_zero(&existing_eb->refs)) { 3519 xa_unlock_irq(&fs_info->buffer_tree); 3520 goto again; 3521 } 3522 xa_unlock_irq(&fs_info->buffer_tree); 3523 goto out; 3524 } 3525 xa_unlock_irq(&fs_info->buffer_tree); 3526 3527 /* add one reference for the tree */ 3528 check_buffer_tree_ref(eb); 3529 3530 /* 3531 * Now it's safe to unlock the pages because any calls to 3532 * btree_release_folio will correctly detect that a page belongs to a 3533 * live buffer and won't free them prematurely. 3534 */ 3535 for (int i = 0; i < num_extent_folios(eb); i++) { 3536 folio_unlock(eb->folios[i]); 3537 /* 3538 * A folio that has been added to an address_space mapping 3539 * should not continue holding the refcount from its original 3540 * allocation indefinitely. 3541 */ 3542 folio_put(eb->folios[i]); 3543 } 3544 return eb; 3545 3546 out: 3547 WARN_ON(!refcount_dec_and_test(&eb->refs)); 3548 3549 /* 3550 * Any attached folios need to be detached before we unlock them. This 3551 * is because when we're inserting our new folios into the mapping, and 3552 * then attaching our eb to that folio. If we fail to insert our folio 3553 * we'll lookup the folio for that index, and grab that EB. We do not 3554 * want that to grab this eb, as we're getting ready to free it. So we 3555 * have to detach it first and then unlock it. 3556 * 3557 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3558 */ 3559 for (int i = 0; i < num_extent_pages(eb); i++) { 3560 struct folio *folio = eb->folios[i]; 3561 3562 if (i < attached) { 3563 ASSERT(folio); 3564 detach_extent_buffer_folio(eb, folio); 3565 folio_unlock(folio); 3566 } else if (!folio) { 3567 continue; 3568 } 3569 3570 folio_put(folio); 3571 eb->folios[i] = NULL; 3572 } 3573 btrfs_release_extent_buffer(eb); 3574 if (ret < 0) 3575 return ERR_PTR(ret); 3576 ASSERT(existing_eb); 3577 return existing_eb; 3578 } 3579 3580 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3581 { 3582 struct extent_buffer *eb = 3583 container_of(head, struct extent_buffer, rcu_head); 3584 3585 kmem_cache_free(extent_buffer_cache, eb); 3586 } 3587 3588 static int release_extent_buffer(struct extent_buffer *eb) 3589 __releases(&eb->refs_lock) 3590 { 3591 lockdep_assert_held(&eb->refs_lock); 3592 3593 if (refcount_dec_and_test(&eb->refs)) { 3594 struct btrfs_fs_info *fs_info = eb->fs_info; 3595 3596 spin_unlock(&eb->refs_lock); 3597 3598 /* 3599 * We're erasing, theoretically there will be no allocations, so 3600 * just use GFP_ATOMIC. 3601 * 3602 * We use cmpxchg instead of erase because we do not know if 3603 * this eb is actually in the tree or not, we could be cleaning 3604 * up an eb that we allocated but never inserted into the tree. 3605 * Thus use cmpxchg to remove it from the tree if it is there, 3606 * or leave the other entry if this isn't in the tree. 3607 * 3608 * The documentation says that putting a NULL value is the same 3609 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3610 * in this case. 3611 */ 3612 xa_cmpxchg_irq(&fs_info->buffer_tree, 3613 eb->start >> fs_info->nodesize_bits, eb, NULL, 3614 GFP_ATOMIC); 3615 3616 btrfs_leak_debug_del_eb(eb); 3617 /* Should be safe to release folios at this point. */ 3618 btrfs_release_extent_buffer_folios(eb); 3619 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3620 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3621 kmem_cache_free(extent_buffer_cache, eb); 3622 return 1; 3623 } 3624 #endif 3625 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3626 return 1; 3627 } 3628 spin_unlock(&eb->refs_lock); 3629 3630 return 0; 3631 } 3632 3633 void free_extent_buffer(struct extent_buffer *eb) 3634 { 3635 int refs; 3636 if (!eb) 3637 return; 3638 3639 refs = refcount_read(&eb->refs); 3640 while (1) { 3641 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { 3642 if (refs == 1) 3643 break; 3644 } else if (refs <= 3) { 3645 break; 3646 } 3647 3648 /* Optimization to avoid locking eb->refs_lock. */ 3649 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) 3650 return; 3651 } 3652 3653 spin_lock(&eb->refs_lock); 3654 if (refcount_read(&eb->refs) == 2 && 3655 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3656 !extent_buffer_under_io(eb) && 3657 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3658 refcount_dec(&eb->refs); 3659 3660 /* 3661 * I know this is terrible, but it's temporary until we stop tracking 3662 * the uptodate bits and such for the extent buffers. 3663 */ 3664 release_extent_buffer(eb); 3665 } 3666 3667 void free_extent_buffer_stale(struct extent_buffer *eb) 3668 { 3669 if (!eb) 3670 return; 3671 3672 spin_lock(&eb->refs_lock); 3673 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3674 3675 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3676 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3677 refcount_dec(&eb->refs); 3678 release_extent_buffer(eb); 3679 } 3680 3681 static void btree_clear_folio_dirty_tag(struct folio *folio) 3682 { 3683 ASSERT(!folio_test_dirty(folio)); 3684 ASSERT(folio_test_locked(folio)); 3685 xa_lock_irq(&folio->mapping->i_pages); 3686 if (!folio_test_dirty(folio)) 3687 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3688 PAGECACHE_TAG_DIRTY); 3689 xa_unlock_irq(&folio->mapping->i_pages); 3690 } 3691 3692 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3693 struct extent_buffer *eb) 3694 { 3695 struct btrfs_fs_info *fs_info = eb->fs_info; 3696 3697 btrfs_assert_tree_write_locked(eb); 3698 3699 if (trans && btrfs_header_generation(eb) != trans->transid) 3700 return; 3701 3702 /* 3703 * Instead of clearing the dirty flag off of the buffer, mark it as 3704 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3705 * write-ordering in zoned mode, without the need to later re-dirty 3706 * the extent_buffer. 3707 * 3708 * The actual zeroout of the buffer will happen later in 3709 * btree_csum_one_bio. 3710 */ 3711 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3712 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3713 return; 3714 } 3715 3716 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3717 return; 3718 3719 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3720 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3721 fs_info->dirty_metadata_batch); 3722 3723 for (int i = 0; i < num_extent_folios(eb); i++) { 3724 struct folio *folio = eb->folios[i]; 3725 bool last; 3726 3727 if (!folio_test_dirty(folio)) 3728 continue; 3729 folio_lock(folio); 3730 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3731 if (last) 3732 btree_clear_folio_dirty_tag(folio); 3733 folio_unlock(folio); 3734 } 3735 WARN_ON(refcount_read(&eb->refs) == 0); 3736 } 3737 3738 void set_extent_buffer_dirty(struct extent_buffer *eb) 3739 { 3740 bool was_dirty; 3741 3742 check_buffer_tree_ref(eb); 3743 3744 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3745 3746 WARN_ON(refcount_read(&eb->refs) == 0); 3747 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3748 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3749 3750 if (!was_dirty) { 3751 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3752 3753 /* 3754 * For subpage case, we can have other extent buffers in the 3755 * same page, and in clear_extent_buffer_dirty() we 3756 * have to clear page dirty without subpage lock held. 3757 * This can cause race where our page gets dirty cleared after 3758 * we just set it. 3759 * 3760 * Thankfully, clear_extent_buffer_dirty() has locked 3761 * its page for other reasons, we can use page lock to prevent 3762 * the above race. 3763 */ 3764 if (subpage) 3765 folio_lock(eb->folios[0]); 3766 for (int i = 0; i < num_extent_folios(eb); i++) 3767 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3768 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3769 if (subpage) 3770 folio_unlock(eb->folios[0]); 3771 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3772 eb->len, 3773 eb->fs_info->dirty_metadata_batch); 3774 } 3775 #ifdef CONFIG_BTRFS_DEBUG 3776 for (int i = 0; i < num_extent_folios(eb); i++) 3777 ASSERT(folio_test_dirty(eb->folios[i])); 3778 #endif 3779 } 3780 3781 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3782 { 3783 3784 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3785 for (int i = 0; i < num_extent_folios(eb); i++) { 3786 struct folio *folio = eb->folios[i]; 3787 3788 if (!folio) 3789 continue; 3790 3791 btrfs_meta_folio_clear_uptodate(folio, eb); 3792 } 3793 } 3794 3795 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3796 { 3797 3798 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3799 for (int i = 0; i < num_extent_folios(eb); i++) 3800 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3801 } 3802 3803 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3804 { 3805 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); 3806 } 3807 3808 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3809 { 3810 struct extent_buffer *eb = bbio->private; 3811 bool uptodate = !bbio->bio.bi_status; 3812 3813 /* 3814 * If the extent buffer is marked UPTODATE before the read operation 3815 * completes, other calls to read_extent_buffer_pages() will return 3816 * early without waiting for the read to finish, causing data races. 3817 */ 3818 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3819 3820 eb->read_mirror = bbio->mirror_num; 3821 3822 if (uptodate && 3823 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3824 uptodate = false; 3825 3826 if (uptodate) 3827 set_extent_buffer_uptodate(eb); 3828 else 3829 clear_extent_buffer_uptodate(eb); 3830 3831 clear_extent_buffer_reading(eb); 3832 free_extent_buffer(eb); 3833 3834 bio_put(&bbio->bio); 3835 } 3836 3837 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3838 const struct btrfs_tree_parent_check *check) 3839 { 3840 struct btrfs_fs_info *fs_info = eb->fs_info; 3841 struct btrfs_bio *bbio; 3842 3843 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3844 return 0; 3845 3846 /* 3847 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3848 * operation, which could potentially still be in flight. In this case 3849 * we simply want to return an error. 3850 */ 3851 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3852 return -EIO; 3853 3854 /* Someone else is already reading the buffer, just wait for it. */ 3855 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3856 return 0; 3857 3858 /* 3859 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3860 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3861 * started and finished reading the same eb. In this case, UPTODATE 3862 * will now be set, and we shouldn't read it in again. 3863 */ 3864 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3865 clear_extent_buffer_reading(eb); 3866 return 0; 3867 } 3868 3869 eb->read_mirror = 0; 3870 check_buffer_tree_ref(eb); 3871 refcount_inc(&eb->refs); 3872 3873 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3874 REQ_OP_READ | REQ_META, BTRFS_I(fs_info->btree_inode), 3875 eb->start, end_bbio_meta_read, eb); 3876 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3877 memcpy(&bbio->parent_check, check, sizeof(*check)); 3878 for (int i = 0; i < num_extent_folios(eb); i++) { 3879 struct folio *folio = eb->folios[i]; 3880 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3881 u32 range_len = min_t(u64, folio_next_pos(folio), 3882 eb->start + eb->len) - range_start; 3883 3884 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3885 offset_in_folio(folio, range_start)); 3886 } 3887 btrfs_submit_bbio(bbio, mirror_num); 3888 return 0; 3889 } 3890 3891 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3892 const struct btrfs_tree_parent_check *check) 3893 { 3894 int ret; 3895 3896 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3897 if (ret < 0) 3898 return ret; 3899 3900 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3901 if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) 3902 return -EIO; 3903 return 0; 3904 } 3905 3906 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3907 unsigned long len) 3908 { 3909 btrfs_warn(eb->fs_info, 3910 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3911 eb->start, eb->len, start, len); 3912 DEBUG_WARN(); 3913 3914 return true; 3915 } 3916 3917 /* 3918 * Check if the [start, start + len) range is valid before reading/writing 3919 * the eb. 3920 * NOTE: @start and @len are offset inside the eb, not logical address. 3921 * 3922 * Caller should not touch the dst/src memory if this function returns error. 3923 */ 3924 static inline int check_eb_range(const struct extent_buffer *eb, 3925 unsigned long start, unsigned long len) 3926 { 3927 unsigned long offset; 3928 3929 /* start, start + len should not go beyond eb->len nor overflow */ 3930 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3931 return report_eb_range(eb, start, len); 3932 3933 return false; 3934 } 3935 3936 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3937 unsigned long start, unsigned long len) 3938 { 3939 const int unit_size = eb->folio_size; 3940 size_t cur; 3941 size_t offset; 3942 char *dst = (char *)dstv; 3943 unsigned long i = get_eb_folio_index(eb, start); 3944 3945 if (check_eb_range(eb, start, len)) { 3946 /* 3947 * Invalid range hit, reset the memory, so callers won't get 3948 * some random garbage for their uninitialized memory. 3949 */ 3950 memset(dstv, 0, len); 3951 return; 3952 } 3953 3954 if (eb->addr) { 3955 memcpy(dstv, eb->addr + start, len); 3956 return; 3957 } 3958 3959 offset = get_eb_offset_in_folio(eb, start); 3960 3961 while (len > 0) { 3962 char *kaddr; 3963 3964 cur = min(len, unit_size - offset); 3965 kaddr = folio_address(eb->folios[i]); 3966 memcpy(dst, kaddr + offset, cur); 3967 3968 dst += cur; 3969 len -= cur; 3970 offset = 0; 3971 i++; 3972 } 3973 } 3974 3975 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3976 void __user *dstv, 3977 unsigned long start, unsigned long len) 3978 { 3979 const int unit_size = eb->folio_size; 3980 size_t cur; 3981 size_t offset; 3982 char __user *dst = (char __user *)dstv; 3983 unsigned long i = get_eb_folio_index(eb, start); 3984 int ret = 0; 3985 3986 WARN_ON(start > eb->len); 3987 WARN_ON(start + len > eb->start + eb->len); 3988 3989 if (eb->addr) { 3990 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3991 ret = -EFAULT; 3992 return ret; 3993 } 3994 3995 offset = get_eb_offset_in_folio(eb, start); 3996 3997 while (len > 0) { 3998 char *kaddr; 3999 4000 cur = min(len, unit_size - offset); 4001 kaddr = folio_address(eb->folios[i]); 4002 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4003 ret = -EFAULT; 4004 break; 4005 } 4006 4007 dst += cur; 4008 len -= cur; 4009 offset = 0; 4010 i++; 4011 } 4012 4013 return ret; 4014 } 4015 4016 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4017 unsigned long start, unsigned long len) 4018 { 4019 const int unit_size = eb->folio_size; 4020 size_t cur; 4021 size_t offset; 4022 char *kaddr; 4023 char *ptr = (char *)ptrv; 4024 unsigned long i = get_eb_folio_index(eb, start); 4025 int ret = 0; 4026 4027 if (check_eb_range(eb, start, len)) 4028 return -EINVAL; 4029 4030 if (eb->addr) 4031 return memcmp(ptrv, eb->addr + start, len); 4032 4033 offset = get_eb_offset_in_folio(eb, start); 4034 4035 while (len > 0) { 4036 cur = min(len, unit_size - offset); 4037 kaddr = folio_address(eb->folios[i]); 4038 ret = memcmp(ptr, kaddr + offset, cur); 4039 if (ret) 4040 break; 4041 4042 ptr += cur; 4043 len -= cur; 4044 offset = 0; 4045 i++; 4046 } 4047 return ret; 4048 } 4049 4050 /* 4051 * Check that the extent buffer is uptodate. 4052 * 4053 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4054 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4055 */ 4056 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4057 { 4058 struct btrfs_fs_info *fs_info = eb->fs_info; 4059 struct folio *folio = eb->folios[i]; 4060 4061 ASSERT(folio); 4062 4063 /* 4064 * If we are using the commit root we could potentially clear a page 4065 * Uptodate while we're using the extent buffer that we've previously 4066 * looked up. We don't want to complain in this case, as the page was 4067 * valid before, we just didn't write it out. Instead we want to catch 4068 * the case where we didn't actually read the block properly, which 4069 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4070 */ 4071 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4072 return; 4073 4074 if (btrfs_meta_is_subpage(fs_info)) { 4075 folio = eb->folios[0]; 4076 ASSERT(i == 0); 4077 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4078 eb->start, eb->len))) 4079 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4080 } else { 4081 WARN_ON(!folio_test_uptodate(folio)); 4082 } 4083 } 4084 4085 static void __write_extent_buffer(const struct extent_buffer *eb, 4086 const void *srcv, unsigned long start, 4087 unsigned long len, bool use_memmove) 4088 { 4089 const int unit_size = eb->folio_size; 4090 size_t cur; 4091 size_t offset; 4092 char *kaddr; 4093 const char *src = (const char *)srcv; 4094 unsigned long i = get_eb_folio_index(eb, start); 4095 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4096 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4097 4098 if (check_eb_range(eb, start, len)) 4099 return; 4100 4101 if (eb->addr) { 4102 if (use_memmove) 4103 memmove(eb->addr + start, srcv, len); 4104 else 4105 memcpy(eb->addr + start, srcv, len); 4106 return; 4107 } 4108 4109 offset = get_eb_offset_in_folio(eb, start); 4110 4111 while (len > 0) { 4112 if (check_uptodate) 4113 assert_eb_folio_uptodate(eb, i); 4114 4115 cur = min(len, unit_size - offset); 4116 kaddr = folio_address(eb->folios[i]); 4117 if (use_memmove) 4118 memmove(kaddr + offset, src, cur); 4119 else 4120 memcpy(kaddr + offset, src, cur); 4121 4122 src += cur; 4123 len -= cur; 4124 offset = 0; 4125 i++; 4126 } 4127 } 4128 4129 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4130 unsigned long start, unsigned long len) 4131 { 4132 return __write_extent_buffer(eb, srcv, start, len, false); 4133 } 4134 4135 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4136 unsigned long start, unsigned long len) 4137 { 4138 const int unit_size = eb->folio_size; 4139 unsigned long cur = start; 4140 4141 if (eb->addr) { 4142 memset(eb->addr + start, c, len); 4143 return; 4144 } 4145 4146 while (cur < start + len) { 4147 unsigned long index = get_eb_folio_index(eb, cur); 4148 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4149 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4150 4151 assert_eb_folio_uptodate(eb, index); 4152 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4153 4154 cur += cur_len; 4155 } 4156 } 4157 4158 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4159 unsigned long len) 4160 { 4161 if (check_eb_range(eb, start, len)) 4162 return; 4163 return memset_extent_buffer(eb, 0, start, len); 4164 } 4165 4166 void copy_extent_buffer_full(const struct extent_buffer *dst, 4167 const struct extent_buffer *src) 4168 { 4169 const int unit_size = src->folio_size; 4170 unsigned long cur = 0; 4171 4172 ASSERT(dst->len == src->len); 4173 4174 while (cur < src->len) { 4175 unsigned long index = get_eb_folio_index(src, cur); 4176 unsigned long offset = get_eb_offset_in_folio(src, cur); 4177 unsigned long cur_len = min(src->len, unit_size - offset); 4178 void *addr = folio_address(src->folios[index]) + offset; 4179 4180 write_extent_buffer(dst, addr, cur, cur_len); 4181 4182 cur += cur_len; 4183 } 4184 } 4185 4186 void copy_extent_buffer(const struct extent_buffer *dst, 4187 const struct extent_buffer *src, 4188 unsigned long dst_offset, unsigned long src_offset, 4189 unsigned long len) 4190 { 4191 const int unit_size = dst->folio_size; 4192 u64 dst_len = dst->len; 4193 size_t cur; 4194 size_t offset; 4195 char *kaddr; 4196 unsigned long i = get_eb_folio_index(dst, dst_offset); 4197 4198 if (check_eb_range(dst, dst_offset, len) || 4199 check_eb_range(src, src_offset, len)) 4200 return; 4201 4202 WARN_ON(src->len != dst_len); 4203 4204 offset = get_eb_offset_in_folio(dst, dst_offset); 4205 4206 while (len > 0) { 4207 assert_eb_folio_uptodate(dst, i); 4208 4209 cur = min(len, (unsigned long)(unit_size - offset)); 4210 4211 kaddr = folio_address(dst->folios[i]); 4212 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4213 4214 src_offset += cur; 4215 len -= cur; 4216 offset = 0; 4217 i++; 4218 } 4219 } 4220 4221 /* 4222 * Calculate the folio and offset of the byte containing the given bit number. 4223 * 4224 * @eb: the extent buffer 4225 * @start: offset of the bitmap item in the extent buffer 4226 * @nr: bit number 4227 * @folio_index: return index of the folio in the extent buffer that contains 4228 * the given bit number 4229 * @folio_offset: return offset into the folio given by folio_index 4230 * 4231 * This helper hides the ugliness of finding the byte in an extent buffer which 4232 * contains a given bit. 4233 */ 4234 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4235 unsigned long start, unsigned long nr, 4236 unsigned long *folio_index, 4237 size_t *folio_offset) 4238 { 4239 size_t byte_offset = BIT_BYTE(nr); 4240 size_t offset; 4241 4242 /* 4243 * The byte we want is the offset of the extent buffer + the offset of 4244 * the bitmap item in the extent buffer + the offset of the byte in the 4245 * bitmap item. 4246 */ 4247 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4248 4249 *folio_index = offset >> eb->folio_shift; 4250 *folio_offset = offset_in_eb_folio(eb, offset); 4251 } 4252 4253 /* 4254 * Determine whether a bit in a bitmap item is set. 4255 * 4256 * @eb: the extent buffer 4257 * @start: offset of the bitmap item in the extent buffer 4258 * @nr: bit number to test 4259 */ 4260 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4261 unsigned long nr) 4262 { 4263 unsigned long i; 4264 size_t offset; 4265 u8 *kaddr; 4266 4267 eb_bitmap_offset(eb, start, nr, &i, &offset); 4268 assert_eb_folio_uptodate(eb, i); 4269 kaddr = folio_address(eb->folios[i]); 4270 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4271 } 4272 4273 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4274 { 4275 unsigned long index = get_eb_folio_index(eb, bytenr); 4276 4277 if (check_eb_range(eb, bytenr, 1)) 4278 return NULL; 4279 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4280 } 4281 4282 /* 4283 * Set an area of a bitmap to 1. 4284 * 4285 * @eb: the extent buffer 4286 * @start: offset of the bitmap item in the extent buffer 4287 * @pos: bit number of the first bit 4288 * @len: number of bits to set 4289 */ 4290 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4291 unsigned long pos, unsigned long len) 4292 { 4293 unsigned int first_byte = start + BIT_BYTE(pos); 4294 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4295 const bool same_byte = (first_byte == last_byte); 4296 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4297 u8 *kaddr; 4298 4299 if (same_byte) 4300 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4301 4302 /* Handle the first byte. */ 4303 kaddr = extent_buffer_get_byte(eb, first_byte); 4304 *kaddr |= mask; 4305 if (same_byte) 4306 return; 4307 4308 /* Handle the byte aligned part. */ 4309 ASSERT(first_byte + 1 <= last_byte); 4310 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4311 4312 /* Handle the last byte. */ 4313 kaddr = extent_buffer_get_byte(eb, last_byte); 4314 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4315 } 4316 4317 4318 /* 4319 * Clear an area of a bitmap. 4320 * 4321 * @eb: the extent buffer 4322 * @start: offset of the bitmap item in the extent buffer 4323 * @pos: bit number of the first bit 4324 * @len: number of bits to clear 4325 */ 4326 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4327 unsigned long start, unsigned long pos, 4328 unsigned long len) 4329 { 4330 unsigned int first_byte = start + BIT_BYTE(pos); 4331 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4332 const bool same_byte = (first_byte == last_byte); 4333 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4334 u8 *kaddr; 4335 4336 if (same_byte) 4337 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4338 4339 /* Handle the first byte. */ 4340 kaddr = extent_buffer_get_byte(eb, first_byte); 4341 *kaddr &= ~mask; 4342 if (same_byte) 4343 return; 4344 4345 /* Handle the byte aligned part. */ 4346 ASSERT(first_byte + 1 <= last_byte); 4347 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4348 4349 /* Handle the last byte. */ 4350 kaddr = extent_buffer_get_byte(eb, last_byte); 4351 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4352 } 4353 4354 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4355 { 4356 unsigned long distance = (src > dst) ? src - dst : dst - src; 4357 return distance < len; 4358 } 4359 4360 void memcpy_extent_buffer(const struct extent_buffer *dst, 4361 unsigned long dst_offset, unsigned long src_offset, 4362 unsigned long len) 4363 { 4364 const int unit_size = dst->folio_size; 4365 unsigned long cur_off = 0; 4366 4367 if (check_eb_range(dst, dst_offset, len) || 4368 check_eb_range(dst, src_offset, len)) 4369 return; 4370 4371 if (dst->addr) { 4372 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4373 4374 if (use_memmove) 4375 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4376 else 4377 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4378 return; 4379 } 4380 4381 while (cur_off < len) { 4382 unsigned long cur_src = cur_off + src_offset; 4383 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4384 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4385 unsigned long cur_len = min(src_offset + len - cur_src, 4386 unit_size - folio_off); 4387 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4388 const bool use_memmove = areas_overlap(src_offset + cur_off, 4389 dst_offset + cur_off, cur_len); 4390 4391 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4392 use_memmove); 4393 cur_off += cur_len; 4394 } 4395 } 4396 4397 void memmove_extent_buffer(const struct extent_buffer *dst, 4398 unsigned long dst_offset, unsigned long src_offset, 4399 unsigned long len) 4400 { 4401 unsigned long dst_end = dst_offset + len - 1; 4402 unsigned long src_end = src_offset + len - 1; 4403 4404 if (check_eb_range(dst, dst_offset, len) || 4405 check_eb_range(dst, src_offset, len)) 4406 return; 4407 4408 if (dst_offset < src_offset) { 4409 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4410 return; 4411 } 4412 4413 if (dst->addr) { 4414 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4415 return; 4416 } 4417 4418 while (len > 0) { 4419 unsigned long src_i; 4420 size_t cur; 4421 size_t dst_off_in_folio; 4422 size_t src_off_in_folio; 4423 void *src_addr; 4424 bool use_memmove; 4425 4426 src_i = get_eb_folio_index(dst, src_end); 4427 4428 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4429 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4430 4431 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4432 cur = min(cur, dst_off_in_folio + 1); 4433 4434 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4435 cur + 1; 4436 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4437 cur); 4438 4439 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4440 use_memmove); 4441 4442 dst_end -= cur; 4443 src_end -= cur; 4444 len -= cur; 4445 } 4446 } 4447 4448 static int try_release_subpage_extent_buffer(struct folio *folio) 4449 { 4450 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4451 struct extent_buffer *eb; 4452 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); 4453 unsigned long index = start; 4454 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; 4455 int ret; 4456 4457 rcu_read_lock(); 4458 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4459 /* 4460 * The same as try_release_extent_buffer(), to ensure the eb 4461 * won't disappear out from under us. 4462 */ 4463 spin_lock(&eb->refs_lock); 4464 rcu_read_unlock(); 4465 4466 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4467 spin_unlock(&eb->refs_lock); 4468 rcu_read_lock(); 4469 continue; 4470 } 4471 4472 /* 4473 * If tree ref isn't set then we know the ref on this eb is a 4474 * real ref, so just return, this eb will likely be freed soon 4475 * anyway. 4476 */ 4477 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4478 spin_unlock(&eb->refs_lock); 4479 break; 4480 } 4481 4482 /* 4483 * Here we don't care about the return value, we will always 4484 * check the folio private at the end. And 4485 * release_extent_buffer() will release the refs_lock. 4486 */ 4487 release_extent_buffer(eb); 4488 rcu_read_lock(); 4489 } 4490 rcu_read_unlock(); 4491 4492 /* 4493 * Finally to check if we have cleared folio private, as if we have 4494 * released all ebs in the page, the folio private should be cleared now. 4495 */ 4496 spin_lock(&folio->mapping->i_private_lock); 4497 if (!folio_test_private(folio)) 4498 ret = 1; 4499 else 4500 ret = 0; 4501 spin_unlock(&folio->mapping->i_private_lock); 4502 return ret; 4503 } 4504 4505 int try_release_extent_buffer(struct folio *folio) 4506 { 4507 struct extent_buffer *eb; 4508 4509 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4510 return try_release_subpage_extent_buffer(folio); 4511 4512 /* 4513 * We need to make sure nobody is changing folio private, as we rely on 4514 * folio private as the pointer to extent buffer. 4515 */ 4516 spin_lock(&folio->mapping->i_private_lock); 4517 if (!folio_test_private(folio)) { 4518 spin_unlock(&folio->mapping->i_private_lock); 4519 return 1; 4520 } 4521 4522 eb = folio_get_private(folio); 4523 BUG_ON(!eb); 4524 4525 /* 4526 * This is a little awful but should be ok, we need to make sure that 4527 * the eb doesn't disappear out from under us while we're looking at 4528 * this page. 4529 */ 4530 spin_lock(&eb->refs_lock); 4531 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4532 spin_unlock(&eb->refs_lock); 4533 spin_unlock(&folio->mapping->i_private_lock); 4534 return 0; 4535 } 4536 spin_unlock(&folio->mapping->i_private_lock); 4537 4538 /* 4539 * If tree ref isn't set then we know the ref on this eb is a real ref, 4540 * so just return, this page will likely be freed soon anyway. 4541 */ 4542 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4543 spin_unlock(&eb->refs_lock); 4544 return 0; 4545 } 4546 4547 return release_extent_buffer(eb); 4548 } 4549 4550 /* 4551 * Attempt to readahead a child block. 4552 * 4553 * @fs_info: the fs_info 4554 * @bytenr: bytenr to read 4555 * @owner_root: objectid of the root that owns this eb 4556 * @gen: generation for the uptodate check, can be 0 4557 * @level: level for the eb 4558 * 4559 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4560 * normal uptodate check of the eb, without checking the generation. If we have 4561 * to read the block we will not block on anything. 4562 */ 4563 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4564 u64 bytenr, u64 owner_root, u64 gen, int level) 4565 { 4566 struct btrfs_tree_parent_check check = { 4567 .level = level, 4568 .transid = gen 4569 }; 4570 struct extent_buffer *eb; 4571 int ret; 4572 4573 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4574 if (IS_ERR(eb)) 4575 return; 4576 4577 if (btrfs_buffer_uptodate(eb, gen, true)) { 4578 free_extent_buffer(eb); 4579 return; 4580 } 4581 4582 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4583 if (ret < 0) 4584 free_extent_buffer_stale(eb); 4585 else 4586 free_extent_buffer(eb); 4587 } 4588 4589 /* 4590 * Readahead a node's child block. 4591 * 4592 * @node: parent node we're reading from 4593 * @slot: slot in the parent node for the child we want to read 4594 * 4595 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4596 * the slot in the node provided. 4597 */ 4598 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4599 { 4600 btrfs_readahead_tree_block(node->fs_info, 4601 btrfs_node_blockptr(node, slot), 4602 btrfs_header_owner(node), 4603 btrfs_node_ptr_generation(node, slot), 4604 btrfs_header_level(node) - 1); 4605 } 4606