xref: /linux/fs/btrfs/extent_io.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	struct inode *inode = tree->private_data;
93 	u64 isize;
94 
95 	if (!inode || !is_data_inode(inode))
96 		return;
97 
98 	isize = i_size_read(inode);
99 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 	}
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head)	do {} while (0)
107 #define btrfs_leak_debug_del(entry)	do {} while (0)
108 #define btrfs_leak_debug_check()	do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
110 #endif
111 
112 struct tree_entry {
113 	u64 start;
114 	u64 end;
115 	struct rb_node rb_node;
116 };
117 
118 struct extent_page_data {
119 	struct bio *bio;
120 	struct extent_io_tree *tree;
121 	/* tells writepage not to lock the state bits for this range
122 	 * it still does the unlocking
123 	 */
124 	unsigned int extent_locked:1;
125 
126 	/* tells the submit_bio code to use REQ_SYNC */
127 	unsigned int sync_io:1;
128 };
129 
130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 				 struct extent_changeset *changeset,
132 				 int set)
133 {
134 	int ret;
135 
136 	if (!changeset)
137 		return 0;
138 	if (set && (state->state & bits) == bits)
139 		return 0;
140 	if (!set && (state->state & bits) == 0)
141 		return 0;
142 	changeset->bytes_changed += state->end - state->start + 1;
143 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 			GFP_ATOMIC);
145 	return ret;
146 }
147 
148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 				       unsigned long bio_flags)
150 {
151 	blk_status_t ret = 0;
152 	struct extent_io_tree *tree = bio->bi_private;
153 
154 	bio->bi_private = NULL;
155 
156 	if (tree->ops)
157 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 						 mirror_num, bio_flags);
159 	else
160 		btrfsic_submit_bio(bio);
161 
162 	return blk_status_to_errno(ret);
163 }
164 
165 /* Cleanup unsubmitted bios */
166 static void end_write_bio(struct extent_page_data *epd, int ret)
167 {
168 	if (epd->bio) {
169 		epd->bio->bi_status = errno_to_blk_status(ret);
170 		bio_endio(epd->bio);
171 		epd->bio = NULL;
172 	}
173 }
174 
175 /*
176  * Submit bio from extent page data via submit_one_bio
177  *
178  * Return 0 if everything is OK.
179  * Return <0 for error.
180  */
181 static int __must_check flush_write_bio(struct extent_page_data *epd)
182 {
183 	int ret = 0;
184 
185 	if (epd->bio) {
186 		ret = submit_one_bio(epd->bio, 0, 0);
187 		/*
188 		 * Clean up of epd->bio is handled by its endio function.
189 		 * And endio is either triggered by successful bio execution
190 		 * or the error handler of submit bio hook.
191 		 * So at this point, no matter what happened, we don't need
192 		 * to clean up epd->bio.
193 		 */
194 		epd->bio = NULL;
195 	}
196 	return ret;
197 }
198 
199 int __init extent_io_init(void)
200 {
201 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 			sizeof(struct extent_state), 0,
203 			SLAB_MEM_SPREAD, NULL);
204 	if (!extent_state_cache)
205 		return -ENOMEM;
206 
207 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 			sizeof(struct extent_buffer), 0,
209 			SLAB_MEM_SPREAD, NULL);
210 	if (!extent_buffer_cache)
211 		goto free_state_cache;
212 
213 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 			offsetof(struct btrfs_io_bio, bio),
215 			BIOSET_NEED_BVECS))
216 		goto free_buffer_cache;
217 
218 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 		goto free_bioset;
220 
221 	return 0;
222 
223 free_bioset:
224 	bioset_exit(&btrfs_bioset);
225 
226 free_buffer_cache:
227 	kmem_cache_destroy(extent_buffer_cache);
228 	extent_buffer_cache = NULL;
229 
230 free_state_cache:
231 	kmem_cache_destroy(extent_state_cache);
232 	extent_state_cache = NULL;
233 	return -ENOMEM;
234 }
235 
236 void __cold extent_io_exit(void)
237 {
238 	btrfs_leak_debug_check();
239 
240 	/*
241 	 * Make sure all delayed rcu free are flushed before we
242 	 * destroy caches.
243 	 */
244 	rcu_barrier();
245 	kmem_cache_destroy(extent_state_cache);
246 	kmem_cache_destroy(extent_buffer_cache);
247 	bioset_exit(&btrfs_bioset);
248 }
249 
250 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 			 struct extent_io_tree *tree, unsigned int owner,
252 			 void *private_data)
253 {
254 	tree->fs_info = fs_info;
255 	tree->state = RB_ROOT;
256 	tree->ops = NULL;
257 	tree->dirty_bytes = 0;
258 	spin_lock_init(&tree->lock);
259 	tree->private_data = private_data;
260 	tree->owner = owner;
261 }
262 
263 void extent_io_tree_release(struct extent_io_tree *tree)
264 {
265 	spin_lock(&tree->lock);
266 	/*
267 	 * Do a single barrier for the waitqueue_active check here, the state
268 	 * of the waitqueue should not change once extent_io_tree_release is
269 	 * called.
270 	 */
271 	smp_mb();
272 	while (!RB_EMPTY_ROOT(&tree->state)) {
273 		struct rb_node *node;
274 		struct extent_state *state;
275 
276 		node = rb_first(&tree->state);
277 		state = rb_entry(node, struct extent_state, rb_node);
278 		rb_erase(&state->rb_node, &tree->state);
279 		RB_CLEAR_NODE(&state->rb_node);
280 		/*
281 		 * btree io trees aren't supposed to have tasks waiting for
282 		 * changes in the flags of extent states ever.
283 		 */
284 		ASSERT(!waitqueue_active(&state->wq));
285 		free_extent_state(state);
286 
287 		cond_resched_lock(&tree->lock);
288 	}
289 	spin_unlock(&tree->lock);
290 }
291 
292 static struct extent_state *alloc_extent_state(gfp_t mask)
293 {
294 	struct extent_state *state;
295 
296 	/*
297 	 * The given mask might be not appropriate for the slab allocator,
298 	 * drop the unsupported bits
299 	 */
300 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 	state = kmem_cache_alloc(extent_state_cache, mask);
302 	if (!state)
303 		return state;
304 	state->state = 0;
305 	state->failrec = NULL;
306 	RB_CLEAR_NODE(&state->rb_node);
307 	btrfs_leak_debug_add(&state->leak_list, &states);
308 	refcount_set(&state->refs, 1);
309 	init_waitqueue_head(&state->wq);
310 	trace_alloc_extent_state(state, mask, _RET_IP_);
311 	return state;
312 }
313 
314 void free_extent_state(struct extent_state *state)
315 {
316 	if (!state)
317 		return;
318 	if (refcount_dec_and_test(&state->refs)) {
319 		WARN_ON(extent_state_in_tree(state));
320 		btrfs_leak_debug_del(&state->leak_list);
321 		trace_free_extent_state(state, _RET_IP_);
322 		kmem_cache_free(extent_state_cache, state);
323 	}
324 }
325 
326 static struct rb_node *tree_insert(struct rb_root *root,
327 				   struct rb_node *search_start,
328 				   u64 offset,
329 				   struct rb_node *node,
330 				   struct rb_node ***p_in,
331 				   struct rb_node **parent_in)
332 {
333 	struct rb_node **p;
334 	struct rb_node *parent = NULL;
335 	struct tree_entry *entry;
336 
337 	if (p_in && parent_in) {
338 		p = *p_in;
339 		parent = *parent_in;
340 		goto do_insert;
341 	}
342 
343 	p = search_start ? &search_start : &root->rb_node;
344 	while (*p) {
345 		parent = *p;
346 		entry = rb_entry(parent, struct tree_entry, rb_node);
347 
348 		if (offset < entry->start)
349 			p = &(*p)->rb_left;
350 		else if (offset > entry->end)
351 			p = &(*p)->rb_right;
352 		else
353 			return parent;
354 	}
355 
356 do_insert:
357 	rb_link_node(node, parent, p);
358 	rb_insert_color(node, root);
359 	return NULL;
360 }
361 
362 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
363 				      struct rb_node **next_ret,
364 				      struct rb_node **prev_ret,
365 				      struct rb_node ***p_ret,
366 				      struct rb_node **parent_ret)
367 {
368 	struct rb_root *root = &tree->state;
369 	struct rb_node **n = &root->rb_node;
370 	struct rb_node *prev = NULL;
371 	struct rb_node *orig_prev = NULL;
372 	struct tree_entry *entry;
373 	struct tree_entry *prev_entry = NULL;
374 
375 	while (*n) {
376 		prev = *n;
377 		entry = rb_entry(prev, struct tree_entry, rb_node);
378 		prev_entry = entry;
379 
380 		if (offset < entry->start)
381 			n = &(*n)->rb_left;
382 		else if (offset > entry->end)
383 			n = &(*n)->rb_right;
384 		else
385 			return *n;
386 	}
387 
388 	if (p_ret)
389 		*p_ret = n;
390 	if (parent_ret)
391 		*parent_ret = prev;
392 
393 	if (next_ret) {
394 		orig_prev = prev;
395 		while (prev && offset > prev_entry->end) {
396 			prev = rb_next(prev);
397 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
398 		}
399 		*next_ret = prev;
400 		prev = orig_prev;
401 	}
402 
403 	if (prev_ret) {
404 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
405 		while (prev && offset < prev_entry->start) {
406 			prev = rb_prev(prev);
407 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
408 		}
409 		*prev_ret = prev;
410 	}
411 	return NULL;
412 }
413 
414 static inline struct rb_node *
415 tree_search_for_insert(struct extent_io_tree *tree,
416 		       u64 offset,
417 		       struct rb_node ***p_ret,
418 		       struct rb_node **parent_ret)
419 {
420 	struct rb_node *next= NULL;
421 	struct rb_node *ret;
422 
423 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
424 	if (!ret)
425 		return next;
426 	return ret;
427 }
428 
429 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
430 					  u64 offset)
431 {
432 	return tree_search_for_insert(tree, offset, NULL, NULL);
433 }
434 
435 /*
436  * utility function to look for merge candidates inside a given range.
437  * Any extents with matching state are merged together into a single
438  * extent in the tree.  Extents with EXTENT_IO in their state field
439  * are not merged because the end_io handlers need to be able to do
440  * operations on them without sleeping (or doing allocations/splits).
441  *
442  * This should be called with the tree lock held.
443  */
444 static void merge_state(struct extent_io_tree *tree,
445 		        struct extent_state *state)
446 {
447 	struct extent_state *other;
448 	struct rb_node *other_node;
449 
450 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
451 		return;
452 
453 	other_node = rb_prev(&state->rb_node);
454 	if (other_node) {
455 		other = rb_entry(other_node, struct extent_state, rb_node);
456 		if (other->end == state->start - 1 &&
457 		    other->state == state->state) {
458 			if (tree->private_data &&
459 			    is_data_inode(tree->private_data))
460 				btrfs_merge_delalloc_extent(tree->private_data,
461 							    state, other);
462 			state->start = other->start;
463 			rb_erase(&other->rb_node, &tree->state);
464 			RB_CLEAR_NODE(&other->rb_node);
465 			free_extent_state(other);
466 		}
467 	}
468 	other_node = rb_next(&state->rb_node);
469 	if (other_node) {
470 		other = rb_entry(other_node, struct extent_state, rb_node);
471 		if (other->start == state->end + 1 &&
472 		    other->state == state->state) {
473 			if (tree->private_data &&
474 			    is_data_inode(tree->private_data))
475 				btrfs_merge_delalloc_extent(tree->private_data,
476 							    state, other);
477 			state->end = other->end;
478 			rb_erase(&other->rb_node, &tree->state);
479 			RB_CLEAR_NODE(&other->rb_node);
480 			free_extent_state(other);
481 		}
482 	}
483 }
484 
485 static void set_state_bits(struct extent_io_tree *tree,
486 			   struct extent_state *state, unsigned *bits,
487 			   struct extent_changeset *changeset);
488 
489 /*
490  * insert an extent_state struct into the tree.  'bits' are set on the
491  * struct before it is inserted.
492  *
493  * This may return -EEXIST if the extent is already there, in which case the
494  * state struct is freed.
495  *
496  * The tree lock is not taken internally.  This is a utility function and
497  * probably isn't what you want to call (see set/clear_extent_bit).
498  */
499 static int insert_state(struct extent_io_tree *tree,
500 			struct extent_state *state, u64 start, u64 end,
501 			struct rb_node ***p,
502 			struct rb_node **parent,
503 			unsigned *bits, struct extent_changeset *changeset)
504 {
505 	struct rb_node *node;
506 
507 	if (end < start)
508 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
509 		       end, start);
510 	state->start = start;
511 	state->end = end;
512 
513 	set_state_bits(tree, state, bits, changeset);
514 
515 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
516 	if (node) {
517 		struct extent_state *found;
518 		found = rb_entry(node, struct extent_state, rb_node);
519 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
520 		       found->start, found->end, start, end);
521 		return -EEXIST;
522 	}
523 	merge_state(tree, state);
524 	return 0;
525 }
526 
527 /*
528  * split a given extent state struct in two, inserting the preallocated
529  * struct 'prealloc' as the newly created second half.  'split' indicates an
530  * offset inside 'orig' where it should be split.
531  *
532  * Before calling,
533  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
534  * are two extent state structs in the tree:
535  * prealloc: [orig->start, split - 1]
536  * orig: [ split, orig->end ]
537  *
538  * The tree locks are not taken by this function. They need to be held
539  * by the caller.
540  */
541 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
542 		       struct extent_state *prealloc, u64 split)
543 {
544 	struct rb_node *node;
545 
546 	if (tree->private_data && is_data_inode(tree->private_data))
547 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
548 
549 	prealloc->start = orig->start;
550 	prealloc->end = split - 1;
551 	prealloc->state = orig->state;
552 	orig->start = split;
553 
554 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
555 			   &prealloc->rb_node, NULL, NULL);
556 	if (node) {
557 		free_extent_state(prealloc);
558 		return -EEXIST;
559 	}
560 	return 0;
561 }
562 
563 static struct extent_state *next_state(struct extent_state *state)
564 {
565 	struct rb_node *next = rb_next(&state->rb_node);
566 	if (next)
567 		return rb_entry(next, struct extent_state, rb_node);
568 	else
569 		return NULL;
570 }
571 
572 /*
573  * utility function to clear some bits in an extent state struct.
574  * it will optionally wake up anyone waiting on this state (wake == 1).
575  *
576  * If no bits are set on the state struct after clearing things, the
577  * struct is freed and removed from the tree
578  */
579 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
580 					    struct extent_state *state,
581 					    unsigned *bits, int wake,
582 					    struct extent_changeset *changeset)
583 {
584 	struct extent_state *next;
585 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
586 	int ret;
587 
588 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
589 		u64 range = state->end - state->start + 1;
590 		WARN_ON(range > tree->dirty_bytes);
591 		tree->dirty_bytes -= range;
592 	}
593 
594 	if (tree->private_data && is_data_inode(tree->private_data))
595 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
596 
597 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
598 	BUG_ON(ret < 0);
599 	state->state &= ~bits_to_clear;
600 	if (wake)
601 		wake_up(&state->wq);
602 	if (state->state == 0) {
603 		next = next_state(state);
604 		if (extent_state_in_tree(state)) {
605 			rb_erase(&state->rb_node, &tree->state);
606 			RB_CLEAR_NODE(&state->rb_node);
607 			free_extent_state(state);
608 		} else {
609 			WARN_ON(1);
610 		}
611 	} else {
612 		merge_state(tree, state);
613 		next = next_state(state);
614 	}
615 	return next;
616 }
617 
618 static struct extent_state *
619 alloc_extent_state_atomic(struct extent_state *prealloc)
620 {
621 	if (!prealloc)
622 		prealloc = alloc_extent_state(GFP_ATOMIC);
623 
624 	return prealloc;
625 }
626 
627 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
628 {
629 	struct inode *inode = tree->private_data;
630 
631 	btrfs_panic(btrfs_sb(inode->i_sb), err,
632 	"locking error: extent tree was modified by another thread while locked");
633 }
634 
635 /*
636  * clear some bits on a range in the tree.  This may require splitting
637  * or inserting elements in the tree, so the gfp mask is used to
638  * indicate which allocations or sleeping are allowed.
639  *
640  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
641  * the given range from the tree regardless of state (ie for truncate).
642  *
643  * the range [start, end] is inclusive.
644  *
645  * This takes the tree lock, and returns 0 on success and < 0 on error.
646  */
647 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
648 			      unsigned bits, int wake, int delete,
649 			      struct extent_state **cached_state,
650 			      gfp_t mask, struct extent_changeset *changeset)
651 {
652 	struct extent_state *state;
653 	struct extent_state *cached;
654 	struct extent_state *prealloc = NULL;
655 	struct rb_node *node;
656 	u64 last_end;
657 	int err;
658 	int clear = 0;
659 
660 	btrfs_debug_check_extent_io_range(tree, start, end);
661 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
662 
663 	if (bits & EXTENT_DELALLOC)
664 		bits |= EXTENT_NORESERVE;
665 
666 	if (delete)
667 		bits |= ~EXTENT_CTLBITS;
668 
669 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
670 		clear = 1;
671 again:
672 	if (!prealloc && gfpflags_allow_blocking(mask)) {
673 		/*
674 		 * Don't care for allocation failure here because we might end
675 		 * up not needing the pre-allocated extent state at all, which
676 		 * is the case if we only have in the tree extent states that
677 		 * cover our input range and don't cover too any other range.
678 		 * If we end up needing a new extent state we allocate it later.
679 		 */
680 		prealloc = alloc_extent_state(mask);
681 	}
682 
683 	spin_lock(&tree->lock);
684 	if (cached_state) {
685 		cached = *cached_state;
686 
687 		if (clear) {
688 			*cached_state = NULL;
689 			cached_state = NULL;
690 		}
691 
692 		if (cached && extent_state_in_tree(cached) &&
693 		    cached->start <= start && cached->end > start) {
694 			if (clear)
695 				refcount_dec(&cached->refs);
696 			state = cached;
697 			goto hit_next;
698 		}
699 		if (clear)
700 			free_extent_state(cached);
701 	}
702 	/*
703 	 * this search will find the extents that end after
704 	 * our range starts
705 	 */
706 	node = tree_search(tree, start);
707 	if (!node)
708 		goto out;
709 	state = rb_entry(node, struct extent_state, rb_node);
710 hit_next:
711 	if (state->start > end)
712 		goto out;
713 	WARN_ON(state->end < start);
714 	last_end = state->end;
715 
716 	/* the state doesn't have the wanted bits, go ahead */
717 	if (!(state->state & bits)) {
718 		state = next_state(state);
719 		goto next;
720 	}
721 
722 	/*
723 	 *     | ---- desired range ---- |
724 	 *  | state | or
725 	 *  | ------------- state -------------- |
726 	 *
727 	 * We need to split the extent we found, and may flip
728 	 * bits on second half.
729 	 *
730 	 * If the extent we found extends past our range, we
731 	 * just split and search again.  It'll get split again
732 	 * the next time though.
733 	 *
734 	 * If the extent we found is inside our range, we clear
735 	 * the desired bit on it.
736 	 */
737 
738 	if (state->start < start) {
739 		prealloc = alloc_extent_state_atomic(prealloc);
740 		BUG_ON(!prealloc);
741 		err = split_state(tree, state, prealloc, start);
742 		if (err)
743 			extent_io_tree_panic(tree, err);
744 
745 		prealloc = NULL;
746 		if (err)
747 			goto out;
748 		if (state->end <= end) {
749 			state = clear_state_bit(tree, state, &bits, wake,
750 						changeset);
751 			goto next;
752 		}
753 		goto search_again;
754 	}
755 	/*
756 	 * | ---- desired range ---- |
757 	 *                        | state |
758 	 * We need to split the extent, and clear the bit
759 	 * on the first half
760 	 */
761 	if (state->start <= end && state->end > end) {
762 		prealloc = alloc_extent_state_atomic(prealloc);
763 		BUG_ON(!prealloc);
764 		err = split_state(tree, state, prealloc, end + 1);
765 		if (err)
766 			extent_io_tree_panic(tree, err);
767 
768 		if (wake)
769 			wake_up(&state->wq);
770 
771 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
772 
773 		prealloc = NULL;
774 		goto out;
775 	}
776 
777 	state = clear_state_bit(tree, state, &bits, wake, changeset);
778 next:
779 	if (last_end == (u64)-1)
780 		goto out;
781 	start = last_end + 1;
782 	if (start <= end && state && !need_resched())
783 		goto hit_next;
784 
785 search_again:
786 	if (start > end)
787 		goto out;
788 	spin_unlock(&tree->lock);
789 	if (gfpflags_allow_blocking(mask))
790 		cond_resched();
791 	goto again;
792 
793 out:
794 	spin_unlock(&tree->lock);
795 	if (prealloc)
796 		free_extent_state(prealloc);
797 
798 	return 0;
799 
800 }
801 
802 static void wait_on_state(struct extent_io_tree *tree,
803 			  struct extent_state *state)
804 		__releases(tree->lock)
805 		__acquires(tree->lock)
806 {
807 	DEFINE_WAIT(wait);
808 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
809 	spin_unlock(&tree->lock);
810 	schedule();
811 	spin_lock(&tree->lock);
812 	finish_wait(&state->wq, &wait);
813 }
814 
815 /*
816  * waits for one or more bits to clear on a range in the state tree.
817  * The range [start, end] is inclusive.
818  * The tree lock is taken by this function
819  */
820 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
821 			    unsigned long bits)
822 {
823 	struct extent_state *state;
824 	struct rb_node *node;
825 
826 	btrfs_debug_check_extent_io_range(tree, start, end);
827 
828 	spin_lock(&tree->lock);
829 again:
830 	while (1) {
831 		/*
832 		 * this search will find all the extents that end after
833 		 * our range starts
834 		 */
835 		node = tree_search(tree, start);
836 process_node:
837 		if (!node)
838 			break;
839 
840 		state = rb_entry(node, struct extent_state, rb_node);
841 
842 		if (state->start > end)
843 			goto out;
844 
845 		if (state->state & bits) {
846 			start = state->start;
847 			refcount_inc(&state->refs);
848 			wait_on_state(tree, state);
849 			free_extent_state(state);
850 			goto again;
851 		}
852 		start = state->end + 1;
853 
854 		if (start > end)
855 			break;
856 
857 		if (!cond_resched_lock(&tree->lock)) {
858 			node = rb_next(node);
859 			goto process_node;
860 		}
861 	}
862 out:
863 	spin_unlock(&tree->lock);
864 }
865 
866 static void set_state_bits(struct extent_io_tree *tree,
867 			   struct extent_state *state,
868 			   unsigned *bits, struct extent_changeset *changeset)
869 {
870 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
871 	int ret;
872 
873 	if (tree->private_data && is_data_inode(tree->private_data))
874 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
875 
876 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
877 		u64 range = state->end - state->start + 1;
878 		tree->dirty_bytes += range;
879 	}
880 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
881 	BUG_ON(ret < 0);
882 	state->state |= bits_to_set;
883 }
884 
885 static void cache_state_if_flags(struct extent_state *state,
886 				 struct extent_state **cached_ptr,
887 				 unsigned flags)
888 {
889 	if (cached_ptr && !(*cached_ptr)) {
890 		if (!flags || (state->state & flags)) {
891 			*cached_ptr = state;
892 			refcount_inc(&state->refs);
893 		}
894 	}
895 }
896 
897 static void cache_state(struct extent_state *state,
898 			struct extent_state **cached_ptr)
899 {
900 	return cache_state_if_flags(state, cached_ptr,
901 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
902 }
903 
904 /*
905  * set some bits on a range in the tree.  This may require allocations or
906  * sleeping, so the gfp mask is used to indicate what is allowed.
907  *
908  * If any of the exclusive bits are set, this will fail with -EEXIST if some
909  * part of the range already has the desired bits set.  The start of the
910  * existing range is returned in failed_start in this case.
911  *
912  * [start, end] is inclusive This takes the tree lock.
913  */
914 
915 static int __must_check
916 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
917 		 unsigned bits, unsigned exclusive_bits,
918 		 u64 *failed_start, struct extent_state **cached_state,
919 		 gfp_t mask, struct extent_changeset *changeset)
920 {
921 	struct extent_state *state;
922 	struct extent_state *prealloc = NULL;
923 	struct rb_node *node;
924 	struct rb_node **p;
925 	struct rb_node *parent;
926 	int err = 0;
927 	u64 last_start;
928 	u64 last_end;
929 
930 	btrfs_debug_check_extent_io_range(tree, start, end);
931 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
932 
933 again:
934 	if (!prealloc && gfpflags_allow_blocking(mask)) {
935 		/*
936 		 * Don't care for allocation failure here because we might end
937 		 * up not needing the pre-allocated extent state at all, which
938 		 * is the case if we only have in the tree extent states that
939 		 * cover our input range and don't cover too any other range.
940 		 * If we end up needing a new extent state we allocate it later.
941 		 */
942 		prealloc = alloc_extent_state(mask);
943 	}
944 
945 	spin_lock(&tree->lock);
946 	if (cached_state && *cached_state) {
947 		state = *cached_state;
948 		if (state->start <= start && state->end > start &&
949 		    extent_state_in_tree(state)) {
950 			node = &state->rb_node;
951 			goto hit_next;
952 		}
953 	}
954 	/*
955 	 * this search will find all the extents that end after
956 	 * our range starts.
957 	 */
958 	node = tree_search_for_insert(tree, start, &p, &parent);
959 	if (!node) {
960 		prealloc = alloc_extent_state_atomic(prealloc);
961 		BUG_ON(!prealloc);
962 		err = insert_state(tree, prealloc, start, end,
963 				   &p, &parent, &bits, changeset);
964 		if (err)
965 			extent_io_tree_panic(tree, err);
966 
967 		cache_state(prealloc, cached_state);
968 		prealloc = NULL;
969 		goto out;
970 	}
971 	state = rb_entry(node, struct extent_state, rb_node);
972 hit_next:
973 	last_start = state->start;
974 	last_end = state->end;
975 
976 	/*
977 	 * | ---- desired range ---- |
978 	 * | state |
979 	 *
980 	 * Just lock what we found and keep going
981 	 */
982 	if (state->start == start && state->end <= end) {
983 		if (state->state & exclusive_bits) {
984 			*failed_start = state->start;
985 			err = -EEXIST;
986 			goto out;
987 		}
988 
989 		set_state_bits(tree, state, &bits, changeset);
990 		cache_state(state, cached_state);
991 		merge_state(tree, state);
992 		if (last_end == (u64)-1)
993 			goto out;
994 		start = last_end + 1;
995 		state = next_state(state);
996 		if (start < end && state && state->start == start &&
997 		    !need_resched())
998 			goto hit_next;
999 		goto search_again;
1000 	}
1001 
1002 	/*
1003 	 *     | ---- desired range ---- |
1004 	 * | state |
1005 	 *   or
1006 	 * | ------------- state -------------- |
1007 	 *
1008 	 * We need to split the extent we found, and may flip bits on
1009 	 * second half.
1010 	 *
1011 	 * If the extent we found extends past our
1012 	 * range, we just split and search again.  It'll get split
1013 	 * again the next time though.
1014 	 *
1015 	 * If the extent we found is inside our range, we set the
1016 	 * desired bit on it.
1017 	 */
1018 	if (state->start < start) {
1019 		if (state->state & exclusive_bits) {
1020 			*failed_start = start;
1021 			err = -EEXIST;
1022 			goto out;
1023 		}
1024 
1025 		prealloc = alloc_extent_state_atomic(prealloc);
1026 		BUG_ON(!prealloc);
1027 		err = split_state(tree, state, prealloc, start);
1028 		if (err)
1029 			extent_io_tree_panic(tree, err);
1030 
1031 		prealloc = NULL;
1032 		if (err)
1033 			goto out;
1034 		if (state->end <= end) {
1035 			set_state_bits(tree, state, &bits, changeset);
1036 			cache_state(state, cached_state);
1037 			merge_state(tree, state);
1038 			if (last_end == (u64)-1)
1039 				goto out;
1040 			start = last_end + 1;
1041 			state = next_state(state);
1042 			if (start < end && state && state->start == start &&
1043 			    !need_resched())
1044 				goto hit_next;
1045 		}
1046 		goto search_again;
1047 	}
1048 	/*
1049 	 * | ---- desired range ---- |
1050 	 *     | state | or               | state |
1051 	 *
1052 	 * There's a hole, we need to insert something in it and
1053 	 * ignore the extent we found.
1054 	 */
1055 	if (state->start > start) {
1056 		u64 this_end;
1057 		if (end < last_start)
1058 			this_end = end;
1059 		else
1060 			this_end = last_start - 1;
1061 
1062 		prealloc = alloc_extent_state_atomic(prealloc);
1063 		BUG_ON(!prealloc);
1064 
1065 		/*
1066 		 * Avoid to free 'prealloc' if it can be merged with
1067 		 * the later extent.
1068 		 */
1069 		err = insert_state(tree, prealloc, start, this_end,
1070 				   NULL, NULL, &bits, changeset);
1071 		if (err)
1072 			extent_io_tree_panic(tree, err);
1073 
1074 		cache_state(prealloc, cached_state);
1075 		prealloc = NULL;
1076 		start = this_end + 1;
1077 		goto search_again;
1078 	}
1079 	/*
1080 	 * | ---- desired range ---- |
1081 	 *                        | state |
1082 	 * We need to split the extent, and set the bit
1083 	 * on the first half
1084 	 */
1085 	if (state->start <= end && state->end > end) {
1086 		if (state->state & exclusive_bits) {
1087 			*failed_start = start;
1088 			err = -EEXIST;
1089 			goto out;
1090 		}
1091 
1092 		prealloc = alloc_extent_state_atomic(prealloc);
1093 		BUG_ON(!prealloc);
1094 		err = split_state(tree, state, prealloc, end + 1);
1095 		if (err)
1096 			extent_io_tree_panic(tree, err);
1097 
1098 		set_state_bits(tree, prealloc, &bits, changeset);
1099 		cache_state(prealloc, cached_state);
1100 		merge_state(tree, prealloc);
1101 		prealloc = NULL;
1102 		goto out;
1103 	}
1104 
1105 search_again:
1106 	if (start > end)
1107 		goto out;
1108 	spin_unlock(&tree->lock);
1109 	if (gfpflags_allow_blocking(mask))
1110 		cond_resched();
1111 	goto again;
1112 
1113 out:
1114 	spin_unlock(&tree->lock);
1115 	if (prealloc)
1116 		free_extent_state(prealloc);
1117 
1118 	return err;
1119 
1120 }
1121 
1122 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1123 		   unsigned bits, u64 * failed_start,
1124 		   struct extent_state **cached_state, gfp_t mask)
1125 {
1126 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1127 				cached_state, mask, NULL);
1128 }
1129 
1130 
1131 /**
1132  * convert_extent_bit - convert all bits in a given range from one bit to
1133  * 			another
1134  * @tree:	the io tree to search
1135  * @start:	the start offset in bytes
1136  * @end:	the end offset in bytes (inclusive)
1137  * @bits:	the bits to set in this range
1138  * @clear_bits:	the bits to clear in this range
1139  * @cached_state:	state that we're going to cache
1140  *
1141  * This will go through and set bits for the given range.  If any states exist
1142  * already in this range they are set with the given bit and cleared of the
1143  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1144  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1145  * boundary bits like LOCK.
1146  *
1147  * All allocations are done with GFP_NOFS.
1148  */
1149 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1150 		       unsigned bits, unsigned clear_bits,
1151 		       struct extent_state **cached_state)
1152 {
1153 	struct extent_state *state;
1154 	struct extent_state *prealloc = NULL;
1155 	struct rb_node *node;
1156 	struct rb_node **p;
1157 	struct rb_node *parent;
1158 	int err = 0;
1159 	u64 last_start;
1160 	u64 last_end;
1161 	bool first_iteration = true;
1162 
1163 	btrfs_debug_check_extent_io_range(tree, start, end);
1164 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1165 				       clear_bits);
1166 
1167 again:
1168 	if (!prealloc) {
1169 		/*
1170 		 * Best effort, don't worry if extent state allocation fails
1171 		 * here for the first iteration. We might have a cached state
1172 		 * that matches exactly the target range, in which case no
1173 		 * extent state allocations are needed. We'll only know this
1174 		 * after locking the tree.
1175 		 */
1176 		prealloc = alloc_extent_state(GFP_NOFS);
1177 		if (!prealloc && !first_iteration)
1178 			return -ENOMEM;
1179 	}
1180 
1181 	spin_lock(&tree->lock);
1182 	if (cached_state && *cached_state) {
1183 		state = *cached_state;
1184 		if (state->start <= start && state->end > start &&
1185 		    extent_state_in_tree(state)) {
1186 			node = &state->rb_node;
1187 			goto hit_next;
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * this search will find all the extents that end after
1193 	 * our range starts.
1194 	 */
1195 	node = tree_search_for_insert(tree, start, &p, &parent);
1196 	if (!node) {
1197 		prealloc = alloc_extent_state_atomic(prealloc);
1198 		if (!prealloc) {
1199 			err = -ENOMEM;
1200 			goto out;
1201 		}
1202 		err = insert_state(tree, prealloc, start, end,
1203 				   &p, &parent, &bits, NULL);
1204 		if (err)
1205 			extent_io_tree_panic(tree, err);
1206 		cache_state(prealloc, cached_state);
1207 		prealloc = NULL;
1208 		goto out;
1209 	}
1210 	state = rb_entry(node, struct extent_state, rb_node);
1211 hit_next:
1212 	last_start = state->start;
1213 	last_end = state->end;
1214 
1215 	/*
1216 	 * | ---- desired range ---- |
1217 	 * | state |
1218 	 *
1219 	 * Just lock what we found and keep going
1220 	 */
1221 	if (state->start == start && state->end <= end) {
1222 		set_state_bits(tree, state, &bits, NULL);
1223 		cache_state(state, cached_state);
1224 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1225 		if (last_end == (u64)-1)
1226 			goto out;
1227 		start = last_end + 1;
1228 		if (start < end && state && state->start == start &&
1229 		    !need_resched())
1230 			goto hit_next;
1231 		goto search_again;
1232 	}
1233 
1234 	/*
1235 	 *     | ---- desired range ---- |
1236 	 * | state |
1237 	 *   or
1238 	 * | ------------- state -------------- |
1239 	 *
1240 	 * We need to split the extent we found, and may flip bits on
1241 	 * second half.
1242 	 *
1243 	 * If the extent we found extends past our
1244 	 * range, we just split and search again.  It'll get split
1245 	 * again the next time though.
1246 	 *
1247 	 * If the extent we found is inside our range, we set the
1248 	 * desired bit on it.
1249 	 */
1250 	if (state->start < start) {
1251 		prealloc = alloc_extent_state_atomic(prealloc);
1252 		if (!prealloc) {
1253 			err = -ENOMEM;
1254 			goto out;
1255 		}
1256 		err = split_state(tree, state, prealloc, start);
1257 		if (err)
1258 			extent_io_tree_panic(tree, err);
1259 		prealloc = NULL;
1260 		if (err)
1261 			goto out;
1262 		if (state->end <= end) {
1263 			set_state_bits(tree, state, &bits, NULL);
1264 			cache_state(state, cached_state);
1265 			state = clear_state_bit(tree, state, &clear_bits, 0,
1266 						NULL);
1267 			if (last_end == (u64)-1)
1268 				goto out;
1269 			start = last_end + 1;
1270 			if (start < end && state && state->start == start &&
1271 			    !need_resched())
1272 				goto hit_next;
1273 		}
1274 		goto search_again;
1275 	}
1276 	/*
1277 	 * | ---- desired range ---- |
1278 	 *     | state | or               | state |
1279 	 *
1280 	 * There's a hole, we need to insert something in it and
1281 	 * ignore the extent we found.
1282 	 */
1283 	if (state->start > start) {
1284 		u64 this_end;
1285 		if (end < last_start)
1286 			this_end = end;
1287 		else
1288 			this_end = last_start - 1;
1289 
1290 		prealloc = alloc_extent_state_atomic(prealloc);
1291 		if (!prealloc) {
1292 			err = -ENOMEM;
1293 			goto out;
1294 		}
1295 
1296 		/*
1297 		 * Avoid to free 'prealloc' if it can be merged with
1298 		 * the later extent.
1299 		 */
1300 		err = insert_state(tree, prealloc, start, this_end,
1301 				   NULL, NULL, &bits, NULL);
1302 		if (err)
1303 			extent_io_tree_panic(tree, err);
1304 		cache_state(prealloc, cached_state);
1305 		prealloc = NULL;
1306 		start = this_end + 1;
1307 		goto search_again;
1308 	}
1309 	/*
1310 	 * | ---- desired range ---- |
1311 	 *                        | state |
1312 	 * We need to split the extent, and set the bit
1313 	 * on the first half
1314 	 */
1315 	if (state->start <= end && state->end > end) {
1316 		prealloc = alloc_extent_state_atomic(prealloc);
1317 		if (!prealloc) {
1318 			err = -ENOMEM;
1319 			goto out;
1320 		}
1321 
1322 		err = split_state(tree, state, prealloc, end + 1);
1323 		if (err)
1324 			extent_io_tree_panic(tree, err);
1325 
1326 		set_state_bits(tree, prealloc, &bits, NULL);
1327 		cache_state(prealloc, cached_state);
1328 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1329 		prealloc = NULL;
1330 		goto out;
1331 	}
1332 
1333 search_again:
1334 	if (start > end)
1335 		goto out;
1336 	spin_unlock(&tree->lock);
1337 	cond_resched();
1338 	first_iteration = false;
1339 	goto again;
1340 
1341 out:
1342 	spin_unlock(&tree->lock);
1343 	if (prealloc)
1344 		free_extent_state(prealloc);
1345 
1346 	return err;
1347 }
1348 
1349 /* wrappers around set/clear extent bit */
1350 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1351 			   unsigned bits, struct extent_changeset *changeset)
1352 {
1353 	/*
1354 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1355 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1356 	 * either fail with -EEXIST or changeset will record the whole
1357 	 * range.
1358 	 */
1359 	BUG_ON(bits & EXTENT_LOCKED);
1360 
1361 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1362 				changeset);
1363 }
1364 
1365 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1366 			   unsigned bits)
1367 {
1368 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1369 				GFP_NOWAIT, NULL);
1370 }
1371 
1372 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1373 		     unsigned bits, int wake, int delete,
1374 		     struct extent_state **cached)
1375 {
1376 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1377 				  cached, GFP_NOFS, NULL);
1378 }
1379 
1380 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1381 		unsigned bits, struct extent_changeset *changeset)
1382 {
1383 	/*
1384 	 * Don't support EXTENT_LOCKED case, same reason as
1385 	 * set_record_extent_bits().
1386 	 */
1387 	BUG_ON(bits & EXTENT_LOCKED);
1388 
1389 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1390 				  changeset);
1391 }
1392 
1393 /*
1394  * either insert or lock state struct between start and end use mask to tell
1395  * us if waiting is desired.
1396  */
1397 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1398 		     struct extent_state **cached_state)
1399 {
1400 	int err;
1401 	u64 failed_start;
1402 
1403 	while (1) {
1404 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1405 				       EXTENT_LOCKED, &failed_start,
1406 				       cached_state, GFP_NOFS, NULL);
1407 		if (err == -EEXIST) {
1408 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1409 			start = failed_start;
1410 		} else
1411 			break;
1412 		WARN_ON(start > end);
1413 	}
1414 	return err;
1415 }
1416 
1417 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1418 {
1419 	int err;
1420 	u64 failed_start;
1421 
1422 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1423 			       &failed_start, NULL, GFP_NOFS, NULL);
1424 	if (err == -EEXIST) {
1425 		if (failed_start > start)
1426 			clear_extent_bit(tree, start, failed_start - 1,
1427 					 EXTENT_LOCKED, 1, 0, NULL);
1428 		return 0;
1429 	}
1430 	return 1;
1431 }
1432 
1433 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1434 {
1435 	unsigned long index = start >> PAGE_SHIFT;
1436 	unsigned long end_index = end >> PAGE_SHIFT;
1437 	struct page *page;
1438 
1439 	while (index <= end_index) {
1440 		page = find_get_page(inode->i_mapping, index);
1441 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1442 		clear_page_dirty_for_io(page);
1443 		put_page(page);
1444 		index++;
1445 	}
1446 }
1447 
1448 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1449 {
1450 	unsigned long index = start >> PAGE_SHIFT;
1451 	unsigned long end_index = end >> PAGE_SHIFT;
1452 	struct page *page;
1453 
1454 	while (index <= end_index) {
1455 		page = find_get_page(inode->i_mapping, index);
1456 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1457 		__set_page_dirty_nobuffers(page);
1458 		account_page_redirty(page);
1459 		put_page(page);
1460 		index++;
1461 	}
1462 }
1463 
1464 /* find the first state struct with 'bits' set after 'start', and
1465  * return it.  tree->lock must be held.  NULL will returned if
1466  * nothing was found after 'start'
1467  */
1468 static struct extent_state *
1469 find_first_extent_bit_state(struct extent_io_tree *tree,
1470 			    u64 start, unsigned bits)
1471 {
1472 	struct rb_node *node;
1473 	struct extent_state *state;
1474 
1475 	/*
1476 	 * this search will find all the extents that end after
1477 	 * our range starts.
1478 	 */
1479 	node = tree_search(tree, start);
1480 	if (!node)
1481 		goto out;
1482 
1483 	while (1) {
1484 		state = rb_entry(node, struct extent_state, rb_node);
1485 		if (state->end >= start && (state->state & bits))
1486 			return state;
1487 
1488 		node = rb_next(node);
1489 		if (!node)
1490 			break;
1491 	}
1492 out:
1493 	return NULL;
1494 }
1495 
1496 /*
1497  * find the first offset in the io tree with 'bits' set. zero is
1498  * returned if we find something, and *start_ret and *end_ret are
1499  * set to reflect the state struct that was found.
1500  *
1501  * If nothing was found, 1 is returned. If found something, return 0.
1502  */
1503 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1504 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1505 			  struct extent_state **cached_state)
1506 {
1507 	struct extent_state *state;
1508 	int ret = 1;
1509 
1510 	spin_lock(&tree->lock);
1511 	if (cached_state && *cached_state) {
1512 		state = *cached_state;
1513 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1514 			while ((state = next_state(state)) != NULL) {
1515 				if (state->state & bits)
1516 					goto got_it;
1517 			}
1518 			free_extent_state(*cached_state);
1519 			*cached_state = NULL;
1520 			goto out;
1521 		}
1522 		free_extent_state(*cached_state);
1523 		*cached_state = NULL;
1524 	}
1525 
1526 	state = find_first_extent_bit_state(tree, start, bits);
1527 got_it:
1528 	if (state) {
1529 		cache_state_if_flags(state, cached_state, 0);
1530 		*start_ret = state->start;
1531 		*end_ret = state->end;
1532 		ret = 0;
1533 	}
1534 out:
1535 	spin_unlock(&tree->lock);
1536 	return ret;
1537 }
1538 
1539 /**
1540  * find_first_clear_extent_bit - finds the first range that has @bits not set
1541  * and that starts after @start
1542  *
1543  * @tree - the tree to search
1544  * @start - the offset at/after which the found extent should start
1545  * @start_ret - records the beginning of the range
1546  * @end_ret - records the end of the range (inclusive)
1547  * @bits - the set of bits which must be unset
1548  *
1549  * Since unallocated range is also considered one which doesn't have the bits
1550  * set it's possible that @end_ret contains -1, this happens in case the range
1551  * spans (last_range_end, end of device]. In this case it's up to the caller to
1552  * trim @end_ret to the appropriate size.
1553  */
1554 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1555 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1556 {
1557 	struct extent_state *state;
1558 	struct rb_node *node, *prev = NULL, *next;
1559 
1560 	spin_lock(&tree->lock);
1561 
1562 	/* Find first extent with bits cleared */
1563 	while (1) {
1564 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1565 		if (!node) {
1566 			node = next;
1567 			if (!node) {
1568 				/*
1569 				 * We are past the last allocated chunk,
1570 				 * set start at the end of the last extent. The
1571 				 * device alloc tree should never be empty so
1572 				 * prev is always set.
1573 				 */
1574 				ASSERT(prev);
1575 				state = rb_entry(prev, struct extent_state, rb_node);
1576 				*start_ret = state->end + 1;
1577 				*end_ret = -1;
1578 				goto out;
1579 			}
1580 		}
1581 		state = rb_entry(node, struct extent_state, rb_node);
1582 		if (in_range(start, state->start, state->end - state->start + 1) &&
1583 			(state->state & bits)) {
1584 			start = state->end + 1;
1585 		} else {
1586 			*start_ret = start;
1587 			break;
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Find the longest stretch from start until an entry which has the
1593 	 * bits set
1594 	 */
1595 	while (1) {
1596 		state = rb_entry(node, struct extent_state, rb_node);
1597 		if (state->end >= start && !(state->state & bits)) {
1598 			*end_ret = state->end;
1599 		} else {
1600 			*end_ret = state->start - 1;
1601 			break;
1602 		}
1603 
1604 		node = rb_next(node);
1605 		if (!node)
1606 			break;
1607 	}
1608 out:
1609 	spin_unlock(&tree->lock);
1610 }
1611 
1612 /*
1613  * find a contiguous range of bytes in the file marked as delalloc, not
1614  * more than 'max_bytes'.  start and end are used to return the range,
1615  *
1616  * true is returned if we find something, false if nothing was in the tree
1617  */
1618 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1619 					u64 *start, u64 *end, u64 max_bytes,
1620 					struct extent_state **cached_state)
1621 {
1622 	struct rb_node *node;
1623 	struct extent_state *state;
1624 	u64 cur_start = *start;
1625 	bool found = false;
1626 	u64 total_bytes = 0;
1627 
1628 	spin_lock(&tree->lock);
1629 
1630 	/*
1631 	 * this search will find all the extents that end after
1632 	 * our range starts.
1633 	 */
1634 	node = tree_search(tree, cur_start);
1635 	if (!node) {
1636 		*end = (u64)-1;
1637 		goto out;
1638 	}
1639 
1640 	while (1) {
1641 		state = rb_entry(node, struct extent_state, rb_node);
1642 		if (found && (state->start != cur_start ||
1643 			      (state->state & EXTENT_BOUNDARY))) {
1644 			goto out;
1645 		}
1646 		if (!(state->state & EXTENT_DELALLOC)) {
1647 			if (!found)
1648 				*end = state->end;
1649 			goto out;
1650 		}
1651 		if (!found) {
1652 			*start = state->start;
1653 			*cached_state = state;
1654 			refcount_inc(&state->refs);
1655 		}
1656 		found = true;
1657 		*end = state->end;
1658 		cur_start = state->end + 1;
1659 		node = rb_next(node);
1660 		total_bytes += state->end - state->start + 1;
1661 		if (total_bytes >= max_bytes)
1662 			break;
1663 		if (!node)
1664 			break;
1665 	}
1666 out:
1667 	spin_unlock(&tree->lock);
1668 	return found;
1669 }
1670 
1671 static int __process_pages_contig(struct address_space *mapping,
1672 				  struct page *locked_page,
1673 				  pgoff_t start_index, pgoff_t end_index,
1674 				  unsigned long page_ops, pgoff_t *index_ret);
1675 
1676 static noinline void __unlock_for_delalloc(struct inode *inode,
1677 					   struct page *locked_page,
1678 					   u64 start, u64 end)
1679 {
1680 	unsigned long index = start >> PAGE_SHIFT;
1681 	unsigned long end_index = end >> PAGE_SHIFT;
1682 
1683 	ASSERT(locked_page);
1684 	if (index == locked_page->index && end_index == index)
1685 		return;
1686 
1687 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1688 			       PAGE_UNLOCK, NULL);
1689 }
1690 
1691 static noinline int lock_delalloc_pages(struct inode *inode,
1692 					struct page *locked_page,
1693 					u64 delalloc_start,
1694 					u64 delalloc_end)
1695 {
1696 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1697 	unsigned long index_ret = index;
1698 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1699 	int ret;
1700 
1701 	ASSERT(locked_page);
1702 	if (index == locked_page->index && index == end_index)
1703 		return 0;
1704 
1705 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1706 				     end_index, PAGE_LOCK, &index_ret);
1707 	if (ret == -EAGAIN)
1708 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1709 				      (u64)index_ret << PAGE_SHIFT);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1715  * more than @max_bytes.  @Start and @end are used to return the range,
1716  *
1717  * Return: true if we find something
1718  *         false if nothing was in the tree
1719  */
1720 EXPORT_FOR_TESTS
1721 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1722 				    struct extent_io_tree *tree,
1723 				    struct page *locked_page, u64 *start,
1724 				    u64 *end)
1725 {
1726 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1727 	u64 delalloc_start;
1728 	u64 delalloc_end;
1729 	bool found;
1730 	struct extent_state *cached_state = NULL;
1731 	int ret;
1732 	int loops = 0;
1733 
1734 again:
1735 	/* step one, find a bunch of delalloc bytes starting at start */
1736 	delalloc_start = *start;
1737 	delalloc_end = 0;
1738 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1739 				    max_bytes, &cached_state);
1740 	if (!found || delalloc_end <= *start) {
1741 		*start = delalloc_start;
1742 		*end = delalloc_end;
1743 		free_extent_state(cached_state);
1744 		return false;
1745 	}
1746 
1747 	/*
1748 	 * start comes from the offset of locked_page.  We have to lock
1749 	 * pages in order, so we can't process delalloc bytes before
1750 	 * locked_page
1751 	 */
1752 	if (delalloc_start < *start)
1753 		delalloc_start = *start;
1754 
1755 	/*
1756 	 * make sure to limit the number of pages we try to lock down
1757 	 */
1758 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1759 		delalloc_end = delalloc_start + max_bytes - 1;
1760 
1761 	/* step two, lock all the pages after the page that has start */
1762 	ret = lock_delalloc_pages(inode, locked_page,
1763 				  delalloc_start, delalloc_end);
1764 	ASSERT(!ret || ret == -EAGAIN);
1765 	if (ret == -EAGAIN) {
1766 		/* some of the pages are gone, lets avoid looping by
1767 		 * shortening the size of the delalloc range we're searching
1768 		 */
1769 		free_extent_state(cached_state);
1770 		cached_state = NULL;
1771 		if (!loops) {
1772 			max_bytes = PAGE_SIZE;
1773 			loops = 1;
1774 			goto again;
1775 		} else {
1776 			found = false;
1777 			goto out_failed;
1778 		}
1779 	}
1780 
1781 	/* step three, lock the state bits for the whole range */
1782 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1783 
1784 	/* then test to make sure it is all still delalloc */
1785 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1786 			     EXTENT_DELALLOC, 1, cached_state);
1787 	if (!ret) {
1788 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1789 				     &cached_state);
1790 		__unlock_for_delalloc(inode, locked_page,
1791 			      delalloc_start, delalloc_end);
1792 		cond_resched();
1793 		goto again;
1794 	}
1795 	free_extent_state(cached_state);
1796 	*start = delalloc_start;
1797 	*end = delalloc_end;
1798 out_failed:
1799 	return found;
1800 }
1801 
1802 static int __process_pages_contig(struct address_space *mapping,
1803 				  struct page *locked_page,
1804 				  pgoff_t start_index, pgoff_t end_index,
1805 				  unsigned long page_ops, pgoff_t *index_ret)
1806 {
1807 	unsigned long nr_pages = end_index - start_index + 1;
1808 	unsigned long pages_locked = 0;
1809 	pgoff_t index = start_index;
1810 	struct page *pages[16];
1811 	unsigned ret;
1812 	int err = 0;
1813 	int i;
1814 
1815 	if (page_ops & PAGE_LOCK) {
1816 		ASSERT(page_ops == PAGE_LOCK);
1817 		ASSERT(index_ret && *index_ret == start_index);
1818 	}
1819 
1820 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1821 		mapping_set_error(mapping, -EIO);
1822 
1823 	while (nr_pages > 0) {
1824 		ret = find_get_pages_contig(mapping, index,
1825 				     min_t(unsigned long,
1826 				     nr_pages, ARRAY_SIZE(pages)), pages);
1827 		if (ret == 0) {
1828 			/*
1829 			 * Only if we're going to lock these pages,
1830 			 * can we find nothing at @index.
1831 			 */
1832 			ASSERT(page_ops & PAGE_LOCK);
1833 			err = -EAGAIN;
1834 			goto out;
1835 		}
1836 
1837 		for (i = 0; i < ret; i++) {
1838 			if (page_ops & PAGE_SET_PRIVATE2)
1839 				SetPagePrivate2(pages[i]);
1840 
1841 			if (pages[i] == locked_page) {
1842 				put_page(pages[i]);
1843 				pages_locked++;
1844 				continue;
1845 			}
1846 			if (page_ops & PAGE_CLEAR_DIRTY)
1847 				clear_page_dirty_for_io(pages[i]);
1848 			if (page_ops & PAGE_SET_WRITEBACK)
1849 				set_page_writeback(pages[i]);
1850 			if (page_ops & PAGE_SET_ERROR)
1851 				SetPageError(pages[i]);
1852 			if (page_ops & PAGE_END_WRITEBACK)
1853 				end_page_writeback(pages[i]);
1854 			if (page_ops & PAGE_UNLOCK)
1855 				unlock_page(pages[i]);
1856 			if (page_ops & PAGE_LOCK) {
1857 				lock_page(pages[i]);
1858 				if (!PageDirty(pages[i]) ||
1859 				    pages[i]->mapping != mapping) {
1860 					unlock_page(pages[i]);
1861 					put_page(pages[i]);
1862 					err = -EAGAIN;
1863 					goto out;
1864 				}
1865 			}
1866 			put_page(pages[i]);
1867 			pages_locked++;
1868 		}
1869 		nr_pages -= ret;
1870 		index += ret;
1871 		cond_resched();
1872 	}
1873 out:
1874 	if (err && index_ret)
1875 		*index_ret = start_index + pages_locked - 1;
1876 	return err;
1877 }
1878 
1879 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1880 				 u64 delalloc_end, struct page *locked_page,
1881 				 unsigned clear_bits,
1882 				 unsigned long page_ops)
1883 {
1884 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1885 			 NULL);
1886 
1887 	__process_pages_contig(inode->i_mapping, locked_page,
1888 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1889 			       page_ops, NULL);
1890 }
1891 
1892 /*
1893  * count the number of bytes in the tree that have a given bit(s)
1894  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1895  * cached.  The total number found is returned.
1896  */
1897 u64 count_range_bits(struct extent_io_tree *tree,
1898 		     u64 *start, u64 search_end, u64 max_bytes,
1899 		     unsigned bits, int contig)
1900 {
1901 	struct rb_node *node;
1902 	struct extent_state *state;
1903 	u64 cur_start = *start;
1904 	u64 total_bytes = 0;
1905 	u64 last = 0;
1906 	int found = 0;
1907 
1908 	if (WARN_ON(search_end <= cur_start))
1909 		return 0;
1910 
1911 	spin_lock(&tree->lock);
1912 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1913 		total_bytes = tree->dirty_bytes;
1914 		goto out;
1915 	}
1916 	/*
1917 	 * this search will find all the extents that end after
1918 	 * our range starts.
1919 	 */
1920 	node = tree_search(tree, cur_start);
1921 	if (!node)
1922 		goto out;
1923 
1924 	while (1) {
1925 		state = rb_entry(node, struct extent_state, rb_node);
1926 		if (state->start > search_end)
1927 			break;
1928 		if (contig && found && state->start > last + 1)
1929 			break;
1930 		if (state->end >= cur_start && (state->state & bits) == bits) {
1931 			total_bytes += min(search_end, state->end) + 1 -
1932 				       max(cur_start, state->start);
1933 			if (total_bytes >= max_bytes)
1934 				break;
1935 			if (!found) {
1936 				*start = max(cur_start, state->start);
1937 				found = 1;
1938 			}
1939 			last = state->end;
1940 		} else if (contig && found) {
1941 			break;
1942 		}
1943 		node = rb_next(node);
1944 		if (!node)
1945 			break;
1946 	}
1947 out:
1948 	spin_unlock(&tree->lock);
1949 	return total_bytes;
1950 }
1951 
1952 /*
1953  * set the private field for a given byte offset in the tree.  If there isn't
1954  * an extent_state there already, this does nothing.
1955  */
1956 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1957 		struct io_failure_record *failrec)
1958 {
1959 	struct rb_node *node;
1960 	struct extent_state *state;
1961 	int ret = 0;
1962 
1963 	spin_lock(&tree->lock);
1964 	/*
1965 	 * this search will find all the extents that end after
1966 	 * our range starts.
1967 	 */
1968 	node = tree_search(tree, start);
1969 	if (!node) {
1970 		ret = -ENOENT;
1971 		goto out;
1972 	}
1973 	state = rb_entry(node, struct extent_state, rb_node);
1974 	if (state->start != start) {
1975 		ret = -ENOENT;
1976 		goto out;
1977 	}
1978 	state->failrec = failrec;
1979 out:
1980 	spin_unlock(&tree->lock);
1981 	return ret;
1982 }
1983 
1984 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1985 		struct io_failure_record **failrec)
1986 {
1987 	struct rb_node *node;
1988 	struct extent_state *state;
1989 	int ret = 0;
1990 
1991 	spin_lock(&tree->lock);
1992 	/*
1993 	 * this search will find all the extents that end after
1994 	 * our range starts.
1995 	 */
1996 	node = tree_search(tree, start);
1997 	if (!node) {
1998 		ret = -ENOENT;
1999 		goto out;
2000 	}
2001 	state = rb_entry(node, struct extent_state, rb_node);
2002 	if (state->start != start) {
2003 		ret = -ENOENT;
2004 		goto out;
2005 	}
2006 	*failrec = state->failrec;
2007 out:
2008 	spin_unlock(&tree->lock);
2009 	return ret;
2010 }
2011 
2012 /*
2013  * searches a range in the state tree for a given mask.
2014  * If 'filled' == 1, this returns 1 only if every extent in the tree
2015  * has the bits set.  Otherwise, 1 is returned if any bit in the
2016  * range is found set.
2017  */
2018 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2019 		   unsigned bits, int filled, struct extent_state *cached)
2020 {
2021 	struct extent_state *state = NULL;
2022 	struct rb_node *node;
2023 	int bitset = 0;
2024 
2025 	spin_lock(&tree->lock);
2026 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2027 	    cached->end > start)
2028 		node = &cached->rb_node;
2029 	else
2030 		node = tree_search(tree, start);
2031 	while (node && start <= end) {
2032 		state = rb_entry(node, struct extent_state, rb_node);
2033 
2034 		if (filled && state->start > start) {
2035 			bitset = 0;
2036 			break;
2037 		}
2038 
2039 		if (state->start > end)
2040 			break;
2041 
2042 		if (state->state & bits) {
2043 			bitset = 1;
2044 			if (!filled)
2045 				break;
2046 		} else if (filled) {
2047 			bitset = 0;
2048 			break;
2049 		}
2050 
2051 		if (state->end == (u64)-1)
2052 			break;
2053 
2054 		start = state->end + 1;
2055 		if (start > end)
2056 			break;
2057 		node = rb_next(node);
2058 		if (!node) {
2059 			if (filled)
2060 				bitset = 0;
2061 			break;
2062 		}
2063 	}
2064 	spin_unlock(&tree->lock);
2065 	return bitset;
2066 }
2067 
2068 /*
2069  * helper function to set a given page up to date if all the
2070  * extents in the tree for that page are up to date
2071  */
2072 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2073 {
2074 	u64 start = page_offset(page);
2075 	u64 end = start + PAGE_SIZE - 1;
2076 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2077 		SetPageUptodate(page);
2078 }
2079 
2080 int free_io_failure(struct extent_io_tree *failure_tree,
2081 		    struct extent_io_tree *io_tree,
2082 		    struct io_failure_record *rec)
2083 {
2084 	int ret;
2085 	int err = 0;
2086 
2087 	set_state_failrec(failure_tree, rec->start, NULL);
2088 	ret = clear_extent_bits(failure_tree, rec->start,
2089 				rec->start + rec->len - 1,
2090 				EXTENT_LOCKED | EXTENT_DIRTY);
2091 	if (ret)
2092 		err = ret;
2093 
2094 	ret = clear_extent_bits(io_tree, rec->start,
2095 				rec->start + rec->len - 1,
2096 				EXTENT_DAMAGED);
2097 	if (ret && !err)
2098 		err = ret;
2099 
2100 	kfree(rec);
2101 	return err;
2102 }
2103 
2104 /*
2105  * this bypasses the standard btrfs submit functions deliberately, as
2106  * the standard behavior is to write all copies in a raid setup. here we only
2107  * want to write the one bad copy. so we do the mapping for ourselves and issue
2108  * submit_bio directly.
2109  * to avoid any synchronization issues, wait for the data after writing, which
2110  * actually prevents the read that triggered the error from finishing.
2111  * currently, there can be no more than two copies of every data bit. thus,
2112  * exactly one rewrite is required.
2113  */
2114 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2115 		      u64 length, u64 logical, struct page *page,
2116 		      unsigned int pg_offset, int mirror_num)
2117 {
2118 	struct bio *bio;
2119 	struct btrfs_device *dev;
2120 	u64 map_length = 0;
2121 	u64 sector;
2122 	struct btrfs_bio *bbio = NULL;
2123 	int ret;
2124 
2125 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2126 	BUG_ON(!mirror_num);
2127 
2128 	bio = btrfs_io_bio_alloc(1);
2129 	bio->bi_iter.bi_size = 0;
2130 	map_length = length;
2131 
2132 	/*
2133 	 * Avoid races with device replace and make sure our bbio has devices
2134 	 * associated to its stripes that don't go away while we are doing the
2135 	 * read repair operation.
2136 	 */
2137 	btrfs_bio_counter_inc_blocked(fs_info);
2138 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2139 		/*
2140 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2141 		 * to update all raid stripes, but here we just want to correct
2142 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2143 		 * stripe's dev and sector.
2144 		 */
2145 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2146 				      &map_length, &bbio, 0);
2147 		if (ret) {
2148 			btrfs_bio_counter_dec(fs_info);
2149 			bio_put(bio);
2150 			return -EIO;
2151 		}
2152 		ASSERT(bbio->mirror_num == 1);
2153 	} else {
2154 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2155 				      &map_length, &bbio, mirror_num);
2156 		if (ret) {
2157 			btrfs_bio_counter_dec(fs_info);
2158 			bio_put(bio);
2159 			return -EIO;
2160 		}
2161 		BUG_ON(mirror_num != bbio->mirror_num);
2162 	}
2163 
2164 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2165 	bio->bi_iter.bi_sector = sector;
2166 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2167 	btrfs_put_bbio(bbio);
2168 	if (!dev || !dev->bdev ||
2169 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2170 		btrfs_bio_counter_dec(fs_info);
2171 		bio_put(bio);
2172 		return -EIO;
2173 	}
2174 	bio_set_dev(bio, dev->bdev);
2175 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2176 	bio_add_page(bio, page, length, pg_offset);
2177 
2178 	if (btrfsic_submit_bio_wait(bio)) {
2179 		/* try to remap that extent elsewhere? */
2180 		btrfs_bio_counter_dec(fs_info);
2181 		bio_put(bio);
2182 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2183 		return -EIO;
2184 	}
2185 
2186 	btrfs_info_rl_in_rcu(fs_info,
2187 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2188 				  ino, start,
2189 				  rcu_str_deref(dev->name), sector);
2190 	btrfs_bio_counter_dec(fs_info);
2191 	bio_put(bio);
2192 	return 0;
2193 }
2194 
2195 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2196 {
2197 	struct btrfs_fs_info *fs_info = eb->fs_info;
2198 	u64 start = eb->start;
2199 	int i, num_pages = num_extent_pages(eb);
2200 	int ret = 0;
2201 
2202 	if (sb_rdonly(fs_info->sb))
2203 		return -EROFS;
2204 
2205 	for (i = 0; i < num_pages; i++) {
2206 		struct page *p = eb->pages[i];
2207 
2208 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2209 					start - page_offset(p), mirror_num);
2210 		if (ret)
2211 			break;
2212 		start += PAGE_SIZE;
2213 	}
2214 
2215 	return ret;
2216 }
2217 
2218 /*
2219  * each time an IO finishes, we do a fast check in the IO failure tree
2220  * to see if we need to process or clean up an io_failure_record
2221  */
2222 int clean_io_failure(struct btrfs_fs_info *fs_info,
2223 		     struct extent_io_tree *failure_tree,
2224 		     struct extent_io_tree *io_tree, u64 start,
2225 		     struct page *page, u64 ino, unsigned int pg_offset)
2226 {
2227 	u64 private;
2228 	struct io_failure_record *failrec;
2229 	struct extent_state *state;
2230 	int num_copies;
2231 	int ret;
2232 
2233 	private = 0;
2234 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2235 			       EXTENT_DIRTY, 0);
2236 	if (!ret)
2237 		return 0;
2238 
2239 	ret = get_state_failrec(failure_tree, start, &failrec);
2240 	if (ret)
2241 		return 0;
2242 
2243 	BUG_ON(!failrec->this_mirror);
2244 
2245 	if (failrec->in_validation) {
2246 		/* there was no real error, just free the record */
2247 		btrfs_debug(fs_info,
2248 			"clean_io_failure: freeing dummy error at %llu",
2249 			failrec->start);
2250 		goto out;
2251 	}
2252 	if (sb_rdonly(fs_info->sb))
2253 		goto out;
2254 
2255 	spin_lock(&io_tree->lock);
2256 	state = find_first_extent_bit_state(io_tree,
2257 					    failrec->start,
2258 					    EXTENT_LOCKED);
2259 	spin_unlock(&io_tree->lock);
2260 
2261 	if (state && state->start <= failrec->start &&
2262 	    state->end >= failrec->start + failrec->len - 1) {
2263 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2264 					      failrec->len);
2265 		if (num_copies > 1)  {
2266 			repair_io_failure(fs_info, ino, start, failrec->len,
2267 					  failrec->logical, page, pg_offset,
2268 					  failrec->failed_mirror);
2269 		}
2270 	}
2271 
2272 out:
2273 	free_io_failure(failure_tree, io_tree, failrec);
2274 
2275 	return 0;
2276 }
2277 
2278 /*
2279  * Can be called when
2280  * - hold extent lock
2281  * - under ordered extent
2282  * - the inode is freeing
2283  */
2284 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2285 {
2286 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2287 	struct io_failure_record *failrec;
2288 	struct extent_state *state, *next;
2289 
2290 	if (RB_EMPTY_ROOT(&failure_tree->state))
2291 		return;
2292 
2293 	spin_lock(&failure_tree->lock);
2294 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2295 	while (state) {
2296 		if (state->start > end)
2297 			break;
2298 
2299 		ASSERT(state->end <= end);
2300 
2301 		next = next_state(state);
2302 
2303 		failrec = state->failrec;
2304 		free_extent_state(state);
2305 		kfree(failrec);
2306 
2307 		state = next;
2308 	}
2309 	spin_unlock(&failure_tree->lock);
2310 }
2311 
2312 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2313 		struct io_failure_record **failrec_ret)
2314 {
2315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2316 	struct io_failure_record *failrec;
2317 	struct extent_map *em;
2318 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2319 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2320 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2321 	int ret;
2322 	u64 logical;
2323 
2324 	ret = get_state_failrec(failure_tree, start, &failrec);
2325 	if (ret) {
2326 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2327 		if (!failrec)
2328 			return -ENOMEM;
2329 
2330 		failrec->start = start;
2331 		failrec->len = end - start + 1;
2332 		failrec->this_mirror = 0;
2333 		failrec->bio_flags = 0;
2334 		failrec->in_validation = 0;
2335 
2336 		read_lock(&em_tree->lock);
2337 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2338 		if (!em) {
2339 			read_unlock(&em_tree->lock);
2340 			kfree(failrec);
2341 			return -EIO;
2342 		}
2343 
2344 		if (em->start > start || em->start + em->len <= start) {
2345 			free_extent_map(em);
2346 			em = NULL;
2347 		}
2348 		read_unlock(&em_tree->lock);
2349 		if (!em) {
2350 			kfree(failrec);
2351 			return -EIO;
2352 		}
2353 
2354 		logical = start - em->start;
2355 		logical = em->block_start + logical;
2356 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2357 			logical = em->block_start;
2358 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2359 			extent_set_compress_type(&failrec->bio_flags,
2360 						 em->compress_type);
2361 		}
2362 
2363 		btrfs_debug(fs_info,
2364 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2365 			logical, start, failrec->len);
2366 
2367 		failrec->logical = logical;
2368 		free_extent_map(em);
2369 
2370 		/* set the bits in the private failure tree */
2371 		ret = set_extent_bits(failure_tree, start, end,
2372 					EXTENT_LOCKED | EXTENT_DIRTY);
2373 		if (ret >= 0)
2374 			ret = set_state_failrec(failure_tree, start, failrec);
2375 		/* set the bits in the inode's tree */
2376 		if (ret >= 0)
2377 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2378 		if (ret < 0) {
2379 			kfree(failrec);
2380 			return ret;
2381 		}
2382 	} else {
2383 		btrfs_debug(fs_info,
2384 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2385 			failrec->logical, failrec->start, failrec->len,
2386 			failrec->in_validation);
2387 		/*
2388 		 * when data can be on disk more than twice, add to failrec here
2389 		 * (e.g. with a list for failed_mirror) to make
2390 		 * clean_io_failure() clean all those errors at once.
2391 		 */
2392 	}
2393 
2394 	*failrec_ret = failrec;
2395 
2396 	return 0;
2397 }
2398 
2399 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2400 			   struct io_failure_record *failrec, int failed_mirror)
2401 {
2402 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2403 	int num_copies;
2404 
2405 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2406 	if (num_copies == 1) {
2407 		/*
2408 		 * we only have a single copy of the data, so don't bother with
2409 		 * all the retry and error correction code that follows. no
2410 		 * matter what the error is, it is very likely to persist.
2411 		 */
2412 		btrfs_debug(fs_info,
2413 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2414 			num_copies, failrec->this_mirror, failed_mirror);
2415 		return false;
2416 	}
2417 
2418 	/*
2419 	 * there are two premises:
2420 	 *	a) deliver good data to the caller
2421 	 *	b) correct the bad sectors on disk
2422 	 */
2423 	if (failed_bio_pages > 1) {
2424 		/*
2425 		 * to fulfill b), we need to know the exact failing sectors, as
2426 		 * we don't want to rewrite any more than the failed ones. thus,
2427 		 * we need separate read requests for the failed bio
2428 		 *
2429 		 * if the following BUG_ON triggers, our validation request got
2430 		 * merged. we need separate requests for our algorithm to work.
2431 		 */
2432 		BUG_ON(failrec->in_validation);
2433 		failrec->in_validation = 1;
2434 		failrec->this_mirror = failed_mirror;
2435 	} else {
2436 		/*
2437 		 * we're ready to fulfill a) and b) alongside. get a good copy
2438 		 * of the failed sector and if we succeed, we have setup
2439 		 * everything for repair_io_failure to do the rest for us.
2440 		 */
2441 		if (failrec->in_validation) {
2442 			BUG_ON(failrec->this_mirror != failed_mirror);
2443 			failrec->in_validation = 0;
2444 			failrec->this_mirror = 0;
2445 		}
2446 		failrec->failed_mirror = failed_mirror;
2447 		failrec->this_mirror++;
2448 		if (failrec->this_mirror == failed_mirror)
2449 			failrec->this_mirror++;
2450 	}
2451 
2452 	if (failrec->this_mirror > num_copies) {
2453 		btrfs_debug(fs_info,
2454 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2455 			num_copies, failrec->this_mirror, failed_mirror);
2456 		return false;
2457 	}
2458 
2459 	return true;
2460 }
2461 
2462 
2463 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2464 				    struct io_failure_record *failrec,
2465 				    struct page *page, int pg_offset, int icsum,
2466 				    bio_end_io_t *endio_func, void *data)
2467 {
2468 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2469 	struct bio *bio;
2470 	struct btrfs_io_bio *btrfs_failed_bio;
2471 	struct btrfs_io_bio *btrfs_bio;
2472 
2473 	bio = btrfs_io_bio_alloc(1);
2474 	bio->bi_end_io = endio_func;
2475 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2476 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2477 	bio->bi_iter.bi_size = 0;
2478 	bio->bi_private = data;
2479 
2480 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2481 	if (btrfs_failed_bio->csum) {
2482 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2483 
2484 		btrfs_bio = btrfs_io_bio(bio);
2485 		btrfs_bio->csum = btrfs_bio->csum_inline;
2486 		icsum *= csum_size;
2487 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2488 		       csum_size);
2489 	}
2490 
2491 	bio_add_page(bio, page, failrec->len, pg_offset);
2492 
2493 	return bio;
2494 }
2495 
2496 /*
2497  * This is a generic handler for readpage errors. If other copies exist, read
2498  * those and write back good data to the failed position. Does not investigate
2499  * in remapping the failed extent elsewhere, hoping the device will be smart
2500  * enough to do this as needed
2501  */
2502 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2503 			      struct page *page, u64 start, u64 end,
2504 			      int failed_mirror)
2505 {
2506 	struct io_failure_record *failrec;
2507 	struct inode *inode = page->mapping->host;
2508 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2509 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2510 	struct bio *bio;
2511 	int read_mode = 0;
2512 	blk_status_t status;
2513 	int ret;
2514 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2515 
2516 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2517 
2518 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2519 	if (ret)
2520 		return ret;
2521 
2522 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2523 				    failed_mirror)) {
2524 		free_io_failure(failure_tree, tree, failrec);
2525 		return -EIO;
2526 	}
2527 
2528 	if (failed_bio_pages > 1)
2529 		read_mode |= REQ_FAILFAST_DEV;
2530 
2531 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2532 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2533 				      start - page_offset(page),
2534 				      (int)phy_offset, failed_bio->bi_end_io,
2535 				      NULL);
2536 	bio->bi_opf = REQ_OP_READ | read_mode;
2537 
2538 	btrfs_debug(btrfs_sb(inode->i_sb),
2539 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2540 		read_mode, failrec->this_mirror, failrec->in_validation);
2541 
2542 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2543 					 failrec->bio_flags);
2544 	if (status) {
2545 		free_io_failure(failure_tree, tree, failrec);
2546 		bio_put(bio);
2547 		ret = blk_status_to_errno(status);
2548 	}
2549 
2550 	return ret;
2551 }
2552 
2553 /* lots and lots of room for performance fixes in the end_bio funcs */
2554 
2555 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2556 {
2557 	int uptodate = (err == 0);
2558 	int ret = 0;
2559 
2560 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2561 
2562 	if (!uptodate) {
2563 		ClearPageUptodate(page);
2564 		SetPageError(page);
2565 		ret = err < 0 ? err : -EIO;
2566 		mapping_set_error(page->mapping, ret);
2567 	}
2568 }
2569 
2570 /*
2571  * after a writepage IO is done, we need to:
2572  * clear the uptodate bits on error
2573  * clear the writeback bits in the extent tree for this IO
2574  * end_page_writeback if the page has no more pending IO
2575  *
2576  * Scheduling is not allowed, so the extent state tree is expected
2577  * to have one and only one object corresponding to this IO.
2578  */
2579 static void end_bio_extent_writepage(struct bio *bio)
2580 {
2581 	int error = blk_status_to_errno(bio->bi_status);
2582 	struct bio_vec *bvec;
2583 	u64 start;
2584 	u64 end;
2585 	struct bvec_iter_all iter_all;
2586 
2587 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2588 	bio_for_each_segment_all(bvec, bio, iter_all) {
2589 		struct page *page = bvec->bv_page;
2590 		struct inode *inode = page->mapping->host;
2591 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2592 
2593 		/* We always issue full-page reads, but if some block
2594 		 * in a page fails to read, blk_update_request() will
2595 		 * advance bv_offset and adjust bv_len to compensate.
2596 		 * Print a warning for nonzero offsets, and an error
2597 		 * if they don't add up to a full page.  */
2598 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2599 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2600 				btrfs_err(fs_info,
2601 				   "partial page write in btrfs with offset %u and length %u",
2602 					bvec->bv_offset, bvec->bv_len);
2603 			else
2604 				btrfs_info(fs_info,
2605 				   "incomplete page write in btrfs with offset %u and length %u",
2606 					bvec->bv_offset, bvec->bv_len);
2607 		}
2608 
2609 		start = page_offset(page);
2610 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2611 
2612 		end_extent_writepage(page, error, start, end);
2613 		end_page_writeback(page);
2614 	}
2615 
2616 	bio_put(bio);
2617 }
2618 
2619 static void
2620 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2621 			      int uptodate)
2622 {
2623 	struct extent_state *cached = NULL;
2624 	u64 end = start + len - 1;
2625 
2626 	if (uptodate && tree->track_uptodate)
2627 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2628 	unlock_extent_cached_atomic(tree, start, end, &cached);
2629 }
2630 
2631 /*
2632  * after a readpage IO is done, we need to:
2633  * clear the uptodate bits on error
2634  * set the uptodate bits if things worked
2635  * set the page up to date if all extents in the tree are uptodate
2636  * clear the lock bit in the extent tree
2637  * unlock the page if there are no other extents locked for it
2638  *
2639  * Scheduling is not allowed, so the extent state tree is expected
2640  * to have one and only one object corresponding to this IO.
2641  */
2642 static void end_bio_extent_readpage(struct bio *bio)
2643 {
2644 	struct bio_vec *bvec;
2645 	int uptodate = !bio->bi_status;
2646 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2647 	struct extent_io_tree *tree, *failure_tree;
2648 	u64 offset = 0;
2649 	u64 start;
2650 	u64 end;
2651 	u64 len;
2652 	u64 extent_start = 0;
2653 	u64 extent_len = 0;
2654 	int mirror;
2655 	int ret;
2656 	struct bvec_iter_all iter_all;
2657 
2658 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2659 	bio_for_each_segment_all(bvec, bio, iter_all) {
2660 		struct page *page = bvec->bv_page;
2661 		struct inode *inode = page->mapping->host;
2662 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2663 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2664 			!= BTRFS_BTREE_INODE_OBJECTID;
2665 
2666 		btrfs_debug(fs_info,
2667 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2668 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2669 			io_bio->mirror_num);
2670 		tree = &BTRFS_I(inode)->io_tree;
2671 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2672 
2673 		/* We always issue full-page reads, but if some block
2674 		 * in a page fails to read, blk_update_request() will
2675 		 * advance bv_offset and adjust bv_len to compensate.
2676 		 * Print a warning for nonzero offsets, and an error
2677 		 * if they don't add up to a full page.  */
2678 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2679 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2680 				btrfs_err(fs_info,
2681 					"partial page read in btrfs with offset %u and length %u",
2682 					bvec->bv_offset, bvec->bv_len);
2683 			else
2684 				btrfs_info(fs_info,
2685 					"incomplete page read in btrfs with offset %u and length %u",
2686 					bvec->bv_offset, bvec->bv_len);
2687 		}
2688 
2689 		start = page_offset(page);
2690 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2691 		len = bvec->bv_len;
2692 
2693 		mirror = io_bio->mirror_num;
2694 		if (likely(uptodate)) {
2695 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2696 							      page, start, end,
2697 							      mirror);
2698 			if (ret)
2699 				uptodate = 0;
2700 			else
2701 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2702 						 failure_tree, tree, start,
2703 						 page,
2704 						 btrfs_ino(BTRFS_I(inode)), 0);
2705 		}
2706 
2707 		if (likely(uptodate))
2708 			goto readpage_ok;
2709 
2710 		if (data_inode) {
2711 
2712 			/*
2713 			 * The generic bio_readpage_error handles errors the
2714 			 * following way: If possible, new read requests are
2715 			 * created and submitted and will end up in
2716 			 * end_bio_extent_readpage as well (if we're lucky,
2717 			 * not in the !uptodate case). In that case it returns
2718 			 * 0 and we just go on with the next page in our bio.
2719 			 * If it can't handle the error it will return -EIO and
2720 			 * we remain responsible for that page.
2721 			 */
2722 			ret = bio_readpage_error(bio, offset, page, start, end,
2723 						 mirror);
2724 			if (ret == 0) {
2725 				uptodate = !bio->bi_status;
2726 				offset += len;
2727 				continue;
2728 			}
2729 		} else {
2730 			struct extent_buffer *eb;
2731 
2732 			eb = (struct extent_buffer *)page->private;
2733 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2734 			eb->read_mirror = mirror;
2735 			atomic_dec(&eb->io_pages);
2736 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2737 					       &eb->bflags))
2738 				btree_readahead_hook(eb, -EIO);
2739 		}
2740 readpage_ok:
2741 		if (likely(uptodate)) {
2742 			loff_t i_size = i_size_read(inode);
2743 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2744 			unsigned off;
2745 
2746 			/* Zero out the end if this page straddles i_size */
2747 			off = offset_in_page(i_size);
2748 			if (page->index == end_index && off)
2749 				zero_user_segment(page, off, PAGE_SIZE);
2750 			SetPageUptodate(page);
2751 		} else {
2752 			ClearPageUptodate(page);
2753 			SetPageError(page);
2754 		}
2755 		unlock_page(page);
2756 		offset += len;
2757 
2758 		if (unlikely(!uptodate)) {
2759 			if (extent_len) {
2760 				endio_readpage_release_extent(tree,
2761 							      extent_start,
2762 							      extent_len, 1);
2763 				extent_start = 0;
2764 				extent_len = 0;
2765 			}
2766 			endio_readpage_release_extent(tree, start,
2767 						      end - start + 1, 0);
2768 		} else if (!extent_len) {
2769 			extent_start = start;
2770 			extent_len = end + 1 - start;
2771 		} else if (extent_start + extent_len == start) {
2772 			extent_len += end + 1 - start;
2773 		} else {
2774 			endio_readpage_release_extent(tree, extent_start,
2775 						      extent_len, uptodate);
2776 			extent_start = start;
2777 			extent_len = end + 1 - start;
2778 		}
2779 	}
2780 
2781 	if (extent_len)
2782 		endio_readpage_release_extent(tree, extent_start, extent_len,
2783 					      uptodate);
2784 	btrfs_io_bio_free_csum(io_bio);
2785 	bio_put(bio);
2786 }
2787 
2788 /*
2789  * Initialize the members up to but not including 'bio'. Use after allocating a
2790  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2791  * 'bio' because use of __GFP_ZERO is not supported.
2792  */
2793 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2794 {
2795 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2796 }
2797 
2798 /*
2799  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2800  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2801  * for the appropriate container_of magic
2802  */
2803 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2804 {
2805 	struct bio *bio;
2806 
2807 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2808 	bio_set_dev(bio, bdev);
2809 	bio->bi_iter.bi_sector = first_byte >> 9;
2810 	btrfs_io_bio_init(btrfs_io_bio(bio));
2811 	return bio;
2812 }
2813 
2814 struct bio *btrfs_bio_clone(struct bio *bio)
2815 {
2816 	struct btrfs_io_bio *btrfs_bio;
2817 	struct bio *new;
2818 
2819 	/* Bio allocation backed by a bioset does not fail */
2820 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2821 	btrfs_bio = btrfs_io_bio(new);
2822 	btrfs_io_bio_init(btrfs_bio);
2823 	btrfs_bio->iter = bio->bi_iter;
2824 	return new;
2825 }
2826 
2827 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2828 {
2829 	struct bio *bio;
2830 
2831 	/* Bio allocation backed by a bioset does not fail */
2832 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2833 	btrfs_io_bio_init(btrfs_io_bio(bio));
2834 	return bio;
2835 }
2836 
2837 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2838 {
2839 	struct bio *bio;
2840 	struct btrfs_io_bio *btrfs_bio;
2841 
2842 	/* this will never fail when it's backed by a bioset */
2843 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2844 	ASSERT(bio);
2845 
2846 	btrfs_bio = btrfs_io_bio(bio);
2847 	btrfs_io_bio_init(btrfs_bio);
2848 
2849 	bio_trim(bio, offset >> 9, size >> 9);
2850 	btrfs_bio->iter = bio->bi_iter;
2851 	return bio;
2852 }
2853 
2854 /*
2855  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2856  * @tree:	tree so we can call our merge_bio hook
2857  * @wbc:	optional writeback control for io accounting
2858  * @page:	page to add to the bio
2859  * @pg_offset:	offset of the new bio or to check whether we are adding
2860  *              a contiguous page to the previous one
2861  * @size:	portion of page that we want to write
2862  * @offset:	starting offset in the page
2863  * @bdev:	attach newly created bios to this bdev
2864  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2865  * @end_io_func:     end_io callback for new bio
2866  * @mirror_num:	     desired mirror to read/write
2867  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2868  * @bio_flags:	flags of the current bio to see if we can merge them
2869  */
2870 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2871 			      struct writeback_control *wbc,
2872 			      struct page *page, u64 offset,
2873 			      size_t size, unsigned long pg_offset,
2874 			      struct block_device *bdev,
2875 			      struct bio **bio_ret,
2876 			      bio_end_io_t end_io_func,
2877 			      int mirror_num,
2878 			      unsigned long prev_bio_flags,
2879 			      unsigned long bio_flags,
2880 			      bool force_bio_submit)
2881 {
2882 	int ret = 0;
2883 	struct bio *bio;
2884 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2885 	sector_t sector = offset >> 9;
2886 
2887 	ASSERT(bio_ret);
2888 
2889 	if (*bio_ret) {
2890 		bool contig;
2891 		bool can_merge = true;
2892 
2893 		bio = *bio_ret;
2894 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2895 			contig = bio->bi_iter.bi_sector == sector;
2896 		else
2897 			contig = bio_end_sector(bio) == sector;
2898 
2899 		ASSERT(tree->ops);
2900 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2901 			can_merge = false;
2902 
2903 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2904 		    force_bio_submit ||
2905 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2906 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2907 			if (ret < 0) {
2908 				*bio_ret = NULL;
2909 				return ret;
2910 			}
2911 			bio = NULL;
2912 		} else {
2913 			if (wbc)
2914 				wbc_account_io(wbc, page, page_size);
2915 			return 0;
2916 		}
2917 	}
2918 
2919 	bio = btrfs_bio_alloc(bdev, offset);
2920 	bio_add_page(bio, page, page_size, pg_offset);
2921 	bio->bi_end_io = end_io_func;
2922 	bio->bi_private = tree;
2923 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2924 	bio->bi_opf = opf;
2925 	if (wbc) {
2926 		wbc_init_bio(wbc, bio);
2927 		wbc_account_io(wbc, page, page_size);
2928 	}
2929 
2930 	*bio_ret = bio;
2931 
2932 	return ret;
2933 }
2934 
2935 static void attach_extent_buffer_page(struct extent_buffer *eb,
2936 				      struct page *page)
2937 {
2938 	if (!PagePrivate(page)) {
2939 		SetPagePrivate(page);
2940 		get_page(page);
2941 		set_page_private(page, (unsigned long)eb);
2942 	} else {
2943 		WARN_ON(page->private != (unsigned long)eb);
2944 	}
2945 }
2946 
2947 void set_page_extent_mapped(struct page *page)
2948 {
2949 	if (!PagePrivate(page)) {
2950 		SetPagePrivate(page);
2951 		get_page(page);
2952 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2953 	}
2954 }
2955 
2956 static struct extent_map *
2957 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2958 		 u64 start, u64 len, get_extent_t *get_extent,
2959 		 struct extent_map **em_cached)
2960 {
2961 	struct extent_map *em;
2962 
2963 	if (em_cached && *em_cached) {
2964 		em = *em_cached;
2965 		if (extent_map_in_tree(em) && start >= em->start &&
2966 		    start < extent_map_end(em)) {
2967 			refcount_inc(&em->refs);
2968 			return em;
2969 		}
2970 
2971 		free_extent_map(em);
2972 		*em_cached = NULL;
2973 	}
2974 
2975 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2976 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2977 		BUG_ON(*em_cached);
2978 		refcount_inc(&em->refs);
2979 		*em_cached = em;
2980 	}
2981 	return em;
2982 }
2983 /*
2984  * basic readpage implementation.  Locked extent state structs are inserted
2985  * into the tree that are removed when the IO is done (by the end_io
2986  * handlers)
2987  * XXX JDM: This needs looking at to ensure proper page locking
2988  * return 0 on success, otherwise return error
2989  */
2990 static int __do_readpage(struct extent_io_tree *tree,
2991 			 struct page *page,
2992 			 get_extent_t *get_extent,
2993 			 struct extent_map **em_cached,
2994 			 struct bio **bio, int mirror_num,
2995 			 unsigned long *bio_flags, unsigned int read_flags,
2996 			 u64 *prev_em_start)
2997 {
2998 	struct inode *inode = page->mapping->host;
2999 	u64 start = page_offset(page);
3000 	const u64 end = start + PAGE_SIZE - 1;
3001 	u64 cur = start;
3002 	u64 extent_offset;
3003 	u64 last_byte = i_size_read(inode);
3004 	u64 block_start;
3005 	u64 cur_end;
3006 	struct extent_map *em;
3007 	struct block_device *bdev;
3008 	int ret = 0;
3009 	int nr = 0;
3010 	size_t pg_offset = 0;
3011 	size_t iosize;
3012 	size_t disk_io_size;
3013 	size_t blocksize = inode->i_sb->s_blocksize;
3014 	unsigned long this_bio_flag = 0;
3015 
3016 	set_page_extent_mapped(page);
3017 
3018 	if (!PageUptodate(page)) {
3019 		if (cleancache_get_page(page) == 0) {
3020 			BUG_ON(blocksize != PAGE_SIZE);
3021 			unlock_extent(tree, start, end);
3022 			goto out;
3023 		}
3024 	}
3025 
3026 	if (page->index == last_byte >> PAGE_SHIFT) {
3027 		char *userpage;
3028 		size_t zero_offset = offset_in_page(last_byte);
3029 
3030 		if (zero_offset) {
3031 			iosize = PAGE_SIZE - zero_offset;
3032 			userpage = kmap_atomic(page);
3033 			memset(userpage + zero_offset, 0, iosize);
3034 			flush_dcache_page(page);
3035 			kunmap_atomic(userpage);
3036 		}
3037 	}
3038 	while (cur <= end) {
3039 		bool force_bio_submit = false;
3040 		u64 offset;
3041 
3042 		if (cur >= last_byte) {
3043 			char *userpage;
3044 			struct extent_state *cached = NULL;
3045 
3046 			iosize = PAGE_SIZE - pg_offset;
3047 			userpage = kmap_atomic(page);
3048 			memset(userpage + pg_offset, 0, iosize);
3049 			flush_dcache_page(page);
3050 			kunmap_atomic(userpage);
3051 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3052 					    &cached, GFP_NOFS);
3053 			unlock_extent_cached(tree, cur,
3054 					     cur + iosize - 1, &cached);
3055 			break;
3056 		}
3057 		em = __get_extent_map(inode, page, pg_offset, cur,
3058 				      end - cur + 1, get_extent, em_cached);
3059 		if (IS_ERR_OR_NULL(em)) {
3060 			SetPageError(page);
3061 			unlock_extent(tree, cur, end);
3062 			break;
3063 		}
3064 		extent_offset = cur - em->start;
3065 		BUG_ON(extent_map_end(em) <= cur);
3066 		BUG_ON(end < cur);
3067 
3068 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3069 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3070 			extent_set_compress_type(&this_bio_flag,
3071 						 em->compress_type);
3072 		}
3073 
3074 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3075 		cur_end = min(extent_map_end(em) - 1, end);
3076 		iosize = ALIGN(iosize, blocksize);
3077 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3078 			disk_io_size = em->block_len;
3079 			offset = em->block_start;
3080 		} else {
3081 			offset = em->block_start + extent_offset;
3082 			disk_io_size = iosize;
3083 		}
3084 		bdev = em->bdev;
3085 		block_start = em->block_start;
3086 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3087 			block_start = EXTENT_MAP_HOLE;
3088 
3089 		/*
3090 		 * If we have a file range that points to a compressed extent
3091 		 * and it's followed by a consecutive file range that points to
3092 		 * to the same compressed extent (possibly with a different
3093 		 * offset and/or length, so it either points to the whole extent
3094 		 * or only part of it), we must make sure we do not submit a
3095 		 * single bio to populate the pages for the 2 ranges because
3096 		 * this makes the compressed extent read zero out the pages
3097 		 * belonging to the 2nd range. Imagine the following scenario:
3098 		 *
3099 		 *  File layout
3100 		 *  [0 - 8K]                     [8K - 24K]
3101 		 *    |                               |
3102 		 *    |                               |
3103 		 * points to extent X,         points to extent X,
3104 		 * offset 4K, length of 8K     offset 0, length 16K
3105 		 *
3106 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3107 		 *
3108 		 * If the bio to read the compressed extent covers both ranges,
3109 		 * it will decompress extent X into the pages belonging to the
3110 		 * first range and then it will stop, zeroing out the remaining
3111 		 * pages that belong to the other range that points to extent X.
3112 		 * So here we make sure we submit 2 bios, one for the first
3113 		 * range and another one for the third range. Both will target
3114 		 * the same physical extent from disk, but we can't currently
3115 		 * make the compressed bio endio callback populate the pages
3116 		 * for both ranges because each compressed bio is tightly
3117 		 * coupled with a single extent map, and each range can have
3118 		 * an extent map with a different offset value relative to the
3119 		 * uncompressed data of our extent and different lengths. This
3120 		 * is a corner case so we prioritize correctness over
3121 		 * non-optimal behavior (submitting 2 bios for the same extent).
3122 		 */
3123 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3124 		    prev_em_start && *prev_em_start != (u64)-1 &&
3125 		    *prev_em_start != em->start)
3126 			force_bio_submit = true;
3127 
3128 		if (prev_em_start)
3129 			*prev_em_start = em->start;
3130 
3131 		free_extent_map(em);
3132 		em = NULL;
3133 
3134 		/* we've found a hole, just zero and go on */
3135 		if (block_start == EXTENT_MAP_HOLE) {
3136 			char *userpage;
3137 			struct extent_state *cached = NULL;
3138 
3139 			userpage = kmap_atomic(page);
3140 			memset(userpage + pg_offset, 0, iosize);
3141 			flush_dcache_page(page);
3142 			kunmap_atomic(userpage);
3143 
3144 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3145 					    &cached, GFP_NOFS);
3146 			unlock_extent_cached(tree, cur,
3147 					     cur + iosize - 1, &cached);
3148 			cur = cur + iosize;
3149 			pg_offset += iosize;
3150 			continue;
3151 		}
3152 		/* the get_extent function already copied into the page */
3153 		if (test_range_bit(tree, cur, cur_end,
3154 				   EXTENT_UPTODATE, 1, NULL)) {
3155 			check_page_uptodate(tree, page);
3156 			unlock_extent(tree, cur, cur + iosize - 1);
3157 			cur = cur + iosize;
3158 			pg_offset += iosize;
3159 			continue;
3160 		}
3161 		/* we have an inline extent but it didn't get marked up
3162 		 * to date.  Error out
3163 		 */
3164 		if (block_start == EXTENT_MAP_INLINE) {
3165 			SetPageError(page);
3166 			unlock_extent(tree, cur, cur + iosize - 1);
3167 			cur = cur + iosize;
3168 			pg_offset += iosize;
3169 			continue;
3170 		}
3171 
3172 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3173 					 page, offset, disk_io_size,
3174 					 pg_offset, bdev, bio,
3175 					 end_bio_extent_readpage, mirror_num,
3176 					 *bio_flags,
3177 					 this_bio_flag,
3178 					 force_bio_submit);
3179 		if (!ret) {
3180 			nr++;
3181 			*bio_flags = this_bio_flag;
3182 		} else {
3183 			SetPageError(page);
3184 			unlock_extent(tree, cur, cur + iosize - 1);
3185 			goto out;
3186 		}
3187 		cur = cur + iosize;
3188 		pg_offset += iosize;
3189 	}
3190 out:
3191 	if (!nr) {
3192 		if (!PageError(page))
3193 			SetPageUptodate(page);
3194 		unlock_page(page);
3195 	}
3196 	return ret;
3197 }
3198 
3199 static inline void contiguous_readpages(struct extent_io_tree *tree,
3200 					     struct page *pages[], int nr_pages,
3201 					     u64 start, u64 end,
3202 					     struct extent_map **em_cached,
3203 					     struct bio **bio,
3204 					     unsigned long *bio_flags,
3205 					     u64 *prev_em_start)
3206 {
3207 	struct inode *inode;
3208 	struct btrfs_ordered_extent *ordered;
3209 	int index;
3210 
3211 	inode = pages[0]->mapping->host;
3212 	while (1) {
3213 		lock_extent(tree, start, end);
3214 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3215 						     end - start + 1);
3216 		if (!ordered)
3217 			break;
3218 		unlock_extent(tree, start, end);
3219 		btrfs_start_ordered_extent(inode, ordered, 1);
3220 		btrfs_put_ordered_extent(ordered);
3221 	}
3222 
3223 	for (index = 0; index < nr_pages; index++) {
3224 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3225 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3226 		put_page(pages[index]);
3227 	}
3228 }
3229 
3230 static int __extent_read_full_page(struct extent_io_tree *tree,
3231 				   struct page *page,
3232 				   get_extent_t *get_extent,
3233 				   struct bio **bio, int mirror_num,
3234 				   unsigned long *bio_flags,
3235 				   unsigned int read_flags)
3236 {
3237 	struct inode *inode = page->mapping->host;
3238 	struct btrfs_ordered_extent *ordered;
3239 	u64 start = page_offset(page);
3240 	u64 end = start + PAGE_SIZE - 1;
3241 	int ret;
3242 
3243 	while (1) {
3244 		lock_extent(tree, start, end);
3245 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3246 						PAGE_SIZE);
3247 		if (!ordered)
3248 			break;
3249 		unlock_extent(tree, start, end);
3250 		btrfs_start_ordered_extent(inode, ordered, 1);
3251 		btrfs_put_ordered_extent(ordered);
3252 	}
3253 
3254 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3255 			    bio_flags, read_flags, NULL);
3256 	return ret;
3257 }
3258 
3259 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3260 			    get_extent_t *get_extent, int mirror_num)
3261 {
3262 	struct bio *bio = NULL;
3263 	unsigned long bio_flags = 0;
3264 	int ret;
3265 
3266 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3267 				      &bio_flags, 0);
3268 	if (bio)
3269 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3270 	return ret;
3271 }
3272 
3273 static void update_nr_written(struct writeback_control *wbc,
3274 			      unsigned long nr_written)
3275 {
3276 	wbc->nr_to_write -= nr_written;
3277 }
3278 
3279 /*
3280  * helper for __extent_writepage, doing all of the delayed allocation setup.
3281  *
3282  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3283  * to write the page (copy into inline extent).  In this case the IO has
3284  * been started and the page is already unlocked.
3285  *
3286  * This returns 0 if all went well (page still locked)
3287  * This returns < 0 if there were errors (page still locked)
3288  */
3289 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3290 		struct page *page, struct writeback_control *wbc,
3291 		u64 delalloc_start, unsigned long *nr_written)
3292 {
3293 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3294 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3295 	bool found;
3296 	u64 delalloc_to_write = 0;
3297 	u64 delalloc_end = 0;
3298 	int ret;
3299 	int page_started = 0;
3300 
3301 
3302 	while (delalloc_end < page_end) {
3303 		found = find_lock_delalloc_range(inode, tree,
3304 					       page,
3305 					       &delalloc_start,
3306 					       &delalloc_end);
3307 		if (!found) {
3308 			delalloc_start = delalloc_end + 1;
3309 			continue;
3310 		}
3311 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3312 				delalloc_end, &page_started, nr_written, wbc);
3313 		/* File system has been set read-only */
3314 		if (ret) {
3315 			SetPageError(page);
3316 			/*
3317 			 * btrfs_run_delalloc_range should return < 0 for error
3318 			 * but just in case, we use > 0 here meaning the IO is
3319 			 * started, so we don't want to return > 0 unless
3320 			 * things are going well.
3321 			 */
3322 			ret = ret < 0 ? ret : -EIO;
3323 			goto done;
3324 		}
3325 		/*
3326 		 * delalloc_end is already one less than the total length, so
3327 		 * we don't subtract one from PAGE_SIZE
3328 		 */
3329 		delalloc_to_write += (delalloc_end - delalloc_start +
3330 				      PAGE_SIZE) >> PAGE_SHIFT;
3331 		delalloc_start = delalloc_end + 1;
3332 	}
3333 	if (wbc->nr_to_write < delalloc_to_write) {
3334 		int thresh = 8192;
3335 
3336 		if (delalloc_to_write < thresh * 2)
3337 			thresh = delalloc_to_write;
3338 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3339 					 thresh);
3340 	}
3341 
3342 	/* did the fill delalloc function already unlock and start
3343 	 * the IO?
3344 	 */
3345 	if (page_started) {
3346 		/*
3347 		 * we've unlocked the page, so we can't update
3348 		 * the mapping's writeback index, just update
3349 		 * nr_to_write.
3350 		 */
3351 		wbc->nr_to_write -= *nr_written;
3352 		return 1;
3353 	}
3354 
3355 	ret = 0;
3356 
3357 done:
3358 	return ret;
3359 }
3360 
3361 /*
3362  * helper for __extent_writepage.  This calls the writepage start hooks,
3363  * and does the loop to map the page into extents and bios.
3364  *
3365  * We return 1 if the IO is started and the page is unlocked,
3366  * 0 if all went well (page still locked)
3367  * < 0 if there were errors (page still locked)
3368  */
3369 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3370 				 struct page *page,
3371 				 struct writeback_control *wbc,
3372 				 struct extent_page_data *epd,
3373 				 loff_t i_size,
3374 				 unsigned long nr_written,
3375 				 unsigned int write_flags, int *nr_ret)
3376 {
3377 	struct extent_io_tree *tree = epd->tree;
3378 	u64 start = page_offset(page);
3379 	u64 page_end = start + PAGE_SIZE - 1;
3380 	u64 end;
3381 	u64 cur = start;
3382 	u64 extent_offset;
3383 	u64 block_start;
3384 	u64 iosize;
3385 	struct extent_map *em;
3386 	struct block_device *bdev;
3387 	size_t pg_offset = 0;
3388 	size_t blocksize;
3389 	int ret = 0;
3390 	int nr = 0;
3391 	bool compressed;
3392 
3393 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3394 	if (ret) {
3395 		/* Fixup worker will requeue */
3396 		if (ret == -EBUSY)
3397 			wbc->pages_skipped++;
3398 		else
3399 			redirty_page_for_writepage(wbc, page);
3400 
3401 		update_nr_written(wbc, nr_written);
3402 		unlock_page(page);
3403 		return 1;
3404 	}
3405 
3406 	/*
3407 	 * we don't want to touch the inode after unlocking the page,
3408 	 * so we update the mapping writeback index now
3409 	 */
3410 	update_nr_written(wbc, nr_written + 1);
3411 
3412 	end = page_end;
3413 	if (i_size <= start) {
3414 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3415 		goto done;
3416 	}
3417 
3418 	blocksize = inode->i_sb->s_blocksize;
3419 
3420 	while (cur <= end) {
3421 		u64 em_end;
3422 		u64 offset;
3423 
3424 		if (cur >= i_size) {
3425 			btrfs_writepage_endio_finish_ordered(page, cur,
3426 							     page_end, 1);
3427 			break;
3428 		}
3429 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3430 				     end - cur + 1, 1);
3431 		if (IS_ERR_OR_NULL(em)) {
3432 			SetPageError(page);
3433 			ret = PTR_ERR_OR_ZERO(em);
3434 			break;
3435 		}
3436 
3437 		extent_offset = cur - em->start;
3438 		em_end = extent_map_end(em);
3439 		BUG_ON(em_end <= cur);
3440 		BUG_ON(end < cur);
3441 		iosize = min(em_end - cur, end - cur + 1);
3442 		iosize = ALIGN(iosize, blocksize);
3443 		offset = em->block_start + extent_offset;
3444 		bdev = em->bdev;
3445 		block_start = em->block_start;
3446 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3447 		free_extent_map(em);
3448 		em = NULL;
3449 
3450 		/*
3451 		 * compressed and inline extents are written through other
3452 		 * paths in the FS
3453 		 */
3454 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3455 		    block_start == EXTENT_MAP_INLINE) {
3456 			/*
3457 			 * end_io notification does not happen here for
3458 			 * compressed extents
3459 			 */
3460 			if (!compressed)
3461 				btrfs_writepage_endio_finish_ordered(page, cur,
3462 							    cur + iosize - 1,
3463 							    1);
3464 			else if (compressed) {
3465 				/* we don't want to end_page_writeback on
3466 				 * a compressed extent.  this happens
3467 				 * elsewhere
3468 				 */
3469 				nr++;
3470 			}
3471 
3472 			cur += iosize;
3473 			pg_offset += iosize;
3474 			continue;
3475 		}
3476 
3477 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3478 		if (!PageWriteback(page)) {
3479 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3480 				   "page %lu not writeback, cur %llu end %llu",
3481 			       page->index, cur, end);
3482 		}
3483 
3484 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3485 					 page, offset, iosize, pg_offset,
3486 					 bdev, &epd->bio,
3487 					 end_bio_extent_writepage,
3488 					 0, 0, 0, false);
3489 		if (ret) {
3490 			SetPageError(page);
3491 			if (PageWriteback(page))
3492 				end_page_writeback(page);
3493 		}
3494 
3495 		cur = cur + iosize;
3496 		pg_offset += iosize;
3497 		nr++;
3498 	}
3499 done:
3500 	*nr_ret = nr;
3501 	return ret;
3502 }
3503 
3504 /*
3505  * the writepage semantics are similar to regular writepage.  extent
3506  * records are inserted to lock ranges in the tree, and as dirty areas
3507  * are found, they are marked writeback.  Then the lock bits are removed
3508  * and the end_io handler clears the writeback ranges
3509  *
3510  * Return 0 if everything goes well.
3511  * Return <0 for error.
3512  */
3513 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3514 			      struct extent_page_data *epd)
3515 {
3516 	struct inode *inode = page->mapping->host;
3517 	u64 start = page_offset(page);
3518 	u64 page_end = start + PAGE_SIZE - 1;
3519 	int ret;
3520 	int nr = 0;
3521 	size_t pg_offset = 0;
3522 	loff_t i_size = i_size_read(inode);
3523 	unsigned long end_index = i_size >> PAGE_SHIFT;
3524 	unsigned int write_flags = 0;
3525 	unsigned long nr_written = 0;
3526 
3527 	write_flags = wbc_to_write_flags(wbc);
3528 
3529 	trace___extent_writepage(page, inode, wbc);
3530 
3531 	WARN_ON(!PageLocked(page));
3532 
3533 	ClearPageError(page);
3534 
3535 	pg_offset = offset_in_page(i_size);
3536 	if (page->index > end_index ||
3537 	   (page->index == end_index && !pg_offset)) {
3538 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3539 		unlock_page(page);
3540 		return 0;
3541 	}
3542 
3543 	if (page->index == end_index) {
3544 		char *userpage;
3545 
3546 		userpage = kmap_atomic(page);
3547 		memset(userpage + pg_offset, 0,
3548 		       PAGE_SIZE - pg_offset);
3549 		kunmap_atomic(userpage);
3550 		flush_dcache_page(page);
3551 	}
3552 
3553 	pg_offset = 0;
3554 
3555 	set_page_extent_mapped(page);
3556 
3557 	if (!epd->extent_locked) {
3558 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3559 		if (ret == 1)
3560 			goto done_unlocked;
3561 		if (ret)
3562 			goto done;
3563 	}
3564 
3565 	ret = __extent_writepage_io(inode, page, wbc, epd,
3566 				    i_size, nr_written, write_flags, &nr);
3567 	if (ret == 1)
3568 		goto done_unlocked;
3569 
3570 done:
3571 	if (nr == 0) {
3572 		/* make sure the mapping tag for page dirty gets cleared */
3573 		set_page_writeback(page);
3574 		end_page_writeback(page);
3575 	}
3576 	if (PageError(page)) {
3577 		ret = ret < 0 ? ret : -EIO;
3578 		end_extent_writepage(page, ret, start, page_end);
3579 	}
3580 	unlock_page(page);
3581 	ASSERT(ret <= 0);
3582 	return ret;
3583 
3584 done_unlocked:
3585 	return 0;
3586 }
3587 
3588 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3589 {
3590 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3591 		       TASK_UNINTERRUPTIBLE);
3592 }
3593 
3594 /*
3595  * Lock eb pages and flush the bio if we can't the locks
3596  *
3597  * Return  0 if nothing went wrong
3598  * Return >0 is same as 0, except bio is not submitted
3599  * Return <0 if something went wrong, no page is locked
3600  */
3601 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3602 			  struct extent_page_data *epd)
3603 {
3604 	struct btrfs_fs_info *fs_info = eb->fs_info;
3605 	int i, num_pages, failed_page_nr;
3606 	int flush = 0;
3607 	int ret = 0;
3608 
3609 	if (!btrfs_try_tree_write_lock(eb)) {
3610 		ret = flush_write_bio(epd);
3611 		if (ret < 0)
3612 			return ret;
3613 		flush = 1;
3614 		btrfs_tree_lock(eb);
3615 	}
3616 
3617 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3618 		btrfs_tree_unlock(eb);
3619 		if (!epd->sync_io)
3620 			return 0;
3621 		if (!flush) {
3622 			ret = flush_write_bio(epd);
3623 			if (ret < 0)
3624 				return ret;
3625 			flush = 1;
3626 		}
3627 		while (1) {
3628 			wait_on_extent_buffer_writeback(eb);
3629 			btrfs_tree_lock(eb);
3630 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3631 				break;
3632 			btrfs_tree_unlock(eb);
3633 		}
3634 	}
3635 
3636 	/*
3637 	 * We need to do this to prevent races in people who check if the eb is
3638 	 * under IO since we can end up having no IO bits set for a short period
3639 	 * of time.
3640 	 */
3641 	spin_lock(&eb->refs_lock);
3642 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3643 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3644 		spin_unlock(&eb->refs_lock);
3645 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3646 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3647 					 -eb->len,
3648 					 fs_info->dirty_metadata_batch);
3649 		ret = 1;
3650 	} else {
3651 		spin_unlock(&eb->refs_lock);
3652 	}
3653 
3654 	btrfs_tree_unlock(eb);
3655 
3656 	if (!ret)
3657 		return ret;
3658 
3659 	num_pages = num_extent_pages(eb);
3660 	for (i = 0; i < num_pages; i++) {
3661 		struct page *p = eb->pages[i];
3662 
3663 		if (!trylock_page(p)) {
3664 			if (!flush) {
3665 				ret = flush_write_bio(epd);
3666 				if (ret < 0) {
3667 					failed_page_nr = i;
3668 					goto err_unlock;
3669 				}
3670 				flush = 1;
3671 			}
3672 			lock_page(p);
3673 		}
3674 	}
3675 
3676 	return ret;
3677 err_unlock:
3678 	/* Unlock already locked pages */
3679 	for (i = 0; i < failed_page_nr; i++)
3680 		unlock_page(eb->pages[i]);
3681 	return ret;
3682 }
3683 
3684 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3685 {
3686 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3687 	smp_mb__after_atomic();
3688 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3689 }
3690 
3691 static void set_btree_ioerr(struct page *page)
3692 {
3693 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3694 
3695 	SetPageError(page);
3696 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3697 		return;
3698 
3699 	/*
3700 	 * If writeback for a btree extent that doesn't belong to a log tree
3701 	 * failed, increment the counter transaction->eb_write_errors.
3702 	 * We do this because while the transaction is running and before it's
3703 	 * committing (when we call filemap_fdata[write|wait]_range against
3704 	 * the btree inode), we might have
3705 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3706 	 * returns an error or an error happens during writeback, when we're
3707 	 * committing the transaction we wouldn't know about it, since the pages
3708 	 * can be no longer dirty nor marked anymore for writeback (if a
3709 	 * subsequent modification to the extent buffer didn't happen before the
3710 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3711 	 * able to find the pages tagged with SetPageError at transaction
3712 	 * commit time. So if this happens we must abort the transaction,
3713 	 * otherwise we commit a super block with btree roots that point to
3714 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3715 	 * or the content of some node/leaf from a past generation that got
3716 	 * cowed or deleted and is no longer valid.
3717 	 *
3718 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3719 	 * not be enough - we need to distinguish between log tree extents vs
3720 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3721 	 * will catch and clear such errors in the mapping - and that call might
3722 	 * be from a log sync and not from a transaction commit. Also, checking
3723 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3724 	 * not done and would not be reliable - the eb might have been released
3725 	 * from memory and reading it back again means that flag would not be
3726 	 * set (since it's a runtime flag, not persisted on disk).
3727 	 *
3728 	 * Using the flags below in the btree inode also makes us achieve the
3729 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3730 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3731 	 * is called, the writeback for all dirty pages had already finished
3732 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3733 	 * filemap_fdatawait_range() would return success, as it could not know
3734 	 * that writeback errors happened (the pages were no longer tagged for
3735 	 * writeback).
3736 	 */
3737 	switch (eb->log_index) {
3738 	case -1:
3739 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3740 		break;
3741 	case 0:
3742 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3743 		break;
3744 	case 1:
3745 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3746 		break;
3747 	default:
3748 		BUG(); /* unexpected, logic error */
3749 	}
3750 }
3751 
3752 static void end_bio_extent_buffer_writepage(struct bio *bio)
3753 {
3754 	struct bio_vec *bvec;
3755 	struct extent_buffer *eb;
3756 	int done;
3757 	struct bvec_iter_all iter_all;
3758 
3759 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3760 	bio_for_each_segment_all(bvec, bio, iter_all) {
3761 		struct page *page = bvec->bv_page;
3762 
3763 		eb = (struct extent_buffer *)page->private;
3764 		BUG_ON(!eb);
3765 		done = atomic_dec_and_test(&eb->io_pages);
3766 
3767 		if (bio->bi_status ||
3768 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3769 			ClearPageUptodate(page);
3770 			set_btree_ioerr(page);
3771 		}
3772 
3773 		end_page_writeback(page);
3774 
3775 		if (!done)
3776 			continue;
3777 
3778 		end_extent_buffer_writeback(eb);
3779 	}
3780 
3781 	bio_put(bio);
3782 }
3783 
3784 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3785 			struct writeback_control *wbc,
3786 			struct extent_page_data *epd)
3787 {
3788 	struct btrfs_fs_info *fs_info = eb->fs_info;
3789 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3790 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3791 	u64 offset = eb->start;
3792 	u32 nritems;
3793 	int i, num_pages;
3794 	unsigned long start, end;
3795 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3796 	int ret = 0;
3797 
3798 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3799 	num_pages = num_extent_pages(eb);
3800 	atomic_set(&eb->io_pages, num_pages);
3801 
3802 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3803 	nritems = btrfs_header_nritems(eb);
3804 	if (btrfs_header_level(eb) > 0) {
3805 		end = btrfs_node_key_ptr_offset(nritems);
3806 
3807 		memzero_extent_buffer(eb, end, eb->len - end);
3808 	} else {
3809 		/*
3810 		 * leaf:
3811 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3812 		 */
3813 		start = btrfs_item_nr_offset(nritems);
3814 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3815 		memzero_extent_buffer(eb, start, end - start);
3816 	}
3817 
3818 	for (i = 0; i < num_pages; i++) {
3819 		struct page *p = eb->pages[i];
3820 
3821 		clear_page_dirty_for_io(p);
3822 		set_page_writeback(p);
3823 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3824 					 p, offset, PAGE_SIZE, 0, bdev,
3825 					 &epd->bio,
3826 					 end_bio_extent_buffer_writepage,
3827 					 0, 0, 0, false);
3828 		if (ret) {
3829 			set_btree_ioerr(p);
3830 			if (PageWriteback(p))
3831 				end_page_writeback(p);
3832 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3833 				end_extent_buffer_writeback(eb);
3834 			ret = -EIO;
3835 			break;
3836 		}
3837 		offset += PAGE_SIZE;
3838 		update_nr_written(wbc, 1);
3839 		unlock_page(p);
3840 	}
3841 
3842 	if (unlikely(ret)) {
3843 		for (; i < num_pages; i++) {
3844 			struct page *p = eb->pages[i];
3845 			clear_page_dirty_for_io(p);
3846 			unlock_page(p);
3847 		}
3848 	}
3849 
3850 	return ret;
3851 }
3852 
3853 int btree_write_cache_pages(struct address_space *mapping,
3854 				   struct writeback_control *wbc)
3855 {
3856 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3857 	struct extent_buffer *eb, *prev_eb = NULL;
3858 	struct extent_page_data epd = {
3859 		.bio = NULL,
3860 		.tree = tree,
3861 		.extent_locked = 0,
3862 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3863 	};
3864 	int ret = 0;
3865 	int done = 0;
3866 	int nr_to_write_done = 0;
3867 	struct pagevec pvec;
3868 	int nr_pages;
3869 	pgoff_t index;
3870 	pgoff_t end;		/* Inclusive */
3871 	int scanned = 0;
3872 	xa_mark_t tag;
3873 
3874 	pagevec_init(&pvec);
3875 	if (wbc->range_cyclic) {
3876 		index = mapping->writeback_index; /* Start from prev offset */
3877 		end = -1;
3878 	} else {
3879 		index = wbc->range_start >> PAGE_SHIFT;
3880 		end = wbc->range_end >> PAGE_SHIFT;
3881 		scanned = 1;
3882 	}
3883 	if (wbc->sync_mode == WB_SYNC_ALL)
3884 		tag = PAGECACHE_TAG_TOWRITE;
3885 	else
3886 		tag = PAGECACHE_TAG_DIRTY;
3887 retry:
3888 	if (wbc->sync_mode == WB_SYNC_ALL)
3889 		tag_pages_for_writeback(mapping, index, end);
3890 	while (!done && !nr_to_write_done && (index <= end) &&
3891 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3892 			tag))) {
3893 		unsigned i;
3894 
3895 		scanned = 1;
3896 		for (i = 0; i < nr_pages; i++) {
3897 			struct page *page = pvec.pages[i];
3898 
3899 			if (!PagePrivate(page))
3900 				continue;
3901 
3902 			spin_lock(&mapping->private_lock);
3903 			if (!PagePrivate(page)) {
3904 				spin_unlock(&mapping->private_lock);
3905 				continue;
3906 			}
3907 
3908 			eb = (struct extent_buffer *)page->private;
3909 
3910 			/*
3911 			 * Shouldn't happen and normally this would be a BUG_ON
3912 			 * but no sense in crashing the users box for something
3913 			 * we can survive anyway.
3914 			 */
3915 			if (WARN_ON(!eb)) {
3916 				spin_unlock(&mapping->private_lock);
3917 				continue;
3918 			}
3919 
3920 			if (eb == prev_eb) {
3921 				spin_unlock(&mapping->private_lock);
3922 				continue;
3923 			}
3924 
3925 			ret = atomic_inc_not_zero(&eb->refs);
3926 			spin_unlock(&mapping->private_lock);
3927 			if (!ret)
3928 				continue;
3929 
3930 			prev_eb = eb;
3931 			ret = lock_extent_buffer_for_io(eb, &epd);
3932 			if (!ret) {
3933 				free_extent_buffer(eb);
3934 				continue;
3935 			}
3936 
3937 			ret = write_one_eb(eb, wbc, &epd);
3938 			if (ret) {
3939 				done = 1;
3940 				free_extent_buffer(eb);
3941 				break;
3942 			}
3943 			free_extent_buffer(eb);
3944 
3945 			/*
3946 			 * the filesystem may choose to bump up nr_to_write.
3947 			 * We have to make sure to honor the new nr_to_write
3948 			 * at any time
3949 			 */
3950 			nr_to_write_done = wbc->nr_to_write <= 0;
3951 		}
3952 		pagevec_release(&pvec);
3953 		cond_resched();
3954 	}
3955 	if (!scanned && !done) {
3956 		/*
3957 		 * We hit the last page and there is more work to be done: wrap
3958 		 * back to the start of the file
3959 		 */
3960 		scanned = 1;
3961 		index = 0;
3962 		goto retry;
3963 	}
3964 	ASSERT(ret <= 0);
3965 	if (ret < 0) {
3966 		end_write_bio(&epd, ret);
3967 		return ret;
3968 	}
3969 	ret = flush_write_bio(&epd);
3970 	return ret;
3971 }
3972 
3973 /**
3974  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3975  * @mapping: address space structure to write
3976  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3977  * @data: data passed to __extent_writepage function
3978  *
3979  * If a page is already under I/O, write_cache_pages() skips it, even
3980  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3981  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3982  * and msync() need to guarantee that all the data which was dirty at the time
3983  * the call was made get new I/O started against them.  If wbc->sync_mode is
3984  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3985  * existing IO to complete.
3986  */
3987 static int extent_write_cache_pages(struct address_space *mapping,
3988 			     struct writeback_control *wbc,
3989 			     struct extent_page_data *epd)
3990 {
3991 	struct inode *inode = mapping->host;
3992 	int ret = 0;
3993 	int done = 0;
3994 	int nr_to_write_done = 0;
3995 	struct pagevec pvec;
3996 	int nr_pages;
3997 	pgoff_t index;
3998 	pgoff_t end;		/* Inclusive */
3999 	pgoff_t done_index;
4000 	int range_whole = 0;
4001 	int scanned = 0;
4002 	xa_mark_t tag;
4003 
4004 	/*
4005 	 * We have to hold onto the inode so that ordered extents can do their
4006 	 * work when the IO finishes.  The alternative to this is failing to add
4007 	 * an ordered extent if the igrab() fails there and that is a huge pain
4008 	 * to deal with, so instead just hold onto the inode throughout the
4009 	 * writepages operation.  If it fails here we are freeing up the inode
4010 	 * anyway and we'd rather not waste our time writing out stuff that is
4011 	 * going to be truncated anyway.
4012 	 */
4013 	if (!igrab(inode))
4014 		return 0;
4015 
4016 	pagevec_init(&pvec);
4017 	if (wbc->range_cyclic) {
4018 		index = mapping->writeback_index; /* Start from prev offset */
4019 		end = -1;
4020 	} else {
4021 		index = wbc->range_start >> PAGE_SHIFT;
4022 		end = wbc->range_end >> PAGE_SHIFT;
4023 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4024 			range_whole = 1;
4025 		scanned = 1;
4026 	}
4027 
4028 	/*
4029 	 * We do the tagged writepage as long as the snapshot flush bit is set
4030 	 * and we are the first one who do the filemap_flush() on this inode.
4031 	 *
4032 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4033 	 * not race in and drop the bit.
4034 	 */
4035 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4036 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4037 			       &BTRFS_I(inode)->runtime_flags))
4038 		wbc->tagged_writepages = 1;
4039 
4040 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4041 		tag = PAGECACHE_TAG_TOWRITE;
4042 	else
4043 		tag = PAGECACHE_TAG_DIRTY;
4044 retry:
4045 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4046 		tag_pages_for_writeback(mapping, index, end);
4047 	done_index = index;
4048 	while (!done && !nr_to_write_done && (index <= end) &&
4049 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4050 						&index, end, tag))) {
4051 		unsigned i;
4052 
4053 		scanned = 1;
4054 		for (i = 0; i < nr_pages; i++) {
4055 			struct page *page = pvec.pages[i];
4056 
4057 			done_index = page->index;
4058 			/*
4059 			 * At this point we hold neither the i_pages lock nor
4060 			 * the page lock: the page may be truncated or
4061 			 * invalidated (changing page->mapping to NULL),
4062 			 * or even swizzled back from swapper_space to
4063 			 * tmpfs file mapping
4064 			 */
4065 			if (!trylock_page(page)) {
4066 				ret = flush_write_bio(epd);
4067 				BUG_ON(ret < 0);
4068 				lock_page(page);
4069 			}
4070 
4071 			if (unlikely(page->mapping != mapping)) {
4072 				unlock_page(page);
4073 				continue;
4074 			}
4075 
4076 			if (wbc->sync_mode != WB_SYNC_NONE) {
4077 				if (PageWriteback(page)) {
4078 					ret = flush_write_bio(epd);
4079 					BUG_ON(ret < 0);
4080 				}
4081 				wait_on_page_writeback(page);
4082 			}
4083 
4084 			if (PageWriteback(page) ||
4085 			    !clear_page_dirty_for_io(page)) {
4086 				unlock_page(page);
4087 				continue;
4088 			}
4089 
4090 			ret = __extent_writepage(page, wbc, epd);
4091 			if (ret < 0) {
4092 				/*
4093 				 * done_index is set past this page,
4094 				 * so media errors will not choke
4095 				 * background writeout for the entire
4096 				 * file. This has consequences for
4097 				 * range_cyclic semantics (ie. it may
4098 				 * not be suitable for data integrity
4099 				 * writeout).
4100 				 */
4101 				done_index = page->index + 1;
4102 				done = 1;
4103 				break;
4104 			}
4105 
4106 			/*
4107 			 * the filesystem may choose to bump up nr_to_write.
4108 			 * We have to make sure to honor the new nr_to_write
4109 			 * at any time
4110 			 */
4111 			nr_to_write_done = wbc->nr_to_write <= 0;
4112 		}
4113 		pagevec_release(&pvec);
4114 		cond_resched();
4115 	}
4116 	if (!scanned && !done) {
4117 		/*
4118 		 * We hit the last page and there is more work to be done: wrap
4119 		 * back to the start of the file
4120 		 */
4121 		scanned = 1;
4122 		index = 0;
4123 		goto retry;
4124 	}
4125 
4126 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4127 		mapping->writeback_index = done_index;
4128 
4129 	btrfs_add_delayed_iput(inode);
4130 	return ret;
4131 }
4132 
4133 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4134 {
4135 	int ret;
4136 	struct extent_page_data epd = {
4137 		.bio = NULL,
4138 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4139 		.extent_locked = 0,
4140 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4141 	};
4142 
4143 	ret = __extent_writepage(page, wbc, &epd);
4144 	ASSERT(ret <= 0);
4145 	if (ret < 0) {
4146 		end_write_bio(&epd, ret);
4147 		return ret;
4148 	}
4149 
4150 	ret = flush_write_bio(&epd);
4151 	ASSERT(ret <= 0);
4152 	return ret;
4153 }
4154 
4155 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4156 			      int mode)
4157 {
4158 	int ret = 0;
4159 	struct address_space *mapping = inode->i_mapping;
4160 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4161 	struct page *page;
4162 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4163 		PAGE_SHIFT;
4164 
4165 	struct extent_page_data epd = {
4166 		.bio = NULL,
4167 		.tree = tree,
4168 		.extent_locked = 1,
4169 		.sync_io = mode == WB_SYNC_ALL,
4170 	};
4171 	struct writeback_control wbc_writepages = {
4172 		.sync_mode	= mode,
4173 		.nr_to_write	= nr_pages * 2,
4174 		.range_start	= start,
4175 		.range_end	= end + 1,
4176 	};
4177 
4178 	while (start <= end) {
4179 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4180 		if (clear_page_dirty_for_io(page))
4181 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4182 		else {
4183 			btrfs_writepage_endio_finish_ordered(page, start,
4184 						    start + PAGE_SIZE - 1, 1);
4185 			unlock_page(page);
4186 		}
4187 		put_page(page);
4188 		start += PAGE_SIZE;
4189 	}
4190 
4191 	ASSERT(ret <= 0);
4192 	if (ret < 0) {
4193 		end_write_bio(&epd, ret);
4194 		return ret;
4195 	}
4196 	ret = flush_write_bio(&epd);
4197 	return ret;
4198 }
4199 
4200 int extent_writepages(struct address_space *mapping,
4201 		      struct writeback_control *wbc)
4202 {
4203 	int ret = 0;
4204 	struct extent_page_data epd = {
4205 		.bio = NULL,
4206 		.tree = &BTRFS_I(mapping->host)->io_tree,
4207 		.extent_locked = 0,
4208 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4209 	};
4210 
4211 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4212 	ASSERT(ret <= 0);
4213 	if (ret < 0) {
4214 		end_write_bio(&epd, ret);
4215 		return ret;
4216 	}
4217 	ret = flush_write_bio(&epd);
4218 	return ret;
4219 }
4220 
4221 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4222 		     unsigned nr_pages)
4223 {
4224 	struct bio *bio = NULL;
4225 	unsigned long bio_flags = 0;
4226 	struct page *pagepool[16];
4227 	struct extent_map *em_cached = NULL;
4228 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4229 	int nr = 0;
4230 	u64 prev_em_start = (u64)-1;
4231 
4232 	while (!list_empty(pages)) {
4233 		u64 contig_end = 0;
4234 
4235 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4236 			struct page *page = lru_to_page(pages);
4237 
4238 			prefetchw(&page->flags);
4239 			list_del(&page->lru);
4240 			if (add_to_page_cache_lru(page, mapping, page->index,
4241 						readahead_gfp_mask(mapping))) {
4242 				put_page(page);
4243 				break;
4244 			}
4245 
4246 			pagepool[nr++] = page;
4247 			contig_end = page_offset(page) + PAGE_SIZE - 1;
4248 		}
4249 
4250 		if (nr) {
4251 			u64 contig_start = page_offset(pagepool[0]);
4252 
4253 			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4254 
4255 			contiguous_readpages(tree, pagepool, nr, contig_start,
4256 				     contig_end, &em_cached, &bio, &bio_flags,
4257 				     &prev_em_start);
4258 		}
4259 	}
4260 
4261 	if (em_cached)
4262 		free_extent_map(em_cached);
4263 
4264 	if (bio)
4265 		return submit_one_bio(bio, 0, bio_flags);
4266 	return 0;
4267 }
4268 
4269 /*
4270  * basic invalidatepage code, this waits on any locked or writeback
4271  * ranges corresponding to the page, and then deletes any extent state
4272  * records from the tree
4273  */
4274 int extent_invalidatepage(struct extent_io_tree *tree,
4275 			  struct page *page, unsigned long offset)
4276 {
4277 	struct extent_state *cached_state = NULL;
4278 	u64 start = page_offset(page);
4279 	u64 end = start + PAGE_SIZE - 1;
4280 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4281 
4282 	start += ALIGN(offset, blocksize);
4283 	if (start > end)
4284 		return 0;
4285 
4286 	lock_extent_bits(tree, start, end, &cached_state);
4287 	wait_on_page_writeback(page);
4288 	clear_extent_bit(tree, start, end,
4289 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4290 			 EXTENT_DO_ACCOUNTING,
4291 			 1, 1, &cached_state);
4292 	return 0;
4293 }
4294 
4295 /*
4296  * a helper for releasepage, this tests for areas of the page that
4297  * are locked or under IO and drops the related state bits if it is safe
4298  * to drop the page.
4299  */
4300 static int try_release_extent_state(struct extent_io_tree *tree,
4301 				    struct page *page, gfp_t mask)
4302 {
4303 	u64 start = page_offset(page);
4304 	u64 end = start + PAGE_SIZE - 1;
4305 	int ret = 1;
4306 
4307 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4308 		ret = 0;
4309 	} else {
4310 		/*
4311 		 * at this point we can safely clear everything except the
4312 		 * locked bit and the nodatasum bit
4313 		 */
4314 		ret = __clear_extent_bit(tree, start, end,
4315 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4316 				 0, 0, NULL, mask, NULL);
4317 
4318 		/* if clear_extent_bit failed for enomem reasons,
4319 		 * we can't allow the release to continue.
4320 		 */
4321 		if (ret < 0)
4322 			ret = 0;
4323 		else
4324 			ret = 1;
4325 	}
4326 	return ret;
4327 }
4328 
4329 /*
4330  * a helper for releasepage.  As long as there are no locked extents
4331  * in the range corresponding to the page, both state records and extent
4332  * map records are removed
4333  */
4334 int try_release_extent_mapping(struct page *page, gfp_t mask)
4335 {
4336 	struct extent_map *em;
4337 	u64 start = page_offset(page);
4338 	u64 end = start + PAGE_SIZE - 1;
4339 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4340 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4341 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4342 
4343 	if (gfpflags_allow_blocking(mask) &&
4344 	    page->mapping->host->i_size > SZ_16M) {
4345 		u64 len;
4346 		while (start <= end) {
4347 			len = end - start + 1;
4348 			write_lock(&map->lock);
4349 			em = lookup_extent_mapping(map, start, len);
4350 			if (!em) {
4351 				write_unlock(&map->lock);
4352 				break;
4353 			}
4354 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4355 			    em->start != start) {
4356 				write_unlock(&map->lock);
4357 				free_extent_map(em);
4358 				break;
4359 			}
4360 			if (!test_range_bit(tree, em->start,
4361 					    extent_map_end(em) - 1,
4362 					    EXTENT_LOCKED, 0, NULL)) {
4363 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4364 					&btrfs_inode->runtime_flags);
4365 				remove_extent_mapping(map, em);
4366 				/* once for the rb tree */
4367 				free_extent_map(em);
4368 			}
4369 			start = extent_map_end(em);
4370 			write_unlock(&map->lock);
4371 
4372 			/* once for us */
4373 			free_extent_map(em);
4374 		}
4375 	}
4376 	return try_release_extent_state(tree, page, mask);
4377 }
4378 
4379 /*
4380  * helper function for fiemap, which doesn't want to see any holes.
4381  * This maps until we find something past 'last'
4382  */
4383 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4384 						u64 offset, u64 last)
4385 {
4386 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4387 	struct extent_map *em;
4388 	u64 len;
4389 
4390 	if (offset >= last)
4391 		return NULL;
4392 
4393 	while (1) {
4394 		len = last - offset;
4395 		if (len == 0)
4396 			break;
4397 		len = ALIGN(len, sectorsize);
4398 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4399 		if (IS_ERR_OR_NULL(em))
4400 			return em;
4401 
4402 		/* if this isn't a hole return it */
4403 		if (em->block_start != EXTENT_MAP_HOLE)
4404 			return em;
4405 
4406 		/* this is a hole, advance to the next extent */
4407 		offset = extent_map_end(em);
4408 		free_extent_map(em);
4409 		if (offset >= last)
4410 			break;
4411 	}
4412 	return NULL;
4413 }
4414 
4415 /*
4416  * To cache previous fiemap extent
4417  *
4418  * Will be used for merging fiemap extent
4419  */
4420 struct fiemap_cache {
4421 	u64 offset;
4422 	u64 phys;
4423 	u64 len;
4424 	u32 flags;
4425 	bool cached;
4426 };
4427 
4428 /*
4429  * Helper to submit fiemap extent.
4430  *
4431  * Will try to merge current fiemap extent specified by @offset, @phys,
4432  * @len and @flags with cached one.
4433  * And only when we fails to merge, cached one will be submitted as
4434  * fiemap extent.
4435  *
4436  * Return value is the same as fiemap_fill_next_extent().
4437  */
4438 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4439 				struct fiemap_cache *cache,
4440 				u64 offset, u64 phys, u64 len, u32 flags)
4441 {
4442 	int ret = 0;
4443 
4444 	if (!cache->cached)
4445 		goto assign;
4446 
4447 	/*
4448 	 * Sanity check, extent_fiemap() should have ensured that new
4449 	 * fiemap extent won't overlap with cached one.
4450 	 * Not recoverable.
4451 	 *
4452 	 * NOTE: Physical address can overlap, due to compression
4453 	 */
4454 	if (cache->offset + cache->len > offset) {
4455 		WARN_ON(1);
4456 		return -EINVAL;
4457 	}
4458 
4459 	/*
4460 	 * Only merges fiemap extents if
4461 	 * 1) Their logical addresses are continuous
4462 	 *
4463 	 * 2) Their physical addresses are continuous
4464 	 *    So truly compressed (physical size smaller than logical size)
4465 	 *    extents won't get merged with each other
4466 	 *
4467 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4468 	 *    So regular extent won't get merged with prealloc extent
4469 	 */
4470 	if (cache->offset + cache->len  == offset &&
4471 	    cache->phys + cache->len == phys  &&
4472 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4473 			(flags & ~FIEMAP_EXTENT_LAST)) {
4474 		cache->len += len;
4475 		cache->flags |= flags;
4476 		goto try_submit_last;
4477 	}
4478 
4479 	/* Not mergeable, need to submit cached one */
4480 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4481 				      cache->len, cache->flags);
4482 	cache->cached = false;
4483 	if (ret)
4484 		return ret;
4485 assign:
4486 	cache->cached = true;
4487 	cache->offset = offset;
4488 	cache->phys = phys;
4489 	cache->len = len;
4490 	cache->flags = flags;
4491 try_submit_last:
4492 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4493 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4494 				cache->phys, cache->len, cache->flags);
4495 		cache->cached = false;
4496 	}
4497 	return ret;
4498 }
4499 
4500 /*
4501  * Emit last fiemap cache
4502  *
4503  * The last fiemap cache may still be cached in the following case:
4504  * 0		      4k		    8k
4505  * |<- Fiemap range ->|
4506  * |<------------  First extent ----------->|
4507  *
4508  * In this case, the first extent range will be cached but not emitted.
4509  * So we must emit it before ending extent_fiemap().
4510  */
4511 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4512 				  struct fiemap_cache *cache)
4513 {
4514 	int ret;
4515 
4516 	if (!cache->cached)
4517 		return 0;
4518 
4519 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4520 				      cache->len, cache->flags);
4521 	cache->cached = false;
4522 	if (ret > 0)
4523 		ret = 0;
4524 	return ret;
4525 }
4526 
4527 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4528 		__u64 start, __u64 len)
4529 {
4530 	int ret = 0;
4531 	u64 off = start;
4532 	u64 max = start + len;
4533 	u32 flags = 0;
4534 	u32 found_type;
4535 	u64 last;
4536 	u64 last_for_get_extent = 0;
4537 	u64 disko = 0;
4538 	u64 isize = i_size_read(inode);
4539 	struct btrfs_key found_key;
4540 	struct extent_map *em = NULL;
4541 	struct extent_state *cached_state = NULL;
4542 	struct btrfs_path *path;
4543 	struct btrfs_root *root = BTRFS_I(inode)->root;
4544 	struct fiemap_cache cache = { 0 };
4545 	int end = 0;
4546 	u64 em_start = 0;
4547 	u64 em_len = 0;
4548 	u64 em_end = 0;
4549 
4550 	if (len == 0)
4551 		return -EINVAL;
4552 
4553 	path = btrfs_alloc_path();
4554 	if (!path)
4555 		return -ENOMEM;
4556 	path->leave_spinning = 1;
4557 
4558 	start = round_down(start, btrfs_inode_sectorsize(inode));
4559 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4560 
4561 	/*
4562 	 * lookup the last file extent.  We're not using i_size here
4563 	 * because there might be preallocation past i_size
4564 	 */
4565 	ret = btrfs_lookup_file_extent(NULL, root, path,
4566 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4567 	if (ret < 0) {
4568 		btrfs_free_path(path);
4569 		return ret;
4570 	} else {
4571 		WARN_ON(!ret);
4572 		if (ret == 1)
4573 			ret = 0;
4574 	}
4575 
4576 	path->slots[0]--;
4577 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4578 	found_type = found_key.type;
4579 
4580 	/* No extents, but there might be delalloc bits */
4581 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4582 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4583 		/* have to trust i_size as the end */
4584 		last = (u64)-1;
4585 		last_for_get_extent = isize;
4586 	} else {
4587 		/*
4588 		 * remember the start of the last extent.  There are a
4589 		 * bunch of different factors that go into the length of the
4590 		 * extent, so its much less complex to remember where it started
4591 		 */
4592 		last = found_key.offset;
4593 		last_for_get_extent = last + 1;
4594 	}
4595 	btrfs_release_path(path);
4596 
4597 	/*
4598 	 * we might have some extents allocated but more delalloc past those
4599 	 * extents.  so, we trust isize unless the start of the last extent is
4600 	 * beyond isize
4601 	 */
4602 	if (last < isize) {
4603 		last = (u64)-1;
4604 		last_for_get_extent = isize;
4605 	}
4606 
4607 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4608 			 &cached_state);
4609 
4610 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4611 	if (!em)
4612 		goto out;
4613 	if (IS_ERR(em)) {
4614 		ret = PTR_ERR(em);
4615 		goto out;
4616 	}
4617 
4618 	while (!end) {
4619 		u64 offset_in_extent = 0;
4620 
4621 		/* break if the extent we found is outside the range */
4622 		if (em->start >= max || extent_map_end(em) < off)
4623 			break;
4624 
4625 		/*
4626 		 * get_extent may return an extent that starts before our
4627 		 * requested range.  We have to make sure the ranges
4628 		 * we return to fiemap always move forward and don't
4629 		 * overlap, so adjust the offsets here
4630 		 */
4631 		em_start = max(em->start, off);
4632 
4633 		/*
4634 		 * record the offset from the start of the extent
4635 		 * for adjusting the disk offset below.  Only do this if the
4636 		 * extent isn't compressed since our in ram offset may be past
4637 		 * what we have actually allocated on disk.
4638 		 */
4639 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4640 			offset_in_extent = em_start - em->start;
4641 		em_end = extent_map_end(em);
4642 		em_len = em_end - em_start;
4643 		flags = 0;
4644 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4645 			disko = em->block_start + offset_in_extent;
4646 		else
4647 			disko = 0;
4648 
4649 		/*
4650 		 * bump off for our next call to get_extent
4651 		 */
4652 		off = extent_map_end(em);
4653 		if (off >= max)
4654 			end = 1;
4655 
4656 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4657 			end = 1;
4658 			flags |= FIEMAP_EXTENT_LAST;
4659 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4660 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4661 				  FIEMAP_EXTENT_NOT_ALIGNED);
4662 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4663 			flags |= (FIEMAP_EXTENT_DELALLOC |
4664 				  FIEMAP_EXTENT_UNKNOWN);
4665 		} else if (fieinfo->fi_extents_max) {
4666 			u64 bytenr = em->block_start -
4667 				(em->start - em->orig_start);
4668 
4669 			/*
4670 			 * As btrfs supports shared space, this information
4671 			 * can be exported to userspace tools via
4672 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4673 			 * then we're just getting a count and we can skip the
4674 			 * lookup stuff.
4675 			 */
4676 			ret = btrfs_check_shared(root,
4677 						 btrfs_ino(BTRFS_I(inode)),
4678 						 bytenr);
4679 			if (ret < 0)
4680 				goto out_free;
4681 			if (ret)
4682 				flags |= FIEMAP_EXTENT_SHARED;
4683 			ret = 0;
4684 		}
4685 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4686 			flags |= FIEMAP_EXTENT_ENCODED;
4687 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4688 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4689 
4690 		free_extent_map(em);
4691 		em = NULL;
4692 		if ((em_start >= last) || em_len == (u64)-1 ||
4693 		   (last == (u64)-1 && isize <= em_end)) {
4694 			flags |= FIEMAP_EXTENT_LAST;
4695 			end = 1;
4696 		}
4697 
4698 		/* now scan forward to see if this is really the last extent. */
4699 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4700 		if (IS_ERR(em)) {
4701 			ret = PTR_ERR(em);
4702 			goto out;
4703 		}
4704 		if (!em) {
4705 			flags |= FIEMAP_EXTENT_LAST;
4706 			end = 1;
4707 		}
4708 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4709 					   em_len, flags);
4710 		if (ret) {
4711 			if (ret == 1)
4712 				ret = 0;
4713 			goto out_free;
4714 		}
4715 	}
4716 out_free:
4717 	if (!ret)
4718 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4719 	free_extent_map(em);
4720 out:
4721 	btrfs_free_path(path);
4722 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4723 			     &cached_state);
4724 	return ret;
4725 }
4726 
4727 static void __free_extent_buffer(struct extent_buffer *eb)
4728 {
4729 	btrfs_leak_debug_del(&eb->leak_list);
4730 	kmem_cache_free(extent_buffer_cache, eb);
4731 }
4732 
4733 int extent_buffer_under_io(struct extent_buffer *eb)
4734 {
4735 	return (atomic_read(&eb->io_pages) ||
4736 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4737 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4738 }
4739 
4740 /*
4741  * Release all pages attached to the extent buffer.
4742  */
4743 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4744 {
4745 	int i;
4746 	int num_pages;
4747 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4748 
4749 	BUG_ON(extent_buffer_under_io(eb));
4750 
4751 	num_pages = num_extent_pages(eb);
4752 	for (i = 0; i < num_pages; i++) {
4753 		struct page *page = eb->pages[i];
4754 
4755 		if (!page)
4756 			continue;
4757 		if (mapped)
4758 			spin_lock(&page->mapping->private_lock);
4759 		/*
4760 		 * We do this since we'll remove the pages after we've
4761 		 * removed the eb from the radix tree, so we could race
4762 		 * and have this page now attached to the new eb.  So
4763 		 * only clear page_private if it's still connected to
4764 		 * this eb.
4765 		 */
4766 		if (PagePrivate(page) &&
4767 		    page->private == (unsigned long)eb) {
4768 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4769 			BUG_ON(PageDirty(page));
4770 			BUG_ON(PageWriteback(page));
4771 			/*
4772 			 * We need to make sure we haven't be attached
4773 			 * to a new eb.
4774 			 */
4775 			ClearPagePrivate(page);
4776 			set_page_private(page, 0);
4777 			/* One for the page private */
4778 			put_page(page);
4779 		}
4780 
4781 		if (mapped)
4782 			spin_unlock(&page->mapping->private_lock);
4783 
4784 		/* One for when we allocated the page */
4785 		put_page(page);
4786 	}
4787 }
4788 
4789 /*
4790  * Helper for releasing the extent buffer.
4791  */
4792 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4793 {
4794 	btrfs_release_extent_buffer_pages(eb);
4795 	__free_extent_buffer(eb);
4796 }
4797 
4798 static struct extent_buffer *
4799 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4800 		      unsigned long len)
4801 {
4802 	struct extent_buffer *eb = NULL;
4803 
4804 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4805 	eb->start = start;
4806 	eb->len = len;
4807 	eb->fs_info = fs_info;
4808 	eb->bflags = 0;
4809 	rwlock_init(&eb->lock);
4810 	atomic_set(&eb->blocking_readers, 0);
4811 	atomic_set(&eb->blocking_writers, 0);
4812 	eb->lock_nested = false;
4813 	init_waitqueue_head(&eb->write_lock_wq);
4814 	init_waitqueue_head(&eb->read_lock_wq);
4815 
4816 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4817 
4818 	spin_lock_init(&eb->refs_lock);
4819 	atomic_set(&eb->refs, 1);
4820 	atomic_set(&eb->io_pages, 0);
4821 
4822 	/*
4823 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4824 	 */
4825 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4826 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4827 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4828 
4829 #ifdef CONFIG_BTRFS_DEBUG
4830 	atomic_set(&eb->spinning_writers, 0);
4831 	atomic_set(&eb->spinning_readers, 0);
4832 	atomic_set(&eb->read_locks, 0);
4833 	atomic_set(&eb->write_locks, 0);
4834 #endif
4835 
4836 	return eb;
4837 }
4838 
4839 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4840 {
4841 	int i;
4842 	struct page *p;
4843 	struct extent_buffer *new;
4844 	int num_pages = num_extent_pages(src);
4845 
4846 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4847 	if (new == NULL)
4848 		return NULL;
4849 
4850 	for (i = 0; i < num_pages; i++) {
4851 		p = alloc_page(GFP_NOFS);
4852 		if (!p) {
4853 			btrfs_release_extent_buffer(new);
4854 			return NULL;
4855 		}
4856 		attach_extent_buffer_page(new, p);
4857 		WARN_ON(PageDirty(p));
4858 		SetPageUptodate(p);
4859 		new->pages[i] = p;
4860 		copy_page(page_address(p), page_address(src->pages[i]));
4861 	}
4862 
4863 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4864 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4865 
4866 	return new;
4867 }
4868 
4869 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4870 						  u64 start, unsigned long len)
4871 {
4872 	struct extent_buffer *eb;
4873 	int num_pages;
4874 	int i;
4875 
4876 	eb = __alloc_extent_buffer(fs_info, start, len);
4877 	if (!eb)
4878 		return NULL;
4879 
4880 	num_pages = num_extent_pages(eb);
4881 	for (i = 0; i < num_pages; i++) {
4882 		eb->pages[i] = alloc_page(GFP_NOFS);
4883 		if (!eb->pages[i])
4884 			goto err;
4885 	}
4886 	set_extent_buffer_uptodate(eb);
4887 	btrfs_set_header_nritems(eb, 0);
4888 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4889 
4890 	return eb;
4891 err:
4892 	for (; i > 0; i--)
4893 		__free_page(eb->pages[i - 1]);
4894 	__free_extent_buffer(eb);
4895 	return NULL;
4896 }
4897 
4898 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4899 						u64 start)
4900 {
4901 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4902 }
4903 
4904 static void check_buffer_tree_ref(struct extent_buffer *eb)
4905 {
4906 	int refs;
4907 	/* the ref bit is tricky.  We have to make sure it is set
4908 	 * if we have the buffer dirty.   Otherwise the
4909 	 * code to free a buffer can end up dropping a dirty
4910 	 * page
4911 	 *
4912 	 * Once the ref bit is set, it won't go away while the
4913 	 * buffer is dirty or in writeback, and it also won't
4914 	 * go away while we have the reference count on the
4915 	 * eb bumped.
4916 	 *
4917 	 * We can't just set the ref bit without bumping the
4918 	 * ref on the eb because free_extent_buffer might
4919 	 * see the ref bit and try to clear it.  If this happens
4920 	 * free_extent_buffer might end up dropping our original
4921 	 * ref by mistake and freeing the page before we are able
4922 	 * to add one more ref.
4923 	 *
4924 	 * So bump the ref count first, then set the bit.  If someone
4925 	 * beat us to it, drop the ref we added.
4926 	 */
4927 	refs = atomic_read(&eb->refs);
4928 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4929 		return;
4930 
4931 	spin_lock(&eb->refs_lock);
4932 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4933 		atomic_inc(&eb->refs);
4934 	spin_unlock(&eb->refs_lock);
4935 }
4936 
4937 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4938 		struct page *accessed)
4939 {
4940 	int num_pages, i;
4941 
4942 	check_buffer_tree_ref(eb);
4943 
4944 	num_pages = num_extent_pages(eb);
4945 	for (i = 0; i < num_pages; i++) {
4946 		struct page *p = eb->pages[i];
4947 
4948 		if (p != accessed)
4949 			mark_page_accessed(p);
4950 	}
4951 }
4952 
4953 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4954 					 u64 start)
4955 {
4956 	struct extent_buffer *eb;
4957 
4958 	rcu_read_lock();
4959 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4960 			       start >> PAGE_SHIFT);
4961 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4962 		rcu_read_unlock();
4963 		/*
4964 		 * Lock our eb's refs_lock to avoid races with
4965 		 * free_extent_buffer. When we get our eb it might be flagged
4966 		 * with EXTENT_BUFFER_STALE and another task running
4967 		 * free_extent_buffer might have seen that flag set,
4968 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4969 		 * writeback flags not set) and it's still in the tree (flag
4970 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4971 		 * of decrementing the extent buffer's reference count twice.
4972 		 * So here we could race and increment the eb's reference count,
4973 		 * clear its stale flag, mark it as dirty and drop our reference
4974 		 * before the other task finishes executing free_extent_buffer,
4975 		 * which would later result in an attempt to free an extent
4976 		 * buffer that is dirty.
4977 		 */
4978 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4979 			spin_lock(&eb->refs_lock);
4980 			spin_unlock(&eb->refs_lock);
4981 		}
4982 		mark_extent_buffer_accessed(eb, NULL);
4983 		return eb;
4984 	}
4985 	rcu_read_unlock();
4986 
4987 	return NULL;
4988 }
4989 
4990 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4991 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4992 					u64 start)
4993 {
4994 	struct extent_buffer *eb, *exists = NULL;
4995 	int ret;
4996 
4997 	eb = find_extent_buffer(fs_info, start);
4998 	if (eb)
4999 		return eb;
5000 	eb = alloc_dummy_extent_buffer(fs_info, start);
5001 	if (!eb)
5002 		return NULL;
5003 	eb->fs_info = fs_info;
5004 again:
5005 	ret = radix_tree_preload(GFP_NOFS);
5006 	if (ret)
5007 		goto free_eb;
5008 	spin_lock(&fs_info->buffer_lock);
5009 	ret = radix_tree_insert(&fs_info->buffer_radix,
5010 				start >> PAGE_SHIFT, eb);
5011 	spin_unlock(&fs_info->buffer_lock);
5012 	radix_tree_preload_end();
5013 	if (ret == -EEXIST) {
5014 		exists = find_extent_buffer(fs_info, start);
5015 		if (exists)
5016 			goto free_eb;
5017 		else
5018 			goto again;
5019 	}
5020 	check_buffer_tree_ref(eb);
5021 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5022 
5023 	return eb;
5024 free_eb:
5025 	btrfs_release_extent_buffer(eb);
5026 	return exists;
5027 }
5028 #endif
5029 
5030 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5031 					  u64 start)
5032 {
5033 	unsigned long len = fs_info->nodesize;
5034 	int num_pages;
5035 	int i;
5036 	unsigned long index = start >> PAGE_SHIFT;
5037 	struct extent_buffer *eb;
5038 	struct extent_buffer *exists = NULL;
5039 	struct page *p;
5040 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5041 	int uptodate = 1;
5042 	int ret;
5043 
5044 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5045 		btrfs_err(fs_info, "bad tree block start %llu", start);
5046 		return ERR_PTR(-EINVAL);
5047 	}
5048 
5049 	eb = find_extent_buffer(fs_info, start);
5050 	if (eb)
5051 		return eb;
5052 
5053 	eb = __alloc_extent_buffer(fs_info, start, len);
5054 	if (!eb)
5055 		return ERR_PTR(-ENOMEM);
5056 
5057 	num_pages = num_extent_pages(eb);
5058 	for (i = 0; i < num_pages; i++, index++) {
5059 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5060 		if (!p) {
5061 			exists = ERR_PTR(-ENOMEM);
5062 			goto free_eb;
5063 		}
5064 
5065 		spin_lock(&mapping->private_lock);
5066 		if (PagePrivate(p)) {
5067 			/*
5068 			 * We could have already allocated an eb for this page
5069 			 * and attached one so lets see if we can get a ref on
5070 			 * the existing eb, and if we can we know it's good and
5071 			 * we can just return that one, else we know we can just
5072 			 * overwrite page->private.
5073 			 */
5074 			exists = (struct extent_buffer *)p->private;
5075 			if (atomic_inc_not_zero(&exists->refs)) {
5076 				spin_unlock(&mapping->private_lock);
5077 				unlock_page(p);
5078 				put_page(p);
5079 				mark_extent_buffer_accessed(exists, p);
5080 				goto free_eb;
5081 			}
5082 			exists = NULL;
5083 
5084 			/*
5085 			 * Do this so attach doesn't complain and we need to
5086 			 * drop the ref the old guy had.
5087 			 */
5088 			ClearPagePrivate(p);
5089 			WARN_ON(PageDirty(p));
5090 			put_page(p);
5091 		}
5092 		attach_extent_buffer_page(eb, p);
5093 		spin_unlock(&mapping->private_lock);
5094 		WARN_ON(PageDirty(p));
5095 		eb->pages[i] = p;
5096 		if (!PageUptodate(p))
5097 			uptodate = 0;
5098 
5099 		/*
5100 		 * We can't unlock the pages just yet since the extent buffer
5101 		 * hasn't been properly inserted in the radix tree, this
5102 		 * opens a race with btree_releasepage which can free a page
5103 		 * while we are still filling in all pages for the buffer and
5104 		 * we could crash.
5105 		 */
5106 	}
5107 	if (uptodate)
5108 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5109 again:
5110 	ret = radix_tree_preload(GFP_NOFS);
5111 	if (ret) {
5112 		exists = ERR_PTR(ret);
5113 		goto free_eb;
5114 	}
5115 
5116 	spin_lock(&fs_info->buffer_lock);
5117 	ret = radix_tree_insert(&fs_info->buffer_radix,
5118 				start >> PAGE_SHIFT, eb);
5119 	spin_unlock(&fs_info->buffer_lock);
5120 	radix_tree_preload_end();
5121 	if (ret == -EEXIST) {
5122 		exists = find_extent_buffer(fs_info, start);
5123 		if (exists)
5124 			goto free_eb;
5125 		else
5126 			goto again;
5127 	}
5128 	/* add one reference for the tree */
5129 	check_buffer_tree_ref(eb);
5130 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5131 
5132 	/*
5133 	 * Now it's safe to unlock the pages because any calls to
5134 	 * btree_releasepage will correctly detect that a page belongs to a
5135 	 * live buffer and won't free them prematurely.
5136 	 */
5137 	for (i = 0; i < num_pages; i++)
5138 		unlock_page(eb->pages[i]);
5139 	return eb;
5140 
5141 free_eb:
5142 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5143 	for (i = 0; i < num_pages; i++) {
5144 		if (eb->pages[i])
5145 			unlock_page(eb->pages[i]);
5146 	}
5147 
5148 	btrfs_release_extent_buffer(eb);
5149 	return exists;
5150 }
5151 
5152 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5153 {
5154 	struct extent_buffer *eb =
5155 			container_of(head, struct extent_buffer, rcu_head);
5156 
5157 	__free_extent_buffer(eb);
5158 }
5159 
5160 static int release_extent_buffer(struct extent_buffer *eb)
5161 {
5162 	lockdep_assert_held(&eb->refs_lock);
5163 
5164 	WARN_ON(atomic_read(&eb->refs) == 0);
5165 	if (atomic_dec_and_test(&eb->refs)) {
5166 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5167 			struct btrfs_fs_info *fs_info = eb->fs_info;
5168 
5169 			spin_unlock(&eb->refs_lock);
5170 
5171 			spin_lock(&fs_info->buffer_lock);
5172 			radix_tree_delete(&fs_info->buffer_radix,
5173 					  eb->start >> PAGE_SHIFT);
5174 			spin_unlock(&fs_info->buffer_lock);
5175 		} else {
5176 			spin_unlock(&eb->refs_lock);
5177 		}
5178 
5179 		/* Should be safe to release our pages at this point */
5180 		btrfs_release_extent_buffer_pages(eb);
5181 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5182 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5183 			__free_extent_buffer(eb);
5184 			return 1;
5185 		}
5186 #endif
5187 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5188 		return 1;
5189 	}
5190 	spin_unlock(&eb->refs_lock);
5191 
5192 	return 0;
5193 }
5194 
5195 void free_extent_buffer(struct extent_buffer *eb)
5196 {
5197 	int refs;
5198 	int old;
5199 	if (!eb)
5200 		return;
5201 
5202 	while (1) {
5203 		refs = atomic_read(&eb->refs);
5204 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5205 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5206 			refs == 1))
5207 			break;
5208 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5209 		if (old == refs)
5210 			return;
5211 	}
5212 
5213 	spin_lock(&eb->refs_lock);
5214 	if (atomic_read(&eb->refs) == 2 &&
5215 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5216 	    !extent_buffer_under_io(eb) &&
5217 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5218 		atomic_dec(&eb->refs);
5219 
5220 	/*
5221 	 * I know this is terrible, but it's temporary until we stop tracking
5222 	 * the uptodate bits and such for the extent buffers.
5223 	 */
5224 	release_extent_buffer(eb);
5225 }
5226 
5227 void free_extent_buffer_stale(struct extent_buffer *eb)
5228 {
5229 	if (!eb)
5230 		return;
5231 
5232 	spin_lock(&eb->refs_lock);
5233 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5234 
5235 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5236 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5237 		atomic_dec(&eb->refs);
5238 	release_extent_buffer(eb);
5239 }
5240 
5241 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5242 {
5243 	int i;
5244 	int num_pages;
5245 	struct page *page;
5246 
5247 	num_pages = num_extent_pages(eb);
5248 
5249 	for (i = 0; i < num_pages; i++) {
5250 		page = eb->pages[i];
5251 		if (!PageDirty(page))
5252 			continue;
5253 
5254 		lock_page(page);
5255 		WARN_ON(!PagePrivate(page));
5256 
5257 		clear_page_dirty_for_io(page);
5258 		xa_lock_irq(&page->mapping->i_pages);
5259 		if (!PageDirty(page))
5260 			__xa_clear_mark(&page->mapping->i_pages,
5261 					page_index(page), PAGECACHE_TAG_DIRTY);
5262 		xa_unlock_irq(&page->mapping->i_pages);
5263 		ClearPageError(page);
5264 		unlock_page(page);
5265 	}
5266 	WARN_ON(atomic_read(&eb->refs) == 0);
5267 }
5268 
5269 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5270 {
5271 	int i;
5272 	int num_pages;
5273 	bool was_dirty;
5274 
5275 	check_buffer_tree_ref(eb);
5276 
5277 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5278 
5279 	num_pages = num_extent_pages(eb);
5280 	WARN_ON(atomic_read(&eb->refs) == 0);
5281 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5282 
5283 	if (!was_dirty)
5284 		for (i = 0; i < num_pages; i++)
5285 			set_page_dirty(eb->pages[i]);
5286 
5287 #ifdef CONFIG_BTRFS_DEBUG
5288 	for (i = 0; i < num_pages; i++)
5289 		ASSERT(PageDirty(eb->pages[i]));
5290 #endif
5291 
5292 	return was_dirty;
5293 }
5294 
5295 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5296 {
5297 	int i;
5298 	struct page *page;
5299 	int num_pages;
5300 
5301 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5302 	num_pages = num_extent_pages(eb);
5303 	for (i = 0; i < num_pages; i++) {
5304 		page = eb->pages[i];
5305 		if (page)
5306 			ClearPageUptodate(page);
5307 	}
5308 }
5309 
5310 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5311 {
5312 	int i;
5313 	struct page *page;
5314 	int num_pages;
5315 
5316 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5317 	num_pages = num_extent_pages(eb);
5318 	for (i = 0; i < num_pages; i++) {
5319 		page = eb->pages[i];
5320 		SetPageUptodate(page);
5321 	}
5322 }
5323 
5324 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5325 {
5326 	int i;
5327 	struct page *page;
5328 	int err;
5329 	int ret = 0;
5330 	int locked_pages = 0;
5331 	int all_uptodate = 1;
5332 	int num_pages;
5333 	unsigned long num_reads = 0;
5334 	struct bio *bio = NULL;
5335 	unsigned long bio_flags = 0;
5336 	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5337 
5338 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5339 		return 0;
5340 
5341 	num_pages = num_extent_pages(eb);
5342 	for (i = 0; i < num_pages; i++) {
5343 		page = eb->pages[i];
5344 		if (wait == WAIT_NONE) {
5345 			if (!trylock_page(page))
5346 				goto unlock_exit;
5347 		} else {
5348 			lock_page(page);
5349 		}
5350 		locked_pages++;
5351 	}
5352 	/*
5353 	 * We need to firstly lock all pages to make sure that
5354 	 * the uptodate bit of our pages won't be affected by
5355 	 * clear_extent_buffer_uptodate().
5356 	 */
5357 	for (i = 0; i < num_pages; i++) {
5358 		page = eb->pages[i];
5359 		if (!PageUptodate(page)) {
5360 			num_reads++;
5361 			all_uptodate = 0;
5362 		}
5363 	}
5364 
5365 	if (all_uptodate) {
5366 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5367 		goto unlock_exit;
5368 	}
5369 
5370 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5371 	eb->read_mirror = 0;
5372 	atomic_set(&eb->io_pages, num_reads);
5373 	for (i = 0; i < num_pages; i++) {
5374 		page = eb->pages[i];
5375 
5376 		if (!PageUptodate(page)) {
5377 			if (ret) {
5378 				atomic_dec(&eb->io_pages);
5379 				unlock_page(page);
5380 				continue;
5381 			}
5382 
5383 			ClearPageError(page);
5384 			err = __extent_read_full_page(tree, page,
5385 						      btree_get_extent, &bio,
5386 						      mirror_num, &bio_flags,
5387 						      REQ_META);
5388 			if (err) {
5389 				ret = err;
5390 				/*
5391 				 * We use &bio in above __extent_read_full_page,
5392 				 * so we ensure that if it returns error, the
5393 				 * current page fails to add itself to bio and
5394 				 * it's been unlocked.
5395 				 *
5396 				 * We must dec io_pages by ourselves.
5397 				 */
5398 				atomic_dec(&eb->io_pages);
5399 			}
5400 		} else {
5401 			unlock_page(page);
5402 		}
5403 	}
5404 
5405 	if (bio) {
5406 		err = submit_one_bio(bio, mirror_num, bio_flags);
5407 		if (err)
5408 			return err;
5409 	}
5410 
5411 	if (ret || wait != WAIT_COMPLETE)
5412 		return ret;
5413 
5414 	for (i = 0; i < num_pages; i++) {
5415 		page = eb->pages[i];
5416 		wait_on_page_locked(page);
5417 		if (!PageUptodate(page))
5418 			ret = -EIO;
5419 	}
5420 
5421 	return ret;
5422 
5423 unlock_exit:
5424 	while (locked_pages > 0) {
5425 		locked_pages--;
5426 		page = eb->pages[locked_pages];
5427 		unlock_page(page);
5428 	}
5429 	return ret;
5430 }
5431 
5432 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5433 			unsigned long start, unsigned long len)
5434 {
5435 	size_t cur;
5436 	size_t offset;
5437 	struct page *page;
5438 	char *kaddr;
5439 	char *dst = (char *)dstv;
5440 	size_t start_offset = offset_in_page(eb->start);
5441 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5442 
5443 	if (start + len > eb->len) {
5444 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5445 		     eb->start, eb->len, start, len);
5446 		memset(dst, 0, len);
5447 		return;
5448 	}
5449 
5450 	offset = offset_in_page(start_offset + start);
5451 
5452 	while (len > 0) {
5453 		page = eb->pages[i];
5454 
5455 		cur = min(len, (PAGE_SIZE - offset));
5456 		kaddr = page_address(page);
5457 		memcpy(dst, kaddr + offset, cur);
5458 
5459 		dst += cur;
5460 		len -= cur;
5461 		offset = 0;
5462 		i++;
5463 	}
5464 }
5465 
5466 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5467 			       void __user *dstv,
5468 			       unsigned long start, unsigned long len)
5469 {
5470 	size_t cur;
5471 	size_t offset;
5472 	struct page *page;
5473 	char *kaddr;
5474 	char __user *dst = (char __user *)dstv;
5475 	size_t start_offset = offset_in_page(eb->start);
5476 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5477 	int ret = 0;
5478 
5479 	WARN_ON(start > eb->len);
5480 	WARN_ON(start + len > eb->start + eb->len);
5481 
5482 	offset = offset_in_page(start_offset + start);
5483 
5484 	while (len > 0) {
5485 		page = eb->pages[i];
5486 
5487 		cur = min(len, (PAGE_SIZE - offset));
5488 		kaddr = page_address(page);
5489 		if (copy_to_user(dst, kaddr + offset, cur)) {
5490 			ret = -EFAULT;
5491 			break;
5492 		}
5493 
5494 		dst += cur;
5495 		len -= cur;
5496 		offset = 0;
5497 		i++;
5498 	}
5499 
5500 	return ret;
5501 }
5502 
5503 /*
5504  * return 0 if the item is found within a page.
5505  * return 1 if the item spans two pages.
5506  * return -EINVAL otherwise.
5507  */
5508 int map_private_extent_buffer(const struct extent_buffer *eb,
5509 			      unsigned long start, unsigned long min_len,
5510 			      char **map, unsigned long *map_start,
5511 			      unsigned long *map_len)
5512 {
5513 	size_t offset;
5514 	char *kaddr;
5515 	struct page *p;
5516 	size_t start_offset = offset_in_page(eb->start);
5517 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5518 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5519 		PAGE_SHIFT;
5520 
5521 	if (start + min_len > eb->len) {
5522 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5523 		       eb->start, eb->len, start, min_len);
5524 		return -EINVAL;
5525 	}
5526 
5527 	if (i != end_i)
5528 		return 1;
5529 
5530 	if (i == 0) {
5531 		offset = start_offset;
5532 		*map_start = 0;
5533 	} else {
5534 		offset = 0;
5535 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5536 	}
5537 
5538 	p = eb->pages[i];
5539 	kaddr = page_address(p);
5540 	*map = kaddr + offset;
5541 	*map_len = PAGE_SIZE - offset;
5542 	return 0;
5543 }
5544 
5545 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5546 			 unsigned long start, unsigned long len)
5547 {
5548 	size_t cur;
5549 	size_t offset;
5550 	struct page *page;
5551 	char *kaddr;
5552 	char *ptr = (char *)ptrv;
5553 	size_t start_offset = offset_in_page(eb->start);
5554 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5555 	int ret = 0;
5556 
5557 	WARN_ON(start > eb->len);
5558 	WARN_ON(start + len > eb->start + eb->len);
5559 
5560 	offset = offset_in_page(start_offset + start);
5561 
5562 	while (len > 0) {
5563 		page = eb->pages[i];
5564 
5565 		cur = min(len, (PAGE_SIZE - offset));
5566 
5567 		kaddr = page_address(page);
5568 		ret = memcmp(ptr, kaddr + offset, cur);
5569 		if (ret)
5570 			break;
5571 
5572 		ptr += cur;
5573 		len -= cur;
5574 		offset = 0;
5575 		i++;
5576 	}
5577 	return ret;
5578 }
5579 
5580 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5581 		const void *srcv)
5582 {
5583 	char *kaddr;
5584 
5585 	WARN_ON(!PageUptodate(eb->pages[0]));
5586 	kaddr = page_address(eb->pages[0]);
5587 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5588 			BTRFS_FSID_SIZE);
5589 }
5590 
5591 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5592 {
5593 	char *kaddr;
5594 
5595 	WARN_ON(!PageUptodate(eb->pages[0]));
5596 	kaddr = page_address(eb->pages[0]);
5597 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5598 			BTRFS_FSID_SIZE);
5599 }
5600 
5601 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5602 			 unsigned long start, unsigned long len)
5603 {
5604 	size_t cur;
5605 	size_t offset;
5606 	struct page *page;
5607 	char *kaddr;
5608 	char *src = (char *)srcv;
5609 	size_t start_offset = offset_in_page(eb->start);
5610 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5611 
5612 	WARN_ON(start > eb->len);
5613 	WARN_ON(start + len > eb->start + eb->len);
5614 
5615 	offset = offset_in_page(start_offset + start);
5616 
5617 	while (len > 0) {
5618 		page = eb->pages[i];
5619 		WARN_ON(!PageUptodate(page));
5620 
5621 		cur = min(len, PAGE_SIZE - offset);
5622 		kaddr = page_address(page);
5623 		memcpy(kaddr + offset, src, cur);
5624 
5625 		src += cur;
5626 		len -= cur;
5627 		offset = 0;
5628 		i++;
5629 	}
5630 }
5631 
5632 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5633 		unsigned long len)
5634 {
5635 	size_t cur;
5636 	size_t offset;
5637 	struct page *page;
5638 	char *kaddr;
5639 	size_t start_offset = offset_in_page(eb->start);
5640 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5641 
5642 	WARN_ON(start > eb->len);
5643 	WARN_ON(start + len > eb->start + eb->len);
5644 
5645 	offset = offset_in_page(start_offset + start);
5646 
5647 	while (len > 0) {
5648 		page = eb->pages[i];
5649 		WARN_ON(!PageUptodate(page));
5650 
5651 		cur = min(len, PAGE_SIZE - offset);
5652 		kaddr = page_address(page);
5653 		memset(kaddr + offset, 0, cur);
5654 
5655 		len -= cur;
5656 		offset = 0;
5657 		i++;
5658 	}
5659 }
5660 
5661 void copy_extent_buffer_full(struct extent_buffer *dst,
5662 			     struct extent_buffer *src)
5663 {
5664 	int i;
5665 	int num_pages;
5666 
5667 	ASSERT(dst->len == src->len);
5668 
5669 	num_pages = num_extent_pages(dst);
5670 	for (i = 0; i < num_pages; i++)
5671 		copy_page(page_address(dst->pages[i]),
5672 				page_address(src->pages[i]));
5673 }
5674 
5675 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5676 			unsigned long dst_offset, unsigned long src_offset,
5677 			unsigned long len)
5678 {
5679 	u64 dst_len = dst->len;
5680 	size_t cur;
5681 	size_t offset;
5682 	struct page *page;
5683 	char *kaddr;
5684 	size_t start_offset = offset_in_page(dst->start);
5685 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5686 
5687 	WARN_ON(src->len != dst_len);
5688 
5689 	offset = offset_in_page(start_offset + dst_offset);
5690 
5691 	while (len > 0) {
5692 		page = dst->pages[i];
5693 		WARN_ON(!PageUptodate(page));
5694 
5695 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5696 
5697 		kaddr = page_address(page);
5698 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5699 
5700 		src_offset += cur;
5701 		len -= cur;
5702 		offset = 0;
5703 		i++;
5704 	}
5705 }
5706 
5707 /*
5708  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5709  * given bit number
5710  * @eb: the extent buffer
5711  * @start: offset of the bitmap item in the extent buffer
5712  * @nr: bit number
5713  * @page_index: return index of the page in the extent buffer that contains the
5714  * given bit number
5715  * @page_offset: return offset into the page given by page_index
5716  *
5717  * This helper hides the ugliness of finding the byte in an extent buffer which
5718  * contains a given bit.
5719  */
5720 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5721 				    unsigned long start, unsigned long nr,
5722 				    unsigned long *page_index,
5723 				    size_t *page_offset)
5724 {
5725 	size_t start_offset = offset_in_page(eb->start);
5726 	size_t byte_offset = BIT_BYTE(nr);
5727 	size_t offset;
5728 
5729 	/*
5730 	 * The byte we want is the offset of the extent buffer + the offset of
5731 	 * the bitmap item in the extent buffer + the offset of the byte in the
5732 	 * bitmap item.
5733 	 */
5734 	offset = start_offset + start + byte_offset;
5735 
5736 	*page_index = offset >> PAGE_SHIFT;
5737 	*page_offset = offset_in_page(offset);
5738 }
5739 
5740 /**
5741  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5742  * @eb: the extent buffer
5743  * @start: offset of the bitmap item in the extent buffer
5744  * @nr: bit number to test
5745  */
5746 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5747 			   unsigned long nr)
5748 {
5749 	u8 *kaddr;
5750 	struct page *page;
5751 	unsigned long i;
5752 	size_t offset;
5753 
5754 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5755 	page = eb->pages[i];
5756 	WARN_ON(!PageUptodate(page));
5757 	kaddr = page_address(page);
5758 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5759 }
5760 
5761 /**
5762  * extent_buffer_bitmap_set - set an area of a bitmap
5763  * @eb: the extent buffer
5764  * @start: offset of the bitmap item in the extent buffer
5765  * @pos: bit number of the first bit
5766  * @len: number of bits to set
5767  */
5768 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5769 			      unsigned long pos, unsigned long len)
5770 {
5771 	u8 *kaddr;
5772 	struct page *page;
5773 	unsigned long i;
5774 	size_t offset;
5775 	const unsigned int size = pos + len;
5776 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5777 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5778 
5779 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5780 	page = eb->pages[i];
5781 	WARN_ON(!PageUptodate(page));
5782 	kaddr = page_address(page);
5783 
5784 	while (len >= bits_to_set) {
5785 		kaddr[offset] |= mask_to_set;
5786 		len -= bits_to_set;
5787 		bits_to_set = BITS_PER_BYTE;
5788 		mask_to_set = ~0;
5789 		if (++offset >= PAGE_SIZE && len > 0) {
5790 			offset = 0;
5791 			page = eb->pages[++i];
5792 			WARN_ON(!PageUptodate(page));
5793 			kaddr = page_address(page);
5794 		}
5795 	}
5796 	if (len) {
5797 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5798 		kaddr[offset] |= mask_to_set;
5799 	}
5800 }
5801 
5802 
5803 /**
5804  * extent_buffer_bitmap_clear - clear an area of a bitmap
5805  * @eb: the extent buffer
5806  * @start: offset of the bitmap item in the extent buffer
5807  * @pos: bit number of the first bit
5808  * @len: number of bits to clear
5809  */
5810 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5811 				unsigned long pos, unsigned long len)
5812 {
5813 	u8 *kaddr;
5814 	struct page *page;
5815 	unsigned long i;
5816 	size_t offset;
5817 	const unsigned int size = pos + len;
5818 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5819 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5820 
5821 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5822 	page = eb->pages[i];
5823 	WARN_ON(!PageUptodate(page));
5824 	kaddr = page_address(page);
5825 
5826 	while (len >= bits_to_clear) {
5827 		kaddr[offset] &= ~mask_to_clear;
5828 		len -= bits_to_clear;
5829 		bits_to_clear = BITS_PER_BYTE;
5830 		mask_to_clear = ~0;
5831 		if (++offset >= PAGE_SIZE && len > 0) {
5832 			offset = 0;
5833 			page = eb->pages[++i];
5834 			WARN_ON(!PageUptodate(page));
5835 			kaddr = page_address(page);
5836 		}
5837 	}
5838 	if (len) {
5839 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5840 		kaddr[offset] &= ~mask_to_clear;
5841 	}
5842 }
5843 
5844 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5845 {
5846 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5847 	return distance < len;
5848 }
5849 
5850 static void copy_pages(struct page *dst_page, struct page *src_page,
5851 		       unsigned long dst_off, unsigned long src_off,
5852 		       unsigned long len)
5853 {
5854 	char *dst_kaddr = page_address(dst_page);
5855 	char *src_kaddr;
5856 	int must_memmove = 0;
5857 
5858 	if (dst_page != src_page) {
5859 		src_kaddr = page_address(src_page);
5860 	} else {
5861 		src_kaddr = dst_kaddr;
5862 		if (areas_overlap(src_off, dst_off, len))
5863 			must_memmove = 1;
5864 	}
5865 
5866 	if (must_memmove)
5867 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5868 	else
5869 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5870 }
5871 
5872 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5873 			   unsigned long src_offset, unsigned long len)
5874 {
5875 	struct btrfs_fs_info *fs_info = dst->fs_info;
5876 	size_t cur;
5877 	size_t dst_off_in_page;
5878 	size_t src_off_in_page;
5879 	size_t start_offset = offset_in_page(dst->start);
5880 	unsigned long dst_i;
5881 	unsigned long src_i;
5882 
5883 	if (src_offset + len > dst->len) {
5884 		btrfs_err(fs_info,
5885 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5886 			 src_offset, len, dst->len);
5887 		BUG();
5888 	}
5889 	if (dst_offset + len > dst->len) {
5890 		btrfs_err(fs_info,
5891 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5892 			 dst_offset, len, dst->len);
5893 		BUG();
5894 	}
5895 
5896 	while (len > 0) {
5897 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5898 		src_off_in_page = offset_in_page(start_offset + src_offset);
5899 
5900 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5901 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5902 
5903 		cur = min(len, (unsigned long)(PAGE_SIZE -
5904 					       src_off_in_page));
5905 		cur = min_t(unsigned long, cur,
5906 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5907 
5908 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5909 			   dst_off_in_page, src_off_in_page, cur);
5910 
5911 		src_offset += cur;
5912 		dst_offset += cur;
5913 		len -= cur;
5914 	}
5915 }
5916 
5917 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5918 			   unsigned long src_offset, unsigned long len)
5919 {
5920 	struct btrfs_fs_info *fs_info = dst->fs_info;
5921 	size_t cur;
5922 	size_t dst_off_in_page;
5923 	size_t src_off_in_page;
5924 	unsigned long dst_end = dst_offset + len - 1;
5925 	unsigned long src_end = src_offset + len - 1;
5926 	size_t start_offset = offset_in_page(dst->start);
5927 	unsigned long dst_i;
5928 	unsigned long src_i;
5929 
5930 	if (src_offset + len > dst->len) {
5931 		btrfs_err(fs_info,
5932 			  "memmove bogus src_offset %lu move len %lu len %lu",
5933 			  src_offset, len, dst->len);
5934 		BUG();
5935 	}
5936 	if (dst_offset + len > dst->len) {
5937 		btrfs_err(fs_info,
5938 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5939 			  dst_offset, len, dst->len);
5940 		BUG();
5941 	}
5942 	if (dst_offset < src_offset) {
5943 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5944 		return;
5945 	}
5946 	while (len > 0) {
5947 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5948 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5949 
5950 		dst_off_in_page = offset_in_page(start_offset + dst_end);
5951 		src_off_in_page = offset_in_page(start_offset + src_end);
5952 
5953 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5954 		cur = min(cur, dst_off_in_page + 1);
5955 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5956 			   dst_off_in_page - cur + 1,
5957 			   src_off_in_page - cur + 1, cur);
5958 
5959 		dst_end -= cur;
5960 		src_end -= cur;
5961 		len -= cur;
5962 	}
5963 }
5964 
5965 int try_release_extent_buffer(struct page *page)
5966 {
5967 	struct extent_buffer *eb;
5968 
5969 	/*
5970 	 * We need to make sure nobody is attaching this page to an eb right
5971 	 * now.
5972 	 */
5973 	spin_lock(&page->mapping->private_lock);
5974 	if (!PagePrivate(page)) {
5975 		spin_unlock(&page->mapping->private_lock);
5976 		return 1;
5977 	}
5978 
5979 	eb = (struct extent_buffer *)page->private;
5980 	BUG_ON(!eb);
5981 
5982 	/*
5983 	 * This is a little awful but should be ok, we need to make sure that
5984 	 * the eb doesn't disappear out from under us while we're looking at
5985 	 * this page.
5986 	 */
5987 	spin_lock(&eb->refs_lock);
5988 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5989 		spin_unlock(&eb->refs_lock);
5990 		spin_unlock(&page->mapping->private_lock);
5991 		return 0;
5992 	}
5993 	spin_unlock(&page->mapping->private_lock);
5994 
5995 	/*
5996 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5997 	 * so just return, this page will likely be freed soon anyway.
5998 	 */
5999 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6000 		spin_unlock(&eb->refs_lock);
6001 		return 0;
6002 	}
6003 
6004 	return release_extent_buffer(eb);
6005 }
6006