xref: /linux/fs/btrfs/extent_io.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	enum btrfs_compression_type compress_type;
100 	u32 len_to_oe_boundary;
101 	blk_opf_t opf;
102 	btrfs_bio_end_io_t end_io_func;
103 	struct writeback_control *wbc;
104 
105 	/*
106 	 * The sectors of the page which are going to be submitted by
107 	 * extent_writepage_io().
108 	 * This is to avoid touching ranges covered by compression/inline.
109 	 */
110 	unsigned long submit_bitmap;
111 };
112 
113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114 {
115 	struct btrfs_bio *bbio = bio_ctrl->bbio;
116 
117 	if (!bbio)
118 		return;
119 
120 	/* Caller should ensure the bio has at least some range added */
121 	ASSERT(bbio->bio.bi_iter.bi_size);
122 
123 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 		btrfs_submit_compressed_read(bbio);
126 	else
127 		btrfs_submit_bbio(bbio, 0);
128 
129 	/* The bbio is owned by the end_io handler now */
130 	bio_ctrl->bbio = NULL;
131 }
132 
133 /*
134  * Submit or fail the current bio in the bio_ctrl structure.
135  */
136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137 {
138 	struct btrfs_bio *bbio = bio_ctrl->bbio;
139 
140 	if (!bbio)
141 		return;
142 
143 	if (ret) {
144 		ASSERT(ret < 0);
145 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 		/* The bio is owned by the end_io handler now */
147 		bio_ctrl->bbio = NULL;
148 	} else {
149 		submit_one_bio(bio_ctrl);
150 	}
151 }
152 
153 int __init extent_buffer_init_cachep(void)
154 {
155 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 						sizeof(struct extent_buffer), 0, 0,
157 						NULL);
158 	if (!extent_buffer_cache)
159 		return -ENOMEM;
160 
161 	return 0;
162 }
163 
164 void __cold extent_buffer_free_cachep(void)
165 {
166 	/*
167 	 * Make sure all delayed rcu free are flushed before we
168 	 * destroy caches.
169 	 */
170 	rcu_barrier();
171 	kmem_cache_destroy(extent_buffer_cache);
172 }
173 
174 static void process_one_folio(struct btrfs_fs_info *fs_info,
175 			      struct folio *folio, const struct folio *locked_folio,
176 			      unsigned long page_ops, u64 start, u64 end)
177 {
178 	u32 len;
179 
180 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 	len = end + 1 - start;
182 
183 	if (page_ops & PAGE_SET_ORDERED)
184 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 	if (page_ops & PAGE_START_WRITEBACK) {
186 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 	}
189 	if (page_ops & PAGE_END_WRITEBACK)
190 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191 
192 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 		btrfs_folio_end_lock(fs_info, folio, start, len);
194 }
195 
196 static void __process_folios_contig(struct address_space *mapping,
197 				    const struct folio *locked_folio, u64 start,
198 				    u64 end, unsigned long page_ops)
199 {
200 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 	pgoff_t start_index = start >> PAGE_SHIFT;
202 	pgoff_t end_index = end >> PAGE_SHIFT;
203 	pgoff_t index = start_index;
204 	struct folio_batch fbatch;
205 	int i;
206 
207 	folio_batch_init(&fbatch);
208 	while (index <= end_index) {
209 		int found_folios;
210 
211 		found_folios = filemap_get_folios_contig(mapping, &index,
212 				end_index, &fbatch);
213 		for (i = 0; i < found_folios; i++) {
214 			struct folio *folio = fbatch.folios[i];
215 
216 			process_one_folio(fs_info, folio, locked_folio,
217 					  page_ops, start, end);
218 		}
219 		folio_batch_release(&fbatch);
220 		cond_resched();
221 	}
222 }
223 
224 static noinline void __unlock_for_delalloc(const struct inode *inode,
225 					   const struct folio *locked_folio,
226 					   u64 start, u64 end)
227 {
228 	unsigned long index = start >> PAGE_SHIFT;
229 	unsigned long end_index = end >> PAGE_SHIFT;
230 
231 	ASSERT(locked_folio);
232 	if (index == locked_folio->index && end_index == index)
233 		return;
234 
235 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
236 				PAGE_UNLOCK);
237 }
238 
239 static noinline int lock_delalloc_folios(struct inode *inode,
240 					 const struct folio *locked_folio,
241 					 u64 start, u64 end)
242 {
243 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
244 	struct address_space *mapping = inode->i_mapping;
245 	pgoff_t start_index = start >> PAGE_SHIFT;
246 	pgoff_t end_index = end >> PAGE_SHIFT;
247 	pgoff_t index = start_index;
248 	u64 processed_end = start;
249 	struct folio_batch fbatch;
250 
251 	if (index == locked_folio->index && index == end_index)
252 		return 0;
253 
254 	folio_batch_init(&fbatch);
255 	while (index <= end_index) {
256 		unsigned int found_folios, i;
257 
258 		found_folios = filemap_get_folios_contig(mapping, &index,
259 				end_index, &fbatch);
260 		if (found_folios == 0)
261 			goto out;
262 
263 		for (i = 0; i < found_folios; i++) {
264 			struct folio *folio = fbatch.folios[i];
265 			u64 range_start;
266 			u32 range_len;
267 
268 			if (folio == locked_folio)
269 				continue;
270 
271 			folio_lock(folio);
272 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
273 				folio_unlock(folio);
274 				goto out;
275 			}
276 			range_start = max_t(u64, folio_pos(folio), start);
277 			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
278 					  end + 1) - range_start;
279 			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
280 
281 			processed_end = range_start + range_len - 1;
282 		}
283 		folio_batch_release(&fbatch);
284 		cond_resched();
285 	}
286 
287 	return 0;
288 out:
289 	folio_batch_release(&fbatch);
290 	if (processed_end > start)
291 		__unlock_for_delalloc(inode, locked_folio, start,
292 				      processed_end);
293 	return -EAGAIN;
294 }
295 
296 /*
297  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
298  * more than @max_bytes.
299  *
300  * @start:	The original start bytenr to search.
301  *		Will store the extent range start bytenr.
302  * @end:	The original end bytenr of the search range
303  *		Will store the extent range end bytenr.
304  *
305  * Return true if we find a delalloc range which starts inside the original
306  * range, and @start/@end will store the delalloc range start/end.
307  *
308  * Return false if we can't find any delalloc range which starts inside the
309  * original range, and @start/@end will be the non-delalloc range start/end.
310  */
311 EXPORT_FOR_TESTS
312 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
313 						 struct folio *locked_folio,
314 						 u64 *start, u64 *end)
315 {
316 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
317 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
318 	const u64 orig_start = *start;
319 	const u64 orig_end = *end;
320 	/* The sanity tests may not set a valid fs_info. */
321 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
322 	u64 delalloc_start;
323 	u64 delalloc_end;
324 	bool found;
325 	struct extent_state *cached_state = NULL;
326 	int ret;
327 	int loops = 0;
328 
329 	/* Caller should pass a valid @end to indicate the search range end */
330 	ASSERT(orig_end > orig_start);
331 
332 	/* The range should at least cover part of the folio */
333 	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
334 		 orig_end <= folio_pos(locked_folio)));
335 again:
336 	/* step one, find a bunch of delalloc bytes starting at start */
337 	delalloc_start = *start;
338 	delalloc_end = 0;
339 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
340 					  max_bytes, &cached_state);
341 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
342 		*start = delalloc_start;
343 
344 		/* @delalloc_end can be -1, never go beyond @orig_end */
345 		*end = min(delalloc_end, orig_end);
346 		free_extent_state(cached_state);
347 		return false;
348 	}
349 
350 	/*
351 	 * start comes from the offset of locked_folio.  We have to lock
352 	 * folios in order, so we can't process delalloc bytes before
353 	 * locked_folio
354 	 */
355 	if (delalloc_start < *start)
356 		delalloc_start = *start;
357 
358 	/*
359 	 * make sure to limit the number of folios we try to lock down
360 	 */
361 	if (delalloc_end + 1 - delalloc_start > max_bytes)
362 		delalloc_end = delalloc_start + max_bytes - 1;
363 
364 	/* step two, lock all the folioss after the folios that has start */
365 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
366 				   delalloc_end);
367 	ASSERT(!ret || ret == -EAGAIN);
368 	if (ret == -EAGAIN) {
369 		/* some of the folios are gone, lets avoid looping by
370 		 * shortening the size of the delalloc range we're searching
371 		 */
372 		free_extent_state(cached_state);
373 		cached_state = NULL;
374 		if (!loops) {
375 			max_bytes = PAGE_SIZE;
376 			loops = 1;
377 			goto again;
378 		} else {
379 			found = false;
380 			goto out_failed;
381 		}
382 	}
383 
384 	/* step three, lock the state bits for the whole range */
385 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
386 
387 	/* then test to make sure it is all still delalloc */
388 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
389 			     EXTENT_DELALLOC, cached_state);
390 
391 	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
392 	if (!ret) {
393 		__unlock_for_delalloc(inode, locked_folio, delalloc_start,
394 				      delalloc_end);
395 		cond_resched();
396 		goto again;
397 	}
398 	*start = delalloc_start;
399 	*end = delalloc_end;
400 out_failed:
401 	return found;
402 }
403 
404 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
405 				  const struct folio *locked_folio,
406 				  struct extent_state **cached,
407 				  u32 clear_bits, unsigned long page_ops)
408 {
409 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
410 
411 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
412 				end, page_ops);
413 }
414 
415 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
416 {
417 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
418 
419 	if (!fsverity_active(folio->mapping->host) ||
420 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
421 	    start >= i_size_read(folio->mapping->host))
422 		return true;
423 	return fsverity_verify_folio(folio);
424 }
425 
426 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
427 {
428 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
429 
430 	ASSERT(folio_pos(folio) <= start &&
431 	       start + len <= folio_pos(folio) + PAGE_SIZE);
432 
433 	if (uptodate && btrfs_verify_folio(folio, start, len))
434 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
435 	else
436 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
437 
438 	if (!btrfs_is_subpage(fs_info, folio->mapping))
439 		folio_unlock(folio);
440 	else
441 		btrfs_folio_end_lock(fs_info, folio, start, len);
442 }
443 
444 /*
445  * After a write IO is done, we need to:
446  *
447  * - clear the uptodate bits on error
448  * - clear the writeback bits in the extent tree for the range
449  * - filio_end_writeback()  if there is no more pending io for the folio
450  *
451  * Scheduling is not allowed, so the extent state tree is expected
452  * to have one and only one object corresponding to this IO.
453  */
454 static void end_bbio_data_write(struct btrfs_bio *bbio)
455 {
456 	struct btrfs_fs_info *fs_info = bbio->fs_info;
457 	struct bio *bio = &bbio->bio;
458 	int error = blk_status_to_errno(bio->bi_status);
459 	struct folio_iter fi;
460 	const u32 sectorsize = fs_info->sectorsize;
461 
462 	ASSERT(!bio_flagged(bio, BIO_CLONED));
463 	bio_for_each_folio_all(fi, bio) {
464 		struct folio *folio = fi.folio;
465 		u64 start = folio_pos(folio) + fi.offset;
466 		u32 len = fi.length;
467 
468 		/* Only order 0 (single page) folios are allowed for data. */
469 		ASSERT(folio_order(folio) == 0);
470 
471 		/* Our read/write should always be sector aligned. */
472 		if (!IS_ALIGNED(fi.offset, sectorsize))
473 			btrfs_err(fs_info,
474 		"partial page write in btrfs with offset %zu and length %zu",
475 				  fi.offset, fi.length);
476 		else if (!IS_ALIGNED(fi.length, sectorsize))
477 			btrfs_info(fs_info,
478 		"incomplete page write with offset %zu and length %zu",
479 				   fi.offset, fi.length);
480 
481 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
482 					    !error);
483 		if (error)
484 			mapping_set_error(folio->mapping, error);
485 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
486 	}
487 
488 	bio_put(bio);
489 }
490 
491 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
492 {
493 	ASSERT(folio_test_locked(folio));
494 	if (!btrfs_is_subpage(fs_info, folio->mapping))
495 		return;
496 
497 	ASSERT(folio_test_private(folio));
498 	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
499 }
500 
501 /*
502  * After a data read IO is done, we need to:
503  *
504  * - clear the uptodate bits on error
505  * - set the uptodate bits if things worked
506  * - set the folio up to date if all extents in the tree are uptodate
507  * - clear the lock bit in the extent tree
508  * - unlock the folio if there are no other extents locked for it
509  *
510  * Scheduling is not allowed, so the extent state tree is expected
511  * to have one and only one object corresponding to this IO.
512  */
513 static void end_bbio_data_read(struct btrfs_bio *bbio)
514 {
515 	struct btrfs_fs_info *fs_info = bbio->fs_info;
516 	struct bio *bio = &bbio->bio;
517 	struct folio_iter fi;
518 	const u32 sectorsize = fs_info->sectorsize;
519 
520 	ASSERT(!bio_flagged(bio, BIO_CLONED));
521 	bio_for_each_folio_all(fi, &bbio->bio) {
522 		bool uptodate = !bio->bi_status;
523 		struct folio *folio = fi.folio;
524 		struct inode *inode = folio->mapping->host;
525 		u64 start;
526 		u64 end;
527 		u32 len;
528 
529 		/* For now only order 0 folios are supported for data. */
530 		ASSERT(folio_order(folio) == 0);
531 		btrfs_debug(fs_info,
532 			"%s: bi_sector=%llu, err=%d, mirror=%u",
533 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
534 			bbio->mirror_num);
535 
536 		/*
537 		 * We always issue full-sector reads, but if some block in a
538 		 * folio fails to read, blk_update_request() will advance
539 		 * bv_offset and adjust bv_len to compensate.  Print a warning
540 		 * for unaligned offsets, and an error if they don't add up to
541 		 * a full sector.
542 		 */
543 		if (!IS_ALIGNED(fi.offset, sectorsize))
544 			btrfs_err(fs_info,
545 		"partial page read in btrfs with offset %zu and length %zu",
546 				  fi.offset, fi.length);
547 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
548 			btrfs_info(fs_info,
549 		"incomplete page read with offset %zu and length %zu",
550 				   fi.offset, fi.length);
551 
552 		start = folio_pos(folio) + fi.offset;
553 		end = start + fi.length - 1;
554 		len = fi.length;
555 
556 		if (likely(uptodate)) {
557 			loff_t i_size = i_size_read(inode);
558 			pgoff_t end_index = i_size >> folio_shift(folio);
559 
560 			/*
561 			 * Zero out the remaining part if this range straddles
562 			 * i_size.
563 			 *
564 			 * Here we should only zero the range inside the folio,
565 			 * not touch anything else.
566 			 *
567 			 * NOTE: i_size is exclusive while end is inclusive.
568 			 */
569 			if (folio_index(folio) == end_index && i_size <= end) {
570 				u32 zero_start = max(offset_in_folio(folio, i_size),
571 						     offset_in_folio(folio, start));
572 				u32 zero_len = offset_in_folio(folio, end) + 1 -
573 					       zero_start;
574 
575 				folio_zero_range(folio, zero_start, zero_len);
576 			}
577 		}
578 
579 		/* Update page status and unlock. */
580 		end_folio_read(folio, uptodate, start, len);
581 	}
582 	bio_put(bio);
583 }
584 
585 /*
586  * Populate every free slot in a provided array with folios using GFP_NOFS.
587  *
588  * @nr_folios:   number of folios to allocate
589  * @folio_array: the array to fill with folios; any existing non-NULL entries in
590  *		 the array will be skipped
591  *
592  * Return: 0        if all folios were able to be allocated;
593  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
594  *                  the array slots zeroed
595  */
596 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
597 {
598 	for (int i = 0; i < nr_folios; i++) {
599 		if (folio_array[i])
600 			continue;
601 		folio_array[i] = folio_alloc(GFP_NOFS, 0);
602 		if (!folio_array[i])
603 			goto error;
604 	}
605 	return 0;
606 error:
607 	for (int i = 0; i < nr_folios; i++) {
608 		if (folio_array[i])
609 			folio_put(folio_array[i]);
610 	}
611 	return -ENOMEM;
612 }
613 
614 /*
615  * Populate every free slot in a provided array with pages, using GFP_NOFS.
616  *
617  * @nr_pages:   number of pages to allocate
618  * @page_array: the array to fill with pages; any existing non-null entries in
619  *		the array will be skipped
620  * @nofail:	whether using __GFP_NOFAIL flag
621  *
622  * Return: 0        if all pages were able to be allocated;
623  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
624  *                  the array slots zeroed
625  */
626 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
627 			   bool nofail)
628 {
629 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
630 	unsigned int allocated;
631 
632 	for (allocated = 0; allocated < nr_pages;) {
633 		unsigned int last = allocated;
634 
635 		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
636 		if (unlikely(allocated == last)) {
637 			/* No progress, fail and do cleanup. */
638 			for (int i = 0; i < allocated; i++) {
639 				__free_page(page_array[i]);
640 				page_array[i] = NULL;
641 			}
642 			return -ENOMEM;
643 		}
644 	}
645 	return 0;
646 }
647 
648 /*
649  * Populate needed folios for the extent buffer.
650  *
651  * For now, the folios populated are always in order 0 (aka, single page).
652  */
653 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
654 {
655 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
656 	int num_pages = num_extent_pages(eb);
657 	int ret;
658 
659 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
660 	if (ret < 0)
661 		return ret;
662 
663 	for (int i = 0; i < num_pages; i++)
664 		eb->folios[i] = page_folio(page_array[i]);
665 	eb->folio_size = PAGE_SIZE;
666 	eb->folio_shift = PAGE_SHIFT;
667 	return 0;
668 }
669 
670 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
671 				struct folio *folio, u64 disk_bytenr,
672 				unsigned int pg_offset)
673 {
674 	struct bio *bio = &bio_ctrl->bbio->bio;
675 	struct bio_vec *bvec = bio_last_bvec_all(bio);
676 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
677 	struct folio *bv_folio = page_folio(bvec->bv_page);
678 
679 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
680 		/*
681 		 * For compression, all IO should have its logical bytenr set
682 		 * to the starting bytenr of the compressed extent.
683 		 */
684 		return bio->bi_iter.bi_sector == sector;
685 	}
686 
687 	/*
688 	 * The contig check requires the following conditions to be met:
689 	 *
690 	 * 1) The folios are belonging to the same inode
691 	 *    This is implied by the call chain.
692 	 *
693 	 * 2) The range has adjacent logical bytenr
694 	 *
695 	 * 3) The range has adjacent file offset
696 	 *    This is required for the usage of btrfs_bio->file_offset.
697 	 */
698 	return bio_end_sector(bio) == sector &&
699 		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
700 		folio_pos(folio) + pg_offset;
701 }
702 
703 static void alloc_new_bio(struct btrfs_inode *inode,
704 			  struct btrfs_bio_ctrl *bio_ctrl,
705 			  u64 disk_bytenr, u64 file_offset)
706 {
707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
708 	struct btrfs_bio *bbio;
709 
710 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
711 			       bio_ctrl->end_io_func, NULL);
712 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
713 	bbio->inode = inode;
714 	bbio->file_offset = file_offset;
715 	bio_ctrl->bbio = bbio;
716 	bio_ctrl->len_to_oe_boundary = U32_MAX;
717 
718 	/* Limit data write bios to the ordered boundary. */
719 	if (bio_ctrl->wbc) {
720 		struct btrfs_ordered_extent *ordered;
721 
722 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
723 		if (ordered) {
724 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
725 					ordered->file_offset +
726 					ordered->disk_num_bytes - file_offset);
727 			bbio->ordered = ordered;
728 		}
729 
730 		/*
731 		 * Pick the last added device to support cgroup writeback.  For
732 		 * multi-device file systems this means blk-cgroup policies have
733 		 * to always be set on the last added/replaced device.
734 		 * This is a bit odd but has been like that for a long time.
735 		 */
736 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
737 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
738 	}
739 }
740 
741 /*
742  * @disk_bytenr: logical bytenr where the write will be
743  * @page:	page to add to the bio
744  * @size:	portion of page that we want to write to
745  * @pg_offset:	offset of the new bio or to check whether we are adding
746  *              a contiguous page to the previous one
747  *
748  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
749  * new one in @bio_ctrl->bbio.
750  * The mirror number for this IO should already be initizlied in
751  * @bio_ctrl->mirror_num.
752  */
753 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
754 			       u64 disk_bytenr, struct folio *folio,
755 			       size_t size, unsigned long pg_offset)
756 {
757 	struct btrfs_inode *inode = folio_to_inode(folio);
758 
759 	ASSERT(pg_offset + size <= PAGE_SIZE);
760 	ASSERT(bio_ctrl->end_io_func);
761 
762 	if (bio_ctrl->bbio &&
763 	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
764 		submit_one_bio(bio_ctrl);
765 
766 	do {
767 		u32 len = size;
768 
769 		/* Allocate new bio if needed */
770 		if (!bio_ctrl->bbio) {
771 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
772 				      folio_pos(folio) + pg_offset);
773 		}
774 
775 		/* Cap to the current ordered extent boundary if there is one. */
776 		if (len > bio_ctrl->len_to_oe_boundary) {
777 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
778 			ASSERT(is_data_inode(inode));
779 			len = bio_ctrl->len_to_oe_boundary;
780 		}
781 
782 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
783 			/* bio full: move on to a new one */
784 			submit_one_bio(bio_ctrl);
785 			continue;
786 		}
787 
788 		if (bio_ctrl->wbc)
789 			wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
790 						 len);
791 
792 		size -= len;
793 		pg_offset += len;
794 		disk_bytenr += len;
795 
796 		/*
797 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
798 		 * sector aligned.  alloc_new_bio() then sets it to the end of
799 		 * our ordered extent for writes into zoned devices.
800 		 *
801 		 * When len_to_oe_boundary is tracking an ordered extent, we
802 		 * trust the ordered extent code to align things properly, and
803 		 * the check above to cap our write to the ordered extent
804 		 * boundary is correct.
805 		 *
806 		 * When len_to_oe_boundary is U32_MAX, the cap above would
807 		 * result in a 4095 byte IO for the last folio right before
808 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
809 		 * the checks required to make sure we don't overflow the bio,
810 		 * and we should just ignore len_to_oe_boundary completely
811 		 * unless we're using it to track an ordered extent.
812 		 *
813 		 * It's pretty hard to make a bio sized U32_MAX, but it can
814 		 * happen when the page cache is able to feed us contiguous
815 		 * folios for large extents.
816 		 */
817 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
818 			bio_ctrl->len_to_oe_boundary -= len;
819 
820 		/* Ordered extent boundary: move on to a new bio. */
821 		if (bio_ctrl->len_to_oe_boundary == 0)
822 			submit_one_bio(bio_ctrl);
823 	} while (size);
824 }
825 
826 static int attach_extent_buffer_folio(struct extent_buffer *eb,
827 				      struct folio *folio,
828 				      struct btrfs_subpage *prealloc)
829 {
830 	struct btrfs_fs_info *fs_info = eb->fs_info;
831 	int ret = 0;
832 
833 	/*
834 	 * If the page is mapped to btree inode, we should hold the private
835 	 * lock to prevent race.
836 	 * For cloned or dummy extent buffers, their pages are not mapped and
837 	 * will not race with any other ebs.
838 	 */
839 	if (folio->mapping)
840 		lockdep_assert_held(&folio->mapping->i_private_lock);
841 
842 	if (fs_info->nodesize >= PAGE_SIZE) {
843 		if (!folio_test_private(folio))
844 			folio_attach_private(folio, eb);
845 		else
846 			WARN_ON(folio_get_private(folio) != eb);
847 		return 0;
848 	}
849 
850 	/* Already mapped, just free prealloc */
851 	if (folio_test_private(folio)) {
852 		btrfs_free_subpage(prealloc);
853 		return 0;
854 	}
855 
856 	if (prealloc)
857 		/* Has preallocated memory for subpage */
858 		folio_attach_private(folio, prealloc);
859 	else
860 		/* Do new allocation to attach subpage */
861 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
862 	return ret;
863 }
864 
865 int set_page_extent_mapped(struct page *page)
866 {
867 	return set_folio_extent_mapped(page_folio(page));
868 }
869 
870 int set_folio_extent_mapped(struct folio *folio)
871 {
872 	struct btrfs_fs_info *fs_info;
873 
874 	ASSERT(folio->mapping);
875 
876 	if (folio_test_private(folio))
877 		return 0;
878 
879 	fs_info = folio_to_fs_info(folio);
880 
881 	if (btrfs_is_subpage(fs_info, folio->mapping))
882 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
883 
884 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
885 	return 0;
886 }
887 
888 void clear_folio_extent_mapped(struct folio *folio)
889 {
890 	struct btrfs_fs_info *fs_info;
891 
892 	ASSERT(folio->mapping);
893 
894 	if (!folio_test_private(folio))
895 		return;
896 
897 	fs_info = folio_to_fs_info(folio);
898 	if (btrfs_is_subpage(fs_info, folio->mapping))
899 		return btrfs_detach_subpage(fs_info, folio);
900 
901 	folio_detach_private(folio);
902 }
903 
904 static struct extent_map *__get_extent_map(struct inode *inode,
905 					   struct folio *folio, u64 start,
906 					   u64 len, struct extent_map **em_cached)
907 {
908 	struct extent_map *em;
909 	struct extent_state *cached_state = NULL;
910 
911 	ASSERT(em_cached);
912 
913 	if (*em_cached) {
914 		em = *em_cached;
915 		if (extent_map_in_tree(em) && start >= em->start &&
916 		    start < extent_map_end(em)) {
917 			refcount_inc(&em->refs);
918 			return em;
919 		}
920 
921 		free_extent_map(em);
922 		*em_cached = NULL;
923 	}
924 
925 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), start, start + len - 1, &cached_state);
926 	em = btrfs_get_extent(BTRFS_I(inode), folio, start, len);
927 	if (!IS_ERR(em)) {
928 		BUG_ON(*em_cached);
929 		refcount_inc(&em->refs);
930 		*em_cached = em;
931 	}
932 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len - 1, &cached_state);
933 
934 	return em;
935 }
936 /*
937  * basic readpage implementation.  Locked extent state structs are inserted
938  * into the tree that are removed when the IO is done (by the end_io
939  * handlers)
940  * XXX JDM: This needs looking at to ensure proper page locking
941  * return 0 on success, otherwise return error
942  */
943 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
944 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
945 {
946 	struct inode *inode = folio->mapping->host;
947 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
948 	u64 start = folio_pos(folio);
949 	const u64 end = start + PAGE_SIZE - 1;
950 	u64 cur = start;
951 	u64 extent_offset;
952 	u64 last_byte = i_size_read(inode);
953 	u64 block_start;
954 	struct extent_map *em;
955 	int ret = 0;
956 	size_t pg_offset = 0;
957 	size_t iosize;
958 	size_t blocksize = fs_info->sectorsize;
959 
960 	ret = set_folio_extent_mapped(folio);
961 	if (ret < 0) {
962 		folio_unlock(folio);
963 		return ret;
964 	}
965 
966 	if (folio->index == last_byte >> folio_shift(folio)) {
967 		size_t zero_offset = offset_in_folio(folio, last_byte);
968 
969 		if (zero_offset) {
970 			iosize = folio_size(folio) - zero_offset;
971 			folio_zero_range(folio, zero_offset, iosize);
972 		}
973 	}
974 	bio_ctrl->end_io_func = end_bbio_data_read;
975 	begin_folio_read(fs_info, folio);
976 	while (cur <= end) {
977 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
978 		bool force_bio_submit = false;
979 		u64 disk_bytenr;
980 
981 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
982 		if (cur >= last_byte) {
983 			iosize = folio_size(folio) - pg_offset;
984 			folio_zero_range(folio, pg_offset, iosize);
985 			end_folio_read(folio, true, cur, iosize);
986 			break;
987 		}
988 		em = __get_extent_map(inode, folio, cur, end - cur + 1,
989 				      em_cached);
990 		if (IS_ERR(em)) {
991 			end_folio_read(folio, false, cur, end + 1 - cur);
992 			return PTR_ERR(em);
993 		}
994 		extent_offset = cur - em->start;
995 		BUG_ON(extent_map_end(em) <= cur);
996 		BUG_ON(end < cur);
997 
998 		compress_type = extent_map_compression(em);
999 
1000 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1001 		iosize = ALIGN(iosize, blocksize);
1002 		if (compress_type != BTRFS_COMPRESS_NONE)
1003 			disk_bytenr = em->disk_bytenr;
1004 		else
1005 			disk_bytenr = extent_map_block_start(em) + extent_offset;
1006 		block_start = extent_map_block_start(em);
1007 		if (em->flags & EXTENT_FLAG_PREALLOC)
1008 			block_start = EXTENT_MAP_HOLE;
1009 
1010 		/*
1011 		 * If we have a file range that points to a compressed extent
1012 		 * and it's followed by a consecutive file range that points
1013 		 * to the same compressed extent (possibly with a different
1014 		 * offset and/or length, so it either points to the whole extent
1015 		 * or only part of it), we must make sure we do not submit a
1016 		 * single bio to populate the folios for the 2 ranges because
1017 		 * this makes the compressed extent read zero out the folios
1018 		 * belonging to the 2nd range. Imagine the following scenario:
1019 		 *
1020 		 *  File layout
1021 		 *  [0 - 8K]                     [8K - 24K]
1022 		 *    |                               |
1023 		 *    |                               |
1024 		 * points to extent X,         points to extent X,
1025 		 * offset 4K, length of 8K     offset 0, length 16K
1026 		 *
1027 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1028 		 *
1029 		 * If the bio to read the compressed extent covers both ranges,
1030 		 * it will decompress extent X into the folios belonging to the
1031 		 * first range and then it will stop, zeroing out the remaining
1032 		 * folios that belong to the other range that points to extent X.
1033 		 * So here we make sure we submit 2 bios, one for the first
1034 		 * range and another one for the third range. Both will target
1035 		 * the same physical extent from disk, but we can't currently
1036 		 * make the compressed bio endio callback populate the folios
1037 		 * for both ranges because each compressed bio is tightly
1038 		 * coupled with a single extent map, and each range can have
1039 		 * an extent map with a different offset value relative to the
1040 		 * uncompressed data of our extent and different lengths. This
1041 		 * is a corner case so we prioritize correctness over
1042 		 * non-optimal behavior (submitting 2 bios for the same extent).
1043 		 */
1044 		if (compress_type != BTRFS_COMPRESS_NONE &&
1045 		    prev_em_start && *prev_em_start != (u64)-1 &&
1046 		    *prev_em_start != em->start)
1047 			force_bio_submit = true;
1048 
1049 		if (prev_em_start)
1050 			*prev_em_start = em->start;
1051 
1052 		free_extent_map(em);
1053 		em = NULL;
1054 
1055 		/* we've found a hole, just zero and go on */
1056 		if (block_start == EXTENT_MAP_HOLE) {
1057 			folio_zero_range(folio, pg_offset, iosize);
1058 
1059 			end_folio_read(folio, true, cur, iosize);
1060 			cur = cur + iosize;
1061 			pg_offset += iosize;
1062 			continue;
1063 		}
1064 		/* the get_extent function already copied into the folio */
1065 		if (block_start == EXTENT_MAP_INLINE) {
1066 			end_folio_read(folio, true, cur, iosize);
1067 			cur = cur + iosize;
1068 			pg_offset += iosize;
1069 			continue;
1070 		}
1071 
1072 		if (bio_ctrl->compress_type != compress_type) {
1073 			submit_one_bio(bio_ctrl);
1074 			bio_ctrl->compress_type = compress_type;
1075 		}
1076 
1077 		if (force_bio_submit)
1078 			submit_one_bio(bio_ctrl);
1079 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1080 				    pg_offset);
1081 		cur = cur + iosize;
1082 		pg_offset += iosize;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 int btrfs_read_folio(struct file *file, struct folio *folio)
1089 {
1090 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091 	struct extent_map *em_cached = NULL;
1092 	int ret;
1093 
1094 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1095 	free_extent_map(em_cached);
1096 
1097 	/*
1098 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1099 	 * bio to do the cleanup.
1100 	 */
1101 	submit_one_bio(&bio_ctrl);
1102 	return ret;
1103 }
1104 
1105 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1106 				u64 start, u32 len)
1107 {
1108 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1109 	const u64 folio_start = folio_pos(folio);
1110 	unsigned int start_bit;
1111 	unsigned int nbits;
1112 
1113 	ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1114 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1115 	nbits = len >> fs_info->sectorsize_bits;
1116 	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1117 	bitmap_set(delalloc_bitmap, start_bit, nbits);
1118 }
1119 
1120 static bool find_next_delalloc_bitmap(struct folio *folio,
1121 				      unsigned long *delalloc_bitmap, u64 start,
1122 				      u64 *found_start, u32 *found_len)
1123 {
1124 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1125 	const u64 folio_start = folio_pos(folio);
1126 	const unsigned int bitmap_size = fs_info->sectors_per_page;
1127 	unsigned int start_bit;
1128 	unsigned int first_zero;
1129 	unsigned int first_set;
1130 
1131 	ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1132 
1133 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1134 	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1135 	if (first_set >= bitmap_size)
1136 		return false;
1137 
1138 	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1139 	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1140 	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1141 	return true;
1142 }
1143 
1144 /*
1145  * helper for extent_writepage(), doing all of the delayed allocation setup.
1146  *
1147  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1148  * to write the page (copy into inline extent).  In this case the IO has
1149  * been started and the page is already unlocked.
1150  *
1151  * This returns 0 if all went well (page still locked)
1152  * This returns < 0 if there were errors (page still locked)
1153  */
1154 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1155 						 struct folio *folio,
1156 						 struct btrfs_bio_ctrl *bio_ctrl)
1157 {
1158 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1159 	struct writeback_control *wbc = bio_ctrl->wbc;
1160 	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1161 	const u64 page_start = folio_pos(folio);
1162 	const u64 page_end = page_start + folio_size(folio) - 1;
1163 	unsigned long delalloc_bitmap = 0;
1164 	/*
1165 	 * Save the last found delalloc end. As the delalloc end can go beyond
1166 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1167 	 * last delalloc end.
1168 	 */
1169 	u64 last_delalloc_end = 0;
1170 	u64 delalloc_start = page_start;
1171 	u64 delalloc_end = page_end;
1172 	u64 delalloc_to_write = 0;
1173 	int ret = 0;
1174 	int bit;
1175 
1176 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1177 	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1178 		ASSERT(fs_info->sectors_per_page > 1);
1179 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1180 	} else {
1181 		bio_ctrl->submit_bitmap = 1;
1182 	}
1183 
1184 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1185 		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1186 
1187 		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1188 	}
1189 
1190 	/* Lock all (subpage) delalloc ranges inside the folio first. */
1191 	while (delalloc_start < page_end) {
1192 		delalloc_end = page_end;
1193 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1194 					      &delalloc_start, &delalloc_end)) {
1195 			delalloc_start = delalloc_end + 1;
1196 			continue;
1197 		}
1198 		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1199 				    min(delalloc_end, page_end) + 1 - delalloc_start);
1200 		last_delalloc_end = delalloc_end;
1201 		delalloc_start = delalloc_end + 1;
1202 	}
1203 	delalloc_start = page_start;
1204 
1205 	if (!last_delalloc_end)
1206 		goto out;
1207 
1208 	/* Run the delalloc ranges for the above locked ranges. */
1209 	while (delalloc_start < page_end) {
1210 		u64 found_start;
1211 		u32 found_len;
1212 		bool found;
1213 
1214 		if (!is_subpage) {
1215 			/*
1216 			 * For non-subpage case, the found delalloc range must
1217 			 * cover this folio and there must be only one locked
1218 			 * delalloc range.
1219 			 */
1220 			found_start = page_start;
1221 			found_len = last_delalloc_end + 1 - found_start;
1222 			found = true;
1223 		} else {
1224 			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1225 					delalloc_start, &found_start, &found_len);
1226 		}
1227 		if (!found)
1228 			break;
1229 		/*
1230 		 * The subpage range covers the last sector, the delalloc range may
1231 		 * end beyond the folio boundary, use the saved delalloc_end
1232 		 * instead.
1233 		 */
1234 		if (found_start + found_len >= page_end)
1235 			found_len = last_delalloc_end + 1 - found_start;
1236 
1237 		if (ret >= 0) {
1238 			/* No errors hit so far, run the current delalloc range. */
1239 			ret = btrfs_run_delalloc_range(inode, folio,
1240 						       found_start,
1241 						       found_start + found_len - 1,
1242 						       wbc);
1243 		} else {
1244 			/*
1245 			 * We've hit an error during previous delalloc range,
1246 			 * have to cleanup the remaining locked ranges.
1247 			 */
1248 			unlock_extent(&inode->io_tree, found_start,
1249 				      found_start + found_len - 1, NULL);
1250 			__unlock_for_delalloc(&inode->vfs_inode, folio,
1251 					      found_start,
1252 					      found_start + found_len - 1);
1253 		}
1254 
1255 		/*
1256 		 * We have some ranges that's going to be submitted asynchronously
1257 		 * (compression or inline).  These range have their own control
1258 		 * on when to unlock the pages.  We should not touch them
1259 		 * anymore, so clear the range from the submission bitmap.
1260 		 */
1261 		if (ret > 0) {
1262 			unsigned int start_bit = (found_start - page_start) >>
1263 						 fs_info->sectorsize_bits;
1264 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1265 						page_start) >> fs_info->sectorsize_bits;
1266 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1267 		}
1268 		/*
1269 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1270 		 * thus for the last range, we cannot touch the folio anymore.
1271 		 */
1272 		if (found_start + found_len >= last_delalloc_end + 1)
1273 			break;
1274 
1275 		delalloc_start = found_start + found_len;
1276 	}
1277 	if (ret < 0)
1278 		return ret;
1279 out:
1280 	if (last_delalloc_end)
1281 		delalloc_end = last_delalloc_end;
1282 	else
1283 		delalloc_end = page_end;
1284 	/*
1285 	 * delalloc_end is already one less than the total length, so
1286 	 * we don't subtract one from PAGE_SIZE
1287 	 */
1288 	delalloc_to_write +=
1289 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1290 
1291 	/*
1292 	 * If all ranges are submitted asynchronously, we just need to account
1293 	 * for them here.
1294 	 */
1295 	if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1296 		wbc->nr_to_write -= delalloc_to_write;
1297 		return 1;
1298 	}
1299 
1300 	if (wbc->nr_to_write < delalloc_to_write) {
1301 		int thresh = 8192;
1302 
1303 		if (delalloc_to_write < thresh * 2)
1304 			thresh = delalloc_to_write;
1305 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1306 					 thresh);
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * Return 0 if we have submitted or queued the sector for submission.
1314  * Return <0 for critical errors.
1315  *
1316  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1317  */
1318 static int submit_one_sector(struct btrfs_inode *inode,
1319 			     struct folio *folio,
1320 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1321 			     loff_t i_size)
1322 {
1323 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1324 	struct extent_map *em;
1325 	u64 block_start;
1326 	u64 disk_bytenr;
1327 	u64 extent_offset;
1328 	u64 em_end;
1329 	const u32 sectorsize = fs_info->sectorsize;
1330 
1331 	ASSERT(IS_ALIGNED(filepos, sectorsize));
1332 
1333 	/* @filepos >= i_size case should be handled by the caller. */
1334 	ASSERT(filepos < i_size);
1335 
1336 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1337 	if (IS_ERR(em))
1338 		return PTR_ERR_OR_ZERO(em);
1339 
1340 	extent_offset = filepos - em->start;
1341 	em_end = extent_map_end(em);
1342 	ASSERT(filepos <= em_end);
1343 	ASSERT(IS_ALIGNED(em->start, sectorsize));
1344 	ASSERT(IS_ALIGNED(em->len, sectorsize));
1345 
1346 	block_start = extent_map_block_start(em);
1347 	disk_bytenr = extent_map_block_start(em) + extent_offset;
1348 
1349 	ASSERT(!extent_map_is_compressed(em));
1350 	ASSERT(block_start != EXTENT_MAP_HOLE);
1351 	ASSERT(block_start != EXTENT_MAP_INLINE);
1352 
1353 	free_extent_map(em);
1354 	em = NULL;
1355 
1356 	/*
1357 	 * Although the PageDirty bit is cleared before entering this
1358 	 * function, subpage dirty bit is not cleared.
1359 	 * So clear subpage dirty bit here so next time we won't submit
1360 	 * a folio for a range already written to disk.
1361 	 */
1362 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1363 	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1364 	/*
1365 	 * Above call should set the whole folio with writeback flag, even
1366 	 * just for a single subpage sector.
1367 	 * As long as the folio is properly locked and the range is correct,
1368 	 * we should always get the folio with writeback flag.
1369 	 */
1370 	ASSERT(folio_test_writeback(folio));
1371 
1372 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1373 			    sectorsize, filepos - folio_pos(folio));
1374 	return 0;
1375 }
1376 
1377 /*
1378  * Helper for extent_writepage().  This calls the writepage start hooks,
1379  * and does the loop to map the page into extents and bios.
1380  *
1381  * We return 1 if the IO is started and the page is unlocked,
1382  * 0 if all went well (page still locked)
1383  * < 0 if there were errors (page still locked)
1384  */
1385 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1386 						  struct folio *folio,
1387 						  u64 start, u32 len,
1388 						  struct btrfs_bio_ctrl *bio_ctrl,
1389 						  loff_t i_size)
1390 {
1391 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1392 	unsigned long range_bitmap = 0;
1393 	bool submitted_io = false;
1394 	const u64 folio_start = folio_pos(folio);
1395 	u64 cur;
1396 	int bit;
1397 	int ret = 0;
1398 
1399 	ASSERT(start >= folio_start &&
1400 	       start + len <= folio_start + folio_size(folio));
1401 
1402 	ret = btrfs_writepage_cow_fixup(folio);
1403 	if (ret) {
1404 		/* Fixup worker will requeue */
1405 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1406 		folio_unlock(folio);
1407 		return 1;
1408 	}
1409 
1410 	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1411 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1412 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1413 		   fs_info->sectors_per_page);
1414 
1415 	bio_ctrl->end_io_func = end_bbio_data_write;
1416 
1417 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1418 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1419 
1420 		if (cur >= i_size) {
1421 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1422 						       start + len - cur, true);
1423 			/*
1424 			 * This range is beyond i_size, thus we don't need to
1425 			 * bother writing back.
1426 			 * But we still need to clear the dirty subpage bit, or
1427 			 * the next time the folio gets dirtied, we will try to
1428 			 * writeback the sectors with subpage dirty bits,
1429 			 * causing writeback without ordered extent.
1430 			 */
1431 			btrfs_folio_clear_dirty(fs_info, folio, cur,
1432 						start + len - cur);
1433 			break;
1434 		}
1435 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1436 		if (ret < 0)
1437 			goto out;
1438 		submitted_io = true;
1439 	}
1440 out:
1441 	/*
1442 	 * If we didn't submitted any sector (>= i_size), folio dirty get
1443 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1444 	 * by folio_start_writeback() if the folio is not dirty).
1445 	 *
1446 	 * Here we set writeback and clear for the range. If the full folio
1447 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1448 	 */
1449 	if (!submitted_io) {
1450 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1451 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1452 	}
1453 	return ret;
1454 }
1455 
1456 /*
1457  * the writepage semantics are similar to regular writepage.  extent
1458  * records are inserted to lock ranges in the tree, and as dirty areas
1459  * are found, they are marked writeback.  Then the lock bits are removed
1460  * and the end_io handler clears the writeback ranges
1461  *
1462  * Return 0 if everything goes well.
1463  * Return <0 for error.
1464  */
1465 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1466 {
1467 	struct inode *inode = folio->mapping->host;
1468 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1469 	const u64 page_start = folio_pos(folio);
1470 	int ret;
1471 	size_t pg_offset;
1472 	loff_t i_size = i_size_read(inode);
1473 	unsigned long end_index = i_size >> PAGE_SHIFT;
1474 
1475 	trace_extent_writepage(folio, inode, bio_ctrl->wbc);
1476 
1477 	WARN_ON(!folio_test_locked(folio));
1478 
1479 	pg_offset = offset_in_folio(folio, i_size);
1480 	if (folio->index > end_index ||
1481 	   (folio->index == end_index && !pg_offset)) {
1482 		folio_invalidate(folio, 0, folio_size(folio));
1483 		folio_unlock(folio);
1484 		return 0;
1485 	}
1486 
1487 	if (folio->index == end_index)
1488 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1489 
1490 	/*
1491 	 * Default to unlock the whole folio.
1492 	 * The proper bitmap can only be initialized until writepage_delalloc().
1493 	 */
1494 	bio_ctrl->submit_bitmap = (unsigned long)-1;
1495 	ret = set_folio_extent_mapped(folio);
1496 	if (ret < 0)
1497 		goto done;
1498 
1499 	ret = writepage_delalloc(BTRFS_I(inode), folio, bio_ctrl);
1500 	if (ret == 1)
1501 		return 0;
1502 	if (ret)
1503 		goto done;
1504 
1505 	ret = extent_writepage_io(BTRFS_I(inode), folio, folio_pos(folio),
1506 				  PAGE_SIZE, bio_ctrl, i_size);
1507 	if (ret == 1)
1508 		return 0;
1509 
1510 	bio_ctrl->wbc->nr_to_write--;
1511 
1512 done:
1513 	if (ret) {
1514 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio,
1515 					       page_start, PAGE_SIZE, !ret);
1516 		mapping_set_error(folio->mapping, ret);
1517 	}
1518 
1519 	/*
1520 	 * Only unlock ranges that are submitted. As there can be some async
1521 	 * submitted ranges inside the folio.
1522 	 */
1523 	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1524 	ASSERT(ret <= 0);
1525 	return ret;
1526 }
1527 
1528 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1529 {
1530 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1531 		       TASK_UNINTERRUPTIBLE);
1532 }
1533 
1534 /*
1535  * Lock extent buffer status and pages for writeback.
1536  *
1537  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1538  * extent buffer is not dirty)
1539  * Return %true is the extent buffer is submitted to bio.
1540  */
1541 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1542 			  struct writeback_control *wbc)
1543 {
1544 	struct btrfs_fs_info *fs_info = eb->fs_info;
1545 	bool ret = false;
1546 
1547 	btrfs_tree_lock(eb);
1548 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1549 		btrfs_tree_unlock(eb);
1550 		if (wbc->sync_mode != WB_SYNC_ALL)
1551 			return false;
1552 		wait_on_extent_buffer_writeback(eb);
1553 		btrfs_tree_lock(eb);
1554 	}
1555 
1556 	/*
1557 	 * We need to do this to prevent races in people who check if the eb is
1558 	 * under IO since we can end up having no IO bits set for a short period
1559 	 * of time.
1560 	 */
1561 	spin_lock(&eb->refs_lock);
1562 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1563 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1564 		spin_unlock(&eb->refs_lock);
1565 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1566 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1567 					 -eb->len,
1568 					 fs_info->dirty_metadata_batch);
1569 		ret = true;
1570 	} else {
1571 		spin_unlock(&eb->refs_lock);
1572 	}
1573 	btrfs_tree_unlock(eb);
1574 	return ret;
1575 }
1576 
1577 static void set_btree_ioerr(struct extent_buffer *eb)
1578 {
1579 	struct btrfs_fs_info *fs_info = eb->fs_info;
1580 
1581 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1582 
1583 	/*
1584 	 * A read may stumble upon this buffer later, make sure that it gets an
1585 	 * error and knows there was an error.
1586 	 */
1587 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1588 
1589 	/*
1590 	 * We need to set the mapping with the io error as well because a write
1591 	 * error will flip the file system readonly, and then syncfs() will
1592 	 * return a 0 because we are readonly if we don't modify the err seq for
1593 	 * the superblock.
1594 	 */
1595 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1596 
1597 	/*
1598 	 * If writeback for a btree extent that doesn't belong to a log tree
1599 	 * failed, increment the counter transaction->eb_write_errors.
1600 	 * We do this because while the transaction is running and before it's
1601 	 * committing (when we call filemap_fdata[write|wait]_range against
1602 	 * the btree inode), we might have
1603 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1604 	 * returns an error or an error happens during writeback, when we're
1605 	 * committing the transaction we wouldn't know about it, since the pages
1606 	 * can be no longer dirty nor marked anymore for writeback (if a
1607 	 * subsequent modification to the extent buffer didn't happen before the
1608 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1609 	 * able to find the pages which contain errors at transaction
1610 	 * commit time. So if this happens we must abort the transaction,
1611 	 * otherwise we commit a super block with btree roots that point to
1612 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1613 	 * or the content of some node/leaf from a past generation that got
1614 	 * cowed or deleted and is no longer valid.
1615 	 *
1616 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1617 	 * not be enough - we need to distinguish between log tree extents vs
1618 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1619 	 * will catch and clear such errors in the mapping - and that call might
1620 	 * be from a log sync and not from a transaction commit. Also, checking
1621 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1622 	 * not done and would not be reliable - the eb might have been released
1623 	 * from memory and reading it back again means that flag would not be
1624 	 * set (since it's a runtime flag, not persisted on disk).
1625 	 *
1626 	 * Using the flags below in the btree inode also makes us achieve the
1627 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1628 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1629 	 * is called, the writeback for all dirty pages had already finished
1630 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1631 	 * filemap_fdatawait_range() would return success, as it could not know
1632 	 * that writeback errors happened (the pages were no longer tagged for
1633 	 * writeback).
1634 	 */
1635 	switch (eb->log_index) {
1636 	case -1:
1637 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1638 		break;
1639 	case 0:
1640 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1641 		break;
1642 	case 1:
1643 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1644 		break;
1645 	default:
1646 		BUG(); /* unexpected, logic error */
1647 	}
1648 }
1649 
1650 /*
1651  * The endio specific version which won't touch any unsafe spinlock in endio
1652  * context.
1653  */
1654 static struct extent_buffer *find_extent_buffer_nolock(
1655 		const struct btrfs_fs_info *fs_info, u64 start)
1656 {
1657 	struct extent_buffer *eb;
1658 
1659 	rcu_read_lock();
1660 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1661 			       start >> fs_info->sectorsize_bits);
1662 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1663 		rcu_read_unlock();
1664 		return eb;
1665 	}
1666 	rcu_read_unlock();
1667 	return NULL;
1668 }
1669 
1670 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1671 {
1672 	struct extent_buffer *eb = bbio->private;
1673 	struct btrfs_fs_info *fs_info = eb->fs_info;
1674 	bool uptodate = !bbio->bio.bi_status;
1675 	struct folio_iter fi;
1676 	u32 bio_offset = 0;
1677 
1678 	if (!uptodate)
1679 		set_btree_ioerr(eb);
1680 
1681 	bio_for_each_folio_all(fi, &bbio->bio) {
1682 		u64 start = eb->start + bio_offset;
1683 		struct folio *folio = fi.folio;
1684 		u32 len = fi.length;
1685 
1686 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1687 		bio_offset += len;
1688 	}
1689 
1690 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1691 	smp_mb__after_atomic();
1692 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1693 
1694 	bio_put(&bbio->bio);
1695 }
1696 
1697 static void prepare_eb_write(struct extent_buffer *eb)
1698 {
1699 	u32 nritems;
1700 	unsigned long start;
1701 	unsigned long end;
1702 
1703 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1704 
1705 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1706 	nritems = btrfs_header_nritems(eb);
1707 	if (btrfs_header_level(eb) > 0) {
1708 		end = btrfs_node_key_ptr_offset(eb, nritems);
1709 		memzero_extent_buffer(eb, end, eb->len - end);
1710 	} else {
1711 		/*
1712 		 * Leaf:
1713 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1714 		 */
1715 		start = btrfs_item_nr_offset(eb, nritems);
1716 		end = btrfs_item_nr_offset(eb, 0);
1717 		if (nritems == 0)
1718 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1719 		else
1720 			end += btrfs_item_offset(eb, nritems - 1);
1721 		memzero_extent_buffer(eb, start, end - start);
1722 	}
1723 }
1724 
1725 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1726 					    struct writeback_control *wbc)
1727 {
1728 	struct btrfs_fs_info *fs_info = eb->fs_info;
1729 	struct btrfs_bio *bbio;
1730 
1731 	prepare_eb_write(eb);
1732 
1733 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1734 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1735 			       eb->fs_info, end_bbio_meta_write, eb);
1736 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1737 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1738 	wbc_init_bio(wbc, &bbio->bio);
1739 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1740 	bbio->file_offset = eb->start;
1741 	if (fs_info->nodesize < PAGE_SIZE) {
1742 		struct folio *folio = eb->folios[0];
1743 		bool ret;
1744 
1745 		folio_lock(folio);
1746 		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1747 		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1748 						       eb->len)) {
1749 			folio_clear_dirty_for_io(folio);
1750 			wbc->nr_to_write--;
1751 		}
1752 		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1753 				    eb->start - folio_pos(folio));
1754 		ASSERT(ret);
1755 		wbc_account_cgroup_owner(wbc, folio, eb->len);
1756 		folio_unlock(folio);
1757 	} else {
1758 		int num_folios = num_extent_folios(eb);
1759 
1760 		for (int i = 0; i < num_folios; i++) {
1761 			struct folio *folio = eb->folios[i];
1762 			bool ret;
1763 
1764 			folio_lock(folio);
1765 			folio_clear_dirty_for_io(folio);
1766 			folio_start_writeback(folio);
1767 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1768 			ASSERT(ret);
1769 			wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1770 			wbc->nr_to_write -= folio_nr_pages(folio);
1771 			folio_unlock(folio);
1772 		}
1773 	}
1774 	btrfs_submit_bbio(bbio, 0);
1775 }
1776 
1777 /*
1778  * Submit one subpage btree page.
1779  *
1780  * The main difference to submit_eb_page() is:
1781  * - Page locking
1782  *   For subpage, we don't rely on page locking at all.
1783  *
1784  * - Flush write bio
1785  *   We only flush bio if we may be unable to fit current extent buffers into
1786  *   current bio.
1787  *
1788  * Return >=0 for the number of submitted extent buffers.
1789  * Return <0 for fatal error.
1790  */
1791 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1792 {
1793 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1794 	int submitted = 0;
1795 	u64 folio_start = folio_pos(folio);
1796 	int bit_start = 0;
1797 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1798 
1799 	/* Lock and write each dirty extent buffers in the range */
1800 	while (bit_start < fs_info->sectors_per_page) {
1801 		struct btrfs_subpage *subpage = folio_get_private(folio);
1802 		struct extent_buffer *eb;
1803 		unsigned long flags;
1804 		u64 start;
1805 
1806 		/*
1807 		 * Take private lock to ensure the subpage won't be detached
1808 		 * in the meantime.
1809 		 */
1810 		spin_lock(&folio->mapping->i_private_lock);
1811 		if (!folio_test_private(folio)) {
1812 			spin_unlock(&folio->mapping->i_private_lock);
1813 			break;
1814 		}
1815 		spin_lock_irqsave(&subpage->lock, flags);
1816 		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1817 			      subpage->bitmaps)) {
1818 			spin_unlock_irqrestore(&subpage->lock, flags);
1819 			spin_unlock(&folio->mapping->i_private_lock);
1820 			bit_start++;
1821 			continue;
1822 		}
1823 
1824 		start = folio_start + bit_start * fs_info->sectorsize;
1825 		bit_start += sectors_per_node;
1826 
1827 		/*
1828 		 * Here we just want to grab the eb without touching extra
1829 		 * spin locks, so call find_extent_buffer_nolock().
1830 		 */
1831 		eb = find_extent_buffer_nolock(fs_info, start);
1832 		spin_unlock_irqrestore(&subpage->lock, flags);
1833 		spin_unlock(&folio->mapping->i_private_lock);
1834 
1835 		/*
1836 		 * The eb has already reached 0 refs thus find_extent_buffer()
1837 		 * doesn't return it. We don't need to write back such eb
1838 		 * anyway.
1839 		 */
1840 		if (!eb)
1841 			continue;
1842 
1843 		if (lock_extent_buffer_for_io(eb, wbc)) {
1844 			write_one_eb(eb, wbc);
1845 			submitted++;
1846 		}
1847 		free_extent_buffer(eb);
1848 	}
1849 	return submitted;
1850 }
1851 
1852 /*
1853  * Submit all page(s) of one extent buffer.
1854  *
1855  * @page:	the page of one extent buffer
1856  * @eb_context:	to determine if we need to submit this page, if current page
1857  *		belongs to this eb, we don't need to submit
1858  *
1859  * The caller should pass each page in their bytenr order, and here we use
1860  * @eb_context to determine if we have submitted pages of one extent buffer.
1861  *
1862  * If we have, we just skip until we hit a new page that doesn't belong to
1863  * current @eb_context.
1864  *
1865  * If not, we submit all the page(s) of the extent buffer.
1866  *
1867  * Return >0 if we have submitted the extent buffer successfully.
1868  * Return 0 if we don't need to submit the page, as it's already submitted by
1869  * previous call.
1870  * Return <0 for fatal error.
1871  */
1872 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1873 {
1874 	struct writeback_control *wbc = ctx->wbc;
1875 	struct address_space *mapping = folio->mapping;
1876 	struct extent_buffer *eb;
1877 	int ret;
1878 
1879 	if (!folio_test_private(folio))
1880 		return 0;
1881 
1882 	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1883 		return submit_eb_subpage(folio, wbc);
1884 
1885 	spin_lock(&mapping->i_private_lock);
1886 	if (!folio_test_private(folio)) {
1887 		spin_unlock(&mapping->i_private_lock);
1888 		return 0;
1889 	}
1890 
1891 	eb = folio_get_private(folio);
1892 
1893 	/*
1894 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1895 	 * crashing the machine for something we can survive anyway.
1896 	 */
1897 	if (WARN_ON(!eb)) {
1898 		spin_unlock(&mapping->i_private_lock);
1899 		return 0;
1900 	}
1901 
1902 	if (eb == ctx->eb) {
1903 		spin_unlock(&mapping->i_private_lock);
1904 		return 0;
1905 	}
1906 	ret = atomic_inc_not_zero(&eb->refs);
1907 	spin_unlock(&mapping->i_private_lock);
1908 	if (!ret)
1909 		return 0;
1910 
1911 	ctx->eb = eb;
1912 
1913 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1914 	if (ret) {
1915 		if (ret == -EBUSY)
1916 			ret = 0;
1917 		free_extent_buffer(eb);
1918 		return ret;
1919 	}
1920 
1921 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1922 		free_extent_buffer(eb);
1923 		return 0;
1924 	}
1925 	/* Implies write in zoned mode. */
1926 	if (ctx->zoned_bg) {
1927 		/* Mark the last eb in the block group. */
1928 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1929 		ctx->zoned_bg->meta_write_pointer += eb->len;
1930 	}
1931 	write_one_eb(eb, wbc);
1932 	free_extent_buffer(eb);
1933 	return 1;
1934 }
1935 
1936 int btree_write_cache_pages(struct address_space *mapping,
1937 				   struct writeback_control *wbc)
1938 {
1939 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1940 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1941 	int ret = 0;
1942 	int done = 0;
1943 	int nr_to_write_done = 0;
1944 	struct folio_batch fbatch;
1945 	unsigned int nr_folios;
1946 	pgoff_t index;
1947 	pgoff_t end;		/* Inclusive */
1948 	int scanned = 0;
1949 	xa_mark_t tag;
1950 
1951 	folio_batch_init(&fbatch);
1952 	if (wbc->range_cyclic) {
1953 		index = mapping->writeback_index; /* Start from prev offset */
1954 		end = -1;
1955 		/*
1956 		 * Start from the beginning does not need to cycle over the
1957 		 * range, mark it as scanned.
1958 		 */
1959 		scanned = (index == 0);
1960 	} else {
1961 		index = wbc->range_start >> PAGE_SHIFT;
1962 		end = wbc->range_end >> PAGE_SHIFT;
1963 		scanned = 1;
1964 	}
1965 	if (wbc->sync_mode == WB_SYNC_ALL)
1966 		tag = PAGECACHE_TAG_TOWRITE;
1967 	else
1968 		tag = PAGECACHE_TAG_DIRTY;
1969 	btrfs_zoned_meta_io_lock(fs_info);
1970 retry:
1971 	if (wbc->sync_mode == WB_SYNC_ALL)
1972 		tag_pages_for_writeback(mapping, index, end);
1973 	while (!done && !nr_to_write_done && (index <= end) &&
1974 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1975 					    tag, &fbatch))) {
1976 		unsigned i;
1977 
1978 		for (i = 0; i < nr_folios; i++) {
1979 			struct folio *folio = fbatch.folios[i];
1980 
1981 			ret = submit_eb_page(folio, &ctx);
1982 			if (ret == 0)
1983 				continue;
1984 			if (ret < 0) {
1985 				done = 1;
1986 				break;
1987 			}
1988 
1989 			/*
1990 			 * the filesystem may choose to bump up nr_to_write.
1991 			 * We have to make sure to honor the new nr_to_write
1992 			 * at any time
1993 			 */
1994 			nr_to_write_done = wbc->nr_to_write <= 0;
1995 		}
1996 		folio_batch_release(&fbatch);
1997 		cond_resched();
1998 	}
1999 	if (!scanned && !done) {
2000 		/*
2001 		 * We hit the last page and there is more work to be done: wrap
2002 		 * back to the start of the file
2003 		 */
2004 		scanned = 1;
2005 		index = 0;
2006 		goto retry;
2007 	}
2008 	/*
2009 	 * If something went wrong, don't allow any metadata write bio to be
2010 	 * submitted.
2011 	 *
2012 	 * This would prevent use-after-free if we had dirty pages not
2013 	 * cleaned up, which can still happen by fuzzed images.
2014 	 *
2015 	 * - Bad extent tree
2016 	 *   Allowing existing tree block to be allocated for other trees.
2017 	 *
2018 	 * - Log tree operations
2019 	 *   Exiting tree blocks get allocated to log tree, bumps its
2020 	 *   generation, then get cleaned in tree re-balance.
2021 	 *   Such tree block will not be written back, since it's clean,
2022 	 *   thus no WRITTEN flag set.
2023 	 *   And after log writes back, this tree block is not traced by
2024 	 *   any dirty extent_io_tree.
2025 	 *
2026 	 * - Offending tree block gets re-dirtied from its original owner
2027 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2028 	 *   reused without COWing. This tree block will not be traced
2029 	 *   by btrfs_transaction::dirty_pages.
2030 	 *
2031 	 *   Now such dirty tree block will not be cleaned by any dirty
2032 	 *   extent io tree. Thus we don't want to submit such wild eb
2033 	 *   if the fs already has error.
2034 	 *
2035 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2036 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2037 	 */
2038 	if (ret > 0)
2039 		ret = 0;
2040 	if (!ret && BTRFS_FS_ERROR(fs_info))
2041 		ret = -EROFS;
2042 
2043 	if (ctx.zoned_bg)
2044 		btrfs_put_block_group(ctx.zoned_bg);
2045 	btrfs_zoned_meta_io_unlock(fs_info);
2046 	return ret;
2047 }
2048 
2049 /*
2050  * Walk the list of dirty pages of the given address space and write all of them.
2051  *
2052  * @mapping:   address space structure to write
2053  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2054  * @bio_ctrl:  holds context for the write, namely the bio
2055  *
2056  * If a page is already under I/O, write_cache_pages() skips it, even
2057  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2058  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2059  * and msync() need to guarantee that all the data which was dirty at the time
2060  * the call was made get new I/O started against them.  If wbc->sync_mode is
2061  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2062  * existing IO to complete.
2063  */
2064 static int extent_write_cache_pages(struct address_space *mapping,
2065 			     struct btrfs_bio_ctrl *bio_ctrl)
2066 {
2067 	struct writeback_control *wbc = bio_ctrl->wbc;
2068 	struct inode *inode = mapping->host;
2069 	int ret = 0;
2070 	int done = 0;
2071 	int nr_to_write_done = 0;
2072 	struct folio_batch fbatch;
2073 	unsigned int nr_folios;
2074 	pgoff_t index;
2075 	pgoff_t end;		/* Inclusive */
2076 	pgoff_t done_index;
2077 	int range_whole = 0;
2078 	int scanned = 0;
2079 	xa_mark_t tag;
2080 
2081 	/*
2082 	 * We have to hold onto the inode so that ordered extents can do their
2083 	 * work when the IO finishes.  The alternative to this is failing to add
2084 	 * an ordered extent if the igrab() fails there and that is a huge pain
2085 	 * to deal with, so instead just hold onto the inode throughout the
2086 	 * writepages operation.  If it fails here we are freeing up the inode
2087 	 * anyway and we'd rather not waste our time writing out stuff that is
2088 	 * going to be truncated anyway.
2089 	 */
2090 	if (!igrab(inode))
2091 		return 0;
2092 
2093 	folio_batch_init(&fbatch);
2094 	if (wbc->range_cyclic) {
2095 		index = mapping->writeback_index; /* Start from prev offset */
2096 		end = -1;
2097 		/*
2098 		 * Start from the beginning does not need to cycle over the
2099 		 * range, mark it as scanned.
2100 		 */
2101 		scanned = (index == 0);
2102 	} else {
2103 		index = wbc->range_start >> PAGE_SHIFT;
2104 		end = wbc->range_end >> PAGE_SHIFT;
2105 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2106 			range_whole = 1;
2107 		scanned = 1;
2108 	}
2109 
2110 	/*
2111 	 * We do the tagged writepage as long as the snapshot flush bit is set
2112 	 * and we are the first one who do the filemap_flush() on this inode.
2113 	 *
2114 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2115 	 * not race in and drop the bit.
2116 	 */
2117 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2118 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2119 			       &BTRFS_I(inode)->runtime_flags))
2120 		wbc->tagged_writepages = 1;
2121 
2122 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123 		tag = PAGECACHE_TAG_TOWRITE;
2124 	else
2125 		tag = PAGECACHE_TAG_DIRTY;
2126 retry:
2127 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2128 		tag_pages_for_writeback(mapping, index, end);
2129 	done_index = index;
2130 	while (!done && !nr_to_write_done && (index <= end) &&
2131 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2132 							end, tag, &fbatch))) {
2133 		unsigned i;
2134 
2135 		for (i = 0; i < nr_folios; i++) {
2136 			struct folio *folio = fbatch.folios[i];
2137 
2138 			done_index = folio_next_index(folio);
2139 			/*
2140 			 * At this point we hold neither the i_pages lock nor
2141 			 * the page lock: the page may be truncated or
2142 			 * invalidated (changing page->mapping to NULL),
2143 			 * or even swizzled back from swapper_space to
2144 			 * tmpfs file mapping
2145 			 */
2146 			if (!folio_trylock(folio)) {
2147 				submit_write_bio(bio_ctrl, 0);
2148 				folio_lock(folio);
2149 			}
2150 
2151 			if (unlikely(folio->mapping != mapping)) {
2152 				folio_unlock(folio);
2153 				continue;
2154 			}
2155 
2156 			if (!folio_test_dirty(folio)) {
2157 				/* Someone wrote it for us. */
2158 				folio_unlock(folio);
2159 				continue;
2160 			}
2161 
2162 			/*
2163 			 * For subpage case, compression can lead to mixed
2164 			 * writeback and dirty flags, e.g:
2165 			 * 0     32K    64K    96K    128K
2166 			 * |     |//////||/////|   |//|
2167 			 *
2168 			 * In above case, [32K, 96K) is asynchronously submitted
2169 			 * for compression, and [124K, 128K) needs to be written back.
2170 			 *
2171 			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2172 			 * won't be submitted as the page still has writeback flag
2173 			 * and will be skipped in the next check.
2174 			 *
2175 			 * This mixed writeback and dirty case is only possible for
2176 			 * subpage case.
2177 			 *
2178 			 * TODO: Remove this check after migrating compression to
2179 			 * regular submission.
2180 			 */
2181 			if (wbc->sync_mode != WB_SYNC_NONE ||
2182 			    btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2183 				if (folio_test_writeback(folio))
2184 					submit_write_bio(bio_ctrl, 0);
2185 				folio_wait_writeback(folio);
2186 			}
2187 
2188 			if (folio_test_writeback(folio) ||
2189 			    !folio_clear_dirty_for_io(folio)) {
2190 				folio_unlock(folio);
2191 				continue;
2192 			}
2193 
2194 			ret = extent_writepage(folio, bio_ctrl);
2195 			if (ret < 0) {
2196 				done = 1;
2197 				break;
2198 			}
2199 
2200 			/*
2201 			 * The filesystem may choose to bump up nr_to_write.
2202 			 * We have to make sure to honor the new nr_to_write
2203 			 * at any time.
2204 			 */
2205 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2206 					    wbc->nr_to_write <= 0);
2207 		}
2208 		folio_batch_release(&fbatch);
2209 		cond_resched();
2210 	}
2211 	if (!scanned && !done) {
2212 		/*
2213 		 * We hit the last page and there is more work to be done: wrap
2214 		 * back to the start of the file
2215 		 */
2216 		scanned = 1;
2217 		index = 0;
2218 
2219 		/*
2220 		 * If we're looping we could run into a page that is locked by a
2221 		 * writer and that writer could be waiting on writeback for a
2222 		 * page in our current bio, and thus deadlock, so flush the
2223 		 * write bio here.
2224 		 */
2225 		submit_write_bio(bio_ctrl, 0);
2226 		goto retry;
2227 	}
2228 
2229 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2230 		mapping->writeback_index = done_index;
2231 
2232 	btrfs_add_delayed_iput(BTRFS_I(inode));
2233 	return ret;
2234 }
2235 
2236 /*
2237  * Submit the pages in the range to bio for call sites which delalloc range has
2238  * already been ran (aka, ordered extent inserted) and all pages are still
2239  * locked.
2240  */
2241 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2242 			       u64 start, u64 end, struct writeback_control *wbc,
2243 			       bool pages_dirty)
2244 {
2245 	bool found_error = false;
2246 	int ret = 0;
2247 	struct address_space *mapping = inode->i_mapping;
2248 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2249 	const u32 sectorsize = fs_info->sectorsize;
2250 	loff_t i_size = i_size_read(inode);
2251 	u64 cur = start;
2252 	struct btrfs_bio_ctrl bio_ctrl = {
2253 		.wbc = wbc,
2254 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2255 	};
2256 
2257 	if (wbc->no_cgroup_owner)
2258 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2259 
2260 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2261 
2262 	while (cur <= end) {
2263 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2264 		u32 cur_len = cur_end + 1 - cur;
2265 		struct folio *folio;
2266 
2267 		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2268 
2269 		/*
2270 		 * This shouldn't happen, the pages are pinned and locked, this
2271 		 * code is just in case, but shouldn't actually be run.
2272 		 */
2273 		if (IS_ERR(folio)) {
2274 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2275 						       cur, cur_len, false);
2276 			mapping_set_error(mapping, PTR_ERR(folio));
2277 			cur = cur_end + 1;
2278 			continue;
2279 		}
2280 
2281 		ASSERT(folio_test_locked(folio));
2282 		if (pages_dirty && folio != locked_folio)
2283 			ASSERT(folio_test_dirty(folio));
2284 
2285 		/*
2286 		 * Set the submission bitmap to submit all sectors.
2287 		 * extent_writepage_io() will do the truncation correctly.
2288 		 */
2289 		bio_ctrl.submit_bitmap = (unsigned long)-1;
2290 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2291 					  &bio_ctrl, i_size);
2292 		if (ret == 1)
2293 			goto next_page;
2294 
2295 		if (ret) {
2296 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio,
2297 						       cur, cur_len, !ret);
2298 			mapping_set_error(mapping, ret);
2299 		}
2300 		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2301 		if (ret < 0)
2302 			found_error = true;
2303 next_page:
2304 		folio_put(folio);
2305 		cur = cur_end + 1;
2306 	}
2307 
2308 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2309 }
2310 
2311 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2312 {
2313 	struct inode *inode = mapping->host;
2314 	int ret = 0;
2315 	struct btrfs_bio_ctrl bio_ctrl = {
2316 		.wbc = wbc,
2317 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2318 	};
2319 
2320 	/*
2321 	 * Allow only a single thread to do the reloc work in zoned mode to
2322 	 * protect the write pointer updates.
2323 	 */
2324 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2325 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2326 	submit_write_bio(&bio_ctrl, ret);
2327 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2328 	return ret;
2329 }
2330 
2331 void btrfs_readahead(struct readahead_control *rac)
2332 {
2333 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2334 	struct folio *folio;
2335 	struct extent_map *em_cached = NULL;
2336 	u64 prev_em_start = (u64)-1;
2337 
2338 	while ((folio = readahead_folio(rac)) != NULL)
2339 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2340 
2341 	if (em_cached)
2342 		free_extent_map(em_cached);
2343 	submit_one_bio(&bio_ctrl);
2344 }
2345 
2346 /*
2347  * basic invalidate_folio code, this waits on any locked or writeback
2348  * ranges corresponding to the folio, and then deletes any extent state
2349  * records from the tree
2350  */
2351 int extent_invalidate_folio(struct extent_io_tree *tree,
2352 			  struct folio *folio, size_t offset)
2353 {
2354 	struct extent_state *cached_state = NULL;
2355 	u64 start = folio_pos(folio);
2356 	u64 end = start + folio_size(folio) - 1;
2357 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2358 
2359 	/* This function is only called for the btree inode */
2360 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2361 
2362 	start += ALIGN(offset, blocksize);
2363 	if (start > end)
2364 		return 0;
2365 
2366 	lock_extent(tree, start, end, &cached_state);
2367 	folio_wait_writeback(folio);
2368 
2369 	/*
2370 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2371 	 * so here we only need to unlock the extent range to free any
2372 	 * existing extent state.
2373 	 */
2374 	unlock_extent(tree, start, end, &cached_state);
2375 	return 0;
2376 }
2377 
2378 /*
2379  * a helper for release_folio, this tests for areas of the page that
2380  * are locked or under IO and drops the related state bits if it is safe
2381  * to drop the page.
2382  */
2383 static bool try_release_extent_state(struct extent_io_tree *tree,
2384 				     struct folio *folio)
2385 {
2386 	u64 start = folio_pos(folio);
2387 	u64 end = start + PAGE_SIZE - 1;
2388 	bool ret;
2389 
2390 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2391 		ret = false;
2392 	} else {
2393 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2394 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2395 				   EXTENT_QGROUP_RESERVED);
2396 		int ret2;
2397 
2398 		/*
2399 		 * At this point we can safely clear everything except the
2400 		 * locked bit, the nodatasum bit and the delalloc new bit.
2401 		 * The delalloc new bit will be cleared by ordered extent
2402 		 * completion.
2403 		 */
2404 		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2405 
2406 		/* if clear_extent_bit failed for enomem reasons,
2407 		 * we can't allow the release to continue.
2408 		 */
2409 		if (ret2 < 0)
2410 			ret = false;
2411 		else
2412 			ret = true;
2413 	}
2414 	return ret;
2415 }
2416 
2417 /*
2418  * a helper for release_folio.  As long as there are no locked extents
2419  * in the range corresponding to the page, both state records and extent
2420  * map records are removed
2421  */
2422 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2423 {
2424 	u64 start = folio_pos(folio);
2425 	u64 end = start + PAGE_SIZE - 1;
2426 	struct btrfs_inode *inode = folio_to_inode(folio);
2427 	struct extent_io_tree *io_tree = &inode->io_tree;
2428 
2429 	while (start <= end) {
2430 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2431 		const u64 len = end - start + 1;
2432 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2433 		struct extent_map *em;
2434 
2435 		write_lock(&extent_tree->lock);
2436 		em = lookup_extent_mapping(extent_tree, start, len);
2437 		if (!em) {
2438 			write_unlock(&extent_tree->lock);
2439 			break;
2440 		}
2441 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2442 			write_unlock(&extent_tree->lock);
2443 			free_extent_map(em);
2444 			break;
2445 		}
2446 		if (test_range_bit_exists(io_tree, em->start,
2447 					  extent_map_end(em) - 1, EXTENT_LOCKED))
2448 			goto next;
2449 		/*
2450 		 * If it's not in the list of modified extents, used by a fast
2451 		 * fsync, we can remove it. If it's being logged we can safely
2452 		 * remove it since fsync took an extra reference on the em.
2453 		 */
2454 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2455 			goto remove_em;
2456 		/*
2457 		 * If it's in the list of modified extents, remove it only if
2458 		 * its generation is older then the current one, in which case
2459 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2460 		 * we could be racing with an ongoing fast fsync that could miss
2461 		 * the new extent.
2462 		 */
2463 		if (em->generation >= cur_gen)
2464 			goto next;
2465 remove_em:
2466 		/*
2467 		 * We only remove extent maps that are not in the list of
2468 		 * modified extents or that are in the list but with a
2469 		 * generation lower then the current generation, so there is no
2470 		 * need to set the full fsync flag on the inode (it hurts the
2471 		 * fsync performance for workloads with a data size that exceeds
2472 		 * or is close to the system's memory).
2473 		 */
2474 		remove_extent_mapping(inode, em);
2475 		/* Once for the inode's extent map tree. */
2476 		free_extent_map(em);
2477 next:
2478 		start = extent_map_end(em);
2479 		write_unlock(&extent_tree->lock);
2480 
2481 		/* Once for us, for the lookup_extent_mapping() reference. */
2482 		free_extent_map(em);
2483 
2484 		if (need_resched()) {
2485 			/*
2486 			 * If we need to resched but we can't block just exit
2487 			 * and leave any remaining extent maps.
2488 			 */
2489 			if (!gfpflags_allow_blocking(mask))
2490 				break;
2491 
2492 			cond_resched();
2493 		}
2494 	}
2495 	return try_release_extent_state(io_tree, folio);
2496 }
2497 
2498 static void __free_extent_buffer(struct extent_buffer *eb)
2499 {
2500 	kmem_cache_free(extent_buffer_cache, eb);
2501 }
2502 
2503 static int extent_buffer_under_io(const struct extent_buffer *eb)
2504 {
2505 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2506 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2507 }
2508 
2509 static bool folio_range_has_eb(struct folio *folio)
2510 {
2511 	struct btrfs_subpage *subpage;
2512 
2513 	lockdep_assert_held(&folio->mapping->i_private_lock);
2514 
2515 	if (folio_test_private(folio)) {
2516 		subpage = folio_get_private(folio);
2517 		if (atomic_read(&subpage->eb_refs))
2518 			return true;
2519 	}
2520 	return false;
2521 }
2522 
2523 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2524 {
2525 	struct btrfs_fs_info *fs_info = eb->fs_info;
2526 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2527 
2528 	/*
2529 	 * For mapped eb, we're going to change the folio private, which should
2530 	 * be done under the i_private_lock.
2531 	 */
2532 	if (mapped)
2533 		spin_lock(&folio->mapping->i_private_lock);
2534 
2535 	if (!folio_test_private(folio)) {
2536 		if (mapped)
2537 			spin_unlock(&folio->mapping->i_private_lock);
2538 		return;
2539 	}
2540 
2541 	if (fs_info->nodesize >= PAGE_SIZE) {
2542 		/*
2543 		 * We do this since we'll remove the pages after we've
2544 		 * removed the eb from the radix tree, so we could race
2545 		 * and have this page now attached to the new eb.  So
2546 		 * only clear folio if it's still connected to
2547 		 * this eb.
2548 		 */
2549 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2550 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2551 			BUG_ON(folio_test_dirty(folio));
2552 			BUG_ON(folio_test_writeback(folio));
2553 			/* We need to make sure we haven't be attached to a new eb. */
2554 			folio_detach_private(folio);
2555 		}
2556 		if (mapped)
2557 			spin_unlock(&folio->mapping->i_private_lock);
2558 		return;
2559 	}
2560 
2561 	/*
2562 	 * For subpage, we can have dummy eb with folio private attached.  In
2563 	 * this case, we can directly detach the private as such folio is only
2564 	 * attached to one dummy eb, no sharing.
2565 	 */
2566 	if (!mapped) {
2567 		btrfs_detach_subpage(fs_info, folio);
2568 		return;
2569 	}
2570 
2571 	btrfs_folio_dec_eb_refs(fs_info, folio);
2572 
2573 	/*
2574 	 * We can only detach the folio private if there are no other ebs in the
2575 	 * page range and no unfinished IO.
2576 	 */
2577 	if (!folio_range_has_eb(folio))
2578 		btrfs_detach_subpage(fs_info, folio);
2579 
2580 	spin_unlock(&folio->mapping->i_private_lock);
2581 }
2582 
2583 /* Release all pages attached to the extent buffer */
2584 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2585 {
2586 	ASSERT(!extent_buffer_under_io(eb));
2587 
2588 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2589 		struct folio *folio = eb->folios[i];
2590 
2591 		if (!folio)
2592 			continue;
2593 
2594 		detach_extent_buffer_folio(eb, folio);
2595 
2596 		/* One for when we allocated the folio. */
2597 		folio_put(folio);
2598 	}
2599 }
2600 
2601 /*
2602  * Helper for releasing the extent buffer.
2603  */
2604 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2605 {
2606 	btrfs_release_extent_buffer_pages(eb);
2607 	btrfs_leak_debug_del_eb(eb);
2608 	__free_extent_buffer(eb);
2609 }
2610 
2611 static struct extent_buffer *
2612 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2613 		      unsigned long len)
2614 {
2615 	struct extent_buffer *eb = NULL;
2616 
2617 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2618 	eb->start = start;
2619 	eb->len = len;
2620 	eb->fs_info = fs_info;
2621 	init_rwsem(&eb->lock);
2622 
2623 	btrfs_leak_debug_add_eb(eb);
2624 
2625 	spin_lock_init(&eb->refs_lock);
2626 	atomic_set(&eb->refs, 1);
2627 
2628 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2629 
2630 	return eb;
2631 }
2632 
2633 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2634 {
2635 	struct extent_buffer *new;
2636 	int num_folios = num_extent_folios(src);
2637 	int ret;
2638 
2639 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2640 	if (new == NULL)
2641 		return NULL;
2642 
2643 	/*
2644 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2645 	 * btrfs_release_extent_buffer() have different behavior for
2646 	 * UNMAPPED subpage extent buffer.
2647 	 */
2648 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2649 
2650 	ret = alloc_eb_folio_array(new, false);
2651 	if (ret) {
2652 		btrfs_release_extent_buffer(new);
2653 		return NULL;
2654 	}
2655 
2656 	for (int i = 0; i < num_folios; i++) {
2657 		struct folio *folio = new->folios[i];
2658 
2659 		ret = attach_extent_buffer_folio(new, folio, NULL);
2660 		if (ret < 0) {
2661 			btrfs_release_extent_buffer(new);
2662 			return NULL;
2663 		}
2664 		WARN_ON(folio_test_dirty(folio));
2665 	}
2666 	copy_extent_buffer_full(new, src);
2667 	set_extent_buffer_uptodate(new);
2668 
2669 	return new;
2670 }
2671 
2672 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2673 						  u64 start, unsigned long len)
2674 {
2675 	struct extent_buffer *eb;
2676 	int num_folios = 0;
2677 	int ret;
2678 
2679 	eb = __alloc_extent_buffer(fs_info, start, len);
2680 	if (!eb)
2681 		return NULL;
2682 
2683 	ret = alloc_eb_folio_array(eb, false);
2684 	if (ret)
2685 		goto err;
2686 
2687 	num_folios = num_extent_folios(eb);
2688 	for (int i = 0; i < num_folios; i++) {
2689 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2690 		if (ret < 0)
2691 			goto err;
2692 	}
2693 
2694 	set_extent_buffer_uptodate(eb);
2695 	btrfs_set_header_nritems(eb, 0);
2696 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2697 
2698 	return eb;
2699 err:
2700 	for (int i = 0; i < num_folios; i++) {
2701 		if (eb->folios[i]) {
2702 			detach_extent_buffer_folio(eb, eb->folios[i]);
2703 			folio_put(eb->folios[i]);
2704 		}
2705 	}
2706 	__free_extent_buffer(eb);
2707 	return NULL;
2708 }
2709 
2710 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2711 						u64 start)
2712 {
2713 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2714 }
2715 
2716 static void check_buffer_tree_ref(struct extent_buffer *eb)
2717 {
2718 	int refs;
2719 	/*
2720 	 * The TREE_REF bit is first set when the extent_buffer is added
2721 	 * to the radix tree. It is also reset, if unset, when a new reference
2722 	 * is created by find_extent_buffer.
2723 	 *
2724 	 * It is only cleared in two cases: freeing the last non-tree
2725 	 * reference to the extent_buffer when its STALE bit is set or
2726 	 * calling release_folio when the tree reference is the only reference.
2727 	 *
2728 	 * In both cases, care is taken to ensure that the extent_buffer's
2729 	 * pages are not under io. However, release_folio can be concurrently
2730 	 * called with creating new references, which is prone to race
2731 	 * conditions between the calls to check_buffer_tree_ref in those
2732 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2733 	 *
2734 	 * The actual lifetime of the extent_buffer in the radix tree is
2735 	 * adequately protected by the refcount, but the TREE_REF bit and
2736 	 * its corresponding reference are not. To protect against this
2737 	 * class of races, we call check_buffer_tree_ref from the codepaths
2738 	 * which trigger io. Note that once io is initiated, TREE_REF can no
2739 	 * longer be cleared, so that is the moment at which any such race is
2740 	 * best fixed.
2741 	 */
2742 	refs = atomic_read(&eb->refs);
2743 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2744 		return;
2745 
2746 	spin_lock(&eb->refs_lock);
2747 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2748 		atomic_inc(&eb->refs);
2749 	spin_unlock(&eb->refs_lock);
2750 }
2751 
2752 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2753 {
2754 	int num_folios= num_extent_folios(eb);
2755 
2756 	check_buffer_tree_ref(eb);
2757 
2758 	for (int i = 0; i < num_folios; i++)
2759 		folio_mark_accessed(eb->folios[i]);
2760 }
2761 
2762 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2763 					 u64 start)
2764 {
2765 	struct extent_buffer *eb;
2766 
2767 	eb = find_extent_buffer_nolock(fs_info, start);
2768 	if (!eb)
2769 		return NULL;
2770 	/*
2771 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2772 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2773 	 * another task running free_extent_buffer() might have seen that flag
2774 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2775 	 * writeback flags not set) and it's still in the tree (flag
2776 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2777 	 * decrementing the extent buffer's reference count twice.  So here we
2778 	 * could race and increment the eb's reference count, clear its stale
2779 	 * flag, mark it as dirty and drop our reference before the other task
2780 	 * finishes executing free_extent_buffer, which would later result in
2781 	 * an attempt to free an extent buffer that is dirty.
2782 	 */
2783 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2784 		spin_lock(&eb->refs_lock);
2785 		spin_unlock(&eb->refs_lock);
2786 	}
2787 	mark_extent_buffer_accessed(eb);
2788 	return eb;
2789 }
2790 
2791 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2792 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2793 					u64 start)
2794 {
2795 	struct extent_buffer *eb, *exists = NULL;
2796 	int ret;
2797 
2798 	eb = find_extent_buffer(fs_info, start);
2799 	if (eb)
2800 		return eb;
2801 	eb = alloc_dummy_extent_buffer(fs_info, start);
2802 	if (!eb)
2803 		return ERR_PTR(-ENOMEM);
2804 	eb->fs_info = fs_info;
2805 again:
2806 	ret = radix_tree_preload(GFP_NOFS);
2807 	if (ret) {
2808 		exists = ERR_PTR(ret);
2809 		goto free_eb;
2810 	}
2811 	spin_lock(&fs_info->buffer_lock);
2812 	ret = radix_tree_insert(&fs_info->buffer_radix,
2813 				start >> fs_info->sectorsize_bits, eb);
2814 	spin_unlock(&fs_info->buffer_lock);
2815 	radix_tree_preload_end();
2816 	if (ret == -EEXIST) {
2817 		exists = find_extent_buffer(fs_info, start);
2818 		if (exists)
2819 			goto free_eb;
2820 		else
2821 			goto again;
2822 	}
2823 	check_buffer_tree_ref(eb);
2824 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2825 
2826 	return eb;
2827 free_eb:
2828 	btrfs_release_extent_buffer(eb);
2829 	return exists;
2830 }
2831 #endif
2832 
2833 static struct extent_buffer *grab_extent_buffer(
2834 		struct btrfs_fs_info *fs_info, struct page *page)
2835 {
2836 	struct folio *folio = page_folio(page);
2837 	struct extent_buffer *exists;
2838 
2839 	lockdep_assert_held(&page->mapping->i_private_lock);
2840 
2841 	/*
2842 	 * For subpage case, we completely rely on radix tree to ensure we
2843 	 * don't try to insert two ebs for the same bytenr.  So here we always
2844 	 * return NULL and just continue.
2845 	 */
2846 	if (fs_info->nodesize < PAGE_SIZE)
2847 		return NULL;
2848 
2849 	/* Page not yet attached to an extent buffer */
2850 	if (!folio_test_private(folio))
2851 		return NULL;
2852 
2853 	/*
2854 	 * We could have already allocated an eb for this page and attached one
2855 	 * so lets see if we can get a ref on the existing eb, and if we can we
2856 	 * know it's good and we can just return that one, else we know we can
2857 	 * just overwrite folio private.
2858 	 */
2859 	exists = folio_get_private(folio);
2860 	if (atomic_inc_not_zero(&exists->refs))
2861 		return exists;
2862 
2863 	WARN_ON(PageDirty(page));
2864 	folio_detach_private(folio);
2865 	return NULL;
2866 }
2867 
2868 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2869 {
2870 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2871 		btrfs_err(fs_info, "bad tree block start %llu", start);
2872 		return -EINVAL;
2873 	}
2874 
2875 	if (fs_info->nodesize < PAGE_SIZE &&
2876 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2877 		btrfs_err(fs_info,
2878 		"tree block crosses page boundary, start %llu nodesize %u",
2879 			  start, fs_info->nodesize);
2880 		return -EINVAL;
2881 	}
2882 	if (fs_info->nodesize >= PAGE_SIZE &&
2883 	    !PAGE_ALIGNED(start)) {
2884 		btrfs_err(fs_info,
2885 		"tree block is not page aligned, start %llu nodesize %u",
2886 			  start, fs_info->nodesize);
2887 		return -EINVAL;
2888 	}
2889 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
2890 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2891 		btrfs_warn(fs_info,
2892 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2893 			      start, fs_info->nodesize);
2894 	}
2895 	return 0;
2896 }
2897 
2898 
2899 /*
2900  * Return 0 if eb->folios[i] is attached to btree inode successfully.
2901  * Return >0 if there is already another extent buffer for the range,
2902  * and @found_eb_ret would be updated.
2903  * Return -EAGAIN if the filemap has an existing folio but with different size
2904  * than @eb.
2905  * The caller needs to free the existing folios and retry using the same order.
2906  */
2907 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2908 				      struct btrfs_subpage *prealloc,
2909 				      struct extent_buffer **found_eb_ret)
2910 {
2911 
2912 	struct btrfs_fs_info *fs_info = eb->fs_info;
2913 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
2914 	const unsigned long index = eb->start >> PAGE_SHIFT;
2915 	struct folio *existing_folio = NULL;
2916 	int ret;
2917 
2918 	ASSERT(found_eb_ret);
2919 
2920 	/* Caller should ensure the folio exists. */
2921 	ASSERT(eb->folios[i]);
2922 
2923 retry:
2924 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2925 				GFP_NOFS | __GFP_NOFAIL);
2926 	if (!ret)
2927 		goto finish;
2928 
2929 	existing_folio = filemap_lock_folio(mapping, index + i);
2930 	/* The page cache only exists for a very short time, just retry. */
2931 	if (IS_ERR(existing_folio)) {
2932 		existing_folio = NULL;
2933 		goto retry;
2934 	}
2935 
2936 	/* For now, we should only have single-page folios for btree inode. */
2937 	ASSERT(folio_nr_pages(existing_folio) == 1);
2938 
2939 	if (folio_size(existing_folio) != eb->folio_size) {
2940 		folio_unlock(existing_folio);
2941 		folio_put(existing_folio);
2942 		return -EAGAIN;
2943 	}
2944 
2945 finish:
2946 	spin_lock(&mapping->i_private_lock);
2947 	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
2948 		/* We're going to reuse the existing page, can drop our folio now. */
2949 		__free_page(folio_page(eb->folios[i], 0));
2950 		eb->folios[i] = existing_folio;
2951 	} else if (existing_folio) {
2952 		struct extent_buffer *existing_eb;
2953 
2954 		existing_eb = grab_extent_buffer(fs_info,
2955 						 folio_page(existing_folio, 0));
2956 		if (existing_eb) {
2957 			/* The extent buffer still exists, we can use it directly. */
2958 			*found_eb_ret = existing_eb;
2959 			spin_unlock(&mapping->i_private_lock);
2960 			folio_unlock(existing_folio);
2961 			folio_put(existing_folio);
2962 			return 1;
2963 		}
2964 		/* The extent buffer no longer exists, we can reuse the folio. */
2965 		__free_page(folio_page(eb->folios[i], 0));
2966 		eb->folios[i] = existing_folio;
2967 	}
2968 	eb->folio_size = folio_size(eb->folios[i]);
2969 	eb->folio_shift = folio_shift(eb->folios[i]);
2970 	/* Should not fail, as we have preallocated the memory. */
2971 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
2972 	ASSERT(!ret);
2973 	/*
2974 	 * To inform we have an extra eb under allocation, so that
2975 	 * detach_extent_buffer_page() won't release the folio private when the
2976 	 * eb hasn't been inserted into radix tree yet.
2977 	 *
2978 	 * The ref will be decreased when the eb releases the page, in
2979 	 * detach_extent_buffer_page().  Thus needs no special handling in the
2980 	 * error path.
2981 	 */
2982 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
2983 	spin_unlock(&mapping->i_private_lock);
2984 	return 0;
2985 }
2986 
2987 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2988 					  u64 start, u64 owner_root, int level)
2989 {
2990 	unsigned long len = fs_info->nodesize;
2991 	int num_folios;
2992 	int attached = 0;
2993 	struct extent_buffer *eb;
2994 	struct extent_buffer *existing_eb = NULL;
2995 	struct btrfs_subpage *prealloc = NULL;
2996 	u64 lockdep_owner = owner_root;
2997 	bool page_contig = true;
2998 	int uptodate = 1;
2999 	int ret;
3000 
3001 	if (check_eb_alignment(fs_info, start))
3002 		return ERR_PTR(-EINVAL);
3003 
3004 #if BITS_PER_LONG == 32
3005 	if (start >= MAX_LFS_FILESIZE) {
3006 		btrfs_err_rl(fs_info,
3007 		"extent buffer %llu is beyond 32bit page cache limit", start);
3008 		btrfs_err_32bit_limit(fs_info);
3009 		return ERR_PTR(-EOVERFLOW);
3010 	}
3011 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3012 		btrfs_warn_32bit_limit(fs_info);
3013 #endif
3014 
3015 	eb = find_extent_buffer(fs_info, start);
3016 	if (eb)
3017 		return eb;
3018 
3019 	eb = __alloc_extent_buffer(fs_info, start, len);
3020 	if (!eb)
3021 		return ERR_PTR(-ENOMEM);
3022 
3023 	/*
3024 	 * The reloc trees are just snapshots, so we need them to appear to be
3025 	 * just like any other fs tree WRT lockdep.
3026 	 */
3027 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3028 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3029 
3030 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3031 
3032 	/*
3033 	 * Preallocate folio private for subpage case, so that we won't
3034 	 * allocate memory with i_private_lock nor page lock hold.
3035 	 *
3036 	 * The memory will be freed by attach_extent_buffer_page() or freed
3037 	 * manually if we exit earlier.
3038 	 */
3039 	if (fs_info->nodesize < PAGE_SIZE) {
3040 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3041 		if (IS_ERR(prealloc)) {
3042 			ret = PTR_ERR(prealloc);
3043 			goto out;
3044 		}
3045 	}
3046 
3047 reallocate:
3048 	/* Allocate all pages first. */
3049 	ret = alloc_eb_folio_array(eb, true);
3050 	if (ret < 0) {
3051 		btrfs_free_subpage(prealloc);
3052 		goto out;
3053 	}
3054 
3055 	num_folios = num_extent_folios(eb);
3056 	/* Attach all pages to the filemap. */
3057 	for (int i = 0; i < num_folios; i++) {
3058 		struct folio *folio;
3059 
3060 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3061 		if (ret > 0) {
3062 			ASSERT(existing_eb);
3063 			goto out;
3064 		}
3065 
3066 		/*
3067 		 * TODO: Special handling for a corner case where the order of
3068 		 * folios mismatch between the new eb and filemap.
3069 		 *
3070 		 * This happens when:
3071 		 *
3072 		 * - the new eb is using higher order folio
3073 		 *
3074 		 * - the filemap is still using 0-order folios for the range
3075 		 *   This can happen at the previous eb allocation, and we don't
3076 		 *   have higher order folio for the call.
3077 		 *
3078 		 * - the existing eb has already been freed
3079 		 *
3080 		 * In this case, we have to free the existing folios first, and
3081 		 * re-allocate using the same order.
3082 		 * Thankfully this is not going to happen yet, as we're still
3083 		 * using 0-order folios.
3084 		 */
3085 		if (unlikely(ret == -EAGAIN)) {
3086 			ASSERT(0);
3087 			goto reallocate;
3088 		}
3089 		attached++;
3090 
3091 		/*
3092 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3093 		 * reliable, as we may choose to reuse the existing page cache
3094 		 * and free the allocated page.
3095 		 */
3096 		folio = eb->folios[i];
3097 		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3098 
3099 		/*
3100 		 * Check if the current page is physically contiguous with previous eb
3101 		 * page.
3102 		 * At this stage, either we allocated a large folio, thus @i
3103 		 * would only be 0, or we fall back to per-page allocation.
3104 		 */
3105 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3106 			page_contig = false;
3107 
3108 		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3109 			uptodate = 0;
3110 
3111 		/*
3112 		 * We can't unlock the pages just yet since the extent buffer
3113 		 * hasn't been properly inserted in the radix tree, this
3114 		 * opens a race with btree_release_folio which can free a page
3115 		 * while we are still filling in all pages for the buffer and
3116 		 * we could crash.
3117 		 */
3118 	}
3119 	if (uptodate)
3120 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3121 	/* All pages are physically contiguous, can skip cross page handling. */
3122 	if (page_contig)
3123 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3124 again:
3125 	ret = radix_tree_preload(GFP_NOFS);
3126 	if (ret)
3127 		goto out;
3128 
3129 	spin_lock(&fs_info->buffer_lock);
3130 	ret = radix_tree_insert(&fs_info->buffer_radix,
3131 				start >> fs_info->sectorsize_bits, eb);
3132 	spin_unlock(&fs_info->buffer_lock);
3133 	radix_tree_preload_end();
3134 	if (ret == -EEXIST) {
3135 		ret = 0;
3136 		existing_eb = find_extent_buffer(fs_info, start);
3137 		if (existing_eb)
3138 			goto out;
3139 		else
3140 			goto again;
3141 	}
3142 	/* add one reference for the tree */
3143 	check_buffer_tree_ref(eb);
3144 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3145 
3146 	/*
3147 	 * Now it's safe to unlock the pages because any calls to
3148 	 * btree_release_folio will correctly detect that a page belongs to a
3149 	 * live buffer and won't free them prematurely.
3150 	 */
3151 	for (int i = 0; i < num_folios; i++)
3152 		unlock_page(folio_page(eb->folios[i], 0));
3153 	return eb;
3154 
3155 out:
3156 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3157 
3158 	/*
3159 	 * Any attached folios need to be detached before we unlock them.  This
3160 	 * is because when we're inserting our new folios into the mapping, and
3161 	 * then attaching our eb to that folio.  If we fail to insert our folio
3162 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3163 	 * want that to grab this eb, as we're getting ready to free it.  So we
3164 	 * have to detach it first and then unlock it.
3165 	 *
3166 	 * We have to drop our reference and NULL it out here because in the
3167 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3168 	 * Below when we call btrfs_release_extent_buffer() we will call
3169 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3170 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3171 	 * double put our reference and be super sad.
3172 	 */
3173 	for (int i = 0; i < attached; i++) {
3174 		ASSERT(eb->folios[i]);
3175 		detach_extent_buffer_folio(eb, eb->folios[i]);
3176 		unlock_page(folio_page(eb->folios[i], 0));
3177 		folio_put(eb->folios[i]);
3178 		eb->folios[i] = NULL;
3179 	}
3180 	/*
3181 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3182 	 * so it can be cleaned up without utilizing page->mapping.
3183 	 */
3184 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3185 
3186 	btrfs_release_extent_buffer(eb);
3187 	if (ret < 0)
3188 		return ERR_PTR(ret);
3189 	ASSERT(existing_eb);
3190 	return existing_eb;
3191 }
3192 
3193 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3194 {
3195 	struct extent_buffer *eb =
3196 			container_of(head, struct extent_buffer, rcu_head);
3197 
3198 	__free_extent_buffer(eb);
3199 }
3200 
3201 static int release_extent_buffer(struct extent_buffer *eb)
3202 	__releases(&eb->refs_lock)
3203 {
3204 	lockdep_assert_held(&eb->refs_lock);
3205 
3206 	WARN_ON(atomic_read(&eb->refs) == 0);
3207 	if (atomic_dec_and_test(&eb->refs)) {
3208 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3209 			struct btrfs_fs_info *fs_info = eb->fs_info;
3210 
3211 			spin_unlock(&eb->refs_lock);
3212 
3213 			spin_lock(&fs_info->buffer_lock);
3214 			radix_tree_delete(&fs_info->buffer_radix,
3215 					  eb->start >> fs_info->sectorsize_bits);
3216 			spin_unlock(&fs_info->buffer_lock);
3217 		} else {
3218 			spin_unlock(&eb->refs_lock);
3219 		}
3220 
3221 		btrfs_leak_debug_del_eb(eb);
3222 		/* Should be safe to release our pages at this point */
3223 		btrfs_release_extent_buffer_pages(eb);
3224 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3225 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3226 			__free_extent_buffer(eb);
3227 			return 1;
3228 		}
3229 #endif
3230 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3231 		return 1;
3232 	}
3233 	spin_unlock(&eb->refs_lock);
3234 
3235 	return 0;
3236 }
3237 
3238 void free_extent_buffer(struct extent_buffer *eb)
3239 {
3240 	int refs;
3241 	if (!eb)
3242 		return;
3243 
3244 	refs = atomic_read(&eb->refs);
3245 	while (1) {
3246 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3247 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3248 			refs == 1))
3249 			break;
3250 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3251 			return;
3252 	}
3253 
3254 	spin_lock(&eb->refs_lock);
3255 	if (atomic_read(&eb->refs) == 2 &&
3256 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3257 	    !extent_buffer_under_io(eb) &&
3258 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3259 		atomic_dec(&eb->refs);
3260 
3261 	/*
3262 	 * I know this is terrible, but it's temporary until we stop tracking
3263 	 * the uptodate bits and such for the extent buffers.
3264 	 */
3265 	release_extent_buffer(eb);
3266 }
3267 
3268 void free_extent_buffer_stale(struct extent_buffer *eb)
3269 {
3270 	if (!eb)
3271 		return;
3272 
3273 	spin_lock(&eb->refs_lock);
3274 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3275 
3276 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3277 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3278 		atomic_dec(&eb->refs);
3279 	release_extent_buffer(eb);
3280 }
3281 
3282 static void btree_clear_folio_dirty(struct folio *folio)
3283 {
3284 	ASSERT(folio_test_dirty(folio));
3285 	ASSERT(folio_test_locked(folio));
3286 	folio_clear_dirty_for_io(folio);
3287 	xa_lock_irq(&folio->mapping->i_pages);
3288 	if (!folio_test_dirty(folio))
3289 		__xa_clear_mark(&folio->mapping->i_pages,
3290 				folio_index(folio), PAGECACHE_TAG_DIRTY);
3291 	xa_unlock_irq(&folio->mapping->i_pages);
3292 }
3293 
3294 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3295 {
3296 	struct btrfs_fs_info *fs_info = eb->fs_info;
3297 	struct folio *folio = eb->folios[0];
3298 	bool last;
3299 
3300 	/* btree_clear_folio_dirty() needs page locked. */
3301 	folio_lock(folio);
3302 	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3303 	if (last)
3304 		btree_clear_folio_dirty(folio);
3305 	folio_unlock(folio);
3306 	WARN_ON(atomic_read(&eb->refs) == 0);
3307 }
3308 
3309 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3310 			      struct extent_buffer *eb)
3311 {
3312 	struct btrfs_fs_info *fs_info = eb->fs_info;
3313 	int num_folios;
3314 
3315 	btrfs_assert_tree_write_locked(eb);
3316 
3317 	if (trans && btrfs_header_generation(eb) != trans->transid)
3318 		return;
3319 
3320 	/*
3321 	 * Instead of clearing the dirty flag off of the buffer, mark it as
3322 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3323 	 * write-ordering in zoned mode, without the need to later re-dirty
3324 	 * the extent_buffer.
3325 	 *
3326 	 * The actual zeroout of the buffer will happen later in
3327 	 * btree_csum_one_bio.
3328 	 */
3329 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3330 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3331 		return;
3332 	}
3333 
3334 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3335 		return;
3336 
3337 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3338 				 fs_info->dirty_metadata_batch);
3339 
3340 	if (eb->fs_info->nodesize < PAGE_SIZE)
3341 		return clear_subpage_extent_buffer_dirty(eb);
3342 
3343 	num_folios = num_extent_folios(eb);
3344 	for (int i = 0; i < num_folios; i++) {
3345 		struct folio *folio = eb->folios[i];
3346 
3347 		if (!folio_test_dirty(folio))
3348 			continue;
3349 		folio_lock(folio);
3350 		btree_clear_folio_dirty(folio);
3351 		folio_unlock(folio);
3352 	}
3353 	WARN_ON(atomic_read(&eb->refs) == 0);
3354 }
3355 
3356 void set_extent_buffer_dirty(struct extent_buffer *eb)
3357 {
3358 	int num_folios;
3359 	bool was_dirty;
3360 
3361 	check_buffer_tree_ref(eb);
3362 
3363 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3364 
3365 	num_folios = num_extent_folios(eb);
3366 	WARN_ON(atomic_read(&eb->refs) == 0);
3367 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3368 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3369 
3370 	if (!was_dirty) {
3371 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3372 
3373 		/*
3374 		 * For subpage case, we can have other extent buffers in the
3375 		 * same page, and in clear_subpage_extent_buffer_dirty() we
3376 		 * have to clear page dirty without subpage lock held.
3377 		 * This can cause race where our page gets dirty cleared after
3378 		 * we just set it.
3379 		 *
3380 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3381 		 * its page for other reasons, we can use page lock to prevent
3382 		 * the above race.
3383 		 */
3384 		if (subpage)
3385 			lock_page(folio_page(eb->folios[0], 0));
3386 		for (int i = 0; i < num_folios; i++)
3387 			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3388 					      eb->start, eb->len);
3389 		if (subpage)
3390 			unlock_page(folio_page(eb->folios[0], 0));
3391 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3392 					 eb->len,
3393 					 eb->fs_info->dirty_metadata_batch);
3394 	}
3395 #ifdef CONFIG_BTRFS_DEBUG
3396 	for (int i = 0; i < num_folios; i++)
3397 		ASSERT(folio_test_dirty(eb->folios[i]));
3398 #endif
3399 }
3400 
3401 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3402 {
3403 	struct btrfs_fs_info *fs_info = eb->fs_info;
3404 	int num_folios = num_extent_folios(eb);
3405 
3406 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3407 	for (int i = 0; i < num_folios; i++) {
3408 		struct folio *folio = eb->folios[i];
3409 
3410 		if (!folio)
3411 			continue;
3412 
3413 		/*
3414 		 * This is special handling for metadata subpage, as regular
3415 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3416 		 */
3417 		if (fs_info->nodesize >= PAGE_SIZE)
3418 			folio_clear_uptodate(folio);
3419 		else
3420 			btrfs_subpage_clear_uptodate(fs_info, folio,
3421 						     eb->start, eb->len);
3422 	}
3423 }
3424 
3425 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3426 {
3427 	struct btrfs_fs_info *fs_info = eb->fs_info;
3428 	int num_folios = num_extent_folios(eb);
3429 
3430 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3431 	for (int i = 0; i < num_folios; i++) {
3432 		struct folio *folio = eb->folios[i];
3433 
3434 		/*
3435 		 * This is special handling for metadata subpage, as regular
3436 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3437 		 */
3438 		if (fs_info->nodesize >= PAGE_SIZE)
3439 			folio_mark_uptodate(folio);
3440 		else
3441 			btrfs_subpage_set_uptodate(fs_info, folio,
3442 						   eb->start, eb->len);
3443 	}
3444 }
3445 
3446 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3447 {
3448 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3449 	smp_mb__after_atomic();
3450 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3451 }
3452 
3453 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3454 {
3455 	struct extent_buffer *eb = bbio->private;
3456 	struct btrfs_fs_info *fs_info = eb->fs_info;
3457 	bool uptodate = !bbio->bio.bi_status;
3458 	struct folio_iter fi;
3459 	u32 bio_offset = 0;
3460 
3461 	/*
3462 	 * If the extent buffer is marked UPTODATE before the read operation
3463 	 * completes, other calls to read_extent_buffer_pages() will return
3464 	 * early without waiting for the read to finish, causing data races.
3465 	 */
3466 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3467 
3468 	eb->read_mirror = bbio->mirror_num;
3469 
3470 	if (uptodate &&
3471 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3472 		uptodate = false;
3473 
3474 	if (uptodate) {
3475 		set_extent_buffer_uptodate(eb);
3476 	} else {
3477 		clear_extent_buffer_uptodate(eb);
3478 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3479 	}
3480 
3481 	bio_for_each_folio_all(fi, &bbio->bio) {
3482 		struct folio *folio = fi.folio;
3483 		u64 start = eb->start + bio_offset;
3484 		u32 len = fi.length;
3485 
3486 		if (uptodate)
3487 			btrfs_folio_set_uptodate(fs_info, folio, start, len);
3488 		else
3489 			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3490 
3491 		bio_offset += len;
3492 	}
3493 
3494 	clear_extent_buffer_reading(eb);
3495 	free_extent_buffer(eb);
3496 
3497 	bio_put(&bbio->bio);
3498 }
3499 
3500 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3501 			     const struct btrfs_tree_parent_check *check)
3502 {
3503 	struct btrfs_bio *bbio;
3504 	bool ret;
3505 
3506 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3507 		return 0;
3508 
3509 	/*
3510 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3511 	 * operation, which could potentially still be in flight.  In this case
3512 	 * we simply want to return an error.
3513 	 */
3514 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3515 		return -EIO;
3516 
3517 	/* Someone else is already reading the buffer, just wait for it. */
3518 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3519 		goto done;
3520 
3521 	/*
3522 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3523 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3524 	 * started and finished reading the same eb.  In this case, UPTODATE
3525 	 * will now be set, and we shouldn't read it in again.
3526 	 */
3527 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3528 		clear_extent_buffer_reading(eb);
3529 		return 0;
3530 	}
3531 
3532 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3533 	eb->read_mirror = 0;
3534 	check_buffer_tree_ref(eb);
3535 	atomic_inc(&eb->refs);
3536 
3537 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3538 			       REQ_OP_READ | REQ_META, eb->fs_info,
3539 			       end_bbio_meta_read, eb);
3540 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3541 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3542 	bbio->file_offset = eb->start;
3543 	memcpy(&bbio->parent_check, check, sizeof(*check));
3544 	if (eb->fs_info->nodesize < PAGE_SIZE) {
3545 		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3546 				    eb->start - folio_pos(eb->folios[0]));
3547 		ASSERT(ret);
3548 	} else {
3549 		int num_folios = num_extent_folios(eb);
3550 
3551 		for (int i = 0; i < num_folios; i++) {
3552 			struct folio *folio = eb->folios[i];
3553 
3554 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3555 			ASSERT(ret);
3556 		}
3557 	}
3558 	btrfs_submit_bbio(bbio, mirror_num);
3559 
3560 done:
3561 	if (wait == WAIT_COMPLETE) {
3562 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3563 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3564 			return -EIO;
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3571 			    unsigned long len)
3572 {
3573 	btrfs_warn(eb->fs_info,
3574 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3575 		eb->start, eb->len, start, len);
3576 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3577 
3578 	return true;
3579 }
3580 
3581 /*
3582  * Check if the [start, start + len) range is valid before reading/writing
3583  * the eb.
3584  * NOTE: @start and @len are offset inside the eb, not logical address.
3585  *
3586  * Caller should not touch the dst/src memory if this function returns error.
3587  */
3588 static inline int check_eb_range(const struct extent_buffer *eb,
3589 				 unsigned long start, unsigned long len)
3590 {
3591 	unsigned long offset;
3592 
3593 	/* start, start + len should not go beyond eb->len nor overflow */
3594 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3595 		return report_eb_range(eb, start, len);
3596 
3597 	return false;
3598 }
3599 
3600 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3601 			unsigned long start, unsigned long len)
3602 {
3603 	const int unit_size = eb->folio_size;
3604 	size_t cur;
3605 	size_t offset;
3606 	char *dst = (char *)dstv;
3607 	unsigned long i = get_eb_folio_index(eb, start);
3608 
3609 	if (check_eb_range(eb, start, len)) {
3610 		/*
3611 		 * Invalid range hit, reset the memory, so callers won't get
3612 		 * some random garbage for their uninitialized memory.
3613 		 */
3614 		memset(dstv, 0, len);
3615 		return;
3616 	}
3617 
3618 	if (eb->addr) {
3619 		memcpy(dstv, eb->addr + start, len);
3620 		return;
3621 	}
3622 
3623 	offset = get_eb_offset_in_folio(eb, start);
3624 
3625 	while (len > 0) {
3626 		char *kaddr;
3627 
3628 		cur = min(len, unit_size - offset);
3629 		kaddr = folio_address(eb->folios[i]);
3630 		memcpy(dst, kaddr + offset, cur);
3631 
3632 		dst += cur;
3633 		len -= cur;
3634 		offset = 0;
3635 		i++;
3636 	}
3637 }
3638 
3639 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3640 				       void __user *dstv,
3641 				       unsigned long start, unsigned long len)
3642 {
3643 	const int unit_size = eb->folio_size;
3644 	size_t cur;
3645 	size_t offset;
3646 	char __user *dst = (char __user *)dstv;
3647 	unsigned long i = get_eb_folio_index(eb, start);
3648 	int ret = 0;
3649 
3650 	WARN_ON(start > eb->len);
3651 	WARN_ON(start + len > eb->start + eb->len);
3652 
3653 	if (eb->addr) {
3654 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3655 			ret = -EFAULT;
3656 		return ret;
3657 	}
3658 
3659 	offset = get_eb_offset_in_folio(eb, start);
3660 
3661 	while (len > 0) {
3662 		char *kaddr;
3663 
3664 		cur = min(len, unit_size - offset);
3665 		kaddr = folio_address(eb->folios[i]);
3666 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3667 			ret = -EFAULT;
3668 			break;
3669 		}
3670 
3671 		dst += cur;
3672 		len -= cur;
3673 		offset = 0;
3674 		i++;
3675 	}
3676 
3677 	return ret;
3678 }
3679 
3680 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3681 			 unsigned long start, unsigned long len)
3682 {
3683 	const int unit_size = eb->folio_size;
3684 	size_t cur;
3685 	size_t offset;
3686 	char *kaddr;
3687 	char *ptr = (char *)ptrv;
3688 	unsigned long i = get_eb_folio_index(eb, start);
3689 	int ret = 0;
3690 
3691 	if (check_eb_range(eb, start, len))
3692 		return -EINVAL;
3693 
3694 	if (eb->addr)
3695 		return memcmp(ptrv, eb->addr + start, len);
3696 
3697 	offset = get_eb_offset_in_folio(eb, start);
3698 
3699 	while (len > 0) {
3700 		cur = min(len, unit_size - offset);
3701 		kaddr = folio_address(eb->folios[i]);
3702 		ret = memcmp(ptr, kaddr + offset, cur);
3703 		if (ret)
3704 			break;
3705 
3706 		ptr += cur;
3707 		len -= cur;
3708 		offset = 0;
3709 		i++;
3710 	}
3711 	return ret;
3712 }
3713 
3714 /*
3715  * Check that the extent buffer is uptodate.
3716  *
3717  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3718  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3719  */
3720 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3721 {
3722 	struct btrfs_fs_info *fs_info = eb->fs_info;
3723 	struct folio *folio = eb->folios[i];
3724 
3725 	ASSERT(folio);
3726 
3727 	/*
3728 	 * If we are using the commit root we could potentially clear a page
3729 	 * Uptodate while we're using the extent buffer that we've previously
3730 	 * looked up.  We don't want to complain in this case, as the page was
3731 	 * valid before, we just didn't write it out.  Instead we want to catch
3732 	 * the case where we didn't actually read the block properly, which
3733 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3734 	 */
3735 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3736 		return;
3737 
3738 	if (fs_info->nodesize < PAGE_SIZE) {
3739 		folio = eb->folios[0];
3740 		ASSERT(i == 0);
3741 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3742 							 eb->start, eb->len)))
3743 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3744 	} else {
3745 		WARN_ON(!folio_test_uptodate(folio));
3746 	}
3747 }
3748 
3749 static void __write_extent_buffer(const struct extent_buffer *eb,
3750 				  const void *srcv, unsigned long start,
3751 				  unsigned long len, bool use_memmove)
3752 {
3753 	const int unit_size = eb->folio_size;
3754 	size_t cur;
3755 	size_t offset;
3756 	char *kaddr;
3757 	const char *src = (const char *)srcv;
3758 	unsigned long i = get_eb_folio_index(eb, start);
3759 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3760 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3761 
3762 	if (check_eb_range(eb, start, len))
3763 		return;
3764 
3765 	if (eb->addr) {
3766 		if (use_memmove)
3767 			memmove(eb->addr + start, srcv, len);
3768 		else
3769 			memcpy(eb->addr + start, srcv, len);
3770 		return;
3771 	}
3772 
3773 	offset = get_eb_offset_in_folio(eb, start);
3774 
3775 	while (len > 0) {
3776 		if (check_uptodate)
3777 			assert_eb_folio_uptodate(eb, i);
3778 
3779 		cur = min(len, unit_size - offset);
3780 		kaddr = folio_address(eb->folios[i]);
3781 		if (use_memmove)
3782 			memmove(kaddr + offset, src, cur);
3783 		else
3784 			memcpy(kaddr + offset, src, cur);
3785 
3786 		src += cur;
3787 		len -= cur;
3788 		offset = 0;
3789 		i++;
3790 	}
3791 }
3792 
3793 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3794 			 unsigned long start, unsigned long len)
3795 {
3796 	return __write_extent_buffer(eb, srcv, start, len, false);
3797 }
3798 
3799 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3800 				 unsigned long start, unsigned long len)
3801 {
3802 	const int unit_size = eb->folio_size;
3803 	unsigned long cur = start;
3804 
3805 	if (eb->addr) {
3806 		memset(eb->addr + start, c, len);
3807 		return;
3808 	}
3809 
3810 	while (cur < start + len) {
3811 		unsigned long index = get_eb_folio_index(eb, cur);
3812 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
3813 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
3814 
3815 		assert_eb_folio_uptodate(eb, index);
3816 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3817 
3818 		cur += cur_len;
3819 	}
3820 }
3821 
3822 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3823 			   unsigned long len)
3824 {
3825 	if (check_eb_range(eb, start, len))
3826 		return;
3827 	return memset_extent_buffer(eb, 0, start, len);
3828 }
3829 
3830 void copy_extent_buffer_full(const struct extent_buffer *dst,
3831 			     const struct extent_buffer *src)
3832 {
3833 	const int unit_size = src->folio_size;
3834 	unsigned long cur = 0;
3835 
3836 	ASSERT(dst->len == src->len);
3837 
3838 	while (cur < src->len) {
3839 		unsigned long index = get_eb_folio_index(src, cur);
3840 		unsigned long offset = get_eb_offset_in_folio(src, cur);
3841 		unsigned long cur_len = min(src->len, unit_size - offset);
3842 		void *addr = folio_address(src->folios[index]) + offset;
3843 
3844 		write_extent_buffer(dst, addr, cur, cur_len);
3845 
3846 		cur += cur_len;
3847 	}
3848 }
3849 
3850 void copy_extent_buffer(const struct extent_buffer *dst,
3851 			const struct extent_buffer *src,
3852 			unsigned long dst_offset, unsigned long src_offset,
3853 			unsigned long len)
3854 {
3855 	const int unit_size = dst->folio_size;
3856 	u64 dst_len = dst->len;
3857 	size_t cur;
3858 	size_t offset;
3859 	char *kaddr;
3860 	unsigned long i = get_eb_folio_index(dst, dst_offset);
3861 
3862 	if (check_eb_range(dst, dst_offset, len) ||
3863 	    check_eb_range(src, src_offset, len))
3864 		return;
3865 
3866 	WARN_ON(src->len != dst_len);
3867 
3868 	offset = get_eb_offset_in_folio(dst, dst_offset);
3869 
3870 	while (len > 0) {
3871 		assert_eb_folio_uptodate(dst, i);
3872 
3873 		cur = min(len, (unsigned long)(unit_size - offset));
3874 
3875 		kaddr = folio_address(dst->folios[i]);
3876 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3877 
3878 		src_offset += cur;
3879 		len -= cur;
3880 		offset = 0;
3881 		i++;
3882 	}
3883 }
3884 
3885 /*
3886  * Calculate the folio and offset of the byte containing the given bit number.
3887  *
3888  * @eb:           the extent buffer
3889  * @start:        offset of the bitmap item in the extent buffer
3890  * @nr:           bit number
3891  * @folio_index:  return index of the folio in the extent buffer that contains
3892  *                the given bit number
3893  * @folio_offset: return offset into the folio given by folio_index
3894  *
3895  * This helper hides the ugliness of finding the byte in an extent buffer which
3896  * contains a given bit.
3897  */
3898 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3899 				    unsigned long start, unsigned long nr,
3900 				    unsigned long *folio_index,
3901 				    size_t *folio_offset)
3902 {
3903 	size_t byte_offset = BIT_BYTE(nr);
3904 	size_t offset;
3905 
3906 	/*
3907 	 * The byte we want is the offset of the extent buffer + the offset of
3908 	 * the bitmap item in the extent buffer + the offset of the byte in the
3909 	 * bitmap item.
3910 	 */
3911 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3912 
3913 	*folio_index = offset >> eb->folio_shift;
3914 	*folio_offset = offset_in_eb_folio(eb, offset);
3915 }
3916 
3917 /*
3918  * Determine whether a bit in a bitmap item is set.
3919  *
3920  * @eb:     the extent buffer
3921  * @start:  offset of the bitmap item in the extent buffer
3922  * @nr:     bit number to test
3923  */
3924 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3925 			   unsigned long nr)
3926 {
3927 	unsigned long i;
3928 	size_t offset;
3929 	u8 *kaddr;
3930 
3931 	eb_bitmap_offset(eb, start, nr, &i, &offset);
3932 	assert_eb_folio_uptodate(eb, i);
3933 	kaddr = folio_address(eb->folios[i]);
3934 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3935 }
3936 
3937 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3938 {
3939 	unsigned long index = get_eb_folio_index(eb, bytenr);
3940 
3941 	if (check_eb_range(eb, bytenr, 1))
3942 		return NULL;
3943 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
3944 }
3945 
3946 /*
3947  * Set an area of a bitmap to 1.
3948  *
3949  * @eb:     the extent buffer
3950  * @start:  offset of the bitmap item in the extent buffer
3951  * @pos:    bit number of the first bit
3952  * @len:    number of bits to set
3953  */
3954 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3955 			      unsigned long pos, unsigned long len)
3956 {
3957 	unsigned int first_byte = start + BIT_BYTE(pos);
3958 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
3959 	const bool same_byte = (first_byte == last_byte);
3960 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
3961 	u8 *kaddr;
3962 
3963 	if (same_byte)
3964 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3965 
3966 	/* Handle the first byte. */
3967 	kaddr = extent_buffer_get_byte(eb, first_byte);
3968 	*kaddr |= mask;
3969 	if (same_byte)
3970 		return;
3971 
3972 	/* Handle the byte aligned part. */
3973 	ASSERT(first_byte + 1 <= last_byte);
3974 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
3975 
3976 	/* Handle the last byte. */
3977 	kaddr = extent_buffer_get_byte(eb, last_byte);
3978 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
3979 }
3980 
3981 
3982 /*
3983  * Clear an area of a bitmap.
3984  *
3985  * @eb:     the extent buffer
3986  * @start:  offset of the bitmap item in the extent buffer
3987  * @pos:    bit number of the first bit
3988  * @len:    number of bits to clear
3989  */
3990 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
3991 				unsigned long start, unsigned long pos,
3992 				unsigned long len)
3993 {
3994 	unsigned int first_byte = start + BIT_BYTE(pos);
3995 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
3996 	const bool same_byte = (first_byte == last_byte);
3997 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
3998 	u8 *kaddr;
3999 
4000 	if (same_byte)
4001 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4002 
4003 	/* Handle the first byte. */
4004 	kaddr = extent_buffer_get_byte(eb, first_byte);
4005 	*kaddr &= ~mask;
4006 	if (same_byte)
4007 		return;
4008 
4009 	/* Handle the byte aligned part. */
4010 	ASSERT(first_byte + 1 <= last_byte);
4011 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4012 
4013 	/* Handle the last byte. */
4014 	kaddr = extent_buffer_get_byte(eb, last_byte);
4015 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4016 }
4017 
4018 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4019 {
4020 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4021 	return distance < len;
4022 }
4023 
4024 void memcpy_extent_buffer(const struct extent_buffer *dst,
4025 			  unsigned long dst_offset, unsigned long src_offset,
4026 			  unsigned long len)
4027 {
4028 	const int unit_size = dst->folio_size;
4029 	unsigned long cur_off = 0;
4030 
4031 	if (check_eb_range(dst, dst_offset, len) ||
4032 	    check_eb_range(dst, src_offset, len))
4033 		return;
4034 
4035 	if (dst->addr) {
4036 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4037 
4038 		if (use_memmove)
4039 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4040 		else
4041 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4042 		return;
4043 	}
4044 
4045 	while (cur_off < len) {
4046 		unsigned long cur_src = cur_off + src_offset;
4047 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4048 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4049 		unsigned long cur_len = min(src_offset + len - cur_src,
4050 					    unit_size - folio_off);
4051 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4052 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4053 						       dst_offset + cur_off, cur_len);
4054 
4055 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4056 				      use_memmove);
4057 		cur_off += cur_len;
4058 	}
4059 }
4060 
4061 void memmove_extent_buffer(const struct extent_buffer *dst,
4062 			   unsigned long dst_offset, unsigned long src_offset,
4063 			   unsigned long len)
4064 {
4065 	unsigned long dst_end = dst_offset + len - 1;
4066 	unsigned long src_end = src_offset + len - 1;
4067 
4068 	if (check_eb_range(dst, dst_offset, len) ||
4069 	    check_eb_range(dst, src_offset, len))
4070 		return;
4071 
4072 	if (dst_offset < src_offset) {
4073 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4074 		return;
4075 	}
4076 
4077 	if (dst->addr) {
4078 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4079 		return;
4080 	}
4081 
4082 	while (len > 0) {
4083 		unsigned long src_i;
4084 		size_t cur;
4085 		size_t dst_off_in_folio;
4086 		size_t src_off_in_folio;
4087 		void *src_addr;
4088 		bool use_memmove;
4089 
4090 		src_i = get_eb_folio_index(dst, src_end);
4091 
4092 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4093 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4094 
4095 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4096 		cur = min(cur, dst_off_in_folio + 1);
4097 
4098 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4099 					 cur + 1;
4100 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4101 					    cur);
4102 
4103 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4104 				      use_memmove);
4105 
4106 		dst_end -= cur;
4107 		src_end -= cur;
4108 		len -= cur;
4109 	}
4110 }
4111 
4112 #define GANG_LOOKUP_SIZE	16
4113 static struct extent_buffer *get_next_extent_buffer(
4114 		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4115 {
4116 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4117 	struct extent_buffer *found = NULL;
4118 	u64 folio_start = folio_pos(folio);
4119 	u64 cur = folio_start;
4120 
4121 	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4122 	lockdep_assert_held(&fs_info->buffer_lock);
4123 
4124 	while (cur < folio_start + PAGE_SIZE) {
4125 		int ret;
4126 		int i;
4127 
4128 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4129 				(void **)gang, cur >> fs_info->sectorsize_bits,
4130 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4131 				      PAGE_SIZE / fs_info->nodesize));
4132 		if (ret == 0)
4133 			goto out;
4134 		for (i = 0; i < ret; i++) {
4135 			/* Already beyond page end */
4136 			if (gang[i]->start >= folio_start + PAGE_SIZE)
4137 				goto out;
4138 			/* Found one */
4139 			if (gang[i]->start >= bytenr) {
4140 				found = gang[i];
4141 				goto out;
4142 			}
4143 		}
4144 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4145 	}
4146 out:
4147 	return found;
4148 }
4149 
4150 static int try_release_subpage_extent_buffer(struct folio *folio)
4151 {
4152 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4153 	u64 cur = folio_pos(folio);
4154 	const u64 end = cur + PAGE_SIZE;
4155 	int ret;
4156 
4157 	while (cur < end) {
4158 		struct extent_buffer *eb = NULL;
4159 
4160 		/*
4161 		 * Unlike try_release_extent_buffer() which uses folio private
4162 		 * to grab buffer, for subpage case we rely on radix tree, thus
4163 		 * we need to ensure radix tree consistency.
4164 		 *
4165 		 * We also want an atomic snapshot of the radix tree, thus go
4166 		 * with spinlock rather than RCU.
4167 		 */
4168 		spin_lock(&fs_info->buffer_lock);
4169 		eb = get_next_extent_buffer(fs_info, folio, cur);
4170 		if (!eb) {
4171 			/* No more eb in the page range after or at cur */
4172 			spin_unlock(&fs_info->buffer_lock);
4173 			break;
4174 		}
4175 		cur = eb->start + eb->len;
4176 
4177 		/*
4178 		 * The same as try_release_extent_buffer(), to ensure the eb
4179 		 * won't disappear out from under us.
4180 		 */
4181 		spin_lock(&eb->refs_lock);
4182 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4183 			spin_unlock(&eb->refs_lock);
4184 			spin_unlock(&fs_info->buffer_lock);
4185 			break;
4186 		}
4187 		spin_unlock(&fs_info->buffer_lock);
4188 
4189 		/*
4190 		 * If tree ref isn't set then we know the ref on this eb is a
4191 		 * real ref, so just return, this eb will likely be freed soon
4192 		 * anyway.
4193 		 */
4194 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4195 			spin_unlock(&eb->refs_lock);
4196 			break;
4197 		}
4198 
4199 		/*
4200 		 * Here we don't care about the return value, we will always
4201 		 * check the folio private at the end.  And
4202 		 * release_extent_buffer() will release the refs_lock.
4203 		 */
4204 		release_extent_buffer(eb);
4205 	}
4206 	/*
4207 	 * Finally to check if we have cleared folio private, as if we have
4208 	 * released all ebs in the page, the folio private should be cleared now.
4209 	 */
4210 	spin_lock(&folio->mapping->i_private_lock);
4211 	if (!folio_test_private(folio))
4212 		ret = 1;
4213 	else
4214 		ret = 0;
4215 	spin_unlock(&folio->mapping->i_private_lock);
4216 	return ret;
4217 
4218 }
4219 
4220 int try_release_extent_buffer(struct folio *folio)
4221 {
4222 	struct extent_buffer *eb;
4223 
4224 	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4225 		return try_release_subpage_extent_buffer(folio);
4226 
4227 	/*
4228 	 * We need to make sure nobody is changing folio private, as we rely on
4229 	 * folio private as the pointer to extent buffer.
4230 	 */
4231 	spin_lock(&folio->mapping->i_private_lock);
4232 	if (!folio_test_private(folio)) {
4233 		spin_unlock(&folio->mapping->i_private_lock);
4234 		return 1;
4235 	}
4236 
4237 	eb = folio_get_private(folio);
4238 	BUG_ON(!eb);
4239 
4240 	/*
4241 	 * This is a little awful but should be ok, we need to make sure that
4242 	 * the eb doesn't disappear out from under us while we're looking at
4243 	 * this page.
4244 	 */
4245 	spin_lock(&eb->refs_lock);
4246 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4247 		spin_unlock(&eb->refs_lock);
4248 		spin_unlock(&folio->mapping->i_private_lock);
4249 		return 0;
4250 	}
4251 	spin_unlock(&folio->mapping->i_private_lock);
4252 
4253 	/*
4254 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4255 	 * so just return, this page will likely be freed soon anyway.
4256 	 */
4257 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4258 		spin_unlock(&eb->refs_lock);
4259 		return 0;
4260 	}
4261 
4262 	return release_extent_buffer(eb);
4263 }
4264 
4265 /*
4266  * Attempt to readahead a child block.
4267  *
4268  * @fs_info:	the fs_info
4269  * @bytenr:	bytenr to read
4270  * @owner_root: objectid of the root that owns this eb
4271  * @gen:	generation for the uptodate check, can be 0
4272  * @level:	level for the eb
4273  *
4274  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4275  * normal uptodate check of the eb, without checking the generation.  If we have
4276  * to read the block we will not block on anything.
4277  */
4278 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4279 				u64 bytenr, u64 owner_root, u64 gen, int level)
4280 {
4281 	struct btrfs_tree_parent_check check = {
4282 		.level = level,
4283 		.transid = gen
4284 	};
4285 	struct extent_buffer *eb;
4286 	int ret;
4287 
4288 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4289 	if (IS_ERR(eb))
4290 		return;
4291 
4292 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4293 		free_extent_buffer(eb);
4294 		return;
4295 	}
4296 
4297 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4298 	if (ret < 0)
4299 		free_extent_buffer_stale(eb);
4300 	else
4301 		free_extent_buffer(eb);
4302 }
4303 
4304 /*
4305  * Readahead a node's child block.
4306  *
4307  * @node:	parent node we're reading from
4308  * @slot:	slot in the parent node for the child we want to read
4309  *
4310  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4311  * the slot in the node provided.
4312  */
4313 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4314 {
4315 	btrfs_readahead_tree_block(node->fs_info,
4316 				   btrfs_node_blockptr(node, slot),
4317 				   btrfs_header_owner(node),
4318 				   btrfs_node_ptr_generation(node, slot),
4319 				   btrfs_header_level(node) - 1);
4320 }
4321