1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/fsverity.h> 16 #include "misc.h" 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "volumes.h" 23 #include "check-integrity.h" 24 #include "locking.h" 25 #include "rcu-string.h" 26 #include "backref.h" 27 #include "disk-io.h" 28 #include "subpage.h" 29 #include "zoned.h" 30 #include "block-group.h" 31 32 static struct kmem_cache *extent_state_cache; 33 static struct kmem_cache *extent_buffer_cache; 34 static struct bio_set btrfs_bioset; 35 36 static inline bool extent_state_in_tree(const struct extent_state *state) 37 { 38 return !RB_EMPTY_NODE(&state->rb_node); 39 } 40 41 #ifdef CONFIG_BTRFS_DEBUG 42 static LIST_HEAD(states); 43 static DEFINE_SPINLOCK(leak_lock); 44 45 static inline void btrfs_leak_debug_add(spinlock_t *lock, 46 struct list_head *new, 47 struct list_head *head) 48 { 49 unsigned long flags; 50 51 spin_lock_irqsave(lock, flags); 52 list_add(new, head); 53 spin_unlock_irqrestore(lock, flags); 54 } 55 56 static inline void btrfs_leak_debug_del(spinlock_t *lock, 57 struct list_head *entry) 58 { 59 unsigned long flags; 60 61 spin_lock_irqsave(lock, flags); 62 list_del(entry); 63 spin_unlock_irqrestore(lock, flags); 64 } 65 66 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 67 { 68 struct extent_buffer *eb; 69 unsigned long flags; 70 71 /* 72 * If we didn't get into open_ctree our allocated_ebs will not be 73 * initialized, so just skip this. 74 */ 75 if (!fs_info->allocated_ebs.next) 76 return; 77 78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 79 while (!list_empty(&fs_info->allocated_ebs)) { 80 eb = list_first_entry(&fs_info->allocated_ebs, 81 struct extent_buffer, leak_list); 82 pr_err( 83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 85 btrfs_header_owner(eb)); 86 list_del(&eb->leak_list); 87 kmem_cache_free(extent_buffer_cache, eb); 88 } 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 90 } 91 92 static inline void btrfs_extent_state_leak_debug_check(void) 93 { 94 struct extent_state *state; 95 96 while (!list_empty(&states)) { 97 state = list_entry(states.next, struct extent_state, leak_list); 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 99 state->start, state->end, state->state, 100 extent_state_in_tree(state), 101 refcount_read(&state->refs)); 102 list_del(&state->leak_list); 103 kmem_cache_free(extent_state_cache, state); 104 } 105 } 106 107 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 109 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 110 struct extent_io_tree *tree, u64 start, u64 end) 111 { 112 struct inode *inode = tree->private_data; 113 u64 isize; 114 115 if (!inode || !is_data_inode(inode)) 116 return; 117 118 isize = i_size_read(inode); 119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 121 "%s: ino %llu isize %llu odd range [%llu,%llu]", 122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 123 } 124 } 125 #else 126 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 127 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 128 #define btrfs_extent_state_leak_debug_check() do {} while (0) 129 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 130 #endif 131 132 struct tree_entry { 133 u64 start; 134 u64 end; 135 struct rb_node rb_node; 136 }; 137 138 struct extent_page_data { 139 struct btrfs_bio_ctrl bio_ctrl; 140 /* tells writepage not to lock the state bits for this range 141 * it still does the unlocking 142 */ 143 unsigned int extent_locked:1; 144 145 /* tells the submit_bio code to use REQ_SYNC */ 146 unsigned int sync_io:1; 147 }; 148 149 static int add_extent_changeset(struct extent_state *state, u32 bits, 150 struct extent_changeset *changeset, 151 int set) 152 { 153 int ret; 154 155 if (!changeset) 156 return 0; 157 if (set && (state->state & bits) == bits) 158 return 0; 159 if (!set && (state->state & bits) == 0) 160 return 0; 161 changeset->bytes_changed += state->end - state->start + 1; 162 ret = ulist_add(&changeset->range_changed, state->start, state->end, 163 GFP_ATOMIC); 164 return ret; 165 } 166 167 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 168 unsigned long bio_flags) 169 { 170 blk_status_t ret = 0; 171 struct extent_io_tree *tree = bio->bi_private; 172 173 bio->bi_private = NULL; 174 175 /* Caller should ensure the bio has at least some range added */ 176 ASSERT(bio->bi_iter.bi_size); 177 if (is_data_inode(tree->private_data)) 178 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 179 bio_flags); 180 else 181 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 182 mirror_num, bio_flags); 183 184 return blk_status_to_errno(ret); 185 } 186 187 /* Cleanup unsubmitted bios */ 188 static void end_write_bio(struct extent_page_data *epd, int ret) 189 { 190 struct bio *bio = epd->bio_ctrl.bio; 191 192 if (bio) { 193 bio->bi_status = errno_to_blk_status(ret); 194 bio_endio(bio); 195 epd->bio_ctrl.bio = NULL; 196 } 197 } 198 199 /* 200 * Submit bio from extent page data via submit_one_bio 201 * 202 * Return 0 if everything is OK. 203 * Return <0 for error. 204 */ 205 static int __must_check flush_write_bio(struct extent_page_data *epd) 206 { 207 int ret = 0; 208 struct bio *bio = epd->bio_ctrl.bio; 209 210 if (bio) { 211 ret = submit_one_bio(bio, 0, 0); 212 /* 213 * Clean up of epd->bio is handled by its endio function. 214 * And endio is either triggered by successful bio execution 215 * or the error handler of submit bio hook. 216 * So at this point, no matter what happened, we don't need 217 * to clean up epd->bio. 218 */ 219 epd->bio_ctrl.bio = NULL; 220 } 221 return ret; 222 } 223 224 int __init extent_state_cache_init(void) 225 { 226 extent_state_cache = kmem_cache_create("btrfs_extent_state", 227 sizeof(struct extent_state), 0, 228 SLAB_MEM_SPREAD, NULL); 229 if (!extent_state_cache) 230 return -ENOMEM; 231 return 0; 232 } 233 234 int __init extent_io_init(void) 235 { 236 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 237 sizeof(struct extent_buffer), 0, 238 SLAB_MEM_SPREAD, NULL); 239 if (!extent_buffer_cache) 240 return -ENOMEM; 241 242 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 243 offsetof(struct btrfs_bio, bio), 244 BIOSET_NEED_BVECS)) 245 goto free_buffer_cache; 246 247 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 248 goto free_bioset; 249 250 return 0; 251 252 free_bioset: 253 bioset_exit(&btrfs_bioset); 254 255 free_buffer_cache: 256 kmem_cache_destroy(extent_buffer_cache); 257 extent_buffer_cache = NULL; 258 return -ENOMEM; 259 } 260 261 void __cold extent_state_cache_exit(void) 262 { 263 btrfs_extent_state_leak_debug_check(); 264 kmem_cache_destroy(extent_state_cache); 265 } 266 267 void __cold extent_io_exit(void) 268 { 269 /* 270 * Make sure all delayed rcu free are flushed before we 271 * destroy caches. 272 */ 273 rcu_barrier(); 274 kmem_cache_destroy(extent_buffer_cache); 275 bioset_exit(&btrfs_bioset); 276 } 277 278 /* 279 * For the file_extent_tree, we want to hold the inode lock when we lookup and 280 * update the disk_i_size, but lockdep will complain because our io_tree we hold 281 * the tree lock and get the inode lock when setting delalloc. These two things 282 * are unrelated, so make a class for the file_extent_tree so we don't get the 283 * two locking patterns mixed up. 284 */ 285 static struct lock_class_key file_extent_tree_class; 286 287 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 288 struct extent_io_tree *tree, unsigned int owner, 289 void *private_data) 290 { 291 tree->fs_info = fs_info; 292 tree->state = RB_ROOT; 293 tree->dirty_bytes = 0; 294 spin_lock_init(&tree->lock); 295 tree->private_data = private_data; 296 tree->owner = owner; 297 if (owner == IO_TREE_INODE_FILE_EXTENT) 298 lockdep_set_class(&tree->lock, &file_extent_tree_class); 299 } 300 301 void extent_io_tree_release(struct extent_io_tree *tree) 302 { 303 spin_lock(&tree->lock); 304 /* 305 * Do a single barrier for the waitqueue_active check here, the state 306 * of the waitqueue should not change once extent_io_tree_release is 307 * called. 308 */ 309 smp_mb(); 310 while (!RB_EMPTY_ROOT(&tree->state)) { 311 struct rb_node *node; 312 struct extent_state *state; 313 314 node = rb_first(&tree->state); 315 state = rb_entry(node, struct extent_state, rb_node); 316 rb_erase(&state->rb_node, &tree->state); 317 RB_CLEAR_NODE(&state->rb_node); 318 /* 319 * btree io trees aren't supposed to have tasks waiting for 320 * changes in the flags of extent states ever. 321 */ 322 ASSERT(!waitqueue_active(&state->wq)); 323 free_extent_state(state); 324 325 cond_resched_lock(&tree->lock); 326 } 327 spin_unlock(&tree->lock); 328 } 329 330 static struct extent_state *alloc_extent_state(gfp_t mask) 331 { 332 struct extent_state *state; 333 334 /* 335 * The given mask might be not appropriate for the slab allocator, 336 * drop the unsupported bits 337 */ 338 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 339 state = kmem_cache_alloc(extent_state_cache, mask); 340 if (!state) 341 return state; 342 state->state = 0; 343 state->failrec = NULL; 344 RB_CLEAR_NODE(&state->rb_node); 345 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 346 refcount_set(&state->refs, 1); 347 init_waitqueue_head(&state->wq); 348 trace_alloc_extent_state(state, mask, _RET_IP_); 349 return state; 350 } 351 352 void free_extent_state(struct extent_state *state) 353 { 354 if (!state) 355 return; 356 if (refcount_dec_and_test(&state->refs)) { 357 WARN_ON(extent_state_in_tree(state)); 358 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 359 trace_free_extent_state(state, _RET_IP_); 360 kmem_cache_free(extent_state_cache, state); 361 } 362 } 363 364 static struct rb_node *tree_insert(struct rb_root *root, 365 struct rb_node *search_start, 366 u64 offset, 367 struct rb_node *node, 368 struct rb_node ***p_in, 369 struct rb_node **parent_in) 370 { 371 struct rb_node **p; 372 struct rb_node *parent = NULL; 373 struct tree_entry *entry; 374 375 if (p_in && parent_in) { 376 p = *p_in; 377 parent = *parent_in; 378 goto do_insert; 379 } 380 381 p = search_start ? &search_start : &root->rb_node; 382 while (*p) { 383 parent = *p; 384 entry = rb_entry(parent, struct tree_entry, rb_node); 385 386 if (offset < entry->start) 387 p = &(*p)->rb_left; 388 else if (offset > entry->end) 389 p = &(*p)->rb_right; 390 else 391 return parent; 392 } 393 394 do_insert: 395 rb_link_node(node, parent, p); 396 rb_insert_color(node, root); 397 return NULL; 398 } 399 400 /** 401 * Search @tree for an entry that contains @offset. Such entry would have 402 * entry->start <= offset && entry->end >= offset. 403 * 404 * @tree: the tree to search 405 * @offset: offset that should fall within an entry in @tree 406 * @next_ret: pointer to the first entry whose range ends after @offset 407 * @prev_ret: pointer to the first entry whose range begins before @offset 408 * @p_ret: pointer where new node should be anchored (used when inserting an 409 * entry in the tree) 410 * @parent_ret: points to entry which would have been the parent of the entry, 411 * containing @offset 412 * 413 * This function returns a pointer to the entry that contains @offset byte 414 * address. If no such entry exists, then NULL is returned and the other 415 * pointer arguments to the function are filled, otherwise the found entry is 416 * returned and other pointers are left untouched. 417 */ 418 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 419 struct rb_node **next_ret, 420 struct rb_node **prev_ret, 421 struct rb_node ***p_ret, 422 struct rb_node **parent_ret) 423 { 424 struct rb_root *root = &tree->state; 425 struct rb_node **n = &root->rb_node; 426 struct rb_node *prev = NULL; 427 struct rb_node *orig_prev = NULL; 428 struct tree_entry *entry; 429 struct tree_entry *prev_entry = NULL; 430 431 while (*n) { 432 prev = *n; 433 entry = rb_entry(prev, struct tree_entry, rb_node); 434 prev_entry = entry; 435 436 if (offset < entry->start) 437 n = &(*n)->rb_left; 438 else if (offset > entry->end) 439 n = &(*n)->rb_right; 440 else 441 return *n; 442 } 443 444 if (p_ret) 445 *p_ret = n; 446 if (parent_ret) 447 *parent_ret = prev; 448 449 if (next_ret) { 450 orig_prev = prev; 451 while (prev && offset > prev_entry->end) { 452 prev = rb_next(prev); 453 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 454 } 455 *next_ret = prev; 456 prev = orig_prev; 457 } 458 459 if (prev_ret) { 460 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 461 while (prev && offset < prev_entry->start) { 462 prev = rb_prev(prev); 463 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 464 } 465 *prev_ret = prev; 466 } 467 return NULL; 468 } 469 470 static inline struct rb_node * 471 tree_search_for_insert(struct extent_io_tree *tree, 472 u64 offset, 473 struct rb_node ***p_ret, 474 struct rb_node **parent_ret) 475 { 476 struct rb_node *next= NULL; 477 struct rb_node *ret; 478 479 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 480 if (!ret) 481 return next; 482 return ret; 483 } 484 485 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 486 u64 offset) 487 { 488 return tree_search_for_insert(tree, offset, NULL, NULL); 489 } 490 491 /* 492 * utility function to look for merge candidates inside a given range. 493 * Any extents with matching state are merged together into a single 494 * extent in the tree. Extents with EXTENT_IO in their state field 495 * are not merged because the end_io handlers need to be able to do 496 * operations on them without sleeping (or doing allocations/splits). 497 * 498 * This should be called with the tree lock held. 499 */ 500 static void merge_state(struct extent_io_tree *tree, 501 struct extent_state *state) 502 { 503 struct extent_state *other; 504 struct rb_node *other_node; 505 506 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 507 return; 508 509 other_node = rb_prev(&state->rb_node); 510 if (other_node) { 511 other = rb_entry(other_node, struct extent_state, rb_node); 512 if (other->end == state->start - 1 && 513 other->state == state->state) { 514 if (tree->private_data && 515 is_data_inode(tree->private_data)) 516 btrfs_merge_delalloc_extent(tree->private_data, 517 state, other); 518 state->start = other->start; 519 rb_erase(&other->rb_node, &tree->state); 520 RB_CLEAR_NODE(&other->rb_node); 521 free_extent_state(other); 522 } 523 } 524 other_node = rb_next(&state->rb_node); 525 if (other_node) { 526 other = rb_entry(other_node, struct extent_state, rb_node); 527 if (other->start == state->end + 1 && 528 other->state == state->state) { 529 if (tree->private_data && 530 is_data_inode(tree->private_data)) 531 btrfs_merge_delalloc_extent(tree->private_data, 532 state, other); 533 state->end = other->end; 534 rb_erase(&other->rb_node, &tree->state); 535 RB_CLEAR_NODE(&other->rb_node); 536 free_extent_state(other); 537 } 538 } 539 } 540 541 static void set_state_bits(struct extent_io_tree *tree, 542 struct extent_state *state, u32 *bits, 543 struct extent_changeset *changeset); 544 545 /* 546 * insert an extent_state struct into the tree. 'bits' are set on the 547 * struct before it is inserted. 548 * 549 * This may return -EEXIST if the extent is already there, in which case the 550 * state struct is freed. 551 * 552 * The tree lock is not taken internally. This is a utility function and 553 * probably isn't what you want to call (see set/clear_extent_bit). 554 */ 555 static int insert_state(struct extent_io_tree *tree, 556 struct extent_state *state, u64 start, u64 end, 557 struct rb_node ***p, 558 struct rb_node **parent, 559 u32 *bits, struct extent_changeset *changeset) 560 { 561 struct rb_node *node; 562 563 if (end < start) { 564 btrfs_err(tree->fs_info, 565 "insert state: end < start %llu %llu", end, start); 566 WARN_ON(1); 567 } 568 state->start = start; 569 state->end = end; 570 571 set_state_bits(tree, state, bits, changeset); 572 573 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 574 if (node) { 575 struct extent_state *found; 576 found = rb_entry(node, struct extent_state, rb_node); 577 btrfs_err(tree->fs_info, 578 "found node %llu %llu on insert of %llu %llu", 579 found->start, found->end, start, end); 580 return -EEXIST; 581 } 582 merge_state(tree, state); 583 return 0; 584 } 585 586 /* 587 * split a given extent state struct in two, inserting the preallocated 588 * struct 'prealloc' as the newly created second half. 'split' indicates an 589 * offset inside 'orig' where it should be split. 590 * 591 * Before calling, 592 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 593 * are two extent state structs in the tree: 594 * prealloc: [orig->start, split - 1] 595 * orig: [ split, orig->end ] 596 * 597 * The tree locks are not taken by this function. They need to be held 598 * by the caller. 599 */ 600 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 601 struct extent_state *prealloc, u64 split) 602 { 603 struct rb_node *node; 604 605 if (tree->private_data && is_data_inode(tree->private_data)) 606 btrfs_split_delalloc_extent(tree->private_data, orig, split); 607 608 prealloc->start = orig->start; 609 prealloc->end = split - 1; 610 prealloc->state = orig->state; 611 orig->start = split; 612 613 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 614 &prealloc->rb_node, NULL, NULL); 615 if (node) { 616 free_extent_state(prealloc); 617 return -EEXIST; 618 } 619 return 0; 620 } 621 622 static struct extent_state *next_state(struct extent_state *state) 623 { 624 struct rb_node *next = rb_next(&state->rb_node); 625 if (next) 626 return rb_entry(next, struct extent_state, rb_node); 627 else 628 return NULL; 629 } 630 631 /* 632 * utility function to clear some bits in an extent state struct. 633 * it will optionally wake up anyone waiting on this state (wake == 1). 634 * 635 * If no bits are set on the state struct after clearing things, the 636 * struct is freed and removed from the tree 637 */ 638 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 639 struct extent_state *state, 640 u32 *bits, int wake, 641 struct extent_changeset *changeset) 642 { 643 struct extent_state *next; 644 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 645 int ret; 646 647 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 648 u64 range = state->end - state->start + 1; 649 WARN_ON(range > tree->dirty_bytes); 650 tree->dirty_bytes -= range; 651 } 652 653 if (tree->private_data && is_data_inode(tree->private_data)) 654 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 655 656 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 657 BUG_ON(ret < 0); 658 state->state &= ~bits_to_clear; 659 if (wake) 660 wake_up(&state->wq); 661 if (state->state == 0) { 662 next = next_state(state); 663 if (extent_state_in_tree(state)) { 664 rb_erase(&state->rb_node, &tree->state); 665 RB_CLEAR_NODE(&state->rb_node); 666 free_extent_state(state); 667 } else { 668 WARN_ON(1); 669 } 670 } else { 671 merge_state(tree, state); 672 next = next_state(state); 673 } 674 return next; 675 } 676 677 static struct extent_state * 678 alloc_extent_state_atomic(struct extent_state *prealloc) 679 { 680 if (!prealloc) 681 prealloc = alloc_extent_state(GFP_ATOMIC); 682 683 return prealloc; 684 } 685 686 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 687 { 688 btrfs_panic(tree->fs_info, err, 689 "locking error: extent tree was modified by another thread while locked"); 690 } 691 692 /* 693 * clear some bits on a range in the tree. This may require splitting 694 * or inserting elements in the tree, so the gfp mask is used to 695 * indicate which allocations or sleeping are allowed. 696 * 697 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 698 * the given range from the tree regardless of state (ie for truncate). 699 * 700 * the range [start, end] is inclusive. 701 * 702 * This takes the tree lock, and returns 0 on success and < 0 on error. 703 */ 704 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 705 u32 bits, int wake, int delete, 706 struct extent_state **cached_state, 707 gfp_t mask, struct extent_changeset *changeset) 708 { 709 struct extent_state *state; 710 struct extent_state *cached; 711 struct extent_state *prealloc = NULL; 712 struct rb_node *node; 713 u64 last_end; 714 int err; 715 int clear = 0; 716 717 btrfs_debug_check_extent_io_range(tree, start, end); 718 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 719 720 if (bits & EXTENT_DELALLOC) 721 bits |= EXTENT_NORESERVE; 722 723 if (delete) 724 bits |= ~EXTENT_CTLBITS; 725 726 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 727 clear = 1; 728 again: 729 if (!prealloc && gfpflags_allow_blocking(mask)) { 730 /* 731 * Don't care for allocation failure here because we might end 732 * up not needing the pre-allocated extent state at all, which 733 * is the case if we only have in the tree extent states that 734 * cover our input range and don't cover too any other range. 735 * If we end up needing a new extent state we allocate it later. 736 */ 737 prealloc = alloc_extent_state(mask); 738 } 739 740 spin_lock(&tree->lock); 741 if (cached_state) { 742 cached = *cached_state; 743 744 if (clear) { 745 *cached_state = NULL; 746 cached_state = NULL; 747 } 748 749 if (cached && extent_state_in_tree(cached) && 750 cached->start <= start && cached->end > start) { 751 if (clear) 752 refcount_dec(&cached->refs); 753 state = cached; 754 goto hit_next; 755 } 756 if (clear) 757 free_extent_state(cached); 758 } 759 /* 760 * this search will find the extents that end after 761 * our range starts 762 */ 763 node = tree_search(tree, start); 764 if (!node) 765 goto out; 766 state = rb_entry(node, struct extent_state, rb_node); 767 hit_next: 768 if (state->start > end) 769 goto out; 770 WARN_ON(state->end < start); 771 last_end = state->end; 772 773 /* the state doesn't have the wanted bits, go ahead */ 774 if (!(state->state & bits)) { 775 state = next_state(state); 776 goto next; 777 } 778 779 /* 780 * | ---- desired range ---- | 781 * | state | or 782 * | ------------- state -------------- | 783 * 784 * We need to split the extent we found, and may flip 785 * bits on second half. 786 * 787 * If the extent we found extends past our range, we 788 * just split and search again. It'll get split again 789 * the next time though. 790 * 791 * If the extent we found is inside our range, we clear 792 * the desired bit on it. 793 */ 794 795 if (state->start < start) { 796 prealloc = alloc_extent_state_atomic(prealloc); 797 BUG_ON(!prealloc); 798 err = split_state(tree, state, prealloc, start); 799 if (err) 800 extent_io_tree_panic(tree, err); 801 802 prealloc = NULL; 803 if (err) 804 goto out; 805 if (state->end <= end) { 806 state = clear_state_bit(tree, state, &bits, wake, 807 changeset); 808 goto next; 809 } 810 goto search_again; 811 } 812 /* 813 * | ---- desired range ---- | 814 * | state | 815 * We need to split the extent, and clear the bit 816 * on the first half 817 */ 818 if (state->start <= end && state->end > end) { 819 prealloc = alloc_extent_state_atomic(prealloc); 820 BUG_ON(!prealloc); 821 err = split_state(tree, state, prealloc, end + 1); 822 if (err) 823 extent_io_tree_panic(tree, err); 824 825 if (wake) 826 wake_up(&state->wq); 827 828 clear_state_bit(tree, prealloc, &bits, wake, changeset); 829 830 prealloc = NULL; 831 goto out; 832 } 833 834 state = clear_state_bit(tree, state, &bits, wake, changeset); 835 next: 836 if (last_end == (u64)-1) 837 goto out; 838 start = last_end + 1; 839 if (start <= end && state && !need_resched()) 840 goto hit_next; 841 842 search_again: 843 if (start > end) 844 goto out; 845 spin_unlock(&tree->lock); 846 if (gfpflags_allow_blocking(mask)) 847 cond_resched(); 848 goto again; 849 850 out: 851 spin_unlock(&tree->lock); 852 if (prealloc) 853 free_extent_state(prealloc); 854 855 return 0; 856 857 } 858 859 static void wait_on_state(struct extent_io_tree *tree, 860 struct extent_state *state) 861 __releases(tree->lock) 862 __acquires(tree->lock) 863 { 864 DEFINE_WAIT(wait); 865 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 866 spin_unlock(&tree->lock); 867 schedule(); 868 spin_lock(&tree->lock); 869 finish_wait(&state->wq, &wait); 870 } 871 872 /* 873 * waits for one or more bits to clear on a range in the state tree. 874 * The range [start, end] is inclusive. 875 * The tree lock is taken by this function 876 */ 877 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 878 u32 bits) 879 { 880 struct extent_state *state; 881 struct rb_node *node; 882 883 btrfs_debug_check_extent_io_range(tree, start, end); 884 885 spin_lock(&tree->lock); 886 again: 887 while (1) { 888 /* 889 * this search will find all the extents that end after 890 * our range starts 891 */ 892 node = tree_search(tree, start); 893 process_node: 894 if (!node) 895 break; 896 897 state = rb_entry(node, struct extent_state, rb_node); 898 899 if (state->start > end) 900 goto out; 901 902 if (state->state & bits) { 903 start = state->start; 904 refcount_inc(&state->refs); 905 wait_on_state(tree, state); 906 free_extent_state(state); 907 goto again; 908 } 909 start = state->end + 1; 910 911 if (start > end) 912 break; 913 914 if (!cond_resched_lock(&tree->lock)) { 915 node = rb_next(node); 916 goto process_node; 917 } 918 } 919 out: 920 spin_unlock(&tree->lock); 921 } 922 923 static void set_state_bits(struct extent_io_tree *tree, 924 struct extent_state *state, 925 u32 *bits, struct extent_changeset *changeset) 926 { 927 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 928 int ret; 929 930 if (tree->private_data && is_data_inode(tree->private_data)) 931 btrfs_set_delalloc_extent(tree->private_data, state, bits); 932 933 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 934 u64 range = state->end - state->start + 1; 935 tree->dirty_bytes += range; 936 } 937 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 938 BUG_ON(ret < 0); 939 state->state |= bits_to_set; 940 } 941 942 static void cache_state_if_flags(struct extent_state *state, 943 struct extent_state **cached_ptr, 944 unsigned flags) 945 { 946 if (cached_ptr && !(*cached_ptr)) { 947 if (!flags || (state->state & flags)) { 948 *cached_ptr = state; 949 refcount_inc(&state->refs); 950 } 951 } 952 } 953 954 static void cache_state(struct extent_state *state, 955 struct extent_state **cached_ptr) 956 { 957 return cache_state_if_flags(state, cached_ptr, 958 EXTENT_LOCKED | EXTENT_BOUNDARY); 959 } 960 961 /* 962 * set some bits on a range in the tree. This may require allocations or 963 * sleeping, so the gfp mask is used to indicate what is allowed. 964 * 965 * If any of the exclusive bits are set, this will fail with -EEXIST if some 966 * part of the range already has the desired bits set. The start of the 967 * existing range is returned in failed_start in this case. 968 * 969 * [start, end] is inclusive This takes the tree lock. 970 */ 971 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 972 u32 exclusive_bits, u64 *failed_start, 973 struct extent_state **cached_state, gfp_t mask, 974 struct extent_changeset *changeset) 975 { 976 struct extent_state *state; 977 struct extent_state *prealloc = NULL; 978 struct rb_node *node; 979 struct rb_node **p; 980 struct rb_node *parent; 981 int err = 0; 982 u64 last_start; 983 u64 last_end; 984 985 btrfs_debug_check_extent_io_range(tree, start, end); 986 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 987 988 if (exclusive_bits) 989 ASSERT(failed_start); 990 else 991 ASSERT(failed_start == NULL); 992 again: 993 if (!prealloc && gfpflags_allow_blocking(mask)) { 994 /* 995 * Don't care for allocation failure here because we might end 996 * up not needing the pre-allocated extent state at all, which 997 * is the case if we only have in the tree extent states that 998 * cover our input range and don't cover too any other range. 999 * If we end up needing a new extent state we allocate it later. 1000 */ 1001 prealloc = alloc_extent_state(mask); 1002 } 1003 1004 spin_lock(&tree->lock); 1005 if (cached_state && *cached_state) { 1006 state = *cached_state; 1007 if (state->start <= start && state->end > start && 1008 extent_state_in_tree(state)) { 1009 node = &state->rb_node; 1010 goto hit_next; 1011 } 1012 } 1013 /* 1014 * this search will find all the extents that end after 1015 * our range starts. 1016 */ 1017 node = tree_search_for_insert(tree, start, &p, &parent); 1018 if (!node) { 1019 prealloc = alloc_extent_state_atomic(prealloc); 1020 BUG_ON(!prealloc); 1021 err = insert_state(tree, prealloc, start, end, 1022 &p, &parent, &bits, changeset); 1023 if (err) 1024 extent_io_tree_panic(tree, err); 1025 1026 cache_state(prealloc, cached_state); 1027 prealloc = NULL; 1028 goto out; 1029 } 1030 state = rb_entry(node, struct extent_state, rb_node); 1031 hit_next: 1032 last_start = state->start; 1033 last_end = state->end; 1034 1035 /* 1036 * | ---- desired range ---- | 1037 * | state | 1038 * 1039 * Just lock what we found and keep going 1040 */ 1041 if (state->start == start && state->end <= end) { 1042 if (state->state & exclusive_bits) { 1043 *failed_start = state->start; 1044 err = -EEXIST; 1045 goto out; 1046 } 1047 1048 set_state_bits(tree, state, &bits, changeset); 1049 cache_state(state, cached_state); 1050 merge_state(tree, state); 1051 if (last_end == (u64)-1) 1052 goto out; 1053 start = last_end + 1; 1054 state = next_state(state); 1055 if (start < end && state && state->start == start && 1056 !need_resched()) 1057 goto hit_next; 1058 goto search_again; 1059 } 1060 1061 /* 1062 * | ---- desired range ---- | 1063 * | state | 1064 * or 1065 * | ------------- state -------------- | 1066 * 1067 * We need to split the extent we found, and may flip bits on 1068 * second half. 1069 * 1070 * If the extent we found extends past our 1071 * range, we just split and search again. It'll get split 1072 * again the next time though. 1073 * 1074 * If the extent we found is inside our range, we set the 1075 * desired bit on it. 1076 */ 1077 if (state->start < start) { 1078 if (state->state & exclusive_bits) { 1079 *failed_start = start; 1080 err = -EEXIST; 1081 goto out; 1082 } 1083 1084 /* 1085 * If this extent already has all the bits we want set, then 1086 * skip it, not necessary to split it or do anything with it. 1087 */ 1088 if ((state->state & bits) == bits) { 1089 start = state->end + 1; 1090 cache_state(state, cached_state); 1091 goto search_again; 1092 } 1093 1094 prealloc = alloc_extent_state_atomic(prealloc); 1095 BUG_ON(!prealloc); 1096 err = split_state(tree, state, prealloc, start); 1097 if (err) 1098 extent_io_tree_panic(tree, err); 1099 1100 prealloc = NULL; 1101 if (err) 1102 goto out; 1103 if (state->end <= end) { 1104 set_state_bits(tree, state, &bits, changeset); 1105 cache_state(state, cached_state); 1106 merge_state(tree, state); 1107 if (last_end == (u64)-1) 1108 goto out; 1109 start = last_end + 1; 1110 state = next_state(state); 1111 if (start < end && state && state->start == start && 1112 !need_resched()) 1113 goto hit_next; 1114 } 1115 goto search_again; 1116 } 1117 /* 1118 * | ---- desired range ---- | 1119 * | state | or | state | 1120 * 1121 * There's a hole, we need to insert something in it and 1122 * ignore the extent we found. 1123 */ 1124 if (state->start > start) { 1125 u64 this_end; 1126 if (end < last_start) 1127 this_end = end; 1128 else 1129 this_end = last_start - 1; 1130 1131 prealloc = alloc_extent_state_atomic(prealloc); 1132 BUG_ON(!prealloc); 1133 1134 /* 1135 * Avoid to free 'prealloc' if it can be merged with 1136 * the later extent. 1137 */ 1138 err = insert_state(tree, prealloc, start, this_end, 1139 NULL, NULL, &bits, changeset); 1140 if (err) 1141 extent_io_tree_panic(tree, err); 1142 1143 cache_state(prealloc, cached_state); 1144 prealloc = NULL; 1145 start = this_end + 1; 1146 goto search_again; 1147 } 1148 /* 1149 * | ---- desired range ---- | 1150 * | state | 1151 * We need to split the extent, and set the bit 1152 * on the first half 1153 */ 1154 if (state->start <= end && state->end > end) { 1155 if (state->state & exclusive_bits) { 1156 *failed_start = start; 1157 err = -EEXIST; 1158 goto out; 1159 } 1160 1161 prealloc = alloc_extent_state_atomic(prealloc); 1162 BUG_ON(!prealloc); 1163 err = split_state(tree, state, prealloc, end + 1); 1164 if (err) 1165 extent_io_tree_panic(tree, err); 1166 1167 set_state_bits(tree, prealloc, &bits, changeset); 1168 cache_state(prealloc, cached_state); 1169 merge_state(tree, prealloc); 1170 prealloc = NULL; 1171 goto out; 1172 } 1173 1174 search_again: 1175 if (start > end) 1176 goto out; 1177 spin_unlock(&tree->lock); 1178 if (gfpflags_allow_blocking(mask)) 1179 cond_resched(); 1180 goto again; 1181 1182 out: 1183 spin_unlock(&tree->lock); 1184 if (prealloc) 1185 free_extent_state(prealloc); 1186 1187 return err; 1188 1189 } 1190 1191 /** 1192 * convert_extent_bit - convert all bits in a given range from one bit to 1193 * another 1194 * @tree: the io tree to search 1195 * @start: the start offset in bytes 1196 * @end: the end offset in bytes (inclusive) 1197 * @bits: the bits to set in this range 1198 * @clear_bits: the bits to clear in this range 1199 * @cached_state: state that we're going to cache 1200 * 1201 * This will go through and set bits for the given range. If any states exist 1202 * already in this range they are set with the given bit and cleared of the 1203 * clear_bits. This is only meant to be used by things that are mergeable, ie 1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1205 * boundary bits like LOCK. 1206 * 1207 * All allocations are done with GFP_NOFS. 1208 */ 1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1210 u32 bits, u32 clear_bits, 1211 struct extent_state **cached_state) 1212 { 1213 struct extent_state *state; 1214 struct extent_state *prealloc = NULL; 1215 struct rb_node *node; 1216 struct rb_node **p; 1217 struct rb_node *parent; 1218 int err = 0; 1219 u64 last_start; 1220 u64 last_end; 1221 bool first_iteration = true; 1222 1223 btrfs_debug_check_extent_io_range(tree, start, end); 1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1225 clear_bits); 1226 1227 again: 1228 if (!prealloc) { 1229 /* 1230 * Best effort, don't worry if extent state allocation fails 1231 * here for the first iteration. We might have a cached state 1232 * that matches exactly the target range, in which case no 1233 * extent state allocations are needed. We'll only know this 1234 * after locking the tree. 1235 */ 1236 prealloc = alloc_extent_state(GFP_NOFS); 1237 if (!prealloc && !first_iteration) 1238 return -ENOMEM; 1239 } 1240 1241 spin_lock(&tree->lock); 1242 if (cached_state && *cached_state) { 1243 state = *cached_state; 1244 if (state->start <= start && state->end > start && 1245 extent_state_in_tree(state)) { 1246 node = &state->rb_node; 1247 goto hit_next; 1248 } 1249 } 1250 1251 /* 1252 * this search will find all the extents that end after 1253 * our range starts. 1254 */ 1255 node = tree_search_for_insert(tree, start, &p, &parent); 1256 if (!node) { 1257 prealloc = alloc_extent_state_atomic(prealloc); 1258 if (!prealloc) { 1259 err = -ENOMEM; 1260 goto out; 1261 } 1262 err = insert_state(tree, prealloc, start, end, 1263 &p, &parent, &bits, NULL); 1264 if (err) 1265 extent_io_tree_panic(tree, err); 1266 cache_state(prealloc, cached_state); 1267 prealloc = NULL; 1268 goto out; 1269 } 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 hit_next: 1272 last_start = state->start; 1273 last_end = state->end; 1274 1275 /* 1276 * | ---- desired range ---- | 1277 * | state | 1278 * 1279 * Just lock what we found and keep going 1280 */ 1281 if (state->start == start && state->end <= end) { 1282 set_state_bits(tree, state, &bits, NULL); 1283 cache_state(state, cached_state); 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1285 if (last_end == (u64)-1) 1286 goto out; 1287 start = last_end + 1; 1288 if (start < end && state && state->start == start && 1289 !need_resched()) 1290 goto hit_next; 1291 goto search_again; 1292 } 1293 1294 /* 1295 * | ---- desired range ---- | 1296 * | state | 1297 * or 1298 * | ------------- state -------------- | 1299 * 1300 * We need to split the extent we found, and may flip bits on 1301 * second half. 1302 * 1303 * If the extent we found extends past our 1304 * range, we just split and search again. It'll get split 1305 * again the next time though. 1306 * 1307 * If the extent we found is inside our range, we set the 1308 * desired bit on it. 1309 */ 1310 if (state->start < start) { 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 err = split_state(tree, state, prealloc, start); 1317 if (err) 1318 extent_io_tree_panic(tree, err); 1319 prealloc = NULL; 1320 if (err) 1321 goto out; 1322 if (state->end <= end) { 1323 set_state_bits(tree, state, &bits, NULL); 1324 cache_state(state, cached_state); 1325 state = clear_state_bit(tree, state, &clear_bits, 0, 1326 NULL); 1327 if (last_end == (u64)-1) 1328 goto out; 1329 start = last_end + 1; 1330 if (start < end && state && state->start == start && 1331 !need_resched()) 1332 goto hit_next; 1333 } 1334 goto search_again; 1335 } 1336 /* 1337 * | ---- desired range ---- | 1338 * | state | or | state | 1339 * 1340 * There's a hole, we need to insert something in it and 1341 * ignore the extent we found. 1342 */ 1343 if (state->start > start) { 1344 u64 this_end; 1345 if (end < last_start) 1346 this_end = end; 1347 else 1348 this_end = last_start - 1; 1349 1350 prealloc = alloc_extent_state_atomic(prealloc); 1351 if (!prealloc) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 /* 1357 * Avoid to free 'prealloc' if it can be merged with 1358 * the later extent. 1359 */ 1360 err = insert_state(tree, prealloc, start, this_end, 1361 NULL, NULL, &bits, NULL); 1362 if (err) 1363 extent_io_tree_panic(tree, err); 1364 cache_state(prealloc, cached_state); 1365 prealloc = NULL; 1366 start = this_end + 1; 1367 goto search_again; 1368 } 1369 /* 1370 * | ---- desired range ---- | 1371 * | state | 1372 * We need to split the extent, and set the bit 1373 * on the first half 1374 */ 1375 if (state->start <= end && state->end > end) { 1376 prealloc = alloc_extent_state_atomic(prealloc); 1377 if (!prealloc) { 1378 err = -ENOMEM; 1379 goto out; 1380 } 1381 1382 err = split_state(tree, state, prealloc, end + 1); 1383 if (err) 1384 extent_io_tree_panic(tree, err); 1385 1386 set_state_bits(tree, prealloc, &bits, NULL); 1387 cache_state(prealloc, cached_state); 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1389 prealloc = NULL; 1390 goto out; 1391 } 1392 1393 search_again: 1394 if (start > end) 1395 goto out; 1396 spin_unlock(&tree->lock); 1397 cond_resched(); 1398 first_iteration = false; 1399 goto again; 1400 1401 out: 1402 spin_unlock(&tree->lock); 1403 if (prealloc) 1404 free_extent_state(prealloc); 1405 1406 return err; 1407 } 1408 1409 /* wrappers around set/clear extent bit */ 1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1411 u32 bits, struct extent_changeset *changeset) 1412 { 1413 /* 1414 * We don't support EXTENT_LOCKED yet, as current changeset will 1415 * record any bits changed, so for EXTENT_LOCKED case, it will 1416 * either fail with -EEXIST or changeset will record the whole 1417 * range. 1418 */ 1419 BUG_ON(bits & EXTENT_LOCKED); 1420 1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1422 changeset); 1423 } 1424 1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1426 u32 bits) 1427 { 1428 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1429 GFP_NOWAIT, NULL); 1430 } 1431 1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1433 u32 bits, int wake, int delete, 1434 struct extent_state **cached) 1435 { 1436 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1437 cached, GFP_NOFS, NULL); 1438 } 1439 1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1441 u32 bits, struct extent_changeset *changeset) 1442 { 1443 /* 1444 * Don't support EXTENT_LOCKED case, same reason as 1445 * set_record_extent_bits(). 1446 */ 1447 BUG_ON(bits & EXTENT_LOCKED); 1448 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1450 changeset); 1451 } 1452 1453 /* 1454 * either insert or lock state struct between start and end use mask to tell 1455 * us if waiting is desired. 1456 */ 1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1458 struct extent_state **cached_state) 1459 { 1460 int err; 1461 u64 failed_start; 1462 1463 while (1) { 1464 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1465 EXTENT_LOCKED, &failed_start, 1466 cached_state, GFP_NOFS, NULL); 1467 if (err == -EEXIST) { 1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1469 start = failed_start; 1470 } else 1471 break; 1472 WARN_ON(start > end); 1473 } 1474 return err; 1475 } 1476 1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1478 { 1479 int err; 1480 u64 failed_start; 1481 1482 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1483 &failed_start, NULL, GFP_NOFS, NULL); 1484 if (err == -EEXIST) { 1485 if (failed_start > start) 1486 clear_extent_bit(tree, start, failed_start - 1, 1487 EXTENT_LOCKED, 1, 0, NULL); 1488 return 0; 1489 } 1490 return 1; 1491 } 1492 1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1494 { 1495 unsigned long index = start >> PAGE_SHIFT; 1496 unsigned long end_index = end >> PAGE_SHIFT; 1497 struct page *page; 1498 1499 while (index <= end_index) { 1500 page = find_get_page(inode->i_mapping, index); 1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1502 clear_page_dirty_for_io(page); 1503 put_page(page); 1504 index++; 1505 } 1506 } 1507 1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 __set_page_dirty_nobuffers(page); 1518 account_page_redirty(page); 1519 put_page(page); 1520 index++; 1521 } 1522 } 1523 1524 /* find the first state struct with 'bits' set after 'start', and 1525 * return it. tree->lock must be held. NULL will returned if 1526 * nothing was found after 'start' 1527 */ 1528 static struct extent_state * 1529 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1530 { 1531 struct rb_node *node; 1532 struct extent_state *state; 1533 1534 /* 1535 * this search will find all the extents that end after 1536 * our range starts. 1537 */ 1538 node = tree_search(tree, start); 1539 if (!node) 1540 goto out; 1541 1542 while (1) { 1543 state = rb_entry(node, struct extent_state, rb_node); 1544 if (state->end >= start && (state->state & bits)) 1545 return state; 1546 1547 node = rb_next(node); 1548 if (!node) 1549 break; 1550 } 1551 out: 1552 return NULL; 1553 } 1554 1555 /* 1556 * Find the first offset in the io tree with one or more @bits set. 1557 * 1558 * Note: If there are multiple bits set in @bits, any of them will match. 1559 * 1560 * Return 0 if we find something, and update @start_ret and @end_ret. 1561 * Return 1 if we found nothing. 1562 */ 1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1564 u64 *start_ret, u64 *end_ret, u32 bits, 1565 struct extent_state **cached_state) 1566 { 1567 struct extent_state *state; 1568 int ret = 1; 1569 1570 spin_lock(&tree->lock); 1571 if (cached_state && *cached_state) { 1572 state = *cached_state; 1573 if (state->end == start - 1 && extent_state_in_tree(state)) { 1574 while ((state = next_state(state)) != NULL) { 1575 if (state->state & bits) 1576 goto got_it; 1577 } 1578 free_extent_state(*cached_state); 1579 *cached_state = NULL; 1580 goto out; 1581 } 1582 free_extent_state(*cached_state); 1583 *cached_state = NULL; 1584 } 1585 1586 state = find_first_extent_bit_state(tree, start, bits); 1587 got_it: 1588 if (state) { 1589 cache_state_if_flags(state, cached_state, 0); 1590 *start_ret = state->start; 1591 *end_ret = state->end; 1592 ret = 0; 1593 } 1594 out: 1595 spin_unlock(&tree->lock); 1596 return ret; 1597 } 1598 1599 /** 1600 * Find a contiguous area of bits 1601 * 1602 * @tree: io tree to check 1603 * @start: offset to start the search from 1604 * @start_ret: the first offset we found with the bits set 1605 * @end_ret: the final contiguous range of the bits that were set 1606 * @bits: bits to look for 1607 * 1608 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1609 * to set bits appropriately, and then merge them again. During this time it 1610 * will drop the tree->lock, so use this helper if you want to find the actual 1611 * contiguous area for given bits. We will search to the first bit we find, and 1612 * then walk down the tree until we find a non-contiguous area. The area 1613 * returned will be the full contiguous area with the bits set. 1614 */ 1615 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1616 u64 *start_ret, u64 *end_ret, u32 bits) 1617 { 1618 struct extent_state *state; 1619 int ret = 1; 1620 1621 spin_lock(&tree->lock); 1622 state = find_first_extent_bit_state(tree, start, bits); 1623 if (state) { 1624 *start_ret = state->start; 1625 *end_ret = state->end; 1626 while ((state = next_state(state)) != NULL) { 1627 if (state->start > (*end_ret + 1)) 1628 break; 1629 *end_ret = state->end; 1630 } 1631 ret = 0; 1632 } 1633 spin_unlock(&tree->lock); 1634 return ret; 1635 } 1636 1637 /** 1638 * Find the first range that has @bits not set. This range could start before 1639 * @start. 1640 * 1641 * @tree: the tree to search 1642 * @start: offset at/after which the found extent should start 1643 * @start_ret: records the beginning of the range 1644 * @end_ret: records the end of the range (inclusive) 1645 * @bits: the set of bits which must be unset 1646 * 1647 * Since unallocated range is also considered one which doesn't have the bits 1648 * set it's possible that @end_ret contains -1, this happens in case the range 1649 * spans (last_range_end, end of device]. In this case it's up to the caller to 1650 * trim @end_ret to the appropriate size. 1651 */ 1652 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1653 u64 *start_ret, u64 *end_ret, u32 bits) 1654 { 1655 struct extent_state *state; 1656 struct rb_node *node, *prev = NULL, *next; 1657 1658 spin_lock(&tree->lock); 1659 1660 /* Find first extent with bits cleared */ 1661 while (1) { 1662 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1663 if (!node && !next && !prev) { 1664 /* 1665 * Tree is completely empty, send full range and let 1666 * caller deal with it 1667 */ 1668 *start_ret = 0; 1669 *end_ret = -1; 1670 goto out; 1671 } else if (!node && !next) { 1672 /* 1673 * We are past the last allocated chunk, set start at 1674 * the end of the last extent. 1675 */ 1676 state = rb_entry(prev, struct extent_state, rb_node); 1677 *start_ret = state->end + 1; 1678 *end_ret = -1; 1679 goto out; 1680 } else if (!node) { 1681 node = next; 1682 } 1683 /* 1684 * At this point 'node' either contains 'start' or start is 1685 * before 'node' 1686 */ 1687 state = rb_entry(node, struct extent_state, rb_node); 1688 1689 if (in_range(start, state->start, state->end - state->start + 1)) { 1690 if (state->state & bits) { 1691 /* 1692 * |--range with bits sets--| 1693 * | 1694 * start 1695 */ 1696 start = state->end + 1; 1697 } else { 1698 /* 1699 * 'start' falls within a range that doesn't 1700 * have the bits set, so take its start as 1701 * the beginning of the desired range 1702 * 1703 * |--range with bits cleared----| 1704 * | 1705 * start 1706 */ 1707 *start_ret = state->start; 1708 break; 1709 } 1710 } else { 1711 /* 1712 * |---prev range---|---hole/unset---|---node range---| 1713 * | 1714 * start 1715 * 1716 * or 1717 * 1718 * |---hole/unset--||--first node--| 1719 * 0 | 1720 * start 1721 */ 1722 if (prev) { 1723 state = rb_entry(prev, struct extent_state, 1724 rb_node); 1725 *start_ret = state->end + 1; 1726 } else { 1727 *start_ret = 0; 1728 } 1729 break; 1730 } 1731 } 1732 1733 /* 1734 * Find the longest stretch from start until an entry which has the 1735 * bits set 1736 */ 1737 while (1) { 1738 state = rb_entry(node, struct extent_state, rb_node); 1739 if (state->end >= start && !(state->state & bits)) { 1740 *end_ret = state->end; 1741 } else { 1742 *end_ret = state->start - 1; 1743 break; 1744 } 1745 1746 node = rb_next(node); 1747 if (!node) 1748 break; 1749 } 1750 out: 1751 spin_unlock(&tree->lock); 1752 } 1753 1754 /* 1755 * find a contiguous range of bytes in the file marked as delalloc, not 1756 * more than 'max_bytes'. start and end are used to return the range, 1757 * 1758 * true is returned if we find something, false if nothing was in the tree 1759 */ 1760 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1761 u64 *end, u64 max_bytes, 1762 struct extent_state **cached_state) 1763 { 1764 struct rb_node *node; 1765 struct extent_state *state; 1766 u64 cur_start = *start; 1767 bool found = false; 1768 u64 total_bytes = 0; 1769 1770 spin_lock(&tree->lock); 1771 1772 /* 1773 * this search will find all the extents that end after 1774 * our range starts. 1775 */ 1776 node = tree_search(tree, cur_start); 1777 if (!node) { 1778 *end = (u64)-1; 1779 goto out; 1780 } 1781 1782 while (1) { 1783 state = rb_entry(node, struct extent_state, rb_node); 1784 if (found && (state->start != cur_start || 1785 (state->state & EXTENT_BOUNDARY))) { 1786 goto out; 1787 } 1788 if (!(state->state & EXTENT_DELALLOC)) { 1789 if (!found) 1790 *end = state->end; 1791 goto out; 1792 } 1793 if (!found) { 1794 *start = state->start; 1795 *cached_state = state; 1796 refcount_inc(&state->refs); 1797 } 1798 found = true; 1799 *end = state->end; 1800 cur_start = state->end + 1; 1801 node = rb_next(node); 1802 total_bytes += state->end - state->start + 1; 1803 if (total_bytes >= max_bytes) 1804 break; 1805 if (!node) 1806 break; 1807 } 1808 out: 1809 spin_unlock(&tree->lock); 1810 return found; 1811 } 1812 1813 /* 1814 * Process one page for __process_pages_contig(). 1815 * 1816 * Return >0 if we hit @page == @locked_page. 1817 * Return 0 if we updated the page status. 1818 * Return -EGAIN if the we need to try again. 1819 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1820 */ 1821 static int process_one_page(struct btrfs_fs_info *fs_info, 1822 struct address_space *mapping, 1823 struct page *page, struct page *locked_page, 1824 unsigned long page_ops, u64 start, u64 end) 1825 { 1826 u32 len; 1827 1828 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1829 len = end + 1 - start; 1830 1831 if (page_ops & PAGE_SET_ORDERED) 1832 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1833 if (page_ops & PAGE_SET_ERROR) 1834 btrfs_page_clamp_set_error(fs_info, page, start, len); 1835 if (page_ops & PAGE_START_WRITEBACK) { 1836 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1837 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1838 } 1839 if (page_ops & PAGE_END_WRITEBACK) 1840 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1841 1842 if (page == locked_page) 1843 return 1; 1844 1845 if (page_ops & PAGE_LOCK) { 1846 int ret; 1847 1848 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1849 if (ret) 1850 return ret; 1851 if (!PageDirty(page) || page->mapping != mapping) { 1852 btrfs_page_end_writer_lock(fs_info, page, start, len); 1853 return -EAGAIN; 1854 } 1855 } 1856 if (page_ops & PAGE_UNLOCK) 1857 btrfs_page_end_writer_lock(fs_info, page, start, len); 1858 return 0; 1859 } 1860 1861 static int __process_pages_contig(struct address_space *mapping, 1862 struct page *locked_page, 1863 u64 start, u64 end, unsigned long page_ops, 1864 u64 *processed_end) 1865 { 1866 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1867 pgoff_t start_index = start >> PAGE_SHIFT; 1868 pgoff_t end_index = end >> PAGE_SHIFT; 1869 pgoff_t index = start_index; 1870 unsigned long nr_pages = end_index - start_index + 1; 1871 unsigned long pages_processed = 0; 1872 struct page *pages[16]; 1873 int err = 0; 1874 int i; 1875 1876 if (page_ops & PAGE_LOCK) { 1877 ASSERT(page_ops == PAGE_LOCK); 1878 ASSERT(processed_end && *processed_end == start); 1879 } 1880 1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1882 mapping_set_error(mapping, -EIO); 1883 1884 while (nr_pages > 0) { 1885 int found_pages; 1886 1887 found_pages = find_get_pages_contig(mapping, index, 1888 min_t(unsigned long, 1889 nr_pages, ARRAY_SIZE(pages)), pages); 1890 if (found_pages == 0) { 1891 /* 1892 * Only if we're going to lock these pages, we can find 1893 * nothing at @index. 1894 */ 1895 ASSERT(page_ops & PAGE_LOCK); 1896 err = -EAGAIN; 1897 goto out; 1898 } 1899 1900 for (i = 0; i < found_pages; i++) { 1901 int process_ret; 1902 1903 process_ret = process_one_page(fs_info, mapping, 1904 pages[i], locked_page, page_ops, 1905 start, end); 1906 if (process_ret < 0) { 1907 for (; i < found_pages; i++) 1908 put_page(pages[i]); 1909 err = -EAGAIN; 1910 goto out; 1911 } 1912 put_page(pages[i]); 1913 pages_processed++; 1914 } 1915 nr_pages -= found_pages; 1916 index += found_pages; 1917 cond_resched(); 1918 } 1919 out: 1920 if (err && processed_end) { 1921 /* 1922 * Update @processed_end. I know this is awful since it has 1923 * two different return value patterns (inclusive vs exclusive). 1924 * 1925 * But the exclusive pattern is necessary if @start is 0, or we 1926 * underflow and check against processed_end won't work as 1927 * expected. 1928 */ 1929 if (pages_processed) 1930 *processed_end = min(end, 1931 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1932 else 1933 *processed_end = start; 1934 } 1935 return err; 1936 } 1937 1938 static noinline void __unlock_for_delalloc(struct inode *inode, 1939 struct page *locked_page, 1940 u64 start, u64 end) 1941 { 1942 unsigned long index = start >> PAGE_SHIFT; 1943 unsigned long end_index = end >> PAGE_SHIFT; 1944 1945 ASSERT(locked_page); 1946 if (index == locked_page->index && end_index == index) 1947 return; 1948 1949 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1950 PAGE_UNLOCK, NULL); 1951 } 1952 1953 static noinline int lock_delalloc_pages(struct inode *inode, 1954 struct page *locked_page, 1955 u64 delalloc_start, 1956 u64 delalloc_end) 1957 { 1958 unsigned long index = delalloc_start >> PAGE_SHIFT; 1959 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1960 u64 processed_end = delalloc_start; 1961 int ret; 1962 1963 ASSERT(locked_page); 1964 if (index == locked_page->index && index == end_index) 1965 return 0; 1966 1967 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1968 delalloc_end, PAGE_LOCK, &processed_end); 1969 if (ret == -EAGAIN && processed_end > delalloc_start) 1970 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1971 processed_end); 1972 return ret; 1973 } 1974 1975 /* 1976 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1977 * more than @max_bytes. 1978 * 1979 * @start: The original start bytenr to search. 1980 * Will store the extent range start bytenr. 1981 * @end: The original end bytenr of the search range 1982 * Will store the extent range end bytenr. 1983 * 1984 * Return true if we find a delalloc range which starts inside the original 1985 * range, and @start/@end will store the delalloc range start/end. 1986 * 1987 * Return false if we can't find any delalloc range which starts inside the 1988 * original range, and @start/@end will be the non-delalloc range start/end. 1989 */ 1990 EXPORT_FOR_TESTS 1991 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1992 struct page *locked_page, u64 *start, 1993 u64 *end) 1994 { 1995 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1996 const u64 orig_start = *start; 1997 const u64 orig_end = *end; 1998 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1999 u64 delalloc_start; 2000 u64 delalloc_end; 2001 bool found; 2002 struct extent_state *cached_state = NULL; 2003 int ret; 2004 int loops = 0; 2005 2006 /* Caller should pass a valid @end to indicate the search range end */ 2007 ASSERT(orig_end > orig_start); 2008 2009 /* The range should at least cover part of the page */ 2010 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2011 orig_end <= page_offset(locked_page))); 2012 again: 2013 /* step one, find a bunch of delalloc bytes starting at start */ 2014 delalloc_start = *start; 2015 delalloc_end = 0; 2016 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2017 max_bytes, &cached_state); 2018 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2019 *start = delalloc_start; 2020 2021 /* @delalloc_end can be -1, never go beyond @orig_end */ 2022 *end = min(delalloc_end, orig_end); 2023 free_extent_state(cached_state); 2024 return false; 2025 } 2026 2027 /* 2028 * start comes from the offset of locked_page. We have to lock 2029 * pages in order, so we can't process delalloc bytes before 2030 * locked_page 2031 */ 2032 if (delalloc_start < *start) 2033 delalloc_start = *start; 2034 2035 /* 2036 * make sure to limit the number of pages we try to lock down 2037 */ 2038 if (delalloc_end + 1 - delalloc_start > max_bytes) 2039 delalloc_end = delalloc_start + max_bytes - 1; 2040 2041 /* step two, lock all the pages after the page that has start */ 2042 ret = lock_delalloc_pages(inode, locked_page, 2043 delalloc_start, delalloc_end); 2044 ASSERT(!ret || ret == -EAGAIN); 2045 if (ret == -EAGAIN) { 2046 /* some of the pages are gone, lets avoid looping by 2047 * shortening the size of the delalloc range we're searching 2048 */ 2049 free_extent_state(cached_state); 2050 cached_state = NULL; 2051 if (!loops) { 2052 max_bytes = PAGE_SIZE; 2053 loops = 1; 2054 goto again; 2055 } else { 2056 found = false; 2057 goto out_failed; 2058 } 2059 } 2060 2061 /* step three, lock the state bits for the whole range */ 2062 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2063 2064 /* then test to make sure it is all still delalloc */ 2065 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2066 EXTENT_DELALLOC, 1, cached_state); 2067 if (!ret) { 2068 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2069 &cached_state); 2070 __unlock_for_delalloc(inode, locked_page, 2071 delalloc_start, delalloc_end); 2072 cond_resched(); 2073 goto again; 2074 } 2075 free_extent_state(cached_state); 2076 *start = delalloc_start; 2077 *end = delalloc_end; 2078 out_failed: 2079 return found; 2080 } 2081 2082 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2083 struct page *locked_page, 2084 u32 clear_bits, unsigned long page_ops) 2085 { 2086 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2087 2088 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2089 start, end, page_ops, NULL); 2090 } 2091 2092 /* 2093 * count the number of bytes in the tree that have a given bit(s) 2094 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2095 * cached. The total number found is returned. 2096 */ 2097 u64 count_range_bits(struct extent_io_tree *tree, 2098 u64 *start, u64 search_end, u64 max_bytes, 2099 u32 bits, int contig) 2100 { 2101 struct rb_node *node; 2102 struct extent_state *state; 2103 u64 cur_start = *start; 2104 u64 total_bytes = 0; 2105 u64 last = 0; 2106 int found = 0; 2107 2108 if (WARN_ON(search_end <= cur_start)) 2109 return 0; 2110 2111 spin_lock(&tree->lock); 2112 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2113 total_bytes = tree->dirty_bytes; 2114 goto out; 2115 } 2116 /* 2117 * this search will find all the extents that end after 2118 * our range starts. 2119 */ 2120 node = tree_search(tree, cur_start); 2121 if (!node) 2122 goto out; 2123 2124 while (1) { 2125 state = rb_entry(node, struct extent_state, rb_node); 2126 if (state->start > search_end) 2127 break; 2128 if (contig && found && state->start > last + 1) 2129 break; 2130 if (state->end >= cur_start && (state->state & bits) == bits) { 2131 total_bytes += min(search_end, state->end) + 1 - 2132 max(cur_start, state->start); 2133 if (total_bytes >= max_bytes) 2134 break; 2135 if (!found) { 2136 *start = max(cur_start, state->start); 2137 found = 1; 2138 } 2139 last = state->end; 2140 } else if (contig && found) { 2141 break; 2142 } 2143 node = rb_next(node); 2144 if (!node) 2145 break; 2146 } 2147 out: 2148 spin_unlock(&tree->lock); 2149 return total_bytes; 2150 } 2151 2152 /* 2153 * set the private field for a given byte offset in the tree. If there isn't 2154 * an extent_state there already, this does nothing. 2155 */ 2156 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2157 struct io_failure_record *failrec) 2158 { 2159 struct rb_node *node; 2160 struct extent_state *state; 2161 int ret = 0; 2162 2163 spin_lock(&tree->lock); 2164 /* 2165 * this search will find all the extents that end after 2166 * our range starts. 2167 */ 2168 node = tree_search(tree, start); 2169 if (!node) { 2170 ret = -ENOENT; 2171 goto out; 2172 } 2173 state = rb_entry(node, struct extent_state, rb_node); 2174 if (state->start != start) { 2175 ret = -ENOENT; 2176 goto out; 2177 } 2178 state->failrec = failrec; 2179 out: 2180 spin_unlock(&tree->lock); 2181 return ret; 2182 } 2183 2184 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2185 { 2186 struct rb_node *node; 2187 struct extent_state *state; 2188 struct io_failure_record *failrec; 2189 2190 spin_lock(&tree->lock); 2191 /* 2192 * this search will find all the extents that end after 2193 * our range starts. 2194 */ 2195 node = tree_search(tree, start); 2196 if (!node) { 2197 failrec = ERR_PTR(-ENOENT); 2198 goto out; 2199 } 2200 state = rb_entry(node, struct extent_state, rb_node); 2201 if (state->start != start) { 2202 failrec = ERR_PTR(-ENOENT); 2203 goto out; 2204 } 2205 2206 failrec = state->failrec; 2207 out: 2208 spin_unlock(&tree->lock); 2209 return failrec; 2210 } 2211 2212 /* 2213 * searches a range in the state tree for a given mask. 2214 * If 'filled' == 1, this returns 1 only if every extent in the tree 2215 * has the bits set. Otherwise, 1 is returned if any bit in the 2216 * range is found set. 2217 */ 2218 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2219 u32 bits, int filled, struct extent_state *cached) 2220 { 2221 struct extent_state *state = NULL; 2222 struct rb_node *node; 2223 int bitset = 0; 2224 2225 spin_lock(&tree->lock); 2226 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2227 cached->end > start) 2228 node = &cached->rb_node; 2229 else 2230 node = tree_search(tree, start); 2231 while (node && start <= end) { 2232 state = rb_entry(node, struct extent_state, rb_node); 2233 2234 if (filled && state->start > start) { 2235 bitset = 0; 2236 break; 2237 } 2238 2239 if (state->start > end) 2240 break; 2241 2242 if (state->state & bits) { 2243 bitset = 1; 2244 if (!filled) 2245 break; 2246 } else if (filled) { 2247 bitset = 0; 2248 break; 2249 } 2250 2251 if (state->end == (u64)-1) 2252 break; 2253 2254 start = state->end + 1; 2255 if (start > end) 2256 break; 2257 node = rb_next(node); 2258 if (!node) { 2259 if (filled) 2260 bitset = 0; 2261 break; 2262 } 2263 } 2264 spin_unlock(&tree->lock); 2265 return bitset; 2266 } 2267 2268 int free_io_failure(struct extent_io_tree *failure_tree, 2269 struct extent_io_tree *io_tree, 2270 struct io_failure_record *rec) 2271 { 2272 int ret; 2273 int err = 0; 2274 2275 set_state_failrec(failure_tree, rec->start, NULL); 2276 ret = clear_extent_bits(failure_tree, rec->start, 2277 rec->start + rec->len - 1, 2278 EXTENT_LOCKED | EXTENT_DIRTY); 2279 if (ret) 2280 err = ret; 2281 2282 ret = clear_extent_bits(io_tree, rec->start, 2283 rec->start + rec->len - 1, 2284 EXTENT_DAMAGED); 2285 if (ret && !err) 2286 err = ret; 2287 2288 kfree(rec); 2289 return err; 2290 } 2291 2292 /* 2293 * this bypasses the standard btrfs submit functions deliberately, as 2294 * the standard behavior is to write all copies in a raid setup. here we only 2295 * want to write the one bad copy. so we do the mapping for ourselves and issue 2296 * submit_bio directly. 2297 * to avoid any synchronization issues, wait for the data after writing, which 2298 * actually prevents the read that triggered the error from finishing. 2299 * currently, there can be no more than two copies of every data bit. thus, 2300 * exactly one rewrite is required. 2301 */ 2302 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2303 u64 length, u64 logical, struct page *page, 2304 unsigned int pg_offset, int mirror_num) 2305 { 2306 struct bio *bio; 2307 struct btrfs_device *dev; 2308 u64 map_length = 0; 2309 u64 sector; 2310 struct btrfs_io_context *bioc = NULL; 2311 int ret; 2312 2313 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2314 BUG_ON(!mirror_num); 2315 2316 if (btrfs_repair_one_zone(fs_info, logical)) 2317 return 0; 2318 2319 bio = btrfs_bio_alloc(1); 2320 bio->bi_iter.bi_size = 0; 2321 map_length = length; 2322 2323 /* 2324 * Avoid races with device replace and make sure our bioc has devices 2325 * associated to its stripes that don't go away while we are doing the 2326 * read repair operation. 2327 */ 2328 btrfs_bio_counter_inc_blocked(fs_info); 2329 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2330 /* 2331 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2332 * to update all raid stripes, but here we just want to correct 2333 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2334 * stripe's dev and sector. 2335 */ 2336 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2337 &map_length, &bioc, 0); 2338 if (ret) { 2339 btrfs_bio_counter_dec(fs_info); 2340 bio_put(bio); 2341 return -EIO; 2342 } 2343 ASSERT(bioc->mirror_num == 1); 2344 } else { 2345 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2346 &map_length, &bioc, mirror_num); 2347 if (ret) { 2348 btrfs_bio_counter_dec(fs_info); 2349 bio_put(bio); 2350 return -EIO; 2351 } 2352 BUG_ON(mirror_num != bioc->mirror_num); 2353 } 2354 2355 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2356 bio->bi_iter.bi_sector = sector; 2357 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2358 btrfs_put_bioc(bioc); 2359 if (!dev || !dev->bdev || 2360 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2361 btrfs_bio_counter_dec(fs_info); 2362 bio_put(bio); 2363 return -EIO; 2364 } 2365 bio_set_dev(bio, dev->bdev); 2366 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2367 bio_add_page(bio, page, length, pg_offset); 2368 2369 if (btrfsic_submit_bio_wait(bio)) { 2370 /* try to remap that extent elsewhere? */ 2371 btrfs_bio_counter_dec(fs_info); 2372 bio_put(bio); 2373 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2374 return -EIO; 2375 } 2376 2377 btrfs_info_rl_in_rcu(fs_info, 2378 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2379 ino, start, 2380 rcu_str_deref(dev->name), sector); 2381 btrfs_bio_counter_dec(fs_info); 2382 bio_put(bio); 2383 return 0; 2384 } 2385 2386 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2387 { 2388 struct btrfs_fs_info *fs_info = eb->fs_info; 2389 u64 start = eb->start; 2390 int i, num_pages = num_extent_pages(eb); 2391 int ret = 0; 2392 2393 if (sb_rdonly(fs_info->sb)) 2394 return -EROFS; 2395 2396 for (i = 0; i < num_pages; i++) { 2397 struct page *p = eb->pages[i]; 2398 2399 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2400 start - page_offset(p), mirror_num); 2401 if (ret) 2402 break; 2403 start += PAGE_SIZE; 2404 } 2405 2406 return ret; 2407 } 2408 2409 /* 2410 * each time an IO finishes, we do a fast check in the IO failure tree 2411 * to see if we need to process or clean up an io_failure_record 2412 */ 2413 int clean_io_failure(struct btrfs_fs_info *fs_info, 2414 struct extent_io_tree *failure_tree, 2415 struct extent_io_tree *io_tree, u64 start, 2416 struct page *page, u64 ino, unsigned int pg_offset) 2417 { 2418 u64 private; 2419 struct io_failure_record *failrec; 2420 struct extent_state *state; 2421 int num_copies; 2422 int ret; 2423 2424 private = 0; 2425 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2426 EXTENT_DIRTY, 0); 2427 if (!ret) 2428 return 0; 2429 2430 failrec = get_state_failrec(failure_tree, start); 2431 if (IS_ERR(failrec)) 2432 return 0; 2433 2434 BUG_ON(!failrec->this_mirror); 2435 2436 if (sb_rdonly(fs_info->sb)) 2437 goto out; 2438 2439 spin_lock(&io_tree->lock); 2440 state = find_first_extent_bit_state(io_tree, 2441 failrec->start, 2442 EXTENT_LOCKED); 2443 spin_unlock(&io_tree->lock); 2444 2445 if (state && state->start <= failrec->start && 2446 state->end >= failrec->start + failrec->len - 1) { 2447 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2448 failrec->len); 2449 if (num_copies > 1) { 2450 repair_io_failure(fs_info, ino, start, failrec->len, 2451 failrec->logical, page, pg_offset, 2452 failrec->failed_mirror); 2453 } 2454 } 2455 2456 out: 2457 free_io_failure(failure_tree, io_tree, failrec); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * Can be called when 2464 * - hold extent lock 2465 * - under ordered extent 2466 * - the inode is freeing 2467 */ 2468 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2469 { 2470 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2471 struct io_failure_record *failrec; 2472 struct extent_state *state, *next; 2473 2474 if (RB_EMPTY_ROOT(&failure_tree->state)) 2475 return; 2476 2477 spin_lock(&failure_tree->lock); 2478 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2479 while (state) { 2480 if (state->start > end) 2481 break; 2482 2483 ASSERT(state->end <= end); 2484 2485 next = next_state(state); 2486 2487 failrec = state->failrec; 2488 free_extent_state(state); 2489 kfree(failrec); 2490 2491 state = next; 2492 } 2493 spin_unlock(&failure_tree->lock); 2494 } 2495 2496 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2497 u64 start) 2498 { 2499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2500 struct io_failure_record *failrec; 2501 struct extent_map *em; 2502 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2503 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2504 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2505 const u32 sectorsize = fs_info->sectorsize; 2506 int ret; 2507 u64 logical; 2508 2509 failrec = get_state_failrec(failure_tree, start); 2510 if (!IS_ERR(failrec)) { 2511 btrfs_debug(fs_info, 2512 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2513 failrec->logical, failrec->start, failrec->len); 2514 /* 2515 * when data can be on disk more than twice, add to failrec here 2516 * (e.g. with a list for failed_mirror) to make 2517 * clean_io_failure() clean all those errors at once. 2518 */ 2519 2520 return failrec; 2521 } 2522 2523 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2524 if (!failrec) 2525 return ERR_PTR(-ENOMEM); 2526 2527 failrec->start = start; 2528 failrec->len = sectorsize; 2529 failrec->this_mirror = 0; 2530 failrec->bio_flags = 0; 2531 2532 read_lock(&em_tree->lock); 2533 em = lookup_extent_mapping(em_tree, start, failrec->len); 2534 if (!em) { 2535 read_unlock(&em_tree->lock); 2536 kfree(failrec); 2537 return ERR_PTR(-EIO); 2538 } 2539 2540 if (em->start > start || em->start + em->len <= start) { 2541 free_extent_map(em); 2542 em = NULL; 2543 } 2544 read_unlock(&em_tree->lock); 2545 if (!em) { 2546 kfree(failrec); 2547 return ERR_PTR(-EIO); 2548 } 2549 2550 logical = start - em->start; 2551 logical = em->block_start + logical; 2552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2553 logical = em->block_start; 2554 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2555 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2556 } 2557 2558 btrfs_debug(fs_info, 2559 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2560 logical, start, failrec->len); 2561 2562 failrec->logical = logical; 2563 free_extent_map(em); 2564 2565 /* Set the bits in the private failure tree */ 2566 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2567 EXTENT_LOCKED | EXTENT_DIRTY); 2568 if (ret >= 0) { 2569 ret = set_state_failrec(failure_tree, start, failrec); 2570 /* Set the bits in the inode's tree */ 2571 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2572 EXTENT_DAMAGED); 2573 } else if (ret < 0) { 2574 kfree(failrec); 2575 return ERR_PTR(ret); 2576 } 2577 2578 return failrec; 2579 } 2580 2581 static bool btrfs_check_repairable(struct inode *inode, 2582 struct io_failure_record *failrec, 2583 int failed_mirror) 2584 { 2585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2586 int num_copies; 2587 2588 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2589 if (num_copies == 1) { 2590 /* 2591 * we only have a single copy of the data, so don't bother with 2592 * all the retry and error correction code that follows. no 2593 * matter what the error is, it is very likely to persist. 2594 */ 2595 btrfs_debug(fs_info, 2596 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2597 num_copies, failrec->this_mirror, failed_mirror); 2598 return false; 2599 } 2600 2601 /* The failure record should only contain one sector */ 2602 ASSERT(failrec->len == fs_info->sectorsize); 2603 2604 /* 2605 * There are two premises: 2606 * a) deliver good data to the caller 2607 * b) correct the bad sectors on disk 2608 * 2609 * Since we're only doing repair for one sector, we only need to get 2610 * a good copy of the failed sector and if we succeed, we have setup 2611 * everything for repair_io_failure to do the rest for us. 2612 */ 2613 failrec->failed_mirror = failed_mirror; 2614 failrec->this_mirror++; 2615 if (failrec->this_mirror == failed_mirror) 2616 failrec->this_mirror++; 2617 2618 if (failrec->this_mirror > num_copies) { 2619 btrfs_debug(fs_info, 2620 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2621 num_copies, failrec->this_mirror, failed_mirror); 2622 return false; 2623 } 2624 2625 return true; 2626 } 2627 2628 int btrfs_repair_one_sector(struct inode *inode, 2629 struct bio *failed_bio, u32 bio_offset, 2630 struct page *page, unsigned int pgoff, 2631 u64 start, int failed_mirror, 2632 submit_bio_hook_t *submit_bio_hook) 2633 { 2634 struct io_failure_record *failrec; 2635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2636 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2637 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2638 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2639 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2640 struct bio *repair_bio; 2641 struct btrfs_bio *repair_bbio; 2642 blk_status_t status; 2643 2644 btrfs_debug(fs_info, 2645 "repair read error: read error at %llu", start); 2646 2647 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2648 2649 failrec = btrfs_get_io_failure_record(inode, start); 2650 if (IS_ERR(failrec)) 2651 return PTR_ERR(failrec); 2652 2653 2654 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2655 free_io_failure(failure_tree, tree, failrec); 2656 return -EIO; 2657 } 2658 2659 repair_bio = btrfs_bio_alloc(1); 2660 repair_bbio = btrfs_bio(repair_bio); 2661 repair_bio->bi_opf = REQ_OP_READ; 2662 repair_bio->bi_end_io = failed_bio->bi_end_io; 2663 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2664 repair_bio->bi_private = failed_bio->bi_private; 2665 2666 if (failed_bbio->csum) { 2667 const u32 csum_size = fs_info->csum_size; 2668 2669 repair_bbio->csum = repair_bbio->csum_inline; 2670 memcpy(repair_bbio->csum, 2671 failed_bbio->csum + csum_size * icsum, csum_size); 2672 } 2673 2674 bio_add_page(repair_bio, page, failrec->len, pgoff); 2675 repair_bbio->iter = repair_bio->bi_iter; 2676 2677 btrfs_debug(btrfs_sb(inode->i_sb), 2678 "repair read error: submitting new read to mirror %d", 2679 failrec->this_mirror); 2680 2681 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2682 failrec->bio_flags); 2683 if (status) { 2684 free_io_failure(failure_tree, tree, failrec); 2685 bio_put(repair_bio); 2686 } 2687 return blk_status_to_errno(status); 2688 } 2689 2690 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2691 { 2692 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2693 2694 ASSERT(page_offset(page) <= start && 2695 start + len <= page_offset(page) + PAGE_SIZE); 2696 2697 if (uptodate) { 2698 if (fsverity_active(page->mapping->host) && 2699 !PageError(page) && 2700 !PageUptodate(page) && 2701 start < i_size_read(page->mapping->host) && 2702 !fsverity_verify_page(page)) { 2703 btrfs_page_set_error(fs_info, page, start, len); 2704 } else { 2705 btrfs_page_set_uptodate(fs_info, page, start, len); 2706 } 2707 } else { 2708 btrfs_page_clear_uptodate(fs_info, page, start, len); 2709 btrfs_page_set_error(fs_info, page, start, len); 2710 } 2711 2712 if (fs_info->sectorsize == PAGE_SIZE) 2713 unlock_page(page); 2714 else 2715 btrfs_subpage_end_reader(fs_info, page, start, len); 2716 } 2717 2718 static blk_status_t submit_read_repair(struct inode *inode, 2719 struct bio *failed_bio, u32 bio_offset, 2720 struct page *page, unsigned int pgoff, 2721 u64 start, u64 end, int failed_mirror, 2722 unsigned int error_bitmap, 2723 submit_bio_hook_t *submit_bio_hook) 2724 { 2725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2726 const u32 sectorsize = fs_info->sectorsize; 2727 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2728 int error = 0; 2729 int i; 2730 2731 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2732 2733 /* We're here because we had some read errors or csum mismatch */ 2734 ASSERT(error_bitmap); 2735 2736 /* 2737 * We only get called on buffered IO, thus page must be mapped and bio 2738 * must not be cloned. 2739 */ 2740 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2741 2742 /* Iterate through all the sectors in the range */ 2743 for (i = 0; i < nr_bits; i++) { 2744 const unsigned int offset = i * sectorsize; 2745 struct extent_state *cached = NULL; 2746 bool uptodate = false; 2747 int ret; 2748 2749 if (!(error_bitmap & (1U << i))) { 2750 /* 2751 * This sector has no error, just end the page read 2752 * and unlock the range. 2753 */ 2754 uptodate = true; 2755 goto next; 2756 } 2757 2758 ret = btrfs_repair_one_sector(inode, failed_bio, 2759 bio_offset + offset, 2760 page, pgoff + offset, start + offset, 2761 failed_mirror, submit_bio_hook); 2762 if (!ret) { 2763 /* 2764 * We have submitted the read repair, the page release 2765 * will be handled by the endio function of the 2766 * submitted repair bio. 2767 * Thus we don't need to do any thing here. 2768 */ 2769 continue; 2770 } 2771 /* 2772 * Repair failed, just record the error but still continue. 2773 * Or the remaining sectors will not be properly unlocked. 2774 */ 2775 if (!error) 2776 error = ret; 2777 next: 2778 end_page_read(page, uptodate, start + offset, sectorsize); 2779 if (uptodate) 2780 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2781 start + offset, 2782 start + offset + sectorsize - 1, 2783 &cached, GFP_ATOMIC); 2784 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2785 start + offset, 2786 start + offset + sectorsize - 1, 2787 &cached); 2788 } 2789 return errno_to_blk_status(error); 2790 } 2791 2792 /* lots and lots of room for performance fixes in the end_bio funcs */ 2793 2794 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2795 { 2796 struct btrfs_inode *inode; 2797 const bool uptodate = (err == 0); 2798 int ret = 0; 2799 2800 ASSERT(page && page->mapping); 2801 inode = BTRFS_I(page->mapping->host); 2802 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2803 2804 if (!uptodate) { 2805 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2806 u32 len; 2807 2808 ASSERT(end + 1 - start <= U32_MAX); 2809 len = end + 1 - start; 2810 2811 btrfs_page_clear_uptodate(fs_info, page, start, len); 2812 btrfs_page_set_error(fs_info, page, start, len); 2813 ret = err < 0 ? err : -EIO; 2814 mapping_set_error(page->mapping, ret); 2815 } 2816 } 2817 2818 /* 2819 * after a writepage IO is done, we need to: 2820 * clear the uptodate bits on error 2821 * clear the writeback bits in the extent tree for this IO 2822 * end_page_writeback if the page has no more pending IO 2823 * 2824 * Scheduling is not allowed, so the extent state tree is expected 2825 * to have one and only one object corresponding to this IO. 2826 */ 2827 static void end_bio_extent_writepage(struct bio *bio) 2828 { 2829 int error = blk_status_to_errno(bio->bi_status); 2830 struct bio_vec *bvec; 2831 u64 start; 2832 u64 end; 2833 struct bvec_iter_all iter_all; 2834 bool first_bvec = true; 2835 2836 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2837 bio_for_each_segment_all(bvec, bio, iter_all) { 2838 struct page *page = bvec->bv_page; 2839 struct inode *inode = page->mapping->host; 2840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2841 const u32 sectorsize = fs_info->sectorsize; 2842 2843 /* Our read/write should always be sector aligned. */ 2844 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2845 btrfs_err(fs_info, 2846 "partial page write in btrfs with offset %u and length %u", 2847 bvec->bv_offset, bvec->bv_len); 2848 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2849 btrfs_info(fs_info, 2850 "incomplete page write with offset %u and length %u", 2851 bvec->bv_offset, bvec->bv_len); 2852 2853 start = page_offset(page) + bvec->bv_offset; 2854 end = start + bvec->bv_len - 1; 2855 2856 if (first_bvec) { 2857 btrfs_record_physical_zoned(inode, start, bio); 2858 first_bvec = false; 2859 } 2860 2861 end_extent_writepage(page, error, start, end); 2862 2863 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2864 } 2865 2866 bio_put(bio); 2867 } 2868 2869 /* 2870 * Record previously processed extent range 2871 * 2872 * For endio_readpage_release_extent() to handle a full extent range, reducing 2873 * the extent io operations. 2874 */ 2875 struct processed_extent { 2876 struct btrfs_inode *inode; 2877 /* Start of the range in @inode */ 2878 u64 start; 2879 /* End of the range in @inode */ 2880 u64 end; 2881 bool uptodate; 2882 }; 2883 2884 /* 2885 * Try to release processed extent range 2886 * 2887 * May not release the extent range right now if the current range is 2888 * contiguous to processed extent. 2889 * 2890 * Will release processed extent when any of @inode, @uptodate, the range is 2891 * no longer contiguous to the processed range. 2892 * 2893 * Passing @inode == NULL will force processed extent to be released. 2894 */ 2895 static void endio_readpage_release_extent(struct processed_extent *processed, 2896 struct btrfs_inode *inode, u64 start, u64 end, 2897 bool uptodate) 2898 { 2899 struct extent_state *cached = NULL; 2900 struct extent_io_tree *tree; 2901 2902 /* The first extent, initialize @processed */ 2903 if (!processed->inode) 2904 goto update; 2905 2906 /* 2907 * Contiguous to processed extent, just uptodate the end. 2908 * 2909 * Several things to notice: 2910 * 2911 * - bio can be merged as long as on-disk bytenr is contiguous 2912 * This means we can have page belonging to other inodes, thus need to 2913 * check if the inode still matches. 2914 * - bvec can contain range beyond current page for multi-page bvec 2915 * Thus we need to do processed->end + 1 >= start check 2916 */ 2917 if (processed->inode == inode && processed->uptodate == uptodate && 2918 processed->end + 1 >= start && end >= processed->end) { 2919 processed->end = end; 2920 return; 2921 } 2922 2923 tree = &processed->inode->io_tree; 2924 /* 2925 * Now we don't have range contiguous to the processed range, release 2926 * the processed range now. 2927 */ 2928 if (processed->uptodate && tree->track_uptodate) 2929 set_extent_uptodate(tree, processed->start, processed->end, 2930 &cached, GFP_ATOMIC); 2931 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2932 &cached); 2933 2934 update: 2935 /* Update processed to current range */ 2936 processed->inode = inode; 2937 processed->start = start; 2938 processed->end = end; 2939 processed->uptodate = uptodate; 2940 } 2941 2942 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2943 { 2944 ASSERT(PageLocked(page)); 2945 if (fs_info->sectorsize == PAGE_SIZE) 2946 return; 2947 2948 ASSERT(PagePrivate(page)); 2949 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2950 } 2951 2952 /* 2953 * Find extent buffer for a givne bytenr. 2954 * 2955 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2956 * in endio context. 2957 */ 2958 static struct extent_buffer *find_extent_buffer_readpage( 2959 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2960 { 2961 struct extent_buffer *eb; 2962 2963 /* 2964 * For regular sectorsize, we can use page->private to grab extent 2965 * buffer 2966 */ 2967 if (fs_info->sectorsize == PAGE_SIZE) { 2968 ASSERT(PagePrivate(page) && page->private); 2969 return (struct extent_buffer *)page->private; 2970 } 2971 2972 /* For subpage case, we need to lookup buffer radix tree */ 2973 rcu_read_lock(); 2974 eb = radix_tree_lookup(&fs_info->buffer_radix, 2975 bytenr >> fs_info->sectorsize_bits); 2976 rcu_read_unlock(); 2977 ASSERT(eb); 2978 return eb; 2979 } 2980 2981 /* 2982 * after a readpage IO is done, we need to: 2983 * clear the uptodate bits on error 2984 * set the uptodate bits if things worked 2985 * set the page up to date if all extents in the tree are uptodate 2986 * clear the lock bit in the extent tree 2987 * unlock the page if there are no other extents locked for it 2988 * 2989 * Scheduling is not allowed, so the extent state tree is expected 2990 * to have one and only one object corresponding to this IO. 2991 */ 2992 static void end_bio_extent_readpage(struct bio *bio) 2993 { 2994 struct bio_vec *bvec; 2995 struct btrfs_bio *bbio = btrfs_bio(bio); 2996 struct extent_io_tree *tree, *failure_tree; 2997 struct processed_extent processed = { 0 }; 2998 /* 2999 * The offset to the beginning of a bio, since one bio can never be 3000 * larger than UINT_MAX, u32 here is enough. 3001 */ 3002 u32 bio_offset = 0; 3003 int mirror; 3004 int ret; 3005 struct bvec_iter_all iter_all; 3006 3007 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3008 bio_for_each_segment_all(bvec, bio, iter_all) { 3009 bool uptodate = !bio->bi_status; 3010 struct page *page = bvec->bv_page; 3011 struct inode *inode = page->mapping->host; 3012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3013 const u32 sectorsize = fs_info->sectorsize; 3014 unsigned int error_bitmap = (unsigned int)-1; 3015 u64 start; 3016 u64 end; 3017 u32 len; 3018 3019 btrfs_debug(fs_info, 3020 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3021 bio->bi_iter.bi_sector, bio->bi_status, 3022 bbio->mirror_num); 3023 tree = &BTRFS_I(inode)->io_tree; 3024 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3025 3026 /* 3027 * We always issue full-sector reads, but if some block in a 3028 * page fails to read, blk_update_request() will advance 3029 * bv_offset and adjust bv_len to compensate. Print a warning 3030 * for unaligned offsets, and an error if they don't add up to 3031 * a full sector. 3032 */ 3033 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3034 btrfs_err(fs_info, 3035 "partial page read in btrfs with offset %u and length %u", 3036 bvec->bv_offset, bvec->bv_len); 3037 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3038 sectorsize)) 3039 btrfs_info(fs_info, 3040 "incomplete page read with offset %u and length %u", 3041 bvec->bv_offset, bvec->bv_len); 3042 3043 start = page_offset(page) + bvec->bv_offset; 3044 end = start + bvec->bv_len - 1; 3045 len = bvec->bv_len; 3046 3047 mirror = bbio->mirror_num; 3048 if (likely(uptodate)) { 3049 if (is_data_inode(inode)) { 3050 error_bitmap = btrfs_verify_data_csum(bbio, 3051 bio_offset, page, start, end); 3052 ret = error_bitmap; 3053 } else { 3054 ret = btrfs_validate_metadata_buffer(bbio, 3055 page, start, end, mirror); 3056 } 3057 if (ret) 3058 uptodate = false; 3059 else 3060 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3061 failure_tree, tree, start, 3062 page, 3063 btrfs_ino(BTRFS_I(inode)), 0); 3064 } 3065 3066 if (likely(uptodate)) 3067 goto readpage_ok; 3068 3069 if (is_data_inode(inode)) { 3070 /* 3071 * btrfs_submit_read_repair() will handle all the good 3072 * and bad sectors, we just continue to the next bvec. 3073 */ 3074 submit_read_repair(inode, bio, bio_offset, page, 3075 start - page_offset(page), start, 3076 end, mirror, error_bitmap, 3077 btrfs_submit_data_bio); 3078 3079 ASSERT(bio_offset + len > bio_offset); 3080 bio_offset += len; 3081 continue; 3082 } else { 3083 struct extent_buffer *eb; 3084 3085 eb = find_extent_buffer_readpage(fs_info, page, start); 3086 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3087 eb->read_mirror = mirror; 3088 atomic_dec(&eb->io_pages); 3089 } 3090 readpage_ok: 3091 if (likely(uptodate)) { 3092 loff_t i_size = i_size_read(inode); 3093 pgoff_t end_index = i_size >> PAGE_SHIFT; 3094 3095 /* 3096 * Zero out the remaining part if this range straddles 3097 * i_size. 3098 * 3099 * Here we should only zero the range inside the bvec, 3100 * not touch anything else. 3101 * 3102 * NOTE: i_size is exclusive while end is inclusive. 3103 */ 3104 if (page->index == end_index && i_size <= end) { 3105 u32 zero_start = max(offset_in_page(i_size), 3106 offset_in_page(start)); 3107 3108 zero_user_segment(page, zero_start, 3109 offset_in_page(end) + 1); 3110 } 3111 } 3112 ASSERT(bio_offset + len > bio_offset); 3113 bio_offset += len; 3114 3115 /* Update page status and unlock */ 3116 end_page_read(page, uptodate, start, len); 3117 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3118 start, end, PageUptodate(page)); 3119 } 3120 /* Release the last extent */ 3121 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3122 btrfs_bio_free_csum(bbio); 3123 bio_put(bio); 3124 } 3125 3126 /* 3127 * Initialize the members up to but not including 'bio'. Use after allocating a 3128 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3129 * 'bio' because use of __GFP_ZERO is not supported. 3130 */ 3131 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3132 { 3133 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3134 } 3135 3136 /* 3137 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3138 * 3139 * The bio allocation is backed by bioset and does not fail. 3140 */ 3141 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3142 { 3143 struct bio *bio; 3144 3145 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3146 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3147 btrfs_bio_init(btrfs_bio(bio)); 3148 return bio; 3149 } 3150 3151 struct bio *btrfs_bio_clone(struct bio *bio) 3152 { 3153 struct btrfs_bio *bbio; 3154 struct bio *new; 3155 3156 /* Bio allocation backed by a bioset does not fail */ 3157 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3158 bbio = btrfs_bio(new); 3159 btrfs_bio_init(bbio); 3160 bbio->iter = bio->bi_iter; 3161 return new; 3162 } 3163 3164 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3165 { 3166 struct bio *bio; 3167 struct btrfs_bio *bbio; 3168 3169 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3170 3171 /* this will never fail when it's backed by a bioset */ 3172 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3173 ASSERT(bio); 3174 3175 bbio = btrfs_bio(bio); 3176 btrfs_bio_init(bbio); 3177 3178 bio_trim(bio, offset >> 9, size >> 9); 3179 bbio->iter = bio->bi_iter; 3180 return bio; 3181 } 3182 3183 /** 3184 * Attempt to add a page to bio 3185 * 3186 * @bio_ctrl: record both the bio, and its bio_flags 3187 * @page: page to add to the bio 3188 * @disk_bytenr: offset of the new bio or to check whether we are adding 3189 * a contiguous page to the previous one 3190 * @size: portion of page that we want to write 3191 * @pg_offset: starting offset in the page 3192 * @bio_flags: flags of the current bio to see if we can merge them 3193 * 3194 * Attempt to add a page to bio considering stripe alignment etc. 3195 * 3196 * Return >= 0 for the number of bytes added to the bio. 3197 * Can return 0 if the current bio is already at stripe/zone boundary. 3198 * Return <0 for error. 3199 */ 3200 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3201 struct page *page, 3202 u64 disk_bytenr, unsigned int size, 3203 unsigned int pg_offset, 3204 unsigned long bio_flags) 3205 { 3206 struct bio *bio = bio_ctrl->bio; 3207 u32 bio_size = bio->bi_iter.bi_size; 3208 u32 real_size; 3209 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3210 bool contig; 3211 int ret; 3212 3213 ASSERT(bio); 3214 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3215 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3216 if (bio_ctrl->bio_flags != bio_flags) 3217 return 0; 3218 3219 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) 3220 contig = bio->bi_iter.bi_sector == sector; 3221 else 3222 contig = bio_end_sector(bio) == sector; 3223 if (!contig) 3224 return 0; 3225 3226 real_size = min(bio_ctrl->len_to_oe_boundary, 3227 bio_ctrl->len_to_stripe_boundary) - bio_size; 3228 real_size = min(real_size, size); 3229 3230 /* 3231 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3232 * bio will still execute its endio function on the page! 3233 */ 3234 if (real_size == 0) 3235 return 0; 3236 3237 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3238 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3239 else 3240 ret = bio_add_page(bio, page, real_size, pg_offset); 3241 3242 return ret; 3243 } 3244 3245 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3246 struct btrfs_inode *inode, u64 file_offset) 3247 { 3248 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3249 struct btrfs_io_geometry geom; 3250 struct btrfs_ordered_extent *ordered; 3251 struct extent_map *em; 3252 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3253 int ret; 3254 3255 /* 3256 * Pages for compressed extent are never submitted to disk directly, 3257 * thus it has no real boundary, just set them to U32_MAX. 3258 * 3259 * The split happens for real compressed bio, which happens in 3260 * btrfs_submit_compressed_read/write(). 3261 */ 3262 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { 3263 bio_ctrl->len_to_oe_boundary = U32_MAX; 3264 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3265 return 0; 3266 } 3267 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3268 if (IS_ERR(em)) 3269 return PTR_ERR(em); 3270 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3271 logical, &geom); 3272 free_extent_map(em); 3273 if (ret < 0) { 3274 return ret; 3275 } 3276 if (geom.len > U32_MAX) 3277 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3278 else 3279 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3280 3281 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3282 bio_ctrl->len_to_oe_boundary = U32_MAX; 3283 return 0; 3284 } 3285 3286 /* Ordered extent not yet created, so we're good */ 3287 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3288 if (!ordered) { 3289 bio_ctrl->len_to_oe_boundary = U32_MAX; 3290 return 0; 3291 } 3292 3293 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3294 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3295 btrfs_put_ordered_extent(ordered); 3296 return 0; 3297 } 3298 3299 static int alloc_new_bio(struct btrfs_inode *inode, 3300 struct btrfs_bio_ctrl *bio_ctrl, 3301 struct writeback_control *wbc, 3302 unsigned int opf, 3303 bio_end_io_t end_io_func, 3304 u64 disk_bytenr, u32 offset, u64 file_offset, 3305 unsigned long bio_flags) 3306 { 3307 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3308 struct bio *bio; 3309 int ret; 3310 3311 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3312 /* 3313 * For compressed page range, its disk_bytenr is always @disk_bytenr 3314 * passed in, no matter if we have added any range into previous bio. 3315 */ 3316 if (bio_flags & EXTENT_BIO_COMPRESSED) 3317 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3318 else 3319 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3320 bio_ctrl->bio = bio; 3321 bio_ctrl->bio_flags = bio_flags; 3322 bio->bi_end_io = end_io_func; 3323 bio->bi_private = &inode->io_tree; 3324 bio->bi_write_hint = inode->vfs_inode.i_write_hint; 3325 bio->bi_opf = opf; 3326 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3327 if (ret < 0) 3328 goto error; 3329 if (wbc) { 3330 struct block_device *bdev; 3331 3332 bdev = fs_info->fs_devices->latest_dev->bdev; 3333 bio_set_dev(bio, bdev); 3334 wbc_init_bio(wbc, bio); 3335 } 3336 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3337 struct btrfs_device *device; 3338 3339 device = btrfs_zoned_get_device(fs_info, disk_bytenr, 3340 fs_info->sectorsize); 3341 if (IS_ERR(device)) { 3342 ret = PTR_ERR(device); 3343 goto error; 3344 } 3345 3346 btrfs_bio(bio)->device = device; 3347 } 3348 return 0; 3349 error: 3350 bio_ctrl->bio = NULL; 3351 bio->bi_status = errno_to_blk_status(ret); 3352 bio_endio(bio); 3353 return ret; 3354 } 3355 3356 /* 3357 * @opf: bio REQ_OP_* and REQ_* flags as one value 3358 * @wbc: optional writeback control for io accounting 3359 * @page: page to add to the bio 3360 * @disk_bytenr: logical bytenr where the write will be 3361 * @size: portion of page that we want to write to 3362 * @pg_offset: offset of the new bio or to check whether we are adding 3363 * a contiguous page to the previous one 3364 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3365 * @end_io_func: end_io callback for new bio 3366 * @mirror_num: desired mirror to read/write 3367 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3368 * @bio_flags: flags of the current bio to see if we can merge them 3369 */ 3370 static int submit_extent_page(unsigned int opf, 3371 struct writeback_control *wbc, 3372 struct btrfs_bio_ctrl *bio_ctrl, 3373 struct page *page, u64 disk_bytenr, 3374 size_t size, unsigned long pg_offset, 3375 bio_end_io_t end_io_func, 3376 int mirror_num, 3377 unsigned long bio_flags, 3378 bool force_bio_submit) 3379 { 3380 int ret = 0; 3381 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3382 unsigned int cur = pg_offset; 3383 3384 ASSERT(bio_ctrl); 3385 3386 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3387 pg_offset + size <= PAGE_SIZE); 3388 if (force_bio_submit && bio_ctrl->bio) { 3389 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); 3390 bio_ctrl->bio = NULL; 3391 if (ret < 0) 3392 return ret; 3393 } 3394 3395 while (cur < pg_offset + size) { 3396 u32 offset = cur - pg_offset; 3397 int added; 3398 3399 /* Allocate new bio if needed */ 3400 if (!bio_ctrl->bio) { 3401 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3402 end_io_func, disk_bytenr, offset, 3403 page_offset(page) + cur, 3404 bio_flags); 3405 if (ret < 0) 3406 return ret; 3407 } 3408 /* 3409 * We must go through btrfs_bio_add_page() to ensure each 3410 * page range won't cross various boundaries. 3411 */ 3412 if (bio_flags & EXTENT_BIO_COMPRESSED) 3413 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3414 size - offset, pg_offset + offset, 3415 bio_flags); 3416 else 3417 added = btrfs_bio_add_page(bio_ctrl, page, 3418 disk_bytenr + offset, size - offset, 3419 pg_offset + offset, bio_flags); 3420 3421 /* Metadata page range should never be split */ 3422 if (!is_data_inode(&inode->vfs_inode)) 3423 ASSERT(added == 0 || added == size - offset); 3424 3425 /* At least we added some page, update the account */ 3426 if (wbc && added) 3427 wbc_account_cgroup_owner(wbc, page, added); 3428 3429 /* We have reached boundary, submit right now */ 3430 if (added < size - offset) { 3431 /* The bio should contain some page(s) */ 3432 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3433 ret = submit_one_bio(bio_ctrl->bio, mirror_num, 3434 bio_ctrl->bio_flags); 3435 bio_ctrl->bio = NULL; 3436 if (ret < 0) 3437 return ret; 3438 } 3439 cur += added; 3440 } 3441 return 0; 3442 } 3443 3444 static int attach_extent_buffer_page(struct extent_buffer *eb, 3445 struct page *page, 3446 struct btrfs_subpage *prealloc) 3447 { 3448 struct btrfs_fs_info *fs_info = eb->fs_info; 3449 int ret = 0; 3450 3451 /* 3452 * If the page is mapped to btree inode, we should hold the private 3453 * lock to prevent race. 3454 * For cloned or dummy extent buffers, their pages are not mapped and 3455 * will not race with any other ebs. 3456 */ 3457 if (page->mapping) 3458 lockdep_assert_held(&page->mapping->private_lock); 3459 3460 if (fs_info->sectorsize == PAGE_SIZE) { 3461 if (!PagePrivate(page)) 3462 attach_page_private(page, eb); 3463 else 3464 WARN_ON(page->private != (unsigned long)eb); 3465 return 0; 3466 } 3467 3468 /* Already mapped, just free prealloc */ 3469 if (PagePrivate(page)) { 3470 btrfs_free_subpage(prealloc); 3471 return 0; 3472 } 3473 3474 if (prealloc) 3475 /* Has preallocated memory for subpage */ 3476 attach_page_private(page, prealloc); 3477 else 3478 /* Do new allocation to attach subpage */ 3479 ret = btrfs_attach_subpage(fs_info, page, 3480 BTRFS_SUBPAGE_METADATA); 3481 return ret; 3482 } 3483 3484 int set_page_extent_mapped(struct page *page) 3485 { 3486 struct btrfs_fs_info *fs_info; 3487 3488 ASSERT(page->mapping); 3489 3490 if (PagePrivate(page)) 3491 return 0; 3492 3493 fs_info = btrfs_sb(page->mapping->host->i_sb); 3494 3495 if (fs_info->sectorsize < PAGE_SIZE) 3496 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3497 3498 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3499 return 0; 3500 } 3501 3502 void clear_page_extent_mapped(struct page *page) 3503 { 3504 struct btrfs_fs_info *fs_info; 3505 3506 ASSERT(page->mapping); 3507 3508 if (!PagePrivate(page)) 3509 return; 3510 3511 fs_info = btrfs_sb(page->mapping->host->i_sb); 3512 if (fs_info->sectorsize < PAGE_SIZE) 3513 return btrfs_detach_subpage(fs_info, page); 3514 3515 detach_page_private(page); 3516 } 3517 3518 static struct extent_map * 3519 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3520 u64 start, u64 len, struct extent_map **em_cached) 3521 { 3522 struct extent_map *em; 3523 3524 if (em_cached && *em_cached) { 3525 em = *em_cached; 3526 if (extent_map_in_tree(em) && start >= em->start && 3527 start < extent_map_end(em)) { 3528 refcount_inc(&em->refs); 3529 return em; 3530 } 3531 3532 free_extent_map(em); 3533 *em_cached = NULL; 3534 } 3535 3536 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3537 if (em_cached && !IS_ERR_OR_NULL(em)) { 3538 BUG_ON(*em_cached); 3539 refcount_inc(&em->refs); 3540 *em_cached = em; 3541 } 3542 return em; 3543 } 3544 /* 3545 * basic readpage implementation. Locked extent state structs are inserted 3546 * into the tree that are removed when the IO is done (by the end_io 3547 * handlers) 3548 * XXX JDM: This needs looking at to ensure proper page locking 3549 * return 0 on success, otherwise return error 3550 */ 3551 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3552 struct btrfs_bio_ctrl *bio_ctrl, 3553 unsigned int read_flags, u64 *prev_em_start) 3554 { 3555 struct inode *inode = page->mapping->host; 3556 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3557 u64 start = page_offset(page); 3558 const u64 end = start + PAGE_SIZE - 1; 3559 u64 cur = start; 3560 u64 extent_offset; 3561 u64 last_byte = i_size_read(inode); 3562 u64 block_start; 3563 u64 cur_end; 3564 struct extent_map *em; 3565 int ret = 0; 3566 int nr = 0; 3567 size_t pg_offset = 0; 3568 size_t iosize; 3569 size_t blocksize = inode->i_sb->s_blocksize; 3570 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3571 3572 ret = set_page_extent_mapped(page); 3573 if (ret < 0) { 3574 unlock_extent(tree, start, end); 3575 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3576 unlock_page(page); 3577 goto out; 3578 } 3579 3580 if (page->index == last_byte >> PAGE_SHIFT) { 3581 size_t zero_offset = offset_in_page(last_byte); 3582 3583 if (zero_offset) { 3584 iosize = PAGE_SIZE - zero_offset; 3585 memzero_page(page, zero_offset, iosize); 3586 flush_dcache_page(page); 3587 } 3588 } 3589 begin_page_read(fs_info, page); 3590 while (cur <= end) { 3591 unsigned long this_bio_flag = 0; 3592 bool force_bio_submit = false; 3593 u64 disk_bytenr; 3594 3595 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3596 if (cur >= last_byte) { 3597 struct extent_state *cached = NULL; 3598 3599 iosize = PAGE_SIZE - pg_offset; 3600 memzero_page(page, pg_offset, iosize); 3601 flush_dcache_page(page); 3602 set_extent_uptodate(tree, cur, cur + iosize - 1, 3603 &cached, GFP_NOFS); 3604 unlock_extent_cached(tree, cur, 3605 cur + iosize - 1, &cached); 3606 end_page_read(page, true, cur, iosize); 3607 break; 3608 } 3609 em = __get_extent_map(inode, page, pg_offset, cur, 3610 end - cur + 1, em_cached); 3611 if (IS_ERR_OR_NULL(em)) { 3612 unlock_extent(tree, cur, end); 3613 end_page_read(page, false, cur, end + 1 - cur); 3614 break; 3615 } 3616 extent_offset = cur - em->start; 3617 BUG_ON(extent_map_end(em) <= cur); 3618 BUG_ON(end < cur); 3619 3620 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3621 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3622 extent_set_compress_type(&this_bio_flag, 3623 em->compress_type); 3624 } 3625 3626 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3627 cur_end = min(extent_map_end(em) - 1, end); 3628 iosize = ALIGN(iosize, blocksize); 3629 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3630 disk_bytenr = em->block_start; 3631 else 3632 disk_bytenr = em->block_start + extent_offset; 3633 block_start = em->block_start; 3634 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3635 block_start = EXTENT_MAP_HOLE; 3636 3637 /* 3638 * If we have a file range that points to a compressed extent 3639 * and it's followed by a consecutive file range that points 3640 * to the same compressed extent (possibly with a different 3641 * offset and/or length, so it either points to the whole extent 3642 * or only part of it), we must make sure we do not submit a 3643 * single bio to populate the pages for the 2 ranges because 3644 * this makes the compressed extent read zero out the pages 3645 * belonging to the 2nd range. Imagine the following scenario: 3646 * 3647 * File layout 3648 * [0 - 8K] [8K - 24K] 3649 * | | 3650 * | | 3651 * points to extent X, points to extent X, 3652 * offset 4K, length of 8K offset 0, length 16K 3653 * 3654 * [extent X, compressed length = 4K uncompressed length = 16K] 3655 * 3656 * If the bio to read the compressed extent covers both ranges, 3657 * it will decompress extent X into the pages belonging to the 3658 * first range and then it will stop, zeroing out the remaining 3659 * pages that belong to the other range that points to extent X. 3660 * So here we make sure we submit 2 bios, one for the first 3661 * range and another one for the third range. Both will target 3662 * the same physical extent from disk, but we can't currently 3663 * make the compressed bio endio callback populate the pages 3664 * for both ranges because each compressed bio is tightly 3665 * coupled with a single extent map, and each range can have 3666 * an extent map with a different offset value relative to the 3667 * uncompressed data of our extent and different lengths. This 3668 * is a corner case so we prioritize correctness over 3669 * non-optimal behavior (submitting 2 bios for the same extent). 3670 */ 3671 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3672 prev_em_start && *prev_em_start != (u64)-1 && 3673 *prev_em_start != em->start) 3674 force_bio_submit = true; 3675 3676 if (prev_em_start) 3677 *prev_em_start = em->start; 3678 3679 free_extent_map(em); 3680 em = NULL; 3681 3682 /* we've found a hole, just zero and go on */ 3683 if (block_start == EXTENT_MAP_HOLE) { 3684 struct extent_state *cached = NULL; 3685 3686 memzero_page(page, pg_offset, iosize); 3687 flush_dcache_page(page); 3688 3689 set_extent_uptodate(tree, cur, cur + iosize - 1, 3690 &cached, GFP_NOFS); 3691 unlock_extent_cached(tree, cur, 3692 cur + iosize - 1, &cached); 3693 end_page_read(page, true, cur, iosize); 3694 cur = cur + iosize; 3695 pg_offset += iosize; 3696 continue; 3697 } 3698 /* the get_extent function already copied into the page */ 3699 if (test_range_bit(tree, cur, cur_end, 3700 EXTENT_UPTODATE, 1, NULL)) { 3701 unlock_extent(tree, cur, cur + iosize - 1); 3702 end_page_read(page, true, cur, iosize); 3703 cur = cur + iosize; 3704 pg_offset += iosize; 3705 continue; 3706 } 3707 /* we have an inline extent but it didn't get marked up 3708 * to date. Error out 3709 */ 3710 if (block_start == EXTENT_MAP_INLINE) { 3711 unlock_extent(tree, cur, cur + iosize - 1); 3712 end_page_read(page, false, cur, iosize); 3713 cur = cur + iosize; 3714 pg_offset += iosize; 3715 continue; 3716 } 3717 3718 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3719 bio_ctrl, page, disk_bytenr, iosize, 3720 pg_offset, 3721 end_bio_extent_readpage, 0, 3722 this_bio_flag, 3723 force_bio_submit); 3724 if (!ret) { 3725 nr++; 3726 } else { 3727 unlock_extent(tree, cur, cur + iosize - 1); 3728 end_page_read(page, false, cur, iosize); 3729 goto out; 3730 } 3731 cur = cur + iosize; 3732 pg_offset += iosize; 3733 } 3734 out: 3735 return ret; 3736 } 3737 3738 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3739 u64 start, u64 end, 3740 struct extent_map **em_cached, 3741 struct btrfs_bio_ctrl *bio_ctrl, 3742 u64 *prev_em_start) 3743 { 3744 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3745 int index; 3746 3747 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3748 3749 for (index = 0; index < nr_pages; index++) { 3750 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3751 REQ_RAHEAD, prev_em_start); 3752 put_page(pages[index]); 3753 } 3754 } 3755 3756 static void update_nr_written(struct writeback_control *wbc, 3757 unsigned long nr_written) 3758 { 3759 wbc->nr_to_write -= nr_written; 3760 } 3761 3762 /* 3763 * helper for __extent_writepage, doing all of the delayed allocation setup. 3764 * 3765 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3766 * to write the page (copy into inline extent). In this case the IO has 3767 * been started and the page is already unlocked. 3768 * 3769 * This returns 0 if all went well (page still locked) 3770 * This returns < 0 if there were errors (page still locked) 3771 */ 3772 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3773 struct page *page, struct writeback_control *wbc) 3774 { 3775 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3776 u64 delalloc_start = page_offset(page); 3777 u64 delalloc_to_write = 0; 3778 /* How many pages are started by btrfs_run_delalloc_range() */ 3779 unsigned long nr_written = 0; 3780 int ret; 3781 int page_started = 0; 3782 3783 while (delalloc_start < page_end) { 3784 u64 delalloc_end = page_end; 3785 bool found; 3786 3787 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3788 &delalloc_start, 3789 &delalloc_end); 3790 if (!found) { 3791 delalloc_start = delalloc_end + 1; 3792 continue; 3793 } 3794 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3795 delalloc_end, &page_started, &nr_written, wbc); 3796 if (ret) { 3797 btrfs_page_set_error(inode->root->fs_info, page, 3798 page_offset(page), PAGE_SIZE); 3799 return ret; 3800 } 3801 /* 3802 * delalloc_end is already one less than the total length, so 3803 * we don't subtract one from PAGE_SIZE 3804 */ 3805 delalloc_to_write += (delalloc_end - delalloc_start + 3806 PAGE_SIZE) >> PAGE_SHIFT; 3807 delalloc_start = delalloc_end + 1; 3808 } 3809 if (wbc->nr_to_write < delalloc_to_write) { 3810 int thresh = 8192; 3811 3812 if (delalloc_to_write < thresh * 2) 3813 thresh = delalloc_to_write; 3814 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3815 thresh); 3816 } 3817 3818 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3819 if (page_started) { 3820 /* 3821 * We've unlocked the page, so we can't update the mapping's 3822 * writeback index, just update nr_to_write. 3823 */ 3824 wbc->nr_to_write -= nr_written; 3825 return 1; 3826 } 3827 3828 return 0; 3829 } 3830 3831 /* 3832 * Find the first byte we need to write. 3833 * 3834 * For subpage, one page can contain several sectors, and 3835 * __extent_writepage_io() will just grab all extent maps in the page 3836 * range and try to submit all non-inline/non-compressed extents. 3837 * 3838 * This is a big problem for subpage, we shouldn't re-submit already written 3839 * data at all. 3840 * This function will lookup subpage dirty bit to find which range we really 3841 * need to submit. 3842 * 3843 * Return the next dirty range in [@start, @end). 3844 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3845 */ 3846 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3847 struct page *page, u64 *start, u64 *end) 3848 { 3849 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3850 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3851 u64 orig_start = *start; 3852 /* Declare as unsigned long so we can use bitmap ops */ 3853 unsigned long flags; 3854 int range_start_bit; 3855 int range_end_bit; 3856 3857 /* 3858 * For regular sector size == page size case, since one page only 3859 * contains one sector, we return the page offset directly. 3860 */ 3861 if (fs_info->sectorsize == PAGE_SIZE) { 3862 *start = page_offset(page); 3863 *end = page_offset(page) + PAGE_SIZE; 3864 return; 3865 } 3866 3867 range_start_bit = spi->dirty_offset + 3868 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3869 3870 /* We should have the page locked, but just in case */ 3871 spin_lock_irqsave(&subpage->lock, flags); 3872 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3873 spi->dirty_offset + spi->bitmap_nr_bits); 3874 spin_unlock_irqrestore(&subpage->lock, flags); 3875 3876 range_start_bit -= spi->dirty_offset; 3877 range_end_bit -= spi->dirty_offset; 3878 3879 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3880 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3881 } 3882 3883 /* 3884 * helper for __extent_writepage. This calls the writepage start hooks, 3885 * and does the loop to map the page into extents and bios. 3886 * 3887 * We return 1 if the IO is started and the page is unlocked, 3888 * 0 if all went well (page still locked) 3889 * < 0 if there were errors (page still locked) 3890 */ 3891 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3892 struct page *page, 3893 struct writeback_control *wbc, 3894 struct extent_page_data *epd, 3895 loff_t i_size, 3896 int *nr_ret) 3897 { 3898 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3899 u64 cur = page_offset(page); 3900 u64 end = cur + PAGE_SIZE - 1; 3901 u64 extent_offset; 3902 u64 block_start; 3903 struct extent_map *em; 3904 int ret = 0; 3905 int nr = 0; 3906 u32 opf = REQ_OP_WRITE; 3907 const unsigned int write_flags = wbc_to_write_flags(wbc); 3908 bool compressed; 3909 3910 ret = btrfs_writepage_cow_fixup(page); 3911 if (ret) { 3912 /* Fixup worker will requeue */ 3913 redirty_page_for_writepage(wbc, page); 3914 unlock_page(page); 3915 return 1; 3916 } 3917 3918 /* 3919 * we don't want to touch the inode after unlocking the page, 3920 * so we update the mapping writeback index now 3921 */ 3922 update_nr_written(wbc, 1); 3923 3924 while (cur <= end) { 3925 u64 disk_bytenr; 3926 u64 em_end; 3927 u64 dirty_range_start = cur; 3928 u64 dirty_range_end; 3929 u32 iosize; 3930 3931 if (cur >= i_size) { 3932 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3933 end, true); 3934 /* 3935 * This range is beyond i_size, thus we don't need to 3936 * bother writing back. 3937 * But we still need to clear the dirty subpage bit, or 3938 * the next time the page gets dirtied, we will try to 3939 * writeback the sectors with subpage dirty bits, 3940 * causing writeback without ordered extent. 3941 */ 3942 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 3943 break; 3944 } 3945 3946 find_next_dirty_byte(fs_info, page, &dirty_range_start, 3947 &dirty_range_end); 3948 if (cur < dirty_range_start) { 3949 cur = dirty_range_start; 3950 continue; 3951 } 3952 3953 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3954 if (IS_ERR_OR_NULL(em)) { 3955 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 3956 ret = PTR_ERR_OR_ZERO(em); 3957 break; 3958 } 3959 3960 extent_offset = cur - em->start; 3961 em_end = extent_map_end(em); 3962 ASSERT(cur <= em_end); 3963 ASSERT(cur < end); 3964 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3965 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3966 block_start = em->block_start; 3967 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3968 disk_bytenr = em->block_start + extent_offset; 3969 3970 /* 3971 * Note that em_end from extent_map_end() and dirty_range_end from 3972 * find_next_dirty_byte() are all exclusive 3973 */ 3974 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 3975 3976 if (btrfs_use_zone_append(inode, em->block_start)) 3977 opf = REQ_OP_ZONE_APPEND; 3978 3979 free_extent_map(em); 3980 em = NULL; 3981 3982 /* 3983 * compressed and inline extents are written through other 3984 * paths in the FS 3985 */ 3986 if (compressed || block_start == EXTENT_MAP_HOLE || 3987 block_start == EXTENT_MAP_INLINE) { 3988 if (compressed) 3989 nr++; 3990 else 3991 btrfs_writepage_endio_finish_ordered(inode, 3992 page, cur, cur + iosize - 1, true); 3993 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 3994 cur += iosize; 3995 continue; 3996 } 3997 3998 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 3999 if (!PageWriteback(page)) { 4000 btrfs_err(inode->root->fs_info, 4001 "page %lu not writeback, cur %llu end %llu", 4002 page->index, cur, end); 4003 } 4004 4005 /* 4006 * Although the PageDirty bit is cleared before entering this 4007 * function, subpage dirty bit is not cleared. 4008 * So clear subpage dirty bit here so next time we won't submit 4009 * page for range already written to disk. 4010 */ 4011 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4012 4013 ret = submit_extent_page(opf | write_flags, wbc, 4014 &epd->bio_ctrl, page, 4015 disk_bytenr, iosize, 4016 cur - page_offset(page), 4017 end_bio_extent_writepage, 4018 0, 0, false); 4019 if (ret) { 4020 btrfs_page_set_error(fs_info, page, cur, iosize); 4021 if (PageWriteback(page)) 4022 btrfs_page_clear_writeback(fs_info, page, cur, 4023 iosize); 4024 } 4025 4026 cur += iosize; 4027 nr++; 4028 } 4029 /* 4030 * If we finish without problem, we should not only clear page dirty, 4031 * but also empty subpage dirty bits 4032 */ 4033 if (!ret) 4034 btrfs_page_assert_not_dirty(fs_info, page); 4035 *nr_ret = nr; 4036 return ret; 4037 } 4038 4039 /* 4040 * the writepage semantics are similar to regular writepage. extent 4041 * records are inserted to lock ranges in the tree, and as dirty areas 4042 * are found, they are marked writeback. Then the lock bits are removed 4043 * and the end_io handler clears the writeback ranges 4044 * 4045 * Return 0 if everything goes well. 4046 * Return <0 for error. 4047 */ 4048 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4049 struct extent_page_data *epd) 4050 { 4051 struct inode *inode = page->mapping->host; 4052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4053 const u64 page_start = page_offset(page); 4054 const u64 page_end = page_start + PAGE_SIZE - 1; 4055 int ret; 4056 int nr = 0; 4057 size_t pg_offset; 4058 loff_t i_size = i_size_read(inode); 4059 unsigned long end_index = i_size >> PAGE_SHIFT; 4060 4061 trace___extent_writepage(page, inode, wbc); 4062 4063 WARN_ON(!PageLocked(page)); 4064 4065 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4066 page_offset(page), PAGE_SIZE); 4067 4068 pg_offset = offset_in_page(i_size); 4069 if (page->index > end_index || 4070 (page->index == end_index && !pg_offset)) { 4071 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 4072 unlock_page(page); 4073 return 0; 4074 } 4075 4076 if (page->index == end_index) { 4077 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4078 flush_dcache_page(page); 4079 } 4080 4081 ret = set_page_extent_mapped(page); 4082 if (ret < 0) { 4083 SetPageError(page); 4084 goto done; 4085 } 4086 4087 if (!epd->extent_locked) { 4088 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4089 if (ret == 1) 4090 return 0; 4091 if (ret) 4092 goto done; 4093 } 4094 4095 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4096 &nr); 4097 if (ret == 1) 4098 return 0; 4099 4100 done: 4101 if (nr == 0) { 4102 /* make sure the mapping tag for page dirty gets cleared */ 4103 set_page_writeback(page); 4104 end_page_writeback(page); 4105 } 4106 /* 4107 * Here we used to have a check for PageError() and then set @ret and 4108 * call end_extent_writepage(). 4109 * 4110 * But in fact setting @ret here will cause different error paths 4111 * between subpage and regular sectorsize. 4112 * 4113 * For regular page size, we never submit current page, but only add 4114 * current page to current bio. 4115 * The bio submission can only happen in next page. 4116 * Thus if we hit the PageError() branch, @ret is already set to 4117 * non-zero value and will not get updated for regular sectorsize. 4118 * 4119 * But for subpage case, it's possible we submit part of current page, 4120 * thus can get PageError() set by submitted bio of the same page, 4121 * while our @ret is still 0. 4122 * 4123 * So here we unify the behavior and don't set @ret. 4124 * Error can still be properly passed to higher layer as page will 4125 * be set error, here we just don't handle the IO failure. 4126 * 4127 * NOTE: This is just a hotfix for subpage. 4128 * The root fix will be properly ending ordered extent when we hit 4129 * an error during writeback. 4130 * 4131 * But that needs a bigger refactoring, as we not only need to grab the 4132 * submitted OE, but also need to know exactly at which bytenr we hit 4133 * the error. 4134 * Currently the full page based __extent_writepage_io() is not 4135 * capable of that. 4136 */ 4137 if (PageError(page)) 4138 end_extent_writepage(page, ret, page_start, page_end); 4139 if (epd->extent_locked) { 4140 /* 4141 * If epd->extent_locked, it's from extent_write_locked_range(), 4142 * the page can either be locked by lock_page() or 4143 * process_one_page(). 4144 * Let btrfs_page_unlock_writer() handle both cases. 4145 */ 4146 ASSERT(wbc); 4147 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4148 wbc->range_end + 1 - wbc->range_start); 4149 } else { 4150 unlock_page(page); 4151 } 4152 ASSERT(ret <= 0); 4153 return ret; 4154 } 4155 4156 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4157 { 4158 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4159 TASK_UNINTERRUPTIBLE); 4160 } 4161 4162 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4163 { 4164 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags)) 4165 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len); 4166 4167 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4168 smp_mb__after_atomic(); 4169 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4170 } 4171 4172 /* 4173 * Lock extent buffer status and pages for writeback. 4174 * 4175 * May try to flush write bio if we can't get the lock. 4176 * 4177 * Return 0 if the extent buffer doesn't need to be submitted. 4178 * (E.g. the extent buffer is not dirty) 4179 * Return >0 is the extent buffer is submitted to bio. 4180 * Return <0 if something went wrong, no page is locked. 4181 */ 4182 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4183 struct extent_page_data *epd) 4184 { 4185 struct btrfs_fs_info *fs_info = eb->fs_info; 4186 int i, num_pages, failed_page_nr; 4187 int flush = 0; 4188 int ret = 0; 4189 4190 if (!btrfs_try_tree_write_lock(eb)) { 4191 ret = flush_write_bio(epd); 4192 if (ret < 0) 4193 return ret; 4194 flush = 1; 4195 btrfs_tree_lock(eb); 4196 } 4197 4198 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4199 btrfs_tree_unlock(eb); 4200 if (!epd->sync_io) 4201 return 0; 4202 if (!flush) { 4203 ret = flush_write_bio(epd); 4204 if (ret < 0) 4205 return ret; 4206 flush = 1; 4207 } 4208 while (1) { 4209 wait_on_extent_buffer_writeback(eb); 4210 btrfs_tree_lock(eb); 4211 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4212 break; 4213 btrfs_tree_unlock(eb); 4214 } 4215 } 4216 4217 /* 4218 * We need to do this to prevent races in people who check if the eb is 4219 * under IO since we can end up having no IO bits set for a short period 4220 * of time. 4221 */ 4222 spin_lock(&eb->refs_lock); 4223 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4224 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4225 spin_unlock(&eb->refs_lock); 4226 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4227 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4228 -eb->len, 4229 fs_info->dirty_metadata_batch); 4230 ret = 1; 4231 } else { 4232 spin_unlock(&eb->refs_lock); 4233 } 4234 4235 btrfs_tree_unlock(eb); 4236 4237 /* 4238 * Either we don't need to submit any tree block, or we're submitting 4239 * subpage eb. 4240 * Subpage metadata doesn't use page locking at all, so we can skip 4241 * the page locking. 4242 */ 4243 if (!ret || fs_info->sectorsize < PAGE_SIZE) 4244 return ret; 4245 4246 num_pages = num_extent_pages(eb); 4247 for (i = 0; i < num_pages; i++) { 4248 struct page *p = eb->pages[i]; 4249 4250 if (!trylock_page(p)) { 4251 if (!flush) { 4252 int err; 4253 4254 err = flush_write_bio(epd); 4255 if (err < 0) { 4256 ret = err; 4257 failed_page_nr = i; 4258 goto err_unlock; 4259 } 4260 flush = 1; 4261 } 4262 lock_page(p); 4263 } 4264 } 4265 4266 return ret; 4267 err_unlock: 4268 /* Unlock already locked pages */ 4269 for (i = 0; i < failed_page_nr; i++) 4270 unlock_page(eb->pages[i]); 4271 /* 4272 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4273 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4274 * be made and undo everything done before. 4275 */ 4276 btrfs_tree_lock(eb); 4277 spin_lock(&eb->refs_lock); 4278 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4279 end_extent_buffer_writeback(eb); 4280 spin_unlock(&eb->refs_lock); 4281 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4282 fs_info->dirty_metadata_batch); 4283 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4284 btrfs_tree_unlock(eb); 4285 return ret; 4286 } 4287 4288 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4289 { 4290 struct btrfs_fs_info *fs_info = eb->fs_info; 4291 4292 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4293 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4294 return; 4295 4296 /* 4297 * A read may stumble upon this buffer later, make sure that it gets an 4298 * error and knows there was an error. 4299 */ 4300 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4301 4302 /* 4303 * We need to set the mapping with the io error as well because a write 4304 * error will flip the file system readonly, and then syncfs() will 4305 * return a 0 because we are readonly if we don't modify the err seq for 4306 * the superblock. 4307 */ 4308 mapping_set_error(page->mapping, -EIO); 4309 4310 /* 4311 * If we error out, we should add back the dirty_metadata_bytes 4312 * to make it consistent. 4313 */ 4314 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4315 eb->len, fs_info->dirty_metadata_batch); 4316 4317 /* 4318 * If writeback for a btree extent that doesn't belong to a log tree 4319 * failed, increment the counter transaction->eb_write_errors. 4320 * We do this because while the transaction is running and before it's 4321 * committing (when we call filemap_fdata[write|wait]_range against 4322 * the btree inode), we might have 4323 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4324 * returns an error or an error happens during writeback, when we're 4325 * committing the transaction we wouldn't know about it, since the pages 4326 * can be no longer dirty nor marked anymore for writeback (if a 4327 * subsequent modification to the extent buffer didn't happen before the 4328 * transaction commit), which makes filemap_fdata[write|wait]_range not 4329 * able to find the pages tagged with SetPageError at transaction 4330 * commit time. So if this happens we must abort the transaction, 4331 * otherwise we commit a super block with btree roots that point to 4332 * btree nodes/leafs whose content on disk is invalid - either garbage 4333 * or the content of some node/leaf from a past generation that got 4334 * cowed or deleted and is no longer valid. 4335 * 4336 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4337 * not be enough - we need to distinguish between log tree extents vs 4338 * non-log tree extents, and the next filemap_fdatawait_range() call 4339 * will catch and clear such errors in the mapping - and that call might 4340 * be from a log sync and not from a transaction commit. Also, checking 4341 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4342 * not done and would not be reliable - the eb might have been released 4343 * from memory and reading it back again means that flag would not be 4344 * set (since it's a runtime flag, not persisted on disk). 4345 * 4346 * Using the flags below in the btree inode also makes us achieve the 4347 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4348 * writeback for all dirty pages and before filemap_fdatawait_range() 4349 * is called, the writeback for all dirty pages had already finished 4350 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4351 * filemap_fdatawait_range() would return success, as it could not know 4352 * that writeback errors happened (the pages were no longer tagged for 4353 * writeback). 4354 */ 4355 switch (eb->log_index) { 4356 case -1: 4357 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4358 break; 4359 case 0: 4360 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4361 break; 4362 case 1: 4363 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4364 break; 4365 default: 4366 BUG(); /* unexpected, logic error */ 4367 } 4368 } 4369 4370 /* 4371 * The endio specific version which won't touch any unsafe spinlock in endio 4372 * context. 4373 */ 4374 static struct extent_buffer *find_extent_buffer_nolock( 4375 struct btrfs_fs_info *fs_info, u64 start) 4376 { 4377 struct extent_buffer *eb; 4378 4379 rcu_read_lock(); 4380 eb = radix_tree_lookup(&fs_info->buffer_radix, 4381 start >> fs_info->sectorsize_bits); 4382 if (eb && atomic_inc_not_zero(&eb->refs)) { 4383 rcu_read_unlock(); 4384 return eb; 4385 } 4386 rcu_read_unlock(); 4387 return NULL; 4388 } 4389 4390 /* 4391 * The endio function for subpage extent buffer write. 4392 * 4393 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4394 * after all extent buffers in the page has finished their writeback. 4395 */ 4396 static void end_bio_subpage_eb_writepage(struct bio *bio) 4397 { 4398 struct btrfs_fs_info *fs_info; 4399 struct bio_vec *bvec; 4400 struct bvec_iter_all iter_all; 4401 4402 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4403 ASSERT(fs_info->sectorsize < PAGE_SIZE); 4404 4405 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4406 bio_for_each_segment_all(bvec, bio, iter_all) { 4407 struct page *page = bvec->bv_page; 4408 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4409 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4410 u64 cur_bytenr = bvec_start; 4411 4412 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4413 4414 /* Iterate through all extent buffers in the range */ 4415 while (cur_bytenr <= bvec_end) { 4416 struct extent_buffer *eb; 4417 int done; 4418 4419 /* 4420 * Here we can't use find_extent_buffer(), as it may 4421 * try to lock eb->refs_lock, which is not safe in endio 4422 * context. 4423 */ 4424 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4425 ASSERT(eb); 4426 4427 cur_bytenr = eb->start + eb->len; 4428 4429 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4430 done = atomic_dec_and_test(&eb->io_pages); 4431 ASSERT(done); 4432 4433 if (bio->bi_status || 4434 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4435 ClearPageUptodate(page); 4436 set_btree_ioerr(page, eb); 4437 } 4438 4439 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4440 eb->len); 4441 end_extent_buffer_writeback(eb); 4442 /* 4443 * free_extent_buffer() will grab spinlock which is not 4444 * safe in endio context. Thus here we manually dec 4445 * the ref. 4446 */ 4447 atomic_dec(&eb->refs); 4448 } 4449 } 4450 bio_put(bio); 4451 } 4452 4453 static void end_bio_extent_buffer_writepage(struct bio *bio) 4454 { 4455 struct bio_vec *bvec; 4456 struct extent_buffer *eb; 4457 int done; 4458 struct bvec_iter_all iter_all; 4459 4460 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4461 bio_for_each_segment_all(bvec, bio, iter_all) { 4462 struct page *page = bvec->bv_page; 4463 4464 eb = (struct extent_buffer *)page->private; 4465 BUG_ON(!eb); 4466 done = atomic_dec_and_test(&eb->io_pages); 4467 4468 if (bio->bi_status || 4469 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4470 ClearPageUptodate(page); 4471 set_btree_ioerr(page, eb); 4472 } 4473 4474 end_page_writeback(page); 4475 4476 if (!done) 4477 continue; 4478 4479 end_extent_buffer_writeback(eb); 4480 } 4481 4482 bio_put(bio); 4483 } 4484 4485 static void prepare_eb_write(struct extent_buffer *eb) 4486 { 4487 u32 nritems; 4488 unsigned long start; 4489 unsigned long end; 4490 4491 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4492 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4493 4494 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4495 nritems = btrfs_header_nritems(eb); 4496 if (btrfs_header_level(eb) > 0) { 4497 end = btrfs_node_key_ptr_offset(nritems); 4498 memzero_extent_buffer(eb, end, eb->len - end); 4499 } else { 4500 /* 4501 * Leaf: 4502 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4503 */ 4504 start = btrfs_item_nr_offset(nritems); 4505 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4506 memzero_extent_buffer(eb, start, end - start); 4507 } 4508 } 4509 4510 /* 4511 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4512 * Page locking is only utilized at minimum to keep the VMM code happy. 4513 */ 4514 static int write_one_subpage_eb(struct extent_buffer *eb, 4515 struct writeback_control *wbc, 4516 struct extent_page_data *epd) 4517 { 4518 struct btrfs_fs_info *fs_info = eb->fs_info; 4519 struct page *page = eb->pages[0]; 4520 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4521 bool no_dirty_ebs = false; 4522 int ret; 4523 4524 prepare_eb_write(eb); 4525 4526 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4527 lock_page(page); 4528 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4529 4530 /* Check if this is the last dirty bit to update nr_written */ 4531 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4532 eb->start, eb->len); 4533 if (no_dirty_ebs) 4534 clear_page_dirty_for_io(page); 4535 4536 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4537 &epd->bio_ctrl, page, eb->start, eb->len, 4538 eb->start - page_offset(page), 4539 end_bio_subpage_eb_writepage, 0, 0, false); 4540 if (ret) { 4541 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4542 set_btree_ioerr(page, eb); 4543 unlock_page(page); 4544 4545 if (atomic_dec_and_test(&eb->io_pages)) 4546 end_extent_buffer_writeback(eb); 4547 return -EIO; 4548 } 4549 unlock_page(page); 4550 /* 4551 * Submission finished without problem, if no range of the page is 4552 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4553 */ 4554 if (no_dirty_ebs) 4555 update_nr_written(wbc, 1); 4556 return ret; 4557 } 4558 4559 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4560 struct writeback_control *wbc, 4561 struct extent_page_data *epd) 4562 { 4563 u64 disk_bytenr = eb->start; 4564 int i, num_pages; 4565 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4566 int ret = 0; 4567 4568 prepare_eb_write(eb); 4569 4570 num_pages = num_extent_pages(eb); 4571 for (i = 0; i < num_pages; i++) { 4572 struct page *p = eb->pages[i]; 4573 4574 clear_page_dirty_for_io(p); 4575 set_page_writeback(p); 4576 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4577 &epd->bio_ctrl, p, disk_bytenr, 4578 PAGE_SIZE, 0, 4579 end_bio_extent_buffer_writepage, 4580 0, 0, false); 4581 if (ret) { 4582 set_btree_ioerr(p, eb); 4583 if (PageWriteback(p)) 4584 end_page_writeback(p); 4585 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4586 end_extent_buffer_writeback(eb); 4587 ret = -EIO; 4588 break; 4589 } 4590 disk_bytenr += PAGE_SIZE; 4591 update_nr_written(wbc, 1); 4592 unlock_page(p); 4593 } 4594 4595 if (unlikely(ret)) { 4596 for (; i < num_pages; i++) { 4597 struct page *p = eb->pages[i]; 4598 clear_page_dirty_for_io(p); 4599 unlock_page(p); 4600 } 4601 } 4602 4603 return ret; 4604 } 4605 4606 /* 4607 * Submit one subpage btree page. 4608 * 4609 * The main difference to submit_eb_page() is: 4610 * - Page locking 4611 * For subpage, we don't rely on page locking at all. 4612 * 4613 * - Flush write bio 4614 * We only flush bio if we may be unable to fit current extent buffers into 4615 * current bio. 4616 * 4617 * Return >=0 for the number of submitted extent buffers. 4618 * Return <0 for fatal error. 4619 */ 4620 static int submit_eb_subpage(struct page *page, 4621 struct writeback_control *wbc, 4622 struct extent_page_data *epd) 4623 { 4624 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4625 int submitted = 0; 4626 u64 page_start = page_offset(page); 4627 int bit_start = 0; 4628 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4629 int ret; 4630 4631 /* Lock and write each dirty extent buffers in the range */ 4632 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4633 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4634 struct extent_buffer *eb; 4635 unsigned long flags; 4636 u64 start; 4637 4638 /* 4639 * Take private lock to ensure the subpage won't be detached 4640 * in the meantime. 4641 */ 4642 spin_lock(&page->mapping->private_lock); 4643 if (!PagePrivate(page)) { 4644 spin_unlock(&page->mapping->private_lock); 4645 break; 4646 } 4647 spin_lock_irqsave(&subpage->lock, flags); 4648 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4649 subpage->bitmaps)) { 4650 spin_unlock_irqrestore(&subpage->lock, flags); 4651 spin_unlock(&page->mapping->private_lock); 4652 bit_start++; 4653 continue; 4654 } 4655 4656 start = page_start + bit_start * fs_info->sectorsize; 4657 bit_start += sectors_per_node; 4658 4659 /* 4660 * Here we just want to grab the eb without touching extra 4661 * spin locks, so call find_extent_buffer_nolock(). 4662 */ 4663 eb = find_extent_buffer_nolock(fs_info, start); 4664 spin_unlock_irqrestore(&subpage->lock, flags); 4665 spin_unlock(&page->mapping->private_lock); 4666 4667 /* 4668 * The eb has already reached 0 refs thus find_extent_buffer() 4669 * doesn't return it. We don't need to write back such eb 4670 * anyway. 4671 */ 4672 if (!eb) 4673 continue; 4674 4675 ret = lock_extent_buffer_for_io(eb, epd); 4676 if (ret == 0) { 4677 free_extent_buffer(eb); 4678 continue; 4679 } 4680 if (ret < 0) { 4681 free_extent_buffer(eb); 4682 goto cleanup; 4683 } 4684 ret = write_one_subpage_eb(eb, wbc, epd); 4685 free_extent_buffer(eb); 4686 if (ret < 0) 4687 goto cleanup; 4688 submitted++; 4689 } 4690 return submitted; 4691 4692 cleanup: 4693 /* We hit error, end bio for the submitted extent buffers */ 4694 end_write_bio(epd, ret); 4695 return ret; 4696 } 4697 4698 /* 4699 * Submit all page(s) of one extent buffer. 4700 * 4701 * @page: the page of one extent buffer 4702 * @eb_context: to determine if we need to submit this page, if current page 4703 * belongs to this eb, we don't need to submit 4704 * 4705 * The caller should pass each page in their bytenr order, and here we use 4706 * @eb_context to determine if we have submitted pages of one extent buffer. 4707 * 4708 * If we have, we just skip until we hit a new page that doesn't belong to 4709 * current @eb_context. 4710 * 4711 * If not, we submit all the page(s) of the extent buffer. 4712 * 4713 * Return >0 if we have submitted the extent buffer successfully. 4714 * Return 0 if we don't need to submit the page, as it's already submitted by 4715 * previous call. 4716 * Return <0 for fatal error. 4717 */ 4718 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4719 struct extent_page_data *epd, 4720 struct extent_buffer **eb_context) 4721 { 4722 struct address_space *mapping = page->mapping; 4723 struct btrfs_block_group *cache = NULL; 4724 struct extent_buffer *eb; 4725 int ret; 4726 4727 if (!PagePrivate(page)) 4728 return 0; 4729 4730 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 4731 return submit_eb_subpage(page, wbc, epd); 4732 4733 spin_lock(&mapping->private_lock); 4734 if (!PagePrivate(page)) { 4735 spin_unlock(&mapping->private_lock); 4736 return 0; 4737 } 4738 4739 eb = (struct extent_buffer *)page->private; 4740 4741 /* 4742 * Shouldn't happen and normally this would be a BUG_ON but no point 4743 * crashing the machine for something we can survive anyway. 4744 */ 4745 if (WARN_ON(!eb)) { 4746 spin_unlock(&mapping->private_lock); 4747 return 0; 4748 } 4749 4750 if (eb == *eb_context) { 4751 spin_unlock(&mapping->private_lock); 4752 return 0; 4753 } 4754 ret = atomic_inc_not_zero(&eb->refs); 4755 spin_unlock(&mapping->private_lock); 4756 if (!ret) 4757 return 0; 4758 4759 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4760 /* 4761 * If for_sync, this hole will be filled with 4762 * trasnsaction commit. 4763 */ 4764 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4765 ret = -EAGAIN; 4766 else 4767 ret = 0; 4768 free_extent_buffer(eb); 4769 return ret; 4770 } 4771 4772 *eb_context = eb; 4773 4774 ret = lock_extent_buffer_for_io(eb, epd); 4775 if (ret <= 0) { 4776 btrfs_revert_meta_write_pointer(cache, eb); 4777 if (cache) 4778 btrfs_put_block_group(cache); 4779 free_extent_buffer(eb); 4780 return ret; 4781 } 4782 if (cache) { 4783 /* Impiles write in zoned mode */ 4784 btrfs_put_block_group(cache); 4785 /* Mark the last eb in a block group */ 4786 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity) 4787 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags); 4788 } 4789 ret = write_one_eb(eb, wbc, epd); 4790 free_extent_buffer(eb); 4791 if (ret < 0) 4792 return ret; 4793 return 1; 4794 } 4795 4796 int btree_write_cache_pages(struct address_space *mapping, 4797 struct writeback_control *wbc) 4798 { 4799 struct extent_buffer *eb_context = NULL; 4800 struct extent_page_data epd = { 4801 .bio_ctrl = { 0 }, 4802 .extent_locked = 0, 4803 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4804 }; 4805 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4806 int ret = 0; 4807 int done = 0; 4808 int nr_to_write_done = 0; 4809 struct pagevec pvec; 4810 int nr_pages; 4811 pgoff_t index; 4812 pgoff_t end; /* Inclusive */ 4813 int scanned = 0; 4814 xa_mark_t tag; 4815 4816 pagevec_init(&pvec); 4817 if (wbc->range_cyclic) { 4818 index = mapping->writeback_index; /* Start from prev offset */ 4819 end = -1; 4820 /* 4821 * Start from the beginning does not need to cycle over the 4822 * range, mark it as scanned. 4823 */ 4824 scanned = (index == 0); 4825 } else { 4826 index = wbc->range_start >> PAGE_SHIFT; 4827 end = wbc->range_end >> PAGE_SHIFT; 4828 scanned = 1; 4829 } 4830 if (wbc->sync_mode == WB_SYNC_ALL) 4831 tag = PAGECACHE_TAG_TOWRITE; 4832 else 4833 tag = PAGECACHE_TAG_DIRTY; 4834 btrfs_zoned_meta_io_lock(fs_info); 4835 retry: 4836 if (wbc->sync_mode == WB_SYNC_ALL) 4837 tag_pages_for_writeback(mapping, index, end); 4838 while (!done && !nr_to_write_done && (index <= end) && 4839 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4840 tag))) { 4841 unsigned i; 4842 4843 for (i = 0; i < nr_pages; i++) { 4844 struct page *page = pvec.pages[i]; 4845 4846 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4847 if (ret == 0) 4848 continue; 4849 if (ret < 0) { 4850 done = 1; 4851 break; 4852 } 4853 4854 /* 4855 * the filesystem may choose to bump up nr_to_write. 4856 * We have to make sure to honor the new nr_to_write 4857 * at any time 4858 */ 4859 nr_to_write_done = wbc->nr_to_write <= 0; 4860 } 4861 pagevec_release(&pvec); 4862 cond_resched(); 4863 } 4864 if (!scanned && !done) { 4865 /* 4866 * We hit the last page and there is more work to be done: wrap 4867 * back to the start of the file 4868 */ 4869 scanned = 1; 4870 index = 0; 4871 goto retry; 4872 } 4873 if (ret < 0) { 4874 end_write_bio(&epd, ret); 4875 goto out; 4876 } 4877 /* 4878 * If something went wrong, don't allow any metadata write bio to be 4879 * submitted. 4880 * 4881 * This would prevent use-after-free if we had dirty pages not 4882 * cleaned up, which can still happen by fuzzed images. 4883 * 4884 * - Bad extent tree 4885 * Allowing existing tree block to be allocated for other trees. 4886 * 4887 * - Log tree operations 4888 * Exiting tree blocks get allocated to log tree, bumps its 4889 * generation, then get cleaned in tree re-balance. 4890 * Such tree block will not be written back, since it's clean, 4891 * thus no WRITTEN flag set. 4892 * And after log writes back, this tree block is not traced by 4893 * any dirty extent_io_tree. 4894 * 4895 * - Offending tree block gets re-dirtied from its original owner 4896 * Since it has bumped generation, no WRITTEN flag, it can be 4897 * reused without COWing. This tree block will not be traced 4898 * by btrfs_transaction::dirty_pages. 4899 * 4900 * Now such dirty tree block will not be cleaned by any dirty 4901 * extent io tree. Thus we don't want to submit such wild eb 4902 * if the fs already has error. 4903 */ 4904 if (!BTRFS_FS_ERROR(fs_info)) { 4905 ret = flush_write_bio(&epd); 4906 } else { 4907 ret = -EROFS; 4908 end_write_bio(&epd, ret); 4909 } 4910 out: 4911 btrfs_zoned_meta_io_unlock(fs_info); 4912 return ret; 4913 } 4914 4915 /** 4916 * Walk the list of dirty pages of the given address space and write all of them. 4917 * 4918 * @mapping: address space structure to write 4919 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4920 * @epd: holds context for the write, namely the bio 4921 * 4922 * If a page is already under I/O, write_cache_pages() skips it, even 4923 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4924 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4925 * and msync() need to guarantee that all the data which was dirty at the time 4926 * the call was made get new I/O started against them. If wbc->sync_mode is 4927 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4928 * existing IO to complete. 4929 */ 4930 static int extent_write_cache_pages(struct address_space *mapping, 4931 struct writeback_control *wbc, 4932 struct extent_page_data *epd) 4933 { 4934 struct inode *inode = mapping->host; 4935 int ret = 0; 4936 int done = 0; 4937 int nr_to_write_done = 0; 4938 struct pagevec pvec; 4939 int nr_pages; 4940 pgoff_t index; 4941 pgoff_t end; /* Inclusive */ 4942 pgoff_t done_index; 4943 int range_whole = 0; 4944 int scanned = 0; 4945 xa_mark_t tag; 4946 4947 /* 4948 * We have to hold onto the inode so that ordered extents can do their 4949 * work when the IO finishes. The alternative to this is failing to add 4950 * an ordered extent if the igrab() fails there and that is a huge pain 4951 * to deal with, so instead just hold onto the inode throughout the 4952 * writepages operation. If it fails here we are freeing up the inode 4953 * anyway and we'd rather not waste our time writing out stuff that is 4954 * going to be truncated anyway. 4955 */ 4956 if (!igrab(inode)) 4957 return 0; 4958 4959 pagevec_init(&pvec); 4960 if (wbc->range_cyclic) { 4961 index = mapping->writeback_index; /* Start from prev offset */ 4962 end = -1; 4963 /* 4964 * Start from the beginning does not need to cycle over the 4965 * range, mark it as scanned. 4966 */ 4967 scanned = (index == 0); 4968 } else { 4969 index = wbc->range_start >> PAGE_SHIFT; 4970 end = wbc->range_end >> PAGE_SHIFT; 4971 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4972 range_whole = 1; 4973 scanned = 1; 4974 } 4975 4976 /* 4977 * We do the tagged writepage as long as the snapshot flush bit is set 4978 * and we are the first one who do the filemap_flush() on this inode. 4979 * 4980 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4981 * not race in and drop the bit. 4982 */ 4983 if (range_whole && wbc->nr_to_write == LONG_MAX && 4984 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4985 &BTRFS_I(inode)->runtime_flags)) 4986 wbc->tagged_writepages = 1; 4987 4988 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4989 tag = PAGECACHE_TAG_TOWRITE; 4990 else 4991 tag = PAGECACHE_TAG_DIRTY; 4992 retry: 4993 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4994 tag_pages_for_writeback(mapping, index, end); 4995 done_index = index; 4996 while (!done && !nr_to_write_done && (index <= end) && 4997 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4998 &index, end, tag))) { 4999 unsigned i; 5000 5001 for (i = 0; i < nr_pages; i++) { 5002 struct page *page = pvec.pages[i]; 5003 5004 done_index = page->index + 1; 5005 /* 5006 * At this point we hold neither the i_pages lock nor 5007 * the page lock: the page may be truncated or 5008 * invalidated (changing page->mapping to NULL), 5009 * or even swizzled back from swapper_space to 5010 * tmpfs file mapping 5011 */ 5012 if (!trylock_page(page)) { 5013 ret = flush_write_bio(epd); 5014 BUG_ON(ret < 0); 5015 lock_page(page); 5016 } 5017 5018 if (unlikely(page->mapping != mapping)) { 5019 unlock_page(page); 5020 continue; 5021 } 5022 5023 if (wbc->sync_mode != WB_SYNC_NONE) { 5024 if (PageWriteback(page)) { 5025 ret = flush_write_bio(epd); 5026 BUG_ON(ret < 0); 5027 } 5028 wait_on_page_writeback(page); 5029 } 5030 5031 if (PageWriteback(page) || 5032 !clear_page_dirty_for_io(page)) { 5033 unlock_page(page); 5034 continue; 5035 } 5036 5037 ret = __extent_writepage(page, wbc, epd); 5038 if (ret < 0) { 5039 done = 1; 5040 break; 5041 } 5042 5043 /* 5044 * the filesystem may choose to bump up nr_to_write. 5045 * We have to make sure to honor the new nr_to_write 5046 * at any time 5047 */ 5048 nr_to_write_done = wbc->nr_to_write <= 0; 5049 } 5050 pagevec_release(&pvec); 5051 cond_resched(); 5052 } 5053 if (!scanned && !done) { 5054 /* 5055 * We hit the last page and there is more work to be done: wrap 5056 * back to the start of the file 5057 */ 5058 scanned = 1; 5059 index = 0; 5060 5061 /* 5062 * If we're looping we could run into a page that is locked by a 5063 * writer and that writer could be waiting on writeback for a 5064 * page in our current bio, and thus deadlock, so flush the 5065 * write bio here. 5066 */ 5067 ret = flush_write_bio(epd); 5068 if (!ret) 5069 goto retry; 5070 } 5071 5072 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5073 mapping->writeback_index = done_index; 5074 5075 btrfs_add_delayed_iput(inode); 5076 return ret; 5077 } 5078 5079 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5080 { 5081 int ret; 5082 struct extent_page_data epd = { 5083 .bio_ctrl = { 0 }, 5084 .extent_locked = 0, 5085 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5086 }; 5087 5088 ret = __extent_writepage(page, wbc, &epd); 5089 ASSERT(ret <= 0); 5090 if (ret < 0) { 5091 end_write_bio(&epd, ret); 5092 return ret; 5093 } 5094 5095 ret = flush_write_bio(&epd); 5096 ASSERT(ret <= 0); 5097 return ret; 5098 } 5099 5100 /* 5101 * Submit the pages in the range to bio for call sites which delalloc range has 5102 * already been ran (aka, ordered extent inserted) and all pages are still 5103 * locked. 5104 */ 5105 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5106 { 5107 bool found_error = false; 5108 int first_error = 0; 5109 int ret = 0; 5110 struct address_space *mapping = inode->i_mapping; 5111 struct page *page; 5112 u64 cur = start; 5113 unsigned long nr_pages; 5114 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5115 struct extent_page_data epd = { 5116 .bio_ctrl = { 0 }, 5117 .extent_locked = 1, 5118 .sync_io = 1, 5119 }; 5120 struct writeback_control wbc_writepages = { 5121 .sync_mode = WB_SYNC_ALL, 5122 .range_start = start, 5123 .range_end = end + 1, 5124 /* We're called from an async helper function */ 5125 .punt_to_cgroup = 1, 5126 .no_cgroup_owner = 1, 5127 }; 5128 5129 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5130 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5131 PAGE_SHIFT; 5132 wbc_writepages.nr_to_write = nr_pages * 2; 5133 5134 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5135 while (cur <= end) { 5136 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5137 5138 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5139 /* 5140 * All pages in the range are locked since 5141 * btrfs_run_delalloc_range(), thus there is no way to clear 5142 * the page dirty flag. 5143 */ 5144 ASSERT(PageLocked(page)); 5145 ASSERT(PageDirty(page)); 5146 clear_page_dirty_for_io(page); 5147 ret = __extent_writepage(page, &wbc_writepages, &epd); 5148 ASSERT(ret <= 0); 5149 if (ret < 0) { 5150 found_error = true; 5151 first_error = ret; 5152 } 5153 put_page(page); 5154 cur = cur_end + 1; 5155 } 5156 5157 if (!found_error) 5158 ret = flush_write_bio(&epd); 5159 else 5160 end_write_bio(&epd, ret); 5161 5162 wbc_detach_inode(&wbc_writepages); 5163 if (found_error) 5164 return first_error; 5165 return ret; 5166 } 5167 5168 int extent_writepages(struct address_space *mapping, 5169 struct writeback_control *wbc) 5170 { 5171 struct inode *inode = mapping->host; 5172 int ret = 0; 5173 struct extent_page_data epd = { 5174 .bio_ctrl = { 0 }, 5175 .extent_locked = 0, 5176 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5177 }; 5178 5179 /* 5180 * Allow only a single thread to do the reloc work in zoned mode to 5181 * protect the write pointer updates. 5182 */ 5183 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5184 ret = extent_write_cache_pages(mapping, wbc, &epd); 5185 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5186 ASSERT(ret <= 0); 5187 if (ret < 0) { 5188 end_write_bio(&epd, ret); 5189 return ret; 5190 } 5191 ret = flush_write_bio(&epd); 5192 return ret; 5193 } 5194 5195 void extent_readahead(struct readahead_control *rac) 5196 { 5197 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5198 struct page *pagepool[16]; 5199 struct extent_map *em_cached = NULL; 5200 u64 prev_em_start = (u64)-1; 5201 int nr; 5202 5203 while ((nr = readahead_page_batch(rac, pagepool))) { 5204 u64 contig_start = readahead_pos(rac); 5205 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5206 5207 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5208 &em_cached, &bio_ctrl, &prev_em_start); 5209 } 5210 5211 if (em_cached) 5212 free_extent_map(em_cached); 5213 5214 if (bio_ctrl.bio) { 5215 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) 5216 return; 5217 } 5218 } 5219 5220 /* 5221 * basic invalidatepage code, this waits on any locked or writeback 5222 * ranges corresponding to the page, and then deletes any extent state 5223 * records from the tree 5224 */ 5225 int extent_invalidatepage(struct extent_io_tree *tree, 5226 struct page *page, unsigned long offset) 5227 { 5228 struct extent_state *cached_state = NULL; 5229 u64 start = page_offset(page); 5230 u64 end = start + PAGE_SIZE - 1; 5231 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 5232 5233 /* This function is only called for the btree inode */ 5234 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5235 5236 start += ALIGN(offset, blocksize); 5237 if (start > end) 5238 return 0; 5239 5240 lock_extent_bits(tree, start, end, &cached_state); 5241 wait_on_page_writeback(page); 5242 5243 /* 5244 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5245 * so here we only need to unlock the extent range to free any 5246 * existing extent state. 5247 */ 5248 unlock_extent_cached(tree, start, end, &cached_state); 5249 return 0; 5250 } 5251 5252 /* 5253 * a helper for releasepage, this tests for areas of the page that 5254 * are locked or under IO and drops the related state bits if it is safe 5255 * to drop the page. 5256 */ 5257 static int try_release_extent_state(struct extent_io_tree *tree, 5258 struct page *page, gfp_t mask) 5259 { 5260 u64 start = page_offset(page); 5261 u64 end = start + PAGE_SIZE - 1; 5262 int ret = 1; 5263 5264 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5265 ret = 0; 5266 } else { 5267 /* 5268 * At this point we can safely clear everything except the 5269 * locked bit, the nodatasum bit and the delalloc new bit. 5270 * The delalloc new bit will be cleared by ordered extent 5271 * completion. 5272 */ 5273 ret = __clear_extent_bit(tree, start, end, 5274 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5275 0, 0, NULL, mask, NULL); 5276 5277 /* if clear_extent_bit failed for enomem reasons, 5278 * we can't allow the release to continue. 5279 */ 5280 if (ret < 0) 5281 ret = 0; 5282 else 5283 ret = 1; 5284 } 5285 return ret; 5286 } 5287 5288 /* 5289 * a helper for releasepage. As long as there are no locked extents 5290 * in the range corresponding to the page, both state records and extent 5291 * map records are removed 5292 */ 5293 int try_release_extent_mapping(struct page *page, gfp_t mask) 5294 { 5295 struct extent_map *em; 5296 u64 start = page_offset(page); 5297 u64 end = start + PAGE_SIZE - 1; 5298 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5299 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5300 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5301 5302 if (gfpflags_allow_blocking(mask) && 5303 page->mapping->host->i_size > SZ_16M) { 5304 u64 len; 5305 while (start <= end) { 5306 struct btrfs_fs_info *fs_info; 5307 u64 cur_gen; 5308 5309 len = end - start + 1; 5310 write_lock(&map->lock); 5311 em = lookup_extent_mapping(map, start, len); 5312 if (!em) { 5313 write_unlock(&map->lock); 5314 break; 5315 } 5316 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5317 em->start != start) { 5318 write_unlock(&map->lock); 5319 free_extent_map(em); 5320 break; 5321 } 5322 if (test_range_bit(tree, em->start, 5323 extent_map_end(em) - 1, 5324 EXTENT_LOCKED, 0, NULL)) 5325 goto next; 5326 /* 5327 * If it's not in the list of modified extents, used 5328 * by a fast fsync, we can remove it. If it's being 5329 * logged we can safely remove it since fsync took an 5330 * extra reference on the em. 5331 */ 5332 if (list_empty(&em->list) || 5333 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5334 goto remove_em; 5335 /* 5336 * If it's in the list of modified extents, remove it 5337 * only if its generation is older then the current one, 5338 * in which case we don't need it for a fast fsync. 5339 * Otherwise don't remove it, we could be racing with an 5340 * ongoing fast fsync that could miss the new extent. 5341 */ 5342 fs_info = btrfs_inode->root->fs_info; 5343 spin_lock(&fs_info->trans_lock); 5344 cur_gen = fs_info->generation; 5345 spin_unlock(&fs_info->trans_lock); 5346 if (em->generation >= cur_gen) 5347 goto next; 5348 remove_em: 5349 /* 5350 * We only remove extent maps that are not in the list of 5351 * modified extents or that are in the list but with a 5352 * generation lower then the current generation, so there 5353 * is no need to set the full fsync flag on the inode (it 5354 * hurts the fsync performance for workloads with a data 5355 * size that exceeds or is close to the system's memory). 5356 */ 5357 remove_extent_mapping(map, em); 5358 /* once for the rb tree */ 5359 free_extent_map(em); 5360 next: 5361 start = extent_map_end(em); 5362 write_unlock(&map->lock); 5363 5364 /* once for us */ 5365 free_extent_map(em); 5366 5367 cond_resched(); /* Allow large-extent preemption. */ 5368 } 5369 } 5370 return try_release_extent_state(tree, page, mask); 5371 } 5372 5373 /* 5374 * helper function for fiemap, which doesn't want to see any holes. 5375 * This maps until we find something past 'last' 5376 */ 5377 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5378 u64 offset, u64 last) 5379 { 5380 u64 sectorsize = btrfs_inode_sectorsize(inode); 5381 struct extent_map *em; 5382 u64 len; 5383 5384 if (offset >= last) 5385 return NULL; 5386 5387 while (1) { 5388 len = last - offset; 5389 if (len == 0) 5390 break; 5391 len = ALIGN(len, sectorsize); 5392 em = btrfs_get_extent_fiemap(inode, offset, len); 5393 if (IS_ERR_OR_NULL(em)) 5394 return em; 5395 5396 /* if this isn't a hole return it */ 5397 if (em->block_start != EXTENT_MAP_HOLE) 5398 return em; 5399 5400 /* this is a hole, advance to the next extent */ 5401 offset = extent_map_end(em); 5402 free_extent_map(em); 5403 if (offset >= last) 5404 break; 5405 } 5406 return NULL; 5407 } 5408 5409 /* 5410 * To cache previous fiemap extent 5411 * 5412 * Will be used for merging fiemap extent 5413 */ 5414 struct fiemap_cache { 5415 u64 offset; 5416 u64 phys; 5417 u64 len; 5418 u32 flags; 5419 bool cached; 5420 }; 5421 5422 /* 5423 * Helper to submit fiemap extent. 5424 * 5425 * Will try to merge current fiemap extent specified by @offset, @phys, 5426 * @len and @flags with cached one. 5427 * And only when we fails to merge, cached one will be submitted as 5428 * fiemap extent. 5429 * 5430 * Return value is the same as fiemap_fill_next_extent(). 5431 */ 5432 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5433 struct fiemap_cache *cache, 5434 u64 offset, u64 phys, u64 len, u32 flags) 5435 { 5436 int ret = 0; 5437 5438 if (!cache->cached) 5439 goto assign; 5440 5441 /* 5442 * Sanity check, extent_fiemap() should have ensured that new 5443 * fiemap extent won't overlap with cached one. 5444 * Not recoverable. 5445 * 5446 * NOTE: Physical address can overlap, due to compression 5447 */ 5448 if (cache->offset + cache->len > offset) { 5449 WARN_ON(1); 5450 return -EINVAL; 5451 } 5452 5453 /* 5454 * Only merges fiemap extents if 5455 * 1) Their logical addresses are continuous 5456 * 5457 * 2) Their physical addresses are continuous 5458 * So truly compressed (physical size smaller than logical size) 5459 * extents won't get merged with each other 5460 * 5461 * 3) Share same flags except FIEMAP_EXTENT_LAST 5462 * So regular extent won't get merged with prealloc extent 5463 */ 5464 if (cache->offset + cache->len == offset && 5465 cache->phys + cache->len == phys && 5466 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5467 (flags & ~FIEMAP_EXTENT_LAST)) { 5468 cache->len += len; 5469 cache->flags |= flags; 5470 goto try_submit_last; 5471 } 5472 5473 /* Not mergeable, need to submit cached one */ 5474 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5475 cache->len, cache->flags); 5476 cache->cached = false; 5477 if (ret) 5478 return ret; 5479 assign: 5480 cache->cached = true; 5481 cache->offset = offset; 5482 cache->phys = phys; 5483 cache->len = len; 5484 cache->flags = flags; 5485 try_submit_last: 5486 if (cache->flags & FIEMAP_EXTENT_LAST) { 5487 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5488 cache->phys, cache->len, cache->flags); 5489 cache->cached = false; 5490 } 5491 return ret; 5492 } 5493 5494 /* 5495 * Emit last fiemap cache 5496 * 5497 * The last fiemap cache may still be cached in the following case: 5498 * 0 4k 8k 5499 * |<- Fiemap range ->| 5500 * |<------------ First extent ----------->| 5501 * 5502 * In this case, the first extent range will be cached but not emitted. 5503 * So we must emit it before ending extent_fiemap(). 5504 */ 5505 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5506 struct fiemap_cache *cache) 5507 { 5508 int ret; 5509 5510 if (!cache->cached) 5511 return 0; 5512 5513 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5514 cache->len, cache->flags); 5515 cache->cached = false; 5516 if (ret > 0) 5517 ret = 0; 5518 return ret; 5519 } 5520 5521 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5522 u64 start, u64 len) 5523 { 5524 int ret = 0; 5525 u64 off; 5526 u64 max = start + len; 5527 u32 flags = 0; 5528 u32 found_type; 5529 u64 last; 5530 u64 last_for_get_extent = 0; 5531 u64 disko = 0; 5532 u64 isize = i_size_read(&inode->vfs_inode); 5533 struct btrfs_key found_key; 5534 struct extent_map *em = NULL; 5535 struct extent_state *cached_state = NULL; 5536 struct btrfs_path *path; 5537 struct btrfs_root *root = inode->root; 5538 struct fiemap_cache cache = { 0 }; 5539 struct ulist *roots; 5540 struct ulist *tmp_ulist; 5541 int end = 0; 5542 u64 em_start = 0; 5543 u64 em_len = 0; 5544 u64 em_end = 0; 5545 5546 if (len == 0) 5547 return -EINVAL; 5548 5549 path = btrfs_alloc_path(); 5550 if (!path) 5551 return -ENOMEM; 5552 5553 roots = ulist_alloc(GFP_KERNEL); 5554 tmp_ulist = ulist_alloc(GFP_KERNEL); 5555 if (!roots || !tmp_ulist) { 5556 ret = -ENOMEM; 5557 goto out_free_ulist; 5558 } 5559 5560 /* 5561 * We can't initialize that to 'start' as this could miss extents due 5562 * to extent item merging 5563 */ 5564 off = 0; 5565 start = round_down(start, btrfs_inode_sectorsize(inode)); 5566 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5567 5568 /* 5569 * lookup the last file extent. We're not using i_size here 5570 * because there might be preallocation past i_size 5571 */ 5572 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5573 0); 5574 if (ret < 0) { 5575 goto out_free_ulist; 5576 } else { 5577 WARN_ON(!ret); 5578 if (ret == 1) 5579 ret = 0; 5580 } 5581 5582 path->slots[0]--; 5583 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5584 found_type = found_key.type; 5585 5586 /* No extents, but there might be delalloc bits */ 5587 if (found_key.objectid != btrfs_ino(inode) || 5588 found_type != BTRFS_EXTENT_DATA_KEY) { 5589 /* have to trust i_size as the end */ 5590 last = (u64)-1; 5591 last_for_get_extent = isize; 5592 } else { 5593 /* 5594 * remember the start of the last extent. There are a 5595 * bunch of different factors that go into the length of the 5596 * extent, so its much less complex to remember where it started 5597 */ 5598 last = found_key.offset; 5599 last_for_get_extent = last + 1; 5600 } 5601 btrfs_release_path(path); 5602 5603 /* 5604 * we might have some extents allocated but more delalloc past those 5605 * extents. so, we trust isize unless the start of the last extent is 5606 * beyond isize 5607 */ 5608 if (last < isize) { 5609 last = (u64)-1; 5610 last_for_get_extent = isize; 5611 } 5612 5613 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5614 &cached_state); 5615 5616 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5617 if (!em) 5618 goto out; 5619 if (IS_ERR(em)) { 5620 ret = PTR_ERR(em); 5621 goto out; 5622 } 5623 5624 while (!end) { 5625 u64 offset_in_extent = 0; 5626 5627 /* break if the extent we found is outside the range */ 5628 if (em->start >= max || extent_map_end(em) < off) 5629 break; 5630 5631 /* 5632 * get_extent may return an extent that starts before our 5633 * requested range. We have to make sure the ranges 5634 * we return to fiemap always move forward and don't 5635 * overlap, so adjust the offsets here 5636 */ 5637 em_start = max(em->start, off); 5638 5639 /* 5640 * record the offset from the start of the extent 5641 * for adjusting the disk offset below. Only do this if the 5642 * extent isn't compressed since our in ram offset may be past 5643 * what we have actually allocated on disk. 5644 */ 5645 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5646 offset_in_extent = em_start - em->start; 5647 em_end = extent_map_end(em); 5648 em_len = em_end - em_start; 5649 flags = 0; 5650 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5651 disko = em->block_start + offset_in_extent; 5652 else 5653 disko = 0; 5654 5655 /* 5656 * bump off for our next call to get_extent 5657 */ 5658 off = extent_map_end(em); 5659 if (off >= max) 5660 end = 1; 5661 5662 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5663 end = 1; 5664 flags |= FIEMAP_EXTENT_LAST; 5665 } else if (em->block_start == EXTENT_MAP_INLINE) { 5666 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5667 FIEMAP_EXTENT_NOT_ALIGNED); 5668 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5669 flags |= (FIEMAP_EXTENT_DELALLOC | 5670 FIEMAP_EXTENT_UNKNOWN); 5671 } else if (fieinfo->fi_extents_max) { 5672 u64 bytenr = em->block_start - 5673 (em->start - em->orig_start); 5674 5675 /* 5676 * As btrfs supports shared space, this information 5677 * can be exported to userspace tools via 5678 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5679 * then we're just getting a count and we can skip the 5680 * lookup stuff. 5681 */ 5682 ret = btrfs_check_shared(root, btrfs_ino(inode), 5683 bytenr, roots, tmp_ulist); 5684 if (ret < 0) 5685 goto out_free; 5686 if (ret) 5687 flags |= FIEMAP_EXTENT_SHARED; 5688 ret = 0; 5689 } 5690 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5691 flags |= FIEMAP_EXTENT_ENCODED; 5692 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5693 flags |= FIEMAP_EXTENT_UNWRITTEN; 5694 5695 free_extent_map(em); 5696 em = NULL; 5697 if ((em_start >= last) || em_len == (u64)-1 || 5698 (last == (u64)-1 && isize <= em_end)) { 5699 flags |= FIEMAP_EXTENT_LAST; 5700 end = 1; 5701 } 5702 5703 /* now scan forward to see if this is really the last extent. */ 5704 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5705 if (IS_ERR(em)) { 5706 ret = PTR_ERR(em); 5707 goto out; 5708 } 5709 if (!em) { 5710 flags |= FIEMAP_EXTENT_LAST; 5711 end = 1; 5712 } 5713 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5714 em_len, flags); 5715 if (ret) { 5716 if (ret == 1) 5717 ret = 0; 5718 goto out_free; 5719 } 5720 } 5721 out_free: 5722 if (!ret) 5723 ret = emit_last_fiemap_cache(fieinfo, &cache); 5724 free_extent_map(em); 5725 out: 5726 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5727 &cached_state); 5728 5729 out_free_ulist: 5730 btrfs_free_path(path); 5731 ulist_free(roots); 5732 ulist_free(tmp_ulist); 5733 return ret; 5734 } 5735 5736 static void __free_extent_buffer(struct extent_buffer *eb) 5737 { 5738 kmem_cache_free(extent_buffer_cache, eb); 5739 } 5740 5741 int extent_buffer_under_io(const struct extent_buffer *eb) 5742 { 5743 return (atomic_read(&eb->io_pages) || 5744 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5745 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5746 } 5747 5748 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5749 { 5750 struct btrfs_subpage *subpage; 5751 5752 lockdep_assert_held(&page->mapping->private_lock); 5753 5754 if (PagePrivate(page)) { 5755 subpage = (struct btrfs_subpage *)page->private; 5756 if (atomic_read(&subpage->eb_refs)) 5757 return true; 5758 /* 5759 * Even there is no eb refs here, we may still have 5760 * end_page_read() call relying on page::private. 5761 */ 5762 if (atomic_read(&subpage->readers)) 5763 return true; 5764 } 5765 return false; 5766 } 5767 5768 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5769 { 5770 struct btrfs_fs_info *fs_info = eb->fs_info; 5771 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5772 5773 /* 5774 * For mapped eb, we're going to change the page private, which should 5775 * be done under the private_lock. 5776 */ 5777 if (mapped) 5778 spin_lock(&page->mapping->private_lock); 5779 5780 if (!PagePrivate(page)) { 5781 if (mapped) 5782 spin_unlock(&page->mapping->private_lock); 5783 return; 5784 } 5785 5786 if (fs_info->sectorsize == PAGE_SIZE) { 5787 /* 5788 * We do this since we'll remove the pages after we've 5789 * removed the eb from the radix tree, so we could race 5790 * and have this page now attached to the new eb. So 5791 * only clear page_private if it's still connected to 5792 * this eb. 5793 */ 5794 if (PagePrivate(page) && 5795 page->private == (unsigned long)eb) { 5796 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5797 BUG_ON(PageDirty(page)); 5798 BUG_ON(PageWriteback(page)); 5799 /* 5800 * We need to make sure we haven't be attached 5801 * to a new eb. 5802 */ 5803 detach_page_private(page); 5804 } 5805 if (mapped) 5806 spin_unlock(&page->mapping->private_lock); 5807 return; 5808 } 5809 5810 /* 5811 * For subpage, we can have dummy eb with page private. In this case, 5812 * we can directly detach the private as such page is only attached to 5813 * one dummy eb, no sharing. 5814 */ 5815 if (!mapped) { 5816 btrfs_detach_subpage(fs_info, page); 5817 return; 5818 } 5819 5820 btrfs_page_dec_eb_refs(fs_info, page); 5821 5822 /* 5823 * We can only detach the page private if there are no other ebs in the 5824 * page range and no unfinished IO. 5825 */ 5826 if (!page_range_has_eb(fs_info, page)) 5827 btrfs_detach_subpage(fs_info, page); 5828 5829 spin_unlock(&page->mapping->private_lock); 5830 } 5831 5832 /* Release all pages attached to the extent buffer */ 5833 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5834 { 5835 int i; 5836 int num_pages; 5837 5838 ASSERT(!extent_buffer_under_io(eb)); 5839 5840 num_pages = num_extent_pages(eb); 5841 for (i = 0; i < num_pages; i++) { 5842 struct page *page = eb->pages[i]; 5843 5844 if (!page) 5845 continue; 5846 5847 detach_extent_buffer_page(eb, page); 5848 5849 /* One for when we allocated the page */ 5850 put_page(page); 5851 } 5852 } 5853 5854 /* 5855 * Helper for releasing the extent buffer. 5856 */ 5857 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5858 { 5859 btrfs_release_extent_buffer_pages(eb); 5860 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5861 __free_extent_buffer(eb); 5862 } 5863 5864 static struct extent_buffer * 5865 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5866 unsigned long len) 5867 { 5868 struct extent_buffer *eb = NULL; 5869 5870 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5871 eb->start = start; 5872 eb->len = len; 5873 eb->fs_info = fs_info; 5874 eb->bflags = 0; 5875 init_rwsem(&eb->lock); 5876 5877 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5878 &fs_info->allocated_ebs); 5879 INIT_LIST_HEAD(&eb->release_list); 5880 5881 spin_lock_init(&eb->refs_lock); 5882 atomic_set(&eb->refs, 1); 5883 atomic_set(&eb->io_pages, 0); 5884 5885 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5886 5887 return eb; 5888 } 5889 5890 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5891 { 5892 int i; 5893 struct page *p; 5894 struct extent_buffer *new; 5895 int num_pages = num_extent_pages(src); 5896 5897 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5898 if (new == NULL) 5899 return NULL; 5900 5901 /* 5902 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5903 * btrfs_release_extent_buffer() have different behavior for 5904 * UNMAPPED subpage extent buffer. 5905 */ 5906 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5907 5908 for (i = 0; i < num_pages; i++) { 5909 int ret; 5910 5911 p = alloc_page(GFP_NOFS); 5912 if (!p) { 5913 btrfs_release_extent_buffer(new); 5914 return NULL; 5915 } 5916 ret = attach_extent_buffer_page(new, p, NULL); 5917 if (ret < 0) { 5918 put_page(p); 5919 btrfs_release_extent_buffer(new); 5920 return NULL; 5921 } 5922 WARN_ON(PageDirty(p)); 5923 new->pages[i] = p; 5924 copy_page(page_address(p), page_address(src->pages[i])); 5925 } 5926 set_extent_buffer_uptodate(new); 5927 5928 return new; 5929 } 5930 5931 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5932 u64 start, unsigned long len) 5933 { 5934 struct extent_buffer *eb; 5935 int num_pages; 5936 int i; 5937 5938 eb = __alloc_extent_buffer(fs_info, start, len); 5939 if (!eb) 5940 return NULL; 5941 5942 num_pages = num_extent_pages(eb); 5943 for (i = 0; i < num_pages; i++) { 5944 int ret; 5945 5946 eb->pages[i] = alloc_page(GFP_NOFS); 5947 if (!eb->pages[i]) 5948 goto err; 5949 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5950 if (ret < 0) 5951 goto err; 5952 } 5953 set_extent_buffer_uptodate(eb); 5954 btrfs_set_header_nritems(eb, 0); 5955 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5956 5957 return eb; 5958 err: 5959 for (; i > 0; i--) { 5960 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5961 __free_page(eb->pages[i - 1]); 5962 } 5963 __free_extent_buffer(eb); 5964 return NULL; 5965 } 5966 5967 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5968 u64 start) 5969 { 5970 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5971 } 5972 5973 static void check_buffer_tree_ref(struct extent_buffer *eb) 5974 { 5975 int refs; 5976 /* 5977 * The TREE_REF bit is first set when the extent_buffer is added 5978 * to the radix tree. It is also reset, if unset, when a new reference 5979 * is created by find_extent_buffer. 5980 * 5981 * It is only cleared in two cases: freeing the last non-tree 5982 * reference to the extent_buffer when its STALE bit is set or 5983 * calling releasepage when the tree reference is the only reference. 5984 * 5985 * In both cases, care is taken to ensure that the extent_buffer's 5986 * pages are not under io. However, releasepage can be concurrently 5987 * called with creating new references, which is prone to race 5988 * conditions between the calls to check_buffer_tree_ref in those 5989 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5990 * 5991 * The actual lifetime of the extent_buffer in the radix tree is 5992 * adequately protected by the refcount, but the TREE_REF bit and 5993 * its corresponding reference are not. To protect against this 5994 * class of races, we call check_buffer_tree_ref from the codepaths 5995 * which trigger io after they set eb->io_pages. Note that once io is 5996 * initiated, TREE_REF can no longer be cleared, so that is the 5997 * moment at which any such race is best fixed. 5998 */ 5999 refs = atomic_read(&eb->refs); 6000 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6001 return; 6002 6003 spin_lock(&eb->refs_lock); 6004 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6005 atomic_inc(&eb->refs); 6006 spin_unlock(&eb->refs_lock); 6007 } 6008 6009 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6010 struct page *accessed) 6011 { 6012 int num_pages, i; 6013 6014 check_buffer_tree_ref(eb); 6015 6016 num_pages = num_extent_pages(eb); 6017 for (i = 0; i < num_pages; i++) { 6018 struct page *p = eb->pages[i]; 6019 6020 if (p != accessed) 6021 mark_page_accessed(p); 6022 } 6023 } 6024 6025 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6026 u64 start) 6027 { 6028 struct extent_buffer *eb; 6029 6030 eb = find_extent_buffer_nolock(fs_info, start); 6031 if (!eb) 6032 return NULL; 6033 /* 6034 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6035 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6036 * another task running free_extent_buffer() might have seen that flag 6037 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6038 * writeback flags not set) and it's still in the tree (flag 6039 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6040 * decrementing the extent buffer's reference count twice. So here we 6041 * could race and increment the eb's reference count, clear its stale 6042 * flag, mark it as dirty and drop our reference before the other task 6043 * finishes executing free_extent_buffer, which would later result in 6044 * an attempt to free an extent buffer that is dirty. 6045 */ 6046 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6047 spin_lock(&eb->refs_lock); 6048 spin_unlock(&eb->refs_lock); 6049 } 6050 mark_extent_buffer_accessed(eb, NULL); 6051 return eb; 6052 } 6053 6054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6055 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6056 u64 start) 6057 { 6058 struct extent_buffer *eb, *exists = NULL; 6059 int ret; 6060 6061 eb = find_extent_buffer(fs_info, start); 6062 if (eb) 6063 return eb; 6064 eb = alloc_dummy_extent_buffer(fs_info, start); 6065 if (!eb) 6066 return ERR_PTR(-ENOMEM); 6067 eb->fs_info = fs_info; 6068 again: 6069 ret = radix_tree_preload(GFP_NOFS); 6070 if (ret) { 6071 exists = ERR_PTR(ret); 6072 goto free_eb; 6073 } 6074 spin_lock(&fs_info->buffer_lock); 6075 ret = radix_tree_insert(&fs_info->buffer_radix, 6076 start >> fs_info->sectorsize_bits, eb); 6077 spin_unlock(&fs_info->buffer_lock); 6078 radix_tree_preload_end(); 6079 if (ret == -EEXIST) { 6080 exists = find_extent_buffer(fs_info, start); 6081 if (exists) 6082 goto free_eb; 6083 else 6084 goto again; 6085 } 6086 check_buffer_tree_ref(eb); 6087 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6088 6089 return eb; 6090 free_eb: 6091 btrfs_release_extent_buffer(eb); 6092 return exists; 6093 } 6094 #endif 6095 6096 static struct extent_buffer *grab_extent_buffer( 6097 struct btrfs_fs_info *fs_info, struct page *page) 6098 { 6099 struct extent_buffer *exists; 6100 6101 /* 6102 * For subpage case, we completely rely on radix tree to ensure we 6103 * don't try to insert two ebs for the same bytenr. So here we always 6104 * return NULL and just continue. 6105 */ 6106 if (fs_info->sectorsize < PAGE_SIZE) 6107 return NULL; 6108 6109 /* Page not yet attached to an extent buffer */ 6110 if (!PagePrivate(page)) 6111 return NULL; 6112 6113 /* 6114 * We could have already allocated an eb for this page and attached one 6115 * so lets see if we can get a ref on the existing eb, and if we can we 6116 * know it's good and we can just return that one, else we know we can 6117 * just overwrite page->private. 6118 */ 6119 exists = (struct extent_buffer *)page->private; 6120 if (atomic_inc_not_zero(&exists->refs)) 6121 return exists; 6122 6123 WARN_ON(PageDirty(page)); 6124 detach_page_private(page); 6125 return NULL; 6126 } 6127 6128 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6129 u64 start, u64 owner_root, int level) 6130 { 6131 unsigned long len = fs_info->nodesize; 6132 int num_pages; 6133 int i; 6134 unsigned long index = start >> PAGE_SHIFT; 6135 struct extent_buffer *eb; 6136 struct extent_buffer *exists = NULL; 6137 struct page *p; 6138 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6139 int uptodate = 1; 6140 int ret; 6141 6142 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6143 btrfs_err(fs_info, "bad tree block start %llu", start); 6144 return ERR_PTR(-EINVAL); 6145 } 6146 6147 #if BITS_PER_LONG == 32 6148 if (start >= MAX_LFS_FILESIZE) { 6149 btrfs_err_rl(fs_info, 6150 "extent buffer %llu is beyond 32bit page cache limit", start); 6151 btrfs_err_32bit_limit(fs_info); 6152 return ERR_PTR(-EOVERFLOW); 6153 } 6154 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6155 btrfs_warn_32bit_limit(fs_info); 6156 #endif 6157 6158 if (fs_info->sectorsize < PAGE_SIZE && 6159 offset_in_page(start) + len > PAGE_SIZE) { 6160 btrfs_err(fs_info, 6161 "tree block crosses page boundary, start %llu nodesize %lu", 6162 start, len); 6163 return ERR_PTR(-EINVAL); 6164 } 6165 6166 eb = find_extent_buffer(fs_info, start); 6167 if (eb) 6168 return eb; 6169 6170 eb = __alloc_extent_buffer(fs_info, start, len); 6171 if (!eb) 6172 return ERR_PTR(-ENOMEM); 6173 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6174 6175 num_pages = num_extent_pages(eb); 6176 for (i = 0; i < num_pages; i++, index++) { 6177 struct btrfs_subpage *prealloc = NULL; 6178 6179 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6180 if (!p) { 6181 exists = ERR_PTR(-ENOMEM); 6182 goto free_eb; 6183 } 6184 6185 /* 6186 * Preallocate page->private for subpage case, so that we won't 6187 * allocate memory with private_lock hold. The memory will be 6188 * freed by attach_extent_buffer_page() or freed manually if 6189 * we exit earlier. 6190 * 6191 * Although we have ensured one subpage eb can only have one 6192 * page, but it may change in the future for 16K page size 6193 * support, so we still preallocate the memory in the loop. 6194 */ 6195 if (fs_info->sectorsize < PAGE_SIZE) { 6196 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6197 if (IS_ERR(prealloc)) { 6198 ret = PTR_ERR(prealloc); 6199 unlock_page(p); 6200 put_page(p); 6201 exists = ERR_PTR(ret); 6202 goto free_eb; 6203 } 6204 } 6205 6206 spin_lock(&mapping->private_lock); 6207 exists = grab_extent_buffer(fs_info, p); 6208 if (exists) { 6209 spin_unlock(&mapping->private_lock); 6210 unlock_page(p); 6211 put_page(p); 6212 mark_extent_buffer_accessed(exists, p); 6213 btrfs_free_subpage(prealloc); 6214 goto free_eb; 6215 } 6216 /* Should not fail, as we have preallocated the memory */ 6217 ret = attach_extent_buffer_page(eb, p, prealloc); 6218 ASSERT(!ret); 6219 /* 6220 * To inform we have extra eb under allocation, so that 6221 * detach_extent_buffer_page() won't release the page private 6222 * when the eb hasn't yet been inserted into radix tree. 6223 * 6224 * The ref will be decreased when the eb released the page, in 6225 * detach_extent_buffer_page(). 6226 * Thus needs no special handling in error path. 6227 */ 6228 btrfs_page_inc_eb_refs(fs_info, p); 6229 spin_unlock(&mapping->private_lock); 6230 6231 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6232 eb->pages[i] = p; 6233 if (!PageUptodate(p)) 6234 uptodate = 0; 6235 6236 /* 6237 * We can't unlock the pages just yet since the extent buffer 6238 * hasn't been properly inserted in the radix tree, this 6239 * opens a race with btree_releasepage which can free a page 6240 * while we are still filling in all pages for the buffer and 6241 * we could crash. 6242 */ 6243 } 6244 if (uptodate) 6245 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6246 again: 6247 ret = radix_tree_preload(GFP_NOFS); 6248 if (ret) { 6249 exists = ERR_PTR(ret); 6250 goto free_eb; 6251 } 6252 6253 spin_lock(&fs_info->buffer_lock); 6254 ret = radix_tree_insert(&fs_info->buffer_radix, 6255 start >> fs_info->sectorsize_bits, eb); 6256 spin_unlock(&fs_info->buffer_lock); 6257 radix_tree_preload_end(); 6258 if (ret == -EEXIST) { 6259 exists = find_extent_buffer(fs_info, start); 6260 if (exists) 6261 goto free_eb; 6262 else 6263 goto again; 6264 } 6265 /* add one reference for the tree */ 6266 check_buffer_tree_ref(eb); 6267 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6268 6269 /* 6270 * Now it's safe to unlock the pages because any calls to 6271 * btree_releasepage will correctly detect that a page belongs to a 6272 * live buffer and won't free them prematurely. 6273 */ 6274 for (i = 0; i < num_pages; i++) 6275 unlock_page(eb->pages[i]); 6276 return eb; 6277 6278 free_eb: 6279 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6280 for (i = 0; i < num_pages; i++) { 6281 if (eb->pages[i]) 6282 unlock_page(eb->pages[i]); 6283 } 6284 6285 btrfs_release_extent_buffer(eb); 6286 return exists; 6287 } 6288 6289 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6290 { 6291 struct extent_buffer *eb = 6292 container_of(head, struct extent_buffer, rcu_head); 6293 6294 __free_extent_buffer(eb); 6295 } 6296 6297 static int release_extent_buffer(struct extent_buffer *eb) 6298 __releases(&eb->refs_lock) 6299 { 6300 lockdep_assert_held(&eb->refs_lock); 6301 6302 WARN_ON(atomic_read(&eb->refs) == 0); 6303 if (atomic_dec_and_test(&eb->refs)) { 6304 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6305 struct btrfs_fs_info *fs_info = eb->fs_info; 6306 6307 spin_unlock(&eb->refs_lock); 6308 6309 spin_lock(&fs_info->buffer_lock); 6310 radix_tree_delete(&fs_info->buffer_radix, 6311 eb->start >> fs_info->sectorsize_bits); 6312 spin_unlock(&fs_info->buffer_lock); 6313 } else { 6314 spin_unlock(&eb->refs_lock); 6315 } 6316 6317 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6318 /* Should be safe to release our pages at this point */ 6319 btrfs_release_extent_buffer_pages(eb); 6320 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6321 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6322 __free_extent_buffer(eb); 6323 return 1; 6324 } 6325 #endif 6326 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6327 return 1; 6328 } 6329 spin_unlock(&eb->refs_lock); 6330 6331 return 0; 6332 } 6333 6334 void free_extent_buffer(struct extent_buffer *eb) 6335 { 6336 int refs; 6337 int old; 6338 if (!eb) 6339 return; 6340 6341 while (1) { 6342 refs = atomic_read(&eb->refs); 6343 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6344 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6345 refs == 1)) 6346 break; 6347 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6348 if (old == refs) 6349 return; 6350 } 6351 6352 spin_lock(&eb->refs_lock); 6353 if (atomic_read(&eb->refs) == 2 && 6354 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6355 !extent_buffer_under_io(eb) && 6356 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6357 atomic_dec(&eb->refs); 6358 6359 /* 6360 * I know this is terrible, but it's temporary until we stop tracking 6361 * the uptodate bits and such for the extent buffers. 6362 */ 6363 release_extent_buffer(eb); 6364 } 6365 6366 void free_extent_buffer_stale(struct extent_buffer *eb) 6367 { 6368 if (!eb) 6369 return; 6370 6371 spin_lock(&eb->refs_lock); 6372 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6373 6374 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6375 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6376 atomic_dec(&eb->refs); 6377 release_extent_buffer(eb); 6378 } 6379 6380 static void btree_clear_page_dirty(struct page *page) 6381 { 6382 ASSERT(PageDirty(page)); 6383 ASSERT(PageLocked(page)); 6384 clear_page_dirty_for_io(page); 6385 xa_lock_irq(&page->mapping->i_pages); 6386 if (!PageDirty(page)) 6387 __xa_clear_mark(&page->mapping->i_pages, 6388 page_index(page), PAGECACHE_TAG_DIRTY); 6389 xa_unlock_irq(&page->mapping->i_pages); 6390 } 6391 6392 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6393 { 6394 struct btrfs_fs_info *fs_info = eb->fs_info; 6395 struct page *page = eb->pages[0]; 6396 bool last; 6397 6398 /* btree_clear_page_dirty() needs page locked */ 6399 lock_page(page); 6400 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6401 eb->len); 6402 if (last) 6403 btree_clear_page_dirty(page); 6404 unlock_page(page); 6405 WARN_ON(atomic_read(&eb->refs) == 0); 6406 } 6407 6408 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6409 { 6410 int i; 6411 int num_pages; 6412 struct page *page; 6413 6414 if (eb->fs_info->sectorsize < PAGE_SIZE) 6415 return clear_subpage_extent_buffer_dirty(eb); 6416 6417 num_pages = num_extent_pages(eb); 6418 6419 for (i = 0; i < num_pages; i++) { 6420 page = eb->pages[i]; 6421 if (!PageDirty(page)) 6422 continue; 6423 lock_page(page); 6424 btree_clear_page_dirty(page); 6425 ClearPageError(page); 6426 unlock_page(page); 6427 } 6428 WARN_ON(atomic_read(&eb->refs) == 0); 6429 } 6430 6431 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6432 { 6433 int i; 6434 int num_pages; 6435 bool was_dirty; 6436 6437 check_buffer_tree_ref(eb); 6438 6439 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6440 6441 num_pages = num_extent_pages(eb); 6442 WARN_ON(atomic_read(&eb->refs) == 0); 6443 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6444 6445 if (!was_dirty) { 6446 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; 6447 6448 /* 6449 * For subpage case, we can have other extent buffers in the 6450 * same page, and in clear_subpage_extent_buffer_dirty() we 6451 * have to clear page dirty without subpage lock held. 6452 * This can cause race where our page gets dirty cleared after 6453 * we just set it. 6454 * 6455 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6456 * its page for other reasons, we can use page lock to prevent 6457 * the above race. 6458 */ 6459 if (subpage) 6460 lock_page(eb->pages[0]); 6461 for (i = 0; i < num_pages; i++) 6462 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6463 eb->start, eb->len); 6464 if (subpage) 6465 unlock_page(eb->pages[0]); 6466 } 6467 #ifdef CONFIG_BTRFS_DEBUG 6468 for (i = 0; i < num_pages; i++) 6469 ASSERT(PageDirty(eb->pages[i])); 6470 #endif 6471 6472 return was_dirty; 6473 } 6474 6475 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6476 { 6477 struct btrfs_fs_info *fs_info = eb->fs_info; 6478 struct page *page; 6479 int num_pages; 6480 int i; 6481 6482 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6483 num_pages = num_extent_pages(eb); 6484 for (i = 0; i < num_pages; i++) { 6485 page = eb->pages[i]; 6486 if (page) 6487 btrfs_page_clear_uptodate(fs_info, page, 6488 eb->start, eb->len); 6489 } 6490 } 6491 6492 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6493 { 6494 struct btrfs_fs_info *fs_info = eb->fs_info; 6495 struct page *page; 6496 int num_pages; 6497 int i; 6498 6499 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6500 num_pages = num_extent_pages(eb); 6501 for (i = 0; i < num_pages; i++) { 6502 page = eb->pages[i]; 6503 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 6504 } 6505 } 6506 6507 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6508 int mirror_num) 6509 { 6510 struct btrfs_fs_info *fs_info = eb->fs_info; 6511 struct extent_io_tree *io_tree; 6512 struct page *page = eb->pages[0]; 6513 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6514 int ret = 0; 6515 6516 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6517 ASSERT(PagePrivate(page)); 6518 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6519 6520 if (wait == WAIT_NONE) { 6521 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6522 return -EAGAIN; 6523 } else { 6524 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6525 if (ret < 0) 6526 return ret; 6527 } 6528 6529 ret = 0; 6530 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6531 PageUptodate(page) || 6532 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6533 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6534 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6535 return ret; 6536 } 6537 6538 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6539 eb->read_mirror = 0; 6540 atomic_set(&eb->io_pages, 1); 6541 check_buffer_tree_ref(eb); 6542 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6543 6544 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6545 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6546 page, eb->start, eb->len, 6547 eb->start - page_offset(page), 6548 end_bio_extent_readpage, mirror_num, 0, 6549 true); 6550 if (ret) { 6551 /* 6552 * In the endio function, if we hit something wrong we will 6553 * increase the io_pages, so here we need to decrease it for 6554 * error path. 6555 */ 6556 atomic_dec(&eb->io_pages); 6557 } 6558 if (bio_ctrl.bio) { 6559 int tmp; 6560 6561 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6562 bio_ctrl.bio = NULL; 6563 if (tmp < 0) 6564 return tmp; 6565 } 6566 if (ret || wait != WAIT_COMPLETE) 6567 return ret; 6568 6569 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6570 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6571 ret = -EIO; 6572 return ret; 6573 } 6574 6575 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6576 { 6577 int i; 6578 struct page *page; 6579 int err; 6580 int ret = 0; 6581 int locked_pages = 0; 6582 int all_uptodate = 1; 6583 int num_pages; 6584 unsigned long num_reads = 0; 6585 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6586 6587 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6588 return 0; 6589 6590 /* 6591 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6592 * operation, which could potentially still be in flight. In this case 6593 * we simply want to return an error. 6594 */ 6595 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6596 return -EIO; 6597 6598 if (eb->fs_info->sectorsize < PAGE_SIZE) 6599 return read_extent_buffer_subpage(eb, wait, mirror_num); 6600 6601 num_pages = num_extent_pages(eb); 6602 for (i = 0; i < num_pages; i++) { 6603 page = eb->pages[i]; 6604 if (wait == WAIT_NONE) { 6605 /* 6606 * WAIT_NONE is only utilized by readahead. If we can't 6607 * acquire the lock atomically it means either the eb 6608 * is being read out or under modification. 6609 * Either way the eb will be or has been cached, 6610 * readahead can exit safely. 6611 */ 6612 if (!trylock_page(page)) 6613 goto unlock_exit; 6614 } else { 6615 lock_page(page); 6616 } 6617 locked_pages++; 6618 } 6619 /* 6620 * We need to firstly lock all pages to make sure that 6621 * the uptodate bit of our pages won't be affected by 6622 * clear_extent_buffer_uptodate(). 6623 */ 6624 for (i = 0; i < num_pages; i++) { 6625 page = eb->pages[i]; 6626 if (!PageUptodate(page)) { 6627 num_reads++; 6628 all_uptodate = 0; 6629 } 6630 } 6631 6632 if (all_uptodate) { 6633 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6634 goto unlock_exit; 6635 } 6636 6637 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6638 eb->read_mirror = 0; 6639 atomic_set(&eb->io_pages, num_reads); 6640 /* 6641 * It is possible for releasepage to clear the TREE_REF bit before we 6642 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6643 */ 6644 check_buffer_tree_ref(eb); 6645 for (i = 0; i < num_pages; i++) { 6646 page = eb->pages[i]; 6647 6648 if (!PageUptodate(page)) { 6649 if (ret) { 6650 atomic_dec(&eb->io_pages); 6651 unlock_page(page); 6652 continue; 6653 } 6654 6655 ClearPageError(page); 6656 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6657 &bio_ctrl, page, page_offset(page), 6658 PAGE_SIZE, 0, end_bio_extent_readpage, 6659 mirror_num, 0, false); 6660 if (err) { 6661 /* 6662 * We failed to submit the bio so it's the 6663 * caller's responsibility to perform cleanup 6664 * i.e unlock page/set error bit. 6665 */ 6666 ret = err; 6667 SetPageError(page); 6668 unlock_page(page); 6669 atomic_dec(&eb->io_pages); 6670 } 6671 } else { 6672 unlock_page(page); 6673 } 6674 } 6675 6676 if (bio_ctrl.bio) { 6677 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); 6678 bio_ctrl.bio = NULL; 6679 if (err) 6680 return err; 6681 } 6682 6683 if (ret || wait != WAIT_COMPLETE) 6684 return ret; 6685 6686 for (i = 0; i < num_pages; i++) { 6687 page = eb->pages[i]; 6688 wait_on_page_locked(page); 6689 if (!PageUptodate(page)) 6690 ret = -EIO; 6691 } 6692 6693 return ret; 6694 6695 unlock_exit: 6696 while (locked_pages > 0) { 6697 locked_pages--; 6698 page = eb->pages[locked_pages]; 6699 unlock_page(page); 6700 } 6701 return ret; 6702 } 6703 6704 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6705 unsigned long len) 6706 { 6707 btrfs_warn(eb->fs_info, 6708 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6709 eb->start, eb->len, start, len); 6710 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6711 6712 return true; 6713 } 6714 6715 /* 6716 * Check if the [start, start + len) range is valid before reading/writing 6717 * the eb. 6718 * NOTE: @start and @len are offset inside the eb, not logical address. 6719 * 6720 * Caller should not touch the dst/src memory if this function returns error. 6721 */ 6722 static inline int check_eb_range(const struct extent_buffer *eb, 6723 unsigned long start, unsigned long len) 6724 { 6725 unsigned long offset; 6726 6727 /* start, start + len should not go beyond eb->len nor overflow */ 6728 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6729 return report_eb_range(eb, start, len); 6730 6731 return false; 6732 } 6733 6734 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6735 unsigned long start, unsigned long len) 6736 { 6737 size_t cur; 6738 size_t offset; 6739 struct page *page; 6740 char *kaddr; 6741 char *dst = (char *)dstv; 6742 unsigned long i = get_eb_page_index(start); 6743 6744 if (check_eb_range(eb, start, len)) 6745 return; 6746 6747 offset = get_eb_offset_in_page(eb, start); 6748 6749 while (len > 0) { 6750 page = eb->pages[i]; 6751 6752 cur = min(len, (PAGE_SIZE - offset)); 6753 kaddr = page_address(page); 6754 memcpy(dst, kaddr + offset, cur); 6755 6756 dst += cur; 6757 len -= cur; 6758 offset = 0; 6759 i++; 6760 } 6761 } 6762 6763 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6764 void __user *dstv, 6765 unsigned long start, unsigned long len) 6766 { 6767 size_t cur; 6768 size_t offset; 6769 struct page *page; 6770 char *kaddr; 6771 char __user *dst = (char __user *)dstv; 6772 unsigned long i = get_eb_page_index(start); 6773 int ret = 0; 6774 6775 WARN_ON(start > eb->len); 6776 WARN_ON(start + len > eb->start + eb->len); 6777 6778 offset = get_eb_offset_in_page(eb, start); 6779 6780 while (len > 0) { 6781 page = eb->pages[i]; 6782 6783 cur = min(len, (PAGE_SIZE - offset)); 6784 kaddr = page_address(page); 6785 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6786 ret = -EFAULT; 6787 break; 6788 } 6789 6790 dst += cur; 6791 len -= cur; 6792 offset = 0; 6793 i++; 6794 } 6795 6796 return ret; 6797 } 6798 6799 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6800 unsigned long start, unsigned long len) 6801 { 6802 size_t cur; 6803 size_t offset; 6804 struct page *page; 6805 char *kaddr; 6806 char *ptr = (char *)ptrv; 6807 unsigned long i = get_eb_page_index(start); 6808 int ret = 0; 6809 6810 if (check_eb_range(eb, start, len)) 6811 return -EINVAL; 6812 6813 offset = get_eb_offset_in_page(eb, start); 6814 6815 while (len > 0) { 6816 page = eb->pages[i]; 6817 6818 cur = min(len, (PAGE_SIZE - offset)); 6819 6820 kaddr = page_address(page); 6821 ret = memcmp(ptr, kaddr + offset, cur); 6822 if (ret) 6823 break; 6824 6825 ptr += cur; 6826 len -= cur; 6827 offset = 0; 6828 i++; 6829 } 6830 return ret; 6831 } 6832 6833 /* 6834 * Check that the extent buffer is uptodate. 6835 * 6836 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6837 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6838 */ 6839 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6840 struct page *page) 6841 { 6842 struct btrfs_fs_info *fs_info = eb->fs_info; 6843 6844 if (fs_info->sectorsize < PAGE_SIZE) { 6845 bool uptodate; 6846 6847 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6848 eb->start, eb->len); 6849 WARN_ON(!uptodate); 6850 } else { 6851 WARN_ON(!PageUptodate(page)); 6852 } 6853 } 6854 6855 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6856 const void *srcv) 6857 { 6858 char *kaddr; 6859 6860 assert_eb_page_uptodate(eb, eb->pages[0]); 6861 kaddr = page_address(eb->pages[0]) + 6862 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6863 chunk_tree_uuid)); 6864 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6865 } 6866 6867 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6868 { 6869 char *kaddr; 6870 6871 assert_eb_page_uptodate(eb, eb->pages[0]); 6872 kaddr = page_address(eb->pages[0]) + 6873 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6874 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6875 } 6876 6877 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6878 unsigned long start, unsigned long len) 6879 { 6880 size_t cur; 6881 size_t offset; 6882 struct page *page; 6883 char *kaddr; 6884 char *src = (char *)srcv; 6885 unsigned long i = get_eb_page_index(start); 6886 6887 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6888 6889 if (check_eb_range(eb, start, len)) 6890 return; 6891 6892 offset = get_eb_offset_in_page(eb, start); 6893 6894 while (len > 0) { 6895 page = eb->pages[i]; 6896 assert_eb_page_uptodate(eb, page); 6897 6898 cur = min(len, PAGE_SIZE - offset); 6899 kaddr = page_address(page); 6900 memcpy(kaddr + offset, src, cur); 6901 6902 src += cur; 6903 len -= cur; 6904 offset = 0; 6905 i++; 6906 } 6907 } 6908 6909 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6910 unsigned long len) 6911 { 6912 size_t cur; 6913 size_t offset; 6914 struct page *page; 6915 char *kaddr; 6916 unsigned long i = get_eb_page_index(start); 6917 6918 if (check_eb_range(eb, start, len)) 6919 return; 6920 6921 offset = get_eb_offset_in_page(eb, start); 6922 6923 while (len > 0) { 6924 page = eb->pages[i]; 6925 assert_eb_page_uptodate(eb, page); 6926 6927 cur = min(len, PAGE_SIZE - offset); 6928 kaddr = page_address(page); 6929 memset(kaddr + offset, 0, cur); 6930 6931 len -= cur; 6932 offset = 0; 6933 i++; 6934 } 6935 } 6936 6937 void copy_extent_buffer_full(const struct extent_buffer *dst, 6938 const struct extent_buffer *src) 6939 { 6940 int i; 6941 int num_pages; 6942 6943 ASSERT(dst->len == src->len); 6944 6945 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6946 num_pages = num_extent_pages(dst); 6947 for (i = 0; i < num_pages; i++) 6948 copy_page(page_address(dst->pages[i]), 6949 page_address(src->pages[i])); 6950 } else { 6951 size_t src_offset = get_eb_offset_in_page(src, 0); 6952 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6953 6954 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6955 memcpy(page_address(dst->pages[0]) + dst_offset, 6956 page_address(src->pages[0]) + src_offset, 6957 src->len); 6958 } 6959 } 6960 6961 void copy_extent_buffer(const struct extent_buffer *dst, 6962 const struct extent_buffer *src, 6963 unsigned long dst_offset, unsigned long src_offset, 6964 unsigned long len) 6965 { 6966 u64 dst_len = dst->len; 6967 size_t cur; 6968 size_t offset; 6969 struct page *page; 6970 char *kaddr; 6971 unsigned long i = get_eb_page_index(dst_offset); 6972 6973 if (check_eb_range(dst, dst_offset, len) || 6974 check_eb_range(src, src_offset, len)) 6975 return; 6976 6977 WARN_ON(src->len != dst_len); 6978 6979 offset = get_eb_offset_in_page(dst, dst_offset); 6980 6981 while (len > 0) { 6982 page = dst->pages[i]; 6983 assert_eb_page_uptodate(dst, page); 6984 6985 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6986 6987 kaddr = page_address(page); 6988 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6989 6990 src_offset += cur; 6991 len -= cur; 6992 offset = 0; 6993 i++; 6994 } 6995 } 6996 6997 /* 6998 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 6999 * given bit number 7000 * @eb: the extent buffer 7001 * @start: offset of the bitmap item in the extent buffer 7002 * @nr: bit number 7003 * @page_index: return index of the page in the extent buffer that contains the 7004 * given bit number 7005 * @page_offset: return offset into the page given by page_index 7006 * 7007 * This helper hides the ugliness of finding the byte in an extent buffer which 7008 * contains a given bit. 7009 */ 7010 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7011 unsigned long start, unsigned long nr, 7012 unsigned long *page_index, 7013 size_t *page_offset) 7014 { 7015 size_t byte_offset = BIT_BYTE(nr); 7016 size_t offset; 7017 7018 /* 7019 * The byte we want is the offset of the extent buffer + the offset of 7020 * the bitmap item in the extent buffer + the offset of the byte in the 7021 * bitmap item. 7022 */ 7023 offset = start + offset_in_page(eb->start) + byte_offset; 7024 7025 *page_index = offset >> PAGE_SHIFT; 7026 *page_offset = offset_in_page(offset); 7027 } 7028 7029 /** 7030 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7031 * @eb: the extent buffer 7032 * @start: offset of the bitmap item in the extent buffer 7033 * @nr: bit number to test 7034 */ 7035 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7036 unsigned long nr) 7037 { 7038 u8 *kaddr; 7039 struct page *page; 7040 unsigned long i; 7041 size_t offset; 7042 7043 eb_bitmap_offset(eb, start, nr, &i, &offset); 7044 page = eb->pages[i]; 7045 assert_eb_page_uptodate(eb, page); 7046 kaddr = page_address(page); 7047 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7048 } 7049 7050 /** 7051 * extent_buffer_bitmap_set - set an area of a bitmap 7052 * @eb: the extent buffer 7053 * @start: offset of the bitmap item in the extent buffer 7054 * @pos: bit number of the first bit 7055 * @len: number of bits to set 7056 */ 7057 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7058 unsigned long pos, unsigned long len) 7059 { 7060 u8 *kaddr; 7061 struct page *page; 7062 unsigned long i; 7063 size_t offset; 7064 const unsigned int size = pos + len; 7065 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7066 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7067 7068 eb_bitmap_offset(eb, start, pos, &i, &offset); 7069 page = eb->pages[i]; 7070 assert_eb_page_uptodate(eb, page); 7071 kaddr = page_address(page); 7072 7073 while (len >= bits_to_set) { 7074 kaddr[offset] |= mask_to_set; 7075 len -= bits_to_set; 7076 bits_to_set = BITS_PER_BYTE; 7077 mask_to_set = ~0; 7078 if (++offset >= PAGE_SIZE && len > 0) { 7079 offset = 0; 7080 page = eb->pages[++i]; 7081 assert_eb_page_uptodate(eb, page); 7082 kaddr = page_address(page); 7083 } 7084 } 7085 if (len) { 7086 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7087 kaddr[offset] |= mask_to_set; 7088 } 7089 } 7090 7091 7092 /** 7093 * extent_buffer_bitmap_clear - clear an area of a bitmap 7094 * @eb: the extent buffer 7095 * @start: offset of the bitmap item in the extent buffer 7096 * @pos: bit number of the first bit 7097 * @len: number of bits to clear 7098 */ 7099 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7100 unsigned long start, unsigned long pos, 7101 unsigned long len) 7102 { 7103 u8 *kaddr; 7104 struct page *page; 7105 unsigned long i; 7106 size_t offset; 7107 const unsigned int size = pos + len; 7108 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7109 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7110 7111 eb_bitmap_offset(eb, start, pos, &i, &offset); 7112 page = eb->pages[i]; 7113 assert_eb_page_uptodate(eb, page); 7114 kaddr = page_address(page); 7115 7116 while (len >= bits_to_clear) { 7117 kaddr[offset] &= ~mask_to_clear; 7118 len -= bits_to_clear; 7119 bits_to_clear = BITS_PER_BYTE; 7120 mask_to_clear = ~0; 7121 if (++offset >= PAGE_SIZE && len > 0) { 7122 offset = 0; 7123 page = eb->pages[++i]; 7124 assert_eb_page_uptodate(eb, page); 7125 kaddr = page_address(page); 7126 } 7127 } 7128 if (len) { 7129 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7130 kaddr[offset] &= ~mask_to_clear; 7131 } 7132 } 7133 7134 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7135 { 7136 unsigned long distance = (src > dst) ? src - dst : dst - src; 7137 return distance < len; 7138 } 7139 7140 static void copy_pages(struct page *dst_page, struct page *src_page, 7141 unsigned long dst_off, unsigned long src_off, 7142 unsigned long len) 7143 { 7144 char *dst_kaddr = page_address(dst_page); 7145 char *src_kaddr; 7146 int must_memmove = 0; 7147 7148 if (dst_page != src_page) { 7149 src_kaddr = page_address(src_page); 7150 } else { 7151 src_kaddr = dst_kaddr; 7152 if (areas_overlap(src_off, dst_off, len)) 7153 must_memmove = 1; 7154 } 7155 7156 if (must_memmove) 7157 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7158 else 7159 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7160 } 7161 7162 void memcpy_extent_buffer(const struct extent_buffer *dst, 7163 unsigned long dst_offset, unsigned long src_offset, 7164 unsigned long len) 7165 { 7166 size_t cur; 7167 size_t dst_off_in_page; 7168 size_t src_off_in_page; 7169 unsigned long dst_i; 7170 unsigned long src_i; 7171 7172 if (check_eb_range(dst, dst_offset, len) || 7173 check_eb_range(dst, src_offset, len)) 7174 return; 7175 7176 while (len > 0) { 7177 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7178 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7179 7180 dst_i = get_eb_page_index(dst_offset); 7181 src_i = get_eb_page_index(src_offset); 7182 7183 cur = min(len, (unsigned long)(PAGE_SIZE - 7184 src_off_in_page)); 7185 cur = min_t(unsigned long, cur, 7186 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7187 7188 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7189 dst_off_in_page, src_off_in_page, cur); 7190 7191 src_offset += cur; 7192 dst_offset += cur; 7193 len -= cur; 7194 } 7195 } 7196 7197 void memmove_extent_buffer(const struct extent_buffer *dst, 7198 unsigned long dst_offset, unsigned long src_offset, 7199 unsigned long len) 7200 { 7201 size_t cur; 7202 size_t dst_off_in_page; 7203 size_t src_off_in_page; 7204 unsigned long dst_end = dst_offset + len - 1; 7205 unsigned long src_end = src_offset + len - 1; 7206 unsigned long dst_i; 7207 unsigned long src_i; 7208 7209 if (check_eb_range(dst, dst_offset, len) || 7210 check_eb_range(dst, src_offset, len)) 7211 return; 7212 if (dst_offset < src_offset) { 7213 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7214 return; 7215 } 7216 while (len > 0) { 7217 dst_i = get_eb_page_index(dst_end); 7218 src_i = get_eb_page_index(src_end); 7219 7220 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7221 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7222 7223 cur = min_t(unsigned long, len, src_off_in_page + 1); 7224 cur = min(cur, dst_off_in_page + 1); 7225 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7226 dst_off_in_page - cur + 1, 7227 src_off_in_page - cur + 1, cur); 7228 7229 dst_end -= cur; 7230 src_end -= cur; 7231 len -= cur; 7232 } 7233 } 7234 7235 #define GANG_LOOKUP_SIZE 16 7236 static struct extent_buffer *get_next_extent_buffer( 7237 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7238 { 7239 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7240 struct extent_buffer *found = NULL; 7241 u64 page_start = page_offset(page); 7242 u64 cur = page_start; 7243 7244 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7245 lockdep_assert_held(&fs_info->buffer_lock); 7246 7247 while (cur < page_start + PAGE_SIZE) { 7248 int ret; 7249 int i; 7250 7251 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7252 (void **)gang, cur >> fs_info->sectorsize_bits, 7253 min_t(unsigned int, GANG_LOOKUP_SIZE, 7254 PAGE_SIZE / fs_info->nodesize)); 7255 if (ret == 0) 7256 goto out; 7257 for (i = 0; i < ret; i++) { 7258 /* Already beyond page end */ 7259 if (gang[i]->start >= page_start + PAGE_SIZE) 7260 goto out; 7261 /* Found one */ 7262 if (gang[i]->start >= bytenr) { 7263 found = gang[i]; 7264 goto out; 7265 } 7266 } 7267 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7268 } 7269 out: 7270 return found; 7271 } 7272 7273 static int try_release_subpage_extent_buffer(struct page *page) 7274 { 7275 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7276 u64 cur = page_offset(page); 7277 const u64 end = page_offset(page) + PAGE_SIZE; 7278 int ret; 7279 7280 while (cur < end) { 7281 struct extent_buffer *eb = NULL; 7282 7283 /* 7284 * Unlike try_release_extent_buffer() which uses page->private 7285 * to grab buffer, for subpage case we rely on radix tree, thus 7286 * we need to ensure radix tree consistency. 7287 * 7288 * We also want an atomic snapshot of the radix tree, thus go 7289 * with spinlock rather than RCU. 7290 */ 7291 spin_lock(&fs_info->buffer_lock); 7292 eb = get_next_extent_buffer(fs_info, page, cur); 7293 if (!eb) { 7294 /* No more eb in the page range after or at cur */ 7295 spin_unlock(&fs_info->buffer_lock); 7296 break; 7297 } 7298 cur = eb->start + eb->len; 7299 7300 /* 7301 * The same as try_release_extent_buffer(), to ensure the eb 7302 * won't disappear out from under us. 7303 */ 7304 spin_lock(&eb->refs_lock); 7305 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7306 spin_unlock(&eb->refs_lock); 7307 spin_unlock(&fs_info->buffer_lock); 7308 break; 7309 } 7310 spin_unlock(&fs_info->buffer_lock); 7311 7312 /* 7313 * If tree ref isn't set then we know the ref on this eb is a 7314 * real ref, so just return, this eb will likely be freed soon 7315 * anyway. 7316 */ 7317 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7318 spin_unlock(&eb->refs_lock); 7319 break; 7320 } 7321 7322 /* 7323 * Here we don't care about the return value, we will always 7324 * check the page private at the end. And 7325 * release_extent_buffer() will release the refs_lock. 7326 */ 7327 release_extent_buffer(eb); 7328 } 7329 /* 7330 * Finally to check if we have cleared page private, as if we have 7331 * released all ebs in the page, the page private should be cleared now. 7332 */ 7333 spin_lock(&page->mapping->private_lock); 7334 if (!PagePrivate(page)) 7335 ret = 1; 7336 else 7337 ret = 0; 7338 spin_unlock(&page->mapping->private_lock); 7339 return ret; 7340 7341 } 7342 7343 int try_release_extent_buffer(struct page *page) 7344 { 7345 struct extent_buffer *eb; 7346 7347 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 7348 return try_release_subpage_extent_buffer(page); 7349 7350 /* 7351 * We need to make sure nobody is changing page->private, as we rely on 7352 * page->private as the pointer to extent buffer. 7353 */ 7354 spin_lock(&page->mapping->private_lock); 7355 if (!PagePrivate(page)) { 7356 spin_unlock(&page->mapping->private_lock); 7357 return 1; 7358 } 7359 7360 eb = (struct extent_buffer *)page->private; 7361 BUG_ON(!eb); 7362 7363 /* 7364 * This is a little awful but should be ok, we need to make sure that 7365 * the eb doesn't disappear out from under us while we're looking at 7366 * this page. 7367 */ 7368 spin_lock(&eb->refs_lock); 7369 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7370 spin_unlock(&eb->refs_lock); 7371 spin_unlock(&page->mapping->private_lock); 7372 return 0; 7373 } 7374 spin_unlock(&page->mapping->private_lock); 7375 7376 /* 7377 * If tree ref isn't set then we know the ref on this eb is a real ref, 7378 * so just return, this page will likely be freed soon anyway. 7379 */ 7380 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7381 spin_unlock(&eb->refs_lock); 7382 return 0; 7383 } 7384 7385 return release_extent_buffer(eb); 7386 } 7387 7388 /* 7389 * btrfs_readahead_tree_block - attempt to readahead a child block 7390 * @fs_info: the fs_info 7391 * @bytenr: bytenr to read 7392 * @owner_root: objectid of the root that owns this eb 7393 * @gen: generation for the uptodate check, can be 0 7394 * @level: level for the eb 7395 * 7396 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7397 * normal uptodate check of the eb, without checking the generation. If we have 7398 * to read the block we will not block on anything. 7399 */ 7400 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7401 u64 bytenr, u64 owner_root, u64 gen, int level) 7402 { 7403 struct extent_buffer *eb; 7404 int ret; 7405 7406 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7407 if (IS_ERR(eb)) 7408 return; 7409 7410 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7411 free_extent_buffer(eb); 7412 return; 7413 } 7414 7415 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7416 if (ret < 0) 7417 free_extent_buffer_stale(eb); 7418 else 7419 free_extent_buffer(eb); 7420 } 7421 7422 /* 7423 * btrfs_readahead_node_child - readahead a node's child block 7424 * @node: parent node we're reading from 7425 * @slot: slot in the parent node for the child we want to read 7426 * 7427 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7428 * the slot in the node provided. 7429 */ 7430 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7431 { 7432 btrfs_readahead_tree_block(node->fs_info, 7433 btrfs_node_blockptr(node, slot), 7434 btrfs_header_owner(node), 7435 btrfs_node_ptr_generation(node, slot), 7436 btrfs_header_level(node) - 1); 7437 } 7438