1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 }; 105 106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 107 { 108 struct btrfs_bio *bbio = bio_ctrl->bbio; 109 110 if (!bbio) 111 return; 112 113 /* Caller should ensure the bio has at least some range added */ 114 ASSERT(bbio->bio.bi_iter.bi_size); 115 116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 118 btrfs_submit_compressed_read(bbio); 119 else 120 btrfs_submit_bio(bbio, 0); 121 122 /* The bbio is owned by the end_io handler now */ 123 bio_ctrl->bbio = NULL; 124 } 125 126 /* 127 * Submit or fail the current bio in the bio_ctrl structure. 128 */ 129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 130 { 131 struct btrfs_bio *bbio = bio_ctrl->bbio; 132 133 if (!bbio) 134 return; 135 136 if (ret) { 137 ASSERT(ret < 0); 138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 139 /* The bio is owned by the end_io handler now */ 140 bio_ctrl->bbio = NULL; 141 } else { 142 submit_one_bio(bio_ctrl); 143 } 144 } 145 146 int __init extent_buffer_init_cachep(void) 147 { 148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 149 sizeof(struct extent_buffer), 0, 0, 150 NULL); 151 if (!extent_buffer_cache) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 void __cold extent_buffer_free_cachep(void) 158 { 159 /* 160 * Make sure all delayed rcu free are flushed before we 161 * destroy caches. 162 */ 163 rcu_barrier(); 164 kmem_cache_destroy(extent_buffer_cache); 165 } 166 167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 168 { 169 unsigned long index = start >> PAGE_SHIFT; 170 unsigned long end_index = end >> PAGE_SHIFT; 171 struct page *page; 172 173 while (index <= end_index) { 174 page = find_get_page(inode->i_mapping, index); 175 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 176 clear_page_dirty_for_io(page); 177 put_page(page); 178 index++; 179 } 180 } 181 182 static void process_one_page(struct btrfs_fs_info *fs_info, 183 struct page *page, struct page *locked_page, 184 unsigned long page_ops, u64 start, u64 end) 185 { 186 struct folio *folio = page_folio(page); 187 u32 len; 188 189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 190 len = end + 1 - start; 191 192 if (page_ops & PAGE_SET_ORDERED) 193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 194 if (page_ops & PAGE_START_WRITEBACK) { 195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 197 } 198 if (page_ops & PAGE_END_WRITEBACK) 199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 200 201 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 202 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 203 } 204 205 static void __process_pages_contig(struct address_space *mapping, 206 struct page *locked_page, u64 start, u64 end, 207 unsigned long page_ops) 208 { 209 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 210 pgoff_t start_index = start >> PAGE_SHIFT; 211 pgoff_t end_index = end >> PAGE_SHIFT; 212 pgoff_t index = start_index; 213 struct folio_batch fbatch; 214 int i; 215 216 folio_batch_init(&fbatch); 217 while (index <= end_index) { 218 int found_folios; 219 220 found_folios = filemap_get_folios_contig(mapping, &index, 221 end_index, &fbatch); 222 for (i = 0; i < found_folios; i++) { 223 struct folio *folio = fbatch.folios[i]; 224 225 process_one_page(fs_info, &folio->page, locked_page, 226 page_ops, start, end); 227 } 228 folio_batch_release(&fbatch); 229 cond_resched(); 230 } 231 } 232 233 static noinline void __unlock_for_delalloc(struct inode *inode, 234 struct page *locked_page, 235 u64 start, u64 end) 236 { 237 unsigned long index = start >> PAGE_SHIFT; 238 unsigned long end_index = end >> PAGE_SHIFT; 239 240 ASSERT(locked_page); 241 if (index == locked_page->index && end_index == index) 242 return; 243 244 __process_pages_contig(inode->i_mapping, locked_page, start, end, 245 PAGE_UNLOCK); 246 } 247 248 static noinline int lock_delalloc_pages(struct inode *inode, 249 struct page *locked_page, 250 u64 start, 251 u64 end) 252 { 253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 254 struct address_space *mapping = inode->i_mapping; 255 pgoff_t start_index = start >> PAGE_SHIFT; 256 pgoff_t end_index = end >> PAGE_SHIFT; 257 pgoff_t index = start_index; 258 u64 processed_end = start; 259 struct folio_batch fbatch; 260 261 if (index == locked_page->index && index == end_index) 262 return 0; 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 unsigned int found_folios, i; 267 268 found_folios = filemap_get_folios_contig(mapping, &index, 269 end_index, &fbatch); 270 if (found_folios == 0) 271 goto out; 272 273 for (i = 0; i < found_folios; i++) { 274 struct folio *folio = fbatch.folios[i]; 275 struct page *page = folio_page(folio, 0); 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_folio_start_writer_lock(fs_info, folio, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_folio_end_writer_lock(fs_info, folio, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, cached_state); 399 400 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 401 if (!ret) { 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 *start = delalloc_start; 408 *end = delalloc_end; 409 out_failed: 410 return found; 411 } 412 413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 414 struct page *locked_page, 415 struct extent_state **cached, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 436 struct folio *folio = page_folio(page); 437 438 ASSERT(page_offset(page) <= start && 439 start + len <= page_offset(page) + PAGE_SIZE); 440 441 if (uptodate && btrfs_verify_page(page, start)) 442 btrfs_folio_set_uptodate(fs_info, folio, start, len); 443 else 444 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 445 446 if (!btrfs_is_subpage(fs_info, page->mapping)) 447 unlock_page(page); 448 else 449 btrfs_subpage_end_reader(fs_info, folio, start, len); 450 } 451 452 /* 453 * After a write IO is done, we need to: 454 * 455 * - clear the uptodate bits on error 456 * - clear the writeback bits in the extent tree for the range 457 * - filio_end_writeback() if there is no more pending io for the folio 458 * 459 * Scheduling is not allowed, so the extent state tree is expected 460 * to have one and only one object corresponding to this IO. 461 */ 462 static void end_bbio_data_write(struct btrfs_bio *bbio) 463 { 464 struct btrfs_fs_info *fs_info = bbio->fs_info; 465 struct bio *bio = &bbio->bio; 466 int error = blk_status_to_errno(bio->bi_status); 467 struct folio_iter fi; 468 const u32 sectorsize = fs_info->sectorsize; 469 470 ASSERT(!bio_flagged(bio, BIO_CLONED)); 471 bio_for_each_folio_all(fi, bio) { 472 struct folio *folio = fi.folio; 473 u64 start = folio_pos(folio) + fi.offset; 474 u32 len = fi.length; 475 476 /* Only order 0 (single page) folios are allowed for data. */ 477 ASSERT(folio_order(folio) == 0); 478 479 /* Our read/write should always be sector aligned. */ 480 if (!IS_ALIGNED(fi.offset, sectorsize)) 481 btrfs_err(fs_info, 482 "partial page write in btrfs with offset %zu and length %zu", 483 fi.offset, fi.length); 484 else if (!IS_ALIGNED(fi.length, sectorsize)) 485 btrfs_info(fs_info, 486 "incomplete page write with offset %zu and length %zu", 487 fi.offset, fi.length); 488 489 btrfs_finish_ordered_extent(bbio->ordered, 490 folio_page(folio, 0), start, len, !error); 491 if (error) 492 mapping_set_error(folio->mapping, error); 493 btrfs_folio_clear_writeback(fs_info, folio, start, len); 494 } 495 496 bio_put(bio); 497 } 498 499 /* 500 * Record previously processed extent range 501 * 502 * For endio_readpage_release_extent() to handle a full extent range, reducing 503 * the extent io operations. 504 */ 505 struct processed_extent { 506 struct btrfs_inode *inode; 507 /* Start of the range in @inode */ 508 u64 start; 509 /* End of the range in @inode */ 510 u64 end; 511 bool uptodate; 512 }; 513 514 /* 515 * Try to release processed extent range 516 * 517 * May not release the extent range right now if the current range is 518 * contiguous to processed extent. 519 * 520 * Will release processed extent when any of @inode, @uptodate, the range is 521 * no longer contiguous to the processed range. 522 * 523 * Passing @inode == NULL will force processed extent to be released. 524 */ 525 static void endio_readpage_release_extent(struct processed_extent *processed, 526 struct btrfs_inode *inode, u64 start, u64 end, 527 bool uptodate) 528 { 529 struct extent_state *cached = NULL; 530 struct extent_io_tree *tree; 531 532 /* The first extent, initialize @processed */ 533 if (!processed->inode) 534 goto update; 535 536 /* 537 * Contiguous to processed extent, just uptodate the end. 538 * 539 * Several things to notice: 540 * 541 * - bio can be merged as long as on-disk bytenr is contiguous 542 * This means we can have page belonging to other inodes, thus need to 543 * check if the inode still matches. 544 * - bvec can contain range beyond current page for multi-page bvec 545 * Thus we need to do processed->end + 1 >= start check 546 */ 547 if (processed->inode == inode && processed->uptodate == uptodate && 548 processed->end + 1 >= start && end >= processed->end) { 549 processed->end = end; 550 return; 551 } 552 553 tree = &processed->inode->io_tree; 554 /* 555 * Now we don't have range contiguous to the processed range, release 556 * the processed range now. 557 */ 558 unlock_extent(tree, processed->start, processed->end, &cached); 559 560 update: 561 /* Update processed to current range */ 562 processed->inode = inode; 563 processed->start = start; 564 processed->end = end; 565 processed->uptodate = uptodate; 566 } 567 568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 569 { 570 struct folio *folio = page_folio(page); 571 572 ASSERT(folio_test_locked(folio)); 573 if (!btrfs_is_subpage(fs_info, folio->mapping)) 574 return; 575 576 ASSERT(folio_test_private(folio)); 577 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE); 578 } 579 580 /* 581 * After a data read IO is done, we need to: 582 * 583 * - clear the uptodate bits on error 584 * - set the uptodate bits if things worked 585 * - set the folio up to date if all extents in the tree are uptodate 586 * - clear the lock bit in the extent tree 587 * - unlock the folio if there are no other extents locked for it 588 * 589 * Scheduling is not allowed, so the extent state tree is expected 590 * to have one and only one object corresponding to this IO. 591 */ 592 static void end_bbio_data_read(struct btrfs_bio *bbio) 593 { 594 struct btrfs_fs_info *fs_info = bbio->fs_info; 595 struct bio *bio = &bbio->bio; 596 struct processed_extent processed = { 0 }; 597 struct folio_iter fi; 598 const u32 sectorsize = fs_info->sectorsize; 599 600 ASSERT(!bio_flagged(bio, BIO_CLONED)); 601 bio_for_each_folio_all(fi, &bbio->bio) { 602 bool uptodate = !bio->bi_status; 603 struct folio *folio = fi.folio; 604 struct inode *inode = folio->mapping->host; 605 u64 start; 606 u64 end; 607 u32 len; 608 609 /* For now only order 0 folios are supported for data. */ 610 ASSERT(folio_order(folio) == 0); 611 btrfs_debug(fs_info, 612 "%s: bi_sector=%llu, err=%d, mirror=%u", 613 __func__, bio->bi_iter.bi_sector, bio->bi_status, 614 bbio->mirror_num); 615 616 /* 617 * We always issue full-sector reads, but if some block in a 618 * folio fails to read, blk_update_request() will advance 619 * bv_offset and adjust bv_len to compensate. Print a warning 620 * for unaligned offsets, and an error if they don't add up to 621 * a full sector. 622 */ 623 if (!IS_ALIGNED(fi.offset, sectorsize)) 624 btrfs_err(fs_info, 625 "partial page read in btrfs with offset %zu and length %zu", 626 fi.offset, fi.length); 627 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 628 btrfs_info(fs_info, 629 "incomplete page read with offset %zu and length %zu", 630 fi.offset, fi.length); 631 632 start = folio_pos(folio) + fi.offset; 633 end = start + fi.length - 1; 634 len = fi.length; 635 636 if (likely(uptodate)) { 637 loff_t i_size = i_size_read(inode); 638 pgoff_t end_index = i_size >> folio_shift(folio); 639 640 /* 641 * Zero out the remaining part if this range straddles 642 * i_size. 643 * 644 * Here we should only zero the range inside the folio, 645 * not touch anything else. 646 * 647 * NOTE: i_size is exclusive while end is inclusive. 648 */ 649 if (folio_index(folio) == end_index && i_size <= end) { 650 u32 zero_start = max(offset_in_folio(folio, i_size), 651 offset_in_folio(folio, start)); 652 u32 zero_len = offset_in_folio(folio, end) + 1 - 653 zero_start; 654 655 folio_zero_range(folio, zero_start, zero_len); 656 } 657 } 658 659 /* Update page status and unlock. */ 660 end_page_read(folio_page(folio, 0), uptodate, start, len); 661 endio_readpage_release_extent(&processed, BTRFS_I(inode), 662 start, end, uptodate); 663 } 664 /* Release the last extent */ 665 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 666 bio_put(bio); 667 } 668 669 /* 670 * Populate every free slot in a provided array with folios. 671 * 672 * @nr_folios: number of folios to allocate 673 * @folio_array: the array to fill with folios; any existing non-NULL entries in 674 * the array will be skipped 675 * @extra_gfp: the extra GFP flags for the allocation 676 * 677 * Return: 0 if all folios were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated folios would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array, 682 gfp_t extra_gfp) 683 { 684 for (int i = 0; i < nr_folios; i++) { 685 if (folio_array[i]) 686 continue; 687 folio_array[i] = folio_alloc(GFP_NOFS | extra_gfp, 0); 688 if (!folio_array[i]) 689 goto error; 690 } 691 return 0; 692 error: 693 for (int i = 0; i < nr_folios; i++) { 694 if (folio_array[i]) 695 folio_put(folio_array[i]); 696 } 697 return -ENOMEM; 698 } 699 700 /* 701 * Populate every free slot in a provided array with pages. 702 * 703 * @nr_pages: number of pages to allocate 704 * @page_array: the array to fill with pages; any existing non-null entries in 705 * the array will be skipped 706 * @extra_gfp: the extra GFP flags for the allocation. 707 * 708 * Return: 0 if all pages were able to be allocated; 709 * -ENOMEM otherwise, the partially allocated pages would be freed and 710 * the array slots zeroed 711 */ 712 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 713 gfp_t extra_gfp) 714 { 715 const gfp_t gfp = GFP_NOFS | extra_gfp; 716 unsigned int allocated; 717 718 for (allocated = 0; allocated < nr_pages;) { 719 unsigned int last = allocated; 720 721 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 722 if (unlikely(allocated == last)) { 723 /* No progress, fail and do cleanup. */ 724 for (int i = 0; i < allocated; i++) { 725 __free_page(page_array[i]); 726 page_array[i] = NULL; 727 } 728 return -ENOMEM; 729 } 730 } 731 return 0; 732 } 733 734 /* 735 * Populate needed folios for the extent buffer. 736 * 737 * For now, the folios populated are always in order 0 (aka, single page). 738 */ 739 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp) 740 { 741 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 742 int num_pages = num_extent_pages(eb); 743 int ret; 744 745 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp); 746 if (ret < 0) 747 return ret; 748 749 for (int i = 0; i < num_pages; i++) 750 eb->folios[i] = page_folio(page_array[i]); 751 eb->folio_size = PAGE_SIZE; 752 eb->folio_shift = PAGE_SHIFT; 753 return 0; 754 } 755 756 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 757 struct page *page, u64 disk_bytenr, 758 unsigned int pg_offset) 759 { 760 struct bio *bio = &bio_ctrl->bbio->bio; 761 struct bio_vec *bvec = bio_last_bvec_all(bio); 762 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 763 764 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 765 /* 766 * For compression, all IO should have its logical bytenr set 767 * to the starting bytenr of the compressed extent. 768 */ 769 return bio->bi_iter.bi_sector == sector; 770 } 771 772 /* 773 * The contig check requires the following conditions to be met: 774 * 775 * 1) The pages are belonging to the same inode 776 * This is implied by the call chain. 777 * 778 * 2) The range has adjacent logical bytenr 779 * 780 * 3) The range has adjacent file offset 781 * This is required for the usage of btrfs_bio->file_offset. 782 */ 783 return bio_end_sector(bio) == sector && 784 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 785 page_offset(page) + pg_offset; 786 } 787 788 static void alloc_new_bio(struct btrfs_inode *inode, 789 struct btrfs_bio_ctrl *bio_ctrl, 790 u64 disk_bytenr, u64 file_offset) 791 { 792 struct btrfs_fs_info *fs_info = inode->root->fs_info; 793 struct btrfs_bio *bbio; 794 795 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 796 bio_ctrl->end_io_func, NULL); 797 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 798 bbio->inode = inode; 799 bbio->file_offset = file_offset; 800 bio_ctrl->bbio = bbio; 801 bio_ctrl->len_to_oe_boundary = U32_MAX; 802 803 /* Limit data write bios to the ordered boundary. */ 804 if (bio_ctrl->wbc) { 805 struct btrfs_ordered_extent *ordered; 806 807 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 808 if (ordered) { 809 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 810 ordered->file_offset + 811 ordered->disk_num_bytes - file_offset); 812 bbio->ordered = ordered; 813 } 814 815 /* 816 * Pick the last added device to support cgroup writeback. For 817 * multi-device file systems this means blk-cgroup policies have 818 * to always be set on the last added/replaced device. 819 * This is a bit odd but has been like that for a long time. 820 */ 821 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 822 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 823 } 824 } 825 826 /* 827 * @disk_bytenr: logical bytenr where the write will be 828 * @page: page to add to the bio 829 * @size: portion of page that we want to write to 830 * @pg_offset: offset of the new bio or to check whether we are adding 831 * a contiguous page to the previous one 832 * 833 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 834 * new one in @bio_ctrl->bbio. 835 * The mirror number for this IO should already be initizlied in 836 * @bio_ctrl->mirror_num. 837 */ 838 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 839 u64 disk_bytenr, struct page *page, 840 size_t size, unsigned long pg_offset) 841 { 842 struct btrfs_inode *inode = page_to_inode(page); 843 844 ASSERT(pg_offset + size <= PAGE_SIZE); 845 ASSERT(bio_ctrl->end_io_func); 846 847 if (bio_ctrl->bbio && 848 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 849 submit_one_bio(bio_ctrl); 850 851 do { 852 u32 len = size; 853 854 /* Allocate new bio if needed */ 855 if (!bio_ctrl->bbio) { 856 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 857 page_offset(page) + pg_offset); 858 } 859 860 /* Cap to the current ordered extent boundary if there is one. */ 861 if (len > bio_ctrl->len_to_oe_boundary) { 862 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 863 ASSERT(is_data_inode(&inode->vfs_inode)); 864 len = bio_ctrl->len_to_oe_boundary; 865 } 866 867 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 868 /* bio full: move on to a new one */ 869 submit_one_bio(bio_ctrl); 870 continue; 871 } 872 873 if (bio_ctrl->wbc) 874 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 875 876 size -= len; 877 pg_offset += len; 878 disk_bytenr += len; 879 880 /* 881 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 882 * sector aligned. alloc_new_bio() then sets it to the end of 883 * our ordered extent for writes into zoned devices. 884 * 885 * When len_to_oe_boundary is tracking an ordered extent, we 886 * trust the ordered extent code to align things properly, and 887 * the check above to cap our write to the ordered extent 888 * boundary is correct. 889 * 890 * When len_to_oe_boundary is U32_MAX, the cap above would 891 * result in a 4095 byte IO for the last page right before 892 * we hit the bio limit of UINT_MAX. bio_add_page() has all 893 * the checks required to make sure we don't overflow the bio, 894 * and we should just ignore len_to_oe_boundary completely 895 * unless we're using it to track an ordered extent. 896 * 897 * It's pretty hard to make a bio sized U32_MAX, but it can 898 * happen when the page cache is able to feed us contiguous 899 * pages for large extents. 900 */ 901 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 902 bio_ctrl->len_to_oe_boundary -= len; 903 904 /* Ordered extent boundary: move on to a new bio. */ 905 if (bio_ctrl->len_to_oe_boundary == 0) 906 submit_one_bio(bio_ctrl); 907 } while (size); 908 } 909 910 static int attach_extent_buffer_folio(struct extent_buffer *eb, 911 struct folio *folio, 912 struct btrfs_subpage *prealloc) 913 { 914 struct btrfs_fs_info *fs_info = eb->fs_info; 915 int ret = 0; 916 917 /* 918 * If the page is mapped to btree inode, we should hold the private 919 * lock to prevent race. 920 * For cloned or dummy extent buffers, their pages are not mapped and 921 * will not race with any other ebs. 922 */ 923 if (folio->mapping) 924 lockdep_assert_held(&folio->mapping->i_private_lock); 925 926 if (fs_info->nodesize >= PAGE_SIZE) { 927 if (!folio_test_private(folio)) 928 folio_attach_private(folio, eb); 929 else 930 WARN_ON(folio_get_private(folio) != eb); 931 return 0; 932 } 933 934 /* Already mapped, just free prealloc */ 935 if (folio_test_private(folio)) { 936 btrfs_free_subpage(prealloc); 937 return 0; 938 } 939 940 if (prealloc) 941 /* Has preallocated memory for subpage */ 942 folio_attach_private(folio, prealloc); 943 else 944 /* Do new allocation to attach subpage */ 945 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 946 return ret; 947 } 948 949 int set_page_extent_mapped(struct page *page) 950 { 951 return set_folio_extent_mapped(page_folio(page)); 952 } 953 954 int set_folio_extent_mapped(struct folio *folio) 955 { 956 struct btrfs_fs_info *fs_info; 957 958 ASSERT(folio->mapping); 959 960 if (folio_test_private(folio)) 961 return 0; 962 963 fs_info = folio_to_fs_info(folio); 964 965 if (btrfs_is_subpage(fs_info, folio->mapping)) 966 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 967 968 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 969 return 0; 970 } 971 972 void clear_page_extent_mapped(struct page *page) 973 { 974 struct folio *folio = page_folio(page); 975 struct btrfs_fs_info *fs_info; 976 977 ASSERT(page->mapping); 978 979 if (!folio_test_private(folio)) 980 return; 981 982 fs_info = page_to_fs_info(page); 983 if (btrfs_is_subpage(fs_info, page->mapping)) 984 return btrfs_detach_subpage(fs_info, folio); 985 986 folio_detach_private(folio); 987 } 988 989 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page, 990 u64 start, u64 len, struct extent_map **em_cached) 991 { 992 struct extent_map *em; 993 994 ASSERT(em_cached); 995 996 if (*em_cached) { 997 em = *em_cached; 998 if (extent_map_in_tree(em) && start >= em->start && 999 start < extent_map_end(em)) { 1000 refcount_inc(&em->refs); 1001 return em; 1002 } 1003 1004 free_extent_map(em); 1005 *em_cached = NULL; 1006 } 1007 1008 em = btrfs_get_extent(BTRFS_I(inode), page, start, len); 1009 if (!IS_ERR(em)) { 1010 BUG_ON(*em_cached); 1011 refcount_inc(&em->refs); 1012 *em_cached = em; 1013 } 1014 return em; 1015 } 1016 /* 1017 * basic readpage implementation. Locked extent state structs are inserted 1018 * into the tree that are removed when the IO is done (by the end_io 1019 * handlers) 1020 * XXX JDM: This needs looking at to ensure proper page locking 1021 * return 0 on success, otherwise return error 1022 */ 1023 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1024 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1025 { 1026 struct inode *inode = page->mapping->host; 1027 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1028 u64 start = page_offset(page); 1029 const u64 end = start + PAGE_SIZE - 1; 1030 u64 cur = start; 1031 u64 extent_offset; 1032 u64 last_byte = i_size_read(inode); 1033 u64 block_start; 1034 struct extent_map *em; 1035 int ret = 0; 1036 size_t pg_offset = 0; 1037 size_t iosize; 1038 size_t blocksize = fs_info->sectorsize; 1039 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1040 1041 ret = set_page_extent_mapped(page); 1042 if (ret < 0) { 1043 unlock_extent(tree, start, end, NULL); 1044 unlock_page(page); 1045 return ret; 1046 } 1047 1048 if (page->index == last_byte >> PAGE_SHIFT) { 1049 size_t zero_offset = offset_in_page(last_byte); 1050 1051 if (zero_offset) { 1052 iosize = PAGE_SIZE - zero_offset; 1053 memzero_page(page, zero_offset, iosize); 1054 } 1055 } 1056 bio_ctrl->end_io_func = end_bbio_data_read; 1057 begin_page_read(fs_info, page); 1058 while (cur <= end) { 1059 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1060 bool force_bio_submit = false; 1061 u64 disk_bytenr; 1062 1063 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1064 if (cur >= last_byte) { 1065 iosize = PAGE_SIZE - pg_offset; 1066 memzero_page(page, pg_offset, iosize); 1067 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1068 end_page_read(page, true, cur, iosize); 1069 break; 1070 } 1071 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached); 1072 if (IS_ERR(em)) { 1073 unlock_extent(tree, cur, end, NULL); 1074 end_page_read(page, false, cur, end + 1 - cur); 1075 return PTR_ERR(em); 1076 } 1077 extent_offset = cur - em->start; 1078 BUG_ON(extent_map_end(em) <= cur); 1079 BUG_ON(end < cur); 1080 1081 compress_type = extent_map_compression(em); 1082 1083 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1084 iosize = ALIGN(iosize, blocksize); 1085 if (compress_type != BTRFS_COMPRESS_NONE) 1086 disk_bytenr = em->block_start; 1087 else 1088 disk_bytenr = em->block_start + extent_offset; 1089 block_start = em->block_start; 1090 if (em->flags & EXTENT_FLAG_PREALLOC) 1091 block_start = EXTENT_MAP_HOLE; 1092 1093 /* 1094 * If we have a file range that points to a compressed extent 1095 * and it's followed by a consecutive file range that points 1096 * to the same compressed extent (possibly with a different 1097 * offset and/or length, so it either points to the whole extent 1098 * or only part of it), we must make sure we do not submit a 1099 * single bio to populate the pages for the 2 ranges because 1100 * this makes the compressed extent read zero out the pages 1101 * belonging to the 2nd range. Imagine the following scenario: 1102 * 1103 * File layout 1104 * [0 - 8K] [8K - 24K] 1105 * | | 1106 * | | 1107 * points to extent X, points to extent X, 1108 * offset 4K, length of 8K offset 0, length 16K 1109 * 1110 * [extent X, compressed length = 4K uncompressed length = 16K] 1111 * 1112 * If the bio to read the compressed extent covers both ranges, 1113 * it will decompress extent X into the pages belonging to the 1114 * first range and then it will stop, zeroing out the remaining 1115 * pages that belong to the other range that points to extent X. 1116 * So here we make sure we submit 2 bios, one for the first 1117 * range and another one for the third range. Both will target 1118 * the same physical extent from disk, but we can't currently 1119 * make the compressed bio endio callback populate the pages 1120 * for both ranges because each compressed bio is tightly 1121 * coupled with a single extent map, and each range can have 1122 * an extent map with a different offset value relative to the 1123 * uncompressed data of our extent and different lengths. This 1124 * is a corner case so we prioritize correctness over 1125 * non-optimal behavior (submitting 2 bios for the same extent). 1126 */ 1127 if (compress_type != BTRFS_COMPRESS_NONE && 1128 prev_em_start && *prev_em_start != (u64)-1 && 1129 *prev_em_start != em->start) 1130 force_bio_submit = true; 1131 1132 if (prev_em_start) 1133 *prev_em_start = em->start; 1134 1135 free_extent_map(em); 1136 em = NULL; 1137 1138 /* we've found a hole, just zero and go on */ 1139 if (block_start == EXTENT_MAP_HOLE) { 1140 memzero_page(page, pg_offset, iosize); 1141 1142 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1143 end_page_read(page, true, cur, iosize); 1144 cur = cur + iosize; 1145 pg_offset += iosize; 1146 continue; 1147 } 1148 /* the get_extent function already copied into the page */ 1149 if (block_start == EXTENT_MAP_INLINE) { 1150 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1151 end_page_read(page, true, cur, iosize); 1152 cur = cur + iosize; 1153 pg_offset += iosize; 1154 continue; 1155 } 1156 1157 if (bio_ctrl->compress_type != compress_type) { 1158 submit_one_bio(bio_ctrl); 1159 bio_ctrl->compress_type = compress_type; 1160 } 1161 1162 if (force_bio_submit) 1163 submit_one_bio(bio_ctrl); 1164 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1165 pg_offset); 1166 cur = cur + iosize; 1167 pg_offset += iosize; 1168 } 1169 1170 return 0; 1171 } 1172 1173 int btrfs_read_folio(struct file *file, struct folio *folio) 1174 { 1175 struct page *page = &folio->page; 1176 struct btrfs_inode *inode = page_to_inode(page); 1177 u64 start = page_offset(page); 1178 u64 end = start + PAGE_SIZE - 1; 1179 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1180 struct extent_map *em_cached = NULL; 1181 int ret; 1182 1183 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1184 1185 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL); 1186 free_extent_map(em_cached); 1187 1188 /* 1189 * If btrfs_do_readpage() failed we will want to submit the assembled 1190 * bio to do the cleanup. 1191 */ 1192 submit_one_bio(&bio_ctrl); 1193 return ret; 1194 } 1195 1196 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1197 u64 start, u64 end, 1198 struct extent_map **em_cached, 1199 struct btrfs_bio_ctrl *bio_ctrl, 1200 u64 *prev_em_start) 1201 { 1202 struct btrfs_inode *inode = page_to_inode(pages[0]); 1203 int index; 1204 1205 ASSERT(em_cached); 1206 1207 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1208 1209 for (index = 0; index < nr_pages; index++) { 1210 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1211 prev_em_start); 1212 put_page(pages[index]); 1213 } 1214 } 1215 1216 /* 1217 * helper for __extent_writepage, doing all of the delayed allocation setup. 1218 * 1219 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1220 * to write the page (copy into inline extent). In this case the IO has 1221 * been started and the page is already unlocked. 1222 * 1223 * This returns 0 if all went well (page still locked) 1224 * This returns < 0 if there were errors (page still locked) 1225 */ 1226 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1227 struct page *page, struct writeback_control *wbc) 1228 { 1229 const u64 page_start = page_offset(page); 1230 const u64 page_end = page_start + PAGE_SIZE - 1; 1231 u64 delalloc_start = page_start; 1232 u64 delalloc_end = page_end; 1233 u64 delalloc_to_write = 0; 1234 int ret = 0; 1235 1236 while (delalloc_start < page_end) { 1237 delalloc_end = page_end; 1238 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1239 &delalloc_start, &delalloc_end)) { 1240 delalloc_start = delalloc_end + 1; 1241 continue; 1242 } 1243 1244 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1245 delalloc_end, wbc); 1246 if (ret < 0) 1247 return ret; 1248 1249 delalloc_start = delalloc_end + 1; 1250 } 1251 1252 /* 1253 * delalloc_end is already one less than the total length, so 1254 * we don't subtract one from PAGE_SIZE 1255 */ 1256 delalloc_to_write += 1257 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1258 1259 /* 1260 * If btrfs_run_dealloc_range() already started I/O and unlocked 1261 * the pages, we just need to account for them here. 1262 */ 1263 if (ret == 1) { 1264 wbc->nr_to_write -= delalloc_to_write; 1265 return 1; 1266 } 1267 1268 if (wbc->nr_to_write < delalloc_to_write) { 1269 int thresh = 8192; 1270 1271 if (delalloc_to_write < thresh * 2) 1272 thresh = delalloc_to_write; 1273 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1274 thresh); 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Find the first byte we need to write. 1282 * 1283 * For subpage, one page can contain several sectors, and 1284 * __extent_writepage_io() will just grab all extent maps in the page 1285 * range and try to submit all non-inline/non-compressed extents. 1286 * 1287 * This is a big problem for subpage, we shouldn't re-submit already written 1288 * data at all. 1289 * This function will lookup subpage dirty bit to find which range we really 1290 * need to submit. 1291 * 1292 * Return the next dirty range in [@start, @end). 1293 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1294 */ 1295 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1296 struct page *page, u64 *start, u64 *end) 1297 { 1298 struct folio *folio = page_folio(page); 1299 struct btrfs_subpage *subpage = folio_get_private(folio); 1300 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1301 u64 orig_start = *start; 1302 /* Declare as unsigned long so we can use bitmap ops */ 1303 unsigned long flags; 1304 int range_start_bit; 1305 int range_end_bit; 1306 1307 /* 1308 * For regular sector size == page size case, since one page only 1309 * contains one sector, we return the page offset directly. 1310 */ 1311 if (!btrfs_is_subpage(fs_info, page->mapping)) { 1312 *start = page_offset(page); 1313 *end = page_offset(page) + PAGE_SIZE; 1314 return; 1315 } 1316 1317 range_start_bit = spi->dirty_offset + 1318 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1319 1320 /* We should have the page locked, but just in case */ 1321 spin_lock_irqsave(&subpage->lock, flags); 1322 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1323 spi->dirty_offset + spi->bitmap_nr_bits); 1324 spin_unlock_irqrestore(&subpage->lock, flags); 1325 1326 range_start_bit -= spi->dirty_offset; 1327 range_end_bit -= spi->dirty_offset; 1328 1329 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1330 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1331 } 1332 1333 /* 1334 * helper for __extent_writepage. This calls the writepage start hooks, 1335 * and does the loop to map the page into extents and bios. 1336 * 1337 * We return 1 if the IO is started and the page is unlocked, 1338 * 0 if all went well (page still locked) 1339 * < 0 if there were errors (page still locked) 1340 */ 1341 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1342 struct page *page, 1343 struct btrfs_bio_ctrl *bio_ctrl, 1344 loff_t i_size, 1345 int *nr_ret) 1346 { 1347 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1348 u64 cur = page_offset(page); 1349 u64 end = cur + PAGE_SIZE - 1; 1350 u64 extent_offset; 1351 u64 block_start; 1352 struct extent_map *em; 1353 int ret = 0; 1354 int nr = 0; 1355 1356 ret = btrfs_writepage_cow_fixup(page); 1357 if (ret) { 1358 /* Fixup worker will requeue */ 1359 redirty_page_for_writepage(bio_ctrl->wbc, page); 1360 unlock_page(page); 1361 return 1; 1362 } 1363 1364 bio_ctrl->end_io_func = end_bbio_data_write; 1365 while (cur <= end) { 1366 u32 len = end - cur + 1; 1367 u64 disk_bytenr; 1368 u64 em_end; 1369 u64 dirty_range_start = cur; 1370 u64 dirty_range_end; 1371 u32 iosize; 1372 1373 if (cur >= i_size) { 1374 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1375 true); 1376 /* 1377 * This range is beyond i_size, thus we don't need to 1378 * bother writing back. 1379 * But we still need to clear the dirty subpage bit, or 1380 * the next time the page gets dirtied, we will try to 1381 * writeback the sectors with subpage dirty bits, 1382 * causing writeback without ordered extent. 1383 */ 1384 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len); 1385 break; 1386 } 1387 1388 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1389 &dirty_range_end); 1390 if (cur < dirty_range_start) { 1391 cur = dirty_range_start; 1392 continue; 1393 } 1394 1395 em = btrfs_get_extent(inode, NULL, cur, len); 1396 if (IS_ERR(em)) { 1397 ret = PTR_ERR_OR_ZERO(em); 1398 goto out_error; 1399 } 1400 1401 extent_offset = cur - em->start; 1402 em_end = extent_map_end(em); 1403 ASSERT(cur <= em_end); 1404 ASSERT(cur < end); 1405 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1406 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1407 1408 block_start = em->block_start; 1409 disk_bytenr = em->block_start + extent_offset; 1410 1411 ASSERT(!extent_map_is_compressed(em)); 1412 ASSERT(block_start != EXTENT_MAP_HOLE); 1413 ASSERT(block_start != EXTENT_MAP_INLINE); 1414 1415 /* 1416 * Note that em_end from extent_map_end() and dirty_range_end from 1417 * find_next_dirty_byte() are all exclusive 1418 */ 1419 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1420 free_extent_map(em); 1421 em = NULL; 1422 1423 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1424 if (!PageWriteback(page)) { 1425 btrfs_err(inode->root->fs_info, 1426 "page %lu not writeback, cur %llu end %llu", 1427 page->index, cur, end); 1428 } 1429 1430 /* 1431 * Although the PageDirty bit is cleared before entering this 1432 * function, subpage dirty bit is not cleared. 1433 * So clear subpage dirty bit here so next time we won't submit 1434 * page for range already written to disk. 1435 */ 1436 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize); 1437 1438 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1439 cur - page_offset(page)); 1440 cur += iosize; 1441 nr++; 1442 } 1443 1444 btrfs_folio_assert_not_dirty(fs_info, page_folio(page)); 1445 *nr_ret = nr; 1446 return 0; 1447 1448 out_error: 1449 /* 1450 * If we finish without problem, we should not only clear page dirty, 1451 * but also empty subpage dirty bits 1452 */ 1453 *nr_ret = nr; 1454 return ret; 1455 } 1456 1457 /* 1458 * the writepage semantics are similar to regular writepage. extent 1459 * records are inserted to lock ranges in the tree, and as dirty areas 1460 * are found, they are marked writeback. Then the lock bits are removed 1461 * and the end_io handler clears the writeback ranges 1462 * 1463 * Return 0 if everything goes well. 1464 * Return <0 for error. 1465 */ 1466 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1467 { 1468 struct folio *folio = page_folio(page); 1469 struct inode *inode = page->mapping->host; 1470 const u64 page_start = page_offset(page); 1471 int ret; 1472 int nr = 0; 1473 size_t pg_offset; 1474 loff_t i_size = i_size_read(inode); 1475 unsigned long end_index = i_size >> PAGE_SHIFT; 1476 1477 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1478 1479 WARN_ON(!PageLocked(page)); 1480 1481 pg_offset = offset_in_page(i_size); 1482 if (page->index > end_index || 1483 (page->index == end_index && !pg_offset)) { 1484 folio_invalidate(folio, 0, folio_size(folio)); 1485 folio_unlock(folio); 1486 return 0; 1487 } 1488 1489 if (page->index == end_index) 1490 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1491 1492 ret = set_page_extent_mapped(page); 1493 if (ret < 0) 1494 goto done; 1495 1496 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1497 if (ret == 1) 1498 return 0; 1499 if (ret) 1500 goto done; 1501 1502 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1503 if (ret == 1) 1504 return 0; 1505 1506 bio_ctrl->wbc->nr_to_write--; 1507 1508 done: 1509 if (nr == 0) { 1510 /* make sure the mapping tag for page dirty gets cleared */ 1511 set_page_writeback(page); 1512 end_page_writeback(page); 1513 } 1514 if (ret) { 1515 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1516 PAGE_SIZE, !ret); 1517 mapping_set_error(page->mapping, ret); 1518 } 1519 unlock_page(page); 1520 ASSERT(ret <= 0); 1521 return ret; 1522 } 1523 1524 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1525 { 1526 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1527 TASK_UNINTERRUPTIBLE); 1528 } 1529 1530 /* 1531 * Lock extent buffer status and pages for writeback. 1532 * 1533 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1534 * extent buffer is not dirty) 1535 * Return %true is the extent buffer is submitted to bio. 1536 */ 1537 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1538 struct writeback_control *wbc) 1539 { 1540 struct btrfs_fs_info *fs_info = eb->fs_info; 1541 bool ret = false; 1542 1543 btrfs_tree_lock(eb); 1544 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1545 btrfs_tree_unlock(eb); 1546 if (wbc->sync_mode != WB_SYNC_ALL) 1547 return false; 1548 wait_on_extent_buffer_writeback(eb); 1549 btrfs_tree_lock(eb); 1550 } 1551 1552 /* 1553 * We need to do this to prevent races in people who check if the eb is 1554 * under IO since we can end up having no IO bits set for a short period 1555 * of time. 1556 */ 1557 spin_lock(&eb->refs_lock); 1558 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1559 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1560 spin_unlock(&eb->refs_lock); 1561 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1562 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1563 -eb->len, 1564 fs_info->dirty_metadata_batch); 1565 ret = true; 1566 } else { 1567 spin_unlock(&eb->refs_lock); 1568 } 1569 btrfs_tree_unlock(eb); 1570 return ret; 1571 } 1572 1573 static void set_btree_ioerr(struct extent_buffer *eb) 1574 { 1575 struct btrfs_fs_info *fs_info = eb->fs_info; 1576 1577 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1578 1579 /* 1580 * A read may stumble upon this buffer later, make sure that it gets an 1581 * error and knows there was an error. 1582 */ 1583 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1584 1585 /* 1586 * We need to set the mapping with the io error as well because a write 1587 * error will flip the file system readonly, and then syncfs() will 1588 * return a 0 because we are readonly if we don't modify the err seq for 1589 * the superblock. 1590 */ 1591 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1592 1593 /* 1594 * If writeback for a btree extent that doesn't belong to a log tree 1595 * failed, increment the counter transaction->eb_write_errors. 1596 * We do this because while the transaction is running and before it's 1597 * committing (when we call filemap_fdata[write|wait]_range against 1598 * the btree inode), we might have 1599 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1600 * returns an error or an error happens during writeback, when we're 1601 * committing the transaction we wouldn't know about it, since the pages 1602 * can be no longer dirty nor marked anymore for writeback (if a 1603 * subsequent modification to the extent buffer didn't happen before the 1604 * transaction commit), which makes filemap_fdata[write|wait]_range not 1605 * able to find the pages which contain errors at transaction 1606 * commit time. So if this happens we must abort the transaction, 1607 * otherwise we commit a super block with btree roots that point to 1608 * btree nodes/leafs whose content on disk is invalid - either garbage 1609 * or the content of some node/leaf from a past generation that got 1610 * cowed or deleted and is no longer valid. 1611 * 1612 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1613 * not be enough - we need to distinguish between log tree extents vs 1614 * non-log tree extents, and the next filemap_fdatawait_range() call 1615 * will catch and clear such errors in the mapping - and that call might 1616 * be from a log sync and not from a transaction commit. Also, checking 1617 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1618 * not done and would not be reliable - the eb might have been released 1619 * from memory and reading it back again means that flag would not be 1620 * set (since it's a runtime flag, not persisted on disk). 1621 * 1622 * Using the flags below in the btree inode also makes us achieve the 1623 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1624 * writeback for all dirty pages and before filemap_fdatawait_range() 1625 * is called, the writeback for all dirty pages had already finished 1626 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1627 * filemap_fdatawait_range() would return success, as it could not know 1628 * that writeback errors happened (the pages were no longer tagged for 1629 * writeback). 1630 */ 1631 switch (eb->log_index) { 1632 case -1: 1633 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1634 break; 1635 case 0: 1636 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1637 break; 1638 case 1: 1639 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1640 break; 1641 default: 1642 BUG(); /* unexpected, logic error */ 1643 } 1644 } 1645 1646 /* 1647 * The endio specific version which won't touch any unsafe spinlock in endio 1648 * context. 1649 */ 1650 static struct extent_buffer *find_extent_buffer_nolock( 1651 struct btrfs_fs_info *fs_info, u64 start) 1652 { 1653 struct extent_buffer *eb; 1654 1655 rcu_read_lock(); 1656 eb = radix_tree_lookup(&fs_info->buffer_radix, 1657 start >> fs_info->sectorsize_bits); 1658 if (eb && atomic_inc_not_zero(&eb->refs)) { 1659 rcu_read_unlock(); 1660 return eb; 1661 } 1662 rcu_read_unlock(); 1663 return NULL; 1664 } 1665 1666 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1667 { 1668 struct extent_buffer *eb = bbio->private; 1669 struct btrfs_fs_info *fs_info = eb->fs_info; 1670 bool uptodate = !bbio->bio.bi_status; 1671 struct folio_iter fi; 1672 u32 bio_offset = 0; 1673 1674 if (!uptodate) 1675 set_btree_ioerr(eb); 1676 1677 bio_for_each_folio_all(fi, &bbio->bio) { 1678 u64 start = eb->start + bio_offset; 1679 struct folio *folio = fi.folio; 1680 u32 len = fi.length; 1681 1682 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1683 bio_offset += len; 1684 } 1685 1686 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1687 smp_mb__after_atomic(); 1688 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1689 1690 bio_put(&bbio->bio); 1691 } 1692 1693 static void prepare_eb_write(struct extent_buffer *eb) 1694 { 1695 u32 nritems; 1696 unsigned long start; 1697 unsigned long end; 1698 1699 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1700 1701 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1702 nritems = btrfs_header_nritems(eb); 1703 if (btrfs_header_level(eb) > 0) { 1704 end = btrfs_node_key_ptr_offset(eb, nritems); 1705 memzero_extent_buffer(eb, end, eb->len - end); 1706 } else { 1707 /* 1708 * Leaf: 1709 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1710 */ 1711 start = btrfs_item_nr_offset(eb, nritems); 1712 end = btrfs_item_nr_offset(eb, 0); 1713 if (nritems == 0) 1714 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1715 else 1716 end += btrfs_item_offset(eb, nritems - 1); 1717 memzero_extent_buffer(eb, start, end - start); 1718 } 1719 } 1720 1721 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1722 struct writeback_control *wbc) 1723 { 1724 struct btrfs_fs_info *fs_info = eb->fs_info; 1725 struct btrfs_bio *bbio; 1726 1727 prepare_eb_write(eb); 1728 1729 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1730 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1731 eb->fs_info, end_bbio_meta_write, eb); 1732 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1733 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1734 wbc_init_bio(wbc, &bbio->bio); 1735 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1736 bbio->file_offset = eb->start; 1737 if (fs_info->nodesize < PAGE_SIZE) { 1738 struct folio *folio = eb->folios[0]; 1739 bool ret; 1740 1741 folio_lock(folio); 1742 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1743 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1744 eb->len)) { 1745 folio_clear_dirty_for_io(folio); 1746 wbc->nr_to_write--; 1747 } 1748 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1749 eb->start - folio_pos(folio)); 1750 ASSERT(ret); 1751 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1752 folio_unlock(folio); 1753 } else { 1754 int num_folios = num_extent_folios(eb); 1755 1756 for (int i = 0; i < num_folios; i++) { 1757 struct folio *folio = eb->folios[i]; 1758 bool ret; 1759 1760 folio_lock(folio); 1761 folio_clear_dirty_for_io(folio); 1762 folio_start_writeback(folio); 1763 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1764 ASSERT(ret); 1765 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1766 eb->folio_size); 1767 wbc->nr_to_write -= folio_nr_pages(folio); 1768 folio_unlock(folio); 1769 } 1770 } 1771 btrfs_submit_bio(bbio, 0); 1772 } 1773 1774 /* 1775 * Submit one subpage btree page. 1776 * 1777 * The main difference to submit_eb_page() is: 1778 * - Page locking 1779 * For subpage, we don't rely on page locking at all. 1780 * 1781 * - Flush write bio 1782 * We only flush bio if we may be unable to fit current extent buffers into 1783 * current bio. 1784 * 1785 * Return >=0 for the number of submitted extent buffers. 1786 * Return <0 for fatal error. 1787 */ 1788 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1789 { 1790 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 1791 struct folio *folio = page_folio(page); 1792 int submitted = 0; 1793 u64 page_start = page_offset(page); 1794 int bit_start = 0; 1795 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1796 1797 /* Lock and write each dirty extent buffers in the range */ 1798 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1799 struct btrfs_subpage *subpage = folio_get_private(folio); 1800 struct extent_buffer *eb; 1801 unsigned long flags; 1802 u64 start; 1803 1804 /* 1805 * Take private lock to ensure the subpage won't be detached 1806 * in the meantime. 1807 */ 1808 spin_lock(&page->mapping->i_private_lock); 1809 if (!folio_test_private(folio)) { 1810 spin_unlock(&page->mapping->i_private_lock); 1811 break; 1812 } 1813 spin_lock_irqsave(&subpage->lock, flags); 1814 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1815 subpage->bitmaps)) { 1816 spin_unlock_irqrestore(&subpage->lock, flags); 1817 spin_unlock(&page->mapping->i_private_lock); 1818 bit_start++; 1819 continue; 1820 } 1821 1822 start = page_start + bit_start * fs_info->sectorsize; 1823 bit_start += sectors_per_node; 1824 1825 /* 1826 * Here we just want to grab the eb without touching extra 1827 * spin locks, so call find_extent_buffer_nolock(). 1828 */ 1829 eb = find_extent_buffer_nolock(fs_info, start); 1830 spin_unlock_irqrestore(&subpage->lock, flags); 1831 spin_unlock(&page->mapping->i_private_lock); 1832 1833 /* 1834 * The eb has already reached 0 refs thus find_extent_buffer() 1835 * doesn't return it. We don't need to write back such eb 1836 * anyway. 1837 */ 1838 if (!eb) 1839 continue; 1840 1841 if (lock_extent_buffer_for_io(eb, wbc)) { 1842 write_one_eb(eb, wbc); 1843 submitted++; 1844 } 1845 free_extent_buffer(eb); 1846 } 1847 return submitted; 1848 } 1849 1850 /* 1851 * Submit all page(s) of one extent buffer. 1852 * 1853 * @page: the page of one extent buffer 1854 * @eb_context: to determine if we need to submit this page, if current page 1855 * belongs to this eb, we don't need to submit 1856 * 1857 * The caller should pass each page in their bytenr order, and here we use 1858 * @eb_context to determine if we have submitted pages of one extent buffer. 1859 * 1860 * If we have, we just skip until we hit a new page that doesn't belong to 1861 * current @eb_context. 1862 * 1863 * If not, we submit all the page(s) of the extent buffer. 1864 * 1865 * Return >0 if we have submitted the extent buffer successfully. 1866 * Return 0 if we don't need to submit the page, as it's already submitted by 1867 * previous call. 1868 * Return <0 for fatal error. 1869 */ 1870 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1871 { 1872 struct writeback_control *wbc = ctx->wbc; 1873 struct address_space *mapping = page->mapping; 1874 struct folio *folio = page_folio(page); 1875 struct extent_buffer *eb; 1876 int ret; 1877 1878 if (!folio_test_private(folio)) 1879 return 0; 1880 1881 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 1882 return submit_eb_subpage(page, wbc); 1883 1884 spin_lock(&mapping->i_private_lock); 1885 if (!folio_test_private(folio)) { 1886 spin_unlock(&mapping->i_private_lock); 1887 return 0; 1888 } 1889 1890 eb = folio_get_private(folio); 1891 1892 /* 1893 * Shouldn't happen and normally this would be a BUG_ON but no point 1894 * crashing the machine for something we can survive anyway. 1895 */ 1896 if (WARN_ON(!eb)) { 1897 spin_unlock(&mapping->i_private_lock); 1898 return 0; 1899 } 1900 1901 if (eb == ctx->eb) { 1902 spin_unlock(&mapping->i_private_lock); 1903 return 0; 1904 } 1905 ret = atomic_inc_not_zero(&eb->refs); 1906 spin_unlock(&mapping->i_private_lock); 1907 if (!ret) 1908 return 0; 1909 1910 ctx->eb = eb; 1911 1912 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1913 if (ret) { 1914 if (ret == -EBUSY) 1915 ret = 0; 1916 free_extent_buffer(eb); 1917 return ret; 1918 } 1919 1920 if (!lock_extent_buffer_for_io(eb, wbc)) { 1921 free_extent_buffer(eb); 1922 return 0; 1923 } 1924 /* Implies write in zoned mode. */ 1925 if (ctx->zoned_bg) { 1926 /* Mark the last eb in the block group. */ 1927 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1928 ctx->zoned_bg->meta_write_pointer += eb->len; 1929 } 1930 write_one_eb(eb, wbc); 1931 free_extent_buffer(eb); 1932 return 1; 1933 } 1934 1935 int btree_write_cache_pages(struct address_space *mapping, 1936 struct writeback_control *wbc) 1937 { 1938 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1939 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1940 int ret = 0; 1941 int done = 0; 1942 int nr_to_write_done = 0; 1943 struct folio_batch fbatch; 1944 unsigned int nr_folios; 1945 pgoff_t index; 1946 pgoff_t end; /* Inclusive */ 1947 int scanned = 0; 1948 xa_mark_t tag; 1949 1950 folio_batch_init(&fbatch); 1951 if (wbc->range_cyclic) { 1952 index = mapping->writeback_index; /* Start from prev offset */ 1953 end = -1; 1954 /* 1955 * Start from the beginning does not need to cycle over the 1956 * range, mark it as scanned. 1957 */ 1958 scanned = (index == 0); 1959 } else { 1960 index = wbc->range_start >> PAGE_SHIFT; 1961 end = wbc->range_end >> PAGE_SHIFT; 1962 scanned = 1; 1963 } 1964 if (wbc->sync_mode == WB_SYNC_ALL) 1965 tag = PAGECACHE_TAG_TOWRITE; 1966 else 1967 tag = PAGECACHE_TAG_DIRTY; 1968 btrfs_zoned_meta_io_lock(fs_info); 1969 retry: 1970 if (wbc->sync_mode == WB_SYNC_ALL) 1971 tag_pages_for_writeback(mapping, index, end); 1972 while (!done && !nr_to_write_done && (index <= end) && 1973 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1974 tag, &fbatch))) { 1975 unsigned i; 1976 1977 for (i = 0; i < nr_folios; i++) { 1978 struct folio *folio = fbatch.folios[i]; 1979 1980 ret = submit_eb_page(&folio->page, &ctx); 1981 if (ret == 0) 1982 continue; 1983 if (ret < 0) { 1984 done = 1; 1985 break; 1986 } 1987 1988 /* 1989 * the filesystem may choose to bump up nr_to_write. 1990 * We have to make sure to honor the new nr_to_write 1991 * at any time 1992 */ 1993 nr_to_write_done = wbc->nr_to_write <= 0; 1994 } 1995 folio_batch_release(&fbatch); 1996 cond_resched(); 1997 } 1998 if (!scanned && !done) { 1999 /* 2000 * We hit the last page and there is more work to be done: wrap 2001 * back to the start of the file 2002 */ 2003 scanned = 1; 2004 index = 0; 2005 goto retry; 2006 } 2007 /* 2008 * If something went wrong, don't allow any metadata write bio to be 2009 * submitted. 2010 * 2011 * This would prevent use-after-free if we had dirty pages not 2012 * cleaned up, which can still happen by fuzzed images. 2013 * 2014 * - Bad extent tree 2015 * Allowing existing tree block to be allocated for other trees. 2016 * 2017 * - Log tree operations 2018 * Exiting tree blocks get allocated to log tree, bumps its 2019 * generation, then get cleaned in tree re-balance. 2020 * Such tree block will not be written back, since it's clean, 2021 * thus no WRITTEN flag set. 2022 * And after log writes back, this tree block is not traced by 2023 * any dirty extent_io_tree. 2024 * 2025 * - Offending tree block gets re-dirtied from its original owner 2026 * Since it has bumped generation, no WRITTEN flag, it can be 2027 * reused without COWing. This tree block will not be traced 2028 * by btrfs_transaction::dirty_pages. 2029 * 2030 * Now such dirty tree block will not be cleaned by any dirty 2031 * extent io tree. Thus we don't want to submit such wild eb 2032 * if the fs already has error. 2033 * 2034 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2035 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2036 */ 2037 if (ret > 0) 2038 ret = 0; 2039 if (!ret && BTRFS_FS_ERROR(fs_info)) 2040 ret = -EROFS; 2041 2042 if (ctx.zoned_bg) 2043 btrfs_put_block_group(ctx.zoned_bg); 2044 btrfs_zoned_meta_io_unlock(fs_info); 2045 return ret; 2046 } 2047 2048 /* 2049 * Walk the list of dirty pages of the given address space and write all of them. 2050 * 2051 * @mapping: address space structure to write 2052 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2053 * @bio_ctrl: holds context for the write, namely the bio 2054 * 2055 * If a page is already under I/O, write_cache_pages() skips it, even 2056 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2057 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2058 * and msync() need to guarantee that all the data which was dirty at the time 2059 * the call was made get new I/O started against them. If wbc->sync_mode is 2060 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2061 * existing IO to complete. 2062 */ 2063 static int extent_write_cache_pages(struct address_space *mapping, 2064 struct btrfs_bio_ctrl *bio_ctrl) 2065 { 2066 struct writeback_control *wbc = bio_ctrl->wbc; 2067 struct inode *inode = mapping->host; 2068 int ret = 0; 2069 int done = 0; 2070 int nr_to_write_done = 0; 2071 struct folio_batch fbatch; 2072 unsigned int nr_folios; 2073 pgoff_t index; 2074 pgoff_t end; /* Inclusive */ 2075 pgoff_t done_index; 2076 int range_whole = 0; 2077 int scanned = 0; 2078 xa_mark_t tag; 2079 2080 /* 2081 * We have to hold onto the inode so that ordered extents can do their 2082 * work when the IO finishes. The alternative to this is failing to add 2083 * an ordered extent if the igrab() fails there and that is a huge pain 2084 * to deal with, so instead just hold onto the inode throughout the 2085 * writepages operation. If it fails here we are freeing up the inode 2086 * anyway and we'd rather not waste our time writing out stuff that is 2087 * going to be truncated anyway. 2088 */ 2089 if (!igrab(inode)) 2090 return 0; 2091 2092 folio_batch_init(&fbatch); 2093 if (wbc->range_cyclic) { 2094 index = mapping->writeback_index; /* Start from prev offset */ 2095 end = -1; 2096 /* 2097 * Start from the beginning does not need to cycle over the 2098 * range, mark it as scanned. 2099 */ 2100 scanned = (index == 0); 2101 } else { 2102 index = wbc->range_start >> PAGE_SHIFT; 2103 end = wbc->range_end >> PAGE_SHIFT; 2104 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2105 range_whole = 1; 2106 scanned = 1; 2107 } 2108 2109 /* 2110 * We do the tagged writepage as long as the snapshot flush bit is set 2111 * and we are the first one who do the filemap_flush() on this inode. 2112 * 2113 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2114 * not race in and drop the bit. 2115 */ 2116 if (range_whole && wbc->nr_to_write == LONG_MAX && 2117 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2118 &BTRFS_I(inode)->runtime_flags)) 2119 wbc->tagged_writepages = 1; 2120 2121 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2122 tag = PAGECACHE_TAG_TOWRITE; 2123 else 2124 tag = PAGECACHE_TAG_DIRTY; 2125 retry: 2126 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2127 tag_pages_for_writeback(mapping, index, end); 2128 done_index = index; 2129 while (!done && !nr_to_write_done && (index <= end) && 2130 (nr_folios = filemap_get_folios_tag(mapping, &index, 2131 end, tag, &fbatch))) { 2132 unsigned i; 2133 2134 for (i = 0; i < nr_folios; i++) { 2135 struct folio *folio = fbatch.folios[i]; 2136 2137 done_index = folio_next_index(folio); 2138 /* 2139 * At this point we hold neither the i_pages lock nor 2140 * the page lock: the page may be truncated or 2141 * invalidated (changing page->mapping to NULL), 2142 * or even swizzled back from swapper_space to 2143 * tmpfs file mapping 2144 */ 2145 if (!folio_trylock(folio)) { 2146 submit_write_bio(bio_ctrl, 0); 2147 folio_lock(folio); 2148 } 2149 2150 if (unlikely(folio->mapping != mapping)) { 2151 folio_unlock(folio); 2152 continue; 2153 } 2154 2155 if (!folio_test_dirty(folio)) { 2156 /* Someone wrote it for us. */ 2157 folio_unlock(folio); 2158 continue; 2159 } 2160 2161 if (wbc->sync_mode != WB_SYNC_NONE) { 2162 if (folio_test_writeback(folio)) 2163 submit_write_bio(bio_ctrl, 0); 2164 folio_wait_writeback(folio); 2165 } 2166 2167 if (folio_test_writeback(folio) || 2168 !folio_clear_dirty_for_io(folio)) { 2169 folio_unlock(folio); 2170 continue; 2171 } 2172 2173 ret = __extent_writepage(&folio->page, bio_ctrl); 2174 if (ret < 0) { 2175 done = 1; 2176 break; 2177 } 2178 2179 /* 2180 * The filesystem may choose to bump up nr_to_write. 2181 * We have to make sure to honor the new nr_to_write 2182 * at any time. 2183 */ 2184 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2185 wbc->nr_to_write <= 0); 2186 } 2187 folio_batch_release(&fbatch); 2188 cond_resched(); 2189 } 2190 if (!scanned && !done) { 2191 /* 2192 * We hit the last page and there is more work to be done: wrap 2193 * back to the start of the file 2194 */ 2195 scanned = 1; 2196 index = 0; 2197 2198 /* 2199 * If we're looping we could run into a page that is locked by a 2200 * writer and that writer could be waiting on writeback for a 2201 * page in our current bio, and thus deadlock, so flush the 2202 * write bio here. 2203 */ 2204 submit_write_bio(bio_ctrl, 0); 2205 goto retry; 2206 } 2207 2208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2209 mapping->writeback_index = done_index; 2210 2211 btrfs_add_delayed_iput(BTRFS_I(inode)); 2212 return ret; 2213 } 2214 2215 /* 2216 * Submit the pages in the range to bio for call sites which delalloc range has 2217 * already been ran (aka, ordered extent inserted) and all pages are still 2218 * locked. 2219 */ 2220 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2221 u64 start, u64 end, struct writeback_control *wbc, 2222 bool pages_dirty) 2223 { 2224 bool found_error = false; 2225 int ret = 0; 2226 struct address_space *mapping = inode->i_mapping; 2227 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2228 const u32 sectorsize = fs_info->sectorsize; 2229 loff_t i_size = i_size_read(inode); 2230 u64 cur = start; 2231 struct btrfs_bio_ctrl bio_ctrl = { 2232 .wbc = wbc, 2233 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2234 }; 2235 2236 if (wbc->no_cgroup_owner) 2237 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2238 2239 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2240 2241 while (cur <= end) { 2242 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2243 u32 cur_len = cur_end + 1 - cur; 2244 struct page *page; 2245 int nr = 0; 2246 2247 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2248 ASSERT(PageLocked(page)); 2249 if (pages_dirty && page != locked_page) { 2250 ASSERT(PageDirty(page)); 2251 clear_page_dirty_for_io(page); 2252 } 2253 2254 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2255 i_size, &nr); 2256 if (ret == 1) 2257 goto next_page; 2258 2259 /* Make sure the mapping tag for page dirty gets cleared. */ 2260 if (nr == 0) { 2261 set_page_writeback(page); 2262 end_page_writeback(page); 2263 } 2264 if (ret) { 2265 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2266 cur, cur_len, !ret); 2267 mapping_set_error(page->mapping, ret); 2268 } 2269 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len); 2270 if (ret < 0) 2271 found_error = true; 2272 next_page: 2273 put_page(page); 2274 cur = cur_end + 1; 2275 } 2276 2277 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2278 } 2279 2280 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2281 { 2282 struct inode *inode = mapping->host; 2283 int ret = 0; 2284 struct btrfs_bio_ctrl bio_ctrl = { 2285 .wbc = wbc, 2286 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2287 }; 2288 2289 /* 2290 * Allow only a single thread to do the reloc work in zoned mode to 2291 * protect the write pointer updates. 2292 */ 2293 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2294 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2295 submit_write_bio(&bio_ctrl, ret); 2296 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2297 return ret; 2298 } 2299 2300 void btrfs_readahead(struct readahead_control *rac) 2301 { 2302 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2303 struct page *pagepool[16]; 2304 struct extent_map *em_cached = NULL; 2305 u64 prev_em_start = (u64)-1; 2306 int nr; 2307 2308 while ((nr = readahead_page_batch(rac, pagepool))) { 2309 u64 contig_start = readahead_pos(rac); 2310 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2311 2312 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2313 &em_cached, &bio_ctrl, &prev_em_start); 2314 } 2315 2316 if (em_cached) 2317 free_extent_map(em_cached); 2318 submit_one_bio(&bio_ctrl); 2319 } 2320 2321 /* 2322 * basic invalidate_folio code, this waits on any locked or writeback 2323 * ranges corresponding to the folio, and then deletes any extent state 2324 * records from the tree 2325 */ 2326 int extent_invalidate_folio(struct extent_io_tree *tree, 2327 struct folio *folio, size_t offset) 2328 { 2329 struct extent_state *cached_state = NULL; 2330 u64 start = folio_pos(folio); 2331 u64 end = start + folio_size(folio) - 1; 2332 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2333 2334 /* This function is only called for the btree inode */ 2335 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2336 2337 start += ALIGN(offset, blocksize); 2338 if (start > end) 2339 return 0; 2340 2341 lock_extent(tree, start, end, &cached_state); 2342 folio_wait_writeback(folio); 2343 2344 /* 2345 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2346 * so here we only need to unlock the extent range to free any 2347 * existing extent state. 2348 */ 2349 unlock_extent(tree, start, end, &cached_state); 2350 return 0; 2351 } 2352 2353 /* 2354 * a helper for release_folio, this tests for areas of the page that 2355 * are locked or under IO and drops the related state bits if it is safe 2356 * to drop the page. 2357 */ 2358 static bool try_release_extent_state(struct extent_io_tree *tree, 2359 struct page *page, gfp_t mask) 2360 { 2361 u64 start = page_offset(page); 2362 u64 end = start + PAGE_SIZE - 1; 2363 bool ret; 2364 2365 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2366 ret = false; 2367 } else { 2368 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2369 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2370 EXTENT_QGROUP_RESERVED); 2371 int ret2; 2372 2373 /* 2374 * At this point we can safely clear everything except the 2375 * locked bit, the nodatasum bit and the delalloc new bit. 2376 * The delalloc new bit will be cleared by ordered extent 2377 * completion. 2378 */ 2379 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2380 2381 /* if clear_extent_bit failed for enomem reasons, 2382 * we can't allow the release to continue. 2383 */ 2384 if (ret2 < 0) 2385 ret = false; 2386 else 2387 ret = true; 2388 } 2389 return ret; 2390 } 2391 2392 /* 2393 * a helper for release_folio. As long as there are no locked extents 2394 * in the range corresponding to the page, both state records and extent 2395 * map records are removed 2396 */ 2397 bool try_release_extent_mapping(struct page *page, gfp_t mask) 2398 { 2399 u64 start = page_offset(page); 2400 u64 end = start + PAGE_SIZE - 1; 2401 struct btrfs_inode *inode = page_to_inode(page); 2402 struct extent_io_tree *io_tree = &inode->io_tree; 2403 2404 while (start <= end) { 2405 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2406 const u64 len = end - start + 1; 2407 struct extent_map_tree *extent_tree = &inode->extent_tree; 2408 struct extent_map *em; 2409 2410 write_lock(&extent_tree->lock); 2411 em = lookup_extent_mapping(extent_tree, start, len); 2412 if (!em) { 2413 write_unlock(&extent_tree->lock); 2414 break; 2415 } 2416 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2417 write_unlock(&extent_tree->lock); 2418 free_extent_map(em); 2419 break; 2420 } 2421 if (test_range_bit_exists(io_tree, em->start, 2422 extent_map_end(em) - 1, EXTENT_LOCKED)) 2423 goto next; 2424 /* 2425 * If it's not in the list of modified extents, used by a fast 2426 * fsync, we can remove it. If it's being logged we can safely 2427 * remove it since fsync took an extra reference on the em. 2428 */ 2429 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2430 goto remove_em; 2431 /* 2432 * If it's in the list of modified extents, remove it only if 2433 * its generation is older then the current one, in which case 2434 * we don't need it for a fast fsync. Otherwise don't remove it, 2435 * we could be racing with an ongoing fast fsync that could miss 2436 * the new extent. 2437 */ 2438 if (em->generation >= cur_gen) 2439 goto next; 2440 remove_em: 2441 /* 2442 * We only remove extent maps that are not in the list of 2443 * modified extents or that are in the list but with a 2444 * generation lower then the current generation, so there is no 2445 * need to set the full fsync flag on the inode (it hurts the 2446 * fsync performance for workloads with a data size that exceeds 2447 * or is close to the system's memory). 2448 */ 2449 remove_extent_mapping(inode, em); 2450 /* Once for the inode's extent map tree. */ 2451 free_extent_map(em); 2452 next: 2453 start = extent_map_end(em); 2454 write_unlock(&extent_tree->lock); 2455 2456 /* Once for us, for the lookup_extent_mapping() reference. */ 2457 free_extent_map(em); 2458 2459 if (need_resched()) { 2460 /* 2461 * If we need to resched but we can't block just exit 2462 * and leave any remaining extent maps. 2463 */ 2464 if (!gfpflags_allow_blocking(mask)) 2465 break; 2466 2467 cond_resched(); 2468 } 2469 } 2470 return try_release_extent_state(io_tree, page, mask); 2471 } 2472 2473 struct btrfs_fiemap_entry { 2474 u64 offset; 2475 u64 phys; 2476 u64 len; 2477 u32 flags; 2478 }; 2479 2480 /* 2481 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file 2482 * range from the inode's io tree, unlock the subvolume tree search path, flush 2483 * the fiemap cache and relock the file range and research the subvolume tree. 2484 * The value here is something negative that can't be confused with a valid 2485 * errno value and different from 1 because that's also a return value from 2486 * fiemap_fill_next_extent() and also it's often used to mean some btree search 2487 * did not find a key, so make it some distinct negative value. 2488 */ 2489 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1)) 2490 2491 /* 2492 * Used to: 2493 * 2494 * - Cache the next entry to be emitted to the fiemap buffer, so that we can 2495 * merge extents that are contiguous and can be grouped as a single one; 2496 * 2497 * - Store extents ready to be written to the fiemap buffer in an intermediary 2498 * buffer. This intermediary buffer is to ensure that in case the fiemap 2499 * buffer is memory mapped to the fiemap target file, we don't deadlock 2500 * during btrfs_page_mkwrite(). This is because during fiemap we are locking 2501 * an extent range in order to prevent races with delalloc flushing and 2502 * ordered extent completion, which is needed in order to reliably detect 2503 * delalloc in holes and prealloc extents. And this can lead to a deadlock 2504 * if the fiemap buffer is memory mapped to the file we are running fiemap 2505 * against (a silly, useless in practice scenario, but possible) because 2506 * btrfs_page_mkwrite() will try to lock the same extent range. 2507 */ 2508 struct fiemap_cache { 2509 /* An array of ready fiemap entries. */ 2510 struct btrfs_fiemap_entry *entries; 2511 /* Number of entries in the entries array. */ 2512 int entries_size; 2513 /* Index of the next entry in the entries array to write to. */ 2514 int entries_pos; 2515 /* 2516 * Once the entries array is full, this indicates what's the offset for 2517 * the next file extent item we must search for in the inode's subvolume 2518 * tree after unlocking the extent range in the inode's io tree and 2519 * releasing the search path. 2520 */ 2521 u64 next_search_offset; 2522 /* 2523 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it 2524 * to count ourselves emitted extents and stop instead of relying on 2525 * fiemap_fill_next_extent() because we buffer ready fiemap entries at 2526 * the @entries array, and we want to stop as soon as we hit the max 2527 * amount of extents to map, not just to save time but also to make the 2528 * logic at extent_fiemap() simpler. 2529 */ 2530 unsigned int extents_mapped; 2531 /* Fields for the cached extent (unsubmitted, not ready, extent). */ 2532 u64 offset; 2533 u64 phys; 2534 u64 len; 2535 u32 flags; 2536 bool cached; 2537 }; 2538 2539 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo, 2540 struct fiemap_cache *cache) 2541 { 2542 for (int i = 0; i < cache->entries_pos; i++) { 2543 struct btrfs_fiemap_entry *entry = &cache->entries[i]; 2544 int ret; 2545 2546 ret = fiemap_fill_next_extent(fieinfo, entry->offset, 2547 entry->phys, entry->len, 2548 entry->flags); 2549 /* 2550 * Ignore 1 (reached max entries) because we keep track of that 2551 * ourselves in emit_fiemap_extent(). 2552 */ 2553 if (ret < 0) 2554 return ret; 2555 } 2556 cache->entries_pos = 0; 2557 2558 return 0; 2559 } 2560 2561 /* 2562 * Helper to submit fiemap extent. 2563 * 2564 * Will try to merge current fiemap extent specified by @offset, @phys, 2565 * @len and @flags with cached one. 2566 * And only when we fails to merge, cached one will be submitted as 2567 * fiemap extent. 2568 * 2569 * Return value is the same as fiemap_fill_next_extent(). 2570 */ 2571 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2572 struct fiemap_cache *cache, 2573 u64 offset, u64 phys, u64 len, u32 flags) 2574 { 2575 struct btrfs_fiemap_entry *entry; 2576 u64 cache_end; 2577 2578 /* Set at the end of extent_fiemap(). */ 2579 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2580 2581 if (!cache->cached) 2582 goto assign; 2583 2584 /* 2585 * When iterating the extents of the inode, at extent_fiemap(), we may 2586 * find an extent that starts at an offset behind the end offset of the 2587 * previous extent we processed. This happens if fiemap is called 2588 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2589 * after we had to unlock the file range, release the search path, emit 2590 * the fiemap extents stored in the buffer (cache->entries array) and 2591 * the lock the remainder of the range and re-search the btree. 2592 * 2593 * For example we are in leaf X processing its last item, which is the 2594 * file extent item for file range [512K, 1M[, and after 2595 * btrfs_next_leaf() releases the path, there's an ordered extent that 2596 * completes for the file range [768K, 2M[, and that results in trimming 2597 * the file extent item so that it now corresponds to the file range 2598 * [512K, 768K[ and a new file extent item is inserted for the file 2599 * range [768K, 2M[, which may end up as the last item of leaf X or as 2600 * the first item of the next leaf - in either case btrfs_next_leaf() 2601 * will leave us with a path pointing to the new extent item, for the 2602 * file range [768K, 2M[, since that's the first key that follows the 2603 * last one we processed. So in order not to report overlapping extents 2604 * to user space, we trim the length of the previously cached extent and 2605 * emit it. 2606 * 2607 * Upon calling btrfs_next_leaf() we may also find an extent with an 2608 * offset smaller than or equals to cache->offset, and this happens 2609 * when we had a hole or prealloc extent with several delalloc ranges in 2610 * it, but after btrfs_next_leaf() released the path, delalloc was 2611 * flushed and the resulting ordered extents were completed, so we can 2612 * now have found a file extent item for an offset that is smaller than 2613 * or equals to what we have in cache->offset. We deal with this as 2614 * described below. 2615 */ 2616 cache_end = cache->offset + cache->len; 2617 if (cache_end > offset) { 2618 if (offset == cache->offset) { 2619 /* 2620 * We cached a dealloc range (found in the io tree) for 2621 * a hole or prealloc extent and we have now found a 2622 * file extent item for the same offset. What we have 2623 * now is more recent and up to date, so discard what 2624 * we had in the cache and use what we have just found. 2625 */ 2626 goto assign; 2627 } else if (offset > cache->offset) { 2628 /* 2629 * The extent range we previously found ends after the 2630 * offset of the file extent item we found and that 2631 * offset falls somewhere in the middle of that previous 2632 * extent range. So adjust the range we previously found 2633 * to end at the offset of the file extent item we have 2634 * just found, since this extent is more up to date. 2635 * Emit that adjusted range and cache the file extent 2636 * item we have just found. This corresponds to the case 2637 * where a previously found file extent item was split 2638 * due to an ordered extent completing. 2639 */ 2640 cache->len = offset - cache->offset; 2641 goto emit; 2642 } else { 2643 const u64 range_end = offset + len; 2644 2645 /* 2646 * The offset of the file extent item we have just found 2647 * is behind the cached offset. This means we were 2648 * processing a hole or prealloc extent for which we 2649 * have found delalloc ranges (in the io tree), so what 2650 * we have in the cache is the last delalloc range we 2651 * found while the file extent item we found can be 2652 * either for a whole delalloc range we previously 2653 * emmitted or only a part of that range. 2654 * 2655 * We have two cases here: 2656 * 2657 * 1) The file extent item's range ends at or behind the 2658 * cached extent's end. In this case just ignore the 2659 * current file extent item because we don't want to 2660 * overlap with previous ranges that may have been 2661 * emmitted already; 2662 * 2663 * 2) The file extent item starts behind the currently 2664 * cached extent but its end offset goes beyond the 2665 * end offset of the cached extent. We don't want to 2666 * overlap with a previous range that may have been 2667 * emmitted already, so we emit the currently cached 2668 * extent and then partially store the current file 2669 * extent item's range in the cache, for the subrange 2670 * going the cached extent's end to the end of the 2671 * file extent item. 2672 */ 2673 if (range_end <= cache_end) 2674 return 0; 2675 2676 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2677 phys += cache_end - offset; 2678 2679 offset = cache_end; 2680 len = range_end - cache_end; 2681 goto emit; 2682 } 2683 } 2684 2685 /* 2686 * Only merges fiemap extents if 2687 * 1) Their logical addresses are continuous 2688 * 2689 * 2) Their physical addresses are continuous 2690 * So truly compressed (physical size smaller than logical size) 2691 * extents won't get merged with each other 2692 * 2693 * 3) Share same flags 2694 */ 2695 if (cache->offset + cache->len == offset && 2696 cache->phys + cache->len == phys && 2697 cache->flags == flags) { 2698 cache->len += len; 2699 return 0; 2700 } 2701 2702 emit: 2703 /* Not mergeable, need to submit cached one */ 2704 2705 if (cache->entries_pos == cache->entries_size) { 2706 /* 2707 * We will need to research for the end offset of the last 2708 * stored extent and not from the current offset, because after 2709 * unlocking the range and releasing the path, if there's a hole 2710 * between that end offset and this current offset, a new extent 2711 * may have been inserted due to a new write, so we don't want 2712 * to miss it. 2713 */ 2714 entry = &cache->entries[cache->entries_size - 1]; 2715 cache->next_search_offset = entry->offset + entry->len; 2716 cache->cached = false; 2717 2718 return BTRFS_FIEMAP_FLUSH_CACHE; 2719 } 2720 2721 entry = &cache->entries[cache->entries_pos]; 2722 entry->offset = cache->offset; 2723 entry->phys = cache->phys; 2724 entry->len = cache->len; 2725 entry->flags = cache->flags; 2726 cache->entries_pos++; 2727 cache->extents_mapped++; 2728 2729 if (cache->extents_mapped == fieinfo->fi_extents_max) { 2730 cache->cached = false; 2731 return 1; 2732 } 2733 assign: 2734 cache->cached = true; 2735 cache->offset = offset; 2736 cache->phys = phys; 2737 cache->len = len; 2738 cache->flags = flags; 2739 2740 return 0; 2741 } 2742 2743 /* 2744 * Emit last fiemap cache 2745 * 2746 * The last fiemap cache may still be cached in the following case: 2747 * 0 4k 8k 2748 * |<- Fiemap range ->| 2749 * |<------------ First extent ----------->| 2750 * 2751 * In this case, the first extent range will be cached but not emitted. 2752 * So we must emit it before ending extent_fiemap(). 2753 */ 2754 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2755 struct fiemap_cache *cache) 2756 { 2757 int ret; 2758 2759 if (!cache->cached) 2760 return 0; 2761 2762 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2763 cache->len, cache->flags); 2764 cache->cached = false; 2765 if (ret > 0) 2766 ret = 0; 2767 return ret; 2768 } 2769 2770 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2771 { 2772 struct extent_buffer *clone = path->nodes[0]; 2773 struct btrfs_key key; 2774 int slot; 2775 int ret; 2776 2777 path->slots[0]++; 2778 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2779 return 0; 2780 2781 /* 2782 * Add a temporary extra ref to an already cloned extent buffer to 2783 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid 2784 * the cost of allocating a new one. 2785 */ 2786 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags)); 2787 atomic_inc(&clone->refs); 2788 2789 ret = btrfs_next_leaf(inode->root, path); 2790 if (ret != 0) 2791 goto out; 2792 2793 /* 2794 * Don't bother with cloning if there are no more file extent items for 2795 * our inode. 2796 */ 2797 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2798 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) { 2799 ret = 1; 2800 goto out; 2801 } 2802 2803 /* 2804 * Important to preserve the start field, for the optimizations when 2805 * checking if extents are shared (see extent_fiemap()). 2806 * 2807 * We must set ->start before calling copy_extent_buffer_full(). If we 2808 * are on sub-pagesize blocksize, we use ->start to determine the offset 2809 * into the folio where our eb exists, and if we update ->start after 2810 * the fact then any subsequent reads of the eb may read from a 2811 * different offset in the folio than where we originally copied into. 2812 */ 2813 clone->start = path->nodes[0]->start; 2814 /* See the comment at fiemap_search_slot() about why we clone. */ 2815 copy_extent_buffer_full(clone, path->nodes[0]); 2816 2817 slot = path->slots[0]; 2818 btrfs_release_path(path); 2819 path->nodes[0] = clone; 2820 path->slots[0] = slot; 2821 out: 2822 if (ret) 2823 free_extent_buffer(clone); 2824 2825 return ret; 2826 } 2827 2828 /* 2829 * Search for the first file extent item that starts at a given file offset or 2830 * the one that starts immediately before that offset. 2831 * Returns: 0 on success, < 0 on error, 1 if not found. 2832 */ 2833 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2834 u64 file_offset) 2835 { 2836 const u64 ino = btrfs_ino(inode); 2837 struct btrfs_root *root = inode->root; 2838 struct extent_buffer *clone; 2839 struct btrfs_key key; 2840 int slot; 2841 int ret; 2842 2843 key.objectid = ino; 2844 key.type = BTRFS_EXTENT_DATA_KEY; 2845 key.offset = file_offset; 2846 2847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2848 if (ret < 0) 2849 return ret; 2850 2851 if (ret > 0 && path->slots[0] > 0) { 2852 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2853 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2854 path->slots[0]--; 2855 } 2856 2857 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2858 ret = btrfs_next_leaf(root, path); 2859 if (ret != 0) 2860 return ret; 2861 2862 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2863 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2864 return 1; 2865 } 2866 2867 /* 2868 * We clone the leaf and use it during fiemap. This is because while 2869 * using the leaf we do expensive things like checking if an extent is 2870 * shared, which can take a long time. In order to prevent blocking 2871 * other tasks for too long, we use a clone of the leaf. We have locked 2872 * the file range in the inode's io tree, so we know none of our file 2873 * extent items can change. This way we avoid blocking other tasks that 2874 * want to insert items for other inodes in the same leaf or b+tree 2875 * rebalance operations (triggered for example when someone is trying 2876 * to push items into this leaf when trying to insert an item in a 2877 * neighbour leaf). 2878 * We also need the private clone because holding a read lock on an 2879 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2880 * when we check if extents are shared, as backref walking may need to 2881 * lock the same leaf we are processing. 2882 */ 2883 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2884 if (!clone) 2885 return -ENOMEM; 2886 2887 slot = path->slots[0]; 2888 btrfs_release_path(path); 2889 path->nodes[0] = clone; 2890 path->slots[0] = slot; 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2897 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2898 * extent. The end offset (@end) is inclusive. 2899 */ 2900 static int fiemap_process_hole(struct btrfs_inode *inode, 2901 struct fiemap_extent_info *fieinfo, 2902 struct fiemap_cache *cache, 2903 struct extent_state **delalloc_cached_state, 2904 struct btrfs_backref_share_check_ctx *backref_ctx, 2905 u64 disk_bytenr, u64 extent_offset, 2906 u64 extent_gen, 2907 u64 start, u64 end) 2908 { 2909 const u64 i_size = i_size_read(&inode->vfs_inode); 2910 u64 cur_offset = start; 2911 u64 last_delalloc_end = 0; 2912 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2913 bool checked_extent_shared = false; 2914 int ret; 2915 2916 /* 2917 * There can be no delalloc past i_size, so don't waste time looking for 2918 * it beyond i_size. 2919 */ 2920 while (cur_offset < end && cur_offset < i_size) { 2921 u64 delalloc_start; 2922 u64 delalloc_end; 2923 u64 prealloc_start; 2924 u64 prealloc_len = 0; 2925 bool delalloc; 2926 2927 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2928 delalloc_cached_state, 2929 &delalloc_start, 2930 &delalloc_end); 2931 if (!delalloc) 2932 break; 2933 2934 /* 2935 * If this is a prealloc extent we have to report every section 2936 * of it that has no delalloc. 2937 */ 2938 if (disk_bytenr != 0) { 2939 if (last_delalloc_end == 0) { 2940 prealloc_start = start; 2941 prealloc_len = delalloc_start - start; 2942 } else { 2943 prealloc_start = last_delalloc_end + 1; 2944 prealloc_len = delalloc_start - prealloc_start; 2945 } 2946 } 2947 2948 if (prealloc_len > 0) { 2949 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2950 ret = btrfs_is_data_extent_shared(inode, 2951 disk_bytenr, 2952 extent_gen, 2953 backref_ctx); 2954 if (ret < 0) 2955 return ret; 2956 else if (ret > 0) 2957 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2958 2959 checked_extent_shared = true; 2960 } 2961 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2962 disk_bytenr + extent_offset, 2963 prealloc_len, prealloc_flags); 2964 if (ret) 2965 return ret; 2966 extent_offset += prealloc_len; 2967 } 2968 2969 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2970 delalloc_end + 1 - delalloc_start, 2971 FIEMAP_EXTENT_DELALLOC | 2972 FIEMAP_EXTENT_UNKNOWN); 2973 if (ret) 2974 return ret; 2975 2976 last_delalloc_end = delalloc_end; 2977 cur_offset = delalloc_end + 1; 2978 extent_offset += cur_offset - delalloc_start; 2979 cond_resched(); 2980 } 2981 2982 /* 2983 * Either we found no delalloc for the whole prealloc extent or we have 2984 * a prealloc extent that spans i_size or starts at or after i_size. 2985 */ 2986 if (disk_bytenr != 0 && last_delalloc_end < end) { 2987 u64 prealloc_start; 2988 u64 prealloc_len; 2989 2990 if (last_delalloc_end == 0) { 2991 prealloc_start = start; 2992 prealloc_len = end + 1 - start; 2993 } else { 2994 prealloc_start = last_delalloc_end + 1; 2995 prealloc_len = end + 1 - prealloc_start; 2996 } 2997 2998 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2999 ret = btrfs_is_data_extent_shared(inode, 3000 disk_bytenr, 3001 extent_gen, 3002 backref_ctx); 3003 if (ret < 0) 3004 return ret; 3005 else if (ret > 0) 3006 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3007 } 3008 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3009 disk_bytenr + extent_offset, 3010 prealloc_len, prealloc_flags); 3011 if (ret) 3012 return ret; 3013 } 3014 3015 return 0; 3016 } 3017 3018 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3019 struct btrfs_path *path, 3020 u64 *last_extent_end_ret) 3021 { 3022 const u64 ino = btrfs_ino(inode); 3023 struct btrfs_root *root = inode->root; 3024 struct extent_buffer *leaf; 3025 struct btrfs_file_extent_item *ei; 3026 struct btrfs_key key; 3027 u64 disk_bytenr; 3028 int ret; 3029 3030 /* 3031 * Lookup the last file extent. We're not using i_size here because 3032 * there might be preallocation past i_size. 3033 */ 3034 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3035 /* There can't be a file extent item at offset (u64)-1 */ 3036 ASSERT(ret != 0); 3037 if (ret < 0) 3038 return ret; 3039 3040 /* 3041 * For a non-existing key, btrfs_search_slot() always leaves us at a 3042 * slot > 0, except if the btree is empty, which is impossible because 3043 * at least it has the inode item for this inode and all the items for 3044 * the root inode 256. 3045 */ 3046 ASSERT(path->slots[0] > 0); 3047 path->slots[0]--; 3048 leaf = path->nodes[0]; 3049 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3050 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3051 /* No file extent items in the subvolume tree. */ 3052 *last_extent_end_ret = 0; 3053 return 0; 3054 } 3055 3056 /* 3057 * For an inline extent, the disk_bytenr is where inline data starts at, 3058 * so first check if we have an inline extent item before checking if we 3059 * have an implicit hole (disk_bytenr == 0). 3060 */ 3061 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3062 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3063 *last_extent_end_ret = btrfs_file_extent_end(path); 3064 return 0; 3065 } 3066 3067 /* 3068 * Find the last file extent item that is not a hole (when NO_HOLES is 3069 * not enabled). This should take at most 2 iterations in the worst 3070 * case: we have one hole file extent item at slot 0 of a leaf and 3071 * another hole file extent item as the last item in the previous leaf. 3072 * This is because we merge file extent items that represent holes. 3073 */ 3074 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3075 while (disk_bytenr == 0) { 3076 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3077 if (ret < 0) { 3078 return ret; 3079 } else if (ret > 0) { 3080 /* No file extent items that are not holes. */ 3081 *last_extent_end_ret = 0; 3082 return 0; 3083 } 3084 leaf = path->nodes[0]; 3085 ei = btrfs_item_ptr(leaf, path->slots[0], 3086 struct btrfs_file_extent_item); 3087 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3088 } 3089 3090 *last_extent_end_ret = btrfs_file_extent_end(path); 3091 return 0; 3092 } 3093 3094 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3095 u64 start, u64 len) 3096 { 3097 const u64 ino = btrfs_ino(inode); 3098 struct extent_state *cached_state = NULL; 3099 struct extent_state *delalloc_cached_state = NULL; 3100 struct btrfs_path *path; 3101 struct fiemap_cache cache = { 0 }; 3102 struct btrfs_backref_share_check_ctx *backref_ctx; 3103 u64 last_extent_end; 3104 u64 prev_extent_end; 3105 u64 range_start; 3106 u64 range_end; 3107 const u64 sectorsize = inode->root->fs_info->sectorsize; 3108 bool stopped = false; 3109 int ret; 3110 3111 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry); 3112 cache.entries = kmalloc_array(cache.entries_size, 3113 sizeof(struct btrfs_fiemap_entry), 3114 GFP_KERNEL); 3115 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3116 path = btrfs_alloc_path(); 3117 if (!cache.entries || !backref_ctx || !path) { 3118 ret = -ENOMEM; 3119 goto out; 3120 } 3121 3122 restart: 3123 range_start = round_down(start, sectorsize); 3124 range_end = round_up(start + len, sectorsize); 3125 prev_extent_end = range_start; 3126 3127 lock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3128 3129 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3130 if (ret < 0) 3131 goto out_unlock; 3132 btrfs_release_path(path); 3133 3134 path->reada = READA_FORWARD; 3135 ret = fiemap_search_slot(inode, path, range_start); 3136 if (ret < 0) { 3137 goto out_unlock; 3138 } else if (ret > 0) { 3139 /* 3140 * No file extent item found, but we may have delalloc between 3141 * the current offset and i_size. So check for that. 3142 */ 3143 ret = 0; 3144 goto check_eof_delalloc; 3145 } 3146 3147 while (prev_extent_end < range_end) { 3148 struct extent_buffer *leaf = path->nodes[0]; 3149 struct btrfs_file_extent_item *ei; 3150 struct btrfs_key key; 3151 u64 extent_end; 3152 u64 extent_len; 3153 u64 extent_offset = 0; 3154 u64 extent_gen; 3155 u64 disk_bytenr = 0; 3156 u64 flags = 0; 3157 int extent_type; 3158 u8 compression; 3159 3160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3161 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3162 break; 3163 3164 extent_end = btrfs_file_extent_end(path); 3165 3166 /* 3167 * The first iteration can leave us at an extent item that ends 3168 * before our range's start. Move to the next item. 3169 */ 3170 if (extent_end <= range_start) 3171 goto next_item; 3172 3173 backref_ctx->curr_leaf_bytenr = leaf->start; 3174 3175 /* We have in implicit hole (NO_HOLES feature enabled). */ 3176 if (prev_extent_end < key.offset) { 3177 const u64 hole_end = min(key.offset, range_end) - 1; 3178 3179 ret = fiemap_process_hole(inode, fieinfo, &cache, 3180 &delalloc_cached_state, 3181 backref_ctx, 0, 0, 0, 3182 prev_extent_end, hole_end); 3183 if (ret < 0) { 3184 goto out_unlock; 3185 } else if (ret > 0) { 3186 /* fiemap_fill_next_extent() told us to stop. */ 3187 stopped = true; 3188 break; 3189 } 3190 3191 /* We've reached the end of the fiemap range, stop. */ 3192 if (key.offset >= range_end) { 3193 stopped = true; 3194 break; 3195 } 3196 } 3197 3198 extent_len = extent_end - key.offset; 3199 ei = btrfs_item_ptr(leaf, path->slots[0], 3200 struct btrfs_file_extent_item); 3201 compression = btrfs_file_extent_compression(leaf, ei); 3202 extent_type = btrfs_file_extent_type(leaf, ei); 3203 extent_gen = btrfs_file_extent_generation(leaf, ei); 3204 3205 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3207 if (compression == BTRFS_COMPRESS_NONE) 3208 extent_offset = btrfs_file_extent_offset(leaf, ei); 3209 } 3210 3211 if (compression != BTRFS_COMPRESS_NONE) 3212 flags |= FIEMAP_EXTENT_ENCODED; 3213 3214 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3215 flags |= FIEMAP_EXTENT_DATA_INLINE; 3216 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3217 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3218 extent_len, flags); 3219 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3220 ret = fiemap_process_hole(inode, fieinfo, &cache, 3221 &delalloc_cached_state, 3222 backref_ctx, 3223 disk_bytenr, extent_offset, 3224 extent_gen, key.offset, 3225 extent_end - 1); 3226 } else if (disk_bytenr == 0) { 3227 /* We have an explicit hole. */ 3228 ret = fiemap_process_hole(inode, fieinfo, &cache, 3229 &delalloc_cached_state, 3230 backref_ctx, 0, 0, 0, 3231 key.offset, extent_end - 1); 3232 } else { 3233 /* We have a regular extent. */ 3234 if (fieinfo->fi_extents_max) { 3235 ret = btrfs_is_data_extent_shared(inode, 3236 disk_bytenr, 3237 extent_gen, 3238 backref_ctx); 3239 if (ret < 0) 3240 goto out_unlock; 3241 else if (ret > 0) 3242 flags |= FIEMAP_EXTENT_SHARED; 3243 } 3244 3245 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3246 disk_bytenr + extent_offset, 3247 extent_len, flags); 3248 } 3249 3250 if (ret < 0) { 3251 goto out_unlock; 3252 } else if (ret > 0) { 3253 /* emit_fiemap_extent() told us to stop. */ 3254 stopped = true; 3255 break; 3256 } 3257 3258 prev_extent_end = extent_end; 3259 next_item: 3260 if (fatal_signal_pending(current)) { 3261 ret = -EINTR; 3262 goto out_unlock; 3263 } 3264 3265 ret = fiemap_next_leaf_item(inode, path); 3266 if (ret < 0) { 3267 goto out_unlock; 3268 } else if (ret > 0) { 3269 /* No more file extent items for this inode. */ 3270 break; 3271 } 3272 cond_resched(); 3273 } 3274 3275 check_eof_delalloc: 3276 if (!stopped && prev_extent_end < range_end) { 3277 ret = fiemap_process_hole(inode, fieinfo, &cache, 3278 &delalloc_cached_state, backref_ctx, 3279 0, 0, 0, prev_extent_end, range_end - 1); 3280 if (ret < 0) 3281 goto out_unlock; 3282 prev_extent_end = range_end; 3283 } 3284 3285 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3286 const u64 i_size = i_size_read(&inode->vfs_inode); 3287 3288 if (prev_extent_end < i_size) { 3289 u64 delalloc_start; 3290 u64 delalloc_end; 3291 bool delalloc; 3292 3293 delalloc = btrfs_find_delalloc_in_range(inode, 3294 prev_extent_end, 3295 i_size - 1, 3296 &delalloc_cached_state, 3297 &delalloc_start, 3298 &delalloc_end); 3299 if (!delalloc) 3300 cache.flags |= FIEMAP_EXTENT_LAST; 3301 } else { 3302 cache.flags |= FIEMAP_EXTENT_LAST; 3303 } 3304 } 3305 3306 out_unlock: 3307 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3308 3309 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) { 3310 btrfs_release_path(path); 3311 ret = flush_fiemap_cache(fieinfo, &cache); 3312 if (ret) 3313 goto out; 3314 len -= cache.next_search_offset - start; 3315 start = cache.next_search_offset; 3316 goto restart; 3317 } else if (ret < 0) { 3318 goto out; 3319 } 3320 3321 /* 3322 * Must free the path before emitting to the fiemap buffer because we 3323 * may have a non-cloned leaf and if the fiemap buffer is memory mapped 3324 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger 3325 * waiting for an ordered extent that in order to complete needs to 3326 * modify that leaf, therefore leading to a deadlock. 3327 */ 3328 btrfs_free_path(path); 3329 path = NULL; 3330 3331 ret = flush_fiemap_cache(fieinfo, &cache); 3332 if (ret) 3333 goto out; 3334 3335 ret = emit_last_fiemap_cache(fieinfo, &cache); 3336 out: 3337 free_extent_state(delalloc_cached_state); 3338 kfree(cache.entries); 3339 btrfs_free_backref_share_ctx(backref_ctx); 3340 btrfs_free_path(path); 3341 return ret; 3342 } 3343 3344 static void __free_extent_buffer(struct extent_buffer *eb) 3345 { 3346 kmem_cache_free(extent_buffer_cache, eb); 3347 } 3348 3349 static int extent_buffer_under_io(const struct extent_buffer *eb) 3350 { 3351 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3352 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3353 } 3354 3355 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 3356 { 3357 struct btrfs_subpage *subpage; 3358 3359 lockdep_assert_held(&folio->mapping->i_private_lock); 3360 3361 if (folio_test_private(folio)) { 3362 subpage = folio_get_private(folio); 3363 if (atomic_read(&subpage->eb_refs)) 3364 return true; 3365 /* 3366 * Even there is no eb refs here, we may still have 3367 * end_page_read() call relying on page::private. 3368 */ 3369 if (atomic_read(&subpage->readers)) 3370 return true; 3371 } 3372 return false; 3373 } 3374 3375 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio) 3376 { 3377 struct btrfs_fs_info *fs_info = eb->fs_info; 3378 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3379 3380 /* 3381 * For mapped eb, we're going to change the folio private, which should 3382 * be done under the i_private_lock. 3383 */ 3384 if (mapped) 3385 spin_lock(&folio->mapping->i_private_lock); 3386 3387 if (!folio_test_private(folio)) { 3388 if (mapped) 3389 spin_unlock(&folio->mapping->i_private_lock); 3390 return; 3391 } 3392 3393 if (fs_info->nodesize >= PAGE_SIZE) { 3394 /* 3395 * We do this since we'll remove the pages after we've 3396 * removed the eb from the radix tree, so we could race 3397 * and have this page now attached to the new eb. So 3398 * only clear folio if it's still connected to 3399 * this eb. 3400 */ 3401 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 3402 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3403 BUG_ON(folio_test_dirty(folio)); 3404 BUG_ON(folio_test_writeback(folio)); 3405 /* We need to make sure we haven't be attached to a new eb. */ 3406 folio_detach_private(folio); 3407 } 3408 if (mapped) 3409 spin_unlock(&folio->mapping->i_private_lock); 3410 return; 3411 } 3412 3413 /* 3414 * For subpage, we can have dummy eb with folio private attached. In 3415 * this case, we can directly detach the private as such folio is only 3416 * attached to one dummy eb, no sharing. 3417 */ 3418 if (!mapped) { 3419 btrfs_detach_subpage(fs_info, folio); 3420 return; 3421 } 3422 3423 btrfs_folio_dec_eb_refs(fs_info, folio); 3424 3425 /* 3426 * We can only detach the folio private if there are no other ebs in the 3427 * page range and no unfinished IO. 3428 */ 3429 if (!folio_range_has_eb(fs_info, folio)) 3430 btrfs_detach_subpage(fs_info, folio); 3431 3432 spin_unlock(&folio->mapping->i_private_lock); 3433 } 3434 3435 /* Release all pages attached to the extent buffer */ 3436 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3437 { 3438 ASSERT(!extent_buffer_under_io(eb)); 3439 3440 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 3441 struct folio *folio = eb->folios[i]; 3442 3443 if (!folio) 3444 continue; 3445 3446 detach_extent_buffer_folio(eb, folio); 3447 3448 /* One for when we allocated the folio. */ 3449 folio_put(folio); 3450 } 3451 } 3452 3453 /* 3454 * Helper for releasing the extent buffer. 3455 */ 3456 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3457 { 3458 btrfs_release_extent_buffer_pages(eb); 3459 btrfs_leak_debug_del_eb(eb); 3460 __free_extent_buffer(eb); 3461 } 3462 3463 static struct extent_buffer * 3464 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3465 unsigned long len) 3466 { 3467 struct extent_buffer *eb = NULL; 3468 3469 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3470 eb->start = start; 3471 eb->len = len; 3472 eb->fs_info = fs_info; 3473 init_rwsem(&eb->lock); 3474 3475 btrfs_leak_debug_add_eb(eb); 3476 3477 spin_lock_init(&eb->refs_lock); 3478 atomic_set(&eb->refs, 1); 3479 3480 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3481 3482 return eb; 3483 } 3484 3485 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3486 { 3487 struct extent_buffer *new; 3488 int num_folios = num_extent_folios(src); 3489 int ret; 3490 3491 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3492 if (new == NULL) 3493 return NULL; 3494 3495 /* 3496 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3497 * btrfs_release_extent_buffer() have different behavior for 3498 * UNMAPPED subpage extent buffer. 3499 */ 3500 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3501 3502 ret = alloc_eb_folio_array(new, 0); 3503 if (ret) { 3504 btrfs_release_extent_buffer(new); 3505 return NULL; 3506 } 3507 3508 for (int i = 0; i < num_folios; i++) { 3509 struct folio *folio = new->folios[i]; 3510 int ret; 3511 3512 ret = attach_extent_buffer_folio(new, folio, NULL); 3513 if (ret < 0) { 3514 btrfs_release_extent_buffer(new); 3515 return NULL; 3516 } 3517 WARN_ON(folio_test_dirty(folio)); 3518 } 3519 copy_extent_buffer_full(new, src); 3520 set_extent_buffer_uptodate(new); 3521 3522 return new; 3523 } 3524 3525 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3526 u64 start, unsigned long len) 3527 { 3528 struct extent_buffer *eb; 3529 int num_folios = 0; 3530 int ret; 3531 3532 eb = __alloc_extent_buffer(fs_info, start, len); 3533 if (!eb) 3534 return NULL; 3535 3536 ret = alloc_eb_folio_array(eb, 0); 3537 if (ret) 3538 goto err; 3539 3540 num_folios = num_extent_folios(eb); 3541 for (int i = 0; i < num_folios; i++) { 3542 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3543 if (ret < 0) 3544 goto err; 3545 } 3546 3547 set_extent_buffer_uptodate(eb); 3548 btrfs_set_header_nritems(eb, 0); 3549 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3550 3551 return eb; 3552 err: 3553 for (int i = 0; i < num_folios; i++) { 3554 if (eb->folios[i]) { 3555 detach_extent_buffer_folio(eb, eb->folios[i]); 3556 __folio_put(eb->folios[i]); 3557 } 3558 } 3559 __free_extent_buffer(eb); 3560 return NULL; 3561 } 3562 3563 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3564 u64 start) 3565 { 3566 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3567 } 3568 3569 static void check_buffer_tree_ref(struct extent_buffer *eb) 3570 { 3571 int refs; 3572 /* 3573 * The TREE_REF bit is first set when the extent_buffer is added 3574 * to the radix tree. It is also reset, if unset, when a new reference 3575 * is created by find_extent_buffer. 3576 * 3577 * It is only cleared in two cases: freeing the last non-tree 3578 * reference to the extent_buffer when its STALE bit is set or 3579 * calling release_folio when the tree reference is the only reference. 3580 * 3581 * In both cases, care is taken to ensure that the extent_buffer's 3582 * pages are not under io. However, release_folio can be concurrently 3583 * called with creating new references, which is prone to race 3584 * conditions between the calls to check_buffer_tree_ref in those 3585 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3586 * 3587 * The actual lifetime of the extent_buffer in the radix tree is 3588 * adequately protected by the refcount, but the TREE_REF bit and 3589 * its corresponding reference are not. To protect against this 3590 * class of races, we call check_buffer_tree_ref from the codepaths 3591 * which trigger io. Note that once io is initiated, TREE_REF can no 3592 * longer be cleared, so that is the moment at which any such race is 3593 * best fixed. 3594 */ 3595 refs = atomic_read(&eb->refs); 3596 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3597 return; 3598 3599 spin_lock(&eb->refs_lock); 3600 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3601 atomic_inc(&eb->refs); 3602 spin_unlock(&eb->refs_lock); 3603 } 3604 3605 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3606 { 3607 int num_folios= num_extent_folios(eb); 3608 3609 check_buffer_tree_ref(eb); 3610 3611 for (int i = 0; i < num_folios; i++) 3612 folio_mark_accessed(eb->folios[i]); 3613 } 3614 3615 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3616 u64 start) 3617 { 3618 struct extent_buffer *eb; 3619 3620 eb = find_extent_buffer_nolock(fs_info, start); 3621 if (!eb) 3622 return NULL; 3623 /* 3624 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3625 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3626 * another task running free_extent_buffer() might have seen that flag 3627 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3628 * writeback flags not set) and it's still in the tree (flag 3629 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3630 * decrementing the extent buffer's reference count twice. So here we 3631 * could race and increment the eb's reference count, clear its stale 3632 * flag, mark it as dirty and drop our reference before the other task 3633 * finishes executing free_extent_buffer, which would later result in 3634 * an attempt to free an extent buffer that is dirty. 3635 */ 3636 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3637 spin_lock(&eb->refs_lock); 3638 spin_unlock(&eb->refs_lock); 3639 } 3640 mark_extent_buffer_accessed(eb); 3641 return eb; 3642 } 3643 3644 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3645 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3646 u64 start) 3647 { 3648 struct extent_buffer *eb, *exists = NULL; 3649 int ret; 3650 3651 eb = find_extent_buffer(fs_info, start); 3652 if (eb) 3653 return eb; 3654 eb = alloc_dummy_extent_buffer(fs_info, start); 3655 if (!eb) 3656 return ERR_PTR(-ENOMEM); 3657 eb->fs_info = fs_info; 3658 again: 3659 ret = radix_tree_preload(GFP_NOFS); 3660 if (ret) { 3661 exists = ERR_PTR(ret); 3662 goto free_eb; 3663 } 3664 spin_lock(&fs_info->buffer_lock); 3665 ret = radix_tree_insert(&fs_info->buffer_radix, 3666 start >> fs_info->sectorsize_bits, eb); 3667 spin_unlock(&fs_info->buffer_lock); 3668 radix_tree_preload_end(); 3669 if (ret == -EEXIST) { 3670 exists = find_extent_buffer(fs_info, start); 3671 if (exists) 3672 goto free_eb; 3673 else 3674 goto again; 3675 } 3676 check_buffer_tree_ref(eb); 3677 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3678 3679 return eb; 3680 free_eb: 3681 btrfs_release_extent_buffer(eb); 3682 return exists; 3683 } 3684 #endif 3685 3686 static struct extent_buffer *grab_extent_buffer( 3687 struct btrfs_fs_info *fs_info, struct page *page) 3688 { 3689 struct folio *folio = page_folio(page); 3690 struct extent_buffer *exists; 3691 3692 /* 3693 * For subpage case, we completely rely on radix tree to ensure we 3694 * don't try to insert two ebs for the same bytenr. So here we always 3695 * return NULL and just continue. 3696 */ 3697 if (fs_info->nodesize < PAGE_SIZE) 3698 return NULL; 3699 3700 /* Page not yet attached to an extent buffer */ 3701 if (!folio_test_private(folio)) 3702 return NULL; 3703 3704 /* 3705 * We could have already allocated an eb for this page and attached one 3706 * so lets see if we can get a ref on the existing eb, and if we can we 3707 * know it's good and we can just return that one, else we know we can 3708 * just overwrite folio private. 3709 */ 3710 exists = folio_get_private(folio); 3711 if (atomic_inc_not_zero(&exists->refs)) 3712 return exists; 3713 3714 WARN_ON(PageDirty(page)); 3715 folio_detach_private(folio); 3716 return NULL; 3717 } 3718 3719 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3720 { 3721 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3722 btrfs_err(fs_info, "bad tree block start %llu", start); 3723 return -EINVAL; 3724 } 3725 3726 if (fs_info->nodesize < PAGE_SIZE && 3727 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3728 btrfs_err(fs_info, 3729 "tree block crosses page boundary, start %llu nodesize %u", 3730 start, fs_info->nodesize); 3731 return -EINVAL; 3732 } 3733 if (fs_info->nodesize >= PAGE_SIZE && 3734 !PAGE_ALIGNED(start)) { 3735 btrfs_err(fs_info, 3736 "tree block is not page aligned, start %llu nodesize %u", 3737 start, fs_info->nodesize); 3738 return -EINVAL; 3739 } 3740 if (!IS_ALIGNED(start, fs_info->nodesize) && 3741 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3742 btrfs_warn(fs_info, 3743 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3744 start, fs_info->nodesize); 3745 } 3746 return 0; 3747 } 3748 3749 3750 /* 3751 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3752 * Return >0 if there is already another extent buffer for the range, 3753 * and @found_eb_ret would be updated. 3754 * Return -EAGAIN if the filemap has an existing folio but with different size 3755 * than @eb. 3756 * The caller needs to free the existing folios and retry using the same order. 3757 */ 3758 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3759 struct extent_buffer **found_eb_ret) 3760 { 3761 3762 struct btrfs_fs_info *fs_info = eb->fs_info; 3763 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3764 const unsigned long index = eb->start >> PAGE_SHIFT; 3765 struct folio *existing_folio; 3766 int ret; 3767 3768 ASSERT(found_eb_ret); 3769 3770 /* Caller should ensure the folio exists. */ 3771 ASSERT(eb->folios[i]); 3772 3773 retry: 3774 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3775 GFP_NOFS | __GFP_NOFAIL); 3776 if (!ret) 3777 return 0; 3778 3779 existing_folio = filemap_lock_folio(mapping, index + i); 3780 /* The page cache only exists for a very short time, just retry. */ 3781 if (IS_ERR(existing_folio)) 3782 goto retry; 3783 3784 /* For now, we should only have single-page folios for btree inode. */ 3785 ASSERT(folio_nr_pages(existing_folio) == 1); 3786 3787 if (folio_size(existing_folio) != eb->folio_size) { 3788 folio_unlock(existing_folio); 3789 folio_put(existing_folio); 3790 return -EAGAIN; 3791 } 3792 3793 if (fs_info->nodesize < PAGE_SIZE) { 3794 /* 3795 * We're going to reuse the existing page, can drop our page 3796 * and subpage structure now. 3797 */ 3798 __free_page(folio_page(eb->folios[i], 0)); 3799 eb->folios[i] = existing_folio; 3800 } else { 3801 struct extent_buffer *existing_eb; 3802 3803 existing_eb = grab_extent_buffer(fs_info, 3804 folio_page(existing_folio, 0)); 3805 if (existing_eb) { 3806 /* The extent buffer still exists, we can use it directly. */ 3807 *found_eb_ret = existing_eb; 3808 folio_unlock(existing_folio); 3809 folio_put(existing_folio); 3810 return 1; 3811 } 3812 /* The extent buffer no longer exists, we can reuse the folio. */ 3813 __free_page(folio_page(eb->folios[i], 0)); 3814 eb->folios[i] = existing_folio; 3815 } 3816 return 0; 3817 } 3818 3819 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3820 u64 start, u64 owner_root, int level) 3821 { 3822 unsigned long len = fs_info->nodesize; 3823 int num_folios; 3824 int attached = 0; 3825 struct extent_buffer *eb; 3826 struct extent_buffer *existing_eb = NULL; 3827 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3828 struct btrfs_subpage *prealloc = NULL; 3829 u64 lockdep_owner = owner_root; 3830 bool page_contig = true; 3831 int uptodate = 1; 3832 int ret; 3833 3834 if (check_eb_alignment(fs_info, start)) 3835 return ERR_PTR(-EINVAL); 3836 3837 #if BITS_PER_LONG == 32 3838 if (start >= MAX_LFS_FILESIZE) { 3839 btrfs_err_rl(fs_info, 3840 "extent buffer %llu is beyond 32bit page cache limit", start); 3841 btrfs_err_32bit_limit(fs_info); 3842 return ERR_PTR(-EOVERFLOW); 3843 } 3844 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3845 btrfs_warn_32bit_limit(fs_info); 3846 #endif 3847 3848 eb = find_extent_buffer(fs_info, start); 3849 if (eb) 3850 return eb; 3851 3852 eb = __alloc_extent_buffer(fs_info, start, len); 3853 if (!eb) 3854 return ERR_PTR(-ENOMEM); 3855 3856 /* 3857 * The reloc trees are just snapshots, so we need them to appear to be 3858 * just like any other fs tree WRT lockdep. 3859 */ 3860 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3861 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3862 3863 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3864 3865 /* 3866 * Preallocate folio private for subpage case, so that we won't 3867 * allocate memory with i_private_lock nor page lock hold. 3868 * 3869 * The memory will be freed by attach_extent_buffer_page() or freed 3870 * manually if we exit earlier. 3871 */ 3872 if (fs_info->nodesize < PAGE_SIZE) { 3873 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3874 if (IS_ERR(prealloc)) { 3875 ret = PTR_ERR(prealloc); 3876 goto out; 3877 } 3878 } 3879 3880 reallocate: 3881 /* Allocate all pages first. */ 3882 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL); 3883 if (ret < 0) { 3884 btrfs_free_subpage(prealloc); 3885 goto out; 3886 } 3887 3888 num_folios = num_extent_folios(eb); 3889 /* Attach all pages to the filemap. */ 3890 for (int i = 0; i < num_folios; i++) { 3891 struct folio *folio; 3892 3893 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb); 3894 if (ret > 0) { 3895 ASSERT(existing_eb); 3896 goto out; 3897 } 3898 3899 /* 3900 * TODO: Special handling for a corner case where the order of 3901 * folios mismatch between the new eb and filemap. 3902 * 3903 * This happens when: 3904 * 3905 * - the new eb is using higher order folio 3906 * 3907 * - the filemap is still using 0-order folios for the range 3908 * This can happen at the previous eb allocation, and we don't 3909 * have higher order folio for the call. 3910 * 3911 * - the existing eb has already been freed 3912 * 3913 * In this case, we have to free the existing folios first, and 3914 * re-allocate using the same order. 3915 * Thankfully this is not going to happen yet, as we're still 3916 * using 0-order folios. 3917 */ 3918 if (unlikely(ret == -EAGAIN)) { 3919 ASSERT(0); 3920 goto reallocate; 3921 } 3922 attached++; 3923 3924 /* 3925 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3926 * reliable, as we may choose to reuse the existing page cache 3927 * and free the allocated page. 3928 */ 3929 folio = eb->folios[i]; 3930 eb->folio_size = folio_size(folio); 3931 eb->folio_shift = folio_shift(folio); 3932 spin_lock(&mapping->i_private_lock); 3933 /* Should not fail, as we have preallocated the memory */ 3934 ret = attach_extent_buffer_folio(eb, folio, prealloc); 3935 ASSERT(!ret); 3936 /* 3937 * To inform we have extra eb under allocation, so that 3938 * detach_extent_buffer_page() won't release the folio private 3939 * when the eb hasn't yet been inserted into radix tree. 3940 * 3941 * The ref will be decreased when the eb released the page, in 3942 * detach_extent_buffer_page(). 3943 * Thus needs no special handling in error path. 3944 */ 3945 btrfs_folio_inc_eb_refs(fs_info, folio); 3946 spin_unlock(&mapping->i_private_lock); 3947 3948 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3949 3950 /* 3951 * Check if the current page is physically contiguous with previous eb 3952 * page. 3953 * At this stage, either we allocated a large folio, thus @i 3954 * would only be 0, or we fall back to per-page allocation. 3955 */ 3956 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3957 page_contig = false; 3958 3959 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3960 uptodate = 0; 3961 3962 /* 3963 * We can't unlock the pages just yet since the extent buffer 3964 * hasn't been properly inserted in the radix tree, this 3965 * opens a race with btree_release_folio which can free a page 3966 * while we are still filling in all pages for the buffer and 3967 * we could crash. 3968 */ 3969 } 3970 if (uptodate) 3971 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3972 /* All pages are physically contiguous, can skip cross page handling. */ 3973 if (page_contig) 3974 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3975 again: 3976 ret = radix_tree_preload(GFP_NOFS); 3977 if (ret) 3978 goto out; 3979 3980 spin_lock(&fs_info->buffer_lock); 3981 ret = radix_tree_insert(&fs_info->buffer_radix, 3982 start >> fs_info->sectorsize_bits, eb); 3983 spin_unlock(&fs_info->buffer_lock); 3984 radix_tree_preload_end(); 3985 if (ret == -EEXIST) { 3986 ret = 0; 3987 existing_eb = find_extent_buffer(fs_info, start); 3988 if (existing_eb) 3989 goto out; 3990 else 3991 goto again; 3992 } 3993 /* add one reference for the tree */ 3994 check_buffer_tree_ref(eb); 3995 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3996 3997 /* 3998 * Now it's safe to unlock the pages because any calls to 3999 * btree_release_folio will correctly detect that a page belongs to a 4000 * live buffer and won't free them prematurely. 4001 */ 4002 for (int i = 0; i < num_folios; i++) 4003 unlock_page(folio_page(eb->folios[i], 0)); 4004 return eb; 4005 4006 out: 4007 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4008 4009 /* 4010 * Any attached folios need to be detached before we unlock them. This 4011 * is because when we're inserting our new folios into the mapping, and 4012 * then attaching our eb to that folio. If we fail to insert our folio 4013 * we'll lookup the folio for that index, and grab that EB. We do not 4014 * want that to grab this eb, as we're getting ready to free it. So we 4015 * have to detach it first and then unlock it. 4016 * 4017 * We have to drop our reference and NULL it out here because in the 4018 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 4019 * Below when we call btrfs_release_extent_buffer() we will call 4020 * detach_extent_buffer_folio() on our remaining pages in the !subpage 4021 * case. If we left eb->folios[i] populated in the subpage case we'd 4022 * double put our reference and be super sad. 4023 */ 4024 for (int i = 0; i < attached; i++) { 4025 ASSERT(eb->folios[i]); 4026 detach_extent_buffer_folio(eb, eb->folios[i]); 4027 unlock_page(folio_page(eb->folios[i], 0)); 4028 folio_put(eb->folios[i]); 4029 eb->folios[i] = NULL; 4030 } 4031 /* 4032 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 4033 * so it can be cleaned up without utlizing page->mapping. 4034 */ 4035 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4036 4037 btrfs_release_extent_buffer(eb); 4038 if (ret < 0) 4039 return ERR_PTR(ret); 4040 ASSERT(existing_eb); 4041 return existing_eb; 4042 } 4043 4044 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4045 { 4046 struct extent_buffer *eb = 4047 container_of(head, struct extent_buffer, rcu_head); 4048 4049 __free_extent_buffer(eb); 4050 } 4051 4052 static int release_extent_buffer(struct extent_buffer *eb) 4053 __releases(&eb->refs_lock) 4054 { 4055 lockdep_assert_held(&eb->refs_lock); 4056 4057 WARN_ON(atomic_read(&eb->refs) == 0); 4058 if (atomic_dec_and_test(&eb->refs)) { 4059 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4060 struct btrfs_fs_info *fs_info = eb->fs_info; 4061 4062 spin_unlock(&eb->refs_lock); 4063 4064 spin_lock(&fs_info->buffer_lock); 4065 radix_tree_delete(&fs_info->buffer_radix, 4066 eb->start >> fs_info->sectorsize_bits); 4067 spin_unlock(&fs_info->buffer_lock); 4068 } else { 4069 spin_unlock(&eb->refs_lock); 4070 } 4071 4072 btrfs_leak_debug_del_eb(eb); 4073 /* Should be safe to release our pages at this point */ 4074 btrfs_release_extent_buffer_pages(eb); 4075 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4076 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4077 __free_extent_buffer(eb); 4078 return 1; 4079 } 4080 #endif 4081 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4082 return 1; 4083 } 4084 spin_unlock(&eb->refs_lock); 4085 4086 return 0; 4087 } 4088 4089 void free_extent_buffer(struct extent_buffer *eb) 4090 { 4091 int refs; 4092 if (!eb) 4093 return; 4094 4095 refs = atomic_read(&eb->refs); 4096 while (1) { 4097 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4098 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4099 refs == 1)) 4100 break; 4101 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4102 return; 4103 } 4104 4105 spin_lock(&eb->refs_lock); 4106 if (atomic_read(&eb->refs) == 2 && 4107 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4108 !extent_buffer_under_io(eb) && 4109 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4110 atomic_dec(&eb->refs); 4111 4112 /* 4113 * I know this is terrible, but it's temporary until we stop tracking 4114 * the uptodate bits and such for the extent buffers. 4115 */ 4116 release_extent_buffer(eb); 4117 } 4118 4119 void free_extent_buffer_stale(struct extent_buffer *eb) 4120 { 4121 if (!eb) 4122 return; 4123 4124 spin_lock(&eb->refs_lock); 4125 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4126 4127 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4128 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4129 atomic_dec(&eb->refs); 4130 release_extent_buffer(eb); 4131 } 4132 4133 static void btree_clear_folio_dirty(struct folio *folio) 4134 { 4135 ASSERT(folio_test_dirty(folio)); 4136 ASSERT(folio_test_locked(folio)); 4137 folio_clear_dirty_for_io(folio); 4138 xa_lock_irq(&folio->mapping->i_pages); 4139 if (!folio_test_dirty(folio)) 4140 __xa_clear_mark(&folio->mapping->i_pages, 4141 folio_index(folio), PAGECACHE_TAG_DIRTY); 4142 xa_unlock_irq(&folio->mapping->i_pages); 4143 } 4144 4145 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4146 { 4147 struct btrfs_fs_info *fs_info = eb->fs_info; 4148 struct folio *folio = eb->folios[0]; 4149 bool last; 4150 4151 /* btree_clear_folio_dirty() needs page locked. */ 4152 folio_lock(folio); 4153 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 4154 if (last) 4155 btree_clear_folio_dirty(folio); 4156 folio_unlock(folio); 4157 WARN_ON(atomic_read(&eb->refs) == 0); 4158 } 4159 4160 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4161 struct extent_buffer *eb) 4162 { 4163 struct btrfs_fs_info *fs_info = eb->fs_info; 4164 int num_folios; 4165 4166 btrfs_assert_tree_write_locked(eb); 4167 4168 if (trans && btrfs_header_generation(eb) != trans->transid) 4169 return; 4170 4171 /* 4172 * Instead of clearing the dirty flag off of the buffer, mark it as 4173 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 4174 * write-ordering in zoned mode, without the need to later re-dirty 4175 * the extent_buffer. 4176 * 4177 * The actual zeroout of the buffer will happen later in 4178 * btree_csum_one_bio. 4179 */ 4180 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4181 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 4182 return; 4183 } 4184 4185 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4186 return; 4187 4188 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4189 fs_info->dirty_metadata_batch); 4190 4191 if (eb->fs_info->nodesize < PAGE_SIZE) 4192 return clear_subpage_extent_buffer_dirty(eb); 4193 4194 num_folios = num_extent_folios(eb); 4195 for (int i = 0; i < num_folios; i++) { 4196 struct folio *folio = eb->folios[i]; 4197 4198 if (!folio_test_dirty(folio)) 4199 continue; 4200 folio_lock(folio); 4201 btree_clear_folio_dirty(folio); 4202 folio_unlock(folio); 4203 } 4204 WARN_ON(atomic_read(&eb->refs) == 0); 4205 } 4206 4207 void set_extent_buffer_dirty(struct extent_buffer *eb) 4208 { 4209 int num_folios; 4210 bool was_dirty; 4211 4212 check_buffer_tree_ref(eb); 4213 4214 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4215 4216 num_folios = num_extent_folios(eb); 4217 WARN_ON(atomic_read(&eb->refs) == 0); 4218 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4219 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 4220 4221 if (!was_dirty) { 4222 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4223 4224 /* 4225 * For subpage case, we can have other extent buffers in the 4226 * same page, and in clear_subpage_extent_buffer_dirty() we 4227 * have to clear page dirty without subpage lock held. 4228 * This can cause race where our page gets dirty cleared after 4229 * we just set it. 4230 * 4231 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4232 * its page for other reasons, we can use page lock to prevent 4233 * the above race. 4234 */ 4235 if (subpage) 4236 lock_page(folio_page(eb->folios[0], 0)); 4237 for (int i = 0; i < num_folios; i++) 4238 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 4239 eb->start, eb->len); 4240 if (subpage) 4241 unlock_page(folio_page(eb->folios[0], 0)); 4242 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4243 eb->len, 4244 eb->fs_info->dirty_metadata_batch); 4245 } 4246 #ifdef CONFIG_BTRFS_DEBUG 4247 for (int i = 0; i < num_folios; i++) 4248 ASSERT(folio_test_dirty(eb->folios[i])); 4249 #endif 4250 } 4251 4252 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4253 { 4254 struct btrfs_fs_info *fs_info = eb->fs_info; 4255 int num_folios = num_extent_folios(eb); 4256 4257 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4258 for (int i = 0; i < num_folios; i++) { 4259 struct folio *folio = eb->folios[i]; 4260 4261 if (!folio) 4262 continue; 4263 4264 /* 4265 * This is special handling for metadata subpage, as regular 4266 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4267 */ 4268 if (fs_info->nodesize >= PAGE_SIZE) 4269 folio_clear_uptodate(folio); 4270 else 4271 btrfs_subpage_clear_uptodate(fs_info, folio, 4272 eb->start, eb->len); 4273 } 4274 } 4275 4276 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4277 { 4278 struct btrfs_fs_info *fs_info = eb->fs_info; 4279 int num_folios = num_extent_folios(eb); 4280 4281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4282 for (int i = 0; i < num_folios; i++) { 4283 struct folio *folio = eb->folios[i]; 4284 4285 /* 4286 * This is special handling for metadata subpage, as regular 4287 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4288 */ 4289 if (fs_info->nodesize >= PAGE_SIZE) 4290 folio_mark_uptodate(folio); 4291 else 4292 btrfs_subpage_set_uptodate(fs_info, folio, 4293 eb->start, eb->len); 4294 } 4295 } 4296 4297 static void clear_extent_buffer_reading(struct extent_buffer *eb) 4298 { 4299 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4300 smp_mb__after_atomic(); 4301 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4302 } 4303 4304 static void end_bbio_meta_read(struct btrfs_bio *bbio) 4305 { 4306 struct extent_buffer *eb = bbio->private; 4307 struct btrfs_fs_info *fs_info = eb->fs_info; 4308 bool uptodate = !bbio->bio.bi_status; 4309 struct folio_iter fi; 4310 u32 bio_offset = 0; 4311 4312 /* 4313 * If the extent buffer is marked UPTODATE before the read operation 4314 * completes, other calls to read_extent_buffer_pages() will return 4315 * early without waiting for the read to finish, causing data races. 4316 */ 4317 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 4318 4319 eb->read_mirror = bbio->mirror_num; 4320 4321 if (uptodate && 4322 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4323 uptodate = false; 4324 4325 if (uptodate) { 4326 set_extent_buffer_uptodate(eb); 4327 } else { 4328 clear_extent_buffer_uptodate(eb); 4329 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4330 } 4331 4332 bio_for_each_folio_all(fi, &bbio->bio) { 4333 struct folio *folio = fi.folio; 4334 u64 start = eb->start + bio_offset; 4335 u32 len = fi.length; 4336 4337 if (uptodate) 4338 btrfs_folio_set_uptodate(fs_info, folio, start, len); 4339 else 4340 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 4341 4342 bio_offset += len; 4343 } 4344 4345 clear_extent_buffer_reading(eb); 4346 free_extent_buffer(eb); 4347 4348 bio_put(&bbio->bio); 4349 } 4350 4351 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4352 struct btrfs_tree_parent_check *check) 4353 { 4354 struct btrfs_bio *bbio; 4355 bool ret; 4356 4357 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4358 return 0; 4359 4360 /* 4361 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4362 * operation, which could potentially still be in flight. In this case 4363 * we simply want to return an error. 4364 */ 4365 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4366 return -EIO; 4367 4368 /* Someone else is already reading the buffer, just wait for it. */ 4369 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4370 goto done; 4371 4372 /* 4373 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 4374 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 4375 * started and finished reading the same eb. In this case, UPTODATE 4376 * will now be set, and we shouldn't read it in again. 4377 */ 4378 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 4379 clear_extent_buffer_reading(eb); 4380 return 0; 4381 } 4382 4383 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4384 eb->read_mirror = 0; 4385 check_buffer_tree_ref(eb); 4386 atomic_inc(&eb->refs); 4387 4388 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4389 REQ_OP_READ | REQ_META, eb->fs_info, 4390 end_bbio_meta_read, eb); 4391 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4392 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4393 bbio->file_offset = eb->start; 4394 memcpy(&bbio->parent_check, check, sizeof(*check)); 4395 if (eb->fs_info->nodesize < PAGE_SIZE) { 4396 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 4397 eb->start - folio_pos(eb->folios[0])); 4398 ASSERT(ret); 4399 } else { 4400 int num_folios = num_extent_folios(eb); 4401 4402 for (int i = 0; i < num_folios; i++) { 4403 struct folio *folio = eb->folios[i]; 4404 4405 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 4406 ASSERT(ret); 4407 } 4408 } 4409 btrfs_submit_bio(bbio, mirror_num); 4410 4411 done: 4412 if (wait == WAIT_COMPLETE) { 4413 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4414 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4415 return -EIO; 4416 } 4417 4418 return 0; 4419 } 4420 4421 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4422 unsigned long len) 4423 { 4424 btrfs_warn(eb->fs_info, 4425 "access to eb bytenr %llu len %u out of range start %lu len %lu", 4426 eb->start, eb->len, start, len); 4427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4428 4429 return true; 4430 } 4431 4432 /* 4433 * Check if the [start, start + len) range is valid before reading/writing 4434 * the eb. 4435 * NOTE: @start and @len are offset inside the eb, not logical address. 4436 * 4437 * Caller should not touch the dst/src memory if this function returns error. 4438 */ 4439 static inline int check_eb_range(const struct extent_buffer *eb, 4440 unsigned long start, unsigned long len) 4441 { 4442 unsigned long offset; 4443 4444 /* start, start + len should not go beyond eb->len nor overflow */ 4445 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4446 return report_eb_range(eb, start, len); 4447 4448 return false; 4449 } 4450 4451 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4452 unsigned long start, unsigned long len) 4453 { 4454 const int unit_size = eb->folio_size; 4455 size_t cur; 4456 size_t offset; 4457 char *dst = (char *)dstv; 4458 unsigned long i = get_eb_folio_index(eb, start); 4459 4460 if (check_eb_range(eb, start, len)) { 4461 /* 4462 * Invalid range hit, reset the memory, so callers won't get 4463 * some random garbage for their uninitialized memory. 4464 */ 4465 memset(dstv, 0, len); 4466 return; 4467 } 4468 4469 if (eb->addr) { 4470 memcpy(dstv, eb->addr + start, len); 4471 return; 4472 } 4473 4474 offset = get_eb_offset_in_folio(eb, start); 4475 4476 while (len > 0) { 4477 char *kaddr; 4478 4479 cur = min(len, unit_size - offset); 4480 kaddr = folio_address(eb->folios[i]); 4481 memcpy(dst, kaddr + offset, cur); 4482 4483 dst += cur; 4484 len -= cur; 4485 offset = 0; 4486 i++; 4487 } 4488 } 4489 4490 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4491 void __user *dstv, 4492 unsigned long start, unsigned long len) 4493 { 4494 const int unit_size = eb->folio_size; 4495 size_t cur; 4496 size_t offset; 4497 char __user *dst = (char __user *)dstv; 4498 unsigned long i = get_eb_folio_index(eb, start); 4499 int ret = 0; 4500 4501 WARN_ON(start > eb->len); 4502 WARN_ON(start + len > eb->start + eb->len); 4503 4504 if (eb->addr) { 4505 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 4506 ret = -EFAULT; 4507 return ret; 4508 } 4509 4510 offset = get_eb_offset_in_folio(eb, start); 4511 4512 while (len > 0) { 4513 char *kaddr; 4514 4515 cur = min(len, unit_size - offset); 4516 kaddr = folio_address(eb->folios[i]); 4517 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4518 ret = -EFAULT; 4519 break; 4520 } 4521 4522 dst += cur; 4523 len -= cur; 4524 offset = 0; 4525 i++; 4526 } 4527 4528 return ret; 4529 } 4530 4531 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4532 unsigned long start, unsigned long len) 4533 { 4534 const int unit_size = eb->folio_size; 4535 size_t cur; 4536 size_t offset; 4537 char *kaddr; 4538 char *ptr = (char *)ptrv; 4539 unsigned long i = get_eb_folio_index(eb, start); 4540 int ret = 0; 4541 4542 if (check_eb_range(eb, start, len)) 4543 return -EINVAL; 4544 4545 if (eb->addr) 4546 return memcmp(ptrv, eb->addr + start, len); 4547 4548 offset = get_eb_offset_in_folio(eb, start); 4549 4550 while (len > 0) { 4551 cur = min(len, unit_size - offset); 4552 kaddr = folio_address(eb->folios[i]); 4553 ret = memcmp(ptr, kaddr + offset, cur); 4554 if (ret) 4555 break; 4556 4557 ptr += cur; 4558 len -= cur; 4559 offset = 0; 4560 i++; 4561 } 4562 return ret; 4563 } 4564 4565 /* 4566 * Check that the extent buffer is uptodate. 4567 * 4568 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4569 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4570 */ 4571 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4572 { 4573 struct btrfs_fs_info *fs_info = eb->fs_info; 4574 struct folio *folio = eb->folios[i]; 4575 4576 ASSERT(folio); 4577 4578 /* 4579 * If we are using the commit root we could potentially clear a page 4580 * Uptodate while we're using the extent buffer that we've previously 4581 * looked up. We don't want to complain in this case, as the page was 4582 * valid before, we just didn't write it out. Instead we want to catch 4583 * the case where we didn't actually read the block properly, which 4584 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4585 */ 4586 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4587 return; 4588 4589 if (fs_info->nodesize < PAGE_SIZE) { 4590 struct folio *folio = eb->folios[0]; 4591 4592 ASSERT(i == 0); 4593 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4594 eb->start, eb->len))) 4595 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4596 } else { 4597 WARN_ON(!folio_test_uptodate(folio)); 4598 } 4599 } 4600 4601 static void __write_extent_buffer(const struct extent_buffer *eb, 4602 const void *srcv, unsigned long start, 4603 unsigned long len, bool use_memmove) 4604 { 4605 const int unit_size = eb->folio_size; 4606 size_t cur; 4607 size_t offset; 4608 char *kaddr; 4609 char *src = (char *)srcv; 4610 unsigned long i = get_eb_folio_index(eb, start); 4611 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4612 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4613 4614 if (check_eb_range(eb, start, len)) 4615 return; 4616 4617 if (eb->addr) { 4618 if (use_memmove) 4619 memmove(eb->addr + start, srcv, len); 4620 else 4621 memcpy(eb->addr + start, srcv, len); 4622 return; 4623 } 4624 4625 offset = get_eb_offset_in_folio(eb, start); 4626 4627 while (len > 0) { 4628 if (check_uptodate) 4629 assert_eb_folio_uptodate(eb, i); 4630 4631 cur = min(len, unit_size - offset); 4632 kaddr = folio_address(eb->folios[i]); 4633 if (use_memmove) 4634 memmove(kaddr + offset, src, cur); 4635 else 4636 memcpy(kaddr + offset, src, cur); 4637 4638 src += cur; 4639 len -= cur; 4640 offset = 0; 4641 i++; 4642 } 4643 } 4644 4645 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4646 unsigned long start, unsigned long len) 4647 { 4648 return __write_extent_buffer(eb, srcv, start, len, false); 4649 } 4650 4651 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4652 unsigned long start, unsigned long len) 4653 { 4654 const int unit_size = eb->folio_size; 4655 unsigned long cur = start; 4656 4657 if (eb->addr) { 4658 memset(eb->addr + start, c, len); 4659 return; 4660 } 4661 4662 while (cur < start + len) { 4663 unsigned long index = get_eb_folio_index(eb, cur); 4664 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4665 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4666 4667 assert_eb_folio_uptodate(eb, index); 4668 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4669 4670 cur += cur_len; 4671 } 4672 } 4673 4674 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4675 unsigned long len) 4676 { 4677 if (check_eb_range(eb, start, len)) 4678 return; 4679 return memset_extent_buffer(eb, 0, start, len); 4680 } 4681 4682 void copy_extent_buffer_full(const struct extent_buffer *dst, 4683 const struct extent_buffer *src) 4684 { 4685 const int unit_size = src->folio_size; 4686 unsigned long cur = 0; 4687 4688 ASSERT(dst->len == src->len); 4689 4690 while (cur < src->len) { 4691 unsigned long index = get_eb_folio_index(src, cur); 4692 unsigned long offset = get_eb_offset_in_folio(src, cur); 4693 unsigned long cur_len = min(src->len, unit_size - offset); 4694 void *addr = folio_address(src->folios[index]) + offset; 4695 4696 write_extent_buffer(dst, addr, cur, cur_len); 4697 4698 cur += cur_len; 4699 } 4700 } 4701 4702 void copy_extent_buffer(const struct extent_buffer *dst, 4703 const struct extent_buffer *src, 4704 unsigned long dst_offset, unsigned long src_offset, 4705 unsigned long len) 4706 { 4707 const int unit_size = dst->folio_size; 4708 u64 dst_len = dst->len; 4709 size_t cur; 4710 size_t offset; 4711 char *kaddr; 4712 unsigned long i = get_eb_folio_index(dst, dst_offset); 4713 4714 if (check_eb_range(dst, dst_offset, len) || 4715 check_eb_range(src, src_offset, len)) 4716 return; 4717 4718 WARN_ON(src->len != dst_len); 4719 4720 offset = get_eb_offset_in_folio(dst, dst_offset); 4721 4722 while (len > 0) { 4723 assert_eb_folio_uptodate(dst, i); 4724 4725 cur = min(len, (unsigned long)(unit_size - offset)); 4726 4727 kaddr = folio_address(dst->folios[i]); 4728 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4729 4730 src_offset += cur; 4731 len -= cur; 4732 offset = 0; 4733 i++; 4734 } 4735 } 4736 4737 /* 4738 * Calculate the folio and offset of the byte containing the given bit number. 4739 * 4740 * @eb: the extent buffer 4741 * @start: offset of the bitmap item in the extent buffer 4742 * @nr: bit number 4743 * @folio_index: return index of the folio in the extent buffer that contains 4744 * the given bit number 4745 * @folio_offset: return offset into the folio given by folio_index 4746 * 4747 * This helper hides the ugliness of finding the byte in an extent buffer which 4748 * contains a given bit. 4749 */ 4750 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4751 unsigned long start, unsigned long nr, 4752 unsigned long *folio_index, 4753 size_t *folio_offset) 4754 { 4755 size_t byte_offset = BIT_BYTE(nr); 4756 size_t offset; 4757 4758 /* 4759 * The byte we want is the offset of the extent buffer + the offset of 4760 * the bitmap item in the extent buffer + the offset of the byte in the 4761 * bitmap item. 4762 */ 4763 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4764 4765 *folio_index = offset >> eb->folio_shift; 4766 *folio_offset = offset_in_eb_folio(eb, offset); 4767 } 4768 4769 /* 4770 * Determine whether a bit in a bitmap item is set. 4771 * 4772 * @eb: the extent buffer 4773 * @start: offset of the bitmap item in the extent buffer 4774 * @nr: bit number to test 4775 */ 4776 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4777 unsigned long nr) 4778 { 4779 unsigned long i; 4780 size_t offset; 4781 u8 *kaddr; 4782 4783 eb_bitmap_offset(eb, start, nr, &i, &offset); 4784 assert_eb_folio_uptodate(eb, i); 4785 kaddr = folio_address(eb->folios[i]); 4786 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4787 } 4788 4789 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4790 { 4791 unsigned long index = get_eb_folio_index(eb, bytenr); 4792 4793 if (check_eb_range(eb, bytenr, 1)) 4794 return NULL; 4795 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4796 } 4797 4798 /* 4799 * Set an area of a bitmap to 1. 4800 * 4801 * @eb: the extent buffer 4802 * @start: offset of the bitmap item in the extent buffer 4803 * @pos: bit number of the first bit 4804 * @len: number of bits to set 4805 */ 4806 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4807 unsigned long pos, unsigned long len) 4808 { 4809 unsigned int first_byte = start + BIT_BYTE(pos); 4810 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4811 const bool same_byte = (first_byte == last_byte); 4812 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4813 u8 *kaddr; 4814 4815 if (same_byte) 4816 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4817 4818 /* Handle the first byte. */ 4819 kaddr = extent_buffer_get_byte(eb, first_byte); 4820 *kaddr |= mask; 4821 if (same_byte) 4822 return; 4823 4824 /* Handle the byte aligned part. */ 4825 ASSERT(first_byte + 1 <= last_byte); 4826 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4827 4828 /* Handle the last byte. */ 4829 kaddr = extent_buffer_get_byte(eb, last_byte); 4830 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4831 } 4832 4833 4834 /* 4835 * Clear an area of a bitmap. 4836 * 4837 * @eb: the extent buffer 4838 * @start: offset of the bitmap item in the extent buffer 4839 * @pos: bit number of the first bit 4840 * @len: number of bits to clear 4841 */ 4842 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4843 unsigned long start, unsigned long pos, 4844 unsigned long len) 4845 { 4846 unsigned int first_byte = start + BIT_BYTE(pos); 4847 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4848 const bool same_byte = (first_byte == last_byte); 4849 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4850 u8 *kaddr; 4851 4852 if (same_byte) 4853 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4854 4855 /* Handle the first byte. */ 4856 kaddr = extent_buffer_get_byte(eb, first_byte); 4857 *kaddr &= ~mask; 4858 if (same_byte) 4859 return; 4860 4861 /* Handle the byte aligned part. */ 4862 ASSERT(first_byte + 1 <= last_byte); 4863 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4864 4865 /* Handle the last byte. */ 4866 kaddr = extent_buffer_get_byte(eb, last_byte); 4867 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4868 } 4869 4870 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4871 { 4872 unsigned long distance = (src > dst) ? src - dst : dst - src; 4873 return distance < len; 4874 } 4875 4876 void memcpy_extent_buffer(const struct extent_buffer *dst, 4877 unsigned long dst_offset, unsigned long src_offset, 4878 unsigned long len) 4879 { 4880 const int unit_size = dst->folio_size; 4881 unsigned long cur_off = 0; 4882 4883 if (check_eb_range(dst, dst_offset, len) || 4884 check_eb_range(dst, src_offset, len)) 4885 return; 4886 4887 if (dst->addr) { 4888 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4889 4890 if (use_memmove) 4891 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4892 else 4893 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4894 return; 4895 } 4896 4897 while (cur_off < len) { 4898 unsigned long cur_src = cur_off + src_offset; 4899 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4900 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4901 unsigned long cur_len = min(src_offset + len - cur_src, 4902 unit_size - folio_off); 4903 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4904 const bool use_memmove = areas_overlap(src_offset + cur_off, 4905 dst_offset + cur_off, cur_len); 4906 4907 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4908 use_memmove); 4909 cur_off += cur_len; 4910 } 4911 } 4912 4913 void memmove_extent_buffer(const struct extent_buffer *dst, 4914 unsigned long dst_offset, unsigned long src_offset, 4915 unsigned long len) 4916 { 4917 unsigned long dst_end = dst_offset + len - 1; 4918 unsigned long src_end = src_offset + len - 1; 4919 4920 if (check_eb_range(dst, dst_offset, len) || 4921 check_eb_range(dst, src_offset, len)) 4922 return; 4923 4924 if (dst_offset < src_offset) { 4925 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4926 return; 4927 } 4928 4929 if (dst->addr) { 4930 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4931 return; 4932 } 4933 4934 while (len > 0) { 4935 unsigned long src_i; 4936 size_t cur; 4937 size_t dst_off_in_folio; 4938 size_t src_off_in_folio; 4939 void *src_addr; 4940 bool use_memmove; 4941 4942 src_i = get_eb_folio_index(dst, src_end); 4943 4944 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4945 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4946 4947 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4948 cur = min(cur, dst_off_in_folio + 1); 4949 4950 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4951 cur + 1; 4952 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4953 cur); 4954 4955 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4956 use_memmove); 4957 4958 dst_end -= cur; 4959 src_end -= cur; 4960 len -= cur; 4961 } 4962 } 4963 4964 #define GANG_LOOKUP_SIZE 16 4965 static struct extent_buffer *get_next_extent_buffer( 4966 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4967 { 4968 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4969 struct extent_buffer *found = NULL; 4970 u64 page_start = page_offset(page); 4971 u64 cur = page_start; 4972 4973 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4974 lockdep_assert_held(&fs_info->buffer_lock); 4975 4976 while (cur < page_start + PAGE_SIZE) { 4977 int ret; 4978 int i; 4979 4980 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4981 (void **)gang, cur >> fs_info->sectorsize_bits, 4982 min_t(unsigned int, GANG_LOOKUP_SIZE, 4983 PAGE_SIZE / fs_info->nodesize)); 4984 if (ret == 0) 4985 goto out; 4986 for (i = 0; i < ret; i++) { 4987 /* Already beyond page end */ 4988 if (gang[i]->start >= page_start + PAGE_SIZE) 4989 goto out; 4990 /* Found one */ 4991 if (gang[i]->start >= bytenr) { 4992 found = gang[i]; 4993 goto out; 4994 } 4995 } 4996 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4997 } 4998 out: 4999 return found; 5000 } 5001 5002 static int try_release_subpage_extent_buffer(struct page *page) 5003 { 5004 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 5005 u64 cur = page_offset(page); 5006 const u64 end = page_offset(page) + PAGE_SIZE; 5007 int ret; 5008 5009 while (cur < end) { 5010 struct extent_buffer *eb = NULL; 5011 5012 /* 5013 * Unlike try_release_extent_buffer() which uses folio private 5014 * to grab buffer, for subpage case we rely on radix tree, thus 5015 * we need to ensure radix tree consistency. 5016 * 5017 * We also want an atomic snapshot of the radix tree, thus go 5018 * with spinlock rather than RCU. 5019 */ 5020 spin_lock(&fs_info->buffer_lock); 5021 eb = get_next_extent_buffer(fs_info, page, cur); 5022 if (!eb) { 5023 /* No more eb in the page range after or at cur */ 5024 spin_unlock(&fs_info->buffer_lock); 5025 break; 5026 } 5027 cur = eb->start + eb->len; 5028 5029 /* 5030 * The same as try_release_extent_buffer(), to ensure the eb 5031 * won't disappear out from under us. 5032 */ 5033 spin_lock(&eb->refs_lock); 5034 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5035 spin_unlock(&eb->refs_lock); 5036 spin_unlock(&fs_info->buffer_lock); 5037 break; 5038 } 5039 spin_unlock(&fs_info->buffer_lock); 5040 5041 /* 5042 * If tree ref isn't set then we know the ref on this eb is a 5043 * real ref, so just return, this eb will likely be freed soon 5044 * anyway. 5045 */ 5046 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5047 spin_unlock(&eb->refs_lock); 5048 break; 5049 } 5050 5051 /* 5052 * Here we don't care about the return value, we will always 5053 * check the folio private at the end. And 5054 * release_extent_buffer() will release the refs_lock. 5055 */ 5056 release_extent_buffer(eb); 5057 } 5058 /* 5059 * Finally to check if we have cleared folio private, as if we have 5060 * released all ebs in the page, the folio private should be cleared now. 5061 */ 5062 spin_lock(&page->mapping->i_private_lock); 5063 if (!folio_test_private(page_folio(page))) 5064 ret = 1; 5065 else 5066 ret = 0; 5067 spin_unlock(&page->mapping->i_private_lock); 5068 return ret; 5069 5070 } 5071 5072 int try_release_extent_buffer(struct page *page) 5073 { 5074 struct folio *folio = page_folio(page); 5075 struct extent_buffer *eb; 5076 5077 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 5078 return try_release_subpage_extent_buffer(page); 5079 5080 /* 5081 * We need to make sure nobody is changing folio private, as we rely on 5082 * folio private as the pointer to extent buffer. 5083 */ 5084 spin_lock(&page->mapping->i_private_lock); 5085 if (!folio_test_private(folio)) { 5086 spin_unlock(&page->mapping->i_private_lock); 5087 return 1; 5088 } 5089 5090 eb = folio_get_private(folio); 5091 BUG_ON(!eb); 5092 5093 /* 5094 * This is a little awful but should be ok, we need to make sure that 5095 * the eb doesn't disappear out from under us while we're looking at 5096 * this page. 5097 */ 5098 spin_lock(&eb->refs_lock); 5099 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5100 spin_unlock(&eb->refs_lock); 5101 spin_unlock(&page->mapping->i_private_lock); 5102 return 0; 5103 } 5104 spin_unlock(&page->mapping->i_private_lock); 5105 5106 /* 5107 * If tree ref isn't set then we know the ref on this eb is a real ref, 5108 * so just return, this page will likely be freed soon anyway. 5109 */ 5110 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5111 spin_unlock(&eb->refs_lock); 5112 return 0; 5113 } 5114 5115 return release_extent_buffer(eb); 5116 } 5117 5118 /* 5119 * Attempt to readahead a child block. 5120 * 5121 * @fs_info: the fs_info 5122 * @bytenr: bytenr to read 5123 * @owner_root: objectid of the root that owns this eb 5124 * @gen: generation for the uptodate check, can be 0 5125 * @level: level for the eb 5126 * 5127 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5128 * normal uptodate check of the eb, without checking the generation. If we have 5129 * to read the block we will not block on anything. 5130 */ 5131 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5132 u64 bytenr, u64 owner_root, u64 gen, int level) 5133 { 5134 struct btrfs_tree_parent_check check = { 5135 .has_first_key = 0, 5136 .level = level, 5137 .transid = gen 5138 }; 5139 struct extent_buffer *eb; 5140 int ret; 5141 5142 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5143 if (IS_ERR(eb)) 5144 return; 5145 5146 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5147 free_extent_buffer(eb); 5148 return; 5149 } 5150 5151 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5152 if (ret < 0) 5153 free_extent_buffer_stale(eb); 5154 else 5155 free_extent_buffer(eb); 5156 } 5157 5158 /* 5159 * Readahead a node's child block. 5160 * 5161 * @node: parent node we're reading from 5162 * @slot: slot in the parent node for the child we want to read 5163 * 5164 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5165 * the slot in the node provided. 5166 */ 5167 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5168 { 5169 btrfs_readahead_tree_block(node->fs_info, 5170 btrfs_node_blockptr(node, slot), 5171 btrfs_header_owner(node), 5172 btrfs_node_ptr_generation(node, slot), 5173 btrfs_header_level(node) - 1); 5174 } 5175