xref: /linux/fs/btrfs/extent_io.c (revision 1a20a9a0ddef17c0bd67eece34a7439b02a7b0ba)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	enum btrfs_compression_type compress_type;
100 	u32 len_to_oe_boundary;
101 	blk_opf_t opf;
102 	btrfs_bio_end_io_t end_io_func;
103 	struct writeback_control *wbc;
104 };
105 
106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
107 {
108 	struct btrfs_bio *bbio = bio_ctrl->bbio;
109 
110 	if (!bbio)
111 		return;
112 
113 	/* Caller should ensure the bio has at least some range added */
114 	ASSERT(bbio->bio.bi_iter.bi_size);
115 
116 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
117 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
118 		btrfs_submit_compressed_read(bbio);
119 	else
120 		btrfs_submit_bio(bbio, 0);
121 
122 	/* The bbio is owned by the end_io handler now */
123 	bio_ctrl->bbio = NULL;
124 }
125 
126 /*
127  * Submit or fail the current bio in the bio_ctrl structure.
128  */
129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
130 {
131 	struct btrfs_bio *bbio = bio_ctrl->bbio;
132 
133 	if (!bbio)
134 		return;
135 
136 	if (ret) {
137 		ASSERT(ret < 0);
138 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
139 		/* The bio is owned by the end_io handler now */
140 		bio_ctrl->bbio = NULL;
141 	} else {
142 		submit_one_bio(bio_ctrl);
143 	}
144 }
145 
146 int __init extent_buffer_init_cachep(void)
147 {
148 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
149 						sizeof(struct extent_buffer), 0, 0,
150 						NULL);
151 	if (!extent_buffer_cache)
152 		return -ENOMEM;
153 
154 	return 0;
155 }
156 
157 void __cold extent_buffer_free_cachep(void)
158 {
159 	/*
160 	 * Make sure all delayed rcu free are flushed before we
161 	 * destroy caches.
162 	 */
163 	rcu_barrier();
164 	kmem_cache_destroy(extent_buffer_cache);
165 }
166 
167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
168 {
169 	unsigned long index = start >> PAGE_SHIFT;
170 	unsigned long end_index = end >> PAGE_SHIFT;
171 	struct page *page;
172 
173 	while (index <= end_index) {
174 		page = find_get_page(inode->i_mapping, index);
175 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 		clear_page_dirty_for_io(page);
177 		put_page(page);
178 		index++;
179 	}
180 }
181 
182 static void process_one_page(struct btrfs_fs_info *fs_info,
183 			     struct page *page, struct page *locked_page,
184 			     unsigned long page_ops, u64 start, u64 end)
185 {
186 	struct folio *folio = page_folio(page);
187 	u32 len;
188 
189 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 	len = end + 1 - start;
191 
192 	if (page_ops & PAGE_SET_ORDERED)
193 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
194 	if (page_ops & PAGE_START_WRITEBACK) {
195 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
197 	}
198 	if (page_ops & PAGE_END_WRITEBACK)
199 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
200 
201 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
203 }
204 
205 static void __process_pages_contig(struct address_space *mapping,
206 				   struct page *locked_page, u64 start, u64 end,
207 				   unsigned long page_ops)
208 {
209 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
210 	pgoff_t start_index = start >> PAGE_SHIFT;
211 	pgoff_t end_index = end >> PAGE_SHIFT;
212 	pgoff_t index = start_index;
213 	struct folio_batch fbatch;
214 	int i;
215 
216 	folio_batch_init(&fbatch);
217 	while (index <= end_index) {
218 		int found_folios;
219 
220 		found_folios = filemap_get_folios_contig(mapping, &index,
221 				end_index, &fbatch);
222 		for (i = 0; i < found_folios; i++) {
223 			struct folio *folio = fbatch.folios[i];
224 
225 			process_one_page(fs_info, &folio->page, locked_page,
226 					 page_ops, start, end);
227 		}
228 		folio_batch_release(&fbatch);
229 		cond_resched();
230 	}
231 }
232 
233 static noinline void __unlock_for_delalloc(struct inode *inode,
234 					   struct page *locked_page,
235 					   u64 start, u64 end)
236 {
237 	unsigned long index = start >> PAGE_SHIFT;
238 	unsigned long end_index = end >> PAGE_SHIFT;
239 
240 	ASSERT(locked_page);
241 	if (index == locked_page->index && end_index == index)
242 		return;
243 
244 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
245 			       PAGE_UNLOCK);
246 }
247 
248 static noinline int lock_delalloc_pages(struct inode *inode,
249 					struct page *locked_page,
250 					u64 start,
251 					u64 end)
252 {
253 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 	struct address_space *mapping = inode->i_mapping;
255 	pgoff_t start_index = start >> PAGE_SHIFT;
256 	pgoff_t end_index = end >> PAGE_SHIFT;
257 	pgoff_t index = start_index;
258 	u64 processed_end = start;
259 	struct folio_batch fbatch;
260 
261 	if (index == locked_page->index && index == end_index)
262 		return 0;
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		unsigned int found_folios, i;
267 
268 		found_folios = filemap_get_folios_contig(mapping, &index,
269 				end_index, &fbatch);
270 		if (found_folios == 0)
271 			goto out;
272 
273 		for (i = 0; i < found_folios; i++) {
274 			struct folio *folio = fbatch.folios[i];
275 			struct page *page = folio_page(folio, 0);
276 			u32 len = end + 1 - start;
277 
278 			if (page == locked_page)
279 				continue;
280 
281 			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 							  len))
283 				goto out;
284 
285 			if (!PageDirty(page) || page->mapping != mapping) {
286 				btrfs_folio_end_writer_lock(fs_info, folio, start,
287 							    len);
288 				goto out;
289 			}
290 
291 			processed_end = page_offset(page) + PAGE_SIZE - 1;
292 		}
293 		folio_batch_release(&fbatch);
294 		cond_resched();
295 	}
296 
297 	return 0;
298 out:
299 	folio_batch_release(&fbatch);
300 	if (processed_end > start)
301 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302 	return -EAGAIN;
303 }
304 
305 /*
306  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307  * more than @max_bytes.
308  *
309  * @start:	The original start bytenr to search.
310  *		Will store the extent range start bytenr.
311  * @end:	The original end bytenr of the search range
312  *		Will store the extent range end bytenr.
313  *
314  * Return true if we find a delalloc range which starts inside the original
315  * range, and @start/@end will store the delalloc range start/end.
316  *
317  * Return false if we can't find any delalloc range which starts inside the
318  * original range, and @start/@end will be the non-delalloc range start/end.
319  */
320 EXPORT_FOR_TESTS
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 				    struct page *locked_page, u64 *start,
323 				    u64 *end)
324 {
325 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 	const u64 orig_start = *start;
328 	const u64 orig_end = *end;
329 	/* The sanity tests may not set a valid fs_info. */
330 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 	u64 delalloc_start;
332 	u64 delalloc_end;
333 	bool found;
334 	struct extent_state *cached_state = NULL;
335 	int ret;
336 	int loops = 0;
337 
338 	/* Caller should pass a valid @end to indicate the search range end */
339 	ASSERT(orig_end > orig_start);
340 
341 	/* The range should at least cover part of the page */
342 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 		 orig_end <= page_offset(locked_page)));
344 again:
345 	/* step one, find a bunch of delalloc bytes starting at start */
346 	delalloc_start = *start;
347 	delalloc_end = 0;
348 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 					  max_bytes, &cached_state);
350 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 		*start = delalloc_start;
352 
353 		/* @delalloc_end can be -1, never go beyond @orig_end */
354 		*end = min(delalloc_end, orig_end);
355 		free_extent_state(cached_state);
356 		return false;
357 	}
358 
359 	/*
360 	 * start comes from the offset of locked_page.  We have to lock
361 	 * pages in order, so we can't process delalloc bytes before
362 	 * locked_page
363 	 */
364 	if (delalloc_start < *start)
365 		delalloc_start = *start;
366 
367 	/*
368 	 * make sure to limit the number of pages we try to lock down
369 	 */
370 	if (delalloc_end + 1 - delalloc_start > max_bytes)
371 		delalloc_end = delalloc_start + max_bytes - 1;
372 
373 	/* step two, lock all the pages after the page that has start */
374 	ret = lock_delalloc_pages(inode, locked_page,
375 				  delalloc_start, delalloc_end);
376 	ASSERT(!ret || ret == -EAGAIN);
377 	if (ret == -EAGAIN) {
378 		/* some of the pages are gone, lets avoid looping by
379 		 * shortening the size of the delalloc range we're searching
380 		 */
381 		free_extent_state(cached_state);
382 		cached_state = NULL;
383 		if (!loops) {
384 			max_bytes = PAGE_SIZE;
385 			loops = 1;
386 			goto again;
387 		} else {
388 			found = false;
389 			goto out_failed;
390 		}
391 	}
392 
393 	/* step three, lock the state bits for the whole range */
394 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395 
396 	/* then test to make sure it is all still delalloc */
397 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 			     EXTENT_DELALLOC, cached_state);
399 	if (!ret) {
400 		unlock_extent(tree, delalloc_start, delalloc_end,
401 			      &cached_state);
402 		__unlock_for_delalloc(inode, locked_page,
403 			      delalloc_start, delalloc_end);
404 		cond_resched();
405 		goto again;
406 	}
407 	free_extent_state(cached_state);
408 	*start = delalloc_start;
409 	*end = delalloc_end;
410 out_failed:
411 	return found;
412 }
413 
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 				  struct page *locked_page,
416 				  u32 clear_bits, unsigned long page_ops)
417 {
418 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419 
420 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 			       start, end, page_ops);
422 }
423 
424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 	if (!fsverity_active(page->mapping->host) ||
427 	    PageUptodate(page) ||
428 	    start >= i_size_read(page->mapping->host))
429 		return true;
430 	return fsverity_verify_page(page);
431 }
432 
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
436 	struct folio *folio = page_folio(page);
437 
438 	ASSERT(page_offset(page) <= start &&
439 	       start + len <= page_offset(page) + PAGE_SIZE);
440 
441 	if (uptodate && btrfs_verify_page(page, start))
442 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
443 	else
444 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
445 
446 	if (!btrfs_is_subpage(fs_info, page->mapping))
447 		unlock_page(page);
448 	else
449 		btrfs_subpage_end_reader(fs_info, folio, start, len);
450 }
451 
452 /*
453  * After a write IO is done, we need to:
454  *
455  * - clear the uptodate bits on error
456  * - clear the writeback bits in the extent tree for the range
457  * - filio_end_writeback()  if there is no more pending io for the folio
458  *
459  * Scheduling is not allowed, so the extent state tree is expected
460  * to have one and only one object corresponding to this IO.
461  */
462 static void end_bbio_data_write(struct btrfs_bio *bbio)
463 {
464 	struct btrfs_fs_info *fs_info = bbio->fs_info;
465 	struct bio *bio = &bbio->bio;
466 	int error = blk_status_to_errno(bio->bi_status);
467 	struct folio_iter fi;
468 	const u32 sectorsize = fs_info->sectorsize;
469 
470 	ASSERT(!bio_flagged(bio, BIO_CLONED));
471 	bio_for_each_folio_all(fi, bio) {
472 		struct folio *folio = fi.folio;
473 		u64 start = folio_pos(folio) + fi.offset;
474 		u32 len = fi.length;
475 
476 		/* Only order 0 (single page) folios are allowed for data. */
477 		ASSERT(folio_order(folio) == 0);
478 
479 		/* Our read/write should always be sector aligned. */
480 		if (!IS_ALIGNED(fi.offset, sectorsize))
481 			btrfs_err(fs_info,
482 		"partial page write in btrfs with offset %zu and length %zu",
483 				  fi.offset, fi.length);
484 		else if (!IS_ALIGNED(fi.length, sectorsize))
485 			btrfs_info(fs_info,
486 		"incomplete page write with offset %zu and length %zu",
487 				   fi.offset, fi.length);
488 
489 		btrfs_finish_ordered_extent(bbio->ordered,
490 				folio_page(folio, 0), start, len, !error);
491 		if (error)
492 			mapping_set_error(folio->mapping, error);
493 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
494 	}
495 
496 	bio_put(bio);
497 }
498 
499 /*
500  * Record previously processed extent range
501  *
502  * For endio_readpage_release_extent() to handle a full extent range, reducing
503  * the extent io operations.
504  */
505 struct processed_extent {
506 	struct btrfs_inode *inode;
507 	/* Start of the range in @inode */
508 	u64 start;
509 	/* End of the range in @inode */
510 	u64 end;
511 	bool uptodate;
512 };
513 
514 /*
515  * Try to release processed extent range
516  *
517  * May not release the extent range right now if the current range is
518  * contiguous to processed extent.
519  *
520  * Will release processed extent when any of @inode, @uptodate, the range is
521  * no longer contiguous to the processed range.
522  *
523  * Passing @inode == NULL will force processed extent to be released.
524  */
525 static void endio_readpage_release_extent(struct processed_extent *processed,
526 			      struct btrfs_inode *inode, u64 start, u64 end,
527 			      bool uptodate)
528 {
529 	struct extent_state *cached = NULL;
530 	struct extent_io_tree *tree;
531 
532 	/* The first extent, initialize @processed */
533 	if (!processed->inode)
534 		goto update;
535 
536 	/*
537 	 * Contiguous to processed extent, just uptodate the end.
538 	 *
539 	 * Several things to notice:
540 	 *
541 	 * - bio can be merged as long as on-disk bytenr is contiguous
542 	 *   This means we can have page belonging to other inodes, thus need to
543 	 *   check if the inode still matches.
544 	 * - bvec can contain range beyond current page for multi-page bvec
545 	 *   Thus we need to do processed->end + 1 >= start check
546 	 */
547 	if (processed->inode == inode && processed->uptodate == uptodate &&
548 	    processed->end + 1 >= start && end >= processed->end) {
549 		processed->end = end;
550 		return;
551 	}
552 
553 	tree = &processed->inode->io_tree;
554 	/*
555 	 * Now we don't have range contiguous to the processed range, release
556 	 * the processed range now.
557 	 */
558 	unlock_extent(tree, processed->start, processed->end, &cached);
559 
560 update:
561 	/* Update processed to current range */
562 	processed->inode = inode;
563 	processed->start = start;
564 	processed->end = end;
565 	processed->uptodate = uptodate;
566 }
567 
568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
569 {
570 	struct folio *folio = page_folio(page);
571 
572 	ASSERT(folio_test_locked(folio));
573 	if (!btrfs_is_subpage(fs_info, folio->mapping))
574 		return;
575 
576 	ASSERT(folio_test_private(folio));
577 	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
578 }
579 
580 /*
581  * After a data read IO is done, we need to:
582  *
583  * - clear the uptodate bits on error
584  * - set the uptodate bits if things worked
585  * - set the folio up to date if all extents in the tree are uptodate
586  * - clear the lock bit in the extent tree
587  * - unlock the folio if there are no other extents locked for it
588  *
589  * Scheduling is not allowed, so the extent state tree is expected
590  * to have one and only one object corresponding to this IO.
591  */
592 static void end_bbio_data_read(struct btrfs_bio *bbio)
593 {
594 	struct btrfs_fs_info *fs_info = bbio->fs_info;
595 	struct bio *bio = &bbio->bio;
596 	struct processed_extent processed = { 0 };
597 	struct folio_iter fi;
598 	const u32 sectorsize = fs_info->sectorsize;
599 
600 	ASSERT(!bio_flagged(bio, BIO_CLONED));
601 	bio_for_each_folio_all(fi, &bbio->bio) {
602 		bool uptodate = !bio->bi_status;
603 		struct folio *folio = fi.folio;
604 		struct inode *inode = folio->mapping->host;
605 		u64 start;
606 		u64 end;
607 		u32 len;
608 
609 		/* For now only order 0 folios are supported for data. */
610 		ASSERT(folio_order(folio) == 0);
611 		btrfs_debug(fs_info,
612 			"%s: bi_sector=%llu, err=%d, mirror=%u",
613 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
614 			bbio->mirror_num);
615 
616 		/*
617 		 * We always issue full-sector reads, but if some block in a
618 		 * folio fails to read, blk_update_request() will advance
619 		 * bv_offset and adjust bv_len to compensate.  Print a warning
620 		 * for unaligned offsets, and an error if they don't add up to
621 		 * a full sector.
622 		 */
623 		if (!IS_ALIGNED(fi.offset, sectorsize))
624 			btrfs_err(fs_info,
625 		"partial page read in btrfs with offset %zu and length %zu",
626 				  fi.offset, fi.length);
627 		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
628 			btrfs_info(fs_info,
629 		"incomplete page read with offset %zu and length %zu",
630 				   fi.offset, fi.length);
631 
632 		start = folio_pos(folio) + fi.offset;
633 		end = start + fi.length - 1;
634 		len = fi.length;
635 
636 		if (likely(uptodate)) {
637 			loff_t i_size = i_size_read(inode);
638 			pgoff_t end_index = i_size >> folio_shift(folio);
639 
640 			/*
641 			 * Zero out the remaining part if this range straddles
642 			 * i_size.
643 			 *
644 			 * Here we should only zero the range inside the folio,
645 			 * not touch anything else.
646 			 *
647 			 * NOTE: i_size is exclusive while end is inclusive.
648 			 */
649 			if (folio_index(folio) == end_index && i_size <= end) {
650 				u32 zero_start = max(offset_in_folio(folio, i_size),
651 						     offset_in_folio(folio, start));
652 				u32 zero_len = offset_in_folio(folio, end) + 1 -
653 					       zero_start;
654 
655 				folio_zero_range(folio, zero_start, zero_len);
656 			}
657 		}
658 
659 		/* Update page status and unlock. */
660 		end_page_read(folio_page(folio, 0), uptodate, start, len);
661 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
662 					      start, end, uptodate);
663 	}
664 	/* Release the last extent */
665 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 	bio_put(bio);
667 }
668 
669 /*
670  * Populate every free slot in a provided array with pages.
671  *
672  * @nr_pages:   number of pages to allocate
673  * @page_array: the array to fill with pages; any existing non-null entries in
674  * 		the array will be skipped
675  * @extra_gfp:	the extra GFP flags for the allocation.
676  *
677  * Return: 0        if all pages were able to be allocated;
678  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
679  *                  the array slots zeroed
680  */
681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
682 			   gfp_t extra_gfp)
683 {
684 	const gfp_t gfp = GFP_NOFS | extra_gfp;
685 	unsigned int allocated;
686 
687 	for (allocated = 0; allocated < nr_pages;) {
688 		unsigned int last = allocated;
689 
690 		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
691 		if (unlikely(allocated == last)) {
692 			/* No progress, fail and do cleanup. */
693 			for (int i = 0; i < allocated; i++) {
694 				__free_page(page_array[i]);
695 				page_array[i] = NULL;
696 			}
697 			return -ENOMEM;
698 		}
699 	}
700 	return 0;
701 }
702 
703 /*
704  * Populate needed folios for the extent buffer.
705  *
706  * For now, the folios populated are always in order 0 (aka, single page).
707  */
708 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
709 {
710 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
711 	int num_pages = num_extent_pages(eb);
712 	int ret;
713 
714 	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
715 	if (ret < 0)
716 		return ret;
717 
718 	for (int i = 0; i < num_pages; i++)
719 		eb->folios[i] = page_folio(page_array[i]);
720 	eb->folio_size = PAGE_SIZE;
721 	eb->folio_shift = PAGE_SHIFT;
722 	return 0;
723 }
724 
725 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
726 				struct page *page, u64 disk_bytenr,
727 				unsigned int pg_offset)
728 {
729 	struct bio *bio = &bio_ctrl->bbio->bio;
730 	struct bio_vec *bvec = bio_last_bvec_all(bio);
731 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
732 
733 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
734 		/*
735 		 * For compression, all IO should have its logical bytenr set
736 		 * to the starting bytenr of the compressed extent.
737 		 */
738 		return bio->bi_iter.bi_sector == sector;
739 	}
740 
741 	/*
742 	 * The contig check requires the following conditions to be met:
743 	 *
744 	 * 1) The pages are belonging to the same inode
745 	 *    This is implied by the call chain.
746 	 *
747 	 * 2) The range has adjacent logical bytenr
748 	 *
749 	 * 3) The range has adjacent file offset
750 	 *    This is required for the usage of btrfs_bio->file_offset.
751 	 */
752 	return bio_end_sector(bio) == sector &&
753 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
754 		page_offset(page) + pg_offset;
755 }
756 
757 static void alloc_new_bio(struct btrfs_inode *inode,
758 			  struct btrfs_bio_ctrl *bio_ctrl,
759 			  u64 disk_bytenr, u64 file_offset)
760 {
761 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
762 	struct btrfs_bio *bbio;
763 
764 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
765 			       bio_ctrl->end_io_func, NULL);
766 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
767 	bbio->inode = inode;
768 	bbio->file_offset = file_offset;
769 	bio_ctrl->bbio = bbio;
770 	bio_ctrl->len_to_oe_boundary = U32_MAX;
771 
772 	/* Limit data write bios to the ordered boundary. */
773 	if (bio_ctrl->wbc) {
774 		struct btrfs_ordered_extent *ordered;
775 
776 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
777 		if (ordered) {
778 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
779 					ordered->file_offset +
780 					ordered->disk_num_bytes - file_offset);
781 			bbio->ordered = ordered;
782 		}
783 
784 		/*
785 		 * Pick the last added device to support cgroup writeback.  For
786 		 * multi-device file systems this means blk-cgroup policies have
787 		 * to always be set on the last added/replaced device.
788 		 * This is a bit odd but has been like that for a long time.
789 		 */
790 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
791 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
792 	}
793 }
794 
795 /*
796  * @disk_bytenr: logical bytenr where the write will be
797  * @page:	page to add to the bio
798  * @size:	portion of page that we want to write to
799  * @pg_offset:	offset of the new bio or to check whether we are adding
800  *              a contiguous page to the previous one
801  *
802  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
803  * new one in @bio_ctrl->bbio.
804  * The mirror number for this IO should already be initizlied in
805  * @bio_ctrl->mirror_num.
806  */
807 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
808 			       u64 disk_bytenr, struct page *page,
809 			       size_t size, unsigned long pg_offset)
810 {
811 	struct btrfs_inode *inode = page_to_inode(page);
812 
813 	ASSERT(pg_offset + size <= PAGE_SIZE);
814 	ASSERT(bio_ctrl->end_io_func);
815 
816 	if (bio_ctrl->bbio &&
817 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
818 		submit_one_bio(bio_ctrl);
819 
820 	do {
821 		u32 len = size;
822 
823 		/* Allocate new bio if needed */
824 		if (!bio_ctrl->bbio) {
825 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
826 				      page_offset(page) + pg_offset);
827 		}
828 
829 		/* Cap to the current ordered extent boundary if there is one. */
830 		if (len > bio_ctrl->len_to_oe_boundary) {
831 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
832 			ASSERT(is_data_inode(&inode->vfs_inode));
833 			len = bio_ctrl->len_to_oe_boundary;
834 		}
835 
836 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
837 			/* bio full: move on to a new one */
838 			submit_one_bio(bio_ctrl);
839 			continue;
840 		}
841 
842 		if (bio_ctrl->wbc)
843 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
844 
845 		size -= len;
846 		pg_offset += len;
847 		disk_bytenr += len;
848 
849 		/*
850 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
851 		 * sector aligned.  alloc_new_bio() then sets it to the end of
852 		 * our ordered extent for writes into zoned devices.
853 		 *
854 		 * When len_to_oe_boundary is tracking an ordered extent, we
855 		 * trust the ordered extent code to align things properly, and
856 		 * the check above to cap our write to the ordered extent
857 		 * boundary is correct.
858 		 *
859 		 * When len_to_oe_boundary is U32_MAX, the cap above would
860 		 * result in a 4095 byte IO for the last page right before
861 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
862 		 * the checks required to make sure we don't overflow the bio,
863 		 * and we should just ignore len_to_oe_boundary completely
864 		 * unless we're using it to track an ordered extent.
865 		 *
866 		 * It's pretty hard to make a bio sized U32_MAX, but it can
867 		 * happen when the page cache is able to feed us contiguous
868 		 * pages for large extents.
869 		 */
870 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
871 			bio_ctrl->len_to_oe_boundary -= len;
872 
873 		/* Ordered extent boundary: move on to a new bio. */
874 		if (bio_ctrl->len_to_oe_boundary == 0)
875 			submit_one_bio(bio_ctrl);
876 	} while (size);
877 }
878 
879 static int attach_extent_buffer_folio(struct extent_buffer *eb,
880 				      struct folio *folio,
881 				      struct btrfs_subpage *prealloc)
882 {
883 	struct btrfs_fs_info *fs_info = eb->fs_info;
884 	int ret = 0;
885 
886 	/*
887 	 * If the page is mapped to btree inode, we should hold the private
888 	 * lock to prevent race.
889 	 * For cloned or dummy extent buffers, their pages are not mapped and
890 	 * will not race with any other ebs.
891 	 */
892 	if (folio->mapping)
893 		lockdep_assert_held(&folio->mapping->i_private_lock);
894 
895 	if (fs_info->nodesize >= PAGE_SIZE) {
896 		if (!folio_test_private(folio))
897 			folio_attach_private(folio, eb);
898 		else
899 			WARN_ON(folio_get_private(folio) != eb);
900 		return 0;
901 	}
902 
903 	/* Already mapped, just free prealloc */
904 	if (folio_test_private(folio)) {
905 		btrfs_free_subpage(prealloc);
906 		return 0;
907 	}
908 
909 	if (prealloc)
910 		/* Has preallocated memory for subpage */
911 		folio_attach_private(folio, prealloc);
912 	else
913 		/* Do new allocation to attach subpage */
914 		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
915 	return ret;
916 }
917 
918 int set_page_extent_mapped(struct page *page)
919 {
920 	return set_folio_extent_mapped(page_folio(page));
921 }
922 
923 int set_folio_extent_mapped(struct folio *folio)
924 {
925 	struct btrfs_fs_info *fs_info;
926 
927 	ASSERT(folio->mapping);
928 
929 	if (folio_test_private(folio))
930 		return 0;
931 
932 	fs_info = folio_to_fs_info(folio);
933 
934 	if (btrfs_is_subpage(fs_info, folio->mapping))
935 		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
936 
937 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
938 	return 0;
939 }
940 
941 void clear_page_extent_mapped(struct page *page)
942 {
943 	struct folio *folio = page_folio(page);
944 	struct btrfs_fs_info *fs_info;
945 
946 	ASSERT(page->mapping);
947 
948 	if (!folio_test_private(folio))
949 		return;
950 
951 	fs_info = page_to_fs_info(page);
952 	if (btrfs_is_subpage(fs_info, page->mapping))
953 		return btrfs_detach_subpage(fs_info, folio);
954 
955 	folio_detach_private(folio);
956 }
957 
958 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
959 		 u64 start, u64 len, struct extent_map **em_cached)
960 {
961 	struct extent_map *em;
962 
963 	ASSERT(em_cached);
964 
965 	if (*em_cached) {
966 		em = *em_cached;
967 		if (extent_map_in_tree(em) && start >= em->start &&
968 		    start < extent_map_end(em)) {
969 			refcount_inc(&em->refs);
970 			return em;
971 		}
972 
973 		free_extent_map(em);
974 		*em_cached = NULL;
975 	}
976 
977 	em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
978 	if (!IS_ERR(em)) {
979 		BUG_ON(*em_cached);
980 		refcount_inc(&em->refs);
981 		*em_cached = em;
982 	}
983 	return em;
984 }
985 /*
986  * basic readpage implementation.  Locked extent state structs are inserted
987  * into the tree that are removed when the IO is done (by the end_io
988  * handlers)
989  * XXX JDM: This needs looking at to ensure proper page locking
990  * return 0 on success, otherwise return error
991  */
992 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
993 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
994 {
995 	struct inode *inode = page->mapping->host;
996 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
997 	u64 start = page_offset(page);
998 	const u64 end = start + PAGE_SIZE - 1;
999 	u64 cur = start;
1000 	u64 extent_offset;
1001 	u64 last_byte = i_size_read(inode);
1002 	u64 block_start;
1003 	struct extent_map *em;
1004 	int ret = 0;
1005 	size_t pg_offset = 0;
1006 	size_t iosize;
1007 	size_t blocksize = fs_info->sectorsize;
1008 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1009 
1010 	ret = set_page_extent_mapped(page);
1011 	if (ret < 0) {
1012 		unlock_extent(tree, start, end, NULL);
1013 		unlock_page(page);
1014 		return ret;
1015 	}
1016 
1017 	if (page->index == last_byte >> PAGE_SHIFT) {
1018 		size_t zero_offset = offset_in_page(last_byte);
1019 
1020 		if (zero_offset) {
1021 			iosize = PAGE_SIZE - zero_offset;
1022 			memzero_page(page, zero_offset, iosize);
1023 		}
1024 	}
1025 	bio_ctrl->end_io_func = end_bbio_data_read;
1026 	begin_page_read(fs_info, page);
1027 	while (cur <= end) {
1028 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1029 		bool force_bio_submit = false;
1030 		u64 disk_bytenr;
1031 
1032 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1033 		if (cur >= last_byte) {
1034 			iosize = PAGE_SIZE - pg_offset;
1035 			memzero_page(page, pg_offset, iosize);
1036 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1037 			end_page_read(page, true, cur, iosize);
1038 			break;
1039 		}
1040 		em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1041 		if (IS_ERR(em)) {
1042 			unlock_extent(tree, cur, end, NULL);
1043 			end_page_read(page, false, cur, end + 1 - cur);
1044 			return PTR_ERR(em);
1045 		}
1046 		extent_offset = cur - em->start;
1047 		BUG_ON(extent_map_end(em) <= cur);
1048 		BUG_ON(end < cur);
1049 
1050 		compress_type = extent_map_compression(em);
1051 
1052 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1053 		iosize = ALIGN(iosize, blocksize);
1054 		if (compress_type != BTRFS_COMPRESS_NONE)
1055 			disk_bytenr = em->block_start;
1056 		else
1057 			disk_bytenr = em->block_start + extent_offset;
1058 		block_start = em->block_start;
1059 		if (em->flags & EXTENT_FLAG_PREALLOC)
1060 			block_start = EXTENT_MAP_HOLE;
1061 
1062 		/*
1063 		 * If we have a file range that points to a compressed extent
1064 		 * and it's followed by a consecutive file range that points
1065 		 * to the same compressed extent (possibly with a different
1066 		 * offset and/or length, so it either points to the whole extent
1067 		 * or only part of it), we must make sure we do not submit a
1068 		 * single bio to populate the pages for the 2 ranges because
1069 		 * this makes the compressed extent read zero out the pages
1070 		 * belonging to the 2nd range. Imagine the following scenario:
1071 		 *
1072 		 *  File layout
1073 		 *  [0 - 8K]                     [8K - 24K]
1074 		 *    |                               |
1075 		 *    |                               |
1076 		 * points to extent X,         points to extent X,
1077 		 * offset 4K, length of 8K     offset 0, length 16K
1078 		 *
1079 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1080 		 *
1081 		 * If the bio to read the compressed extent covers both ranges,
1082 		 * it will decompress extent X into the pages belonging to the
1083 		 * first range and then it will stop, zeroing out the remaining
1084 		 * pages that belong to the other range that points to extent X.
1085 		 * So here we make sure we submit 2 bios, one for the first
1086 		 * range and another one for the third range. Both will target
1087 		 * the same physical extent from disk, but we can't currently
1088 		 * make the compressed bio endio callback populate the pages
1089 		 * for both ranges because each compressed bio is tightly
1090 		 * coupled with a single extent map, and each range can have
1091 		 * an extent map with a different offset value relative to the
1092 		 * uncompressed data of our extent and different lengths. This
1093 		 * is a corner case so we prioritize correctness over
1094 		 * non-optimal behavior (submitting 2 bios for the same extent).
1095 		 */
1096 		if (compress_type != BTRFS_COMPRESS_NONE &&
1097 		    prev_em_start && *prev_em_start != (u64)-1 &&
1098 		    *prev_em_start != em->start)
1099 			force_bio_submit = true;
1100 
1101 		if (prev_em_start)
1102 			*prev_em_start = em->start;
1103 
1104 		free_extent_map(em);
1105 		em = NULL;
1106 
1107 		/* we've found a hole, just zero and go on */
1108 		if (block_start == EXTENT_MAP_HOLE) {
1109 			memzero_page(page, pg_offset, iosize);
1110 
1111 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1112 			end_page_read(page, true, cur, iosize);
1113 			cur = cur + iosize;
1114 			pg_offset += iosize;
1115 			continue;
1116 		}
1117 		/* the get_extent function already copied into the page */
1118 		if (block_start == EXTENT_MAP_INLINE) {
1119 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1120 			end_page_read(page, true, cur, iosize);
1121 			cur = cur + iosize;
1122 			pg_offset += iosize;
1123 			continue;
1124 		}
1125 
1126 		if (bio_ctrl->compress_type != compress_type) {
1127 			submit_one_bio(bio_ctrl);
1128 			bio_ctrl->compress_type = compress_type;
1129 		}
1130 
1131 		if (force_bio_submit)
1132 			submit_one_bio(bio_ctrl);
1133 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1134 				   pg_offset);
1135 		cur = cur + iosize;
1136 		pg_offset += iosize;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 int btrfs_read_folio(struct file *file, struct folio *folio)
1143 {
1144 	struct page *page = &folio->page;
1145 	struct btrfs_inode *inode = page_to_inode(page);
1146 	u64 start = page_offset(page);
1147 	u64 end = start + PAGE_SIZE - 1;
1148 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1149 	struct extent_map *em_cached = NULL;
1150 	int ret;
1151 
1152 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1153 
1154 	ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1155 	free_extent_map(em_cached);
1156 
1157 	/*
1158 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1159 	 * bio to do the cleanup.
1160 	 */
1161 	submit_one_bio(&bio_ctrl);
1162 	return ret;
1163 }
1164 
1165 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1166 					u64 start, u64 end,
1167 					struct extent_map **em_cached,
1168 					struct btrfs_bio_ctrl *bio_ctrl,
1169 					u64 *prev_em_start)
1170 {
1171 	struct btrfs_inode *inode = page_to_inode(pages[0]);
1172 	int index;
1173 
1174 	ASSERT(em_cached);
1175 
1176 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1177 
1178 	for (index = 0; index < nr_pages; index++) {
1179 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1180 				  prev_em_start);
1181 		put_page(pages[index]);
1182 	}
1183 }
1184 
1185 /*
1186  * helper for __extent_writepage, doing all of the delayed allocation setup.
1187  *
1188  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1189  * to write the page (copy into inline extent).  In this case the IO has
1190  * been started and the page is already unlocked.
1191  *
1192  * This returns 0 if all went well (page still locked)
1193  * This returns < 0 if there were errors (page still locked)
1194  */
1195 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1196 		struct page *page, struct writeback_control *wbc)
1197 {
1198 	const u64 page_start = page_offset(page);
1199 	const u64 page_end = page_start + PAGE_SIZE - 1;
1200 	u64 delalloc_start = page_start;
1201 	u64 delalloc_end = page_end;
1202 	u64 delalloc_to_write = 0;
1203 	int ret = 0;
1204 
1205 	while (delalloc_start < page_end) {
1206 		delalloc_end = page_end;
1207 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1208 					      &delalloc_start, &delalloc_end)) {
1209 			delalloc_start = delalloc_end + 1;
1210 			continue;
1211 		}
1212 
1213 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1214 					       delalloc_end, wbc);
1215 		if (ret < 0)
1216 			return ret;
1217 
1218 		delalloc_start = delalloc_end + 1;
1219 	}
1220 
1221 	/*
1222 	 * delalloc_end is already one less than the total length, so
1223 	 * we don't subtract one from PAGE_SIZE
1224 	 */
1225 	delalloc_to_write +=
1226 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1227 
1228 	/*
1229 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1230 	 * the pages, we just need to account for them here.
1231 	 */
1232 	if (ret == 1) {
1233 		wbc->nr_to_write -= delalloc_to_write;
1234 		return 1;
1235 	}
1236 
1237 	if (wbc->nr_to_write < delalloc_to_write) {
1238 		int thresh = 8192;
1239 
1240 		if (delalloc_to_write < thresh * 2)
1241 			thresh = delalloc_to_write;
1242 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1243 					 thresh);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Find the first byte we need to write.
1251  *
1252  * For subpage, one page can contain several sectors, and
1253  * __extent_writepage_io() will just grab all extent maps in the page
1254  * range and try to submit all non-inline/non-compressed extents.
1255  *
1256  * This is a big problem for subpage, we shouldn't re-submit already written
1257  * data at all.
1258  * This function will lookup subpage dirty bit to find which range we really
1259  * need to submit.
1260  *
1261  * Return the next dirty range in [@start, @end).
1262  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1263  */
1264 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1265 				 struct page *page, u64 *start, u64 *end)
1266 {
1267 	struct folio *folio = page_folio(page);
1268 	struct btrfs_subpage *subpage = folio_get_private(folio);
1269 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1270 	u64 orig_start = *start;
1271 	/* Declare as unsigned long so we can use bitmap ops */
1272 	unsigned long flags;
1273 	int range_start_bit;
1274 	int range_end_bit;
1275 
1276 	/*
1277 	 * For regular sector size == page size case, since one page only
1278 	 * contains one sector, we return the page offset directly.
1279 	 */
1280 	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1281 		*start = page_offset(page);
1282 		*end = page_offset(page) + PAGE_SIZE;
1283 		return;
1284 	}
1285 
1286 	range_start_bit = spi->dirty_offset +
1287 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1288 
1289 	/* We should have the page locked, but just in case */
1290 	spin_lock_irqsave(&subpage->lock, flags);
1291 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1292 			       spi->dirty_offset + spi->bitmap_nr_bits);
1293 	spin_unlock_irqrestore(&subpage->lock, flags);
1294 
1295 	range_start_bit -= spi->dirty_offset;
1296 	range_end_bit -= spi->dirty_offset;
1297 
1298 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1299 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1300 }
1301 
1302 /*
1303  * helper for __extent_writepage.  This calls the writepage start hooks,
1304  * and does the loop to map the page into extents and bios.
1305  *
1306  * We return 1 if the IO is started and the page is unlocked,
1307  * 0 if all went well (page still locked)
1308  * < 0 if there were errors (page still locked)
1309  */
1310 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1311 				 struct page *page,
1312 				 struct btrfs_bio_ctrl *bio_ctrl,
1313 				 loff_t i_size,
1314 				 int *nr_ret)
1315 {
1316 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1317 	u64 cur = page_offset(page);
1318 	u64 end = cur + PAGE_SIZE - 1;
1319 	u64 extent_offset;
1320 	u64 block_start;
1321 	struct extent_map *em;
1322 	int ret = 0;
1323 	int nr = 0;
1324 
1325 	ret = btrfs_writepage_cow_fixup(page);
1326 	if (ret) {
1327 		/* Fixup worker will requeue */
1328 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1329 		unlock_page(page);
1330 		return 1;
1331 	}
1332 
1333 	bio_ctrl->end_io_func = end_bbio_data_write;
1334 	while (cur <= end) {
1335 		u32 len = end - cur + 1;
1336 		u64 disk_bytenr;
1337 		u64 em_end;
1338 		u64 dirty_range_start = cur;
1339 		u64 dirty_range_end;
1340 		u32 iosize;
1341 
1342 		if (cur >= i_size) {
1343 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1344 						       true);
1345 			/*
1346 			 * This range is beyond i_size, thus we don't need to
1347 			 * bother writing back.
1348 			 * But we still need to clear the dirty subpage bit, or
1349 			 * the next time the page gets dirtied, we will try to
1350 			 * writeback the sectors with subpage dirty bits,
1351 			 * causing writeback without ordered extent.
1352 			 */
1353 			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1354 			break;
1355 		}
1356 
1357 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1358 				     &dirty_range_end);
1359 		if (cur < dirty_range_start) {
1360 			cur = dirty_range_start;
1361 			continue;
1362 		}
1363 
1364 		em = btrfs_get_extent(inode, NULL, cur, len);
1365 		if (IS_ERR(em)) {
1366 			ret = PTR_ERR_OR_ZERO(em);
1367 			goto out_error;
1368 		}
1369 
1370 		extent_offset = cur - em->start;
1371 		em_end = extent_map_end(em);
1372 		ASSERT(cur <= em_end);
1373 		ASSERT(cur < end);
1374 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1375 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1376 
1377 		block_start = em->block_start;
1378 		disk_bytenr = em->block_start + extent_offset;
1379 
1380 		ASSERT(!extent_map_is_compressed(em));
1381 		ASSERT(block_start != EXTENT_MAP_HOLE);
1382 		ASSERT(block_start != EXTENT_MAP_INLINE);
1383 
1384 		/*
1385 		 * Note that em_end from extent_map_end() and dirty_range_end from
1386 		 * find_next_dirty_byte() are all exclusive
1387 		 */
1388 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1389 		free_extent_map(em);
1390 		em = NULL;
1391 
1392 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1393 		if (!PageWriteback(page)) {
1394 			btrfs_err(inode->root->fs_info,
1395 				   "page %lu not writeback, cur %llu end %llu",
1396 			       page->index, cur, end);
1397 		}
1398 
1399 		/*
1400 		 * Although the PageDirty bit is cleared before entering this
1401 		 * function, subpage dirty bit is not cleared.
1402 		 * So clear subpage dirty bit here so next time we won't submit
1403 		 * page for range already written to disk.
1404 		 */
1405 		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1406 
1407 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1408 				   cur - page_offset(page));
1409 		cur += iosize;
1410 		nr++;
1411 	}
1412 
1413 	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1414 	*nr_ret = nr;
1415 	return 0;
1416 
1417 out_error:
1418 	/*
1419 	 * If we finish without problem, we should not only clear page dirty,
1420 	 * but also empty subpage dirty bits
1421 	 */
1422 	*nr_ret = nr;
1423 	return ret;
1424 }
1425 
1426 /*
1427  * the writepage semantics are similar to regular writepage.  extent
1428  * records are inserted to lock ranges in the tree, and as dirty areas
1429  * are found, they are marked writeback.  Then the lock bits are removed
1430  * and the end_io handler clears the writeback ranges
1431  *
1432  * Return 0 if everything goes well.
1433  * Return <0 for error.
1434  */
1435 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1436 {
1437 	struct folio *folio = page_folio(page);
1438 	struct inode *inode = page->mapping->host;
1439 	const u64 page_start = page_offset(page);
1440 	int ret;
1441 	int nr = 0;
1442 	size_t pg_offset;
1443 	loff_t i_size = i_size_read(inode);
1444 	unsigned long end_index = i_size >> PAGE_SHIFT;
1445 
1446 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1447 
1448 	WARN_ON(!PageLocked(page));
1449 
1450 	pg_offset = offset_in_page(i_size);
1451 	if (page->index > end_index ||
1452 	   (page->index == end_index && !pg_offset)) {
1453 		folio_invalidate(folio, 0, folio_size(folio));
1454 		folio_unlock(folio);
1455 		return 0;
1456 	}
1457 
1458 	if (page->index == end_index)
1459 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1460 
1461 	ret = set_page_extent_mapped(page);
1462 	if (ret < 0)
1463 		goto done;
1464 
1465 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1466 	if (ret == 1)
1467 		return 0;
1468 	if (ret)
1469 		goto done;
1470 
1471 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1472 	if (ret == 1)
1473 		return 0;
1474 
1475 	bio_ctrl->wbc->nr_to_write--;
1476 
1477 done:
1478 	if (nr == 0) {
1479 		/* make sure the mapping tag for page dirty gets cleared */
1480 		set_page_writeback(page);
1481 		end_page_writeback(page);
1482 	}
1483 	if (ret) {
1484 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1485 					       PAGE_SIZE, !ret);
1486 		mapping_set_error(page->mapping, ret);
1487 	}
1488 	unlock_page(page);
1489 	ASSERT(ret <= 0);
1490 	return ret;
1491 }
1492 
1493 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1494 {
1495 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1496 		       TASK_UNINTERRUPTIBLE);
1497 }
1498 
1499 /*
1500  * Lock extent buffer status and pages for writeback.
1501  *
1502  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1503  * extent buffer is not dirty)
1504  * Return %true is the extent buffer is submitted to bio.
1505  */
1506 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1507 			  struct writeback_control *wbc)
1508 {
1509 	struct btrfs_fs_info *fs_info = eb->fs_info;
1510 	bool ret = false;
1511 
1512 	btrfs_tree_lock(eb);
1513 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1514 		btrfs_tree_unlock(eb);
1515 		if (wbc->sync_mode != WB_SYNC_ALL)
1516 			return false;
1517 		wait_on_extent_buffer_writeback(eb);
1518 		btrfs_tree_lock(eb);
1519 	}
1520 
1521 	/*
1522 	 * We need to do this to prevent races in people who check if the eb is
1523 	 * under IO since we can end up having no IO bits set for a short period
1524 	 * of time.
1525 	 */
1526 	spin_lock(&eb->refs_lock);
1527 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1528 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1529 		spin_unlock(&eb->refs_lock);
1530 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1531 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1532 					 -eb->len,
1533 					 fs_info->dirty_metadata_batch);
1534 		ret = true;
1535 	} else {
1536 		spin_unlock(&eb->refs_lock);
1537 	}
1538 	btrfs_tree_unlock(eb);
1539 	return ret;
1540 }
1541 
1542 static void set_btree_ioerr(struct extent_buffer *eb)
1543 {
1544 	struct btrfs_fs_info *fs_info = eb->fs_info;
1545 
1546 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1547 
1548 	/*
1549 	 * A read may stumble upon this buffer later, make sure that it gets an
1550 	 * error and knows there was an error.
1551 	 */
1552 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1553 
1554 	/*
1555 	 * We need to set the mapping with the io error as well because a write
1556 	 * error will flip the file system readonly, and then syncfs() will
1557 	 * return a 0 because we are readonly if we don't modify the err seq for
1558 	 * the superblock.
1559 	 */
1560 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1561 
1562 	/*
1563 	 * If writeback for a btree extent that doesn't belong to a log tree
1564 	 * failed, increment the counter transaction->eb_write_errors.
1565 	 * We do this because while the transaction is running and before it's
1566 	 * committing (when we call filemap_fdata[write|wait]_range against
1567 	 * the btree inode), we might have
1568 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1569 	 * returns an error or an error happens during writeback, when we're
1570 	 * committing the transaction we wouldn't know about it, since the pages
1571 	 * can be no longer dirty nor marked anymore for writeback (if a
1572 	 * subsequent modification to the extent buffer didn't happen before the
1573 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1574 	 * able to find the pages tagged with SetPageError at transaction
1575 	 * commit time. So if this happens we must abort the transaction,
1576 	 * otherwise we commit a super block with btree roots that point to
1577 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1578 	 * or the content of some node/leaf from a past generation that got
1579 	 * cowed or deleted and is no longer valid.
1580 	 *
1581 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1582 	 * not be enough - we need to distinguish between log tree extents vs
1583 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1584 	 * will catch and clear such errors in the mapping - and that call might
1585 	 * be from a log sync and not from a transaction commit. Also, checking
1586 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1587 	 * not done and would not be reliable - the eb might have been released
1588 	 * from memory and reading it back again means that flag would not be
1589 	 * set (since it's a runtime flag, not persisted on disk).
1590 	 *
1591 	 * Using the flags below in the btree inode also makes us achieve the
1592 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1593 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1594 	 * is called, the writeback for all dirty pages had already finished
1595 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1596 	 * filemap_fdatawait_range() would return success, as it could not know
1597 	 * that writeback errors happened (the pages were no longer tagged for
1598 	 * writeback).
1599 	 */
1600 	switch (eb->log_index) {
1601 	case -1:
1602 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1603 		break;
1604 	case 0:
1605 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1606 		break;
1607 	case 1:
1608 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1609 		break;
1610 	default:
1611 		BUG(); /* unexpected, logic error */
1612 	}
1613 }
1614 
1615 /*
1616  * The endio specific version which won't touch any unsafe spinlock in endio
1617  * context.
1618  */
1619 static struct extent_buffer *find_extent_buffer_nolock(
1620 		struct btrfs_fs_info *fs_info, u64 start)
1621 {
1622 	struct extent_buffer *eb;
1623 
1624 	rcu_read_lock();
1625 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1626 			       start >> fs_info->sectorsize_bits);
1627 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1628 		rcu_read_unlock();
1629 		return eb;
1630 	}
1631 	rcu_read_unlock();
1632 	return NULL;
1633 }
1634 
1635 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1636 {
1637 	struct extent_buffer *eb = bbio->private;
1638 	struct btrfs_fs_info *fs_info = eb->fs_info;
1639 	bool uptodate = !bbio->bio.bi_status;
1640 	struct folio_iter fi;
1641 	u32 bio_offset = 0;
1642 
1643 	if (!uptodate)
1644 		set_btree_ioerr(eb);
1645 
1646 	bio_for_each_folio_all(fi, &bbio->bio) {
1647 		u64 start = eb->start + bio_offset;
1648 		struct folio *folio = fi.folio;
1649 		u32 len = fi.length;
1650 
1651 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1652 		bio_offset += len;
1653 	}
1654 
1655 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1656 	smp_mb__after_atomic();
1657 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1658 
1659 	bio_put(&bbio->bio);
1660 }
1661 
1662 static void prepare_eb_write(struct extent_buffer *eb)
1663 {
1664 	u32 nritems;
1665 	unsigned long start;
1666 	unsigned long end;
1667 
1668 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1669 
1670 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1671 	nritems = btrfs_header_nritems(eb);
1672 	if (btrfs_header_level(eb) > 0) {
1673 		end = btrfs_node_key_ptr_offset(eb, nritems);
1674 		memzero_extent_buffer(eb, end, eb->len - end);
1675 	} else {
1676 		/*
1677 		 * Leaf:
1678 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1679 		 */
1680 		start = btrfs_item_nr_offset(eb, nritems);
1681 		end = btrfs_item_nr_offset(eb, 0);
1682 		if (nritems == 0)
1683 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1684 		else
1685 			end += btrfs_item_offset(eb, nritems - 1);
1686 		memzero_extent_buffer(eb, start, end - start);
1687 	}
1688 }
1689 
1690 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1691 					    struct writeback_control *wbc)
1692 {
1693 	struct btrfs_fs_info *fs_info = eb->fs_info;
1694 	struct btrfs_bio *bbio;
1695 
1696 	prepare_eb_write(eb);
1697 
1698 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1699 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1700 			       eb->fs_info, end_bbio_meta_write, eb);
1701 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1702 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1703 	wbc_init_bio(wbc, &bbio->bio);
1704 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1705 	bbio->file_offset = eb->start;
1706 	if (fs_info->nodesize < PAGE_SIZE) {
1707 		struct folio *folio = eb->folios[0];
1708 		bool ret;
1709 
1710 		folio_lock(folio);
1711 		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1712 		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1713 						       eb->len)) {
1714 			folio_clear_dirty_for_io(folio);
1715 			wbc->nr_to_write--;
1716 		}
1717 		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1718 				    eb->start - folio_pos(folio));
1719 		ASSERT(ret);
1720 		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1721 		folio_unlock(folio);
1722 	} else {
1723 		int num_folios = num_extent_folios(eb);
1724 
1725 		for (int i = 0; i < num_folios; i++) {
1726 			struct folio *folio = eb->folios[i];
1727 			bool ret;
1728 
1729 			folio_lock(folio);
1730 			folio_clear_dirty_for_io(folio);
1731 			folio_start_writeback(folio);
1732 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1733 			ASSERT(ret);
1734 			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1735 						 eb->folio_size);
1736 			wbc->nr_to_write -= folio_nr_pages(folio);
1737 			folio_unlock(folio);
1738 		}
1739 	}
1740 	btrfs_submit_bio(bbio, 0);
1741 }
1742 
1743 /*
1744  * Submit one subpage btree page.
1745  *
1746  * The main difference to submit_eb_page() is:
1747  * - Page locking
1748  *   For subpage, we don't rely on page locking at all.
1749  *
1750  * - Flush write bio
1751  *   We only flush bio if we may be unable to fit current extent buffers into
1752  *   current bio.
1753  *
1754  * Return >=0 for the number of submitted extent buffers.
1755  * Return <0 for fatal error.
1756  */
1757 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1758 {
1759 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1760 	struct folio *folio = page_folio(page);
1761 	int submitted = 0;
1762 	u64 page_start = page_offset(page);
1763 	int bit_start = 0;
1764 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1765 
1766 	/* Lock and write each dirty extent buffers in the range */
1767 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1768 		struct btrfs_subpage *subpage = folio_get_private(folio);
1769 		struct extent_buffer *eb;
1770 		unsigned long flags;
1771 		u64 start;
1772 
1773 		/*
1774 		 * Take private lock to ensure the subpage won't be detached
1775 		 * in the meantime.
1776 		 */
1777 		spin_lock(&page->mapping->i_private_lock);
1778 		if (!folio_test_private(folio)) {
1779 			spin_unlock(&page->mapping->i_private_lock);
1780 			break;
1781 		}
1782 		spin_lock_irqsave(&subpage->lock, flags);
1783 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1784 			      subpage->bitmaps)) {
1785 			spin_unlock_irqrestore(&subpage->lock, flags);
1786 			spin_unlock(&page->mapping->i_private_lock);
1787 			bit_start++;
1788 			continue;
1789 		}
1790 
1791 		start = page_start + bit_start * fs_info->sectorsize;
1792 		bit_start += sectors_per_node;
1793 
1794 		/*
1795 		 * Here we just want to grab the eb without touching extra
1796 		 * spin locks, so call find_extent_buffer_nolock().
1797 		 */
1798 		eb = find_extent_buffer_nolock(fs_info, start);
1799 		spin_unlock_irqrestore(&subpage->lock, flags);
1800 		spin_unlock(&page->mapping->i_private_lock);
1801 
1802 		/*
1803 		 * The eb has already reached 0 refs thus find_extent_buffer()
1804 		 * doesn't return it. We don't need to write back such eb
1805 		 * anyway.
1806 		 */
1807 		if (!eb)
1808 			continue;
1809 
1810 		if (lock_extent_buffer_for_io(eb, wbc)) {
1811 			write_one_eb(eb, wbc);
1812 			submitted++;
1813 		}
1814 		free_extent_buffer(eb);
1815 	}
1816 	return submitted;
1817 }
1818 
1819 /*
1820  * Submit all page(s) of one extent buffer.
1821  *
1822  * @page:	the page of one extent buffer
1823  * @eb_context:	to determine if we need to submit this page, if current page
1824  *		belongs to this eb, we don't need to submit
1825  *
1826  * The caller should pass each page in their bytenr order, and here we use
1827  * @eb_context to determine if we have submitted pages of one extent buffer.
1828  *
1829  * If we have, we just skip until we hit a new page that doesn't belong to
1830  * current @eb_context.
1831  *
1832  * If not, we submit all the page(s) of the extent buffer.
1833  *
1834  * Return >0 if we have submitted the extent buffer successfully.
1835  * Return 0 if we don't need to submit the page, as it's already submitted by
1836  * previous call.
1837  * Return <0 for fatal error.
1838  */
1839 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1840 {
1841 	struct writeback_control *wbc = ctx->wbc;
1842 	struct address_space *mapping = page->mapping;
1843 	struct folio *folio = page_folio(page);
1844 	struct extent_buffer *eb;
1845 	int ret;
1846 
1847 	if (!folio_test_private(folio))
1848 		return 0;
1849 
1850 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1851 		return submit_eb_subpage(page, wbc);
1852 
1853 	spin_lock(&mapping->i_private_lock);
1854 	if (!folio_test_private(folio)) {
1855 		spin_unlock(&mapping->i_private_lock);
1856 		return 0;
1857 	}
1858 
1859 	eb = folio_get_private(folio);
1860 
1861 	/*
1862 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1863 	 * crashing the machine for something we can survive anyway.
1864 	 */
1865 	if (WARN_ON(!eb)) {
1866 		spin_unlock(&mapping->i_private_lock);
1867 		return 0;
1868 	}
1869 
1870 	if (eb == ctx->eb) {
1871 		spin_unlock(&mapping->i_private_lock);
1872 		return 0;
1873 	}
1874 	ret = atomic_inc_not_zero(&eb->refs);
1875 	spin_unlock(&mapping->i_private_lock);
1876 	if (!ret)
1877 		return 0;
1878 
1879 	ctx->eb = eb;
1880 
1881 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1882 	if (ret) {
1883 		if (ret == -EBUSY)
1884 			ret = 0;
1885 		free_extent_buffer(eb);
1886 		return ret;
1887 	}
1888 
1889 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1890 		free_extent_buffer(eb);
1891 		return 0;
1892 	}
1893 	/* Implies write in zoned mode. */
1894 	if (ctx->zoned_bg) {
1895 		/* Mark the last eb in the block group. */
1896 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1897 		ctx->zoned_bg->meta_write_pointer += eb->len;
1898 	}
1899 	write_one_eb(eb, wbc);
1900 	free_extent_buffer(eb);
1901 	return 1;
1902 }
1903 
1904 int btree_write_cache_pages(struct address_space *mapping,
1905 				   struct writeback_control *wbc)
1906 {
1907 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1908 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1909 	int ret = 0;
1910 	int done = 0;
1911 	int nr_to_write_done = 0;
1912 	struct folio_batch fbatch;
1913 	unsigned int nr_folios;
1914 	pgoff_t index;
1915 	pgoff_t end;		/* Inclusive */
1916 	int scanned = 0;
1917 	xa_mark_t tag;
1918 
1919 	folio_batch_init(&fbatch);
1920 	if (wbc->range_cyclic) {
1921 		index = mapping->writeback_index; /* Start from prev offset */
1922 		end = -1;
1923 		/*
1924 		 * Start from the beginning does not need to cycle over the
1925 		 * range, mark it as scanned.
1926 		 */
1927 		scanned = (index == 0);
1928 	} else {
1929 		index = wbc->range_start >> PAGE_SHIFT;
1930 		end = wbc->range_end >> PAGE_SHIFT;
1931 		scanned = 1;
1932 	}
1933 	if (wbc->sync_mode == WB_SYNC_ALL)
1934 		tag = PAGECACHE_TAG_TOWRITE;
1935 	else
1936 		tag = PAGECACHE_TAG_DIRTY;
1937 	btrfs_zoned_meta_io_lock(fs_info);
1938 retry:
1939 	if (wbc->sync_mode == WB_SYNC_ALL)
1940 		tag_pages_for_writeback(mapping, index, end);
1941 	while (!done && !nr_to_write_done && (index <= end) &&
1942 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1943 					    tag, &fbatch))) {
1944 		unsigned i;
1945 
1946 		for (i = 0; i < nr_folios; i++) {
1947 			struct folio *folio = fbatch.folios[i];
1948 
1949 			ret = submit_eb_page(&folio->page, &ctx);
1950 			if (ret == 0)
1951 				continue;
1952 			if (ret < 0) {
1953 				done = 1;
1954 				break;
1955 			}
1956 
1957 			/*
1958 			 * the filesystem may choose to bump up nr_to_write.
1959 			 * We have to make sure to honor the new nr_to_write
1960 			 * at any time
1961 			 */
1962 			nr_to_write_done = wbc->nr_to_write <= 0;
1963 		}
1964 		folio_batch_release(&fbatch);
1965 		cond_resched();
1966 	}
1967 	if (!scanned && !done) {
1968 		/*
1969 		 * We hit the last page and there is more work to be done: wrap
1970 		 * back to the start of the file
1971 		 */
1972 		scanned = 1;
1973 		index = 0;
1974 		goto retry;
1975 	}
1976 	/*
1977 	 * If something went wrong, don't allow any metadata write bio to be
1978 	 * submitted.
1979 	 *
1980 	 * This would prevent use-after-free if we had dirty pages not
1981 	 * cleaned up, which can still happen by fuzzed images.
1982 	 *
1983 	 * - Bad extent tree
1984 	 *   Allowing existing tree block to be allocated for other trees.
1985 	 *
1986 	 * - Log tree operations
1987 	 *   Exiting tree blocks get allocated to log tree, bumps its
1988 	 *   generation, then get cleaned in tree re-balance.
1989 	 *   Such tree block will not be written back, since it's clean,
1990 	 *   thus no WRITTEN flag set.
1991 	 *   And after log writes back, this tree block is not traced by
1992 	 *   any dirty extent_io_tree.
1993 	 *
1994 	 * - Offending tree block gets re-dirtied from its original owner
1995 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1996 	 *   reused without COWing. This tree block will not be traced
1997 	 *   by btrfs_transaction::dirty_pages.
1998 	 *
1999 	 *   Now such dirty tree block will not be cleaned by any dirty
2000 	 *   extent io tree. Thus we don't want to submit such wild eb
2001 	 *   if the fs already has error.
2002 	 *
2003 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2004 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2005 	 */
2006 	if (ret > 0)
2007 		ret = 0;
2008 	if (!ret && BTRFS_FS_ERROR(fs_info))
2009 		ret = -EROFS;
2010 
2011 	if (ctx.zoned_bg)
2012 		btrfs_put_block_group(ctx.zoned_bg);
2013 	btrfs_zoned_meta_io_unlock(fs_info);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Walk the list of dirty pages of the given address space and write all of them.
2019  *
2020  * @mapping:   address space structure to write
2021  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2022  * @bio_ctrl:  holds context for the write, namely the bio
2023  *
2024  * If a page is already under I/O, write_cache_pages() skips it, even
2025  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2026  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2027  * and msync() need to guarantee that all the data which was dirty at the time
2028  * the call was made get new I/O started against them.  If wbc->sync_mode is
2029  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2030  * existing IO to complete.
2031  */
2032 static int extent_write_cache_pages(struct address_space *mapping,
2033 			     struct btrfs_bio_ctrl *bio_ctrl)
2034 {
2035 	struct writeback_control *wbc = bio_ctrl->wbc;
2036 	struct inode *inode = mapping->host;
2037 	int ret = 0;
2038 	int done = 0;
2039 	int nr_to_write_done = 0;
2040 	struct folio_batch fbatch;
2041 	unsigned int nr_folios;
2042 	pgoff_t index;
2043 	pgoff_t end;		/* Inclusive */
2044 	pgoff_t done_index;
2045 	int range_whole = 0;
2046 	int scanned = 0;
2047 	xa_mark_t tag;
2048 
2049 	/*
2050 	 * We have to hold onto the inode so that ordered extents can do their
2051 	 * work when the IO finishes.  The alternative to this is failing to add
2052 	 * an ordered extent if the igrab() fails there and that is a huge pain
2053 	 * to deal with, so instead just hold onto the inode throughout the
2054 	 * writepages operation.  If it fails here we are freeing up the inode
2055 	 * anyway and we'd rather not waste our time writing out stuff that is
2056 	 * going to be truncated anyway.
2057 	 */
2058 	if (!igrab(inode))
2059 		return 0;
2060 
2061 	folio_batch_init(&fbatch);
2062 	if (wbc->range_cyclic) {
2063 		index = mapping->writeback_index; /* Start from prev offset */
2064 		end = -1;
2065 		/*
2066 		 * Start from the beginning does not need to cycle over the
2067 		 * range, mark it as scanned.
2068 		 */
2069 		scanned = (index == 0);
2070 	} else {
2071 		index = wbc->range_start >> PAGE_SHIFT;
2072 		end = wbc->range_end >> PAGE_SHIFT;
2073 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 			range_whole = 1;
2075 		scanned = 1;
2076 	}
2077 
2078 	/*
2079 	 * We do the tagged writepage as long as the snapshot flush bit is set
2080 	 * and we are the first one who do the filemap_flush() on this inode.
2081 	 *
2082 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2083 	 * not race in and drop the bit.
2084 	 */
2085 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2086 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2087 			       &BTRFS_I(inode)->runtime_flags))
2088 		wbc->tagged_writepages = 1;
2089 
2090 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2091 		tag = PAGECACHE_TAG_TOWRITE;
2092 	else
2093 		tag = PAGECACHE_TAG_DIRTY;
2094 retry:
2095 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2096 		tag_pages_for_writeback(mapping, index, end);
2097 	done_index = index;
2098 	while (!done && !nr_to_write_done && (index <= end) &&
2099 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2100 							end, tag, &fbatch))) {
2101 		unsigned i;
2102 
2103 		for (i = 0; i < nr_folios; i++) {
2104 			struct folio *folio = fbatch.folios[i];
2105 
2106 			done_index = folio_next_index(folio);
2107 			/*
2108 			 * At this point we hold neither the i_pages lock nor
2109 			 * the page lock: the page may be truncated or
2110 			 * invalidated (changing page->mapping to NULL),
2111 			 * or even swizzled back from swapper_space to
2112 			 * tmpfs file mapping
2113 			 */
2114 			if (!folio_trylock(folio)) {
2115 				submit_write_bio(bio_ctrl, 0);
2116 				folio_lock(folio);
2117 			}
2118 
2119 			if (unlikely(folio->mapping != mapping)) {
2120 				folio_unlock(folio);
2121 				continue;
2122 			}
2123 
2124 			if (!folio_test_dirty(folio)) {
2125 				/* Someone wrote it for us. */
2126 				folio_unlock(folio);
2127 				continue;
2128 			}
2129 
2130 			if (wbc->sync_mode != WB_SYNC_NONE) {
2131 				if (folio_test_writeback(folio))
2132 					submit_write_bio(bio_ctrl, 0);
2133 				folio_wait_writeback(folio);
2134 			}
2135 
2136 			if (folio_test_writeback(folio) ||
2137 			    !folio_clear_dirty_for_io(folio)) {
2138 				folio_unlock(folio);
2139 				continue;
2140 			}
2141 
2142 			ret = __extent_writepage(&folio->page, bio_ctrl);
2143 			if (ret < 0) {
2144 				done = 1;
2145 				break;
2146 			}
2147 
2148 			/*
2149 			 * The filesystem may choose to bump up nr_to_write.
2150 			 * We have to make sure to honor the new nr_to_write
2151 			 * at any time.
2152 			 */
2153 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2154 					    wbc->nr_to_write <= 0);
2155 		}
2156 		folio_batch_release(&fbatch);
2157 		cond_resched();
2158 	}
2159 	if (!scanned && !done) {
2160 		/*
2161 		 * We hit the last page and there is more work to be done: wrap
2162 		 * back to the start of the file
2163 		 */
2164 		scanned = 1;
2165 		index = 0;
2166 
2167 		/*
2168 		 * If we're looping we could run into a page that is locked by a
2169 		 * writer and that writer could be waiting on writeback for a
2170 		 * page in our current bio, and thus deadlock, so flush the
2171 		 * write bio here.
2172 		 */
2173 		submit_write_bio(bio_ctrl, 0);
2174 		goto retry;
2175 	}
2176 
2177 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2178 		mapping->writeback_index = done_index;
2179 
2180 	btrfs_add_delayed_iput(BTRFS_I(inode));
2181 	return ret;
2182 }
2183 
2184 /*
2185  * Submit the pages in the range to bio for call sites which delalloc range has
2186  * already been ran (aka, ordered extent inserted) and all pages are still
2187  * locked.
2188  */
2189 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2190 			       u64 start, u64 end, struct writeback_control *wbc,
2191 			       bool pages_dirty)
2192 {
2193 	bool found_error = false;
2194 	int ret = 0;
2195 	struct address_space *mapping = inode->i_mapping;
2196 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2197 	const u32 sectorsize = fs_info->sectorsize;
2198 	loff_t i_size = i_size_read(inode);
2199 	u64 cur = start;
2200 	struct btrfs_bio_ctrl bio_ctrl = {
2201 		.wbc = wbc,
2202 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2203 	};
2204 
2205 	if (wbc->no_cgroup_owner)
2206 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2207 
2208 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2209 
2210 	while (cur <= end) {
2211 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2212 		u32 cur_len = cur_end + 1 - cur;
2213 		struct page *page;
2214 		int nr = 0;
2215 
2216 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2217 		ASSERT(PageLocked(page));
2218 		if (pages_dirty && page != locked_page) {
2219 			ASSERT(PageDirty(page));
2220 			clear_page_dirty_for_io(page);
2221 		}
2222 
2223 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2224 					    i_size, &nr);
2225 		if (ret == 1)
2226 			goto next_page;
2227 
2228 		/* Make sure the mapping tag for page dirty gets cleared. */
2229 		if (nr == 0) {
2230 			set_page_writeback(page);
2231 			end_page_writeback(page);
2232 		}
2233 		if (ret) {
2234 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2235 						       cur, cur_len, !ret);
2236 			mapping_set_error(page->mapping, ret);
2237 		}
2238 		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2239 		if (ret < 0)
2240 			found_error = true;
2241 next_page:
2242 		put_page(page);
2243 		cur = cur_end + 1;
2244 	}
2245 
2246 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2247 }
2248 
2249 int extent_writepages(struct address_space *mapping,
2250 		      struct writeback_control *wbc)
2251 {
2252 	struct inode *inode = mapping->host;
2253 	int ret = 0;
2254 	struct btrfs_bio_ctrl bio_ctrl = {
2255 		.wbc = wbc,
2256 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2257 	};
2258 
2259 	/*
2260 	 * Allow only a single thread to do the reloc work in zoned mode to
2261 	 * protect the write pointer updates.
2262 	 */
2263 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2264 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2265 	submit_write_bio(&bio_ctrl, ret);
2266 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2267 	return ret;
2268 }
2269 
2270 void extent_readahead(struct readahead_control *rac)
2271 {
2272 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2273 	struct page *pagepool[16];
2274 	struct extent_map *em_cached = NULL;
2275 	u64 prev_em_start = (u64)-1;
2276 	int nr;
2277 
2278 	while ((nr = readahead_page_batch(rac, pagepool))) {
2279 		u64 contig_start = readahead_pos(rac);
2280 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2281 
2282 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2283 				&em_cached, &bio_ctrl, &prev_em_start);
2284 	}
2285 
2286 	if (em_cached)
2287 		free_extent_map(em_cached);
2288 	submit_one_bio(&bio_ctrl);
2289 }
2290 
2291 /*
2292  * basic invalidate_folio code, this waits on any locked or writeback
2293  * ranges corresponding to the folio, and then deletes any extent state
2294  * records from the tree
2295  */
2296 int extent_invalidate_folio(struct extent_io_tree *tree,
2297 			  struct folio *folio, size_t offset)
2298 {
2299 	struct extent_state *cached_state = NULL;
2300 	u64 start = folio_pos(folio);
2301 	u64 end = start + folio_size(folio) - 1;
2302 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2303 
2304 	/* This function is only called for the btree inode */
2305 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2306 
2307 	start += ALIGN(offset, blocksize);
2308 	if (start > end)
2309 		return 0;
2310 
2311 	lock_extent(tree, start, end, &cached_state);
2312 	folio_wait_writeback(folio);
2313 
2314 	/*
2315 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2316 	 * so here we only need to unlock the extent range to free any
2317 	 * existing extent state.
2318 	 */
2319 	unlock_extent(tree, start, end, &cached_state);
2320 	return 0;
2321 }
2322 
2323 /*
2324  * a helper for release_folio, this tests for areas of the page that
2325  * are locked or under IO and drops the related state bits if it is safe
2326  * to drop the page.
2327  */
2328 static int try_release_extent_state(struct extent_io_tree *tree,
2329 				    struct page *page, gfp_t mask)
2330 {
2331 	u64 start = page_offset(page);
2332 	u64 end = start + PAGE_SIZE - 1;
2333 	int ret = 1;
2334 
2335 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2336 		ret = 0;
2337 	} else {
2338 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2339 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2340 				   EXTENT_QGROUP_RESERVED);
2341 
2342 		/*
2343 		 * At this point we can safely clear everything except the
2344 		 * locked bit, the nodatasum bit and the delalloc new bit.
2345 		 * The delalloc new bit will be cleared by ordered extent
2346 		 * completion.
2347 		 */
2348 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2349 
2350 		/* if clear_extent_bit failed for enomem reasons,
2351 		 * we can't allow the release to continue.
2352 		 */
2353 		if (ret < 0)
2354 			ret = 0;
2355 		else
2356 			ret = 1;
2357 	}
2358 	return ret;
2359 }
2360 
2361 /*
2362  * a helper for release_folio.  As long as there are no locked extents
2363  * in the range corresponding to the page, both state records and extent
2364  * map records are removed
2365  */
2366 int try_release_extent_mapping(struct page *page, gfp_t mask)
2367 {
2368 	struct extent_map *em;
2369 	u64 start = page_offset(page);
2370 	u64 end = start + PAGE_SIZE - 1;
2371 	struct btrfs_inode *btrfs_inode = page_to_inode(page);
2372 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2373 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2374 
2375 	if (gfpflags_allow_blocking(mask) &&
2376 	    page->mapping->host->i_size > SZ_16M) {
2377 		u64 len;
2378 		while (start <= end) {
2379 			struct btrfs_fs_info *fs_info;
2380 			u64 cur_gen;
2381 
2382 			len = end - start + 1;
2383 			write_lock(&map->lock);
2384 			em = lookup_extent_mapping(map, start, len);
2385 			if (!em) {
2386 				write_unlock(&map->lock);
2387 				break;
2388 			}
2389 			if ((em->flags & EXTENT_FLAG_PINNED) ||
2390 			    em->start != start) {
2391 				write_unlock(&map->lock);
2392 				free_extent_map(em);
2393 				break;
2394 			}
2395 			if (test_range_bit_exists(tree, em->start,
2396 						  extent_map_end(em) - 1,
2397 						  EXTENT_LOCKED))
2398 				goto next;
2399 			/*
2400 			 * If it's not in the list of modified extents, used
2401 			 * by a fast fsync, we can remove it. If it's being
2402 			 * logged we can safely remove it since fsync took an
2403 			 * extra reference on the em.
2404 			 */
2405 			if (list_empty(&em->list) ||
2406 			    (em->flags & EXTENT_FLAG_LOGGING))
2407 				goto remove_em;
2408 			/*
2409 			 * If it's in the list of modified extents, remove it
2410 			 * only if its generation is older then the current one,
2411 			 * in which case we don't need it for a fast fsync.
2412 			 * Otherwise don't remove it, we could be racing with an
2413 			 * ongoing fast fsync that could miss the new extent.
2414 			 */
2415 			fs_info = btrfs_inode->root->fs_info;
2416 			spin_lock(&fs_info->trans_lock);
2417 			cur_gen = fs_info->generation;
2418 			spin_unlock(&fs_info->trans_lock);
2419 			if (em->generation >= cur_gen)
2420 				goto next;
2421 remove_em:
2422 			/*
2423 			 * We only remove extent maps that are not in the list of
2424 			 * modified extents or that are in the list but with a
2425 			 * generation lower then the current generation, so there
2426 			 * is no need to set the full fsync flag on the inode (it
2427 			 * hurts the fsync performance for workloads with a data
2428 			 * size that exceeds or is close to the system's memory).
2429 			 */
2430 			remove_extent_mapping(map, em);
2431 			/* once for the rb tree */
2432 			free_extent_map(em);
2433 next:
2434 			start = extent_map_end(em);
2435 			write_unlock(&map->lock);
2436 
2437 			/* once for us */
2438 			free_extent_map(em);
2439 
2440 			cond_resched(); /* Allow large-extent preemption. */
2441 		}
2442 	}
2443 	return try_release_extent_state(tree, page, mask);
2444 }
2445 
2446 struct btrfs_fiemap_entry {
2447 	u64 offset;
2448 	u64 phys;
2449 	u64 len;
2450 	u32 flags;
2451 };
2452 
2453 /*
2454  * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2455  * range from the inode's io tree, unlock the subvolume tree search path, flush
2456  * the fiemap cache and relock the file range and research the subvolume tree.
2457  * The value here is something negative that can't be confused with a valid
2458  * errno value and different from 1 because that's also a return value from
2459  * fiemap_fill_next_extent() and also it's often used to mean some btree search
2460  * did not find a key, so make it some distinct negative value.
2461  */
2462 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2463 
2464 /*
2465  * Used to:
2466  *
2467  * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2468  *   merge extents that are contiguous and can be grouped as a single one;
2469  *
2470  * - Store extents ready to be written to the fiemap buffer in an intermediary
2471  *   buffer. This intermediary buffer is to ensure that in case the fiemap
2472  *   buffer is memory mapped to the fiemap target file, we don't deadlock
2473  *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
2474  *   an extent range in order to prevent races with delalloc flushing and
2475  *   ordered extent completion, which is needed in order to reliably detect
2476  *   delalloc in holes and prealloc extents. And this can lead to a deadlock
2477  *   if the fiemap buffer is memory mapped to the file we are running fiemap
2478  *   against (a silly, useless in practice scenario, but possible) because
2479  *   btrfs_page_mkwrite() will try to lock the same extent range.
2480  */
2481 struct fiemap_cache {
2482 	/* An array of ready fiemap entries. */
2483 	struct btrfs_fiemap_entry *entries;
2484 	/* Number of entries in the entries array. */
2485 	int entries_size;
2486 	/* Index of the next entry in the entries array to write to. */
2487 	int entries_pos;
2488 	/*
2489 	 * Once the entries array is full, this indicates what's the offset for
2490 	 * the next file extent item we must search for in the inode's subvolume
2491 	 * tree after unlocking the extent range in the inode's io tree and
2492 	 * releasing the search path.
2493 	 */
2494 	u64 next_search_offset;
2495 	/*
2496 	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2497 	 * to count ourselves emitted extents and stop instead of relying on
2498 	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2499 	 * the @entries array, and we want to stop as soon as we hit the max
2500 	 * amount of extents to map, not just to save time but also to make the
2501 	 * logic at extent_fiemap() simpler.
2502 	 */
2503 	unsigned int extents_mapped;
2504 	/* Fields for the cached extent (unsubmitted, not ready, extent). */
2505 	u64 offset;
2506 	u64 phys;
2507 	u64 len;
2508 	u32 flags;
2509 	bool cached;
2510 };
2511 
2512 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2513 			      struct fiemap_cache *cache)
2514 {
2515 	for (int i = 0; i < cache->entries_pos; i++) {
2516 		struct btrfs_fiemap_entry *entry = &cache->entries[i];
2517 		int ret;
2518 
2519 		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2520 					      entry->phys, entry->len,
2521 					      entry->flags);
2522 		/*
2523 		 * Ignore 1 (reached max entries) because we keep track of that
2524 		 * ourselves in emit_fiemap_extent().
2525 		 */
2526 		if (ret < 0)
2527 			return ret;
2528 	}
2529 	cache->entries_pos = 0;
2530 
2531 	return 0;
2532 }
2533 
2534 /*
2535  * Helper to submit fiemap extent.
2536  *
2537  * Will try to merge current fiemap extent specified by @offset, @phys,
2538  * @len and @flags with cached one.
2539  * And only when we fails to merge, cached one will be submitted as
2540  * fiemap extent.
2541  *
2542  * Return value is the same as fiemap_fill_next_extent().
2543  */
2544 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2545 				struct fiemap_cache *cache,
2546 				u64 offset, u64 phys, u64 len, u32 flags)
2547 {
2548 	struct btrfs_fiemap_entry *entry;
2549 	u64 cache_end;
2550 
2551 	/* Set at the end of extent_fiemap(). */
2552 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2553 
2554 	if (!cache->cached)
2555 		goto assign;
2556 
2557 	/*
2558 	 * When iterating the extents of the inode, at extent_fiemap(), we may
2559 	 * find an extent that starts at an offset behind the end offset of the
2560 	 * previous extent we processed. This happens if fiemap is called
2561 	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2562 	 * after we had to unlock the file range, release the search path, emit
2563 	 * the fiemap extents stored in the buffer (cache->entries array) and
2564 	 * the lock the remainder of the range and re-search the btree.
2565 	 *
2566 	 * For example we are in leaf X processing its last item, which is the
2567 	 * file extent item for file range [512K, 1M[, and after
2568 	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2569 	 * completes for the file range [768K, 2M[, and that results in trimming
2570 	 * the file extent item so that it now corresponds to the file range
2571 	 * [512K, 768K[ and a new file extent item is inserted for the file
2572 	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2573 	 * the first item of the next leaf - in either case btrfs_next_leaf()
2574 	 * will leave us with a path pointing to the new extent item, for the
2575 	 * file range [768K, 2M[, since that's the first key that follows the
2576 	 * last one we processed. So in order not to report overlapping extents
2577 	 * to user space, we trim the length of the previously cached extent and
2578 	 * emit it.
2579 	 *
2580 	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2581 	 * offset smaller than or equals to cache->offset, and this happens
2582 	 * when we had a hole or prealloc extent with several delalloc ranges in
2583 	 * it, but after btrfs_next_leaf() released the path, delalloc was
2584 	 * flushed and the resulting ordered extents were completed, so we can
2585 	 * now have found a file extent item for an offset that is smaller than
2586 	 * or equals to what we have in cache->offset. We deal with this as
2587 	 * described below.
2588 	 */
2589 	cache_end = cache->offset + cache->len;
2590 	if (cache_end > offset) {
2591 		if (offset == cache->offset) {
2592 			/*
2593 			 * We cached a dealloc range (found in the io tree) for
2594 			 * a hole or prealloc extent and we have now found a
2595 			 * file extent item for the same offset. What we have
2596 			 * now is more recent and up to date, so discard what
2597 			 * we had in the cache and use what we have just found.
2598 			 */
2599 			goto assign;
2600 		} else if (offset > cache->offset) {
2601 			/*
2602 			 * The extent range we previously found ends after the
2603 			 * offset of the file extent item we found and that
2604 			 * offset falls somewhere in the middle of that previous
2605 			 * extent range. So adjust the range we previously found
2606 			 * to end at the offset of the file extent item we have
2607 			 * just found, since this extent is more up to date.
2608 			 * Emit that adjusted range and cache the file extent
2609 			 * item we have just found. This corresponds to the case
2610 			 * where a previously found file extent item was split
2611 			 * due to an ordered extent completing.
2612 			 */
2613 			cache->len = offset - cache->offset;
2614 			goto emit;
2615 		} else {
2616 			const u64 range_end = offset + len;
2617 
2618 			/*
2619 			 * The offset of the file extent item we have just found
2620 			 * is behind the cached offset. This means we were
2621 			 * processing a hole or prealloc extent for which we
2622 			 * have found delalloc ranges (in the io tree), so what
2623 			 * we have in the cache is the last delalloc range we
2624 			 * found while the file extent item we found can be
2625 			 * either for a whole delalloc range we previously
2626 			 * emmitted or only a part of that range.
2627 			 *
2628 			 * We have two cases here:
2629 			 *
2630 			 * 1) The file extent item's range ends at or behind the
2631 			 *    cached extent's end. In this case just ignore the
2632 			 *    current file extent item because we don't want to
2633 			 *    overlap with previous ranges that may have been
2634 			 *    emmitted already;
2635 			 *
2636 			 * 2) The file extent item starts behind the currently
2637 			 *    cached extent but its end offset goes beyond the
2638 			 *    end offset of the cached extent. We don't want to
2639 			 *    overlap with a previous range that may have been
2640 			 *    emmitted already, so we emit the currently cached
2641 			 *    extent and then partially store the current file
2642 			 *    extent item's range in the cache, for the subrange
2643 			 *    going the cached extent's end to the end of the
2644 			 *    file extent item.
2645 			 */
2646 			if (range_end <= cache_end)
2647 				return 0;
2648 
2649 			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2650 				phys += cache_end - offset;
2651 
2652 			offset = cache_end;
2653 			len = range_end - cache_end;
2654 			goto emit;
2655 		}
2656 	}
2657 
2658 	/*
2659 	 * Only merges fiemap extents if
2660 	 * 1) Their logical addresses are continuous
2661 	 *
2662 	 * 2) Their physical addresses are continuous
2663 	 *    So truly compressed (physical size smaller than logical size)
2664 	 *    extents won't get merged with each other
2665 	 *
2666 	 * 3) Share same flags
2667 	 */
2668 	if (cache->offset + cache->len  == offset &&
2669 	    cache->phys + cache->len == phys  &&
2670 	    cache->flags == flags) {
2671 		cache->len += len;
2672 		return 0;
2673 	}
2674 
2675 emit:
2676 	/* Not mergeable, need to submit cached one */
2677 
2678 	if (cache->entries_pos == cache->entries_size) {
2679 		/*
2680 		 * We will need to research for the end offset of the last
2681 		 * stored extent and not from the current offset, because after
2682 		 * unlocking the range and releasing the path, if there's a hole
2683 		 * between that end offset and this current offset, a new extent
2684 		 * may have been inserted due to a new write, so we don't want
2685 		 * to miss it.
2686 		 */
2687 		entry = &cache->entries[cache->entries_size - 1];
2688 		cache->next_search_offset = entry->offset + entry->len;
2689 		cache->cached = false;
2690 
2691 		return BTRFS_FIEMAP_FLUSH_CACHE;
2692 	}
2693 
2694 	entry = &cache->entries[cache->entries_pos];
2695 	entry->offset = cache->offset;
2696 	entry->phys = cache->phys;
2697 	entry->len = cache->len;
2698 	entry->flags = cache->flags;
2699 	cache->entries_pos++;
2700 	cache->extents_mapped++;
2701 
2702 	if (cache->extents_mapped == fieinfo->fi_extents_max) {
2703 		cache->cached = false;
2704 		return 1;
2705 	}
2706 assign:
2707 	cache->cached = true;
2708 	cache->offset = offset;
2709 	cache->phys = phys;
2710 	cache->len = len;
2711 	cache->flags = flags;
2712 
2713 	return 0;
2714 }
2715 
2716 /*
2717  * Emit last fiemap cache
2718  *
2719  * The last fiemap cache may still be cached in the following case:
2720  * 0		      4k		    8k
2721  * |<- Fiemap range ->|
2722  * |<------------  First extent ----------->|
2723  *
2724  * In this case, the first extent range will be cached but not emitted.
2725  * So we must emit it before ending extent_fiemap().
2726  */
2727 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2728 				  struct fiemap_cache *cache)
2729 {
2730 	int ret;
2731 
2732 	if (!cache->cached)
2733 		return 0;
2734 
2735 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2736 				      cache->len, cache->flags);
2737 	cache->cached = false;
2738 	if (ret > 0)
2739 		ret = 0;
2740 	return ret;
2741 }
2742 
2743 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2744 {
2745 	struct extent_buffer *clone = path->nodes[0];
2746 	struct btrfs_key key;
2747 	int slot;
2748 	int ret;
2749 
2750 	path->slots[0]++;
2751 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2752 		return 0;
2753 
2754 	/*
2755 	 * Add a temporary extra ref to an already cloned extent buffer to
2756 	 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2757 	 * the cost of allocating a new one.
2758 	 */
2759 	ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2760 	atomic_inc(&clone->refs);
2761 
2762 	ret = btrfs_next_leaf(inode->root, path);
2763 	if (ret != 0)
2764 		goto out;
2765 
2766 	/*
2767 	 * Don't bother with cloning if there are no more file extent items for
2768 	 * our inode.
2769 	 */
2770 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2771 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2772 		ret = 1;
2773 		goto out;
2774 	}
2775 
2776 	/* See the comment at fiemap_search_slot() about why we clone. */
2777 	copy_extent_buffer_full(clone, path->nodes[0]);
2778 	/*
2779 	 * Important to preserve the start field, for the optimizations when
2780 	 * checking if extents are shared (see extent_fiemap()).
2781 	 */
2782 	clone->start = path->nodes[0]->start;
2783 
2784 	slot = path->slots[0];
2785 	btrfs_release_path(path);
2786 	path->nodes[0] = clone;
2787 	path->slots[0] = slot;
2788 out:
2789 	if (ret)
2790 		free_extent_buffer(clone);
2791 
2792 	return ret;
2793 }
2794 
2795 /*
2796  * Search for the first file extent item that starts at a given file offset or
2797  * the one that starts immediately before that offset.
2798  * Returns: 0 on success, < 0 on error, 1 if not found.
2799  */
2800 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2801 			      u64 file_offset)
2802 {
2803 	const u64 ino = btrfs_ino(inode);
2804 	struct btrfs_root *root = inode->root;
2805 	struct extent_buffer *clone;
2806 	struct btrfs_key key;
2807 	int slot;
2808 	int ret;
2809 
2810 	key.objectid = ino;
2811 	key.type = BTRFS_EXTENT_DATA_KEY;
2812 	key.offset = file_offset;
2813 
2814 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2815 	if (ret < 0)
2816 		return ret;
2817 
2818 	if (ret > 0 && path->slots[0] > 0) {
2819 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2820 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2821 			path->slots[0]--;
2822 	}
2823 
2824 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2825 		ret = btrfs_next_leaf(root, path);
2826 		if (ret != 0)
2827 			return ret;
2828 
2829 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2830 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2831 			return 1;
2832 	}
2833 
2834 	/*
2835 	 * We clone the leaf and use it during fiemap. This is because while
2836 	 * using the leaf we do expensive things like checking if an extent is
2837 	 * shared, which can take a long time. In order to prevent blocking
2838 	 * other tasks for too long, we use a clone of the leaf. We have locked
2839 	 * the file range in the inode's io tree, so we know none of our file
2840 	 * extent items can change. This way we avoid blocking other tasks that
2841 	 * want to insert items for other inodes in the same leaf or b+tree
2842 	 * rebalance operations (triggered for example when someone is trying
2843 	 * to push items into this leaf when trying to insert an item in a
2844 	 * neighbour leaf).
2845 	 * We also need the private clone because holding a read lock on an
2846 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2847 	 * when we check if extents are shared, as backref walking may need to
2848 	 * lock the same leaf we are processing.
2849 	 */
2850 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2851 	if (!clone)
2852 		return -ENOMEM;
2853 
2854 	slot = path->slots[0];
2855 	btrfs_release_path(path);
2856 	path->nodes[0] = clone;
2857 	path->slots[0] = slot;
2858 
2859 	return 0;
2860 }
2861 
2862 /*
2863  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2864  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2865  * extent. The end offset (@end) is inclusive.
2866  */
2867 static int fiemap_process_hole(struct btrfs_inode *inode,
2868 			       struct fiemap_extent_info *fieinfo,
2869 			       struct fiemap_cache *cache,
2870 			       struct extent_state **delalloc_cached_state,
2871 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2872 			       u64 disk_bytenr, u64 extent_offset,
2873 			       u64 extent_gen,
2874 			       u64 start, u64 end)
2875 {
2876 	const u64 i_size = i_size_read(&inode->vfs_inode);
2877 	u64 cur_offset = start;
2878 	u64 last_delalloc_end = 0;
2879 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2880 	bool checked_extent_shared = false;
2881 	int ret;
2882 
2883 	/*
2884 	 * There can be no delalloc past i_size, so don't waste time looking for
2885 	 * it beyond i_size.
2886 	 */
2887 	while (cur_offset < end && cur_offset < i_size) {
2888 		u64 delalloc_start;
2889 		u64 delalloc_end;
2890 		u64 prealloc_start;
2891 		u64 prealloc_len = 0;
2892 		bool delalloc;
2893 
2894 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2895 							delalloc_cached_state,
2896 							&delalloc_start,
2897 							&delalloc_end);
2898 		if (!delalloc)
2899 			break;
2900 
2901 		/*
2902 		 * If this is a prealloc extent we have to report every section
2903 		 * of it that has no delalloc.
2904 		 */
2905 		if (disk_bytenr != 0) {
2906 			if (last_delalloc_end == 0) {
2907 				prealloc_start = start;
2908 				prealloc_len = delalloc_start - start;
2909 			} else {
2910 				prealloc_start = last_delalloc_end + 1;
2911 				prealloc_len = delalloc_start - prealloc_start;
2912 			}
2913 		}
2914 
2915 		if (prealloc_len > 0) {
2916 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2917 				ret = btrfs_is_data_extent_shared(inode,
2918 								  disk_bytenr,
2919 								  extent_gen,
2920 								  backref_ctx);
2921 				if (ret < 0)
2922 					return ret;
2923 				else if (ret > 0)
2924 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2925 
2926 				checked_extent_shared = true;
2927 			}
2928 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2929 						 disk_bytenr + extent_offset,
2930 						 prealloc_len, prealloc_flags);
2931 			if (ret)
2932 				return ret;
2933 			extent_offset += prealloc_len;
2934 		}
2935 
2936 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2937 					 delalloc_end + 1 - delalloc_start,
2938 					 FIEMAP_EXTENT_DELALLOC |
2939 					 FIEMAP_EXTENT_UNKNOWN);
2940 		if (ret)
2941 			return ret;
2942 
2943 		last_delalloc_end = delalloc_end;
2944 		cur_offset = delalloc_end + 1;
2945 		extent_offset += cur_offset - delalloc_start;
2946 		cond_resched();
2947 	}
2948 
2949 	/*
2950 	 * Either we found no delalloc for the whole prealloc extent or we have
2951 	 * a prealloc extent that spans i_size or starts at or after i_size.
2952 	 */
2953 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2954 		u64 prealloc_start;
2955 		u64 prealloc_len;
2956 
2957 		if (last_delalloc_end == 0) {
2958 			prealloc_start = start;
2959 			prealloc_len = end + 1 - start;
2960 		} else {
2961 			prealloc_start = last_delalloc_end + 1;
2962 			prealloc_len = end + 1 - prealloc_start;
2963 		}
2964 
2965 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2966 			ret = btrfs_is_data_extent_shared(inode,
2967 							  disk_bytenr,
2968 							  extent_gen,
2969 							  backref_ctx);
2970 			if (ret < 0)
2971 				return ret;
2972 			else if (ret > 0)
2973 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2974 		}
2975 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2976 					 disk_bytenr + extent_offset,
2977 					 prealloc_len, prealloc_flags);
2978 		if (ret)
2979 			return ret;
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2986 					  struct btrfs_path *path,
2987 					  u64 *last_extent_end_ret)
2988 {
2989 	const u64 ino = btrfs_ino(inode);
2990 	struct btrfs_root *root = inode->root;
2991 	struct extent_buffer *leaf;
2992 	struct btrfs_file_extent_item *ei;
2993 	struct btrfs_key key;
2994 	u64 disk_bytenr;
2995 	int ret;
2996 
2997 	/*
2998 	 * Lookup the last file extent. We're not using i_size here because
2999 	 * there might be preallocation past i_size.
3000 	 */
3001 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3002 	/* There can't be a file extent item at offset (u64)-1 */
3003 	ASSERT(ret != 0);
3004 	if (ret < 0)
3005 		return ret;
3006 
3007 	/*
3008 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3009 	 * slot > 0, except if the btree is empty, which is impossible because
3010 	 * at least it has the inode item for this inode and all the items for
3011 	 * the root inode 256.
3012 	 */
3013 	ASSERT(path->slots[0] > 0);
3014 	path->slots[0]--;
3015 	leaf = path->nodes[0];
3016 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3017 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3018 		/* No file extent items in the subvolume tree. */
3019 		*last_extent_end_ret = 0;
3020 		return 0;
3021 	}
3022 
3023 	/*
3024 	 * For an inline extent, the disk_bytenr is where inline data starts at,
3025 	 * so first check if we have an inline extent item before checking if we
3026 	 * have an implicit hole (disk_bytenr == 0).
3027 	 */
3028 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3029 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3030 		*last_extent_end_ret = btrfs_file_extent_end(path);
3031 		return 0;
3032 	}
3033 
3034 	/*
3035 	 * Find the last file extent item that is not a hole (when NO_HOLES is
3036 	 * not enabled). This should take at most 2 iterations in the worst
3037 	 * case: we have one hole file extent item at slot 0 of a leaf and
3038 	 * another hole file extent item as the last item in the previous leaf.
3039 	 * This is because we merge file extent items that represent holes.
3040 	 */
3041 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3042 	while (disk_bytenr == 0) {
3043 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3044 		if (ret < 0) {
3045 			return ret;
3046 		} else if (ret > 0) {
3047 			/* No file extent items that are not holes. */
3048 			*last_extent_end_ret = 0;
3049 			return 0;
3050 		}
3051 		leaf = path->nodes[0];
3052 		ei = btrfs_item_ptr(leaf, path->slots[0],
3053 				    struct btrfs_file_extent_item);
3054 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3055 	}
3056 
3057 	*last_extent_end_ret = btrfs_file_extent_end(path);
3058 	return 0;
3059 }
3060 
3061 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3062 		  u64 start, u64 len)
3063 {
3064 	const u64 ino = btrfs_ino(inode);
3065 	struct extent_state *cached_state = NULL;
3066 	struct extent_state *delalloc_cached_state = NULL;
3067 	struct btrfs_path *path;
3068 	struct fiemap_cache cache = { 0 };
3069 	struct btrfs_backref_share_check_ctx *backref_ctx;
3070 	u64 last_extent_end;
3071 	u64 prev_extent_end;
3072 	u64 range_start;
3073 	u64 range_end;
3074 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3075 	bool stopped = false;
3076 	int ret;
3077 
3078 	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3079 	cache.entries = kmalloc_array(cache.entries_size,
3080 				      sizeof(struct btrfs_fiemap_entry),
3081 				      GFP_KERNEL);
3082 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3083 	path = btrfs_alloc_path();
3084 	if (!cache.entries || !backref_ctx || !path) {
3085 		ret = -ENOMEM;
3086 		goto out;
3087 	}
3088 
3089 restart:
3090 	range_start = round_down(start, sectorsize);
3091 	range_end = round_up(start + len, sectorsize);
3092 	prev_extent_end = range_start;
3093 
3094 	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3095 
3096 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3097 	if (ret < 0)
3098 		goto out_unlock;
3099 	btrfs_release_path(path);
3100 
3101 	path->reada = READA_FORWARD;
3102 	ret = fiemap_search_slot(inode, path, range_start);
3103 	if (ret < 0) {
3104 		goto out_unlock;
3105 	} else if (ret > 0) {
3106 		/*
3107 		 * No file extent item found, but we may have delalloc between
3108 		 * the current offset and i_size. So check for that.
3109 		 */
3110 		ret = 0;
3111 		goto check_eof_delalloc;
3112 	}
3113 
3114 	while (prev_extent_end < range_end) {
3115 		struct extent_buffer *leaf = path->nodes[0];
3116 		struct btrfs_file_extent_item *ei;
3117 		struct btrfs_key key;
3118 		u64 extent_end;
3119 		u64 extent_len;
3120 		u64 extent_offset = 0;
3121 		u64 extent_gen;
3122 		u64 disk_bytenr = 0;
3123 		u64 flags = 0;
3124 		int extent_type;
3125 		u8 compression;
3126 
3127 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3128 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3129 			break;
3130 
3131 		extent_end = btrfs_file_extent_end(path);
3132 
3133 		/*
3134 		 * The first iteration can leave us at an extent item that ends
3135 		 * before our range's start. Move to the next item.
3136 		 */
3137 		if (extent_end <= range_start)
3138 			goto next_item;
3139 
3140 		backref_ctx->curr_leaf_bytenr = leaf->start;
3141 
3142 		/* We have in implicit hole (NO_HOLES feature enabled). */
3143 		if (prev_extent_end < key.offset) {
3144 			const u64 hole_end = min(key.offset, range_end) - 1;
3145 
3146 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3147 						  &delalloc_cached_state,
3148 						  backref_ctx, 0, 0, 0,
3149 						  prev_extent_end, hole_end);
3150 			if (ret < 0) {
3151 				goto out_unlock;
3152 			} else if (ret > 0) {
3153 				/* fiemap_fill_next_extent() told us to stop. */
3154 				stopped = true;
3155 				break;
3156 			}
3157 
3158 			/* We've reached the end of the fiemap range, stop. */
3159 			if (key.offset >= range_end) {
3160 				stopped = true;
3161 				break;
3162 			}
3163 		}
3164 
3165 		extent_len = extent_end - key.offset;
3166 		ei = btrfs_item_ptr(leaf, path->slots[0],
3167 				    struct btrfs_file_extent_item);
3168 		compression = btrfs_file_extent_compression(leaf, ei);
3169 		extent_type = btrfs_file_extent_type(leaf, ei);
3170 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3171 
3172 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3173 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3174 			if (compression == BTRFS_COMPRESS_NONE)
3175 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3176 		}
3177 
3178 		if (compression != BTRFS_COMPRESS_NONE)
3179 			flags |= FIEMAP_EXTENT_ENCODED;
3180 
3181 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3182 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3183 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3184 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3185 						 extent_len, flags);
3186 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3187 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3188 						  &delalloc_cached_state,
3189 						  backref_ctx,
3190 						  disk_bytenr, extent_offset,
3191 						  extent_gen, key.offset,
3192 						  extent_end - 1);
3193 		} else if (disk_bytenr == 0) {
3194 			/* We have an explicit hole. */
3195 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3196 						  &delalloc_cached_state,
3197 						  backref_ctx, 0, 0, 0,
3198 						  key.offset, extent_end - 1);
3199 		} else {
3200 			/* We have a regular extent. */
3201 			if (fieinfo->fi_extents_max) {
3202 				ret = btrfs_is_data_extent_shared(inode,
3203 								  disk_bytenr,
3204 								  extent_gen,
3205 								  backref_ctx);
3206 				if (ret < 0)
3207 					goto out_unlock;
3208 				else if (ret > 0)
3209 					flags |= FIEMAP_EXTENT_SHARED;
3210 			}
3211 
3212 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3213 						 disk_bytenr + extent_offset,
3214 						 extent_len, flags);
3215 		}
3216 
3217 		if (ret < 0) {
3218 			goto out_unlock;
3219 		} else if (ret > 0) {
3220 			/* emit_fiemap_extent() told us to stop. */
3221 			stopped = true;
3222 			break;
3223 		}
3224 
3225 		prev_extent_end = extent_end;
3226 next_item:
3227 		if (fatal_signal_pending(current)) {
3228 			ret = -EINTR;
3229 			goto out_unlock;
3230 		}
3231 
3232 		ret = fiemap_next_leaf_item(inode, path);
3233 		if (ret < 0) {
3234 			goto out_unlock;
3235 		} else if (ret > 0) {
3236 			/* No more file extent items for this inode. */
3237 			break;
3238 		}
3239 		cond_resched();
3240 	}
3241 
3242 check_eof_delalloc:
3243 	if (!stopped && prev_extent_end < range_end) {
3244 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3245 					  &delalloc_cached_state, backref_ctx,
3246 					  0, 0, 0, prev_extent_end, range_end - 1);
3247 		if (ret < 0)
3248 			goto out_unlock;
3249 		prev_extent_end = range_end;
3250 	}
3251 
3252 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3253 		const u64 i_size = i_size_read(&inode->vfs_inode);
3254 
3255 		if (prev_extent_end < i_size) {
3256 			u64 delalloc_start;
3257 			u64 delalloc_end;
3258 			bool delalloc;
3259 
3260 			delalloc = btrfs_find_delalloc_in_range(inode,
3261 								prev_extent_end,
3262 								i_size - 1,
3263 								&delalloc_cached_state,
3264 								&delalloc_start,
3265 								&delalloc_end);
3266 			if (!delalloc)
3267 				cache.flags |= FIEMAP_EXTENT_LAST;
3268 		} else {
3269 			cache.flags |= FIEMAP_EXTENT_LAST;
3270 		}
3271 	}
3272 
3273 out_unlock:
3274 	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3275 
3276 	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3277 		btrfs_release_path(path);
3278 		ret = flush_fiemap_cache(fieinfo, &cache);
3279 		if (ret)
3280 			goto out;
3281 		len -= cache.next_search_offset - start;
3282 		start = cache.next_search_offset;
3283 		goto restart;
3284 	} else if (ret < 0) {
3285 		goto out;
3286 	}
3287 
3288 	/*
3289 	 * Must free the path before emitting to the fiemap buffer because we
3290 	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3291 	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3292 	 * waiting for an ordered extent that in order to complete needs to
3293 	 * modify that leaf, therefore leading to a deadlock.
3294 	 */
3295 	btrfs_free_path(path);
3296 	path = NULL;
3297 
3298 	ret = flush_fiemap_cache(fieinfo, &cache);
3299 	if (ret)
3300 		goto out;
3301 
3302 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3303 out:
3304 	free_extent_state(delalloc_cached_state);
3305 	kfree(cache.entries);
3306 	btrfs_free_backref_share_ctx(backref_ctx);
3307 	btrfs_free_path(path);
3308 	return ret;
3309 }
3310 
3311 static void __free_extent_buffer(struct extent_buffer *eb)
3312 {
3313 	kmem_cache_free(extent_buffer_cache, eb);
3314 }
3315 
3316 static int extent_buffer_under_io(const struct extent_buffer *eb)
3317 {
3318 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3319 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3320 }
3321 
3322 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3323 {
3324 	struct btrfs_subpage *subpage;
3325 
3326 	lockdep_assert_held(&folio->mapping->i_private_lock);
3327 
3328 	if (folio_test_private(folio)) {
3329 		subpage = folio_get_private(folio);
3330 		if (atomic_read(&subpage->eb_refs))
3331 			return true;
3332 		/*
3333 		 * Even there is no eb refs here, we may still have
3334 		 * end_page_read() call relying on page::private.
3335 		 */
3336 		if (atomic_read(&subpage->readers))
3337 			return true;
3338 	}
3339 	return false;
3340 }
3341 
3342 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3343 {
3344 	struct btrfs_fs_info *fs_info = eb->fs_info;
3345 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3346 
3347 	/*
3348 	 * For mapped eb, we're going to change the folio private, which should
3349 	 * be done under the i_private_lock.
3350 	 */
3351 	if (mapped)
3352 		spin_lock(&folio->mapping->i_private_lock);
3353 
3354 	if (!folio_test_private(folio)) {
3355 		if (mapped)
3356 			spin_unlock(&folio->mapping->i_private_lock);
3357 		return;
3358 	}
3359 
3360 	if (fs_info->nodesize >= PAGE_SIZE) {
3361 		/*
3362 		 * We do this since we'll remove the pages after we've
3363 		 * removed the eb from the radix tree, so we could race
3364 		 * and have this page now attached to the new eb.  So
3365 		 * only clear folio if it's still connected to
3366 		 * this eb.
3367 		 */
3368 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3369 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3370 			BUG_ON(folio_test_dirty(folio));
3371 			BUG_ON(folio_test_writeback(folio));
3372 			/* We need to make sure we haven't be attached to a new eb. */
3373 			folio_detach_private(folio);
3374 		}
3375 		if (mapped)
3376 			spin_unlock(&folio->mapping->i_private_lock);
3377 		return;
3378 	}
3379 
3380 	/*
3381 	 * For subpage, we can have dummy eb with folio private attached.  In
3382 	 * this case, we can directly detach the private as such folio is only
3383 	 * attached to one dummy eb, no sharing.
3384 	 */
3385 	if (!mapped) {
3386 		btrfs_detach_subpage(fs_info, folio);
3387 		return;
3388 	}
3389 
3390 	btrfs_folio_dec_eb_refs(fs_info, folio);
3391 
3392 	/*
3393 	 * We can only detach the folio private if there are no other ebs in the
3394 	 * page range and no unfinished IO.
3395 	 */
3396 	if (!folio_range_has_eb(fs_info, folio))
3397 		btrfs_detach_subpage(fs_info, folio);
3398 
3399 	spin_unlock(&folio->mapping->i_private_lock);
3400 }
3401 
3402 /* Release all pages attached to the extent buffer */
3403 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3404 {
3405 	ASSERT(!extent_buffer_under_io(eb));
3406 
3407 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3408 		struct folio *folio = eb->folios[i];
3409 
3410 		if (!folio)
3411 			continue;
3412 
3413 		detach_extent_buffer_folio(eb, folio);
3414 
3415 		/* One for when we allocated the folio. */
3416 		folio_put(folio);
3417 	}
3418 }
3419 
3420 /*
3421  * Helper for releasing the extent buffer.
3422  */
3423 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3424 {
3425 	btrfs_release_extent_buffer_pages(eb);
3426 	btrfs_leak_debug_del_eb(eb);
3427 	__free_extent_buffer(eb);
3428 }
3429 
3430 static struct extent_buffer *
3431 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3432 		      unsigned long len)
3433 {
3434 	struct extent_buffer *eb = NULL;
3435 
3436 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3437 	eb->start = start;
3438 	eb->len = len;
3439 	eb->fs_info = fs_info;
3440 	init_rwsem(&eb->lock);
3441 
3442 	btrfs_leak_debug_add_eb(eb);
3443 
3444 	spin_lock_init(&eb->refs_lock);
3445 	atomic_set(&eb->refs, 1);
3446 
3447 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3448 
3449 	return eb;
3450 }
3451 
3452 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3453 {
3454 	struct extent_buffer *new;
3455 	int num_folios = num_extent_folios(src);
3456 	int ret;
3457 
3458 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3459 	if (new == NULL)
3460 		return NULL;
3461 
3462 	/*
3463 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3464 	 * btrfs_release_extent_buffer() have different behavior for
3465 	 * UNMAPPED subpage extent buffer.
3466 	 */
3467 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3468 
3469 	ret = alloc_eb_folio_array(new, 0);
3470 	if (ret) {
3471 		btrfs_release_extent_buffer(new);
3472 		return NULL;
3473 	}
3474 
3475 	for (int i = 0; i < num_folios; i++) {
3476 		struct folio *folio = new->folios[i];
3477 		int ret;
3478 
3479 		ret = attach_extent_buffer_folio(new, folio, NULL);
3480 		if (ret < 0) {
3481 			btrfs_release_extent_buffer(new);
3482 			return NULL;
3483 		}
3484 		WARN_ON(folio_test_dirty(folio));
3485 	}
3486 	copy_extent_buffer_full(new, src);
3487 	set_extent_buffer_uptodate(new);
3488 
3489 	return new;
3490 }
3491 
3492 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3493 						  u64 start, unsigned long len)
3494 {
3495 	struct extent_buffer *eb;
3496 	int num_folios = 0;
3497 	int ret;
3498 
3499 	eb = __alloc_extent_buffer(fs_info, start, len);
3500 	if (!eb)
3501 		return NULL;
3502 
3503 	ret = alloc_eb_folio_array(eb, 0);
3504 	if (ret)
3505 		goto err;
3506 
3507 	num_folios = num_extent_folios(eb);
3508 	for (int i = 0; i < num_folios; i++) {
3509 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3510 		if (ret < 0)
3511 			goto err;
3512 	}
3513 
3514 	set_extent_buffer_uptodate(eb);
3515 	btrfs_set_header_nritems(eb, 0);
3516 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3517 
3518 	return eb;
3519 err:
3520 	for (int i = 0; i < num_folios; i++) {
3521 		if (eb->folios[i]) {
3522 			detach_extent_buffer_folio(eb, eb->folios[i]);
3523 			__folio_put(eb->folios[i]);
3524 		}
3525 	}
3526 	__free_extent_buffer(eb);
3527 	return NULL;
3528 }
3529 
3530 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3531 						u64 start)
3532 {
3533 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3534 }
3535 
3536 static void check_buffer_tree_ref(struct extent_buffer *eb)
3537 {
3538 	int refs;
3539 	/*
3540 	 * The TREE_REF bit is first set when the extent_buffer is added
3541 	 * to the radix tree. It is also reset, if unset, when a new reference
3542 	 * is created by find_extent_buffer.
3543 	 *
3544 	 * It is only cleared in two cases: freeing the last non-tree
3545 	 * reference to the extent_buffer when its STALE bit is set or
3546 	 * calling release_folio when the tree reference is the only reference.
3547 	 *
3548 	 * In both cases, care is taken to ensure that the extent_buffer's
3549 	 * pages are not under io. However, release_folio can be concurrently
3550 	 * called with creating new references, which is prone to race
3551 	 * conditions between the calls to check_buffer_tree_ref in those
3552 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3553 	 *
3554 	 * The actual lifetime of the extent_buffer in the radix tree is
3555 	 * adequately protected by the refcount, but the TREE_REF bit and
3556 	 * its corresponding reference are not. To protect against this
3557 	 * class of races, we call check_buffer_tree_ref from the codepaths
3558 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3559 	 * longer be cleared, so that is the moment at which any such race is
3560 	 * best fixed.
3561 	 */
3562 	refs = atomic_read(&eb->refs);
3563 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3564 		return;
3565 
3566 	spin_lock(&eb->refs_lock);
3567 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3568 		atomic_inc(&eb->refs);
3569 	spin_unlock(&eb->refs_lock);
3570 }
3571 
3572 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3573 {
3574 	int num_folios= num_extent_folios(eb);
3575 
3576 	check_buffer_tree_ref(eb);
3577 
3578 	for (int i = 0; i < num_folios; i++)
3579 		folio_mark_accessed(eb->folios[i]);
3580 }
3581 
3582 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3583 					 u64 start)
3584 {
3585 	struct extent_buffer *eb;
3586 
3587 	eb = find_extent_buffer_nolock(fs_info, start);
3588 	if (!eb)
3589 		return NULL;
3590 	/*
3591 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3592 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3593 	 * another task running free_extent_buffer() might have seen that flag
3594 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3595 	 * writeback flags not set) and it's still in the tree (flag
3596 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3597 	 * decrementing the extent buffer's reference count twice.  So here we
3598 	 * could race and increment the eb's reference count, clear its stale
3599 	 * flag, mark it as dirty and drop our reference before the other task
3600 	 * finishes executing free_extent_buffer, which would later result in
3601 	 * an attempt to free an extent buffer that is dirty.
3602 	 */
3603 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3604 		spin_lock(&eb->refs_lock);
3605 		spin_unlock(&eb->refs_lock);
3606 	}
3607 	mark_extent_buffer_accessed(eb);
3608 	return eb;
3609 }
3610 
3611 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3612 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3613 					u64 start)
3614 {
3615 	struct extent_buffer *eb, *exists = NULL;
3616 	int ret;
3617 
3618 	eb = find_extent_buffer(fs_info, start);
3619 	if (eb)
3620 		return eb;
3621 	eb = alloc_dummy_extent_buffer(fs_info, start);
3622 	if (!eb)
3623 		return ERR_PTR(-ENOMEM);
3624 	eb->fs_info = fs_info;
3625 again:
3626 	ret = radix_tree_preload(GFP_NOFS);
3627 	if (ret) {
3628 		exists = ERR_PTR(ret);
3629 		goto free_eb;
3630 	}
3631 	spin_lock(&fs_info->buffer_lock);
3632 	ret = radix_tree_insert(&fs_info->buffer_radix,
3633 				start >> fs_info->sectorsize_bits, eb);
3634 	spin_unlock(&fs_info->buffer_lock);
3635 	radix_tree_preload_end();
3636 	if (ret == -EEXIST) {
3637 		exists = find_extent_buffer(fs_info, start);
3638 		if (exists)
3639 			goto free_eb;
3640 		else
3641 			goto again;
3642 	}
3643 	check_buffer_tree_ref(eb);
3644 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3645 
3646 	return eb;
3647 free_eb:
3648 	btrfs_release_extent_buffer(eb);
3649 	return exists;
3650 }
3651 #endif
3652 
3653 static struct extent_buffer *grab_extent_buffer(
3654 		struct btrfs_fs_info *fs_info, struct page *page)
3655 {
3656 	struct folio *folio = page_folio(page);
3657 	struct extent_buffer *exists;
3658 
3659 	/*
3660 	 * For subpage case, we completely rely on radix tree to ensure we
3661 	 * don't try to insert two ebs for the same bytenr.  So here we always
3662 	 * return NULL and just continue.
3663 	 */
3664 	if (fs_info->nodesize < PAGE_SIZE)
3665 		return NULL;
3666 
3667 	/* Page not yet attached to an extent buffer */
3668 	if (!folio_test_private(folio))
3669 		return NULL;
3670 
3671 	/*
3672 	 * We could have already allocated an eb for this page and attached one
3673 	 * so lets see if we can get a ref on the existing eb, and if we can we
3674 	 * know it's good and we can just return that one, else we know we can
3675 	 * just overwrite folio private.
3676 	 */
3677 	exists = folio_get_private(folio);
3678 	if (atomic_inc_not_zero(&exists->refs))
3679 		return exists;
3680 
3681 	WARN_ON(PageDirty(page));
3682 	folio_detach_private(folio);
3683 	return NULL;
3684 }
3685 
3686 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3687 {
3688 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3689 		btrfs_err(fs_info, "bad tree block start %llu", start);
3690 		return -EINVAL;
3691 	}
3692 
3693 	if (fs_info->nodesize < PAGE_SIZE &&
3694 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3695 		btrfs_err(fs_info,
3696 		"tree block crosses page boundary, start %llu nodesize %u",
3697 			  start, fs_info->nodesize);
3698 		return -EINVAL;
3699 	}
3700 	if (fs_info->nodesize >= PAGE_SIZE &&
3701 	    !PAGE_ALIGNED(start)) {
3702 		btrfs_err(fs_info,
3703 		"tree block is not page aligned, start %llu nodesize %u",
3704 			  start, fs_info->nodesize);
3705 		return -EINVAL;
3706 	}
3707 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3708 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3709 		btrfs_warn(fs_info,
3710 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3711 			      start, fs_info->nodesize);
3712 	}
3713 	return 0;
3714 }
3715 
3716 
3717 /*
3718  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3719  * Return >0 if there is already another extent buffer for the range,
3720  * and @found_eb_ret would be updated.
3721  * Return -EAGAIN if the filemap has an existing folio but with different size
3722  * than @eb.
3723  * The caller needs to free the existing folios and retry using the same order.
3724  */
3725 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3726 				      struct extent_buffer **found_eb_ret)
3727 {
3728 
3729 	struct btrfs_fs_info *fs_info = eb->fs_info;
3730 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3731 	const unsigned long index = eb->start >> PAGE_SHIFT;
3732 	struct folio *existing_folio;
3733 	int ret;
3734 
3735 	ASSERT(found_eb_ret);
3736 
3737 	/* Caller should ensure the folio exists. */
3738 	ASSERT(eb->folios[i]);
3739 
3740 retry:
3741 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3742 				GFP_NOFS | __GFP_NOFAIL);
3743 	if (!ret)
3744 		return 0;
3745 
3746 	existing_folio = filemap_lock_folio(mapping, index + i);
3747 	/* The page cache only exists for a very short time, just retry. */
3748 	if (IS_ERR(existing_folio))
3749 		goto retry;
3750 
3751 	/* For now, we should only have single-page folios for btree inode. */
3752 	ASSERT(folio_nr_pages(existing_folio) == 1);
3753 
3754 	if (folio_size(existing_folio) != eb->folio_size) {
3755 		folio_unlock(existing_folio);
3756 		folio_put(existing_folio);
3757 		return -EAGAIN;
3758 	}
3759 
3760 	if (fs_info->nodesize < PAGE_SIZE) {
3761 		/*
3762 		 * We're going to reuse the existing page, can drop our page
3763 		 * and subpage structure now.
3764 		 */
3765 		__free_page(folio_page(eb->folios[i], 0));
3766 		eb->folios[i] = existing_folio;
3767 	} else {
3768 		struct extent_buffer *existing_eb;
3769 
3770 		existing_eb = grab_extent_buffer(fs_info,
3771 						 folio_page(existing_folio, 0));
3772 		if (existing_eb) {
3773 			/* The extent buffer still exists, we can use it directly. */
3774 			*found_eb_ret = existing_eb;
3775 			folio_unlock(existing_folio);
3776 			folio_put(existing_folio);
3777 			return 1;
3778 		}
3779 		/* The extent buffer no longer exists, we can reuse the folio. */
3780 		__free_page(folio_page(eb->folios[i], 0));
3781 		eb->folios[i] = existing_folio;
3782 	}
3783 	return 0;
3784 }
3785 
3786 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3787 					  u64 start, u64 owner_root, int level)
3788 {
3789 	unsigned long len = fs_info->nodesize;
3790 	int num_folios;
3791 	int attached = 0;
3792 	struct extent_buffer *eb;
3793 	struct extent_buffer *existing_eb = NULL;
3794 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3795 	struct btrfs_subpage *prealloc = NULL;
3796 	u64 lockdep_owner = owner_root;
3797 	bool page_contig = true;
3798 	int uptodate = 1;
3799 	int ret;
3800 
3801 	if (check_eb_alignment(fs_info, start))
3802 		return ERR_PTR(-EINVAL);
3803 
3804 #if BITS_PER_LONG == 32
3805 	if (start >= MAX_LFS_FILESIZE) {
3806 		btrfs_err_rl(fs_info,
3807 		"extent buffer %llu is beyond 32bit page cache limit", start);
3808 		btrfs_err_32bit_limit(fs_info);
3809 		return ERR_PTR(-EOVERFLOW);
3810 	}
3811 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3812 		btrfs_warn_32bit_limit(fs_info);
3813 #endif
3814 
3815 	eb = find_extent_buffer(fs_info, start);
3816 	if (eb)
3817 		return eb;
3818 
3819 	eb = __alloc_extent_buffer(fs_info, start, len);
3820 	if (!eb)
3821 		return ERR_PTR(-ENOMEM);
3822 
3823 	/*
3824 	 * The reloc trees are just snapshots, so we need them to appear to be
3825 	 * just like any other fs tree WRT lockdep.
3826 	 */
3827 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3828 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3829 
3830 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3831 
3832 	/*
3833 	 * Preallocate folio private for subpage case, so that we won't
3834 	 * allocate memory with i_private_lock nor page lock hold.
3835 	 *
3836 	 * The memory will be freed by attach_extent_buffer_page() or freed
3837 	 * manually if we exit earlier.
3838 	 */
3839 	if (fs_info->nodesize < PAGE_SIZE) {
3840 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3841 		if (IS_ERR(prealloc)) {
3842 			ret = PTR_ERR(prealloc);
3843 			goto out;
3844 		}
3845 	}
3846 
3847 reallocate:
3848 	/* Allocate all pages first. */
3849 	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3850 	if (ret < 0) {
3851 		btrfs_free_subpage(prealloc);
3852 		goto out;
3853 	}
3854 
3855 	num_folios = num_extent_folios(eb);
3856 	/* Attach all pages to the filemap. */
3857 	for (int i = 0; i < num_folios; i++) {
3858 		struct folio *folio;
3859 
3860 		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3861 		if (ret > 0) {
3862 			ASSERT(existing_eb);
3863 			goto out;
3864 		}
3865 
3866 		/*
3867 		 * TODO: Special handling for a corner case where the order of
3868 		 * folios mismatch between the new eb and filemap.
3869 		 *
3870 		 * This happens when:
3871 		 *
3872 		 * - the new eb is using higher order folio
3873 		 *
3874 		 * - the filemap is still using 0-order folios for the range
3875 		 *   This can happen at the previous eb allocation, and we don't
3876 		 *   have higher order folio for the call.
3877 		 *
3878 		 * - the existing eb has already been freed
3879 		 *
3880 		 * In this case, we have to free the existing folios first, and
3881 		 * re-allocate using the same order.
3882 		 * Thankfully this is not going to happen yet, as we're still
3883 		 * using 0-order folios.
3884 		 */
3885 		if (unlikely(ret == -EAGAIN)) {
3886 			ASSERT(0);
3887 			goto reallocate;
3888 		}
3889 		attached++;
3890 
3891 		/*
3892 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3893 		 * reliable, as we may choose to reuse the existing page cache
3894 		 * and free the allocated page.
3895 		 */
3896 		folio = eb->folios[i];
3897 		eb->folio_size = folio_size(folio);
3898 		eb->folio_shift = folio_shift(folio);
3899 		spin_lock(&mapping->i_private_lock);
3900 		/* Should not fail, as we have preallocated the memory */
3901 		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3902 		ASSERT(!ret);
3903 		/*
3904 		 * To inform we have extra eb under allocation, so that
3905 		 * detach_extent_buffer_page() won't release the folio private
3906 		 * when the eb hasn't yet been inserted into radix tree.
3907 		 *
3908 		 * The ref will be decreased when the eb released the page, in
3909 		 * detach_extent_buffer_page().
3910 		 * Thus needs no special handling in error path.
3911 		 */
3912 		btrfs_folio_inc_eb_refs(fs_info, folio);
3913 		spin_unlock(&mapping->i_private_lock);
3914 
3915 		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3916 
3917 		/*
3918 		 * Check if the current page is physically contiguous with previous eb
3919 		 * page.
3920 		 * At this stage, either we allocated a large folio, thus @i
3921 		 * would only be 0, or we fall back to per-page allocation.
3922 		 */
3923 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3924 			page_contig = false;
3925 
3926 		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3927 			uptodate = 0;
3928 
3929 		/*
3930 		 * We can't unlock the pages just yet since the extent buffer
3931 		 * hasn't been properly inserted in the radix tree, this
3932 		 * opens a race with btree_release_folio which can free a page
3933 		 * while we are still filling in all pages for the buffer and
3934 		 * we could crash.
3935 		 */
3936 	}
3937 	if (uptodate)
3938 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3939 	/* All pages are physically contiguous, can skip cross page handling. */
3940 	if (page_contig)
3941 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3942 again:
3943 	ret = radix_tree_preload(GFP_NOFS);
3944 	if (ret)
3945 		goto out;
3946 
3947 	spin_lock(&fs_info->buffer_lock);
3948 	ret = radix_tree_insert(&fs_info->buffer_radix,
3949 				start >> fs_info->sectorsize_bits, eb);
3950 	spin_unlock(&fs_info->buffer_lock);
3951 	radix_tree_preload_end();
3952 	if (ret == -EEXIST) {
3953 		ret = 0;
3954 		existing_eb = find_extent_buffer(fs_info, start);
3955 		if (existing_eb)
3956 			goto out;
3957 		else
3958 			goto again;
3959 	}
3960 	/* add one reference for the tree */
3961 	check_buffer_tree_ref(eb);
3962 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3963 
3964 	/*
3965 	 * Now it's safe to unlock the pages because any calls to
3966 	 * btree_release_folio will correctly detect that a page belongs to a
3967 	 * live buffer and won't free them prematurely.
3968 	 */
3969 	for (int i = 0; i < num_folios; i++)
3970 		unlock_page(folio_page(eb->folios[i], 0));
3971 	return eb;
3972 
3973 out:
3974 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3975 
3976 	/*
3977 	 * Any attached folios need to be detached before we unlock them.  This
3978 	 * is because when we're inserting our new folios into the mapping, and
3979 	 * then attaching our eb to that folio.  If we fail to insert our folio
3980 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3981 	 * want that to grab this eb, as we're getting ready to free it.  So we
3982 	 * have to detach it first and then unlock it.
3983 	 *
3984 	 * We have to drop our reference and NULL it out here because in the
3985 	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3986 	 * Below when we call btrfs_release_extent_buffer() we will call
3987 	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3988 	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3989 	 * double put our reference and be super sad.
3990 	 */
3991 	for (int i = 0; i < attached; i++) {
3992 		ASSERT(eb->folios[i]);
3993 		detach_extent_buffer_folio(eb, eb->folios[i]);
3994 		unlock_page(folio_page(eb->folios[i], 0));
3995 		folio_put(eb->folios[i]);
3996 		eb->folios[i] = NULL;
3997 	}
3998 	/*
3999 	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4000 	 * so it can be cleaned up without utlizing page->mapping.
4001 	 */
4002 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4003 
4004 	btrfs_release_extent_buffer(eb);
4005 	if (ret < 0)
4006 		return ERR_PTR(ret);
4007 	ASSERT(existing_eb);
4008 	return existing_eb;
4009 }
4010 
4011 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4012 {
4013 	struct extent_buffer *eb =
4014 			container_of(head, struct extent_buffer, rcu_head);
4015 
4016 	__free_extent_buffer(eb);
4017 }
4018 
4019 static int release_extent_buffer(struct extent_buffer *eb)
4020 	__releases(&eb->refs_lock)
4021 {
4022 	lockdep_assert_held(&eb->refs_lock);
4023 
4024 	WARN_ON(atomic_read(&eb->refs) == 0);
4025 	if (atomic_dec_and_test(&eb->refs)) {
4026 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4027 			struct btrfs_fs_info *fs_info = eb->fs_info;
4028 
4029 			spin_unlock(&eb->refs_lock);
4030 
4031 			spin_lock(&fs_info->buffer_lock);
4032 			radix_tree_delete(&fs_info->buffer_radix,
4033 					  eb->start >> fs_info->sectorsize_bits);
4034 			spin_unlock(&fs_info->buffer_lock);
4035 		} else {
4036 			spin_unlock(&eb->refs_lock);
4037 		}
4038 
4039 		btrfs_leak_debug_del_eb(eb);
4040 		/* Should be safe to release our pages at this point */
4041 		btrfs_release_extent_buffer_pages(eb);
4042 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4043 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4044 			__free_extent_buffer(eb);
4045 			return 1;
4046 		}
4047 #endif
4048 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4049 		return 1;
4050 	}
4051 	spin_unlock(&eb->refs_lock);
4052 
4053 	return 0;
4054 }
4055 
4056 void free_extent_buffer(struct extent_buffer *eb)
4057 {
4058 	int refs;
4059 	if (!eb)
4060 		return;
4061 
4062 	refs = atomic_read(&eb->refs);
4063 	while (1) {
4064 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4065 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4066 			refs == 1))
4067 			break;
4068 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4069 			return;
4070 	}
4071 
4072 	spin_lock(&eb->refs_lock);
4073 	if (atomic_read(&eb->refs) == 2 &&
4074 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4075 	    !extent_buffer_under_io(eb) &&
4076 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4077 		atomic_dec(&eb->refs);
4078 
4079 	/*
4080 	 * I know this is terrible, but it's temporary until we stop tracking
4081 	 * the uptodate bits and such for the extent buffers.
4082 	 */
4083 	release_extent_buffer(eb);
4084 }
4085 
4086 void free_extent_buffer_stale(struct extent_buffer *eb)
4087 {
4088 	if (!eb)
4089 		return;
4090 
4091 	spin_lock(&eb->refs_lock);
4092 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4093 
4094 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4095 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4096 		atomic_dec(&eb->refs);
4097 	release_extent_buffer(eb);
4098 }
4099 
4100 static void btree_clear_folio_dirty(struct folio *folio)
4101 {
4102 	ASSERT(folio_test_dirty(folio));
4103 	ASSERT(folio_test_locked(folio));
4104 	folio_clear_dirty_for_io(folio);
4105 	xa_lock_irq(&folio->mapping->i_pages);
4106 	if (!folio_test_dirty(folio))
4107 		__xa_clear_mark(&folio->mapping->i_pages,
4108 				folio_index(folio), PAGECACHE_TAG_DIRTY);
4109 	xa_unlock_irq(&folio->mapping->i_pages);
4110 }
4111 
4112 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4113 {
4114 	struct btrfs_fs_info *fs_info = eb->fs_info;
4115 	struct folio *folio = eb->folios[0];
4116 	bool last;
4117 
4118 	/* btree_clear_folio_dirty() needs page locked. */
4119 	folio_lock(folio);
4120 	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4121 	if (last)
4122 		btree_clear_folio_dirty(folio);
4123 	folio_unlock(folio);
4124 	WARN_ON(atomic_read(&eb->refs) == 0);
4125 }
4126 
4127 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4128 			      struct extent_buffer *eb)
4129 {
4130 	struct btrfs_fs_info *fs_info = eb->fs_info;
4131 	int num_folios;
4132 
4133 	btrfs_assert_tree_write_locked(eb);
4134 
4135 	if (trans && btrfs_header_generation(eb) != trans->transid)
4136 		return;
4137 
4138 	/*
4139 	 * Instead of clearing the dirty flag off of the buffer, mark it as
4140 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4141 	 * write-ordering in zoned mode, without the need to later re-dirty
4142 	 * the extent_buffer.
4143 	 *
4144 	 * The actual zeroout of the buffer will happen later in
4145 	 * btree_csum_one_bio.
4146 	 */
4147 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4148 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4149 		return;
4150 	}
4151 
4152 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4153 		return;
4154 
4155 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4156 				 fs_info->dirty_metadata_batch);
4157 
4158 	if (eb->fs_info->nodesize < PAGE_SIZE)
4159 		return clear_subpage_extent_buffer_dirty(eb);
4160 
4161 	num_folios = num_extent_folios(eb);
4162 	for (int i = 0; i < num_folios; i++) {
4163 		struct folio *folio = eb->folios[i];
4164 
4165 		if (!folio_test_dirty(folio))
4166 			continue;
4167 		folio_lock(folio);
4168 		btree_clear_folio_dirty(folio);
4169 		folio_unlock(folio);
4170 	}
4171 	WARN_ON(atomic_read(&eb->refs) == 0);
4172 }
4173 
4174 void set_extent_buffer_dirty(struct extent_buffer *eb)
4175 {
4176 	int num_folios;
4177 	bool was_dirty;
4178 
4179 	check_buffer_tree_ref(eb);
4180 
4181 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4182 
4183 	num_folios = num_extent_folios(eb);
4184 	WARN_ON(atomic_read(&eb->refs) == 0);
4185 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4186 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
4187 
4188 	if (!was_dirty) {
4189 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4190 
4191 		/*
4192 		 * For subpage case, we can have other extent buffers in the
4193 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4194 		 * have to clear page dirty without subpage lock held.
4195 		 * This can cause race where our page gets dirty cleared after
4196 		 * we just set it.
4197 		 *
4198 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4199 		 * its page for other reasons, we can use page lock to prevent
4200 		 * the above race.
4201 		 */
4202 		if (subpage)
4203 			lock_page(folio_page(eb->folios[0], 0));
4204 		for (int i = 0; i < num_folios; i++)
4205 			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4206 					      eb->start, eb->len);
4207 		if (subpage)
4208 			unlock_page(folio_page(eb->folios[0], 0));
4209 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4210 					 eb->len,
4211 					 eb->fs_info->dirty_metadata_batch);
4212 	}
4213 #ifdef CONFIG_BTRFS_DEBUG
4214 	for (int i = 0; i < num_folios; i++)
4215 		ASSERT(folio_test_dirty(eb->folios[i]));
4216 #endif
4217 }
4218 
4219 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4220 {
4221 	struct btrfs_fs_info *fs_info = eb->fs_info;
4222 	int num_folios = num_extent_folios(eb);
4223 
4224 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4225 	for (int i = 0; i < num_folios; i++) {
4226 		struct folio *folio = eb->folios[i];
4227 
4228 		if (!folio)
4229 			continue;
4230 
4231 		/*
4232 		 * This is special handling for metadata subpage, as regular
4233 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4234 		 */
4235 		if (fs_info->nodesize >= PAGE_SIZE)
4236 			folio_clear_uptodate(folio);
4237 		else
4238 			btrfs_subpage_clear_uptodate(fs_info, folio,
4239 						     eb->start, eb->len);
4240 	}
4241 }
4242 
4243 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4244 {
4245 	struct btrfs_fs_info *fs_info = eb->fs_info;
4246 	int num_folios = num_extent_folios(eb);
4247 
4248 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4249 	for (int i = 0; i < num_folios; i++) {
4250 		struct folio *folio = eb->folios[i];
4251 
4252 		/*
4253 		 * This is special handling for metadata subpage, as regular
4254 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4255 		 */
4256 		if (fs_info->nodesize >= PAGE_SIZE)
4257 			folio_mark_uptodate(folio);
4258 		else
4259 			btrfs_subpage_set_uptodate(fs_info, folio,
4260 						   eb->start, eb->len);
4261 	}
4262 }
4263 
4264 static void end_bbio_meta_read(struct btrfs_bio *bbio)
4265 {
4266 	struct extent_buffer *eb = bbio->private;
4267 	struct btrfs_fs_info *fs_info = eb->fs_info;
4268 	bool uptodate = !bbio->bio.bi_status;
4269 	struct folio_iter fi;
4270 	u32 bio_offset = 0;
4271 
4272 	eb->read_mirror = bbio->mirror_num;
4273 
4274 	if (uptodate &&
4275 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4276 		uptodate = false;
4277 
4278 	if (uptodate) {
4279 		set_extent_buffer_uptodate(eb);
4280 	} else {
4281 		clear_extent_buffer_uptodate(eb);
4282 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4283 	}
4284 
4285 	bio_for_each_folio_all(fi, &bbio->bio) {
4286 		struct folio *folio = fi.folio;
4287 		u64 start = eb->start + bio_offset;
4288 		u32 len = fi.length;
4289 
4290 		if (uptodate)
4291 			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4292 		else
4293 			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4294 
4295 		bio_offset += len;
4296 	}
4297 
4298 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4299 	smp_mb__after_atomic();
4300 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4301 	free_extent_buffer(eb);
4302 
4303 	bio_put(&bbio->bio);
4304 }
4305 
4306 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4307 			     struct btrfs_tree_parent_check *check)
4308 {
4309 	struct btrfs_bio *bbio;
4310 	bool ret;
4311 
4312 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4313 		return 0;
4314 
4315 	/*
4316 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4317 	 * operation, which could potentially still be in flight.  In this case
4318 	 * we simply want to return an error.
4319 	 */
4320 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4321 		return -EIO;
4322 
4323 	/* Someone else is already reading the buffer, just wait for it. */
4324 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4325 		goto done;
4326 
4327 	/*
4328 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4329 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4330 	 * started and finished reading the same eb.  In this case, UPTODATE
4331 	 * will now be set, and we shouldn't read it in again.
4332 	 */
4333 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4334 		clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4335 		smp_mb__after_atomic();
4336 		wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4337 		return 0;
4338 	}
4339 
4340 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4341 	eb->read_mirror = 0;
4342 	check_buffer_tree_ref(eb);
4343 	atomic_inc(&eb->refs);
4344 
4345 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4346 			       REQ_OP_READ | REQ_META, eb->fs_info,
4347 			       end_bbio_meta_read, eb);
4348 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4349 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4350 	bbio->file_offset = eb->start;
4351 	memcpy(&bbio->parent_check, check, sizeof(*check));
4352 	if (eb->fs_info->nodesize < PAGE_SIZE) {
4353 		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4354 				    eb->start - folio_pos(eb->folios[0]));
4355 		ASSERT(ret);
4356 	} else {
4357 		int num_folios = num_extent_folios(eb);
4358 
4359 		for (int i = 0; i < num_folios; i++) {
4360 			struct folio *folio = eb->folios[i];
4361 
4362 			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4363 			ASSERT(ret);
4364 		}
4365 	}
4366 	btrfs_submit_bio(bbio, mirror_num);
4367 
4368 done:
4369 	if (wait == WAIT_COMPLETE) {
4370 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4371 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4372 			return -EIO;
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4379 			    unsigned long len)
4380 {
4381 	btrfs_warn(eb->fs_info,
4382 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
4383 		eb->start, eb->len, start, len);
4384 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4385 
4386 	return true;
4387 }
4388 
4389 /*
4390  * Check if the [start, start + len) range is valid before reading/writing
4391  * the eb.
4392  * NOTE: @start and @len are offset inside the eb, not logical address.
4393  *
4394  * Caller should not touch the dst/src memory if this function returns error.
4395  */
4396 static inline int check_eb_range(const struct extent_buffer *eb,
4397 				 unsigned long start, unsigned long len)
4398 {
4399 	unsigned long offset;
4400 
4401 	/* start, start + len should not go beyond eb->len nor overflow */
4402 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4403 		return report_eb_range(eb, start, len);
4404 
4405 	return false;
4406 }
4407 
4408 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4409 			unsigned long start, unsigned long len)
4410 {
4411 	const int unit_size = eb->folio_size;
4412 	size_t cur;
4413 	size_t offset;
4414 	char *dst = (char *)dstv;
4415 	unsigned long i = get_eb_folio_index(eb, start);
4416 
4417 	if (check_eb_range(eb, start, len)) {
4418 		/*
4419 		 * Invalid range hit, reset the memory, so callers won't get
4420 		 * some random garbage for their uninitialized memory.
4421 		 */
4422 		memset(dstv, 0, len);
4423 		return;
4424 	}
4425 
4426 	if (eb->addr) {
4427 		memcpy(dstv, eb->addr + start, len);
4428 		return;
4429 	}
4430 
4431 	offset = get_eb_offset_in_folio(eb, start);
4432 
4433 	while (len > 0) {
4434 		char *kaddr;
4435 
4436 		cur = min(len, unit_size - offset);
4437 		kaddr = folio_address(eb->folios[i]);
4438 		memcpy(dst, kaddr + offset, cur);
4439 
4440 		dst += cur;
4441 		len -= cur;
4442 		offset = 0;
4443 		i++;
4444 	}
4445 }
4446 
4447 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4448 				       void __user *dstv,
4449 				       unsigned long start, unsigned long len)
4450 {
4451 	const int unit_size = eb->folio_size;
4452 	size_t cur;
4453 	size_t offset;
4454 	char __user *dst = (char __user *)dstv;
4455 	unsigned long i = get_eb_folio_index(eb, start);
4456 	int ret = 0;
4457 
4458 	WARN_ON(start > eb->len);
4459 	WARN_ON(start + len > eb->start + eb->len);
4460 
4461 	if (eb->addr) {
4462 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4463 			ret = -EFAULT;
4464 		return ret;
4465 	}
4466 
4467 	offset = get_eb_offset_in_folio(eb, start);
4468 
4469 	while (len > 0) {
4470 		char *kaddr;
4471 
4472 		cur = min(len, unit_size - offset);
4473 		kaddr = folio_address(eb->folios[i]);
4474 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4475 			ret = -EFAULT;
4476 			break;
4477 		}
4478 
4479 		dst += cur;
4480 		len -= cur;
4481 		offset = 0;
4482 		i++;
4483 	}
4484 
4485 	return ret;
4486 }
4487 
4488 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4489 			 unsigned long start, unsigned long len)
4490 {
4491 	const int unit_size = eb->folio_size;
4492 	size_t cur;
4493 	size_t offset;
4494 	char *kaddr;
4495 	char *ptr = (char *)ptrv;
4496 	unsigned long i = get_eb_folio_index(eb, start);
4497 	int ret = 0;
4498 
4499 	if (check_eb_range(eb, start, len))
4500 		return -EINVAL;
4501 
4502 	if (eb->addr)
4503 		return memcmp(ptrv, eb->addr + start, len);
4504 
4505 	offset = get_eb_offset_in_folio(eb, start);
4506 
4507 	while (len > 0) {
4508 		cur = min(len, unit_size - offset);
4509 		kaddr = folio_address(eb->folios[i]);
4510 		ret = memcmp(ptr, kaddr + offset, cur);
4511 		if (ret)
4512 			break;
4513 
4514 		ptr += cur;
4515 		len -= cur;
4516 		offset = 0;
4517 		i++;
4518 	}
4519 	return ret;
4520 }
4521 
4522 /*
4523  * Check that the extent buffer is uptodate.
4524  *
4525  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4526  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4527  */
4528 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4529 {
4530 	struct btrfs_fs_info *fs_info = eb->fs_info;
4531 	struct folio *folio = eb->folios[i];
4532 
4533 	ASSERT(folio);
4534 
4535 	/*
4536 	 * If we are using the commit root we could potentially clear a page
4537 	 * Uptodate while we're using the extent buffer that we've previously
4538 	 * looked up.  We don't want to complain in this case, as the page was
4539 	 * valid before, we just didn't write it out.  Instead we want to catch
4540 	 * the case where we didn't actually read the block properly, which
4541 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4542 	 */
4543 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4544 		return;
4545 
4546 	if (fs_info->nodesize < PAGE_SIZE) {
4547 		struct folio *folio = eb->folios[0];
4548 
4549 		ASSERT(i == 0);
4550 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4551 							 eb->start, eb->len)))
4552 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4553 	} else {
4554 		WARN_ON(!folio_test_uptodate(folio));
4555 	}
4556 }
4557 
4558 static void __write_extent_buffer(const struct extent_buffer *eb,
4559 				  const void *srcv, unsigned long start,
4560 				  unsigned long len, bool use_memmove)
4561 {
4562 	const int unit_size = eb->folio_size;
4563 	size_t cur;
4564 	size_t offset;
4565 	char *kaddr;
4566 	char *src = (char *)srcv;
4567 	unsigned long i = get_eb_folio_index(eb, start);
4568 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4569 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4570 
4571 	if (check_eb_range(eb, start, len))
4572 		return;
4573 
4574 	if (eb->addr) {
4575 		if (use_memmove)
4576 			memmove(eb->addr + start, srcv, len);
4577 		else
4578 			memcpy(eb->addr + start, srcv, len);
4579 		return;
4580 	}
4581 
4582 	offset = get_eb_offset_in_folio(eb, start);
4583 
4584 	while (len > 0) {
4585 		if (check_uptodate)
4586 			assert_eb_folio_uptodate(eb, i);
4587 
4588 		cur = min(len, unit_size - offset);
4589 		kaddr = folio_address(eb->folios[i]);
4590 		if (use_memmove)
4591 			memmove(kaddr + offset, src, cur);
4592 		else
4593 			memcpy(kaddr + offset, src, cur);
4594 
4595 		src += cur;
4596 		len -= cur;
4597 		offset = 0;
4598 		i++;
4599 	}
4600 }
4601 
4602 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4603 			 unsigned long start, unsigned long len)
4604 {
4605 	return __write_extent_buffer(eb, srcv, start, len, false);
4606 }
4607 
4608 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4609 				 unsigned long start, unsigned long len)
4610 {
4611 	const int unit_size = eb->folio_size;
4612 	unsigned long cur = start;
4613 
4614 	if (eb->addr) {
4615 		memset(eb->addr + start, c, len);
4616 		return;
4617 	}
4618 
4619 	while (cur < start + len) {
4620 		unsigned long index = get_eb_folio_index(eb, cur);
4621 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4622 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4623 
4624 		assert_eb_folio_uptodate(eb, index);
4625 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4626 
4627 		cur += cur_len;
4628 	}
4629 }
4630 
4631 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4632 			   unsigned long len)
4633 {
4634 	if (check_eb_range(eb, start, len))
4635 		return;
4636 	return memset_extent_buffer(eb, 0, start, len);
4637 }
4638 
4639 void copy_extent_buffer_full(const struct extent_buffer *dst,
4640 			     const struct extent_buffer *src)
4641 {
4642 	const int unit_size = src->folio_size;
4643 	unsigned long cur = 0;
4644 
4645 	ASSERT(dst->len == src->len);
4646 
4647 	while (cur < src->len) {
4648 		unsigned long index = get_eb_folio_index(src, cur);
4649 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4650 		unsigned long cur_len = min(src->len, unit_size - offset);
4651 		void *addr = folio_address(src->folios[index]) + offset;
4652 
4653 		write_extent_buffer(dst, addr, cur, cur_len);
4654 
4655 		cur += cur_len;
4656 	}
4657 }
4658 
4659 void copy_extent_buffer(const struct extent_buffer *dst,
4660 			const struct extent_buffer *src,
4661 			unsigned long dst_offset, unsigned long src_offset,
4662 			unsigned long len)
4663 {
4664 	const int unit_size = dst->folio_size;
4665 	u64 dst_len = dst->len;
4666 	size_t cur;
4667 	size_t offset;
4668 	char *kaddr;
4669 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4670 
4671 	if (check_eb_range(dst, dst_offset, len) ||
4672 	    check_eb_range(src, src_offset, len))
4673 		return;
4674 
4675 	WARN_ON(src->len != dst_len);
4676 
4677 	offset = get_eb_offset_in_folio(dst, dst_offset);
4678 
4679 	while (len > 0) {
4680 		assert_eb_folio_uptodate(dst, i);
4681 
4682 		cur = min(len, (unsigned long)(unit_size - offset));
4683 
4684 		kaddr = folio_address(dst->folios[i]);
4685 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4686 
4687 		src_offset += cur;
4688 		len -= cur;
4689 		offset = 0;
4690 		i++;
4691 	}
4692 }
4693 
4694 /*
4695  * Calculate the folio and offset of the byte containing the given bit number.
4696  *
4697  * @eb:           the extent buffer
4698  * @start:        offset of the bitmap item in the extent buffer
4699  * @nr:           bit number
4700  * @folio_index:  return index of the folio in the extent buffer that contains
4701  *                the given bit number
4702  * @folio_offset: return offset into the folio given by folio_index
4703  *
4704  * This helper hides the ugliness of finding the byte in an extent buffer which
4705  * contains a given bit.
4706  */
4707 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4708 				    unsigned long start, unsigned long nr,
4709 				    unsigned long *folio_index,
4710 				    size_t *folio_offset)
4711 {
4712 	size_t byte_offset = BIT_BYTE(nr);
4713 	size_t offset;
4714 
4715 	/*
4716 	 * The byte we want is the offset of the extent buffer + the offset of
4717 	 * the bitmap item in the extent buffer + the offset of the byte in the
4718 	 * bitmap item.
4719 	 */
4720 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4721 
4722 	*folio_index = offset >> eb->folio_shift;
4723 	*folio_offset = offset_in_eb_folio(eb, offset);
4724 }
4725 
4726 /*
4727  * Determine whether a bit in a bitmap item is set.
4728  *
4729  * @eb:     the extent buffer
4730  * @start:  offset of the bitmap item in the extent buffer
4731  * @nr:     bit number to test
4732  */
4733 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4734 			   unsigned long nr)
4735 {
4736 	unsigned long i;
4737 	size_t offset;
4738 	u8 *kaddr;
4739 
4740 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4741 	assert_eb_folio_uptodate(eb, i);
4742 	kaddr = folio_address(eb->folios[i]);
4743 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4744 }
4745 
4746 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4747 {
4748 	unsigned long index = get_eb_folio_index(eb, bytenr);
4749 
4750 	if (check_eb_range(eb, bytenr, 1))
4751 		return NULL;
4752 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4753 }
4754 
4755 /*
4756  * Set an area of a bitmap to 1.
4757  *
4758  * @eb:     the extent buffer
4759  * @start:  offset of the bitmap item in the extent buffer
4760  * @pos:    bit number of the first bit
4761  * @len:    number of bits to set
4762  */
4763 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4764 			      unsigned long pos, unsigned long len)
4765 {
4766 	unsigned int first_byte = start + BIT_BYTE(pos);
4767 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4768 	const bool same_byte = (first_byte == last_byte);
4769 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4770 	u8 *kaddr;
4771 
4772 	if (same_byte)
4773 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4774 
4775 	/* Handle the first byte. */
4776 	kaddr = extent_buffer_get_byte(eb, first_byte);
4777 	*kaddr |= mask;
4778 	if (same_byte)
4779 		return;
4780 
4781 	/* Handle the byte aligned part. */
4782 	ASSERT(first_byte + 1 <= last_byte);
4783 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4784 
4785 	/* Handle the last byte. */
4786 	kaddr = extent_buffer_get_byte(eb, last_byte);
4787 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4788 }
4789 
4790 
4791 /*
4792  * Clear an area of a bitmap.
4793  *
4794  * @eb:     the extent buffer
4795  * @start:  offset of the bitmap item in the extent buffer
4796  * @pos:    bit number of the first bit
4797  * @len:    number of bits to clear
4798  */
4799 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4800 				unsigned long start, unsigned long pos,
4801 				unsigned long len)
4802 {
4803 	unsigned int first_byte = start + BIT_BYTE(pos);
4804 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4805 	const bool same_byte = (first_byte == last_byte);
4806 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4807 	u8 *kaddr;
4808 
4809 	if (same_byte)
4810 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4811 
4812 	/* Handle the first byte. */
4813 	kaddr = extent_buffer_get_byte(eb, first_byte);
4814 	*kaddr &= ~mask;
4815 	if (same_byte)
4816 		return;
4817 
4818 	/* Handle the byte aligned part. */
4819 	ASSERT(first_byte + 1 <= last_byte);
4820 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4821 
4822 	/* Handle the last byte. */
4823 	kaddr = extent_buffer_get_byte(eb, last_byte);
4824 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4825 }
4826 
4827 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4828 {
4829 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4830 	return distance < len;
4831 }
4832 
4833 void memcpy_extent_buffer(const struct extent_buffer *dst,
4834 			  unsigned long dst_offset, unsigned long src_offset,
4835 			  unsigned long len)
4836 {
4837 	const int unit_size = dst->folio_size;
4838 	unsigned long cur_off = 0;
4839 
4840 	if (check_eb_range(dst, dst_offset, len) ||
4841 	    check_eb_range(dst, src_offset, len))
4842 		return;
4843 
4844 	if (dst->addr) {
4845 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4846 
4847 		if (use_memmove)
4848 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4849 		else
4850 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4851 		return;
4852 	}
4853 
4854 	while (cur_off < len) {
4855 		unsigned long cur_src = cur_off + src_offset;
4856 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4857 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4858 		unsigned long cur_len = min(src_offset + len - cur_src,
4859 					    unit_size - folio_off);
4860 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4861 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4862 						       dst_offset + cur_off, cur_len);
4863 
4864 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4865 				      use_memmove);
4866 		cur_off += cur_len;
4867 	}
4868 }
4869 
4870 void memmove_extent_buffer(const struct extent_buffer *dst,
4871 			   unsigned long dst_offset, unsigned long src_offset,
4872 			   unsigned long len)
4873 {
4874 	unsigned long dst_end = dst_offset + len - 1;
4875 	unsigned long src_end = src_offset + len - 1;
4876 
4877 	if (check_eb_range(dst, dst_offset, len) ||
4878 	    check_eb_range(dst, src_offset, len))
4879 		return;
4880 
4881 	if (dst_offset < src_offset) {
4882 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4883 		return;
4884 	}
4885 
4886 	if (dst->addr) {
4887 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4888 		return;
4889 	}
4890 
4891 	while (len > 0) {
4892 		unsigned long src_i;
4893 		size_t cur;
4894 		size_t dst_off_in_folio;
4895 		size_t src_off_in_folio;
4896 		void *src_addr;
4897 		bool use_memmove;
4898 
4899 		src_i = get_eb_folio_index(dst, src_end);
4900 
4901 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4902 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4903 
4904 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4905 		cur = min(cur, dst_off_in_folio + 1);
4906 
4907 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4908 					 cur + 1;
4909 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4910 					    cur);
4911 
4912 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4913 				      use_memmove);
4914 
4915 		dst_end -= cur;
4916 		src_end -= cur;
4917 		len -= cur;
4918 	}
4919 }
4920 
4921 #define GANG_LOOKUP_SIZE	16
4922 static struct extent_buffer *get_next_extent_buffer(
4923 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4924 {
4925 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4926 	struct extent_buffer *found = NULL;
4927 	u64 page_start = page_offset(page);
4928 	u64 cur = page_start;
4929 
4930 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4931 	lockdep_assert_held(&fs_info->buffer_lock);
4932 
4933 	while (cur < page_start + PAGE_SIZE) {
4934 		int ret;
4935 		int i;
4936 
4937 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4938 				(void **)gang, cur >> fs_info->sectorsize_bits,
4939 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4940 				      PAGE_SIZE / fs_info->nodesize));
4941 		if (ret == 0)
4942 			goto out;
4943 		for (i = 0; i < ret; i++) {
4944 			/* Already beyond page end */
4945 			if (gang[i]->start >= page_start + PAGE_SIZE)
4946 				goto out;
4947 			/* Found one */
4948 			if (gang[i]->start >= bytenr) {
4949 				found = gang[i];
4950 				goto out;
4951 			}
4952 		}
4953 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4954 	}
4955 out:
4956 	return found;
4957 }
4958 
4959 static int try_release_subpage_extent_buffer(struct page *page)
4960 {
4961 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
4962 	u64 cur = page_offset(page);
4963 	const u64 end = page_offset(page) + PAGE_SIZE;
4964 	int ret;
4965 
4966 	while (cur < end) {
4967 		struct extent_buffer *eb = NULL;
4968 
4969 		/*
4970 		 * Unlike try_release_extent_buffer() which uses folio private
4971 		 * to grab buffer, for subpage case we rely on radix tree, thus
4972 		 * we need to ensure radix tree consistency.
4973 		 *
4974 		 * We also want an atomic snapshot of the radix tree, thus go
4975 		 * with spinlock rather than RCU.
4976 		 */
4977 		spin_lock(&fs_info->buffer_lock);
4978 		eb = get_next_extent_buffer(fs_info, page, cur);
4979 		if (!eb) {
4980 			/* No more eb in the page range after or at cur */
4981 			spin_unlock(&fs_info->buffer_lock);
4982 			break;
4983 		}
4984 		cur = eb->start + eb->len;
4985 
4986 		/*
4987 		 * The same as try_release_extent_buffer(), to ensure the eb
4988 		 * won't disappear out from under us.
4989 		 */
4990 		spin_lock(&eb->refs_lock);
4991 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4992 			spin_unlock(&eb->refs_lock);
4993 			spin_unlock(&fs_info->buffer_lock);
4994 			break;
4995 		}
4996 		spin_unlock(&fs_info->buffer_lock);
4997 
4998 		/*
4999 		 * If tree ref isn't set then we know the ref on this eb is a
5000 		 * real ref, so just return, this eb will likely be freed soon
5001 		 * anyway.
5002 		 */
5003 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5004 			spin_unlock(&eb->refs_lock);
5005 			break;
5006 		}
5007 
5008 		/*
5009 		 * Here we don't care about the return value, we will always
5010 		 * check the folio private at the end.  And
5011 		 * release_extent_buffer() will release the refs_lock.
5012 		 */
5013 		release_extent_buffer(eb);
5014 	}
5015 	/*
5016 	 * Finally to check if we have cleared folio private, as if we have
5017 	 * released all ebs in the page, the folio private should be cleared now.
5018 	 */
5019 	spin_lock(&page->mapping->i_private_lock);
5020 	if (!folio_test_private(page_folio(page)))
5021 		ret = 1;
5022 	else
5023 		ret = 0;
5024 	spin_unlock(&page->mapping->i_private_lock);
5025 	return ret;
5026 
5027 }
5028 
5029 int try_release_extent_buffer(struct page *page)
5030 {
5031 	struct folio *folio = page_folio(page);
5032 	struct extent_buffer *eb;
5033 
5034 	if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5035 		return try_release_subpage_extent_buffer(page);
5036 
5037 	/*
5038 	 * We need to make sure nobody is changing folio private, as we rely on
5039 	 * folio private as the pointer to extent buffer.
5040 	 */
5041 	spin_lock(&page->mapping->i_private_lock);
5042 	if (!folio_test_private(folio)) {
5043 		spin_unlock(&page->mapping->i_private_lock);
5044 		return 1;
5045 	}
5046 
5047 	eb = folio_get_private(folio);
5048 	BUG_ON(!eb);
5049 
5050 	/*
5051 	 * This is a little awful but should be ok, we need to make sure that
5052 	 * the eb doesn't disappear out from under us while we're looking at
5053 	 * this page.
5054 	 */
5055 	spin_lock(&eb->refs_lock);
5056 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5057 		spin_unlock(&eb->refs_lock);
5058 		spin_unlock(&page->mapping->i_private_lock);
5059 		return 0;
5060 	}
5061 	spin_unlock(&page->mapping->i_private_lock);
5062 
5063 	/*
5064 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5065 	 * so just return, this page will likely be freed soon anyway.
5066 	 */
5067 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5068 		spin_unlock(&eb->refs_lock);
5069 		return 0;
5070 	}
5071 
5072 	return release_extent_buffer(eb);
5073 }
5074 
5075 /*
5076  * Attempt to readahead a child block.
5077  *
5078  * @fs_info:	the fs_info
5079  * @bytenr:	bytenr to read
5080  * @owner_root: objectid of the root that owns this eb
5081  * @gen:	generation for the uptodate check, can be 0
5082  * @level:	level for the eb
5083  *
5084  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5085  * normal uptodate check of the eb, without checking the generation.  If we have
5086  * to read the block we will not block on anything.
5087  */
5088 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5089 				u64 bytenr, u64 owner_root, u64 gen, int level)
5090 {
5091 	struct btrfs_tree_parent_check check = {
5092 		.has_first_key = 0,
5093 		.level = level,
5094 		.transid = gen
5095 	};
5096 	struct extent_buffer *eb;
5097 	int ret;
5098 
5099 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5100 	if (IS_ERR(eb))
5101 		return;
5102 
5103 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5104 		free_extent_buffer(eb);
5105 		return;
5106 	}
5107 
5108 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5109 	if (ret < 0)
5110 		free_extent_buffer_stale(eb);
5111 	else
5112 		free_extent_buffer(eb);
5113 }
5114 
5115 /*
5116  * Readahead a node's child block.
5117  *
5118  * @node:	parent node we're reading from
5119  * @slot:	slot in the parent node for the child we want to read
5120  *
5121  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5122  * the slot in the node provided.
5123  */
5124 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5125 {
5126 	btrfs_readahead_tree_block(node->fs_info,
5127 				   btrfs_node_blockptr(node, slot),
5128 				   btrfs_header_owner(node),
5129 				   btrfs_node_ptr_generation(node, slot),
5130 				   btrfs_header_level(node) - 1);
5131 }
5132