xref: /linux/fs/btrfs/extent_io.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30 
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35 
36 #define BUFFER_LRU_MAX 64
37 
38 struct tree_entry {
39 	u64 start;
40 	u64 end;
41 	struct rb_node rb_node;
42 };
43 
44 struct extent_page_data {
45 	struct bio *bio;
46 	struct extent_io_tree *tree;
47 	get_extent_t *get_extent;
48 
49 	/* tells writepage not to lock the state bits for this range
50 	 * it still does the unlocking
51 	 */
52 	unsigned int extent_locked:1;
53 
54 	/* tells the submit_bio code to use a WRITE_SYNC */
55 	unsigned int sync_io:1;
56 };
57 
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62 	return btrfs_sb(tree->mapping->host->i_sb);
63 }
64 
65 int __init extent_io_init(void)
66 {
67 	extent_state_cache = kmem_cache_create("extent_state",
68 			sizeof(struct extent_state), 0,
69 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70 	if (!extent_state_cache)
71 		return -ENOMEM;
72 
73 	extent_buffer_cache = kmem_cache_create("extent_buffers",
74 			sizeof(struct extent_buffer), 0,
75 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76 	if (!extent_buffer_cache)
77 		goto free_state_cache;
78 	return 0;
79 
80 free_state_cache:
81 	kmem_cache_destroy(extent_state_cache);
82 	return -ENOMEM;
83 }
84 
85 void extent_io_exit(void)
86 {
87 	struct extent_state *state;
88 	struct extent_buffer *eb;
89 
90 	while (!list_empty(&states)) {
91 		state = list_entry(states.next, struct extent_state, leak_list);
92 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 		       "state %lu in tree %p refs %d\n",
94 		       (unsigned long long)state->start,
95 		       (unsigned long long)state->end,
96 		       state->state, state->tree, atomic_read(&state->refs));
97 		list_del(&state->leak_list);
98 		kmem_cache_free(extent_state_cache, state);
99 
100 	}
101 
102 	while (!list_empty(&buffers)) {
103 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 		       "refs %d\n", (unsigned long long)eb->start,
106 		       eb->len, atomic_read(&eb->refs));
107 		list_del(&eb->leak_list);
108 		kmem_cache_free(extent_buffer_cache, eb);
109 	}
110 	if (extent_state_cache)
111 		kmem_cache_destroy(extent_state_cache);
112 	if (extent_buffer_cache)
113 		kmem_cache_destroy(extent_buffer_cache);
114 }
115 
116 void extent_io_tree_init(struct extent_io_tree *tree,
117 			 struct address_space *mapping)
118 {
119 	tree->state = RB_ROOT;
120 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121 	tree->ops = NULL;
122 	tree->dirty_bytes = 0;
123 	spin_lock_init(&tree->lock);
124 	spin_lock_init(&tree->buffer_lock);
125 	tree->mapping = mapping;
126 }
127 
128 static struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130 	struct extent_state *state;
131 #if LEAK_DEBUG
132 	unsigned long flags;
133 #endif
134 
135 	state = kmem_cache_alloc(extent_state_cache, mask);
136 	if (!state)
137 		return state;
138 	state->state = 0;
139 	state->private = 0;
140 	state->tree = NULL;
141 #if LEAK_DEBUG
142 	spin_lock_irqsave(&leak_lock, flags);
143 	list_add(&state->leak_list, &states);
144 	spin_unlock_irqrestore(&leak_lock, flags);
145 #endif
146 	atomic_set(&state->refs, 1);
147 	init_waitqueue_head(&state->wq);
148 	trace_alloc_extent_state(state, mask, _RET_IP_);
149 	return state;
150 }
151 
152 void free_extent_state(struct extent_state *state)
153 {
154 	if (!state)
155 		return;
156 	if (atomic_dec_and_test(&state->refs)) {
157 #if LEAK_DEBUG
158 		unsigned long flags;
159 #endif
160 		WARN_ON(state->tree);
161 #if LEAK_DEBUG
162 		spin_lock_irqsave(&leak_lock, flags);
163 		list_del(&state->leak_list);
164 		spin_unlock_irqrestore(&leak_lock, flags);
165 #endif
166 		trace_free_extent_state(state, _RET_IP_);
167 		kmem_cache_free(extent_state_cache, state);
168 	}
169 }
170 
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 				   struct rb_node *node)
173 {
174 	struct rb_node **p = &root->rb_node;
175 	struct rb_node *parent = NULL;
176 	struct tree_entry *entry;
177 
178 	while (*p) {
179 		parent = *p;
180 		entry = rb_entry(parent, struct tree_entry, rb_node);
181 
182 		if (offset < entry->start)
183 			p = &(*p)->rb_left;
184 		else if (offset > entry->end)
185 			p = &(*p)->rb_right;
186 		else
187 			return parent;
188 	}
189 
190 	rb_link_node(node, parent, p);
191 	rb_insert_color(node, root);
192 	return NULL;
193 }
194 
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 				     struct rb_node **prev_ret,
197 				     struct rb_node **next_ret)
198 {
199 	struct rb_root *root = &tree->state;
200 	struct rb_node *n = root->rb_node;
201 	struct rb_node *prev = NULL;
202 	struct rb_node *orig_prev = NULL;
203 	struct tree_entry *entry;
204 	struct tree_entry *prev_entry = NULL;
205 
206 	while (n) {
207 		entry = rb_entry(n, struct tree_entry, rb_node);
208 		prev = n;
209 		prev_entry = entry;
210 
211 		if (offset < entry->start)
212 			n = n->rb_left;
213 		else if (offset > entry->end)
214 			n = n->rb_right;
215 		else
216 			return n;
217 	}
218 
219 	if (prev_ret) {
220 		orig_prev = prev;
221 		while (prev && offset > prev_entry->end) {
222 			prev = rb_next(prev);
223 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 		}
225 		*prev_ret = prev;
226 		prev = orig_prev;
227 	}
228 
229 	if (next_ret) {
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 		while (prev && offset < prev_entry->start) {
232 			prev = rb_prev(prev);
233 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 		}
235 		*next_ret = prev;
236 	}
237 	return NULL;
238 }
239 
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 					  u64 offset)
242 {
243 	struct rb_node *prev = NULL;
244 	struct rb_node *ret;
245 
246 	ret = __etree_search(tree, offset, &prev, NULL);
247 	if (!ret)
248 		return prev;
249 	return ret;
250 }
251 
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 		     struct extent_state *other)
254 {
255 	if (tree->ops && tree->ops->merge_extent_hook)
256 		tree->ops->merge_extent_hook(tree->mapping->host, new,
257 					     other);
258 }
259 
260 /*
261  * utility function to look for merge candidates inside a given range.
262  * Any extents with matching state are merged together into a single
263  * extent in the tree.  Extents with EXTENT_IO in their state field
264  * are not merged because the end_io handlers need to be able to do
265  * operations on them without sleeping (or doing allocations/splits).
266  *
267  * This should be called with the tree lock held.
268  */
269 static void merge_state(struct extent_io_tree *tree,
270 		        struct extent_state *state)
271 {
272 	struct extent_state *other;
273 	struct rb_node *other_node;
274 
275 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276 		return;
277 
278 	other_node = rb_prev(&state->rb_node);
279 	if (other_node) {
280 		other = rb_entry(other_node, struct extent_state, rb_node);
281 		if (other->end == state->start - 1 &&
282 		    other->state == state->state) {
283 			merge_cb(tree, state, other);
284 			state->start = other->start;
285 			other->tree = NULL;
286 			rb_erase(&other->rb_node, &tree->state);
287 			free_extent_state(other);
288 		}
289 	}
290 	other_node = rb_next(&state->rb_node);
291 	if (other_node) {
292 		other = rb_entry(other_node, struct extent_state, rb_node);
293 		if (other->start == state->end + 1 &&
294 		    other->state == state->state) {
295 			merge_cb(tree, state, other);
296 			state->end = other->end;
297 			other->tree = NULL;
298 			rb_erase(&other->rb_node, &tree->state);
299 			free_extent_state(other);
300 		}
301 	}
302 }
303 
304 static void set_state_cb(struct extent_io_tree *tree,
305 			 struct extent_state *state, int *bits)
306 {
307 	if (tree->ops && tree->ops->set_bit_hook)
308 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310 
311 static void clear_state_cb(struct extent_io_tree *tree,
312 			   struct extent_state *state, int *bits)
313 {
314 	if (tree->ops && tree->ops->clear_bit_hook)
315 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317 
318 static void set_state_bits(struct extent_io_tree *tree,
319 			   struct extent_state *state, int *bits);
320 
321 /*
322  * insert an extent_state struct into the tree.  'bits' are set on the
323  * struct before it is inserted.
324  *
325  * This may return -EEXIST if the extent is already there, in which case the
326  * state struct is freed.
327  *
328  * The tree lock is not taken internally.  This is a utility function and
329  * probably isn't what you want to call (see set/clear_extent_bit).
330  */
331 static int insert_state(struct extent_io_tree *tree,
332 			struct extent_state *state, u64 start, u64 end,
333 			int *bits)
334 {
335 	struct rb_node *node;
336 
337 	if (end < start) {
338 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 		       (unsigned long long)end,
340 		       (unsigned long long)start);
341 		WARN_ON(1);
342 	}
343 	state->start = start;
344 	state->end = end;
345 
346 	set_state_bits(tree, state, bits);
347 
348 	node = tree_insert(&tree->state, end, &state->rb_node);
349 	if (node) {
350 		struct extent_state *found;
351 		found = rb_entry(node, struct extent_state, rb_node);
352 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 		       "%llu %llu\n", (unsigned long long)found->start,
354 		       (unsigned long long)found->end,
355 		       (unsigned long long)start, (unsigned long long)end);
356 		return -EEXIST;
357 	}
358 	state->tree = tree;
359 	merge_state(tree, state);
360 	return 0;
361 }
362 
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364 		     u64 split)
365 {
366 	if (tree->ops && tree->ops->split_extent_hook)
367 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369 
370 /*
371  * split a given extent state struct in two, inserting the preallocated
372  * struct 'prealloc' as the newly created second half.  'split' indicates an
373  * offset inside 'orig' where it should be split.
374  *
375  * Before calling,
376  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
377  * are two extent state structs in the tree:
378  * prealloc: [orig->start, split - 1]
379  * orig: [ split, orig->end ]
380  *
381  * The tree locks are not taken by this function. They need to be held
382  * by the caller.
383  */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 		       struct extent_state *prealloc, u64 split)
386 {
387 	struct rb_node *node;
388 
389 	split_cb(tree, orig, split);
390 
391 	prealloc->start = orig->start;
392 	prealloc->end = split - 1;
393 	prealloc->state = orig->state;
394 	orig->start = split;
395 
396 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 	if (node) {
398 		free_extent_state(prealloc);
399 		return -EEXIST;
400 	}
401 	prealloc->tree = tree;
402 	return 0;
403 }
404 
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407 	struct rb_node *next = rb_next(&state->rb_node);
408 	if (next)
409 		return rb_entry(next, struct extent_state, rb_node);
410 	else
411 		return NULL;
412 }
413 
414 /*
415  * utility function to clear some bits in an extent state struct.
416  * it will optionally wake up any one waiting on this state (wake == 1).
417  *
418  * If no bits are set on the state struct after clearing things, the
419  * struct is freed and removed from the tree
420  */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 					    struct extent_state *state,
423 					    int *bits, int wake)
424 {
425 	struct extent_state *next;
426 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427 
428 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 		u64 range = state->end - state->start + 1;
430 		WARN_ON(range > tree->dirty_bytes);
431 		tree->dirty_bytes -= range;
432 	}
433 	clear_state_cb(tree, state, bits);
434 	state->state &= ~bits_to_clear;
435 	if (wake)
436 		wake_up(&state->wq);
437 	if (state->state == 0) {
438 		next = next_state(state);
439 		if (state->tree) {
440 			rb_erase(&state->rb_node, &tree->state);
441 			state->tree = NULL;
442 			free_extent_state(state);
443 		} else {
444 			WARN_ON(1);
445 		}
446 	} else {
447 		merge_state(tree, state);
448 		next = next_state(state);
449 	}
450 	return next;
451 }
452 
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456 	if (!prealloc)
457 		prealloc = alloc_extent_state(GFP_ATOMIC);
458 
459 	return prealloc;
460 }
461 
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 		    "Extent tree was modified by another "
466 		    "thread while locked.");
467 }
468 
469 /*
470  * clear some bits on a range in the tree.  This may require splitting
471  * or inserting elements in the tree, so the gfp mask is used to
472  * indicate which allocations or sleeping are allowed.
473  *
474  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475  * the given range from the tree regardless of state (ie for truncate).
476  *
477  * the range [start, end] is inclusive.
478  *
479  * This takes the tree lock, and returns 0 on success and < 0 on error.
480  */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 		     int bits, int wake, int delete,
483 		     struct extent_state **cached_state,
484 		     gfp_t mask)
485 {
486 	struct extent_state *state;
487 	struct extent_state *cached;
488 	struct extent_state *prealloc = NULL;
489 	struct rb_node *node;
490 	u64 last_end;
491 	int err;
492 	int clear = 0;
493 
494 	if (delete)
495 		bits |= ~EXTENT_CTLBITS;
496 	bits |= EXTENT_FIRST_DELALLOC;
497 
498 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 		clear = 1;
500 again:
501 	if (!prealloc && (mask & __GFP_WAIT)) {
502 		prealloc = alloc_extent_state(mask);
503 		if (!prealloc)
504 			return -ENOMEM;
505 	}
506 
507 	spin_lock(&tree->lock);
508 	if (cached_state) {
509 		cached = *cached_state;
510 
511 		if (clear) {
512 			*cached_state = NULL;
513 			cached_state = NULL;
514 		}
515 
516 		if (cached && cached->tree && cached->start <= start &&
517 		    cached->end > start) {
518 			if (clear)
519 				atomic_dec(&cached->refs);
520 			state = cached;
521 			goto hit_next;
522 		}
523 		if (clear)
524 			free_extent_state(cached);
525 	}
526 	/*
527 	 * this search will find the extents that end after
528 	 * our range starts
529 	 */
530 	node = tree_search(tree, start);
531 	if (!node)
532 		goto out;
533 	state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535 	if (state->start > end)
536 		goto out;
537 	WARN_ON(state->end < start);
538 	last_end = state->end;
539 
540 	/* the state doesn't have the wanted bits, go ahead */
541 	if (!(state->state & bits)) {
542 		state = next_state(state);
543 		goto next;
544 	}
545 
546 	/*
547 	 *     | ---- desired range ---- |
548 	 *  | state | or
549 	 *  | ------------- state -------------- |
550 	 *
551 	 * We need to split the extent we found, and may flip
552 	 * bits on second half.
553 	 *
554 	 * If the extent we found extends past our range, we
555 	 * just split and search again.  It'll get split again
556 	 * the next time though.
557 	 *
558 	 * If the extent we found is inside our range, we clear
559 	 * the desired bit on it.
560 	 */
561 
562 	if (state->start < start) {
563 		prealloc = alloc_extent_state_atomic(prealloc);
564 		BUG_ON(!prealloc);
565 		err = split_state(tree, state, prealloc, start);
566 		if (err)
567 			extent_io_tree_panic(tree, err);
568 
569 		prealloc = NULL;
570 		if (err)
571 			goto out;
572 		if (state->end <= end) {
573 			state = clear_state_bit(tree, state, &bits, wake);
574 			goto next;
575 		}
576 		goto search_again;
577 	}
578 	/*
579 	 * | ---- desired range ---- |
580 	 *                        | state |
581 	 * We need to split the extent, and clear the bit
582 	 * on the first half
583 	 */
584 	if (state->start <= end && state->end > end) {
585 		prealloc = alloc_extent_state_atomic(prealloc);
586 		BUG_ON(!prealloc);
587 		err = split_state(tree, state, prealloc, end + 1);
588 		if (err)
589 			extent_io_tree_panic(tree, err);
590 
591 		if (wake)
592 			wake_up(&state->wq);
593 
594 		clear_state_bit(tree, prealloc, &bits, wake);
595 
596 		prealloc = NULL;
597 		goto out;
598 	}
599 
600 	state = clear_state_bit(tree, state, &bits, wake);
601 next:
602 	if (last_end == (u64)-1)
603 		goto out;
604 	start = last_end + 1;
605 	if (start <= end && state && !need_resched())
606 		goto hit_next;
607 	goto search_again;
608 
609 out:
610 	spin_unlock(&tree->lock);
611 	if (prealloc)
612 		free_extent_state(prealloc);
613 
614 	return 0;
615 
616 search_again:
617 	if (start > end)
618 		goto out;
619 	spin_unlock(&tree->lock);
620 	if (mask & __GFP_WAIT)
621 		cond_resched();
622 	goto again;
623 }
624 
625 static void wait_on_state(struct extent_io_tree *tree,
626 			  struct extent_state *state)
627 		__releases(tree->lock)
628 		__acquires(tree->lock)
629 {
630 	DEFINE_WAIT(wait);
631 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632 	spin_unlock(&tree->lock);
633 	schedule();
634 	spin_lock(&tree->lock);
635 	finish_wait(&state->wq, &wait);
636 }
637 
638 /*
639  * waits for one or more bits to clear on a range in the state tree.
640  * The range [start, end] is inclusive.
641  * The tree lock is taken by this function
642  */
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
644 {
645 	struct extent_state *state;
646 	struct rb_node *node;
647 
648 	spin_lock(&tree->lock);
649 again:
650 	while (1) {
651 		/*
652 		 * this search will find all the extents that end after
653 		 * our range starts
654 		 */
655 		node = tree_search(tree, start);
656 		if (!node)
657 			break;
658 
659 		state = rb_entry(node, struct extent_state, rb_node);
660 
661 		if (state->start > end)
662 			goto out;
663 
664 		if (state->state & bits) {
665 			start = state->start;
666 			atomic_inc(&state->refs);
667 			wait_on_state(tree, state);
668 			free_extent_state(state);
669 			goto again;
670 		}
671 		start = state->end + 1;
672 
673 		if (start > end)
674 			break;
675 
676 		cond_resched_lock(&tree->lock);
677 	}
678 out:
679 	spin_unlock(&tree->lock);
680 }
681 
682 static void set_state_bits(struct extent_io_tree *tree,
683 			   struct extent_state *state,
684 			   int *bits)
685 {
686 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
687 
688 	set_state_cb(tree, state, bits);
689 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690 		u64 range = state->end - state->start + 1;
691 		tree->dirty_bytes += range;
692 	}
693 	state->state |= bits_to_set;
694 }
695 
696 static void cache_state(struct extent_state *state,
697 			struct extent_state **cached_ptr)
698 {
699 	if (cached_ptr && !(*cached_ptr)) {
700 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 			*cached_ptr = state;
702 			atomic_inc(&state->refs);
703 		}
704 	}
705 }
706 
707 static void uncache_state(struct extent_state **cached_ptr)
708 {
709 	if (cached_ptr && (*cached_ptr)) {
710 		struct extent_state *state = *cached_ptr;
711 		*cached_ptr = NULL;
712 		free_extent_state(state);
713 	}
714 }
715 
716 /*
717  * set some bits on a range in the tree.  This may require allocations or
718  * sleeping, so the gfp mask is used to indicate what is allowed.
719  *
720  * If any of the exclusive bits are set, this will fail with -EEXIST if some
721  * part of the range already has the desired bits set.  The start of the
722  * existing range is returned in failed_start in this case.
723  *
724  * [start, end] is inclusive This takes the tree lock.
725  */
726 
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 		 int bits, int exclusive_bits, u64 *failed_start,
730 		 struct extent_state **cached_state, gfp_t mask)
731 {
732 	struct extent_state *state;
733 	struct extent_state *prealloc = NULL;
734 	struct rb_node *node;
735 	int err = 0;
736 	u64 last_start;
737 	u64 last_end;
738 
739 	bits |= EXTENT_FIRST_DELALLOC;
740 again:
741 	if (!prealloc && (mask & __GFP_WAIT)) {
742 		prealloc = alloc_extent_state(mask);
743 		BUG_ON(!prealloc);
744 	}
745 
746 	spin_lock(&tree->lock);
747 	if (cached_state && *cached_state) {
748 		state = *cached_state;
749 		if (state->start <= start && state->end > start &&
750 		    state->tree) {
751 			node = &state->rb_node;
752 			goto hit_next;
753 		}
754 	}
755 	/*
756 	 * this search will find all the extents that end after
757 	 * our range starts.
758 	 */
759 	node = tree_search(tree, start);
760 	if (!node) {
761 		prealloc = alloc_extent_state_atomic(prealloc);
762 		BUG_ON(!prealloc);
763 		err = insert_state(tree, prealloc, start, end, &bits);
764 		if (err)
765 			extent_io_tree_panic(tree, err);
766 
767 		prealloc = NULL;
768 		goto out;
769 	}
770 	state = rb_entry(node, struct extent_state, rb_node);
771 hit_next:
772 	last_start = state->start;
773 	last_end = state->end;
774 
775 	/*
776 	 * | ---- desired range ---- |
777 	 * | state |
778 	 *
779 	 * Just lock what we found and keep going
780 	 */
781 	if (state->start == start && state->end <= end) {
782 		if (state->state & exclusive_bits) {
783 			*failed_start = state->start;
784 			err = -EEXIST;
785 			goto out;
786 		}
787 
788 		set_state_bits(tree, state, &bits);
789 		cache_state(state, cached_state);
790 		merge_state(tree, state);
791 		if (last_end == (u64)-1)
792 			goto out;
793 		start = last_end + 1;
794 		state = next_state(state);
795 		if (start < end && state && state->start == start &&
796 		    !need_resched())
797 			goto hit_next;
798 		goto search_again;
799 	}
800 
801 	/*
802 	 *     | ---- desired range ---- |
803 	 * | state |
804 	 *   or
805 	 * | ------------- state -------------- |
806 	 *
807 	 * We need to split the extent we found, and may flip bits on
808 	 * second half.
809 	 *
810 	 * If the extent we found extends past our
811 	 * range, we just split and search again.  It'll get split
812 	 * again the next time though.
813 	 *
814 	 * If the extent we found is inside our range, we set the
815 	 * desired bit on it.
816 	 */
817 	if (state->start < start) {
818 		if (state->state & exclusive_bits) {
819 			*failed_start = start;
820 			err = -EEXIST;
821 			goto out;
822 		}
823 
824 		prealloc = alloc_extent_state_atomic(prealloc);
825 		BUG_ON(!prealloc);
826 		err = split_state(tree, state, prealloc, start);
827 		if (err)
828 			extent_io_tree_panic(tree, err);
829 
830 		prealloc = NULL;
831 		if (err)
832 			goto out;
833 		if (state->end <= end) {
834 			set_state_bits(tree, state, &bits);
835 			cache_state(state, cached_state);
836 			merge_state(tree, state);
837 			if (last_end == (u64)-1)
838 				goto out;
839 			start = last_end + 1;
840 			state = next_state(state);
841 			if (start < end && state && state->start == start &&
842 			    !need_resched())
843 				goto hit_next;
844 		}
845 		goto search_again;
846 	}
847 	/*
848 	 * | ---- desired range ---- |
849 	 *     | state | or               | state |
850 	 *
851 	 * There's a hole, we need to insert something in it and
852 	 * ignore the extent we found.
853 	 */
854 	if (state->start > start) {
855 		u64 this_end;
856 		if (end < last_start)
857 			this_end = end;
858 		else
859 			this_end = last_start - 1;
860 
861 		prealloc = alloc_extent_state_atomic(prealloc);
862 		BUG_ON(!prealloc);
863 
864 		/*
865 		 * Avoid to free 'prealloc' if it can be merged with
866 		 * the later extent.
867 		 */
868 		err = insert_state(tree, prealloc, start, this_end,
869 				   &bits);
870 		if (err)
871 			extent_io_tree_panic(tree, err);
872 
873 		cache_state(prealloc, cached_state);
874 		prealloc = NULL;
875 		start = this_end + 1;
876 		goto search_again;
877 	}
878 	/*
879 	 * | ---- desired range ---- |
880 	 *                        | state |
881 	 * We need to split the extent, and set the bit
882 	 * on the first half
883 	 */
884 	if (state->start <= end && state->end > end) {
885 		if (state->state & exclusive_bits) {
886 			*failed_start = start;
887 			err = -EEXIST;
888 			goto out;
889 		}
890 
891 		prealloc = alloc_extent_state_atomic(prealloc);
892 		BUG_ON(!prealloc);
893 		err = split_state(tree, state, prealloc, end + 1);
894 		if (err)
895 			extent_io_tree_panic(tree, err);
896 
897 		set_state_bits(tree, prealloc, &bits);
898 		cache_state(prealloc, cached_state);
899 		merge_state(tree, prealloc);
900 		prealloc = NULL;
901 		goto out;
902 	}
903 
904 	goto search_again;
905 
906 out:
907 	spin_unlock(&tree->lock);
908 	if (prealloc)
909 		free_extent_state(prealloc);
910 
911 	return err;
912 
913 search_again:
914 	if (start > end)
915 		goto out;
916 	spin_unlock(&tree->lock);
917 	if (mask & __GFP_WAIT)
918 		cond_resched();
919 	goto again;
920 }
921 
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 		   u64 *failed_start, struct extent_state **cached_state,
924 		   gfp_t mask)
925 {
926 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 				cached_state, mask);
928 }
929 
930 
931 /**
932  * convert_extent - convert all bits in a given range from one bit to another
933  * @tree:	the io tree to search
934  * @start:	the start offset in bytes
935  * @end:	the end offset in bytes (inclusive)
936  * @bits:	the bits to set in this range
937  * @clear_bits:	the bits to clear in this range
938  * @mask:	the allocation mask
939  *
940  * This will go through and set bits for the given range.  If any states exist
941  * already in this range they are set with the given bit and cleared of the
942  * clear_bits.  This is only meant to be used by things that are mergeable, ie
943  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
944  * boundary bits like LOCK.
945  */
946 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
947 		       int bits, int clear_bits, gfp_t mask)
948 {
949 	struct extent_state *state;
950 	struct extent_state *prealloc = NULL;
951 	struct rb_node *node;
952 	int err = 0;
953 	u64 last_start;
954 	u64 last_end;
955 
956 again:
957 	if (!prealloc && (mask & __GFP_WAIT)) {
958 		prealloc = alloc_extent_state(mask);
959 		if (!prealloc)
960 			return -ENOMEM;
961 	}
962 
963 	spin_lock(&tree->lock);
964 	/*
965 	 * this search will find all the extents that end after
966 	 * our range starts.
967 	 */
968 	node = tree_search(tree, start);
969 	if (!node) {
970 		prealloc = alloc_extent_state_atomic(prealloc);
971 		if (!prealloc) {
972 			err = -ENOMEM;
973 			goto out;
974 		}
975 		err = insert_state(tree, prealloc, start, end, &bits);
976 		prealloc = NULL;
977 		if (err)
978 			extent_io_tree_panic(tree, err);
979 		goto out;
980 	}
981 	state = rb_entry(node, struct extent_state, rb_node);
982 hit_next:
983 	last_start = state->start;
984 	last_end = state->end;
985 
986 	/*
987 	 * | ---- desired range ---- |
988 	 * | state |
989 	 *
990 	 * Just lock what we found and keep going
991 	 */
992 	if (state->start == start && state->end <= end) {
993 		set_state_bits(tree, state, &bits);
994 		state = clear_state_bit(tree, state, &clear_bits, 0);
995 		if (last_end == (u64)-1)
996 			goto out;
997 		start = last_end + 1;
998 		if (start < end && state && state->start == start &&
999 		    !need_resched())
1000 			goto hit_next;
1001 		goto search_again;
1002 	}
1003 
1004 	/*
1005 	 *     | ---- desired range ---- |
1006 	 * | state |
1007 	 *   or
1008 	 * | ------------- state -------------- |
1009 	 *
1010 	 * We need to split the extent we found, and may flip bits on
1011 	 * second half.
1012 	 *
1013 	 * If the extent we found extends past our
1014 	 * range, we just split and search again.  It'll get split
1015 	 * again the next time though.
1016 	 *
1017 	 * If the extent we found is inside our range, we set the
1018 	 * desired bit on it.
1019 	 */
1020 	if (state->start < start) {
1021 		prealloc = alloc_extent_state_atomic(prealloc);
1022 		if (!prealloc) {
1023 			err = -ENOMEM;
1024 			goto out;
1025 		}
1026 		err = split_state(tree, state, prealloc, start);
1027 		if (err)
1028 			extent_io_tree_panic(tree, err);
1029 		prealloc = NULL;
1030 		if (err)
1031 			goto out;
1032 		if (state->end <= end) {
1033 			set_state_bits(tree, state, &bits);
1034 			state = clear_state_bit(tree, state, &clear_bits, 0);
1035 			if (last_end == (u64)-1)
1036 				goto out;
1037 			start = last_end + 1;
1038 			if (start < end && state && state->start == start &&
1039 			    !need_resched())
1040 				goto hit_next;
1041 		}
1042 		goto search_again;
1043 	}
1044 	/*
1045 	 * | ---- desired range ---- |
1046 	 *     | state | or               | state |
1047 	 *
1048 	 * There's a hole, we need to insert something in it and
1049 	 * ignore the extent we found.
1050 	 */
1051 	if (state->start > start) {
1052 		u64 this_end;
1053 		if (end < last_start)
1054 			this_end = end;
1055 		else
1056 			this_end = last_start - 1;
1057 
1058 		prealloc = alloc_extent_state_atomic(prealloc);
1059 		if (!prealloc) {
1060 			err = -ENOMEM;
1061 			goto out;
1062 		}
1063 
1064 		/*
1065 		 * Avoid to free 'prealloc' if it can be merged with
1066 		 * the later extent.
1067 		 */
1068 		err = insert_state(tree, prealloc, start, this_end,
1069 				   &bits);
1070 		if (err)
1071 			extent_io_tree_panic(tree, err);
1072 		prealloc = NULL;
1073 		start = this_end + 1;
1074 		goto search_again;
1075 	}
1076 	/*
1077 	 * | ---- desired range ---- |
1078 	 *                        | state |
1079 	 * We need to split the extent, and set the bit
1080 	 * on the first half
1081 	 */
1082 	if (state->start <= end && state->end > end) {
1083 		prealloc = alloc_extent_state_atomic(prealloc);
1084 		if (!prealloc) {
1085 			err = -ENOMEM;
1086 			goto out;
1087 		}
1088 
1089 		err = split_state(tree, state, prealloc, end + 1);
1090 		if (err)
1091 			extent_io_tree_panic(tree, err);
1092 
1093 		set_state_bits(tree, prealloc, &bits);
1094 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1095 		prealloc = NULL;
1096 		goto out;
1097 	}
1098 
1099 	goto search_again;
1100 
1101 out:
1102 	spin_unlock(&tree->lock);
1103 	if (prealloc)
1104 		free_extent_state(prealloc);
1105 
1106 	return err;
1107 
1108 search_again:
1109 	if (start > end)
1110 		goto out;
1111 	spin_unlock(&tree->lock);
1112 	if (mask & __GFP_WAIT)
1113 		cond_resched();
1114 	goto again;
1115 }
1116 
1117 /* wrappers around set/clear extent bit */
1118 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1119 		     gfp_t mask)
1120 {
1121 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1122 			      NULL, mask);
1123 }
1124 
1125 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126 		    int bits, gfp_t mask)
1127 {
1128 	return set_extent_bit(tree, start, end, bits, NULL,
1129 			      NULL, mask);
1130 }
1131 
1132 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 		      int bits, gfp_t mask)
1134 {
1135 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1136 }
1137 
1138 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139 			struct extent_state **cached_state, gfp_t mask)
1140 {
1141 	return set_extent_bit(tree, start, end,
1142 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1143 			      NULL, cached_state, mask);
1144 }
1145 
1146 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1147 		       gfp_t mask)
1148 {
1149 	return clear_extent_bit(tree, start, end,
1150 				EXTENT_DIRTY | EXTENT_DELALLOC |
1151 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1152 }
1153 
1154 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1155 		     gfp_t mask)
1156 {
1157 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1158 			      NULL, mask);
1159 }
1160 
1161 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162 			struct extent_state **cached_state, gfp_t mask)
1163 {
1164 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165 			      cached_state, mask);
1166 }
1167 
1168 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169 			  struct extent_state **cached_state, gfp_t mask)
1170 {
1171 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172 				cached_state, mask);
1173 }
1174 
1175 /*
1176  * either insert or lock state struct between start and end use mask to tell
1177  * us if waiting is desired.
1178  */
1179 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180 		     int bits, struct extent_state **cached_state)
1181 {
1182 	int err;
1183 	u64 failed_start;
1184 	while (1) {
1185 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186 				       EXTENT_LOCKED, &failed_start,
1187 				       cached_state, GFP_NOFS);
1188 		if (err == -EEXIST) {
1189 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190 			start = failed_start;
1191 		} else
1192 			break;
1193 		WARN_ON(start > end);
1194 	}
1195 	return err;
1196 }
1197 
1198 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1199 {
1200 	return lock_extent_bits(tree, start, end, 0, NULL);
1201 }
1202 
1203 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1204 {
1205 	int err;
1206 	u64 failed_start;
1207 
1208 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209 			       &failed_start, NULL, GFP_NOFS);
1210 	if (err == -EEXIST) {
1211 		if (failed_start > start)
1212 			clear_extent_bit(tree, start, failed_start - 1,
1213 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1214 		return 0;
1215 	}
1216 	return 1;
1217 }
1218 
1219 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220 			 struct extent_state **cached, gfp_t mask)
1221 {
1222 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1223 				mask);
1224 }
1225 
1226 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1229 				GFP_NOFS);
1230 }
1231 
1232 /*
1233  * helper function to set both pages and extents in the tree writeback
1234  */
1235 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1236 {
1237 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1238 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1239 	struct page *page;
1240 
1241 	while (index <= end_index) {
1242 		page = find_get_page(tree->mapping, index);
1243 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244 		set_page_writeback(page);
1245 		page_cache_release(page);
1246 		index++;
1247 	}
1248 	return 0;
1249 }
1250 
1251 /* find the first state struct with 'bits' set after 'start', and
1252  * return it.  tree->lock must be held.  NULL will returned if
1253  * nothing was found after 'start'
1254  */
1255 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256 						 u64 start, int bits)
1257 {
1258 	struct rb_node *node;
1259 	struct extent_state *state;
1260 
1261 	/*
1262 	 * this search will find all the extents that end after
1263 	 * our range starts.
1264 	 */
1265 	node = tree_search(tree, start);
1266 	if (!node)
1267 		goto out;
1268 
1269 	while (1) {
1270 		state = rb_entry(node, struct extent_state, rb_node);
1271 		if (state->end >= start && (state->state & bits))
1272 			return state;
1273 
1274 		node = rb_next(node);
1275 		if (!node)
1276 			break;
1277 	}
1278 out:
1279 	return NULL;
1280 }
1281 
1282 /*
1283  * find the first offset in the io tree with 'bits' set. zero is
1284  * returned if we find something, and *start_ret and *end_ret are
1285  * set to reflect the state struct that was found.
1286  *
1287  * If nothing was found, 1 is returned. If found something, return 0.
1288  */
1289 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290 			  u64 *start_ret, u64 *end_ret, int bits)
1291 {
1292 	struct extent_state *state;
1293 	int ret = 1;
1294 
1295 	spin_lock(&tree->lock);
1296 	state = find_first_extent_bit_state(tree, start, bits);
1297 	if (state) {
1298 		*start_ret = state->start;
1299 		*end_ret = state->end;
1300 		ret = 0;
1301 	}
1302 	spin_unlock(&tree->lock);
1303 	return ret;
1304 }
1305 
1306 /*
1307  * find a contiguous range of bytes in the file marked as delalloc, not
1308  * more than 'max_bytes'.  start and end are used to return the range,
1309  *
1310  * 1 is returned if we find something, 0 if nothing was in the tree
1311  */
1312 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313 					u64 *start, u64 *end, u64 max_bytes,
1314 					struct extent_state **cached_state)
1315 {
1316 	struct rb_node *node;
1317 	struct extent_state *state;
1318 	u64 cur_start = *start;
1319 	u64 found = 0;
1320 	u64 total_bytes = 0;
1321 
1322 	spin_lock(&tree->lock);
1323 
1324 	/*
1325 	 * this search will find all the extents that end after
1326 	 * our range starts.
1327 	 */
1328 	node = tree_search(tree, cur_start);
1329 	if (!node) {
1330 		if (!found)
1331 			*end = (u64)-1;
1332 		goto out;
1333 	}
1334 
1335 	while (1) {
1336 		state = rb_entry(node, struct extent_state, rb_node);
1337 		if (found && (state->start != cur_start ||
1338 			      (state->state & EXTENT_BOUNDARY))) {
1339 			goto out;
1340 		}
1341 		if (!(state->state & EXTENT_DELALLOC)) {
1342 			if (!found)
1343 				*end = state->end;
1344 			goto out;
1345 		}
1346 		if (!found) {
1347 			*start = state->start;
1348 			*cached_state = state;
1349 			atomic_inc(&state->refs);
1350 		}
1351 		found++;
1352 		*end = state->end;
1353 		cur_start = state->end + 1;
1354 		node = rb_next(node);
1355 		if (!node)
1356 			break;
1357 		total_bytes += state->end - state->start + 1;
1358 		if (total_bytes >= max_bytes)
1359 			break;
1360 	}
1361 out:
1362 	spin_unlock(&tree->lock);
1363 	return found;
1364 }
1365 
1366 static noinline void __unlock_for_delalloc(struct inode *inode,
1367 					   struct page *locked_page,
1368 					   u64 start, u64 end)
1369 {
1370 	int ret;
1371 	struct page *pages[16];
1372 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1373 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374 	unsigned long nr_pages = end_index - index + 1;
1375 	int i;
1376 
1377 	if (index == locked_page->index && end_index == index)
1378 		return;
1379 
1380 	while (nr_pages > 0) {
1381 		ret = find_get_pages_contig(inode->i_mapping, index,
1382 				     min_t(unsigned long, nr_pages,
1383 				     ARRAY_SIZE(pages)), pages);
1384 		for (i = 0; i < ret; i++) {
1385 			if (pages[i] != locked_page)
1386 				unlock_page(pages[i]);
1387 			page_cache_release(pages[i]);
1388 		}
1389 		nr_pages -= ret;
1390 		index += ret;
1391 		cond_resched();
1392 	}
1393 }
1394 
1395 static noinline int lock_delalloc_pages(struct inode *inode,
1396 					struct page *locked_page,
1397 					u64 delalloc_start,
1398 					u64 delalloc_end)
1399 {
1400 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401 	unsigned long start_index = index;
1402 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403 	unsigned long pages_locked = 0;
1404 	struct page *pages[16];
1405 	unsigned long nrpages;
1406 	int ret;
1407 	int i;
1408 
1409 	/* the caller is responsible for locking the start index */
1410 	if (index == locked_page->index && index == end_index)
1411 		return 0;
1412 
1413 	/* skip the page at the start index */
1414 	nrpages = end_index - index + 1;
1415 	while (nrpages > 0) {
1416 		ret = find_get_pages_contig(inode->i_mapping, index,
1417 				     min_t(unsigned long,
1418 				     nrpages, ARRAY_SIZE(pages)), pages);
1419 		if (ret == 0) {
1420 			ret = -EAGAIN;
1421 			goto done;
1422 		}
1423 		/* now we have an array of pages, lock them all */
1424 		for (i = 0; i < ret; i++) {
1425 			/*
1426 			 * the caller is taking responsibility for
1427 			 * locked_page
1428 			 */
1429 			if (pages[i] != locked_page) {
1430 				lock_page(pages[i]);
1431 				if (!PageDirty(pages[i]) ||
1432 				    pages[i]->mapping != inode->i_mapping) {
1433 					ret = -EAGAIN;
1434 					unlock_page(pages[i]);
1435 					page_cache_release(pages[i]);
1436 					goto done;
1437 				}
1438 			}
1439 			page_cache_release(pages[i]);
1440 			pages_locked++;
1441 		}
1442 		nrpages -= ret;
1443 		index += ret;
1444 		cond_resched();
1445 	}
1446 	ret = 0;
1447 done:
1448 	if (ret && pages_locked) {
1449 		__unlock_for_delalloc(inode, locked_page,
1450 			      delalloc_start,
1451 			      ((u64)(start_index + pages_locked - 1)) <<
1452 			      PAGE_CACHE_SHIFT);
1453 	}
1454 	return ret;
1455 }
1456 
1457 /*
1458  * find a contiguous range of bytes in the file marked as delalloc, not
1459  * more than 'max_bytes'.  start and end are used to return the range,
1460  *
1461  * 1 is returned if we find something, 0 if nothing was in the tree
1462  */
1463 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464 					     struct extent_io_tree *tree,
1465 					     struct page *locked_page,
1466 					     u64 *start, u64 *end,
1467 					     u64 max_bytes)
1468 {
1469 	u64 delalloc_start;
1470 	u64 delalloc_end;
1471 	u64 found;
1472 	struct extent_state *cached_state = NULL;
1473 	int ret;
1474 	int loops = 0;
1475 
1476 again:
1477 	/* step one, find a bunch of delalloc bytes starting at start */
1478 	delalloc_start = *start;
1479 	delalloc_end = 0;
1480 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481 				    max_bytes, &cached_state);
1482 	if (!found || delalloc_end <= *start) {
1483 		*start = delalloc_start;
1484 		*end = delalloc_end;
1485 		free_extent_state(cached_state);
1486 		return found;
1487 	}
1488 
1489 	/*
1490 	 * start comes from the offset of locked_page.  We have to lock
1491 	 * pages in order, so we can't process delalloc bytes before
1492 	 * locked_page
1493 	 */
1494 	if (delalloc_start < *start)
1495 		delalloc_start = *start;
1496 
1497 	/*
1498 	 * make sure to limit the number of pages we try to lock down
1499 	 * if we're looping.
1500 	 */
1501 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1503 
1504 	/* step two, lock all the pages after the page that has start */
1505 	ret = lock_delalloc_pages(inode, locked_page,
1506 				  delalloc_start, delalloc_end);
1507 	if (ret == -EAGAIN) {
1508 		/* some of the pages are gone, lets avoid looping by
1509 		 * shortening the size of the delalloc range we're searching
1510 		 */
1511 		free_extent_state(cached_state);
1512 		if (!loops) {
1513 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514 			max_bytes = PAGE_CACHE_SIZE - offset;
1515 			loops = 1;
1516 			goto again;
1517 		} else {
1518 			found = 0;
1519 			goto out_failed;
1520 		}
1521 	}
1522 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1523 
1524 	/* step three, lock the state bits for the whole range */
1525 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1526 
1527 	/* then test to make sure it is all still delalloc */
1528 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529 			     EXTENT_DELALLOC, 1, cached_state);
1530 	if (!ret) {
1531 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532 				     &cached_state, GFP_NOFS);
1533 		__unlock_for_delalloc(inode, locked_page,
1534 			      delalloc_start, delalloc_end);
1535 		cond_resched();
1536 		goto again;
1537 	}
1538 	free_extent_state(cached_state);
1539 	*start = delalloc_start;
1540 	*end = delalloc_end;
1541 out_failed:
1542 	return found;
1543 }
1544 
1545 int extent_clear_unlock_delalloc(struct inode *inode,
1546 				struct extent_io_tree *tree,
1547 				u64 start, u64 end, struct page *locked_page,
1548 				unsigned long op)
1549 {
1550 	int ret;
1551 	struct page *pages[16];
1552 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1553 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554 	unsigned long nr_pages = end_index - index + 1;
1555 	int i;
1556 	int clear_bits = 0;
1557 
1558 	if (op & EXTENT_CLEAR_UNLOCK)
1559 		clear_bits |= EXTENT_LOCKED;
1560 	if (op & EXTENT_CLEAR_DIRTY)
1561 		clear_bits |= EXTENT_DIRTY;
1562 
1563 	if (op & EXTENT_CLEAR_DELALLOC)
1564 		clear_bits |= EXTENT_DELALLOC;
1565 
1566 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569 		    EXTENT_SET_PRIVATE2)))
1570 		return 0;
1571 
1572 	while (nr_pages > 0) {
1573 		ret = find_get_pages_contig(inode->i_mapping, index,
1574 				     min_t(unsigned long,
1575 				     nr_pages, ARRAY_SIZE(pages)), pages);
1576 		for (i = 0; i < ret; i++) {
1577 
1578 			if (op & EXTENT_SET_PRIVATE2)
1579 				SetPagePrivate2(pages[i]);
1580 
1581 			if (pages[i] == locked_page) {
1582 				page_cache_release(pages[i]);
1583 				continue;
1584 			}
1585 			if (op & EXTENT_CLEAR_DIRTY)
1586 				clear_page_dirty_for_io(pages[i]);
1587 			if (op & EXTENT_SET_WRITEBACK)
1588 				set_page_writeback(pages[i]);
1589 			if (op & EXTENT_END_WRITEBACK)
1590 				end_page_writeback(pages[i]);
1591 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592 				unlock_page(pages[i]);
1593 			page_cache_release(pages[i]);
1594 		}
1595 		nr_pages -= ret;
1596 		index += ret;
1597 		cond_resched();
1598 	}
1599 	return 0;
1600 }
1601 
1602 /*
1603  * count the number of bytes in the tree that have a given bit(s)
1604  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1605  * cached.  The total number found is returned.
1606  */
1607 u64 count_range_bits(struct extent_io_tree *tree,
1608 		     u64 *start, u64 search_end, u64 max_bytes,
1609 		     unsigned long bits, int contig)
1610 {
1611 	struct rb_node *node;
1612 	struct extent_state *state;
1613 	u64 cur_start = *start;
1614 	u64 total_bytes = 0;
1615 	u64 last = 0;
1616 	int found = 0;
1617 
1618 	if (search_end <= cur_start) {
1619 		WARN_ON(1);
1620 		return 0;
1621 	}
1622 
1623 	spin_lock(&tree->lock);
1624 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625 		total_bytes = tree->dirty_bytes;
1626 		goto out;
1627 	}
1628 	/*
1629 	 * this search will find all the extents that end after
1630 	 * our range starts.
1631 	 */
1632 	node = tree_search(tree, cur_start);
1633 	if (!node)
1634 		goto out;
1635 
1636 	while (1) {
1637 		state = rb_entry(node, struct extent_state, rb_node);
1638 		if (state->start > search_end)
1639 			break;
1640 		if (contig && found && state->start > last + 1)
1641 			break;
1642 		if (state->end >= cur_start && (state->state & bits) == bits) {
1643 			total_bytes += min(search_end, state->end) + 1 -
1644 				       max(cur_start, state->start);
1645 			if (total_bytes >= max_bytes)
1646 				break;
1647 			if (!found) {
1648 				*start = max(cur_start, state->start);
1649 				found = 1;
1650 			}
1651 			last = state->end;
1652 		} else if (contig && found) {
1653 			break;
1654 		}
1655 		node = rb_next(node);
1656 		if (!node)
1657 			break;
1658 	}
1659 out:
1660 	spin_unlock(&tree->lock);
1661 	return total_bytes;
1662 }
1663 
1664 /*
1665  * set the private field for a given byte offset in the tree.  If there isn't
1666  * an extent_state there already, this does nothing.
1667  */
1668 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1669 {
1670 	struct rb_node *node;
1671 	struct extent_state *state;
1672 	int ret = 0;
1673 
1674 	spin_lock(&tree->lock);
1675 	/*
1676 	 * this search will find all the extents that end after
1677 	 * our range starts.
1678 	 */
1679 	node = tree_search(tree, start);
1680 	if (!node) {
1681 		ret = -ENOENT;
1682 		goto out;
1683 	}
1684 	state = rb_entry(node, struct extent_state, rb_node);
1685 	if (state->start != start) {
1686 		ret = -ENOENT;
1687 		goto out;
1688 	}
1689 	state->private = private;
1690 out:
1691 	spin_unlock(&tree->lock);
1692 	return ret;
1693 }
1694 
1695 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1696 {
1697 	struct rb_node *node;
1698 	struct extent_state *state;
1699 	int ret = 0;
1700 
1701 	spin_lock(&tree->lock);
1702 	/*
1703 	 * this search will find all the extents that end after
1704 	 * our range starts.
1705 	 */
1706 	node = tree_search(tree, start);
1707 	if (!node) {
1708 		ret = -ENOENT;
1709 		goto out;
1710 	}
1711 	state = rb_entry(node, struct extent_state, rb_node);
1712 	if (state->start != start) {
1713 		ret = -ENOENT;
1714 		goto out;
1715 	}
1716 	*private = state->private;
1717 out:
1718 	spin_unlock(&tree->lock);
1719 	return ret;
1720 }
1721 
1722 /*
1723  * searches a range in the state tree for a given mask.
1724  * If 'filled' == 1, this returns 1 only if every extent in the tree
1725  * has the bits set.  Otherwise, 1 is returned if any bit in the
1726  * range is found set.
1727  */
1728 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729 		   int bits, int filled, struct extent_state *cached)
1730 {
1731 	struct extent_state *state = NULL;
1732 	struct rb_node *node;
1733 	int bitset = 0;
1734 
1735 	spin_lock(&tree->lock);
1736 	if (cached && cached->tree && cached->start <= start &&
1737 	    cached->end > start)
1738 		node = &cached->rb_node;
1739 	else
1740 		node = tree_search(tree, start);
1741 	while (node && start <= end) {
1742 		state = rb_entry(node, struct extent_state, rb_node);
1743 
1744 		if (filled && state->start > start) {
1745 			bitset = 0;
1746 			break;
1747 		}
1748 
1749 		if (state->start > end)
1750 			break;
1751 
1752 		if (state->state & bits) {
1753 			bitset = 1;
1754 			if (!filled)
1755 				break;
1756 		} else if (filled) {
1757 			bitset = 0;
1758 			break;
1759 		}
1760 
1761 		if (state->end == (u64)-1)
1762 			break;
1763 
1764 		start = state->end + 1;
1765 		if (start > end)
1766 			break;
1767 		node = rb_next(node);
1768 		if (!node) {
1769 			if (filled)
1770 				bitset = 0;
1771 			break;
1772 		}
1773 	}
1774 	spin_unlock(&tree->lock);
1775 	return bitset;
1776 }
1777 
1778 /*
1779  * helper function to set a given page up to date if all the
1780  * extents in the tree for that page are up to date
1781  */
1782 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1783 {
1784 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785 	u64 end = start + PAGE_CACHE_SIZE - 1;
1786 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787 		SetPageUptodate(page);
1788 }
1789 
1790 /*
1791  * helper function to unlock a page if all the extents in the tree
1792  * for that page are unlocked
1793  */
1794 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1795 {
1796 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797 	u64 end = start + PAGE_CACHE_SIZE - 1;
1798 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1799 		unlock_page(page);
1800 }
1801 
1802 /*
1803  * helper function to end page writeback if all the extents
1804  * in the tree for that page are done with writeback
1805  */
1806 static void check_page_writeback(struct extent_io_tree *tree,
1807 				 struct page *page)
1808 {
1809 	end_page_writeback(page);
1810 }
1811 
1812 /*
1813  * When IO fails, either with EIO or csum verification fails, we
1814  * try other mirrors that might have a good copy of the data.  This
1815  * io_failure_record is used to record state as we go through all the
1816  * mirrors.  If another mirror has good data, the page is set up to date
1817  * and things continue.  If a good mirror can't be found, the original
1818  * bio end_io callback is called to indicate things have failed.
1819  */
1820 struct io_failure_record {
1821 	struct page *page;
1822 	u64 start;
1823 	u64 len;
1824 	u64 logical;
1825 	unsigned long bio_flags;
1826 	int this_mirror;
1827 	int failed_mirror;
1828 	int in_validation;
1829 };
1830 
1831 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1832 				int did_repair)
1833 {
1834 	int ret;
1835 	int err = 0;
1836 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1837 
1838 	set_state_private(failure_tree, rec->start, 0);
1839 	ret = clear_extent_bits(failure_tree, rec->start,
1840 				rec->start + rec->len - 1,
1841 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1842 	if (ret)
1843 		err = ret;
1844 
1845 	if (did_repair) {
1846 		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847 					rec->start + rec->len - 1,
1848 					EXTENT_DAMAGED, GFP_NOFS);
1849 		if (ret && !err)
1850 			err = ret;
1851 	}
1852 
1853 	kfree(rec);
1854 	return err;
1855 }
1856 
1857 static void repair_io_failure_callback(struct bio *bio, int err)
1858 {
1859 	complete(bio->bi_private);
1860 }
1861 
1862 /*
1863  * this bypasses the standard btrfs submit functions deliberately, as
1864  * the standard behavior is to write all copies in a raid setup. here we only
1865  * want to write the one bad copy. so we do the mapping for ourselves and issue
1866  * submit_bio directly.
1867  * to avoid any synchonization issues, wait for the data after writing, which
1868  * actually prevents the read that triggered the error from finishing.
1869  * currently, there can be no more than two copies of every data bit. thus,
1870  * exactly one rewrite is required.
1871  */
1872 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873 			u64 length, u64 logical, struct page *page,
1874 			int mirror_num)
1875 {
1876 	struct bio *bio;
1877 	struct btrfs_device *dev;
1878 	DECLARE_COMPLETION_ONSTACK(compl);
1879 	u64 map_length = 0;
1880 	u64 sector;
1881 	struct btrfs_bio *bbio = NULL;
1882 	int ret;
1883 
1884 	BUG_ON(!mirror_num);
1885 
1886 	bio = bio_alloc(GFP_NOFS, 1);
1887 	if (!bio)
1888 		return -EIO;
1889 	bio->bi_private = &compl;
1890 	bio->bi_end_io = repair_io_failure_callback;
1891 	bio->bi_size = 0;
1892 	map_length = length;
1893 
1894 	ret = btrfs_map_block(map_tree, WRITE, logical,
1895 			      &map_length, &bbio, mirror_num);
1896 	if (ret) {
1897 		bio_put(bio);
1898 		return -EIO;
1899 	}
1900 	BUG_ON(mirror_num != bbio->mirror_num);
1901 	sector = bbio->stripes[mirror_num-1].physical >> 9;
1902 	bio->bi_sector = sector;
1903 	dev = bbio->stripes[mirror_num-1].dev;
1904 	kfree(bbio);
1905 	if (!dev || !dev->bdev || !dev->writeable) {
1906 		bio_put(bio);
1907 		return -EIO;
1908 	}
1909 	bio->bi_bdev = dev->bdev;
1910 	bio_add_page(bio, page, length, start-page_offset(page));
1911 	btrfsic_submit_bio(WRITE_SYNC, bio);
1912 	wait_for_completion(&compl);
1913 
1914 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915 		/* try to remap that extent elsewhere? */
1916 		bio_put(bio);
1917 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1918 		return -EIO;
1919 	}
1920 
1921 	printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923 		      start, rcu_str_deref(dev->name), sector);
1924 
1925 	bio_put(bio);
1926 	return 0;
1927 }
1928 
1929 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1930 			 int mirror_num)
1931 {
1932 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933 	u64 start = eb->start;
1934 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1935 	int ret = 0;
1936 
1937 	for (i = 0; i < num_pages; i++) {
1938 		struct page *p = extent_buffer_page(eb, i);
1939 		ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940 					start, p, mirror_num);
1941 		if (ret)
1942 			break;
1943 		start += PAGE_CACHE_SIZE;
1944 	}
1945 
1946 	return ret;
1947 }
1948 
1949 /*
1950  * each time an IO finishes, we do a fast check in the IO failure tree
1951  * to see if we need to process or clean up an io_failure_record
1952  */
1953 static int clean_io_failure(u64 start, struct page *page)
1954 {
1955 	u64 private;
1956 	u64 private_failure;
1957 	struct io_failure_record *failrec;
1958 	struct btrfs_mapping_tree *map_tree;
1959 	struct extent_state *state;
1960 	int num_copies;
1961 	int did_repair = 0;
1962 	int ret;
1963 	struct inode *inode = page->mapping->host;
1964 
1965 	private = 0;
1966 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967 				(u64)-1, 1, EXTENT_DIRTY, 0);
1968 	if (!ret)
1969 		return 0;
1970 
1971 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972 				&private_failure);
1973 	if (ret)
1974 		return 0;
1975 
1976 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977 	BUG_ON(!failrec->this_mirror);
1978 
1979 	if (failrec->in_validation) {
1980 		/* there was no real error, just free the record */
1981 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982 			 failrec->start);
1983 		did_repair = 1;
1984 		goto out;
1985 	}
1986 
1987 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989 					    failrec->start,
1990 					    EXTENT_LOCKED);
1991 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1992 
1993 	if (state && state->start == failrec->start) {
1994 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995 		num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996 						failrec->len);
1997 		if (num_copies > 1)  {
1998 			ret = repair_io_failure(map_tree, start, failrec->len,
1999 						failrec->logical, page,
2000 						failrec->failed_mirror);
2001 			did_repair = !ret;
2002 		}
2003 	}
2004 
2005 out:
2006 	if (!ret)
2007 		ret = free_io_failure(inode, failrec, did_repair);
2008 
2009 	return ret;
2010 }
2011 
2012 /*
2013  * this is a generic handler for readpage errors (default
2014  * readpage_io_failed_hook). if other copies exist, read those and write back
2015  * good data to the failed position. does not investigate in remapping the
2016  * failed extent elsewhere, hoping the device will be smart enough to do this as
2017  * needed
2018  */
2019 
2020 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021 				u64 start, u64 end, int failed_mirror,
2022 				struct extent_state *state)
2023 {
2024 	struct io_failure_record *failrec = NULL;
2025 	u64 private;
2026 	struct extent_map *em;
2027 	struct inode *inode = page->mapping->host;
2028 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031 	struct bio *bio;
2032 	int num_copies;
2033 	int ret;
2034 	int read_mode;
2035 	u64 logical;
2036 
2037 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2038 
2039 	ret = get_state_private(failure_tree, start, &private);
2040 	if (ret) {
2041 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042 		if (!failrec)
2043 			return -ENOMEM;
2044 		failrec->start = start;
2045 		failrec->len = end - start + 1;
2046 		failrec->this_mirror = 0;
2047 		failrec->bio_flags = 0;
2048 		failrec->in_validation = 0;
2049 
2050 		read_lock(&em_tree->lock);
2051 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2052 		if (!em) {
2053 			read_unlock(&em_tree->lock);
2054 			kfree(failrec);
2055 			return -EIO;
2056 		}
2057 
2058 		if (em->start > start || em->start + em->len < start) {
2059 			free_extent_map(em);
2060 			em = NULL;
2061 		}
2062 		read_unlock(&em_tree->lock);
2063 
2064 		if (!em || IS_ERR(em)) {
2065 			kfree(failrec);
2066 			return -EIO;
2067 		}
2068 		logical = start - em->start;
2069 		logical = em->block_start + logical;
2070 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071 			logical = em->block_start;
2072 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073 			extent_set_compress_type(&failrec->bio_flags,
2074 						 em->compress_type);
2075 		}
2076 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077 			 "len=%llu\n", logical, start, failrec->len);
2078 		failrec->logical = logical;
2079 		free_extent_map(em);
2080 
2081 		/* set the bits in the private failure tree */
2082 		ret = set_extent_bits(failure_tree, start, end,
2083 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084 		if (ret >= 0)
2085 			ret = set_state_private(failure_tree, start,
2086 						(u64)(unsigned long)failrec);
2087 		/* set the bits in the inode's tree */
2088 		if (ret >= 0)
2089 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090 						GFP_NOFS);
2091 		if (ret < 0) {
2092 			kfree(failrec);
2093 			return ret;
2094 		}
2095 	} else {
2096 		failrec = (struct io_failure_record *)(unsigned long)private;
2097 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2098 			 "start=%llu, len=%llu, validation=%d\n",
2099 			 failrec->logical, failrec->start, failrec->len,
2100 			 failrec->in_validation);
2101 		/*
2102 		 * when data can be on disk more than twice, add to failrec here
2103 		 * (e.g. with a list for failed_mirror) to make
2104 		 * clean_io_failure() clean all those errors at once.
2105 		 */
2106 	}
2107 	num_copies = btrfs_num_copies(
2108 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109 			      failrec->logical, failrec->len);
2110 	if (num_copies == 1) {
2111 		/*
2112 		 * we only have a single copy of the data, so don't bother with
2113 		 * all the retry and error correction code that follows. no
2114 		 * matter what the error is, it is very likely to persist.
2115 		 */
2116 		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117 			 "state=%p, num_copies=%d, next_mirror %d, "
2118 			 "failed_mirror %d\n", state, num_copies,
2119 			 failrec->this_mirror, failed_mirror);
2120 		free_io_failure(inode, failrec, 0);
2121 		return -EIO;
2122 	}
2123 
2124 	if (!state) {
2125 		spin_lock(&tree->lock);
2126 		state = find_first_extent_bit_state(tree, failrec->start,
2127 						    EXTENT_LOCKED);
2128 		if (state && state->start != failrec->start)
2129 			state = NULL;
2130 		spin_unlock(&tree->lock);
2131 	}
2132 
2133 	/*
2134 	 * there are two premises:
2135 	 *	a) deliver good data to the caller
2136 	 *	b) correct the bad sectors on disk
2137 	 */
2138 	if (failed_bio->bi_vcnt > 1) {
2139 		/*
2140 		 * to fulfill b), we need to know the exact failing sectors, as
2141 		 * we don't want to rewrite any more than the failed ones. thus,
2142 		 * we need separate read requests for the failed bio
2143 		 *
2144 		 * if the following BUG_ON triggers, our validation request got
2145 		 * merged. we need separate requests for our algorithm to work.
2146 		 */
2147 		BUG_ON(failrec->in_validation);
2148 		failrec->in_validation = 1;
2149 		failrec->this_mirror = failed_mirror;
2150 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151 	} else {
2152 		/*
2153 		 * we're ready to fulfill a) and b) alongside. get a good copy
2154 		 * of the failed sector and if we succeed, we have setup
2155 		 * everything for repair_io_failure to do the rest for us.
2156 		 */
2157 		if (failrec->in_validation) {
2158 			BUG_ON(failrec->this_mirror != failed_mirror);
2159 			failrec->in_validation = 0;
2160 			failrec->this_mirror = 0;
2161 		}
2162 		failrec->failed_mirror = failed_mirror;
2163 		failrec->this_mirror++;
2164 		if (failrec->this_mirror == failed_mirror)
2165 			failrec->this_mirror++;
2166 		read_mode = READ_SYNC;
2167 	}
2168 
2169 	if (!state || failrec->this_mirror > num_copies) {
2170 		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171 			 "next_mirror %d, failed_mirror %d\n", state,
2172 			 num_copies, failrec->this_mirror, failed_mirror);
2173 		free_io_failure(inode, failrec, 0);
2174 		return -EIO;
2175 	}
2176 
2177 	bio = bio_alloc(GFP_NOFS, 1);
2178 	if (!bio) {
2179 		free_io_failure(inode, failrec, 0);
2180 		return -EIO;
2181 	}
2182 	bio->bi_private = state;
2183 	bio->bi_end_io = failed_bio->bi_end_io;
2184 	bio->bi_sector = failrec->logical >> 9;
2185 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2186 	bio->bi_size = 0;
2187 
2188 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2189 
2190 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192 		 failrec->this_mirror, num_copies, failrec->in_validation);
2193 
2194 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195 					 failrec->this_mirror,
2196 					 failrec->bio_flags, 0);
2197 	return ret;
2198 }
2199 
2200 /* lots and lots of room for performance fixes in the end_bio funcs */
2201 
2202 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2203 {
2204 	int uptodate = (err == 0);
2205 	struct extent_io_tree *tree;
2206 	int ret;
2207 
2208 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2209 
2210 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2211 		ret = tree->ops->writepage_end_io_hook(page, start,
2212 					       end, NULL, uptodate);
2213 		if (ret)
2214 			uptodate = 0;
2215 	}
2216 
2217 	if (!uptodate) {
2218 		ClearPageUptodate(page);
2219 		SetPageError(page);
2220 	}
2221 	return 0;
2222 }
2223 
2224 /*
2225  * after a writepage IO is done, we need to:
2226  * clear the uptodate bits on error
2227  * clear the writeback bits in the extent tree for this IO
2228  * end_page_writeback if the page has no more pending IO
2229  *
2230  * Scheduling is not allowed, so the extent state tree is expected
2231  * to have one and only one object corresponding to this IO.
2232  */
2233 static void end_bio_extent_writepage(struct bio *bio, int err)
2234 {
2235 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236 	struct extent_io_tree *tree;
2237 	u64 start;
2238 	u64 end;
2239 	int whole_page;
2240 
2241 	do {
2242 		struct page *page = bvec->bv_page;
2243 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2244 
2245 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2246 			 bvec->bv_offset;
2247 		end = start + bvec->bv_len - 1;
2248 
2249 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2250 			whole_page = 1;
2251 		else
2252 			whole_page = 0;
2253 
2254 		if (--bvec >= bio->bi_io_vec)
2255 			prefetchw(&bvec->bv_page->flags);
2256 
2257 		if (end_extent_writepage(page, err, start, end))
2258 			continue;
2259 
2260 		if (whole_page)
2261 			end_page_writeback(page);
2262 		else
2263 			check_page_writeback(tree, page);
2264 	} while (bvec >= bio->bi_io_vec);
2265 
2266 	bio_put(bio);
2267 }
2268 
2269 /*
2270  * after a readpage IO is done, we need to:
2271  * clear the uptodate bits on error
2272  * set the uptodate bits if things worked
2273  * set the page up to date if all extents in the tree are uptodate
2274  * clear the lock bit in the extent tree
2275  * unlock the page if there are no other extents locked for it
2276  *
2277  * Scheduling is not allowed, so the extent state tree is expected
2278  * to have one and only one object corresponding to this IO.
2279  */
2280 static void end_bio_extent_readpage(struct bio *bio, int err)
2281 {
2282 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284 	struct bio_vec *bvec = bio->bi_io_vec;
2285 	struct extent_io_tree *tree;
2286 	u64 start;
2287 	u64 end;
2288 	int whole_page;
2289 	int mirror;
2290 	int ret;
2291 
2292 	if (err)
2293 		uptodate = 0;
2294 
2295 	do {
2296 		struct page *page = bvec->bv_page;
2297 		struct extent_state *cached = NULL;
2298 		struct extent_state *state;
2299 
2300 		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301 			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302 			 (long int)bio->bi_bdev);
2303 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2304 
2305 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2306 			bvec->bv_offset;
2307 		end = start + bvec->bv_len - 1;
2308 
2309 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2310 			whole_page = 1;
2311 		else
2312 			whole_page = 0;
2313 
2314 		if (++bvec <= bvec_end)
2315 			prefetchw(&bvec->bv_page->flags);
2316 
2317 		spin_lock(&tree->lock);
2318 		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319 		if (state && state->start == start) {
2320 			/*
2321 			 * take a reference on the state, unlock will drop
2322 			 * the ref
2323 			 */
2324 			cache_state(state, &cached);
2325 		}
2326 		spin_unlock(&tree->lock);
2327 
2328 		mirror = (int)(unsigned long)bio->bi_bdev;
2329 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330 			ret = tree->ops->readpage_end_io_hook(page, start, end,
2331 							      state, mirror);
2332 			if (ret) {
2333 				/* no IO indicated but software detected errors
2334 				 * in the block, either checksum errors or
2335 				 * issues with the contents */
2336 				struct btrfs_root *root =
2337 					BTRFS_I(page->mapping->host)->root;
2338 				struct btrfs_device *device;
2339 
2340 				uptodate = 0;
2341 				device = btrfs_find_device_for_logical(
2342 						root, start, mirror);
2343 				if (device)
2344 					btrfs_dev_stat_inc_and_print(device,
2345 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
2346 			} else {
2347 				clean_io_failure(start, page);
2348 			}
2349 		}
2350 
2351 		if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2352 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2353 			if (!ret && !err &&
2354 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2355 				uptodate = 1;
2356 		} else if (!uptodate) {
2357 			/*
2358 			 * The generic bio_readpage_error handles errors the
2359 			 * following way: If possible, new read requests are
2360 			 * created and submitted and will end up in
2361 			 * end_bio_extent_readpage as well (if we're lucky, not
2362 			 * in the !uptodate case). In that case it returns 0 and
2363 			 * we just go on with the next page in our bio. If it
2364 			 * can't handle the error it will return -EIO and we
2365 			 * remain responsible for that page.
2366 			 */
2367 			ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2368 			if (ret == 0) {
2369 				uptodate =
2370 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2371 				if (err)
2372 					uptodate = 0;
2373 				uncache_state(&cached);
2374 				continue;
2375 			}
2376 		}
2377 
2378 		if (uptodate && tree->track_uptodate) {
2379 			set_extent_uptodate(tree, start, end, &cached,
2380 					    GFP_ATOMIC);
2381 		}
2382 		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2383 
2384 		if (whole_page) {
2385 			if (uptodate) {
2386 				SetPageUptodate(page);
2387 			} else {
2388 				ClearPageUptodate(page);
2389 				SetPageError(page);
2390 			}
2391 			unlock_page(page);
2392 		} else {
2393 			if (uptodate) {
2394 				check_page_uptodate(tree, page);
2395 			} else {
2396 				ClearPageUptodate(page);
2397 				SetPageError(page);
2398 			}
2399 			check_page_locked(tree, page);
2400 		}
2401 	} while (bvec <= bvec_end);
2402 
2403 	bio_put(bio);
2404 }
2405 
2406 struct bio *
2407 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2408 		gfp_t gfp_flags)
2409 {
2410 	struct bio *bio;
2411 
2412 	bio = bio_alloc(gfp_flags, nr_vecs);
2413 
2414 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2415 		while (!bio && (nr_vecs /= 2))
2416 			bio = bio_alloc(gfp_flags, nr_vecs);
2417 	}
2418 
2419 	if (bio) {
2420 		bio->bi_size = 0;
2421 		bio->bi_bdev = bdev;
2422 		bio->bi_sector = first_sector;
2423 	}
2424 	return bio;
2425 }
2426 
2427 /*
2428  * Since writes are async, they will only return -ENOMEM.
2429  * Reads can return the full range of I/O error conditions.
2430  */
2431 static int __must_check submit_one_bio(int rw, struct bio *bio,
2432 				       int mirror_num, unsigned long bio_flags)
2433 {
2434 	int ret = 0;
2435 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2436 	struct page *page = bvec->bv_page;
2437 	struct extent_io_tree *tree = bio->bi_private;
2438 	u64 start;
2439 
2440 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2441 
2442 	bio->bi_private = NULL;
2443 
2444 	bio_get(bio);
2445 
2446 	if (tree->ops && tree->ops->submit_bio_hook)
2447 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2448 					   mirror_num, bio_flags, start);
2449 	else
2450 		btrfsic_submit_bio(rw, bio);
2451 
2452 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2453 		ret = -EOPNOTSUPP;
2454 	bio_put(bio);
2455 	return ret;
2456 }
2457 
2458 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2459 		     unsigned long offset, size_t size, struct bio *bio,
2460 		     unsigned long bio_flags)
2461 {
2462 	int ret = 0;
2463 	if (tree->ops && tree->ops->merge_bio_hook)
2464 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2465 						bio_flags);
2466 	BUG_ON(ret < 0);
2467 	return ret;
2468 
2469 }
2470 
2471 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2472 			      struct page *page, sector_t sector,
2473 			      size_t size, unsigned long offset,
2474 			      struct block_device *bdev,
2475 			      struct bio **bio_ret,
2476 			      unsigned long max_pages,
2477 			      bio_end_io_t end_io_func,
2478 			      int mirror_num,
2479 			      unsigned long prev_bio_flags,
2480 			      unsigned long bio_flags)
2481 {
2482 	int ret = 0;
2483 	struct bio *bio;
2484 	int nr;
2485 	int contig = 0;
2486 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2487 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2488 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2489 
2490 	if (bio_ret && *bio_ret) {
2491 		bio = *bio_ret;
2492 		if (old_compressed)
2493 			contig = bio->bi_sector == sector;
2494 		else
2495 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
2496 				sector;
2497 
2498 		if (prev_bio_flags != bio_flags || !contig ||
2499 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2500 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2501 			ret = submit_one_bio(rw, bio, mirror_num,
2502 					     prev_bio_flags);
2503 			if (ret < 0)
2504 				return ret;
2505 			bio = NULL;
2506 		} else {
2507 			return 0;
2508 		}
2509 	}
2510 	if (this_compressed)
2511 		nr = BIO_MAX_PAGES;
2512 	else
2513 		nr = bio_get_nr_vecs(bdev);
2514 
2515 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2516 	if (!bio)
2517 		return -ENOMEM;
2518 
2519 	bio_add_page(bio, page, page_size, offset);
2520 	bio->bi_end_io = end_io_func;
2521 	bio->bi_private = tree;
2522 
2523 	if (bio_ret)
2524 		*bio_ret = bio;
2525 	else
2526 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2527 
2528 	return ret;
2529 }
2530 
2531 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2532 {
2533 	if (!PagePrivate(page)) {
2534 		SetPagePrivate(page);
2535 		page_cache_get(page);
2536 		set_page_private(page, (unsigned long)eb);
2537 	} else {
2538 		WARN_ON(page->private != (unsigned long)eb);
2539 	}
2540 }
2541 
2542 void set_page_extent_mapped(struct page *page)
2543 {
2544 	if (!PagePrivate(page)) {
2545 		SetPagePrivate(page);
2546 		page_cache_get(page);
2547 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2548 	}
2549 }
2550 
2551 /*
2552  * basic readpage implementation.  Locked extent state structs are inserted
2553  * into the tree that are removed when the IO is done (by the end_io
2554  * handlers)
2555  * XXX JDM: This needs looking at to ensure proper page locking
2556  */
2557 static int __extent_read_full_page(struct extent_io_tree *tree,
2558 				   struct page *page,
2559 				   get_extent_t *get_extent,
2560 				   struct bio **bio, int mirror_num,
2561 				   unsigned long *bio_flags)
2562 {
2563 	struct inode *inode = page->mapping->host;
2564 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2565 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2566 	u64 end;
2567 	u64 cur = start;
2568 	u64 extent_offset;
2569 	u64 last_byte = i_size_read(inode);
2570 	u64 block_start;
2571 	u64 cur_end;
2572 	sector_t sector;
2573 	struct extent_map *em;
2574 	struct block_device *bdev;
2575 	struct btrfs_ordered_extent *ordered;
2576 	int ret;
2577 	int nr = 0;
2578 	size_t pg_offset = 0;
2579 	size_t iosize;
2580 	size_t disk_io_size;
2581 	size_t blocksize = inode->i_sb->s_blocksize;
2582 	unsigned long this_bio_flag = 0;
2583 
2584 	set_page_extent_mapped(page);
2585 
2586 	if (!PageUptodate(page)) {
2587 		if (cleancache_get_page(page) == 0) {
2588 			BUG_ON(blocksize != PAGE_SIZE);
2589 			goto out;
2590 		}
2591 	}
2592 
2593 	end = page_end;
2594 	while (1) {
2595 		lock_extent(tree, start, end);
2596 		ordered = btrfs_lookup_ordered_extent(inode, start);
2597 		if (!ordered)
2598 			break;
2599 		unlock_extent(tree, start, end);
2600 		btrfs_start_ordered_extent(inode, ordered, 1);
2601 		btrfs_put_ordered_extent(ordered);
2602 	}
2603 
2604 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2605 		char *userpage;
2606 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2607 
2608 		if (zero_offset) {
2609 			iosize = PAGE_CACHE_SIZE - zero_offset;
2610 			userpage = kmap_atomic(page);
2611 			memset(userpage + zero_offset, 0, iosize);
2612 			flush_dcache_page(page);
2613 			kunmap_atomic(userpage);
2614 		}
2615 	}
2616 	while (cur <= end) {
2617 		if (cur >= last_byte) {
2618 			char *userpage;
2619 			struct extent_state *cached = NULL;
2620 
2621 			iosize = PAGE_CACHE_SIZE - pg_offset;
2622 			userpage = kmap_atomic(page);
2623 			memset(userpage + pg_offset, 0, iosize);
2624 			flush_dcache_page(page);
2625 			kunmap_atomic(userpage);
2626 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2627 					    &cached, GFP_NOFS);
2628 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2629 					     &cached, GFP_NOFS);
2630 			break;
2631 		}
2632 		em = get_extent(inode, page, pg_offset, cur,
2633 				end - cur + 1, 0);
2634 		if (IS_ERR_OR_NULL(em)) {
2635 			SetPageError(page);
2636 			unlock_extent(tree, cur, end);
2637 			break;
2638 		}
2639 		extent_offset = cur - em->start;
2640 		BUG_ON(extent_map_end(em) <= cur);
2641 		BUG_ON(end < cur);
2642 
2643 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2644 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2645 			extent_set_compress_type(&this_bio_flag,
2646 						 em->compress_type);
2647 		}
2648 
2649 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2650 		cur_end = min(extent_map_end(em) - 1, end);
2651 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2652 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2653 			disk_io_size = em->block_len;
2654 			sector = em->block_start >> 9;
2655 		} else {
2656 			sector = (em->block_start + extent_offset) >> 9;
2657 			disk_io_size = iosize;
2658 		}
2659 		bdev = em->bdev;
2660 		block_start = em->block_start;
2661 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2662 			block_start = EXTENT_MAP_HOLE;
2663 		free_extent_map(em);
2664 		em = NULL;
2665 
2666 		/* we've found a hole, just zero and go on */
2667 		if (block_start == EXTENT_MAP_HOLE) {
2668 			char *userpage;
2669 			struct extent_state *cached = NULL;
2670 
2671 			userpage = kmap_atomic(page);
2672 			memset(userpage + pg_offset, 0, iosize);
2673 			flush_dcache_page(page);
2674 			kunmap_atomic(userpage);
2675 
2676 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2677 					    &cached, GFP_NOFS);
2678 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2679 			                     &cached, GFP_NOFS);
2680 			cur = cur + iosize;
2681 			pg_offset += iosize;
2682 			continue;
2683 		}
2684 		/* the get_extent function already copied into the page */
2685 		if (test_range_bit(tree, cur, cur_end,
2686 				   EXTENT_UPTODATE, 1, NULL)) {
2687 			check_page_uptodate(tree, page);
2688 			unlock_extent(tree, cur, cur + iosize - 1);
2689 			cur = cur + iosize;
2690 			pg_offset += iosize;
2691 			continue;
2692 		}
2693 		/* we have an inline extent but it didn't get marked up
2694 		 * to date.  Error out
2695 		 */
2696 		if (block_start == EXTENT_MAP_INLINE) {
2697 			SetPageError(page);
2698 			unlock_extent(tree, cur, cur + iosize - 1);
2699 			cur = cur + iosize;
2700 			pg_offset += iosize;
2701 			continue;
2702 		}
2703 
2704 		ret = 0;
2705 		if (tree->ops && tree->ops->readpage_io_hook) {
2706 			ret = tree->ops->readpage_io_hook(page, cur,
2707 							  cur + iosize - 1);
2708 		}
2709 		if (!ret) {
2710 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2711 			pnr -= page->index;
2712 			ret = submit_extent_page(READ, tree, page,
2713 					 sector, disk_io_size, pg_offset,
2714 					 bdev, bio, pnr,
2715 					 end_bio_extent_readpage, mirror_num,
2716 					 *bio_flags,
2717 					 this_bio_flag);
2718 			BUG_ON(ret == -ENOMEM);
2719 			nr++;
2720 			*bio_flags = this_bio_flag;
2721 		}
2722 		if (ret)
2723 			SetPageError(page);
2724 		cur = cur + iosize;
2725 		pg_offset += iosize;
2726 	}
2727 out:
2728 	if (!nr) {
2729 		if (!PageError(page))
2730 			SetPageUptodate(page);
2731 		unlock_page(page);
2732 	}
2733 	return 0;
2734 }
2735 
2736 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2737 			    get_extent_t *get_extent, int mirror_num)
2738 {
2739 	struct bio *bio = NULL;
2740 	unsigned long bio_flags = 0;
2741 	int ret;
2742 
2743 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2744 				      &bio_flags);
2745 	if (bio)
2746 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2747 	return ret;
2748 }
2749 
2750 static noinline void update_nr_written(struct page *page,
2751 				      struct writeback_control *wbc,
2752 				      unsigned long nr_written)
2753 {
2754 	wbc->nr_to_write -= nr_written;
2755 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2756 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2757 		page->mapping->writeback_index = page->index + nr_written;
2758 }
2759 
2760 /*
2761  * the writepage semantics are similar to regular writepage.  extent
2762  * records are inserted to lock ranges in the tree, and as dirty areas
2763  * are found, they are marked writeback.  Then the lock bits are removed
2764  * and the end_io handler clears the writeback ranges
2765  */
2766 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2767 			      void *data)
2768 {
2769 	struct inode *inode = page->mapping->host;
2770 	struct extent_page_data *epd = data;
2771 	struct extent_io_tree *tree = epd->tree;
2772 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2773 	u64 delalloc_start;
2774 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2775 	u64 end;
2776 	u64 cur = start;
2777 	u64 extent_offset;
2778 	u64 last_byte = i_size_read(inode);
2779 	u64 block_start;
2780 	u64 iosize;
2781 	sector_t sector;
2782 	struct extent_state *cached_state = NULL;
2783 	struct extent_map *em;
2784 	struct block_device *bdev;
2785 	int ret;
2786 	int nr = 0;
2787 	size_t pg_offset = 0;
2788 	size_t blocksize;
2789 	loff_t i_size = i_size_read(inode);
2790 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2791 	u64 nr_delalloc;
2792 	u64 delalloc_end;
2793 	int page_started;
2794 	int compressed;
2795 	int write_flags;
2796 	unsigned long nr_written = 0;
2797 	bool fill_delalloc = true;
2798 
2799 	if (wbc->sync_mode == WB_SYNC_ALL)
2800 		write_flags = WRITE_SYNC;
2801 	else
2802 		write_flags = WRITE;
2803 
2804 	trace___extent_writepage(page, inode, wbc);
2805 
2806 	WARN_ON(!PageLocked(page));
2807 
2808 	ClearPageError(page);
2809 
2810 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2811 	if (page->index > end_index ||
2812 	   (page->index == end_index && !pg_offset)) {
2813 		page->mapping->a_ops->invalidatepage(page, 0);
2814 		unlock_page(page);
2815 		return 0;
2816 	}
2817 
2818 	if (page->index == end_index) {
2819 		char *userpage;
2820 
2821 		userpage = kmap_atomic(page);
2822 		memset(userpage + pg_offset, 0,
2823 		       PAGE_CACHE_SIZE - pg_offset);
2824 		kunmap_atomic(userpage);
2825 		flush_dcache_page(page);
2826 	}
2827 	pg_offset = 0;
2828 
2829 	set_page_extent_mapped(page);
2830 
2831 	if (!tree->ops || !tree->ops->fill_delalloc)
2832 		fill_delalloc = false;
2833 
2834 	delalloc_start = start;
2835 	delalloc_end = 0;
2836 	page_started = 0;
2837 	if (!epd->extent_locked && fill_delalloc) {
2838 		u64 delalloc_to_write = 0;
2839 		/*
2840 		 * make sure the wbc mapping index is at least updated
2841 		 * to this page.
2842 		 */
2843 		update_nr_written(page, wbc, 0);
2844 
2845 		while (delalloc_end < page_end) {
2846 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2847 						       page,
2848 						       &delalloc_start,
2849 						       &delalloc_end,
2850 						       128 * 1024 * 1024);
2851 			if (nr_delalloc == 0) {
2852 				delalloc_start = delalloc_end + 1;
2853 				continue;
2854 			}
2855 			ret = tree->ops->fill_delalloc(inode, page,
2856 						       delalloc_start,
2857 						       delalloc_end,
2858 						       &page_started,
2859 						       &nr_written);
2860 			/* File system has been set read-only */
2861 			if (ret) {
2862 				SetPageError(page);
2863 				goto done;
2864 			}
2865 			/*
2866 			 * delalloc_end is already one less than the total
2867 			 * length, so we don't subtract one from
2868 			 * PAGE_CACHE_SIZE
2869 			 */
2870 			delalloc_to_write += (delalloc_end - delalloc_start +
2871 					      PAGE_CACHE_SIZE) >>
2872 					      PAGE_CACHE_SHIFT;
2873 			delalloc_start = delalloc_end + 1;
2874 		}
2875 		if (wbc->nr_to_write < delalloc_to_write) {
2876 			int thresh = 8192;
2877 
2878 			if (delalloc_to_write < thresh * 2)
2879 				thresh = delalloc_to_write;
2880 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2881 						 thresh);
2882 		}
2883 
2884 		/* did the fill delalloc function already unlock and start
2885 		 * the IO?
2886 		 */
2887 		if (page_started) {
2888 			ret = 0;
2889 			/*
2890 			 * we've unlocked the page, so we can't update
2891 			 * the mapping's writeback index, just update
2892 			 * nr_to_write.
2893 			 */
2894 			wbc->nr_to_write -= nr_written;
2895 			goto done_unlocked;
2896 		}
2897 	}
2898 	if (tree->ops && tree->ops->writepage_start_hook) {
2899 		ret = tree->ops->writepage_start_hook(page, start,
2900 						      page_end);
2901 		if (ret) {
2902 			/* Fixup worker will requeue */
2903 			if (ret == -EBUSY)
2904 				wbc->pages_skipped++;
2905 			else
2906 				redirty_page_for_writepage(wbc, page);
2907 			update_nr_written(page, wbc, nr_written);
2908 			unlock_page(page);
2909 			ret = 0;
2910 			goto done_unlocked;
2911 		}
2912 	}
2913 
2914 	/*
2915 	 * we don't want to touch the inode after unlocking the page,
2916 	 * so we update the mapping writeback index now
2917 	 */
2918 	update_nr_written(page, wbc, nr_written + 1);
2919 
2920 	end = page_end;
2921 	if (last_byte <= start) {
2922 		if (tree->ops && tree->ops->writepage_end_io_hook)
2923 			tree->ops->writepage_end_io_hook(page, start,
2924 							 page_end, NULL, 1);
2925 		goto done;
2926 	}
2927 
2928 	blocksize = inode->i_sb->s_blocksize;
2929 
2930 	while (cur <= end) {
2931 		if (cur >= last_byte) {
2932 			if (tree->ops && tree->ops->writepage_end_io_hook)
2933 				tree->ops->writepage_end_io_hook(page, cur,
2934 							 page_end, NULL, 1);
2935 			break;
2936 		}
2937 		em = epd->get_extent(inode, page, pg_offset, cur,
2938 				     end - cur + 1, 1);
2939 		if (IS_ERR_OR_NULL(em)) {
2940 			SetPageError(page);
2941 			break;
2942 		}
2943 
2944 		extent_offset = cur - em->start;
2945 		BUG_ON(extent_map_end(em) <= cur);
2946 		BUG_ON(end < cur);
2947 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2949 		sector = (em->block_start + extent_offset) >> 9;
2950 		bdev = em->bdev;
2951 		block_start = em->block_start;
2952 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2953 		free_extent_map(em);
2954 		em = NULL;
2955 
2956 		/*
2957 		 * compressed and inline extents are written through other
2958 		 * paths in the FS
2959 		 */
2960 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2961 		    block_start == EXTENT_MAP_INLINE) {
2962 			/*
2963 			 * end_io notification does not happen here for
2964 			 * compressed extents
2965 			 */
2966 			if (!compressed && tree->ops &&
2967 			    tree->ops->writepage_end_io_hook)
2968 				tree->ops->writepage_end_io_hook(page, cur,
2969 							 cur + iosize - 1,
2970 							 NULL, 1);
2971 			else if (compressed) {
2972 				/* we don't want to end_page_writeback on
2973 				 * a compressed extent.  this happens
2974 				 * elsewhere
2975 				 */
2976 				nr++;
2977 			}
2978 
2979 			cur += iosize;
2980 			pg_offset += iosize;
2981 			continue;
2982 		}
2983 		/* leave this out until we have a page_mkwrite call */
2984 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2985 				   EXTENT_DIRTY, 0, NULL)) {
2986 			cur = cur + iosize;
2987 			pg_offset += iosize;
2988 			continue;
2989 		}
2990 
2991 		if (tree->ops && tree->ops->writepage_io_hook) {
2992 			ret = tree->ops->writepage_io_hook(page, cur,
2993 						cur + iosize - 1);
2994 		} else {
2995 			ret = 0;
2996 		}
2997 		if (ret) {
2998 			SetPageError(page);
2999 		} else {
3000 			unsigned long max_nr = end_index + 1;
3001 
3002 			set_range_writeback(tree, cur, cur + iosize - 1);
3003 			if (!PageWriteback(page)) {
3004 				printk(KERN_ERR "btrfs warning page %lu not "
3005 				       "writeback, cur %llu end %llu\n",
3006 				       page->index, (unsigned long long)cur,
3007 				       (unsigned long long)end);
3008 			}
3009 
3010 			ret = submit_extent_page(write_flags, tree, page,
3011 						 sector, iosize, pg_offset,
3012 						 bdev, &epd->bio, max_nr,
3013 						 end_bio_extent_writepage,
3014 						 0, 0, 0);
3015 			if (ret)
3016 				SetPageError(page);
3017 		}
3018 		cur = cur + iosize;
3019 		pg_offset += iosize;
3020 		nr++;
3021 	}
3022 done:
3023 	if (nr == 0) {
3024 		/* make sure the mapping tag for page dirty gets cleared */
3025 		set_page_writeback(page);
3026 		end_page_writeback(page);
3027 	}
3028 	unlock_page(page);
3029 
3030 done_unlocked:
3031 
3032 	/* drop our reference on any cached states */
3033 	free_extent_state(cached_state);
3034 	return 0;
3035 }
3036 
3037 static int eb_wait(void *word)
3038 {
3039 	io_schedule();
3040 	return 0;
3041 }
3042 
3043 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3044 {
3045 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3046 		    TASK_UNINTERRUPTIBLE);
3047 }
3048 
3049 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3050 				     struct btrfs_fs_info *fs_info,
3051 				     struct extent_page_data *epd)
3052 {
3053 	unsigned long i, num_pages;
3054 	int flush = 0;
3055 	int ret = 0;
3056 
3057 	if (!btrfs_try_tree_write_lock(eb)) {
3058 		flush = 1;
3059 		flush_write_bio(epd);
3060 		btrfs_tree_lock(eb);
3061 	}
3062 
3063 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3064 		btrfs_tree_unlock(eb);
3065 		if (!epd->sync_io)
3066 			return 0;
3067 		if (!flush) {
3068 			flush_write_bio(epd);
3069 			flush = 1;
3070 		}
3071 		while (1) {
3072 			wait_on_extent_buffer_writeback(eb);
3073 			btrfs_tree_lock(eb);
3074 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3075 				break;
3076 			btrfs_tree_unlock(eb);
3077 		}
3078 	}
3079 
3080 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3081 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3082 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3083 		spin_lock(&fs_info->delalloc_lock);
3084 		if (fs_info->dirty_metadata_bytes >= eb->len)
3085 			fs_info->dirty_metadata_bytes -= eb->len;
3086 		else
3087 			WARN_ON(1);
3088 		spin_unlock(&fs_info->delalloc_lock);
3089 		ret = 1;
3090 	}
3091 
3092 	btrfs_tree_unlock(eb);
3093 
3094 	if (!ret)
3095 		return ret;
3096 
3097 	num_pages = num_extent_pages(eb->start, eb->len);
3098 	for (i = 0; i < num_pages; i++) {
3099 		struct page *p = extent_buffer_page(eb, i);
3100 
3101 		if (!trylock_page(p)) {
3102 			if (!flush) {
3103 				flush_write_bio(epd);
3104 				flush = 1;
3105 			}
3106 			lock_page(p);
3107 		}
3108 	}
3109 
3110 	return ret;
3111 }
3112 
3113 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3114 {
3115 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3116 	smp_mb__after_clear_bit();
3117 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3118 }
3119 
3120 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3121 {
3122 	int uptodate = err == 0;
3123 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3124 	struct extent_buffer *eb;
3125 	int done;
3126 
3127 	do {
3128 		struct page *page = bvec->bv_page;
3129 
3130 		bvec--;
3131 		eb = (struct extent_buffer *)page->private;
3132 		BUG_ON(!eb);
3133 		done = atomic_dec_and_test(&eb->io_pages);
3134 
3135 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3136 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3137 			ClearPageUptodate(page);
3138 			SetPageError(page);
3139 		}
3140 
3141 		end_page_writeback(page);
3142 
3143 		if (!done)
3144 			continue;
3145 
3146 		end_extent_buffer_writeback(eb);
3147 	} while (bvec >= bio->bi_io_vec);
3148 
3149 	bio_put(bio);
3150 
3151 }
3152 
3153 static int write_one_eb(struct extent_buffer *eb,
3154 			struct btrfs_fs_info *fs_info,
3155 			struct writeback_control *wbc,
3156 			struct extent_page_data *epd)
3157 {
3158 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3159 	u64 offset = eb->start;
3160 	unsigned long i, num_pages;
3161 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3162 	int ret = 0;
3163 
3164 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165 	num_pages = num_extent_pages(eb->start, eb->len);
3166 	atomic_set(&eb->io_pages, num_pages);
3167 	for (i = 0; i < num_pages; i++) {
3168 		struct page *p = extent_buffer_page(eb, i);
3169 
3170 		clear_page_dirty_for_io(p);
3171 		set_page_writeback(p);
3172 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3173 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3174 					 -1, end_bio_extent_buffer_writepage,
3175 					 0, 0, 0);
3176 		if (ret) {
3177 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3178 			SetPageError(p);
3179 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3180 				end_extent_buffer_writeback(eb);
3181 			ret = -EIO;
3182 			break;
3183 		}
3184 		offset += PAGE_CACHE_SIZE;
3185 		update_nr_written(p, wbc, 1);
3186 		unlock_page(p);
3187 	}
3188 
3189 	if (unlikely(ret)) {
3190 		for (; i < num_pages; i++) {
3191 			struct page *p = extent_buffer_page(eb, i);
3192 			unlock_page(p);
3193 		}
3194 	}
3195 
3196 	return ret;
3197 }
3198 
3199 int btree_write_cache_pages(struct address_space *mapping,
3200 				   struct writeback_control *wbc)
3201 {
3202 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3203 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3204 	struct extent_buffer *eb, *prev_eb = NULL;
3205 	struct extent_page_data epd = {
3206 		.bio = NULL,
3207 		.tree = tree,
3208 		.extent_locked = 0,
3209 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3210 	};
3211 	int ret = 0;
3212 	int done = 0;
3213 	int nr_to_write_done = 0;
3214 	struct pagevec pvec;
3215 	int nr_pages;
3216 	pgoff_t index;
3217 	pgoff_t end;		/* Inclusive */
3218 	int scanned = 0;
3219 	int tag;
3220 
3221 	pagevec_init(&pvec, 0);
3222 	if (wbc->range_cyclic) {
3223 		index = mapping->writeback_index; /* Start from prev offset */
3224 		end = -1;
3225 	} else {
3226 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3227 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3228 		scanned = 1;
3229 	}
3230 	if (wbc->sync_mode == WB_SYNC_ALL)
3231 		tag = PAGECACHE_TAG_TOWRITE;
3232 	else
3233 		tag = PAGECACHE_TAG_DIRTY;
3234 retry:
3235 	if (wbc->sync_mode == WB_SYNC_ALL)
3236 		tag_pages_for_writeback(mapping, index, end);
3237 	while (!done && !nr_to_write_done && (index <= end) &&
3238 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3239 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3240 		unsigned i;
3241 
3242 		scanned = 1;
3243 		for (i = 0; i < nr_pages; i++) {
3244 			struct page *page = pvec.pages[i];
3245 
3246 			if (!PagePrivate(page))
3247 				continue;
3248 
3249 			if (!wbc->range_cyclic && page->index > end) {
3250 				done = 1;
3251 				break;
3252 			}
3253 
3254 			eb = (struct extent_buffer *)page->private;
3255 			if (!eb) {
3256 				WARN_ON(1);
3257 				continue;
3258 			}
3259 
3260 			if (eb == prev_eb)
3261 				continue;
3262 
3263 			if (!atomic_inc_not_zero(&eb->refs)) {
3264 				WARN_ON(1);
3265 				continue;
3266 			}
3267 
3268 			prev_eb = eb;
3269 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3270 			if (!ret) {
3271 				free_extent_buffer(eb);
3272 				continue;
3273 			}
3274 
3275 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3276 			if (ret) {
3277 				done = 1;
3278 				free_extent_buffer(eb);
3279 				break;
3280 			}
3281 			free_extent_buffer(eb);
3282 
3283 			/*
3284 			 * the filesystem may choose to bump up nr_to_write.
3285 			 * We have to make sure to honor the new nr_to_write
3286 			 * at any time
3287 			 */
3288 			nr_to_write_done = wbc->nr_to_write <= 0;
3289 		}
3290 		pagevec_release(&pvec);
3291 		cond_resched();
3292 	}
3293 	if (!scanned && !done) {
3294 		/*
3295 		 * We hit the last page and there is more work to be done: wrap
3296 		 * back to the start of the file
3297 		 */
3298 		scanned = 1;
3299 		index = 0;
3300 		goto retry;
3301 	}
3302 	flush_write_bio(&epd);
3303 	return ret;
3304 }
3305 
3306 /**
3307  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3308  * @mapping: address space structure to write
3309  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3310  * @writepage: function called for each page
3311  * @data: data passed to writepage function
3312  *
3313  * If a page is already under I/O, write_cache_pages() skips it, even
3314  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3315  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3316  * and msync() need to guarantee that all the data which was dirty at the time
3317  * the call was made get new I/O started against them.  If wbc->sync_mode is
3318  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3319  * existing IO to complete.
3320  */
3321 static int extent_write_cache_pages(struct extent_io_tree *tree,
3322 			     struct address_space *mapping,
3323 			     struct writeback_control *wbc,
3324 			     writepage_t writepage, void *data,
3325 			     void (*flush_fn)(void *))
3326 {
3327 	struct inode *inode = mapping->host;
3328 	int ret = 0;
3329 	int done = 0;
3330 	int nr_to_write_done = 0;
3331 	struct pagevec pvec;
3332 	int nr_pages;
3333 	pgoff_t index;
3334 	pgoff_t end;		/* Inclusive */
3335 	int scanned = 0;
3336 	int tag;
3337 
3338 	/*
3339 	 * We have to hold onto the inode so that ordered extents can do their
3340 	 * work when the IO finishes.  The alternative to this is failing to add
3341 	 * an ordered extent if the igrab() fails there and that is a huge pain
3342 	 * to deal with, so instead just hold onto the inode throughout the
3343 	 * writepages operation.  If it fails here we are freeing up the inode
3344 	 * anyway and we'd rather not waste our time writing out stuff that is
3345 	 * going to be truncated anyway.
3346 	 */
3347 	if (!igrab(inode))
3348 		return 0;
3349 
3350 	pagevec_init(&pvec, 0);
3351 	if (wbc->range_cyclic) {
3352 		index = mapping->writeback_index; /* Start from prev offset */
3353 		end = -1;
3354 	} else {
3355 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3356 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3357 		scanned = 1;
3358 	}
3359 	if (wbc->sync_mode == WB_SYNC_ALL)
3360 		tag = PAGECACHE_TAG_TOWRITE;
3361 	else
3362 		tag = PAGECACHE_TAG_DIRTY;
3363 retry:
3364 	if (wbc->sync_mode == WB_SYNC_ALL)
3365 		tag_pages_for_writeback(mapping, index, end);
3366 	while (!done && !nr_to_write_done && (index <= end) &&
3367 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3368 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3369 		unsigned i;
3370 
3371 		scanned = 1;
3372 		for (i = 0; i < nr_pages; i++) {
3373 			struct page *page = pvec.pages[i];
3374 
3375 			/*
3376 			 * At this point we hold neither mapping->tree_lock nor
3377 			 * lock on the page itself: the page may be truncated or
3378 			 * invalidated (changing page->mapping to NULL), or even
3379 			 * swizzled back from swapper_space to tmpfs file
3380 			 * mapping
3381 			 */
3382 			if (tree->ops &&
3383 			    tree->ops->write_cache_pages_lock_hook) {
3384 				tree->ops->write_cache_pages_lock_hook(page,
3385 							       data, flush_fn);
3386 			} else {
3387 				if (!trylock_page(page)) {
3388 					flush_fn(data);
3389 					lock_page(page);
3390 				}
3391 			}
3392 
3393 			if (unlikely(page->mapping != mapping)) {
3394 				unlock_page(page);
3395 				continue;
3396 			}
3397 
3398 			if (!wbc->range_cyclic && page->index > end) {
3399 				done = 1;
3400 				unlock_page(page);
3401 				continue;
3402 			}
3403 
3404 			if (wbc->sync_mode != WB_SYNC_NONE) {
3405 				if (PageWriteback(page))
3406 					flush_fn(data);
3407 				wait_on_page_writeback(page);
3408 			}
3409 
3410 			if (PageWriteback(page) ||
3411 			    !clear_page_dirty_for_io(page)) {
3412 				unlock_page(page);
3413 				continue;
3414 			}
3415 
3416 			ret = (*writepage)(page, wbc, data);
3417 
3418 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3419 				unlock_page(page);
3420 				ret = 0;
3421 			}
3422 			if (ret)
3423 				done = 1;
3424 
3425 			/*
3426 			 * the filesystem may choose to bump up nr_to_write.
3427 			 * We have to make sure to honor the new nr_to_write
3428 			 * at any time
3429 			 */
3430 			nr_to_write_done = wbc->nr_to_write <= 0;
3431 		}
3432 		pagevec_release(&pvec);
3433 		cond_resched();
3434 	}
3435 	if (!scanned && !done) {
3436 		/*
3437 		 * We hit the last page and there is more work to be done: wrap
3438 		 * back to the start of the file
3439 		 */
3440 		scanned = 1;
3441 		index = 0;
3442 		goto retry;
3443 	}
3444 	btrfs_add_delayed_iput(inode);
3445 	return ret;
3446 }
3447 
3448 static void flush_epd_write_bio(struct extent_page_data *epd)
3449 {
3450 	if (epd->bio) {
3451 		int rw = WRITE;
3452 		int ret;
3453 
3454 		if (epd->sync_io)
3455 			rw = WRITE_SYNC;
3456 
3457 		ret = submit_one_bio(rw, epd->bio, 0, 0);
3458 		BUG_ON(ret < 0); /* -ENOMEM */
3459 		epd->bio = NULL;
3460 	}
3461 }
3462 
3463 static noinline void flush_write_bio(void *data)
3464 {
3465 	struct extent_page_data *epd = data;
3466 	flush_epd_write_bio(epd);
3467 }
3468 
3469 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3470 			  get_extent_t *get_extent,
3471 			  struct writeback_control *wbc)
3472 {
3473 	int ret;
3474 	struct extent_page_data epd = {
3475 		.bio = NULL,
3476 		.tree = tree,
3477 		.get_extent = get_extent,
3478 		.extent_locked = 0,
3479 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3480 	};
3481 
3482 	ret = __extent_writepage(page, wbc, &epd);
3483 
3484 	flush_epd_write_bio(&epd);
3485 	return ret;
3486 }
3487 
3488 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3489 			      u64 start, u64 end, get_extent_t *get_extent,
3490 			      int mode)
3491 {
3492 	int ret = 0;
3493 	struct address_space *mapping = inode->i_mapping;
3494 	struct page *page;
3495 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3496 		PAGE_CACHE_SHIFT;
3497 
3498 	struct extent_page_data epd = {
3499 		.bio = NULL,
3500 		.tree = tree,
3501 		.get_extent = get_extent,
3502 		.extent_locked = 1,
3503 		.sync_io = mode == WB_SYNC_ALL,
3504 	};
3505 	struct writeback_control wbc_writepages = {
3506 		.sync_mode	= mode,
3507 		.nr_to_write	= nr_pages * 2,
3508 		.range_start	= start,
3509 		.range_end	= end + 1,
3510 	};
3511 
3512 	while (start <= end) {
3513 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3514 		if (clear_page_dirty_for_io(page))
3515 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3516 		else {
3517 			if (tree->ops && tree->ops->writepage_end_io_hook)
3518 				tree->ops->writepage_end_io_hook(page, start,
3519 						 start + PAGE_CACHE_SIZE - 1,
3520 						 NULL, 1);
3521 			unlock_page(page);
3522 		}
3523 		page_cache_release(page);
3524 		start += PAGE_CACHE_SIZE;
3525 	}
3526 
3527 	flush_epd_write_bio(&epd);
3528 	return ret;
3529 }
3530 
3531 int extent_writepages(struct extent_io_tree *tree,
3532 		      struct address_space *mapping,
3533 		      get_extent_t *get_extent,
3534 		      struct writeback_control *wbc)
3535 {
3536 	int ret = 0;
3537 	struct extent_page_data epd = {
3538 		.bio = NULL,
3539 		.tree = tree,
3540 		.get_extent = get_extent,
3541 		.extent_locked = 0,
3542 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3543 	};
3544 
3545 	ret = extent_write_cache_pages(tree, mapping, wbc,
3546 				       __extent_writepage, &epd,
3547 				       flush_write_bio);
3548 	flush_epd_write_bio(&epd);
3549 	return ret;
3550 }
3551 
3552 int extent_readpages(struct extent_io_tree *tree,
3553 		     struct address_space *mapping,
3554 		     struct list_head *pages, unsigned nr_pages,
3555 		     get_extent_t get_extent)
3556 {
3557 	struct bio *bio = NULL;
3558 	unsigned page_idx;
3559 	unsigned long bio_flags = 0;
3560 
3561 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3562 		struct page *page = list_entry(pages->prev, struct page, lru);
3563 
3564 		prefetchw(&page->flags);
3565 		list_del(&page->lru);
3566 		if (!add_to_page_cache_lru(page, mapping,
3567 					page->index, GFP_NOFS)) {
3568 			__extent_read_full_page(tree, page, get_extent,
3569 						&bio, 0, &bio_flags);
3570 		}
3571 		page_cache_release(page);
3572 	}
3573 	BUG_ON(!list_empty(pages));
3574 	if (bio)
3575 		return submit_one_bio(READ, bio, 0, bio_flags);
3576 	return 0;
3577 }
3578 
3579 /*
3580  * basic invalidatepage code, this waits on any locked or writeback
3581  * ranges corresponding to the page, and then deletes any extent state
3582  * records from the tree
3583  */
3584 int extent_invalidatepage(struct extent_io_tree *tree,
3585 			  struct page *page, unsigned long offset)
3586 {
3587 	struct extent_state *cached_state = NULL;
3588 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3589 	u64 end = start + PAGE_CACHE_SIZE - 1;
3590 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3591 
3592 	start += (offset + blocksize - 1) & ~(blocksize - 1);
3593 	if (start > end)
3594 		return 0;
3595 
3596 	lock_extent_bits(tree, start, end, 0, &cached_state);
3597 	wait_on_page_writeback(page);
3598 	clear_extent_bit(tree, start, end,
3599 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3600 			 EXTENT_DO_ACCOUNTING,
3601 			 1, 1, &cached_state, GFP_NOFS);
3602 	return 0;
3603 }
3604 
3605 /*
3606  * a helper for releasepage, this tests for areas of the page that
3607  * are locked or under IO and drops the related state bits if it is safe
3608  * to drop the page.
3609  */
3610 int try_release_extent_state(struct extent_map_tree *map,
3611 			     struct extent_io_tree *tree, struct page *page,
3612 			     gfp_t mask)
3613 {
3614 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3615 	u64 end = start + PAGE_CACHE_SIZE - 1;
3616 	int ret = 1;
3617 
3618 	if (test_range_bit(tree, start, end,
3619 			   EXTENT_IOBITS, 0, NULL))
3620 		ret = 0;
3621 	else {
3622 		if ((mask & GFP_NOFS) == GFP_NOFS)
3623 			mask = GFP_NOFS;
3624 		/*
3625 		 * at this point we can safely clear everything except the
3626 		 * locked bit and the nodatasum bit
3627 		 */
3628 		ret = clear_extent_bit(tree, start, end,
3629 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3630 				 0, 0, NULL, mask);
3631 
3632 		/* if clear_extent_bit failed for enomem reasons,
3633 		 * we can't allow the release to continue.
3634 		 */
3635 		if (ret < 0)
3636 			ret = 0;
3637 		else
3638 			ret = 1;
3639 	}
3640 	return ret;
3641 }
3642 
3643 /*
3644  * a helper for releasepage.  As long as there are no locked extents
3645  * in the range corresponding to the page, both state records and extent
3646  * map records are removed
3647  */
3648 int try_release_extent_mapping(struct extent_map_tree *map,
3649 			       struct extent_io_tree *tree, struct page *page,
3650 			       gfp_t mask)
3651 {
3652 	struct extent_map *em;
3653 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3654 	u64 end = start + PAGE_CACHE_SIZE - 1;
3655 
3656 	if ((mask & __GFP_WAIT) &&
3657 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3658 		u64 len;
3659 		while (start <= end) {
3660 			len = end - start + 1;
3661 			write_lock(&map->lock);
3662 			em = lookup_extent_mapping(map, start, len);
3663 			if (!em) {
3664 				write_unlock(&map->lock);
3665 				break;
3666 			}
3667 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3668 			    em->start != start) {
3669 				write_unlock(&map->lock);
3670 				free_extent_map(em);
3671 				break;
3672 			}
3673 			if (!test_range_bit(tree, em->start,
3674 					    extent_map_end(em) - 1,
3675 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3676 					    0, NULL)) {
3677 				remove_extent_mapping(map, em);
3678 				/* once for the rb tree */
3679 				free_extent_map(em);
3680 			}
3681 			start = extent_map_end(em);
3682 			write_unlock(&map->lock);
3683 
3684 			/* once for us */
3685 			free_extent_map(em);
3686 		}
3687 	}
3688 	return try_release_extent_state(map, tree, page, mask);
3689 }
3690 
3691 /*
3692  * helper function for fiemap, which doesn't want to see any holes.
3693  * This maps until we find something past 'last'
3694  */
3695 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3696 						u64 offset,
3697 						u64 last,
3698 						get_extent_t *get_extent)
3699 {
3700 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3701 	struct extent_map *em;
3702 	u64 len;
3703 
3704 	if (offset >= last)
3705 		return NULL;
3706 
3707 	while(1) {
3708 		len = last - offset;
3709 		if (len == 0)
3710 			break;
3711 		len = (len + sectorsize - 1) & ~(sectorsize - 1);
3712 		em = get_extent(inode, NULL, 0, offset, len, 0);
3713 		if (IS_ERR_OR_NULL(em))
3714 			return em;
3715 
3716 		/* if this isn't a hole return it */
3717 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3718 		    em->block_start != EXTENT_MAP_HOLE) {
3719 			return em;
3720 		}
3721 
3722 		/* this is a hole, advance to the next extent */
3723 		offset = extent_map_end(em);
3724 		free_extent_map(em);
3725 		if (offset >= last)
3726 			break;
3727 	}
3728 	return NULL;
3729 }
3730 
3731 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3732 		__u64 start, __u64 len, get_extent_t *get_extent)
3733 {
3734 	int ret = 0;
3735 	u64 off = start;
3736 	u64 max = start + len;
3737 	u32 flags = 0;
3738 	u32 found_type;
3739 	u64 last;
3740 	u64 last_for_get_extent = 0;
3741 	u64 disko = 0;
3742 	u64 isize = i_size_read(inode);
3743 	struct btrfs_key found_key;
3744 	struct extent_map *em = NULL;
3745 	struct extent_state *cached_state = NULL;
3746 	struct btrfs_path *path;
3747 	struct btrfs_file_extent_item *item;
3748 	int end = 0;
3749 	u64 em_start = 0;
3750 	u64 em_len = 0;
3751 	u64 em_end = 0;
3752 	unsigned long emflags;
3753 
3754 	if (len == 0)
3755 		return -EINVAL;
3756 
3757 	path = btrfs_alloc_path();
3758 	if (!path)
3759 		return -ENOMEM;
3760 	path->leave_spinning = 1;
3761 
3762 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3763 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3764 
3765 	/*
3766 	 * lookup the last file extent.  We're not using i_size here
3767 	 * because there might be preallocation past i_size
3768 	 */
3769 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3770 				       path, btrfs_ino(inode), -1, 0);
3771 	if (ret < 0) {
3772 		btrfs_free_path(path);
3773 		return ret;
3774 	}
3775 	WARN_ON(!ret);
3776 	path->slots[0]--;
3777 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3778 			      struct btrfs_file_extent_item);
3779 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3780 	found_type = btrfs_key_type(&found_key);
3781 
3782 	/* No extents, but there might be delalloc bits */
3783 	if (found_key.objectid != btrfs_ino(inode) ||
3784 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3785 		/* have to trust i_size as the end */
3786 		last = (u64)-1;
3787 		last_for_get_extent = isize;
3788 	} else {
3789 		/*
3790 		 * remember the start of the last extent.  There are a
3791 		 * bunch of different factors that go into the length of the
3792 		 * extent, so its much less complex to remember where it started
3793 		 */
3794 		last = found_key.offset;
3795 		last_for_get_extent = last + 1;
3796 	}
3797 	btrfs_free_path(path);
3798 
3799 	/*
3800 	 * we might have some extents allocated but more delalloc past those
3801 	 * extents.  so, we trust isize unless the start of the last extent is
3802 	 * beyond isize
3803 	 */
3804 	if (last < isize) {
3805 		last = (u64)-1;
3806 		last_for_get_extent = isize;
3807 	}
3808 
3809 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3810 			 &cached_state);
3811 
3812 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
3813 				   get_extent);
3814 	if (!em)
3815 		goto out;
3816 	if (IS_ERR(em)) {
3817 		ret = PTR_ERR(em);
3818 		goto out;
3819 	}
3820 
3821 	while (!end) {
3822 		u64 offset_in_extent;
3823 
3824 		/* break if the extent we found is outside the range */
3825 		if (em->start >= max || extent_map_end(em) < off)
3826 			break;
3827 
3828 		/*
3829 		 * get_extent may return an extent that starts before our
3830 		 * requested range.  We have to make sure the ranges
3831 		 * we return to fiemap always move forward and don't
3832 		 * overlap, so adjust the offsets here
3833 		 */
3834 		em_start = max(em->start, off);
3835 
3836 		/*
3837 		 * record the offset from the start of the extent
3838 		 * for adjusting the disk offset below
3839 		 */
3840 		offset_in_extent = em_start - em->start;
3841 		em_end = extent_map_end(em);
3842 		em_len = em_end - em_start;
3843 		emflags = em->flags;
3844 		disko = 0;
3845 		flags = 0;
3846 
3847 		/*
3848 		 * bump off for our next call to get_extent
3849 		 */
3850 		off = extent_map_end(em);
3851 		if (off >= max)
3852 			end = 1;
3853 
3854 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3855 			end = 1;
3856 			flags |= FIEMAP_EXTENT_LAST;
3857 		} else if (em->block_start == EXTENT_MAP_INLINE) {
3858 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3859 				  FIEMAP_EXTENT_NOT_ALIGNED);
3860 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3861 			flags |= (FIEMAP_EXTENT_DELALLOC |
3862 				  FIEMAP_EXTENT_UNKNOWN);
3863 		} else {
3864 			disko = em->block_start + offset_in_extent;
3865 		}
3866 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3867 			flags |= FIEMAP_EXTENT_ENCODED;
3868 
3869 		free_extent_map(em);
3870 		em = NULL;
3871 		if ((em_start >= last) || em_len == (u64)-1 ||
3872 		   (last == (u64)-1 && isize <= em_end)) {
3873 			flags |= FIEMAP_EXTENT_LAST;
3874 			end = 1;
3875 		}
3876 
3877 		/* now scan forward to see if this is really the last extent. */
3878 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3879 					   get_extent);
3880 		if (IS_ERR(em)) {
3881 			ret = PTR_ERR(em);
3882 			goto out;
3883 		}
3884 		if (!em) {
3885 			flags |= FIEMAP_EXTENT_LAST;
3886 			end = 1;
3887 		}
3888 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3889 					      em_len, flags);
3890 		if (ret)
3891 			goto out_free;
3892 	}
3893 out_free:
3894 	free_extent_map(em);
3895 out:
3896 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3897 			     &cached_state, GFP_NOFS);
3898 	return ret;
3899 }
3900 
3901 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3902 					      unsigned long i)
3903 {
3904 	return eb->pages[i];
3905 }
3906 
3907 inline unsigned long num_extent_pages(u64 start, u64 len)
3908 {
3909 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3910 		(start >> PAGE_CACHE_SHIFT);
3911 }
3912 
3913 static void __free_extent_buffer(struct extent_buffer *eb)
3914 {
3915 #if LEAK_DEBUG
3916 	unsigned long flags;
3917 	spin_lock_irqsave(&leak_lock, flags);
3918 	list_del(&eb->leak_list);
3919 	spin_unlock_irqrestore(&leak_lock, flags);
3920 #endif
3921 	if (eb->pages && eb->pages != eb->inline_pages)
3922 		kfree(eb->pages);
3923 	kmem_cache_free(extent_buffer_cache, eb);
3924 }
3925 
3926 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3927 						   u64 start,
3928 						   unsigned long len,
3929 						   gfp_t mask)
3930 {
3931 	struct extent_buffer *eb = NULL;
3932 #if LEAK_DEBUG
3933 	unsigned long flags;
3934 #endif
3935 
3936 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3937 	if (eb == NULL)
3938 		return NULL;
3939 	eb->start = start;
3940 	eb->len = len;
3941 	eb->tree = tree;
3942 	eb->bflags = 0;
3943 	rwlock_init(&eb->lock);
3944 	atomic_set(&eb->write_locks, 0);
3945 	atomic_set(&eb->read_locks, 0);
3946 	atomic_set(&eb->blocking_readers, 0);
3947 	atomic_set(&eb->blocking_writers, 0);
3948 	atomic_set(&eb->spinning_readers, 0);
3949 	atomic_set(&eb->spinning_writers, 0);
3950 	eb->lock_nested = 0;
3951 	init_waitqueue_head(&eb->write_lock_wq);
3952 	init_waitqueue_head(&eb->read_lock_wq);
3953 
3954 #if LEAK_DEBUG
3955 	spin_lock_irqsave(&leak_lock, flags);
3956 	list_add(&eb->leak_list, &buffers);
3957 	spin_unlock_irqrestore(&leak_lock, flags);
3958 #endif
3959 	spin_lock_init(&eb->refs_lock);
3960 	atomic_set(&eb->refs, 1);
3961 	atomic_set(&eb->io_pages, 0);
3962 
3963 	if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3964 		struct page **pages;
3965 		int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3966 			PAGE_CACHE_SHIFT;
3967 		pages = kzalloc(num_pages, mask);
3968 		if (!pages) {
3969 			__free_extent_buffer(eb);
3970 			return NULL;
3971 		}
3972 		eb->pages = pages;
3973 	} else {
3974 		eb->pages = eb->inline_pages;
3975 	}
3976 
3977 	return eb;
3978 }
3979 
3980 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3981 {
3982 	unsigned long i;
3983 	struct page *p;
3984 	struct extent_buffer *new;
3985 	unsigned long num_pages = num_extent_pages(src->start, src->len);
3986 
3987 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3988 	if (new == NULL)
3989 		return NULL;
3990 
3991 	for (i = 0; i < num_pages; i++) {
3992 		p = alloc_page(GFP_ATOMIC);
3993 		BUG_ON(!p);
3994 		attach_extent_buffer_page(new, p);
3995 		WARN_ON(PageDirty(p));
3996 		SetPageUptodate(p);
3997 		new->pages[i] = p;
3998 	}
3999 
4000 	copy_extent_buffer(new, src, 0, 0, src->len);
4001 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4002 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4003 
4004 	return new;
4005 }
4006 
4007 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4008 {
4009 	struct extent_buffer *eb;
4010 	unsigned long num_pages = num_extent_pages(0, len);
4011 	unsigned long i;
4012 
4013 	eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4014 	if (!eb)
4015 		return NULL;
4016 
4017 	for (i = 0; i < num_pages; i++) {
4018 		eb->pages[i] = alloc_page(GFP_ATOMIC);
4019 		if (!eb->pages[i])
4020 			goto err;
4021 	}
4022 	set_extent_buffer_uptodate(eb);
4023 	btrfs_set_header_nritems(eb, 0);
4024 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4025 
4026 	return eb;
4027 err:
4028 	for (i--; i > 0; i--)
4029 		__free_page(eb->pages[i]);
4030 	__free_extent_buffer(eb);
4031 	return NULL;
4032 }
4033 
4034 static int extent_buffer_under_io(struct extent_buffer *eb)
4035 {
4036 	return (atomic_read(&eb->io_pages) ||
4037 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4038 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4039 }
4040 
4041 /*
4042  * Helper for releasing extent buffer page.
4043  */
4044 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4045 						unsigned long start_idx)
4046 {
4047 	unsigned long index;
4048 	unsigned long num_pages;
4049 	struct page *page;
4050 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4051 
4052 	BUG_ON(extent_buffer_under_io(eb));
4053 
4054 	num_pages = num_extent_pages(eb->start, eb->len);
4055 	index = start_idx + num_pages;
4056 	if (start_idx >= index)
4057 		return;
4058 
4059 	do {
4060 		index--;
4061 		page = extent_buffer_page(eb, index);
4062 		if (page && mapped) {
4063 			spin_lock(&page->mapping->private_lock);
4064 			/*
4065 			 * We do this since we'll remove the pages after we've
4066 			 * removed the eb from the radix tree, so we could race
4067 			 * and have this page now attached to the new eb.  So
4068 			 * only clear page_private if it's still connected to
4069 			 * this eb.
4070 			 */
4071 			if (PagePrivate(page) &&
4072 			    page->private == (unsigned long)eb) {
4073 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4074 				BUG_ON(PageDirty(page));
4075 				BUG_ON(PageWriteback(page));
4076 				/*
4077 				 * We need to make sure we haven't be attached
4078 				 * to a new eb.
4079 				 */
4080 				ClearPagePrivate(page);
4081 				set_page_private(page, 0);
4082 				/* One for the page private */
4083 				page_cache_release(page);
4084 			}
4085 			spin_unlock(&page->mapping->private_lock);
4086 
4087 		}
4088 		if (page) {
4089 			/* One for when we alloced the page */
4090 			page_cache_release(page);
4091 		}
4092 	} while (index != start_idx);
4093 }
4094 
4095 /*
4096  * Helper for releasing the extent buffer.
4097  */
4098 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4099 {
4100 	btrfs_release_extent_buffer_page(eb, 0);
4101 	__free_extent_buffer(eb);
4102 }
4103 
4104 static void check_buffer_tree_ref(struct extent_buffer *eb)
4105 {
4106 	/* the ref bit is tricky.  We have to make sure it is set
4107 	 * if we have the buffer dirty.   Otherwise the
4108 	 * code to free a buffer can end up dropping a dirty
4109 	 * page
4110 	 *
4111 	 * Once the ref bit is set, it won't go away while the
4112 	 * buffer is dirty or in writeback, and it also won't
4113 	 * go away while we have the reference count on the
4114 	 * eb bumped.
4115 	 *
4116 	 * We can't just set the ref bit without bumping the
4117 	 * ref on the eb because free_extent_buffer might
4118 	 * see the ref bit and try to clear it.  If this happens
4119 	 * free_extent_buffer might end up dropping our original
4120 	 * ref by mistake and freeing the page before we are able
4121 	 * to add one more ref.
4122 	 *
4123 	 * So bump the ref count first, then set the bit.  If someone
4124 	 * beat us to it, drop the ref we added.
4125 	 */
4126 	if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4127 		atomic_inc(&eb->refs);
4128 		if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4129 			atomic_dec(&eb->refs);
4130 	}
4131 }
4132 
4133 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4134 {
4135 	unsigned long num_pages, i;
4136 
4137 	check_buffer_tree_ref(eb);
4138 
4139 	num_pages = num_extent_pages(eb->start, eb->len);
4140 	for (i = 0; i < num_pages; i++) {
4141 		struct page *p = extent_buffer_page(eb, i);
4142 		mark_page_accessed(p);
4143 	}
4144 }
4145 
4146 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4147 					  u64 start, unsigned long len)
4148 {
4149 	unsigned long num_pages = num_extent_pages(start, len);
4150 	unsigned long i;
4151 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4152 	struct extent_buffer *eb;
4153 	struct extent_buffer *exists = NULL;
4154 	struct page *p;
4155 	struct address_space *mapping = tree->mapping;
4156 	int uptodate = 1;
4157 	int ret;
4158 
4159 	rcu_read_lock();
4160 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4161 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4162 		rcu_read_unlock();
4163 		mark_extent_buffer_accessed(eb);
4164 		return eb;
4165 	}
4166 	rcu_read_unlock();
4167 
4168 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4169 	if (!eb)
4170 		return NULL;
4171 
4172 	for (i = 0; i < num_pages; i++, index++) {
4173 		p = find_or_create_page(mapping, index, GFP_NOFS);
4174 		if (!p) {
4175 			WARN_ON(1);
4176 			goto free_eb;
4177 		}
4178 
4179 		spin_lock(&mapping->private_lock);
4180 		if (PagePrivate(p)) {
4181 			/*
4182 			 * We could have already allocated an eb for this page
4183 			 * and attached one so lets see if we can get a ref on
4184 			 * the existing eb, and if we can we know it's good and
4185 			 * we can just return that one, else we know we can just
4186 			 * overwrite page->private.
4187 			 */
4188 			exists = (struct extent_buffer *)p->private;
4189 			if (atomic_inc_not_zero(&exists->refs)) {
4190 				spin_unlock(&mapping->private_lock);
4191 				unlock_page(p);
4192 				page_cache_release(p);
4193 				mark_extent_buffer_accessed(exists);
4194 				goto free_eb;
4195 			}
4196 
4197 			/*
4198 			 * Do this so attach doesn't complain and we need to
4199 			 * drop the ref the old guy had.
4200 			 */
4201 			ClearPagePrivate(p);
4202 			WARN_ON(PageDirty(p));
4203 			page_cache_release(p);
4204 		}
4205 		attach_extent_buffer_page(eb, p);
4206 		spin_unlock(&mapping->private_lock);
4207 		WARN_ON(PageDirty(p));
4208 		mark_page_accessed(p);
4209 		eb->pages[i] = p;
4210 		if (!PageUptodate(p))
4211 			uptodate = 0;
4212 
4213 		/*
4214 		 * see below about how we avoid a nasty race with release page
4215 		 * and why we unlock later
4216 		 */
4217 	}
4218 	if (uptodate)
4219 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4220 again:
4221 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4222 	if (ret)
4223 		goto free_eb;
4224 
4225 	spin_lock(&tree->buffer_lock);
4226 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4227 	if (ret == -EEXIST) {
4228 		exists = radix_tree_lookup(&tree->buffer,
4229 						start >> PAGE_CACHE_SHIFT);
4230 		if (!atomic_inc_not_zero(&exists->refs)) {
4231 			spin_unlock(&tree->buffer_lock);
4232 			radix_tree_preload_end();
4233 			exists = NULL;
4234 			goto again;
4235 		}
4236 		spin_unlock(&tree->buffer_lock);
4237 		radix_tree_preload_end();
4238 		mark_extent_buffer_accessed(exists);
4239 		goto free_eb;
4240 	}
4241 	/* add one reference for the tree */
4242 	spin_lock(&eb->refs_lock);
4243 	check_buffer_tree_ref(eb);
4244 	spin_unlock(&eb->refs_lock);
4245 	spin_unlock(&tree->buffer_lock);
4246 	radix_tree_preload_end();
4247 
4248 	/*
4249 	 * there is a race where release page may have
4250 	 * tried to find this extent buffer in the radix
4251 	 * but failed.  It will tell the VM it is safe to
4252 	 * reclaim the, and it will clear the page private bit.
4253 	 * We must make sure to set the page private bit properly
4254 	 * after the extent buffer is in the radix tree so
4255 	 * it doesn't get lost
4256 	 */
4257 	SetPageChecked(eb->pages[0]);
4258 	for (i = 1; i < num_pages; i++) {
4259 		p = extent_buffer_page(eb, i);
4260 		ClearPageChecked(p);
4261 		unlock_page(p);
4262 	}
4263 	unlock_page(eb->pages[0]);
4264 	return eb;
4265 
4266 free_eb:
4267 	for (i = 0; i < num_pages; i++) {
4268 		if (eb->pages[i])
4269 			unlock_page(eb->pages[i]);
4270 	}
4271 
4272 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4273 	btrfs_release_extent_buffer(eb);
4274 	return exists;
4275 }
4276 
4277 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4278 					 u64 start, unsigned long len)
4279 {
4280 	struct extent_buffer *eb;
4281 
4282 	rcu_read_lock();
4283 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4284 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4285 		rcu_read_unlock();
4286 		mark_extent_buffer_accessed(eb);
4287 		return eb;
4288 	}
4289 	rcu_read_unlock();
4290 
4291 	return NULL;
4292 }
4293 
4294 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4295 {
4296 	struct extent_buffer *eb =
4297 			container_of(head, struct extent_buffer, rcu_head);
4298 
4299 	__free_extent_buffer(eb);
4300 }
4301 
4302 /* Expects to have eb->eb_lock already held */
4303 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4304 {
4305 	WARN_ON(atomic_read(&eb->refs) == 0);
4306 	if (atomic_dec_and_test(&eb->refs)) {
4307 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4308 			spin_unlock(&eb->refs_lock);
4309 		} else {
4310 			struct extent_io_tree *tree = eb->tree;
4311 
4312 			spin_unlock(&eb->refs_lock);
4313 
4314 			spin_lock(&tree->buffer_lock);
4315 			radix_tree_delete(&tree->buffer,
4316 					  eb->start >> PAGE_CACHE_SHIFT);
4317 			spin_unlock(&tree->buffer_lock);
4318 		}
4319 
4320 		/* Should be safe to release our pages at this point */
4321 		btrfs_release_extent_buffer_page(eb, 0);
4322 
4323 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4324 		return;
4325 	}
4326 	spin_unlock(&eb->refs_lock);
4327 }
4328 
4329 void free_extent_buffer(struct extent_buffer *eb)
4330 {
4331 	if (!eb)
4332 		return;
4333 
4334 	spin_lock(&eb->refs_lock);
4335 	if (atomic_read(&eb->refs) == 2 &&
4336 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4337 		atomic_dec(&eb->refs);
4338 
4339 	if (atomic_read(&eb->refs) == 2 &&
4340 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4341 	    !extent_buffer_under_io(eb) &&
4342 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4343 		atomic_dec(&eb->refs);
4344 
4345 	/*
4346 	 * I know this is terrible, but it's temporary until we stop tracking
4347 	 * the uptodate bits and such for the extent buffers.
4348 	 */
4349 	release_extent_buffer(eb, GFP_ATOMIC);
4350 }
4351 
4352 void free_extent_buffer_stale(struct extent_buffer *eb)
4353 {
4354 	if (!eb)
4355 		return;
4356 
4357 	spin_lock(&eb->refs_lock);
4358 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4359 
4360 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4361 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4362 		atomic_dec(&eb->refs);
4363 	release_extent_buffer(eb, GFP_NOFS);
4364 }
4365 
4366 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4367 {
4368 	unsigned long i;
4369 	unsigned long num_pages;
4370 	struct page *page;
4371 
4372 	num_pages = num_extent_pages(eb->start, eb->len);
4373 
4374 	for (i = 0; i < num_pages; i++) {
4375 		page = extent_buffer_page(eb, i);
4376 		if (!PageDirty(page))
4377 			continue;
4378 
4379 		lock_page(page);
4380 		WARN_ON(!PagePrivate(page));
4381 
4382 		clear_page_dirty_for_io(page);
4383 		spin_lock_irq(&page->mapping->tree_lock);
4384 		if (!PageDirty(page)) {
4385 			radix_tree_tag_clear(&page->mapping->page_tree,
4386 						page_index(page),
4387 						PAGECACHE_TAG_DIRTY);
4388 		}
4389 		spin_unlock_irq(&page->mapping->tree_lock);
4390 		ClearPageError(page);
4391 		unlock_page(page);
4392 	}
4393 	WARN_ON(atomic_read(&eb->refs) == 0);
4394 }
4395 
4396 int set_extent_buffer_dirty(struct extent_buffer *eb)
4397 {
4398 	unsigned long i;
4399 	unsigned long num_pages;
4400 	int was_dirty = 0;
4401 
4402 	check_buffer_tree_ref(eb);
4403 
4404 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4405 
4406 	num_pages = num_extent_pages(eb->start, eb->len);
4407 	WARN_ON(atomic_read(&eb->refs) == 0);
4408 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4409 
4410 	for (i = 0; i < num_pages; i++)
4411 		set_page_dirty(extent_buffer_page(eb, i));
4412 	return was_dirty;
4413 }
4414 
4415 static int range_straddles_pages(u64 start, u64 len)
4416 {
4417 	if (len < PAGE_CACHE_SIZE)
4418 		return 1;
4419 	if (start & (PAGE_CACHE_SIZE - 1))
4420 		return 1;
4421 	if ((start + len) & (PAGE_CACHE_SIZE - 1))
4422 		return 1;
4423 	return 0;
4424 }
4425 
4426 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4427 {
4428 	unsigned long i;
4429 	struct page *page;
4430 	unsigned long num_pages;
4431 
4432 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4433 	num_pages = num_extent_pages(eb->start, eb->len);
4434 	for (i = 0; i < num_pages; i++) {
4435 		page = extent_buffer_page(eb, i);
4436 		if (page)
4437 			ClearPageUptodate(page);
4438 	}
4439 	return 0;
4440 }
4441 
4442 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4443 {
4444 	unsigned long i;
4445 	struct page *page;
4446 	unsigned long num_pages;
4447 
4448 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4449 	num_pages = num_extent_pages(eb->start, eb->len);
4450 	for (i = 0; i < num_pages; i++) {
4451 		page = extent_buffer_page(eb, i);
4452 		SetPageUptodate(page);
4453 	}
4454 	return 0;
4455 }
4456 
4457 int extent_range_uptodate(struct extent_io_tree *tree,
4458 			  u64 start, u64 end)
4459 {
4460 	struct page *page;
4461 	int ret;
4462 	int pg_uptodate = 1;
4463 	int uptodate;
4464 	unsigned long index;
4465 
4466 	if (range_straddles_pages(start, end - start + 1)) {
4467 		ret = test_range_bit(tree, start, end,
4468 				     EXTENT_UPTODATE, 1, NULL);
4469 		if (ret)
4470 			return 1;
4471 	}
4472 	while (start <= end) {
4473 		index = start >> PAGE_CACHE_SHIFT;
4474 		page = find_get_page(tree->mapping, index);
4475 		if (!page)
4476 			return 1;
4477 		uptodate = PageUptodate(page);
4478 		page_cache_release(page);
4479 		if (!uptodate) {
4480 			pg_uptodate = 0;
4481 			break;
4482 		}
4483 		start += PAGE_CACHE_SIZE;
4484 	}
4485 	return pg_uptodate;
4486 }
4487 
4488 int extent_buffer_uptodate(struct extent_buffer *eb)
4489 {
4490 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4491 }
4492 
4493 int read_extent_buffer_pages(struct extent_io_tree *tree,
4494 			     struct extent_buffer *eb, u64 start, int wait,
4495 			     get_extent_t *get_extent, int mirror_num)
4496 {
4497 	unsigned long i;
4498 	unsigned long start_i;
4499 	struct page *page;
4500 	int err;
4501 	int ret = 0;
4502 	int locked_pages = 0;
4503 	int all_uptodate = 1;
4504 	unsigned long num_pages;
4505 	unsigned long num_reads = 0;
4506 	struct bio *bio = NULL;
4507 	unsigned long bio_flags = 0;
4508 
4509 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4510 		return 0;
4511 
4512 	if (start) {
4513 		WARN_ON(start < eb->start);
4514 		start_i = (start >> PAGE_CACHE_SHIFT) -
4515 			(eb->start >> PAGE_CACHE_SHIFT);
4516 	} else {
4517 		start_i = 0;
4518 	}
4519 
4520 	num_pages = num_extent_pages(eb->start, eb->len);
4521 	for (i = start_i; i < num_pages; i++) {
4522 		page = extent_buffer_page(eb, i);
4523 		if (wait == WAIT_NONE) {
4524 			if (!trylock_page(page))
4525 				goto unlock_exit;
4526 		} else {
4527 			lock_page(page);
4528 		}
4529 		locked_pages++;
4530 		if (!PageUptodate(page)) {
4531 			num_reads++;
4532 			all_uptodate = 0;
4533 		}
4534 	}
4535 	if (all_uptodate) {
4536 		if (start_i == 0)
4537 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4538 		goto unlock_exit;
4539 	}
4540 
4541 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4542 	eb->read_mirror = 0;
4543 	atomic_set(&eb->io_pages, num_reads);
4544 	for (i = start_i; i < num_pages; i++) {
4545 		page = extent_buffer_page(eb, i);
4546 		if (!PageUptodate(page)) {
4547 			ClearPageError(page);
4548 			err = __extent_read_full_page(tree, page,
4549 						      get_extent, &bio,
4550 						      mirror_num, &bio_flags);
4551 			if (err)
4552 				ret = err;
4553 		} else {
4554 			unlock_page(page);
4555 		}
4556 	}
4557 
4558 	if (bio) {
4559 		err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4560 		if (err)
4561 			return err;
4562 	}
4563 
4564 	if (ret || wait != WAIT_COMPLETE)
4565 		return ret;
4566 
4567 	for (i = start_i; i < num_pages; i++) {
4568 		page = extent_buffer_page(eb, i);
4569 		wait_on_page_locked(page);
4570 		if (!PageUptodate(page))
4571 			ret = -EIO;
4572 	}
4573 
4574 	return ret;
4575 
4576 unlock_exit:
4577 	i = start_i;
4578 	while (locked_pages > 0) {
4579 		page = extent_buffer_page(eb, i);
4580 		i++;
4581 		unlock_page(page);
4582 		locked_pages--;
4583 	}
4584 	return ret;
4585 }
4586 
4587 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4588 			unsigned long start,
4589 			unsigned long len)
4590 {
4591 	size_t cur;
4592 	size_t offset;
4593 	struct page *page;
4594 	char *kaddr;
4595 	char *dst = (char *)dstv;
4596 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4597 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4598 
4599 	WARN_ON(start > eb->len);
4600 	WARN_ON(start + len > eb->start + eb->len);
4601 
4602 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4603 
4604 	while (len > 0) {
4605 		page = extent_buffer_page(eb, i);
4606 
4607 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4608 		kaddr = page_address(page);
4609 		memcpy(dst, kaddr + offset, cur);
4610 
4611 		dst += cur;
4612 		len -= cur;
4613 		offset = 0;
4614 		i++;
4615 	}
4616 }
4617 
4618 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4619 			       unsigned long min_len, char **map,
4620 			       unsigned long *map_start,
4621 			       unsigned long *map_len)
4622 {
4623 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4624 	char *kaddr;
4625 	struct page *p;
4626 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4627 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4628 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4629 		PAGE_CACHE_SHIFT;
4630 
4631 	if (i != end_i)
4632 		return -EINVAL;
4633 
4634 	if (i == 0) {
4635 		offset = start_offset;
4636 		*map_start = 0;
4637 	} else {
4638 		offset = 0;
4639 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4640 	}
4641 
4642 	if (start + min_len > eb->len) {
4643 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4644 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4645 		       eb->len, start, min_len);
4646 		WARN_ON(1);
4647 		return -EINVAL;
4648 	}
4649 
4650 	p = extent_buffer_page(eb, i);
4651 	kaddr = page_address(p);
4652 	*map = kaddr + offset;
4653 	*map_len = PAGE_CACHE_SIZE - offset;
4654 	return 0;
4655 }
4656 
4657 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4658 			  unsigned long start,
4659 			  unsigned long len)
4660 {
4661 	size_t cur;
4662 	size_t offset;
4663 	struct page *page;
4664 	char *kaddr;
4665 	char *ptr = (char *)ptrv;
4666 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4667 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4668 	int ret = 0;
4669 
4670 	WARN_ON(start > eb->len);
4671 	WARN_ON(start + len > eb->start + eb->len);
4672 
4673 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4674 
4675 	while (len > 0) {
4676 		page = extent_buffer_page(eb, i);
4677 
4678 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4679 
4680 		kaddr = page_address(page);
4681 		ret = memcmp(ptr, kaddr + offset, cur);
4682 		if (ret)
4683 			break;
4684 
4685 		ptr += cur;
4686 		len -= cur;
4687 		offset = 0;
4688 		i++;
4689 	}
4690 	return ret;
4691 }
4692 
4693 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4694 			 unsigned long start, unsigned long len)
4695 {
4696 	size_t cur;
4697 	size_t offset;
4698 	struct page *page;
4699 	char *kaddr;
4700 	char *src = (char *)srcv;
4701 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4702 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4703 
4704 	WARN_ON(start > eb->len);
4705 	WARN_ON(start + len > eb->start + eb->len);
4706 
4707 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4708 
4709 	while (len > 0) {
4710 		page = extent_buffer_page(eb, i);
4711 		WARN_ON(!PageUptodate(page));
4712 
4713 		cur = min(len, PAGE_CACHE_SIZE - offset);
4714 		kaddr = page_address(page);
4715 		memcpy(kaddr + offset, src, cur);
4716 
4717 		src += cur;
4718 		len -= cur;
4719 		offset = 0;
4720 		i++;
4721 	}
4722 }
4723 
4724 void memset_extent_buffer(struct extent_buffer *eb, char c,
4725 			  unsigned long start, unsigned long len)
4726 {
4727 	size_t cur;
4728 	size_t offset;
4729 	struct page *page;
4730 	char *kaddr;
4731 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4732 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4733 
4734 	WARN_ON(start > eb->len);
4735 	WARN_ON(start + len > eb->start + eb->len);
4736 
4737 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4738 
4739 	while (len > 0) {
4740 		page = extent_buffer_page(eb, i);
4741 		WARN_ON(!PageUptodate(page));
4742 
4743 		cur = min(len, PAGE_CACHE_SIZE - offset);
4744 		kaddr = page_address(page);
4745 		memset(kaddr + offset, c, cur);
4746 
4747 		len -= cur;
4748 		offset = 0;
4749 		i++;
4750 	}
4751 }
4752 
4753 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4754 			unsigned long dst_offset, unsigned long src_offset,
4755 			unsigned long len)
4756 {
4757 	u64 dst_len = dst->len;
4758 	size_t cur;
4759 	size_t offset;
4760 	struct page *page;
4761 	char *kaddr;
4762 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4763 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4764 
4765 	WARN_ON(src->len != dst_len);
4766 
4767 	offset = (start_offset + dst_offset) &
4768 		((unsigned long)PAGE_CACHE_SIZE - 1);
4769 
4770 	while (len > 0) {
4771 		page = extent_buffer_page(dst, i);
4772 		WARN_ON(!PageUptodate(page));
4773 
4774 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4775 
4776 		kaddr = page_address(page);
4777 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4778 
4779 		src_offset += cur;
4780 		len -= cur;
4781 		offset = 0;
4782 		i++;
4783 	}
4784 }
4785 
4786 static void move_pages(struct page *dst_page, struct page *src_page,
4787 		       unsigned long dst_off, unsigned long src_off,
4788 		       unsigned long len)
4789 {
4790 	char *dst_kaddr = page_address(dst_page);
4791 	if (dst_page == src_page) {
4792 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4793 	} else {
4794 		char *src_kaddr = page_address(src_page);
4795 		char *p = dst_kaddr + dst_off + len;
4796 		char *s = src_kaddr + src_off + len;
4797 
4798 		while (len--)
4799 			*--p = *--s;
4800 	}
4801 }
4802 
4803 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4804 {
4805 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4806 	return distance < len;
4807 }
4808 
4809 static void copy_pages(struct page *dst_page, struct page *src_page,
4810 		       unsigned long dst_off, unsigned long src_off,
4811 		       unsigned long len)
4812 {
4813 	char *dst_kaddr = page_address(dst_page);
4814 	char *src_kaddr;
4815 	int must_memmove = 0;
4816 
4817 	if (dst_page != src_page) {
4818 		src_kaddr = page_address(src_page);
4819 	} else {
4820 		src_kaddr = dst_kaddr;
4821 		if (areas_overlap(src_off, dst_off, len))
4822 			must_memmove = 1;
4823 	}
4824 
4825 	if (must_memmove)
4826 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4827 	else
4828 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4829 }
4830 
4831 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4832 			   unsigned long src_offset, unsigned long len)
4833 {
4834 	size_t cur;
4835 	size_t dst_off_in_page;
4836 	size_t src_off_in_page;
4837 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4838 	unsigned long dst_i;
4839 	unsigned long src_i;
4840 
4841 	if (src_offset + len > dst->len) {
4842 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4843 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
4844 		BUG_ON(1);
4845 	}
4846 	if (dst_offset + len > dst->len) {
4847 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4848 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4849 		BUG_ON(1);
4850 	}
4851 
4852 	while (len > 0) {
4853 		dst_off_in_page = (start_offset + dst_offset) &
4854 			((unsigned long)PAGE_CACHE_SIZE - 1);
4855 		src_off_in_page = (start_offset + src_offset) &
4856 			((unsigned long)PAGE_CACHE_SIZE - 1);
4857 
4858 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4859 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4860 
4861 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4862 					       src_off_in_page));
4863 		cur = min_t(unsigned long, cur,
4864 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4865 
4866 		copy_pages(extent_buffer_page(dst, dst_i),
4867 			   extent_buffer_page(dst, src_i),
4868 			   dst_off_in_page, src_off_in_page, cur);
4869 
4870 		src_offset += cur;
4871 		dst_offset += cur;
4872 		len -= cur;
4873 	}
4874 }
4875 
4876 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4877 			   unsigned long src_offset, unsigned long len)
4878 {
4879 	size_t cur;
4880 	size_t dst_off_in_page;
4881 	size_t src_off_in_page;
4882 	unsigned long dst_end = dst_offset + len - 1;
4883 	unsigned long src_end = src_offset + len - 1;
4884 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4885 	unsigned long dst_i;
4886 	unsigned long src_i;
4887 
4888 	if (src_offset + len > dst->len) {
4889 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4890 		       "len %lu len %lu\n", src_offset, len, dst->len);
4891 		BUG_ON(1);
4892 	}
4893 	if (dst_offset + len > dst->len) {
4894 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4895 		       "len %lu len %lu\n", dst_offset, len, dst->len);
4896 		BUG_ON(1);
4897 	}
4898 	if (dst_offset < src_offset) {
4899 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4900 		return;
4901 	}
4902 	while (len > 0) {
4903 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4904 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4905 
4906 		dst_off_in_page = (start_offset + dst_end) &
4907 			((unsigned long)PAGE_CACHE_SIZE - 1);
4908 		src_off_in_page = (start_offset + src_end) &
4909 			((unsigned long)PAGE_CACHE_SIZE - 1);
4910 
4911 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4912 		cur = min(cur, dst_off_in_page + 1);
4913 		move_pages(extent_buffer_page(dst, dst_i),
4914 			   extent_buffer_page(dst, src_i),
4915 			   dst_off_in_page - cur + 1,
4916 			   src_off_in_page - cur + 1, cur);
4917 
4918 		dst_end -= cur;
4919 		src_end -= cur;
4920 		len -= cur;
4921 	}
4922 }
4923 
4924 int try_release_extent_buffer(struct page *page, gfp_t mask)
4925 {
4926 	struct extent_buffer *eb;
4927 
4928 	/*
4929 	 * We need to make sure noboody is attaching this page to an eb right
4930 	 * now.
4931 	 */
4932 	spin_lock(&page->mapping->private_lock);
4933 	if (!PagePrivate(page)) {
4934 		spin_unlock(&page->mapping->private_lock);
4935 		return 1;
4936 	}
4937 
4938 	eb = (struct extent_buffer *)page->private;
4939 	BUG_ON(!eb);
4940 
4941 	/*
4942 	 * This is a little awful but should be ok, we need to make sure that
4943 	 * the eb doesn't disappear out from under us while we're looking at
4944 	 * this page.
4945 	 */
4946 	spin_lock(&eb->refs_lock);
4947 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4948 		spin_unlock(&eb->refs_lock);
4949 		spin_unlock(&page->mapping->private_lock);
4950 		return 0;
4951 	}
4952 	spin_unlock(&page->mapping->private_lock);
4953 
4954 	if ((mask & GFP_NOFS) == GFP_NOFS)
4955 		mask = GFP_NOFS;
4956 
4957 	/*
4958 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4959 	 * so just return, this page will likely be freed soon anyway.
4960 	 */
4961 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4962 		spin_unlock(&eb->refs_lock);
4963 		return 0;
4964 	}
4965 	release_extent_buffer(eb, mask);
4966 
4967 	return 1;
4968 }
4969