1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/module.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "compat.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 25 static struct kmem_cache *extent_state_cache; 26 static struct kmem_cache *extent_buffer_cache; 27 28 static LIST_HEAD(buffers); 29 static LIST_HEAD(states); 30 31 #define LEAK_DEBUG 0 32 #if LEAK_DEBUG 33 static DEFINE_SPINLOCK(leak_lock); 34 #endif 35 36 #define BUFFER_LRU_MAX 64 37 38 struct tree_entry { 39 u64 start; 40 u64 end; 41 struct rb_node rb_node; 42 }; 43 44 struct extent_page_data { 45 struct bio *bio; 46 struct extent_io_tree *tree; 47 get_extent_t *get_extent; 48 49 /* tells writepage not to lock the state bits for this range 50 * it still does the unlocking 51 */ 52 unsigned int extent_locked:1; 53 54 /* tells the submit_bio code to use a WRITE_SYNC */ 55 unsigned int sync_io:1; 56 }; 57 58 static noinline void flush_write_bio(void *data); 59 static inline struct btrfs_fs_info * 60 tree_fs_info(struct extent_io_tree *tree) 61 { 62 return btrfs_sb(tree->mapping->host->i_sb); 63 } 64 65 int __init extent_io_init(void) 66 { 67 extent_state_cache = kmem_cache_create("extent_state", 68 sizeof(struct extent_state), 0, 69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 70 if (!extent_state_cache) 71 return -ENOMEM; 72 73 extent_buffer_cache = kmem_cache_create("extent_buffers", 74 sizeof(struct extent_buffer), 0, 75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 76 if (!extent_buffer_cache) 77 goto free_state_cache; 78 return 0; 79 80 free_state_cache: 81 kmem_cache_destroy(extent_state_cache); 82 return -ENOMEM; 83 } 84 85 void extent_io_exit(void) 86 { 87 struct extent_state *state; 88 struct extent_buffer *eb; 89 90 while (!list_empty(&states)) { 91 state = list_entry(states.next, struct extent_state, leak_list); 92 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 93 "state %lu in tree %p refs %d\n", 94 (unsigned long long)state->start, 95 (unsigned long long)state->end, 96 state->state, state->tree, atomic_read(&state->refs)); 97 list_del(&state->leak_list); 98 kmem_cache_free(extent_state_cache, state); 99 100 } 101 102 while (!list_empty(&buffers)) { 103 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 105 "refs %d\n", (unsigned long long)eb->start, 106 eb->len, atomic_read(&eb->refs)); 107 list_del(&eb->leak_list); 108 kmem_cache_free(extent_buffer_cache, eb); 109 } 110 if (extent_state_cache) 111 kmem_cache_destroy(extent_state_cache); 112 if (extent_buffer_cache) 113 kmem_cache_destroy(extent_buffer_cache); 114 } 115 116 void extent_io_tree_init(struct extent_io_tree *tree, 117 struct address_space *mapping) 118 { 119 tree->state = RB_ROOT; 120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 121 tree->ops = NULL; 122 tree->dirty_bytes = 0; 123 spin_lock_init(&tree->lock); 124 spin_lock_init(&tree->buffer_lock); 125 tree->mapping = mapping; 126 } 127 128 static struct extent_state *alloc_extent_state(gfp_t mask) 129 { 130 struct extent_state *state; 131 #if LEAK_DEBUG 132 unsigned long flags; 133 #endif 134 135 state = kmem_cache_alloc(extent_state_cache, mask); 136 if (!state) 137 return state; 138 state->state = 0; 139 state->private = 0; 140 state->tree = NULL; 141 #if LEAK_DEBUG 142 spin_lock_irqsave(&leak_lock, flags); 143 list_add(&state->leak_list, &states); 144 spin_unlock_irqrestore(&leak_lock, flags); 145 #endif 146 atomic_set(&state->refs, 1); 147 init_waitqueue_head(&state->wq); 148 trace_alloc_extent_state(state, mask, _RET_IP_); 149 return state; 150 } 151 152 void free_extent_state(struct extent_state *state) 153 { 154 if (!state) 155 return; 156 if (atomic_dec_and_test(&state->refs)) { 157 #if LEAK_DEBUG 158 unsigned long flags; 159 #endif 160 WARN_ON(state->tree); 161 #if LEAK_DEBUG 162 spin_lock_irqsave(&leak_lock, flags); 163 list_del(&state->leak_list); 164 spin_unlock_irqrestore(&leak_lock, flags); 165 #endif 166 trace_free_extent_state(state, _RET_IP_); 167 kmem_cache_free(extent_state_cache, state); 168 } 169 } 170 171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 172 struct rb_node *node) 173 { 174 struct rb_node **p = &root->rb_node; 175 struct rb_node *parent = NULL; 176 struct tree_entry *entry; 177 178 while (*p) { 179 parent = *p; 180 entry = rb_entry(parent, struct tree_entry, rb_node); 181 182 if (offset < entry->start) 183 p = &(*p)->rb_left; 184 else if (offset > entry->end) 185 p = &(*p)->rb_right; 186 else 187 return parent; 188 } 189 190 rb_link_node(node, parent, p); 191 rb_insert_color(node, root); 192 return NULL; 193 } 194 195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 196 struct rb_node **prev_ret, 197 struct rb_node **next_ret) 198 { 199 struct rb_root *root = &tree->state; 200 struct rb_node *n = root->rb_node; 201 struct rb_node *prev = NULL; 202 struct rb_node *orig_prev = NULL; 203 struct tree_entry *entry; 204 struct tree_entry *prev_entry = NULL; 205 206 while (n) { 207 entry = rb_entry(n, struct tree_entry, rb_node); 208 prev = n; 209 prev_entry = entry; 210 211 if (offset < entry->start) 212 n = n->rb_left; 213 else if (offset > entry->end) 214 n = n->rb_right; 215 else 216 return n; 217 } 218 219 if (prev_ret) { 220 orig_prev = prev; 221 while (prev && offset > prev_entry->end) { 222 prev = rb_next(prev); 223 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 224 } 225 *prev_ret = prev; 226 prev = orig_prev; 227 } 228 229 if (next_ret) { 230 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 231 while (prev && offset < prev_entry->start) { 232 prev = rb_prev(prev); 233 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 234 } 235 *next_ret = prev; 236 } 237 return NULL; 238 } 239 240 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 241 u64 offset) 242 { 243 struct rb_node *prev = NULL; 244 struct rb_node *ret; 245 246 ret = __etree_search(tree, offset, &prev, NULL); 247 if (!ret) 248 return prev; 249 return ret; 250 } 251 252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 253 struct extent_state *other) 254 { 255 if (tree->ops && tree->ops->merge_extent_hook) 256 tree->ops->merge_extent_hook(tree->mapping->host, new, 257 other); 258 } 259 260 /* 261 * utility function to look for merge candidates inside a given range. 262 * Any extents with matching state are merged together into a single 263 * extent in the tree. Extents with EXTENT_IO in their state field 264 * are not merged because the end_io handlers need to be able to do 265 * operations on them without sleeping (or doing allocations/splits). 266 * 267 * This should be called with the tree lock held. 268 */ 269 static void merge_state(struct extent_io_tree *tree, 270 struct extent_state *state) 271 { 272 struct extent_state *other; 273 struct rb_node *other_node; 274 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 276 return; 277 278 other_node = rb_prev(&state->rb_node); 279 if (other_node) { 280 other = rb_entry(other_node, struct extent_state, rb_node); 281 if (other->end == state->start - 1 && 282 other->state == state->state) { 283 merge_cb(tree, state, other); 284 state->start = other->start; 285 other->tree = NULL; 286 rb_erase(&other->rb_node, &tree->state); 287 free_extent_state(other); 288 } 289 } 290 other_node = rb_next(&state->rb_node); 291 if (other_node) { 292 other = rb_entry(other_node, struct extent_state, rb_node); 293 if (other->start == state->end + 1 && 294 other->state == state->state) { 295 merge_cb(tree, state, other); 296 state->end = other->end; 297 other->tree = NULL; 298 rb_erase(&other->rb_node, &tree->state); 299 free_extent_state(other); 300 } 301 } 302 } 303 304 static void set_state_cb(struct extent_io_tree *tree, 305 struct extent_state *state, int *bits) 306 { 307 if (tree->ops && tree->ops->set_bit_hook) 308 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 309 } 310 311 static void clear_state_cb(struct extent_io_tree *tree, 312 struct extent_state *state, int *bits) 313 { 314 if (tree->ops && tree->ops->clear_bit_hook) 315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 316 } 317 318 static void set_state_bits(struct extent_io_tree *tree, 319 struct extent_state *state, int *bits); 320 321 /* 322 * insert an extent_state struct into the tree. 'bits' are set on the 323 * struct before it is inserted. 324 * 325 * This may return -EEXIST if the extent is already there, in which case the 326 * state struct is freed. 327 * 328 * The tree lock is not taken internally. This is a utility function and 329 * probably isn't what you want to call (see set/clear_extent_bit). 330 */ 331 static int insert_state(struct extent_io_tree *tree, 332 struct extent_state *state, u64 start, u64 end, 333 int *bits) 334 { 335 struct rb_node *node; 336 337 if (end < start) { 338 printk(KERN_ERR "btrfs end < start %llu %llu\n", 339 (unsigned long long)end, 340 (unsigned long long)start); 341 WARN_ON(1); 342 } 343 state->start = start; 344 state->end = end; 345 346 set_state_bits(tree, state, bits); 347 348 node = tree_insert(&tree->state, end, &state->rb_node); 349 if (node) { 350 struct extent_state *found; 351 found = rb_entry(node, struct extent_state, rb_node); 352 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 353 "%llu %llu\n", (unsigned long long)found->start, 354 (unsigned long long)found->end, 355 (unsigned long long)start, (unsigned long long)end); 356 return -EEXIST; 357 } 358 state->tree = tree; 359 merge_state(tree, state); 360 return 0; 361 } 362 363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 364 u64 split) 365 { 366 if (tree->ops && tree->ops->split_extent_hook) 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 368 } 369 370 /* 371 * split a given extent state struct in two, inserting the preallocated 372 * struct 'prealloc' as the newly created second half. 'split' indicates an 373 * offset inside 'orig' where it should be split. 374 * 375 * Before calling, 376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 377 * are two extent state structs in the tree: 378 * prealloc: [orig->start, split - 1] 379 * orig: [ split, orig->end ] 380 * 381 * The tree locks are not taken by this function. They need to be held 382 * by the caller. 383 */ 384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 385 struct extent_state *prealloc, u64 split) 386 { 387 struct rb_node *node; 388 389 split_cb(tree, orig, split); 390 391 prealloc->start = orig->start; 392 prealloc->end = split - 1; 393 prealloc->state = orig->state; 394 orig->start = split; 395 396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 397 if (node) { 398 free_extent_state(prealloc); 399 return -EEXIST; 400 } 401 prealloc->tree = tree; 402 return 0; 403 } 404 405 static struct extent_state *next_state(struct extent_state *state) 406 { 407 struct rb_node *next = rb_next(&state->rb_node); 408 if (next) 409 return rb_entry(next, struct extent_state, rb_node); 410 else 411 return NULL; 412 } 413 414 /* 415 * utility function to clear some bits in an extent state struct. 416 * it will optionally wake up any one waiting on this state (wake == 1). 417 * 418 * If no bits are set on the state struct after clearing things, the 419 * struct is freed and removed from the tree 420 */ 421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 422 struct extent_state *state, 423 int *bits, int wake) 424 { 425 struct extent_state *next; 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 427 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 429 u64 range = state->end - state->start + 1; 430 WARN_ON(range > tree->dirty_bytes); 431 tree->dirty_bytes -= range; 432 } 433 clear_state_cb(tree, state, bits); 434 state->state &= ~bits_to_clear; 435 if (wake) 436 wake_up(&state->wq); 437 if (state->state == 0) { 438 next = next_state(state); 439 if (state->tree) { 440 rb_erase(&state->rb_node, &tree->state); 441 state->tree = NULL; 442 free_extent_state(state); 443 } else { 444 WARN_ON(1); 445 } 446 } else { 447 merge_state(tree, state); 448 next = next_state(state); 449 } 450 return next; 451 } 452 453 static struct extent_state * 454 alloc_extent_state_atomic(struct extent_state *prealloc) 455 { 456 if (!prealloc) 457 prealloc = alloc_extent_state(GFP_ATOMIC); 458 459 return prealloc; 460 } 461 462 void extent_io_tree_panic(struct extent_io_tree *tree, int err) 463 { 464 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 465 "Extent tree was modified by another " 466 "thread while locked."); 467 } 468 469 /* 470 * clear some bits on a range in the tree. This may require splitting 471 * or inserting elements in the tree, so the gfp mask is used to 472 * indicate which allocations or sleeping are allowed. 473 * 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 475 * the given range from the tree regardless of state (ie for truncate). 476 * 477 * the range [start, end] is inclusive. 478 * 479 * This takes the tree lock, and returns 0 on success and < 0 on error. 480 */ 481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 482 int bits, int wake, int delete, 483 struct extent_state **cached_state, 484 gfp_t mask) 485 { 486 struct extent_state *state; 487 struct extent_state *cached; 488 struct extent_state *prealloc = NULL; 489 struct rb_node *node; 490 u64 last_end; 491 int err; 492 int clear = 0; 493 494 if (delete) 495 bits |= ~EXTENT_CTLBITS; 496 bits |= EXTENT_FIRST_DELALLOC; 497 498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 499 clear = 1; 500 again: 501 if (!prealloc && (mask & __GFP_WAIT)) { 502 prealloc = alloc_extent_state(mask); 503 if (!prealloc) 504 return -ENOMEM; 505 } 506 507 spin_lock(&tree->lock); 508 if (cached_state) { 509 cached = *cached_state; 510 511 if (clear) { 512 *cached_state = NULL; 513 cached_state = NULL; 514 } 515 516 if (cached && cached->tree && cached->start <= start && 517 cached->end > start) { 518 if (clear) 519 atomic_dec(&cached->refs); 520 state = cached; 521 goto hit_next; 522 } 523 if (clear) 524 free_extent_state(cached); 525 } 526 /* 527 * this search will find the extents that end after 528 * our range starts 529 */ 530 node = tree_search(tree, start); 531 if (!node) 532 goto out; 533 state = rb_entry(node, struct extent_state, rb_node); 534 hit_next: 535 if (state->start > end) 536 goto out; 537 WARN_ON(state->end < start); 538 last_end = state->end; 539 540 /* the state doesn't have the wanted bits, go ahead */ 541 if (!(state->state & bits)) { 542 state = next_state(state); 543 goto next; 544 } 545 546 /* 547 * | ---- desired range ---- | 548 * | state | or 549 * | ------------- state -------------- | 550 * 551 * We need to split the extent we found, and may flip 552 * bits on second half. 553 * 554 * If the extent we found extends past our range, we 555 * just split and search again. It'll get split again 556 * the next time though. 557 * 558 * If the extent we found is inside our range, we clear 559 * the desired bit on it. 560 */ 561 562 if (state->start < start) { 563 prealloc = alloc_extent_state_atomic(prealloc); 564 BUG_ON(!prealloc); 565 err = split_state(tree, state, prealloc, start); 566 if (err) 567 extent_io_tree_panic(tree, err); 568 569 prealloc = NULL; 570 if (err) 571 goto out; 572 if (state->end <= end) { 573 state = clear_state_bit(tree, state, &bits, wake); 574 goto next; 575 } 576 goto search_again; 577 } 578 /* 579 * | ---- desired range ---- | 580 * | state | 581 * We need to split the extent, and clear the bit 582 * on the first half 583 */ 584 if (state->start <= end && state->end > end) { 585 prealloc = alloc_extent_state_atomic(prealloc); 586 BUG_ON(!prealloc); 587 err = split_state(tree, state, prealloc, end + 1); 588 if (err) 589 extent_io_tree_panic(tree, err); 590 591 if (wake) 592 wake_up(&state->wq); 593 594 clear_state_bit(tree, prealloc, &bits, wake); 595 596 prealloc = NULL; 597 goto out; 598 } 599 600 state = clear_state_bit(tree, state, &bits, wake); 601 next: 602 if (last_end == (u64)-1) 603 goto out; 604 start = last_end + 1; 605 if (start <= end && state && !need_resched()) 606 goto hit_next; 607 goto search_again; 608 609 out: 610 spin_unlock(&tree->lock); 611 if (prealloc) 612 free_extent_state(prealloc); 613 614 return 0; 615 616 search_again: 617 if (start > end) 618 goto out; 619 spin_unlock(&tree->lock); 620 if (mask & __GFP_WAIT) 621 cond_resched(); 622 goto again; 623 } 624 625 static void wait_on_state(struct extent_io_tree *tree, 626 struct extent_state *state) 627 __releases(tree->lock) 628 __acquires(tree->lock) 629 { 630 DEFINE_WAIT(wait); 631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 632 spin_unlock(&tree->lock); 633 schedule(); 634 spin_lock(&tree->lock); 635 finish_wait(&state->wq, &wait); 636 } 637 638 /* 639 * waits for one or more bits to clear on a range in the state tree. 640 * The range [start, end] is inclusive. 641 * The tree lock is taken by this function 642 */ 643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 644 { 645 struct extent_state *state; 646 struct rb_node *node; 647 648 spin_lock(&tree->lock); 649 again: 650 while (1) { 651 /* 652 * this search will find all the extents that end after 653 * our range starts 654 */ 655 node = tree_search(tree, start); 656 if (!node) 657 break; 658 659 state = rb_entry(node, struct extent_state, rb_node); 660 661 if (state->start > end) 662 goto out; 663 664 if (state->state & bits) { 665 start = state->start; 666 atomic_inc(&state->refs); 667 wait_on_state(tree, state); 668 free_extent_state(state); 669 goto again; 670 } 671 start = state->end + 1; 672 673 if (start > end) 674 break; 675 676 cond_resched_lock(&tree->lock); 677 } 678 out: 679 spin_unlock(&tree->lock); 680 } 681 682 static void set_state_bits(struct extent_io_tree *tree, 683 struct extent_state *state, 684 int *bits) 685 { 686 int bits_to_set = *bits & ~EXTENT_CTLBITS; 687 688 set_state_cb(tree, state, bits); 689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 690 u64 range = state->end - state->start + 1; 691 tree->dirty_bytes += range; 692 } 693 state->state |= bits_to_set; 694 } 695 696 static void cache_state(struct extent_state *state, 697 struct extent_state **cached_ptr) 698 { 699 if (cached_ptr && !(*cached_ptr)) { 700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 701 *cached_ptr = state; 702 atomic_inc(&state->refs); 703 } 704 } 705 } 706 707 static void uncache_state(struct extent_state **cached_ptr) 708 { 709 if (cached_ptr && (*cached_ptr)) { 710 struct extent_state *state = *cached_ptr; 711 *cached_ptr = NULL; 712 free_extent_state(state); 713 } 714 } 715 716 /* 717 * set some bits on a range in the tree. This may require allocations or 718 * sleeping, so the gfp mask is used to indicate what is allowed. 719 * 720 * If any of the exclusive bits are set, this will fail with -EEXIST if some 721 * part of the range already has the desired bits set. The start of the 722 * existing range is returned in failed_start in this case. 723 * 724 * [start, end] is inclusive This takes the tree lock. 725 */ 726 727 static int __must_check 728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 729 int bits, int exclusive_bits, u64 *failed_start, 730 struct extent_state **cached_state, gfp_t mask) 731 { 732 struct extent_state *state; 733 struct extent_state *prealloc = NULL; 734 struct rb_node *node; 735 int err = 0; 736 u64 last_start; 737 u64 last_end; 738 739 bits |= EXTENT_FIRST_DELALLOC; 740 again: 741 if (!prealloc && (mask & __GFP_WAIT)) { 742 prealloc = alloc_extent_state(mask); 743 BUG_ON(!prealloc); 744 } 745 746 spin_lock(&tree->lock); 747 if (cached_state && *cached_state) { 748 state = *cached_state; 749 if (state->start <= start && state->end > start && 750 state->tree) { 751 node = &state->rb_node; 752 goto hit_next; 753 } 754 } 755 /* 756 * this search will find all the extents that end after 757 * our range starts. 758 */ 759 node = tree_search(tree, start); 760 if (!node) { 761 prealloc = alloc_extent_state_atomic(prealloc); 762 BUG_ON(!prealloc); 763 err = insert_state(tree, prealloc, start, end, &bits); 764 if (err) 765 extent_io_tree_panic(tree, err); 766 767 prealloc = NULL; 768 goto out; 769 } 770 state = rb_entry(node, struct extent_state, rb_node); 771 hit_next: 772 last_start = state->start; 773 last_end = state->end; 774 775 /* 776 * | ---- desired range ---- | 777 * | state | 778 * 779 * Just lock what we found and keep going 780 */ 781 if (state->start == start && state->end <= end) { 782 if (state->state & exclusive_bits) { 783 *failed_start = state->start; 784 err = -EEXIST; 785 goto out; 786 } 787 788 set_state_bits(tree, state, &bits); 789 cache_state(state, cached_state); 790 merge_state(tree, state); 791 if (last_end == (u64)-1) 792 goto out; 793 start = last_end + 1; 794 state = next_state(state); 795 if (start < end && state && state->start == start && 796 !need_resched()) 797 goto hit_next; 798 goto search_again; 799 } 800 801 /* 802 * | ---- desired range ---- | 803 * | state | 804 * or 805 * | ------------- state -------------- | 806 * 807 * We need to split the extent we found, and may flip bits on 808 * second half. 809 * 810 * If the extent we found extends past our 811 * range, we just split and search again. It'll get split 812 * again the next time though. 813 * 814 * If the extent we found is inside our range, we set the 815 * desired bit on it. 816 */ 817 if (state->start < start) { 818 if (state->state & exclusive_bits) { 819 *failed_start = start; 820 err = -EEXIST; 821 goto out; 822 } 823 824 prealloc = alloc_extent_state_atomic(prealloc); 825 BUG_ON(!prealloc); 826 err = split_state(tree, state, prealloc, start); 827 if (err) 828 extent_io_tree_panic(tree, err); 829 830 prealloc = NULL; 831 if (err) 832 goto out; 833 if (state->end <= end) { 834 set_state_bits(tree, state, &bits); 835 cache_state(state, cached_state); 836 merge_state(tree, state); 837 if (last_end == (u64)-1) 838 goto out; 839 start = last_end + 1; 840 state = next_state(state); 841 if (start < end && state && state->start == start && 842 !need_resched()) 843 goto hit_next; 844 } 845 goto search_again; 846 } 847 /* 848 * | ---- desired range ---- | 849 * | state | or | state | 850 * 851 * There's a hole, we need to insert something in it and 852 * ignore the extent we found. 853 */ 854 if (state->start > start) { 855 u64 this_end; 856 if (end < last_start) 857 this_end = end; 858 else 859 this_end = last_start - 1; 860 861 prealloc = alloc_extent_state_atomic(prealloc); 862 BUG_ON(!prealloc); 863 864 /* 865 * Avoid to free 'prealloc' if it can be merged with 866 * the later extent. 867 */ 868 err = insert_state(tree, prealloc, start, this_end, 869 &bits); 870 if (err) 871 extent_io_tree_panic(tree, err); 872 873 cache_state(prealloc, cached_state); 874 prealloc = NULL; 875 start = this_end + 1; 876 goto search_again; 877 } 878 /* 879 * | ---- desired range ---- | 880 * | state | 881 * We need to split the extent, and set the bit 882 * on the first half 883 */ 884 if (state->start <= end && state->end > end) { 885 if (state->state & exclusive_bits) { 886 *failed_start = start; 887 err = -EEXIST; 888 goto out; 889 } 890 891 prealloc = alloc_extent_state_atomic(prealloc); 892 BUG_ON(!prealloc); 893 err = split_state(tree, state, prealloc, end + 1); 894 if (err) 895 extent_io_tree_panic(tree, err); 896 897 set_state_bits(tree, prealloc, &bits); 898 cache_state(prealloc, cached_state); 899 merge_state(tree, prealloc); 900 prealloc = NULL; 901 goto out; 902 } 903 904 goto search_again; 905 906 out: 907 spin_unlock(&tree->lock); 908 if (prealloc) 909 free_extent_state(prealloc); 910 911 return err; 912 913 search_again: 914 if (start > end) 915 goto out; 916 spin_unlock(&tree->lock); 917 if (mask & __GFP_WAIT) 918 cond_resched(); 919 goto again; 920 } 921 922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, 923 u64 *failed_start, struct extent_state **cached_state, 924 gfp_t mask) 925 { 926 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 927 cached_state, mask); 928 } 929 930 931 /** 932 * convert_extent - convert all bits in a given range from one bit to another 933 * @tree: the io tree to search 934 * @start: the start offset in bytes 935 * @end: the end offset in bytes (inclusive) 936 * @bits: the bits to set in this range 937 * @clear_bits: the bits to clear in this range 938 * @mask: the allocation mask 939 * 940 * This will go through and set bits for the given range. If any states exist 941 * already in this range they are set with the given bit and cleared of the 942 * clear_bits. This is only meant to be used by things that are mergeable, ie 943 * converting from say DELALLOC to DIRTY. This is not meant to be used with 944 * boundary bits like LOCK. 945 */ 946 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 947 int bits, int clear_bits, gfp_t mask) 948 { 949 struct extent_state *state; 950 struct extent_state *prealloc = NULL; 951 struct rb_node *node; 952 int err = 0; 953 u64 last_start; 954 u64 last_end; 955 956 again: 957 if (!prealloc && (mask & __GFP_WAIT)) { 958 prealloc = alloc_extent_state(mask); 959 if (!prealloc) 960 return -ENOMEM; 961 } 962 963 spin_lock(&tree->lock); 964 /* 965 * this search will find all the extents that end after 966 * our range starts. 967 */ 968 node = tree_search(tree, start); 969 if (!node) { 970 prealloc = alloc_extent_state_atomic(prealloc); 971 if (!prealloc) { 972 err = -ENOMEM; 973 goto out; 974 } 975 err = insert_state(tree, prealloc, start, end, &bits); 976 prealloc = NULL; 977 if (err) 978 extent_io_tree_panic(tree, err); 979 goto out; 980 } 981 state = rb_entry(node, struct extent_state, rb_node); 982 hit_next: 983 last_start = state->start; 984 last_end = state->end; 985 986 /* 987 * | ---- desired range ---- | 988 * | state | 989 * 990 * Just lock what we found and keep going 991 */ 992 if (state->start == start && state->end <= end) { 993 set_state_bits(tree, state, &bits); 994 state = clear_state_bit(tree, state, &clear_bits, 0); 995 if (last_end == (u64)-1) 996 goto out; 997 start = last_end + 1; 998 if (start < end && state && state->start == start && 999 !need_resched()) 1000 goto hit_next; 1001 goto search_again; 1002 } 1003 1004 /* 1005 * | ---- desired range ---- | 1006 * | state | 1007 * or 1008 * | ------------- state -------------- | 1009 * 1010 * We need to split the extent we found, and may flip bits on 1011 * second half. 1012 * 1013 * If the extent we found extends past our 1014 * range, we just split and search again. It'll get split 1015 * again the next time though. 1016 * 1017 * If the extent we found is inside our range, we set the 1018 * desired bit on it. 1019 */ 1020 if (state->start < start) { 1021 prealloc = alloc_extent_state_atomic(prealloc); 1022 if (!prealloc) { 1023 err = -ENOMEM; 1024 goto out; 1025 } 1026 err = split_state(tree, state, prealloc, start); 1027 if (err) 1028 extent_io_tree_panic(tree, err); 1029 prealloc = NULL; 1030 if (err) 1031 goto out; 1032 if (state->end <= end) { 1033 set_state_bits(tree, state, &bits); 1034 state = clear_state_bit(tree, state, &clear_bits, 0); 1035 if (last_end == (u64)-1) 1036 goto out; 1037 start = last_end + 1; 1038 if (start < end && state && state->start == start && 1039 !need_resched()) 1040 goto hit_next; 1041 } 1042 goto search_again; 1043 } 1044 /* 1045 * | ---- desired range ---- | 1046 * | state | or | state | 1047 * 1048 * There's a hole, we need to insert something in it and 1049 * ignore the extent we found. 1050 */ 1051 if (state->start > start) { 1052 u64 this_end; 1053 if (end < last_start) 1054 this_end = end; 1055 else 1056 this_end = last_start - 1; 1057 1058 prealloc = alloc_extent_state_atomic(prealloc); 1059 if (!prealloc) { 1060 err = -ENOMEM; 1061 goto out; 1062 } 1063 1064 /* 1065 * Avoid to free 'prealloc' if it can be merged with 1066 * the later extent. 1067 */ 1068 err = insert_state(tree, prealloc, start, this_end, 1069 &bits); 1070 if (err) 1071 extent_io_tree_panic(tree, err); 1072 prealloc = NULL; 1073 start = this_end + 1; 1074 goto search_again; 1075 } 1076 /* 1077 * | ---- desired range ---- | 1078 * | state | 1079 * We need to split the extent, and set the bit 1080 * on the first half 1081 */ 1082 if (state->start <= end && state->end > end) { 1083 prealloc = alloc_extent_state_atomic(prealloc); 1084 if (!prealloc) { 1085 err = -ENOMEM; 1086 goto out; 1087 } 1088 1089 err = split_state(tree, state, prealloc, end + 1); 1090 if (err) 1091 extent_io_tree_panic(tree, err); 1092 1093 set_state_bits(tree, prealloc, &bits); 1094 clear_state_bit(tree, prealloc, &clear_bits, 0); 1095 prealloc = NULL; 1096 goto out; 1097 } 1098 1099 goto search_again; 1100 1101 out: 1102 spin_unlock(&tree->lock); 1103 if (prealloc) 1104 free_extent_state(prealloc); 1105 1106 return err; 1107 1108 search_again: 1109 if (start > end) 1110 goto out; 1111 spin_unlock(&tree->lock); 1112 if (mask & __GFP_WAIT) 1113 cond_resched(); 1114 goto again; 1115 } 1116 1117 /* wrappers around set/clear extent bit */ 1118 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1119 gfp_t mask) 1120 { 1121 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1122 NULL, mask); 1123 } 1124 1125 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1126 int bits, gfp_t mask) 1127 { 1128 return set_extent_bit(tree, start, end, bits, NULL, 1129 NULL, mask); 1130 } 1131 1132 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1133 int bits, gfp_t mask) 1134 { 1135 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1136 } 1137 1138 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1139 struct extent_state **cached_state, gfp_t mask) 1140 { 1141 return set_extent_bit(tree, start, end, 1142 EXTENT_DELALLOC | EXTENT_UPTODATE, 1143 NULL, cached_state, mask); 1144 } 1145 1146 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1147 gfp_t mask) 1148 { 1149 return clear_extent_bit(tree, start, end, 1150 EXTENT_DIRTY | EXTENT_DELALLOC | 1151 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1152 } 1153 1154 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1155 gfp_t mask) 1156 { 1157 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1158 NULL, mask); 1159 } 1160 1161 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1162 struct extent_state **cached_state, gfp_t mask) 1163 { 1164 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 1165 cached_state, mask); 1166 } 1167 1168 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1169 struct extent_state **cached_state, gfp_t mask) 1170 { 1171 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1172 cached_state, mask); 1173 } 1174 1175 /* 1176 * either insert or lock state struct between start and end use mask to tell 1177 * us if waiting is desired. 1178 */ 1179 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1180 int bits, struct extent_state **cached_state) 1181 { 1182 int err; 1183 u64 failed_start; 1184 while (1) { 1185 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1186 EXTENT_LOCKED, &failed_start, 1187 cached_state, GFP_NOFS); 1188 if (err == -EEXIST) { 1189 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1190 start = failed_start; 1191 } else 1192 break; 1193 WARN_ON(start > end); 1194 } 1195 return err; 1196 } 1197 1198 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1199 { 1200 return lock_extent_bits(tree, start, end, 0, NULL); 1201 } 1202 1203 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1204 { 1205 int err; 1206 u64 failed_start; 1207 1208 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1209 &failed_start, NULL, GFP_NOFS); 1210 if (err == -EEXIST) { 1211 if (failed_start > start) 1212 clear_extent_bit(tree, start, failed_start - 1, 1213 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1214 return 0; 1215 } 1216 return 1; 1217 } 1218 1219 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1220 struct extent_state **cached, gfp_t mask) 1221 { 1222 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1223 mask); 1224 } 1225 1226 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1227 { 1228 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1229 GFP_NOFS); 1230 } 1231 1232 /* 1233 * helper function to set both pages and extents in the tree writeback 1234 */ 1235 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1236 { 1237 unsigned long index = start >> PAGE_CACHE_SHIFT; 1238 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1239 struct page *page; 1240 1241 while (index <= end_index) { 1242 page = find_get_page(tree->mapping, index); 1243 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1244 set_page_writeback(page); 1245 page_cache_release(page); 1246 index++; 1247 } 1248 return 0; 1249 } 1250 1251 /* find the first state struct with 'bits' set after 'start', and 1252 * return it. tree->lock must be held. NULL will returned if 1253 * nothing was found after 'start' 1254 */ 1255 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1256 u64 start, int bits) 1257 { 1258 struct rb_node *node; 1259 struct extent_state *state; 1260 1261 /* 1262 * this search will find all the extents that end after 1263 * our range starts. 1264 */ 1265 node = tree_search(tree, start); 1266 if (!node) 1267 goto out; 1268 1269 while (1) { 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 if (state->end >= start && (state->state & bits)) 1272 return state; 1273 1274 node = rb_next(node); 1275 if (!node) 1276 break; 1277 } 1278 out: 1279 return NULL; 1280 } 1281 1282 /* 1283 * find the first offset in the io tree with 'bits' set. zero is 1284 * returned if we find something, and *start_ret and *end_ret are 1285 * set to reflect the state struct that was found. 1286 * 1287 * If nothing was found, 1 is returned. If found something, return 0. 1288 */ 1289 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1290 u64 *start_ret, u64 *end_ret, int bits) 1291 { 1292 struct extent_state *state; 1293 int ret = 1; 1294 1295 spin_lock(&tree->lock); 1296 state = find_first_extent_bit_state(tree, start, bits); 1297 if (state) { 1298 *start_ret = state->start; 1299 *end_ret = state->end; 1300 ret = 0; 1301 } 1302 spin_unlock(&tree->lock); 1303 return ret; 1304 } 1305 1306 /* 1307 * find a contiguous range of bytes in the file marked as delalloc, not 1308 * more than 'max_bytes'. start and end are used to return the range, 1309 * 1310 * 1 is returned if we find something, 0 if nothing was in the tree 1311 */ 1312 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1313 u64 *start, u64 *end, u64 max_bytes, 1314 struct extent_state **cached_state) 1315 { 1316 struct rb_node *node; 1317 struct extent_state *state; 1318 u64 cur_start = *start; 1319 u64 found = 0; 1320 u64 total_bytes = 0; 1321 1322 spin_lock(&tree->lock); 1323 1324 /* 1325 * this search will find all the extents that end after 1326 * our range starts. 1327 */ 1328 node = tree_search(tree, cur_start); 1329 if (!node) { 1330 if (!found) 1331 *end = (u64)-1; 1332 goto out; 1333 } 1334 1335 while (1) { 1336 state = rb_entry(node, struct extent_state, rb_node); 1337 if (found && (state->start != cur_start || 1338 (state->state & EXTENT_BOUNDARY))) { 1339 goto out; 1340 } 1341 if (!(state->state & EXTENT_DELALLOC)) { 1342 if (!found) 1343 *end = state->end; 1344 goto out; 1345 } 1346 if (!found) { 1347 *start = state->start; 1348 *cached_state = state; 1349 atomic_inc(&state->refs); 1350 } 1351 found++; 1352 *end = state->end; 1353 cur_start = state->end + 1; 1354 node = rb_next(node); 1355 if (!node) 1356 break; 1357 total_bytes += state->end - state->start + 1; 1358 if (total_bytes >= max_bytes) 1359 break; 1360 } 1361 out: 1362 spin_unlock(&tree->lock); 1363 return found; 1364 } 1365 1366 static noinline void __unlock_for_delalloc(struct inode *inode, 1367 struct page *locked_page, 1368 u64 start, u64 end) 1369 { 1370 int ret; 1371 struct page *pages[16]; 1372 unsigned long index = start >> PAGE_CACHE_SHIFT; 1373 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1374 unsigned long nr_pages = end_index - index + 1; 1375 int i; 1376 1377 if (index == locked_page->index && end_index == index) 1378 return; 1379 1380 while (nr_pages > 0) { 1381 ret = find_get_pages_contig(inode->i_mapping, index, 1382 min_t(unsigned long, nr_pages, 1383 ARRAY_SIZE(pages)), pages); 1384 for (i = 0; i < ret; i++) { 1385 if (pages[i] != locked_page) 1386 unlock_page(pages[i]); 1387 page_cache_release(pages[i]); 1388 } 1389 nr_pages -= ret; 1390 index += ret; 1391 cond_resched(); 1392 } 1393 } 1394 1395 static noinline int lock_delalloc_pages(struct inode *inode, 1396 struct page *locked_page, 1397 u64 delalloc_start, 1398 u64 delalloc_end) 1399 { 1400 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1401 unsigned long start_index = index; 1402 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1403 unsigned long pages_locked = 0; 1404 struct page *pages[16]; 1405 unsigned long nrpages; 1406 int ret; 1407 int i; 1408 1409 /* the caller is responsible for locking the start index */ 1410 if (index == locked_page->index && index == end_index) 1411 return 0; 1412 1413 /* skip the page at the start index */ 1414 nrpages = end_index - index + 1; 1415 while (nrpages > 0) { 1416 ret = find_get_pages_contig(inode->i_mapping, index, 1417 min_t(unsigned long, 1418 nrpages, ARRAY_SIZE(pages)), pages); 1419 if (ret == 0) { 1420 ret = -EAGAIN; 1421 goto done; 1422 } 1423 /* now we have an array of pages, lock them all */ 1424 for (i = 0; i < ret; i++) { 1425 /* 1426 * the caller is taking responsibility for 1427 * locked_page 1428 */ 1429 if (pages[i] != locked_page) { 1430 lock_page(pages[i]); 1431 if (!PageDirty(pages[i]) || 1432 pages[i]->mapping != inode->i_mapping) { 1433 ret = -EAGAIN; 1434 unlock_page(pages[i]); 1435 page_cache_release(pages[i]); 1436 goto done; 1437 } 1438 } 1439 page_cache_release(pages[i]); 1440 pages_locked++; 1441 } 1442 nrpages -= ret; 1443 index += ret; 1444 cond_resched(); 1445 } 1446 ret = 0; 1447 done: 1448 if (ret && pages_locked) { 1449 __unlock_for_delalloc(inode, locked_page, 1450 delalloc_start, 1451 ((u64)(start_index + pages_locked - 1)) << 1452 PAGE_CACHE_SHIFT); 1453 } 1454 return ret; 1455 } 1456 1457 /* 1458 * find a contiguous range of bytes in the file marked as delalloc, not 1459 * more than 'max_bytes'. start and end are used to return the range, 1460 * 1461 * 1 is returned if we find something, 0 if nothing was in the tree 1462 */ 1463 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1464 struct extent_io_tree *tree, 1465 struct page *locked_page, 1466 u64 *start, u64 *end, 1467 u64 max_bytes) 1468 { 1469 u64 delalloc_start; 1470 u64 delalloc_end; 1471 u64 found; 1472 struct extent_state *cached_state = NULL; 1473 int ret; 1474 int loops = 0; 1475 1476 again: 1477 /* step one, find a bunch of delalloc bytes starting at start */ 1478 delalloc_start = *start; 1479 delalloc_end = 0; 1480 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1481 max_bytes, &cached_state); 1482 if (!found || delalloc_end <= *start) { 1483 *start = delalloc_start; 1484 *end = delalloc_end; 1485 free_extent_state(cached_state); 1486 return found; 1487 } 1488 1489 /* 1490 * start comes from the offset of locked_page. We have to lock 1491 * pages in order, so we can't process delalloc bytes before 1492 * locked_page 1493 */ 1494 if (delalloc_start < *start) 1495 delalloc_start = *start; 1496 1497 /* 1498 * make sure to limit the number of pages we try to lock down 1499 * if we're looping. 1500 */ 1501 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1502 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1503 1504 /* step two, lock all the pages after the page that has start */ 1505 ret = lock_delalloc_pages(inode, locked_page, 1506 delalloc_start, delalloc_end); 1507 if (ret == -EAGAIN) { 1508 /* some of the pages are gone, lets avoid looping by 1509 * shortening the size of the delalloc range we're searching 1510 */ 1511 free_extent_state(cached_state); 1512 if (!loops) { 1513 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1514 max_bytes = PAGE_CACHE_SIZE - offset; 1515 loops = 1; 1516 goto again; 1517 } else { 1518 found = 0; 1519 goto out_failed; 1520 } 1521 } 1522 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1523 1524 /* step three, lock the state bits for the whole range */ 1525 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1526 1527 /* then test to make sure it is all still delalloc */ 1528 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1529 EXTENT_DELALLOC, 1, cached_state); 1530 if (!ret) { 1531 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1532 &cached_state, GFP_NOFS); 1533 __unlock_for_delalloc(inode, locked_page, 1534 delalloc_start, delalloc_end); 1535 cond_resched(); 1536 goto again; 1537 } 1538 free_extent_state(cached_state); 1539 *start = delalloc_start; 1540 *end = delalloc_end; 1541 out_failed: 1542 return found; 1543 } 1544 1545 int extent_clear_unlock_delalloc(struct inode *inode, 1546 struct extent_io_tree *tree, 1547 u64 start, u64 end, struct page *locked_page, 1548 unsigned long op) 1549 { 1550 int ret; 1551 struct page *pages[16]; 1552 unsigned long index = start >> PAGE_CACHE_SHIFT; 1553 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1554 unsigned long nr_pages = end_index - index + 1; 1555 int i; 1556 int clear_bits = 0; 1557 1558 if (op & EXTENT_CLEAR_UNLOCK) 1559 clear_bits |= EXTENT_LOCKED; 1560 if (op & EXTENT_CLEAR_DIRTY) 1561 clear_bits |= EXTENT_DIRTY; 1562 1563 if (op & EXTENT_CLEAR_DELALLOC) 1564 clear_bits |= EXTENT_DELALLOC; 1565 1566 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1567 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1568 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1569 EXTENT_SET_PRIVATE2))) 1570 return 0; 1571 1572 while (nr_pages > 0) { 1573 ret = find_get_pages_contig(inode->i_mapping, index, 1574 min_t(unsigned long, 1575 nr_pages, ARRAY_SIZE(pages)), pages); 1576 for (i = 0; i < ret; i++) { 1577 1578 if (op & EXTENT_SET_PRIVATE2) 1579 SetPagePrivate2(pages[i]); 1580 1581 if (pages[i] == locked_page) { 1582 page_cache_release(pages[i]); 1583 continue; 1584 } 1585 if (op & EXTENT_CLEAR_DIRTY) 1586 clear_page_dirty_for_io(pages[i]); 1587 if (op & EXTENT_SET_WRITEBACK) 1588 set_page_writeback(pages[i]); 1589 if (op & EXTENT_END_WRITEBACK) 1590 end_page_writeback(pages[i]); 1591 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1592 unlock_page(pages[i]); 1593 page_cache_release(pages[i]); 1594 } 1595 nr_pages -= ret; 1596 index += ret; 1597 cond_resched(); 1598 } 1599 return 0; 1600 } 1601 1602 /* 1603 * count the number of bytes in the tree that have a given bit(s) 1604 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1605 * cached. The total number found is returned. 1606 */ 1607 u64 count_range_bits(struct extent_io_tree *tree, 1608 u64 *start, u64 search_end, u64 max_bytes, 1609 unsigned long bits, int contig) 1610 { 1611 struct rb_node *node; 1612 struct extent_state *state; 1613 u64 cur_start = *start; 1614 u64 total_bytes = 0; 1615 u64 last = 0; 1616 int found = 0; 1617 1618 if (search_end <= cur_start) { 1619 WARN_ON(1); 1620 return 0; 1621 } 1622 1623 spin_lock(&tree->lock); 1624 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1625 total_bytes = tree->dirty_bytes; 1626 goto out; 1627 } 1628 /* 1629 * this search will find all the extents that end after 1630 * our range starts. 1631 */ 1632 node = tree_search(tree, cur_start); 1633 if (!node) 1634 goto out; 1635 1636 while (1) { 1637 state = rb_entry(node, struct extent_state, rb_node); 1638 if (state->start > search_end) 1639 break; 1640 if (contig && found && state->start > last + 1) 1641 break; 1642 if (state->end >= cur_start && (state->state & bits) == bits) { 1643 total_bytes += min(search_end, state->end) + 1 - 1644 max(cur_start, state->start); 1645 if (total_bytes >= max_bytes) 1646 break; 1647 if (!found) { 1648 *start = max(cur_start, state->start); 1649 found = 1; 1650 } 1651 last = state->end; 1652 } else if (contig && found) { 1653 break; 1654 } 1655 node = rb_next(node); 1656 if (!node) 1657 break; 1658 } 1659 out: 1660 spin_unlock(&tree->lock); 1661 return total_bytes; 1662 } 1663 1664 /* 1665 * set the private field for a given byte offset in the tree. If there isn't 1666 * an extent_state there already, this does nothing. 1667 */ 1668 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1669 { 1670 struct rb_node *node; 1671 struct extent_state *state; 1672 int ret = 0; 1673 1674 spin_lock(&tree->lock); 1675 /* 1676 * this search will find all the extents that end after 1677 * our range starts. 1678 */ 1679 node = tree_search(tree, start); 1680 if (!node) { 1681 ret = -ENOENT; 1682 goto out; 1683 } 1684 state = rb_entry(node, struct extent_state, rb_node); 1685 if (state->start != start) { 1686 ret = -ENOENT; 1687 goto out; 1688 } 1689 state->private = private; 1690 out: 1691 spin_unlock(&tree->lock); 1692 return ret; 1693 } 1694 1695 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1696 { 1697 struct rb_node *node; 1698 struct extent_state *state; 1699 int ret = 0; 1700 1701 spin_lock(&tree->lock); 1702 /* 1703 * this search will find all the extents that end after 1704 * our range starts. 1705 */ 1706 node = tree_search(tree, start); 1707 if (!node) { 1708 ret = -ENOENT; 1709 goto out; 1710 } 1711 state = rb_entry(node, struct extent_state, rb_node); 1712 if (state->start != start) { 1713 ret = -ENOENT; 1714 goto out; 1715 } 1716 *private = state->private; 1717 out: 1718 spin_unlock(&tree->lock); 1719 return ret; 1720 } 1721 1722 /* 1723 * searches a range in the state tree for a given mask. 1724 * If 'filled' == 1, this returns 1 only if every extent in the tree 1725 * has the bits set. Otherwise, 1 is returned if any bit in the 1726 * range is found set. 1727 */ 1728 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1729 int bits, int filled, struct extent_state *cached) 1730 { 1731 struct extent_state *state = NULL; 1732 struct rb_node *node; 1733 int bitset = 0; 1734 1735 spin_lock(&tree->lock); 1736 if (cached && cached->tree && cached->start <= start && 1737 cached->end > start) 1738 node = &cached->rb_node; 1739 else 1740 node = tree_search(tree, start); 1741 while (node && start <= end) { 1742 state = rb_entry(node, struct extent_state, rb_node); 1743 1744 if (filled && state->start > start) { 1745 bitset = 0; 1746 break; 1747 } 1748 1749 if (state->start > end) 1750 break; 1751 1752 if (state->state & bits) { 1753 bitset = 1; 1754 if (!filled) 1755 break; 1756 } else if (filled) { 1757 bitset = 0; 1758 break; 1759 } 1760 1761 if (state->end == (u64)-1) 1762 break; 1763 1764 start = state->end + 1; 1765 if (start > end) 1766 break; 1767 node = rb_next(node); 1768 if (!node) { 1769 if (filled) 1770 bitset = 0; 1771 break; 1772 } 1773 } 1774 spin_unlock(&tree->lock); 1775 return bitset; 1776 } 1777 1778 /* 1779 * helper function to set a given page up to date if all the 1780 * extents in the tree for that page are up to date 1781 */ 1782 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1783 { 1784 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1785 u64 end = start + PAGE_CACHE_SIZE - 1; 1786 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1787 SetPageUptodate(page); 1788 } 1789 1790 /* 1791 * helper function to unlock a page if all the extents in the tree 1792 * for that page are unlocked 1793 */ 1794 static void check_page_locked(struct extent_io_tree *tree, struct page *page) 1795 { 1796 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1797 u64 end = start + PAGE_CACHE_SIZE - 1; 1798 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1799 unlock_page(page); 1800 } 1801 1802 /* 1803 * helper function to end page writeback if all the extents 1804 * in the tree for that page are done with writeback 1805 */ 1806 static void check_page_writeback(struct extent_io_tree *tree, 1807 struct page *page) 1808 { 1809 end_page_writeback(page); 1810 } 1811 1812 /* 1813 * When IO fails, either with EIO or csum verification fails, we 1814 * try other mirrors that might have a good copy of the data. This 1815 * io_failure_record is used to record state as we go through all the 1816 * mirrors. If another mirror has good data, the page is set up to date 1817 * and things continue. If a good mirror can't be found, the original 1818 * bio end_io callback is called to indicate things have failed. 1819 */ 1820 struct io_failure_record { 1821 struct page *page; 1822 u64 start; 1823 u64 len; 1824 u64 logical; 1825 unsigned long bio_flags; 1826 int this_mirror; 1827 int failed_mirror; 1828 int in_validation; 1829 }; 1830 1831 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1832 int did_repair) 1833 { 1834 int ret; 1835 int err = 0; 1836 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1837 1838 set_state_private(failure_tree, rec->start, 0); 1839 ret = clear_extent_bits(failure_tree, rec->start, 1840 rec->start + rec->len - 1, 1841 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1842 if (ret) 1843 err = ret; 1844 1845 if (did_repair) { 1846 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1847 rec->start + rec->len - 1, 1848 EXTENT_DAMAGED, GFP_NOFS); 1849 if (ret && !err) 1850 err = ret; 1851 } 1852 1853 kfree(rec); 1854 return err; 1855 } 1856 1857 static void repair_io_failure_callback(struct bio *bio, int err) 1858 { 1859 complete(bio->bi_private); 1860 } 1861 1862 /* 1863 * this bypasses the standard btrfs submit functions deliberately, as 1864 * the standard behavior is to write all copies in a raid setup. here we only 1865 * want to write the one bad copy. so we do the mapping for ourselves and issue 1866 * submit_bio directly. 1867 * to avoid any synchonization issues, wait for the data after writing, which 1868 * actually prevents the read that triggered the error from finishing. 1869 * currently, there can be no more than two copies of every data bit. thus, 1870 * exactly one rewrite is required. 1871 */ 1872 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start, 1873 u64 length, u64 logical, struct page *page, 1874 int mirror_num) 1875 { 1876 struct bio *bio; 1877 struct btrfs_device *dev; 1878 DECLARE_COMPLETION_ONSTACK(compl); 1879 u64 map_length = 0; 1880 u64 sector; 1881 struct btrfs_bio *bbio = NULL; 1882 int ret; 1883 1884 BUG_ON(!mirror_num); 1885 1886 bio = bio_alloc(GFP_NOFS, 1); 1887 if (!bio) 1888 return -EIO; 1889 bio->bi_private = &compl; 1890 bio->bi_end_io = repair_io_failure_callback; 1891 bio->bi_size = 0; 1892 map_length = length; 1893 1894 ret = btrfs_map_block(map_tree, WRITE, logical, 1895 &map_length, &bbio, mirror_num); 1896 if (ret) { 1897 bio_put(bio); 1898 return -EIO; 1899 } 1900 BUG_ON(mirror_num != bbio->mirror_num); 1901 sector = bbio->stripes[mirror_num-1].physical >> 9; 1902 bio->bi_sector = sector; 1903 dev = bbio->stripes[mirror_num-1].dev; 1904 kfree(bbio); 1905 if (!dev || !dev->bdev || !dev->writeable) { 1906 bio_put(bio); 1907 return -EIO; 1908 } 1909 bio->bi_bdev = dev->bdev; 1910 bio_add_page(bio, page, length, start-page_offset(page)); 1911 btrfsic_submit_bio(WRITE_SYNC, bio); 1912 wait_for_completion(&compl); 1913 1914 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 1915 /* try to remap that extent elsewhere? */ 1916 bio_put(bio); 1917 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 1918 return -EIO; 1919 } 1920 1921 printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 1922 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 1923 start, rcu_str_deref(dev->name), sector); 1924 1925 bio_put(bio); 1926 return 0; 1927 } 1928 1929 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 1930 int mirror_num) 1931 { 1932 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 1933 u64 start = eb->start; 1934 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 1935 int ret = 0; 1936 1937 for (i = 0; i < num_pages; i++) { 1938 struct page *p = extent_buffer_page(eb, i); 1939 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE, 1940 start, p, mirror_num); 1941 if (ret) 1942 break; 1943 start += PAGE_CACHE_SIZE; 1944 } 1945 1946 return ret; 1947 } 1948 1949 /* 1950 * each time an IO finishes, we do a fast check in the IO failure tree 1951 * to see if we need to process or clean up an io_failure_record 1952 */ 1953 static int clean_io_failure(u64 start, struct page *page) 1954 { 1955 u64 private; 1956 u64 private_failure; 1957 struct io_failure_record *failrec; 1958 struct btrfs_mapping_tree *map_tree; 1959 struct extent_state *state; 1960 int num_copies; 1961 int did_repair = 0; 1962 int ret; 1963 struct inode *inode = page->mapping->host; 1964 1965 private = 0; 1966 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1967 (u64)-1, 1, EXTENT_DIRTY, 0); 1968 if (!ret) 1969 return 0; 1970 1971 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 1972 &private_failure); 1973 if (ret) 1974 return 0; 1975 1976 failrec = (struct io_failure_record *)(unsigned long) private_failure; 1977 BUG_ON(!failrec->this_mirror); 1978 1979 if (failrec->in_validation) { 1980 /* there was no real error, just free the record */ 1981 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 1982 failrec->start); 1983 did_repair = 1; 1984 goto out; 1985 } 1986 1987 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1988 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1989 failrec->start, 1990 EXTENT_LOCKED); 1991 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1992 1993 if (state && state->start == failrec->start) { 1994 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; 1995 num_copies = btrfs_num_copies(map_tree, failrec->logical, 1996 failrec->len); 1997 if (num_copies > 1) { 1998 ret = repair_io_failure(map_tree, start, failrec->len, 1999 failrec->logical, page, 2000 failrec->failed_mirror); 2001 did_repair = !ret; 2002 } 2003 } 2004 2005 out: 2006 if (!ret) 2007 ret = free_io_failure(inode, failrec, did_repair); 2008 2009 return ret; 2010 } 2011 2012 /* 2013 * this is a generic handler for readpage errors (default 2014 * readpage_io_failed_hook). if other copies exist, read those and write back 2015 * good data to the failed position. does not investigate in remapping the 2016 * failed extent elsewhere, hoping the device will be smart enough to do this as 2017 * needed 2018 */ 2019 2020 static int bio_readpage_error(struct bio *failed_bio, struct page *page, 2021 u64 start, u64 end, int failed_mirror, 2022 struct extent_state *state) 2023 { 2024 struct io_failure_record *failrec = NULL; 2025 u64 private; 2026 struct extent_map *em; 2027 struct inode *inode = page->mapping->host; 2028 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2029 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2030 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2031 struct bio *bio; 2032 int num_copies; 2033 int ret; 2034 int read_mode; 2035 u64 logical; 2036 2037 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2038 2039 ret = get_state_private(failure_tree, start, &private); 2040 if (ret) { 2041 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2042 if (!failrec) 2043 return -ENOMEM; 2044 failrec->start = start; 2045 failrec->len = end - start + 1; 2046 failrec->this_mirror = 0; 2047 failrec->bio_flags = 0; 2048 failrec->in_validation = 0; 2049 2050 read_lock(&em_tree->lock); 2051 em = lookup_extent_mapping(em_tree, start, failrec->len); 2052 if (!em) { 2053 read_unlock(&em_tree->lock); 2054 kfree(failrec); 2055 return -EIO; 2056 } 2057 2058 if (em->start > start || em->start + em->len < start) { 2059 free_extent_map(em); 2060 em = NULL; 2061 } 2062 read_unlock(&em_tree->lock); 2063 2064 if (!em || IS_ERR(em)) { 2065 kfree(failrec); 2066 return -EIO; 2067 } 2068 logical = start - em->start; 2069 logical = em->block_start + logical; 2070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2071 logical = em->block_start; 2072 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2073 extent_set_compress_type(&failrec->bio_flags, 2074 em->compress_type); 2075 } 2076 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2077 "len=%llu\n", logical, start, failrec->len); 2078 failrec->logical = logical; 2079 free_extent_map(em); 2080 2081 /* set the bits in the private failure tree */ 2082 ret = set_extent_bits(failure_tree, start, end, 2083 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2084 if (ret >= 0) 2085 ret = set_state_private(failure_tree, start, 2086 (u64)(unsigned long)failrec); 2087 /* set the bits in the inode's tree */ 2088 if (ret >= 0) 2089 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2090 GFP_NOFS); 2091 if (ret < 0) { 2092 kfree(failrec); 2093 return ret; 2094 } 2095 } else { 2096 failrec = (struct io_failure_record *)(unsigned long)private; 2097 pr_debug("bio_readpage_error: (found) logical=%llu, " 2098 "start=%llu, len=%llu, validation=%d\n", 2099 failrec->logical, failrec->start, failrec->len, 2100 failrec->in_validation); 2101 /* 2102 * when data can be on disk more than twice, add to failrec here 2103 * (e.g. with a list for failed_mirror) to make 2104 * clean_io_failure() clean all those errors at once. 2105 */ 2106 } 2107 num_copies = btrfs_num_copies( 2108 &BTRFS_I(inode)->root->fs_info->mapping_tree, 2109 failrec->logical, failrec->len); 2110 if (num_copies == 1) { 2111 /* 2112 * we only have a single copy of the data, so don't bother with 2113 * all the retry and error correction code that follows. no 2114 * matter what the error is, it is very likely to persist. 2115 */ 2116 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " 2117 "state=%p, num_copies=%d, next_mirror %d, " 2118 "failed_mirror %d\n", state, num_copies, 2119 failrec->this_mirror, failed_mirror); 2120 free_io_failure(inode, failrec, 0); 2121 return -EIO; 2122 } 2123 2124 if (!state) { 2125 spin_lock(&tree->lock); 2126 state = find_first_extent_bit_state(tree, failrec->start, 2127 EXTENT_LOCKED); 2128 if (state && state->start != failrec->start) 2129 state = NULL; 2130 spin_unlock(&tree->lock); 2131 } 2132 2133 /* 2134 * there are two premises: 2135 * a) deliver good data to the caller 2136 * b) correct the bad sectors on disk 2137 */ 2138 if (failed_bio->bi_vcnt > 1) { 2139 /* 2140 * to fulfill b), we need to know the exact failing sectors, as 2141 * we don't want to rewrite any more than the failed ones. thus, 2142 * we need separate read requests for the failed bio 2143 * 2144 * if the following BUG_ON triggers, our validation request got 2145 * merged. we need separate requests for our algorithm to work. 2146 */ 2147 BUG_ON(failrec->in_validation); 2148 failrec->in_validation = 1; 2149 failrec->this_mirror = failed_mirror; 2150 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2151 } else { 2152 /* 2153 * we're ready to fulfill a) and b) alongside. get a good copy 2154 * of the failed sector and if we succeed, we have setup 2155 * everything for repair_io_failure to do the rest for us. 2156 */ 2157 if (failrec->in_validation) { 2158 BUG_ON(failrec->this_mirror != failed_mirror); 2159 failrec->in_validation = 0; 2160 failrec->this_mirror = 0; 2161 } 2162 failrec->failed_mirror = failed_mirror; 2163 failrec->this_mirror++; 2164 if (failrec->this_mirror == failed_mirror) 2165 failrec->this_mirror++; 2166 read_mode = READ_SYNC; 2167 } 2168 2169 if (!state || failrec->this_mirror > num_copies) { 2170 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " 2171 "next_mirror %d, failed_mirror %d\n", state, 2172 num_copies, failrec->this_mirror, failed_mirror); 2173 free_io_failure(inode, failrec, 0); 2174 return -EIO; 2175 } 2176 2177 bio = bio_alloc(GFP_NOFS, 1); 2178 if (!bio) { 2179 free_io_failure(inode, failrec, 0); 2180 return -EIO; 2181 } 2182 bio->bi_private = state; 2183 bio->bi_end_io = failed_bio->bi_end_io; 2184 bio->bi_sector = failrec->logical >> 9; 2185 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2186 bio->bi_size = 0; 2187 2188 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2189 2190 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2191 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2192 failrec->this_mirror, num_copies, failrec->in_validation); 2193 2194 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2195 failrec->this_mirror, 2196 failrec->bio_flags, 0); 2197 return ret; 2198 } 2199 2200 /* lots and lots of room for performance fixes in the end_bio funcs */ 2201 2202 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2203 { 2204 int uptodate = (err == 0); 2205 struct extent_io_tree *tree; 2206 int ret; 2207 2208 tree = &BTRFS_I(page->mapping->host)->io_tree; 2209 2210 if (tree->ops && tree->ops->writepage_end_io_hook) { 2211 ret = tree->ops->writepage_end_io_hook(page, start, 2212 end, NULL, uptodate); 2213 if (ret) 2214 uptodate = 0; 2215 } 2216 2217 if (!uptodate) { 2218 ClearPageUptodate(page); 2219 SetPageError(page); 2220 } 2221 return 0; 2222 } 2223 2224 /* 2225 * after a writepage IO is done, we need to: 2226 * clear the uptodate bits on error 2227 * clear the writeback bits in the extent tree for this IO 2228 * end_page_writeback if the page has no more pending IO 2229 * 2230 * Scheduling is not allowed, so the extent state tree is expected 2231 * to have one and only one object corresponding to this IO. 2232 */ 2233 static void end_bio_extent_writepage(struct bio *bio, int err) 2234 { 2235 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2236 struct extent_io_tree *tree; 2237 u64 start; 2238 u64 end; 2239 int whole_page; 2240 2241 do { 2242 struct page *page = bvec->bv_page; 2243 tree = &BTRFS_I(page->mapping->host)->io_tree; 2244 2245 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2246 bvec->bv_offset; 2247 end = start + bvec->bv_len - 1; 2248 2249 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2250 whole_page = 1; 2251 else 2252 whole_page = 0; 2253 2254 if (--bvec >= bio->bi_io_vec) 2255 prefetchw(&bvec->bv_page->flags); 2256 2257 if (end_extent_writepage(page, err, start, end)) 2258 continue; 2259 2260 if (whole_page) 2261 end_page_writeback(page); 2262 else 2263 check_page_writeback(tree, page); 2264 } while (bvec >= bio->bi_io_vec); 2265 2266 bio_put(bio); 2267 } 2268 2269 /* 2270 * after a readpage IO is done, we need to: 2271 * clear the uptodate bits on error 2272 * set the uptodate bits if things worked 2273 * set the page up to date if all extents in the tree are uptodate 2274 * clear the lock bit in the extent tree 2275 * unlock the page if there are no other extents locked for it 2276 * 2277 * Scheduling is not allowed, so the extent state tree is expected 2278 * to have one and only one object corresponding to this IO. 2279 */ 2280 static void end_bio_extent_readpage(struct bio *bio, int err) 2281 { 2282 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2283 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2284 struct bio_vec *bvec = bio->bi_io_vec; 2285 struct extent_io_tree *tree; 2286 u64 start; 2287 u64 end; 2288 int whole_page; 2289 int mirror; 2290 int ret; 2291 2292 if (err) 2293 uptodate = 0; 2294 2295 do { 2296 struct page *page = bvec->bv_page; 2297 struct extent_state *cached = NULL; 2298 struct extent_state *state; 2299 2300 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, " 2301 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err, 2302 (long int)bio->bi_bdev); 2303 tree = &BTRFS_I(page->mapping->host)->io_tree; 2304 2305 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2306 bvec->bv_offset; 2307 end = start + bvec->bv_len - 1; 2308 2309 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2310 whole_page = 1; 2311 else 2312 whole_page = 0; 2313 2314 if (++bvec <= bvec_end) 2315 prefetchw(&bvec->bv_page->flags); 2316 2317 spin_lock(&tree->lock); 2318 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 2319 if (state && state->start == start) { 2320 /* 2321 * take a reference on the state, unlock will drop 2322 * the ref 2323 */ 2324 cache_state(state, &cached); 2325 } 2326 spin_unlock(&tree->lock); 2327 2328 mirror = (int)(unsigned long)bio->bi_bdev; 2329 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 2330 ret = tree->ops->readpage_end_io_hook(page, start, end, 2331 state, mirror); 2332 if (ret) { 2333 /* no IO indicated but software detected errors 2334 * in the block, either checksum errors or 2335 * issues with the contents */ 2336 struct btrfs_root *root = 2337 BTRFS_I(page->mapping->host)->root; 2338 struct btrfs_device *device; 2339 2340 uptodate = 0; 2341 device = btrfs_find_device_for_logical( 2342 root, start, mirror); 2343 if (device) 2344 btrfs_dev_stat_inc_and_print(device, 2345 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2346 } else { 2347 clean_io_failure(start, page); 2348 } 2349 } 2350 2351 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { 2352 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2353 if (!ret && !err && 2354 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2355 uptodate = 1; 2356 } else if (!uptodate) { 2357 /* 2358 * The generic bio_readpage_error handles errors the 2359 * following way: If possible, new read requests are 2360 * created and submitted and will end up in 2361 * end_bio_extent_readpage as well (if we're lucky, not 2362 * in the !uptodate case). In that case it returns 0 and 2363 * we just go on with the next page in our bio. If it 2364 * can't handle the error it will return -EIO and we 2365 * remain responsible for that page. 2366 */ 2367 ret = bio_readpage_error(bio, page, start, end, mirror, NULL); 2368 if (ret == 0) { 2369 uptodate = 2370 test_bit(BIO_UPTODATE, &bio->bi_flags); 2371 if (err) 2372 uptodate = 0; 2373 uncache_state(&cached); 2374 continue; 2375 } 2376 } 2377 2378 if (uptodate && tree->track_uptodate) { 2379 set_extent_uptodate(tree, start, end, &cached, 2380 GFP_ATOMIC); 2381 } 2382 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2383 2384 if (whole_page) { 2385 if (uptodate) { 2386 SetPageUptodate(page); 2387 } else { 2388 ClearPageUptodate(page); 2389 SetPageError(page); 2390 } 2391 unlock_page(page); 2392 } else { 2393 if (uptodate) { 2394 check_page_uptodate(tree, page); 2395 } else { 2396 ClearPageUptodate(page); 2397 SetPageError(page); 2398 } 2399 check_page_locked(tree, page); 2400 } 2401 } while (bvec <= bvec_end); 2402 2403 bio_put(bio); 2404 } 2405 2406 struct bio * 2407 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2408 gfp_t gfp_flags) 2409 { 2410 struct bio *bio; 2411 2412 bio = bio_alloc(gfp_flags, nr_vecs); 2413 2414 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2415 while (!bio && (nr_vecs /= 2)) 2416 bio = bio_alloc(gfp_flags, nr_vecs); 2417 } 2418 2419 if (bio) { 2420 bio->bi_size = 0; 2421 bio->bi_bdev = bdev; 2422 bio->bi_sector = first_sector; 2423 } 2424 return bio; 2425 } 2426 2427 /* 2428 * Since writes are async, they will only return -ENOMEM. 2429 * Reads can return the full range of I/O error conditions. 2430 */ 2431 static int __must_check submit_one_bio(int rw, struct bio *bio, 2432 int mirror_num, unsigned long bio_flags) 2433 { 2434 int ret = 0; 2435 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2436 struct page *page = bvec->bv_page; 2437 struct extent_io_tree *tree = bio->bi_private; 2438 u64 start; 2439 2440 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 2441 2442 bio->bi_private = NULL; 2443 2444 bio_get(bio); 2445 2446 if (tree->ops && tree->ops->submit_bio_hook) 2447 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2448 mirror_num, bio_flags, start); 2449 else 2450 btrfsic_submit_bio(rw, bio); 2451 2452 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2453 ret = -EOPNOTSUPP; 2454 bio_put(bio); 2455 return ret; 2456 } 2457 2458 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2459 unsigned long offset, size_t size, struct bio *bio, 2460 unsigned long bio_flags) 2461 { 2462 int ret = 0; 2463 if (tree->ops && tree->ops->merge_bio_hook) 2464 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2465 bio_flags); 2466 BUG_ON(ret < 0); 2467 return ret; 2468 2469 } 2470 2471 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2472 struct page *page, sector_t sector, 2473 size_t size, unsigned long offset, 2474 struct block_device *bdev, 2475 struct bio **bio_ret, 2476 unsigned long max_pages, 2477 bio_end_io_t end_io_func, 2478 int mirror_num, 2479 unsigned long prev_bio_flags, 2480 unsigned long bio_flags) 2481 { 2482 int ret = 0; 2483 struct bio *bio; 2484 int nr; 2485 int contig = 0; 2486 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2487 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2488 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2489 2490 if (bio_ret && *bio_ret) { 2491 bio = *bio_ret; 2492 if (old_compressed) 2493 contig = bio->bi_sector == sector; 2494 else 2495 contig = bio->bi_sector + (bio->bi_size >> 9) == 2496 sector; 2497 2498 if (prev_bio_flags != bio_flags || !contig || 2499 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2500 bio_add_page(bio, page, page_size, offset) < page_size) { 2501 ret = submit_one_bio(rw, bio, mirror_num, 2502 prev_bio_flags); 2503 if (ret < 0) 2504 return ret; 2505 bio = NULL; 2506 } else { 2507 return 0; 2508 } 2509 } 2510 if (this_compressed) 2511 nr = BIO_MAX_PAGES; 2512 else 2513 nr = bio_get_nr_vecs(bdev); 2514 2515 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2516 if (!bio) 2517 return -ENOMEM; 2518 2519 bio_add_page(bio, page, page_size, offset); 2520 bio->bi_end_io = end_io_func; 2521 bio->bi_private = tree; 2522 2523 if (bio_ret) 2524 *bio_ret = bio; 2525 else 2526 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2527 2528 return ret; 2529 } 2530 2531 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 2532 { 2533 if (!PagePrivate(page)) { 2534 SetPagePrivate(page); 2535 page_cache_get(page); 2536 set_page_private(page, (unsigned long)eb); 2537 } else { 2538 WARN_ON(page->private != (unsigned long)eb); 2539 } 2540 } 2541 2542 void set_page_extent_mapped(struct page *page) 2543 { 2544 if (!PagePrivate(page)) { 2545 SetPagePrivate(page); 2546 page_cache_get(page); 2547 set_page_private(page, EXTENT_PAGE_PRIVATE); 2548 } 2549 } 2550 2551 /* 2552 * basic readpage implementation. Locked extent state structs are inserted 2553 * into the tree that are removed when the IO is done (by the end_io 2554 * handlers) 2555 * XXX JDM: This needs looking at to ensure proper page locking 2556 */ 2557 static int __extent_read_full_page(struct extent_io_tree *tree, 2558 struct page *page, 2559 get_extent_t *get_extent, 2560 struct bio **bio, int mirror_num, 2561 unsigned long *bio_flags) 2562 { 2563 struct inode *inode = page->mapping->host; 2564 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2565 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2566 u64 end; 2567 u64 cur = start; 2568 u64 extent_offset; 2569 u64 last_byte = i_size_read(inode); 2570 u64 block_start; 2571 u64 cur_end; 2572 sector_t sector; 2573 struct extent_map *em; 2574 struct block_device *bdev; 2575 struct btrfs_ordered_extent *ordered; 2576 int ret; 2577 int nr = 0; 2578 size_t pg_offset = 0; 2579 size_t iosize; 2580 size_t disk_io_size; 2581 size_t blocksize = inode->i_sb->s_blocksize; 2582 unsigned long this_bio_flag = 0; 2583 2584 set_page_extent_mapped(page); 2585 2586 if (!PageUptodate(page)) { 2587 if (cleancache_get_page(page) == 0) { 2588 BUG_ON(blocksize != PAGE_SIZE); 2589 goto out; 2590 } 2591 } 2592 2593 end = page_end; 2594 while (1) { 2595 lock_extent(tree, start, end); 2596 ordered = btrfs_lookup_ordered_extent(inode, start); 2597 if (!ordered) 2598 break; 2599 unlock_extent(tree, start, end); 2600 btrfs_start_ordered_extent(inode, ordered, 1); 2601 btrfs_put_ordered_extent(ordered); 2602 } 2603 2604 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2605 char *userpage; 2606 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2607 2608 if (zero_offset) { 2609 iosize = PAGE_CACHE_SIZE - zero_offset; 2610 userpage = kmap_atomic(page); 2611 memset(userpage + zero_offset, 0, iosize); 2612 flush_dcache_page(page); 2613 kunmap_atomic(userpage); 2614 } 2615 } 2616 while (cur <= end) { 2617 if (cur >= last_byte) { 2618 char *userpage; 2619 struct extent_state *cached = NULL; 2620 2621 iosize = PAGE_CACHE_SIZE - pg_offset; 2622 userpage = kmap_atomic(page); 2623 memset(userpage + pg_offset, 0, iosize); 2624 flush_dcache_page(page); 2625 kunmap_atomic(userpage); 2626 set_extent_uptodate(tree, cur, cur + iosize - 1, 2627 &cached, GFP_NOFS); 2628 unlock_extent_cached(tree, cur, cur + iosize - 1, 2629 &cached, GFP_NOFS); 2630 break; 2631 } 2632 em = get_extent(inode, page, pg_offset, cur, 2633 end - cur + 1, 0); 2634 if (IS_ERR_OR_NULL(em)) { 2635 SetPageError(page); 2636 unlock_extent(tree, cur, end); 2637 break; 2638 } 2639 extent_offset = cur - em->start; 2640 BUG_ON(extent_map_end(em) <= cur); 2641 BUG_ON(end < cur); 2642 2643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2644 this_bio_flag = EXTENT_BIO_COMPRESSED; 2645 extent_set_compress_type(&this_bio_flag, 2646 em->compress_type); 2647 } 2648 2649 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2650 cur_end = min(extent_map_end(em) - 1, end); 2651 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2652 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2653 disk_io_size = em->block_len; 2654 sector = em->block_start >> 9; 2655 } else { 2656 sector = (em->block_start + extent_offset) >> 9; 2657 disk_io_size = iosize; 2658 } 2659 bdev = em->bdev; 2660 block_start = em->block_start; 2661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2662 block_start = EXTENT_MAP_HOLE; 2663 free_extent_map(em); 2664 em = NULL; 2665 2666 /* we've found a hole, just zero and go on */ 2667 if (block_start == EXTENT_MAP_HOLE) { 2668 char *userpage; 2669 struct extent_state *cached = NULL; 2670 2671 userpage = kmap_atomic(page); 2672 memset(userpage + pg_offset, 0, iosize); 2673 flush_dcache_page(page); 2674 kunmap_atomic(userpage); 2675 2676 set_extent_uptodate(tree, cur, cur + iosize - 1, 2677 &cached, GFP_NOFS); 2678 unlock_extent_cached(tree, cur, cur + iosize - 1, 2679 &cached, GFP_NOFS); 2680 cur = cur + iosize; 2681 pg_offset += iosize; 2682 continue; 2683 } 2684 /* the get_extent function already copied into the page */ 2685 if (test_range_bit(tree, cur, cur_end, 2686 EXTENT_UPTODATE, 1, NULL)) { 2687 check_page_uptodate(tree, page); 2688 unlock_extent(tree, cur, cur + iosize - 1); 2689 cur = cur + iosize; 2690 pg_offset += iosize; 2691 continue; 2692 } 2693 /* we have an inline extent but it didn't get marked up 2694 * to date. Error out 2695 */ 2696 if (block_start == EXTENT_MAP_INLINE) { 2697 SetPageError(page); 2698 unlock_extent(tree, cur, cur + iosize - 1); 2699 cur = cur + iosize; 2700 pg_offset += iosize; 2701 continue; 2702 } 2703 2704 ret = 0; 2705 if (tree->ops && tree->ops->readpage_io_hook) { 2706 ret = tree->ops->readpage_io_hook(page, cur, 2707 cur + iosize - 1); 2708 } 2709 if (!ret) { 2710 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2711 pnr -= page->index; 2712 ret = submit_extent_page(READ, tree, page, 2713 sector, disk_io_size, pg_offset, 2714 bdev, bio, pnr, 2715 end_bio_extent_readpage, mirror_num, 2716 *bio_flags, 2717 this_bio_flag); 2718 BUG_ON(ret == -ENOMEM); 2719 nr++; 2720 *bio_flags = this_bio_flag; 2721 } 2722 if (ret) 2723 SetPageError(page); 2724 cur = cur + iosize; 2725 pg_offset += iosize; 2726 } 2727 out: 2728 if (!nr) { 2729 if (!PageError(page)) 2730 SetPageUptodate(page); 2731 unlock_page(page); 2732 } 2733 return 0; 2734 } 2735 2736 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2737 get_extent_t *get_extent, int mirror_num) 2738 { 2739 struct bio *bio = NULL; 2740 unsigned long bio_flags = 0; 2741 int ret; 2742 2743 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 2744 &bio_flags); 2745 if (bio) 2746 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 2747 return ret; 2748 } 2749 2750 static noinline void update_nr_written(struct page *page, 2751 struct writeback_control *wbc, 2752 unsigned long nr_written) 2753 { 2754 wbc->nr_to_write -= nr_written; 2755 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2756 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2757 page->mapping->writeback_index = page->index + nr_written; 2758 } 2759 2760 /* 2761 * the writepage semantics are similar to regular writepage. extent 2762 * records are inserted to lock ranges in the tree, and as dirty areas 2763 * are found, they are marked writeback. Then the lock bits are removed 2764 * and the end_io handler clears the writeback ranges 2765 */ 2766 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2767 void *data) 2768 { 2769 struct inode *inode = page->mapping->host; 2770 struct extent_page_data *epd = data; 2771 struct extent_io_tree *tree = epd->tree; 2772 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2773 u64 delalloc_start; 2774 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2775 u64 end; 2776 u64 cur = start; 2777 u64 extent_offset; 2778 u64 last_byte = i_size_read(inode); 2779 u64 block_start; 2780 u64 iosize; 2781 sector_t sector; 2782 struct extent_state *cached_state = NULL; 2783 struct extent_map *em; 2784 struct block_device *bdev; 2785 int ret; 2786 int nr = 0; 2787 size_t pg_offset = 0; 2788 size_t blocksize; 2789 loff_t i_size = i_size_read(inode); 2790 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2791 u64 nr_delalloc; 2792 u64 delalloc_end; 2793 int page_started; 2794 int compressed; 2795 int write_flags; 2796 unsigned long nr_written = 0; 2797 bool fill_delalloc = true; 2798 2799 if (wbc->sync_mode == WB_SYNC_ALL) 2800 write_flags = WRITE_SYNC; 2801 else 2802 write_flags = WRITE; 2803 2804 trace___extent_writepage(page, inode, wbc); 2805 2806 WARN_ON(!PageLocked(page)); 2807 2808 ClearPageError(page); 2809 2810 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2811 if (page->index > end_index || 2812 (page->index == end_index && !pg_offset)) { 2813 page->mapping->a_ops->invalidatepage(page, 0); 2814 unlock_page(page); 2815 return 0; 2816 } 2817 2818 if (page->index == end_index) { 2819 char *userpage; 2820 2821 userpage = kmap_atomic(page); 2822 memset(userpage + pg_offset, 0, 2823 PAGE_CACHE_SIZE - pg_offset); 2824 kunmap_atomic(userpage); 2825 flush_dcache_page(page); 2826 } 2827 pg_offset = 0; 2828 2829 set_page_extent_mapped(page); 2830 2831 if (!tree->ops || !tree->ops->fill_delalloc) 2832 fill_delalloc = false; 2833 2834 delalloc_start = start; 2835 delalloc_end = 0; 2836 page_started = 0; 2837 if (!epd->extent_locked && fill_delalloc) { 2838 u64 delalloc_to_write = 0; 2839 /* 2840 * make sure the wbc mapping index is at least updated 2841 * to this page. 2842 */ 2843 update_nr_written(page, wbc, 0); 2844 2845 while (delalloc_end < page_end) { 2846 nr_delalloc = find_lock_delalloc_range(inode, tree, 2847 page, 2848 &delalloc_start, 2849 &delalloc_end, 2850 128 * 1024 * 1024); 2851 if (nr_delalloc == 0) { 2852 delalloc_start = delalloc_end + 1; 2853 continue; 2854 } 2855 ret = tree->ops->fill_delalloc(inode, page, 2856 delalloc_start, 2857 delalloc_end, 2858 &page_started, 2859 &nr_written); 2860 /* File system has been set read-only */ 2861 if (ret) { 2862 SetPageError(page); 2863 goto done; 2864 } 2865 /* 2866 * delalloc_end is already one less than the total 2867 * length, so we don't subtract one from 2868 * PAGE_CACHE_SIZE 2869 */ 2870 delalloc_to_write += (delalloc_end - delalloc_start + 2871 PAGE_CACHE_SIZE) >> 2872 PAGE_CACHE_SHIFT; 2873 delalloc_start = delalloc_end + 1; 2874 } 2875 if (wbc->nr_to_write < delalloc_to_write) { 2876 int thresh = 8192; 2877 2878 if (delalloc_to_write < thresh * 2) 2879 thresh = delalloc_to_write; 2880 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2881 thresh); 2882 } 2883 2884 /* did the fill delalloc function already unlock and start 2885 * the IO? 2886 */ 2887 if (page_started) { 2888 ret = 0; 2889 /* 2890 * we've unlocked the page, so we can't update 2891 * the mapping's writeback index, just update 2892 * nr_to_write. 2893 */ 2894 wbc->nr_to_write -= nr_written; 2895 goto done_unlocked; 2896 } 2897 } 2898 if (tree->ops && tree->ops->writepage_start_hook) { 2899 ret = tree->ops->writepage_start_hook(page, start, 2900 page_end); 2901 if (ret) { 2902 /* Fixup worker will requeue */ 2903 if (ret == -EBUSY) 2904 wbc->pages_skipped++; 2905 else 2906 redirty_page_for_writepage(wbc, page); 2907 update_nr_written(page, wbc, nr_written); 2908 unlock_page(page); 2909 ret = 0; 2910 goto done_unlocked; 2911 } 2912 } 2913 2914 /* 2915 * we don't want to touch the inode after unlocking the page, 2916 * so we update the mapping writeback index now 2917 */ 2918 update_nr_written(page, wbc, nr_written + 1); 2919 2920 end = page_end; 2921 if (last_byte <= start) { 2922 if (tree->ops && tree->ops->writepage_end_io_hook) 2923 tree->ops->writepage_end_io_hook(page, start, 2924 page_end, NULL, 1); 2925 goto done; 2926 } 2927 2928 blocksize = inode->i_sb->s_blocksize; 2929 2930 while (cur <= end) { 2931 if (cur >= last_byte) { 2932 if (tree->ops && tree->ops->writepage_end_io_hook) 2933 tree->ops->writepage_end_io_hook(page, cur, 2934 page_end, NULL, 1); 2935 break; 2936 } 2937 em = epd->get_extent(inode, page, pg_offset, cur, 2938 end - cur + 1, 1); 2939 if (IS_ERR_OR_NULL(em)) { 2940 SetPageError(page); 2941 break; 2942 } 2943 2944 extent_offset = cur - em->start; 2945 BUG_ON(extent_map_end(em) <= cur); 2946 BUG_ON(end < cur); 2947 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2948 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2949 sector = (em->block_start + extent_offset) >> 9; 2950 bdev = em->bdev; 2951 block_start = em->block_start; 2952 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2953 free_extent_map(em); 2954 em = NULL; 2955 2956 /* 2957 * compressed and inline extents are written through other 2958 * paths in the FS 2959 */ 2960 if (compressed || block_start == EXTENT_MAP_HOLE || 2961 block_start == EXTENT_MAP_INLINE) { 2962 /* 2963 * end_io notification does not happen here for 2964 * compressed extents 2965 */ 2966 if (!compressed && tree->ops && 2967 tree->ops->writepage_end_io_hook) 2968 tree->ops->writepage_end_io_hook(page, cur, 2969 cur + iosize - 1, 2970 NULL, 1); 2971 else if (compressed) { 2972 /* we don't want to end_page_writeback on 2973 * a compressed extent. this happens 2974 * elsewhere 2975 */ 2976 nr++; 2977 } 2978 2979 cur += iosize; 2980 pg_offset += iosize; 2981 continue; 2982 } 2983 /* leave this out until we have a page_mkwrite call */ 2984 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2985 EXTENT_DIRTY, 0, NULL)) { 2986 cur = cur + iosize; 2987 pg_offset += iosize; 2988 continue; 2989 } 2990 2991 if (tree->ops && tree->ops->writepage_io_hook) { 2992 ret = tree->ops->writepage_io_hook(page, cur, 2993 cur + iosize - 1); 2994 } else { 2995 ret = 0; 2996 } 2997 if (ret) { 2998 SetPageError(page); 2999 } else { 3000 unsigned long max_nr = end_index + 1; 3001 3002 set_range_writeback(tree, cur, cur + iosize - 1); 3003 if (!PageWriteback(page)) { 3004 printk(KERN_ERR "btrfs warning page %lu not " 3005 "writeback, cur %llu end %llu\n", 3006 page->index, (unsigned long long)cur, 3007 (unsigned long long)end); 3008 } 3009 3010 ret = submit_extent_page(write_flags, tree, page, 3011 sector, iosize, pg_offset, 3012 bdev, &epd->bio, max_nr, 3013 end_bio_extent_writepage, 3014 0, 0, 0); 3015 if (ret) 3016 SetPageError(page); 3017 } 3018 cur = cur + iosize; 3019 pg_offset += iosize; 3020 nr++; 3021 } 3022 done: 3023 if (nr == 0) { 3024 /* make sure the mapping tag for page dirty gets cleared */ 3025 set_page_writeback(page); 3026 end_page_writeback(page); 3027 } 3028 unlock_page(page); 3029 3030 done_unlocked: 3031 3032 /* drop our reference on any cached states */ 3033 free_extent_state(cached_state); 3034 return 0; 3035 } 3036 3037 static int eb_wait(void *word) 3038 { 3039 io_schedule(); 3040 return 0; 3041 } 3042 3043 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3044 { 3045 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3046 TASK_UNINTERRUPTIBLE); 3047 } 3048 3049 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3050 struct btrfs_fs_info *fs_info, 3051 struct extent_page_data *epd) 3052 { 3053 unsigned long i, num_pages; 3054 int flush = 0; 3055 int ret = 0; 3056 3057 if (!btrfs_try_tree_write_lock(eb)) { 3058 flush = 1; 3059 flush_write_bio(epd); 3060 btrfs_tree_lock(eb); 3061 } 3062 3063 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3064 btrfs_tree_unlock(eb); 3065 if (!epd->sync_io) 3066 return 0; 3067 if (!flush) { 3068 flush_write_bio(epd); 3069 flush = 1; 3070 } 3071 while (1) { 3072 wait_on_extent_buffer_writeback(eb); 3073 btrfs_tree_lock(eb); 3074 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3075 break; 3076 btrfs_tree_unlock(eb); 3077 } 3078 } 3079 3080 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3081 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3082 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3083 spin_lock(&fs_info->delalloc_lock); 3084 if (fs_info->dirty_metadata_bytes >= eb->len) 3085 fs_info->dirty_metadata_bytes -= eb->len; 3086 else 3087 WARN_ON(1); 3088 spin_unlock(&fs_info->delalloc_lock); 3089 ret = 1; 3090 } 3091 3092 btrfs_tree_unlock(eb); 3093 3094 if (!ret) 3095 return ret; 3096 3097 num_pages = num_extent_pages(eb->start, eb->len); 3098 for (i = 0; i < num_pages; i++) { 3099 struct page *p = extent_buffer_page(eb, i); 3100 3101 if (!trylock_page(p)) { 3102 if (!flush) { 3103 flush_write_bio(epd); 3104 flush = 1; 3105 } 3106 lock_page(p); 3107 } 3108 } 3109 3110 return ret; 3111 } 3112 3113 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3114 { 3115 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3116 smp_mb__after_clear_bit(); 3117 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3118 } 3119 3120 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3121 { 3122 int uptodate = err == 0; 3123 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3124 struct extent_buffer *eb; 3125 int done; 3126 3127 do { 3128 struct page *page = bvec->bv_page; 3129 3130 bvec--; 3131 eb = (struct extent_buffer *)page->private; 3132 BUG_ON(!eb); 3133 done = atomic_dec_and_test(&eb->io_pages); 3134 3135 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3136 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3137 ClearPageUptodate(page); 3138 SetPageError(page); 3139 } 3140 3141 end_page_writeback(page); 3142 3143 if (!done) 3144 continue; 3145 3146 end_extent_buffer_writeback(eb); 3147 } while (bvec >= bio->bi_io_vec); 3148 3149 bio_put(bio); 3150 3151 } 3152 3153 static int write_one_eb(struct extent_buffer *eb, 3154 struct btrfs_fs_info *fs_info, 3155 struct writeback_control *wbc, 3156 struct extent_page_data *epd) 3157 { 3158 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3159 u64 offset = eb->start; 3160 unsigned long i, num_pages; 3161 int rw = (epd->sync_io ? WRITE_SYNC : WRITE); 3162 int ret = 0; 3163 3164 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3165 num_pages = num_extent_pages(eb->start, eb->len); 3166 atomic_set(&eb->io_pages, num_pages); 3167 for (i = 0; i < num_pages; i++) { 3168 struct page *p = extent_buffer_page(eb, i); 3169 3170 clear_page_dirty_for_io(p); 3171 set_page_writeback(p); 3172 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3173 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3174 -1, end_bio_extent_buffer_writepage, 3175 0, 0, 0); 3176 if (ret) { 3177 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3178 SetPageError(p); 3179 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3180 end_extent_buffer_writeback(eb); 3181 ret = -EIO; 3182 break; 3183 } 3184 offset += PAGE_CACHE_SIZE; 3185 update_nr_written(p, wbc, 1); 3186 unlock_page(p); 3187 } 3188 3189 if (unlikely(ret)) { 3190 for (; i < num_pages; i++) { 3191 struct page *p = extent_buffer_page(eb, i); 3192 unlock_page(p); 3193 } 3194 } 3195 3196 return ret; 3197 } 3198 3199 int btree_write_cache_pages(struct address_space *mapping, 3200 struct writeback_control *wbc) 3201 { 3202 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3203 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3204 struct extent_buffer *eb, *prev_eb = NULL; 3205 struct extent_page_data epd = { 3206 .bio = NULL, 3207 .tree = tree, 3208 .extent_locked = 0, 3209 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3210 }; 3211 int ret = 0; 3212 int done = 0; 3213 int nr_to_write_done = 0; 3214 struct pagevec pvec; 3215 int nr_pages; 3216 pgoff_t index; 3217 pgoff_t end; /* Inclusive */ 3218 int scanned = 0; 3219 int tag; 3220 3221 pagevec_init(&pvec, 0); 3222 if (wbc->range_cyclic) { 3223 index = mapping->writeback_index; /* Start from prev offset */ 3224 end = -1; 3225 } else { 3226 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3227 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3228 scanned = 1; 3229 } 3230 if (wbc->sync_mode == WB_SYNC_ALL) 3231 tag = PAGECACHE_TAG_TOWRITE; 3232 else 3233 tag = PAGECACHE_TAG_DIRTY; 3234 retry: 3235 if (wbc->sync_mode == WB_SYNC_ALL) 3236 tag_pages_for_writeback(mapping, index, end); 3237 while (!done && !nr_to_write_done && (index <= end) && 3238 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3239 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3240 unsigned i; 3241 3242 scanned = 1; 3243 for (i = 0; i < nr_pages; i++) { 3244 struct page *page = pvec.pages[i]; 3245 3246 if (!PagePrivate(page)) 3247 continue; 3248 3249 if (!wbc->range_cyclic && page->index > end) { 3250 done = 1; 3251 break; 3252 } 3253 3254 eb = (struct extent_buffer *)page->private; 3255 if (!eb) { 3256 WARN_ON(1); 3257 continue; 3258 } 3259 3260 if (eb == prev_eb) 3261 continue; 3262 3263 if (!atomic_inc_not_zero(&eb->refs)) { 3264 WARN_ON(1); 3265 continue; 3266 } 3267 3268 prev_eb = eb; 3269 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3270 if (!ret) { 3271 free_extent_buffer(eb); 3272 continue; 3273 } 3274 3275 ret = write_one_eb(eb, fs_info, wbc, &epd); 3276 if (ret) { 3277 done = 1; 3278 free_extent_buffer(eb); 3279 break; 3280 } 3281 free_extent_buffer(eb); 3282 3283 /* 3284 * the filesystem may choose to bump up nr_to_write. 3285 * We have to make sure to honor the new nr_to_write 3286 * at any time 3287 */ 3288 nr_to_write_done = wbc->nr_to_write <= 0; 3289 } 3290 pagevec_release(&pvec); 3291 cond_resched(); 3292 } 3293 if (!scanned && !done) { 3294 /* 3295 * We hit the last page and there is more work to be done: wrap 3296 * back to the start of the file 3297 */ 3298 scanned = 1; 3299 index = 0; 3300 goto retry; 3301 } 3302 flush_write_bio(&epd); 3303 return ret; 3304 } 3305 3306 /** 3307 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3308 * @mapping: address space structure to write 3309 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3310 * @writepage: function called for each page 3311 * @data: data passed to writepage function 3312 * 3313 * If a page is already under I/O, write_cache_pages() skips it, even 3314 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3315 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3316 * and msync() need to guarantee that all the data which was dirty at the time 3317 * the call was made get new I/O started against them. If wbc->sync_mode is 3318 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3319 * existing IO to complete. 3320 */ 3321 static int extent_write_cache_pages(struct extent_io_tree *tree, 3322 struct address_space *mapping, 3323 struct writeback_control *wbc, 3324 writepage_t writepage, void *data, 3325 void (*flush_fn)(void *)) 3326 { 3327 struct inode *inode = mapping->host; 3328 int ret = 0; 3329 int done = 0; 3330 int nr_to_write_done = 0; 3331 struct pagevec pvec; 3332 int nr_pages; 3333 pgoff_t index; 3334 pgoff_t end; /* Inclusive */ 3335 int scanned = 0; 3336 int tag; 3337 3338 /* 3339 * We have to hold onto the inode so that ordered extents can do their 3340 * work when the IO finishes. The alternative to this is failing to add 3341 * an ordered extent if the igrab() fails there and that is a huge pain 3342 * to deal with, so instead just hold onto the inode throughout the 3343 * writepages operation. If it fails here we are freeing up the inode 3344 * anyway and we'd rather not waste our time writing out stuff that is 3345 * going to be truncated anyway. 3346 */ 3347 if (!igrab(inode)) 3348 return 0; 3349 3350 pagevec_init(&pvec, 0); 3351 if (wbc->range_cyclic) { 3352 index = mapping->writeback_index; /* Start from prev offset */ 3353 end = -1; 3354 } else { 3355 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3356 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3357 scanned = 1; 3358 } 3359 if (wbc->sync_mode == WB_SYNC_ALL) 3360 tag = PAGECACHE_TAG_TOWRITE; 3361 else 3362 tag = PAGECACHE_TAG_DIRTY; 3363 retry: 3364 if (wbc->sync_mode == WB_SYNC_ALL) 3365 tag_pages_for_writeback(mapping, index, end); 3366 while (!done && !nr_to_write_done && (index <= end) && 3367 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3369 unsigned i; 3370 3371 scanned = 1; 3372 for (i = 0; i < nr_pages; i++) { 3373 struct page *page = pvec.pages[i]; 3374 3375 /* 3376 * At this point we hold neither mapping->tree_lock nor 3377 * lock on the page itself: the page may be truncated or 3378 * invalidated (changing page->mapping to NULL), or even 3379 * swizzled back from swapper_space to tmpfs file 3380 * mapping 3381 */ 3382 if (tree->ops && 3383 tree->ops->write_cache_pages_lock_hook) { 3384 tree->ops->write_cache_pages_lock_hook(page, 3385 data, flush_fn); 3386 } else { 3387 if (!trylock_page(page)) { 3388 flush_fn(data); 3389 lock_page(page); 3390 } 3391 } 3392 3393 if (unlikely(page->mapping != mapping)) { 3394 unlock_page(page); 3395 continue; 3396 } 3397 3398 if (!wbc->range_cyclic && page->index > end) { 3399 done = 1; 3400 unlock_page(page); 3401 continue; 3402 } 3403 3404 if (wbc->sync_mode != WB_SYNC_NONE) { 3405 if (PageWriteback(page)) 3406 flush_fn(data); 3407 wait_on_page_writeback(page); 3408 } 3409 3410 if (PageWriteback(page) || 3411 !clear_page_dirty_for_io(page)) { 3412 unlock_page(page); 3413 continue; 3414 } 3415 3416 ret = (*writepage)(page, wbc, data); 3417 3418 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3419 unlock_page(page); 3420 ret = 0; 3421 } 3422 if (ret) 3423 done = 1; 3424 3425 /* 3426 * the filesystem may choose to bump up nr_to_write. 3427 * We have to make sure to honor the new nr_to_write 3428 * at any time 3429 */ 3430 nr_to_write_done = wbc->nr_to_write <= 0; 3431 } 3432 pagevec_release(&pvec); 3433 cond_resched(); 3434 } 3435 if (!scanned && !done) { 3436 /* 3437 * We hit the last page and there is more work to be done: wrap 3438 * back to the start of the file 3439 */ 3440 scanned = 1; 3441 index = 0; 3442 goto retry; 3443 } 3444 btrfs_add_delayed_iput(inode); 3445 return ret; 3446 } 3447 3448 static void flush_epd_write_bio(struct extent_page_data *epd) 3449 { 3450 if (epd->bio) { 3451 int rw = WRITE; 3452 int ret; 3453 3454 if (epd->sync_io) 3455 rw = WRITE_SYNC; 3456 3457 ret = submit_one_bio(rw, epd->bio, 0, 0); 3458 BUG_ON(ret < 0); /* -ENOMEM */ 3459 epd->bio = NULL; 3460 } 3461 } 3462 3463 static noinline void flush_write_bio(void *data) 3464 { 3465 struct extent_page_data *epd = data; 3466 flush_epd_write_bio(epd); 3467 } 3468 3469 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3470 get_extent_t *get_extent, 3471 struct writeback_control *wbc) 3472 { 3473 int ret; 3474 struct extent_page_data epd = { 3475 .bio = NULL, 3476 .tree = tree, 3477 .get_extent = get_extent, 3478 .extent_locked = 0, 3479 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3480 }; 3481 3482 ret = __extent_writepage(page, wbc, &epd); 3483 3484 flush_epd_write_bio(&epd); 3485 return ret; 3486 } 3487 3488 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3489 u64 start, u64 end, get_extent_t *get_extent, 3490 int mode) 3491 { 3492 int ret = 0; 3493 struct address_space *mapping = inode->i_mapping; 3494 struct page *page; 3495 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3496 PAGE_CACHE_SHIFT; 3497 3498 struct extent_page_data epd = { 3499 .bio = NULL, 3500 .tree = tree, 3501 .get_extent = get_extent, 3502 .extent_locked = 1, 3503 .sync_io = mode == WB_SYNC_ALL, 3504 }; 3505 struct writeback_control wbc_writepages = { 3506 .sync_mode = mode, 3507 .nr_to_write = nr_pages * 2, 3508 .range_start = start, 3509 .range_end = end + 1, 3510 }; 3511 3512 while (start <= end) { 3513 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3514 if (clear_page_dirty_for_io(page)) 3515 ret = __extent_writepage(page, &wbc_writepages, &epd); 3516 else { 3517 if (tree->ops && tree->ops->writepage_end_io_hook) 3518 tree->ops->writepage_end_io_hook(page, start, 3519 start + PAGE_CACHE_SIZE - 1, 3520 NULL, 1); 3521 unlock_page(page); 3522 } 3523 page_cache_release(page); 3524 start += PAGE_CACHE_SIZE; 3525 } 3526 3527 flush_epd_write_bio(&epd); 3528 return ret; 3529 } 3530 3531 int extent_writepages(struct extent_io_tree *tree, 3532 struct address_space *mapping, 3533 get_extent_t *get_extent, 3534 struct writeback_control *wbc) 3535 { 3536 int ret = 0; 3537 struct extent_page_data epd = { 3538 .bio = NULL, 3539 .tree = tree, 3540 .get_extent = get_extent, 3541 .extent_locked = 0, 3542 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3543 }; 3544 3545 ret = extent_write_cache_pages(tree, mapping, wbc, 3546 __extent_writepage, &epd, 3547 flush_write_bio); 3548 flush_epd_write_bio(&epd); 3549 return ret; 3550 } 3551 3552 int extent_readpages(struct extent_io_tree *tree, 3553 struct address_space *mapping, 3554 struct list_head *pages, unsigned nr_pages, 3555 get_extent_t get_extent) 3556 { 3557 struct bio *bio = NULL; 3558 unsigned page_idx; 3559 unsigned long bio_flags = 0; 3560 3561 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3562 struct page *page = list_entry(pages->prev, struct page, lru); 3563 3564 prefetchw(&page->flags); 3565 list_del(&page->lru); 3566 if (!add_to_page_cache_lru(page, mapping, 3567 page->index, GFP_NOFS)) { 3568 __extent_read_full_page(tree, page, get_extent, 3569 &bio, 0, &bio_flags); 3570 } 3571 page_cache_release(page); 3572 } 3573 BUG_ON(!list_empty(pages)); 3574 if (bio) 3575 return submit_one_bio(READ, bio, 0, bio_flags); 3576 return 0; 3577 } 3578 3579 /* 3580 * basic invalidatepage code, this waits on any locked or writeback 3581 * ranges corresponding to the page, and then deletes any extent state 3582 * records from the tree 3583 */ 3584 int extent_invalidatepage(struct extent_io_tree *tree, 3585 struct page *page, unsigned long offset) 3586 { 3587 struct extent_state *cached_state = NULL; 3588 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 3589 u64 end = start + PAGE_CACHE_SIZE - 1; 3590 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3591 3592 start += (offset + blocksize - 1) & ~(blocksize - 1); 3593 if (start > end) 3594 return 0; 3595 3596 lock_extent_bits(tree, start, end, 0, &cached_state); 3597 wait_on_page_writeback(page); 3598 clear_extent_bit(tree, start, end, 3599 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3600 EXTENT_DO_ACCOUNTING, 3601 1, 1, &cached_state, GFP_NOFS); 3602 return 0; 3603 } 3604 3605 /* 3606 * a helper for releasepage, this tests for areas of the page that 3607 * are locked or under IO and drops the related state bits if it is safe 3608 * to drop the page. 3609 */ 3610 int try_release_extent_state(struct extent_map_tree *map, 3611 struct extent_io_tree *tree, struct page *page, 3612 gfp_t mask) 3613 { 3614 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3615 u64 end = start + PAGE_CACHE_SIZE - 1; 3616 int ret = 1; 3617 3618 if (test_range_bit(tree, start, end, 3619 EXTENT_IOBITS, 0, NULL)) 3620 ret = 0; 3621 else { 3622 if ((mask & GFP_NOFS) == GFP_NOFS) 3623 mask = GFP_NOFS; 3624 /* 3625 * at this point we can safely clear everything except the 3626 * locked bit and the nodatasum bit 3627 */ 3628 ret = clear_extent_bit(tree, start, end, 3629 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3630 0, 0, NULL, mask); 3631 3632 /* if clear_extent_bit failed for enomem reasons, 3633 * we can't allow the release to continue. 3634 */ 3635 if (ret < 0) 3636 ret = 0; 3637 else 3638 ret = 1; 3639 } 3640 return ret; 3641 } 3642 3643 /* 3644 * a helper for releasepage. As long as there are no locked extents 3645 * in the range corresponding to the page, both state records and extent 3646 * map records are removed 3647 */ 3648 int try_release_extent_mapping(struct extent_map_tree *map, 3649 struct extent_io_tree *tree, struct page *page, 3650 gfp_t mask) 3651 { 3652 struct extent_map *em; 3653 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3654 u64 end = start + PAGE_CACHE_SIZE - 1; 3655 3656 if ((mask & __GFP_WAIT) && 3657 page->mapping->host->i_size > 16 * 1024 * 1024) { 3658 u64 len; 3659 while (start <= end) { 3660 len = end - start + 1; 3661 write_lock(&map->lock); 3662 em = lookup_extent_mapping(map, start, len); 3663 if (!em) { 3664 write_unlock(&map->lock); 3665 break; 3666 } 3667 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3668 em->start != start) { 3669 write_unlock(&map->lock); 3670 free_extent_map(em); 3671 break; 3672 } 3673 if (!test_range_bit(tree, em->start, 3674 extent_map_end(em) - 1, 3675 EXTENT_LOCKED | EXTENT_WRITEBACK, 3676 0, NULL)) { 3677 remove_extent_mapping(map, em); 3678 /* once for the rb tree */ 3679 free_extent_map(em); 3680 } 3681 start = extent_map_end(em); 3682 write_unlock(&map->lock); 3683 3684 /* once for us */ 3685 free_extent_map(em); 3686 } 3687 } 3688 return try_release_extent_state(map, tree, page, mask); 3689 } 3690 3691 /* 3692 * helper function for fiemap, which doesn't want to see any holes. 3693 * This maps until we find something past 'last' 3694 */ 3695 static struct extent_map *get_extent_skip_holes(struct inode *inode, 3696 u64 offset, 3697 u64 last, 3698 get_extent_t *get_extent) 3699 { 3700 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 3701 struct extent_map *em; 3702 u64 len; 3703 3704 if (offset >= last) 3705 return NULL; 3706 3707 while(1) { 3708 len = last - offset; 3709 if (len == 0) 3710 break; 3711 len = (len + sectorsize - 1) & ~(sectorsize - 1); 3712 em = get_extent(inode, NULL, 0, offset, len, 0); 3713 if (IS_ERR_OR_NULL(em)) 3714 return em; 3715 3716 /* if this isn't a hole return it */ 3717 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 3718 em->block_start != EXTENT_MAP_HOLE) { 3719 return em; 3720 } 3721 3722 /* this is a hole, advance to the next extent */ 3723 offset = extent_map_end(em); 3724 free_extent_map(em); 3725 if (offset >= last) 3726 break; 3727 } 3728 return NULL; 3729 } 3730 3731 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3732 __u64 start, __u64 len, get_extent_t *get_extent) 3733 { 3734 int ret = 0; 3735 u64 off = start; 3736 u64 max = start + len; 3737 u32 flags = 0; 3738 u32 found_type; 3739 u64 last; 3740 u64 last_for_get_extent = 0; 3741 u64 disko = 0; 3742 u64 isize = i_size_read(inode); 3743 struct btrfs_key found_key; 3744 struct extent_map *em = NULL; 3745 struct extent_state *cached_state = NULL; 3746 struct btrfs_path *path; 3747 struct btrfs_file_extent_item *item; 3748 int end = 0; 3749 u64 em_start = 0; 3750 u64 em_len = 0; 3751 u64 em_end = 0; 3752 unsigned long emflags; 3753 3754 if (len == 0) 3755 return -EINVAL; 3756 3757 path = btrfs_alloc_path(); 3758 if (!path) 3759 return -ENOMEM; 3760 path->leave_spinning = 1; 3761 3762 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 3763 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 3764 3765 /* 3766 * lookup the last file extent. We're not using i_size here 3767 * because there might be preallocation past i_size 3768 */ 3769 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 3770 path, btrfs_ino(inode), -1, 0); 3771 if (ret < 0) { 3772 btrfs_free_path(path); 3773 return ret; 3774 } 3775 WARN_ON(!ret); 3776 path->slots[0]--; 3777 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3778 struct btrfs_file_extent_item); 3779 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 3780 found_type = btrfs_key_type(&found_key); 3781 3782 /* No extents, but there might be delalloc bits */ 3783 if (found_key.objectid != btrfs_ino(inode) || 3784 found_type != BTRFS_EXTENT_DATA_KEY) { 3785 /* have to trust i_size as the end */ 3786 last = (u64)-1; 3787 last_for_get_extent = isize; 3788 } else { 3789 /* 3790 * remember the start of the last extent. There are a 3791 * bunch of different factors that go into the length of the 3792 * extent, so its much less complex to remember where it started 3793 */ 3794 last = found_key.offset; 3795 last_for_get_extent = last + 1; 3796 } 3797 btrfs_free_path(path); 3798 3799 /* 3800 * we might have some extents allocated but more delalloc past those 3801 * extents. so, we trust isize unless the start of the last extent is 3802 * beyond isize 3803 */ 3804 if (last < isize) { 3805 last = (u64)-1; 3806 last_for_get_extent = isize; 3807 } 3808 3809 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 3810 &cached_state); 3811 3812 em = get_extent_skip_holes(inode, start, last_for_get_extent, 3813 get_extent); 3814 if (!em) 3815 goto out; 3816 if (IS_ERR(em)) { 3817 ret = PTR_ERR(em); 3818 goto out; 3819 } 3820 3821 while (!end) { 3822 u64 offset_in_extent; 3823 3824 /* break if the extent we found is outside the range */ 3825 if (em->start >= max || extent_map_end(em) < off) 3826 break; 3827 3828 /* 3829 * get_extent may return an extent that starts before our 3830 * requested range. We have to make sure the ranges 3831 * we return to fiemap always move forward and don't 3832 * overlap, so adjust the offsets here 3833 */ 3834 em_start = max(em->start, off); 3835 3836 /* 3837 * record the offset from the start of the extent 3838 * for adjusting the disk offset below 3839 */ 3840 offset_in_extent = em_start - em->start; 3841 em_end = extent_map_end(em); 3842 em_len = em_end - em_start; 3843 emflags = em->flags; 3844 disko = 0; 3845 flags = 0; 3846 3847 /* 3848 * bump off for our next call to get_extent 3849 */ 3850 off = extent_map_end(em); 3851 if (off >= max) 3852 end = 1; 3853 3854 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 3855 end = 1; 3856 flags |= FIEMAP_EXTENT_LAST; 3857 } else if (em->block_start == EXTENT_MAP_INLINE) { 3858 flags |= (FIEMAP_EXTENT_DATA_INLINE | 3859 FIEMAP_EXTENT_NOT_ALIGNED); 3860 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 3861 flags |= (FIEMAP_EXTENT_DELALLOC | 3862 FIEMAP_EXTENT_UNKNOWN); 3863 } else { 3864 disko = em->block_start + offset_in_extent; 3865 } 3866 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3867 flags |= FIEMAP_EXTENT_ENCODED; 3868 3869 free_extent_map(em); 3870 em = NULL; 3871 if ((em_start >= last) || em_len == (u64)-1 || 3872 (last == (u64)-1 && isize <= em_end)) { 3873 flags |= FIEMAP_EXTENT_LAST; 3874 end = 1; 3875 } 3876 3877 /* now scan forward to see if this is really the last extent. */ 3878 em = get_extent_skip_holes(inode, off, last_for_get_extent, 3879 get_extent); 3880 if (IS_ERR(em)) { 3881 ret = PTR_ERR(em); 3882 goto out; 3883 } 3884 if (!em) { 3885 flags |= FIEMAP_EXTENT_LAST; 3886 end = 1; 3887 } 3888 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3889 em_len, flags); 3890 if (ret) 3891 goto out_free; 3892 } 3893 out_free: 3894 free_extent_map(em); 3895 out: 3896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 3897 &cached_state, GFP_NOFS); 3898 return ret; 3899 } 3900 3901 inline struct page *extent_buffer_page(struct extent_buffer *eb, 3902 unsigned long i) 3903 { 3904 return eb->pages[i]; 3905 } 3906 3907 inline unsigned long num_extent_pages(u64 start, u64 len) 3908 { 3909 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3910 (start >> PAGE_CACHE_SHIFT); 3911 } 3912 3913 static void __free_extent_buffer(struct extent_buffer *eb) 3914 { 3915 #if LEAK_DEBUG 3916 unsigned long flags; 3917 spin_lock_irqsave(&leak_lock, flags); 3918 list_del(&eb->leak_list); 3919 spin_unlock_irqrestore(&leak_lock, flags); 3920 #endif 3921 if (eb->pages && eb->pages != eb->inline_pages) 3922 kfree(eb->pages); 3923 kmem_cache_free(extent_buffer_cache, eb); 3924 } 3925 3926 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3927 u64 start, 3928 unsigned long len, 3929 gfp_t mask) 3930 { 3931 struct extent_buffer *eb = NULL; 3932 #if LEAK_DEBUG 3933 unsigned long flags; 3934 #endif 3935 3936 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3937 if (eb == NULL) 3938 return NULL; 3939 eb->start = start; 3940 eb->len = len; 3941 eb->tree = tree; 3942 eb->bflags = 0; 3943 rwlock_init(&eb->lock); 3944 atomic_set(&eb->write_locks, 0); 3945 atomic_set(&eb->read_locks, 0); 3946 atomic_set(&eb->blocking_readers, 0); 3947 atomic_set(&eb->blocking_writers, 0); 3948 atomic_set(&eb->spinning_readers, 0); 3949 atomic_set(&eb->spinning_writers, 0); 3950 eb->lock_nested = 0; 3951 init_waitqueue_head(&eb->write_lock_wq); 3952 init_waitqueue_head(&eb->read_lock_wq); 3953 3954 #if LEAK_DEBUG 3955 spin_lock_irqsave(&leak_lock, flags); 3956 list_add(&eb->leak_list, &buffers); 3957 spin_unlock_irqrestore(&leak_lock, flags); 3958 #endif 3959 spin_lock_init(&eb->refs_lock); 3960 atomic_set(&eb->refs, 1); 3961 atomic_set(&eb->io_pages, 0); 3962 3963 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) { 3964 struct page **pages; 3965 int num_pages = (len + PAGE_CACHE_SIZE - 1) >> 3966 PAGE_CACHE_SHIFT; 3967 pages = kzalloc(num_pages, mask); 3968 if (!pages) { 3969 __free_extent_buffer(eb); 3970 return NULL; 3971 } 3972 eb->pages = pages; 3973 } else { 3974 eb->pages = eb->inline_pages; 3975 } 3976 3977 return eb; 3978 } 3979 3980 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 3981 { 3982 unsigned long i; 3983 struct page *p; 3984 struct extent_buffer *new; 3985 unsigned long num_pages = num_extent_pages(src->start, src->len); 3986 3987 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC); 3988 if (new == NULL) 3989 return NULL; 3990 3991 for (i = 0; i < num_pages; i++) { 3992 p = alloc_page(GFP_ATOMIC); 3993 BUG_ON(!p); 3994 attach_extent_buffer_page(new, p); 3995 WARN_ON(PageDirty(p)); 3996 SetPageUptodate(p); 3997 new->pages[i] = p; 3998 } 3999 4000 copy_extent_buffer(new, src, 0, 0, src->len); 4001 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4002 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4003 4004 return new; 4005 } 4006 4007 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4008 { 4009 struct extent_buffer *eb; 4010 unsigned long num_pages = num_extent_pages(0, len); 4011 unsigned long i; 4012 4013 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC); 4014 if (!eb) 4015 return NULL; 4016 4017 for (i = 0; i < num_pages; i++) { 4018 eb->pages[i] = alloc_page(GFP_ATOMIC); 4019 if (!eb->pages[i]) 4020 goto err; 4021 } 4022 set_extent_buffer_uptodate(eb); 4023 btrfs_set_header_nritems(eb, 0); 4024 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4025 4026 return eb; 4027 err: 4028 for (i--; i > 0; i--) 4029 __free_page(eb->pages[i]); 4030 __free_extent_buffer(eb); 4031 return NULL; 4032 } 4033 4034 static int extent_buffer_under_io(struct extent_buffer *eb) 4035 { 4036 return (atomic_read(&eb->io_pages) || 4037 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4038 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4039 } 4040 4041 /* 4042 * Helper for releasing extent buffer page. 4043 */ 4044 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4045 unsigned long start_idx) 4046 { 4047 unsigned long index; 4048 unsigned long num_pages; 4049 struct page *page; 4050 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4051 4052 BUG_ON(extent_buffer_under_io(eb)); 4053 4054 num_pages = num_extent_pages(eb->start, eb->len); 4055 index = start_idx + num_pages; 4056 if (start_idx >= index) 4057 return; 4058 4059 do { 4060 index--; 4061 page = extent_buffer_page(eb, index); 4062 if (page && mapped) { 4063 spin_lock(&page->mapping->private_lock); 4064 /* 4065 * We do this since we'll remove the pages after we've 4066 * removed the eb from the radix tree, so we could race 4067 * and have this page now attached to the new eb. So 4068 * only clear page_private if it's still connected to 4069 * this eb. 4070 */ 4071 if (PagePrivate(page) && 4072 page->private == (unsigned long)eb) { 4073 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4074 BUG_ON(PageDirty(page)); 4075 BUG_ON(PageWriteback(page)); 4076 /* 4077 * We need to make sure we haven't be attached 4078 * to a new eb. 4079 */ 4080 ClearPagePrivate(page); 4081 set_page_private(page, 0); 4082 /* One for the page private */ 4083 page_cache_release(page); 4084 } 4085 spin_unlock(&page->mapping->private_lock); 4086 4087 } 4088 if (page) { 4089 /* One for when we alloced the page */ 4090 page_cache_release(page); 4091 } 4092 } while (index != start_idx); 4093 } 4094 4095 /* 4096 * Helper for releasing the extent buffer. 4097 */ 4098 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4099 { 4100 btrfs_release_extent_buffer_page(eb, 0); 4101 __free_extent_buffer(eb); 4102 } 4103 4104 static void check_buffer_tree_ref(struct extent_buffer *eb) 4105 { 4106 /* the ref bit is tricky. We have to make sure it is set 4107 * if we have the buffer dirty. Otherwise the 4108 * code to free a buffer can end up dropping a dirty 4109 * page 4110 * 4111 * Once the ref bit is set, it won't go away while the 4112 * buffer is dirty or in writeback, and it also won't 4113 * go away while we have the reference count on the 4114 * eb bumped. 4115 * 4116 * We can't just set the ref bit without bumping the 4117 * ref on the eb because free_extent_buffer might 4118 * see the ref bit and try to clear it. If this happens 4119 * free_extent_buffer might end up dropping our original 4120 * ref by mistake and freeing the page before we are able 4121 * to add one more ref. 4122 * 4123 * So bump the ref count first, then set the bit. If someone 4124 * beat us to it, drop the ref we added. 4125 */ 4126 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4127 atomic_inc(&eb->refs); 4128 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4129 atomic_dec(&eb->refs); 4130 } 4131 } 4132 4133 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4134 { 4135 unsigned long num_pages, i; 4136 4137 check_buffer_tree_ref(eb); 4138 4139 num_pages = num_extent_pages(eb->start, eb->len); 4140 for (i = 0; i < num_pages; i++) { 4141 struct page *p = extent_buffer_page(eb, i); 4142 mark_page_accessed(p); 4143 } 4144 } 4145 4146 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4147 u64 start, unsigned long len) 4148 { 4149 unsigned long num_pages = num_extent_pages(start, len); 4150 unsigned long i; 4151 unsigned long index = start >> PAGE_CACHE_SHIFT; 4152 struct extent_buffer *eb; 4153 struct extent_buffer *exists = NULL; 4154 struct page *p; 4155 struct address_space *mapping = tree->mapping; 4156 int uptodate = 1; 4157 int ret; 4158 4159 rcu_read_lock(); 4160 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4161 if (eb && atomic_inc_not_zero(&eb->refs)) { 4162 rcu_read_unlock(); 4163 mark_extent_buffer_accessed(eb); 4164 return eb; 4165 } 4166 rcu_read_unlock(); 4167 4168 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4169 if (!eb) 4170 return NULL; 4171 4172 for (i = 0; i < num_pages; i++, index++) { 4173 p = find_or_create_page(mapping, index, GFP_NOFS); 4174 if (!p) { 4175 WARN_ON(1); 4176 goto free_eb; 4177 } 4178 4179 spin_lock(&mapping->private_lock); 4180 if (PagePrivate(p)) { 4181 /* 4182 * We could have already allocated an eb for this page 4183 * and attached one so lets see if we can get a ref on 4184 * the existing eb, and if we can we know it's good and 4185 * we can just return that one, else we know we can just 4186 * overwrite page->private. 4187 */ 4188 exists = (struct extent_buffer *)p->private; 4189 if (atomic_inc_not_zero(&exists->refs)) { 4190 spin_unlock(&mapping->private_lock); 4191 unlock_page(p); 4192 page_cache_release(p); 4193 mark_extent_buffer_accessed(exists); 4194 goto free_eb; 4195 } 4196 4197 /* 4198 * Do this so attach doesn't complain and we need to 4199 * drop the ref the old guy had. 4200 */ 4201 ClearPagePrivate(p); 4202 WARN_ON(PageDirty(p)); 4203 page_cache_release(p); 4204 } 4205 attach_extent_buffer_page(eb, p); 4206 spin_unlock(&mapping->private_lock); 4207 WARN_ON(PageDirty(p)); 4208 mark_page_accessed(p); 4209 eb->pages[i] = p; 4210 if (!PageUptodate(p)) 4211 uptodate = 0; 4212 4213 /* 4214 * see below about how we avoid a nasty race with release page 4215 * and why we unlock later 4216 */ 4217 } 4218 if (uptodate) 4219 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4220 again: 4221 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4222 if (ret) 4223 goto free_eb; 4224 4225 spin_lock(&tree->buffer_lock); 4226 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4227 if (ret == -EEXIST) { 4228 exists = radix_tree_lookup(&tree->buffer, 4229 start >> PAGE_CACHE_SHIFT); 4230 if (!atomic_inc_not_zero(&exists->refs)) { 4231 spin_unlock(&tree->buffer_lock); 4232 radix_tree_preload_end(); 4233 exists = NULL; 4234 goto again; 4235 } 4236 spin_unlock(&tree->buffer_lock); 4237 radix_tree_preload_end(); 4238 mark_extent_buffer_accessed(exists); 4239 goto free_eb; 4240 } 4241 /* add one reference for the tree */ 4242 spin_lock(&eb->refs_lock); 4243 check_buffer_tree_ref(eb); 4244 spin_unlock(&eb->refs_lock); 4245 spin_unlock(&tree->buffer_lock); 4246 radix_tree_preload_end(); 4247 4248 /* 4249 * there is a race where release page may have 4250 * tried to find this extent buffer in the radix 4251 * but failed. It will tell the VM it is safe to 4252 * reclaim the, and it will clear the page private bit. 4253 * We must make sure to set the page private bit properly 4254 * after the extent buffer is in the radix tree so 4255 * it doesn't get lost 4256 */ 4257 SetPageChecked(eb->pages[0]); 4258 for (i = 1; i < num_pages; i++) { 4259 p = extent_buffer_page(eb, i); 4260 ClearPageChecked(p); 4261 unlock_page(p); 4262 } 4263 unlock_page(eb->pages[0]); 4264 return eb; 4265 4266 free_eb: 4267 for (i = 0; i < num_pages; i++) { 4268 if (eb->pages[i]) 4269 unlock_page(eb->pages[i]); 4270 } 4271 4272 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4273 btrfs_release_extent_buffer(eb); 4274 return exists; 4275 } 4276 4277 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4278 u64 start, unsigned long len) 4279 { 4280 struct extent_buffer *eb; 4281 4282 rcu_read_lock(); 4283 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4284 if (eb && atomic_inc_not_zero(&eb->refs)) { 4285 rcu_read_unlock(); 4286 mark_extent_buffer_accessed(eb); 4287 return eb; 4288 } 4289 rcu_read_unlock(); 4290 4291 return NULL; 4292 } 4293 4294 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4295 { 4296 struct extent_buffer *eb = 4297 container_of(head, struct extent_buffer, rcu_head); 4298 4299 __free_extent_buffer(eb); 4300 } 4301 4302 /* Expects to have eb->eb_lock already held */ 4303 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask) 4304 { 4305 WARN_ON(atomic_read(&eb->refs) == 0); 4306 if (atomic_dec_and_test(&eb->refs)) { 4307 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4308 spin_unlock(&eb->refs_lock); 4309 } else { 4310 struct extent_io_tree *tree = eb->tree; 4311 4312 spin_unlock(&eb->refs_lock); 4313 4314 spin_lock(&tree->buffer_lock); 4315 radix_tree_delete(&tree->buffer, 4316 eb->start >> PAGE_CACHE_SHIFT); 4317 spin_unlock(&tree->buffer_lock); 4318 } 4319 4320 /* Should be safe to release our pages at this point */ 4321 btrfs_release_extent_buffer_page(eb, 0); 4322 4323 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4324 return; 4325 } 4326 spin_unlock(&eb->refs_lock); 4327 } 4328 4329 void free_extent_buffer(struct extent_buffer *eb) 4330 { 4331 if (!eb) 4332 return; 4333 4334 spin_lock(&eb->refs_lock); 4335 if (atomic_read(&eb->refs) == 2 && 4336 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4337 atomic_dec(&eb->refs); 4338 4339 if (atomic_read(&eb->refs) == 2 && 4340 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4341 !extent_buffer_under_io(eb) && 4342 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4343 atomic_dec(&eb->refs); 4344 4345 /* 4346 * I know this is terrible, but it's temporary until we stop tracking 4347 * the uptodate bits and such for the extent buffers. 4348 */ 4349 release_extent_buffer(eb, GFP_ATOMIC); 4350 } 4351 4352 void free_extent_buffer_stale(struct extent_buffer *eb) 4353 { 4354 if (!eb) 4355 return; 4356 4357 spin_lock(&eb->refs_lock); 4358 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4359 4360 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4361 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4362 atomic_dec(&eb->refs); 4363 release_extent_buffer(eb, GFP_NOFS); 4364 } 4365 4366 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4367 { 4368 unsigned long i; 4369 unsigned long num_pages; 4370 struct page *page; 4371 4372 num_pages = num_extent_pages(eb->start, eb->len); 4373 4374 for (i = 0; i < num_pages; i++) { 4375 page = extent_buffer_page(eb, i); 4376 if (!PageDirty(page)) 4377 continue; 4378 4379 lock_page(page); 4380 WARN_ON(!PagePrivate(page)); 4381 4382 clear_page_dirty_for_io(page); 4383 spin_lock_irq(&page->mapping->tree_lock); 4384 if (!PageDirty(page)) { 4385 radix_tree_tag_clear(&page->mapping->page_tree, 4386 page_index(page), 4387 PAGECACHE_TAG_DIRTY); 4388 } 4389 spin_unlock_irq(&page->mapping->tree_lock); 4390 ClearPageError(page); 4391 unlock_page(page); 4392 } 4393 WARN_ON(atomic_read(&eb->refs) == 0); 4394 } 4395 4396 int set_extent_buffer_dirty(struct extent_buffer *eb) 4397 { 4398 unsigned long i; 4399 unsigned long num_pages; 4400 int was_dirty = 0; 4401 4402 check_buffer_tree_ref(eb); 4403 4404 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4405 4406 num_pages = num_extent_pages(eb->start, eb->len); 4407 WARN_ON(atomic_read(&eb->refs) == 0); 4408 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4409 4410 for (i = 0; i < num_pages; i++) 4411 set_page_dirty(extent_buffer_page(eb, i)); 4412 return was_dirty; 4413 } 4414 4415 static int range_straddles_pages(u64 start, u64 len) 4416 { 4417 if (len < PAGE_CACHE_SIZE) 4418 return 1; 4419 if (start & (PAGE_CACHE_SIZE - 1)) 4420 return 1; 4421 if ((start + len) & (PAGE_CACHE_SIZE - 1)) 4422 return 1; 4423 return 0; 4424 } 4425 4426 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4427 { 4428 unsigned long i; 4429 struct page *page; 4430 unsigned long num_pages; 4431 4432 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4433 num_pages = num_extent_pages(eb->start, eb->len); 4434 for (i = 0; i < num_pages; i++) { 4435 page = extent_buffer_page(eb, i); 4436 if (page) 4437 ClearPageUptodate(page); 4438 } 4439 return 0; 4440 } 4441 4442 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4443 { 4444 unsigned long i; 4445 struct page *page; 4446 unsigned long num_pages; 4447 4448 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4449 num_pages = num_extent_pages(eb->start, eb->len); 4450 for (i = 0; i < num_pages; i++) { 4451 page = extent_buffer_page(eb, i); 4452 SetPageUptodate(page); 4453 } 4454 return 0; 4455 } 4456 4457 int extent_range_uptodate(struct extent_io_tree *tree, 4458 u64 start, u64 end) 4459 { 4460 struct page *page; 4461 int ret; 4462 int pg_uptodate = 1; 4463 int uptodate; 4464 unsigned long index; 4465 4466 if (range_straddles_pages(start, end - start + 1)) { 4467 ret = test_range_bit(tree, start, end, 4468 EXTENT_UPTODATE, 1, NULL); 4469 if (ret) 4470 return 1; 4471 } 4472 while (start <= end) { 4473 index = start >> PAGE_CACHE_SHIFT; 4474 page = find_get_page(tree->mapping, index); 4475 if (!page) 4476 return 1; 4477 uptodate = PageUptodate(page); 4478 page_cache_release(page); 4479 if (!uptodate) { 4480 pg_uptodate = 0; 4481 break; 4482 } 4483 start += PAGE_CACHE_SIZE; 4484 } 4485 return pg_uptodate; 4486 } 4487 4488 int extent_buffer_uptodate(struct extent_buffer *eb) 4489 { 4490 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4491 } 4492 4493 int read_extent_buffer_pages(struct extent_io_tree *tree, 4494 struct extent_buffer *eb, u64 start, int wait, 4495 get_extent_t *get_extent, int mirror_num) 4496 { 4497 unsigned long i; 4498 unsigned long start_i; 4499 struct page *page; 4500 int err; 4501 int ret = 0; 4502 int locked_pages = 0; 4503 int all_uptodate = 1; 4504 unsigned long num_pages; 4505 unsigned long num_reads = 0; 4506 struct bio *bio = NULL; 4507 unsigned long bio_flags = 0; 4508 4509 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4510 return 0; 4511 4512 if (start) { 4513 WARN_ON(start < eb->start); 4514 start_i = (start >> PAGE_CACHE_SHIFT) - 4515 (eb->start >> PAGE_CACHE_SHIFT); 4516 } else { 4517 start_i = 0; 4518 } 4519 4520 num_pages = num_extent_pages(eb->start, eb->len); 4521 for (i = start_i; i < num_pages; i++) { 4522 page = extent_buffer_page(eb, i); 4523 if (wait == WAIT_NONE) { 4524 if (!trylock_page(page)) 4525 goto unlock_exit; 4526 } else { 4527 lock_page(page); 4528 } 4529 locked_pages++; 4530 if (!PageUptodate(page)) { 4531 num_reads++; 4532 all_uptodate = 0; 4533 } 4534 } 4535 if (all_uptodate) { 4536 if (start_i == 0) 4537 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4538 goto unlock_exit; 4539 } 4540 4541 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4542 eb->read_mirror = 0; 4543 atomic_set(&eb->io_pages, num_reads); 4544 for (i = start_i; i < num_pages; i++) { 4545 page = extent_buffer_page(eb, i); 4546 if (!PageUptodate(page)) { 4547 ClearPageError(page); 4548 err = __extent_read_full_page(tree, page, 4549 get_extent, &bio, 4550 mirror_num, &bio_flags); 4551 if (err) 4552 ret = err; 4553 } else { 4554 unlock_page(page); 4555 } 4556 } 4557 4558 if (bio) { 4559 err = submit_one_bio(READ, bio, mirror_num, bio_flags); 4560 if (err) 4561 return err; 4562 } 4563 4564 if (ret || wait != WAIT_COMPLETE) 4565 return ret; 4566 4567 for (i = start_i; i < num_pages; i++) { 4568 page = extent_buffer_page(eb, i); 4569 wait_on_page_locked(page); 4570 if (!PageUptodate(page)) 4571 ret = -EIO; 4572 } 4573 4574 return ret; 4575 4576 unlock_exit: 4577 i = start_i; 4578 while (locked_pages > 0) { 4579 page = extent_buffer_page(eb, i); 4580 i++; 4581 unlock_page(page); 4582 locked_pages--; 4583 } 4584 return ret; 4585 } 4586 4587 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4588 unsigned long start, 4589 unsigned long len) 4590 { 4591 size_t cur; 4592 size_t offset; 4593 struct page *page; 4594 char *kaddr; 4595 char *dst = (char *)dstv; 4596 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4597 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4598 4599 WARN_ON(start > eb->len); 4600 WARN_ON(start + len > eb->start + eb->len); 4601 4602 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4603 4604 while (len > 0) { 4605 page = extent_buffer_page(eb, i); 4606 4607 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4608 kaddr = page_address(page); 4609 memcpy(dst, kaddr + offset, cur); 4610 4611 dst += cur; 4612 len -= cur; 4613 offset = 0; 4614 i++; 4615 } 4616 } 4617 4618 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4619 unsigned long min_len, char **map, 4620 unsigned long *map_start, 4621 unsigned long *map_len) 4622 { 4623 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4624 char *kaddr; 4625 struct page *p; 4626 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4627 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4628 unsigned long end_i = (start_offset + start + min_len - 1) >> 4629 PAGE_CACHE_SHIFT; 4630 4631 if (i != end_i) 4632 return -EINVAL; 4633 4634 if (i == 0) { 4635 offset = start_offset; 4636 *map_start = 0; 4637 } else { 4638 offset = 0; 4639 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4640 } 4641 4642 if (start + min_len > eb->len) { 4643 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4644 "wanted %lu %lu\n", (unsigned long long)eb->start, 4645 eb->len, start, min_len); 4646 WARN_ON(1); 4647 return -EINVAL; 4648 } 4649 4650 p = extent_buffer_page(eb, i); 4651 kaddr = page_address(p); 4652 *map = kaddr + offset; 4653 *map_len = PAGE_CACHE_SIZE - offset; 4654 return 0; 4655 } 4656 4657 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4658 unsigned long start, 4659 unsigned long len) 4660 { 4661 size_t cur; 4662 size_t offset; 4663 struct page *page; 4664 char *kaddr; 4665 char *ptr = (char *)ptrv; 4666 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4667 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4668 int ret = 0; 4669 4670 WARN_ON(start > eb->len); 4671 WARN_ON(start + len > eb->start + eb->len); 4672 4673 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4674 4675 while (len > 0) { 4676 page = extent_buffer_page(eb, i); 4677 4678 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4679 4680 kaddr = page_address(page); 4681 ret = memcmp(ptr, kaddr + offset, cur); 4682 if (ret) 4683 break; 4684 4685 ptr += cur; 4686 len -= cur; 4687 offset = 0; 4688 i++; 4689 } 4690 return ret; 4691 } 4692 4693 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4694 unsigned long start, unsigned long len) 4695 { 4696 size_t cur; 4697 size_t offset; 4698 struct page *page; 4699 char *kaddr; 4700 char *src = (char *)srcv; 4701 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4702 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4703 4704 WARN_ON(start > eb->len); 4705 WARN_ON(start + len > eb->start + eb->len); 4706 4707 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4708 4709 while (len > 0) { 4710 page = extent_buffer_page(eb, i); 4711 WARN_ON(!PageUptodate(page)); 4712 4713 cur = min(len, PAGE_CACHE_SIZE - offset); 4714 kaddr = page_address(page); 4715 memcpy(kaddr + offset, src, cur); 4716 4717 src += cur; 4718 len -= cur; 4719 offset = 0; 4720 i++; 4721 } 4722 } 4723 4724 void memset_extent_buffer(struct extent_buffer *eb, char c, 4725 unsigned long start, unsigned long len) 4726 { 4727 size_t cur; 4728 size_t offset; 4729 struct page *page; 4730 char *kaddr; 4731 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4732 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4733 4734 WARN_ON(start > eb->len); 4735 WARN_ON(start + len > eb->start + eb->len); 4736 4737 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4738 4739 while (len > 0) { 4740 page = extent_buffer_page(eb, i); 4741 WARN_ON(!PageUptodate(page)); 4742 4743 cur = min(len, PAGE_CACHE_SIZE - offset); 4744 kaddr = page_address(page); 4745 memset(kaddr + offset, c, cur); 4746 4747 len -= cur; 4748 offset = 0; 4749 i++; 4750 } 4751 } 4752 4753 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 4754 unsigned long dst_offset, unsigned long src_offset, 4755 unsigned long len) 4756 { 4757 u64 dst_len = dst->len; 4758 size_t cur; 4759 size_t offset; 4760 struct page *page; 4761 char *kaddr; 4762 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4763 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4764 4765 WARN_ON(src->len != dst_len); 4766 4767 offset = (start_offset + dst_offset) & 4768 ((unsigned long)PAGE_CACHE_SIZE - 1); 4769 4770 while (len > 0) { 4771 page = extent_buffer_page(dst, i); 4772 WARN_ON(!PageUptodate(page)); 4773 4774 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 4775 4776 kaddr = page_address(page); 4777 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4778 4779 src_offset += cur; 4780 len -= cur; 4781 offset = 0; 4782 i++; 4783 } 4784 } 4785 4786 static void move_pages(struct page *dst_page, struct page *src_page, 4787 unsigned long dst_off, unsigned long src_off, 4788 unsigned long len) 4789 { 4790 char *dst_kaddr = page_address(dst_page); 4791 if (dst_page == src_page) { 4792 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 4793 } else { 4794 char *src_kaddr = page_address(src_page); 4795 char *p = dst_kaddr + dst_off + len; 4796 char *s = src_kaddr + src_off + len; 4797 4798 while (len--) 4799 *--p = *--s; 4800 } 4801 } 4802 4803 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4804 { 4805 unsigned long distance = (src > dst) ? src - dst : dst - src; 4806 return distance < len; 4807 } 4808 4809 static void copy_pages(struct page *dst_page, struct page *src_page, 4810 unsigned long dst_off, unsigned long src_off, 4811 unsigned long len) 4812 { 4813 char *dst_kaddr = page_address(dst_page); 4814 char *src_kaddr; 4815 int must_memmove = 0; 4816 4817 if (dst_page != src_page) { 4818 src_kaddr = page_address(src_page); 4819 } else { 4820 src_kaddr = dst_kaddr; 4821 if (areas_overlap(src_off, dst_off, len)) 4822 must_memmove = 1; 4823 } 4824 4825 if (must_memmove) 4826 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4827 else 4828 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4829 } 4830 4831 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4832 unsigned long src_offset, unsigned long len) 4833 { 4834 size_t cur; 4835 size_t dst_off_in_page; 4836 size_t src_off_in_page; 4837 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4838 unsigned long dst_i; 4839 unsigned long src_i; 4840 4841 if (src_offset + len > dst->len) { 4842 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4843 "len %lu dst len %lu\n", src_offset, len, dst->len); 4844 BUG_ON(1); 4845 } 4846 if (dst_offset + len > dst->len) { 4847 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4848 "len %lu dst len %lu\n", dst_offset, len, dst->len); 4849 BUG_ON(1); 4850 } 4851 4852 while (len > 0) { 4853 dst_off_in_page = (start_offset + dst_offset) & 4854 ((unsigned long)PAGE_CACHE_SIZE - 1); 4855 src_off_in_page = (start_offset + src_offset) & 4856 ((unsigned long)PAGE_CACHE_SIZE - 1); 4857 4858 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4859 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 4860 4861 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 4862 src_off_in_page)); 4863 cur = min_t(unsigned long, cur, 4864 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 4865 4866 copy_pages(extent_buffer_page(dst, dst_i), 4867 extent_buffer_page(dst, src_i), 4868 dst_off_in_page, src_off_in_page, cur); 4869 4870 src_offset += cur; 4871 dst_offset += cur; 4872 len -= cur; 4873 } 4874 } 4875 4876 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4877 unsigned long src_offset, unsigned long len) 4878 { 4879 size_t cur; 4880 size_t dst_off_in_page; 4881 size_t src_off_in_page; 4882 unsigned long dst_end = dst_offset + len - 1; 4883 unsigned long src_end = src_offset + len - 1; 4884 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4885 unsigned long dst_i; 4886 unsigned long src_i; 4887 4888 if (src_offset + len > dst->len) { 4889 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4890 "len %lu len %lu\n", src_offset, len, dst->len); 4891 BUG_ON(1); 4892 } 4893 if (dst_offset + len > dst->len) { 4894 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4895 "len %lu len %lu\n", dst_offset, len, dst->len); 4896 BUG_ON(1); 4897 } 4898 if (dst_offset < src_offset) { 4899 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4900 return; 4901 } 4902 while (len > 0) { 4903 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 4904 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 4905 4906 dst_off_in_page = (start_offset + dst_end) & 4907 ((unsigned long)PAGE_CACHE_SIZE - 1); 4908 src_off_in_page = (start_offset + src_end) & 4909 ((unsigned long)PAGE_CACHE_SIZE - 1); 4910 4911 cur = min_t(unsigned long, len, src_off_in_page + 1); 4912 cur = min(cur, dst_off_in_page + 1); 4913 move_pages(extent_buffer_page(dst, dst_i), 4914 extent_buffer_page(dst, src_i), 4915 dst_off_in_page - cur + 1, 4916 src_off_in_page - cur + 1, cur); 4917 4918 dst_end -= cur; 4919 src_end -= cur; 4920 len -= cur; 4921 } 4922 } 4923 4924 int try_release_extent_buffer(struct page *page, gfp_t mask) 4925 { 4926 struct extent_buffer *eb; 4927 4928 /* 4929 * We need to make sure noboody is attaching this page to an eb right 4930 * now. 4931 */ 4932 spin_lock(&page->mapping->private_lock); 4933 if (!PagePrivate(page)) { 4934 spin_unlock(&page->mapping->private_lock); 4935 return 1; 4936 } 4937 4938 eb = (struct extent_buffer *)page->private; 4939 BUG_ON(!eb); 4940 4941 /* 4942 * This is a little awful but should be ok, we need to make sure that 4943 * the eb doesn't disappear out from under us while we're looking at 4944 * this page. 4945 */ 4946 spin_lock(&eb->refs_lock); 4947 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4948 spin_unlock(&eb->refs_lock); 4949 spin_unlock(&page->mapping->private_lock); 4950 return 0; 4951 } 4952 spin_unlock(&page->mapping->private_lock); 4953 4954 if ((mask & GFP_NOFS) == GFP_NOFS) 4955 mask = GFP_NOFS; 4956 4957 /* 4958 * If tree ref isn't set then we know the ref on this eb is a real ref, 4959 * so just return, this page will likely be freed soon anyway. 4960 */ 4961 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4962 spin_unlock(&eb->refs_lock); 4963 return 0; 4964 } 4965 release_extent_buffer(eb, mask); 4966 4967 return 1; 4968 } 4969