1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 33 static struct kmem_cache *extent_state_cache; 34 static struct kmem_cache *extent_buffer_cache; 35 static struct bio_set btrfs_bioset; 36 37 static inline bool extent_state_in_tree(const struct extent_state *state) 38 { 39 return !RB_EMPTY_NODE(&state->rb_node); 40 } 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static LIST_HEAD(states); 44 static DEFINE_SPINLOCK(leak_lock); 45 46 static inline void btrfs_leak_debug_add(spinlock_t *lock, 47 struct list_head *new, 48 struct list_head *head) 49 { 50 unsigned long flags; 51 52 spin_lock_irqsave(lock, flags); 53 list_add(new, head); 54 spin_unlock_irqrestore(lock, flags); 55 } 56 57 static inline void btrfs_leak_debug_del(spinlock_t *lock, 58 struct list_head *entry) 59 { 60 unsigned long flags; 61 62 spin_lock_irqsave(lock, flags); 63 list_del(entry); 64 spin_unlock_irqrestore(lock, flags); 65 } 66 67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 68 { 69 struct extent_buffer *eb; 70 unsigned long flags; 71 72 /* 73 * If we didn't get into open_ctree our allocated_ebs will not be 74 * initialized, so just skip this. 75 */ 76 if (!fs_info->allocated_ebs.next) 77 return; 78 79 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 80 while (!list_empty(&fs_info->allocated_ebs)) { 81 eb = list_first_entry(&fs_info->allocated_ebs, 82 struct extent_buffer, leak_list); 83 pr_err( 84 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 85 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 86 btrfs_header_owner(eb)); 87 list_del(&eb->leak_list); 88 kmem_cache_free(extent_buffer_cache, eb); 89 } 90 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 91 } 92 93 static inline void btrfs_extent_state_leak_debug_check(void) 94 { 95 struct extent_state *state; 96 97 while (!list_empty(&states)) { 98 state = list_entry(states.next, struct extent_state, leak_list); 99 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 100 state->start, state->end, state->state, 101 extent_state_in_tree(state), 102 refcount_read(&state->refs)); 103 list_del(&state->leak_list); 104 kmem_cache_free(extent_state_cache, state); 105 } 106 } 107 108 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 109 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 110 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 111 struct extent_io_tree *tree, u64 start, u64 end) 112 { 113 struct inode *inode = tree->private_data; 114 u64 isize; 115 116 if (!inode || !is_data_inode(inode)) 117 return; 118 119 isize = i_size_read(inode); 120 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 121 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 122 "%s: ino %llu isize %llu odd range [%llu,%llu]", 123 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 124 } 125 } 126 #else 127 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 128 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 129 #define btrfs_extent_state_leak_debug_check() do {} while (0) 130 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 131 #endif 132 133 struct tree_entry { 134 u64 start; 135 u64 end; 136 struct rb_node rb_node; 137 }; 138 139 struct extent_page_data { 140 struct btrfs_bio_ctrl bio_ctrl; 141 /* tells writepage not to lock the state bits for this range 142 * it still does the unlocking 143 */ 144 unsigned int extent_locked:1; 145 146 /* tells the submit_bio code to use REQ_SYNC */ 147 unsigned int sync_io:1; 148 }; 149 150 static int add_extent_changeset(struct extent_state *state, u32 bits, 151 struct extent_changeset *changeset, 152 int set) 153 { 154 int ret; 155 156 if (!changeset) 157 return 0; 158 if (set && (state->state & bits) == bits) 159 return 0; 160 if (!set && (state->state & bits) == 0) 161 return 0; 162 changeset->bytes_changed += state->end - state->start + 1; 163 ret = ulist_add(&changeset->range_changed, state->start, state->end, 164 GFP_ATOMIC); 165 return ret; 166 } 167 168 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 169 unsigned long bio_flags) 170 { 171 blk_status_t ret = 0; 172 struct extent_io_tree *tree = bio->bi_private; 173 174 bio->bi_private = NULL; 175 176 /* Caller should ensure the bio has at least some range added */ 177 ASSERT(bio->bi_iter.bi_size); 178 if (is_data_inode(tree->private_data)) 179 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 180 bio_flags); 181 else 182 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 183 mirror_num, bio_flags); 184 185 return blk_status_to_errno(ret); 186 } 187 188 /* Cleanup unsubmitted bios */ 189 static void end_write_bio(struct extent_page_data *epd, int ret) 190 { 191 struct bio *bio = epd->bio_ctrl.bio; 192 193 if (bio) { 194 bio->bi_status = errno_to_blk_status(ret); 195 bio_endio(bio); 196 epd->bio_ctrl.bio = NULL; 197 } 198 } 199 200 /* 201 * Submit bio from extent page data via submit_one_bio 202 * 203 * Return 0 if everything is OK. 204 * Return <0 for error. 205 */ 206 static int __must_check flush_write_bio(struct extent_page_data *epd) 207 { 208 int ret = 0; 209 struct bio *bio = epd->bio_ctrl.bio; 210 211 if (bio) { 212 ret = submit_one_bio(bio, 0, 0); 213 /* 214 * Clean up of epd->bio is handled by its endio function. 215 * And endio is either triggered by successful bio execution 216 * or the error handler of submit bio hook. 217 * So at this point, no matter what happened, we don't need 218 * to clean up epd->bio. 219 */ 220 epd->bio_ctrl.bio = NULL; 221 } 222 return ret; 223 } 224 225 int __init extent_state_cache_init(void) 226 { 227 extent_state_cache = kmem_cache_create("btrfs_extent_state", 228 sizeof(struct extent_state), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_state_cache) 231 return -ENOMEM; 232 return 0; 233 } 234 235 int __init extent_io_init(void) 236 { 237 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 238 sizeof(struct extent_buffer), 0, 239 SLAB_MEM_SPREAD, NULL); 240 if (!extent_buffer_cache) 241 return -ENOMEM; 242 243 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 244 offsetof(struct btrfs_bio, bio), 245 BIOSET_NEED_BVECS)) 246 goto free_buffer_cache; 247 248 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 249 goto free_bioset; 250 251 return 0; 252 253 free_bioset: 254 bioset_exit(&btrfs_bioset); 255 256 free_buffer_cache: 257 kmem_cache_destroy(extent_buffer_cache); 258 extent_buffer_cache = NULL; 259 return -ENOMEM; 260 } 261 262 void __cold extent_state_cache_exit(void) 263 { 264 btrfs_extent_state_leak_debug_check(); 265 kmem_cache_destroy(extent_state_cache); 266 } 267 268 void __cold extent_io_exit(void) 269 { 270 /* 271 * Make sure all delayed rcu free are flushed before we 272 * destroy caches. 273 */ 274 rcu_barrier(); 275 kmem_cache_destroy(extent_buffer_cache); 276 bioset_exit(&btrfs_bioset); 277 } 278 279 /* 280 * For the file_extent_tree, we want to hold the inode lock when we lookup and 281 * update the disk_i_size, but lockdep will complain because our io_tree we hold 282 * the tree lock and get the inode lock when setting delalloc. These two things 283 * are unrelated, so make a class for the file_extent_tree so we don't get the 284 * two locking patterns mixed up. 285 */ 286 static struct lock_class_key file_extent_tree_class; 287 288 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 289 struct extent_io_tree *tree, unsigned int owner, 290 void *private_data) 291 { 292 tree->fs_info = fs_info; 293 tree->state = RB_ROOT; 294 tree->dirty_bytes = 0; 295 spin_lock_init(&tree->lock); 296 tree->private_data = private_data; 297 tree->owner = owner; 298 if (owner == IO_TREE_INODE_FILE_EXTENT) 299 lockdep_set_class(&tree->lock, &file_extent_tree_class); 300 } 301 302 void extent_io_tree_release(struct extent_io_tree *tree) 303 { 304 spin_lock(&tree->lock); 305 /* 306 * Do a single barrier for the waitqueue_active check here, the state 307 * of the waitqueue should not change once extent_io_tree_release is 308 * called. 309 */ 310 smp_mb(); 311 while (!RB_EMPTY_ROOT(&tree->state)) { 312 struct rb_node *node; 313 struct extent_state *state; 314 315 node = rb_first(&tree->state); 316 state = rb_entry(node, struct extent_state, rb_node); 317 rb_erase(&state->rb_node, &tree->state); 318 RB_CLEAR_NODE(&state->rb_node); 319 /* 320 * btree io trees aren't supposed to have tasks waiting for 321 * changes in the flags of extent states ever. 322 */ 323 ASSERT(!waitqueue_active(&state->wq)); 324 free_extent_state(state); 325 326 cond_resched_lock(&tree->lock); 327 } 328 spin_unlock(&tree->lock); 329 } 330 331 static struct extent_state *alloc_extent_state(gfp_t mask) 332 { 333 struct extent_state *state; 334 335 /* 336 * The given mask might be not appropriate for the slab allocator, 337 * drop the unsupported bits 338 */ 339 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 340 state = kmem_cache_alloc(extent_state_cache, mask); 341 if (!state) 342 return state; 343 state->state = 0; 344 state->failrec = NULL; 345 RB_CLEAR_NODE(&state->rb_node); 346 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 347 refcount_set(&state->refs, 1); 348 init_waitqueue_head(&state->wq); 349 trace_alloc_extent_state(state, mask, _RET_IP_); 350 return state; 351 } 352 353 void free_extent_state(struct extent_state *state) 354 { 355 if (!state) 356 return; 357 if (refcount_dec_and_test(&state->refs)) { 358 WARN_ON(extent_state_in_tree(state)); 359 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 360 trace_free_extent_state(state, _RET_IP_); 361 kmem_cache_free(extent_state_cache, state); 362 } 363 } 364 365 static struct rb_node *tree_insert(struct rb_root *root, 366 struct rb_node *search_start, 367 u64 offset, 368 struct rb_node *node, 369 struct rb_node ***p_in, 370 struct rb_node **parent_in) 371 { 372 struct rb_node **p; 373 struct rb_node *parent = NULL; 374 struct tree_entry *entry; 375 376 if (p_in && parent_in) { 377 p = *p_in; 378 parent = *parent_in; 379 goto do_insert; 380 } 381 382 p = search_start ? &search_start : &root->rb_node; 383 while (*p) { 384 parent = *p; 385 entry = rb_entry(parent, struct tree_entry, rb_node); 386 387 if (offset < entry->start) 388 p = &(*p)->rb_left; 389 else if (offset > entry->end) 390 p = &(*p)->rb_right; 391 else 392 return parent; 393 } 394 395 do_insert: 396 rb_link_node(node, parent, p); 397 rb_insert_color(node, root); 398 return NULL; 399 } 400 401 /** 402 * Search @tree for an entry that contains @offset. Such entry would have 403 * entry->start <= offset && entry->end >= offset. 404 * 405 * @tree: the tree to search 406 * @offset: offset that should fall within an entry in @tree 407 * @next_ret: pointer to the first entry whose range ends after @offset 408 * @prev_ret: pointer to the first entry whose range begins before @offset 409 * @p_ret: pointer where new node should be anchored (used when inserting an 410 * entry in the tree) 411 * @parent_ret: points to entry which would have been the parent of the entry, 412 * containing @offset 413 * 414 * This function returns a pointer to the entry that contains @offset byte 415 * address. If no such entry exists, then NULL is returned and the other 416 * pointer arguments to the function are filled, otherwise the found entry is 417 * returned and other pointers are left untouched. 418 */ 419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 420 struct rb_node **next_ret, 421 struct rb_node **prev_ret, 422 struct rb_node ***p_ret, 423 struct rb_node **parent_ret) 424 { 425 struct rb_root *root = &tree->state; 426 struct rb_node **n = &root->rb_node; 427 struct rb_node *prev = NULL; 428 struct rb_node *orig_prev = NULL; 429 struct tree_entry *entry; 430 struct tree_entry *prev_entry = NULL; 431 432 while (*n) { 433 prev = *n; 434 entry = rb_entry(prev, struct tree_entry, rb_node); 435 prev_entry = entry; 436 437 if (offset < entry->start) 438 n = &(*n)->rb_left; 439 else if (offset > entry->end) 440 n = &(*n)->rb_right; 441 else 442 return *n; 443 } 444 445 if (p_ret) 446 *p_ret = n; 447 if (parent_ret) 448 *parent_ret = prev; 449 450 if (next_ret) { 451 orig_prev = prev; 452 while (prev && offset > prev_entry->end) { 453 prev = rb_next(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *next_ret = prev; 457 prev = orig_prev; 458 } 459 460 if (prev_ret) { 461 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 462 while (prev && offset < prev_entry->start) { 463 prev = rb_prev(prev); 464 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 465 } 466 *prev_ret = prev; 467 } 468 return NULL; 469 } 470 471 static inline struct rb_node * 472 tree_search_for_insert(struct extent_io_tree *tree, 473 u64 offset, 474 struct rb_node ***p_ret, 475 struct rb_node **parent_ret) 476 { 477 struct rb_node *next= NULL; 478 struct rb_node *ret; 479 480 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 481 if (!ret) 482 return next; 483 return ret; 484 } 485 486 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 487 u64 offset) 488 { 489 return tree_search_for_insert(tree, offset, NULL, NULL); 490 } 491 492 /* 493 * utility function to look for merge candidates inside a given range. 494 * Any extents with matching state are merged together into a single 495 * extent in the tree. Extents with EXTENT_IO in their state field 496 * are not merged because the end_io handlers need to be able to do 497 * operations on them without sleeping (or doing allocations/splits). 498 * 499 * This should be called with the tree lock held. 500 */ 501 static void merge_state(struct extent_io_tree *tree, 502 struct extent_state *state) 503 { 504 struct extent_state *other; 505 struct rb_node *other_node; 506 507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 508 return; 509 510 other_node = rb_prev(&state->rb_node); 511 if (other_node) { 512 other = rb_entry(other_node, struct extent_state, rb_node); 513 if (other->end == state->start - 1 && 514 other->state == state->state) { 515 if (tree->private_data && 516 is_data_inode(tree->private_data)) 517 btrfs_merge_delalloc_extent(tree->private_data, 518 state, other); 519 state->start = other->start; 520 rb_erase(&other->rb_node, &tree->state); 521 RB_CLEAR_NODE(&other->rb_node); 522 free_extent_state(other); 523 } 524 } 525 other_node = rb_next(&state->rb_node); 526 if (other_node) { 527 other = rb_entry(other_node, struct extent_state, rb_node); 528 if (other->start == state->end + 1 && 529 other->state == state->state) { 530 if (tree->private_data && 531 is_data_inode(tree->private_data)) 532 btrfs_merge_delalloc_extent(tree->private_data, 533 state, other); 534 state->end = other->end; 535 rb_erase(&other->rb_node, &tree->state); 536 RB_CLEAR_NODE(&other->rb_node); 537 free_extent_state(other); 538 } 539 } 540 } 541 542 static void set_state_bits(struct extent_io_tree *tree, 543 struct extent_state *state, u32 *bits, 544 struct extent_changeset *changeset); 545 546 /* 547 * insert an extent_state struct into the tree. 'bits' are set on the 548 * struct before it is inserted. 549 * 550 * This may return -EEXIST if the extent is already there, in which case the 551 * state struct is freed. 552 * 553 * The tree lock is not taken internally. This is a utility function and 554 * probably isn't what you want to call (see set/clear_extent_bit). 555 */ 556 static int insert_state(struct extent_io_tree *tree, 557 struct extent_state *state, u64 start, u64 end, 558 struct rb_node ***p, 559 struct rb_node **parent, 560 u32 *bits, struct extent_changeset *changeset) 561 { 562 struct rb_node *node; 563 564 if (end < start) { 565 btrfs_err(tree->fs_info, 566 "insert state: end < start %llu %llu", end, start); 567 WARN_ON(1); 568 } 569 state->start = start; 570 state->end = end; 571 572 set_state_bits(tree, state, bits, changeset); 573 574 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 575 if (node) { 576 struct extent_state *found; 577 found = rb_entry(node, struct extent_state, rb_node); 578 btrfs_err(tree->fs_info, 579 "found node %llu %llu on insert of %llu %llu", 580 found->start, found->end, start, end); 581 return -EEXIST; 582 } 583 merge_state(tree, state); 584 return 0; 585 } 586 587 /* 588 * split a given extent state struct in two, inserting the preallocated 589 * struct 'prealloc' as the newly created second half. 'split' indicates an 590 * offset inside 'orig' where it should be split. 591 * 592 * Before calling, 593 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 594 * are two extent state structs in the tree: 595 * prealloc: [orig->start, split - 1] 596 * orig: [ split, orig->end ] 597 * 598 * The tree locks are not taken by this function. They need to be held 599 * by the caller. 600 */ 601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 602 struct extent_state *prealloc, u64 split) 603 { 604 struct rb_node *node; 605 606 if (tree->private_data && is_data_inode(tree->private_data)) 607 btrfs_split_delalloc_extent(tree->private_data, orig, split); 608 609 prealloc->start = orig->start; 610 prealloc->end = split - 1; 611 prealloc->state = orig->state; 612 orig->start = split; 613 614 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 615 &prealloc->rb_node, NULL, NULL); 616 if (node) { 617 free_extent_state(prealloc); 618 return -EEXIST; 619 } 620 return 0; 621 } 622 623 static struct extent_state *next_state(struct extent_state *state) 624 { 625 struct rb_node *next = rb_next(&state->rb_node); 626 if (next) 627 return rb_entry(next, struct extent_state, rb_node); 628 else 629 return NULL; 630 } 631 632 /* 633 * utility function to clear some bits in an extent state struct. 634 * it will optionally wake up anyone waiting on this state (wake == 1). 635 * 636 * If no bits are set on the state struct after clearing things, the 637 * struct is freed and removed from the tree 638 */ 639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 640 struct extent_state *state, 641 u32 *bits, int wake, 642 struct extent_changeset *changeset) 643 { 644 struct extent_state *next; 645 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 646 int ret; 647 648 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 649 u64 range = state->end - state->start + 1; 650 WARN_ON(range > tree->dirty_bytes); 651 tree->dirty_bytes -= range; 652 } 653 654 if (tree->private_data && is_data_inode(tree->private_data)) 655 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 656 657 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 658 BUG_ON(ret < 0); 659 state->state &= ~bits_to_clear; 660 if (wake) 661 wake_up(&state->wq); 662 if (state->state == 0) { 663 next = next_state(state); 664 if (extent_state_in_tree(state)) { 665 rb_erase(&state->rb_node, &tree->state); 666 RB_CLEAR_NODE(&state->rb_node); 667 free_extent_state(state); 668 } else { 669 WARN_ON(1); 670 } 671 } else { 672 merge_state(tree, state); 673 next = next_state(state); 674 } 675 return next; 676 } 677 678 static struct extent_state * 679 alloc_extent_state_atomic(struct extent_state *prealloc) 680 { 681 if (!prealloc) 682 prealloc = alloc_extent_state(GFP_ATOMIC); 683 684 return prealloc; 685 } 686 687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 688 { 689 btrfs_panic(tree->fs_info, err, 690 "locking error: extent tree was modified by another thread while locked"); 691 } 692 693 /* 694 * clear some bits on a range in the tree. This may require splitting 695 * or inserting elements in the tree, so the gfp mask is used to 696 * indicate which allocations or sleeping are allowed. 697 * 698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 699 * the given range from the tree regardless of state (ie for truncate). 700 * 701 * the range [start, end] is inclusive. 702 * 703 * This takes the tree lock, and returns 0 on success and < 0 on error. 704 */ 705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 706 u32 bits, int wake, int delete, 707 struct extent_state **cached_state, 708 gfp_t mask, struct extent_changeset *changeset) 709 { 710 struct extent_state *state; 711 struct extent_state *cached; 712 struct extent_state *prealloc = NULL; 713 struct rb_node *node; 714 u64 last_end; 715 int err; 716 int clear = 0; 717 718 btrfs_debug_check_extent_io_range(tree, start, end); 719 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 720 721 if (bits & EXTENT_DELALLOC) 722 bits |= EXTENT_NORESERVE; 723 724 if (delete) 725 bits |= ~EXTENT_CTLBITS; 726 727 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 728 clear = 1; 729 again: 730 if (!prealloc && gfpflags_allow_blocking(mask)) { 731 /* 732 * Don't care for allocation failure here because we might end 733 * up not needing the pre-allocated extent state at all, which 734 * is the case if we only have in the tree extent states that 735 * cover our input range and don't cover too any other range. 736 * If we end up needing a new extent state we allocate it later. 737 */ 738 prealloc = alloc_extent_state(mask); 739 } 740 741 spin_lock(&tree->lock); 742 if (cached_state) { 743 cached = *cached_state; 744 745 if (clear) { 746 *cached_state = NULL; 747 cached_state = NULL; 748 } 749 750 if (cached && extent_state_in_tree(cached) && 751 cached->start <= start && cached->end > start) { 752 if (clear) 753 refcount_dec(&cached->refs); 754 state = cached; 755 goto hit_next; 756 } 757 if (clear) 758 free_extent_state(cached); 759 } 760 /* 761 * this search will find the extents that end after 762 * our range starts 763 */ 764 node = tree_search(tree, start); 765 if (!node) 766 goto out; 767 state = rb_entry(node, struct extent_state, rb_node); 768 hit_next: 769 if (state->start > end) 770 goto out; 771 WARN_ON(state->end < start); 772 last_end = state->end; 773 774 /* the state doesn't have the wanted bits, go ahead */ 775 if (!(state->state & bits)) { 776 state = next_state(state); 777 goto next; 778 } 779 780 /* 781 * | ---- desired range ---- | 782 * | state | or 783 * | ------------- state -------------- | 784 * 785 * We need to split the extent we found, and may flip 786 * bits on second half. 787 * 788 * If the extent we found extends past our range, we 789 * just split and search again. It'll get split again 790 * the next time though. 791 * 792 * If the extent we found is inside our range, we clear 793 * the desired bit on it. 794 */ 795 796 if (state->start < start) { 797 prealloc = alloc_extent_state_atomic(prealloc); 798 BUG_ON(!prealloc); 799 err = split_state(tree, state, prealloc, start); 800 if (err) 801 extent_io_tree_panic(tree, err); 802 803 prealloc = NULL; 804 if (err) 805 goto out; 806 if (state->end <= end) { 807 state = clear_state_bit(tree, state, &bits, wake, 808 changeset); 809 goto next; 810 } 811 goto search_again; 812 } 813 /* 814 * | ---- desired range ---- | 815 * | state | 816 * We need to split the extent, and clear the bit 817 * on the first half 818 */ 819 if (state->start <= end && state->end > end) { 820 prealloc = alloc_extent_state_atomic(prealloc); 821 BUG_ON(!prealloc); 822 err = split_state(tree, state, prealloc, end + 1); 823 if (err) 824 extent_io_tree_panic(tree, err); 825 826 if (wake) 827 wake_up(&state->wq); 828 829 clear_state_bit(tree, prealloc, &bits, wake, changeset); 830 831 prealloc = NULL; 832 goto out; 833 } 834 835 state = clear_state_bit(tree, state, &bits, wake, changeset); 836 next: 837 if (last_end == (u64)-1) 838 goto out; 839 start = last_end + 1; 840 if (start <= end && state && !need_resched()) 841 goto hit_next; 842 843 search_again: 844 if (start > end) 845 goto out; 846 spin_unlock(&tree->lock); 847 if (gfpflags_allow_blocking(mask)) 848 cond_resched(); 849 goto again; 850 851 out: 852 spin_unlock(&tree->lock); 853 if (prealloc) 854 free_extent_state(prealloc); 855 856 return 0; 857 858 } 859 860 static void wait_on_state(struct extent_io_tree *tree, 861 struct extent_state *state) 862 __releases(tree->lock) 863 __acquires(tree->lock) 864 { 865 DEFINE_WAIT(wait); 866 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 867 spin_unlock(&tree->lock); 868 schedule(); 869 spin_lock(&tree->lock); 870 finish_wait(&state->wq, &wait); 871 } 872 873 /* 874 * waits for one or more bits to clear on a range in the state tree. 875 * The range [start, end] is inclusive. 876 * The tree lock is taken by this function 877 */ 878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 879 u32 bits) 880 { 881 struct extent_state *state; 882 struct rb_node *node; 883 884 btrfs_debug_check_extent_io_range(tree, start, end); 885 886 spin_lock(&tree->lock); 887 again: 888 while (1) { 889 /* 890 * this search will find all the extents that end after 891 * our range starts 892 */ 893 node = tree_search(tree, start); 894 process_node: 895 if (!node) 896 break; 897 898 state = rb_entry(node, struct extent_state, rb_node); 899 900 if (state->start > end) 901 goto out; 902 903 if (state->state & bits) { 904 start = state->start; 905 refcount_inc(&state->refs); 906 wait_on_state(tree, state); 907 free_extent_state(state); 908 goto again; 909 } 910 start = state->end + 1; 911 912 if (start > end) 913 break; 914 915 if (!cond_resched_lock(&tree->lock)) { 916 node = rb_next(node); 917 goto process_node; 918 } 919 } 920 out: 921 spin_unlock(&tree->lock); 922 } 923 924 static void set_state_bits(struct extent_io_tree *tree, 925 struct extent_state *state, 926 u32 *bits, struct extent_changeset *changeset) 927 { 928 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 929 int ret; 930 931 if (tree->private_data && is_data_inode(tree->private_data)) 932 btrfs_set_delalloc_extent(tree->private_data, state, bits); 933 934 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 935 u64 range = state->end - state->start + 1; 936 tree->dirty_bytes += range; 937 } 938 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 939 BUG_ON(ret < 0); 940 state->state |= bits_to_set; 941 } 942 943 static void cache_state_if_flags(struct extent_state *state, 944 struct extent_state **cached_ptr, 945 unsigned flags) 946 { 947 if (cached_ptr && !(*cached_ptr)) { 948 if (!flags || (state->state & flags)) { 949 *cached_ptr = state; 950 refcount_inc(&state->refs); 951 } 952 } 953 } 954 955 static void cache_state(struct extent_state *state, 956 struct extent_state **cached_ptr) 957 { 958 return cache_state_if_flags(state, cached_ptr, 959 EXTENT_LOCKED | EXTENT_BOUNDARY); 960 } 961 962 /* 963 * set some bits on a range in the tree. This may require allocations or 964 * sleeping, so the gfp mask is used to indicate what is allowed. 965 * 966 * If any of the exclusive bits are set, this will fail with -EEXIST if some 967 * part of the range already has the desired bits set. The start of the 968 * existing range is returned in failed_start in this case. 969 * 970 * [start, end] is inclusive This takes the tree lock. 971 */ 972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 973 u32 exclusive_bits, u64 *failed_start, 974 struct extent_state **cached_state, gfp_t mask, 975 struct extent_changeset *changeset) 976 { 977 struct extent_state *state; 978 struct extent_state *prealloc = NULL; 979 struct rb_node *node; 980 struct rb_node **p; 981 struct rb_node *parent; 982 int err = 0; 983 u64 last_start; 984 u64 last_end; 985 986 btrfs_debug_check_extent_io_range(tree, start, end); 987 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 988 989 if (exclusive_bits) 990 ASSERT(failed_start); 991 else 992 ASSERT(failed_start == NULL); 993 again: 994 if (!prealloc && gfpflags_allow_blocking(mask)) { 995 /* 996 * Don't care for allocation failure here because we might end 997 * up not needing the pre-allocated extent state at all, which 998 * is the case if we only have in the tree extent states that 999 * cover our input range and don't cover too any other range. 1000 * If we end up needing a new extent state we allocate it later. 1001 */ 1002 prealloc = alloc_extent_state(mask); 1003 } 1004 1005 spin_lock(&tree->lock); 1006 if (cached_state && *cached_state) { 1007 state = *cached_state; 1008 if (state->start <= start && state->end > start && 1009 extent_state_in_tree(state)) { 1010 node = &state->rb_node; 1011 goto hit_next; 1012 } 1013 } 1014 /* 1015 * this search will find all the extents that end after 1016 * our range starts. 1017 */ 1018 node = tree_search_for_insert(tree, start, &p, &parent); 1019 if (!node) { 1020 prealloc = alloc_extent_state_atomic(prealloc); 1021 BUG_ON(!prealloc); 1022 err = insert_state(tree, prealloc, start, end, 1023 &p, &parent, &bits, changeset); 1024 if (err) 1025 extent_io_tree_panic(tree, err); 1026 1027 cache_state(prealloc, cached_state); 1028 prealloc = NULL; 1029 goto out; 1030 } 1031 state = rb_entry(node, struct extent_state, rb_node); 1032 hit_next: 1033 last_start = state->start; 1034 last_end = state->end; 1035 1036 /* 1037 * | ---- desired range ---- | 1038 * | state | 1039 * 1040 * Just lock what we found and keep going 1041 */ 1042 if (state->start == start && state->end <= end) { 1043 if (state->state & exclusive_bits) { 1044 *failed_start = state->start; 1045 err = -EEXIST; 1046 goto out; 1047 } 1048 1049 set_state_bits(tree, state, &bits, changeset); 1050 cache_state(state, cached_state); 1051 merge_state(tree, state); 1052 if (last_end == (u64)-1) 1053 goto out; 1054 start = last_end + 1; 1055 state = next_state(state); 1056 if (start < end && state && state->start == start && 1057 !need_resched()) 1058 goto hit_next; 1059 goto search_again; 1060 } 1061 1062 /* 1063 * | ---- desired range ---- | 1064 * | state | 1065 * or 1066 * | ------------- state -------------- | 1067 * 1068 * We need to split the extent we found, and may flip bits on 1069 * second half. 1070 * 1071 * If the extent we found extends past our 1072 * range, we just split and search again. It'll get split 1073 * again the next time though. 1074 * 1075 * If the extent we found is inside our range, we set the 1076 * desired bit on it. 1077 */ 1078 if (state->start < start) { 1079 if (state->state & exclusive_bits) { 1080 *failed_start = start; 1081 err = -EEXIST; 1082 goto out; 1083 } 1084 1085 /* 1086 * If this extent already has all the bits we want set, then 1087 * skip it, not necessary to split it or do anything with it. 1088 */ 1089 if ((state->state & bits) == bits) { 1090 start = state->end + 1; 1091 cache_state(state, cached_state); 1092 goto search_again; 1093 } 1094 1095 prealloc = alloc_extent_state_atomic(prealloc); 1096 BUG_ON(!prealloc); 1097 err = split_state(tree, state, prealloc, start); 1098 if (err) 1099 extent_io_tree_panic(tree, err); 1100 1101 prealloc = NULL; 1102 if (err) 1103 goto out; 1104 if (state->end <= end) { 1105 set_state_bits(tree, state, &bits, changeset); 1106 cache_state(state, cached_state); 1107 merge_state(tree, state); 1108 if (last_end == (u64)-1) 1109 goto out; 1110 start = last_end + 1; 1111 state = next_state(state); 1112 if (start < end && state && state->start == start && 1113 !need_resched()) 1114 goto hit_next; 1115 } 1116 goto search_again; 1117 } 1118 /* 1119 * | ---- desired range ---- | 1120 * | state | or | state | 1121 * 1122 * There's a hole, we need to insert something in it and 1123 * ignore the extent we found. 1124 */ 1125 if (state->start > start) { 1126 u64 this_end; 1127 if (end < last_start) 1128 this_end = end; 1129 else 1130 this_end = last_start - 1; 1131 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 BUG_ON(!prealloc); 1134 1135 /* 1136 * Avoid to free 'prealloc' if it can be merged with 1137 * the later extent. 1138 */ 1139 err = insert_state(tree, prealloc, start, this_end, 1140 NULL, NULL, &bits, changeset); 1141 if (err) 1142 extent_io_tree_panic(tree, err); 1143 1144 cache_state(prealloc, cached_state); 1145 prealloc = NULL; 1146 start = this_end + 1; 1147 goto search_again; 1148 } 1149 /* 1150 * | ---- desired range ---- | 1151 * | state | 1152 * We need to split the extent, and set the bit 1153 * on the first half 1154 */ 1155 if (state->start <= end && state->end > end) { 1156 if (state->state & exclusive_bits) { 1157 *failed_start = start; 1158 err = -EEXIST; 1159 goto out; 1160 } 1161 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 BUG_ON(!prealloc); 1164 err = split_state(tree, state, prealloc, end + 1); 1165 if (err) 1166 extent_io_tree_panic(tree, err); 1167 1168 set_state_bits(tree, prealloc, &bits, changeset); 1169 cache_state(prealloc, cached_state); 1170 merge_state(tree, prealloc); 1171 prealloc = NULL; 1172 goto out; 1173 } 1174 1175 search_again: 1176 if (start > end) 1177 goto out; 1178 spin_unlock(&tree->lock); 1179 if (gfpflags_allow_blocking(mask)) 1180 cond_resched(); 1181 goto again; 1182 1183 out: 1184 spin_unlock(&tree->lock); 1185 if (prealloc) 1186 free_extent_state(prealloc); 1187 1188 return err; 1189 1190 } 1191 1192 /** 1193 * convert_extent_bit - convert all bits in a given range from one bit to 1194 * another 1195 * @tree: the io tree to search 1196 * @start: the start offset in bytes 1197 * @end: the end offset in bytes (inclusive) 1198 * @bits: the bits to set in this range 1199 * @clear_bits: the bits to clear in this range 1200 * @cached_state: state that we're going to cache 1201 * 1202 * This will go through and set bits for the given range. If any states exist 1203 * already in this range they are set with the given bit and cleared of the 1204 * clear_bits. This is only meant to be used by things that are mergeable, ie 1205 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1206 * boundary bits like LOCK. 1207 * 1208 * All allocations are done with GFP_NOFS. 1209 */ 1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1211 u32 bits, u32 clear_bits, 1212 struct extent_state **cached_state) 1213 { 1214 struct extent_state *state; 1215 struct extent_state *prealloc = NULL; 1216 struct rb_node *node; 1217 struct rb_node **p; 1218 struct rb_node *parent; 1219 int err = 0; 1220 u64 last_start; 1221 u64 last_end; 1222 bool first_iteration = true; 1223 1224 btrfs_debug_check_extent_io_range(tree, start, end); 1225 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1226 clear_bits); 1227 1228 again: 1229 if (!prealloc) { 1230 /* 1231 * Best effort, don't worry if extent state allocation fails 1232 * here for the first iteration. We might have a cached state 1233 * that matches exactly the target range, in which case no 1234 * extent state allocations are needed. We'll only know this 1235 * after locking the tree. 1236 */ 1237 prealloc = alloc_extent_state(GFP_NOFS); 1238 if (!prealloc && !first_iteration) 1239 return -ENOMEM; 1240 } 1241 1242 spin_lock(&tree->lock); 1243 if (cached_state && *cached_state) { 1244 state = *cached_state; 1245 if (state->start <= start && state->end > start && 1246 extent_state_in_tree(state)) { 1247 node = &state->rb_node; 1248 goto hit_next; 1249 } 1250 } 1251 1252 /* 1253 * this search will find all the extents that end after 1254 * our range starts. 1255 */ 1256 node = tree_search_for_insert(tree, start, &p, &parent); 1257 if (!node) { 1258 prealloc = alloc_extent_state_atomic(prealloc); 1259 if (!prealloc) { 1260 err = -ENOMEM; 1261 goto out; 1262 } 1263 err = insert_state(tree, prealloc, start, end, 1264 &p, &parent, &bits, NULL); 1265 if (err) 1266 extent_io_tree_panic(tree, err); 1267 cache_state(prealloc, cached_state); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 state = rb_entry(node, struct extent_state, rb_node); 1272 hit_next: 1273 last_start = state->start; 1274 last_end = state->end; 1275 1276 /* 1277 * | ---- desired range ---- | 1278 * | state | 1279 * 1280 * Just lock what we found and keep going 1281 */ 1282 if (state->start == start && state->end <= end) { 1283 set_state_bits(tree, state, &bits, NULL); 1284 cache_state(state, cached_state); 1285 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1286 if (last_end == (u64)-1) 1287 goto out; 1288 start = last_end + 1; 1289 if (start < end && state && state->start == start && 1290 !need_resched()) 1291 goto hit_next; 1292 goto search_again; 1293 } 1294 1295 /* 1296 * | ---- desired range ---- | 1297 * | state | 1298 * or 1299 * | ------------- state -------------- | 1300 * 1301 * We need to split the extent we found, and may flip bits on 1302 * second half. 1303 * 1304 * If the extent we found extends past our 1305 * range, we just split and search again. It'll get split 1306 * again the next time though. 1307 * 1308 * If the extent we found is inside our range, we set the 1309 * desired bit on it. 1310 */ 1311 if (state->start < start) { 1312 prealloc = alloc_extent_state_atomic(prealloc); 1313 if (!prealloc) { 1314 err = -ENOMEM; 1315 goto out; 1316 } 1317 err = split_state(tree, state, prealloc, start); 1318 if (err) 1319 extent_io_tree_panic(tree, err); 1320 prealloc = NULL; 1321 if (err) 1322 goto out; 1323 if (state->end <= end) { 1324 set_state_bits(tree, state, &bits, NULL); 1325 cache_state(state, cached_state); 1326 state = clear_state_bit(tree, state, &clear_bits, 0, 1327 NULL); 1328 if (last_end == (u64)-1) 1329 goto out; 1330 start = last_end + 1; 1331 if (start < end && state && state->start == start && 1332 !need_resched()) 1333 goto hit_next; 1334 } 1335 goto search_again; 1336 } 1337 /* 1338 * | ---- desired range ---- | 1339 * | state | or | state | 1340 * 1341 * There's a hole, we need to insert something in it and 1342 * ignore the extent we found. 1343 */ 1344 if (state->start > start) { 1345 u64 this_end; 1346 if (end < last_start) 1347 this_end = end; 1348 else 1349 this_end = last_start - 1; 1350 1351 prealloc = alloc_extent_state_atomic(prealloc); 1352 if (!prealloc) { 1353 err = -ENOMEM; 1354 goto out; 1355 } 1356 1357 /* 1358 * Avoid to free 'prealloc' if it can be merged with 1359 * the later extent. 1360 */ 1361 err = insert_state(tree, prealloc, start, this_end, 1362 NULL, NULL, &bits, NULL); 1363 if (err) 1364 extent_io_tree_panic(tree, err); 1365 cache_state(prealloc, cached_state); 1366 prealloc = NULL; 1367 start = this_end + 1; 1368 goto search_again; 1369 } 1370 /* 1371 * | ---- desired range ---- | 1372 * | state | 1373 * We need to split the extent, and set the bit 1374 * on the first half 1375 */ 1376 if (state->start <= end && state->end > end) { 1377 prealloc = alloc_extent_state_atomic(prealloc); 1378 if (!prealloc) { 1379 err = -ENOMEM; 1380 goto out; 1381 } 1382 1383 err = split_state(tree, state, prealloc, end + 1); 1384 if (err) 1385 extent_io_tree_panic(tree, err); 1386 1387 set_state_bits(tree, prealloc, &bits, NULL); 1388 cache_state(prealloc, cached_state); 1389 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1390 prealloc = NULL; 1391 goto out; 1392 } 1393 1394 search_again: 1395 if (start > end) 1396 goto out; 1397 spin_unlock(&tree->lock); 1398 cond_resched(); 1399 first_iteration = false; 1400 goto again; 1401 1402 out: 1403 spin_unlock(&tree->lock); 1404 if (prealloc) 1405 free_extent_state(prealloc); 1406 1407 return err; 1408 } 1409 1410 /* wrappers around set/clear extent bit */ 1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1412 u32 bits, struct extent_changeset *changeset) 1413 { 1414 /* 1415 * We don't support EXTENT_LOCKED yet, as current changeset will 1416 * record any bits changed, so for EXTENT_LOCKED case, it will 1417 * either fail with -EEXIST or changeset will record the whole 1418 * range. 1419 */ 1420 BUG_ON(bits & EXTENT_LOCKED); 1421 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1423 changeset); 1424 } 1425 1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits) 1428 { 1429 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1430 GFP_NOWAIT, NULL); 1431 } 1432 1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1434 u32 bits, int wake, int delete, 1435 struct extent_state **cached) 1436 { 1437 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1438 cached, GFP_NOFS, NULL); 1439 } 1440 1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1442 u32 bits, struct extent_changeset *changeset) 1443 { 1444 /* 1445 * Don't support EXTENT_LOCKED case, same reason as 1446 * set_record_extent_bits(). 1447 */ 1448 BUG_ON(bits & EXTENT_LOCKED); 1449 1450 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1451 changeset); 1452 } 1453 1454 /* 1455 * either insert or lock state struct between start and end use mask to tell 1456 * us if waiting is desired. 1457 */ 1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1459 struct extent_state **cached_state) 1460 { 1461 int err; 1462 u64 failed_start; 1463 1464 while (1) { 1465 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1466 EXTENT_LOCKED, &failed_start, 1467 cached_state, GFP_NOFS, NULL); 1468 if (err == -EEXIST) { 1469 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1470 start = failed_start; 1471 } else 1472 break; 1473 WARN_ON(start > end); 1474 } 1475 return err; 1476 } 1477 1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1479 { 1480 int err; 1481 u64 failed_start; 1482 1483 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1484 &failed_start, NULL, GFP_NOFS, NULL); 1485 if (err == -EEXIST) { 1486 if (failed_start > start) 1487 clear_extent_bit(tree, start, failed_start - 1, 1488 EXTENT_LOCKED, 1, 0, NULL); 1489 return 0; 1490 } 1491 return 1; 1492 } 1493 1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1495 { 1496 unsigned long index = start >> PAGE_SHIFT; 1497 unsigned long end_index = end >> PAGE_SHIFT; 1498 struct page *page; 1499 1500 while (index <= end_index) { 1501 page = find_get_page(inode->i_mapping, index); 1502 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1503 clear_page_dirty_for_io(page); 1504 put_page(page); 1505 index++; 1506 } 1507 } 1508 1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1510 { 1511 unsigned long index = start >> PAGE_SHIFT; 1512 unsigned long end_index = end >> PAGE_SHIFT; 1513 struct page *page; 1514 1515 while (index <= end_index) { 1516 page = find_get_page(inode->i_mapping, index); 1517 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1518 __set_page_dirty_nobuffers(page); 1519 account_page_redirty(page); 1520 put_page(page); 1521 index++; 1522 } 1523 } 1524 1525 /* find the first state struct with 'bits' set after 'start', and 1526 * return it. tree->lock must be held. NULL will returned if 1527 * nothing was found after 'start' 1528 */ 1529 static struct extent_state * 1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * Find the first offset in the io tree with one or more @bits set. 1558 * 1559 * Note: If there are multiple bits set in @bits, any of them will match. 1560 * 1561 * Return 0 if we find something, and update @start_ret and @end_ret. 1562 * Return 1 if we found nothing. 1563 */ 1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1565 u64 *start_ret, u64 *end_ret, u32 bits, 1566 struct extent_state **cached_state) 1567 { 1568 struct extent_state *state; 1569 int ret = 1; 1570 1571 spin_lock(&tree->lock); 1572 if (cached_state && *cached_state) { 1573 state = *cached_state; 1574 if (state->end == start - 1 && extent_state_in_tree(state)) { 1575 while ((state = next_state(state)) != NULL) { 1576 if (state->state & bits) 1577 goto got_it; 1578 } 1579 free_extent_state(*cached_state); 1580 *cached_state = NULL; 1581 goto out; 1582 } 1583 free_extent_state(*cached_state); 1584 *cached_state = NULL; 1585 } 1586 1587 state = find_first_extent_bit_state(tree, start, bits); 1588 got_it: 1589 if (state) { 1590 cache_state_if_flags(state, cached_state, 0); 1591 *start_ret = state->start; 1592 *end_ret = state->end; 1593 ret = 0; 1594 } 1595 out: 1596 spin_unlock(&tree->lock); 1597 return ret; 1598 } 1599 1600 /** 1601 * Find a contiguous area of bits 1602 * 1603 * @tree: io tree to check 1604 * @start: offset to start the search from 1605 * @start_ret: the first offset we found with the bits set 1606 * @end_ret: the final contiguous range of the bits that were set 1607 * @bits: bits to look for 1608 * 1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1610 * to set bits appropriately, and then merge them again. During this time it 1611 * will drop the tree->lock, so use this helper if you want to find the actual 1612 * contiguous area for given bits. We will search to the first bit we find, and 1613 * then walk down the tree until we find a non-contiguous area. The area 1614 * returned will be the full contiguous area with the bits set. 1615 */ 1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1617 u64 *start_ret, u64 *end_ret, u32 bits) 1618 { 1619 struct extent_state *state; 1620 int ret = 1; 1621 1622 spin_lock(&tree->lock); 1623 state = find_first_extent_bit_state(tree, start, bits); 1624 if (state) { 1625 *start_ret = state->start; 1626 *end_ret = state->end; 1627 while ((state = next_state(state)) != NULL) { 1628 if (state->start > (*end_ret + 1)) 1629 break; 1630 *end_ret = state->end; 1631 } 1632 ret = 0; 1633 } 1634 spin_unlock(&tree->lock); 1635 return ret; 1636 } 1637 1638 /** 1639 * Find the first range that has @bits not set. This range could start before 1640 * @start. 1641 * 1642 * @tree: the tree to search 1643 * @start: offset at/after which the found extent should start 1644 * @start_ret: records the beginning of the range 1645 * @end_ret: records the end of the range (inclusive) 1646 * @bits: the set of bits which must be unset 1647 * 1648 * Since unallocated range is also considered one which doesn't have the bits 1649 * set it's possible that @end_ret contains -1, this happens in case the range 1650 * spans (last_range_end, end of device]. In this case it's up to the caller to 1651 * trim @end_ret to the appropriate size. 1652 */ 1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1654 u64 *start_ret, u64 *end_ret, u32 bits) 1655 { 1656 struct extent_state *state; 1657 struct rb_node *node, *prev = NULL, *next; 1658 1659 spin_lock(&tree->lock); 1660 1661 /* Find first extent with bits cleared */ 1662 while (1) { 1663 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1664 if (!node && !next && !prev) { 1665 /* 1666 * Tree is completely empty, send full range and let 1667 * caller deal with it 1668 */ 1669 *start_ret = 0; 1670 *end_ret = -1; 1671 goto out; 1672 } else if (!node && !next) { 1673 /* 1674 * We are past the last allocated chunk, set start at 1675 * the end of the last extent. 1676 */ 1677 state = rb_entry(prev, struct extent_state, rb_node); 1678 *start_ret = state->end + 1; 1679 *end_ret = -1; 1680 goto out; 1681 } else if (!node) { 1682 node = next; 1683 } 1684 /* 1685 * At this point 'node' either contains 'start' or start is 1686 * before 'node' 1687 */ 1688 state = rb_entry(node, struct extent_state, rb_node); 1689 1690 if (in_range(start, state->start, state->end - state->start + 1)) { 1691 if (state->state & bits) { 1692 /* 1693 * |--range with bits sets--| 1694 * | 1695 * start 1696 */ 1697 start = state->end + 1; 1698 } else { 1699 /* 1700 * 'start' falls within a range that doesn't 1701 * have the bits set, so take its start as 1702 * the beginning of the desired range 1703 * 1704 * |--range with bits cleared----| 1705 * | 1706 * start 1707 */ 1708 *start_ret = state->start; 1709 break; 1710 } 1711 } else { 1712 /* 1713 * |---prev range---|---hole/unset---|---node range---| 1714 * | 1715 * start 1716 * 1717 * or 1718 * 1719 * |---hole/unset--||--first node--| 1720 * 0 | 1721 * start 1722 */ 1723 if (prev) { 1724 state = rb_entry(prev, struct extent_state, 1725 rb_node); 1726 *start_ret = state->end + 1; 1727 } else { 1728 *start_ret = 0; 1729 } 1730 break; 1731 } 1732 } 1733 1734 /* 1735 * Find the longest stretch from start until an entry which has the 1736 * bits set 1737 */ 1738 while (1) { 1739 state = rb_entry(node, struct extent_state, rb_node); 1740 if (state->end >= start && !(state->state & bits)) { 1741 *end_ret = state->end; 1742 } else { 1743 *end_ret = state->start - 1; 1744 break; 1745 } 1746 1747 node = rb_next(node); 1748 if (!node) 1749 break; 1750 } 1751 out: 1752 spin_unlock(&tree->lock); 1753 } 1754 1755 /* 1756 * find a contiguous range of bytes in the file marked as delalloc, not 1757 * more than 'max_bytes'. start and end are used to return the range, 1758 * 1759 * true is returned if we find something, false if nothing was in the tree 1760 */ 1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1762 u64 *end, u64 max_bytes, 1763 struct extent_state **cached_state) 1764 { 1765 struct rb_node *node; 1766 struct extent_state *state; 1767 u64 cur_start = *start; 1768 bool found = false; 1769 u64 total_bytes = 0; 1770 1771 spin_lock(&tree->lock); 1772 1773 /* 1774 * this search will find all the extents that end after 1775 * our range starts. 1776 */ 1777 node = tree_search(tree, cur_start); 1778 if (!node) { 1779 *end = (u64)-1; 1780 goto out; 1781 } 1782 1783 while (1) { 1784 state = rb_entry(node, struct extent_state, rb_node); 1785 if (found && (state->start != cur_start || 1786 (state->state & EXTENT_BOUNDARY))) { 1787 goto out; 1788 } 1789 if (!(state->state & EXTENT_DELALLOC)) { 1790 if (!found) 1791 *end = state->end; 1792 goto out; 1793 } 1794 if (!found) { 1795 *start = state->start; 1796 *cached_state = state; 1797 refcount_inc(&state->refs); 1798 } 1799 found = true; 1800 *end = state->end; 1801 cur_start = state->end + 1; 1802 node = rb_next(node); 1803 total_bytes += state->end - state->start + 1; 1804 if (total_bytes >= max_bytes) 1805 break; 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return found; 1812 } 1813 1814 /* 1815 * Process one page for __process_pages_contig(). 1816 * 1817 * Return >0 if we hit @page == @locked_page. 1818 * Return 0 if we updated the page status. 1819 * Return -EGAIN if the we need to try again. 1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1821 */ 1822 static int process_one_page(struct btrfs_fs_info *fs_info, 1823 struct address_space *mapping, 1824 struct page *page, struct page *locked_page, 1825 unsigned long page_ops, u64 start, u64 end) 1826 { 1827 u32 len; 1828 1829 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1830 len = end + 1 - start; 1831 1832 if (page_ops & PAGE_SET_ORDERED) 1833 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1834 if (page_ops & PAGE_SET_ERROR) 1835 btrfs_page_clamp_set_error(fs_info, page, start, len); 1836 if (page_ops & PAGE_START_WRITEBACK) { 1837 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1838 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1839 } 1840 if (page_ops & PAGE_END_WRITEBACK) 1841 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1842 1843 if (page == locked_page) 1844 return 1; 1845 1846 if (page_ops & PAGE_LOCK) { 1847 int ret; 1848 1849 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1850 if (ret) 1851 return ret; 1852 if (!PageDirty(page) || page->mapping != mapping) { 1853 btrfs_page_end_writer_lock(fs_info, page, start, len); 1854 return -EAGAIN; 1855 } 1856 } 1857 if (page_ops & PAGE_UNLOCK) 1858 btrfs_page_end_writer_lock(fs_info, page, start, len); 1859 return 0; 1860 } 1861 1862 static int __process_pages_contig(struct address_space *mapping, 1863 struct page *locked_page, 1864 u64 start, u64 end, unsigned long page_ops, 1865 u64 *processed_end) 1866 { 1867 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1868 pgoff_t start_index = start >> PAGE_SHIFT; 1869 pgoff_t end_index = end >> PAGE_SHIFT; 1870 pgoff_t index = start_index; 1871 unsigned long nr_pages = end_index - start_index + 1; 1872 unsigned long pages_processed = 0; 1873 struct page *pages[16]; 1874 int err = 0; 1875 int i; 1876 1877 if (page_ops & PAGE_LOCK) { 1878 ASSERT(page_ops == PAGE_LOCK); 1879 ASSERT(processed_end && *processed_end == start); 1880 } 1881 1882 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1883 mapping_set_error(mapping, -EIO); 1884 1885 while (nr_pages > 0) { 1886 int found_pages; 1887 1888 found_pages = find_get_pages_contig(mapping, index, 1889 min_t(unsigned long, 1890 nr_pages, ARRAY_SIZE(pages)), pages); 1891 if (found_pages == 0) { 1892 /* 1893 * Only if we're going to lock these pages, we can find 1894 * nothing at @index. 1895 */ 1896 ASSERT(page_ops & PAGE_LOCK); 1897 err = -EAGAIN; 1898 goto out; 1899 } 1900 1901 for (i = 0; i < found_pages; i++) { 1902 int process_ret; 1903 1904 process_ret = process_one_page(fs_info, mapping, 1905 pages[i], locked_page, page_ops, 1906 start, end); 1907 if (process_ret < 0) { 1908 for (; i < found_pages; i++) 1909 put_page(pages[i]); 1910 err = -EAGAIN; 1911 goto out; 1912 } 1913 put_page(pages[i]); 1914 pages_processed++; 1915 } 1916 nr_pages -= found_pages; 1917 index += found_pages; 1918 cond_resched(); 1919 } 1920 out: 1921 if (err && processed_end) { 1922 /* 1923 * Update @processed_end. I know this is awful since it has 1924 * two different return value patterns (inclusive vs exclusive). 1925 * 1926 * But the exclusive pattern is necessary if @start is 0, or we 1927 * underflow and check against processed_end won't work as 1928 * expected. 1929 */ 1930 if (pages_processed) 1931 *processed_end = min(end, 1932 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1933 else 1934 *processed_end = start; 1935 } 1936 return err; 1937 } 1938 1939 static noinline void __unlock_for_delalloc(struct inode *inode, 1940 struct page *locked_page, 1941 u64 start, u64 end) 1942 { 1943 unsigned long index = start >> PAGE_SHIFT; 1944 unsigned long end_index = end >> PAGE_SHIFT; 1945 1946 ASSERT(locked_page); 1947 if (index == locked_page->index && end_index == index) 1948 return; 1949 1950 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1951 PAGE_UNLOCK, NULL); 1952 } 1953 1954 static noinline int lock_delalloc_pages(struct inode *inode, 1955 struct page *locked_page, 1956 u64 delalloc_start, 1957 u64 delalloc_end) 1958 { 1959 unsigned long index = delalloc_start >> PAGE_SHIFT; 1960 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1961 u64 processed_end = delalloc_start; 1962 int ret; 1963 1964 ASSERT(locked_page); 1965 if (index == locked_page->index && index == end_index) 1966 return 0; 1967 1968 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1969 delalloc_end, PAGE_LOCK, &processed_end); 1970 if (ret == -EAGAIN && processed_end > delalloc_start) 1971 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1972 processed_end); 1973 return ret; 1974 } 1975 1976 /* 1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1978 * more than @max_bytes. 1979 * 1980 * @start: The original start bytenr to search. 1981 * Will store the extent range start bytenr. 1982 * @end: The original end bytenr of the search range 1983 * Will store the extent range end bytenr. 1984 * 1985 * Return true if we find a delalloc range which starts inside the original 1986 * range, and @start/@end will store the delalloc range start/end. 1987 * 1988 * Return false if we can't find any delalloc range which starts inside the 1989 * original range, and @start/@end will be the non-delalloc range start/end. 1990 */ 1991 EXPORT_FOR_TESTS 1992 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1993 struct page *locked_page, u64 *start, 1994 u64 *end) 1995 { 1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1997 const u64 orig_start = *start; 1998 const u64 orig_end = *end; 1999 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 2000 u64 delalloc_start; 2001 u64 delalloc_end; 2002 bool found; 2003 struct extent_state *cached_state = NULL; 2004 int ret; 2005 int loops = 0; 2006 2007 /* Caller should pass a valid @end to indicate the search range end */ 2008 ASSERT(orig_end > orig_start); 2009 2010 /* The range should at least cover part of the page */ 2011 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2012 orig_end <= page_offset(locked_page))); 2013 again: 2014 /* step one, find a bunch of delalloc bytes starting at start */ 2015 delalloc_start = *start; 2016 delalloc_end = 0; 2017 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2018 max_bytes, &cached_state); 2019 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2020 *start = delalloc_start; 2021 2022 /* @delalloc_end can be -1, never go beyond @orig_end */ 2023 *end = min(delalloc_end, orig_end); 2024 free_extent_state(cached_state); 2025 return false; 2026 } 2027 2028 /* 2029 * start comes from the offset of locked_page. We have to lock 2030 * pages in order, so we can't process delalloc bytes before 2031 * locked_page 2032 */ 2033 if (delalloc_start < *start) 2034 delalloc_start = *start; 2035 2036 /* 2037 * make sure to limit the number of pages we try to lock down 2038 */ 2039 if (delalloc_end + 1 - delalloc_start > max_bytes) 2040 delalloc_end = delalloc_start + max_bytes - 1; 2041 2042 /* step two, lock all the pages after the page that has start */ 2043 ret = lock_delalloc_pages(inode, locked_page, 2044 delalloc_start, delalloc_end); 2045 ASSERT(!ret || ret == -EAGAIN); 2046 if (ret == -EAGAIN) { 2047 /* some of the pages are gone, lets avoid looping by 2048 * shortening the size of the delalloc range we're searching 2049 */ 2050 free_extent_state(cached_state); 2051 cached_state = NULL; 2052 if (!loops) { 2053 max_bytes = PAGE_SIZE; 2054 loops = 1; 2055 goto again; 2056 } else { 2057 found = false; 2058 goto out_failed; 2059 } 2060 } 2061 2062 /* step three, lock the state bits for the whole range */ 2063 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2064 2065 /* then test to make sure it is all still delalloc */ 2066 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2067 EXTENT_DELALLOC, 1, cached_state); 2068 if (!ret) { 2069 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2070 &cached_state); 2071 __unlock_for_delalloc(inode, locked_page, 2072 delalloc_start, delalloc_end); 2073 cond_resched(); 2074 goto again; 2075 } 2076 free_extent_state(cached_state); 2077 *start = delalloc_start; 2078 *end = delalloc_end; 2079 out_failed: 2080 return found; 2081 } 2082 2083 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2084 struct page *locked_page, 2085 u32 clear_bits, unsigned long page_ops) 2086 { 2087 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2088 2089 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2090 start, end, page_ops, NULL); 2091 } 2092 2093 /* 2094 * count the number of bytes in the tree that have a given bit(s) 2095 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2096 * cached. The total number found is returned. 2097 */ 2098 u64 count_range_bits(struct extent_io_tree *tree, 2099 u64 *start, u64 search_end, u64 max_bytes, 2100 u32 bits, int contig) 2101 { 2102 struct rb_node *node; 2103 struct extent_state *state; 2104 u64 cur_start = *start; 2105 u64 total_bytes = 0; 2106 u64 last = 0; 2107 int found = 0; 2108 2109 if (WARN_ON(search_end <= cur_start)) 2110 return 0; 2111 2112 spin_lock(&tree->lock); 2113 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2114 total_bytes = tree->dirty_bytes; 2115 goto out; 2116 } 2117 /* 2118 * this search will find all the extents that end after 2119 * our range starts. 2120 */ 2121 node = tree_search(tree, cur_start); 2122 if (!node) 2123 goto out; 2124 2125 while (1) { 2126 state = rb_entry(node, struct extent_state, rb_node); 2127 if (state->start > search_end) 2128 break; 2129 if (contig && found && state->start > last + 1) 2130 break; 2131 if (state->end >= cur_start && (state->state & bits) == bits) { 2132 total_bytes += min(search_end, state->end) + 1 - 2133 max(cur_start, state->start); 2134 if (total_bytes >= max_bytes) 2135 break; 2136 if (!found) { 2137 *start = max(cur_start, state->start); 2138 found = 1; 2139 } 2140 last = state->end; 2141 } else if (contig && found) { 2142 break; 2143 } 2144 node = rb_next(node); 2145 if (!node) 2146 break; 2147 } 2148 out: 2149 spin_unlock(&tree->lock); 2150 return total_bytes; 2151 } 2152 2153 /* 2154 * set the private field for a given byte offset in the tree. If there isn't 2155 * an extent_state there already, this does nothing. 2156 */ 2157 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2158 struct io_failure_record *failrec) 2159 { 2160 struct rb_node *node; 2161 struct extent_state *state; 2162 int ret = 0; 2163 2164 spin_lock(&tree->lock); 2165 /* 2166 * this search will find all the extents that end after 2167 * our range starts. 2168 */ 2169 node = tree_search(tree, start); 2170 if (!node) { 2171 ret = -ENOENT; 2172 goto out; 2173 } 2174 state = rb_entry(node, struct extent_state, rb_node); 2175 if (state->start != start) { 2176 ret = -ENOENT; 2177 goto out; 2178 } 2179 state->failrec = failrec; 2180 out: 2181 spin_unlock(&tree->lock); 2182 return ret; 2183 } 2184 2185 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2186 { 2187 struct rb_node *node; 2188 struct extent_state *state; 2189 struct io_failure_record *failrec; 2190 2191 spin_lock(&tree->lock); 2192 /* 2193 * this search will find all the extents that end after 2194 * our range starts. 2195 */ 2196 node = tree_search(tree, start); 2197 if (!node) { 2198 failrec = ERR_PTR(-ENOENT); 2199 goto out; 2200 } 2201 state = rb_entry(node, struct extent_state, rb_node); 2202 if (state->start != start) { 2203 failrec = ERR_PTR(-ENOENT); 2204 goto out; 2205 } 2206 2207 failrec = state->failrec; 2208 out: 2209 spin_unlock(&tree->lock); 2210 return failrec; 2211 } 2212 2213 /* 2214 * searches a range in the state tree for a given mask. 2215 * If 'filled' == 1, this returns 1 only if every extent in the tree 2216 * has the bits set. Otherwise, 1 is returned if any bit in the 2217 * range is found set. 2218 */ 2219 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2220 u32 bits, int filled, struct extent_state *cached) 2221 { 2222 struct extent_state *state = NULL; 2223 struct rb_node *node; 2224 int bitset = 0; 2225 2226 spin_lock(&tree->lock); 2227 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2228 cached->end > start) 2229 node = &cached->rb_node; 2230 else 2231 node = tree_search(tree, start); 2232 while (node && start <= end) { 2233 state = rb_entry(node, struct extent_state, rb_node); 2234 2235 if (filled && state->start > start) { 2236 bitset = 0; 2237 break; 2238 } 2239 2240 if (state->start > end) 2241 break; 2242 2243 if (state->state & bits) { 2244 bitset = 1; 2245 if (!filled) 2246 break; 2247 } else if (filled) { 2248 bitset = 0; 2249 break; 2250 } 2251 2252 if (state->end == (u64)-1) 2253 break; 2254 2255 start = state->end + 1; 2256 if (start > end) 2257 break; 2258 node = rb_next(node); 2259 if (!node) { 2260 if (filled) 2261 bitset = 0; 2262 break; 2263 } 2264 } 2265 spin_unlock(&tree->lock); 2266 return bitset; 2267 } 2268 2269 int free_io_failure(struct extent_io_tree *failure_tree, 2270 struct extent_io_tree *io_tree, 2271 struct io_failure_record *rec) 2272 { 2273 int ret; 2274 int err = 0; 2275 2276 set_state_failrec(failure_tree, rec->start, NULL); 2277 ret = clear_extent_bits(failure_tree, rec->start, 2278 rec->start + rec->len - 1, 2279 EXTENT_LOCKED | EXTENT_DIRTY); 2280 if (ret) 2281 err = ret; 2282 2283 ret = clear_extent_bits(io_tree, rec->start, 2284 rec->start + rec->len - 1, 2285 EXTENT_DAMAGED); 2286 if (ret && !err) 2287 err = ret; 2288 2289 kfree(rec); 2290 return err; 2291 } 2292 2293 /* 2294 * this bypasses the standard btrfs submit functions deliberately, as 2295 * the standard behavior is to write all copies in a raid setup. here we only 2296 * want to write the one bad copy. so we do the mapping for ourselves and issue 2297 * submit_bio directly. 2298 * to avoid any synchronization issues, wait for the data after writing, which 2299 * actually prevents the read that triggered the error from finishing. 2300 * currently, there can be no more than two copies of every data bit. thus, 2301 * exactly one rewrite is required. 2302 */ 2303 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2304 u64 length, u64 logical, struct page *page, 2305 unsigned int pg_offset, int mirror_num) 2306 { 2307 struct bio *bio; 2308 struct btrfs_device *dev; 2309 u64 map_length = 0; 2310 u64 sector; 2311 struct btrfs_io_context *bioc = NULL; 2312 int ret; 2313 2314 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2315 BUG_ON(!mirror_num); 2316 2317 if (btrfs_is_zoned(fs_info)) 2318 return btrfs_repair_one_zone(fs_info, logical); 2319 2320 bio = btrfs_bio_alloc(1); 2321 bio->bi_iter.bi_size = 0; 2322 map_length = length; 2323 2324 /* 2325 * Avoid races with device replace and make sure our bioc has devices 2326 * associated to its stripes that don't go away while we are doing the 2327 * read repair operation. 2328 */ 2329 btrfs_bio_counter_inc_blocked(fs_info); 2330 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2331 /* 2332 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2333 * to update all raid stripes, but here we just want to correct 2334 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2335 * stripe's dev and sector. 2336 */ 2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2338 &map_length, &bioc, 0); 2339 if (ret) { 2340 btrfs_bio_counter_dec(fs_info); 2341 bio_put(bio); 2342 return -EIO; 2343 } 2344 ASSERT(bioc->mirror_num == 1); 2345 } else { 2346 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2347 &map_length, &bioc, mirror_num); 2348 if (ret) { 2349 btrfs_bio_counter_dec(fs_info); 2350 bio_put(bio); 2351 return -EIO; 2352 } 2353 BUG_ON(mirror_num != bioc->mirror_num); 2354 } 2355 2356 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2357 bio->bi_iter.bi_sector = sector; 2358 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2359 btrfs_put_bioc(bioc); 2360 if (!dev || !dev->bdev || 2361 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2362 btrfs_bio_counter_dec(fs_info); 2363 bio_put(bio); 2364 return -EIO; 2365 } 2366 bio_set_dev(bio, dev->bdev); 2367 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2368 bio_add_page(bio, page, length, pg_offset); 2369 2370 if (btrfsic_submit_bio_wait(bio)) { 2371 /* try to remap that extent elsewhere? */ 2372 btrfs_bio_counter_dec(fs_info); 2373 bio_put(bio); 2374 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2375 return -EIO; 2376 } 2377 2378 btrfs_info_rl_in_rcu(fs_info, 2379 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2380 ino, start, 2381 rcu_str_deref(dev->name), sector); 2382 btrfs_bio_counter_dec(fs_info); 2383 bio_put(bio); 2384 return 0; 2385 } 2386 2387 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2388 { 2389 struct btrfs_fs_info *fs_info = eb->fs_info; 2390 u64 start = eb->start; 2391 int i, num_pages = num_extent_pages(eb); 2392 int ret = 0; 2393 2394 if (sb_rdonly(fs_info->sb)) 2395 return -EROFS; 2396 2397 for (i = 0; i < num_pages; i++) { 2398 struct page *p = eb->pages[i]; 2399 2400 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2401 start - page_offset(p), mirror_num); 2402 if (ret) 2403 break; 2404 start += PAGE_SIZE; 2405 } 2406 2407 return ret; 2408 } 2409 2410 /* 2411 * each time an IO finishes, we do a fast check in the IO failure tree 2412 * to see if we need to process or clean up an io_failure_record 2413 */ 2414 int clean_io_failure(struct btrfs_fs_info *fs_info, 2415 struct extent_io_tree *failure_tree, 2416 struct extent_io_tree *io_tree, u64 start, 2417 struct page *page, u64 ino, unsigned int pg_offset) 2418 { 2419 u64 private; 2420 struct io_failure_record *failrec; 2421 struct extent_state *state; 2422 int num_copies; 2423 int ret; 2424 2425 private = 0; 2426 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2427 EXTENT_DIRTY, 0); 2428 if (!ret) 2429 return 0; 2430 2431 failrec = get_state_failrec(failure_tree, start); 2432 if (IS_ERR(failrec)) 2433 return 0; 2434 2435 BUG_ON(!failrec->this_mirror); 2436 2437 if (sb_rdonly(fs_info->sb)) 2438 goto out; 2439 2440 spin_lock(&io_tree->lock); 2441 state = find_first_extent_bit_state(io_tree, 2442 failrec->start, 2443 EXTENT_LOCKED); 2444 spin_unlock(&io_tree->lock); 2445 2446 if (state && state->start <= failrec->start && 2447 state->end >= failrec->start + failrec->len - 1) { 2448 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2449 failrec->len); 2450 if (num_copies > 1) { 2451 repair_io_failure(fs_info, ino, start, failrec->len, 2452 failrec->logical, page, pg_offset, 2453 failrec->failed_mirror); 2454 } 2455 } 2456 2457 out: 2458 free_io_failure(failure_tree, io_tree, failrec); 2459 2460 return 0; 2461 } 2462 2463 /* 2464 * Can be called when 2465 * - hold extent lock 2466 * - under ordered extent 2467 * - the inode is freeing 2468 */ 2469 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2470 { 2471 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2472 struct io_failure_record *failrec; 2473 struct extent_state *state, *next; 2474 2475 if (RB_EMPTY_ROOT(&failure_tree->state)) 2476 return; 2477 2478 spin_lock(&failure_tree->lock); 2479 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2480 while (state) { 2481 if (state->start > end) 2482 break; 2483 2484 ASSERT(state->end <= end); 2485 2486 next = next_state(state); 2487 2488 failrec = state->failrec; 2489 free_extent_state(state); 2490 kfree(failrec); 2491 2492 state = next; 2493 } 2494 spin_unlock(&failure_tree->lock); 2495 } 2496 2497 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2498 u64 start) 2499 { 2500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2501 struct io_failure_record *failrec; 2502 struct extent_map *em; 2503 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2504 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2505 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2506 const u32 sectorsize = fs_info->sectorsize; 2507 int ret; 2508 u64 logical; 2509 2510 failrec = get_state_failrec(failure_tree, start); 2511 if (!IS_ERR(failrec)) { 2512 btrfs_debug(fs_info, 2513 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2514 failrec->logical, failrec->start, failrec->len); 2515 /* 2516 * when data can be on disk more than twice, add to failrec here 2517 * (e.g. with a list for failed_mirror) to make 2518 * clean_io_failure() clean all those errors at once. 2519 */ 2520 2521 return failrec; 2522 } 2523 2524 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2525 if (!failrec) 2526 return ERR_PTR(-ENOMEM); 2527 2528 failrec->start = start; 2529 failrec->len = sectorsize; 2530 failrec->this_mirror = 0; 2531 failrec->bio_flags = 0; 2532 2533 read_lock(&em_tree->lock); 2534 em = lookup_extent_mapping(em_tree, start, failrec->len); 2535 if (!em) { 2536 read_unlock(&em_tree->lock); 2537 kfree(failrec); 2538 return ERR_PTR(-EIO); 2539 } 2540 2541 if (em->start > start || em->start + em->len <= start) { 2542 free_extent_map(em); 2543 em = NULL; 2544 } 2545 read_unlock(&em_tree->lock); 2546 if (!em) { 2547 kfree(failrec); 2548 return ERR_PTR(-EIO); 2549 } 2550 2551 logical = start - em->start; 2552 logical = em->block_start + logical; 2553 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2554 logical = em->block_start; 2555 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2556 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2557 } 2558 2559 btrfs_debug(fs_info, 2560 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2561 logical, start, failrec->len); 2562 2563 failrec->logical = logical; 2564 free_extent_map(em); 2565 2566 /* Set the bits in the private failure tree */ 2567 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2568 EXTENT_LOCKED | EXTENT_DIRTY); 2569 if (ret >= 0) { 2570 ret = set_state_failrec(failure_tree, start, failrec); 2571 /* Set the bits in the inode's tree */ 2572 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2573 EXTENT_DAMAGED); 2574 } else if (ret < 0) { 2575 kfree(failrec); 2576 return ERR_PTR(ret); 2577 } 2578 2579 return failrec; 2580 } 2581 2582 static bool btrfs_check_repairable(struct inode *inode, 2583 struct io_failure_record *failrec, 2584 int failed_mirror) 2585 { 2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2587 int num_copies; 2588 2589 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2590 if (num_copies == 1) { 2591 /* 2592 * we only have a single copy of the data, so don't bother with 2593 * all the retry and error correction code that follows. no 2594 * matter what the error is, it is very likely to persist. 2595 */ 2596 btrfs_debug(fs_info, 2597 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2598 num_copies, failrec->this_mirror, failed_mirror); 2599 return false; 2600 } 2601 2602 /* The failure record should only contain one sector */ 2603 ASSERT(failrec->len == fs_info->sectorsize); 2604 2605 /* 2606 * There are two premises: 2607 * a) deliver good data to the caller 2608 * b) correct the bad sectors on disk 2609 * 2610 * Since we're only doing repair for one sector, we only need to get 2611 * a good copy of the failed sector and if we succeed, we have setup 2612 * everything for repair_io_failure to do the rest for us. 2613 */ 2614 failrec->failed_mirror = failed_mirror; 2615 failrec->this_mirror++; 2616 if (failrec->this_mirror == failed_mirror) 2617 failrec->this_mirror++; 2618 2619 if (failrec->this_mirror > num_copies) { 2620 btrfs_debug(fs_info, 2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2622 num_copies, failrec->this_mirror, failed_mirror); 2623 return false; 2624 } 2625 2626 return true; 2627 } 2628 2629 int btrfs_repair_one_sector(struct inode *inode, 2630 struct bio *failed_bio, u32 bio_offset, 2631 struct page *page, unsigned int pgoff, 2632 u64 start, int failed_mirror, 2633 submit_bio_hook_t *submit_bio_hook) 2634 { 2635 struct io_failure_record *failrec; 2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2640 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2641 struct bio *repair_bio; 2642 struct btrfs_bio *repair_bbio; 2643 blk_status_t status; 2644 2645 btrfs_debug(fs_info, 2646 "repair read error: read error at %llu", start); 2647 2648 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2649 2650 failrec = btrfs_get_io_failure_record(inode, start); 2651 if (IS_ERR(failrec)) 2652 return PTR_ERR(failrec); 2653 2654 2655 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2656 free_io_failure(failure_tree, tree, failrec); 2657 return -EIO; 2658 } 2659 2660 repair_bio = btrfs_bio_alloc(1); 2661 repair_bbio = btrfs_bio(repair_bio); 2662 repair_bio->bi_opf = REQ_OP_READ; 2663 repair_bio->bi_end_io = failed_bio->bi_end_io; 2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2665 repair_bio->bi_private = failed_bio->bi_private; 2666 2667 if (failed_bbio->csum) { 2668 const u32 csum_size = fs_info->csum_size; 2669 2670 repair_bbio->csum = repair_bbio->csum_inline; 2671 memcpy(repair_bbio->csum, 2672 failed_bbio->csum + csum_size * icsum, csum_size); 2673 } 2674 2675 bio_add_page(repair_bio, page, failrec->len, pgoff); 2676 repair_bbio->iter = repair_bio->bi_iter; 2677 2678 btrfs_debug(btrfs_sb(inode->i_sb), 2679 "repair read error: submitting new read to mirror %d", 2680 failrec->this_mirror); 2681 2682 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2683 failrec->bio_flags); 2684 if (status) { 2685 free_io_failure(failure_tree, tree, failrec); 2686 bio_put(repair_bio); 2687 } 2688 return blk_status_to_errno(status); 2689 } 2690 2691 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2692 { 2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2694 2695 ASSERT(page_offset(page) <= start && 2696 start + len <= page_offset(page) + PAGE_SIZE); 2697 2698 if (uptodate) { 2699 if (fsverity_active(page->mapping->host) && 2700 !PageError(page) && 2701 !PageUptodate(page) && 2702 start < i_size_read(page->mapping->host) && 2703 !fsverity_verify_page(page)) { 2704 btrfs_page_set_error(fs_info, page, start, len); 2705 } else { 2706 btrfs_page_set_uptodate(fs_info, page, start, len); 2707 } 2708 } else { 2709 btrfs_page_clear_uptodate(fs_info, page, start, len); 2710 btrfs_page_set_error(fs_info, page, start, len); 2711 } 2712 2713 if (fs_info->sectorsize == PAGE_SIZE) 2714 unlock_page(page); 2715 else 2716 btrfs_subpage_end_reader(fs_info, page, start, len); 2717 } 2718 2719 static blk_status_t submit_read_repair(struct inode *inode, 2720 struct bio *failed_bio, u32 bio_offset, 2721 struct page *page, unsigned int pgoff, 2722 u64 start, u64 end, int failed_mirror, 2723 unsigned int error_bitmap, 2724 submit_bio_hook_t *submit_bio_hook) 2725 { 2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2727 const u32 sectorsize = fs_info->sectorsize; 2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2729 int error = 0; 2730 int i; 2731 2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2733 2734 /* We're here because we had some read errors or csum mismatch */ 2735 ASSERT(error_bitmap); 2736 2737 /* 2738 * We only get called on buffered IO, thus page must be mapped and bio 2739 * must not be cloned. 2740 */ 2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2742 2743 /* Iterate through all the sectors in the range */ 2744 for (i = 0; i < nr_bits; i++) { 2745 const unsigned int offset = i * sectorsize; 2746 struct extent_state *cached = NULL; 2747 bool uptodate = false; 2748 int ret; 2749 2750 if (!(error_bitmap & (1U << i))) { 2751 /* 2752 * This sector has no error, just end the page read 2753 * and unlock the range. 2754 */ 2755 uptodate = true; 2756 goto next; 2757 } 2758 2759 ret = btrfs_repair_one_sector(inode, failed_bio, 2760 bio_offset + offset, 2761 page, pgoff + offset, start + offset, 2762 failed_mirror, submit_bio_hook); 2763 if (!ret) { 2764 /* 2765 * We have submitted the read repair, the page release 2766 * will be handled by the endio function of the 2767 * submitted repair bio. 2768 * Thus we don't need to do any thing here. 2769 */ 2770 continue; 2771 } 2772 /* 2773 * Repair failed, just record the error but still continue. 2774 * Or the remaining sectors will not be properly unlocked. 2775 */ 2776 if (!error) 2777 error = ret; 2778 next: 2779 end_page_read(page, uptodate, start + offset, sectorsize); 2780 if (uptodate) 2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2782 start + offset, 2783 start + offset + sectorsize - 1, 2784 &cached, GFP_ATOMIC); 2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2786 start + offset, 2787 start + offset + sectorsize - 1, 2788 &cached); 2789 } 2790 return errno_to_blk_status(error); 2791 } 2792 2793 /* lots and lots of room for performance fixes in the end_bio funcs */ 2794 2795 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2796 { 2797 struct btrfs_inode *inode; 2798 const bool uptodate = (err == 0); 2799 int ret = 0; 2800 2801 ASSERT(page && page->mapping); 2802 inode = BTRFS_I(page->mapping->host); 2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2804 2805 if (!uptodate) { 2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2807 u32 len; 2808 2809 ASSERT(end + 1 - start <= U32_MAX); 2810 len = end + 1 - start; 2811 2812 btrfs_page_clear_uptodate(fs_info, page, start, len); 2813 btrfs_page_set_error(fs_info, page, start, len); 2814 ret = err < 0 ? err : -EIO; 2815 mapping_set_error(page->mapping, ret); 2816 } 2817 } 2818 2819 /* 2820 * after a writepage IO is done, we need to: 2821 * clear the uptodate bits on error 2822 * clear the writeback bits in the extent tree for this IO 2823 * end_page_writeback if the page has no more pending IO 2824 * 2825 * Scheduling is not allowed, so the extent state tree is expected 2826 * to have one and only one object corresponding to this IO. 2827 */ 2828 static void end_bio_extent_writepage(struct bio *bio) 2829 { 2830 int error = blk_status_to_errno(bio->bi_status); 2831 struct bio_vec *bvec; 2832 u64 start; 2833 u64 end; 2834 struct bvec_iter_all iter_all; 2835 bool first_bvec = true; 2836 2837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2838 bio_for_each_segment_all(bvec, bio, iter_all) { 2839 struct page *page = bvec->bv_page; 2840 struct inode *inode = page->mapping->host; 2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2842 const u32 sectorsize = fs_info->sectorsize; 2843 2844 /* Our read/write should always be sector aligned. */ 2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2846 btrfs_err(fs_info, 2847 "partial page write in btrfs with offset %u and length %u", 2848 bvec->bv_offset, bvec->bv_len); 2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2850 btrfs_info(fs_info, 2851 "incomplete page write with offset %u and length %u", 2852 bvec->bv_offset, bvec->bv_len); 2853 2854 start = page_offset(page) + bvec->bv_offset; 2855 end = start + bvec->bv_len - 1; 2856 2857 if (first_bvec) { 2858 btrfs_record_physical_zoned(inode, start, bio); 2859 first_bvec = false; 2860 } 2861 2862 end_extent_writepage(page, error, start, end); 2863 2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2865 } 2866 2867 bio_put(bio); 2868 } 2869 2870 /* 2871 * Record previously processed extent range 2872 * 2873 * For endio_readpage_release_extent() to handle a full extent range, reducing 2874 * the extent io operations. 2875 */ 2876 struct processed_extent { 2877 struct btrfs_inode *inode; 2878 /* Start of the range in @inode */ 2879 u64 start; 2880 /* End of the range in @inode */ 2881 u64 end; 2882 bool uptodate; 2883 }; 2884 2885 /* 2886 * Try to release processed extent range 2887 * 2888 * May not release the extent range right now if the current range is 2889 * contiguous to processed extent. 2890 * 2891 * Will release processed extent when any of @inode, @uptodate, the range is 2892 * no longer contiguous to the processed range. 2893 * 2894 * Passing @inode == NULL will force processed extent to be released. 2895 */ 2896 static void endio_readpage_release_extent(struct processed_extent *processed, 2897 struct btrfs_inode *inode, u64 start, u64 end, 2898 bool uptodate) 2899 { 2900 struct extent_state *cached = NULL; 2901 struct extent_io_tree *tree; 2902 2903 /* The first extent, initialize @processed */ 2904 if (!processed->inode) 2905 goto update; 2906 2907 /* 2908 * Contiguous to processed extent, just uptodate the end. 2909 * 2910 * Several things to notice: 2911 * 2912 * - bio can be merged as long as on-disk bytenr is contiguous 2913 * This means we can have page belonging to other inodes, thus need to 2914 * check if the inode still matches. 2915 * - bvec can contain range beyond current page for multi-page bvec 2916 * Thus we need to do processed->end + 1 >= start check 2917 */ 2918 if (processed->inode == inode && processed->uptodate == uptodate && 2919 processed->end + 1 >= start && end >= processed->end) { 2920 processed->end = end; 2921 return; 2922 } 2923 2924 tree = &processed->inode->io_tree; 2925 /* 2926 * Now we don't have range contiguous to the processed range, release 2927 * the processed range now. 2928 */ 2929 if (processed->uptodate && tree->track_uptodate) 2930 set_extent_uptodate(tree, processed->start, processed->end, 2931 &cached, GFP_ATOMIC); 2932 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2933 &cached); 2934 2935 update: 2936 /* Update processed to current range */ 2937 processed->inode = inode; 2938 processed->start = start; 2939 processed->end = end; 2940 processed->uptodate = uptodate; 2941 } 2942 2943 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2944 { 2945 ASSERT(PageLocked(page)); 2946 if (fs_info->sectorsize == PAGE_SIZE) 2947 return; 2948 2949 ASSERT(PagePrivate(page)); 2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2951 } 2952 2953 /* 2954 * Find extent buffer for a givne bytenr. 2955 * 2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2957 * in endio context. 2958 */ 2959 static struct extent_buffer *find_extent_buffer_readpage( 2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2961 { 2962 struct extent_buffer *eb; 2963 2964 /* 2965 * For regular sectorsize, we can use page->private to grab extent 2966 * buffer 2967 */ 2968 if (fs_info->sectorsize == PAGE_SIZE) { 2969 ASSERT(PagePrivate(page) && page->private); 2970 return (struct extent_buffer *)page->private; 2971 } 2972 2973 /* For subpage case, we need to lookup buffer radix tree */ 2974 rcu_read_lock(); 2975 eb = radix_tree_lookup(&fs_info->buffer_radix, 2976 bytenr >> fs_info->sectorsize_bits); 2977 rcu_read_unlock(); 2978 ASSERT(eb); 2979 return eb; 2980 } 2981 2982 /* 2983 * after a readpage IO is done, we need to: 2984 * clear the uptodate bits on error 2985 * set the uptodate bits if things worked 2986 * set the page up to date if all extents in the tree are uptodate 2987 * clear the lock bit in the extent tree 2988 * unlock the page if there are no other extents locked for it 2989 * 2990 * Scheduling is not allowed, so the extent state tree is expected 2991 * to have one and only one object corresponding to this IO. 2992 */ 2993 static void end_bio_extent_readpage(struct bio *bio) 2994 { 2995 struct bio_vec *bvec; 2996 struct btrfs_bio *bbio = btrfs_bio(bio); 2997 struct extent_io_tree *tree, *failure_tree; 2998 struct processed_extent processed = { 0 }; 2999 /* 3000 * The offset to the beginning of a bio, since one bio can never be 3001 * larger than UINT_MAX, u32 here is enough. 3002 */ 3003 u32 bio_offset = 0; 3004 int mirror; 3005 int ret; 3006 struct bvec_iter_all iter_all; 3007 3008 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3009 bio_for_each_segment_all(bvec, bio, iter_all) { 3010 bool uptodate = !bio->bi_status; 3011 struct page *page = bvec->bv_page; 3012 struct inode *inode = page->mapping->host; 3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3014 const u32 sectorsize = fs_info->sectorsize; 3015 unsigned int error_bitmap = (unsigned int)-1; 3016 u64 start; 3017 u64 end; 3018 u32 len; 3019 3020 btrfs_debug(fs_info, 3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3022 bio->bi_iter.bi_sector, bio->bi_status, 3023 bbio->mirror_num); 3024 tree = &BTRFS_I(inode)->io_tree; 3025 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3026 3027 /* 3028 * We always issue full-sector reads, but if some block in a 3029 * page fails to read, blk_update_request() will advance 3030 * bv_offset and adjust bv_len to compensate. Print a warning 3031 * for unaligned offsets, and an error if they don't add up to 3032 * a full sector. 3033 */ 3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3035 btrfs_err(fs_info, 3036 "partial page read in btrfs with offset %u and length %u", 3037 bvec->bv_offset, bvec->bv_len); 3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3039 sectorsize)) 3040 btrfs_info(fs_info, 3041 "incomplete page read with offset %u and length %u", 3042 bvec->bv_offset, bvec->bv_len); 3043 3044 start = page_offset(page) + bvec->bv_offset; 3045 end = start + bvec->bv_len - 1; 3046 len = bvec->bv_len; 3047 3048 mirror = bbio->mirror_num; 3049 if (likely(uptodate)) { 3050 if (is_data_inode(inode)) { 3051 error_bitmap = btrfs_verify_data_csum(bbio, 3052 bio_offset, page, start, end); 3053 ret = error_bitmap; 3054 } else { 3055 ret = btrfs_validate_metadata_buffer(bbio, 3056 page, start, end, mirror); 3057 } 3058 if (ret) 3059 uptodate = false; 3060 else 3061 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3062 failure_tree, tree, start, 3063 page, 3064 btrfs_ino(BTRFS_I(inode)), 0); 3065 } 3066 3067 if (likely(uptodate)) 3068 goto readpage_ok; 3069 3070 if (is_data_inode(inode)) { 3071 /* 3072 * btrfs_submit_read_repair() will handle all the good 3073 * and bad sectors, we just continue to the next bvec. 3074 */ 3075 submit_read_repair(inode, bio, bio_offset, page, 3076 start - page_offset(page), start, 3077 end, mirror, error_bitmap, 3078 btrfs_submit_data_bio); 3079 3080 ASSERT(bio_offset + len > bio_offset); 3081 bio_offset += len; 3082 continue; 3083 } else { 3084 struct extent_buffer *eb; 3085 3086 eb = find_extent_buffer_readpage(fs_info, page, start); 3087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3088 eb->read_mirror = mirror; 3089 atomic_dec(&eb->io_pages); 3090 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 3091 &eb->bflags)) 3092 btree_readahead_hook(eb, -EIO); 3093 } 3094 readpage_ok: 3095 if (likely(uptodate)) { 3096 loff_t i_size = i_size_read(inode); 3097 pgoff_t end_index = i_size >> PAGE_SHIFT; 3098 3099 /* 3100 * Zero out the remaining part if this range straddles 3101 * i_size. 3102 * 3103 * Here we should only zero the range inside the bvec, 3104 * not touch anything else. 3105 * 3106 * NOTE: i_size is exclusive while end is inclusive. 3107 */ 3108 if (page->index == end_index && i_size <= end) { 3109 u32 zero_start = max(offset_in_page(i_size), 3110 offset_in_page(start)); 3111 3112 zero_user_segment(page, zero_start, 3113 offset_in_page(end) + 1); 3114 } 3115 } 3116 ASSERT(bio_offset + len > bio_offset); 3117 bio_offset += len; 3118 3119 /* Update page status and unlock */ 3120 end_page_read(page, uptodate, start, len); 3121 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3122 start, end, PageUptodate(page)); 3123 } 3124 /* Release the last extent */ 3125 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3126 btrfs_bio_free_csum(bbio); 3127 bio_put(bio); 3128 } 3129 3130 /* 3131 * Initialize the members up to but not including 'bio'. Use after allocating a 3132 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3133 * 'bio' because use of __GFP_ZERO is not supported. 3134 */ 3135 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3136 { 3137 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3138 } 3139 3140 /* 3141 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3142 * 3143 * The bio allocation is backed by bioset and does not fail. 3144 */ 3145 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3146 { 3147 struct bio *bio; 3148 3149 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3150 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3151 btrfs_bio_init(btrfs_bio(bio)); 3152 return bio; 3153 } 3154 3155 struct bio *btrfs_bio_clone(struct bio *bio) 3156 { 3157 struct btrfs_bio *bbio; 3158 struct bio *new; 3159 3160 /* Bio allocation backed by a bioset does not fail */ 3161 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3162 bbio = btrfs_bio(new); 3163 btrfs_bio_init(bbio); 3164 bbio->iter = bio->bi_iter; 3165 return new; 3166 } 3167 3168 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3169 { 3170 struct bio *bio; 3171 struct btrfs_bio *bbio; 3172 3173 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3174 3175 /* this will never fail when it's backed by a bioset */ 3176 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3177 ASSERT(bio); 3178 3179 bbio = btrfs_bio(bio); 3180 btrfs_bio_init(bbio); 3181 3182 bio_trim(bio, offset >> 9, size >> 9); 3183 bbio->iter = bio->bi_iter; 3184 return bio; 3185 } 3186 3187 /** 3188 * Attempt to add a page to bio 3189 * 3190 * @bio: destination bio 3191 * @page: page to add to the bio 3192 * @disk_bytenr: offset of the new bio or to check whether we are adding 3193 * a contiguous page to the previous one 3194 * @pg_offset: starting offset in the page 3195 * @size: portion of page that we want to write 3196 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3197 * @bio_flags: flags of the current bio to see if we can merge them 3198 * 3199 * Attempt to add a page to bio considering stripe alignment etc. 3200 * 3201 * Return >= 0 for the number of bytes added to the bio. 3202 * Can return 0 if the current bio is already at stripe/zone boundary. 3203 * Return <0 for error. 3204 */ 3205 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3206 struct page *page, 3207 u64 disk_bytenr, unsigned int size, 3208 unsigned int pg_offset, 3209 unsigned long bio_flags) 3210 { 3211 struct bio *bio = bio_ctrl->bio; 3212 u32 bio_size = bio->bi_iter.bi_size; 3213 u32 real_size; 3214 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3215 bool contig; 3216 int ret; 3217 3218 ASSERT(bio); 3219 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3220 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3221 if (bio_ctrl->bio_flags != bio_flags) 3222 return 0; 3223 3224 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) 3225 contig = bio->bi_iter.bi_sector == sector; 3226 else 3227 contig = bio_end_sector(bio) == sector; 3228 if (!contig) 3229 return 0; 3230 3231 real_size = min(bio_ctrl->len_to_oe_boundary, 3232 bio_ctrl->len_to_stripe_boundary) - bio_size; 3233 real_size = min(real_size, size); 3234 3235 /* 3236 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3237 * bio will still execute its endio function on the page! 3238 */ 3239 if (real_size == 0) 3240 return 0; 3241 3242 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3243 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3244 else 3245 ret = bio_add_page(bio, page, real_size, pg_offset); 3246 3247 return ret; 3248 } 3249 3250 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3251 struct btrfs_inode *inode, u64 file_offset) 3252 { 3253 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3254 struct btrfs_io_geometry geom; 3255 struct btrfs_ordered_extent *ordered; 3256 struct extent_map *em; 3257 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3258 int ret; 3259 3260 /* 3261 * Pages for compressed extent are never submitted to disk directly, 3262 * thus it has no real boundary, just set them to U32_MAX. 3263 * 3264 * The split happens for real compressed bio, which happens in 3265 * btrfs_submit_compressed_read/write(). 3266 */ 3267 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { 3268 bio_ctrl->len_to_oe_boundary = U32_MAX; 3269 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3270 return 0; 3271 } 3272 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3273 if (IS_ERR(em)) 3274 return PTR_ERR(em); 3275 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3276 logical, &geom); 3277 free_extent_map(em); 3278 if (ret < 0) { 3279 return ret; 3280 } 3281 if (geom.len > U32_MAX) 3282 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3283 else 3284 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3285 3286 if (!btrfs_is_zoned(fs_info) || 3287 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3288 bio_ctrl->len_to_oe_boundary = U32_MAX; 3289 return 0; 3290 } 3291 3292 /* Ordered extent not yet created, so we're good */ 3293 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3294 if (!ordered) { 3295 bio_ctrl->len_to_oe_boundary = U32_MAX; 3296 return 0; 3297 } 3298 3299 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3300 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3301 btrfs_put_ordered_extent(ordered); 3302 return 0; 3303 } 3304 3305 static int alloc_new_bio(struct btrfs_inode *inode, 3306 struct btrfs_bio_ctrl *bio_ctrl, 3307 struct writeback_control *wbc, 3308 unsigned int opf, 3309 bio_end_io_t end_io_func, 3310 u64 disk_bytenr, u32 offset, u64 file_offset, 3311 unsigned long bio_flags) 3312 { 3313 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3314 struct bio *bio; 3315 int ret; 3316 3317 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3318 /* 3319 * For compressed page range, its disk_bytenr is always @disk_bytenr 3320 * passed in, no matter if we have added any range into previous bio. 3321 */ 3322 if (bio_flags & EXTENT_BIO_COMPRESSED) 3323 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3324 else 3325 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3326 bio_ctrl->bio = bio; 3327 bio_ctrl->bio_flags = bio_flags; 3328 bio->bi_end_io = end_io_func; 3329 bio->bi_private = &inode->io_tree; 3330 bio->bi_write_hint = inode->vfs_inode.i_write_hint; 3331 bio->bi_opf = opf; 3332 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3333 if (ret < 0) 3334 goto error; 3335 if (wbc) { 3336 struct block_device *bdev; 3337 3338 bdev = fs_info->fs_devices->latest_dev->bdev; 3339 bio_set_dev(bio, bdev); 3340 wbc_init_bio(wbc, bio); 3341 } 3342 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { 3343 struct btrfs_device *device; 3344 3345 device = btrfs_zoned_get_device(fs_info, disk_bytenr, 3346 fs_info->sectorsize); 3347 if (IS_ERR(device)) { 3348 ret = PTR_ERR(device); 3349 goto error; 3350 } 3351 3352 btrfs_bio(bio)->device = device; 3353 } 3354 return 0; 3355 error: 3356 bio_ctrl->bio = NULL; 3357 bio->bi_status = errno_to_blk_status(ret); 3358 bio_endio(bio); 3359 return ret; 3360 } 3361 3362 /* 3363 * @opf: bio REQ_OP_* and REQ_* flags as one value 3364 * @wbc: optional writeback control for io accounting 3365 * @page: page to add to the bio 3366 * @disk_bytenr: logical bytenr where the write will be 3367 * @size: portion of page that we want to write to 3368 * @pg_offset: offset of the new bio or to check whether we are adding 3369 * a contiguous page to the previous one 3370 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3371 * @end_io_func: end_io callback for new bio 3372 * @mirror_num: desired mirror to read/write 3373 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3374 * @bio_flags: flags of the current bio to see if we can merge them 3375 */ 3376 static int submit_extent_page(unsigned int opf, 3377 struct writeback_control *wbc, 3378 struct btrfs_bio_ctrl *bio_ctrl, 3379 struct page *page, u64 disk_bytenr, 3380 size_t size, unsigned long pg_offset, 3381 bio_end_io_t end_io_func, 3382 int mirror_num, 3383 unsigned long bio_flags, 3384 bool force_bio_submit) 3385 { 3386 int ret = 0; 3387 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3388 unsigned int cur = pg_offset; 3389 3390 ASSERT(bio_ctrl); 3391 3392 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3393 pg_offset + size <= PAGE_SIZE); 3394 if (force_bio_submit && bio_ctrl->bio) { 3395 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); 3396 bio_ctrl->bio = NULL; 3397 if (ret < 0) 3398 return ret; 3399 } 3400 3401 while (cur < pg_offset + size) { 3402 u32 offset = cur - pg_offset; 3403 int added; 3404 3405 /* Allocate new bio if needed */ 3406 if (!bio_ctrl->bio) { 3407 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3408 end_io_func, disk_bytenr, offset, 3409 page_offset(page) + cur, 3410 bio_flags); 3411 if (ret < 0) 3412 return ret; 3413 } 3414 /* 3415 * We must go through btrfs_bio_add_page() to ensure each 3416 * page range won't cross various boundaries. 3417 */ 3418 if (bio_flags & EXTENT_BIO_COMPRESSED) 3419 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3420 size - offset, pg_offset + offset, 3421 bio_flags); 3422 else 3423 added = btrfs_bio_add_page(bio_ctrl, page, 3424 disk_bytenr + offset, size - offset, 3425 pg_offset + offset, bio_flags); 3426 3427 /* Metadata page range should never be split */ 3428 if (!is_data_inode(&inode->vfs_inode)) 3429 ASSERT(added == 0 || added == size - offset); 3430 3431 /* At least we added some page, update the account */ 3432 if (wbc && added) 3433 wbc_account_cgroup_owner(wbc, page, added); 3434 3435 /* We have reached boundary, submit right now */ 3436 if (added < size - offset) { 3437 /* The bio should contain some page(s) */ 3438 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3439 ret = submit_one_bio(bio_ctrl->bio, mirror_num, 3440 bio_ctrl->bio_flags); 3441 bio_ctrl->bio = NULL; 3442 if (ret < 0) 3443 return ret; 3444 } 3445 cur += added; 3446 } 3447 return 0; 3448 } 3449 3450 static int attach_extent_buffer_page(struct extent_buffer *eb, 3451 struct page *page, 3452 struct btrfs_subpage *prealloc) 3453 { 3454 struct btrfs_fs_info *fs_info = eb->fs_info; 3455 int ret = 0; 3456 3457 /* 3458 * If the page is mapped to btree inode, we should hold the private 3459 * lock to prevent race. 3460 * For cloned or dummy extent buffers, their pages are not mapped and 3461 * will not race with any other ebs. 3462 */ 3463 if (page->mapping) 3464 lockdep_assert_held(&page->mapping->private_lock); 3465 3466 if (fs_info->sectorsize == PAGE_SIZE) { 3467 if (!PagePrivate(page)) 3468 attach_page_private(page, eb); 3469 else 3470 WARN_ON(page->private != (unsigned long)eb); 3471 return 0; 3472 } 3473 3474 /* Already mapped, just free prealloc */ 3475 if (PagePrivate(page)) { 3476 btrfs_free_subpage(prealloc); 3477 return 0; 3478 } 3479 3480 if (prealloc) 3481 /* Has preallocated memory for subpage */ 3482 attach_page_private(page, prealloc); 3483 else 3484 /* Do new allocation to attach subpage */ 3485 ret = btrfs_attach_subpage(fs_info, page, 3486 BTRFS_SUBPAGE_METADATA); 3487 return ret; 3488 } 3489 3490 int set_page_extent_mapped(struct page *page) 3491 { 3492 struct btrfs_fs_info *fs_info; 3493 3494 ASSERT(page->mapping); 3495 3496 if (PagePrivate(page)) 3497 return 0; 3498 3499 fs_info = btrfs_sb(page->mapping->host->i_sb); 3500 3501 if (fs_info->sectorsize < PAGE_SIZE) 3502 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3503 3504 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3505 return 0; 3506 } 3507 3508 void clear_page_extent_mapped(struct page *page) 3509 { 3510 struct btrfs_fs_info *fs_info; 3511 3512 ASSERT(page->mapping); 3513 3514 if (!PagePrivate(page)) 3515 return; 3516 3517 fs_info = btrfs_sb(page->mapping->host->i_sb); 3518 if (fs_info->sectorsize < PAGE_SIZE) 3519 return btrfs_detach_subpage(fs_info, page); 3520 3521 detach_page_private(page); 3522 } 3523 3524 static struct extent_map * 3525 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3526 u64 start, u64 len, struct extent_map **em_cached) 3527 { 3528 struct extent_map *em; 3529 3530 if (em_cached && *em_cached) { 3531 em = *em_cached; 3532 if (extent_map_in_tree(em) && start >= em->start && 3533 start < extent_map_end(em)) { 3534 refcount_inc(&em->refs); 3535 return em; 3536 } 3537 3538 free_extent_map(em); 3539 *em_cached = NULL; 3540 } 3541 3542 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3543 if (em_cached && !IS_ERR_OR_NULL(em)) { 3544 BUG_ON(*em_cached); 3545 refcount_inc(&em->refs); 3546 *em_cached = em; 3547 } 3548 return em; 3549 } 3550 /* 3551 * basic readpage implementation. Locked extent state structs are inserted 3552 * into the tree that are removed when the IO is done (by the end_io 3553 * handlers) 3554 * XXX JDM: This needs looking at to ensure proper page locking 3555 * return 0 on success, otherwise return error 3556 */ 3557 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3558 struct btrfs_bio_ctrl *bio_ctrl, 3559 unsigned int read_flags, u64 *prev_em_start) 3560 { 3561 struct inode *inode = page->mapping->host; 3562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3563 u64 start = page_offset(page); 3564 const u64 end = start + PAGE_SIZE - 1; 3565 u64 cur = start; 3566 u64 extent_offset; 3567 u64 last_byte = i_size_read(inode); 3568 u64 block_start; 3569 u64 cur_end; 3570 struct extent_map *em; 3571 int ret = 0; 3572 int nr = 0; 3573 size_t pg_offset = 0; 3574 size_t iosize; 3575 size_t blocksize = inode->i_sb->s_blocksize; 3576 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3577 3578 ret = set_page_extent_mapped(page); 3579 if (ret < 0) { 3580 unlock_extent(tree, start, end); 3581 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3582 unlock_page(page); 3583 goto out; 3584 } 3585 3586 if (!PageUptodate(page)) { 3587 if (cleancache_get_page(page) == 0) { 3588 BUG_ON(blocksize != PAGE_SIZE); 3589 unlock_extent(tree, start, end); 3590 unlock_page(page); 3591 goto out; 3592 } 3593 } 3594 3595 if (page->index == last_byte >> PAGE_SHIFT) { 3596 size_t zero_offset = offset_in_page(last_byte); 3597 3598 if (zero_offset) { 3599 iosize = PAGE_SIZE - zero_offset; 3600 memzero_page(page, zero_offset, iosize); 3601 flush_dcache_page(page); 3602 } 3603 } 3604 begin_page_read(fs_info, page); 3605 while (cur <= end) { 3606 unsigned long this_bio_flag = 0; 3607 bool force_bio_submit = false; 3608 u64 disk_bytenr; 3609 3610 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3611 if (cur >= last_byte) { 3612 struct extent_state *cached = NULL; 3613 3614 iosize = PAGE_SIZE - pg_offset; 3615 memzero_page(page, pg_offset, iosize); 3616 flush_dcache_page(page); 3617 set_extent_uptodate(tree, cur, cur + iosize - 1, 3618 &cached, GFP_NOFS); 3619 unlock_extent_cached(tree, cur, 3620 cur + iosize - 1, &cached); 3621 end_page_read(page, true, cur, iosize); 3622 break; 3623 } 3624 em = __get_extent_map(inode, page, pg_offset, cur, 3625 end - cur + 1, em_cached); 3626 if (IS_ERR_OR_NULL(em)) { 3627 unlock_extent(tree, cur, end); 3628 end_page_read(page, false, cur, end + 1 - cur); 3629 break; 3630 } 3631 extent_offset = cur - em->start; 3632 BUG_ON(extent_map_end(em) <= cur); 3633 BUG_ON(end < cur); 3634 3635 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3636 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3637 extent_set_compress_type(&this_bio_flag, 3638 em->compress_type); 3639 } 3640 3641 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3642 cur_end = min(extent_map_end(em) - 1, end); 3643 iosize = ALIGN(iosize, blocksize); 3644 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3645 disk_bytenr = em->block_start; 3646 else 3647 disk_bytenr = em->block_start + extent_offset; 3648 block_start = em->block_start; 3649 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3650 block_start = EXTENT_MAP_HOLE; 3651 3652 /* 3653 * If we have a file range that points to a compressed extent 3654 * and it's followed by a consecutive file range that points 3655 * to the same compressed extent (possibly with a different 3656 * offset and/or length, so it either points to the whole extent 3657 * or only part of it), we must make sure we do not submit a 3658 * single bio to populate the pages for the 2 ranges because 3659 * this makes the compressed extent read zero out the pages 3660 * belonging to the 2nd range. Imagine the following scenario: 3661 * 3662 * File layout 3663 * [0 - 8K] [8K - 24K] 3664 * | | 3665 * | | 3666 * points to extent X, points to extent X, 3667 * offset 4K, length of 8K offset 0, length 16K 3668 * 3669 * [extent X, compressed length = 4K uncompressed length = 16K] 3670 * 3671 * If the bio to read the compressed extent covers both ranges, 3672 * it will decompress extent X into the pages belonging to the 3673 * first range and then it will stop, zeroing out the remaining 3674 * pages that belong to the other range that points to extent X. 3675 * So here we make sure we submit 2 bios, one for the first 3676 * range and another one for the third range. Both will target 3677 * the same physical extent from disk, but we can't currently 3678 * make the compressed bio endio callback populate the pages 3679 * for both ranges because each compressed bio is tightly 3680 * coupled with a single extent map, and each range can have 3681 * an extent map with a different offset value relative to the 3682 * uncompressed data of our extent and different lengths. This 3683 * is a corner case so we prioritize correctness over 3684 * non-optimal behavior (submitting 2 bios for the same extent). 3685 */ 3686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3687 prev_em_start && *prev_em_start != (u64)-1 && 3688 *prev_em_start != em->start) 3689 force_bio_submit = true; 3690 3691 if (prev_em_start) 3692 *prev_em_start = em->start; 3693 3694 free_extent_map(em); 3695 em = NULL; 3696 3697 /* we've found a hole, just zero and go on */ 3698 if (block_start == EXTENT_MAP_HOLE) { 3699 struct extent_state *cached = NULL; 3700 3701 memzero_page(page, pg_offset, iosize); 3702 flush_dcache_page(page); 3703 3704 set_extent_uptodate(tree, cur, cur + iosize - 1, 3705 &cached, GFP_NOFS); 3706 unlock_extent_cached(tree, cur, 3707 cur + iosize - 1, &cached); 3708 end_page_read(page, true, cur, iosize); 3709 cur = cur + iosize; 3710 pg_offset += iosize; 3711 continue; 3712 } 3713 /* the get_extent function already copied into the page */ 3714 if (test_range_bit(tree, cur, cur_end, 3715 EXTENT_UPTODATE, 1, NULL)) { 3716 unlock_extent(tree, cur, cur + iosize - 1); 3717 end_page_read(page, true, cur, iosize); 3718 cur = cur + iosize; 3719 pg_offset += iosize; 3720 continue; 3721 } 3722 /* we have an inline extent but it didn't get marked up 3723 * to date. Error out 3724 */ 3725 if (block_start == EXTENT_MAP_INLINE) { 3726 unlock_extent(tree, cur, cur + iosize - 1); 3727 end_page_read(page, false, cur, iosize); 3728 cur = cur + iosize; 3729 pg_offset += iosize; 3730 continue; 3731 } 3732 3733 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3734 bio_ctrl, page, disk_bytenr, iosize, 3735 pg_offset, 3736 end_bio_extent_readpage, 0, 3737 this_bio_flag, 3738 force_bio_submit); 3739 if (!ret) { 3740 nr++; 3741 } else { 3742 unlock_extent(tree, cur, cur + iosize - 1); 3743 end_page_read(page, false, cur, iosize); 3744 goto out; 3745 } 3746 cur = cur + iosize; 3747 pg_offset += iosize; 3748 } 3749 out: 3750 return ret; 3751 } 3752 3753 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3754 u64 start, u64 end, 3755 struct extent_map **em_cached, 3756 struct btrfs_bio_ctrl *bio_ctrl, 3757 u64 *prev_em_start) 3758 { 3759 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3760 int index; 3761 3762 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3763 3764 for (index = 0; index < nr_pages; index++) { 3765 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3766 REQ_RAHEAD, prev_em_start); 3767 put_page(pages[index]); 3768 } 3769 } 3770 3771 static void update_nr_written(struct writeback_control *wbc, 3772 unsigned long nr_written) 3773 { 3774 wbc->nr_to_write -= nr_written; 3775 } 3776 3777 /* 3778 * helper for __extent_writepage, doing all of the delayed allocation setup. 3779 * 3780 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3781 * to write the page (copy into inline extent). In this case the IO has 3782 * been started and the page is already unlocked. 3783 * 3784 * This returns 0 if all went well (page still locked) 3785 * This returns < 0 if there were errors (page still locked) 3786 */ 3787 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3788 struct page *page, struct writeback_control *wbc, 3789 unsigned long *nr_written) 3790 { 3791 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3792 u64 delalloc_start = page_offset(page); 3793 u64 delalloc_to_write = 0; 3794 int ret; 3795 int page_started = 0; 3796 3797 while (delalloc_start < page_end) { 3798 u64 delalloc_end = page_end; 3799 bool found; 3800 3801 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3802 &delalloc_start, 3803 &delalloc_end); 3804 if (!found) { 3805 delalloc_start = delalloc_end + 1; 3806 continue; 3807 } 3808 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3809 delalloc_end, &page_started, nr_written, wbc); 3810 if (ret) { 3811 btrfs_page_set_error(inode->root->fs_info, page, 3812 page_offset(page), PAGE_SIZE); 3813 return ret; 3814 } 3815 /* 3816 * delalloc_end is already one less than the total length, so 3817 * we don't subtract one from PAGE_SIZE 3818 */ 3819 delalloc_to_write += (delalloc_end - delalloc_start + 3820 PAGE_SIZE) >> PAGE_SHIFT; 3821 delalloc_start = delalloc_end + 1; 3822 } 3823 if (wbc->nr_to_write < delalloc_to_write) { 3824 int thresh = 8192; 3825 3826 if (delalloc_to_write < thresh * 2) 3827 thresh = delalloc_to_write; 3828 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3829 thresh); 3830 } 3831 3832 /* did the fill delalloc function already unlock and start 3833 * the IO? 3834 */ 3835 if (page_started) { 3836 /* 3837 * we've unlocked the page, so we can't update 3838 * the mapping's writeback index, just update 3839 * nr_to_write. 3840 */ 3841 wbc->nr_to_write -= *nr_written; 3842 return 1; 3843 } 3844 3845 return 0; 3846 } 3847 3848 /* 3849 * Find the first byte we need to write. 3850 * 3851 * For subpage, one page can contain several sectors, and 3852 * __extent_writepage_io() will just grab all extent maps in the page 3853 * range and try to submit all non-inline/non-compressed extents. 3854 * 3855 * This is a big problem for subpage, we shouldn't re-submit already written 3856 * data at all. 3857 * This function will lookup subpage dirty bit to find which range we really 3858 * need to submit. 3859 * 3860 * Return the next dirty range in [@start, @end). 3861 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3862 */ 3863 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3864 struct page *page, u64 *start, u64 *end) 3865 { 3866 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3867 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3868 u64 orig_start = *start; 3869 /* Declare as unsigned long so we can use bitmap ops */ 3870 unsigned long flags; 3871 int range_start_bit; 3872 int range_end_bit; 3873 3874 /* 3875 * For regular sector size == page size case, since one page only 3876 * contains one sector, we return the page offset directly. 3877 */ 3878 if (fs_info->sectorsize == PAGE_SIZE) { 3879 *start = page_offset(page); 3880 *end = page_offset(page) + PAGE_SIZE; 3881 return; 3882 } 3883 3884 range_start_bit = spi->dirty_offset + 3885 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3886 3887 /* We should have the page locked, but just in case */ 3888 spin_lock_irqsave(&subpage->lock, flags); 3889 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3890 spi->dirty_offset + spi->bitmap_nr_bits); 3891 spin_unlock_irqrestore(&subpage->lock, flags); 3892 3893 range_start_bit -= spi->dirty_offset; 3894 range_end_bit -= spi->dirty_offset; 3895 3896 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3897 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3898 } 3899 3900 /* 3901 * helper for __extent_writepage. This calls the writepage start hooks, 3902 * and does the loop to map the page into extents and bios. 3903 * 3904 * We return 1 if the IO is started and the page is unlocked, 3905 * 0 if all went well (page still locked) 3906 * < 0 if there were errors (page still locked) 3907 */ 3908 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3909 struct page *page, 3910 struct writeback_control *wbc, 3911 struct extent_page_data *epd, 3912 loff_t i_size, 3913 unsigned long nr_written, 3914 int *nr_ret) 3915 { 3916 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3917 u64 cur = page_offset(page); 3918 u64 end = cur + PAGE_SIZE - 1; 3919 u64 extent_offset; 3920 u64 block_start; 3921 struct extent_map *em; 3922 int ret = 0; 3923 int nr = 0; 3924 u32 opf = REQ_OP_WRITE; 3925 const unsigned int write_flags = wbc_to_write_flags(wbc); 3926 bool compressed; 3927 3928 ret = btrfs_writepage_cow_fixup(page); 3929 if (ret) { 3930 /* Fixup worker will requeue */ 3931 redirty_page_for_writepage(wbc, page); 3932 update_nr_written(wbc, nr_written); 3933 unlock_page(page); 3934 return 1; 3935 } 3936 3937 /* 3938 * we don't want to touch the inode after unlocking the page, 3939 * so we update the mapping writeback index now 3940 */ 3941 update_nr_written(wbc, nr_written + 1); 3942 3943 while (cur <= end) { 3944 u64 disk_bytenr; 3945 u64 em_end; 3946 u64 dirty_range_start = cur; 3947 u64 dirty_range_end; 3948 u32 iosize; 3949 3950 if (cur >= i_size) { 3951 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3952 end, true); 3953 /* 3954 * This range is beyond i_size, thus we don't need to 3955 * bother writing back. 3956 * But we still need to clear the dirty subpage bit, or 3957 * the next time the page gets dirtied, we will try to 3958 * writeback the sectors with subpage dirty bits, 3959 * causing writeback without ordered extent. 3960 */ 3961 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 3962 break; 3963 } 3964 3965 find_next_dirty_byte(fs_info, page, &dirty_range_start, 3966 &dirty_range_end); 3967 if (cur < dirty_range_start) { 3968 cur = dirty_range_start; 3969 continue; 3970 } 3971 3972 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3973 if (IS_ERR_OR_NULL(em)) { 3974 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 3975 ret = PTR_ERR_OR_ZERO(em); 3976 break; 3977 } 3978 3979 extent_offset = cur - em->start; 3980 em_end = extent_map_end(em); 3981 ASSERT(cur <= em_end); 3982 ASSERT(cur < end); 3983 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3984 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3985 block_start = em->block_start; 3986 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3987 disk_bytenr = em->block_start + extent_offset; 3988 3989 /* 3990 * Note that em_end from extent_map_end() and dirty_range_end from 3991 * find_next_dirty_byte() are all exclusive 3992 */ 3993 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 3994 3995 if (btrfs_use_zone_append(inode, em->block_start)) 3996 opf = REQ_OP_ZONE_APPEND; 3997 3998 free_extent_map(em); 3999 em = NULL; 4000 4001 /* 4002 * compressed and inline extents are written through other 4003 * paths in the FS 4004 */ 4005 if (compressed || block_start == EXTENT_MAP_HOLE || 4006 block_start == EXTENT_MAP_INLINE) { 4007 if (compressed) 4008 nr++; 4009 else 4010 btrfs_writepage_endio_finish_ordered(inode, 4011 page, cur, cur + iosize - 1, true); 4012 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4013 cur += iosize; 4014 continue; 4015 } 4016 4017 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4018 if (!PageWriteback(page)) { 4019 btrfs_err(inode->root->fs_info, 4020 "page %lu not writeback, cur %llu end %llu", 4021 page->index, cur, end); 4022 } 4023 4024 /* 4025 * Although the PageDirty bit is cleared before entering this 4026 * function, subpage dirty bit is not cleared. 4027 * So clear subpage dirty bit here so next time we won't submit 4028 * page for range already written to disk. 4029 */ 4030 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4031 4032 ret = submit_extent_page(opf | write_flags, wbc, 4033 &epd->bio_ctrl, page, 4034 disk_bytenr, iosize, 4035 cur - page_offset(page), 4036 end_bio_extent_writepage, 4037 0, 0, false); 4038 if (ret) { 4039 btrfs_page_set_error(fs_info, page, cur, iosize); 4040 if (PageWriteback(page)) 4041 btrfs_page_clear_writeback(fs_info, page, cur, 4042 iosize); 4043 } 4044 4045 cur += iosize; 4046 nr++; 4047 } 4048 /* 4049 * If we finish without problem, we should not only clear page dirty, 4050 * but also empty subpage dirty bits 4051 */ 4052 if (!ret) 4053 btrfs_page_assert_not_dirty(fs_info, page); 4054 *nr_ret = nr; 4055 return ret; 4056 } 4057 4058 /* 4059 * the writepage semantics are similar to regular writepage. extent 4060 * records are inserted to lock ranges in the tree, and as dirty areas 4061 * are found, they are marked writeback. Then the lock bits are removed 4062 * and the end_io handler clears the writeback ranges 4063 * 4064 * Return 0 if everything goes well. 4065 * Return <0 for error. 4066 */ 4067 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4068 struct extent_page_data *epd) 4069 { 4070 struct inode *inode = page->mapping->host; 4071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4072 const u64 page_start = page_offset(page); 4073 const u64 page_end = page_start + PAGE_SIZE - 1; 4074 int ret; 4075 int nr = 0; 4076 size_t pg_offset; 4077 loff_t i_size = i_size_read(inode); 4078 unsigned long end_index = i_size >> PAGE_SHIFT; 4079 unsigned long nr_written = 0; 4080 4081 trace___extent_writepage(page, inode, wbc); 4082 4083 WARN_ON(!PageLocked(page)); 4084 4085 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4086 page_offset(page), PAGE_SIZE); 4087 4088 pg_offset = offset_in_page(i_size); 4089 if (page->index > end_index || 4090 (page->index == end_index && !pg_offset)) { 4091 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 4092 unlock_page(page); 4093 return 0; 4094 } 4095 4096 if (page->index == end_index) { 4097 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4098 flush_dcache_page(page); 4099 } 4100 4101 ret = set_page_extent_mapped(page); 4102 if (ret < 0) { 4103 SetPageError(page); 4104 goto done; 4105 } 4106 4107 if (!epd->extent_locked) { 4108 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written); 4109 if (ret == 1) 4110 return 0; 4111 if (ret) 4112 goto done; 4113 } 4114 4115 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4116 nr_written, &nr); 4117 if (ret == 1) 4118 return 0; 4119 4120 done: 4121 if (nr == 0) { 4122 /* make sure the mapping tag for page dirty gets cleared */ 4123 set_page_writeback(page); 4124 end_page_writeback(page); 4125 } 4126 /* 4127 * Here we used to have a check for PageError() and then set @ret and 4128 * call end_extent_writepage(). 4129 * 4130 * But in fact setting @ret here will cause different error paths 4131 * between subpage and regular sectorsize. 4132 * 4133 * For regular page size, we never submit current page, but only add 4134 * current page to current bio. 4135 * The bio submission can only happen in next page. 4136 * Thus if we hit the PageError() branch, @ret is already set to 4137 * non-zero value and will not get updated for regular sectorsize. 4138 * 4139 * But for subpage case, it's possible we submit part of current page, 4140 * thus can get PageError() set by submitted bio of the same page, 4141 * while our @ret is still 0. 4142 * 4143 * So here we unify the behavior and don't set @ret. 4144 * Error can still be properly passed to higher layer as page will 4145 * be set error, here we just don't handle the IO failure. 4146 * 4147 * NOTE: This is just a hotfix for subpage. 4148 * The root fix will be properly ending ordered extent when we hit 4149 * an error during writeback. 4150 * 4151 * But that needs a bigger refactoring, as we not only need to grab the 4152 * submitted OE, but also need to know exactly at which bytenr we hit 4153 * the error. 4154 * Currently the full page based __extent_writepage_io() is not 4155 * capable of that. 4156 */ 4157 if (PageError(page)) 4158 end_extent_writepage(page, ret, page_start, page_end); 4159 if (epd->extent_locked) { 4160 /* 4161 * If epd->extent_locked, it's from extent_write_locked_range(), 4162 * the page can either be locked by lock_page() or 4163 * process_one_page(). 4164 * Let btrfs_page_unlock_writer() handle both cases. 4165 */ 4166 ASSERT(wbc); 4167 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4168 wbc->range_end + 1 - wbc->range_start); 4169 } else { 4170 unlock_page(page); 4171 } 4172 ASSERT(ret <= 0); 4173 return ret; 4174 } 4175 4176 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4177 { 4178 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4179 TASK_UNINTERRUPTIBLE); 4180 } 4181 4182 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4183 { 4184 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags)) 4185 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len); 4186 4187 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4188 smp_mb__after_atomic(); 4189 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4190 } 4191 4192 /* 4193 * Lock extent buffer status and pages for writeback. 4194 * 4195 * May try to flush write bio if we can't get the lock. 4196 * 4197 * Return 0 if the extent buffer doesn't need to be submitted. 4198 * (E.g. the extent buffer is not dirty) 4199 * Return >0 is the extent buffer is submitted to bio. 4200 * Return <0 if something went wrong, no page is locked. 4201 */ 4202 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4203 struct extent_page_data *epd) 4204 { 4205 struct btrfs_fs_info *fs_info = eb->fs_info; 4206 int i, num_pages, failed_page_nr; 4207 int flush = 0; 4208 int ret = 0; 4209 4210 if (!btrfs_try_tree_write_lock(eb)) { 4211 ret = flush_write_bio(epd); 4212 if (ret < 0) 4213 return ret; 4214 flush = 1; 4215 btrfs_tree_lock(eb); 4216 } 4217 4218 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4219 btrfs_tree_unlock(eb); 4220 if (!epd->sync_io) 4221 return 0; 4222 if (!flush) { 4223 ret = flush_write_bio(epd); 4224 if (ret < 0) 4225 return ret; 4226 flush = 1; 4227 } 4228 while (1) { 4229 wait_on_extent_buffer_writeback(eb); 4230 btrfs_tree_lock(eb); 4231 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4232 break; 4233 btrfs_tree_unlock(eb); 4234 } 4235 } 4236 4237 /* 4238 * We need to do this to prevent races in people who check if the eb is 4239 * under IO since we can end up having no IO bits set for a short period 4240 * of time. 4241 */ 4242 spin_lock(&eb->refs_lock); 4243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4244 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4245 spin_unlock(&eb->refs_lock); 4246 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4247 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4248 -eb->len, 4249 fs_info->dirty_metadata_batch); 4250 ret = 1; 4251 } else { 4252 spin_unlock(&eb->refs_lock); 4253 } 4254 4255 btrfs_tree_unlock(eb); 4256 4257 /* 4258 * Either we don't need to submit any tree block, or we're submitting 4259 * subpage eb. 4260 * Subpage metadata doesn't use page locking at all, so we can skip 4261 * the page locking. 4262 */ 4263 if (!ret || fs_info->sectorsize < PAGE_SIZE) 4264 return ret; 4265 4266 num_pages = num_extent_pages(eb); 4267 for (i = 0; i < num_pages; i++) { 4268 struct page *p = eb->pages[i]; 4269 4270 if (!trylock_page(p)) { 4271 if (!flush) { 4272 int err; 4273 4274 err = flush_write_bio(epd); 4275 if (err < 0) { 4276 ret = err; 4277 failed_page_nr = i; 4278 goto err_unlock; 4279 } 4280 flush = 1; 4281 } 4282 lock_page(p); 4283 } 4284 } 4285 4286 return ret; 4287 err_unlock: 4288 /* Unlock already locked pages */ 4289 for (i = 0; i < failed_page_nr; i++) 4290 unlock_page(eb->pages[i]); 4291 /* 4292 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4293 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4294 * be made and undo everything done before. 4295 */ 4296 btrfs_tree_lock(eb); 4297 spin_lock(&eb->refs_lock); 4298 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4299 end_extent_buffer_writeback(eb); 4300 spin_unlock(&eb->refs_lock); 4301 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4302 fs_info->dirty_metadata_batch); 4303 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4304 btrfs_tree_unlock(eb); 4305 return ret; 4306 } 4307 4308 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4309 { 4310 struct btrfs_fs_info *fs_info = eb->fs_info; 4311 4312 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4313 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4314 return; 4315 4316 /* 4317 * A read may stumble upon this buffer later, make sure that it gets an 4318 * error and knows there was an error. 4319 */ 4320 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4321 4322 /* 4323 * We need to set the mapping with the io error as well because a write 4324 * error will flip the file system readonly, and then syncfs() will 4325 * return a 0 because we are readonly if we don't modify the err seq for 4326 * the superblock. 4327 */ 4328 mapping_set_error(page->mapping, -EIO); 4329 4330 /* 4331 * If we error out, we should add back the dirty_metadata_bytes 4332 * to make it consistent. 4333 */ 4334 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4335 eb->len, fs_info->dirty_metadata_batch); 4336 4337 /* 4338 * If writeback for a btree extent that doesn't belong to a log tree 4339 * failed, increment the counter transaction->eb_write_errors. 4340 * We do this because while the transaction is running and before it's 4341 * committing (when we call filemap_fdata[write|wait]_range against 4342 * the btree inode), we might have 4343 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4344 * returns an error or an error happens during writeback, when we're 4345 * committing the transaction we wouldn't know about it, since the pages 4346 * can be no longer dirty nor marked anymore for writeback (if a 4347 * subsequent modification to the extent buffer didn't happen before the 4348 * transaction commit), which makes filemap_fdata[write|wait]_range not 4349 * able to find the pages tagged with SetPageError at transaction 4350 * commit time. So if this happens we must abort the transaction, 4351 * otherwise we commit a super block with btree roots that point to 4352 * btree nodes/leafs whose content on disk is invalid - either garbage 4353 * or the content of some node/leaf from a past generation that got 4354 * cowed or deleted and is no longer valid. 4355 * 4356 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4357 * not be enough - we need to distinguish between log tree extents vs 4358 * non-log tree extents, and the next filemap_fdatawait_range() call 4359 * will catch and clear such errors in the mapping - and that call might 4360 * be from a log sync and not from a transaction commit. Also, checking 4361 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4362 * not done and would not be reliable - the eb might have been released 4363 * from memory and reading it back again means that flag would not be 4364 * set (since it's a runtime flag, not persisted on disk). 4365 * 4366 * Using the flags below in the btree inode also makes us achieve the 4367 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4368 * writeback for all dirty pages and before filemap_fdatawait_range() 4369 * is called, the writeback for all dirty pages had already finished 4370 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4371 * filemap_fdatawait_range() would return success, as it could not know 4372 * that writeback errors happened (the pages were no longer tagged for 4373 * writeback). 4374 */ 4375 switch (eb->log_index) { 4376 case -1: 4377 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4378 break; 4379 case 0: 4380 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4381 break; 4382 case 1: 4383 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4384 break; 4385 default: 4386 BUG(); /* unexpected, logic error */ 4387 } 4388 } 4389 4390 /* 4391 * The endio specific version which won't touch any unsafe spinlock in endio 4392 * context. 4393 */ 4394 static struct extent_buffer *find_extent_buffer_nolock( 4395 struct btrfs_fs_info *fs_info, u64 start) 4396 { 4397 struct extent_buffer *eb; 4398 4399 rcu_read_lock(); 4400 eb = radix_tree_lookup(&fs_info->buffer_radix, 4401 start >> fs_info->sectorsize_bits); 4402 if (eb && atomic_inc_not_zero(&eb->refs)) { 4403 rcu_read_unlock(); 4404 return eb; 4405 } 4406 rcu_read_unlock(); 4407 return NULL; 4408 } 4409 4410 /* 4411 * The endio function for subpage extent buffer write. 4412 * 4413 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4414 * after all extent buffers in the page has finished their writeback. 4415 */ 4416 static void end_bio_subpage_eb_writepage(struct bio *bio) 4417 { 4418 struct btrfs_fs_info *fs_info; 4419 struct bio_vec *bvec; 4420 struct bvec_iter_all iter_all; 4421 4422 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4423 ASSERT(fs_info->sectorsize < PAGE_SIZE); 4424 4425 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4426 bio_for_each_segment_all(bvec, bio, iter_all) { 4427 struct page *page = bvec->bv_page; 4428 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4429 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4430 u64 cur_bytenr = bvec_start; 4431 4432 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4433 4434 /* Iterate through all extent buffers in the range */ 4435 while (cur_bytenr <= bvec_end) { 4436 struct extent_buffer *eb; 4437 int done; 4438 4439 /* 4440 * Here we can't use find_extent_buffer(), as it may 4441 * try to lock eb->refs_lock, which is not safe in endio 4442 * context. 4443 */ 4444 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4445 ASSERT(eb); 4446 4447 cur_bytenr = eb->start + eb->len; 4448 4449 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4450 done = atomic_dec_and_test(&eb->io_pages); 4451 ASSERT(done); 4452 4453 if (bio->bi_status || 4454 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4455 ClearPageUptodate(page); 4456 set_btree_ioerr(page, eb); 4457 } 4458 4459 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4460 eb->len); 4461 end_extent_buffer_writeback(eb); 4462 /* 4463 * free_extent_buffer() will grab spinlock which is not 4464 * safe in endio context. Thus here we manually dec 4465 * the ref. 4466 */ 4467 atomic_dec(&eb->refs); 4468 } 4469 } 4470 bio_put(bio); 4471 } 4472 4473 static void end_bio_extent_buffer_writepage(struct bio *bio) 4474 { 4475 struct bio_vec *bvec; 4476 struct extent_buffer *eb; 4477 int done; 4478 struct bvec_iter_all iter_all; 4479 4480 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4481 bio_for_each_segment_all(bvec, bio, iter_all) { 4482 struct page *page = bvec->bv_page; 4483 4484 eb = (struct extent_buffer *)page->private; 4485 BUG_ON(!eb); 4486 done = atomic_dec_and_test(&eb->io_pages); 4487 4488 if (bio->bi_status || 4489 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4490 ClearPageUptodate(page); 4491 set_btree_ioerr(page, eb); 4492 } 4493 4494 end_page_writeback(page); 4495 4496 if (!done) 4497 continue; 4498 4499 end_extent_buffer_writeback(eb); 4500 } 4501 4502 bio_put(bio); 4503 } 4504 4505 static void prepare_eb_write(struct extent_buffer *eb) 4506 { 4507 u32 nritems; 4508 unsigned long start; 4509 unsigned long end; 4510 4511 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4512 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4513 4514 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4515 nritems = btrfs_header_nritems(eb); 4516 if (btrfs_header_level(eb) > 0) { 4517 end = btrfs_node_key_ptr_offset(nritems); 4518 memzero_extent_buffer(eb, end, eb->len - end); 4519 } else { 4520 /* 4521 * Leaf: 4522 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4523 */ 4524 start = btrfs_item_nr_offset(nritems); 4525 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4526 memzero_extent_buffer(eb, start, end - start); 4527 } 4528 } 4529 4530 /* 4531 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4532 * Page locking is only utilized at minimum to keep the VMM code happy. 4533 */ 4534 static int write_one_subpage_eb(struct extent_buffer *eb, 4535 struct writeback_control *wbc, 4536 struct extent_page_data *epd) 4537 { 4538 struct btrfs_fs_info *fs_info = eb->fs_info; 4539 struct page *page = eb->pages[0]; 4540 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4541 bool no_dirty_ebs = false; 4542 int ret; 4543 4544 prepare_eb_write(eb); 4545 4546 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4547 lock_page(page); 4548 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4549 4550 /* Check if this is the last dirty bit to update nr_written */ 4551 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4552 eb->start, eb->len); 4553 if (no_dirty_ebs) 4554 clear_page_dirty_for_io(page); 4555 4556 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4557 &epd->bio_ctrl, page, eb->start, eb->len, 4558 eb->start - page_offset(page), 4559 end_bio_subpage_eb_writepage, 0, 0, false); 4560 if (ret) { 4561 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4562 set_btree_ioerr(page, eb); 4563 unlock_page(page); 4564 4565 if (atomic_dec_and_test(&eb->io_pages)) 4566 end_extent_buffer_writeback(eb); 4567 return -EIO; 4568 } 4569 unlock_page(page); 4570 /* 4571 * Submission finished without problem, if no range of the page is 4572 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4573 */ 4574 if (no_dirty_ebs) 4575 update_nr_written(wbc, 1); 4576 return ret; 4577 } 4578 4579 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4580 struct writeback_control *wbc, 4581 struct extent_page_data *epd) 4582 { 4583 u64 disk_bytenr = eb->start; 4584 int i, num_pages; 4585 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4586 int ret = 0; 4587 4588 prepare_eb_write(eb); 4589 4590 num_pages = num_extent_pages(eb); 4591 for (i = 0; i < num_pages; i++) { 4592 struct page *p = eb->pages[i]; 4593 4594 clear_page_dirty_for_io(p); 4595 set_page_writeback(p); 4596 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4597 &epd->bio_ctrl, p, disk_bytenr, 4598 PAGE_SIZE, 0, 4599 end_bio_extent_buffer_writepage, 4600 0, 0, false); 4601 if (ret) { 4602 set_btree_ioerr(p, eb); 4603 if (PageWriteback(p)) 4604 end_page_writeback(p); 4605 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4606 end_extent_buffer_writeback(eb); 4607 ret = -EIO; 4608 break; 4609 } 4610 disk_bytenr += PAGE_SIZE; 4611 update_nr_written(wbc, 1); 4612 unlock_page(p); 4613 } 4614 4615 if (unlikely(ret)) { 4616 for (; i < num_pages; i++) { 4617 struct page *p = eb->pages[i]; 4618 clear_page_dirty_for_io(p); 4619 unlock_page(p); 4620 } 4621 } 4622 4623 return ret; 4624 } 4625 4626 /* 4627 * Submit one subpage btree page. 4628 * 4629 * The main difference to submit_eb_page() is: 4630 * - Page locking 4631 * For subpage, we don't rely on page locking at all. 4632 * 4633 * - Flush write bio 4634 * We only flush bio if we may be unable to fit current extent buffers into 4635 * current bio. 4636 * 4637 * Return >=0 for the number of submitted extent buffers. 4638 * Return <0 for fatal error. 4639 */ 4640 static int submit_eb_subpage(struct page *page, 4641 struct writeback_control *wbc, 4642 struct extent_page_data *epd) 4643 { 4644 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4645 int submitted = 0; 4646 u64 page_start = page_offset(page); 4647 int bit_start = 0; 4648 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4649 int ret; 4650 4651 /* Lock and write each dirty extent buffers in the range */ 4652 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4653 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4654 struct extent_buffer *eb; 4655 unsigned long flags; 4656 u64 start; 4657 4658 /* 4659 * Take private lock to ensure the subpage won't be detached 4660 * in the meantime. 4661 */ 4662 spin_lock(&page->mapping->private_lock); 4663 if (!PagePrivate(page)) { 4664 spin_unlock(&page->mapping->private_lock); 4665 break; 4666 } 4667 spin_lock_irqsave(&subpage->lock, flags); 4668 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4669 subpage->bitmaps)) { 4670 spin_unlock_irqrestore(&subpage->lock, flags); 4671 spin_unlock(&page->mapping->private_lock); 4672 bit_start++; 4673 continue; 4674 } 4675 4676 start = page_start + bit_start * fs_info->sectorsize; 4677 bit_start += sectors_per_node; 4678 4679 /* 4680 * Here we just want to grab the eb without touching extra 4681 * spin locks, so call find_extent_buffer_nolock(). 4682 */ 4683 eb = find_extent_buffer_nolock(fs_info, start); 4684 spin_unlock_irqrestore(&subpage->lock, flags); 4685 spin_unlock(&page->mapping->private_lock); 4686 4687 /* 4688 * The eb has already reached 0 refs thus find_extent_buffer() 4689 * doesn't return it. We don't need to write back such eb 4690 * anyway. 4691 */ 4692 if (!eb) 4693 continue; 4694 4695 ret = lock_extent_buffer_for_io(eb, epd); 4696 if (ret == 0) { 4697 free_extent_buffer(eb); 4698 continue; 4699 } 4700 if (ret < 0) { 4701 free_extent_buffer(eb); 4702 goto cleanup; 4703 } 4704 ret = write_one_subpage_eb(eb, wbc, epd); 4705 free_extent_buffer(eb); 4706 if (ret < 0) 4707 goto cleanup; 4708 submitted++; 4709 } 4710 return submitted; 4711 4712 cleanup: 4713 /* We hit error, end bio for the submitted extent buffers */ 4714 end_write_bio(epd, ret); 4715 return ret; 4716 } 4717 4718 /* 4719 * Submit all page(s) of one extent buffer. 4720 * 4721 * @page: the page of one extent buffer 4722 * @eb_context: to determine if we need to submit this page, if current page 4723 * belongs to this eb, we don't need to submit 4724 * 4725 * The caller should pass each page in their bytenr order, and here we use 4726 * @eb_context to determine if we have submitted pages of one extent buffer. 4727 * 4728 * If we have, we just skip until we hit a new page that doesn't belong to 4729 * current @eb_context. 4730 * 4731 * If not, we submit all the page(s) of the extent buffer. 4732 * 4733 * Return >0 if we have submitted the extent buffer successfully. 4734 * Return 0 if we don't need to submit the page, as it's already submitted by 4735 * previous call. 4736 * Return <0 for fatal error. 4737 */ 4738 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4739 struct extent_page_data *epd, 4740 struct extent_buffer **eb_context) 4741 { 4742 struct address_space *mapping = page->mapping; 4743 struct btrfs_block_group *cache = NULL; 4744 struct extent_buffer *eb; 4745 int ret; 4746 4747 if (!PagePrivate(page)) 4748 return 0; 4749 4750 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 4751 return submit_eb_subpage(page, wbc, epd); 4752 4753 spin_lock(&mapping->private_lock); 4754 if (!PagePrivate(page)) { 4755 spin_unlock(&mapping->private_lock); 4756 return 0; 4757 } 4758 4759 eb = (struct extent_buffer *)page->private; 4760 4761 /* 4762 * Shouldn't happen and normally this would be a BUG_ON but no point 4763 * crashing the machine for something we can survive anyway. 4764 */ 4765 if (WARN_ON(!eb)) { 4766 spin_unlock(&mapping->private_lock); 4767 return 0; 4768 } 4769 4770 if (eb == *eb_context) { 4771 spin_unlock(&mapping->private_lock); 4772 return 0; 4773 } 4774 ret = atomic_inc_not_zero(&eb->refs); 4775 spin_unlock(&mapping->private_lock); 4776 if (!ret) 4777 return 0; 4778 4779 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4780 /* 4781 * If for_sync, this hole will be filled with 4782 * trasnsaction commit. 4783 */ 4784 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4785 ret = -EAGAIN; 4786 else 4787 ret = 0; 4788 free_extent_buffer(eb); 4789 return ret; 4790 } 4791 4792 *eb_context = eb; 4793 4794 ret = lock_extent_buffer_for_io(eb, epd); 4795 if (ret <= 0) { 4796 btrfs_revert_meta_write_pointer(cache, eb); 4797 if (cache) 4798 btrfs_put_block_group(cache); 4799 free_extent_buffer(eb); 4800 return ret; 4801 } 4802 if (cache) { 4803 /* Impiles write in zoned mode */ 4804 btrfs_put_block_group(cache); 4805 /* Mark the last eb in a block group */ 4806 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity) 4807 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags); 4808 } 4809 ret = write_one_eb(eb, wbc, epd); 4810 free_extent_buffer(eb); 4811 if (ret < 0) 4812 return ret; 4813 return 1; 4814 } 4815 4816 int btree_write_cache_pages(struct address_space *mapping, 4817 struct writeback_control *wbc) 4818 { 4819 struct extent_buffer *eb_context = NULL; 4820 struct extent_page_data epd = { 4821 .bio_ctrl = { 0 }, 4822 .extent_locked = 0, 4823 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4824 }; 4825 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4826 int ret = 0; 4827 int done = 0; 4828 int nr_to_write_done = 0; 4829 struct pagevec pvec; 4830 int nr_pages; 4831 pgoff_t index; 4832 pgoff_t end; /* Inclusive */ 4833 int scanned = 0; 4834 xa_mark_t tag; 4835 4836 pagevec_init(&pvec); 4837 if (wbc->range_cyclic) { 4838 index = mapping->writeback_index; /* Start from prev offset */ 4839 end = -1; 4840 /* 4841 * Start from the beginning does not need to cycle over the 4842 * range, mark it as scanned. 4843 */ 4844 scanned = (index == 0); 4845 } else { 4846 index = wbc->range_start >> PAGE_SHIFT; 4847 end = wbc->range_end >> PAGE_SHIFT; 4848 scanned = 1; 4849 } 4850 if (wbc->sync_mode == WB_SYNC_ALL) 4851 tag = PAGECACHE_TAG_TOWRITE; 4852 else 4853 tag = PAGECACHE_TAG_DIRTY; 4854 btrfs_zoned_meta_io_lock(fs_info); 4855 retry: 4856 if (wbc->sync_mode == WB_SYNC_ALL) 4857 tag_pages_for_writeback(mapping, index, end); 4858 while (!done && !nr_to_write_done && (index <= end) && 4859 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4860 tag))) { 4861 unsigned i; 4862 4863 for (i = 0; i < nr_pages; i++) { 4864 struct page *page = pvec.pages[i]; 4865 4866 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4867 if (ret == 0) 4868 continue; 4869 if (ret < 0) { 4870 done = 1; 4871 break; 4872 } 4873 4874 /* 4875 * the filesystem may choose to bump up nr_to_write. 4876 * We have to make sure to honor the new nr_to_write 4877 * at any time 4878 */ 4879 nr_to_write_done = wbc->nr_to_write <= 0; 4880 } 4881 pagevec_release(&pvec); 4882 cond_resched(); 4883 } 4884 if (!scanned && !done) { 4885 /* 4886 * We hit the last page and there is more work to be done: wrap 4887 * back to the start of the file 4888 */ 4889 scanned = 1; 4890 index = 0; 4891 goto retry; 4892 } 4893 if (ret < 0) { 4894 end_write_bio(&epd, ret); 4895 goto out; 4896 } 4897 /* 4898 * If something went wrong, don't allow any metadata write bio to be 4899 * submitted. 4900 * 4901 * This would prevent use-after-free if we had dirty pages not 4902 * cleaned up, which can still happen by fuzzed images. 4903 * 4904 * - Bad extent tree 4905 * Allowing existing tree block to be allocated for other trees. 4906 * 4907 * - Log tree operations 4908 * Exiting tree blocks get allocated to log tree, bumps its 4909 * generation, then get cleaned in tree re-balance. 4910 * Such tree block will not be written back, since it's clean, 4911 * thus no WRITTEN flag set. 4912 * And after log writes back, this tree block is not traced by 4913 * any dirty extent_io_tree. 4914 * 4915 * - Offending tree block gets re-dirtied from its original owner 4916 * Since it has bumped generation, no WRITTEN flag, it can be 4917 * reused without COWing. This tree block will not be traced 4918 * by btrfs_transaction::dirty_pages. 4919 * 4920 * Now such dirty tree block will not be cleaned by any dirty 4921 * extent io tree. Thus we don't want to submit such wild eb 4922 * if the fs already has error. 4923 */ 4924 if (!BTRFS_FS_ERROR(fs_info)) { 4925 ret = flush_write_bio(&epd); 4926 } else { 4927 ret = -EROFS; 4928 end_write_bio(&epd, ret); 4929 } 4930 out: 4931 btrfs_zoned_meta_io_unlock(fs_info); 4932 return ret; 4933 } 4934 4935 /** 4936 * Walk the list of dirty pages of the given address space and write all of them. 4937 * 4938 * @mapping: address space structure to write 4939 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4940 * @epd: holds context for the write, namely the bio 4941 * 4942 * If a page is already under I/O, write_cache_pages() skips it, even 4943 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4944 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4945 * and msync() need to guarantee that all the data which was dirty at the time 4946 * the call was made get new I/O started against them. If wbc->sync_mode is 4947 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4948 * existing IO to complete. 4949 */ 4950 static int extent_write_cache_pages(struct address_space *mapping, 4951 struct writeback_control *wbc, 4952 struct extent_page_data *epd) 4953 { 4954 struct inode *inode = mapping->host; 4955 int ret = 0; 4956 int done = 0; 4957 int nr_to_write_done = 0; 4958 struct pagevec pvec; 4959 int nr_pages; 4960 pgoff_t index; 4961 pgoff_t end; /* Inclusive */ 4962 pgoff_t done_index; 4963 int range_whole = 0; 4964 int scanned = 0; 4965 xa_mark_t tag; 4966 4967 /* 4968 * We have to hold onto the inode so that ordered extents can do their 4969 * work when the IO finishes. The alternative to this is failing to add 4970 * an ordered extent if the igrab() fails there and that is a huge pain 4971 * to deal with, so instead just hold onto the inode throughout the 4972 * writepages operation. If it fails here we are freeing up the inode 4973 * anyway and we'd rather not waste our time writing out stuff that is 4974 * going to be truncated anyway. 4975 */ 4976 if (!igrab(inode)) 4977 return 0; 4978 4979 pagevec_init(&pvec); 4980 if (wbc->range_cyclic) { 4981 index = mapping->writeback_index; /* Start from prev offset */ 4982 end = -1; 4983 /* 4984 * Start from the beginning does not need to cycle over the 4985 * range, mark it as scanned. 4986 */ 4987 scanned = (index == 0); 4988 } else { 4989 index = wbc->range_start >> PAGE_SHIFT; 4990 end = wbc->range_end >> PAGE_SHIFT; 4991 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4992 range_whole = 1; 4993 scanned = 1; 4994 } 4995 4996 /* 4997 * We do the tagged writepage as long as the snapshot flush bit is set 4998 * and we are the first one who do the filemap_flush() on this inode. 4999 * 5000 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 5001 * not race in and drop the bit. 5002 */ 5003 if (range_whole && wbc->nr_to_write == LONG_MAX && 5004 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 5005 &BTRFS_I(inode)->runtime_flags)) 5006 wbc->tagged_writepages = 1; 5007 5008 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5009 tag = PAGECACHE_TAG_TOWRITE; 5010 else 5011 tag = PAGECACHE_TAG_DIRTY; 5012 retry: 5013 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5014 tag_pages_for_writeback(mapping, index, end); 5015 done_index = index; 5016 while (!done && !nr_to_write_done && (index <= end) && 5017 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5018 &index, end, tag))) { 5019 unsigned i; 5020 5021 for (i = 0; i < nr_pages; i++) { 5022 struct page *page = pvec.pages[i]; 5023 5024 done_index = page->index + 1; 5025 /* 5026 * At this point we hold neither the i_pages lock nor 5027 * the page lock: the page may be truncated or 5028 * invalidated (changing page->mapping to NULL), 5029 * or even swizzled back from swapper_space to 5030 * tmpfs file mapping 5031 */ 5032 if (!trylock_page(page)) { 5033 ret = flush_write_bio(epd); 5034 BUG_ON(ret < 0); 5035 lock_page(page); 5036 } 5037 5038 if (unlikely(page->mapping != mapping)) { 5039 unlock_page(page); 5040 continue; 5041 } 5042 5043 if (wbc->sync_mode != WB_SYNC_NONE) { 5044 if (PageWriteback(page)) { 5045 ret = flush_write_bio(epd); 5046 BUG_ON(ret < 0); 5047 } 5048 wait_on_page_writeback(page); 5049 } 5050 5051 if (PageWriteback(page) || 5052 !clear_page_dirty_for_io(page)) { 5053 unlock_page(page); 5054 continue; 5055 } 5056 5057 ret = __extent_writepage(page, wbc, epd); 5058 if (ret < 0) { 5059 done = 1; 5060 break; 5061 } 5062 5063 /* 5064 * the filesystem may choose to bump up nr_to_write. 5065 * We have to make sure to honor the new nr_to_write 5066 * at any time 5067 */ 5068 nr_to_write_done = wbc->nr_to_write <= 0; 5069 } 5070 pagevec_release(&pvec); 5071 cond_resched(); 5072 } 5073 if (!scanned && !done) { 5074 /* 5075 * We hit the last page and there is more work to be done: wrap 5076 * back to the start of the file 5077 */ 5078 scanned = 1; 5079 index = 0; 5080 5081 /* 5082 * If we're looping we could run into a page that is locked by a 5083 * writer and that writer could be waiting on writeback for a 5084 * page in our current bio, and thus deadlock, so flush the 5085 * write bio here. 5086 */ 5087 ret = flush_write_bio(epd); 5088 if (!ret) 5089 goto retry; 5090 } 5091 5092 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5093 mapping->writeback_index = done_index; 5094 5095 btrfs_add_delayed_iput(inode); 5096 return ret; 5097 } 5098 5099 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5100 { 5101 int ret; 5102 struct extent_page_data epd = { 5103 .bio_ctrl = { 0 }, 5104 .extent_locked = 0, 5105 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5106 }; 5107 5108 ret = __extent_writepage(page, wbc, &epd); 5109 ASSERT(ret <= 0); 5110 if (ret < 0) { 5111 end_write_bio(&epd, ret); 5112 return ret; 5113 } 5114 5115 ret = flush_write_bio(&epd); 5116 ASSERT(ret <= 0); 5117 return ret; 5118 } 5119 5120 /* 5121 * Submit the pages in the range to bio for call sites which delalloc range has 5122 * already been ran (aka, ordered extent inserted) and all pages are still 5123 * locked. 5124 */ 5125 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5126 { 5127 bool found_error = false; 5128 int first_error = 0; 5129 int ret = 0; 5130 struct address_space *mapping = inode->i_mapping; 5131 struct page *page; 5132 u64 cur = start; 5133 unsigned long nr_pages; 5134 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5135 struct extent_page_data epd = { 5136 .bio_ctrl = { 0 }, 5137 .extent_locked = 1, 5138 .sync_io = 1, 5139 }; 5140 struct writeback_control wbc_writepages = { 5141 .sync_mode = WB_SYNC_ALL, 5142 .range_start = start, 5143 .range_end = end + 1, 5144 /* We're called from an async helper function */ 5145 .punt_to_cgroup = 1, 5146 .no_cgroup_owner = 1, 5147 }; 5148 5149 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5150 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5151 PAGE_SHIFT; 5152 wbc_writepages.nr_to_write = nr_pages * 2; 5153 5154 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5155 while (cur <= end) { 5156 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5157 5158 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5159 /* 5160 * All pages in the range are locked since 5161 * btrfs_run_delalloc_range(), thus there is no way to clear 5162 * the page dirty flag. 5163 */ 5164 ASSERT(PageLocked(page)); 5165 ASSERT(PageDirty(page)); 5166 clear_page_dirty_for_io(page); 5167 ret = __extent_writepage(page, &wbc_writepages, &epd); 5168 ASSERT(ret <= 0); 5169 if (ret < 0) { 5170 found_error = true; 5171 first_error = ret; 5172 } 5173 put_page(page); 5174 cur = cur_end + 1; 5175 } 5176 5177 if (!found_error) 5178 ret = flush_write_bio(&epd); 5179 else 5180 end_write_bio(&epd, ret); 5181 5182 wbc_detach_inode(&wbc_writepages); 5183 if (found_error) 5184 return first_error; 5185 return ret; 5186 } 5187 5188 int extent_writepages(struct address_space *mapping, 5189 struct writeback_control *wbc) 5190 { 5191 struct inode *inode = mapping->host; 5192 const bool data_reloc = btrfs_is_data_reloc_root(BTRFS_I(inode)->root); 5193 const bool zoned = btrfs_is_zoned(BTRFS_I(inode)->root->fs_info); 5194 int ret = 0; 5195 struct extent_page_data epd = { 5196 .bio_ctrl = { 0 }, 5197 .extent_locked = 0, 5198 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5199 }; 5200 5201 /* 5202 * Allow only a single thread to do the reloc work in zoned mode to 5203 * protect the write pointer updates. 5204 */ 5205 if (data_reloc && zoned) 5206 btrfs_inode_lock(inode, 0); 5207 ret = extent_write_cache_pages(mapping, wbc, &epd); 5208 if (data_reloc && zoned) 5209 btrfs_inode_unlock(inode, 0); 5210 ASSERT(ret <= 0); 5211 if (ret < 0) { 5212 end_write_bio(&epd, ret); 5213 return ret; 5214 } 5215 ret = flush_write_bio(&epd); 5216 return ret; 5217 } 5218 5219 void extent_readahead(struct readahead_control *rac) 5220 { 5221 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5222 struct page *pagepool[16]; 5223 struct extent_map *em_cached = NULL; 5224 u64 prev_em_start = (u64)-1; 5225 int nr; 5226 5227 while ((nr = readahead_page_batch(rac, pagepool))) { 5228 u64 contig_start = readahead_pos(rac); 5229 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5230 5231 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5232 &em_cached, &bio_ctrl, &prev_em_start); 5233 } 5234 5235 if (em_cached) 5236 free_extent_map(em_cached); 5237 5238 if (bio_ctrl.bio) { 5239 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) 5240 return; 5241 } 5242 } 5243 5244 /* 5245 * basic invalidatepage code, this waits on any locked or writeback 5246 * ranges corresponding to the page, and then deletes any extent state 5247 * records from the tree 5248 */ 5249 int extent_invalidatepage(struct extent_io_tree *tree, 5250 struct page *page, unsigned long offset) 5251 { 5252 struct extent_state *cached_state = NULL; 5253 u64 start = page_offset(page); 5254 u64 end = start + PAGE_SIZE - 1; 5255 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 5256 5257 /* This function is only called for the btree inode */ 5258 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5259 5260 start += ALIGN(offset, blocksize); 5261 if (start > end) 5262 return 0; 5263 5264 lock_extent_bits(tree, start, end, &cached_state); 5265 wait_on_page_writeback(page); 5266 5267 /* 5268 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5269 * so here we only need to unlock the extent range to free any 5270 * existing extent state. 5271 */ 5272 unlock_extent_cached(tree, start, end, &cached_state); 5273 return 0; 5274 } 5275 5276 /* 5277 * a helper for releasepage, this tests for areas of the page that 5278 * are locked or under IO and drops the related state bits if it is safe 5279 * to drop the page. 5280 */ 5281 static int try_release_extent_state(struct extent_io_tree *tree, 5282 struct page *page, gfp_t mask) 5283 { 5284 u64 start = page_offset(page); 5285 u64 end = start + PAGE_SIZE - 1; 5286 int ret = 1; 5287 5288 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5289 ret = 0; 5290 } else { 5291 /* 5292 * At this point we can safely clear everything except the 5293 * locked bit, the nodatasum bit and the delalloc new bit. 5294 * The delalloc new bit will be cleared by ordered extent 5295 * completion. 5296 */ 5297 ret = __clear_extent_bit(tree, start, end, 5298 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5299 0, 0, NULL, mask, NULL); 5300 5301 /* if clear_extent_bit failed for enomem reasons, 5302 * we can't allow the release to continue. 5303 */ 5304 if (ret < 0) 5305 ret = 0; 5306 else 5307 ret = 1; 5308 } 5309 return ret; 5310 } 5311 5312 /* 5313 * a helper for releasepage. As long as there are no locked extents 5314 * in the range corresponding to the page, both state records and extent 5315 * map records are removed 5316 */ 5317 int try_release_extent_mapping(struct page *page, gfp_t mask) 5318 { 5319 struct extent_map *em; 5320 u64 start = page_offset(page); 5321 u64 end = start + PAGE_SIZE - 1; 5322 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5323 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5324 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5325 5326 if (gfpflags_allow_blocking(mask) && 5327 page->mapping->host->i_size > SZ_16M) { 5328 u64 len; 5329 while (start <= end) { 5330 struct btrfs_fs_info *fs_info; 5331 u64 cur_gen; 5332 5333 len = end - start + 1; 5334 write_lock(&map->lock); 5335 em = lookup_extent_mapping(map, start, len); 5336 if (!em) { 5337 write_unlock(&map->lock); 5338 break; 5339 } 5340 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5341 em->start != start) { 5342 write_unlock(&map->lock); 5343 free_extent_map(em); 5344 break; 5345 } 5346 if (test_range_bit(tree, em->start, 5347 extent_map_end(em) - 1, 5348 EXTENT_LOCKED, 0, NULL)) 5349 goto next; 5350 /* 5351 * If it's not in the list of modified extents, used 5352 * by a fast fsync, we can remove it. If it's being 5353 * logged we can safely remove it since fsync took an 5354 * extra reference on the em. 5355 */ 5356 if (list_empty(&em->list) || 5357 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5358 goto remove_em; 5359 /* 5360 * If it's in the list of modified extents, remove it 5361 * only if its generation is older then the current one, 5362 * in which case we don't need it for a fast fsync. 5363 * Otherwise don't remove it, we could be racing with an 5364 * ongoing fast fsync that could miss the new extent. 5365 */ 5366 fs_info = btrfs_inode->root->fs_info; 5367 spin_lock(&fs_info->trans_lock); 5368 cur_gen = fs_info->generation; 5369 spin_unlock(&fs_info->trans_lock); 5370 if (em->generation >= cur_gen) 5371 goto next; 5372 remove_em: 5373 /* 5374 * We only remove extent maps that are not in the list of 5375 * modified extents or that are in the list but with a 5376 * generation lower then the current generation, so there 5377 * is no need to set the full fsync flag on the inode (it 5378 * hurts the fsync performance for workloads with a data 5379 * size that exceeds or is close to the system's memory). 5380 */ 5381 remove_extent_mapping(map, em); 5382 /* once for the rb tree */ 5383 free_extent_map(em); 5384 next: 5385 start = extent_map_end(em); 5386 write_unlock(&map->lock); 5387 5388 /* once for us */ 5389 free_extent_map(em); 5390 5391 cond_resched(); /* Allow large-extent preemption. */ 5392 } 5393 } 5394 return try_release_extent_state(tree, page, mask); 5395 } 5396 5397 /* 5398 * helper function for fiemap, which doesn't want to see any holes. 5399 * This maps until we find something past 'last' 5400 */ 5401 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5402 u64 offset, u64 last) 5403 { 5404 u64 sectorsize = btrfs_inode_sectorsize(inode); 5405 struct extent_map *em; 5406 u64 len; 5407 5408 if (offset >= last) 5409 return NULL; 5410 5411 while (1) { 5412 len = last - offset; 5413 if (len == 0) 5414 break; 5415 len = ALIGN(len, sectorsize); 5416 em = btrfs_get_extent_fiemap(inode, offset, len); 5417 if (IS_ERR_OR_NULL(em)) 5418 return em; 5419 5420 /* if this isn't a hole return it */ 5421 if (em->block_start != EXTENT_MAP_HOLE) 5422 return em; 5423 5424 /* this is a hole, advance to the next extent */ 5425 offset = extent_map_end(em); 5426 free_extent_map(em); 5427 if (offset >= last) 5428 break; 5429 } 5430 return NULL; 5431 } 5432 5433 /* 5434 * To cache previous fiemap extent 5435 * 5436 * Will be used for merging fiemap extent 5437 */ 5438 struct fiemap_cache { 5439 u64 offset; 5440 u64 phys; 5441 u64 len; 5442 u32 flags; 5443 bool cached; 5444 }; 5445 5446 /* 5447 * Helper to submit fiemap extent. 5448 * 5449 * Will try to merge current fiemap extent specified by @offset, @phys, 5450 * @len and @flags with cached one. 5451 * And only when we fails to merge, cached one will be submitted as 5452 * fiemap extent. 5453 * 5454 * Return value is the same as fiemap_fill_next_extent(). 5455 */ 5456 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5457 struct fiemap_cache *cache, 5458 u64 offset, u64 phys, u64 len, u32 flags) 5459 { 5460 int ret = 0; 5461 5462 if (!cache->cached) 5463 goto assign; 5464 5465 /* 5466 * Sanity check, extent_fiemap() should have ensured that new 5467 * fiemap extent won't overlap with cached one. 5468 * Not recoverable. 5469 * 5470 * NOTE: Physical address can overlap, due to compression 5471 */ 5472 if (cache->offset + cache->len > offset) { 5473 WARN_ON(1); 5474 return -EINVAL; 5475 } 5476 5477 /* 5478 * Only merges fiemap extents if 5479 * 1) Their logical addresses are continuous 5480 * 5481 * 2) Their physical addresses are continuous 5482 * So truly compressed (physical size smaller than logical size) 5483 * extents won't get merged with each other 5484 * 5485 * 3) Share same flags except FIEMAP_EXTENT_LAST 5486 * So regular extent won't get merged with prealloc extent 5487 */ 5488 if (cache->offset + cache->len == offset && 5489 cache->phys + cache->len == phys && 5490 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5491 (flags & ~FIEMAP_EXTENT_LAST)) { 5492 cache->len += len; 5493 cache->flags |= flags; 5494 goto try_submit_last; 5495 } 5496 5497 /* Not mergeable, need to submit cached one */ 5498 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5499 cache->len, cache->flags); 5500 cache->cached = false; 5501 if (ret) 5502 return ret; 5503 assign: 5504 cache->cached = true; 5505 cache->offset = offset; 5506 cache->phys = phys; 5507 cache->len = len; 5508 cache->flags = flags; 5509 try_submit_last: 5510 if (cache->flags & FIEMAP_EXTENT_LAST) { 5511 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5512 cache->phys, cache->len, cache->flags); 5513 cache->cached = false; 5514 } 5515 return ret; 5516 } 5517 5518 /* 5519 * Emit last fiemap cache 5520 * 5521 * The last fiemap cache may still be cached in the following case: 5522 * 0 4k 8k 5523 * |<- Fiemap range ->| 5524 * |<------------ First extent ----------->| 5525 * 5526 * In this case, the first extent range will be cached but not emitted. 5527 * So we must emit it before ending extent_fiemap(). 5528 */ 5529 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5530 struct fiemap_cache *cache) 5531 { 5532 int ret; 5533 5534 if (!cache->cached) 5535 return 0; 5536 5537 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5538 cache->len, cache->flags); 5539 cache->cached = false; 5540 if (ret > 0) 5541 ret = 0; 5542 return ret; 5543 } 5544 5545 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5546 u64 start, u64 len) 5547 { 5548 int ret = 0; 5549 u64 off; 5550 u64 max = start + len; 5551 u32 flags = 0; 5552 u32 found_type; 5553 u64 last; 5554 u64 last_for_get_extent = 0; 5555 u64 disko = 0; 5556 u64 isize = i_size_read(&inode->vfs_inode); 5557 struct btrfs_key found_key; 5558 struct extent_map *em = NULL; 5559 struct extent_state *cached_state = NULL; 5560 struct btrfs_path *path; 5561 struct btrfs_root *root = inode->root; 5562 struct fiemap_cache cache = { 0 }; 5563 struct ulist *roots; 5564 struct ulist *tmp_ulist; 5565 int end = 0; 5566 u64 em_start = 0; 5567 u64 em_len = 0; 5568 u64 em_end = 0; 5569 5570 if (len == 0) 5571 return -EINVAL; 5572 5573 path = btrfs_alloc_path(); 5574 if (!path) 5575 return -ENOMEM; 5576 5577 roots = ulist_alloc(GFP_KERNEL); 5578 tmp_ulist = ulist_alloc(GFP_KERNEL); 5579 if (!roots || !tmp_ulist) { 5580 ret = -ENOMEM; 5581 goto out_free_ulist; 5582 } 5583 5584 /* 5585 * We can't initialize that to 'start' as this could miss extents due 5586 * to extent item merging 5587 */ 5588 off = 0; 5589 start = round_down(start, btrfs_inode_sectorsize(inode)); 5590 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5591 5592 /* 5593 * lookup the last file extent. We're not using i_size here 5594 * because there might be preallocation past i_size 5595 */ 5596 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5597 0); 5598 if (ret < 0) { 5599 goto out_free_ulist; 5600 } else { 5601 WARN_ON(!ret); 5602 if (ret == 1) 5603 ret = 0; 5604 } 5605 5606 path->slots[0]--; 5607 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5608 found_type = found_key.type; 5609 5610 /* No extents, but there might be delalloc bits */ 5611 if (found_key.objectid != btrfs_ino(inode) || 5612 found_type != BTRFS_EXTENT_DATA_KEY) { 5613 /* have to trust i_size as the end */ 5614 last = (u64)-1; 5615 last_for_get_extent = isize; 5616 } else { 5617 /* 5618 * remember the start of the last extent. There are a 5619 * bunch of different factors that go into the length of the 5620 * extent, so its much less complex to remember where it started 5621 */ 5622 last = found_key.offset; 5623 last_for_get_extent = last + 1; 5624 } 5625 btrfs_release_path(path); 5626 5627 /* 5628 * we might have some extents allocated but more delalloc past those 5629 * extents. so, we trust isize unless the start of the last extent is 5630 * beyond isize 5631 */ 5632 if (last < isize) { 5633 last = (u64)-1; 5634 last_for_get_extent = isize; 5635 } 5636 5637 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5638 &cached_state); 5639 5640 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5641 if (!em) 5642 goto out; 5643 if (IS_ERR(em)) { 5644 ret = PTR_ERR(em); 5645 goto out; 5646 } 5647 5648 while (!end) { 5649 u64 offset_in_extent = 0; 5650 5651 /* break if the extent we found is outside the range */ 5652 if (em->start >= max || extent_map_end(em) < off) 5653 break; 5654 5655 /* 5656 * get_extent may return an extent that starts before our 5657 * requested range. We have to make sure the ranges 5658 * we return to fiemap always move forward and don't 5659 * overlap, so adjust the offsets here 5660 */ 5661 em_start = max(em->start, off); 5662 5663 /* 5664 * record the offset from the start of the extent 5665 * for adjusting the disk offset below. Only do this if the 5666 * extent isn't compressed since our in ram offset may be past 5667 * what we have actually allocated on disk. 5668 */ 5669 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5670 offset_in_extent = em_start - em->start; 5671 em_end = extent_map_end(em); 5672 em_len = em_end - em_start; 5673 flags = 0; 5674 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5675 disko = em->block_start + offset_in_extent; 5676 else 5677 disko = 0; 5678 5679 /* 5680 * bump off for our next call to get_extent 5681 */ 5682 off = extent_map_end(em); 5683 if (off >= max) 5684 end = 1; 5685 5686 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5687 end = 1; 5688 flags |= FIEMAP_EXTENT_LAST; 5689 } else if (em->block_start == EXTENT_MAP_INLINE) { 5690 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5691 FIEMAP_EXTENT_NOT_ALIGNED); 5692 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5693 flags |= (FIEMAP_EXTENT_DELALLOC | 5694 FIEMAP_EXTENT_UNKNOWN); 5695 } else if (fieinfo->fi_extents_max) { 5696 u64 bytenr = em->block_start - 5697 (em->start - em->orig_start); 5698 5699 /* 5700 * As btrfs supports shared space, this information 5701 * can be exported to userspace tools via 5702 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5703 * then we're just getting a count and we can skip the 5704 * lookup stuff. 5705 */ 5706 ret = btrfs_check_shared(root, btrfs_ino(inode), 5707 bytenr, roots, tmp_ulist); 5708 if (ret < 0) 5709 goto out_free; 5710 if (ret) 5711 flags |= FIEMAP_EXTENT_SHARED; 5712 ret = 0; 5713 } 5714 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5715 flags |= FIEMAP_EXTENT_ENCODED; 5716 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5717 flags |= FIEMAP_EXTENT_UNWRITTEN; 5718 5719 free_extent_map(em); 5720 em = NULL; 5721 if ((em_start >= last) || em_len == (u64)-1 || 5722 (last == (u64)-1 && isize <= em_end)) { 5723 flags |= FIEMAP_EXTENT_LAST; 5724 end = 1; 5725 } 5726 5727 /* now scan forward to see if this is really the last extent. */ 5728 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5729 if (IS_ERR(em)) { 5730 ret = PTR_ERR(em); 5731 goto out; 5732 } 5733 if (!em) { 5734 flags |= FIEMAP_EXTENT_LAST; 5735 end = 1; 5736 } 5737 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5738 em_len, flags); 5739 if (ret) { 5740 if (ret == 1) 5741 ret = 0; 5742 goto out_free; 5743 } 5744 } 5745 out_free: 5746 if (!ret) 5747 ret = emit_last_fiemap_cache(fieinfo, &cache); 5748 free_extent_map(em); 5749 out: 5750 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5751 &cached_state); 5752 5753 out_free_ulist: 5754 btrfs_free_path(path); 5755 ulist_free(roots); 5756 ulist_free(tmp_ulist); 5757 return ret; 5758 } 5759 5760 static void __free_extent_buffer(struct extent_buffer *eb) 5761 { 5762 kmem_cache_free(extent_buffer_cache, eb); 5763 } 5764 5765 int extent_buffer_under_io(const struct extent_buffer *eb) 5766 { 5767 return (atomic_read(&eb->io_pages) || 5768 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5769 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5770 } 5771 5772 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5773 { 5774 struct btrfs_subpage *subpage; 5775 5776 lockdep_assert_held(&page->mapping->private_lock); 5777 5778 if (PagePrivate(page)) { 5779 subpage = (struct btrfs_subpage *)page->private; 5780 if (atomic_read(&subpage->eb_refs)) 5781 return true; 5782 /* 5783 * Even there is no eb refs here, we may still have 5784 * end_page_read() call relying on page::private. 5785 */ 5786 if (atomic_read(&subpage->readers)) 5787 return true; 5788 } 5789 return false; 5790 } 5791 5792 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5793 { 5794 struct btrfs_fs_info *fs_info = eb->fs_info; 5795 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5796 5797 /* 5798 * For mapped eb, we're going to change the page private, which should 5799 * be done under the private_lock. 5800 */ 5801 if (mapped) 5802 spin_lock(&page->mapping->private_lock); 5803 5804 if (!PagePrivate(page)) { 5805 if (mapped) 5806 spin_unlock(&page->mapping->private_lock); 5807 return; 5808 } 5809 5810 if (fs_info->sectorsize == PAGE_SIZE) { 5811 /* 5812 * We do this since we'll remove the pages after we've 5813 * removed the eb from the radix tree, so we could race 5814 * and have this page now attached to the new eb. So 5815 * only clear page_private if it's still connected to 5816 * this eb. 5817 */ 5818 if (PagePrivate(page) && 5819 page->private == (unsigned long)eb) { 5820 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5821 BUG_ON(PageDirty(page)); 5822 BUG_ON(PageWriteback(page)); 5823 /* 5824 * We need to make sure we haven't be attached 5825 * to a new eb. 5826 */ 5827 detach_page_private(page); 5828 } 5829 if (mapped) 5830 spin_unlock(&page->mapping->private_lock); 5831 return; 5832 } 5833 5834 /* 5835 * For subpage, we can have dummy eb with page private. In this case, 5836 * we can directly detach the private as such page is only attached to 5837 * one dummy eb, no sharing. 5838 */ 5839 if (!mapped) { 5840 btrfs_detach_subpage(fs_info, page); 5841 return; 5842 } 5843 5844 btrfs_page_dec_eb_refs(fs_info, page); 5845 5846 /* 5847 * We can only detach the page private if there are no other ebs in the 5848 * page range and no unfinished IO. 5849 */ 5850 if (!page_range_has_eb(fs_info, page)) 5851 btrfs_detach_subpage(fs_info, page); 5852 5853 spin_unlock(&page->mapping->private_lock); 5854 } 5855 5856 /* Release all pages attached to the extent buffer */ 5857 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5858 { 5859 int i; 5860 int num_pages; 5861 5862 ASSERT(!extent_buffer_under_io(eb)); 5863 5864 num_pages = num_extent_pages(eb); 5865 for (i = 0; i < num_pages; i++) { 5866 struct page *page = eb->pages[i]; 5867 5868 if (!page) 5869 continue; 5870 5871 detach_extent_buffer_page(eb, page); 5872 5873 /* One for when we allocated the page */ 5874 put_page(page); 5875 } 5876 } 5877 5878 /* 5879 * Helper for releasing the extent buffer. 5880 */ 5881 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5882 { 5883 btrfs_release_extent_buffer_pages(eb); 5884 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5885 __free_extent_buffer(eb); 5886 } 5887 5888 static struct extent_buffer * 5889 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5890 unsigned long len) 5891 { 5892 struct extent_buffer *eb = NULL; 5893 5894 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5895 eb->start = start; 5896 eb->len = len; 5897 eb->fs_info = fs_info; 5898 eb->bflags = 0; 5899 init_rwsem(&eb->lock); 5900 5901 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5902 &fs_info->allocated_ebs); 5903 INIT_LIST_HEAD(&eb->release_list); 5904 5905 spin_lock_init(&eb->refs_lock); 5906 atomic_set(&eb->refs, 1); 5907 atomic_set(&eb->io_pages, 0); 5908 5909 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5910 5911 return eb; 5912 } 5913 5914 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5915 { 5916 int i; 5917 struct page *p; 5918 struct extent_buffer *new; 5919 int num_pages = num_extent_pages(src); 5920 5921 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5922 if (new == NULL) 5923 return NULL; 5924 5925 /* 5926 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5927 * btrfs_release_extent_buffer() have different behavior for 5928 * UNMAPPED subpage extent buffer. 5929 */ 5930 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5931 5932 for (i = 0; i < num_pages; i++) { 5933 int ret; 5934 5935 p = alloc_page(GFP_NOFS); 5936 if (!p) { 5937 btrfs_release_extent_buffer(new); 5938 return NULL; 5939 } 5940 ret = attach_extent_buffer_page(new, p, NULL); 5941 if (ret < 0) { 5942 put_page(p); 5943 btrfs_release_extent_buffer(new); 5944 return NULL; 5945 } 5946 WARN_ON(PageDirty(p)); 5947 new->pages[i] = p; 5948 copy_page(page_address(p), page_address(src->pages[i])); 5949 } 5950 set_extent_buffer_uptodate(new); 5951 5952 return new; 5953 } 5954 5955 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5956 u64 start, unsigned long len) 5957 { 5958 struct extent_buffer *eb; 5959 int num_pages; 5960 int i; 5961 5962 eb = __alloc_extent_buffer(fs_info, start, len); 5963 if (!eb) 5964 return NULL; 5965 5966 num_pages = num_extent_pages(eb); 5967 for (i = 0; i < num_pages; i++) { 5968 int ret; 5969 5970 eb->pages[i] = alloc_page(GFP_NOFS); 5971 if (!eb->pages[i]) 5972 goto err; 5973 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5974 if (ret < 0) 5975 goto err; 5976 } 5977 set_extent_buffer_uptodate(eb); 5978 btrfs_set_header_nritems(eb, 0); 5979 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5980 5981 return eb; 5982 err: 5983 for (; i > 0; i--) { 5984 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5985 __free_page(eb->pages[i - 1]); 5986 } 5987 __free_extent_buffer(eb); 5988 return NULL; 5989 } 5990 5991 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5992 u64 start) 5993 { 5994 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5995 } 5996 5997 static void check_buffer_tree_ref(struct extent_buffer *eb) 5998 { 5999 int refs; 6000 /* 6001 * The TREE_REF bit is first set when the extent_buffer is added 6002 * to the radix tree. It is also reset, if unset, when a new reference 6003 * is created by find_extent_buffer. 6004 * 6005 * It is only cleared in two cases: freeing the last non-tree 6006 * reference to the extent_buffer when its STALE bit is set or 6007 * calling releasepage when the tree reference is the only reference. 6008 * 6009 * In both cases, care is taken to ensure that the extent_buffer's 6010 * pages are not under io. However, releasepage can be concurrently 6011 * called with creating new references, which is prone to race 6012 * conditions between the calls to check_buffer_tree_ref in those 6013 * codepaths and clearing TREE_REF in try_release_extent_buffer. 6014 * 6015 * The actual lifetime of the extent_buffer in the radix tree is 6016 * adequately protected by the refcount, but the TREE_REF bit and 6017 * its corresponding reference are not. To protect against this 6018 * class of races, we call check_buffer_tree_ref from the codepaths 6019 * which trigger io after they set eb->io_pages. Note that once io is 6020 * initiated, TREE_REF can no longer be cleared, so that is the 6021 * moment at which any such race is best fixed. 6022 */ 6023 refs = atomic_read(&eb->refs); 6024 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6025 return; 6026 6027 spin_lock(&eb->refs_lock); 6028 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6029 atomic_inc(&eb->refs); 6030 spin_unlock(&eb->refs_lock); 6031 } 6032 6033 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6034 struct page *accessed) 6035 { 6036 int num_pages, i; 6037 6038 check_buffer_tree_ref(eb); 6039 6040 num_pages = num_extent_pages(eb); 6041 for (i = 0; i < num_pages; i++) { 6042 struct page *p = eb->pages[i]; 6043 6044 if (p != accessed) 6045 mark_page_accessed(p); 6046 } 6047 } 6048 6049 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6050 u64 start) 6051 { 6052 struct extent_buffer *eb; 6053 6054 eb = find_extent_buffer_nolock(fs_info, start); 6055 if (!eb) 6056 return NULL; 6057 /* 6058 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6059 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6060 * another task running free_extent_buffer() might have seen that flag 6061 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6062 * writeback flags not set) and it's still in the tree (flag 6063 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6064 * decrementing the extent buffer's reference count twice. So here we 6065 * could race and increment the eb's reference count, clear its stale 6066 * flag, mark it as dirty and drop our reference before the other task 6067 * finishes executing free_extent_buffer, which would later result in 6068 * an attempt to free an extent buffer that is dirty. 6069 */ 6070 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6071 spin_lock(&eb->refs_lock); 6072 spin_unlock(&eb->refs_lock); 6073 } 6074 mark_extent_buffer_accessed(eb, NULL); 6075 return eb; 6076 } 6077 6078 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6079 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6080 u64 start) 6081 { 6082 struct extent_buffer *eb, *exists = NULL; 6083 int ret; 6084 6085 eb = find_extent_buffer(fs_info, start); 6086 if (eb) 6087 return eb; 6088 eb = alloc_dummy_extent_buffer(fs_info, start); 6089 if (!eb) 6090 return ERR_PTR(-ENOMEM); 6091 eb->fs_info = fs_info; 6092 again: 6093 ret = radix_tree_preload(GFP_NOFS); 6094 if (ret) { 6095 exists = ERR_PTR(ret); 6096 goto free_eb; 6097 } 6098 spin_lock(&fs_info->buffer_lock); 6099 ret = radix_tree_insert(&fs_info->buffer_radix, 6100 start >> fs_info->sectorsize_bits, eb); 6101 spin_unlock(&fs_info->buffer_lock); 6102 radix_tree_preload_end(); 6103 if (ret == -EEXIST) { 6104 exists = find_extent_buffer(fs_info, start); 6105 if (exists) 6106 goto free_eb; 6107 else 6108 goto again; 6109 } 6110 check_buffer_tree_ref(eb); 6111 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6112 6113 return eb; 6114 free_eb: 6115 btrfs_release_extent_buffer(eb); 6116 return exists; 6117 } 6118 #endif 6119 6120 static struct extent_buffer *grab_extent_buffer( 6121 struct btrfs_fs_info *fs_info, struct page *page) 6122 { 6123 struct extent_buffer *exists; 6124 6125 /* 6126 * For subpage case, we completely rely on radix tree to ensure we 6127 * don't try to insert two ebs for the same bytenr. So here we always 6128 * return NULL and just continue. 6129 */ 6130 if (fs_info->sectorsize < PAGE_SIZE) 6131 return NULL; 6132 6133 /* Page not yet attached to an extent buffer */ 6134 if (!PagePrivate(page)) 6135 return NULL; 6136 6137 /* 6138 * We could have already allocated an eb for this page and attached one 6139 * so lets see if we can get a ref on the existing eb, and if we can we 6140 * know it's good and we can just return that one, else we know we can 6141 * just overwrite page->private. 6142 */ 6143 exists = (struct extent_buffer *)page->private; 6144 if (atomic_inc_not_zero(&exists->refs)) 6145 return exists; 6146 6147 WARN_ON(PageDirty(page)); 6148 detach_page_private(page); 6149 return NULL; 6150 } 6151 6152 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6153 u64 start, u64 owner_root, int level) 6154 { 6155 unsigned long len = fs_info->nodesize; 6156 int num_pages; 6157 int i; 6158 unsigned long index = start >> PAGE_SHIFT; 6159 struct extent_buffer *eb; 6160 struct extent_buffer *exists = NULL; 6161 struct page *p; 6162 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6163 int uptodate = 1; 6164 int ret; 6165 6166 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6167 btrfs_err(fs_info, "bad tree block start %llu", start); 6168 return ERR_PTR(-EINVAL); 6169 } 6170 6171 #if BITS_PER_LONG == 32 6172 if (start >= MAX_LFS_FILESIZE) { 6173 btrfs_err_rl(fs_info, 6174 "extent buffer %llu is beyond 32bit page cache limit", start); 6175 btrfs_err_32bit_limit(fs_info); 6176 return ERR_PTR(-EOVERFLOW); 6177 } 6178 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6179 btrfs_warn_32bit_limit(fs_info); 6180 #endif 6181 6182 if (fs_info->sectorsize < PAGE_SIZE && 6183 offset_in_page(start) + len > PAGE_SIZE) { 6184 btrfs_err(fs_info, 6185 "tree block crosses page boundary, start %llu nodesize %lu", 6186 start, len); 6187 return ERR_PTR(-EINVAL); 6188 } 6189 6190 eb = find_extent_buffer(fs_info, start); 6191 if (eb) 6192 return eb; 6193 6194 eb = __alloc_extent_buffer(fs_info, start, len); 6195 if (!eb) 6196 return ERR_PTR(-ENOMEM); 6197 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6198 6199 num_pages = num_extent_pages(eb); 6200 for (i = 0; i < num_pages; i++, index++) { 6201 struct btrfs_subpage *prealloc = NULL; 6202 6203 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6204 if (!p) { 6205 exists = ERR_PTR(-ENOMEM); 6206 goto free_eb; 6207 } 6208 6209 /* 6210 * Preallocate page->private for subpage case, so that we won't 6211 * allocate memory with private_lock hold. The memory will be 6212 * freed by attach_extent_buffer_page() or freed manually if 6213 * we exit earlier. 6214 * 6215 * Although we have ensured one subpage eb can only have one 6216 * page, but it may change in the future for 16K page size 6217 * support, so we still preallocate the memory in the loop. 6218 */ 6219 if (fs_info->sectorsize < PAGE_SIZE) { 6220 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6221 if (IS_ERR(prealloc)) { 6222 ret = PTR_ERR(prealloc); 6223 unlock_page(p); 6224 put_page(p); 6225 exists = ERR_PTR(ret); 6226 goto free_eb; 6227 } 6228 } 6229 6230 spin_lock(&mapping->private_lock); 6231 exists = grab_extent_buffer(fs_info, p); 6232 if (exists) { 6233 spin_unlock(&mapping->private_lock); 6234 unlock_page(p); 6235 put_page(p); 6236 mark_extent_buffer_accessed(exists, p); 6237 btrfs_free_subpage(prealloc); 6238 goto free_eb; 6239 } 6240 /* Should not fail, as we have preallocated the memory */ 6241 ret = attach_extent_buffer_page(eb, p, prealloc); 6242 ASSERT(!ret); 6243 /* 6244 * To inform we have extra eb under allocation, so that 6245 * detach_extent_buffer_page() won't release the page private 6246 * when the eb hasn't yet been inserted into radix tree. 6247 * 6248 * The ref will be decreased when the eb released the page, in 6249 * detach_extent_buffer_page(). 6250 * Thus needs no special handling in error path. 6251 */ 6252 btrfs_page_inc_eb_refs(fs_info, p); 6253 spin_unlock(&mapping->private_lock); 6254 6255 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6256 eb->pages[i] = p; 6257 if (!PageUptodate(p)) 6258 uptodate = 0; 6259 6260 /* 6261 * We can't unlock the pages just yet since the extent buffer 6262 * hasn't been properly inserted in the radix tree, this 6263 * opens a race with btree_releasepage which can free a page 6264 * while we are still filling in all pages for the buffer and 6265 * we could crash. 6266 */ 6267 } 6268 if (uptodate) 6269 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6270 again: 6271 ret = radix_tree_preload(GFP_NOFS); 6272 if (ret) { 6273 exists = ERR_PTR(ret); 6274 goto free_eb; 6275 } 6276 6277 spin_lock(&fs_info->buffer_lock); 6278 ret = radix_tree_insert(&fs_info->buffer_radix, 6279 start >> fs_info->sectorsize_bits, eb); 6280 spin_unlock(&fs_info->buffer_lock); 6281 radix_tree_preload_end(); 6282 if (ret == -EEXIST) { 6283 exists = find_extent_buffer(fs_info, start); 6284 if (exists) 6285 goto free_eb; 6286 else 6287 goto again; 6288 } 6289 /* add one reference for the tree */ 6290 check_buffer_tree_ref(eb); 6291 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6292 6293 /* 6294 * Now it's safe to unlock the pages because any calls to 6295 * btree_releasepage will correctly detect that a page belongs to a 6296 * live buffer and won't free them prematurely. 6297 */ 6298 for (i = 0; i < num_pages; i++) 6299 unlock_page(eb->pages[i]); 6300 return eb; 6301 6302 free_eb: 6303 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6304 for (i = 0; i < num_pages; i++) { 6305 if (eb->pages[i]) 6306 unlock_page(eb->pages[i]); 6307 } 6308 6309 btrfs_release_extent_buffer(eb); 6310 return exists; 6311 } 6312 6313 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6314 { 6315 struct extent_buffer *eb = 6316 container_of(head, struct extent_buffer, rcu_head); 6317 6318 __free_extent_buffer(eb); 6319 } 6320 6321 static int release_extent_buffer(struct extent_buffer *eb) 6322 __releases(&eb->refs_lock) 6323 { 6324 lockdep_assert_held(&eb->refs_lock); 6325 6326 WARN_ON(atomic_read(&eb->refs) == 0); 6327 if (atomic_dec_and_test(&eb->refs)) { 6328 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6329 struct btrfs_fs_info *fs_info = eb->fs_info; 6330 6331 spin_unlock(&eb->refs_lock); 6332 6333 spin_lock(&fs_info->buffer_lock); 6334 radix_tree_delete(&fs_info->buffer_radix, 6335 eb->start >> fs_info->sectorsize_bits); 6336 spin_unlock(&fs_info->buffer_lock); 6337 } else { 6338 spin_unlock(&eb->refs_lock); 6339 } 6340 6341 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6342 /* Should be safe to release our pages at this point */ 6343 btrfs_release_extent_buffer_pages(eb); 6344 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6345 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6346 __free_extent_buffer(eb); 6347 return 1; 6348 } 6349 #endif 6350 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6351 return 1; 6352 } 6353 spin_unlock(&eb->refs_lock); 6354 6355 return 0; 6356 } 6357 6358 void free_extent_buffer(struct extent_buffer *eb) 6359 { 6360 int refs; 6361 int old; 6362 if (!eb) 6363 return; 6364 6365 while (1) { 6366 refs = atomic_read(&eb->refs); 6367 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6368 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6369 refs == 1)) 6370 break; 6371 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6372 if (old == refs) 6373 return; 6374 } 6375 6376 spin_lock(&eb->refs_lock); 6377 if (atomic_read(&eb->refs) == 2 && 6378 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6379 !extent_buffer_under_io(eb) && 6380 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6381 atomic_dec(&eb->refs); 6382 6383 /* 6384 * I know this is terrible, but it's temporary until we stop tracking 6385 * the uptodate bits and such for the extent buffers. 6386 */ 6387 release_extent_buffer(eb); 6388 } 6389 6390 void free_extent_buffer_stale(struct extent_buffer *eb) 6391 { 6392 if (!eb) 6393 return; 6394 6395 spin_lock(&eb->refs_lock); 6396 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6397 6398 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6399 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6400 atomic_dec(&eb->refs); 6401 release_extent_buffer(eb); 6402 } 6403 6404 static void btree_clear_page_dirty(struct page *page) 6405 { 6406 ASSERT(PageDirty(page)); 6407 ASSERT(PageLocked(page)); 6408 clear_page_dirty_for_io(page); 6409 xa_lock_irq(&page->mapping->i_pages); 6410 if (!PageDirty(page)) 6411 __xa_clear_mark(&page->mapping->i_pages, 6412 page_index(page), PAGECACHE_TAG_DIRTY); 6413 xa_unlock_irq(&page->mapping->i_pages); 6414 } 6415 6416 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6417 { 6418 struct btrfs_fs_info *fs_info = eb->fs_info; 6419 struct page *page = eb->pages[0]; 6420 bool last; 6421 6422 /* btree_clear_page_dirty() needs page locked */ 6423 lock_page(page); 6424 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6425 eb->len); 6426 if (last) 6427 btree_clear_page_dirty(page); 6428 unlock_page(page); 6429 WARN_ON(atomic_read(&eb->refs) == 0); 6430 } 6431 6432 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6433 { 6434 int i; 6435 int num_pages; 6436 struct page *page; 6437 6438 if (eb->fs_info->sectorsize < PAGE_SIZE) 6439 return clear_subpage_extent_buffer_dirty(eb); 6440 6441 num_pages = num_extent_pages(eb); 6442 6443 for (i = 0; i < num_pages; i++) { 6444 page = eb->pages[i]; 6445 if (!PageDirty(page)) 6446 continue; 6447 lock_page(page); 6448 btree_clear_page_dirty(page); 6449 ClearPageError(page); 6450 unlock_page(page); 6451 } 6452 WARN_ON(atomic_read(&eb->refs) == 0); 6453 } 6454 6455 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6456 { 6457 int i; 6458 int num_pages; 6459 bool was_dirty; 6460 6461 check_buffer_tree_ref(eb); 6462 6463 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6464 6465 num_pages = num_extent_pages(eb); 6466 WARN_ON(atomic_read(&eb->refs) == 0); 6467 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6468 6469 if (!was_dirty) { 6470 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; 6471 6472 /* 6473 * For subpage case, we can have other extent buffers in the 6474 * same page, and in clear_subpage_extent_buffer_dirty() we 6475 * have to clear page dirty without subpage lock held. 6476 * This can cause race where our page gets dirty cleared after 6477 * we just set it. 6478 * 6479 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6480 * its page for other reasons, we can use page lock to prevent 6481 * the above race. 6482 */ 6483 if (subpage) 6484 lock_page(eb->pages[0]); 6485 for (i = 0; i < num_pages; i++) 6486 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6487 eb->start, eb->len); 6488 if (subpage) 6489 unlock_page(eb->pages[0]); 6490 } 6491 #ifdef CONFIG_BTRFS_DEBUG 6492 for (i = 0; i < num_pages; i++) 6493 ASSERT(PageDirty(eb->pages[i])); 6494 #endif 6495 6496 return was_dirty; 6497 } 6498 6499 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6500 { 6501 struct btrfs_fs_info *fs_info = eb->fs_info; 6502 struct page *page; 6503 int num_pages; 6504 int i; 6505 6506 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6507 num_pages = num_extent_pages(eb); 6508 for (i = 0; i < num_pages; i++) { 6509 page = eb->pages[i]; 6510 if (page) 6511 btrfs_page_clear_uptodate(fs_info, page, 6512 eb->start, eb->len); 6513 } 6514 } 6515 6516 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6517 { 6518 struct btrfs_fs_info *fs_info = eb->fs_info; 6519 struct page *page; 6520 int num_pages; 6521 int i; 6522 6523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6524 num_pages = num_extent_pages(eb); 6525 for (i = 0; i < num_pages; i++) { 6526 page = eb->pages[i]; 6527 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 6528 } 6529 } 6530 6531 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6532 int mirror_num) 6533 { 6534 struct btrfs_fs_info *fs_info = eb->fs_info; 6535 struct extent_io_tree *io_tree; 6536 struct page *page = eb->pages[0]; 6537 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6538 int ret = 0; 6539 6540 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6541 ASSERT(PagePrivate(page)); 6542 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6543 6544 if (wait == WAIT_NONE) { 6545 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6546 return -EAGAIN; 6547 } else { 6548 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6549 if (ret < 0) 6550 return ret; 6551 } 6552 6553 ret = 0; 6554 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6555 PageUptodate(page) || 6556 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6557 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6558 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6559 return ret; 6560 } 6561 6562 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6563 eb->read_mirror = 0; 6564 atomic_set(&eb->io_pages, 1); 6565 check_buffer_tree_ref(eb); 6566 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6567 6568 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6569 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6570 page, eb->start, eb->len, 6571 eb->start - page_offset(page), 6572 end_bio_extent_readpage, mirror_num, 0, 6573 true); 6574 if (ret) { 6575 /* 6576 * In the endio function, if we hit something wrong we will 6577 * increase the io_pages, so here we need to decrease it for 6578 * error path. 6579 */ 6580 atomic_dec(&eb->io_pages); 6581 } 6582 if (bio_ctrl.bio) { 6583 int tmp; 6584 6585 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6586 bio_ctrl.bio = NULL; 6587 if (tmp < 0) 6588 return tmp; 6589 } 6590 if (ret || wait != WAIT_COMPLETE) 6591 return ret; 6592 6593 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6594 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6595 ret = -EIO; 6596 return ret; 6597 } 6598 6599 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6600 { 6601 int i; 6602 struct page *page; 6603 int err; 6604 int ret = 0; 6605 int locked_pages = 0; 6606 int all_uptodate = 1; 6607 int num_pages; 6608 unsigned long num_reads = 0; 6609 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6610 6611 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6612 return 0; 6613 6614 if (eb->fs_info->sectorsize < PAGE_SIZE) 6615 return read_extent_buffer_subpage(eb, wait, mirror_num); 6616 6617 num_pages = num_extent_pages(eb); 6618 for (i = 0; i < num_pages; i++) { 6619 page = eb->pages[i]; 6620 if (wait == WAIT_NONE) { 6621 /* 6622 * WAIT_NONE is only utilized by readahead. If we can't 6623 * acquire the lock atomically it means either the eb 6624 * is being read out or under modification. 6625 * Either way the eb will be or has been cached, 6626 * readahead can exit safely. 6627 */ 6628 if (!trylock_page(page)) 6629 goto unlock_exit; 6630 } else { 6631 lock_page(page); 6632 } 6633 locked_pages++; 6634 } 6635 /* 6636 * We need to firstly lock all pages to make sure that 6637 * the uptodate bit of our pages won't be affected by 6638 * clear_extent_buffer_uptodate(). 6639 */ 6640 for (i = 0; i < num_pages; i++) { 6641 page = eb->pages[i]; 6642 if (!PageUptodate(page)) { 6643 num_reads++; 6644 all_uptodate = 0; 6645 } 6646 } 6647 6648 if (all_uptodate) { 6649 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6650 goto unlock_exit; 6651 } 6652 6653 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6654 eb->read_mirror = 0; 6655 atomic_set(&eb->io_pages, num_reads); 6656 /* 6657 * It is possible for releasepage to clear the TREE_REF bit before we 6658 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6659 */ 6660 check_buffer_tree_ref(eb); 6661 for (i = 0; i < num_pages; i++) { 6662 page = eb->pages[i]; 6663 6664 if (!PageUptodate(page)) { 6665 if (ret) { 6666 atomic_dec(&eb->io_pages); 6667 unlock_page(page); 6668 continue; 6669 } 6670 6671 ClearPageError(page); 6672 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6673 &bio_ctrl, page, page_offset(page), 6674 PAGE_SIZE, 0, end_bio_extent_readpage, 6675 mirror_num, 0, false); 6676 if (err) { 6677 /* 6678 * We failed to submit the bio so it's the 6679 * caller's responsibility to perform cleanup 6680 * i.e unlock page/set error bit. 6681 */ 6682 ret = err; 6683 SetPageError(page); 6684 unlock_page(page); 6685 atomic_dec(&eb->io_pages); 6686 } 6687 } else { 6688 unlock_page(page); 6689 } 6690 } 6691 6692 if (bio_ctrl.bio) { 6693 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); 6694 bio_ctrl.bio = NULL; 6695 if (err) 6696 return err; 6697 } 6698 6699 if (ret || wait != WAIT_COMPLETE) 6700 return ret; 6701 6702 for (i = 0; i < num_pages; i++) { 6703 page = eb->pages[i]; 6704 wait_on_page_locked(page); 6705 if (!PageUptodate(page)) 6706 ret = -EIO; 6707 } 6708 6709 return ret; 6710 6711 unlock_exit: 6712 while (locked_pages > 0) { 6713 locked_pages--; 6714 page = eb->pages[locked_pages]; 6715 unlock_page(page); 6716 } 6717 return ret; 6718 } 6719 6720 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6721 unsigned long len) 6722 { 6723 btrfs_warn(eb->fs_info, 6724 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6725 eb->start, eb->len, start, len); 6726 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6727 6728 return true; 6729 } 6730 6731 /* 6732 * Check if the [start, start + len) range is valid before reading/writing 6733 * the eb. 6734 * NOTE: @start and @len are offset inside the eb, not logical address. 6735 * 6736 * Caller should not touch the dst/src memory if this function returns error. 6737 */ 6738 static inline int check_eb_range(const struct extent_buffer *eb, 6739 unsigned long start, unsigned long len) 6740 { 6741 unsigned long offset; 6742 6743 /* start, start + len should not go beyond eb->len nor overflow */ 6744 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6745 return report_eb_range(eb, start, len); 6746 6747 return false; 6748 } 6749 6750 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6751 unsigned long start, unsigned long len) 6752 { 6753 size_t cur; 6754 size_t offset; 6755 struct page *page; 6756 char *kaddr; 6757 char *dst = (char *)dstv; 6758 unsigned long i = get_eb_page_index(start); 6759 6760 if (check_eb_range(eb, start, len)) 6761 return; 6762 6763 offset = get_eb_offset_in_page(eb, start); 6764 6765 while (len > 0) { 6766 page = eb->pages[i]; 6767 6768 cur = min(len, (PAGE_SIZE - offset)); 6769 kaddr = page_address(page); 6770 memcpy(dst, kaddr + offset, cur); 6771 6772 dst += cur; 6773 len -= cur; 6774 offset = 0; 6775 i++; 6776 } 6777 } 6778 6779 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6780 void __user *dstv, 6781 unsigned long start, unsigned long len) 6782 { 6783 size_t cur; 6784 size_t offset; 6785 struct page *page; 6786 char *kaddr; 6787 char __user *dst = (char __user *)dstv; 6788 unsigned long i = get_eb_page_index(start); 6789 int ret = 0; 6790 6791 WARN_ON(start > eb->len); 6792 WARN_ON(start + len > eb->start + eb->len); 6793 6794 offset = get_eb_offset_in_page(eb, start); 6795 6796 while (len > 0) { 6797 page = eb->pages[i]; 6798 6799 cur = min(len, (PAGE_SIZE - offset)); 6800 kaddr = page_address(page); 6801 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6802 ret = -EFAULT; 6803 break; 6804 } 6805 6806 dst += cur; 6807 len -= cur; 6808 offset = 0; 6809 i++; 6810 } 6811 6812 return ret; 6813 } 6814 6815 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6816 unsigned long start, unsigned long len) 6817 { 6818 size_t cur; 6819 size_t offset; 6820 struct page *page; 6821 char *kaddr; 6822 char *ptr = (char *)ptrv; 6823 unsigned long i = get_eb_page_index(start); 6824 int ret = 0; 6825 6826 if (check_eb_range(eb, start, len)) 6827 return -EINVAL; 6828 6829 offset = get_eb_offset_in_page(eb, start); 6830 6831 while (len > 0) { 6832 page = eb->pages[i]; 6833 6834 cur = min(len, (PAGE_SIZE - offset)); 6835 6836 kaddr = page_address(page); 6837 ret = memcmp(ptr, kaddr + offset, cur); 6838 if (ret) 6839 break; 6840 6841 ptr += cur; 6842 len -= cur; 6843 offset = 0; 6844 i++; 6845 } 6846 return ret; 6847 } 6848 6849 /* 6850 * Check that the extent buffer is uptodate. 6851 * 6852 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6853 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6854 */ 6855 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6856 struct page *page) 6857 { 6858 struct btrfs_fs_info *fs_info = eb->fs_info; 6859 6860 if (fs_info->sectorsize < PAGE_SIZE) { 6861 bool uptodate; 6862 6863 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6864 eb->start, eb->len); 6865 WARN_ON(!uptodate); 6866 } else { 6867 WARN_ON(!PageUptodate(page)); 6868 } 6869 } 6870 6871 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6872 const void *srcv) 6873 { 6874 char *kaddr; 6875 6876 assert_eb_page_uptodate(eb, eb->pages[0]); 6877 kaddr = page_address(eb->pages[0]) + 6878 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6879 chunk_tree_uuid)); 6880 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6881 } 6882 6883 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6884 { 6885 char *kaddr; 6886 6887 assert_eb_page_uptodate(eb, eb->pages[0]); 6888 kaddr = page_address(eb->pages[0]) + 6889 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6890 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6891 } 6892 6893 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6894 unsigned long start, unsigned long len) 6895 { 6896 size_t cur; 6897 size_t offset; 6898 struct page *page; 6899 char *kaddr; 6900 char *src = (char *)srcv; 6901 unsigned long i = get_eb_page_index(start); 6902 6903 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6904 6905 if (check_eb_range(eb, start, len)) 6906 return; 6907 6908 offset = get_eb_offset_in_page(eb, start); 6909 6910 while (len > 0) { 6911 page = eb->pages[i]; 6912 assert_eb_page_uptodate(eb, page); 6913 6914 cur = min(len, PAGE_SIZE - offset); 6915 kaddr = page_address(page); 6916 memcpy(kaddr + offset, src, cur); 6917 6918 src += cur; 6919 len -= cur; 6920 offset = 0; 6921 i++; 6922 } 6923 } 6924 6925 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6926 unsigned long len) 6927 { 6928 size_t cur; 6929 size_t offset; 6930 struct page *page; 6931 char *kaddr; 6932 unsigned long i = get_eb_page_index(start); 6933 6934 if (check_eb_range(eb, start, len)) 6935 return; 6936 6937 offset = get_eb_offset_in_page(eb, start); 6938 6939 while (len > 0) { 6940 page = eb->pages[i]; 6941 assert_eb_page_uptodate(eb, page); 6942 6943 cur = min(len, PAGE_SIZE - offset); 6944 kaddr = page_address(page); 6945 memset(kaddr + offset, 0, cur); 6946 6947 len -= cur; 6948 offset = 0; 6949 i++; 6950 } 6951 } 6952 6953 void copy_extent_buffer_full(const struct extent_buffer *dst, 6954 const struct extent_buffer *src) 6955 { 6956 int i; 6957 int num_pages; 6958 6959 ASSERT(dst->len == src->len); 6960 6961 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6962 num_pages = num_extent_pages(dst); 6963 for (i = 0; i < num_pages; i++) 6964 copy_page(page_address(dst->pages[i]), 6965 page_address(src->pages[i])); 6966 } else { 6967 size_t src_offset = get_eb_offset_in_page(src, 0); 6968 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6969 6970 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6971 memcpy(page_address(dst->pages[0]) + dst_offset, 6972 page_address(src->pages[0]) + src_offset, 6973 src->len); 6974 } 6975 } 6976 6977 void copy_extent_buffer(const struct extent_buffer *dst, 6978 const struct extent_buffer *src, 6979 unsigned long dst_offset, unsigned long src_offset, 6980 unsigned long len) 6981 { 6982 u64 dst_len = dst->len; 6983 size_t cur; 6984 size_t offset; 6985 struct page *page; 6986 char *kaddr; 6987 unsigned long i = get_eb_page_index(dst_offset); 6988 6989 if (check_eb_range(dst, dst_offset, len) || 6990 check_eb_range(src, src_offset, len)) 6991 return; 6992 6993 WARN_ON(src->len != dst_len); 6994 6995 offset = get_eb_offset_in_page(dst, dst_offset); 6996 6997 while (len > 0) { 6998 page = dst->pages[i]; 6999 assert_eb_page_uptodate(dst, page); 7000 7001 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 7002 7003 kaddr = page_address(page); 7004 read_extent_buffer(src, kaddr + offset, src_offset, cur); 7005 7006 src_offset += cur; 7007 len -= cur; 7008 offset = 0; 7009 i++; 7010 } 7011 } 7012 7013 /* 7014 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7015 * given bit number 7016 * @eb: the extent buffer 7017 * @start: offset of the bitmap item in the extent buffer 7018 * @nr: bit number 7019 * @page_index: return index of the page in the extent buffer that contains the 7020 * given bit number 7021 * @page_offset: return offset into the page given by page_index 7022 * 7023 * This helper hides the ugliness of finding the byte in an extent buffer which 7024 * contains a given bit. 7025 */ 7026 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7027 unsigned long start, unsigned long nr, 7028 unsigned long *page_index, 7029 size_t *page_offset) 7030 { 7031 size_t byte_offset = BIT_BYTE(nr); 7032 size_t offset; 7033 7034 /* 7035 * The byte we want is the offset of the extent buffer + the offset of 7036 * the bitmap item in the extent buffer + the offset of the byte in the 7037 * bitmap item. 7038 */ 7039 offset = start + offset_in_page(eb->start) + byte_offset; 7040 7041 *page_index = offset >> PAGE_SHIFT; 7042 *page_offset = offset_in_page(offset); 7043 } 7044 7045 /** 7046 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7047 * @eb: the extent buffer 7048 * @start: offset of the bitmap item in the extent buffer 7049 * @nr: bit number to test 7050 */ 7051 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7052 unsigned long nr) 7053 { 7054 u8 *kaddr; 7055 struct page *page; 7056 unsigned long i; 7057 size_t offset; 7058 7059 eb_bitmap_offset(eb, start, nr, &i, &offset); 7060 page = eb->pages[i]; 7061 assert_eb_page_uptodate(eb, page); 7062 kaddr = page_address(page); 7063 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7064 } 7065 7066 /** 7067 * extent_buffer_bitmap_set - set an area of a bitmap 7068 * @eb: the extent buffer 7069 * @start: offset of the bitmap item in the extent buffer 7070 * @pos: bit number of the first bit 7071 * @len: number of bits to set 7072 */ 7073 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7074 unsigned long pos, unsigned long len) 7075 { 7076 u8 *kaddr; 7077 struct page *page; 7078 unsigned long i; 7079 size_t offset; 7080 const unsigned int size = pos + len; 7081 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7082 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7083 7084 eb_bitmap_offset(eb, start, pos, &i, &offset); 7085 page = eb->pages[i]; 7086 assert_eb_page_uptodate(eb, page); 7087 kaddr = page_address(page); 7088 7089 while (len >= bits_to_set) { 7090 kaddr[offset] |= mask_to_set; 7091 len -= bits_to_set; 7092 bits_to_set = BITS_PER_BYTE; 7093 mask_to_set = ~0; 7094 if (++offset >= PAGE_SIZE && len > 0) { 7095 offset = 0; 7096 page = eb->pages[++i]; 7097 assert_eb_page_uptodate(eb, page); 7098 kaddr = page_address(page); 7099 } 7100 } 7101 if (len) { 7102 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7103 kaddr[offset] |= mask_to_set; 7104 } 7105 } 7106 7107 7108 /** 7109 * extent_buffer_bitmap_clear - clear an area of a bitmap 7110 * @eb: the extent buffer 7111 * @start: offset of the bitmap item in the extent buffer 7112 * @pos: bit number of the first bit 7113 * @len: number of bits to clear 7114 */ 7115 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7116 unsigned long start, unsigned long pos, 7117 unsigned long len) 7118 { 7119 u8 *kaddr; 7120 struct page *page; 7121 unsigned long i; 7122 size_t offset; 7123 const unsigned int size = pos + len; 7124 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7125 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7126 7127 eb_bitmap_offset(eb, start, pos, &i, &offset); 7128 page = eb->pages[i]; 7129 assert_eb_page_uptodate(eb, page); 7130 kaddr = page_address(page); 7131 7132 while (len >= bits_to_clear) { 7133 kaddr[offset] &= ~mask_to_clear; 7134 len -= bits_to_clear; 7135 bits_to_clear = BITS_PER_BYTE; 7136 mask_to_clear = ~0; 7137 if (++offset >= PAGE_SIZE && len > 0) { 7138 offset = 0; 7139 page = eb->pages[++i]; 7140 assert_eb_page_uptodate(eb, page); 7141 kaddr = page_address(page); 7142 } 7143 } 7144 if (len) { 7145 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7146 kaddr[offset] &= ~mask_to_clear; 7147 } 7148 } 7149 7150 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7151 { 7152 unsigned long distance = (src > dst) ? src - dst : dst - src; 7153 return distance < len; 7154 } 7155 7156 static void copy_pages(struct page *dst_page, struct page *src_page, 7157 unsigned long dst_off, unsigned long src_off, 7158 unsigned long len) 7159 { 7160 char *dst_kaddr = page_address(dst_page); 7161 char *src_kaddr; 7162 int must_memmove = 0; 7163 7164 if (dst_page != src_page) { 7165 src_kaddr = page_address(src_page); 7166 } else { 7167 src_kaddr = dst_kaddr; 7168 if (areas_overlap(src_off, dst_off, len)) 7169 must_memmove = 1; 7170 } 7171 7172 if (must_memmove) 7173 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7174 else 7175 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7176 } 7177 7178 void memcpy_extent_buffer(const struct extent_buffer *dst, 7179 unsigned long dst_offset, unsigned long src_offset, 7180 unsigned long len) 7181 { 7182 size_t cur; 7183 size_t dst_off_in_page; 7184 size_t src_off_in_page; 7185 unsigned long dst_i; 7186 unsigned long src_i; 7187 7188 if (check_eb_range(dst, dst_offset, len) || 7189 check_eb_range(dst, src_offset, len)) 7190 return; 7191 7192 while (len > 0) { 7193 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7194 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7195 7196 dst_i = get_eb_page_index(dst_offset); 7197 src_i = get_eb_page_index(src_offset); 7198 7199 cur = min(len, (unsigned long)(PAGE_SIZE - 7200 src_off_in_page)); 7201 cur = min_t(unsigned long, cur, 7202 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7203 7204 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7205 dst_off_in_page, src_off_in_page, cur); 7206 7207 src_offset += cur; 7208 dst_offset += cur; 7209 len -= cur; 7210 } 7211 } 7212 7213 void memmove_extent_buffer(const struct extent_buffer *dst, 7214 unsigned long dst_offset, unsigned long src_offset, 7215 unsigned long len) 7216 { 7217 size_t cur; 7218 size_t dst_off_in_page; 7219 size_t src_off_in_page; 7220 unsigned long dst_end = dst_offset + len - 1; 7221 unsigned long src_end = src_offset + len - 1; 7222 unsigned long dst_i; 7223 unsigned long src_i; 7224 7225 if (check_eb_range(dst, dst_offset, len) || 7226 check_eb_range(dst, src_offset, len)) 7227 return; 7228 if (dst_offset < src_offset) { 7229 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7230 return; 7231 } 7232 while (len > 0) { 7233 dst_i = get_eb_page_index(dst_end); 7234 src_i = get_eb_page_index(src_end); 7235 7236 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7237 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7238 7239 cur = min_t(unsigned long, len, src_off_in_page + 1); 7240 cur = min(cur, dst_off_in_page + 1); 7241 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7242 dst_off_in_page - cur + 1, 7243 src_off_in_page - cur + 1, cur); 7244 7245 dst_end -= cur; 7246 src_end -= cur; 7247 len -= cur; 7248 } 7249 } 7250 7251 #define GANG_LOOKUP_SIZE 16 7252 static struct extent_buffer *get_next_extent_buffer( 7253 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7254 { 7255 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7256 struct extent_buffer *found = NULL; 7257 u64 page_start = page_offset(page); 7258 u64 cur = page_start; 7259 7260 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7261 lockdep_assert_held(&fs_info->buffer_lock); 7262 7263 while (cur < page_start + PAGE_SIZE) { 7264 int ret; 7265 int i; 7266 7267 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7268 (void **)gang, cur >> fs_info->sectorsize_bits, 7269 min_t(unsigned int, GANG_LOOKUP_SIZE, 7270 PAGE_SIZE / fs_info->nodesize)); 7271 if (ret == 0) 7272 goto out; 7273 for (i = 0; i < ret; i++) { 7274 /* Already beyond page end */ 7275 if (gang[i]->start >= page_start + PAGE_SIZE) 7276 goto out; 7277 /* Found one */ 7278 if (gang[i]->start >= bytenr) { 7279 found = gang[i]; 7280 goto out; 7281 } 7282 } 7283 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7284 } 7285 out: 7286 return found; 7287 } 7288 7289 static int try_release_subpage_extent_buffer(struct page *page) 7290 { 7291 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7292 u64 cur = page_offset(page); 7293 const u64 end = page_offset(page) + PAGE_SIZE; 7294 int ret; 7295 7296 while (cur < end) { 7297 struct extent_buffer *eb = NULL; 7298 7299 /* 7300 * Unlike try_release_extent_buffer() which uses page->private 7301 * to grab buffer, for subpage case we rely on radix tree, thus 7302 * we need to ensure radix tree consistency. 7303 * 7304 * We also want an atomic snapshot of the radix tree, thus go 7305 * with spinlock rather than RCU. 7306 */ 7307 spin_lock(&fs_info->buffer_lock); 7308 eb = get_next_extent_buffer(fs_info, page, cur); 7309 if (!eb) { 7310 /* No more eb in the page range after or at cur */ 7311 spin_unlock(&fs_info->buffer_lock); 7312 break; 7313 } 7314 cur = eb->start + eb->len; 7315 7316 /* 7317 * The same as try_release_extent_buffer(), to ensure the eb 7318 * won't disappear out from under us. 7319 */ 7320 spin_lock(&eb->refs_lock); 7321 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7322 spin_unlock(&eb->refs_lock); 7323 spin_unlock(&fs_info->buffer_lock); 7324 break; 7325 } 7326 spin_unlock(&fs_info->buffer_lock); 7327 7328 /* 7329 * If tree ref isn't set then we know the ref on this eb is a 7330 * real ref, so just return, this eb will likely be freed soon 7331 * anyway. 7332 */ 7333 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7334 spin_unlock(&eb->refs_lock); 7335 break; 7336 } 7337 7338 /* 7339 * Here we don't care about the return value, we will always 7340 * check the page private at the end. And 7341 * release_extent_buffer() will release the refs_lock. 7342 */ 7343 release_extent_buffer(eb); 7344 } 7345 /* 7346 * Finally to check if we have cleared page private, as if we have 7347 * released all ebs in the page, the page private should be cleared now. 7348 */ 7349 spin_lock(&page->mapping->private_lock); 7350 if (!PagePrivate(page)) 7351 ret = 1; 7352 else 7353 ret = 0; 7354 spin_unlock(&page->mapping->private_lock); 7355 return ret; 7356 7357 } 7358 7359 int try_release_extent_buffer(struct page *page) 7360 { 7361 struct extent_buffer *eb; 7362 7363 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 7364 return try_release_subpage_extent_buffer(page); 7365 7366 /* 7367 * We need to make sure nobody is changing page->private, as we rely on 7368 * page->private as the pointer to extent buffer. 7369 */ 7370 spin_lock(&page->mapping->private_lock); 7371 if (!PagePrivate(page)) { 7372 spin_unlock(&page->mapping->private_lock); 7373 return 1; 7374 } 7375 7376 eb = (struct extent_buffer *)page->private; 7377 BUG_ON(!eb); 7378 7379 /* 7380 * This is a little awful but should be ok, we need to make sure that 7381 * the eb doesn't disappear out from under us while we're looking at 7382 * this page. 7383 */ 7384 spin_lock(&eb->refs_lock); 7385 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7386 spin_unlock(&eb->refs_lock); 7387 spin_unlock(&page->mapping->private_lock); 7388 return 0; 7389 } 7390 spin_unlock(&page->mapping->private_lock); 7391 7392 /* 7393 * If tree ref isn't set then we know the ref on this eb is a real ref, 7394 * so just return, this page will likely be freed soon anyway. 7395 */ 7396 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7397 spin_unlock(&eb->refs_lock); 7398 return 0; 7399 } 7400 7401 return release_extent_buffer(eb); 7402 } 7403 7404 /* 7405 * btrfs_readahead_tree_block - attempt to readahead a child block 7406 * @fs_info: the fs_info 7407 * @bytenr: bytenr to read 7408 * @owner_root: objectid of the root that owns this eb 7409 * @gen: generation for the uptodate check, can be 0 7410 * @level: level for the eb 7411 * 7412 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7413 * normal uptodate check of the eb, without checking the generation. If we have 7414 * to read the block we will not block on anything. 7415 */ 7416 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7417 u64 bytenr, u64 owner_root, u64 gen, int level) 7418 { 7419 struct extent_buffer *eb; 7420 int ret; 7421 7422 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7423 if (IS_ERR(eb)) 7424 return; 7425 7426 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7427 free_extent_buffer(eb); 7428 return; 7429 } 7430 7431 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7432 if (ret < 0) 7433 free_extent_buffer_stale(eb); 7434 else 7435 free_extent_buffer(eb); 7436 } 7437 7438 /* 7439 * btrfs_readahead_node_child - readahead a node's child block 7440 * @node: parent node we're reading from 7441 * @slot: slot in the parent node for the child we want to read 7442 * 7443 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7444 * the slot in the node provided. 7445 */ 7446 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7447 { 7448 btrfs_readahead_tree_block(node->fs_info, 7449 btrfs_node_blockptr(node, slot), 7450 btrfs_header_owner(node), 7451 btrfs_node_ptr_generation(node, slot), 7452 btrfs_header_level(node) - 1); 7453 } 7454