xref: /linux/fs/btrfs/extent_io.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		btrfs_err(fs_info,
79 		       "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 		       eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	/* Last byte contained in bbio + 1 . */
100 	loff_t next_file_offset;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_oe_boundary;
103 	blk_opf_t opf;
104 	/*
105 	 * For data read bios, we attempt to optimize csum lookups if the extent
106 	 * generation is older than the current one. To make this possible, we
107 	 * need to track the maximum generation of an extent in a bio_ctrl to
108 	 * make the decision when submitting the bio.
109 	 *
110 	 * The pattern between do_readpage(), submit_one_bio() and
111 	 * submit_extent_folio() is quite subtle, so tracking this is tricky.
112 	 *
113 	 * As we process extent E, we might submit a bio with existing built up
114 	 * extents before adding E to a new bio, or we might just add E to the
115 	 * bio. As a result, E's generation could apply to the current bio or
116 	 * to the next one, so we need to be careful to update the bio_ctrl's
117 	 * generation with E's only when we are sure E is added to bio_ctrl->bbio
118 	 * in submit_extent_folio().
119 	 *
120 	 * See the comment in btrfs_lookup_bio_sums() for more detail on the
121 	 * need for this optimization.
122 	 */
123 	u64 generation;
124 	btrfs_bio_end_io_t end_io_func;
125 	struct writeback_control *wbc;
126 
127 	/*
128 	 * The sectors of the page which are going to be submitted by
129 	 * extent_writepage_io().
130 	 * This is to avoid touching ranges covered by compression/inline.
131 	 */
132 	unsigned long submit_bitmap;
133 	struct readahead_control *ractl;
134 
135 	/*
136 	 * The start offset of the last used extent map by a read operation.
137 	 *
138 	 * This is for proper compressed read merge.
139 	 * U64_MAX means we are starting the read and have made no progress yet.
140 	 *
141 	 * The current btrfs_bio_is_contig() only uses disk_bytenr as
142 	 * the condition to check if the read can be merged with previous
143 	 * bio, which is not correct. E.g. two file extents pointing to the
144 	 * same extent but with different offset.
145 	 *
146 	 * So here we need to do extra checks to only merge reads that are
147 	 * covered by the same extent map.
148 	 * Just extent_map::start will be enough, as they are unique
149 	 * inside the same inode.
150 	 */
151 	u64 last_em_start;
152 };
153 
154 /*
155  * Helper to set the csum search commit root option for a bio_ctrl's bbio
156  * before submitting the bio.
157  *
158  * Only for use by submit_one_bio().
159  */
bio_set_csum_search_commit_root(struct btrfs_bio_ctrl * bio_ctrl)160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl)
161 {
162 	struct btrfs_bio *bbio = bio_ctrl->bbio;
163 
164 	ASSERT(bbio);
165 
166 	if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode)))
167 		return;
168 
169 	bio_ctrl->bbio->csum_search_commit_root =
170 		(bio_ctrl->generation &&
171 		 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info));
172 }
173 
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
175 {
176 	struct btrfs_bio *bbio = bio_ctrl->bbio;
177 
178 	if (!bbio)
179 		return;
180 
181 	/* Caller should ensure the bio has at least some range added */
182 	ASSERT(bbio->bio.bi_iter.bi_size);
183 
184 	bio_set_csum_search_commit_root(bio_ctrl);
185 
186 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
187 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
188 		btrfs_submit_compressed_read(bbio);
189 	else
190 		btrfs_submit_bbio(bbio, 0);
191 
192 	/* The bbio is owned by the end_io handler now */
193 	bio_ctrl->bbio = NULL;
194 	/*
195 	 * We used the generation to decide whether to lookup csums in the
196 	 * commit_root or not when we called bio_set_csum_search_commit_root()
197 	 * above. Now, reset the generation for the next bio.
198 	 */
199 	bio_ctrl->generation = 0;
200 }
201 
202 /*
203  * Submit or fail the current bio in the bio_ctrl structure.
204  */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
206 {
207 	struct btrfs_bio *bbio = bio_ctrl->bbio;
208 
209 	if (!bbio)
210 		return;
211 
212 	if (ret) {
213 		ASSERT(ret < 0);
214 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
215 		/* The bio is owned by the end_io handler now */
216 		bio_ctrl->bbio = NULL;
217 	} else {
218 		submit_one_bio(bio_ctrl);
219 	}
220 }
221 
extent_buffer_init_cachep(void)222 int __init extent_buffer_init_cachep(void)
223 {
224 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
225 						sizeof(struct extent_buffer), 0, 0,
226 						NULL);
227 	if (!extent_buffer_cache)
228 		return -ENOMEM;
229 
230 	return 0;
231 }
232 
extent_buffer_free_cachep(void)233 void __cold extent_buffer_free_cachep(void)
234 {
235 	/*
236 	 * Make sure all delayed rcu free are flushed before we
237 	 * destroy caches.
238 	 */
239 	rcu_barrier();
240 	kmem_cache_destroy(extent_buffer_cache);
241 }
242 
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)243 static void process_one_folio(struct btrfs_fs_info *fs_info,
244 			      struct folio *folio, const struct folio *locked_folio,
245 			      unsigned long page_ops, u64 start, u64 end)
246 {
247 	u32 len;
248 
249 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
250 	len = end + 1 - start;
251 
252 	if (page_ops & PAGE_SET_ORDERED)
253 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
254 	if (page_ops & PAGE_START_WRITEBACK) {
255 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
256 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
257 	}
258 	if (page_ops & PAGE_END_WRITEBACK)
259 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
260 
261 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
262 		btrfs_folio_end_lock(fs_info, folio, start, len);
263 }
264 
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)265 static void __process_folios_contig(struct address_space *mapping,
266 				    const struct folio *locked_folio, u64 start,
267 				    u64 end, unsigned long page_ops)
268 {
269 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
270 	pgoff_t index = start >> PAGE_SHIFT;
271 	pgoff_t end_index = end >> PAGE_SHIFT;
272 	struct folio_batch fbatch;
273 	int i;
274 
275 	folio_batch_init(&fbatch);
276 	while (index <= end_index) {
277 		int found_folios;
278 
279 		found_folios = filemap_get_folios_contig(mapping, &index,
280 				end_index, &fbatch);
281 		for (i = 0; i < found_folios; i++) {
282 			struct folio *folio = fbatch.folios[i];
283 
284 			process_one_folio(fs_info, folio, locked_folio,
285 					  page_ops, start, end);
286 		}
287 		folio_batch_release(&fbatch);
288 		cond_resched();
289 	}
290 }
291 
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)292 static noinline void unlock_delalloc_folio(const struct inode *inode,
293 					   struct folio *locked_folio,
294 					   u64 start, u64 end)
295 {
296 	ASSERT(locked_folio);
297 
298 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
299 				PAGE_UNLOCK);
300 }
301 
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)302 static noinline int lock_delalloc_folios(struct inode *inode,
303 					 struct folio *locked_folio,
304 					 u64 start, u64 end)
305 {
306 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
307 	struct address_space *mapping = inode->i_mapping;
308 	pgoff_t index = start >> PAGE_SHIFT;
309 	pgoff_t end_index = end >> PAGE_SHIFT;
310 	u64 processed_end = start;
311 	struct folio_batch fbatch;
312 
313 	folio_batch_init(&fbatch);
314 	while (index <= end_index) {
315 		unsigned int found_folios, i;
316 
317 		found_folios = filemap_get_folios_contig(mapping, &index,
318 				end_index, &fbatch);
319 		if (found_folios == 0)
320 			goto out;
321 
322 		for (i = 0; i < found_folios; i++) {
323 			struct folio *folio = fbatch.folios[i];
324 			u64 range_start;
325 			u32 range_len;
326 
327 			if (folio == locked_folio)
328 				continue;
329 
330 			folio_lock(folio);
331 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
332 				folio_unlock(folio);
333 				goto out;
334 			}
335 			range_start = max_t(u64, folio_pos(folio), start);
336 			range_len = min_t(u64, folio_next_pos(folio), end + 1) - range_start;
337 			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
338 
339 			processed_end = range_start + range_len - 1;
340 		}
341 		folio_batch_release(&fbatch);
342 		cond_resched();
343 	}
344 
345 	return 0;
346 out:
347 	folio_batch_release(&fbatch);
348 	if (processed_end > start)
349 		unlock_delalloc_folio(inode, locked_folio, start, processed_end);
350 	return -EAGAIN;
351 }
352 
353 /*
354  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
355  * more than @max_bytes.
356  *
357  * @start:	The original start bytenr to search.
358  *		Will store the extent range start bytenr.
359  * @end:	The original end bytenr of the search range
360  *		Will store the extent range end bytenr.
361  *
362  * Return true if we find a delalloc range which starts inside the original
363  * range, and @start/@end will store the delalloc range start/end.
364  *
365  * Return false if we can't find any delalloc range which starts inside the
366  * original range, and @start/@end will be the non-delalloc range start/end.
367  */
368 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
370 						 struct folio *locked_folio,
371 						 u64 *start, u64 *end)
372 {
373 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
374 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
375 	const u64 orig_start = *start;
376 	const u64 orig_end = *end;
377 	u64 max_bytes = fs_info->max_extent_size;
378 	u64 delalloc_start;
379 	u64 delalloc_end;
380 	bool found;
381 	struct extent_state *cached_state = NULL;
382 	int ret;
383 	int loops = 0;
384 
385 	/* Caller should pass a valid @end to indicate the search range end */
386 	ASSERT(orig_end > orig_start);
387 
388 	/* The range should at least cover part of the folio */
389 	ASSERT(!(orig_start >= folio_next_pos(locked_folio) ||
390 		 orig_end <= folio_pos(locked_folio)));
391 again:
392 	/* step one, find a bunch of delalloc bytes starting at start */
393 	delalloc_start = *start;
394 	delalloc_end = 0;
395 
396 	/*
397 	 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can
398 	 * return early without handling any dirty ranges.
399 	 */
400 	ASSERT(max_bytes >= fs_info->sectorsize);
401 
402 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
403 					  max_bytes, &cached_state);
404 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
405 		*start = delalloc_start;
406 
407 		/* @delalloc_end can be -1, never go beyond @orig_end */
408 		*end = min(delalloc_end, orig_end);
409 		btrfs_free_extent_state(cached_state);
410 		return false;
411 	}
412 
413 	/*
414 	 * start comes from the offset of locked_folio.  We have to lock
415 	 * folios in order, so we can't process delalloc bytes before
416 	 * locked_folio
417 	 */
418 	if (delalloc_start < *start)
419 		delalloc_start = *start;
420 
421 	/*
422 	 * make sure to limit the number of folios we try to lock down
423 	 */
424 	if (delalloc_end + 1 - delalloc_start > max_bytes)
425 		delalloc_end = delalloc_start + max_bytes - 1;
426 
427 	/* step two, lock all the folios after the folios that has start */
428 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
429 				   delalloc_end);
430 	ASSERT(!ret || ret == -EAGAIN);
431 	if (ret == -EAGAIN) {
432 		/*
433 		 * Some of the folios are gone, lets avoid looping by
434 		 * shortening the size of the delalloc range we're searching.
435 		 */
436 		btrfs_free_extent_state(cached_state);
437 		cached_state = NULL;
438 		if (!loops) {
439 			max_bytes = fs_info->sectorsize;
440 			loops = 1;
441 			goto again;
442 		} else {
443 			found = false;
444 			goto out_failed;
445 		}
446 	}
447 
448 	/* step three, lock the state bits for the whole range */
449 	btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
450 
451 	/* then test to make sure it is all still delalloc */
452 	ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
453 				   EXTENT_DELALLOC, cached_state);
454 
455 	btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
456 	if (!ret) {
457 		unlock_delalloc_folio(inode, locked_folio, delalloc_start,
458 				      delalloc_end);
459 		cond_resched();
460 		goto again;
461 	}
462 	*start = delalloc_start;
463 	*end = delalloc_end;
464 out_failed:
465 	return found;
466 }
467 
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)468 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
469 				  const struct folio *locked_folio,
470 				  struct extent_state **cached,
471 				  u32 clear_bits, unsigned long page_ops)
472 {
473 	btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
474 
475 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
476 				end, page_ops);
477 }
478 
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)479 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
480 {
481 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
482 
483 	if (!fsverity_active(folio->mapping->host) ||
484 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
485 	    start >= i_size_read(folio->mapping->host))
486 		return true;
487 	return fsverity_verify_folio(folio);
488 }
489 
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)490 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
491 {
492 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
493 
494 	ASSERT(folio_pos(folio) <= start &&
495 	       start + len <= folio_next_pos(folio));
496 
497 	if (uptodate && btrfs_verify_folio(folio, start, len))
498 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
499 	else
500 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
501 
502 	if (!btrfs_is_subpage(fs_info, folio))
503 		folio_unlock(folio);
504 	else
505 		btrfs_folio_end_lock(fs_info, folio, start, len);
506 }
507 
508 /*
509  * After a write IO is done, we need to:
510  *
511  * - clear the uptodate bits on error
512  * - clear the writeback bits in the extent tree for the range
513  * - filio_end_writeback()  if there is no more pending io for the folio
514  *
515  * Scheduling is not allowed, so the extent state tree is expected
516  * to have one and only one object corresponding to this IO.
517  */
end_bbio_data_write(struct btrfs_bio * bbio)518 static void end_bbio_data_write(struct btrfs_bio *bbio)
519 {
520 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
521 	struct bio *bio = &bbio->bio;
522 	int error = blk_status_to_errno(bio->bi_status);
523 	struct folio_iter fi;
524 	const u32 sectorsize = fs_info->sectorsize;
525 
526 	ASSERT(!bio_flagged(bio, BIO_CLONED));
527 	bio_for_each_folio_all(fi, bio) {
528 		struct folio *folio = fi.folio;
529 		u64 start = folio_pos(folio) + fi.offset;
530 		u32 len = fi.length;
531 
532 		/* Our read/write should always be sector aligned. */
533 		if (!IS_ALIGNED(fi.offset, sectorsize))
534 			btrfs_err(fs_info,
535 		"partial page write in btrfs with offset %zu and length %zu",
536 				  fi.offset, fi.length);
537 		else if (!IS_ALIGNED(fi.length, sectorsize))
538 			btrfs_info(fs_info,
539 		"incomplete page write with offset %zu and length %zu",
540 				   fi.offset, fi.length);
541 
542 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
543 					    !error);
544 		if (error)
545 			mapping_set_error(folio->mapping, error);
546 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
547 	}
548 
549 	bio_put(bio);
550 }
551 
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)552 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
553 {
554 	ASSERT(folio_test_locked(folio));
555 	if (!btrfs_is_subpage(fs_info, folio))
556 		return;
557 
558 	ASSERT(folio_test_private(folio));
559 	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
560 }
561 
562 /*
563  * After a data read IO is done, we need to:
564  *
565  * - clear the uptodate bits on error
566  * - set the uptodate bits if things worked
567  * - set the folio up to date if all extents in the tree are uptodate
568  * - clear the lock bit in the extent tree
569  * - unlock the folio if there are no other extents locked for it
570  *
571  * Scheduling is not allowed, so the extent state tree is expected
572  * to have one and only one object corresponding to this IO.
573  */
end_bbio_data_read(struct btrfs_bio * bbio)574 static void end_bbio_data_read(struct btrfs_bio *bbio)
575 {
576 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
577 	struct bio *bio = &bbio->bio;
578 	struct folio_iter fi;
579 
580 	ASSERT(!bio_flagged(bio, BIO_CLONED));
581 	bio_for_each_folio_all(fi, &bbio->bio) {
582 		bool uptodate = !bio->bi_status;
583 		struct folio *folio = fi.folio;
584 		struct inode *inode = folio->mapping->host;
585 		u64 start = folio_pos(folio) + fi.offset;
586 
587 		btrfs_debug(fs_info,
588 			"%s: bi_sector=%llu, err=%d, mirror=%u",
589 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
590 			bbio->mirror_num);
591 
592 
593 		if (likely(uptodate)) {
594 			u64 end = start + fi.length - 1;
595 			loff_t i_size = i_size_read(inode);
596 
597 			/*
598 			 * Zero out the remaining part if this range straddles
599 			 * i_size.
600 			 *
601 			 * Here we should only zero the range inside the folio,
602 			 * not touch anything else.
603 			 *
604 			 * NOTE: i_size is exclusive while end is inclusive and
605 			 * folio_contains() takes PAGE_SIZE units.
606 			 */
607 			if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
608 			    i_size <= end) {
609 				u32 zero_start = max(offset_in_folio(folio, i_size),
610 						     offset_in_folio(folio, start));
611 				u32 zero_len = offset_in_folio(folio, end) + 1 -
612 					       zero_start;
613 
614 				folio_zero_range(folio, zero_start, zero_len);
615 			}
616 		}
617 
618 		/* Update page status and unlock. */
619 		end_folio_read(folio, uptodate, start, fi.length);
620 	}
621 	bio_put(bio);
622 }
623 
624 /*
625  * Populate every free slot in a provided array with folios using GFP_NOFS.
626  *
627  * @nr_folios:   number of folios to allocate
628  * @order:	 the order of the folios to be allocated
629  * @folio_array: the array to fill with folios; any existing non-NULL entries in
630  *		 the array will be skipped
631  *
632  * Return: 0        if all folios were able to be allocated;
633  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
634  *                  the array slots zeroed
635  */
btrfs_alloc_folio_array(unsigned int nr_folios,unsigned int order,struct folio ** folio_array)636 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order,
637 			    struct folio **folio_array)
638 {
639 	for (int i = 0; i < nr_folios; i++) {
640 		if (folio_array[i])
641 			continue;
642 		folio_array[i] = folio_alloc(GFP_NOFS, order);
643 		if (!folio_array[i])
644 			goto error;
645 	}
646 	return 0;
647 error:
648 	for (int i = 0; i < nr_folios; i++) {
649 		if (folio_array[i])
650 			folio_put(folio_array[i]);
651 		folio_array[i] = NULL;
652 	}
653 	return -ENOMEM;
654 }
655 
656 /*
657  * Populate every free slot in a provided array with pages, using GFP_NOFS.
658  *
659  * @nr_pages:   number of pages to allocate
660  * @page_array: the array to fill with pages; any existing non-null entries in
661  *		the array will be skipped
662  * @nofail:	whether using __GFP_NOFAIL flag
663  *
664  * Return: 0        if all pages were able to be allocated;
665  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
666  *                  the array slots zeroed
667  */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)668 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
669 			   bool nofail)
670 {
671 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
672 	unsigned int allocated;
673 
674 	for (allocated = 0; allocated < nr_pages;) {
675 		unsigned int last = allocated;
676 
677 		allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
678 		if (unlikely(allocated == last)) {
679 			/* No progress, fail and do cleanup. */
680 			for (int i = 0; i < allocated; i++) {
681 				__free_page(page_array[i]);
682 				page_array[i] = NULL;
683 			}
684 			return -ENOMEM;
685 		}
686 	}
687 	return 0;
688 }
689 
690 /*
691  * Populate needed folios for the extent buffer.
692  *
693  * For now, the folios populated are always in order 0 (aka, single page).
694  */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)695 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
696 {
697 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
698 	int num_pages = num_extent_pages(eb);
699 	int ret;
700 
701 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
702 	if (ret < 0)
703 		return ret;
704 
705 	for (int i = 0; i < num_pages; i++)
706 		eb->folios[i] = page_folio(page_array[i]);
707 	eb->folio_size = PAGE_SIZE;
708 	eb->folio_shift = PAGE_SHIFT;
709 	return 0;
710 }
711 
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)712 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
713 				u64 disk_bytenr, loff_t file_offset)
714 {
715 	struct bio *bio = &bio_ctrl->bbio->bio;
716 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
717 
718 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
719 		/*
720 		 * For compression, all IO should have its logical bytenr set
721 		 * to the starting bytenr of the compressed extent.
722 		 */
723 		return bio->bi_iter.bi_sector == sector;
724 	}
725 
726 	/*
727 	 * To merge into a bio both the disk sector and the logical offset in
728 	 * the file need to be contiguous.
729 	 */
730 	return bio_ctrl->next_file_offset == file_offset &&
731 		bio_end_sector(bio) == sector;
732 }
733 
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)734 static void alloc_new_bio(struct btrfs_inode *inode,
735 			  struct btrfs_bio_ctrl *bio_ctrl,
736 			  u64 disk_bytenr, u64 file_offset)
737 {
738 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
739 	struct btrfs_bio *bbio;
740 
741 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, inode,
742 			       file_offset, bio_ctrl->end_io_func, NULL);
743 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
744 	bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
745 	bio_ctrl->bbio = bbio;
746 	bio_ctrl->len_to_oe_boundary = U32_MAX;
747 	bio_ctrl->next_file_offset = file_offset;
748 
749 	/* Limit data write bios to the ordered boundary. */
750 	if (bio_ctrl->wbc) {
751 		struct btrfs_ordered_extent *ordered;
752 
753 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
754 		if (ordered) {
755 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
756 					ordered->file_offset +
757 					ordered->disk_num_bytes - file_offset);
758 			bbio->ordered = ordered;
759 		}
760 
761 		/*
762 		 * Pick the last added device to support cgroup writeback.  For
763 		 * multi-device file systems this means blk-cgroup policies have
764 		 * to always be set on the last added/replaced device.
765 		 * This is a bit odd but has been like that for a long time.
766 		 */
767 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
768 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
769 	}
770 }
771 
772 /*
773  * @disk_bytenr: logical bytenr where the write will be
774  * @page:	page to add to the bio
775  * @size:	portion of page that we want to write to
776  * @pg_offset:	offset of the new bio or to check whether we are adding
777  *              a contiguous page to the previous one
778  * @read_em_generation: generation of the extent_map we are submitting
779  *			(only used for read)
780  *
781  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
782  * new one in @bio_ctrl->bbio.
783  * The mirror number for this IO should already be initialized in
784  * @bio_ctrl->mirror_num.
785  */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset,u64 read_em_generation)786 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
787 			       u64 disk_bytenr, struct folio *folio,
788 			       size_t size, unsigned long pg_offset,
789 			       u64 read_em_generation)
790 {
791 	struct btrfs_inode *inode = folio_to_inode(folio);
792 	loff_t file_offset = folio_pos(folio) + pg_offset;
793 
794 	ASSERT(pg_offset + size <= folio_size(folio));
795 	ASSERT(bio_ctrl->end_io_func);
796 
797 	if (bio_ctrl->bbio &&
798 	    !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
799 		submit_one_bio(bio_ctrl);
800 
801 	do {
802 		u32 len = size;
803 
804 		/* Allocate new bio if needed */
805 		if (!bio_ctrl->bbio)
806 			alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
807 
808 		/* Cap to the current ordered extent boundary if there is one. */
809 		if (len > bio_ctrl->len_to_oe_boundary) {
810 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
811 			ASSERT(is_data_inode(inode));
812 			len = bio_ctrl->len_to_oe_boundary;
813 		}
814 
815 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
816 			/* bio full: move on to a new one */
817 			submit_one_bio(bio_ctrl);
818 			continue;
819 		}
820 		/*
821 		 * Now that the folio is definitely added to the bio, include its
822 		 * generation in the max generation calculation.
823 		 */
824 		bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation);
825 		bio_ctrl->next_file_offset += len;
826 
827 		if (bio_ctrl->wbc)
828 			wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
829 
830 		size -= len;
831 		pg_offset += len;
832 		disk_bytenr += len;
833 		file_offset += len;
834 
835 		/*
836 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
837 		 * sector aligned.  alloc_new_bio() then sets it to the end of
838 		 * our ordered extent for writes into zoned devices.
839 		 *
840 		 * When len_to_oe_boundary is tracking an ordered extent, we
841 		 * trust the ordered extent code to align things properly, and
842 		 * the check above to cap our write to the ordered extent
843 		 * boundary is correct.
844 		 *
845 		 * When len_to_oe_boundary is U32_MAX, the cap above would
846 		 * result in a 4095 byte IO for the last folio right before
847 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
848 		 * the checks required to make sure we don't overflow the bio,
849 		 * and we should just ignore len_to_oe_boundary completely
850 		 * unless we're using it to track an ordered extent.
851 		 *
852 		 * It's pretty hard to make a bio sized U32_MAX, but it can
853 		 * happen when the page cache is able to feed us contiguous
854 		 * folios for large extents.
855 		 */
856 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857 			bio_ctrl->len_to_oe_boundary -= len;
858 
859 		/* Ordered extent boundary: move on to a new bio. */
860 		if (bio_ctrl->len_to_oe_boundary == 0)
861 			submit_one_bio(bio_ctrl);
862 	} while (size);
863 }
864 
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)865 static int attach_extent_buffer_folio(struct extent_buffer *eb,
866 				      struct folio *folio,
867 				      struct btrfs_folio_state *prealloc)
868 {
869 	struct btrfs_fs_info *fs_info = eb->fs_info;
870 	int ret = 0;
871 
872 	/*
873 	 * If the page is mapped to btree inode, we should hold the private
874 	 * lock to prevent race.
875 	 * For cloned or dummy extent buffers, their pages are not mapped and
876 	 * will not race with any other ebs.
877 	 */
878 	if (folio->mapping)
879 		lockdep_assert_held(&folio->mapping->i_private_lock);
880 
881 	if (!btrfs_meta_is_subpage(fs_info)) {
882 		if (!folio_test_private(folio))
883 			folio_attach_private(folio, eb);
884 		else
885 			WARN_ON(folio_get_private(folio) != eb);
886 		return 0;
887 	}
888 
889 	/* Already mapped, just free prealloc */
890 	if (folio_test_private(folio)) {
891 		btrfs_free_folio_state(prealloc);
892 		return 0;
893 	}
894 
895 	if (prealloc)
896 		/* Has preallocated memory for subpage */
897 		folio_attach_private(folio, prealloc);
898 	else
899 		/* Do new allocation to attach subpage */
900 		ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
901 	return ret;
902 }
903 
set_folio_extent_mapped(struct folio * folio)904 int set_folio_extent_mapped(struct folio *folio)
905 {
906 	struct btrfs_fs_info *fs_info;
907 
908 	ASSERT(folio->mapping);
909 
910 	if (folio_test_private(folio))
911 		return 0;
912 
913 	fs_info = folio_to_fs_info(folio);
914 
915 	if (btrfs_is_subpage(fs_info, folio))
916 		return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
917 
918 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
919 	return 0;
920 }
921 
clear_folio_extent_mapped(struct folio * folio)922 void clear_folio_extent_mapped(struct folio *folio)
923 {
924 	struct btrfs_fs_info *fs_info;
925 
926 	ASSERT(folio->mapping);
927 
928 	if (!folio_test_private(folio))
929 		return;
930 
931 	fs_info = folio_to_fs_info(folio);
932 	if (btrfs_is_subpage(fs_info, folio))
933 		return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
934 
935 	folio_detach_private(folio);
936 }
937 
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)938 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
939 					 struct folio *folio, u64 start,
940 					 u64 len, struct extent_map **em_cached)
941 {
942 	struct extent_map *em;
943 
944 	ASSERT(em_cached);
945 
946 	if (*em_cached) {
947 		em = *em_cached;
948 		if (btrfs_extent_map_in_tree(em) && start >= em->start &&
949 		    start < btrfs_extent_map_end(em)) {
950 			refcount_inc(&em->refs);
951 			return em;
952 		}
953 
954 		btrfs_free_extent_map(em);
955 		*em_cached = NULL;
956 	}
957 
958 	em = btrfs_get_extent(inode, folio, start, len);
959 	if (!IS_ERR(em)) {
960 		BUG_ON(*em_cached);
961 		refcount_inc(&em->refs);
962 		*em_cached = em;
963 	}
964 
965 	return em;
966 }
967 
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)968 static void btrfs_readahead_expand(struct readahead_control *ractl,
969 				   const struct extent_map *em)
970 {
971 	const u64 ra_pos = readahead_pos(ractl);
972 	const u64 ra_end = ra_pos + readahead_length(ractl);
973 	const u64 em_end = em->start + em->len;
974 
975 	/* No expansion for holes and inline extents. */
976 	if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
977 		return;
978 
979 	ASSERT(em_end >= ra_pos,
980 	       "extent_map %llu %llu ends before current readahead position %llu",
981 	       em->start, em->len, ra_pos);
982 	if (em_end > ra_end)
983 		readahead_expand(ractl, ra_pos, em_end - ra_pos);
984 }
985 
986 /*
987  * basic readpage implementation.  Locked extent state structs are inserted
988  * into the tree that are removed when the IO is done (by the end_io
989  * handlers)
990  * XXX JDM: This needs looking at to ensure proper page locking
991  * return 0 on success, otherwise return error
992  */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl)993 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
994 			     struct btrfs_bio_ctrl *bio_ctrl)
995 {
996 	struct inode *inode = folio->mapping->host;
997 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
998 	u64 start = folio_pos(folio);
999 	const u64 end = start + folio_size(folio) - 1;
1000 	u64 extent_offset;
1001 	u64 last_byte = i_size_read(inode);
1002 	struct extent_map *em;
1003 	int ret = 0;
1004 	const size_t blocksize = fs_info->sectorsize;
1005 
1006 	ret = set_folio_extent_mapped(folio);
1007 	if (ret < 0) {
1008 		folio_unlock(folio);
1009 		return ret;
1010 	}
1011 
1012 	if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
1013 		size_t zero_offset = offset_in_folio(folio, last_byte);
1014 
1015 		if (zero_offset)
1016 			folio_zero_range(folio, zero_offset,
1017 					 folio_size(folio) - zero_offset);
1018 	}
1019 	bio_ctrl->end_io_func = end_bbio_data_read;
1020 	begin_folio_read(fs_info, folio);
1021 	for (u64 cur = start; cur <= end; cur += blocksize) {
1022 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1023 		unsigned long pg_offset = offset_in_folio(folio, cur);
1024 		bool force_bio_submit = false;
1025 		u64 disk_bytenr;
1026 		u64 block_start;
1027 		u64 em_gen;
1028 
1029 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1030 		if (cur >= last_byte) {
1031 			folio_zero_range(folio, pg_offset, end - cur + 1);
1032 			end_folio_read(folio, true, cur, end - cur + 1);
1033 			break;
1034 		}
1035 		if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1036 			end_folio_read(folio, true, cur, blocksize);
1037 			continue;
1038 		}
1039 		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
1040 		if (IS_ERR(em)) {
1041 			end_folio_read(folio, false, cur, end + 1 - cur);
1042 			return PTR_ERR(em);
1043 		}
1044 		extent_offset = cur - em->start;
1045 		BUG_ON(btrfs_extent_map_end(em) <= cur);
1046 		BUG_ON(end < cur);
1047 
1048 		compress_type = btrfs_extent_map_compression(em);
1049 
1050 		/*
1051 		 * Only expand readahead for extents which are already creating
1052 		 * the pages anyway in add_ra_bio_pages, which is compressed
1053 		 * extents in the non subpage case.
1054 		 */
1055 		if (bio_ctrl->ractl &&
1056 		    !btrfs_is_subpage(fs_info, folio) &&
1057 		    compress_type != BTRFS_COMPRESS_NONE)
1058 			btrfs_readahead_expand(bio_ctrl->ractl, em);
1059 
1060 		if (compress_type != BTRFS_COMPRESS_NONE)
1061 			disk_bytenr = em->disk_bytenr;
1062 		else
1063 			disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1064 
1065 		if (em->flags & EXTENT_FLAG_PREALLOC)
1066 			block_start = EXTENT_MAP_HOLE;
1067 		else
1068 			block_start = btrfs_extent_map_block_start(em);
1069 
1070 		/*
1071 		 * If we have a file range that points to a compressed extent
1072 		 * and it's followed by a consecutive file range that points
1073 		 * to the same compressed extent (possibly with a different
1074 		 * offset and/or length, so it either points to the whole extent
1075 		 * or only part of it), we must make sure we do not submit a
1076 		 * single bio to populate the folios for the 2 ranges because
1077 		 * this makes the compressed extent read zero out the folios
1078 		 * belonging to the 2nd range. Imagine the following scenario:
1079 		 *
1080 		 *  File layout
1081 		 *  [0 - 8K]                     [8K - 24K]
1082 		 *    |                               |
1083 		 *    |                               |
1084 		 * points to extent X,         points to extent X,
1085 		 * offset 4K, length of 8K     offset 0, length 16K
1086 		 *
1087 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1088 		 *
1089 		 * If the bio to read the compressed extent covers both ranges,
1090 		 * it will decompress extent X into the folios belonging to the
1091 		 * first range and then it will stop, zeroing out the remaining
1092 		 * folios that belong to the other range that points to extent X.
1093 		 * So here we make sure we submit 2 bios, one for the first
1094 		 * range and another one for the third range. Both will target
1095 		 * the same physical extent from disk, but we can't currently
1096 		 * make the compressed bio endio callback populate the folios
1097 		 * for both ranges because each compressed bio is tightly
1098 		 * coupled with a single extent map, and each range can have
1099 		 * an extent map with a different offset value relative to the
1100 		 * uncompressed data of our extent and different lengths. This
1101 		 * is a corner case so we prioritize correctness over
1102 		 * non-optimal behavior (submitting 2 bios for the same extent).
1103 		 */
1104 		if (compress_type != BTRFS_COMPRESS_NONE &&
1105 		    bio_ctrl->last_em_start != U64_MAX &&
1106 		    bio_ctrl->last_em_start != em->start)
1107 			force_bio_submit = true;
1108 
1109 		bio_ctrl->last_em_start = em->start;
1110 
1111 		em_gen = em->generation;
1112 		btrfs_free_extent_map(em);
1113 		em = NULL;
1114 
1115 		/* we've found a hole, just zero and go on */
1116 		if (block_start == EXTENT_MAP_HOLE) {
1117 			folio_zero_range(folio, pg_offset, blocksize);
1118 			end_folio_read(folio, true, cur, blocksize);
1119 			continue;
1120 		}
1121 		/* the get_extent function already copied into the folio */
1122 		if (block_start == EXTENT_MAP_INLINE) {
1123 			end_folio_read(folio, true, cur, blocksize);
1124 			continue;
1125 		}
1126 
1127 		if (bio_ctrl->compress_type != compress_type) {
1128 			submit_one_bio(bio_ctrl);
1129 			bio_ctrl->compress_type = compress_type;
1130 		}
1131 
1132 		if (force_bio_submit)
1133 			submit_one_bio(bio_ctrl);
1134 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1135 				    pg_offset, em_gen);
1136 	}
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1142  *
1143  * @fileoff:	Both input and output.
1144  *		Input as the file offset where the check should start at.
1145  *		Output as where the next check should start at,
1146  *		if the function returns true.
1147  *
1148  * Return true if we can skip to @fileoff. The caller needs to check the new
1149  * @fileoff value to make sure it covers the full range, before skipping the
1150  * full OE.
1151  *
1152  * Return false if we must wait for the ordered extent.
1153  */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1154 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1155 				       struct btrfs_ordered_extent *ordered,
1156 				       u64 *fileoff)
1157 {
1158 	const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1159 	struct folio *folio;
1160 	const u32 blocksize = fs_info->sectorsize;
1161 	u64 cur = *fileoff;
1162 	bool ret;
1163 
1164 	folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1165 
1166 	/*
1167 	 * We should have locked the folio(s) for range [start, end], thus
1168 	 * there must be a folio and it must be locked.
1169 	 */
1170 	ASSERT(!IS_ERR(folio));
1171 	ASSERT(folio_test_locked(folio));
1172 
1173 	/*
1174 	 * There are several cases for the folio and OE combination:
1175 	 *
1176 	 * 1) Folio has no private flag
1177 	 *    The OE has all its IO done but not yet finished, and folio got
1178 	 *    invalidated.
1179 	 *
1180 	 * Have we have to wait for the OE to finish, as it may contain the
1181 	 * to-be-inserted data checksum.
1182 	 * Without the data checksum inserted into the csum tree, read will
1183 	 * just fail with missing csum.
1184 	 */
1185 	if (!folio_test_private(folio)) {
1186 		ret = false;
1187 		goto out;
1188 	}
1189 
1190 	/*
1191 	 * 2) The first block is DIRTY.
1192 	 *
1193 	 * This means the OE is created by some other folios whose file pos is
1194 	 * before this one. And since we are holding the folio lock, the writeback
1195 	 * of this folio cannot start.
1196 	 *
1197 	 * We must skip the whole OE, because it will never start until we
1198 	 * finished our folio read and unlocked the folio.
1199 	 */
1200 	if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1201 		u64 range_len = umin(folio_next_pos(folio),
1202 				    ordered->file_offset + ordered->num_bytes) - cur;
1203 
1204 		ret = true;
1205 		/*
1206 		 * At least inside the folio, all the remaining blocks should
1207 		 * also be dirty.
1208 		 */
1209 		ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1210 		*fileoff = ordered->file_offset + ordered->num_bytes;
1211 		goto out;
1212 	}
1213 
1214 	/*
1215 	 * 3) The first block is uptodate.
1216 	 *
1217 	 * At least the first block can be skipped, but we are still not fully
1218 	 * sure. E.g. if the OE has some other folios in the range that cannot
1219 	 * be skipped.
1220 	 * So we return true and update @next_ret to the OE/folio boundary.
1221 	 */
1222 	if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1223 		u64 range_len = umin(folio_next_pos(folio),
1224 				    ordered->file_offset + ordered->num_bytes) - cur;
1225 
1226 		/*
1227 		 * The whole range to the OE end or folio boundary should also
1228 		 * be uptodate.
1229 		 */
1230 		ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1231 		ret = true;
1232 		*fileoff = cur + range_len;
1233 		goto out;
1234 	}
1235 
1236 	/*
1237 	 * 4) The first block is not uptodate.
1238 	 *
1239 	 * This means the folio is invalidated after the writeback was finished,
1240 	 * but by some other operations (e.g. block aligned buffered write) the
1241 	 * folio is inserted into filemap.
1242 	 * Very much the same as case 1).
1243 	 */
1244 	ret = false;
1245 out:
1246 	folio_put(folio);
1247 	return ret;
1248 }
1249 
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1250 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1251 				    struct btrfs_ordered_extent *ordered,
1252 				    u64 start, u64 end)
1253 {
1254 	const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1255 	u64 cur = max(start, ordered->file_offset);
1256 
1257 	while (cur < range_end) {
1258 		bool can_skip;
1259 
1260 		can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1261 		if (!can_skip)
1262 			return false;
1263 	}
1264 	return true;
1265 }
1266 
1267 /*
1268  * Locking helper to make sure we get a stable view of extent maps for the
1269  * involved range.
1270  *
1271  * This is for folio read paths (read and readahead), thus the involved range
1272  * should have all the folios locked.
1273  */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1274 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1275 				  struct extent_state **cached_state)
1276 {
1277 	u64 cur_pos;
1278 
1279 	/* Caller must provide a valid @cached_state. */
1280 	ASSERT(cached_state);
1281 
1282 	/* The range must at least be page aligned, as all read paths are folio based. */
1283 	ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1284 	ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1285 
1286 again:
1287 	btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1288 	cur_pos = start;
1289 	while (cur_pos < end) {
1290 		struct btrfs_ordered_extent *ordered;
1291 
1292 		ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1293 						     end - cur_pos + 1);
1294 		/*
1295 		 * No ordered extents in the range, and we hold the extent lock,
1296 		 * no one can modify the extent maps in the range, we're safe to return.
1297 		 */
1298 		if (!ordered)
1299 			break;
1300 
1301 		/* Check if we can skip waiting for the whole OE. */
1302 		if (can_skip_ordered_extent(inode, ordered, start, end)) {
1303 			cur_pos = min(ordered->file_offset + ordered->num_bytes,
1304 				      end + 1);
1305 			btrfs_put_ordered_extent(ordered);
1306 			continue;
1307 		}
1308 
1309 		/* Now wait for the OE to finish. */
1310 		btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1311 		btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1312 		btrfs_put_ordered_extent(ordered);
1313 		/* We have unlocked the whole range, restart from the beginning. */
1314 		goto again;
1315 	}
1316 }
1317 
btrfs_read_folio(struct file * file,struct folio * folio)1318 int btrfs_read_folio(struct file *file, struct folio *folio)
1319 {
1320 	struct btrfs_inode *inode = folio_to_inode(folio);
1321 	const u64 start = folio_pos(folio);
1322 	const u64 end = start + folio_size(folio) - 1;
1323 	struct extent_state *cached_state = NULL;
1324 	struct btrfs_bio_ctrl bio_ctrl = {
1325 		.opf = REQ_OP_READ,
1326 		.last_em_start = U64_MAX,
1327 	};
1328 	struct extent_map *em_cached = NULL;
1329 	int ret;
1330 
1331 	lock_extents_for_read(inode, start, end, &cached_state);
1332 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
1333 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1334 
1335 	btrfs_free_extent_map(em_cached);
1336 
1337 	/*
1338 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1339 	 * bio to do the cleanup.
1340 	 */
1341 	submit_one_bio(&bio_ctrl);
1342 	return ret;
1343 }
1344 
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1345 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1346 				u64 start, u32 len)
1347 {
1348 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1349 	const u64 folio_start = folio_pos(folio);
1350 	unsigned int start_bit;
1351 	unsigned int nbits;
1352 
1353 	ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1354 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1355 	nbits = len >> fs_info->sectorsize_bits;
1356 	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1357 	bitmap_set(delalloc_bitmap, start_bit, nbits);
1358 }
1359 
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1360 static bool find_next_delalloc_bitmap(struct folio *folio,
1361 				      unsigned long *delalloc_bitmap, u64 start,
1362 				      u64 *found_start, u32 *found_len)
1363 {
1364 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1365 	const u64 folio_start = folio_pos(folio);
1366 	const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1367 	unsigned int start_bit;
1368 	unsigned int first_zero;
1369 	unsigned int first_set;
1370 
1371 	ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1372 
1373 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1374 	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1375 	if (first_set >= bitmap_size)
1376 		return false;
1377 
1378 	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1379 	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1380 	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1381 	return true;
1382 }
1383 
1384 /*
1385  * Do all of the delayed allocation setup.
1386  *
1387  * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1388  * The @folio should no longer be touched (treat it as already unlocked).
1389  *
1390  * Return 0 if there is still dirty block that needs to be submitted through
1391  * extent_writepage_io().
1392  * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1393  * submitted, and @folio is still kept locked.
1394  *
1395  * Return <0 if there is any error hit.
1396  * Any allocated ordered extent range covering this folio will be marked
1397  * finished (IOERR), and @folio is still kept locked.
1398  */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1399 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1400 						 struct folio *folio,
1401 						 struct btrfs_bio_ctrl *bio_ctrl)
1402 {
1403 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1404 	struct writeback_control *wbc = bio_ctrl->wbc;
1405 	const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1406 	const u64 page_start = folio_pos(folio);
1407 	const u64 page_end = page_start + folio_size(folio) - 1;
1408 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1409 	unsigned long delalloc_bitmap = 0;
1410 	/*
1411 	 * Save the last found delalloc end. As the delalloc end can go beyond
1412 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1413 	 * last delalloc end.
1414 	 */
1415 	u64 last_delalloc_end = 0;
1416 	/*
1417 	 * The range end (exclusive) of the last successfully finished delalloc
1418 	 * range.
1419 	 * Any range covered by ordered extent must either be manually marked
1420 	 * finished (error handling), or has IO submitted (and finish the
1421 	 * ordered extent normally).
1422 	 *
1423 	 * This records the end of ordered extent cleanup if we hit an error.
1424 	 */
1425 	u64 last_finished_delalloc_end = page_start;
1426 	u64 delalloc_start = page_start;
1427 	u64 delalloc_end = page_end;
1428 	u64 delalloc_to_write = 0;
1429 	int ret = 0;
1430 	int bit;
1431 
1432 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1433 	if (btrfs_is_subpage(fs_info, folio)) {
1434 		ASSERT(blocks_per_folio > 1);
1435 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1436 	} else {
1437 		bio_ctrl->submit_bitmap = 1;
1438 	}
1439 
1440 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1441 		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1442 
1443 		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1444 	}
1445 
1446 	/* Lock all (subpage) delalloc ranges inside the folio first. */
1447 	while (delalloc_start < page_end) {
1448 		delalloc_end = page_end;
1449 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1450 					      &delalloc_start, &delalloc_end)) {
1451 			delalloc_start = delalloc_end + 1;
1452 			continue;
1453 		}
1454 		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1455 				    min(delalloc_end, page_end) + 1 - delalloc_start);
1456 		last_delalloc_end = delalloc_end;
1457 		delalloc_start = delalloc_end + 1;
1458 	}
1459 	delalloc_start = page_start;
1460 
1461 	if (!last_delalloc_end)
1462 		goto out;
1463 
1464 	/* Run the delalloc ranges for the above locked ranges. */
1465 	while (delalloc_start < page_end) {
1466 		u64 found_start;
1467 		u32 found_len;
1468 		bool found;
1469 
1470 		if (!is_subpage) {
1471 			/*
1472 			 * For non-subpage case, the found delalloc range must
1473 			 * cover this folio and there must be only one locked
1474 			 * delalloc range.
1475 			 */
1476 			found_start = page_start;
1477 			found_len = last_delalloc_end + 1 - found_start;
1478 			found = true;
1479 		} else {
1480 			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1481 					delalloc_start, &found_start, &found_len);
1482 		}
1483 		if (!found)
1484 			break;
1485 		/*
1486 		 * The subpage range covers the last sector, the delalloc range may
1487 		 * end beyond the folio boundary, use the saved delalloc_end
1488 		 * instead.
1489 		 */
1490 		if (found_start + found_len >= page_end)
1491 			found_len = last_delalloc_end + 1 - found_start;
1492 
1493 		if (ret >= 0) {
1494 			/*
1495 			 * Some delalloc range may be created by previous folios.
1496 			 * Thus we still need to clean up this range during error
1497 			 * handling.
1498 			 */
1499 			last_finished_delalloc_end = found_start;
1500 			/* No errors hit so far, run the current delalloc range. */
1501 			ret = btrfs_run_delalloc_range(inode, folio,
1502 						       found_start,
1503 						       found_start + found_len - 1,
1504 						       wbc);
1505 			if (ret >= 0)
1506 				last_finished_delalloc_end = found_start + found_len;
1507 			if (unlikely(ret < 0))
1508 				btrfs_err_rl(fs_info,
1509 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1510 					     btrfs_root_id(inode->root),
1511 					     btrfs_ino(inode),
1512 					     folio_pos(folio),
1513 					     blocks_per_folio,
1514 					     &bio_ctrl->submit_bitmap,
1515 					     found_start, found_len, ret);
1516 		} else {
1517 			/*
1518 			 * We've hit an error during previous delalloc range,
1519 			 * have to cleanup the remaining locked ranges.
1520 			 */
1521 			btrfs_unlock_extent(&inode->io_tree, found_start,
1522 					    found_start + found_len - 1, NULL);
1523 			unlock_delalloc_folio(&inode->vfs_inode, folio,
1524 					      found_start,
1525 					      found_start + found_len - 1);
1526 		}
1527 
1528 		/*
1529 		 * We have some ranges that's going to be submitted asynchronously
1530 		 * (compression or inline).  These range have their own control
1531 		 * on when to unlock the pages.  We should not touch them
1532 		 * anymore, so clear the range from the submission bitmap.
1533 		 */
1534 		if (ret > 0) {
1535 			unsigned int start_bit = (found_start - page_start) >>
1536 						 fs_info->sectorsize_bits;
1537 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1538 						page_start) >> fs_info->sectorsize_bits;
1539 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1540 		}
1541 		/*
1542 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1543 		 * thus for the last range, we cannot touch the folio anymore.
1544 		 */
1545 		if (found_start + found_len >= last_delalloc_end + 1)
1546 			break;
1547 
1548 		delalloc_start = found_start + found_len;
1549 	}
1550 	/*
1551 	 * It's possible we had some ordered extents created before we hit
1552 	 * an error, cleanup non-async successfully created delalloc ranges.
1553 	 */
1554 	if (unlikely(ret < 0)) {
1555 		unsigned int bitmap_size = min(
1556 				(last_finished_delalloc_end - page_start) >>
1557 				fs_info->sectorsize_bits,
1558 				blocks_per_folio);
1559 
1560 		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1561 			btrfs_mark_ordered_io_finished(inode, folio,
1562 				page_start + (bit << fs_info->sectorsize_bits),
1563 				fs_info->sectorsize, false);
1564 		return ret;
1565 	}
1566 out:
1567 	if (last_delalloc_end)
1568 		delalloc_end = last_delalloc_end;
1569 	else
1570 		delalloc_end = page_end;
1571 	/*
1572 	 * delalloc_end is already one less than the total length, so
1573 	 * we don't subtract one from PAGE_SIZE.
1574 	 */
1575 	delalloc_to_write +=
1576 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1577 
1578 	/*
1579 	 * If all ranges are submitted asynchronously, we just need to account
1580 	 * for them here.
1581 	 */
1582 	if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1583 		wbc->nr_to_write -= delalloc_to_write;
1584 		return 1;
1585 	}
1586 
1587 	if (wbc->nr_to_write < delalloc_to_write) {
1588 		int thresh = 8192;
1589 
1590 		if (delalloc_to_write < thresh * 2)
1591 			thresh = delalloc_to_write;
1592 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1593 					 thresh);
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Return 0 if we have submitted or queued the sector for submission.
1601  * Return <0 for critical errors, and the sector will have its dirty flag cleared.
1602  *
1603  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1604  */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1605 static int submit_one_sector(struct btrfs_inode *inode,
1606 			     struct folio *folio,
1607 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1608 			     loff_t i_size)
1609 {
1610 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1611 	struct extent_map *em;
1612 	u64 block_start;
1613 	u64 disk_bytenr;
1614 	u64 extent_offset;
1615 	u64 em_end;
1616 	const u32 sectorsize = fs_info->sectorsize;
1617 
1618 	ASSERT(IS_ALIGNED(filepos, sectorsize));
1619 
1620 	/* @filepos >= i_size case should be handled by the caller. */
1621 	ASSERT(filepos < i_size);
1622 
1623 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1624 	if (IS_ERR(em)) {
1625 		/*
1626 		 * When submission failed, we should still clear the folio dirty.
1627 		 * Or the folio will be written back again but without any
1628 		 * ordered extent.
1629 		 */
1630 		btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1631 		btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1632 		btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1633 		return PTR_ERR(em);
1634 	}
1635 
1636 	extent_offset = filepos - em->start;
1637 	em_end = btrfs_extent_map_end(em);
1638 	ASSERT(filepos <= em_end);
1639 	ASSERT(IS_ALIGNED(em->start, sectorsize));
1640 	ASSERT(IS_ALIGNED(em->len, sectorsize));
1641 
1642 	block_start = btrfs_extent_map_block_start(em);
1643 	disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1644 
1645 	ASSERT(!btrfs_extent_map_is_compressed(em));
1646 	ASSERT(block_start != EXTENT_MAP_HOLE);
1647 	ASSERT(block_start != EXTENT_MAP_INLINE);
1648 
1649 	btrfs_free_extent_map(em);
1650 	em = NULL;
1651 
1652 	/*
1653 	 * Although the PageDirty bit is cleared before entering this
1654 	 * function, subpage dirty bit is not cleared.
1655 	 * So clear subpage dirty bit here so next time we won't submit
1656 	 * a folio for a range already written to disk.
1657 	 */
1658 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1659 	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1660 	/*
1661 	 * Above call should set the whole folio with writeback flag, even
1662 	 * just for a single subpage sector.
1663 	 * As long as the folio is properly locked and the range is correct,
1664 	 * we should always get the folio with writeback flag.
1665 	 */
1666 	ASSERT(folio_test_writeback(folio));
1667 
1668 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1669 			    sectorsize, filepos - folio_pos(folio), 0);
1670 	return 0;
1671 }
1672 
1673 /*
1674  * Helper for extent_writepage().  This calls the writepage start hooks,
1675  * and does the loop to map the page into extents and bios.
1676  *
1677  * We return 1 if the IO is started and the page is unlocked,
1678  * 0 if all went well (page still locked)
1679  * < 0 if there were errors (page still locked)
1680  */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1681 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1682 						  struct folio *folio,
1683 						  u64 start, u32 len,
1684 						  struct btrfs_bio_ctrl *bio_ctrl,
1685 						  loff_t i_size)
1686 {
1687 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1688 	unsigned long range_bitmap = 0;
1689 	bool submitted_io = false;
1690 	int found_error = 0;
1691 	const u64 end = start + len;
1692 	const u64 folio_start = folio_pos(folio);
1693 	const u64 folio_end = folio_start + folio_size(folio);
1694 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1695 	u64 cur;
1696 	int bit;
1697 	int ret = 0;
1698 
1699 	ASSERT(start >= folio_start, "start=%llu folio_start=%llu", start, folio_start);
1700 	ASSERT(end <= folio_end, "start=%llu len=%u folio_start=%llu folio_size=%zu",
1701 	       start, len, folio_start, folio_size(folio));
1702 
1703 	ret = btrfs_writepage_cow_fixup(folio);
1704 	if (ret == -EAGAIN) {
1705 		/* Fixup worker will requeue */
1706 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1707 		folio_unlock(folio);
1708 		return 1;
1709 	}
1710 	if (ret < 0) {
1711 		btrfs_folio_clear_dirty(fs_info, folio, start, len);
1712 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1713 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1714 		return ret;
1715 	}
1716 
1717 	for (cur = start; cur < end; cur += fs_info->sectorsize)
1718 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1719 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1720 		   blocks_per_folio);
1721 
1722 	bio_ctrl->end_io_func = end_bbio_data_write;
1723 
1724 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1725 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1726 
1727 		if (cur >= i_size) {
1728 			struct btrfs_ordered_extent *ordered;
1729 
1730 			ordered = btrfs_lookup_first_ordered_range(inode, cur,
1731 								   folio_end - cur);
1732 			/*
1733 			 * We have just run delalloc before getting here, so
1734 			 * there must be an ordered extent.
1735 			 */
1736 			ASSERT(ordered != NULL);
1737 			spin_lock(&inode->ordered_tree_lock);
1738 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
1739 			ordered->truncated_len = min(ordered->truncated_len,
1740 						     cur - ordered->file_offset);
1741 			spin_unlock(&inode->ordered_tree_lock);
1742 			btrfs_put_ordered_extent(ordered);
1743 
1744 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1745 						       end - cur, true);
1746 			/*
1747 			 * This range is beyond i_size, thus we don't need to
1748 			 * bother writing back.
1749 			 * But we still need to clear the dirty subpage bit, or
1750 			 * the next time the folio gets dirtied, we will try to
1751 			 * writeback the sectors with subpage dirty bits,
1752 			 * causing writeback without ordered extent.
1753 			 */
1754 			btrfs_folio_clear_dirty(fs_info, folio, cur, end - cur);
1755 			break;
1756 		}
1757 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1758 		if (unlikely(ret < 0)) {
1759 			/*
1760 			 * bio_ctrl may contain a bio crossing several folios.
1761 			 * Submit it immediately so that the bio has a chance
1762 			 * to finish normally, other than marked as error.
1763 			 */
1764 			submit_one_bio(bio_ctrl);
1765 			/*
1766 			 * Failed to grab the extent map which should be very rare.
1767 			 * Since there is no bio submitted to finish the ordered
1768 			 * extent, we have to manually finish this sector.
1769 			 */
1770 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1771 						       fs_info->sectorsize, false);
1772 			if (!found_error)
1773 				found_error = ret;
1774 			continue;
1775 		}
1776 		submitted_io = true;
1777 	}
1778 
1779 	/*
1780 	 * If we didn't submitted any sector (>= i_size), folio dirty get
1781 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1782 	 * by folio_start_writeback() if the folio is not dirty).
1783 	 *
1784 	 * Here we set writeback and clear for the range. If the full folio
1785 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1786 	 *
1787 	 * If we hit any error, the corresponding sector will have its dirty
1788 	 * flag cleared and writeback finished, thus no need to handle the error case.
1789 	 */
1790 	if (!submitted_io && !found_error) {
1791 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1792 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1793 	}
1794 	return found_error;
1795 }
1796 
1797 /*
1798  * the writepage semantics are similar to regular writepage.  extent
1799  * records are inserted to lock ranges in the tree, and as dirty areas
1800  * are found, they are marked writeback.  Then the lock bits are removed
1801  * and the end_io handler clears the writeback ranges
1802  *
1803  * Return 0 if everything goes well.
1804  * Return <0 for error.
1805  */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1806 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1807 {
1808 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1809 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1810 	int ret;
1811 	size_t pg_offset;
1812 	loff_t i_size = i_size_read(&inode->vfs_inode);
1813 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
1814 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1815 
1816 	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1817 
1818 	WARN_ON(!folio_test_locked(folio));
1819 
1820 	pg_offset = offset_in_folio(folio, i_size);
1821 	if (folio->index > end_index ||
1822 	   (folio->index == end_index && !pg_offset)) {
1823 		folio_invalidate(folio, 0, folio_size(folio));
1824 		folio_unlock(folio);
1825 		return 0;
1826 	}
1827 
1828 	if (folio_contains(folio, end_index))
1829 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1830 
1831 	/*
1832 	 * Default to unlock the whole folio.
1833 	 * The proper bitmap can only be initialized until writepage_delalloc().
1834 	 */
1835 	bio_ctrl->submit_bitmap = (unsigned long)-1;
1836 
1837 	/*
1838 	 * If the page is dirty but without private set, it's marked dirty
1839 	 * without informing the fs.
1840 	 * Nowadays that is a bug, since the introduction of
1841 	 * pin_user_pages*().
1842 	 *
1843 	 * So here we check if the page has private set to rule out such
1844 	 * case.
1845 	 * But we also have a long history of relying on the COW fixup,
1846 	 * so here we only enable this check for experimental builds until
1847 	 * we're sure it's safe.
1848 	 */
1849 	if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1850 	    unlikely(!folio_test_private(folio))) {
1851 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1852 		btrfs_err_rl(fs_info,
1853 	"root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1854 			     btrfs_root_id(inode->root),
1855 			     btrfs_ino(inode), folio_pos(folio));
1856 		ret = -EUCLEAN;
1857 		goto done;
1858 	}
1859 
1860 	ret = set_folio_extent_mapped(folio);
1861 	if (ret < 0)
1862 		goto done;
1863 
1864 	ret = writepage_delalloc(inode, folio, bio_ctrl);
1865 	if (ret == 1)
1866 		return 0;
1867 	if (ret)
1868 		goto done;
1869 
1870 	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1871 				  folio_size(folio), bio_ctrl, i_size);
1872 	if (ret == 1)
1873 		return 0;
1874 	if (unlikely(ret < 0))
1875 		btrfs_err_rl(fs_info,
1876 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1877 			     btrfs_root_id(inode->root), btrfs_ino(inode),
1878 			     folio_pos(folio), blocks_per_folio,
1879 			     &bio_ctrl->submit_bitmap, ret);
1880 
1881 	bio_ctrl->wbc->nr_to_write--;
1882 
1883 done:
1884 	if (ret < 0)
1885 		mapping_set_error(folio->mapping, ret);
1886 	/*
1887 	 * Only unlock ranges that are submitted. As there can be some async
1888 	 * submitted ranges inside the folio.
1889 	 */
1890 	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1891 	ASSERT(ret <= 0);
1892 	return ret;
1893 }
1894 
1895 /*
1896  * Lock extent buffer status and pages for writeback.
1897  *
1898  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1899  * extent buffer is not dirty)
1900  * Return %true is the extent buffer is submitted to bio.
1901  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1902 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1903 			  struct writeback_control *wbc)
1904 {
1905 	struct btrfs_fs_info *fs_info = eb->fs_info;
1906 	bool ret = false;
1907 
1908 	btrfs_tree_lock(eb);
1909 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1910 		btrfs_tree_unlock(eb);
1911 		if (wbc->sync_mode != WB_SYNC_ALL)
1912 			return false;
1913 		wait_on_extent_buffer_writeback(eb);
1914 		btrfs_tree_lock(eb);
1915 	}
1916 
1917 	/*
1918 	 * We need to do this to prevent races in people who check if the eb is
1919 	 * under IO since we can end up having no IO bits set for a short period
1920 	 * of time.
1921 	 */
1922 	spin_lock(&eb->refs_lock);
1923 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1924 		XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1925 		unsigned long flags;
1926 
1927 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1928 		spin_unlock(&eb->refs_lock);
1929 
1930 		xas_lock_irqsave(&xas, flags);
1931 		xas_load(&xas);
1932 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1933 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1934 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1935 		xas_unlock_irqrestore(&xas, flags);
1936 
1937 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1938 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1939 					 -eb->len,
1940 					 fs_info->dirty_metadata_batch);
1941 		ret = true;
1942 	} else {
1943 		spin_unlock(&eb->refs_lock);
1944 	}
1945 	btrfs_tree_unlock(eb);
1946 	return ret;
1947 }
1948 
set_btree_ioerr(struct extent_buffer * eb)1949 static void set_btree_ioerr(struct extent_buffer *eb)
1950 {
1951 	struct btrfs_fs_info *fs_info = eb->fs_info;
1952 
1953 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1954 
1955 	/*
1956 	 * A read may stumble upon this buffer later, make sure that it gets an
1957 	 * error and knows there was an error.
1958 	 */
1959 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1960 
1961 	/*
1962 	 * We need to set the mapping with the io error as well because a write
1963 	 * error will flip the file system readonly, and then syncfs() will
1964 	 * return a 0 because we are readonly if we don't modify the err seq for
1965 	 * the superblock.
1966 	 */
1967 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1968 
1969 	/*
1970 	 * If writeback for a btree extent that doesn't belong to a log tree
1971 	 * failed, increment the counter transaction->eb_write_errors.
1972 	 * We do this because while the transaction is running and before it's
1973 	 * committing (when we call filemap_fdata[write|wait]_range against
1974 	 * the btree inode), we might have
1975 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1976 	 * returns an error or an error happens during writeback, when we're
1977 	 * committing the transaction we wouldn't know about it, since the pages
1978 	 * can be no longer dirty nor marked anymore for writeback (if a
1979 	 * subsequent modification to the extent buffer didn't happen before the
1980 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1981 	 * able to find the pages which contain errors at transaction
1982 	 * commit time. So if this happens we must abort the transaction,
1983 	 * otherwise we commit a super block with btree roots that point to
1984 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1985 	 * or the content of some node/leaf from a past generation that got
1986 	 * cowed or deleted and is no longer valid.
1987 	 *
1988 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1989 	 * not be enough - we need to distinguish between log tree extents vs
1990 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1991 	 * will catch and clear such errors in the mapping - and that call might
1992 	 * be from a log sync and not from a transaction commit. Also, checking
1993 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1994 	 * not done and would not be reliable - the eb might have been released
1995 	 * from memory and reading it back again means that flag would not be
1996 	 * set (since it's a runtime flag, not persisted on disk).
1997 	 *
1998 	 * Using the flags below in the btree inode also makes us achieve the
1999 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2000 	 * writeback for all dirty pages and before filemap_fdatawait_range()
2001 	 * is called, the writeback for all dirty pages had already finished
2002 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2003 	 * filemap_fdatawait_range() would return success, as it could not know
2004 	 * that writeback errors happened (the pages were no longer tagged for
2005 	 * writeback).
2006 	 */
2007 	switch (eb->log_index) {
2008 	case -1:
2009 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2010 		break;
2011 	case 0:
2012 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2013 		break;
2014 	case 1:
2015 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2016 		break;
2017 	default:
2018 		BUG(); /* unexpected, logic error */
2019 	}
2020 }
2021 
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)2022 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
2023 {
2024 	struct btrfs_fs_info *fs_info = eb->fs_info;
2025 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2026 	unsigned long flags;
2027 
2028 	xas_lock_irqsave(&xas, flags);
2029 	xas_load(&xas);
2030 	xas_set_mark(&xas, mark);
2031 	xas_unlock_irqrestore(&xas, flags);
2032 }
2033 
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)2034 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
2035 {
2036 	struct btrfs_fs_info *fs_info = eb->fs_info;
2037 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2038 	unsigned long flags;
2039 
2040 	xas_lock_irqsave(&xas, flags);
2041 	xas_load(&xas);
2042 	xas_clear_mark(&xas, mark);
2043 	xas_unlock_irqrestore(&xas, flags);
2044 }
2045 
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)2046 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
2047 					  unsigned long start, unsigned long end)
2048 {
2049 	XA_STATE(xas, &fs_info->buffer_tree, start);
2050 	unsigned int tagged = 0;
2051 	void *eb;
2052 
2053 	xas_lock_irq(&xas);
2054 	xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
2055 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2056 		if (++tagged % XA_CHECK_SCHED)
2057 			continue;
2058 		xas_pause(&xas);
2059 		xas_unlock_irq(&xas);
2060 		cond_resched();
2061 		xas_lock_irq(&xas);
2062 	}
2063 	xas_unlock_irq(&xas);
2064 }
2065 
2066 struct eb_batch {
2067 	unsigned int nr;
2068 	unsigned int cur;
2069 	struct extent_buffer *ebs[PAGEVEC_SIZE];
2070 };
2071 
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)2072 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
2073 {
2074 	batch->ebs[batch->nr++] = eb;
2075 	return (batch->nr < PAGEVEC_SIZE);
2076 }
2077 
eb_batch_init(struct eb_batch * batch)2078 static inline void eb_batch_init(struct eb_batch *batch)
2079 {
2080 	batch->nr = 0;
2081 	batch->cur = 0;
2082 }
2083 
eb_batch_next(struct eb_batch * batch)2084 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
2085 {
2086 	if (batch->cur >= batch->nr)
2087 		return NULL;
2088 	return batch->ebs[batch->cur++];
2089 }
2090 
eb_batch_release(struct eb_batch * batch)2091 static inline void eb_batch_release(struct eb_batch *batch)
2092 {
2093 	for (unsigned int i = 0; i < batch->nr; i++)
2094 		free_extent_buffer(batch->ebs[i]);
2095 	eb_batch_init(batch);
2096 }
2097 
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)2098 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
2099 						xa_mark_t mark)
2100 {
2101 	struct extent_buffer *eb;
2102 
2103 retry:
2104 	eb = xas_find_marked(xas, max, mark);
2105 
2106 	if (xas_retry(xas, eb))
2107 		goto retry;
2108 
2109 	if (!eb)
2110 		return NULL;
2111 
2112 	if (!refcount_inc_not_zero(&eb->refs)) {
2113 		xas_reset(xas);
2114 		goto retry;
2115 	}
2116 
2117 	if (unlikely(eb != xas_reload(xas))) {
2118 		free_extent_buffer(eb);
2119 		xas_reset(xas);
2120 		goto retry;
2121 	}
2122 
2123 	return eb;
2124 }
2125 
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2126 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2127 					    unsigned long *start,
2128 					    unsigned long end, xa_mark_t tag,
2129 					    struct eb_batch *batch)
2130 {
2131 	XA_STATE(xas, &fs_info->buffer_tree, *start);
2132 	struct extent_buffer *eb;
2133 
2134 	rcu_read_lock();
2135 	while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2136 		if (!eb_batch_add(batch, eb)) {
2137 			*start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2138 			goto out;
2139 		}
2140 	}
2141 	if (end == ULONG_MAX)
2142 		*start = ULONG_MAX;
2143 	else
2144 		*start = end + 1;
2145 out:
2146 	rcu_read_unlock();
2147 
2148 	return batch->nr;
2149 }
2150 
2151 /*
2152  * The endio specific version which won't touch any unsafe spinlock in endio
2153  * context.
2154  */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2155 static struct extent_buffer *find_extent_buffer_nolock(
2156 		struct btrfs_fs_info *fs_info, u64 start)
2157 {
2158 	struct extent_buffer *eb;
2159 	unsigned long index = (start >> fs_info->nodesize_bits);
2160 
2161 	rcu_read_lock();
2162 	eb = xa_load(&fs_info->buffer_tree, index);
2163 	if (eb && !refcount_inc_not_zero(&eb->refs))
2164 		eb = NULL;
2165 	rcu_read_unlock();
2166 	return eb;
2167 }
2168 
end_bbio_meta_write(struct btrfs_bio * bbio)2169 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2170 {
2171 	struct extent_buffer *eb = bbio->private;
2172 	struct folio_iter fi;
2173 
2174 	if (bbio->bio.bi_status != BLK_STS_OK)
2175 		set_btree_ioerr(eb);
2176 
2177 	bio_for_each_folio_all(fi, &bbio->bio) {
2178 		btrfs_meta_folio_clear_writeback(fi.folio, eb);
2179 	}
2180 
2181 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2182 	clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2183 	bio_put(&bbio->bio);
2184 }
2185 
prepare_eb_write(struct extent_buffer * eb)2186 static void prepare_eb_write(struct extent_buffer *eb)
2187 {
2188 	u32 nritems;
2189 	unsigned long start;
2190 	unsigned long end;
2191 
2192 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2193 
2194 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
2195 	nritems = btrfs_header_nritems(eb);
2196 	if (btrfs_header_level(eb) > 0) {
2197 		end = btrfs_node_key_ptr_offset(eb, nritems);
2198 		memzero_extent_buffer(eb, end, eb->len - end);
2199 	} else {
2200 		/*
2201 		 * Leaf:
2202 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2203 		 */
2204 		start = btrfs_item_nr_offset(eb, nritems);
2205 		end = btrfs_item_nr_offset(eb, 0);
2206 		if (nritems == 0)
2207 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2208 		else
2209 			end += btrfs_item_offset(eb, nritems - 1);
2210 		memzero_extent_buffer(eb, start, end - start);
2211 	}
2212 }
2213 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2214 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2215 					    struct writeback_control *wbc)
2216 {
2217 	struct btrfs_fs_info *fs_info = eb->fs_info;
2218 	struct btrfs_bio *bbio;
2219 
2220 	prepare_eb_write(eb);
2221 
2222 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2223 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2224 			       BTRFS_I(fs_info->btree_inode), eb->start,
2225 			       end_bbio_meta_write, eb);
2226 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2227 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2228 	wbc_init_bio(wbc, &bbio->bio);
2229 	for (int i = 0; i < num_extent_folios(eb); i++) {
2230 		struct folio *folio = eb->folios[i];
2231 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2232 		u32 range_len = min_t(u64, folio_next_pos(folio),
2233 				      eb->start + eb->len) - range_start;
2234 
2235 		folio_lock(folio);
2236 		btrfs_meta_folio_clear_dirty(folio, eb);
2237 		btrfs_meta_folio_set_writeback(folio, eb);
2238 		if (!folio_test_dirty(folio))
2239 			wbc->nr_to_write -= folio_nr_pages(folio);
2240 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
2241 				     offset_in_folio(folio, range_start));
2242 		wbc_account_cgroup_owner(wbc, folio, range_len);
2243 		folio_unlock(folio);
2244 	}
2245 	/*
2246 	 * If the fs is already in error status, do not submit any writeback
2247 	 * but immediately finish it.
2248 	 */
2249 	if (unlikely(BTRFS_FS_ERROR(fs_info))) {
2250 		btrfs_bio_end_io(bbio, errno_to_blk_status(BTRFS_FS_ERROR(fs_info)));
2251 		return;
2252 	}
2253 	btrfs_submit_bbio(bbio, 0);
2254 }
2255 
2256 /*
2257  * Wait for all eb writeback in the given range to finish.
2258  *
2259  * @fs_info:	The fs_info for this file system.
2260  * @start:	The offset of the range to start waiting on writeback.
2261  * @end:	The end of the range, inclusive. This is meant to be used in
2262  *		conjunction with wait_marked_extents, so this will usually be
2263  *		the_next_eb->start - 1.
2264  */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2265 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2266 				      u64 end)
2267 {
2268 	struct eb_batch batch;
2269 	unsigned long start_index = (start >> fs_info->nodesize_bits);
2270 	unsigned long end_index = (end >> fs_info->nodesize_bits);
2271 
2272 	eb_batch_init(&batch);
2273 	while (start_index <= end_index) {
2274 		struct extent_buffer *eb;
2275 		unsigned int nr_ebs;
2276 
2277 		nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2278 						 PAGECACHE_TAG_WRITEBACK, &batch);
2279 		if (!nr_ebs)
2280 			break;
2281 
2282 		while ((eb = eb_batch_next(&batch)) != NULL)
2283 			wait_on_extent_buffer_writeback(eb);
2284 		eb_batch_release(&batch);
2285 		cond_resched();
2286 	}
2287 }
2288 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2289 int btree_write_cache_pages(struct address_space *mapping,
2290 				   struct writeback_control *wbc)
2291 {
2292 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
2293 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2294 	int ret = 0;
2295 	int done = 0;
2296 	int nr_to_write_done = 0;
2297 	struct eb_batch batch;
2298 	unsigned int nr_ebs;
2299 	unsigned long index;
2300 	unsigned long end;
2301 	int scanned = 0;
2302 	xa_mark_t tag;
2303 
2304 	eb_batch_init(&batch);
2305 	if (wbc->range_cyclic) {
2306 		index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2307 		end = -1;
2308 
2309 		/*
2310 		 * Start from the beginning does not need to cycle over the
2311 		 * range, mark it as scanned.
2312 		 */
2313 		scanned = (index == 0);
2314 	} else {
2315 		index = (wbc->range_start >> fs_info->nodesize_bits);
2316 		end = (wbc->range_end >> fs_info->nodesize_bits);
2317 
2318 		scanned = 1;
2319 	}
2320 	if (wbc->sync_mode == WB_SYNC_ALL)
2321 		tag = PAGECACHE_TAG_TOWRITE;
2322 	else
2323 		tag = PAGECACHE_TAG_DIRTY;
2324 	btrfs_zoned_meta_io_lock(fs_info);
2325 retry:
2326 	if (wbc->sync_mode == WB_SYNC_ALL)
2327 		buffer_tree_tag_for_writeback(fs_info, index, end);
2328 	while (!done && !nr_to_write_done && (index <= end) &&
2329 	       (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2330 		struct extent_buffer *eb;
2331 
2332 		while ((eb = eb_batch_next(&batch)) != NULL) {
2333 			ctx.eb = eb;
2334 
2335 			ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2336 			if (ret) {
2337 				if (ret == -EBUSY)
2338 					ret = 0;
2339 
2340 				if (ret) {
2341 					done = 1;
2342 					break;
2343 				}
2344 				continue;
2345 			}
2346 
2347 			if (!lock_extent_buffer_for_io(eb, wbc))
2348 				continue;
2349 
2350 			/* Implies write in zoned mode. */
2351 			if (ctx.zoned_bg) {
2352 				/* Mark the last eb in the block group. */
2353 				btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2354 				ctx.zoned_bg->meta_write_pointer += eb->len;
2355 			}
2356 			write_one_eb(eb, wbc);
2357 		}
2358 		nr_to_write_done = (wbc->nr_to_write <= 0);
2359 		eb_batch_release(&batch);
2360 		cond_resched();
2361 	}
2362 	if (!scanned && !done) {
2363 		/*
2364 		 * We hit the last page and there is more work to be done: wrap
2365 		 * back to the start of the file
2366 		 */
2367 		scanned = 1;
2368 		index = 0;
2369 		goto retry;
2370 	}
2371 	/*
2372 	 * If something went wrong, don't allow any metadata write bio to be
2373 	 * submitted.
2374 	 *
2375 	 * This would prevent use-after-free if we had dirty pages not
2376 	 * cleaned up, which can still happen by fuzzed images.
2377 	 *
2378 	 * - Bad extent tree
2379 	 *   Allowing existing tree block to be allocated for other trees.
2380 	 *
2381 	 * - Log tree operations
2382 	 *   Exiting tree blocks get allocated to log tree, bumps its
2383 	 *   generation, then get cleaned in tree re-balance.
2384 	 *   Such tree block will not be written back, since it's clean,
2385 	 *   thus no WRITTEN flag set.
2386 	 *   And after log writes back, this tree block is not traced by
2387 	 *   any dirty extent_io_tree.
2388 	 *
2389 	 * - Offending tree block gets re-dirtied from its original owner
2390 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2391 	 *   reused without COWing. This tree block will not be traced
2392 	 *   by btrfs_transaction::dirty_pages.
2393 	 *
2394 	 *   Now such dirty tree block will not be cleaned by any dirty
2395 	 *   extent io tree. Thus we don't want to submit such wild eb
2396 	 *   if the fs already has error.
2397 	 *
2398 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2399 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2400 	 */
2401 	if (ret > 0)
2402 		ret = 0;
2403 	if (!ret && BTRFS_FS_ERROR(fs_info))
2404 		ret = -EROFS;
2405 
2406 	if (ctx.zoned_bg)
2407 		btrfs_put_block_group(ctx.zoned_bg);
2408 	btrfs_zoned_meta_io_unlock(fs_info);
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Walk the list of dirty pages of the given address space and write all of them.
2414  *
2415  * @mapping:   address space structure to write
2416  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2417  * @bio_ctrl:  holds context for the write, namely the bio
2418  *
2419  * If a page is already under I/O, write_cache_pages() skips it, even
2420  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2421  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2422  * and msync() need to guarantee that all the data which was dirty at the time
2423  * the call was made get new I/O started against them.  If wbc->sync_mode is
2424  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2425  * existing IO to complete.
2426  */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2427 static int extent_write_cache_pages(struct address_space *mapping,
2428 			     struct btrfs_bio_ctrl *bio_ctrl)
2429 {
2430 	struct writeback_control *wbc = bio_ctrl->wbc;
2431 	struct inode *inode = mapping->host;
2432 	int ret = 0;
2433 	int done = 0;
2434 	int nr_to_write_done = 0;
2435 	struct folio_batch fbatch;
2436 	unsigned int nr_folios;
2437 	pgoff_t index;
2438 	pgoff_t end;		/* Inclusive */
2439 	pgoff_t done_index;
2440 	int range_whole = 0;
2441 	int scanned = 0;
2442 	xa_mark_t tag;
2443 
2444 	/*
2445 	 * We have to hold onto the inode so that ordered extents can do their
2446 	 * work when the IO finishes.  The alternative to this is failing to add
2447 	 * an ordered extent if the igrab() fails there and that is a huge pain
2448 	 * to deal with, so instead just hold onto the inode throughout the
2449 	 * writepages operation.  If it fails here we are freeing up the inode
2450 	 * anyway and we'd rather not waste our time writing out stuff that is
2451 	 * going to be truncated anyway.
2452 	 */
2453 	if (!igrab(inode))
2454 		return 0;
2455 
2456 	folio_batch_init(&fbatch);
2457 	if (wbc->range_cyclic) {
2458 		index = mapping->writeback_index; /* Start from prev offset */
2459 		end = -1;
2460 		/*
2461 		 * Start from the beginning does not need to cycle over the
2462 		 * range, mark it as scanned.
2463 		 */
2464 		scanned = (index == 0);
2465 	} else {
2466 		index = wbc->range_start >> PAGE_SHIFT;
2467 		end = wbc->range_end >> PAGE_SHIFT;
2468 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2469 			range_whole = 1;
2470 		scanned = 1;
2471 	}
2472 
2473 	/*
2474 	 * We do the tagged writepage as long as the snapshot flush bit is set
2475 	 * and we are the first one who do the filemap_flush() on this inode.
2476 	 *
2477 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2478 	 * not race in and drop the bit.
2479 	 */
2480 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2481 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2482 			       &BTRFS_I(inode)->runtime_flags))
2483 		wbc->tagged_writepages = 1;
2484 
2485 	tag = wbc_to_tag(wbc);
2486 retry:
2487 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2488 		tag_pages_for_writeback(mapping, index, end);
2489 	done_index = index;
2490 	while (!done && !nr_to_write_done && (index <= end) &&
2491 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2492 							end, tag, &fbatch))) {
2493 		unsigned i;
2494 
2495 		for (i = 0; i < nr_folios; i++) {
2496 			struct folio *folio = fbatch.folios[i];
2497 
2498 			done_index = folio_next_index(folio);
2499 			/*
2500 			 * At this point we hold neither the i_pages lock nor
2501 			 * the folio lock: the folio may be truncated or
2502 			 * invalidated (changing folio->mapping to NULL).
2503 			 */
2504 			if (!folio_trylock(folio)) {
2505 				submit_write_bio(bio_ctrl, 0);
2506 				folio_lock(folio);
2507 			}
2508 
2509 			if (unlikely(folio->mapping != mapping)) {
2510 				folio_unlock(folio);
2511 				continue;
2512 			}
2513 
2514 			if (!folio_test_dirty(folio)) {
2515 				/* Someone wrote it for us. */
2516 				folio_unlock(folio);
2517 				continue;
2518 			}
2519 
2520 			/*
2521 			 * For subpage case, compression can lead to mixed
2522 			 * writeback and dirty flags, e.g:
2523 			 * 0     32K    64K    96K    128K
2524 			 * |     |//////||/////|   |//|
2525 			 *
2526 			 * In above case, [32K, 96K) is asynchronously submitted
2527 			 * for compression, and [124K, 128K) needs to be written back.
2528 			 *
2529 			 * If we didn't wait writeback for page 64K, [128K, 128K)
2530 			 * won't be submitted as the page still has writeback flag
2531 			 * and will be skipped in the next check.
2532 			 *
2533 			 * This mixed writeback and dirty case is only possible for
2534 			 * subpage case.
2535 			 *
2536 			 * TODO: Remove this check after migrating compression to
2537 			 * regular submission.
2538 			 */
2539 			if (wbc->sync_mode != WB_SYNC_NONE ||
2540 			    btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2541 				if (folio_test_writeback(folio))
2542 					submit_write_bio(bio_ctrl, 0);
2543 				folio_wait_writeback(folio);
2544 			}
2545 
2546 			if (folio_test_writeback(folio) ||
2547 			    !folio_clear_dirty_for_io(folio)) {
2548 				folio_unlock(folio);
2549 				continue;
2550 			}
2551 
2552 			ret = extent_writepage(folio, bio_ctrl);
2553 			if (ret < 0) {
2554 				done = 1;
2555 				break;
2556 			}
2557 
2558 			/*
2559 			 * The filesystem may choose to bump up nr_to_write.
2560 			 * We have to make sure to honor the new nr_to_write
2561 			 * at any time.
2562 			 */
2563 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2564 					    wbc->nr_to_write <= 0);
2565 		}
2566 		folio_batch_release(&fbatch);
2567 		cond_resched();
2568 	}
2569 	if (!scanned && !done) {
2570 		/*
2571 		 * We hit the last page and there is more work to be done: wrap
2572 		 * back to the start of the file
2573 		 */
2574 		scanned = 1;
2575 		index = 0;
2576 
2577 		/*
2578 		 * If we're looping we could run into a page that is locked by a
2579 		 * writer and that writer could be waiting on writeback for a
2580 		 * page in our current bio, and thus deadlock, so flush the
2581 		 * write bio here.
2582 		 */
2583 		submit_write_bio(bio_ctrl, 0);
2584 		goto retry;
2585 	}
2586 
2587 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2588 		mapping->writeback_index = done_index;
2589 
2590 	btrfs_add_delayed_iput(BTRFS_I(inode));
2591 	return ret;
2592 }
2593 
2594 /*
2595  * Submit the pages in the range to bio for call sites which delalloc range has
2596  * already been ran (aka, ordered extent inserted) and all pages are still
2597  * locked.
2598  */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2599 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2600 			       u64 start, u64 end, struct writeback_control *wbc,
2601 			       bool pages_dirty)
2602 {
2603 	bool found_error = false;
2604 	int ret = 0;
2605 	struct address_space *mapping = inode->i_mapping;
2606 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2607 	const u32 sectorsize = fs_info->sectorsize;
2608 	loff_t i_size = i_size_read(inode);
2609 	u64 cur = start;
2610 	struct btrfs_bio_ctrl bio_ctrl = {
2611 		.wbc = wbc,
2612 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2613 	};
2614 
2615 	if (wbc->no_cgroup_owner)
2616 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2617 
2618 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2619 
2620 	while (cur <= end) {
2621 		u64 cur_end;
2622 		u32 cur_len;
2623 		struct folio *folio;
2624 
2625 		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2626 
2627 		/*
2628 		 * This shouldn't happen, the pages are pinned and locked, this
2629 		 * code is just in case, but shouldn't actually be run.
2630 		 */
2631 		if (IS_ERR(folio)) {
2632 			cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2633 			cur_len = cur_end + 1 - cur;
2634 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2635 						       cur, cur_len, false);
2636 			mapping_set_error(mapping, PTR_ERR(folio));
2637 			cur = cur_end;
2638 			continue;
2639 		}
2640 
2641 		cur_end = min_t(u64, folio_next_pos(folio) - 1, end);
2642 		cur_len = cur_end + 1 - cur;
2643 
2644 		ASSERT(folio_test_locked(folio));
2645 		if (pages_dirty && folio != locked_folio)
2646 			ASSERT(folio_test_dirty(folio));
2647 
2648 		/*
2649 		 * Set the submission bitmap to submit all sectors.
2650 		 * extent_writepage_io() will do the truncation correctly.
2651 		 */
2652 		bio_ctrl.submit_bitmap = (unsigned long)-1;
2653 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2654 					  &bio_ctrl, i_size);
2655 		if (ret == 1)
2656 			goto next_page;
2657 
2658 		if (ret)
2659 			mapping_set_error(mapping, ret);
2660 		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2661 		if (ret < 0)
2662 			found_error = true;
2663 next_page:
2664 		folio_put(folio);
2665 		cur = cur_end + 1;
2666 	}
2667 
2668 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2669 }
2670 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2671 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2672 {
2673 	struct inode *inode = mapping->host;
2674 	int ret = 0;
2675 	struct btrfs_bio_ctrl bio_ctrl = {
2676 		.wbc = wbc,
2677 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2678 	};
2679 
2680 	/*
2681 	 * Allow only a single thread to do the reloc work in zoned mode to
2682 	 * protect the write pointer updates.
2683 	 */
2684 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2685 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2686 	submit_write_bio(&bio_ctrl, ret);
2687 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2688 	return ret;
2689 }
2690 
btrfs_readahead(struct readahead_control * rac)2691 void btrfs_readahead(struct readahead_control *rac)
2692 {
2693 	struct btrfs_bio_ctrl bio_ctrl = {
2694 		.opf = REQ_OP_READ | REQ_RAHEAD,
2695 		.ractl = rac,
2696 		.last_em_start = U64_MAX,
2697 	};
2698 	struct folio *folio;
2699 	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2700 	const u64 start = readahead_pos(rac);
2701 	const u64 end = start + readahead_length(rac) - 1;
2702 	struct extent_state *cached_state = NULL;
2703 	struct extent_map *em_cached = NULL;
2704 
2705 	lock_extents_for_read(inode, start, end, &cached_state);
2706 
2707 	while ((folio = readahead_folio(rac)) != NULL)
2708 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
2709 
2710 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2711 
2712 	if (em_cached)
2713 		btrfs_free_extent_map(em_cached);
2714 	submit_one_bio(&bio_ctrl);
2715 }
2716 
2717 /*
2718  * basic invalidate_folio code, this waits on any locked or writeback
2719  * ranges corresponding to the folio, and then deletes any extent state
2720  * records from the tree
2721  */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2722 int extent_invalidate_folio(struct extent_io_tree *tree,
2723 			  struct folio *folio, size_t offset)
2724 {
2725 	struct extent_state *cached_state = NULL;
2726 	u64 start = folio_pos(folio);
2727 	u64 end = start + folio_size(folio) - 1;
2728 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2729 
2730 	/* This function is only called for the btree inode */
2731 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2732 
2733 	start += ALIGN(offset, blocksize);
2734 	if (start > end)
2735 		return 0;
2736 
2737 	btrfs_lock_extent(tree, start, end, &cached_state);
2738 	folio_wait_writeback(folio);
2739 
2740 	/*
2741 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2742 	 * so here we only need to unlock the extent range to free any
2743 	 * existing extent state.
2744 	 */
2745 	btrfs_unlock_extent(tree, start, end, &cached_state);
2746 	return 0;
2747 }
2748 
2749 /*
2750  * A helper for struct address_space_operations::release_folio, this tests for
2751  * areas of the folio that are locked or under IO and drops the related state
2752  * bits if it is safe to drop the folio.
2753  */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2754 static bool try_release_extent_state(struct extent_io_tree *tree,
2755 				     struct folio *folio)
2756 {
2757 	struct extent_state *cached_state = NULL;
2758 	u64 start = folio_pos(folio);
2759 	u64 end = start + folio_size(folio) - 1;
2760 	u32 range_bits;
2761 	u32 clear_bits;
2762 	bool ret = false;
2763 	int ret2;
2764 
2765 	btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2766 
2767 	/*
2768 	 * We can release the folio if it's locked only for ordered extent
2769 	 * completion, since that doesn't require using the folio.
2770 	 */
2771 	if ((range_bits & EXTENT_LOCKED) &&
2772 	    !(range_bits & EXTENT_FINISHING_ORDERED))
2773 		goto out;
2774 
2775 	clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2776 		       EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2777 		       EXTENT_FINISHING_ORDERED);
2778 	/*
2779 	 * At this point we can safely clear everything except the locked,
2780 	 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2781 	 * bit will be cleared by ordered extent completion.
2782 	 */
2783 	ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2784 	/*
2785 	 * If clear_extent_bit failed for enomem reasons, we can't allow the
2786 	 * release to continue.
2787 	 */
2788 	if (ret2 == 0)
2789 		ret = true;
2790 out:
2791 	btrfs_free_extent_state(cached_state);
2792 
2793 	return ret;
2794 }
2795 
2796 /*
2797  * a helper for release_folio.  As long as there are no locked extents
2798  * in the range corresponding to the page, both state records and extent
2799  * map records are removed
2800  */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2801 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2802 {
2803 	u64 start = folio_pos(folio);
2804 	u64 end = start + folio_size(folio) - 1;
2805 	struct btrfs_inode *inode = folio_to_inode(folio);
2806 	struct extent_io_tree *io_tree = &inode->io_tree;
2807 
2808 	while (start <= end) {
2809 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2810 		const u64 len = end - start + 1;
2811 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2812 		struct extent_map *em;
2813 
2814 		write_lock(&extent_tree->lock);
2815 		em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2816 		if (!em) {
2817 			write_unlock(&extent_tree->lock);
2818 			break;
2819 		}
2820 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2821 			write_unlock(&extent_tree->lock);
2822 			btrfs_free_extent_map(em);
2823 			break;
2824 		}
2825 		if (btrfs_test_range_bit_exists(io_tree, em->start,
2826 						btrfs_extent_map_end(em) - 1,
2827 						EXTENT_LOCKED))
2828 			goto next;
2829 		/*
2830 		 * If it's not in the list of modified extents, used by a fast
2831 		 * fsync, we can remove it. If it's being logged we can safely
2832 		 * remove it since fsync took an extra reference on the em.
2833 		 */
2834 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2835 			goto remove_em;
2836 		/*
2837 		 * If it's in the list of modified extents, remove it only if
2838 		 * its generation is older then the current one, in which case
2839 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2840 		 * we could be racing with an ongoing fast fsync that could miss
2841 		 * the new extent.
2842 		 */
2843 		if (em->generation >= cur_gen)
2844 			goto next;
2845 remove_em:
2846 		/*
2847 		 * We only remove extent maps that are not in the list of
2848 		 * modified extents or that are in the list but with a
2849 		 * generation lower then the current generation, so there is no
2850 		 * need to set the full fsync flag on the inode (it hurts the
2851 		 * fsync performance for workloads with a data size that exceeds
2852 		 * or is close to the system's memory).
2853 		 */
2854 		btrfs_remove_extent_mapping(inode, em);
2855 		/* Once for the inode's extent map tree. */
2856 		btrfs_free_extent_map(em);
2857 next:
2858 		start = btrfs_extent_map_end(em);
2859 		write_unlock(&extent_tree->lock);
2860 
2861 		/* Once for us, for the lookup_extent_mapping() reference. */
2862 		btrfs_free_extent_map(em);
2863 
2864 		if (need_resched()) {
2865 			/*
2866 			 * If we need to resched but we can't block just exit
2867 			 * and leave any remaining extent maps.
2868 			 */
2869 			if (!gfpflags_allow_blocking(mask))
2870 				break;
2871 
2872 			cond_resched();
2873 		}
2874 	}
2875 	return try_release_extent_state(io_tree, folio);
2876 }
2877 
extent_buffer_under_io(const struct extent_buffer * eb)2878 static int extent_buffer_under_io(const struct extent_buffer *eb)
2879 {
2880 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2881 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2882 }
2883 
folio_range_has_eb(struct folio * folio)2884 static bool folio_range_has_eb(struct folio *folio)
2885 {
2886 	struct btrfs_folio_state *bfs;
2887 
2888 	lockdep_assert_held(&folio->mapping->i_private_lock);
2889 
2890 	if (folio_test_private(folio)) {
2891 		bfs = folio_get_private(folio);
2892 		if (atomic_read(&bfs->eb_refs))
2893 			return true;
2894 	}
2895 	return false;
2896 }
2897 
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2898 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2899 {
2900 	struct btrfs_fs_info *fs_info = eb->fs_info;
2901 	struct address_space *mapping = folio->mapping;
2902 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2903 
2904 	/*
2905 	 * For mapped eb, we're going to change the folio private, which should
2906 	 * be done under the i_private_lock.
2907 	 */
2908 	if (mapped)
2909 		spin_lock(&mapping->i_private_lock);
2910 
2911 	if (!folio_test_private(folio)) {
2912 		if (mapped)
2913 			spin_unlock(&mapping->i_private_lock);
2914 		return;
2915 	}
2916 
2917 	if (!btrfs_meta_is_subpage(fs_info)) {
2918 		/*
2919 		 * We do this since we'll remove the pages after we've removed
2920 		 * the eb from the xarray, so we could race and have this page
2921 		 * now attached to the new eb.  So only clear folio if it's
2922 		 * still connected to this eb.
2923 		 */
2924 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2925 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2926 			BUG_ON(folio_test_dirty(folio));
2927 			BUG_ON(folio_test_writeback(folio));
2928 			/* We need to make sure we haven't be attached to a new eb. */
2929 			folio_detach_private(folio);
2930 		}
2931 		if (mapped)
2932 			spin_unlock(&mapping->i_private_lock);
2933 		return;
2934 	}
2935 
2936 	/*
2937 	 * For subpage, we can have dummy eb with folio private attached.  In
2938 	 * this case, we can directly detach the private as such folio is only
2939 	 * attached to one dummy eb, no sharing.
2940 	 */
2941 	if (!mapped) {
2942 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2943 		return;
2944 	}
2945 
2946 	btrfs_folio_dec_eb_refs(fs_info, folio);
2947 
2948 	/*
2949 	 * We can only detach the folio private if there are no other ebs in the
2950 	 * page range and no unfinished IO.
2951 	 */
2952 	if (!folio_range_has_eb(folio))
2953 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2954 
2955 	spin_unlock(&mapping->i_private_lock);
2956 }
2957 
2958 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2959 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2960 {
2961 	ASSERT(!extent_buffer_under_io(eb));
2962 
2963 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2964 		struct folio *folio = eb->folios[i];
2965 
2966 		if (!folio)
2967 			continue;
2968 
2969 		detach_extent_buffer_folio(eb, folio);
2970 	}
2971 }
2972 
2973 /*
2974  * Helper for releasing the extent buffer.
2975  */
btrfs_release_extent_buffer(struct extent_buffer * eb)2976 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2977 {
2978 	btrfs_release_extent_buffer_folios(eb);
2979 	btrfs_leak_debug_del_eb(eb);
2980 	kmem_cache_free(extent_buffer_cache, eb);
2981 }
2982 
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2983 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2984 						   u64 start)
2985 {
2986 	struct extent_buffer *eb = NULL;
2987 
2988 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2989 	eb->start = start;
2990 	eb->len = fs_info->nodesize;
2991 	eb->fs_info = fs_info;
2992 	init_rwsem(&eb->lock);
2993 
2994 	btrfs_leak_debug_add_eb(eb);
2995 
2996 	spin_lock_init(&eb->refs_lock);
2997 	refcount_set(&eb->refs, 1);
2998 
2999 	ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3000 
3001 	return eb;
3002 }
3003 
3004 /*
3005  * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
3006  * does not call folio_put(), and we need to set the folios to NULL so that
3007  * btrfs_release_extent_buffer() will not detach them a second time.
3008  */
cleanup_extent_buffer_folios(struct extent_buffer * eb)3009 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
3010 {
3011 	const int num_folios = num_extent_folios(eb);
3012 
3013 	/* We cannot use num_extent_folios() as loop bound as eb->folios changes. */
3014 	for (int i = 0; i < num_folios; i++) {
3015 		ASSERT(eb->folios[i]);
3016 		detach_extent_buffer_folio(eb, eb->folios[i]);
3017 		folio_put(eb->folios[i]);
3018 		eb->folios[i] = NULL;
3019 	}
3020 }
3021 
btrfs_clone_extent_buffer(const struct extent_buffer * src)3022 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3023 {
3024 	struct extent_buffer *new;
3025 	int num_folios;
3026 	int ret;
3027 
3028 	new = __alloc_extent_buffer(src->fs_info, src->start);
3029 	if (new == NULL)
3030 		return NULL;
3031 
3032 	/*
3033 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3034 	 * btrfs_release_extent_buffer() have different behavior for
3035 	 * UNMAPPED subpage extent buffer.
3036 	 */
3037 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3038 
3039 	ret = alloc_eb_folio_array(new, false);
3040 	if (ret)
3041 		goto release_eb;
3042 
3043 	ASSERT(num_extent_folios(src) == num_extent_folios(new),
3044 	       "%d != %d", num_extent_folios(src), num_extent_folios(new));
3045 	/* Explicitly use the cached num_extent value from now on. */
3046 	num_folios = num_extent_folios(src);
3047 	for (int i = 0; i < num_folios; i++) {
3048 		struct folio *folio = new->folios[i];
3049 
3050 		ret = attach_extent_buffer_folio(new, folio, NULL);
3051 		if (ret < 0)
3052 			goto cleanup_folios;
3053 		WARN_ON(folio_test_dirty(folio));
3054 	}
3055 	for (int i = 0; i < num_folios; i++)
3056 		folio_put(new->folios[i]);
3057 
3058 	copy_extent_buffer_full(new, src);
3059 	set_extent_buffer_uptodate(new);
3060 
3061 	return new;
3062 
3063 cleanup_folios:
3064 	cleanup_extent_buffer_folios(new);
3065 release_eb:
3066 	btrfs_release_extent_buffer(new);
3067 	return NULL;
3068 }
3069 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3070 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3071 						u64 start)
3072 {
3073 	struct extent_buffer *eb;
3074 	int ret;
3075 
3076 	eb = __alloc_extent_buffer(fs_info, start);
3077 	if (!eb)
3078 		return NULL;
3079 
3080 	ret = alloc_eb_folio_array(eb, false);
3081 	if (ret)
3082 		goto release_eb;
3083 
3084 	for (int i = 0; i < num_extent_folios(eb); i++) {
3085 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3086 		if (ret < 0)
3087 			goto cleanup_folios;
3088 	}
3089 	for (int i = 0; i < num_extent_folios(eb); i++)
3090 		folio_put(eb->folios[i]);
3091 
3092 	set_extent_buffer_uptodate(eb);
3093 	btrfs_set_header_nritems(eb, 0);
3094 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3095 
3096 	return eb;
3097 
3098 cleanup_folios:
3099 	cleanup_extent_buffer_folios(eb);
3100 release_eb:
3101 	btrfs_release_extent_buffer(eb);
3102 	return NULL;
3103 }
3104 
check_buffer_tree_ref(struct extent_buffer * eb)3105 static void check_buffer_tree_ref(struct extent_buffer *eb)
3106 {
3107 	int refs;
3108 	/*
3109 	 * The TREE_REF bit is first set when the extent_buffer is added to the
3110 	 * xarray. It is also reset, if unset, when a new reference is created
3111 	 * by find_extent_buffer.
3112 	 *
3113 	 * It is only cleared in two cases: freeing the last non-tree
3114 	 * reference to the extent_buffer when its STALE bit is set or
3115 	 * calling release_folio when the tree reference is the only reference.
3116 	 *
3117 	 * In both cases, care is taken to ensure that the extent_buffer's
3118 	 * pages are not under io. However, release_folio can be concurrently
3119 	 * called with creating new references, which is prone to race
3120 	 * conditions between the calls to check_buffer_tree_ref in those
3121 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3122 	 *
3123 	 * The actual lifetime of the extent_buffer in the xarray is adequately
3124 	 * protected by the refcount, but the TREE_REF bit and its corresponding
3125 	 * reference are not. To protect against this class of races, we call
3126 	 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3127 	 * once io is initiated, TREE_REF can no longer be cleared, so that is
3128 	 * the moment at which any such race is best fixed.
3129 	 */
3130 	refs = refcount_read(&eb->refs);
3131 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3132 		return;
3133 
3134 	spin_lock(&eb->refs_lock);
3135 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3136 		refcount_inc(&eb->refs);
3137 	spin_unlock(&eb->refs_lock);
3138 }
3139 
mark_extent_buffer_accessed(struct extent_buffer * eb)3140 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3141 {
3142 	check_buffer_tree_ref(eb);
3143 
3144 	for (int i = 0; i < num_extent_folios(eb); i++)
3145 		folio_mark_accessed(eb->folios[i]);
3146 }
3147 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3148 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3149 					 u64 start)
3150 {
3151 	struct extent_buffer *eb;
3152 
3153 	eb = find_extent_buffer_nolock(fs_info, start);
3154 	if (!eb)
3155 		return NULL;
3156 	/*
3157 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3158 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3159 	 * another task running free_extent_buffer() might have seen that flag
3160 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3161 	 * writeback flags not set) and it's still in the tree (flag
3162 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3163 	 * decrementing the extent buffer's reference count twice.  So here we
3164 	 * could race and increment the eb's reference count, clear its stale
3165 	 * flag, mark it as dirty and drop our reference before the other task
3166 	 * finishes executing free_extent_buffer, which would later result in
3167 	 * an attempt to free an extent buffer that is dirty.
3168 	 */
3169 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3170 		spin_lock(&eb->refs_lock);
3171 		spin_unlock(&eb->refs_lock);
3172 	}
3173 	mark_extent_buffer_accessed(eb);
3174 	return eb;
3175 }
3176 
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3177 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3178 					u64 start)
3179 {
3180 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3181 	struct extent_buffer *eb, *exists = NULL;
3182 	int ret;
3183 
3184 	eb = find_extent_buffer(fs_info, start);
3185 	if (eb)
3186 		return eb;
3187 	eb = alloc_dummy_extent_buffer(fs_info, start);
3188 	if (!eb)
3189 		return ERR_PTR(-ENOMEM);
3190 	eb->fs_info = fs_info;
3191 again:
3192 	xa_lock_irq(&fs_info->buffer_tree);
3193 	exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3194 			      NULL, eb, GFP_NOFS);
3195 	if (xa_is_err(exists)) {
3196 		ret = xa_err(exists);
3197 		xa_unlock_irq(&fs_info->buffer_tree);
3198 		btrfs_release_extent_buffer(eb);
3199 		return ERR_PTR(ret);
3200 	}
3201 	if (exists) {
3202 		if (!refcount_inc_not_zero(&exists->refs)) {
3203 			/* The extent buffer is being freed, retry. */
3204 			xa_unlock_irq(&fs_info->buffer_tree);
3205 			goto again;
3206 		}
3207 		xa_unlock_irq(&fs_info->buffer_tree);
3208 		btrfs_release_extent_buffer(eb);
3209 		return exists;
3210 	}
3211 	xa_unlock_irq(&fs_info->buffer_tree);
3212 	check_buffer_tree_ref(eb);
3213 
3214 	return eb;
3215 #else
3216 	/* Stub to avoid linker error when compiled with optimizations turned off. */
3217 	return NULL;
3218 #endif
3219 }
3220 
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3221 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3222 						struct folio *folio)
3223 {
3224 	struct extent_buffer *exists;
3225 
3226 	lockdep_assert_held(&folio->mapping->i_private_lock);
3227 
3228 	/*
3229 	 * For subpage case, we completely rely on xarray to ensure we don't try
3230 	 * to insert two ebs for the same bytenr.  So here we always return NULL
3231 	 * and just continue.
3232 	 */
3233 	if (btrfs_meta_is_subpage(fs_info))
3234 		return NULL;
3235 
3236 	/* Page not yet attached to an extent buffer */
3237 	if (!folio_test_private(folio))
3238 		return NULL;
3239 
3240 	/*
3241 	 * We could have already allocated an eb for this folio and attached one
3242 	 * so lets see if we can get a ref on the existing eb, and if we can we
3243 	 * know it's good and we can just return that one, else we know we can
3244 	 * just overwrite folio private.
3245 	 */
3246 	exists = folio_get_private(folio);
3247 	if (refcount_inc_not_zero(&exists->refs))
3248 		return exists;
3249 
3250 	WARN_ON(folio_test_dirty(folio));
3251 	folio_detach_private(folio);
3252 	return NULL;
3253 }
3254 
3255 /*
3256  * Validate alignment constraints of eb at logical address @start.
3257  */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3258 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3259 {
3260 	const u32 nodesize = fs_info->nodesize;
3261 
3262 	if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) {
3263 		btrfs_err(fs_info, "bad tree block start %llu", start);
3264 		return true;
3265 	}
3266 
3267 	if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) {
3268 		btrfs_err(fs_info,
3269 		"tree block is not nodesize aligned, start %llu nodesize %u",
3270 			  start, nodesize);
3271 		return true;
3272 	}
3273 	if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) {
3274 		btrfs_err(fs_info,
3275 		"tree block is not page aligned, start %llu nodesize %u",
3276 			  start, nodesize);
3277 		return true;
3278 	}
3279 	if (unlikely(!IS_ALIGNED(start, nodesize) &&
3280 		     !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) {
3281 		btrfs_warn(fs_info,
3282 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3283 			      start, nodesize);
3284 	}
3285 	return false;
3286 }
3287 
3288 /*
3289  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3290  * Return >0 if there is already another extent buffer for the range,
3291  * and @found_eb_ret would be updated.
3292  * Return -EAGAIN if the filemap has an existing folio but with different size
3293  * than @eb.
3294  * The caller needs to free the existing folios and retry using the same order.
3295  */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3296 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3297 				      struct btrfs_folio_state *prealloc,
3298 				      struct extent_buffer **found_eb_ret)
3299 {
3300 
3301 	struct btrfs_fs_info *fs_info = eb->fs_info;
3302 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3303 	const pgoff_t index = eb->start >> PAGE_SHIFT;
3304 	struct folio *existing_folio;
3305 	int ret;
3306 
3307 	ASSERT(found_eb_ret);
3308 
3309 	/* Caller should ensure the folio exists. */
3310 	ASSERT(eb->folios[i]);
3311 
3312 retry:
3313 	existing_folio = NULL;
3314 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3315 				GFP_NOFS | __GFP_NOFAIL);
3316 	if (!ret)
3317 		goto finish;
3318 
3319 	existing_folio = filemap_lock_folio(mapping, index + i);
3320 	/* The page cache only exists for a very short time, just retry. */
3321 	if (IS_ERR(existing_folio))
3322 		goto retry;
3323 
3324 	/* For now, we should only have single-page folios for btree inode. */
3325 	ASSERT(folio_nr_pages(existing_folio) == 1);
3326 
3327 	if (folio_size(existing_folio) != eb->folio_size) {
3328 		folio_unlock(existing_folio);
3329 		folio_put(existing_folio);
3330 		return -EAGAIN;
3331 	}
3332 
3333 finish:
3334 	spin_lock(&mapping->i_private_lock);
3335 	if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3336 		/* We're going to reuse the existing page, can drop our folio now. */
3337 		__free_page(folio_page(eb->folios[i], 0));
3338 		eb->folios[i] = existing_folio;
3339 	} else if (existing_folio) {
3340 		struct extent_buffer *existing_eb;
3341 
3342 		existing_eb = grab_extent_buffer(fs_info, existing_folio);
3343 		if (existing_eb) {
3344 			/* The extent buffer still exists, we can use it directly. */
3345 			*found_eb_ret = existing_eb;
3346 			spin_unlock(&mapping->i_private_lock);
3347 			folio_unlock(existing_folio);
3348 			folio_put(existing_folio);
3349 			return 1;
3350 		}
3351 		/* The extent buffer no longer exists, we can reuse the folio. */
3352 		__free_page(folio_page(eb->folios[i], 0));
3353 		eb->folios[i] = existing_folio;
3354 	}
3355 	eb->folio_size = folio_size(eb->folios[i]);
3356 	eb->folio_shift = folio_shift(eb->folios[i]);
3357 	/* Should not fail, as we have preallocated the memory. */
3358 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3359 	ASSERT(!ret);
3360 	/*
3361 	 * To inform we have an extra eb under allocation, so that
3362 	 * detach_extent_buffer_page() won't release the folio private when the
3363 	 * eb hasn't been inserted into the xarray yet.
3364 	 *
3365 	 * The ref will be decreased when the eb releases the page, in
3366 	 * detach_extent_buffer_page().  Thus needs no special handling in the
3367 	 * error path.
3368 	 */
3369 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3370 	spin_unlock(&mapping->i_private_lock);
3371 	return 0;
3372 }
3373 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3374 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3375 					  u64 start, u64 owner_root, int level)
3376 {
3377 	int attached = 0;
3378 	struct extent_buffer *eb;
3379 	struct extent_buffer *existing_eb = NULL;
3380 	struct btrfs_folio_state *prealloc = NULL;
3381 	u64 lockdep_owner = owner_root;
3382 	bool page_contig = true;
3383 	int uptodate = 1;
3384 	int ret;
3385 
3386 	if (check_eb_alignment(fs_info, start))
3387 		return ERR_PTR(-EINVAL);
3388 
3389 #if BITS_PER_LONG == 32
3390 	if (start >= MAX_LFS_FILESIZE) {
3391 		btrfs_err_rl(fs_info,
3392 		"extent buffer %llu is beyond 32bit page cache limit", start);
3393 		btrfs_err_32bit_limit(fs_info);
3394 		return ERR_PTR(-EOVERFLOW);
3395 	}
3396 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3397 		btrfs_warn_32bit_limit(fs_info);
3398 #endif
3399 
3400 	eb = find_extent_buffer(fs_info, start);
3401 	if (eb)
3402 		return eb;
3403 
3404 	eb = __alloc_extent_buffer(fs_info, start);
3405 	if (!eb)
3406 		return ERR_PTR(-ENOMEM);
3407 
3408 	/*
3409 	 * The reloc trees are just snapshots, so we need them to appear to be
3410 	 * just like any other fs tree WRT lockdep.
3411 	 */
3412 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3413 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3414 
3415 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3416 
3417 	/*
3418 	 * Preallocate folio private for subpage case, so that we won't
3419 	 * allocate memory with i_private_lock nor page lock hold.
3420 	 *
3421 	 * The memory will be freed by attach_extent_buffer_page() or freed
3422 	 * manually if we exit earlier.
3423 	 */
3424 	if (btrfs_meta_is_subpage(fs_info)) {
3425 		prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3426 		if (IS_ERR(prealloc)) {
3427 			ret = PTR_ERR(prealloc);
3428 			goto out;
3429 		}
3430 	}
3431 
3432 reallocate:
3433 	/* Allocate all pages first. */
3434 	ret = alloc_eb_folio_array(eb, true);
3435 	if (ret < 0) {
3436 		btrfs_free_folio_state(prealloc);
3437 		goto out;
3438 	}
3439 
3440 	/* Attach all pages to the filemap. */
3441 	for (int i = 0; i < num_extent_folios(eb); i++) {
3442 		struct folio *folio;
3443 
3444 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3445 		if (ret > 0) {
3446 			ASSERT(existing_eb);
3447 			goto out;
3448 		}
3449 
3450 		/*
3451 		 * TODO: Special handling for a corner case where the order of
3452 		 * folios mismatch between the new eb and filemap.
3453 		 *
3454 		 * This happens when:
3455 		 *
3456 		 * - the new eb is using higher order folio
3457 		 *
3458 		 * - the filemap is still using 0-order folios for the range
3459 		 *   This can happen at the previous eb allocation, and we don't
3460 		 *   have higher order folio for the call.
3461 		 *
3462 		 * - the existing eb has already been freed
3463 		 *
3464 		 * In this case, we have to free the existing folios first, and
3465 		 * re-allocate using the same order.
3466 		 * Thankfully this is not going to happen yet, as we're still
3467 		 * using 0-order folios.
3468 		 */
3469 		if (unlikely(ret == -EAGAIN)) {
3470 			DEBUG_WARN("folio order mismatch between new eb and filemap");
3471 			goto reallocate;
3472 		}
3473 		attached++;
3474 
3475 		/*
3476 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3477 		 * reliable, as we may choose to reuse the existing page cache
3478 		 * and free the allocated page.
3479 		 */
3480 		folio = eb->folios[i];
3481 		WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3482 
3483 		/*
3484 		 * Check if the current page is physically contiguous with previous eb
3485 		 * page.
3486 		 * At this stage, either we allocated a large folio, thus @i
3487 		 * would only be 0, or we fall back to per-page allocation.
3488 		 */
3489 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3490 			page_contig = false;
3491 
3492 		if (!btrfs_meta_folio_test_uptodate(folio, eb))
3493 			uptodate = 0;
3494 
3495 		/*
3496 		 * We can't unlock the pages just yet since the extent buffer
3497 		 * hasn't been properly inserted into the xarray, this opens a
3498 		 * race with btree_release_folio() which can free a page while we
3499 		 * are still filling in all pages for the buffer and we could crash.
3500 		 */
3501 	}
3502 	if (uptodate)
3503 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3504 	/* All pages are physically contiguous, can skip cross page handling. */
3505 	if (page_contig)
3506 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3507 again:
3508 	xa_lock_irq(&fs_info->buffer_tree);
3509 	existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3510 				   start >> fs_info->nodesize_bits, NULL, eb,
3511 				   GFP_NOFS);
3512 	if (xa_is_err(existing_eb)) {
3513 		ret = xa_err(existing_eb);
3514 		xa_unlock_irq(&fs_info->buffer_tree);
3515 		goto out;
3516 	}
3517 	if (existing_eb) {
3518 		if (!refcount_inc_not_zero(&existing_eb->refs)) {
3519 			xa_unlock_irq(&fs_info->buffer_tree);
3520 			goto again;
3521 		}
3522 		xa_unlock_irq(&fs_info->buffer_tree);
3523 		goto out;
3524 	}
3525 	xa_unlock_irq(&fs_info->buffer_tree);
3526 
3527 	/* add one reference for the tree */
3528 	check_buffer_tree_ref(eb);
3529 
3530 	/*
3531 	 * Now it's safe to unlock the pages because any calls to
3532 	 * btree_release_folio will correctly detect that a page belongs to a
3533 	 * live buffer and won't free them prematurely.
3534 	 */
3535 	for (int i = 0; i < num_extent_folios(eb); i++) {
3536 		folio_unlock(eb->folios[i]);
3537 		/*
3538 		 * A folio that has been added to an address_space mapping
3539 		 * should not continue holding the refcount from its original
3540 		 * allocation indefinitely.
3541 		 */
3542 		folio_put(eb->folios[i]);
3543 	}
3544 	return eb;
3545 
3546 out:
3547 	WARN_ON(!refcount_dec_and_test(&eb->refs));
3548 
3549 	/*
3550 	 * Any attached folios need to be detached before we unlock them.  This
3551 	 * is because when we're inserting our new folios into the mapping, and
3552 	 * then attaching our eb to that folio.  If we fail to insert our folio
3553 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3554 	 * want that to grab this eb, as we're getting ready to free it.  So we
3555 	 * have to detach it first and then unlock it.
3556 	 *
3557 	 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3558 	 */
3559 	for (int i = 0; i < num_extent_pages(eb); i++) {
3560 		struct folio *folio = eb->folios[i];
3561 
3562 		if (i < attached) {
3563 			ASSERT(folio);
3564 			detach_extent_buffer_folio(eb, folio);
3565 			folio_unlock(folio);
3566 		} else if (!folio) {
3567 			continue;
3568 		}
3569 
3570 		folio_put(folio);
3571 		eb->folios[i] = NULL;
3572 	}
3573 	btrfs_release_extent_buffer(eb);
3574 	if (ret < 0)
3575 		return ERR_PTR(ret);
3576 	ASSERT(existing_eb);
3577 	return existing_eb;
3578 }
3579 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3580 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3581 {
3582 	struct extent_buffer *eb =
3583 			container_of(head, struct extent_buffer, rcu_head);
3584 
3585 	kmem_cache_free(extent_buffer_cache, eb);
3586 }
3587 
release_extent_buffer(struct extent_buffer * eb)3588 static int release_extent_buffer(struct extent_buffer *eb)
3589 	__releases(&eb->refs_lock)
3590 {
3591 	lockdep_assert_held(&eb->refs_lock);
3592 
3593 	if (refcount_dec_and_test(&eb->refs)) {
3594 		struct btrfs_fs_info *fs_info = eb->fs_info;
3595 
3596 		spin_unlock(&eb->refs_lock);
3597 
3598 		/*
3599 		 * We're erasing, theoretically there will be no allocations, so
3600 		 * just use GFP_ATOMIC.
3601 		 *
3602 		 * We use cmpxchg instead of erase because we do not know if
3603 		 * this eb is actually in the tree or not, we could be cleaning
3604 		 * up an eb that we allocated but never inserted into the tree.
3605 		 * Thus use cmpxchg to remove it from the tree if it is there,
3606 		 * or leave the other entry if this isn't in the tree.
3607 		 *
3608 		 * The documentation says that putting a NULL value is the same
3609 		 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3610 		 * in this case.
3611 		 */
3612 		xa_cmpxchg_irq(&fs_info->buffer_tree,
3613 			       eb->start >> fs_info->nodesize_bits, eb, NULL,
3614 			       GFP_ATOMIC);
3615 
3616 		btrfs_leak_debug_del_eb(eb);
3617 		/* Should be safe to release folios at this point. */
3618 		btrfs_release_extent_buffer_folios(eb);
3619 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3620 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3621 			kmem_cache_free(extent_buffer_cache, eb);
3622 			return 1;
3623 		}
3624 #endif
3625 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3626 		return 1;
3627 	}
3628 	spin_unlock(&eb->refs_lock);
3629 
3630 	return 0;
3631 }
3632 
free_extent_buffer(struct extent_buffer * eb)3633 void free_extent_buffer(struct extent_buffer *eb)
3634 {
3635 	int refs;
3636 	if (!eb)
3637 		return;
3638 
3639 	refs = refcount_read(&eb->refs);
3640 	while (1) {
3641 		if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3642 			if (refs == 1)
3643 				break;
3644 		} else if (refs <= 3) {
3645 			break;
3646 		}
3647 
3648 		/* Optimization to avoid locking eb->refs_lock. */
3649 		if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3650 			return;
3651 	}
3652 
3653 	spin_lock(&eb->refs_lock);
3654 	if (refcount_read(&eb->refs) == 2 &&
3655 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3656 	    !extent_buffer_under_io(eb) &&
3657 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3658 		refcount_dec(&eb->refs);
3659 
3660 	/*
3661 	 * I know this is terrible, but it's temporary until we stop tracking
3662 	 * the uptodate bits and such for the extent buffers.
3663 	 */
3664 	release_extent_buffer(eb);
3665 }
3666 
free_extent_buffer_stale(struct extent_buffer * eb)3667 void free_extent_buffer_stale(struct extent_buffer *eb)
3668 {
3669 	if (!eb)
3670 		return;
3671 
3672 	spin_lock(&eb->refs_lock);
3673 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3674 
3675 	if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3676 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3677 		refcount_dec(&eb->refs);
3678 	release_extent_buffer(eb);
3679 }
3680 
btree_clear_folio_dirty_tag(struct folio * folio)3681 static void btree_clear_folio_dirty_tag(struct folio *folio)
3682 {
3683 	ASSERT(!folio_test_dirty(folio));
3684 	ASSERT(folio_test_locked(folio));
3685 	xa_lock_irq(&folio->mapping->i_pages);
3686 	if (!folio_test_dirty(folio))
3687 		__xa_clear_mark(&folio->mapping->i_pages, folio->index,
3688 				PAGECACHE_TAG_DIRTY);
3689 	xa_unlock_irq(&folio->mapping->i_pages);
3690 }
3691 
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3692 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3693 			      struct extent_buffer *eb)
3694 {
3695 	struct btrfs_fs_info *fs_info = eb->fs_info;
3696 
3697 	btrfs_assert_tree_write_locked(eb);
3698 
3699 	if (trans && btrfs_header_generation(eb) != trans->transid)
3700 		return;
3701 
3702 	/*
3703 	 * Instead of clearing the dirty flag off of the buffer, mark it as
3704 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3705 	 * write-ordering in zoned mode, without the need to later re-dirty
3706 	 * the extent_buffer.
3707 	 *
3708 	 * The actual zeroout of the buffer will happen later in
3709 	 * btree_csum_one_bio.
3710 	 */
3711 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3712 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3713 		return;
3714 	}
3715 
3716 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3717 		return;
3718 
3719 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3720 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3721 				 fs_info->dirty_metadata_batch);
3722 
3723 	for (int i = 0; i < num_extent_folios(eb); i++) {
3724 		struct folio *folio = eb->folios[i];
3725 		bool last;
3726 
3727 		if (!folio_test_dirty(folio))
3728 			continue;
3729 		folio_lock(folio);
3730 		last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3731 		if (last)
3732 			btree_clear_folio_dirty_tag(folio);
3733 		folio_unlock(folio);
3734 	}
3735 	WARN_ON(refcount_read(&eb->refs) == 0);
3736 }
3737 
set_extent_buffer_dirty(struct extent_buffer * eb)3738 void set_extent_buffer_dirty(struct extent_buffer *eb)
3739 {
3740 	bool was_dirty;
3741 
3742 	check_buffer_tree_ref(eb);
3743 
3744 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3745 
3746 	WARN_ON(refcount_read(&eb->refs) == 0);
3747 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3748 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3749 
3750 	if (!was_dirty) {
3751 		bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3752 
3753 		/*
3754 		 * For subpage case, we can have other extent buffers in the
3755 		 * same page, and in clear_extent_buffer_dirty() we
3756 		 * have to clear page dirty without subpage lock held.
3757 		 * This can cause race where our page gets dirty cleared after
3758 		 * we just set it.
3759 		 *
3760 		 * Thankfully, clear_extent_buffer_dirty() has locked
3761 		 * its page for other reasons, we can use page lock to prevent
3762 		 * the above race.
3763 		 */
3764 		if (subpage)
3765 			folio_lock(eb->folios[0]);
3766 		for (int i = 0; i < num_extent_folios(eb); i++)
3767 			btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3768 		buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3769 		if (subpage)
3770 			folio_unlock(eb->folios[0]);
3771 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3772 					 eb->len,
3773 					 eb->fs_info->dirty_metadata_batch);
3774 	}
3775 #ifdef CONFIG_BTRFS_DEBUG
3776 	for (int i = 0; i < num_extent_folios(eb); i++)
3777 		ASSERT(folio_test_dirty(eb->folios[i]));
3778 #endif
3779 }
3780 
clear_extent_buffer_uptodate(struct extent_buffer * eb)3781 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3782 {
3783 
3784 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3785 	for (int i = 0; i < num_extent_folios(eb); i++) {
3786 		struct folio *folio = eb->folios[i];
3787 
3788 		if (!folio)
3789 			continue;
3790 
3791 		btrfs_meta_folio_clear_uptodate(folio, eb);
3792 	}
3793 }
3794 
set_extent_buffer_uptodate(struct extent_buffer * eb)3795 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3796 {
3797 
3798 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3799 	for (int i = 0; i < num_extent_folios(eb); i++)
3800 		btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3801 }
3802 
clear_extent_buffer_reading(struct extent_buffer * eb)3803 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3804 {
3805 	clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3806 }
3807 
end_bbio_meta_read(struct btrfs_bio * bbio)3808 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3809 {
3810 	struct extent_buffer *eb = bbio->private;
3811 	bool uptodate = !bbio->bio.bi_status;
3812 
3813 	/*
3814 	 * If the extent buffer is marked UPTODATE before the read operation
3815 	 * completes, other calls to read_extent_buffer_pages() will return
3816 	 * early without waiting for the read to finish, causing data races.
3817 	 */
3818 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3819 
3820 	eb->read_mirror = bbio->mirror_num;
3821 
3822 	if (uptodate &&
3823 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3824 		uptodate = false;
3825 
3826 	if (uptodate)
3827 		set_extent_buffer_uptodate(eb);
3828 	else
3829 		clear_extent_buffer_uptodate(eb);
3830 
3831 	clear_extent_buffer_reading(eb);
3832 	free_extent_buffer(eb);
3833 
3834 	bio_put(&bbio->bio);
3835 }
3836 
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3837 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3838 				    const struct btrfs_tree_parent_check *check)
3839 {
3840 	struct btrfs_fs_info *fs_info = eb->fs_info;
3841 	struct btrfs_bio *bbio;
3842 
3843 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3844 		return 0;
3845 
3846 	/*
3847 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3848 	 * operation, which could potentially still be in flight.  In this case
3849 	 * we simply want to return an error.
3850 	 */
3851 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3852 		return -EIO;
3853 
3854 	/* Someone else is already reading the buffer, just wait for it. */
3855 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3856 		return 0;
3857 
3858 	/*
3859 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3860 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3861 	 * started and finished reading the same eb.  In this case, UPTODATE
3862 	 * will now be set, and we shouldn't read it in again.
3863 	 */
3864 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3865 		clear_extent_buffer_reading(eb);
3866 		return 0;
3867 	}
3868 
3869 	eb->read_mirror = 0;
3870 	check_buffer_tree_ref(eb);
3871 	refcount_inc(&eb->refs);
3872 
3873 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3874 			       REQ_OP_READ | REQ_META, BTRFS_I(fs_info->btree_inode),
3875 			       eb->start, end_bbio_meta_read, eb);
3876 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3877 	memcpy(&bbio->parent_check, check, sizeof(*check));
3878 	for (int i = 0; i < num_extent_folios(eb); i++) {
3879 		struct folio *folio = eb->folios[i];
3880 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3881 		u32 range_len = min_t(u64, folio_next_pos(folio),
3882 				      eb->start + eb->len) - range_start;
3883 
3884 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
3885 				     offset_in_folio(folio, range_start));
3886 	}
3887 	btrfs_submit_bbio(bbio, mirror_num);
3888 	return 0;
3889 }
3890 
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3891 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3892 			     const struct btrfs_tree_parent_check *check)
3893 {
3894 	int ret;
3895 
3896 	ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3897 	if (ret < 0)
3898 		return ret;
3899 
3900 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3901 	if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)))
3902 		return -EIO;
3903 	return 0;
3904 }
3905 
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3906 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3907 			    unsigned long len)
3908 {
3909 	btrfs_warn(eb->fs_info,
3910 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3911 		eb->start, eb->len, start, len);
3912 	DEBUG_WARN();
3913 
3914 	return true;
3915 }
3916 
3917 /*
3918  * Check if the [start, start + len) range is valid before reading/writing
3919  * the eb.
3920  * NOTE: @start and @len are offset inside the eb, not logical address.
3921  *
3922  * Caller should not touch the dst/src memory if this function returns error.
3923  */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3924 static inline int check_eb_range(const struct extent_buffer *eb,
3925 				 unsigned long start, unsigned long len)
3926 {
3927 	unsigned long offset;
3928 
3929 	/* start, start + len should not go beyond eb->len nor overflow */
3930 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3931 		return report_eb_range(eb, start, len);
3932 
3933 	return false;
3934 }
3935 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3936 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3937 			unsigned long start, unsigned long len)
3938 {
3939 	const int unit_size = eb->folio_size;
3940 	size_t cur;
3941 	size_t offset;
3942 	char *dst = (char *)dstv;
3943 	unsigned long i = get_eb_folio_index(eb, start);
3944 
3945 	if (check_eb_range(eb, start, len)) {
3946 		/*
3947 		 * Invalid range hit, reset the memory, so callers won't get
3948 		 * some random garbage for their uninitialized memory.
3949 		 */
3950 		memset(dstv, 0, len);
3951 		return;
3952 	}
3953 
3954 	if (eb->addr) {
3955 		memcpy(dstv, eb->addr + start, len);
3956 		return;
3957 	}
3958 
3959 	offset = get_eb_offset_in_folio(eb, start);
3960 
3961 	while (len > 0) {
3962 		char *kaddr;
3963 
3964 		cur = min(len, unit_size - offset);
3965 		kaddr = folio_address(eb->folios[i]);
3966 		memcpy(dst, kaddr + offset, cur);
3967 
3968 		dst += cur;
3969 		len -= cur;
3970 		offset = 0;
3971 		i++;
3972 	}
3973 }
3974 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3975 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3976 				       void __user *dstv,
3977 				       unsigned long start, unsigned long len)
3978 {
3979 	const int unit_size = eb->folio_size;
3980 	size_t cur;
3981 	size_t offset;
3982 	char __user *dst = (char __user *)dstv;
3983 	unsigned long i = get_eb_folio_index(eb, start);
3984 	int ret = 0;
3985 
3986 	WARN_ON(start > eb->len);
3987 	WARN_ON(start + len > eb->start + eb->len);
3988 
3989 	if (eb->addr) {
3990 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3991 			ret = -EFAULT;
3992 		return ret;
3993 	}
3994 
3995 	offset = get_eb_offset_in_folio(eb, start);
3996 
3997 	while (len > 0) {
3998 		char *kaddr;
3999 
4000 		cur = min(len, unit_size - offset);
4001 		kaddr = folio_address(eb->folios[i]);
4002 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4003 			ret = -EFAULT;
4004 			break;
4005 		}
4006 
4007 		dst += cur;
4008 		len -= cur;
4009 		offset = 0;
4010 		i++;
4011 	}
4012 
4013 	return ret;
4014 }
4015 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4016 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4017 			 unsigned long start, unsigned long len)
4018 {
4019 	const int unit_size = eb->folio_size;
4020 	size_t cur;
4021 	size_t offset;
4022 	char *kaddr;
4023 	char *ptr = (char *)ptrv;
4024 	unsigned long i = get_eb_folio_index(eb, start);
4025 	int ret = 0;
4026 
4027 	if (check_eb_range(eb, start, len))
4028 		return -EINVAL;
4029 
4030 	if (eb->addr)
4031 		return memcmp(ptrv, eb->addr + start, len);
4032 
4033 	offset = get_eb_offset_in_folio(eb, start);
4034 
4035 	while (len > 0) {
4036 		cur = min(len, unit_size - offset);
4037 		kaddr = folio_address(eb->folios[i]);
4038 		ret = memcmp(ptr, kaddr + offset, cur);
4039 		if (ret)
4040 			break;
4041 
4042 		ptr += cur;
4043 		len -= cur;
4044 		offset = 0;
4045 		i++;
4046 	}
4047 	return ret;
4048 }
4049 
4050 /*
4051  * Check that the extent buffer is uptodate.
4052  *
4053  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4054  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4055  */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)4056 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4057 {
4058 	struct btrfs_fs_info *fs_info = eb->fs_info;
4059 	struct folio *folio = eb->folios[i];
4060 
4061 	ASSERT(folio);
4062 
4063 	/*
4064 	 * If we are using the commit root we could potentially clear a page
4065 	 * Uptodate while we're using the extent buffer that we've previously
4066 	 * looked up.  We don't want to complain in this case, as the page was
4067 	 * valid before, we just didn't write it out.  Instead we want to catch
4068 	 * the case where we didn't actually read the block properly, which
4069 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4070 	 */
4071 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4072 		return;
4073 
4074 	if (btrfs_meta_is_subpage(fs_info)) {
4075 		folio = eb->folios[0];
4076 		ASSERT(i == 0);
4077 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4078 							 eb->start, eb->len)))
4079 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4080 	} else {
4081 		WARN_ON(!folio_test_uptodate(folio));
4082 	}
4083 }
4084 
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4085 static void __write_extent_buffer(const struct extent_buffer *eb,
4086 				  const void *srcv, unsigned long start,
4087 				  unsigned long len, bool use_memmove)
4088 {
4089 	const int unit_size = eb->folio_size;
4090 	size_t cur;
4091 	size_t offset;
4092 	char *kaddr;
4093 	const char *src = (const char *)srcv;
4094 	unsigned long i = get_eb_folio_index(eb, start);
4095 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4096 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4097 
4098 	if (check_eb_range(eb, start, len))
4099 		return;
4100 
4101 	if (eb->addr) {
4102 		if (use_memmove)
4103 			memmove(eb->addr + start, srcv, len);
4104 		else
4105 			memcpy(eb->addr + start, srcv, len);
4106 		return;
4107 	}
4108 
4109 	offset = get_eb_offset_in_folio(eb, start);
4110 
4111 	while (len > 0) {
4112 		if (check_uptodate)
4113 			assert_eb_folio_uptodate(eb, i);
4114 
4115 		cur = min(len, unit_size - offset);
4116 		kaddr = folio_address(eb->folios[i]);
4117 		if (use_memmove)
4118 			memmove(kaddr + offset, src, cur);
4119 		else
4120 			memcpy(kaddr + offset, src, cur);
4121 
4122 		src += cur;
4123 		len -= cur;
4124 		offset = 0;
4125 		i++;
4126 	}
4127 }
4128 
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4129 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4130 			 unsigned long start, unsigned long len)
4131 {
4132 	return __write_extent_buffer(eb, srcv, start, len, false);
4133 }
4134 
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4135 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4136 				 unsigned long start, unsigned long len)
4137 {
4138 	const int unit_size = eb->folio_size;
4139 	unsigned long cur = start;
4140 
4141 	if (eb->addr) {
4142 		memset(eb->addr + start, c, len);
4143 		return;
4144 	}
4145 
4146 	while (cur < start + len) {
4147 		unsigned long index = get_eb_folio_index(eb, cur);
4148 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4149 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4150 
4151 		assert_eb_folio_uptodate(eb, index);
4152 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4153 
4154 		cur += cur_len;
4155 	}
4156 }
4157 
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4158 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4159 			   unsigned long len)
4160 {
4161 	if (check_eb_range(eb, start, len))
4162 		return;
4163 	return memset_extent_buffer(eb, 0, start, len);
4164 }
4165 
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4166 void copy_extent_buffer_full(const struct extent_buffer *dst,
4167 			     const struct extent_buffer *src)
4168 {
4169 	const int unit_size = src->folio_size;
4170 	unsigned long cur = 0;
4171 
4172 	ASSERT(dst->len == src->len);
4173 
4174 	while (cur < src->len) {
4175 		unsigned long index = get_eb_folio_index(src, cur);
4176 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4177 		unsigned long cur_len = min(src->len, unit_size - offset);
4178 		void *addr = folio_address(src->folios[index]) + offset;
4179 
4180 		write_extent_buffer(dst, addr, cur, cur_len);
4181 
4182 		cur += cur_len;
4183 	}
4184 }
4185 
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4186 void copy_extent_buffer(const struct extent_buffer *dst,
4187 			const struct extent_buffer *src,
4188 			unsigned long dst_offset, unsigned long src_offset,
4189 			unsigned long len)
4190 {
4191 	const int unit_size = dst->folio_size;
4192 	u64 dst_len = dst->len;
4193 	size_t cur;
4194 	size_t offset;
4195 	char *kaddr;
4196 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4197 
4198 	if (check_eb_range(dst, dst_offset, len) ||
4199 	    check_eb_range(src, src_offset, len))
4200 		return;
4201 
4202 	WARN_ON(src->len != dst_len);
4203 
4204 	offset = get_eb_offset_in_folio(dst, dst_offset);
4205 
4206 	while (len > 0) {
4207 		assert_eb_folio_uptodate(dst, i);
4208 
4209 		cur = min(len, (unsigned long)(unit_size - offset));
4210 
4211 		kaddr = folio_address(dst->folios[i]);
4212 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4213 
4214 		src_offset += cur;
4215 		len -= cur;
4216 		offset = 0;
4217 		i++;
4218 	}
4219 }
4220 
4221 /*
4222  * Calculate the folio and offset of the byte containing the given bit number.
4223  *
4224  * @eb:           the extent buffer
4225  * @start:        offset of the bitmap item in the extent buffer
4226  * @nr:           bit number
4227  * @folio_index:  return index of the folio in the extent buffer that contains
4228  *                the given bit number
4229  * @folio_offset: return offset into the folio given by folio_index
4230  *
4231  * This helper hides the ugliness of finding the byte in an extent buffer which
4232  * contains a given bit.
4233  */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4234 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4235 				    unsigned long start, unsigned long nr,
4236 				    unsigned long *folio_index,
4237 				    size_t *folio_offset)
4238 {
4239 	size_t byte_offset = BIT_BYTE(nr);
4240 	size_t offset;
4241 
4242 	/*
4243 	 * The byte we want is the offset of the extent buffer + the offset of
4244 	 * the bitmap item in the extent buffer + the offset of the byte in the
4245 	 * bitmap item.
4246 	 */
4247 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4248 
4249 	*folio_index = offset >> eb->folio_shift;
4250 	*folio_offset = offset_in_eb_folio(eb, offset);
4251 }
4252 
4253 /*
4254  * Determine whether a bit in a bitmap item is set.
4255  *
4256  * @eb:     the extent buffer
4257  * @start:  offset of the bitmap item in the extent buffer
4258  * @nr:     bit number to test
4259  */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4260 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4261 			    unsigned long nr)
4262 {
4263 	unsigned long i;
4264 	size_t offset;
4265 	u8 *kaddr;
4266 
4267 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4268 	assert_eb_folio_uptodate(eb, i);
4269 	kaddr = folio_address(eb->folios[i]);
4270 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4271 }
4272 
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4273 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4274 {
4275 	unsigned long index = get_eb_folio_index(eb, bytenr);
4276 
4277 	if (check_eb_range(eb, bytenr, 1))
4278 		return NULL;
4279 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4280 }
4281 
4282 /*
4283  * Set an area of a bitmap to 1.
4284  *
4285  * @eb:     the extent buffer
4286  * @start:  offset of the bitmap item in the extent buffer
4287  * @pos:    bit number of the first bit
4288  * @len:    number of bits to set
4289  */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4290 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4291 			      unsigned long pos, unsigned long len)
4292 {
4293 	unsigned int first_byte = start + BIT_BYTE(pos);
4294 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4295 	const bool same_byte = (first_byte == last_byte);
4296 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4297 	u8 *kaddr;
4298 
4299 	if (same_byte)
4300 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4301 
4302 	/* Handle the first byte. */
4303 	kaddr = extent_buffer_get_byte(eb, first_byte);
4304 	*kaddr |= mask;
4305 	if (same_byte)
4306 		return;
4307 
4308 	/* Handle the byte aligned part. */
4309 	ASSERT(first_byte + 1 <= last_byte);
4310 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4311 
4312 	/* Handle the last byte. */
4313 	kaddr = extent_buffer_get_byte(eb, last_byte);
4314 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4315 }
4316 
4317 
4318 /*
4319  * Clear an area of a bitmap.
4320  *
4321  * @eb:     the extent buffer
4322  * @start:  offset of the bitmap item in the extent buffer
4323  * @pos:    bit number of the first bit
4324  * @len:    number of bits to clear
4325  */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4326 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4327 				unsigned long start, unsigned long pos,
4328 				unsigned long len)
4329 {
4330 	unsigned int first_byte = start + BIT_BYTE(pos);
4331 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4332 	const bool same_byte = (first_byte == last_byte);
4333 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4334 	u8 *kaddr;
4335 
4336 	if (same_byte)
4337 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4338 
4339 	/* Handle the first byte. */
4340 	kaddr = extent_buffer_get_byte(eb, first_byte);
4341 	*kaddr &= ~mask;
4342 	if (same_byte)
4343 		return;
4344 
4345 	/* Handle the byte aligned part. */
4346 	ASSERT(first_byte + 1 <= last_byte);
4347 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4348 
4349 	/* Handle the last byte. */
4350 	kaddr = extent_buffer_get_byte(eb, last_byte);
4351 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4352 }
4353 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4354 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4355 {
4356 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4357 	return distance < len;
4358 }
4359 
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4360 void memcpy_extent_buffer(const struct extent_buffer *dst,
4361 			  unsigned long dst_offset, unsigned long src_offset,
4362 			  unsigned long len)
4363 {
4364 	const int unit_size = dst->folio_size;
4365 	unsigned long cur_off = 0;
4366 
4367 	if (check_eb_range(dst, dst_offset, len) ||
4368 	    check_eb_range(dst, src_offset, len))
4369 		return;
4370 
4371 	if (dst->addr) {
4372 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4373 
4374 		if (use_memmove)
4375 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4376 		else
4377 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4378 		return;
4379 	}
4380 
4381 	while (cur_off < len) {
4382 		unsigned long cur_src = cur_off + src_offset;
4383 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4384 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4385 		unsigned long cur_len = min(src_offset + len - cur_src,
4386 					    unit_size - folio_off);
4387 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4388 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4389 						       dst_offset + cur_off, cur_len);
4390 
4391 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4392 				      use_memmove);
4393 		cur_off += cur_len;
4394 	}
4395 }
4396 
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4397 void memmove_extent_buffer(const struct extent_buffer *dst,
4398 			   unsigned long dst_offset, unsigned long src_offset,
4399 			   unsigned long len)
4400 {
4401 	unsigned long dst_end = dst_offset + len - 1;
4402 	unsigned long src_end = src_offset + len - 1;
4403 
4404 	if (check_eb_range(dst, dst_offset, len) ||
4405 	    check_eb_range(dst, src_offset, len))
4406 		return;
4407 
4408 	if (dst_offset < src_offset) {
4409 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4410 		return;
4411 	}
4412 
4413 	if (dst->addr) {
4414 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4415 		return;
4416 	}
4417 
4418 	while (len > 0) {
4419 		unsigned long src_i;
4420 		size_t cur;
4421 		size_t dst_off_in_folio;
4422 		size_t src_off_in_folio;
4423 		void *src_addr;
4424 		bool use_memmove;
4425 
4426 		src_i = get_eb_folio_index(dst, src_end);
4427 
4428 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4429 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4430 
4431 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4432 		cur = min(cur, dst_off_in_folio + 1);
4433 
4434 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4435 					 cur + 1;
4436 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4437 					    cur);
4438 
4439 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4440 				      use_memmove);
4441 
4442 		dst_end -= cur;
4443 		src_end -= cur;
4444 		len -= cur;
4445 	}
4446 }
4447 
try_release_subpage_extent_buffer(struct folio * folio)4448 static int try_release_subpage_extent_buffer(struct folio *folio)
4449 {
4450 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4451 	struct extent_buffer *eb;
4452 	unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4453 	unsigned long index = start;
4454 	unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4455 	int ret;
4456 
4457 	rcu_read_lock();
4458 	xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4459 		/*
4460 		 * The same as try_release_extent_buffer(), to ensure the eb
4461 		 * won't disappear out from under us.
4462 		 */
4463 		spin_lock(&eb->refs_lock);
4464 		rcu_read_unlock();
4465 
4466 		if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4467 			spin_unlock(&eb->refs_lock);
4468 			rcu_read_lock();
4469 			continue;
4470 		}
4471 
4472 		/*
4473 		 * If tree ref isn't set then we know the ref on this eb is a
4474 		 * real ref, so just return, this eb will likely be freed soon
4475 		 * anyway.
4476 		 */
4477 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4478 			spin_unlock(&eb->refs_lock);
4479 			break;
4480 		}
4481 
4482 		/*
4483 		 * Here we don't care about the return value, we will always
4484 		 * check the folio private at the end.  And
4485 		 * release_extent_buffer() will release the refs_lock.
4486 		 */
4487 		release_extent_buffer(eb);
4488 		rcu_read_lock();
4489 	}
4490 	rcu_read_unlock();
4491 
4492 	/*
4493 	 * Finally to check if we have cleared folio private, as if we have
4494 	 * released all ebs in the page, the folio private should be cleared now.
4495 	 */
4496 	spin_lock(&folio->mapping->i_private_lock);
4497 	if (!folio_test_private(folio))
4498 		ret = 1;
4499 	else
4500 		ret = 0;
4501 	spin_unlock(&folio->mapping->i_private_lock);
4502 	return ret;
4503 }
4504 
try_release_extent_buffer(struct folio * folio)4505 int try_release_extent_buffer(struct folio *folio)
4506 {
4507 	struct extent_buffer *eb;
4508 
4509 	if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4510 		return try_release_subpage_extent_buffer(folio);
4511 
4512 	/*
4513 	 * We need to make sure nobody is changing folio private, as we rely on
4514 	 * folio private as the pointer to extent buffer.
4515 	 */
4516 	spin_lock(&folio->mapping->i_private_lock);
4517 	if (!folio_test_private(folio)) {
4518 		spin_unlock(&folio->mapping->i_private_lock);
4519 		return 1;
4520 	}
4521 
4522 	eb = folio_get_private(folio);
4523 	BUG_ON(!eb);
4524 
4525 	/*
4526 	 * This is a little awful but should be ok, we need to make sure that
4527 	 * the eb doesn't disappear out from under us while we're looking at
4528 	 * this page.
4529 	 */
4530 	spin_lock(&eb->refs_lock);
4531 	if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4532 		spin_unlock(&eb->refs_lock);
4533 		spin_unlock(&folio->mapping->i_private_lock);
4534 		return 0;
4535 	}
4536 	spin_unlock(&folio->mapping->i_private_lock);
4537 
4538 	/*
4539 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4540 	 * so just return, this page will likely be freed soon anyway.
4541 	 */
4542 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4543 		spin_unlock(&eb->refs_lock);
4544 		return 0;
4545 	}
4546 
4547 	return release_extent_buffer(eb);
4548 }
4549 
4550 /*
4551  * Attempt to readahead a child block.
4552  *
4553  * @fs_info:	the fs_info
4554  * @bytenr:	bytenr to read
4555  * @owner_root: objectid of the root that owns this eb
4556  * @gen:	generation for the uptodate check, can be 0
4557  * @level:	level for the eb
4558  *
4559  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4560  * normal uptodate check of the eb, without checking the generation.  If we have
4561  * to read the block we will not block on anything.
4562  */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4563 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4564 				u64 bytenr, u64 owner_root, u64 gen, int level)
4565 {
4566 	struct btrfs_tree_parent_check check = {
4567 		.level = level,
4568 		.transid = gen
4569 	};
4570 	struct extent_buffer *eb;
4571 	int ret;
4572 
4573 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4574 	if (IS_ERR(eb))
4575 		return;
4576 
4577 	if (btrfs_buffer_uptodate(eb, gen, true)) {
4578 		free_extent_buffer(eb);
4579 		return;
4580 	}
4581 
4582 	ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4583 	if (ret < 0)
4584 		free_extent_buffer_stale(eb);
4585 	else
4586 		free_extent_buffer(eb);
4587 }
4588 
4589 /*
4590  * Readahead a node's child block.
4591  *
4592  * @node:	parent node we're reading from
4593  * @slot:	slot in the parent node for the child we want to read
4594  *
4595  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4596  * the slot in the node provided.
4597  */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4598 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4599 {
4600 	btrfs_readahead_tree_block(node->fs_info,
4601 				   btrfs_node_blockptr(node, slot),
4602 				   btrfs_header_owner(node),
4603 				   btrfs_node_ptr_generation(node, slot),
4604 				   btrfs_header_level(node) - 1);
4605 }
4606