1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 34 static struct kmem_cache *extent_state_cache; 35 static struct kmem_cache *extent_buffer_cache; 36 static struct bio_set btrfs_bioset; 37 38 static inline bool extent_state_in_tree(const struct extent_state *state) 39 { 40 return !RB_EMPTY_NODE(&state->rb_node); 41 } 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static LIST_HEAD(states); 45 static DEFINE_SPINLOCK(leak_lock); 46 47 static inline void btrfs_leak_debug_add(spinlock_t *lock, 48 struct list_head *new, 49 struct list_head *head) 50 { 51 unsigned long flags; 52 53 spin_lock_irqsave(lock, flags); 54 list_add(new, head); 55 spin_unlock_irqrestore(lock, flags); 56 } 57 58 static inline void btrfs_leak_debug_del(spinlock_t *lock, 59 struct list_head *entry) 60 { 61 unsigned long flags; 62 63 spin_lock_irqsave(lock, flags); 64 list_del(entry); 65 spin_unlock_irqrestore(lock, flags); 66 } 67 68 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 69 { 70 struct extent_buffer *eb; 71 unsigned long flags; 72 73 /* 74 * If we didn't get into open_ctree our allocated_ebs will not be 75 * initialized, so just skip this. 76 */ 77 if (!fs_info->allocated_ebs.next) 78 return; 79 80 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 81 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 82 while (!list_empty(&fs_info->allocated_ebs)) { 83 eb = list_first_entry(&fs_info->allocated_ebs, 84 struct extent_buffer, leak_list); 85 pr_err( 86 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 87 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 88 btrfs_header_owner(eb)); 89 list_del(&eb->leak_list); 90 kmem_cache_free(extent_buffer_cache, eb); 91 } 92 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 93 } 94 95 static inline void btrfs_extent_state_leak_debug_check(void) 96 { 97 struct extent_state *state; 98 99 while (!list_empty(&states)) { 100 state = list_entry(states.next, struct extent_state, leak_list); 101 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 102 state->start, state->end, state->state, 103 extent_state_in_tree(state), 104 refcount_read(&state->refs)); 105 list_del(&state->leak_list); 106 kmem_cache_free(extent_state_cache, state); 107 } 108 } 109 110 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 111 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 112 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 113 struct extent_io_tree *tree, u64 start, u64 end) 114 { 115 struct inode *inode = tree->private_data; 116 u64 isize; 117 118 if (!inode || !is_data_inode(inode)) 119 return; 120 121 isize = i_size_read(inode); 122 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 123 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 124 "%s: ino %llu isize %llu odd range [%llu,%llu]", 125 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 126 } 127 } 128 #else 129 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 130 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 131 #define btrfs_extent_state_leak_debug_check() do {} while (0) 132 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 133 #endif 134 135 struct tree_entry { 136 u64 start; 137 u64 end; 138 struct rb_node rb_node; 139 }; 140 141 /* 142 * Structure to record info about the bio being assembled, and other info like 143 * how many bytes are there before stripe/ordered extent boundary. 144 */ 145 struct btrfs_bio_ctrl { 146 struct bio *bio; 147 int mirror_num; 148 enum btrfs_compression_type compress_type; 149 u32 len_to_stripe_boundary; 150 u32 len_to_oe_boundary; 151 }; 152 153 struct extent_page_data { 154 struct btrfs_bio_ctrl bio_ctrl; 155 /* tells writepage not to lock the state bits for this range 156 * it still does the unlocking 157 */ 158 unsigned int extent_locked:1; 159 160 /* tells the submit_bio code to use REQ_SYNC */ 161 unsigned int sync_io:1; 162 }; 163 164 static int add_extent_changeset(struct extent_state *state, u32 bits, 165 struct extent_changeset *changeset, 166 int set) 167 { 168 int ret; 169 170 if (!changeset) 171 return 0; 172 if (set && (state->state & bits) == bits) 173 return 0; 174 if (!set && (state->state & bits) == 0) 175 return 0; 176 changeset->bytes_changed += state->end - state->start + 1; 177 ret = ulist_add(&changeset->range_changed, state->start, state->end, 178 GFP_ATOMIC); 179 return ret; 180 } 181 182 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 183 { 184 struct bio *bio; 185 struct bio_vec *bv; 186 struct inode *inode; 187 int mirror_num; 188 189 if (!bio_ctrl->bio) 190 return; 191 192 bio = bio_ctrl->bio; 193 bv = bio_first_bvec_all(bio); 194 inode = bv->bv_page->mapping->host; 195 mirror_num = bio_ctrl->mirror_num; 196 197 /* Caller should ensure the bio has at least some range added */ 198 ASSERT(bio->bi_iter.bi_size); 199 200 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; 201 202 if (!is_data_inode(inode)) 203 btrfs_submit_metadata_bio(inode, bio, mirror_num); 204 else if (btrfs_op(bio) == BTRFS_MAP_WRITE) 205 btrfs_submit_data_write_bio(inode, bio, mirror_num); 206 else 207 btrfs_submit_data_read_bio(inode, bio, mirror_num, 208 bio_ctrl->compress_type); 209 210 /* The bio is owned by the bi_end_io handler now */ 211 bio_ctrl->bio = NULL; 212 } 213 214 /* 215 * Submit or fail the current bio in an extent_page_data structure. 216 */ 217 static void submit_write_bio(struct extent_page_data *epd, int ret) 218 { 219 struct bio *bio = epd->bio_ctrl.bio; 220 221 if (!bio) 222 return; 223 224 if (ret) { 225 ASSERT(ret < 0); 226 bio->bi_status = errno_to_blk_status(ret); 227 bio_endio(bio); 228 /* The bio is owned by the bi_end_io handler now */ 229 epd->bio_ctrl.bio = NULL; 230 } else { 231 submit_one_bio(&epd->bio_ctrl); 232 } 233 } 234 235 int __init extent_state_cache_init(void) 236 { 237 extent_state_cache = kmem_cache_create("btrfs_extent_state", 238 sizeof(struct extent_state), 0, 239 SLAB_MEM_SPREAD, NULL); 240 if (!extent_state_cache) 241 return -ENOMEM; 242 return 0; 243 } 244 245 int __init extent_io_init(void) 246 { 247 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 248 sizeof(struct extent_buffer), 0, 249 SLAB_MEM_SPREAD, NULL); 250 if (!extent_buffer_cache) 251 return -ENOMEM; 252 253 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 254 offsetof(struct btrfs_bio, bio), 255 BIOSET_NEED_BVECS)) 256 goto free_buffer_cache; 257 258 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 259 goto free_bioset; 260 261 return 0; 262 263 free_bioset: 264 bioset_exit(&btrfs_bioset); 265 266 free_buffer_cache: 267 kmem_cache_destroy(extent_buffer_cache); 268 extent_buffer_cache = NULL; 269 return -ENOMEM; 270 } 271 272 void __cold extent_state_cache_exit(void) 273 { 274 btrfs_extent_state_leak_debug_check(); 275 kmem_cache_destroy(extent_state_cache); 276 } 277 278 void __cold extent_io_exit(void) 279 { 280 /* 281 * Make sure all delayed rcu free are flushed before we 282 * destroy caches. 283 */ 284 rcu_barrier(); 285 kmem_cache_destroy(extent_buffer_cache); 286 bioset_exit(&btrfs_bioset); 287 } 288 289 /* 290 * For the file_extent_tree, we want to hold the inode lock when we lookup and 291 * update the disk_i_size, but lockdep will complain because our io_tree we hold 292 * the tree lock and get the inode lock when setting delalloc. These two things 293 * are unrelated, so make a class for the file_extent_tree so we don't get the 294 * two locking patterns mixed up. 295 */ 296 static struct lock_class_key file_extent_tree_class; 297 298 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 299 struct extent_io_tree *tree, unsigned int owner, 300 void *private_data) 301 { 302 tree->fs_info = fs_info; 303 tree->state = RB_ROOT; 304 tree->dirty_bytes = 0; 305 spin_lock_init(&tree->lock); 306 tree->private_data = private_data; 307 tree->owner = owner; 308 if (owner == IO_TREE_INODE_FILE_EXTENT) 309 lockdep_set_class(&tree->lock, &file_extent_tree_class); 310 } 311 312 void extent_io_tree_release(struct extent_io_tree *tree) 313 { 314 spin_lock(&tree->lock); 315 /* 316 * Do a single barrier for the waitqueue_active check here, the state 317 * of the waitqueue should not change once extent_io_tree_release is 318 * called. 319 */ 320 smp_mb(); 321 while (!RB_EMPTY_ROOT(&tree->state)) { 322 struct rb_node *node; 323 struct extent_state *state; 324 325 node = rb_first(&tree->state); 326 state = rb_entry(node, struct extent_state, rb_node); 327 rb_erase(&state->rb_node, &tree->state); 328 RB_CLEAR_NODE(&state->rb_node); 329 /* 330 * btree io trees aren't supposed to have tasks waiting for 331 * changes in the flags of extent states ever. 332 */ 333 ASSERT(!waitqueue_active(&state->wq)); 334 free_extent_state(state); 335 336 cond_resched_lock(&tree->lock); 337 } 338 spin_unlock(&tree->lock); 339 } 340 341 static struct extent_state *alloc_extent_state(gfp_t mask) 342 { 343 struct extent_state *state; 344 345 /* 346 * The given mask might be not appropriate for the slab allocator, 347 * drop the unsupported bits 348 */ 349 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 350 state = kmem_cache_alloc(extent_state_cache, mask); 351 if (!state) 352 return state; 353 state->state = 0; 354 state->failrec = NULL; 355 RB_CLEAR_NODE(&state->rb_node); 356 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 357 refcount_set(&state->refs, 1); 358 init_waitqueue_head(&state->wq); 359 trace_alloc_extent_state(state, mask, _RET_IP_); 360 return state; 361 } 362 363 void free_extent_state(struct extent_state *state) 364 { 365 if (!state) 366 return; 367 if (refcount_dec_and_test(&state->refs)) { 368 WARN_ON(extent_state_in_tree(state)); 369 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 370 trace_free_extent_state(state, _RET_IP_); 371 kmem_cache_free(extent_state_cache, state); 372 } 373 } 374 375 /** 376 * Search @tree for an entry that contains @offset. Such entry would have 377 * entry->start <= offset && entry->end >= offset. 378 * 379 * @tree: the tree to search 380 * @offset: offset that should fall within an entry in @tree 381 * @node_ret: pointer where new node should be anchored (used when inserting an 382 * entry in the tree) 383 * @parent_ret: points to entry which would have been the parent of the entry, 384 * containing @offset 385 * 386 * Return a pointer to the entry that contains @offset byte address and don't change 387 * @node_ret and @parent_ret. 388 * 389 * If no such entry exists, return pointer to entry that ends before @offset 390 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL. 391 */ 392 static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree, 393 u64 offset, 394 struct rb_node ***node_ret, 395 struct rb_node **parent_ret) 396 { 397 struct rb_root *root = &tree->state; 398 struct rb_node **node = &root->rb_node; 399 struct rb_node *prev = NULL; 400 struct tree_entry *entry; 401 402 while (*node) { 403 prev = *node; 404 entry = rb_entry(prev, struct tree_entry, rb_node); 405 406 if (offset < entry->start) 407 node = &(*node)->rb_left; 408 else if (offset > entry->end) 409 node = &(*node)->rb_right; 410 else 411 return *node; 412 } 413 414 if (node_ret) 415 *node_ret = node; 416 if (parent_ret) 417 *parent_ret = prev; 418 419 /* Search neighbors until we find the first one past the end */ 420 while (prev && offset > entry->end) { 421 prev = rb_next(prev); 422 entry = rb_entry(prev, struct tree_entry, rb_node); 423 } 424 425 return prev; 426 } 427 428 /* 429 * Inexact rb-tree search, return the next entry if @offset is not found 430 */ 431 static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset) 432 { 433 return tree_search_for_insert(tree, offset, NULL, NULL); 434 } 435 436 /** 437 * Search offset in the tree or fill neighbor rbtree node pointers. 438 * 439 * @tree: the tree to search 440 * @offset: offset that should fall within an entry in @tree 441 * @next_ret: pointer to the first entry whose range ends after @offset 442 * @prev_ret: pointer to the first entry whose range begins before @offset 443 * 444 * Return a pointer to the entry that contains @offset byte address. If no 445 * such entry exists, then return NULL and fill @prev_ret and @next_ret. 446 * Otherwise return the found entry and other pointers are left untouched. 447 */ 448 static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree, 449 u64 offset, 450 struct rb_node **prev_ret, 451 struct rb_node **next_ret) 452 { 453 struct rb_root *root = &tree->state; 454 struct rb_node **node = &root->rb_node; 455 struct rb_node *prev = NULL; 456 struct rb_node *orig_prev = NULL; 457 struct tree_entry *entry; 458 459 ASSERT(prev_ret); 460 ASSERT(next_ret); 461 462 while (*node) { 463 prev = *node; 464 entry = rb_entry(prev, struct tree_entry, rb_node); 465 466 if (offset < entry->start) 467 node = &(*node)->rb_left; 468 else if (offset > entry->end) 469 node = &(*node)->rb_right; 470 else 471 return *node; 472 } 473 474 orig_prev = prev; 475 while (prev && offset > entry->end) { 476 prev = rb_next(prev); 477 entry = rb_entry(prev, struct tree_entry, rb_node); 478 } 479 *next_ret = prev; 480 prev = orig_prev; 481 482 entry = rb_entry(prev, struct tree_entry, rb_node); 483 while (prev && offset < entry->start) { 484 prev = rb_prev(prev); 485 entry = rb_entry(prev, struct tree_entry, rb_node); 486 } 487 *prev_ret = prev; 488 489 return NULL; 490 } 491 492 /* 493 * utility function to look for merge candidates inside a given range. 494 * Any extents with matching state are merged together into a single 495 * extent in the tree. Extents with EXTENT_IO in their state field 496 * are not merged because the end_io handlers need to be able to do 497 * operations on them without sleeping (or doing allocations/splits). 498 * 499 * This should be called with the tree lock held. 500 */ 501 static void merge_state(struct extent_io_tree *tree, 502 struct extent_state *state) 503 { 504 struct extent_state *other; 505 struct rb_node *other_node; 506 507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 508 return; 509 510 other_node = rb_prev(&state->rb_node); 511 if (other_node) { 512 other = rb_entry(other_node, struct extent_state, rb_node); 513 if (other->end == state->start - 1 && 514 other->state == state->state) { 515 if (tree->private_data && 516 is_data_inode(tree->private_data)) 517 btrfs_merge_delalloc_extent(tree->private_data, 518 state, other); 519 state->start = other->start; 520 rb_erase(&other->rb_node, &tree->state); 521 RB_CLEAR_NODE(&other->rb_node); 522 free_extent_state(other); 523 } 524 } 525 other_node = rb_next(&state->rb_node); 526 if (other_node) { 527 other = rb_entry(other_node, struct extent_state, rb_node); 528 if (other->start == state->end + 1 && 529 other->state == state->state) { 530 if (tree->private_data && 531 is_data_inode(tree->private_data)) 532 btrfs_merge_delalloc_extent(tree->private_data, 533 state, other); 534 state->end = other->end; 535 rb_erase(&other->rb_node, &tree->state); 536 RB_CLEAR_NODE(&other->rb_node); 537 free_extent_state(other); 538 } 539 } 540 } 541 542 static void set_state_bits(struct extent_io_tree *tree, 543 struct extent_state *state, u32 bits, 544 struct extent_changeset *changeset); 545 546 /* 547 * insert an extent_state struct into the tree. 'bits' are set on the 548 * struct before it is inserted. 549 * 550 * This may return -EEXIST if the extent is already there, in which case the 551 * state struct is freed. 552 * 553 * The tree lock is not taken internally. This is a utility function and 554 * probably isn't what you want to call (see set/clear_extent_bit). 555 */ 556 static int insert_state(struct extent_io_tree *tree, 557 struct extent_state *state, 558 u32 bits, struct extent_changeset *changeset) 559 { 560 struct rb_node **node; 561 struct rb_node *parent; 562 const u64 end = state->end; 563 564 set_state_bits(tree, state, bits, changeset); 565 566 node = &tree->state.rb_node; 567 while (*node) { 568 struct tree_entry *entry; 569 570 parent = *node; 571 entry = rb_entry(parent, struct tree_entry, rb_node); 572 573 if (end < entry->start) { 574 node = &(*node)->rb_left; 575 } else if (end > entry->end) { 576 node = &(*node)->rb_right; 577 } else { 578 btrfs_err(tree->fs_info, 579 "found node %llu %llu on insert of %llu %llu", 580 entry->start, entry->end, state->start, end); 581 return -EEXIST; 582 } 583 } 584 585 rb_link_node(&state->rb_node, parent, node); 586 rb_insert_color(&state->rb_node, &tree->state); 587 588 merge_state(tree, state); 589 return 0; 590 } 591 592 /* 593 * Insert state to @tree to the location given by @node and @parent. 594 */ 595 static void insert_state_fast(struct extent_io_tree *tree, 596 struct extent_state *state, struct rb_node **node, 597 struct rb_node *parent, unsigned bits, 598 struct extent_changeset *changeset) 599 { 600 set_state_bits(tree, state, bits, changeset); 601 rb_link_node(&state->rb_node, parent, node); 602 rb_insert_color(&state->rb_node, &tree->state); 603 merge_state(tree, state); 604 } 605 606 /* 607 * split a given extent state struct in two, inserting the preallocated 608 * struct 'prealloc' as the newly created second half. 'split' indicates an 609 * offset inside 'orig' where it should be split. 610 * 611 * Before calling, 612 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 613 * are two extent state structs in the tree: 614 * prealloc: [orig->start, split - 1] 615 * orig: [ split, orig->end ] 616 * 617 * The tree locks are not taken by this function. They need to be held 618 * by the caller. 619 */ 620 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 621 struct extent_state *prealloc, u64 split) 622 { 623 struct rb_node *parent = NULL; 624 struct rb_node **node; 625 626 if (tree->private_data && is_data_inode(tree->private_data)) 627 btrfs_split_delalloc_extent(tree->private_data, orig, split); 628 629 prealloc->start = orig->start; 630 prealloc->end = split - 1; 631 prealloc->state = orig->state; 632 orig->start = split; 633 634 parent = &orig->rb_node; 635 node = &parent; 636 while (*node) { 637 struct tree_entry *entry; 638 639 parent = *node; 640 entry = rb_entry(parent, struct tree_entry, rb_node); 641 642 if (prealloc->end < entry->start) { 643 node = &(*node)->rb_left; 644 } else if (prealloc->end > entry->end) { 645 node = &(*node)->rb_right; 646 } else { 647 free_extent_state(prealloc); 648 return -EEXIST; 649 } 650 } 651 652 rb_link_node(&prealloc->rb_node, parent, node); 653 rb_insert_color(&prealloc->rb_node, &tree->state); 654 655 return 0; 656 } 657 658 static struct extent_state *next_state(struct extent_state *state) 659 { 660 struct rb_node *next = rb_next(&state->rb_node); 661 if (next) 662 return rb_entry(next, struct extent_state, rb_node); 663 else 664 return NULL; 665 } 666 667 /* 668 * utility function to clear some bits in an extent state struct. 669 * it will optionally wake up anyone waiting on this state (wake == 1). 670 * 671 * If no bits are set on the state struct after clearing things, the 672 * struct is freed and removed from the tree 673 */ 674 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 675 struct extent_state *state, 676 u32 bits, int wake, 677 struct extent_changeset *changeset) 678 { 679 struct extent_state *next; 680 u32 bits_to_clear = bits & ~EXTENT_CTLBITS; 681 int ret; 682 683 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 684 u64 range = state->end - state->start + 1; 685 WARN_ON(range > tree->dirty_bytes); 686 tree->dirty_bytes -= range; 687 } 688 689 if (tree->private_data && is_data_inode(tree->private_data)) 690 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 691 692 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 693 BUG_ON(ret < 0); 694 state->state &= ~bits_to_clear; 695 if (wake) 696 wake_up(&state->wq); 697 if (state->state == 0) { 698 next = next_state(state); 699 if (extent_state_in_tree(state)) { 700 rb_erase(&state->rb_node, &tree->state); 701 RB_CLEAR_NODE(&state->rb_node); 702 free_extent_state(state); 703 } else { 704 WARN_ON(1); 705 } 706 } else { 707 merge_state(tree, state); 708 next = next_state(state); 709 } 710 return next; 711 } 712 713 static struct extent_state * 714 alloc_extent_state_atomic(struct extent_state *prealloc) 715 { 716 if (!prealloc) 717 prealloc = alloc_extent_state(GFP_ATOMIC); 718 719 return prealloc; 720 } 721 722 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 723 { 724 btrfs_panic(tree->fs_info, err, 725 "locking error: extent tree was modified by another thread while locked"); 726 } 727 728 /* 729 * clear some bits on a range in the tree. This may require splitting 730 * or inserting elements in the tree, so the gfp mask is used to 731 * indicate which allocations or sleeping are allowed. 732 * 733 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 734 * the given range from the tree regardless of state (ie for truncate). 735 * 736 * the range [start, end] is inclusive. 737 * 738 * This takes the tree lock, and returns 0 on success and < 0 on error. 739 */ 740 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 741 u32 bits, int wake, int delete, 742 struct extent_state **cached_state, 743 gfp_t mask, struct extent_changeset *changeset) 744 { 745 struct extent_state *state; 746 struct extent_state *cached; 747 struct extent_state *prealloc = NULL; 748 struct rb_node *node; 749 u64 last_end; 750 int err; 751 int clear = 0; 752 753 btrfs_debug_check_extent_io_range(tree, start, end); 754 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 755 756 if (bits & EXTENT_DELALLOC) 757 bits |= EXTENT_NORESERVE; 758 759 if (delete) 760 bits |= ~EXTENT_CTLBITS; 761 762 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 763 clear = 1; 764 again: 765 if (!prealloc && gfpflags_allow_blocking(mask)) { 766 /* 767 * Don't care for allocation failure here because we might end 768 * up not needing the pre-allocated extent state at all, which 769 * is the case if we only have in the tree extent states that 770 * cover our input range and don't cover too any other range. 771 * If we end up needing a new extent state we allocate it later. 772 */ 773 prealloc = alloc_extent_state(mask); 774 } 775 776 spin_lock(&tree->lock); 777 if (cached_state) { 778 cached = *cached_state; 779 780 if (clear) { 781 *cached_state = NULL; 782 cached_state = NULL; 783 } 784 785 if (cached && extent_state_in_tree(cached) && 786 cached->start <= start && cached->end > start) { 787 if (clear) 788 refcount_dec(&cached->refs); 789 state = cached; 790 goto hit_next; 791 } 792 if (clear) 793 free_extent_state(cached); 794 } 795 /* 796 * this search will find the extents that end after 797 * our range starts 798 */ 799 node = tree_search(tree, start); 800 if (!node) 801 goto out; 802 state = rb_entry(node, struct extent_state, rb_node); 803 hit_next: 804 if (state->start > end) 805 goto out; 806 WARN_ON(state->end < start); 807 last_end = state->end; 808 809 /* the state doesn't have the wanted bits, go ahead */ 810 if (!(state->state & bits)) { 811 state = next_state(state); 812 goto next; 813 } 814 815 /* 816 * | ---- desired range ---- | 817 * | state | or 818 * | ------------- state -------------- | 819 * 820 * We need to split the extent we found, and may flip 821 * bits on second half. 822 * 823 * If the extent we found extends past our range, we 824 * just split and search again. It'll get split again 825 * the next time though. 826 * 827 * If the extent we found is inside our range, we clear 828 * the desired bit on it. 829 */ 830 831 if (state->start < start) { 832 prealloc = alloc_extent_state_atomic(prealloc); 833 BUG_ON(!prealloc); 834 err = split_state(tree, state, prealloc, start); 835 if (err) 836 extent_io_tree_panic(tree, err); 837 838 prealloc = NULL; 839 if (err) 840 goto out; 841 if (state->end <= end) { 842 state = clear_state_bit(tree, state, bits, wake, changeset); 843 goto next; 844 } 845 goto search_again; 846 } 847 /* 848 * | ---- desired range ---- | 849 * | state | 850 * We need to split the extent, and clear the bit 851 * on the first half 852 */ 853 if (state->start <= end && state->end > end) { 854 prealloc = alloc_extent_state_atomic(prealloc); 855 BUG_ON(!prealloc); 856 err = split_state(tree, state, prealloc, end + 1); 857 if (err) 858 extent_io_tree_panic(tree, err); 859 860 if (wake) 861 wake_up(&state->wq); 862 863 clear_state_bit(tree, prealloc, bits, wake, changeset); 864 865 prealloc = NULL; 866 goto out; 867 } 868 869 state = clear_state_bit(tree, state, bits, wake, changeset); 870 next: 871 if (last_end == (u64)-1) 872 goto out; 873 start = last_end + 1; 874 if (start <= end && state && !need_resched()) 875 goto hit_next; 876 877 search_again: 878 if (start > end) 879 goto out; 880 spin_unlock(&tree->lock); 881 if (gfpflags_allow_blocking(mask)) 882 cond_resched(); 883 goto again; 884 885 out: 886 spin_unlock(&tree->lock); 887 if (prealloc) 888 free_extent_state(prealloc); 889 890 return 0; 891 892 } 893 894 static void wait_on_state(struct extent_io_tree *tree, 895 struct extent_state *state) 896 __releases(tree->lock) 897 __acquires(tree->lock) 898 { 899 DEFINE_WAIT(wait); 900 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 901 spin_unlock(&tree->lock); 902 schedule(); 903 spin_lock(&tree->lock); 904 finish_wait(&state->wq, &wait); 905 } 906 907 /* 908 * waits for one or more bits to clear on a range in the state tree. 909 * The range [start, end] is inclusive. 910 * The tree lock is taken by this function 911 */ 912 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 913 u32 bits) 914 { 915 struct extent_state *state; 916 struct rb_node *node; 917 918 btrfs_debug_check_extent_io_range(tree, start, end); 919 920 spin_lock(&tree->lock); 921 again: 922 while (1) { 923 /* 924 * this search will find all the extents that end after 925 * our range starts 926 */ 927 node = tree_search(tree, start); 928 process_node: 929 if (!node) 930 break; 931 932 state = rb_entry(node, struct extent_state, rb_node); 933 934 if (state->start > end) 935 goto out; 936 937 if (state->state & bits) { 938 start = state->start; 939 refcount_inc(&state->refs); 940 wait_on_state(tree, state); 941 free_extent_state(state); 942 goto again; 943 } 944 start = state->end + 1; 945 946 if (start > end) 947 break; 948 949 if (!cond_resched_lock(&tree->lock)) { 950 node = rb_next(node); 951 goto process_node; 952 } 953 } 954 out: 955 spin_unlock(&tree->lock); 956 } 957 958 static void set_state_bits(struct extent_io_tree *tree, 959 struct extent_state *state, 960 u32 bits, struct extent_changeset *changeset) 961 { 962 u32 bits_to_set = bits & ~EXTENT_CTLBITS; 963 int ret; 964 965 if (tree->private_data && is_data_inode(tree->private_data)) 966 btrfs_set_delalloc_extent(tree->private_data, state, bits); 967 968 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 969 u64 range = state->end - state->start + 1; 970 tree->dirty_bytes += range; 971 } 972 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 973 BUG_ON(ret < 0); 974 state->state |= bits_to_set; 975 } 976 977 static void cache_state_if_flags(struct extent_state *state, 978 struct extent_state **cached_ptr, 979 unsigned flags) 980 { 981 if (cached_ptr && !(*cached_ptr)) { 982 if (!flags || (state->state & flags)) { 983 *cached_ptr = state; 984 refcount_inc(&state->refs); 985 } 986 } 987 } 988 989 static void cache_state(struct extent_state *state, 990 struct extent_state **cached_ptr) 991 { 992 return cache_state_if_flags(state, cached_ptr, 993 EXTENT_LOCKED | EXTENT_BOUNDARY); 994 } 995 996 /* 997 * set some bits on a range in the tree. This may require allocations or 998 * sleeping, so the gfp mask is used to indicate what is allowed. 999 * 1000 * If any of the exclusive bits are set, this will fail with -EEXIST if some 1001 * part of the range already has the desired bits set. The start of the 1002 * existing range is returned in failed_start in this case. 1003 * 1004 * [start, end] is inclusive This takes the tree lock. 1005 */ 1006 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 1007 u32 exclusive_bits, u64 *failed_start, 1008 struct extent_state **cached_state, gfp_t mask, 1009 struct extent_changeset *changeset) 1010 { 1011 struct extent_state *state; 1012 struct extent_state *prealloc = NULL; 1013 struct rb_node *node; 1014 struct rb_node **p; 1015 struct rb_node *parent; 1016 int err = 0; 1017 u64 last_start; 1018 u64 last_end; 1019 1020 btrfs_debug_check_extent_io_range(tree, start, end); 1021 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 1022 1023 if (exclusive_bits) 1024 ASSERT(failed_start); 1025 else 1026 ASSERT(failed_start == NULL); 1027 again: 1028 if (!prealloc && gfpflags_allow_blocking(mask)) { 1029 /* 1030 * Don't care for allocation failure here because we might end 1031 * up not needing the pre-allocated extent state at all, which 1032 * is the case if we only have in the tree extent states that 1033 * cover our input range and don't cover too any other range. 1034 * If we end up needing a new extent state we allocate it later. 1035 */ 1036 prealloc = alloc_extent_state(mask); 1037 } 1038 1039 spin_lock(&tree->lock); 1040 if (cached_state && *cached_state) { 1041 state = *cached_state; 1042 if (state->start <= start && state->end > start && 1043 extent_state_in_tree(state)) { 1044 node = &state->rb_node; 1045 goto hit_next; 1046 } 1047 } 1048 /* 1049 * this search will find all the extents that end after 1050 * our range starts. 1051 */ 1052 node = tree_search_for_insert(tree, start, &p, &parent); 1053 if (!node) { 1054 prealloc = alloc_extent_state_atomic(prealloc); 1055 BUG_ON(!prealloc); 1056 prealloc->start = start; 1057 prealloc->end = end; 1058 insert_state_fast(tree, prealloc, p, parent, bits, changeset); 1059 cache_state(prealloc, cached_state); 1060 prealloc = NULL; 1061 goto out; 1062 } 1063 state = rb_entry(node, struct extent_state, rb_node); 1064 hit_next: 1065 last_start = state->start; 1066 last_end = state->end; 1067 1068 /* 1069 * | ---- desired range ---- | 1070 * | state | 1071 * 1072 * Just lock what we found and keep going 1073 */ 1074 if (state->start == start && state->end <= end) { 1075 if (state->state & exclusive_bits) { 1076 *failed_start = state->start; 1077 err = -EEXIST; 1078 goto out; 1079 } 1080 1081 set_state_bits(tree, state, bits, changeset); 1082 cache_state(state, cached_state); 1083 merge_state(tree, state); 1084 if (last_end == (u64)-1) 1085 goto out; 1086 start = last_end + 1; 1087 state = next_state(state); 1088 if (start < end && state && state->start == start && 1089 !need_resched()) 1090 goto hit_next; 1091 goto search_again; 1092 } 1093 1094 /* 1095 * | ---- desired range ---- | 1096 * | state | 1097 * or 1098 * | ------------- state -------------- | 1099 * 1100 * We need to split the extent we found, and may flip bits on 1101 * second half. 1102 * 1103 * If the extent we found extends past our 1104 * range, we just split and search again. It'll get split 1105 * again the next time though. 1106 * 1107 * If the extent we found is inside our range, we set the 1108 * desired bit on it. 1109 */ 1110 if (state->start < start) { 1111 if (state->state & exclusive_bits) { 1112 *failed_start = start; 1113 err = -EEXIST; 1114 goto out; 1115 } 1116 1117 /* 1118 * If this extent already has all the bits we want set, then 1119 * skip it, not necessary to split it or do anything with it. 1120 */ 1121 if ((state->state & bits) == bits) { 1122 start = state->end + 1; 1123 cache_state(state, cached_state); 1124 goto search_again; 1125 } 1126 1127 prealloc = alloc_extent_state_atomic(prealloc); 1128 BUG_ON(!prealloc); 1129 err = split_state(tree, state, prealloc, start); 1130 if (err) 1131 extent_io_tree_panic(tree, err); 1132 1133 prealloc = NULL; 1134 if (err) 1135 goto out; 1136 if (state->end <= end) { 1137 set_state_bits(tree, state, bits, changeset); 1138 cache_state(state, cached_state); 1139 merge_state(tree, state); 1140 if (last_end == (u64)-1) 1141 goto out; 1142 start = last_end + 1; 1143 state = next_state(state); 1144 if (start < end && state && state->start == start && 1145 !need_resched()) 1146 goto hit_next; 1147 } 1148 goto search_again; 1149 } 1150 /* 1151 * | ---- desired range ---- | 1152 * | state | or | state | 1153 * 1154 * There's a hole, we need to insert something in it and 1155 * ignore the extent we found. 1156 */ 1157 if (state->start > start) { 1158 u64 this_end; 1159 if (end < last_start) 1160 this_end = end; 1161 else 1162 this_end = last_start - 1; 1163 1164 prealloc = alloc_extent_state_atomic(prealloc); 1165 BUG_ON(!prealloc); 1166 1167 /* 1168 * Avoid to free 'prealloc' if it can be merged with 1169 * the later extent. 1170 */ 1171 prealloc->start = start; 1172 prealloc->end = this_end; 1173 err = insert_state(tree, prealloc, bits, changeset); 1174 if (err) 1175 extent_io_tree_panic(tree, err); 1176 1177 cache_state(prealloc, cached_state); 1178 prealloc = NULL; 1179 start = this_end + 1; 1180 goto search_again; 1181 } 1182 /* 1183 * | ---- desired range ---- | 1184 * | state | 1185 * We need to split the extent, and set the bit 1186 * on the first half 1187 */ 1188 if (state->start <= end && state->end > end) { 1189 if (state->state & exclusive_bits) { 1190 *failed_start = start; 1191 err = -EEXIST; 1192 goto out; 1193 } 1194 1195 prealloc = alloc_extent_state_atomic(prealloc); 1196 BUG_ON(!prealloc); 1197 err = split_state(tree, state, prealloc, end + 1); 1198 if (err) 1199 extent_io_tree_panic(tree, err); 1200 1201 set_state_bits(tree, prealloc, bits, changeset); 1202 cache_state(prealloc, cached_state); 1203 merge_state(tree, prealloc); 1204 prealloc = NULL; 1205 goto out; 1206 } 1207 1208 search_again: 1209 if (start > end) 1210 goto out; 1211 spin_unlock(&tree->lock); 1212 if (gfpflags_allow_blocking(mask)) 1213 cond_resched(); 1214 goto again; 1215 1216 out: 1217 spin_unlock(&tree->lock); 1218 if (prealloc) 1219 free_extent_state(prealloc); 1220 1221 return err; 1222 1223 } 1224 1225 /** 1226 * convert_extent_bit - convert all bits in a given range from one bit to 1227 * another 1228 * @tree: the io tree to search 1229 * @start: the start offset in bytes 1230 * @end: the end offset in bytes (inclusive) 1231 * @bits: the bits to set in this range 1232 * @clear_bits: the bits to clear in this range 1233 * @cached_state: state that we're going to cache 1234 * 1235 * This will go through and set bits for the given range. If any states exist 1236 * already in this range they are set with the given bit and cleared of the 1237 * clear_bits. This is only meant to be used by things that are mergeable, ie 1238 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1239 * boundary bits like LOCK. 1240 * 1241 * All allocations are done with GFP_NOFS. 1242 */ 1243 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1244 u32 bits, u32 clear_bits, 1245 struct extent_state **cached_state) 1246 { 1247 struct extent_state *state; 1248 struct extent_state *prealloc = NULL; 1249 struct rb_node *node; 1250 struct rb_node **p; 1251 struct rb_node *parent; 1252 int err = 0; 1253 u64 last_start; 1254 u64 last_end; 1255 bool first_iteration = true; 1256 1257 btrfs_debug_check_extent_io_range(tree, start, end); 1258 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1259 clear_bits); 1260 1261 again: 1262 if (!prealloc) { 1263 /* 1264 * Best effort, don't worry if extent state allocation fails 1265 * here for the first iteration. We might have a cached state 1266 * that matches exactly the target range, in which case no 1267 * extent state allocations are needed. We'll only know this 1268 * after locking the tree. 1269 */ 1270 prealloc = alloc_extent_state(GFP_NOFS); 1271 if (!prealloc && !first_iteration) 1272 return -ENOMEM; 1273 } 1274 1275 spin_lock(&tree->lock); 1276 if (cached_state && *cached_state) { 1277 state = *cached_state; 1278 if (state->start <= start && state->end > start && 1279 extent_state_in_tree(state)) { 1280 node = &state->rb_node; 1281 goto hit_next; 1282 } 1283 } 1284 1285 /* 1286 * this search will find all the extents that end after 1287 * our range starts. 1288 */ 1289 node = tree_search_for_insert(tree, start, &p, &parent); 1290 if (!node) { 1291 prealloc = alloc_extent_state_atomic(prealloc); 1292 if (!prealloc) { 1293 err = -ENOMEM; 1294 goto out; 1295 } 1296 prealloc->start = start; 1297 prealloc->end = end; 1298 insert_state_fast(tree, prealloc, p, parent, bits, NULL); 1299 cache_state(prealloc, cached_state); 1300 prealloc = NULL; 1301 goto out; 1302 } 1303 state = rb_entry(node, struct extent_state, rb_node); 1304 hit_next: 1305 last_start = state->start; 1306 last_end = state->end; 1307 1308 /* 1309 * | ---- desired range ---- | 1310 * | state | 1311 * 1312 * Just lock what we found and keep going 1313 */ 1314 if (state->start == start && state->end <= end) { 1315 set_state_bits(tree, state, bits, NULL); 1316 cache_state(state, cached_state); 1317 state = clear_state_bit(tree, state, clear_bits, 0, NULL); 1318 if (last_end == (u64)-1) 1319 goto out; 1320 start = last_end + 1; 1321 if (start < end && state && state->start == start && 1322 !need_resched()) 1323 goto hit_next; 1324 goto search_again; 1325 } 1326 1327 /* 1328 * | ---- desired range ---- | 1329 * | state | 1330 * or 1331 * | ------------- state -------------- | 1332 * 1333 * We need to split the extent we found, and may flip bits on 1334 * second half. 1335 * 1336 * If the extent we found extends past our 1337 * range, we just split and search again. It'll get split 1338 * again the next time though. 1339 * 1340 * If the extent we found is inside our range, we set the 1341 * desired bit on it. 1342 */ 1343 if (state->start < start) { 1344 prealloc = alloc_extent_state_atomic(prealloc); 1345 if (!prealloc) { 1346 err = -ENOMEM; 1347 goto out; 1348 } 1349 err = split_state(tree, state, prealloc, start); 1350 if (err) 1351 extent_io_tree_panic(tree, err); 1352 prealloc = NULL; 1353 if (err) 1354 goto out; 1355 if (state->end <= end) { 1356 set_state_bits(tree, state, bits, NULL); 1357 cache_state(state, cached_state); 1358 state = clear_state_bit(tree, state, clear_bits, 0, NULL); 1359 if (last_end == (u64)-1) 1360 goto out; 1361 start = last_end + 1; 1362 if (start < end && state && state->start == start && 1363 !need_resched()) 1364 goto hit_next; 1365 } 1366 goto search_again; 1367 } 1368 /* 1369 * | ---- desired range ---- | 1370 * | state | or | state | 1371 * 1372 * There's a hole, we need to insert something in it and 1373 * ignore the extent we found. 1374 */ 1375 if (state->start > start) { 1376 u64 this_end; 1377 if (end < last_start) 1378 this_end = end; 1379 else 1380 this_end = last_start - 1; 1381 1382 prealloc = alloc_extent_state_atomic(prealloc); 1383 if (!prealloc) { 1384 err = -ENOMEM; 1385 goto out; 1386 } 1387 1388 /* 1389 * Avoid to free 'prealloc' if it can be merged with 1390 * the later extent. 1391 */ 1392 prealloc->start = start; 1393 prealloc->end = this_end; 1394 err = insert_state(tree, prealloc, bits, NULL); 1395 if (err) 1396 extent_io_tree_panic(tree, err); 1397 cache_state(prealloc, cached_state); 1398 prealloc = NULL; 1399 start = this_end + 1; 1400 goto search_again; 1401 } 1402 /* 1403 * | ---- desired range ---- | 1404 * | state | 1405 * We need to split the extent, and set the bit 1406 * on the first half 1407 */ 1408 if (state->start <= end && state->end > end) { 1409 prealloc = alloc_extent_state_atomic(prealloc); 1410 if (!prealloc) { 1411 err = -ENOMEM; 1412 goto out; 1413 } 1414 1415 err = split_state(tree, state, prealloc, end + 1); 1416 if (err) 1417 extent_io_tree_panic(tree, err); 1418 1419 set_state_bits(tree, prealloc, bits, NULL); 1420 cache_state(prealloc, cached_state); 1421 clear_state_bit(tree, prealloc, clear_bits, 0, NULL); 1422 prealloc = NULL; 1423 goto out; 1424 } 1425 1426 search_again: 1427 if (start > end) 1428 goto out; 1429 spin_unlock(&tree->lock); 1430 cond_resched(); 1431 first_iteration = false; 1432 goto again; 1433 1434 out: 1435 spin_unlock(&tree->lock); 1436 if (prealloc) 1437 free_extent_state(prealloc); 1438 1439 return err; 1440 } 1441 1442 /* wrappers around set/clear extent bit */ 1443 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1444 u32 bits, struct extent_changeset *changeset) 1445 { 1446 /* 1447 * We don't support EXTENT_LOCKED yet, as current changeset will 1448 * record any bits changed, so for EXTENT_LOCKED case, it will 1449 * either fail with -EEXIST or changeset will record the whole 1450 * range. 1451 */ 1452 BUG_ON(bits & EXTENT_LOCKED); 1453 1454 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1455 changeset); 1456 } 1457 1458 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1459 u32 bits) 1460 { 1461 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1462 GFP_NOWAIT, NULL); 1463 } 1464 1465 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1466 u32 bits, int wake, int delete, 1467 struct extent_state **cached) 1468 { 1469 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1470 cached, GFP_NOFS, NULL); 1471 } 1472 1473 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1474 u32 bits, struct extent_changeset *changeset) 1475 { 1476 /* 1477 * Don't support EXTENT_LOCKED case, same reason as 1478 * set_record_extent_bits(). 1479 */ 1480 BUG_ON(bits & EXTENT_LOCKED); 1481 1482 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1483 changeset); 1484 } 1485 1486 /* 1487 * either insert or lock state struct between start and end use mask to tell 1488 * us if waiting is desired. 1489 */ 1490 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1491 struct extent_state **cached_state) 1492 { 1493 int err; 1494 u64 failed_start; 1495 1496 while (1) { 1497 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1498 EXTENT_LOCKED, &failed_start, 1499 cached_state, GFP_NOFS, NULL); 1500 if (err == -EEXIST) { 1501 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1502 start = failed_start; 1503 } else 1504 break; 1505 WARN_ON(start > end); 1506 } 1507 return err; 1508 } 1509 1510 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1511 { 1512 int err; 1513 u64 failed_start; 1514 1515 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1516 &failed_start, NULL, GFP_NOFS, NULL); 1517 if (err == -EEXIST) { 1518 if (failed_start > start) 1519 clear_extent_bit(tree, start, failed_start - 1, 1520 EXTENT_LOCKED, 1, 0, NULL); 1521 return 0; 1522 } 1523 return 1; 1524 } 1525 1526 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1527 { 1528 unsigned long index = start >> PAGE_SHIFT; 1529 unsigned long end_index = end >> PAGE_SHIFT; 1530 struct page *page; 1531 1532 while (index <= end_index) { 1533 page = find_get_page(inode->i_mapping, index); 1534 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1535 clear_page_dirty_for_io(page); 1536 put_page(page); 1537 index++; 1538 } 1539 } 1540 1541 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1542 { 1543 struct address_space *mapping = inode->i_mapping; 1544 unsigned long index = start >> PAGE_SHIFT; 1545 unsigned long end_index = end >> PAGE_SHIFT; 1546 struct folio *folio; 1547 1548 while (index <= end_index) { 1549 folio = filemap_get_folio(mapping, index); 1550 filemap_dirty_folio(mapping, folio); 1551 folio_account_redirty(folio); 1552 index += folio_nr_pages(folio); 1553 folio_put(folio); 1554 } 1555 } 1556 1557 /* find the first state struct with 'bits' set after 'start', and 1558 * return it. tree->lock must be held. NULL will returned if 1559 * nothing was found after 'start' 1560 */ 1561 static struct extent_state * 1562 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1563 { 1564 struct rb_node *node; 1565 struct extent_state *state; 1566 1567 /* 1568 * this search will find all the extents that end after 1569 * our range starts. 1570 */ 1571 node = tree_search(tree, start); 1572 if (!node) 1573 goto out; 1574 1575 while (1) { 1576 state = rb_entry(node, struct extent_state, rb_node); 1577 if (state->end >= start && (state->state & bits)) 1578 return state; 1579 1580 node = rb_next(node); 1581 if (!node) 1582 break; 1583 } 1584 out: 1585 return NULL; 1586 } 1587 1588 /* 1589 * Find the first offset in the io tree with one or more @bits set. 1590 * 1591 * Note: If there are multiple bits set in @bits, any of them will match. 1592 * 1593 * Return 0 if we find something, and update @start_ret and @end_ret. 1594 * Return 1 if we found nothing. 1595 */ 1596 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1597 u64 *start_ret, u64 *end_ret, u32 bits, 1598 struct extent_state **cached_state) 1599 { 1600 struct extent_state *state; 1601 int ret = 1; 1602 1603 spin_lock(&tree->lock); 1604 if (cached_state && *cached_state) { 1605 state = *cached_state; 1606 if (state->end == start - 1 && extent_state_in_tree(state)) { 1607 while ((state = next_state(state)) != NULL) { 1608 if (state->state & bits) 1609 goto got_it; 1610 } 1611 free_extent_state(*cached_state); 1612 *cached_state = NULL; 1613 goto out; 1614 } 1615 free_extent_state(*cached_state); 1616 *cached_state = NULL; 1617 } 1618 1619 state = find_first_extent_bit_state(tree, start, bits); 1620 got_it: 1621 if (state) { 1622 cache_state_if_flags(state, cached_state, 0); 1623 *start_ret = state->start; 1624 *end_ret = state->end; 1625 ret = 0; 1626 } 1627 out: 1628 spin_unlock(&tree->lock); 1629 return ret; 1630 } 1631 1632 /** 1633 * Find a contiguous area of bits 1634 * 1635 * @tree: io tree to check 1636 * @start: offset to start the search from 1637 * @start_ret: the first offset we found with the bits set 1638 * @end_ret: the final contiguous range of the bits that were set 1639 * @bits: bits to look for 1640 * 1641 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1642 * to set bits appropriately, and then merge them again. During this time it 1643 * will drop the tree->lock, so use this helper if you want to find the actual 1644 * contiguous area for given bits. We will search to the first bit we find, and 1645 * then walk down the tree until we find a non-contiguous area. The area 1646 * returned will be the full contiguous area with the bits set. 1647 */ 1648 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1649 u64 *start_ret, u64 *end_ret, u32 bits) 1650 { 1651 struct extent_state *state; 1652 int ret = 1; 1653 1654 spin_lock(&tree->lock); 1655 state = find_first_extent_bit_state(tree, start, bits); 1656 if (state) { 1657 *start_ret = state->start; 1658 *end_ret = state->end; 1659 while ((state = next_state(state)) != NULL) { 1660 if (state->start > (*end_ret + 1)) 1661 break; 1662 *end_ret = state->end; 1663 } 1664 ret = 0; 1665 } 1666 spin_unlock(&tree->lock); 1667 return ret; 1668 } 1669 1670 /** 1671 * Find the first range that has @bits not set. This range could start before 1672 * @start. 1673 * 1674 * @tree: the tree to search 1675 * @start: offset at/after which the found extent should start 1676 * @start_ret: records the beginning of the range 1677 * @end_ret: records the end of the range (inclusive) 1678 * @bits: the set of bits which must be unset 1679 * 1680 * Since unallocated range is also considered one which doesn't have the bits 1681 * set it's possible that @end_ret contains -1, this happens in case the range 1682 * spans (last_range_end, end of device]. In this case it's up to the caller to 1683 * trim @end_ret to the appropriate size. 1684 */ 1685 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1686 u64 *start_ret, u64 *end_ret, u32 bits) 1687 { 1688 struct extent_state *state; 1689 struct rb_node *node, *prev = NULL, *next; 1690 1691 spin_lock(&tree->lock); 1692 1693 /* Find first extent with bits cleared */ 1694 while (1) { 1695 node = tree_search_prev_next(tree, start, &prev, &next); 1696 if (!node && !next && !prev) { 1697 /* 1698 * Tree is completely empty, send full range and let 1699 * caller deal with it 1700 */ 1701 *start_ret = 0; 1702 *end_ret = -1; 1703 goto out; 1704 } else if (!node && !next) { 1705 /* 1706 * We are past the last allocated chunk, set start at 1707 * the end of the last extent. 1708 */ 1709 state = rb_entry(prev, struct extent_state, rb_node); 1710 *start_ret = state->end + 1; 1711 *end_ret = -1; 1712 goto out; 1713 } else if (!node) { 1714 node = next; 1715 } 1716 /* 1717 * At this point 'node' either contains 'start' or start is 1718 * before 'node' 1719 */ 1720 state = rb_entry(node, struct extent_state, rb_node); 1721 1722 if (in_range(start, state->start, state->end - state->start + 1)) { 1723 if (state->state & bits) { 1724 /* 1725 * |--range with bits sets--| 1726 * | 1727 * start 1728 */ 1729 start = state->end + 1; 1730 } else { 1731 /* 1732 * 'start' falls within a range that doesn't 1733 * have the bits set, so take its start as 1734 * the beginning of the desired range 1735 * 1736 * |--range with bits cleared----| 1737 * | 1738 * start 1739 */ 1740 *start_ret = state->start; 1741 break; 1742 } 1743 } else { 1744 /* 1745 * |---prev range---|---hole/unset---|---node range---| 1746 * | 1747 * start 1748 * 1749 * or 1750 * 1751 * |---hole/unset--||--first node--| 1752 * 0 | 1753 * start 1754 */ 1755 if (prev) { 1756 state = rb_entry(prev, struct extent_state, 1757 rb_node); 1758 *start_ret = state->end + 1; 1759 } else { 1760 *start_ret = 0; 1761 } 1762 break; 1763 } 1764 } 1765 1766 /* 1767 * Find the longest stretch from start until an entry which has the 1768 * bits set 1769 */ 1770 while (1) { 1771 state = rb_entry(node, struct extent_state, rb_node); 1772 if (state->end >= start && !(state->state & bits)) { 1773 *end_ret = state->end; 1774 } else { 1775 *end_ret = state->start - 1; 1776 break; 1777 } 1778 1779 node = rb_next(node); 1780 if (!node) 1781 break; 1782 } 1783 out: 1784 spin_unlock(&tree->lock); 1785 } 1786 1787 /* 1788 * find a contiguous range of bytes in the file marked as delalloc, not 1789 * more than 'max_bytes'. start and end are used to return the range, 1790 * 1791 * true is returned if we find something, false if nothing was in the tree 1792 */ 1793 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1794 u64 *end, u64 max_bytes, 1795 struct extent_state **cached_state) 1796 { 1797 struct rb_node *node; 1798 struct extent_state *state; 1799 u64 cur_start = *start; 1800 bool found = false; 1801 u64 total_bytes = 0; 1802 1803 spin_lock(&tree->lock); 1804 1805 /* 1806 * this search will find all the extents that end after 1807 * our range starts. 1808 */ 1809 node = tree_search(tree, cur_start); 1810 if (!node) { 1811 *end = (u64)-1; 1812 goto out; 1813 } 1814 1815 while (1) { 1816 state = rb_entry(node, struct extent_state, rb_node); 1817 if (found && (state->start != cur_start || 1818 (state->state & EXTENT_BOUNDARY))) { 1819 goto out; 1820 } 1821 if (!(state->state & EXTENT_DELALLOC)) { 1822 if (!found) 1823 *end = state->end; 1824 goto out; 1825 } 1826 if (!found) { 1827 *start = state->start; 1828 *cached_state = state; 1829 refcount_inc(&state->refs); 1830 } 1831 found = true; 1832 *end = state->end; 1833 cur_start = state->end + 1; 1834 node = rb_next(node); 1835 total_bytes += state->end - state->start + 1; 1836 if (total_bytes >= max_bytes) 1837 break; 1838 if (!node) 1839 break; 1840 } 1841 out: 1842 spin_unlock(&tree->lock); 1843 return found; 1844 } 1845 1846 /* 1847 * Process one page for __process_pages_contig(). 1848 * 1849 * Return >0 if we hit @page == @locked_page. 1850 * Return 0 if we updated the page status. 1851 * Return -EGAIN if the we need to try again. 1852 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1853 */ 1854 static int process_one_page(struct btrfs_fs_info *fs_info, 1855 struct address_space *mapping, 1856 struct page *page, struct page *locked_page, 1857 unsigned long page_ops, u64 start, u64 end) 1858 { 1859 u32 len; 1860 1861 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1862 len = end + 1 - start; 1863 1864 if (page_ops & PAGE_SET_ORDERED) 1865 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1866 if (page_ops & PAGE_SET_ERROR) 1867 btrfs_page_clamp_set_error(fs_info, page, start, len); 1868 if (page_ops & PAGE_START_WRITEBACK) { 1869 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1870 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1871 } 1872 if (page_ops & PAGE_END_WRITEBACK) 1873 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1874 1875 if (page == locked_page) 1876 return 1; 1877 1878 if (page_ops & PAGE_LOCK) { 1879 int ret; 1880 1881 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1882 if (ret) 1883 return ret; 1884 if (!PageDirty(page) || page->mapping != mapping) { 1885 btrfs_page_end_writer_lock(fs_info, page, start, len); 1886 return -EAGAIN; 1887 } 1888 } 1889 if (page_ops & PAGE_UNLOCK) 1890 btrfs_page_end_writer_lock(fs_info, page, start, len); 1891 return 0; 1892 } 1893 1894 static int __process_pages_contig(struct address_space *mapping, 1895 struct page *locked_page, 1896 u64 start, u64 end, unsigned long page_ops, 1897 u64 *processed_end) 1898 { 1899 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1900 pgoff_t start_index = start >> PAGE_SHIFT; 1901 pgoff_t end_index = end >> PAGE_SHIFT; 1902 pgoff_t index = start_index; 1903 unsigned long nr_pages = end_index - start_index + 1; 1904 unsigned long pages_processed = 0; 1905 struct page *pages[16]; 1906 int err = 0; 1907 int i; 1908 1909 if (page_ops & PAGE_LOCK) { 1910 ASSERT(page_ops == PAGE_LOCK); 1911 ASSERT(processed_end && *processed_end == start); 1912 } 1913 1914 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1915 mapping_set_error(mapping, -EIO); 1916 1917 while (nr_pages > 0) { 1918 int found_pages; 1919 1920 found_pages = find_get_pages_contig(mapping, index, 1921 min_t(unsigned long, 1922 nr_pages, ARRAY_SIZE(pages)), pages); 1923 if (found_pages == 0) { 1924 /* 1925 * Only if we're going to lock these pages, we can find 1926 * nothing at @index. 1927 */ 1928 ASSERT(page_ops & PAGE_LOCK); 1929 err = -EAGAIN; 1930 goto out; 1931 } 1932 1933 for (i = 0; i < found_pages; i++) { 1934 int process_ret; 1935 1936 process_ret = process_one_page(fs_info, mapping, 1937 pages[i], locked_page, page_ops, 1938 start, end); 1939 if (process_ret < 0) { 1940 for (; i < found_pages; i++) 1941 put_page(pages[i]); 1942 err = -EAGAIN; 1943 goto out; 1944 } 1945 put_page(pages[i]); 1946 pages_processed++; 1947 } 1948 nr_pages -= found_pages; 1949 index += found_pages; 1950 cond_resched(); 1951 } 1952 out: 1953 if (err && processed_end) { 1954 /* 1955 * Update @processed_end. I know this is awful since it has 1956 * two different return value patterns (inclusive vs exclusive). 1957 * 1958 * But the exclusive pattern is necessary if @start is 0, or we 1959 * underflow and check against processed_end won't work as 1960 * expected. 1961 */ 1962 if (pages_processed) 1963 *processed_end = min(end, 1964 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1965 else 1966 *processed_end = start; 1967 } 1968 return err; 1969 } 1970 1971 static noinline void __unlock_for_delalloc(struct inode *inode, 1972 struct page *locked_page, 1973 u64 start, u64 end) 1974 { 1975 unsigned long index = start >> PAGE_SHIFT; 1976 unsigned long end_index = end >> PAGE_SHIFT; 1977 1978 ASSERT(locked_page); 1979 if (index == locked_page->index && end_index == index) 1980 return; 1981 1982 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1983 PAGE_UNLOCK, NULL); 1984 } 1985 1986 static noinline int lock_delalloc_pages(struct inode *inode, 1987 struct page *locked_page, 1988 u64 delalloc_start, 1989 u64 delalloc_end) 1990 { 1991 unsigned long index = delalloc_start >> PAGE_SHIFT; 1992 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1993 u64 processed_end = delalloc_start; 1994 int ret; 1995 1996 ASSERT(locked_page); 1997 if (index == locked_page->index && index == end_index) 1998 return 0; 1999 2000 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 2001 delalloc_end, PAGE_LOCK, &processed_end); 2002 if (ret == -EAGAIN && processed_end > delalloc_start) 2003 __unlock_for_delalloc(inode, locked_page, delalloc_start, 2004 processed_end); 2005 return ret; 2006 } 2007 2008 /* 2009 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 2010 * more than @max_bytes. 2011 * 2012 * @start: The original start bytenr to search. 2013 * Will store the extent range start bytenr. 2014 * @end: The original end bytenr of the search range 2015 * Will store the extent range end bytenr. 2016 * 2017 * Return true if we find a delalloc range which starts inside the original 2018 * range, and @start/@end will store the delalloc range start/end. 2019 * 2020 * Return false if we can't find any delalloc range which starts inside the 2021 * original range, and @start/@end will be the non-delalloc range start/end. 2022 */ 2023 EXPORT_FOR_TESTS 2024 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 2025 struct page *locked_page, u64 *start, 2026 u64 *end) 2027 { 2028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2029 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2030 const u64 orig_start = *start; 2031 const u64 orig_end = *end; 2032 /* The sanity tests may not set a valid fs_info. */ 2033 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 2034 u64 delalloc_start; 2035 u64 delalloc_end; 2036 bool found; 2037 struct extent_state *cached_state = NULL; 2038 int ret; 2039 int loops = 0; 2040 2041 /* Caller should pass a valid @end to indicate the search range end */ 2042 ASSERT(orig_end > orig_start); 2043 2044 /* The range should at least cover part of the page */ 2045 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2046 orig_end <= page_offset(locked_page))); 2047 again: 2048 /* step one, find a bunch of delalloc bytes starting at start */ 2049 delalloc_start = *start; 2050 delalloc_end = 0; 2051 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2052 max_bytes, &cached_state); 2053 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2054 *start = delalloc_start; 2055 2056 /* @delalloc_end can be -1, never go beyond @orig_end */ 2057 *end = min(delalloc_end, orig_end); 2058 free_extent_state(cached_state); 2059 return false; 2060 } 2061 2062 /* 2063 * start comes from the offset of locked_page. We have to lock 2064 * pages in order, so we can't process delalloc bytes before 2065 * locked_page 2066 */ 2067 if (delalloc_start < *start) 2068 delalloc_start = *start; 2069 2070 /* 2071 * make sure to limit the number of pages we try to lock down 2072 */ 2073 if (delalloc_end + 1 - delalloc_start > max_bytes) 2074 delalloc_end = delalloc_start + max_bytes - 1; 2075 2076 /* step two, lock all the pages after the page that has start */ 2077 ret = lock_delalloc_pages(inode, locked_page, 2078 delalloc_start, delalloc_end); 2079 ASSERT(!ret || ret == -EAGAIN); 2080 if (ret == -EAGAIN) { 2081 /* some of the pages are gone, lets avoid looping by 2082 * shortening the size of the delalloc range we're searching 2083 */ 2084 free_extent_state(cached_state); 2085 cached_state = NULL; 2086 if (!loops) { 2087 max_bytes = PAGE_SIZE; 2088 loops = 1; 2089 goto again; 2090 } else { 2091 found = false; 2092 goto out_failed; 2093 } 2094 } 2095 2096 /* step three, lock the state bits for the whole range */ 2097 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2098 2099 /* then test to make sure it is all still delalloc */ 2100 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2101 EXTENT_DELALLOC, 1, cached_state); 2102 if (!ret) { 2103 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2104 &cached_state); 2105 __unlock_for_delalloc(inode, locked_page, 2106 delalloc_start, delalloc_end); 2107 cond_resched(); 2108 goto again; 2109 } 2110 free_extent_state(cached_state); 2111 *start = delalloc_start; 2112 *end = delalloc_end; 2113 out_failed: 2114 return found; 2115 } 2116 2117 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2118 struct page *locked_page, 2119 u32 clear_bits, unsigned long page_ops) 2120 { 2121 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2122 2123 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2124 start, end, page_ops, NULL); 2125 } 2126 2127 /* 2128 * count the number of bytes in the tree that have a given bit(s) 2129 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2130 * cached. The total number found is returned. 2131 */ 2132 u64 count_range_bits(struct extent_io_tree *tree, 2133 u64 *start, u64 search_end, u64 max_bytes, 2134 u32 bits, int contig) 2135 { 2136 struct rb_node *node; 2137 struct extent_state *state; 2138 u64 cur_start = *start; 2139 u64 total_bytes = 0; 2140 u64 last = 0; 2141 int found = 0; 2142 2143 if (WARN_ON(search_end <= cur_start)) 2144 return 0; 2145 2146 spin_lock(&tree->lock); 2147 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2148 total_bytes = tree->dirty_bytes; 2149 goto out; 2150 } 2151 /* 2152 * this search will find all the extents that end after 2153 * our range starts. 2154 */ 2155 node = tree_search(tree, cur_start); 2156 if (!node) 2157 goto out; 2158 2159 while (1) { 2160 state = rb_entry(node, struct extent_state, rb_node); 2161 if (state->start > search_end) 2162 break; 2163 if (contig && found && state->start > last + 1) 2164 break; 2165 if (state->end >= cur_start && (state->state & bits) == bits) { 2166 total_bytes += min(search_end, state->end) + 1 - 2167 max(cur_start, state->start); 2168 if (total_bytes >= max_bytes) 2169 break; 2170 if (!found) { 2171 *start = max(cur_start, state->start); 2172 found = 1; 2173 } 2174 last = state->end; 2175 } else if (contig && found) { 2176 break; 2177 } 2178 node = rb_next(node); 2179 if (!node) 2180 break; 2181 } 2182 out: 2183 spin_unlock(&tree->lock); 2184 return total_bytes; 2185 } 2186 2187 /* 2188 * set the private field for a given byte offset in the tree. If there isn't 2189 * an extent_state there already, this does nothing. 2190 */ 2191 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2192 struct io_failure_record *failrec) 2193 { 2194 struct rb_node *node; 2195 struct extent_state *state; 2196 int ret = 0; 2197 2198 spin_lock(&tree->lock); 2199 /* 2200 * this search will find all the extents that end after 2201 * our range starts. 2202 */ 2203 node = tree_search(tree, start); 2204 if (!node) { 2205 ret = -ENOENT; 2206 goto out; 2207 } 2208 state = rb_entry(node, struct extent_state, rb_node); 2209 if (state->start != start) { 2210 ret = -ENOENT; 2211 goto out; 2212 } 2213 state->failrec = failrec; 2214 out: 2215 spin_unlock(&tree->lock); 2216 return ret; 2217 } 2218 2219 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2220 { 2221 struct rb_node *node; 2222 struct extent_state *state; 2223 struct io_failure_record *failrec; 2224 2225 spin_lock(&tree->lock); 2226 /* 2227 * this search will find all the extents that end after 2228 * our range starts. 2229 */ 2230 node = tree_search(tree, start); 2231 if (!node) { 2232 failrec = ERR_PTR(-ENOENT); 2233 goto out; 2234 } 2235 state = rb_entry(node, struct extent_state, rb_node); 2236 if (state->start != start) { 2237 failrec = ERR_PTR(-ENOENT); 2238 goto out; 2239 } 2240 2241 failrec = state->failrec; 2242 out: 2243 spin_unlock(&tree->lock); 2244 return failrec; 2245 } 2246 2247 /* 2248 * searches a range in the state tree for a given mask. 2249 * If 'filled' == 1, this returns 1 only if every extent in the tree 2250 * has the bits set. Otherwise, 1 is returned if any bit in the 2251 * range is found set. 2252 */ 2253 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2254 u32 bits, int filled, struct extent_state *cached) 2255 { 2256 struct extent_state *state = NULL; 2257 struct rb_node *node; 2258 int bitset = 0; 2259 2260 spin_lock(&tree->lock); 2261 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2262 cached->end > start) 2263 node = &cached->rb_node; 2264 else 2265 node = tree_search(tree, start); 2266 while (node && start <= end) { 2267 state = rb_entry(node, struct extent_state, rb_node); 2268 2269 if (filled && state->start > start) { 2270 bitset = 0; 2271 break; 2272 } 2273 2274 if (state->start > end) 2275 break; 2276 2277 if (state->state & bits) { 2278 bitset = 1; 2279 if (!filled) 2280 break; 2281 } else if (filled) { 2282 bitset = 0; 2283 break; 2284 } 2285 2286 if (state->end == (u64)-1) 2287 break; 2288 2289 start = state->end + 1; 2290 if (start > end) 2291 break; 2292 node = rb_next(node); 2293 if (!node) { 2294 if (filled) 2295 bitset = 0; 2296 break; 2297 } 2298 } 2299 spin_unlock(&tree->lock); 2300 return bitset; 2301 } 2302 2303 int free_io_failure(struct extent_io_tree *failure_tree, 2304 struct extent_io_tree *io_tree, 2305 struct io_failure_record *rec) 2306 { 2307 int ret; 2308 int err = 0; 2309 2310 set_state_failrec(failure_tree, rec->start, NULL); 2311 ret = clear_extent_bits(failure_tree, rec->start, 2312 rec->start + rec->len - 1, 2313 EXTENT_LOCKED | EXTENT_DIRTY); 2314 if (ret) 2315 err = ret; 2316 2317 ret = clear_extent_bits(io_tree, rec->start, 2318 rec->start + rec->len - 1, 2319 EXTENT_DAMAGED); 2320 if (ret && !err) 2321 err = ret; 2322 2323 kfree(rec); 2324 return err; 2325 } 2326 2327 /* 2328 * this bypasses the standard btrfs submit functions deliberately, as 2329 * the standard behavior is to write all copies in a raid setup. here we only 2330 * want to write the one bad copy. so we do the mapping for ourselves and issue 2331 * submit_bio directly. 2332 * to avoid any synchronization issues, wait for the data after writing, which 2333 * actually prevents the read that triggered the error from finishing. 2334 * currently, there can be no more than two copies of every data bit. thus, 2335 * exactly one rewrite is required. 2336 */ 2337 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2338 u64 length, u64 logical, struct page *page, 2339 unsigned int pg_offset, int mirror_num) 2340 { 2341 struct btrfs_device *dev; 2342 struct bio_vec bvec; 2343 struct bio bio; 2344 u64 map_length = 0; 2345 u64 sector; 2346 struct btrfs_io_context *bioc = NULL; 2347 int ret = 0; 2348 2349 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2350 BUG_ON(!mirror_num); 2351 2352 if (btrfs_repair_one_zone(fs_info, logical)) 2353 return 0; 2354 2355 map_length = length; 2356 2357 /* 2358 * Avoid races with device replace and make sure our bioc has devices 2359 * associated to its stripes that don't go away while we are doing the 2360 * read repair operation. 2361 */ 2362 btrfs_bio_counter_inc_blocked(fs_info); 2363 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2364 /* 2365 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2366 * to update all raid stripes, but here we just want to correct 2367 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2368 * stripe's dev and sector. 2369 */ 2370 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2371 &map_length, &bioc, 0); 2372 if (ret) 2373 goto out_counter_dec; 2374 ASSERT(bioc->mirror_num == 1); 2375 } else { 2376 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2377 &map_length, &bioc, mirror_num); 2378 if (ret) 2379 goto out_counter_dec; 2380 BUG_ON(mirror_num != bioc->mirror_num); 2381 } 2382 2383 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2384 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2385 btrfs_put_bioc(bioc); 2386 2387 if (!dev || !dev->bdev || 2388 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2389 ret = -EIO; 2390 goto out_counter_dec; 2391 } 2392 2393 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 2394 bio.bi_iter.bi_sector = sector; 2395 __bio_add_page(&bio, page, length, pg_offset); 2396 2397 btrfsic_check_bio(&bio); 2398 ret = submit_bio_wait(&bio); 2399 if (ret) { 2400 /* try to remap that extent elsewhere? */ 2401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2402 goto out_bio_uninit; 2403 } 2404 2405 btrfs_info_rl_in_rcu(fs_info, 2406 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2407 ino, start, 2408 rcu_str_deref(dev->name), sector); 2409 ret = 0; 2410 2411 out_bio_uninit: 2412 bio_uninit(&bio); 2413 out_counter_dec: 2414 btrfs_bio_counter_dec(fs_info); 2415 return ret; 2416 } 2417 2418 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2419 { 2420 struct btrfs_fs_info *fs_info = eb->fs_info; 2421 u64 start = eb->start; 2422 int i, num_pages = num_extent_pages(eb); 2423 int ret = 0; 2424 2425 if (sb_rdonly(fs_info->sb)) 2426 return -EROFS; 2427 2428 for (i = 0; i < num_pages; i++) { 2429 struct page *p = eb->pages[i]; 2430 2431 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2432 start - page_offset(p), mirror_num); 2433 if (ret) 2434 break; 2435 start += PAGE_SIZE; 2436 } 2437 2438 return ret; 2439 } 2440 2441 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) 2442 { 2443 if (cur_mirror == failrec->num_copies) 2444 return cur_mirror + 1 - failrec->num_copies; 2445 return cur_mirror + 1; 2446 } 2447 2448 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) 2449 { 2450 if (cur_mirror == 1) 2451 return failrec->num_copies; 2452 return cur_mirror - 1; 2453 } 2454 2455 /* 2456 * each time an IO finishes, we do a fast check in the IO failure tree 2457 * to see if we need to process or clean up an io_failure_record 2458 */ 2459 int clean_io_failure(struct btrfs_fs_info *fs_info, 2460 struct extent_io_tree *failure_tree, 2461 struct extent_io_tree *io_tree, u64 start, 2462 struct page *page, u64 ino, unsigned int pg_offset) 2463 { 2464 u64 private; 2465 struct io_failure_record *failrec; 2466 struct extent_state *state; 2467 int mirror; 2468 int ret; 2469 2470 private = 0; 2471 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2472 EXTENT_DIRTY, 0); 2473 if (!ret) 2474 return 0; 2475 2476 failrec = get_state_failrec(failure_tree, start); 2477 if (IS_ERR(failrec)) 2478 return 0; 2479 2480 BUG_ON(!failrec->this_mirror); 2481 2482 if (sb_rdonly(fs_info->sb)) 2483 goto out; 2484 2485 spin_lock(&io_tree->lock); 2486 state = find_first_extent_bit_state(io_tree, 2487 failrec->start, 2488 EXTENT_LOCKED); 2489 spin_unlock(&io_tree->lock); 2490 2491 if (!state || state->start > failrec->start || 2492 state->end < failrec->start + failrec->len - 1) 2493 goto out; 2494 2495 mirror = failrec->this_mirror; 2496 do { 2497 mirror = prev_mirror(failrec, mirror); 2498 repair_io_failure(fs_info, ino, start, failrec->len, 2499 failrec->logical, page, pg_offset, mirror); 2500 } while (mirror != failrec->failed_mirror); 2501 2502 out: 2503 free_io_failure(failure_tree, io_tree, failrec); 2504 return 0; 2505 } 2506 2507 /* 2508 * Can be called when 2509 * - hold extent lock 2510 * - under ordered extent 2511 * - the inode is freeing 2512 */ 2513 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2514 { 2515 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2516 struct io_failure_record *failrec; 2517 struct extent_state *state, *next; 2518 2519 if (RB_EMPTY_ROOT(&failure_tree->state)) 2520 return; 2521 2522 spin_lock(&failure_tree->lock); 2523 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2524 while (state) { 2525 if (state->start > end) 2526 break; 2527 2528 ASSERT(state->end <= end); 2529 2530 next = next_state(state); 2531 2532 failrec = state->failrec; 2533 free_extent_state(state); 2534 kfree(failrec); 2535 2536 state = next; 2537 } 2538 spin_unlock(&failure_tree->lock); 2539 } 2540 2541 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2542 struct btrfs_bio *bbio, 2543 unsigned int bio_offset) 2544 { 2545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2546 u64 start = bbio->file_offset + bio_offset; 2547 struct io_failure_record *failrec; 2548 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2549 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2550 const u32 sectorsize = fs_info->sectorsize; 2551 int ret; 2552 2553 failrec = get_state_failrec(failure_tree, start); 2554 if (!IS_ERR(failrec)) { 2555 btrfs_debug(fs_info, 2556 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2557 failrec->logical, failrec->start, failrec->len); 2558 /* 2559 * when data can be on disk more than twice, add to failrec here 2560 * (e.g. with a list for failed_mirror) to make 2561 * clean_io_failure() clean all those errors at once. 2562 */ 2563 ASSERT(failrec->this_mirror == bbio->mirror_num); 2564 ASSERT(failrec->len == fs_info->sectorsize); 2565 return failrec; 2566 } 2567 2568 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2569 if (!failrec) 2570 return ERR_PTR(-ENOMEM); 2571 2572 failrec->start = start; 2573 failrec->len = sectorsize; 2574 failrec->failed_mirror = bbio->mirror_num; 2575 failrec->this_mirror = bbio->mirror_num; 2576 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; 2577 2578 btrfs_debug(fs_info, 2579 "new io failure record logical %llu start %llu", 2580 failrec->logical, start); 2581 2582 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); 2583 if (failrec->num_copies == 1) { 2584 /* 2585 * We only have a single copy of the data, so don't bother with 2586 * all the retry and error correction code that follows. No 2587 * matter what the error is, it is very likely to persist. 2588 */ 2589 btrfs_debug(fs_info, 2590 "cannot repair logical %llu num_copies %d", 2591 failrec->logical, failrec->num_copies); 2592 kfree(failrec); 2593 return ERR_PTR(-EIO); 2594 } 2595 2596 /* Set the bits in the private failure tree */ 2597 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2598 EXTENT_LOCKED | EXTENT_DIRTY); 2599 if (ret >= 0) { 2600 ret = set_state_failrec(failure_tree, start, failrec); 2601 /* Set the bits in the inode's tree */ 2602 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2603 EXTENT_DAMAGED); 2604 } else if (ret < 0) { 2605 kfree(failrec); 2606 return ERR_PTR(ret); 2607 } 2608 2609 return failrec; 2610 } 2611 2612 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio, 2613 u32 bio_offset, struct page *page, unsigned int pgoff, 2614 submit_bio_hook_t *submit_bio_hook) 2615 { 2616 u64 start = failed_bbio->file_offset + bio_offset; 2617 struct io_failure_record *failrec; 2618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2619 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2620 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2621 struct bio *failed_bio = &failed_bbio->bio; 2622 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2623 struct bio *repair_bio; 2624 struct btrfs_bio *repair_bbio; 2625 2626 btrfs_debug(fs_info, 2627 "repair read error: read error at %llu", start); 2628 2629 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2630 2631 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset); 2632 if (IS_ERR(failrec)) 2633 return PTR_ERR(failrec); 2634 2635 /* 2636 * There are two premises: 2637 * a) deliver good data to the caller 2638 * b) correct the bad sectors on disk 2639 * 2640 * Since we're only doing repair for one sector, we only need to get 2641 * a good copy of the failed sector and if we succeed, we have setup 2642 * everything for repair_io_failure to do the rest for us. 2643 */ 2644 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); 2645 if (failrec->this_mirror == failrec->failed_mirror) { 2646 btrfs_debug(fs_info, 2647 "failed to repair num_copies %d this_mirror %d failed_mirror %d", 2648 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); 2649 free_io_failure(failure_tree, tree, failrec); 2650 return -EIO; 2651 } 2652 2653 repair_bio = btrfs_bio_alloc(1); 2654 repair_bbio = btrfs_bio(repair_bio); 2655 repair_bbio->file_offset = start; 2656 repair_bio->bi_opf = REQ_OP_READ; 2657 repair_bio->bi_end_io = failed_bio->bi_end_io; 2658 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2659 repair_bio->bi_private = failed_bio->bi_private; 2660 2661 if (failed_bbio->csum) { 2662 const u32 csum_size = fs_info->csum_size; 2663 2664 repair_bbio->csum = repair_bbio->csum_inline; 2665 memcpy(repair_bbio->csum, 2666 failed_bbio->csum + csum_size * icsum, csum_size); 2667 } 2668 2669 bio_add_page(repair_bio, page, failrec->len, pgoff); 2670 repair_bbio->iter = repair_bio->bi_iter; 2671 2672 btrfs_debug(btrfs_sb(inode->i_sb), 2673 "repair read error: submitting new read to mirror %d", 2674 failrec->this_mirror); 2675 2676 /* 2677 * At this point we have a bio, so any errors from submit_bio_hook() 2678 * will be handled by the endio on the repair_bio, so we can't return an 2679 * error here. 2680 */ 2681 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0); 2682 return BLK_STS_OK; 2683 } 2684 2685 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2686 { 2687 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2688 2689 ASSERT(page_offset(page) <= start && 2690 start + len <= page_offset(page) + PAGE_SIZE); 2691 2692 if (uptodate) { 2693 if (fsverity_active(page->mapping->host) && 2694 !PageError(page) && 2695 !PageUptodate(page) && 2696 start < i_size_read(page->mapping->host) && 2697 !fsverity_verify_page(page)) { 2698 btrfs_page_set_error(fs_info, page, start, len); 2699 } else { 2700 btrfs_page_set_uptodate(fs_info, page, start, len); 2701 } 2702 } else { 2703 btrfs_page_clear_uptodate(fs_info, page, start, len); 2704 btrfs_page_set_error(fs_info, page, start, len); 2705 } 2706 2707 if (!btrfs_is_subpage(fs_info, page)) 2708 unlock_page(page); 2709 else 2710 btrfs_subpage_end_reader(fs_info, page, start, len); 2711 } 2712 2713 static void end_sector_io(struct page *page, u64 offset, bool uptodate) 2714 { 2715 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2716 const u32 sectorsize = inode->root->fs_info->sectorsize; 2717 struct extent_state *cached = NULL; 2718 2719 end_page_read(page, uptodate, offset, sectorsize); 2720 if (uptodate) 2721 set_extent_uptodate(&inode->io_tree, offset, 2722 offset + sectorsize - 1, &cached, GFP_ATOMIC); 2723 unlock_extent_cached_atomic(&inode->io_tree, offset, 2724 offset + sectorsize - 1, &cached); 2725 } 2726 2727 static void submit_data_read_repair(struct inode *inode, 2728 struct btrfs_bio *failed_bbio, 2729 u32 bio_offset, const struct bio_vec *bvec, 2730 unsigned int error_bitmap) 2731 { 2732 const unsigned int pgoff = bvec->bv_offset; 2733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2734 struct page *page = bvec->bv_page; 2735 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; 2736 const u64 end = start + bvec->bv_len - 1; 2737 const u32 sectorsize = fs_info->sectorsize; 2738 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2739 int i; 2740 2741 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); 2742 2743 /* This repair is only for data */ 2744 ASSERT(is_data_inode(inode)); 2745 2746 /* We're here because we had some read errors or csum mismatch */ 2747 ASSERT(error_bitmap); 2748 2749 /* 2750 * We only get called on buffered IO, thus page must be mapped and bio 2751 * must not be cloned. 2752 */ 2753 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); 2754 2755 /* Iterate through all the sectors in the range */ 2756 for (i = 0; i < nr_bits; i++) { 2757 const unsigned int offset = i * sectorsize; 2758 bool uptodate = false; 2759 int ret; 2760 2761 if (!(error_bitmap & (1U << i))) { 2762 /* 2763 * This sector has no error, just end the page read 2764 * and unlock the range. 2765 */ 2766 uptodate = true; 2767 goto next; 2768 } 2769 2770 ret = btrfs_repair_one_sector(inode, failed_bbio, 2771 bio_offset + offset, page, pgoff + offset, 2772 btrfs_submit_data_read_bio); 2773 if (!ret) { 2774 /* 2775 * We have submitted the read repair, the page release 2776 * will be handled by the endio function of the 2777 * submitted repair bio. 2778 * Thus we don't need to do any thing here. 2779 */ 2780 continue; 2781 } 2782 /* 2783 * Continue on failed repair, otherwise the remaining sectors 2784 * will not be properly unlocked. 2785 */ 2786 next: 2787 end_sector_io(page, start + offset, uptodate); 2788 } 2789 } 2790 2791 /* lots and lots of room for performance fixes in the end_bio funcs */ 2792 2793 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2794 { 2795 struct btrfs_inode *inode; 2796 const bool uptodate = (err == 0); 2797 int ret = 0; 2798 2799 ASSERT(page && page->mapping); 2800 inode = BTRFS_I(page->mapping->host); 2801 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2802 2803 if (!uptodate) { 2804 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2805 u32 len; 2806 2807 ASSERT(end + 1 - start <= U32_MAX); 2808 len = end + 1 - start; 2809 2810 btrfs_page_clear_uptodate(fs_info, page, start, len); 2811 btrfs_page_set_error(fs_info, page, start, len); 2812 ret = err < 0 ? err : -EIO; 2813 mapping_set_error(page->mapping, ret); 2814 } 2815 } 2816 2817 /* 2818 * after a writepage IO is done, we need to: 2819 * clear the uptodate bits on error 2820 * clear the writeback bits in the extent tree for this IO 2821 * end_page_writeback if the page has no more pending IO 2822 * 2823 * Scheduling is not allowed, so the extent state tree is expected 2824 * to have one and only one object corresponding to this IO. 2825 */ 2826 static void end_bio_extent_writepage(struct bio *bio) 2827 { 2828 int error = blk_status_to_errno(bio->bi_status); 2829 struct bio_vec *bvec; 2830 u64 start; 2831 u64 end; 2832 struct bvec_iter_all iter_all; 2833 bool first_bvec = true; 2834 2835 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2836 bio_for_each_segment_all(bvec, bio, iter_all) { 2837 struct page *page = bvec->bv_page; 2838 struct inode *inode = page->mapping->host; 2839 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2840 const u32 sectorsize = fs_info->sectorsize; 2841 2842 /* Our read/write should always be sector aligned. */ 2843 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2844 btrfs_err(fs_info, 2845 "partial page write in btrfs with offset %u and length %u", 2846 bvec->bv_offset, bvec->bv_len); 2847 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2848 btrfs_info(fs_info, 2849 "incomplete page write with offset %u and length %u", 2850 bvec->bv_offset, bvec->bv_len); 2851 2852 start = page_offset(page) + bvec->bv_offset; 2853 end = start + bvec->bv_len - 1; 2854 2855 if (first_bvec) { 2856 btrfs_record_physical_zoned(inode, start, bio); 2857 first_bvec = false; 2858 } 2859 2860 end_extent_writepage(page, error, start, end); 2861 2862 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2863 } 2864 2865 bio_put(bio); 2866 } 2867 2868 /* 2869 * Record previously processed extent range 2870 * 2871 * For endio_readpage_release_extent() to handle a full extent range, reducing 2872 * the extent io operations. 2873 */ 2874 struct processed_extent { 2875 struct btrfs_inode *inode; 2876 /* Start of the range in @inode */ 2877 u64 start; 2878 /* End of the range in @inode */ 2879 u64 end; 2880 bool uptodate; 2881 }; 2882 2883 /* 2884 * Try to release processed extent range 2885 * 2886 * May not release the extent range right now if the current range is 2887 * contiguous to processed extent. 2888 * 2889 * Will release processed extent when any of @inode, @uptodate, the range is 2890 * no longer contiguous to the processed range. 2891 * 2892 * Passing @inode == NULL will force processed extent to be released. 2893 */ 2894 static void endio_readpage_release_extent(struct processed_extent *processed, 2895 struct btrfs_inode *inode, u64 start, u64 end, 2896 bool uptodate) 2897 { 2898 struct extent_state *cached = NULL; 2899 struct extent_io_tree *tree; 2900 2901 /* The first extent, initialize @processed */ 2902 if (!processed->inode) 2903 goto update; 2904 2905 /* 2906 * Contiguous to processed extent, just uptodate the end. 2907 * 2908 * Several things to notice: 2909 * 2910 * - bio can be merged as long as on-disk bytenr is contiguous 2911 * This means we can have page belonging to other inodes, thus need to 2912 * check if the inode still matches. 2913 * - bvec can contain range beyond current page for multi-page bvec 2914 * Thus we need to do processed->end + 1 >= start check 2915 */ 2916 if (processed->inode == inode && processed->uptodate == uptodate && 2917 processed->end + 1 >= start && end >= processed->end) { 2918 processed->end = end; 2919 return; 2920 } 2921 2922 tree = &processed->inode->io_tree; 2923 /* 2924 * Now we don't have range contiguous to the processed range, release 2925 * the processed range now. 2926 */ 2927 if (processed->uptodate && tree->track_uptodate) 2928 set_extent_uptodate(tree, processed->start, processed->end, 2929 &cached, GFP_ATOMIC); 2930 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2931 &cached); 2932 2933 update: 2934 /* Update processed to current range */ 2935 processed->inode = inode; 2936 processed->start = start; 2937 processed->end = end; 2938 processed->uptodate = uptodate; 2939 } 2940 2941 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2942 { 2943 ASSERT(PageLocked(page)); 2944 if (!btrfs_is_subpage(fs_info, page)) 2945 return; 2946 2947 ASSERT(PagePrivate(page)); 2948 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2949 } 2950 2951 /* 2952 * Find extent buffer for a givne bytenr. 2953 * 2954 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2955 * in endio context. 2956 */ 2957 static struct extent_buffer *find_extent_buffer_readpage( 2958 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2959 { 2960 struct extent_buffer *eb; 2961 2962 /* 2963 * For regular sectorsize, we can use page->private to grab extent 2964 * buffer 2965 */ 2966 if (fs_info->nodesize >= PAGE_SIZE) { 2967 ASSERT(PagePrivate(page) && page->private); 2968 return (struct extent_buffer *)page->private; 2969 } 2970 2971 /* For subpage case, we need to lookup buffer radix tree */ 2972 rcu_read_lock(); 2973 eb = radix_tree_lookup(&fs_info->buffer_radix, 2974 bytenr >> fs_info->sectorsize_bits); 2975 rcu_read_unlock(); 2976 ASSERT(eb); 2977 return eb; 2978 } 2979 2980 /* 2981 * after a readpage IO is done, we need to: 2982 * clear the uptodate bits on error 2983 * set the uptodate bits if things worked 2984 * set the page up to date if all extents in the tree are uptodate 2985 * clear the lock bit in the extent tree 2986 * unlock the page if there are no other extents locked for it 2987 * 2988 * Scheduling is not allowed, so the extent state tree is expected 2989 * to have one and only one object corresponding to this IO. 2990 */ 2991 static void end_bio_extent_readpage(struct bio *bio) 2992 { 2993 struct bio_vec *bvec; 2994 struct btrfs_bio *bbio = btrfs_bio(bio); 2995 struct extent_io_tree *tree, *failure_tree; 2996 struct processed_extent processed = { 0 }; 2997 /* 2998 * The offset to the beginning of a bio, since one bio can never be 2999 * larger than UINT_MAX, u32 here is enough. 3000 */ 3001 u32 bio_offset = 0; 3002 int mirror; 3003 struct bvec_iter_all iter_all; 3004 3005 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3006 bio_for_each_segment_all(bvec, bio, iter_all) { 3007 bool uptodate = !bio->bi_status; 3008 struct page *page = bvec->bv_page; 3009 struct inode *inode = page->mapping->host; 3010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3011 const u32 sectorsize = fs_info->sectorsize; 3012 unsigned int error_bitmap = (unsigned int)-1; 3013 bool repair = false; 3014 u64 start; 3015 u64 end; 3016 u32 len; 3017 3018 btrfs_debug(fs_info, 3019 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3020 bio->bi_iter.bi_sector, bio->bi_status, 3021 bbio->mirror_num); 3022 tree = &BTRFS_I(inode)->io_tree; 3023 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3024 3025 /* 3026 * We always issue full-sector reads, but if some block in a 3027 * page fails to read, blk_update_request() will advance 3028 * bv_offset and adjust bv_len to compensate. Print a warning 3029 * for unaligned offsets, and an error if they don't add up to 3030 * a full sector. 3031 */ 3032 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3033 btrfs_err(fs_info, 3034 "partial page read in btrfs with offset %u and length %u", 3035 bvec->bv_offset, bvec->bv_len); 3036 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3037 sectorsize)) 3038 btrfs_info(fs_info, 3039 "incomplete page read with offset %u and length %u", 3040 bvec->bv_offset, bvec->bv_len); 3041 3042 start = page_offset(page) + bvec->bv_offset; 3043 end = start + bvec->bv_len - 1; 3044 len = bvec->bv_len; 3045 3046 mirror = bbio->mirror_num; 3047 if (likely(uptodate)) { 3048 if (is_data_inode(inode)) { 3049 error_bitmap = btrfs_verify_data_csum(bbio, 3050 bio_offset, page, start, end); 3051 if (error_bitmap) 3052 uptodate = false; 3053 } else { 3054 if (btrfs_validate_metadata_buffer(bbio, 3055 page, start, end, mirror)) 3056 uptodate = false; 3057 } 3058 } 3059 3060 if (likely(uptodate)) { 3061 loff_t i_size = i_size_read(inode); 3062 pgoff_t end_index = i_size >> PAGE_SHIFT; 3063 3064 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3065 failure_tree, tree, start, page, 3066 btrfs_ino(BTRFS_I(inode)), 0); 3067 3068 /* 3069 * Zero out the remaining part if this range straddles 3070 * i_size. 3071 * 3072 * Here we should only zero the range inside the bvec, 3073 * not touch anything else. 3074 * 3075 * NOTE: i_size is exclusive while end is inclusive. 3076 */ 3077 if (page->index == end_index && i_size <= end) { 3078 u32 zero_start = max(offset_in_page(i_size), 3079 offset_in_page(start)); 3080 3081 zero_user_segment(page, zero_start, 3082 offset_in_page(end) + 1); 3083 } 3084 } else if (is_data_inode(inode)) { 3085 /* 3086 * Only try to repair bios that actually made it to a 3087 * device. If the bio failed to be submitted mirror 3088 * is 0 and we need to fail it without retrying. 3089 * 3090 * This also includes the high level bios for compressed 3091 * extents - these never make it to a device and repair 3092 * is already handled on the lower compressed bio. 3093 */ 3094 if (mirror > 0) 3095 repair = true; 3096 } else { 3097 struct extent_buffer *eb; 3098 3099 eb = find_extent_buffer_readpage(fs_info, page, start); 3100 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3101 eb->read_mirror = mirror; 3102 atomic_dec(&eb->io_pages); 3103 } 3104 3105 if (repair) { 3106 /* 3107 * submit_data_read_repair() will handle all the good 3108 * and bad sectors, we just continue to the next bvec. 3109 */ 3110 submit_data_read_repair(inode, bbio, bio_offset, bvec, 3111 error_bitmap); 3112 } else { 3113 /* Update page status and unlock */ 3114 end_page_read(page, uptodate, start, len); 3115 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3116 start, end, PageUptodate(page)); 3117 } 3118 3119 ASSERT(bio_offset + len > bio_offset); 3120 bio_offset += len; 3121 3122 } 3123 /* Release the last extent */ 3124 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3125 btrfs_bio_free_csum(bbio); 3126 bio_put(bio); 3127 } 3128 3129 /** 3130 * Populate every free slot in a provided array with pages. 3131 * 3132 * @nr_pages: number of pages to allocate 3133 * @page_array: the array to fill with pages; any existing non-null entries in 3134 * the array will be skipped 3135 * 3136 * Return: 0 if all pages were able to be allocated; 3137 * -ENOMEM otherwise, and the caller is responsible for freeing all 3138 * non-null page pointers in the array. 3139 */ 3140 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 3141 { 3142 unsigned int allocated; 3143 3144 for (allocated = 0; allocated < nr_pages;) { 3145 unsigned int last = allocated; 3146 3147 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 3148 3149 if (allocated == nr_pages) 3150 return 0; 3151 3152 /* 3153 * During this iteration, no page could be allocated, even 3154 * though alloc_pages_bulk_array() falls back to alloc_page() 3155 * if it could not bulk-allocate. So we must be out of memory. 3156 */ 3157 if (allocated == last) 3158 return -ENOMEM; 3159 3160 memalloc_retry_wait(GFP_NOFS); 3161 } 3162 return 0; 3163 } 3164 3165 /* 3166 * Initialize the members up to but not including 'bio'. Use after allocating a 3167 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3168 * 'bio' because use of __GFP_ZERO is not supported. 3169 */ 3170 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3171 { 3172 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3173 } 3174 3175 /* 3176 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3177 * 3178 * The bio allocation is backed by bioset and does not fail. 3179 */ 3180 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3181 { 3182 struct bio *bio; 3183 3184 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3185 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset); 3186 btrfs_bio_init(btrfs_bio(bio)); 3187 return bio; 3188 } 3189 3190 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3191 { 3192 struct bio *bio; 3193 struct btrfs_bio *bbio; 3194 3195 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3196 3197 /* this will never fail when it's backed by a bioset */ 3198 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 3199 ASSERT(bio); 3200 3201 bbio = btrfs_bio(bio); 3202 btrfs_bio_init(bbio); 3203 3204 bio_trim(bio, offset >> 9, size >> 9); 3205 bbio->iter = bio->bi_iter; 3206 return bio; 3207 } 3208 3209 /** 3210 * Attempt to add a page to bio 3211 * 3212 * @bio_ctrl: record both the bio, and its bio_flags 3213 * @page: page to add to the bio 3214 * @disk_bytenr: offset of the new bio or to check whether we are adding 3215 * a contiguous page to the previous one 3216 * @size: portion of page that we want to write 3217 * @pg_offset: starting offset in the page 3218 * @compress_type: compression type of the current bio to see if we can merge them 3219 * 3220 * Attempt to add a page to bio considering stripe alignment etc. 3221 * 3222 * Return >= 0 for the number of bytes added to the bio. 3223 * Can return 0 if the current bio is already at stripe/zone boundary. 3224 * Return <0 for error. 3225 */ 3226 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3227 struct page *page, 3228 u64 disk_bytenr, unsigned int size, 3229 unsigned int pg_offset, 3230 enum btrfs_compression_type compress_type) 3231 { 3232 struct bio *bio = bio_ctrl->bio; 3233 u32 bio_size = bio->bi_iter.bi_size; 3234 u32 real_size; 3235 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3236 bool contig = false; 3237 int ret; 3238 3239 ASSERT(bio); 3240 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3241 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3242 if (bio_ctrl->compress_type != compress_type) 3243 return 0; 3244 3245 3246 if (bio->bi_iter.bi_size == 0) { 3247 /* We can always add a page into an empty bio. */ 3248 contig = true; 3249 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 3250 struct bio_vec *bvec = bio_last_bvec_all(bio); 3251 3252 /* 3253 * The contig check requires the following conditions to be met: 3254 * 1) The pages are belonging to the same inode 3255 * This is implied by the call chain. 3256 * 3257 * 2) The range has adjacent logical bytenr 3258 * 3259 * 3) The range has adjacent file offset 3260 * This is required for the usage of btrfs_bio->file_offset. 3261 */ 3262 if (bio_end_sector(bio) == sector && 3263 page_offset(bvec->bv_page) + bvec->bv_offset + 3264 bvec->bv_len == page_offset(page) + pg_offset) 3265 contig = true; 3266 } else { 3267 /* 3268 * For compression, all IO should have its logical bytenr 3269 * set to the starting bytenr of the compressed extent. 3270 */ 3271 contig = bio->bi_iter.bi_sector == sector; 3272 } 3273 3274 if (!contig) 3275 return 0; 3276 3277 real_size = min(bio_ctrl->len_to_oe_boundary, 3278 bio_ctrl->len_to_stripe_boundary) - bio_size; 3279 real_size = min(real_size, size); 3280 3281 /* 3282 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3283 * bio will still execute its endio function on the page! 3284 */ 3285 if (real_size == 0) 3286 return 0; 3287 3288 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3289 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3290 else 3291 ret = bio_add_page(bio, page, real_size, pg_offset); 3292 3293 return ret; 3294 } 3295 3296 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3297 struct btrfs_inode *inode, u64 file_offset) 3298 { 3299 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3300 struct btrfs_io_geometry geom; 3301 struct btrfs_ordered_extent *ordered; 3302 struct extent_map *em; 3303 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3304 int ret; 3305 3306 /* 3307 * Pages for compressed extent are never submitted to disk directly, 3308 * thus it has no real boundary, just set them to U32_MAX. 3309 * 3310 * The split happens for real compressed bio, which happens in 3311 * btrfs_submit_compressed_read/write(). 3312 */ 3313 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 3314 bio_ctrl->len_to_oe_boundary = U32_MAX; 3315 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3316 return 0; 3317 } 3318 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3319 if (IS_ERR(em)) 3320 return PTR_ERR(em); 3321 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3322 logical, &geom); 3323 free_extent_map(em); 3324 if (ret < 0) { 3325 return ret; 3326 } 3327 if (geom.len > U32_MAX) 3328 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3329 else 3330 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3331 3332 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3333 bio_ctrl->len_to_oe_boundary = U32_MAX; 3334 return 0; 3335 } 3336 3337 /* Ordered extent not yet created, so we're good */ 3338 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3339 if (!ordered) { 3340 bio_ctrl->len_to_oe_boundary = U32_MAX; 3341 return 0; 3342 } 3343 3344 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3345 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3346 btrfs_put_ordered_extent(ordered); 3347 return 0; 3348 } 3349 3350 static int alloc_new_bio(struct btrfs_inode *inode, 3351 struct btrfs_bio_ctrl *bio_ctrl, 3352 struct writeback_control *wbc, 3353 blk_opf_t opf, 3354 bio_end_io_t end_io_func, 3355 u64 disk_bytenr, u32 offset, u64 file_offset, 3356 enum btrfs_compression_type compress_type) 3357 { 3358 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3359 struct bio *bio; 3360 int ret; 3361 3362 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3363 /* 3364 * For compressed page range, its disk_bytenr is always @disk_bytenr 3365 * passed in, no matter if we have added any range into previous bio. 3366 */ 3367 if (compress_type != BTRFS_COMPRESS_NONE) 3368 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3369 else 3370 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3371 bio_ctrl->bio = bio; 3372 bio_ctrl->compress_type = compress_type; 3373 bio->bi_end_io = end_io_func; 3374 bio->bi_opf = opf; 3375 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3376 if (ret < 0) 3377 goto error; 3378 3379 if (wbc) { 3380 /* 3381 * For Zone append we need the correct block_device that we are 3382 * going to write to set in the bio to be able to respect the 3383 * hardware limitation. Look it up here: 3384 */ 3385 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3386 struct btrfs_device *dev; 3387 3388 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 3389 fs_info->sectorsize); 3390 if (IS_ERR(dev)) { 3391 ret = PTR_ERR(dev); 3392 goto error; 3393 } 3394 3395 bio_set_dev(bio, dev->bdev); 3396 } else { 3397 /* 3398 * Otherwise pick the last added device to support 3399 * cgroup writeback. For multi-device file systems this 3400 * means blk-cgroup policies have to always be set on the 3401 * last added/replaced device. This is a bit odd but has 3402 * been like that for a long time. 3403 */ 3404 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 3405 } 3406 wbc_init_bio(wbc, bio); 3407 } else { 3408 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 3409 } 3410 return 0; 3411 error: 3412 bio_ctrl->bio = NULL; 3413 bio->bi_status = errno_to_blk_status(ret); 3414 bio_endio(bio); 3415 return ret; 3416 } 3417 3418 /* 3419 * @opf: bio REQ_OP_* and REQ_* flags as one value 3420 * @wbc: optional writeback control for io accounting 3421 * @page: page to add to the bio 3422 * @disk_bytenr: logical bytenr where the write will be 3423 * @size: portion of page that we want to write to 3424 * @pg_offset: offset of the new bio or to check whether we are adding 3425 * a contiguous page to the previous one 3426 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3427 * @end_io_func: end_io callback for new bio 3428 * @mirror_num: desired mirror to read/write 3429 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3430 * @compress_type: compress type for current bio 3431 */ 3432 static int submit_extent_page(blk_opf_t opf, 3433 struct writeback_control *wbc, 3434 struct btrfs_bio_ctrl *bio_ctrl, 3435 struct page *page, u64 disk_bytenr, 3436 size_t size, unsigned long pg_offset, 3437 bio_end_io_t end_io_func, 3438 enum btrfs_compression_type compress_type, 3439 bool force_bio_submit) 3440 { 3441 int ret = 0; 3442 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3443 unsigned int cur = pg_offset; 3444 3445 ASSERT(bio_ctrl); 3446 3447 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3448 pg_offset + size <= PAGE_SIZE); 3449 if (force_bio_submit) 3450 submit_one_bio(bio_ctrl); 3451 3452 while (cur < pg_offset + size) { 3453 u32 offset = cur - pg_offset; 3454 int added; 3455 3456 /* Allocate new bio if needed */ 3457 if (!bio_ctrl->bio) { 3458 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3459 end_io_func, disk_bytenr, offset, 3460 page_offset(page) + cur, 3461 compress_type); 3462 if (ret < 0) 3463 return ret; 3464 } 3465 /* 3466 * We must go through btrfs_bio_add_page() to ensure each 3467 * page range won't cross various boundaries. 3468 */ 3469 if (compress_type != BTRFS_COMPRESS_NONE) 3470 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3471 size - offset, pg_offset + offset, 3472 compress_type); 3473 else 3474 added = btrfs_bio_add_page(bio_ctrl, page, 3475 disk_bytenr + offset, size - offset, 3476 pg_offset + offset, compress_type); 3477 3478 /* Metadata page range should never be split */ 3479 if (!is_data_inode(&inode->vfs_inode)) 3480 ASSERT(added == 0 || added == size - offset); 3481 3482 /* At least we added some page, update the account */ 3483 if (wbc && added) 3484 wbc_account_cgroup_owner(wbc, page, added); 3485 3486 /* We have reached boundary, submit right now */ 3487 if (added < size - offset) { 3488 /* The bio should contain some page(s) */ 3489 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3490 submit_one_bio(bio_ctrl); 3491 } 3492 cur += added; 3493 } 3494 return 0; 3495 } 3496 3497 static int attach_extent_buffer_page(struct extent_buffer *eb, 3498 struct page *page, 3499 struct btrfs_subpage *prealloc) 3500 { 3501 struct btrfs_fs_info *fs_info = eb->fs_info; 3502 int ret = 0; 3503 3504 /* 3505 * If the page is mapped to btree inode, we should hold the private 3506 * lock to prevent race. 3507 * For cloned or dummy extent buffers, their pages are not mapped and 3508 * will not race with any other ebs. 3509 */ 3510 if (page->mapping) 3511 lockdep_assert_held(&page->mapping->private_lock); 3512 3513 if (fs_info->nodesize >= PAGE_SIZE) { 3514 if (!PagePrivate(page)) 3515 attach_page_private(page, eb); 3516 else 3517 WARN_ON(page->private != (unsigned long)eb); 3518 return 0; 3519 } 3520 3521 /* Already mapped, just free prealloc */ 3522 if (PagePrivate(page)) { 3523 btrfs_free_subpage(prealloc); 3524 return 0; 3525 } 3526 3527 if (prealloc) 3528 /* Has preallocated memory for subpage */ 3529 attach_page_private(page, prealloc); 3530 else 3531 /* Do new allocation to attach subpage */ 3532 ret = btrfs_attach_subpage(fs_info, page, 3533 BTRFS_SUBPAGE_METADATA); 3534 return ret; 3535 } 3536 3537 int set_page_extent_mapped(struct page *page) 3538 { 3539 struct btrfs_fs_info *fs_info; 3540 3541 ASSERT(page->mapping); 3542 3543 if (PagePrivate(page)) 3544 return 0; 3545 3546 fs_info = btrfs_sb(page->mapping->host->i_sb); 3547 3548 if (btrfs_is_subpage(fs_info, page)) 3549 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3550 3551 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3552 return 0; 3553 } 3554 3555 void clear_page_extent_mapped(struct page *page) 3556 { 3557 struct btrfs_fs_info *fs_info; 3558 3559 ASSERT(page->mapping); 3560 3561 if (!PagePrivate(page)) 3562 return; 3563 3564 fs_info = btrfs_sb(page->mapping->host->i_sb); 3565 if (btrfs_is_subpage(fs_info, page)) 3566 return btrfs_detach_subpage(fs_info, page); 3567 3568 detach_page_private(page); 3569 } 3570 3571 static struct extent_map * 3572 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3573 u64 start, u64 len, struct extent_map **em_cached) 3574 { 3575 struct extent_map *em; 3576 3577 if (em_cached && *em_cached) { 3578 em = *em_cached; 3579 if (extent_map_in_tree(em) && start >= em->start && 3580 start < extent_map_end(em)) { 3581 refcount_inc(&em->refs); 3582 return em; 3583 } 3584 3585 free_extent_map(em); 3586 *em_cached = NULL; 3587 } 3588 3589 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3590 if (em_cached && !IS_ERR(em)) { 3591 BUG_ON(*em_cached); 3592 refcount_inc(&em->refs); 3593 *em_cached = em; 3594 } 3595 return em; 3596 } 3597 /* 3598 * basic readpage implementation. Locked extent state structs are inserted 3599 * into the tree that are removed when the IO is done (by the end_io 3600 * handlers) 3601 * XXX JDM: This needs looking at to ensure proper page locking 3602 * return 0 on success, otherwise return error 3603 */ 3604 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3605 struct btrfs_bio_ctrl *bio_ctrl, 3606 blk_opf_t read_flags, u64 *prev_em_start) 3607 { 3608 struct inode *inode = page->mapping->host; 3609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3610 u64 start = page_offset(page); 3611 const u64 end = start + PAGE_SIZE - 1; 3612 u64 cur = start; 3613 u64 extent_offset; 3614 u64 last_byte = i_size_read(inode); 3615 u64 block_start; 3616 u64 cur_end; 3617 struct extent_map *em; 3618 int ret = 0; 3619 size_t pg_offset = 0; 3620 size_t iosize; 3621 size_t blocksize = inode->i_sb->s_blocksize; 3622 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3623 3624 ret = set_page_extent_mapped(page); 3625 if (ret < 0) { 3626 unlock_extent(tree, start, end); 3627 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3628 unlock_page(page); 3629 goto out; 3630 } 3631 3632 if (page->index == last_byte >> PAGE_SHIFT) { 3633 size_t zero_offset = offset_in_page(last_byte); 3634 3635 if (zero_offset) { 3636 iosize = PAGE_SIZE - zero_offset; 3637 memzero_page(page, zero_offset, iosize); 3638 } 3639 } 3640 begin_page_read(fs_info, page); 3641 while (cur <= end) { 3642 unsigned long this_bio_flag = 0; 3643 bool force_bio_submit = false; 3644 u64 disk_bytenr; 3645 3646 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3647 if (cur >= last_byte) { 3648 struct extent_state *cached = NULL; 3649 3650 iosize = PAGE_SIZE - pg_offset; 3651 memzero_page(page, pg_offset, iosize); 3652 set_extent_uptodate(tree, cur, cur + iosize - 1, 3653 &cached, GFP_NOFS); 3654 unlock_extent_cached(tree, cur, 3655 cur + iosize - 1, &cached); 3656 end_page_read(page, true, cur, iosize); 3657 break; 3658 } 3659 em = __get_extent_map(inode, page, pg_offset, cur, 3660 end - cur + 1, em_cached); 3661 if (IS_ERR(em)) { 3662 unlock_extent(tree, cur, end); 3663 end_page_read(page, false, cur, end + 1 - cur); 3664 ret = PTR_ERR(em); 3665 break; 3666 } 3667 extent_offset = cur - em->start; 3668 BUG_ON(extent_map_end(em) <= cur); 3669 BUG_ON(end < cur); 3670 3671 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3672 this_bio_flag = em->compress_type; 3673 3674 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3675 cur_end = min(extent_map_end(em) - 1, end); 3676 iosize = ALIGN(iosize, blocksize); 3677 if (this_bio_flag != BTRFS_COMPRESS_NONE) 3678 disk_bytenr = em->block_start; 3679 else 3680 disk_bytenr = em->block_start + extent_offset; 3681 block_start = em->block_start; 3682 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3683 block_start = EXTENT_MAP_HOLE; 3684 3685 /* 3686 * If we have a file range that points to a compressed extent 3687 * and it's followed by a consecutive file range that points 3688 * to the same compressed extent (possibly with a different 3689 * offset and/or length, so it either points to the whole extent 3690 * or only part of it), we must make sure we do not submit a 3691 * single bio to populate the pages for the 2 ranges because 3692 * this makes the compressed extent read zero out the pages 3693 * belonging to the 2nd range. Imagine the following scenario: 3694 * 3695 * File layout 3696 * [0 - 8K] [8K - 24K] 3697 * | | 3698 * | | 3699 * points to extent X, points to extent X, 3700 * offset 4K, length of 8K offset 0, length 16K 3701 * 3702 * [extent X, compressed length = 4K uncompressed length = 16K] 3703 * 3704 * If the bio to read the compressed extent covers both ranges, 3705 * it will decompress extent X into the pages belonging to the 3706 * first range and then it will stop, zeroing out the remaining 3707 * pages that belong to the other range that points to extent X. 3708 * So here we make sure we submit 2 bios, one for the first 3709 * range and another one for the third range. Both will target 3710 * the same physical extent from disk, but we can't currently 3711 * make the compressed bio endio callback populate the pages 3712 * for both ranges because each compressed bio is tightly 3713 * coupled with a single extent map, and each range can have 3714 * an extent map with a different offset value relative to the 3715 * uncompressed data of our extent and different lengths. This 3716 * is a corner case so we prioritize correctness over 3717 * non-optimal behavior (submitting 2 bios for the same extent). 3718 */ 3719 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3720 prev_em_start && *prev_em_start != (u64)-1 && 3721 *prev_em_start != em->start) 3722 force_bio_submit = true; 3723 3724 if (prev_em_start) 3725 *prev_em_start = em->start; 3726 3727 free_extent_map(em); 3728 em = NULL; 3729 3730 /* we've found a hole, just zero and go on */ 3731 if (block_start == EXTENT_MAP_HOLE) { 3732 struct extent_state *cached = NULL; 3733 3734 memzero_page(page, pg_offset, iosize); 3735 3736 set_extent_uptodate(tree, cur, cur + iosize - 1, 3737 &cached, GFP_NOFS); 3738 unlock_extent_cached(tree, cur, 3739 cur + iosize - 1, &cached); 3740 end_page_read(page, true, cur, iosize); 3741 cur = cur + iosize; 3742 pg_offset += iosize; 3743 continue; 3744 } 3745 /* the get_extent function already copied into the page */ 3746 if (test_range_bit(tree, cur, cur_end, 3747 EXTENT_UPTODATE, 1, NULL)) { 3748 unlock_extent(tree, cur, cur + iosize - 1); 3749 end_page_read(page, true, cur, iosize); 3750 cur = cur + iosize; 3751 pg_offset += iosize; 3752 continue; 3753 } 3754 /* we have an inline extent but it didn't get marked up 3755 * to date. Error out 3756 */ 3757 if (block_start == EXTENT_MAP_INLINE) { 3758 unlock_extent(tree, cur, cur + iosize - 1); 3759 end_page_read(page, false, cur, iosize); 3760 cur = cur + iosize; 3761 pg_offset += iosize; 3762 continue; 3763 } 3764 3765 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3766 bio_ctrl, page, disk_bytenr, iosize, 3767 pg_offset, end_bio_extent_readpage, 3768 this_bio_flag, force_bio_submit); 3769 if (ret) { 3770 /* 3771 * We have to unlock the remaining range, or the page 3772 * will never be unlocked. 3773 */ 3774 unlock_extent(tree, cur, end); 3775 end_page_read(page, false, cur, end + 1 - cur); 3776 goto out; 3777 } 3778 cur = cur + iosize; 3779 pg_offset += iosize; 3780 } 3781 out: 3782 return ret; 3783 } 3784 3785 int btrfs_read_folio(struct file *file, struct folio *folio) 3786 { 3787 struct page *page = &folio->page; 3788 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3789 u64 start = page_offset(page); 3790 u64 end = start + PAGE_SIZE - 1; 3791 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3792 int ret; 3793 3794 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3795 3796 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 3797 /* 3798 * If btrfs_do_readpage() failed we will want to submit the assembled 3799 * bio to do the cleanup. 3800 */ 3801 submit_one_bio(&bio_ctrl); 3802 return ret; 3803 } 3804 3805 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3806 u64 start, u64 end, 3807 struct extent_map **em_cached, 3808 struct btrfs_bio_ctrl *bio_ctrl, 3809 u64 *prev_em_start) 3810 { 3811 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3812 int index; 3813 3814 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3815 3816 for (index = 0; index < nr_pages; index++) { 3817 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3818 REQ_RAHEAD, prev_em_start); 3819 put_page(pages[index]); 3820 } 3821 } 3822 3823 /* 3824 * helper for __extent_writepage, doing all of the delayed allocation setup. 3825 * 3826 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3827 * to write the page (copy into inline extent). In this case the IO has 3828 * been started and the page is already unlocked. 3829 * 3830 * This returns 0 if all went well (page still locked) 3831 * This returns < 0 if there were errors (page still locked) 3832 */ 3833 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3834 struct page *page, struct writeback_control *wbc) 3835 { 3836 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3837 u64 delalloc_start = page_offset(page); 3838 u64 delalloc_to_write = 0; 3839 /* How many pages are started by btrfs_run_delalloc_range() */ 3840 unsigned long nr_written = 0; 3841 int ret; 3842 int page_started = 0; 3843 3844 while (delalloc_start < page_end) { 3845 u64 delalloc_end = page_end; 3846 bool found; 3847 3848 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3849 &delalloc_start, 3850 &delalloc_end); 3851 if (!found) { 3852 delalloc_start = delalloc_end + 1; 3853 continue; 3854 } 3855 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3856 delalloc_end, &page_started, &nr_written, wbc); 3857 if (ret) { 3858 btrfs_page_set_error(inode->root->fs_info, page, 3859 page_offset(page), PAGE_SIZE); 3860 return ret; 3861 } 3862 /* 3863 * delalloc_end is already one less than the total length, so 3864 * we don't subtract one from PAGE_SIZE 3865 */ 3866 delalloc_to_write += (delalloc_end - delalloc_start + 3867 PAGE_SIZE) >> PAGE_SHIFT; 3868 delalloc_start = delalloc_end + 1; 3869 } 3870 if (wbc->nr_to_write < delalloc_to_write) { 3871 int thresh = 8192; 3872 3873 if (delalloc_to_write < thresh * 2) 3874 thresh = delalloc_to_write; 3875 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3876 thresh); 3877 } 3878 3879 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3880 if (page_started) { 3881 /* 3882 * We've unlocked the page, so we can't update the mapping's 3883 * writeback index, just update nr_to_write. 3884 */ 3885 wbc->nr_to_write -= nr_written; 3886 return 1; 3887 } 3888 3889 return 0; 3890 } 3891 3892 /* 3893 * Find the first byte we need to write. 3894 * 3895 * For subpage, one page can contain several sectors, and 3896 * __extent_writepage_io() will just grab all extent maps in the page 3897 * range and try to submit all non-inline/non-compressed extents. 3898 * 3899 * This is a big problem for subpage, we shouldn't re-submit already written 3900 * data at all. 3901 * This function will lookup subpage dirty bit to find which range we really 3902 * need to submit. 3903 * 3904 * Return the next dirty range in [@start, @end). 3905 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3906 */ 3907 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3908 struct page *page, u64 *start, u64 *end) 3909 { 3910 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3911 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3912 u64 orig_start = *start; 3913 /* Declare as unsigned long so we can use bitmap ops */ 3914 unsigned long flags; 3915 int range_start_bit; 3916 int range_end_bit; 3917 3918 /* 3919 * For regular sector size == page size case, since one page only 3920 * contains one sector, we return the page offset directly. 3921 */ 3922 if (!btrfs_is_subpage(fs_info, page)) { 3923 *start = page_offset(page); 3924 *end = page_offset(page) + PAGE_SIZE; 3925 return; 3926 } 3927 3928 range_start_bit = spi->dirty_offset + 3929 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3930 3931 /* We should have the page locked, but just in case */ 3932 spin_lock_irqsave(&subpage->lock, flags); 3933 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3934 spi->dirty_offset + spi->bitmap_nr_bits); 3935 spin_unlock_irqrestore(&subpage->lock, flags); 3936 3937 range_start_bit -= spi->dirty_offset; 3938 range_end_bit -= spi->dirty_offset; 3939 3940 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3941 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3942 } 3943 3944 /* 3945 * helper for __extent_writepage. This calls the writepage start hooks, 3946 * and does the loop to map the page into extents and bios. 3947 * 3948 * We return 1 if the IO is started and the page is unlocked, 3949 * 0 if all went well (page still locked) 3950 * < 0 if there were errors (page still locked) 3951 */ 3952 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3953 struct page *page, 3954 struct writeback_control *wbc, 3955 struct extent_page_data *epd, 3956 loff_t i_size, 3957 int *nr_ret) 3958 { 3959 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3960 u64 cur = page_offset(page); 3961 u64 end = cur + PAGE_SIZE - 1; 3962 u64 extent_offset; 3963 u64 block_start; 3964 struct extent_map *em; 3965 int saved_ret = 0; 3966 int ret = 0; 3967 int nr = 0; 3968 enum req_op op = REQ_OP_WRITE; 3969 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 3970 bool has_error = false; 3971 bool compressed; 3972 3973 ret = btrfs_writepage_cow_fixup(page); 3974 if (ret) { 3975 /* Fixup worker will requeue */ 3976 redirty_page_for_writepage(wbc, page); 3977 unlock_page(page); 3978 return 1; 3979 } 3980 3981 /* 3982 * we don't want to touch the inode after unlocking the page, 3983 * so we update the mapping writeback index now 3984 */ 3985 wbc->nr_to_write--; 3986 3987 while (cur <= end) { 3988 u64 disk_bytenr; 3989 u64 em_end; 3990 u64 dirty_range_start = cur; 3991 u64 dirty_range_end; 3992 u32 iosize; 3993 3994 if (cur >= i_size) { 3995 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3996 end, true); 3997 /* 3998 * This range is beyond i_size, thus we don't need to 3999 * bother writing back. 4000 * But we still need to clear the dirty subpage bit, or 4001 * the next time the page gets dirtied, we will try to 4002 * writeback the sectors with subpage dirty bits, 4003 * causing writeback without ordered extent. 4004 */ 4005 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 4006 break; 4007 } 4008 4009 find_next_dirty_byte(fs_info, page, &dirty_range_start, 4010 &dirty_range_end); 4011 if (cur < dirty_range_start) { 4012 cur = dirty_range_start; 4013 continue; 4014 } 4015 4016 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 4017 if (IS_ERR(em)) { 4018 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 4019 ret = PTR_ERR_OR_ZERO(em); 4020 has_error = true; 4021 if (!saved_ret) 4022 saved_ret = ret; 4023 break; 4024 } 4025 4026 extent_offset = cur - em->start; 4027 em_end = extent_map_end(em); 4028 ASSERT(cur <= em_end); 4029 ASSERT(cur < end); 4030 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 4031 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 4032 block_start = em->block_start; 4033 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4034 disk_bytenr = em->block_start + extent_offset; 4035 4036 /* 4037 * Note that em_end from extent_map_end() and dirty_range_end from 4038 * find_next_dirty_byte() are all exclusive 4039 */ 4040 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 4041 4042 if (btrfs_use_zone_append(inode, em->block_start)) 4043 op = REQ_OP_ZONE_APPEND; 4044 4045 free_extent_map(em); 4046 em = NULL; 4047 4048 /* 4049 * compressed and inline extents are written through other 4050 * paths in the FS 4051 */ 4052 if (compressed || block_start == EXTENT_MAP_HOLE || 4053 block_start == EXTENT_MAP_INLINE) { 4054 if (compressed) 4055 nr++; 4056 else 4057 btrfs_writepage_endio_finish_ordered(inode, 4058 page, cur, cur + iosize - 1, true); 4059 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4060 cur += iosize; 4061 continue; 4062 } 4063 4064 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4065 if (!PageWriteback(page)) { 4066 btrfs_err(inode->root->fs_info, 4067 "page %lu not writeback, cur %llu end %llu", 4068 page->index, cur, end); 4069 } 4070 4071 /* 4072 * Although the PageDirty bit is cleared before entering this 4073 * function, subpage dirty bit is not cleared. 4074 * So clear subpage dirty bit here so next time we won't submit 4075 * page for range already written to disk. 4076 */ 4077 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4078 4079 ret = submit_extent_page(op | write_flags, wbc, 4080 &epd->bio_ctrl, page, 4081 disk_bytenr, iosize, 4082 cur - page_offset(page), 4083 end_bio_extent_writepage, 4084 0, false); 4085 if (ret) { 4086 has_error = true; 4087 if (!saved_ret) 4088 saved_ret = ret; 4089 4090 btrfs_page_set_error(fs_info, page, cur, iosize); 4091 if (PageWriteback(page)) 4092 btrfs_page_clear_writeback(fs_info, page, cur, 4093 iosize); 4094 } 4095 4096 cur += iosize; 4097 nr++; 4098 } 4099 /* 4100 * If we finish without problem, we should not only clear page dirty, 4101 * but also empty subpage dirty bits 4102 */ 4103 if (!has_error) 4104 btrfs_page_assert_not_dirty(fs_info, page); 4105 else 4106 ret = saved_ret; 4107 *nr_ret = nr; 4108 return ret; 4109 } 4110 4111 /* 4112 * the writepage semantics are similar to regular writepage. extent 4113 * records are inserted to lock ranges in the tree, and as dirty areas 4114 * are found, they are marked writeback. Then the lock bits are removed 4115 * and the end_io handler clears the writeback ranges 4116 * 4117 * Return 0 if everything goes well. 4118 * Return <0 for error. 4119 */ 4120 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4121 struct extent_page_data *epd) 4122 { 4123 struct folio *folio = page_folio(page); 4124 struct inode *inode = page->mapping->host; 4125 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4126 const u64 page_start = page_offset(page); 4127 const u64 page_end = page_start + PAGE_SIZE - 1; 4128 int ret; 4129 int nr = 0; 4130 size_t pg_offset; 4131 loff_t i_size = i_size_read(inode); 4132 unsigned long end_index = i_size >> PAGE_SHIFT; 4133 4134 trace___extent_writepage(page, inode, wbc); 4135 4136 WARN_ON(!PageLocked(page)); 4137 4138 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4139 page_offset(page), PAGE_SIZE); 4140 4141 pg_offset = offset_in_page(i_size); 4142 if (page->index > end_index || 4143 (page->index == end_index && !pg_offset)) { 4144 folio_invalidate(folio, 0, folio_size(folio)); 4145 folio_unlock(folio); 4146 return 0; 4147 } 4148 4149 if (page->index == end_index) 4150 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4151 4152 ret = set_page_extent_mapped(page); 4153 if (ret < 0) { 4154 SetPageError(page); 4155 goto done; 4156 } 4157 4158 if (!epd->extent_locked) { 4159 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4160 if (ret == 1) 4161 return 0; 4162 if (ret) 4163 goto done; 4164 } 4165 4166 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4167 &nr); 4168 if (ret == 1) 4169 return 0; 4170 4171 done: 4172 if (nr == 0) { 4173 /* make sure the mapping tag for page dirty gets cleared */ 4174 set_page_writeback(page); 4175 end_page_writeback(page); 4176 } 4177 /* 4178 * Here we used to have a check for PageError() and then set @ret and 4179 * call end_extent_writepage(). 4180 * 4181 * But in fact setting @ret here will cause different error paths 4182 * between subpage and regular sectorsize. 4183 * 4184 * For regular page size, we never submit current page, but only add 4185 * current page to current bio. 4186 * The bio submission can only happen in next page. 4187 * Thus if we hit the PageError() branch, @ret is already set to 4188 * non-zero value and will not get updated for regular sectorsize. 4189 * 4190 * But for subpage case, it's possible we submit part of current page, 4191 * thus can get PageError() set by submitted bio of the same page, 4192 * while our @ret is still 0. 4193 * 4194 * So here we unify the behavior and don't set @ret. 4195 * Error can still be properly passed to higher layer as page will 4196 * be set error, here we just don't handle the IO failure. 4197 * 4198 * NOTE: This is just a hotfix for subpage. 4199 * The root fix will be properly ending ordered extent when we hit 4200 * an error during writeback. 4201 * 4202 * But that needs a bigger refactoring, as we not only need to grab the 4203 * submitted OE, but also need to know exactly at which bytenr we hit 4204 * the error. 4205 * Currently the full page based __extent_writepage_io() is not 4206 * capable of that. 4207 */ 4208 if (PageError(page)) 4209 end_extent_writepage(page, ret, page_start, page_end); 4210 if (epd->extent_locked) { 4211 /* 4212 * If epd->extent_locked, it's from extent_write_locked_range(), 4213 * the page can either be locked by lock_page() or 4214 * process_one_page(). 4215 * Let btrfs_page_unlock_writer() handle both cases. 4216 */ 4217 ASSERT(wbc); 4218 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4219 wbc->range_end + 1 - wbc->range_start); 4220 } else { 4221 unlock_page(page); 4222 } 4223 ASSERT(ret <= 0); 4224 return ret; 4225 } 4226 4227 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4228 { 4229 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4230 TASK_UNINTERRUPTIBLE); 4231 } 4232 4233 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4234 { 4235 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4236 smp_mb__after_atomic(); 4237 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4238 } 4239 4240 /* 4241 * Lock extent buffer status and pages for writeback. 4242 * 4243 * May try to flush write bio if we can't get the lock. 4244 * 4245 * Return 0 if the extent buffer doesn't need to be submitted. 4246 * (E.g. the extent buffer is not dirty) 4247 * Return >0 is the extent buffer is submitted to bio. 4248 * Return <0 if something went wrong, no page is locked. 4249 */ 4250 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4251 struct extent_page_data *epd) 4252 { 4253 struct btrfs_fs_info *fs_info = eb->fs_info; 4254 int i, num_pages; 4255 int flush = 0; 4256 int ret = 0; 4257 4258 if (!btrfs_try_tree_write_lock(eb)) { 4259 submit_write_bio(epd, 0); 4260 flush = 1; 4261 btrfs_tree_lock(eb); 4262 } 4263 4264 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4265 btrfs_tree_unlock(eb); 4266 if (!epd->sync_io) 4267 return 0; 4268 if (!flush) { 4269 submit_write_bio(epd, 0); 4270 flush = 1; 4271 } 4272 while (1) { 4273 wait_on_extent_buffer_writeback(eb); 4274 btrfs_tree_lock(eb); 4275 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4276 break; 4277 btrfs_tree_unlock(eb); 4278 } 4279 } 4280 4281 /* 4282 * We need to do this to prevent races in people who check if the eb is 4283 * under IO since we can end up having no IO bits set for a short period 4284 * of time. 4285 */ 4286 spin_lock(&eb->refs_lock); 4287 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4288 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4289 spin_unlock(&eb->refs_lock); 4290 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4291 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4292 -eb->len, 4293 fs_info->dirty_metadata_batch); 4294 ret = 1; 4295 } else { 4296 spin_unlock(&eb->refs_lock); 4297 } 4298 4299 btrfs_tree_unlock(eb); 4300 4301 /* 4302 * Either we don't need to submit any tree block, or we're submitting 4303 * subpage eb. 4304 * Subpage metadata doesn't use page locking at all, so we can skip 4305 * the page locking. 4306 */ 4307 if (!ret || fs_info->nodesize < PAGE_SIZE) 4308 return ret; 4309 4310 num_pages = num_extent_pages(eb); 4311 for (i = 0; i < num_pages; i++) { 4312 struct page *p = eb->pages[i]; 4313 4314 if (!trylock_page(p)) { 4315 if (!flush) { 4316 submit_write_bio(epd, 0); 4317 flush = 1; 4318 } 4319 lock_page(p); 4320 } 4321 } 4322 4323 return ret; 4324 } 4325 4326 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4327 { 4328 struct btrfs_fs_info *fs_info = eb->fs_info; 4329 4330 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4331 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4332 return; 4333 4334 /* 4335 * A read may stumble upon this buffer later, make sure that it gets an 4336 * error and knows there was an error. 4337 */ 4338 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4339 4340 /* 4341 * We need to set the mapping with the io error as well because a write 4342 * error will flip the file system readonly, and then syncfs() will 4343 * return a 0 because we are readonly if we don't modify the err seq for 4344 * the superblock. 4345 */ 4346 mapping_set_error(page->mapping, -EIO); 4347 4348 /* 4349 * If we error out, we should add back the dirty_metadata_bytes 4350 * to make it consistent. 4351 */ 4352 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4353 eb->len, fs_info->dirty_metadata_batch); 4354 4355 /* 4356 * If writeback for a btree extent that doesn't belong to a log tree 4357 * failed, increment the counter transaction->eb_write_errors. 4358 * We do this because while the transaction is running and before it's 4359 * committing (when we call filemap_fdata[write|wait]_range against 4360 * the btree inode), we might have 4361 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4362 * returns an error or an error happens during writeback, when we're 4363 * committing the transaction we wouldn't know about it, since the pages 4364 * can be no longer dirty nor marked anymore for writeback (if a 4365 * subsequent modification to the extent buffer didn't happen before the 4366 * transaction commit), which makes filemap_fdata[write|wait]_range not 4367 * able to find the pages tagged with SetPageError at transaction 4368 * commit time. So if this happens we must abort the transaction, 4369 * otherwise we commit a super block with btree roots that point to 4370 * btree nodes/leafs whose content on disk is invalid - either garbage 4371 * or the content of some node/leaf from a past generation that got 4372 * cowed or deleted and is no longer valid. 4373 * 4374 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4375 * not be enough - we need to distinguish between log tree extents vs 4376 * non-log tree extents, and the next filemap_fdatawait_range() call 4377 * will catch and clear such errors in the mapping - and that call might 4378 * be from a log sync and not from a transaction commit. Also, checking 4379 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4380 * not done and would not be reliable - the eb might have been released 4381 * from memory and reading it back again means that flag would not be 4382 * set (since it's a runtime flag, not persisted on disk). 4383 * 4384 * Using the flags below in the btree inode also makes us achieve the 4385 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4386 * writeback for all dirty pages and before filemap_fdatawait_range() 4387 * is called, the writeback for all dirty pages had already finished 4388 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4389 * filemap_fdatawait_range() would return success, as it could not know 4390 * that writeback errors happened (the pages were no longer tagged for 4391 * writeback). 4392 */ 4393 switch (eb->log_index) { 4394 case -1: 4395 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4396 break; 4397 case 0: 4398 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4399 break; 4400 case 1: 4401 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4402 break; 4403 default: 4404 BUG(); /* unexpected, logic error */ 4405 } 4406 } 4407 4408 /* 4409 * The endio specific version which won't touch any unsafe spinlock in endio 4410 * context. 4411 */ 4412 static struct extent_buffer *find_extent_buffer_nolock( 4413 struct btrfs_fs_info *fs_info, u64 start) 4414 { 4415 struct extent_buffer *eb; 4416 4417 rcu_read_lock(); 4418 eb = radix_tree_lookup(&fs_info->buffer_radix, 4419 start >> fs_info->sectorsize_bits); 4420 if (eb && atomic_inc_not_zero(&eb->refs)) { 4421 rcu_read_unlock(); 4422 return eb; 4423 } 4424 rcu_read_unlock(); 4425 return NULL; 4426 } 4427 4428 /* 4429 * The endio function for subpage extent buffer write. 4430 * 4431 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4432 * after all extent buffers in the page has finished their writeback. 4433 */ 4434 static void end_bio_subpage_eb_writepage(struct bio *bio) 4435 { 4436 struct btrfs_fs_info *fs_info; 4437 struct bio_vec *bvec; 4438 struct bvec_iter_all iter_all; 4439 4440 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4441 ASSERT(fs_info->nodesize < PAGE_SIZE); 4442 4443 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4444 bio_for_each_segment_all(bvec, bio, iter_all) { 4445 struct page *page = bvec->bv_page; 4446 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4447 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4448 u64 cur_bytenr = bvec_start; 4449 4450 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4451 4452 /* Iterate through all extent buffers in the range */ 4453 while (cur_bytenr <= bvec_end) { 4454 struct extent_buffer *eb; 4455 int done; 4456 4457 /* 4458 * Here we can't use find_extent_buffer(), as it may 4459 * try to lock eb->refs_lock, which is not safe in endio 4460 * context. 4461 */ 4462 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4463 ASSERT(eb); 4464 4465 cur_bytenr = eb->start + eb->len; 4466 4467 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4468 done = atomic_dec_and_test(&eb->io_pages); 4469 ASSERT(done); 4470 4471 if (bio->bi_status || 4472 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4473 ClearPageUptodate(page); 4474 set_btree_ioerr(page, eb); 4475 } 4476 4477 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4478 eb->len); 4479 end_extent_buffer_writeback(eb); 4480 /* 4481 * free_extent_buffer() will grab spinlock which is not 4482 * safe in endio context. Thus here we manually dec 4483 * the ref. 4484 */ 4485 atomic_dec(&eb->refs); 4486 } 4487 } 4488 bio_put(bio); 4489 } 4490 4491 static void end_bio_extent_buffer_writepage(struct bio *bio) 4492 { 4493 struct bio_vec *bvec; 4494 struct extent_buffer *eb; 4495 int done; 4496 struct bvec_iter_all iter_all; 4497 4498 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4499 bio_for_each_segment_all(bvec, bio, iter_all) { 4500 struct page *page = bvec->bv_page; 4501 4502 eb = (struct extent_buffer *)page->private; 4503 BUG_ON(!eb); 4504 done = atomic_dec_and_test(&eb->io_pages); 4505 4506 if (bio->bi_status || 4507 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4508 ClearPageUptodate(page); 4509 set_btree_ioerr(page, eb); 4510 } 4511 4512 end_page_writeback(page); 4513 4514 if (!done) 4515 continue; 4516 4517 end_extent_buffer_writeback(eb); 4518 } 4519 4520 bio_put(bio); 4521 } 4522 4523 static void prepare_eb_write(struct extent_buffer *eb) 4524 { 4525 u32 nritems; 4526 unsigned long start; 4527 unsigned long end; 4528 4529 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4530 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4531 4532 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4533 nritems = btrfs_header_nritems(eb); 4534 if (btrfs_header_level(eb) > 0) { 4535 end = btrfs_node_key_ptr_offset(nritems); 4536 memzero_extent_buffer(eb, end, eb->len - end); 4537 } else { 4538 /* 4539 * Leaf: 4540 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4541 */ 4542 start = btrfs_item_nr_offset(nritems); 4543 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4544 memzero_extent_buffer(eb, start, end - start); 4545 } 4546 } 4547 4548 /* 4549 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4550 * Page locking is only utilized at minimum to keep the VMM code happy. 4551 */ 4552 static int write_one_subpage_eb(struct extent_buffer *eb, 4553 struct writeback_control *wbc, 4554 struct extent_page_data *epd) 4555 { 4556 struct btrfs_fs_info *fs_info = eb->fs_info; 4557 struct page *page = eb->pages[0]; 4558 blk_opf_t write_flags = wbc_to_write_flags(wbc); 4559 bool no_dirty_ebs = false; 4560 int ret; 4561 4562 prepare_eb_write(eb); 4563 4564 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4565 lock_page(page); 4566 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4567 4568 /* Check if this is the last dirty bit to update nr_written */ 4569 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4570 eb->start, eb->len); 4571 if (no_dirty_ebs) 4572 clear_page_dirty_for_io(page); 4573 4574 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4575 &epd->bio_ctrl, page, eb->start, eb->len, 4576 eb->start - page_offset(page), 4577 end_bio_subpage_eb_writepage, 0, false); 4578 if (ret) { 4579 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4580 set_btree_ioerr(page, eb); 4581 unlock_page(page); 4582 4583 if (atomic_dec_and_test(&eb->io_pages)) 4584 end_extent_buffer_writeback(eb); 4585 return -EIO; 4586 } 4587 unlock_page(page); 4588 /* 4589 * Submission finished without problem, if no range of the page is 4590 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4591 */ 4592 if (no_dirty_ebs) 4593 wbc->nr_to_write--; 4594 return ret; 4595 } 4596 4597 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4598 struct writeback_control *wbc, 4599 struct extent_page_data *epd) 4600 { 4601 u64 disk_bytenr = eb->start; 4602 int i, num_pages; 4603 blk_opf_t write_flags = wbc_to_write_flags(wbc); 4604 int ret = 0; 4605 4606 prepare_eb_write(eb); 4607 4608 num_pages = num_extent_pages(eb); 4609 for (i = 0; i < num_pages; i++) { 4610 struct page *p = eb->pages[i]; 4611 4612 clear_page_dirty_for_io(p); 4613 set_page_writeback(p); 4614 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4615 &epd->bio_ctrl, p, disk_bytenr, 4616 PAGE_SIZE, 0, 4617 end_bio_extent_buffer_writepage, 4618 0, false); 4619 if (ret) { 4620 set_btree_ioerr(p, eb); 4621 if (PageWriteback(p)) 4622 end_page_writeback(p); 4623 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4624 end_extent_buffer_writeback(eb); 4625 ret = -EIO; 4626 break; 4627 } 4628 disk_bytenr += PAGE_SIZE; 4629 wbc->nr_to_write--; 4630 unlock_page(p); 4631 } 4632 4633 if (unlikely(ret)) { 4634 for (; i < num_pages; i++) { 4635 struct page *p = eb->pages[i]; 4636 clear_page_dirty_for_io(p); 4637 unlock_page(p); 4638 } 4639 } 4640 4641 return ret; 4642 } 4643 4644 /* 4645 * Submit one subpage btree page. 4646 * 4647 * The main difference to submit_eb_page() is: 4648 * - Page locking 4649 * For subpage, we don't rely on page locking at all. 4650 * 4651 * - Flush write bio 4652 * We only flush bio if we may be unable to fit current extent buffers into 4653 * current bio. 4654 * 4655 * Return >=0 for the number of submitted extent buffers. 4656 * Return <0 for fatal error. 4657 */ 4658 static int submit_eb_subpage(struct page *page, 4659 struct writeback_control *wbc, 4660 struct extent_page_data *epd) 4661 { 4662 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4663 int submitted = 0; 4664 u64 page_start = page_offset(page); 4665 int bit_start = 0; 4666 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4667 int ret; 4668 4669 /* Lock and write each dirty extent buffers in the range */ 4670 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4671 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4672 struct extent_buffer *eb; 4673 unsigned long flags; 4674 u64 start; 4675 4676 /* 4677 * Take private lock to ensure the subpage won't be detached 4678 * in the meantime. 4679 */ 4680 spin_lock(&page->mapping->private_lock); 4681 if (!PagePrivate(page)) { 4682 spin_unlock(&page->mapping->private_lock); 4683 break; 4684 } 4685 spin_lock_irqsave(&subpage->lock, flags); 4686 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4687 subpage->bitmaps)) { 4688 spin_unlock_irqrestore(&subpage->lock, flags); 4689 spin_unlock(&page->mapping->private_lock); 4690 bit_start++; 4691 continue; 4692 } 4693 4694 start = page_start + bit_start * fs_info->sectorsize; 4695 bit_start += sectors_per_node; 4696 4697 /* 4698 * Here we just want to grab the eb without touching extra 4699 * spin locks, so call find_extent_buffer_nolock(). 4700 */ 4701 eb = find_extent_buffer_nolock(fs_info, start); 4702 spin_unlock_irqrestore(&subpage->lock, flags); 4703 spin_unlock(&page->mapping->private_lock); 4704 4705 /* 4706 * The eb has already reached 0 refs thus find_extent_buffer() 4707 * doesn't return it. We don't need to write back such eb 4708 * anyway. 4709 */ 4710 if (!eb) 4711 continue; 4712 4713 ret = lock_extent_buffer_for_io(eb, epd); 4714 if (ret == 0) { 4715 free_extent_buffer(eb); 4716 continue; 4717 } 4718 if (ret < 0) { 4719 free_extent_buffer(eb); 4720 goto cleanup; 4721 } 4722 ret = write_one_subpage_eb(eb, wbc, epd); 4723 free_extent_buffer(eb); 4724 if (ret < 0) 4725 goto cleanup; 4726 submitted++; 4727 } 4728 return submitted; 4729 4730 cleanup: 4731 /* We hit error, end bio for the submitted extent buffers */ 4732 submit_write_bio(epd, ret); 4733 return ret; 4734 } 4735 4736 /* 4737 * Submit all page(s) of one extent buffer. 4738 * 4739 * @page: the page of one extent buffer 4740 * @eb_context: to determine if we need to submit this page, if current page 4741 * belongs to this eb, we don't need to submit 4742 * 4743 * The caller should pass each page in their bytenr order, and here we use 4744 * @eb_context to determine if we have submitted pages of one extent buffer. 4745 * 4746 * If we have, we just skip until we hit a new page that doesn't belong to 4747 * current @eb_context. 4748 * 4749 * If not, we submit all the page(s) of the extent buffer. 4750 * 4751 * Return >0 if we have submitted the extent buffer successfully. 4752 * Return 0 if we don't need to submit the page, as it's already submitted by 4753 * previous call. 4754 * Return <0 for fatal error. 4755 */ 4756 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4757 struct extent_page_data *epd, 4758 struct extent_buffer **eb_context) 4759 { 4760 struct address_space *mapping = page->mapping; 4761 struct btrfs_block_group *cache = NULL; 4762 struct extent_buffer *eb; 4763 int ret; 4764 4765 if (!PagePrivate(page)) 4766 return 0; 4767 4768 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4769 return submit_eb_subpage(page, wbc, epd); 4770 4771 spin_lock(&mapping->private_lock); 4772 if (!PagePrivate(page)) { 4773 spin_unlock(&mapping->private_lock); 4774 return 0; 4775 } 4776 4777 eb = (struct extent_buffer *)page->private; 4778 4779 /* 4780 * Shouldn't happen and normally this would be a BUG_ON but no point 4781 * crashing the machine for something we can survive anyway. 4782 */ 4783 if (WARN_ON(!eb)) { 4784 spin_unlock(&mapping->private_lock); 4785 return 0; 4786 } 4787 4788 if (eb == *eb_context) { 4789 spin_unlock(&mapping->private_lock); 4790 return 0; 4791 } 4792 ret = atomic_inc_not_zero(&eb->refs); 4793 spin_unlock(&mapping->private_lock); 4794 if (!ret) 4795 return 0; 4796 4797 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4798 /* 4799 * If for_sync, this hole will be filled with 4800 * trasnsaction commit. 4801 */ 4802 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4803 ret = -EAGAIN; 4804 else 4805 ret = 0; 4806 free_extent_buffer(eb); 4807 return ret; 4808 } 4809 4810 *eb_context = eb; 4811 4812 ret = lock_extent_buffer_for_io(eb, epd); 4813 if (ret <= 0) { 4814 btrfs_revert_meta_write_pointer(cache, eb); 4815 if (cache) 4816 btrfs_put_block_group(cache); 4817 free_extent_buffer(eb); 4818 return ret; 4819 } 4820 if (cache) { 4821 /* 4822 * Implies write in zoned mode. Mark the last eb in a block group. 4823 */ 4824 btrfs_schedule_zone_finish_bg(cache, eb); 4825 btrfs_put_block_group(cache); 4826 } 4827 ret = write_one_eb(eb, wbc, epd); 4828 free_extent_buffer(eb); 4829 if (ret < 0) 4830 return ret; 4831 return 1; 4832 } 4833 4834 int btree_write_cache_pages(struct address_space *mapping, 4835 struct writeback_control *wbc) 4836 { 4837 struct extent_buffer *eb_context = NULL; 4838 struct extent_page_data epd = { 4839 .bio_ctrl = { 0 }, 4840 .extent_locked = 0, 4841 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4842 }; 4843 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4844 int ret = 0; 4845 int done = 0; 4846 int nr_to_write_done = 0; 4847 struct pagevec pvec; 4848 int nr_pages; 4849 pgoff_t index; 4850 pgoff_t end; /* Inclusive */ 4851 int scanned = 0; 4852 xa_mark_t tag; 4853 4854 pagevec_init(&pvec); 4855 if (wbc->range_cyclic) { 4856 index = mapping->writeback_index; /* Start from prev offset */ 4857 end = -1; 4858 /* 4859 * Start from the beginning does not need to cycle over the 4860 * range, mark it as scanned. 4861 */ 4862 scanned = (index == 0); 4863 } else { 4864 index = wbc->range_start >> PAGE_SHIFT; 4865 end = wbc->range_end >> PAGE_SHIFT; 4866 scanned = 1; 4867 } 4868 if (wbc->sync_mode == WB_SYNC_ALL) 4869 tag = PAGECACHE_TAG_TOWRITE; 4870 else 4871 tag = PAGECACHE_TAG_DIRTY; 4872 btrfs_zoned_meta_io_lock(fs_info); 4873 retry: 4874 if (wbc->sync_mode == WB_SYNC_ALL) 4875 tag_pages_for_writeback(mapping, index, end); 4876 while (!done && !nr_to_write_done && (index <= end) && 4877 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4878 tag))) { 4879 unsigned i; 4880 4881 for (i = 0; i < nr_pages; i++) { 4882 struct page *page = pvec.pages[i]; 4883 4884 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4885 if (ret == 0) 4886 continue; 4887 if (ret < 0) { 4888 done = 1; 4889 break; 4890 } 4891 4892 /* 4893 * the filesystem may choose to bump up nr_to_write. 4894 * We have to make sure to honor the new nr_to_write 4895 * at any time 4896 */ 4897 nr_to_write_done = wbc->nr_to_write <= 0; 4898 } 4899 pagevec_release(&pvec); 4900 cond_resched(); 4901 } 4902 if (!scanned && !done) { 4903 /* 4904 * We hit the last page and there is more work to be done: wrap 4905 * back to the start of the file 4906 */ 4907 scanned = 1; 4908 index = 0; 4909 goto retry; 4910 } 4911 /* 4912 * If something went wrong, don't allow any metadata write bio to be 4913 * submitted. 4914 * 4915 * This would prevent use-after-free if we had dirty pages not 4916 * cleaned up, which can still happen by fuzzed images. 4917 * 4918 * - Bad extent tree 4919 * Allowing existing tree block to be allocated for other trees. 4920 * 4921 * - Log tree operations 4922 * Exiting tree blocks get allocated to log tree, bumps its 4923 * generation, then get cleaned in tree re-balance. 4924 * Such tree block will not be written back, since it's clean, 4925 * thus no WRITTEN flag set. 4926 * And after log writes back, this tree block is not traced by 4927 * any dirty extent_io_tree. 4928 * 4929 * - Offending tree block gets re-dirtied from its original owner 4930 * Since it has bumped generation, no WRITTEN flag, it can be 4931 * reused without COWing. This tree block will not be traced 4932 * by btrfs_transaction::dirty_pages. 4933 * 4934 * Now such dirty tree block will not be cleaned by any dirty 4935 * extent io tree. Thus we don't want to submit such wild eb 4936 * if the fs already has error. 4937 * 4938 * We can get ret > 0 from submit_extent_page() indicating how many ebs 4939 * were submitted. Reset it to 0 to avoid false alerts for the caller. 4940 */ 4941 if (ret > 0) 4942 ret = 0; 4943 if (!ret && BTRFS_FS_ERROR(fs_info)) 4944 ret = -EROFS; 4945 submit_write_bio(&epd, ret); 4946 4947 btrfs_zoned_meta_io_unlock(fs_info); 4948 return ret; 4949 } 4950 4951 /** 4952 * Walk the list of dirty pages of the given address space and write all of them. 4953 * 4954 * @mapping: address space structure to write 4955 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4956 * @epd: holds context for the write, namely the bio 4957 * 4958 * If a page is already under I/O, write_cache_pages() skips it, even 4959 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4960 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4961 * and msync() need to guarantee that all the data which was dirty at the time 4962 * the call was made get new I/O started against them. If wbc->sync_mode is 4963 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4964 * existing IO to complete. 4965 */ 4966 static int extent_write_cache_pages(struct address_space *mapping, 4967 struct writeback_control *wbc, 4968 struct extent_page_data *epd) 4969 { 4970 struct inode *inode = mapping->host; 4971 int ret = 0; 4972 int done = 0; 4973 int nr_to_write_done = 0; 4974 struct pagevec pvec; 4975 int nr_pages; 4976 pgoff_t index; 4977 pgoff_t end; /* Inclusive */ 4978 pgoff_t done_index; 4979 int range_whole = 0; 4980 int scanned = 0; 4981 xa_mark_t tag; 4982 4983 /* 4984 * We have to hold onto the inode so that ordered extents can do their 4985 * work when the IO finishes. The alternative to this is failing to add 4986 * an ordered extent if the igrab() fails there and that is a huge pain 4987 * to deal with, so instead just hold onto the inode throughout the 4988 * writepages operation. If it fails here we are freeing up the inode 4989 * anyway and we'd rather not waste our time writing out stuff that is 4990 * going to be truncated anyway. 4991 */ 4992 if (!igrab(inode)) 4993 return 0; 4994 4995 pagevec_init(&pvec); 4996 if (wbc->range_cyclic) { 4997 index = mapping->writeback_index; /* Start from prev offset */ 4998 end = -1; 4999 /* 5000 * Start from the beginning does not need to cycle over the 5001 * range, mark it as scanned. 5002 */ 5003 scanned = (index == 0); 5004 } else { 5005 index = wbc->range_start >> PAGE_SHIFT; 5006 end = wbc->range_end >> PAGE_SHIFT; 5007 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 5008 range_whole = 1; 5009 scanned = 1; 5010 } 5011 5012 /* 5013 * We do the tagged writepage as long as the snapshot flush bit is set 5014 * and we are the first one who do the filemap_flush() on this inode. 5015 * 5016 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 5017 * not race in and drop the bit. 5018 */ 5019 if (range_whole && wbc->nr_to_write == LONG_MAX && 5020 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 5021 &BTRFS_I(inode)->runtime_flags)) 5022 wbc->tagged_writepages = 1; 5023 5024 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5025 tag = PAGECACHE_TAG_TOWRITE; 5026 else 5027 tag = PAGECACHE_TAG_DIRTY; 5028 retry: 5029 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5030 tag_pages_for_writeback(mapping, index, end); 5031 done_index = index; 5032 while (!done && !nr_to_write_done && (index <= end) && 5033 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5034 &index, end, tag))) { 5035 unsigned i; 5036 5037 for (i = 0; i < nr_pages; i++) { 5038 struct page *page = pvec.pages[i]; 5039 5040 done_index = page->index + 1; 5041 /* 5042 * At this point we hold neither the i_pages lock nor 5043 * the page lock: the page may be truncated or 5044 * invalidated (changing page->mapping to NULL), 5045 * or even swizzled back from swapper_space to 5046 * tmpfs file mapping 5047 */ 5048 if (!trylock_page(page)) { 5049 submit_write_bio(epd, 0); 5050 lock_page(page); 5051 } 5052 5053 if (unlikely(page->mapping != mapping)) { 5054 unlock_page(page); 5055 continue; 5056 } 5057 5058 if (wbc->sync_mode != WB_SYNC_NONE) { 5059 if (PageWriteback(page)) 5060 submit_write_bio(epd, 0); 5061 wait_on_page_writeback(page); 5062 } 5063 5064 if (PageWriteback(page) || 5065 !clear_page_dirty_for_io(page)) { 5066 unlock_page(page); 5067 continue; 5068 } 5069 5070 ret = __extent_writepage(page, wbc, epd); 5071 if (ret < 0) { 5072 done = 1; 5073 break; 5074 } 5075 5076 /* 5077 * the filesystem may choose to bump up nr_to_write. 5078 * We have to make sure to honor the new nr_to_write 5079 * at any time 5080 */ 5081 nr_to_write_done = wbc->nr_to_write <= 0; 5082 } 5083 pagevec_release(&pvec); 5084 cond_resched(); 5085 } 5086 if (!scanned && !done) { 5087 /* 5088 * We hit the last page and there is more work to be done: wrap 5089 * back to the start of the file 5090 */ 5091 scanned = 1; 5092 index = 0; 5093 5094 /* 5095 * If we're looping we could run into a page that is locked by a 5096 * writer and that writer could be waiting on writeback for a 5097 * page in our current bio, and thus deadlock, so flush the 5098 * write bio here. 5099 */ 5100 submit_write_bio(epd, 0); 5101 goto retry; 5102 } 5103 5104 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5105 mapping->writeback_index = done_index; 5106 5107 btrfs_add_delayed_iput(inode); 5108 return ret; 5109 } 5110 5111 /* 5112 * Submit the pages in the range to bio for call sites which delalloc range has 5113 * already been ran (aka, ordered extent inserted) and all pages are still 5114 * locked. 5115 */ 5116 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5117 { 5118 bool found_error = false; 5119 int first_error = 0; 5120 int ret = 0; 5121 struct address_space *mapping = inode->i_mapping; 5122 struct page *page; 5123 u64 cur = start; 5124 unsigned long nr_pages; 5125 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5126 struct extent_page_data epd = { 5127 .bio_ctrl = { 0 }, 5128 .extent_locked = 1, 5129 .sync_io = 1, 5130 }; 5131 struct writeback_control wbc_writepages = { 5132 .sync_mode = WB_SYNC_ALL, 5133 .range_start = start, 5134 .range_end = end + 1, 5135 /* We're called from an async helper function */ 5136 .punt_to_cgroup = 1, 5137 .no_cgroup_owner = 1, 5138 }; 5139 5140 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5141 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5142 PAGE_SHIFT; 5143 wbc_writepages.nr_to_write = nr_pages * 2; 5144 5145 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5146 while (cur <= end) { 5147 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5148 5149 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5150 /* 5151 * All pages in the range are locked since 5152 * btrfs_run_delalloc_range(), thus there is no way to clear 5153 * the page dirty flag. 5154 */ 5155 ASSERT(PageLocked(page)); 5156 ASSERT(PageDirty(page)); 5157 clear_page_dirty_for_io(page); 5158 ret = __extent_writepage(page, &wbc_writepages, &epd); 5159 ASSERT(ret <= 0); 5160 if (ret < 0) { 5161 found_error = true; 5162 first_error = ret; 5163 } 5164 put_page(page); 5165 cur = cur_end + 1; 5166 } 5167 5168 submit_write_bio(&epd, found_error ? ret : 0); 5169 5170 wbc_detach_inode(&wbc_writepages); 5171 if (found_error) 5172 return first_error; 5173 return ret; 5174 } 5175 5176 int extent_writepages(struct address_space *mapping, 5177 struct writeback_control *wbc) 5178 { 5179 struct inode *inode = mapping->host; 5180 int ret = 0; 5181 struct extent_page_data epd = { 5182 .bio_ctrl = { 0 }, 5183 .extent_locked = 0, 5184 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5185 }; 5186 5187 /* 5188 * Allow only a single thread to do the reloc work in zoned mode to 5189 * protect the write pointer updates. 5190 */ 5191 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5192 ret = extent_write_cache_pages(mapping, wbc, &epd); 5193 submit_write_bio(&epd, ret); 5194 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5195 return ret; 5196 } 5197 5198 void extent_readahead(struct readahead_control *rac) 5199 { 5200 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5201 struct page *pagepool[16]; 5202 struct extent_map *em_cached = NULL; 5203 u64 prev_em_start = (u64)-1; 5204 int nr; 5205 5206 while ((nr = readahead_page_batch(rac, pagepool))) { 5207 u64 contig_start = readahead_pos(rac); 5208 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5209 5210 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5211 &em_cached, &bio_ctrl, &prev_em_start); 5212 } 5213 5214 if (em_cached) 5215 free_extent_map(em_cached); 5216 submit_one_bio(&bio_ctrl); 5217 } 5218 5219 /* 5220 * basic invalidate_folio code, this waits on any locked or writeback 5221 * ranges corresponding to the folio, and then deletes any extent state 5222 * records from the tree 5223 */ 5224 int extent_invalidate_folio(struct extent_io_tree *tree, 5225 struct folio *folio, size_t offset) 5226 { 5227 struct extent_state *cached_state = NULL; 5228 u64 start = folio_pos(folio); 5229 u64 end = start + folio_size(folio) - 1; 5230 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 5231 5232 /* This function is only called for the btree inode */ 5233 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5234 5235 start += ALIGN(offset, blocksize); 5236 if (start > end) 5237 return 0; 5238 5239 lock_extent_bits(tree, start, end, &cached_state); 5240 folio_wait_writeback(folio); 5241 5242 /* 5243 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5244 * so here we only need to unlock the extent range to free any 5245 * existing extent state. 5246 */ 5247 unlock_extent_cached(tree, start, end, &cached_state); 5248 return 0; 5249 } 5250 5251 /* 5252 * a helper for release_folio, this tests for areas of the page that 5253 * are locked or under IO and drops the related state bits if it is safe 5254 * to drop the page. 5255 */ 5256 static int try_release_extent_state(struct extent_io_tree *tree, 5257 struct page *page, gfp_t mask) 5258 { 5259 u64 start = page_offset(page); 5260 u64 end = start + PAGE_SIZE - 1; 5261 int ret = 1; 5262 5263 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5264 ret = 0; 5265 } else { 5266 /* 5267 * At this point we can safely clear everything except the 5268 * locked bit, the nodatasum bit and the delalloc new bit. 5269 * The delalloc new bit will be cleared by ordered extent 5270 * completion. 5271 */ 5272 ret = __clear_extent_bit(tree, start, end, 5273 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5274 0, 0, NULL, mask, NULL); 5275 5276 /* if clear_extent_bit failed for enomem reasons, 5277 * we can't allow the release to continue. 5278 */ 5279 if (ret < 0) 5280 ret = 0; 5281 else 5282 ret = 1; 5283 } 5284 return ret; 5285 } 5286 5287 /* 5288 * a helper for release_folio. As long as there are no locked extents 5289 * in the range corresponding to the page, both state records and extent 5290 * map records are removed 5291 */ 5292 int try_release_extent_mapping(struct page *page, gfp_t mask) 5293 { 5294 struct extent_map *em; 5295 u64 start = page_offset(page); 5296 u64 end = start + PAGE_SIZE - 1; 5297 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5298 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5299 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5300 5301 if (gfpflags_allow_blocking(mask) && 5302 page->mapping->host->i_size > SZ_16M) { 5303 u64 len; 5304 while (start <= end) { 5305 struct btrfs_fs_info *fs_info; 5306 u64 cur_gen; 5307 5308 len = end - start + 1; 5309 write_lock(&map->lock); 5310 em = lookup_extent_mapping(map, start, len); 5311 if (!em) { 5312 write_unlock(&map->lock); 5313 break; 5314 } 5315 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5316 em->start != start) { 5317 write_unlock(&map->lock); 5318 free_extent_map(em); 5319 break; 5320 } 5321 if (test_range_bit(tree, em->start, 5322 extent_map_end(em) - 1, 5323 EXTENT_LOCKED, 0, NULL)) 5324 goto next; 5325 /* 5326 * If it's not in the list of modified extents, used 5327 * by a fast fsync, we can remove it. If it's being 5328 * logged we can safely remove it since fsync took an 5329 * extra reference on the em. 5330 */ 5331 if (list_empty(&em->list) || 5332 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5333 goto remove_em; 5334 /* 5335 * If it's in the list of modified extents, remove it 5336 * only if its generation is older then the current one, 5337 * in which case we don't need it for a fast fsync. 5338 * Otherwise don't remove it, we could be racing with an 5339 * ongoing fast fsync that could miss the new extent. 5340 */ 5341 fs_info = btrfs_inode->root->fs_info; 5342 spin_lock(&fs_info->trans_lock); 5343 cur_gen = fs_info->generation; 5344 spin_unlock(&fs_info->trans_lock); 5345 if (em->generation >= cur_gen) 5346 goto next; 5347 remove_em: 5348 /* 5349 * We only remove extent maps that are not in the list of 5350 * modified extents or that are in the list but with a 5351 * generation lower then the current generation, so there 5352 * is no need to set the full fsync flag on the inode (it 5353 * hurts the fsync performance for workloads with a data 5354 * size that exceeds or is close to the system's memory). 5355 */ 5356 remove_extent_mapping(map, em); 5357 /* once for the rb tree */ 5358 free_extent_map(em); 5359 next: 5360 start = extent_map_end(em); 5361 write_unlock(&map->lock); 5362 5363 /* once for us */ 5364 free_extent_map(em); 5365 5366 cond_resched(); /* Allow large-extent preemption. */ 5367 } 5368 } 5369 return try_release_extent_state(tree, page, mask); 5370 } 5371 5372 /* 5373 * helper function for fiemap, which doesn't want to see any holes. 5374 * This maps until we find something past 'last' 5375 */ 5376 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5377 u64 offset, u64 last) 5378 { 5379 u64 sectorsize = btrfs_inode_sectorsize(inode); 5380 struct extent_map *em; 5381 u64 len; 5382 5383 if (offset >= last) 5384 return NULL; 5385 5386 while (1) { 5387 len = last - offset; 5388 if (len == 0) 5389 break; 5390 len = ALIGN(len, sectorsize); 5391 em = btrfs_get_extent_fiemap(inode, offset, len); 5392 if (IS_ERR(em)) 5393 return em; 5394 5395 /* if this isn't a hole return it */ 5396 if (em->block_start != EXTENT_MAP_HOLE) 5397 return em; 5398 5399 /* this is a hole, advance to the next extent */ 5400 offset = extent_map_end(em); 5401 free_extent_map(em); 5402 if (offset >= last) 5403 break; 5404 } 5405 return NULL; 5406 } 5407 5408 /* 5409 * To cache previous fiemap extent 5410 * 5411 * Will be used for merging fiemap extent 5412 */ 5413 struct fiemap_cache { 5414 u64 offset; 5415 u64 phys; 5416 u64 len; 5417 u32 flags; 5418 bool cached; 5419 }; 5420 5421 /* 5422 * Helper to submit fiemap extent. 5423 * 5424 * Will try to merge current fiemap extent specified by @offset, @phys, 5425 * @len and @flags with cached one. 5426 * And only when we fails to merge, cached one will be submitted as 5427 * fiemap extent. 5428 * 5429 * Return value is the same as fiemap_fill_next_extent(). 5430 */ 5431 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5432 struct fiemap_cache *cache, 5433 u64 offset, u64 phys, u64 len, u32 flags) 5434 { 5435 int ret = 0; 5436 5437 if (!cache->cached) 5438 goto assign; 5439 5440 /* 5441 * Sanity check, extent_fiemap() should have ensured that new 5442 * fiemap extent won't overlap with cached one. 5443 * Not recoverable. 5444 * 5445 * NOTE: Physical address can overlap, due to compression 5446 */ 5447 if (cache->offset + cache->len > offset) { 5448 WARN_ON(1); 5449 return -EINVAL; 5450 } 5451 5452 /* 5453 * Only merges fiemap extents if 5454 * 1) Their logical addresses are continuous 5455 * 5456 * 2) Their physical addresses are continuous 5457 * So truly compressed (physical size smaller than logical size) 5458 * extents won't get merged with each other 5459 * 5460 * 3) Share same flags except FIEMAP_EXTENT_LAST 5461 * So regular extent won't get merged with prealloc extent 5462 */ 5463 if (cache->offset + cache->len == offset && 5464 cache->phys + cache->len == phys && 5465 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5466 (flags & ~FIEMAP_EXTENT_LAST)) { 5467 cache->len += len; 5468 cache->flags |= flags; 5469 goto try_submit_last; 5470 } 5471 5472 /* Not mergeable, need to submit cached one */ 5473 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5474 cache->len, cache->flags); 5475 cache->cached = false; 5476 if (ret) 5477 return ret; 5478 assign: 5479 cache->cached = true; 5480 cache->offset = offset; 5481 cache->phys = phys; 5482 cache->len = len; 5483 cache->flags = flags; 5484 try_submit_last: 5485 if (cache->flags & FIEMAP_EXTENT_LAST) { 5486 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5487 cache->phys, cache->len, cache->flags); 5488 cache->cached = false; 5489 } 5490 return ret; 5491 } 5492 5493 /* 5494 * Emit last fiemap cache 5495 * 5496 * The last fiemap cache may still be cached in the following case: 5497 * 0 4k 8k 5498 * |<- Fiemap range ->| 5499 * |<------------ First extent ----------->| 5500 * 5501 * In this case, the first extent range will be cached but not emitted. 5502 * So we must emit it before ending extent_fiemap(). 5503 */ 5504 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5505 struct fiemap_cache *cache) 5506 { 5507 int ret; 5508 5509 if (!cache->cached) 5510 return 0; 5511 5512 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5513 cache->len, cache->flags); 5514 cache->cached = false; 5515 if (ret > 0) 5516 ret = 0; 5517 return ret; 5518 } 5519 5520 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5521 u64 start, u64 len) 5522 { 5523 int ret = 0; 5524 u64 off; 5525 u64 max = start + len; 5526 u32 flags = 0; 5527 u32 found_type; 5528 u64 last; 5529 u64 last_for_get_extent = 0; 5530 u64 disko = 0; 5531 u64 isize = i_size_read(&inode->vfs_inode); 5532 struct btrfs_key found_key; 5533 struct extent_map *em = NULL; 5534 struct extent_state *cached_state = NULL; 5535 struct btrfs_path *path; 5536 struct btrfs_root *root = inode->root; 5537 struct fiemap_cache cache = { 0 }; 5538 struct ulist *roots; 5539 struct ulist *tmp_ulist; 5540 int end = 0; 5541 u64 em_start = 0; 5542 u64 em_len = 0; 5543 u64 em_end = 0; 5544 5545 if (len == 0) 5546 return -EINVAL; 5547 5548 path = btrfs_alloc_path(); 5549 if (!path) 5550 return -ENOMEM; 5551 5552 roots = ulist_alloc(GFP_KERNEL); 5553 tmp_ulist = ulist_alloc(GFP_KERNEL); 5554 if (!roots || !tmp_ulist) { 5555 ret = -ENOMEM; 5556 goto out_free_ulist; 5557 } 5558 5559 /* 5560 * We can't initialize that to 'start' as this could miss extents due 5561 * to extent item merging 5562 */ 5563 off = 0; 5564 start = round_down(start, btrfs_inode_sectorsize(inode)); 5565 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5566 5567 /* 5568 * lookup the last file extent. We're not using i_size here 5569 * because there might be preallocation past i_size 5570 */ 5571 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5572 0); 5573 if (ret < 0) { 5574 goto out_free_ulist; 5575 } else { 5576 WARN_ON(!ret); 5577 if (ret == 1) 5578 ret = 0; 5579 } 5580 5581 path->slots[0]--; 5582 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5583 found_type = found_key.type; 5584 5585 /* No extents, but there might be delalloc bits */ 5586 if (found_key.objectid != btrfs_ino(inode) || 5587 found_type != BTRFS_EXTENT_DATA_KEY) { 5588 /* have to trust i_size as the end */ 5589 last = (u64)-1; 5590 last_for_get_extent = isize; 5591 } else { 5592 /* 5593 * remember the start of the last extent. There are a 5594 * bunch of different factors that go into the length of the 5595 * extent, so its much less complex to remember where it started 5596 */ 5597 last = found_key.offset; 5598 last_for_get_extent = last + 1; 5599 } 5600 btrfs_release_path(path); 5601 5602 /* 5603 * we might have some extents allocated but more delalloc past those 5604 * extents. so, we trust isize unless the start of the last extent is 5605 * beyond isize 5606 */ 5607 if (last < isize) { 5608 last = (u64)-1; 5609 last_for_get_extent = isize; 5610 } 5611 5612 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5613 &cached_state); 5614 5615 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5616 if (!em) 5617 goto out; 5618 if (IS_ERR(em)) { 5619 ret = PTR_ERR(em); 5620 goto out; 5621 } 5622 5623 while (!end) { 5624 u64 offset_in_extent = 0; 5625 5626 /* break if the extent we found is outside the range */ 5627 if (em->start >= max || extent_map_end(em) < off) 5628 break; 5629 5630 /* 5631 * get_extent may return an extent that starts before our 5632 * requested range. We have to make sure the ranges 5633 * we return to fiemap always move forward and don't 5634 * overlap, so adjust the offsets here 5635 */ 5636 em_start = max(em->start, off); 5637 5638 /* 5639 * record the offset from the start of the extent 5640 * for adjusting the disk offset below. Only do this if the 5641 * extent isn't compressed since our in ram offset may be past 5642 * what we have actually allocated on disk. 5643 */ 5644 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5645 offset_in_extent = em_start - em->start; 5646 em_end = extent_map_end(em); 5647 em_len = em_end - em_start; 5648 flags = 0; 5649 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5650 disko = em->block_start + offset_in_extent; 5651 else 5652 disko = 0; 5653 5654 /* 5655 * bump off for our next call to get_extent 5656 */ 5657 off = extent_map_end(em); 5658 if (off >= max) 5659 end = 1; 5660 5661 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5662 end = 1; 5663 flags |= FIEMAP_EXTENT_LAST; 5664 } else if (em->block_start == EXTENT_MAP_INLINE) { 5665 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5666 FIEMAP_EXTENT_NOT_ALIGNED); 5667 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5668 flags |= (FIEMAP_EXTENT_DELALLOC | 5669 FIEMAP_EXTENT_UNKNOWN); 5670 } else if (fieinfo->fi_extents_max) { 5671 u64 bytenr = em->block_start - 5672 (em->start - em->orig_start); 5673 5674 /* 5675 * As btrfs supports shared space, this information 5676 * can be exported to userspace tools via 5677 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5678 * then we're just getting a count and we can skip the 5679 * lookup stuff. 5680 */ 5681 ret = btrfs_check_shared(root, btrfs_ino(inode), 5682 bytenr, roots, tmp_ulist); 5683 if (ret < 0) 5684 goto out_free; 5685 if (ret) 5686 flags |= FIEMAP_EXTENT_SHARED; 5687 ret = 0; 5688 } 5689 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5690 flags |= FIEMAP_EXTENT_ENCODED; 5691 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5692 flags |= FIEMAP_EXTENT_UNWRITTEN; 5693 5694 free_extent_map(em); 5695 em = NULL; 5696 if ((em_start >= last) || em_len == (u64)-1 || 5697 (last == (u64)-1 && isize <= em_end)) { 5698 flags |= FIEMAP_EXTENT_LAST; 5699 end = 1; 5700 } 5701 5702 /* now scan forward to see if this is really the last extent. */ 5703 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5704 if (IS_ERR(em)) { 5705 ret = PTR_ERR(em); 5706 goto out; 5707 } 5708 if (!em) { 5709 flags |= FIEMAP_EXTENT_LAST; 5710 end = 1; 5711 } 5712 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5713 em_len, flags); 5714 if (ret) { 5715 if (ret == 1) 5716 ret = 0; 5717 goto out_free; 5718 } 5719 } 5720 out_free: 5721 if (!ret) 5722 ret = emit_last_fiemap_cache(fieinfo, &cache); 5723 free_extent_map(em); 5724 out: 5725 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5726 &cached_state); 5727 5728 out_free_ulist: 5729 btrfs_free_path(path); 5730 ulist_free(roots); 5731 ulist_free(tmp_ulist); 5732 return ret; 5733 } 5734 5735 static void __free_extent_buffer(struct extent_buffer *eb) 5736 { 5737 kmem_cache_free(extent_buffer_cache, eb); 5738 } 5739 5740 int extent_buffer_under_io(const struct extent_buffer *eb) 5741 { 5742 return (atomic_read(&eb->io_pages) || 5743 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5744 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5745 } 5746 5747 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5748 { 5749 struct btrfs_subpage *subpage; 5750 5751 lockdep_assert_held(&page->mapping->private_lock); 5752 5753 if (PagePrivate(page)) { 5754 subpage = (struct btrfs_subpage *)page->private; 5755 if (atomic_read(&subpage->eb_refs)) 5756 return true; 5757 /* 5758 * Even there is no eb refs here, we may still have 5759 * end_page_read() call relying on page::private. 5760 */ 5761 if (atomic_read(&subpage->readers)) 5762 return true; 5763 } 5764 return false; 5765 } 5766 5767 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5768 { 5769 struct btrfs_fs_info *fs_info = eb->fs_info; 5770 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5771 5772 /* 5773 * For mapped eb, we're going to change the page private, which should 5774 * be done under the private_lock. 5775 */ 5776 if (mapped) 5777 spin_lock(&page->mapping->private_lock); 5778 5779 if (!PagePrivate(page)) { 5780 if (mapped) 5781 spin_unlock(&page->mapping->private_lock); 5782 return; 5783 } 5784 5785 if (fs_info->nodesize >= PAGE_SIZE) { 5786 /* 5787 * We do this since we'll remove the pages after we've 5788 * removed the eb from the radix tree, so we could race 5789 * and have this page now attached to the new eb. So 5790 * only clear page_private if it's still connected to 5791 * this eb. 5792 */ 5793 if (PagePrivate(page) && 5794 page->private == (unsigned long)eb) { 5795 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5796 BUG_ON(PageDirty(page)); 5797 BUG_ON(PageWriteback(page)); 5798 /* 5799 * We need to make sure we haven't be attached 5800 * to a new eb. 5801 */ 5802 detach_page_private(page); 5803 } 5804 if (mapped) 5805 spin_unlock(&page->mapping->private_lock); 5806 return; 5807 } 5808 5809 /* 5810 * For subpage, we can have dummy eb with page private. In this case, 5811 * we can directly detach the private as such page is only attached to 5812 * one dummy eb, no sharing. 5813 */ 5814 if (!mapped) { 5815 btrfs_detach_subpage(fs_info, page); 5816 return; 5817 } 5818 5819 btrfs_page_dec_eb_refs(fs_info, page); 5820 5821 /* 5822 * We can only detach the page private if there are no other ebs in the 5823 * page range and no unfinished IO. 5824 */ 5825 if (!page_range_has_eb(fs_info, page)) 5826 btrfs_detach_subpage(fs_info, page); 5827 5828 spin_unlock(&page->mapping->private_lock); 5829 } 5830 5831 /* Release all pages attached to the extent buffer */ 5832 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5833 { 5834 int i; 5835 int num_pages; 5836 5837 ASSERT(!extent_buffer_under_io(eb)); 5838 5839 num_pages = num_extent_pages(eb); 5840 for (i = 0; i < num_pages; i++) { 5841 struct page *page = eb->pages[i]; 5842 5843 if (!page) 5844 continue; 5845 5846 detach_extent_buffer_page(eb, page); 5847 5848 /* One for when we allocated the page */ 5849 put_page(page); 5850 } 5851 } 5852 5853 /* 5854 * Helper for releasing the extent buffer. 5855 */ 5856 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5857 { 5858 btrfs_release_extent_buffer_pages(eb); 5859 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5860 __free_extent_buffer(eb); 5861 } 5862 5863 static struct extent_buffer * 5864 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5865 unsigned long len) 5866 { 5867 struct extent_buffer *eb = NULL; 5868 5869 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5870 eb->start = start; 5871 eb->len = len; 5872 eb->fs_info = fs_info; 5873 eb->bflags = 0; 5874 init_rwsem(&eb->lock); 5875 5876 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5877 &fs_info->allocated_ebs); 5878 INIT_LIST_HEAD(&eb->release_list); 5879 5880 spin_lock_init(&eb->refs_lock); 5881 atomic_set(&eb->refs, 1); 5882 atomic_set(&eb->io_pages, 0); 5883 5884 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5885 5886 return eb; 5887 } 5888 5889 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5890 { 5891 int i; 5892 struct extent_buffer *new; 5893 int num_pages = num_extent_pages(src); 5894 int ret; 5895 5896 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5897 if (new == NULL) 5898 return NULL; 5899 5900 /* 5901 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5902 * btrfs_release_extent_buffer() have different behavior for 5903 * UNMAPPED subpage extent buffer. 5904 */ 5905 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5906 5907 memset(new->pages, 0, sizeof(*new->pages) * num_pages); 5908 ret = btrfs_alloc_page_array(num_pages, new->pages); 5909 if (ret) { 5910 btrfs_release_extent_buffer(new); 5911 return NULL; 5912 } 5913 5914 for (i = 0; i < num_pages; i++) { 5915 int ret; 5916 struct page *p = new->pages[i]; 5917 5918 ret = attach_extent_buffer_page(new, p, NULL); 5919 if (ret < 0) { 5920 btrfs_release_extent_buffer(new); 5921 return NULL; 5922 } 5923 WARN_ON(PageDirty(p)); 5924 copy_page(page_address(p), page_address(src->pages[i])); 5925 } 5926 set_extent_buffer_uptodate(new); 5927 5928 return new; 5929 } 5930 5931 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5932 u64 start, unsigned long len) 5933 { 5934 struct extent_buffer *eb; 5935 int num_pages; 5936 int i; 5937 int ret; 5938 5939 eb = __alloc_extent_buffer(fs_info, start, len); 5940 if (!eb) 5941 return NULL; 5942 5943 num_pages = num_extent_pages(eb); 5944 ret = btrfs_alloc_page_array(num_pages, eb->pages); 5945 if (ret) 5946 goto err; 5947 5948 for (i = 0; i < num_pages; i++) { 5949 struct page *p = eb->pages[i]; 5950 5951 ret = attach_extent_buffer_page(eb, p, NULL); 5952 if (ret < 0) 5953 goto err; 5954 } 5955 5956 set_extent_buffer_uptodate(eb); 5957 btrfs_set_header_nritems(eb, 0); 5958 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5959 5960 return eb; 5961 err: 5962 for (i = 0; i < num_pages; i++) { 5963 if (eb->pages[i]) { 5964 detach_extent_buffer_page(eb, eb->pages[i]); 5965 __free_page(eb->pages[i]); 5966 } 5967 } 5968 __free_extent_buffer(eb); 5969 return NULL; 5970 } 5971 5972 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5973 u64 start) 5974 { 5975 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5976 } 5977 5978 static void check_buffer_tree_ref(struct extent_buffer *eb) 5979 { 5980 int refs; 5981 /* 5982 * The TREE_REF bit is first set when the extent_buffer is added 5983 * to the radix tree. It is also reset, if unset, when a new reference 5984 * is created by find_extent_buffer. 5985 * 5986 * It is only cleared in two cases: freeing the last non-tree 5987 * reference to the extent_buffer when its STALE bit is set or 5988 * calling release_folio when the tree reference is the only reference. 5989 * 5990 * In both cases, care is taken to ensure that the extent_buffer's 5991 * pages are not under io. However, release_folio can be concurrently 5992 * called with creating new references, which is prone to race 5993 * conditions between the calls to check_buffer_tree_ref in those 5994 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5995 * 5996 * The actual lifetime of the extent_buffer in the radix tree is 5997 * adequately protected by the refcount, but the TREE_REF bit and 5998 * its corresponding reference are not. To protect against this 5999 * class of races, we call check_buffer_tree_ref from the codepaths 6000 * which trigger io after they set eb->io_pages. Note that once io is 6001 * initiated, TREE_REF can no longer be cleared, so that is the 6002 * moment at which any such race is best fixed. 6003 */ 6004 refs = atomic_read(&eb->refs); 6005 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6006 return; 6007 6008 spin_lock(&eb->refs_lock); 6009 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6010 atomic_inc(&eb->refs); 6011 spin_unlock(&eb->refs_lock); 6012 } 6013 6014 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6015 struct page *accessed) 6016 { 6017 int num_pages, i; 6018 6019 check_buffer_tree_ref(eb); 6020 6021 num_pages = num_extent_pages(eb); 6022 for (i = 0; i < num_pages; i++) { 6023 struct page *p = eb->pages[i]; 6024 6025 if (p != accessed) 6026 mark_page_accessed(p); 6027 } 6028 } 6029 6030 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6031 u64 start) 6032 { 6033 struct extent_buffer *eb; 6034 6035 eb = find_extent_buffer_nolock(fs_info, start); 6036 if (!eb) 6037 return NULL; 6038 /* 6039 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6040 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6041 * another task running free_extent_buffer() might have seen that flag 6042 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6043 * writeback flags not set) and it's still in the tree (flag 6044 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6045 * decrementing the extent buffer's reference count twice. So here we 6046 * could race and increment the eb's reference count, clear its stale 6047 * flag, mark it as dirty and drop our reference before the other task 6048 * finishes executing free_extent_buffer, which would later result in 6049 * an attempt to free an extent buffer that is dirty. 6050 */ 6051 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6052 spin_lock(&eb->refs_lock); 6053 spin_unlock(&eb->refs_lock); 6054 } 6055 mark_extent_buffer_accessed(eb, NULL); 6056 return eb; 6057 } 6058 6059 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6060 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6061 u64 start) 6062 { 6063 struct extent_buffer *eb, *exists = NULL; 6064 int ret; 6065 6066 eb = find_extent_buffer(fs_info, start); 6067 if (eb) 6068 return eb; 6069 eb = alloc_dummy_extent_buffer(fs_info, start); 6070 if (!eb) 6071 return ERR_PTR(-ENOMEM); 6072 eb->fs_info = fs_info; 6073 again: 6074 ret = radix_tree_preload(GFP_NOFS); 6075 if (ret) { 6076 exists = ERR_PTR(ret); 6077 goto free_eb; 6078 } 6079 spin_lock(&fs_info->buffer_lock); 6080 ret = radix_tree_insert(&fs_info->buffer_radix, 6081 start >> fs_info->sectorsize_bits, eb); 6082 spin_unlock(&fs_info->buffer_lock); 6083 radix_tree_preload_end(); 6084 if (ret == -EEXIST) { 6085 exists = find_extent_buffer(fs_info, start); 6086 if (exists) 6087 goto free_eb; 6088 else 6089 goto again; 6090 } 6091 check_buffer_tree_ref(eb); 6092 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6093 6094 return eb; 6095 free_eb: 6096 btrfs_release_extent_buffer(eb); 6097 return exists; 6098 } 6099 #endif 6100 6101 static struct extent_buffer *grab_extent_buffer( 6102 struct btrfs_fs_info *fs_info, struct page *page) 6103 { 6104 struct extent_buffer *exists; 6105 6106 /* 6107 * For subpage case, we completely rely on radix tree to ensure we 6108 * don't try to insert two ebs for the same bytenr. So here we always 6109 * return NULL and just continue. 6110 */ 6111 if (fs_info->nodesize < PAGE_SIZE) 6112 return NULL; 6113 6114 /* Page not yet attached to an extent buffer */ 6115 if (!PagePrivate(page)) 6116 return NULL; 6117 6118 /* 6119 * We could have already allocated an eb for this page and attached one 6120 * so lets see if we can get a ref on the existing eb, and if we can we 6121 * know it's good and we can just return that one, else we know we can 6122 * just overwrite page->private. 6123 */ 6124 exists = (struct extent_buffer *)page->private; 6125 if (atomic_inc_not_zero(&exists->refs)) 6126 return exists; 6127 6128 WARN_ON(PageDirty(page)); 6129 detach_page_private(page); 6130 return NULL; 6131 } 6132 6133 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 6134 { 6135 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6136 btrfs_err(fs_info, "bad tree block start %llu", start); 6137 return -EINVAL; 6138 } 6139 6140 if (fs_info->nodesize < PAGE_SIZE && 6141 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 6142 btrfs_err(fs_info, 6143 "tree block crosses page boundary, start %llu nodesize %u", 6144 start, fs_info->nodesize); 6145 return -EINVAL; 6146 } 6147 if (fs_info->nodesize >= PAGE_SIZE && 6148 !PAGE_ALIGNED(start)) { 6149 btrfs_err(fs_info, 6150 "tree block is not page aligned, start %llu nodesize %u", 6151 start, fs_info->nodesize); 6152 return -EINVAL; 6153 } 6154 return 0; 6155 } 6156 6157 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6158 u64 start, u64 owner_root, int level) 6159 { 6160 unsigned long len = fs_info->nodesize; 6161 int num_pages; 6162 int i; 6163 unsigned long index = start >> PAGE_SHIFT; 6164 struct extent_buffer *eb; 6165 struct extent_buffer *exists = NULL; 6166 struct page *p; 6167 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6168 u64 lockdep_owner = owner_root; 6169 int uptodate = 1; 6170 int ret; 6171 6172 if (check_eb_alignment(fs_info, start)) 6173 return ERR_PTR(-EINVAL); 6174 6175 #if BITS_PER_LONG == 32 6176 if (start >= MAX_LFS_FILESIZE) { 6177 btrfs_err_rl(fs_info, 6178 "extent buffer %llu is beyond 32bit page cache limit", start); 6179 btrfs_err_32bit_limit(fs_info); 6180 return ERR_PTR(-EOVERFLOW); 6181 } 6182 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6183 btrfs_warn_32bit_limit(fs_info); 6184 #endif 6185 6186 eb = find_extent_buffer(fs_info, start); 6187 if (eb) 6188 return eb; 6189 6190 eb = __alloc_extent_buffer(fs_info, start, len); 6191 if (!eb) 6192 return ERR_PTR(-ENOMEM); 6193 6194 /* 6195 * The reloc trees are just snapshots, so we need them to appear to be 6196 * just like any other fs tree WRT lockdep. 6197 */ 6198 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 6199 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 6200 6201 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 6202 6203 num_pages = num_extent_pages(eb); 6204 for (i = 0; i < num_pages; i++, index++) { 6205 struct btrfs_subpage *prealloc = NULL; 6206 6207 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6208 if (!p) { 6209 exists = ERR_PTR(-ENOMEM); 6210 goto free_eb; 6211 } 6212 6213 /* 6214 * Preallocate page->private for subpage case, so that we won't 6215 * allocate memory with private_lock hold. The memory will be 6216 * freed by attach_extent_buffer_page() or freed manually if 6217 * we exit earlier. 6218 * 6219 * Although we have ensured one subpage eb can only have one 6220 * page, but it may change in the future for 16K page size 6221 * support, so we still preallocate the memory in the loop. 6222 */ 6223 if (fs_info->nodesize < PAGE_SIZE) { 6224 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6225 if (IS_ERR(prealloc)) { 6226 ret = PTR_ERR(prealloc); 6227 unlock_page(p); 6228 put_page(p); 6229 exists = ERR_PTR(ret); 6230 goto free_eb; 6231 } 6232 } 6233 6234 spin_lock(&mapping->private_lock); 6235 exists = grab_extent_buffer(fs_info, p); 6236 if (exists) { 6237 spin_unlock(&mapping->private_lock); 6238 unlock_page(p); 6239 put_page(p); 6240 mark_extent_buffer_accessed(exists, p); 6241 btrfs_free_subpage(prealloc); 6242 goto free_eb; 6243 } 6244 /* Should not fail, as we have preallocated the memory */ 6245 ret = attach_extent_buffer_page(eb, p, prealloc); 6246 ASSERT(!ret); 6247 /* 6248 * To inform we have extra eb under allocation, so that 6249 * detach_extent_buffer_page() won't release the page private 6250 * when the eb hasn't yet been inserted into radix tree. 6251 * 6252 * The ref will be decreased when the eb released the page, in 6253 * detach_extent_buffer_page(). 6254 * Thus needs no special handling in error path. 6255 */ 6256 btrfs_page_inc_eb_refs(fs_info, p); 6257 spin_unlock(&mapping->private_lock); 6258 6259 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6260 eb->pages[i] = p; 6261 if (!PageUptodate(p)) 6262 uptodate = 0; 6263 6264 /* 6265 * We can't unlock the pages just yet since the extent buffer 6266 * hasn't been properly inserted in the radix tree, this 6267 * opens a race with btree_release_folio which can free a page 6268 * while we are still filling in all pages for the buffer and 6269 * we could crash. 6270 */ 6271 } 6272 if (uptodate) 6273 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6274 again: 6275 ret = radix_tree_preload(GFP_NOFS); 6276 if (ret) { 6277 exists = ERR_PTR(ret); 6278 goto free_eb; 6279 } 6280 6281 spin_lock(&fs_info->buffer_lock); 6282 ret = radix_tree_insert(&fs_info->buffer_radix, 6283 start >> fs_info->sectorsize_bits, eb); 6284 spin_unlock(&fs_info->buffer_lock); 6285 radix_tree_preload_end(); 6286 if (ret == -EEXIST) { 6287 exists = find_extent_buffer(fs_info, start); 6288 if (exists) 6289 goto free_eb; 6290 else 6291 goto again; 6292 } 6293 /* add one reference for the tree */ 6294 check_buffer_tree_ref(eb); 6295 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6296 6297 /* 6298 * Now it's safe to unlock the pages because any calls to 6299 * btree_release_folio will correctly detect that a page belongs to a 6300 * live buffer and won't free them prematurely. 6301 */ 6302 for (i = 0; i < num_pages; i++) 6303 unlock_page(eb->pages[i]); 6304 return eb; 6305 6306 free_eb: 6307 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6308 for (i = 0; i < num_pages; i++) { 6309 if (eb->pages[i]) 6310 unlock_page(eb->pages[i]); 6311 } 6312 6313 btrfs_release_extent_buffer(eb); 6314 return exists; 6315 } 6316 6317 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6318 { 6319 struct extent_buffer *eb = 6320 container_of(head, struct extent_buffer, rcu_head); 6321 6322 __free_extent_buffer(eb); 6323 } 6324 6325 static int release_extent_buffer(struct extent_buffer *eb) 6326 __releases(&eb->refs_lock) 6327 { 6328 lockdep_assert_held(&eb->refs_lock); 6329 6330 WARN_ON(atomic_read(&eb->refs) == 0); 6331 if (atomic_dec_and_test(&eb->refs)) { 6332 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6333 struct btrfs_fs_info *fs_info = eb->fs_info; 6334 6335 spin_unlock(&eb->refs_lock); 6336 6337 spin_lock(&fs_info->buffer_lock); 6338 radix_tree_delete(&fs_info->buffer_radix, 6339 eb->start >> fs_info->sectorsize_bits); 6340 spin_unlock(&fs_info->buffer_lock); 6341 } else { 6342 spin_unlock(&eb->refs_lock); 6343 } 6344 6345 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6346 /* Should be safe to release our pages at this point */ 6347 btrfs_release_extent_buffer_pages(eb); 6348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6349 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6350 __free_extent_buffer(eb); 6351 return 1; 6352 } 6353 #endif 6354 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6355 return 1; 6356 } 6357 spin_unlock(&eb->refs_lock); 6358 6359 return 0; 6360 } 6361 6362 void free_extent_buffer(struct extent_buffer *eb) 6363 { 6364 int refs; 6365 int old; 6366 if (!eb) 6367 return; 6368 6369 while (1) { 6370 refs = atomic_read(&eb->refs); 6371 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6372 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6373 refs == 1)) 6374 break; 6375 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6376 if (old == refs) 6377 return; 6378 } 6379 6380 spin_lock(&eb->refs_lock); 6381 if (atomic_read(&eb->refs) == 2 && 6382 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6383 !extent_buffer_under_io(eb) && 6384 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6385 atomic_dec(&eb->refs); 6386 6387 /* 6388 * I know this is terrible, but it's temporary until we stop tracking 6389 * the uptodate bits and such for the extent buffers. 6390 */ 6391 release_extent_buffer(eb); 6392 } 6393 6394 void free_extent_buffer_stale(struct extent_buffer *eb) 6395 { 6396 if (!eb) 6397 return; 6398 6399 spin_lock(&eb->refs_lock); 6400 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6401 6402 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6403 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6404 atomic_dec(&eb->refs); 6405 release_extent_buffer(eb); 6406 } 6407 6408 static void btree_clear_page_dirty(struct page *page) 6409 { 6410 ASSERT(PageDirty(page)); 6411 ASSERT(PageLocked(page)); 6412 clear_page_dirty_for_io(page); 6413 xa_lock_irq(&page->mapping->i_pages); 6414 if (!PageDirty(page)) 6415 __xa_clear_mark(&page->mapping->i_pages, 6416 page_index(page), PAGECACHE_TAG_DIRTY); 6417 xa_unlock_irq(&page->mapping->i_pages); 6418 } 6419 6420 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6421 { 6422 struct btrfs_fs_info *fs_info = eb->fs_info; 6423 struct page *page = eb->pages[0]; 6424 bool last; 6425 6426 /* btree_clear_page_dirty() needs page locked */ 6427 lock_page(page); 6428 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6429 eb->len); 6430 if (last) 6431 btree_clear_page_dirty(page); 6432 unlock_page(page); 6433 WARN_ON(atomic_read(&eb->refs) == 0); 6434 } 6435 6436 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6437 { 6438 int i; 6439 int num_pages; 6440 struct page *page; 6441 6442 if (eb->fs_info->nodesize < PAGE_SIZE) 6443 return clear_subpage_extent_buffer_dirty(eb); 6444 6445 num_pages = num_extent_pages(eb); 6446 6447 for (i = 0; i < num_pages; i++) { 6448 page = eb->pages[i]; 6449 if (!PageDirty(page)) 6450 continue; 6451 lock_page(page); 6452 btree_clear_page_dirty(page); 6453 ClearPageError(page); 6454 unlock_page(page); 6455 } 6456 WARN_ON(atomic_read(&eb->refs) == 0); 6457 } 6458 6459 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6460 { 6461 int i; 6462 int num_pages; 6463 bool was_dirty; 6464 6465 check_buffer_tree_ref(eb); 6466 6467 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6468 6469 num_pages = num_extent_pages(eb); 6470 WARN_ON(atomic_read(&eb->refs) == 0); 6471 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6472 6473 if (!was_dirty) { 6474 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 6475 6476 /* 6477 * For subpage case, we can have other extent buffers in the 6478 * same page, and in clear_subpage_extent_buffer_dirty() we 6479 * have to clear page dirty without subpage lock held. 6480 * This can cause race where our page gets dirty cleared after 6481 * we just set it. 6482 * 6483 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6484 * its page for other reasons, we can use page lock to prevent 6485 * the above race. 6486 */ 6487 if (subpage) 6488 lock_page(eb->pages[0]); 6489 for (i = 0; i < num_pages; i++) 6490 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6491 eb->start, eb->len); 6492 if (subpage) 6493 unlock_page(eb->pages[0]); 6494 } 6495 #ifdef CONFIG_BTRFS_DEBUG 6496 for (i = 0; i < num_pages; i++) 6497 ASSERT(PageDirty(eb->pages[i])); 6498 #endif 6499 6500 return was_dirty; 6501 } 6502 6503 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6504 { 6505 struct btrfs_fs_info *fs_info = eb->fs_info; 6506 struct page *page; 6507 int num_pages; 6508 int i; 6509 6510 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6511 num_pages = num_extent_pages(eb); 6512 for (i = 0; i < num_pages; i++) { 6513 page = eb->pages[i]; 6514 if (!page) 6515 continue; 6516 6517 /* 6518 * This is special handling for metadata subpage, as regular 6519 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6520 */ 6521 if (fs_info->nodesize >= PAGE_SIZE) 6522 ClearPageUptodate(page); 6523 else 6524 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 6525 eb->len); 6526 } 6527 } 6528 6529 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6530 { 6531 struct btrfs_fs_info *fs_info = eb->fs_info; 6532 struct page *page; 6533 int num_pages; 6534 int i; 6535 6536 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6537 num_pages = num_extent_pages(eb); 6538 for (i = 0; i < num_pages; i++) { 6539 page = eb->pages[i]; 6540 6541 /* 6542 * This is special handling for metadata subpage, as regular 6543 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6544 */ 6545 if (fs_info->nodesize >= PAGE_SIZE) 6546 SetPageUptodate(page); 6547 else 6548 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 6549 eb->len); 6550 } 6551 } 6552 6553 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6554 int mirror_num) 6555 { 6556 struct btrfs_fs_info *fs_info = eb->fs_info; 6557 struct extent_io_tree *io_tree; 6558 struct page *page = eb->pages[0]; 6559 struct btrfs_bio_ctrl bio_ctrl = { 6560 .mirror_num = mirror_num, 6561 }; 6562 int ret = 0; 6563 6564 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6565 ASSERT(PagePrivate(page)); 6566 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6567 6568 if (wait == WAIT_NONE) { 6569 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6570 return -EAGAIN; 6571 } else { 6572 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6573 if (ret < 0) 6574 return ret; 6575 } 6576 6577 ret = 0; 6578 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6579 PageUptodate(page) || 6580 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6581 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6582 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6583 return ret; 6584 } 6585 6586 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6587 eb->read_mirror = 0; 6588 atomic_set(&eb->io_pages, 1); 6589 check_buffer_tree_ref(eb); 6590 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6591 6592 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6593 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 6594 page, eb->start, eb->len, 6595 eb->start - page_offset(page), 6596 end_bio_extent_readpage, 0, true); 6597 if (ret) { 6598 /* 6599 * In the endio function, if we hit something wrong we will 6600 * increase the io_pages, so here we need to decrease it for 6601 * error path. 6602 */ 6603 atomic_dec(&eb->io_pages); 6604 } 6605 submit_one_bio(&bio_ctrl); 6606 if (ret || wait != WAIT_COMPLETE) 6607 return ret; 6608 6609 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6610 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6611 ret = -EIO; 6612 return ret; 6613 } 6614 6615 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6616 { 6617 int i; 6618 struct page *page; 6619 int err; 6620 int ret = 0; 6621 int locked_pages = 0; 6622 int all_uptodate = 1; 6623 int num_pages; 6624 unsigned long num_reads = 0; 6625 struct btrfs_bio_ctrl bio_ctrl = { 6626 .mirror_num = mirror_num, 6627 }; 6628 6629 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6630 return 0; 6631 6632 /* 6633 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6634 * operation, which could potentially still be in flight. In this case 6635 * we simply want to return an error. 6636 */ 6637 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6638 return -EIO; 6639 6640 if (eb->fs_info->nodesize < PAGE_SIZE) 6641 return read_extent_buffer_subpage(eb, wait, mirror_num); 6642 6643 num_pages = num_extent_pages(eb); 6644 for (i = 0; i < num_pages; i++) { 6645 page = eb->pages[i]; 6646 if (wait == WAIT_NONE) { 6647 /* 6648 * WAIT_NONE is only utilized by readahead. If we can't 6649 * acquire the lock atomically it means either the eb 6650 * is being read out or under modification. 6651 * Either way the eb will be or has been cached, 6652 * readahead can exit safely. 6653 */ 6654 if (!trylock_page(page)) 6655 goto unlock_exit; 6656 } else { 6657 lock_page(page); 6658 } 6659 locked_pages++; 6660 } 6661 /* 6662 * We need to firstly lock all pages to make sure that 6663 * the uptodate bit of our pages won't be affected by 6664 * clear_extent_buffer_uptodate(). 6665 */ 6666 for (i = 0; i < num_pages; i++) { 6667 page = eb->pages[i]; 6668 if (!PageUptodate(page)) { 6669 num_reads++; 6670 all_uptodate = 0; 6671 } 6672 } 6673 6674 if (all_uptodate) { 6675 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6676 goto unlock_exit; 6677 } 6678 6679 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6680 eb->read_mirror = 0; 6681 atomic_set(&eb->io_pages, num_reads); 6682 /* 6683 * It is possible for release_folio to clear the TREE_REF bit before we 6684 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6685 */ 6686 check_buffer_tree_ref(eb); 6687 for (i = 0; i < num_pages; i++) { 6688 page = eb->pages[i]; 6689 6690 if (!PageUptodate(page)) { 6691 if (ret) { 6692 atomic_dec(&eb->io_pages); 6693 unlock_page(page); 6694 continue; 6695 } 6696 6697 ClearPageError(page); 6698 err = submit_extent_page(REQ_OP_READ, NULL, 6699 &bio_ctrl, page, page_offset(page), 6700 PAGE_SIZE, 0, end_bio_extent_readpage, 6701 0, false); 6702 if (err) { 6703 /* 6704 * We failed to submit the bio so it's the 6705 * caller's responsibility to perform cleanup 6706 * i.e unlock page/set error bit. 6707 */ 6708 ret = err; 6709 SetPageError(page); 6710 unlock_page(page); 6711 atomic_dec(&eb->io_pages); 6712 } 6713 } else { 6714 unlock_page(page); 6715 } 6716 } 6717 6718 submit_one_bio(&bio_ctrl); 6719 6720 if (ret || wait != WAIT_COMPLETE) 6721 return ret; 6722 6723 for (i = 0; i < num_pages; i++) { 6724 page = eb->pages[i]; 6725 wait_on_page_locked(page); 6726 if (!PageUptodate(page)) 6727 ret = -EIO; 6728 } 6729 6730 return ret; 6731 6732 unlock_exit: 6733 while (locked_pages > 0) { 6734 locked_pages--; 6735 page = eb->pages[locked_pages]; 6736 unlock_page(page); 6737 } 6738 return ret; 6739 } 6740 6741 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6742 unsigned long len) 6743 { 6744 btrfs_warn(eb->fs_info, 6745 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6746 eb->start, eb->len, start, len); 6747 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6748 6749 return true; 6750 } 6751 6752 /* 6753 * Check if the [start, start + len) range is valid before reading/writing 6754 * the eb. 6755 * NOTE: @start and @len are offset inside the eb, not logical address. 6756 * 6757 * Caller should not touch the dst/src memory if this function returns error. 6758 */ 6759 static inline int check_eb_range(const struct extent_buffer *eb, 6760 unsigned long start, unsigned long len) 6761 { 6762 unsigned long offset; 6763 6764 /* start, start + len should not go beyond eb->len nor overflow */ 6765 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6766 return report_eb_range(eb, start, len); 6767 6768 return false; 6769 } 6770 6771 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6772 unsigned long start, unsigned long len) 6773 { 6774 size_t cur; 6775 size_t offset; 6776 struct page *page; 6777 char *kaddr; 6778 char *dst = (char *)dstv; 6779 unsigned long i = get_eb_page_index(start); 6780 6781 if (check_eb_range(eb, start, len)) 6782 return; 6783 6784 offset = get_eb_offset_in_page(eb, start); 6785 6786 while (len > 0) { 6787 page = eb->pages[i]; 6788 6789 cur = min(len, (PAGE_SIZE - offset)); 6790 kaddr = page_address(page); 6791 memcpy(dst, kaddr + offset, cur); 6792 6793 dst += cur; 6794 len -= cur; 6795 offset = 0; 6796 i++; 6797 } 6798 } 6799 6800 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6801 void __user *dstv, 6802 unsigned long start, unsigned long len) 6803 { 6804 size_t cur; 6805 size_t offset; 6806 struct page *page; 6807 char *kaddr; 6808 char __user *dst = (char __user *)dstv; 6809 unsigned long i = get_eb_page_index(start); 6810 int ret = 0; 6811 6812 WARN_ON(start > eb->len); 6813 WARN_ON(start + len > eb->start + eb->len); 6814 6815 offset = get_eb_offset_in_page(eb, start); 6816 6817 while (len > 0) { 6818 page = eb->pages[i]; 6819 6820 cur = min(len, (PAGE_SIZE - offset)); 6821 kaddr = page_address(page); 6822 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6823 ret = -EFAULT; 6824 break; 6825 } 6826 6827 dst += cur; 6828 len -= cur; 6829 offset = 0; 6830 i++; 6831 } 6832 6833 return ret; 6834 } 6835 6836 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6837 unsigned long start, unsigned long len) 6838 { 6839 size_t cur; 6840 size_t offset; 6841 struct page *page; 6842 char *kaddr; 6843 char *ptr = (char *)ptrv; 6844 unsigned long i = get_eb_page_index(start); 6845 int ret = 0; 6846 6847 if (check_eb_range(eb, start, len)) 6848 return -EINVAL; 6849 6850 offset = get_eb_offset_in_page(eb, start); 6851 6852 while (len > 0) { 6853 page = eb->pages[i]; 6854 6855 cur = min(len, (PAGE_SIZE - offset)); 6856 6857 kaddr = page_address(page); 6858 ret = memcmp(ptr, kaddr + offset, cur); 6859 if (ret) 6860 break; 6861 6862 ptr += cur; 6863 len -= cur; 6864 offset = 0; 6865 i++; 6866 } 6867 return ret; 6868 } 6869 6870 /* 6871 * Check that the extent buffer is uptodate. 6872 * 6873 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6874 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6875 */ 6876 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6877 struct page *page) 6878 { 6879 struct btrfs_fs_info *fs_info = eb->fs_info; 6880 6881 /* 6882 * If we are using the commit root we could potentially clear a page 6883 * Uptodate while we're using the extent buffer that we've previously 6884 * looked up. We don't want to complain in this case, as the page was 6885 * valid before, we just didn't write it out. Instead we want to catch 6886 * the case where we didn't actually read the block properly, which 6887 * would have !PageUptodate && !PageError, as we clear PageError before 6888 * reading. 6889 */ 6890 if (fs_info->nodesize < PAGE_SIZE) { 6891 bool uptodate, error; 6892 6893 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6894 eb->start, eb->len); 6895 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 6896 WARN_ON(!uptodate && !error); 6897 } else { 6898 WARN_ON(!PageUptodate(page) && !PageError(page)); 6899 } 6900 } 6901 6902 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6903 const void *srcv) 6904 { 6905 char *kaddr; 6906 6907 assert_eb_page_uptodate(eb, eb->pages[0]); 6908 kaddr = page_address(eb->pages[0]) + 6909 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6910 chunk_tree_uuid)); 6911 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6912 } 6913 6914 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6915 { 6916 char *kaddr; 6917 6918 assert_eb_page_uptodate(eb, eb->pages[0]); 6919 kaddr = page_address(eb->pages[0]) + 6920 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6921 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6922 } 6923 6924 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6925 unsigned long start, unsigned long len) 6926 { 6927 size_t cur; 6928 size_t offset; 6929 struct page *page; 6930 char *kaddr; 6931 char *src = (char *)srcv; 6932 unsigned long i = get_eb_page_index(start); 6933 6934 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6935 6936 if (check_eb_range(eb, start, len)) 6937 return; 6938 6939 offset = get_eb_offset_in_page(eb, start); 6940 6941 while (len > 0) { 6942 page = eb->pages[i]; 6943 assert_eb_page_uptodate(eb, page); 6944 6945 cur = min(len, PAGE_SIZE - offset); 6946 kaddr = page_address(page); 6947 memcpy(kaddr + offset, src, cur); 6948 6949 src += cur; 6950 len -= cur; 6951 offset = 0; 6952 i++; 6953 } 6954 } 6955 6956 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6957 unsigned long len) 6958 { 6959 size_t cur; 6960 size_t offset; 6961 struct page *page; 6962 char *kaddr; 6963 unsigned long i = get_eb_page_index(start); 6964 6965 if (check_eb_range(eb, start, len)) 6966 return; 6967 6968 offset = get_eb_offset_in_page(eb, start); 6969 6970 while (len > 0) { 6971 page = eb->pages[i]; 6972 assert_eb_page_uptodate(eb, page); 6973 6974 cur = min(len, PAGE_SIZE - offset); 6975 kaddr = page_address(page); 6976 memset(kaddr + offset, 0, cur); 6977 6978 len -= cur; 6979 offset = 0; 6980 i++; 6981 } 6982 } 6983 6984 void copy_extent_buffer_full(const struct extent_buffer *dst, 6985 const struct extent_buffer *src) 6986 { 6987 int i; 6988 int num_pages; 6989 6990 ASSERT(dst->len == src->len); 6991 6992 if (dst->fs_info->nodesize >= PAGE_SIZE) { 6993 num_pages = num_extent_pages(dst); 6994 for (i = 0; i < num_pages; i++) 6995 copy_page(page_address(dst->pages[i]), 6996 page_address(src->pages[i])); 6997 } else { 6998 size_t src_offset = get_eb_offset_in_page(src, 0); 6999 size_t dst_offset = get_eb_offset_in_page(dst, 0); 7000 7001 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 7002 memcpy(page_address(dst->pages[0]) + dst_offset, 7003 page_address(src->pages[0]) + src_offset, 7004 src->len); 7005 } 7006 } 7007 7008 void copy_extent_buffer(const struct extent_buffer *dst, 7009 const struct extent_buffer *src, 7010 unsigned long dst_offset, unsigned long src_offset, 7011 unsigned long len) 7012 { 7013 u64 dst_len = dst->len; 7014 size_t cur; 7015 size_t offset; 7016 struct page *page; 7017 char *kaddr; 7018 unsigned long i = get_eb_page_index(dst_offset); 7019 7020 if (check_eb_range(dst, dst_offset, len) || 7021 check_eb_range(src, src_offset, len)) 7022 return; 7023 7024 WARN_ON(src->len != dst_len); 7025 7026 offset = get_eb_offset_in_page(dst, dst_offset); 7027 7028 while (len > 0) { 7029 page = dst->pages[i]; 7030 assert_eb_page_uptodate(dst, page); 7031 7032 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 7033 7034 kaddr = page_address(page); 7035 read_extent_buffer(src, kaddr + offset, src_offset, cur); 7036 7037 src_offset += cur; 7038 len -= cur; 7039 offset = 0; 7040 i++; 7041 } 7042 } 7043 7044 /* 7045 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7046 * given bit number 7047 * @eb: the extent buffer 7048 * @start: offset of the bitmap item in the extent buffer 7049 * @nr: bit number 7050 * @page_index: return index of the page in the extent buffer that contains the 7051 * given bit number 7052 * @page_offset: return offset into the page given by page_index 7053 * 7054 * This helper hides the ugliness of finding the byte in an extent buffer which 7055 * contains a given bit. 7056 */ 7057 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7058 unsigned long start, unsigned long nr, 7059 unsigned long *page_index, 7060 size_t *page_offset) 7061 { 7062 size_t byte_offset = BIT_BYTE(nr); 7063 size_t offset; 7064 7065 /* 7066 * The byte we want is the offset of the extent buffer + the offset of 7067 * the bitmap item in the extent buffer + the offset of the byte in the 7068 * bitmap item. 7069 */ 7070 offset = start + offset_in_page(eb->start) + byte_offset; 7071 7072 *page_index = offset >> PAGE_SHIFT; 7073 *page_offset = offset_in_page(offset); 7074 } 7075 7076 /** 7077 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7078 * @eb: the extent buffer 7079 * @start: offset of the bitmap item in the extent buffer 7080 * @nr: bit number to test 7081 */ 7082 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7083 unsigned long nr) 7084 { 7085 u8 *kaddr; 7086 struct page *page; 7087 unsigned long i; 7088 size_t offset; 7089 7090 eb_bitmap_offset(eb, start, nr, &i, &offset); 7091 page = eb->pages[i]; 7092 assert_eb_page_uptodate(eb, page); 7093 kaddr = page_address(page); 7094 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7095 } 7096 7097 /** 7098 * extent_buffer_bitmap_set - set an area of a bitmap 7099 * @eb: the extent buffer 7100 * @start: offset of the bitmap item in the extent buffer 7101 * @pos: bit number of the first bit 7102 * @len: number of bits to set 7103 */ 7104 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7105 unsigned long pos, unsigned long len) 7106 { 7107 u8 *kaddr; 7108 struct page *page; 7109 unsigned long i; 7110 size_t offset; 7111 const unsigned int size = pos + len; 7112 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7113 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7114 7115 eb_bitmap_offset(eb, start, pos, &i, &offset); 7116 page = eb->pages[i]; 7117 assert_eb_page_uptodate(eb, page); 7118 kaddr = page_address(page); 7119 7120 while (len >= bits_to_set) { 7121 kaddr[offset] |= mask_to_set; 7122 len -= bits_to_set; 7123 bits_to_set = BITS_PER_BYTE; 7124 mask_to_set = ~0; 7125 if (++offset >= PAGE_SIZE && len > 0) { 7126 offset = 0; 7127 page = eb->pages[++i]; 7128 assert_eb_page_uptodate(eb, page); 7129 kaddr = page_address(page); 7130 } 7131 } 7132 if (len) { 7133 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7134 kaddr[offset] |= mask_to_set; 7135 } 7136 } 7137 7138 7139 /** 7140 * extent_buffer_bitmap_clear - clear an area of a bitmap 7141 * @eb: the extent buffer 7142 * @start: offset of the bitmap item in the extent buffer 7143 * @pos: bit number of the first bit 7144 * @len: number of bits to clear 7145 */ 7146 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7147 unsigned long start, unsigned long pos, 7148 unsigned long len) 7149 { 7150 u8 *kaddr; 7151 struct page *page; 7152 unsigned long i; 7153 size_t offset; 7154 const unsigned int size = pos + len; 7155 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7156 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7157 7158 eb_bitmap_offset(eb, start, pos, &i, &offset); 7159 page = eb->pages[i]; 7160 assert_eb_page_uptodate(eb, page); 7161 kaddr = page_address(page); 7162 7163 while (len >= bits_to_clear) { 7164 kaddr[offset] &= ~mask_to_clear; 7165 len -= bits_to_clear; 7166 bits_to_clear = BITS_PER_BYTE; 7167 mask_to_clear = ~0; 7168 if (++offset >= PAGE_SIZE && len > 0) { 7169 offset = 0; 7170 page = eb->pages[++i]; 7171 assert_eb_page_uptodate(eb, page); 7172 kaddr = page_address(page); 7173 } 7174 } 7175 if (len) { 7176 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7177 kaddr[offset] &= ~mask_to_clear; 7178 } 7179 } 7180 7181 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7182 { 7183 unsigned long distance = (src > dst) ? src - dst : dst - src; 7184 return distance < len; 7185 } 7186 7187 static void copy_pages(struct page *dst_page, struct page *src_page, 7188 unsigned long dst_off, unsigned long src_off, 7189 unsigned long len) 7190 { 7191 char *dst_kaddr = page_address(dst_page); 7192 char *src_kaddr; 7193 int must_memmove = 0; 7194 7195 if (dst_page != src_page) { 7196 src_kaddr = page_address(src_page); 7197 } else { 7198 src_kaddr = dst_kaddr; 7199 if (areas_overlap(src_off, dst_off, len)) 7200 must_memmove = 1; 7201 } 7202 7203 if (must_memmove) 7204 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7205 else 7206 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7207 } 7208 7209 void memcpy_extent_buffer(const struct extent_buffer *dst, 7210 unsigned long dst_offset, unsigned long src_offset, 7211 unsigned long len) 7212 { 7213 size_t cur; 7214 size_t dst_off_in_page; 7215 size_t src_off_in_page; 7216 unsigned long dst_i; 7217 unsigned long src_i; 7218 7219 if (check_eb_range(dst, dst_offset, len) || 7220 check_eb_range(dst, src_offset, len)) 7221 return; 7222 7223 while (len > 0) { 7224 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7225 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7226 7227 dst_i = get_eb_page_index(dst_offset); 7228 src_i = get_eb_page_index(src_offset); 7229 7230 cur = min(len, (unsigned long)(PAGE_SIZE - 7231 src_off_in_page)); 7232 cur = min_t(unsigned long, cur, 7233 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7234 7235 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7236 dst_off_in_page, src_off_in_page, cur); 7237 7238 src_offset += cur; 7239 dst_offset += cur; 7240 len -= cur; 7241 } 7242 } 7243 7244 void memmove_extent_buffer(const struct extent_buffer *dst, 7245 unsigned long dst_offset, unsigned long src_offset, 7246 unsigned long len) 7247 { 7248 size_t cur; 7249 size_t dst_off_in_page; 7250 size_t src_off_in_page; 7251 unsigned long dst_end = dst_offset + len - 1; 7252 unsigned long src_end = src_offset + len - 1; 7253 unsigned long dst_i; 7254 unsigned long src_i; 7255 7256 if (check_eb_range(dst, dst_offset, len) || 7257 check_eb_range(dst, src_offset, len)) 7258 return; 7259 if (dst_offset < src_offset) { 7260 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7261 return; 7262 } 7263 while (len > 0) { 7264 dst_i = get_eb_page_index(dst_end); 7265 src_i = get_eb_page_index(src_end); 7266 7267 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7268 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7269 7270 cur = min_t(unsigned long, len, src_off_in_page + 1); 7271 cur = min(cur, dst_off_in_page + 1); 7272 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7273 dst_off_in_page - cur + 1, 7274 src_off_in_page - cur + 1, cur); 7275 7276 dst_end -= cur; 7277 src_end -= cur; 7278 len -= cur; 7279 } 7280 } 7281 7282 #define GANG_LOOKUP_SIZE 16 7283 static struct extent_buffer *get_next_extent_buffer( 7284 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7285 { 7286 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7287 struct extent_buffer *found = NULL; 7288 u64 page_start = page_offset(page); 7289 u64 cur = page_start; 7290 7291 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7292 lockdep_assert_held(&fs_info->buffer_lock); 7293 7294 while (cur < page_start + PAGE_SIZE) { 7295 int ret; 7296 int i; 7297 7298 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7299 (void **)gang, cur >> fs_info->sectorsize_bits, 7300 min_t(unsigned int, GANG_LOOKUP_SIZE, 7301 PAGE_SIZE / fs_info->nodesize)); 7302 if (ret == 0) 7303 goto out; 7304 for (i = 0; i < ret; i++) { 7305 /* Already beyond page end */ 7306 if (gang[i]->start >= page_start + PAGE_SIZE) 7307 goto out; 7308 /* Found one */ 7309 if (gang[i]->start >= bytenr) { 7310 found = gang[i]; 7311 goto out; 7312 } 7313 } 7314 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7315 } 7316 out: 7317 return found; 7318 } 7319 7320 static int try_release_subpage_extent_buffer(struct page *page) 7321 { 7322 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7323 u64 cur = page_offset(page); 7324 const u64 end = page_offset(page) + PAGE_SIZE; 7325 int ret; 7326 7327 while (cur < end) { 7328 struct extent_buffer *eb = NULL; 7329 7330 /* 7331 * Unlike try_release_extent_buffer() which uses page->private 7332 * to grab buffer, for subpage case we rely on radix tree, thus 7333 * we need to ensure radix tree consistency. 7334 * 7335 * We also want an atomic snapshot of the radix tree, thus go 7336 * with spinlock rather than RCU. 7337 */ 7338 spin_lock(&fs_info->buffer_lock); 7339 eb = get_next_extent_buffer(fs_info, page, cur); 7340 if (!eb) { 7341 /* No more eb in the page range after or at cur */ 7342 spin_unlock(&fs_info->buffer_lock); 7343 break; 7344 } 7345 cur = eb->start + eb->len; 7346 7347 /* 7348 * The same as try_release_extent_buffer(), to ensure the eb 7349 * won't disappear out from under us. 7350 */ 7351 spin_lock(&eb->refs_lock); 7352 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7353 spin_unlock(&eb->refs_lock); 7354 spin_unlock(&fs_info->buffer_lock); 7355 break; 7356 } 7357 spin_unlock(&fs_info->buffer_lock); 7358 7359 /* 7360 * If tree ref isn't set then we know the ref on this eb is a 7361 * real ref, so just return, this eb will likely be freed soon 7362 * anyway. 7363 */ 7364 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7365 spin_unlock(&eb->refs_lock); 7366 break; 7367 } 7368 7369 /* 7370 * Here we don't care about the return value, we will always 7371 * check the page private at the end. And 7372 * release_extent_buffer() will release the refs_lock. 7373 */ 7374 release_extent_buffer(eb); 7375 } 7376 /* 7377 * Finally to check if we have cleared page private, as if we have 7378 * released all ebs in the page, the page private should be cleared now. 7379 */ 7380 spin_lock(&page->mapping->private_lock); 7381 if (!PagePrivate(page)) 7382 ret = 1; 7383 else 7384 ret = 0; 7385 spin_unlock(&page->mapping->private_lock); 7386 return ret; 7387 7388 } 7389 7390 int try_release_extent_buffer(struct page *page) 7391 { 7392 struct extent_buffer *eb; 7393 7394 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 7395 return try_release_subpage_extent_buffer(page); 7396 7397 /* 7398 * We need to make sure nobody is changing page->private, as we rely on 7399 * page->private as the pointer to extent buffer. 7400 */ 7401 spin_lock(&page->mapping->private_lock); 7402 if (!PagePrivate(page)) { 7403 spin_unlock(&page->mapping->private_lock); 7404 return 1; 7405 } 7406 7407 eb = (struct extent_buffer *)page->private; 7408 BUG_ON(!eb); 7409 7410 /* 7411 * This is a little awful but should be ok, we need to make sure that 7412 * the eb doesn't disappear out from under us while we're looking at 7413 * this page. 7414 */ 7415 spin_lock(&eb->refs_lock); 7416 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7417 spin_unlock(&eb->refs_lock); 7418 spin_unlock(&page->mapping->private_lock); 7419 return 0; 7420 } 7421 spin_unlock(&page->mapping->private_lock); 7422 7423 /* 7424 * If tree ref isn't set then we know the ref on this eb is a real ref, 7425 * so just return, this page will likely be freed soon anyway. 7426 */ 7427 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7428 spin_unlock(&eb->refs_lock); 7429 return 0; 7430 } 7431 7432 return release_extent_buffer(eb); 7433 } 7434 7435 /* 7436 * btrfs_readahead_tree_block - attempt to readahead a child block 7437 * @fs_info: the fs_info 7438 * @bytenr: bytenr to read 7439 * @owner_root: objectid of the root that owns this eb 7440 * @gen: generation for the uptodate check, can be 0 7441 * @level: level for the eb 7442 * 7443 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7444 * normal uptodate check of the eb, without checking the generation. If we have 7445 * to read the block we will not block on anything. 7446 */ 7447 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7448 u64 bytenr, u64 owner_root, u64 gen, int level) 7449 { 7450 struct extent_buffer *eb; 7451 int ret; 7452 7453 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7454 if (IS_ERR(eb)) 7455 return; 7456 7457 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7458 free_extent_buffer(eb); 7459 return; 7460 } 7461 7462 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7463 if (ret < 0) 7464 free_extent_buffer_stale(eb); 7465 else 7466 free_extent_buffer(eb); 7467 } 7468 7469 /* 7470 * btrfs_readahead_node_child - readahead a node's child block 7471 * @node: parent node we're reading from 7472 * @slot: slot in the parent node for the child we want to read 7473 * 7474 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7475 * the slot in the node provided. 7476 */ 7477 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7478 { 7479 btrfs_readahead_tree_block(node->fs_info, 7480 btrfs_node_blockptr(node, slot), 7481 btrfs_header_owner(node), 7482 btrfs_node_ptr_generation(node, slot), 7483 btrfs_header_level(node) - 1); 7484 } 7485