1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 40 static struct kmem_cache *extent_buffer_cache; 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 44 { 45 struct btrfs_fs_info *fs_info = eb->fs_info; 46 unsigned long flags; 47 48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 49 list_add(&eb->leak_list, &fs_info->allocated_ebs); 50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 51 } 52 53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 54 { 55 struct btrfs_fs_info *fs_info = eb->fs_info; 56 unsigned long flags; 57 58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 59 list_del(&eb->leak_list); 60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 61 } 62 63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 64 { 65 struct extent_buffer *eb; 66 unsigned long flags; 67 68 /* 69 * If we didn't get into open_ctree our allocated_ebs will not be 70 * initialized, so just skip this. 71 */ 72 if (!fs_info->allocated_ebs.next) 73 return; 74 75 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 77 while (!list_empty(&fs_info->allocated_ebs)) { 78 eb = list_first_entry(&fs_info->allocated_ebs, 79 struct extent_buffer, leak_list); 80 pr_err( 81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 83 btrfs_header_owner(eb)); 84 list_del(&eb->leak_list); 85 kmem_cache_free(extent_buffer_cache, eb); 86 } 87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 88 } 89 #else 90 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 91 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 92 #endif 93 94 /* 95 * Structure to record info about the bio being assembled, and other info like 96 * how many bytes are there before stripe/ordered extent boundary. 97 */ 98 struct btrfs_bio_ctrl { 99 struct bio *bio; 100 int mirror_num; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_stripe_boundary; 103 u32 len_to_oe_boundary; 104 btrfs_bio_end_io_t end_io_func; 105 106 /* 107 * This is for metadata read, to provide the extra needed verification 108 * info. This has to be provided for submit_one_bio(), as 109 * submit_one_bio() can submit a bio if it ends at stripe boundary. If 110 * no such parent_check is provided, the metadata can hit false alert at 111 * endio time. 112 */ 113 struct btrfs_tree_parent_check *parent_check; 114 115 /* 116 * Tell writepage not to lock the state bits for this range, it still 117 * does the unlocking. 118 */ 119 bool extent_locked; 120 121 /* Tell the submit_bio code to use REQ_SYNC */ 122 bool sync_io; 123 }; 124 125 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 126 { 127 struct bio *bio; 128 struct bio_vec *bv; 129 struct btrfs_inode *inode; 130 int mirror_num; 131 132 if (!bio_ctrl->bio) 133 return; 134 135 bio = bio_ctrl->bio; 136 bv = bio_first_bvec_all(bio); 137 inode = BTRFS_I(bv->bv_page->mapping->host); 138 mirror_num = bio_ctrl->mirror_num; 139 140 /* Caller should ensure the bio has at least some range added */ 141 ASSERT(bio->bi_iter.bi_size); 142 143 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; 144 145 if (!is_data_inode(&inode->vfs_inode)) { 146 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 147 /* 148 * For metadata read, we should have the parent_check, 149 * and copy it to bbio for metadata verification. 150 */ 151 ASSERT(bio_ctrl->parent_check); 152 memcpy(&btrfs_bio(bio)->parent_check, 153 bio_ctrl->parent_check, 154 sizeof(struct btrfs_tree_parent_check)); 155 } 156 btrfs_submit_metadata_bio(inode, bio, mirror_num); 157 } else if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 158 btrfs_submit_data_write_bio(inode, bio, mirror_num); 159 } else { 160 btrfs_submit_data_read_bio(inode, bio, mirror_num, 161 bio_ctrl->compress_type); 162 } 163 164 /* The bio is owned by the end_io handler now */ 165 bio_ctrl->bio = NULL; 166 } 167 168 /* 169 * Submit or fail the current bio in the bio_ctrl structure. 170 */ 171 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 172 { 173 struct bio *bio = bio_ctrl->bio; 174 175 if (!bio) 176 return; 177 178 if (ret) { 179 ASSERT(ret < 0); 180 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 181 /* The bio is owned by the end_io handler now */ 182 bio_ctrl->bio = NULL; 183 } else { 184 submit_one_bio(bio_ctrl); 185 } 186 } 187 188 int __init extent_buffer_init_cachep(void) 189 { 190 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 191 sizeof(struct extent_buffer), 0, 192 SLAB_MEM_SPREAD, NULL); 193 if (!extent_buffer_cache) 194 return -ENOMEM; 195 196 return 0; 197 } 198 199 void __cold extent_buffer_free_cachep(void) 200 { 201 /* 202 * Make sure all delayed rcu free are flushed before we 203 * destroy caches. 204 */ 205 rcu_barrier(); 206 kmem_cache_destroy(extent_buffer_cache); 207 } 208 209 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 210 { 211 unsigned long index = start >> PAGE_SHIFT; 212 unsigned long end_index = end >> PAGE_SHIFT; 213 struct page *page; 214 215 while (index <= end_index) { 216 page = find_get_page(inode->i_mapping, index); 217 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 218 clear_page_dirty_for_io(page); 219 put_page(page); 220 index++; 221 } 222 } 223 224 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 225 { 226 struct address_space *mapping = inode->i_mapping; 227 unsigned long index = start >> PAGE_SHIFT; 228 unsigned long end_index = end >> PAGE_SHIFT; 229 struct folio *folio; 230 231 while (index <= end_index) { 232 folio = filemap_get_folio(mapping, index); 233 filemap_dirty_folio(mapping, folio); 234 folio_account_redirty(folio); 235 index += folio_nr_pages(folio); 236 folio_put(folio); 237 } 238 } 239 240 /* 241 * Process one page for __process_pages_contig(). 242 * 243 * Return >0 if we hit @page == @locked_page. 244 * Return 0 if we updated the page status. 245 * Return -EGAIN if the we need to try again. 246 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 247 */ 248 static int process_one_page(struct btrfs_fs_info *fs_info, 249 struct address_space *mapping, 250 struct page *page, struct page *locked_page, 251 unsigned long page_ops, u64 start, u64 end) 252 { 253 u32 len; 254 255 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 256 len = end + 1 - start; 257 258 if (page_ops & PAGE_SET_ORDERED) 259 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 260 if (page_ops & PAGE_SET_ERROR) 261 btrfs_page_clamp_set_error(fs_info, page, start, len); 262 if (page_ops & PAGE_START_WRITEBACK) { 263 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 264 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 265 } 266 if (page_ops & PAGE_END_WRITEBACK) 267 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 268 269 if (page == locked_page) 270 return 1; 271 272 if (page_ops & PAGE_LOCK) { 273 int ret; 274 275 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 276 if (ret) 277 return ret; 278 if (!PageDirty(page) || page->mapping != mapping) { 279 btrfs_page_end_writer_lock(fs_info, page, start, len); 280 return -EAGAIN; 281 } 282 } 283 if (page_ops & PAGE_UNLOCK) 284 btrfs_page_end_writer_lock(fs_info, page, start, len); 285 return 0; 286 } 287 288 static int __process_pages_contig(struct address_space *mapping, 289 struct page *locked_page, 290 u64 start, u64 end, unsigned long page_ops, 291 u64 *processed_end) 292 { 293 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 294 pgoff_t start_index = start >> PAGE_SHIFT; 295 pgoff_t end_index = end >> PAGE_SHIFT; 296 pgoff_t index = start_index; 297 unsigned long pages_processed = 0; 298 struct folio_batch fbatch; 299 int err = 0; 300 int i; 301 302 if (page_ops & PAGE_LOCK) { 303 ASSERT(page_ops == PAGE_LOCK); 304 ASSERT(processed_end && *processed_end == start); 305 } 306 307 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 308 mapping_set_error(mapping, -EIO); 309 310 folio_batch_init(&fbatch); 311 while (index <= end_index) { 312 int found_folios; 313 314 found_folios = filemap_get_folios_contig(mapping, &index, 315 end_index, &fbatch); 316 317 if (found_folios == 0) { 318 /* 319 * Only if we're going to lock these pages, we can find 320 * nothing at @index. 321 */ 322 ASSERT(page_ops & PAGE_LOCK); 323 err = -EAGAIN; 324 goto out; 325 } 326 327 for (i = 0; i < found_folios; i++) { 328 int process_ret; 329 struct folio *folio = fbatch.folios[i]; 330 process_ret = process_one_page(fs_info, mapping, 331 &folio->page, locked_page, page_ops, 332 start, end); 333 if (process_ret < 0) { 334 err = -EAGAIN; 335 folio_batch_release(&fbatch); 336 goto out; 337 } 338 pages_processed += folio_nr_pages(folio); 339 } 340 folio_batch_release(&fbatch); 341 cond_resched(); 342 } 343 out: 344 if (err && processed_end) { 345 /* 346 * Update @processed_end. I know this is awful since it has 347 * two different return value patterns (inclusive vs exclusive). 348 * 349 * But the exclusive pattern is necessary if @start is 0, or we 350 * underflow and check against processed_end won't work as 351 * expected. 352 */ 353 if (pages_processed) 354 *processed_end = min(end, 355 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 356 else 357 *processed_end = start; 358 } 359 return err; 360 } 361 362 static noinline void __unlock_for_delalloc(struct inode *inode, 363 struct page *locked_page, 364 u64 start, u64 end) 365 { 366 unsigned long index = start >> PAGE_SHIFT; 367 unsigned long end_index = end >> PAGE_SHIFT; 368 369 ASSERT(locked_page); 370 if (index == locked_page->index && end_index == index) 371 return; 372 373 __process_pages_contig(inode->i_mapping, locked_page, start, end, 374 PAGE_UNLOCK, NULL); 375 } 376 377 static noinline int lock_delalloc_pages(struct inode *inode, 378 struct page *locked_page, 379 u64 delalloc_start, 380 u64 delalloc_end) 381 { 382 unsigned long index = delalloc_start >> PAGE_SHIFT; 383 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 384 u64 processed_end = delalloc_start; 385 int ret; 386 387 ASSERT(locked_page); 388 if (index == locked_page->index && index == end_index) 389 return 0; 390 391 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 392 delalloc_end, PAGE_LOCK, &processed_end); 393 if (ret == -EAGAIN && processed_end > delalloc_start) 394 __unlock_for_delalloc(inode, locked_page, delalloc_start, 395 processed_end); 396 return ret; 397 } 398 399 /* 400 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 401 * more than @max_bytes. 402 * 403 * @start: The original start bytenr to search. 404 * Will store the extent range start bytenr. 405 * @end: The original end bytenr of the search range 406 * Will store the extent range end bytenr. 407 * 408 * Return true if we find a delalloc range which starts inside the original 409 * range, and @start/@end will store the delalloc range start/end. 410 * 411 * Return false if we can't find any delalloc range which starts inside the 412 * original range, and @start/@end will be the non-delalloc range start/end. 413 */ 414 EXPORT_FOR_TESTS 415 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 416 struct page *locked_page, u64 *start, 417 u64 *end) 418 { 419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 420 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 421 const u64 orig_start = *start; 422 const u64 orig_end = *end; 423 /* The sanity tests may not set a valid fs_info. */ 424 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 425 u64 delalloc_start; 426 u64 delalloc_end; 427 bool found; 428 struct extent_state *cached_state = NULL; 429 int ret; 430 int loops = 0; 431 432 /* Caller should pass a valid @end to indicate the search range end */ 433 ASSERT(orig_end > orig_start); 434 435 /* The range should at least cover part of the page */ 436 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 437 orig_end <= page_offset(locked_page))); 438 again: 439 /* step one, find a bunch of delalloc bytes starting at start */ 440 delalloc_start = *start; 441 delalloc_end = 0; 442 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 443 max_bytes, &cached_state); 444 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 445 *start = delalloc_start; 446 447 /* @delalloc_end can be -1, never go beyond @orig_end */ 448 *end = min(delalloc_end, orig_end); 449 free_extent_state(cached_state); 450 return false; 451 } 452 453 /* 454 * start comes from the offset of locked_page. We have to lock 455 * pages in order, so we can't process delalloc bytes before 456 * locked_page 457 */ 458 if (delalloc_start < *start) 459 delalloc_start = *start; 460 461 /* 462 * make sure to limit the number of pages we try to lock down 463 */ 464 if (delalloc_end + 1 - delalloc_start > max_bytes) 465 delalloc_end = delalloc_start + max_bytes - 1; 466 467 /* step two, lock all the pages after the page that has start */ 468 ret = lock_delalloc_pages(inode, locked_page, 469 delalloc_start, delalloc_end); 470 ASSERT(!ret || ret == -EAGAIN); 471 if (ret == -EAGAIN) { 472 /* some of the pages are gone, lets avoid looping by 473 * shortening the size of the delalloc range we're searching 474 */ 475 free_extent_state(cached_state); 476 cached_state = NULL; 477 if (!loops) { 478 max_bytes = PAGE_SIZE; 479 loops = 1; 480 goto again; 481 } else { 482 found = false; 483 goto out_failed; 484 } 485 } 486 487 /* step three, lock the state bits for the whole range */ 488 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 489 490 /* then test to make sure it is all still delalloc */ 491 ret = test_range_bit(tree, delalloc_start, delalloc_end, 492 EXTENT_DELALLOC, 1, cached_state); 493 if (!ret) { 494 unlock_extent(tree, delalloc_start, delalloc_end, 495 &cached_state); 496 __unlock_for_delalloc(inode, locked_page, 497 delalloc_start, delalloc_end); 498 cond_resched(); 499 goto again; 500 } 501 free_extent_state(cached_state); 502 *start = delalloc_start; 503 *end = delalloc_end; 504 out_failed: 505 return found; 506 } 507 508 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 509 struct page *locked_page, 510 u32 clear_bits, unsigned long page_ops) 511 { 512 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 513 514 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 515 start, end, page_ops, NULL); 516 } 517 518 static int insert_failrec(struct btrfs_inode *inode, 519 struct io_failure_record *failrec) 520 { 521 struct rb_node *exist; 522 523 spin_lock(&inode->io_failure_lock); 524 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr, 525 &failrec->rb_node); 526 spin_unlock(&inode->io_failure_lock); 527 528 return (exist == NULL) ? 0 : -EEXIST; 529 } 530 531 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start) 532 { 533 struct rb_node *node; 534 struct io_failure_record *failrec = ERR_PTR(-ENOENT); 535 536 spin_lock(&inode->io_failure_lock); 537 node = rb_simple_search(&inode->io_failure_tree, start); 538 if (node) 539 failrec = rb_entry(node, struct io_failure_record, rb_node); 540 spin_unlock(&inode->io_failure_lock); 541 return failrec; 542 } 543 544 static void free_io_failure(struct btrfs_inode *inode, 545 struct io_failure_record *rec) 546 { 547 spin_lock(&inode->io_failure_lock); 548 rb_erase(&rec->rb_node, &inode->io_failure_tree); 549 spin_unlock(&inode->io_failure_lock); 550 551 kfree(rec); 552 } 553 554 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) 555 { 556 if (cur_mirror == failrec->num_copies) 557 return cur_mirror + 1 - failrec->num_copies; 558 return cur_mirror + 1; 559 } 560 561 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) 562 { 563 if (cur_mirror == 1) 564 return failrec->num_copies; 565 return cur_mirror - 1; 566 } 567 568 /* 569 * each time an IO finishes, we do a fast check in the IO failure tree 570 * to see if we need to process or clean up an io_failure_record 571 */ 572 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start, 573 struct page *page, unsigned int pg_offset) 574 { 575 struct btrfs_fs_info *fs_info = inode->root->fs_info; 576 struct extent_io_tree *io_tree = &inode->io_tree; 577 u64 ino = btrfs_ino(inode); 578 u64 locked_start, locked_end; 579 struct io_failure_record *failrec; 580 int mirror; 581 int ret; 582 583 failrec = get_failrec(inode, start); 584 if (IS_ERR(failrec)) 585 return 0; 586 587 BUG_ON(!failrec->this_mirror); 588 589 if (sb_rdonly(fs_info->sb)) 590 goto out; 591 592 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start, 593 &locked_end, EXTENT_LOCKED, NULL); 594 if (ret || locked_start > failrec->bytenr || 595 locked_end < failrec->bytenr + failrec->len - 1) 596 goto out; 597 598 mirror = failrec->this_mirror; 599 do { 600 mirror = prev_mirror(failrec, mirror); 601 btrfs_repair_io_failure(fs_info, ino, start, failrec->len, 602 failrec->logical, page, pg_offset, mirror); 603 } while (mirror != failrec->failed_mirror); 604 605 out: 606 free_io_failure(inode, failrec); 607 return 0; 608 } 609 610 /* 611 * Can be called when 612 * - hold extent lock 613 * - under ordered extent 614 * - the inode is freeing 615 */ 616 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 617 { 618 struct io_failure_record *failrec; 619 struct rb_node *node, *next; 620 621 if (RB_EMPTY_ROOT(&inode->io_failure_tree)) 622 return; 623 624 spin_lock(&inode->io_failure_lock); 625 node = rb_simple_search_first(&inode->io_failure_tree, start); 626 while (node) { 627 failrec = rb_entry(node, struct io_failure_record, rb_node); 628 if (failrec->bytenr > end) 629 break; 630 631 next = rb_next(node); 632 rb_erase(&failrec->rb_node, &inode->io_failure_tree); 633 kfree(failrec); 634 635 node = next; 636 } 637 spin_unlock(&inode->io_failure_lock); 638 } 639 640 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 641 struct btrfs_bio *bbio, 642 unsigned int bio_offset) 643 { 644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 645 u64 start = bbio->file_offset + bio_offset; 646 struct io_failure_record *failrec; 647 const u32 sectorsize = fs_info->sectorsize; 648 int ret; 649 650 failrec = get_failrec(BTRFS_I(inode), start); 651 if (!IS_ERR(failrec)) { 652 btrfs_debug(fs_info, 653 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 654 failrec->logical, failrec->bytenr, failrec->len); 655 /* 656 * when data can be on disk more than twice, add to failrec here 657 * (e.g. with a list for failed_mirror) to make 658 * clean_io_failure() clean all those errors at once. 659 */ 660 ASSERT(failrec->this_mirror == bbio->mirror_num); 661 ASSERT(failrec->len == fs_info->sectorsize); 662 return failrec; 663 } 664 665 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 666 if (!failrec) 667 return ERR_PTR(-ENOMEM); 668 669 RB_CLEAR_NODE(&failrec->rb_node); 670 failrec->bytenr = start; 671 failrec->len = sectorsize; 672 failrec->failed_mirror = bbio->mirror_num; 673 failrec->this_mirror = bbio->mirror_num; 674 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; 675 676 btrfs_debug(fs_info, 677 "new io failure record logical %llu start %llu", 678 failrec->logical, start); 679 680 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); 681 if (failrec->num_copies == 1) { 682 /* 683 * We only have a single copy of the data, so don't bother with 684 * all the retry and error correction code that follows. No 685 * matter what the error is, it is very likely to persist. 686 */ 687 btrfs_debug(fs_info, 688 "cannot repair logical %llu num_copies %d", 689 failrec->logical, failrec->num_copies); 690 kfree(failrec); 691 return ERR_PTR(-EIO); 692 } 693 694 /* Set the bits in the private failure tree */ 695 ret = insert_failrec(BTRFS_I(inode), failrec); 696 if (ret) { 697 kfree(failrec); 698 return ERR_PTR(ret); 699 } 700 701 return failrec; 702 } 703 704 int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio, 705 u32 bio_offset, struct page *page, unsigned int pgoff, 706 bool submit_buffered) 707 { 708 u64 start = failed_bbio->file_offset + bio_offset; 709 struct io_failure_record *failrec; 710 struct btrfs_fs_info *fs_info = inode->root->fs_info; 711 struct bio *failed_bio = &failed_bbio->bio; 712 const int icsum = bio_offset >> fs_info->sectorsize_bits; 713 struct bio *repair_bio; 714 struct btrfs_bio *repair_bbio; 715 716 btrfs_debug(fs_info, 717 "repair read error: read error at %llu", start); 718 719 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 720 721 failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset); 722 if (IS_ERR(failrec)) 723 return PTR_ERR(failrec); 724 725 /* 726 * There are two premises: 727 * a) deliver good data to the caller 728 * b) correct the bad sectors on disk 729 * 730 * Since we're only doing repair for one sector, we only need to get 731 * a good copy of the failed sector and if we succeed, we have setup 732 * everything for btrfs_repair_io_failure to do the rest for us. 733 */ 734 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); 735 if (failrec->this_mirror == failrec->failed_mirror) { 736 btrfs_debug(fs_info, 737 "failed to repair num_copies %d this_mirror %d failed_mirror %d", 738 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); 739 free_io_failure(inode, failrec); 740 return -EIO; 741 } 742 743 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io, 744 failed_bbio->private); 745 repair_bbio = btrfs_bio(repair_bio); 746 repair_bbio->file_offset = start; 747 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 748 749 if (failed_bbio->csum) { 750 const u32 csum_size = fs_info->csum_size; 751 752 repair_bbio->csum = repair_bbio->csum_inline; 753 memcpy(repair_bbio->csum, 754 failed_bbio->csum + csum_size * icsum, csum_size); 755 } 756 757 bio_add_page(repair_bio, page, failrec->len, pgoff); 758 repair_bbio->iter = repair_bio->bi_iter; 759 760 btrfs_debug(fs_info, 761 "repair read error: submitting new read to mirror %d", 762 failrec->this_mirror); 763 764 /* 765 * At this point we have a bio, so any errors from bio submission will 766 * be handled by the endio on the repair_bio, so we can't return an 767 * error here. 768 */ 769 if (submit_buffered) 770 btrfs_submit_data_read_bio(inode, repair_bio, 771 failrec->this_mirror, 0); 772 else 773 btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror); 774 775 return BLK_STS_OK; 776 } 777 778 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 779 { 780 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 781 782 ASSERT(page_offset(page) <= start && 783 start + len <= page_offset(page) + PAGE_SIZE); 784 785 if (uptodate) { 786 if (fsverity_active(page->mapping->host) && 787 !PageError(page) && 788 !PageUptodate(page) && 789 start < i_size_read(page->mapping->host) && 790 !fsverity_verify_page(page)) { 791 btrfs_page_set_error(fs_info, page, start, len); 792 } else { 793 btrfs_page_set_uptodate(fs_info, page, start, len); 794 } 795 } else { 796 btrfs_page_clear_uptodate(fs_info, page, start, len); 797 btrfs_page_set_error(fs_info, page, start, len); 798 } 799 800 if (!btrfs_is_subpage(fs_info, page)) 801 unlock_page(page); 802 else 803 btrfs_subpage_end_reader(fs_info, page, start, len); 804 } 805 806 static void end_sector_io(struct page *page, u64 offset, bool uptodate) 807 { 808 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 809 const u32 sectorsize = inode->root->fs_info->sectorsize; 810 811 end_page_read(page, uptodate, offset, sectorsize); 812 unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL); 813 } 814 815 static void submit_data_read_repair(struct inode *inode, 816 struct btrfs_bio *failed_bbio, 817 u32 bio_offset, const struct bio_vec *bvec, 818 unsigned int error_bitmap) 819 { 820 const unsigned int pgoff = bvec->bv_offset; 821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 822 struct page *page = bvec->bv_page; 823 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; 824 const u64 end = start + bvec->bv_len - 1; 825 const u32 sectorsize = fs_info->sectorsize; 826 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 827 int i; 828 829 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); 830 831 /* This repair is only for data */ 832 ASSERT(is_data_inode(inode)); 833 834 /* We're here because we had some read errors or csum mismatch */ 835 ASSERT(error_bitmap); 836 837 /* 838 * We only get called on buffered IO, thus page must be mapped and bio 839 * must not be cloned. 840 */ 841 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); 842 843 /* Iterate through all the sectors in the range */ 844 for (i = 0; i < nr_bits; i++) { 845 const unsigned int offset = i * sectorsize; 846 bool uptodate = false; 847 int ret; 848 849 if (!(error_bitmap & (1U << i))) { 850 /* 851 * This sector has no error, just end the page read 852 * and unlock the range. 853 */ 854 uptodate = true; 855 goto next; 856 } 857 858 ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio, 859 bio_offset + offset, page, pgoff + offset, 860 true); 861 if (!ret) { 862 /* 863 * We have submitted the read repair, the page release 864 * will be handled by the endio function of the 865 * submitted repair bio. 866 * Thus we don't need to do any thing here. 867 */ 868 continue; 869 } 870 /* 871 * Continue on failed repair, otherwise the remaining sectors 872 * will not be properly unlocked. 873 */ 874 next: 875 end_sector_io(page, start + offset, uptodate); 876 } 877 } 878 879 /* lots and lots of room for performance fixes in the end_bio funcs */ 880 881 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 882 { 883 struct btrfs_inode *inode; 884 const bool uptodate = (err == 0); 885 int ret = 0; 886 887 ASSERT(page && page->mapping); 888 inode = BTRFS_I(page->mapping->host); 889 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 890 891 if (!uptodate) { 892 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 893 u32 len; 894 895 ASSERT(end + 1 - start <= U32_MAX); 896 len = end + 1 - start; 897 898 btrfs_page_clear_uptodate(fs_info, page, start, len); 899 btrfs_page_set_error(fs_info, page, start, len); 900 ret = err < 0 ? err : -EIO; 901 mapping_set_error(page->mapping, ret); 902 } 903 } 904 905 /* 906 * after a writepage IO is done, we need to: 907 * clear the uptodate bits on error 908 * clear the writeback bits in the extent tree for this IO 909 * end_page_writeback if the page has no more pending IO 910 * 911 * Scheduling is not allowed, so the extent state tree is expected 912 * to have one and only one object corresponding to this IO. 913 */ 914 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 915 { 916 struct bio *bio = &bbio->bio; 917 int error = blk_status_to_errno(bio->bi_status); 918 struct bio_vec *bvec; 919 u64 start; 920 u64 end; 921 struct bvec_iter_all iter_all; 922 bool first_bvec = true; 923 924 ASSERT(!bio_flagged(bio, BIO_CLONED)); 925 bio_for_each_segment_all(bvec, bio, iter_all) { 926 struct page *page = bvec->bv_page; 927 struct inode *inode = page->mapping->host; 928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 929 const u32 sectorsize = fs_info->sectorsize; 930 931 /* Our read/write should always be sector aligned. */ 932 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 933 btrfs_err(fs_info, 934 "partial page write in btrfs with offset %u and length %u", 935 bvec->bv_offset, bvec->bv_len); 936 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 937 btrfs_info(fs_info, 938 "incomplete page write with offset %u and length %u", 939 bvec->bv_offset, bvec->bv_len); 940 941 start = page_offset(page) + bvec->bv_offset; 942 end = start + bvec->bv_len - 1; 943 944 if (first_bvec) { 945 btrfs_record_physical_zoned(inode, start, bio); 946 first_bvec = false; 947 } 948 949 end_extent_writepage(page, error, start, end); 950 951 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 952 } 953 954 bio_put(bio); 955 } 956 957 /* 958 * Record previously processed extent range 959 * 960 * For endio_readpage_release_extent() to handle a full extent range, reducing 961 * the extent io operations. 962 */ 963 struct processed_extent { 964 struct btrfs_inode *inode; 965 /* Start of the range in @inode */ 966 u64 start; 967 /* End of the range in @inode */ 968 u64 end; 969 bool uptodate; 970 }; 971 972 /* 973 * Try to release processed extent range 974 * 975 * May not release the extent range right now if the current range is 976 * contiguous to processed extent. 977 * 978 * Will release processed extent when any of @inode, @uptodate, the range is 979 * no longer contiguous to the processed range. 980 * 981 * Passing @inode == NULL will force processed extent to be released. 982 */ 983 static void endio_readpage_release_extent(struct processed_extent *processed, 984 struct btrfs_inode *inode, u64 start, u64 end, 985 bool uptodate) 986 { 987 struct extent_state *cached = NULL; 988 struct extent_io_tree *tree; 989 990 /* The first extent, initialize @processed */ 991 if (!processed->inode) 992 goto update; 993 994 /* 995 * Contiguous to processed extent, just uptodate the end. 996 * 997 * Several things to notice: 998 * 999 * - bio can be merged as long as on-disk bytenr is contiguous 1000 * This means we can have page belonging to other inodes, thus need to 1001 * check if the inode still matches. 1002 * - bvec can contain range beyond current page for multi-page bvec 1003 * Thus we need to do processed->end + 1 >= start check 1004 */ 1005 if (processed->inode == inode && processed->uptodate == uptodate && 1006 processed->end + 1 >= start && end >= processed->end) { 1007 processed->end = end; 1008 return; 1009 } 1010 1011 tree = &processed->inode->io_tree; 1012 /* 1013 * Now we don't have range contiguous to the processed range, release 1014 * the processed range now. 1015 */ 1016 unlock_extent(tree, processed->start, processed->end, &cached); 1017 1018 update: 1019 /* Update processed to current range */ 1020 processed->inode = inode; 1021 processed->start = start; 1022 processed->end = end; 1023 processed->uptodate = uptodate; 1024 } 1025 1026 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 1027 { 1028 ASSERT(PageLocked(page)); 1029 if (!btrfs_is_subpage(fs_info, page)) 1030 return; 1031 1032 ASSERT(PagePrivate(page)); 1033 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 1034 } 1035 1036 /* 1037 * Find extent buffer for a givne bytenr. 1038 * 1039 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 1040 * in endio context. 1041 */ 1042 static struct extent_buffer *find_extent_buffer_readpage( 1043 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 1044 { 1045 struct extent_buffer *eb; 1046 1047 /* 1048 * For regular sectorsize, we can use page->private to grab extent 1049 * buffer 1050 */ 1051 if (fs_info->nodesize >= PAGE_SIZE) { 1052 ASSERT(PagePrivate(page) && page->private); 1053 return (struct extent_buffer *)page->private; 1054 } 1055 1056 /* For subpage case, we need to lookup buffer radix tree */ 1057 rcu_read_lock(); 1058 eb = radix_tree_lookup(&fs_info->buffer_radix, 1059 bytenr >> fs_info->sectorsize_bits); 1060 rcu_read_unlock(); 1061 ASSERT(eb); 1062 return eb; 1063 } 1064 1065 /* 1066 * after a readpage IO is done, we need to: 1067 * clear the uptodate bits on error 1068 * set the uptodate bits if things worked 1069 * set the page up to date if all extents in the tree are uptodate 1070 * clear the lock bit in the extent tree 1071 * unlock the page if there are no other extents locked for it 1072 * 1073 * Scheduling is not allowed, so the extent state tree is expected 1074 * to have one and only one object corresponding to this IO. 1075 */ 1076 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 1077 { 1078 struct bio *bio = &bbio->bio; 1079 struct bio_vec *bvec; 1080 struct processed_extent processed = { 0 }; 1081 /* 1082 * The offset to the beginning of a bio, since one bio can never be 1083 * larger than UINT_MAX, u32 here is enough. 1084 */ 1085 u32 bio_offset = 0; 1086 int mirror; 1087 struct bvec_iter_all iter_all; 1088 1089 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1090 bio_for_each_segment_all(bvec, bio, iter_all) { 1091 bool uptodate = !bio->bi_status; 1092 struct page *page = bvec->bv_page; 1093 struct inode *inode = page->mapping->host; 1094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1095 const u32 sectorsize = fs_info->sectorsize; 1096 unsigned int error_bitmap = (unsigned int)-1; 1097 bool repair = false; 1098 u64 start; 1099 u64 end; 1100 u32 len; 1101 1102 btrfs_debug(fs_info, 1103 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 1104 bio->bi_iter.bi_sector, bio->bi_status, 1105 bbio->mirror_num); 1106 1107 /* 1108 * We always issue full-sector reads, but if some block in a 1109 * page fails to read, blk_update_request() will advance 1110 * bv_offset and adjust bv_len to compensate. Print a warning 1111 * for unaligned offsets, and an error if they don't add up to 1112 * a full sector. 1113 */ 1114 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1115 btrfs_err(fs_info, 1116 "partial page read in btrfs with offset %u and length %u", 1117 bvec->bv_offset, bvec->bv_len); 1118 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 1119 sectorsize)) 1120 btrfs_info(fs_info, 1121 "incomplete page read with offset %u and length %u", 1122 bvec->bv_offset, bvec->bv_len); 1123 1124 start = page_offset(page) + bvec->bv_offset; 1125 end = start + bvec->bv_len - 1; 1126 len = bvec->bv_len; 1127 1128 mirror = bbio->mirror_num; 1129 if (likely(uptodate)) { 1130 if (is_data_inode(inode)) { 1131 error_bitmap = btrfs_verify_data_csum(bbio, 1132 bio_offset, page, start, end); 1133 if (error_bitmap) 1134 uptodate = false; 1135 } else { 1136 if (btrfs_validate_metadata_buffer(bbio, 1137 page, start, end, mirror)) 1138 uptodate = false; 1139 } 1140 } 1141 1142 if (likely(uptodate)) { 1143 loff_t i_size = i_size_read(inode); 1144 pgoff_t end_index = i_size >> PAGE_SHIFT; 1145 1146 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0); 1147 1148 /* 1149 * Zero out the remaining part if this range straddles 1150 * i_size. 1151 * 1152 * Here we should only zero the range inside the bvec, 1153 * not touch anything else. 1154 * 1155 * NOTE: i_size is exclusive while end is inclusive. 1156 */ 1157 if (page->index == end_index && i_size <= end) { 1158 u32 zero_start = max(offset_in_page(i_size), 1159 offset_in_page(start)); 1160 1161 zero_user_segment(page, zero_start, 1162 offset_in_page(end) + 1); 1163 } 1164 } else if (is_data_inode(inode)) { 1165 /* 1166 * Only try to repair bios that actually made it to a 1167 * device. If the bio failed to be submitted mirror 1168 * is 0 and we need to fail it without retrying. 1169 * 1170 * This also includes the high level bios for compressed 1171 * extents - these never make it to a device and repair 1172 * is already handled on the lower compressed bio. 1173 */ 1174 if (mirror > 0) 1175 repair = true; 1176 } else { 1177 struct extent_buffer *eb; 1178 1179 eb = find_extent_buffer_readpage(fs_info, page, start); 1180 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 1181 eb->read_mirror = mirror; 1182 atomic_dec(&eb->io_pages); 1183 } 1184 1185 if (repair) { 1186 /* 1187 * submit_data_read_repair() will handle all the good 1188 * and bad sectors, we just continue to the next bvec. 1189 */ 1190 submit_data_read_repair(inode, bbio, bio_offset, bvec, 1191 error_bitmap); 1192 } else { 1193 /* Update page status and unlock */ 1194 end_page_read(page, uptodate, start, len); 1195 endio_readpage_release_extent(&processed, BTRFS_I(inode), 1196 start, end, PageUptodate(page)); 1197 } 1198 1199 ASSERT(bio_offset + len > bio_offset); 1200 bio_offset += len; 1201 1202 } 1203 /* Release the last extent */ 1204 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 1205 btrfs_bio_free_csum(bbio); 1206 bio_put(bio); 1207 } 1208 1209 /* 1210 * Populate every free slot in a provided array with pages. 1211 * 1212 * @nr_pages: number of pages to allocate 1213 * @page_array: the array to fill with pages; any existing non-null entries in 1214 * the array will be skipped 1215 * 1216 * Return: 0 if all pages were able to be allocated; 1217 * -ENOMEM otherwise, and the caller is responsible for freeing all 1218 * non-null page pointers in the array. 1219 */ 1220 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 1221 { 1222 unsigned int allocated; 1223 1224 for (allocated = 0; allocated < nr_pages;) { 1225 unsigned int last = allocated; 1226 1227 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 1228 1229 if (allocated == nr_pages) 1230 return 0; 1231 1232 /* 1233 * During this iteration, no page could be allocated, even 1234 * though alloc_pages_bulk_array() falls back to alloc_page() 1235 * if it could not bulk-allocate. So we must be out of memory. 1236 */ 1237 if (allocated == last) 1238 return -ENOMEM; 1239 1240 memalloc_retry_wait(GFP_NOFS); 1241 } 1242 return 0; 1243 } 1244 1245 /* 1246 * Attempt to add a page to bio. 1247 * 1248 * @bio_ctrl: record both the bio, and its bio_flags 1249 * @page: page to add to the bio 1250 * @disk_bytenr: offset of the new bio or to check whether we are adding 1251 * a contiguous page to the previous one 1252 * @size: portion of page that we want to write 1253 * @pg_offset: starting offset in the page 1254 * @compress_type: compression type of the current bio to see if we can merge them 1255 * 1256 * Attempt to add a page to bio considering stripe alignment etc. 1257 * 1258 * Return >= 0 for the number of bytes added to the bio. 1259 * Can return 0 if the current bio is already at stripe/zone boundary. 1260 * Return <0 for error. 1261 */ 1262 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 1263 struct page *page, 1264 u64 disk_bytenr, unsigned int size, 1265 unsigned int pg_offset, 1266 enum btrfs_compression_type compress_type) 1267 { 1268 struct bio *bio = bio_ctrl->bio; 1269 u32 bio_size = bio->bi_iter.bi_size; 1270 u32 real_size; 1271 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 1272 bool contig = false; 1273 int ret; 1274 1275 ASSERT(bio); 1276 /* The limit should be calculated when bio_ctrl->bio is allocated */ 1277 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 1278 if (bio_ctrl->compress_type != compress_type) 1279 return 0; 1280 1281 1282 if (bio->bi_iter.bi_size == 0) { 1283 /* We can always add a page into an empty bio. */ 1284 contig = true; 1285 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 1286 struct bio_vec *bvec = bio_last_bvec_all(bio); 1287 1288 /* 1289 * The contig check requires the following conditions to be met: 1290 * 1) The pages are belonging to the same inode 1291 * This is implied by the call chain. 1292 * 1293 * 2) The range has adjacent logical bytenr 1294 * 1295 * 3) The range has adjacent file offset 1296 * This is required for the usage of btrfs_bio->file_offset. 1297 */ 1298 if (bio_end_sector(bio) == sector && 1299 page_offset(bvec->bv_page) + bvec->bv_offset + 1300 bvec->bv_len == page_offset(page) + pg_offset) 1301 contig = true; 1302 } else { 1303 /* 1304 * For compression, all IO should have its logical bytenr 1305 * set to the starting bytenr of the compressed extent. 1306 */ 1307 contig = bio->bi_iter.bi_sector == sector; 1308 } 1309 1310 if (!contig) 1311 return 0; 1312 1313 real_size = min(bio_ctrl->len_to_oe_boundary, 1314 bio_ctrl->len_to_stripe_boundary) - bio_size; 1315 real_size = min(real_size, size); 1316 1317 /* 1318 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 1319 * bio will still execute its endio function on the page! 1320 */ 1321 if (real_size == 0) 1322 return 0; 1323 1324 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1325 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 1326 else 1327 ret = bio_add_page(bio, page, real_size, pg_offset); 1328 1329 return ret; 1330 } 1331 1332 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 1333 struct btrfs_inode *inode, u64 file_offset) 1334 { 1335 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1336 struct btrfs_io_geometry geom; 1337 struct btrfs_ordered_extent *ordered; 1338 struct extent_map *em; 1339 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 1340 int ret; 1341 1342 /* 1343 * Pages for compressed extent are never submitted to disk directly, 1344 * thus it has no real boundary, just set them to U32_MAX. 1345 * 1346 * The split happens for real compressed bio, which happens in 1347 * btrfs_submit_compressed_read/write(). 1348 */ 1349 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 1350 bio_ctrl->len_to_oe_boundary = U32_MAX; 1351 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1352 return 0; 1353 } 1354 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 1355 if (IS_ERR(em)) 1356 return PTR_ERR(em); 1357 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 1358 logical, &geom); 1359 free_extent_map(em); 1360 if (ret < 0) { 1361 return ret; 1362 } 1363 if (geom.len > U32_MAX) 1364 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1365 else 1366 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 1367 1368 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 1369 bio_ctrl->len_to_oe_boundary = U32_MAX; 1370 return 0; 1371 } 1372 1373 /* Ordered extent not yet created, so we're good */ 1374 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 1375 if (!ordered) { 1376 bio_ctrl->len_to_oe_boundary = U32_MAX; 1377 return 0; 1378 } 1379 1380 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 1381 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 1382 btrfs_put_ordered_extent(ordered); 1383 return 0; 1384 } 1385 1386 static int alloc_new_bio(struct btrfs_inode *inode, 1387 struct btrfs_bio_ctrl *bio_ctrl, 1388 struct writeback_control *wbc, 1389 blk_opf_t opf, 1390 u64 disk_bytenr, u32 offset, u64 file_offset, 1391 enum btrfs_compression_type compress_type) 1392 { 1393 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1394 struct bio *bio; 1395 int ret; 1396 1397 ASSERT(bio_ctrl->end_io_func); 1398 1399 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL); 1400 /* 1401 * For compressed page range, its disk_bytenr is always @disk_bytenr 1402 * passed in, no matter if we have added any range into previous bio. 1403 */ 1404 if (compress_type != BTRFS_COMPRESS_NONE) 1405 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 1406 else 1407 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 1408 bio_ctrl->bio = bio; 1409 bio_ctrl->compress_type = compress_type; 1410 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 1411 if (ret < 0) 1412 goto error; 1413 1414 if (wbc) { 1415 /* 1416 * For Zone append we need the correct block_device that we are 1417 * going to write to set in the bio to be able to respect the 1418 * hardware limitation. Look it up here: 1419 */ 1420 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1421 struct btrfs_device *dev; 1422 1423 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 1424 fs_info->sectorsize); 1425 if (IS_ERR(dev)) { 1426 ret = PTR_ERR(dev); 1427 goto error; 1428 } 1429 1430 bio_set_dev(bio, dev->bdev); 1431 } else { 1432 /* 1433 * Otherwise pick the last added device to support 1434 * cgroup writeback. For multi-device file systems this 1435 * means blk-cgroup policies have to always be set on the 1436 * last added/replaced device. This is a bit odd but has 1437 * been like that for a long time. 1438 */ 1439 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1440 } 1441 wbc_init_bio(wbc, bio); 1442 } else { 1443 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 1444 } 1445 return 0; 1446 error: 1447 bio_ctrl->bio = NULL; 1448 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 1449 return ret; 1450 } 1451 1452 /* 1453 * @opf: bio REQ_OP_* and REQ_* flags as one value 1454 * @wbc: optional writeback control for io accounting 1455 * @disk_bytenr: logical bytenr where the write will be 1456 * @page: page to add to the bio 1457 * @size: portion of page that we want to write to 1458 * @pg_offset: offset of the new bio or to check whether we are adding 1459 * a contiguous page to the previous one 1460 * @compress_type: compress type for current bio 1461 * 1462 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1463 * new one in @bio_ctrl->bio. 1464 * The mirror number for this IO should already be initizlied in 1465 * @bio_ctrl->mirror_num. 1466 */ 1467 static int submit_extent_page(blk_opf_t opf, 1468 struct writeback_control *wbc, 1469 struct btrfs_bio_ctrl *bio_ctrl, 1470 u64 disk_bytenr, struct page *page, 1471 size_t size, unsigned long pg_offset, 1472 enum btrfs_compression_type compress_type, 1473 bool force_bio_submit) 1474 { 1475 int ret = 0; 1476 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1477 unsigned int cur = pg_offset; 1478 1479 ASSERT(bio_ctrl); 1480 1481 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1482 pg_offset + size <= PAGE_SIZE); 1483 1484 ASSERT(bio_ctrl->end_io_func); 1485 1486 if (force_bio_submit) 1487 submit_one_bio(bio_ctrl); 1488 1489 while (cur < pg_offset + size) { 1490 u32 offset = cur - pg_offset; 1491 int added; 1492 1493 /* Allocate new bio if needed */ 1494 if (!bio_ctrl->bio) { 1495 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 1496 disk_bytenr, offset, 1497 page_offset(page) + cur, 1498 compress_type); 1499 if (ret < 0) 1500 return ret; 1501 } 1502 /* 1503 * We must go through btrfs_bio_add_page() to ensure each 1504 * page range won't cross various boundaries. 1505 */ 1506 if (compress_type != BTRFS_COMPRESS_NONE) 1507 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1508 size - offset, pg_offset + offset, 1509 compress_type); 1510 else 1511 added = btrfs_bio_add_page(bio_ctrl, page, 1512 disk_bytenr + offset, size - offset, 1513 pg_offset + offset, compress_type); 1514 1515 /* Metadata page range should never be split */ 1516 if (!is_data_inode(&inode->vfs_inode)) 1517 ASSERT(added == 0 || added == size - offset); 1518 1519 /* At least we added some page, update the account */ 1520 if (wbc && added) 1521 wbc_account_cgroup_owner(wbc, page, added); 1522 1523 /* We have reached boundary, submit right now */ 1524 if (added < size - offset) { 1525 /* The bio should contain some page(s) */ 1526 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1527 submit_one_bio(bio_ctrl); 1528 } 1529 cur += added; 1530 } 1531 return 0; 1532 } 1533 1534 static int attach_extent_buffer_page(struct extent_buffer *eb, 1535 struct page *page, 1536 struct btrfs_subpage *prealloc) 1537 { 1538 struct btrfs_fs_info *fs_info = eb->fs_info; 1539 int ret = 0; 1540 1541 /* 1542 * If the page is mapped to btree inode, we should hold the private 1543 * lock to prevent race. 1544 * For cloned or dummy extent buffers, their pages are not mapped and 1545 * will not race with any other ebs. 1546 */ 1547 if (page->mapping) 1548 lockdep_assert_held(&page->mapping->private_lock); 1549 1550 if (fs_info->nodesize >= PAGE_SIZE) { 1551 if (!PagePrivate(page)) 1552 attach_page_private(page, eb); 1553 else 1554 WARN_ON(page->private != (unsigned long)eb); 1555 return 0; 1556 } 1557 1558 /* Already mapped, just free prealloc */ 1559 if (PagePrivate(page)) { 1560 btrfs_free_subpage(prealloc); 1561 return 0; 1562 } 1563 1564 if (prealloc) 1565 /* Has preallocated memory for subpage */ 1566 attach_page_private(page, prealloc); 1567 else 1568 /* Do new allocation to attach subpage */ 1569 ret = btrfs_attach_subpage(fs_info, page, 1570 BTRFS_SUBPAGE_METADATA); 1571 return ret; 1572 } 1573 1574 int set_page_extent_mapped(struct page *page) 1575 { 1576 struct btrfs_fs_info *fs_info; 1577 1578 ASSERT(page->mapping); 1579 1580 if (PagePrivate(page)) 1581 return 0; 1582 1583 fs_info = btrfs_sb(page->mapping->host->i_sb); 1584 1585 if (btrfs_is_subpage(fs_info, page)) 1586 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1587 1588 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1589 return 0; 1590 } 1591 1592 void clear_page_extent_mapped(struct page *page) 1593 { 1594 struct btrfs_fs_info *fs_info; 1595 1596 ASSERT(page->mapping); 1597 1598 if (!PagePrivate(page)) 1599 return; 1600 1601 fs_info = btrfs_sb(page->mapping->host->i_sb); 1602 if (btrfs_is_subpage(fs_info, page)) 1603 return btrfs_detach_subpage(fs_info, page); 1604 1605 detach_page_private(page); 1606 } 1607 1608 static struct extent_map * 1609 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1610 u64 start, u64 len, struct extent_map **em_cached) 1611 { 1612 struct extent_map *em; 1613 1614 if (em_cached && *em_cached) { 1615 em = *em_cached; 1616 if (extent_map_in_tree(em) && start >= em->start && 1617 start < extent_map_end(em)) { 1618 refcount_inc(&em->refs); 1619 return em; 1620 } 1621 1622 free_extent_map(em); 1623 *em_cached = NULL; 1624 } 1625 1626 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1627 if (em_cached && !IS_ERR(em)) { 1628 BUG_ON(*em_cached); 1629 refcount_inc(&em->refs); 1630 *em_cached = em; 1631 } 1632 return em; 1633 } 1634 /* 1635 * basic readpage implementation. Locked extent state structs are inserted 1636 * into the tree that are removed when the IO is done (by the end_io 1637 * handlers) 1638 * XXX JDM: This needs looking at to ensure proper page locking 1639 * return 0 on success, otherwise return error 1640 */ 1641 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1642 struct btrfs_bio_ctrl *bio_ctrl, 1643 blk_opf_t read_flags, u64 *prev_em_start) 1644 { 1645 struct inode *inode = page->mapping->host; 1646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1647 u64 start = page_offset(page); 1648 const u64 end = start + PAGE_SIZE - 1; 1649 u64 cur = start; 1650 u64 extent_offset; 1651 u64 last_byte = i_size_read(inode); 1652 u64 block_start; 1653 struct extent_map *em; 1654 int ret = 0; 1655 size_t pg_offset = 0; 1656 size_t iosize; 1657 size_t blocksize = inode->i_sb->s_blocksize; 1658 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1659 1660 ret = set_page_extent_mapped(page); 1661 if (ret < 0) { 1662 unlock_extent(tree, start, end, NULL); 1663 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1664 unlock_page(page); 1665 goto out; 1666 } 1667 1668 if (page->index == last_byte >> PAGE_SHIFT) { 1669 size_t zero_offset = offset_in_page(last_byte); 1670 1671 if (zero_offset) { 1672 iosize = PAGE_SIZE - zero_offset; 1673 memzero_page(page, zero_offset, iosize); 1674 } 1675 } 1676 bio_ctrl->end_io_func = end_bio_extent_readpage; 1677 begin_page_read(fs_info, page); 1678 while (cur <= end) { 1679 unsigned long this_bio_flag = 0; 1680 bool force_bio_submit = false; 1681 u64 disk_bytenr; 1682 1683 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1684 if (cur >= last_byte) { 1685 iosize = PAGE_SIZE - pg_offset; 1686 memzero_page(page, pg_offset, iosize); 1687 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1688 end_page_read(page, true, cur, iosize); 1689 break; 1690 } 1691 em = __get_extent_map(inode, page, pg_offset, cur, 1692 end - cur + 1, em_cached); 1693 if (IS_ERR(em)) { 1694 unlock_extent(tree, cur, end, NULL); 1695 end_page_read(page, false, cur, end + 1 - cur); 1696 ret = PTR_ERR(em); 1697 break; 1698 } 1699 extent_offset = cur - em->start; 1700 BUG_ON(extent_map_end(em) <= cur); 1701 BUG_ON(end < cur); 1702 1703 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1704 this_bio_flag = em->compress_type; 1705 1706 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1707 iosize = ALIGN(iosize, blocksize); 1708 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1709 disk_bytenr = em->block_start; 1710 else 1711 disk_bytenr = em->block_start + extent_offset; 1712 block_start = em->block_start; 1713 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1714 block_start = EXTENT_MAP_HOLE; 1715 1716 /* 1717 * If we have a file range that points to a compressed extent 1718 * and it's followed by a consecutive file range that points 1719 * to the same compressed extent (possibly with a different 1720 * offset and/or length, so it either points to the whole extent 1721 * or only part of it), we must make sure we do not submit a 1722 * single bio to populate the pages for the 2 ranges because 1723 * this makes the compressed extent read zero out the pages 1724 * belonging to the 2nd range. Imagine the following scenario: 1725 * 1726 * File layout 1727 * [0 - 8K] [8K - 24K] 1728 * | | 1729 * | | 1730 * points to extent X, points to extent X, 1731 * offset 4K, length of 8K offset 0, length 16K 1732 * 1733 * [extent X, compressed length = 4K uncompressed length = 16K] 1734 * 1735 * If the bio to read the compressed extent covers both ranges, 1736 * it will decompress extent X into the pages belonging to the 1737 * first range and then it will stop, zeroing out the remaining 1738 * pages that belong to the other range that points to extent X. 1739 * So here we make sure we submit 2 bios, one for the first 1740 * range and another one for the third range. Both will target 1741 * the same physical extent from disk, but we can't currently 1742 * make the compressed bio endio callback populate the pages 1743 * for both ranges because each compressed bio is tightly 1744 * coupled with a single extent map, and each range can have 1745 * an extent map with a different offset value relative to the 1746 * uncompressed data of our extent and different lengths. This 1747 * is a corner case so we prioritize correctness over 1748 * non-optimal behavior (submitting 2 bios for the same extent). 1749 */ 1750 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1751 prev_em_start && *prev_em_start != (u64)-1 && 1752 *prev_em_start != em->start) 1753 force_bio_submit = true; 1754 1755 if (prev_em_start) 1756 *prev_em_start = em->start; 1757 1758 free_extent_map(em); 1759 em = NULL; 1760 1761 /* we've found a hole, just zero and go on */ 1762 if (block_start == EXTENT_MAP_HOLE) { 1763 memzero_page(page, pg_offset, iosize); 1764 1765 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1766 end_page_read(page, true, cur, iosize); 1767 cur = cur + iosize; 1768 pg_offset += iosize; 1769 continue; 1770 } 1771 /* the get_extent function already copied into the page */ 1772 if (block_start == EXTENT_MAP_INLINE) { 1773 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1774 end_page_read(page, true, cur, iosize); 1775 cur = cur + iosize; 1776 pg_offset += iosize; 1777 continue; 1778 } 1779 1780 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1781 bio_ctrl, disk_bytenr, page, iosize, 1782 pg_offset, this_bio_flag, 1783 force_bio_submit); 1784 if (ret) { 1785 /* 1786 * We have to unlock the remaining range, or the page 1787 * will never be unlocked. 1788 */ 1789 unlock_extent(tree, cur, end, NULL); 1790 end_page_read(page, false, cur, end + 1 - cur); 1791 goto out; 1792 } 1793 cur = cur + iosize; 1794 pg_offset += iosize; 1795 } 1796 out: 1797 return ret; 1798 } 1799 1800 int btrfs_read_folio(struct file *file, struct folio *folio) 1801 { 1802 struct page *page = &folio->page; 1803 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1804 u64 start = page_offset(page); 1805 u64 end = start + PAGE_SIZE - 1; 1806 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1807 int ret; 1808 1809 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1810 1811 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1812 /* 1813 * If btrfs_do_readpage() failed we will want to submit the assembled 1814 * bio to do the cleanup. 1815 */ 1816 submit_one_bio(&bio_ctrl); 1817 return ret; 1818 } 1819 1820 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1821 u64 start, u64 end, 1822 struct extent_map **em_cached, 1823 struct btrfs_bio_ctrl *bio_ctrl, 1824 u64 *prev_em_start) 1825 { 1826 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1827 int index; 1828 1829 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1830 1831 for (index = 0; index < nr_pages; index++) { 1832 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1833 REQ_RAHEAD, prev_em_start); 1834 put_page(pages[index]); 1835 } 1836 } 1837 1838 /* 1839 * helper for __extent_writepage, doing all of the delayed allocation setup. 1840 * 1841 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1842 * to write the page (copy into inline extent). In this case the IO has 1843 * been started and the page is already unlocked. 1844 * 1845 * This returns 0 if all went well (page still locked) 1846 * This returns < 0 if there were errors (page still locked) 1847 */ 1848 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1849 struct page *page, struct writeback_control *wbc) 1850 { 1851 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1852 u64 delalloc_start = page_offset(page); 1853 u64 delalloc_to_write = 0; 1854 /* How many pages are started by btrfs_run_delalloc_range() */ 1855 unsigned long nr_written = 0; 1856 int ret; 1857 int page_started = 0; 1858 1859 while (delalloc_start < page_end) { 1860 u64 delalloc_end = page_end; 1861 bool found; 1862 1863 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1864 &delalloc_start, 1865 &delalloc_end); 1866 if (!found) { 1867 delalloc_start = delalloc_end + 1; 1868 continue; 1869 } 1870 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1871 delalloc_end, &page_started, &nr_written, wbc); 1872 if (ret) { 1873 btrfs_page_set_error(inode->root->fs_info, page, 1874 page_offset(page), PAGE_SIZE); 1875 return ret; 1876 } 1877 /* 1878 * delalloc_end is already one less than the total length, so 1879 * we don't subtract one from PAGE_SIZE 1880 */ 1881 delalloc_to_write += (delalloc_end - delalloc_start + 1882 PAGE_SIZE) >> PAGE_SHIFT; 1883 delalloc_start = delalloc_end + 1; 1884 } 1885 if (wbc->nr_to_write < delalloc_to_write) { 1886 int thresh = 8192; 1887 1888 if (delalloc_to_write < thresh * 2) 1889 thresh = delalloc_to_write; 1890 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1891 thresh); 1892 } 1893 1894 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1895 if (page_started) { 1896 /* 1897 * We've unlocked the page, so we can't update the mapping's 1898 * writeback index, just update nr_to_write. 1899 */ 1900 wbc->nr_to_write -= nr_written; 1901 return 1; 1902 } 1903 1904 return 0; 1905 } 1906 1907 /* 1908 * Find the first byte we need to write. 1909 * 1910 * For subpage, one page can contain several sectors, and 1911 * __extent_writepage_io() will just grab all extent maps in the page 1912 * range and try to submit all non-inline/non-compressed extents. 1913 * 1914 * This is a big problem for subpage, we shouldn't re-submit already written 1915 * data at all. 1916 * This function will lookup subpage dirty bit to find which range we really 1917 * need to submit. 1918 * 1919 * Return the next dirty range in [@start, @end). 1920 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1921 */ 1922 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1923 struct page *page, u64 *start, u64 *end) 1924 { 1925 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1926 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1927 u64 orig_start = *start; 1928 /* Declare as unsigned long so we can use bitmap ops */ 1929 unsigned long flags; 1930 int range_start_bit; 1931 int range_end_bit; 1932 1933 /* 1934 * For regular sector size == page size case, since one page only 1935 * contains one sector, we return the page offset directly. 1936 */ 1937 if (!btrfs_is_subpage(fs_info, page)) { 1938 *start = page_offset(page); 1939 *end = page_offset(page) + PAGE_SIZE; 1940 return; 1941 } 1942 1943 range_start_bit = spi->dirty_offset + 1944 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1945 1946 /* We should have the page locked, but just in case */ 1947 spin_lock_irqsave(&subpage->lock, flags); 1948 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1949 spi->dirty_offset + spi->bitmap_nr_bits); 1950 spin_unlock_irqrestore(&subpage->lock, flags); 1951 1952 range_start_bit -= spi->dirty_offset; 1953 range_end_bit -= spi->dirty_offset; 1954 1955 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1956 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1957 } 1958 1959 /* 1960 * helper for __extent_writepage. This calls the writepage start hooks, 1961 * and does the loop to map the page into extents and bios. 1962 * 1963 * We return 1 if the IO is started and the page is unlocked, 1964 * 0 if all went well (page still locked) 1965 * < 0 if there were errors (page still locked) 1966 */ 1967 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1968 struct page *page, 1969 struct writeback_control *wbc, 1970 struct btrfs_bio_ctrl *bio_ctrl, 1971 loff_t i_size, 1972 int *nr_ret) 1973 { 1974 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1975 u64 cur = page_offset(page); 1976 u64 end = cur + PAGE_SIZE - 1; 1977 u64 extent_offset; 1978 u64 block_start; 1979 struct extent_map *em; 1980 int saved_ret = 0; 1981 int ret = 0; 1982 int nr = 0; 1983 enum req_op op = REQ_OP_WRITE; 1984 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1985 bool has_error = false; 1986 bool compressed; 1987 1988 ret = btrfs_writepage_cow_fixup(page); 1989 if (ret) { 1990 /* Fixup worker will requeue */ 1991 redirty_page_for_writepage(wbc, page); 1992 unlock_page(page); 1993 return 1; 1994 } 1995 1996 /* 1997 * we don't want to touch the inode after unlocking the page, 1998 * so we update the mapping writeback index now 1999 */ 2000 wbc->nr_to_write--; 2001 2002 bio_ctrl->end_io_func = end_bio_extent_writepage; 2003 while (cur <= end) { 2004 u64 disk_bytenr; 2005 u64 em_end; 2006 u64 dirty_range_start = cur; 2007 u64 dirty_range_end; 2008 u32 iosize; 2009 2010 if (cur >= i_size) { 2011 btrfs_writepage_endio_finish_ordered(inode, page, cur, 2012 end, true); 2013 /* 2014 * This range is beyond i_size, thus we don't need to 2015 * bother writing back. 2016 * But we still need to clear the dirty subpage bit, or 2017 * the next time the page gets dirtied, we will try to 2018 * writeback the sectors with subpage dirty bits, 2019 * causing writeback without ordered extent. 2020 */ 2021 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 2022 break; 2023 } 2024 2025 find_next_dirty_byte(fs_info, page, &dirty_range_start, 2026 &dirty_range_end); 2027 if (cur < dirty_range_start) { 2028 cur = dirty_range_start; 2029 continue; 2030 } 2031 2032 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 2033 if (IS_ERR(em)) { 2034 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 2035 ret = PTR_ERR_OR_ZERO(em); 2036 has_error = true; 2037 if (!saved_ret) 2038 saved_ret = ret; 2039 break; 2040 } 2041 2042 extent_offset = cur - em->start; 2043 em_end = extent_map_end(em); 2044 ASSERT(cur <= em_end); 2045 ASSERT(cur < end); 2046 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 2047 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 2048 block_start = em->block_start; 2049 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2050 disk_bytenr = em->block_start + extent_offset; 2051 2052 /* 2053 * Note that em_end from extent_map_end() and dirty_range_end from 2054 * find_next_dirty_byte() are all exclusive 2055 */ 2056 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 2057 2058 if (btrfs_use_zone_append(inode, em->block_start)) 2059 op = REQ_OP_ZONE_APPEND; 2060 2061 free_extent_map(em); 2062 em = NULL; 2063 2064 /* 2065 * compressed and inline extents are written through other 2066 * paths in the FS 2067 */ 2068 if (compressed || block_start == EXTENT_MAP_HOLE || 2069 block_start == EXTENT_MAP_INLINE) { 2070 if (compressed) 2071 nr++; 2072 else 2073 btrfs_writepage_endio_finish_ordered(inode, 2074 page, cur, cur + iosize - 1, true); 2075 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2076 cur += iosize; 2077 continue; 2078 } 2079 2080 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 2081 if (!PageWriteback(page)) { 2082 btrfs_err(inode->root->fs_info, 2083 "page %lu not writeback, cur %llu end %llu", 2084 page->index, cur, end); 2085 } 2086 2087 /* 2088 * Although the PageDirty bit is cleared before entering this 2089 * function, subpage dirty bit is not cleared. 2090 * So clear subpage dirty bit here so next time we won't submit 2091 * page for range already written to disk. 2092 */ 2093 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2094 2095 ret = submit_extent_page(op | write_flags, wbc, 2096 bio_ctrl, disk_bytenr, 2097 page, iosize, 2098 cur - page_offset(page), 2099 0, false); 2100 if (ret) { 2101 has_error = true; 2102 if (!saved_ret) 2103 saved_ret = ret; 2104 2105 btrfs_page_set_error(fs_info, page, cur, iosize); 2106 if (PageWriteback(page)) 2107 btrfs_page_clear_writeback(fs_info, page, cur, 2108 iosize); 2109 } 2110 2111 cur += iosize; 2112 nr++; 2113 } 2114 /* 2115 * If we finish without problem, we should not only clear page dirty, 2116 * but also empty subpage dirty bits 2117 */ 2118 if (!has_error) 2119 btrfs_page_assert_not_dirty(fs_info, page); 2120 else 2121 ret = saved_ret; 2122 *nr_ret = nr; 2123 return ret; 2124 } 2125 2126 /* 2127 * the writepage semantics are similar to regular writepage. extent 2128 * records are inserted to lock ranges in the tree, and as dirty areas 2129 * are found, they are marked writeback. Then the lock bits are removed 2130 * and the end_io handler clears the writeback ranges 2131 * 2132 * Return 0 if everything goes well. 2133 * Return <0 for error. 2134 */ 2135 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2136 struct btrfs_bio_ctrl *bio_ctrl) 2137 { 2138 struct folio *folio = page_folio(page); 2139 struct inode *inode = page->mapping->host; 2140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2141 const u64 page_start = page_offset(page); 2142 const u64 page_end = page_start + PAGE_SIZE - 1; 2143 int ret; 2144 int nr = 0; 2145 size_t pg_offset; 2146 loff_t i_size = i_size_read(inode); 2147 unsigned long end_index = i_size >> PAGE_SHIFT; 2148 2149 trace___extent_writepage(page, inode, wbc); 2150 2151 WARN_ON(!PageLocked(page)); 2152 2153 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 2154 page_offset(page), PAGE_SIZE); 2155 2156 pg_offset = offset_in_page(i_size); 2157 if (page->index > end_index || 2158 (page->index == end_index && !pg_offset)) { 2159 folio_invalidate(folio, 0, folio_size(folio)); 2160 folio_unlock(folio); 2161 return 0; 2162 } 2163 2164 if (page->index == end_index) 2165 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 2166 2167 ret = set_page_extent_mapped(page); 2168 if (ret < 0) { 2169 SetPageError(page); 2170 goto done; 2171 } 2172 2173 if (!bio_ctrl->extent_locked) { 2174 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 2175 if (ret == 1) 2176 return 0; 2177 if (ret) 2178 goto done; 2179 } 2180 2181 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size, 2182 &nr); 2183 if (ret == 1) 2184 return 0; 2185 2186 done: 2187 if (nr == 0) { 2188 /* make sure the mapping tag for page dirty gets cleared */ 2189 set_page_writeback(page); 2190 end_page_writeback(page); 2191 } 2192 /* 2193 * Here we used to have a check for PageError() and then set @ret and 2194 * call end_extent_writepage(). 2195 * 2196 * But in fact setting @ret here will cause different error paths 2197 * between subpage and regular sectorsize. 2198 * 2199 * For regular page size, we never submit current page, but only add 2200 * current page to current bio. 2201 * The bio submission can only happen in next page. 2202 * Thus if we hit the PageError() branch, @ret is already set to 2203 * non-zero value and will not get updated for regular sectorsize. 2204 * 2205 * But for subpage case, it's possible we submit part of current page, 2206 * thus can get PageError() set by submitted bio of the same page, 2207 * while our @ret is still 0. 2208 * 2209 * So here we unify the behavior and don't set @ret. 2210 * Error can still be properly passed to higher layer as page will 2211 * be set error, here we just don't handle the IO failure. 2212 * 2213 * NOTE: This is just a hotfix for subpage. 2214 * The root fix will be properly ending ordered extent when we hit 2215 * an error during writeback. 2216 * 2217 * But that needs a bigger refactoring, as we not only need to grab the 2218 * submitted OE, but also need to know exactly at which bytenr we hit 2219 * the error. 2220 * Currently the full page based __extent_writepage_io() is not 2221 * capable of that. 2222 */ 2223 if (PageError(page)) 2224 end_extent_writepage(page, ret, page_start, page_end); 2225 if (bio_ctrl->extent_locked) { 2226 /* 2227 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(), 2228 * the page can either be locked by lock_page() or 2229 * process_one_page(). 2230 * Let btrfs_page_unlock_writer() handle both cases. 2231 */ 2232 ASSERT(wbc); 2233 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 2234 wbc->range_end + 1 - wbc->range_start); 2235 } else { 2236 unlock_page(page); 2237 } 2238 ASSERT(ret <= 0); 2239 return ret; 2240 } 2241 2242 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 2243 { 2244 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 2245 TASK_UNINTERRUPTIBLE); 2246 } 2247 2248 static void end_extent_buffer_writeback(struct extent_buffer *eb) 2249 { 2250 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2251 smp_mb__after_atomic(); 2252 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 2253 } 2254 2255 /* 2256 * Lock extent buffer status and pages for writeback. 2257 * 2258 * May try to flush write bio if we can't get the lock. 2259 * 2260 * Return 0 if the extent buffer doesn't need to be submitted. 2261 * (E.g. the extent buffer is not dirty) 2262 * Return >0 is the extent buffer is submitted to bio. 2263 * Return <0 if something went wrong, no page is locked. 2264 */ 2265 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 2266 struct btrfs_bio_ctrl *bio_ctrl) 2267 { 2268 struct btrfs_fs_info *fs_info = eb->fs_info; 2269 int i, num_pages; 2270 int flush = 0; 2271 int ret = 0; 2272 2273 if (!btrfs_try_tree_write_lock(eb)) { 2274 submit_write_bio(bio_ctrl, 0); 2275 flush = 1; 2276 btrfs_tree_lock(eb); 2277 } 2278 2279 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 2280 btrfs_tree_unlock(eb); 2281 if (!bio_ctrl->sync_io) 2282 return 0; 2283 if (!flush) { 2284 submit_write_bio(bio_ctrl, 0); 2285 flush = 1; 2286 } 2287 while (1) { 2288 wait_on_extent_buffer_writeback(eb); 2289 btrfs_tree_lock(eb); 2290 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 2291 break; 2292 btrfs_tree_unlock(eb); 2293 } 2294 } 2295 2296 /* 2297 * We need to do this to prevent races in people who check if the eb is 2298 * under IO since we can end up having no IO bits set for a short period 2299 * of time. 2300 */ 2301 spin_lock(&eb->refs_lock); 2302 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2303 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2304 spin_unlock(&eb->refs_lock); 2305 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2306 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2307 -eb->len, 2308 fs_info->dirty_metadata_batch); 2309 ret = 1; 2310 } else { 2311 spin_unlock(&eb->refs_lock); 2312 } 2313 2314 btrfs_tree_unlock(eb); 2315 2316 /* 2317 * Either we don't need to submit any tree block, or we're submitting 2318 * subpage eb. 2319 * Subpage metadata doesn't use page locking at all, so we can skip 2320 * the page locking. 2321 */ 2322 if (!ret || fs_info->nodesize < PAGE_SIZE) 2323 return ret; 2324 2325 num_pages = num_extent_pages(eb); 2326 for (i = 0; i < num_pages; i++) { 2327 struct page *p = eb->pages[i]; 2328 2329 if (!trylock_page(p)) { 2330 if (!flush) { 2331 submit_write_bio(bio_ctrl, 0); 2332 flush = 1; 2333 } 2334 lock_page(p); 2335 } 2336 } 2337 2338 return ret; 2339 } 2340 2341 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 2342 { 2343 struct btrfs_fs_info *fs_info = eb->fs_info; 2344 2345 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 2346 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 2347 return; 2348 2349 /* 2350 * A read may stumble upon this buffer later, make sure that it gets an 2351 * error and knows there was an error. 2352 */ 2353 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 2354 2355 /* 2356 * We need to set the mapping with the io error as well because a write 2357 * error will flip the file system readonly, and then syncfs() will 2358 * return a 0 because we are readonly if we don't modify the err seq for 2359 * the superblock. 2360 */ 2361 mapping_set_error(page->mapping, -EIO); 2362 2363 /* 2364 * If we error out, we should add back the dirty_metadata_bytes 2365 * to make it consistent. 2366 */ 2367 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2368 eb->len, fs_info->dirty_metadata_batch); 2369 2370 /* 2371 * If writeback for a btree extent that doesn't belong to a log tree 2372 * failed, increment the counter transaction->eb_write_errors. 2373 * We do this because while the transaction is running and before it's 2374 * committing (when we call filemap_fdata[write|wait]_range against 2375 * the btree inode), we might have 2376 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 2377 * returns an error or an error happens during writeback, when we're 2378 * committing the transaction we wouldn't know about it, since the pages 2379 * can be no longer dirty nor marked anymore for writeback (if a 2380 * subsequent modification to the extent buffer didn't happen before the 2381 * transaction commit), which makes filemap_fdata[write|wait]_range not 2382 * able to find the pages tagged with SetPageError at transaction 2383 * commit time. So if this happens we must abort the transaction, 2384 * otherwise we commit a super block with btree roots that point to 2385 * btree nodes/leafs whose content on disk is invalid - either garbage 2386 * or the content of some node/leaf from a past generation that got 2387 * cowed or deleted and is no longer valid. 2388 * 2389 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 2390 * not be enough - we need to distinguish between log tree extents vs 2391 * non-log tree extents, and the next filemap_fdatawait_range() call 2392 * will catch and clear such errors in the mapping - and that call might 2393 * be from a log sync and not from a transaction commit. Also, checking 2394 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 2395 * not done and would not be reliable - the eb might have been released 2396 * from memory and reading it back again means that flag would not be 2397 * set (since it's a runtime flag, not persisted on disk). 2398 * 2399 * Using the flags below in the btree inode also makes us achieve the 2400 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2401 * writeback for all dirty pages and before filemap_fdatawait_range() 2402 * is called, the writeback for all dirty pages had already finished 2403 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2404 * filemap_fdatawait_range() would return success, as it could not know 2405 * that writeback errors happened (the pages were no longer tagged for 2406 * writeback). 2407 */ 2408 switch (eb->log_index) { 2409 case -1: 2410 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2411 break; 2412 case 0: 2413 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2414 break; 2415 case 1: 2416 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2417 break; 2418 default: 2419 BUG(); /* unexpected, logic error */ 2420 } 2421 } 2422 2423 /* 2424 * The endio specific version which won't touch any unsafe spinlock in endio 2425 * context. 2426 */ 2427 static struct extent_buffer *find_extent_buffer_nolock( 2428 struct btrfs_fs_info *fs_info, u64 start) 2429 { 2430 struct extent_buffer *eb; 2431 2432 rcu_read_lock(); 2433 eb = radix_tree_lookup(&fs_info->buffer_radix, 2434 start >> fs_info->sectorsize_bits); 2435 if (eb && atomic_inc_not_zero(&eb->refs)) { 2436 rcu_read_unlock(); 2437 return eb; 2438 } 2439 rcu_read_unlock(); 2440 return NULL; 2441 } 2442 2443 /* 2444 * The endio function for subpage extent buffer write. 2445 * 2446 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 2447 * after all extent buffers in the page has finished their writeback. 2448 */ 2449 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 2450 { 2451 struct bio *bio = &bbio->bio; 2452 struct btrfs_fs_info *fs_info; 2453 struct bio_vec *bvec; 2454 struct bvec_iter_all iter_all; 2455 2456 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2457 ASSERT(fs_info->nodesize < PAGE_SIZE); 2458 2459 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2460 bio_for_each_segment_all(bvec, bio, iter_all) { 2461 struct page *page = bvec->bv_page; 2462 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2463 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2464 u64 cur_bytenr = bvec_start; 2465 2466 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2467 2468 /* Iterate through all extent buffers in the range */ 2469 while (cur_bytenr <= bvec_end) { 2470 struct extent_buffer *eb; 2471 int done; 2472 2473 /* 2474 * Here we can't use find_extent_buffer(), as it may 2475 * try to lock eb->refs_lock, which is not safe in endio 2476 * context. 2477 */ 2478 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2479 ASSERT(eb); 2480 2481 cur_bytenr = eb->start + eb->len; 2482 2483 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2484 done = atomic_dec_and_test(&eb->io_pages); 2485 ASSERT(done); 2486 2487 if (bio->bi_status || 2488 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2489 ClearPageUptodate(page); 2490 set_btree_ioerr(page, eb); 2491 } 2492 2493 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2494 eb->len); 2495 end_extent_buffer_writeback(eb); 2496 /* 2497 * free_extent_buffer() will grab spinlock which is not 2498 * safe in endio context. Thus here we manually dec 2499 * the ref. 2500 */ 2501 atomic_dec(&eb->refs); 2502 } 2503 } 2504 bio_put(bio); 2505 } 2506 2507 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2508 { 2509 struct bio *bio = &bbio->bio; 2510 struct bio_vec *bvec; 2511 struct extent_buffer *eb; 2512 int done; 2513 struct bvec_iter_all iter_all; 2514 2515 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2516 bio_for_each_segment_all(bvec, bio, iter_all) { 2517 struct page *page = bvec->bv_page; 2518 2519 eb = (struct extent_buffer *)page->private; 2520 BUG_ON(!eb); 2521 done = atomic_dec_and_test(&eb->io_pages); 2522 2523 if (bio->bi_status || 2524 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2525 ClearPageUptodate(page); 2526 set_btree_ioerr(page, eb); 2527 } 2528 2529 end_page_writeback(page); 2530 2531 if (!done) 2532 continue; 2533 2534 end_extent_buffer_writeback(eb); 2535 } 2536 2537 bio_put(bio); 2538 } 2539 2540 static void prepare_eb_write(struct extent_buffer *eb) 2541 { 2542 u32 nritems; 2543 unsigned long start; 2544 unsigned long end; 2545 2546 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2547 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2548 2549 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2550 nritems = btrfs_header_nritems(eb); 2551 if (btrfs_header_level(eb) > 0) { 2552 end = btrfs_node_key_ptr_offset(eb, nritems); 2553 memzero_extent_buffer(eb, end, eb->len - end); 2554 } else { 2555 /* 2556 * Leaf: 2557 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2558 */ 2559 start = btrfs_item_nr_offset(eb, nritems); 2560 end = btrfs_item_nr_offset(eb, 0); 2561 if (nritems == 0) 2562 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2563 else 2564 end += btrfs_item_offset(eb, nritems - 1); 2565 memzero_extent_buffer(eb, start, end - start); 2566 } 2567 } 2568 2569 /* 2570 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2571 * Page locking is only utilized at minimum to keep the VMM code happy. 2572 */ 2573 static int write_one_subpage_eb(struct extent_buffer *eb, 2574 struct writeback_control *wbc, 2575 struct btrfs_bio_ctrl *bio_ctrl) 2576 { 2577 struct btrfs_fs_info *fs_info = eb->fs_info; 2578 struct page *page = eb->pages[0]; 2579 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2580 bool no_dirty_ebs = false; 2581 int ret; 2582 2583 prepare_eb_write(eb); 2584 2585 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2586 lock_page(page); 2587 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2588 2589 /* Check if this is the last dirty bit to update nr_written */ 2590 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2591 eb->start, eb->len); 2592 if (no_dirty_ebs) 2593 clear_page_dirty_for_io(page); 2594 2595 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage; 2596 2597 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2598 bio_ctrl, eb->start, page, eb->len, 2599 eb->start - page_offset(page), 0, false); 2600 if (ret) { 2601 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2602 set_btree_ioerr(page, eb); 2603 unlock_page(page); 2604 2605 if (atomic_dec_and_test(&eb->io_pages)) 2606 end_extent_buffer_writeback(eb); 2607 return -EIO; 2608 } 2609 unlock_page(page); 2610 /* 2611 * Submission finished without problem, if no range of the page is 2612 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2613 */ 2614 if (no_dirty_ebs) 2615 wbc->nr_to_write--; 2616 return ret; 2617 } 2618 2619 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2620 struct writeback_control *wbc, 2621 struct btrfs_bio_ctrl *bio_ctrl) 2622 { 2623 u64 disk_bytenr = eb->start; 2624 int i, num_pages; 2625 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2626 int ret = 0; 2627 2628 prepare_eb_write(eb); 2629 2630 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage; 2631 2632 num_pages = num_extent_pages(eb); 2633 for (i = 0; i < num_pages; i++) { 2634 struct page *p = eb->pages[i]; 2635 2636 clear_page_dirty_for_io(p); 2637 set_page_writeback(p); 2638 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2639 bio_ctrl, disk_bytenr, p, 2640 PAGE_SIZE, 0, 0, false); 2641 if (ret) { 2642 set_btree_ioerr(p, eb); 2643 if (PageWriteback(p)) 2644 end_page_writeback(p); 2645 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2646 end_extent_buffer_writeback(eb); 2647 ret = -EIO; 2648 break; 2649 } 2650 disk_bytenr += PAGE_SIZE; 2651 wbc->nr_to_write--; 2652 unlock_page(p); 2653 } 2654 2655 if (unlikely(ret)) { 2656 for (; i < num_pages; i++) { 2657 struct page *p = eb->pages[i]; 2658 clear_page_dirty_for_io(p); 2659 unlock_page(p); 2660 } 2661 } 2662 2663 return ret; 2664 } 2665 2666 /* 2667 * Submit one subpage btree page. 2668 * 2669 * The main difference to submit_eb_page() is: 2670 * - Page locking 2671 * For subpage, we don't rely on page locking at all. 2672 * 2673 * - Flush write bio 2674 * We only flush bio if we may be unable to fit current extent buffers into 2675 * current bio. 2676 * 2677 * Return >=0 for the number of submitted extent buffers. 2678 * Return <0 for fatal error. 2679 */ 2680 static int submit_eb_subpage(struct page *page, 2681 struct writeback_control *wbc, 2682 struct btrfs_bio_ctrl *bio_ctrl) 2683 { 2684 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2685 int submitted = 0; 2686 u64 page_start = page_offset(page); 2687 int bit_start = 0; 2688 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2689 int ret; 2690 2691 /* Lock and write each dirty extent buffers in the range */ 2692 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2693 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2694 struct extent_buffer *eb; 2695 unsigned long flags; 2696 u64 start; 2697 2698 /* 2699 * Take private lock to ensure the subpage won't be detached 2700 * in the meantime. 2701 */ 2702 spin_lock(&page->mapping->private_lock); 2703 if (!PagePrivate(page)) { 2704 spin_unlock(&page->mapping->private_lock); 2705 break; 2706 } 2707 spin_lock_irqsave(&subpage->lock, flags); 2708 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2709 subpage->bitmaps)) { 2710 spin_unlock_irqrestore(&subpage->lock, flags); 2711 spin_unlock(&page->mapping->private_lock); 2712 bit_start++; 2713 continue; 2714 } 2715 2716 start = page_start + bit_start * fs_info->sectorsize; 2717 bit_start += sectors_per_node; 2718 2719 /* 2720 * Here we just want to grab the eb without touching extra 2721 * spin locks, so call find_extent_buffer_nolock(). 2722 */ 2723 eb = find_extent_buffer_nolock(fs_info, start); 2724 spin_unlock_irqrestore(&subpage->lock, flags); 2725 spin_unlock(&page->mapping->private_lock); 2726 2727 /* 2728 * The eb has already reached 0 refs thus find_extent_buffer() 2729 * doesn't return it. We don't need to write back such eb 2730 * anyway. 2731 */ 2732 if (!eb) 2733 continue; 2734 2735 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2736 if (ret == 0) { 2737 free_extent_buffer(eb); 2738 continue; 2739 } 2740 if (ret < 0) { 2741 free_extent_buffer(eb); 2742 goto cleanup; 2743 } 2744 ret = write_one_subpage_eb(eb, wbc, bio_ctrl); 2745 free_extent_buffer(eb); 2746 if (ret < 0) 2747 goto cleanup; 2748 submitted++; 2749 } 2750 return submitted; 2751 2752 cleanup: 2753 /* We hit error, end bio for the submitted extent buffers */ 2754 submit_write_bio(bio_ctrl, ret); 2755 return ret; 2756 } 2757 2758 /* 2759 * Submit all page(s) of one extent buffer. 2760 * 2761 * @page: the page of one extent buffer 2762 * @eb_context: to determine if we need to submit this page, if current page 2763 * belongs to this eb, we don't need to submit 2764 * 2765 * The caller should pass each page in their bytenr order, and here we use 2766 * @eb_context to determine if we have submitted pages of one extent buffer. 2767 * 2768 * If we have, we just skip until we hit a new page that doesn't belong to 2769 * current @eb_context. 2770 * 2771 * If not, we submit all the page(s) of the extent buffer. 2772 * 2773 * Return >0 if we have submitted the extent buffer successfully. 2774 * Return 0 if we don't need to submit the page, as it's already submitted by 2775 * previous call. 2776 * Return <0 for fatal error. 2777 */ 2778 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2779 struct btrfs_bio_ctrl *bio_ctrl, 2780 struct extent_buffer **eb_context) 2781 { 2782 struct address_space *mapping = page->mapping; 2783 struct btrfs_block_group *cache = NULL; 2784 struct extent_buffer *eb; 2785 int ret; 2786 2787 if (!PagePrivate(page)) 2788 return 0; 2789 2790 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2791 return submit_eb_subpage(page, wbc, bio_ctrl); 2792 2793 spin_lock(&mapping->private_lock); 2794 if (!PagePrivate(page)) { 2795 spin_unlock(&mapping->private_lock); 2796 return 0; 2797 } 2798 2799 eb = (struct extent_buffer *)page->private; 2800 2801 /* 2802 * Shouldn't happen and normally this would be a BUG_ON but no point 2803 * crashing the machine for something we can survive anyway. 2804 */ 2805 if (WARN_ON(!eb)) { 2806 spin_unlock(&mapping->private_lock); 2807 return 0; 2808 } 2809 2810 if (eb == *eb_context) { 2811 spin_unlock(&mapping->private_lock); 2812 return 0; 2813 } 2814 ret = atomic_inc_not_zero(&eb->refs); 2815 spin_unlock(&mapping->private_lock); 2816 if (!ret) 2817 return 0; 2818 2819 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2820 /* 2821 * If for_sync, this hole will be filled with 2822 * trasnsaction commit. 2823 */ 2824 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2825 ret = -EAGAIN; 2826 else 2827 ret = 0; 2828 free_extent_buffer(eb); 2829 return ret; 2830 } 2831 2832 *eb_context = eb; 2833 2834 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2835 if (ret <= 0) { 2836 btrfs_revert_meta_write_pointer(cache, eb); 2837 if (cache) 2838 btrfs_put_block_group(cache); 2839 free_extent_buffer(eb); 2840 return ret; 2841 } 2842 if (cache) { 2843 /* 2844 * Implies write in zoned mode. Mark the last eb in a block group. 2845 */ 2846 btrfs_schedule_zone_finish_bg(cache, eb); 2847 btrfs_put_block_group(cache); 2848 } 2849 ret = write_one_eb(eb, wbc, bio_ctrl); 2850 free_extent_buffer(eb); 2851 if (ret < 0) 2852 return ret; 2853 return 1; 2854 } 2855 2856 int btree_write_cache_pages(struct address_space *mapping, 2857 struct writeback_control *wbc) 2858 { 2859 struct extent_buffer *eb_context = NULL; 2860 struct btrfs_bio_ctrl bio_ctrl = { 2861 .extent_locked = 0, 2862 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2863 }; 2864 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2865 int ret = 0; 2866 int done = 0; 2867 int nr_to_write_done = 0; 2868 struct pagevec pvec; 2869 int nr_pages; 2870 pgoff_t index; 2871 pgoff_t end; /* Inclusive */ 2872 int scanned = 0; 2873 xa_mark_t tag; 2874 2875 pagevec_init(&pvec); 2876 if (wbc->range_cyclic) { 2877 index = mapping->writeback_index; /* Start from prev offset */ 2878 end = -1; 2879 /* 2880 * Start from the beginning does not need to cycle over the 2881 * range, mark it as scanned. 2882 */ 2883 scanned = (index == 0); 2884 } else { 2885 index = wbc->range_start >> PAGE_SHIFT; 2886 end = wbc->range_end >> PAGE_SHIFT; 2887 scanned = 1; 2888 } 2889 if (wbc->sync_mode == WB_SYNC_ALL) 2890 tag = PAGECACHE_TAG_TOWRITE; 2891 else 2892 tag = PAGECACHE_TAG_DIRTY; 2893 btrfs_zoned_meta_io_lock(fs_info); 2894 retry: 2895 if (wbc->sync_mode == WB_SYNC_ALL) 2896 tag_pages_for_writeback(mapping, index, end); 2897 while (!done && !nr_to_write_done && (index <= end) && 2898 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2899 tag))) { 2900 unsigned i; 2901 2902 for (i = 0; i < nr_pages; i++) { 2903 struct page *page = pvec.pages[i]; 2904 2905 ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context); 2906 if (ret == 0) 2907 continue; 2908 if (ret < 0) { 2909 done = 1; 2910 break; 2911 } 2912 2913 /* 2914 * the filesystem may choose to bump up nr_to_write. 2915 * We have to make sure to honor the new nr_to_write 2916 * at any time 2917 */ 2918 nr_to_write_done = wbc->nr_to_write <= 0; 2919 } 2920 pagevec_release(&pvec); 2921 cond_resched(); 2922 } 2923 if (!scanned && !done) { 2924 /* 2925 * We hit the last page and there is more work to be done: wrap 2926 * back to the start of the file 2927 */ 2928 scanned = 1; 2929 index = 0; 2930 goto retry; 2931 } 2932 /* 2933 * If something went wrong, don't allow any metadata write bio to be 2934 * submitted. 2935 * 2936 * This would prevent use-after-free if we had dirty pages not 2937 * cleaned up, which can still happen by fuzzed images. 2938 * 2939 * - Bad extent tree 2940 * Allowing existing tree block to be allocated for other trees. 2941 * 2942 * - Log tree operations 2943 * Exiting tree blocks get allocated to log tree, bumps its 2944 * generation, then get cleaned in tree re-balance. 2945 * Such tree block will not be written back, since it's clean, 2946 * thus no WRITTEN flag set. 2947 * And after log writes back, this tree block is not traced by 2948 * any dirty extent_io_tree. 2949 * 2950 * - Offending tree block gets re-dirtied from its original owner 2951 * Since it has bumped generation, no WRITTEN flag, it can be 2952 * reused without COWing. This tree block will not be traced 2953 * by btrfs_transaction::dirty_pages. 2954 * 2955 * Now such dirty tree block will not be cleaned by any dirty 2956 * extent io tree. Thus we don't want to submit such wild eb 2957 * if the fs already has error. 2958 * 2959 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2960 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2961 */ 2962 if (ret > 0) 2963 ret = 0; 2964 if (!ret && BTRFS_FS_ERROR(fs_info)) 2965 ret = -EROFS; 2966 submit_write_bio(&bio_ctrl, ret); 2967 2968 btrfs_zoned_meta_io_unlock(fs_info); 2969 return ret; 2970 } 2971 2972 /* 2973 * Walk the list of dirty pages of the given address space and write all of them. 2974 * 2975 * @mapping: address space structure to write 2976 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2977 * @bio_ctrl: holds context for the write, namely the bio 2978 * 2979 * If a page is already under I/O, write_cache_pages() skips it, even 2980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2982 * and msync() need to guarantee that all the data which was dirty at the time 2983 * the call was made get new I/O started against them. If wbc->sync_mode is 2984 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2985 * existing IO to complete. 2986 */ 2987 static int extent_write_cache_pages(struct address_space *mapping, 2988 struct writeback_control *wbc, 2989 struct btrfs_bio_ctrl *bio_ctrl) 2990 { 2991 struct inode *inode = mapping->host; 2992 int ret = 0; 2993 int done = 0; 2994 int nr_to_write_done = 0; 2995 struct pagevec pvec; 2996 int nr_pages; 2997 pgoff_t index; 2998 pgoff_t end; /* Inclusive */ 2999 pgoff_t done_index; 3000 int range_whole = 0; 3001 int scanned = 0; 3002 xa_mark_t tag; 3003 3004 /* 3005 * We have to hold onto the inode so that ordered extents can do their 3006 * work when the IO finishes. The alternative to this is failing to add 3007 * an ordered extent if the igrab() fails there and that is a huge pain 3008 * to deal with, so instead just hold onto the inode throughout the 3009 * writepages operation. If it fails here we are freeing up the inode 3010 * anyway and we'd rather not waste our time writing out stuff that is 3011 * going to be truncated anyway. 3012 */ 3013 if (!igrab(inode)) 3014 return 0; 3015 3016 pagevec_init(&pvec); 3017 if (wbc->range_cyclic) { 3018 index = mapping->writeback_index; /* Start from prev offset */ 3019 end = -1; 3020 /* 3021 * Start from the beginning does not need to cycle over the 3022 * range, mark it as scanned. 3023 */ 3024 scanned = (index == 0); 3025 } else { 3026 index = wbc->range_start >> PAGE_SHIFT; 3027 end = wbc->range_end >> PAGE_SHIFT; 3028 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3029 range_whole = 1; 3030 scanned = 1; 3031 } 3032 3033 /* 3034 * We do the tagged writepage as long as the snapshot flush bit is set 3035 * and we are the first one who do the filemap_flush() on this inode. 3036 * 3037 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3038 * not race in and drop the bit. 3039 */ 3040 if (range_whole && wbc->nr_to_write == LONG_MAX && 3041 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3042 &BTRFS_I(inode)->runtime_flags)) 3043 wbc->tagged_writepages = 1; 3044 3045 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3046 tag = PAGECACHE_TAG_TOWRITE; 3047 else 3048 tag = PAGECACHE_TAG_DIRTY; 3049 retry: 3050 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3051 tag_pages_for_writeback(mapping, index, end); 3052 done_index = index; 3053 while (!done && !nr_to_write_done && (index <= end) && 3054 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3055 &index, end, tag))) { 3056 unsigned i; 3057 3058 for (i = 0; i < nr_pages; i++) { 3059 struct page *page = pvec.pages[i]; 3060 3061 done_index = page->index + 1; 3062 /* 3063 * At this point we hold neither the i_pages lock nor 3064 * the page lock: the page may be truncated or 3065 * invalidated (changing page->mapping to NULL), 3066 * or even swizzled back from swapper_space to 3067 * tmpfs file mapping 3068 */ 3069 if (!trylock_page(page)) { 3070 submit_write_bio(bio_ctrl, 0); 3071 lock_page(page); 3072 } 3073 3074 if (unlikely(page->mapping != mapping)) { 3075 unlock_page(page); 3076 continue; 3077 } 3078 3079 if (wbc->sync_mode != WB_SYNC_NONE) { 3080 if (PageWriteback(page)) 3081 submit_write_bio(bio_ctrl, 0); 3082 wait_on_page_writeback(page); 3083 } 3084 3085 if (PageWriteback(page) || 3086 !clear_page_dirty_for_io(page)) { 3087 unlock_page(page); 3088 continue; 3089 } 3090 3091 ret = __extent_writepage(page, wbc, bio_ctrl); 3092 if (ret < 0) { 3093 done = 1; 3094 break; 3095 } 3096 3097 /* 3098 * the filesystem may choose to bump up nr_to_write. 3099 * We have to make sure to honor the new nr_to_write 3100 * at any time 3101 */ 3102 nr_to_write_done = wbc->nr_to_write <= 0; 3103 } 3104 pagevec_release(&pvec); 3105 cond_resched(); 3106 } 3107 if (!scanned && !done) { 3108 /* 3109 * We hit the last page and there is more work to be done: wrap 3110 * back to the start of the file 3111 */ 3112 scanned = 1; 3113 index = 0; 3114 3115 /* 3116 * If we're looping we could run into a page that is locked by a 3117 * writer and that writer could be waiting on writeback for a 3118 * page in our current bio, and thus deadlock, so flush the 3119 * write bio here. 3120 */ 3121 submit_write_bio(bio_ctrl, 0); 3122 goto retry; 3123 } 3124 3125 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 3126 mapping->writeback_index = done_index; 3127 3128 btrfs_add_delayed_iput(BTRFS_I(inode)); 3129 return ret; 3130 } 3131 3132 /* 3133 * Submit the pages in the range to bio for call sites which delalloc range has 3134 * already been ran (aka, ordered extent inserted) and all pages are still 3135 * locked. 3136 */ 3137 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 3138 { 3139 bool found_error = false; 3140 int first_error = 0; 3141 int ret = 0; 3142 struct address_space *mapping = inode->i_mapping; 3143 struct page *page; 3144 u64 cur = start; 3145 unsigned long nr_pages; 3146 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 3147 struct btrfs_bio_ctrl bio_ctrl = { 3148 .extent_locked = 1, 3149 .sync_io = 1, 3150 }; 3151 struct writeback_control wbc_writepages = { 3152 .sync_mode = WB_SYNC_ALL, 3153 .range_start = start, 3154 .range_end = end + 1, 3155 /* We're called from an async helper function */ 3156 .punt_to_cgroup = 1, 3157 .no_cgroup_owner = 1, 3158 }; 3159 3160 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 3161 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 3162 PAGE_SHIFT; 3163 wbc_writepages.nr_to_write = nr_pages * 2; 3164 3165 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 3166 while (cur <= end) { 3167 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 3168 3169 page = find_get_page(mapping, cur >> PAGE_SHIFT); 3170 /* 3171 * All pages in the range are locked since 3172 * btrfs_run_delalloc_range(), thus there is no way to clear 3173 * the page dirty flag. 3174 */ 3175 ASSERT(PageLocked(page)); 3176 ASSERT(PageDirty(page)); 3177 clear_page_dirty_for_io(page); 3178 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl); 3179 ASSERT(ret <= 0); 3180 if (ret < 0) { 3181 found_error = true; 3182 first_error = ret; 3183 } 3184 put_page(page); 3185 cur = cur_end + 1; 3186 } 3187 3188 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 3189 3190 wbc_detach_inode(&wbc_writepages); 3191 if (found_error) 3192 return first_error; 3193 return ret; 3194 } 3195 3196 int extent_writepages(struct address_space *mapping, 3197 struct writeback_control *wbc) 3198 { 3199 struct inode *inode = mapping->host; 3200 int ret = 0; 3201 struct btrfs_bio_ctrl bio_ctrl = { 3202 .extent_locked = 0, 3203 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 3204 }; 3205 3206 /* 3207 * Allow only a single thread to do the reloc work in zoned mode to 3208 * protect the write pointer updates. 3209 */ 3210 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 3211 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl); 3212 submit_write_bio(&bio_ctrl, ret); 3213 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 3214 return ret; 3215 } 3216 3217 void extent_readahead(struct readahead_control *rac) 3218 { 3219 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3220 struct page *pagepool[16]; 3221 struct extent_map *em_cached = NULL; 3222 u64 prev_em_start = (u64)-1; 3223 int nr; 3224 3225 while ((nr = readahead_page_batch(rac, pagepool))) { 3226 u64 contig_start = readahead_pos(rac); 3227 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 3228 3229 contiguous_readpages(pagepool, nr, contig_start, contig_end, 3230 &em_cached, &bio_ctrl, &prev_em_start); 3231 } 3232 3233 if (em_cached) 3234 free_extent_map(em_cached); 3235 submit_one_bio(&bio_ctrl); 3236 } 3237 3238 /* 3239 * basic invalidate_folio code, this waits on any locked or writeback 3240 * ranges corresponding to the folio, and then deletes any extent state 3241 * records from the tree 3242 */ 3243 int extent_invalidate_folio(struct extent_io_tree *tree, 3244 struct folio *folio, size_t offset) 3245 { 3246 struct extent_state *cached_state = NULL; 3247 u64 start = folio_pos(folio); 3248 u64 end = start + folio_size(folio) - 1; 3249 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 3250 3251 /* This function is only called for the btree inode */ 3252 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 3253 3254 start += ALIGN(offset, blocksize); 3255 if (start > end) 3256 return 0; 3257 3258 lock_extent(tree, start, end, &cached_state); 3259 folio_wait_writeback(folio); 3260 3261 /* 3262 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 3263 * so here we only need to unlock the extent range to free any 3264 * existing extent state. 3265 */ 3266 unlock_extent(tree, start, end, &cached_state); 3267 return 0; 3268 } 3269 3270 /* 3271 * a helper for release_folio, this tests for areas of the page that 3272 * are locked or under IO and drops the related state bits if it is safe 3273 * to drop the page. 3274 */ 3275 static int try_release_extent_state(struct extent_io_tree *tree, 3276 struct page *page, gfp_t mask) 3277 { 3278 u64 start = page_offset(page); 3279 u64 end = start + PAGE_SIZE - 1; 3280 int ret = 1; 3281 3282 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 3283 ret = 0; 3284 } else { 3285 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 3286 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 3287 3288 /* 3289 * At this point we can safely clear everything except the 3290 * locked bit, the nodatasum bit and the delalloc new bit. 3291 * The delalloc new bit will be cleared by ordered extent 3292 * completion. 3293 */ 3294 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 3295 mask, NULL); 3296 3297 /* if clear_extent_bit failed for enomem reasons, 3298 * we can't allow the release to continue. 3299 */ 3300 if (ret < 0) 3301 ret = 0; 3302 else 3303 ret = 1; 3304 } 3305 return ret; 3306 } 3307 3308 /* 3309 * a helper for release_folio. As long as there are no locked extents 3310 * in the range corresponding to the page, both state records and extent 3311 * map records are removed 3312 */ 3313 int try_release_extent_mapping(struct page *page, gfp_t mask) 3314 { 3315 struct extent_map *em; 3316 u64 start = page_offset(page); 3317 u64 end = start + PAGE_SIZE - 1; 3318 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 3319 struct extent_io_tree *tree = &btrfs_inode->io_tree; 3320 struct extent_map_tree *map = &btrfs_inode->extent_tree; 3321 3322 if (gfpflags_allow_blocking(mask) && 3323 page->mapping->host->i_size > SZ_16M) { 3324 u64 len; 3325 while (start <= end) { 3326 struct btrfs_fs_info *fs_info; 3327 u64 cur_gen; 3328 3329 len = end - start + 1; 3330 write_lock(&map->lock); 3331 em = lookup_extent_mapping(map, start, len); 3332 if (!em) { 3333 write_unlock(&map->lock); 3334 break; 3335 } 3336 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3337 em->start != start) { 3338 write_unlock(&map->lock); 3339 free_extent_map(em); 3340 break; 3341 } 3342 if (test_range_bit(tree, em->start, 3343 extent_map_end(em) - 1, 3344 EXTENT_LOCKED, 0, NULL)) 3345 goto next; 3346 /* 3347 * If it's not in the list of modified extents, used 3348 * by a fast fsync, we can remove it. If it's being 3349 * logged we can safely remove it since fsync took an 3350 * extra reference on the em. 3351 */ 3352 if (list_empty(&em->list) || 3353 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 3354 goto remove_em; 3355 /* 3356 * If it's in the list of modified extents, remove it 3357 * only if its generation is older then the current one, 3358 * in which case we don't need it for a fast fsync. 3359 * Otherwise don't remove it, we could be racing with an 3360 * ongoing fast fsync that could miss the new extent. 3361 */ 3362 fs_info = btrfs_inode->root->fs_info; 3363 spin_lock(&fs_info->trans_lock); 3364 cur_gen = fs_info->generation; 3365 spin_unlock(&fs_info->trans_lock); 3366 if (em->generation >= cur_gen) 3367 goto next; 3368 remove_em: 3369 /* 3370 * We only remove extent maps that are not in the list of 3371 * modified extents or that are in the list but with a 3372 * generation lower then the current generation, so there 3373 * is no need to set the full fsync flag on the inode (it 3374 * hurts the fsync performance for workloads with a data 3375 * size that exceeds or is close to the system's memory). 3376 */ 3377 remove_extent_mapping(map, em); 3378 /* once for the rb tree */ 3379 free_extent_map(em); 3380 next: 3381 start = extent_map_end(em); 3382 write_unlock(&map->lock); 3383 3384 /* once for us */ 3385 free_extent_map(em); 3386 3387 cond_resched(); /* Allow large-extent preemption. */ 3388 } 3389 } 3390 return try_release_extent_state(tree, page, mask); 3391 } 3392 3393 /* 3394 * To cache previous fiemap extent 3395 * 3396 * Will be used for merging fiemap extent 3397 */ 3398 struct fiemap_cache { 3399 u64 offset; 3400 u64 phys; 3401 u64 len; 3402 u32 flags; 3403 bool cached; 3404 }; 3405 3406 /* 3407 * Helper to submit fiemap extent. 3408 * 3409 * Will try to merge current fiemap extent specified by @offset, @phys, 3410 * @len and @flags with cached one. 3411 * And only when we fails to merge, cached one will be submitted as 3412 * fiemap extent. 3413 * 3414 * Return value is the same as fiemap_fill_next_extent(). 3415 */ 3416 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 3417 struct fiemap_cache *cache, 3418 u64 offset, u64 phys, u64 len, u32 flags) 3419 { 3420 int ret = 0; 3421 3422 /* Set at the end of extent_fiemap(). */ 3423 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 3424 3425 if (!cache->cached) 3426 goto assign; 3427 3428 /* 3429 * Sanity check, extent_fiemap() should have ensured that new 3430 * fiemap extent won't overlap with cached one. 3431 * Not recoverable. 3432 * 3433 * NOTE: Physical address can overlap, due to compression 3434 */ 3435 if (cache->offset + cache->len > offset) { 3436 WARN_ON(1); 3437 return -EINVAL; 3438 } 3439 3440 /* 3441 * Only merges fiemap extents if 3442 * 1) Their logical addresses are continuous 3443 * 3444 * 2) Their physical addresses are continuous 3445 * So truly compressed (physical size smaller than logical size) 3446 * extents won't get merged with each other 3447 * 3448 * 3) Share same flags 3449 */ 3450 if (cache->offset + cache->len == offset && 3451 cache->phys + cache->len == phys && 3452 cache->flags == flags) { 3453 cache->len += len; 3454 return 0; 3455 } 3456 3457 /* Not mergeable, need to submit cached one */ 3458 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3459 cache->len, cache->flags); 3460 cache->cached = false; 3461 if (ret) 3462 return ret; 3463 assign: 3464 cache->cached = true; 3465 cache->offset = offset; 3466 cache->phys = phys; 3467 cache->len = len; 3468 cache->flags = flags; 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * Emit last fiemap cache 3475 * 3476 * The last fiemap cache may still be cached in the following case: 3477 * 0 4k 8k 3478 * |<- Fiemap range ->| 3479 * |<------------ First extent ----------->| 3480 * 3481 * In this case, the first extent range will be cached but not emitted. 3482 * So we must emit it before ending extent_fiemap(). 3483 */ 3484 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3485 struct fiemap_cache *cache) 3486 { 3487 int ret; 3488 3489 if (!cache->cached) 3490 return 0; 3491 3492 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3493 cache->len, cache->flags); 3494 cache->cached = false; 3495 if (ret > 0) 3496 ret = 0; 3497 return ret; 3498 } 3499 3500 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3501 { 3502 struct extent_buffer *clone; 3503 struct btrfs_key key; 3504 int slot; 3505 int ret; 3506 3507 path->slots[0]++; 3508 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3509 return 0; 3510 3511 ret = btrfs_next_leaf(inode->root, path); 3512 if (ret != 0) 3513 return ret; 3514 3515 /* 3516 * Don't bother with cloning if there are no more file extent items for 3517 * our inode. 3518 */ 3519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3520 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3521 return 1; 3522 3523 /* See the comment at fiemap_search_slot() about why we clone. */ 3524 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3525 if (!clone) 3526 return -ENOMEM; 3527 3528 slot = path->slots[0]; 3529 btrfs_release_path(path); 3530 path->nodes[0] = clone; 3531 path->slots[0] = slot; 3532 3533 return 0; 3534 } 3535 3536 /* 3537 * Search for the first file extent item that starts at a given file offset or 3538 * the one that starts immediately before that offset. 3539 * Returns: 0 on success, < 0 on error, 1 if not found. 3540 */ 3541 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3542 u64 file_offset) 3543 { 3544 const u64 ino = btrfs_ino(inode); 3545 struct btrfs_root *root = inode->root; 3546 struct extent_buffer *clone; 3547 struct btrfs_key key; 3548 int slot; 3549 int ret; 3550 3551 key.objectid = ino; 3552 key.type = BTRFS_EXTENT_DATA_KEY; 3553 key.offset = file_offset; 3554 3555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3556 if (ret < 0) 3557 return ret; 3558 3559 if (ret > 0 && path->slots[0] > 0) { 3560 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3561 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3562 path->slots[0]--; 3563 } 3564 3565 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3566 ret = btrfs_next_leaf(root, path); 3567 if (ret != 0) 3568 return ret; 3569 3570 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3571 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3572 return 1; 3573 } 3574 3575 /* 3576 * We clone the leaf and use it during fiemap. This is because while 3577 * using the leaf we do expensive things like checking if an extent is 3578 * shared, which can take a long time. In order to prevent blocking 3579 * other tasks for too long, we use a clone of the leaf. We have locked 3580 * the file range in the inode's io tree, so we know none of our file 3581 * extent items can change. This way we avoid blocking other tasks that 3582 * want to insert items for other inodes in the same leaf or b+tree 3583 * rebalance operations (triggered for example when someone is trying 3584 * to push items into this leaf when trying to insert an item in a 3585 * neighbour leaf). 3586 * We also need the private clone because holding a read lock on an 3587 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3588 * when we call fiemap_fill_next_extent(), because that may cause a page 3589 * fault when filling the user space buffer with fiemap data. 3590 */ 3591 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3592 if (!clone) 3593 return -ENOMEM; 3594 3595 slot = path->slots[0]; 3596 btrfs_release_path(path); 3597 path->nodes[0] = clone; 3598 path->slots[0] = slot; 3599 3600 return 0; 3601 } 3602 3603 /* 3604 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3605 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3606 * extent. The end offset (@end) is inclusive. 3607 */ 3608 static int fiemap_process_hole(struct btrfs_inode *inode, 3609 struct fiemap_extent_info *fieinfo, 3610 struct fiemap_cache *cache, 3611 struct extent_state **delalloc_cached_state, 3612 struct btrfs_backref_share_check_ctx *backref_ctx, 3613 u64 disk_bytenr, u64 extent_offset, 3614 u64 extent_gen, 3615 u64 start, u64 end) 3616 { 3617 const u64 i_size = i_size_read(&inode->vfs_inode); 3618 u64 cur_offset = start; 3619 u64 last_delalloc_end = 0; 3620 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3621 bool checked_extent_shared = false; 3622 int ret; 3623 3624 /* 3625 * There can be no delalloc past i_size, so don't waste time looking for 3626 * it beyond i_size. 3627 */ 3628 while (cur_offset < end && cur_offset < i_size) { 3629 u64 delalloc_start; 3630 u64 delalloc_end; 3631 u64 prealloc_start; 3632 u64 prealloc_len = 0; 3633 bool delalloc; 3634 3635 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3636 delalloc_cached_state, 3637 &delalloc_start, 3638 &delalloc_end); 3639 if (!delalloc) 3640 break; 3641 3642 /* 3643 * If this is a prealloc extent we have to report every section 3644 * of it that has no delalloc. 3645 */ 3646 if (disk_bytenr != 0) { 3647 if (last_delalloc_end == 0) { 3648 prealloc_start = start; 3649 prealloc_len = delalloc_start - start; 3650 } else { 3651 prealloc_start = last_delalloc_end + 1; 3652 prealloc_len = delalloc_start - prealloc_start; 3653 } 3654 } 3655 3656 if (prealloc_len > 0) { 3657 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3658 ret = btrfs_is_data_extent_shared(inode, 3659 disk_bytenr, 3660 extent_gen, 3661 backref_ctx); 3662 if (ret < 0) 3663 return ret; 3664 else if (ret > 0) 3665 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3666 3667 checked_extent_shared = true; 3668 } 3669 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3670 disk_bytenr + extent_offset, 3671 prealloc_len, prealloc_flags); 3672 if (ret) 3673 return ret; 3674 extent_offset += prealloc_len; 3675 } 3676 3677 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3678 delalloc_end + 1 - delalloc_start, 3679 FIEMAP_EXTENT_DELALLOC | 3680 FIEMAP_EXTENT_UNKNOWN); 3681 if (ret) 3682 return ret; 3683 3684 last_delalloc_end = delalloc_end; 3685 cur_offset = delalloc_end + 1; 3686 extent_offset += cur_offset - delalloc_start; 3687 cond_resched(); 3688 } 3689 3690 /* 3691 * Either we found no delalloc for the whole prealloc extent or we have 3692 * a prealloc extent that spans i_size or starts at or after i_size. 3693 */ 3694 if (disk_bytenr != 0 && last_delalloc_end < end) { 3695 u64 prealloc_start; 3696 u64 prealloc_len; 3697 3698 if (last_delalloc_end == 0) { 3699 prealloc_start = start; 3700 prealloc_len = end + 1 - start; 3701 } else { 3702 prealloc_start = last_delalloc_end + 1; 3703 prealloc_len = end + 1 - prealloc_start; 3704 } 3705 3706 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3707 ret = btrfs_is_data_extent_shared(inode, 3708 disk_bytenr, 3709 extent_gen, 3710 backref_ctx); 3711 if (ret < 0) 3712 return ret; 3713 else if (ret > 0) 3714 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3715 } 3716 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3717 disk_bytenr + extent_offset, 3718 prealloc_len, prealloc_flags); 3719 if (ret) 3720 return ret; 3721 } 3722 3723 return 0; 3724 } 3725 3726 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3727 struct btrfs_path *path, 3728 u64 *last_extent_end_ret) 3729 { 3730 const u64 ino = btrfs_ino(inode); 3731 struct btrfs_root *root = inode->root; 3732 struct extent_buffer *leaf; 3733 struct btrfs_file_extent_item *ei; 3734 struct btrfs_key key; 3735 u64 disk_bytenr; 3736 int ret; 3737 3738 /* 3739 * Lookup the last file extent. We're not using i_size here because 3740 * there might be preallocation past i_size. 3741 */ 3742 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3743 /* There can't be a file extent item at offset (u64)-1 */ 3744 ASSERT(ret != 0); 3745 if (ret < 0) 3746 return ret; 3747 3748 /* 3749 * For a non-existing key, btrfs_search_slot() always leaves us at a 3750 * slot > 0, except if the btree is empty, which is impossible because 3751 * at least it has the inode item for this inode and all the items for 3752 * the root inode 256. 3753 */ 3754 ASSERT(path->slots[0] > 0); 3755 path->slots[0]--; 3756 leaf = path->nodes[0]; 3757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3758 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3759 /* No file extent items in the subvolume tree. */ 3760 *last_extent_end_ret = 0; 3761 return 0; 3762 } 3763 3764 /* 3765 * For an inline extent, the disk_bytenr is where inline data starts at, 3766 * so first check if we have an inline extent item before checking if we 3767 * have an implicit hole (disk_bytenr == 0). 3768 */ 3769 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3770 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3771 *last_extent_end_ret = btrfs_file_extent_end(path); 3772 return 0; 3773 } 3774 3775 /* 3776 * Find the last file extent item that is not a hole (when NO_HOLES is 3777 * not enabled). This should take at most 2 iterations in the worst 3778 * case: we have one hole file extent item at slot 0 of a leaf and 3779 * another hole file extent item as the last item in the previous leaf. 3780 * This is because we merge file extent items that represent holes. 3781 */ 3782 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3783 while (disk_bytenr == 0) { 3784 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3785 if (ret < 0) { 3786 return ret; 3787 } else if (ret > 0) { 3788 /* No file extent items that are not holes. */ 3789 *last_extent_end_ret = 0; 3790 return 0; 3791 } 3792 leaf = path->nodes[0]; 3793 ei = btrfs_item_ptr(leaf, path->slots[0], 3794 struct btrfs_file_extent_item); 3795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3796 } 3797 3798 *last_extent_end_ret = btrfs_file_extent_end(path); 3799 return 0; 3800 } 3801 3802 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3803 u64 start, u64 len) 3804 { 3805 const u64 ino = btrfs_ino(inode); 3806 struct extent_state *cached_state = NULL; 3807 struct extent_state *delalloc_cached_state = NULL; 3808 struct btrfs_path *path; 3809 struct fiemap_cache cache = { 0 }; 3810 struct btrfs_backref_share_check_ctx *backref_ctx; 3811 u64 last_extent_end; 3812 u64 prev_extent_end; 3813 u64 lockstart; 3814 u64 lockend; 3815 bool stopped = false; 3816 int ret; 3817 3818 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3819 path = btrfs_alloc_path(); 3820 if (!backref_ctx || !path) { 3821 ret = -ENOMEM; 3822 goto out; 3823 } 3824 3825 lockstart = round_down(start, inode->root->fs_info->sectorsize); 3826 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 3827 prev_extent_end = lockstart; 3828 3829 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3830 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3831 3832 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3833 if (ret < 0) 3834 goto out_unlock; 3835 btrfs_release_path(path); 3836 3837 path->reada = READA_FORWARD; 3838 ret = fiemap_search_slot(inode, path, lockstart); 3839 if (ret < 0) { 3840 goto out_unlock; 3841 } else if (ret > 0) { 3842 /* 3843 * No file extent item found, but we may have delalloc between 3844 * the current offset and i_size. So check for that. 3845 */ 3846 ret = 0; 3847 goto check_eof_delalloc; 3848 } 3849 3850 while (prev_extent_end < lockend) { 3851 struct extent_buffer *leaf = path->nodes[0]; 3852 struct btrfs_file_extent_item *ei; 3853 struct btrfs_key key; 3854 u64 extent_end; 3855 u64 extent_len; 3856 u64 extent_offset = 0; 3857 u64 extent_gen; 3858 u64 disk_bytenr = 0; 3859 u64 flags = 0; 3860 int extent_type; 3861 u8 compression; 3862 3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3864 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3865 break; 3866 3867 extent_end = btrfs_file_extent_end(path); 3868 3869 /* 3870 * The first iteration can leave us at an extent item that ends 3871 * before our range's start. Move to the next item. 3872 */ 3873 if (extent_end <= lockstart) 3874 goto next_item; 3875 3876 backref_ctx->curr_leaf_bytenr = leaf->start; 3877 3878 /* We have in implicit hole (NO_HOLES feature enabled). */ 3879 if (prev_extent_end < key.offset) { 3880 const u64 range_end = min(key.offset, lockend) - 1; 3881 3882 ret = fiemap_process_hole(inode, fieinfo, &cache, 3883 &delalloc_cached_state, 3884 backref_ctx, 0, 0, 0, 3885 prev_extent_end, range_end); 3886 if (ret < 0) { 3887 goto out_unlock; 3888 } else if (ret > 0) { 3889 /* fiemap_fill_next_extent() told us to stop. */ 3890 stopped = true; 3891 break; 3892 } 3893 3894 /* We've reached the end of the fiemap range, stop. */ 3895 if (key.offset >= lockend) { 3896 stopped = true; 3897 break; 3898 } 3899 } 3900 3901 extent_len = extent_end - key.offset; 3902 ei = btrfs_item_ptr(leaf, path->slots[0], 3903 struct btrfs_file_extent_item); 3904 compression = btrfs_file_extent_compression(leaf, ei); 3905 extent_type = btrfs_file_extent_type(leaf, ei); 3906 extent_gen = btrfs_file_extent_generation(leaf, ei); 3907 3908 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3909 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3910 if (compression == BTRFS_COMPRESS_NONE) 3911 extent_offset = btrfs_file_extent_offset(leaf, ei); 3912 } 3913 3914 if (compression != BTRFS_COMPRESS_NONE) 3915 flags |= FIEMAP_EXTENT_ENCODED; 3916 3917 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3918 flags |= FIEMAP_EXTENT_DATA_INLINE; 3919 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3920 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3921 extent_len, flags); 3922 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3923 ret = fiemap_process_hole(inode, fieinfo, &cache, 3924 &delalloc_cached_state, 3925 backref_ctx, 3926 disk_bytenr, extent_offset, 3927 extent_gen, key.offset, 3928 extent_end - 1); 3929 } else if (disk_bytenr == 0) { 3930 /* We have an explicit hole. */ 3931 ret = fiemap_process_hole(inode, fieinfo, &cache, 3932 &delalloc_cached_state, 3933 backref_ctx, 0, 0, 0, 3934 key.offset, extent_end - 1); 3935 } else { 3936 /* We have a regular extent. */ 3937 if (fieinfo->fi_extents_max) { 3938 ret = btrfs_is_data_extent_shared(inode, 3939 disk_bytenr, 3940 extent_gen, 3941 backref_ctx); 3942 if (ret < 0) 3943 goto out_unlock; 3944 else if (ret > 0) 3945 flags |= FIEMAP_EXTENT_SHARED; 3946 } 3947 3948 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3949 disk_bytenr + extent_offset, 3950 extent_len, flags); 3951 } 3952 3953 if (ret < 0) { 3954 goto out_unlock; 3955 } else if (ret > 0) { 3956 /* fiemap_fill_next_extent() told us to stop. */ 3957 stopped = true; 3958 break; 3959 } 3960 3961 prev_extent_end = extent_end; 3962 next_item: 3963 if (fatal_signal_pending(current)) { 3964 ret = -EINTR; 3965 goto out_unlock; 3966 } 3967 3968 ret = fiemap_next_leaf_item(inode, path); 3969 if (ret < 0) { 3970 goto out_unlock; 3971 } else if (ret > 0) { 3972 /* No more file extent items for this inode. */ 3973 break; 3974 } 3975 cond_resched(); 3976 } 3977 3978 check_eof_delalloc: 3979 /* 3980 * Release (and free) the path before emitting any final entries to 3981 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3982 * once we find no more file extent items exist, we may have a 3983 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3984 * faults when copying data to the user space buffer. 3985 */ 3986 btrfs_free_path(path); 3987 path = NULL; 3988 3989 if (!stopped && prev_extent_end < lockend) { 3990 ret = fiemap_process_hole(inode, fieinfo, &cache, 3991 &delalloc_cached_state, backref_ctx, 3992 0, 0, 0, prev_extent_end, lockend - 1); 3993 if (ret < 0) 3994 goto out_unlock; 3995 prev_extent_end = lockend; 3996 } 3997 3998 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3999 const u64 i_size = i_size_read(&inode->vfs_inode); 4000 4001 if (prev_extent_end < i_size) { 4002 u64 delalloc_start; 4003 u64 delalloc_end; 4004 bool delalloc; 4005 4006 delalloc = btrfs_find_delalloc_in_range(inode, 4007 prev_extent_end, 4008 i_size - 1, 4009 &delalloc_cached_state, 4010 &delalloc_start, 4011 &delalloc_end); 4012 if (!delalloc) 4013 cache.flags |= FIEMAP_EXTENT_LAST; 4014 } else { 4015 cache.flags |= FIEMAP_EXTENT_LAST; 4016 } 4017 } 4018 4019 ret = emit_last_fiemap_cache(fieinfo, &cache); 4020 4021 out_unlock: 4022 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 4023 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4024 out: 4025 free_extent_state(delalloc_cached_state); 4026 btrfs_free_backref_share_ctx(backref_ctx); 4027 btrfs_free_path(path); 4028 return ret; 4029 } 4030 4031 static void __free_extent_buffer(struct extent_buffer *eb) 4032 { 4033 kmem_cache_free(extent_buffer_cache, eb); 4034 } 4035 4036 int extent_buffer_under_io(const struct extent_buffer *eb) 4037 { 4038 return (atomic_read(&eb->io_pages) || 4039 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4040 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4041 } 4042 4043 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 4044 { 4045 struct btrfs_subpage *subpage; 4046 4047 lockdep_assert_held(&page->mapping->private_lock); 4048 4049 if (PagePrivate(page)) { 4050 subpage = (struct btrfs_subpage *)page->private; 4051 if (atomic_read(&subpage->eb_refs)) 4052 return true; 4053 /* 4054 * Even there is no eb refs here, we may still have 4055 * end_page_read() call relying on page::private. 4056 */ 4057 if (atomic_read(&subpage->readers)) 4058 return true; 4059 } 4060 return false; 4061 } 4062 4063 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 4064 { 4065 struct btrfs_fs_info *fs_info = eb->fs_info; 4066 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4067 4068 /* 4069 * For mapped eb, we're going to change the page private, which should 4070 * be done under the private_lock. 4071 */ 4072 if (mapped) 4073 spin_lock(&page->mapping->private_lock); 4074 4075 if (!PagePrivate(page)) { 4076 if (mapped) 4077 spin_unlock(&page->mapping->private_lock); 4078 return; 4079 } 4080 4081 if (fs_info->nodesize >= PAGE_SIZE) { 4082 /* 4083 * We do this since we'll remove the pages after we've 4084 * removed the eb from the radix tree, so we could race 4085 * and have this page now attached to the new eb. So 4086 * only clear page_private if it's still connected to 4087 * this eb. 4088 */ 4089 if (PagePrivate(page) && 4090 page->private == (unsigned long)eb) { 4091 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4092 BUG_ON(PageDirty(page)); 4093 BUG_ON(PageWriteback(page)); 4094 /* 4095 * We need to make sure we haven't be attached 4096 * to a new eb. 4097 */ 4098 detach_page_private(page); 4099 } 4100 if (mapped) 4101 spin_unlock(&page->mapping->private_lock); 4102 return; 4103 } 4104 4105 /* 4106 * For subpage, we can have dummy eb with page private. In this case, 4107 * we can directly detach the private as such page is only attached to 4108 * one dummy eb, no sharing. 4109 */ 4110 if (!mapped) { 4111 btrfs_detach_subpage(fs_info, page); 4112 return; 4113 } 4114 4115 btrfs_page_dec_eb_refs(fs_info, page); 4116 4117 /* 4118 * We can only detach the page private if there are no other ebs in the 4119 * page range and no unfinished IO. 4120 */ 4121 if (!page_range_has_eb(fs_info, page)) 4122 btrfs_detach_subpage(fs_info, page); 4123 4124 spin_unlock(&page->mapping->private_lock); 4125 } 4126 4127 /* Release all pages attached to the extent buffer */ 4128 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4129 { 4130 int i; 4131 int num_pages; 4132 4133 ASSERT(!extent_buffer_under_io(eb)); 4134 4135 num_pages = num_extent_pages(eb); 4136 for (i = 0; i < num_pages; i++) { 4137 struct page *page = eb->pages[i]; 4138 4139 if (!page) 4140 continue; 4141 4142 detach_extent_buffer_page(eb, page); 4143 4144 /* One for when we allocated the page */ 4145 put_page(page); 4146 } 4147 } 4148 4149 /* 4150 * Helper for releasing the extent buffer. 4151 */ 4152 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4153 { 4154 btrfs_release_extent_buffer_pages(eb); 4155 btrfs_leak_debug_del_eb(eb); 4156 __free_extent_buffer(eb); 4157 } 4158 4159 static struct extent_buffer * 4160 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4161 unsigned long len) 4162 { 4163 struct extent_buffer *eb = NULL; 4164 4165 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4166 eb->start = start; 4167 eb->len = len; 4168 eb->fs_info = fs_info; 4169 init_rwsem(&eb->lock); 4170 4171 btrfs_leak_debug_add_eb(eb); 4172 INIT_LIST_HEAD(&eb->release_list); 4173 4174 spin_lock_init(&eb->refs_lock); 4175 atomic_set(&eb->refs, 1); 4176 atomic_set(&eb->io_pages, 0); 4177 4178 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 4179 4180 return eb; 4181 } 4182 4183 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4184 { 4185 int i; 4186 struct extent_buffer *new; 4187 int num_pages = num_extent_pages(src); 4188 int ret; 4189 4190 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4191 if (new == NULL) 4192 return NULL; 4193 4194 /* 4195 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 4196 * btrfs_release_extent_buffer() have different behavior for 4197 * UNMAPPED subpage extent buffer. 4198 */ 4199 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4200 4201 ret = btrfs_alloc_page_array(num_pages, new->pages); 4202 if (ret) { 4203 btrfs_release_extent_buffer(new); 4204 return NULL; 4205 } 4206 4207 for (i = 0; i < num_pages; i++) { 4208 int ret; 4209 struct page *p = new->pages[i]; 4210 4211 ret = attach_extent_buffer_page(new, p, NULL); 4212 if (ret < 0) { 4213 btrfs_release_extent_buffer(new); 4214 return NULL; 4215 } 4216 WARN_ON(PageDirty(p)); 4217 copy_page(page_address(p), page_address(src->pages[i])); 4218 } 4219 set_extent_buffer_uptodate(new); 4220 4221 return new; 4222 } 4223 4224 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4225 u64 start, unsigned long len) 4226 { 4227 struct extent_buffer *eb; 4228 int num_pages; 4229 int i; 4230 int ret; 4231 4232 eb = __alloc_extent_buffer(fs_info, start, len); 4233 if (!eb) 4234 return NULL; 4235 4236 num_pages = num_extent_pages(eb); 4237 ret = btrfs_alloc_page_array(num_pages, eb->pages); 4238 if (ret) 4239 goto err; 4240 4241 for (i = 0; i < num_pages; i++) { 4242 struct page *p = eb->pages[i]; 4243 4244 ret = attach_extent_buffer_page(eb, p, NULL); 4245 if (ret < 0) 4246 goto err; 4247 } 4248 4249 set_extent_buffer_uptodate(eb); 4250 btrfs_set_header_nritems(eb, 0); 4251 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4252 4253 return eb; 4254 err: 4255 for (i = 0; i < num_pages; i++) { 4256 if (eb->pages[i]) { 4257 detach_extent_buffer_page(eb, eb->pages[i]); 4258 __free_page(eb->pages[i]); 4259 } 4260 } 4261 __free_extent_buffer(eb); 4262 return NULL; 4263 } 4264 4265 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4266 u64 start) 4267 { 4268 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4269 } 4270 4271 static void check_buffer_tree_ref(struct extent_buffer *eb) 4272 { 4273 int refs; 4274 /* 4275 * The TREE_REF bit is first set when the extent_buffer is added 4276 * to the radix tree. It is also reset, if unset, when a new reference 4277 * is created by find_extent_buffer. 4278 * 4279 * It is only cleared in two cases: freeing the last non-tree 4280 * reference to the extent_buffer when its STALE bit is set or 4281 * calling release_folio when the tree reference is the only reference. 4282 * 4283 * In both cases, care is taken to ensure that the extent_buffer's 4284 * pages are not under io. However, release_folio can be concurrently 4285 * called with creating new references, which is prone to race 4286 * conditions between the calls to check_buffer_tree_ref in those 4287 * codepaths and clearing TREE_REF in try_release_extent_buffer. 4288 * 4289 * The actual lifetime of the extent_buffer in the radix tree is 4290 * adequately protected by the refcount, but the TREE_REF bit and 4291 * its corresponding reference are not. To protect against this 4292 * class of races, we call check_buffer_tree_ref from the codepaths 4293 * which trigger io after they set eb->io_pages. Note that once io is 4294 * initiated, TREE_REF can no longer be cleared, so that is the 4295 * moment at which any such race is best fixed. 4296 */ 4297 refs = atomic_read(&eb->refs); 4298 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4299 return; 4300 4301 spin_lock(&eb->refs_lock); 4302 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4303 atomic_inc(&eb->refs); 4304 spin_unlock(&eb->refs_lock); 4305 } 4306 4307 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4308 struct page *accessed) 4309 { 4310 int num_pages, i; 4311 4312 check_buffer_tree_ref(eb); 4313 4314 num_pages = num_extent_pages(eb); 4315 for (i = 0; i < num_pages; i++) { 4316 struct page *p = eb->pages[i]; 4317 4318 if (p != accessed) 4319 mark_page_accessed(p); 4320 } 4321 } 4322 4323 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4324 u64 start) 4325 { 4326 struct extent_buffer *eb; 4327 4328 eb = find_extent_buffer_nolock(fs_info, start); 4329 if (!eb) 4330 return NULL; 4331 /* 4332 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 4333 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 4334 * another task running free_extent_buffer() might have seen that flag 4335 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 4336 * writeback flags not set) and it's still in the tree (flag 4337 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 4338 * decrementing the extent buffer's reference count twice. So here we 4339 * could race and increment the eb's reference count, clear its stale 4340 * flag, mark it as dirty and drop our reference before the other task 4341 * finishes executing free_extent_buffer, which would later result in 4342 * an attempt to free an extent buffer that is dirty. 4343 */ 4344 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4345 spin_lock(&eb->refs_lock); 4346 spin_unlock(&eb->refs_lock); 4347 } 4348 mark_extent_buffer_accessed(eb, NULL); 4349 return eb; 4350 } 4351 4352 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4353 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4354 u64 start) 4355 { 4356 struct extent_buffer *eb, *exists = NULL; 4357 int ret; 4358 4359 eb = find_extent_buffer(fs_info, start); 4360 if (eb) 4361 return eb; 4362 eb = alloc_dummy_extent_buffer(fs_info, start); 4363 if (!eb) 4364 return ERR_PTR(-ENOMEM); 4365 eb->fs_info = fs_info; 4366 again: 4367 ret = radix_tree_preload(GFP_NOFS); 4368 if (ret) { 4369 exists = ERR_PTR(ret); 4370 goto free_eb; 4371 } 4372 spin_lock(&fs_info->buffer_lock); 4373 ret = radix_tree_insert(&fs_info->buffer_radix, 4374 start >> fs_info->sectorsize_bits, eb); 4375 spin_unlock(&fs_info->buffer_lock); 4376 radix_tree_preload_end(); 4377 if (ret == -EEXIST) { 4378 exists = find_extent_buffer(fs_info, start); 4379 if (exists) 4380 goto free_eb; 4381 else 4382 goto again; 4383 } 4384 check_buffer_tree_ref(eb); 4385 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4386 4387 return eb; 4388 free_eb: 4389 btrfs_release_extent_buffer(eb); 4390 return exists; 4391 } 4392 #endif 4393 4394 static struct extent_buffer *grab_extent_buffer( 4395 struct btrfs_fs_info *fs_info, struct page *page) 4396 { 4397 struct extent_buffer *exists; 4398 4399 /* 4400 * For subpage case, we completely rely on radix tree to ensure we 4401 * don't try to insert two ebs for the same bytenr. So here we always 4402 * return NULL and just continue. 4403 */ 4404 if (fs_info->nodesize < PAGE_SIZE) 4405 return NULL; 4406 4407 /* Page not yet attached to an extent buffer */ 4408 if (!PagePrivate(page)) 4409 return NULL; 4410 4411 /* 4412 * We could have already allocated an eb for this page and attached one 4413 * so lets see if we can get a ref on the existing eb, and if we can we 4414 * know it's good and we can just return that one, else we know we can 4415 * just overwrite page->private. 4416 */ 4417 exists = (struct extent_buffer *)page->private; 4418 if (atomic_inc_not_zero(&exists->refs)) 4419 return exists; 4420 4421 WARN_ON(PageDirty(page)); 4422 detach_page_private(page); 4423 return NULL; 4424 } 4425 4426 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 4427 { 4428 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4429 btrfs_err(fs_info, "bad tree block start %llu", start); 4430 return -EINVAL; 4431 } 4432 4433 if (fs_info->nodesize < PAGE_SIZE && 4434 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 4435 btrfs_err(fs_info, 4436 "tree block crosses page boundary, start %llu nodesize %u", 4437 start, fs_info->nodesize); 4438 return -EINVAL; 4439 } 4440 if (fs_info->nodesize >= PAGE_SIZE && 4441 !PAGE_ALIGNED(start)) { 4442 btrfs_err(fs_info, 4443 "tree block is not page aligned, start %llu nodesize %u", 4444 start, fs_info->nodesize); 4445 return -EINVAL; 4446 } 4447 return 0; 4448 } 4449 4450 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4451 u64 start, u64 owner_root, int level) 4452 { 4453 unsigned long len = fs_info->nodesize; 4454 int num_pages; 4455 int i; 4456 unsigned long index = start >> PAGE_SHIFT; 4457 struct extent_buffer *eb; 4458 struct extent_buffer *exists = NULL; 4459 struct page *p; 4460 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4461 u64 lockdep_owner = owner_root; 4462 int uptodate = 1; 4463 int ret; 4464 4465 if (check_eb_alignment(fs_info, start)) 4466 return ERR_PTR(-EINVAL); 4467 4468 #if BITS_PER_LONG == 32 4469 if (start >= MAX_LFS_FILESIZE) { 4470 btrfs_err_rl(fs_info, 4471 "extent buffer %llu is beyond 32bit page cache limit", start); 4472 btrfs_err_32bit_limit(fs_info); 4473 return ERR_PTR(-EOVERFLOW); 4474 } 4475 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4476 btrfs_warn_32bit_limit(fs_info); 4477 #endif 4478 4479 eb = find_extent_buffer(fs_info, start); 4480 if (eb) 4481 return eb; 4482 4483 eb = __alloc_extent_buffer(fs_info, start, len); 4484 if (!eb) 4485 return ERR_PTR(-ENOMEM); 4486 4487 /* 4488 * The reloc trees are just snapshots, so we need them to appear to be 4489 * just like any other fs tree WRT lockdep. 4490 */ 4491 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4492 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4493 4494 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4495 4496 num_pages = num_extent_pages(eb); 4497 for (i = 0; i < num_pages; i++, index++) { 4498 struct btrfs_subpage *prealloc = NULL; 4499 4500 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4501 if (!p) { 4502 exists = ERR_PTR(-ENOMEM); 4503 goto free_eb; 4504 } 4505 4506 /* 4507 * Preallocate page->private for subpage case, so that we won't 4508 * allocate memory with private_lock hold. The memory will be 4509 * freed by attach_extent_buffer_page() or freed manually if 4510 * we exit earlier. 4511 * 4512 * Although we have ensured one subpage eb can only have one 4513 * page, but it may change in the future for 16K page size 4514 * support, so we still preallocate the memory in the loop. 4515 */ 4516 if (fs_info->nodesize < PAGE_SIZE) { 4517 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4518 if (IS_ERR(prealloc)) { 4519 ret = PTR_ERR(prealloc); 4520 unlock_page(p); 4521 put_page(p); 4522 exists = ERR_PTR(ret); 4523 goto free_eb; 4524 } 4525 } 4526 4527 spin_lock(&mapping->private_lock); 4528 exists = grab_extent_buffer(fs_info, p); 4529 if (exists) { 4530 spin_unlock(&mapping->private_lock); 4531 unlock_page(p); 4532 put_page(p); 4533 mark_extent_buffer_accessed(exists, p); 4534 btrfs_free_subpage(prealloc); 4535 goto free_eb; 4536 } 4537 /* Should not fail, as we have preallocated the memory */ 4538 ret = attach_extent_buffer_page(eb, p, prealloc); 4539 ASSERT(!ret); 4540 /* 4541 * To inform we have extra eb under allocation, so that 4542 * detach_extent_buffer_page() won't release the page private 4543 * when the eb hasn't yet been inserted into radix tree. 4544 * 4545 * The ref will be decreased when the eb released the page, in 4546 * detach_extent_buffer_page(). 4547 * Thus needs no special handling in error path. 4548 */ 4549 btrfs_page_inc_eb_refs(fs_info, p); 4550 spin_unlock(&mapping->private_lock); 4551 4552 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4553 eb->pages[i] = p; 4554 if (!PageUptodate(p)) 4555 uptodate = 0; 4556 4557 /* 4558 * We can't unlock the pages just yet since the extent buffer 4559 * hasn't been properly inserted in the radix tree, this 4560 * opens a race with btree_release_folio which can free a page 4561 * while we are still filling in all pages for the buffer and 4562 * we could crash. 4563 */ 4564 } 4565 if (uptodate) 4566 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4567 again: 4568 ret = radix_tree_preload(GFP_NOFS); 4569 if (ret) { 4570 exists = ERR_PTR(ret); 4571 goto free_eb; 4572 } 4573 4574 spin_lock(&fs_info->buffer_lock); 4575 ret = radix_tree_insert(&fs_info->buffer_radix, 4576 start >> fs_info->sectorsize_bits, eb); 4577 spin_unlock(&fs_info->buffer_lock); 4578 radix_tree_preload_end(); 4579 if (ret == -EEXIST) { 4580 exists = find_extent_buffer(fs_info, start); 4581 if (exists) 4582 goto free_eb; 4583 else 4584 goto again; 4585 } 4586 /* add one reference for the tree */ 4587 check_buffer_tree_ref(eb); 4588 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4589 4590 /* 4591 * Now it's safe to unlock the pages because any calls to 4592 * btree_release_folio will correctly detect that a page belongs to a 4593 * live buffer and won't free them prematurely. 4594 */ 4595 for (i = 0; i < num_pages; i++) 4596 unlock_page(eb->pages[i]); 4597 return eb; 4598 4599 free_eb: 4600 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4601 for (i = 0; i < num_pages; i++) { 4602 if (eb->pages[i]) 4603 unlock_page(eb->pages[i]); 4604 } 4605 4606 btrfs_release_extent_buffer(eb); 4607 return exists; 4608 } 4609 4610 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4611 { 4612 struct extent_buffer *eb = 4613 container_of(head, struct extent_buffer, rcu_head); 4614 4615 __free_extent_buffer(eb); 4616 } 4617 4618 static int release_extent_buffer(struct extent_buffer *eb) 4619 __releases(&eb->refs_lock) 4620 { 4621 lockdep_assert_held(&eb->refs_lock); 4622 4623 WARN_ON(atomic_read(&eb->refs) == 0); 4624 if (atomic_dec_and_test(&eb->refs)) { 4625 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4626 struct btrfs_fs_info *fs_info = eb->fs_info; 4627 4628 spin_unlock(&eb->refs_lock); 4629 4630 spin_lock(&fs_info->buffer_lock); 4631 radix_tree_delete(&fs_info->buffer_radix, 4632 eb->start >> fs_info->sectorsize_bits); 4633 spin_unlock(&fs_info->buffer_lock); 4634 } else { 4635 spin_unlock(&eb->refs_lock); 4636 } 4637 4638 btrfs_leak_debug_del_eb(eb); 4639 /* Should be safe to release our pages at this point */ 4640 btrfs_release_extent_buffer_pages(eb); 4641 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4642 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4643 __free_extent_buffer(eb); 4644 return 1; 4645 } 4646 #endif 4647 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4648 return 1; 4649 } 4650 spin_unlock(&eb->refs_lock); 4651 4652 return 0; 4653 } 4654 4655 void free_extent_buffer(struct extent_buffer *eb) 4656 { 4657 int refs; 4658 if (!eb) 4659 return; 4660 4661 refs = atomic_read(&eb->refs); 4662 while (1) { 4663 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4664 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4665 refs == 1)) 4666 break; 4667 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4668 return; 4669 } 4670 4671 spin_lock(&eb->refs_lock); 4672 if (atomic_read(&eb->refs) == 2 && 4673 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4674 !extent_buffer_under_io(eb) && 4675 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4676 atomic_dec(&eb->refs); 4677 4678 /* 4679 * I know this is terrible, but it's temporary until we stop tracking 4680 * the uptodate bits and such for the extent buffers. 4681 */ 4682 release_extent_buffer(eb); 4683 } 4684 4685 void free_extent_buffer_stale(struct extent_buffer *eb) 4686 { 4687 if (!eb) 4688 return; 4689 4690 spin_lock(&eb->refs_lock); 4691 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4692 4693 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4694 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4695 atomic_dec(&eb->refs); 4696 release_extent_buffer(eb); 4697 } 4698 4699 static void btree_clear_page_dirty(struct page *page) 4700 { 4701 ASSERT(PageDirty(page)); 4702 ASSERT(PageLocked(page)); 4703 clear_page_dirty_for_io(page); 4704 xa_lock_irq(&page->mapping->i_pages); 4705 if (!PageDirty(page)) 4706 __xa_clear_mark(&page->mapping->i_pages, 4707 page_index(page), PAGECACHE_TAG_DIRTY); 4708 xa_unlock_irq(&page->mapping->i_pages); 4709 } 4710 4711 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4712 { 4713 struct btrfs_fs_info *fs_info = eb->fs_info; 4714 struct page *page = eb->pages[0]; 4715 bool last; 4716 4717 /* btree_clear_page_dirty() needs page locked */ 4718 lock_page(page); 4719 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4720 eb->len); 4721 if (last) 4722 btree_clear_page_dirty(page); 4723 unlock_page(page); 4724 WARN_ON(atomic_read(&eb->refs) == 0); 4725 } 4726 4727 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 4728 { 4729 int i; 4730 int num_pages; 4731 struct page *page; 4732 4733 if (eb->fs_info->nodesize < PAGE_SIZE) 4734 return clear_subpage_extent_buffer_dirty(eb); 4735 4736 num_pages = num_extent_pages(eb); 4737 4738 for (i = 0; i < num_pages; i++) { 4739 page = eb->pages[i]; 4740 if (!PageDirty(page)) 4741 continue; 4742 lock_page(page); 4743 btree_clear_page_dirty(page); 4744 ClearPageError(page); 4745 unlock_page(page); 4746 } 4747 WARN_ON(atomic_read(&eb->refs) == 0); 4748 } 4749 4750 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4751 { 4752 int i; 4753 int num_pages; 4754 bool was_dirty; 4755 4756 check_buffer_tree_ref(eb); 4757 4758 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4759 4760 num_pages = num_extent_pages(eb); 4761 WARN_ON(atomic_read(&eb->refs) == 0); 4762 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4763 4764 if (!was_dirty) { 4765 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4766 4767 /* 4768 * For subpage case, we can have other extent buffers in the 4769 * same page, and in clear_subpage_extent_buffer_dirty() we 4770 * have to clear page dirty without subpage lock held. 4771 * This can cause race where our page gets dirty cleared after 4772 * we just set it. 4773 * 4774 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4775 * its page for other reasons, we can use page lock to prevent 4776 * the above race. 4777 */ 4778 if (subpage) 4779 lock_page(eb->pages[0]); 4780 for (i = 0; i < num_pages; i++) 4781 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4782 eb->start, eb->len); 4783 if (subpage) 4784 unlock_page(eb->pages[0]); 4785 } 4786 #ifdef CONFIG_BTRFS_DEBUG 4787 for (i = 0; i < num_pages; i++) 4788 ASSERT(PageDirty(eb->pages[i])); 4789 #endif 4790 4791 return was_dirty; 4792 } 4793 4794 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4795 { 4796 struct btrfs_fs_info *fs_info = eb->fs_info; 4797 struct page *page; 4798 int num_pages; 4799 int i; 4800 4801 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4802 num_pages = num_extent_pages(eb); 4803 for (i = 0; i < num_pages; i++) { 4804 page = eb->pages[i]; 4805 if (!page) 4806 continue; 4807 4808 /* 4809 * This is special handling for metadata subpage, as regular 4810 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4811 */ 4812 if (fs_info->nodesize >= PAGE_SIZE) 4813 ClearPageUptodate(page); 4814 else 4815 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4816 eb->len); 4817 } 4818 } 4819 4820 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4821 { 4822 struct btrfs_fs_info *fs_info = eb->fs_info; 4823 struct page *page; 4824 int num_pages; 4825 int i; 4826 4827 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4828 num_pages = num_extent_pages(eb); 4829 for (i = 0; i < num_pages; i++) { 4830 page = eb->pages[i]; 4831 4832 /* 4833 * This is special handling for metadata subpage, as regular 4834 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4835 */ 4836 if (fs_info->nodesize >= PAGE_SIZE) 4837 SetPageUptodate(page); 4838 else 4839 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4840 eb->len); 4841 } 4842 } 4843 4844 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4845 int mirror_num, 4846 struct btrfs_tree_parent_check *check) 4847 { 4848 struct btrfs_fs_info *fs_info = eb->fs_info; 4849 struct extent_io_tree *io_tree; 4850 struct page *page = eb->pages[0]; 4851 struct extent_state *cached_state = NULL; 4852 struct btrfs_bio_ctrl bio_ctrl = { 4853 .mirror_num = mirror_num, 4854 .parent_check = check, 4855 }; 4856 int ret = 0; 4857 4858 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4859 ASSERT(PagePrivate(page)); 4860 ASSERT(check); 4861 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4862 4863 if (wait == WAIT_NONE) { 4864 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4865 &cached_state)) 4866 return -EAGAIN; 4867 } else { 4868 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4869 &cached_state); 4870 if (ret < 0) 4871 return ret; 4872 } 4873 4874 ret = 0; 4875 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4876 PageUptodate(page) || 4877 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4878 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4879 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4880 &cached_state); 4881 return ret; 4882 } 4883 4884 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4885 eb->read_mirror = 0; 4886 atomic_set(&eb->io_pages, 1); 4887 check_buffer_tree_ref(eb); 4888 bio_ctrl.end_io_func = end_bio_extent_readpage; 4889 4890 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4891 4892 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4893 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4894 eb->start, page, eb->len, 4895 eb->start - page_offset(page), 0, true); 4896 if (ret) { 4897 /* 4898 * In the endio function, if we hit something wrong we will 4899 * increase the io_pages, so here we need to decrease it for 4900 * error path. 4901 */ 4902 atomic_dec(&eb->io_pages); 4903 } 4904 submit_one_bio(&bio_ctrl); 4905 if (ret || wait != WAIT_COMPLETE) { 4906 free_extent_state(cached_state); 4907 return ret; 4908 } 4909 4910 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, 4911 EXTENT_LOCKED, &cached_state); 4912 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4913 ret = -EIO; 4914 return ret; 4915 } 4916 4917 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4918 struct btrfs_tree_parent_check *check) 4919 { 4920 int i; 4921 struct page *page; 4922 int err; 4923 int ret = 0; 4924 int locked_pages = 0; 4925 int all_uptodate = 1; 4926 int num_pages; 4927 unsigned long num_reads = 0; 4928 struct btrfs_bio_ctrl bio_ctrl = { 4929 .mirror_num = mirror_num, 4930 .parent_check = check, 4931 }; 4932 4933 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4934 return 0; 4935 4936 /* 4937 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4938 * operation, which could potentially still be in flight. In this case 4939 * we simply want to return an error. 4940 */ 4941 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4942 return -EIO; 4943 4944 if (eb->fs_info->nodesize < PAGE_SIZE) 4945 return read_extent_buffer_subpage(eb, wait, mirror_num, check); 4946 4947 num_pages = num_extent_pages(eb); 4948 for (i = 0; i < num_pages; i++) { 4949 page = eb->pages[i]; 4950 if (wait == WAIT_NONE) { 4951 /* 4952 * WAIT_NONE is only utilized by readahead. If we can't 4953 * acquire the lock atomically it means either the eb 4954 * is being read out or under modification. 4955 * Either way the eb will be or has been cached, 4956 * readahead can exit safely. 4957 */ 4958 if (!trylock_page(page)) 4959 goto unlock_exit; 4960 } else { 4961 lock_page(page); 4962 } 4963 locked_pages++; 4964 } 4965 /* 4966 * We need to firstly lock all pages to make sure that 4967 * the uptodate bit of our pages won't be affected by 4968 * clear_extent_buffer_uptodate(). 4969 */ 4970 for (i = 0; i < num_pages; i++) { 4971 page = eb->pages[i]; 4972 if (!PageUptodate(page)) { 4973 num_reads++; 4974 all_uptodate = 0; 4975 } 4976 } 4977 4978 if (all_uptodate) { 4979 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4980 goto unlock_exit; 4981 } 4982 4983 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4984 eb->read_mirror = 0; 4985 atomic_set(&eb->io_pages, num_reads); 4986 /* 4987 * It is possible for release_folio to clear the TREE_REF bit before we 4988 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 4989 */ 4990 check_buffer_tree_ref(eb); 4991 bio_ctrl.end_io_func = end_bio_extent_readpage; 4992 for (i = 0; i < num_pages; i++) { 4993 page = eb->pages[i]; 4994 4995 if (!PageUptodate(page)) { 4996 if (ret) { 4997 atomic_dec(&eb->io_pages); 4998 unlock_page(page); 4999 continue; 5000 } 5001 5002 ClearPageError(page); 5003 err = submit_extent_page(REQ_OP_READ, NULL, 5004 &bio_ctrl, page_offset(page), page, 5005 PAGE_SIZE, 0, 0, false); 5006 if (err) { 5007 /* 5008 * We failed to submit the bio so it's the 5009 * caller's responsibility to perform cleanup 5010 * i.e unlock page/set error bit. 5011 */ 5012 ret = err; 5013 SetPageError(page); 5014 unlock_page(page); 5015 atomic_dec(&eb->io_pages); 5016 } 5017 } else { 5018 unlock_page(page); 5019 } 5020 } 5021 5022 submit_one_bio(&bio_ctrl); 5023 5024 if (ret || wait != WAIT_COMPLETE) 5025 return ret; 5026 5027 for (i = 0; i < num_pages; i++) { 5028 page = eb->pages[i]; 5029 wait_on_page_locked(page); 5030 if (!PageUptodate(page)) 5031 ret = -EIO; 5032 } 5033 5034 return ret; 5035 5036 unlock_exit: 5037 while (locked_pages > 0) { 5038 locked_pages--; 5039 page = eb->pages[locked_pages]; 5040 unlock_page(page); 5041 } 5042 return ret; 5043 } 5044 5045 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5046 unsigned long len) 5047 { 5048 btrfs_warn(eb->fs_info, 5049 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5050 eb->start, eb->len, start, len); 5051 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5052 5053 return true; 5054 } 5055 5056 /* 5057 * Check if the [start, start + len) range is valid before reading/writing 5058 * the eb. 5059 * NOTE: @start and @len are offset inside the eb, not logical address. 5060 * 5061 * Caller should not touch the dst/src memory if this function returns error. 5062 */ 5063 static inline int check_eb_range(const struct extent_buffer *eb, 5064 unsigned long start, unsigned long len) 5065 { 5066 unsigned long offset; 5067 5068 /* start, start + len should not go beyond eb->len nor overflow */ 5069 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5070 return report_eb_range(eb, start, len); 5071 5072 return false; 5073 } 5074 5075 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5076 unsigned long start, unsigned long len) 5077 { 5078 size_t cur; 5079 size_t offset; 5080 struct page *page; 5081 char *kaddr; 5082 char *dst = (char *)dstv; 5083 unsigned long i = get_eb_page_index(start); 5084 5085 if (check_eb_range(eb, start, len)) 5086 return; 5087 5088 offset = get_eb_offset_in_page(eb, start); 5089 5090 while (len > 0) { 5091 page = eb->pages[i]; 5092 5093 cur = min(len, (PAGE_SIZE - offset)); 5094 kaddr = page_address(page); 5095 memcpy(dst, kaddr + offset, cur); 5096 5097 dst += cur; 5098 len -= cur; 5099 offset = 0; 5100 i++; 5101 } 5102 } 5103 5104 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5105 void __user *dstv, 5106 unsigned long start, unsigned long len) 5107 { 5108 size_t cur; 5109 size_t offset; 5110 struct page *page; 5111 char *kaddr; 5112 char __user *dst = (char __user *)dstv; 5113 unsigned long i = get_eb_page_index(start); 5114 int ret = 0; 5115 5116 WARN_ON(start > eb->len); 5117 WARN_ON(start + len > eb->start + eb->len); 5118 5119 offset = get_eb_offset_in_page(eb, start); 5120 5121 while (len > 0) { 5122 page = eb->pages[i]; 5123 5124 cur = min(len, (PAGE_SIZE - offset)); 5125 kaddr = page_address(page); 5126 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5127 ret = -EFAULT; 5128 break; 5129 } 5130 5131 dst += cur; 5132 len -= cur; 5133 offset = 0; 5134 i++; 5135 } 5136 5137 return ret; 5138 } 5139 5140 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5141 unsigned long start, unsigned long len) 5142 { 5143 size_t cur; 5144 size_t offset; 5145 struct page *page; 5146 char *kaddr; 5147 char *ptr = (char *)ptrv; 5148 unsigned long i = get_eb_page_index(start); 5149 int ret = 0; 5150 5151 if (check_eb_range(eb, start, len)) 5152 return -EINVAL; 5153 5154 offset = get_eb_offset_in_page(eb, start); 5155 5156 while (len > 0) { 5157 page = eb->pages[i]; 5158 5159 cur = min(len, (PAGE_SIZE - offset)); 5160 5161 kaddr = page_address(page); 5162 ret = memcmp(ptr, kaddr + offset, cur); 5163 if (ret) 5164 break; 5165 5166 ptr += cur; 5167 len -= cur; 5168 offset = 0; 5169 i++; 5170 } 5171 return ret; 5172 } 5173 5174 /* 5175 * Check that the extent buffer is uptodate. 5176 * 5177 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 5178 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 5179 */ 5180 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 5181 struct page *page) 5182 { 5183 struct btrfs_fs_info *fs_info = eb->fs_info; 5184 5185 /* 5186 * If we are using the commit root we could potentially clear a page 5187 * Uptodate while we're using the extent buffer that we've previously 5188 * looked up. We don't want to complain in this case, as the page was 5189 * valid before, we just didn't write it out. Instead we want to catch 5190 * the case where we didn't actually read the block properly, which 5191 * would have !PageUptodate && !PageError, as we clear PageError before 5192 * reading. 5193 */ 5194 if (fs_info->nodesize < PAGE_SIZE) { 5195 bool uptodate, error; 5196 5197 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 5198 eb->start, eb->len); 5199 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 5200 WARN_ON(!uptodate && !error); 5201 } else { 5202 WARN_ON(!PageUptodate(page) && !PageError(page)); 5203 } 5204 } 5205 5206 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5207 const void *srcv) 5208 { 5209 char *kaddr; 5210 5211 assert_eb_page_uptodate(eb, eb->pages[0]); 5212 kaddr = page_address(eb->pages[0]) + 5213 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 5214 chunk_tree_uuid)); 5215 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5216 } 5217 5218 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5219 { 5220 char *kaddr; 5221 5222 assert_eb_page_uptodate(eb, eb->pages[0]); 5223 kaddr = page_address(eb->pages[0]) + 5224 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 5225 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5226 } 5227 5228 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5229 unsigned long start, unsigned long len) 5230 { 5231 size_t cur; 5232 size_t offset; 5233 struct page *page; 5234 char *kaddr; 5235 char *src = (char *)srcv; 5236 unsigned long i = get_eb_page_index(start); 5237 5238 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 5239 5240 if (check_eb_range(eb, start, len)) 5241 return; 5242 5243 offset = get_eb_offset_in_page(eb, start); 5244 5245 while (len > 0) { 5246 page = eb->pages[i]; 5247 assert_eb_page_uptodate(eb, page); 5248 5249 cur = min(len, PAGE_SIZE - offset); 5250 kaddr = page_address(page); 5251 memcpy(kaddr + offset, src, cur); 5252 5253 src += cur; 5254 len -= cur; 5255 offset = 0; 5256 i++; 5257 } 5258 } 5259 5260 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5261 unsigned long len) 5262 { 5263 size_t cur; 5264 size_t offset; 5265 struct page *page; 5266 char *kaddr; 5267 unsigned long i = get_eb_page_index(start); 5268 5269 if (check_eb_range(eb, start, len)) 5270 return; 5271 5272 offset = get_eb_offset_in_page(eb, start); 5273 5274 while (len > 0) { 5275 page = eb->pages[i]; 5276 assert_eb_page_uptodate(eb, page); 5277 5278 cur = min(len, PAGE_SIZE - offset); 5279 kaddr = page_address(page); 5280 memset(kaddr + offset, 0, cur); 5281 5282 len -= cur; 5283 offset = 0; 5284 i++; 5285 } 5286 } 5287 5288 void copy_extent_buffer_full(const struct extent_buffer *dst, 5289 const struct extent_buffer *src) 5290 { 5291 int i; 5292 int num_pages; 5293 5294 ASSERT(dst->len == src->len); 5295 5296 if (dst->fs_info->nodesize >= PAGE_SIZE) { 5297 num_pages = num_extent_pages(dst); 5298 for (i = 0; i < num_pages; i++) 5299 copy_page(page_address(dst->pages[i]), 5300 page_address(src->pages[i])); 5301 } else { 5302 size_t src_offset = get_eb_offset_in_page(src, 0); 5303 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5304 5305 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 5306 memcpy(page_address(dst->pages[0]) + dst_offset, 5307 page_address(src->pages[0]) + src_offset, 5308 src->len); 5309 } 5310 } 5311 5312 void copy_extent_buffer(const struct extent_buffer *dst, 5313 const struct extent_buffer *src, 5314 unsigned long dst_offset, unsigned long src_offset, 5315 unsigned long len) 5316 { 5317 u64 dst_len = dst->len; 5318 size_t cur; 5319 size_t offset; 5320 struct page *page; 5321 char *kaddr; 5322 unsigned long i = get_eb_page_index(dst_offset); 5323 5324 if (check_eb_range(dst, dst_offset, len) || 5325 check_eb_range(src, src_offset, len)) 5326 return; 5327 5328 WARN_ON(src->len != dst_len); 5329 5330 offset = get_eb_offset_in_page(dst, dst_offset); 5331 5332 while (len > 0) { 5333 page = dst->pages[i]; 5334 assert_eb_page_uptodate(dst, page); 5335 5336 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5337 5338 kaddr = page_address(page); 5339 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5340 5341 src_offset += cur; 5342 len -= cur; 5343 offset = 0; 5344 i++; 5345 } 5346 } 5347 5348 /* 5349 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5350 * given bit number 5351 * @eb: the extent buffer 5352 * @start: offset of the bitmap item in the extent buffer 5353 * @nr: bit number 5354 * @page_index: return index of the page in the extent buffer that contains the 5355 * given bit number 5356 * @page_offset: return offset into the page given by page_index 5357 * 5358 * This helper hides the ugliness of finding the byte in an extent buffer which 5359 * contains a given bit. 5360 */ 5361 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5362 unsigned long start, unsigned long nr, 5363 unsigned long *page_index, 5364 size_t *page_offset) 5365 { 5366 size_t byte_offset = BIT_BYTE(nr); 5367 size_t offset; 5368 5369 /* 5370 * The byte we want is the offset of the extent buffer + the offset of 5371 * the bitmap item in the extent buffer + the offset of the byte in the 5372 * bitmap item. 5373 */ 5374 offset = start + offset_in_page(eb->start) + byte_offset; 5375 5376 *page_index = offset >> PAGE_SHIFT; 5377 *page_offset = offset_in_page(offset); 5378 } 5379 5380 /* 5381 * Determine whether a bit in a bitmap item is set. 5382 * 5383 * @eb: the extent buffer 5384 * @start: offset of the bitmap item in the extent buffer 5385 * @nr: bit number to test 5386 */ 5387 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5388 unsigned long nr) 5389 { 5390 u8 *kaddr; 5391 struct page *page; 5392 unsigned long i; 5393 size_t offset; 5394 5395 eb_bitmap_offset(eb, start, nr, &i, &offset); 5396 page = eb->pages[i]; 5397 assert_eb_page_uptodate(eb, page); 5398 kaddr = page_address(page); 5399 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5400 } 5401 5402 /* 5403 * Set an area of a bitmap to 1. 5404 * 5405 * @eb: the extent buffer 5406 * @start: offset of the bitmap item in the extent buffer 5407 * @pos: bit number of the first bit 5408 * @len: number of bits to set 5409 */ 5410 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5411 unsigned long pos, unsigned long len) 5412 { 5413 u8 *kaddr; 5414 struct page *page; 5415 unsigned long i; 5416 size_t offset; 5417 const unsigned int size = pos + len; 5418 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5419 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5420 5421 eb_bitmap_offset(eb, start, pos, &i, &offset); 5422 page = eb->pages[i]; 5423 assert_eb_page_uptodate(eb, page); 5424 kaddr = page_address(page); 5425 5426 while (len >= bits_to_set) { 5427 kaddr[offset] |= mask_to_set; 5428 len -= bits_to_set; 5429 bits_to_set = BITS_PER_BYTE; 5430 mask_to_set = ~0; 5431 if (++offset >= PAGE_SIZE && len > 0) { 5432 offset = 0; 5433 page = eb->pages[++i]; 5434 assert_eb_page_uptodate(eb, page); 5435 kaddr = page_address(page); 5436 } 5437 } 5438 if (len) { 5439 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5440 kaddr[offset] |= mask_to_set; 5441 } 5442 } 5443 5444 5445 /* 5446 * Clear an area of a bitmap. 5447 * 5448 * @eb: the extent buffer 5449 * @start: offset of the bitmap item in the extent buffer 5450 * @pos: bit number of the first bit 5451 * @len: number of bits to clear 5452 */ 5453 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5454 unsigned long start, unsigned long pos, 5455 unsigned long len) 5456 { 5457 u8 *kaddr; 5458 struct page *page; 5459 unsigned long i; 5460 size_t offset; 5461 const unsigned int size = pos + len; 5462 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5463 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5464 5465 eb_bitmap_offset(eb, start, pos, &i, &offset); 5466 page = eb->pages[i]; 5467 assert_eb_page_uptodate(eb, page); 5468 kaddr = page_address(page); 5469 5470 while (len >= bits_to_clear) { 5471 kaddr[offset] &= ~mask_to_clear; 5472 len -= bits_to_clear; 5473 bits_to_clear = BITS_PER_BYTE; 5474 mask_to_clear = ~0; 5475 if (++offset >= PAGE_SIZE && len > 0) { 5476 offset = 0; 5477 page = eb->pages[++i]; 5478 assert_eb_page_uptodate(eb, page); 5479 kaddr = page_address(page); 5480 } 5481 } 5482 if (len) { 5483 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5484 kaddr[offset] &= ~mask_to_clear; 5485 } 5486 } 5487 5488 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5489 { 5490 unsigned long distance = (src > dst) ? src - dst : dst - src; 5491 return distance < len; 5492 } 5493 5494 static void copy_pages(struct page *dst_page, struct page *src_page, 5495 unsigned long dst_off, unsigned long src_off, 5496 unsigned long len) 5497 { 5498 char *dst_kaddr = page_address(dst_page); 5499 char *src_kaddr; 5500 int must_memmove = 0; 5501 5502 if (dst_page != src_page) { 5503 src_kaddr = page_address(src_page); 5504 } else { 5505 src_kaddr = dst_kaddr; 5506 if (areas_overlap(src_off, dst_off, len)) 5507 must_memmove = 1; 5508 } 5509 5510 if (must_memmove) 5511 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5512 else 5513 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5514 } 5515 5516 void memcpy_extent_buffer(const struct extent_buffer *dst, 5517 unsigned long dst_offset, unsigned long src_offset, 5518 unsigned long len) 5519 { 5520 size_t cur; 5521 size_t dst_off_in_page; 5522 size_t src_off_in_page; 5523 unsigned long dst_i; 5524 unsigned long src_i; 5525 5526 if (check_eb_range(dst, dst_offset, len) || 5527 check_eb_range(dst, src_offset, len)) 5528 return; 5529 5530 while (len > 0) { 5531 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5532 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5533 5534 dst_i = get_eb_page_index(dst_offset); 5535 src_i = get_eb_page_index(src_offset); 5536 5537 cur = min(len, (unsigned long)(PAGE_SIZE - 5538 src_off_in_page)); 5539 cur = min_t(unsigned long, cur, 5540 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5541 5542 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5543 dst_off_in_page, src_off_in_page, cur); 5544 5545 src_offset += cur; 5546 dst_offset += cur; 5547 len -= cur; 5548 } 5549 } 5550 5551 void memmove_extent_buffer(const struct extent_buffer *dst, 5552 unsigned long dst_offset, unsigned long src_offset, 5553 unsigned long len) 5554 { 5555 size_t cur; 5556 size_t dst_off_in_page; 5557 size_t src_off_in_page; 5558 unsigned long dst_end = dst_offset + len - 1; 5559 unsigned long src_end = src_offset + len - 1; 5560 unsigned long dst_i; 5561 unsigned long src_i; 5562 5563 if (check_eb_range(dst, dst_offset, len) || 5564 check_eb_range(dst, src_offset, len)) 5565 return; 5566 if (dst_offset < src_offset) { 5567 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5568 return; 5569 } 5570 while (len > 0) { 5571 dst_i = get_eb_page_index(dst_end); 5572 src_i = get_eb_page_index(src_end); 5573 5574 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5575 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5576 5577 cur = min_t(unsigned long, len, src_off_in_page + 1); 5578 cur = min(cur, dst_off_in_page + 1); 5579 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5580 dst_off_in_page - cur + 1, 5581 src_off_in_page - cur + 1, cur); 5582 5583 dst_end -= cur; 5584 src_end -= cur; 5585 len -= cur; 5586 } 5587 } 5588 5589 #define GANG_LOOKUP_SIZE 16 5590 static struct extent_buffer *get_next_extent_buffer( 5591 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5592 { 5593 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5594 struct extent_buffer *found = NULL; 5595 u64 page_start = page_offset(page); 5596 u64 cur = page_start; 5597 5598 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5599 lockdep_assert_held(&fs_info->buffer_lock); 5600 5601 while (cur < page_start + PAGE_SIZE) { 5602 int ret; 5603 int i; 5604 5605 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5606 (void **)gang, cur >> fs_info->sectorsize_bits, 5607 min_t(unsigned int, GANG_LOOKUP_SIZE, 5608 PAGE_SIZE / fs_info->nodesize)); 5609 if (ret == 0) 5610 goto out; 5611 for (i = 0; i < ret; i++) { 5612 /* Already beyond page end */ 5613 if (gang[i]->start >= page_start + PAGE_SIZE) 5614 goto out; 5615 /* Found one */ 5616 if (gang[i]->start >= bytenr) { 5617 found = gang[i]; 5618 goto out; 5619 } 5620 } 5621 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5622 } 5623 out: 5624 return found; 5625 } 5626 5627 static int try_release_subpage_extent_buffer(struct page *page) 5628 { 5629 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5630 u64 cur = page_offset(page); 5631 const u64 end = page_offset(page) + PAGE_SIZE; 5632 int ret; 5633 5634 while (cur < end) { 5635 struct extent_buffer *eb = NULL; 5636 5637 /* 5638 * Unlike try_release_extent_buffer() which uses page->private 5639 * to grab buffer, for subpage case we rely on radix tree, thus 5640 * we need to ensure radix tree consistency. 5641 * 5642 * We also want an atomic snapshot of the radix tree, thus go 5643 * with spinlock rather than RCU. 5644 */ 5645 spin_lock(&fs_info->buffer_lock); 5646 eb = get_next_extent_buffer(fs_info, page, cur); 5647 if (!eb) { 5648 /* No more eb in the page range after or at cur */ 5649 spin_unlock(&fs_info->buffer_lock); 5650 break; 5651 } 5652 cur = eb->start + eb->len; 5653 5654 /* 5655 * The same as try_release_extent_buffer(), to ensure the eb 5656 * won't disappear out from under us. 5657 */ 5658 spin_lock(&eb->refs_lock); 5659 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5660 spin_unlock(&eb->refs_lock); 5661 spin_unlock(&fs_info->buffer_lock); 5662 break; 5663 } 5664 spin_unlock(&fs_info->buffer_lock); 5665 5666 /* 5667 * If tree ref isn't set then we know the ref on this eb is a 5668 * real ref, so just return, this eb will likely be freed soon 5669 * anyway. 5670 */ 5671 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5672 spin_unlock(&eb->refs_lock); 5673 break; 5674 } 5675 5676 /* 5677 * Here we don't care about the return value, we will always 5678 * check the page private at the end. And 5679 * release_extent_buffer() will release the refs_lock. 5680 */ 5681 release_extent_buffer(eb); 5682 } 5683 /* 5684 * Finally to check if we have cleared page private, as if we have 5685 * released all ebs in the page, the page private should be cleared now. 5686 */ 5687 spin_lock(&page->mapping->private_lock); 5688 if (!PagePrivate(page)) 5689 ret = 1; 5690 else 5691 ret = 0; 5692 spin_unlock(&page->mapping->private_lock); 5693 return ret; 5694 5695 } 5696 5697 int try_release_extent_buffer(struct page *page) 5698 { 5699 struct extent_buffer *eb; 5700 5701 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5702 return try_release_subpage_extent_buffer(page); 5703 5704 /* 5705 * We need to make sure nobody is changing page->private, as we rely on 5706 * page->private as the pointer to extent buffer. 5707 */ 5708 spin_lock(&page->mapping->private_lock); 5709 if (!PagePrivate(page)) { 5710 spin_unlock(&page->mapping->private_lock); 5711 return 1; 5712 } 5713 5714 eb = (struct extent_buffer *)page->private; 5715 BUG_ON(!eb); 5716 5717 /* 5718 * This is a little awful but should be ok, we need to make sure that 5719 * the eb doesn't disappear out from under us while we're looking at 5720 * this page. 5721 */ 5722 spin_lock(&eb->refs_lock); 5723 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5724 spin_unlock(&eb->refs_lock); 5725 spin_unlock(&page->mapping->private_lock); 5726 return 0; 5727 } 5728 spin_unlock(&page->mapping->private_lock); 5729 5730 /* 5731 * If tree ref isn't set then we know the ref on this eb is a real ref, 5732 * so just return, this page will likely be freed soon anyway. 5733 */ 5734 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5735 spin_unlock(&eb->refs_lock); 5736 return 0; 5737 } 5738 5739 return release_extent_buffer(eb); 5740 } 5741 5742 /* 5743 * btrfs_readahead_tree_block - attempt to readahead a child block 5744 * @fs_info: the fs_info 5745 * @bytenr: bytenr to read 5746 * @owner_root: objectid of the root that owns this eb 5747 * @gen: generation for the uptodate check, can be 0 5748 * @level: level for the eb 5749 * 5750 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5751 * normal uptodate check of the eb, without checking the generation. If we have 5752 * to read the block we will not block on anything. 5753 */ 5754 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5755 u64 bytenr, u64 owner_root, u64 gen, int level) 5756 { 5757 struct btrfs_tree_parent_check check = { 5758 .has_first_key = 0, 5759 .level = level, 5760 .transid = gen 5761 }; 5762 struct extent_buffer *eb; 5763 int ret; 5764 5765 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5766 if (IS_ERR(eb)) 5767 return; 5768 5769 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5770 free_extent_buffer(eb); 5771 return; 5772 } 5773 5774 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5775 if (ret < 0) 5776 free_extent_buffer_stale(eb); 5777 else 5778 free_extent_buffer(eb); 5779 } 5780 5781 /* 5782 * btrfs_readahead_node_child - readahead a node's child block 5783 * @node: parent node we're reading from 5784 * @slot: slot in the parent node for the child we want to read 5785 * 5786 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5787 * the slot in the node provided. 5788 */ 5789 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5790 { 5791 btrfs_readahead_tree_block(node->fs_info, 5792 btrfs_node_blockptr(node, slot), 5793 btrfs_header_owner(node), 5794 btrfs_node_ptr_generation(node, slot), 5795 btrfs_header_level(node) - 1); 5796 } 5797