1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/module.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "compat.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 25 static struct kmem_cache *extent_state_cache; 26 static struct kmem_cache *extent_buffer_cache; 27 28 static LIST_HEAD(buffers); 29 static LIST_HEAD(states); 30 31 #define LEAK_DEBUG 0 32 #if LEAK_DEBUG 33 static DEFINE_SPINLOCK(leak_lock); 34 #endif 35 36 #define BUFFER_LRU_MAX 64 37 38 struct tree_entry { 39 u64 start; 40 u64 end; 41 struct rb_node rb_node; 42 }; 43 44 struct extent_page_data { 45 struct bio *bio; 46 struct extent_io_tree *tree; 47 get_extent_t *get_extent; 48 49 /* tells writepage not to lock the state bits for this range 50 * it still does the unlocking 51 */ 52 unsigned int extent_locked:1; 53 54 /* tells the submit_bio code to use a WRITE_SYNC */ 55 unsigned int sync_io:1; 56 }; 57 58 static noinline void flush_write_bio(void *data); 59 static inline struct btrfs_fs_info * 60 tree_fs_info(struct extent_io_tree *tree) 61 { 62 return btrfs_sb(tree->mapping->host->i_sb); 63 } 64 65 int __init extent_io_init(void) 66 { 67 extent_state_cache = kmem_cache_create("extent_state", 68 sizeof(struct extent_state), 0, 69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 70 if (!extent_state_cache) 71 return -ENOMEM; 72 73 extent_buffer_cache = kmem_cache_create("extent_buffers", 74 sizeof(struct extent_buffer), 0, 75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 76 if (!extent_buffer_cache) 77 goto free_state_cache; 78 return 0; 79 80 free_state_cache: 81 kmem_cache_destroy(extent_state_cache); 82 return -ENOMEM; 83 } 84 85 void extent_io_exit(void) 86 { 87 struct extent_state *state; 88 struct extent_buffer *eb; 89 90 while (!list_empty(&states)) { 91 state = list_entry(states.next, struct extent_state, leak_list); 92 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 93 "state %lu in tree %p refs %d\n", 94 (unsigned long long)state->start, 95 (unsigned long long)state->end, 96 state->state, state->tree, atomic_read(&state->refs)); 97 list_del(&state->leak_list); 98 kmem_cache_free(extent_state_cache, state); 99 100 } 101 102 while (!list_empty(&buffers)) { 103 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 105 "refs %d\n", (unsigned long long)eb->start, 106 eb->len, atomic_read(&eb->refs)); 107 list_del(&eb->leak_list); 108 kmem_cache_free(extent_buffer_cache, eb); 109 } 110 if (extent_state_cache) 111 kmem_cache_destroy(extent_state_cache); 112 if (extent_buffer_cache) 113 kmem_cache_destroy(extent_buffer_cache); 114 } 115 116 void extent_io_tree_init(struct extent_io_tree *tree, 117 struct address_space *mapping) 118 { 119 tree->state = RB_ROOT; 120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 121 tree->ops = NULL; 122 tree->dirty_bytes = 0; 123 spin_lock_init(&tree->lock); 124 spin_lock_init(&tree->buffer_lock); 125 tree->mapping = mapping; 126 } 127 128 static struct extent_state *alloc_extent_state(gfp_t mask) 129 { 130 struct extent_state *state; 131 #if LEAK_DEBUG 132 unsigned long flags; 133 #endif 134 135 state = kmem_cache_alloc(extent_state_cache, mask); 136 if (!state) 137 return state; 138 state->state = 0; 139 state->private = 0; 140 state->tree = NULL; 141 #if LEAK_DEBUG 142 spin_lock_irqsave(&leak_lock, flags); 143 list_add(&state->leak_list, &states); 144 spin_unlock_irqrestore(&leak_lock, flags); 145 #endif 146 atomic_set(&state->refs, 1); 147 init_waitqueue_head(&state->wq); 148 trace_alloc_extent_state(state, mask, _RET_IP_); 149 return state; 150 } 151 152 void free_extent_state(struct extent_state *state) 153 { 154 if (!state) 155 return; 156 if (atomic_dec_and_test(&state->refs)) { 157 #if LEAK_DEBUG 158 unsigned long flags; 159 #endif 160 WARN_ON(state->tree); 161 #if LEAK_DEBUG 162 spin_lock_irqsave(&leak_lock, flags); 163 list_del(&state->leak_list); 164 spin_unlock_irqrestore(&leak_lock, flags); 165 #endif 166 trace_free_extent_state(state, _RET_IP_); 167 kmem_cache_free(extent_state_cache, state); 168 } 169 } 170 171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 172 struct rb_node *node) 173 { 174 struct rb_node **p = &root->rb_node; 175 struct rb_node *parent = NULL; 176 struct tree_entry *entry; 177 178 while (*p) { 179 parent = *p; 180 entry = rb_entry(parent, struct tree_entry, rb_node); 181 182 if (offset < entry->start) 183 p = &(*p)->rb_left; 184 else if (offset > entry->end) 185 p = &(*p)->rb_right; 186 else 187 return parent; 188 } 189 190 rb_link_node(node, parent, p); 191 rb_insert_color(node, root); 192 return NULL; 193 } 194 195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 196 struct rb_node **prev_ret, 197 struct rb_node **next_ret) 198 { 199 struct rb_root *root = &tree->state; 200 struct rb_node *n = root->rb_node; 201 struct rb_node *prev = NULL; 202 struct rb_node *orig_prev = NULL; 203 struct tree_entry *entry; 204 struct tree_entry *prev_entry = NULL; 205 206 while (n) { 207 entry = rb_entry(n, struct tree_entry, rb_node); 208 prev = n; 209 prev_entry = entry; 210 211 if (offset < entry->start) 212 n = n->rb_left; 213 else if (offset > entry->end) 214 n = n->rb_right; 215 else 216 return n; 217 } 218 219 if (prev_ret) { 220 orig_prev = prev; 221 while (prev && offset > prev_entry->end) { 222 prev = rb_next(prev); 223 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 224 } 225 *prev_ret = prev; 226 prev = orig_prev; 227 } 228 229 if (next_ret) { 230 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 231 while (prev && offset < prev_entry->start) { 232 prev = rb_prev(prev); 233 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 234 } 235 *next_ret = prev; 236 } 237 return NULL; 238 } 239 240 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 241 u64 offset) 242 { 243 struct rb_node *prev = NULL; 244 struct rb_node *ret; 245 246 ret = __etree_search(tree, offset, &prev, NULL); 247 if (!ret) 248 return prev; 249 return ret; 250 } 251 252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 253 struct extent_state *other) 254 { 255 if (tree->ops && tree->ops->merge_extent_hook) 256 tree->ops->merge_extent_hook(tree->mapping->host, new, 257 other); 258 } 259 260 /* 261 * utility function to look for merge candidates inside a given range. 262 * Any extents with matching state are merged together into a single 263 * extent in the tree. Extents with EXTENT_IO in their state field 264 * are not merged because the end_io handlers need to be able to do 265 * operations on them without sleeping (or doing allocations/splits). 266 * 267 * This should be called with the tree lock held. 268 */ 269 static void merge_state(struct extent_io_tree *tree, 270 struct extent_state *state) 271 { 272 struct extent_state *other; 273 struct rb_node *other_node; 274 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 276 return; 277 278 other_node = rb_prev(&state->rb_node); 279 if (other_node) { 280 other = rb_entry(other_node, struct extent_state, rb_node); 281 if (other->end == state->start - 1 && 282 other->state == state->state) { 283 merge_cb(tree, state, other); 284 state->start = other->start; 285 other->tree = NULL; 286 rb_erase(&other->rb_node, &tree->state); 287 free_extent_state(other); 288 } 289 } 290 other_node = rb_next(&state->rb_node); 291 if (other_node) { 292 other = rb_entry(other_node, struct extent_state, rb_node); 293 if (other->start == state->end + 1 && 294 other->state == state->state) { 295 merge_cb(tree, state, other); 296 state->end = other->end; 297 other->tree = NULL; 298 rb_erase(&other->rb_node, &tree->state); 299 free_extent_state(other); 300 } 301 } 302 } 303 304 static void set_state_cb(struct extent_io_tree *tree, 305 struct extent_state *state, int *bits) 306 { 307 if (tree->ops && tree->ops->set_bit_hook) 308 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 309 } 310 311 static void clear_state_cb(struct extent_io_tree *tree, 312 struct extent_state *state, int *bits) 313 { 314 if (tree->ops && tree->ops->clear_bit_hook) 315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 316 } 317 318 static void set_state_bits(struct extent_io_tree *tree, 319 struct extent_state *state, int *bits); 320 321 /* 322 * insert an extent_state struct into the tree. 'bits' are set on the 323 * struct before it is inserted. 324 * 325 * This may return -EEXIST if the extent is already there, in which case the 326 * state struct is freed. 327 * 328 * The tree lock is not taken internally. This is a utility function and 329 * probably isn't what you want to call (see set/clear_extent_bit). 330 */ 331 static int insert_state(struct extent_io_tree *tree, 332 struct extent_state *state, u64 start, u64 end, 333 int *bits) 334 { 335 struct rb_node *node; 336 337 if (end < start) { 338 printk(KERN_ERR "btrfs end < start %llu %llu\n", 339 (unsigned long long)end, 340 (unsigned long long)start); 341 WARN_ON(1); 342 } 343 state->start = start; 344 state->end = end; 345 346 set_state_bits(tree, state, bits); 347 348 node = tree_insert(&tree->state, end, &state->rb_node); 349 if (node) { 350 struct extent_state *found; 351 found = rb_entry(node, struct extent_state, rb_node); 352 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 353 "%llu %llu\n", (unsigned long long)found->start, 354 (unsigned long long)found->end, 355 (unsigned long long)start, (unsigned long long)end); 356 return -EEXIST; 357 } 358 state->tree = tree; 359 merge_state(tree, state); 360 return 0; 361 } 362 363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 364 u64 split) 365 { 366 if (tree->ops && tree->ops->split_extent_hook) 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 368 } 369 370 /* 371 * split a given extent state struct in two, inserting the preallocated 372 * struct 'prealloc' as the newly created second half. 'split' indicates an 373 * offset inside 'orig' where it should be split. 374 * 375 * Before calling, 376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 377 * are two extent state structs in the tree: 378 * prealloc: [orig->start, split - 1] 379 * orig: [ split, orig->end ] 380 * 381 * The tree locks are not taken by this function. They need to be held 382 * by the caller. 383 */ 384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 385 struct extent_state *prealloc, u64 split) 386 { 387 struct rb_node *node; 388 389 split_cb(tree, orig, split); 390 391 prealloc->start = orig->start; 392 prealloc->end = split - 1; 393 prealloc->state = orig->state; 394 orig->start = split; 395 396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 397 if (node) { 398 free_extent_state(prealloc); 399 return -EEXIST; 400 } 401 prealloc->tree = tree; 402 return 0; 403 } 404 405 static struct extent_state *next_state(struct extent_state *state) 406 { 407 struct rb_node *next = rb_next(&state->rb_node); 408 if (next) 409 return rb_entry(next, struct extent_state, rb_node); 410 else 411 return NULL; 412 } 413 414 /* 415 * utility function to clear some bits in an extent state struct. 416 * it will optionally wake up any one waiting on this state (wake == 1). 417 * 418 * If no bits are set on the state struct after clearing things, the 419 * struct is freed and removed from the tree 420 */ 421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 422 struct extent_state *state, 423 int *bits, int wake) 424 { 425 struct extent_state *next; 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 427 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 429 u64 range = state->end - state->start + 1; 430 WARN_ON(range > tree->dirty_bytes); 431 tree->dirty_bytes -= range; 432 } 433 clear_state_cb(tree, state, bits); 434 state->state &= ~bits_to_clear; 435 if (wake) 436 wake_up(&state->wq); 437 if (state->state == 0) { 438 next = next_state(state); 439 if (state->tree) { 440 rb_erase(&state->rb_node, &tree->state); 441 state->tree = NULL; 442 free_extent_state(state); 443 } else { 444 WARN_ON(1); 445 } 446 } else { 447 merge_state(tree, state); 448 next = next_state(state); 449 } 450 return next; 451 } 452 453 static struct extent_state * 454 alloc_extent_state_atomic(struct extent_state *prealloc) 455 { 456 if (!prealloc) 457 prealloc = alloc_extent_state(GFP_ATOMIC); 458 459 return prealloc; 460 } 461 462 void extent_io_tree_panic(struct extent_io_tree *tree, int err) 463 { 464 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 465 "Extent tree was modified by another " 466 "thread while locked."); 467 } 468 469 /* 470 * clear some bits on a range in the tree. This may require splitting 471 * or inserting elements in the tree, so the gfp mask is used to 472 * indicate which allocations or sleeping are allowed. 473 * 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 475 * the given range from the tree regardless of state (ie for truncate). 476 * 477 * the range [start, end] is inclusive. 478 * 479 * This takes the tree lock, and returns 0 on success and < 0 on error. 480 */ 481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 482 int bits, int wake, int delete, 483 struct extent_state **cached_state, 484 gfp_t mask) 485 { 486 struct extent_state *state; 487 struct extent_state *cached; 488 struct extent_state *prealloc = NULL; 489 struct rb_node *node; 490 u64 last_end; 491 int err; 492 int clear = 0; 493 494 if (delete) 495 bits |= ~EXTENT_CTLBITS; 496 bits |= EXTENT_FIRST_DELALLOC; 497 498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 499 clear = 1; 500 again: 501 if (!prealloc && (mask & __GFP_WAIT)) { 502 prealloc = alloc_extent_state(mask); 503 if (!prealloc) 504 return -ENOMEM; 505 } 506 507 spin_lock(&tree->lock); 508 if (cached_state) { 509 cached = *cached_state; 510 511 if (clear) { 512 *cached_state = NULL; 513 cached_state = NULL; 514 } 515 516 if (cached && cached->tree && cached->start <= start && 517 cached->end > start) { 518 if (clear) 519 atomic_dec(&cached->refs); 520 state = cached; 521 goto hit_next; 522 } 523 if (clear) 524 free_extent_state(cached); 525 } 526 /* 527 * this search will find the extents that end after 528 * our range starts 529 */ 530 node = tree_search(tree, start); 531 if (!node) 532 goto out; 533 state = rb_entry(node, struct extent_state, rb_node); 534 hit_next: 535 if (state->start > end) 536 goto out; 537 WARN_ON(state->end < start); 538 last_end = state->end; 539 540 /* the state doesn't have the wanted bits, go ahead */ 541 if (!(state->state & bits)) { 542 state = next_state(state); 543 goto next; 544 } 545 546 /* 547 * | ---- desired range ---- | 548 * | state | or 549 * | ------------- state -------------- | 550 * 551 * We need to split the extent we found, and may flip 552 * bits on second half. 553 * 554 * If the extent we found extends past our range, we 555 * just split and search again. It'll get split again 556 * the next time though. 557 * 558 * If the extent we found is inside our range, we clear 559 * the desired bit on it. 560 */ 561 562 if (state->start < start) { 563 prealloc = alloc_extent_state_atomic(prealloc); 564 BUG_ON(!prealloc); 565 err = split_state(tree, state, prealloc, start); 566 if (err) 567 extent_io_tree_panic(tree, err); 568 569 prealloc = NULL; 570 if (err) 571 goto out; 572 if (state->end <= end) { 573 state = clear_state_bit(tree, state, &bits, wake); 574 goto next; 575 } 576 goto search_again; 577 } 578 /* 579 * | ---- desired range ---- | 580 * | state | 581 * We need to split the extent, and clear the bit 582 * on the first half 583 */ 584 if (state->start <= end && state->end > end) { 585 prealloc = alloc_extent_state_atomic(prealloc); 586 BUG_ON(!prealloc); 587 err = split_state(tree, state, prealloc, end + 1); 588 if (err) 589 extent_io_tree_panic(tree, err); 590 591 if (wake) 592 wake_up(&state->wq); 593 594 clear_state_bit(tree, prealloc, &bits, wake); 595 596 prealloc = NULL; 597 goto out; 598 } 599 600 state = clear_state_bit(tree, state, &bits, wake); 601 next: 602 if (last_end == (u64)-1) 603 goto out; 604 start = last_end + 1; 605 if (start <= end && state && !need_resched()) 606 goto hit_next; 607 goto search_again; 608 609 out: 610 spin_unlock(&tree->lock); 611 if (prealloc) 612 free_extent_state(prealloc); 613 614 return 0; 615 616 search_again: 617 if (start > end) 618 goto out; 619 spin_unlock(&tree->lock); 620 if (mask & __GFP_WAIT) 621 cond_resched(); 622 goto again; 623 } 624 625 static void wait_on_state(struct extent_io_tree *tree, 626 struct extent_state *state) 627 __releases(tree->lock) 628 __acquires(tree->lock) 629 { 630 DEFINE_WAIT(wait); 631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 632 spin_unlock(&tree->lock); 633 schedule(); 634 spin_lock(&tree->lock); 635 finish_wait(&state->wq, &wait); 636 } 637 638 /* 639 * waits for one or more bits to clear on a range in the state tree. 640 * The range [start, end] is inclusive. 641 * The tree lock is taken by this function 642 */ 643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 644 { 645 struct extent_state *state; 646 struct rb_node *node; 647 648 spin_lock(&tree->lock); 649 again: 650 while (1) { 651 /* 652 * this search will find all the extents that end after 653 * our range starts 654 */ 655 node = tree_search(tree, start); 656 if (!node) 657 break; 658 659 state = rb_entry(node, struct extent_state, rb_node); 660 661 if (state->start > end) 662 goto out; 663 664 if (state->state & bits) { 665 start = state->start; 666 atomic_inc(&state->refs); 667 wait_on_state(tree, state); 668 free_extent_state(state); 669 goto again; 670 } 671 start = state->end + 1; 672 673 if (start > end) 674 break; 675 676 cond_resched_lock(&tree->lock); 677 } 678 out: 679 spin_unlock(&tree->lock); 680 } 681 682 static void set_state_bits(struct extent_io_tree *tree, 683 struct extent_state *state, 684 int *bits) 685 { 686 int bits_to_set = *bits & ~EXTENT_CTLBITS; 687 688 set_state_cb(tree, state, bits); 689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 690 u64 range = state->end - state->start + 1; 691 tree->dirty_bytes += range; 692 } 693 state->state |= bits_to_set; 694 } 695 696 static void cache_state(struct extent_state *state, 697 struct extent_state **cached_ptr) 698 { 699 if (cached_ptr && !(*cached_ptr)) { 700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 701 *cached_ptr = state; 702 atomic_inc(&state->refs); 703 } 704 } 705 } 706 707 static void uncache_state(struct extent_state **cached_ptr) 708 { 709 if (cached_ptr && (*cached_ptr)) { 710 struct extent_state *state = *cached_ptr; 711 *cached_ptr = NULL; 712 free_extent_state(state); 713 } 714 } 715 716 /* 717 * set some bits on a range in the tree. This may require allocations or 718 * sleeping, so the gfp mask is used to indicate what is allowed. 719 * 720 * If any of the exclusive bits are set, this will fail with -EEXIST if some 721 * part of the range already has the desired bits set. The start of the 722 * existing range is returned in failed_start in this case. 723 * 724 * [start, end] is inclusive This takes the tree lock. 725 */ 726 727 static int __must_check 728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 729 int bits, int exclusive_bits, u64 *failed_start, 730 struct extent_state **cached_state, gfp_t mask) 731 { 732 struct extent_state *state; 733 struct extent_state *prealloc = NULL; 734 struct rb_node *node; 735 int err = 0; 736 u64 last_start; 737 u64 last_end; 738 739 bits |= EXTENT_FIRST_DELALLOC; 740 again: 741 if (!prealloc && (mask & __GFP_WAIT)) { 742 prealloc = alloc_extent_state(mask); 743 BUG_ON(!prealloc); 744 } 745 746 spin_lock(&tree->lock); 747 if (cached_state && *cached_state) { 748 state = *cached_state; 749 if (state->start <= start && state->end > start && 750 state->tree) { 751 node = &state->rb_node; 752 goto hit_next; 753 } 754 } 755 /* 756 * this search will find all the extents that end after 757 * our range starts. 758 */ 759 node = tree_search(tree, start); 760 if (!node) { 761 prealloc = alloc_extent_state_atomic(prealloc); 762 BUG_ON(!prealloc); 763 err = insert_state(tree, prealloc, start, end, &bits); 764 if (err) 765 extent_io_tree_panic(tree, err); 766 767 prealloc = NULL; 768 goto out; 769 } 770 state = rb_entry(node, struct extent_state, rb_node); 771 hit_next: 772 last_start = state->start; 773 last_end = state->end; 774 775 /* 776 * | ---- desired range ---- | 777 * | state | 778 * 779 * Just lock what we found and keep going 780 */ 781 if (state->start == start && state->end <= end) { 782 if (state->state & exclusive_bits) { 783 *failed_start = state->start; 784 err = -EEXIST; 785 goto out; 786 } 787 788 set_state_bits(tree, state, &bits); 789 cache_state(state, cached_state); 790 merge_state(tree, state); 791 if (last_end == (u64)-1) 792 goto out; 793 start = last_end + 1; 794 state = next_state(state); 795 if (start < end && state && state->start == start && 796 !need_resched()) 797 goto hit_next; 798 goto search_again; 799 } 800 801 /* 802 * | ---- desired range ---- | 803 * | state | 804 * or 805 * | ------------- state -------------- | 806 * 807 * We need to split the extent we found, and may flip bits on 808 * second half. 809 * 810 * If the extent we found extends past our 811 * range, we just split and search again. It'll get split 812 * again the next time though. 813 * 814 * If the extent we found is inside our range, we set the 815 * desired bit on it. 816 */ 817 if (state->start < start) { 818 if (state->state & exclusive_bits) { 819 *failed_start = start; 820 err = -EEXIST; 821 goto out; 822 } 823 824 prealloc = alloc_extent_state_atomic(prealloc); 825 BUG_ON(!prealloc); 826 err = split_state(tree, state, prealloc, start); 827 if (err) 828 extent_io_tree_panic(tree, err); 829 830 prealloc = NULL; 831 if (err) 832 goto out; 833 if (state->end <= end) { 834 set_state_bits(tree, state, &bits); 835 cache_state(state, cached_state); 836 merge_state(tree, state); 837 if (last_end == (u64)-1) 838 goto out; 839 start = last_end + 1; 840 state = next_state(state); 841 if (start < end && state && state->start == start && 842 !need_resched()) 843 goto hit_next; 844 } 845 goto search_again; 846 } 847 /* 848 * | ---- desired range ---- | 849 * | state | or | state | 850 * 851 * There's a hole, we need to insert something in it and 852 * ignore the extent we found. 853 */ 854 if (state->start > start) { 855 u64 this_end; 856 if (end < last_start) 857 this_end = end; 858 else 859 this_end = last_start - 1; 860 861 prealloc = alloc_extent_state_atomic(prealloc); 862 BUG_ON(!prealloc); 863 864 /* 865 * Avoid to free 'prealloc' if it can be merged with 866 * the later extent. 867 */ 868 err = insert_state(tree, prealloc, start, this_end, 869 &bits); 870 if (err) 871 extent_io_tree_panic(tree, err); 872 873 cache_state(prealloc, cached_state); 874 prealloc = NULL; 875 start = this_end + 1; 876 goto search_again; 877 } 878 /* 879 * | ---- desired range ---- | 880 * | state | 881 * We need to split the extent, and set the bit 882 * on the first half 883 */ 884 if (state->start <= end && state->end > end) { 885 if (state->state & exclusive_bits) { 886 *failed_start = start; 887 err = -EEXIST; 888 goto out; 889 } 890 891 prealloc = alloc_extent_state_atomic(prealloc); 892 BUG_ON(!prealloc); 893 err = split_state(tree, state, prealloc, end + 1); 894 if (err) 895 extent_io_tree_panic(tree, err); 896 897 set_state_bits(tree, prealloc, &bits); 898 cache_state(prealloc, cached_state); 899 merge_state(tree, prealloc); 900 prealloc = NULL; 901 goto out; 902 } 903 904 goto search_again; 905 906 out: 907 spin_unlock(&tree->lock); 908 if (prealloc) 909 free_extent_state(prealloc); 910 911 return err; 912 913 search_again: 914 if (start > end) 915 goto out; 916 spin_unlock(&tree->lock); 917 if (mask & __GFP_WAIT) 918 cond_resched(); 919 goto again; 920 } 921 922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, 923 u64 *failed_start, struct extent_state **cached_state, 924 gfp_t mask) 925 { 926 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 927 cached_state, mask); 928 } 929 930 931 /** 932 * convert_extent_bit - convert all bits in a given range from one bit to 933 * another 934 * @tree: the io tree to search 935 * @start: the start offset in bytes 936 * @end: the end offset in bytes (inclusive) 937 * @bits: the bits to set in this range 938 * @clear_bits: the bits to clear in this range 939 * @mask: the allocation mask 940 * 941 * This will go through and set bits for the given range. If any states exist 942 * already in this range they are set with the given bit and cleared of the 943 * clear_bits. This is only meant to be used by things that are mergeable, ie 944 * converting from say DELALLOC to DIRTY. This is not meant to be used with 945 * boundary bits like LOCK. 946 */ 947 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 948 int bits, int clear_bits, gfp_t mask) 949 { 950 struct extent_state *state; 951 struct extent_state *prealloc = NULL; 952 struct rb_node *node; 953 int err = 0; 954 u64 last_start; 955 u64 last_end; 956 957 again: 958 if (!prealloc && (mask & __GFP_WAIT)) { 959 prealloc = alloc_extent_state(mask); 960 if (!prealloc) 961 return -ENOMEM; 962 } 963 964 spin_lock(&tree->lock); 965 /* 966 * this search will find all the extents that end after 967 * our range starts. 968 */ 969 node = tree_search(tree, start); 970 if (!node) { 971 prealloc = alloc_extent_state_atomic(prealloc); 972 if (!prealloc) { 973 err = -ENOMEM; 974 goto out; 975 } 976 err = insert_state(tree, prealloc, start, end, &bits); 977 prealloc = NULL; 978 if (err) 979 extent_io_tree_panic(tree, err); 980 goto out; 981 } 982 state = rb_entry(node, struct extent_state, rb_node); 983 hit_next: 984 last_start = state->start; 985 last_end = state->end; 986 987 /* 988 * | ---- desired range ---- | 989 * | state | 990 * 991 * Just lock what we found and keep going 992 */ 993 if (state->start == start && state->end <= end) { 994 set_state_bits(tree, state, &bits); 995 state = clear_state_bit(tree, state, &clear_bits, 0); 996 if (last_end == (u64)-1) 997 goto out; 998 start = last_end + 1; 999 if (start < end && state && state->start == start && 1000 !need_resched()) 1001 goto hit_next; 1002 goto search_again; 1003 } 1004 1005 /* 1006 * | ---- desired range ---- | 1007 * | state | 1008 * or 1009 * | ------------- state -------------- | 1010 * 1011 * We need to split the extent we found, and may flip bits on 1012 * second half. 1013 * 1014 * If the extent we found extends past our 1015 * range, we just split and search again. It'll get split 1016 * again the next time though. 1017 * 1018 * If the extent we found is inside our range, we set the 1019 * desired bit on it. 1020 */ 1021 if (state->start < start) { 1022 prealloc = alloc_extent_state_atomic(prealloc); 1023 if (!prealloc) { 1024 err = -ENOMEM; 1025 goto out; 1026 } 1027 err = split_state(tree, state, prealloc, start); 1028 if (err) 1029 extent_io_tree_panic(tree, err); 1030 prealloc = NULL; 1031 if (err) 1032 goto out; 1033 if (state->end <= end) { 1034 set_state_bits(tree, state, &bits); 1035 state = clear_state_bit(tree, state, &clear_bits, 0); 1036 if (last_end == (u64)-1) 1037 goto out; 1038 start = last_end + 1; 1039 if (start < end && state && state->start == start && 1040 !need_resched()) 1041 goto hit_next; 1042 } 1043 goto search_again; 1044 } 1045 /* 1046 * | ---- desired range ---- | 1047 * | state | or | state | 1048 * 1049 * There's a hole, we need to insert something in it and 1050 * ignore the extent we found. 1051 */ 1052 if (state->start > start) { 1053 u64 this_end; 1054 if (end < last_start) 1055 this_end = end; 1056 else 1057 this_end = last_start - 1; 1058 1059 prealloc = alloc_extent_state_atomic(prealloc); 1060 if (!prealloc) { 1061 err = -ENOMEM; 1062 goto out; 1063 } 1064 1065 /* 1066 * Avoid to free 'prealloc' if it can be merged with 1067 * the later extent. 1068 */ 1069 err = insert_state(tree, prealloc, start, this_end, 1070 &bits); 1071 if (err) 1072 extent_io_tree_panic(tree, err); 1073 prealloc = NULL; 1074 start = this_end + 1; 1075 goto search_again; 1076 } 1077 /* 1078 * | ---- desired range ---- | 1079 * | state | 1080 * We need to split the extent, and set the bit 1081 * on the first half 1082 */ 1083 if (state->start <= end && state->end > end) { 1084 prealloc = alloc_extent_state_atomic(prealloc); 1085 if (!prealloc) { 1086 err = -ENOMEM; 1087 goto out; 1088 } 1089 1090 err = split_state(tree, state, prealloc, end + 1); 1091 if (err) 1092 extent_io_tree_panic(tree, err); 1093 1094 set_state_bits(tree, prealloc, &bits); 1095 clear_state_bit(tree, prealloc, &clear_bits, 0); 1096 prealloc = NULL; 1097 goto out; 1098 } 1099 1100 goto search_again; 1101 1102 out: 1103 spin_unlock(&tree->lock); 1104 if (prealloc) 1105 free_extent_state(prealloc); 1106 1107 return err; 1108 1109 search_again: 1110 if (start > end) 1111 goto out; 1112 spin_unlock(&tree->lock); 1113 if (mask & __GFP_WAIT) 1114 cond_resched(); 1115 goto again; 1116 } 1117 1118 /* wrappers around set/clear extent bit */ 1119 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1120 gfp_t mask) 1121 { 1122 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1123 NULL, mask); 1124 } 1125 1126 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1127 int bits, gfp_t mask) 1128 { 1129 return set_extent_bit(tree, start, end, bits, NULL, 1130 NULL, mask); 1131 } 1132 1133 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1134 int bits, gfp_t mask) 1135 { 1136 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1137 } 1138 1139 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1140 struct extent_state **cached_state, gfp_t mask) 1141 { 1142 return set_extent_bit(tree, start, end, 1143 EXTENT_DELALLOC | EXTENT_UPTODATE, 1144 NULL, cached_state, mask); 1145 } 1146 1147 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1148 gfp_t mask) 1149 { 1150 return clear_extent_bit(tree, start, end, 1151 EXTENT_DIRTY | EXTENT_DELALLOC | 1152 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1153 } 1154 1155 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1156 gfp_t mask) 1157 { 1158 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1159 NULL, mask); 1160 } 1161 1162 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1163 struct extent_state **cached_state, gfp_t mask) 1164 { 1165 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 1166 cached_state, mask); 1167 } 1168 1169 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1170 struct extent_state **cached_state, gfp_t mask) 1171 { 1172 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1173 cached_state, mask); 1174 } 1175 1176 /* 1177 * either insert or lock state struct between start and end use mask to tell 1178 * us if waiting is desired. 1179 */ 1180 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1181 int bits, struct extent_state **cached_state) 1182 { 1183 int err; 1184 u64 failed_start; 1185 while (1) { 1186 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1187 EXTENT_LOCKED, &failed_start, 1188 cached_state, GFP_NOFS); 1189 if (err == -EEXIST) { 1190 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1191 start = failed_start; 1192 } else 1193 break; 1194 WARN_ON(start > end); 1195 } 1196 return err; 1197 } 1198 1199 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1200 { 1201 return lock_extent_bits(tree, start, end, 0, NULL); 1202 } 1203 1204 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1205 { 1206 int err; 1207 u64 failed_start; 1208 1209 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1210 &failed_start, NULL, GFP_NOFS); 1211 if (err == -EEXIST) { 1212 if (failed_start > start) 1213 clear_extent_bit(tree, start, failed_start - 1, 1214 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1215 return 0; 1216 } 1217 return 1; 1218 } 1219 1220 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1221 struct extent_state **cached, gfp_t mask) 1222 { 1223 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1224 mask); 1225 } 1226 1227 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1228 { 1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1230 GFP_NOFS); 1231 } 1232 1233 /* 1234 * helper function to set both pages and extents in the tree writeback 1235 */ 1236 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1237 { 1238 unsigned long index = start >> PAGE_CACHE_SHIFT; 1239 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1240 struct page *page; 1241 1242 while (index <= end_index) { 1243 page = find_get_page(tree->mapping, index); 1244 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1245 set_page_writeback(page); 1246 page_cache_release(page); 1247 index++; 1248 } 1249 return 0; 1250 } 1251 1252 /* find the first state struct with 'bits' set after 'start', and 1253 * return it. tree->lock must be held. NULL will returned if 1254 * nothing was found after 'start' 1255 */ 1256 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1257 u64 start, int bits) 1258 { 1259 struct rb_node *node; 1260 struct extent_state *state; 1261 1262 /* 1263 * this search will find all the extents that end after 1264 * our range starts. 1265 */ 1266 node = tree_search(tree, start); 1267 if (!node) 1268 goto out; 1269 1270 while (1) { 1271 state = rb_entry(node, struct extent_state, rb_node); 1272 if (state->end >= start && (state->state & bits)) 1273 return state; 1274 1275 node = rb_next(node); 1276 if (!node) 1277 break; 1278 } 1279 out: 1280 return NULL; 1281 } 1282 1283 /* 1284 * find the first offset in the io tree with 'bits' set. zero is 1285 * returned if we find something, and *start_ret and *end_ret are 1286 * set to reflect the state struct that was found. 1287 * 1288 * If nothing was found, 1 is returned. If found something, return 0. 1289 */ 1290 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1291 u64 *start_ret, u64 *end_ret, int bits) 1292 { 1293 struct extent_state *state; 1294 int ret = 1; 1295 1296 spin_lock(&tree->lock); 1297 state = find_first_extent_bit_state(tree, start, bits); 1298 if (state) { 1299 *start_ret = state->start; 1300 *end_ret = state->end; 1301 ret = 0; 1302 } 1303 spin_unlock(&tree->lock); 1304 return ret; 1305 } 1306 1307 /* 1308 * find a contiguous range of bytes in the file marked as delalloc, not 1309 * more than 'max_bytes'. start and end are used to return the range, 1310 * 1311 * 1 is returned if we find something, 0 if nothing was in the tree 1312 */ 1313 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1314 u64 *start, u64 *end, u64 max_bytes, 1315 struct extent_state **cached_state) 1316 { 1317 struct rb_node *node; 1318 struct extent_state *state; 1319 u64 cur_start = *start; 1320 u64 found = 0; 1321 u64 total_bytes = 0; 1322 1323 spin_lock(&tree->lock); 1324 1325 /* 1326 * this search will find all the extents that end after 1327 * our range starts. 1328 */ 1329 node = tree_search(tree, cur_start); 1330 if (!node) { 1331 if (!found) 1332 *end = (u64)-1; 1333 goto out; 1334 } 1335 1336 while (1) { 1337 state = rb_entry(node, struct extent_state, rb_node); 1338 if (found && (state->start != cur_start || 1339 (state->state & EXTENT_BOUNDARY))) { 1340 goto out; 1341 } 1342 if (!(state->state & EXTENT_DELALLOC)) { 1343 if (!found) 1344 *end = state->end; 1345 goto out; 1346 } 1347 if (!found) { 1348 *start = state->start; 1349 *cached_state = state; 1350 atomic_inc(&state->refs); 1351 } 1352 found++; 1353 *end = state->end; 1354 cur_start = state->end + 1; 1355 node = rb_next(node); 1356 if (!node) 1357 break; 1358 total_bytes += state->end - state->start + 1; 1359 if (total_bytes >= max_bytes) 1360 break; 1361 } 1362 out: 1363 spin_unlock(&tree->lock); 1364 return found; 1365 } 1366 1367 static noinline void __unlock_for_delalloc(struct inode *inode, 1368 struct page *locked_page, 1369 u64 start, u64 end) 1370 { 1371 int ret; 1372 struct page *pages[16]; 1373 unsigned long index = start >> PAGE_CACHE_SHIFT; 1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1375 unsigned long nr_pages = end_index - index + 1; 1376 int i; 1377 1378 if (index == locked_page->index && end_index == index) 1379 return; 1380 1381 while (nr_pages > 0) { 1382 ret = find_get_pages_contig(inode->i_mapping, index, 1383 min_t(unsigned long, nr_pages, 1384 ARRAY_SIZE(pages)), pages); 1385 for (i = 0; i < ret; i++) { 1386 if (pages[i] != locked_page) 1387 unlock_page(pages[i]); 1388 page_cache_release(pages[i]); 1389 } 1390 nr_pages -= ret; 1391 index += ret; 1392 cond_resched(); 1393 } 1394 } 1395 1396 static noinline int lock_delalloc_pages(struct inode *inode, 1397 struct page *locked_page, 1398 u64 delalloc_start, 1399 u64 delalloc_end) 1400 { 1401 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1402 unsigned long start_index = index; 1403 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1404 unsigned long pages_locked = 0; 1405 struct page *pages[16]; 1406 unsigned long nrpages; 1407 int ret; 1408 int i; 1409 1410 /* the caller is responsible for locking the start index */ 1411 if (index == locked_page->index && index == end_index) 1412 return 0; 1413 1414 /* skip the page at the start index */ 1415 nrpages = end_index - index + 1; 1416 while (nrpages > 0) { 1417 ret = find_get_pages_contig(inode->i_mapping, index, 1418 min_t(unsigned long, 1419 nrpages, ARRAY_SIZE(pages)), pages); 1420 if (ret == 0) { 1421 ret = -EAGAIN; 1422 goto done; 1423 } 1424 /* now we have an array of pages, lock them all */ 1425 for (i = 0; i < ret; i++) { 1426 /* 1427 * the caller is taking responsibility for 1428 * locked_page 1429 */ 1430 if (pages[i] != locked_page) { 1431 lock_page(pages[i]); 1432 if (!PageDirty(pages[i]) || 1433 pages[i]->mapping != inode->i_mapping) { 1434 ret = -EAGAIN; 1435 unlock_page(pages[i]); 1436 page_cache_release(pages[i]); 1437 goto done; 1438 } 1439 } 1440 page_cache_release(pages[i]); 1441 pages_locked++; 1442 } 1443 nrpages -= ret; 1444 index += ret; 1445 cond_resched(); 1446 } 1447 ret = 0; 1448 done: 1449 if (ret && pages_locked) { 1450 __unlock_for_delalloc(inode, locked_page, 1451 delalloc_start, 1452 ((u64)(start_index + pages_locked - 1)) << 1453 PAGE_CACHE_SHIFT); 1454 } 1455 return ret; 1456 } 1457 1458 /* 1459 * find a contiguous range of bytes in the file marked as delalloc, not 1460 * more than 'max_bytes'. start and end are used to return the range, 1461 * 1462 * 1 is returned if we find something, 0 if nothing was in the tree 1463 */ 1464 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1465 struct extent_io_tree *tree, 1466 struct page *locked_page, 1467 u64 *start, u64 *end, 1468 u64 max_bytes) 1469 { 1470 u64 delalloc_start; 1471 u64 delalloc_end; 1472 u64 found; 1473 struct extent_state *cached_state = NULL; 1474 int ret; 1475 int loops = 0; 1476 1477 again: 1478 /* step one, find a bunch of delalloc bytes starting at start */ 1479 delalloc_start = *start; 1480 delalloc_end = 0; 1481 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1482 max_bytes, &cached_state); 1483 if (!found || delalloc_end <= *start) { 1484 *start = delalloc_start; 1485 *end = delalloc_end; 1486 free_extent_state(cached_state); 1487 return found; 1488 } 1489 1490 /* 1491 * start comes from the offset of locked_page. We have to lock 1492 * pages in order, so we can't process delalloc bytes before 1493 * locked_page 1494 */ 1495 if (delalloc_start < *start) 1496 delalloc_start = *start; 1497 1498 /* 1499 * make sure to limit the number of pages we try to lock down 1500 * if we're looping. 1501 */ 1502 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1503 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1504 1505 /* step two, lock all the pages after the page that has start */ 1506 ret = lock_delalloc_pages(inode, locked_page, 1507 delalloc_start, delalloc_end); 1508 if (ret == -EAGAIN) { 1509 /* some of the pages are gone, lets avoid looping by 1510 * shortening the size of the delalloc range we're searching 1511 */ 1512 free_extent_state(cached_state); 1513 if (!loops) { 1514 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1515 max_bytes = PAGE_CACHE_SIZE - offset; 1516 loops = 1; 1517 goto again; 1518 } else { 1519 found = 0; 1520 goto out_failed; 1521 } 1522 } 1523 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1524 1525 /* step three, lock the state bits for the whole range */ 1526 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1527 1528 /* then test to make sure it is all still delalloc */ 1529 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1530 EXTENT_DELALLOC, 1, cached_state); 1531 if (!ret) { 1532 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1533 &cached_state, GFP_NOFS); 1534 __unlock_for_delalloc(inode, locked_page, 1535 delalloc_start, delalloc_end); 1536 cond_resched(); 1537 goto again; 1538 } 1539 free_extent_state(cached_state); 1540 *start = delalloc_start; 1541 *end = delalloc_end; 1542 out_failed: 1543 return found; 1544 } 1545 1546 int extent_clear_unlock_delalloc(struct inode *inode, 1547 struct extent_io_tree *tree, 1548 u64 start, u64 end, struct page *locked_page, 1549 unsigned long op) 1550 { 1551 int ret; 1552 struct page *pages[16]; 1553 unsigned long index = start >> PAGE_CACHE_SHIFT; 1554 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1555 unsigned long nr_pages = end_index - index + 1; 1556 int i; 1557 int clear_bits = 0; 1558 1559 if (op & EXTENT_CLEAR_UNLOCK) 1560 clear_bits |= EXTENT_LOCKED; 1561 if (op & EXTENT_CLEAR_DIRTY) 1562 clear_bits |= EXTENT_DIRTY; 1563 1564 if (op & EXTENT_CLEAR_DELALLOC) 1565 clear_bits |= EXTENT_DELALLOC; 1566 1567 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1568 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1569 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1570 EXTENT_SET_PRIVATE2))) 1571 return 0; 1572 1573 while (nr_pages > 0) { 1574 ret = find_get_pages_contig(inode->i_mapping, index, 1575 min_t(unsigned long, 1576 nr_pages, ARRAY_SIZE(pages)), pages); 1577 for (i = 0; i < ret; i++) { 1578 1579 if (op & EXTENT_SET_PRIVATE2) 1580 SetPagePrivate2(pages[i]); 1581 1582 if (pages[i] == locked_page) { 1583 page_cache_release(pages[i]); 1584 continue; 1585 } 1586 if (op & EXTENT_CLEAR_DIRTY) 1587 clear_page_dirty_for_io(pages[i]); 1588 if (op & EXTENT_SET_WRITEBACK) 1589 set_page_writeback(pages[i]); 1590 if (op & EXTENT_END_WRITEBACK) 1591 end_page_writeback(pages[i]); 1592 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1593 unlock_page(pages[i]); 1594 page_cache_release(pages[i]); 1595 } 1596 nr_pages -= ret; 1597 index += ret; 1598 cond_resched(); 1599 } 1600 return 0; 1601 } 1602 1603 /* 1604 * count the number of bytes in the tree that have a given bit(s) 1605 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1606 * cached. The total number found is returned. 1607 */ 1608 u64 count_range_bits(struct extent_io_tree *tree, 1609 u64 *start, u64 search_end, u64 max_bytes, 1610 unsigned long bits, int contig) 1611 { 1612 struct rb_node *node; 1613 struct extent_state *state; 1614 u64 cur_start = *start; 1615 u64 total_bytes = 0; 1616 u64 last = 0; 1617 int found = 0; 1618 1619 if (search_end <= cur_start) { 1620 WARN_ON(1); 1621 return 0; 1622 } 1623 1624 spin_lock(&tree->lock); 1625 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1626 total_bytes = tree->dirty_bytes; 1627 goto out; 1628 } 1629 /* 1630 * this search will find all the extents that end after 1631 * our range starts. 1632 */ 1633 node = tree_search(tree, cur_start); 1634 if (!node) 1635 goto out; 1636 1637 while (1) { 1638 state = rb_entry(node, struct extent_state, rb_node); 1639 if (state->start > search_end) 1640 break; 1641 if (contig && found && state->start > last + 1) 1642 break; 1643 if (state->end >= cur_start && (state->state & bits) == bits) { 1644 total_bytes += min(search_end, state->end) + 1 - 1645 max(cur_start, state->start); 1646 if (total_bytes >= max_bytes) 1647 break; 1648 if (!found) { 1649 *start = max(cur_start, state->start); 1650 found = 1; 1651 } 1652 last = state->end; 1653 } else if (contig && found) { 1654 break; 1655 } 1656 node = rb_next(node); 1657 if (!node) 1658 break; 1659 } 1660 out: 1661 spin_unlock(&tree->lock); 1662 return total_bytes; 1663 } 1664 1665 /* 1666 * set the private field for a given byte offset in the tree. If there isn't 1667 * an extent_state there already, this does nothing. 1668 */ 1669 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1670 { 1671 struct rb_node *node; 1672 struct extent_state *state; 1673 int ret = 0; 1674 1675 spin_lock(&tree->lock); 1676 /* 1677 * this search will find all the extents that end after 1678 * our range starts. 1679 */ 1680 node = tree_search(tree, start); 1681 if (!node) { 1682 ret = -ENOENT; 1683 goto out; 1684 } 1685 state = rb_entry(node, struct extent_state, rb_node); 1686 if (state->start != start) { 1687 ret = -ENOENT; 1688 goto out; 1689 } 1690 state->private = private; 1691 out: 1692 spin_unlock(&tree->lock); 1693 return ret; 1694 } 1695 1696 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1697 { 1698 struct rb_node *node; 1699 struct extent_state *state; 1700 int ret = 0; 1701 1702 spin_lock(&tree->lock); 1703 /* 1704 * this search will find all the extents that end after 1705 * our range starts. 1706 */ 1707 node = tree_search(tree, start); 1708 if (!node) { 1709 ret = -ENOENT; 1710 goto out; 1711 } 1712 state = rb_entry(node, struct extent_state, rb_node); 1713 if (state->start != start) { 1714 ret = -ENOENT; 1715 goto out; 1716 } 1717 *private = state->private; 1718 out: 1719 spin_unlock(&tree->lock); 1720 return ret; 1721 } 1722 1723 /* 1724 * searches a range in the state tree for a given mask. 1725 * If 'filled' == 1, this returns 1 only if every extent in the tree 1726 * has the bits set. Otherwise, 1 is returned if any bit in the 1727 * range is found set. 1728 */ 1729 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1730 int bits, int filled, struct extent_state *cached) 1731 { 1732 struct extent_state *state = NULL; 1733 struct rb_node *node; 1734 int bitset = 0; 1735 1736 spin_lock(&tree->lock); 1737 if (cached && cached->tree && cached->start <= start && 1738 cached->end > start) 1739 node = &cached->rb_node; 1740 else 1741 node = tree_search(tree, start); 1742 while (node && start <= end) { 1743 state = rb_entry(node, struct extent_state, rb_node); 1744 1745 if (filled && state->start > start) { 1746 bitset = 0; 1747 break; 1748 } 1749 1750 if (state->start > end) 1751 break; 1752 1753 if (state->state & bits) { 1754 bitset = 1; 1755 if (!filled) 1756 break; 1757 } else if (filled) { 1758 bitset = 0; 1759 break; 1760 } 1761 1762 if (state->end == (u64)-1) 1763 break; 1764 1765 start = state->end + 1; 1766 if (start > end) 1767 break; 1768 node = rb_next(node); 1769 if (!node) { 1770 if (filled) 1771 bitset = 0; 1772 break; 1773 } 1774 } 1775 spin_unlock(&tree->lock); 1776 return bitset; 1777 } 1778 1779 /* 1780 * helper function to set a given page up to date if all the 1781 * extents in the tree for that page are up to date 1782 */ 1783 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1784 { 1785 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1786 u64 end = start + PAGE_CACHE_SIZE - 1; 1787 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1788 SetPageUptodate(page); 1789 } 1790 1791 /* 1792 * helper function to unlock a page if all the extents in the tree 1793 * for that page are unlocked 1794 */ 1795 static void check_page_locked(struct extent_io_tree *tree, struct page *page) 1796 { 1797 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1798 u64 end = start + PAGE_CACHE_SIZE - 1; 1799 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1800 unlock_page(page); 1801 } 1802 1803 /* 1804 * helper function to end page writeback if all the extents 1805 * in the tree for that page are done with writeback 1806 */ 1807 static void check_page_writeback(struct extent_io_tree *tree, 1808 struct page *page) 1809 { 1810 end_page_writeback(page); 1811 } 1812 1813 /* 1814 * When IO fails, either with EIO or csum verification fails, we 1815 * try other mirrors that might have a good copy of the data. This 1816 * io_failure_record is used to record state as we go through all the 1817 * mirrors. If another mirror has good data, the page is set up to date 1818 * and things continue. If a good mirror can't be found, the original 1819 * bio end_io callback is called to indicate things have failed. 1820 */ 1821 struct io_failure_record { 1822 struct page *page; 1823 u64 start; 1824 u64 len; 1825 u64 logical; 1826 unsigned long bio_flags; 1827 int this_mirror; 1828 int failed_mirror; 1829 int in_validation; 1830 }; 1831 1832 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1833 int did_repair) 1834 { 1835 int ret; 1836 int err = 0; 1837 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1838 1839 set_state_private(failure_tree, rec->start, 0); 1840 ret = clear_extent_bits(failure_tree, rec->start, 1841 rec->start + rec->len - 1, 1842 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1843 if (ret) 1844 err = ret; 1845 1846 if (did_repair) { 1847 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1848 rec->start + rec->len - 1, 1849 EXTENT_DAMAGED, GFP_NOFS); 1850 if (ret && !err) 1851 err = ret; 1852 } 1853 1854 kfree(rec); 1855 return err; 1856 } 1857 1858 static void repair_io_failure_callback(struct bio *bio, int err) 1859 { 1860 complete(bio->bi_private); 1861 } 1862 1863 /* 1864 * this bypasses the standard btrfs submit functions deliberately, as 1865 * the standard behavior is to write all copies in a raid setup. here we only 1866 * want to write the one bad copy. so we do the mapping for ourselves and issue 1867 * submit_bio directly. 1868 * to avoid any synchonization issues, wait for the data after writing, which 1869 * actually prevents the read that triggered the error from finishing. 1870 * currently, there can be no more than two copies of every data bit. thus, 1871 * exactly one rewrite is required. 1872 */ 1873 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start, 1874 u64 length, u64 logical, struct page *page, 1875 int mirror_num) 1876 { 1877 struct bio *bio; 1878 struct btrfs_device *dev; 1879 DECLARE_COMPLETION_ONSTACK(compl); 1880 u64 map_length = 0; 1881 u64 sector; 1882 struct btrfs_bio *bbio = NULL; 1883 int ret; 1884 1885 BUG_ON(!mirror_num); 1886 1887 bio = bio_alloc(GFP_NOFS, 1); 1888 if (!bio) 1889 return -EIO; 1890 bio->bi_private = &compl; 1891 bio->bi_end_io = repair_io_failure_callback; 1892 bio->bi_size = 0; 1893 map_length = length; 1894 1895 ret = btrfs_map_block(map_tree, WRITE, logical, 1896 &map_length, &bbio, mirror_num); 1897 if (ret) { 1898 bio_put(bio); 1899 return -EIO; 1900 } 1901 BUG_ON(mirror_num != bbio->mirror_num); 1902 sector = bbio->stripes[mirror_num-1].physical >> 9; 1903 bio->bi_sector = sector; 1904 dev = bbio->stripes[mirror_num-1].dev; 1905 kfree(bbio); 1906 if (!dev || !dev->bdev || !dev->writeable) { 1907 bio_put(bio); 1908 return -EIO; 1909 } 1910 bio->bi_bdev = dev->bdev; 1911 bio_add_page(bio, page, length, start-page_offset(page)); 1912 btrfsic_submit_bio(WRITE_SYNC, bio); 1913 wait_for_completion(&compl); 1914 1915 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 1916 /* try to remap that extent elsewhere? */ 1917 bio_put(bio); 1918 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 1919 return -EIO; 1920 } 1921 1922 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 1923 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 1924 start, rcu_str_deref(dev->name), sector); 1925 1926 bio_put(bio); 1927 return 0; 1928 } 1929 1930 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 1931 int mirror_num) 1932 { 1933 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 1934 u64 start = eb->start; 1935 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 1936 int ret = 0; 1937 1938 for (i = 0; i < num_pages; i++) { 1939 struct page *p = extent_buffer_page(eb, i); 1940 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE, 1941 start, p, mirror_num); 1942 if (ret) 1943 break; 1944 start += PAGE_CACHE_SIZE; 1945 } 1946 1947 return ret; 1948 } 1949 1950 /* 1951 * each time an IO finishes, we do a fast check in the IO failure tree 1952 * to see if we need to process or clean up an io_failure_record 1953 */ 1954 static int clean_io_failure(u64 start, struct page *page) 1955 { 1956 u64 private; 1957 u64 private_failure; 1958 struct io_failure_record *failrec; 1959 struct btrfs_mapping_tree *map_tree; 1960 struct extent_state *state; 1961 int num_copies; 1962 int did_repair = 0; 1963 int ret; 1964 struct inode *inode = page->mapping->host; 1965 1966 private = 0; 1967 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1968 (u64)-1, 1, EXTENT_DIRTY, 0); 1969 if (!ret) 1970 return 0; 1971 1972 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 1973 &private_failure); 1974 if (ret) 1975 return 0; 1976 1977 failrec = (struct io_failure_record *)(unsigned long) private_failure; 1978 BUG_ON(!failrec->this_mirror); 1979 1980 if (failrec->in_validation) { 1981 /* there was no real error, just free the record */ 1982 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 1983 failrec->start); 1984 did_repair = 1; 1985 goto out; 1986 } 1987 1988 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1989 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1990 failrec->start, 1991 EXTENT_LOCKED); 1992 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1993 1994 if (state && state->start == failrec->start) { 1995 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; 1996 num_copies = btrfs_num_copies(map_tree, failrec->logical, 1997 failrec->len); 1998 if (num_copies > 1) { 1999 ret = repair_io_failure(map_tree, start, failrec->len, 2000 failrec->logical, page, 2001 failrec->failed_mirror); 2002 did_repair = !ret; 2003 } 2004 } 2005 2006 out: 2007 if (!ret) 2008 ret = free_io_failure(inode, failrec, did_repair); 2009 2010 return ret; 2011 } 2012 2013 /* 2014 * this is a generic handler for readpage errors (default 2015 * readpage_io_failed_hook). if other copies exist, read those and write back 2016 * good data to the failed position. does not investigate in remapping the 2017 * failed extent elsewhere, hoping the device will be smart enough to do this as 2018 * needed 2019 */ 2020 2021 static int bio_readpage_error(struct bio *failed_bio, struct page *page, 2022 u64 start, u64 end, int failed_mirror, 2023 struct extent_state *state) 2024 { 2025 struct io_failure_record *failrec = NULL; 2026 u64 private; 2027 struct extent_map *em; 2028 struct inode *inode = page->mapping->host; 2029 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2030 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2031 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2032 struct bio *bio; 2033 int num_copies; 2034 int ret; 2035 int read_mode; 2036 u64 logical; 2037 2038 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2039 2040 ret = get_state_private(failure_tree, start, &private); 2041 if (ret) { 2042 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2043 if (!failrec) 2044 return -ENOMEM; 2045 failrec->start = start; 2046 failrec->len = end - start + 1; 2047 failrec->this_mirror = 0; 2048 failrec->bio_flags = 0; 2049 failrec->in_validation = 0; 2050 2051 read_lock(&em_tree->lock); 2052 em = lookup_extent_mapping(em_tree, start, failrec->len); 2053 if (!em) { 2054 read_unlock(&em_tree->lock); 2055 kfree(failrec); 2056 return -EIO; 2057 } 2058 2059 if (em->start > start || em->start + em->len < start) { 2060 free_extent_map(em); 2061 em = NULL; 2062 } 2063 read_unlock(&em_tree->lock); 2064 2065 if (!em || IS_ERR(em)) { 2066 kfree(failrec); 2067 return -EIO; 2068 } 2069 logical = start - em->start; 2070 logical = em->block_start + logical; 2071 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2072 logical = em->block_start; 2073 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2074 extent_set_compress_type(&failrec->bio_flags, 2075 em->compress_type); 2076 } 2077 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2078 "len=%llu\n", logical, start, failrec->len); 2079 failrec->logical = logical; 2080 free_extent_map(em); 2081 2082 /* set the bits in the private failure tree */ 2083 ret = set_extent_bits(failure_tree, start, end, 2084 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2085 if (ret >= 0) 2086 ret = set_state_private(failure_tree, start, 2087 (u64)(unsigned long)failrec); 2088 /* set the bits in the inode's tree */ 2089 if (ret >= 0) 2090 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2091 GFP_NOFS); 2092 if (ret < 0) { 2093 kfree(failrec); 2094 return ret; 2095 } 2096 } else { 2097 failrec = (struct io_failure_record *)(unsigned long)private; 2098 pr_debug("bio_readpage_error: (found) logical=%llu, " 2099 "start=%llu, len=%llu, validation=%d\n", 2100 failrec->logical, failrec->start, failrec->len, 2101 failrec->in_validation); 2102 /* 2103 * when data can be on disk more than twice, add to failrec here 2104 * (e.g. with a list for failed_mirror) to make 2105 * clean_io_failure() clean all those errors at once. 2106 */ 2107 } 2108 num_copies = btrfs_num_copies( 2109 &BTRFS_I(inode)->root->fs_info->mapping_tree, 2110 failrec->logical, failrec->len); 2111 if (num_copies == 1) { 2112 /* 2113 * we only have a single copy of the data, so don't bother with 2114 * all the retry and error correction code that follows. no 2115 * matter what the error is, it is very likely to persist. 2116 */ 2117 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " 2118 "state=%p, num_copies=%d, next_mirror %d, " 2119 "failed_mirror %d\n", state, num_copies, 2120 failrec->this_mirror, failed_mirror); 2121 free_io_failure(inode, failrec, 0); 2122 return -EIO; 2123 } 2124 2125 if (!state) { 2126 spin_lock(&tree->lock); 2127 state = find_first_extent_bit_state(tree, failrec->start, 2128 EXTENT_LOCKED); 2129 if (state && state->start != failrec->start) 2130 state = NULL; 2131 spin_unlock(&tree->lock); 2132 } 2133 2134 /* 2135 * there are two premises: 2136 * a) deliver good data to the caller 2137 * b) correct the bad sectors on disk 2138 */ 2139 if (failed_bio->bi_vcnt > 1) { 2140 /* 2141 * to fulfill b), we need to know the exact failing sectors, as 2142 * we don't want to rewrite any more than the failed ones. thus, 2143 * we need separate read requests for the failed bio 2144 * 2145 * if the following BUG_ON triggers, our validation request got 2146 * merged. we need separate requests for our algorithm to work. 2147 */ 2148 BUG_ON(failrec->in_validation); 2149 failrec->in_validation = 1; 2150 failrec->this_mirror = failed_mirror; 2151 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2152 } else { 2153 /* 2154 * we're ready to fulfill a) and b) alongside. get a good copy 2155 * of the failed sector and if we succeed, we have setup 2156 * everything for repair_io_failure to do the rest for us. 2157 */ 2158 if (failrec->in_validation) { 2159 BUG_ON(failrec->this_mirror != failed_mirror); 2160 failrec->in_validation = 0; 2161 failrec->this_mirror = 0; 2162 } 2163 failrec->failed_mirror = failed_mirror; 2164 failrec->this_mirror++; 2165 if (failrec->this_mirror == failed_mirror) 2166 failrec->this_mirror++; 2167 read_mode = READ_SYNC; 2168 } 2169 2170 if (!state || failrec->this_mirror > num_copies) { 2171 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " 2172 "next_mirror %d, failed_mirror %d\n", state, 2173 num_copies, failrec->this_mirror, failed_mirror); 2174 free_io_failure(inode, failrec, 0); 2175 return -EIO; 2176 } 2177 2178 bio = bio_alloc(GFP_NOFS, 1); 2179 if (!bio) { 2180 free_io_failure(inode, failrec, 0); 2181 return -EIO; 2182 } 2183 bio->bi_private = state; 2184 bio->bi_end_io = failed_bio->bi_end_io; 2185 bio->bi_sector = failrec->logical >> 9; 2186 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2187 bio->bi_size = 0; 2188 2189 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2190 2191 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2192 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2193 failrec->this_mirror, num_copies, failrec->in_validation); 2194 2195 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2196 failrec->this_mirror, 2197 failrec->bio_flags, 0); 2198 return ret; 2199 } 2200 2201 /* lots and lots of room for performance fixes in the end_bio funcs */ 2202 2203 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2204 { 2205 int uptodate = (err == 0); 2206 struct extent_io_tree *tree; 2207 int ret; 2208 2209 tree = &BTRFS_I(page->mapping->host)->io_tree; 2210 2211 if (tree->ops && tree->ops->writepage_end_io_hook) { 2212 ret = tree->ops->writepage_end_io_hook(page, start, 2213 end, NULL, uptodate); 2214 if (ret) 2215 uptodate = 0; 2216 } 2217 2218 if (!uptodate) { 2219 ClearPageUptodate(page); 2220 SetPageError(page); 2221 } 2222 return 0; 2223 } 2224 2225 /* 2226 * after a writepage IO is done, we need to: 2227 * clear the uptodate bits on error 2228 * clear the writeback bits in the extent tree for this IO 2229 * end_page_writeback if the page has no more pending IO 2230 * 2231 * Scheduling is not allowed, so the extent state tree is expected 2232 * to have one and only one object corresponding to this IO. 2233 */ 2234 static void end_bio_extent_writepage(struct bio *bio, int err) 2235 { 2236 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2237 struct extent_io_tree *tree; 2238 u64 start; 2239 u64 end; 2240 int whole_page; 2241 2242 do { 2243 struct page *page = bvec->bv_page; 2244 tree = &BTRFS_I(page->mapping->host)->io_tree; 2245 2246 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2247 bvec->bv_offset; 2248 end = start + bvec->bv_len - 1; 2249 2250 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2251 whole_page = 1; 2252 else 2253 whole_page = 0; 2254 2255 if (--bvec >= bio->bi_io_vec) 2256 prefetchw(&bvec->bv_page->flags); 2257 2258 if (end_extent_writepage(page, err, start, end)) 2259 continue; 2260 2261 if (whole_page) 2262 end_page_writeback(page); 2263 else 2264 check_page_writeback(tree, page); 2265 } while (bvec >= bio->bi_io_vec); 2266 2267 bio_put(bio); 2268 } 2269 2270 /* 2271 * after a readpage IO is done, we need to: 2272 * clear the uptodate bits on error 2273 * set the uptodate bits if things worked 2274 * set the page up to date if all extents in the tree are uptodate 2275 * clear the lock bit in the extent tree 2276 * unlock the page if there are no other extents locked for it 2277 * 2278 * Scheduling is not allowed, so the extent state tree is expected 2279 * to have one and only one object corresponding to this IO. 2280 */ 2281 static void end_bio_extent_readpage(struct bio *bio, int err) 2282 { 2283 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2284 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2285 struct bio_vec *bvec = bio->bi_io_vec; 2286 struct extent_io_tree *tree; 2287 u64 start; 2288 u64 end; 2289 int whole_page; 2290 int mirror; 2291 int ret; 2292 2293 if (err) 2294 uptodate = 0; 2295 2296 do { 2297 struct page *page = bvec->bv_page; 2298 struct extent_state *cached = NULL; 2299 struct extent_state *state; 2300 2301 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, " 2302 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err, 2303 (long int)bio->bi_bdev); 2304 tree = &BTRFS_I(page->mapping->host)->io_tree; 2305 2306 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2307 bvec->bv_offset; 2308 end = start + bvec->bv_len - 1; 2309 2310 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2311 whole_page = 1; 2312 else 2313 whole_page = 0; 2314 2315 if (++bvec <= bvec_end) 2316 prefetchw(&bvec->bv_page->flags); 2317 2318 spin_lock(&tree->lock); 2319 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 2320 if (state && state->start == start) { 2321 /* 2322 * take a reference on the state, unlock will drop 2323 * the ref 2324 */ 2325 cache_state(state, &cached); 2326 } 2327 spin_unlock(&tree->lock); 2328 2329 mirror = (int)(unsigned long)bio->bi_bdev; 2330 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 2331 ret = tree->ops->readpage_end_io_hook(page, start, end, 2332 state, mirror); 2333 if (ret) { 2334 /* no IO indicated but software detected errors 2335 * in the block, either checksum errors or 2336 * issues with the contents */ 2337 struct btrfs_root *root = 2338 BTRFS_I(page->mapping->host)->root; 2339 struct btrfs_device *device; 2340 2341 uptodate = 0; 2342 device = btrfs_find_device_for_logical( 2343 root, start, mirror); 2344 if (device) 2345 btrfs_dev_stat_inc_and_print(device, 2346 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2347 } else { 2348 clean_io_failure(start, page); 2349 } 2350 } 2351 2352 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { 2353 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2354 if (!ret && !err && 2355 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2356 uptodate = 1; 2357 } else if (!uptodate) { 2358 /* 2359 * The generic bio_readpage_error handles errors the 2360 * following way: If possible, new read requests are 2361 * created and submitted and will end up in 2362 * end_bio_extent_readpage as well (if we're lucky, not 2363 * in the !uptodate case). In that case it returns 0 and 2364 * we just go on with the next page in our bio. If it 2365 * can't handle the error it will return -EIO and we 2366 * remain responsible for that page. 2367 */ 2368 ret = bio_readpage_error(bio, page, start, end, mirror, NULL); 2369 if (ret == 0) { 2370 uptodate = 2371 test_bit(BIO_UPTODATE, &bio->bi_flags); 2372 if (err) 2373 uptodate = 0; 2374 uncache_state(&cached); 2375 continue; 2376 } 2377 } 2378 2379 if (uptodate && tree->track_uptodate) { 2380 set_extent_uptodate(tree, start, end, &cached, 2381 GFP_ATOMIC); 2382 } 2383 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2384 2385 if (whole_page) { 2386 if (uptodate) { 2387 SetPageUptodate(page); 2388 } else { 2389 ClearPageUptodate(page); 2390 SetPageError(page); 2391 } 2392 unlock_page(page); 2393 } else { 2394 if (uptodate) { 2395 check_page_uptodate(tree, page); 2396 } else { 2397 ClearPageUptodate(page); 2398 SetPageError(page); 2399 } 2400 check_page_locked(tree, page); 2401 } 2402 } while (bvec <= bvec_end); 2403 2404 bio_put(bio); 2405 } 2406 2407 struct bio * 2408 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2409 gfp_t gfp_flags) 2410 { 2411 struct bio *bio; 2412 2413 bio = bio_alloc(gfp_flags, nr_vecs); 2414 2415 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2416 while (!bio && (nr_vecs /= 2)) 2417 bio = bio_alloc(gfp_flags, nr_vecs); 2418 } 2419 2420 if (bio) { 2421 bio->bi_size = 0; 2422 bio->bi_bdev = bdev; 2423 bio->bi_sector = first_sector; 2424 } 2425 return bio; 2426 } 2427 2428 /* 2429 * Since writes are async, they will only return -ENOMEM. 2430 * Reads can return the full range of I/O error conditions. 2431 */ 2432 static int __must_check submit_one_bio(int rw, struct bio *bio, 2433 int mirror_num, unsigned long bio_flags) 2434 { 2435 int ret = 0; 2436 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2437 struct page *page = bvec->bv_page; 2438 struct extent_io_tree *tree = bio->bi_private; 2439 u64 start; 2440 2441 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 2442 2443 bio->bi_private = NULL; 2444 2445 bio_get(bio); 2446 2447 if (tree->ops && tree->ops->submit_bio_hook) 2448 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2449 mirror_num, bio_flags, start); 2450 else 2451 btrfsic_submit_bio(rw, bio); 2452 2453 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2454 ret = -EOPNOTSUPP; 2455 bio_put(bio); 2456 return ret; 2457 } 2458 2459 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2460 unsigned long offset, size_t size, struct bio *bio, 2461 unsigned long bio_flags) 2462 { 2463 int ret = 0; 2464 if (tree->ops && tree->ops->merge_bio_hook) 2465 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2466 bio_flags); 2467 BUG_ON(ret < 0); 2468 return ret; 2469 2470 } 2471 2472 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2473 struct page *page, sector_t sector, 2474 size_t size, unsigned long offset, 2475 struct block_device *bdev, 2476 struct bio **bio_ret, 2477 unsigned long max_pages, 2478 bio_end_io_t end_io_func, 2479 int mirror_num, 2480 unsigned long prev_bio_flags, 2481 unsigned long bio_flags) 2482 { 2483 int ret = 0; 2484 struct bio *bio; 2485 int nr; 2486 int contig = 0; 2487 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2488 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2489 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2490 2491 if (bio_ret && *bio_ret) { 2492 bio = *bio_ret; 2493 if (old_compressed) 2494 contig = bio->bi_sector == sector; 2495 else 2496 contig = bio->bi_sector + (bio->bi_size >> 9) == 2497 sector; 2498 2499 if (prev_bio_flags != bio_flags || !contig || 2500 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2501 bio_add_page(bio, page, page_size, offset) < page_size) { 2502 ret = submit_one_bio(rw, bio, mirror_num, 2503 prev_bio_flags); 2504 if (ret < 0) 2505 return ret; 2506 bio = NULL; 2507 } else { 2508 return 0; 2509 } 2510 } 2511 if (this_compressed) 2512 nr = BIO_MAX_PAGES; 2513 else 2514 nr = bio_get_nr_vecs(bdev); 2515 2516 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2517 if (!bio) 2518 return -ENOMEM; 2519 2520 bio_add_page(bio, page, page_size, offset); 2521 bio->bi_end_io = end_io_func; 2522 bio->bi_private = tree; 2523 2524 if (bio_ret) 2525 *bio_ret = bio; 2526 else 2527 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2528 2529 return ret; 2530 } 2531 2532 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 2533 { 2534 if (!PagePrivate(page)) { 2535 SetPagePrivate(page); 2536 page_cache_get(page); 2537 set_page_private(page, (unsigned long)eb); 2538 } else { 2539 WARN_ON(page->private != (unsigned long)eb); 2540 } 2541 } 2542 2543 void set_page_extent_mapped(struct page *page) 2544 { 2545 if (!PagePrivate(page)) { 2546 SetPagePrivate(page); 2547 page_cache_get(page); 2548 set_page_private(page, EXTENT_PAGE_PRIVATE); 2549 } 2550 } 2551 2552 /* 2553 * basic readpage implementation. Locked extent state structs are inserted 2554 * into the tree that are removed when the IO is done (by the end_io 2555 * handlers) 2556 * XXX JDM: This needs looking at to ensure proper page locking 2557 */ 2558 static int __extent_read_full_page(struct extent_io_tree *tree, 2559 struct page *page, 2560 get_extent_t *get_extent, 2561 struct bio **bio, int mirror_num, 2562 unsigned long *bio_flags) 2563 { 2564 struct inode *inode = page->mapping->host; 2565 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2566 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2567 u64 end; 2568 u64 cur = start; 2569 u64 extent_offset; 2570 u64 last_byte = i_size_read(inode); 2571 u64 block_start; 2572 u64 cur_end; 2573 sector_t sector; 2574 struct extent_map *em; 2575 struct block_device *bdev; 2576 struct btrfs_ordered_extent *ordered; 2577 int ret; 2578 int nr = 0; 2579 size_t pg_offset = 0; 2580 size_t iosize; 2581 size_t disk_io_size; 2582 size_t blocksize = inode->i_sb->s_blocksize; 2583 unsigned long this_bio_flag = 0; 2584 2585 set_page_extent_mapped(page); 2586 2587 if (!PageUptodate(page)) { 2588 if (cleancache_get_page(page) == 0) { 2589 BUG_ON(blocksize != PAGE_SIZE); 2590 goto out; 2591 } 2592 } 2593 2594 end = page_end; 2595 while (1) { 2596 lock_extent(tree, start, end); 2597 ordered = btrfs_lookup_ordered_extent(inode, start); 2598 if (!ordered) 2599 break; 2600 unlock_extent(tree, start, end); 2601 btrfs_start_ordered_extent(inode, ordered, 1); 2602 btrfs_put_ordered_extent(ordered); 2603 } 2604 2605 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2606 char *userpage; 2607 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2608 2609 if (zero_offset) { 2610 iosize = PAGE_CACHE_SIZE - zero_offset; 2611 userpage = kmap_atomic(page); 2612 memset(userpage + zero_offset, 0, iosize); 2613 flush_dcache_page(page); 2614 kunmap_atomic(userpage); 2615 } 2616 } 2617 while (cur <= end) { 2618 if (cur >= last_byte) { 2619 char *userpage; 2620 struct extent_state *cached = NULL; 2621 2622 iosize = PAGE_CACHE_SIZE - pg_offset; 2623 userpage = kmap_atomic(page); 2624 memset(userpage + pg_offset, 0, iosize); 2625 flush_dcache_page(page); 2626 kunmap_atomic(userpage); 2627 set_extent_uptodate(tree, cur, cur + iosize - 1, 2628 &cached, GFP_NOFS); 2629 unlock_extent_cached(tree, cur, cur + iosize - 1, 2630 &cached, GFP_NOFS); 2631 break; 2632 } 2633 em = get_extent(inode, page, pg_offset, cur, 2634 end - cur + 1, 0); 2635 if (IS_ERR_OR_NULL(em)) { 2636 SetPageError(page); 2637 unlock_extent(tree, cur, end); 2638 break; 2639 } 2640 extent_offset = cur - em->start; 2641 BUG_ON(extent_map_end(em) <= cur); 2642 BUG_ON(end < cur); 2643 2644 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2645 this_bio_flag = EXTENT_BIO_COMPRESSED; 2646 extent_set_compress_type(&this_bio_flag, 2647 em->compress_type); 2648 } 2649 2650 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2651 cur_end = min(extent_map_end(em) - 1, end); 2652 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2653 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2654 disk_io_size = em->block_len; 2655 sector = em->block_start >> 9; 2656 } else { 2657 sector = (em->block_start + extent_offset) >> 9; 2658 disk_io_size = iosize; 2659 } 2660 bdev = em->bdev; 2661 block_start = em->block_start; 2662 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2663 block_start = EXTENT_MAP_HOLE; 2664 free_extent_map(em); 2665 em = NULL; 2666 2667 /* we've found a hole, just zero and go on */ 2668 if (block_start == EXTENT_MAP_HOLE) { 2669 char *userpage; 2670 struct extent_state *cached = NULL; 2671 2672 userpage = kmap_atomic(page); 2673 memset(userpage + pg_offset, 0, iosize); 2674 flush_dcache_page(page); 2675 kunmap_atomic(userpage); 2676 2677 set_extent_uptodate(tree, cur, cur + iosize - 1, 2678 &cached, GFP_NOFS); 2679 unlock_extent_cached(tree, cur, cur + iosize - 1, 2680 &cached, GFP_NOFS); 2681 cur = cur + iosize; 2682 pg_offset += iosize; 2683 continue; 2684 } 2685 /* the get_extent function already copied into the page */ 2686 if (test_range_bit(tree, cur, cur_end, 2687 EXTENT_UPTODATE, 1, NULL)) { 2688 check_page_uptodate(tree, page); 2689 unlock_extent(tree, cur, cur + iosize - 1); 2690 cur = cur + iosize; 2691 pg_offset += iosize; 2692 continue; 2693 } 2694 /* we have an inline extent but it didn't get marked up 2695 * to date. Error out 2696 */ 2697 if (block_start == EXTENT_MAP_INLINE) { 2698 SetPageError(page); 2699 unlock_extent(tree, cur, cur + iosize - 1); 2700 cur = cur + iosize; 2701 pg_offset += iosize; 2702 continue; 2703 } 2704 2705 ret = 0; 2706 if (tree->ops && tree->ops->readpage_io_hook) { 2707 ret = tree->ops->readpage_io_hook(page, cur, 2708 cur + iosize - 1); 2709 } 2710 if (!ret) { 2711 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2712 pnr -= page->index; 2713 ret = submit_extent_page(READ, tree, page, 2714 sector, disk_io_size, pg_offset, 2715 bdev, bio, pnr, 2716 end_bio_extent_readpage, mirror_num, 2717 *bio_flags, 2718 this_bio_flag); 2719 BUG_ON(ret == -ENOMEM); 2720 nr++; 2721 *bio_flags = this_bio_flag; 2722 } 2723 if (ret) 2724 SetPageError(page); 2725 cur = cur + iosize; 2726 pg_offset += iosize; 2727 } 2728 out: 2729 if (!nr) { 2730 if (!PageError(page)) 2731 SetPageUptodate(page); 2732 unlock_page(page); 2733 } 2734 return 0; 2735 } 2736 2737 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2738 get_extent_t *get_extent, int mirror_num) 2739 { 2740 struct bio *bio = NULL; 2741 unsigned long bio_flags = 0; 2742 int ret; 2743 2744 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 2745 &bio_flags); 2746 if (bio) 2747 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 2748 return ret; 2749 } 2750 2751 static noinline void update_nr_written(struct page *page, 2752 struct writeback_control *wbc, 2753 unsigned long nr_written) 2754 { 2755 wbc->nr_to_write -= nr_written; 2756 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2757 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2758 page->mapping->writeback_index = page->index + nr_written; 2759 } 2760 2761 /* 2762 * the writepage semantics are similar to regular writepage. extent 2763 * records are inserted to lock ranges in the tree, and as dirty areas 2764 * are found, they are marked writeback. Then the lock bits are removed 2765 * and the end_io handler clears the writeback ranges 2766 */ 2767 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2768 void *data) 2769 { 2770 struct inode *inode = page->mapping->host; 2771 struct extent_page_data *epd = data; 2772 struct extent_io_tree *tree = epd->tree; 2773 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2774 u64 delalloc_start; 2775 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2776 u64 end; 2777 u64 cur = start; 2778 u64 extent_offset; 2779 u64 last_byte = i_size_read(inode); 2780 u64 block_start; 2781 u64 iosize; 2782 sector_t sector; 2783 struct extent_state *cached_state = NULL; 2784 struct extent_map *em; 2785 struct block_device *bdev; 2786 int ret; 2787 int nr = 0; 2788 size_t pg_offset = 0; 2789 size_t blocksize; 2790 loff_t i_size = i_size_read(inode); 2791 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2792 u64 nr_delalloc; 2793 u64 delalloc_end; 2794 int page_started; 2795 int compressed; 2796 int write_flags; 2797 unsigned long nr_written = 0; 2798 bool fill_delalloc = true; 2799 2800 if (wbc->sync_mode == WB_SYNC_ALL) 2801 write_flags = WRITE_SYNC; 2802 else 2803 write_flags = WRITE; 2804 2805 trace___extent_writepage(page, inode, wbc); 2806 2807 WARN_ON(!PageLocked(page)); 2808 2809 ClearPageError(page); 2810 2811 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2812 if (page->index > end_index || 2813 (page->index == end_index && !pg_offset)) { 2814 page->mapping->a_ops->invalidatepage(page, 0); 2815 unlock_page(page); 2816 return 0; 2817 } 2818 2819 if (page->index == end_index) { 2820 char *userpage; 2821 2822 userpage = kmap_atomic(page); 2823 memset(userpage + pg_offset, 0, 2824 PAGE_CACHE_SIZE - pg_offset); 2825 kunmap_atomic(userpage); 2826 flush_dcache_page(page); 2827 } 2828 pg_offset = 0; 2829 2830 set_page_extent_mapped(page); 2831 2832 if (!tree->ops || !tree->ops->fill_delalloc) 2833 fill_delalloc = false; 2834 2835 delalloc_start = start; 2836 delalloc_end = 0; 2837 page_started = 0; 2838 if (!epd->extent_locked && fill_delalloc) { 2839 u64 delalloc_to_write = 0; 2840 /* 2841 * make sure the wbc mapping index is at least updated 2842 * to this page. 2843 */ 2844 update_nr_written(page, wbc, 0); 2845 2846 while (delalloc_end < page_end) { 2847 nr_delalloc = find_lock_delalloc_range(inode, tree, 2848 page, 2849 &delalloc_start, 2850 &delalloc_end, 2851 128 * 1024 * 1024); 2852 if (nr_delalloc == 0) { 2853 delalloc_start = delalloc_end + 1; 2854 continue; 2855 } 2856 ret = tree->ops->fill_delalloc(inode, page, 2857 delalloc_start, 2858 delalloc_end, 2859 &page_started, 2860 &nr_written); 2861 /* File system has been set read-only */ 2862 if (ret) { 2863 SetPageError(page); 2864 goto done; 2865 } 2866 /* 2867 * delalloc_end is already one less than the total 2868 * length, so we don't subtract one from 2869 * PAGE_CACHE_SIZE 2870 */ 2871 delalloc_to_write += (delalloc_end - delalloc_start + 2872 PAGE_CACHE_SIZE) >> 2873 PAGE_CACHE_SHIFT; 2874 delalloc_start = delalloc_end + 1; 2875 } 2876 if (wbc->nr_to_write < delalloc_to_write) { 2877 int thresh = 8192; 2878 2879 if (delalloc_to_write < thresh * 2) 2880 thresh = delalloc_to_write; 2881 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2882 thresh); 2883 } 2884 2885 /* did the fill delalloc function already unlock and start 2886 * the IO? 2887 */ 2888 if (page_started) { 2889 ret = 0; 2890 /* 2891 * we've unlocked the page, so we can't update 2892 * the mapping's writeback index, just update 2893 * nr_to_write. 2894 */ 2895 wbc->nr_to_write -= nr_written; 2896 goto done_unlocked; 2897 } 2898 } 2899 if (tree->ops && tree->ops->writepage_start_hook) { 2900 ret = tree->ops->writepage_start_hook(page, start, 2901 page_end); 2902 if (ret) { 2903 /* Fixup worker will requeue */ 2904 if (ret == -EBUSY) 2905 wbc->pages_skipped++; 2906 else 2907 redirty_page_for_writepage(wbc, page); 2908 update_nr_written(page, wbc, nr_written); 2909 unlock_page(page); 2910 ret = 0; 2911 goto done_unlocked; 2912 } 2913 } 2914 2915 /* 2916 * we don't want to touch the inode after unlocking the page, 2917 * so we update the mapping writeback index now 2918 */ 2919 update_nr_written(page, wbc, nr_written + 1); 2920 2921 end = page_end; 2922 if (last_byte <= start) { 2923 if (tree->ops && tree->ops->writepage_end_io_hook) 2924 tree->ops->writepage_end_io_hook(page, start, 2925 page_end, NULL, 1); 2926 goto done; 2927 } 2928 2929 blocksize = inode->i_sb->s_blocksize; 2930 2931 while (cur <= end) { 2932 if (cur >= last_byte) { 2933 if (tree->ops && tree->ops->writepage_end_io_hook) 2934 tree->ops->writepage_end_io_hook(page, cur, 2935 page_end, NULL, 1); 2936 break; 2937 } 2938 em = epd->get_extent(inode, page, pg_offset, cur, 2939 end - cur + 1, 1); 2940 if (IS_ERR_OR_NULL(em)) { 2941 SetPageError(page); 2942 break; 2943 } 2944 2945 extent_offset = cur - em->start; 2946 BUG_ON(extent_map_end(em) <= cur); 2947 BUG_ON(end < cur); 2948 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2949 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2950 sector = (em->block_start + extent_offset) >> 9; 2951 bdev = em->bdev; 2952 block_start = em->block_start; 2953 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2954 free_extent_map(em); 2955 em = NULL; 2956 2957 /* 2958 * compressed and inline extents are written through other 2959 * paths in the FS 2960 */ 2961 if (compressed || block_start == EXTENT_MAP_HOLE || 2962 block_start == EXTENT_MAP_INLINE) { 2963 /* 2964 * end_io notification does not happen here for 2965 * compressed extents 2966 */ 2967 if (!compressed && tree->ops && 2968 tree->ops->writepage_end_io_hook) 2969 tree->ops->writepage_end_io_hook(page, cur, 2970 cur + iosize - 1, 2971 NULL, 1); 2972 else if (compressed) { 2973 /* we don't want to end_page_writeback on 2974 * a compressed extent. this happens 2975 * elsewhere 2976 */ 2977 nr++; 2978 } 2979 2980 cur += iosize; 2981 pg_offset += iosize; 2982 continue; 2983 } 2984 /* leave this out until we have a page_mkwrite call */ 2985 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2986 EXTENT_DIRTY, 0, NULL)) { 2987 cur = cur + iosize; 2988 pg_offset += iosize; 2989 continue; 2990 } 2991 2992 if (tree->ops && tree->ops->writepage_io_hook) { 2993 ret = tree->ops->writepage_io_hook(page, cur, 2994 cur + iosize - 1); 2995 } else { 2996 ret = 0; 2997 } 2998 if (ret) { 2999 SetPageError(page); 3000 } else { 3001 unsigned long max_nr = end_index + 1; 3002 3003 set_range_writeback(tree, cur, cur + iosize - 1); 3004 if (!PageWriteback(page)) { 3005 printk(KERN_ERR "btrfs warning page %lu not " 3006 "writeback, cur %llu end %llu\n", 3007 page->index, (unsigned long long)cur, 3008 (unsigned long long)end); 3009 } 3010 3011 ret = submit_extent_page(write_flags, tree, page, 3012 sector, iosize, pg_offset, 3013 bdev, &epd->bio, max_nr, 3014 end_bio_extent_writepage, 3015 0, 0, 0); 3016 if (ret) 3017 SetPageError(page); 3018 } 3019 cur = cur + iosize; 3020 pg_offset += iosize; 3021 nr++; 3022 } 3023 done: 3024 if (nr == 0) { 3025 /* make sure the mapping tag for page dirty gets cleared */ 3026 set_page_writeback(page); 3027 end_page_writeback(page); 3028 } 3029 unlock_page(page); 3030 3031 done_unlocked: 3032 3033 /* drop our reference on any cached states */ 3034 free_extent_state(cached_state); 3035 return 0; 3036 } 3037 3038 static int eb_wait(void *word) 3039 { 3040 io_schedule(); 3041 return 0; 3042 } 3043 3044 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3045 { 3046 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3047 TASK_UNINTERRUPTIBLE); 3048 } 3049 3050 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3051 struct btrfs_fs_info *fs_info, 3052 struct extent_page_data *epd) 3053 { 3054 unsigned long i, num_pages; 3055 int flush = 0; 3056 int ret = 0; 3057 3058 if (!btrfs_try_tree_write_lock(eb)) { 3059 flush = 1; 3060 flush_write_bio(epd); 3061 btrfs_tree_lock(eb); 3062 } 3063 3064 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3065 btrfs_tree_unlock(eb); 3066 if (!epd->sync_io) 3067 return 0; 3068 if (!flush) { 3069 flush_write_bio(epd); 3070 flush = 1; 3071 } 3072 while (1) { 3073 wait_on_extent_buffer_writeback(eb); 3074 btrfs_tree_lock(eb); 3075 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3076 break; 3077 btrfs_tree_unlock(eb); 3078 } 3079 } 3080 3081 /* 3082 * We need to do this to prevent races in people who check if the eb is 3083 * under IO since we can end up having no IO bits set for a short period 3084 * of time. 3085 */ 3086 spin_lock(&eb->refs_lock); 3087 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3088 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3089 spin_unlock(&eb->refs_lock); 3090 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3091 spin_lock(&fs_info->delalloc_lock); 3092 if (fs_info->dirty_metadata_bytes >= eb->len) 3093 fs_info->dirty_metadata_bytes -= eb->len; 3094 else 3095 WARN_ON(1); 3096 spin_unlock(&fs_info->delalloc_lock); 3097 ret = 1; 3098 } else { 3099 spin_unlock(&eb->refs_lock); 3100 } 3101 3102 btrfs_tree_unlock(eb); 3103 3104 if (!ret) 3105 return ret; 3106 3107 num_pages = num_extent_pages(eb->start, eb->len); 3108 for (i = 0; i < num_pages; i++) { 3109 struct page *p = extent_buffer_page(eb, i); 3110 3111 if (!trylock_page(p)) { 3112 if (!flush) { 3113 flush_write_bio(epd); 3114 flush = 1; 3115 } 3116 lock_page(p); 3117 } 3118 } 3119 3120 return ret; 3121 } 3122 3123 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3124 { 3125 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3126 smp_mb__after_clear_bit(); 3127 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3128 } 3129 3130 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3131 { 3132 int uptodate = err == 0; 3133 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3134 struct extent_buffer *eb; 3135 int done; 3136 3137 do { 3138 struct page *page = bvec->bv_page; 3139 3140 bvec--; 3141 eb = (struct extent_buffer *)page->private; 3142 BUG_ON(!eb); 3143 done = atomic_dec_and_test(&eb->io_pages); 3144 3145 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3146 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3147 ClearPageUptodate(page); 3148 SetPageError(page); 3149 } 3150 3151 end_page_writeback(page); 3152 3153 if (!done) 3154 continue; 3155 3156 end_extent_buffer_writeback(eb); 3157 } while (bvec >= bio->bi_io_vec); 3158 3159 bio_put(bio); 3160 3161 } 3162 3163 static int write_one_eb(struct extent_buffer *eb, 3164 struct btrfs_fs_info *fs_info, 3165 struct writeback_control *wbc, 3166 struct extent_page_data *epd) 3167 { 3168 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3169 u64 offset = eb->start; 3170 unsigned long i, num_pages; 3171 int rw = (epd->sync_io ? WRITE_SYNC : WRITE); 3172 int ret = 0; 3173 3174 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3175 num_pages = num_extent_pages(eb->start, eb->len); 3176 atomic_set(&eb->io_pages, num_pages); 3177 for (i = 0; i < num_pages; i++) { 3178 struct page *p = extent_buffer_page(eb, i); 3179 3180 clear_page_dirty_for_io(p); 3181 set_page_writeback(p); 3182 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3183 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3184 -1, end_bio_extent_buffer_writepage, 3185 0, 0, 0); 3186 if (ret) { 3187 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3188 SetPageError(p); 3189 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3190 end_extent_buffer_writeback(eb); 3191 ret = -EIO; 3192 break; 3193 } 3194 offset += PAGE_CACHE_SIZE; 3195 update_nr_written(p, wbc, 1); 3196 unlock_page(p); 3197 } 3198 3199 if (unlikely(ret)) { 3200 for (; i < num_pages; i++) { 3201 struct page *p = extent_buffer_page(eb, i); 3202 unlock_page(p); 3203 } 3204 } 3205 3206 return ret; 3207 } 3208 3209 int btree_write_cache_pages(struct address_space *mapping, 3210 struct writeback_control *wbc) 3211 { 3212 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3213 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3214 struct extent_buffer *eb, *prev_eb = NULL; 3215 struct extent_page_data epd = { 3216 .bio = NULL, 3217 .tree = tree, 3218 .extent_locked = 0, 3219 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3220 }; 3221 int ret = 0; 3222 int done = 0; 3223 int nr_to_write_done = 0; 3224 struct pagevec pvec; 3225 int nr_pages; 3226 pgoff_t index; 3227 pgoff_t end; /* Inclusive */ 3228 int scanned = 0; 3229 int tag; 3230 3231 pagevec_init(&pvec, 0); 3232 if (wbc->range_cyclic) { 3233 index = mapping->writeback_index; /* Start from prev offset */ 3234 end = -1; 3235 } else { 3236 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3237 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3238 scanned = 1; 3239 } 3240 if (wbc->sync_mode == WB_SYNC_ALL) 3241 tag = PAGECACHE_TAG_TOWRITE; 3242 else 3243 tag = PAGECACHE_TAG_DIRTY; 3244 retry: 3245 if (wbc->sync_mode == WB_SYNC_ALL) 3246 tag_pages_for_writeback(mapping, index, end); 3247 while (!done && !nr_to_write_done && (index <= end) && 3248 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3249 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3250 unsigned i; 3251 3252 scanned = 1; 3253 for (i = 0; i < nr_pages; i++) { 3254 struct page *page = pvec.pages[i]; 3255 3256 if (!PagePrivate(page)) 3257 continue; 3258 3259 if (!wbc->range_cyclic && page->index > end) { 3260 done = 1; 3261 break; 3262 } 3263 3264 eb = (struct extent_buffer *)page->private; 3265 if (!eb) { 3266 WARN_ON(1); 3267 continue; 3268 } 3269 3270 if (eb == prev_eb) 3271 continue; 3272 3273 if (!atomic_inc_not_zero(&eb->refs)) { 3274 WARN_ON(1); 3275 continue; 3276 } 3277 3278 prev_eb = eb; 3279 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3280 if (!ret) { 3281 free_extent_buffer(eb); 3282 continue; 3283 } 3284 3285 ret = write_one_eb(eb, fs_info, wbc, &epd); 3286 if (ret) { 3287 done = 1; 3288 free_extent_buffer(eb); 3289 break; 3290 } 3291 free_extent_buffer(eb); 3292 3293 /* 3294 * the filesystem may choose to bump up nr_to_write. 3295 * We have to make sure to honor the new nr_to_write 3296 * at any time 3297 */ 3298 nr_to_write_done = wbc->nr_to_write <= 0; 3299 } 3300 pagevec_release(&pvec); 3301 cond_resched(); 3302 } 3303 if (!scanned && !done) { 3304 /* 3305 * We hit the last page and there is more work to be done: wrap 3306 * back to the start of the file 3307 */ 3308 scanned = 1; 3309 index = 0; 3310 goto retry; 3311 } 3312 flush_write_bio(&epd); 3313 return ret; 3314 } 3315 3316 /** 3317 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3318 * @mapping: address space structure to write 3319 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3320 * @writepage: function called for each page 3321 * @data: data passed to writepage function 3322 * 3323 * If a page is already under I/O, write_cache_pages() skips it, even 3324 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3325 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3326 * and msync() need to guarantee that all the data which was dirty at the time 3327 * the call was made get new I/O started against them. If wbc->sync_mode is 3328 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3329 * existing IO to complete. 3330 */ 3331 static int extent_write_cache_pages(struct extent_io_tree *tree, 3332 struct address_space *mapping, 3333 struct writeback_control *wbc, 3334 writepage_t writepage, void *data, 3335 void (*flush_fn)(void *)) 3336 { 3337 struct inode *inode = mapping->host; 3338 int ret = 0; 3339 int done = 0; 3340 int nr_to_write_done = 0; 3341 struct pagevec pvec; 3342 int nr_pages; 3343 pgoff_t index; 3344 pgoff_t end; /* Inclusive */ 3345 int scanned = 0; 3346 int tag; 3347 3348 /* 3349 * We have to hold onto the inode so that ordered extents can do their 3350 * work when the IO finishes. The alternative to this is failing to add 3351 * an ordered extent if the igrab() fails there and that is a huge pain 3352 * to deal with, so instead just hold onto the inode throughout the 3353 * writepages operation. If it fails here we are freeing up the inode 3354 * anyway and we'd rather not waste our time writing out stuff that is 3355 * going to be truncated anyway. 3356 */ 3357 if (!igrab(inode)) 3358 return 0; 3359 3360 pagevec_init(&pvec, 0); 3361 if (wbc->range_cyclic) { 3362 index = mapping->writeback_index; /* Start from prev offset */ 3363 end = -1; 3364 } else { 3365 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3366 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3367 scanned = 1; 3368 } 3369 if (wbc->sync_mode == WB_SYNC_ALL) 3370 tag = PAGECACHE_TAG_TOWRITE; 3371 else 3372 tag = PAGECACHE_TAG_DIRTY; 3373 retry: 3374 if (wbc->sync_mode == WB_SYNC_ALL) 3375 tag_pages_for_writeback(mapping, index, end); 3376 while (!done && !nr_to_write_done && (index <= end) && 3377 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3378 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3379 unsigned i; 3380 3381 scanned = 1; 3382 for (i = 0; i < nr_pages; i++) { 3383 struct page *page = pvec.pages[i]; 3384 3385 /* 3386 * At this point we hold neither mapping->tree_lock nor 3387 * lock on the page itself: the page may be truncated or 3388 * invalidated (changing page->mapping to NULL), or even 3389 * swizzled back from swapper_space to tmpfs file 3390 * mapping 3391 */ 3392 if (tree->ops && 3393 tree->ops->write_cache_pages_lock_hook) { 3394 tree->ops->write_cache_pages_lock_hook(page, 3395 data, flush_fn); 3396 } else { 3397 if (!trylock_page(page)) { 3398 flush_fn(data); 3399 lock_page(page); 3400 } 3401 } 3402 3403 if (unlikely(page->mapping != mapping)) { 3404 unlock_page(page); 3405 continue; 3406 } 3407 3408 if (!wbc->range_cyclic && page->index > end) { 3409 done = 1; 3410 unlock_page(page); 3411 continue; 3412 } 3413 3414 if (wbc->sync_mode != WB_SYNC_NONE) { 3415 if (PageWriteback(page)) 3416 flush_fn(data); 3417 wait_on_page_writeback(page); 3418 } 3419 3420 if (PageWriteback(page) || 3421 !clear_page_dirty_for_io(page)) { 3422 unlock_page(page); 3423 continue; 3424 } 3425 3426 ret = (*writepage)(page, wbc, data); 3427 3428 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3429 unlock_page(page); 3430 ret = 0; 3431 } 3432 if (ret) 3433 done = 1; 3434 3435 /* 3436 * the filesystem may choose to bump up nr_to_write. 3437 * We have to make sure to honor the new nr_to_write 3438 * at any time 3439 */ 3440 nr_to_write_done = wbc->nr_to_write <= 0; 3441 } 3442 pagevec_release(&pvec); 3443 cond_resched(); 3444 } 3445 if (!scanned && !done) { 3446 /* 3447 * We hit the last page and there is more work to be done: wrap 3448 * back to the start of the file 3449 */ 3450 scanned = 1; 3451 index = 0; 3452 goto retry; 3453 } 3454 btrfs_add_delayed_iput(inode); 3455 return ret; 3456 } 3457 3458 static void flush_epd_write_bio(struct extent_page_data *epd) 3459 { 3460 if (epd->bio) { 3461 int rw = WRITE; 3462 int ret; 3463 3464 if (epd->sync_io) 3465 rw = WRITE_SYNC; 3466 3467 ret = submit_one_bio(rw, epd->bio, 0, 0); 3468 BUG_ON(ret < 0); /* -ENOMEM */ 3469 epd->bio = NULL; 3470 } 3471 } 3472 3473 static noinline void flush_write_bio(void *data) 3474 { 3475 struct extent_page_data *epd = data; 3476 flush_epd_write_bio(epd); 3477 } 3478 3479 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3480 get_extent_t *get_extent, 3481 struct writeback_control *wbc) 3482 { 3483 int ret; 3484 struct extent_page_data epd = { 3485 .bio = NULL, 3486 .tree = tree, 3487 .get_extent = get_extent, 3488 .extent_locked = 0, 3489 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3490 }; 3491 3492 ret = __extent_writepage(page, wbc, &epd); 3493 3494 flush_epd_write_bio(&epd); 3495 return ret; 3496 } 3497 3498 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3499 u64 start, u64 end, get_extent_t *get_extent, 3500 int mode) 3501 { 3502 int ret = 0; 3503 struct address_space *mapping = inode->i_mapping; 3504 struct page *page; 3505 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3506 PAGE_CACHE_SHIFT; 3507 3508 struct extent_page_data epd = { 3509 .bio = NULL, 3510 .tree = tree, 3511 .get_extent = get_extent, 3512 .extent_locked = 1, 3513 .sync_io = mode == WB_SYNC_ALL, 3514 }; 3515 struct writeback_control wbc_writepages = { 3516 .sync_mode = mode, 3517 .nr_to_write = nr_pages * 2, 3518 .range_start = start, 3519 .range_end = end + 1, 3520 }; 3521 3522 while (start <= end) { 3523 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3524 if (clear_page_dirty_for_io(page)) 3525 ret = __extent_writepage(page, &wbc_writepages, &epd); 3526 else { 3527 if (tree->ops && tree->ops->writepage_end_io_hook) 3528 tree->ops->writepage_end_io_hook(page, start, 3529 start + PAGE_CACHE_SIZE - 1, 3530 NULL, 1); 3531 unlock_page(page); 3532 } 3533 page_cache_release(page); 3534 start += PAGE_CACHE_SIZE; 3535 } 3536 3537 flush_epd_write_bio(&epd); 3538 return ret; 3539 } 3540 3541 int extent_writepages(struct extent_io_tree *tree, 3542 struct address_space *mapping, 3543 get_extent_t *get_extent, 3544 struct writeback_control *wbc) 3545 { 3546 int ret = 0; 3547 struct extent_page_data epd = { 3548 .bio = NULL, 3549 .tree = tree, 3550 .get_extent = get_extent, 3551 .extent_locked = 0, 3552 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3553 }; 3554 3555 ret = extent_write_cache_pages(tree, mapping, wbc, 3556 __extent_writepage, &epd, 3557 flush_write_bio); 3558 flush_epd_write_bio(&epd); 3559 return ret; 3560 } 3561 3562 int extent_readpages(struct extent_io_tree *tree, 3563 struct address_space *mapping, 3564 struct list_head *pages, unsigned nr_pages, 3565 get_extent_t get_extent) 3566 { 3567 struct bio *bio = NULL; 3568 unsigned page_idx; 3569 unsigned long bio_flags = 0; 3570 struct page *pagepool[16]; 3571 struct page *page; 3572 int i = 0; 3573 int nr = 0; 3574 3575 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3576 page = list_entry(pages->prev, struct page, lru); 3577 3578 prefetchw(&page->flags); 3579 list_del(&page->lru); 3580 if (add_to_page_cache_lru(page, mapping, 3581 page->index, GFP_NOFS)) { 3582 page_cache_release(page); 3583 continue; 3584 } 3585 3586 pagepool[nr++] = page; 3587 if (nr < ARRAY_SIZE(pagepool)) 3588 continue; 3589 for (i = 0; i < nr; i++) { 3590 __extent_read_full_page(tree, pagepool[i], get_extent, 3591 &bio, 0, &bio_flags); 3592 page_cache_release(pagepool[i]); 3593 } 3594 nr = 0; 3595 } 3596 for (i = 0; i < nr; i++) { 3597 __extent_read_full_page(tree, pagepool[i], get_extent, 3598 &bio, 0, &bio_flags); 3599 page_cache_release(pagepool[i]); 3600 } 3601 3602 BUG_ON(!list_empty(pages)); 3603 if (bio) 3604 return submit_one_bio(READ, bio, 0, bio_flags); 3605 return 0; 3606 } 3607 3608 /* 3609 * basic invalidatepage code, this waits on any locked or writeback 3610 * ranges corresponding to the page, and then deletes any extent state 3611 * records from the tree 3612 */ 3613 int extent_invalidatepage(struct extent_io_tree *tree, 3614 struct page *page, unsigned long offset) 3615 { 3616 struct extent_state *cached_state = NULL; 3617 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 3618 u64 end = start + PAGE_CACHE_SIZE - 1; 3619 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3620 3621 start += (offset + blocksize - 1) & ~(blocksize - 1); 3622 if (start > end) 3623 return 0; 3624 3625 lock_extent_bits(tree, start, end, 0, &cached_state); 3626 wait_on_page_writeback(page); 3627 clear_extent_bit(tree, start, end, 3628 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3629 EXTENT_DO_ACCOUNTING, 3630 1, 1, &cached_state, GFP_NOFS); 3631 return 0; 3632 } 3633 3634 /* 3635 * a helper for releasepage, this tests for areas of the page that 3636 * are locked or under IO and drops the related state bits if it is safe 3637 * to drop the page. 3638 */ 3639 int try_release_extent_state(struct extent_map_tree *map, 3640 struct extent_io_tree *tree, struct page *page, 3641 gfp_t mask) 3642 { 3643 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3644 u64 end = start + PAGE_CACHE_SIZE - 1; 3645 int ret = 1; 3646 3647 if (test_range_bit(tree, start, end, 3648 EXTENT_IOBITS, 0, NULL)) 3649 ret = 0; 3650 else { 3651 if ((mask & GFP_NOFS) == GFP_NOFS) 3652 mask = GFP_NOFS; 3653 /* 3654 * at this point we can safely clear everything except the 3655 * locked bit and the nodatasum bit 3656 */ 3657 ret = clear_extent_bit(tree, start, end, 3658 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3659 0, 0, NULL, mask); 3660 3661 /* if clear_extent_bit failed for enomem reasons, 3662 * we can't allow the release to continue. 3663 */ 3664 if (ret < 0) 3665 ret = 0; 3666 else 3667 ret = 1; 3668 } 3669 return ret; 3670 } 3671 3672 /* 3673 * a helper for releasepage. As long as there are no locked extents 3674 * in the range corresponding to the page, both state records and extent 3675 * map records are removed 3676 */ 3677 int try_release_extent_mapping(struct extent_map_tree *map, 3678 struct extent_io_tree *tree, struct page *page, 3679 gfp_t mask) 3680 { 3681 struct extent_map *em; 3682 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3683 u64 end = start + PAGE_CACHE_SIZE - 1; 3684 3685 if ((mask & __GFP_WAIT) && 3686 page->mapping->host->i_size > 16 * 1024 * 1024) { 3687 u64 len; 3688 while (start <= end) { 3689 len = end - start + 1; 3690 write_lock(&map->lock); 3691 em = lookup_extent_mapping(map, start, len); 3692 if (!em) { 3693 write_unlock(&map->lock); 3694 break; 3695 } 3696 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3697 em->start != start) { 3698 write_unlock(&map->lock); 3699 free_extent_map(em); 3700 break; 3701 } 3702 if (!test_range_bit(tree, em->start, 3703 extent_map_end(em) - 1, 3704 EXTENT_LOCKED | EXTENT_WRITEBACK, 3705 0, NULL)) { 3706 remove_extent_mapping(map, em); 3707 /* once for the rb tree */ 3708 free_extent_map(em); 3709 } 3710 start = extent_map_end(em); 3711 write_unlock(&map->lock); 3712 3713 /* once for us */ 3714 free_extent_map(em); 3715 } 3716 } 3717 return try_release_extent_state(map, tree, page, mask); 3718 } 3719 3720 /* 3721 * helper function for fiemap, which doesn't want to see any holes. 3722 * This maps until we find something past 'last' 3723 */ 3724 static struct extent_map *get_extent_skip_holes(struct inode *inode, 3725 u64 offset, 3726 u64 last, 3727 get_extent_t *get_extent) 3728 { 3729 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 3730 struct extent_map *em; 3731 u64 len; 3732 3733 if (offset >= last) 3734 return NULL; 3735 3736 while(1) { 3737 len = last - offset; 3738 if (len == 0) 3739 break; 3740 len = (len + sectorsize - 1) & ~(sectorsize - 1); 3741 em = get_extent(inode, NULL, 0, offset, len, 0); 3742 if (IS_ERR_OR_NULL(em)) 3743 return em; 3744 3745 /* if this isn't a hole return it */ 3746 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 3747 em->block_start != EXTENT_MAP_HOLE) { 3748 return em; 3749 } 3750 3751 /* this is a hole, advance to the next extent */ 3752 offset = extent_map_end(em); 3753 free_extent_map(em); 3754 if (offset >= last) 3755 break; 3756 } 3757 return NULL; 3758 } 3759 3760 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3761 __u64 start, __u64 len, get_extent_t *get_extent) 3762 { 3763 int ret = 0; 3764 u64 off = start; 3765 u64 max = start + len; 3766 u32 flags = 0; 3767 u32 found_type; 3768 u64 last; 3769 u64 last_for_get_extent = 0; 3770 u64 disko = 0; 3771 u64 isize = i_size_read(inode); 3772 struct btrfs_key found_key; 3773 struct extent_map *em = NULL; 3774 struct extent_state *cached_state = NULL; 3775 struct btrfs_path *path; 3776 struct btrfs_file_extent_item *item; 3777 int end = 0; 3778 u64 em_start = 0; 3779 u64 em_len = 0; 3780 u64 em_end = 0; 3781 unsigned long emflags; 3782 3783 if (len == 0) 3784 return -EINVAL; 3785 3786 path = btrfs_alloc_path(); 3787 if (!path) 3788 return -ENOMEM; 3789 path->leave_spinning = 1; 3790 3791 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 3792 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 3793 3794 /* 3795 * lookup the last file extent. We're not using i_size here 3796 * because there might be preallocation past i_size 3797 */ 3798 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 3799 path, btrfs_ino(inode), -1, 0); 3800 if (ret < 0) { 3801 btrfs_free_path(path); 3802 return ret; 3803 } 3804 WARN_ON(!ret); 3805 path->slots[0]--; 3806 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3807 struct btrfs_file_extent_item); 3808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 3809 found_type = btrfs_key_type(&found_key); 3810 3811 /* No extents, but there might be delalloc bits */ 3812 if (found_key.objectid != btrfs_ino(inode) || 3813 found_type != BTRFS_EXTENT_DATA_KEY) { 3814 /* have to trust i_size as the end */ 3815 last = (u64)-1; 3816 last_for_get_extent = isize; 3817 } else { 3818 /* 3819 * remember the start of the last extent. There are a 3820 * bunch of different factors that go into the length of the 3821 * extent, so its much less complex to remember where it started 3822 */ 3823 last = found_key.offset; 3824 last_for_get_extent = last + 1; 3825 } 3826 btrfs_free_path(path); 3827 3828 /* 3829 * we might have some extents allocated but more delalloc past those 3830 * extents. so, we trust isize unless the start of the last extent is 3831 * beyond isize 3832 */ 3833 if (last < isize) { 3834 last = (u64)-1; 3835 last_for_get_extent = isize; 3836 } 3837 3838 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 3839 &cached_state); 3840 3841 em = get_extent_skip_holes(inode, start, last_for_get_extent, 3842 get_extent); 3843 if (!em) 3844 goto out; 3845 if (IS_ERR(em)) { 3846 ret = PTR_ERR(em); 3847 goto out; 3848 } 3849 3850 while (!end) { 3851 u64 offset_in_extent; 3852 3853 /* break if the extent we found is outside the range */ 3854 if (em->start >= max || extent_map_end(em) < off) 3855 break; 3856 3857 /* 3858 * get_extent may return an extent that starts before our 3859 * requested range. We have to make sure the ranges 3860 * we return to fiemap always move forward and don't 3861 * overlap, so adjust the offsets here 3862 */ 3863 em_start = max(em->start, off); 3864 3865 /* 3866 * record the offset from the start of the extent 3867 * for adjusting the disk offset below 3868 */ 3869 offset_in_extent = em_start - em->start; 3870 em_end = extent_map_end(em); 3871 em_len = em_end - em_start; 3872 emflags = em->flags; 3873 disko = 0; 3874 flags = 0; 3875 3876 /* 3877 * bump off for our next call to get_extent 3878 */ 3879 off = extent_map_end(em); 3880 if (off >= max) 3881 end = 1; 3882 3883 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 3884 end = 1; 3885 flags |= FIEMAP_EXTENT_LAST; 3886 } else if (em->block_start == EXTENT_MAP_INLINE) { 3887 flags |= (FIEMAP_EXTENT_DATA_INLINE | 3888 FIEMAP_EXTENT_NOT_ALIGNED); 3889 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 3890 flags |= (FIEMAP_EXTENT_DELALLOC | 3891 FIEMAP_EXTENT_UNKNOWN); 3892 } else { 3893 disko = em->block_start + offset_in_extent; 3894 } 3895 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3896 flags |= FIEMAP_EXTENT_ENCODED; 3897 3898 free_extent_map(em); 3899 em = NULL; 3900 if ((em_start >= last) || em_len == (u64)-1 || 3901 (last == (u64)-1 && isize <= em_end)) { 3902 flags |= FIEMAP_EXTENT_LAST; 3903 end = 1; 3904 } 3905 3906 /* now scan forward to see if this is really the last extent. */ 3907 em = get_extent_skip_holes(inode, off, last_for_get_extent, 3908 get_extent); 3909 if (IS_ERR(em)) { 3910 ret = PTR_ERR(em); 3911 goto out; 3912 } 3913 if (!em) { 3914 flags |= FIEMAP_EXTENT_LAST; 3915 end = 1; 3916 } 3917 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3918 em_len, flags); 3919 if (ret) 3920 goto out_free; 3921 } 3922 out_free: 3923 free_extent_map(em); 3924 out: 3925 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 3926 &cached_state, GFP_NOFS); 3927 return ret; 3928 } 3929 3930 inline struct page *extent_buffer_page(struct extent_buffer *eb, 3931 unsigned long i) 3932 { 3933 return eb->pages[i]; 3934 } 3935 3936 inline unsigned long num_extent_pages(u64 start, u64 len) 3937 { 3938 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3939 (start >> PAGE_CACHE_SHIFT); 3940 } 3941 3942 static void __free_extent_buffer(struct extent_buffer *eb) 3943 { 3944 #if LEAK_DEBUG 3945 unsigned long flags; 3946 spin_lock_irqsave(&leak_lock, flags); 3947 list_del(&eb->leak_list); 3948 spin_unlock_irqrestore(&leak_lock, flags); 3949 #endif 3950 if (eb->pages && eb->pages != eb->inline_pages) 3951 kfree(eb->pages); 3952 kmem_cache_free(extent_buffer_cache, eb); 3953 } 3954 3955 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3956 u64 start, 3957 unsigned long len, 3958 gfp_t mask) 3959 { 3960 struct extent_buffer *eb = NULL; 3961 #if LEAK_DEBUG 3962 unsigned long flags; 3963 #endif 3964 3965 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3966 if (eb == NULL) 3967 return NULL; 3968 eb->start = start; 3969 eb->len = len; 3970 eb->tree = tree; 3971 eb->bflags = 0; 3972 rwlock_init(&eb->lock); 3973 atomic_set(&eb->write_locks, 0); 3974 atomic_set(&eb->read_locks, 0); 3975 atomic_set(&eb->blocking_readers, 0); 3976 atomic_set(&eb->blocking_writers, 0); 3977 atomic_set(&eb->spinning_readers, 0); 3978 atomic_set(&eb->spinning_writers, 0); 3979 eb->lock_nested = 0; 3980 init_waitqueue_head(&eb->write_lock_wq); 3981 init_waitqueue_head(&eb->read_lock_wq); 3982 3983 #if LEAK_DEBUG 3984 spin_lock_irqsave(&leak_lock, flags); 3985 list_add(&eb->leak_list, &buffers); 3986 spin_unlock_irqrestore(&leak_lock, flags); 3987 #endif 3988 spin_lock_init(&eb->refs_lock); 3989 atomic_set(&eb->refs, 1); 3990 atomic_set(&eb->io_pages, 0); 3991 3992 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) { 3993 struct page **pages; 3994 int num_pages = (len + PAGE_CACHE_SIZE - 1) >> 3995 PAGE_CACHE_SHIFT; 3996 pages = kzalloc(num_pages, mask); 3997 if (!pages) { 3998 __free_extent_buffer(eb); 3999 return NULL; 4000 } 4001 eb->pages = pages; 4002 } else { 4003 eb->pages = eb->inline_pages; 4004 } 4005 4006 return eb; 4007 } 4008 4009 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4010 { 4011 unsigned long i; 4012 struct page *p; 4013 struct extent_buffer *new; 4014 unsigned long num_pages = num_extent_pages(src->start, src->len); 4015 4016 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC); 4017 if (new == NULL) 4018 return NULL; 4019 4020 for (i = 0; i < num_pages; i++) { 4021 p = alloc_page(GFP_ATOMIC); 4022 BUG_ON(!p); 4023 attach_extent_buffer_page(new, p); 4024 WARN_ON(PageDirty(p)); 4025 SetPageUptodate(p); 4026 new->pages[i] = p; 4027 } 4028 4029 copy_extent_buffer(new, src, 0, 0, src->len); 4030 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4031 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4032 4033 return new; 4034 } 4035 4036 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4037 { 4038 struct extent_buffer *eb; 4039 unsigned long num_pages = num_extent_pages(0, len); 4040 unsigned long i; 4041 4042 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC); 4043 if (!eb) 4044 return NULL; 4045 4046 for (i = 0; i < num_pages; i++) { 4047 eb->pages[i] = alloc_page(GFP_ATOMIC); 4048 if (!eb->pages[i]) 4049 goto err; 4050 } 4051 set_extent_buffer_uptodate(eb); 4052 btrfs_set_header_nritems(eb, 0); 4053 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4054 4055 return eb; 4056 err: 4057 for (i--; i > 0; i--) 4058 __free_page(eb->pages[i]); 4059 __free_extent_buffer(eb); 4060 return NULL; 4061 } 4062 4063 static int extent_buffer_under_io(struct extent_buffer *eb) 4064 { 4065 return (atomic_read(&eb->io_pages) || 4066 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4067 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4068 } 4069 4070 /* 4071 * Helper for releasing extent buffer page. 4072 */ 4073 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4074 unsigned long start_idx) 4075 { 4076 unsigned long index; 4077 unsigned long num_pages; 4078 struct page *page; 4079 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4080 4081 BUG_ON(extent_buffer_under_io(eb)); 4082 4083 num_pages = num_extent_pages(eb->start, eb->len); 4084 index = start_idx + num_pages; 4085 if (start_idx >= index) 4086 return; 4087 4088 do { 4089 index--; 4090 page = extent_buffer_page(eb, index); 4091 if (page && mapped) { 4092 spin_lock(&page->mapping->private_lock); 4093 /* 4094 * We do this since we'll remove the pages after we've 4095 * removed the eb from the radix tree, so we could race 4096 * and have this page now attached to the new eb. So 4097 * only clear page_private if it's still connected to 4098 * this eb. 4099 */ 4100 if (PagePrivate(page) && 4101 page->private == (unsigned long)eb) { 4102 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4103 BUG_ON(PageDirty(page)); 4104 BUG_ON(PageWriteback(page)); 4105 /* 4106 * We need to make sure we haven't be attached 4107 * to a new eb. 4108 */ 4109 ClearPagePrivate(page); 4110 set_page_private(page, 0); 4111 /* One for the page private */ 4112 page_cache_release(page); 4113 } 4114 spin_unlock(&page->mapping->private_lock); 4115 4116 } 4117 if (page) { 4118 /* One for when we alloced the page */ 4119 page_cache_release(page); 4120 } 4121 } while (index != start_idx); 4122 } 4123 4124 /* 4125 * Helper for releasing the extent buffer. 4126 */ 4127 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4128 { 4129 btrfs_release_extent_buffer_page(eb, 0); 4130 __free_extent_buffer(eb); 4131 } 4132 4133 static void check_buffer_tree_ref(struct extent_buffer *eb) 4134 { 4135 /* the ref bit is tricky. We have to make sure it is set 4136 * if we have the buffer dirty. Otherwise the 4137 * code to free a buffer can end up dropping a dirty 4138 * page 4139 * 4140 * Once the ref bit is set, it won't go away while the 4141 * buffer is dirty or in writeback, and it also won't 4142 * go away while we have the reference count on the 4143 * eb bumped. 4144 * 4145 * We can't just set the ref bit without bumping the 4146 * ref on the eb because free_extent_buffer might 4147 * see the ref bit and try to clear it. If this happens 4148 * free_extent_buffer might end up dropping our original 4149 * ref by mistake and freeing the page before we are able 4150 * to add one more ref. 4151 * 4152 * So bump the ref count first, then set the bit. If someone 4153 * beat us to it, drop the ref we added. 4154 */ 4155 spin_lock(&eb->refs_lock); 4156 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4157 atomic_inc(&eb->refs); 4158 spin_unlock(&eb->refs_lock); 4159 } 4160 4161 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4162 { 4163 unsigned long num_pages, i; 4164 4165 check_buffer_tree_ref(eb); 4166 4167 num_pages = num_extent_pages(eb->start, eb->len); 4168 for (i = 0; i < num_pages; i++) { 4169 struct page *p = extent_buffer_page(eb, i); 4170 mark_page_accessed(p); 4171 } 4172 } 4173 4174 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4175 u64 start, unsigned long len) 4176 { 4177 unsigned long num_pages = num_extent_pages(start, len); 4178 unsigned long i; 4179 unsigned long index = start >> PAGE_CACHE_SHIFT; 4180 struct extent_buffer *eb; 4181 struct extent_buffer *exists = NULL; 4182 struct page *p; 4183 struct address_space *mapping = tree->mapping; 4184 int uptodate = 1; 4185 int ret; 4186 4187 rcu_read_lock(); 4188 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4189 if (eb && atomic_inc_not_zero(&eb->refs)) { 4190 rcu_read_unlock(); 4191 mark_extent_buffer_accessed(eb); 4192 return eb; 4193 } 4194 rcu_read_unlock(); 4195 4196 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4197 if (!eb) 4198 return NULL; 4199 4200 for (i = 0; i < num_pages; i++, index++) { 4201 p = find_or_create_page(mapping, index, GFP_NOFS); 4202 if (!p) { 4203 WARN_ON(1); 4204 goto free_eb; 4205 } 4206 4207 spin_lock(&mapping->private_lock); 4208 if (PagePrivate(p)) { 4209 /* 4210 * We could have already allocated an eb for this page 4211 * and attached one so lets see if we can get a ref on 4212 * the existing eb, and if we can we know it's good and 4213 * we can just return that one, else we know we can just 4214 * overwrite page->private. 4215 */ 4216 exists = (struct extent_buffer *)p->private; 4217 if (atomic_inc_not_zero(&exists->refs)) { 4218 spin_unlock(&mapping->private_lock); 4219 unlock_page(p); 4220 page_cache_release(p); 4221 mark_extent_buffer_accessed(exists); 4222 goto free_eb; 4223 } 4224 4225 /* 4226 * Do this so attach doesn't complain and we need to 4227 * drop the ref the old guy had. 4228 */ 4229 ClearPagePrivate(p); 4230 WARN_ON(PageDirty(p)); 4231 page_cache_release(p); 4232 } 4233 attach_extent_buffer_page(eb, p); 4234 spin_unlock(&mapping->private_lock); 4235 WARN_ON(PageDirty(p)); 4236 mark_page_accessed(p); 4237 eb->pages[i] = p; 4238 if (!PageUptodate(p)) 4239 uptodate = 0; 4240 4241 /* 4242 * see below about how we avoid a nasty race with release page 4243 * and why we unlock later 4244 */ 4245 } 4246 if (uptodate) 4247 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4248 again: 4249 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4250 if (ret) 4251 goto free_eb; 4252 4253 spin_lock(&tree->buffer_lock); 4254 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4255 if (ret == -EEXIST) { 4256 exists = radix_tree_lookup(&tree->buffer, 4257 start >> PAGE_CACHE_SHIFT); 4258 if (!atomic_inc_not_zero(&exists->refs)) { 4259 spin_unlock(&tree->buffer_lock); 4260 radix_tree_preload_end(); 4261 exists = NULL; 4262 goto again; 4263 } 4264 spin_unlock(&tree->buffer_lock); 4265 radix_tree_preload_end(); 4266 mark_extent_buffer_accessed(exists); 4267 goto free_eb; 4268 } 4269 /* add one reference for the tree */ 4270 check_buffer_tree_ref(eb); 4271 spin_unlock(&tree->buffer_lock); 4272 radix_tree_preload_end(); 4273 4274 /* 4275 * there is a race where release page may have 4276 * tried to find this extent buffer in the radix 4277 * but failed. It will tell the VM it is safe to 4278 * reclaim the, and it will clear the page private bit. 4279 * We must make sure to set the page private bit properly 4280 * after the extent buffer is in the radix tree so 4281 * it doesn't get lost 4282 */ 4283 SetPageChecked(eb->pages[0]); 4284 for (i = 1; i < num_pages; i++) { 4285 p = extent_buffer_page(eb, i); 4286 ClearPageChecked(p); 4287 unlock_page(p); 4288 } 4289 unlock_page(eb->pages[0]); 4290 return eb; 4291 4292 free_eb: 4293 for (i = 0; i < num_pages; i++) { 4294 if (eb->pages[i]) 4295 unlock_page(eb->pages[i]); 4296 } 4297 4298 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4299 btrfs_release_extent_buffer(eb); 4300 return exists; 4301 } 4302 4303 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4304 u64 start, unsigned long len) 4305 { 4306 struct extent_buffer *eb; 4307 4308 rcu_read_lock(); 4309 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4310 if (eb && atomic_inc_not_zero(&eb->refs)) { 4311 rcu_read_unlock(); 4312 mark_extent_buffer_accessed(eb); 4313 return eb; 4314 } 4315 rcu_read_unlock(); 4316 4317 return NULL; 4318 } 4319 4320 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4321 { 4322 struct extent_buffer *eb = 4323 container_of(head, struct extent_buffer, rcu_head); 4324 4325 __free_extent_buffer(eb); 4326 } 4327 4328 /* Expects to have eb->eb_lock already held */ 4329 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask) 4330 { 4331 WARN_ON(atomic_read(&eb->refs) == 0); 4332 if (atomic_dec_and_test(&eb->refs)) { 4333 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4334 spin_unlock(&eb->refs_lock); 4335 } else { 4336 struct extent_io_tree *tree = eb->tree; 4337 4338 spin_unlock(&eb->refs_lock); 4339 4340 spin_lock(&tree->buffer_lock); 4341 radix_tree_delete(&tree->buffer, 4342 eb->start >> PAGE_CACHE_SHIFT); 4343 spin_unlock(&tree->buffer_lock); 4344 } 4345 4346 /* Should be safe to release our pages at this point */ 4347 btrfs_release_extent_buffer_page(eb, 0); 4348 4349 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4350 return 1; 4351 } 4352 spin_unlock(&eb->refs_lock); 4353 4354 return 0; 4355 } 4356 4357 void free_extent_buffer(struct extent_buffer *eb) 4358 { 4359 if (!eb) 4360 return; 4361 4362 spin_lock(&eb->refs_lock); 4363 if (atomic_read(&eb->refs) == 2 && 4364 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4365 atomic_dec(&eb->refs); 4366 4367 if (atomic_read(&eb->refs) == 2 && 4368 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4369 !extent_buffer_under_io(eb) && 4370 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4371 atomic_dec(&eb->refs); 4372 4373 /* 4374 * I know this is terrible, but it's temporary until we stop tracking 4375 * the uptodate bits and such for the extent buffers. 4376 */ 4377 release_extent_buffer(eb, GFP_ATOMIC); 4378 } 4379 4380 void free_extent_buffer_stale(struct extent_buffer *eb) 4381 { 4382 if (!eb) 4383 return; 4384 4385 spin_lock(&eb->refs_lock); 4386 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4387 4388 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4389 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4390 atomic_dec(&eb->refs); 4391 release_extent_buffer(eb, GFP_NOFS); 4392 } 4393 4394 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4395 { 4396 unsigned long i; 4397 unsigned long num_pages; 4398 struct page *page; 4399 4400 num_pages = num_extent_pages(eb->start, eb->len); 4401 4402 for (i = 0; i < num_pages; i++) { 4403 page = extent_buffer_page(eb, i); 4404 if (!PageDirty(page)) 4405 continue; 4406 4407 lock_page(page); 4408 WARN_ON(!PagePrivate(page)); 4409 4410 clear_page_dirty_for_io(page); 4411 spin_lock_irq(&page->mapping->tree_lock); 4412 if (!PageDirty(page)) { 4413 radix_tree_tag_clear(&page->mapping->page_tree, 4414 page_index(page), 4415 PAGECACHE_TAG_DIRTY); 4416 } 4417 spin_unlock_irq(&page->mapping->tree_lock); 4418 ClearPageError(page); 4419 unlock_page(page); 4420 } 4421 WARN_ON(atomic_read(&eb->refs) == 0); 4422 } 4423 4424 int set_extent_buffer_dirty(struct extent_buffer *eb) 4425 { 4426 unsigned long i; 4427 unsigned long num_pages; 4428 int was_dirty = 0; 4429 4430 check_buffer_tree_ref(eb); 4431 4432 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4433 4434 num_pages = num_extent_pages(eb->start, eb->len); 4435 WARN_ON(atomic_read(&eb->refs) == 0); 4436 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4437 4438 for (i = 0; i < num_pages; i++) 4439 set_page_dirty(extent_buffer_page(eb, i)); 4440 return was_dirty; 4441 } 4442 4443 static int range_straddles_pages(u64 start, u64 len) 4444 { 4445 if (len < PAGE_CACHE_SIZE) 4446 return 1; 4447 if (start & (PAGE_CACHE_SIZE - 1)) 4448 return 1; 4449 if ((start + len) & (PAGE_CACHE_SIZE - 1)) 4450 return 1; 4451 return 0; 4452 } 4453 4454 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4455 { 4456 unsigned long i; 4457 struct page *page; 4458 unsigned long num_pages; 4459 4460 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4461 num_pages = num_extent_pages(eb->start, eb->len); 4462 for (i = 0; i < num_pages; i++) { 4463 page = extent_buffer_page(eb, i); 4464 if (page) 4465 ClearPageUptodate(page); 4466 } 4467 return 0; 4468 } 4469 4470 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4471 { 4472 unsigned long i; 4473 struct page *page; 4474 unsigned long num_pages; 4475 4476 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4477 num_pages = num_extent_pages(eb->start, eb->len); 4478 for (i = 0; i < num_pages; i++) { 4479 page = extent_buffer_page(eb, i); 4480 SetPageUptodate(page); 4481 } 4482 return 0; 4483 } 4484 4485 int extent_range_uptodate(struct extent_io_tree *tree, 4486 u64 start, u64 end) 4487 { 4488 struct page *page; 4489 int ret; 4490 int pg_uptodate = 1; 4491 int uptodate; 4492 unsigned long index; 4493 4494 if (range_straddles_pages(start, end - start + 1)) { 4495 ret = test_range_bit(tree, start, end, 4496 EXTENT_UPTODATE, 1, NULL); 4497 if (ret) 4498 return 1; 4499 } 4500 while (start <= end) { 4501 index = start >> PAGE_CACHE_SHIFT; 4502 page = find_get_page(tree->mapping, index); 4503 if (!page) 4504 return 1; 4505 uptodate = PageUptodate(page); 4506 page_cache_release(page); 4507 if (!uptodate) { 4508 pg_uptodate = 0; 4509 break; 4510 } 4511 start += PAGE_CACHE_SIZE; 4512 } 4513 return pg_uptodate; 4514 } 4515 4516 int extent_buffer_uptodate(struct extent_buffer *eb) 4517 { 4518 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4519 } 4520 4521 int read_extent_buffer_pages(struct extent_io_tree *tree, 4522 struct extent_buffer *eb, u64 start, int wait, 4523 get_extent_t *get_extent, int mirror_num) 4524 { 4525 unsigned long i; 4526 unsigned long start_i; 4527 struct page *page; 4528 int err; 4529 int ret = 0; 4530 int locked_pages = 0; 4531 int all_uptodate = 1; 4532 unsigned long num_pages; 4533 unsigned long num_reads = 0; 4534 struct bio *bio = NULL; 4535 unsigned long bio_flags = 0; 4536 4537 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4538 return 0; 4539 4540 if (start) { 4541 WARN_ON(start < eb->start); 4542 start_i = (start >> PAGE_CACHE_SHIFT) - 4543 (eb->start >> PAGE_CACHE_SHIFT); 4544 } else { 4545 start_i = 0; 4546 } 4547 4548 num_pages = num_extent_pages(eb->start, eb->len); 4549 for (i = start_i; i < num_pages; i++) { 4550 page = extent_buffer_page(eb, i); 4551 if (wait == WAIT_NONE) { 4552 if (!trylock_page(page)) 4553 goto unlock_exit; 4554 } else { 4555 lock_page(page); 4556 } 4557 locked_pages++; 4558 if (!PageUptodate(page)) { 4559 num_reads++; 4560 all_uptodate = 0; 4561 } 4562 } 4563 if (all_uptodate) { 4564 if (start_i == 0) 4565 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4566 goto unlock_exit; 4567 } 4568 4569 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4570 eb->read_mirror = 0; 4571 atomic_set(&eb->io_pages, num_reads); 4572 for (i = start_i; i < num_pages; i++) { 4573 page = extent_buffer_page(eb, i); 4574 if (!PageUptodate(page)) { 4575 ClearPageError(page); 4576 err = __extent_read_full_page(tree, page, 4577 get_extent, &bio, 4578 mirror_num, &bio_flags); 4579 if (err) 4580 ret = err; 4581 } else { 4582 unlock_page(page); 4583 } 4584 } 4585 4586 if (bio) { 4587 err = submit_one_bio(READ, bio, mirror_num, bio_flags); 4588 if (err) 4589 return err; 4590 } 4591 4592 if (ret || wait != WAIT_COMPLETE) 4593 return ret; 4594 4595 for (i = start_i; i < num_pages; i++) { 4596 page = extent_buffer_page(eb, i); 4597 wait_on_page_locked(page); 4598 if (!PageUptodate(page)) 4599 ret = -EIO; 4600 } 4601 4602 return ret; 4603 4604 unlock_exit: 4605 i = start_i; 4606 while (locked_pages > 0) { 4607 page = extent_buffer_page(eb, i); 4608 i++; 4609 unlock_page(page); 4610 locked_pages--; 4611 } 4612 return ret; 4613 } 4614 4615 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4616 unsigned long start, 4617 unsigned long len) 4618 { 4619 size_t cur; 4620 size_t offset; 4621 struct page *page; 4622 char *kaddr; 4623 char *dst = (char *)dstv; 4624 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4625 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4626 4627 WARN_ON(start > eb->len); 4628 WARN_ON(start + len > eb->start + eb->len); 4629 4630 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4631 4632 while (len > 0) { 4633 page = extent_buffer_page(eb, i); 4634 4635 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4636 kaddr = page_address(page); 4637 memcpy(dst, kaddr + offset, cur); 4638 4639 dst += cur; 4640 len -= cur; 4641 offset = 0; 4642 i++; 4643 } 4644 } 4645 4646 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4647 unsigned long min_len, char **map, 4648 unsigned long *map_start, 4649 unsigned long *map_len) 4650 { 4651 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4652 char *kaddr; 4653 struct page *p; 4654 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4655 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4656 unsigned long end_i = (start_offset + start + min_len - 1) >> 4657 PAGE_CACHE_SHIFT; 4658 4659 if (i != end_i) 4660 return -EINVAL; 4661 4662 if (i == 0) { 4663 offset = start_offset; 4664 *map_start = 0; 4665 } else { 4666 offset = 0; 4667 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4668 } 4669 4670 if (start + min_len > eb->len) { 4671 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4672 "wanted %lu %lu\n", (unsigned long long)eb->start, 4673 eb->len, start, min_len); 4674 WARN_ON(1); 4675 return -EINVAL; 4676 } 4677 4678 p = extent_buffer_page(eb, i); 4679 kaddr = page_address(p); 4680 *map = kaddr + offset; 4681 *map_len = PAGE_CACHE_SIZE - offset; 4682 return 0; 4683 } 4684 4685 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4686 unsigned long start, 4687 unsigned long len) 4688 { 4689 size_t cur; 4690 size_t offset; 4691 struct page *page; 4692 char *kaddr; 4693 char *ptr = (char *)ptrv; 4694 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4695 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4696 int ret = 0; 4697 4698 WARN_ON(start > eb->len); 4699 WARN_ON(start + len > eb->start + eb->len); 4700 4701 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4702 4703 while (len > 0) { 4704 page = extent_buffer_page(eb, i); 4705 4706 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4707 4708 kaddr = page_address(page); 4709 ret = memcmp(ptr, kaddr + offset, cur); 4710 if (ret) 4711 break; 4712 4713 ptr += cur; 4714 len -= cur; 4715 offset = 0; 4716 i++; 4717 } 4718 return ret; 4719 } 4720 4721 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4722 unsigned long start, unsigned long len) 4723 { 4724 size_t cur; 4725 size_t offset; 4726 struct page *page; 4727 char *kaddr; 4728 char *src = (char *)srcv; 4729 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4730 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4731 4732 WARN_ON(start > eb->len); 4733 WARN_ON(start + len > eb->start + eb->len); 4734 4735 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4736 4737 while (len > 0) { 4738 page = extent_buffer_page(eb, i); 4739 WARN_ON(!PageUptodate(page)); 4740 4741 cur = min(len, PAGE_CACHE_SIZE - offset); 4742 kaddr = page_address(page); 4743 memcpy(kaddr + offset, src, cur); 4744 4745 src += cur; 4746 len -= cur; 4747 offset = 0; 4748 i++; 4749 } 4750 } 4751 4752 void memset_extent_buffer(struct extent_buffer *eb, char c, 4753 unsigned long start, unsigned long len) 4754 { 4755 size_t cur; 4756 size_t offset; 4757 struct page *page; 4758 char *kaddr; 4759 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4760 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4761 4762 WARN_ON(start > eb->len); 4763 WARN_ON(start + len > eb->start + eb->len); 4764 4765 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4766 4767 while (len > 0) { 4768 page = extent_buffer_page(eb, i); 4769 WARN_ON(!PageUptodate(page)); 4770 4771 cur = min(len, PAGE_CACHE_SIZE - offset); 4772 kaddr = page_address(page); 4773 memset(kaddr + offset, c, cur); 4774 4775 len -= cur; 4776 offset = 0; 4777 i++; 4778 } 4779 } 4780 4781 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 4782 unsigned long dst_offset, unsigned long src_offset, 4783 unsigned long len) 4784 { 4785 u64 dst_len = dst->len; 4786 size_t cur; 4787 size_t offset; 4788 struct page *page; 4789 char *kaddr; 4790 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4791 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4792 4793 WARN_ON(src->len != dst_len); 4794 4795 offset = (start_offset + dst_offset) & 4796 ((unsigned long)PAGE_CACHE_SIZE - 1); 4797 4798 while (len > 0) { 4799 page = extent_buffer_page(dst, i); 4800 WARN_ON(!PageUptodate(page)); 4801 4802 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 4803 4804 kaddr = page_address(page); 4805 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4806 4807 src_offset += cur; 4808 len -= cur; 4809 offset = 0; 4810 i++; 4811 } 4812 } 4813 4814 static void move_pages(struct page *dst_page, struct page *src_page, 4815 unsigned long dst_off, unsigned long src_off, 4816 unsigned long len) 4817 { 4818 char *dst_kaddr = page_address(dst_page); 4819 if (dst_page == src_page) { 4820 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 4821 } else { 4822 char *src_kaddr = page_address(src_page); 4823 char *p = dst_kaddr + dst_off + len; 4824 char *s = src_kaddr + src_off + len; 4825 4826 while (len--) 4827 *--p = *--s; 4828 } 4829 } 4830 4831 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4832 { 4833 unsigned long distance = (src > dst) ? src - dst : dst - src; 4834 return distance < len; 4835 } 4836 4837 static void copy_pages(struct page *dst_page, struct page *src_page, 4838 unsigned long dst_off, unsigned long src_off, 4839 unsigned long len) 4840 { 4841 char *dst_kaddr = page_address(dst_page); 4842 char *src_kaddr; 4843 int must_memmove = 0; 4844 4845 if (dst_page != src_page) { 4846 src_kaddr = page_address(src_page); 4847 } else { 4848 src_kaddr = dst_kaddr; 4849 if (areas_overlap(src_off, dst_off, len)) 4850 must_memmove = 1; 4851 } 4852 4853 if (must_memmove) 4854 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4855 else 4856 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4857 } 4858 4859 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4860 unsigned long src_offset, unsigned long len) 4861 { 4862 size_t cur; 4863 size_t dst_off_in_page; 4864 size_t src_off_in_page; 4865 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4866 unsigned long dst_i; 4867 unsigned long src_i; 4868 4869 if (src_offset + len > dst->len) { 4870 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4871 "len %lu dst len %lu\n", src_offset, len, dst->len); 4872 BUG_ON(1); 4873 } 4874 if (dst_offset + len > dst->len) { 4875 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4876 "len %lu dst len %lu\n", dst_offset, len, dst->len); 4877 BUG_ON(1); 4878 } 4879 4880 while (len > 0) { 4881 dst_off_in_page = (start_offset + dst_offset) & 4882 ((unsigned long)PAGE_CACHE_SIZE - 1); 4883 src_off_in_page = (start_offset + src_offset) & 4884 ((unsigned long)PAGE_CACHE_SIZE - 1); 4885 4886 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4887 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 4888 4889 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 4890 src_off_in_page)); 4891 cur = min_t(unsigned long, cur, 4892 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 4893 4894 copy_pages(extent_buffer_page(dst, dst_i), 4895 extent_buffer_page(dst, src_i), 4896 dst_off_in_page, src_off_in_page, cur); 4897 4898 src_offset += cur; 4899 dst_offset += cur; 4900 len -= cur; 4901 } 4902 } 4903 4904 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4905 unsigned long src_offset, unsigned long len) 4906 { 4907 size_t cur; 4908 size_t dst_off_in_page; 4909 size_t src_off_in_page; 4910 unsigned long dst_end = dst_offset + len - 1; 4911 unsigned long src_end = src_offset + len - 1; 4912 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4913 unsigned long dst_i; 4914 unsigned long src_i; 4915 4916 if (src_offset + len > dst->len) { 4917 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4918 "len %lu len %lu\n", src_offset, len, dst->len); 4919 BUG_ON(1); 4920 } 4921 if (dst_offset + len > dst->len) { 4922 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4923 "len %lu len %lu\n", dst_offset, len, dst->len); 4924 BUG_ON(1); 4925 } 4926 if (dst_offset < src_offset) { 4927 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4928 return; 4929 } 4930 while (len > 0) { 4931 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 4932 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 4933 4934 dst_off_in_page = (start_offset + dst_end) & 4935 ((unsigned long)PAGE_CACHE_SIZE - 1); 4936 src_off_in_page = (start_offset + src_end) & 4937 ((unsigned long)PAGE_CACHE_SIZE - 1); 4938 4939 cur = min_t(unsigned long, len, src_off_in_page + 1); 4940 cur = min(cur, dst_off_in_page + 1); 4941 move_pages(extent_buffer_page(dst, dst_i), 4942 extent_buffer_page(dst, src_i), 4943 dst_off_in_page - cur + 1, 4944 src_off_in_page - cur + 1, cur); 4945 4946 dst_end -= cur; 4947 src_end -= cur; 4948 len -= cur; 4949 } 4950 } 4951 4952 int try_release_extent_buffer(struct page *page, gfp_t mask) 4953 { 4954 struct extent_buffer *eb; 4955 4956 /* 4957 * We need to make sure noboody is attaching this page to an eb right 4958 * now. 4959 */ 4960 spin_lock(&page->mapping->private_lock); 4961 if (!PagePrivate(page)) { 4962 spin_unlock(&page->mapping->private_lock); 4963 return 1; 4964 } 4965 4966 eb = (struct extent_buffer *)page->private; 4967 BUG_ON(!eb); 4968 4969 /* 4970 * This is a little awful but should be ok, we need to make sure that 4971 * the eb doesn't disappear out from under us while we're looking at 4972 * this page. 4973 */ 4974 spin_lock(&eb->refs_lock); 4975 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4976 spin_unlock(&eb->refs_lock); 4977 spin_unlock(&page->mapping->private_lock); 4978 return 0; 4979 } 4980 spin_unlock(&page->mapping->private_lock); 4981 4982 if ((mask & GFP_NOFS) == GFP_NOFS) 4983 mask = GFP_NOFS; 4984 4985 /* 4986 * If tree ref isn't set then we know the ref on this eb is a real ref, 4987 * so just return, this page will likely be freed soon anyway. 4988 */ 4989 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4990 spin_unlock(&eb->refs_lock); 4991 return 0; 4992 } 4993 4994 return release_extent_buffer(eb, mask); 4995 } 4996