1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 105 /* 106 * The sectors of the page which are going to be submitted by 107 * extent_writepage_io(). 108 * This is to avoid touching ranges covered by compression/inline. 109 */ 110 unsigned long submit_bitmap; 111 }; 112 113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 114 { 115 struct btrfs_bio *bbio = bio_ctrl->bbio; 116 117 if (!bbio) 118 return; 119 120 /* Caller should ensure the bio has at least some range added */ 121 ASSERT(bbio->bio.bi_iter.bi_size); 122 123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 125 btrfs_submit_compressed_read(bbio); 126 else 127 btrfs_submit_bbio(bbio, 0); 128 129 /* The bbio is owned by the end_io handler now */ 130 bio_ctrl->bbio = NULL; 131 } 132 133 /* 134 * Submit or fail the current bio in the bio_ctrl structure. 135 */ 136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 137 { 138 struct btrfs_bio *bbio = bio_ctrl->bbio; 139 140 if (!bbio) 141 return; 142 143 if (ret) { 144 ASSERT(ret < 0); 145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 146 /* The bio is owned by the end_io handler now */ 147 bio_ctrl->bbio = NULL; 148 } else { 149 submit_one_bio(bio_ctrl); 150 } 151 } 152 153 int __init extent_buffer_init_cachep(void) 154 { 155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 156 sizeof(struct extent_buffer), 0, 0, 157 NULL); 158 if (!extent_buffer_cache) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 void __cold extent_buffer_free_cachep(void) 165 { 166 /* 167 * Make sure all delayed rcu free are flushed before we 168 * destroy caches. 169 */ 170 rcu_barrier(); 171 kmem_cache_destroy(extent_buffer_cache); 172 } 173 174 static void process_one_folio(struct btrfs_fs_info *fs_info, 175 struct folio *folio, const struct folio *locked_folio, 176 unsigned long page_ops, u64 start, u64 end) 177 { 178 u32 len; 179 180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 181 len = end + 1 - start; 182 183 if (page_ops & PAGE_SET_ORDERED) 184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 185 if (page_ops & PAGE_START_WRITEBACK) { 186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 188 } 189 if (page_ops & PAGE_END_WRITEBACK) 190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 191 192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 193 btrfs_folio_end_lock(fs_info, folio, start, len); 194 } 195 196 static void __process_folios_contig(struct address_space *mapping, 197 const struct folio *locked_folio, u64 start, 198 u64 end, unsigned long page_ops) 199 { 200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 201 pgoff_t start_index = start >> PAGE_SHIFT; 202 pgoff_t end_index = end >> PAGE_SHIFT; 203 pgoff_t index = start_index; 204 struct folio_batch fbatch; 205 int i; 206 207 folio_batch_init(&fbatch); 208 while (index <= end_index) { 209 int found_folios; 210 211 found_folios = filemap_get_folios_contig(mapping, &index, 212 end_index, &fbatch); 213 for (i = 0; i < found_folios; i++) { 214 struct folio *folio = fbatch.folios[i]; 215 216 process_one_folio(fs_info, folio, locked_folio, 217 page_ops, start, end); 218 } 219 folio_batch_release(&fbatch); 220 cond_resched(); 221 } 222 } 223 224 static noinline void __unlock_for_delalloc(const struct inode *inode, 225 const struct folio *locked_folio, 226 u64 start, u64 end) 227 { 228 unsigned long index = start >> PAGE_SHIFT; 229 unsigned long end_index = end >> PAGE_SHIFT; 230 231 ASSERT(locked_folio); 232 if (index == locked_folio->index && end_index == index) 233 return; 234 235 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 236 PAGE_UNLOCK); 237 } 238 239 static noinline int lock_delalloc_folios(struct inode *inode, 240 const struct folio *locked_folio, 241 u64 start, u64 end) 242 { 243 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 244 struct address_space *mapping = inode->i_mapping; 245 pgoff_t start_index = start >> PAGE_SHIFT; 246 pgoff_t end_index = end >> PAGE_SHIFT; 247 pgoff_t index = start_index; 248 u64 processed_end = start; 249 struct folio_batch fbatch; 250 251 if (index == locked_folio->index && index == end_index) 252 return 0; 253 254 folio_batch_init(&fbatch); 255 while (index <= end_index) { 256 unsigned int found_folios, i; 257 258 found_folios = filemap_get_folios_contig(mapping, &index, 259 end_index, &fbatch); 260 if (found_folios == 0) 261 goto out; 262 263 for (i = 0; i < found_folios; i++) { 264 struct folio *folio = fbatch.folios[i]; 265 u64 range_start; 266 u32 range_len; 267 268 if (folio == locked_folio) 269 continue; 270 271 folio_lock(folio); 272 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 273 folio_unlock(folio); 274 goto out; 275 } 276 range_start = max_t(u64, folio_pos(folio), start); 277 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 278 end + 1) - range_start; 279 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 280 281 processed_end = range_start + range_len - 1; 282 } 283 folio_batch_release(&fbatch); 284 cond_resched(); 285 } 286 287 return 0; 288 out: 289 folio_batch_release(&fbatch); 290 if (processed_end > start) 291 __unlock_for_delalloc(inode, locked_folio, start, 292 processed_end); 293 return -EAGAIN; 294 } 295 296 /* 297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 298 * more than @max_bytes. 299 * 300 * @start: The original start bytenr to search. 301 * Will store the extent range start bytenr. 302 * @end: The original end bytenr of the search range 303 * Will store the extent range end bytenr. 304 * 305 * Return true if we find a delalloc range which starts inside the original 306 * range, and @start/@end will store the delalloc range start/end. 307 * 308 * Return false if we can't find any delalloc range which starts inside the 309 * original range, and @start/@end will be the non-delalloc range start/end. 310 */ 311 EXPORT_FOR_TESTS 312 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 313 struct folio *locked_folio, 314 u64 *start, u64 *end) 315 { 316 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 317 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 318 const u64 orig_start = *start; 319 const u64 orig_end = *end; 320 /* The sanity tests may not set a valid fs_info. */ 321 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 322 u64 delalloc_start; 323 u64 delalloc_end; 324 bool found; 325 struct extent_state *cached_state = NULL; 326 int ret; 327 int loops = 0; 328 329 /* Caller should pass a valid @end to indicate the search range end */ 330 ASSERT(orig_end > orig_start); 331 332 /* The range should at least cover part of the folio */ 333 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) || 334 orig_end <= folio_pos(locked_folio))); 335 again: 336 /* step one, find a bunch of delalloc bytes starting at start */ 337 delalloc_start = *start; 338 delalloc_end = 0; 339 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 340 max_bytes, &cached_state); 341 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 342 *start = delalloc_start; 343 344 /* @delalloc_end can be -1, never go beyond @orig_end */ 345 *end = min(delalloc_end, orig_end); 346 free_extent_state(cached_state); 347 return false; 348 } 349 350 /* 351 * start comes from the offset of locked_folio. We have to lock 352 * folios in order, so we can't process delalloc bytes before 353 * locked_folio 354 */ 355 if (delalloc_start < *start) 356 delalloc_start = *start; 357 358 /* 359 * make sure to limit the number of folios we try to lock down 360 */ 361 if (delalloc_end + 1 - delalloc_start > max_bytes) 362 delalloc_end = delalloc_start + max_bytes - 1; 363 364 /* step two, lock all the folioss after the folios that has start */ 365 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 366 delalloc_end); 367 ASSERT(!ret || ret == -EAGAIN); 368 if (ret == -EAGAIN) { 369 /* some of the folios are gone, lets avoid looping by 370 * shortening the size of the delalloc range we're searching 371 */ 372 free_extent_state(cached_state); 373 cached_state = NULL; 374 if (!loops) { 375 max_bytes = PAGE_SIZE; 376 loops = 1; 377 goto again; 378 } else { 379 found = false; 380 goto out_failed; 381 } 382 } 383 384 /* step three, lock the state bits for the whole range */ 385 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 386 387 /* then test to make sure it is all still delalloc */ 388 ret = test_range_bit(tree, delalloc_start, delalloc_end, 389 EXTENT_DELALLOC, cached_state); 390 391 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 392 if (!ret) { 393 __unlock_for_delalloc(inode, locked_folio, delalloc_start, 394 delalloc_end); 395 cond_resched(); 396 goto again; 397 } 398 *start = delalloc_start; 399 *end = delalloc_end; 400 out_failed: 401 return found; 402 } 403 404 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 405 const struct folio *locked_folio, 406 struct extent_state **cached, 407 u32 clear_bits, unsigned long page_ops) 408 { 409 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 410 411 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 412 end, page_ops); 413 } 414 415 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 416 { 417 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 418 419 if (!fsverity_active(folio->mapping->host) || 420 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 421 start >= i_size_read(folio->mapping->host)) 422 return true; 423 return fsverity_verify_folio(folio); 424 } 425 426 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 427 { 428 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 429 430 ASSERT(folio_pos(folio) <= start && 431 start + len <= folio_pos(folio) + PAGE_SIZE); 432 433 if (uptodate && btrfs_verify_folio(folio, start, len)) 434 btrfs_folio_set_uptodate(fs_info, folio, start, len); 435 else 436 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 437 438 if (!btrfs_is_subpage(fs_info, folio->mapping)) 439 folio_unlock(folio); 440 else 441 btrfs_folio_end_lock(fs_info, folio, start, len); 442 } 443 444 /* 445 * After a write IO is done, we need to: 446 * 447 * - clear the uptodate bits on error 448 * - clear the writeback bits in the extent tree for the range 449 * - filio_end_writeback() if there is no more pending io for the folio 450 * 451 * Scheduling is not allowed, so the extent state tree is expected 452 * to have one and only one object corresponding to this IO. 453 */ 454 static void end_bbio_data_write(struct btrfs_bio *bbio) 455 { 456 struct btrfs_fs_info *fs_info = bbio->fs_info; 457 struct bio *bio = &bbio->bio; 458 int error = blk_status_to_errno(bio->bi_status); 459 struct folio_iter fi; 460 const u32 sectorsize = fs_info->sectorsize; 461 462 ASSERT(!bio_flagged(bio, BIO_CLONED)); 463 bio_for_each_folio_all(fi, bio) { 464 struct folio *folio = fi.folio; 465 u64 start = folio_pos(folio) + fi.offset; 466 u32 len = fi.length; 467 468 /* Only order 0 (single page) folios are allowed for data. */ 469 ASSERT(folio_order(folio) == 0); 470 471 /* Our read/write should always be sector aligned. */ 472 if (!IS_ALIGNED(fi.offset, sectorsize)) 473 btrfs_err(fs_info, 474 "partial page write in btrfs with offset %zu and length %zu", 475 fi.offset, fi.length); 476 else if (!IS_ALIGNED(fi.length, sectorsize)) 477 btrfs_info(fs_info, 478 "incomplete page write with offset %zu and length %zu", 479 fi.offset, fi.length); 480 481 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 482 !error); 483 if (error) 484 mapping_set_error(folio->mapping, error); 485 btrfs_folio_clear_writeback(fs_info, folio, start, len); 486 } 487 488 bio_put(bio); 489 } 490 491 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 492 { 493 ASSERT(folio_test_locked(folio)); 494 if (!btrfs_is_subpage(fs_info, folio->mapping)) 495 return; 496 497 ASSERT(folio_test_private(folio)); 498 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE); 499 } 500 501 /* 502 * After a data read IO is done, we need to: 503 * 504 * - clear the uptodate bits on error 505 * - set the uptodate bits if things worked 506 * - set the folio up to date if all extents in the tree are uptodate 507 * - clear the lock bit in the extent tree 508 * - unlock the folio if there are no other extents locked for it 509 * 510 * Scheduling is not allowed, so the extent state tree is expected 511 * to have one and only one object corresponding to this IO. 512 */ 513 static void end_bbio_data_read(struct btrfs_bio *bbio) 514 { 515 struct btrfs_fs_info *fs_info = bbio->fs_info; 516 struct bio *bio = &bbio->bio; 517 struct folio_iter fi; 518 const u32 sectorsize = fs_info->sectorsize; 519 520 ASSERT(!bio_flagged(bio, BIO_CLONED)); 521 bio_for_each_folio_all(fi, &bbio->bio) { 522 bool uptodate = !bio->bi_status; 523 struct folio *folio = fi.folio; 524 struct inode *inode = folio->mapping->host; 525 u64 start; 526 u64 end; 527 u32 len; 528 529 /* For now only order 0 folios are supported for data. */ 530 ASSERT(folio_order(folio) == 0); 531 btrfs_debug(fs_info, 532 "%s: bi_sector=%llu, err=%d, mirror=%u", 533 __func__, bio->bi_iter.bi_sector, bio->bi_status, 534 bbio->mirror_num); 535 536 /* 537 * We always issue full-sector reads, but if some block in a 538 * folio fails to read, blk_update_request() will advance 539 * bv_offset and adjust bv_len to compensate. Print a warning 540 * for unaligned offsets, and an error if they don't add up to 541 * a full sector. 542 */ 543 if (!IS_ALIGNED(fi.offset, sectorsize)) 544 btrfs_err(fs_info, 545 "partial page read in btrfs with offset %zu and length %zu", 546 fi.offset, fi.length); 547 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 548 btrfs_info(fs_info, 549 "incomplete page read with offset %zu and length %zu", 550 fi.offset, fi.length); 551 552 start = folio_pos(folio) + fi.offset; 553 end = start + fi.length - 1; 554 len = fi.length; 555 556 if (likely(uptodate)) { 557 loff_t i_size = i_size_read(inode); 558 pgoff_t end_index = i_size >> folio_shift(folio); 559 560 /* 561 * Zero out the remaining part if this range straddles 562 * i_size. 563 * 564 * Here we should only zero the range inside the folio, 565 * not touch anything else. 566 * 567 * NOTE: i_size is exclusive while end is inclusive. 568 */ 569 if (folio_index(folio) == end_index && i_size <= end) { 570 u32 zero_start = max(offset_in_folio(folio, i_size), 571 offset_in_folio(folio, start)); 572 u32 zero_len = offset_in_folio(folio, end) + 1 - 573 zero_start; 574 575 folio_zero_range(folio, zero_start, zero_len); 576 } 577 } 578 579 /* Update page status and unlock. */ 580 end_folio_read(folio, uptodate, start, len); 581 } 582 bio_put(bio); 583 } 584 585 /* 586 * Populate every free slot in a provided array with folios using GFP_NOFS. 587 * 588 * @nr_folios: number of folios to allocate 589 * @folio_array: the array to fill with folios; any existing non-NULL entries in 590 * the array will be skipped 591 * 592 * Return: 0 if all folios were able to be allocated; 593 * -ENOMEM otherwise, the partially allocated folios would be freed and 594 * the array slots zeroed 595 */ 596 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 597 { 598 for (int i = 0; i < nr_folios; i++) { 599 if (folio_array[i]) 600 continue; 601 folio_array[i] = folio_alloc(GFP_NOFS, 0); 602 if (!folio_array[i]) 603 goto error; 604 } 605 return 0; 606 error: 607 for (int i = 0; i < nr_folios; i++) { 608 if (folio_array[i]) 609 folio_put(folio_array[i]); 610 } 611 return -ENOMEM; 612 } 613 614 /* 615 * Populate every free slot in a provided array with pages, using GFP_NOFS. 616 * 617 * @nr_pages: number of pages to allocate 618 * @page_array: the array to fill with pages; any existing non-null entries in 619 * the array will be skipped 620 * @nofail: whether using __GFP_NOFAIL flag 621 * 622 * Return: 0 if all pages were able to be allocated; 623 * -ENOMEM otherwise, the partially allocated pages would be freed and 624 * the array slots zeroed 625 */ 626 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 627 bool nofail) 628 { 629 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 630 unsigned int allocated; 631 632 for (allocated = 0; allocated < nr_pages;) { 633 unsigned int last = allocated; 634 635 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 636 if (unlikely(allocated == last)) { 637 /* No progress, fail and do cleanup. */ 638 for (int i = 0; i < allocated; i++) { 639 __free_page(page_array[i]); 640 page_array[i] = NULL; 641 } 642 return -ENOMEM; 643 } 644 } 645 return 0; 646 } 647 648 /* 649 * Populate needed folios for the extent buffer. 650 * 651 * For now, the folios populated are always in order 0 (aka, single page). 652 */ 653 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 654 { 655 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 656 int num_pages = num_extent_pages(eb); 657 int ret; 658 659 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 660 if (ret < 0) 661 return ret; 662 663 for (int i = 0; i < num_pages; i++) 664 eb->folios[i] = page_folio(page_array[i]); 665 eb->folio_size = PAGE_SIZE; 666 eb->folio_shift = PAGE_SHIFT; 667 return 0; 668 } 669 670 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 671 struct folio *folio, u64 disk_bytenr, 672 unsigned int pg_offset) 673 { 674 struct bio *bio = &bio_ctrl->bbio->bio; 675 struct bio_vec *bvec = bio_last_bvec_all(bio); 676 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 677 struct folio *bv_folio = page_folio(bvec->bv_page); 678 679 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 680 /* 681 * For compression, all IO should have its logical bytenr set 682 * to the starting bytenr of the compressed extent. 683 */ 684 return bio->bi_iter.bi_sector == sector; 685 } 686 687 /* 688 * The contig check requires the following conditions to be met: 689 * 690 * 1) The folios are belonging to the same inode 691 * This is implied by the call chain. 692 * 693 * 2) The range has adjacent logical bytenr 694 * 695 * 3) The range has adjacent file offset 696 * This is required for the usage of btrfs_bio->file_offset. 697 */ 698 return bio_end_sector(bio) == sector && 699 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len == 700 folio_pos(folio) + pg_offset; 701 } 702 703 static void alloc_new_bio(struct btrfs_inode *inode, 704 struct btrfs_bio_ctrl *bio_ctrl, 705 u64 disk_bytenr, u64 file_offset) 706 { 707 struct btrfs_fs_info *fs_info = inode->root->fs_info; 708 struct btrfs_bio *bbio; 709 710 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 711 bio_ctrl->end_io_func, NULL); 712 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 713 bbio->inode = inode; 714 bbio->file_offset = file_offset; 715 bio_ctrl->bbio = bbio; 716 bio_ctrl->len_to_oe_boundary = U32_MAX; 717 718 /* Limit data write bios to the ordered boundary. */ 719 if (bio_ctrl->wbc) { 720 struct btrfs_ordered_extent *ordered; 721 722 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 723 if (ordered) { 724 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 725 ordered->file_offset + 726 ordered->disk_num_bytes - file_offset); 727 bbio->ordered = ordered; 728 } 729 730 /* 731 * Pick the last added device to support cgroup writeback. For 732 * multi-device file systems this means blk-cgroup policies have 733 * to always be set on the last added/replaced device. 734 * This is a bit odd but has been like that for a long time. 735 */ 736 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 737 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 738 } 739 } 740 741 /* 742 * @disk_bytenr: logical bytenr where the write will be 743 * @page: page to add to the bio 744 * @size: portion of page that we want to write to 745 * @pg_offset: offset of the new bio or to check whether we are adding 746 * a contiguous page to the previous one 747 * 748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 749 * new one in @bio_ctrl->bbio. 750 * The mirror number for this IO should already be initizlied in 751 * @bio_ctrl->mirror_num. 752 */ 753 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 754 u64 disk_bytenr, struct folio *folio, 755 size_t size, unsigned long pg_offset) 756 { 757 struct btrfs_inode *inode = folio_to_inode(folio); 758 759 ASSERT(pg_offset + size <= PAGE_SIZE); 760 ASSERT(bio_ctrl->end_io_func); 761 762 if (bio_ctrl->bbio && 763 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset)) 764 submit_one_bio(bio_ctrl); 765 766 do { 767 u32 len = size; 768 769 /* Allocate new bio if needed */ 770 if (!bio_ctrl->bbio) { 771 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 772 folio_pos(folio) + pg_offset); 773 } 774 775 /* Cap to the current ordered extent boundary if there is one. */ 776 if (len > bio_ctrl->len_to_oe_boundary) { 777 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 778 ASSERT(is_data_inode(inode)); 779 len = bio_ctrl->len_to_oe_boundary; 780 } 781 782 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 783 /* bio full: move on to a new one */ 784 submit_one_bio(bio_ctrl); 785 continue; 786 } 787 788 if (bio_ctrl->wbc) 789 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, 790 len); 791 792 size -= len; 793 pg_offset += len; 794 disk_bytenr += len; 795 796 /* 797 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 798 * sector aligned. alloc_new_bio() then sets it to the end of 799 * our ordered extent for writes into zoned devices. 800 * 801 * When len_to_oe_boundary is tracking an ordered extent, we 802 * trust the ordered extent code to align things properly, and 803 * the check above to cap our write to the ordered extent 804 * boundary is correct. 805 * 806 * When len_to_oe_boundary is U32_MAX, the cap above would 807 * result in a 4095 byte IO for the last folio right before 808 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 809 * the checks required to make sure we don't overflow the bio, 810 * and we should just ignore len_to_oe_boundary completely 811 * unless we're using it to track an ordered extent. 812 * 813 * It's pretty hard to make a bio sized U32_MAX, but it can 814 * happen when the page cache is able to feed us contiguous 815 * folios for large extents. 816 */ 817 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 818 bio_ctrl->len_to_oe_boundary -= len; 819 820 /* Ordered extent boundary: move on to a new bio. */ 821 if (bio_ctrl->len_to_oe_boundary == 0) 822 submit_one_bio(bio_ctrl); 823 } while (size); 824 } 825 826 static int attach_extent_buffer_folio(struct extent_buffer *eb, 827 struct folio *folio, 828 struct btrfs_subpage *prealloc) 829 { 830 struct btrfs_fs_info *fs_info = eb->fs_info; 831 int ret = 0; 832 833 /* 834 * If the page is mapped to btree inode, we should hold the private 835 * lock to prevent race. 836 * For cloned or dummy extent buffers, their pages are not mapped and 837 * will not race with any other ebs. 838 */ 839 if (folio->mapping) 840 lockdep_assert_held(&folio->mapping->i_private_lock); 841 842 if (fs_info->nodesize >= PAGE_SIZE) { 843 if (!folio_test_private(folio)) 844 folio_attach_private(folio, eb); 845 else 846 WARN_ON(folio_get_private(folio) != eb); 847 return 0; 848 } 849 850 /* Already mapped, just free prealloc */ 851 if (folio_test_private(folio)) { 852 btrfs_free_subpage(prealloc); 853 return 0; 854 } 855 856 if (prealloc) 857 /* Has preallocated memory for subpage */ 858 folio_attach_private(folio, prealloc); 859 else 860 /* Do new allocation to attach subpage */ 861 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 862 return ret; 863 } 864 865 int set_page_extent_mapped(struct page *page) 866 { 867 return set_folio_extent_mapped(page_folio(page)); 868 } 869 870 int set_folio_extent_mapped(struct folio *folio) 871 { 872 struct btrfs_fs_info *fs_info; 873 874 ASSERT(folio->mapping); 875 876 if (folio_test_private(folio)) 877 return 0; 878 879 fs_info = folio_to_fs_info(folio); 880 881 if (btrfs_is_subpage(fs_info, folio->mapping)) 882 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 883 884 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 885 return 0; 886 } 887 888 void clear_folio_extent_mapped(struct folio *folio) 889 { 890 struct btrfs_fs_info *fs_info; 891 892 ASSERT(folio->mapping); 893 894 if (!folio_test_private(folio)) 895 return; 896 897 fs_info = folio_to_fs_info(folio); 898 if (btrfs_is_subpage(fs_info, folio->mapping)) 899 return btrfs_detach_subpage(fs_info, folio); 900 901 folio_detach_private(folio); 902 } 903 904 static struct extent_map *__get_extent_map(struct inode *inode, 905 struct folio *folio, u64 start, 906 u64 len, struct extent_map **em_cached) 907 { 908 struct extent_map *em; 909 struct extent_state *cached_state = NULL; 910 911 ASSERT(em_cached); 912 913 if (*em_cached) { 914 em = *em_cached; 915 if (extent_map_in_tree(em) && start >= em->start && 916 start < extent_map_end(em)) { 917 refcount_inc(&em->refs); 918 return em; 919 } 920 921 free_extent_map(em); 922 *em_cached = NULL; 923 } 924 925 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), start, start + len - 1, &cached_state); 926 em = btrfs_get_extent(BTRFS_I(inode), folio, start, len); 927 if (!IS_ERR(em)) { 928 BUG_ON(*em_cached); 929 refcount_inc(&em->refs); 930 *em_cached = em; 931 } 932 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len - 1, &cached_state); 933 934 return em; 935 } 936 /* 937 * basic readpage implementation. Locked extent state structs are inserted 938 * into the tree that are removed when the IO is done (by the end_io 939 * handlers) 940 * XXX JDM: This needs looking at to ensure proper page locking 941 * return 0 on success, otherwise return error 942 */ 943 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 944 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 945 { 946 struct inode *inode = folio->mapping->host; 947 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 948 u64 start = folio_pos(folio); 949 const u64 end = start + PAGE_SIZE - 1; 950 u64 cur = start; 951 u64 extent_offset; 952 u64 last_byte = i_size_read(inode); 953 u64 block_start; 954 struct extent_map *em; 955 int ret = 0; 956 size_t pg_offset = 0; 957 size_t iosize; 958 size_t blocksize = fs_info->sectorsize; 959 960 ret = set_folio_extent_mapped(folio); 961 if (ret < 0) { 962 folio_unlock(folio); 963 return ret; 964 } 965 966 if (folio->index == last_byte >> folio_shift(folio)) { 967 size_t zero_offset = offset_in_folio(folio, last_byte); 968 969 if (zero_offset) { 970 iosize = folio_size(folio) - zero_offset; 971 folio_zero_range(folio, zero_offset, iosize); 972 } 973 } 974 bio_ctrl->end_io_func = end_bbio_data_read; 975 begin_folio_read(fs_info, folio); 976 while (cur <= end) { 977 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 978 bool force_bio_submit = false; 979 u64 disk_bytenr; 980 981 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 982 if (cur >= last_byte) { 983 iosize = folio_size(folio) - pg_offset; 984 folio_zero_range(folio, pg_offset, iosize); 985 end_folio_read(folio, true, cur, iosize); 986 break; 987 } 988 em = __get_extent_map(inode, folio, cur, end - cur + 1, 989 em_cached); 990 if (IS_ERR(em)) { 991 end_folio_read(folio, false, cur, end + 1 - cur); 992 return PTR_ERR(em); 993 } 994 extent_offset = cur - em->start; 995 BUG_ON(extent_map_end(em) <= cur); 996 BUG_ON(end < cur); 997 998 compress_type = extent_map_compression(em); 999 1000 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1001 iosize = ALIGN(iosize, blocksize); 1002 if (compress_type != BTRFS_COMPRESS_NONE) 1003 disk_bytenr = em->disk_bytenr; 1004 else 1005 disk_bytenr = extent_map_block_start(em) + extent_offset; 1006 block_start = extent_map_block_start(em); 1007 if (em->flags & EXTENT_FLAG_PREALLOC) 1008 block_start = EXTENT_MAP_HOLE; 1009 1010 /* 1011 * If we have a file range that points to a compressed extent 1012 * and it's followed by a consecutive file range that points 1013 * to the same compressed extent (possibly with a different 1014 * offset and/or length, so it either points to the whole extent 1015 * or only part of it), we must make sure we do not submit a 1016 * single bio to populate the folios for the 2 ranges because 1017 * this makes the compressed extent read zero out the folios 1018 * belonging to the 2nd range. Imagine the following scenario: 1019 * 1020 * File layout 1021 * [0 - 8K] [8K - 24K] 1022 * | | 1023 * | | 1024 * points to extent X, points to extent X, 1025 * offset 4K, length of 8K offset 0, length 16K 1026 * 1027 * [extent X, compressed length = 4K uncompressed length = 16K] 1028 * 1029 * If the bio to read the compressed extent covers both ranges, 1030 * it will decompress extent X into the folios belonging to the 1031 * first range and then it will stop, zeroing out the remaining 1032 * folios that belong to the other range that points to extent X. 1033 * So here we make sure we submit 2 bios, one for the first 1034 * range and another one for the third range. Both will target 1035 * the same physical extent from disk, but we can't currently 1036 * make the compressed bio endio callback populate the folios 1037 * for both ranges because each compressed bio is tightly 1038 * coupled with a single extent map, and each range can have 1039 * an extent map with a different offset value relative to the 1040 * uncompressed data of our extent and different lengths. This 1041 * is a corner case so we prioritize correctness over 1042 * non-optimal behavior (submitting 2 bios for the same extent). 1043 */ 1044 if (compress_type != BTRFS_COMPRESS_NONE && 1045 prev_em_start && *prev_em_start != (u64)-1 && 1046 *prev_em_start != em->start) 1047 force_bio_submit = true; 1048 1049 if (prev_em_start) 1050 *prev_em_start = em->start; 1051 1052 free_extent_map(em); 1053 em = NULL; 1054 1055 /* we've found a hole, just zero and go on */ 1056 if (block_start == EXTENT_MAP_HOLE) { 1057 folio_zero_range(folio, pg_offset, iosize); 1058 1059 end_folio_read(folio, true, cur, iosize); 1060 cur = cur + iosize; 1061 pg_offset += iosize; 1062 continue; 1063 } 1064 /* the get_extent function already copied into the folio */ 1065 if (block_start == EXTENT_MAP_INLINE) { 1066 end_folio_read(folio, true, cur, iosize); 1067 cur = cur + iosize; 1068 pg_offset += iosize; 1069 continue; 1070 } 1071 1072 if (bio_ctrl->compress_type != compress_type) { 1073 submit_one_bio(bio_ctrl); 1074 bio_ctrl->compress_type = compress_type; 1075 } 1076 1077 if (force_bio_submit) 1078 submit_one_bio(bio_ctrl); 1079 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize, 1080 pg_offset); 1081 cur = cur + iosize; 1082 pg_offset += iosize; 1083 } 1084 1085 return 0; 1086 } 1087 1088 int btrfs_read_folio(struct file *file, struct folio *folio) 1089 { 1090 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1091 struct extent_map *em_cached = NULL; 1092 int ret; 1093 1094 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1095 free_extent_map(em_cached); 1096 1097 /* 1098 * If btrfs_do_readpage() failed we will want to submit the assembled 1099 * bio to do the cleanup. 1100 */ 1101 submit_one_bio(&bio_ctrl); 1102 return ret; 1103 } 1104 1105 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1106 u64 start, u32 len) 1107 { 1108 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1109 const u64 folio_start = folio_pos(folio); 1110 unsigned int start_bit; 1111 unsigned int nbits; 1112 1113 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE); 1114 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1115 nbits = len >> fs_info->sectorsize_bits; 1116 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1117 bitmap_set(delalloc_bitmap, start_bit, nbits); 1118 } 1119 1120 static bool find_next_delalloc_bitmap(struct folio *folio, 1121 unsigned long *delalloc_bitmap, u64 start, 1122 u64 *found_start, u32 *found_len) 1123 { 1124 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1125 const u64 folio_start = folio_pos(folio); 1126 const unsigned int bitmap_size = fs_info->sectors_per_page; 1127 unsigned int start_bit; 1128 unsigned int first_zero; 1129 unsigned int first_set; 1130 1131 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE); 1132 1133 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1134 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1135 if (first_set >= bitmap_size) 1136 return false; 1137 1138 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1139 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1140 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1141 return true; 1142 } 1143 1144 /* 1145 * helper for extent_writepage(), doing all of the delayed allocation setup. 1146 * 1147 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1148 * to write the page (copy into inline extent). In this case the IO has 1149 * been started and the page is already unlocked. 1150 * 1151 * This returns 0 if all went well (page still locked) 1152 * This returns < 0 if there were errors (page still locked) 1153 */ 1154 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1155 struct folio *folio, 1156 struct btrfs_bio_ctrl *bio_ctrl) 1157 { 1158 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1159 struct writeback_control *wbc = bio_ctrl->wbc; 1160 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping); 1161 const u64 page_start = folio_pos(folio); 1162 const u64 page_end = page_start + folio_size(folio) - 1; 1163 unsigned long delalloc_bitmap = 0; 1164 /* 1165 * Save the last found delalloc end. As the delalloc end can go beyond 1166 * page boundary, thus we cannot rely on subpage bitmap to locate the 1167 * last delalloc end. 1168 */ 1169 u64 last_delalloc_end = 0; 1170 u64 delalloc_start = page_start; 1171 u64 delalloc_end = page_end; 1172 u64 delalloc_to_write = 0; 1173 int ret = 0; 1174 int bit; 1175 1176 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1177 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) { 1178 ASSERT(fs_info->sectors_per_page > 1); 1179 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1180 } else { 1181 bio_ctrl->submit_bitmap = 1; 1182 } 1183 1184 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) { 1185 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1186 1187 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1188 } 1189 1190 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1191 while (delalloc_start < page_end) { 1192 delalloc_end = page_end; 1193 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1194 &delalloc_start, &delalloc_end)) { 1195 delalloc_start = delalloc_end + 1; 1196 continue; 1197 } 1198 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1199 min(delalloc_end, page_end) + 1 - delalloc_start); 1200 last_delalloc_end = delalloc_end; 1201 delalloc_start = delalloc_end + 1; 1202 } 1203 delalloc_start = page_start; 1204 1205 if (!last_delalloc_end) 1206 goto out; 1207 1208 /* Run the delalloc ranges for the above locked ranges. */ 1209 while (delalloc_start < page_end) { 1210 u64 found_start; 1211 u32 found_len; 1212 bool found; 1213 1214 if (!is_subpage) { 1215 /* 1216 * For non-subpage case, the found delalloc range must 1217 * cover this folio and there must be only one locked 1218 * delalloc range. 1219 */ 1220 found_start = page_start; 1221 found_len = last_delalloc_end + 1 - found_start; 1222 found = true; 1223 } else { 1224 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1225 delalloc_start, &found_start, &found_len); 1226 } 1227 if (!found) 1228 break; 1229 /* 1230 * The subpage range covers the last sector, the delalloc range may 1231 * end beyond the folio boundary, use the saved delalloc_end 1232 * instead. 1233 */ 1234 if (found_start + found_len >= page_end) 1235 found_len = last_delalloc_end + 1 - found_start; 1236 1237 if (ret >= 0) { 1238 /* No errors hit so far, run the current delalloc range. */ 1239 ret = btrfs_run_delalloc_range(inode, folio, 1240 found_start, 1241 found_start + found_len - 1, 1242 wbc); 1243 } else { 1244 /* 1245 * We've hit an error during previous delalloc range, 1246 * have to cleanup the remaining locked ranges. 1247 */ 1248 unlock_extent(&inode->io_tree, found_start, 1249 found_start + found_len - 1, NULL); 1250 __unlock_for_delalloc(&inode->vfs_inode, folio, 1251 found_start, 1252 found_start + found_len - 1); 1253 } 1254 1255 /* 1256 * We have some ranges that's going to be submitted asynchronously 1257 * (compression or inline). These range have their own control 1258 * on when to unlock the pages. We should not touch them 1259 * anymore, so clear the range from the submission bitmap. 1260 */ 1261 if (ret > 0) { 1262 unsigned int start_bit = (found_start - page_start) >> 1263 fs_info->sectorsize_bits; 1264 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1265 page_start) >> fs_info->sectorsize_bits; 1266 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1267 } 1268 /* 1269 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1270 * thus for the last range, we cannot touch the folio anymore. 1271 */ 1272 if (found_start + found_len >= last_delalloc_end + 1) 1273 break; 1274 1275 delalloc_start = found_start + found_len; 1276 } 1277 if (ret < 0) 1278 return ret; 1279 out: 1280 if (last_delalloc_end) 1281 delalloc_end = last_delalloc_end; 1282 else 1283 delalloc_end = page_end; 1284 /* 1285 * delalloc_end is already one less than the total length, so 1286 * we don't subtract one from PAGE_SIZE 1287 */ 1288 delalloc_to_write += 1289 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1290 1291 /* 1292 * If all ranges are submitted asynchronously, we just need to account 1293 * for them here. 1294 */ 1295 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) { 1296 wbc->nr_to_write -= delalloc_to_write; 1297 return 1; 1298 } 1299 1300 if (wbc->nr_to_write < delalloc_to_write) { 1301 int thresh = 8192; 1302 1303 if (delalloc_to_write < thresh * 2) 1304 thresh = delalloc_to_write; 1305 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1306 thresh); 1307 } 1308 1309 return 0; 1310 } 1311 1312 /* 1313 * Return 0 if we have submitted or queued the sector for submission. 1314 * Return <0 for critical errors. 1315 * 1316 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1317 */ 1318 static int submit_one_sector(struct btrfs_inode *inode, 1319 struct folio *folio, 1320 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1321 loff_t i_size) 1322 { 1323 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1324 struct extent_map *em; 1325 u64 block_start; 1326 u64 disk_bytenr; 1327 u64 extent_offset; 1328 u64 em_end; 1329 const u32 sectorsize = fs_info->sectorsize; 1330 1331 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1332 1333 /* @filepos >= i_size case should be handled by the caller. */ 1334 ASSERT(filepos < i_size); 1335 1336 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1337 if (IS_ERR(em)) 1338 return PTR_ERR_OR_ZERO(em); 1339 1340 extent_offset = filepos - em->start; 1341 em_end = extent_map_end(em); 1342 ASSERT(filepos <= em_end); 1343 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1344 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1345 1346 block_start = extent_map_block_start(em); 1347 disk_bytenr = extent_map_block_start(em) + extent_offset; 1348 1349 ASSERT(!extent_map_is_compressed(em)); 1350 ASSERT(block_start != EXTENT_MAP_HOLE); 1351 ASSERT(block_start != EXTENT_MAP_INLINE); 1352 1353 free_extent_map(em); 1354 em = NULL; 1355 1356 /* 1357 * Although the PageDirty bit is cleared before entering this 1358 * function, subpage dirty bit is not cleared. 1359 * So clear subpage dirty bit here so next time we won't submit 1360 * a folio for a range already written to disk. 1361 */ 1362 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1363 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1364 /* 1365 * Above call should set the whole folio with writeback flag, even 1366 * just for a single subpage sector. 1367 * As long as the folio is properly locked and the range is correct, 1368 * we should always get the folio with writeback flag. 1369 */ 1370 ASSERT(folio_test_writeback(folio)); 1371 1372 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1373 sectorsize, filepos - folio_pos(folio)); 1374 return 0; 1375 } 1376 1377 /* 1378 * Helper for extent_writepage(). This calls the writepage start hooks, 1379 * and does the loop to map the page into extents and bios. 1380 * 1381 * We return 1 if the IO is started and the page is unlocked, 1382 * 0 if all went well (page still locked) 1383 * < 0 if there were errors (page still locked) 1384 */ 1385 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1386 struct folio *folio, 1387 u64 start, u32 len, 1388 struct btrfs_bio_ctrl *bio_ctrl, 1389 loff_t i_size) 1390 { 1391 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1392 unsigned long range_bitmap = 0; 1393 bool submitted_io = false; 1394 const u64 folio_start = folio_pos(folio); 1395 u64 cur; 1396 int bit; 1397 int ret = 0; 1398 1399 ASSERT(start >= folio_start && 1400 start + len <= folio_start + folio_size(folio)); 1401 1402 ret = btrfs_writepage_cow_fixup(folio); 1403 if (ret) { 1404 /* Fixup worker will requeue */ 1405 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1406 folio_unlock(folio); 1407 return 1; 1408 } 1409 1410 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1411 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1412 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1413 fs_info->sectors_per_page); 1414 1415 bio_ctrl->end_io_func = end_bbio_data_write; 1416 1417 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) { 1418 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1419 1420 if (cur >= i_size) { 1421 btrfs_mark_ordered_io_finished(inode, folio, cur, 1422 start + len - cur, true); 1423 /* 1424 * This range is beyond i_size, thus we don't need to 1425 * bother writing back. 1426 * But we still need to clear the dirty subpage bit, or 1427 * the next time the folio gets dirtied, we will try to 1428 * writeback the sectors with subpage dirty bits, 1429 * causing writeback without ordered extent. 1430 */ 1431 btrfs_folio_clear_dirty(fs_info, folio, cur, 1432 start + len - cur); 1433 break; 1434 } 1435 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1436 if (ret < 0) 1437 goto out; 1438 submitted_io = true; 1439 } 1440 out: 1441 /* 1442 * If we didn't submitted any sector (>= i_size), folio dirty get 1443 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1444 * by folio_start_writeback() if the folio is not dirty). 1445 * 1446 * Here we set writeback and clear for the range. If the full folio 1447 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1448 */ 1449 if (!submitted_io) { 1450 btrfs_folio_set_writeback(fs_info, folio, start, len); 1451 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1452 } 1453 return ret; 1454 } 1455 1456 /* 1457 * the writepage semantics are similar to regular writepage. extent 1458 * records are inserted to lock ranges in the tree, and as dirty areas 1459 * are found, they are marked writeback. Then the lock bits are removed 1460 * and the end_io handler clears the writeback ranges 1461 * 1462 * Return 0 if everything goes well. 1463 * Return <0 for error. 1464 */ 1465 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1466 { 1467 struct inode *inode = folio->mapping->host; 1468 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1469 const u64 page_start = folio_pos(folio); 1470 int ret; 1471 size_t pg_offset; 1472 loff_t i_size = i_size_read(inode); 1473 unsigned long end_index = i_size >> PAGE_SHIFT; 1474 1475 trace_extent_writepage(folio, inode, bio_ctrl->wbc); 1476 1477 WARN_ON(!folio_test_locked(folio)); 1478 1479 pg_offset = offset_in_folio(folio, i_size); 1480 if (folio->index > end_index || 1481 (folio->index == end_index && !pg_offset)) { 1482 folio_invalidate(folio, 0, folio_size(folio)); 1483 folio_unlock(folio); 1484 return 0; 1485 } 1486 1487 if (folio->index == end_index) 1488 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1489 1490 /* 1491 * Default to unlock the whole folio. 1492 * The proper bitmap can only be initialized until writepage_delalloc(). 1493 */ 1494 bio_ctrl->submit_bitmap = (unsigned long)-1; 1495 ret = set_folio_extent_mapped(folio); 1496 if (ret < 0) 1497 goto done; 1498 1499 ret = writepage_delalloc(BTRFS_I(inode), folio, bio_ctrl); 1500 if (ret == 1) 1501 return 0; 1502 if (ret) 1503 goto done; 1504 1505 ret = extent_writepage_io(BTRFS_I(inode), folio, folio_pos(folio), 1506 PAGE_SIZE, bio_ctrl, i_size); 1507 if (ret == 1) 1508 return 0; 1509 1510 bio_ctrl->wbc->nr_to_write--; 1511 1512 done: 1513 if (ret) { 1514 btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio, 1515 page_start, PAGE_SIZE, !ret); 1516 mapping_set_error(folio->mapping, ret); 1517 } 1518 1519 /* 1520 * Only unlock ranges that are submitted. As there can be some async 1521 * submitted ranges inside the folio. 1522 */ 1523 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1524 ASSERT(ret <= 0); 1525 return ret; 1526 } 1527 1528 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1529 { 1530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1531 TASK_UNINTERRUPTIBLE); 1532 } 1533 1534 /* 1535 * Lock extent buffer status and pages for writeback. 1536 * 1537 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1538 * extent buffer is not dirty) 1539 * Return %true is the extent buffer is submitted to bio. 1540 */ 1541 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1542 struct writeback_control *wbc) 1543 { 1544 struct btrfs_fs_info *fs_info = eb->fs_info; 1545 bool ret = false; 1546 1547 btrfs_tree_lock(eb); 1548 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1549 btrfs_tree_unlock(eb); 1550 if (wbc->sync_mode != WB_SYNC_ALL) 1551 return false; 1552 wait_on_extent_buffer_writeback(eb); 1553 btrfs_tree_lock(eb); 1554 } 1555 1556 /* 1557 * We need to do this to prevent races in people who check if the eb is 1558 * under IO since we can end up having no IO bits set for a short period 1559 * of time. 1560 */ 1561 spin_lock(&eb->refs_lock); 1562 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1563 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1564 spin_unlock(&eb->refs_lock); 1565 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1566 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1567 -eb->len, 1568 fs_info->dirty_metadata_batch); 1569 ret = true; 1570 } else { 1571 spin_unlock(&eb->refs_lock); 1572 } 1573 btrfs_tree_unlock(eb); 1574 return ret; 1575 } 1576 1577 static void set_btree_ioerr(struct extent_buffer *eb) 1578 { 1579 struct btrfs_fs_info *fs_info = eb->fs_info; 1580 1581 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1582 1583 /* 1584 * A read may stumble upon this buffer later, make sure that it gets an 1585 * error and knows there was an error. 1586 */ 1587 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1588 1589 /* 1590 * We need to set the mapping with the io error as well because a write 1591 * error will flip the file system readonly, and then syncfs() will 1592 * return a 0 because we are readonly if we don't modify the err seq for 1593 * the superblock. 1594 */ 1595 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1596 1597 /* 1598 * If writeback for a btree extent that doesn't belong to a log tree 1599 * failed, increment the counter transaction->eb_write_errors. 1600 * We do this because while the transaction is running and before it's 1601 * committing (when we call filemap_fdata[write|wait]_range against 1602 * the btree inode), we might have 1603 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1604 * returns an error or an error happens during writeback, when we're 1605 * committing the transaction we wouldn't know about it, since the pages 1606 * can be no longer dirty nor marked anymore for writeback (if a 1607 * subsequent modification to the extent buffer didn't happen before the 1608 * transaction commit), which makes filemap_fdata[write|wait]_range not 1609 * able to find the pages which contain errors at transaction 1610 * commit time. So if this happens we must abort the transaction, 1611 * otherwise we commit a super block with btree roots that point to 1612 * btree nodes/leafs whose content on disk is invalid - either garbage 1613 * or the content of some node/leaf from a past generation that got 1614 * cowed or deleted and is no longer valid. 1615 * 1616 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1617 * not be enough - we need to distinguish between log tree extents vs 1618 * non-log tree extents, and the next filemap_fdatawait_range() call 1619 * will catch and clear such errors in the mapping - and that call might 1620 * be from a log sync and not from a transaction commit. Also, checking 1621 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1622 * not done and would not be reliable - the eb might have been released 1623 * from memory and reading it back again means that flag would not be 1624 * set (since it's a runtime flag, not persisted on disk). 1625 * 1626 * Using the flags below in the btree inode also makes us achieve the 1627 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1628 * writeback for all dirty pages and before filemap_fdatawait_range() 1629 * is called, the writeback for all dirty pages had already finished 1630 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1631 * filemap_fdatawait_range() would return success, as it could not know 1632 * that writeback errors happened (the pages were no longer tagged for 1633 * writeback). 1634 */ 1635 switch (eb->log_index) { 1636 case -1: 1637 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1638 break; 1639 case 0: 1640 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1641 break; 1642 case 1: 1643 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1644 break; 1645 default: 1646 BUG(); /* unexpected, logic error */ 1647 } 1648 } 1649 1650 /* 1651 * The endio specific version which won't touch any unsafe spinlock in endio 1652 * context. 1653 */ 1654 static struct extent_buffer *find_extent_buffer_nolock( 1655 const struct btrfs_fs_info *fs_info, u64 start) 1656 { 1657 struct extent_buffer *eb; 1658 1659 rcu_read_lock(); 1660 eb = radix_tree_lookup(&fs_info->buffer_radix, 1661 start >> fs_info->sectorsize_bits); 1662 if (eb && atomic_inc_not_zero(&eb->refs)) { 1663 rcu_read_unlock(); 1664 return eb; 1665 } 1666 rcu_read_unlock(); 1667 return NULL; 1668 } 1669 1670 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1671 { 1672 struct extent_buffer *eb = bbio->private; 1673 struct btrfs_fs_info *fs_info = eb->fs_info; 1674 bool uptodate = !bbio->bio.bi_status; 1675 struct folio_iter fi; 1676 u32 bio_offset = 0; 1677 1678 if (!uptodate) 1679 set_btree_ioerr(eb); 1680 1681 bio_for_each_folio_all(fi, &bbio->bio) { 1682 u64 start = eb->start + bio_offset; 1683 struct folio *folio = fi.folio; 1684 u32 len = fi.length; 1685 1686 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1687 bio_offset += len; 1688 } 1689 1690 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1691 smp_mb__after_atomic(); 1692 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1693 1694 bio_put(&bbio->bio); 1695 } 1696 1697 static void prepare_eb_write(struct extent_buffer *eb) 1698 { 1699 u32 nritems; 1700 unsigned long start; 1701 unsigned long end; 1702 1703 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1704 1705 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1706 nritems = btrfs_header_nritems(eb); 1707 if (btrfs_header_level(eb) > 0) { 1708 end = btrfs_node_key_ptr_offset(eb, nritems); 1709 memzero_extent_buffer(eb, end, eb->len - end); 1710 } else { 1711 /* 1712 * Leaf: 1713 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1714 */ 1715 start = btrfs_item_nr_offset(eb, nritems); 1716 end = btrfs_item_nr_offset(eb, 0); 1717 if (nritems == 0) 1718 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1719 else 1720 end += btrfs_item_offset(eb, nritems - 1); 1721 memzero_extent_buffer(eb, start, end - start); 1722 } 1723 } 1724 1725 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1726 struct writeback_control *wbc) 1727 { 1728 struct btrfs_fs_info *fs_info = eb->fs_info; 1729 struct btrfs_bio *bbio; 1730 1731 prepare_eb_write(eb); 1732 1733 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1734 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1735 eb->fs_info, end_bbio_meta_write, eb); 1736 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1737 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1738 wbc_init_bio(wbc, &bbio->bio); 1739 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1740 bbio->file_offset = eb->start; 1741 if (fs_info->nodesize < PAGE_SIZE) { 1742 struct folio *folio = eb->folios[0]; 1743 bool ret; 1744 1745 folio_lock(folio); 1746 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1747 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1748 eb->len)) { 1749 folio_clear_dirty_for_io(folio); 1750 wbc->nr_to_write--; 1751 } 1752 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1753 eb->start - folio_pos(folio)); 1754 ASSERT(ret); 1755 wbc_account_cgroup_owner(wbc, folio, eb->len); 1756 folio_unlock(folio); 1757 } else { 1758 int num_folios = num_extent_folios(eb); 1759 1760 for (int i = 0; i < num_folios; i++) { 1761 struct folio *folio = eb->folios[i]; 1762 bool ret; 1763 1764 folio_lock(folio); 1765 folio_clear_dirty_for_io(folio); 1766 folio_start_writeback(folio); 1767 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1768 ASSERT(ret); 1769 wbc_account_cgroup_owner(wbc, folio, eb->folio_size); 1770 wbc->nr_to_write -= folio_nr_pages(folio); 1771 folio_unlock(folio); 1772 } 1773 } 1774 btrfs_submit_bbio(bbio, 0); 1775 } 1776 1777 /* 1778 * Submit one subpage btree page. 1779 * 1780 * The main difference to submit_eb_page() is: 1781 * - Page locking 1782 * For subpage, we don't rely on page locking at all. 1783 * 1784 * - Flush write bio 1785 * We only flush bio if we may be unable to fit current extent buffers into 1786 * current bio. 1787 * 1788 * Return >=0 for the number of submitted extent buffers. 1789 * Return <0 for fatal error. 1790 */ 1791 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc) 1792 { 1793 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1794 int submitted = 0; 1795 u64 folio_start = folio_pos(folio); 1796 int bit_start = 0; 1797 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1798 1799 /* Lock and write each dirty extent buffers in the range */ 1800 while (bit_start < fs_info->sectors_per_page) { 1801 struct btrfs_subpage *subpage = folio_get_private(folio); 1802 struct extent_buffer *eb; 1803 unsigned long flags; 1804 u64 start; 1805 1806 /* 1807 * Take private lock to ensure the subpage won't be detached 1808 * in the meantime. 1809 */ 1810 spin_lock(&folio->mapping->i_private_lock); 1811 if (!folio_test_private(folio)) { 1812 spin_unlock(&folio->mapping->i_private_lock); 1813 break; 1814 } 1815 spin_lock_irqsave(&subpage->lock, flags); 1816 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page, 1817 subpage->bitmaps)) { 1818 spin_unlock_irqrestore(&subpage->lock, flags); 1819 spin_unlock(&folio->mapping->i_private_lock); 1820 bit_start++; 1821 continue; 1822 } 1823 1824 start = folio_start + bit_start * fs_info->sectorsize; 1825 bit_start += sectors_per_node; 1826 1827 /* 1828 * Here we just want to grab the eb without touching extra 1829 * spin locks, so call find_extent_buffer_nolock(). 1830 */ 1831 eb = find_extent_buffer_nolock(fs_info, start); 1832 spin_unlock_irqrestore(&subpage->lock, flags); 1833 spin_unlock(&folio->mapping->i_private_lock); 1834 1835 /* 1836 * The eb has already reached 0 refs thus find_extent_buffer() 1837 * doesn't return it. We don't need to write back such eb 1838 * anyway. 1839 */ 1840 if (!eb) 1841 continue; 1842 1843 if (lock_extent_buffer_for_io(eb, wbc)) { 1844 write_one_eb(eb, wbc); 1845 submitted++; 1846 } 1847 free_extent_buffer(eb); 1848 } 1849 return submitted; 1850 } 1851 1852 /* 1853 * Submit all page(s) of one extent buffer. 1854 * 1855 * @page: the page of one extent buffer 1856 * @eb_context: to determine if we need to submit this page, if current page 1857 * belongs to this eb, we don't need to submit 1858 * 1859 * The caller should pass each page in their bytenr order, and here we use 1860 * @eb_context to determine if we have submitted pages of one extent buffer. 1861 * 1862 * If we have, we just skip until we hit a new page that doesn't belong to 1863 * current @eb_context. 1864 * 1865 * If not, we submit all the page(s) of the extent buffer. 1866 * 1867 * Return >0 if we have submitted the extent buffer successfully. 1868 * Return 0 if we don't need to submit the page, as it's already submitted by 1869 * previous call. 1870 * Return <0 for fatal error. 1871 */ 1872 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx) 1873 { 1874 struct writeback_control *wbc = ctx->wbc; 1875 struct address_space *mapping = folio->mapping; 1876 struct extent_buffer *eb; 1877 int ret; 1878 1879 if (!folio_test_private(folio)) 1880 return 0; 1881 1882 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 1883 return submit_eb_subpage(folio, wbc); 1884 1885 spin_lock(&mapping->i_private_lock); 1886 if (!folio_test_private(folio)) { 1887 spin_unlock(&mapping->i_private_lock); 1888 return 0; 1889 } 1890 1891 eb = folio_get_private(folio); 1892 1893 /* 1894 * Shouldn't happen and normally this would be a BUG_ON but no point 1895 * crashing the machine for something we can survive anyway. 1896 */ 1897 if (WARN_ON(!eb)) { 1898 spin_unlock(&mapping->i_private_lock); 1899 return 0; 1900 } 1901 1902 if (eb == ctx->eb) { 1903 spin_unlock(&mapping->i_private_lock); 1904 return 0; 1905 } 1906 ret = atomic_inc_not_zero(&eb->refs); 1907 spin_unlock(&mapping->i_private_lock); 1908 if (!ret) 1909 return 0; 1910 1911 ctx->eb = eb; 1912 1913 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1914 if (ret) { 1915 if (ret == -EBUSY) 1916 ret = 0; 1917 free_extent_buffer(eb); 1918 return ret; 1919 } 1920 1921 if (!lock_extent_buffer_for_io(eb, wbc)) { 1922 free_extent_buffer(eb); 1923 return 0; 1924 } 1925 /* Implies write in zoned mode. */ 1926 if (ctx->zoned_bg) { 1927 /* Mark the last eb in the block group. */ 1928 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1929 ctx->zoned_bg->meta_write_pointer += eb->len; 1930 } 1931 write_one_eb(eb, wbc); 1932 free_extent_buffer(eb); 1933 return 1; 1934 } 1935 1936 int btree_write_cache_pages(struct address_space *mapping, 1937 struct writeback_control *wbc) 1938 { 1939 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1940 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1941 int ret = 0; 1942 int done = 0; 1943 int nr_to_write_done = 0; 1944 struct folio_batch fbatch; 1945 unsigned int nr_folios; 1946 pgoff_t index; 1947 pgoff_t end; /* Inclusive */ 1948 int scanned = 0; 1949 xa_mark_t tag; 1950 1951 folio_batch_init(&fbatch); 1952 if (wbc->range_cyclic) { 1953 index = mapping->writeback_index; /* Start from prev offset */ 1954 end = -1; 1955 /* 1956 * Start from the beginning does not need to cycle over the 1957 * range, mark it as scanned. 1958 */ 1959 scanned = (index == 0); 1960 } else { 1961 index = wbc->range_start >> PAGE_SHIFT; 1962 end = wbc->range_end >> PAGE_SHIFT; 1963 scanned = 1; 1964 } 1965 if (wbc->sync_mode == WB_SYNC_ALL) 1966 tag = PAGECACHE_TAG_TOWRITE; 1967 else 1968 tag = PAGECACHE_TAG_DIRTY; 1969 btrfs_zoned_meta_io_lock(fs_info); 1970 retry: 1971 if (wbc->sync_mode == WB_SYNC_ALL) 1972 tag_pages_for_writeback(mapping, index, end); 1973 while (!done && !nr_to_write_done && (index <= end) && 1974 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1975 tag, &fbatch))) { 1976 unsigned i; 1977 1978 for (i = 0; i < nr_folios; i++) { 1979 struct folio *folio = fbatch.folios[i]; 1980 1981 ret = submit_eb_page(folio, &ctx); 1982 if (ret == 0) 1983 continue; 1984 if (ret < 0) { 1985 done = 1; 1986 break; 1987 } 1988 1989 /* 1990 * the filesystem may choose to bump up nr_to_write. 1991 * We have to make sure to honor the new nr_to_write 1992 * at any time 1993 */ 1994 nr_to_write_done = wbc->nr_to_write <= 0; 1995 } 1996 folio_batch_release(&fbatch); 1997 cond_resched(); 1998 } 1999 if (!scanned && !done) { 2000 /* 2001 * We hit the last page and there is more work to be done: wrap 2002 * back to the start of the file 2003 */ 2004 scanned = 1; 2005 index = 0; 2006 goto retry; 2007 } 2008 /* 2009 * If something went wrong, don't allow any metadata write bio to be 2010 * submitted. 2011 * 2012 * This would prevent use-after-free if we had dirty pages not 2013 * cleaned up, which can still happen by fuzzed images. 2014 * 2015 * - Bad extent tree 2016 * Allowing existing tree block to be allocated for other trees. 2017 * 2018 * - Log tree operations 2019 * Exiting tree blocks get allocated to log tree, bumps its 2020 * generation, then get cleaned in tree re-balance. 2021 * Such tree block will not be written back, since it's clean, 2022 * thus no WRITTEN flag set. 2023 * And after log writes back, this tree block is not traced by 2024 * any dirty extent_io_tree. 2025 * 2026 * - Offending tree block gets re-dirtied from its original owner 2027 * Since it has bumped generation, no WRITTEN flag, it can be 2028 * reused without COWing. This tree block will not be traced 2029 * by btrfs_transaction::dirty_pages. 2030 * 2031 * Now such dirty tree block will not be cleaned by any dirty 2032 * extent io tree. Thus we don't want to submit such wild eb 2033 * if the fs already has error. 2034 * 2035 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2036 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2037 */ 2038 if (ret > 0) 2039 ret = 0; 2040 if (!ret && BTRFS_FS_ERROR(fs_info)) 2041 ret = -EROFS; 2042 2043 if (ctx.zoned_bg) 2044 btrfs_put_block_group(ctx.zoned_bg); 2045 btrfs_zoned_meta_io_unlock(fs_info); 2046 return ret; 2047 } 2048 2049 /* 2050 * Walk the list of dirty pages of the given address space and write all of them. 2051 * 2052 * @mapping: address space structure to write 2053 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2054 * @bio_ctrl: holds context for the write, namely the bio 2055 * 2056 * If a page is already under I/O, write_cache_pages() skips it, even 2057 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2058 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2059 * and msync() need to guarantee that all the data which was dirty at the time 2060 * the call was made get new I/O started against them. If wbc->sync_mode is 2061 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2062 * existing IO to complete. 2063 */ 2064 static int extent_write_cache_pages(struct address_space *mapping, 2065 struct btrfs_bio_ctrl *bio_ctrl) 2066 { 2067 struct writeback_control *wbc = bio_ctrl->wbc; 2068 struct inode *inode = mapping->host; 2069 int ret = 0; 2070 int done = 0; 2071 int nr_to_write_done = 0; 2072 struct folio_batch fbatch; 2073 unsigned int nr_folios; 2074 pgoff_t index; 2075 pgoff_t end; /* Inclusive */ 2076 pgoff_t done_index; 2077 int range_whole = 0; 2078 int scanned = 0; 2079 xa_mark_t tag; 2080 2081 /* 2082 * We have to hold onto the inode so that ordered extents can do their 2083 * work when the IO finishes. The alternative to this is failing to add 2084 * an ordered extent if the igrab() fails there and that is a huge pain 2085 * to deal with, so instead just hold onto the inode throughout the 2086 * writepages operation. If it fails here we are freeing up the inode 2087 * anyway and we'd rather not waste our time writing out stuff that is 2088 * going to be truncated anyway. 2089 */ 2090 if (!igrab(inode)) 2091 return 0; 2092 2093 folio_batch_init(&fbatch); 2094 if (wbc->range_cyclic) { 2095 index = mapping->writeback_index; /* Start from prev offset */ 2096 end = -1; 2097 /* 2098 * Start from the beginning does not need to cycle over the 2099 * range, mark it as scanned. 2100 */ 2101 scanned = (index == 0); 2102 } else { 2103 index = wbc->range_start >> PAGE_SHIFT; 2104 end = wbc->range_end >> PAGE_SHIFT; 2105 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2106 range_whole = 1; 2107 scanned = 1; 2108 } 2109 2110 /* 2111 * We do the tagged writepage as long as the snapshot flush bit is set 2112 * and we are the first one who do the filemap_flush() on this inode. 2113 * 2114 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2115 * not race in and drop the bit. 2116 */ 2117 if (range_whole && wbc->nr_to_write == LONG_MAX && 2118 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2119 &BTRFS_I(inode)->runtime_flags)) 2120 wbc->tagged_writepages = 1; 2121 2122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2123 tag = PAGECACHE_TAG_TOWRITE; 2124 else 2125 tag = PAGECACHE_TAG_DIRTY; 2126 retry: 2127 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2128 tag_pages_for_writeback(mapping, index, end); 2129 done_index = index; 2130 while (!done && !nr_to_write_done && (index <= end) && 2131 (nr_folios = filemap_get_folios_tag(mapping, &index, 2132 end, tag, &fbatch))) { 2133 unsigned i; 2134 2135 for (i = 0; i < nr_folios; i++) { 2136 struct folio *folio = fbatch.folios[i]; 2137 2138 done_index = folio_next_index(folio); 2139 /* 2140 * At this point we hold neither the i_pages lock nor 2141 * the page lock: the page may be truncated or 2142 * invalidated (changing page->mapping to NULL), 2143 * or even swizzled back from swapper_space to 2144 * tmpfs file mapping 2145 */ 2146 if (!folio_trylock(folio)) { 2147 submit_write_bio(bio_ctrl, 0); 2148 folio_lock(folio); 2149 } 2150 2151 if (unlikely(folio->mapping != mapping)) { 2152 folio_unlock(folio); 2153 continue; 2154 } 2155 2156 if (!folio_test_dirty(folio)) { 2157 /* Someone wrote it for us. */ 2158 folio_unlock(folio); 2159 continue; 2160 } 2161 2162 /* 2163 * For subpage case, compression can lead to mixed 2164 * writeback and dirty flags, e.g: 2165 * 0 32K 64K 96K 128K 2166 * | |//////||/////| |//| 2167 * 2168 * In above case, [32K, 96K) is asynchronously submitted 2169 * for compression, and [124K, 128K) needs to be written back. 2170 * 2171 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2172 * won't be submitted as the page still has writeback flag 2173 * and will be skipped in the next check. 2174 * 2175 * This mixed writeback and dirty case is only possible for 2176 * subpage case. 2177 * 2178 * TODO: Remove this check after migrating compression to 2179 * regular submission. 2180 */ 2181 if (wbc->sync_mode != WB_SYNC_NONE || 2182 btrfs_is_subpage(inode_to_fs_info(inode), mapping)) { 2183 if (folio_test_writeback(folio)) 2184 submit_write_bio(bio_ctrl, 0); 2185 folio_wait_writeback(folio); 2186 } 2187 2188 if (folio_test_writeback(folio) || 2189 !folio_clear_dirty_for_io(folio)) { 2190 folio_unlock(folio); 2191 continue; 2192 } 2193 2194 ret = extent_writepage(folio, bio_ctrl); 2195 if (ret < 0) { 2196 done = 1; 2197 break; 2198 } 2199 2200 /* 2201 * The filesystem may choose to bump up nr_to_write. 2202 * We have to make sure to honor the new nr_to_write 2203 * at any time. 2204 */ 2205 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2206 wbc->nr_to_write <= 0); 2207 } 2208 folio_batch_release(&fbatch); 2209 cond_resched(); 2210 } 2211 if (!scanned && !done) { 2212 /* 2213 * We hit the last page and there is more work to be done: wrap 2214 * back to the start of the file 2215 */ 2216 scanned = 1; 2217 index = 0; 2218 2219 /* 2220 * If we're looping we could run into a page that is locked by a 2221 * writer and that writer could be waiting on writeback for a 2222 * page in our current bio, and thus deadlock, so flush the 2223 * write bio here. 2224 */ 2225 submit_write_bio(bio_ctrl, 0); 2226 goto retry; 2227 } 2228 2229 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2230 mapping->writeback_index = done_index; 2231 2232 btrfs_add_delayed_iput(BTRFS_I(inode)); 2233 return ret; 2234 } 2235 2236 /* 2237 * Submit the pages in the range to bio for call sites which delalloc range has 2238 * already been ran (aka, ordered extent inserted) and all pages are still 2239 * locked. 2240 */ 2241 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2242 u64 start, u64 end, struct writeback_control *wbc, 2243 bool pages_dirty) 2244 { 2245 bool found_error = false; 2246 int ret = 0; 2247 struct address_space *mapping = inode->i_mapping; 2248 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2249 const u32 sectorsize = fs_info->sectorsize; 2250 loff_t i_size = i_size_read(inode); 2251 u64 cur = start; 2252 struct btrfs_bio_ctrl bio_ctrl = { 2253 .wbc = wbc, 2254 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2255 }; 2256 2257 if (wbc->no_cgroup_owner) 2258 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2259 2260 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2261 2262 while (cur <= end) { 2263 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2264 u32 cur_len = cur_end + 1 - cur; 2265 struct folio *folio; 2266 2267 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2268 2269 /* 2270 * This shouldn't happen, the pages are pinned and locked, this 2271 * code is just in case, but shouldn't actually be run. 2272 */ 2273 if (IS_ERR(folio)) { 2274 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2275 cur, cur_len, false); 2276 mapping_set_error(mapping, PTR_ERR(folio)); 2277 cur = cur_end + 1; 2278 continue; 2279 } 2280 2281 ASSERT(folio_test_locked(folio)); 2282 if (pages_dirty && folio != locked_folio) 2283 ASSERT(folio_test_dirty(folio)); 2284 2285 /* 2286 * Set the submission bitmap to submit all sectors. 2287 * extent_writepage_io() will do the truncation correctly. 2288 */ 2289 bio_ctrl.submit_bitmap = (unsigned long)-1; 2290 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2291 &bio_ctrl, i_size); 2292 if (ret == 1) 2293 goto next_page; 2294 2295 if (ret) { 2296 btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio, 2297 cur, cur_len, !ret); 2298 mapping_set_error(mapping, ret); 2299 } 2300 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2301 if (ret < 0) 2302 found_error = true; 2303 next_page: 2304 folio_put(folio); 2305 cur = cur_end + 1; 2306 } 2307 2308 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2309 } 2310 2311 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2312 { 2313 struct inode *inode = mapping->host; 2314 int ret = 0; 2315 struct btrfs_bio_ctrl bio_ctrl = { 2316 .wbc = wbc, 2317 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2318 }; 2319 2320 /* 2321 * Allow only a single thread to do the reloc work in zoned mode to 2322 * protect the write pointer updates. 2323 */ 2324 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2325 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2326 submit_write_bio(&bio_ctrl, ret); 2327 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2328 return ret; 2329 } 2330 2331 void btrfs_readahead(struct readahead_control *rac) 2332 { 2333 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2334 struct folio *folio; 2335 struct extent_map *em_cached = NULL; 2336 u64 prev_em_start = (u64)-1; 2337 2338 while ((folio = readahead_folio(rac)) != NULL) 2339 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2340 2341 if (em_cached) 2342 free_extent_map(em_cached); 2343 submit_one_bio(&bio_ctrl); 2344 } 2345 2346 /* 2347 * basic invalidate_folio code, this waits on any locked or writeback 2348 * ranges corresponding to the folio, and then deletes any extent state 2349 * records from the tree 2350 */ 2351 int extent_invalidate_folio(struct extent_io_tree *tree, 2352 struct folio *folio, size_t offset) 2353 { 2354 struct extent_state *cached_state = NULL; 2355 u64 start = folio_pos(folio); 2356 u64 end = start + folio_size(folio) - 1; 2357 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2358 2359 /* This function is only called for the btree inode */ 2360 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2361 2362 start += ALIGN(offset, blocksize); 2363 if (start > end) 2364 return 0; 2365 2366 lock_extent(tree, start, end, &cached_state); 2367 folio_wait_writeback(folio); 2368 2369 /* 2370 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2371 * so here we only need to unlock the extent range to free any 2372 * existing extent state. 2373 */ 2374 unlock_extent(tree, start, end, &cached_state); 2375 return 0; 2376 } 2377 2378 /* 2379 * a helper for release_folio, this tests for areas of the page that 2380 * are locked or under IO and drops the related state bits if it is safe 2381 * to drop the page. 2382 */ 2383 static bool try_release_extent_state(struct extent_io_tree *tree, 2384 struct folio *folio) 2385 { 2386 u64 start = folio_pos(folio); 2387 u64 end = start + PAGE_SIZE - 1; 2388 bool ret; 2389 2390 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2391 ret = false; 2392 } else { 2393 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2394 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2395 EXTENT_QGROUP_RESERVED); 2396 int ret2; 2397 2398 /* 2399 * At this point we can safely clear everything except the 2400 * locked bit, the nodatasum bit and the delalloc new bit. 2401 * The delalloc new bit will be cleared by ordered extent 2402 * completion. 2403 */ 2404 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2405 2406 /* if clear_extent_bit failed for enomem reasons, 2407 * we can't allow the release to continue. 2408 */ 2409 if (ret2 < 0) 2410 ret = false; 2411 else 2412 ret = true; 2413 } 2414 return ret; 2415 } 2416 2417 /* 2418 * a helper for release_folio. As long as there are no locked extents 2419 * in the range corresponding to the page, both state records and extent 2420 * map records are removed 2421 */ 2422 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2423 { 2424 u64 start = folio_pos(folio); 2425 u64 end = start + PAGE_SIZE - 1; 2426 struct btrfs_inode *inode = folio_to_inode(folio); 2427 struct extent_io_tree *io_tree = &inode->io_tree; 2428 2429 while (start <= end) { 2430 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2431 const u64 len = end - start + 1; 2432 struct extent_map_tree *extent_tree = &inode->extent_tree; 2433 struct extent_map *em; 2434 2435 write_lock(&extent_tree->lock); 2436 em = lookup_extent_mapping(extent_tree, start, len); 2437 if (!em) { 2438 write_unlock(&extent_tree->lock); 2439 break; 2440 } 2441 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2442 write_unlock(&extent_tree->lock); 2443 free_extent_map(em); 2444 break; 2445 } 2446 if (test_range_bit_exists(io_tree, em->start, 2447 extent_map_end(em) - 1, EXTENT_LOCKED)) 2448 goto next; 2449 /* 2450 * If it's not in the list of modified extents, used by a fast 2451 * fsync, we can remove it. If it's being logged we can safely 2452 * remove it since fsync took an extra reference on the em. 2453 */ 2454 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2455 goto remove_em; 2456 /* 2457 * If it's in the list of modified extents, remove it only if 2458 * its generation is older then the current one, in which case 2459 * we don't need it for a fast fsync. Otherwise don't remove it, 2460 * we could be racing with an ongoing fast fsync that could miss 2461 * the new extent. 2462 */ 2463 if (em->generation >= cur_gen) 2464 goto next; 2465 remove_em: 2466 /* 2467 * We only remove extent maps that are not in the list of 2468 * modified extents or that are in the list but with a 2469 * generation lower then the current generation, so there is no 2470 * need to set the full fsync flag on the inode (it hurts the 2471 * fsync performance for workloads with a data size that exceeds 2472 * or is close to the system's memory). 2473 */ 2474 remove_extent_mapping(inode, em); 2475 /* Once for the inode's extent map tree. */ 2476 free_extent_map(em); 2477 next: 2478 start = extent_map_end(em); 2479 write_unlock(&extent_tree->lock); 2480 2481 /* Once for us, for the lookup_extent_mapping() reference. */ 2482 free_extent_map(em); 2483 2484 if (need_resched()) { 2485 /* 2486 * If we need to resched but we can't block just exit 2487 * and leave any remaining extent maps. 2488 */ 2489 if (!gfpflags_allow_blocking(mask)) 2490 break; 2491 2492 cond_resched(); 2493 } 2494 } 2495 return try_release_extent_state(io_tree, folio); 2496 } 2497 2498 static void __free_extent_buffer(struct extent_buffer *eb) 2499 { 2500 kmem_cache_free(extent_buffer_cache, eb); 2501 } 2502 2503 static int extent_buffer_under_io(const struct extent_buffer *eb) 2504 { 2505 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2506 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2507 } 2508 2509 static bool folio_range_has_eb(struct folio *folio) 2510 { 2511 struct btrfs_subpage *subpage; 2512 2513 lockdep_assert_held(&folio->mapping->i_private_lock); 2514 2515 if (folio_test_private(folio)) { 2516 subpage = folio_get_private(folio); 2517 if (atomic_read(&subpage->eb_refs)) 2518 return true; 2519 } 2520 return false; 2521 } 2522 2523 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2524 { 2525 struct btrfs_fs_info *fs_info = eb->fs_info; 2526 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2527 2528 /* 2529 * For mapped eb, we're going to change the folio private, which should 2530 * be done under the i_private_lock. 2531 */ 2532 if (mapped) 2533 spin_lock(&folio->mapping->i_private_lock); 2534 2535 if (!folio_test_private(folio)) { 2536 if (mapped) 2537 spin_unlock(&folio->mapping->i_private_lock); 2538 return; 2539 } 2540 2541 if (fs_info->nodesize >= PAGE_SIZE) { 2542 /* 2543 * We do this since we'll remove the pages after we've 2544 * removed the eb from the radix tree, so we could race 2545 * and have this page now attached to the new eb. So 2546 * only clear folio if it's still connected to 2547 * this eb. 2548 */ 2549 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2550 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2551 BUG_ON(folio_test_dirty(folio)); 2552 BUG_ON(folio_test_writeback(folio)); 2553 /* We need to make sure we haven't be attached to a new eb. */ 2554 folio_detach_private(folio); 2555 } 2556 if (mapped) 2557 spin_unlock(&folio->mapping->i_private_lock); 2558 return; 2559 } 2560 2561 /* 2562 * For subpage, we can have dummy eb with folio private attached. In 2563 * this case, we can directly detach the private as such folio is only 2564 * attached to one dummy eb, no sharing. 2565 */ 2566 if (!mapped) { 2567 btrfs_detach_subpage(fs_info, folio); 2568 return; 2569 } 2570 2571 btrfs_folio_dec_eb_refs(fs_info, folio); 2572 2573 /* 2574 * We can only detach the folio private if there are no other ebs in the 2575 * page range and no unfinished IO. 2576 */ 2577 if (!folio_range_has_eb(folio)) 2578 btrfs_detach_subpage(fs_info, folio); 2579 2580 spin_unlock(&folio->mapping->i_private_lock); 2581 } 2582 2583 /* Release all pages attached to the extent buffer */ 2584 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb) 2585 { 2586 ASSERT(!extent_buffer_under_io(eb)); 2587 2588 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2589 struct folio *folio = eb->folios[i]; 2590 2591 if (!folio) 2592 continue; 2593 2594 detach_extent_buffer_folio(eb, folio); 2595 2596 /* One for when we allocated the folio. */ 2597 folio_put(folio); 2598 } 2599 } 2600 2601 /* 2602 * Helper for releasing the extent buffer. 2603 */ 2604 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2605 { 2606 btrfs_release_extent_buffer_pages(eb); 2607 btrfs_leak_debug_del_eb(eb); 2608 __free_extent_buffer(eb); 2609 } 2610 2611 static struct extent_buffer * 2612 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 2613 unsigned long len) 2614 { 2615 struct extent_buffer *eb = NULL; 2616 2617 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2618 eb->start = start; 2619 eb->len = len; 2620 eb->fs_info = fs_info; 2621 init_rwsem(&eb->lock); 2622 2623 btrfs_leak_debug_add_eb(eb); 2624 2625 spin_lock_init(&eb->refs_lock); 2626 atomic_set(&eb->refs, 1); 2627 2628 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2629 2630 return eb; 2631 } 2632 2633 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2634 { 2635 struct extent_buffer *new; 2636 int num_folios = num_extent_folios(src); 2637 int ret; 2638 2639 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 2640 if (new == NULL) 2641 return NULL; 2642 2643 /* 2644 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2645 * btrfs_release_extent_buffer() have different behavior for 2646 * UNMAPPED subpage extent buffer. 2647 */ 2648 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2649 2650 ret = alloc_eb_folio_array(new, false); 2651 if (ret) { 2652 btrfs_release_extent_buffer(new); 2653 return NULL; 2654 } 2655 2656 for (int i = 0; i < num_folios; i++) { 2657 struct folio *folio = new->folios[i]; 2658 2659 ret = attach_extent_buffer_folio(new, folio, NULL); 2660 if (ret < 0) { 2661 btrfs_release_extent_buffer(new); 2662 return NULL; 2663 } 2664 WARN_ON(folio_test_dirty(folio)); 2665 } 2666 copy_extent_buffer_full(new, src); 2667 set_extent_buffer_uptodate(new); 2668 2669 return new; 2670 } 2671 2672 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2673 u64 start, unsigned long len) 2674 { 2675 struct extent_buffer *eb; 2676 int num_folios = 0; 2677 int ret; 2678 2679 eb = __alloc_extent_buffer(fs_info, start, len); 2680 if (!eb) 2681 return NULL; 2682 2683 ret = alloc_eb_folio_array(eb, false); 2684 if (ret) 2685 goto err; 2686 2687 num_folios = num_extent_folios(eb); 2688 for (int i = 0; i < num_folios; i++) { 2689 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2690 if (ret < 0) 2691 goto err; 2692 } 2693 2694 set_extent_buffer_uptodate(eb); 2695 btrfs_set_header_nritems(eb, 0); 2696 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2697 2698 return eb; 2699 err: 2700 for (int i = 0; i < num_folios; i++) { 2701 if (eb->folios[i]) { 2702 detach_extent_buffer_folio(eb, eb->folios[i]); 2703 folio_put(eb->folios[i]); 2704 } 2705 } 2706 __free_extent_buffer(eb); 2707 return NULL; 2708 } 2709 2710 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2711 u64 start) 2712 { 2713 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 2714 } 2715 2716 static void check_buffer_tree_ref(struct extent_buffer *eb) 2717 { 2718 int refs; 2719 /* 2720 * The TREE_REF bit is first set when the extent_buffer is added 2721 * to the radix tree. It is also reset, if unset, when a new reference 2722 * is created by find_extent_buffer. 2723 * 2724 * It is only cleared in two cases: freeing the last non-tree 2725 * reference to the extent_buffer when its STALE bit is set or 2726 * calling release_folio when the tree reference is the only reference. 2727 * 2728 * In both cases, care is taken to ensure that the extent_buffer's 2729 * pages are not under io. However, release_folio can be concurrently 2730 * called with creating new references, which is prone to race 2731 * conditions between the calls to check_buffer_tree_ref in those 2732 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2733 * 2734 * The actual lifetime of the extent_buffer in the radix tree is 2735 * adequately protected by the refcount, but the TREE_REF bit and 2736 * its corresponding reference are not. To protect against this 2737 * class of races, we call check_buffer_tree_ref from the codepaths 2738 * which trigger io. Note that once io is initiated, TREE_REF can no 2739 * longer be cleared, so that is the moment at which any such race is 2740 * best fixed. 2741 */ 2742 refs = atomic_read(&eb->refs); 2743 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2744 return; 2745 2746 spin_lock(&eb->refs_lock); 2747 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2748 atomic_inc(&eb->refs); 2749 spin_unlock(&eb->refs_lock); 2750 } 2751 2752 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2753 { 2754 int num_folios= num_extent_folios(eb); 2755 2756 check_buffer_tree_ref(eb); 2757 2758 for (int i = 0; i < num_folios; i++) 2759 folio_mark_accessed(eb->folios[i]); 2760 } 2761 2762 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2763 u64 start) 2764 { 2765 struct extent_buffer *eb; 2766 2767 eb = find_extent_buffer_nolock(fs_info, start); 2768 if (!eb) 2769 return NULL; 2770 /* 2771 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 2772 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 2773 * another task running free_extent_buffer() might have seen that flag 2774 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 2775 * writeback flags not set) and it's still in the tree (flag 2776 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 2777 * decrementing the extent buffer's reference count twice. So here we 2778 * could race and increment the eb's reference count, clear its stale 2779 * flag, mark it as dirty and drop our reference before the other task 2780 * finishes executing free_extent_buffer, which would later result in 2781 * an attempt to free an extent buffer that is dirty. 2782 */ 2783 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 2784 spin_lock(&eb->refs_lock); 2785 spin_unlock(&eb->refs_lock); 2786 } 2787 mark_extent_buffer_accessed(eb); 2788 return eb; 2789 } 2790 2791 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2792 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 2793 u64 start) 2794 { 2795 struct extent_buffer *eb, *exists = NULL; 2796 int ret; 2797 2798 eb = find_extent_buffer(fs_info, start); 2799 if (eb) 2800 return eb; 2801 eb = alloc_dummy_extent_buffer(fs_info, start); 2802 if (!eb) 2803 return ERR_PTR(-ENOMEM); 2804 eb->fs_info = fs_info; 2805 again: 2806 ret = radix_tree_preload(GFP_NOFS); 2807 if (ret) { 2808 exists = ERR_PTR(ret); 2809 goto free_eb; 2810 } 2811 spin_lock(&fs_info->buffer_lock); 2812 ret = radix_tree_insert(&fs_info->buffer_radix, 2813 start >> fs_info->sectorsize_bits, eb); 2814 spin_unlock(&fs_info->buffer_lock); 2815 radix_tree_preload_end(); 2816 if (ret == -EEXIST) { 2817 exists = find_extent_buffer(fs_info, start); 2818 if (exists) 2819 goto free_eb; 2820 else 2821 goto again; 2822 } 2823 check_buffer_tree_ref(eb); 2824 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 2825 2826 return eb; 2827 free_eb: 2828 btrfs_release_extent_buffer(eb); 2829 return exists; 2830 } 2831 #endif 2832 2833 static struct extent_buffer *grab_extent_buffer( 2834 struct btrfs_fs_info *fs_info, struct page *page) 2835 { 2836 struct folio *folio = page_folio(page); 2837 struct extent_buffer *exists; 2838 2839 lockdep_assert_held(&page->mapping->i_private_lock); 2840 2841 /* 2842 * For subpage case, we completely rely on radix tree to ensure we 2843 * don't try to insert two ebs for the same bytenr. So here we always 2844 * return NULL and just continue. 2845 */ 2846 if (fs_info->nodesize < PAGE_SIZE) 2847 return NULL; 2848 2849 /* Page not yet attached to an extent buffer */ 2850 if (!folio_test_private(folio)) 2851 return NULL; 2852 2853 /* 2854 * We could have already allocated an eb for this page and attached one 2855 * so lets see if we can get a ref on the existing eb, and if we can we 2856 * know it's good and we can just return that one, else we know we can 2857 * just overwrite folio private. 2858 */ 2859 exists = folio_get_private(folio); 2860 if (atomic_inc_not_zero(&exists->refs)) 2861 return exists; 2862 2863 WARN_ON(PageDirty(page)); 2864 folio_detach_private(folio); 2865 return NULL; 2866 } 2867 2868 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 2869 { 2870 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 2871 btrfs_err(fs_info, "bad tree block start %llu", start); 2872 return -EINVAL; 2873 } 2874 2875 if (fs_info->nodesize < PAGE_SIZE && 2876 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 2877 btrfs_err(fs_info, 2878 "tree block crosses page boundary, start %llu nodesize %u", 2879 start, fs_info->nodesize); 2880 return -EINVAL; 2881 } 2882 if (fs_info->nodesize >= PAGE_SIZE && 2883 !PAGE_ALIGNED(start)) { 2884 btrfs_err(fs_info, 2885 "tree block is not page aligned, start %llu nodesize %u", 2886 start, fs_info->nodesize); 2887 return -EINVAL; 2888 } 2889 if (!IS_ALIGNED(start, fs_info->nodesize) && 2890 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 2891 btrfs_warn(fs_info, 2892 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 2893 start, fs_info->nodesize); 2894 } 2895 return 0; 2896 } 2897 2898 2899 /* 2900 * Return 0 if eb->folios[i] is attached to btree inode successfully. 2901 * Return >0 if there is already another extent buffer for the range, 2902 * and @found_eb_ret would be updated. 2903 * Return -EAGAIN if the filemap has an existing folio but with different size 2904 * than @eb. 2905 * The caller needs to free the existing folios and retry using the same order. 2906 */ 2907 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 2908 struct btrfs_subpage *prealloc, 2909 struct extent_buffer **found_eb_ret) 2910 { 2911 2912 struct btrfs_fs_info *fs_info = eb->fs_info; 2913 struct address_space *mapping = fs_info->btree_inode->i_mapping; 2914 const unsigned long index = eb->start >> PAGE_SHIFT; 2915 struct folio *existing_folio = NULL; 2916 int ret; 2917 2918 ASSERT(found_eb_ret); 2919 2920 /* Caller should ensure the folio exists. */ 2921 ASSERT(eb->folios[i]); 2922 2923 retry: 2924 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 2925 GFP_NOFS | __GFP_NOFAIL); 2926 if (!ret) 2927 goto finish; 2928 2929 existing_folio = filemap_lock_folio(mapping, index + i); 2930 /* The page cache only exists for a very short time, just retry. */ 2931 if (IS_ERR(existing_folio)) { 2932 existing_folio = NULL; 2933 goto retry; 2934 } 2935 2936 /* For now, we should only have single-page folios for btree inode. */ 2937 ASSERT(folio_nr_pages(existing_folio) == 1); 2938 2939 if (folio_size(existing_folio) != eb->folio_size) { 2940 folio_unlock(existing_folio); 2941 folio_put(existing_folio); 2942 return -EAGAIN; 2943 } 2944 2945 finish: 2946 spin_lock(&mapping->i_private_lock); 2947 if (existing_folio && fs_info->nodesize < PAGE_SIZE) { 2948 /* We're going to reuse the existing page, can drop our folio now. */ 2949 __free_page(folio_page(eb->folios[i], 0)); 2950 eb->folios[i] = existing_folio; 2951 } else if (existing_folio) { 2952 struct extent_buffer *existing_eb; 2953 2954 existing_eb = grab_extent_buffer(fs_info, 2955 folio_page(existing_folio, 0)); 2956 if (existing_eb) { 2957 /* The extent buffer still exists, we can use it directly. */ 2958 *found_eb_ret = existing_eb; 2959 spin_unlock(&mapping->i_private_lock); 2960 folio_unlock(existing_folio); 2961 folio_put(existing_folio); 2962 return 1; 2963 } 2964 /* The extent buffer no longer exists, we can reuse the folio. */ 2965 __free_page(folio_page(eb->folios[i], 0)); 2966 eb->folios[i] = existing_folio; 2967 } 2968 eb->folio_size = folio_size(eb->folios[i]); 2969 eb->folio_shift = folio_shift(eb->folios[i]); 2970 /* Should not fail, as we have preallocated the memory. */ 2971 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 2972 ASSERT(!ret); 2973 /* 2974 * To inform we have an extra eb under allocation, so that 2975 * detach_extent_buffer_page() won't release the folio private when the 2976 * eb hasn't been inserted into radix tree yet. 2977 * 2978 * The ref will be decreased when the eb releases the page, in 2979 * detach_extent_buffer_page(). Thus needs no special handling in the 2980 * error path. 2981 */ 2982 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 2983 spin_unlock(&mapping->i_private_lock); 2984 return 0; 2985 } 2986 2987 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2988 u64 start, u64 owner_root, int level) 2989 { 2990 unsigned long len = fs_info->nodesize; 2991 int num_folios; 2992 int attached = 0; 2993 struct extent_buffer *eb; 2994 struct extent_buffer *existing_eb = NULL; 2995 struct btrfs_subpage *prealloc = NULL; 2996 u64 lockdep_owner = owner_root; 2997 bool page_contig = true; 2998 int uptodate = 1; 2999 int ret; 3000 3001 if (check_eb_alignment(fs_info, start)) 3002 return ERR_PTR(-EINVAL); 3003 3004 #if BITS_PER_LONG == 32 3005 if (start >= MAX_LFS_FILESIZE) { 3006 btrfs_err_rl(fs_info, 3007 "extent buffer %llu is beyond 32bit page cache limit", start); 3008 btrfs_err_32bit_limit(fs_info); 3009 return ERR_PTR(-EOVERFLOW); 3010 } 3011 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3012 btrfs_warn_32bit_limit(fs_info); 3013 #endif 3014 3015 eb = find_extent_buffer(fs_info, start); 3016 if (eb) 3017 return eb; 3018 3019 eb = __alloc_extent_buffer(fs_info, start, len); 3020 if (!eb) 3021 return ERR_PTR(-ENOMEM); 3022 3023 /* 3024 * The reloc trees are just snapshots, so we need them to appear to be 3025 * just like any other fs tree WRT lockdep. 3026 */ 3027 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3028 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3029 3030 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3031 3032 /* 3033 * Preallocate folio private for subpage case, so that we won't 3034 * allocate memory with i_private_lock nor page lock hold. 3035 * 3036 * The memory will be freed by attach_extent_buffer_page() or freed 3037 * manually if we exit earlier. 3038 */ 3039 if (fs_info->nodesize < PAGE_SIZE) { 3040 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3041 if (IS_ERR(prealloc)) { 3042 ret = PTR_ERR(prealloc); 3043 goto out; 3044 } 3045 } 3046 3047 reallocate: 3048 /* Allocate all pages first. */ 3049 ret = alloc_eb_folio_array(eb, true); 3050 if (ret < 0) { 3051 btrfs_free_subpage(prealloc); 3052 goto out; 3053 } 3054 3055 num_folios = num_extent_folios(eb); 3056 /* Attach all pages to the filemap. */ 3057 for (int i = 0; i < num_folios; i++) { 3058 struct folio *folio; 3059 3060 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3061 if (ret > 0) { 3062 ASSERT(existing_eb); 3063 goto out; 3064 } 3065 3066 /* 3067 * TODO: Special handling for a corner case where the order of 3068 * folios mismatch between the new eb and filemap. 3069 * 3070 * This happens when: 3071 * 3072 * - the new eb is using higher order folio 3073 * 3074 * - the filemap is still using 0-order folios for the range 3075 * This can happen at the previous eb allocation, and we don't 3076 * have higher order folio for the call. 3077 * 3078 * - the existing eb has already been freed 3079 * 3080 * In this case, we have to free the existing folios first, and 3081 * re-allocate using the same order. 3082 * Thankfully this is not going to happen yet, as we're still 3083 * using 0-order folios. 3084 */ 3085 if (unlikely(ret == -EAGAIN)) { 3086 ASSERT(0); 3087 goto reallocate; 3088 } 3089 attached++; 3090 3091 /* 3092 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3093 * reliable, as we may choose to reuse the existing page cache 3094 * and free the allocated page. 3095 */ 3096 folio = eb->folios[i]; 3097 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3098 3099 /* 3100 * Check if the current page is physically contiguous with previous eb 3101 * page. 3102 * At this stage, either we allocated a large folio, thus @i 3103 * would only be 0, or we fall back to per-page allocation. 3104 */ 3105 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3106 page_contig = false; 3107 3108 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3109 uptodate = 0; 3110 3111 /* 3112 * We can't unlock the pages just yet since the extent buffer 3113 * hasn't been properly inserted in the radix tree, this 3114 * opens a race with btree_release_folio which can free a page 3115 * while we are still filling in all pages for the buffer and 3116 * we could crash. 3117 */ 3118 } 3119 if (uptodate) 3120 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3121 /* All pages are physically contiguous, can skip cross page handling. */ 3122 if (page_contig) 3123 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3124 again: 3125 ret = radix_tree_preload(GFP_NOFS); 3126 if (ret) 3127 goto out; 3128 3129 spin_lock(&fs_info->buffer_lock); 3130 ret = radix_tree_insert(&fs_info->buffer_radix, 3131 start >> fs_info->sectorsize_bits, eb); 3132 spin_unlock(&fs_info->buffer_lock); 3133 radix_tree_preload_end(); 3134 if (ret == -EEXIST) { 3135 ret = 0; 3136 existing_eb = find_extent_buffer(fs_info, start); 3137 if (existing_eb) 3138 goto out; 3139 else 3140 goto again; 3141 } 3142 /* add one reference for the tree */ 3143 check_buffer_tree_ref(eb); 3144 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3145 3146 /* 3147 * Now it's safe to unlock the pages because any calls to 3148 * btree_release_folio will correctly detect that a page belongs to a 3149 * live buffer and won't free them prematurely. 3150 */ 3151 for (int i = 0; i < num_folios; i++) 3152 unlock_page(folio_page(eb->folios[i], 0)); 3153 return eb; 3154 3155 out: 3156 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3157 3158 /* 3159 * Any attached folios need to be detached before we unlock them. This 3160 * is because when we're inserting our new folios into the mapping, and 3161 * then attaching our eb to that folio. If we fail to insert our folio 3162 * we'll lookup the folio for that index, and grab that EB. We do not 3163 * want that to grab this eb, as we're getting ready to free it. So we 3164 * have to detach it first and then unlock it. 3165 * 3166 * We have to drop our reference and NULL it out here because in the 3167 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3168 * Below when we call btrfs_release_extent_buffer() we will call 3169 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3170 * case. If we left eb->folios[i] populated in the subpage case we'd 3171 * double put our reference and be super sad. 3172 */ 3173 for (int i = 0; i < attached; i++) { 3174 ASSERT(eb->folios[i]); 3175 detach_extent_buffer_folio(eb, eb->folios[i]); 3176 unlock_page(folio_page(eb->folios[i], 0)); 3177 folio_put(eb->folios[i]); 3178 eb->folios[i] = NULL; 3179 } 3180 /* 3181 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3182 * so it can be cleaned up without utilizing page->mapping. 3183 */ 3184 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3185 3186 btrfs_release_extent_buffer(eb); 3187 if (ret < 0) 3188 return ERR_PTR(ret); 3189 ASSERT(existing_eb); 3190 return existing_eb; 3191 } 3192 3193 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3194 { 3195 struct extent_buffer *eb = 3196 container_of(head, struct extent_buffer, rcu_head); 3197 3198 __free_extent_buffer(eb); 3199 } 3200 3201 static int release_extent_buffer(struct extent_buffer *eb) 3202 __releases(&eb->refs_lock) 3203 { 3204 lockdep_assert_held(&eb->refs_lock); 3205 3206 WARN_ON(atomic_read(&eb->refs) == 0); 3207 if (atomic_dec_and_test(&eb->refs)) { 3208 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3209 struct btrfs_fs_info *fs_info = eb->fs_info; 3210 3211 spin_unlock(&eb->refs_lock); 3212 3213 spin_lock(&fs_info->buffer_lock); 3214 radix_tree_delete(&fs_info->buffer_radix, 3215 eb->start >> fs_info->sectorsize_bits); 3216 spin_unlock(&fs_info->buffer_lock); 3217 } else { 3218 spin_unlock(&eb->refs_lock); 3219 } 3220 3221 btrfs_leak_debug_del_eb(eb); 3222 /* Should be safe to release our pages at this point */ 3223 btrfs_release_extent_buffer_pages(eb); 3224 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3225 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3226 __free_extent_buffer(eb); 3227 return 1; 3228 } 3229 #endif 3230 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3231 return 1; 3232 } 3233 spin_unlock(&eb->refs_lock); 3234 3235 return 0; 3236 } 3237 3238 void free_extent_buffer(struct extent_buffer *eb) 3239 { 3240 int refs; 3241 if (!eb) 3242 return; 3243 3244 refs = atomic_read(&eb->refs); 3245 while (1) { 3246 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3247 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3248 refs == 1)) 3249 break; 3250 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3251 return; 3252 } 3253 3254 spin_lock(&eb->refs_lock); 3255 if (atomic_read(&eb->refs) == 2 && 3256 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3257 !extent_buffer_under_io(eb) && 3258 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3259 atomic_dec(&eb->refs); 3260 3261 /* 3262 * I know this is terrible, but it's temporary until we stop tracking 3263 * the uptodate bits and such for the extent buffers. 3264 */ 3265 release_extent_buffer(eb); 3266 } 3267 3268 void free_extent_buffer_stale(struct extent_buffer *eb) 3269 { 3270 if (!eb) 3271 return; 3272 3273 spin_lock(&eb->refs_lock); 3274 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3275 3276 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3277 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3278 atomic_dec(&eb->refs); 3279 release_extent_buffer(eb); 3280 } 3281 3282 static void btree_clear_folio_dirty(struct folio *folio) 3283 { 3284 ASSERT(folio_test_dirty(folio)); 3285 ASSERT(folio_test_locked(folio)); 3286 folio_clear_dirty_for_io(folio); 3287 xa_lock_irq(&folio->mapping->i_pages); 3288 if (!folio_test_dirty(folio)) 3289 __xa_clear_mark(&folio->mapping->i_pages, 3290 folio_index(folio), PAGECACHE_TAG_DIRTY); 3291 xa_unlock_irq(&folio->mapping->i_pages); 3292 } 3293 3294 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3295 { 3296 struct btrfs_fs_info *fs_info = eb->fs_info; 3297 struct folio *folio = eb->folios[0]; 3298 bool last; 3299 3300 /* btree_clear_folio_dirty() needs page locked. */ 3301 folio_lock(folio); 3302 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 3303 if (last) 3304 btree_clear_folio_dirty(folio); 3305 folio_unlock(folio); 3306 WARN_ON(atomic_read(&eb->refs) == 0); 3307 } 3308 3309 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3310 struct extent_buffer *eb) 3311 { 3312 struct btrfs_fs_info *fs_info = eb->fs_info; 3313 int num_folios; 3314 3315 btrfs_assert_tree_write_locked(eb); 3316 3317 if (trans && btrfs_header_generation(eb) != trans->transid) 3318 return; 3319 3320 /* 3321 * Instead of clearing the dirty flag off of the buffer, mark it as 3322 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3323 * write-ordering in zoned mode, without the need to later re-dirty 3324 * the extent_buffer. 3325 * 3326 * The actual zeroout of the buffer will happen later in 3327 * btree_csum_one_bio. 3328 */ 3329 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3330 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3331 return; 3332 } 3333 3334 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3335 return; 3336 3337 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3338 fs_info->dirty_metadata_batch); 3339 3340 if (eb->fs_info->nodesize < PAGE_SIZE) 3341 return clear_subpage_extent_buffer_dirty(eb); 3342 3343 num_folios = num_extent_folios(eb); 3344 for (int i = 0; i < num_folios; i++) { 3345 struct folio *folio = eb->folios[i]; 3346 3347 if (!folio_test_dirty(folio)) 3348 continue; 3349 folio_lock(folio); 3350 btree_clear_folio_dirty(folio); 3351 folio_unlock(folio); 3352 } 3353 WARN_ON(atomic_read(&eb->refs) == 0); 3354 } 3355 3356 void set_extent_buffer_dirty(struct extent_buffer *eb) 3357 { 3358 int num_folios; 3359 bool was_dirty; 3360 3361 check_buffer_tree_ref(eb); 3362 3363 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3364 3365 num_folios = num_extent_folios(eb); 3366 WARN_ON(atomic_read(&eb->refs) == 0); 3367 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3368 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3369 3370 if (!was_dirty) { 3371 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3372 3373 /* 3374 * For subpage case, we can have other extent buffers in the 3375 * same page, and in clear_subpage_extent_buffer_dirty() we 3376 * have to clear page dirty without subpage lock held. 3377 * This can cause race where our page gets dirty cleared after 3378 * we just set it. 3379 * 3380 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3381 * its page for other reasons, we can use page lock to prevent 3382 * the above race. 3383 */ 3384 if (subpage) 3385 lock_page(folio_page(eb->folios[0], 0)); 3386 for (int i = 0; i < num_folios; i++) 3387 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 3388 eb->start, eb->len); 3389 if (subpage) 3390 unlock_page(folio_page(eb->folios[0], 0)); 3391 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3392 eb->len, 3393 eb->fs_info->dirty_metadata_batch); 3394 } 3395 #ifdef CONFIG_BTRFS_DEBUG 3396 for (int i = 0; i < num_folios; i++) 3397 ASSERT(folio_test_dirty(eb->folios[i])); 3398 #endif 3399 } 3400 3401 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3402 { 3403 struct btrfs_fs_info *fs_info = eb->fs_info; 3404 int num_folios = num_extent_folios(eb); 3405 3406 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3407 for (int i = 0; i < num_folios; i++) { 3408 struct folio *folio = eb->folios[i]; 3409 3410 if (!folio) 3411 continue; 3412 3413 /* 3414 * This is special handling for metadata subpage, as regular 3415 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3416 */ 3417 if (fs_info->nodesize >= PAGE_SIZE) 3418 folio_clear_uptodate(folio); 3419 else 3420 btrfs_subpage_clear_uptodate(fs_info, folio, 3421 eb->start, eb->len); 3422 } 3423 } 3424 3425 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3426 { 3427 struct btrfs_fs_info *fs_info = eb->fs_info; 3428 int num_folios = num_extent_folios(eb); 3429 3430 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3431 for (int i = 0; i < num_folios; i++) { 3432 struct folio *folio = eb->folios[i]; 3433 3434 /* 3435 * This is special handling for metadata subpage, as regular 3436 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3437 */ 3438 if (fs_info->nodesize >= PAGE_SIZE) 3439 folio_mark_uptodate(folio); 3440 else 3441 btrfs_subpage_set_uptodate(fs_info, folio, 3442 eb->start, eb->len); 3443 } 3444 } 3445 3446 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3447 { 3448 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3449 smp_mb__after_atomic(); 3450 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3451 } 3452 3453 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3454 { 3455 struct extent_buffer *eb = bbio->private; 3456 struct btrfs_fs_info *fs_info = eb->fs_info; 3457 bool uptodate = !bbio->bio.bi_status; 3458 struct folio_iter fi; 3459 u32 bio_offset = 0; 3460 3461 /* 3462 * If the extent buffer is marked UPTODATE before the read operation 3463 * completes, other calls to read_extent_buffer_pages() will return 3464 * early without waiting for the read to finish, causing data races. 3465 */ 3466 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3467 3468 eb->read_mirror = bbio->mirror_num; 3469 3470 if (uptodate && 3471 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3472 uptodate = false; 3473 3474 if (uptodate) { 3475 set_extent_buffer_uptodate(eb); 3476 } else { 3477 clear_extent_buffer_uptodate(eb); 3478 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3479 } 3480 3481 bio_for_each_folio_all(fi, &bbio->bio) { 3482 struct folio *folio = fi.folio; 3483 u64 start = eb->start + bio_offset; 3484 u32 len = fi.length; 3485 3486 if (uptodate) 3487 btrfs_folio_set_uptodate(fs_info, folio, start, len); 3488 else 3489 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 3490 3491 bio_offset += len; 3492 } 3493 3494 clear_extent_buffer_reading(eb); 3495 free_extent_buffer(eb); 3496 3497 bio_put(&bbio->bio); 3498 } 3499 3500 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3501 const struct btrfs_tree_parent_check *check) 3502 { 3503 struct btrfs_bio *bbio; 3504 bool ret; 3505 3506 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3507 return 0; 3508 3509 /* 3510 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3511 * operation, which could potentially still be in flight. In this case 3512 * we simply want to return an error. 3513 */ 3514 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3515 return -EIO; 3516 3517 /* Someone else is already reading the buffer, just wait for it. */ 3518 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3519 goto done; 3520 3521 /* 3522 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3523 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3524 * started and finished reading the same eb. In this case, UPTODATE 3525 * will now be set, and we shouldn't read it in again. 3526 */ 3527 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3528 clear_extent_buffer_reading(eb); 3529 return 0; 3530 } 3531 3532 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3533 eb->read_mirror = 0; 3534 check_buffer_tree_ref(eb); 3535 atomic_inc(&eb->refs); 3536 3537 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3538 REQ_OP_READ | REQ_META, eb->fs_info, 3539 end_bbio_meta_read, eb); 3540 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3541 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3542 bbio->file_offset = eb->start; 3543 memcpy(&bbio->parent_check, check, sizeof(*check)); 3544 if (eb->fs_info->nodesize < PAGE_SIZE) { 3545 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 3546 eb->start - folio_pos(eb->folios[0])); 3547 ASSERT(ret); 3548 } else { 3549 int num_folios = num_extent_folios(eb); 3550 3551 for (int i = 0; i < num_folios; i++) { 3552 struct folio *folio = eb->folios[i]; 3553 3554 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 3555 ASSERT(ret); 3556 } 3557 } 3558 btrfs_submit_bbio(bbio, mirror_num); 3559 3560 done: 3561 if (wait == WAIT_COMPLETE) { 3562 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3563 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3564 return -EIO; 3565 } 3566 3567 return 0; 3568 } 3569 3570 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3571 unsigned long len) 3572 { 3573 btrfs_warn(eb->fs_info, 3574 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3575 eb->start, eb->len, start, len); 3576 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3577 3578 return true; 3579 } 3580 3581 /* 3582 * Check if the [start, start + len) range is valid before reading/writing 3583 * the eb. 3584 * NOTE: @start and @len are offset inside the eb, not logical address. 3585 * 3586 * Caller should not touch the dst/src memory if this function returns error. 3587 */ 3588 static inline int check_eb_range(const struct extent_buffer *eb, 3589 unsigned long start, unsigned long len) 3590 { 3591 unsigned long offset; 3592 3593 /* start, start + len should not go beyond eb->len nor overflow */ 3594 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3595 return report_eb_range(eb, start, len); 3596 3597 return false; 3598 } 3599 3600 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3601 unsigned long start, unsigned long len) 3602 { 3603 const int unit_size = eb->folio_size; 3604 size_t cur; 3605 size_t offset; 3606 char *dst = (char *)dstv; 3607 unsigned long i = get_eb_folio_index(eb, start); 3608 3609 if (check_eb_range(eb, start, len)) { 3610 /* 3611 * Invalid range hit, reset the memory, so callers won't get 3612 * some random garbage for their uninitialized memory. 3613 */ 3614 memset(dstv, 0, len); 3615 return; 3616 } 3617 3618 if (eb->addr) { 3619 memcpy(dstv, eb->addr + start, len); 3620 return; 3621 } 3622 3623 offset = get_eb_offset_in_folio(eb, start); 3624 3625 while (len > 0) { 3626 char *kaddr; 3627 3628 cur = min(len, unit_size - offset); 3629 kaddr = folio_address(eb->folios[i]); 3630 memcpy(dst, kaddr + offset, cur); 3631 3632 dst += cur; 3633 len -= cur; 3634 offset = 0; 3635 i++; 3636 } 3637 } 3638 3639 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3640 void __user *dstv, 3641 unsigned long start, unsigned long len) 3642 { 3643 const int unit_size = eb->folio_size; 3644 size_t cur; 3645 size_t offset; 3646 char __user *dst = (char __user *)dstv; 3647 unsigned long i = get_eb_folio_index(eb, start); 3648 int ret = 0; 3649 3650 WARN_ON(start > eb->len); 3651 WARN_ON(start + len > eb->start + eb->len); 3652 3653 if (eb->addr) { 3654 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3655 ret = -EFAULT; 3656 return ret; 3657 } 3658 3659 offset = get_eb_offset_in_folio(eb, start); 3660 3661 while (len > 0) { 3662 char *kaddr; 3663 3664 cur = min(len, unit_size - offset); 3665 kaddr = folio_address(eb->folios[i]); 3666 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3667 ret = -EFAULT; 3668 break; 3669 } 3670 3671 dst += cur; 3672 len -= cur; 3673 offset = 0; 3674 i++; 3675 } 3676 3677 return ret; 3678 } 3679 3680 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3681 unsigned long start, unsigned long len) 3682 { 3683 const int unit_size = eb->folio_size; 3684 size_t cur; 3685 size_t offset; 3686 char *kaddr; 3687 char *ptr = (char *)ptrv; 3688 unsigned long i = get_eb_folio_index(eb, start); 3689 int ret = 0; 3690 3691 if (check_eb_range(eb, start, len)) 3692 return -EINVAL; 3693 3694 if (eb->addr) 3695 return memcmp(ptrv, eb->addr + start, len); 3696 3697 offset = get_eb_offset_in_folio(eb, start); 3698 3699 while (len > 0) { 3700 cur = min(len, unit_size - offset); 3701 kaddr = folio_address(eb->folios[i]); 3702 ret = memcmp(ptr, kaddr + offset, cur); 3703 if (ret) 3704 break; 3705 3706 ptr += cur; 3707 len -= cur; 3708 offset = 0; 3709 i++; 3710 } 3711 return ret; 3712 } 3713 3714 /* 3715 * Check that the extent buffer is uptodate. 3716 * 3717 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3718 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3719 */ 3720 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3721 { 3722 struct btrfs_fs_info *fs_info = eb->fs_info; 3723 struct folio *folio = eb->folios[i]; 3724 3725 ASSERT(folio); 3726 3727 /* 3728 * If we are using the commit root we could potentially clear a page 3729 * Uptodate while we're using the extent buffer that we've previously 3730 * looked up. We don't want to complain in this case, as the page was 3731 * valid before, we just didn't write it out. Instead we want to catch 3732 * the case where we didn't actually read the block properly, which 3733 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3734 */ 3735 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3736 return; 3737 3738 if (fs_info->nodesize < PAGE_SIZE) { 3739 folio = eb->folios[0]; 3740 ASSERT(i == 0); 3741 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3742 eb->start, eb->len))) 3743 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3744 } else { 3745 WARN_ON(!folio_test_uptodate(folio)); 3746 } 3747 } 3748 3749 static void __write_extent_buffer(const struct extent_buffer *eb, 3750 const void *srcv, unsigned long start, 3751 unsigned long len, bool use_memmove) 3752 { 3753 const int unit_size = eb->folio_size; 3754 size_t cur; 3755 size_t offset; 3756 char *kaddr; 3757 const char *src = (const char *)srcv; 3758 unsigned long i = get_eb_folio_index(eb, start); 3759 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3760 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3761 3762 if (check_eb_range(eb, start, len)) 3763 return; 3764 3765 if (eb->addr) { 3766 if (use_memmove) 3767 memmove(eb->addr + start, srcv, len); 3768 else 3769 memcpy(eb->addr + start, srcv, len); 3770 return; 3771 } 3772 3773 offset = get_eb_offset_in_folio(eb, start); 3774 3775 while (len > 0) { 3776 if (check_uptodate) 3777 assert_eb_folio_uptodate(eb, i); 3778 3779 cur = min(len, unit_size - offset); 3780 kaddr = folio_address(eb->folios[i]); 3781 if (use_memmove) 3782 memmove(kaddr + offset, src, cur); 3783 else 3784 memcpy(kaddr + offset, src, cur); 3785 3786 src += cur; 3787 len -= cur; 3788 offset = 0; 3789 i++; 3790 } 3791 } 3792 3793 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3794 unsigned long start, unsigned long len) 3795 { 3796 return __write_extent_buffer(eb, srcv, start, len, false); 3797 } 3798 3799 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3800 unsigned long start, unsigned long len) 3801 { 3802 const int unit_size = eb->folio_size; 3803 unsigned long cur = start; 3804 3805 if (eb->addr) { 3806 memset(eb->addr + start, c, len); 3807 return; 3808 } 3809 3810 while (cur < start + len) { 3811 unsigned long index = get_eb_folio_index(eb, cur); 3812 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3813 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3814 3815 assert_eb_folio_uptodate(eb, index); 3816 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 3817 3818 cur += cur_len; 3819 } 3820 } 3821 3822 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 3823 unsigned long len) 3824 { 3825 if (check_eb_range(eb, start, len)) 3826 return; 3827 return memset_extent_buffer(eb, 0, start, len); 3828 } 3829 3830 void copy_extent_buffer_full(const struct extent_buffer *dst, 3831 const struct extent_buffer *src) 3832 { 3833 const int unit_size = src->folio_size; 3834 unsigned long cur = 0; 3835 3836 ASSERT(dst->len == src->len); 3837 3838 while (cur < src->len) { 3839 unsigned long index = get_eb_folio_index(src, cur); 3840 unsigned long offset = get_eb_offset_in_folio(src, cur); 3841 unsigned long cur_len = min(src->len, unit_size - offset); 3842 void *addr = folio_address(src->folios[index]) + offset; 3843 3844 write_extent_buffer(dst, addr, cur, cur_len); 3845 3846 cur += cur_len; 3847 } 3848 } 3849 3850 void copy_extent_buffer(const struct extent_buffer *dst, 3851 const struct extent_buffer *src, 3852 unsigned long dst_offset, unsigned long src_offset, 3853 unsigned long len) 3854 { 3855 const int unit_size = dst->folio_size; 3856 u64 dst_len = dst->len; 3857 size_t cur; 3858 size_t offset; 3859 char *kaddr; 3860 unsigned long i = get_eb_folio_index(dst, dst_offset); 3861 3862 if (check_eb_range(dst, dst_offset, len) || 3863 check_eb_range(src, src_offset, len)) 3864 return; 3865 3866 WARN_ON(src->len != dst_len); 3867 3868 offset = get_eb_offset_in_folio(dst, dst_offset); 3869 3870 while (len > 0) { 3871 assert_eb_folio_uptodate(dst, i); 3872 3873 cur = min(len, (unsigned long)(unit_size - offset)); 3874 3875 kaddr = folio_address(dst->folios[i]); 3876 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3877 3878 src_offset += cur; 3879 len -= cur; 3880 offset = 0; 3881 i++; 3882 } 3883 } 3884 3885 /* 3886 * Calculate the folio and offset of the byte containing the given bit number. 3887 * 3888 * @eb: the extent buffer 3889 * @start: offset of the bitmap item in the extent buffer 3890 * @nr: bit number 3891 * @folio_index: return index of the folio in the extent buffer that contains 3892 * the given bit number 3893 * @folio_offset: return offset into the folio given by folio_index 3894 * 3895 * This helper hides the ugliness of finding the byte in an extent buffer which 3896 * contains a given bit. 3897 */ 3898 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 3899 unsigned long start, unsigned long nr, 3900 unsigned long *folio_index, 3901 size_t *folio_offset) 3902 { 3903 size_t byte_offset = BIT_BYTE(nr); 3904 size_t offset; 3905 3906 /* 3907 * The byte we want is the offset of the extent buffer + the offset of 3908 * the bitmap item in the extent buffer + the offset of the byte in the 3909 * bitmap item. 3910 */ 3911 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 3912 3913 *folio_index = offset >> eb->folio_shift; 3914 *folio_offset = offset_in_eb_folio(eb, offset); 3915 } 3916 3917 /* 3918 * Determine whether a bit in a bitmap item is set. 3919 * 3920 * @eb: the extent buffer 3921 * @start: offset of the bitmap item in the extent buffer 3922 * @nr: bit number to test 3923 */ 3924 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 3925 unsigned long nr) 3926 { 3927 unsigned long i; 3928 size_t offset; 3929 u8 *kaddr; 3930 3931 eb_bitmap_offset(eb, start, nr, &i, &offset); 3932 assert_eb_folio_uptodate(eb, i); 3933 kaddr = folio_address(eb->folios[i]); 3934 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 3935 } 3936 3937 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 3938 { 3939 unsigned long index = get_eb_folio_index(eb, bytenr); 3940 3941 if (check_eb_range(eb, bytenr, 1)) 3942 return NULL; 3943 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 3944 } 3945 3946 /* 3947 * Set an area of a bitmap to 1. 3948 * 3949 * @eb: the extent buffer 3950 * @start: offset of the bitmap item in the extent buffer 3951 * @pos: bit number of the first bit 3952 * @len: number of bits to set 3953 */ 3954 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 3955 unsigned long pos, unsigned long len) 3956 { 3957 unsigned int first_byte = start + BIT_BYTE(pos); 3958 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 3959 const bool same_byte = (first_byte == last_byte); 3960 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 3961 u8 *kaddr; 3962 3963 if (same_byte) 3964 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 3965 3966 /* Handle the first byte. */ 3967 kaddr = extent_buffer_get_byte(eb, first_byte); 3968 *kaddr |= mask; 3969 if (same_byte) 3970 return; 3971 3972 /* Handle the byte aligned part. */ 3973 ASSERT(first_byte + 1 <= last_byte); 3974 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 3975 3976 /* Handle the last byte. */ 3977 kaddr = extent_buffer_get_byte(eb, last_byte); 3978 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 3979 } 3980 3981 3982 /* 3983 * Clear an area of a bitmap. 3984 * 3985 * @eb: the extent buffer 3986 * @start: offset of the bitmap item in the extent buffer 3987 * @pos: bit number of the first bit 3988 * @len: number of bits to clear 3989 */ 3990 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 3991 unsigned long start, unsigned long pos, 3992 unsigned long len) 3993 { 3994 unsigned int first_byte = start + BIT_BYTE(pos); 3995 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 3996 const bool same_byte = (first_byte == last_byte); 3997 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 3998 u8 *kaddr; 3999 4000 if (same_byte) 4001 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4002 4003 /* Handle the first byte. */ 4004 kaddr = extent_buffer_get_byte(eb, first_byte); 4005 *kaddr &= ~mask; 4006 if (same_byte) 4007 return; 4008 4009 /* Handle the byte aligned part. */ 4010 ASSERT(first_byte + 1 <= last_byte); 4011 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4012 4013 /* Handle the last byte. */ 4014 kaddr = extent_buffer_get_byte(eb, last_byte); 4015 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4016 } 4017 4018 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4019 { 4020 unsigned long distance = (src > dst) ? src - dst : dst - src; 4021 return distance < len; 4022 } 4023 4024 void memcpy_extent_buffer(const struct extent_buffer *dst, 4025 unsigned long dst_offset, unsigned long src_offset, 4026 unsigned long len) 4027 { 4028 const int unit_size = dst->folio_size; 4029 unsigned long cur_off = 0; 4030 4031 if (check_eb_range(dst, dst_offset, len) || 4032 check_eb_range(dst, src_offset, len)) 4033 return; 4034 4035 if (dst->addr) { 4036 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4037 4038 if (use_memmove) 4039 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4040 else 4041 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4042 return; 4043 } 4044 4045 while (cur_off < len) { 4046 unsigned long cur_src = cur_off + src_offset; 4047 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4048 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4049 unsigned long cur_len = min(src_offset + len - cur_src, 4050 unit_size - folio_off); 4051 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4052 const bool use_memmove = areas_overlap(src_offset + cur_off, 4053 dst_offset + cur_off, cur_len); 4054 4055 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4056 use_memmove); 4057 cur_off += cur_len; 4058 } 4059 } 4060 4061 void memmove_extent_buffer(const struct extent_buffer *dst, 4062 unsigned long dst_offset, unsigned long src_offset, 4063 unsigned long len) 4064 { 4065 unsigned long dst_end = dst_offset + len - 1; 4066 unsigned long src_end = src_offset + len - 1; 4067 4068 if (check_eb_range(dst, dst_offset, len) || 4069 check_eb_range(dst, src_offset, len)) 4070 return; 4071 4072 if (dst_offset < src_offset) { 4073 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4074 return; 4075 } 4076 4077 if (dst->addr) { 4078 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4079 return; 4080 } 4081 4082 while (len > 0) { 4083 unsigned long src_i; 4084 size_t cur; 4085 size_t dst_off_in_folio; 4086 size_t src_off_in_folio; 4087 void *src_addr; 4088 bool use_memmove; 4089 4090 src_i = get_eb_folio_index(dst, src_end); 4091 4092 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4093 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4094 4095 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4096 cur = min(cur, dst_off_in_folio + 1); 4097 4098 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4099 cur + 1; 4100 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4101 cur); 4102 4103 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4104 use_memmove); 4105 4106 dst_end -= cur; 4107 src_end -= cur; 4108 len -= cur; 4109 } 4110 } 4111 4112 #define GANG_LOOKUP_SIZE 16 4113 static struct extent_buffer *get_next_extent_buffer( 4114 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr) 4115 { 4116 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4117 struct extent_buffer *found = NULL; 4118 u64 folio_start = folio_pos(folio); 4119 u64 cur = folio_start; 4120 4121 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE)); 4122 lockdep_assert_held(&fs_info->buffer_lock); 4123 4124 while (cur < folio_start + PAGE_SIZE) { 4125 int ret; 4126 int i; 4127 4128 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4129 (void **)gang, cur >> fs_info->sectorsize_bits, 4130 min_t(unsigned int, GANG_LOOKUP_SIZE, 4131 PAGE_SIZE / fs_info->nodesize)); 4132 if (ret == 0) 4133 goto out; 4134 for (i = 0; i < ret; i++) { 4135 /* Already beyond page end */ 4136 if (gang[i]->start >= folio_start + PAGE_SIZE) 4137 goto out; 4138 /* Found one */ 4139 if (gang[i]->start >= bytenr) { 4140 found = gang[i]; 4141 goto out; 4142 } 4143 } 4144 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4145 } 4146 out: 4147 return found; 4148 } 4149 4150 static int try_release_subpage_extent_buffer(struct folio *folio) 4151 { 4152 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4153 u64 cur = folio_pos(folio); 4154 const u64 end = cur + PAGE_SIZE; 4155 int ret; 4156 4157 while (cur < end) { 4158 struct extent_buffer *eb = NULL; 4159 4160 /* 4161 * Unlike try_release_extent_buffer() which uses folio private 4162 * to grab buffer, for subpage case we rely on radix tree, thus 4163 * we need to ensure radix tree consistency. 4164 * 4165 * We also want an atomic snapshot of the radix tree, thus go 4166 * with spinlock rather than RCU. 4167 */ 4168 spin_lock(&fs_info->buffer_lock); 4169 eb = get_next_extent_buffer(fs_info, folio, cur); 4170 if (!eb) { 4171 /* No more eb in the page range after or at cur */ 4172 spin_unlock(&fs_info->buffer_lock); 4173 break; 4174 } 4175 cur = eb->start + eb->len; 4176 4177 /* 4178 * The same as try_release_extent_buffer(), to ensure the eb 4179 * won't disappear out from under us. 4180 */ 4181 spin_lock(&eb->refs_lock); 4182 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4183 spin_unlock(&eb->refs_lock); 4184 spin_unlock(&fs_info->buffer_lock); 4185 break; 4186 } 4187 spin_unlock(&fs_info->buffer_lock); 4188 4189 /* 4190 * If tree ref isn't set then we know the ref on this eb is a 4191 * real ref, so just return, this eb will likely be freed soon 4192 * anyway. 4193 */ 4194 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4195 spin_unlock(&eb->refs_lock); 4196 break; 4197 } 4198 4199 /* 4200 * Here we don't care about the return value, we will always 4201 * check the folio private at the end. And 4202 * release_extent_buffer() will release the refs_lock. 4203 */ 4204 release_extent_buffer(eb); 4205 } 4206 /* 4207 * Finally to check if we have cleared folio private, as if we have 4208 * released all ebs in the page, the folio private should be cleared now. 4209 */ 4210 spin_lock(&folio->mapping->i_private_lock); 4211 if (!folio_test_private(folio)) 4212 ret = 1; 4213 else 4214 ret = 0; 4215 spin_unlock(&folio->mapping->i_private_lock); 4216 return ret; 4217 4218 } 4219 4220 int try_release_extent_buffer(struct folio *folio) 4221 { 4222 struct extent_buffer *eb; 4223 4224 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 4225 return try_release_subpage_extent_buffer(folio); 4226 4227 /* 4228 * We need to make sure nobody is changing folio private, as we rely on 4229 * folio private as the pointer to extent buffer. 4230 */ 4231 spin_lock(&folio->mapping->i_private_lock); 4232 if (!folio_test_private(folio)) { 4233 spin_unlock(&folio->mapping->i_private_lock); 4234 return 1; 4235 } 4236 4237 eb = folio_get_private(folio); 4238 BUG_ON(!eb); 4239 4240 /* 4241 * This is a little awful but should be ok, we need to make sure that 4242 * the eb doesn't disappear out from under us while we're looking at 4243 * this page. 4244 */ 4245 spin_lock(&eb->refs_lock); 4246 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4247 spin_unlock(&eb->refs_lock); 4248 spin_unlock(&folio->mapping->i_private_lock); 4249 return 0; 4250 } 4251 spin_unlock(&folio->mapping->i_private_lock); 4252 4253 /* 4254 * If tree ref isn't set then we know the ref on this eb is a real ref, 4255 * so just return, this page will likely be freed soon anyway. 4256 */ 4257 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4258 spin_unlock(&eb->refs_lock); 4259 return 0; 4260 } 4261 4262 return release_extent_buffer(eb); 4263 } 4264 4265 /* 4266 * Attempt to readahead a child block. 4267 * 4268 * @fs_info: the fs_info 4269 * @bytenr: bytenr to read 4270 * @owner_root: objectid of the root that owns this eb 4271 * @gen: generation for the uptodate check, can be 0 4272 * @level: level for the eb 4273 * 4274 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4275 * normal uptodate check of the eb, without checking the generation. If we have 4276 * to read the block we will not block on anything. 4277 */ 4278 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4279 u64 bytenr, u64 owner_root, u64 gen, int level) 4280 { 4281 struct btrfs_tree_parent_check check = { 4282 .level = level, 4283 .transid = gen 4284 }; 4285 struct extent_buffer *eb; 4286 int ret; 4287 4288 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4289 if (IS_ERR(eb)) 4290 return; 4291 4292 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4293 free_extent_buffer(eb); 4294 return; 4295 } 4296 4297 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4298 if (ret < 0) 4299 free_extent_buffer_stale(eb); 4300 else 4301 free_extent_buffer(eb); 4302 } 4303 4304 /* 4305 * Readahead a node's child block. 4306 * 4307 * @node: parent node we're reading from 4308 * @slot: slot in the parent node for the child we want to read 4309 * 4310 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4311 * the slot in the node provided. 4312 */ 4313 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4314 { 4315 btrfs_readahead_tree_block(node->fs_info, 4316 btrfs_node_blockptr(node, slot), 4317 btrfs_header_owner(node), 4318 btrfs_node_ptr_generation(node, slot), 4319 btrfs_header_level(node) - 1); 4320 } 4321