xref: /linux/fs/btrfs/extent_io.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
145 static int add_extent_changeset(struct extent_state *state, u32 bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (is_data_inode(tree->private_data))
172 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 					    bio_flags);
174 	else
175 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 						mirror_num, bio_flags);
177 
178 	return blk_status_to_errno(ret);
179 }
180 
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184 	if (epd->bio) {
185 		epd->bio->bi_status = errno_to_blk_status(ret);
186 		bio_endio(epd->bio);
187 		epd->bio = NULL;
188 	}
189 }
190 
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199 	int ret = 0;
200 
201 	if (epd->bio) {
202 		ret = submit_one_bio(epd->bio, 0, 0);
203 		/*
204 		 * Clean up of epd->bio is handled by its endio function.
205 		 * And endio is either triggered by successful bio execution
206 		 * or the error handler of submit bio hook.
207 		 * So at this point, no matter what happened, we don't need
208 		 * to clean up epd->bio.
209 		 */
210 		epd->bio = NULL;
211 	}
212 	return ret;
213 }
214 
215 int __init extent_state_cache_init(void)
216 {
217 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
218 			sizeof(struct extent_state), 0,
219 			SLAB_MEM_SPREAD, NULL);
220 	if (!extent_state_cache)
221 		return -ENOMEM;
222 	return 0;
223 }
224 
225 int __init extent_io_init(void)
226 {
227 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228 			sizeof(struct extent_buffer), 0,
229 			SLAB_MEM_SPREAD, NULL);
230 	if (!extent_buffer_cache)
231 		return -ENOMEM;
232 
233 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 			offsetof(struct btrfs_io_bio, bio),
235 			BIOSET_NEED_BVECS))
236 		goto free_buffer_cache;
237 
238 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 		goto free_bioset;
240 
241 	return 0;
242 
243 free_bioset:
244 	bioset_exit(&btrfs_bioset);
245 
246 free_buffer_cache:
247 	kmem_cache_destroy(extent_buffer_cache);
248 	extent_buffer_cache = NULL;
249 	return -ENOMEM;
250 }
251 
252 void __cold extent_state_cache_exit(void)
253 {
254 	btrfs_extent_state_leak_debug_check();
255 	kmem_cache_destroy(extent_state_cache);
256 }
257 
258 void __cold extent_io_exit(void)
259 {
260 	/*
261 	 * Make sure all delayed rcu free are flushed before we
262 	 * destroy caches.
263 	 */
264 	rcu_barrier();
265 	kmem_cache_destroy(extent_buffer_cache);
266 	bioset_exit(&btrfs_bioset);
267 }
268 
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277 
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 			 struct extent_io_tree *tree, unsigned int owner,
280 			 void *private_data)
281 {
282 	tree->fs_info = fs_info;
283 	tree->state = RB_ROOT;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, u32 *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			u32 *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    u32 *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	btrfs_panic(tree->fs_info, err,
680 	"locking error: extent tree was modified by another thread while locked");
681 }
682 
683 /*
684  * clear some bits on a range in the tree.  This may require splitting
685  * or inserting elements in the tree, so the gfp mask is used to
686  * indicate which allocations or sleeping are allowed.
687  *
688  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
689  * the given range from the tree regardless of state (ie for truncate).
690  *
691  * the range [start, end] is inclusive.
692  *
693  * This takes the tree lock, and returns 0 on success and < 0 on error.
694  */
695 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
696 		       u32 bits, int wake, int delete,
697 		       struct extent_state **cached_state,
698 		       gfp_t mask, struct extent_changeset *changeset)
699 {
700 	struct extent_state *state;
701 	struct extent_state *cached;
702 	struct extent_state *prealloc = NULL;
703 	struct rb_node *node;
704 	u64 last_end;
705 	int err;
706 	int clear = 0;
707 
708 	btrfs_debug_check_extent_io_range(tree, start, end);
709 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
710 
711 	if (bits & EXTENT_DELALLOC)
712 		bits |= EXTENT_NORESERVE;
713 
714 	if (delete)
715 		bits |= ~EXTENT_CTLBITS;
716 
717 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
718 		clear = 1;
719 again:
720 	if (!prealloc && gfpflags_allow_blocking(mask)) {
721 		/*
722 		 * Don't care for allocation failure here because we might end
723 		 * up not needing the pre-allocated extent state at all, which
724 		 * is the case if we only have in the tree extent states that
725 		 * cover our input range and don't cover too any other range.
726 		 * If we end up needing a new extent state we allocate it later.
727 		 */
728 		prealloc = alloc_extent_state(mask);
729 	}
730 
731 	spin_lock(&tree->lock);
732 	if (cached_state) {
733 		cached = *cached_state;
734 
735 		if (clear) {
736 			*cached_state = NULL;
737 			cached_state = NULL;
738 		}
739 
740 		if (cached && extent_state_in_tree(cached) &&
741 		    cached->start <= start && cached->end > start) {
742 			if (clear)
743 				refcount_dec(&cached->refs);
744 			state = cached;
745 			goto hit_next;
746 		}
747 		if (clear)
748 			free_extent_state(cached);
749 	}
750 	/*
751 	 * this search will find the extents that end after
752 	 * our range starts
753 	 */
754 	node = tree_search(tree, start);
755 	if (!node)
756 		goto out;
757 	state = rb_entry(node, struct extent_state, rb_node);
758 hit_next:
759 	if (state->start > end)
760 		goto out;
761 	WARN_ON(state->end < start);
762 	last_end = state->end;
763 
764 	/* the state doesn't have the wanted bits, go ahead */
765 	if (!(state->state & bits)) {
766 		state = next_state(state);
767 		goto next;
768 	}
769 
770 	/*
771 	 *     | ---- desired range ---- |
772 	 *  | state | or
773 	 *  | ------------- state -------------- |
774 	 *
775 	 * We need to split the extent we found, and may flip
776 	 * bits on second half.
777 	 *
778 	 * If the extent we found extends past our range, we
779 	 * just split and search again.  It'll get split again
780 	 * the next time though.
781 	 *
782 	 * If the extent we found is inside our range, we clear
783 	 * the desired bit on it.
784 	 */
785 
786 	if (state->start < start) {
787 		prealloc = alloc_extent_state_atomic(prealloc);
788 		BUG_ON(!prealloc);
789 		err = split_state(tree, state, prealloc, start);
790 		if (err)
791 			extent_io_tree_panic(tree, err);
792 
793 		prealloc = NULL;
794 		if (err)
795 			goto out;
796 		if (state->end <= end) {
797 			state = clear_state_bit(tree, state, &bits, wake,
798 						changeset);
799 			goto next;
800 		}
801 		goto search_again;
802 	}
803 	/*
804 	 * | ---- desired range ---- |
805 	 *                        | state |
806 	 * We need to split the extent, and clear the bit
807 	 * on the first half
808 	 */
809 	if (state->start <= end && state->end > end) {
810 		prealloc = alloc_extent_state_atomic(prealloc);
811 		BUG_ON(!prealloc);
812 		err = split_state(tree, state, prealloc, end + 1);
813 		if (err)
814 			extent_io_tree_panic(tree, err);
815 
816 		if (wake)
817 			wake_up(&state->wq);
818 
819 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
820 
821 		prealloc = NULL;
822 		goto out;
823 	}
824 
825 	state = clear_state_bit(tree, state, &bits, wake, changeset);
826 next:
827 	if (last_end == (u64)-1)
828 		goto out;
829 	start = last_end + 1;
830 	if (start <= end && state && !need_resched())
831 		goto hit_next;
832 
833 search_again:
834 	if (start > end)
835 		goto out;
836 	spin_unlock(&tree->lock);
837 	if (gfpflags_allow_blocking(mask))
838 		cond_resched();
839 	goto again;
840 
841 out:
842 	spin_unlock(&tree->lock);
843 	if (prealloc)
844 		free_extent_state(prealloc);
845 
846 	return 0;
847 
848 }
849 
850 static void wait_on_state(struct extent_io_tree *tree,
851 			  struct extent_state *state)
852 		__releases(tree->lock)
853 		__acquires(tree->lock)
854 {
855 	DEFINE_WAIT(wait);
856 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
857 	spin_unlock(&tree->lock);
858 	schedule();
859 	spin_lock(&tree->lock);
860 	finish_wait(&state->wq, &wait);
861 }
862 
863 /*
864  * waits for one or more bits to clear on a range in the state tree.
865  * The range [start, end] is inclusive.
866  * The tree lock is taken by this function
867  */
868 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869 			    u32 bits)
870 {
871 	struct extent_state *state;
872 	struct rb_node *node;
873 
874 	btrfs_debug_check_extent_io_range(tree, start, end);
875 
876 	spin_lock(&tree->lock);
877 again:
878 	while (1) {
879 		/*
880 		 * this search will find all the extents that end after
881 		 * our range starts
882 		 */
883 		node = tree_search(tree, start);
884 process_node:
885 		if (!node)
886 			break;
887 
888 		state = rb_entry(node, struct extent_state, rb_node);
889 
890 		if (state->start > end)
891 			goto out;
892 
893 		if (state->state & bits) {
894 			start = state->start;
895 			refcount_inc(&state->refs);
896 			wait_on_state(tree, state);
897 			free_extent_state(state);
898 			goto again;
899 		}
900 		start = state->end + 1;
901 
902 		if (start > end)
903 			break;
904 
905 		if (!cond_resched_lock(&tree->lock)) {
906 			node = rb_next(node);
907 			goto process_node;
908 		}
909 	}
910 out:
911 	spin_unlock(&tree->lock);
912 }
913 
914 static void set_state_bits(struct extent_io_tree *tree,
915 			   struct extent_state *state,
916 			   u32 *bits, struct extent_changeset *changeset)
917 {
918 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
919 	int ret;
920 
921 	if (tree->private_data && is_data_inode(tree->private_data))
922 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
923 
924 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
925 		u64 range = state->end - state->start + 1;
926 		tree->dirty_bytes += range;
927 	}
928 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
929 	BUG_ON(ret < 0);
930 	state->state |= bits_to_set;
931 }
932 
933 static void cache_state_if_flags(struct extent_state *state,
934 				 struct extent_state **cached_ptr,
935 				 unsigned flags)
936 {
937 	if (cached_ptr && !(*cached_ptr)) {
938 		if (!flags || (state->state & flags)) {
939 			*cached_ptr = state;
940 			refcount_inc(&state->refs);
941 		}
942 	}
943 }
944 
945 static void cache_state(struct extent_state *state,
946 			struct extent_state **cached_ptr)
947 {
948 	return cache_state_if_flags(state, cached_ptr,
949 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
950 }
951 
952 /*
953  * set some bits on a range in the tree.  This may require allocations or
954  * sleeping, so the gfp mask is used to indicate what is allowed.
955  *
956  * If any of the exclusive bits are set, this will fail with -EEXIST if some
957  * part of the range already has the desired bits set.  The start of the
958  * existing range is returned in failed_start in this case.
959  *
960  * [start, end] is inclusive This takes the tree lock.
961  */
962 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
963 		   u32 exclusive_bits, u64 *failed_start,
964 		   struct extent_state **cached_state, gfp_t mask,
965 		   struct extent_changeset *changeset)
966 {
967 	struct extent_state *state;
968 	struct extent_state *prealloc = NULL;
969 	struct rb_node *node;
970 	struct rb_node **p;
971 	struct rb_node *parent;
972 	int err = 0;
973 	u64 last_start;
974 	u64 last_end;
975 
976 	btrfs_debug_check_extent_io_range(tree, start, end);
977 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
978 
979 	if (exclusive_bits)
980 		ASSERT(failed_start);
981 	else
982 		ASSERT(failed_start == NULL);
983 again:
984 	if (!prealloc && gfpflags_allow_blocking(mask)) {
985 		/*
986 		 * Don't care for allocation failure here because we might end
987 		 * up not needing the pre-allocated extent state at all, which
988 		 * is the case if we only have in the tree extent states that
989 		 * cover our input range and don't cover too any other range.
990 		 * If we end up needing a new extent state we allocate it later.
991 		 */
992 		prealloc = alloc_extent_state(mask);
993 	}
994 
995 	spin_lock(&tree->lock);
996 	if (cached_state && *cached_state) {
997 		state = *cached_state;
998 		if (state->start <= start && state->end > start &&
999 		    extent_state_in_tree(state)) {
1000 			node = &state->rb_node;
1001 			goto hit_next;
1002 		}
1003 	}
1004 	/*
1005 	 * this search will find all the extents that end after
1006 	 * our range starts.
1007 	 */
1008 	node = tree_search_for_insert(tree, start, &p, &parent);
1009 	if (!node) {
1010 		prealloc = alloc_extent_state_atomic(prealloc);
1011 		BUG_ON(!prealloc);
1012 		err = insert_state(tree, prealloc, start, end,
1013 				   &p, &parent, &bits, changeset);
1014 		if (err)
1015 			extent_io_tree_panic(tree, err);
1016 
1017 		cache_state(prealloc, cached_state);
1018 		prealloc = NULL;
1019 		goto out;
1020 	}
1021 	state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 	last_start = state->start;
1024 	last_end = state->end;
1025 
1026 	/*
1027 	 * | ---- desired range ---- |
1028 	 * | state |
1029 	 *
1030 	 * Just lock what we found and keep going
1031 	 */
1032 	if (state->start == start && state->end <= end) {
1033 		if (state->state & exclusive_bits) {
1034 			*failed_start = state->start;
1035 			err = -EEXIST;
1036 			goto out;
1037 		}
1038 
1039 		set_state_bits(tree, state, &bits, changeset);
1040 		cache_state(state, cached_state);
1041 		merge_state(tree, state);
1042 		if (last_end == (u64)-1)
1043 			goto out;
1044 		start = last_end + 1;
1045 		state = next_state(state);
1046 		if (start < end && state && state->start == start &&
1047 		    !need_resched())
1048 			goto hit_next;
1049 		goto search_again;
1050 	}
1051 
1052 	/*
1053 	 *     | ---- desired range ---- |
1054 	 * | state |
1055 	 *   or
1056 	 * | ------------- state -------------- |
1057 	 *
1058 	 * We need to split the extent we found, and may flip bits on
1059 	 * second half.
1060 	 *
1061 	 * If the extent we found extends past our
1062 	 * range, we just split and search again.  It'll get split
1063 	 * again the next time though.
1064 	 *
1065 	 * If the extent we found is inside our range, we set the
1066 	 * desired bit on it.
1067 	 */
1068 	if (state->start < start) {
1069 		if (state->state & exclusive_bits) {
1070 			*failed_start = start;
1071 			err = -EEXIST;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * If this extent already has all the bits we want set, then
1077 		 * skip it, not necessary to split it or do anything with it.
1078 		 */
1079 		if ((state->state & bits) == bits) {
1080 			start = state->end + 1;
1081 			cache_state(state, cached_state);
1082 			goto search_again;
1083 		}
1084 
1085 		prealloc = alloc_extent_state_atomic(prealloc);
1086 		BUG_ON(!prealloc);
1087 		err = split_state(tree, state, prealloc, start);
1088 		if (err)
1089 			extent_io_tree_panic(tree, err);
1090 
1091 		prealloc = NULL;
1092 		if (err)
1093 			goto out;
1094 		if (state->end <= end) {
1095 			set_state_bits(tree, state, &bits, changeset);
1096 			cache_state(state, cached_state);
1097 			merge_state(tree, state);
1098 			if (last_end == (u64)-1)
1099 				goto out;
1100 			start = last_end + 1;
1101 			state = next_state(state);
1102 			if (start < end && state && state->start == start &&
1103 			    !need_resched())
1104 				goto hit_next;
1105 		}
1106 		goto search_again;
1107 	}
1108 	/*
1109 	 * | ---- desired range ---- |
1110 	 *     | state | or               | state |
1111 	 *
1112 	 * There's a hole, we need to insert something in it and
1113 	 * ignore the extent we found.
1114 	 */
1115 	if (state->start > start) {
1116 		u64 this_end;
1117 		if (end < last_start)
1118 			this_end = end;
1119 		else
1120 			this_end = last_start - 1;
1121 
1122 		prealloc = alloc_extent_state_atomic(prealloc);
1123 		BUG_ON(!prealloc);
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   NULL, NULL, &bits, changeset);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 
1134 		cache_state(prealloc, cached_state);
1135 		prealloc = NULL;
1136 		start = this_end + 1;
1137 		goto search_again;
1138 	}
1139 	/*
1140 	 * | ---- desired range ---- |
1141 	 *                        | state |
1142 	 * We need to split the extent, and set the bit
1143 	 * on the first half
1144 	 */
1145 	if (state->start <= end && state->end > end) {
1146 		if (state->state & exclusive_bits) {
1147 			*failed_start = start;
1148 			err = -EEXIST;
1149 			goto out;
1150 		}
1151 
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		BUG_ON(!prealloc);
1154 		err = split_state(tree, state, prealloc, end + 1);
1155 		if (err)
1156 			extent_io_tree_panic(tree, err);
1157 
1158 		set_state_bits(tree, prealloc, &bits, changeset);
1159 		cache_state(prealloc, cached_state);
1160 		merge_state(tree, prealloc);
1161 		prealloc = NULL;
1162 		goto out;
1163 	}
1164 
1165 search_again:
1166 	if (start > end)
1167 		goto out;
1168 	spin_unlock(&tree->lock);
1169 	if (gfpflags_allow_blocking(mask))
1170 		cond_resched();
1171 	goto again;
1172 
1173 out:
1174 	spin_unlock(&tree->lock);
1175 	if (prealloc)
1176 		free_extent_state(prealloc);
1177 
1178 	return err;
1179 
1180 }
1181 
1182 /**
1183  * convert_extent_bit - convert all bits in a given range from one bit to
1184  * 			another
1185  * @tree:	the io tree to search
1186  * @start:	the start offset in bytes
1187  * @end:	the end offset in bytes (inclusive)
1188  * @bits:	the bits to set in this range
1189  * @clear_bits:	the bits to clear in this range
1190  * @cached_state:	state that we're going to cache
1191  *
1192  * This will go through and set bits for the given range.  If any states exist
1193  * already in this range they are set with the given bit and cleared of the
1194  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1195  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1196  * boundary bits like LOCK.
1197  *
1198  * All allocations are done with GFP_NOFS.
1199  */
1200 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1201 		       u32 bits, u32 clear_bits,
1202 		       struct extent_state **cached_state)
1203 {
1204 	struct extent_state *state;
1205 	struct extent_state *prealloc = NULL;
1206 	struct rb_node *node;
1207 	struct rb_node **p;
1208 	struct rb_node *parent;
1209 	int err = 0;
1210 	u64 last_start;
1211 	u64 last_end;
1212 	bool first_iteration = true;
1213 
1214 	btrfs_debug_check_extent_io_range(tree, start, end);
1215 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1216 				       clear_bits);
1217 
1218 again:
1219 	if (!prealloc) {
1220 		/*
1221 		 * Best effort, don't worry if extent state allocation fails
1222 		 * here for the first iteration. We might have a cached state
1223 		 * that matches exactly the target range, in which case no
1224 		 * extent state allocations are needed. We'll only know this
1225 		 * after locking the tree.
1226 		 */
1227 		prealloc = alloc_extent_state(GFP_NOFS);
1228 		if (!prealloc && !first_iteration)
1229 			return -ENOMEM;
1230 	}
1231 
1232 	spin_lock(&tree->lock);
1233 	if (cached_state && *cached_state) {
1234 		state = *cached_state;
1235 		if (state->start <= start && state->end > start &&
1236 		    extent_state_in_tree(state)) {
1237 			node = &state->rb_node;
1238 			goto hit_next;
1239 		}
1240 	}
1241 
1242 	/*
1243 	 * this search will find all the extents that end after
1244 	 * our range starts.
1245 	 */
1246 	node = tree_search_for_insert(tree, start, &p, &parent);
1247 	if (!node) {
1248 		prealloc = alloc_extent_state_atomic(prealloc);
1249 		if (!prealloc) {
1250 			err = -ENOMEM;
1251 			goto out;
1252 		}
1253 		err = insert_state(tree, prealloc, start, end,
1254 				   &p, &parent, &bits, NULL);
1255 		if (err)
1256 			extent_io_tree_panic(tree, err);
1257 		cache_state(prealloc, cached_state);
1258 		prealloc = NULL;
1259 		goto out;
1260 	}
1261 	state = rb_entry(node, struct extent_state, rb_node);
1262 hit_next:
1263 	last_start = state->start;
1264 	last_end = state->end;
1265 
1266 	/*
1267 	 * | ---- desired range ---- |
1268 	 * | state |
1269 	 *
1270 	 * Just lock what we found and keep going
1271 	 */
1272 	if (state->start == start && state->end <= end) {
1273 		set_state_bits(tree, state, &bits, NULL);
1274 		cache_state(state, cached_state);
1275 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1276 		if (last_end == (u64)-1)
1277 			goto out;
1278 		start = last_end + 1;
1279 		if (start < end && state && state->start == start &&
1280 		    !need_resched())
1281 			goto hit_next;
1282 		goto search_again;
1283 	}
1284 
1285 	/*
1286 	 *     | ---- desired range ---- |
1287 	 * | state |
1288 	 *   or
1289 	 * | ------------- state -------------- |
1290 	 *
1291 	 * We need to split the extent we found, and may flip bits on
1292 	 * second half.
1293 	 *
1294 	 * If the extent we found extends past our
1295 	 * range, we just split and search again.  It'll get split
1296 	 * again the next time though.
1297 	 *
1298 	 * If the extent we found is inside our range, we set the
1299 	 * desired bit on it.
1300 	 */
1301 	if (state->start < start) {
1302 		prealloc = alloc_extent_state_atomic(prealloc);
1303 		if (!prealloc) {
1304 			err = -ENOMEM;
1305 			goto out;
1306 		}
1307 		err = split_state(tree, state, prealloc, start);
1308 		if (err)
1309 			extent_io_tree_panic(tree, err);
1310 		prealloc = NULL;
1311 		if (err)
1312 			goto out;
1313 		if (state->end <= end) {
1314 			set_state_bits(tree, state, &bits, NULL);
1315 			cache_state(state, cached_state);
1316 			state = clear_state_bit(tree, state, &clear_bits, 0,
1317 						NULL);
1318 			if (last_end == (u64)-1)
1319 				goto out;
1320 			start = last_end + 1;
1321 			if (start < end && state && state->start == start &&
1322 			    !need_resched())
1323 				goto hit_next;
1324 		}
1325 		goto search_again;
1326 	}
1327 	/*
1328 	 * | ---- desired range ---- |
1329 	 *     | state | or               | state |
1330 	 *
1331 	 * There's a hole, we need to insert something in it and
1332 	 * ignore the extent we found.
1333 	 */
1334 	if (state->start > start) {
1335 		u64 this_end;
1336 		if (end < last_start)
1337 			this_end = end;
1338 		else
1339 			this_end = last_start - 1;
1340 
1341 		prealloc = alloc_extent_state_atomic(prealloc);
1342 		if (!prealloc) {
1343 			err = -ENOMEM;
1344 			goto out;
1345 		}
1346 
1347 		/*
1348 		 * Avoid to free 'prealloc' if it can be merged with
1349 		 * the later extent.
1350 		 */
1351 		err = insert_state(tree, prealloc, start, this_end,
1352 				   NULL, NULL, &bits, NULL);
1353 		if (err)
1354 			extent_io_tree_panic(tree, err);
1355 		cache_state(prealloc, cached_state);
1356 		prealloc = NULL;
1357 		start = this_end + 1;
1358 		goto search_again;
1359 	}
1360 	/*
1361 	 * | ---- desired range ---- |
1362 	 *                        | state |
1363 	 * We need to split the extent, and set the bit
1364 	 * on the first half
1365 	 */
1366 	if (state->start <= end && state->end > end) {
1367 		prealloc = alloc_extent_state_atomic(prealloc);
1368 		if (!prealloc) {
1369 			err = -ENOMEM;
1370 			goto out;
1371 		}
1372 
1373 		err = split_state(tree, state, prealloc, end + 1);
1374 		if (err)
1375 			extent_io_tree_panic(tree, err);
1376 
1377 		set_state_bits(tree, prealloc, &bits, NULL);
1378 		cache_state(prealloc, cached_state);
1379 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1380 		prealloc = NULL;
1381 		goto out;
1382 	}
1383 
1384 search_again:
1385 	if (start > end)
1386 		goto out;
1387 	spin_unlock(&tree->lock);
1388 	cond_resched();
1389 	first_iteration = false;
1390 	goto again;
1391 
1392 out:
1393 	spin_unlock(&tree->lock);
1394 	if (prealloc)
1395 		free_extent_state(prealloc);
1396 
1397 	return err;
1398 }
1399 
1400 /* wrappers around set/clear extent bit */
1401 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402 			   u32 bits, struct extent_changeset *changeset)
1403 {
1404 	/*
1405 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1406 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1407 	 * either fail with -EEXIST or changeset will record the whole
1408 	 * range.
1409 	 */
1410 	BUG_ON(bits & EXTENT_LOCKED);
1411 
1412 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1413 			      changeset);
1414 }
1415 
1416 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1417 			   u32 bits)
1418 {
1419 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1420 			      GFP_NOWAIT, NULL);
1421 }
1422 
1423 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1424 		     u32 bits, int wake, int delete,
1425 		     struct extent_state **cached)
1426 {
1427 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1428 				  cached, GFP_NOFS, NULL);
1429 }
1430 
1431 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1432 		u32 bits, struct extent_changeset *changeset)
1433 {
1434 	/*
1435 	 * Don't support EXTENT_LOCKED case, same reason as
1436 	 * set_record_extent_bits().
1437 	 */
1438 	BUG_ON(bits & EXTENT_LOCKED);
1439 
1440 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1441 				  changeset);
1442 }
1443 
1444 /*
1445  * either insert or lock state struct between start and end use mask to tell
1446  * us if waiting is desired.
1447  */
1448 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1449 		     struct extent_state **cached_state)
1450 {
1451 	int err;
1452 	u64 failed_start;
1453 
1454 	while (1) {
1455 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1456 				     EXTENT_LOCKED, &failed_start,
1457 				     cached_state, GFP_NOFS, NULL);
1458 		if (err == -EEXIST) {
1459 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1460 			start = failed_start;
1461 		} else
1462 			break;
1463 		WARN_ON(start > end);
1464 	}
1465 	return err;
1466 }
1467 
1468 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1469 {
1470 	int err;
1471 	u64 failed_start;
1472 
1473 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1474 			     &failed_start, NULL, GFP_NOFS, NULL);
1475 	if (err == -EEXIST) {
1476 		if (failed_start > start)
1477 			clear_extent_bit(tree, start, failed_start - 1,
1478 					 EXTENT_LOCKED, 1, 0, NULL);
1479 		return 0;
1480 	}
1481 	return 1;
1482 }
1483 
1484 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1485 {
1486 	unsigned long index = start >> PAGE_SHIFT;
1487 	unsigned long end_index = end >> PAGE_SHIFT;
1488 	struct page *page;
1489 
1490 	while (index <= end_index) {
1491 		page = find_get_page(inode->i_mapping, index);
1492 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1493 		clear_page_dirty_for_io(page);
1494 		put_page(page);
1495 		index++;
1496 	}
1497 }
1498 
1499 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1500 {
1501 	unsigned long index = start >> PAGE_SHIFT;
1502 	unsigned long end_index = end >> PAGE_SHIFT;
1503 	struct page *page;
1504 
1505 	while (index <= end_index) {
1506 		page = find_get_page(inode->i_mapping, index);
1507 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1508 		__set_page_dirty_nobuffers(page);
1509 		account_page_redirty(page);
1510 		put_page(page);
1511 		index++;
1512 	}
1513 }
1514 
1515 /* find the first state struct with 'bits' set after 'start', and
1516  * return it.  tree->lock must be held.  NULL will returned if
1517  * nothing was found after 'start'
1518  */
1519 static struct extent_state *
1520 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1521 {
1522 	struct rb_node *node;
1523 	struct extent_state *state;
1524 
1525 	/*
1526 	 * this search will find all the extents that end after
1527 	 * our range starts.
1528 	 */
1529 	node = tree_search(tree, start);
1530 	if (!node)
1531 		goto out;
1532 
1533 	while (1) {
1534 		state = rb_entry(node, struct extent_state, rb_node);
1535 		if (state->end >= start && (state->state & bits))
1536 			return state;
1537 
1538 		node = rb_next(node);
1539 		if (!node)
1540 			break;
1541 	}
1542 out:
1543 	return NULL;
1544 }
1545 
1546 /*
1547  * Find the first offset in the io tree with one or more @bits set.
1548  *
1549  * Note: If there are multiple bits set in @bits, any of them will match.
1550  *
1551  * Return 0 if we find something, and update @start_ret and @end_ret.
1552  * Return 1 if we found nothing.
1553  */
1554 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1555 			  u64 *start_ret, u64 *end_ret, u32 bits,
1556 			  struct extent_state **cached_state)
1557 {
1558 	struct extent_state *state;
1559 	int ret = 1;
1560 
1561 	spin_lock(&tree->lock);
1562 	if (cached_state && *cached_state) {
1563 		state = *cached_state;
1564 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1565 			while ((state = next_state(state)) != NULL) {
1566 				if (state->state & bits)
1567 					goto got_it;
1568 			}
1569 			free_extent_state(*cached_state);
1570 			*cached_state = NULL;
1571 			goto out;
1572 		}
1573 		free_extent_state(*cached_state);
1574 		*cached_state = NULL;
1575 	}
1576 
1577 	state = find_first_extent_bit_state(tree, start, bits);
1578 got_it:
1579 	if (state) {
1580 		cache_state_if_flags(state, cached_state, 0);
1581 		*start_ret = state->start;
1582 		*end_ret = state->end;
1583 		ret = 0;
1584 	}
1585 out:
1586 	spin_unlock(&tree->lock);
1587 	return ret;
1588 }
1589 
1590 /**
1591  * find_contiguous_extent_bit: find a contiguous area of bits
1592  * @tree - io tree to check
1593  * @start - offset to start the search from
1594  * @start_ret - the first offset we found with the bits set
1595  * @end_ret - the final contiguous range of the bits that were set
1596  * @bits - bits to look for
1597  *
1598  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1599  * to set bits appropriately, and then merge them again.  During this time it
1600  * will drop the tree->lock, so use this helper if you want to find the actual
1601  * contiguous area for given bits.  We will search to the first bit we find, and
1602  * then walk down the tree until we find a non-contiguous area.  The area
1603  * returned will be the full contiguous area with the bits set.
1604  */
1605 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1606 			       u64 *start_ret, u64 *end_ret, u32 bits)
1607 {
1608 	struct extent_state *state;
1609 	int ret = 1;
1610 
1611 	spin_lock(&tree->lock);
1612 	state = find_first_extent_bit_state(tree, start, bits);
1613 	if (state) {
1614 		*start_ret = state->start;
1615 		*end_ret = state->end;
1616 		while ((state = next_state(state)) != NULL) {
1617 			if (state->start > (*end_ret + 1))
1618 				break;
1619 			*end_ret = state->end;
1620 		}
1621 		ret = 0;
1622 	}
1623 	spin_unlock(&tree->lock);
1624 	return ret;
1625 }
1626 
1627 /**
1628  * find_first_clear_extent_bit - find the first range that has @bits not set.
1629  * This range could start before @start.
1630  *
1631  * @tree - the tree to search
1632  * @start - the offset at/after which the found extent should start
1633  * @start_ret - records the beginning of the range
1634  * @end_ret - records the end of the range (inclusive)
1635  * @bits - the set of bits which must be unset
1636  *
1637  * Since unallocated range is also considered one which doesn't have the bits
1638  * set it's possible that @end_ret contains -1, this happens in case the range
1639  * spans (last_range_end, end of device]. In this case it's up to the caller to
1640  * trim @end_ret to the appropriate size.
1641  */
1642 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1643 				 u64 *start_ret, u64 *end_ret, u32 bits)
1644 {
1645 	struct extent_state *state;
1646 	struct rb_node *node, *prev = NULL, *next;
1647 
1648 	spin_lock(&tree->lock);
1649 
1650 	/* Find first extent with bits cleared */
1651 	while (1) {
1652 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1653 		if (!node && !next && !prev) {
1654 			/*
1655 			 * Tree is completely empty, send full range and let
1656 			 * caller deal with it
1657 			 */
1658 			*start_ret = 0;
1659 			*end_ret = -1;
1660 			goto out;
1661 		} else if (!node && !next) {
1662 			/*
1663 			 * We are past the last allocated chunk, set start at
1664 			 * the end of the last extent.
1665 			 */
1666 			state = rb_entry(prev, struct extent_state, rb_node);
1667 			*start_ret = state->end + 1;
1668 			*end_ret = -1;
1669 			goto out;
1670 		} else if (!node) {
1671 			node = next;
1672 		}
1673 		/*
1674 		 * At this point 'node' either contains 'start' or start is
1675 		 * before 'node'
1676 		 */
1677 		state = rb_entry(node, struct extent_state, rb_node);
1678 
1679 		if (in_range(start, state->start, state->end - state->start + 1)) {
1680 			if (state->state & bits) {
1681 				/*
1682 				 * |--range with bits sets--|
1683 				 *    |
1684 				 *    start
1685 				 */
1686 				start = state->end + 1;
1687 			} else {
1688 				/*
1689 				 * 'start' falls within a range that doesn't
1690 				 * have the bits set, so take its start as
1691 				 * the beginning of the desired range
1692 				 *
1693 				 * |--range with bits cleared----|
1694 				 *      |
1695 				 *      start
1696 				 */
1697 				*start_ret = state->start;
1698 				break;
1699 			}
1700 		} else {
1701 			/*
1702 			 * |---prev range---|---hole/unset---|---node range---|
1703 			 *                          |
1704 			 *                        start
1705 			 *
1706 			 *                        or
1707 			 *
1708 			 * |---hole/unset--||--first node--|
1709 			 * 0   |
1710 			 *    start
1711 			 */
1712 			if (prev) {
1713 				state = rb_entry(prev, struct extent_state,
1714 						 rb_node);
1715 				*start_ret = state->end + 1;
1716 			} else {
1717 				*start_ret = 0;
1718 			}
1719 			break;
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * Find the longest stretch from start until an entry which has the
1725 	 * bits set
1726 	 */
1727 	while (1) {
1728 		state = rb_entry(node, struct extent_state, rb_node);
1729 		if (state->end >= start && !(state->state & bits)) {
1730 			*end_ret = state->end;
1731 		} else {
1732 			*end_ret = state->start - 1;
1733 			break;
1734 		}
1735 
1736 		node = rb_next(node);
1737 		if (!node)
1738 			break;
1739 	}
1740 out:
1741 	spin_unlock(&tree->lock);
1742 }
1743 
1744 /*
1745  * find a contiguous range of bytes in the file marked as delalloc, not
1746  * more than 'max_bytes'.  start and end are used to return the range,
1747  *
1748  * true is returned if we find something, false if nothing was in the tree
1749  */
1750 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1751 			       u64 *end, u64 max_bytes,
1752 			       struct extent_state **cached_state)
1753 {
1754 	struct rb_node *node;
1755 	struct extent_state *state;
1756 	u64 cur_start = *start;
1757 	bool found = false;
1758 	u64 total_bytes = 0;
1759 
1760 	spin_lock(&tree->lock);
1761 
1762 	/*
1763 	 * this search will find all the extents that end after
1764 	 * our range starts.
1765 	 */
1766 	node = tree_search(tree, cur_start);
1767 	if (!node) {
1768 		*end = (u64)-1;
1769 		goto out;
1770 	}
1771 
1772 	while (1) {
1773 		state = rb_entry(node, struct extent_state, rb_node);
1774 		if (found && (state->start != cur_start ||
1775 			      (state->state & EXTENT_BOUNDARY))) {
1776 			goto out;
1777 		}
1778 		if (!(state->state & EXTENT_DELALLOC)) {
1779 			if (!found)
1780 				*end = state->end;
1781 			goto out;
1782 		}
1783 		if (!found) {
1784 			*start = state->start;
1785 			*cached_state = state;
1786 			refcount_inc(&state->refs);
1787 		}
1788 		found = true;
1789 		*end = state->end;
1790 		cur_start = state->end + 1;
1791 		node = rb_next(node);
1792 		total_bytes += state->end - state->start + 1;
1793 		if (total_bytes >= max_bytes)
1794 			break;
1795 		if (!node)
1796 			break;
1797 	}
1798 out:
1799 	spin_unlock(&tree->lock);
1800 	return found;
1801 }
1802 
1803 static int __process_pages_contig(struct address_space *mapping,
1804 				  struct page *locked_page,
1805 				  pgoff_t start_index, pgoff_t end_index,
1806 				  unsigned long page_ops, pgoff_t *index_ret);
1807 
1808 static noinline void __unlock_for_delalloc(struct inode *inode,
1809 					   struct page *locked_page,
1810 					   u64 start, u64 end)
1811 {
1812 	unsigned long index = start >> PAGE_SHIFT;
1813 	unsigned long end_index = end >> PAGE_SHIFT;
1814 
1815 	ASSERT(locked_page);
1816 	if (index == locked_page->index && end_index == index)
1817 		return;
1818 
1819 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1820 			       PAGE_UNLOCK, NULL);
1821 }
1822 
1823 static noinline int lock_delalloc_pages(struct inode *inode,
1824 					struct page *locked_page,
1825 					u64 delalloc_start,
1826 					u64 delalloc_end)
1827 {
1828 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1829 	unsigned long index_ret = index;
1830 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1831 	int ret;
1832 
1833 	ASSERT(locked_page);
1834 	if (index == locked_page->index && index == end_index)
1835 		return 0;
1836 
1837 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1838 				     end_index, PAGE_LOCK, &index_ret);
1839 	if (ret == -EAGAIN)
1840 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1841 				      (u64)index_ret << PAGE_SHIFT);
1842 	return ret;
1843 }
1844 
1845 /*
1846  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1847  * more than @max_bytes.  @Start and @end are used to return the range,
1848  *
1849  * Return: true if we find something
1850  *         false if nothing was in the tree
1851  */
1852 EXPORT_FOR_TESTS
1853 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1854 				    struct page *locked_page, u64 *start,
1855 				    u64 *end)
1856 {
1857 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1858 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1859 	u64 delalloc_start;
1860 	u64 delalloc_end;
1861 	bool found;
1862 	struct extent_state *cached_state = NULL;
1863 	int ret;
1864 	int loops = 0;
1865 
1866 again:
1867 	/* step one, find a bunch of delalloc bytes starting at start */
1868 	delalloc_start = *start;
1869 	delalloc_end = 0;
1870 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1871 					  max_bytes, &cached_state);
1872 	if (!found || delalloc_end <= *start) {
1873 		*start = delalloc_start;
1874 		*end = delalloc_end;
1875 		free_extent_state(cached_state);
1876 		return false;
1877 	}
1878 
1879 	/*
1880 	 * start comes from the offset of locked_page.  We have to lock
1881 	 * pages in order, so we can't process delalloc bytes before
1882 	 * locked_page
1883 	 */
1884 	if (delalloc_start < *start)
1885 		delalloc_start = *start;
1886 
1887 	/*
1888 	 * make sure to limit the number of pages we try to lock down
1889 	 */
1890 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1891 		delalloc_end = delalloc_start + max_bytes - 1;
1892 
1893 	/* step two, lock all the pages after the page that has start */
1894 	ret = lock_delalloc_pages(inode, locked_page,
1895 				  delalloc_start, delalloc_end);
1896 	ASSERT(!ret || ret == -EAGAIN);
1897 	if (ret == -EAGAIN) {
1898 		/* some of the pages are gone, lets avoid looping by
1899 		 * shortening the size of the delalloc range we're searching
1900 		 */
1901 		free_extent_state(cached_state);
1902 		cached_state = NULL;
1903 		if (!loops) {
1904 			max_bytes = PAGE_SIZE;
1905 			loops = 1;
1906 			goto again;
1907 		} else {
1908 			found = false;
1909 			goto out_failed;
1910 		}
1911 	}
1912 
1913 	/* step three, lock the state bits for the whole range */
1914 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1915 
1916 	/* then test to make sure it is all still delalloc */
1917 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1918 			     EXTENT_DELALLOC, 1, cached_state);
1919 	if (!ret) {
1920 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1921 				     &cached_state);
1922 		__unlock_for_delalloc(inode, locked_page,
1923 			      delalloc_start, delalloc_end);
1924 		cond_resched();
1925 		goto again;
1926 	}
1927 	free_extent_state(cached_state);
1928 	*start = delalloc_start;
1929 	*end = delalloc_end;
1930 out_failed:
1931 	return found;
1932 }
1933 
1934 static int __process_pages_contig(struct address_space *mapping,
1935 				  struct page *locked_page,
1936 				  pgoff_t start_index, pgoff_t end_index,
1937 				  unsigned long page_ops, pgoff_t *index_ret)
1938 {
1939 	unsigned long nr_pages = end_index - start_index + 1;
1940 	unsigned long pages_processed = 0;
1941 	pgoff_t index = start_index;
1942 	struct page *pages[16];
1943 	unsigned ret;
1944 	int err = 0;
1945 	int i;
1946 
1947 	if (page_ops & PAGE_LOCK) {
1948 		ASSERT(page_ops == PAGE_LOCK);
1949 		ASSERT(index_ret && *index_ret == start_index);
1950 	}
1951 
1952 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1953 		mapping_set_error(mapping, -EIO);
1954 
1955 	while (nr_pages > 0) {
1956 		ret = find_get_pages_contig(mapping, index,
1957 				     min_t(unsigned long,
1958 				     nr_pages, ARRAY_SIZE(pages)), pages);
1959 		if (ret == 0) {
1960 			/*
1961 			 * Only if we're going to lock these pages,
1962 			 * can we find nothing at @index.
1963 			 */
1964 			ASSERT(page_ops & PAGE_LOCK);
1965 			err = -EAGAIN;
1966 			goto out;
1967 		}
1968 
1969 		for (i = 0; i < ret; i++) {
1970 			if (page_ops & PAGE_SET_PRIVATE2)
1971 				SetPagePrivate2(pages[i]);
1972 
1973 			if (locked_page && pages[i] == locked_page) {
1974 				put_page(pages[i]);
1975 				pages_processed++;
1976 				continue;
1977 			}
1978 			if (page_ops & PAGE_CLEAR_DIRTY)
1979 				clear_page_dirty_for_io(pages[i]);
1980 			if (page_ops & PAGE_SET_WRITEBACK)
1981 				set_page_writeback(pages[i]);
1982 			if (page_ops & PAGE_SET_ERROR)
1983 				SetPageError(pages[i]);
1984 			if (page_ops & PAGE_END_WRITEBACK)
1985 				end_page_writeback(pages[i]);
1986 			if (page_ops & PAGE_UNLOCK)
1987 				unlock_page(pages[i]);
1988 			if (page_ops & PAGE_LOCK) {
1989 				lock_page(pages[i]);
1990 				if (!PageDirty(pages[i]) ||
1991 				    pages[i]->mapping != mapping) {
1992 					unlock_page(pages[i]);
1993 					for (; i < ret; i++)
1994 						put_page(pages[i]);
1995 					err = -EAGAIN;
1996 					goto out;
1997 				}
1998 			}
1999 			put_page(pages[i]);
2000 			pages_processed++;
2001 		}
2002 		nr_pages -= ret;
2003 		index += ret;
2004 		cond_resched();
2005 	}
2006 out:
2007 	if (err && index_ret)
2008 		*index_ret = start_index + pages_processed - 1;
2009 	return err;
2010 }
2011 
2012 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2013 				  struct page *locked_page,
2014 				  u32 clear_bits, unsigned long page_ops)
2015 {
2016 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2017 
2018 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2019 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2020 			       page_ops, NULL);
2021 }
2022 
2023 /*
2024  * count the number of bytes in the tree that have a given bit(s)
2025  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2026  * cached.  The total number found is returned.
2027  */
2028 u64 count_range_bits(struct extent_io_tree *tree,
2029 		     u64 *start, u64 search_end, u64 max_bytes,
2030 		     u32 bits, int contig)
2031 {
2032 	struct rb_node *node;
2033 	struct extent_state *state;
2034 	u64 cur_start = *start;
2035 	u64 total_bytes = 0;
2036 	u64 last = 0;
2037 	int found = 0;
2038 
2039 	if (WARN_ON(search_end <= cur_start))
2040 		return 0;
2041 
2042 	spin_lock(&tree->lock);
2043 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2044 		total_bytes = tree->dirty_bytes;
2045 		goto out;
2046 	}
2047 	/*
2048 	 * this search will find all the extents that end after
2049 	 * our range starts.
2050 	 */
2051 	node = tree_search(tree, cur_start);
2052 	if (!node)
2053 		goto out;
2054 
2055 	while (1) {
2056 		state = rb_entry(node, struct extent_state, rb_node);
2057 		if (state->start > search_end)
2058 			break;
2059 		if (contig && found && state->start > last + 1)
2060 			break;
2061 		if (state->end >= cur_start && (state->state & bits) == bits) {
2062 			total_bytes += min(search_end, state->end) + 1 -
2063 				       max(cur_start, state->start);
2064 			if (total_bytes >= max_bytes)
2065 				break;
2066 			if (!found) {
2067 				*start = max(cur_start, state->start);
2068 				found = 1;
2069 			}
2070 			last = state->end;
2071 		} else if (contig && found) {
2072 			break;
2073 		}
2074 		node = rb_next(node);
2075 		if (!node)
2076 			break;
2077 	}
2078 out:
2079 	spin_unlock(&tree->lock);
2080 	return total_bytes;
2081 }
2082 
2083 /*
2084  * set the private field for a given byte offset in the tree.  If there isn't
2085  * an extent_state there already, this does nothing.
2086  */
2087 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2088 		      struct io_failure_record *failrec)
2089 {
2090 	struct rb_node *node;
2091 	struct extent_state *state;
2092 	int ret = 0;
2093 
2094 	spin_lock(&tree->lock);
2095 	/*
2096 	 * this search will find all the extents that end after
2097 	 * our range starts.
2098 	 */
2099 	node = tree_search(tree, start);
2100 	if (!node) {
2101 		ret = -ENOENT;
2102 		goto out;
2103 	}
2104 	state = rb_entry(node, struct extent_state, rb_node);
2105 	if (state->start != start) {
2106 		ret = -ENOENT;
2107 		goto out;
2108 	}
2109 	state->failrec = failrec;
2110 out:
2111 	spin_unlock(&tree->lock);
2112 	return ret;
2113 }
2114 
2115 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2116 {
2117 	struct rb_node *node;
2118 	struct extent_state *state;
2119 	struct io_failure_record *failrec;
2120 
2121 	spin_lock(&tree->lock);
2122 	/*
2123 	 * this search will find all the extents that end after
2124 	 * our range starts.
2125 	 */
2126 	node = tree_search(tree, start);
2127 	if (!node) {
2128 		failrec = ERR_PTR(-ENOENT);
2129 		goto out;
2130 	}
2131 	state = rb_entry(node, struct extent_state, rb_node);
2132 	if (state->start != start) {
2133 		failrec = ERR_PTR(-ENOENT);
2134 		goto out;
2135 	}
2136 
2137 	failrec = state->failrec;
2138 out:
2139 	spin_unlock(&tree->lock);
2140 	return failrec;
2141 }
2142 
2143 /*
2144  * searches a range in the state tree for a given mask.
2145  * If 'filled' == 1, this returns 1 only if every extent in the tree
2146  * has the bits set.  Otherwise, 1 is returned if any bit in the
2147  * range is found set.
2148  */
2149 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2150 		   u32 bits, int filled, struct extent_state *cached)
2151 {
2152 	struct extent_state *state = NULL;
2153 	struct rb_node *node;
2154 	int bitset = 0;
2155 
2156 	spin_lock(&tree->lock);
2157 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2158 	    cached->end > start)
2159 		node = &cached->rb_node;
2160 	else
2161 		node = tree_search(tree, start);
2162 	while (node && start <= end) {
2163 		state = rb_entry(node, struct extent_state, rb_node);
2164 
2165 		if (filled && state->start > start) {
2166 			bitset = 0;
2167 			break;
2168 		}
2169 
2170 		if (state->start > end)
2171 			break;
2172 
2173 		if (state->state & bits) {
2174 			bitset = 1;
2175 			if (!filled)
2176 				break;
2177 		} else if (filled) {
2178 			bitset = 0;
2179 			break;
2180 		}
2181 
2182 		if (state->end == (u64)-1)
2183 			break;
2184 
2185 		start = state->end + 1;
2186 		if (start > end)
2187 			break;
2188 		node = rb_next(node);
2189 		if (!node) {
2190 			if (filled)
2191 				bitset = 0;
2192 			break;
2193 		}
2194 	}
2195 	spin_unlock(&tree->lock);
2196 	return bitset;
2197 }
2198 
2199 /*
2200  * helper function to set a given page up to date if all the
2201  * extents in the tree for that page are up to date
2202  */
2203 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2204 {
2205 	u64 start = page_offset(page);
2206 	u64 end = start + PAGE_SIZE - 1;
2207 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2208 		SetPageUptodate(page);
2209 }
2210 
2211 int free_io_failure(struct extent_io_tree *failure_tree,
2212 		    struct extent_io_tree *io_tree,
2213 		    struct io_failure_record *rec)
2214 {
2215 	int ret;
2216 	int err = 0;
2217 
2218 	set_state_failrec(failure_tree, rec->start, NULL);
2219 	ret = clear_extent_bits(failure_tree, rec->start,
2220 				rec->start + rec->len - 1,
2221 				EXTENT_LOCKED | EXTENT_DIRTY);
2222 	if (ret)
2223 		err = ret;
2224 
2225 	ret = clear_extent_bits(io_tree, rec->start,
2226 				rec->start + rec->len - 1,
2227 				EXTENT_DAMAGED);
2228 	if (ret && !err)
2229 		err = ret;
2230 
2231 	kfree(rec);
2232 	return err;
2233 }
2234 
2235 /*
2236  * this bypasses the standard btrfs submit functions deliberately, as
2237  * the standard behavior is to write all copies in a raid setup. here we only
2238  * want to write the one bad copy. so we do the mapping for ourselves and issue
2239  * submit_bio directly.
2240  * to avoid any synchronization issues, wait for the data after writing, which
2241  * actually prevents the read that triggered the error from finishing.
2242  * currently, there can be no more than two copies of every data bit. thus,
2243  * exactly one rewrite is required.
2244  */
2245 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2246 		      u64 length, u64 logical, struct page *page,
2247 		      unsigned int pg_offset, int mirror_num)
2248 {
2249 	struct bio *bio;
2250 	struct btrfs_device *dev;
2251 	u64 map_length = 0;
2252 	u64 sector;
2253 	struct btrfs_bio *bbio = NULL;
2254 	int ret;
2255 
2256 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2257 	BUG_ON(!mirror_num);
2258 
2259 	bio = btrfs_io_bio_alloc(1);
2260 	bio->bi_iter.bi_size = 0;
2261 	map_length = length;
2262 
2263 	/*
2264 	 * Avoid races with device replace and make sure our bbio has devices
2265 	 * associated to its stripes that don't go away while we are doing the
2266 	 * read repair operation.
2267 	 */
2268 	btrfs_bio_counter_inc_blocked(fs_info);
2269 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2270 		/*
2271 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2272 		 * to update all raid stripes, but here we just want to correct
2273 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2274 		 * stripe's dev and sector.
2275 		 */
2276 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2277 				      &map_length, &bbio, 0);
2278 		if (ret) {
2279 			btrfs_bio_counter_dec(fs_info);
2280 			bio_put(bio);
2281 			return -EIO;
2282 		}
2283 		ASSERT(bbio->mirror_num == 1);
2284 	} else {
2285 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2286 				      &map_length, &bbio, mirror_num);
2287 		if (ret) {
2288 			btrfs_bio_counter_dec(fs_info);
2289 			bio_put(bio);
2290 			return -EIO;
2291 		}
2292 		BUG_ON(mirror_num != bbio->mirror_num);
2293 	}
2294 
2295 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2296 	bio->bi_iter.bi_sector = sector;
2297 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2298 	btrfs_put_bbio(bbio);
2299 	if (!dev || !dev->bdev ||
2300 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2301 		btrfs_bio_counter_dec(fs_info);
2302 		bio_put(bio);
2303 		return -EIO;
2304 	}
2305 	bio_set_dev(bio, dev->bdev);
2306 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2307 	bio_add_page(bio, page, length, pg_offset);
2308 
2309 	if (btrfsic_submit_bio_wait(bio)) {
2310 		/* try to remap that extent elsewhere? */
2311 		btrfs_bio_counter_dec(fs_info);
2312 		bio_put(bio);
2313 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2314 		return -EIO;
2315 	}
2316 
2317 	btrfs_info_rl_in_rcu(fs_info,
2318 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2319 				  ino, start,
2320 				  rcu_str_deref(dev->name), sector);
2321 	btrfs_bio_counter_dec(fs_info);
2322 	bio_put(bio);
2323 	return 0;
2324 }
2325 
2326 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2327 {
2328 	struct btrfs_fs_info *fs_info = eb->fs_info;
2329 	u64 start = eb->start;
2330 	int i, num_pages = num_extent_pages(eb);
2331 	int ret = 0;
2332 
2333 	if (sb_rdonly(fs_info->sb))
2334 		return -EROFS;
2335 
2336 	for (i = 0; i < num_pages; i++) {
2337 		struct page *p = eb->pages[i];
2338 
2339 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2340 					start - page_offset(p), mirror_num);
2341 		if (ret)
2342 			break;
2343 		start += PAGE_SIZE;
2344 	}
2345 
2346 	return ret;
2347 }
2348 
2349 /*
2350  * each time an IO finishes, we do a fast check in the IO failure tree
2351  * to see if we need to process or clean up an io_failure_record
2352  */
2353 int clean_io_failure(struct btrfs_fs_info *fs_info,
2354 		     struct extent_io_tree *failure_tree,
2355 		     struct extent_io_tree *io_tree, u64 start,
2356 		     struct page *page, u64 ino, unsigned int pg_offset)
2357 {
2358 	u64 private;
2359 	struct io_failure_record *failrec;
2360 	struct extent_state *state;
2361 	int num_copies;
2362 	int ret;
2363 
2364 	private = 0;
2365 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2366 			       EXTENT_DIRTY, 0);
2367 	if (!ret)
2368 		return 0;
2369 
2370 	failrec = get_state_failrec(failure_tree, start);
2371 	if (IS_ERR(failrec))
2372 		return 0;
2373 
2374 	BUG_ON(!failrec->this_mirror);
2375 
2376 	if (failrec->in_validation) {
2377 		/* there was no real error, just free the record */
2378 		btrfs_debug(fs_info,
2379 			"clean_io_failure: freeing dummy error at %llu",
2380 			failrec->start);
2381 		goto out;
2382 	}
2383 	if (sb_rdonly(fs_info->sb))
2384 		goto out;
2385 
2386 	spin_lock(&io_tree->lock);
2387 	state = find_first_extent_bit_state(io_tree,
2388 					    failrec->start,
2389 					    EXTENT_LOCKED);
2390 	spin_unlock(&io_tree->lock);
2391 
2392 	if (state && state->start <= failrec->start &&
2393 	    state->end >= failrec->start + failrec->len - 1) {
2394 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2395 					      failrec->len);
2396 		if (num_copies > 1)  {
2397 			repair_io_failure(fs_info, ino, start, failrec->len,
2398 					  failrec->logical, page, pg_offset,
2399 					  failrec->failed_mirror);
2400 		}
2401 	}
2402 
2403 out:
2404 	free_io_failure(failure_tree, io_tree, failrec);
2405 
2406 	return 0;
2407 }
2408 
2409 /*
2410  * Can be called when
2411  * - hold extent lock
2412  * - under ordered extent
2413  * - the inode is freeing
2414  */
2415 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2416 {
2417 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2418 	struct io_failure_record *failrec;
2419 	struct extent_state *state, *next;
2420 
2421 	if (RB_EMPTY_ROOT(&failure_tree->state))
2422 		return;
2423 
2424 	spin_lock(&failure_tree->lock);
2425 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2426 	while (state) {
2427 		if (state->start > end)
2428 			break;
2429 
2430 		ASSERT(state->end <= end);
2431 
2432 		next = next_state(state);
2433 
2434 		failrec = state->failrec;
2435 		free_extent_state(state);
2436 		kfree(failrec);
2437 
2438 		state = next;
2439 	}
2440 	spin_unlock(&failure_tree->lock);
2441 }
2442 
2443 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2444 							     u64 start, u64 end)
2445 {
2446 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2447 	struct io_failure_record *failrec;
2448 	struct extent_map *em;
2449 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2450 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2451 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2452 	int ret;
2453 	u64 logical;
2454 
2455 	failrec = get_state_failrec(failure_tree, start);
2456 	if (!IS_ERR(failrec)) {
2457 		btrfs_debug(fs_info,
2458 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2459 			failrec->logical, failrec->start, failrec->len,
2460 			failrec->in_validation);
2461 		/*
2462 		 * when data can be on disk more than twice, add to failrec here
2463 		 * (e.g. with a list for failed_mirror) to make
2464 		 * clean_io_failure() clean all those errors at once.
2465 		 */
2466 
2467 		return failrec;
2468 	}
2469 
2470 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2471 	if (!failrec)
2472 		return ERR_PTR(-ENOMEM);
2473 
2474 	failrec->start = start;
2475 	failrec->len = end - start + 1;
2476 	failrec->this_mirror = 0;
2477 	failrec->bio_flags = 0;
2478 	failrec->in_validation = 0;
2479 
2480 	read_lock(&em_tree->lock);
2481 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2482 	if (!em) {
2483 		read_unlock(&em_tree->lock);
2484 		kfree(failrec);
2485 		return ERR_PTR(-EIO);
2486 	}
2487 
2488 	if (em->start > start || em->start + em->len <= start) {
2489 		free_extent_map(em);
2490 		em = NULL;
2491 	}
2492 	read_unlock(&em_tree->lock);
2493 	if (!em) {
2494 		kfree(failrec);
2495 		return ERR_PTR(-EIO);
2496 	}
2497 
2498 	logical = start - em->start;
2499 	logical = em->block_start + logical;
2500 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2501 		logical = em->block_start;
2502 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2503 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2504 	}
2505 
2506 	btrfs_debug(fs_info,
2507 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2508 		    logical, start, failrec->len);
2509 
2510 	failrec->logical = logical;
2511 	free_extent_map(em);
2512 
2513 	/* Set the bits in the private failure tree */
2514 	ret = set_extent_bits(failure_tree, start, end,
2515 			      EXTENT_LOCKED | EXTENT_DIRTY);
2516 	if (ret >= 0) {
2517 		ret = set_state_failrec(failure_tree, start, failrec);
2518 		/* Set the bits in the inode's tree */
2519 		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2520 	} else if (ret < 0) {
2521 		kfree(failrec);
2522 		return ERR_PTR(ret);
2523 	}
2524 
2525 	return failrec;
2526 }
2527 
2528 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2529 				   struct io_failure_record *failrec,
2530 				   int failed_mirror)
2531 {
2532 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2533 	int num_copies;
2534 
2535 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2536 	if (num_copies == 1) {
2537 		/*
2538 		 * we only have a single copy of the data, so don't bother with
2539 		 * all the retry and error correction code that follows. no
2540 		 * matter what the error is, it is very likely to persist.
2541 		 */
2542 		btrfs_debug(fs_info,
2543 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2544 			num_copies, failrec->this_mirror, failed_mirror);
2545 		return false;
2546 	}
2547 
2548 	/*
2549 	 * there are two premises:
2550 	 *	a) deliver good data to the caller
2551 	 *	b) correct the bad sectors on disk
2552 	 */
2553 	if (needs_validation) {
2554 		/*
2555 		 * to fulfill b), we need to know the exact failing sectors, as
2556 		 * we don't want to rewrite any more than the failed ones. thus,
2557 		 * we need separate read requests for the failed bio
2558 		 *
2559 		 * if the following BUG_ON triggers, our validation request got
2560 		 * merged. we need separate requests for our algorithm to work.
2561 		 */
2562 		BUG_ON(failrec->in_validation);
2563 		failrec->in_validation = 1;
2564 		failrec->this_mirror = failed_mirror;
2565 	} else {
2566 		/*
2567 		 * we're ready to fulfill a) and b) alongside. get a good copy
2568 		 * of the failed sector and if we succeed, we have setup
2569 		 * everything for repair_io_failure to do the rest for us.
2570 		 */
2571 		if (failrec->in_validation) {
2572 			BUG_ON(failrec->this_mirror != failed_mirror);
2573 			failrec->in_validation = 0;
2574 			failrec->this_mirror = 0;
2575 		}
2576 		failrec->failed_mirror = failed_mirror;
2577 		failrec->this_mirror++;
2578 		if (failrec->this_mirror == failed_mirror)
2579 			failrec->this_mirror++;
2580 	}
2581 
2582 	if (failrec->this_mirror > num_copies) {
2583 		btrfs_debug(fs_info,
2584 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2585 			num_copies, failrec->this_mirror, failed_mirror);
2586 		return false;
2587 	}
2588 
2589 	return true;
2590 }
2591 
2592 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2593 {
2594 	u64 len = 0;
2595 	const u32 blocksize = inode->i_sb->s_blocksize;
2596 
2597 	/*
2598 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2599 	 * I/O error. In this case, we already know exactly which sector was
2600 	 * bad, so we don't need to validate.
2601 	 */
2602 	if (bio->bi_status == BLK_STS_OK)
2603 		return false;
2604 
2605 	/*
2606 	 * We need to validate each sector individually if the failed I/O was
2607 	 * for multiple sectors.
2608 	 *
2609 	 * There are a few possible bios that can end up here:
2610 	 * 1. A buffered read bio, which is not cloned.
2611 	 * 2. A direct I/O read bio, which is cloned.
2612 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2613 	 *
2614 	 * For cloned bios (case 2), we can get the size from
2615 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2616 	 * it from the bvecs.
2617 	 */
2618 	if (bio_flagged(bio, BIO_CLONED)) {
2619 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2620 			return true;
2621 	} else {
2622 		struct bio_vec *bvec;
2623 		int i;
2624 
2625 		bio_for_each_bvec_all(bvec, bio, i) {
2626 			len += bvec->bv_len;
2627 			if (len > blocksize)
2628 				return true;
2629 		}
2630 	}
2631 	return false;
2632 }
2633 
2634 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2635 				      struct bio *failed_bio, u32 bio_offset,
2636 				      struct page *page, unsigned int pgoff,
2637 				      u64 start, u64 end, int failed_mirror,
2638 				      submit_bio_hook_t *submit_bio_hook)
2639 {
2640 	struct io_failure_record *failrec;
2641 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2642 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2643 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2644 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2645 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2646 	bool need_validation;
2647 	struct bio *repair_bio;
2648 	struct btrfs_io_bio *repair_io_bio;
2649 	blk_status_t status;
2650 
2651 	btrfs_debug(fs_info,
2652 		   "repair read error: read error at %llu", start);
2653 
2654 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2655 
2656 	failrec = btrfs_get_io_failure_record(inode, start, end);
2657 	if (IS_ERR(failrec))
2658 		return errno_to_blk_status(PTR_ERR(failrec));
2659 
2660 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2661 
2662 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2663 				    failed_mirror)) {
2664 		free_io_failure(failure_tree, tree, failrec);
2665 		return BLK_STS_IOERR;
2666 	}
2667 
2668 	repair_bio = btrfs_io_bio_alloc(1);
2669 	repair_io_bio = btrfs_io_bio(repair_bio);
2670 	repair_bio->bi_opf = REQ_OP_READ;
2671 	if (need_validation)
2672 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2673 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2674 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2675 	repair_bio->bi_private = failed_bio->bi_private;
2676 
2677 	if (failed_io_bio->csum) {
2678 		const u32 csum_size = fs_info->csum_size;
2679 
2680 		repair_io_bio->csum = repair_io_bio->csum_inline;
2681 		memcpy(repair_io_bio->csum,
2682 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2683 	}
2684 
2685 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2686 	repair_io_bio->logical = failrec->start;
2687 	repair_io_bio->iter = repair_bio->bi_iter;
2688 
2689 	btrfs_debug(btrfs_sb(inode->i_sb),
2690 "repair read error: submitting new read to mirror %d, in_validation=%d",
2691 		    failrec->this_mirror, failrec->in_validation);
2692 
2693 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2694 				 failrec->bio_flags);
2695 	if (status) {
2696 		free_io_failure(failure_tree, tree, failrec);
2697 		bio_put(repair_bio);
2698 	}
2699 	return status;
2700 }
2701 
2702 /* lots and lots of room for performance fixes in the end_bio funcs */
2703 
2704 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2705 {
2706 	int uptodate = (err == 0);
2707 	int ret = 0;
2708 
2709 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2710 
2711 	if (!uptodate) {
2712 		ClearPageUptodate(page);
2713 		SetPageError(page);
2714 		ret = err < 0 ? err : -EIO;
2715 		mapping_set_error(page->mapping, ret);
2716 	}
2717 }
2718 
2719 /*
2720  * after a writepage IO is done, we need to:
2721  * clear the uptodate bits on error
2722  * clear the writeback bits in the extent tree for this IO
2723  * end_page_writeback if the page has no more pending IO
2724  *
2725  * Scheduling is not allowed, so the extent state tree is expected
2726  * to have one and only one object corresponding to this IO.
2727  */
2728 static void end_bio_extent_writepage(struct bio *bio)
2729 {
2730 	int error = blk_status_to_errno(bio->bi_status);
2731 	struct bio_vec *bvec;
2732 	u64 start;
2733 	u64 end;
2734 	struct bvec_iter_all iter_all;
2735 
2736 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2737 	bio_for_each_segment_all(bvec, bio, iter_all) {
2738 		struct page *page = bvec->bv_page;
2739 		struct inode *inode = page->mapping->host;
2740 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2741 
2742 		/* We always issue full-page reads, but if some block
2743 		 * in a page fails to read, blk_update_request() will
2744 		 * advance bv_offset and adjust bv_len to compensate.
2745 		 * Print a warning for nonzero offsets, and an error
2746 		 * if they don't add up to a full page.  */
2747 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2748 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2749 				btrfs_err(fs_info,
2750 				   "partial page write in btrfs with offset %u and length %u",
2751 					bvec->bv_offset, bvec->bv_len);
2752 			else
2753 				btrfs_info(fs_info,
2754 				   "incomplete page write in btrfs with offset %u and length %u",
2755 					bvec->bv_offset, bvec->bv_len);
2756 		}
2757 
2758 		start = page_offset(page);
2759 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2760 
2761 		end_extent_writepage(page, error, start, end);
2762 		end_page_writeback(page);
2763 	}
2764 
2765 	bio_put(bio);
2766 }
2767 
2768 /*
2769  * Record previously processed extent range
2770  *
2771  * For endio_readpage_release_extent() to handle a full extent range, reducing
2772  * the extent io operations.
2773  */
2774 struct processed_extent {
2775 	struct btrfs_inode *inode;
2776 	/* Start of the range in @inode */
2777 	u64 start;
2778 	/* End of the range in in @inode */
2779 	u64 end;
2780 	bool uptodate;
2781 };
2782 
2783 /*
2784  * Try to release processed extent range
2785  *
2786  * May not release the extent range right now if the current range is
2787  * contiguous to processed extent.
2788  *
2789  * Will release processed extent when any of @inode, @uptodate, the range is
2790  * no longer contiguous to the processed range.
2791  *
2792  * Passing @inode == NULL will force processed extent to be released.
2793  */
2794 static void endio_readpage_release_extent(struct processed_extent *processed,
2795 			      struct btrfs_inode *inode, u64 start, u64 end,
2796 			      bool uptodate)
2797 {
2798 	struct extent_state *cached = NULL;
2799 	struct extent_io_tree *tree;
2800 
2801 	/* The first extent, initialize @processed */
2802 	if (!processed->inode)
2803 		goto update;
2804 
2805 	/*
2806 	 * Contiguous to processed extent, just uptodate the end.
2807 	 *
2808 	 * Several things to notice:
2809 	 *
2810 	 * - bio can be merged as long as on-disk bytenr is contiguous
2811 	 *   This means we can have page belonging to other inodes, thus need to
2812 	 *   check if the inode still matches.
2813 	 * - bvec can contain range beyond current page for multi-page bvec
2814 	 *   Thus we need to do processed->end + 1 >= start check
2815 	 */
2816 	if (processed->inode == inode && processed->uptodate == uptodate &&
2817 	    processed->end + 1 >= start && end >= processed->end) {
2818 		processed->end = end;
2819 		return;
2820 	}
2821 
2822 	tree = &processed->inode->io_tree;
2823 	/*
2824 	 * Now we don't have range contiguous to the processed range, release
2825 	 * the processed range now.
2826 	 */
2827 	if (processed->uptodate && tree->track_uptodate)
2828 		set_extent_uptodate(tree, processed->start, processed->end,
2829 				    &cached, GFP_ATOMIC);
2830 	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2831 				    &cached);
2832 
2833 update:
2834 	/* Update processed to current range */
2835 	processed->inode = inode;
2836 	processed->start = start;
2837 	processed->end = end;
2838 	processed->uptodate = uptodate;
2839 }
2840 
2841 static void endio_readpage_update_page_status(struct page *page, bool uptodate)
2842 {
2843 	if (uptodate) {
2844 		SetPageUptodate(page);
2845 	} else {
2846 		ClearPageUptodate(page);
2847 		SetPageError(page);
2848 	}
2849 	unlock_page(page);
2850 }
2851 
2852 /*
2853  * after a readpage IO is done, we need to:
2854  * clear the uptodate bits on error
2855  * set the uptodate bits if things worked
2856  * set the page up to date if all extents in the tree are uptodate
2857  * clear the lock bit in the extent tree
2858  * unlock the page if there are no other extents locked for it
2859  *
2860  * Scheduling is not allowed, so the extent state tree is expected
2861  * to have one and only one object corresponding to this IO.
2862  */
2863 static void end_bio_extent_readpage(struct bio *bio)
2864 {
2865 	struct bio_vec *bvec;
2866 	int uptodate = !bio->bi_status;
2867 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2868 	struct extent_io_tree *tree, *failure_tree;
2869 	struct processed_extent processed = { 0 };
2870 	/*
2871 	 * The offset to the beginning of a bio, since one bio can never be
2872 	 * larger than UINT_MAX, u32 here is enough.
2873 	 */
2874 	u32 bio_offset = 0;
2875 	int mirror;
2876 	int ret;
2877 	struct bvec_iter_all iter_all;
2878 
2879 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2880 	bio_for_each_segment_all(bvec, bio, iter_all) {
2881 		struct page *page = bvec->bv_page;
2882 		struct inode *inode = page->mapping->host;
2883 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2884 		const u32 sectorsize = fs_info->sectorsize;
2885 		u64 start;
2886 		u64 end;
2887 		u32 len;
2888 
2889 		btrfs_debug(fs_info,
2890 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2891 			bio->bi_iter.bi_sector, bio->bi_status,
2892 			io_bio->mirror_num);
2893 		tree = &BTRFS_I(inode)->io_tree;
2894 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2895 
2896 		/*
2897 		 * We always issue full-sector reads, but if some block in a
2898 		 * page fails to read, blk_update_request() will advance
2899 		 * bv_offset and adjust bv_len to compensate.  Print a warning
2900 		 * for unaligned offsets, and an error if they don't add up to
2901 		 * a full sector.
2902 		 */
2903 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2904 			btrfs_err(fs_info,
2905 		"partial page read in btrfs with offset %u and length %u",
2906 				  bvec->bv_offset, bvec->bv_len);
2907 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
2908 				     sectorsize))
2909 			btrfs_info(fs_info,
2910 		"incomplete page read with offset %u and length %u",
2911 				   bvec->bv_offset, bvec->bv_len);
2912 
2913 		start = page_offset(page) + bvec->bv_offset;
2914 		end = start + bvec->bv_len - 1;
2915 		len = bvec->bv_len;
2916 
2917 		mirror = io_bio->mirror_num;
2918 		if (likely(uptodate)) {
2919 			if (is_data_inode(inode))
2920 				ret = btrfs_verify_data_csum(io_bio,
2921 						bio_offset, page, start, end,
2922 						mirror);
2923 			else
2924 				ret = btrfs_validate_metadata_buffer(io_bio,
2925 					page, start, end, mirror);
2926 			if (ret)
2927 				uptodate = 0;
2928 			else
2929 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2930 						 failure_tree, tree, start,
2931 						 page,
2932 						 btrfs_ino(BTRFS_I(inode)), 0);
2933 		}
2934 
2935 		if (likely(uptodate))
2936 			goto readpage_ok;
2937 
2938 		if (is_data_inode(inode)) {
2939 
2940 			/*
2941 			 * The generic bio_readpage_error handles errors the
2942 			 * following way: If possible, new read requests are
2943 			 * created and submitted and will end up in
2944 			 * end_bio_extent_readpage as well (if we're lucky,
2945 			 * not in the !uptodate case). In that case it returns
2946 			 * 0 and we just go on with the next page in our bio.
2947 			 * If it can't handle the error it will return -EIO and
2948 			 * we remain responsible for that page.
2949 			 */
2950 			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
2951 						page,
2952 						start - page_offset(page),
2953 						start, end, mirror,
2954 						btrfs_submit_data_bio)) {
2955 				uptodate = !bio->bi_status;
2956 				ASSERT(bio_offset + len > bio_offset);
2957 				bio_offset += len;
2958 				continue;
2959 			}
2960 		} else {
2961 			struct extent_buffer *eb;
2962 
2963 			eb = (struct extent_buffer *)page->private;
2964 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2965 			eb->read_mirror = mirror;
2966 			atomic_dec(&eb->io_pages);
2967 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2968 					       &eb->bflags))
2969 				btree_readahead_hook(eb, -EIO);
2970 		}
2971 readpage_ok:
2972 		if (likely(uptodate)) {
2973 			loff_t i_size = i_size_read(inode);
2974 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2975 			unsigned off;
2976 
2977 			/* Zero out the end if this page straddles i_size */
2978 			off = offset_in_page(i_size);
2979 			if (page->index == end_index && off)
2980 				zero_user_segment(page, off, PAGE_SIZE);
2981 		}
2982 		ASSERT(bio_offset + len > bio_offset);
2983 		bio_offset += len;
2984 
2985 		/* Update page status and unlock */
2986 		endio_readpage_update_page_status(page, uptodate);
2987 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
2988 					      start, end, uptodate);
2989 	}
2990 	/* Release the last extent */
2991 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
2992 	btrfs_io_bio_free_csum(io_bio);
2993 	bio_put(bio);
2994 }
2995 
2996 /*
2997  * Initialize the members up to but not including 'bio'. Use after allocating a
2998  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2999  * 'bio' because use of __GFP_ZERO is not supported.
3000  */
3001 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3002 {
3003 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3004 }
3005 
3006 /*
3007  * The following helpers allocate a bio. As it's backed by a bioset, it'll
3008  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3009  * for the appropriate container_of magic
3010  */
3011 struct bio *btrfs_bio_alloc(u64 first_byte)
3012 {
3013 	struct bio *bio;
3014 
3015 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3016 	bio->bi_iter.bi_sector = first_byte >> 9;
3017 	btrfs_io_bio_init(btrfs_io_bio(bio));
3018 	return bio;
3019 }
3020 
3021 struct bio *btrfs_bio_clone(struct bio *bio)
3022 {
3023 	struct btrfs_io_bio *btrfs_bio;
3024 	struct bio *new;
3025 
3026 	/* Bio allocation backed by a bioset does not fail */
3027 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3028 	btrfs_bio = btrfs_io_bio(new);
3029 	btrfs_io_bio_init(btrfs_bio);
3030 	btrfs_bio->iter = bio->bi_iter;
3031 	return new;
3032 }
3033 
3034 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3035 {
3036 	struct bio *bio;
3037 
3038 	/* Bio allocation backed by a bioset does not fail */
3039 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3040 	btrfs_io_bio_init(btrfs_io_bio(bio));
3041 	return bio;
3042 }
3043 
3044 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3045 {
3046 	struct bio *bio;
3047 	struct btrfs_io_bio *btrfs_bio;
3048 
3049 	/* this will never fail when it's backed by a bioset */
3050 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3051 	ASSERT(bio);
3052 
3053 	btrfs_bio = btrfs_io_bio(bio);
3054 	btrfs_io_bio_init(btrfs_bio);
3055 
3056 	bio_trim(bio, offset >> 9, size >> 9);
3057 	btrfs_bio->iter = bio->bi_iter;
3058 	return bio;
3059 }
3060 
3061 /*
3062  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3063  * @wbc:	optional writeback control for io accounting
3064  * @page:	page to add to the bio
3065  * @pg_offset:	offset of the new bio or to check whether we are adding
3066  *              a contiguous page to the previous one
3067  * @size:	portion of page that we want to write
3068  * @offset:	starting offset in the page
3069  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3070  * @end_io_func:     end_io callback for new bio
3071  * @mirror_num:	     desired mirror to read/write
3072  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3073  * @bio_flags:	flags of the current bio to see if we can merge them
3074  */
3075 static int submit_extent_page(unsigned int opf,
3076 			      struct writeback_control *wbc,
3077 			      struct page *page, u64 offset,
3078 			      size_t size, unsigned long pg_offset,
3079 			      struct bio **bio_ret,
3080 			      bio_end_io_t end_io_func,
3081 			      int mirror_num,
3082 			      unsigned long prev_bio_flags,
3083 			      unsigned long bio_flags,
3084 			      bool force_bio_submit)
3085 {
3086 	int ret = 0;
3087 	struct bio *bio;
3088 	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3089 	sector_t sector = offset >> 9;
3090 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3091 
3092 	ASSERT(bio_ret);
3093 
3094 	if (*bio_ret) {
3095 		bool contig;
3096 		bool can_merge = true;
3097 
3098 		bio = *bio_ret;
3099 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3100 			contig = bio->bi_iter.bi_sector == sector;
3101 		else
3102 			contig = bio_end_sector(bio) == sector;
3103 
3104 		if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
3105 			can_merge = false;
3106 
3107 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3108 		    force_bio_submit ||
3109 		    bio_add_page(bio, page, io_size, pg_offset) < io_size) {
3110 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3111 			if (ret < 0) {
3112 				*bio_ret = NULL;
3113 				return ret;
3114 			}
3115 			bio = NULL;
3116 		} else {
3117 			if (wbc)
3118 				wbc_account_cgroup_owner(wbc, page, io_size);
3119 			return 0;
3120 		}
3121 	}
3122 
3123 	bio = btrfs_bio_alloc(offset);
3124 	bio_add_page(bio, page, io_size, pg_offset);
3125 	bio->bi_end_io = end_io_func;
3126 	bio->bi_private = tree;
3127 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3128 	bio->bi_opf = opf;
3129 	if (wbc) {
3130 		struct block_device *bdev;
3131 
3132 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3133 		bio_set_dev(bio, bdev);
3134 		wbc_init_bio(wbc, bio);
3135 		wbc_account_cgroup_owner(wbc, page, io_size);
3136 	}
3137 
3138 	*bio_ret = bio;
3139 
3140 	return ret;
3141 }
3142 
3143 static void attach_extent_buffer_page(struct extent_buffer *eb,
3144 				      struct page *page)
3145 {
3146 	/*
3147 	 * If the page is mapped to btree inode, we should hold the private
3148 	 * lock to prevent race.
3149 	 * For cloned or dummy extent buffers, their pages are not mapped and
3150 	 * will not race with any other ebs.
3151 	 */
3152 	if (page->mapping)
3153 		lockdep_assert_held(&page->mapping->private_lock);
3154 
3155 	if (!PagePrivate(page))
3156 		attach_page_private(page, eb);
3157 	else
3158 		WARN_ON(page->private != (unsigned long)eb);
3159 }
3160 
3161 void set_page_extent_mapped(struct page *page)
3162 {
3163 	if (!PagePrivate(page))
3164 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3165 }
3166 
3167 static struct extent_map *
3168 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3169 		 u64 start, u64 len, struct extent_map **em_cached)
3170 {
3171 	struct extent_map *em;
3172 
3173 	if (em_cached && *em_cached) {
3174 		em = *em_cached;
3175 		if (extent_map_in_tree(em) && start >= em->start &&
3176 		    start < extent_map_end(em)) {
3177 			refcount_inc(&em->refs);
3178 			return em;
3179 		}
3180 
3181 		free_extent_map(em);
3182 		*em_cached = NULL;
3183 	}
3184 
3185 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3186 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3187 		BUG_ON(*em_cached);
3188 		refcount_inc(&em->refs);
3189 		*em_cached = em;
3190 	}
3191 	return em;
3192 }
3193 /*
3194  * basic readpage implementation.  Locked extent state structs are inserted
3195  * into the tree that are removed when the IO is done (by the end_io
3196  * handlers)
3197  * XXX JDM: This needs looking at to ensure proper page locking
3198  * return 0 on success, otherwise return error
3199  */
3200 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3201 		      struct bio **bio, unsigned long *bio_flags,
3202 		      unsigned int read_flags, u64 *prev_em_start)
3203 {
3204 	struct inode *inode = page->mapping->host;
3205 	u64 start = page_offset(page);
3206 	const u64 end = start + PAGE_SIZE - 1;
3207 	u64 cur = start;
3208 	u64 extent_offset;
3209 	u64 last_byte = i_size_read(inode);
3210 	u64 block_start;
3211 	u64 cur_end;
3212 	struct extent_map *em;
3213 	int ret = 0;
3214 	int nr = 0;
3215 	size_t pg_offset = 0;
3216 	size_t iosize;
3217 	size_t blocksize = inode->i_sb->s_blocksize;
3218 	unsigned long this_bio_flag = 0;
3219 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3220 
3221 	set_page_extent_mapped(page);
3222 
3223 	if (!PageUptodate(page)) {
3224 		if (cleancache_get_page(page) == 0) {
3225 			BUG_ON(blocksize != PAGE_SIZE);
3226 			unlock_extent(tree, start, end);
3227 			goto out;
3228 		}
3229 	}
3230 
3231 	if (page->index == last_byte >> PAGE_SHIFT) {
3232 		char *userpage;
3233 		size_t zero_offset = offset_in_page(last_byte);
3234 
3235 		if (zero_offset) {
3236 			iosize = PAGE_SIZE - zero_offset;
3237 			userpage = kmap_atomic(page);
3238 			memset(userpage + zero_offset, 0, iosize);
3239 			flush_dcache_page(page);
3240 			kunmap_atomic(userpage);
3241 		}
3242 	}
3243 	while (cur <= end) {
3244 		bool force_bio_submit = false;
3245 		u64 offset;
3246 
3247 		if (cur >= last_byte) {
3248 			char *userpage;
3249 			struct extent_state *cached = NULL;
3250 
3251 			iosize = PAGE_SIZE - pg_offset;
3252 			userpage = kmap_atomic(page);
3253 			memset(userpage + pg_offset, 0, iosize);
3254 			flush_dcache_page(page);
3255 			kunmap_atomic(userpage);
3256 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3257 					    &cached, GFP_NOFS);
3258 			unlock_extent_cached(tree, cur,
3259 					     cur + iosize - 1, &cached);
3260 			break;
3261 		}
3262 		em = __get_extent_map(inode, page, pg_offset, cur,
3263 				      end - cur + 1, em_cached);
3264 		if (IS_ERR_OR_NULL(em)) {
3265 			SetPageError(page);
3266 			unlock_extent(tree, cur, end);
3267 			break;
3268 		}
3269 		extent_offset = cur - em->start;
3270 		BUG_ON(extent_map_end(em) <= cur);
3271 		BUG_ON(end < cur);
3272 
3273 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3274 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3275 			extent_set_compress_type(&this_bio_flag,
3276 						 em->compress_type);
3277 		}
3278 
3279 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3280 		cur_end = min(extent_map_end(em) - 1, end);
3281 		iosize = ALIGN(iosize, blocksize);
3282 		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3283 			offset = em->block_start;
3284 		else
3285 			offset = em->block_start + extent_offset;
3286 		block_start = em->block_start;
3287 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3288 			block_start = EXTENT_MAP_HOLE;
3289 
3290 		/*
3291 		 * If we have a file range that points to a compressed extent
3292 		 * and it's followed by a consecutive file range that points
3293 		 * to the same compressed extent (possibly with a different
3294 		 * offset and/or length, so it either points to the whole extent
3295 		 * or only part of it), we must make sure we do not submit a
3296 		 * single bio to populate the pages for the 2 ranges because
3297 		 * this makes the compressed extent read zero out the pages
3298 		 * belonging to the 2nd range. Imagine the following scenario:
3299 		 *
3300 		 *  File layout
3301 		 *  [0 - 8K]                     [8K - 24K]
3302 		 *    |                               |
3303 		 *    |                               |
3304 		 * points to extent X,         points to extent X,
3305 		 * offset 4K, length of 8K     offset 0, length 16K
3306 		 *
3307 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3308 		 *
3309 		 * If the bio to read the compressed extent covers both ranges,
3310 		 * it will decompress extent X into the pages belonging to the
3311 		 * first range and then it will stop, zeroing out the remaining
3312 		 * pages that belong to the other range that points to extent X.
3313 		 * So here we make sure we submit 2 bios, one for the first
3314 		 * range and another one for the third range. Both will target
3315 		 * the same physical extent from disk, but we can't currently
3316 		 * make the compressed bio endio callback populate the pages
3317 		 * for both ranges because each compressed bio is tightly
3318 		 * coupled with a single extent map, and each range can have
3319 		 * an extent map with a different offset value relative to the
3320 		 * uncompressed data of our extent and different lengths. This
3321 		 * is a corner case so we prioritize correctness over
3322 		 * non-optimal behavior (submitting 2 bios for the same extent).
3323 		 */
3324 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3325 		    prev_em_start && *prev_em_start != (u64)-1 &&
3326 		    *prev_em_start != em->start)
3327 			force_bio_submit = true;
3328 
3329 		if (prev_em_start)
3330 			*prev_em_start = em->start;
3331 
3332 		free_extent_map(em);
3333 		em = NULL;
3334 
3335 		/* we've found a hole, just zero and go on */
3336 		if (block_start == EXTENT_MAP_HOLE) {
3337 			char *userpage;
3338 			struct extent_state *cached = NULL;
3339 
3340 			userpage = kmap_atomic(page);
3341 			memset(userpage + pg_offset, 0, iosize);
3342 			flush_dcache_page(page);
3343 			kunmap_atomic(userpage);
3344 
3345 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3346 					    &cached, GFP_NOFS);
3347 			unlock_extent_cached(tree, cur,
3348 					     cur + iosize - 1, &cached);
3349 			cur = cur + iosize;
3350 			pg_offset += iosize;
3351 			continue;
3352 		}
3353 		/* the get_extent function already copied into the page */
3354 		if (test_range_bit(tree, cur, cur_end,
3355 				   EXTENT_UPTODATE, 1, NULL)) {
3356 			check_page_uptodate(tree, page);
3357 			unlock_extent(tree, cur, cur + iosize - 1);
3358 			cur = cur + iosize;
3359 			pg_offset += iosize;
3360 			continue;
3361 		}
3362 		/* we have an inline extent but it didn't get marked up
3363 		 * to date.  Error out
3364 		 */
3365 		if (block_start == EXTENT_MAP_INLINE) {
3366 			SetPageError(page);
3367 			unlock_extent(tree, cur, cur + iosize - 1);
3368 			cur = cur + iosize;
3369 			pg_offset += iosize;
3370 			continue;
3371 		}
3372 
3373 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3374 					 page, offset, iosize,
3375 					 pg_offset, bio,
3376 					 end_bio_extent_readpage, 0,
3377 					 *bio_flags,
3378 					 this_bio_flag,
3379 					 force_bio_submit);
3380 		if (!ret) {
3381 			nr++;
3382 			*bio_flags = this_bio_flag;
3383 		} else {
3384 			SetPageError(page);
3385 			unlock_extent(tree, cur, cur + iosize - 1);
3386 			goto out;
3387 		}
3388 		cur = cur + iosize;
3389 		pg_offset += iosize;
3390 	}
3391 out:
3392 	if (!nr) {
3393 		if (!PageError(page))
3394 			SetPageUptodate(page);
3395 		unlock_page(page);
3396 	}
3397 	return ret;
3398 }
3399 
3400 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3401 					     u64 start, u64 end,
3402 					     struct extent_map **em_cached,
3403 					     struct bio **bio,
3404 					     unsigned long *bio_flags,
3405 					     u64 *prev_em_start)
3406 {
3407 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3408 	int index;
3409 
3410 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3411 
3412 	for (index = 0; index < nr_pages; index++) {
3413 		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3414 				  REQ_RAHEAD, prev_em_start);
3415 		put_page(pages[index]);
3416 	}
3417 }
3418 
3419 static void update_nr_written(struct writeback_control *wbc,
3420 			      unsigned long nr_written)
3421 {
3422 	wbc->nr_to_write -= nr_written;
3423 }
3424 
3425 /*
3426  * helper for __extent_writepage, doing all of the delayed allocation setup.
3427  *
3428  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3429  * to write the page (copy into inline extent).  In this case the IO has
3430  * been started and the page is already unlocked.
3431  *
3432  * This returns 0 if all went well (page still locked)
3433  * This returns < 0 if there were errors (page still locked)
3434  */
3435 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3436 		struct page *page, struct writeback_control *wbc,
3437 		u64 delalloc_start, unsigned long *nr_written)
3438 {
3439 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3440 	bool found;
3441 	u64 delalloc_to_write = 0;
3442 	u64 delalloc_end = 0;
3443 	int ret;
3444 	int page_started = 0;
3445 
3446 
3447 	while (delalloc_end < page_end) {
3448 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3449 					       &delalloc_start,
3450 					       &delalloc_end);
3451 		if (!found) {
3452 			delalloc_start = delalloc_end + 1;
3453 			continue;
3454 		}
3455 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3456 				delalloc_end, &page_started, nr_written, wbc);
3457 		if (ret) {
3458 			SetPageError(page);
3459 			/*
3460 			 * btrfs_run_delalloc_range should return < 0 for error
3461 			 * but just in case, we use > 0 here meaning the IO is
3462 			 * started, so we don't want to return > 0 unless
3463 			 * things are going well.
3464 			 */
3465 			return ret < 0 ? ret : -EIO;
3466 		}
3467 		/*
3468 		 * delalloc_end is already one less than the total length, so
3469 		 * we don't subtract one from PAGE_SIZE
3470 		 */
3471 		delalloc_to_write += (delalloc_end - delalloc_start +
3472 				      PAGE_SIZE) >> PAGE_SHIFT;
3473 		delalloc_start = delalloc_end + 1;
3474 	}
3475 	if (wbc->nr_to_write < delalloc_to_write) {
3476 		int thresh = 8192;
3477 
3478 		if (delalloc_to_write < thresh * 2)
3479 			thresh = delalloc_to_write;
3480 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3481 					 thresh);
3482 	}
3483 
3484 	/* did the fill delalloc function already unlock and start
3485 	 * the IO?
3486 	 */
3487 	if (page_started) {
3488 		/*
3489 		 * we've unlocked the page, so we can't update
3490 		 * the mapping's writeback index, just update
3491 		 * nr_to_write.
3492 		 */
3493 		wbc->nr_to_write -= *nr_written;
3494 		return 1;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 /*
3501  * helper for __extent_writepage.  This calls the writepage start hooks,
3502  * and does the loop to map the page into extents and bios.
3503  *
3504  * We return 1 if the IO is started and the page is unlocked,
3505  * 0 if all went well (page still locked)
3506  * < 0 if there were errors (page still locked)
3507  */
3508 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3509 				 struct page *page,
3510 				 struct writeback_control *wbc,
3511 				 struct extent_page_data *epd,
3512 				 loff_t i_size,
3513 				 unsigned long nr_written,
3514 				 int *nr_ret)
3515 {
3516 	struct extent_io_tree *tree = &inode->io_tree;
3517 	u64 start = page_offset(page);
3518 	u64 page_end = start + PAGE_SIZE - 1;
3519 	u64 end;
3520 	u64 cur = start;
3521 	u64 extent_offset;
3522 	u64 block_start;
3523 	u64 iosize;
3524 	struct extent_map *em;
3525 	size_t pg_offset = 0;
3526 	size_t blocksize;
3527 	int ret = 0;
3528 	int nr = 0;
3529 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3530 	bool compressed;
3531 
3532 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3533 	if (ret) {
3534 		/* Fixup worker will requeue */
3535 		redirty_page_for_writepage(wbc, page);
3536 		update_nr_written(wbc, nr_written);
3537 		unlock_page(page);
3538 		return 1;
3539 	}
3540 
3541 	/*
3542 	 * we don't want to touch the inode after unlocking the page,
3543 	 * so we update the mapping writeback index now
3544 	 */
3545 	update_nr_written(wbc, nr_written + 1);
3546 
3547 	end = page_end;
3548 	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3549 
3550 	while (cur <= end) {
3551 		u64 em_end;
3552 		u64 offset;
3553 
3554 		if (cur >= i_size) {
3555 			btrfs_writepage_endio_finish_ordered(page, cur,
3556 							     page_end, 1);
3557 			break;
3558 		}
3559 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3560 		if (IS_ERR_OR_NULL(em)) {
3561 			SetPageError(page);
3562 			ret = PTR_ERR_OR_ZERO(em);
3563 			break;
3564 		}
3565 
3566 		extent_offset = cur - em->start;
3567 		em_end = extent_map_end(em);
3568 		BUG_ON(em_end <= cur);
3569 		BUG_ON(end < cur);
3570 		iosize = min(em_end - cur, end - cur + 1);
3571 		iosize = ALIGN(iosize, blocksize);
3572 		offset = em->block_start + extent_offset;
3573 		block_start = em->block_start;
3574 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3575 		free_extent_map(em);
3576 		em = NULL;
3577 
3578 		/*
3579 		 * compressed and inline extents are written through other
3580 		 * paths in the FS
3581 		 */
3582 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3583 		    block_start == EXTENT_MAP_INLINE) {
3584 			if (compressed)
3585 				nr++;
3586 			else
3587 				btrfs_writepage_endio_finish_ordered(page, cur,
3588 							cur + iosize - 1, 1);
3589 			cur += iosize;
3590 			pg_offset += iosize;
3591 			continue;
3592 		}
3593 
3594 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3595 		if (!PageWriteback(page)) {
3596 			btrfs_err(inode->root->fs_info,
3597 				   "page %lu not writeback, cur %llu end %llu",
3598 			       page->index, cur, end);
3599 		}
3600 
3601 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3602 					 page, offset, iosize, pg_offset,
3603 					 &epd->bio,
3604 					 end_bio_extent_writepage,
3605 					 0, 0, 0, false);
3606 		if (ret) {
3607 			SetPageError(page);
3608 			if (PageWriteback(page))
3609 				end_page_writeback(page);
3610 		}
3611 
3612 		cur = cur + iosize;
3613 		pg_offset += iosize;
3614 		nr++;
3615 	}
3616 	*nr_ret = nr;
3617 	return ret;
3618 }
3619 
3620 /*
3621  * the writepage semantics are similar to regular writepage.  extent
3622  * records are inserted to lock ranges in the tree, and as dirty areas
3623  * are found, they are marked writeback.  Then the lock bits are removed
3624  * and the end_io handler clears the writeback ranges
3625  *
3626  * Return 0 if everything goes well.
3627  * Return <0 for error.
3628  */
3629 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3630 			      struct extent_page_data *epd)
3631 {
3632 	struct inode *inode = page->mapping->host;
3633 	u64 start = page_offset(page);
3634 	u64 page_end = start + PAGE_SIZE - 1;
3635 	int ret;
3636 	int nr = 0;
3637 	size_t pg_offset;
3638 	loff_t i_size = i_size_read(inode);
3639 	unsigned long end_index = i_size >> PAGE_SHIFT;
3640 	unsigned long nr_written = 0;
3641 
3642 	trace___extent_writepage(page, inode, wbc);
3643 
3644 	WARN_ON(!PageLocked(page));
3645 
3646 	ClearPageError(page);
3647 
3648 	pg_offset = offset_in_page(i_size);
3649 	if (page->index > end_index ||
3650 	   (page->index == end_index && !pg_offset)) {
3651 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3652 		unlock_page(page);
3653 		return 0;
3654 	}
3655 
3656 	if (page->index == end_index) {
3657 		char *userpage;
3658 
3659 		userpage = kmap_atomic(page);
3660 		memset(userpage + pg_offset, 0,
3661 		       PAGE_SIZE - pg_offset);
3662 		kunmap_atomic(userpage);
3663 		flush_dcache_page(page);
3664 	}
3665 
3666 	set_page_extent_mapped(page);
3667 
3668 	if (!epd->extent_locked) {
3669 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3670 					 &nr_written);
3671 		if (ret == 1)
3672 			return 0;
3673 		if (ret)
3674 			goto done;
3675 	}
3676 
3677 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3678 				    nr_written, &nr);
3679 	if (ret == 1)
3680 		return 0;
3681 
3682 done:
3683 	if (nr == 0) {
3684 		/* make sure the mapping tag for page dirty gets cleared */
3685 		set_page_writeback(page);
3686 		end_page_writeback(page);
3687 	}
3688 	if (PageError(page)) {
3689 		ret = ret < 0 ? ret : -EIO;
3690 		end_extent_writepage(page, ret, start, page_end);
3691 	}
3692 	unlock_page(page);
3693 	ASSERT(ret <= 0);
3694 	return ret;
3695 }
3696 
3697 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3698 {
3699 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3700 		       TASK_UNINTERRUPTIBLE);
3701 }
3702 
3703 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3704 {
3705 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3706 	smp_mb__after_atomic();
3707 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3708 }
3709 
3710 /*
3711  * Lock extent buffer status and pages for writeback.
3712  *
3713  * May try to flush write bio if we can't get the lock.
3714  *
3715  * Return  0 if the extent buffer doesn't need to be submitted.
3716  *           (E.g. the extent buffer is not dirty)
3717  * Return >0 is the extent buffer is submitted to bio.
3718  * Return <0 if something went wrong, no page is locked.
3719  */
3720 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3721 			  struct extent_page_data *epd)
3722 {
3723 	struct btrfs_fs_info *fs_info = eb->fs_info;
3724 	int i, num_pages, failed_page_nr;
3725 	int flush = 0;
3726 	int ret = 0;
3727 
3728 	if (!btrfs_try_tree_write_lock(eb)) {
3729 		ret = flush_write_bio(epd);
3730 		if (ret < 0)
3731 			return ret;
3732 		flush = 1;
3733 		btrfs_tree_lock(eb);
3734 	}
3735 
3736 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3737 		btrfs_tree_unlock(eb);
3738 		if (!epd->sync_io)
3739 			return 0;
3740 		if (!flush) {
3741 			ret = flush_write_bio(epd);
3742 			if (ret < 0)
3743 				return ret;
3744 			flush = 1;
3745 		}
3746 		while (1) {
3747 			wait_on_extent_buffer_writeback(eb);
3748 			btrfs_tree_lock(eb);
3749 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3750 				break;
3751 			btrfs_tree_unlock(eb);
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * We need to do this to prevent races in people who check if the eb is
3757 	 * under IO since we can end up having no IO bits set for a short period
3758 	 * of time.
3759 	 */
3760 	spin_lock(&eb->refs_lock);
3761 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3762 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3763 		spin_unlock(&eb->refs_lock);
3764 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3765 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3766 					 -eb->len,
3767 					 fs_info->dirty_metadata_batch);
3768 		ret = 1;
3769 	} else {
3770 		spin_unlock(&eb->refs_lock);
3771 	}
3772 
3773 	btrfs_tree_unlock(eb);
3774 
3775 	if (!ret)
3776 		return ret;
3777 
3778 	num_pages = num_extent_pages(eb);
3779 	for (i = 0; i < num_pages; i++) {
3780 		struct page *p = eb->pages[i];
3781 
3782 		if (!trylock_page(p)) {
3783 			if (!flush) {
3784 				int err;
3785 
3786 				err = flush_write_bio(epd);
3787 				if (err < 0) {
3788 					ret = err;
3789 					failed_page_nr = i;
3790 					goto err_unlock;
3791 				}
3792 				flush = 1;
3793 			}
3794 			lock_page(p);
3795 		}
3796 	}
3797 
3798 	return ret;
3799 err_unlock:
3800 	/* Unlock already locked pages */
3801 	for (i = 0; i < failed_page_nr; i++)
3802 		unlock_page(eb->pages[i]);
3803 	/*
3804 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3805 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3806 	 * be made and undo everything done before.
3807 	 */
3808 	btrfs_tree_lock(eb);
3809 	spin_lock(&eb->refs_lock);
3810 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3811 	end_extent_buffer_writeback(eb);
3812 	spin_unlock(&eb->refs_lock);
3813 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3814 				 fs_info->dirty_metadata_batch);
3815 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3816 	btrfs_tree_unlock(eb);
3817 	return ret;
3818 }
3819 
3820 static void set_btree_ioerr(struct page *page)
3821 {
3822 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3823 	struct btrfs_fs_info *fs_info;
3824 
3825 	SetPageError(page);
3826 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3827 		return;
3828 
3829 	/*
3830 	 * If we error out, we should add back the dirty_metadata_bytes
3831 	 * to make it consistent.
3832 	 */
3833 	fs_info = eb->fs_info;
3834 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3835 				 eb->len, fs_info->dirty_metadata_batch);
3836 
3837 	/*
3838 	 * If writeback for a btree extent that doesn't belong to a log tree
3839 	 * failed, increment the counter transaction->eb_write_errors.
3840 	 * We do this because while the transaction is running and before it's
3841 	 * committing (when we call filemap_fdata[write|wait]_range against
3842 	 * the btree inode), we might have
3843 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3844 	 * returns an error or an error happens during writeback, when we're
3845 	 * committing the transaction we wouldn't know about it, since the pages
3846 	 * can be no longer dirty nor marked anymore for writeback (if a
3847 	 * subsequent modification to the extent buffer didn't happen before the
3848 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3849 	 * able to find the pages tagged with SetPageError at transaction
3850 	 * commit time. So if this happens we must abort the transaction,
3851 	 * otherwise we commit a super block with btree roots that point to
3852 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3853 	 * or the content of some node/leaf from a past generation that got
3854 	 * cowed or deleted and is no longer valid.
3855 	 *
3856 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3857 	 * not be enough - we need to distinguish between log tree extents vs
3858 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3859 	 * will catch and clear such errors in the mapping - and that call might
3860 	 * be from a log sync and not from a transaction commit. Also, checking
3861 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3862 	 * not done and would not be reliable - the eb might have been released
3863 	 * from memory and reading it back again means that flag would not be
3864 	 * set (since it's a runtime flag, not persisted on disk).
3865 	 *
3866 	 * Using the flags below in the btree inode also makes us achieve the
3867 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3868 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3869 	 * is called, the writeback for all dirty pages had already finished
3870 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3871 	 * filemap_fdatawait_range() would return success, as it could not know
3872 	 * that writeback errors happened (the pages were no longer tagged for
3873 	 * writeback).
3874 	 */
3875 	switch (eb->log_index) {
3876 	case -1:
3877 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3878 		break;
3879 	case 0:
3880 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3881 		break;
3882 	case 1:
3883 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3884 		break;
3885 	default:
3886 		BUG(); /* unexpected, logic error */
3887 	}
3888 }
3889 
3890 static void end_bio_extent_buffer_writepage(struct bio *bio)
3891 {
3892 	struct bio_vec *bvec;
3893 	struct extent_buffer *eb;
3894 	int done;
3895 	struct bvec_iter_all iter_all;
3896 
3897 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3898 	bio_for_each_segment_all(bvec, bio, iter_all) {
3899 		struct page *page = bvec->bv_page;
3900 
3901 		eb = (struct extent_buffer *)page->private;
3902 		BUG_ON(!eb);
3903 		done = atomic_dec_and_test(&eb->io_pages);
3904 
3905 		if (bio->bi_status ||
3906 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3907 			ClearPageUptodate(page);
3908 			set_btree_ioerr(page);
3909 		}
3910 
3911 		end_page_writeback(page);
3912 
3913 		if (!done)
3914 			continue;
3915 
3916 		end_extent_buffer_writeback(eb);
3917 	}
3918 
3919 	bio_put(bio);
3920 }
3921 
3922 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3923 			struct writeback_control *wbc,
3924 			struct extent_page_data *epd)
3925 {
3926 	u64 offset = eb->start;
3927 	u32 nritems;
3928 	int i, num_pages;
3929 	unsigned long start, end;
3930 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3931 	int ret = 0;
3932 
3933 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3934 	num_pages = num_extent_pages(eb);
3935 	atomic_set(&eb->io_pages, num_pages);
3936 
3937 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3938 	nritems = btrfs_header_nritems(eb);
3939 	if (btrfs_header_level(eb) > 0) {
3940 		end = btrfs_node_key_ptr_offset(nritems);
3941 
3942 		memzero_extent_buffer(eb, end, eb->len - end);
3943 	} else {
3944 		/*
3945 		 * leaf:
3946 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3947 		 */
3948 		start = btrfs_item_nr_offset(nritems);
3949 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3950 		memzero_extent_buffer(eb, start, end - start);
3951 	}
3952 
3953 	for (i = 0; i < num_pages; i++) {
3954 		struct page *p = eb->pages[i];
3955 
3956 		clear_page_dirty_for_io(p);
3957 		set_page_writeback(p);
3958 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3959 					 p, offset, PAGE_SIZE, 0,
3960 					 &epd->bio,
3961 					 end_bio_extent_buffer_writepage,
3962 					 0, 0, 0, false);
3963 		if (ret) {
3964 			set_btree_ioerr(p);
3965 			if (PageWriteback(p))
3966 				end_page_writeback(p);
3967 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3968 				end_extent_buffer_writeback(eb);
3969 			ret = -EIO;
3970 			break;
3971 		}
3972 		offset += PAGE_SIZE;
3973 		update_nr_written(wbc, 1);
3974 		unlock_page(p);
3975 	}
3976 
3977 	if (unlikely(ret)) {
3978 		for (; i < num_pages; i++) {
3979 			struct page *p = eb->pages[i];
3980 			clear_page_dirty_for_io(p);
3981 			unlock_page(p);
3982 		}
3983 	}
3984 
3985 	return ret;
3986 }
3987 
3988 /*
3989  * Submit all page(s) of one extent buffer.
3990  *
3991  * @page:	the page of one extent buffer
3992  * @eb_context:	to determine if we need to submit this page, if current page
3993  *		belongs to this eb, we don't need to submit
3994  *
3995  * The caller should pass each page in their bytenr order, and here we use
3996  * @eb_context to determine if we have submitted pages of one extent buffer.
3997  *
3998  * If we have, we just skip until we hit a new page that doesn't belong to
3999  * current @eb_context.
4000  *
4001  * If not, we submit all the page(s) of the extent buffer.
4002  *
4003  * Return >0 if we have submitted the extent buffer successfully.
4004  * Return 0 if we don't need to submit the page, as it's already submitted by
4005  * previous call.
4006  * Return <0 for fatal error.
4007  */
4008 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4009 			  struct extent_page_data *epd,
4010 			  struct extent_buffer **eb_context)
4011 {
4012 	struct address_space *mapping = page->mapping;
4013 	struct extent_buffer *eb;
4014 	int ret;
4015 
4016 	if (!PagePrivate(page))
4017 		return 0;
4018 
4019 	spin_lock(&mapping->private_lock);
4020 	if (!PagePrivate(page)) {
4021 		spin_unlock(&mapping->private_lock);
4022 		return 0;
4023 	}
4024 
4025 	eb = (struct extent_buffer *)page->private;
4026 
4027 	/*
4028 	 * Shouldn't happen and normally this would be a BUG_ON but no point
4029 	 * crashing the machine for something we can survive anyway.
4030 	 */
4031 	if (WARN_ON(!eb)) {
4032 		spin_unlock(&mapping->private_lock);
4033 		return 0;
4034 	}
4035 
4036 	if (eb == *eb_context) {
4037 		spin_unlock(&mapping->private_lock);
4038 		return 0;
4039 	}
4040 	ret = atomic_inc_not_zero(&eb->refs);
4041 	spin_unlock(&mapping->private_lock);
4042 	if (!ret)
4043 		return 0;
4044 
4045 	*eb_context = eb;
4046 
4047 	ret = lock_extent_buffer_for_io(eb, epd);
4048 	if (ret <= 0) {
4049 		free_extent_buffer(eb);
4050 		return ret;
4051 	}
4052 	ret = write_one_eb(eb, wbc, epd);
4053 	free_extent_buffer(eb);
4054 	if (ret < 0)
4055 		return ret;
4056 	return 1;
4057 }
4058 
4059 int btree_write_cache_pages(struct address_space *mapping,
4060 				   struct writeback_control *wbc)
4061 {
4062 	struct extent_buffer *eb_context = NULL;
4063 	struct extent_page_data epd = {
4064 		.bio = NULL,
4065 		.extent_locked = 0,
4066 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4067 	};
4068 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4069 	int ret = 0;
4070 	int done = 0;
4071 	int nr_to_write_done = 0;
4072 	struct pagevec pvec;
4073 	int nr_pages;
4074 	pgoff_t index;
4075 	pgoff_t end;		/* Inclusive */
4076 	int scanned = 0;
4077 	xa_mark_t tag;
4078 
4079 	pagevec_init(&pvec);
4080 	if (wbc->range_cyclic) {
4081 		index = mapping->writeback_index; /* Start from prev offset */
4082 		end = -1;
4083 		/*
4084 		 * Start from the beginning does not need to cycle over the
4085 		 * range, mark it as scanned.
4086 		 */
4087 		scanned = (index == 0);
4088 	} else {
4089 		index = wbc->range_start >> PAGE_SHIFT;
4090 		end = wbc->range_end >> PAGE_SHIFT;
4091 		scanned = 1;
4092 	}
4093 	if (wbc->sync_mode == WB_SYNC_ALL)
4094 		tag = PAGECACHE_TAG_TOWRITE;
4095 	else
4096 		tag = PAGECACHE_TAG_DIRTY;
4097 retry:
4098 	if (wbc->sync_mode == WB_SYNC_ALL)
4099 		tag_pages_for_writeback(mapping, index, end);
4100 	while (!done && !nr_to_write_done && (index <= end) &&
4101 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4102 			tag))) {
4103 		unsigned i;
4104 
4105 		for (i = 0; i < nr_pages; i++) {
4106 			struct page *page = pvec.pages[i];
4107 
4108 			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4109 			if (ret == 0)
4110 				continue;
4111 			if (ret < 0) {
4112 				done = 1;
4113 				break;
4114 			}
4115 
4116 			/*
4117 			 * the filesystem may choose to bump up nr_to_write.
4118 			 * We have to make sure to honor the new nr_to_write
4119 			 * at any time
4120 			 */
4121 			nr_to_write_done = wbc->nr_to_write <= 0;
4122 		}
4123 		pagevec_release(&pvec);
4124 		cond_resched();
4125 	}
4126 	if (!scanned && !done) {
4127 		/*
4128 		 * We hit the last page and there is more work to be done: wrap
4129 		 * back to the start of the file
4130 		 */
4131 		scanned = 1;
4132 		index = 0;
4133 		goto retry;
4134 	}
4135 	if (ret < 0) {
4136 		end_write_bio(&epd, ret);
4137 		return ret;
4138 	}
4139 	/*
4140 	 * If something went wrong, don't allow any metadata write bio to be
4141 	 * submitted.
4142 	 *
4143 	 * This would prevent use-after-free if we had dirty pages not
4144 	 * cleaned up, which can still happen by fuzzed images.
4145 	 *
4146 	 * - Bad extent tree
4147 	 *   Allowing existing tree block to be allocated for other trees.
4148 	 *
4149 	 * - Log tree operations
4150 	 *   Exiting tree blocks get allocated to log tree, bumps its
4151 	 *   generation, then get cleaned in tree re-balance.
4152 	 *   Such tree block will not be written back, since it's clean,
4153 	 *   thus no WRITTEN flag set.
4154 	 *   And after log writes back, this tree block is not traced by
4155 	 *   any dirty extent_io_tree.
4156 	 *
4157 	 * - Offending tree block gets re-dirtied from its original owner
4158 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4159 	 *   reused without COWing. This tree block will not be traced
4160 	 *   by btrfs_transaction::dirty_pages.
4161 	 *
4162 	 *   Now such dirty tree block will not be cleaned by any dirty
4163 	 *   extent io tree. Thus we don't want to submit such wild eb
4164 	 *   if the fs already has error.
4165 	 */
4166 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4167 		ret = flush_write_bio(&epd);
4168 	} else {
4169 		ret = -EROFS;
4170 		end_write_bio(&epd, ret);
4171 	}
4172 	return ret;
4173 }
4174 
4175 /**
4176  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4177  * @mapping: address space structure to write
4178  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4179  * @data: data passed to __extent_writepage function
4180  *
4181  * If a page is already under I/O, write_cache_pages() skips it, even
4182  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4183  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4184  * and msync() need to guarantee that all the data which was dirty at the time
4185  * the call was made get new I/O started against them.  If wbc->sync_mode is
4186  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4187  * existing IO to complete.
4188  */
4189 static int extent_write_cache_pages(struct address_space *mapping,
4190 			     struct writeback_control *wbc,
4191 			     struct extent_page_data *epd)
4192 {
4193 	struct inode *inode = mapping->host;
4194 	int ret = 0;
4195 	int done = 0;
4196 	int nr_to_write_done = 0;
4197 	struct pagevec pvec;
4198 	int nr_pages;
4199 	pgoff_t index;
4200 	pgoff_t end;		/* Inclusive */
4201 	pgoff_t done_index;
4202 	int range_whole = 0;
4203 	int scanned = 0;
4204 	xa_mark_t tag;
4205 
4206 	/*
4207 	 * We have to hold onto the inode so that ordered extents can do their
4208 	 * work when the IO finishes.  The alternative to this is failing to add
4209 	 * an ordered extent if the igrab() fails there and that is a huge pain
4210 	 * to deal with, so instead just hold onto the inode throughout the
4211 	 * writepages operation.  If it fails here we are freeing up the inode
4212 	 * anyway and we'd rather not waste our time writing out stuff that is
4213 	 * going to be truncated anyway.
4214 	 */
4215 	if (!igrab(inode))
4216 		return 0;
4217 
4218 	pagevec_init(&pvec);
4219 	if (wbc->range_cyclic) {
4220 		index = mapping->writeback_index; /* Start from prev offset */
4221 		end = -1;
4222 		/*
4223 		 * Start from the beginning does not need to cycle over the
4224 		 * range, mark it as scanned.
4225 		 */
4226 		scanned = (index == 0);
4227 	} else {
4228 		index = wbc->range_start >> PAGE_SHIFT;
4229 		end = wbc->range_end >> PAGE_SHIFT;
4230 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4231 			range_whole = 1;
4232 		scanned = 1;
4233 	}
4234 
4235 	/*
4236 	 * We do the tagged writepage as long as the snapshot flush bit is set
4237 	 * and we are the first one who do the filemap_flush() on this inode.
4238 	 *
4239 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4240 	 * not race in and drop the bit.
4241 	 */
4242 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4243 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4244 			       &BTRFS_I(inode)->runtime_flags))
4245 		wbc->tagged_writepages = 1;
4246 
4247 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4248 		tag = PAGECACHE_TAG_TOWRITE;
4249 	else
4250 		tag = PAGECACHE_TAG_DIRTY;
4251 retry:
4252 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4253 		tag_pages_for_writeback(mapping, index, end);
4254 	done_index = index;
4255 	while (!done && !nr_to_write_done && (index <= end) &&
4256 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4257 						&index, end, tag))) {
4258 		unsigned i;
4259 
4260 		for (i = 0; i < nr_pages; i++) {
4261 			struct page *page = pvec.pages[i];
4262 
4263 			done_index = page->index + 1;
4264 			/*
4265 			 * At this point we hold neither the i_pages lock nor
4266 			 * the page lock: the page may be truncated or
4267 			 * invalidated (changing page->mapping to NULL),
4268 			 * or even swizzled back from swapper_space to
4269 			 * tmpfs file mapping
4270 			 */
4271 			if (!trylock_page(page)) {
4272 				ret = flush_write_bio(epd);
4273 				BUG_ON(ret < 0);
4274 				lock_page(page);
4275 			}
4276 
4277 			if (unlikely(page->mapping != mapping)) {
4278 				unlock_page(page);
4279 				continue;
4280 			}
4281 
4282 			if (wbc->sync_mode != WB_SYNC_NONE) {
4283 				if (PageWriteback(page)) {
4284 					ret = flush_write_bio(epd);
4285 					BUG_ON(ret < 0);
4286 				}
4287 				wait_on_page_writeback(page);
4288 			}
4289 
4290 			if (PageWriteback(page) ||
4291 			    !clear_page_dirty_for_io(page)) {
4292 				unlock_page(page);
4293 				continue;
4294 			}
4295 
4296 			ret = __extent_writepage(page, wbc, epd);
4297 			if (ret < 0) {
4298 				done = 1;
4299 				break;
4300 			}
4301 
4302 			/*
4303 			 * the filesystem may choose to bump up nr_to_write.
4304 			 * We have to make sure to honor the new nr_to_write
4305 			 * at any time
4306 			 */
4307 			nr_to_write_done = wbc->nr_to_write <= 0;
4308 		}
4309 		pagevec_release(&pvec);
4310 		cond_resched();
4311 	}
4312 	if (!scanned && !done) {
4313 		/*
4314 		 * We hit the last page and there is more work to be done: wrap
4315 		 * back to the start of the file
4316 		 */
4317 		scanned = 1;
4318 		index = 0;
4319 
4320 		/*
4321 		 * If we're looping we could run into a page that is locked by a
4322 		 * writer and that writer could be waiting on writeback for a
4323 		 * page in our current bio, and thus deadlock, so flush the
4324 		 * write bio here.
4325 		 */
4326 		ret = flush_write_bio(epd);
4327 		if (!ret)
4328 			goto retry;
4329 	}
4330 
4331 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4332 		mapping->writeback_index = done_index;
4333 
4334 	btrfs_add_delayed_iput(inode);
4335 	return ret;
4336 }
4337 
4338 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4339 {
4340 	int ret;
4341 	struct extent_page_data epd = {
4342 		.bio = NULL,
4343 		.extent_locked = 0,
4344 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4345 	};
4346 
4347 	ret = __extent_writepage(page, wbc, &epd);
4348 	ASSERT(ret <= 0);
4349 	if (ret < 0) {
4350 		end_write_bio(&epd, ret);
4351 		return ret;
4352 	}
4353 
4354 	ret = flush_write_bio(&epd);
4355 	ASSERT(ret <= 0);
4356 	return ret;
4357 }
4358 
4359 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4360 			      int mode)
4361 {
4362 	int ret = 0;
4363 	struct address_space *mapping = inode->i_mapping;
4364 	struct page *page;
4365 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4366 		PAGE_SHIFT;
4367 
4368 	struct extent_page_data epd = {
4369 		.bio = NULL,
4370 		.extent_locked = 1,
4371 		.sync_io = mode == WB_SYNC_ALL,
4372 	};
4373 	struct writeback_control wbc_writepages = {
4374 		.sync_mode	= mode,
4375 		.nr_to_write	= nr_pages * 2,
4376 		.range_start	= start,
4377 		.range_end	= end + 1,
4378 		/* We're called from an async helper function */
4379 		.punt_to_cgroup	= 1,
4380 		.no_cgroup_owner = 1,
4381 	};
4382 
4383 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4384 	while (start <= end) {
4385 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4386 		if (clear_page_dirty_for_io(page))
4387 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4388 		else {
4389 			btrfs_writepage_endio_finish_ordered(page, start,
4390 						    start + PAGE_SIZE - 1, 1);
4391 			unlock_page(page);
4392 		}
4393 		put_page(page);
4394 		start += PAGE_SIZE;
4395 	}
4396 
4397 	ASSERT(ret <= 0);
4398 	if (ret == 0)
4399 		ret = flush_write_bio(&epd);
4400 	else
4401 		end_write_bio(&epd, ret);
4402 
4403 	wbc_detach_inode(&wbc_writepages);
4404 	return ret;
4405 }
4406 
4407 int extent_writepages(struct address_space *mapping,
4408 		      struct writeback_control *wbc)
4409 {
4410 	int ret = 0;
4411 	struct extent_page_data epd = {
4412 		.bio = NULL,
4413 		.extent_locked = 0,
4414 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4415 	};
4416 
4417 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4418 	ASSERT(ret <= 0);
4419 	if (ret < 0) {
4420 		end_write_bio(&epd, ret);
4421 		return ret;
4422 	}
4423 	ret = flush_write_bio(&epd);
4424 	return ret;
4425 }
4426 
4427 void extent_readahead(struct readahead_control *rac)
4428 {
4429 	struct bio *bio = NULL;
4430 	unsigned long bio_flags = 0;
4431 	struct page *pagepool[16];
4432 	struct extent_map *em_cached = NULL;
4433 	u64 prev_em_start = (u64)-1;
4434 	int nr;
4435 
4436 	while ((nr = readahead_page_batch(rac, pagepool))) {
4437 		u64 contig_start = page_offset(pagepool[0]);
4438 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4439 
4440 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4441 
4442 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4443 				&em_cached, &bio, &bio_flags, &prev_em_start);
4444 	}
4445 
4446 	if (em_cached)
4447 		free_extent_map(em_cached);
4448 
4449 	if (bio) {
4450 		if (submit_one_bio(bio, 0, bio_flags))
4451 			return;
4452 	}
4453 }
4454 
4455 /*
4456  * basic invalidatepage code, this waits on any locked or writeback
4457  * ranges corresponding to the page, and then deletes any extent state
4458  * records from the tree
4459  */
4460 int extent_invalidatepage(struct extent_io_tree *tree,
4461 			  struct page *page, unsigned long offset)
4462 {
4463 	struct extent_state *cached_state = NULL;
4464 	u64 start = page_offset(page);
4465 	u64 end = start + PAGE_SIZE - 1;
4466 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4467 
4468 	/* This function is only called for the btree inode */
4469 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
4470 
4471 	start += ALIGN(offset, blocksize);
4472 	if (start > end)
4473 		return 0;
4474 
4475 	lock_extent_bits(tree, start, end, &cached_state);
4476 	wait_on_page_writeback(page);
4477 
4478 	/*
4479 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
4480 	 * so here we only need to unlock the extent range to free any
4481 	 * existing extent state.
4482 	 */
4483 	unlock_extent_cached(tree, start, end, &cached_state);
4484 	return 0;
4485 }
4486 
4487 /*
4488  * a helper for releasepage, this tests for areas of the page that
4489  * are locked or under IO and drops the related state bits if it is safe
4490  * to drop the page.
4491  */
4492 static int try_release_extent_state(struct extent_io_tree *tree,
4493 				    struct page *page, gfp_t mask)
4494 {
4495 	u64 start = page_offset(page);
4496 	u64 end = start + PAGE_SIZE - 1;
4497 	int ret = 1;
4498 
4499 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4500 		ret = 0;
4501 	} else {
4502 		/*
4503 		 * At this point we can safely clear everything except the
4504 		 * locked bit, the nodatasum bit and the delalloc new bit.
4505 		 * The delalloc new bit will be cleared by ordered extent
4506 		 * completion.
4507 		 */
4508 		ret = __clear_extent_bit(tree, start, end,
4509 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
4510 			 0, 0, NULL, mask, NULL);
4511 
4512 		/* if clear_extent_bit failed for enomem reasons,
4513 		 * we can't allow the release to continue.
4514 		 */
4515 		if (ret < 0)
4516 			ret = 0;
4517 		else
4518 			ret = 1;
4519 	}
4520 	return ret;
4521 }
4522 
4523 /*
4524  * a helper for releasepage.  As long as there are no locked extents
4525  * in the range corresponding to the page, both state records and extent
4526  * map records are removed
4527  */
4528 int try_release_extent_mapping(struct page *page, gfp_t mask)
4529 {
4530 	struct extent_map *em;
4531 	u64 start = page_offset(page);
4532 	u64 end = start + PAGE_SIZE - 1;
4533 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4534 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4535 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4536 
4537 	if (gfpflags_allow_blocking(mask) &&
4538 	    page->mapping->host->i_size > SZ_16M) {
4539 		u64 len;
4540 		while (start <= end) {
4541 			struct btrfs_fs_info *fs_info;
4542 			u64 cur_gen;
4543 
4544 			len = end - start + 1;
4545 			write_lock(&map->lock);
4546 			em = lookup_extent_mapping(map, start, len);
4547 			if (!em) {
4548 				write_unlock(&map->lock);
4549 				break;
4550 			}
4551 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4552 			    em->start != start) {
4553 				write_unlock(&map->lock);
4554 				free_extent_map(em);
4555 				break;
4556 			}
4557 			if (test_range_bit(tree, em->start,
4558 					   extent_map_end(em) - 1,
4559 					   EXTENT_LOCKED, 0, NULL))
4560 				goto next;
4561 			/*
4562 			 * If it's not in the list of modified extents, used
4563 			 * by a fast fsync, we can remove it. If it's being
4564 			 * logged we can safely remove it since fsync took an
4565 			 * extra reference on the em.
4566 			 */
4567 			if (list_empty(&em->list) ||
4568 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4569 				goto remove_em;
4570 			/*
4571 			 * If it's in the list of modified extents, remove it
4572 			 * only if its generation is older then the current one,
4573 			 * in which case we don't need it for a fast fsync.
4574 			 * Otherwise don't remove it, we could be racing with an
4575 			 * ongoing fast fsync that could miss the new extent.
4576 			 */
4577 			fs_info = btrfs_inode->root->fs_info;
4578 			spin_lock(&fs_info->trans_lock);
4579 			cur_gen = fs_info->generation;
4580 			spin_unlock(&fs_info->trans_lock);
4581 			if (em->generation >= cur_gen)
4582 				goto next;
4583 remove_em:
4584 			/*
4585 			 * We only remove extent maps that are not in the list of
4586 			 * modified extents or that are in the list but with a
4587 			 * generation lower then the current generation, so there
4588 			 * is no need to set the full fsync flag on the inode (it
4589 			 * hurts the fsync performance for workloads with a data
4590 			 * size that exceeds or is close to the system's memory).
4591 			 */
4592 			remove_extent_mapping(map, em);
4593 			/* once for the rb tree */
4594 			free_extent_map(em);
4595 next:
4596 			start = extent_map_end(em);
4597 			write_unlock(&map->lock);
4598 
4599 			/* once for us */
4600 			free_extent_map(em);
4601 
4602 			cond_resched(); /* Allow large-extent preemption. */
4603 		}
4604 	}
4605 	return try_release_extent_state(tree, page, mask);
4606 }
4607 
4608 /*
4609  * helper function for fiemap, which doesn't want to see any holes.
4610  * This maps until we find something past 'last'
4611  */
4612 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4613 						u64 offset, u64 last)
4614 {
4615 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4616 	struct extent_map *em;
4617 	u64 len;
4618 
4619 	if (offset >= last)
4620 		return NULL;
4621 
4622 	while (1) {
4623 		len = last - offset;
4624 		if (len == 0)
4625 			break;
4626 		len = ALIGN(len, sectorsize);
4627 		em = btrfs_get_extent_fiemap(inode, offset, len);
4628 		if (IS_ERR_OR_NULL(em))
4629 			return em;
4630 
4631 		/* if this isn't a hole return it */
4632 		if (em->block_start != EXTENT_MAP_HOLE)
4633 			return em;
4634 
4635 		/* this is a hole, advance to the next extent */
4636 		offset = extent_map_end(em);
4637 		free_extent_map(em);
4638 		if (offset >= last)
4639 			break;
4640 	}
4641 	return NULL;
4642 }
4643 
4644 /*
4645  * To cache previous fiemap extent
4646  *
4647  * Will be used for merging fiemap extent
4648  */
4649 struct fiemap_cache {
4650 	u64 offset;
4651 	u64 phys;
4652 	u64 len;
4653 	u32 flags;
4654 	bool cached;
4655 };
4656 
4657 /*
4658  * Helper to submit fiemap extent.
4659  *
4660  * Will try to merge current fiemap extent specified by @offset, @phys,
4661  * @len and @flags with cached one.
4662  * And only when we fails to merge, cached one will be submitted as
4663  * fiemap extent.
4664  *
4665  * Return value is the same as fiemap_fill_next_extent().
4666  */
4667 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4668 				struct fiemap_cache *cache,
4669 				u64 offset, u64 phys, u64 len, u32 flags)
4670 {
4671 	int ret = 0;
4672 
4673 	if (!cache->cached)
4674 		goto assign;
4675 
4676 	/*
4677 	 * Sanity check, extent_fiemap() should have ensured that new
4678 	 * fiemap extent won't overlap with cached one.
4679 	 * Not recoverable.
4680 	 *
4681 	 * NOTE: Physical address can overlap, due to compression
4682 	 */
4683 	if (cache->offset + cache->len > offset) {
4684 		WARN_ON(1);
4685 		return -EINVAL;
4686 	}
4687 
4688 	/*
4689 	 * Only merges fiemap extents if
4690 	 * 1) Their logical addresses are continuous
4691 	 *
4692 	 * 2) Their physical addresses are continuous
4693 	 *    So truly compressed (physical size smaller than logical size)
4694 	 *    extents won't get merged with each other
4695 	 *
4696 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4697 	 *    So regular extent won't get merged with prealloc extent
4698 	 */
4699 	if (cache->offset + cache->len  == offset &&
4700 	    cache->phys + cache->len == phys  &&
4701 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4702 			(flags & ~FIEMAP_EXTENT_LAST)) {
4703 		cache->len += len;
4704 		cache->flags |= flags;
4705 		goto try_submit_last;
4706 	}
4707 
4708 	/* Not mergeable, need to submit cached one */
4709 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4710 				      cache->len, cache->flags);
4711 	cache->cached = false;
4712 	if (ret)
4713 		return ret;
4714 assign:
4715 	cache->cached = true;
4716 	cache->offset = offset;
4717 	cache->phys = phys;
4718 	cache->len = len;
4719 	cache->flags = flags;
4720 try_submit_last:
4721 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4722 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4723 				cache->phys, cache->len, cache->flags);
4724 		cache->cached = false;
4725 	}
4726 	return ret;
4727 }
4728 
4729 /*
4730  * Emit last fiemap cache
4731  *
4732  * The last fiemap cache may still be cached in the following case:
4733  * 0		      4k		    8k
4734  * |<- Fiemap range ->|
4735  * |<------------  First extent ----------->|
4736  *
4737  * In this case, the first extent range will be cached but not emitted.
4738  * So we must emit it before ending extent_fiemap().
4739  */
4740 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4741 				  struct fiemap_cache *cache)
4742 {
4743 	int ret;
4744 
4745 	if (!cache->cached)
4746 		return 0;
4747 
4748 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4749 				      cache->len, cache->flags);
4750 	cache->cached = false;
4751 	if (ret > 0)
4752 		ret = 0;
4753 	return ret;
4754 }
4755 
4756 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4757 		  u64 start, u64 len)
4758 {
4759 	int ret = 0;
4760 	u64 off = start;
4761 	u64 max = start + len;
4762 	u32 flags = 0;
4763 	u32 found_type;
4764 	u64 last;
4765 	u64 last_for_get_extent = 0;
4766 	u64 disko = 0;
4767 	u64 isize = i_size_read(&inode->vfs_inode);
4768 	struct btrfs_key found_key;
4769 	struct extent_map *em = NULL;
4770 	struct extent_state *cached_state = NULL;
4771 	struct btrfs_path *path;
4772 	struct btrfs_root *root = inode->root;
4773 	struct fiemap_cache cache = { 0 };
4774 	struct ulist *roots;
4775 	struct ulist *tmp_ulist;
4776 	int end = 0;
4777 	u64 em_start = 0;
4778 	u64 em_len = 0;
4779 	u64 em_end = 0;
4780 
4781 	if (len == 0)
4782 		return -EINVAL;
4783 
4784 	path = btrfs_alloc_path();
4785 	if (!path)
4786 		return -ENOMEM;
4787 
4788 	roots = ulist_alloc(GFP_KERNEL);
4789 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4790 	if (!roots || !tmp_ulist) {
4791 		ret = -ENOMEM;
4792 		goto out_free_ulist;
4793 	}
4794 
4795 	start = round_down(start, btrfs_inode_sectorsize(inode));
4796 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4797 
4798 	/*
4799 	 * lookup the last file extent.  We're not using i_size here
4800 	 * because there might be preallocation past i_size
4801 	 */
4802 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4803 				       0);
4804 	if (ret < 0) {
4805 		goto out_free_ulist;
4806 	} else {
4807 		WARN_ON(!ret);
4808 		if (ret == 1)
4809 			ret = 0;
4810 	}
4811 
4812 	path->slots[0]--;
4813 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4814 	found_type = found_key.type;
4815 
4816 	/* No extents, but there might be delalloc bits */
4817 	if (found_key.objectid != btrfs_ino(inode) ||
4818 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4819 		/* have to trust i_size as the end */
4820 		last = (u64)-1;
4821 		last_for_get_extent = isize;
4822 	} else {
4823 		/*
4824 		 * remember the start of the last extent.  There are a
4825 		 * bunch of different factors that go into the length of the
4826 		 * extent, so its much less complex to remember where it started
4827 		 */
4828 		last = found_key.offset;
4829 		last_for_get_extent = last + 1;
4830 	}
4831 	btrfs_release_path(path);
4832 
4833 	/*
4834 	 * we might have some extents allocated but more delalloc past those
4835 	 * extents.  so, we trust isize unless the start of the last extent is
4836 	 * beyond isize
4837 	 */
4838 	if (last < isize) {
4839 		last = (u64)-1;
4840 		last_for_get_extent = isize;
4841 	}
4842 
4843 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4844 			 &cached_state);
4845 
4846 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4847 	if (!em)
4848 		goto out;
4849 	if (IS_ERR(em)) {
4850 		ret = PTR_ERR(em);
4851 		goto out;
4852 	}
4853 
4854 	while (!end) {
4855 		u64 offset_in_extent = 0;
4856 
4857 		/* break if the extent we found is outside the range */
4858 		if (em->start >= max || extent_map_end(em) < off)
4859 			break;
4860 
4861 		/*
4862 		 * get_extent may return an extent that starts before our
4863 		 * requested range.  We have to make sure the ranges
4864 		 * we return to fiemap always move forward and don't
4865 		 * overlap, so adjust the offsets here
4866 		 */
4867 		em_start = max(em->start, off);
4868 
4869 		/*
4870 		 * record the offset from the start of the extent
4871 		 * for adjusting the disk offset below.  Only do this if the
4872 		 * extent isn't compressed since our in ram offset may be past
4873 		 * what we have actually allocated on disk.
4874 		 */
4875 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4876 			offset_in_extent = em_start - em->start;
4877 		em_end = extent_map_end(em);
4878 		em_len = em_end - em_start;
4879 		flags = 0;
4880 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4881 			disko = em->block_start + offset_in_extent;
4882 		else
4883 			disko = 0;
4884 
4885 		/*
4886 		 * bump off for our next call to get_extent
4887 		 */
4888 		off = extent_map_end(em);
4889 		if (off >= max)
4890 			end = 1;
4891 
4892 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4893 			end = 1;
4894 			flags |= FIEMAP_EXTENT_LAST;
4895 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4896 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4897 				  FIEMAP_EXTENT_NOT_ALIGNED);
4898 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4899 			flags |= (FIEMAP_EXTENT_DELALLOC |
4900 				  FIEMAP_EXTENT_UNKNOWN);
4901 		} else if (fieinfo->fi_extents_max) {
4902 			u64 bytenr = em->block_start -
4903 				(em->start - em->orig_start);
4904 
4905 			/*
4906 			 * As btrfs supports shared space, this information
4907 			 * can be exported to userspace tools via
4908 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4909 			 * then we're just getting a count and we can skip the
4910 			 * lookup stuff.
4911 			 */
4912 			ret = btrfs_check_shared(root, btrfs_ino(inode),
4913 						 bytenr, roots, tmp_ulist);
4914 			if (ret < 0)
4915 				goto out_free;
4916 			if (ret)
4917 				flags |= FIEMAP_EXTENT_SHARED;
4918 			ret = 0;
4919 		}
4920 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4921 			flags |= FIEMAP_EXTENT_ENCODED;
4922 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4923 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4924 
4925 		free_extent_map(em);
4926 		em = NULL;
4927 		if ((em_start >= last) || em_len == (u64)-1 ||
4928 		   (last == (u64)-1 && isize <= em_end)) {
4929 			flags |= FIEMAP_EXTENT_LAST;
4930 			end = 1;
4931 		}
4932 
4933 		/* now scan forward to see if this is really the last extent. */
4934 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4935 		if (IS_ERR(em)) {
4936 			ret = PTR_ERR(em);
4937 			goto out;
4938 		}
4939 		if (!em) {
4940 			flags |= FIEMAP_EXTENT_LAST;
4941 			end = 1;
4942 		}
4943 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4944 					   em_len, flags);
4945 		if (ret) {
4946 			if (ret == 1)
4947 				ret = 0;
4948 			goto out_free;
4949 		}
4950 	}
4951 out_free:
4952 	if (!ret)
4953 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4954 	free_extent_map(em);
4955 out:
4956 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4957 			     &cached_state);
4958 
4959 out_free_ulist:
4960 	btrfs_free_path(path);
4961 	ulist_free(roots);
4962 	ulist_free(tmp_ulist);
4963 	return ret;
4964 }
4965 
4966 static void __free_extent_buffer(struct extent_buffer *eb)
4967 {
4968 	kmem_cache_free(extent_buffer_cache, eb);
4969 }
4970 
4971 int extent_buffer_under_io(const struct extent_buffer *eb)
4972 {
4973 	return (atomic_read(&eb->io_pages) ||
4974 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4975 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4976 }
4977 
4978 /*
4979  * Release all pages attached to the extent buffer.
4980  */
4981 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4982 {
4983 	int i;
4984 	int num_pages;
4985 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4986 
4987 	BUG_ON(extent_buffer_under_io(eb));
4988 
4989 	num_pages = num_extent_pages(eb);
4990 	for (i = 0; i < num_pages; i++) {
4991 		struct page *page = eb->pages[i];
4992 
4993 		if (!page)
4994 			continue;
4995 		if (mapped)
4996 			spin_lock(&page->mapping->private_lock);
4997 		/*
4998 		 * We do this since we'll remove the pages after we've
4999 		 * removed the eb from the radix tree, so we could race
5000 		 * and have this page now attached to the new eb.  So
5001 		 * only clear page_private if it's still connected to
5002 		 * this eb.
5003 		 */
5004 		if (PagePrivate(page) &&
5005 		    page->private == (unsigned long)eb) {
5006 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5007 			BUG_ON(PageDirty(page));
5008 			BUG_ON(PageWriteback(page));
5009 			/*
5010 			 * We need to make sure we haven't be attached
5011 			 * to a new eb.
5012 			 */
5013 			detach_page_private(page);
5014 		}
5015 
5016 		if (mapped)
5017 			spin_unlock(&page->mapping->private_lock);
5018 
5019 		/* One for when we allocated the page */
5020 		put_page(page);
5021 	}
5022 }
5023 
5024 /*
5025  * Helper for releasing the extent buffer.
5026  */
5027 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5028 {
5029 	btrfs_release_extent_buffer_pages(eb);
5030 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5031 	__free_extent_buffer(eb);
5032 }
5033 
5034 static struct extent_buffer *
5035 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5036 		      unsigned long len)
5037 {
5038 	struct extent_buffer *eb = NULL;
5039 
5040 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5041 	eb->start = start;
5042 	eb->len = len;
5043 	eb->fs_info = fs_info;
5044 	eb->bflags = 0;
5045 	init_rwsem(&eb->lock);
5046 
5047 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5048 			     &fs_info->allocated_ebs);
5049 
5050 	spin_lock_init(&eb->refs_lock);
5051 	atomic_set(&eb->refs, 1);
5052 	atomic_set(&eb->io_pages, 0);
5053 
5054 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5055 
5056 	return eb;
5057 }
5058 
5059 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5060 {
5061 	int i;
5062 	struct page *p;
5063 	struct extent_buffer *new;
5064 	int num_pages = num_extent_pages(src);
5065 
5066 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5067 	if (new == NULL)
5068 		return NULL;
5069 
5070 	for (i = 0; i < num_pages; i++) {
5071 		p = alloc_page(GFP_NOFS);
5072 		if (!p) {
5073 			btrfs_release_extent_buffer(new);
5074 			return NULL;
5075 		}
5076 		attach_extent_buffer_page(new, p);
5077 		WARN_ON(PageDirty(p));
5078 		SetPageUptodate(p);
5079 		new->pages[i] = p;
5080 		copy_page(page_address(p), page_address(src->pages[i]));
5081 	}
5082 
5083 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5084 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5085 
5086 	return new;
5087 }
5088 
5089 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5090 						  u64 start, unsigned long len)
5091 {
5092 	struct extent_buffer *eb;
5093 	int num_pages;
5094 	int i;
5095 
5096 	eb = __alloc_extent_buffer(fs_info, start, len);
5097 	if (!eb)
5098 		return NULL;
5099 
5100 	num_pages = num_extent_pages(eb);
5101 	for (i = 0; i < num_pages; i++) {
5102 		eb->pages[i] = alloc_page(GFP_NOFS);
5103 		if (!eb->pages[i])
5104 			goto err;
5105 	}
5106 	set_extent_buffer_uptodate(eb);
5107 	btrfs_set_header_nritems(eb, 0);
5108 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5109 
5110 	return eb;
5111 err:
5112 	for (; i > 0; i--)
5113 		__free_page(eb->pages[i - 1]);
5114 	__free_extent_buffer(eb);
5115 	return NULL;
5116 }
5117 
5118 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5119 						u64 start)
5120 {
5121 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5122 }
5123 
5124 static void check_buffer_tree_ref(struct extent_buffer *eb)
5125 {
5126 	int refs;
5127 	/*
5128 	 * The TREE_REF bit is first set when the extent_buffer is added
5129 	 * to the radix tree. It is also reset, if unset, when a new reference
5130 	 * is created by find_extent_buffer.
5131 	 *
5132 	 * It is only cleared in two cases: freeing the last non-tree
5133 	 * reference to the extent_buffer when its STALE bit is set or
5134 	 * calling releasepage when the tree reference is the only reference.
5135 	 *
5136 	 * In both cases, care is taken to ensure that the extent_buffer's
5137 	 * pages are not under io. However, releasepage can be concurrently
5138 	 * called with creating new references, which is prone to race
5139 	 * conditions between the calls to check_buffer_tree_ref in those
5140 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5141 	 *
5142 	 * The actual lifetime of the extent_buffer in the radix tree is
5143 	 * adequately protected by the refcount, but the TREE_REF bit and
5144 	 * its corresponding reference are not. To protect against this
5145 	 * class of races, we call check_buffer_tree_ref from the codepaths
5146 	 * which trigger io after they set eb->io_pages. Note that once io is
5147 	 * initiated, TREE_REF can no longer be cleared, so that is the
5148 	 * moment at which any such race is best fixed.
5149 	 */
5150 	refs = atomic_read(&eb->refs);
5151 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5152 		return;
5153 
5154 	spin_lock(&eb->refs_lock);
5155 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5156 		atomic_inc(&eb->refs);
5157 	spin_unlock(&eb->refs_lock);
5158 }
5159 
5160 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5161 		struct page *accessed)
5162 {
5163 	int num_pages, i;
5164 
5165 	check_buffer_tree_ref(eb);
5166 
5167 	num_pages = num_extent_pages(eb);
5168 	for (i = 0; i < num_pages; i++) {
5169 		struct page *p = eb->pages[i];
5170 
5171 		if (p != accessed)
5172 			mark_page_accessed(p);
5173 	}
5174 }
5175 
5176 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5177 					 u64 start)
5178 {
5179 	struct extent_buffer *eb;
5180 
5181 	rcu_read_lock();
5182 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5183 			       start >> fs_info->sectorsize_bits);
5184 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5185 		rcu_read_unlock();
5186 		/*
5187 		 * Lock our eb's refs_lock to avoid races with
5188 		 * free_extent_buffer. When we get our eb it might be flagged
5189 		 * with EXTENT_BUFFER_STALE and another task running
5190 		 * free_extent_buffer might have seen that flag set,
5191 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5192 		 * writeback flags not set) and it's still in the tree (flag
5193 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5194 		 * of decrementing the extent buffer's reference count twice.
5195 		 * So here we could race and increment the eb's reference count,
5196 		 * clear its stale flag, mark it as dirty and drop our reference
5197 		 * before the other task finishes executing free_extent_buffer,
5198 		 * which would later result in an attempt to free an extent
5199 		 * buffer that is dirty.
5200 		 */
5201 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5202 			spin_lock(&eb->refs_lock);
5203 			spin_unlock(&eb->refs_lock);
5204 		}
5205 		mark_extent_buffer_accessed(eb, NULL);
5206 		return eb;
5207 	}
5208 	rcu_read_unlock();
5209 
5210 	return NULL;
5211 }
5212 
5213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5214 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5215 					u64 start)
5216 {
5217 	struct extent_buffer *eb, *exists = NULL;
5218 	int ret;
5219 
5220 	eb = find_extent_buffer(fs_info, start);
5221 	if (eb)
5222 		return eb;
5223 	eb = alloc_dummy_extent_buffer(fs_info, start);
5224 	if (!eb)
5225 		return ERR_PTR(-ENOMEM);
5226 	eb->fs_info = fs_info;
5227 again:
5228 	ret = radix_tree_preload(GFP_NOFS);
5229 	if (ret) {
5230 		exists = ERR_PTR(ret);
5231 		goto free_eb;
5232 	}
5233 	spin_lock(&fs_info->buffer_lock);
5234 	ret = radix_tree_insert(&fs_info->buffer_radix,
5235 				start >> fs_info->sectorsize_bits, eb);
5236 	spin_unlock(&fs_info->buffer_lock);
5237 	radix_tree_preload_end();
5238 	if (ret == -EEXIST) {
5239 		exists = find_extent_buffer(fs_info, start);
5240 		if (exists)
5241 			goto free_eb;
5242 		else
5243 			goto again;
5244 	}
5245 	check_buffer_tree_ref(eb);
5246 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5247 
5248 	return eb;
5249 free_eb:
5250 	btrfs_release_extent_buffer(eb);
5251 	return exists;
5252 }
5253 #endif
5254 
5255 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5256 					  u64 start, u64 owner_root, int level)
5257 {
5258 	unsigned long len = fs_info->nodesize;
5259 	int num_pages;
5260 	int i;
5261 	unsigned long index = start >> PAGE_SHIFT;
5262 	struct extent_buffer *eb;
5263 	struct extent_buffer *exists = NULL;
5264 	struct page *p;
5265 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5266 	int uptodate = 1;
5267 	int ret;
5268 
5269 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5270 		btrfs_err(fs_info, "bad tree block start %llu", start);
5271 		return ERR_PTR(-EINVAL);
5272 	}
5273 
5274 	if (fs_info->sectorsize < PAGE_SIZE &&
5275 	    offset_in_page(start) + len > PAGE_SIZE) {
5276 		btrfs_err(fs_info,
5277 		"tree block crosses page boundary, start %llu nodesize %lu",
5278 			  start, len);
5279 		return ERR_PTR(-EINVAL);
5280 	}
5281 
5282 	eb = find_extent_buffer(fs_info, start);
5283 	if (eb)
5284 		return eb;
5285 
5286 	eb = __alloc_extent_buffer(fs_info, start, len);
5287 	if (!eb)
5288 		return ERR_PTR(-ENOMEM);
5289 	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5290 
5291 	num_pages = num_extent_pages(eb);
5292 	for (i = 0; i < num_pages; i++, index++) {
5293 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5294 		if (!p) {
5295 			exists = ERR_PTR(-ENOMEM);
5296 			goto free_eb;
5297 		}
5298 
5299 		spin_lock(&mapping->private_lock);
5300 		if (PagePrivate(p)) {
5301 			/*
5302 			 * We could have already allocated an eb for this page
5303 			 * and attached one so lets see if we can get a ref on
5304 			 * the existing eb, and if we can we know it's good and
5305 			 * we can just return that one, else we know we can just
5306 			 * overwrite page->private.
5307 			 */
5308 			exists = (struct extent_buffer *)p->private;
5309 			if (atomic_inc_not_zero(&exists->refs)) {
5310 				spin_unlock(&mapping->private_lock);
5311 				unlock_page(p);
5312 				put_page(p);
5313 				mark_extent_buffer_accessed(exists, p);
5314 				goto free_eb;
5315 			}
5316 			exists = NULL;
5317 
5318 			WARN_ON(PageDirty(p));
5319 			detach_page_private(p);
5320 		}
5321 		attach_extent_buffer_page(eb, p);
5322 		spin_unlock(&mapping->private_lock);
5323 		WARN_ON(PageDirty(p));
5324 		eb->pages[i] = p;
5325 		if (!PageUptodate(p))
5326 			uptodate = 0;
5327 
5328 		/*
5329 		 * We can't unlock the pages just yet since the extent buffer
5330 		 * hasn't been properly inserted in the radix tree, this
5331 		 * opens a race with btree_releasepage which can free a page
5332 		 * while we are still filling in all pages for the buffer and
5333 		 * we could crash.
5334 		 */
5335 	}
5336 	if (uptodate)
5337 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5338 again:
5339 	ret = radix_tree_preload(GFP_NOFS);
5340 	if (ret) {
5341 		exists = ERR_PTR(ret);
5342 		goto free_eb;
5343 	}
5344 
5345 	spin_lock(&fs_info->buffer_lock);
5346 	ret = radix_tree_insert(&fs_info->buffer_radix,
5347 				start >> fs_info->sectorsize_bits, eb);
5348 	spin_unlock(&fs_info->buffer_lock);
5349 	radix_tree_preload_end();
5350 	if (ret == -EEXIST) {
5351 		exists = find_extent_buffer(fs_info, start);
5352 		if (exists)
5353 			goto free_eb;
5354 		else
5355 			goto again;
5356 	}
5357 	/* add one reference for the tree */
5358 	check_buffer_tree_ref(eb);
5359 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5360 
5361 	/*
5362 	 * Now it's safe to unlock the pages because any calls to
5363 	 * btree_releasepage will correctly detect that a page belongs to a
5364 	 * live buffer and won't free them prematurely.
5365 	 */
5366 	for (i = 0; i < num_pages; i++)
5367 		unlock_page(eb->pages[i]);
5368 	return eb;
5369 
5370 free_eb:
5371 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5372 	for (i = 0; i < num_pages; i++) {
5373 		if (eb->pages[i])
5374 			unlock_page(eb->pages[i]);
5375 	}
5376 
5377 	btrfs_release_extent_buffer(eb);
5378 	return exists;
5379 }
5380 
5381 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5382 {
5383 	struct extent_buffer *eb =
5384 			container_of(head, struct extent_buffer, rcu_head);
5385 
5386 	__free_extent_buffer(eb);
5387 }
5388 
5389 static int release_extent_buffer(struct extent_buffer *eb)
5390 	__releases(&eb->refs_lock)
5391 {
5392 	lockdep_assert_held(&eb->refs_lock);
5393 
5394 	WARN_ON(atomic_read(&eb->refs) == 0);
5395 	if (atomic_dec_and_test(&eb->refs)) {
5396 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5397 			struct btrfs_fs_info *fs_info = eb->fs_info;
5398 
5399 			spin_unlock(&eb->refs_lock);
5400 
5401 			spin_lock(&fs_info->buffer_lock);
5402 			radix_tree_delete(&fs_info->buffer_radix,
5403 					  eb->start >> fs_info->sectorsize_bits);
5404 			spin_unlock(&fs_info->buffer_lock);
5405 		} else {
5406 			spin_unlock(&eb->refs_lock);
5407 		}
5408 
5409 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5410 		/* Should be safe to release our pages at this point */
5411 		btrfs_release_extent_buffer_pages(eb);
5412 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5413 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5414 			__free_extent_buffer(eb);
5415 			return 1;
5416 		}
5417 #endif
5418 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5419 		return 1;
5420 	}
5421 	spin_unlock(&eb->refs_lock);
5422 
5423 	return 0;
5424 }
5425 
5426 void free_extent_buffer(struct extent_buffer *eb)
5427 {
5428 	int refs;
5429 	int old;
5430 	if (!eb)
5431 		return;
5432 
5433 	while (1) {
5434 		refs = atomic_read(&eb->refs);
5435 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5436 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5437 			refs == 1))
5438 			break;
5439 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5440 		if (old == refs)
5441 			return;
5442 	}
5443 
5444 	spin_lock(&eb->refs_lock);
5445 	if (atomic_read(&eb->refs) == 2 &&
5446 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5447 	    !extent_buffer_under_io(eb) &&
5448 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5449 		atomic_dec(&eb->refs);
5450 
5451 	/*
5452 	 * I know this is terrible, but it's temporary until we stop tracking
5453 	 * the uptodate bits and such for the extent buffers.
5454 	 */
5455 	release_extent_buffer(eb);
5456 }
5457 
5458 void free_extent_buffer_stale(struct extent_buffer *eb)
5459 {
5460 	if (!eb)
5461 		return;
5462 
5463 	spin_lock(&eb->refs_lock);
5464 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5465 
5466 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5467 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5468 		atomic_dec(&eb->refs);
5469 	release_extent_buffer(eb);
5470 }
5471 
5472 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5473 {
5474 	int i;
5475 	int num_pages;
5476 	struct page *page;
5477 
5478 	num_pages = num_extent_pages(eb);
5479 
5480 	for (i = 0; i < num_pages; i++) {
5481 		page = eb->pages[i];
5482 		if (!PageDirty(page))
5483 			continue;
5484 
5485 		lock_page(page);
5486 		WARN_ON(!PagePrivate(page));
5487 
5488 		clear_page_dirty_for_io(page);
5489 		xa_lock_irq(&page->mapping->i_pages);
5490 		if (!PageDirty(page))
5491 			__xa_clear_mark(&page->mapping->i_pages,
5492 					page_index(page), PAGECACHE_TAG_DIRTY);
5493 		xa_unlock_irq(&page->mapping->i_pages);
5494 		ClearPageError(page);
5495 		unlock_page(page);
5496 	}
5497 	WARN_ON(atomic_read(&eb->refs) == 0);
5498 }
5499 
5500 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5501 {
5502 	int i;
5503 	int num_pages;
5504 	bool was_dirty;
5505 
5506 	check_buffer_tree_ref(eb);
5507 
5508 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5509 
5510 	num_pages = num_extent_pages(eb);
5511 	WARN_ON(atomic_read(&eb->refs) == 0);
5512 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5513 
5514 	if (!was_dirty)
5515 		for (i = 0; i < num_pages; i++)
5516 			set_page_dirty(eb->pages[i]);
5517 
5518 #ifdef CONFIG_BTRFS_DEBUG
5519 	for (i = 0; i < num_pages; i++)
5520 		ASSERT(PageDirty(eb->pages[i]));
5521 #endif
5522 
5523 	return was_dirty;
5524 }
5525 
5526 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5527 {
5528 	int i;
5529 	struct page *page;
5530 	int num_pages;
5531 
5532 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5533 	num_pages = num_extent_pages(eb);
5534 	for (i = 0; i < num_pages; i++) {
5535 		page = eb->pages[i];
5536 		if (page)
5537 			ClearPageUptodate(page);
5538 	}
5539 }
5540 
5541 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5542 {
5543 	int i;
5544 	struct page *page;
5545 	int num_pages;
5546 
5547 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5548 	num_pages = num_extent_pages(eb);
5549 	for (i = 0; i < num_pages; i++) {
5550 		page = eb->pages[i];
5551 		SetPageUptodate(page);
5552 	}
5553 }
5554 
5555 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5556 {
5557 	int i;
5558 	struct page *page;
5559 	int err;
5560 	int ret = 0;
5561 	int locked_pages = 0;
5562 	int all_uptodate = 1;
5563 	int num_pages;
5564 	unsigned long num_reads = 0;
5565 	struct bio *bio = NULL;
5566 	unsigned long bio_flags = 0;
5567 
5568 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5569 		return 0;
5570 
5571 	num_pages = num_extent_pages(eb);
5572 	for (i = 0; i < num_pages; i++) {
5573 		page = eb->pages[i];
5574 		if (wait == WAIT_NONE) {
5575 			if (!trylock_page(page))
5576 				goto unlock_exit;
5577 		} else {
5578 			lock_page(page);
5579 		}
5580 		locked_pages++;
5581 	}
5582 	/*
5583 	 * We need to firstly lock all pages to make sure that
5584 	 * the uptodate bit of our pages won't be affected by
5585 	 * clear_extent_buffer_uptodate().
5586 	 */
5587 	for (i = 0; i < num_pages; i++) {
5588 		page = eb->pages[i];
5589 		if (!PageUptodate(page)) {
5590 			num_reads++;
5591 			all_uptodate = 0;
5592 		}
5593 	}
5594 
5595 	if (all_uptodate) {
5596 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5597 		goto unlock_exit;
5598 	}
5599 
5600 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5601 	eb->read_mirror = 0;
5602 	atomic_set(&eb->io_pages, num_reads);
5603 	/*
5604 	 * It is possible for releasepage to clear the TREE_REF bit before we
5605 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5606 	 */
5607 	check_buffer_tree_ref(eb);
5608 	for (i = 0; i < num_pages; i++) {
5609 		page = eb->pages[i];
5610 
5611 		if (!PageUptodate(page)) {
5612 			if (ret) {
5613 				atomic_dec(&eb->io_pages);
5614 				unlock_page(page);
5615 				continue;
5616 			}
5617 
5618 			ClearPageError(page);
5619 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5620 					 page, page_offset(page), PAGE_SIZE, 0,
5621 					 &bio, end_bio_extent_readpage,
5622 					 mirror_num, 0, 0, false);
5623 			if (err) {
5624 				/*
5625 				 * We failed to submit the bio so it's the
5626 				 * caller's responsibility to perform cleanup
5627 				 * i.e unlock page/set error bit.
5628 				 */
5629 				ret = err;
5630 				SetPageError(page);
5631 				unlock_page(page);
5632 				atomic_dec(&eb->io_pages);
5633 			}
5634 		} else {
5635 			unlock_page(page);
5636 		}
5637 	}
5638 
5639 	if (bio) {
5640 		err = submit_one_bio(bio, mirror_num, bio_flags);
5641 		if (err)
5642 			return err;
5643 	}
5644 
5645 	if (ret || wait != WAIT_COMPLETE)
5646 		return ret;
5647 
5648 	for (i = 0; i < num_pages; i++) {
5649 		page = eb->pages[i];
5650 		wait_on_page_locked(page);
5651 		if (!PageUptodate(page))
5652 			ret = -EIO;
5653 	}
5654 
5655 	return ret;
5656 
5657 unlock_exit:
5658 	while (locked_pages > 0) {
5659 		locked_pages--;
5660 		page = eb->pages[locked_pages];
5661 		unlock_page(page);
5662 	}
5663 	return ret;
5664 }
5665 
5666 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5667 			    unsigned long len)
5668 {
5669 	btrfs_warn(eb->fs_info,
5670 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5671 		eb->start, eb->len, start, len);
5672 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5673 
5674 	return true;
5675 }
5676 
5677 /*
5678  * Check if the [start, start + len) range is valid before reading/writing
5679  * the eb.
5680  * NOTE: @start and @len are offset inside the eb, not logical address.
5681  *
5682  * Caller should not touch the dst/src memory if this function returns error.
5683  */
5684 static inline int check_eb_range(const struct extent_buffer *eb,
5685 				 unsigned long start, unsigned long len)
5686 {
5687 	unsigned long offset;
5688 
5689 	/* start, start + len should not go beyond eb->len nor overflow */
5690 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5691 		return report_eb_range(eb, start, len);
5692 
5693 	return false;
5694 }
5695 
5696 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5697 			unsigned long start, unsigned long len)
5698 {
5699 	size_t cur;
5700 	size_t offset;
5701 	struct page *page;
5702 	char *kaddr;
5703 	char *dst = (char *)dstv;
5704 	unsigned long i = get_eb_page_index(start);
5705 
5706 	if (check_eb_range(eb, start, len))
5707 		return;
5708 
5709 	offset = get_eb_offset_in_page(eb, start);
5710 
5711 	while (len > 0) {
5712 		page = eb->pages[i];
5713 
5714 		cur = min(len, (PAGE_SIZE - offset));
5715 		kaddr = page_address(page);
5716 		memcpy(dst, kaddr + offset, cur);
5717 
5718 		dst += cur;
5719 		len -= cur;
5720 		offset = 0;
5721 		i++;
5722 	}
5723 }
5724 
5725 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5726 				       void __user *dstv,
5727 				       unsigned long start, unsigned long len)
5728 {
5729 	size_t cur;
5730 	size_t offset;
5731 	struct page *page;
5732 	char *kaddr;
5733 	char __user *dst = (char __user *)dstv;
5734 	unsigned long i = get_eb_page_index(start);
5735 	int ret = 0;
5736 
5737 	WARN_ON(start > eb->len);
5738 	WARN_ON(start + len > eb->start + eb->len);
5739 
5740 	offset = get_eb_offset_in_page(eb, start);
5741 
5742 	while (len > 0) {
5743 		page = eb->pages[i];
5744 
5745 		cur = min(len, (PAGE_SIZE - offset));
5746 		kaddr = page_address(page);
5747 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5748 			ret = -EFAULT;
5749 			break;
5750 		}
5751 
5752 		dst += cur;
5753 		len -= cur;
5754 		offset = 0;
5755 		i++;
5756 	}
5757 
5758 	return ret;
5759 }
5760 
5761 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5762 			 unsigned long start, unsigned long len)
5763 {
5764 	size_t cur;
5765 	size_t offset;
5766 	struct page *page;
5767 	char *kaddr;
5768 	char *ptr = (char *)ptrv;
5769 	unsigned long i = get_eb_page_index(start);
5770 	int ret = 0;
5771 
5772 	if (check_eb_range(eb, start, len))
5773 		return -EINVAL;
5774 
5775 	offset = get_eb_offset_in_page(eb, start);
5776 
5777 	while (len > 0) {
5778 		page = eb->pages[i];
5779 
5780 		cur = min(len, (PAGE_SIZE - offset));
5781 
5782 		kaddr = page_address(page);
5783 		ret = memcmp(ptr, kaddr + offset, cur);
5784 		if (ret)
5785 			break;
5786 
5787 		ptr += cur;
5788 		len -= cur;
5789 		offset = 0;
5790 		i++;
5791 	}
5792 	return ret;
5793 }
5794 
5795 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5796 		const void *srcv)
5797 {
5798 	char *kaddr;
5799 
5800 	WARN_ON(!PageUptodate(eb->pages[0]));
5801 	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5802 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5803 			BTRFS_FSID_SIZE);
5804 }
5805 
5806 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5807 {
5808 	char *kaddr;
5809 
5810 	WARN_ON(!PageUptodate(eb->pages[0]));
5811 	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5812 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5813 			BTRFS_FSID_SIZE);
5814 }
5815 
5816 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5817 			 unsigned long start, unsigned long len)
5818 {
5819 	size_t cur;
5820 	size_t offset;
5821 	struct page *page;
5822 	char *kaddr;
5823 	char *src = (char *)srcv;
5824 	unsigned long i = get_eb_page_index(start);
5825 
5826 	if (check_eb_range(eb, start, len))
5827 		return;
5828 
5829 	offset = get_eb_offset_in_page(eb, start);
5830 
5831 	while (len > 0) {
5832 		page = eb->pages[i];
5833 		WARN_ON(!PageUptodate(page));
5834 
5835 		cur = min(len, PAGE_SIZE - offset);
5836 		kaddr = page_address(page);
5837 		memcpy(kaddr + offset, src, cur);
5838 
5839 		src += cur;
5840 		len -= cur;
5841 		offset = 0;
5842 		i++;
5843 	}
5844 }
5845 
5846 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5847 		unsigned long len)
5848 {
5849 	size_t cur;
5850 	size_t offset;
5851 	struct page *page;
5852 	char *kaddr;
5853 	unsigned long i = get_eb_page_index(start);
5854 
5855 	if (check_eb_range(eb, start, len))
5856 		return;
5857 
5858 	offset = get_eb_offset_in_page(eb, start);
5859 
5860 	while (len > 0) {
5861 		page = eb->pages[i];
5862 		WARN_ON(!PageUptodate(page));
5863 
5864 		cur = min(len, PAGE_SIZE - offset);
5865 		kaddr = page_address(page);
5866 		memset(kaddr + offset, 0, cur);
5867 
5868 		len -= cur;
5869 		offset = 0;
5870 		i++;
5871 	}
5872 }
5873 
5874 void copy_extent_buffer_full(const struct extent_buffer *dst,
5875 			     const struct extent_buffer *src)
5876 {
5877 	int i;
5878 	int num_pages;
5879 
5880 	ASSERT(dst->len == src->len);
5881 
5882 	if (dst->fs_info->sectorsize == PAGE_SIZE) {
5883 		num_pages = num_extent_pages(dst);
5884 		for (i = 0; i < num_pages; i++)
5885 			copy_page(page_address(dst->pages[i]),
5886 				  page_address(src->pages[i]));
5887 	} else {
5888 		size_t src_offset = get_eb_offset_in_page(src, 0);
5889 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
5890 
5891 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
5892 		memcpy(page_address(dst->pages[0]) + dst_offset,
5893 		       page_address(src->pages[0]) + src_offset,
5894 		       src->len);
5895 	}
5896 }
5897 
5898 void copy_extent_buffer(const struct extent_buffer *dst,
5899 			const struct extent_buffer *src,
5900 			unsigned long dst_offset, unsigned long src_offset,
5901 			unsigned long len)
5902 {
5903 	u64 dst_len = dst->len;
5904 	size_t cur;
5905 	size_t offset;
5906 	struct page *page;
5907 	char *kaddr;
5908 	unsigned long i = get_eb_page_index(dst_offset);
5909 
5910 	if (check_eb_range(dst, dst_offset, len) ||
5911 	    check_eb_range(src, src_offset, len))
5912 		return;
5913 
5914 	WARN_ON(src->len != dst_len);
5915 
5916 	offset = get_eb_offset_in_page(dst, dst_offset);
5917 
5918 	while (len > 0) {
5919 		page = dst->pages[i];
5920 		WARN_ON(!PageUptodate(page));
5921 
5922 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5923 
5924 		kaddr = page_address(page);
5925 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5926 
5927 		src_offset += cur;
5928 		len -= cur;
5929 		offset = 0;
5930 		i++;
5931 	}
5932 }
5933 
5934 /*
5935  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5936  * given bit number
5937  * @eb: the extent buffer
5938  * @start: offset of the bitmap item in the extent buffer
5939  * @nr: bit number
5940  * @page_index: return index of the page in the extent buffer that contains the
5941  * given bit number
5942  * @page_offset: return offset into the page given by page_index
5943  *
5944  * This helper hides the ugliness of finding the byte in an extent buffer which
5945  * contains a given bit.
5946  */
5947 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5948 				    unsigned long start, unsigned long nr,
5949 				    unsigned long *page_index,
5950 				    size_t *page_offset)
5951 {
5952 	size_t byte_offset = BIT_BYTE(nr);
5953 	size_t offset;
5954 
5955 	/*
5956 	 * The byte we want is the offset of the extent buffer + the offset of
5957 	 * the bitmap item in the extent buffer + the offset of the byte in the
5958 	 * bitmap item.
5959 	 */
5960 	offset = start + offset_in_page(eb->start) + byte_offset;
5961 
5962 	*page_index = offset >> PAGE_SHIFT;
5963 	*page_offset = offset_in_page(offset);
5964 }
5965 
5966 /**
5967  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5968  * @eb: the extent buffer
5969  * @start: offset of the bitmap item in the extent buffer
5970  * @nr: bit number to test
5971  */
5972 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5973 			   unsigned long nr)
5974 {
5975 	u8 *kaddr;
5976 	struct page *page;
5977 	unsigned long i;
5978 	size_t offset;
5979 
5980 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5981 	page = eb->pages[i];
5982 	WARN_ON(!PageUptodate(page));
5983 	kaddr = page_address(page);
5984 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5985 }
5986 
5987 /**
5988  * extent_buffer_bitmap_set - set an area of a bitmap
5989  * @eb: the extent buffer
5990  * @start: offset of the bitmap item in the extent buffer
5991  * @pos: bit number of the first bit
5992  * @len: number of bits to set
5993  */
5994 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5995 			      unsigned long pos, unsigned long len)
5996 {
5997 	u8 *kaddr;
5998 	struct page *page;
5999 	unsigned long i;
6000 	size_t offset;
6001 	const unsigned int size = pos + len;
6002 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6003 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6004 
6005 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6006 	page = eb->pages[i];
6007 	WARN_ON(!PageUptodate(page));
6008 	kaddr = page_address(page);
6009 
6010 	while (len >= bits_to_set) {
6011 		kaddr[offset] |= mask_to_set;
6012 		len -= bits_to_set;
6013 		bits_to_set = BITS_PER_BYTE;
6014 		mask_to_set = ~0;
6015 		if (++offset >= PAGE_SIZE && len > 0) {
6016 			offset = 0;
6017 			page = eb->pages[++i];
6018 			WARN_ON(!PageUptodate(page));
6019 			kaddr = page_address(page);
6020 		}
6021 	}
6022 	if (len) {
6023 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6024 		kaddr[offset] |= mask_to_set;
6025 	}
6026 }
6027 
6028 
6029 /**
6030  * extent_buffer_bitmap_clear - clear an area of a bitmap
6031  * @eb: the extent buffer
6032  * @start: offset of the bitmap item in the extent buffer
6033  * @pos: bit number of the first bit
6034  * @len: number of bits to clear
6035  */
6036 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6037 				unsigned long start, unsigned long pos,
6038 				unsigned long len)
6039 {
6040 	u8 *kaddr;
6041 	struct page *page;
6042 	unsigned long i;
6043 	size_t offset;
6044 	const unsigned int size = pos + len;
6045 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6046 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6047 
6048 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6049 	page = eb->pages[i];
6050 	WARN_ON(!PageUptodate(page));
6051 	kaddr = page_address(page);
6052 
6053 	while (len >= bits_to_clear) {
6054 		kaddr[offset] &= ~mask_to_clear;
6055 		len -= bits_to_clear;
6056 		bits_to_clear = BITS_PER_BYTE;
6057 		mask_to_clear = ~0;
6058 		if (++offset >= PAGE_SIZE && len > 0) {
6059 			offset = 0;
6060 			page = eb->pages[++i];
6061 			WARN_ON(!PageUptodate(page));
6062 			kaddr = page_address(page);
6063 		}
6064 	}
6065 	if (len) {
6066 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6067 		kaddr[offset] &= ~mask_to_clear;
6068 	}
6069 }
6070 
6071 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6072 {
6073 	unsigned long distance = (src > dst) ? src - dst : dst - src;
6074 	return distance < len;
6075 }
6076 
6077 static void copy_pages(struct page *dst_page, struct page *src_page,
6078 		       unsigned long dst_off, unsigned long src_off,
6079 		       unsigned long len)
6080 {
6081 	char *dst_kaddr = page_address(dst_page);
6082 	char *src_kaddr;
6083 	int must_memmove = 0;
6084 
6085 	if (dst_page != src_page) {
6086 		src_kaddr = page_address(src_page);
6087 	} else {
6088 		src_kaddr = dst_kaddr;
6089 		if (areas_overlap(src_off, dst_off, len))
6090 			must_memmove = 1;
6091 	}
6092 
6093 	if (must_memmove)
6094 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6095 	else
6096 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6097 }
6098 
6099 void memcpy_extent_buffer(const struct extent_buffer *dst,
6100 			  unsigned long dst_offset, unsigned long src_offset,
6101 			  unsigned long len)
6102 {
6103 	size_t cur;
6104 	size_t dst_off_in_page;
6105 	size_t src_off_in_page;
6106 	unsigned long dst_i;
6107 	unsigned long src_i;
6108 
6109 	if (check_eb_range(dst, dst_offset, len) ||
6110 	    check_eb_range(dst, src_offset, len))
6111 		return;
6112 
6113 	while (len > 0) {
6114 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6115 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6116 
6117 		dst_i = get_eb_page_index(dst_offset);
6118 		src_i = get_eb_page_index(src_offset);
6119 
6120 		cur = min(len, (unsigned long)(PAGE_SIZE -
6121 					       src_off_in_page));
6122 		cur = min_t(unsigned long, cur,
6123 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6124 
6125 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6126 			   dst_off_in_page, src_off_in_page, cur);
6127 
6128 		src_offset += cur;
6129 		dst_offset += cur;
6130 		len -= cur;
6131 	}
6132 }
6133 
6134 void memmove_extent_buffer(const struct extent_buffer *dst,
6135 			   unsigned long dst_offset, unsigned long src_offset,
6136 			   unsigned long len)
6137 {
6138 	size_t cur;
6139 	size_t dst_off_in_page;
6140 	size_t src_off_in_page;
6141 	unsigned long dst_end = dst_offset + len - 1;
6142 	unsigned long src_end = src_offset + len - 1;
6143 	unsigned long dst_i;
6144 	unsigned long src_i;
6145 
6146 	if (check_eb_range(dst, dst_offset, len) ||
6147 	    check_eb_range(dst, src_offset, len))
6148 		return;
6149 	if (dst_offset < src_offset) {
6150 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6151 		return;
6152 	}
6153 	while (len > 0) {
6154 		dst_i = get_eb_page_index(dst_end);
6155 		src_i = get_eb_page_index(src_end);
6156 
6157 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
6158 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6159 
6160 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6161 		cur = min(cur, dst_off_in_page + 1);
6162 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6163 			   dst_off_in_page - cur + 1,
6164 			   src_off_in_page - cur + 1, cur);
6165 
6166 		dst_end -= cur;
6167 		src_end -= cur;
6168 		len -= cur;
6169 	}
6170 }
6171 
6172 int try_release_extent_buffer(struct page *page)
6173 {
6174 	struct extent_buffer *eb;
6175 
6176 	/*
6177 	 * We need to make sure nobody is attaching this page to an eb right
6178 	 * now.
6179 	 */
6180 	spin_lock(&page->mapping->private_lock);
6181 	if (!PagePrivate(page)) {
6182 		spin_unlock(&page->mapping->private_lock);
6183 		return 1;
6184 	}
6185 
6186 	eb = (struct extent_buffer *)page->private;
6187 	BUG_ON(!eb);
6188 
6189 	/*
6190 	 * This is a little awful but should be ok, we need to make sure that
6191 	 * the eb doesn't disappear out from under us while we're looking at
6192 	 * this page.
6193 	 */
6194 	spin_lock(&eb->refs_lock);
6195 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6196 		spin_unlock(&eb->refs_lock);
6197 		spin_unlock(&page->mapping->private_lock);
6198 		return 0;
6199 	}
6200 	spin_unlock(&page->mapping->private_lock);
6201 
6202 	/*
6203 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6204 	 * so just return, this page will likely be freed soon anyway.
6205 	 */
6206 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6207 		spin_unlock(&eb->refs_lock);
6208 		return 0;
6209 	}
6210 
6211 	return release_extent_buffer(eb);
6212 }
6213 
6214 /*
6215  * btrfs_readahead_tree_block - attempt to readahead a child block
6216  * @fs_info:	the fs_info
6217  * @bytenr:	bytenr to read
6218  * @owner_root: objectid of the root that owns this eb
6219  * @gen:	generation for the uptodate check, can be 0
6220  * @level:	level for the eb
6221  *
6222  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
6223  * normal uptodate check of the eb, without checking the generation.  If we have
6224  * to read the block we will not block on anything.
6225  */
6226 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6227 				u64 bytenr, u64 owner_root, u64 gen, int level)
6228 {
6229 	struct extent_buffer *eb;
6230 	int ret;
6231 
6232 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6233 	if (IS_ERR(eb))
6234 		return;
6235 
6236 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
6237 		free_extent_buffer(eb);
6238 		return;
6239 	}
6240 
6241 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
6242 	if (ret < 0)
6243 		free_extent_buffer_stale(eb);
6244 	else
6245 		free_extent_buffer(eb);
6246 }
6247 
6248 /*
6249  * btrfs_readahead_node_child - readahead a node's child block
6250  * @node:	parent node we're reading from
6251  * @slot:	slot in the parent node for the child we want to read
6252  *
6253  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
6254  * the slot in the node provided.
6255  */
6256 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
6257 {
6258 	btrfs_readahead_tree_block(node->fs_info,
6259 				   btrfs_node_blockptr(node, slot),
6260 				   btrfs_header_owner(node),
6261 				   btrfs_node_ptr_generation(node, slot),
6262 				   btrfs_header_level(node) - 1);
6263 }
6264