xref: /linux/fs/btrfs/extent_io.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       refcount_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use REQ_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio),
178 				     BIOSET_NEED_BVECS);
179 	if (!btrfs_bioset)
180 		goto free_buffer_cache;
181 
182 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
183 		goto free_bioset;
184 
185 	return 0;
186 
187 free_bioset:
188 	bioset_free(btrfs_bioset);
189 	btrfs_bioset = NULL;
190 
191 free_buffer_cache:
192 	kmem_cache_destroy(extent_buffer_cache);
193 	extent_buffer_cache = NULL;
194 
195 free_state_cache:
196 	kmem_cache_destroy(extent_state_cache);
197 	extent_state_cache = NULL;
198 	return -ENOMEM;
199 }
200 
201 void extent_io_exit(void)
202 {
203 	btrfs_leak_debug_check();
204 
205 	/*
206 	 * Make sure all delayed rcu free are flushed before we
207 	 * destroy caches.
208 	 */
209 	rcu_barrier();
210 	kmem_cache_destroy(extent_state_cache);
211 	kmem_cache_destroy(extent_buffer_cache);
212 	if (btrfs_bioset)
213 		bioset_free(btrfs_bioset);
214 }
215 
216 void extent_io_tree_init(struct extent_io_tree *tree,
217 			 struct address_space *mapping)
218 {
219 	tree->state = RB_ROOT;
220 	tree->ops = NULL;
221 	tree->dirty_bytes = 0;
222 	spin_lock_init(&tree->lock);
223 	tree->mapping = mapping;
224 }
225 
226 static struct extent_state *alloc_extent_state(gfp_t mask)
227 {
228 	struct extent_state *state;
229 
230 	/*
231 	 * The given mask might be not appropriate for the slab allocator,
232 	 * drop the unsupported bits
233 	 */
234 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
235 	state = kmem_cache_alloc(extent_state_cache, mask);
236 	if (!state)
237 		return state;
238 	state->state = 0;
239 	state->failrec = NULL;
240 	RB_CLEAR_NODE(&state->rb_node);
241 	btrfs_leak_debug_add(&state->leak_list, &states);
242 	refcount_set(&state->refs, 1);
243 	init_waitqueue_head(&state->wq);
244 	trace_alloc_extent_state(state, mask, _RET_IP_);
245 	return state;
246 }
247 
248 void free_extent_state(struct extent_state *state)
249 {
250 	if (!state)
251 		return;
252 	if (refcount_dec_and_test(&state->refs)) {
253 		WARN_ON(extent_state_in_tree(state));
254 		btrfs_leak_debug_del(&state->leak_list);
255 		trace_free_extent_state(state, _RET_IP_);
256 		kmem_cache_free(extent_state_cache, state);
257 	}
258 }
259 
260 static struct rb_node *tree_insert(struct rb_root *root,
261 				   struct rb_node *search_start,
262 				   u64 offset,
263 				   struct rb_node *node,
264 				   struct rb_node ***p_in,
265 				   struct rb_node **parent_in)
266 {
267 	struct rb_node **p;
268 	struct rb_node *parent = NULL;
269 	struct tree_entry *entry;
270 
271 	if (p_in && parent_in) {
272 		p = *p_in;
273 		parent = *parent_in;
274 		goto do_insert;
275 	}
276 
277 	p = search_start ? &search_start : &root->rb_node;
278 	while (*p) {
279 		parent = *p;
280 		entry = rb_entry(parent, struct tree_entry, rb_node);
281 
282 		if (offset < entry->start)
283 			p = &(*p)->rb_left;
284 		else if (offset > entry->end)
285 			p = &(*p)->rb_right;
286 		else
287 			return parent;
288 	}
289 
290 do_insert:
291 	rb_link_node(node, parent, p);
292 	rb_insert_color(node, root);
293 	return NULL;
294 }
295 
296 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
297 				      struct rb_node **prev_ret,
298 				      struct rb_node **next_ret,
299 				      struct rb_node ***p_ret,
300 				      struct rb_node **parent_ret)
301 {
302 	struct rb_root *root = &tree->state;
303 	struct rb_node **n = &root->rb_node;
304 	struct rb_node *prev = NULL;
305 	struct rb_node *orig_prev = NULL;
306 	struct tree_entry *entry;
307 	struct tree_entry *prev_entry = NULL;
308 
309 	while (*n) {
310 		prev = *n;
311 		entry = rb_entry(prev, struct tree_entry, rb_node);
312 		prev_entry = entry;
313 
314 		if (offset < entry->start)
315 			n = &(*n)->rb_left;
316 		else if (offset > entry->end)
317 			n = &(*n)->rb_right;
318 		else
319 			return *n;
320 	}
321 
322 	if (p_ret)
323 		*p_ret = n;
324 	if (parent_ret)
325 		*parent_ret = prev;
326 
327 	if (prev_ret) {
328 		orig_prev = prev;
329 		while (prev && offset > prev_entry->end) {
330 			prev = rb_next(prev);
331 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 		}
333 		*prev_ret = prev;
334 		prev = orig_prev;
335 	}
336 
337 	if (next_ret) {
338 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
339 		while (prev && offset < prev_entry->start) {
340 			prev = rb_prev(prev);
341 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
342 		}
343 		*next_ret = prev;
344 	}
345 	return NULL;
346 }
347 
348 static inline struct rb_node *
349 tree_search_for_insert(struct extent_io_tree *tree,
350 		       u64 offset,
351 		       struct rb_node ***p_ret,
352 		       struct rb_node **parent_ret)
353 {
354 	struct rb_node *prev = NULL;
355 	struct rb_node *ret;
356 
357 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
358 	if (!ret)
359 		return prev;
360 	return ret;
361 }
362 
363 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
364 					  u64 offset)
365 {
366 	return tree_search_for_insert(tree, offset, NULL, NULL);
367 }
368 
369 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
370 		     struct extent_state *other)
371 {
372 	if (tree->ops && tree->ops->merge_extent_hook)
373 		tree->ops->merge_extent_hook(tree->mapping->host, new,
374 					     other);
375 }
376 
377 /*
378  * utility function to look for merge candidates inside a given range.
379  * Any extents with matching state are merged together into a single
380  * extent in the tree.  Extents with EXTENT_IO in their state field
381  * are not merged because the end_io handlers need to be able to do
382  * operations on them without sleeping (or doing allocations/splits).
383  *
384  * This should be called with the tree lock held.
385  */
386 static void merge_state(struct extent_io_tree *tree,
387 		        struct extent_state *state)
388 {
389 	struct extent_state *other;
390 	struct rb_node *other_node;
391 
392 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
393 		return;
394 
395 	other_node = rb_prev(&state->rb_node);
396 	if (other_node) {
397 		other = rb_entry(other_node, struct extent_state, rb_node);
398 		if (other->end == state->start - 1 &&
399 		    other->state == state->state) {
400 			merge_cb(tree, state, other);
401 			state->start = other->start;
402 			rb_erase(&other->rb_node, &tree->state);
403 			RB_CLEAR_NODE(&other->rb_node);
404 			free_extent_state(other);
405 		}
406 	}
407 	other_node = rb_next(&state->rb_node);
408 	if (other_node) {
409 		other = rb_entry(other_node, struct extent_state, rb_node);
410 		if (other->start == state->end + 1 &&
411 		    other->state == state->state) {
412 			merge_cb(tree, state, other);
413 			state->end = other->end;
414 			rb_erase(&other->rb_node, &tree->state);
415 			RB_CLEAR_NODE(&other->rb_node);
416 			free_extent_state(other);
417 		}
418 	}
419 }
420 
421 static void set_state_cb(struct extent_io_tree *tree,
422 			 struct extent_state *state, unsigned *bits)
423 {
424 	if (tree->ops && tree->ops->set_bit_hook)
425 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
426 }
427 
428 static void clear_state_cb(struct extent_io_tree *tree,
429 			   struct extent_state *state, unsigned *bits)
430 {
431 	if (tree->ops && tree->ops->clear_bit_hook)
432 		tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
433 				state, bits);
434 }
435 
436 static void set_state_bits(struct extent_io_tree *tree,
437 			   struct extent_state *state, unsigned *bits,
438 			   struct extent_changeset *changeset);
439 
440 /*
441  * insert an extent_state struct into the tree.  'bits' are set on the
442  * struct before it is inserted.
443  *
444  * This may return -EEXIST if the extent is already there, in which case the
445  * state struct is freed.
446  *
447  * The tree lock is not taken internally.  This is a utility function and
448  * probably isn't what you want to call (see set/clear_extent_bit).
449  */
450 static int insert_state(struct extent_io_tree *tree,
451 			struct extent_state *state, u64 start, u64 end,
452 			struct rb_node ***p,
453 			struct rb_node **parent,
454 			unsigned *bits, struct extent_changeset *changeset)
455 {
456 	struct rb_node *node;
457 
458 	if (end < start)
459 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
460 		       end, start);
461 	state->start = start;
462 	state->end = end;
463 
464 	set_state_bits(tree, state, bits, changeset);
465 
466 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
467 	if (node) {
468 		struct extent_state *found;
469 		found = rb_entry(node, struct extent_state, rb_node);
470 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
471 		       found->start, found->end, start, end);
472 		return -EEXIST;
473 	}
474 	merge_state(tree, state);
475 	return 0;
476 }
477 
478 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
479 		     u64 split)
480 {
481 	if (tree->ops && tree->ops->split_extent_hook)
482 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
483 }
484 
485 /*
486  * split a given extent state struct in two, inserting the preallocated
487  * struct 'prealloc' as the newly created second half.  'split' indicates an
488  * offset inside 'orig' where it should be split.
489  *
490  * Before calling,
491  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
492  * are two extent state structs in the tree:
493  * prealloc: [orig->start, split - 1]
494  * orig: [ split, orig->end ]
495  *
496  * The tree locks are not taken by this function. They need to be held
497  * by the caller.
498  */
499 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
500 		       struct extent_state *prealloc, u64 split)
501 {
502 	struct rb_node *node;
503 
504 	split_cb(tree, orig, split);
505 
506 	prealloc->start = orig->start;
507 	prealloc->end = split - 1;
508 	prealloc->state = orig->state;
509 	orig->start = split;
510 
511 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
512 			   &prealloc->rb_node, NULL, NULL);
513 	if (node) {
514 		free_extent_state(prealloc);
515 		return -EEXIST;
516 	}
517 	return 0;
518 }
519 
520 static struct extent_state *next_state(struct extent_state *state)
521 {
522 	struct rb_node *next = rb_next(&state->rb_node);
523 	if (next)
524 		return rb_entry(next, struct extent_state, rb_node);
525 	else
526 		return NULL;
527 }
528 
529 /*
530  * utility function to clear some bits in an extent state struct.
531  * it will optionally wake up any one waiting on this state (wake == 1).
532  *
533  * If no bits are set on the state struct after clearing things, the
534  * struct is freed and removed from the tree
535  */
536 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
537 					    struct extent_state *state,
538 					    unsigned *bits, int wake,
539 					    struct extent_changeset *changeset)
540 {
541 	struct extent_state *next;
542 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
543 
544 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
545 		u64 range = state->end - state->start + 1;
546 		WARN_ON(range > tree->dirty_bytes);
547 		tree->dirty_bytes -= range;
548 	}
549 	clear_state_cb(tree, state, bits);
550 	add_extent_changeset(state, bits_to_clear, changeset, 0);
551 	state->state &= ~bits_to_clear;
552 	if (wake)
553 		wake_up(&state->wq);
554 	if (state->state == 0) {
555 		next = next_state(state);
556 		if (extent_state_in_tree(state)) {
557 			rb_erase(&state->rb_node, &tree->state);
558 			RB_CLEAR_NODE(&state->rb_node);
559 			free_extent_state(state);
560 		} else {
561 			WARN_ON(1);
562 		}
563 	} else {
564 		merge_state(tree, state);
565 		next = next_state(state);
566 	}
567 	return next;
568 }
569 
570 static struct extent_state *
571 alloc_extent_state_atomic(struct extent_state *prealloc)
572 {
573 	if (!prealloc)
574 		prealloc = alloc_extent_state(GFP_ATOMIC);
575 
576 	return prealloc;
577 }
578 
579 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
580 {
581 	btrfs_panic(tree_fs_info(tree), err,
582 		    "Locking error: Extent tree was modified by another thread while locked.");
583 }
584 
585 /*
586  * clear some bits on a range in the tree.  This may require splitting
587  * or inserting elements in the tree, so the gfp mask is used to
588  * indicate which allocations or sleeping are allowed.
589  *
590  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
591  * the given range from the tree regardless of state (ie for truncate).
592  *
593  * the range [start, end] is inclusive.
594  *
595  * This takes the tree lock, and returns 0 on success and < 0 on error.
596  */
597 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
598 			      unsigned bits, int wake, int delete,
599 			      struct extent_state **cached_state,
600 			      gfp_t mask, struct extent_changeset *changeset)
601 {
602 	struct extent_state *state;
603 	struct extent_state *cached;
604 	struct extent_state *prealloc = NULL;
605 	struct rb_node *node;
606 	u64 last_end;
607 	int err;
608 	int clear = 0;
609 
610 	btrfs_debug_check_extent_io_range(tree, start, end);
611 
612 	if (bits & EXTENT_DELALLOC)
613 		bits |= EXTENT_NORESERVE;
614 
615 	if (delete)
616 		bits |= ~EXTENT_CTLBITS;
617 	bits |= EXTENT_FIRST_DELALLOC;
618 
619 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
620 		clear = 1;
621 again:
622 	if (!prealloc && gfpflags_allow_blocking(mask)) {
623 		/*
624 		 * Don't care for allocation failure here because we might end
625 		 * up not needing the pre-allocated extent state at all, which
626 		 * is the case if we only have in the tree extent states that
627 		 * cover our input range and don't cover too any other range.
628 		 * If we end up needing a new extent state we allocate it later.
629 		 */
630 		prealloc = alloc_extent_state(mask);
631 	}
632 
633 	spin_lock(&tree->lock);
634 	if (cached_state) {
635 		cached = *cached_state;
636 
637 		if (clear) {
638 			*cached_state = NULL;
639 			cached_state = NULL;
640 		}
641 
642 		if (cached && extent_state_in_tree(cached) &&
643 		    cached->start <= start && cached->end > start) {
644 			if (clear)
645 				refcount_dec(&cached->refs);
646 			state = cached;
647 			goto hit_next;
648 		}
649 		if (clear)
650 			free_extent_state(cached);
651 	}
652 	/*
653 	 * this search will find the extents that end after
654 	 * our range starts
655 	 */
656 	node = tree_search(tree, start);
657 	if (!node)
658 		goto out;
659 	state = rb_entry(node, struct extent_state, rb_node);
660 hit_next:
661 	if (state->start > end)
662 		goto out;
663 	WARN_ON(state->end < start);
664 	last_end = state->end;
665 
666 	/* the state doesn't have the wanted bits, go ahead */
667 	if (!(state->state & bits)) {
668 		state = next_state(state);
669 		goto next;
670 	}
671 
672 	/*
673 	 *     | ---- desired range ---- |
674 	 *  | state | or
675 	 *  | ------------- state -------------- |
676 	 *
677 	 * We need to split the extent we found, and may flip
678 	 * bits on second half.
679 	 *
680 	 * If the extent we found extends past our range, we
681 	 * just split and search again.  It'll get split again
682 	 * the next time though.
683 	 *
684 	 * If the extent we found is inside our range, we clear
685 	 * the desired bit on it.
686 	 */
687 
688 	if (state->start < start) {
689 		prealloc = alloc_extent_state_atomic(prealloc);
690 		BUG_ON(!prealloc);
691 		err = split_state(tree, state, prealloc, start);
692 		if (err)
693 			extent_io_tree_panic(tree, err);
694 
695 		prealloc = NULL;
696 		if (err)
697 			goto out;
698 		if (state->end <= end) {
699 			state = clear_state_bit(tree, state, &bits, wake,
700 						changeset);
701 			goto next;
702 		}
703 		goto search_again;
704 	}
705 	/*
706 	 * | ---- desired range ---- |
707 	 *                        | state |
708 	 * We need to split the extent, and clear the bit
709 	 * on the first half
710 	 */
711 	if (state->start <= end && state->end > end) {
712 		prealloc = alloc_extent_state_atomic(prealloc);
713 		BUG_ON(!prealloc);
714 		err = split_state(tree, state, prealloc, end + 1);
715 		if (err)
716 			extent_io_tree_panic(tree, err);
717 
718 		if (wake)
719 			wake_up(&state->wq);
720 
721 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
722 
723 		prealloc = NULL;
724 		goto out;
725 	}
726 
727 	state = clear_state_bit(tree, state, &bits, wake, changeset);
728 next:
729 	if (last_end == (u64)-1)
730 		goto out;
731 	start = last_end + 1;
732 	if (start <= end && state && !need_resched())
733 		goto hit_next;
734 
735 search_again:
736 	if (start > end)
737 		goto out;
738 	spin_unlock(&tree->lock);
739 	if (gfpflags_allow_blocking(mask))
740 		cond_resched();
741 	goto again;
742 
743 out:
744 	spin_unlock(&tree->lock);
745 	if (prealloc)
746 		free_extent_state(prealloc);
747 
748 	return 0;
749 
750 }
751 
752 static void wait_on_state(struct extent_io_tree *tree,
753 			  struct extent_state *state)
754 		__releases(tree->lock)
755 		__acquires(tree->lock)
756 {
757 	DEFINE_WAIT(wait);
758 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
759 	spin_unlock(&tree->lock);
760 	schedule();
761 	spin_lock(&tree->lock);
762 	finish_wait(&state->wq, &wait);
763 }
764 
765 /*
766  * waits for one or more bits to clear on a range in the state tree.
767  * The range [start, end] is inclusive.
768  * The tree lock is taken by this function
769  */
770 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
771 			    unsigned long bits)
772 {
773 	struct extent_state *state;
774 	struct rb_node *node;
775 
776 	btrfs_debug_check_extent_io_range(tree, start, end);
777 
778 	spin_lock(&tree->lock);
779 again:
780 	while (1) {
781 		/*
782 		 * this search will find all the extents that end after
783 		 * our range starts
784 		 */
785 		node = tree_search(tree, start);
786 process_node:
787 		if (!node)
788 			break;
789 
790 		state = rb_entry(node, struct extent_state, rb_node);
791 
792 		if (state->start > end)
793 			goto out;
794 
795 		if (state->state & bits) {
796 			start = state->start;
797 			refcount_inc(&state->refs);
798 			wait_on_state(tree, state);
799 			free_extent_state(state);
800 			goto again;
801 		}
802 		start = state->end + 1;
803 
804 		if (start > end)
805 			break;
806 
807 		if (!cond_resched_lock(&tree->lock)) {
808 			node = rb_next(node);
809 			goto process_node;
810 		}
811 	}
812 out:
813 	spin_unlock(&tree->lock);
814 }
815 
816 static void set_state_bits(struct extent_io_tree *tree,
817 			   struct extent_state *state,
818 			   unsigned *bits, struct extent_changeset *changeset)
819 {
820 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
821 
822 	set_state_cb(tree, state, bits);
823 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
824 		u64 range = state->end - state->start + 1;
825 		tree->dirty_bytes += range;
826 	}
827 	add_extent_changeset(state, bits_to_set, changeset, 1);
828 	state->state |= bits_to_set;
829 }
830 
831 static void cache_state_if_flags(struct extent_state *state,
832 				 struct extent_state **cached_ptr,
833 				 unsigned flags)
834 {
835 	if (cached_ptr && !(*cached_ptr)) {
836 		if (!flags || (state->state & flags)) {
837 			*cached_ptr = state;
838 			refcount_inc(&state->refs);
839 		}
840 	}
841 }
842 
843 static void cache_state(struct extent_state *state,
844 			struct extent_state **cached_ptr)
845 {
846 	return cache_state_if_flags(state, cached_ptr,
847 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
848 }
849 
850 /*
851  * set some bits on a range in the tree.  This may require allocations or
852  * sleeping, so the gfp mask is used to indicate what is allowed.
853  *
854  * If any of the exclusive bits are set, this will fail with -EEXIST if some
855  * part of the range already has the desired bits set.  The start of the
856  * existing range is returned in failed_start in this case.
857  *
858  * [start, end] is inclusive This takes the tree lock.
859  */
860 
861 static int __must_check
862 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
863 		 unsigned bits, unsigned exclusive_bits,
864 		 u64 *failed_start, struct extent_state **cached_state,
865 		 gfp_t mask, struct extent_changeset *changeset)
866 {
867 	struct extent_state *state;
868 	struct extent_state *prealloc = NULL;
869 	struct rb_node *node;
870 	struct rb_node **p;
871 	struct rb_node *parent;
872 	int err = 0;
873 	u64 last_start;
874 	u64 last_end;
875 
876 	btrfs_debug_check_extent_io_range(tree, start, end);
877 
878 	bits |= EXTENT_FIRST_DELALLOC;
879 again:
880 	if (!prealloc && gfpflags_allow_blocking(mask)) {
881 		/*
882 		 * Don't care for allocation failure here because we might end
883 		 * up not needing the pre-allocated extent state at all, which
884 		 * is the case if we only have in the tree extent states that
885 		 * cover our input range and don't cover too any other range.
886 		 * If we end up needing a new extent state we allocate it later.
887 		 */
888 		prealloc = alloc_extent_state(mask);
889 	}
890 
891 	spin_lock(&tree->lock);
892 	if (cached_state && *cached_state) {
893 		state = *cached_state;
894 		if (state->start <= start && state->end > start &&
895 		    extent_state_in_tree(state)) {
896 			node = &state->rb_node;
897 			goto hit_next;
898 		}
899 	}
900 	/*
901 	 * this search will find all the extents that end after
902 	 * our range starts.
903 	 */
904 	node = tree_search_for_insert(tree, start, &p, &parent);
905 	if (!node) {
906 		prealloc = alloc_extent_state_atomic(prealloc);
907 		BUG_ON(!prealloc);
908 		err = insert_state(tree, prealloc, start, end,
909 				   &p, &parent, &bits, changeset);
910 		if (err)
911 			extent_io_tree_panic(tree, err);
912 
913 		cache_state(prealloc, cached_state);
914 		prealloc = NULL;
915 		goto out;
916 	}
917 	state = rb_entry(node, struct extent_state, rb_node);
918 hit_next:
919 	last_start = state->start;
920 	last_end = state->end;
921 
922 	/*
923 	 * | ---- desired range ---- |
924 	 * | state |
925 	 *
926 	 * Just lock what we found and keep going
927 	 */
928 	if (state->start == start && state->end <= end) {
929 		if (state->state & exclusive_bits) {
930 			*failed_start = state->start;
931 			err = -EEXIST;
932 			goto out;
933 		}
934 
935 		set_state_bits(tree, state, &bits, changeset);
936 		cache_state(state, cached_state);
937 		merge_state(tree, state);
938 		if (last_end == (u64)-1)
939 			goto out;
940 		start = last_end + 1;
941 		state = next_state(state);
942 		if (start < end && state && state->start == start &&
943 		    !need_resched())
944 			goto hit_next;
945 		goto search_again;
946 	}
947 
948 	/*
949 	 *     | ---- desired range ---- |
950 	 * | state |
951 	 *   or
952 	 * | ------------- state -------------- |
953 	 *
954 	 * We need to split the extent we found, and may flip bits on
955 	 * second half.
956 	 *
957 	 * If the extent we found extends past our
958 	 * range, we just split and search again.  It'll get split
959 	 * again the next time though.
960 	 *
961 	 * If the extent we found is inside our range, we set the
962 	 * desired bit on it.
963 	 */
964 	if (state->start < start) {
965 		if (state->state & exclusive_bits) {
966 			*failed_start = start;
967 			err = -EEXIST;
968 			goto out;
969 		}
970 
971 		prealloc = alloc_extent_state_atomic(prealloc);
972 		BUG_ON(!prealloc);
973 		err = split_state(tree, state, prealloc, start);
974 		if (err)
975 			extent_io_tree_panic(tree, err);
976 
977 		prealloc = NULL;
978 		if (err)
979 			goto out;
980 		if (state->end <= end) {
981 			set_state_bits(tree, state, &bits, changeset);
982 			cache_state(state, cached_state);
983 			merge_state(tree, state);
984 			if (last_end == (u64)-1)
985 				goto out;
986 			start = last_end + 1;
987 			state = next_state(state);
988 			if (start < end && state && state->start == start &&
989 			    !need_resched())
990 				goto hit_next;
991 		}
992 		goto search_again;
993 	}
994 	/*
995 	 * | ---- desired range ---- |
996 	 *     | state | or               | state |
997 	 *
998 	 * There's a hole, we need to insert something in it and
999 	 * ignore the extent we found.
1000 	 */
1001 	if (state->start > start) {
1002 		u64 this_end;
1003 		if (end < last_start)
1004 			this_end = end;
1005 		else
1006 			this_end = last_start - 1;
1007 
1008 		prealloc = alloc_extent_state_atomic(prealloc);
1009 		BUG_ON(!prealloc);
1010 
1011 		/*
1012 		 * Avoid to free 'prealloc' if it can be merged with
1013 		 * the later extent.
1014 		 */
1015 		err = insert_state(tree, prealloc, start, this_end,
1016 				   NULL, NULL, &bits, changeset);
1017 		if (err)
1018 			extent_io_tree_panic(tree, err);
1019 
1020 		cache_state(prealloc, cached_state);
1021 		prealloc = NULL;
1022 		start = this_end + 1;
1023 		goto search_again;
1024 	}
1025 	/*
1026 	 * | ---- desired range ---- |
1027 	 *                        | state |
1028 	 * We need to split the extent, and set the bit
1029 	 * on the first half
1030 	 */
1031 	if (state->start <= end && state->end > end) {
1032 		if (state->state & exclusive_bits) {
1033 			*failed_start = start;
1034 			err = -EEXIST;
1035 			goto out;
1036 		}
1037 
1038 		prealloc = alloc_extent_state_atomic(prealloc);
1039 		BUG_ON(!prealloc);
1040 		err = split_state(tree, state, prealloc, end + 1);
1041 		if (err)
1042 			extent_io_tree_panic(tree, err);
1043 
1044 		set_state_bits(tree, prealloc, &bits, changeset);
1045 		cache_state(prealloc, cached_state);
1046 		merge_state(tree, prealloc);
1047 		prealloc = NULL;
1048 		goto out;
1049 	}
1050 
1051 search_again:
1052 	if (start > end)
1053 		goto out;
1054 	spin_unlock(&tree->lock);
1055 	if (gfpflags_allow_blocking(mask))
1056 		cond_resched();
1057 	goto again;
1058 
1059 out:
1060 	spin_unlock(&tree->lock);
1061 	if (prealloc)
1062 		free_extent_state(prealloc);
1063 
1064 	return err;
1065 
1066 }
1067 
1068 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1069 		   unsigned bits, u64 * failed_start,
1070 		   struct extent_state **cached_state, gfp_t mask)
1071 {
1072 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1073 				cached_state, mask, NULL);
1074 }
1075 
1076 
1077 /**
1078  * convert_extent_bit - convert all bits in a given range from one bit to
1079  * 			another
1080  * @tree:	the io tree to search
1081  * @start:	the start offset in bytes
1082  * @end:	the end offset in bytes (inclusive)
1083  * @bits:	the bits to set in this range
1084  * @clear_bits:	the bits to clear in this range
1085  * @cached_state:	state that we're going to cache
1086  *
1087  * This will go through and set bits for the given range.  If any states exist
1088  * already in this range they are set with the given bit and cleared of the
1089  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1090  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1091  * boundary bits like LOCK.
1092  *
1093  * All allocations are done with GFP_NOFS.
1094  */
1095 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1096 		       unsigned bits, unsigned clear_bits,
1097 		       struct extent_state **cached_state)
1098 {
1099 	struct extent_state *state;
1100 	struct extent_state *prealloc = NULL;
1101 	struct rb_node *node;
1102 	struct rb_node **p;
1103 	struct rb_node *parent;
1104 	int err = 0;
1105 	u64 last_start;
1106 	u64 last_end;
1107 	bool first_iteration = true;
1108 
1109 	btrfs_debug_check_extent_io_range(tree, start, end);
1110 
1111 again:
1112 	if (!prealloc) {
1113 		/*
1114 		 * Best effort, don't worry if extent state allocation fails
1115 		 * here for the first iteration. We might have a cached state
1116 		 * that matches exactly the target range, in which case no
1117 		 * extent state allocations are needed. We'll only know this
1118 		 * after locking the tree.
1119 		 */
1120 		prealloc = alloc_extent_state(GFP_NOFS);
1121 		if (!prealloc && !first_iteration)
1122 			return -ENOMEM;
1123 	}
1124 
1125 	spin_lock(&tree->lock);
1126 	if (cached_state && *cached_state) {
1127 		state = *cached_state;
1128 		if (state->start <= start && state->end > start &&
1129 		    extent_state_in_tree(state)) {
1130 			node = &state->rb_node;
1131 			goto hit_next;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * this search will find all the extents that end after
1137 	 * our range starts.
1138 	 */
1139 	node = tree_search_for_insert(tree, start, &p, &parent);
1140 	if (!node) {
1141 		prealloc = alloc_extent_state_atomic(prealloc);
1142 		if (!prealloc) {
1143 			err = -ENOMEM;
1144 			goto out;
1145 		}
1146 		err = insert_state(tree, prealloc, start, end,
1147 				   &p, &parent, &bits, NULL);
1148 		if (err)
1149 			extent_io_tree_panic(tree, err);
1150 		cache_state(prealloc, cached_state);
1151 		prealloc = NULL;
1152 		goto out;
1153 	}
1154 	state = rb_entry(node, struct extent_state, rb_node);
1155 hit_next:
1156 	last_start = state->start;
1157 	last_end = state->end;
1158 
1159 	/*
1160 	 * | ---- desired range ---- |
1161 	 * | state |
1162 	 *
1163 	 * Just lock what we found and keep going
1164 	 */
1165 	if (state->start == start && state->end <= end) {
1166 		set_state_bits(tree, state, &bits, NULL);
1167 		cache_state(state, cached_state);
1168 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1169 		if (last_end == (u64)-1)
1170 			goto out;
1171 		start = last_end + 1;
1172 		if (start < end && state && state->start == start &&
1173 		    !need_resched())
1174 			goto hit_next;
1175 		goto search_again;
1176 	}
1177 
1178 	/*
1179 	 *     | ---- desired range ---- |
1180 	 * | state |
1181 	 *   or
1182 	 * | ------------- state -------------- |
1183 	 *
1184 	 * We need to split the extent we found, and may flip bits on
1185 	 * second half.
1186 	 *
1187 	 * If the extent we found extends past our
1188 	 * range, we just split and search again.  It'll get split
1189 	 * again the next time though.
1190 	 *
1191 	 * If the extent we found is inside our range, we set the
1192 	 * desired bit on it.
1193 	 */
1194 	if (state->start < start) {
1195 		prealloc = alloc_extent_state_atomic(prealloc);
1196 		if (!prealloc) {
1197 			err = -ENOMEM;
1198 			goto out;
1199 		}
1200 		err = split_state(tree, state, prealloc, start);
1201 		if (err)
1202 			extent_io_tree_panic(tree, err);
1203 		prealloc = NULL;
1204 		if (err)
1205 			goto out;
1206 		if (state->end <= end) {
1207 			set_state_bits(tree, state, &bits, NULL);
1208 			cache_state(state, cached_state);
1209 			state = clear_state_bit(tree, state, &clear_bits, 0,
1210 						NULL);
1211 			if (last_end == (u64)-1)
1212 				goto out;
1213 			start = last_end + 1;
1214 			if (start < end && state && state->start == start &&
1215 			    !need_resched())
1216 				goto hit_next;
1217 		}
1218 		goto search_again;
1219 	}
1220 	/*
1221 	 * | ---- desired range ---- |
1222 	 *     | state | or               | state |
1223 	 *
1224 	 * There's a hole, we need to insert something in it and
1225 	 * ignore the extent we found.
1226 	 */
1227 	if (state->start > start) {
1228 		u64 this_end;
1229 		if (end < last_start)
1230 			this_end = end;
1231 		else
1232 			this_end = last_start - 1;
1233 
1234 		prealloc = alloc_extent_state_atomic(prealloc);
1235 		if (!prealloc) {
1236 			err = -ENOMEM;
1237 			goto out;
1238 		}
1239 
1240 		/*
1241 		 * Avoid to free 'prealloc' if it can be merged with
1242 		 * the later extent.
1243 		 */
1244 		err = insert_state(tree, prealloc, start, this_end,
1245 				   NULL, NULL, &bits, NULL);
1246 		if (err)
1247 			extent_io_tree_panic(tree, err);
1248 		cache_state(prealloc, cached_state);
1249 		prealloc = NULL;
1250 		start = this_end + 1;
1251 		goto search_again;
1252 	}
1253 	/*
1254 	 * | ---- desired range ---- |
1255 	 *                        | state |
1256 	 * We need to split the extent, and set the bit
1257 	 * on the first half
1258 	 */
1259 	if (state->start <= end && state->end > end) {
1260 		prealloc = alloc_extent_state_atomic(prealloc);
1261 		if (!prealloc) {
1262 			err = -ENOMEM;
1263 			goto out;
1264 		}
1265 
1266 		err = split_state(tree, state, prealloc, end + 1);
1267 		if (err)
1268 			extent_io_tree_panic(tree, err);
1269 
1270 		set_state_bits(tree, prealloc, &bits, NULL);
1271 		cache_state(prealloc, cached_state);
1272 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1273 		prealloc = NULL;
1274 		goto out;
1275 	}
1276 
1277 search_again:
1278 	if (start > end)
1279 		goto out;
1280 	spin_unlock(&tree->lock);
1281 	cond_resched();
1282 	first_iteration = false;
1283 	goto again;
1284 
1285 out:
1286 	spin_unlock(&tree->lock);
1287 	if (prealloc)
1288 		free_extent_state(prealloc);
1289 
1290 	return err;
1291 }
1292 
1293 /* wrappers around set/clear extent bit */
1294 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1295 			   unsigned bits, struct extent_changeset *changeset)
1296 {
1297 	/*
1298 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1299 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1300 	 * either fail with -EEXIST or changeset will record the whole
1301 	 * range.
1302 	 */
1303 	BUG_ON(bits & EXTENT_LOCKED);
1304 
1305 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1306 				changeset);
1307 }
1308 
1309 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1310 		     unsigned bits, int wake, int delete,
1311 		     struct extent_state **cached, gfp_t mask)
1312 {
1313 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1314 				  cached, mask, NULL);
1315 }
1316 
1317 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1318 		unsigned bits, struct extent_changeset *changeset)
1319 {
1320 	/*
1321 	 * Don't support EXTENT_LOCKED case, same reason as
1322 	 * set_record_extent_bits().
1323 	 */
1324 	BUG_ON(bits & EXTENT_LOCKED);
1325 
1326 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1327 				  changeset);
1328 }
1329 
1330 /*
1331  * either insert or lock state struct between start and end use mask to tell
1332  * us if waiting is desired.
1333  */
1334 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1335 		     struct extent_state **cached_state)
1336 {
1337 	int err;
1338 	u64 failed_start;
1339 
1340 	while (1) {
1341 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1342 				       EXTENT_LOCKED, &failed_start,
1343 				       cached_state, GFP_NOFS, NULL);
1344 		if (err == -EEXIST) {
1345 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1346 			start = failed_start;
1347 		} else
1348 			break;
1349 		WARN_ON(start > end);
1350 	}
1351 	return err;
1352 }
1353 
1354 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 {
1356 	int err;
1357 	u64 failed_start;
1358 
1359 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1360 			       &failed_start, NULL, GFP_NOFS, NULL);
1361 	if (err == -EEXIST) {
1362 		if (failed_start > start)
1363 			clear_extent_bit(tree, start, failed_start - 1,
1364 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1365 		return 0;
1366 	}
1367 	return 1;
1368 }
1369 
1370 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1371 {
1372 	unsigned long index = start >> PAGE_SHIFT;
1373 	unsigned long end_index = end >> PAGE_SHIFT;
1374 	struct page *page;
1375 
1376 	while (index <= end_index) {
1377 		page = find_get_page(inode->i_mapping, index);
1378 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1379 		clear_page_dirty_for_io(page);
1380 		put_page(page);
1381 		index++;
1382 	}
1383 }
1384 
1385 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1386 {
1387 	unsigned long index = start >> PAGE_SHIFT;
1388 	unsigned long end_index = end >> PAGE_SHIFT;
1389 	struct page *page;
1390 
1391 	while (index <= end_index) {
1392 		page = find_get_page(inode->i_mapping, index);
1393 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1394 		__set_page_dirty_nobuffers(page);
1395 		account_page_redirty(page);
1396 		put_page(page);
1397 		index++;
1398 	}
1399 }
1400 
1401 /*
1402  * helper function to set both pages and extents in the tree writeback
1403  */
1404 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1405 {
1406 	unsigned long index = start >> PAGE_SHIFT;
1407 	unsigned long end_index = end >> PAGE_SHIFT;
1408 	struct page *page;
1409 
1410 	while (index <= end_index) {
1411 		page = find_get_page(tree->mapping, index);
1412 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1413 		set_page_writeback(page);
1414 		put_page(page);
1415 		index++;
1416 	}
1417 }
1418 
1419 /* find the first state struct with 'bits' set after 'start', and
1420  * return it.  tree->lock must be held.  NULL will returned if
1421  * nothing was found after 'start'
1422  */
1423 static struct extent_state *
1424 find_first_extent_bit_state(struct extent_io_tree *tree,
1425 			    u64 start, unsigned bits)
1426 {
1427 	struct rb_node *node;
1428 	struct extent_state *state;
1429 
1430 	/*
1431 	 * this search will find all the extents that end after
1432 	 * our range starts.
1433 	 */
1434 	node = tree_search(tree, start);
1435 	if (!node)
1436 		goto out;
1437 
1438 	while (1) {
1439 		state = rb_entry(node, struct extent_state, rb_node);
1440 		if (state->end >= start && (state->state & bits))
1441 			return state;
1442 
1443 		node = rb_next(node);
1444 		if (!node)
1445 			break;
1446 	}
1447 out:
1448 	return NULL;
1449 }
1450 
1451 /*
1452  * find the first offset in the io tree with 'bits' set. zero is
1453  * returned if we find something, and *start_ret and *end_ret are
1454  * set to reflect the state struct that was found.
1455  *
1456  * If nothing was found, 1 is returned. If found something, return 0.
1457  */
1458 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1459 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1460 			  struct extent_state **cached_state)
1461 {
1462 	struct extent_state *state;
1463 	struct rb_node *n;
1464 	int ret = 1;
1465 
1466 	spin_lock(&tree->lock);
1467 	if (cached_state && *cached_state) {
1468 		state = *cached_state;
1469 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1470 			n = rb_next(&state->rb_node);
1471 			while (n) {
1472 				state = rb_entry(n, struct extent_state,
1473 						 rb_node);
1474 				if (state->state & bits)
1475 					goto got_it;
1476 				n = rb_next(n);
1477 			}
1478 			free_extent_state(*cached_state);
1479 			*cached_state = NULL;
1480 			goto out;
1481 		}
1482 		free_extent_state(*cached_state);
1483 		*cached_state = NULL;
1484 	}
1485 
1486 	state = find_first_extent_bit_state(tree, start, bits);
1487 got_it:
1488 	if (state) {
1489 		cache_state_if_flags(state, cached_state, 0);
1490 		*start_ret = state->start;
1491 		*end_ret = state->end;
1492 		ret = 0;
1493 	}
1494 out:
1495 	spin_unlock(&tree->lock);
1496 	return ret;
1497 }
1498 
1499 /*
1500  * find a contiguous range of bytes in the file marked as delalloc, not
1501  * more than 'max_bytes'.  start and end are used to return the range,
1502  *
1503  * 1 is returned if we find something, 0 if nothing was in the tree
1504  */
1505 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1506 					u64 *start, u64 *end, u64 max_bytes,
1507 					struct extent_state **cached_state)
1508 {
1509 	struct rb_node *node;
1510 	struct extent_state *state;
1511 	u64 cur_start = *start;
1512 	u64 found = 0;
1513 	u64 total_bytes = 0;
1514 
1515 	spin_lock(&tree->lock);
1516 
1517 	/*
1518 	 * this search will find all the extents that end after
1519 	 * our range starts.
1520 	 */
1521 	node = tree_search(tree, cur_start);
1522 	if (!node) {
1523 		if (!found)
1524 			*end = (u64)-1;
1525 		goto out;
1526 	}
1527 
1528 	while (1) {
1529 		state = rb_entry(node, struct extent_state, rb_node);
1530 		if (found && (state->start != cur_start ||
1531 			      (state->state & EXTENT_BOUNDARY))) {
1532 			goto out;
1533 		}
1534 		if (!(state->state & EXTENT_DELALLOC)) {
1535 			if (!found)
1536 				*end = state->end;
1537 			goto out;
1538 		}
1539 		if (!found) {
1540 			*start = state->start;
1541 			*cached_state = state;
1542 			refcount_inc(&state->refs);
1543 		}
1544 		found++;
1545 		*end = state->end;
1546 		cur_start = state->end + 1;
1547 		node = rb_next(node);
1548 		total_bytes += state->end - state->start + 1;
1549 		if (total_bytes >= max_bytes)
1550 			break;
1551 		if (!node)
1552 			break;
1553 	}
1554 out:
1555 	spin_unlock(&tree->lock);
1556 	return found;
1557 }
1558 
1559 static int __process_pages_contig(struct address_space *mapping,
1560 				  struct page *locked_page,
1561 				  pgoff_t start_index, pgoff_t end_index,
1562 				  unsigned long page_ops, pgoff_t *index_ret);
1563 
1564 static noinline void __unlock_for_delalloc(struct inode *inode,
1565 					   struct page *locked_page,
1566 					   u64 start, u64 end)
1567 {
1568 	unsigned long index = start >> PAGE_SHIFT;
1569 	unsigned long end_index = end >> PAGE_SHIFT;
1570 
1571 	ASSERT(locked_page);
1572 	if (index == locked_page->index && end_index == index)
1573 		return;
1574 
1575 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1576 			       PAGE_UNLOCK, NULL);
1577 }
1578 
1579 static noinline int lock_delalloc_pages(struct inode *inode,
1580 					struct page *locked_page,
1581 					u64 delalloc_start,
1582 					u64 delalloc_end)
1583 {
1584 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1585 	unsigned long index_ret = index;
1586 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1587 	int ret;
1588 
1589 	ASSERT(locked_page);
1590 	if (index == locked_page->index && index == end_index)
1591 		return 0;
1592 
1593 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1594 				     end_index, PAGE_LOCK, &index_ret);
1595 	if (ret == -EAGAIN)
1596 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1597 				      (u64)index_ret << PAGE_SHIFT);
1598 	return ret;
1599 }
1600 
1601 /*
1602  * find a contiguous range of bytes in the file marked as delalloc, not
1603  * more than 'max_bytes'.  start and end are used to return the range,
1604  *
1605  * 1 is returned if we find something, 0 if nothing was in the tree
1606  */
1607 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1608 				    struct extent_io_tree *tree,
1609 				    struct page *locked_page, u64 *start,
1610 				    u64 *end, u64 max_bytes)
1611 {
1612 	u64 delalloc_start;
1613 	u64 delalloc_end;
1614 	u64 found;
1615 	struct extent_state *cached_state = NULL;
1616 	int ret;
1617 	int loops = 0;
1618 
1619 again:
1620 	/* step one, find a bunch of delalloc bytes starting at start */
1621 	delalloc_start = *start;
1622 	delalloc_end = 0;
1623 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1624 				    max_bytes, &cached_state);
1625 	if (!found || delalloc_end <= *start) {
1626 		*start = delalloc_start;
1627 		*end = delalloc_end;
1628 		free_extent_state(cached_state);
1629 		return 0;
1630 	}
1631 
1632 	/*
1633 	 * start comes from the offset of locked_page.  We have to lock
1634 	 * pages in order, so we can't process delalloc bytes before
1635 	 * locked_page
1636 	 */
1637 	if (delalloc_start < *start)
1638 		delalloc_start = *start;
1639 
1640 	/*
1641 	 * make sure to limit the number of pages we try to lock down
1642 	 */
1643 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1644 		delalloc_end = delalloc_start + max_bytes - 1;
1645 
1646 	/* step two, lock all the pages after the page that has start */
1647 	ret = lock_delalloc_pages(inode, locked_page,
1648 				  delalloc_start, delalloc_end);
1649 	if (ret == -EAGAIN) {
1650 		/* some of the pages are gone, lets avoid looping by
1651 		 * shortening the size of the delalloc range we're searching
1652 		 */
1653 		free_extent_state(cached_state);
1654 		cached_state = NULL;
1655 		if (!loops) {
1656 			max_bytes = PAGE_SIZE;
1657 			loops = 1;
1658 			goto again;
1659 		} else {
1660 			found = 0;
1661 			goto out_failed;
1662 		}
1663 	}
1664 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1665 
1666 	/* step three, lock the state bits for the whole range */
1667 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1668 
1669 	/* then test to make sure it is all still delalloc */
1670 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1671 			     EXTENT_DELALLOC, 1, cached_state);
1672 	if (!ret) {
1673 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1674 				     &cached_state, GFP_NOFS);
1675 		__unlock_for_delalloc(inode, locked_page,
1676 			      delalloc_start, delalloc_end);
1677 		cond_resched();
1678 		goto again;
1679 	}
1680 	free_extent_state(cached_state);
1681 	*start = delalloc_start;
1682 	*end = delalloc_end;
1683 out_failed:
1684 	return found;
1685 }
1686 
1687 static int __process_pages_contig(struct address_space *mapping,
1688 				  struct page *locked_page,
1689 				  pgoff_t start_index, pgoff_t end_index,
1690 				  unsigned long page_ops, pgoff_t *index_ret)
1691 {
1692 	unsigned long nr_pages = end_index - start_index + 1;
1693 	unsigned long pages_locked = 0;
1694 	pgoff_t index = start_index;
1695 	struct page *pages[16];
1696 	unsigned ret;
1697 	int err = 0;
1698 	int i;
1699 
1700 	if (page_ops & PAGE_LOCK) {
1701 		ASSERT(page_ops == PAGE_LOCK);
1702 		ASSERT(index_ret && *index_ret == start_index);
1703 	}
1704 
1705 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1706 		mapping_set_error(mapping, -EIO);
1707 
1708 	while (nr_pages > 0) {
1709 		ret = find_get_pages_contig(mapping, index,
1710 				     min_t(unsigned long,
1711 				     nr_pages, ARRAY_SIZE(pages)), pages);
1712 		if (ret == 0) {
1713 			/*
1714 			 * Only if we're going to lock these pages,
1715 			 * can we find nothing at @index.
1716 			 */
1717 			ASSERT(page_ops & PAGE_LOCK);
1718 			err = -EAGAIN;
1719 			goto out;
1720 		}
1721 
1722 		for (i = 0; i < ret; i++) {
1723 			if (page_ops & PAGE_SET_PRIVATE2)
1724 				SetPagePrivate2(pages[i]);
1725 
1726 			if (pages[i] == locked_page) {
1727 				put_page(pages[i]);
1728 				pages_locked++;
1729 				continue;
1730 			}
1731 			if (page_ops & PAGE_CLEAR_DIRTY)
1732 				clear_page_dirty_for_io(pages[i]);
1733 			if (page_ops & PAGE_SET_WRITEBACK)
1734 				set_page_writeback(pages[i]);
1735 			if (page_ops & PAGE_SET_ERROR)
1736 				SetPageError(pages[i]);
1737 			if (page_ops & PAGE_END_WRITEBACK)
1738 				end_page_writeback(pages[i]);
1739 			if (page_ops & PAGE_UNLOCK)
1740 				unlock_page(pages[i]);
1741 			if (page_ops & PAGE_LOCK) {
1742 				lock_page(pages[i]);
1743 				if (!PageDirty(pages[i]) ||
1744 				    pages[i]->mapping != mapping) {
1745 					unlock_page(pages[i]);
1746 					put_page(pages[i]);
1747 					err = -EAGAIN;
1748 					goto out;
1749 				}
1750 			}
1751 			put_page(pages[i]);
1752 			pages_locked++;
1753 		}
1754 		nr_pages -= ret;
1755 		index += ret;
1756 		cond_resched();
1757 	}
1758 out:
1759 	if (err && index_ret)
1760 		*index_ret = start_index + pages_locked - 1;
1761 	return err;
1762 }
1763 
1764 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1765 				 u64 delalloc_end, struct page *locked_page,
1766 				 unsigned clear_bits,
1767 				 unsigned long page_ops)
1768 {
1769 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1770 			 NULL, GFP_NOFS);
1771 
1772 	__process_pages_contig(inode->i_mapping, locked_page,
1773 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1774 			       page_ops, NULL);
1775 }
1776 
1777 /*
1778  * count the number of bytes in the tree that have a given bit(s)
1779  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1780  * cached.  The total number found is returned.
1781  */
1782 u64 count_range_bits(struct extent_io_tree *tree,
1783 		     u64 *start, u64 search_end, u64 max_bytes,
1784 		     unsigned bits, int contig)
1785 {
1786 	struct rb_node *node;
1787 	struct extent_state *state;
1788 	u64 cur_start = *start;
1789 	u64 total_bytes = 0;
1790 	u64 last = 0;
1791 	int found = 0;
1792 
1793 	if (WARN_ON(search_end <= cur_start))
1794 		return 0;
1795 
1796 	spin_lock(&tree->lock);
1797 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1798 		total_bytes = tree->dirty_bytes;
1799 		goto out;
1800 	}
1801 	/*
1802 	 * this search will find all the extents that end after
1803 	 * our range starts.
1804 	 */
1805 	node = tree_search(tree, cur_start);
1806 	if (!node)
1807 		goto out;
1808 
1809 	while (1) {
1810 		state = rb_entry(node, struct extent_state, rb_node);
1811 		if (state->start > search_end)
1812 			break;
1813 		if (contig && found && state->start > last + 1)
1814 			break;
1815 		if (state->end >= cur_start && (state->state & bits) == bits) {
1816 			total_bytes += min(search_end, state->end) + 1 -
1817 				       max(cur_start, state->start);
1818 			if (total_bytes >= max_bytes)
1819 				break;
1820 			if (!found) {
1821 				*start = max(cur_start, state->start);
1822 				found = 1;
1823 			}
1824 			last = state->end;
1825 		} else if (contig && found) {
1826 			break;
1827 		}
1828 		node = rb_next(node);
1829 		if (!node)
1830 			break;
1831 	}
1832 out:
1833 	spin_unlock(&tree->lock);
1834 	return total_bytes;
1835 }
1836 
1837 /*
1838  * set the private field for a given byte offset in the tree.  If there isn't
1839  * an extent_state there already, this does nothing.
1840  */
1841 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1842 		struct io_failure_record *failrec)
1843 {
1844 	struct rb_node *node;
1845 	struct extent_state *state;
1846 	int ret = 0;
1847 
1848 	spin_lock(&tree->lock);
1849 	/*
1850 	 * this search will find all the extents that end after
1851 	 * our range starts.
1852 	 */
1853 	node = tree_search(tree, start);
1854 	if (!node) {
1855 		ret = -ENOENT;
1856 		goto out;
1857 	}
1858 	state = rb_entry(node, struct extent_state, rb_node);
1859 	if (state->start != start) {
1860 		ret = -ENOENT;
1861 		goto out;
1862 	}
1863 	state->failrec = failrec;
1864 out:
1865 	spin_unlock(&tree->lock);
1866 	return ret;
1867 }
1868 
1869 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1870 		struct io_failure_record **failrec)
1871 {
1872 	struct rb_node *node;
1873 	struct extent_state *state;
1874 	int ret = 0;
1875 
1876 	spin_lock(&tree->lock);
1877 	/*
1878 	 * this search will find all the extents that end after
1879 	 * our range starts.
1880 	 */
1881 	node = tree_search(tree, start);
1882 	if (!node) {
1883 		ret = -ENOENT;
1884 		goto out;
1885 	}
1886 	state = rb_entry(node, struct extent_state, rb_node);
1887 	if (state->start != start) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	*failrec = state->failrec;
1892 out:
1893 	spin_unlock(&tree->lock);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * searches a range in the state tree for a given mask.
1899  * If 'filled' == 1, this returns 1 only if every extent in the tree
1900  * has the bits set.  Otherwise, 1 is returned if any bit in the
1901  * range is found set.
1902  */
1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1904 		   unsigned bits, int filled, struct extent_state *cached)
1905 {
1906 	struct extent_state *state = NULL;
1907 	struct rb_node *node;
1908 	int bitset = 0;
1909 
1910 	spin_lock(&tree->lock);
1911 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1912 	    cached->end > start)
1913 		node = &cached->rb_node;
1914 	else
1915 		node = tree_search(tree, start);
1916 	while (node && start <= end) {
1917 		state = rb_entry(node, struct extent_state, rb_node);
1918 
1919 		if (filled && state->start > start) {
1920 			bitset = 0;
1921 			break;
1922 		}
1923 
1924 		if (state->start > end)
1925 			break;
1926 
1927 		if (state->state & bits) {
1928 			bitset = 1;
1929 			if (!filled)
1930 				break;
1931 		} else if (filled) {
1932 			bitset = 0;
1933 			break;
1934 		}
1935 
1936 		if (state->end == (u64)-1)
1937 			break;
1938 
1939 		start = state->end + 1;
1940 		if (start > end)
1941 			break;
1942 		node = rb_next(node);
1943 		if (!node) {
1944 			if (filled)
1945 				bitset = 0;
1946 			break;
1947 		}
1948 	}
1949 	spin_unlock(&tree->lock);
1950 	return bitset;
1951 }
1952 
1953 /*
1954  * helper function to set a given page up to date if all the
1955  * extents in the tree for that page are up to date
1956  */
1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1958 {
1959 	u64 start = page_offset(page);
1960 	u64 end = start + PAGE_SIZE - 1;
1961 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1962 		SetPageUptodate(page);
1963 }
1964 
1965 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1966 {
1967 	int ret;
1968 	int err = 0;
1969 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1970 
1971 	set_state_failrec(failure_tree, rec->start, NULL);
1972 	ret = clear_extent_bits(failure_tree, rec->start,
1973 				rec->start + rec->len - 1,
1974 				EXTENT_LOCKED | EXTENT_DIRTY);
1975 	if (ret)
1976 		err = ret;
1977 
1978 	ret = clear_extent_bits(&inode->io_tree, rec->start,
1979 				rec->start + rec->len - 1,
1980 				EXTENT_DAMAGED);
1981 	if (ret && !err)
1982 		err = ret;
1983 
1984 	kfree(rec);
1985 	return err;
1986 }
1987 
1988 /*
1989  * this bypasses the standard btrfs submit functions deliberately, as
1990  * the standard behavior is to write all copies in a raid setup. here we only
1991  * want to write the one bad copy. so we do the mapping for ourselves and issue
1992  * submit_bio directly.
1993  * to avoid any synchronization issues, wait for the data after writing, which
1994  * actually prevents the read that triggered the error from finishing.
1995  * currently, there can be no more than two copies of every data bit. thus,
1996  * exactly one rewrite is required.
1997  */
1998 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1999 		u64 logical, struct page *page,
2000 		unsigned int pg_offset, int mirror_num)
2001 {
2002 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2003 	struct bio *bio;
2004 	struct btrfs_device *dev;
2005 	u64 map_length = 0;
2006 	u64 sector;
2007 	struct btrfs_bio *bbio = NULL;
2008 	int ret;
2009 
2010 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2011 	BUG_ON(!mirror_num);
2012 
2013 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2014 	if (!bio)
2015 		return -EIO;
2016 	bio->bi_iter.bi_size = 0;
2017 	map_length = length;
2018 
2019 	/*
2020 	 * Avoid races with device replace and make sure our bbio has devices
2021 	 * associated to its stripes that don't go away while we are doing the
2022 	 * read repair operation.
2023 	 */
2024 	btrfs_bio_counter_inc_blocked(fs_info);
2025 	if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2026 		/*
2027 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2028 		 * to update all raid stripes, but here we just want to correct
2029 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2030 		 * stripe's dev and sector.
2031 		 */
2032 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2033 				      &map_length, &bbio, 0);
2034 		if (ret) {
2035 			btrfs_bio_counter_dec(fs_info);
2036 			bio_put(bio);
2037 			return -EIO;
2038 		}
2039 		ASSERT(bbio->mirror_num == 1);
2040 	} else {
2041 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2042 				      &map_length, &bbio, mirror_num);
2043 		if (ret) {
2044 			btrfs_bio_counter_dec(fs_info);
2045 			bio_put(bio);
2046 			return -EIO;
2047 		}
2048 		BUG_ON(mirror_num != bbio->mirror_num);
2049 	}
2050 
2051 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2052 	bio->bi_iter.bi_sector = sector;
2053 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2054 	btrfs_put_bbio(bbio);
2055 	if (!dev || !dev->bdev || !dev->writeable) {
2056 		btrfs_bio_counter_dec(fs_info);
2057 		bio_put(bio);
2058 		return -EIO;
2059 	}
2060 	bio->bi_bdev = dev->bdev;
2061 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2062 	bio_add_page(bio, page, length, pg_offset);
2063 
2064 	if (btrfsic_submit_bio_wait(bio)) {
2065 		/* try to remap that extent elsewhere? */
2066 		btrfs_bio_counter_dec(fs_info);
2067 		bio_put(bio);
2068 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2069 		return -EIO;
2070 	}
2071 
2072 	btrfs_info_rl_in_rcu(fs_info,
2073 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2074 				  btrfs_ino(inode), start,
2075 				  rcu_str_deref(dev->name), sector);
2076 	btrfs_bio_counter_dec(fs_info);
2077 	bio_put(bio);
2078 	return 0;
2079 }
2080 
2081 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2082 			 struct extent_buffer *eb, int mirror_num)
2083 {
2084 	u64 start = eb->start;
2085 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2086 	int ret = 0;
2087 
2088 	if (fs_info->sb->s_flags & MS_RDONLY)
2089 		return -EROFS;
2090 
2091 	for (i = 0; i < num_pages; i++) {
2092 		struct page *p = eb->pages[i];
2093 
2094 		ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2095 					PAGE_SIZE, start, p,
2096 					start - page_offset(p), mirror_num);
2097 		if (ret)
2098 			break;
2099 		start += PAGE_SIZE;
2100 	}
2101 
2102 	return ret;
2103 }
2104 
2105 /*
2106  * each time an IO finishes, we do a fast check in the IO failure tree
2107  * to see if we need to process or clean up an io_failure_record
2108  */
2109 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2110 		     unsigned int pg_offset)
2111 {
2112 	u64 private;
2113 	struct io_failure_record *failrec;
2114 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2115 	struct extent_state *state;
2116 	int num_copies;
2117 	int ret;
2118 
2119 	private = 0;
2120 	ret = count_range_bits(&inode->io_failure_tree, &private,
2121 				(u64)-1, 1, EXTENT_DIRTY, 0);
2122 	if (!ret)
2123 		return 0;
2124 
2125 	ret = get_state_failrec(&inode->io_failure_tree, start,
2126 			&failrec);
2127 	if (ret)
2128 		return 0;
2129 
2130 	BUG_ON(!failrec->this_mirror);
2131 
2132 	if (failrec->in_validation) {
2133 		/* there was no real error, just free the record */
2134 		btrfs_debug(fs_info,
2135 			"clean_io_failure: freeing dummy error at %llu",
2136 			failrec->start);
2137 		goto out;
2138 	}
2139 	if (fs_info->sb->s_flags & MS_RDONLY)
2140 		goto out;
2141 
2142 	spin_lock(&inode->io_tree.lock);
2143 	state = find_first_extent_bit_state(&inode->io_tree,
2144 					    failrec->start,
2145 					    EXTENT_LOCKED);
2146 	spin_unlock(&inode->io_tree.lock);
2147 
2148 	if (state && state->start <= failrec->start &&
2149 	    state->end >= failrec->start + failrec->len - 1) {
2150 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2151 					      failrec->len);
2152 		if (num_copies > 1)  {
2153 			repair_io_failure(inode, start, failrec->len,
2154 					  failrec->logical, page,
2155 					  pg_offset, failrec->failed_mirror);
2156 		}
2157 	}
2158 
2159 out:
2160 	free_io_failure(inode, failrec);
2161 
2162 	return 0;
2163 }
2164 
2165 /*
2166  * Can be called when
2167  * - hold extent lock
2168  * - under ordered extent
2169  * - the inode is freeing
2170  */
2171 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2172 {
2173 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2174 	struct io_failure_record *failrec;
2175 	struct extent_state *state, *next;
2176 
2177 	if (RB_EMPTY_ROOT(&failure_tree->state))
2178 		return;
2179 
2180 	spin_lock(&failure_tree->lock);
2181 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2182 	while (state) {
2183 		if (state->start > end)
2184 			break;
2185 
2186 		ASSERT(state->end <= end);
2187 
2188 		next = next_state(state);
2189 
2190 		failrec = state->failrec;
2191 		free_extent_state(state);
2192 		kfree(failrec);
2193 
2194 		state = next;
2195 	}
2196 	spin_unlock(&failure_tree->lock);
2197 }
2198 
2199 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2200 		struct io_failure_record **failrec_ret)
2201 {
2202 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2203 	struct io_failure_record *failrec;
2204 	struct extent_map *em;
2205 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2206 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2207 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2208 	int ret;
2209 	u64 logical;
2210 
2211 	ret = get_state_failrec(failure_tree, start, &failrec);
2212 	if (ret) {
2213 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2214 		if (!failrec)
2215 			return -ENOMEM;
2216 
2217 		failrec->start = start;
2218 		failrec->len = end - start + 1;
2219 		failrec->this_mirror = 0;
2220 		failrec->bio_flags = 0;
2221 		failrec->in_validation = 0;
2222 
2223 		read_lock(&em_tree->lock);
2224 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2225 		if (!em) {
2226 			read_unlock(&em_tree->lock);
2227 			kfree(failrec);
2228 			return -EIO;
2229 		}
2230 
2231 		if (em->start > start || em->start + em->len <= start) {
2232 			free_extent_map(em);
2233 			em = NULL;
2234 		}
2235 		read_unlock(&em_tree->lock);
2236 		if (!em) {
2237 			kfree(failrec);
2238 			return -EIO;
2239 		}
2240 
2241 		logical = start - em->start;
2242 		logical = em->block_start + logical;
2243 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2244 			logical = em->block_start;
2245 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2246 			extent_set_compress_type(&failrec->bio_flags,
2247 						 em->compress_type);
2248 		}
2249 
2250 		btrfs_debug(fs_info,
2251 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2252 			logical, start, failrec->len);
2253 
2254 		failrec->logical = logical;
2255 		free_extent_map(em);
2256 
2257 		/* set the bits in the private failure tree */
2258 		ret = set_extent_bits(failure_tree, start, end,
2259 					EXTENT_LOCKED | EXTENT_DIRTY);
2260 		if (ret >= 0)
2261 			ret = set_state_failrec(failure_tree, start, failrec);
2262 		/* set the bits in the inode's tree */
2263 		if (ret >= 0)
2264 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2265 		if (ret < 0) {
2266 			kfree(failrec);
2267 			return ret;
2268 		}
2269 	} else {
2270 		btrfs_debug(fs_info,
2271 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2272 			failrec->logical, failrec->start, failrec->len,
2273 			failrec->in_validation);
2274 		/*
2275 		 * when data can be on disk more than twice, add to failrec here
2276 		 * (e.g. with a list for failed_mirror) to make
2277 		 * clean_io_failure() clean all those errors at once.
2278 		 */
2279 	}
2280 
2281 	*failrec_ret = failrec;
2282 
2283 	return 0;
2284 }
2285 
2286 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2287 			   struct io_failure_record *failrec, int failed_mirror)
2288 {
2289 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2290 	int num_copies;
2291 
2292 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2293 	if (num_copies == 1) {
2294 		/*
2295 		 * we only have a single copy of the data, so don't bother with
2296 		 * all the retry and error correction code that follows. no
2297 		 * matter what the error is, it is very likely to persist.
2298 		 */
2299 		btrfs_debug(fs_info,
2300 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2301 			num_copies, failrec->this_mirror, failed_mirror);
2302 		return 0;
2303 	}
2304 
2305 	/*
2306 	 * there are two premises:
2307 	 *	a) deliver good data to the caller
2308 	 *	b) correct the bad sectors on disk
2309 	 */
2310 	if (failed_bio->bi_vcnt > 1) {
2311 		/*
2312 		 * to fulfill b), we need to know the exact failing sectors, as
2313 		 * we don't want to rewrite any more than the failed ones. thus,
2314 		 * we need separate read requests for the failed bio
2315 		 *
2316 		 * if the following BUG_ON triggers, our validation request got
2317 		 * merged. we need separate requests for our algorithm to work.
2318 		 */
2319 		BUG_ON(failrec->in_validation);
2320 		failrec->in_validation = 1;
2321 		failrec->this_mirror = failed_mirror;
2322 	} else {
2323 		/*
2324 		 * we're ready to fulfill a) and b) alongside. get a good copy
2325 		 * of the failed sector and if we succeed, we have setup
2326 		 * everything for repair_io_failure to do the rest for us.
2327 		 */
2328 		if (failrec->in_validation) {
2329 			BUG_ON(failrec->this_mirror != failed_mirror);
2330 			failrec->in_validation = 0;
2331 			failrec->this_mirror = 0;
2332 		}
2333 		failrec->failed_mirror = failed_mirror;
2334 		failrec->this_mirror++;
2335 		if (failrec->this_mirror == failed_mirror)
2336 			failrec->this_mirror++;
2337 	}
2338 
2339 	if (failrec->this_mirror > num_copies) {
2340 		btrfs_debug(fs_info,
2341 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2342 			num_copies, failrec->this_mirror, failed_mirror);
2343 		return 0;
2344 	}
2345 
2346 	return 1;
2347 }
2348 
2349 
2350 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2351 				    struct io_failure_record *failrec,
2352 				    struct page *page, int pg_offset, int icsum,
2353 				    bio_end_io_t *endio_func, void *data)
2354 {
2355 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2356 	struct bio *bio;
2357 	struct btrfs_io_bio *btrfs_failed_bio;
2358 	struct btrfs_io_bio *btrfs_bio;
2359 
2360 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2361 	if (!bio)
2362 		return NULL;
2363 
2364 	bio->bi_end_io = endio_func;
2365 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2366 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2367 	bio->bi_iter.bi_size = 0;
2368 	bio->bi_private = data;
2369 
2370 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2371 	if (btrfs_failed_bio->csum) {
2372 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2373 
2374 		btrfs_bio = btrfs_io_bio(bio);
2375 		btrfs_bio->csum = btrfs_bio->csum_inline;
2376 		icsum *= csum_size;
2377 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2378 		       csum_size);
2379 	}
2380 
2381 	bio_add_page(bio, page, failrec->len, pg_offset);
2382 
2383 	return bio;
2384 }
2385 
2386 /*
2387  * this is a generic handler for readpage errors (default
2388  * readpage_io_failed_hook). if other copies exist, read those and write back
2389  * good data to the failed position. does not investigate in remapping the
2390  * failed extent elsewhere, hoping the device will be smart enough to do this as
2391  * needed
2392  */
2393 
2394 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2395 			      struct page *page, u64 start, u64 end,
2396 			      int failed_mirror)
2397 {
2398 	struct io_failure_record *failrec;
2399 	struct inode *inode = page->mapping->host;
2400 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2401 	struct bio *bio;
2402 	int read_mode = 0;
2403 	blk_status_t status;
2404 	int ret;
2405 
2406 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2407 
2408 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2409 	if (ret)
2410 		return ret;
2411 
2412 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2413 	if (!ret) {
2414 		free_io_failure(BTRFS_I(inode), failrec);
2415 		return -EIO;
2416 	}
2417 
2418 	if (failed_bio->bi_vcnt > 1)
2419 		read_mode |= REQ_FAILFAST_DEV;
2420 
2421 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2422 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2423 				      start - page_offset(page),
2424 				      (int)phy_offset, failed_bio->bi_end_io,
2425 				      NULL);
2426 	if (!bio) {
2427 		free_io_failure(BTRFS_I(inode), failrec);
2428 		return -EIO;
2429 	}
2430 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2431 
2432 	btrfs_debug(btrfs_sb(inode->i_sb),
2433 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2434 		read_mode, failrec->this_mirror, failrec->in_validation);
2435 
2436 	status = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2437 					 failrec->bio_flags, 0);
2438 	if (status) {
2439 		free_io_failure(BTRFS_I(inode), failrec);
2440 		bio_put(bio);
2441 		ret = blk_status_to_errno(status);
2442 	}
2443 
2444 	return ret;
2445 }
2446 
2447 /* lots and lots of room for performance fixes in the end_bio funcs */
2448 
2449 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2450 {
2451 	int uptodate = (err == 0);
2452 	struct extent_io_tree *tree;
2453 	int ret = 0;
2454 
2455 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2456 
2457 	if (tree->ops && tree->ops->writepage_end_io_hook)
2458 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2459 				uptodate);
2460 
2461 	if (!uptodate) {
2462 		ClearPageUptodate(page);
2463 		SetPageError(page);
2464 		ret = err < 0 ? err : -EIO;
2465 		mapping_set_error(page->mapping, ret);
2466 	}
2467 }
2468 
2469 /*
2470  * after a writepage IO is done, we need to:
2471  * clear the uptodate bits on error
2472  * clear the writeback bits in the extent tree for this IO
2473  * end_page_writeback if the page has no more pending IO
2474  *
2475  * Scheduling is not allowed, so the extent state tree is expected
2476  * to have one and only one object corresponding to this IO.
2477  */
2478 static void end_bio_extent_writepage(struct bio *bio)
2479 {
2480 	int error = blk_status_to_errno(bio->bi_status);
2481 	struct bio_vec *bvec;
2482 	u64 start;
2483 	u64 end;
2484 	int i;
2485 
2486 	bio_for_each_segment_all(bvec, bio, i) {
2487 		struct page *page = bvec->bv_page;
2488 		struct inode *inode = page->mapping->host;
2489 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2490 
2491 		/* We always issue full-page reads, but if some block
2492 		 * in a page fails to read, blk_update_request() will
2493 		 * advance bv_offset and adjust bv_len to compensate.
2494 		 * Print a warning for nonzero offsets, and an error
2495 		 * if they don't add up to a full page.  */
2496 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2497 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2498 				btrfs_err(fs_info,
2499 				   "partial page write in btrfs with offset %u and length %u",
2500 					bvec->bv_offset, bvec->bv_len);
2501 			else
2502 				btrfs_info(fs_info,
2503 				   "incomplete page write in btrfs with offset %u and length %u",
2504 					bvec->bv_offset, bvec->bv_len);
2505 		}
2506 
2507 		start = page_offset(page);
2508 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2509 
2510 		end_extent_writepage(page, error, start, end);
2511 		end_page_writeback(page);
2512 	}
2513 
2514 	bio_put(bio);
2515 }
2516 
2517 static void
2518 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2519 			      int uptodate)
2520 {
2521 	struct extent_state *cached = NULL;
2522 	u64 end = start + len - 1;
2523 
2524 	if (uptodate && tree->track_uptodate)
2525 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2526 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2527 }
2528 
2529 /*
2530  * after a readpage IO is done, we need to:
2531  * clear the uptodate bits on error
2532  * set the uptodate bits if things worked
2533  * set the page up to date if all extents in the tree are uptodate
2534  * clear the lock bit in the extent tree
2535  * unlock the page if there are no other extents locked for it
2536  *
2537  * Scheduling is not allowed, so the extent state tree is expected
2538  * to have one and only one object corresponding to this IO.
2539  */
2540 static void end_bio_extent_readpage(struct bio *bio)
2541 {
2542 	struct bio_vec *bvec;
2543 	int uptodate = !bio->bi_status;
2544 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2545 	struct extent_io_tree *tree;
2546 	u64 offset = 0;
2547 	u64 start;
2548 	u64 end;
2549 	u64 len;
2550 	u64 extent_start = 0;
2551 	u64 extent_len = 0;
2552 	int mirror;
2553 	int ret;
2554 	int i;
2555 
2556 	bio_for_each_segment_all(bvec, bio, i) {
2557 		struct page *page = bvec->bv_page;
2558 		struct inode *inode = page->mapping->host;
2559 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2560 
2561 		btrfs_debug(fs_info,
2562 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2563 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2564 			io_bio->mirror_num);
2565 		tree = &BTRFS_I(inode)->io_tree;
2566 
2567 		/* We always issue full-page reads, but if some block
2568 		 * in a page fails to read, blk_update_request() will
2569 		 * advance bv_offset and adjust bv_len to compensate.
2570 		 * Print a warning for nonzero offsets, and an error
2571 		 * if they don't add up to a full page.  */
2572 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2573 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2574 				btrfs_err(fs_info,
2575 					"partial page read in btrfs with offset %u and length %u",
2576 					bvec->bv_offset, bvec->bv_len);
2577 			else
2578 				btrfs_info(fs_info,
2579 					"incomplete page read in btrfs with offset %u and length %u",
2580 					bvec->bv_offset, bvec->bv_len);
2581 		}
2582 
2583 		start = page_offset(page);
2584 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2585 		len = bvec->bv_len;
2586 
2587 		mirror = io_bio->mirror_num;
2588 		if (likely(uptodate && tree->ops)) {
2589 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2590 							      page, start, end,
2591 							      mirror);
2592 			if (ret)
2593 				uptodate = 0;
2594 			else
2595 				clean_io_failure(BTRFS_I(inode), start,
2596 						page, 0);
2597 		}
2598 
2599 		if (likely(uptodate))
2600 			goto readpage_ok;
2601 
2602 		if (tree->ops) {
2603 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2604 			if (ret == -EAGAIN) {
2605 				/*
2606 				 * Data inode's readpage_io_failed_hook() always
2607 				 * returns -EAGAIN.
2608 				 *
2609 				 * The generic bio_readpage_error handles errors
2610 				 * the following way: If possible, new read
2611 				 * requests are created and submitted and will
2612 				 * end up in end_bio_extent_readpage as well (if
2613 				 * we're lucky, not in the !uptodate case). In
2614 				 * that case it returns 0 and we just go on with
2615 				 * the next page in our bio. If it can't handle
2616 				 * the error it will return -EIO and we remain
2617 				 * responsible for that page.
2618 				 */
2619 				ret = bio_readpage_error(bio, offset, page,
2620 							 start, end, mirror);
2621 				if (ret == 0) {
2622 					uptodate = !bio->bi_status;
2623 					offset += len;
2624 					continue;
2625 				}
2626 			}
2627 
2628 			/*
2629 			 * metadata's readpage_io_failed_hook() always returns
2630 			 * -EIO and fixes nothing.  -EIO is also returned if
2631 			 * data inode error could not be fixed.
2632 			 */
2633 			ASSERT(ret == -EIO);
2634 		}
2635 readpage_ok:
2636 		if (likely(uptodate)) {
2637 			loff_t i_size = i_size_read(inode);
2638 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2639 			unsigned off;
2640 
2641 			/* Zero out the end if this page straddles i_size */
2642 			off = i_size & (PAGE_SIZE-1);
2643 			if (page->index == end_index && off)
2644 				zero_user_segment(page, off, PAGE_SIZE);
2645 			SetPageUptodate(page);
2646 		} else {
2647 			ClearPageUptodate(page);
2648 			SetPageError(page);
2649 		}
2650 		unlock_page(page);
2651 		offset += len;
2652 
2653 		if (unlikely(!uptodate)) {
2654 			if (extent_len) {
2655 				endio_readpage_release_extent(tree,
2656 							      extent_start,
2657 							      extent_len, 1);
2658 				extent_start = 0;
2659 				extent_len = 0;
2660 			}
2661 			endio_readpage_release_extent(tree, start,
2662 						      end - start + 1, 0);
2663 		} else if (!extent_len) {
2664 			extent_start = start;
2665 			extent_len = end + 1 - start;
2666 		} else if (extent_start + extent_len == start) {
2667 			extent_len += end + 1 - start;
2668 		} else {
2669 			endio_readpage_release_extent(tree, extent_start,
2670 						      extent_len, uptodate);
2671 			extent_start = start;
2672 			extent_len = end + 1 - start;
2673 		}
2674 	}
2675 
2676 	if (extent_len)
2677 		endio_readpage_release_extent(tree, extent_start, extent_len,
2678 					      uptodate);
2679 	if (io_bio->end_io)
2680 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2681 	bio_put(bio);
2682 }
2683 
2684 /*
2685  * this allocates from the btrfs_bioset.  We're returning a bio right now
2686  * but you can call btrfs_io_bio for the appropriate container_of magic
2687  */
2688 struct bio *
2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2690 		gfp_t gfp_flags)
2691 {
2692 	struct btrfs_io_bio *btrfs_bio;
2693 	struct bio *bio;
2694 
2695 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2696 
2697 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698 		while (!bio && (nr_vecs /= 2)) {
2699 			bio = bio_alloc_bioset(gfp_flags,
2700 					       nr_vecs, btrfs_bioset);
2701 		}
2702 	}
2703 
2704 	if (bio) {
2705 		bio->bi_bdev = bdev;
2706 		bio->bi_iter.bi_sector = first_sector;
2707 		btrfs_bio = btrfs_io_bio(bio);
2708 		btrfs_bio->csum = NULL;
2709 		btrfs_bio->csum_allocated = NULL;
2710 		btrfs_bio->end_io = NULL;
2711 	}
2712 	return bio;
2713 }
2714 
2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2716 {
2717 	struct btrfs_io_bio *btrfs_bio;
2718 	struct bio *new;
2719 
2720 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2721 	if (new) {
2722 		btrfs_bio = btrfs_io_bio(new);
2723 		btrfs_bio->csum = NULL;
2724 		btrfs_bio->csum_allocated = NULL;
2725 		btrfs_bio->end_io = NULL;
2726 	}
2727 	return new;
2728 }
2729 
2730 /* this also allocates from the btrfs_bioset */
2731 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2732 {
2733 	struct btrfs_io_bio *btrfs_bio;
2734 	struct bio *bio;
2735 
2736 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2737 	if (bio) {
2738 		btrfs_bio = btrfs_io_bio(bio);
2739 		btrfs_bio->csum = NULL;
2740 		btrfs_bio->csum_allocated = NULL;
2741 		btrfs_bio->end_io = NULL;
2742 	}
2743 	return bio;
2744 }
2745 
2746 
2747 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2748 				       unsigned long bio_flags)
2749 {
2750 	blk_status_t ret = 0;
2751 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2752 	struct page *page = bvec->bv_page;
2753 	struct extent_io_tree *tree = bio->bi_private;
2754 	u64 start;
2755 
2756 	start = page_offset(page) + bvec->bv_offset;
2757 
2758 	bio->bi_private = NULL;
2759 	bio_get(bio);
2760 
2761 	if (tree->ops)
2762 		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2763 					   mirror_num, bio_flags, start);
2764 	else
2765 		btrfsic_submit_bio(bio);
2766 
2767 	bio_put(bio);
2768 	return blk_status_to_errno(ret);
2769 }
2770 
2771 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2772 		     unsigned long offset, size_t size, struct bio *bio,
2773 		     unsigned long bio_flags)
2774 {
2775 	int ret = 0;
2776 	if (tree->ops)
2777 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2778 						bio_flags);
2779 	return ret;
2780 
2781 }
2782 
2783 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2784 			      struct writeback_control *wbc,
2785 			      struct page *page, sector_t sector,
2786 			      size_t size, unsigned long offset,
2787 			      struct block_device *bdev,
2788 			      struct bio **bio_ret,
2789 			      bio_end_io_t end_io_func,
2790 			      int mirror_num,
2791 			      unsigned long prev_bio_flags,
2792 			      unsigned long bio_flags,
2793 			      bool force_bio_submit)
2794 {
2795 	int ret = 0;
2796 	struct bio *bio;
2797 	int contig = 0;
2798 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2799 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2800 
2801 	if (bio_ret && *bio_ret) {
2802 		bio = *bio_ret;
2803 		if (old_compressed)
2804 			contig = bio->bi_iter.bi_sector == sector;
2805 		else
2806 			contig = bio_end_sector(bio) == sector;
2807 
2808 		if (prev_bio_flags != bio_flags || !contig ||
2809 		    force_bio_submit ||
2810 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2811 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2812 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2813 			if (ret < 0) {
2814 				*bio_ret = NULL;
2815 				return ret;
2816 			}
2817 			bio = NULL;
2818 		} else {
2819 			if (wbc)
2820 				wbc_account_io(wbc, page, page_size);
2821 			return 0;
2822 		}
2823 	}
2824 
2825 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2826 			GFP_NOFS | __GFP_HIGH);
2827 	if (!bio)
2828 		return -ENOMEM;
2829 
2830 	bio_add_page(bio, page, page_size, offset);
2831 	bio->bi_end_io = end_io_func;
2832 	bio->bi_private = tree;
2833 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2834 	bio_set_op_attrs(bio, op, op_flags);
2835 	if (wbc) {
2836 		wbc_init_bio(wbc, bio);
2837 		wbc_account_io(wbc, page, page_size);
2838 	}
2839 
2840 	if (bio_ret)
2841 		*bio_ret = bio;
2842 	else
2843 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2844 
2845 	return ret;
2846 }
2847 
2848 static void attach_extent_buffer_page(struct extent_buffer *eb,
2849 				      struct page *page)
2850 {
2851 	if (!PagePrivate(page)) {
2852 		SetPagePrivate(page);
2853 		get_page(page);
2854 		set_page_private(page, (unsigned long)eb);
2855 	} else {
2856 		WARN_ON(page->private != (unsigned long)eb);
2857 	}
2858 }
2859 
2860 void set_page_extent_mapped(struct page *page)
2861 {
2862 	if (!PagePrivate(page)) {
2863 		SetPagePrivate(page);
2864 		get_page(page);
2865 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2866 	}
2867 }
2868 
2869 static struct extent_map *
2870 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2871 		 u64 start, u64 len, get_extent_t *get_extent,
2872 		 struct extent_map **em_cached)
2873 {
2874 	struct extent_map *em;
2875 
2876 	if (em_cached && *em_cached) {
2877 		em = *em_cached;
2878 		if (extent_map_in_tree(em) && start >= em->start &&
2879 		    start < extent_map_end(em)) {
2880 			refcount_inc(&em->refs);
2881 			return em;
2882 		}
2883 
2884 		free_extent_map(em);
2885 		*em_cached = NULL;
2886 	}
2887 
2888 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2889 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2890 		BUG_ON(*em_cached);
2891 		refcount_inc(&em->refs);
2892 		*em_cached = em;
2893 	}
2894 	return em;
2895 }
2896 /*
2897  * basic readpage implementation.  Locked extent state structs are inserted
2898  * into the tree that are removed when the IO is done (by the end_io
2899  * handlers)
2900  * XXX JDM: This needs looking at to ensure proper page locking
2901  * return 0 on success, otherwise return error
2902  */
2903 static int __do_readpage(struct extent_io_tree *tree,
2904 			 struct page *page,
2905 			 get_extent_t *get_extent,
2906 			 struct extent_map **em_cached,
2907 			 struct bio **bio, int mirror_num,
2908 			 unsigned long *bio_flags, int read_flags,
2909 			 u64 *prev_em_start)
2910 {
2911 	struct inode *inode = page->mapping->host;
2912 	u64 start = page_offset(page);
2913 	u64 page_end = start + PAGE_SIZE - 1;
2914 	u64 end;
2915 	u64 cur = start;
2916 	u64 extent_offset;
2917 	u64 last_byte = i_size_read(inode);
2918 	u64 block_start;
2919 	u64 cur_end;
2920 	sector_t sector;
2921 	struct extent_map *em;
2922 	struct block_device *bdev;
2923 	int ret = 0;
2924 	int nr = 0;
2925 	size_t pg_offset = 0;
2926 	size_t iosize;
2927 	size_t disk_io_size;
2928 	size_t blocksize = inode->i_sb->s_blocksize;
2929 	unsigned long this_bio_flag = 0;
2930 
2931 	set_page_extent_mapped(page);
2932 
2933 	end = page_end;
2934 	if (!PageUptodate(page)) {
2935 		if (cleancache_get_page(page) == 0) {
2936 			BUG_ON(blocksize != PAGE_SIZE);
2937 			unlock_extent(tree, start, end);
2938 			goto out;
2939 		}
2940 	}
2941 
2942 	if (page->index == last_byte >> PAGE_SHIFT) {
2943 		char *userpage;
2944 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2945 
2946 		if (zero_offset) {
2947 			iosize = PAGE_SIZE - zero_offset;
2948 			userpage = kmap_atomic(page);
2949 			memset(userpage + zero_offset, 0, iosize);
2950 			flush_dcache_page(page);
2951 			kunmap_atomic(userpage);
2952 		}
2953 	}
2954 	while (cur <= end) {
2955 		bool force_bio_submit = false;
2956 
2957 		if (cur >= last_byte) {
2958 			char *userpage;
2959 			struct extent_state *cached = NULL;
2960 
2961 			iosize = PAGE_SIZE - pg_offset;
2962 			userpage = kmap_atomic(page);
2963 			memset(userpage + pg_offset, 0, iosize);
2964 			flush_dcache_page(page);
2965 			kunmap_atomic(userpage);
2966 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2967 					    &cached, GFP_NOFS);
2968 			unlock_extent_cached(tree, cur,
2969 					     cur + iosize - 1,
2970 					     &cached, GFP_NOFS);
2971 			break;
2972 		}
2973 		em = __get_extent_map(inode, page, pg_offset, cur,
2974 				      end - cur + 1, get_extent, em_cached);
2975 		if (IS_ERR_OR_NULL(em)) {
2976 			SetPageError(page);
2977 			unlock_extent(tree, cur, end);
2978 			break;
2979 		}
2980 		extent_offset = cur - em->start;
2981 		BUG_ON(extent_map_end(em) <= cur);
2982 		BUG_ON(end < cur);
2983 
2984 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2985 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2986 			extent_set_compress_type(&this_bio_flag,
2987 						 em->compress_type);
2988 		}
2989 
2990 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2991 		cur_end = min(extent_map_end(em) - 1, end);
2992 		iosize = ALIGN(iosize, blocksize);
2993 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2994 			disk_io_size = em->block_len;
2995 			sector = em->block_start >> 9;
2996 		} else {
2997 			sector = (em->block_start + extent_offset) >> 9;
2998 			disk_io_size = iosize;
2999 		}
3000 		bdev = em->bdev;
3001 		block_start = em->block_start;
3002 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3003 			block_start = EXTENT_MAP_HOLE;
3004 
3005 		/*
3006 		 * If we have a file range that points to a compressed extent
3007 		 * and it's followed by a consecutive file range that points to
3008 		 * to the same compressed extent (possibly with a different
3009 		 * offset and/or length, so it either points to the whole extent
3010 		 * or only part of it), we must make sure we do not submit a
3011 		 * single bio to populate the pages for the 2 ranges because
3012 		 * this makes the compressed extent read zero out the pages
3013 		 * belonging to the 2nd range. Imagine the following scenario:
3014 		 *
3015 		 *  File layout
3016 		 *  [0 - 8K]                     [8K - 24K]
3017 		 *    |                               |
3018 		 *    |                               |
3019 		 * points to extent X,         points to extent X,
3020 		 * offset 4K, length of 8K     offset 0, length 16K
3021 		 *
3022 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3023 		 *
3024 		 * If the bio to read the compressed extent covers both ranges,
3025 		 * it will decompress extent X into the pages belonging to the
3026 		 * first range and then it will stop, zeroing out the remaining
3027 		 * pages that belong to the other range that points to extent X.
3028 		 * So here we make sure we submit 2 bios, one for the first
3029 		 * range and another one for the third range. Both will target
3030 		 * the same physical extent from disk, but we can't currently
3031 		 * make the compressed bio endio callback populate the pages
3032 		 * for both ranges because each compressed bio is tightly
3033 		 * coupled with a single extent map, and each range can have
3034 		 * an extent map with a different offset value relative to the
3035 		 * uncompressed data of our extent and different lengths. This
3036 		 * is a corner case so we prioritize correctness over
3037 		 * non-optimal behavior (submitting 2 bios for the same extent).
3038 		 */
3039 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3040 		    prev_em_start && *prev_em_start != (u64)-1 &&
3041 		    *prev_em_start != em->orig_start)
3042 			force_bio_submit = true;
3043 
3044 		if (prev_em_start)
3045 			*prev_em_start = em->orig_start;
3046 
3047 		free_extent_map(em);
3048 		em = NULL;
3049 
3050 		/* we've found a hole, just zero and go on */
3051 		if (block_start == EXTENT_MAP_HOLE) {
3052 			char *userpage;
3053 			struct extent_state *cached = NULL;
3054 
3055 			userpage = kmap_atomic(page);
3056 			memset(userpage + pg_offset, 0, iosize);
3057 			flush_dcache_page(page);
3058 			kunmap_atomic(userpage);
3059 
3060 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3061 					    &cached, GFP_NOFS);
3062 			unlock_extent_cached(tree, cur,
3063 					     cur + iosize - 1,
3064 					     &cached, GFP_NOFS);
3065 			cur = cur + iosize;
3066 			pg_offset += iosize;
3067 			continue;
3068 		}
3069 		/* the get_extent function already copied into the page */
3070 		if (test_range_bit(tree, cur, cur_end,
3071 				   EXTENT_UPTODATE, 1, NULL)) {
3072 			check_page_uptodate(tree, page);
3073 			unlock_extent(tree, cur, cur + iosize - 1);
3074 			cur = cur + iosize;
3075 			pg_offset += iosize;
3076 			continue;
3077 		}
3078 		/* we have an inline extent but it didn't get marked up
3079 		 * to date.  Error out
3080 		 */
3081 		if (block_start == EXTENT_MAP_INLINE) {
3082 			SetPageError(page);
3083 			unlock_extent(tree, cur, cur + iosize - 1);
3084 			cur = cur + iosize;
3085 			pg_offset += iosize;
3086 			continue;
3087 		}
3088 
3089 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3090 					 page, sector, disk_io_size, pg_offset,
3091 					 bdev, bio,
3092 					 end_bio_extent_readpage, mirror_num,
3093 					 *bio_flags,
3094 					 this_bio_flag,
3095 					 force_bio_submit);
3096 		if (!ret) {
3097 			nr++;
3098 			*bio_flags = this_bio_flag;
3099 		} else {
3100 			SetPageError(page);
3101 			unlock_extent(tree, cur, cur + iosize - 1);
3102 			goto out;
3103 		}
3104 		cur = cur + iosize;
3105 		pg_offset += iosize;
3106 	}
3107 out:
3108 	if (!nr) {
3109 		if (!PageError(page))
3110 			SetPageUptodate(page);
3111 		unlock_page(page);
3112 	}
3113 	return ret;
3114 }
3115 
3116 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3117 					     struct page *pages[], int nr_pages,
3118 					     u64 start, u64 end,
3119 					     get_extent_t *get_extent,
3120 					     struct extent_map **em_cached,
3121 					     struct bio **bio, int mirror_num,
3122 					     unsigned long *bio_flags,
3123 					     u64 *prev_em_start)
3124 {
3125 	struct inode *inode;
3126 	struct btrfs_ordered_extent *ordered;
3127 	int index;
3128 
3129 	inode = pages[0]->mapping->host;
3130 	while (1) {
3131 		lock_extent(tree, start, end);
3132 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3133 						     end - start + 1);
3134 		if (!ordered)
3135 			break;
3136 		unlock_extent(tree, start, end);
3137 		btrfs_start_ordered_extent(inode, ordered, 1);
3138 		btrfs_put_ordered_extent(ordered);
3139 	}
3140 
3141 	for (index = 0; index < nr_pages; index++) {
3142 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3143 			      mirror_num, bio_flags, 0, prev_em_start);
3144 		put_page(pages[index]);
3145 	}
3146 }
3147 
3148 static void __extent_readpages(struct extent_io_tree *tree,
3149 			       struct page *pages[],
3150 			       int nr_pages, get_extent_t *get_extent,
3151 			       struct extent_map **em_cached,
3152 			       struct bio **bio, int mirror_num,
3153 			       unsigned long *bio_flags,
3154 			       u64 *prev_em_start)
3155 {
3156 	u64 start = 0;
3157 	u64 end = 0;
3158 	u64 page_start;
3159 	int index;
3160 	int first_index = 0;
3161 
3162 	for (index = 0; index < nr_pages; index++) {
3163 		page_start = page_offset(pages[index]);
3164 		if (!end) {
3165 			start = page_start;
3166 			end = start + PAGE_SIZE - 1;
3167 			first_index = index;
3168 		} else if (end + 1 == page_start) {
3169 			end += PAGE_SIZE;
3170 		} else {
3171 			__do_contiguous_readpages(tree, &pages[first_index],
3172 						  index - first_index, start,
3173 						  end, get_extent, em_cached,
3174 						  bio, mirror_num, bio_flags,
3175 						  prev_em_start);
3176 			start = page_start;
3177 			end = start + PAGE_SIZE - 1;
3178 			first_index = index;
3179 		}
3180 	}
3181 
3182 	if (end)
3183 		__do_contiguous_readpages(tree, &pages[first_index],
3184 					  index - first_index, start,
3185 					  end, get_extent, em_cached, bio,
3186 					  mirror_num, bio_flags,
3187 					  prev_em_start);
3188 }
3189 
3190 static int __extent_read_full_page(struct extent_io_tree *tree,
3191 				   struct page *page,
3192 				   get_extent_t *get_extent,
3193 				   struct bio **bio, int mirror_num,
3194 				   unsigned long *bio_flags, int read_flags)
3195 {
3196 	struct inode *inode = page->mapping->host;
3197 	struct btrfs_ordered_extent *ordered;
3198 	u64 start = page_offset(page);
3199 	u64 end = start + PAGE_SIZE - 1;
3200 	int ret;
3201 
3202 	while (1) {
3203 		lock_extent(tree, start, end);
3204 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3205 						PAGE_SIZE);
3206 		if (!ordered)
3207 			break;
3208 		unlock_extent(tree, start, end);
3209 		btrfs_start_ordered_extent(inode, ordered, 1);
3210 		btrfs_put_ordered_extent(ordered);
3211 	}
3212 
3213 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3214 			    bio_flags, read_flags, NULL);
3215 	return ret;
3216 }
3217 
3218 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3219 			    get_extent_t *get_extent, int mirror_num)
3220 {
3221 	struct bio *bio = NULL;
3222 	unsigned long bio_flags = 0;
3223 	int ret;
3224 
3225 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3226 				      &bio_flags, 0);
3227 	if (bio)
3228 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3229 	return ret;
3230 }
3231 
3232 static void update_nr_written(struct writeback_control *wbc,
3233 			      unsigned long nr_written)
3234 {
3235 	wbc->nr_to_write -= nr_written;
3236 }
3237 
3238 /*
3239  * helper for __extent_writepage, doing all of the delayed allocation setup.
3240  *
3241  * This returns 1 if our fill_delalloc function did all the work required
3242  * to write the page (copy into inline extent).  In this case the IO has
3243  * been started and the page is already unlocked.
3244  *
3245  * This returns 0 if all went well (page still locked)
3246  * This returns < 0 if there were errors (page still locked)
3247  */
3248 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3249 			      struct page *page, struct writeback_control *wbc,
3250 			      struct extent_page_data *epd,
3251 			      u64 delalloc_start,
3252 			      unsigned long *nr_written)
3253 {
3254 	struct extent_io_tree *tree = epd->tree;
3255 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3256 	u64 nr_delalloc;
3257 	u64 delalloc_to_write = 0;
3258 	u64 delalloc_end = 0;
3259 	int ret;
3260 	int page_started = 0;
3261 
3262 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3263 		return 0;
3264 
3265 	while (delalloc_end < page_end) {
3266 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3267 					       page,
3268 					       &delalloc_start,
3269 					       &delalloc_end,
3270 					       BTRFS_MAX_EXTENT_SIZE);
3271 		if (nr_delalloc == 0) {
3272 			delalloc_start = delalloc_end + 1;
3273 			continue;
3274 		}
3275 		ret = tree->ops->fill_delalloc(inode, page,
3276 					       delalloc_start,
3277 					       delalloc_end,
3278 					       &page_started,
3279 					       nr_written);
3280 		/* File system has been set read-only */
3281 		if (ret) {
3282 			SetPageError(page);
3283 			/* fill_delalloc should be return < 0 for error
3284 			 * but just in case, we use > 0 here meaning the
3285 			 * IO is started, so we don't want to return > 0
3286 			 * unless things are going well.
3287 			 */
3288 			ret = ret < 0 ? ret : -EIO;
3289 			goto done;
3290 		}
3291 		/*
3292 		 * delalloc_end is already one less than the total length, so
3293 		 * we don't subtract one from PAGE_SIZE
3294 		 */
3295 		delalloc_to_write += (delalloc_end - delalloc_start +
3296 				      PAGE_SIZE) >> PAGE_SHIFT;
3297 		delalloc_start = delalloc_end + 1;
3298 	}
3299 	if (wbc->nr_to_write < delalloc_to_write) {
3300 		int thresh = 8192;
3301 
3302 		if (delalloc_to_write < thresh * 2)
3303 			thresh = delalloc_to_write;
3304 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3305 					 thresh);
3306 	}
3307 
3308 	/* did the fill delalloc function already unlock and start
3309 	 * the IO?
3310 	 */
3311 	if (page_started) {
3312 		/*
3313 		 * we've unlocked the page, so we can't update
3314 		 * the mapping's writeback index, just update
3315 		 * nr_to_write.
3316 		 */
3317 		wbc->nr_to_write -= *nr_written;
3318 		return 1;
3319 	}
3320 
3321 	ret = 0;
3322 
3323 done:
3324 	return ret;
3325 }
3326 
3327 /*
3328  * helper for __extent_writepage.  This calls the writepage start hooks,
3329  * and does the loop to map the page into extents and bios.
3330  *
3331  * We return 1 if the IO is started and the page is unlocked,
3332  * 0 if all went well (page still locked)
3333  * < 0 if there were errors (page still locked)
3334  */
3335 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3336 				 struct page *page,
3337 				 struct writeback_control *wbc,
3338 				 struct extent_page_data *epd,
3339 				 loff_t i_size,
3340 				 unsigned long nr_written,
3341 				 int write_flags, int *nr_ret)
3342 {
3343 	struct extent_io_tree *tree = epd->tree;
3344 	u64 start = page_offset(page);
3345 	u64 page_end = start + PAGE_SIZE - 1;
3346 	u64 end;
3347 	u64 cur = start;
3348 	u64 extent_offset;
3349 	u64 block_start;
3350 	u64 iosize;
3351 	sector_t sector;
3352 	struct extent_map *em;
3353 	struct block_device *bdev;
3354 	size_t pg_offset = 0;
3355 	size_t blocksize;
3356 	int ret = 0;
3357 	int nr = 0;
3358 	bool compressed;
3359 
3360 	if (tree->ops && tree->ops->writepage_start_hook) {
3361 		ret = tree->ops->writepage_start_hook(page, start,
3362 						      page_end);
3363 		if (ret) {
3364 			/* Fixup worker will requeue */
3365 			if (ret == -EBUSY)
3366 				wbc->pages_skipped++;
3367 			else
3368 				redirty_page_for_writepage(wbc, page);
3369 
3370 			update_nr_written(wbc, nr_written);
3371 			unlock_page(page);
3372 			return 1;
3373 		}
3374 	}
3375 
3376 	/*
3377 	 * we don't want to touch the inode after unlocking the page,
3378 	 * so we update the mapping writeback index now
3379 	 */
3380 	update_nr_written(wbc, nr_written + 1);
3381 
3382 	end = page_end;
3383 	if (i_size <= start) {
3384 		if (tree->ops && tree->ops->writepage_end_io_hook)
3385 			tree->ops->writepage_end_io_hook(page, start,
3386 							 page_end, NULL, 1);
3387 		goto done;
3388 	}
3389 
3390 	blocksize = inode->i_sb->s_blocksize;
3391 
3392 	while (cur <= end) {
3393 		u64 em_end;
3394 
3395 		if (cur >= i_size) {
3396 			if (tree->ops && tree->ops->writepage_end_io_hook)
3397 				tree->ops->writepage_end_io_hook(page, cur,
3398 							 page_end, NULL, 1);
3399 			break;
3400 		}
3401 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3402 				     end - cur + 1, 1);
3403 		if (IS_ERR_OR_NULL(em)) {
3404 			SetPageError(page);
3405 			ret = PTR_ERR_OR_ZERO(em);
3406 			break;
3407 		}
3408 
3409 		extent_offset = cur - em->start;
3410 		em_end = extent_map_end(em);
3411 		BUG_ON(em_end <= cur);
3412 		BUG_ON(end < cur);
3413 		iosize = min(em_end - cur, end - cur + 1);
3414 		iosize = ALIGN(iosize, blocksize);
3415 		sector = (em->block_start + extent_offset) >> 9;
3416 		bdev = em->bdev;
3417 		block_start = em->block_start;
3418 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3419 		free_extent_map(em);
3420 		em = NULL;
3421 
3422 		/*
3423 		 * compressed and inline extents are written through other
3424 		 * paths in the FS
3425 		 */
3426 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3427 		    block_start == EXTENT_MAP_INLINE) {
3428 			/*
3429 			 * end_io notification does not happen here for
3430 			 * compressed extents
3431 			 */
3432 			if (!compressed && tree->ops &&
3433 			    tree->ops->writepage_end_io_hook)
3434 				tree->ops->writepage_end_io_hook(page, cur,
3435 							 cur + iosize - 1,
3436 							 NULL, 1);
3437 			else if (compressed) {
3438 				/* we don't want to end_page_writeback on
3439 				 * a compressed extent.  this happens
3440 				 * elsewhere
3441 				 */
3442 				nr++;
3443 			}
3444 
3445 			cur += iosize;
3446 			pg_offset += iosize;
3447 			continue;
3448 		}
3449 
3450 		set_range_writeback(tree, cur, cur + iosize - 1);
3451 		if (!PageWriteback(page)) {
3452 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3453 				   "page %lu not writeback, cur %llu end %llu",
3454 			       page->index, cur, end);
3455 		}
3456 
3457 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3458 					 page, sector, iosize, pg_offset,
3459 					 bdev, &epd->bio,
3460 					 end_bio_extent_writepage,
3461 					 0, 0, 0, false);
3462 		if (ret) {
3463 			SetPageError(page);
3464 			if (PageWriteback(page))
3465 				end_page_writeback(page);
3466 		}
3467 
3468 		cur = cur + iosize;
3469 		pg_offset += iosize;
3470 		nr++;
3471 	}
3472 done:
3473 	*nr_ret = nr;
3474 	return ret;
3475 }
3476 
3477 /*
3478  * the writepage semantics are similar to regular writepage.  extent
3479  * records are inserted to lock ranges in the tree, and as dirty areas
3480  * are found, they are marked writeback.  Then the lock bits are removed
3481  * and the end_io handler clears the writeback ranges
3482  */
3483 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3484 			      void *data)
3485 {
3486 	struct inode *inode = page->mapping->host;
3487 	struct extent_page_data *epd = data;
3488 	u64 start = page_offset(page);
3489 	u64 page_end = start + PAGE_SIZE - 1;
3490 	int ret;
3491 	int nr = 0;
3492 	size_t pg_offset = 0;
3493 	loff_t i_size = i_size_read(inode);
3494 	unsigned long end_index = i_size >> PAGE_SHIFT;
3495 	int write_flags = 0;
3496 	unsigned long nr_written = 0;
3497 
3498 	if (wbc->sync_mode == WB_SYNC_ALL)
3499 		write_flags = REQ_SYNC;
3500 
3501 	trace___extent_writepage(page, inode, wbc);
3502 
3503 	WARN_ON(!PageLocked(page));
3504 
3505 	ClearPageError(page);
3506 
3507 	pg_offset = i_size & (PAGE_SIZE - 1);
3508 	if (page->index > end_index ||
3509 	   (page->index == end_index && !pg_offset)) {
3510 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3511 		unlock_page(page);
3512 		return 0;
3513 	}
3514 
3515 	if (page->index == end_index) {
3516 		char *userpage;
3517 
3518 		userpage = kmap_atomic(page);
3519 		memset(userpage + pg_offset, 0,
3520 		       PAGE_SIZE - pg_offset);
3521 		kunmap_atomic(userpage);
3522 		flush_dcache_page(page);
3523 	}
3524 
3525 	pg_offset = 0;
3526 
3527 	set_page_extent_mapped(page);
3528 
3529 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3530 	if (ret == 1)
3531 		goto done_unlocked;
3532 	if (ret)
3533 		goto done;
3534 
3535 	ret = __extent_writepage_io(inode, page, wbc, epd,
3536 				    i_size, nr_written, write_flags, &nr);
3537 	if (ret == 1)
3538 		goto done_unlocked;
3539 
3540 done:
3541 	if (nr == 0) {
3542 		/* make sure the mapping tag for page dirty gets cleared */
3543 		set_page_writeback(page);
3544 		end_page_writeback(page);
3545 	}
3546 	if (PageError(page)) {
3547 		ret = ret < 0 ? ret : -EIO;
3548 		end_extent_writepage(page, ret, start, page_end);
3549 	}
3550 	unlock_page(page);
3551 	return ret;
3552 
3553 done_unlocked:
3554 	return 0;
3555 }
3556 
3557 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3558 {
3559 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3560 		       TASK_UNINTERRUPTIBLE);
3561 }
3562 
3563 static noinline_for_stack int
3564 lock_extent_buffer_for_io(struct extent_buffer *eb,
3565 			  struct btrfs_fs_info *fs_info,
3566 			  struct extent_page_data *epd)
3567 {
3568 	unsigned long i, num_pages;
3569 	int flush = 0;
3570 	int ret = 0;
3571 
3572 	if (!btrfs_try_tree_write_lock(eb)) {
3573 		flush = 1;
3574 		flush_write_bio(epd);
3575 		btrfs_tree_lock(eb);
3576 	}
3577 
3578 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3579 		btrfs_tree_unlock(eb);
3580 		if (!epd->sync_io)
3581 			return 0;
3582 		if (!flush) {
3583 			flush_write_bio(epd);
3584 			flush = 1;
3585 		}
3586 		while (1) {
3587 			wait_on_extent_buffer_writeback(eb);
3588 			btrfs_tree_lock(eb);
3589 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3590 				break;
3591 			btrfs_tree_unlock(eb);
3592 		}
3593 	}
3594 
3595 	/*
3596 	 * We need to do this to prevent races in people who check if the eb is
3597 	 * under IO since we can end up having no IO bits set for a short period
3598 	 * of time.
3599 	 */
3600 	spin_lock(&eb->refs_lock);
3601 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3602 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3603 		spin_unlock(&eb->refs_lock);
3604 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3605 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3606 				     -eb->len,
3607 				     fs_info->dirty_metadata_batch);
3608 		ret = 1;
3609 	} else {
3610 		spin_unlock(&eb->refs_lock);
3611 	}
3612 
3613 	btrfs_tree_unlock(eb);
3614 
3615 	if (!ret)
3616 		return ret;
3617 
3618 	num_pages = num_extent_pages(eb->start, eb->len);
3619 	for (i = 0; i < num_pages; i++) {
3620 		struct page *p = eb->pages[i];
3621 
3622 		if (!trylock_page(p)) {
3623 			if (!flush) {
3624 				flush_write_bio(epd);
3625 				flush = 1;
3626 			}
3627 			lock_page(p);
3628 		}
3629 	}
3630 
3631 	return ret;
3632 }
3633 
3634 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3635 {
3636 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3637 	smp_mb__after_atomic();
3638 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3639 }
3640 
3641 static void set_btree_ioerr(struct page *page)
3642 {
3643 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3644 
3645 	SetPageError(page);
3646 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3647 		return;
3648 
3649 	/*
3650 	 * If writeback for a btree extent that doesn't belong to a log tree
3651 	 * failed, increment the counter transaction->eb_write_errors.
3652 	 * We do this because while the transaction is running and before it's
3653 	 * committing (when we call filemap_fdata[write|wait]_range against
3654 	 * the btree inode), we might have
3655 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3656 	 * returns an error or an error happens during writeback, when we're
3657 	 * committing the transaction we wouldn't know about it, since the pages
3658 	 * can be no longer dirty nor marked anymore for writeback (if a
3659 	 * subsequent modification to the extent buffer didn't happen before the
3660 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3661 	 * able to find the pages tagged with SetPageError at transaction
3662 	 * commit time. So if this happens we must abort the transaction,
3663 	 * otherwise we commit a super block with btree roots that point to
3664 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3665 	 * or the content of some node/leaf from a past generation that got
3666 	 * cowed or deleted and is no longer valid.
3667 	 *
3668 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3669 	 * not be enough - we need to distinguish between log tree extents vs
3670 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3671 	 * will catch and clear such errors in the mapping - and that call might
3672 	 * be from a log sync and not from a transaction commit. Also, checking
3673 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3674 	 * not done and would not be reliable - the eb might have been released
3675 	 * from memory and reading it back again means that flag would not be
3676 	 * set (since it's a runtime flag, not persisted on disk).
3677 	 *
3678 	 * Using the flags below in the btree inode also makes us achieve the
3679 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3680 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3681 	 * is called, the writeback for all dirty pages had already finished
3682 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3683 	 * filemap_fdatawait_range() would return success, as it could not know
3684 	 * that writeback errors happened (the pages were no longer tagged for
3685 	 * writeback).
3686 	 */
3687 	switch (eb->log_index) {
3688 	case -1:
3689 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3690 		break;
3691 	case 0:
3692 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3693 		break;
3694 	case 1:
3695 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3696 		break;
3697 	default:
3698 		BUG(); /* unexpected, logic error */
3699 	}
3700 }
3701 
3702 static void end_bio_extent_buffer_writepage(struct bio *bio)
3703 {
3704 	struct bio_vec *bvec;
3705 	struct extent_buffer *eb;
3706 	int i, done;
3707 
3708 	bio_for_each_segment_all(bvec, bio, i) {
3709 		struct page *page = bvec->bv_page;
3710 
3711 		eb = (struct extent_buffer *)page->private;
3712 		BUG_ON(!eb);
3713 		done = atomic_dec_and_test(&eb->io_pages);
3714 
3715 		if (bio->bi_status ||
3716 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3717 			ClearPageUptodate(page);
3718 			set_btree_ioerr(page);
3719 		}
3720 
3721 		end_page_writeback(page);
3722 
3723 		if (!done)
3724 			continue;
3725 
3726 		end_extent_buffer_writeback(eb);
3727 	}
3728 
3729 	bio_put(bio);
3730 }
3731 
3732 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3733 			struct btrfs_fs_info *fs_info,
3734 			struct writeback_control *wbc,
3735 			struct extent_page_data *epd)
3736 {
3737 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3738 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3739 	u64 offset = eb->start;
3740 	u32 nritems;
3741 	unsigned long i, num_pages;
3742 	unsigned long bio_flags = 0;
3743 	unsigned long start, end;
3744 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3745 	int ret = 0;
3746 
3747 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3748 	num_pages = num_extent_pages(eb->start, eb->len);
3749 	atomic_set(&eb->io_pages, num_pages);
3750 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3751 		bio_flags = EXTENT_BIO_TREE_LOG;
3752 
3753 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3754 	nritems = btrfs_header_nritems(eb);
3755 	if (btrfs_header_level(eb) > 0) {
3756 		end = btrfs_node_key_ptr_offset(nritems);
3757 
3758 		memzero_extent_buffer(eb, end, eb->len - end);
3759 	} else {
3760 		/*
3761 		 * leaf:
3762 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3763 		 */
3764 		start = btrfs_item_nr_offset(nritems);
3765 		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3766 		memzero_extent_buffer(eb, start, end - start);
3767 	}
3768 
3769 	for (i = 0; i < num_pages; i++) {
3770 		struct page *p = eb->pages[i];
3771 
3772 		clear_page_dirty_for_io(p);
3773 		set_page_writeback(p);
3774 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3775 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3776 					 &epd->bio,
3777 					 end_bio_extent_buffer_writepage,
3778 					 0, epd->bio_flags, bio_flags, false);
3779 		epd->bio_flags = bio_flags;
3780 		if (ret) {
3781 			set_btree_ioerr(p);
3782 			if (PageWriteback(p))
3783 				end_page_writeback(p);
3784 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3785 				end_extent_buffer_writeback(eb);
3786 			ret = -EIO;
3787 			break;
3788 		}
3789 		offset += PAGE_SIZE;
3790 		update_nr_written(wbc, 1);
3791 		unlock_page(p);
3792 	}
3793 
3794 	if (unlikely(ret)) {
3795 		for (; i < num_pages; i++) {
3796 			struct page *p = eb->pages[i];
3797 			clear_page_dirty_for_io(p);
3798 			unlock_page(p);
3799 		}
3800 	}
3801 
3802 	return ret;
3803 }
3804 
3805 int btree_write_cache_pages(struct address_space *mapping,
3806 				   struct writeback_control *wbc)
3807 {
3808 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3809 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3810 	struct extent_buffer *eb, *prev_eb = NULL;
3811 	struct extent_page_data epd = {
3812 		.bio = NULL,
3813 		.tree = tree,
3814 		.extent_locked = 0,
3815 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3816 		.bio_flags = 0,
3817 	};
3818 	int ret = 0;
3819 	int done = 0;
3820 	int nr_to_write_done = 0;
3821 	struct pagevec pvec;
3822 	int nr_pages;
3823 	pgoff_t index;
3824 	pgoff_t end;		/* Inclusive */
3825 	int scanned = 0;
3826 	int tag;
3827 
3828 	pagevec_init(&pvec, 0);
3829 	if (wbc->range_cyclic) {
3830 		index = mapping->writeback_index; /* Start from prev offset */
3831 		end = -1;
3832 	} else {
3833 		index = wbc->range_start >> PAGE_SHIFT;
3834 		end = wbc->range_end >> PAGE_SHIFT;
3835 		scanned = 1;
3836 	}
3837 	if (wbc->sync_mode == WB_SYNC_ALL)
3838 		tag = PAGECACHE_TAG_TOWRITE;
3839 	else
3840 		tag = PAGECACHE_TAG_DIRTY;
3841 retry:
3842 	if (wbc->sync_mode == WB_SYNC_ALL)
3843 		tag_pages_for_writeback(mapping, index, end);
3844 	while (!done && !nr_to_write_done && (index <= end) &&
3845 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3846 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3847 		unsigned i;
3848 
3849 		scanned = 1;
3850 		for (i = 0; i < nr_pages; i++) {
3851 			struct page *page = pvec.pages[i];
3852 
3853 			if (!PagePrivate(page))
3854 				continue;
3855 
3856 			if (!wbc->range_cyclic && page->index > end) {
3857 				done = 1;
3858 				break;
3859 			}
3860 
3861 			spin_lock(&mapping->private_lock);
3862 			if (!PagePrivate(page)) {
3863 				spin_unlock(&mapping->private_lock);
3864 				continue;
3865 			}
3866 
3867 			eb = (struct extent_buffer *)page->private;
3868 
3869 			/*
3870 			 * Shouldn't happen and normally this would be a BUG_ON
3871 			 * but no sense in crashing the users box for something
3872 			 * we can survive anyway.
3873 			 */
3874 			if (WARN_ON(!eb)) {
3875 				spin_unlock(&mapping->private_lock);
3876 				continue;
3877 			}
3878 
3879 			if (eb == prev_eb) {
3880 				spin_unlock(&mapping->private_lock);
3881 				continue;
3882 			}
3883 
3884 			ret = atomic_inc_not_zero(&eb->refs);
3885 			spin_unlock(&mapping->private_lock);
3886 			if (!ret)
3887 				continue;
3888 
3889 			prev_eb = eb;
3890 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3891 			if (!ret) {
3892 				free_extent_buffer(eb);
3893 				continue;
3894 			}
3895 
3896 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3897 			if (ret) {
3898 				done = 1;
3899 				free_extent_buffer(eb);
3900 				break;
3901 			}
3902 			free_extent_buffer(eb);
3903 
3904 			/*
3905 			 * the filesystem may choose to bump up nr_to_write.
3906 			 * We have to make sure to honor the new nr_to_write
3907 			 * at any time
3908 			 */
3909 			nr_to_write_done = wbc->nr_to_write <= 0;
3910 		}
3911 		pagevec_release(&pvec);
3912 		cond_resched();
3913 	}
3914 	if (!scanned && !done) {
3915 		/*
3916 		 * We hit the last page and there is more work to be done: wrap
3917 		 * back to the start of the file
3918 		 */
3919 		scanned = 1;
3920 		index = 0;
3921 		goto retry;
3922 	}
3923 	flush_write_bio(&epd);
3924 	return ret;
3925 }
3926 
3927 /**
3928  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3929  * @mapping: address space structure to write
3930  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3931  * @writepage: function called for each page
3932  * @data: data passed to writepage function
3933  *
3934  * If a page is already under I/O, write_cache_pages() skips it, even
3935  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3936  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3937  * and msync() need to guarantee that all the data which was dirty at the time
3938  * the call was made get new I/O started against them.  If wbc->sync_mode is
3939  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3940  * existing IO to complete.
3941  */
3942 static int extent_write_cache_pages(struct address_space *mapping,
3943 			     struct writeback_control *wbc,
3944 			     writepage_t writepage, void *data,
3945 			     void (*flush_fn)(void *))
3946 {
3947 	struct inode *inode = mapping->host;
3948 	int ret = 0;
3949 	int done = 0;
3950 	int nr_to_write_done = 0;
3951 	struct pagevec pvec;
3952 	int nr_pages;
3953 	pgoff_t index;
3954 	pgoff_t end;		/* Inclusive */
3955 	pgoff_t done_index;
3956 	int range_whole = 0;
3957 	int scanned = 0;
3958 	int tag;
3959 
3960 	/*
3961 	 * We have to hold onto the inode so that ordered extents can do their
3962 	 * work when the IO finishes.  The alternative to this is failing to add
3963 	 * an ordered extent if the igrab() fails there and that is a huge pain
3964 	 * to deal with, so instead just hold onto the inode throughout the
3965 	 * writepages operation.  If it fails here we are freeing up the inode
3966 	 * anyway and we'd rather not waste our time writing out stuff that is
3967 	 * going to be truncated anyway.
3968 	 */
3969 	if (!igrab(inode))
3970 		return 0;
3971 
3972 	pagevec_init(&pvec, 0);
3973 	if (wbc->range_cyclic) {
3974 		index = mapping->writeback_index; /* Start from prev offset */
3975 		end = -1;
3976 	} else {
3977 		index = wbc->range_start >> PAGE_SHIFT;
3978 		end = wbc->range_end >> PAGE_SHIFT;
3979 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3980 			range_whole = 1;
3981 		scanned = 1;
3982 	}
3983 	if (wbc->sync_mode == WB_SYNC_ALL)
3984 		tag = PAGECACHE_TAG_TOWRITE;
3985 	else
3986 		tag = PAGECACHE_TAG_DIRTY;
3987 retry:
3988 	if (wbc->sync_mode == WB_SYNC_ALL)
3989 		tag_pages_for_writeback(mapping, index, end);
3990 	done_index = index;
3991 	while (!done && !nr_to_write_done && (index <= end) &&
3992 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3993 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3994 		unsigned i;
3995 
3996 		scanned = 1;
3997 		for (i = 0; i < nr_pages; i++) {
3998 			struct page *page = pvec.pages[i];
3999 
4000 			done_index = page->index;
4001 			/*
4002 			 * At this point we hold neither mapping->tree_lock nor
4003 			 * lock on the page itself: the page may be truncated or
4004 			 * invalidated (changing page->mapping to NULL), or even
4005 			 * swizzled back from swapper_space to tmpfs file
4006 			 * mapping
4007 			 */
4008 			if (!trylock_page(page)) {
4009 				flush_fn(data);
4010 				lock_page(page);
4011 			}
4012 
4013 			if (unlikely(page->mapping != mapping)) {
4014 				unlock_page(page);
4015 				continue;
4016 			}
4017 
4018 			if (!wbc->range_cyclic && page->index > end) {
4019 				done = 1;
4020 				unlock_page(page);
4021 				continue;
4022 			}
4023 
4024 			if (wbc->sync_mode != WB_SYNC_NONE) {
4025 				if (PageWriteback(page))
4026 					flush_fn(data);
4027 				wait_on_page_writeback(page);
4028 			}
4029 
4030 			if (PageWriteback(page) ||
4031 			    !clear_page_dirty_for_io(page)) {
4032 				unlock_page(page);
4033 				continue;
4034 			}
4035 
4036 			ret = (*writepage)(page, wbc, data);
4037 
4038 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4039 				unlock_page(page);
4040 				ret = 0;
4041 			}
4042 			if (ret < 0) {
4043 				/*
4044 				 * done_index is set past this page,
4045 				 * so media errors will not choke
4046 				 * background writeout for the entire
4047 				 * file. This has consequences for
4048 				 * range_cyclic semantics (ie. it may
4049 				 * not be suitable for data integrity
4050 				 * writeout).
4051 				 */
4052 				done_index = page->index + 1;
4053 				done = 1;
4054 				break;
4055 			}
4056 
4057 			/*
4058 			 * the filesystem may choose to bump up nr_to_write.
4059 			 * We have to make sure to honor the new nr_to_write
4060 			 * at any time
4061 			 */
4062 			nr_to_write_done = wbc->nr_to_write <= 0;
4063 		}
4064 		pagevec_release(&pvec);
4065 		cond_resched();
4066 	}
4067 	if (!scanned && !done) {
4068 		/*
4069 		 * We hit the last page and there is more work to be done: wrap
4070 		 * back to the start of the file
4071 		 */
4072 		scanned = 1;
4073 		index = 0;
4074 		goto retry;
4075 	}
4076 
4077 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4078 		mapping->writeback_index = done_index;
4079 
4080 	btrfs_add_delayed_iput(inode);
4081 	return ret;
4082 }
4083 
4084 static void flush_epd_write_bio(struct extent_page_data *epd)
4085 {
4086 	if (epd->bio) {
4087 		int ret;
4088 
4089 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4090 				 epd->sync_io ? REQ_SYNC : 0);
4091 
4092 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4093 		BUG_ON(ret < 0); /* -ENOMEM */
4094 		epd->bio = NULL;
4095 	}
4096 }
4097 
4098 static noinline void flush_write_bio(void *data)
4099 {
4100 	struct extent_page_data *epd = data;
4101 	flush_epd_write_bio(epd);
4102 }
4103 
4104 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4105 			  get_extent_t *get_extent,
4106 			  struct writeback_control *wbc)
4107 {
4108 	int ret;
4109 	struct extent_page_data epd = {
4110 		.bio = NULL,
4111 		.tree = tree,
4112 		.get_extent = get_extent,
4113 		.extent_locked = 0,
4114 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4115 		.bio_flags = 0,
4116 	};
4117 
4118 	ret = __extent_writepage(page, wbc, &epd);
4119 
4120 	flush_epd_write_bio(&epd);
4121 	return ret;
4122 }
4123 
4124 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4125 			      u64 start, u64 end, get_extent_t *get_extent,
4126 			      int mode)
4127 {
4128 	int ret = 0;
4129 	struct address_space *mapping = inode->i_mapping;
4130 	struct page *page;
4131 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4132 		PAGE_SHIFT;
4133 
4134 	struct extent_page_data epd = {
4135 		.bio = NULL,
4136 		.tree = tree,
4137 		.get_extent = get_extent,
4138 		.extent_locked = 1,
4139 		.sync_io = mode == WB_SYNC_ALL,
4140 		.bio_flags = 0,
4141 	};
4142 	struct writeback_control wbc_writepages = {
4143 		.sync_mode	= mode,
4144 		.nr_to_write	= nr_pages * 2,
4145 		.range_start	= start,
4146 		.range_end	= end + 1,
4147 	};
4148 
4149 	while (start <= end) {
4150 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4151 		if (clear_page_dirty_for_io(page))
4152 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4153 		else {
4154 			if (tree->ops && tree->ops->writepage_end_io_hook)
4155 				tree->ops->writepage_end_io_hook(page, start,
4156 						 start + PAGE_SIZE - 1,
4157 						 NULL, 1);
4158 			unlock_page(page);
4159 		}
4160 		put_page(page);
4161 		start += PAGE_SIZE;
4162 	}
4163 
4164 	flush_epd_write_bio(&epd);
4165 	return ret;
4166 }
4167 
4168 int extent_writepages(struct extent_io_tree *tree,
4169 		      struct address_space *mapping,
4170 		      get_extent_t *get_extent,
4171 		      struct writeback_control *wbc)
4172 {
4173 	int ret = 0;
4174 	struct extent_page_data epd = {
4175 		.bio = NULL,
4176 		.tree = tree,
4177 		.get_extent = get_extent,
4178 		.extent_locked = 0,
4179 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4180 		.bio_flags = 0,
4181 	};
4182 
4183 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4184 				       flush_write_bio);
4185 	flush_epd_write_bio(&epd);
4186 	return ret;
4187 }
4188 
4189 int extent_readpages(struct extent_io_tree *tree,
4190 		     struct address_space *mapping,
4191 		     struct list_head *pages, unsigned nr_pages,
4192 		     get_extent_t get_extent)
4193 {
4194 	struct bio *bio = NULL;
4195 	unsigned page_idx;
4196 	unsigned long bio_flags = 0;
4197 	struct page *pagepool[16];
4198 	struct page *page;
4199 	struct extent_map *em_cached = NULL;
4200 	int nr = 0;
4201 	u64 prev_em_start = (u64)-1;
4202 
4203 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4204 		page = list_entry(pages->prev, struct page, lru);
4205 
4206 		prefetchw(&page->flags);
4207 		list_del(&page->lru);
4208 		if (add_to_page_cache_lru(page, mapping,
4209 					page->index,
4210 					readahead_gfp_mask(mapping))) {
4211 			put_page(page);
4212 			continue;
4213 		}
4214 
4215 		pagepool[nr++] = page;
4216 		if (nr < ARRAY_SIZE(pagepool))
4217 			continue;
4218 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4219 				   &bio, 0, &bio_flags, &prev_em_start);
4220 		nr = 0;
4221 	}
4222 	if (nr)
4223 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4224 				   &bio, 0, &bio_flags, &prev_em_start);
4225 
4226 	if (em_cached)
4227 		free_extent_map(em_cached);
4228 
4229 	BUG_ON(!list_empty(pages));
4230 	if (bio)
4231 		return submit_one_bio(bio, 0, bio_flags);
4232 	return 0;
4233 }
4234 
4235 /*
4236  * basic invalidatepage code, this waits on any locked or writeback
4237  * ranges corresponding to the page, and then deletes any extent state
4238  * records from the tree
4239  */
4240 int extent_invalidatepage(struct extent_io_tree *tree,
4241 			  struct page *page, unsigned long offset)
4242 {
4243 	struct extent_state *cached_state = NULL;
4244 	u64 start = page_offset(page);
4245 	u64 end = start + PAGE_SIZE - 1;
4246 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4247 
4248 	start += ALIGN(offset, blocksize);
4249 	if (start > end)
4250 		return 0;
4251 
4252 	lock_extent_bits(tree, start, end, &cached_state);
4253 	wait_on_page_writeback(page);
4254 	clear_extent_bit(tree, start, end,
4255 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4256 			 EXTENT_DO_ACCOUNTING,
4257 			 1, 1, &cached_state, GFP_NOFS);
4258 	return 0;
4259 }
4260 
4261 /*
4262  * a helper for releasepage, this tests for areas of the page that
4263  * are locked or under IO and drops the related state bits if it is safe
4264  * to drop the page.
4265  */
4266 static int try_release_extent_state(struct extent_map_tree *map,
4267 				    struct extent_io_tree *tree,
4268 				    struct page *page, gfp_t mask)
4269 {
4270 	u64 start = page_offset(page);
4271 	u64 end = start + PAGE_SIZE - 1;
4272 	int ret = 1;
4273 
4274 	if (test_range_bit(tree, start, end,
4275 			   EXTENT_IOBITS, 0, NULL))
4276 		ret = 0;
4277 	else {
4278 		/*
4279 		 * at this point we can safely clear everything except the
4280 		 * locked bit and the nodatasum bit
4281 		 */
4282 		ret = clear_extent_bit(tree, start, end,
4283 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4284 				 0, 0, NULL, mask);
4285 
4286 		/* if clear_extent_bit failed for enomem reasons,
4287 		 * we can't allow the release to continue.
4288 		 */
4289 		if (ret < 0)
4290 			ret = 0;
4291 		else
4292 			ret = 1;
4293 	}
4294 	return ret;
4295 }
4296 
4297 /*
4298  * a helper for releasepage.  As long as there are no locked extents
4299  * in the range corresponding to the page, both state records and extent
4300  * map records are removed
4301  */
4302 int try_release_extent_mapping(struct extent_map_tree *map,
4303 			       struct extent_io_tree *tree, struct page *page,
4304 			       gfp_t mask)
4305 {
4306 	struct extent_map *em;
4307 	u64 start = page_offset(page);
4308 	u64 end = start + PAGE_SIZE - 1;
4309 
4310 	if (gfpflags_allow_blocking(mask) &&
4311 	    page->mapping->host->i_size > SZ_16M) {
4312 		u64 len;
4313 		while (start <= end) {
4314 			len = end - start + 1;
4315 			write_lock(&map->lock);
4316 			em = lookup_extent_mapping(map, start, len);
4317 			if (!em) {
4318 				write_unlock(&map->lock);
4319 				break;
4320 			}
4321 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4322 			    em->start != start) {
4323 				write_unlock(&map->lock);
4324 				free_extent_map(em);
4325 				break;
4326 			}
4327 			if (!test_range_bit(tree, em->start,
4328 					    extent_map_end(em) - 1,
4329 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4330 					    0, NULL)) {
4331 				remove_extent_mapping(map, em);
4332 				/* once for the rb tree */
4333 				free_extent_map(em);
4334 			}
4335 			start = extent_map_end(em);
4336 			write_unlock(&map->lock);
4337 
4338 			/* once for us */
4339 			free_extent_map(em);
4340 		}
4341 	}
4342 	return try_release_extent_state(map, tree, page, mask);
4343 }
4344 
4345 /*
4346  * helper function for fiemap, which doesn't want to see any holes.
4347  * This maps until we find something past 'last'
4348  */
4349 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4350 						u64 offset,
4351 						u64 last,
4352 						get_extent_t *get_extent)
4353 {
4354 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4355 	struct extent_map *em;
4356 	u64 len;
4357 
4358 	if (offset >= last)
4359 		return NULL;
4360 
4361 	while (1) {
4362 		len = last - offset;
4363 		if (len == 0)
4364 			break;
4365 		len = ALIGN(len, sectorsize);
4366 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4367 		if (IS_ERR_OR_NULL(em))
4368 			return em;
4369 
4370 		/* if this isn't a hole return it */
4371 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4372 		    em->block_start != EXTENT_MAP_HOLE) {
4373 			return em;
4374 		}
4375 
4376 		/* this is a hole, advance to the next extent */
4377 		offset = extent_map_end(em);
4378 		free_extent_map(em);
4379 		if (offset >= last)
4380 			break;
4381 	}
4382 	return NULL;
4383 }
4384 
4385 /*
4386  * To cache previous fiemap extent
4387  *
4388  * Will be used for merging fiemap extent
4389  */
4390 struct fiemap_cache {
4391 	u64 offset;
4392 	u64 phys;
4393 	u64 len;
4394 	u32 flags;
4395 	bool cached;
4396 };
4397 
4398 /*
4399  * Helper to submit fiemap extent.
4400  *
4401  * Will try to merge current fiemap extent specified by @offset, @phys,
4402  * @len and @flags with cached one.
4403  * And only when we fails to merge, cached one will be submitted as
4404  * fiemap extent.
4405  *
4406  * Return value is the same as fiemap_fill_next_extent().
4407  */
4408 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4409 				struct fiemap_cache *cache,
4410 				u64 offset, u64 phys, u64 len, u32 flags)
4411 {
4412 	int ret = 0;
4413 
4414 	if (!cache->cached)
4415 		goto assign;
4416 
4417 	/*
4418 	 * Sanity check, extent_fiemap() should have ensured that new
4419 	 * fiemap extent won't overlap with cahced one.
4420 	 * Not recoverable.
4421 	 *
4422 	 * NOTE: Physical address can overlap, due to compression
4423 	 */
4424 	if (cache->offset + cache->len > offset) {
4425 		WARN_ON(1);
4426 		return -EINVAL;
4427 	}
4428 
4429 	/*
4430 	 * Only merges fiemap extents if
4431 	 * 1) Their logical addresses are continuous
4432 	 *
4433 	 * 2) Their physical addresses are continuous
4434 	 *    So truly compressed (physical size smaller than logical size)
4435 	 *    extents won't get merged with each other
4436 	 *
4437 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4438 	 *    So regular extent won't get merged with prealloc extent
4439 	 */
4440 	if (cache->offset + cache->len  == offset &&
4441 	    cache->phys + cache->len == phys  &&
4442 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4443 			(flags & ~FIEMAP_EXTENT_LAST)) {
4444 		cache->len += len;
4445 		cache->flags |= flags;
4446 		goto try_submit_last;
4447 	}
4448 
4449 	/* Not mergeable, need to submit cached one */
4450 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4451 				      cache->len, cache->flags);
4452 	cache->cached = false;
4453 	if (ret)
4454 		return ret;
4455 assign:
4456 	cache->cached = true;
4457 	cache->offset = offset;
4458 	cache->phys = phys;
4459 	cache->len = len;
4460 	cache->flags = flags;
4461 try_submit_last:
4462 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4463 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4464 				cache->phys, cache->len, cache->flags);
4465 		cache->cached = false;
4466 	}
4467 	return ret;
4468 }
4469 
4470 /*
4471  * Sanity check for fiemap cache
4472  *
4473  * All fiemap cache should be submitted by emit_fiemap_extent()
4474  * Iteration should be terminated either by last fiemap extent or
4475  * fieinfo->fi_extents_max.
4476  * So no cached fiemap should exist.
4477  */
4478 static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4479 			       struct fiemap_extent_info *fieinfo,
4480 			       struct fiemap_cache *cache)
4481 {
4482 	int ret;
4483 
4484 	if (!cache->cached)
4485 		return 0;
4486 
4487 	/* Small and recoverbale problem, only to info developer */
4488 #ifdef CONFIG_BTRFS_DEBUG
4489 	WARN_ON(1);
4490 #endif
4491 	btrfs_warn(fs_info,
4492 		   "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4493 		   cache->offset, cache->phys, cache->len, cache->flags);
4494 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4495 				      cache->len, cache->flags);
4496 	cache->cached = false;
4497 	if (ret > 0)
4498 		ret = 0;
4499 	return ret;
4500 }
4501 
4502 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4503 		__u64 start, __u64 len, get_extent_t *get_extent)
4504 {
4505 	int ret = 0;
4506 	u64 off = start;
4507 	u64 max = start + len;
4508 	u32 flags = 0;
4509 	u32 found_type;
4510 	u64 last;
4511 	u64 last_for_get_extent = 0;
4512 	u64 disko = 0;
4513 	u64 isize = i_size_read(inode);
4514 	struct btrfs_key found_key;
4515 	struct extent_map *em = NULL;
4516 	struct extent_state *cached_state = NULL;
4517 	struct btrfs_path *path;
4518 	struct btrfs_root *root = BTRFS_I(inode)->root;
4519 	struct fiemap_cache cache = { 0 };
4520 	int end = 0;
4521 	u64 em_start = 0;
4522 	u64 em_len = 0;
4523 	u64 em_end = 0;
4524 
4525 	if (len == 0)
4526 		return -EINVAL;
4527 
4528 	path = btrfs_alloc_path();
4529 	if (!path)
4530 		return -ENOMEM;
4531 	path->leave_spinning = 1;
4532 
4533 	start = round_down(start, btrfs_inode_sectorsize(inode));
4534 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4535 
4536 	/*
4537 	 * lookup the last file extent.  We're not using i_size here
4538 	 * because there might be preallocation past i_size
4539 	 */
4540 	ret = btrfs_lookup_file_extent(NULL, root, path,
4541 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4542 	if (ret < 0) {
4543 		btrfs_free_path(path);
4544 		return ret;
4545 	} else {
4546 		WARN_ON(!ret);
4547 		if (ret == 1)
4548 			ret = 0;
4549 	}
4550 
4551 	path->slots[0]--;
4552 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4553 	found_type = found_key.type;
4554 
4555 	/* No extents, but there might be delalloc bits */
4556 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4557 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4558 		/* have to trust i_size as the end */
4559 		last = (u64)-1;
4560 		last_for_get_extent = isize;
4561 	} else {
4562 		/*
4563 		 * remember the start of the last extent.  There are a
4564 		 * bunch of different factors that go into the length of the
4565 		 * extent, so its much less complex to remember where it started
4566 		 */
4567 		last = found_key.offset;
4568 		last_for_get_extent = last + 1;
4569 	}
4570 	btrfs_release_path(path);
4571 
4572 	/*
4573 	 * we might have some extents allocated but more delalloc past those
4574 	 * extents.  so, we trust isize unless the start of the last extent is
4575 	 * beyond isize
4576 	 */
4577 	if (last < isize) {
4578 		last = (u64)-1;
4579 		last_for_get_extent = isize;
4580 	}
4581 
4582 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4583 			 &cached_state);
4584 
4585 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4586 				   get_extent);
4587 	if (!em)
4588 		goto out;
4589 	if (IS_ERR(em)) {
4590 		ret = PTR_ERR(em);
4591 		goto out;
4592 	}
4593 
4594 	while (!end) {
4595 		u64 offset_in_extent = 0;
4596 
4597 		/* break if the extent we found is outside the range */
4598 		if (em->start >= max || extent_map_end(em) < off)
4599 			break;
4600 
4601 		/*
4602 		 * get_extent may return an extent that starts before our
4603 		 * requested range.  We have to make sure the ranges
4604 		 * we return to fiemap always move forward and don't
4605 		 * overlap, so adjust the offsets here
4606 		 */
4607 		em_start = max(em->start, off);
4608 
4609 		/*
4610 		 * record the offset from the start of the extent
4611 		 * for adjusting the disk offset below.  Only do this if the
4612 		 * extent isn't compressed since our in ram offset may be past
4613 		 * what we have actually allocated on disk.
4614 		 */
4615 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4616 			offset_in_extent = em_start - em->start;
4617 		em_end = extent_map_end(em);
4618 		em_len = em_end - em_start;
4619 		disko = 0;
4620 		flags = 0;
4621 
4622 		/*
4623 		 * bump off for our next call to get_extent
4624 		 */
4625 		off = extent_map_end(em);
4626 		if (off >= max)
4627 			end = 1;
4628 
4629 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4630 			end = 1;
4631 			flags |= FIEMAP_EXTENT_LAST;
4632 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4633 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4634 				  FIEMAP_EXTENT_NOT_ALIGNED);
4635 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4636 			flags |= (FIEMAP_EXTENT_DELALLOC |
4637 				  FIEMAP_EXTENT_UNKNOWN);
4638 		} else if (fieinfo->fi_extents_max) {
4639 			struct btrfs_trans_handle *trans;
4640 
4641 			u64 bytenr = em->block_start -
4642 				(em->start - em->orig_start);
4643 
4644 			disko = em->block_start + offset_in_extent;
4645 
4646 			/*
4647 			 * We need a trans handle to get delayed refs
4648 			 */
4649 			trans = btrfs_join_transaction(root);
4650 			/*
4651 			 * It's OK if we can't start a trans we can still check
4652 			 * from commit_root
4653 			 */
4654 			if (IS_ERR(trans))
4655 				trans = NULL;
4656 
4657 			/*
4658 			 * As btrfs supports shared space, this information
4659 			 * can be exported to userspace tools via
4660 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4661 			 * then we're just getting a count and we can skip the
4662 			 * lookup stuff.
4663 			 */
4664 			ret = btrfs_check_shared(trans, root->fs_info,
4665 					root->objectid,
4666 					btrfs_ino(BTRFS_I(inode)), bytenr);
4667 			if (trans)
4668 				btrfs_end_transaction(trans);
4669 			if (ret < 0)
4670 				goto out_free;
4671 			if (ret)
4672 				flags |= FIEMAP_EXTENT_SHARED;
4673 			ret = 0;
4674 		}
4675 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4676 			flags |= FIEMAP_EXTENT_ENCODED;
4677 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4678 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4679 
4680 		free_extent_map(em);
4681 		em = NULL;
4682 		if ((em_start >= last) || em_len == (u64)-1 ||
4683 		   (last == (u64)-1 && isize <= em_end)) {
4684 			flags |= FIEMAP_EXTENT_LAST;
4685 			end = 1;
4686 		}
4687 
4688 		/* now scan forward to see if this is really the last extent. */
4689 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4690 					   get_extent);
4691 		if (IS_ERR(em)) {
4692 			ret = PTR_ERR(em);
4693 			goto out;
4694 		}
4695 		if (!em) {
4696 			flags |= FIEMAP_EXTENT_LAST;
4697 			end = 1;
4698 		}
4699 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4700 					   em_len, flags);
4701 		if (ret) {
4702 			if (ret == 1)
4703 				ret = 0;
4704 			goto out_free;
4705 		}
4706 	}
4707 out_free:
4708 	if (!ret)
4709 		ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
4710 	free_extent_map(em);
4711 out:
4712 	btrfs_free_path(path);
4713 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4714 			     &cached_state, GFP_NOFS);
4715 	return ret;
4716 }
4717 
4718 static void __free_extent_buffer(struct extent_buffer *eb)
4719 {
4720 	btrfs_leak_debug_del(&eb->leak_list);
4721 	kmem_cache_free(extent_buffer_cache, eb);
4722 }
4723 
4724 int extent_buffer_under_io(struct extent_buffer *eb)
4725 {
4726 	return (atomic_read(&eb->io_pages) ||
4727 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4728 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4729 }
4730 
4731 /*
4732  * Helper for releasing extent buffer page.
4733  */
4734 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4735 {
4736 	unsigned long index;
4737 	struct page *page;
4738 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4739 
4740 	BUG_ON(extent_buffer_under_io(eb));
4741 
4742 	index = num_extent_pages(eb->start, eb->len);
4743 	if (index == 0)
4744 		return;
4745 
4746 	do {
4747 		index--;
4748 		page = eb->pages[index];
4749 		if (!page)
4750 			continue;
4751 		if (mapped)
4752 			spin_lock(&page->mapping->private_lock);
4753 		/*
4754 		 * We do this since we'll remove the pages after we've
4755 		 * removed the eb from the radix tree, so we could race
4756 		 * and have this page now attached to the new eb.  So
4757 		 * only clear page_private if it's still connected to
4758 		 * this eb.
4759 		 */
4760 		if (PagePrivate(page) &&
4761 		    page->private == (unsigned long)eb) {
4762 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4763 			BUG_ON(PageDirty(page));
4764 			BUG_ON(PageWriteback(page));
4765 			/*
4766 			 * We need to make sure we haven't be attached
4767 			 * to a new eb.
4768 			 */
4769 			ClearPagePrivate(page);
4770 			set_page_private(page, 0);
4771 			/* One for the page private */
4772 			put_page(page);
4773 		}
4774 
4775 		if (mapped)
4776 			spin_unlock(&page->mapping->private_lock);
4777 
4778 		/* One for when we allocated the page */
4779 		put_page(page);
4780 	} while (index != 0);
4781 }
4782 
4783 /*
4784  * Helper for releasing the extent buffer.
4785  */
4786 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4787 {
4788 	btrfs_release_extent_buffer_page(eb);
4789 	__free_extent_buffer(eb);
4790 }
4791 
4792 static struct extent_buffer *
4793 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4794 		      unsigned long len)
4795 {
4796 	struct extent_buffer *eb = NULL;
4797 
4798 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4799 	eb->start = start;
4800 	eb->len = len;
4801 	eb->fs_info = fs_info;
4802 	eb->bflags = 0;
4803 	rwlock_init(&eb->lock);
4804 	atomic_set(&eb->write_locks, 0);
4805 	atomic_set(&eb->read_locks, 0);
4806 	atomic_set(&eb->blocking_readers, 0);
4807 	atomic_set(&eb->blocking_writers, 0);
4808 	atomic_set(&eb->spinning_readers, 0);
4809 	atomic_set(&eb->spinning_writers, 0);
4810 	eb->lock_nested = 0;
4811 	init_waitqueue_head(&eb->write_lock_wq);
4812 	init_waitqueue_head(&eb->read_lock_wq);
4813 
4814 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4815 
4816 	spin_lock_init(&eb->refs_lock);
4817 	atomic_set(&eb->refs, 1);
4818 	atomic_set(&eb->io_pages, 0);
4819 
4820 	/*
4821 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4822 	 */
4823 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4824 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4825 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4826 
4827 	return eb;
4828 }
4829 
4830 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4831 {
4832 	unsigned long i;
4833 	struct page *p;
4834 	struct extent_buffer *new;
4835 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4836 
4837 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4838 	if (new == NULL)
4839 		return NULL;
4840 
4841 	for (i = 0; i < num_pages; i++) {
4842 		p = alloc_page(GFP_NOFS);
4843 		if (!p) {
4844 			btrfs_release_extent_buffer(new);
4845 			return NULL;
4846 		}
4847 		attach_extent_buffer_page(new, p);
4848 		WARN_ON(PageDirty(p));
4849 		SetPageUptodate(p);
4850 		new->pages[i] = p;
4851 		copy_page(page_address(p), page_address(src->pages[i]));
4852 	}
4853 
4854 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4855 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4856 
4857 	return new;
4858 }
4859 
4860 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4861 						  u64 start, unsigned long len)
4862 {
4863 	struct extent_buffer *eb;
4864 	unsigned long num_pages;
4865 	unsigned long i;
4866 
4867 	num_pages = num_extent_pages(start, len);
4868 
4869 	eb = __alloc_extent_buffer(fs_info, start, len);
4870 	if (!eb)
4871 		return NULL;
4872 
4873 	for (i = 0; i < num_pages; i++) {
4874 		eb->pages[i] = alloc_page(GFP_NOFS);
4875 		if (!eb->pages[i])
4876 			goto err;
4877 	}
4878 	set_extent_buffer_uptodate(eb);
4879 	btrfs_set_header_nritems(eb, 0);
4880 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4881 
4882 	return eb;
4883 err:
4884 	for (; i > 0; i--)
4885 		__free_page(eb->pages[i - 1]);
4886 	__free_extent_buffer(eb);
4887 	return NULL;
4888 }
4889 
4890 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4891 						u64 start)
4892 {
4893 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4894 }
4895 
4896 static void check_buffer_tree_ref(struct extent_buffer *eb)
4897 {
4898 	int refs;
4899 	/* the ref bit is tricky.  We have to make sure it is set
4900 	 * if we have the buffer dirty.   Otherwise the
4901 	 * code to free a buffer can end up dropping a dirty
4902 	 * page
4903 	 *
4904 	 * Once the ref bit is set, it won't go away while the
4905 	 * buffer is dirty or in writeback, and it also won't
4906 	 * go away while we have the reference count on the
4907 	 * eb bumped.
4908 	 *
4909 	 * We can't just set the ref bit without bumping the
4910 	 * ref on the eb because free_extent_buffer might
4911 	 * see the ref bit and try to clear it.  If this happens
4912 	 * free_extent_buffer might end up dropping our original
4913 	 * ref by mistake and freeing the page before we are able
4914 	 * to add one more ref.
4915 	 *
4916 	 * So bump the ref count first, then set the bit.  If someone
4917 	 * beat us to it, drop the ref we added.
4918 	 */
4919 	refs = atomic_read(&eb->refs);
4920 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4921 		return;
4922 
4923 	spin_lock(&eb->refs_lock);
4924 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4925 		atomic_inc(&eb->refs);
4926 	spin_unlock(&eb->refs_lock);
4927 }
4928 
4929 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4930 		struct page *accessed)
4931 {
4932 	unsigned long num_pages, i;
4933 
4934 	check_buffer_tree_ref(eb);
4935 
4936 	num_pages = num_extent_pages(eb->start, eb->len);
4937 	for (i = 0; i < num_pages; i++) {
4938 		struct page *p = eb->pages[i];
4939 
4940 		if (p != accessed)
4941 			mark_page_accessed(p);
4942 	}
4943 }
4944 
4945 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4946 					 u64 start)
4947 {
4948 	struct extent_buffer *eb;
4949 
4950 	rcu_read_lock();
4951 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4952 			       start >> PAGE_SHIFT);
4953 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4954 		rcu_read_unlock();
4955 		/*
4956 		 * Lock our eb's refs_lock to avoid races with
4957 		 * free_extent_buffer. When we get our eb it might be flagged
4958 		 * with EXTENT_BUFFER_STALE and another task running
4959 		 * free_extent_buffer might have seen that flag set,
4960 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4961 		 * writeback flags not set) and it's still in the tree (flag
4962 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4963 		 * of decrementing the extent buffer's reference count twice.
4964 		 * So here we could race and increment the eb's reference count,
4965 		 * clear its stale flag, mark it as dirty and drop our reference
4966 		 * before the other task finishes executing free_extent_buffer,
4967 		 * which would later result in an attempt to free an extent
4968 		 * buffer that is dirty.
4969 		 */
4970 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4971 			spin_lock(&eb->refs_lock);
4972 			spin_unlock(&eb->refs_lock);
4973 		}
4974 		mark_extent_buffer_accessed(eb, NULL);
4975 		return eb;
4976 	}
4977 	rcu_read_unlock();
4978 
4979 	return NULL;
4980 }
4981 
4982 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4983 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4984 					u64 start)
4985 {
4986 	struct extent_buffer *eb, *exists = NULL;
4987 	int ret;
4988 
4989 	eb = find_extent_buffer(fs_info, start);
4990 	if (eb)
4991 		return eb;
4992 	eb = alloc_dummy_extent_buffer(fs_info, start);
4993 	if (!eb)
4994 		return NULL;
4995 	eb->fs_info = fs_info;
4996 again:
4997 	ret = radix_tree_preload(GFP_NOFS);
4998 	if (ret)
4999 		goto free_eb;
5000 	spin_lock(&fs_info->buffer_lock);
5001 	ret = radix_tree_insert(&fs_info->buffer_radix,
5002 				start >> PAGE_SHIFT, eb);
5003 	spin_unlock(&fs_info->buffer_lock);
5004 	radix_tree_preload_end();
5005 	if (ret == -EEXIST) {
5006 		exists = find_extent_buffer(fs_info, start);
5007 		if (exists)
5008 			goto free_eb;
5009 		else
5010 			goto again;
5011 	}
5012 	check_buffer_tree_ref(eb);
5013 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5014 
5015 	/*
5016 	 * We will free dummy extent buffer's if they come into
5017 	 * free_extent_buffer with a ref count of 2, but if we are using this we
5018 	 * want the buffers to stay in memory until we're done with them, so
5019 	 * bump the ref count again.
5020 	 */
5021 	atomic_inc(&eb->refs);
5022 	return eb;
5023 free_eb:
5024 	btrfs_release_extent_buffer(eb);
5025 	return exists;
5026 }
5027 #endif
5028 
5029 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5030 					  u64 start)
5031 {
5032 	unsigned long len = fs_info->nodesize;
5033 	unsigned long num_pages = num_extent_pages(start, len);
5034 	unsigned long i;
5035 	unsigned long index = start >> PAGE_SHIFT;
5036 	struct extent_buffer *eb;
5037 	struct extent_buffer *exists = NULL;
5038 	struct page *p;
5039 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5040 	int uptodate = 1;
5041 	int ret;
5042 
5043 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5044 		btrfs_err(fs_info, "bad tree block start %llu", start);
5045 		return ERR_PTR(-EINVAL);
5046 	}
5047 
5048 	eb = find_extent_buffer(fs_info, start);
5049 	if (eb)
5050 		return eb;
5051 
5052 	eb = __alloc_extent_buffer(fs_info, start, len);
5053 	if (!eb)
5054 		return ERR_PTR(-ENOMEM);
5055 
5056 	for (i = 0; i < num_pages; i++, index++) {
5057 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5058 		if (!p) {
5059 			exists = ERR_PTR(-ENOMEM);
5060 			goto free_eb;
5061 		}
5062 
5063 		spin_lock(&mapping->private_lock);
5064 		if (PagePrivate(p)) {
5065 			/*
5066 			 * We could have already allocated an eb for this page
5067 			 * and attached one so lets see if we can get a ref on
5068 			 * the existing eb, and if we can we know it's good and
5069 			 * we can just return that one, else we know we can just
5070 			 * overwrite page->private.
5071 			 */
5072 			exists = (struct extent_buffer *)p->private;
5073 			if (atomic_inc_not_zero(&exists->refs)) {
5074 				spin_unlock(&mapping->private_lock);
5075 				unlock_page(p);
5076 				put_page(p);
5077 				mark_extent_buffer_accessed(exists, p);
5078 				goto free_eb;
5079 			}
5080 			exists = NULL;
5081 
5082 			/*
5083 			 * Do this so attach doesn't complain and we need to
5084 			 * drop the ref the old guy had.
5085 			 */
5086 			ClearPagePrivate(p);
5087 			WARN_ON(PageDirty(p));
5088 			put_page(p);
5089 		}
5090 		attach_extent_buffer_page(eb, p);
5091 		spin_unlock(&mapping->private_lock);
5092 		WARN_ON(PageDirty(p));
5093 		eb->pages[i] = p;
5094 		if (!PageUptodate(p))
5095 			uptodate = 0;
5096 
5097 		/*
5098 		 * see below about how we avoid a nasty race with release page
5099 		 * and why we unlock later
5100 		 */
5101 	}
5102 	if (uptodate)
5103 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5104 again:
5105 	ret = radix_tree_preload(GFP_NOFS);
5106 	if (ret) {
5107 		exists = ERR_PTR(ret);
5108 		goto free_eb;
5109 	}
5110 
5111 	spin_lock(&fs_info->buffer_lock);
5112 	ret = radix_tree_insert(&fs_info->buffer_radix,
5113 				start >> PAGE_SHIFT, eb);
5114 	spin_unlock(&fs_info->buffer_lock);
5115 	radix_tree_preload_end();
5116 	if (ret == -EEXIST) {
5117 		exists = find_extent_buffer(fs_info, start);
5118 		if (exists)
5119 			goto free_eb;
5120 		else
5121 			goto again;
5122 	}
5123 	/* add one reference for the tree */
5124 	check_buffer_tree_ref(eb);
5125 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5126 
5127 	/*
5128 	 * there is a race where release page may have
5129 	 * tried to find this extent buffer in the radix
5130 	 * but failed.  It will tell the VM it is safe to
5131 	 * reclaim the, and it will clear the page private bit.
5132 	 * We must make sure to set the page private bit properly
5133 	 * after the extent buffer is in the radix tree so
5134 	 * it doesn't get lost
5135 	 */
5136 	SetPageChecked(eb->pages[0]);
5137 	for (i = 1; i < num_pages; i++) {
5138 		p = eb->pages[i];
5139 		ClearPageChecked(p);
5140 		unlock_page(p);
5141 	}
5142 	unlock_page(eb->pages[0]);
5143 	return eb;
5144 
5145 free_eb:
5146 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5147 	for (i = 0; i < num_pages; i++) {
5148 		if (eb->pages[i])
5149 			unlock_page(eb->pages[i]);
5150 	}
5151 
5152 	btrfs_release_extent_buffer(eb);
5153 	return exists;
5154 }
5155 
5156 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5157 {
5158 	struct extent_buffer *eb =
5159 			container_of(head, struct extent_buffer, rcu_head);
5160 
5161 	__free_extent_buffer(eb);
5162 }
5163 
5164 /* Expects to have eb->eb_lock already held */
5165 static int release_extent_buffer(struct extent_buffer *eb)
5166 {
5167 	WARN_ON(atomic_read(&eb->refs) == 0);
5168 	if (atomic_dec_and_test(&eb->refs)) {
5169 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5170 			struct btrfs_fs_info *fs_info = eb->fs_info;
5171 
5172 			spin_unlock(&eb->refs_lock);
5173 
5174 			spin_lock(&fs_info->buffer_lock);
5175 			radix_tree_delete(&fs_info->buffer_radix,
5176 					  eb->start >> PAGE_SHIFT);
5177 			spin_unlock(&fs_info->buffer_lock);
5178 		} else {
5179 			spin_unlock(&eb->refs_lock);
5180 		}
5181 
5182 		/* Should be safe to release our pages at this point */
5183 		btrfs_release_extent_buffer_page(eb);
5184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5185 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5186 			__free_extent_buffer(eb);
5187 			return 1;
5188 		}
5189 #endif
5190 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5191 		return 1;
5192 	}
5193 	spin_unlock(&eb->refs_lock);
5194 
5195 	return 0;
5196 }
5197 
5198 void free_extent_buffer(struct extent_buffer *eb)
5199 {
5200 	int refs;
5201 	int old;
5202 	if (!eb)
5203 		return;
5204 
5205 	while (1) {
5206 		refs = atomic_read(&eb->refs);
5207 		if (refs <= 3)
5208 			break;
5209 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5210 		if (old == refs)
5211 			return;
5212 	}
5213 
5214 	spin_lock(&eb->refs_lock);
5215 	if (atomic_read(&eb->refs) == 2 &&
5216 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5217 		atomic_dec(&eb->refs);
5218 
5219 	if (atomic_read(&eb->refs) == 2 &&
5220 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5221 	    !extent_buffer_under_io(eb) &&
5222 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5223 		atomic_dec(&eb->refs);
5224 
5225 	/*
5226 	 * I know this is terrible, but it's temporary until we stop tracking
5227 	 * the uptodate bits and such for the extent buffers.
5228 	 */
5229 	release_extent_buffer(eb);
5230 }
5231 
5232 void free_extent_buffer_stale(struct extent_buffer *eb)
5233 {
5234 	if (!eb)
5235 		return;
5236 
5237 	spin_lock(&eb->refs_lock);
5238 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5239 
5240 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5241 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5242 		atomic_dec(&eb->refs);
5243 	release_extent_buffer(eb);
5244 }
5245 
5246 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5247 {
5248 	unsigned long i;
5249 	unsigned long num_pages;
5250 	struct page *page;
5251 
5252 	num_pages = num_extent_pages(eb->start, eb->len);
5253 
5254 	for (i = 0; i < num_pages; i++) {
5255 		page = eb->pages[i];
5256 		if (!PageDirty(page))
5257 			continue;
5258 
5259 		lock_page(page);
5260 		WARN_ON(!PagePrivate(page));
5261 
5262 		clear_page_dirty_for_io(page);
5263 		spin_lock_irq(&page->mapping->tree_lock);
5264 		if (!PageDirty(page)) {
5265 			radix_tree_tag_clear(&page->mapping->page_tree,
5266 						page_index(page),
5267 						PAGECACHE_TAG_DIRTY);
5268 		}
5269 		spin_unlock_irq(&page->mapping->tree_lock);
5270 		ClearPageError(page);
5271 		unlock_page(page);
5272 	}
5273 	WARN_ON(atomic_read(&eb->refs) == 0);
5274 }
5275 
5276 int set_extent_buffer_dirty(struct extent_buffer *eb)
5277 {
5278 	unsigned long i;
5279 	unsigned long num_pages;
5280 	int was_dirty = 0;
5281 
5282 	check_buffer_tree_ref(eb);
5283 
5284 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5285 
5286 	num_pages = num_extent_pages(eb->start, eb->len);
5287 	WARN_ON(atomic_read(&eb->refs) == 0);
5288 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5289 
5290 	for (i = 0; i < num_pages; i++)
5291 		set_page_dirty(eb->pages[i]);
5292 	return was_dirty;
5293 }
5294 
5295 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5296 {
5297 	unsigned long i;
5298 	struct page *page;
5299 	unsigned long num_pages;
5300 
5301 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5302 	num_pages = num_extent_pages(eb->start, eb->len);
5303 	for (i = 0; i < num_pages; i++) {
5304 		page = eb->pages[i];
5305 		if (page)
5306 			ClearPageUptodate(page);
5307 	}
5308 }
5309 
5310 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5311 {
5312 	unsigned long i;
5313 	struct page *page;
5314 	unsigned long num_pages;
5315 
5316 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5317 	num_pages = num_extent_pages(eb->start, eb->len);
5318 	for (i = 0; i < num_pages; i++) {
5319 		page = eb->pages[i];
5320 		SetPageUptodate(page);
5321 	}
5322 }
5323 
5324 int extent_buffer_uptodate(struct extent_buffer *eb)
5325 {
5326 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5327 }
5328 
5329 int read_extent_buffer_pages(struct extent_io_tree *tree,
5330 			     struct extent_buffer *eb, int wait,
5331 			     get_extent_t *get_extent, int mirror_num)
5332 {
5333 	unsigned long i;
5334 	struct page *page;
5335 	int err;
5336 	int ret = 0;
5337 	int locked_pages = 0;
5338 	int all_uptodate = 1;
5339 	unsigned long num_pages;
5340 	unsigned long num_reads = 0;
5341 	struct bio *bio = NULL;
5342 	unsigned long bio_flags = 0;
5343 
5344 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5345 		return 0;
5346 
5347 	num_pages = num_extent_pages(eb->start, eb->len);
5348 	for (i = 0; i < num_pages; i++) {
5349 		page = eb->pages[i];
5350 		if (wait == WAIT_NONE) {
5351 			if (!trylock_page(page))
5352 				goto unlock_exit;
5353 		} else {
5354 			lock_page(page);
5355 		}
5356 		locked_pages++;
5357 	}
5358 	/*
5359 	 * We need to firstly lock all pages to make sure that
5360 	 * the uptodate bit of our pages won't be affected by
5361 	 * clear_extent_buffer_uptodate().
5362 	 */
5363 	for (i = 0; i < num_pages; i++) {
5364 		page = eb->pages[i];
5365 		if (!PageUptodate(page)) {
5366 			num_reads++;
5367 			all_uptodate = 0;
5368 		}
5369 	}
5370 
5371 	if (all_uptodate) {
5372 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5373 		goto unlock_exit;
5374 	}
5375 
5376 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5377 	eb->read_mirror = 0;
5378 	atomic_set(&eb->io_pages, num_reads);
5379 	for (i = 0; i < num_pages; i++) {
5380 		page = eb->pages[i];
5381 
5382 		if (!PageUptodate(page)) {
5383 			if (ret) {
5384 				atomic_dec(&eb->io_pages);
5385 				unlock_page(page);
5386 				continue;
5387 			}
5388 
5389 			ClearPageError(page);
5390 			err = __extent_read_full_page(tree, page,
5391 						      get_extent, &bio,
5392 						      mirror_num, &bio_flags,
5393 						      REQ_META);
5394 			if (err) {
5395 				ret = err;
5396 				/*
5397 				 * We use &bio in above __extent_read_full_page,
5398 				 * so we ensure that if it returns error, the
5399 				 * current page fails to add itself to bio and
5400 				 * it's been unlocked.
5401 				 *
5402 				 * We must dec io_pages by ourselves.
5403 				 */
5404 				atomic_dec(&eb->io_pages);
5405 			}
5406 		} else {
5407 			unlock_page(page);
5408 		}
5409 	}
5410 
5411 	if (bio) {
5412 		err = submit_one_bio(bio, mirror_num, bio_flags);
5413 		if (err)
5414 			return err;
5415 	}
5416 
5417 	if (ret || wait != WAIT_COMPLETE)
5418 		return ret;
5419 
5420 	for (i = 0; i < num_pages; i++) {
5421 		page = eb->pages[i];
5422 		wait_on_page_locked(page);
5423 		if (!PageUptodate(page))
5424 			ret = -EIO;
5425 	}
5426 
5427 	return ret;
5428 
5429 unlock_exit:
5430 	while (locked_pages > 0) {
5431 		locked_pages--;
5432 		page = eb->pages[locked_pages];
5433 		unlock_page(page);
5434 	}
5435 	return ret;
5436 }
5437 
5438 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5439 			unsigned long start,
5440 			unsigned long len)
5441 {
5442 	size_t cur;
5443 	size_t offset;
5444 	struct page *page;
5445 	char *kaddr;
5446 	char *dst = (char *)dstv;
5447 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5448 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5449 
5450 	WARN_ON(start > eb->len);
5451 	WARN_ON(start + len > eb->start + eb->len);
5452 
5453 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5454 
5455 	while (len > 0) {
5456 		page = eb->pages[i];
5457 
5458 		cur = min(len, (PAGE_SIZE - offset));
5459 		kaddr = page_address(page);
5460 		memcpy(dst, kaddr + offset, cur);
5461 
5462 		dst += cur;
5463 		len -= cur;
5464 		offset = 0;
5465 		i++;
5466 	}
5467 }
5468 
5469 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5470 			unsigned long start,
5471 			unsigned long len)
5472 {
5473 	size_t cur;
5474 	size_t offset;
5475 	struct page *page;
5476 	char *kaddr;
5477 	char __user *dst = (char __user *)dstv;
5478 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5479 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5480 	int ret = 0;
5481 
5482 	WARN_ON(start > eb->len);
5483 	WARN_ON(start + len > eb->start + eb->len);
5484 
5485 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5486 
5487 	while (len > 0) {
5488 		page = eb->pages[i];
5489 
5490 		cur = min(len, (PAGE_SIZE - offset));
5491 		kaddr = page_address(page);
5492 		if (copy_to_user(dst, kaddr + offset, cur)) {
5493 			ret = -EFAULT;
5494 			break;
5495 		}
5496 
5497 		dst += cur;
5498 		len -= cur;
5499 		offset = 0;
5500 		i++;
5501 	}
5502 
5503 	return ret;
5504 }
5505 
5506 /*
5507  * return 0 if the item is found within a page.
5508  * return 1 if the item spans two pages.
5509  * return -EINVAL otherwise.
5510  */
5511 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5512 			       unsigned long min_len, char **map,
5513 			       unsigned long *map_start,
5514 			       unsigned long *map_len)
5515 {
5516 	size_t offset = start & (PAGE_SIZE - 1);
5517 	char *kaddr;
5518 	struct page *p;
5519 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5520 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5521 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5522 		PAGE_SHIFT;
5523 
5524 	if (i != end_i)
5525 		return 1;
5526 
5527 	if (i == 0) {
5528 		offset = start_offset;
5529 		*map_start = 0;
5530 	} else {
5531 		offset = 0;
5532 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5533 	}
5534 
5535 	if (start + min_len > eb->len) {
5536 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5537 		       eb->start, eb->len, start, min_len);
5538 		return -EINVAL;
5539 	}
5540 
5541 	p = eb->pages[i];
5542 	kaddr = page_address(p);
5543 	*map = kaddr + offset;
5544 	*map_len = PAGE_SIZE - offset;
5545 	return 0;
5546 }
5547 
5548 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5549 			  unsigned long start,
5550 			  unsigned long len)
5551 {
5552 	size_t cur;
5553 	size_t offset;
5554 	struct page *page;
5555 	char *kaddr;
5556 	char *ptr = (char *)ptrv;
5557 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5558 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5559 	int ret = 0;
5560 
5561 	WARN_ON(start > eb->len);
5562 	WARN_ON(start + len > eb->start + eb->len);
5563 
5564 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5565 
5566 	while (len > 0) {
5567 		page = eb->pages[i];
5568 
5569 		cur = min(len, (PAGE_SIZE - offset));
5570 
5571 		kaddr = page_address(page);
5572 		ret = memcmp(ptr, kaddr + offset, cur);
5573 		if (ret)
5574 			break;
5575 
5576 		ptr += cur;
5577 		len -= cur;
5578 		offset = 0;
5579 		i++;
5580 	}
5581 	return ret;
5582 }
5583 
5584 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5585 		const void *srcv)
5586 {
5587 	char *kaddr;
5588 
5589 	WARN_ON(!PageUptodate(eb->pages[0]));
5590 	kaddr = page_address(eb->pages[0]);
5591 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5592 			BTRFS_FSID_SIZE);
5593 }
5594 
5595 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5596 {
5597 	char *kaddr;
5598 
5599 	WARN_ON(!PageUptodate(eb->pages[0]));
5600 	kaddr = page_address(eb->pages[0]);
5601 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5602 			BTRFS_FSID_SIZE);
5603 }
5604 
5605 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5606 			 unsigned long start, unsigned long len)
5607 {
5608 	size_t cur;
5609 	size_t offset;
5610 	struct page *page;
5611 	char *kaddr;
5612 	char *src = (char *)srcv;
5613 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5614 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5615 
5616 	WARN_ON(start > eb->len);
5617 	WARN_ON(start + len > eb->start + eb->len);
5618 
5619 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5620 
5621 	while (len > 0) {
5622 		page = eb->pages[i];
5623 		WARN_ON(!PageUptodate(page));
5624 
5625 		cur = min(len, PAGE_SIZE - offset);
5626 		kaddr = page_address(page);
5627 		memcpy(kaddr + offset, src, cur);
5628 
5629 		src += cur;
5630 		len -= cur;
5631 		offset = 0;
5632 		i++;
5633 	}
5634 }
5635 
5636 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5637 		unsigned long len)
5638 {
5639 	size_t cur;
5640 	size_t offset;
5641 	struct page *page;
5642 	char *kaddr;
5643 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5644 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5645 
5646 	WARN_ON(start > eb->len);
5647 	WARN_ON(start + len > eb->start + eb->len);
5648 
5649 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5650 
5651 	while (len > 0) {
5652 		page = eb->pages[i];
5653 		WARN_ON(!PageUptodate(page));
5654 
5655 		cur = min(len, PAGE_SIZE - offset);
5656 		kaddr = page_address(page);
5657 		memset(kaddr + offset, 0, cur);
5658 
5659 		len -= cur;
5660 		offset = 0;
5661 		i++;
5662 	}
5663 }
5664 
5665 void copy_extent_buffer_full(struct extent_buffer *dst,
5666 			     struct extent_buffer *src)
5667 {
5668 	int i;
5669 	unsigned num_pages;
5670 
5671 	ASSERT(dst->len == src->len);
5672 
5673 	num_pages = num_extent_pages(dst->start, dst->len);
5674 	for (i = 0; i < num_pages; i++)
5675 		copy_page(page_address(dst->pages[i]),
5676 				page_address(src->pages[i]));
5677 }
5678 
5679 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5680 			unsigned long dst_offset, unsigned long src_offset,
5681 			unsigned long len)
5682 {
5683 	u64 dst_len = dst->len;
5684 	size_t cur;
5685 	size_t offset;
5686 	struct page *page;
5687 	char *kaddr;
5688 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5689 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5690 
5691 	WARN_ON(src->len != dst_len);
5692 
5693 	offset = (start_offset + dst_offset) &
5694 		(PAGE_SIZE - 1);
5695 
5696 	while (len > 0) {
5697 		page = dst->pages[i];
5698 		WARN_ON(!PageUptodate(page));
5699 
5700 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5701 
5702 		kaddr = page_address(page);
5703 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5704 
5705 		src_offset += cur;
5706 		len -= cur;
5707 		offset = 0;
5708 		i++;
5709 	}
5710 }
5711 
5712 void le_bitmap_set(u8 *map, unsigned int start, int len)
5713 {
5714 	u8 *p = map + BIT_BYTE(start);
5715 	const unsigned int size = start + len;
5716 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5717 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5718 
5719 	while (len - bits_to_set >= 0) {
5720 		*p |= mask_to_set;
5721 		len -= bits_to_set;
5722 		bits_to_set = BITS_PER_BYTE;
5723 		mask_to_set = ~0;
5724 		p++;
5725 	}
5726 	if (len) {
5727 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5728 		*p |= mask_to_set;
5729 	}
5730 }
5731 
5732 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5733 {
5734 	u8 *p = map + BIT_BYTE(start);
5735 	const unsigned int size = start + len;
5736 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5737 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5738 
5739 	while (len - bits_to_clear >= 0) {
5740 		*p &= ~mask_to_clear;
5741 		len -= bits_to_clear;
5742 		bits_to_clear = BITS_PER_BYTE;
5743 		mask_to_clear = ~0;
5744 		p++;
5745 	}
5746 	if (len) {
5747 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5748 		*p &= ~mask_to_clear;
5749 	}
5750 }
5751 
5752 /*
5753  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5754  * given bit number
5755  * @eb: the extent buffer
5756  * @start: offset of the bitmap item in the extent buffer
5757  * @nr: bit number
5758  * @page_index: return index of the page in the extent buffer that contains the
5759  * given bit number
5760  * @page_offset: return offset into the page given by page_index
5761  *
5762  * This helper hides the ugliness of finding the byte in an extent buffer which
5763  * contains a given bit.
5764  */
5765 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5766 				    unsigned long start, unsigned long nr,
5767 				    unsigned long *page_index,
5768 				    size_t *page_offset)
5769 {
5770 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5771 	size_t byte_offset = BIT_BYTE(nr);
5772 	size_t offset;
5773 
5774 	/*
5775 	 * The byte we want is the offset of the extent buffer + the offset of
5776 	 * the bitmap item in the extent buffer + the offset of the byte in the
5777 	 * bitmap item.
5778 	 */
5779 	offset = start_offset + start + byte_offset;
5780 
5781 	*page_index = offset >> PAGE_SHIFT;
5782 	*page_offset = offset & (PAGE_SIZE - 1);
5783 }
5784 
5785 /**
5786  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5787  * @eb: the extent buffer
5788  * @start: offset of the bitmap item in the extent buffer
5789  * @nr: bit number to test
5790  */
5791 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5792 			   unsigned long nr)
5793 {
5794 	u8 *kaddr;
5795 	struct page *page;
5796 	unsigned long i;
5797 	size_t offset;
5798 
5799 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5800 	page = eb->pages[i];
5801 	WARN_ON(!PageUptodate(page));
5802 	kaddr = page_address(page);
5803 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5804 }
5805 
5806 /**
5807  * extent_buffer_bitmap_set - set an area of a bitmap
5808  * @eb: the extent buffer
5809  * @start: offset of the bitmap item in the extent buffer
5810  * @pos: bit number of the first bit
5811  * @len: number of bits to set
5812  */
5813 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5814 			      unsigned long pos, unsigned long len)
5815 {
5816 	u8 *kaddr;
5817 	struct page *page;
5818 	unsigned long i;
5819 	size_t offset;
5820 	const unsigned int size = pos + len;
5821 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5822 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5823 
5824 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5825 	page = eb->pages[i];
5826 	WARN_ON(!PageUptodate(page));
5827 	kaddr = page_address(page);
5828 
5829 	while (len >= bits_to_set) {
5830 		kaddr[offset] |= mask_to_set;
5831 		len -= bits_to_set;
5832 		bits_to_set = BITS_PER_BYTE;
5833 		mask_to_set = ~0;
5834 		if (++offset >= PAGE_SIZE && len > 0) {
5835 			offset = 0;
5836 			page = eb->pages[++i];
5837 			WARN_ON(!PageUptodate(page));
5838 			kaddr = page_address(page);
5839 		}
5840 	}
5841 	if (len) {
5842 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5843 		kaddr[offset] |= mask_to_set;
5844 	}
5845 }
5846 
5847 
5848 /**
5849  * extent_buffer_bitmap_clear - clear an area of a bitmap
5850  * @eb: the extent buffer
5851  * @start: offset of the bitmap item in the extent buffer
5852  * @pos: bit number of the first bit
5853  * @len: number of bits to clear
5854  */
5855 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5856 				unsigned long pos, unsigned long len)
5857 {
5858 	u8 *kaddr;
5859 	struct page *page;
5860 	unsigned long i;
5861 	size_t offset;
5862 	const unsigned int size = pos + len;
5863 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5864 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5865 
5866 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5867 	page = eb->pages[i];
5868 	WARN_ON(!PageUptodate(page));
5869 	kaddr = page_address(page);
5870 
5871 	while (len >= bits_to_clear) {
5872 		kaddr[offset] &= ~mask_to_clear;
5873 		len -= bits_to_clear;
5874 		bits_to_clear = BITS_PER_BYTE;
5875 		mask_to_clear = ~0;
5876 		if (++offset >= PAGE_SIZE && len > 0) {
5877 			offset = 0;
5878 			page = eb->pages[++i];
5879 			WARN_ON(!PageUptodate(page));
5880 			kaddr = page_address(page);
5881 		}
5882 	}
5883 	if (len) {
5884 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5885 		kaddr[offset] &= ~mask_to_clear;
5886 	}
5887 }
5888 
5889 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5890 {
5891 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5892 	return distance < len;
5893 }
5894 
5895 static void copy_pages(struct page *dst_page, struct page *src_page,
5896 		       unsigned long dst_off, unsigned long src_off,
5897 		       unsigned long len)
5898 {
5899 	char *dst_kaddr = page_address(dst_page);
5900 	char *src_kaddr;
5901 	int must_memmove = 0;
5902 
5903 	if (dst_page != src_page) {
5904 		src_kaddr = page_address(src_page);
5905 	} else {
5906 		src_kaddr = dst_kaddr;
5907 		if (areas_overlap(src_off, dst_off, len))
5908 			must_memmove = 1;
5909 	}
5910 
5911 	if (must_memmove)
5912 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5913 	else
5914 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5915 }
5916 
5917 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5918 			   unsigned long src_offset, unsigned long len)
5919 {
5920 	struct btrfs_fs_info *fs_info = dst->fs_info;
5921 	size_t cur;
5922 	size_t dst_off_in_page;
5923 	size_t src_off_in_page;
5924 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5925 	unsigned long dst_i;
5926 	unsigned long src_i;
5927 
5928 	if (src_offset + len > dst->len) {
5929 		btrfs_err(fs_info,
5930 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5931 			 src_offset, len, dst->len);
5932 		BUG_ON(1);
5933 	}
5934 	if (dst_offset + len > dst->len) {
5935 		btrfs_err(fs_info,
5936 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5937 			 dst_offset, len, dst->len);
5938 		BUG_ON(1);
5939 	}
5940 
5941 	while (len > 0) {
5942 		dst_off_in_page = (start_offset + dst_offset) &
5943 			(PAGE_SIZE - 1);
5944 		src_off_in_page = (start_offset + src_offset) &
5945 			(PAGE_SIZE - 1);
5946 
5947 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5948 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5949 
5950 		cur = min(len, (unsigned long)(PAGE_SIZE -
5951 					       src_off_in_page));
5952 		cur = min_t(unsigned long, cur,
5953 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5954 
5955 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5956 			   dst_off_in_page, src_off_in_page, cur);
5957 
5958 		src_offset += cur;
5959 		dst_offset += cur;
5960 		len -= cur;
5961 	}
5962 }
5963 
5964 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5965 			   unsigned long src_offset, unsigned long len)
5966 {
5967 	struct btrfs_fs_info *fs_info = dst->fs_info;
5968 	size_t cur;
5969 	size_t dst_off_in_page;
5970 	size_t src_off_in_page;
5971 	unsigned long dst_end = dst_offset + len - 1;
5972 	unsigned long src_end = src_offset + len - 1;
5973 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5974 	unsigned long dst_i;
5975 	unsigned long src_i;
5976 
5977 	if (src_offset + len > dst->len) {
5978 		btrfs_err(fs_info,
5979 			  "memmove bogus src_offset %lu move len %lu len %lu",
5980 			  src_offset, len, dst->len);
5981 		BUG_ON(1);
5982 	}
5983 	if (dst_offset + len > dst->len) {
5984 		btrfs_err(fs_info,
5985 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5986 			  dst_offset, len, dst->len);
5987 		BUG_ON(1);
5988 	}
5989 	if (dst_offset < src_offset) {
5990 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5991 		return;
5992 	}
5993 	while (len > 0) {
5994 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5995 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5996 
5997 		dst_off_in_page = (start_offset + dst_end) &
5998 			(PAGE_SIZE - 1);
5999 		src_off_in_page = (start_offset + src_end) &
6000 			(PAGE_SIZE - 1);
6001 
6002 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6003 		cur = min(cur, dst_off_in_page + 1);
6004 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6005 			   dst_off_in_page - cur + 1,
6006 			   src_off_in_page - cur + 1, cur);
6007 
6008 		dst_end -= cur;
6009 		src_end -= cur;
6010 		len -= cur;
6011 	}
6012 }
6013 
6014 int try_release_extent_buffer(struct page *page)
6015 {
6016 	struct extent_buffer *eb;
6017 
6018 	/*
6019 	 * We need to make sure nobody is attaching this page to an eb right
6020 	 * now.
6021 	 */
6022 	spin_lock(&page->mapping->private_lock);
6023 	if (!PagePrivate(page)) {
6024 		spin_unlock(&page->mapping->private_lock);
6025 		return 1;
6026 	}
6027 
6028 	eb = (struct extent_buffer *)page->private;
6029 	BUG_ON(!eb);
6030 
6031 	/*
6032 	 * This is a little awful but should be ok, we need to make sure that
6033 	 * the eb doesn't disappear out from under us while we're looking at
6034 	 * this page.
6035 	 */
6036 	spin_lock(&eb->refs_lock);
6037 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6038 		spin_unlock(&eb->refs_lock);
6039 		spin_unlock(&page->mapping->private_lock);
6040 		return 0;
6041 	}
6042 	spin_unlock(&page->mapping->private_lock);
6043 
6044 	/*
6045 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6046 	 * so just return, this page will likely be freed soon anyway.
6047 	 */
6048 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6049 		spin_unlock(&eb->refs_lock);
6050 		return 0;
6051 	}
6052 
6053 	return release_extent_buffer(eb);
6054 }
6055