1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "locking.h" 25 #include "rcu-string.h" 26 #include "backref.h" 27 #include "disk-io.h" 28 #include "subpage.h" 29 #include "zoned.h" 30 #include "block-group.h" 31 #include "compression.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "file-item.h" 35 #include "file.h" 36 #include "dev-replace.h" 37 #include "super.h" 38 #include "transaction.h" 39 40 static struct kmem_cache *extent_buffer_cache; 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 44 { 45 struct btrfs_fs_info *fs_info = eb->fs_info; 46 unsigned long flags; 47 48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 49 list_add(&eb->leak_list, &fs_info->allocated_ebs); 50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 51 } 52 53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 54 { 55 struct btrfs_fs_info *fs_info = eb->fs_info; 56 unsigned long flags; 57 58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 59 list_del(&eb->leak_list); 60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 61 } 62 63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 64 { 65 struct extent_buffer *eb; 66 unsigned long flags; 67 68 /* 69 * If we didn't get into open_ctree our allocated_ebs will not be 70 * initialized, so just skip this. 71 */ 72 if (!fs_info->allocated_ebs.next) 73 return; 74 75 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 77 while (!list_empty(&fs_info->allocated_ebs)) { 78 eb = list_first_entry(&fs_info->allocated_ebs, 79 struct extent_buffer, leak_list); 80 pr_err( 81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 83 btrfs_header_owner(eb)); 84 list_del(&eb->leak_list); 85 kmem_cache_free(extent_buffer_cache, eb); 86 } 87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 88 } 89 #else 90 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 91 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 92 #endif 93 94 /* 95 * Structure to record info about the bio being assembled, and other info like 96 * how many bytes are there before stripe/ordered extent boundary. 97 */ 98 struct btrfs_bio_ctrl { 99 struct btrfs_bio *bbio; 100 enum btrfs_compression_type compress_type; 101 u32 len_to_oe_boundary; 102 blk_opf_t opf; 103 btrfs_bio_end_io_t end_io_func; 104 struct writeback_control *wbc; 105 }; 106 107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 108 { 109 struct btrfs_bio *bbio = bio_ctrl->bbio; 110 111 if (!bbio) 112 return; 113 114 /* Caller should ensure the bio has at least some range added */ 115 ASSERT(bbio->bio.bi_iter.bi_size); 116 117 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 118 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 119 btrfs_submit_compressed_read(bbio); 120 else 121 btrfs_submit_bio(bbio, 0); 122 123 /* The bbio is owned by the end_io handler now */ 124 bio_ctrl->bbio = NULL; 125 } 126 127 /* 128 * Submit or fail the current bio in the bio_ctrl structure. 129 */ 130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 131 { 132 struct btrfs_bio *bbio = bio_ctrl->bbio; 133 134 if (!bbio) 135 return; 136 137 if (ret) { 138 ASSERT(ret < 0); 139 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 140 /* The bio is owned by the end_io handler now */ 141 bio_ctrl->bbio = NULL; 142 } else { 143 submit_one_bio(bio_ctrl); 144 } 145 } 146 147 int __init extent_buffer_init_cachep(void) 148 { 149 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 150 sizeof(struct extent_buffer), 0, 151 SLAB_MEM_SPREAD, NULL); 152 if (!extent_buffer_cache) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 void __cold extent_buffer_free_cachep(void) 159 { 160 /* 161 * Make sure all delayed rcu free are flushed before we 162 * destroy caches. 163 */ 164 rcu_barrier(); 165 kmem_cache_destroy(extent_buffer_cache); 166 } 167 168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 169 { 170 unsigned long index = start >> PAGE_SHIFT; 171 unsigned long end_index = end >> PAGE_SHIFT; 172 struct page *page; 173 174 while (index <= end_index) { 175 page = find_get_page(inode->i_mapping, index); 176 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 177 clear_page_dirty_for_io(page); 178 put_page(page); 179 index++; 180 } 181 } 182 183 static void process_one_page(struct btrfs_fs_info *fs_info, 184 struct page *page, struct page *locked_page, 185 unsigned long page_ops, u64 start, u64 end) 186 { 187 u32 len; 188 189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 190 len = end + 1 - start; 191 192 if (page_ops & PAGE_SET_ORDERED) 193 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 194 if (page_ops & PAGE_START_WRITEBACK) { 195 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 196 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 197 } 198 if (page_ops & PAGE_END_WRITEBACK) 199 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 200 201 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 202 btrfs_page_end_writer_lock(fs_info, page, start, len); 203 } 204 205 static void __process_pages_contig(struct address_space *mapping, 206 struct page *locked_page, u64 start, u64 end, 207 unsigned long page_ops) 208 { 209 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 210 pgoff_t start_index = start >> PAGE_SHIFT; 211 pgoff_t end_index = end >> PAGE_SHIFT; 212 pgoff_t index = start_index; 213 struct folio_batch fbatch; 214 int i; 215 216 folio_batch_init(&fbatch); 217 while (index <= end_index) { 218 int found_folios; 219 220 found_folios = filemap_get_folios_contig(mapping, &index, 221 end_index, &fbatch); 222 for (i = 0; i < found_folios; i++) { 223 struct folio *folio = fbatch.folios[i]; 224 225 process_one_page(fs_info, &folio->page, locked_page, 226 page_ops, start, end); 227 } 228 folio_batch_release(&fbatch); 229 cond_resched(); 230 } 231 } 232 233 static noinline void __unlock_for_delalloc(struct inode *inode, 234 struct page *locked_page, 235 u64 start, u64 end) 236 { 237 unsigned long index = start >> PAGE_SHIFT; 238 unsigned long end_index = end >> PAGE_SHIFT; 239 240 ASSERT(locked_page); 241 if (index == locked_page->index && end_index == index) 242 return; 243 244 __process_pages_contig(inode->i_mapping, locked_page, start, end, 245 PAGE_UNLOCK); 246 } 247 248 static noinline int lock_delalloc_pages(struct inode *inode, 249 struct page *locked_page, 250 u64 start, 251 u64 end) 252 { 253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 254 struct address_space *mapping = inode->i_mapping; 255 pgoff_t start_index = start >> PAGE_SHIFT; 256 pgoff_t end_index = end >> PAGE_SHIFT; 257 pgoff_t index = start_index; 258 u64 processed_end = start; 259 struct folio_batch fbatch; 260 261 if (index == locked_page->index && index == end_index) 262 return 0; 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 unsigned int found_folios, i; 267 268 found_folios = filemap_get_folios_contig(mapping, &index, 269 end_index, &fbatch); 270 if (found_folios == 0) 271 goto out; 272 273 for (i = 0; i < found_folios; i++) { 274 struct page *page = &fbatch.folios[i]->page; 275 u32 len = end + 1 - start; 276 277 if (page == locked_page) 278 continue; 279 280 if (btrfs_page_start_writer_lock(fs_info, page, start, 281 len)) 282 goto out; 283 284 if (!PageDirty(page) || page->mapping != mapping) { 285 btrfs_page_end_writer_lock(fs_info, page, start, 286 len); 287 goto out; 288 } 289 290 processed_end = page_offset(page) + PAGE_SIZE - 1; 291 } 292 folio_batch_release(&fbatch); 293 cond_resched(); 294 } 295 296 return 0; 297 out: 298 folio_batch_release(&fbatch); 299 if (processed_end > start) 300 __unlock_for_delalloc(inode, locked_page, start, processed_end); 301 return -EAGAIN; 302 } 303 304 /* 305 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 306 * more than @max_bytes. 307 * 308 * @start: The original start bytenr to search. 309 * Will store the extent range start bytenr. 310 * @end: The original end bytenr of the search range 311 * Will store the extent range end bytenr. 312 * 313 * Return true if we find a delalloc range which starts inside the original 314 * range, and @start/@end will store the delalloc range start/end. 315 * 316 * Return false if we can't find any delalloc range which starts inside the 317 * original range, and @start/@end will be the non-delalloc range start/end. 318 */ 319 EXPORT_FOR_TESTS 320 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 321 struct page *locked_page, u64 *start, 322 u64 *end) 323 { 324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 325 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 326 const u64 orig_start = *start; 327 const u64 orig_end = *end; 328 /* The sanity tests may not set a valid fs_info. */ 329 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 330 u64 delalloc_start; 331 u64 delalloc_end; 332 bool found; 333 struct extent_state *cached_state = NULL; 334 int ret; 335 int loops = 0; 336 337 /* Caller should pass a valid @end to indicate the search range end */ 338 ASSERT(orig_end > orig_start); 339 340 /* The range should at least cover part of the page */ 341 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 342 orig_end <= page_offset(locked_page))); 343 again: 344 /* step one, find a bunch of delalloc bytes starting at start */ 345 delalloc_start = *start; 346 delalloc_end = 0; 347 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 348 max_bytes, &cached_state); 349 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 350 *start = delalloc_start; 351 352 /* @delalloc_end can be -1, never go beyond @orig_end */ 353 *end = min(delalloc_end, orig_end); 354 free_extent_state(cached_state); 355 return false; 356 } 357 358 /* 359 * start comes from the offset of locked_page. We have to lock 360 * pages in order, so we can't process delalloc bytes before 361 * locked_page 362 */ 363 if (delalloc_start < *start) 364 delalloc_start = *start; 365 366 /* 367 * make sure to limit the number of pages we try to lock down 368 */ 369 if (delalloc_end + 1 - delalloc_start > max_bytes) 370 delalloc_end = delalloc_start + max_bytes - 1; 371 372 /* step two, lock all the pages after the page that has start */ 373 ret = lock_delalloc_pages(inode, locked_page, 374 delalloc_start, delalloc_end); 375 ASSERT(!ret || ret == -EAGAIN); 376 if (ret == -EAGAIN) { 377 /* some of the pages are gone, lets avoid looping by 378 * shortening the size of the delalloc range we're searching 379 */ 380 free_extent_state(cached_state); 381 cached_state = NULL; 382 if (!loops) { 383 max_bytes = PAGE_SIZE; 384 loops = 1; 385 goto again; 386 } else { 387 found = false; 388 goto out_failed; 389 } 390 } 391 392 /* step three, lock the state bits for the whole range */ 393 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 394 395 /* then test to make sure it is all still delalloc */ 396 ret = test_range_bit(tree, delalloc_start, delalloc_end, 397 EXTENT_DELALLOC, cached_state); 398 if (!ret) { 399 unlock_extent(tree, delalloc_start, delalloc_end, 400 &cached_state); 401 __unlock_for_delalloc(inode, locked_page, 402 delalloc_start, delalloc_end); 403 cond_resched(); 404 goto again; 405 } 406 free_extent_state(cached_state); 407 *start = delalloc_start; 408 *end = delalloc_end; 409 out_failed: 410 return found; 411 } 412 413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 414 struct page *locked_page, 415 u32 clear_bits, unsigned long page_ops) 416 { 417 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 418 419 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 420 start, end, page_ops); 421 } 422 423 static bool btrfs_verify_page(struct page *page, u64 start) 424 { 425 if (!fsverity_active(page->mapping->host) || 426 PageUptodate(page) || 427 start >= i_size_read(page->mapping->host)) 428 return true; 429 return fsverity_verify_page(page); 430 } 431 432 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 433 { 434 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 435 436 ASSERT(page_offset(page) <= start && 437 start + len <= page_offset(page) + PAGE_SIZE); 438 439 if (uptodate && btrfs_verify_page(page, start)) 440 btrfs_page_set_uptodate(fs_info, page, start, len); 441 else 442 btrfs_page_clear_uptodate(fs_info, page, start, len); 443 444 if (!btrfs_is_subpage(fs_info, page)) 445 unlock_page(page); 446 else 447 btrfs_subpage_end_reader(fs_info, page, start, len); 448 } 449 450 /* 451 * after a writepage IO is done, we need to: 452 * clear the uptodate bits on error 453 * clear the writeback bits in the extent tree for this IO 454 * end_page_writeback if the page has no more pending IO 455 * 456 * Scheduling is not allowed, so the extent state tree is expected 457 * to have one and only one object corresponding to this IO. 458 */ 459 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 460 { 461 struct bio *bio = &bbio->bio; 462 int error = blk_status_to_errno(bio->bi_status); 463 struct bio_vec *bvec; 464 struct bvec_iter_all iter_all; 465 466 ASSERT(!bio_flagged(bio, BIO_CLONED)); 467 bio_for_each_segment_all(bvec, bio, iter_all) { 468 struct page *page = bvec->bv_page; 469 struct inode *inode = page->mapping->host; 470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 471 const u32 sectorsize = fs_info->sectorsize; 472 u64 start = page_offset(page) + bvec->bv_offset; 473 u32 len = bvec->bv_len; 474 475 /* Our read/write should always be sector aligned. */ 476 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 477 btrfs_err(fs_info, 478 "partial page write in btrfs with offset %u and length %u", 479 bvec->bv_offset, bvec->bv_len); 480 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 481 btrfs_info(fs_info, 482 "incomplete page write with offset %u and length %u", 483 bvec->bv_offset, bvec->bv_len); 484 485 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 486 if (error) 487 mapping_set_error(page->mapping, error); 488 btrfs_page_clear_writeback(fs_info, page, start, len); 489 } 490 491 bio_put(bio); 492 } 493 494 /* 495 * Record previously processed extent range 496 * 497 * For endio_readpage_release_extent() to handle a full extent range, reducing 498 * the extent io operations. 499 */ 500 struct processed_extent { 501 struct btrfs_inode *inode; 502 /* Start of the range in @inode */ 503 u64 start; 504 /* End of the range in @inode */ 505 u64 end; 506 bool uptodate; 507 }; 508 509 /* 510 * Try to release processed extent range 511 * 512 * May not release the extent range right now if the current range is 513 * contiguous to processed extent. 514 * 515 * Will release processed extent when any of @inode, @uptodate, the range is 516 * no longer contiguous to the processed range. 517 * 518 * Passing @inode == NULL will force processed extent to be released. 519 */ 520 static void endio_readpage_release_extent(struct processed_extent *processed, 521 struct btrfs_inode *inode, u64 start, u64 end, 522 bool uptodate) 523 { 524 struct extent_state *cached = NULL; 525 struct extent_io_tree *tree; 526 527 /* The first extent, initialize @processed */ 528 if (!processed->inode) 529 goto update; 530 531 /* 532 * Contiguous to processed extent, just uptodate the end. 533 * 534 * Several things to notice: 535 * 536 * - bio can be merged as long as on-disk bytenr is contiguous 537 * This means we can have page belonging to other inodes, thus need to 538 * check if the inode still matches. 539 * - bvec can contain range beyond current page for multi-page bvec 540 * Thus we need to do processed->end + 1 >= start check 541 */ 542 if (processed->inode == inode && processed->uptodate == uptodate && 543 processed->end + 1 >= start && end >= processed->end) { 544 processed->end = end; 545 return; 546 } 547 548 tree = &processed->inode->io_tree; 549 /* 550 * Now we don't have range contiguous to the processed range, release 551 * the processed range now. 552 */ 553 unlock_extent(tree, processed->start, processed->end, &cached); 554 555 update: 556 /* Update processed to current range */ 557 processed->inode = inode; 558 processed->start = start; 559 processed->end = end; 560 processed->uptodate = uptodate; 561 } 562 563 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 564 { 565 ASSERT(PageLocked(page)); 566 if (!btrfs_is_subpage(fs_info, page)) 567 return; 568 569 ASSERT(PagePrivate(page)); 570 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 571 } 572 573 /* 574 * after a readpage IO is done, we need to: 575 * clear the uptodate bits on error 576 * set the uptodate bits if things worked 577 * set the page up to date if all extents in the tree are uptodate 578 * clear the lock bit in the extent tree 579 * unlock the page if there are no other extents locked for it 580 * 581 * Scheduling is not allowed, so the extent state tree is expected 582 * to have one and only one object corresponding to this IO. 583 */ 584 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 585 { 586 struct bio *bio = &bbio->bio; 587 struct bio_vec *bvec; 588 struct processed_extent processed = { 0 }; 589 /* 590 * The offset to the beginning of a bio, since one bio can never be 591 * larger than UINT_MAX, u32 here is enough. 592 */ 593 u32 bio_offset = 0; 594 struct bvec_iter_all iter_all; 595 596 ASSERT(!bio_flagged(bio, BIO_CLONED)); 597 bio_for_each_segment_all(bvec, bio, iter_all) { 598 bool uptodate = !bio->bi_status; 599 struct page *page = bvec->bv_page; 600 struct inode *inode = page->mapping->host; 601 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 602 const u32 sectorsize = fs_info->sectorsize; 603 u64 start; 604 u64 end; 605 u32 len; 606 607 btrfs_debug(fs_info, 608 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 609 bio->bi_iter.bi_sector, bio->bi_status, 610 bbio->mirror_num); 611 612 /* 613 * We always issue full-sector reads, but if some block in a 614 * page fails to read, blk_update_request() will advance 615 * bv_offset and adjust bv_len to compensate. Print a warning 616 * for unaligned offsets, and an error if they don't add up to 617 * a full sector. 618 */ 619 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 620 btrfs_err(fs_info, 621 "partial page read in btrfs with offset %u and length %u", 622 bvec->bv_offset, bvec->bv_len); 623 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 624 sectorsize)) 625 btrfs_info(fs_info, 626 "incomplete page read with offset %u and length %u", 627 bvec->bv_offset, bvec->bv_len); 628 629 start = page_offset(page) + bvec->bv_offset; 630 end = start + bvec->bv_len - 1; 631 len = bvec->bv_len; 632 633 if (likely(uptodate)) { 634 loff_t i_size = i_size_read(inode); 635 pgoff_t end_index = i_size >> PAGE_SHIFT; 636 637 /* 638 * Zero out the remaining part if this range straddles 639 * i_size. 640 * 641 * Here we should only zero the range inside the bvec, 642 * not touch anything else. 643 * 644 * NOTE: i_size is exclusive while end is inclusive. 645 */ 646 if (page->index == end_index && i_size <= end) { 647 u32 zero_start = max(offset_in_page(i_size), 648 offset_in_page(start)); 649 650 zero_user_segment(page, zero_start, 651 offset_in_page(end) + 1); 652 } 653 } 654 655 /* Update page status and unlock. */ 656 end_page_read(page, uptodate, start, len); 657 endio_readpage_release_extent(&processed, BTRFS_I(inode), 658 start, end, uptodate); 659 660 ASSERT(bio_offset + len > bio_offset); 661 bio_offset += len; 662 663 } 664 /* Release the last extent */ 665 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 666 bio_put(bio); 667 } 668 669 /* 670 * Populate every free slot in a provided array with pages. 671 * 672 * @nr_pages: number of pages to allocate 673 * @page_array: the array to fill with pages; any existing non-null entries in 674 * the array will be skipped 675 * 676 * Return: 0 if all pages were able to be allocated; 677 * -ENOMEM otherwise, the partially allocated pages would be freed and 678 * the array slots zeroed 679 */ 680 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 681 { 682 unsigned int allocated; 683 684 for (allocated = 0; allocated < nr_pages;) { 685 unsigned int last = allocated; 686 687 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 688 689 if (allocated == nr_pages) 690 return 0; 691 692 /* 693 * During this iteration, no page could be allocated, even 694 * though alloc_pages_bulk_array() falls back to alloc_page() 695 * if it could not bulk-allocate. So we must be out of memory. 696 */ 697 if (allocated == last) { 698 for (int i = 0; i < allocated; i++) { 699 __free_page(page_array[i]); 700 page_array[i] = NULL; 701 } 702 return -ENOMEM; 703 } 704 705 memalloc_retry_wait(GFP_NOFS); 706 } 707 return 0; 708 } 709 710 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 711 struct page *page, u64 disk_bytenr, 712 unsigned int pg_offset) 713 { 714 struct bio *bio = &bio_ctrl->bbio->bio; 715 struct bio_vec *bvec = bio_last_bvec_all(bio); 716 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 717 718 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 719 /* 720 * For compression, all IO should have its logical bytenr set 721 * to the starting bytenr of the compressed extent. 722 */ 723 return bio->bi_iter.bi_sector == sector; 724 } 725 726 /* 727 * The contig check requires the following conditions to be met: 728 * 729 * 1) The pages are belonging to the same inode 730 * This is implied by the call chain. 731 * 732 * 2) The range has adjacent logical bytenr 733 * 734 * 3) The range has adjacent file offset 735 * This is required for the usage of btrfs_bio->file_offset. 736 */ 737 return bio_end_sector(bio) == sector && 738 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 739 page_offset(page) + pg_offset; 740 } 741 742 static void alloc_new_bio(struct btrfs_inode *inode, 743 struct btrfs_bio_ctrl *bio_ctrl, 744 u64 disk_bytenr, u64 file_offset) 745 { 746 struct btrfs_fs_info *fs_info = inode->root->fs_info; 747 struct btrfs_bio *bbio; 748 749 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 750 bio_ctrl->end_io_func, NULL); 751 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 752 bbio->inode = inode; 753 bbio->file_offset = file_offset; 754 bio_ctrl->bbio = bbio; 755 bio_ctrl->len_to_oe_boundary = U32_MAX; 756 757 /* Limit data write bios to the ordered boundary. */ 758 if (bio_ctrl->wbc) { 759 struct btrfs_ordered_extent *ordered; 760 761 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 762 if (ordered) { 763 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 764 ordered->file_offset + 765 ordered->disk_num_bytes - file_offset); 766 bbio->ordered = ordered; 767 } 768 769 /* 770 * Pick the last added device to support cgroup writeback. For 771 * multi-device file systems this means blk-cgroup policies have 772 * to always be set on the last added/replaced device. 773 * This is a bit odd but has been like that for a long time. 774 */ 775 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 776 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 777 } 778 } 779 780 /* 781 * @disk_bytenr: logical bytenr where the write will be 782 * @page: page to add to the bio 783 * @size: portion of page that we want to write to 784 * @pg_offset: offset of the new bio or to check whether we are adding 785 * a contiguous page to the previous one 786 * 787 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 788 * new one in @bio_ctrl->bbio. 789 * The mirror number for this IO should already be initizlied in 790 * @bio_ctrl->mirror_num. 791 */ 792 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 793 u64 disk_bytenr, struct page *page, 794 size_t size, unsigned long pg_offset) 795 { 796 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 797 798 ASSERT(pg_offset + size <= PAGE_SIZE); 799 ASSERT(bio_ctrl->end_io_func); 800 801 if (bio_ctrl->bbio && 802 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 803 submit_one_bio(bio_ctrl); 804 805 do { 806 u32 len = size; 807 808 /* Allocate new bio if needed */ 809 if (!bio_ctrl->bbio) { 810 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 811 page_offset(page) + pg_offset); 812 } 813 814 /* Cap to the current ordered extent boundary if there is one. */ 815 if (len > bio_ctrl->len_to_oe_boundary) { 816 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 817 ASSERT(is_data_inode(&inode->vfs_inode)); 818 len = bio_ctrl->len_to_oe_boundary; 819 } 820 821 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 822 /* bio full: move on to a new one */ 823 submit_one_bio(bio_ctrl); 824 continue; 825 } 826 827 if (bio_ctrl->wbc) 828 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 829 830 size -= len; 831 pg_offset += len; 832 disk_bytenr += len; 833 834 /* 835 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 836 * sector aligned. alloc_new_bio() then sets it to the end of 837 * our ordered extent for writes into zoned devices. 838 * 839 * When len_to_oe_boundary is tracking an ordered extent, we 840 * trust the ordered extent code to align things properly, and 841 * the check above to cap our write to the ordered extent 842 * boundary is correct. 843 * 844 * When len_to_oe_boundary is U32_MAX, the cap above would 845 * result in a 4095 byte IO for the last page right before 846 * we hit the bio limit of UINT_MAX. bio_add_page() has all 847 * the checks required to make sure we don't overflow the bio, 848 * and we should just ignore len_to_oe_boundary completely 849 * unless we're using it to track an ordered extent. 850 * 851 * It's pretty hard to make a bio sized U32_MAX, but it can 852 * happen when the page cache is able to feed us contiguous 853 * pages for large extents. 854 */ 855 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 856 bio_ctrl->len_to_oe_boundary -= len; 857 858 /* Ordered extent boundary: move on to a new bio. */ 859 if (bio_ctrl->len_to_oe_boundary == 0) 860 submit_one_bio(bio_ctrl); 861 } while (size); 862 } 863 864 static int attach_extent_buffer_page(struct extent_buffer *eb, 865 struct page *page, 866 struct btrfs_subpage *prealloc) 867 { 868 struct btrfs_fs_info *fs_info = eb->fs_info; 869 int ret = 0; 870 871 /* 872 * If the page is mapped to btree inode, we should hold the private 873 * lock to prevent race. 874 * For cloned or dummy extent buffers, their pages are not mapped and 875 * will not race with any other ebs. 876 */ 877 if (page->mapping) 878 lockdep_assert_held(&page->mapping->private_lock); 879 880 if (fs_info->nodesize >= PAGE_SIZE) { 881 if (!PagePrivate(page)) 882 attach_page_private(page, eb); 883 else 884 WARN_ON(page->private != (unsigned long)eb); 885 return 0; 886 } 887 888 /* Already mapped, just free prealloc */ 889 if (PagePrivate(page)) { 890 btrfs_free_subpage(prealloc); 891 return 0; 892 } 893 894 if (prealloc) 895 /* Has preallocated memory for subpage */ 896 attach_page_private(page, prealloc); 897 else 898 /* Do new allocation to attach subpage */ 899 ret = btrfs_attach_subpage(fs_info, page, 900 BTRFS_SUBPAGE_METADATA); 901 return ret; 902 } 903 904 int set_page_extent_mapped(struct page *page) 905 { 906 struct btrfs_fs_info *fs_info; 907 908 ASSERT(page->mapping); 909 910 if (PagePrivate(page)) 911 return 0; 912 913 fs_info = btrfs_sb(page->mapping->host->i_sb); 914 915 if (btrfs_is_subpage(fs_info, page)) 916 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 917 918 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 919 return 0; 920 } 921 922 void clear_page_extent_mapped(struct page *page) 923 { 924 struct btrfs_fs_info *fs_info; 925 926 ASSERT(page->mapping); 927 928 if (!PagePrivate(page)) 929 return; 930 931 fs_info = btrfs_sb(page->mapping->host->i_sb); 932 if (btrfs_is_subpage(fs_info, page)) 933 return btrfs_detach_subpage(fs_info, page); 934 935 detach_page_private(page); 936 } 937 938 static struct extent_map * 939 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 940 u64 start, u64 len, struct extent_map **em_cached) 941 { 942 struct extent_map *em; 943 944 if (em_cached && *em_cached) { 945 em = *em_cached; 946 if (extent_map_in_tree(em) && start >= em->start && 947 start < extent_map_end(em)) { 948 refcount_inc(&em->refs); 949 return em; 950 } 951 952 free_extent_map(em); 953 *em_cached = NULL; 954 } 955 956 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 957 if (em_cached && !IS_ERR(em)) { 958 BUG_ON(*em_cached); 959 refcount_inc(&em->refs); 960 *em_cached = em; 961 } 962 return em; 963 } 964 /* 965 * basic readpage implementation. Locked extent state structs are inserted 966 * into the tree that are removed when the IO is done (by the end_io 967 * handlers) 968 * XXX JDM: This needs looking at to ensure proper page locking 969 * return 0 on success, otherwise return error 970 */ 971 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 972 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 973 { 974 struct inode *inode = page->mapping->host; 975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 976 u64 start = page_offset(page); 977 const u64 end = start + PAGE_SIZE - 1; 978 u64 cur = start; 979 u64 extent_offset; 980 u64 last_byte = i_size_read(inode); 981 u64 block_start; 982 struct extent_map *em; 983 int ret = 0; 984 size_t pg_offset = 0; 985 size_t iosize; 986 size_t blocksize = inode->i_sb->s_blocksize; 987 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 988 989 ret = set_page_extent_mapped(page); 990 if (ret < 0) { 991 unlock_extent(tree, start, end, NULL); 992 unlock_page(page); 993 return ret; 994 } 995 996 if (page->index == last_byte >> PAGE_SHIFT) { 997 size_t zero_offset = offset_in_page(last_byte); 998 999 if (zero_offset) { 1000 iosize = PAGE_SIZE - zero_offset; 1001 memzero_page(page, zero_offset, iosize); 1002 } 1003 } 1004 bio_ctrl->end_io_func = end_bio_extent_readpage; 1005 begin_page_read(fs_info, page); 1006 while (cur <= end) { 1007 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1008 bool force_bio_submit = false; 1009 u64 disk_bytenr; 1010 1011 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1012 if (cur >= last_byte) { 1013 iosize = PAGE_SIZE - pg_offset; 1014 memzero_page(page, pg_offset, iosize); 1015 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1016 end_page_read(page, true, cur, iosize); 1017 break; 1018 } 1019 em = __get_extent_map(inode, page, pg_offset, cur, 1020 end - cur + 1, em_cached); 1021 if (IS_ERR(em)) { 1022 unlock_extent(tree, cur, end, NULL); 1023 end_page_read(page, false, cur, end + 1 - cur); 1024 return PTR_ERR(em); 1025 } 1026 extent_offset = cur - em->start; 1027 BUG_ON(extent_map_end(em) <= cur); 1028 BUG_ON(end < cur); 1029 1030 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1031 compress_type = em->compress_type; 1032 1033 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1034 iosize = ALIGN(iosize, blocksize); 1035 if (compress_type != BTRFS_COMPRESS_NONE) 1036 disk_bytenr = em->block_start; 1037 else 1038 disk_bytenr = em->block_start + extent_offset; 1039 block_start = em->block_start; 1040 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1041 block_start = EXTENT_MAP_HOLE; 1042 1043 /* 1044 * If we have a file range that points to a compressed extent 1045 * and it's followed by a consecutive file range that points 1046 * to the same compressed extent (possibly with a different 1047 * offset and/or length, so it either points to the whole extent 1048 * or only part of it), we must make sure we do not submit a 1049 * single bio to populate the pages for the 2 ranges because 1050 * this makes the compressed extent read zero out the pages 1051 * belonging to the 2nd range. Imagine the following scenario: 1052 * 1053 * File layout 1054 * [0 - 8K] [8K - 24K] 1055 * | | 1056 * | | 1057 * points to extent X, points to extent X, 1058 * offset 4K, length of 8K offset 0, length 16K 1059 * 1060 * [extent X, compressed length = 4K uncompressed length = 16K] 1061 * 1062 * If the bio to read the compressed extent covers both ranges, 1063 * it will decompress extent X into the pages belonging to the 1064 * first range and then it will stop, zeroing out the remaining 1065 * pages that belong to the other range that points to extent X. 1066 * So here we make sure we submit 2 bios, one for the first 1067 * range and another one for the third range. Both will target 1068 * the same physical extent from disk, but we can't currently 1069 * make the compressed bio endio callback populate the pages 1070 * for both ranges because each compressed bio is tightly 1071 * coupled with a single extent map, and each range can have 1072 * an extent map with a different offset value relative to the 1073 * uncompressed data of our extent and different lengths. This 1074 * is a corner case so we prioritize correctness over 1075 * non-optimal behavior (submitting 2 bios for the same extent). 1076 */ 1077 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1078 prev_em_start && *prev_em_start != (u64)-1 && 1079 *prev_em_start != em->start) 1080 force_bio_submit = true; 1081 1082 if (prev_em_start) 1083 *prev_em_start = em->start; 1084 1085 free_extent_map(em); 1086 em = NULL; 1087 1088 /* we've found a hole, just zero and go on */ 1089 if (block_start == EXTENT_MAP_HOLE) { 1090 memzero_page(page, pg_offset, iosize); 1091 1092 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1093 end_page_read(page, true, cur, iosize); 1094 cur = cur + iosize; 1095 pg_offset += iosize; 1096 continue; 1097 } 1098 /* the get_extent function already copied into the page */ 1099 if (block_start == EXTENT_MAP_INLINE) { 1100 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1101 end_page_read(page, true, cur, iosize); 1102 cur = cur + iosize; 1103 pg_offset += iosize; 1104 continue; 1105 } 1106 1107 if (bio_ctrl->compress_type != compress_type) { 1108 submit_one_bio(bio_ctrl); 1109 bio_ctrl->compress_type = compress_type; 1110 } 1111 1112 if (force_bio_submit) 1113 submit_one_bio(bio_ctrl); 1114 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1115 pg_offset); 1116 cur = cur + iosize; 1117 pg_offset += iosize; 1118 } 1119 1120 return 0; 1121 } 1122 1123 int btrfs_read_folio(struct file *file, struct folio *folio) 1124 { 1125 struct page *page = &folio->page; 1126 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1127 u64 start = page_offset(page); 1128 u64 end = start + PAGE_SIZE - 1; 1129 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1130 int ret; 1131 1132 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1133 1134 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1135 /* 1136 * If btrfs_do_readpage() failed we will want to submit the assembled 1137 * bio to do the cleanup. 1138 */ 1139 submit_one_bio(&bio_ctrl); 1140 return ret; 1141 } 1142 1143 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1144 u64 start, u64 end, 1145 struct extent_map **em_cached, 1146 struct btrfs_bio_ctrl *bio_ctrl, 1147 u64 *prev_em_start) 1148 { 1149 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1150 int index; 1151 1152 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1153 1154 for (index = 0; index < nr_pages; index++) { 1155 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1156 prev_em_start); 1157 put_page(pages[index]); 1158 } 1159 } 1160 1161 /* 1162 * helper for __extent_writepage, doing all of the delayed allocation setup. 1163 * 1164 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1165 * to write the page (copy into inline extent). In this case the IO has 1166 * been started and the page is already unlocked. 1167 * 1168 * This returns 0 if all went well (page still locked) 1169 * This returns < 0 if there were errors (page still locked) 1170 */ 1171 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1172 struct page *page, struct writeback_control *wbc) 1173 { 1174 const u64 page_start = page_offset(page); 1175 const u64 page_end = page_start + PAGE_SIZE - 1; 1176 u64 delalloc_start = page_start; 1177 u64 delalloc_end = page_end; 1178 u64 delalloc_to_write = 0; 1179 int ret = 0; 1180 1181 while (delalloc_start < page_end) { 1182 delalloc_end = page_end; 1183 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1184 &delalloc_start, &delalloc_end)) { 1185 delalloc_start = delalloc_end + 1; 1186 continue; 1187 } 1188 1189 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1190 delalloc_end, wbc); 1191 if (ret < 0) 1192 return ret; 1193 1194 delalloc_start = delalloc_end + 1; 1195 } 1196 1197 /* 1198 * delalloc_end is already one less than the total length, so 1199 * we don't subtract one from PAGE_SIZE 1200 */ 1201 delalloc_to_write += 1202 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1203 1204 /* 1205 * If btrfs_run_dealloc_range() already started I/O and unlocked 1206 * the pages, we just need to account for them here. 1207 */ 1208 if (ret == 1) { 1209 wbc->nr_to_write -= delalloc_to_write; 1210 return 1; 1211 } 1212 1213 if (wbc->nr_to_write < delalloc_to_write) { 1214 int thresh = 8192; 1215 1216 if (delalloc_to_write < thresh * 2) 1217 thresh = delalloc_to_write; 1218 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1219 thresh); 1220 } 1221 1222 return 0; 1223 } 1224 1225 /* 1226 * Find the first byte we need to write. 1227 * 1228 * For subpage, one page can contain several sectors, and 1229 * __extent_writepage_io() will just grab all extent maps in the page 1230 * range and try to submit all non-inline/non-compressed extents. 1231 * 1232 * This is a big problem for subpage, we shouldn't re-submit already written 1233 * data at all. 1234 * This function will lookup subpage dirty bit to find which range we really 1235 * need to submit. 1236 * 1237 * Return the next dirty range in [@start, @end). 1238 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1239 */ 1240 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1241 struct page *page, u64 *start, u64 *end) 1242 { 1243 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1244 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1245 u64 orig_start = *start; 1246 /* Declare as unsigned long so we can use bitmap ops */ 1247 unsigned long flags; 1248 int range_start_bit; 1249 int range_end_bit; 1250 1251 /* 1252 * For regular sector size == page size case, since one page only 1253 * contains one sector, we return the page offset directly. 1254 */ 1255 if (!btrfs_is_subpage(fs_info, page)) { 1256 *start = page_offset(page); 1257 *end = page_offset(page) + PAGE_SIZE; 1258 return; 1259 } 1260 1261 range_start_bit = spi->dirty_offset + 1262 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1263 1264 /* We should have the page locked, but just in case */ 1265 spin_lock_irqsave(&subpage->lock, flags); 1266 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1267 spi->dirty_offset + spi->bitmap_nr_bits); 1268 spin_unlock_irqrestore(&subpage->lock, flags); 1269 1270 range_start_bit -= spi->dirty_offset; 1271 range_end_bit -= spi->dirty_offset; 1272 1273 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1274 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1275 } 1276 1277 /* 1278 * helper for __extent_writepage. This calls the writepage start hooks, 1279 * and does the loop to map the page into extents and bios. 1280 * 1281 * We return 1 if the IO is started and the page is unlocked, 1282 * 0 if all went well (page still locked) 1283 * < 0 if there were errors (page still locked) 1284 */ 1285 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1286 struct page *page, 1287 struct btrfs_bio_ctrl *bio_ctrl, 1288 loff_t i_size, 1289 int *nr_ret) 1290 { 1291 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1292 u64 cur = page_offset(page); 1293 u64 end = cur + PAGE_SIZE - 1; 1294 u64 extent_offset; 1295 u64 block_start; 1296 struct extent_map *em; 1297 int ret = 0; 1298 int nr = 0; 1299 1300 ret = btrfs_writepage_cow_fixup(page); 1301 if (ret) { 1302 /* Fixup worker will requeue */ 1303 redirty_page_for_writepage(bio_ctrl->wbc, page); 1304 unlock_page(page); 1305 return 1; 1306 } 1307 1308 bio_ctrl->end_io_func = end_bio_extent_writepage; 1309 while (cur <= end) { 1310 u32 len = end - cur + 1; 1311 u64 disk_bytenr; 1312 u64 em_end; 1313 u64 dirty_range_start = cur; 1314 u64 dirty_range_end; 1315 u32 iosize; 1316 1317 if (cur >= i_size) { 1318 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1319 true); 1320 /* 1321 * This range is beyond i_size, thus we don't need to 1322 * bother writing back. 1323 * But we still need to clear the dirty subpage bit, or 1324 * the next time the page gets dirtied, we will try to 1325 * writeback the sectors with subpage dirty bits, 1326 * causing writeback without ordered extent. 1327 */ 1328 btrfs_page_clear_dirty(fs_info, page, cur, len); 1329 break; 1330 } 1331 1332 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1333 &dirty_range_end); 1334 if (cur < dirty_range_start) { 1335 cur = dirty_range_start; 1336 continue; 1337 } 1338 1339 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1340 if (IS_ERR(em)) { 1341 ret = PTR_ERR_OR_ZERO(em); 1342 goto out_error; 1343 } 1344 1345 extent_offset = cur - em->start; 1346 em_end = extent_map_end(em); 1347 ASSERT(cur <= em_end); 1348 ASSERT(cur < end); 1349 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1350 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1351 1352 block_start = em->block_start; 1353 disk_bytenr = em->block_start + extent_offset; 1354 1355 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1356 ASSERT(block_start != EXTENT_MAP_HOLE); 1357 ASSERT(block_start != EXTENT_MAP_INLINE); 1358 1359 /* 1360 * Note that em_end from extent_map_end() and dirty_range_end from 1361 * find_next_dirty_byte() are all exclusive 1362 */ 1363 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1364 free_extent_map(em); 1365 em = NULL; 1366 1367 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1368 if (!PageWriteback(page)) { 1369 btrfs_err(inode->root->fs_info, 1370 "page %lu not writeback, cur %llu end %llu", 1371 page->index, cur, end); 1372 } 1373 1374 /* 1375 * Although the PageDirty bit is cleared before entering this 1376 * function, subpage dirty bit is not cleared. 1377 * So clear subpage dirty bit here so next time we won't submit 1378 * page for range already written to disk. 1379 */ 1380 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1381 1382 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1383 cur - page_offset(page)); 1384 cur += iosize; 1385 nr++; 1386 } 1387 1388 btrfs_page_assert_not_dirty(fs_info, page); 1389 *nr_ret = nr; 1390 return 0; 1391 1392 out_error: 1393 /* 1394 * If we finish without problem, we should not only clear page dirty, 1395 * but also empty subpage dirty bits 1396 */ 1397 *nr_ret = nr; 1398 return ret; 1399 } 1400 1401 /* 1402 * the writepage semantics are similar to regular writepage. extent 1403 * records are inserted to lock ranges in the tree, and as dirty areas 1404 * are found, they are marked writeback. Then the lock bits are removed 1405 * and the end_io handler clears the writeback ranges 1406 * 1407 * Return 0 if everything goes well. 1408 * Return <0 for error. 1409 */ 1410 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1411 { 1412 struct folio *folio = page_folio(page); 1413 struct inode *inode = page->mapping->host; 1414 const u64 page_start = page_offset(page); 1415 int ret; 1416 int nr = 0; 1417 size_t pg_offset; 1418 loff_t i_size = i_size_read(inode); 1419 unsigned long end_index = i_size >> PAGE_SHIFT; 1420 1421 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1422 1423 WARN_ON(!PageLocked(page)); 1424 1425 pg_offset = offset_in_page(i_size); 1426 if (page->index > end_index || 1427 (page->index == end_index && !pg_offset)) { 1428 folio_invalidate(folio, 0, folio_size(folio)); 1429 folio_unlock(folio); 1430 return 0; 1431 } 1432 1433 if (page->index == end_index) 1434 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1435 1436 ret = set_page_extent_mapped(page); 1437 if (ret < 0) 1438 goto done; 1439 1440 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1441 if (ret == 1) 1442 return 0; 1443 if (ret) 1444 goto done; 1445 1446 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1447 if (ret == 1) 1448 return 0; 1449 1450 bio_ctrl->wbc->nr_to_write--; 1451 1452 done: 1453 if (nr == 0) { 1454 /* make sure the mapping tag for page dirty gets cleared */ 1455 set_page_writeback(page); 1456 end_page_writeback(page); 1457 } 1458 if (ret) { 1459 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1460 PAGE_SIZE, !ret); 1461 mapping_set_error(page->mapping, ret); 1462 } 1463 unlock_page(page); 1464 ASSERT(ret <= 0); 1465 return ret; 1466 } 1467 1468 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1469 { 1470 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1471 TASK_UNINTERRUPTIBLE); 1472 } 1473 1474 /* 1475 * Lock extent buffer status and pages for writeback. 1476 * 1477 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1478 * extent buffer is not dirty) 1479 * Return %true is the extent buffer is submitted to bio. 1480 */ 1481 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1482 struct writeback_control *wbc) 1483 { 1484 struct btrfs_fs_info *fs_info = eb->fs_info; 1485 bool ret = false; 1486 1487 btrfs_tree_lock(eb); 1488 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1489 btrfs_tree_unlock(eb); 1490 if (wbc->sync_mode != WB_SYNC_ALL) 1491 return false; 1492 wait_on_extent_buffer_writeback(eb); 1493 btrfs_tree_lock(eb); 1494 } 1495 1496 /* 1497 * We need to do this to prevent races in people who check if the eb is 1498 * under IO since we can end up having no IO bits set for a short period 1499 * of time. 1500 */ 1501 spin_lock(&eb->refs_lock); 1502 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1503 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1504 spin_unlock(&eb->refs_lock); 1505 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1506 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1507 -eb->len, 1508 fs_info->dirty_metadata_batch); 1509 ret = true; 1510 } else { 1511 spin_unlock(&eb->refs_lock); 1512 } 1513 btrfs_tree_unlock(eb); 1514 return ret; 1515 } 1516 1517 static void set_btree_ioerr(struct extent_buffer *eb) 1518 { 1519 struct btrfs_fs_info *fs_info = eb->fs_info; 1520 1521 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1522 1523 /* 1524 * A read may stumble upon this buffer later, make sure that it gets an 1525 * error and knows there was an error. 1526 */ 1527 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1528 1529 /* 1530 * We need to set the mapping with the io error as well because a write 1531 * error will flip the file system readonly, and then syncfs() will 1532 * return a 0 because we are readonly if we don't modify the err seq for 1533 * the superblock. 1534 */ 1535 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1536 1537 /* 1538 * If writeback for a btree extent that doesn't belong to a log tree 1539 * failed, increment the counter transaction->eb_write_errors. 1540 * We do this because while the transaction is running and before it's 1541 * committing (when we call filemap_fdata[write|wait]_range against 1542 * the btree inode), we might have 1543 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1544 * returns an error or an error happens during writeback, when we're 1545 * committing the transaction we wouldn't know about it, since the pages 1546 * can be no longer dirty nor marked anymore for writeback (if a 1547 * subsequent modification to the extent buffer didn't happen before the 1548 * transaction commit), which makes filemap_fdata[write|wait]_range not 1549 * able to find the pages tagged with SetPageError at transaction 1550 * commit time. So if this happens we must abort the transaction, 1551 * otherwise we commit a super block with btree roots that point to 1552 * btree nodes/leafs whose content on disk is invalid - either garbage 1553 * or the content of some node/leaf from a past generation that got 1554 * cowed or deleted and is no longer valid. 1555 * 1556 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1557 * not be enough - we need to distinguish between log tree extents vs 1558 * non-log tree extents, and the next filemap_fdatawait_range() call 1559 * will catch and clear such errors in the mapping - and that call might 1560 * be from a log sync and not from a transaction commit. Also, checking 1561 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1562 * not done and would not be reliable - the eb might have been released 1563 * from memory and reading it back again means that flag would not be 1564 * set (since it's a runtime flag, not persisted on disk). 1565 * 1566 * Using the flags below in the btree inode also makes us achieve the 1567 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1568 * writeback for all dirty pages and before filemap_fdatawait_range() 1569 * is called, the writeback for all dirty pages had already finished 1570 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1571 * filemap_fdatawait_range() would return success, as it could not know 1572 * that writeback errors happened (the pages were no longer tagged for 1573 * writeback). 1574 */ 1575 switch (eb->log_index) { 1576 case -1: 1577 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1578 break; 1579 case 0: 1580 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1581 break; 1582 case 1: 1583 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1584 break; 1585 default: 1586 BUG(); /* unexpected, logic error */ 1587 } 1588 } 1589 1590 /* 1591 * The endio specific version which won't touch any unsafe spinlock in endio 1592 * context. 1593 */ 1594 static struct extent_buffer *find_extent_buffer_nolock( 1595 struct btrfs_fs_info *fs_info, u64 start) 1596 { 1597 struct extent_buffer *eb; 1598 1599 rcu_read_lock(); 1600 eb = radix_tree_lookup(&fs_info->buffer_radix, 1601 start >> fs_info->sectorsize_bits); 1602 if (eb && atomic_inc_not_zero(&eb->refs)) { 1603 rcu_read_unlock(); 1604 return eb; 1605 } 1606 rcu_read_unlock(); 1607 return NULL; 1608 } 1609 1610 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1611 { 1612 struct extent_buffer *eb = bbio->private; 1613 struct btrfs_fs_info *fs_info = eb->fs_info; 1614 bool uptodate = !bbio->bio.bi_status; 1615 struct bvec_iter_all iter_all; 1616 struct bio_vec *bvec; 1617 u32 bio_offset = 0; 1618 1619 if (!uptodate) 1620 set_btree_ioerr(eb); 1621 1622 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1623 u64 start = eb->start + bio_offset; 1624 struct page *page = bvec->bv_page; 1625 u32 len = bvec->bv_len; 1626 1627 btrfs_page_clear_writeback(fs_info, page, start, len); 1628 bio_offset += len; 1629 } 1630 1631 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1632 smp_mb__after_atomic(); 1633 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1634 1635 bio_put(&bbio->bio); 1636 } 1637 1638 static void prepare_eb_write(struct extent_buffer *eb) 1639 { 1640 u32 nritems; 1641 unsigned long start; 1642 unsigned long end; 1643 1644 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1645 1646 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1647 nritems = btrfs_header_nritems(eb); 1648 if (btrfs_header_level(eb) > 0) { 1649 end = btrfs_node_key_ptr_offset(eb, nritems); 1650 memzero_extent_buffer(eb, end, eb->len - end); 1651 } else { 1652 /* 1653 * Leaf: 1654 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1655 */ 1656 start = btrfs_item_nr_offset(eb, nritems); 1657 end = btrfs_item_nr_offset(eb, 0); 1658 if (nritems == 0) 1659 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1660 else 1661 end += btrfs_item_offset(eb, nritems - 1); 1662 memzero_extent_buffer(eb, start, end - start); 1663 } 1664 } 1665 1666 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1667 struct writeback_control *wbc) 1668 { 1669 struct btrfs_fs_info *fs_info = eb->fs_info; 1670 struct btrfs_bio *bbio; 1671 1672 prepare_eb_write(eb); 1673 1674 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1675 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1676 eb->fs_info, extent_buffer_write_end_io, eb); 1677 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1678 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1679 wbc_init_bio(wbc, &bbio->bio); 1680 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1681 bbio->file_offset = eb->start; 1682 if (fs_info->nodesize < PAGE_SIZE) { 1683 struct page *p = eb->pages[0]; 1684 1685 lock_page(p); 1686 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1687 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1688 eb->len)) { 1689 clear_page_dirty_for_io(p); 1690 wbc->nr_to_write--; 1691 } 1692 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1693 wbc_account_cgroup_owner(wbc, p, eb->len); 1694 unlock_page(p); 1695 } else { 1696 for (int i = 0; i < num_extent_pages(eb); i++) { 1697 struct page *p = eb->pages[i]; 1698 1699 lock_page(p); 1700 clear_page_dirty_for_io(p); 1701 set_page_writeback(p); 1702 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1703 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1704 wbc->nr_to_write--; 1705 unlock_page(p); 1706 } 1707 } 1708 btrfs_submit_bio(bbio, 0); 1709 } 1710 1711 /* 1712 * Submit one subpage btree page. 1713 * 1714 * The main difference to submit_eb_page() is: 1715 * - Page locking 1716 * For subpage, we don't rely on page locking at all. 1717 * 1718 * - Flush write bio 1719 * We only flush bio if we may be unable to fit current extent buffers into 1720 * current bio. 1721 * 1722 * Return >=0 for the number of submitted extent buffers. 1723 * Return <0 for fatal error. 1724 */ 1725 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1726 { 1727 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1728 int submitted = 0; 1729 u64 page_start = page_offset(page); 1730 int bit_start = 0; 1731 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1732 1733 /* Lock and write each dirty extent buffers in the range */ 1734 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1735 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1736 struct extent_buffer *eb; 1737 unsigned long flags; 1738 u64 start; 1739 1740 /* 1741 * Take private lock to ensure the subpage won't be detached 1742 * in the meantime. 1743 */ 1744 spin_lock(&page->mapping->private_lock); 1745 if (!PagePrivate(page)) { 1746 spin_unlock(&page->mapping->private_lock); 1747 break; 1748 } 1749 spin_lock_irqsave(&subpage->lock, flags); 1750 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1751 subpage->bitmaps)) { 1752 spin_unlock_irqrestore(&subpage->lock, flags); 1753 spin_unlock(&page->mapping->private_lock); 1754 bit_start++; 1755 continue; 1756 } 1757 1758 start = page_start + bit_start * fs_info->sectorsize; 1759 bit_start += sectors_per_node; 1760 1761 /* 1762 * Here we just want to grab the eb without touching extra 1763 * spin locks, so call find_extent_buffer_nolock(). 1764 */ 1765 eb = find_extent_buffer_nolock(fs_info, start); 1766 spin_unlock_irqrestore(&subpage->lock, flags); 1767 spin_unlock(&page->mapping->private_lock); 1768 1769 /* 1770 * The eb has already reached 0 refs thus find_extent_buffer() 1771 * doesn't return it. We don't need to write back such eb 1772 * anyway. 1773 */ 1774 if (!eb) 1775 continue; 1776 1777 if (lock_extent_buffer_for_io(eb, wbc)) { 1778 write_one_eb(eb, wbc); 1779 submitted++; 1780 } 1781 free_extent_buffer(eb); 1782 } 1783 return submitted; 1784 } 1785 1786 /* 1787 * Submit all page(s) of one extent buffer. 1788 * 1789 * @page: the page of one extent buffer 1790 * @eb_context: to determine if we need to submit this page, if current page 1791 * belongs to this eb, we don't need to submit 1792 * 1793 * The caller should pass each page in their bytenr order, and here we use 1794 * @eb_context to determine if we have submitted pages of one extent buffer. 1795 * 1796 * If we have, we just skip until we hit a new page that doesn't belong to 1797 * current @eb_context. 1798 * 1799 * If not, we submit all the page(s) of the extent buffer. 1800 * 1801 * Return >0 if we have submitted the extent buffer successfully. 1802 * Return 0 if we don't need to submit the page, as it's already submitted by 1803 * previous call. 1804 * Return <0 for fatal error. 1805 */ 1806 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1807 { 1808 struct writeback_control *wbc = ctx->wbc; 1809 struct address_space *mapping = page->mapping; 1810 struct extent_buffer *eb; 1811 int ret; 1812 1813 if (!PagePrivate(page)) 1814 return 0; 1815 1816 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1817 return submit_eb_subpage(page, wbc); 1818 1819 spin_lock(&mapping->private_lock); 1820 if (!PagePrivate(page)) { 1821 spin_unlock(&mapping->private_lock); 1822 return 0; 1823 } 1824 1825 eb = (struct extent_buffer *)page->private; 1826 1827 /* 1828 * Shouldn't happen and normally this would be a BUG_ON but no point 1829 * crashing the machine for something we can survive anyway. 1830 */ 1831 if (WARN_ON(!eb)) { 1832 spin_unlock(&mapping->private_lock); 1833 return 0; 1834 } 1835 1836 if (eb == ctx->eb) { 1837 spin_unlock(&mapping->private_lock); 1838 return 0; 1839 } 1840 ret = atomic_inc_not_zero(&eb->refs); 1841 spin_unlock(&mapping->private_lock); 1842 if (!ret) 1843 return 0; 1844 1845 ctx->eb = eb; 1846 1847 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1848 if (ret) { 1849 if (ret == -EBUSY) 1850 ret = 0; 1851 free_extent_buffer(eb); 1852 return ret; 1853 } 1854 1855 if (!lock_extent_buffer_for_io(eb, wbc)) { 1856 free_extent_buffer(eb); 1857 return 0; 1858 } 1859 /* Implies write in zoned mode. */ 1860 if (ctx->zoned_bg) { 1861 /* Mark the last eb in the block group. */ 1862 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1863 ctx->zoned_bg->meta_write_pointer += eb->len; 1864 } 1865 write_one_eb(eb, wbc); 1866 free_extent_buffer(eb); 1867 return 1; 1868 } 1869 1870 int btree_write_cache_pages(struct address_space *mapping, 1871 struct writeback_control *wbc) 1872 { 1873 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1874 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1875 int ret = 0; 1876 int done = 0; 1877 int nr_to_write_done = 0; 1878 struct folio_batch fbatch; 1879 unsigned int nr_folios; 1880 pgoff_t index; 1881 pgoff_t end; /* Inclusive */ 1882 int scanned = 0; 1883 xa_mark_t tag; 1884 1885 folio_batch_init(&fbatch); 1886 if (wbc->range_cyclic) { 1887 index = mapping->writeback_index; /* Start from prev offset */ 1888 end = -1; 1889 /* 1890 * Start from the beginning does not need to cycle over the 1891 * range, mark it as scanned. 1892 */ 1893 scanned = (index == 0); 1894 } else { 1895 index = wbc->range_start >> PAGE_SHIFT; 1896 end = wbc->range_end >> PAGE_SHIFT; 1897 scanned = 1; 1898 } 1899 if (wbc->sync_mode == WB_SYNC_ALL) 1900 tag = PAGECACHE_TAG_TOWRITE; 1901 else 1902 tag = PAGECACHE_TAG_DIRTY; 1903 btrfs_zoned_meta_io_lock(fs_info); 1904 retry: 1905 if (wbc->sync_mode == WB_SYNC_ALL) 1906 tag_pages_for_writeback(mapping, index, end); 1907 while (!done && !nr_to_write_done && (index <= end) && 1908 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1909 tag, &fbatch))) { 1910 unsigned i; 1911 1912 for (i = 0; i < nr_folios; i++) { 1913 struct folio *folio = fbatch.folios[i]; 1914 1915 ret = submit_eb_page(&folio->page, &ctx); 1916 if (ret == 0) 1917 continue; 1918 if (ret < 0) { 1919 done = 1; 1920 break; 1921 } 1922 1923 /* 1924 * the filesystem may choose to bump up nr_to_write. 1925 * We have to make sure to honor the new nr_to_write 1926 * at any time 1927 */ 1928 nr_to_write_done = wbc->nr_to_write <= 0; 1929 } 1930 folio_batch_release(&fbatch); 1931 cond_resched(); 1932 } 1933 if (!scanned && !done) { 1934 /* 1935 * We hit the last page and there is more work to be done: wrap 1936 * back to the start of the file 1937 */ 1938 scanned = 1; 1939 index = 0; 1940 goto retry; 1941 } 1942 /* 1943 * If something went wrong, don't allow any metadata write bio to be 1944 * submitted. 1945 * 1946 * This would prevent use-after-free if we had dirty pages not 1947 * cleaned up, which can still happen by fuzzed images. 1948 * 1949 * - Bad extent tree 1950 * Allowing existing tree block to be allocated for other trees. 1951 * 1952 * - Log tree operations 1953 * Exiting tree blocks get allocated to log tree, bumps its 1954 * generation, then get cleaned in tree re-balance. 1955 * Such tree block will not be written back, since it's clean, 1956 * thus no WRITTEN flag set. 1957 * And after log writes back, this tree block is not traced by 1958 * any dirty extent_io_tree. 1959 * 1960 * - Offending tree block gets re-dirtied from its original owner 1961 * Since it has bumped generation, no WRITTEN flag, it can be 1962 * reused without COWing. This tree block will not be traced 1963 * by btrfs_transaction::dirty_pages. 1964 * 1965 * Now such dirty tree block will not be cleaned by any dirty 1966 * extent io tree. Thus we don't want to submit such wild eb 1967 * if the fs already has error. 1968 * 1969 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1970 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1971 */ 1972 if (ret > 0) 1973 ret = 0; 1974 if (!ret && BTRFS_FS_ERROR(fs_info)) 1975 ret = -EROFS; 1976 1977 if (ctx.zoned_bg) 1978 btrfs_put_block_group(ctx.zoned_bg); 1979 btrfs_zoned_meta_io_unlock(fs_info); 1980 return ret; 1981 } 1982 1983 /* 1984 * Walk the list of dirty pages of the given address space and write all of them. 1985 * 1986 * @mapping: address space structure to write 1987 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1988 * @bio_ctrl: holds context for the write, namely the bio 1989 * 1990 * If a page is already under I/O, write_cache_pages() skips it, even 1991 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1992 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1993 * and msync() need to guarantee that all the data which was dirty at the time 1994 * the call was made get new I/O started against them. If wbc->sync_mode is 1995 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1996 * existing IO to complete. 1997 */ 1998 static int extent_write_cache_pages(struct address_space *mapping, 1999 struct btrfs_bio_ctrl *bio_ctrl) 2000 { 2001 struct writeback_control *wbc = bio_ctrl->wbc; 2002 struct inode *inode = mapping->host; 2003 int ret = 0; 2004 int done = 0; 2005 int nr_to_write_done = 0; 2006 struct folio_batch fbatch; 2007 unsigned int nr_folios; 2008 pgoff_t index; 2009 pgoff_t end; /* Inclusive */ 2010 pgoff_t done_index; 2011 int range_whole = 0; 2012 int scanned = 0; 2013 xa_mark_t tag; 2014 2015 /* 2016 * We have to hold onto the inode so that ordered extents can do their 2017 * work when the IO finishes. The alternative to this is failing to add 2018 * an ordered extent if the igrab() fails there and that is a huge pain 2019 * to deal with, so instead just hold onto the inode throughout the 2020 * writepages operation. If it fails here we are freeing up the inode 2021 * anyway and we'd rather not waste our time writing out stuff that is 2022 * going to be truncated anyway. 2023 */ 2024 if (!igrab(inode)) 2025 return 0; 2026 2027 folio_batch_init(&fbatch); 2028 if (wbc->range_cyclic) { 2029 index = mapping->writeback_index; /* Start from prev offset */ 2030 end = -1; 2031 /* 2032 * Start from the beginning does not need to cycle over the 2033 * range, mark it as scanned. 2034 */ 2035 scanned = (index == 0); 2036 } else { 2037 index = wbc->range_start >> PAGE_SHIFT; 2038 end = wbc->range_end >> PAGE_SHIFT; 2039 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2040 range_whole = 1; 2041 scanned = 1; 2042 } 2043 2044 /* 2045 * We do the tagged writepage as long as the snapshot flush bit is set 2046 * and we are the first one who do the filemap_flush() on this inode. 2047 * 2048 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2049 * not race in and drop the bit. 2050 */ 2051 if (range_whole && wbc->nr_to_write == LONG_MAX && 2052 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2053 &BTRFS_I(inode)->runtime_flags)) 2054 wbc->tagged_writepages = 1; 2055 2056 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2057 tag = PAGECACHE_TAG_TOWRITE; 2058 else 2059 tag = PAGECACHE_TAG_DIRTY; 2060 retry: 2061 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2062 tag_pages_for_writeback(mapping, index, end); 2063 done_index = index; 2064 while (!done && !nr_to_write_done && (index <= end) && 2065 (nr_folios = filemap_get_folios_tag(mapping, &index, 2066 end, tag, &fbatch))) { 2067 unsigned i; 2068 2069 for (i = 0; i < nr_folios; i++) { 2070 struct folio *folio = fbatch.folios[i]; 2071 2072 done_index = folio_next_index(folio); 2073 /* 2074 * At this point we hold neither the i_pages lock nor 2075 * the page lock: the page may be truncated or 2076 * invalidated (changing page->mapping to NULL), 2077 * or even swizzled back from swapper_space to 2078 * tmpfs file mapping 2079 */ 2080 if (!folio_trylock(folio)) { 2081 submit_write_bio(bio_ctrl, 0); 2082 folio_lock(folio); 2083 } 2084 2085 if (unlikely(folio->mapping != mapping)) { 2086 folio_unlock(folio); 2087 continue; 2088 } 2089 2090 if (!folio_test_dirty(folio)) { 2091 /* Someone wrote it for us. */ 2092 folio_unlock(folio); 2093 continue; 2094 } 2095 2096 if (wbc->sync_mode != WB_SYNC_NONE) { 2097 if (folio_test_writeback(folio)) 2098 submit_write_bio(bio_ctrl, 0); 2099 folio_wait_writeback(folio); 2100 } 2101 2102 if (folio_test_writeback(folio) || 2103 !folio_clear_dirty_for_io(folio)) { 2104 folio_unlock(folio); 2105 continue; 2106 } 2107 2108 ret = __extent_writepage(&folio->page, bio_ctrl); 2109 if (ret < 0) { 2110 done = 1; 2111 break; 2112 } 2113 2114 /* 2115 * The filesystem may choose to bump up nr_to_write. 2116 * We have to make sure to honor the new nr_to_write 2117 * at any time. 2118 */ 2119 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2120 wbc->nr_to_write <= 0); 2121 } 2122 folio_batch_release(&fbatch); 2123 cond_resched(); 2124 } 2125 if (!scanned && !done) { 2126 /* 2127 * We hit the last page and there is more work to be done: wrap 2128 * back to the start of the file 2129 */ 2130 scanned = 1; 2131 index = 0; 2132 2133 /* 2134 * If we're looping we could run into a page that is locked by a 2135 * writer and that writer could be waiting on writeback for a 2136 * page in our current bio, and thus deadlock, so flush the 2137 * write bio here. 2138 */ 2139 submit_write_bio(bio_ctrl, 0); 2140 goto retry; 2141 } 2142 2143 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2144 mapping->writeback_index = done_index; 2145 2146 btrfs_add_delayed_iput(BTRFS_I(inode)); 2147 return ret; 2148 } 2149 2150 /* 2151 * Submit the pages in the range to bio for call sites which delalloc range has 2152 * already been ran (aka, ordered extent inserted) and all pages are still 2153 * locked. 2154 */ 2155 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2156 u64 start, u64 end, struct writeback_control *wbc, 2157 bool pages_dirty) 2158 { 2159 bool found_error = false; 2160 int ret = 0; 2161 struct address_space *mapping = inode->i_mapping; 2162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2163 const u32 sectorsize = fs_info->sectorsize; 2164 loff_t i_size = i_size_read(inode); 2165 u64 cur = start; 2166 struct btrfs_bio_ctrl bio_ctrl = { 2167 .wbc = wbc, 2168 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2169 }; 2170 2171 if (wbc->no_cgroup_owner) 2172 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2173 2174 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2175 2176 while (cur <= end) { 2177 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2178 u32 cur_len = cur_end + 1 - cur; 2179 struct page *page; 2180 int nr = 0; 2181 2182 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2183 ASSERT(PageLocked(page)); 2184 if (pages_dirty && page != locked_page) { 2185 ASSERT(PageDirty(page)); 2186 clear_page_dirty_for_io(page); 2187 } 2188 2189 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2190 i_size, &nr); 2191 if (ret == 1) 2192 goto next_page; 2193 2194 /* Make sure the mapping tag for page dirty gets cleared. */ 2195 if (nr == 0) { 2196 set_page_writeback(page); 2197 end_page_writeback(page); 2198 } 2199 if (ret) { 2200 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2201 cur, cur_len, !ret); 2202 mapping_set_error(page->mapping, ret); 2203 } 2204 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2205 if (ret < 0) 2206 found_error = true; 2207 next_page: 2208 put_page(page); 2209 cur = cur_end + 1; 2210 } 2211 2212 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2213 } 2214 2215 int extent_writepages(struct address_space *mapping, 2216 struct writeback_control *wbc) 2217 { 2218 struct inode *inode = mapping->host; 2219 int ret = 0; 2220 struct btrfs_bio_ctrl bio_ctrl = { 2221 .wbc = wbc, 2222 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2223 }; 2224 2225 /* 2226 * Allow only a single thread to do the reloc work in zoned mode to 2227 * protect the write pointer updates. 2228 */ 2229 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2230 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2231 submit_write_bio(&bio_ctrl, ret); 2232 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2233 return ret; 2234 } 2235 2236 void extent_readahead(struct readahead_control *rac) 2237 { 2238 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2239 struct page *pagepool[16]; 2240 struct extent_map *em_cached = NULL; 2241 u64 prev_em_start = (u64)-1; 2242 int nr; 2243 2244 while ((nr = readahead_page_batch(rac, pagepool))) { 2245 u64 contig_start = readahead_pos(rac); 2246 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2247 2248 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2249 &em_cached, &bio_ctrl, &prev_em_start); 2250 } 2251 2252 if (em_cached) 2253 free_extent_map(em_cached); 2254 submit_one_bio(&bio_ctrl); 2255 } 2256 2257 /* 2258 * basic invalidate_folio code, this waits on any locked or writeback 2259 * ranges corresponding to the folio, and then deletes any extent state 2260 * records from the tree 2261 */ 2262 int extent_invalidate_folio(struct extent_io_tree *tree, 2263 struct folio *folio, size_t offset) 2264 { 2265 struct extent_state *cached_state = NULL; 2266 u64 start = folio_pos(folio); 2267 u64 end = start + folio_size(folio) - 1; 2268 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2269 2270 /* This function is only called for the btree inode */ 2271 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2272 2273 start += ALIGN(offset, blocksize); 2274 if (start > end) 2275 return 0; 2276 2277 lock_extent(tree, start, end, &cached_state); 2278 folio_wait_writeback(folio); 2279 2280 /* 2281 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2282 * so here we only need to unlock the extent range to free any 2283 * existing extent state. 2284 */ 2285 unlock_extent(tree, start, end, &cached_state); 2286 return 0; 2287 } 2288 2289 /* 2290 * a helper for release_folio, this tests for areas of the page that 2291 * are locked or under IO and drops the related state bits if it is safe 2292 * to drop the page. 2293 */ 2294 static int try_release_extent_state(struct extent_io_tree *tree, 2295 struct page *page, gfp_t mask) 2296 { 2297 u64 start = page_offset(page); 2298 u64 end = start + PAGE_SIZE - 1; 2299 int ret = 1; 2300 2301 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2302 ret = 0; 2303 } else { 2304 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2305 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2306 2307 /* 2308 * At this point we can safely clear everything except the 2309 * locked bit, the nodatasum bit and the delalloc new bit. 2310 * The delalloc new bit will be cleared by ordered extent 2311 * completion. 2312 */ 2313 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2314 2315 /* if clear_extent_bit failed for enomem reasons, 2316 * we can't allow the release to continue. 2317 */ 2318 if (ret < 0) 2319 ret = 0; 2320 else 2321 ret = 1; 2322 } 2323 return ret; 2324 } 2325 2326 /* 2327 * a helper for release_folio. As long as there are no locked extents 2328 * in the range corresponding to the page, both state records and extent 2329 * map records are removed 2330 */ 2331 int try_release_extent_mapping(struct page *page, gfp_t mask) 2332 { 2333 struct extent_map *em; 2334 u64 start = page_offset(page); 2335 u64 end = start + PAGE_SIZE - 1; 2336 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2337 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2338 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2339 2340 if (gfpflags_allow_blocking(mask) && 2341 page->mapping->host->i_size > SZ_16M) { 2342 u64 len; 2343 while (start <= end) { 2344 struct btrfs_fs_info *fs_info; 2345 u64 cur_gen; 2346 2347 len = end - start + 1; 2348 write_lock(&map->lock); 2349 em = lookup_extent_mapping(map, start, len); 2350 if (!em) { 2351 write_unlock(&map->lock); 2352 break; 2353 } 2354 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2355 em->start != start) { 2356 write_unlock(&map->lock); 2357 free_extent_map(em); 2358 break; 2359 } 2360 if (test_range_bit_exists(tree, em->start, 2361 extent_map_end(em) - 1, 2362 EXTENT_LOCKED)) 2363 goto next; 2364 /* 2365 * If it's not in the list of modified extents, used 2366 * by a fast fsync, we can remove it. If it's being 2367 * logged we can safely remove it since fsync took an 2368 * extra reference on the em. 2369 */ 2370 if (list_empty(&em->list) || 2371 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2372 goto remove_em; 2373 /* 2374 * If it's in the list of modified extents, remove it 2375 * only if its generation is older then the current one, 2376 * in which case we don't need it for a fast fsync. 2377 * Otherwise don't remove it, we could be racing with an 2378 * ongoing fast fsync that could miss the new extent. 2379 */ 2380 fs_info = btrfs_inode->root->fs_info; 2381 spin_lock(&fs_info->trans_lock); 2382 cur_gen = fs_info->generation; 2383 spin_unlock(&fs_info->trans_lock); 2384 if (em->generation >= cur_gen) 2385 goto next; 2386 remove_em: 2387 /* 2388 * We only remove extent maps that are not in the list of 2389 * modified extents or that are in the list but with a 2390 * generation lower then the current generation, so there 2391 * is no need to set the full fsync flag on the inode (it 2392 * hurts the fsync performance for workloads with a data 2393 * size that exceeds or is close to the system's memory). 2394 */ 2395 remove_extent_mapping(map, em); 2396 /* once for the rb tree */ 2397 free_extent_map(em); 2398 next: 2399 start = extent_map_end(em); 2400 write_unlock(&map->lock); 2401 2402 /* once for us */ 2403 free_extent_map(em); 2404 2405 cond_resched(); /* Allow large-extent preemption. */ 2406 } 2407 } 2408 return try_release_extent_state(tree, page, mask); 2409 } 2410 2411 /* 2412 * To cache previous fiemap extent 2413 * 2414 * Will be used for merging fiemap extent 2415 */ 2416 struct fiemap_cache { 2417 u64 offset; 2418 u64 phys; 2419 u64 len; 2420 u32 flags; 2421 bool cached; 2422 }; 2423 2424 /* 2425 * Helper to submit fiemap extent. 2426 * 2427 * Will try to merge current fiemap extent specified by @offset, @phys, 2428 * @len and @flags with cached one. 2429 * And only when we fails to merge, cached one will be submitted as 2430 * fiemap extent. 2431 * 2432 * Return value is the same as fiemap_fill_next_extent(). 2433 */ 2434 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2435 struct fiemap_cache *cache, 2436 u64 offset, u64 phys, u64 len, u32 flags) 2437 { 2438 int ret = 0; 2439 2440 /* Set at the end of extent_fiemap(). */ 2441 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2442 2443 if (!cache->cached) 2444 goto assign; 2445 2446 /* 2447 * Sanity check, extent_fiemap() should have ensured that new 2448 * fiemap extent won't overlap with cached one. 2449 * Not recoverable. 2450 * 2451 * NOTE: Physical address can overlap, due to compression 2452 */ 2453 if (cache->offset + cache->len > offset) { 2454 WARN_ON(1); 2455 return -EINVAL; 2456 } 2457 2458 /* 2459 * Only merges fiemap extents if 2460 * 1) Their logical addresses are continuous 2461 * 2462 * 2) Their physical addresses are continuous 2463 * So truly compressed (physical size smaller than logical size) 2464 * extents won't get merged with each other 2465 * 2466 * 3) Share same flags 2467 */ 2468 if (cache->offset + cache->len == offset && 2469 cache->phys + cache->len == phys && 2470 cache->flags == flags) { 2471 cache->len += len; 2472 return 0; 2473 } 2474 2475 /* Not mergeable, need to submit cached one */ 2476 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2477 cache->len, cache->flags); 2478 cache->cached = false; 2479 if (ret) 2480 return ret; 2481 assign: 2482 cache->cached = true; 2483 cache->offset = offset; 2484 cache->phys = phys; 2485 cache->len = len; 2486 cache->flags = flags; 2487 2488 return 0; 2489 } 2490 2491 /* 2492 * Emit last fiemap cache 2493 * 2494 * The last fiemap cache may still be cached in the following case: 2495 * 0 4k 8k 2496 * |<- Fiemap range ->| 2497 * |<------------ First extent ----------->| 2498 * 2499 * In this case, the first extent range will be cached but not emitted. 2500 * So we must emit it before ending extent_fiemap(). 2501 */ 2502 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2503 struct fiemap_cache *cache) 2504 { 2505 int ret; 2506 2507 if (!cache->cached) 2508 return 0; 2509 2510 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2511 cache->len, cache->flags); 2512 cache->cached = false; 2513 if (ret > 0) 2514 ret = 0; 2515 return ret; 2516 } 2517 2518 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2519 { 2520 struct extent_buffer *clone; 2521 struct btrfs_key key; 2522 int slot; 2523 int ret; 2524 2525 path->slots[0]++; 2526 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2527 return 0; 2528 2529 ret = btrfs_next_leaf(inode->root, path); 2530 if (ret != 0) 2531 return ret; 2532 2533 /* 2534 * Don't bother with cloning if there are no more file extent items for 2535 * our inode. 2536 */ 2537 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2538 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2539 return 1; 2540 2541 /* See the comment at fiemap_search_slot() about why we clone. */ 2542 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2543 if (!clone) 2544 return -ENOMEM; 2545 2546 slot = path->slots[0]; 2547 btrfs_release_path(path); 2548 path->nodes[0] = clone; 2549 path->slots[0] = slot; 2550 2551 return 0; 2552 } 2553 2554 /* 2555 * Search for the first file extent item that starts at a given file offset or 2556 * the one that starts immediately before that offset. 2557 * Returns: 0 on success, < 0 on error, 1 if not found. 2558 */ 2559 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2560 u64 file_offset) 2561 { 2562 const u64 ino = btrfs_ino(inode); 2563 struct btrfs_root *root = inode->root; 2564 struct extent_buffer *clone; 2565 struct btrfs_key key; 2566 int slot; 2567 int ret; 2568 2569 key.objectid = ino; 2570 key.type = BTRFS_EXTENT_DATA_KEY; 2571 key.offset = file_offset; 2572 2573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2574 if (ret < 0) 2575 return ret; 2576 2577 if (ret > 0 && path->slots[0] > 0) { 2578 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2579 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2580 path->slots[0]--; 2581 } 2582 2583 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2584 ret = btrfs_next_leaf(root, path); 2585 if (ret != 0) 2586 return ret; 2587 2588 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2589 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2590 return 1; 2591 } 2592 2593 /* 2594 * We clone the leaf and use it during fiemap. This is because while 2595 * using the leaf we do expensive things like checking if an extent is 2596 * shared, which can take a long time. In order to prevent blocking 2597 * other tasks for too long, we use a clone of the leaf. We have locked 2598 * the file range in the inode's io tree, so we know none of our file 2599 * extent items can change. This way we avoid blocking other tasks that 2600 * want to insert items for other inodes in the same leaf or b+tree 2601 * rebalance operations (triggered for example when someone is trying 2602 * to push items into this leaf when trying to insert an item in a 2603 * neighbour leaf). 2604 * We also need the private clone because holding a read lock on an 2605 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2606 * when we call fiemap_fill_next_extent(), because that may cause a page 2607 * fault when filling the user space buffer with fiemap data. 2608 */ 2609 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2610 if (!clone) 2611 return -ENOMEM; 2612 2613 slot = path->slots[0]; 2614 btrfs_release_path(path); 2615 path->nodes[0] = clone; 2616 path->slots[0] = slot; 2617 2618 return 0; 2619 } 2620 2621 /* 2622 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2623 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2624 * extent. The end offset (@end) is inclusive. 2625 */ 2626 static int fiemap_process_hole(struct btrfs_inode *inode, 2627 struct fiemap_extent_info *fieinfo, 2628 struct fiemap_cache *cache, 2629 struct extent_state **delalloc_cached_state, 2630 struct btrfs_backref_share_check_ctx *backref_ctx, 2631 u64 disk_bytenr, u64 extent_offset, 2632 u64 extent_gen, 2633 u64 start, u64 end) 2634 { 2635 const u64 i_size = i_size_read(&inode->vfs_inode); 2636 u64 cur_offset = start; 2637 u64 last_delalloc_end = 0; 2638 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2639 bool checked_extent_shared = false; 2640 int ret; 2641 2642 /* 2643 * There can be no delalloc past i_size, so don't waste time looking for 2644 * it beyond i_size. 2645 */ 2646 while (cur_offset < end && cur_offset < i_size) { 2647 u64 delalloc_start; 2648 u64 delalloc_end; 2649 u64 prealloc_start; 2650 u64 prealloc_len = 0; 2651 bool delalloc; 2652 2653 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2654 delalloc_cached_state, 2655 &delalloc_start, 2656 &delalloc_end); 2657 if (!delalloc) 2658 break; 2659 2660 /* 2661 * If this is a prealloc extent we have to report every section 2662 * of it that has no delalloc. 2663 */ 2664 if (disk_bytenr != 0) { 2665 if (last_delalloc_end == 0) { 2666 prealloc_start = start; 2667 prealloc_len = delalloc_start - start; 2668 } else { 2669 prealloc_start = last_delalloc_end + 1; 2670 prealloc_len = delalloc_start - prealloc_start; 2671 } 2672 } 2673 2674 if (prealloc_len > 0) { 2675 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2676 ret = btrfs_is_data_extent_shared(inode, 2677 disk_bytenr, 2678 extent_gen, 2679 backref_ctx); 2680 if (ret < 0) 2681 return ret; 2682 else if (ret > 0) 2683 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2684 2685 checked_extent_shared = true; 2686 } 2687 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2688 disk_bytenr + extent_offset, 2689 prealloc_len, prealloc_flags); 2690 if (ret) 2691 return ret; 2692 extent_offset += prealloc_len; 2693 } 2694 2695 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2696 delalloc_end + 1 - delalloc_start, 2697 FIEMAP_EXTENT_DELALLOC | 2698 FIEMAP_EXTENT_UNKNOWN); 2699 if (ret) 2700 return ret; 2701 2702 last_delalloc_end = delalloc_end; 2703 cur_offset = delalloc_end + 1; 2704 extent_offset += cur_offset - delalloc_start; 2705 cond_resched(); 2706 } 2707 2708 /* 2709 * Either we found no delalloc for the whole prealloc extent or we have 2710 * a prealloc extent that spans i_size or starts at or after i_size. 2711 */ 2712 if (disk_bytenr != 0 && last_delalloc_end < end) { 2713 u64 prealloc_start; 2714 u64 prealloc_len; 2715 2716 if (last_delalloc_end == 0) { 2717 prealloc_start = start; 2718 prealloc_len = end + 1 - start; 2719 } else { 2720 prealloc_start = last_delalloc_end + 1; 2721 prealloc_len = end + 1 - prealloc_start; 2722 } 2723 2724 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2725 ret = btrfs_is_data_extent_shared(inode, 2726 disk_bytenr, 2727 extent_gen, 2728 backref_ctx); 2729 if (ret < 0) 2730 return ret; 2731 else if (ret > 0) 2732 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2733 } 2734 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2735 disk_bytenr + extent_offset, 2736 prealloc_len, prealloc_flags); 2737 if (ret) 2738 return ret; 2739 } 2740 2741 return 0; 2742 } 2743 2744 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2745 struct btrfs_path *path, 2746 u64 *last_extent_end_ret) 2747 { 2748 const u64 ino = btrfs_ino(inode); 2749 struct btrfs_root *root = inode->root; 2750 struct extent_buffer *leaf; 2751 struct btrfs_file_extent_item *ei; 2752 struct btrfs_key key; 2753 u64 disk_bytenr; 2754 int ret; 2755 2756 /* 2757 * Lookup the last file extent. We're not using i_size here because 2758 * there might be preallocation past i_size. 2759 */ 2760 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2761 /* There can't be a file extent item at offset (u64)-1 */ 2762 ASSERT(ret != 0); 2763 if (ret < 0) 2764 return ret; 2765 2766 /* 2767 * For a non-existing key, btrfs_search_slot() always leaves us at a 2768 * slot > 0, except if the btree is empty, which is impossible because 2769 * at least it has the inode item for this inode and all the items for 2770 * the root inode 256. 2771 */ 2772 ASSERT(path->slots[0] > 0); 2773 path->slots[0]--; 2774 leaf = path->nodes[0]; 2775 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2776 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2777 /* No file extent items in the subvolume tree. */ 2778 *last_extent_end_ret = 0; 2779 return 0; 2780 } 2781 2782 /* 2783 * For an inline extent, the disk_bytenr is where inline data starts at, 2784 * so first check if we have an inline extent item before checking if we 2785 * have an implicit hole (disk_bytenr == 0). 2786 */ 2787 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2788 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2789 *last_extent_end_ret = btrfs_file_extent_end(path); 2790 return 0; 2791 } 2792 2793 /* 2794 * Find the last file extent item that is not a hole (when NO_HOLES is 2795 * not enabled). This should take at most 2 iterations in the worst 2796 * case: we have one hole file extent item at slot 0 of a leaf and 2797 * another hole file extent item as the last item in the previous leaf. 2798 * This is because we merge file extent items that represent holes. 2799 */ 2800 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2801 while (disk_bytenr == 0) { 2802 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2803 if (ret < 0) { 2804 return ret; 2805 } else if (ret > 0) { 2806 /* No file extent items that are not holes. */ 2807 *last_extent_end_ret = 0; 2808 return 0; 2809 } 2810 leaf = path->nodes[0]; 2811 ei = btrfs_item_ptr(leaf, path->slots[0], 2812 struct btrfs_file_extent_item); 2813 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2814 } 2815 2816 *last_extent_end_ret = btrfs_file_extent_end(path); 2817 return 0; 2818 } 2819 2820 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2821 u64 start, u64 len) 2822 { 2823 const u64 ino = btrfs_ino(inode); 2824 struct extent_state *cached_state = NULL; 2825 struct extent_state *delalloc_cached_state = NULL; 2826 struct btrfs_path *path; 2827 struct fiemap_cache cache = { 0 }; 2828 struct btrfs_backref_share_check_ctx *backref_ctx; 2829 u64 last_extent_end; 2830 u64 prev_extent_end; 2831 u64 lockstart; 2832 u64 lockend; 2833 bool stopped = false; 2834 int ret; 2835 2836 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2837 path = btrfs_alloc_path(); 2838 if (!backref_ctx || !path) { 2839 ret = -ENOMEM; 2840 goto out; 2841 } 2842 2843 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2844 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2845 prev_extent_end = lockstart; 2846 2847 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2848 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2849 2850 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2851 if (ret < 0) 2852 goto out_unlock; 2853 btrfs_release_path(path); 2854 2855 path->reada = READA_FORWARD; 2856 ret = fiemap_search_slot(inode, path, lockstart); 2857 if (ret < 0) { 2858 goto out_unlock; 2859 } else if (ret > 0) { 2860 /* 2861 * No file extent item found, but we may have delalloc between 2862 * the current offset and i_size. So check for that. 2863 */ 2864 ret = 0; 2865 goto check_eof_delalloc; 2866 } 2867 2868 while (prev_extent_end < lockend) { 2869 struct extent_buffer *leaf = path->nodes[0]; 2870 struct btrfs_file_extent_item *ei; 2871 struct btrfs_key key; 2872 u64 extent_end; 2873 u64 extent_len; 2874 u64 extent_offset = 0; 2875 u64 extent_gen; 2876 u64 disk_bytenr = 0; 2877 u64 flags = 0; 2878 int extent_type; 2879 u8 compression; 2880 2881 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2882 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2883 break; 2884 2885 extent_end = btrfs_file_extent_end(path); 2886 2887 /* 2888 * The first iteration can leave us at an extent item that ends 2889 * before our range's start. Move to the next item. 2890 */ 2891 if (extent_end <= lockstart) 2892 goto next_item; 2893 2894 backref_ctx->curr_leaf_bytenr = leaf->start; 2895 2896 /* We have in implicit hole (NO_HOLES feature enabled). */ 2897 if (prev_extent_end < key.offset) { 2898 const u64 range_end = min(key.offset, lockend) - 1; 2899 2900 ret = fiemap_process_hole(inode, fieinfo, &cache, 2901 &delalloc_cached_state, 2902 backref_ctx, 0, 0, 0, 2903 prev_extent_end, range_end); 2904 if (ret < 0) { 2905 goto out_unlock; 2906 } else if (ret > 0) { 2907 /* fiemap_fill_next_extent() told us to stop. */ 2908 stopped = true; 2909 break; 2910 } 2911 2912 /* We've reached the end of the fiemap range, stop. */ 2913 if (key.offset >= lockend) { 2914 stopped = true; 2915 break; 2916 } 2917 } 2918 2919 extent_len = extent_end - key.offset; 2920 ei = btrfs_item_ptr(leaf, path->slots[0], 2921 struct btrfs_file_extent_item); 2922 compression = btrfs_file_extent_compression(leaf, ei); 2923 extent_type = btrfs_file_extent_type(leaf, ei); 2924 extent_gen = btrfs_file_extent_generation(leaf, ei); 2925 2926 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2927 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2928 if (compression == BTRFS_COMPRESS_NONE) 2929 extent_offset = btrfs_file_extent_offset(leaf, ei); 2930 } 2931 2932 if (compression != BTRFS_COMPRESS_NONE) 2933 flags |= FIEMAP_EXTENT_ENCODED; 2934 2935 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2936 flags |= FIEMAP_EXTENT_DATA_INLINE; 2937 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 2938 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 2939 extent_len, flags); 2940 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2941 ret = fiemap_process_hole(inode, fieinfo, &cache, 2942 &delalloc_cached_state, 2943 backref_ctx, 2944 disk_bytenr, extent_offset, 2945 extent_gen, key.offset, 2946 extent_end - 1); 2947 } else if (disk_bytenr == 0) { 2948 /* We have an explicit hole. */ 2949 ret = fiemap_process_hole(inode, fieinfo, &cache, 2950 &delalloc_cached_state, 2951 backref_ctx, 0, 0, 0, 2952 key.offset, extent_end - 1); 2953 } else { 2954 /* We have a regular extent. */ 2955 if (fieinfo->fi_extents_max) { 2956 ret = btrfs_is_data_extent_shared(inode, 2957 disk_bytenr, 2958 extent_gen, 2959 backref_ctx); 2960 if (ret < 0) 2961 goto out_unlock; 2962 else if (ret > 0) 2963 flags |= FIEMAP_EXTENT_SHARED; 2964 } 2965 2966 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 2967 disk_bytenr + extent_offset, 2968 extent_len, flags); 2969 } 2970 2971 if (ret < 0) { 2972 goto out_unlock; 2973 } else if (ret > 0) { 2974 /* fiemap_fill_next_extent() told us to stop. */ 2975 stopped = true; 2976 break; 2977 } 2978 2979 prev_extent_end = extent_end; 2980 next_item: 2981 if (fatal_signal_pending(current)) { 2982 ret = -EINTR; 2983 goto out_unlock; 2984 } 2985 2986 ret = fiemap_next_leaf_item(inode, path); 2987 if (ret < 0) { 2988 goto out_unlock; 2989 } else if (ret > 0) { 2990 /* No more file extent items for this inode. */ 2991 break; 2992 } 2993 cond_resched(); 2994 } 2995 2996 check_eof_delalloc: 2997 /* 2998 * Release (and free) the path before emitting any final entries to 2999 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3000 * once we find no more file extent items exist, we may have a 3001 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3002 * faults when copying data to the user space buffer. 3003 */ 3004 btrfs_free_path(path); 3005 path = NULL; 3006 3007 if (!stopped && prev_extent_end < lockend) { 3008 ret = fiemap_process_hole(inode, fieinfo, &cache, 3009 &delalloc_cached_state, backref_ctx, 3010 0, 0, 0, prev_extent_end, lockend - 1); 3011 if (ret < 0) 3012 goto out_unlock; 3013 prev_extent_end = lockend; 3014 } 3015 3016 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3017 const u64 i_size = i_size_read(&inode->vfs_inode); 3018 3019 if (prev_extent_end < i_size) { 3020 u64 delalloc_start; 3021 u64 delalloc_end; 3022 bool delalloc; 3023 3024 delalloc = btrfs_find_delalloc_in_range(inode, 3025 prev_extent_end, 3026 i_size - 1, 3027 &delalloc_cached_state, 3028 &delalloc_start, 3029 &delalloc_end); 3030 if (!delalloc) 3031 cache.flags |= FIEMAP_EXTENT_LAST; 3032 } else { 3033 cache.flags |= FIEMAP_EXTENT_LAST; 3034 } 3035 } 3036 3037 ret = emit_last_fiemap_cache(fieinfo, &cache); 3038 3039 out_unlock: 3040 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3041 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3042 out: 3043 free_extent_state(delalloc_cached_state); 3044 btrfs_free_backref_share_ctx(backref_ctx); 3045 btrfs_free_path(path); 3046 return ret; 3047 } 3048 3049 static void __free_extent_buffer(struct extent_buffer *eb) 3050 { 3051 kmem_cache_free(extent_buffer_cache, eb); 3052 } 3053 3054 static int extent_buffer_under_io(const struct extent_buffer *eb) 3055 { 3056 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3057 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3058 } 3059 3060 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3061 { 3062 struct btrfs_subpage *subpage; 3063 3064 lockdep_assert_held(&page->mapping->private_lock); 3065 3066 if (PagePrivate(page)) { 3067 subpage = (struct btrfs_subpage *)page->private; 3068 if (atomic_read(&subpage->eb_refs)) 3069 return true; 3070 /* 3071 * Even there is no eb refs here, we may still have 3072 * end_page_read() call relying on page::private. 3073 */ 3074 if (atomic_read(&subpage->readers)) 3075 return true; 3076 } 3077 return false; 3078 } 3079 3080 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3081 { 3082 struct btrfs_fs_info *fs_info = eb->fs_info; 3083 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3084 3085 /* 3086 * For mapped eb, we're going to change the page private, which should 3087 * be done under the private_lock. 3088 */ 3089 if (mapped) 3090 spin_lock(&page->mapping->private_lock); 3091 3092 if (!PagePrivate(page)) { 3093 if (mapped) 3094 spin_unlock(&page->mapping->private_lock); 3095 return; 3096 } 3097 3098 if (fs_info->nodesize >= PAGE_SIZE) { 3099 /* 3100 * We do this since we'll remove the pages after we've 3101 * removed the eb from the radix tree, so we could race 3102 * and have this page now attached to the new eb. So 3103 * only clear page_private if it's still connected to 3104 * this eb. 3105 */ 3106 if (PagePrivate(page) && 3107 page->private == (unsigned long)eb) { 3108 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3109 BUG_ON(PageDirty(page)); 3110 BUG_ON(PageWriteback(page)); 3111 /* 3112 * We need to make sure we haven't be attached 3113 * to a new eb. 3114 */ 3115 detach_page_private(page); 3116 } 3117 if (mapped) 3118 spin_unlock(&page->mapping->private_lock); 3119 return; 3120 } 3121 3122 /* 3123 * For subpage, we can have dummy eb with page private. In this case, 3124 * we can directly detach the private as such page is only attached to 3125 * one dummy eb, no sharing. 3126 */ 3127 if (!mapped) { 3128 btrfs_detach_subpage(fs_info, page); 3129 return; 3130 } 3131 3132 btrfs_page_dec_eb_refs(fs_info, page); 3133 3134 /* 3135 * We can only detach the page private if there are no other ebs in the 3136 * page range and no unfinished IO. 3137 */ 3138 if (!page_range_has_eb(fs_info, page)) 3139 btrfs_detach_subpage(fs_info, page); 3140 3141 spin_unlock(&page->mapping->private_lock); 3142 } 3143 3144 /* Release all pages attached to the extent buffer */ 3145 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3146 { 3147 int i; 3148 int num_pages; 3149 3150 ASSERT(!extent_buffer_under_io(eb)); 3151 3152 num_pages = num_extent_pages(eb); 3153 for (i = 0; i < num_pages; i++) { 3154 struct page *page = eb->pages[i]; 3155 3156 if (!page) 3157 continue; 3158 3159 detach_extent_buffer_page(eb, page); 3160 3161 /* One for when we allocated the page */ 3162 put_page(page); 3163 } 3164 } 3165 3166 /* 3167 * Helper for releasing the extent buffer. 3168 */ 3169 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3170 { 3171 btrfs_release_extent_buffer_pages(eb); 3172 btrfs_leak_debug_del_eb(eb); 3173 __free_extent_buffer(eb); 3174 } 3175 3176 static struct extent_buffer * 3177 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3178 unsigned long len) 3179 { 3180 struct extent_buffer *eb = NULL; 3181 3182 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3183 eb->start = start; 3184 eb->len = len; 3185 eb->fs_info = fs_info; 3186 init_rwsem(&eb->lock); 3187 3188 btrfs_leak_debug_add_eb(eb); 3189 3190 spin_lock_init(&eb->refs_lock); 3191 atomic_set(&eb->refs, 1); 3192 3193 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3194 3195 return eb; 3196 } 3197 3198 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3199 { 3200 int i; 3201 struct extent_buffer *new; 3202 int num_pages = num_extent_pages(src); 3203 int ret; 3204 3205 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3206 if (new == NULL) 3207 return NULL; 3208 3209 /* 3210 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3211 * btrfs_release_extent_buffer() have different behavior for 3212 * UNMAPPED subpage extent buffer. 3213 */ 3214 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3215 3216 ret = btrfs_alloc_page_array(num_pages, new->pages); 3217 if (ret) { 3218 btrfs_release_extent_buffer(new); 3219 return NULL; 3220 } 3221 3222 for (i = 0; i < num_pages; i++) { 3223 int ret; 3224 struct page *p = new->pages[i]; 3225 3226 ret = attach_extent_buffer_page(new, p, NULL); 3227 if (ret < 0) { 3228 btrfs_release_extent_buffer(new); 3229 return NULL; 3230 } 3231 WARN_ON(PageDirty(p)); 3232 } 3233 copy_extent_buffer_full(new, src); 3234 set_extent_buffer_uptodate(new); 3235 3236 return new; 3237 } 3238 3239 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3240 u64 start, unsigned long len) 3241 { 3242 struct extent_buffer *eb; 3243 int num_pages; 3244 int i; 3245 int ret; 3246 3247 eb = __alloc_extent_buffer(fs_info, start, len); 3248 if (!eb) 3249 return NULL; 3250 3251 num_pages = num_extent_pages(eb); 3252 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3253 if (ret) 3254 goto err; 3255 3256 for (i = 0; i < num_pages; i++) { 3257 struct page *p = eb->pages[i]; 3258 3259 ret = attach_extent_buffer_page(eb, p, NULL); 3260 if (ret < 0) 3261 goto err; 3262 } 3263 3264 set_extent_buffer_uptodate(eb); 3265 btrfs_set_header_nritems(eb, 0); 3266 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3267 3268 return eb; 3269 err: 3270 for (i = 0; i < num_pages; i++) { 3271 if (eb->pages[i]) { 3272 detach_extent_buffer_page(eb, eb->pages[i]); 3273 __free_page(eb->pages[i]); 3274 } 3275 } 3276 __free_extent_buffer(eb); 3277 return NULL; 3278 } 3279 3280 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3281 u64 start) 3282 { 3283 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3284 } 3285 3286 static void check_buffer_tree_ref(struct extent_buffer *eb) 3287 { 3288 int refs; 3289 /* 3290 * The TREE_REF bit is first set when the extent_buffer is added 3291 * to the radix tree. It is also reset, if unset, when a new reference 3292 * is created by find_extent_buffer. 3293 * 3294 * It is only cleared in two cases: freeing the last non-tree 3295 * reference to the extent_buffer when its STALE bit is set or 3296 * calling release_folio when the tree reference is the only reference. 3297 * 3298 * In both cases, care is taken to ensure that the extent_buffer's 3299 * pages are not under io. However, release_folio can be concurrently 3300 * called with creating new references, which is prone to race 3301 * conditions between the calls to check_buffer_tree_ref in those 3302 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3303 * 3304 * The actual lifetime of the extent_buffer in the radix tree is 3305 * adequately protected by the refcount, but the TREE_REF bit and 3306 * its corresponding reference are not. To protect against this 3307 * class of races, we call check_buffer_tree_ref from the codepaths 3308 * which trigger io. Note that once io is initiated, TREE_REF can no 3309 * longer be cleared, so that is the moment at which any such race is 3310 * best fixed. 3311 */ 3312 refs = atomic_read(&eb->refs); 3313 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3314 return; 3315 3316 spin_lock(&eb->refs_lock); 3317 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3318 atomic_inc(&eb->refs); 3319 spin_unlock(&eb->refs_lock); 3320 } 3321 3322 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3323 struct page *accessed) 3324 { 3325 int num_pages, i; 3326 3327 check_buffer_tree_ref(eb); 3328 3329 num_pages = num_extent_pages(eb); 3330 for (i = 0; i < num_pages; i++) { 3331 struct page *p = eb->pages[i]; 3332 3333 if (p != accessed) 3334 mark_page_accessed(p); 3335 } 3336 } 3337 3338 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3339 u64 start) 3340 { 3341 struct extent_buffer *eb; 3342 3343 eb = find_extent_buffer_nolock(fs_info, start); 3344 if (!eb) 3345 return NULL; 3346 /* 3347 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3348 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3349 * another task running free_extent_buffer() might have seen that flag 3350 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3351 * writeback flags not set) and it's still in the tree (flag 3352 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3353 * decrementing the extent buffer's reference count twice. So here we 3354 * could race and increment the eb's reference count, clear its stale 3355 * flag, mark it as dirty and drop our reference before the other task 3356 * finishes executing free_extent_buffer, which would later result in 3357 * an attempt to free an extent buffer that is dirty. 3358 */ 3359 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3360 spin_lock(&eb->refs_lock); 3361 spin_unlock(&eb->refs_lock); 3362 } 3363 mark_extent_buffer_accessed(eb, NULL); 3364 return eb; 3365 } 3366 3367 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3368 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3369 u64 start) 3370 { 3371 struct extent_buffer *eb, *exists = NULL; 3372 int ret; 3373 3374 eb = find_extent_buffer(fs_info, start); 3375 if (eb) 3376 return eb; 3377 eb = alloc_dummy_extent_buffer(fs_info, start); 3378 if (!eb) 3379 return ERR_PTR(-ENOMEM); 3380 eb->fs_info = fs_info; 3381 again: 3382 ret = radix_tree_preload(GFP_NOFS); 3383 if (ret) { 3384 exists = ERR_PTR(ret); 3385 goto free_eb; 3386 } 3387 spin_lock(&fs_info->buffer_lock); 3388 ret = radix_tree_insert(&fs_info->buffer_radix, 3389 start >> fs_info->sectorsize_bits, eb); 3390 spin_unlock(&fs_info->buffer_lock); 3391 radix_tree_preload_end(); 3392 if (ret == -EEXIST) { 3393 exists = find_extent_buffer(fs_info, start); 3394 if (exists) 3395 goto free_eb; 3396 else 3397 goto again; 3398 } 3399 check_buffer_tree_ref(eb); 3400 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3401 3402 return eb; 3403 free_eb: 3404 btrfs_release_extent_buffer(eb); 3405 return exists; 3406 } 3407 #endif 3408 3409 static struct extent_buffer *grab_extent_buffer( 3410 struct btrfs_fs_info *fs_info, struct page *page) 3411 { 3412 struct extent_buffer *exists; 3413 3414 /* 3415 * For subpage case, we completely rely on radix tree to ensure we 3416 * don't try to insert two ebs for the same bytenr. So here we always 3417 * return NULL and just continue. 3418 */ 3419 if (fs_info->nodesize < PAGE_SIZE) 3420 return NULL; 3421 3422 /* Page not yet attached to an extent buffer */ 3423 if (!PagePrivate(page)) 3424 return NULL; 3425 3426 /* 3427 * We could have already allocated an eb for this page and attached one 3428 * so lets see if we can get a ref on the existing eb, and if we can we 3429 * know it's good and we can just return that one, else we know we can 3430 * just overwrite page->private. 3431 */ 3432 exists = (struct extent_buffer *)page->private; 3433 if (atomic_inc_not_zero(&exists->refs)) 3434 return exists; 3435 3436 WARN_ON(PageDirty(page)); 3437 detach_page_private(page); 3438 return NULL; 3439 } 3440 3441 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3442 { 3443 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3444 btrfs_err(fs_info, "bad tree block start %llu", start); 3445 return -EINVAL; 3446 } 3447 3448 if (fs_info->nodesize < PAGE_SIZE && 3449 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3450 btrfs_err(fs_info, 3451 "tree block crosses page boundary, start %llu nodesize %u", 3452 start, fs_info->nodesize); 3453 return -EINVAL; 3454 } 3455 if (fs_info->nodesize >= PAGE_SIZE && 3456 !PAGE_ALIGNED(start)) { 3457 btrfs_err(fs_info, 3458 "tree block is not page aligned, start %llu nodesize %u", 3459 start, fs_info->nodesize); 3460 return -EINVAL; 3461 } 3462 if (!IS_ALIGNED(start, fs_info->nodesize) && 3463 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3464 btrfs_warn(fs_info, 3465 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3466 start, fs_info->nodesize); 3467 } 3468 return 0; 3469 } 3470 3471 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3472 u64 start, u64 owner_root, int level) 3473 { 3474 unsigned long len = fs_info->nodesize; 3475 int num_pages; 3476 int i; 3477 unsigned long index = start >> PAGE_SHIFT; 3478 struct extent_buffer *eb; 3479 struct extent_buffer *exists = NULL; 3480 struct page *p; 3481 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3482 struct btrfs_subpage *prealloc = NULL; 3483 u64 lockdep_owner = owner_root; 3484 int uptodate = 1; 3485 int ret; 3486 3487 if (check_eb_alignment(fs_info, start)) 3488 return ERR_PTR(-EINVAL); 3489 3490 #if BITS_PER_LONG == 32 3491 if (start >= MAX_LFS_FILESIZE) { 3492 btrfs_err_rl(fs_info, 3493 "extent buffer %llu is beyond 32bit page cache limit", start); 3494 btrfs_err_32bit_limit(fs_info); 3495 return ERR_PTR(-EOVERFLOW); 3496 } 3497 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3498 btrfs_warn_32bit_limit(fs_info); 3499 #endif 3500 3501 eb = find_extent_buffer(fs_info, start); 3502 if (eb) 3503 return eb; 3504 3505 eb = __alloc_extent_buffer(fs_info, start, len); 3506 if (!eb) 3507 return ERR_PTR(-ENOMEM); 3508 3509 /* 3510 * The reloc trees are just snapshots, so we need them to appear to be 3511 * just like any other fs tree WRT lockdep. 3512 */ 3513 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3514 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3515 3516 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3517 3518 num_pages = num_extent_pages(eb); 3519 3520 /* 3521 * Preallocate page->private for subpage case, so that we won't 3522 * allocate memory with private_lock nor page lock hold. 3523 * 3524 * The memory will be freed by attach_extent_buffer_page() or freed 3525 * manually if we exit earlier. 3526 */ 3527 if (fs_info->nodesize < PAGE_SIZE) { 3528 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3529 if (IS_ERR(prealloc)) { 3530 exists = ERR_CAST(prealloc); 3531 goto free_eb; 3532 } 3533 } 3534 3535 for (i = 0; i < num_pages; i++, index++) { 3536 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3537 if (!p) { 3538 exists = ERR_PTR(-ENOMEM); 3539 btrfs_free_subpage(prealloc); 3540 goto free_eb; 3541 } 3542 3543 spin_lock(&mapping->private_lock); 3544 exists = grab_extent_buffer(fs_info, p); 3545 if (exists) { 3546 spin_unlock(&mapping->private_lock); 3547 unlock_page(p); 3548 put_page(p); 3549 mark_extent_buffer_accessed(exists, p); 3550 btrfs_free_subpage(prealloc); 3551 goto free_eb; 3552 } 3553 /* Should not fail, as we have preallocated the memory */ 3554 ret = attach_extent_buffer_page(eb, p, prealloc); 3555 ASSERT(!ret); 3556 /* 3557 * To inform we have extra eb under allocation, so that 3558 * detach_extent_buffer_page() won't release the page private 3559 * when the eb hasn't yet been inserted into radix tree. 3560 * 3561 * The ref will be decreased when the eb released the page, in 3562 * detach_extent_buffer_page(). 3563 * Thus needs no special handling in error path. 3564 */ 3565 btrfs_page_inc_eb_refs(fs_info, p); 3566 spin_unlock(&mapping->private_lock); 3567 3568 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3569 eb->pages[i] = p; 3570 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3571 uptodate = 0; 3572 3573 /* 3574 * We can't unlock the pages just yet since the extent buffer 3575 * hasn't been properly inserted in the radix tree, this 3576 * opens a race with btree_release_folio which can free a page 3577 * while we are still filling in all pages for the buffer and 3578 * we could crash. 3579 */ 3580 } 3581 if (uptodate) 3582 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3583 again: 3584 ret = radix_tree_preload(GFP_NOFS); 3585 if (ret) { 3586 exists = ERR_PTR(ret); 3587 goto free_eb; 3588 } 3589 3590 spin_lock(&fs_info->buffer_lock); 3591 ret = radix_tree_insert(&fs_info->buffer_radix, 3592 start >> fs_info->sectorsize_bits, eb); 3593 spin_unlock(&fs_info->buffer_lock); 3594 radix_tree_preload_end(); 3595 if (ret == -EEXIST) { 3596 exists = find_extent_buffer(fs_info, start); 3597 if (exists) 3598 goto free_eb; 3599 else 3600 goto again; 3601 } 3602 /* add one reference for the tree */ 3603 check_buffer_tree_ref(eb); 3604 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3605 3606 /* 3607 * Now it's safe to unlock the pages because any calls to 3608 * btree_release_folio will correctly detect that a page belongs to a 3609 * live buffer and won't free them prematurely. 3610 */ 3611 for (i = 0; i < num_pages; i++) 3612 unlock_page(eb->pages[i]); 3613 return eb; 3614 3615 free_eb: 3616 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3617 for (i = 0; i < num_pages; i++) { 3618 if (eb->pages[i]) 3619 unlock_page(eb->pages[i]); 3620 } 3621 3622 btrfs_release_extent_buffer(eb); 3623 return exists; 3624 } 3625 3626 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3627 { 3628 struct extent_buffer *eb = 3629 container_of(head, struct extent_buffer, rcu_head); 3630 3631 __free_extent_buffer(eb); 3632 } 3633 3634 static int release_extent_buffer(struct extent_buffer *eb) 3635 __releases(&eb->refs_lock) 3636 { 3637 lockdep_assert_held(&eb->refs_lock); 3638 3639 WARN_ON(atomic_read(&eb->refs) == 0); 3640 if (atomic_dec_and_test(&eb->refs)) { 3641 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3642 struct btrfs_fs_info *fs_info = eb->fs_info; 3643 3644 spin_unlock(&eb->refs_lock); 3645 3646 spin_lock(&fs_info->buffer_lock); 3647 radix_tree_delete(&fs_info->buffer_radix, 3648 eb->start >> fs_info->sectorsize_bits); 3649 spin_unlock(&fs_info->buffer_lock); 3650 } else { 3651 spin_unlock(&eb->refs_lock); 3652 } 3653 3654 btrfs_leak_debug_del_eb(eb); 3655 /* Should be safe to release our pages at this point */ 3656 btrfs_release_extent_buffer_pages(eb); 3657 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3658 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3659 __free_extent_buffer(eb); 3660 return 1; 3661 } 3662 #endif 3663 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3664 return 1; 3665 } 3666 spin_unlock(&eb->refs_lock); 3667 3668 return 0; 3669 } 3670 3671 void free_extent_buffer(struct extent_buffer *eb) 3672 { 3673 int refs; 3674 if (!eb) 3675 return; 3676 3677 refs = atomic_read(&eb->refs); 3678 while (1) { 3679 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3680 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3681 refs == 1)) 3682 break; 3683 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3684 return; 3685 } 3686 3687 spin_lock(&eb->refs_lock); 3688 if (atomic_read(&eb->refs) == 2 && 3689 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3690 !extent_buffer_under_io(eb) && 3691 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3692 atomic_dec(&eb->refs); 3693 3694 /* 3695 * I know this is terrible, but it's temporary until we stop tracking 3696 * the uptodate bits and such for the extent buffers. 3697 */ 3698 release_extent_buffer(eb); 3699 } 3700 3701 void free_extent_buffer_stale(struct extent_buffer *eb) 3702 { 3703 if (!eb) 3704 return; 3705 3706 spin_lock(&eb->refs_lock); 3707 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3708 3709 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3710 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3711 atomic_dec(&eb->refs); 3712 release_extent_buffer(eb); 3713 } 3714 3715 static void btree_clear_page_dirty(struct page *page) 3716 { 3717 ASSERT(PageDirty(page)); 3718 ASSERT(PageLocked(page)); 3719 clear_page_dirty_for_io(page); 3720 xa_lock_irq(&page->mapping->i_pages); 3721 if (!PageDirty(page)) 3722 __xa_clear_mark(&page->mapping->i_pages, 3723 page_index(page), PAGECACHE_TAG_DIRTY); 3724 xa_unlock_irq(&page->mapping->i_pages); 3725 } 3726 3727 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3728 { 3729 struct btrfs_fs_info *fs_info = eb->fs_info; 3730 struct page *page = eb->pages[0]; 3731 bool last; 3732 3733 /* btree_clear_page_dirty() needs page locked */ 3734 lock_page(page); 3735 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3736 eb->len); 3737 if (last) 3738 btree_clear_page_dirty(page); 3739 unlock_page(page); 3740 WARN_ON(atomic_read(&eb->refs) == 0); 3741 } 3742 3743 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3744 struct extent_buffer *eb) 3745 { 3746 struct btrfs_fs_info *fs_info = eb->fs_info; 3747 int i; 3748 int num_pages; 3749 struct page *page; 3750 3751 btrfs_assert_tree_write_locked(eb); 3752 3753 if (trans && btrfs_header_generation(eb) != trans->transid) 3754 return; 3755 3756 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3757 return; 3758 3759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3760 fs_info->dirty_metadata_batch); 3761 3762 if (eb->fs_info->nodesize < PAGE_SIZE) 3763 return clear_subpage_extent_buffer_dirty(eb); 3764 3765 num_pages = num_extent_pages(eb); 3766 3767 for (i = 0; i < num_pages; i++) { 3768 page = eb->pages[i]; 3769 if (!PageDirty(page)) 3770 continue; 3771 lock_page(page); 3772 btree_clear_page_dirty(page); 3773 unlock_page(page); 3774 } 3775 WARN_ON(atomic_read(&eb->refs) == 0); 3776 } 3777 3778 void set_extent_buffer_dirty(struct extent_buffer *eb) 3779 { 3780 int i; 3781 int num_pages; 3782 bool was_dirty; 3783 3784 check_buffer_tree_ref(eb); 3785 3786 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3787 3788 num_pages = num_extent_pages(eb); 3789 WARN_ON(atomic_read(&eb->refs) == 0); 3790 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3791 3792 if (!was_dirty) { 3793 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3794 3795 /* 3796 * For subpage case, we can have other extent buffers in the 3797 * same page, and in clear_subpage_extent_buffer_dirty() we 3798 * have to clear page dirty without subpage lock held. 3799 * This can cause race where our page gets dirty cleared after 3800 * we just set it. 3801 * 3802 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3803 * its page for other reasons, we can use page lock to prevent 3804 * the above race. 3805 */ 3806 if (subpage) 3807 lock_page(eb->pages[0]); 3808 for (i = 0; i < num_pages; i++) 3809 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3810 eb->start, eb->len); 3811 if (subpage) 3812 unlock_page(eb->pages[0]); 3813 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3814 eb->len, 3815 eb->fs_info->dirty_metadata_batch); 3816 } 3817 #ifdef CONFIG_BTRFS_DEBUG 3818 for (i = 0; i < num_pages; i++) 3819 ASSERT(PageDirty(eb->pages[i])); 3820 #endif 3821 } 3822 3823 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3824 { 3825 struct btrfs_fs_info *fs_info = eb->fs_info; 3826 struct page *page; 3827 int num_pages; 3828 int i; 3829 3830 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3831 num_pages = num_extent_pages(eb); 3832 for (i = 0; i < num_pages; i++) { 3833 page = eb->pages[i]; 3834 if (!page) 3835 continue; 3836 3837 /* 3838 * This is special handling for metadata subpage, as regular 3839 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3840 */ 3841 if (fs_info->nodesize >= PAGE_SIZE) 3842 ClearPageUptodate(page); 3843 else 3844 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3845 eb->len); 3846 } 3847 } 3848 3849 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3850 { 3851 struct btrfs_fs_info *fs_info = eb->fs_info; 3852 struct page *page; 3853 int num_pages; 3854 int i; 3855 3856 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3857 num_pages = num_extent_pages(eb); 3858 for (i = 0; i < num_pages; i++) { 3859 page = eb->pages[i]; 3860 3861 /* 3862 * This is special handling for metadata subpage, as regular 3863 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3864 */ 3865 if (fs_info->nodesize >= PAGE_SIZE) 3866 SetPageUptodate(page); 3867 else 3868 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3869 eb->len); 3870 } 3871 } 3872 3873 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3874 { 3875 struct extent_buffer *eb = bbio->private; 3876 struct btrfs_fs_info *fs_info = eb->fs_info; 3877 bool uptodate = !bbio->bio.bi_status; 3878 struct bvec_iter_all iter_all; 3879 struct bio_vec *bvec; 3880 u32 bio_offset = 0; 3881 3882 eb->read_mirror = bbio->mirror_num; 3883 3884 if (uptodate && 3885 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3886 uptodate = false; 3887 3888 if (uptodate) { 3889 set_extent_buffer_uptodate(eb); 3890 } else { 3891 clear_extent_buffer_uptodate(eb); 3892 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3893 } 3894 3895 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3896 u64 start = eb->start + bio_offset; 3897 struct page *page = bvec->bv_page; 3898 u32 len = bvec->bv_len; 3899 3900 if (uptodate) 3901 btrfs_page_set_uptodate(fs_info, page, start, len); 3902 else 3903 btrfs_page_clear_uptodate(fs_info, page, start, len); 3904 3905 bio_offset += len; 3906 } 3907 3908 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3909 smp_mb__after_atomic(); 3910 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3911 free_extent_buffer(eb); 3912 3913 bio_put(&bbio->bio); 3914 } 3915 3916 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3917 struct btrfs_tree_parent_check *check) 3918 { 3919 int num_pages = num_extent_pages(eb), i; 3920 struct btrfs_bio *bbio; 3921 3922 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3923 return 0; 3924 3925 /* 3926 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3927 * operation, which could potentially still be in flight. In this case 3928 * we simply want to return an error. 3929 */ 3930 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3931 return -EIO; 3932 3933 /* Someone else is already reading the buffer, just wait for it. */ 3934 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3935 goto done; 3936 3937 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3938 eb->read_mirror = 0; 3939 check_buffer_tree_ref(eb); 3940 atomic_inc(&eb->refs); 3941 3942 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3943 REQ_OP_READ | REQ_META, eb->fs_info, 3944 extent_buffer_read_end_io, eb); 3945 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3946 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3947 bbio->file_offset = eb->start; 3948 memcpy(&bbio->parent_check, check, sizeof(*check)); 3949 if (eb->fs_info->nodesize < PAGE_SIZE) { 3950 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 3951 eb->start - page_offset(eb->pages[0])); 3952 } else { 3953 for (i = 0; i < num_pages; i++) 3954 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 3955 } 3956 btrfs_submit_bio(bbio, mirror_num); 3957 3958 done: 3959 if (wait == WAIT_COMPLETE) { 3960 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3961 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3962 return -EIO; 3963 } 3964 3965 return 0; 3966 } 3967 3968 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3969 unsigned long len) 3970 { 3971 btrfs_warn(eb->fs_info, 3972 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 3973 eb->start, eb->len, start, len); 3974 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3975 3976 return true; 3977 } 3978 3979 /* 3980 * Check if the [start, start + len) range is valid before reading/writing 3981 * the eb. 3982 * NOTE: @start and @len are offset inside the eb, not logical address. 3983 * 3984 * Caller should not touch the dst/src memory if this function returns error. 3985 */ 3986 static inline int check_eb_range(const struct extent_buffer *eb, 3987 unsigned long start, unsigned long len) 3988 { 3989 unsigned long offset; 3990 3991 /* start, start + len should not go beyond eb->len nor overflow */ 3992 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3993 return report_eb_range(eb, start, len); 3994 3995 return false; 3996 } 3997 3998 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3999 unsigned long start, unsigned long len) 4000 { 4001 size_t cur; 4002 size_t offset; 4003 struct page *page; 4004 char *kaddr; 4005 char *dst = (char *)dstv; 4006 unsigned long i = get_eb_page_index(start); 4007 4008 if (check_eb_range(eb, start, len)) { 4009 /* 4010 * Invalid range hit, reset the memory, so callers won't get 4011 * some random garbage for their uninitialzed memory. 4012 */ 4013 memset(dstv, 0, len); 4014 return; 4015 } 4016 4017 offset = get_eb_offset_in_page(eb, start); 4018 4019 while (len > 0) { 4020 page = eb->pages[i]; 4021 4022 cur = min(len, (PAGE_SIZE - offset)); 4023 kaddr = page_address(page); 4024 memcpy(dst, kaddr + offset, cur); 4025 4026 dst += cur; 4027 len -= cur; 4028 offset = 0; 4029 i++; 4030 } 4031 } 4032 4033 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4034 void __user *dstv, 4035 unsigned long start, unsigned long len) 4036 { 4037 size_t cur; 4038 size_t offset; 4039 struct page *page; 4040 char *kaddr; 4041 char __user *dst = (char __user *)dstv; 4042 unsigned long i = get_eb_page_index(start); 4043 int ret = 0; 4044 4045 WARN_ON(start > eb->len); 4046 WARN_ON(start + len > eb->start + eb->len); 4047 4048 offset = get_eb_offset_in_page(eb, start); 4049 4050 while (len > 0) { 4051 page = eb->pages[i]; 4052 4053 cur = min(len, (PAGE_SIZE - offset)); 4054 kaddr = page_address(page); 4055 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4056 ret = -EFAULT; 4057 break; 4058 } 4059 4060 dst += cur; 4061 len -= cur; 4062 offset = 0; 4063 i++; 4064 } 4065 4066 return ret; 4067 } 4068 4069 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4070 unsigned long start, unsigned long len) 4071 { 4072 size_t cur; 4073 size_t offset; 4074 struct page *page; 4075 char *kaddr; 4076 char *ptr = (char *)ptrv; 4077 unsigned long i = get_eb_page_index(start); 4078 int ret = 0; 4079 4080 if (check_eb_range(eb, start, len)) 4081 return -EINVAL; 4082 4083 offset = get_eb_offset_in_page(eb, start); 4084 4085 while (len > 0) { 4086 page = eb->pages[i]; 4087 4088 cur = min(len, (PAGE_SIZE - offset)); 4089 4090 kaddr = page_address(page); 4091 ret = memcmp(ptr, kaddr + offset, cur); 4092 if (ret) 4093 break; 4094 4095 ptr += cur; 4096 len -= cur; 4097 offset = 0; 4098 i++; 4099 } 4100 return ret; 4101 } 4102 4103 /* 4104 * Check that the extent buffer is uptodate. 4105 * 4106 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4107 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4108 */ 4109 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4110 struct page *page) 4111 { 4112 struct btrfs_fs_info *fs_info = eb->fs_info; 4113 4114 /* 4115 * If we are using the commit root we could potentially clear a page 4116 * Uptodate while we're using the extent buffer that we've previously 4117 * looked up. We don't want to complain in this case, as the page was 4118 * valid before, we just didn't write it out. Instead we want to catch 4119 * the case where we didn't actually read the block properly, which 4120 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4121 */ 4122 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4123 return; 4124 4125 if (fs_info->nodesize < PAGE_SIZE) { 4126 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4127 eb->start, eb->len))) 4128 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4129 } else { 4130 WARN_ON(!PageUptodate(page)); 4131 } 4132 } 4133 4134 static void __write_extent_buffer(const struct extent_buffer *eb, 4135 const void *srcv, unsigned long start, 4136 unsigned long len, bool use_memmove) 4137 { 4138 size_t cur; 4139 size_t offset; 4140 struct page *page; 4141 char *kaddr; 4142 char *src = (char *)srcv; 4143 unsigned long i = get_eb_page_index(start); 4144 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4145 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4146 4147 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4148 4149 if (check_eb_range(eb, start, len)) 4150 return; 4151 4152 offset = get_eb_offset_in_page(eb, start); 4153 4154 while (len > 0) { 4155 page = eb->pages[i]; 4156 if (check_uptodate) 4157 assert_eb_page_uptodate(eb, page); 4158 4159 cur = min(len, PAGE_SIZE - offset); 4160 kaddr = page_address(page); 4161 if (use_memmove) 4162 memmove(kaddr + offset, src, cur); 4163 else 4164 memcpy(kaddr + offset, src, cur); 4165 4166 src += cur; 4167 len -= cur; 4168 offset = 0; 4169 i++; 4170 } 4171 } 4172 4173 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4174 unsigned long start, unsigned long len) 4175 { 4176 return __write_extent_buffer(eb, srcv, start, len, false); 4177 } 4178 4179 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4180 unsigned long start, unsigned long len) 4181 { 4182 unsigned long cur = start; 4183 4184 while (cur < start + len) { 4185 unsigned long index = get_eb_page_index(cur); 4186 unsigned int offset = get_eb_offset_in_page(eb, cur); 4187 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4188 struct page *page = eb->pages[index]; 4189 4190 assert_eb_page_uptodate(eb, page); 4191 memset(page_address(page) + offset, c, cur_len); 4192 4193 cur += cur_len; 4194 } 4195 } 4196 4197 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4198 unsigned long len) 4199 { 4200 if (check_eb_range(eb, start, len)) 4201 return; 4202 return memset_extent_buffer(eb, 0, start, len); 4203 } 4204 4205 void copy_extent_buffer_full(const struct extent_buffer *dst, 4206 const struct extent_buffer *src) 4207 { 4208 unsigned long cur = 0; 4209 4210 ASSERT(dst->len == src->len); 4211 4212 while (cur < src->len) { 4213 unsigned long index = get_eb_page_index(cur); 4214 unsigned long offset = get_eb_offset_in_page(src, cur); 4215 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4216 void *addr = page_address(src->pages[index]) + offset; 4217 4218 write_extent_buffer(dst, addr, cur, cur_len); 4219 4220 cur += cur_len; 4221 } 4222 } 4223 4224 void copy_extent_buffer(const struct extent_buffer *dst, 4225 const struct extent_buffer *src, 4226 unsigned long dst_offset, unsigned long src_offset, 4227 unsigned long len) 4228 { 4229 u64 dst_len = dst->len; 4230 size_t cur; 4231 size_t offset; 4232 struct page *page; 4233 char *kaddr; 4234 unsigned long i = get_eb_page_index(dst_offset); 4235 4236 if (check_eb_range(dst, dst_offset, len) || 4237 check_eb_range(src, src_offset, len)) 4238 return; 4239 4240 WARN_ON(src->len != dst_len); 4241 4242 offset = get_eb_offset_in_page(dst, dst_offset); 4243 4244 while (len > 0) { 4245 page = dst->pages[i]; 4246 assert_eb_page_uptodate(dst, page); 4247 4248 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4249 4250 kaddr = page_address(page); 4251 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4252 4253 src_offset += cur; 4254 len -= cur; 4255 offset = 0; 4256 i++; 4257 } 4258 } 4259 4260 /* 4261 * Calculate the page and offset of the byte containing the given bit number. 4262 * 4263 * @eb: the extent buffer 4264 * @start: offset of the bitmap item in the extent buffer 4265 * @nr: bit number 4266 * @page_index: return index of the page in the extent buffer that contains 4267 * the given bit number 4268 * @page_offset: return offset into the page given by page_index 4269 * 4270 * This helper hides the ugliness of finding the byte in an extent buffer which 4271 * contains a given bit. 4272 */ 4273 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4274 unsigned long start, unsigned long nr, 4275 unsigned long *page_index, 4276 size_t *page_offset) 4277 { 4278 size_t byte_offset = BIT_BYTE(nr); 4279 size_t offset; 4280 4281 /* 4282 * The byte we want is the offset of the extent buffer + the offset of 4283 * the bitmap item in the extent buffer + the offset of the byte in the 4284 * bitmap item. 4285 */ 4286 offset = start + offset_in_page(eb->start) + byte_offset; 4287 4288 *page_index = offset >> PAGE_SHIFT; 4289 *page_offset = offset_in_page(offset); 4290 } 4291 4292 /* 4293 * Determine whether a bit in a bitmap item is set. 4294 * 4295 * @eb: the extent buffer 4296 * @start: offset of the bitmap item in the extent buffer 4297 * @nr: bit number to test 4298 */ 4299 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4300 unsigned long nr) 4301 { 4302 u8 *kaddr; 4303 struct page *page; 4304 unsigned long i; 4305 size_t offset; 4306 4307 eb_bitmap_offset(eb, start, nr, &i, &offset); 4308 page = eb->pages[i]; 4309 assert_eb_page_uptodate(eb, page); 4310 kaddr = page_address(page); 4311 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4312 } 4313 4314 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4315 { 4316 unsigned long index = get_eb_page_index(bytenr); 4317 4318 if (check_eb_range(eb, bytenr, 1)) 4319 return NULL; 4320 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4321 } 4322 4323 /* 4324 * Set an area of a bitmap to 1. 4325 * 4326 * @eb: the extent buffer 4327 * @start: offset of the bitmap item in the extent buffer 4328 * @pos: bit number of the first bit 4329 * @len: number of bits to set 4330 */ 4331 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4332 unsigned long pos, unsigned long len) 4333 { 4334 unsigned int first_byte = start + BIT_BYTE(pos); 4335 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4336 const bool same_byte = (first_byte == last_byte); 4337 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4338 u8 *kaddr; 4339 4340 if (same_byte) 4341 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4342 4343 /* Handle the first byte. */ 4344 kaddr = extent_buffer_get_byte(eb, first_byte); 4345 *kaddr |= mask; 4346 if (same_byte) 4347 return; 4348 4349 /* Handle the byte aligned part. */ 4350 ASSERT(first_byte + 1 <= last_byte); 4351 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4352 4353 /* Handle the last byte. */ 4354 kaddr = extent_buffer_get_byte(eb, last_byte); 4355 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4356 } 4357 4358 4359 /* 4360 * Clear an area of a bitmap. 4361 * 4362 * @eb: the extent buffer 4363 * @start: offset of the bitmap item in the extent buffer 4364 * @pos: bit number of the first bit 4365 * @len: number of bits to clear 4366 */ 4367 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4368 unsigned long start, unsigned long pos, 4369 unsigned long len) 4370 { 4371 unsigned int first_byte = start + BIT_BYTE(pos); 4372 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4373 const bool same_byte = (first_byte == last_byte); 4374 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4375 u8 *kaddr; 4376 4377 if (same_byte) 4378 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4379 4380 /* Handle the first byte. */ 4381 kaddr = extent_buffer_get_byte(eb, first_byte); 4382 *kaddr &= ~mask; 4383 if (same_byte) 4384 return; 4385 4386 /* Handle the byte aligned part. */ 4387 ASSERT(first_byte + 1 <= last_byte); 4388 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4389 4390 /* Handle the last byte. */ 4391 kaddr = extent_buffer_get_byte(eb, last_byte); 4392 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4393 } 4394 4395 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4396 { 4397 unsigned long distance = (src > dst) ? src - dst : dst - src; 4398 return distance < len; 4399 } 4400 4401 void memcpy_extent_buffer(const struct extent_buffer *dst, 4402 unsigned long dst_offset, unsigned long src_offset, 4403 unsigned long len) 4404 { 4405 unsigned long cur_off = 0; 4406 4407 if (check_eb_range(dst, dst_offset, len) || 4408 check_eb_range(dst, src_offset, len)) 4409 return; 4410 4411 while (cur_off < len) { 4412 unsigned long cur_src = cur_off + src_offset; 4413 unsigned long pg_index = get_eb_page_index(cur_src); 4414 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4415 unsigned long cur_len = min(src_offset + len - cur_src, 4416 PAGE_SIZE - pg_off); 4417 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4418 const bool use_memmove = areas_overlap(src_offset + cur_off, 4419 dst_offset + cur_off, cur_len); 4420 4421 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4422 use_memmove); 4423 cur_off += cur_len; 4424 } 4425 } 4426 4427 void memmove_extent_buffer(const struct extent_buffer *dst, 4428 unsigned long dst_offset, unsigned long src_offset, 4429 unsigned long len) 4430 { 4431 unsigned long dst_end = dst_offset + len - 1; 4432 unsigned long src_end = src_offset + len - 1; 4433 4434 if (check_eb_range(dst, dst_offset, len) || 4435 check_eb_range(dst, src_offset, len)) 4436 return; 4437 4438 if (dst_offset < src_offset) { 4439 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4440 return; 4441 } 4442 4443 while (len > 0) { 4444 unsigned long src_i; 4445 size_t cur; 4446 size_t dst_off_in_page; 4447 size_t src_off_in_page; 4448 void *src_addr; 4449 bool use_memmove; 4450 4451 src_i = get_eb_page_index(src_end); 4452 4453 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4454 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4455 4456 cur = min_t(unsigned long, len, src_off_in_page + 1); 4457 cur = min(cur, dst_off_in_page + 1); 4458 4459 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4460 cur + 1; 4461 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4462 cur); 4463 4464 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4465 use_memmove); 4466 4467 dst_end -= cur; 4468 src_end -= cur; 4469 len -= cur; 4470 } 4471 } 4472 4473 #define GANG_LOOKUP_SIZE 16 4474 static struct extent_buffer *get_next_extent_buffer( 4475 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4476 { 4477 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4478 struct extent_buffer *found = NULL; 4479 u64 page_start = page_offset(page); 4480 u64 cur = page_start; 4481 4482 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4483 lockdep_assert_held(&fs_info->buffer_lock); 4484 4485 while (cur < page_start + PAGE_SIZE) { 4486 int ret; 4487 int i; 4488 4489 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4490 (void **)gang, cur >> fs_info->sectorsize_bits, 4491 min_t(unsigned int, GANG_LOOKUP_SIZE, 4492 PAGE_SIZE / fs_info->nodesize)); 4493 if (ret == 0) 4494 goto out; 4495 for (i = 0; i < ret; i++) { 4496 /* Already beyond page end */ 4497 if (gang[i]->start >= page_start + PAGE_SIZE) 4498 goto out; 4499 /* Found one */ 4500 if (gang[i]->start >= bytenr) { 4501 found = gang[i]; 4502 goto out; 4503 } 4504 } 4505 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4506 } 4507 out: 4508 return found; 4509 } 4510 4511 static int try_release_subpage_extent_buffer(struct page *page) 4512 { 4513 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4514 u64 cur = page_offset(page); 4515 const u64 end = page_offset(page) + PAGE_SIZE; 4516 int ret; 4517 4518 while (cur < end) { 4519 struct extent_buffer *eb = NULL; 4520 4521 /* 4522 * Unlike try_release_extent_buffer() which uses page->private 4523 * to grab buffer, for subpage case we rely on radix tree, thus 4524 * we need to ensure radix tree consistency. 4525 * 4526 * We also want an atomic snapshot of the radix tree, thus go 4527 * with spinlock rather than RCU. 4528 */ 4529 spin_lock(&fs_info->buffer_lock); 4530 eb = get_next_extent_buffer(fs_info, page, cur); 4531 if (!eb) { 4532 /* No more eb in the page range after or at cur */ 4533 spin_unlock(&fs_info->buffer_lock); 4534 break; 4535 } 4536 cur = eb->start + eb->len; 4537 4538 /* 4539 * The same as try_release_extent_buffer(), to ensure the eb 4540 * won't disappear out from under us. 4541 */ 4542 spin_lock(&eb->refs_lock); 4543 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4544 spin_unlock(&eb->refs_lock); 4545 spin_unlock(&fs_info->buffer_lock); 4546 break; 4547 } 4548 spin_unlock(&fs_info->buffer_lock); 4549 4550 /* 4551 * If tree ref isn't set then we know the ref on this eb is a 4552 * real ref, so just return, this eb will likely be freed soon 4553 * anyway. 4554 */ 4555 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4556 spin_unlock(&eb->refs_lock); 4557 break; 4558 } 4559 4560 /* 4561 * Here we don't care about the return value, we will always 4562 * check the page private at the end. And 4563 * release_extent_buffer() will release the refs_lock. 4564 */ 4565 release_extent_buffer(eb); 4566 } 4567 /* 4568 * Finally to check if we have cleared page private, as if we have 4569 * released all ebs in the page, the page private should be cleared now. 4570 */ 4571 spin_lock(&page->mapping->private_lock); 4572 if (!PagePrivate(page)) 4573 ret = 1; 4574 else 4575 ret = 0; 4576 spin_unlock(&page->mapping->private_lock); 4577 return ret; 4578 4579 } 4580 4581 int try_release_extent_buffer(struct page *page) 4582 { 4583 struct extent_buffer *eb; 4584 4585 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4586 return try_release_subpage_extent_buffer(page); 4587 4588 /* 4589 * We need to make sure nobody is changing page->private, as we rely on 4590 * page->private as the pointer to extent buffer. 4591 */ 4592 spin_lock(&page->mapping->private_lock); 4593 if (!PagePrivate(page)) { 4594 spin_unlock(&page->mapping->private_lock); 4595 return 1; 4596 } 4597 4598 eb = (struct extent_buffer *)page->private; 4599 BUG_ON(!eb); 4600 4601 /* 4602 * This is a little awful but should be ok, we need to make sure that 4603 * the eb doesn't disappear out from under us while we're looking at 4604 * this page. 4605 */ 4606 spin_lock(&eb->refs_lock); 4607 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4608 spin_unlock(&eb->refs_lock); 4609 spin_unlock(&page->mapping->private_lock); 4610 return 0; 4611 } 4612 spin_unlock(&page->mapping->private_lock); 4613 4614 /* 4615 * If tree ref isn't set then we know the ref on this eb is a real ref, 4616 * so just return, this page will likely be freed soon anyway. 4617 */ 4618 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4619 spin_unlock(&eb->refs_lock); 4620 return 0; 4621 } 4622 4623 return release_extent_buffer(eb); 4624 } 4625 4626 /* 4627 * Attempt to readahead a child block. 4628 * 4629 * @fs_info: the fs_info 4630 * @bytenr: bytenr to read 4631 * @owner_root: objectid of the root that owns this eb 4632 * @gen: generation for the uptodate check, can be 0 4633 * @level: level for the eb 4634 * 4635 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4636 * normal uptodate check of the eb, without checking the generation. If we have 4637 * to read the block we will not block on anything. 4638 */ 4639 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4640 u64 bytenr, u64 owner_root, u64 gen, int level) 4641 { 4642 struct btrfs_tree_parent_check check = { 4643 .has_first_key = 0, 4644 .level = level, 4645 .transid = gen 4646 }; 4647 struct extent_buffer *eb; 4648 int ret; 4649 4650 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4651 if (IS_ERR(eb)) 4652 return; 4653 4654 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4655 free_extent_buffer(eb); 4656 return; 4657 } 4658 4659 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4660 if (ret < 0) 4661 free_extent_buffer_stale(eb); 4662 else 4663 free_extent_buffer(eb); 4664 } 4665 4666 /* 4667 * Readahead a node's child block. 4668 * 4669 * @node: parent node we're reading from 4670 * @slot: slot in the parent node for the child we want to read 4671 * 4672 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4673 * the slot in the node provided. 4674 */ 4675 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4676 { 4677 btrfs_readahead_tree_block(node->fs_info, 4678 btrfs_node_blockptr(node, slot), 4679 btrfs_header_owner(node), 4680 btrfs_node_ptr_generation(node, slot), 4681 btrfs_header_level(node) - 1); 4682 } 4683