xref: /linux/fs/btrfs/extent_io.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30 
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35 
36 #define BUFFER_LRU_MAX 64
37 
38 struct tree_entry {
39 	u64 start;
40 	u64 end;
41 	struct rb_node rb_node;
42 };
43 
44 struct extent_page_data {
45 	struct bio *bio;
46 	struct extent_io_tree *tree;
47 	get_extent_t *get_extent;
48 
49 	/* tells writepage not to lock the state bits for this range
50 	 * it still does the unlocking
51 	 */
52 	unsigned int extent_locked:1;
53 
54 	/* tells the submit_bio code to use a WRITE_SYNC */
55 	unsigned int sync_io:1;
56 };
57 
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62 	return btrfs_sb(tree->mapping->host->i_sb);
63 }
64 
65 int __init extent_io_init(void)
66 {
67 	extent_state_cache = kmem_cache_create("extent_state",
68 			sizeof(struct extent_state), 0,
69 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70 	if (!extent_state_cache)
71 		return -ENOMEM;
72 
73 	extent_buffer_cache = kmem_cache_create("extent_buffers",
74 			sizeof(struct extent_buffer), 0,
75 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76 	if (!extent_buffer_cache)
77 		goto free_state_cache;
78 	return 0;
79 
80 free_state_cache:
81 	kmem_cache_destroy(extent_state_cache);
82 	return -ENOMEM;
83 }
84 
85 void extent_io_exit(void)
86 {
87 	struct extent_state *state;
88 	struct extent_buffer *eb;
89 
90 	while (!list_empty(&states)) {
91 		state = list_entry(states.next, struct extent_state, leak_list);
92 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 		       "state %lu in tree %p refs %d\n",
94 		       (unsigned long long)state->start,
95 		       (unsigned long long)state->end,
96 		       state->state, state->tree, atomic_read(&state->refs));
97 		list_del(&state->leak_list);
98 		kmem_cache_free(extent_state_cache, state);
99 
100 	}
101 
102 	while (!list_empty(&buffers)) {
103 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 		       "refs %d\n", (unsigned long long)eb->start,
106 		       eb->len, atomic_read(&eb->refs));
107 		list_del(&eb->leak_list);
108 		kmem_cache_free(extent_buffer_cache, eb);
109 	}
110 	if (extent_state_cache)
111 		kmem_cache_destroy(extent_state_cache);
112 	if (extent_buffer_cache)
113 		kmem_cache_destroy(extent_buffer_cache);
114 }
115 
116 void extent_io_tree_init(struct extent_io_tree *tree,
117 			 struct address_space *mapping)
118 {
119 	tree->state = RB_ROOT;
120 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121 	tree->ops = NULL;
122 	tree->dirty_bytes = 0;
123 	spin_lock_init(&tree->lock);
124 	spin_lock_init(&tree->buffer_lock);
125 	tree->mapping = mapping;
126 }
127 
128 static struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130 	struct extent_state *state;
131 #if LEAK_DEBUG
132 	unsigned long flags;
133 #endif
134 
135 	state = kmem_cache_alloc(extent_state_cache, mask);
136 	if (!state)
137 		return state;
138 	state->state = 0;
139 	state->private = 0;
140 	state->tree = NULL;
141 #if LEAK_DEBUG
142 	spin_lock_irqsave(&leak_lock, flags);
143 	list_add(&state->leak_list, &states);
144 	spin_unlock_irqrestore(&leak_lock, flags);
145 #endif
146 	atomic_set(&state->refs, 1);
147 	init_waitqueue_head(&state->wq);
148 	trace_alloc_extent_state(state, mask, _RET_IP_);
149 	return state;
150 }
151 
152 void free_extent_state(struct extent_state *state)
153 {
154 	if (!state)
155 		return;
156 	if (atomic_dec_and_test(&state->refs)) {
157 #if LEAK_DEBUG
158 		unsigned long flags;
159 #endif
160 		WARN_ON(state->tree);
161 #if LEAK_DEBUG
162 		spin_lock_irqsave(&leak_lock, flags);
163 		list_del(&state->leak_list);
164 		spin_unlock_irqrestore(&leak_lock, flags);
165 #endif
166 		trace_free_extent_state(state, _RET_IP_);
167 		kmem_cache_free(extent_state_cache, state);
168 	}
169 }
170 
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 				   struct rb_node *node)
173 {
174 	struct rb_node **p = &root->rb_node;
175 	struct rb_node *parent = NULL;
176 	struct tree_entry *entry;
177 
178 	while (*p) {
179 		parent = *p;
180 		entry = rb_entry(parent, struct tree_entry, rb_node);
181 
182 		if (offset < entry->start)
183 			p = &(*p)->rb_left;
184 		else if (offset > entry->end)
185 			p = &(*p)->rb_right;
186 		else
187 			return parent;
188 	}
189 
190 	rb_link_node(node, parent, p);
191 	rb_insert_color(node, root);
192 	return NULL;
193 }
194 
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 				     struct rb_node **prev_ret,
197 				     struct rb_node **next_ret)
198 {
199 	struct rb_root *root = &tree->state;
200 	struct rb_node *n = root->rb_node;
201 	struct rb_node *prev = NULL;
202 	struct rb_node *orig_prev = NULL;
203 	struct tree_entry *entry;
204 	struct tree_entry *prev_entry = NULL;
205 
206 	while (n) {
207 		entry = rb_entry(n, struct tree_entry, rb_node);
208 		prev = n;
209 		prev_entry = entry;
210 
211 		if (offset < entry->start)
212 			n = n->rb_left;
213 		else if (offset > entry->end)
214 			n = n->rb_right;
215 		else
216 			return n;
217 	}
218 
219 	if (prev_ret) {
220 		orig_prev = prev;
221 		while (prev && offset > prev_entry->end) {
222 			prev = rb_next(prev);
223 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 		}
225 		*prev_ret = prev;
226 		prev = orig_prev;
227 	}
228 
229 	if (next_ret) {
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 		while (prev && offset < prev_entry->start) {
232 			prev = rb_prev(prev);
233 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 		}
235 		*next_ret = prev;
236 	}
237 	return NULL;
238 }
239 
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 					  u64 offset)
242 {
243 	struct rb_node *prev = NULL;
244 	struct rb_node *ret;
245 
246 	ret = __etree_search(tree, offset, &prev, NULL);
247 	if (!ret)
248 		return prev;
249 	return ret;
250 }
251 
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 		     struct extent_state *other)
254 {
255 	if (tree->ops && tree->ops->merge_extent_hook)
256 		tree->ops->merge_extent_hook(tree->mapping->host, new,
257 					     other);
258 }
259 
260 /*
261  * utility function to look for merge candidates inside a given range.
262  * Any extents with matching state are merged together into a single
263  * extent in the tree.  Extents with EXTENT_IO in their state field
264  * are not merged because the end_io handlers need to be able to do
265  * operations on them without sleeping (or doing allocations/splits).
266  *
267  * This should be called with the tree lock held.
268  */
269 static void merge_state(struct extent_io_tree *tree,
270 		        struct extent_state *state)
271 {
272 	struct extent_state *other;
273 	struct rb_node *other_node;
274 
275 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276 		return;
277 
278 	other_node = rb_prev(&state->rb_node);
279 	if (other_node) {
280 		other = rb_entry(other_node, struct extent_state, rb_node);
281 		if (other->end == state->start - 1 &&
282 		    other->state == state->state) {
283 			merge_cb(tree, state, other);
284 			state->start = other->start;
285 			other->tree = NULL;
286 			rb_erase(&other->rb_node, &tree->state);
287 			free_extent_state(other);
288 		}
289 	}
290 	other_node = rb_next(&state->rb_node);
291 	if (other_node) {
292 		other = rb_entry(other_node, struct extent_state, rb_node);
293 		if (other->start == state->end + 1 &&
294 		    other->state == state->state) {
295 			merge_cb(tree, state, other);
296 			state->end = other->end;
297 			other->tree = NULL;
298 			rb_erase(&other->rb_node, &tree->state);
299 			free_extent_state(other);
300 		}
301 	}
302 }
303 
304 static void set_state_cb(struct extent_io_tree *tree,
305 			 struct extent_state *state, int *bits)
306 {
307 	if (tree->ops && tree->ops->set_bit_hook)
308 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310 
311 static void clear_state_cb(struct extent_io_tree *tree,
312 			   struct extent_state *state, int *bits)
313 {
314 	if (tree->ops && tree->ops->clear_bit_hook)
315 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317 
318 static void set_state_bits(struct extent_io_tree *tree,
319 			   struct extent_state *state, int *bits);
320 
321 /*
322  * insert an extent_state struct into the tree.  'bits' are set on the
323  * struct before it is inserted.
324  *
325  * This may return -EEXIST if the extent is already there, in which case the
326  * state struct is freed.
327  *
328  * The tree lock is not taken internally.  This is a utility function and
329  * probably isn't what you want to call (see set/clear_extent_bit).
330  */
331 static int insert_state(struct extent_io_tree *tree,
332 			struct extent_state *state, u64 start, u64 end,
333 			int *bits)
334 {
335 	struct rb_node *node;
336 
337 	if (end < start) {
338 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 		       (unsigned long long)end,
340 		       (unsigned long long)start);
341 		WARN_ON(1);
342 	}
343 	state->start = start;
344 	state->end = end;
345 
346 	set_state_bits(tree, state, bits);
347 
348 	node = tree_insert(&tree->state, end, &state->rb_node);
349 	if (node) {
350 		struct extent_state *found;
351 		found = rb_entry(node, struct extent_state, rb_node);
352 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 		       "%llu %llu\n", (unsigned long long)found->start,
354 		       (unsigned long long)found->end,
355 		       (unsigned long long)start, (unsigned long long)end);
356 		return -EEXIST;
357 	}
358 	state->tree = tree;
359 	merge_state(tree, state);
360 	return 0;
361 }
362 
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364 		     u64 split)
365 {
366 	if (tree->ops && tree->ops->split_extent_hook)
367 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369 
370 /*
371  * split a given extent state struct in two, inserting the preallocated
372  * struct 'prealloc' as the newly created second half.  'split' indicates an
373  * offset inside 'orig' where it should be split.
374  *
375  * Before calling,
376  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
377  * are two extent state structs in the tree:
378  * prealloc: [orig->start, split - 1]
379  * orig: [ split, orig->end ]
380  *
381  * The tree locks are not taken by this function. They need to be held
382  * by the caller.
383  */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 		       struct extent_state *prealloc, u64 split)
386 {
387 	struct rb_node *node;
388 
389 	split_cb(tree, orig, split);
390 
391 	prealloc->start = orig->start;
392 	prealloc->end = split - 1;
393 	prealloc->state = orig->state;
394 	orig->start = split;
395 
396 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 	if (node) {
398 		free_extent_state(prealloc);
399 		return -EEXIST;
400 	}
401 	prealloc->tree = tree;
402 	return 0;
403 }
404 
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407 	struct rb_node *next = rb_next(&state->rb_node);
408 	if (next)
409 		return rb_entry(next, struct extent_state, rb_node);
410 	else
411 		return NULL;
412 }
413 
414 /*
415  * utility function to clear some bits in an extent state struct.
416  * it will optionally wake up any one waiting on this state (wake == 1).
417  *
418  * If no bits are set on the state struct after clearing things, the
419  * struct is freed and removed from the tree
420  */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 					    struct extent_state *state,
423 					    int *bits, int wake)
424 {
425 	struct extent_state *next;
426 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427 
428 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 		u64 range = state->end - state->start + 1;
430 		WARN_ON(range > tree->dirty_bytes);
431 		tree->dirty_bytes -= range;
432 	}
433 	clear_state_cb(tree, state, bits);
434 	state->state &= ~bits_to_clear;
435 	if (wake)
436 		wake_up(&state->wq);
437 	if (state->state == 0) {
438 		next = next_state(state);
439 		if (state->tree) {
440 			rb_erase(&state->rb_node, &tree->state);
441 			state->tree = NULL;
442 			free_extent_state(state);
443 		} else {
444 			WARN_ON(1);
445 		}
446 	} else {
447 		merge_state(tree, state);
448 		next = next_state(state);
449 	}
450 	return next;
451 }
452 
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456 	if (!prealloc)
457 		prealloc = alloc_extent_state(GFP_ATOMIC);
458 
459 	return prealloc;
460 }
461 
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 		    "Extent tree was modified by another "
466 		    "thread while locked.");
467 }
468 
469 /*
470  * clear some bits on a range in the tree.  This may require splitting
471  * or inserting elements in the tree, so the gfp mask is used to
472  * indicate which allocations or sleeping are allowed.
473  *
474  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475  * the given range from the tree regardless of state (ie for truncate).
476  *
477  * the range [start, end] is inclusive.
478  *
479  * This takes the tree lock, and returns 0 on success and < 0 on error.
480  */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 		     int bits, int wake, int delete,
483 		     struct extent_state **cached_state,
484 		     gfp_t mask)
485 {
486 	struct extent_state *state;
487 	struct extent_state *cached;
488 	struct extent_state *prealloc = NULL;
489 	struct rb_node *node;
490 	u64 last_end;
491 	int err;
492 	int clear = 0;
493 
494 	if (delete)
495 		bits |= ~EXTENT_CTLBITS;
496 	bits |= EXTENT_FIRST_DELALLOC;
497 
498 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 		clear = 1;
500 again:
501 	if (!prealloc && (mask & __GFP_WAIT)) {
502 		prealloc = alloc_extent_state(mask);
503 		if (!prealloc)
504 			return -ENOMEM;
505 	}
506 
507 	spin_lock(&tree->lock);
508 	if (cached_state) {
509 		cached = *cached_state;
510 
511 		if (clear) {
512 			*cached_state = NULL;
513 			cached_state = NULL;
514 		}
515 
516 		if (cached && cached->tree && cached->start <= start &&
517 		    cached->end > start) {
518 			if (clear)
519 				atomic_dec(&cached->refs);
520 			state = cached;
521 			goto hit_next;
522 		}
523 		if (clear)
524 			free_extent_state(cached);
525 	}
526 	/*
527 	 * this search will find the extents that end after
528 	 * our range starts
529 	 */
530 	node = tree_search(tree, start);
531 	if (!node)
532 		goto out;
533 	state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535 	if (state->start > end)
536 		goto out;
537 	WARN_ON(state->end < start);
538 	last_end = state->end;
539 
540 	/* the state doesn't have the wanted bits, go ahead */
541 	if (!(state->state & bits)) {
542 		state = next_state(state);
543 		goto next;
544 	}
545 
546 	/*
547 	 *     | ---- desired range ---- |
548 	 *  | state | or
549 	 *  | ------------- state -------------- |
550 	 *
551 	 * We need to split the extent we found, and may flip
552 	 * bits on second half.
553 	 *
554 	 * If the extent we found extends past our range, we
555 	 * just split and search again.  It'll get split again
556 	 * the next time though.
557 	 *
558 	 * If the extent we found is inside our range, we clear
559 	 * the desired bit on it.
560 	 */
561 
562 	if (state->start < start) {
563 		prealloc = alloc_extent_state_atomic(prealloc);
564 		BUG_ON(!prealloc);
565 		err = split_state(tree, state, prealloc, start);
566 		if (err)
567 			extent_io_tree_panic(tree, err);
568 
569 		prealloc = NULL;
570 		if (err)
571 			goto out;
572 		if (state->end <= end) {
573 			state = clear_state_bit(tree, state, &bits, wake);
574 			goto next;
575 		}
576 		goto search_again;
577 	}
578 	/*
579 	 * | ---- desired range ---- |
580 	 *                        | state |
581 	 * We need to split the extent, and clear the bit
582 	 * on the first half
583 	 */
584 	if (state->start <= end && state->end > end) {
585 		prealloc = alloc_extent_state_atomic(prealloc);
586 		BUG_ON(!prealloc);
587 		err = split_state(tree, state, prealloc, end + 1);
588 		if (err)
589 			extent_io_tree_panic(tree, err);
590 
591 		if (wake)
592 			wake_up(&state->wq);
593 
594 		clear_state_bit(tree, prealloc, &bits, wake);
595 
596 		prealloc = NULL;
597 		goto out;
598 	}
599 
600 	state = clear_state_bit(tree, state, &bits, wake);
601 next:
602 	if (last_end == (u64)-1)
603 		goto out;
604 	start = last_end + 1;
605 	if (start <= end && state && !need_resched())
606 		goto hit_next;
607 	goto search_again;
608 
609 out:
610 	spin_unlock(&tree->lock);
611 	if (prealloc)
612 		free_extent_state(prealloc);
613 
614 	return 0;
615 
616 search_again:
617 	if (start > end)
618 		goto out;
619 	spin_unlock(&tree->lock);
620 	if (mask & __GFP_WAIT)
621 		cond_resched();
622 	goto again;
623 }
624 
625 static void wait_on_state(struct extent_io_tree *tree,
626 			  struct extent_state *state)
627 		__releases(tree->lock)
628 		__acquires(tree->lock)
629 {
630 	DEFINE_WAIT(wait);
631 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632 	spin_unlock(&tree->lock);
633 	schedule();
634 	spin_lock(&tree->lock);
635 	finish_wait(&state->wq, &wait);
636 }
637 
638 /*
639  * waits for one or more bits to clear on a range in the state tree.
640  * The range [start, end] is inclusive.
641  * The tree lock is taken by this function
642  */
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
644 {
645 	struct extent_state *state;
646 	struct rb_node *node;
647 
648 	spin_lock(&tree->lock);
649 again:
650 	while (1) {
651 		/*
652 		 * this search will find all the extents that end after
653 		 * our range starts
654 		 */
655 		node = tree_search(tree, start);
656 		if (!node)
657 			break;
658 
659 		state = rb_entry(node, struct extent_state, rb_node);
660 
661 		if (state->start > end)
662 			goto out;
663 
664 		if (state->state & bits) {
665 			start = state->start;
666 			atomic_inc(&state->refs);
667 			wait_on_state(tree, state);
668 			free_extent_state(state);
669 			goto again;
670 		}
671 		start = state->end + 1;
672 
673 		if (start > end)
674 			break;
675 
676 		cond_resched_lock(&tree->lock);
677 	}
678 out:
679 	spin_unlock(&tree->lock);
680 }
681 
682 static void set_state_bits(struct extent_io_tree *tree,
683 			   struct extent_state *state,
684 			   int *bits)
685 {
686 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
687 
688 	set_state_cb(tree, state, bits);
689 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690 		u64 range = state->end - state->start + 1;
691 		tree->dirty_bytes += range;
692 	}
693 	state->state |= bits_to_set;
694 }
695 
696 static void cache_state(struct extent_state *state,
697 			struct extent_state **cached_ptr)
698 {
699 	if (cached_ptr && !(*cached_ptr)) {
700 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 			*cached_ptr = state;
702 			atomic_inc(&state->refs);
703 		}
704 	}
705 }
706 
707 static void uncache_state(struct extent_state **cached_ptr)
708 {
709 	if (cached_ptr && (*cached_ptr)) {
710 		struct extent_state *state = *cached_ptr;
711 		*cached_ptr = NULL;
712 		free_extent_state(state);
713 	}
714 }
715 
716 /*
717  * set some bits on a range in the tree.  This may require allocations or
718  * sleeping, so the gfp mask is used to indicate what is allowed.
719  *
720  * If any of the exclusive bits are set, this will fail with -EEXIST if some
721  * part of the range already has the desired bits set.  The start of the
722  * existing range is returned in failed_start in this case.
723  *
724  * [start, end] is inclusive This takes the tree lock.
725  */
726 
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 		 int bits, int exclusive_bits, u64 *failed_start,
730 		 struct extent_state **cached_state, gfp_t mask)
731 {
732 	struct extent_state *state;
733 	struct extent_state *prealloc = NULL;
734 	struct rb_node *node;
735 	int err = 0;
736 	u64 last_start;
737 	u64 last_end;
738 
739 	bits |= EXTENT_FIRST_DELALLOC;
740 again:
741 	if (!prealloc && (mask & __GFP_WAIT)) {
742 		prealloc = alloc_extent_state(mask);
743 		BUG_ON(!prealloc);
744 	}
745 
746 	spin_lock(&tree->lock);
747 	if (cached_state && *cached_state) {
748 		state = *cached_state;
749 		if (state->start <= start && state->end > start &&
750 		    state->tree) {
751 			node = &state->rb_node;
752 			goto hit_next;
753 		}
754 	}
755 	/*
756 	 * this search will find all the extents that end after
757 	 * our range starts.
758 	 */
759 	node = tree_search(tree, start);
760 	if (!node) {
761 		prealloc = alloc_extent_state_atomic(prealloc);
762 		BUG_ON(!prealloc);
763 		err = insert_state(tree, prealloc, start, end, &bits);
764 		if (err)
765 			extent_io_tree_panic(tree, err);
766 
767 		prealloc = NULL;
768 		goto out;
769 	}
770 	state = rb_entry(node, struct extent_state, rb_node);
771 hit_next:
772 	last_start = state->start;
773 	last_end = state->end;
774 
775 	/*
776 	 * | ---- desired range ---- |
777 	 * | state |
778 	 *
779 	 * Just lock what we found and keep going
780 	 */
781 	if (state->start == start && state->end <= end) {
782 		if (state->state & exclusive_bits) {
783 			*failed_start = state->start;
784 			err = -EEXIST;
785 			goto out;
786 		}
787 
788 		set_state_bits(tree, state, &bits);
789 		cache_state(state, cached_state);
790 		merge_state(tree, state);
791 		if (last_end == (u64)-1)
792 			goto out;
793 		start = last_end + 1;
794 		state = next_state(state);
795 		if (start < end && state && state->start == start &&
796 		    !need_resched())
797 			goto hit_next;
798 		goto search_again;
799 	}
800 
801 	/*
802 	 *     | ---- desired range ---- |
803 	 * | state |
804 	 *   or
805 	 * | ------------- state -------------- |
806 	 *
807 	 * We need to split the extent we found, and may flip bits on
808 	 * second half.
809 	 *
810 	 * If the extent we found extends past our
811 	 * range, we just split and search again.  It'll get split
812 	 * again the next time though.
813 	 *
814 	 * If the extent we found is inside our range, we set the
815 	 * desired bit on it.
816 	 */
817 	if (state->start < start) {
818 		if (state->state & exclusive_bits) {
819 			*failed_start = start;
820 			err = -EEXIST;
821 			goto out;
822 		}
823 
824 		prealloc = alloc_extent_state_atomic(prealloc);
825 		BUG_ON(!prealloc);
826 		err = split_state(tree, state, prealloc, start);
827 		if (err)
828 			extent_io_tree_panic(tree, err);
829 
830 		prealloc = NULL;
831 		if (err)
832 			goto out;
833 		if (state->end <= end) {
834 			set_state_bits(tree, state, &bits);
835 			cache_state(state, cached_state);
836 			merge_state(tree, state);
837 			if (last_end == (u64)-1)
838 				goto out;
839 			start = last_end + 1;
840 			state = next_state(state);
841 			if (start < end && state && state->start == start &&
842 			    !need_resched())
843 				goto hit_next;
844 		}
845 		goto search_again;
846 	}
847 	/*
848 	 * | ---- desired range ---- |
849 	 *     | state | or               | state |
850 	 *
851 	 * There's a hole, we need to insert something in it and
852 	 * ignore the extent we found.
853 	 */
854 	if (state->start > start) {
855 		u64 this_end;
856 		if (end < last_start)
857 			this_end = end;
858 		else
859 			this_end = last_start - 1;
860 
861 		prealloc = alloc_extent_state_atomic(prealloc);
862 		BUG_ON(!prealloc);
863 
864 		/*
865 		 * Avoid to free 'prealloc' if it can be merged with
866 		 * the later extent.
867 		 */
868 		err = insert_state(tree, prealloc, start, this_end,
869 				   &bits);
870 		if (err)
871 			extent_io_tree_panic(tree, err);
872 
873 		cache_state(prealloc, cached_state);
874 		prealloc = NULL;
875 		start = this_end + 1;
876 		goto search_again;
877 	}
878 	/*
879 	 * | ---- desired range ---- |
880 	 *                        | state |
881 	 * We need to split the extent, and set the bit
882 	 * on the first half
883 	 */
884 	if (state->start <= end && state->end > end) {
885 		if (state->state & exclusive_bits) {
886 			*failed_start = start;
887 			err = -EEXIST;
888 			goto out;
889 		}
890 
891 		prealloc = alloc_extent_state_atomic(prealloc);
892 		BUG_ON(!prealloc);
893 		err = split_state(tree, state, prealloc, end + 1);
894 		if (err)
895 			extent_io_tree_panic(tree, err);
896 
897 		set_state_bits(tree, prealloc, &bits);
898 		cache_state(prealloc, cached_state);
899 		merge_state(tree, prealloc);
900 		prealloc = NULL;
901 		goto out;
902 	}
903 
904 	goto search_again;
905 
906 out:
907 	spin_unlock(&tree->lock);
908 	if (prealloc)
909 		free_extent_state(prealloc);
910 
911 	return err;
912 
913 search_again:
914 	if (start > end)
915 		goto out;
916 	spin_unlock(&tree->lock);
917 	if (mask & __GFP_WAIT)
918 		cond_resched();
919 	goto again;
920 }
921 
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 		   u64 *failed_start, struct extent_state **cached_state,
924 		   gfp_t mask)
925 {
926 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 				cached_state, mask);
928 }
929 
930 
931 /**
932  * convert_extent_bit - convert all bits in a given range from one bit to
933  * 			another
934  * @tree:	the io tree to search
935  * @start:	the start offset in bytes
936  * @end:	the end offset in bytes (inclusive)
937  * @bits:	the bits to set in this range
938  * @clear_bits:	the bits to clear in this range
939  * @mask:	the allocation mask
940  *
941  * This will go through and set bits for the given range.  If any states exist
942  * already in this range they are set with the given bit and cleared of the
943  * clear_bits.  This is only meant to be used by things that are mergeable, ie
944  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
945  * boundary bits like LOCK.
946  */
947 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 		       int bits, int clear_bits, gfp_t mask)
949 {
950 	struct extent_state *state;
951 	struct extent_state *prealloc = NULL;
952 	struct rb_node *node;
953 	int err = 0;
954 	u64 last_start;
955 	u64 last_end;
956 
957 again:
958 	if (!prealloc && (mask & __GFP_WAIT)) {
959 		prealloc = alloc_extent_state(mask);
960 		if (!prealloc)
961 			return -ENOMEM;
962 	}
963 
964 	spin_lock(&tree->lock);
965 	/*
966 	 * this search will find all the extents that end after
967 	 * our range starts.
968 	 */
969 	node = tree_search(tree, start);
970 	if (!node) {
971 		prealloc = alloc_extent_state_atomic(prealloc);
972 		if (!prealloc) {
973 			err = -ENOMEM;
974 			goto out;
975 		}
976 		err = insert_state(tree, prealloc, start, end, &bits);
977 		prealloc = NULL;
978 		if (err)
979 			extent_io_tree_panic(tree, err);
980 		goto out;
981 	}
982 	state = rb_entry(node, struct extent_state, rb_node);
983 hit_next:
984 	last_start = state->start;
985 	last_end = state->end;
986 
987 	/*
988 	 * | ---- desired range ---- |
989 	 * | state |
990 	 *
991 	 * Just lock what we found and keep going
992 	 */
993 	if (state->start == start && state->end <= end) {
994 		set_state_bits(tree, state, &bits);
995 		state = clear_state_bit(tree, state, &clear_bits, 0);
996 		if (last_end == (u64)-1)
997 			goto out;
998 		start = last_end + 1;
999 		if (start < end && state && state->start == start &&
1000 		    !need_resched())
1001 			goto hit_next;
1002 		goto search_again;
1003 	}
1004 
1005 	/*
1006 	 *     | ---- desired range ---- |
1007 	 * | state |
1008 	 *   or
1009 	 * | ------------- state -------------- |
1010 	 *
1011 	 * We need to split the extent we found, and may flip bits on
1012 	 * second half.
1013 	 *
1014 	 * If the extent we found extends past our
1015 	 * range, we just split and search again.  It'll get split
1016 	 * again the next time though.
1017 	 *
1018 	 * If the extent we found is inside our range, we set the
1019 	 * desired bit on it.
1020 	 */
1021 	if (state->start < start) {
1022 		prealloc = alloc_extent_state_atomic(prealloc);
1023 		if (!prealloc) {
1024 			err = -ENOMEM;
1025 			goto out;
1026 		}
1027 		err = split_state(tree, state, prealloc, start);
1028 		if (err)
1029 			extent_io_tree_panic(tree, err);
1030 		prealloc = NULL;
1031 		if (err)
1032 			goto out;
1033 		if (state->end <= end) {
1034 			set_state_bits(tree, state, &bits);
1035 			state = clear_state_bit(tree, state, &clear_bits, 0);
1036 			if (last_end == (u64)-1)
1037 				goto out;
1038 			start = last_end + 1;
1039 			if (start < end && state && state->start == start &&
1040 			    !need_resched())
1041 				goto hit_next;
1042 		}
1043 		goto search_again;
1044 	}
1045 	/*
1046 	 * | ---- desired range ---- |
1047 	 *     | state | or               | state |
1048 	 *
1049 	 * There's a hole, we need to insert something in it and
1050 	 * ignore the extent we found.
1051 	 */
1052 	if (state->start > start) {
1053 		u64 this_end;
1054 		if (end < last_start)
1055 			this_end = end;
1056 		else
1057 			this_end = last_start - 1;
1058 
1059 		prealloc = alloc_extent_state_atomic(prealloc);
1060 		if (!prealloc) {
1061 			err = -ENOMEM;
1062 			goto out;
1063 		}
1064 
1065 		/*
1066 		 * Avoid to free 'prealloc' if it can be merged with
1067 		 * the later extent.
1068 		 */
1069 		err = insert_state(tree, prealloc, start, this_end,
1070 				   &bits);
1071 		if (err)
1072 			extent_io_tree_panic(tree, err);
1073 		prealloc = NULL;
1074 		start = this_end + 1;
1075 		goto search_again;
1076 	}
1077 	/*
1078 	 * | ---- desired range ---- |
1079 	 *                        | state |
1080 	 * We need to split the extent, and set the bit
1081 	 * on the first half
1082 	 */
1083 	if (state->start <= end && state->end > end) {
1084 		prealloc = alloc_extent_state_atomic(prealloc);
1085 		if (!prealloc) {
1086 			err = -ENOMEM;
1087 			goto out;
1088 		}
1089 
1090 		err = split_state(tree, state, prealloc, end + 1);
1091 		if (err)
1092 			extent_io_tree_panic(tree, err);
1093 
1094 		set_state_bits(tree, prealloc, &bits);
1095 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1096 		prealloc = NULL;
1097 		goto out;
1098 	}
1099 
1100 	goto search_again;
1101 
1102 out:
1103 	spin_unlock(&tree->lock);
1104 	if (prealloc)
1105 		free_extent_state(prealloc);
1106 
1107 	return err;
1108 
1109 search_again:
1110 	if (start > end)
1111 		goto out;
1112 	spin_unlock(&tree->lock);
1113 	if (mask & __GFP_WAIT)
1114 		cond_resched();
1115 	goto again;
1116 }
1117 
1118 /* wrappers around set/clear extent bit */
1119 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1120 		     gfp_t mask)
1121 {
1122 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1123 			      NULL, mask);
1124 }
1125 
1126 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1127 		    int bits, gfp_t mask)
1128 {
1129 	return set_extent_bit(tree, start, end, bits, NULL,
1130 			      NULL, mask);
1131 }
1132 
1133 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 		      int bits, gfp_t mask)
1135 {
1136 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1137 }
1138 
1139 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1140 			struct extent_state **cached_state, gfp_t mask)
1141 {
1142 	return set_extent_bit(tree, start, end,
1143 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1144 			      NULL, cached_state, mask);
1145 }
1146 
1147 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1148 		       gfp_t mask)
1149 {
1150 	return clear_extent_bit(tree, start, end,
1151 				EXTENT_DIRTY | EXTENT_DELALLOC |
1152 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1153 }
1154 
1155 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1156 		     gfp_t mask)
1157 {
1158 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1159 			      NULL, mask);
1160 }
1161 
1162 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1163 			struct extent_state **cached_state, gfp_t mask)
1164 {
1165 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1166 			      cached_state, mask);
1167 }
1168 
1169 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170 			  struct extent_state **cached_state, gfp_t mask)
1171 {
1172 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1173 				cached_state, mask);
1174 }
1175 
1176 /*
1177  * either insert or lock state struct between start and end use mask to tell
1178  * us if waiting is desired.
1179  */
1180 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1181 		     int bits, struct extent_state **cached_state)
1182 {
1183 	int err;
1184 	u64 failed_start;
1185 	while (1) {
1186 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1187 				       EXTENT_LOCKED, &failed_start,
1188 				       cached_state, GFP_NOFS);
1189 		if (err == -EEXIST) {
1190 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1191 			start = failed_start;
1192 		} else
1193 			break;
1194 		WARN_ON(start > end);
1195 	}
1196 	return err;
1197 }
1198 
1199 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1200 {
1201 	return lock_extent_bits(tree, start, end, 0, NULL);
1202 }
1203 
1204 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1205 {
1206 	int err;
1207 	u64 failed_start;
1208 
1209 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1210 			       &failed_start, NULL, GFP_NOFS);
1211 	if (err == -EEXIST) {
1212 		if (failed_start > start)
1213 			clear_extent_bit(tree, start, failed_start - 1,
1214 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1215 		return 0;
1216 	}
1217 	return 1;
1218 }
1219 
1220 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1221 			 struct extent_state **cached, gfp_t mask)
1222 {
1223 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1224 				mask);
1225 }
1226 
1227 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1230 				GFP_NOFS);
1231 }
1232 
1233 /*
1234  * helper function to set both pages and extents in the tree writeback
1235  */
1236 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1237 {
1238 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1239 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1240 	struct page *page;
1241 
1242 	while (index <= end_index) {
1243 		page = find_get_page(tree->mapping, index);
1244 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1245 		set_page_writeback(page);
1246 		page_cache_release(page);
1247 		index++;
1248 	}
1249 	return 0;
1250 }
1251 
1252 /* find the first state struct with 'bits' set after 'start', and
1253  * return it.  tree->lock must be held.  NULL will returned if
1254  * nothing was found after 'start'
1255  */
1256 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1257 						 u64 start, int bits)
1258 {
1259 	struct rb_node *node;
1260 	struct extent_state *state;
1261 
1262 	/*
1263 	 * this search will find all the extents that end after
1264 	 * our range starts.
1265 	 */
1266 	node = tree_search(tree, start);
1267 	if (!node)
1268 		goto out;
1269 
1270 	while (1) {
1271 		state = rb_entry(node, struct extent_state, rb_node);
1272 		if (state->end >= start && (state->state & bits))
1273 			return state;
1274 
1275 		node = rb_next(node);
1276 		if (!node)
1277 			break;
1278 	}
1279 out:
1280 	return NULL;
1281 }
1282 
1283 /*
1284  * find the first offset in the io tree with 'bits' set. zero is
1285  * returned if we find something, and *start_ret and *end_ret are
1286  * set to reflect the state struct that was found.
1287  *
1288  * If nothing was found, 1 is returned. If found something, return 0.
1289  */
1290 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1291 			  u64 *start_ret, u64 *end_ret, int bits)
1292 {
1293 	struct extent_state *state;
1294 	int ret = 1;
1295 
1296 	spin_lock(&tree->lock);
1297 	state = find_first_extent_bit_state(tree, start, bits);
1298 	if (state) {
1299 		*start_ret = state->start;
1300 		*end_ret = state->end;
1301 		ret = 0;
1302 	}
1303 	spin_unlock(&tree->lock);
1304 	return ret;
1305 }
1306 
1307 /*
1308  * find a contiguous range of bytes in the file marked as delalloc, not
1309  * more than 'max_bytes'.  start and end are used to return the range,
1310  *
1311  * 1 is returned if we find something, 0 if nothing was in the tree
1312  */
1313 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1314 					u64 *start, u64 *end, u64 max_bytes,
1315 					struct extent_state **cached_state)
1316 {
1317 	struct rb_node *node;
1318 	struct extent_state *state;
1319 	u64 cur_start = *start;
1320 	u64 found = 0;
1321 	u64 total_bytes = 0;
1322 
1323 	spin_lock(&tree->lock);
1324 
1325 	/*
1326 	 * this search will find all the extents that end after
1327 	 * our range starts.
1328 	 */
1329 	node = tree_search(tree, cur_start);
1330 	if (!node) {
1331 		if (!found)
1332 			*end = (u64)-1;
1333 		goto out;
1334 	}
1335 
1336 	while (1) {
1337 		state = rb_entry(node, struct extent_state, rb_node);
1338 		if (found && (state->start != cur_start ||
1339 			      (state->state & EXTENT_BOUNDARY))) {
1340 			goto out;
1341 		}
1342 		if (!(state->state & EXTENT_DELALLOC)) {
1343 			if (!found)
1344 				*end = state->end;
1345 			goto out;
1346 		}
1347 		if (!found) {
1348 			*start = state->start;
1349 			*cached_state = state;
1350 			atomic_inc(&state->refs);
1351 		}
1352 		found++;
1353 		*end = state->end;
1354 		cur_start = state->end + 1;
1355 		node = rb_next(node);
1356 		if (!node)
1357 			break;
1358 		total_bytes += state->end - state->start + 1;
1359 		if (total_bytes >= max_bytes)
1360 			break;
1361 	}
1362 out:
1363 	spin_unlock(&tree->lock);
1364 	return found;
1365 }
1366 
1367 static noinline void __unlock_for_delalloc(struct inode *inode,
1368 					   struct page *locked_page,
1369 					   u64 start, u64 end)
1370 {
1371 	int ret;
1372 	struct page *pages[16];
1373 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 	unsigned long nr_pages = end_index - index + 1;
1376 	int i;
1377 
1378 	if (index == locked_page->index && end_index == index)
1379 		return;
1380 
1381 	while (nr_pages > 0) {
1382 		ret = find_get_pages_contig(inode->i_mapping, index,
1383 				     min_t(unsigned long, nr_pages,
1384 				     ARRAY_SIZE(pages)), pages);
1385 		for (i = 0; i < ret; i++) {
1386 			if (pages[i] != locked_page)
1387 				unlock_page(pages[i]);
1388 			page_cache_release(pages[i]);
1389 		}
1390 		nr_pages -= ret;
1391 		index += ret;
1392 		cond_resched();
1393 	}
1394 }
1395 
1396 static noinline int lock_delalloc_pages(struct inode *inode,
1397 					struct page *locked_page,
1398 					u64 delalloc_start,
1399 					u64 delalloc_end)
1400 {
1401 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1402 	unsigned long start_index = index;
1403 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1404 	unsigned long pages_locked = 0;
1405 	struct page *pages[16];
1406 	unsigned long nrpages;
1407 	int ret;
1408 	int i;
1409 
1410 	/* the caller is responsible for locking the start index */
1411 	if (index == locked_page->index && index == end_index)
1412 		return 0;
1413 
1414 	/* skip the page at the start index */
1415 	nrpages = end_index - index + 1;
1416 	while (nrpages > 0) {
1417 		ret = find_get_pages_contig(inode->i_mapping, index,
1418 				     min_t(unsigned long,
1419 				     nrpages, ARRAY_SIZE(pages)), pages);
1420 		if (ret == 0) {
1421 			ret = -EAGAIN;
1422 			goto done;
1423 		}
1424 		/* now we have an array of pages, lock them all */
1425 		for (i = 0; i < ret; i++) {
1426 			/*
1427 			 * the caller is taking responsibility for
1428 			 * locked_page
1429 			 */
1430 			if (pages[i] != locked_page) {
1431 				lock_page(pages[i]);
1432 				if (!PageDirty(pages[i]) ||
1433 				    pages[i]->mapping != inode->i_mapping) {
1434 					ret = -EAGAIN;
1435 					unlock_page(pages[i]);
1436 					page_cache_release(pages[i]);
1437 					goto done;
1438 				}
1439 			}
1440 			page_cache_release(pages[i]);
1441 			pages_locked++;
1442 		}
1443 		nrpages -= ret;
1444 		index += ret;
1445 		cond_resched();
1446 	}
1447 	ret = 0;
1448 done:
1449 	if (ret && pages_locked) {
1450 		__unlock_for_delalloc(inode, locked_page,
1451 			      delalloc_start,
1452 			      ((u64)(start_index + pages_locked - 1)) <<
1453 			      PAGE_CACHE_SHIFT);
1454 	}
1455 	return ret;
1456 }
1457 
1458 /*
1459  * find a contiguous range of bytes in the file marked as delalloc, not
1460  * more than 'max_bytes'.  start and end are used to return the range,
1461  *
1462  * 1 is returned if we find something, 0 if nothing was in the tree
1463  */
1464 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1465 					     struct extent_io_tree *tree,
1466 					     struct page *locked_page,
1467 					     u64 *start, u64 *end,
1468 					     u64 max_bytes)
1469 {
1470 	u64 delalloc_start;
1471 	u64 delalloc_end;
1472 	u64 found;
1473 	struct extent_state *cached_state = NULL;
1474 	int ret;
1475 	int loops = 0;
1476 
1477 again:
1478 	/* step one, find a bunch of delalloc bytes starting at start */
1479 	delalloc_start = *start;
1480 	delalloc_end = 0;
1481 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1482 				    max_bytes, &cached_state);
1483 	if (!found || delalloc_end <= *start) {
1484 		*start = delalloc_start;
1485 		*end = delalloc_end;
1486 		free_extent_state(cached_state);
1487 		return found;
1488 	}
1489 
1490 	/*
1491 	 * start comes from the offset of locked_page.  We have to lock
1492 	 * pages in order, so we can't process delalloc bytes before
1493 	 * locked_page
1494 	 */
1495 	if (delalloc_start < *start)
1496 		delalloc_start = *start;
1497 
1498 	/*
1499 	 * make sure to limit the number of pages we try to lock down
1500 	 * if we're looping.
1501 	 */
1502 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1503 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1504 
1505 	/* step two, lock all the pages after the page that has start */
1506 	ret = lock_delalloc_pages(inode, locked_page,
1507 				  delalloc_start, delalloc_end);
1508 	if (ret == -EAGAIN) {
1509 		/* some of the pages are gone, lets avoid looping by
1510 		 * shortening the size of the delalloc range we're searching
1511 		 */
1512 		free_extent_state(cached_state);
1513 		if (!loops) {
1514 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1515 			max_bytes = PAGE_CACHE_SIZE - offset;
1516 			loops = 1;
1517 			goto again;
1518 		} else {
1519 			found = 0;
1520 			goto out_failed;
1521 		}
1522 	}
1523 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1524 
1525 	/* step three, lock the state bits for the whole range */
1526 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1527 
1528 	/* then test to make sure it is all still delalloc */
1529 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1530 			     EXTENT_DELALLOC, 1, cached_state);
1531 	if (!ret) {
1532 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1533 				     &cached_state, GFP_NOFS);
1534 		__unlock_for_delalloc(inode, locked_page,
1535 			      delalloc_start, delalloc_end);
1536 		cond_resched();
1537 		goto again;
1538 	}
1539 	free_extent_state(cached_state);
1540 	*start = delalloc_start;
1541 	*end = delalloc_end;
1542 out_failed:
1543 	return found;
1544 }
1545 
1546 int extent_clear_unlock_delalloc(struct inode *inode,
1547 				struct extent_io_tree *tree,
1548 				u64 start, u64 end, struct page *locked_page,
1549 				unsigned long op)
1550 {
1551 	int ret;
1552 	struct page *pages[16];
1553 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1554 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555 	unsigned long nr_pages = end_index - index + 1;
1556 	int i;
1557 	int clear_bits = 0;
1558 
1559 	if (op & EXTENT_CLEAR_UNLOCK)
1560 		clear_bits |= EXTENT_LOCKED;
1561 	if (op & EXTENT_CLEAR_DIRTY)
1562 		clear_bits |= EXTENT_DIRTY;
1563 
1564 	if (op & EXTENT_CLEAR_DELALLOC)
1565 		clear_bits |= EXTENT_DELALLOC;
1566 
1567 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1568 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1569 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1570 		    EXTENT_SET_PRIVATE2)))
1571 		return 0;
1572 
1573 	while (nr_pages > 0) {
1574 		ret = find_get_pages_contig(inode->i_mapping, index,
1575 				     min_t(unsigned long,
1576 				     nr_pages, ARRAY_SIZE(pages)), pages);
1577 		for (i = 0; i < ret; i++) {
1578 
1579 			if (op & EXTENT_SET_PRIVATE2)
1580 				SetPagePrivate2(pages[i]);
1581 
1582 			if (pages[i] == locked_page) {
1583 				page_cache_release(pages[i]);
1584 				continue;
1585 			}
1586 			if (op & EXTENT_CLEAR_DIRTY)
1587 				clear_page_dirty_for_io(pages[i]);
1588 			if (op & EXTENT_SET_WRITEBACK)
1589 				set_page_writeback(pages[i]);
1590 			if (op & EXTENT_END_WRITEBACK)
1591 				end_page_writeback(pages[i]);
1592 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1593 				unlock_page(pages[i]);
1594 			page_cache_release(pages[i]);
1595 		}
1596 		nr_pages -= ret;
1597 		index += ret;
1598 		cond_resched();
1599 	}
1600 	return 0;
1601 }
1602 
1603 /*
1604  * count the number of bytes in the tree that have a given bit(s)
1605  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1606  * cached.  The total number found is returned.
1607  */
1608 u64 count_range_bits(struct extent_io_tree *tree,
1609 		     u64 *start, u64 search_end, u64 max_bytes,
1610 		     unsigned long bits, int contig)
1611 {
1612 	struct rb_node *node;
1613 	struct extent_state *state;
1614 	u64 cur_start = *start;
1615 	u64 total_bytes = 0;
1616 	u64 last = 0;
1617 	int found = 0;
1618 
1619 	if (search_end <= cur_start) {
1620 		WARN_ON(1);
1621 		return 0;
1622 	}
1623 
1624 	spin_lock(&tree->lock);
1625 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1626 		total_bytes = tree->dirty_bytes;
1627 		goto out;
1628 	}
1629 	/*
1630 	 * this search will find all the extents that end after
1631 	 * our range starts.
1632 	 */
1633 	node = tree_search(tree, cur_start);
1634 	if (!node)
1635 		goto out;
1636 
1637 	while (1) {
1638 		state = rb_entry(node, struct extent_state, rb_node);
1639 		if (state->start > search_end)
1640 			break;
1641 		if (contig && found && state->start > last + 1)
1642 			break;
1643 		if (state->end >= cur_start && (state->state & bits) == bits) {
1644 			total_bytes += min(search_end, state->end) + 1 -
1645 				       max(cur_start, state->start);
1646 			if (total_bytes >= max_bytes)
1647 				break;
1648 			if (!found) {
1649 				*start = max(cur_start, state->start);
1650 				found = 1;
1651 			}
1652 			last = state->end;
1653 		} else if (contig && found) {
1654 			break;
1655 		}
1656 		node = rb_next(node);
1657 		if (!node)
1658 			break;
1659 	}
1660 out:
1661 	spin_unlock(&tree->lock);
1662 	return total_bytes;
1663 }
1664 
1665 /*
1666  * set the private field for a given byte offset in the tree.  If there isn't
1667  * an extent_state there already, this does nothing.
1668  */
1669 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1670 {
1671 	struct rb_node *node;
1672 	struct extent_state *state;
1673 	int ret = 0;
1674 
1675 	spin_lock(&tree->lock);
1676 	/*
1677 	 * this search will find all the extents that end after
1678 	 * our range starts.
1679 	 */
1680 	node = tree_search(tree, start);
1681 	if (!node) {
1682 		ret = -ENOENT;
1683 		goto out;
1684 	}
1685 	state = rb_entry(node, struct extent_state, rb_node);
1686 	if (state->start != start) {
1687 		ret = -ENOENT;
1688 		goto out;
1689 	}
1690 	state->private = private;
1691 out:
1692 	spin_unlock(&tree->lock);
1693 	return ret;
1694 }
1695 
1696 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1697 {
1698 	struct rb_node *node;
1699 	struct extent_state *state;
1700 	int ret = 0;
1701 
1702 	spin_lock(&tree->lock);
1703 	/*
1704 	 * this search will find all the extents that end after
1705 	 * our range starts.
1706 	 */
1707 	node = tree_search(tree, start);
1708 	if (!node) {
1709 		ret = -ENOENT;
1710 		goto out;
1711 	}
1712 	state = rb_entry(node, struct extent_state, rb_node);
1713 	if (state->start != start) {
1714 		ret = -ENOENT;
1715 		goto out;
1716 	}
1717 	*private = state->private;
1718 out:
1719 	spin_unlock(&tree->lock);
1720 	return ret;
1721 }
1722 
1723 /*
1724  * searches a range in the state tree for a given mask.
1725  * If 'filled' == 1, this returns 1 only if every extent in the tree
1726  * has the bits set.  Otherwise, 1 is returned if any bit in the
1727  * range is found set.
1728  */
1729 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1730 		   int bits, int filled, struct extent_state *cached)
1731 {
1732 	struct extent_state *state = NULL;
1733 	struct rb_node *node;
1734 	int bitset = 0;
1735 
1736 	spin_lock(&tree->lock);
1737 	if (cached && cached->tree && cached->start <= start &&
1738 	    cached->end > start)
1739 		node = &cached->rb_node;
1740 	else
1741 		node = tree_search(tree, start);
1742 	while (node && start <= end) {
1743 		state = rb_entry(node, struct extent_state, rb_node);
1744 
1745 		if (filled && state->start > start) {
1746 			bitset = 0;
1747 			break;
1748 		}
1749 
1750 		if (state->start > end)
1751 			break;
1752 
1753 		if (state->state & bits) {
1754 			bitset = 1;
1755 			if (!filled)
1756 				break;
1757 		} else if (filled) {
1758 			bitset = 0;
1759 			break;
1760 		}
1761 
1762 		if (state->end == (u64)-1)
1763 			break;
1764 
1765 		start = state->end + 1;
1766 		if (start > end)
1767 			break;
1768 		node = rb_next(node);
1769 		if (!node) {
1770 			if (filled)
1771 				bitset = 0;
1772 			break;
1773 		}
1774 	}
1775 	spin_unlock(&tree->lock);
1776 	return bitset;
1777 }
1778 
1779 /*
1780  * helper function to set a given page up to date if all the
1781  * extents in the tree for that page are up to date
1782  */
1783 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1784 {
1785 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1786 	u64 end = start + PAGE_CACHE_SIZE - 1;
1787 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1788 		SetPageUptodate(page);
1789 }
1790 
1791 /*
1792  * helper function to unlock a page if all the extents in the tree
1793  * for that page are unlocked
1794  */
1795 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1796 {
1797 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798 	u64 end = start + PAGE_CACHE_SIZE - 1;
1799 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1800 		unlock_page(page);
1801 }
1802 
1803 /*
1804  * helper function to end page writeback if all the extents
1805  * in the tree for that page are done with writeback
1806  */
1807 static void check_page_writeback(struct extent_io_tree *tree,
1808 				 struct page *page)
1809 {
1810 	end_page_writeback(page);
1811 }
1812 
1813 /*
1814  * When IO fails, either with EIO or csum verification fails, we
1815  * try other mirrors that might have a good copy of the data.  This
1816  * io_failure_record is used to record state as we go through all the
1817  * mirrors.  If another mirror has good data, the page is set up to date
1818  * and things continue.  If a good mirror can't be found, the original
1819  * bio end_io callback is called to indicate things have failed.
1820  */
1821 struct io_failure_record {
1822 	struct page *page;
1823 	u64 start;
1824 	u64 len;
1825 	u64 logical;
1826 	unsigned long bio_flags;
1827 	int this_mirror;
1828 	int failed_mirror;
1829 	int in_validation;
1830 };
1831 
1832 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1833 				int did_repair)
1834 {
1835 	int ret;
1836 	int err = 0;
1837 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1838 
1839 	set_state_private(failure_tree, rec->start, 0);
1840 	ret = clear_extent_bits(failure_tree, rec->start,
1841 				rec->start + rec->len - 1,
1842 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1843 	if (ret)
1844 		err = ret;
1845 
1846 	if (did_repair) {
1847 		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1848 					rec->start + rec->len - 1,
1849 					EXTENT_DAMAGED, GFP_NOFS);
1850 		if (ret && !err)
1851 			err = ret;
1852 	}
1853 
1854 	kfree(rec);
1855 	return err;
1856 }
1857 
1858 static void repair_io_failure_callback(struct bio *bio, int err)
1859 {
1860 	complete(bio->bi_private);
1861 }
1862 
1863 /*
1864  * this bypasses the standard btrfs submit functions deliberately, as
1865  * the standard behavior is to write all copies in a raid setup. here we only
1866  * want to write the one bad copy. so we do the mapping for ourselves and issue
1867  * submit_bio directly.
1868  * to avoid any synchonization issues, wait for the data after writing, which
1869  * actually prevents the read that triggered the error from finishing.
1870  * currently, there can be no more than two copies of every data bit. thus,
1871  * exactly one rewrite is required.
1872  */
1873 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1874 			u64 length, u64 logical, struct page *page,
1875 			int mirror_num)
1876 {
1877 	struct bio *bio;
1878 	struct btrfs_device *dev;
1879 	DECLARE_COMPLETION_ONSTACK(compl);
1880 	u64 map_length = 0;
1881 	u64 sector;
1882 	struct btrfs_bio *bbio = NULL;
1883 	int ret;
1884 
1885 	BUG_ON(!mirror_num);
1886 
1887 	bio = bio_alloc(GFP_NOFS, 1);
1888 	if (!bio)
1889 		return -EIO;
1890 	bio->bi_private = &compl;
1891 	bio->bi_end_io = repair_io_failure_callback;
1892 	bio->bi_size = 0;
1893 	map_length = length;
1894 
1895 	ret = btrfs_map_block(map_tree, WRITE, logical,
1896 			      &map_length, &bbio, mirror_num);
1897 	if (ret) {
1898 		bio_put(bio);
1899 		return -EIO;
1900 	}
1901 	BUG_ON(mirror_num != bbio->mirror_num);
1902 	sector = bbio->stripes[mirror_num-1].physical >> 9;
1903 	bio->bi_sector = sector;
1904 	dev = bbio->stripes[mirror_num-1].dev;
1905 	kfree(bbio);
1906 	if (!dev || !dev->bdev || !dev->writeable) {
1907 		bio_put(bio);
1908 		return -EIO;
1909 	}
1910 	bio->bi_bdev = dev->bdev;
1911 	bio_add_page(bio, page, length, start-page_offset(page));
1912 	btrfsic_submit_bio(WRITE_SYNC, bio);
1913 	wait_for_completion(&compl);
1914 
1915 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1916 		/* try to remap that extent elsewhere? */
1917 		bio_put(bio);
1918 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1919 		return -EIO;
1920 	}
1921 
1922 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1923 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1924 		      start, rcu_str_deref(dev->name), sector);
1925 
1926 	bio_put(bio);
1927 	return 0;
1928 }
1929 
1930 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1931 			 int mirror_num)
1932 {
1933 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1934 	u64 start = eb->start;
1935 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1936 	int ret = 0;
1937 
1938 	for (i = 0; i < num_pages; i++) {
1939 		struct page *p = extent_buffer_page(eb, i);
1940 		ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1941 					start, p, mirror_num);
1942 		if (ret)
1943 			break;
1944 		start += PAGE_CACHE_SIZE;
1945 	}
1946 
1947 	return ret;
1948 }
1949 
1950 /*
1951  * each time an IO finishes, we do a fast check in the IO failure tree
1952  * to see if we need to process or clean up an io_failure_record
1953  */
1954 static int clean_io_failure(u64 start, struct page *page)
1955 {
1956 	u64 private;
1957 	u64 private_failure;
1958 	struct io_failure_record *failrec;
1959 	struct btrfs_mapping_tree *map_tree;
1960 	struct extent_state *state;
1961 	int num_copies;
1962 	int did_repair = 0;
1963 	int ret;
1964 	struct inode *inode = page->mapping->host;
1965 
1966 	private = 0;
1967 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1968 				(u64)-1, 1, EXTENT_DIRTY, 0);
1969 	if (!ret)
1970 		return 0;
1971 
1972 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1973 				&private_failure);
1974 	if (ret)
1975 		return 0;
1976 
1977 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
1978 	BUG_ON(!failrec->this_mirror);
1979 
1980 	if (failrec->in_validation) {
1981 		/* there was no real error, just free the record */
1982 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1983 			 failrec->start);
1984 		did_repair = 1;
1985 		goto out;
1986 	}
1987 
1988 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
1989 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1990 					    failrec->start,
1991 					    EXTENT_LOCKED);
1992 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993 
1994 	if (state && state->start == failrec->start) {
1995 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1996 		num_copies = btrfs_num_copies(map_tree, failrec->logical,
1997 						failrec->len);
1998 		if (num_copies > 1)  {
1999 			ret = repair_io_failure(map_tree, start, failrec->len,
2000 						failrec->logical, page,
2001 						failrec->failed_mirror);
2002 			did_repair = !ret;
2003 		}
2004 	}
2005 
2006 out:
2007 	if (!ret)
2008 		ret = free_io_failure(inode, failrec, did_repair);
2009 
2010 	return ret;
2011 }
2012 
2013 /*
2014  * this is a generic handler for readpage errors (default
2015  * readpage_io_failed_hook). if other copies exist, read those and write back
2016  * good data to the failed position. does not investigate in remapping the
2017  * failed extent elsewhere, hoping the device will be smart enough to do this as
2018  * needed
2019  */
2020 
2021 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2022 				u64 start, u64 end, int failed_mirror,
2023 				struct extent_state *state)
2024 {
2025 	struct io_failure_record *failrec = NULL;
2026 	u64 private;
2027 	struct extent_map *em;
2028 	struct inode *inode = page->mapping->host;
2029 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2030 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2031 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2032 	struct bio *bio;
2033 	int num_copies;
2034 	int ret;
2035 	int read_mode;
2036 	u64 logical;
2037 
2038 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039 
2040 	ret = get_state_private(failure_tree, start, &private);
2041 	if (ret) {
2042 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2043 		if (!failrec)
2044 			return -ENOMEM;
2045 		failrec->start = start;
2046 		failrec->len = end - start + 1;
2047 		failrec->this_mirror = 0;
2048 		failrec->bio_flags = 0;
2049 		failrec->in_validation = 0;
2050 
2051 		read_lock(&em_tree->lock);
2052 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2053 		if (!em) {
2054 			read_unlock(&em_tree->lock);
2055 			kfree(failrec);
2056 			return -EIO;
2057 		}
2058 
2059 		if (em->start > start || em->start + em->len < start) {
2060 			free_extent_map(em);
2061 			em = NULL;
2062 		}
2063 		read_unlock(&em_tree->lock);
2064 
2065 		if (!em || IS_ERR(em)) {
2066 			kfree(failrec);
2067 			return -EIO;
2068 		}
2069 		logical = start - em->start;
2070 		logical = em->block_start + logical;
2071 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2072 			logical = em->block_start;
2073 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2074 			extent_set_compress_type(&failrec->bio_flags,
2075 						 em->compress_type);
2076 		}
2077 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2078 			 "len=%llu\n", logical, start, failrec->len);
2079 		failrec->logical = logical;
2080 		free_extent_map(em);
2081 
2082 		/* set the bits in the private failure tree */
2083 		ret = set_extent_bits(failure_tree, start, end,
2084 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2085 		if (ret >= 0)
2086 			ret = set_state_private(failure_tree, start,
2087 						(u64)(unsigned long)failrec);
2088 		/* set the bits in the inode's tree */
2089 		if (ret >= 0)
2090 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2091 						GFP_NOFS);
2092 		if (ret < 0) {
2093 			kfree(failrec);
2094 			return ret;
2095 		}
2096 	} else {
2097 		failrec = (struct io_failure_record *)(unsigned long)private;
2098 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2099 			 "start=%llu, len=%llu, validation=%d\n",
2100 			 failrec->logical, failrec->start, failrec->len,
2101 			 failrec->in_validation);
2102 		/*
2103 		 * when data can be on disk more than twice, add to failrec here
2104 		 * (e.g. with a list for failed_mirror) to make
2105 		 * clean_io_failure() clean all those errors at once.
2106 		 */
2107 	}
2108 	num_copies = btrfs_num_copies(
2109 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
2110 			      failrec->logical, failrec->len);
2111 	if (num_copies == 1) {
2112 		/*
2113 		 * we only have a single copy of the data, so don't bother with
2114 		 * all the retry and error correction code that follows. no
2115 		 * matter what the error is, it is very likely to persist.
2116 		 */
2117 		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2118 			 "state=%p, num_copies=%d, next_mirror %d, "
2119 			 "failed_mirror %d\n", state, num_copies,
2120 			 failrec->this_mirror, failed_mirror);
2121 		free_io_failure(inode, failrec, 0);
2122 		return -EIO;
2123 	}
2124 
2125 	if (!state) {
2126 		spin_lock(&tree->lock);
2127 		state = find_first_extent_bit_state(tree, failrec->start,
2128 						    EXTENT_LOCKED);
2129 		if (state && state->start != failrec->start)
2130 			state = NULL;
2131 		spin_unlock(&tree->lock);
2132 	}
2133 
2134 	/*
2135 	 * there are two premises:
2136 	 *	a) deliver good data to the caller
2137 	 *	b) correct the bad sectors on disk
2138 	 */
2139 	if (failed_bio->bi_vcnt > 1) {
2140 		/*
2141 		 * to fulfill b), we need to know the exact failing sectors, as
2142 		 * we don't want to rewrite any more than the failed ones. thus,
2143 		 * we need separate read requests for the failed bio
2144 		 *
2145 		 * if the following BUG_ON triggers, our validation request got
2146 		 * merged. we need separate requests for our algorithm to work.
2147 		 */
2148 		BUG_ON(failrec->in_validation);
2149 		failrec->in_validation = 1;
2150 		failrec->this_mirror = failed_mirror;
2151 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2152 	} else {
2153 		/*
2154 		 * we're ready to fulfill a) and b) alongside. get a good copy
2155 		 * of the failed sector and if we succeed, we have setup
2156 		 * everything for repair_io_failure to do the rest for us.
2157 		 */
2158 		if (failrec->in_validation) {
2159 			BUG_ON(failrec->this_mirror != failed_mirror);
2160 			failrec->in_validation = 0;
2161 			failrec->this_mirror = 0;
2162 		}
2163 		failrec->failed_mirror = failed_mirror;
2164 		failrec->this_mirror++;
2165 		if (failrec->this_mirror == failed_mirror)
2166 			failrec->this_mirror++;
2167 		read_mode = READ_SYNC;
2168 	}
2169 
2170 	if (!state || failrec->this_mirror > num_copies) {
2171 		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2172 			 "next_mirror %d, failed_mirror %d\n", state,
2173 			 num_copies, failrec->this_mirror, failed_mirror);
2174 		free_io_failure(inode, failrec, 0);
2175 		return -EIO;
2176 	}
2177 
2178 	bio = bio_alloc(GFP_NOFS, 1);
2179 	if (!bio) {
2180 		free_io_failure(inode, failrec, 0);
2181 		return -EIO;
2182 	}
2183 	bio->bi_private = state;
2184 	bio->bi_end_io = failed_bio->bi_end_io;
2185 	bio->bi_sector = failrec->logical >> 9;
2186 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2187 	bio->bi_size = 0;
2188 
2189 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2190 
2191 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2192 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2193 		 failrec->this_mirror, num_copies, failrec->in_validation);
2194 
2195 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2196 					 failrec->this_mirror,
2197 					 failrec->bio_flags, 0);
2198 	return ret;
2199 }
2200 
2201 /* lots and lots of room for performance fixes in the end_bio funcs */
2202 
2203 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2204 {
2205 	int uptodate = (err == 0);
2206 	struct extent_io_tree *tree;
2207 	int ret;
2208 
2209 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2210 
2211 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2212 		ret = tree->ops->writepage_end_io_hook(page, start,
2213 					       end, NULL, uptodate);
2214 		if (ret)
2215 			uptodate = 0;
2216 	}
2217 
2218 	if (!uptodate) {
2219 		ClearPageUptodate(page);
2220 		SetPageError(page);
2221 	}
2222 	return 0;
2223 }
2224 
2225 /*
2226  * after a writepage IO is done, we need to:
2227  * clear the uptodate bits on error
2228  * clear the writeback bits in the extent tree for this IO
2229  * end_page_writeback if the page has no more pending IO
2230  *
2231  * Scheduling is not allowed, so the extent state tree is expected
2232  * to have one and only one object corresponding to this IO.
2233  */
2234 static void end_bio_extent_writepage(struct bio *bio, int err)
2235 {
2236 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2237 	struct extent_io_tree *tree;
2238 	u64 start;
2239 	u64 end;
2240 	int whole_page;
2241 
2242 	do {
2243 		struct page *page = bvec->bv_page;
2244 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2245 
2246 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2247 			 bvec->bv_offset;
2248 		end = start + bvec->bv_len - 1;
2249 
2250 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2251 			whole_page = 1;
2252 		else
2253 			whole_page = 0;
2254 
2255 		if (--bvec >= bio->bi_io_vec)
2256 			prefetchw(&bvec->bv_page->flags);
2257 
2258 		if (end_extent_writepage(page, err, start, end))
2259 			continue;
2260 
2261 		if (whole_page)
2262 			end_page_writeback(page);
2263 		else
2264 			check_page_writeback(tree, page);
2265 	} while (bvec >= bio->bi_io_vec);
2266 
2267 	bio_put(bio);
2268 }
2269 
2270 /*
2271  * after a readpage IO is done, we need to:
2272  * clear the uptodate bits on error
2273  * set the uptodate bits if things worked
2274  * set the page up to date if all extents in the tree are uptodate
2275  * clear the lock bit in the extent tree
2276  * unlock the page if there are no other extents locked for it
2277  *
2278  * Scheduling is not allowed, so the extent state tree is expected
2279  * to have one and only one object corresponding to this IO.
2280  */
2281 static void end_bio_extent_readpage(struct bio *bio, int err)
2282 {
2283 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2284 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2285 	struct bio_vec *bvec = bio->bi_io_vec;
2286 	struct extent_io_tree *tree;
2287 	u64 start;
2288 	u64 end;
2289 	int whole_page;
2290 	int mirror;
2291 	int ret;
2292 
2293 	if (err)
2294 		uptodate = 0;
2295 
2296 	do {
2297 		struct page *page = bvec->bv_page;
2298 		struct extent_state *cached = NULL;
2299 		struct extent_state *state;
2300 
2301 		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2302 			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2303 			 (long int)bio->bi_bdev);
2304 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2305 
2306 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2307 			bvec->bv_offset;
2308 		end = start + bvec->bv_len - 1;
2309 
2310 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2311 			whole_page = 1;
2312 		else
2313 			whole_page = 0;
2314 
2315 		if (++bvec <= bvec_end)
2316 			prefetchw(&bvec->bv_page->flags);
2317 
2318 		spin_lock(&tree->lock);
2319 		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2320 		if (state && state->start == start) {
2321 			/*
2322 			 * take a reference on the state, unlock will drop
2323 			 * the ref
2324 			 */
2325 			cache_state(state, &cached);
2326 		}
2327 		spin_unlock(&tree->lock);
2328 
2329 		mirror = (int)(unsigned long)bio->bi_bdev;
2330 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2331 			ret = tree->ops->readpage_end_io_hook(page, start, end,
2332 							      state, mirror);
2333 			if (ret)
2334 				uptodate = 0;
2335 			else
2336 				clean_io_failure(start, page);
2337 		}
2338 
2339 		if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2340 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2341 			if (!ret && !err &&
2342 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2343 				uptodate = 1;
2344 		} else if (!uptodate) {
2345 			/*
2346 			 * The generic bio_readpage_error handles errors the
2347 			 * following way: If possible, new read requests are
2348 			 * created and submitted and will end up in
2349 			 * end_bio_extent_readpage as well (if we're lucky, not
2350 			 * in the !uptodate case). In that case it returns 0 and
2351 			 * we just go on with the next page in our bio. If it
2352 			 * can't handle the error it will return -EIO and we
2353 			 * remain responsible for that page.
2354 			 */
2355 			ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2356 			if (ret == 0) {
2357 				uptodate =
2358 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2359 				if (err)
2360 					uptodate = 0;
2361 				uncache_state(&cached);
2362 				continue;
2363 			}
2364 		}
2365 
2366 		if (uptodate && tree->track_uptodate) {
2367 			set_extent_uptodate(tree, start, end, &cached,
2368 					    GFP_ATOMIC);
2369 		}
2370 		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2371 
2372 		if (whole_page) {
2373 			if (uptodate) {
2374 				SetPageUptodate(page);
2375 			} else {
2376 				ClearPageUptodate(page);
2377 				SetPageError(page);
2378 			}
2379 			unlock_page(page);
2380 		} else {
2381 			if (uptodate) {
2382 				check_page_uptodate(tree, page);
2383 			} else {
2384 				ClearPageUptodate(page);
2385 				SetPageError(page);
2386 			}
2387 			check_page_locked(tree, page);
2388 		}
2389 	} while (bvec <= bvec_end);
2390 
2391 	bio_put(bio);
2392 }
2393 
2394 struct bio *
2395 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2396 		gfp_t gfp_flags)
2397 {
2398 	struct bio *bio;
2399 
2400 	bio = bio_alloc(gfp_flags, nr_vecs);
2401 
2402 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2403 		while (!bio && (nr_vecs /= 2))
2404 			bio = bio_alloc(gfp_flags, nr_vecs);
2405 	}
2406 
2407 	if (bio) {
2408 		bio->bi_size = 0;
2409 		bio->bi_bdev = bdev;
2410 		bio->bi_sector = first_sector;
2411 	}
2412 	return bio;
2413 }
2414 
2415 /*
2416  * Since writes are async, they will only return -ENOMEM.
2417  * Reads can return the full range of I/O error conditions.
2418  */
2419 static int __must_check submit_one_bio(int rw, struct bio *bio,
2420 				       int mirror_num, unsigned long bio_flags)
2421 {
2422 	int ret = 0;
2423 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2424 	struct page *page = bvec->bv_page;
2425 	struct extent_io_tree *tree = bio->bi_private;
2426 	u64 start;
2427 
2428 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2429 
2430 	bio->bi_private = NULL;
2431 
2432 	bio_get(bio);
2433 
2434 	if (tree->ops && tree->ops->submit_bio_hook)
2435 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2436 					   mirror_num, bio_flags, start);
2437 	else
2438 		btrfsic_submit_bio(rw, bio);
2439 
2440 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2441 		ret = -EOPNOTSUPP;
2442 	bio_put(bio);
2443 	return ret;
2444 }
2445 
2446 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2447 		     unsigned long offset, size_t size, struct bio *bio,
2448 		     unsigned long bio_flags)
2449 {
2450 	int ret = 0;
2451 	if (tree->ops && tree->ops->merge_bio_hook)
2452 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2453 						bio_flags);
2454 	BUG_ON(ret < 0);
2455 	return ret;
2456 
2457 }
2458 
2459 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2460 			      struct page *page, sector_t sector,
2461 			      size_t size, unsigned long offset,
2462 			      struct block_device *bdev,
2463 			      struct bio **bio_ret,
2464 			      unsigned long max_pages,
2465 			      bio_end_io_t end_io_func,
2466 			      int mirror_num,
2467 			      unsigned long prev_bio_flags,
2468 			      unsigned long bio_flags)
2469 {
2470 	int ret = 0;
2471 	struct bio *bio;
2472 	int nr;
2473 	int contig = 0;
2474 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2475 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2476 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2477 
2478 	if (bio_ret && *bio_ret) {
2479 		bio = *bio_ret;
2480 		if (old_compressed)
2481 			contig = bio->bi_sector == sector;
2482 		else
2483 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
2484 				sector;
2485 
2486 		if (prev_bio_flags != bio_flags || !contig ||
2487 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2488 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2489 			ret = submit_one_bio(rw, bio, mirror_num,
2490 					     prev_bio_flags);
2491 			if (ret < 0)
2492 				return ret;
2493 			bio = NULL;
2494 		} else {
2495 			return 0;
2496 		}
2497 	}
2498 	if (this_compressed)
2499 		nr = BIO_MAX_PAGES;
2500 	else
2501 		nr = bio_get_nr_vecs(bdev);
2502 
2503 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2504 	if (!bio)
2505 		return -ENOMEM;
2506 
2507 	bio_add_page(bio, page, page_size, offset);
2508 	bio->bi_end_io = end_io_func;
2509 	bio->bi_private = tree;
2510 
2511 	if (bio_ret)
2512 		*bio_ret = bio;
2513 	else
2514 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2515 
2516 	return ret;
2517 }
2518 
2519 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2520 {
2521 	if (!PagePrivate(page)) {
2522 		SetPagePrivate(page);
2523 		page_cache_get(page);
2524 		set_page_private(page, (unsigned long)eb);
2525 	} else {
2526 		WARN_ON(page->private != (unsigned long)eb);
2527 	}
2528 }
2529 
2530 void set_page_extent_mapped(struct page *page)
2531 {
2532 	if (!PagePrivate(page)) {
2533 		SetPagePrivate(page);
2534 		page_cache_get(page);
2535 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2536 	}
2537 }
2538 
2539 /*
2540  * basic readpage implementation.  Locked extent state structs are inserted
2541  * into the tree that are removed when the IO is done (by the end_io
2542  * handlers)
2543  * XXX JDM: This needs looking at to ensure proper page locking
2544  */
2545 static int __extent_read_full_page(struct extent_io_tree *tree,
2546 				   struct page *page,
2547 				   get_extent_t *get_extent,
2548 				   struct bio **bio, int mirror_num,
2549 				   unsigned long *bio_flags)
2550 {
2551 	struct inode *inode = page->mapping->host;
2552 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2553 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2554 	u64 end;
2555 	u64 cur = start;
2556 	u64 extent_offset;
2557 	u64 last_byte = i_size_read(inode);
2558 	u64 block_start;
2559 	u64 cur_end;
2560 	sector_t sector;
2561 	struct extent_map *em;
2562 	struct block_device *bdev;
2563 	struct btrfs_ordered_extent *ordered;
2564 	int ret;
2565 	int nr = 0;
2566 	size_t pg_offset = 0;
2567 	size_t iosize;
2568 	size_t disk_io_size;
2569 	size_t blocksize = inode->i_sb->s_blocksize;
2570 	unsigned long this_bio_flag = 0;
2571 
2572 	set_page_extent_mapped(page);
2573 
2574 	if (!PageUptodate(page)) {
2575 		if (cleancache_get_page(page) == 0) {
2576 			BUG_ON(blocksize != PAGE_SIZE);
2577 			goto out;
2578 		}
2579 	}
2580 
2581 	end = page_end;
2582 	while (1) {
2583 		lock_extent(tree, start, end);
2584 		ordered = btrfs_lookup_ordered_extent(inode, start);
2585 		if (!ordered)
2586 			break;
2587 		unlock_extent(tree, start, end);
2588 		btrfs_start_ordered_extent(inode, ordered, 1);
2589 		btrfs_put_ordered_extent(ordered);
2590 	}
2591 
2592 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2593 		char *userpage;
2594 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2595 
2596 		if (zero_offset) {
2597 			iosize = PAGE_CACHE_SIZE - zero_offset;
2598 			userpage = kmap_atomic(page);
2599 			memset(userpage + zero_offset, 0, iosize);
2600 			flush_dcache_page(page);
2601 			kunmap_atomic(userpage);
2602 		}
2603 	}
2604 	while (cur <= end) {
2605 		if (cur >= last_byte) {
2606 			char *userpage;
2607 			struct extent_state *cached = NULL;
2608 
2609 			iosize = PAGE_CACHE_SIZE - pg_offset;
2610 			userpage = kmap_atomic(page);
2611 			memset(userpage + pg_offset, 0, iosize);
2612 			flush_dcache_page(page);
2613 			kunmap_atomic(userpage);
2614 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2615 					    &cached, GFP_NOFS);
2616 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2617 					     &cached, GFP_NOFS);
2618 			break;
2619 		}
2620 		em = get_extent(inode, page, pg_offset, cur,
2621 				end - cur + 1, 0);
2622 		if (IS_ERR_OR_NULL(em)) {
2623 			SetPageError(page);
2624 			unlock_extent(tree, cur, end);
2625 			break;
2626 		}
2627 		extent_offset = cur - em->start;
2628 		BUG_ON(extent_map_end(em) <= cur);
2629 		BUG_ON(end < cur);
2630 
2631 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2632 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2633 			extent_set_compress_type(&this_bio_flag,
2634 						 em->compress_type);
2635 		}
2636 
2637 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2638 		cur_end = min(extent_map_end(em) - 1, end);
2639 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2640 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2641 			disk_io_size = em->block_len;
2642 			sector = em->block_start >> 9;
2643 		} else {
2644 			sector = (em->block_start + extent_offset) >> 9;
2645 			disk_io_size = iosize;
2646 		}
2647 		bdev = em->bdev;
2648 		block_start = em->block_start;
2649 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2650 			block_start = EXTENT_MAP_HOLE;
2651 		free_extent_map(em);
2652 		em = NULL;
2653 
2654 		/* we've found a hole, just zero and go on */
2655 		if (block_start == EXTENT_MAP_HOLE) {
2656 			char *userpage;
2657 			struct extent_state *cached = NULL;
2658 
2659 			userpage = kmap_atomic(page);
2660 			memset(userpage + pg_offset, 0, iosize);
2661 			flush_dcache_page(page);
2662 			kunmap_atomic(userpage);
2663 
2664 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2665 					    &cached, GFP_NOFS);
2666 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2667 			                     &cached, GFP_NOFS);
2668 			cur = cur + iosize;
2669 			pg_offset += iosize;
2670 			continue;
2671 		}
2672 		/* the get_extent function already copied into the page */
2673 		if (test_range_bit(tree, cur, cur_end,
2674 				   EXTENT_UPTODATE, 1, NULL)) {
2675 			check_page_uptodate(tree, page);
2676 			unlock_extent(tree, cur, cur + iosize - 1);
2677 			cur = cur + iosize;
2678 			pg_offset += iosize;
2679 			continue;
2680 		}
2681 		/* we have an inline extent but it didn't get marked up
2682 		 * to date.  Error out
2683 		 */
2684 		if (block_start == EXTENT_MAP_INLINE) {
2685 			SetPageError(page);
2686 			unlock_extent(tree, cur, cur + iosize - 1);
2687 			cur = cur + iosize;
2688 			pg_offset += iosize;
2689 			continue;
2690 		}
2691 
2692 		ret = 0;
2693 		if (tree->ops && tree->ops->readpage_io_hook) {
2694 			ret = tree->ops->readpage_io_hook(page, cur,
2695 							  cur + iosize - 1);
2696 		}
2697 		if (!ret) {
2698 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2699 			pnr -= page->index;
2700 			ret = submit_extent_page(READ, tree, page,
2701 					 sector, disk_io_size, pg_offset,
2702 					 bdev, bio, pnr,
2703 					 end_bio_extent_readpage, mirror_num,
2704 					 *bio_flags,
2705 					 this_bio_flag);
2706 			BUG_ON(ret == -ENOMEM);
2707 			nr++;
2708 			*bio_flags = this_bio_flag;
2709 		}
2710 		if (ret)
2711 			SetPageError(page);
2712 		cur = cur + iosize;
2713 		pg_offset += iosize;
2714 	}
2715 out:
2716 	if (!nr) {
2717 		if (!PageError(page))
2718 			SetPageUptodate(page);
2719 		unlock_page(page);
2720 	}
2721 	return 0;
2722 }
2723 
2724 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2725 			    get_extent_t *get_extent, int mirror_num)
2726 {
2727 	struct bio *bio = NULL;
2728 	unsigned long bio_flags = 0;
2729 	int ret;
2730 
2731 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2732 				      &bio_flags);
2733 	if (bio)
2734 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2735 	return ret;
2736 }
2737 
2738 static noinline void update_nr_written(struct page *page,
2739 				      struct writeback_control *wbc,
2740 				      unsigned long nr_written)
2741 {
2742 	wbc->nr_to_write -= nr_written;
2743 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2744 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2745 		page->mapping->writeback_index = page->index + nr_written;
2746 }
2747 
2748 /*
2749  * the writepage semantics are similar to regular writepage.  extent
2750  * records are inserted to lock ranges in the tree, and as dirty areas
2751  * are found, they are marked writeback.  Then the lock bits are removed
2752  * and the end_io handler clears the writeback ranges
2753  */
2754 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2755 			      void *data)
2756 {
2757 	struct inode *inode = page->mapping->host;
2758 	struct extent_page_data *epd = data;
2759 	struct extent_io_tree *tree = epd->tree;
2760 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2761 	u64 delalloc_start;
2762 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2763 	u64 end;
2764 	u64 cur = start;
2765 	u64 extent_offset;
2766 	u64 last_byte = i_size_read(inode);
2767 	u64 block_start;
2768 	u64 iosize;
2769 	sector_t sector;
2770 	struct extent_state *cached_state = NULL;
2771 	struct extent_map *em;
2772 	struct block_device *bdev;
2773 	int ret;
2774 	int nr = 0;
2775 	size_t pg_offset = 0;
2776 	size_t blocksize;
2777 	loff_t i_size = i_size_read(inode);
2778 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2779 	u64 nr_delalloc;
2780 	u64 delalloc_end;
2781 	int page_started;
2782 	int compressed;
2783 	int write_flags;
2784 	unsigned long nr_written = 0;
2785 	bool fill_delalloc = true;
2786 
2787 	if (wbc->sync_mode == WB_SYNC_ALL)
2788 		write_flags = WRITE_SYNC;
2789 	else
2790 		write_flags = WRITE;
2791 
2792 	trace___extent_writepage(page, inode, wbc);
2793 
2794 	WARN_ON(!PageLocked(page));
2795 
2796 	ClearPageError(page);
2797 
2798 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2799 	if (page->index > end_index ||
2800 	   (page->index == end_index && !pg_offset)) {
2801 		page->mapping->a_ops->invalidatepage(page, 0);
2802 		unlock_page(page);
2803 		return 0;
2804 	}
2805 
2806 	if (page->index == end_index) {
2807 		char *userpage;
2808 
2809 		userpage = kmap_atomic(page);
2810 		memset(userpage + pg_offset, 0,
2811 		       PAGE_CACHE_SIZE - pg_offset);
2812 		kunmap_atomic(userpage);
2813 		flush_dcache_page(page);
2814 	}
2815 	pg_offset = 0;
2816 
2817 	set_page_extent_mapped(page);
2818 
2819 	if (!tree->ops || !tree->ops->fill_delalloc)
2820 		fill_delalloc = false;
2821 
2822 	delalloc_start = start;
2823 	delalloc_end = 0;
2824 	page_started = 0;
2825 	if (!epd->extent_locked && fill_delalloc) {
2826 		u64 delalloc_to_write = 0;
2827 		/*
2828 		 * make sure the wbc mapping index is at least updated
2829 		 * to this page.
2830 		 */
2831 		update_nr_written(page, wbc, 0);
2832 
2833 		while (delalloc_end < page_end) {
2834 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2835 						       page,
2836 						       &delalloc_start,
2837 						       &delalloc_end,
2838 						       128 * 1024 * 1024);
2839 			if (nr_delalloc == 0) {
2840 				delalloc_start = delalloc_end + 1;
2841 				continue;
2842 			}
2843 			ret = tree->ops->fill_delalloc(inode, page,
2844 						       delalloc_start,
2845 						       delalloc_end,
2846 						       &page_started,
2847 						       &nr_written);
2848 			/* File system has been set read-only */
2849 			if (ret) {
2850 				SetPageError(page);
2851 				goto done;
2852 			}
2853 			/*
2854 			 * delalloc_end is already one less than the total
2855 			 * length, so we don't subtract one from
2856 			 * PAGE_CACHE_SIZE
2857 			 */
2858 			delalloc_to_write += (delalloc_end - delalloc_start +
2859 					      PAGE_CACHE_SIZE) >>
2860 					      PAGE_CACHE_SHIFT;
2861 			delalloc_start = delalloc_end + 1;
2862 		}
2863 		if (wbc->nr_to_write < delalloc_to_write) {
2864 			int thresh = 8192;
2865 
2866 			if (delalloc_to_write < thresh * 2)
2867 				thresh = delalloc_to_write;
2868 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2869 						 thresh);
2870 		}
2871 
2872 		/* did the fill delalloc function already unlock and start
2873 		 * the IO?
2874 		 */
2875 		if (page_started) {
2876 			ret = 0;
2877 			/*
2878 			 * we've unlocked the page, so we can't update
2879 			 * the mapping's writeback index, just update
2880 			 * nr_to_write.
2881 			 */
2882 			wbc->nr_to_write -= nr_written;
2883 			goto done_unlocked;
2884 		}
2885 	}
2886 	if (tree->ops && tree->ops->writepage_start_hook) {
2887 		ret = tree->ops->writepage_start_hook(page, start,
2888 						      page_end);
2889 		if (ret) {
2890 			/* Fixup worker will requeue */
2891 			if (ret == -EBUSY)
2892 				wbc->pages_skipped++;
2893 			else
2894 				redirty_page_for_writepage(wbc, page);
2895 			update_nr_written(page, wbc, nr_written);
2896 			unlock_page(page);
2897 			ret = 0;
2898 			goto done_unlocked;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * we don't want to touch the inode after unlocking the page,
2904 	 * so we update the mapping writeback index now
2905 	 */
2906 	update_nr_written(page, wbc, nr_written + 1);
2907 
2908 	end = page_end;
2909 	if (last_byte <= start) {
2910 		if (tree->ops && tree->ops->writepage_end_io_hook)
2911 			tree->ops->writepage_end_io_hook(page, start,
2912 							 page_end, NULL, 1);
2913 		goto done;
2914 	}
2915 
2916 	blocksize = inode->i_sb->s_blocksize;
2917 
2918 	while (cur <= end) {
2919 		if (cur >= last_byte) {
2920 			if (tree->ops && tree->ops->writepage_end_io_hook)
2921 				tree->ops->writepage_end_io_hook(page, cur,
2922 							 page_end, NULL, 1);
2923 			break;
2924 		}
2925 		em = epd->get_extent(inode, page, pg_offset, cur,
2926 				     end - cur + 1, 1);
2927 		if (IS_ERR_OR_NULL(em)) {
2928 			SetPageError(page);
2929 			break;
2930 		}
2931 
2932 		extent_offset = cur - em->start;
2933 		BUG_ON(extent_map_end(em) <= cur);
2934 		BUG_ON(end < cur);
2935 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2936 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2937 		sector = (em->block_start + extent_offset) >> 9;
2938 		bdev = em->bdev;
2939 		block_start = em->block_start;
2940 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2941 		free_extent_map(em);
2942 		em = NULL;
2943 
2944 		/*
2945 		 * compressed and inline extents are written through other
2946 		 * paths in the FS
2947 		 */
2948 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2949 		    block_start == EXTENT_MAP_INLINE) {
2950 			/*
2951 			 * end_io notification does not happen here for
2952 			 * compressed extents
2953 			 */
2954 			if (!compressed && tree->ops &&
2955 			    tree->ops->writepage_end_io_hook)
2956 				tree->ops->writepage_end_io_hook(page, cur,
2957 							 cur + iosize - 1,
2958 							 NULL, 1);
2959 			else if (compressed) {
2960 				/* we don't want to end_page_writeback on
2961 				 * a compressed extent.  this happens
2962 				 * elsewhere
2963 				 */
2964 				nr++;
2965 			}
2966 
2967 			cur += iosize;
2968 			pg_offset += iosize;
2969 			continue;
2970 		}
2971 		/* leave this out until we have a page_mkwrite call */
2972 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2973 				   EXTENT_DIRTY, 0, NULL)) {
2974 			cur = cur + iosize;
2975 			pg_offset += iosize;
2976 			continue;
2977 		}
2978 
2979 		if (tree->ops && tree->ops->writepage_io_hook) {
2980 			ret = tree->ops->writepage_io_hook(page, cur,
2981 						cur + iosize - 1);
2982 		} else {
2983 			ret = 0;
2984 		}
2985 		if (ret) {
2986 			SetPageError(page);
2987 		} else {
2988 			unsigned long max_nr = end_index + 1;
2989 
2990 			set_range_writeback(tree, cur, cur + iosize - 1);
2991 			if (!PageWriteback(page)) {
2992 				printk(KERN_ERR "btrfs warning page %lu not "
2993 				       "writeback, cur %llu end %llu\n",
2994 				       page->index, (unsigned long long)cur,
2995 				       (unsigned long long)end);
2996 			}
2997 
2998 			ret = submit_extent_page(write_flags, tree, page,
2999 						 sector, iosize, pg_offset,
3000 						 bdev, &epd->bio, max_nr,
3001 						 end_bio_extent_writepage,
3002 						 0, 0, 0);
3003 			if (ret)
3004 				SetPageError(page);
3005 		}
3006 		cur = cur + iosize;
3007 		pg_offset += iosize;
3008 		nr++;
3009 	}
3010 done:
3011 	if (nr == 0) {
3012 		/* make sure the mapping tag for page dirty gets cleared */
3013 		set_page_writeback(page);
3014 		end_page_writeback(page);
3015 	}
3016 	unlock_page(page);
3017 
3018 done_unlocked:
3019 
3020 	/* drop our reference on any cached states */
3021 	free_extent_state(cached_state);
3022 	return 0;
3023 }
3024 
3025 static int eb_wait(void *word)
3026 {
3027 	io_schedule();
3028 	return 0;
3029 }
3030 
3031 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3032 {
3033 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3034 		    TASK_UNINTERRUPTIBLE);
3035 }
3036 
3037 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3038 				     struct btrfs_fs_info *fs_info,
3039 				     struct extent_page_data *epd)
3040 {
3041 	unsigned long i, num_pages;
3042 	int flush = 0;
3043 	int ret = 0;
3044 
3045 	if (!btrfs_try_tree_write_lock(eb)) {
3046 		flush = 1;
3047 		flush_write_bio(epd);
3048 		btrfs_tree_lock(eb);
3049 	}
3050 
3051 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3052 		btrfs_tree_unlock(eb);
3053 		if (!epd->sync_io)
3054 			return 0;
3055 		if (!flush) {
3056 			flush_write_bio(epd);
3057 			flush = 1;
3058 		}
3059 		while (1) {
3060 			wait_on_extent_buffer_writeback(eb);
3061 			btrfs_tree_lock(eb);
3062 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3063 				break;
3064 			btrfs_tree_unlock(eb);
3065 		}
3066 	}
3067 
3068 	/*
3069 	 * We need to do this to prevent races in people who check if the eb is
3070 	 * under IO since we can end up having no IO bits set for a short period
3071 	 * of time.
3072 	 */
3073 	spin_lock(&eb->refs_lock);
3074 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3075 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3076 		spin_unlock(&eb->refs_lock);
3077 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3078 		spin_lock(&fs_info->delalloc_lock);
3079 		if (fs_info->dirty_metadata_bytes >= eb->len)
3080 			fs_info->dirty_metadata_bytes -= eb->len;
3081 		else
3082 			WARN_ON(1);
3083 		spin_unlock(&fs_info->delalloc_lock);
3084 		ret = 1;
3085 	} else {
3086 		spin_unlock(&eb->refs_lock);
3087 	}
3088 
3089 	btrfs_tree_unlock(eb);
3090 
3091 	if (!ret)
3092 		return ret;
3093 
3094 	num_pages = num_extent_pages(eb->start, eb->len);
3095 	for (i = 0; i < num_pages; i++) {
3096 		struct page *p = extent_buffer_page(eb, i);
3097 
3098 		if (!trylock_page(p)) {
3099 			if (!flush) {
3100 				flush_write_bio(epd);
3101 				flush = 1;
3102 			}
3103 			lock_page(p);
3104 		}
3105 	}
3106 
3107 	return ret;
3108 }
3109 
3110 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3111 {
3112 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3113 	smp_mb__after_clear_bit();
3114 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3115 }
3116 
3117 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3118 {
3119 	int uptodate = err == 0;
3120 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3121 	struct extent_buffer *eb;
3122 	int done;
3123 
3124 	do {
3125 		struct page *page = bvec->bv_page;
3126 
3127 		bvec--;
3128 		eb = (struct extent_buffer *)page->private;
3129 		BUG_ON(!eb);
3130 		done = atomic_dec_and_test(&eb->io_pages);
3131 
3132 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3133 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3134 			ClearPageUptodate(page);
3135 			SetPageError(page);
3136 		}
3137 
3138 		end_page_writeback(page);
3139 
3140 		if (!done)
3141 			continue;
3142 
3143 		end_extent_buffer_writeback(eb);
3144 	} while (bvec >= bio->bi_io_vec);
3145 
3146 	bio_put(bio);
3147 
3148 }
3149 
3150 static int write_one_eb(struct extent_buffer *eb,
3151 			struct btrfs_fs_info *fs_info,
3152 			struct writeback_control *wbc,
3153 			struct extent_page_data *epd)
3154 {
3155 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3156 	u64 offset = eb->start;
3157 	unsigned long i, num_pages;
3158 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3159 	int ret = 0;
3160 
3161 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3162 	num_pages = num_extent_pages(eb->start, eb->len);
3163 	atomic_set(&eb->io_pages, num_pages);
3164 	for (i = 0; i < num_pages; i++) {
3165 		struct page *p = extent_buffer_page(eb, i);
3166 
3167 		clear_page_dirty_for_io(p);
3168 		set_page_writeback(p);
3169 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3170 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3171 					 -1, end_bio_extent_buffer_writepage,
3172 					 0, 0, 0);
3173 		if (ret) {
3174 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3175 			SetPageError(p);
3176 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3177 				end_extent_buffer_writeback(eb);
3178 			ret = -EIO;
3179 			break;
3180 		}
3181 		offset += PAGE_CACHE_SIZE;
3182 		update_nr_written(p, wbc, 1);
3183 		unlock_page(p);
3184 	}
3185 
3186 	if (unlikely(ret)) {
3187 		for (; i < num_pages; i++) {
3188 			struct page *p = extent_buffer_page(eb, i);
3189 			unlock_page(p);
3190 		}
3191 	}
3192 
3193 	return ret;
3194 }
3195 
3196 int btree_write_cache_pages(struct address_space *mapping,
3197 				   struct writeback_control *wbc)
3198 {
3199 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3200 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3201 	struct extent_buffer *eb, *prev_eb = NULL;
3202 	struct extent_page_data epd = {
3203 		.bio = NULL,
3204 		.tree = tree,
3205 		.extent_locked = 0,
3206 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3207 	};
3208 	int ret = 0;
3209 	int done = 0;
3210 	int nr_to_write_done = 0;
3211 	struct pagevec pvec;
3212 	int nr_pages;
3213 	pgoff_t index;
3214 	pgoff_t end;		/* Inclusive */
3215 	int scanned = 0;
3216 	int tag;
3217 
3218 	pagevec_init(&pvec, 0);
3219 	if (wbc->range_cyclic) {
3220 		index = mapping->writeback_index; /* Start from prev offset */
3221 		end = -1;
3222 	} else {
3223 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3224 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3225 		scanned = 1;
3226 	}
3227 	if (wbc->sync_mode == WB_SYNC_ALL)
3228 		tag = PAGECACHE_TAG_TOWRITE;
3229 	else
3230 		tag = PAGECACHE_TAG_DIRTY;
3231 retry:
3232 	if (wbc->sync_mode == WB_SYNC_ALL)
3233 		tag_pages_for_writeback(mapping, index, end);
3234 	while (!done && !nr_to_write_done && (index <= end) &&
3235 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3236 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3237 		unsigned i;
3238 
3239 		scanned = 1;
3240 		for (i = 0; i < nr_pages; i++) {
3241 			struct page *page = pvec.pages[i];
3242 
3243 			if (!PagePrivate(page))
3244 				continue;
3245 
3246 			if (!wbc->range_cyclic && page->index > end) {
3247 				done = 1;
3248 				break;
3249 			}
3250 
3251 			eb = (struct extent_buffer *)page->private;
3252 			if (!eb) {
3253 				WARN_ON(1);
3254 				continue;
3255 			}
3256 
3257 			if (eb == prev_eb)
3258 				continue;
3259 
3260 			if (!atomic_inc_not_zero(&eb->refs)) {
3261 				WARN_ON(1);
3262 				continue;
3263 			}
3264 
3265 			prev_eb = eb;
3266 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3267 			if (!ret) {
3268 				free_extent_buffer(eb);
3269 				continue;
3270 			}
3271 
3272 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3273 			if (ret) {
3274 				done = 1;
3275 				free_extent_buffer(eb);
3276 				break;
3277 			}
3278 			free_extent_buffer(eb);
3279 
3280 			/*
3281 			 * the filesystem may choose to bump up nr_to_write.
3282 			 * We have to make sure to honor the new nr_to_write
3283 			 * at any time
3284 			 */
3285 			nr_to_write_done = wbc->nr_to_write <= 0;
3286 		}
3287 		pagevec_release(&pvec);
3288 		cond_resched();
3289 	}
3290 	if (!scanned && !done) {
3291 		/*
3292 		 * We hit the last page and there is more work to be done: wrap
3293 		 * back to the start of the file
3294 		 */
3295 		scanned = 1;
3296 		index = 0;
3297 		goto retry;
3298 	}
3299 	flush_write_bio(&epd);
3300 	return ret;
3301 }
3302 
3303 /**
3304  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3305  * @mapping: address space structure to write
3306  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3307  * @writepage: function called for each page
3308  * @data: data passed to writepage function
3309  *
3310  * If a page is already under I/O, write_cache_pages() skips it, even
3311  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3312  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3313  * and msync() need to guarantee that all the data which was dirty at the time
3314  * the call was made get new I/O started against them.  If wbc->sync_mode is
3315  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3316  * existing IO to complete.
3317  */
3318 static int extent_write_cache_pages(struct extent_io_tree *tree,
3319 			     struct address_space *mapping,
3320 			     struct writeback_control *wbc,
3321 			     writepage_t writepage, void *data,
3322 			     void (*flush_fn)(void *))
3323 {
3324 	struct inode *inode = mapping->host;
3325 	int ret = 0;
3326 	int done = 0;
3327 	int nr_to_write_done = 0;
3328 	struct pagevec pvec;
3329 	int nr_pages;
3330 	pgoff_t index;
3331 	pgoff_t end;		/* Inclusive */
3332 	int scanned = 0;
3333 	int tag;
3334 
3335 	/*
3336 	 * We have to hold onto the inode so that ordered extents can do their
3337 	 * work when the IO finishes.  The alternative to this is failing to add
3338 	 * an ordered extent if the igrab() fails there and that is a huge pain
3339 	 * to deal with, so instead just hold onto the inode throughout the
3340 	 * writepages operation.  If it fails here we are freeing up the inode
3341 	 * anyway and we'd rather not waste our time writing out stuff that is
3342 	 * going to be truncated anyway.
3343 	 */
3344 	if (!igrab(inode))
3345 		return 0;
3346 
3347 	pagevec_init(&pvec, 0);
3348 	if (wbc->range_cyclic) {
3349 		index = mapping->writeback_index; /* Start from prev offset */
3350 		end = -1;
3351 	} else {
3352 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3353 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3354 		scanned = 1;
3355 	}
3356 	if (wbc->sync_mode == WB_SYNC_ALL)
3357 		tag = PAGECACHE_TAG_TOWRITE;
3358 	else
3359 		tag = PAGECACHE_TAG_DIRTY;
3360 retry:
3361 	if (wbc->sync_mode == WB_SYNC_ALL)
3362 		tag_pages_for_writeback(mapping, index, end);
3363 	while (!done && !nr_to_write_done && (index <= end) &&
3364 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3365 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3366 		unsigned i;
3367 
3368 		scanned = 1;
3369 		for (i = 0; i < nr_pages; i++) {
3370 			struct page *page = pvec.pages[i];
3371 
3372 			/*
3373 			 * At this point we hold neither mapping->tree_lock nor
3374 			 * lock on the page itself: the page may be truncated or
3375 			 * invalidated (changing page->mapping to NULL), or even
3376 			 * swizzled back from swapper_space to tmpfs file
3377 			 * mapping
3378 			 */
3379 			if (tree->ops &&
3380 			    tree->ops->write_cache_pages_lock_hook) {
3381 				tree->ops->write_cache_pages_lock_hook(page,
3382 							       data, flush_fn);
3383 			} else {
3384 				if (!trylock_page(page)) {
3385 					flush_fn(data);
3386 					lock_page(page);
3387 				}
3388 			}
3389 
3390 			if (unlikely(page->mapping != mapping)) {
3391 				unlock_page(page);
3392 				continue;
3393 			}
3394 
3395 			if (!wbc->range_cyclic && page->index > end) {
3396 				done = 1;
3397 				unlock_page(page);
3398 				continue;
3399 			}
3400 
3401 			if (wbc->sync_mode != WB_SYNC_NONE) {
3402 				if (PageWriteback(page))
3403 					flush_fn(data);
3404 				wait_on_page_writeback(page);
3405 			}
3406 
3407 			if (PageWriteback(page) ||
3408 			    !clear_page_dirty_for_io(page)) {
3409 				unlock_page(page);
3410 				continue;
3411 			}
3412 
3413 			ret = (*writepage)(page, wbc, data);
3414 
3415 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3416 				unlock_page(page);
3417 				ret = 0;
3418 			}
3419 			if (ret)
3420 				done = 1;
3421 
3422 			/*
3423 			 * the filesystem may choose to bump up nr_to_write.
3424 			 * We have to make sure to honor the new nr_to_write
3425 			 * at any time
3426 			 */
3427 			nr_to_write_done = wbc->nr_to_write <= 0;
3428 		}
3429 		pagevec_release(&pvec);
3430 		cond_resched();
3431 	}
3432 	if (!scanned && !done) {
3433 		/*
3434 		 * We hit the last page and there is more work to be done: wrap
3435 		 * back to the start of the file
3436 		 */
3437 		scanned = 1;
3438 		index = 0;
3439 		goto retry;
3440 	}
3441 	btrfs_add_delayed_iput(inode);
3442 	return ret;
3443 }
3444 
3445 static void flush_epd_write_bio(struct extent_page_data *epd)
3446 {
3447 	if (epd->bio) {
3448 		int rw = WRITE;
3449 		int ret;
3450 
3451 		if (epd->sync_io)
3452 			rw = WRITE_SYNC;
3453 
3454 		ret = submit_one_bio(rw, epd->bio, 0, 0);
3455 		BUG_ON(ret < 0); /* -ENOMEM */
3456 		epd->bio = NULL;
3457 	}
3458 }
3459 
3460 static noinline void flush_write_bio(void *data)
3461 {
3462 	struct extent_page_data *epd = data;
3463 	flush_epd_write_bio(epd);
3464 }
3465 
3466 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3467 			  get_extent_t *get_extent,
3468 			  struct writeback_control *wbc)
3469 {
3470 	int ret;
3471 	struct extent_page_data epd = {
3472 		.bio = NULL,
3473 		.tree = tree,
3474 		.get_extent = get_extent,
3475 		.extent_locked = 0,
3476 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3477 	};
3478 
3479 	ret = __extent_writepage(page, wbc, &epd);
3480 
3481 	flush_epd_write_bio(&epd);
3482 	return ret;
3483 }
3484 
3485 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3486 			      u64 start, u64 end, get_extent_t *get_extent,
3487 			      int mode)
3488 {
3489 	int ret = 0;
3490 	struct address_space *mapping = inode->i_mapping;
3491 	struct page *page;
3492 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3493 		PAGE_CACHE_SHIFT;
3494 
3495 	struct extent_page_data epd = {
3496 		.bio = NULL,
3497 		.tree = tree,
3498 		.get_extent = get_extent,
3499 		.extent_locked = 1,
3500 		.sync_io = mode == WB_SYNC_ALL,
3501 	};
3502 	struct writeback_control wbc_writepages = {
3503 		.sync_mode	= mode,
3504 		.nr_to_write	= nr_pages * 2,
3505 		.range_start	= start,
3506 		.range_end	= end + 1,
3507 	};
3508 
3509 	while (start <= end) {
3510 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3511 		if (clear_page_dirty_for_io(page))
3512 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3513 		else {
3514 			if (tree->ops && tree->ops->writepage_end_io_hook)
3515 				tree->ops->writepage_end_io_hook(page, start,
3516 						 start + PAGE_CACHE_SIZE - 1,
3517 						 NULL, 1);
3518 			unlock_page(page);
3519 		}
3520 		page_cache_release(page);
3521 		start += PAGE_CACHE_SIZE;
3522 	}
3523 
3524 	flush_epd_write_bio(&epd);
3525 	return ret;
3526 }
3527 
3528 int extent_writepages(struct extent_io_tree *tree,
3529 		      struct address_space *mapping,
3530 		      get_extent_t *get_extent,
3531 		      struct writeback_control *wbc)
3532 {
3533 	int ret = 0;
3534 	struct extent_page_data epd = {
3535 		.bio = NULL,
3536 		.tree = tree,
3537 		.get_extent = get_extent,
3538 		.extent_locked = 0,
3539 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3540 	};
3541 
3542 	ret = extent_write_cache_pages(tree, mapping, wbc,
3543 				       __extent_writepage, &epd,
3544 				       flush_write_bio);
3545 	flush_epd_write_bio(&epd);
3546 	return ret;
3547 }
3548 
3549 int extent_readpages(struct extent_io_tree *tree,
3550 		     struct address_space *mapping,
3551 		     struct list_head *pages, unsigned nr_pages,
3552 		     get_extent_t get_extent)
3553 {
3554 	struct bio *bio = NULL;
3555 	unsigned page_idx;
3556 	unsigned long bio_flags = 0;
3557 	struct page *pagepool[16];
3558 	struct page *page;
3559 	int i = 0;
3560 	int nr = 0;
3561 
3562 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3563 		page = list_entry(pages->prev, struct page, lru);
3564 
3565 		prefetchw(&page->flags);
3566 		list_del(&page->lru);
3567 		if (add_to_page_cache_lru(page, mapping,
3568 					page->index, GFP_NOFS)) {
3569 			page_cache_release(page);
3570 			continue;
3571 		}
3572 
3573 		pagepool[nr++] = page;
3574 		if (nr < ARRAY_SIZE(pagepool))
3575 			continue;
3576 		for (i = 0; i < nr; i++) {
3577 			__extent_read_full_page(tree, pagepool[i], get_extent,
3578 					&bio, 0, &bio_flags);
3579 			page_cache_release(pagepool[i]);
3580 		}
3581 		nr = 0;
3582 	}
3583 	for (i = 0; i < nr; i++) {
3584 		__extent_read_full_page(tree, pagepool[i], get_extent,
3585 					&bio, 0, &bio_flags);
3586 		page_cache_release(pagepool[i]);
3587 	}
3588 
3589 	BUG_ON(!list_empty(pages));
3590 	if (bio)
3591 		return submit_one_bio(READ, bio, 0, bio_flags);
3592 	return 0;
3593 }
3594 
3595 /*
3596  * basic invalidatepage code, this waits on any locked or writeback
3597  * ranges corresponding to the page, and then deletes any extent state
3598  * records from the tree
3599  */
3600 int extent_invalidatepage(struct extent_io_tree *tree,
3601 			  struct page *page, unsigned long offset)
3602 {
3603 	struct extent_state *cached_state = NULL;
3604 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3605 	u64 end = start + PAGE_CACHE_SIZE - 1;
3606 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3607 
3608 	start += (offset + blocksize - 1) & ~(blocksize - 1);
3609 	if (start > end)
3610 		return 0;
3611 
3612 	lock_extent_bits(tree, start, end, 0, &cached_state);
3613 	wait_on_page_writeback(page);
3614 	clear_extent_bit(tree, start, end,
3615 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3616 			 EXTENT_DO_ACCOUNTING,
3617 			 1, 1, &cached_state, GFP_NOFS);
3618 	return 0;
3619 }
3620 
3621 /*
3622  * a helper for releasepage, this tests for areas of the page that
3623  * are locked or under IO and drops the related state bits if it is safe
3624  * to drop the page.
3625  */
3626 int try_release_extent_state(struct extent_map_tree *map,
3627 			     struct extent_io_tree *tree, struct page *page,
3628 			     gfp_t mask)
3629 {
3630 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3631 	u64 end = start + PAGE_CACHE_SIZE - 1;
3632 	int ret = 1;
3633 
3634 	if (test_range_bit(tree, start, end,
3635 			   EXTENT_IOBITS, 0, NULL))
3636 		ret = 0;
3637 	else {
3638 		if ((mask & GFP_NOFS) == GFP_NOFS)
3639 			mask = GFP_NOFS;
3640 		/*
3641 		 * at this point we can safely clear everything except the
3642 		 * locked bit and the nodatasum bit
3643 		 */
3644 		ret = clear_extent_bit(tree, start, end,
3645 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3646 				 0, 0, NULL, mask);
3647 
3648 		/* if clear_extent_bit failed for enomem reasons,
3649 		 * we can't allow the release to continue.
3650 		 */
3651 		if (ret < 0)
3652 			ret = 0;
3653 		else
3654 			ret = 1;
3655 	}
3656 	return ret;
3657 }
3658 
3659 /*
3660  * a helper for releasepage.  As long as there are no locked extents
3661  * in the range corresponding to the page, both state records and extent
3662  * map records are removed
3663  */
3664 int try_release_extent_mapping(struct extent_map_tree *map,
3665 			       struct extent_io_tree *tree, struct page *page,
3666 			       gfp_t mask)
3667 {
3668 	struct extent_map *em;
3669 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3670 	u64 end = start + PAGE_CACHE_SIZE - 1;
3671 
3672 	if ((mask & __GFP_WAIT) &&
3673 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3674 		u64 len;
3675 		while (start <= end) {
3676 			len = end - start + 1;
3677 			write_lock(&map->lock);
3678 			em = lookup_extent_mapping(map, start, len);
3679 			if (!em) {
3680 				write_unlock(&map->lock);
3681 				break;
3682 			}
3683 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3684 			    em->start != start) {
3685 				write_unlock(&map->lock);
3686 				free_extent_map(em);
3687 				break;
3688 			}
3689 			if (!test_range_bit(tree, em->start,
3690 					    extent_map_end(em) - 1,
3691 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3692 					    0, NULL)) {
3693 				remove_extent_mapping(map, em);
3694 				/* once for the rb tree */
3695 				free_extent_map(em);
3696 			}
3697 			start = extent_map_end(em);
3698 			write_unlock(&map->lock);
3699 
3700 			/* once for us */
3701 			free_extent_map(em);
3702 		}
3703 	}
3704 	return try_release_extent_state(map, tree, page, mask);
3705 }
3706 
3707 /*
3708  * helper function for fiemap, which doesn't want to see any holes.
3709  * This maps until we find something past 'last'
3710  */
3711 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3712 						u64 offset,
3713 						u64 last,
3714 						get_extent_t *get_extent)
3715 {
3716 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3717 	struct extent_map *em;
3718 	u64 len;
3719 
3720 	if (offset >= last)
3721 		return NULL;
3722 
3723 	while(1) {
3724 		len = last - offset;
3725 		if (len == 0)
3726 			break;
3727 		len = (len + sectorsize - 1) & ~(sectorsize - 1);
3728 		em = get_extent(inode, NULL, 0, offset, len, 0);
3729 		if (IS_ERR_OR_NULL(em))
3730 			return em;
3731 
3732 		/* if this isn't a hole return it */
3733 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3734 		    em->block_start != EXTENT_MAP_HOLE) {
3735 			return em;
3736 		}
3737 
3738 		/* this is a hole, advance to the next extent */
3739 		offset = extent_map_end(em);
3740 		free_extent_map(em);
3741 		if (offset >= last)
3742 			break;
3743 	}
3744 	return NULL;
3745 }
3746 
3747 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3748 		__u64 start, __u64 len, get_extent_t *get_extent)
3749 {
3750 	int ret = 0;
3751 	u64 off = start;
3752 	u64 max = start + len;
3753 	u32 flags = 0;
3754 	u32 found_type;
3755 	u64 last;
3756 	u64 last_for_get_extent = 0;
3757 	u64 disko = 0;
3758 	u64 isize = i_size_read(inode);
3759 	struct btrfs_key found_key;
3760 	struct extent_map *em = NULL;
3761 	struct extent_state *cached_state = NULL;
3762 	struct btrfs_path *path;
3763 	struct btrfs_file_extent_item *item;
3764 	int end = 0;
3765 	u64 em_start = 0;
3766 	u64 em_len = 0;
3767 	u64 em_end = 0;
3768 	unsigned long emflags;
3769 
3770 	if (len == 0)
3771 		return -EINVAL;
3772 
3773 	path = btrfs_alloc_path();
3774 	if (!path)
3775 		return -ENOMEM;
3776 	path->leave_spinning = 1;
3777 
3778 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3779 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3780 
3781 	/*
3782 	 * lookup the last file extent.  We're not using i_size here
3783 	 * because there might be preallocation past i_size
3784 	 */
3785 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3786 				       path, btrfs_ino(inode), -1, 0);
3787 	if (ret < 0) {
3788 		btrfs_free_path(path);
3789 		return ret;
3790 	}
3791 	WARN_ON(!ret);
3792 	path->slots[0]--;
3793 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3794 			      struct btrfs_file_extent_item);
3795 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3796 	found_type = btrfs_key_type(&found_key);
3797 
3798 	/* No extents, but there might be delalloc bits */
3799 	if (found_key.objectid != btrfs_ino(inode) ||
3800 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3801 		/* have to trust i_size as the end */
3802 		last = (u64)-1;
3803 		last_for_get_extent = isize;
3804 	} else {
3805 		/*
3806 		 * remember the start of the last extent.  There are a
3807 		 * bunch of different factors that go into the length of the
3808 		 * extent, so its much less complex to remember where it started
3809 		 */
3810 		last = found_key.offset;
3811 		last_for_get_extent = last + 1;
3812 	}
3813 	btrfs_free_path(path);
3814 
3815 	/*
3816 	 * we might have some extents allocated but more delalloc past those
3817 	 * extents.  so, we trust isize unless the start of the last extent is
3818 	 * beyond isize
3819 	 */
3820 	if (last < isize) {
3821 		last = (u64)-1;
3822 		last_for_get_extent = isize;
3823 	}
3824 
3825 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3826 			 &cached_state);
3827 
3828 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
3829 				   get_extent);
3830 	if (!em)
3831 		goto out;
3832 	if (IS_ERR(em)) {
3833 		ret = PTR_ERR(em);
3834 		goto out;
3835 	}
3836 
3837 	while (!end) {
3838 		u64 offset_in_extent;
3839 
3840 		/* break if the extent we found is outside the range */
3841 		if (em->start >= max || extent_map_end(em) < off)
3842 			break;
3843 
3844 		/*
3845 		 * get_extent may return an extent that starts before our
3846 		 * requested range.  We have to make sure the ranges
3847 		 * we return to fiemap always move forward and don't
3848 		 * overlap, so adjust the offsets here
3849 		 */
3850 		em_start = max(em->start, off);
3851 
3852 		/*
3853 		 * record the offset from the start of the extent
3854 		 * for adjusting the disk offset below
3855 		 */
3856 		offset_in_extent = em_start - em->start;
3857 		em_end = extent_map_end(em);
3858 		em_len = em_end - em_start;
3859 		emflags = em->flags;
3860 		disko = 0;
3861 		flags = 0;
3862 
3863 		/*
3864 		 * bump off for our next call to get_extent
3865 		 */
3866 		off = extent_map_end(em);
3867 		if (off >= max)
3868 			end = 1;
3869 
3870 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3871 			end = 1;
3872 			flags |= FIEMAP_EXTENT_LAST;
3873 		} else if (em->block_start == EXTENT_MAP_INLINE) {
3874 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3875 				  FIEMAP_EXTENT_NOT_ALIGNED);
3876 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3877 			flags |= (FIEMAP_EXTENT_DELALLOC |
3878 				  FIEMAP_EXTENT_UNKNOWN);
3879 		} else {
3880 			disko = em->block_start + offset_in_extent;
3881 		}
3882 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3883 			flags |= FIEMAP_EXTENT_ENCODED;
3884 
3885 		free_extent_map(em);
3886 		em = NULL;
3887 		if ((em_start >= last) || em_len == (u64)-1 ||
3888 		   (last == (u64)-1 && isize <= em_end)) {
3889 			flags |= FIEMAP_EXTENT_LAST;
3890 			end = 1;
3891 		}
3892 
3893 		/* now scan forward to see if this is really the last extent. */
3894 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3895 					   get_extent);
3896 		if (IS_ERR(em)) {
3897 			ret = PTR_ERR(em);
3898 			goto out;
3899 		}
3900 		if (!em) {
3901 			flags |= FIEMAP_EXTENT_LAST;
3902 			end = 1;
3903 		}
3904 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3905 					      em_len, flags);
3906 		if (ret)
3907 			goto out_free;
3908 	}
3909 out_free:
3910 	free_extent_map(em);
3911 out:
3912 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3913 			     &cached_state, GFP_NOFS);
3914 	return ret;
3915 }
3916 
3917 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3918 					      unsigned long i)
3919 {
3920 	return eb->pages[i];
3921 }
3922 
3923 inline unsigned long num_extent_pages(u64 start, u64 len)
3924 {
3925 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3926 		(start >> PAGE_CACHE_SHIFT);
3927 }
3928 
3929 static void __free_extent_buffer(struct extent_buffer *eb)
3930 {
3931 #if LEAK_DEBUG
3932 	unsigned long flags;
3933 	spin_lock_irqsave(&leak_lock, flags);
3934 	list_del(&eb->leak_list);
3935 	spin_unlock_irqrestore(&leak_lock, flags);
3936 #endif
3937 	if (eb->pages && eb->pages != eb->inline_pages)
3938 		kfree(eb->pages);
3939 	kmem_cache_free(extent_buffer_cache, eb);
3940 }
3941 
3942 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3943 						   u64 start,
3944 						   unsigned long len,
3945 						   gfp_t mask)
3946 {
3947 	struct extent_buffer *eb = NULL;
3948 #if LEAK_DEBUG
3949 	unsigned long flags;
3950 #endif
3951 
3952 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3953 	if (eb == NULL)
3954 		return NULL;
3955 	eb->start = start;
3956 	eb->len = len;
3957 	eb->tree = tree;
3958 	eb->bflags = 0;
3959 	rwlock_init(&eb->lock);
3960 	atomic_set(&eb->write_locks, 0);
3961 	atomic_set(&eb->read_locks, 0);
3962 	atomic_set(&eb->blocking_readers, 0);
3963 	atomic_set(&eb->blocking_writers, 0);
3964 	atomic_set(&eb->spinning_readers, 0);
3965 	atomic_set(&eb->spinning_writers, 0);
3966 	eb->lock_nested = 0;
3967 	init_waitqueue_head(&eb->write_lock_wq);
3968 	init_waitqueue_head(&eb->read_lock_wq);
3969 
3970 #if LEAK_DEBUG
3971 	spin_lock_irqsave(&leak_lock, flags);
3972 	list_add(&eb->leak_list, &buffers);
3973 	spin_unlock_irqrestore(&leak_lock, flags);
3974 #endif
3975 	spin_lock_init(&eb->refs_lock);
3976 	atomic_set(&eb->refs, 1);
3977 	atomic_set(&eb->io_pages, 0);
3978 
3979 	if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3980 		struct page **pages;
3981 		int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3982 			PAGE_CACHE_SHIFT;
3983 		pages = kzalloc(num_pages, mask);
3984 		if (!pages) {
3985 			__free_extent_buffer(eb);
3986 			return NULL;
3987 		}
3988 		eb->pages = pages;
3989 	} else {
3990 		eb->pages = eb->inline_pages;
3991 	}
3992 
3993 	return eb;
3994 }
3995 
3996 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3997 {
3998 	unsigned long i;
3999 	struct page *p;
4000 	struct extent_buffer *new;
4001 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4002 
4003 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4004 	if (new == NULL)
4005 		return NULL;
4006 
4007 	for (i = 0; i < num_pages; i++) {
4008 		p = alloc_page(GFP_ATOMIC);
4009 		BUG_ON(!p);
4010 		attach_extent_buffer_page(new, p);
4011 		WARN_ON(PageDirty(p));
4012 		SetPageUptodate(p);
4013 		new->pages[i] = p;
4014 	}
4015 
4016 	copy_extent_buffer(new, src, 0, 0, src->len);
4017 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4018 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4019 
4020 	return new;
4021 }
4022 
4023 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4024 {
4025 	struct extent_buffer *eb;
4026 	unsigned long num_pages = num_extent_pages(0, len);
4027 	unsigned long i;
4028 
4029 	eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4030 	if (!eb)
4031 		return NULL;
4032 
4033 	for (i = 0; i < num_pages; i++) {
4034 		eb->pages[i] = alloc_page(GFP_ATOMIC);
4035 		if (!eb->pages[i])
4036 			goto err;
4037 	}
4038 	set_extent_buffer_uptodate(eb);
4039 	btrfs_set_header_nritems(eb, 0);
4040 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4041 
4042 	return eb;
4043 err:
4044 	for (i--; i > 0; i--)
4045 		__free_page(eb->pages[i]);
4046 	__free_extent_buffer(eb);
4047 	return NULL;
4048 }
4049 
4050 static int extent_buffer_under_io(struct extent_buffer *eb)
4051 {
4052 	return (atomic_read(&eb->io_pages) ||
4053 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4054 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4055 }
4056 
4057 /*
4058  * Helper for releasing extent buffer page.
4059  */
4060 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4061 						unsigned long start_idx)
4062 {
4063 	unsigned long index;
4064 	unsigned long num_pages;
4065 	struct page *page;
4066 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4067 
4068 	BUG_ON(extent_buffer_under_io(eb));
4069 
4070 	num_pages = num_extent_pages(eb->start, eb->len);
4071 	index = start_idx + num_pages;
4072 	if (start_idx >= index)
4073 		return;
4074 
4075 	do {
4076 		index--;
4077 		page = extent_buffer_page(eb, index);
4078 		if (page && mapped) {
4079 			spin_lock(&page->mapping->private_lock);
4080 			/*
4081 			 * We do this since we'll remove the pages after we've
4082 			 * removed the eb from the radix tree, so we could race
4083 			 * and have this page now attached to the new eb.  So
4084 			 * only clear page_private if it's still connected to
4085 			 * this eb.
4086 			 */
4087 			if (PagePrivate(page) &&
4088 			    page->private == (unsigned long)eb) {
4089 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4090 				BUG_ON(PageDirty(page));
4091 				BUG_ON(PageWriteback(page));
4092 				/*
4093 				 * We need to make sure we haven't be attached
4094 				 * to a new eb.
4095 				 */
4096 				ClearPagePrivate(page);
4097 				set_page_private(page, 0);
4098 				/* One for the page private */
4099 				page_cache_release(page);
4100 			}
4101 			spin_unlock(&page->mapping->private_lock);
4102 
4103 		}
4104 		if (page) {
4105 			/* One for when we alloced the page */
4106 			page_cache_release(page);
4107 		}
4108 	} while (index != start_idx);
4109 }
4110 
4111 /*
4112  * Helper for releasing the extent buffer.
4113  */
4114 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4115 {
4116 	btrfs_release_extent_buffer_page(eb, 0);
4117 	__free_extent_buffer(eb);
4118 }
4119 
4120 static void check_buffer_tree_ref(struct extent_buffer *eb)
4121 {
4122 	/* the ref bit is tricky.  We have to make sure it is set
4123 	 * if we have the buffer dirty.   Otherwise the
4124 	 * code to free a buffer can end up dropping a dirty
4125 	 * page
4126 	 *
4127 	 * Once the ref bit is set, it won't go away while the
4128 	 * buffer is dirty or in writeback, and it also won't
4129 	 * go away while we have the reference count on the
4130 	 * eb bumped.
4131 	 *
4132 	 * We can't just set the ref bit without bumping the
4133 	 * ref on the eb because free_extent_buffer might
4134 	 * see the ref bit and try to clear it.  If this happens
4135 	 * free_extent_buffer might end up dropping our original
4136 	 * ref by mistake and freeing the page before we are able
4137 	 * to add one more ref.
4138 	 *
4139 	 * So bump the ref count first, then set the bit.  If someone
4140 	 * beat us to it, drop the ref we added.
4141 	 */
4142 	spin_lock(&eb->refs_lock);
4143 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4144 		atomic_inc(&eb->refs);
4145 	spin_unlock(&eb->refs_lock);
4146 }
4147 
4148 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4149 {
4150 	unsigned long num_pages, i;
4151 
4152 	check_buffer_tree_ref(eb);
4153 
4154 	num_pages = num_extent_pages(eb->start, eb->len);
4155 	for (i = 0; i < num_pages; i++) {
4156 		struct page *p = extent_buffer_page(eb, i);
4157 		mark_page_accessed(p);
4158 	}
4159 }
4160 
4161 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4162 					  u64 start, unsigned long len)
4163 {
4164 	unsigned long num_pages = num_extent_pages(start, len);
4165 	unsigned long i;
4166 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4167 	struct extent_buffer *eb;
4168 	struct extent_buffer *exists = NULL;
4169 	struct page *p;
4170 	struct address_space *mapping = tree->mapping;
4171 	int uptodate = 1;
4172 	int ret;
4173 
4174 	rcu_read_lock();
4175 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4176 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4177 		rcu_read_unlock();
4178 		mark_extent_buffer_accessed(eb);
4179 		return eb;
4180 	}
4181 	rcu_read_unlock();
4182 
4183 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4184 	if (!eb)
4185 		return NULL;
4186 
4187 	for (i = 0; i < num_pages; i++, index++) {
4188 		p = find_or_create_page(mapping, index, GFP_NOFS);
4189 		if (!p) {
4190 			WARN_ON(1);
4191 			goto free_eb;
4192 		}
4193 
4194 		spin_lock(&mapping->private_lock);
4195 		if (PagePrivate(p)) {
4196 			/*
4197 			 * We could have already allocated an eb for this page
4198 			 * and attached one so lets see if we can get a ref on
4199 			 * the existing eb, and if we can we know it's good and
4200 			 * we can just return that one, else we know we can just
4201 			 * overwrite page->private.
4202 			 */
4203 			exists = (struct extent_buffer *)p->private;
4204 			if (atomic_inc_not_zero(&exists->refs)) {
4205 				spin_unlock(&mapping->private_lock);
4206 				unlock_page(p);
4207 				page_cache_release(p);
4208 				mark_extent_buffer_accessed(exists);
4209 				goto free_eb;
4210 			}
4211 
4212 			/*
4213 			 * Do this so attach doesn't complain and we need to
4214 			 * drop the ref the old guy had.
4215 			 */
4216 			ClearPagePrivate(p);
4217 			WARN_ON(PageDirty(p));
4218 			page_cache_release(p);
4219 		}
4220 		attach_extent_buffer_page(eb, p);
4221 		spin_unlock(&mapping->private_lock);
4222 		WARN_ON(PageDirty(p));
4223 		mark_page_accessed(p);
4224 		eb->pages[i] = p;
4225 		if (!PageUptodate(p))
4226 			uptodate = 0;
4227 
4228 		/*
4229 		 * see below about how we avoid a nasty race with release page
4230 		 * and why we unlock later
4231 		 */
4232 	}
4233 	if (uptodate)
4234 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4235 again:
4236 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4237 	if (ret)
4238 		goto free_eb;
4239 
4240 	spin_lock(&tree->buffer_lock);
4241 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4242 	if (ret == -EEXIST) {
4243 		exists = radix_tree_lookup(&tree->buffer,
4244 						start >> PAGE_CACHE_SHIFT);
4245 		if (!atomic_inc_not_zero(&exists->refs)) {
4246 			spin_unlock(&tree->buffer_lock);
4247 			radix_tree_preload_end();
4248 			exists = NULL;
4249 			goto again;
4250 		}
4251 		spin_unlock(&tree->buffer_lock);
4252 		radix_tree_preload_end();
4253 		mark_extent_buffer_accessed(exists);
4254 		goto free_eb;
4255 	}
4256 	/* add one reference for the tree */
4257 	check_buffer_tree_ref(eb);
4258 	spin_unlock(&tree->buffer_lock);
4259 	radix_tree_preload_end();
4260 
4261 	/*
4262 	 * there is a race where release page may have
4263 	 * tried to find this extent buffer in the radix
4264 	 * but failed.  It will tell the VM it is safe to
4265 	 * reclaim the, and it will clear the page private bit.
4266 	 * We must make sure to set the page private bit properly
4267 	 * after the extent buffer is in the radix tree so
4268 	 * it doesn't get lost
4269 	 */
4270 	SetPageChecked(eb->pages[0]);
4271 	for (i = 1; i < num_pages; i++) {
4272 		p = extent_buffer_page(eb, i);
4273 		ClearPageChecked(p);
4274 		unlock_page(p);
4275 	}
4276 	unlock_page(eb->pages[0]);
4277 	return eb;
4278 
4279 free_eb:
4280 	for (i = 0; i < num_pages; i++) {
4281 		if (eb->pages[i])
4282 			unlock_page(eb->pages[i]);
4283 	}
4284 
4285 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4286 	btrfs_release_extent_buffer(eb);
4287 	return exists;
4288 }
4289 
4290 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4291 					 u64 start, unsigned long len)
4292 {
4293 	struct extent_buffer *eb;
4294 
4295 	rcu_read_lock();
4296 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4297 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4298 		rcu_read_unlock();
4299 		mark_extent_buffer_accessed(eb);
4300 		return eb;
4301 	}
4302 	rcu_read_unlock();
4303 
4304 	return NULL;
4305 }
4306 
4307 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4308 {
4309 	struct extent_buffer *eb =
4310 			container_of(head, struct extent_buffer, rcu_head);
4311 
4312 	__free_extent_buffer(eb);
4313 }
4314 
4315 /* Expects to have eb->eb_lock already held */
4316 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4317 {
4318 	WARN_ON(atomic_read(&eb->refs) == 0);
4319 	if (atomic_dec_and_test(&eb->refs)) {
4320 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4321 			spin_unlock(&eb->refs_lock);
4322 		} else {
4323 			struct extent_io_tree *tree = eb->tree;
4324 
4325 			spin_unlock(&eb->refs_lock);
4326 
4327 			spin_lock(&tree->buffer_lock);
4328 			radix_tree_delete(&tree->buffer,
4329 					  eb->start >> PAGE_CACHE_SHIFT);
4330 			spin_unlock(&tree->buffer_lock);
4331 		}
4332 
4333 		/* Should be safe to release our pages at this point */
4334 		btrfs_release_extent_buffer_page(eb, 0);
4335 
4336 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4337 		return 1;
4338 	}
4339 	spin_unlock(&eb->refs_lock);
4340 
4341 	return 0;
4342 }
4343 
4344 void free_extent_buffer(struct extent_buffer *eb)
4345 {
4346 	if (!eb)
4347 		return;
4348 
4349 	spin_lock(&eb->refs_lock);
4350 	if (atomic_read(&eb->refs) == 2 &&
4351 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4352 		atomic_dec(&eb->refs);
4353 
4354 	if (atomic_read(&eb->refs) == 2 &&
4355 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4356 	    !extent_buffer_under_io(eb) &&
4357 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4358 		atomic_dec(&eb->refs);
4359 
4360 	/*
4361 	 * I know this is terrible, but it's temporary until we stop tracking
4362 	 * the uptodate bits and such for the extent buffers.
4363 	 */
4364 	release_extent_buffer(eb, GFP_ATOMIC);
4365 }
4366 
4367 void free_extent_buffer_stale(struct extent_buffer *eb)
4368 {
4369 	if (!eb)
4370 		return;
4371 
4372 	spin_lock(&eb->refs_lock);
4373 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4374 
4375 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4376 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4377 		atomic_dec(&eb->refs);
4378 	release_extent_buffer(eb, GFP_NOFS);
4379 }
4380 
4381 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4382 {
4383 	unsigned long i;
4384 	unsigned long num_pages;
4385 	struct page *page;
4386 
4387 	num_pages = num_extent_pages(eb->start, eb->len);
4388 
4389 	for (i = 0; i < num_pages; i++) {
4390 		page = extent_buffer_page(eb, i);
4391 		if (!PageDirty(page))
4392 			continue;
4393 
4394 		lock_page(page);
4395 		WARN_ON(!PagePrivate(page));
4396 
4397 		clear_page_dirty_for_io(page);
4398 		spin_lock_irq(&page->mapping->tree_lock);
4399 		if (!PageDirty(page)) {
4400 			radix_tree_tag_clear(&page->mapping->page_tree,
4401 						page_index(page),
4402 						PAGECACHE_TAG_DIRTY);
4403 		}
4404 		spin_unlock_irq(&page->mapping->tree_lock);
4405 		ClearPageError(page);
4406 		unlock_page(page);
4407 	}
4408 	WARN_ON(atomic_read(&eb->refs) == 0);
4409 }
4410 
4411 int set_extent_buffer_dirty(struct extent_buffer *eb)
4412 {
4413 	unsigned long i;
4414 	unsigned long num_pages;
4415 	int was_dirty = 0;
4416 
4417 	check_buffer_tree_ref(eb);
4418 
4419 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4420 
4421 	num_pages = num_extent_pages(eb->start, eb->len);
4422 	WARN_ON(atomic_read(&eb->refs) == 0);
4423 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4424 
4425 	for (i = 0; i < num_pages; i++)
4426 		set_page_dirty(extent_buffer_page(eb, i));
4427 	return was_dirty;
4428 }
4429 
4430 static int range_straddles_pages(u64 start, u64 len)
4431 {
4432 	if (len < PAGE_CACHE_SIZE)
4433 		return 1;
4434 	if (start & (PAGE_CACHE_SIZE - 1))
4435 		return 1;
4436 	if ((start + len) & (PAGE_CACHE_SIZE - 1))
4437 		return 1;
4438 	return 0;
4439 }
4440 
4441 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4442 {
4443 	unsigned long i;
4444 	struct page *page;
4445 	unsigned long num_pages;
4446 
4447 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4448 	num_pages = num_extent_pages(eb->start, eb->len);
4449 	for (i = 0; i < num_pages; i++) {
4450 		page = extent_buffer_page(eb, i);
4451 		if (page)
4452 			ClearPageUptodate(page);
4453 	}
4454 	return 0;
4455 }
4456 
4457 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4458 {
4459 	unsigned long i;
4460 	struct page *page;
4461 	unsigned long num_pages;
4462 
4463 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4464 	num_pages = num_extent_pages(eb->start, eb->len);
4465 	for (i = 0; i < num_pages; i++) {
4466 		page = extent_buffer_page(eb, i);
4467 		SetPageUptodate(page);
4468 	}
4469 	return 0;
4470 }
4471 
4472 int extent_range_uptodate(struct extent_io_tree *tree,
4473 			  u64 start, u64 end)
4474 {
4475 	struct page *page;
4476 	int ret;
4477 	int pg_uptodate = 1;
4478 	int uptodate;
4479 	unsigned long index;
4480 
4481 	if (range_straddles_pages(start, end - start + 1)) {
4482 		ret = test_range_bit(tree, start, end,
4483 				     EXTENT_UPTODATE, 1, NULL);
4484 		if (ret)
4485 			return 1;
4486 	}
4487 	while (start <= end) {
4488 		index = start >> PAGE_CACHE_SHIFT;
4489 		page = find_get_page(tree->mapping, index);
4490 		if (!page)
4491 			return 1;
4492 		uptodate = PageUptodate(page);
4493 		page_cache_release(page);
4494 		if (!uptodate) {
4495 			pg_uptodate = 0;
4496 			break;
4497 		}
4498 		start += PAGE_CACHE_SIZE;
4499 	}
4500 	return pg_uptodate;
4501 }
4502 
4503 int extent_buffer_uptodate(struct extent_buffer *eb)
4504 {
4505 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4506 }
4507 
4508 int read_extent_buffer_pages(struct extent_io_tree *tree,
4509 			     struct extent_buffer *eb, u64 start, int wait,
4510 			     get_extent_t *get_extent, int mirror_num)
4511 {
4512 	unsigned long i;
4513 	unsigned long start_i;
4514 	struct page *page;
4515 	int err;
4516 	int ret = 0;
4517 	int locked_pages = 0;
4518 	int all_uptodate = 1;
4519 	unsigned long num_pages;
4520 	unsigned long num_reads = 0;
4521 	struct bio *bio = NULL;
4522 	unsigned long bio_flags = 0;
4523 
4524 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4525 		return 0;
4526 
4527 	if (start) {
4528 		WARN_ON(start < eb->start);
4529 		start_i = (start >> PAGE_CACHE_SHIFT) -
4530 			(eb->start >> PAGE_CACHE_SHIFT);
4531 	} else {
4532 		start_i = 0;
4533 	}
4534 
4535 	num_pages = num_extent_pages(eb->start, eb->len);
4536 	for (i = start_i; i < num_pages; i++) {
4537 		page = extent_buffer_page(eb, i);
4538 		if (wait == WAIT_NONE) {
4539 			if (!trylock_page(page))
4540 				goto unlock_exit;
4541 		} else {
4542 			lock_page(page);
4543 		}
4544 		locked_pages++;
4545 		if (!PageUptodate(page)) {
4546 			num_reads++;
4547 			all_uptodate = 0;
4548 		}
4549 	}
4550 	if (all_uptodate) {
4551 		if (start_i == 0)
4552 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4553 		goto unlock_exit;
4554 	}
4555 
4556 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4557 	eb->read_mirror = 0;
4558 	atomic_set(&eb->io_pages, num_reads);
4559 	for (i = start_i; i < num_pages; i++) {
4560 		page = extent_buffer_page(eb, i);
4561 		if (!PageUptodate(page)) {
4562 			ClearPageError(page);
4563 			err = __extent_read_full_page(tree, page,
4564 						      get_extent, &bio,
4565 						      mirror_num, &bio_flags);
4566 			if (err)
4567 				ret = err;
4568 		} else {
4569 			unlock_page(page);
4570 		}
4571 	}
4572 
4573 	if (bio) {
4574 		err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4575 		if (err)
4576 			return err;
4577 	}
4578 
4579 	if (ret || wait != WAIT_COMPLETE)
4580 		return ret;
4581 
4582 	for (i = start_i; i < num_pages; i++) {
4583 		page = extent_buffer_page(eb, i);
4584 		wait_on_page_locked(page);
4585 		if (!PageUptodate(page))
4586 			ret = -EIO;
4587 	}
4588 
4589 	return ret;
4590 
4591 unlock_exit:
4592 	i = start_i;
4593 	while (locked_pages > 0) {
4594 		page = extent_buffer_page(eb, i);
4595 		i++;
4596 		unlock_page(page);
4597 		locked_pages--;
4598 	}
4599 	return ret;
4600 }
4601 
4602 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4603 			unsigned long start,
4604 			unsigned long len)
4605 {
4606 	size_t cur;
4607 	size_t offset;
4608 	struct page *page;
4609 	char *kaddr;
4610 	char *dst = (char *)dstv;
4611 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4612 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4613 
4614 	WARN_ON(start > eb->len);
4615 	WARN_ON(start + len > eb->start + eb->len);
4616 
4617 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4618 
4619 	while (len > 0) {
4620 		page = extent_buffer_page(eb, i);
4621 
4622 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4623 		kaddr = page_address(page);
4624 		memcpy(dst, kaddr + offset, cur);
4625 
4626 		dst += cur;
4627 		len -= cur;
4628 		offset = 0;
4629 		i++;
4630 	}
4631 }
4632 
4633 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4634 			       unsigned long min_len, char **map,
4635 			       unsigned long *map_start,
4636 			       unsigned long *map_len)
4637 {
4638 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4639 	char *kaddr;
4640 	struct page *p;
4641 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4642 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4643 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4644 		PAGE_CACHE_SHIFT;
4645 
4646 	if (i != end_i)
4647 		return -EINVAL;
4648 
4649 	if (i == 0) {
4650 		offset = start_offset;
4651 		*map_start = 0;
4652 	} else {
4653 		offset = 0;
4654 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4655 	}
4656 
4657 	if (start + min_len > eb->len) {
4658 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4659 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4660 		       eb->len, start, min_len);
4661 		WARN_ON(1);
4662 		return -EINVAL;
4663 	}
4664 
4665 	p = extent_buffer_page(eb, i);
4666 	kaddr = page_address(p);
4667 	*map = kaddr + offset;
4668 	*map_len = PAGE_CACHE_SIZE - offset;
4669 	return 0;
4670 }
4671 
4672 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4673 			  unsigned long start,
4674 			  unsigned long len)
4675 {
4676 	size_t cur;
4677 	size_t offset;
4678 	struct page *page;
4679 	char *kaddr;
4680 	char *ptr = (char *)ptrv;
4681 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4682 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4683 	int ret = 0;
4684 
4685 	WARN_ON(start > eb->len);
4686 	WARN_ON(start + len > eb->start + eb->len);
4687 
4688 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4689 
4690 	while (len > 0) {
4691 		page = extent_buffer_page(eb, i);
4692 
4693 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4694 
4695 		kaddr = page_address(page);
4696 		ret = memcmp(ptr, kaddr + offset, cur);
4697 		if (ret)
4698 			break;
4699 
4700 		ptr += cur;
4701 		len -= cur;
4702 		offset = 0;
4703 		i++;
4704 	}
4705 	return ret;
4706 }
4707 
4708 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4709 			 unsigned long start, unsigned long len)
4710 {
4711 	size_t cur;
4712 	size_t offset;
4713 	struct page *page;
4714 	char *kaddr;
4715 	char *src = (char *)srcv;
4716 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4717 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4718 
4719 	WARN_ON(start > eb->len);
4720 	WARN_ON(start + len > eb->start + eb->len);
4721 
4722 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4723 
4724 	while (len > 0) {
4725 		page = extent_buffer_page(eb, i);
4726 		WARN_ON(!PageUptodate(page));
4727 
4728 		cur = min(len, PAGE_CACHE_SIZE - offset);
4729 		kaddr = page_address(page);
4730 		memcpy(kaddr + offset, src, cur);
4731 
4732 		src += cur;
4733 		len -= cur;
4734 		offset = 0;
4735 		i++;
4736 	}
4737 }
4738 
4739 void memset_extent_buffer(struct extent_buffer *eb, char c,
4740 			  unsigned long start, unsigned long len)
4741 {
4742 	size_t cur;
4743 	size_t offset;
4744 	struct page *page;
4745 	char *kaddr;
4746 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4747 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4748 
4749 	WARN_ON(start > eb->len);
4750 	WARN_ON(start + len > eb->start + eb->len);
4751 
4752 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4753 
4754 	while (len > 0) {
4755 		page = extent_buffer_page(eb, i);
4756 		WARN_ON(!PageUptodate(page));
4757 
4758 		cur = min(len, PAGE_CACHE_SIZE - offset);
4759 		kaddr = page_address(page);
4760 		memset(kaddr + offset, c, cur);
4761 
4762 		len -= cur;
4763 		offset = 0;
4764 		i++;
4765 	}
4766 }
4767 
4768 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4769 			unsigned long dst_offset, unsigned long src_offset,
4770 			unsigned long len)
4771 {
4772 	u64 dst_len = dst->len;
4773 	size_t cur;
4774 	size_t offset;
4775 	struct page *page;
4776 	char *kaddr;
4777 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4778 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4779 
4780 	WARN_ON(src->len != dst_len);
4781 
4782 	offset = (start_offset + dst_offset) &
4783 		((unsigned long)PAGE_CACHE_SIZE - 1);
4784 
4785 	while (len > 0) {
4786 		page = extent_buffer_page(dst, i);
4787 		WARN_ON(!PageUptodate(page));
4788 
4789 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4790 
4791 		kaddr = page_address(page);
4792 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4793 
4794 		src_offset += cur;
4795 		len -= cur;
4796 		offset = 0;
4797 		i++;
4798 	}
4799 }
4800 
4801 static void move_pages(struct page *dst_page, struct page *src_page,
4802 		       unsigned long dst_off, unsigned long src_off,
4803 		       unsigned long len)
4804 {
4805 	char *dst_kaddr = page_address(dst_page);
4806 	if (dst_page == src_page) {
4807 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4808 	} else {
4809 		char *src_kaddr = page_address(src_page);
4810 		char *p = dst_kaddr + dst_off + len;
4811 		char *s = src_kaddr + src_off + len;
4812 
4813 		while (len--)
4814 			*--p = *--s;
4815 	}
4816 }
4817 
4818 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4819 {
4820 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4821 	return distance < len;
4822 }
4823 
4824 static void copy_pages(struct page *dst_page, struct page *src_page,
4825 		       unsigned long dst_off, unsigned long src_off,
4826 		       unsigned long len)
4827 {
4828 	char *dst_kaddr = page_address(dst_page);
4829 	char *src_kaddr;
4830 	int must_memmove = 0;
4831 
4832 	if (dst_page != src_page) {
4833 		src_kaddr = page_address(src_page);
4834 	} else {
4835 		src_kaddr = dst_kaddr;
4836 		if (areas_overlap(src_off, dst_off, len))
4837 			must_memmove = 1;
4838 	}
4839 
4840 	if (must_memmove)
4841 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4842 	else
4843 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4844 }
4845 
4846 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4847 			   unsigned long src_offset, unsigned long len)
4848 {
4849 	size_t cur;
4850 	size_t dst_off_in_page;
4851 	size_t src_off_in_page;
4852 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4853 	unsigned long dst_i;
4854 	unsigned long src_i;
4855 
4856 	if (src_offset + len > dst->len) {
4857 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4858 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
4859 		BUG_ON(1);
4860 	}
4861 	if (dst_offset + len > dst->len) {
4862 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4863 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4864 		BUG_ON(1);
4865 	}
4866 
4867 	while (len > 0) {
4868 		dst_off_in_page = (start_offset + dst_offset) &
4869 			((unsigned long)PAGE_CACHE_SIZE - 1);
4870 		src_off_in_page = (start_offset + src_offset) &
4871 			((unsigned long)PAGE_CACHE_SIZE - 1);
4872 
4873 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4874 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4875 
4876 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4877 					       src_off_in_page));
4878 		cur = min_t(unsigned long, cur,
4879 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4880 
4881 		copy_pages(extent_buffer_page(dst, dst_i),
4882 			   extent_buffer_page(dst, src_i),
4883 			   dst_off_in_page, src_off_in_page, cur);
4884 
4885 		src_offset += cur;
4886 		dst_offset += cur;
4887 		len -= cur;
4888 	}
4889 }
4890 
4891 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4892 			   unsigned long src_offset, unsigned long len)
4893 {
4894 	size_t cur;
4895 	size_t dst_off_in_page;
4896 	size_t src_off_in_page;
4897 	unsigned long dst_end = dst_offset + len - 1;
4898 	unsigned long src_end = src_offset + len - 1;
4899 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4900 	unsigned long dst_i;
4901 	unsigned long src_i;
4902 
4903 	if (src_offset + len > dst->len) {
4904 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4905 		       "len %lu len %lu\n", src_offset, len, dst->len);
4906 		BUG_ON(1);
4907 	}
4908 	if (dst_offset + len > dst->len) {
4909 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4910 		       "len %lu len %lu\n", dst_offset, len, dst->len);
4911 		BUG_ON(1);
4912 	}
4913 	if (dst_offset < src_offset) {
4914 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4915 		return;
4916 	}
4917 	while (len > 0) {
4918 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4919 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4920 
4921 		dst_off_in_page = (start_offset + dst_end) &
4922 			((unsigned long)PAGE_CACHE_SIZE - 1);
4923 		src_off_in_page = (start_offset + src_end) &
4924 			((unsigned long)PAGE_CACHE_SIZE - 1);
4925 
4926 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4927 		cur = min(cur, dst_off_in_page + 1);
4928 		move_pages(extent_buffer_page(dst, dst_i),
4929 			   extent_buffer_page(dst, src_i),
4930 			   dst_off_in_page - cur + 1,
4931 			   src_off_in_page - cur + 1, cur);
4932 
4933 		dst_end -= cur;
4934 		src_end -= cur;
4935 		len -= cur;
4936 	}
4937 }
4938 
4939 int try_release_extent_buffer(struct page *page, gfp_t mask)
4940 {
4941 	struct extent_buffer *eb;
4942 
4943 	/*
4944 	 * We need to make sure noboody is attaching this page to an eb right
4945 	 * now.
4946 	 */
4947 	spin_lock(&page->mapping->private_lock);
4948 	if (!PagePrivate(page)) {
4949 		spin_unlock(&page->mapping->private_lock);
4950 		return 1;
4951 	}
4952 
4953 	eb = (struct extent_buffer *)page->private;
4954 	BUG_ON(!eb);
4955 
4956 	/*
4957 	 * This is a little awful but should be ok, we need to make sure that
4958 	 * the eb doesn't disappear out from under us while we're looking at
4959 	 * this page.
4960 	 */
4961 	spin_lock(&eb->refs_lock);
4962 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4963 		spin_unlock(&eb->refs_lock);
4964 		spin_unlock(&page->mapping->private_lock);
4965 		return 0;
4966 	}
4967 	spin_unlock(&page->mapping->private_lock);
4968 
4969 	if ((mask & GFP_NOFS) == GFP_NOFS)
4970 		mask = GFP_NOFS;
4971 
4972 	/*
4973 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4974 	 * so just return, this page will likely be freed soon anyway.
4975 	 */
4976 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4977 		spin_unlock(&eb->refs_lock);
4978 		return 0;
4979 	}
4980 
4981 	return release_extent_buffer(eb, mask);
4982 }
4983