1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793 { 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279 { 1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1281 } 1282 1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1284 struct extent_state **cached_state, gfp_t mask) 1285 { 1286 return set_extent_bit(tree, start, end, 1287 EXTENT_DELALLOC | EXTENT_UPTODATE, 1288 NULL, cached_state, mask); 1289 } 1290 1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1292 struct extent_state **cached_state, gfp_t mask) 1293 { 1294 return set_extent_bit(tree, start, end, 1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1296 NULL, cached_state, mask); 1297 } 1298 1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1300 gfp_t mask) 1301 { 1302 return clear_extent_bit(tree, start, end, 1303 EXTENT_DIRTY | EXTENT_DELALLOC | 1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1305 } 1306 1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1308 gfp_t mask) 1309 { 1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1311 NULL, mask); 1312 } 1313 1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1315 struct extent_state **cached_state, gfp_t mask) 1316 { 1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1318 cached_state, mask); 1319 } 1320 1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state, gfp_t mask) 1323 { 1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1325 cached_state, mask); 1326 } 1327 1328 /* 1329 * either insert or lock state struct between start and end use mask to tell 1330 * us if waiting is desired. 1331 */ 1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1333 unsigned bits, struct extent_state **cached_state) 1334 { 1335 int err; 1336 u64 failed_start; 1337 1338 while (1) { 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1340 EXTENT_LOCKED, &failed_start, 1341 cached_state, GFP_NOFS); 1342 if (err == -EEXIST) { 1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1344 start = failed_start; 1345 } else 1346 break; 1347 WARN_ON(start > end); 1348 } 1349 return err; 1350 } 1351 1352 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1353 { 1354 return lock_extent_bits(tree, start, end, 0, NULL); 1355 } 1356 1357 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 int err; 1360 u64 failed_start; 1361 1362 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1363 &failed_start, NULL, GFP_NOFS); 1364 if (err == -EEXIST) { 1365 if (failed_start > start) 1366 clear_extent_bit(tree, start, failed_start - 1, 1367 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1368 return 0; 1369 } 1370 return 1; 1371 } 1372 1373 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1374 struct extent_state **cached, gfp_t mask) 1375 { 1376 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1377 mask); 1378 } 1379 1380 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1381 { 1382 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1383 GFP_NOFS); 1384 } 1385 1386 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1387 { 1388 unsigned long index = start >> PAGE_CACHE_SHIFT; 1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1390 struct page *page; 1391 1392 while (index <= end_index) { 1393 page = find_get_page(inode->i_mapping, index); 1394 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1395 clear_page_dirty_for_io(page); 1396 page_cache_release(page); 1397 index++; 1398 } 1399 return 0; 1400 } 1401 1402 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1403 { 1404 unsigned long index = start >> PAGE_CACHE_SHIFT; 1405 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1406 struct page *page; 1407 1408 while (index <= end_index) { 1409 page = find_get_page(inode->i_mapping, index); 1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1411 __set_page_dirty_nobuffers(page); 1412 account_page_redirty(page); 1413 page_cache_release(page); 1414 index++; 1415 } 1416 return 0; 1417 } 1418 1419 /* 1420 * helper function to set both pages and extents in the tree writeback 1421 */ 1422 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1423 { 1424 unsigned long index = start >> PAGE_CACHE_SHIFT; 1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1426 struct page *page; 1427 1428 while (index <= end_index) { 1429 page = find_get_page(tree->mapping, index); 1430 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1431 set_page_writeback(page); 1432 page_cache_release(page); 1433 index++; 1434 } 1435 return 0; 1436 } 1437 1438 /* find the first state struct with 'bits' set after 'start', and 1439 * return it. tree->lock must be held. NULL will returned if 1440 * nothing was found after 'start' 1441 */ 1442 static struct extent_state * 1443 find_first_extent_bit_state(struct extent_io_tree *tree, 1444 u64 start, unsigned bits) 1445 { 1446 struct rb_node *node; 1447 struct extent_state *state; 1448 1449 /* 1450 * this search will find all the extents that end after 1451 * our range starts. 1452 */ 1453 node = tree_search(tree, start); 1454 if (!node) 1455 goto out; 1456 1457 while (1) { 1458 state = rb_entry(node, struct extent_state, rb_node); 1459 if (state->end >= start && (state->state & bits)) 1460 return state; 1461 1462 node = rb_next(node); 1463 if (!node) 1464 break; 1465 } 1466 out: 1467 return NULL; 1468 } 1469 1470 /* 1471 * find the first offset in the io tree with 'bits' set. zero is 1472 * returned if we find something, and *start_ret and *end_ret are 1473 * set to reflect the state struct that was found. 1474 * 1475 * If nothing was found, 1 is returned. If found something, return 0. 1476 */ 1477 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1478 u64 *start_ret, u64 *end_ret, unsigned bits, 1479 struct extent_state **cached_state) 1480 { 1481 struct extent_state *state; 1482 struct rb_node *n; 1483 int ret = 1; 1484 1485 spin_lock(&tree->lock); 1486 if (cached_state && *cached_state) { 1487 state = *cached_state; 1488 if (state->end == start - 1 && extent_state_in_tree(state)) { 1489 n = rb_next(&state->rb_node); 1490 while (n) { 1491 state = rb_entry(n, struct extent_state, 1492 rb_node); 1493 if (state->state & bits) 1494 goto got_it; 1495 n = rb_next(n); 1496 } 1497 free_extent_state(*cached_state); 1498 *cached_state = NULL; 1499 goto out; 1500 } 1501 free_extent_state(*cached_state); 1502 *cached_state = NULL; 1503 } 1504 1505 state = find_first_extent_bit_state(tree, start, bits); 1506 got_it: 1507 if (state) { 1508 cache_state_if_flags(state, cached_state, 0); 1509 *start_ret = state->start; 1510 *end_ret = state->end; 1511 ret = 0; 1512 } 1513 out: 1514 spin_unlock(&tree->lock); 1515 return ret; 1516 } 1517 1518 /* 1519 * find a contiguous range of bytes in the file marked as delalloc, not 1520 * more than 'max_bytes'. start and end are used to return the range, 1521 * 1522 * 1 is returned if we find something, 0 if nothing was in the tree 1523 */ 1524 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1525 u64 *start, u64 *end, u64 max_bytes, 1526 struct extent_state **cached_state) 1527 { 1528 struct rb_node *node; 1529 struct extent_state *state; 1530 u64 cur_start = *start; 1531 u64 found = 0; 1532 u64 total_bytes = 0; 1533 1534 spin_lock(&tree->lock); 1535 1536 /* 1537 * this search will find all the extents that end after 1538 * our range starts. 1539 */ 1540 node = tree_search(tree, cur_start); 1541 if (!node) { 1542 if (!found) 1543 *end = (u64)-1; 1544 goto out; 1545 } 1546 1547 while (1) { 1548 state = rb_entry(node, struct extent_state, rb_node); 1549 if (found && (state->start != cur_start || 1550 (state->state & EXTENT_BOUNDARY))) { 1551 goto out; 1552 } 1553 if (!(state->state & EXTENT_DELALLOC)) { 1554 if (!found) 1555 *end = state->end; 1556 goto out; 1557 } 1558 if (!found) { 1559 *start = state->start; 1560 *cached_state = state; 1561 atomic_inc(&state->refs); 1562 } 1563 found++; 1564 *end = state->end; 1565 cur_start = state->end + 1; 1566 node = rb_next(node); 1567 total_bytes += state->end - state->start + 1; 1568 if (total_bytes >= max_bytes) 1569 break; 1570 if (!node) 1571 break; 1572 } 1573 out: 1574 spin_unlock(&tree->lock); 1575 return found; 1576 } 1577 1578 static noinline void __unlock_for_delalloc(struct inode *inode, 1579 struct page *locked_page, 1580 u64 start, u64 end) 1581 { 1582 int ret; 1583 struct page *pages[16]; 1584 unsigned long index = start >> PAGE_CACHE_SHIFT; 1585 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1586 unsigned long nr_pages = end_index - index + 1; 1587 int i; 1588 1589 if (index == locked_page->index && end_index == index) 1590 return; 1591 1592 while (nr_pages > 0) { 1593 ret = find_get_pages_contig(inode->i_mapping, index, 1594 min_t(unsigned long, nr_pages, 1595 ARRAY_SIZE(pages)), pages); 1596 for (i = 0; i < ret; i++) { 1597 if (pages[i] != locked_page) 1598 unlock_page(pages[i]); 1599 page_cache_release(pages[i]); 1600 } 1601 nr_pages -= ret; 1602 index += ret; 1603 cond_resched(); 1604 } 1605 } 1606 1607 static noinline int lock_delalloc_pages(struct inode *inode, 1608 struct page *locked_page, 1609 u64 delalloc_start, 1610 u64 delalloc_end) 1611 { 1612 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1613 unsigned long start_index = index; 1614 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1615 unsigned long pages_locked = 0; 1616 struct page *pages[16]; 1617 unsigned long nrpages; 1618 int ret; 1619 int i; 1620 1621 /* the caller is responsible for locking the start index */ 1622 if (index == locked_page->index && index == end_index) 1623 return 0; 1624 1625 /* skip the page at the start index */ 1626 nrpages = end_index - index + 1; 1627 while (nrpages > 0) { 1628 ret = find_get_pages_contig(inode->i_mapping, index, 1629 min_t(unsigned long, 1630 nrpages, ARRAY_SIZE(pages)), pages); 1631 if (ret == 0) { 1632 ret = -EAGAIN; 1633 goto done; 1634 } 1635 /* now we have an array of pages, lock them all */ 1636 for (i = 0; i < ret; i++) { 1637 /* 1638 * the caller is taking responsibility for 1639 * locked_page 1640 */ 1641 if (pages[i] != locked_page) { 1642 lock_page(pages[i]); 1643 if (!PageDirty(pages[i]) || 1644 pages[i]->mapping != inode->i_mapping) { 1645 ret = -EAGAIN; 1646 unlock_page(pages[i]); 1647 page_cache_release(pages[i]); 1648 goto done; 1649 } 1650 } 1651 page_cache_release(pages[i]); 1652 pages_locked++; 1653 } 1654 nrpages -= ret; 1655 index += ret; 1656 cond_resched(); 1657 } 1658 ret = 0; 1659 done: 1660 if (ret && pages_locked) { 1661 __unlock_for_delalloc(inode, locked_page, 1662 delalloc_start, 1663 ((u64)(start_index + pages_locked - 1)) << 1664 PAGE_CACHE_SHIFT); 1665 } 1666 return ret; 1667 } 1668 1669 /* 1670 * find a contiguous range of bytes in the file marked as delalloc, not 1671 * more than 'max_bytes'. start and end are used to return the range, 1672 * 1673 * 1 is returned if we find something, 0 if nothing was in the tree 1674 */ 1675 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1676 struct extent_io_tree *tree, 1677 struct page *locked_page, u64 *start, 1678 u64 *end, u64 max_bytes) 1679 { 1680 u64 delalloc_start; 1681 u64 delalloc_end; 1682 u64 found; 1683 struct extent_state *cached_state = NULL; 1684 int ret; 1685 int loops = 0; 1686 1687 again: 1688 /* step one, find a bunch of delalloc bytes starting at start */ 1689 delalloc_start = *start; 1690 delalloc_end = 0; 1691 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1692 max_bytes, &cached_state); 1693 if (!found || delalloc_end <= *start) { 1694 *start = delalloc_start; 1695 *end = delalloc_end; 1696 free_extent_state(cached_state); 1697 return 0; 1698 } 1699 1700 /* 1701 * start comes from the offset of locked_page. We have to lock 1702 * pages in order, so we can't process delalloc bytes before 1703 * locked_page 1704 */ 1705 if (delalloc_start < *start) 1706 delalloc_start = *start; 1707 1708 /* 1709 * make sure to limit the number of pages we try to lock down 1710 */ 1711 if (delalloc_end + 1 - delalloc_start > max_bytes) 1712 delalloc_end = delalloc_start + max_bytes - 1; 1713 1714 /* step two, lock all the pages after the page that has start */ 1715 ret = lock_delalloc_pages(inode, locked_page, 1716 delalloc_start, delalloc_end); 1717 if (ret == -EAGAIN) { 1718 /* some of the pages are gone, lets avoid looping by 1719 * shortening the size of the delalloc range we're searching 1720 */ 1721 free_extent_state(cached_state); 1722 cached_state = NULL; 1723 if (!loops) { 1724 max_bytes = PAGE_CACHE_SIZE; 1725 loops = 1; 1726 goto again; 1727 } else { 1728 found = 0; 1729 goto out_failed; 1730 } 1731 } 1732 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1733 1734 /* step three, lock the state bits for the whole range */ 1735 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1736 1737 /* then test to make sure it is all still delalloc */ 1738 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1739 EXTENT_DELALLOC, 1, cached_state); 1740 if (!ret) { 1741 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1742 &cached_state, GFP_NOFS); 1743 __unlock_for_delalloc(inode, locked_page, 1744 delalloc_start, delalloc_end); 1745 cond_resched(); 1746 goto again; 1747 } 1748 free_extent_state(cached_state); 1749 *start = delalloc_start; 1750 *end = delalloc_end; 1751 out_failed: 1752 return found; 1753 } 1754 1755 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1756 struct page *locked_page, 1757 unsigned clear_bits, 1758 unsigned long page_ops) 1759 { 1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1761 int ret; 1762 struct page *pages[16]; 1763 unsigned long index = start >> PAGE_CACHE_SHIFT; 1764 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1765 unsigned long nr_pages = end_index - index + 1; 1766 int i; 1767 1768 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1769 if (page_ops == 0) 1770 return 0; 1771 1772 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1773 mapping_set_error(inode->i_mapping, -EIO); 1774 1775 while (nr_pages > 0) { 1776 ret = find_get_pages_contig(inode->i_mapping, index, 1777 min_t(unsigned long, 1778 nr_pages, ARRAY_SIZE(pages)), pages); 1779 for (i = 0; i < ret; i++) { 1780 1781 if (page_ops & PAGE_SET_PRIVATE2) 1782 SetPagePrivate2(pages[i]); 1783 1784 if (pages[i] == locked_page) { 1785 page_cache_release(pages[i]); 1786 continue; 1787 } 1788 if (page_ops & PAGE_CLEAR_DIRTY) 1789 clear_page_dirty_for_io(pages[i]); 1790 if (page_ops & PAGE_SET_WRITEBACK) 1791 set_page_writeback(pages[i]); 1792 if (page_ops & PAGE_SET_ERROR) 1793 SetPageError(pages[i]); 1794 if (page_ops & PAGE_END_WRITEBACK) 1795 end_page_writeback(pages[i]); 1796 if (page_ops & PAGE_UNLOCK) 1797 unlock_page(pages[i]); 1798 page_cache_release(pages[i]); 1799 } 1800 nr_pages -= ret; 1801 index += ret; 1802 cond_resched(); 1803 } 1804 return 0; 1805 } 1806 1807 /* 1808 * count the number of bytes in the tree that have a given bit(s) 1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1810 * cached. The total number found is returned. 1811 */ 1812 u64 count_range_bits(struct extent_io_tree *tree, 1813 u64 *start, u64 search_end, u64 max_bytes, 1814 unsigned bits, int contig) 1815 { 1816 struct rb_node *node; 1817 struct extent_state *state; 1818 u64 cur_start = *start; 1819 u64 total_bytes = 0; 1820 u64 last = 0; 1821 int found = 0; 1822 1823 if (WARN_ON(search_end <= cur_start)) 1824 return 0; 1825 1826 spin_lock(&tree->lock); 1827 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1828 total_bytes = tree->dirty_bytes; 1829 goto out; 1830 } 1831 /* 1832 * this search will find all the extents that end after 1833 * our range starts. 1834 */ 1835 node = tree_search(tree, cur_start); 1836 if (!node) 1837 goto out; 1838 1839 while (1) { 1840 state = rb_entry(node, struct extent_state, rb_node); 1841 if (state->start > search_end) 1842 break; 1843 if (contig && found && state->start > last + 1) 1844 break; 1845 if (state->end >= cur_start && (state->state & bits) == bits) { 1846 total_bytes += min(search_end, state->end) + 1 - 1847 max(cur_start, state->start); 1848 if (total_bytes >= max_bytes) 1849 break; 1850 if (!found) { 1851 *start = max(cur_start, state->start); 1852 found = 1; 1853 } 1854 last = state->end; 1855 } else if (contig && found) { 1856 break; 1857 } 1858 node = rb_next(node); 1859 if (!node) 1860 break; 1861 } 1862 out: 1863 spin_unlock(&tree->lock); 1864 return total_bytes; 1865 } 1866 1867 /* 1868 * set the private field for a given byte offset in the tree. If there isn't 1869 * an extent_state there already, this does nothing. 1870 */ 1871 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1872 { 1873 struct rb_node *node; 1874 struct extent_state *state; 1875 int ret = 0; 1876 1877 spin_lock(&tree->lock); 1878 /* 1879 * this search will find all the extents that end after 1880 * our range starts. 1881 */ 1882 node = tree_search(tree, start); 1883 if (!node) { 1884 ret = -ENOENT; 1885 goto out; 1886 } 1887 state = rb_entry(node, struct extent_state, rb_node); 1888 if (state->start != start) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state->private = private; 1893 out: 1894 spin_unlock(&tree->lock); 1895 return ret; 1896 } 1897 1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1899 { 1900 struct rb_node *node; 1901 struct extent_state *state; 1902 int ret = 0; 1903 1904 spin_lock(&tree->lock); 1905 /* 1906 * this search will find all the extents that end after 1907 * our range starts. 1908 */ 1909 node = tree_search(tree, start); 1910 if (!node) { 1911 ret = -ENOENT; 1912 goto out; 1913 } 1914 state = rb_entry(node, struct extent_state, rb_node); 1915 if (state->start != start) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 *private = state->private; 1920 out: 1921 spin_unlock(&tree->lock); 1922 return ret; 1923 } 1924 1925 /* 1926 * searches a range in the state tree for a given mask. 1927 * If 'filled' == 1, this returns 1 only if every extent in the tree 1928 * has the bits set. Otherwise, 1 is returned if any bit in the 1929 * range is found set. 1930 */ 1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1932 unsigned bits, int filled, struct extent_state *cached) 1933 { 1934 struct extent_state *state = NULL; 1935 struct rb_node *node; 1936 int bitset = 0; 1937 1938 spin_lock(&tree->lock); 1939 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1940 cached->end > start) 1941 node = &cached->rb_node; 1942 else 1943 node = tree_search(tree, start); 1944 while (node && start <= end) { 1945 state = rb_entry(node, struct extent_state, rb_node); 1946 1947 if (filled && state->start > start) { 1948 bitset = 0; 1949 break; 1950 } 1951 1952 if (state->start > end) 1953 break; 1954 1955 if (state->state & bits) { 1956 bitset = 1; 1957 if (!filled) 1958 break; 1959 } else if (filled) { 1960 bitset = 0; 1961 break; 1962 } 1963 1964 if (state->end == (u64)-1) 1965 break; 1966 1967 start = state->end + 1; 1968 if (start > end) 1969 break; 1970 node = rb_next(node); 1971 if (!node) { 1972 if (filled) 1973 bitset = 0; 1974 break; 1975 } 1976 } 1977 spin_unlock(&tree->lock); 1978 return bitset; 1979 } 1980 1981 /* 1982 * helper function to set a given page up to date if all the 1983 * extents in the tree for that page are up to date 1984 */ 1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1986 { 1987 u64 start = page_offset(page); 1988 u64 end = start + PAGE_CACHE_SIZE - 1; 1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1990 SetPageUptodate(page); 1991 } 1992 1993 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1994 { 1995 int ret; 1996 int err = 0; 1997 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1998 1999 set_state_private(failure_tree, rec->start, 0); 2000 ret = clear_extent_bits(failure_tree, rec->start, 2001 rec->start + rec->len - 1, 2002 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2003 if (ret) 2004 err = ret; 2005 2006 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2007 rec->start + rec->len - 1, 2008 EXTENT_DAMAGED, GFP_NOFS); 2009 if (ret && !err) 2010 err = ret; 2011 2012 kfree(rec); 2013 return err; 2014 } 2015 2016 /* 2017 * this bypasses the standard btrfs submit functions deliberately, as 2018 * the standard behavior is to write all copies in a raid setup. here we only 2019 * want to write the one bad copy. so we do the mapping for ourselves and issue 2020 * submit_bio directly. 2021 * to avoid any synchronization issues, wait for the data after writing, which 2022 * actually prevents the read that triggered the error from finishing. 2023 * currently, there can be no more than two copies of every data bit. thus, 2024 * exactly one rewrite is required. 2025 */ 2026 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2027 struct page *page, unsigned int pg_offset, int mirror_num) 2028 { 2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2030 struct bio *bio; 2031 struct btrfs_device *dev; 2032 u64 map_length = 0; 2033 u64 sector; 2034 struct btrfs_bio *bbio = NULL; 2035 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2036 int ret; 2037 2038 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2039 BUG_ON(!mirror_num); 2040 2041 /* we can't repair anything in raid56 yet */ 2042 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2043 return 0; 2044 2045 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2046 if (!bio) 2047 return -EIO; 2048 bio->bi_iter.bi_size = 0; 2049 map_length = length; 2050 2051 ret = btrfs_map_block(fs_info, WRITE, logical, 2052 &map_length, &bbio, mirror_num); 2053 if (ret) { 2054 bio_put(bio); 2055 return -EIO; 2056 } 2057 BUG_ON(mirror_num != bbio->mirror_num); 2058 sector = bbio->stripes[mirror_num-1].physical >> 9; 2059 bio->bi_iter.bi_sector = sector; 2060 dev = bbio->stripes[mirror_num-1].dev; 2061 btrfs_put_bbio(bbio); 2062 if (!dev || !dev->bdev || !dev->writeable) { 2063 bio_put(bio); 2064 return -EIO; 2065 } 2066 bio->bi_bdev = dev->bdev; 2067 bio_add_page(bio, page, length, pg_offset); 2068 2069 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2070 /* try to remap that extent elsewhere? */ 2071 bio_put(bio); 2072 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2073 return -EIO; 2074 } 2075 2076 printk_ratelimited_in_rcu(KERN_INFO 2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2078 btrfs_ino(inode), start, 2079 rcu_str_deref(dev->name), sector); 2080 bio_put(bio); 2081 return 0; 2082 } 2083 2084 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2085 int mirror_num) 2086 { 2087 u64 start = eb->start; 2088 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2089 int ret = 0; 2090 2091 if (root->fs_info->sb->s_flags & MS_RDONLY) 2092 return -EROFS; 2093 2094 for (i = 0; i < num_pages; i++) { 2095 struct page *p = eb->pages[i]; 2096 2097 ret = repair_io_failure(root->fs_info->btree_inode, start, 2098 PAGE_CACHE_SIZE, start, p, 2099 start - page_offset(p), mirror_num); 2100 if (ret) 2101 break; 2102 start += PAGE_CACHE_SIZE; 2103 } 2104 2105 return ret; 2106 } 2107 2108 /* 2109 * each time an IO finishes, we do a fast check in the IO failure tree 2110 * to see if we need to process or clean up an io_failure_record 2111 */ 2112 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2113 unsigned int pg_offset) 2114 { 2115 u64 private; 2116 u64 private_failure; 2117 struct io_failure_record *failrec; 2118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2119 struct extent_state *state; 2120 int num_copies; 2121 int ret; 2122 2123 private = 0; 2124 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2125 (u64)-1, 1, EXTENT_DIRTY, 0); 2126 if (!ret) 2127 return 0; 2128 2129 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2130 &private_failure); 2131 if (ret) 2132 return 0; 2133 2134 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2135 BUG_ON(!failrec->this_mirror); 2136 2137 if (failrec->in_validation) { 2138 /* there was no real error, just free the record */ 2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2140 failrec->start); 2141 goto out; 2142 } 2143 if (fs_info->sb->s_flags & MS_RDONLY) 2144 goto out; 2145 2146 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2147 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2148 failrec->start, 2149 EXTENT_LOCKED); 2150 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2151 2152 if (state && state->start <= failrec->start && 2153 state->end >= failrec->start + failrec->len - 1) { 2154 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2155 failrec->len); 2156 if (num_copies > 1) { 2157 repair_io_failure(inode, start, failrec->len, 2158 failrec->logical, page, 2159 pg_offset, failrec->failed_mirror); 2160 } 2161 } 2162 2163 out: 2164 free_io_failure(inode, failrec); 2165 2166 return 0; 2167 } 2168 2169 /* 2170 * Can be called when 2171 * - hold extent lock 2172 * - under ordered extent 2173 * - the inode is freeing 2174 */ 2175 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2176 { 2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2178 struct io_failure_record *failrec; 2179 struct extent_state *state, *next; 2180 2181 if (RB_EMPTY_ROOT(&failure_tree->state)) 2182 return; 2183 2184 spin_lock(&failure_tree->lock); 2185 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2186 while (state) { 2187 if (state->start > end) 2188 break; 2189 2190 ASSERT(state->end <= end); 2191 2192 next = next_state(state); 2193 2194 failrec = (struct io_failure_record *)(unsigned long)state->private; 2195 free_extent_state(state); 2196 kfree(failrec); 2197 2198 state = next; 2199 } 2200 spin_unlock(&failure_tree->lock); 2201 } 2202 2203 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2204 struct io_failure_record **failrec_ret) 2205 { 2206 struct io_failure_record *failrec; 2207 u64 private; 2208 struct extent_map *em; 2209 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2210 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2212 int ret; 2213 u64 logical; 2214 2215 ret = get_state_private(failure_tree, start, &private); 2216 if (ret) { 2217 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2218 if (!failrec) 2219 return -ENOMEM; 2220 2221 failrec->start = start; 2222 failrec->len = end - start + 1; 2223 failrec->this_mirror = 0; 2224 failrec->bio_flags = 0; 2225 failrec->in_validation = 0; 2226 2227 read_lock(&em_tree->lock); 2228 em = lookup_extent_mapping(em_tree, start, failrec->len); 2229 if (!em) { 2230 read_unlock(&em_tree->lock); 2231 kfree(failrec); 2232 return -EIO; 2233 } 2234 2235 if (em->start > start || em->start + em->len <= start) { 2236 free_extent_map(em); 2237 em = NULL; 2238 } 2239 read_unlock(&em_tree->lock); 2240 if (!em) { 2241 kfree(failrec); 2242 return -EIO; 2243 } 2244 2245 logical = start - em->start; 2246 logical = em->block_start + logical; 2247 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2248 logical = em->block_start; 2249 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2250 extent_set_compress_type(&failrec->bio_flags, 2251 em->compress_type); 2252 } 2253 2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2255 logical, start, failrec->len); 2256 2257 failrec->logical = logical; 2258 free_extent_map(em); 2259 2260 /* set the bits in the private failure tree */ 2261 ret = set_extent_bits(failure_tree, start, end, 2262 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2263 if (ret >= 0) 2264 ret = set_state_private(failure_tree, start, 2265 (u64)(unsigned long)failrec); 2266 /* set the bits in the inode's tree */ 2267 if (ret >= 0) 2268 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2269 GFP_NOFS); 2270 if (ret < 0) { 2271 kfree(failrec); 2272 return ret; 2273 } 2274 } else { 2275 failrec = (struct io_failure_record *)(unsigned long)private; 2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2277 failrec->logical, failrec->start, failrec->len, 2278 failrec->in_validation); 2279 /* 2280 * when data can be on disk more than twice, add to failrec here 2281 * (e.g. with a list for failed_mirror) to make 2282 * clean_io_failure() clean all those errors at once. 2283 */ 2284 } 2285 2286 *failrec_ret = failrec; 2287 2288 return 0; 2289 } 2290 2291 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2292 struct io_failure_record *failrec, int failed_mirror) 2293 { 2294 int num_copies; 2295 2296 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2297 failrec->logical, failrec->len); 2298 if (num_copies == 1) { 2299 /* 2300 * we only have a single copy of the data, so don't bother with 2301 * all the retry and error correction code that follows. no 2302 * matter what the error is, it is very likely to persist. 2303 */ 2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2305 num_copies, failrec->this_mirror, failed_mirror); 2306 return 0; 2307 } 2308 2309 /* 2310 * there are two premises: 2311 * a) deliver good data to the caller 2312 * b) correct the bad sectors on disk 2313 */ 2314 if (failed_bio->bi_vcnt > 1) { 2315 /* 2316 * to fulfill b), we need to know the exact failing sectors, as 2317 * we don't want to rewrite any more than the failed ones. thus, 2318 * we need separate read requests for the failed bio 2319 * 2320 * if the following BUG_ON triggers, our validation request got 2321 * merged. we need separate requests for our algorithm to work. 2322 */ 2323 BUG_ON(failrec->in_validation); 2324 failrec->in_validation = 1; 2325 failrec->this_mirror = failed_mirror; 2326 } else { 2327 /* 2328 * we're ready to fulfill a) and b) alongside. get a good copy 2329 * of the failed sector and if we succeed, we have setup 2330 * everything for repair_io_failure to do the rest for us. 2331 */ 2332 if (failrec->in_validation) { 2333 BUG_ON(failrec->this_mirror != failed_mirror); 2334 failrec->in_validation = 0; 2335 failrec->this_mirror = 0; 2336 } 2337 failrec->failed_mirror = failed_mirror; 2338 failrec->this_mirror++; 2339 if (failrec->this_mirror == failed_mirror) 2340 failrec->this_mirror++; 2341 } 2342 2343 if (failrec->this_mirror > num_copies) { 2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2345 num_copies, failrec->this_mirror, failed_mirror); 2346 return 0; 2347 } 2348 2349 return 1; 2350 } 2351 2352 2353 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2354 struct io_failure_record *failrec, 2355 struct page *page, int pg_offset, int icsum, 2356 bio_end_io_t *endio_func, void *data) 2357 { 2358 struct bio *bio; 2359 struct btrfs_io_bio *btrfs_failed_bio; 2360 struct btrfs_io_bio *btrfs_bio; 2361 2362 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2363 if (!bio) 2364 return NULL; 2365 2366 bio->bi_end_io = endio_func; 2367 bio->bi_iter.bi_sector = failrec->logical >> 9; 2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2369 bio->bi_iter.bi_size = 0; 2370 bio->bi_private = data; 2371 2372 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2373 if (btrfs_failed_bio->csum) { 2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2375 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2376 2377 btrfs_bio = btrfs_io_bio(bio); 2378 btrfs_bio->csum = btrfs_bio->csum_inline; 2379 icsum *= csum_size; 2380 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2381 csum_size); 2382 } 2383 2384 bio_add_page(bio, page, failrec->len, pg_offset); 2385 2386 return bio; 2387 } 2388 2389 /* 2390 * this is a generic handler for readpage errors (default 2391 * readpage_io_failed_hook). if other copies exist, read those and write back 2392 * good data to the failed position. does not investigate in remapping the 2393 * failed extent elsewhere, hoping the device will be smart enough to do this as 2394 * needed 2395 */ 2396 2397 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2398 struct page *page, u64 start, u64 end, 2399 int failed_mirror) 2400 { 2401 struct io_failure_record *failrec; 2402 struct inode *inode = page->mapping->host; 2403 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2404 struct bio *bio; 2405 int read_mode; 2406 int ret; 2407 2408 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2409 2410 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2411 if (ret) 2412 return ret; 2413 2414 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2415 if (!ret) { 2416 free_io_failure(inode, failrec); 2417 return -EIO; 2418 } 2419 2420 if (failed_bio->bi_vcnt > 1) 2421 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2422 else 2423 read_mode = READ_SYNC; 2424 2425 phy_offset >>= inode->i_sb->s_blocksize_bits; 2426 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2427 start - page_offset(page), 2428 (int)phy_offset, failed_bio->bi_end_io, 2429 NULL); 2430 if (!bio) { 2431 free_io_failure(inode, failrec); 2432 return -EIO; 2433 } 2434 2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2436 read_mode, failrec->this_mirror, failrec->in_validation); 2437 2438 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2439 failrec->this_mirror, 2440 failrec->bio_flags, 0); 2441 if (ret) { 2442 free_io_failure(inode, failrec); 2443 bio_put(bio); 2444 } 2445 2446 return ret; 2447 } 2448 2449 /* lots and lots of room for performance fixes in the end_bio funcs */ 2450 2451 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2452 { 2453 int uptodate = (err == 0); 2454 struct extent_io_tree *tree; 2455 int ret = 0; 2456 2457 tree = &BTRFS_I(page->mapping->host)->io_tree; 2458 2459 if (tree->ops && tree->ops->writepage_end_io_hook) { 2460 ret = tree->ops->writepage_end_io_hook(page, start, 2461 end, NULL, uptodate); 2462 if (ret) 2463 uptodate = 0; 2464 } 2465 2466 if (!uptodate) { 2467 ClearPageUptodate(page); 2468 SetPageError(page); 2469 ret = ret < 0 ? ret : -EIO; 2470 mapping_set_error(page->mapping, ret); 2471 } 2472 return 0; 2473 } 2474 2475 /* 2476 * after a writepage IO is done, we need to: 2477 * clear the uptodate bits on error 2478 * clear the writeback bits in the extent tree for this IO 2479 * end_page_writeback if the page has no more pending IO 2480 * 2481 * Scheduling is not allowed, so the extent state tree is expected 2482 * to have one and only one object corresponding to this IO. 2483 */ 2484 static void end_bio_extent_writepage(struct bio *bio, int err) 2485 { 2486 struct bio_vec *bvec; 2487 u64 start; 2488 u64 end; 2489 int i; 2490 2491 bio_for_each_segment_all(bvec, bio, i) { 2492 struct page *page = bvec->bv_page; 2493 2494 /* We always issue full-page reads, but if some block 2495 * in a page fails to read, blk_update_request() will 2496 * advance bv_offset and adjust bv_len to compensate. 2497 * Print a warning for nonzero offsets, and an error 2498 * if they don't add up to a full page. */ 2499 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2500 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2501 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2502 "partial page write in btrfs with offset %u and length %u", 2503 bvec->bv_offset, bvec->bv_len); 2504 else 2505 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2506 "incomplete page write in btrfs with offset %u and " 2507 "length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 } 2510 2511 start = page_offset(page); 2512 end = start + bvec->bv_offset + bvec->bv_len - 1; 2513 2514 if (end_extent_writepage(page, err, start, end)) 2515 continue; 2516 2517 end_page_writeback(page); 2518 } 2519 2520 bio_put(bio); 2521 } 2522 2523 static void 2524 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2525 int uptodate) 2526 { 2527 struct extent_state *cached = NULL; 2528 u64 end = start + len - 1; 2529 2530 if (uptodate && tree->track_uptodate) 2531 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2532 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2533 } 2534 2535 /* 2536 * after a readpage IO is done, we need to: 2537 * clear the uptodate bits on error 2538 * set the uptodate bits if things worked 2539 * set the page up to date if all extents in the tree are uptodate 2540 * clear the lock bit in the extent tree 2541 * unlock the page if there are no other extents locked for it 2542 * 2543 * Scheduling is not allowed, so the extent state tree is expected 2544 * to have one and only one object corresponding to this IO. 2545 */ 2546 static void end_bio_extent_readpage(struct bio *bio, int err) 2547 { 2548 struct bio_vec *bvec; 2549 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2550 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2551 struct extent_io_tree *tree; 2552 u64 offset = 0; 2553 u64 start; 2554 u64 end; 2555 u64 len; 2556 u64 extent_start = 0; 2557 u64 extent_len = 0; 2558 int mirror; 2559 int ret; 2560 int i; 2561 2562 if (err) 2563 uptodate = 0; 2564 2565 bio_for_each_segment_all(bvec, bio, i) { 2566 struct page *page = bvec->bv_page; 2567 struct inode *inode = page->mapping->host; 2568 2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2570 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2571 io_bio->mirror_num); 2572 tree = &BTRFS_I(inode)->io_tree; 2573 2574 /* We always issue full-page reads, but if some block 2575 * in a page fails to read, blk_update_request() will 2576 * advance bv_offset and adjust bv_len to compensate. 2577 * Print a warning for nonzero offsets, and an error 2578 * if they don't add up to a full page. */ 2579 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2580 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2581 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2582 "partial page read in btrfs with offset %u and length %u", 2583 bvec->bv_offset, bvec->bv_len); 2584 else 2585 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2586 "incomplete page read in btrfs with offset %u and " 2587 "length %u", 2588 bvec->bv_offset, bvec->bv_len); 2589 } 2590 2591 start = page_offset(page); 2592 end = start + bvec->bv_offset + bvec->bv_len - 1; 2593 len = bvec->bv_len; 2594 2595 mirror = io_bio->mirror_num; 2596 if (likely(uptodate && tree->ops && 2597 tree->ops->readpage_end_io_hook)) { 2598 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2599 page, start, end, 2600 mirror); 2601 if (ret) 2602 uptodate = 0; 2603 else 2604 clean_io_failure(inode, start, page, 0); 2605 } 2606 2607 if (likely(uptodate)) 2608 goto readpage_ok; 2609 2610 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2611 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2612 if (!ret && !err && 2613 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2614 uptodate = 1; 2615 } else { 2616 /* 2617 * The generic bio_readpage_error handles errors the 2618 * following way: If possible, new read requests are 2619 * created and submitted and will end up in 2620 * end_bio_extent_readpage as well (if we're lucky, not 2621 * in the !uptodate case). In that case it returns 0 and 2622 * we just go on with the next page in our bio. If it 2623 * can't handle the error it will return -EIO and we 2624 * remain responsible for that page. 2625 */ 2626 ret = bio_readpage_error(bio, offset, page, start, end, 2627 mirror); 2628 if (ret == 0) { 2629 uptodate = 2630 test_bit(BIO_UPTODATE, &bio->bi_flags); 2631 if (err) 2632 uptodate = 0; 2633 offset += len; 2634 continue; 2635 } 2636 } 2637 readpage_ok: 2638 if (likely(uptodate)) { 2639 loff_t i_size = i_size_read(inode); 2640 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2641 unsigned off; 2642 2643 /* Zero out the end if this page straddles i_size */ 2644 off = i_size & (PAGE_CACHE_SIZE-1); 2645 if (page->index == end_index && off) 2646 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2647 SetPageUptodate(page); 2648 } else { 2649 ClearPageUptodate(page); 2650 SetPageError(page); 2651 } 2652 unlock_page(page); 2653 offset += len; 2654 2655 if (unlikely(!uptodate)) { 2656 if (extent_len) { 2657 endio_readpage_release_extent(tree, 2658 extent_start, 2659 extent_len, 1); 2660 extent_start = 0; 2661 extent_len = 0; 2662 } 2663 endio_readpage_release_extent(tree, start, 2664 end - start + 1, 0); 2665 } else if (!extent_len) { 2666 extent_start = start; 2667 extent_len = end + 1 - start; 2668 } else if (extent_start + extent_len == start) { 2669 extent_len += end + 1 - start; 2670 } else { 2671 endio_readpage_release_extent(tree, extent_start, 2672 extent_len, uptodate); 2673 extent_start = start; 2674 extent_len = end + 1 - start; 2675 } 2676 } 2677 2678 if (extent_len) 2679 endio_readpage_release_extent(tree, extent_start, extent_len, 2680 uptodate); 2681 if (io_bio->end_io) 2682 io_bio->end_io(io_bio, err); 2683 bio_put(bio); 2684 } 2685 2686 /* 2687 * this allocates from the btrfs_bioset. We're returning a bio right now 2688 * but you can call btrfs_io_bio for the appropriate container_of magic 2689 */ 2690 struct bio * 2691 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2692 gfp_t gfp_flags) 2693 { 2694 struct btrfs_io_bio *btrfs_bio; 2695 struct bio *bio; 2696 2697 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2698 2699 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2700 while (!bio && (nr_vecs /= 2)) { 2701 bio = bio_alloc_bioset(gfp_flags, 2702 nr_vecs, btrfs_bioset); 2703 } 2704 } 2705 2706 if (bio) { 2707 bio->bi_bdev = bdev; 2708 bio->bi_iter.bi_sector = first_sector; 2709 btrfs_bio = btrfs_io_bio(bio); 2710 btrfs_bio->csum = NULL; 2711 btrfs_bio->csum_allocated = NULL; 2712 btrfs_bio->end_io = NULL; 2713 } 2714 return bio; 2715 } 2716 2717 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2718 { 2719 struct btrfs_io_bio *btrfs_bio; 2720 struct bio *new; 2721 2722 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2723 if (new) { 2724 btrfs_bio = btrfs_io_bio(new); 2725 btrfs_bio->csum = NULL; 2726 btrfs_bio->csum_allocated = NULL; 2727 btrfs_bio->end_io = NULL; 2728 } 2729 return new; 2730 } 2731 2732 /* this also allocates from the btrfs_bioset */ 2733 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2734 { 2735 struct btrfs_io_bio *btrfs_bio; 2736 struct bio *bio; 2737 2738 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2739 if (bio) { 2740 btrfs_bio = btrfs_io_bio(bio); 2741 btrfs_bio->csum = NULL; 2742 btrfs_bio->csum_allocated = NULL; 2743 btrfs_bio->end_io = NULL; 2744 } 2745 return bio; 2746 } 2747 2748 2749 static int __must_check submit_one_bio(int rw, struct bio *bio, 2750 int mirror_num, unsigned long bio_flags) 2751 { 2752 int ret = 0; 2753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2754 struct page *page = bvec->bv_page; 2755 struct extent_io_tree *tree = bio->bi_private; 2756 u64 start; 2757 2758 start = page_offset(page) + bvec->bv_offset; 2759 2760 bio->bi_private = NULL; 2761 2762 bio_get(bio); 2763 2764 if (tree->ops && tree->ops->submit_bio_hook) 2765 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2766 mirror_num, bio_flags, start); 2767 else 2768 btrfsic_submit_bio(rw, bio); 2769 2770 bio_put(bio); 2771 return ret; 2772 } 2773 2774 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2775 unsigned long offset, size_t size, struct bio *bio, 2776 unsigned long bio_flags) 2777 { 2778 int ret = 0; 2779 if (tree->ops && tree->ops->merge_bio_hook) 2780 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2781 bio_flags); 2782 BUG_ON(ret < 0); 2783 return ret; 2784 2785 } 2786 2787 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2788 struct page *page, sector_t sector, 2789 size_t size, unsigned long offset, 2790 struct block_device *bdev, 2791 struct bio **bio_ret, 2792 unsigned long max_pages, 2793 bio_end_io_t end_io_func, 2794 int mirror_num, 2795 unsigned long prev_bio_flags, 2796 unsigned long bio_flags) 2797 { 2798 int ret = 0; 2799 struct bio *bio; 2800 int nr; 2801 int contig = 0; 2802 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2803 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2804 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2805 2806 if (bio_ret && *bio_ret) { 2807 bio = *bio_ret; 2808 if (old_compressed) 2809 contig = bio->bi_iter.bi_sector == sector; 2810 else 2811 contig = bio_end_sector(bio) == sector; 2812 2813 if (prev_bio_flags != bio_flags || !contig || 2814 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2815 bio_add_page(bio, page, page_size, offset) < page_size) { 2816 ret = submit_one_bio(rw, bio, mirror_num, 2817 prev_bio_flags); 2818 if (ret < 0) { 2819 *bio_ret = NULL; 2820 return ret; 2821 } 2822 bio = NULL; 2823 } else { 2824 return 0; 2825 } 2826 } 2827 if (this_compressed) 2828 nr = BIO_MAX_PAGES; 2829 else 2830 nr = bio_get_nr_vecs(bdev); 2831 2832 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2833 if (!bio) 2834 return -ENOMEM; 2835 2836 bio_add_page(bio, page, page_size, offset); 2837 bio->bi_end_io = end_io_func; 2838 bio->bi_private = tree; 2839 2840 if (bio_ret) 2841 *bio_ret = bio; 2842 else 2843 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2844 2845 return ret; 2846 } 2847 2848 static void attach_extent_buffer_page(struct extent_buffer *eb, 2849 struct page *page) 2850 { 2851 if (!PagePrivate(page)) { 2852 SetPagePrivate(page); 2853 page_cache_get(page); 2854 set_page_private(page, (unsigned long)eb); 2855 } else { 2856 WARN_ON(page->private != (unsigned long)eb); 2857 } 2858 } 2859 2860 void set_page_extent_mapped(struct page *page) 2861 { 2862 if (!PagePrivate(page)) { 2863 SetPagePrivate(page); 2864 page_cache_get(page); 2865 set_page_private(page, EXTENT_PAGE_PRIVATE); 2866 } 2867 } 2868 2869 static struct extent_map * 2870 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2871 u64 start, u64 len, get_extent_t *get_extent, 2872 struct extent_map **em_cached) 2873 { 2874 struct extent_map *em; 2875 2876 if (em_cached && *em_cached) { 2877 em = *em_cached; 2878 if (extent_map_in_tree(em) && start >= em->start && 2879 start < extent_map_end(em)) { 2880 atomic_inc(&em->refs); 2881 return em; 2882 } 2883 2884 free_extent_map(em); 2885 *em_cached = NULL; 2886 } 2887 2888 em = get_extent(inode, page, pg_offset, start, len, 0); 2889 if (em_cached && !IS_ERR_OR_NULL(em)) { 2890 BUG_ON(*em_cached); 2891 atomic_inc(&em->refs); 2892 *em_cached = em; 2893 } 2894 return em; 2895 } 2896 /* 2897 * basic readpage implementation. Locked extent state structs are inserted 2898 * into the tree that are removed when the IO is done (by the end_io 2899 * handlers) 2900 * XXX JDM: This needs looking at to ensure proper page locking 2901 */ 2902 static int __do_readpage(struct extent_io_tree *tree, 2903 struct page *page, 2904 get_extent_t *get_extent, 2905 struct extent_map **em_cached, 2906 struct bio **bio, int mirror_num, 2907 unsigned long *bio_flags, int rw) 2908 { 2909 struct inode *inode = page->mapping->host; 2910 u64 start = page_offset(page); 2911 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2912 u64 end; 2913 u64 cur = start; 2914 u64 extent_offset; 2915 u64 last_byte = i_size_read(inode); 2916 u64 block_start; 2917 u64 cur_end; 2918 sector_t sector; 2919 struct extent_map *em; 2920 struct block_device *bdev; 2921 int ret; 2922 int nr = 0; 2923 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2924 size_t pg_offset = 0; 2925 size_t iosize; 2926 size_t disk_io_size; 2927 size_t blocksize = inode->i_sb->s_blocksize; 2928 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2929 2930 set_page_extent_mapped(page); 2931 2932 end = page_end; 2933 if (!PageUptodate(page)) { 2934 if (cleancache_get_page(page) == 0) { 2935 BUG_ON(blocksize != PAGE_SIZE); 2936 unlock_extent(tree, start, end); 2937 goto out; 2938 } 2939 } 2940 2941 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2942 char *userpage; 2943 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2944 2945 if (zero_offset) { 2946 iosize = PAGE_CACHE_SIZE - zero_offset; 2947 userpage = kmap_atomic(page); 2948 memset(userpage + zero_offset, 0, iosize); 2949 flush_dcache_page(page); 2950 kunmap_atomic(userpage); 2951 } 2952 } 2953 while (cur <= end) { 2954 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2955 2956 if (cur >= last_byte) { 2957 char *userpage; 2958 struct extent_state *cached = NULL; 2959 2960 iosize = PAGE_CACHE_SIZE - pg_offset; 2961 userpage = kmap_atomic(page); 2962 memset(userpage + pg_offset, 0, iosize); 2963 flush_dcache_page(page); 2964 kunmap_atomic(userpage); 2965 set_extent_uptodate(tree, cur, cur + iosize - 1, 2966 &cached, GFP_NOFS); 2967 if (!parent_locked) 2968 unlock_extent_cached(tree, cur, 2969 cur + iosize - 1, 2970 &cached, GFP_NOFS); 2971 break; 2972 } 2973 em = __get_extent_map(inode, page, pg_offset, cur, 2974 end - cur + 1, get_extent, em_cached); 2975 if (IS_ERR_OR_NULL(em)) { 2976 SetPageError(page); 2977 if (!parent_locked) 2978 unlock_extent(tree, cur, end); 2979 break; 2980 } 2981 extent_offset = cur - em->start; 2982 BUG_ON(extent_map_end(em) <= cur); 2983 BUG_ON(end < cur); 2984 2985 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2986 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2987 extent_set_compress_type(&this_bio_flag, 2988 em->compress_type); 2989 } 2990 2991 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2992 cur_end = min(extent_map_end(em) - 1, end); 2993 iosize = ALIGN(iosize, blocksize); 2994 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2995 disk_io_size = em->block_len; 2996 sector = em->block_start >> 9; 2997 } else { 2998 sector = (em->block_start + extent_offset) >> 9; 2999 disk_io_size = iosize; 3000 } 3001 bdev = em->bdev; 3002 block_start = em->block_start; 3003 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3004 block_start = EXTENT_MAP_HOLE; 3005 free_extent_map(em); 3006 em = NULL; 3007 3008 /* we've found a hole, just zero and go on */ 3009 if (block_start == EXTENT_MAP_HOLE) { 3010 char *userpage; 3011 struct extent_state *cached = NULL; 3012 3013 userpage = kmap_atomic(page); 3014 memset(userpage + pg_offset, 0, iosize); 3015 flush_dcache_page(page); 3016 kunmap_atomic(userpage); 3017 3018 set_extent_uptodate(tree, cur, cur + iosize - 1, 3019 &cached, GFP_NOFS); 3020 unlock_extent_cached(tree, cur, cur + iosize - 1, 3021 &cached, GFP_NOFS); 3022 cur = cur + iosize; 3023 pg_offset += iosize; 3024 continue; 3025 } 3026 /* the get_extent function already copied into the page */ 3027 if (test_range_bit(tree, cur, cur_end, 3028 EXTENT_UPTODATE, 1, NULL)) { 3029 check_page_uptodate(tree, page); 3030 if (!parent_locked) 3031 unlock_extent(tree, cur, cur + iosize - 1); 3032 cur = cur + iosize; 3033 pg_offset += iosize; 3034 continue; 3035 } 3036 /* we have an inline extent but it didn't get marked up 3037 * to date. Error out 3038 */ 3039 if (block_start == EXTENT_MAP_INLINE) { 3040 SetPageError(page); 3041 if (!parent_locked) 3042 unlock_extent(tree, cur, cur + iosize - 1); 3043 cur = cur + iosize; 3044 pg_offset += iosize; 3045 continue; 3046 } 3047 3048 pnr -= page->index; 3049 ret = submit_extent_page(rw, tree, page, 3050 sector, disk_io_size, pg_offset, 3051 bdev, bio, pnr, 3052 end_bio_extent_readpage, mirror_num, 3053 *bio_flags, 3054 this_bio_flag); 3055 if (!ret) { 3056 nr++; 3057 *bio_flags = this_bio_flag; 3058 } else { 3059 SetPageError(page); 3060 if (!parent_locked) 3061 unlock_extent(tree, cur, cur + iosize - 1); 3062 } 3063 cur = cur + iosize; 3064 pg_offset += iosize; 3065 } 3066 out: 3067 if (!nr) { 3068 if (!PageError(page)) 3069 SetPageUptodate(page); 3070 unlock_page(page); 3071 } 3072 return 0; 3073 } 3074 3075 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3076 struct page *pages[], int nr_pages, 3077 u64 start, u64 end, 3078 get_extent_t *get_extent, 3079 struct extent_map **em_cached, 3080 struct bio **bio, int mirror_num, 3081 unsigned long *bio_flags, int rw) 3082 { 3083 struct inode *inode; 3084 struct btrfs_ordered_extent *ordered; 3085 int index; 3086 3087 inode = pages[0]->mapping->host; 3088 while (1) { 3089 lock_extent(tree, start, end); 3090 ordered = btrfs_lookup_ordered_range(inode, start, 3091 end - start + 1); 3092 if (!ordered) 3093 break; 3094 unlock_extent(tree, start, end); 3095 btrfs_start_ordered_extent(inode, ordered, 1); 3096 btrfs_put_ordered_extent(ordered); 3097 } 3098 3099 for (index = 0; index < nr_pages; index++) { 3100 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3101 mirror_num, bio_flags, rw); 3102 page_cache_release(pages[index]); 3103 } 3104 } 3105 3106 static void __extent_readpages(struct extent_io_tree *tree, 3107 struct page *pages[], 3108 int nr_pages, get_extent_t *get_extent, 3109 struct extent_map **em_cached, 3110 struct bio **bio, int mirror_num, 3111 unsigned long *bio_flags, int rw) 3112 { 3113 u64 start = 0; 3114 u64 end = 0; 3115 u64 page_start; 3116 int index; 3117 int first_index = 0; 3118 3119 for (index = 0; index < nr_pages; index++) { 3120 page_start = page_offset(pages[index]); 3121 if (!end) { 3122 start = page_start; 3123 end = start + PAGE_CACHE_SIZE - 1; 3124 first_index = index; 3125 } else if (end + 1 == page_start) { 3126 end += PAGE_CACHE_SIZE; 3127 } else { 3128 __do_contiguous_readpages(tree, &pages[first_index], 3129 index - first_index, start, 3130 end, get_extent, em_cached, 3131 bio, mirror_num, bio_flags, 3132 rw); 3133 start = page_start; 3134 end = start + PAGE_CACHE_SIZE - 1; 3135 first_index = index; 3136 } 3137 } 3138 3139 if (end) 3140 __do_contiguous_readpages(tree, &pages[first_index], 3141 index - first_index, start, 3142 end, get_extent, em_cached, bio, 3143 mirror_num, bio_flags, rw); 3144 } 3145 3146 static int __extent_read_full_page(struct extent_io_tree *tree, 3147 struct page *page, 3148 get_extent_t *get_extent, 3149 struct bio **bio, int mirror_num, 3150 unsigned long *bio_flags, int rw) 3151 { 3152 struct inode *inode = page->mapping->host; 3153 struct btrfs_ordered_extent *ordered; 3154 u64 start = page_offset(page); 3155 u64 end = start + PAGE_CACHE_SIZE - 1; 3156 int ret; 3157 3158 while (1) { 3159 lock_extent(tree, start, end); 3160 ordered = btrfs_lookup_ordered_extent(inode, start); 3161 if (!ordered) 3162 break; 3163 unlock_extent(tree, start, end); 3164 btrfs_start_ordered_extent(inode, ordered, 1); 3165 btrfs_put_ordered_extent(ordered); 3166 } 3167 3168 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3169 bio_flags, rw); 3170 return ret; 3171 } 3172 3173 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3174 get_extent_t *get_extent, int mirror_num) 3175 { 3176 struct bio *bio = NULL; 3177 unsigned long bio_flags = 0; 3178 int ret; 3179 3180 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3181 &bio_flags, READ); 3182 if (bio) 3183 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3184 return ret; 3185 } 3186 3187 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3188 get_extent_t *get_extent, int mirror_num) 3189 { 3190 struct bio *bio = NULL; 3191 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3192 int ret; 3193 3194 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3195 &bio_flags, READ); 3196 if (bio) 3197 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3198 return ret; 3199 } 3200 3201 static noinline void update_nr_written(struct page *page, 3202 struct writeback_control *wbc, 3203 unsigned long nr_written) 3204 { 3205 wbc->nr_to_write -= nr_written; 3206 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3207 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3208 page->mapping->writeback_index = page->index + nr_written; 3209 } 3210 3211 /* 3212 * helper for __extent_writepage, doing all of the delayed allocation setup. 3213 * 3214 * This returns 1 if our fill_delalloc function did all the work required 3215 * to write the page (copy into inline extent). In this case the IO has 3216 * been started and the page is already unlocked. 3217 * 3218 * This returns 0 if all went well (page still locked) 3219 * This returns < 0 if there were errors (page still locked) 3220 */ 3221 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3222 struct page *page, struct writeback_control *wbc, 3223 struct extent_page_data *epd, 3224 u64 delalloc_start, 3225 unsigned long *nr_written) 3226 { 3227 struct extent_io_tree *tree = epd->tree; 3228 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3229 u64 nr_delalloc; 3230 u64 delalloc_to_write = 0; 3231 u64 delalloc_end = 0; 3232 int ret; 3233 int page_started = 0; 3234 3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3236 return 0; 3237 3238 while (delalloc_end < page_end) { 3239 nr_delalloc = find_lock_delalloc_range(inode, tree, 3240 page, 3241 &delalloc_start, 3242 &delalloc_end, 3243 BTRFS_MAX_EXTENT_SIZE); 3244 if (nr_delalloc == 0) { 3245 delalloc_start = delalloc_end + 1; 3246 continue; 3247 } 3248 ret = tree->ops->fill_delalloc(inode, page, 3249 delalloc_start, 3250 delalloc_end, 3251 &page_started, 3252 nr_written); 3253 /* File system has been set read-only */ 3254 if (ret) { 3255 SetPageError(page); 3256 /* fill_delalloc should be return < 0 for error 3257 * but just in case, we use > 0 here meaning the 3258 * IO is started, so we don't want to return > 0 3259 * unless things are going well. 3260 */ 3261 ret = ret < 0 ? ret : -EIO; 3262 goto done; 3263 } 3264 /* 3265 * delalloc_end is already one less than the total 3266 * length, so we don't subtract one from 3267 * PAGE_CACHE_SIZE 3268 */ 3269 delalloc_to_write += (delalloc_end - delalloc_start + 3270 PAGE_CACHE_SIZE) >> 3271 PAGE_CACHE_SHIFT; 3272 delalloc_start = delalloc_end + 1; 3273 } 3274 if (wbc->nr_to_write < delalloc_to_write) { 3275 int thresh = 8192; 3276 3277 if (delalloc_to_write < thresh * 2) 3278 thresh = delalloc_to_write; 3279 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3280 thresh); 3281 } 3282 3283 /* did the fill delalloc function already unlock and start 3284 * the IO? 3285 */ 3286 if (page_started) { 3287 /* 3288 * we've unlocked the page, so we can't update 3289 * the mapping's writeback index, just update 3290 * nr_to_write. 3291 */ 3292 wbc->nr_to_write -= *nr_written; 3293 return 1; 3294 } 3295 3296 ret = 0; 3297 3298 done: 3299 return ret; 3300 } 3301 3302 /* 3303 * helper for __extent_writepage. This calls the writepage start hooks, 3304 * and does the loop to map the page into extents and bios. 3305 * 3306 * We return 1 if the IO is started and the page is unlocked, 3307 * 0 if all went well (page still locked) 3308 * < 0 if there were errors (page still locked) 3309 */ 3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3311 struct page *page, 3312 struct writeback_control *wbc, 3313 struct extent_page_data *epd, 3314 loff_t i_size, 3315 unsigned long nr_written, 3316 int write_flags, int *nr_ret) 3317 { 3318 struct extent_io_tree *tree = epd->tree; 3319 u64 start = page_offset(page); 3320 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3321 u64 end; 3322 u64 cur = start; 3323 u64 extent_offset; 3324 u64 block_start; 3325 u64 iosize; 3326 sector_t sector; 3327 struct extent_state *cached_state = NULL; 3328 struct extent_map *em; 3329 struct block_device *bdev; 3330 size_t pg_offset = 0; 3331 size_t blocksize; 3332 int ret = 0; 3333 int nr = 0; 3334 bool compressed; 3335 3336 if (tree->ops && tree->ops->writepage_start_hook) { 3337 ret = tree->ops->writepage_start_hook(page, start, 3338 page_end); 3339 if (ret) { 3340 /* Fixup worker will requeue */ 3341 if (ret == -EBUSY) 3342 wbc->pages_skipped++; 3343 else 3344 redirty_page_for_writepage(wbc, page); 3345 3346 update_nr_written(page, wbc, nr_written); 3347 unlock_page(page); 3348 ret = 1; 3349 goto done_unlocked; 3350 } 3351 } 3352 3353 /* 3354 * we don't want to touch the inode after unlocking the page, 3355 * so we update the mapping writeback index now 3356 */ 3357 update_nr_written(page, wbc, nr_written + 1); 3358 3359 end = page_end; 3360 if (i_size <= start) { 3361 if (tree->ops && tree->ops->writepage_end_io_hook) 3362 tree->ops->writepage_end_io_hook(page, start, 3363 page_end, NULL, 1); 3364 goto done; 3365 } 3366 3367 blocksize = inode->i_sb->s_blocksize; 3368 3369 while (cur <= end) { 3370 u64 em_end; 3371 if (cur >= i_size) { 3372 if (tree->ops && tree->ops->writepage_end_io_hook) 3373 tree->ops->writepage_end_io_hook(page, cur, 3374 page_end, NULL, 1); 3375 break; 3376 } 3377 em = epd->get_extent(inode, page, pg_offset, cur, 3378 end - cur + 1, 1); 3379 if (IS_ERR_OR_NULL(em)) { 3380 SetPageError(page); 3381 ret = PTR_ERR_OR_ZERO(em); 3382 break; 3383 } 3384 3385 extent_offset = cur - em->start; 3386 em_end = extent_map_end(em); 3387 BUG_ON(em_end <= cur); 3388 BUG_ON(end < cur); 3389 iosize = min(em_end - cur, end - cur + 1); 3390 iosize = ALIGN(iosize, blocksize); 3391 sector = (em->block_start + extent_offset) >> 9; 3392 bdev = em->bdev; 3393 block_start = em->block_start; 3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3395 free_extent_map(em); 3396 em = NULL; 3397 3398 /* 3399 * compressed and inline extents are written through other 3400 * paths in the FS 3401 */ 3402 if (compressed || block_start == EXTENT_MAP_HOLE || 3403 block_start == EXTENT_MAP_INLINE) { 3404 /* 3405 * end_io notification does not happen here for 3406 * compressed extents 3407 */ 3408 if (!compressed && tree->ops && 3409 tree->ops->writepage_end_io_hook) 3410 tree->ops->writepage_end_io_hook(page, cur, 3411 cur + iosize - 1, 3412 NULL, 1); 3413 else if (compressed) { 3414 /* we don't want to end_page_writeback on 3415 * a compressed extent. this happens 3416 * elsewhere 3417 */ 3418 nr++; 3419 } 3420 3421 cur += iosize; 3422 pg_offset += iosize; 3423 continue; 3424 } 3425 3426 if (tree->ops && tree->ops->writepage_io_hook) { 3427 ret = tree->ops->writepage_io_hook(page, cur, 3428 cur + iosize - 1); 3429 } else { 3430 ret = 0; 3431 } 3432 if (ret) { 3433 SetPageError(page); 3434 } else { 3435 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3436 3437 set_range_writeback(tree, cur, cur + iosize - 1); 3438 if (!PageWriteback(page)) { 3439 btrfs_err(BTRFS_I(inode)->root->fs_info, 3440 "page %lu not writeback, cur %llu end %llu", 3441 page->index, cur, end); 3442 } 3443 3444 ret = submit_extent_page(write_flags, tree, page, 3445 sector, iosize, pg_offset, 3446 bdev, &epd->bio, max_nr, 3447 end_bio_extent_writepage, 3448 0, 0, 0); 3449 if (ret) 3450 SetPageError(page); 3451 } 3452 cur = cur + iosize; 3453 pg_offset += iosize; 3454 nr++; 3455 } 3456 done: 3457 *nr_ret = nr; 3458 3459 done_unlocked: 3460 3461 /* drop our reference on any cached states */ 3462 free_extent_state(cached_state); 3463 return ret; 3464 } 3465 3466 /* 3467 * the writepage semantics are similar to regular writepage. extent 3468 * records are inserted to lock ranges in the tree, and as dirty areas 3469 * are found, they are marked writeback. Then the lock bits are removed 3470 * and the end_io handler clears the writeback ranges 3471 */ 3472 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3473 void *data) 3474 { 3475 struct inode *inode = page->mapping->host; 3476 struct extent_page_data *epd = data; 3477 u64 start = page_offset(page); 3478 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3479 int ret; 3480 int nr = 0; 3481 size_t pg_offset = 0; 3482 loff_t i_size = i_size_read(inode); 3483 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3484 int write_flags; 3485 unsigned long nr_written = 0; 3486 3487 if (wbc->sync_mode == WB_SYNC_ALL) 3488 write_flags = WRITE_SYNC; 3489 else 3490 write_flags = WRITE; 3491 3492 trace___extent_writepage(page, inode, wbc); 3493 3494 WARN_ON(!PageLocked(page)); 3495 3496 ClearPageError(page); 3497 3498 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3499 if (page->index > end_index || 3500 (page->index == end_index && !pg_offset)) { 3501 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3502 unlock_page(page); 3503 return 0; 3504 } 3505 3506 if (page->index == end_index) { 3507 char *userpage; 3508 3509 userpage = kmap_atomic(page); 3510 memset(userpage + pg_offset, 0, 3511 PAGE_CACHE_SIZE - pg_offset); 3512 kunmap_atomic(userpage); 3513 flush_dcache_page(page); 3514 } 3515 3516 pg_offset = 0; 3517 3518 set_page_extent_mapped(page); 3519 3520 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3521 if (ret == 1) 3522 goto done_unlocked; 3523 if (ret) 3524 goto done; 3525 3526 ret = __extent_writepage_io(inode, page, wbc, epd, 3527 i_size, nr_written, write_flags, &nr); 3528 if (ret == 1) 3529 goto done_unlocked; 3530 3531 done: 3532 if (nr == 0) { 3533 /* make sure the mapping tag for page dirty gets cleared */ 3534 set_page_writeback(page); 3535 end_page_writeback(page); 3536 } 3537 if (PageError(page)) { 3538 ret = ret < 0 ? ret : -EIO; 3539 end_extent_writepage(page, ret, start, page_end); 3540 } 3541 unlock_page(page); 3542 return ret; 3543 3544 done_unlocked: 3545 return 0; 3546 } 3547 3548 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3549 { 3550 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3551 TASK_UNINTERRUPTIBLE); 3552 } 3553 3554 static noinline_for_stack int 3555 lock_extent_buffer_for_io(struct extent_buffer *eb, 3556 struct btrfs_fs_info *fs_info, 3557 struct extent_page_data *epd) 3558 { 3559 unsigned long i, num_pages; 3560 int flush = 0; 3561 int ret = 0; 3562 3563 if (!btrfs_try_tree_write_lock(eb)) { 3564 flush = 1; 3565 flush_write_bio(epd); 3566 btrfs_tree_lock(eb); 3567 } 3568 3569 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3570 btrfs_tree_unlock(eb); 3571 if (!epd->sync_io) 3572 return 0; 3573 if (!flush) { 3574 flush_write_bio(epd); 3575 flush = 1; 3576 } 3577 while (1) { 3578 wait_on_extent_buffer_writeback(eb); 3579 btrfs_tree_lock(eb); 3580 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3581 break; 3582 btrfs_tree_unlock(eb); 3583 } 3584 } 3585 3586 /* 3587 * We need to do this to prevent races in people who check if the eb is 3588 * under IO since we can end up having no IO bits set for a short period 3589 * of time. 3590 */ 3591 spin_lock(&eb->refs_lock); 3592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3593 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3594 spin_unlock(&eb->refs_lock); 3595 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3596 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3597 -eb->len, 3598 fs_info->dirty_metadata_batch); 3599 ret = 1; 3600 } else { 3601 spin_unlock(&eb->refs_lock); 3602 } 3603 3604 btrfs_tree_unlock(eb); 3605 3606 if (!ret) 3607 return ret; 3608 3609 num_pages = num_extent_pages(eb->start, eb->len); 3610 for (i = 0; i < num_pages; i++) { 3611 struct page *p = eb->pages[i]; 3612 3613 if (!trylock_page(p)) { 3614 if (!flush) { 3615 flush_write_bio(epd); 3616 flush = 1; 3617 } 3618 lock_page(p); 3619 } 3620 } 3621 3622 return ret; 3623 } 3624 3625 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3626 { 3627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3628 smp_mb__after_atomic(); 3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3630 } 3631 3632 static void set_btree_ioerr(struct page *page) 3633 { 3634 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3635 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3636 3637 SetPageError(page); 3638 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3639 return; 3640 3641 /* 3642 * If writeback for a btree extent that doesn't belong to a log tree 3643 * failed, increment the counter transaction->eb_write_errors. 3644 * We do this because while the transaction is running and before it's 3645 * committing (when we call filemap_fdata[write|wait]_range against 3646 * the btree inode), we might have 3647 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3648 * returns an error or an error happens during writeback, when we're 3649 * committing the transaction we wouldn't know about it, since the pages 3650 * can be no longer dirty nor marked anymore for writeback (if a 3651 * subsequent modification to the extent buffer didn't happen before the 3652 * transaction commit), which makes filemap_fdata[write|wait]_range not 3653 * able to find the pages tagged with SetPageError at transaction 3654 * commit time. So if this happens we must abort the transaction, 3655 * otherwise we commit a super block with btree roots that point to 3656 * btree nodes/leafs whose content on disk is invalid - either garbage 3657 * or the content of some node/leaf from a past generation that got 3658 * cowed or deleted and is no longer valid. 3659 * 3660 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3661 * not be enough - we need to distinguish between log tree extents vs 3662 * non-log tree extents, and the next filemap_fdatawait_range() call 3663 * will catch and clear such errors in the mapping - and that call might 3664 * be from a log sync and not from a transaction commit. Also, checking 3665 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3666 * not done and would not be reliable - the eb might have been released 3667 * from memory and reading it back again means that flag would not be 3668 * set (since it's a runtime flag, not persisted on disk). 3669 * 3670 * Using the flags below in the btree inode also makes us achieve the 3671 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3672 * writeback for all dirty pages and before filemap_fdatawait_range() 3673 * is called, the writeback for all dirty pages had already finished 3674 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3675 * filemap_fdatawait_range() would return success, as it could not know 3676 * that writeback errors happened (the pages were no longer tagged for 3677 * writeback). 3678 */ 3679 switch (eb->log_index) { 3680 case -1: 3681 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3682 break; 3683 case 0: 3684 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3685 break; 3686 case 1: 3687 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3688 break; 3689 default: 3690 BUG(); /* unexpected, logic error */ 3691 } 3692 } 3693 3694 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3695 { 3696 struct bio_vec *bvec; 3697 struct extent_buffer *eb; 3698 int i, done; 3699 3700 bio_for_each_segment_all(bvec, bio, i) { 3701 struct page *page = bvec->bv_page; 3702 3703 eb = (struct extent_buffer *)page->private; 3704 BUG_ON(!eb); 3705 done = atomic_dec_and_test(&eb->io_pages); 3706 3707 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3708 ClearPageUptodate(page); 3709 set_btree_ioerr(page); 3710 } 3711 3712 end_page_writeback(page); 3713 3714 if (!done) 3715 continue; 3716 3717 end_extent_buffer_writeback(eb); 3718 } 3719 3720 bio_put(bio); 3721 } 3722 3723 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3724 struct btrfs_fs_info *fs_info, 3725 struct writeback_control *wbc, 3726 struct extent_page_data *epd) 3727 { 3728 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3729 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3730 u64 offset = eb->start; 3731 unsigned long i, num_pages; 3732 unsigned long bio_flags = 0; 3733 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3734 int ret = 0; 3735 3736 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3737 num_pages = num_extent_pages(eb->start, eb->len); 3738 atomic_set(&eb->io_pages, num_pages); 3739 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3740 bio_flags = EXTENT_BIO_TREE_LOG; 3741 3742 for (i = 0; i < num_pages; i++) { 3743 struct page *p = eb->pages[i]; 3744 3745 clear_page_dirty_for_io(p); 3746 set_page_writeback(p); 3747 ret = submit_extent_page(rw, tree, p, offset >> 9, 3748 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3749 -1, end_bio_extent_buffer_writepage, 3750 0, epd->bio_flags, bio_flags); 3751 epd->bio_flags = bio_flags; 3752 if (ret) { 3753 set_btree_ioerr(p); 3754 end_page_writeback(p); 3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3756 end_extent_buffer_writeback(eb); 3757 ret = -EIO; 3758 break; 3759 } 3760 offset += PAGE_CACHE_SIZE; 3761 update_nr_written(p, wbc, 1); 3762 unlock_page(p); 3763 } 3764 3765 if (unlikely(ret)) { 3766 for (; i < num_pages; i++) { 3767 struct page *p = eb->pages[i]; 3768 clear_page_dirty_for_io(p); 3769 unlock_page(p); 3770 } 3771 } 3772 3773 return ret; 3774 } 3775 3776 int btree_write_cache_pages(struct address_space *mapping, 3777 struct writeback_control *wbc) 3778 { 3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3781 struct extent_buffer *eb, *prev_eb = NULL; 3782 struct extent_page_data epd = { 3783 .bio = NULL, 3784 .tree = tree, 3785 .extent_locked = 0, 3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3787 .bio_flags = 0, 3788 }; 3789 int ret = 0; 3790 int done = 0; 3791 int nr_to_write_done = 0; 3792 struct pagevec pvec; 3793 int nr_pages; 3794 pgoff_t index; 3795 pgoff_t end; /* Inclusive */ 3796 int scanned = 0; 3797 int tag; 3798 3799 pagevec_init(&pvec, 0); 3800 if (wbc->range_cyclic) { 3801 index = mapping->writeback_index; /* Start from prev offset */ 3802 end = -1; 3803 } else { 3804 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3805 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3806 scanned = 1; 3807 } 3808 if (wbc->sync_mode == WB_SYNC_ALL) 3809 tag = PAGECACHE_TAG_TOWRITE; 3810 else 3811 tag = PAGECACHE_TAG_DIRTY; 3812 retry: 3813 if (wbc->sync_mode == WB_SYNC_ALL) 3814 tag_pages_for_writeback(mapping, index, end); 3815 while (!done && !nr_to_write_done && (index <= end) && 3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3818 unsigned i; 3819 3820 scanned = 1; 3821 for (i = 0; i < nr_pages; i++) { 3822 struct page *page = pvec.pages[i]; 3823 3824 if (!PagePrivate(page)) 3825 continue; 3826 3827 if (!wbc->range_cyclic && page->index > end) { 3828 done = 1; 3829 break; 3830 } 3831 3832 spin_lock(&mapping->private_lock); 3833 if (!PagePrivate(page)) { 3834 spin_unlock(&mapping->private_lock); 3835 continue; 3836 } 3837 3838 eb = (struct extent_buffer *)page->private; 3839 3840 /* 3841 * Shouldn't happen and normally this would be a BUG_ON 3842 * but no sense in crashing the users box for something 3843 * we can survive anyway. 3844 */ 3845 if (WARN_ON(!eb)) { 3846 spin_unlock(&mapping->private_lock); 3847 continue; 3848 } 3849 3850 if (eb == prev_eb) { 3851 spin_unlock(&mapping->private_lock); 3852 continue; 3853 } 3854 3855 ret = atomic_inc_not_zero(&eb->refs); 3856 spin_unlock(&mapping->private_lock); 3857 if (!ret) 3858 continue; 3859 3860 prev_eb = eb; 3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3862 if (!ret) { 3863 free_extent_buffer(eb); 3864 continue; 3865 } 3866 3867 ret = write_one_eb(eb, fs_info, wbc, &epd); 3868 if (ret) { 3869 done = 1; 3870 free_extent_buffer(eb); 3871 break; 3872 } 3873 free_extent_buffer(eb); 3874 3875 /* 3876 * the filesystem may choose to bump up nr_to_write. 3877 * We have to make sure to honor the new nr_to_write 3878 * at any time 3879 */ 3880 nr_to_write_done = wbc->nr_to_write <= 0; 3881 } 3882 pagevec_release(&pvec); 3883 cond_resched(); 3884 } 3885 if (!scanned && !done) { 3886 /* 3887 * We hit the last page and there is more work to be done: wrap 3888 * back to the start of the file 3889 */ 3890 scanned = 1; 3891 index = 0; 3892 goto retry; 3893 } 3894 flush_write_bio(&epd); 3895 return ret; 3896 } 3897 3898 /** 3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3900 * @mapping: address space structure to write 3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3902 * @writepage: function called for each page 3903 * @data: data passed to writepage function 3904 * 3905 * If a page is already under I/O, write_cache_pages() skips it, even 3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3908 * and msync() need to guarantee that all the data which was dirty at the time 3909 * the call was made get new I/O started against them. If wbc->sync_mode is 3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3911 * existing IO to complete. 3912 */ 3913 static int extent_write_cache_pages(struct extent_io_tree *tree, 3914 struct address_space *mapping, 3915 struct writeback_control *wbc, 3916 writepage_t writepage, void *data, 3917 void (*flush_fn)(void *)) 3918 { 3919 struct inode *inode = mapping->host; 3920 int ret = 0; 3921 int done = 0; 3922 int err = 0; 3923 int nr_to_write_done = 0; 3924 struct pagevec pvec; 3925 int nr_pages; 3926 pgoff_t index; 3927 pgoff_t end; /* Inclusive */ 3928 int scanned = 0; 3929 int tag; 3930 3931 /* 3932 * We have to hold onto the inode so that ordered extents can do their 3933 * work when the IO finishes. The alternative to this is failing to add 3934 * an ordered extent if the igrab() fails there and that is a huge pain 3935 * to deal with, so instead just hold onto the inode throughout the 3936 * writepages operation. If it fails here we are freeing up the inode 3937 * anyway and we'd rather not waste our time writing out stuff that is 3938 * going to be truncated anyway. 3939 */ 3940 if (!igrab(inode)) 3941 return 0; 3942 3943 pagevec_init(&pvec, 0); 3944 if (wbc->range_cyclic) { 3945 index = mapping->writeback_index; /* Start from prev offset */ 3946 end = -1; 3947 } else { 3948 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3949 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3950 scanned = 1; 3951 } 3952 if (wbc->sync_mode == WB_SYNC_ALL) 3953 tag = PAGECACHE_TAG_TOWRITE; 3954 else 3955 tag = PAGECACHE_TAG_DIRTY; 3956 retry: 3957 if (wbc->sync_mode == WB_SYNC_ALL) 3958 tag_pages_for_writeback(mapping, index, end); 3959 while (!done && !nr_to_write_done && (index <= end) && 3960 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3961 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3962 unsigned i; 3963 3964 scanned = 1; 3965 for (i = 0; i < nr_pages; i++) { 3966 struct page *page = pvec.pages[i]; 3967 3968 /* 3969 * At this point we hold neither mapping->tree_lock nor 3970 * lock on the page itself: the page may be truncated or 3971 * invalidated (changing page->mapping to NULL), or even 3972 * swizzled back from swapper_space to tmpfs file 3973 * mapping 3974 */ 3975 if (!trylock_page(page)) { 3976 flush_fn(data); 3977 lock_page(page); 3978 } 3979 3980 if (unlikely(page->mapping != mapping)) { 3981 unlock_page(page); 3982 continue; 3983 } 3984 3985 if (!wbc->range_cyclic && page->index > end) { 3986 done = 1; 3987 unlock_page(page); 3988 continue; 3989 } 3990 3991 if (wbc->sync_mode != WB_SYNC_NONE) { 3992 if (PageWriteback(page)) 3993 flush_fn(data); 3994 wait_on_page_writeback(page); 3995 } 3996 3997 if (PageWriteback(page) || 3998 !clear_page_dirty_for_io(page)) { 3999 unlock_page(page); 4000 continue; 4001 } 4002 4003 ret = (*writepage)(page, wbc, data); 4004 4005 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4006 unlock_page(page); 4007 ret = 0; 4008 } 4009 if (!err && ret < 0) 4010 err = ret; 4011 4012 /* 4013 * the filesystem may choose to bump up nr_to_write. 4014 * We have to make sure to honor the new nr_to_write 4015 * at any time 4016 */ 4017 nr_to_write_done = wbc->nr_to_write <= 0; 4018 } 4019 pagevec_release(&pvec); 4020 cond_resched(); 4021 } 4022 if (!scanned && !done && !err) { 4023 /* 4024 * We hit the last page and there is more work to be done: wrap 4025 * back to the start of the file 4026 */ 4027 scanned = 1; 4028 index = 0; 4029 goto retry; 4030 } 4031 btrfs_add_delayed_iput(inode); 4032 return err; 4033 } 4034 4035 static void flush_epd_write_bio(struct extent_page_data *epd) 4036 { 4037 if (epd->bio) { 4038 int rw = WRITE; 4039 int ret; 4040 4041 if (epd->sync_io) 4042 rw = WRITE_SYNC; 4043 4044 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4045 BUG_ON(ret < 0); /* -ENOMEM */ 4046 epd->bio = NULL; 4047 } 4048 } 4049 4050 static noinline void flush_write_bio(void *data) 4051 { 4052 struct extent_page_data *epd = data; 4053 flush_epd_write_bio(epd); 4054 } 4055 4056 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4057 get_extent_t *get_extent, 4058 struct writeback_control *wbc) 4059 { 4060 int ret; 4061 struct extent_page_data epd = { 4062 .bio = NULL, 4063 .tree = tree, 4064 .get_extent = get_extent, 4065 .extent_locked = 0, 4066 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4067 .bio_flags = 0, 4068 }; 4069 4070 ret = __extent_writepage(page, wbc, &epd); 4071 4072 flush_epd_write_bio(&epd); 4073 return ret; 4074 } 4075 4076 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4077 u64 start, u64 end, get_extent_t *get_extent, 4078 int mode) 4079 { 4080 int ret = 0; 4081 struct address_space *mapping = inode->i_mapping; 4082 struct page *page; 4083 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4084 PAGE_CACHE_SHIFT; 4085 4086 struct extent_page_data epd = { 4087 .bio = NULL, 4088 .tree = tree, 4089 .get_extent = get_extent, 4090 .extent_locked = 1, 4091 .sync_io = mode == WB_SYNC_ALL, 4092 .bio_flags = 0, 4093 }; 4094 struct writeback_control wbc_writepages = { 4095 .sync_mode = mode, 4096 .nr_to_write = nr_pages * 2, 4097 .range_start = start, 4098 .range_end = end + 1, 4099 }; 4100 4101 while (start <= end) { 4102 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4103 if (clear_page_dirty_for_io(page)) 4104 ret = __extent_writepage(page, &wbc_writepages, &epd); 4105 else { 4106 if (tree->ops && tree->ops->writepage_end_io_hook) 4107 tree->ops->writepage_end_io_hook(page, start, 4108 start + PAGE_CACHE_SIZE - 1, 4109 NULL, 1); 4110 unlock_page(page); 4111 } 4112 page_cache_release(page); 4113 start += PAGE_CACHE_SIZE; 4114 } 4115 4116 flush_epd_write_bio(&epd); 4117 return ret; 4118 } 4119 4120 int extent_writepages(struct extent_io_tree *tree, 4121 struct address_space *mapping, 4122 get_extent_t *get_extent, 4123 struct writeback_control *wbc) 4124 { 4125 int ret = 0; 4126 struct extent_page_data epd = { 4127 .bio = NULL, 4128 .tree = tree, 4129 .get_extent = get_extent, 4130 .extent_locked = 0, 4131 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4132 .bio_flags = 0, 4133 }; 4134 4135 ret = extent_write_cache_pages(tree, mapping, wbc, 4136 __extent_writepage, &epd, 4137 flush_write_bio); 4138 flush_epd_write_bio(&epd); 4139 return ret; 4140 } 4141 4142 int extent_readpages(struct extent_io_tree *tree, 4143 struct address_space *mapping, 4144 struct list_head *pages, unsigned nr_pages, 4145 get_extent_t get_extent) 4146 { 4147 struct bio *bio = NULL; 4148 unsigned page_idx; 4149 unsigned long bio_flags = 0; 4150 struct page *pagepool[16]; 4151 struct page *page; 4152 struct extent_map *em_cached = NULL; 4153 int nr = 0; 4154 4155 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4156 page = list_entry(pages->prev, struct page, lru); 4157 4158 prefetchw(&page->flags); 4159 list_del(&page->lru); 4160 if (add_to_page_cache_lru(page, mapping, 4161 page->index, GFP_NOFS)) { 4162 page_cache_release(page); 4163 continue; 4164 } 4165 4166 pagepool[nr++] = page; 4167 if (nr < ARRAY_SIZE(pagepool)) 4168 continue; 4169 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4170 &bio, 0, &bio_flags, READ); 4171 nr = 0; 4172 } 4173 if (nr) 4174 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4175 &bio, 0, &bio_flags, READ); 4176 4177 if (em_cached) 4178 free_extent_map(em_cached); 4179 4180 BUG_ON(!list_empty(pages)); 4181 if (bio) 4182 return submit_one_bio(READ, bio, 0, bio_flags); 4183 return 0; 4184 } 4185 4186 /* 4187 * basic invalidatepage code, this waits on any locked or writeback 4188 * ranges corresponding to the page, and then deletes any extent state 4189 * records from the tree 4190 */ 4191 int extent_invalidatepage(struct extent_io_tree *tree, 4192 struct page *page, unsigned long offset) 4193 { 4194 struct extent_state *cached_state = NULL; 4195 u64 start = page_offset(page); 4196 u64 end = start + PAGE_CACHE_SIZE - 1; 4197 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4198 4199 start += ALIGN(offset, blocksize); 4200 if (start > end) 4201 return 0; 4202 4203 lock_extent_bits(tree, start, end, 0, &cached_state); 4204 wait_on_page_writeback(page); 4205 clear_extent_bit(tree, start, end, 4206 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4207 EXTENT_DO_ACCOUNTING, 4208 1, 1, &cached_state, GFP_NOFS); 4209 return 0; 4210 } 4211 4212 /* 4213 * a helper for releasepage, this tests for areas of the page that 4214 * are locked or under IO and drops the related state bits if it is safe 4215 * to drop the page. 4216 */ 4217 static int try_release_extent_state(struct extent_map_tree *map, 4218 struct extent_io_tree *tree, 4219 struct page *page, gfp_t mask) 4220 { 4221 u64 start = page_offset(page); 4222 u64 end = start + PAGE_CACHE_SIZE - 1; 4223 int ret = 1; 4224 4225 if (test_range_bit(tree, start, end, 4226 EXTENT_IOBITS, 0, NULL)) 4227 ret = 0; 4228 else { 4229 if ((mask & GFP_NOFS) == GFP_NOFS) 4230 mask = GFP_NOFS; 4231 /* 4232 * at this point we can safely clear everything except the 4233 * locked bit and the nodatasum bit 4234 */ 4235 ret = clear_extent_bit(tree, start, end, 4236 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4237 0, 0, NULL, mask); 4238 4239 /* if clear_extent_bit failed for enomem reasons, 4240 * we can't allow the release to continue. 4241 */ 4242 if (ret < 0) 4243 ret = 0; 4244 else 4245 ret = 1; 4246 } 4247 return ret; 4248 } 4249 4250 /* 4251 * a helper for releasepage. As long as there are no locked extents 4252 * in the range corresponding to the page, both state records and extent 4253 * map records are removed 4254 */ 4255 int try_release_extent_mapping(struct extent_map_tree *map, 4256 struct extent_io_tree *tree, struct page *page, 4257 gfp_t mask) 4258 { 4259 struct extent_map *em; 4260 u64 start = page_offset(page); 4261 u64 end = start + PAGE_CACHE_SIZE - 1; 4262 4263 if ((mask & __GFP_WAIT) && 4264 page->mapping->host->i_size > 16 * 1024 * 1024) { 4265 u64 len; 4266 while (start <= end) { 4267 len = end - start + 1; 4268 write_lock(&map->lock); 4269 em = lookup_extent_mapping(map, start, len); 4270 if (!em) { 4271 write_unlock(&map->lock); 4272 break; 4273 } 4274 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4275 em->start != start) { 4276 write_unlock(&map->lock); 4277 free_extent_map(em); 4278 break; 4279 } 4280 if (!test_range_bit(tree, em->start, 4281 extent_map_end(em) - 1, 4282 EXTENT_LOCKED | EXTENT_WRITEBACK, 4283 0, NULL)) { 4284 remove_extent_mapping(map, em); 4285 /* once for the rb tree */ 4286 free_extent_map(em); 4287 } 4288 start = extent_map_end(em); 4289 write_unlock(&map->lock); 4290 4291 /* once for us */ 4292 free_extent_map(em); 4293 } 4294 } 4295 return try_release_extent_state(map, tree, page, mask); 4296 } 4297 4298 /* 4299 * helper function for fiemap, which doesn't want to see any holes. 4300 * This maps until we find something past 'last' 4301 */ 4302 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4303 u64 offset, 4304 u64 last, 4305 get_extent_t *get_extent) 4306 { 4307 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4308 struct extent_map *em; 4309 u64 len; 4310 4311 if (offset >= last) 4312 return NULL; 4313 4314 while (1) { 4315 len = last - offset; 4316 if (len == 0) 4317 break; 4318 len = ALIGN(len, sectorsize); 4319 em = get_extent(inode, NULL, 0, offset, len, 0); 4320 if (IS_ERR_OR_NULL(em)) 4321 return em; 4322 4323 /* if this isn't a hole return it */ 4324 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4325 em->block_start != EXTENT_MAP_HOLE) { 4326 return em; 4327 } 4328 4329 /* this is a hole, advance to the next extent */ 4330 offset = extent_map_end(em); 4331 free_extent_map(em); 4332 if (offset >= last) 4333 break; 4334 } 4335 return NULL; 4336 } 4337 4338 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4339 __u64 start, __u64 len, get_extent_t *get_extent) 4340 { 4341 int ret = 0; 4342 u64 off = start; 4343 u64 max = start + len; 4344 u32 flags = 0; 4345 u32 found_type; 4346 u64 last; 4347 u64 last_for_get_extent = 0; 4348 u64 disko = 0; 4349 u64 isize = i_size_read(inode); 4350 struct btrfs_key found_key; 4351 struct extent_map *em = NULL; 4352 struct extent_state *cached_state = NULL; 4353 struct btrfs_path *path; 4354 struct btrfs_root *root = BTRFS_I(inode)->root; 4355 int end = 0; 4356 u64 em_start = 0; 4357 u64 em_len = 0; 4358 u64 em_end = 0; 4359 4360 if (len == 0) 4361 return -EINVAL; 4362 4363 path = btrfs_alloc_path(); 4364 if (!path) 4365 return -ENOMEM; 4366 path->leave_spinning = 1; 4367 4368 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4369 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4370 4371 /* 4372 * lookup the last file extent. We're not using i_size here 4373 * because there might be preallocation past i_size 4374 */ 4375 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4376 0); 4377 if (ret < 0) { 4378 btrfs_free_path(path); 4379 return ret; 4380 } 4381 WARN_ON(!ret); 4382 path->slots[0]--; 4383 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4384 found_type = found_key.type; 4385 4386 /* No extents, but there might be delalloc bits */ 4387 if (found_key.objectid != btrfs_ino(inode) || 4388 found_type != BTRFS_EXTENT_DATA_KEY) { 4389 /* have to trust i_size as the end */ 4390 last = (u64)-1; 4391 last_for_get_extent = isize; 4392 } else { 4393 /* 4394 * remember the start of the last extent. There are a 4395 * bunch of different factors that go into the length of the 4396 * extent, so its much less complex to remember where it started 4397 */ 4398 last = found_key.offset; 4399 last_for_get_extent = last + 1; 4400 } 4401 btrfs_release_path(path); 4402 4403 /* 4404 * we might have some extents allocated but more delalloc past those 4405 * extents. so, we trust isize unless the start of the last extent is 4406 * beyond isize 4407 */ 4408 if (last < isize) { 4409 last = (u64)-1; 4410 last_for_get_extent = isize; 4411 } 4412 4413 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4414 &cached_state); 4415 4416 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4417 get_extent); 4418 if (!em) 4419 goto out; 4420 if (IS_ERR(em)) { 4421 ret = PTR_ERR(em); 4422 goto out; 4423 } 4424 4425 while (!end) { 4426 u64 offset_in_extent = 0; 4427 4428 /* break if the extent we found is outside the range */ 4429 if (em->start >= max || extent_map_end(em) < off) 4430 break; 4431 4432 /* 4433 * get_extent may return an extent that starts before our 4434 * requested range. We have to make sure the ranges 4435 * we return to fiemap always move forward and don't 4436 * overlap, so adjust the offsets here 4437 */ 4438 em_start = max(em->start, off); 4439 4440 /* 4441 * record the offset from the start of the extent 4442 * for adjusting the disk offset below. Only do this if the 4443 * extent isn't compressed since our in ram offset may be past 4444 * what we have actually allocated on disk. 4445 */ 4446 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4447 offset_in_extent = em_start - em->start; 4448 em_end = extent_map_end(em); 4449 em_len = em_end - em_start; 4450 disko = 0; 4451 flags = 0; 4452 4453 /* 4454 * bump off for our next call to get_extent 4455 */ 4456 off = extent_map_end(em); 4457 if (off >= max) 4458 end = 1; 4459 4460 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4461 end = 1; 4462 flags |= FIEMAP_EXTENT_LAST; 4463 } else if (em->block_start == EXTENT_MAP_INLINE) { 4464 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4465 FIEMAP_EXTENT_NOT_ALIGNED); 4466 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4467 flags |= (FIEMAP_EXTENT_DELALLOC | 4468 FIEMAP_EXTENT_UNKNOWN); 4469 } else if (fieinfo->fi_extents_max) { 4470 u64 bytenr = em->block_start - 4471 (em->start - em->orig_start); 4472 4473 disko = em->block_start + offset_in_extent; 4474 4475 /* 4476 * As btrfs supports shared space, this information 4477 * can be exported to userspace tools via 4478 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4479 * then we're just getting a count and we can skip the 4480 * lookup stuff. 4481 */ 4482 ret = btrfs_check_shared(NULL, root->fs_info, 4483 root->objectid, 4484 btrfs_ino(inode), bytenr); 4485 if (ret < 0) 4486 goto out_free; 4487 if (ret) 4488 flags |= FIEMAP_EXTENT_SHARED; 4489 ret = 0; 4490 } 4491 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4492 flags |= FIEMAP_EXTENT_ENCODED; 4493 4494 free_extent_map(em); 4495 em = NULL; 4496 if ((em_start >= last) || em_len == (u64)-1 || 4497 (last == (u64)-1 && isize <= em_end)) { 4498 flags |= FIEMAP_EXTENT_LAST; 4499 end = 1; 4500 } 4501 4502 /* now scan forward to see if this is really the last extent. */ 4503 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4504 get_extent); 4505 if (IS_ERR(em)) { 4506 ret = PTR_ERR(em); 4507 goto out; 4508 } 4509 if (!em) { 4510 flags |= FIEMAP_EXTENT_LAST; 4511 end = 1; 4512 } 4513 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4514 em_len, flags); 4515 if (ret) { 4516 if (ret == 1) 4517 ret = 0; 4518 goto out_free; 4519 } 4520 } 4521 out_free: 4522 free_extent_map(em); 4523 out: 4524 btrfs_free_path(path); 4525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4526 &cached_state, GFP_NOFS); 4527 return ret; 4528 } 4529 4530 static void __free_extent_buffer(struct extent_buffer *eb) 4531 { 4532 btrfs_leak_debug_del(&eb->leak_list); 4533 kmem_cache_free(extent_buffer_cache, eb); 4534 } 4535 4536 int extent_buffer_under_io(struct extent_buffer *eb) 4537 { 4538 return (atomic_read(&eb->io_pages) || 4539 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4540 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4541 } 4542 4543 /* 4544 * Helper for releasing extent buffer page. 4545 */ 4546 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4547 { 4548 unsigned long index; 4549 struct page *page; 4550 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4551 4552 BUG_ON(extent_buffer_under_io(eb)); 4553 4554 index = num_extent_pages(eb->start, eb->len); 4555 if (index == 0) 4556 return; 4557 4558 do { 4559 index--; 4560 page = eb->pages[index]; 4561 if (!page) 4562 continue; 4563 if (mapped) 4564 spin_lock(&page->mapping->private_lock); 4565 /* 4566 * We do this since we'll remove the pages after we've 4567 * removed the eb from the radix tree, so we could race 4568 * and have this page now attached to the new eb. So 4569 * only clear page_private if it's still connected to 4570 * this eb. 4571 */ 4572 if (PagePrivate(page) && 4573 page->private == (unsigned long)eb) { 4574 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4575 BUG_ON(PageDirty(page)); 4576 BUG_ON(PageWriteback(page)); 4577 /* 4578 * We need to make sure we haven't be attached 4579 * to a new eb. 4580 */ 4581 ClearPagePrivate(page); 4582 set_page_private(page, 0); 4583 /* One for the page private */ 4584 page_cache_release(page); 4585 } 4586 4587 if (mapped) 4588 spin_unlock(&page->mapping->private_lock); 4589 4590 /* One for when we alloced the page */ 4591 page_cache_release(page); 4592 } while (index != 0); 4593 } 4594 4595 /* 4596 * Helper for releasing the extent buffer. 4597 */ 4598 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4599 { 4600 btrfs_release_extent_buffer_page(eb); 4601 __free_extent_buffer(eb); 4602 } 4603 4604 static struct extent_buffer * 4605 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4606 unsigned long len) 4607 { 4608 struct extent_buffer *eb = NULL; 4609 4610 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS); 4611 if (eb == NULL) 4612 return NULL; 4613 eb->start = start; 4614 eb->len = len; 4615 eb->fs_info = fs_info; 4616 eb->bflags = 0; 4617 rwlock_init(&eb->lock); 4618 atomic_set(&eb->write_locks, 0); 4619 atomic_set(&eb->read_locks, 0); 4620 atomic_set(&eb->blocking_readers, 0); 4621 atomic_set(&eb->blocking_writers, 0); 4622 atomic_set(&eb->spinning_readers, 0); 4623 atomic_set(&eb->spinning_writers, 0); 4624 eb->lock_nested = 0; 4625 init_waitqueue_head(&eb->write_lock_wq); 4626 init_waitqueue_head(&eb->read_lock_wq); 4627 4628 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4629 4630 spin_lock_init(&eb->refs_lock); 4631 atomic_set(&eb->refs, 1); 4632 atomic_set(&eb->io_pages, 0); 4633 4634 /* 4635 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4636 */ 4637 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4638 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4639 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4640 4641 return eb; 4642 } 4643 4644 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4645 { 4646 unsigned long i; 4647 struct page *p; 4648 struct extent_buffer *new; 4649 unsigned long num_pages = num_extent_pages(src->start, src->len); 4650 4651 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4652 if (new == NULL) 4653 return NULL; 4654 4655 for (i = 0; i < num_pages; i++) { 4656 p = alloc_page(GFP_NOFS); 4657 if (!p) { 4658 btrfs_release_extent_buffer(new); 4659 return NULL; 4660 } 4661 attach_extent_buffer_page(new, p); 4662 WARN_ON(PageDirty(p)); 4663 SetPageUptodate(p); 4664 new->pages[i] = p; 4665 } 4666 4667 copy_extent_buffer(new, src, 0, 0, src->len); 4668 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4669 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4670 4671 return new; 4672 } 4673 4674 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4675 u64 start) 4676 { 4677 struct extent_buffer *eb; 4678 unsigned long len; 4679 unsigned long num_pages; 4680 unsigned long i; 4681 4682 if (!fs_info) { 4683 /* 4684 * Called only from tests that don't always have a fs_info 4685 * available, but we know that nodesize is 4096 4686 */ 4687 len = 4096; 4688 } else { 4689 len = fs_info->tree_root->nodesize; 4690 } 4691 num_pages = num_extent_pages(0, len); 4692 4693 eb = __alloc_extent_buffer(fs_info, start, len); 4694 if (!eb) 4695 return NULL; 4696 4697 for (i = 0; i < num_pages; i++) { 4698 eb->pages[i] = alloc_page(GFP_NOFS); 4699 if (!eb->pages[i]) 4700 goto err; 4701 } 4702 set_extent_buffer_uptodate(eb); 4703 btrfs_set_header_nritems(eb, 0); 4704 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4705 4706 return eb; 4707 err: 4708 for (; i > 0; i--) 4709 __free_page(eb->pages[i - 1]); 4710 __free_extent_buffer(eb); 4711 return NULL; 4712 } 4713 4714 static void check_buffer_tree_ref(struct extent_buffer *eb) 4715 { 4716 int refs; 4717 /* the ref bit is tricky. We have to make sure it is set 4718 * if we have the buffer dirty. Otherwise the 4719 * code to free a buffer can end up dropping a dirty 4720 * page 4721 * 4722 * Once the ref bit is set, it won't go away while the 4723 * buffer is dirty or in writeback, and it also won't 4724 * go away while we have the reference count on the 4725 * eb bumped. 4726 * 4727 * We can't just set the ref bit without bumping the 4728 * ref on the eb because free_extent_buffer might 4729 * see the ref bit and try to clear it. If this happens 4730 * free_extent_buffer might end up dropping our original 4731 * ref by mistake and freeing the page before we are able 4732 * to add one more ref. 4733 * 4734 * So bump the ref count first, then set the bit. If someone 4735 * beat us to it, drop the ref we added. 4736 */ 4737 refs = atomic_read(&eb->refs); 4738 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4739 return; 4740 4741 spin_lock(&eb->refs_lock); 4742 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4743 atomic_inc(&eb->refs); 4744 spin_unlock(&eb->refs_lock); 4745 } 4746 4747 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4748 struct page *accessed) 4749 { 4750 unsigned long num_pages, i; 4751 4752 check_buffer_tree_ref(eb); 4753 4754 num_pages = num_extent_pages(eb->start, eb->len); 4755 for (i = 0; i < num_pages; i++) { 4756 struct page *p = eb->pages[i]; 4757 4758 if (p != accessed) 4759 mark_page_accessed(p); 4760 } 4761 } 4762 4763 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4764 u64 start) 4765 { 4766 struct extent_buffer *eb; 4767 4768 rcu_read_lock(); 4769 eb = radix_tree_lookup(&fs_info->buffer_radix, 4770 start >> PAGE_CACHE_SHIFT); 4771 if (eb && atomic_inc_not_zero(&eb->refs)) { 4772 rcu_read_unlock(); 4773 /* 4774 * Lock our eb's refs_lock to avoid races with 4775 * free_extent_buffer. When we get our eb it might be flagged 4776 * with EXTENT_BUFFER_STALE and another task running 4777 * free_extent_buffer might have seen that flag set, 4778 * eb->refs == 2, that the buffer isn't under IO (dirty and 4779 * writeback flags not set) and it's still in the tree (flag 4780 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4781 * of decrementing the extent buffer's reference count twice. 4782 * So here we could race and increment the eb's reference count, 4783 * clear its stale flag, mark it as dirty and drop our reference 4784 * before the other task finishes executing free_extent_buffer, 4785 * which would later result in an attempt to free an extent 4786 * buffer that is dirty. 4787 */ 4788 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4789 spin_lock(&eb->refs_lock); 4790 spin_unlock(&eb->refs_lock); 4791 } 4792 mark_extent_buffer_accessed(eb, NULL); 4793 return eb; 4794 } 4795 rcu_read_unlock(); 4796 4797 return NULL; 4798 } 4799 4800 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4801 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4802 u64 start) 4803 { 4804 struct extent_buffer *eb, *exists = NULL; 4805 int ret; 4806 4807 eb = find_extent_buffer(fs_info, start); 4808 if (eb) 4809 return eb; 4810 eb = alloc_dummy_extent_buffer(fs_info, start); 4811 if (!eb) 4812 return NULL; 4813 eb->fs_info = fs_info; 4814 again: 4815 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4816 if (ret) 4817 goto free_eb; 4818 spin_lock(&fs_info->buffer_lock); 4819 ret = radix_tree_insert(&fs_info->buffer_radix, 4820 start >> PAGE_CACHE_SHIFT, eb); 4821 spin_unlock(&fs_info->buffer_lock); 4822 radix_tree_preload_end(); 4823 if (ret == -EEXIST) { 4824 exists = find_extent_buffer(fs_info, start); 4825 if (exists) 4826 goto free_eb; 4827 else 4828 goto again; 4829 } 4830 check_buffer_tree_ref(eb); 4831 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4832 4833 /* 4834 * We will free dummy extent buffer's if they come into 4835 * free_extent_buffer with a ref count of 2, but if we are using this we 4836 * want the buffers to stay in memory until we're done with them, so 4837 * bump the ref count again. 4838 */ 4839 atomic_inc(&eb->refs); 4840 return eb; 4841 free_eb: 4842 btrfs_release_extent_buffer(eb); 4843 return exists; 4844 } 4845 #endif 4846 4847 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4848 u64 start) 4849 { 4850 unsigned long len = fs_info->tree_root->nodesize; 4851 unsigned long num_pages = num_extent_pages(start, len); 4852 unsigned long i; 4853 unsigned long index = start >> PAGE_CACHE_SHIFT; 4854 struct extent_buffer *eb; 4855 struct extent_buffer *exists = NULL; 4856 struct page *p; 4857 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4858 int uptodate = 1; 4859 int ret; 4860 4861 eb = find_extent_buffer(fs_info, start); 4862 if (eb) 4863 return eb; 4864 4865 eb = __alloc_extent_buffer(fs_info, start, len); 4866 if (!eb) 4867 return NULL; 4868 4869 for (i = 0; i < num_pages; i++, index++) { 4870 p = find_or_create_page(mapping, index, GFP_NOFS); 4871 if (!p) 4872 goto free_eb; 4873 4874 spin_lock(&mapping->private_lock); 4875 if (PagePrivate(p)) { 4876 /* 4877 * We could have already allocated an eb for this page 4878 * and attached one so lets see if we can get a ref on 4879 * the existing eb, and if we can we know it's good and 4880 * we can just return that one, else we know we can just 4881 * overwrite page->private. 4882 */ 4883 exists = (struct extent_buffer *)p->private; 4884 if (atomic_inc_not_zero(&exists->refs)) { 4885 spin_unlock(&mapping->private_lock); 4886 unlock_page(p); 4887 page_cache_release(p); 4888 mark_extent_buffer_accessed(exists, p); 4889 goto free_eb; 4890 } 4891 exists = NULL; 4892 4893 /* 4894 * Do this so attach doesn't complain and we need to 4895 * drop the ref the old guy had. 4896 */ 4897 ClearPagePrivate(p); 4898 WARN_ON(PageDirty(p)); 4899 page_cache_release(p); 4900 } 4901 attach_extent_buffer_page(eb, p); 4902 spin_unlock(&mapping->private_lock); 4903 WARN_ON(PageDirty(p)); 4904 eb->pages[i] = p; 4905 if (!PageUptodate(p)) 4906 uptodate = 0; 4907 4908 /* 4909 * see below about how we avoid a nasty race with release page 4910 * and why we unlock later 4911 */ 4912 } 4913 if (uptodate) 4914 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4915 again: 4916 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4917 if (ret) 4918 goto free_eb; 4919 4920 spin_lock(&fs_info->buffer_lock); 4921 ret = radix_tree_insert(&fs_info->buffer_radix, 4922 start >> PAGE_CACHE_SHIFT, eb); 4923 spin_unlock(&fs_info->buffer_lock); 4924 radix_tree_preload_end(); 4925 if (ret == -EEXIST) { 4926 exists = find_extent_buffer(fs_info, start); 4927 if (exists) 4928 goto free_eb; 4929 else 4930 goto again; 4931 } 4932 /* add one reference for the tree */ 4933 check_buffer_tree_ref(eb); 4934 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4935 4936 /* 4937 * there is a race where release page may have 4938 * tried to find this extent buffer in the radix 4939 * but failed. It will tell the VM it is safe to 4940 * reclaim the, and it will clear the page private bit. 4941 * We must make sure to set the page private bit properly 4942 * after the extent buffer is in the radix tree so 4943 * it doesn't get lost 4944 */ 4945 SetPageChecked(eb->pages[0]); 4946 for (i = 1; i < num_pages; i++) { 4947 p = eb->pages[i]; 4948 ClearPageChecked(p); 4949 unlock_page(p); 4950 } 4951 unlock_page(eb->pages[0]); 4952 return eb; 4953 4954 free_eb: 4955 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4956 for (i = 0; i < num_pages; i++) { 4957 if (eb->pages[i]) 4958 unlock_page(eb->pages[i]); 4959 } 4960 4961 btrfs_release_extent_buffer(eb); 4962 return exists; 4963 } 4964 4965 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4966 { 4967 struct extent_buffer *eb = 4968 container_of(head, struct extent_buffer, rcu_head); 4969 4970 __free_extent_buffer(eb); 4971 } 4972 4973 /* Expects to have eb->eb_lock already held */ 4974 static int release_extent_buffer(struct extent_buffer *eb) 4975 { 4976 WARN_ON(atomic_read(&eb->refs) == 0); 4977 if (atomic_dec_and_test(&eb->refs)) { 4978 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4979 struct btrfs_fs_info *fs_info = eb->fs_info; 4980 4981 spin_unlock(&eb->refs_lock); 4982 4983 spin_lock(&fs_info->buffer_lock); 4984 radix_tree_delete(&fs_info->buffer_radix, 4985 eb->start >> PAGE_CACHE_SHIFT); 4986 spin_unlock(&fs_info->buffer_lock); 4987 } else { 4988 spin_unlock(&eb->refs_lock); 4989 } 4990 4991 /* Should be safe to release our pages at this point */ 4992 btrfs_release_extent_buffer_page(eb); 4993 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4994 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 4995 __free_extent_buffer(eb); 4996 return 1; 4997 } 4998 #endif 4999 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5000 return 1; 5001 } 5002 spin_unlock(&eb->refs_lock); 5003 5004 return 0; 5005 } 5006 5007 void free_extent_buffer(struct extent_buffer *eb) 5008 { 5009 int refs; 5010 int old; 5011 if (!eb) 5012 return; 5013 5014 while (1) { 5015 refs = atomic_read(&eb->refs); 5016 if (refs <= 3) 5017 break; 5018 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5019 if (old == refs) 5020 return; 5021 } 5022 5023 spin_lock(&eb->refs_lock); 5024 if (atomic_read(&eb->refs) == 2 && 5025 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5026 atomic_dec(&eb->refs); 5027 5028 if (atomic_read(&eb->refs) == 2 && 5029 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5030 !extent_buffer_under_io(eb) && 5031 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5032 atomic_dec(&eb->refs); 5033 5034 /* 5035 * I know this is terrible, but it's temporary until we stop tracking 5036 * the uptodate bits and such for the extent buffers. 5037 */ 5038 release_extent_buffer(eb); 5039 } 5040 5041 void free_extent_buffer_stale(struct extent_buffer *eb) 5042 { 5043 if (!eb) 5044 return; 5045 5046 spin_lock(&eb->refs_lock); 5047 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5048 5049 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5050 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5051 atomic_dec(&eb->refs); 5052 release_extent_buffer(eb); 5053 } 5054 5055 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5056 { 5057 unsigned long i; 5058 unsigned long num_pages; 5059 struct page *page; 5060 5061 num_pages = num_extent_pages(eb->start, eb->len); 5062 5063 for (i = 0; i < num_pages; i++) { 5064 page = eb->pages[i]; 5065 if (!PageDirty(page)) 5066 continue; 5067 5068 lock_page(page); 5069 WARN_ON(!PagePrivate(page)); 5070 5071 clear_page_dirty_for_io(page); 5072 spin_lock_irq(&page->mapping->tree_lock); 5073 if (!PageDirty(page)) { 5074 radix_tree_tag_clear(&page->mapping->page_tree, 5075 page_index(page), 5076 PAGECACHE_TAG_DIRTY); 5077 } 5078 spin_unlock_irq(&page->mapping->tree_lock); 5079 ClearPageError(page); 5080 unlock_page(page); 5081 } 5082 WARN_ON(atomic_read(&eb->refs) == 0); 5083 } 5084 5085 int set_extent_buffer_dirty(struct extent_buffer *eb) 5086 { 5087 unsigned long i; 5088 unsigned long num_pages; 5089 int was_dirty = 0; 5090 5091 check_buffer_tree_ref(eb); 5092 5093 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5094 5095 num_pages = num_extent_pages(eb->start, eb->len); 5096 WARN_ON(atomic_read(&eb->refs) == 0); 5097 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5098 5099 for (i = 0; i < num_pages; i++) 5100 set_page_dirty(eb->pages[i]); 5101 return was_dirty; 5102 } 5103 5104 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5105 { 5106 unsigned long i; 5107 struct page *page; 5108 unsigned long num_pages; 5109 5110 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5111 num_pages = num_extent_pages(eb->start, eb->len); 5112 for (i = 0; i < num_pages; i++) { 5113 page = eb->pages[i]; 5114 if (page) 5115 ClearPageUptodate(page); 5116 } 5117 return 0; 5118 } 5119 5120 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5121 { 5122 unsigned long i; 5123 struct page *page; 5124 unsigned long num_pages; 5125 5126 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5127 num_pages = num_extent_pages(eb->start, eb->len); 5128 for (i = 0; i < num_pages; i++) { 5129 page = eb->pages[i]; 5130 SetPageUptodate(page); 5131 } 5132 return 0; 5133 } 5134 5135 int extent_buffer_uptodate(struct extent_buffer *eb) 5136 { 5137 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5138 } 5139 5140 int read_extent_buffer_pages(struct extent_io_tree *tree, 5141 struct extent_buffer *eb, u64 start, int wait, 5142 get_extent_t *get_extent, int mirror_num) 5143 { 5144 unsigned long i; 5145 unsigned long start_i; 5146 struct page *page; 5147 int err; 5148 int ret = 0; 5149 int locked_pages = 0; 5150 int all_uptodate = 1; 5151 unsigned long num_pages; 5152 unsigned long num_reads = 0; 5153 struct bio *bio = NULL; 5154 unsigned long bio_flags = 0; 5155 5156 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5157 return 0; 5158 5159 if (start) { 5160 WARN_ON(start < eb->start); 5161 start_i = (start >> PAGE_CACHE_SHIFT) - 5162 (eb->start >> PAGE_CACHE_SHIFT); 5163 } else { 5164 start_i = 0; 5165 } 5166 5167 num_pages = num_extent_pages(eb->start, eb->len); 5168 for (i = start_i; i < num_pages; i++) { 5169 page = eb->pages[i]; 5170 if (wait == WAIT_NONE) { 5171 if (!trylock_page(page)) 5172 goto unlock_exit; 5173 } else { 5174 lock_page(page); 5175 } 5176 locked_pages++; 5177 if (!PageUptodate(page)) { 5178 num_reads++; 5179 all_uptodate = 0; 5180 } 5181 } 5182 if (all_uptodate) { 5183 if (start_i == 0) 5184 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5185 goto unlock_exit; 5186 } 5187 5188 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5189 eb->read_mirror = 0; 5190 atomic_set(&eb->io_pages, num_reads); 5191 for (i = start_i; i < num_pages; i++) { 5192 page = eb->pages[i]; 5193 if (!PageUptodate(page)) { 5194 ClearPageError(page); 5195 err = __extent_read_full_page(tree, page, 5196 get_extent, &bio, 5197 mirror_num, &bio_flags, 5198 READ | REQ_META); 5199 if (err) 5200 ret = err; 5201 } else { 5202 unlock_page(page); 5203 } 5204 } 5205 5206 if (bio) { 5207 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5208 bio_flags); 5209 if (err) 5210 return err; 5211 } 5212 5213 if (ret || wait != WAIT_COMPLETE) 5214 return ret; 5215 5216 for (i = start_i; i < num_pages; i++) { 5217 page = eb->pages[i]; 5218 wait_on_page_locked(page); 5219 if (!PageUptodate(page)) 5220 ret = -EIO; 5221 } 5222 5223 return ret; 5224 5225 unlock_exit: 5226 i = start_i; 5227 while (locked_pages > 0) { 5228 page = eb->pages[i]; 5229 i++; 5230 unlock_page(page); 5231 locked_pages--; 5232 } 5233 return ret; 5234 } 5235 5236 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5237 unsigned long start, 5238 unsigned long len) 5239 { 5240 size_t cur; 5241 size_t offset; 5242 struct page *page; 5243 char *kaddr; 5244 char *dst = (char *)dstv; 5245 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5246 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5247 5248 WARN_ON(start > eb->len); 5249 WARN_ON(start + len > eb->start + eb->len); 5250 5251 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5252 5253 while (len > 0) { 5254 page = eb->pages[i]; 5255 5256 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5257 kaddr = page_address(page); 5258 memcpy(dst, kaddr + offset, cur); 5259 5260 dst += cur; 5261 len -= cur; 5262 offset = 0; 5263 i++; 5264 } 5265 } 5266 5267 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5268 unsigned long start, 5269 unsigned long len) 5270 { 5271 size_t cur; 5272 size_t offset; 5273 struct page *page; 5274 char *kaddr; 5275 char __user *dst = (char __user *)dstv; 5276 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5277 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5278 int ret = 0; 5279 5280 WARN_ON(start > eb->len); 5281 WARN_ON(start + len > eb->start + eb->len); 5282 5283 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5284 5285 while (len > 0) { 5286 page = eb->pages[i]; 5287 5288 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5289 kaddr = page_address(page); 5290 if (copy_to_user(dst, kaddr + offset, cur)) { 5291 ret = -EFAULT; 5292 break; 5293 } 5294 5295 dst += cur; 5296 len -= cur; 5297 offset = 0; 5298 i++; 5299 } 5300 5301 return ret; 5302 } 5303 5304 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5305 unsigned long min_len, char **map, 5306 unsigned long *map_start, 5307 unsigned long *map_len) 5308 { 5309 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5310 char *kaddr; 5311 struct page *p; 5312 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5313 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5314 unsigned long end_i = (start_offset + start + min_len - 1) >> 5315 PAGE_CACHE_SHIFT; 5316 5317 if (i != end_i) 5318 return -EINVAL; 5319 5320 if (i == 0) { 5321 offset = start_offset; 5322 *map_start = 0; 5323 } else { 5324 offset = 0; 5325 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5326 } 5327 5328 if (start + min_len > eb->len) { 5329 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5330 "wanted %lu %lu\n", 5331 eb->start, eb->len, start, min_len); 5332 return -EINVAL; 5333 } 5334 5335 p = eb->pages[i]; 5336 kaddr = page_address(p); 5337 *map = kaddr + offset; 5338 *map_len = PAGE_CACHE_SIZE - offset; 5339 return 0; 5340 } 5341 5342 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5343 unsigned long start, 5344 unsigned long len) 5345 { 5346 size_t cur; 5347 size_t offset; 5348 struct page *page; 5349 char *kaddr; 5350 char *ptr = (char *)ptrv; 5351 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5352 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5353 int ret = 0; 5354 5355 WARN_ON(start > eb->len); 5356 WARN_ON(start + len > eb->start + eb->len); 5357 5358 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5359 5360 while (len > 0) { 5361 page = eb->pages[i]; 5362 5363 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5364 5365 kaddr = page_address(page); 5366 ret = memcmp(ptr, kaddr + offset, cur); 5367 if (ret) 5368 break; 5369 5370 ptr += cur; 5371 len -= cur; 5372 offset = 0; 5373 i++; 5374 } 5375 return ret; 5376 } 5377 5378 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5379 unsigned long start, unsigned long len) 5380 { 5381 size_t cur; 5382 size_t offset; 5383 struct page *page; 5384 char *kaddr; 5385 char *src = (char *)srcv; 5386 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5387 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5388 5389 WARN_ON(start > eb->len); 5390 WARN_ON(start + len > eb->start + eb->len); 5391 5392 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5393 5394 while (len > 0) { 5395 page = eb->pages[i]; 5396 WARN_ON(!PageUptodate(page)); 5397 5398 cur = min(len, PAGE_CACHE_SIZE - offset); 5399 kaddr = page_address(page); 5400 memcpy(kaddr + offset, src, cur); 5401 5402 src += cur; 5403 len -= cur; 5404 offset = 0; 5405 i++; 5406 } 5407 } 5408 5409 void memset_extent_buffer(struct extent_buffer *eb, char c, 5410 unsigned long start, unsigned long len) 5411 { 5412 size_t cur; 5413 size_t offset; 5414 struct page *page; 5415 char *kaddr; 5416 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5417 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5418 5419 WARN_ON(start > eb->len); 5420 WARN_ON(start + len > eb->start + eb->len); 5421 5422 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5423 5424 while (len > 0) { 5425 page = eb->pages[i]; 5426 WARN_ON(!PageUptodate(page)); 5427 5428 cur = min(len, PAGE_CACHE_SIZE - offset); 5429 kaddr = page_address(page); 5430 memset(kaddr + offset, c, cur); 5431 5432 len -= cur; 5433 offset = 0; 5434 i++; 5435 } 5436 } 5437 5438 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5439 unsigned long dst_offset, unsigned long src_offset, 5440 unsigned long len) 5441 { 5442 u64 dst_len = dst->len; 5443 size_t cur; 5444 size_t offset; 5445 struct page *page; 5446 char *kaddr; 5447 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5448 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5449 5450 WARN_ON(src->len != dst_len); 5451 5452 offset = (start_offset + dst_offset) & 5453 (PAGE_CACHE_SIZE - 1); 5454 5455 while (len > 0) { 5456 page = dst->pages[i]; 5457 WARN_ON(!PageUptodate(page)); 5458 5459 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5460 5461 kaddr = page_address(page); 5462 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5463 5464 src_offset += cur; 5465 len -= cur; 5466 offset = 0; 5467 i++; 5468 } 5469 } 5470 5471 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5472 { 5473 unsigned long distance = (src > dst) ? src - dst : dst - src; 5474 return distance < len; 5475 } 5476 5477 static void copy_pages(struct page *dst_page, struct page *src_page, 5478 unsigned long dst_off, unsigned long src_off, 5479 unsigned long len) 5480 { 5481 char *dst_kaddr = page_address(dst_page); 5482 char *src_kaddr; 5483 int must_memmove = 0; 5484 5485 if (dst_page != src_page) { 5486 src_kaddr = page_address(src_page); 5487 } else { 5488 src_kaddr = dst_kaddr; 5489 if (areas_overlap(src_off, dst_off, len)) 5490 must_memmove = 1; 5491 } 5492 5493 if (must_memmove) 5494 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5495 else 5496 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5497 } 5498 5499 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5500 unsigned long src_offset, unsigned long len) 5501 { 5502 size_t cur; 5503 size_t dst_off_in_page; 5504 size_t src_off_in_page; 5505 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5506 unsigned long dst_i; 5507 unsigned long src_i; 5508 5509 if (src_offset + len > dst->len) { 5510 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5511 "len %lu dst len %lu\n", src_offset, len, dst->len); 5512 BUG_ON(1); 5513 } 5514 if (dst_offset + len > dst->len) { 5515 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5516 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5517 BUG_ON(1); 5518 } 5519 5520 while (len > 0) { 5521 dst_off_in_page = (start_offset + dst_offset) & 5522 (PAGE_CACHE_SIZE - 1); 5523 src_off_in_page = (start_offset + src_offset) & 5524 (PAGE_CACHE_SIZE - 1); 5525 5526 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5527 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5528 5529 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5530 src_off_in_page)); 5531 cur = min_t(unsigned long, cur, 5532 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5533 5534 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5535 dst_off_in_page, src_off_in_page, cur); 5536 5537 src_offset += cur; 5538 dst_offset += cur; 5539 len -= cur; 5540 } 5541 } 5542 5543 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5544 unsigned long src_offset, unsigned long len) 5545 { 5546 size_t cur; 5547 size_t dst_off_in_page; 5548 size_t src_off_in_page; 5549 unsigned long dst_end = dst_offset + len - 1; 5550 unsigned long src_end = src_offset + len - 1; 5551 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5552 unsigned long dst_i; 5553 unsigned long src_i; 5554 5555 if (src_offset + len > dst->len) { 5556 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5557 "len %lu len %lu\n", src_offset, len, dst->len); 5558 BUG_ON(1); 5559 } 5560 if (dst_offset + len > dst->len) { 5561 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5562 "len %lu len %lu\n", dst_offset, len, dst->len); 5563 BUG_ON(1); 5564 } 5565 if (dst_offset < src_offset) { 5566 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5567 return; 5568 } 5569 while (len > 0) { 5570 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5571 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5572 5573 dst_off_in_page = (start_offset + dst_end) & 5574 (PAGE_CACHE_SIZE - 1); 5575 src_off_in_page = (start_offset + src_end) & 5576 (PAGE_CACHE_SIZE - 1); 5577 5578 cur = min_t(unsigned long, len, src_off_in_page + 1); 5579 cur = min(cur, dst_off_in_page + 1); 5580 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5581 dst_off_in_page - cur + 1, 5582 src_off_in_page - cur + 1, cur); 5583 5584 dst_end -= cur; 5585 src_end -= cur; 5586 len -= cur; 5587 } 5588 } 5589 5590 int try_release_extent_buffer(struct page *page) 5591 { 5592 struct extent_buffer *eb; 5593 5594 /* 5595 * We need to make sure noboody is attaching this page to an eb right 5596 * now. 5597 */ 5598 spin_lock(&page->mapping->private_lock); 5599 if (!PagePrivate(page)) { 5600 spin_unlock(&page->mapping->private_lock); 5601 return 1; 5602 } 5603 5604 eb = (struct extent_buffer *)page->private; 5605 BUG_ON(!eb); 5606 5607 /* 5608 * This is a little awful but should be ok, we need to make sure that 5609 * the eb doesn't disappear out from under us while we're looking at 5610 * this page. 5611 */ 5612 spin_lock(&eb->refs_lock); 5613 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5614 spin_unlock(&eb->refs_lock); 5615 spin_unlock(&page->mapping->private_lock); 5616 return 0; 5617 } 5618 spin_unlock(&page->mapping->private_lock); 5619 5620 /* 5621 * If tree ref isn't set then we know the ref on this eb is a real ref, 5622 * so just return, this page will likely be freed soon anyway. 5623 */ 5624 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5625 spin_unlock(&eb->refs_lock); 5626 return 0; 5627 } 5628 5629 return release_extent_buffer(eb); 5630 } 5631