1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 }; 105 106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 107 { 108 struct btrfs_bio *bbio = bio_ctrl->bbio; 109 110 if (!bbio) 111 return; 112 113 /* Caller should ensure the bio has at least some range added */ 114 ASSERT(bbio->bio.bi_iter.bi_size); 115 116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 118 btrfs_submit_compressed_read(bbio); 119 else 120 btrfs_submit_bio(bbio, 0); 121 122 /* The bbio is owned by the end_io handler now */ 123 bio_ctrl->bbio = NULL; 124 } 125 126 /* 127 * Submit or fail the current bio in the bio_ctrl structure. 128 */ 129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 130 { 131 struct btrfs_bio *bbio = bio_ctrl->bbio; 132 133 if (!bbio) 134 return; 135 136 if (ret) { 137 ASSERT(ret < 0); 138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 139 /* The bio is owned by the end_io handler now */ 140 bio_ctrl->bbio = NULL; 141 } else { 142 submit_one_bio(bio_ctrl); 143 } 144 } 145 146 int __init extent_buffer_init_cachep(void) 147 { 148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 149 sizeof(struct extent_buffer), 0, 0, 150 NULL); 151 if (!extent_buffer_cache) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 void __cold extent_buffer_free_cachep(void) 158 { 159 /* 160 * Make sure all delayed rcu free are flushed before we 161 * destroy caches. 162 */ 163 rcu_barrier(); 164 kmem_cache_destroy(extent_buffer_cache); 165 } 166 167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 168 { 169 unsigned long index = start >> PAGE_SHIFT; 170 unsigned long end_index = end >> PAGE_SHIFT; 171 struct page *page; 172 173 while (index <= end_index) { 174 page = find_get_page(inode->i_mapping, index); 175 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 176 clear_page_dirty_for_io(page); 177 put_page(page); 178 index++; 179 } 180 } 181 182 static void process_one_page(struct btrfs_fs_info *fs_info, 183 struct page *page, struct page *locked_page, 184 unsigned long page_ops, u64 start, u64 end) 185 { 186 struct folio *folio = page_folio(page); 187 u32 len; 188 189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 190 len = end + 1 - start; 191 192 if (page_ops & PAGE_SET_ORDERED) 193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 194 if (page_ops & PAGE_START_WRITEBACK) { 195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 197 } 198 if (page_ops & PAGE_END_WRITEBACK) 199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 200 201 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 202 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 203 } 204 205 static void __process_pages_contig(struct address_space *mapping, 206 struct page *locked_page, u64 start, u64 end, 207 unsigned long page_ops) 208 { 209 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 210 pgoff_t start_index = start >> PAGE_SHIFT; 211 pgoff_t end_index = end >> PAGE_SHIFT; 212 pgoff_t index = start_index; 213 struct folio_batch fbatch; 214 int i; 215 216 folio_batch_init(&fbatch); 217 while (index <= end_index) { 218 int found_folios; 219 220 found_folios = filemap_get_folios_contig(mapping, &index, 221 end_index, &fbatch); 222 for (i = 0; i < found_folios; i++) { 223 struct folio *folio = fbatch.folios[i]; 224 225 process_one_page(fs_info, &folio->page, locked_page, 226 page_ops, start, end); 227 } 228 folio_batch_release(&fbatch); 229 cond_resched(); 230 } 231 } 232 233 static noinline void __unlock_for_delalloc(struct inode *inode, 234 struct page *locked_page, 235 u64 start, u64 end) 236 { 237 unsigned long index = start >> PAGE_SHIFT; 238 unsigned long end_index = end >> PAGE_SHIFT; 239 240 ASSERT(locked_page); 241 if (index == locked_page->index && end_index == index) 242 return; 243 244 __process_pages_contig(inode->i_mapping, locked_page, start, end, 245 PAGE_UNLOCK); 246 } 247 248 static noinline int lock_delalloc_pages(struct inode *inode, 249 struct page *locked_page, 250 u64 start, 251 u64 end) 252 { 253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 254 struct address_space *mapping = inode->i_mapping; 255 pgoff_t start_index = start >> PAGE_SHIFT; 256 pgoff_t end_index = end >> PAGE_SHIFT; 257 pgoff_t index = start_index; 258 u64 processed_end = start; 259 struct folio_batch fbatch; 260 261 if (index == locked_page->index && index == end_index) 262 return 0; 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 unsigned int found_folios, i; 267 268 found_folios = filemap_get_folios_contig(mapping, &index, 269 end_index, &fbatch); 270 if (found_folios == 0) 271 goto out; 272 273 for (i = 0; i < found_folios; i++) { 274 struct folio *folio = fbatch.folios[i]; 275 struct page *page = folio_page(folio, 0); 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_folio_start_writer_lock(fs_info, folio, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_folio_end_writer_lock(fs_info, folio, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 436 struct folio *folio = page_folio(page); 437 438 ASSERT(page_offset(page) <= start && 439 start + len <= page_offset(page) + PAGE_SIZE); 440 441 if (uptodate && btrfs_verify_page(page, start)) 442 btrfs_folio_set_uptodate(fs_info, folio, start, len); 443 else 444 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 445 446 if (!btrfs_is_subpage(fs_info, page->mapping)) 447 unlock_page(page); 448 else 449 btrfs_subpage_end_reader(fs_info, folio, start, len); 450 } 451 452 /* 453 * After a write IO is done, we need to: 454 * 455 * - clear the uptodate bits on error 456 * - clear the writeback bits in the extent tree for the range 457 * - filio_end_writeback() if there is no more pending io for the folio 458 * 459 * Scheduling is not allowed, so the extent state tree is expected 460 * to have one and only one object corresponding to this IO. 461 */ 462 static void end_bbio_data_write(struct btrfs_bio *bbio) 463 { 464 struct btrfs_fs_info *fs_info = bbio->fs_info; 465 struct bio *bio = &bbio->bio; 466 int error = blk_status_to_errno(bio->bi_status); 467 struct folio_iter fi; 468 const u32 sectorsize = fs_info->sectorsize; 469 470 ASSERT(!bio_flagged(bio, BIO_CLONED)); 471 bio_for_each_folio_all(fi, bio) { 472 struct folio *folio = fi.folio; 473 u64 start = folio_pos(folio) + fi.offset; 474 u32 len = fi.length; 475 476 /* Only order 0 (single page) folios are allowed for data. */ 477 ASSERT(folio_order(folio) == 0); 478 479 /* Our read/write should always be sector aligned. */ 480 if (!IS_ALIGNED(fi.offset, sectorsize)) 481 btrfs_err(fs_info, 482 "partial page write in btrfs with offset %zu and length %zu", 483 fi.offset, fi.length); 484 else if (!IS_ALIGNED(fi.length, sectorsize)) 485 btrfs_info(fs_info, 486 "incomplete page write with offset %zu and length %zu", 487 fi.offset, fi.length); 488 489 btrfs_finish_ordered_extent(bbio->ordered, 490 folio_page(folio, 0), start, len, !error); 491 if (error) 492 mapping_set_error(folio->mapping, error); 493 btrfs_folio_clear_writeback(fs_info, folio, start, len); 494 } 495 496 bio_put(bio); 497 } 498 499 /* 500 * Record previously processed extent range 501 * 502 * For endio_readpage_release_extent() to handle a full extent range, reducing 503 * the extent io operations. 504 */ 505 struct processed_extent { 506 struct btrfs_inode *inode; 507 /* Start of the range in @inode */ 508 u64 start; 509 /* End of the range in @inode */ 510 u64 end; 511 bool uptodate; 512 }; 513 514 /* 515 * Try to release processed extent range 516 * 517 * May not release the extent range right now if the current range is 518 * contiguous to processed extent. 519 * 520 * Will release processed extent when any of @inode, @uptodate, the range is 521 * no longer contiguous to the processed range. 522 * 523 * Passing @inode == NULL will force processed extent to be released. 524 */ 525 static void endio_readpage_release_extent(struct processed_extent *processed, 526 struct btrfs_inode *inode, u64 start, u64 end, 527 bool uptodate) 528 { 529 struct extent_state *cached = NULL; 530 struct extent_io_tree *tree; 531 532 /* The first extent, initialize @processed */ 533 if (!processed->inode) 534 goto update; 535 536 /* 537 * Contiguous to processed extent, just uptodate the end. 538 * 539 * Several things to notice: 540 * 541 * - bio can be merged as long as on-disk bytenr is contiguous 542 * This means we can have page belonging to other inodes, thus need to 543 * check if the inode still matches. 544 * - bvec can contain range beyond current page for multi-page bvec 545 * Thus we need to do processed->end + 1 >= start check 546 */ 547 if (processed->inode == inode && processed->uptodate == uptodate && 548 processed->end + 1 >= start && end >= processed->end) { 549 processed->end = end; 550 return; 551 } 552 553 tree = &processed->inode->io_tree; 554 /* 555 * Now we don't have range contiguous to the processed range, release 556 * the processed range now. 557 */ 558 unlock_extent(tree, processed->start, processed->end, &cached); 559 560 update: 561 /* Update processed to current range */ 562 processed->inode = inode; 563 processed->start = start; 564 processed->end = end; 565 processed->uptodate = uptodate; 566 } 567 568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 569 { 570 struct folio *folio = page_folio(page); 571 572 ASSERT(folio_test_locked(folio)); 573 if (!btrfs_is_subpage(fs_info, folio->mapping)) 574 return; 575 576 ASSERT(folio_test_private(folio)); 577 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE); 578 } 579 580 /* 581 * After a data read IO is done, we need to: 582 * 583 * - clear the uptodate bits on error 584 * - set the uptodate bits if things worked 585 * - set the folio up to date if all extents in the tree are uptodate 586 * - clear the lock bit in the extent tree 587 * - unlock the folio if there are no other extents locked for it 588 * 589 * Scheduling is not allowed, so the extent state tree is expected 590 * to have one and only one object corresponding to this IO. 591 */ 592 static void end_bbio_data_read(struct btrfs_bio *bbio) 593 { 594 struct btrfs_fs_info *fs_info = bbio->fs_info; 595 struct bio *bio = &bbio->bio; 596 struct processed_extent processed = { 0 }; 597 struct folio_iter fi; 598 const u32 sectorsize = fs_info->sectorsize; 599 600 ASSERT(!bio_flagged(bio, BIO_CLONED)); 601 bio_for_each_folio_all(fi, &bbio->bio) { 602 bool uptodate = !bio->bi_status; 603 struct folio *folio = fi.folio; 604 struct inode *inode = folio->mapping->host; 605 u64 start; 606 u64 end; 607 u32 len; 608 609 /* For now only order 0 folios are supported for data. */ 610 ASSERT(folio_order(folio) == 0); 611 btrfs_debug(fs_info, 612 "%s: bi_sector=%llu, err=%d, mirror=%u", 613 __func__, bio->bi_iter.bi_sector, bio->bi_status, 614 bbio->mirror_num); 615 616 /* 617 * We always issue full-sector reads, but if some block in a 618 * folio fails to read, blk_update_request() will advance 619 * bv_offset and adjust bv_len to compensate. Print a warning 620 * for unaligned offsets, and an error if they don't add up to 621 * a full sector. 622 */ 623 if (!IS_ALIGNED(fi.offset, sectorsize)) 624 btrfs_err(fs_info, 625 "partial page read in btrfs with offset %zu and length %zu", 626 fi.offset, fi.length); 627 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 628 btrfs_info(fs_info, 629 "incomplete page read with offset %zu and length %zu", 630 fi.offset, fi.length); 631 632 start = folio_pos(folio) + fi.offset; 633 end = start + fi.length - 1; 634 len = fi.length; 635 636 if (likely(uptodate)) { 637 loff_t i_size = i_size_read(inode); 638 pgoff_t end_index = i_size >> folio_shift(folio); 639 640 /* 641 * Zero out the remaining part if this range straddles 642 * i_size. 643 * 644 * Here we should only zero the range inside the folio, 645 * not touch anything else. 646 * 647 * NOTE: i_size is exclusive while end is inclusive. 648 */ 649 if (folio_index(folio) == end_index && i_size <= end) { 650 u32 zero_start = max(offset_in_folio(folio, i_size), 651 offset_in_folio(folio, start)); 652 u32 zero_len = offset_in_folio(folio, end) + 1 - 653 zero_start; 654 655 folio_zero_range(folio, zero_start, zero_len); 656 } 657 } 658 659 /* Update page status and unlock. */ 660 end_page_read(folio_page(folio, 0), uptodate, start, len); 661 endio_readpage_release_extent(&processed, BTRFS_I(inode), 662 start, end, uptodate); 663 } 664 /* Release the last extent */ 665 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 666 bio_put(bio); 667 } 668 669 /* 670 * Populate every free slot in a provided array with pages. 671 * 672 * @nr_pages: number of pages to allocate 673 * @page_array: the array to fill with pages; any existing non-null entries in 674 * the array will be skipped 675 * @extra_gfp: the extra GFP flags for the allocation. 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 682 gfp_t extra_gfp) 683 { 684 const gfp_t gfp = GFP_NOFS | extra_gfp; 685 unsigned int allocated; 686 687 for (allocated = 0; allocated < nr_pages;) { 688 unsigned int last = allocated; 689 690 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 691 if (unlikely(allocated == last)) { 692 /* No progress, fail and do cleanup. */ 693 for (int i = 0; i < allocated; i++) { 694 __free_page(page_array[i]); 695 page_array[i] = NULL; 696 } 697 return -ENOMEM; 698 } 699 } 700 return 0; 701 } 702 703 /* 704 * Populate needed folios for the extent buffer. 705 * 706 * For now, the folios populated are always in order 0 (aka, single page). 707 */ 708 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp) 709 { 710 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 711 int num_pages = num_extent_pages(eb); 712 int ret; 713 714 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp); 715 if (ret < 0) 716 return ret; 717 718 for (int i = 0; i < num_pages; i++) 719 eb->folios[i] = page_folio(page_array[i]); 720 eb->folio_size = PAGE_SIZE; 721 eb->folio_shift = PAGE_SHIFT; 722 return 0; 723 } 724 725 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 726 struct page *page, u64 disk_bytenr, 727 unsigned int pg_offset) 728 { 729 struct bio *bio = &bio_ctrl->bbio->bio; 730 struct bio_vec *bvec = bio_last_bvec_all(bio); 731 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 732 733 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 734 /* 735 * For compression, all IO should have its logical bytenr set 736 * to the starting bytenr of the compressed extent. 737 */ 738 return bio->bi_iter.bi_sector == sector; 739 } 740 741 /* 742 * The contig check requires the following conditions to be met: 743 * 744 * 1) The pages are belonging to the same inode 745 * This is implied by the call chain. 746 * 747 * 2) The range has adjacent logical bytenr 748 * 749 * 3) The range has adjacent file offset 750 * This is required for the usage of btrfs_bio->file_offset. 751 */ 752 return bio_end_sector(bio) == sector && 753 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 754 page_offset(page) + pg_offset; 755 } 756 757 static void alloc_new_bio(struct btrfs_inode *inode, 758 struct btrfs_bio_ctrl *bio_ctrl, 759 u64 disk_bytenr, u64 file_offset) 760 { 761 struct btrfs_fs_info *fs_info = inode->root->fs_info; 762 struct btrfs_bio *bbio; 763 764 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 765 bio_ctrl->end_io_func, NULL); 766 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 767 bbio->inode = inode; 768 bbio->file_offset = file_offset; 769 bio_ctrl->bbio = bbio; 770 bio_ctrl->len_to_oe_boundary = U32_MAX; 771 772 /* Limit data write bios to the ordered boundary. */ 773 if (bio_ctrl->wbc) { 774 struct btrfs_ordered_extent *ordered; 775 776 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 777 if (ordered) { 778 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 779 ordered->file_offset + 780 ordered->disk_num_bytes - file_offset); 781 bbio->ordered = ordered; 782 } 783 784 /* 785 * Pick the last added device to support cgroup writeback. For 786 * multi-device file systems this means blk-cgroup policies have 787 * to always be set on the last added/replaced device. 788 * This is a bit odd but has been like that for a long time. 789 */ 790 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 791 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 792 } 793 } 794 795 /* 796 * @disk_bytenr: logical bytenr where the write will be 797 * @page: page to add to the bio 798 * @size: portion of page that we want to write to 799 * @pg_offset: offset of the new bio or to check whether we are adding 800 * a contiguous page to the previous one 801 * 802 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 803 * new one in @bio_ctrl->bbio. 804 * The mirror number for this IO should already be initizlied in 805 * @bio_ctrl->mirror_num. 806 */ 807 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 808 u64 disk_bytenr, struct page *page, 809 size_t size, unsigned long pg_offset) 810 { 811 struct btrfs_inode *inode = page_to_inode(page); 812 813 ASSERT(pg_offset + size <= PAGE_SIZE); 814 ASSERT(bio_ctrl->end_io_func); 815 816 if (bio_ctrl->bbio && 817 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 818 submit_one_bio(bio_ctrl); 819 820 do { 821 u32 len = size; 822 823 /* Allocate new bio if needed */ 824 if (!bio_ctrl->bbio) { 825 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 826 page_offset(page) + pg_offset); 827 } 828 829 /* Cap to the current ordered extent boundary if there is one. */ 830 if (len > bio_ctrl->len_to_oe_boundary) { 831 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 832 ASSERT(is_data_inode(&inode->vfs_inode)); 833 len = bio_ctrl->len_to_oe_boundary; 834 } 835 836 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 837 /* bio full: move on to a new one */ 838 submit_one_bio(bio_ctrl); 839 continue; 840 } 841 842 if (bio_ctrl->wbc) 843 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 844 845 size -= len; 846 pg_offset += len; 847 disk_bytenr += len; 848 849 /* 850 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 851 * sector aligned. alloc_new_bio() then sets it to the end of 852 * our ordered extent for writes into zoned devices. 853 * 854 * When len_to_oe_boundary is tracking an ordered extent, we 855 * trust the ordered extent code to align things properly, and 856 * the check above to cap our write to the ordered extent 857 * boundary is correct. 858 * 859 * When len_to_oe_boundary is U32_MAX, the cap above would 860 * result in a 4095 byte IO for the last page right before 861 * we hit the bio limit of UINT_MAX. bio_add_page() has all 862 * the checks required to make sure we don't overflow the bio, 863 * and we should just ignore len_to_oe_boundary completely 864 * unless we're using it to track an ordered extent. 865 * 866 * It's pretty hard to make a bio sized U32_MAX, but it can 867 * happen when the page cache is able to feed us contiguous 868 * pages for large extents. 869 */ 870 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 871 bio_ctrl->len_to_oe_boundary -= len; 872 873 /* Ordered extent boundary: move on to a new bio. */ 874 if (bio_ctrl->len_to_oe_boundary == 0) 875 submit_one_bio(bio_ctrl); 876 } while (size); 877 } 878 879 static int attach_extent_buffer_folio(struct extent_buffer *eb, 880 struct folio *folio, 881 struct btrfs_subpage *prealloc) 882 { 883 struct btrfs_fs_info *fs_info = eb->fs_info; 884 int ret = 0; 885 886 /* 887 * If the page is mapped to btree inode, we should hold the private 888 * lock to prevent race. 889 * For cloned or dummy extent buffers, their pages are not mapped and 890 * will not race with any other ebs. 891 */ 892 if (folio->mapping) 893 lockdep_assert_held(&folio->mapping->i_private_lock); 894 895 if (fs_info->nodesize >= PAGE_SIZE) { 896 if (!folio_test_private(folio)) 897 folio_attach_private(folio, eb); 898 else 899 WARN_ON(folio_get_private(folio) != eb); 900 return 0; 901 } 902 903 /* Already mapped, just free prealloc */ 904 if (folio_test_private(folio)) { 905 btrfs_free_subpage(prealloc); 906 return 0; 907 } 908 909 if (prealloc) 910 /* Has preallocated memory for subpage */ 911 folio_attach_private(folio, prealloc); 912 else 913 /* Do new allocation to attach subpage */ 914 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 915 return ret; 916 } 917 918 int set_page_extent_mapped(struct page *page) 919 { 920 return set_folio_extent_mapped(page_folio(page)); 921 } 922 923 int set_folio_extent_mapped(struct folio *folio) 924 { 925 struct btrfs_fs_info *fs_info; 926 927 ASSERT(folio->mapping); 928 929 if (folio_test_private(folio)) 930 return 0; 931 932 fs_info = folio_to_fs_info(folio); 933 934 if (btrfs_is_subpage(fs_info, folio->mapping)) 935 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 936 937 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 938 return 0; 939 } 940 941 void clear_page_extent_mapped(struct page *page) 942 { 943 struct folio *folio = page_folio(page); 944 struct btrfs_fs_info *fs_info; 945 946 ASSERT(page->mapping); 947 948 if (!folio_test_private(folio)) 949 return; 950 951 fs_info = page_to_fs_info(page); 952 if (btrfs_is_subpage(fs_info, page->mapping)) 953 return btrfs_detach_subpage(fs_info, folio); 954 955 folio_detach_private(folio); 956 } 957 958 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page, 959 u64 start, u64 len, struct extent_map **em_cached) 960 { 961 struct extent_map *em; 962 963 ASSERT(em_cached); 964 965 if (*em_cached) { 966 em = *em_cached; 967 if (extent_map_in_tree(em) && start >= em->start && 968 start < extent_map_end(em)) { 969 refcount_inc(&em->refs); 970 return em; 971 } 972 973 free_extent_map(em); 974 *em_cached = NULL; 975 } 976 977 em = btrfs_get_extent(BTRFS_I(inode), page, start, len); 978 if (!IS_ERR(em)) { 979 BUG_ON(*em_cached); 980 refcount_inc(&em->refs); 981 *em_cached = em; 982 } 983 return em; 984 } 985 /* 986 * basic readpage implementation. Locked extent state structs are inserted 987 * into the tree that are removed when the IO is done (by the end_io 988 * handlers) 989 * XXX JDM: This needs looking at to ensure proper page locking 990 * return 0 on success, otherwise return error 991 */ 992 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 993 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 994 { 995 struct inode *inode = page->mapping->host; 996 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 997 u64 start = page_offset(page); 998 const u64 end = start + PAGE_SIZE - 1; 999 u64 cur = start; 1000 u64 extent_offset; 1001 u64 last_byte = i_size_read(inode); 1002 u64 block_start; 1003 struct extent_map *em; 1004 int ret = 0; 1005 size_t pg_offset = 0; 1006 size_t iosize; 1007 size_t blocksize = fs_info->sectorsize; 1008 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1009 1010 ret = set_page_extent_mapped(page); 1011 if (ret < 0) { 1012 unlock_extent(tree, start, end, NULL); 1013 unlock_page(page); 1014 return ret; 1015 } 1016 1017 if (page->index == last_byte >> PAGE_SHIFT) { 1018 size_t zero_offset = offset_in_page(last_byte); 1019 1020 if (zero_offset) { 1021 iosize = PAGE_SIZE - zero_offset; 1022 memzero_page(page, zero_offset, iosize); 1023 } 1024 } 1025 bio_ctrl->end_io_func = end_bbio_data_read; 1026 begin_page_read(fs_info, page); 1027 while (cur <= end) { 1028 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1029 bool force_bio_submit = false; 1030 u64 disk_bytenr; 1031 1032 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1033 if (cur >= last_byte) { 1034 iosize = PAGE_SIZE - pg_offset; 1035 memzero_page(page, pg_offset, iosize); 1036 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1037 end_page_read(page, true, cur, iosize); 1038 break; 1039 } 1040 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached); 1041 if (IS_ERR(em)) { 1042 unlock_extent(tree, cur, end, NULL); 1043 end_page_read(page, false, cur, end + 1 - cur); 1044 return PTR_ERR(em); 1045 } 1046 extent_offset = cur - em->start; 1047 BUG_ON(extent_map_end(em) <= cur); 1048 BUG_ON(end < cur); 1049 1050 compress_type = extent_map_compression(em); 1051 1052 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1053 iosize = ALIGN(iosize, blocksize); 1054 if (compress_type != BTRFS_COMPRESS_NONE) 1055 disk_bytenr = em->block_start; 1056 else 1057 disk_bytenr = em->block_start + extent_offset; 1058 block_start = em->block_start; 1059 if (em->flags & EXTENT_FLAG_PREALLOC) 1060 block_start = EXTENT_MAP_HOLE; 1061 1062 /* 1063 * If we have a file range that points to a compressed extent 1064 * and it's followed by a consecutive file range that points 1065 * to the same compressed extent (possibly with a different 1066 * offset and/or length, so it either points to the whole extent 1067 * or only part of it), we must make sure we do not submit a 1068 * single bio to populate the pages for the 2 ranges because 1069 * this makes the compressed extent read zero out the pages 1070 * belonging to the 2nd range. Imagine the following scenario: 1071 * 1072 * File layout 1073 * [0 - 8K] [8K - 24K] 1074 * | | 1075 * | | 1076 * points to extent X, points to extent X, 1077 * offset 4K, length of 8K offset 0, length 16K 1078 * 1079 * [extent X, compressed length = 4K uncompressed length = 16K] 1080 * 1081 * If the bio to read the compressed extent covers both ranges, 1082 * it will decompress extent X into the pages belonging to the 1083 * first range and then it will stop, zeroing out the remaining 1084 * pages that belong to the other range that points to extent X. 1085 * So here we make sure we submit 2 bios, one for the first 1086 * range and another one for the third range. Both will target 1087 * the same physical extent from disk, but we can't currently 1088 * make the compressed bio endio callback populate the pages 1089 * for both ranges because each compressed bio is tightly 1090 * coupled with a single extent map, and each range can have 1091 * an extent map with a different offset value relative to the 1092 * uncompressed data of our extent and different lengths. This 1093 * is a corner case so we prioritize correctness over 1094 * non-optimal behavior (submitting 2 bios for the same extent). 1095 */ 1096 if (compress_type != BTRFS_COMPRESS_NONE && 1097 prev_em_start && *prev_em_start != (u64)-1 && 1098 *prev_em_start != em->start) 1099 force_bio_submit = true; 1100 1101 if (prev_em_start) 1102 *prev_em_start = em->start; 1103 1104 free_extent_map(em); 1105 em = NULL; 1106 1107 /* we've found a hole, just zero and go on */ 1108 if (block_start == EXTENT_MAP_HOLE) { 1109 memzero_page(page, pg_offset, iosize); 1110 1111 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1112 end_page_read(page, true, cur, iosize); 1113 cur = cur + iosize; 1114 pg_offset += iosize; 1115 continue; 1116 } 1117 /* the get_extent function already copied into the page */ 1118 if (block_start == EXTENT_MAP_INLINE) { 1119 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1120 end_page_read(page, true, cur, iosize); 1121 cur = cur + iosize; 1122 pg_offset += iosize; 1123 continue; 1124 } 1125 1126 if (bio_ctrl->compress_type != compress_type) { 1127 submit_one_bio(bio_ctrl); 1128 bio_ctrl->compress_type = compress_type; 1129 } 1130 1131 if (force_bio_submit) 1132 submit_one_bio(bio_ctrl); 1133 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1134 pg_offset); 1135 cur = cur + iosize; 1136 pg_offset += iosize; 1137 } 1138 1139 return 0; 1140 } 1141 1142 int btrfs_read_folio(struct file *file, struct folio *folio) 1143 { 1144 struct page *page = &folio->page; 1145 struct btrfs_inode *inode = page_to_inode(page); 1146 u64 start = page_offset(page); 1147 u64 end = start + PAGE_SIZE - 1; 1148 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1149 struct extent_map *em_cached = NULL; 1150 int ret; 1151 1152 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1153 1154 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL); 1155 free_extent_map(em_cached); 1156 1157 /* 1158 * If btrfs_do_readpage() failed we will want to submit the assembled 1159 * bio to do the cleanup. 1160 */ 1161 submit_one_bio(&bio_ctrl); 1162 return ret; 1163 } 1164 1165 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1166 u64 start, u64 end, 1167 struct extent_map **em_cached, 1168 struct btrfs_bio_ctrl *bio_ctrl, 1169 u64 *prev_em_start) 1170 { 1171 struct btrfs_inode *inode = page_to_inode(pages[0]); 1172 int index; 1173 1174 ASSERT(em_cached); 1175 1176 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1177 1178 for (index = 0; index < nr_pages; index++) { 1179 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1180 prev_em_start); 1181 put_page(pages[index]); 1182 } 1183 } 1184 1185 /* 1186 * helper for __extent_writepage, doing all of the delayed allocation setup. 1187 * 1188 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1189 * to write the page (copy into inline extent). In this case the IO has 1190 * been started and the page is already unlocked. 1191 * 1192 * This returns 0 if all went well (page still locked) 1193 * This returns < 0 if there were errors (page still locked) 1194 */ 1195 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1196 struct page *page, struct writeback_control *wbc) 1197 { 1198 const u64 page_start = page_offset(page); 1199 const u64 page_end = page_start + PAGE_SIZE - 1; 1200 u64 delalloc_start = page_start; 1201 u64 delalloc_end = page_end; 1202 u64 delalloc_to_write = 0; 1203 int ret = 0; 1204 1205 while (delalloc_start < page_end) { 1206 delalloc_end = page_end; 1207 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1208 &delalloc_start, &delalloc_end)) { 1209 delalloc_start = delalloc_end + 1; 1210 continue; 1211 } 1212 1213 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1214 delalloc_end, wbc); 1215 if (ret < 0) 1216 return ret; 1217 1218 delalloc_start = delalloc_end + 1; 1219 } 1220 1221 /* 1222 * delalloc_end is already one less than the total length, so 1223 * we don't subtract one from PAGE_SIZE 1224 */ 1225 delalloc_to_write += 1226 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1227 1228 /* 1229 * If btrfs_run_dealloc_range() already started I/O and unlocked 1230 * the pages, we just need to account for them here. 1231 */ 1232 if (ret == 1) { 1233 wbc->nr_to_write -= delalloc_to_write; 1234 return 1; 1235 } 1236 1237 if (wbc->nr_to_write < delalloc_to_write) { 1238 int thresh = 8192; 1239 1240 if (delalloc_to_write < thresh * 2) 1241 thresh = delalloc_to_write; 1242 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1243 thresh); 1244 } 1245 1246 return 0; 1247 } 1248 1249 /* 1250 * Find the first byte we need to write. 1251 * 1252 * For subpage, one page can contain several sectors, and 1253 * __extent_writepage_io() will just grab all extent maps in the page 1254 * range and try to submit all non-inline/non-compressed extents. 1255 * 1256 * This is a big problem for subpage, we shouldn't re-submit already written 1257 * data at all. 1258 * This function will lookup subpage dirty bit to find which range we really 1259 * need to submit. 1260 * 1261 * Return the next dirty range in [@start, @end). 1262 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1263 */ 1264 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1265 struct page *page, u64 *start, u64 *end) 1266 { 1267 struct folio *folio = page_folio(page); 1268 struct btrfs_subpage *subpage = folio_get_private(folio); 1269 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1270 u64 orig_start = *start; 1271 /* Declare as unsigned long so we can use bitmap ops */ 1272 unsigned long flags; 1273 int range_start_bit; 1274 int range_end_bit; 1275 1276 /* 1277 * For regular sector size == page size case, since one page only 1278 * contains one sector, we return the page offset directly. 1279 */ 1280 if (!btrfs_is_subpage(fs_info, page->mapping)) { 1281 *start = page_offset(page); 1282 *end = page_offset(page) + PAGE_SIZE; 1283 return; 1284 } 1285 1286 range_start_bit = spi->dirty_offset + 1287 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1288 1289 /* We should have the page locked, but just in case */ 1290 spin_lock_irqsave(&subpage->lock, flags); 1291 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1292 spi->dirty_offset + spi->bitmap_nr_bits); 1293 spin_unlock_irqrestore(&subpage->lock, flags); 1294 1295 range_start_bit -= spi->dirty_offset; 1296 range_end_bit -= spi->dirty_offset; 1297 1298 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1299 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1300 } 1301 1302 /* 1303 * helper for __extent_writepage. This calls the writepage start hooks, 1304 * and does the loop to map the page into extents and bios. 1305 * 1306 * We return 1 if the IO is started and the page is unlocked, 1307 * 0 if all went well (page still locked) 1308 * < 0 if there were errors (page still locked) 1309 */ 1310 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1311 struct page *page, 1312 struct btrfs_bio_ctrl *bio_ctrl, 1313 loff_t i_size, 1314 int *nr_ret) 1315 { 1316 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1317 u64 cur = page_offset(page); 1318 u64 end = cur + PAGE_SIZE - 1; 1319 u64 extent_offset; 1320 u64 block_start; 1321 struct extent_map *em; 1322 int ret = 0; 1323 int nr = 0; 1324 1325 ret = btrfs_writepage_cow_fixup(page); 1326 if (ret) { 1327 /* Fixup worker will requeue */ 1328 redirty_page_for_writepage(bio_ctrl->wbc, page); 1329 unlock_page(page); 1330 return 1; 1331 } 1332 1333 bio_ctrl->end_io_func = end_bbio_data_write; 1334 while (cur <= end) { 1335 u32 len = end - cur + 1; 1336 u64 disk_bytenr; 1337 u64 em_end; 1338 u64 dirty_range_start = cur; 1339 u64 dirty_range_end; 1340 u32 iosize; 1341 1342 if (cur >= i_size) { 1343 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1344 true); 1345 /* 1346 * This range is beyond i_size, thus we don't need to 1347 * bother writing back. 1348 * But we still need to clear the dirty subpage bit, or 1349 * the next time the page gets dirtied, we will try to 1350 * writeback the sectors with subpage dirty bits, 1351 * causing writeback without ordered extent. 1352 */ 1353 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len); 1354 break; 1355 } 1356 1357 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1358 &dirty_range_end); 1359 if (cur < dirty_range_start) { 1360 cur = dirty_range_start; 1361 continue; 1362 } 1363 1364 em = btrfs_get_extent(inode, NULL, cur, len); 1365 if (IS_ERR(em)) { 1366 ret = PTR_ERR_OR_ZERO(em); 1367 goto out_error; 1368 } 1369 1370 extent_offset = cur - em->start; 1371 em_end = extent_map_end(em); 1372 ASSERT(cur <= em_end); 1373 ASSERT(cur < end); 1374 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1375 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1376 1377 block_start = em->block_start; 1378 disk_bytenr = em->block_start + extent_offset; 1379 1380 ASSERT(!extent_map_is_compressed(em)); 1381 ASSERT(block_start != EXTENT_MAP_HOLE); 1382 ASSERT(block_start != EXTENT_MAP_INLINE); 1383 1384 /* 1385 * Note that em_end from extent_map_end() and dirty_range_end from 1386 * find_next_dirty_byte() are all exclusive 1387 */ 1388 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1389 free_extent_map(em); 1390 em = NULL; 1391 1392 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1393 if (!PageWriteback(page)) { 1394 btrfs_err(inode->root->fs_info, 1395 "page %lu not writeback, cur %llu end %llu", 1396 page->index, cur, end); 1397 } 1398 1399 /* 1400 * Although the PageDirty bit is cleared before entering this 1401 * function, subpage dirty bit is not cleared. 1402 * So clear subpage dirty bit here so next time we won't submit 1403 * page for range already written to disk. 1404 */ 1405 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize); 1406 1407 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1408 cur - page_offset(page)); 1409 cur += iosize; 1410 nr++; 1411 } 1412 1413 btrfs_folio_assert_not_dirty(fs_info, page_folio(page)); 1414 *nr_ret = nr; 1415 return 0; 1416 1417 out_error: 1418 /* 1419 * If we finish without problem, we should not only clear page dirty, 1420 * but also empty subpage dirty bits 1421 */ 1422 *nr_ret = nr; 1423 return ret; 1424 } 1425 1426 /* 1427 * the writepage semantics are similar to regular writepage. extent 1428 * records are inserted to lock ranges in the tree, and as dirty areas 1429 * are found, they are marked writeback. Then the lock bits are removed 1430 * and the end_io handler clears the writeback ranges 1431 * 1432 * Return 0 if everything goes well. 1433 * Return <0 for error. 1434 */ 1435 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1436 { 1437 struct folio *folio = page_folio(page); 1438 struct inode *inode = page->mapping->host; 1439 const u64 page_start = page_offset(page); 1440 int ret; 1441 int nr = 0; 1442 size_t pg_offset; 1443 loff_t i_size = i_size_read(inode); 1444 unsigned long end_index = i_size >> PAGE_SHIFT; 1445 1446 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1447 1448 WARN_ON(!PageLocked(page)); 1449 1450 pg_offset = offset_in_page(i_size); 1451 if (page->index > end_index || 1452 (page->index == end_index && !pg_offset)) { 1453 folio_invalidate(folio, 0, folio_size(folio)); 1454 folio_unlock(folio); 1455 return 0; 1456 } 1457 1458 if (page->index == end_index) 1459 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1460 1461 ret = set_page_extent_mapped(page); 1462 if (ret < 0) 1463 goto done; 1464 1465 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1466 if (ret == 1) 1467 return 0; 1468 if (ret) 1469 goto done; 1470 1471 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1472 if (ret == 1) 1473 return 0; 1474 1475 bio_ctrl->wbc->nr_to_write--; 1476 1477 done: 1478 if (nr == 0) { 1479 /* make sure the mapping tag for page dirty gets cleared */ 1480 set_page_writeback(page); 1481 end_page_writeback(page); 1482 } 1483 if (ret) { 1484 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1485 PAGE_SIZE, !ret); 1486 mapping_set_error(page->mapping, ret); 1487 } 1488 unlock_page(page); 1489 ASSERT(ret <= 0); 1490 return ret; 1491 } 1492 1493 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1494 { 1495 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1496 TASK_UNINTERRUPTIBLE); 1497 } 1498 1499 /* 1500 * Lock extent buffer status and pages for writeback. 1501 * 1502 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1503 * extent buffer is not dirty) 1504 * Return %true is the extent buffer is submitted to bio. 1505 */ 1506 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1507 struct writeback_control *wbc) 1508 { 1509 struct btrfs_fs_info *fs_info = eb->fs_info; 1510 bool ret = false; 1511 1512 btrfs_tree_lock(eb); 1513 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1514 btrfs_tree_unlock(eb); 1515 if (wbc->sync_mode != WB_SYNC_ALL) 1516 return false; 1517 wait_on_extent_buffer_writeback(eb); 1518 btrfs_tree_lock(eb); 1519 } 1520 1521 /* 1522 * We need to do this to prevent races in people who check if the eb is 1523 * under IO since we can end up having no IO bits set for a short period 1524 * of time. 1525 */ 1526 spin_lock(&eb->refs_lock); 1527 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1528 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1529 spin_unlock(&eb->refs_lock); 1530 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1531 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1532 -eb->len, 1533 fs_info->dirty_metadata_batch); 1534 ret = true; 1535 } else { 1536 spin_unlock(&eb->refs_lock); 1537 } 1538 btrfs_tree_unlock(eb); 1539 return ret; 1540 } 1541 1542 static void set_btree_ioerr(struct extent_buffer *eb) 1543 { 1544 struct btrfs_fs_info *fs_info = eb->fs_info; 1545 1546 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1547 1548 /* 1549 * A read may stumble upon this buffer later, make sure that it gets an 1550 * error and knows there was an error. 1551 */ 1552 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1553 1554 /* 1555 * We need to set the mapping with the io error as well because a write 1556 * error will flip the file system readonly, and then syncfs() will 1557 * return a 0 because we are readonly if we don't modify the err seq for 1558 * the superblock. 1559 */ 1560 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1561 1562 /* 1563 * If writeback for a btree extent that doesn't belong to a log tree 1564 * failed, increment the counter transaction->eb_write_errors. 1565 * We do this because while the transaction is running and before it's 1566 * committing (when we call filemap_fdata[write|wait]_range against 1567 * the btree inode), we might have 1568 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1569 * returns an error or an error happens during writeback, when we're 1570 * committing the transaction we wouldn't know about it, since the pages 1571 * can be no longer dirty nor marked anymore for writeback (if a 1572 * subsequent modification to the extent buffer didn't happen before the 1573 * transaction commit), which makes filemap_fdata[write|wait]_range not 1574 * able to find the pages tagged with SetPageError at transaction 1575 * commit time. So if this happens we must abort the transaction, 1576 * otherwise we commit a super block with btree roots that point to 1577 * btree nodes/leafs whose content on disk is invalid - either garbage 1578 * or the content of some node/leaf from a past generation that got 1579 * cowed or deleted and is no longer valid. 1580 * 1581 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1582 * not be enough - we need to distinguish between log tree extents vs 1583 * non-log tree extents, and the next filemap_fdatawait_range() call 1584 * will catch and clear such errors in the mapping - and that call might 1585 * be from a log sync and not from a transaction commit. Also, checking 1586 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1587 * not done and would not be reliable - the eb might have been released 1588 * from memory and reading it back again means that flag would not be 1589 * set (since it's a runtime flag, not persisted on disk). 1590 * 1591 * Using the flags below in the btree inode also makes us achieve the 1592 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1593 * writeback for all dirty pages and before filemap_fdatawait_range() 1594 * is called, the writeback for all dirty pages had already finished 1595 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1596 * filemap_fdatawait_range() would return success, as it could not know 1597 * that writeback errors happened (the pages were no longer tagged for 1598 * writeback). 1599 */ 1600 switch (eb->log_index) { 1601 case -1: 1602 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1603 break; 1604 case 0: 1605 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1606 break; 1607 case 1: 1608 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1609 break; 1610 default: 1611 BUG(); /* unexpected, logic error */ 1612 } 1613 } 1614 1615 /* 1616 * The endio specific version which won't touch any unsafe spinlock in endio 1617 * context. 1618 */ 1619 static struct extent_buffer *find_extent_buffer_nolock( 1620 struct btrfs_fs_info *fs_info, u64 start) 1621 { 1622 struct extent_buffer *eb; 1623 1624 rcu_read_lock(); 1625 eb = radix_tree_lookup(&fs_info->buffer_radix, 1626 start >> fs_info->sectorsize_bits); 1627 if (eb && atomic_inc_not_zero(&eb->refs)) { 1628 rcu_read_unlock(); 1629 return eb; 1630 } 1631 rcu_read_unlock(); 1632 return NULL; 1633 } 1634 1635 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1636 { 1637 struct extent_buffer *eb = bbio->private; 1638 struct btrfs_fs_info *fs_info = eb->fs_info; 1639 bool uptodate = !bbio->bio.bi_status; 1640 struct folio_iter fi; 1641 u32 bio_offset = 0; 1642 1643 if (!uptodate) 1644 set_btree_ioerr(eb); 1645 1646 bio_for_each_folio_all(fi, &bbio->bio) { 1647 u64 start = eb->start + bio_offset; 1648 struct folio *folio = fi.folio; 1649 u32 len = fi.length; 1650 1651 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1652 bio_offset += len; 1653 } 1654 1655 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1656 smp_mb__after_atomic(); 1657 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1658 1659 bio_put(&bbio->bio); 1660 } 1661 1662 static void prepare_eb_write(struct extent_buffer *eb) 1663 { 1664 u32 nritems; 1665 unsigned long start; 1666 unsigned long end; 1667 1668 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1669 1670 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1671 nritems = btrfs_header_nritems(eb); 1672 if (btrfs_header_level(eb) > 0) { 1673 end = btrfs_node_key_ptr_offset(eb, nritems); 1674 memzero_extent_buffer(eb, end, eb->len - end); 1675 } else { 1676 /* 1677 * Leaf: 1678 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1679 */ 1680 start = btrfs_item_nr_offset(eb, nritems); 1681 end = btrfs_item_nr_offset(eb, 0); 1682 if (nritems == 0) 1683 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1684 else 1685 end += btrfs_item_offset(eb, nritems - 1); 1686 memzero_extent_buffer(eb, start, end - start); 1687 } 1688 } 1689 1690 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1691 struct writeback_control *wbc) 1692 { 1693 struct btrfs_fs_info *fs_info = eb->fs_info; 1694 struct btrfs_bio *bbio; 1695 1696 prepare_eb_write(eb); 1697 1698 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1699 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1700 eb->fs_info, end_bbio_meta_write, eb); 1701 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1702 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1703 wbc_init_bio(wbc, &bbio->bio); 1704 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1705 bbio->file_offset = eb->start; 1706 if (fs_info->nodesize < PAGE_SIZE) { 1707 struct folio *folio = eb->folios[0]; 1708 bool ret; 1709 1710 folio_lock(folio); 1711 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1712 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1713 eb->len)) { 1714 folio_clear_dirty_for_io(folio); 1715 wbc->nr_to_write--; 1716 } 1717 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1718 eb->start - folio_pos(folio)); 1719 ASSERT(ret); 1720 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1721 folio_unlock(folio); 1722 } else { 1723 int num_folios = num_extent_folios(eb); 1724 1725 for (int i = 0; i < num_folios; i++) { 1726 struct folio *folio = eb->folios[i]; 1727 bool ret; 1728 1729 folio_lock(folio); 1730 folio_clear_dirty_for_io(folio); 1731 folio_start_writeback(folio); 1732 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1733 ASSERT(ret); 1734 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1735 eb->folio_size); 1736 wbc->nr_to_write -= folio_nr_pages(folio); 1737 folio_unlock(folio); 1738 } 1739 } 1740 btrfs_submit_bio(bbio, 0); 1741 } 1742 1743 /* 1744 * Submit one subpage btree page. 1745 * 1746 * The main difference to submit_eb_page() is: 1747 * - Page locking 1748 * For subpage, we don't rely on page locking at all. 1749 * 1750 * - Flush write bio 1751 * We only flush bio if we may be unable to fit current extent buffers into 1752 * current bio. 1753 * 1754 * Return >=0 for the number of submitted extent buffers. 1755 * Return <0 for fatal error. 1756 */ 1757 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1758 { 1759 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 1760 struct folio *folio = page_folio(page); 1761 int submitted = 0; 1762 u64 page_start = page_offset(page); 1763 int bit_start = 0; 1764 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1765 1766 /* Lock and write each dirty extent buffers in the range */ 1767 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1768 struct btrfs_subpage *subpage = folio_get_private(folio); 1769 struct extent_buffer *eb; 1770 unsigned long flags; 1771 u64 start; 1772 1773 /* 1774 * Take private lock to ensure the subpage won't be detached 1775 * in the meantime. 1776 */ 1777 spin_lock(&page->mapping->i_private_lock); 1778 if (!folio_test_private(folio)) { 1779 spin_unlock(&page->mapping->i_private_lock); 1780 break; 1781 } 1782 spin_lock_irqsave(&subpage->lock, flags); 1783 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1784 subpage->bitmaps)) { 1785 spin_unlock_irqrestore(&subpage->lock, flags); 1786 spin_unlock(&page->mapping->i_private_lock); 1787 bit_start++; 1788 continue; 1789 } 1790 1791 start = page_start + bit_start * fs_info->sectorsize; 1792 bit_start += sectors_per_node; 1793 1794 /* 1795 * Here we just want to grab the eb without touching extra 1796 * spin locks, so call find_extent_buffer_nolock(). 1797 */ 1798 eb = find_extent_buffer_nolock(fs_info, start); 1799 spin_unlock_irqrestore(&subpage->lock, flags); 1800 spin_unlock(&page->mapping->i_private_lock); 1801 1802 /* 1803 * The eb has already reached 0 refs thus find_extent_buffer() 1804 * doesn't return it. We don't need to write back such eb 1805 * anyway. 1806 */ 1807 if (!eb) 1808 continue; 1809 1810 if (lock_extent_buffer_for_io(eb, wbc)) { 1811 write_one_eb(eb, wbc); 1812 submitted++; 1813 } 1814 free_extent_buffer(eb); 1815 } 1816 return submitted; 1817 } 1818 1819 /* 1820 * Submit all page(s) of one extent buffer. 1821 * 1822 * @page: the page of one extent buffer 1823 * @eb_context: to determine if we need to submit this page, if current page 1824 * belongs to this eb, we don't need to submit 1825 * 1826 * The caller should pass each page in their bytenr order, and here we use 1827 * @eb_context to determine if we have submitted pages of one extent buffer. 1828 * 1829 * If we have, we just skip until we hit a new page that doesn't belong to 1830 * current @eb_context. 1831 * 1832 * If not, we submit all the page(s) of the extent buffer. 1833 * 1834 * Return >0 if we have submitted the extent buffer successfully. 1835 * Return 0 if we don't need to submit the page, as it's already submitted by 1836 * previous call. 1837 * Return <0 for fatal error. 1838 */ 1839 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1840 { 1841 struct writeback_control *wbc = ctx->wbc; 1842 struct address_space *mapping = page->mapping; 1843 struct folio *folio = page_folio(page); 1844 struct extent_buffer *eb; 1845 int ret; 1846 1847 if (!folio_test_private(folio)) 1848 return 0; 1849 1850 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 1851 return submit_eb_subpage(page, wbc); 1852 1853 spin_lock(&mapping->i_private_lock); 1854 if (!folio_test_private(folio)) { 1855 spin_unlock(&mapping->i_private_lock); 1856 return 0; 1857 } 1858 1859 eb = folio_get_private(folio); 1860 1861 /* 1862 * Shouldn't happen and normally this would be a BUG_ON but no point 1863 * crashing the machine for something we can survive anyway. 1864 */ 1865 if (WARN_ON(!eb)) { 1866 spin_unlock(&mapping->i_private_lock); 1867 return 0; 1868 } 1869 1870 if (eb == ctx->eb) { 1871 spin_unlock(&mapping->i_private_lock); 1872 return 0; 1873 } 1874 ret = atomic_inc_not_zero(&eb->refs); 1875 spin_unlock(&mapping->i_private_lock); 1876 if (!ret) 1877 return 0; 1878 1879 ctx->eb = eb; 1880 1881 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1882 if (ret) { 1883 if (ret == -EBUSY) 1884 ret = 0; 1885 free_extent_buffer(eb); 1886 return ret; 1887 } 1888 1889 if (!lock_extent_buffer_for_io(eb, wbc)) { 1890 free_extent_buffer(eb); 1891 return 0; 1892 } 1893 /* Implies write in zoned mode. */ 1894 if (ctx->zoned_bg) { 1895 /* Mark the last eb in the block group. */ 1896 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1897 ctx->zoned_bg->meta_write_pointer += eb->len; 1898 } 1899 write_one_eb(eb, wbc); 1900 free_extent_buffer(eb); 1901 return 1; 1902 } 1903 1904 int btree_write_cache_pages(struct address_space *mapping, 1905 struct writeback_control *wbc) 1906 { 1907 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1908 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1909 int ret = 0; 1910 int done = 0; 1911 int nr_to_write_done = 0; 1912 struct folio_batch fbatch; 1913 unsigned int nr_folios; 1914 pgoff_t index; 1915 pgoff_t end; /* Inclusive */ 1916 int scanned = 0; 1917 xa_mark_t tag; 1918 1919 folio_batch_init(&fbatch); 1920 if (wbc->range_cyclic) { 1921 index = mapping->writeback_index; /* Start from prev offset */ 1922 end = -1; 1923 /* 1924 * Start from the beginning does not need to cycle over the 1925 * range, mark it as scanned. 1926 */ 1927 scanned = (index == 0); 1928 } else { 1929 index = wbc->range_start >> PAGE_SHIFT; 1930 end = wbc->range_end >> PAGE_SHIFT; 1931 scanned = 1; 1932 } 1933 if (wbc->sync_mode == WB_SYNC_ALL) 1934 tag = PAGECACHE_TAG_TOWRITE; 1935 else 1936 tag = PAGECACHE_TAG_DIRTY; 1937 btrfs_zoned_meta_io_lock(fs_info); 1938 retry: 1939 if (wbc->sync_mode == WB_SYNC_ALL) 1940 tag_pages_for_writeback(mapping, index, end); 1941 while (!done && !nr_to_write_done && (index <= end) && 1942 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1943 tag, &fbatch))) { 1944 unsigned i; 1945 1946 for (i = 0; i < nr_folios; i++) { 1947 struct folio *folio = fbatch.folios[i]; 1948 1949 ret = submit_eb_page(&folio->page, &ctx); 1950 if (ret == 0) 1951 continue; 1952 if (ret < 0) { 1953 done = 1; 1954 break; 1955 } 1956 1957 /* 1958 * the filesystem may choose to bump up nr_to_write. 1959 * We have to make sure to honor the new nr_to_write 1960 * at any time 1961 */ 1962 nr_to_write_done = wbc->nr_to_write <= 0; 1963 } 1964 folio_batch_release(&fbatch); 1965 cond_resched(); 1966 } 1967 if (!scanned && !done) { 1968 /* 1969 * We hit the last page and there is more work to be done: wrap 1970 * back to the start of the file 1971 */ 1972 scanned = 1; 1973 index = 0; 1974 goto retry; 1975 } 1976 /* 1977 * If something went wrong, don't allow any metadata write bio to be 1978 * submitted. 1979 * 1980 * This would prevent use-after-free if we had dirty pages not 1981 * cleaned up, which can still happen by fuzzed images. 1982 * 1983 * - Bad extent tree 1984 * Allowing existing tree block to be allocated for other trees. 1985 * 1986 * - Log tree operations 1987 * Exiting tree blocks get allocated to log tree, bumps its 1988 * generation, then get cleaned in tree re-balance. 1989 * Such tree block will not be written back, since it's clean, 1990 * thus no WRITTEN flag set. 1991 * And after log writes back, this tree block is not traced by 1992 * any dirty extent_io_tree. 1993 * 1994 * - Offending tree block gets re-dirtied from its original owner 1995 * Since it has bumped generation, no WRITTEN flag, it can be 1996 * reused without COWing. This tree block will not be traced 1997 * by btrfs_transaction::dirty_pages. 1998 * 1999 * Now such dirty tree block will not be cleaned by any dirty 2000 * extent io tree. Thus we don't want to submit such wild eb 2001 * if the fs already has error. 2002 * 2003 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2004 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2005 */ 2006 if (ret > 0) 2007 ret = 0; 2008 if (!ret && BTRFS_FS_ERROR(fs_info)) 2009 ret = -EROFS; 2010 2011 if (ctx.zoned_bg) 2012 btrfs_put_block_group(ctx.zoned_bg); 2013 btrfs_zoned_meta_io_unlock(fs_info); 2014 return ret; 2015 } 2016 2017 /* 2018 * Walk the list of dirty pages of the given address space and write all of them. 2019 * 2020 * @mapping: address space structure to write 2021 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2022 * @bio_ctrl: holds context for the write, namely the bio 2023 * 2024 * If a page is already under I/O, write_cache_pages() skips it, even 2025 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2026 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2027 * and msync() need to guarantee that all the data which was dirty at the time 2028 * the call was made get new I/O started against them. If wbc->sync_mode is 2029 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2030 * existing IO to complete. 2031 */ 2032 static int extent_write_cache_pages(struct address_space *mapping, 2033 struct btrfs_bio_ctrl *bio_ctrl) 2034 { 2035 struct writeback_control *wbc = bio_ctrl->wbc; 2036 struct inode *inode = mapping->host; 2037 int ret = 0; 2038 int done = 0; 2039 int nr_to_write_done = 0; 2040 struct folio_batch fbatch; 2041 unsigned int nr_folios; 2042 pgoff_t index; 2043 pgoff_t end; /* Inclusive */ 2044 pgoff_t done_index; 2045 int range_whole = 0; 2046 int scanned = 0; 2047 xa_mark_t tag; 2048 2049 /* 2050 * We have to hold onto the inode so that ordered extents can do their 2051 * work when the IO finishes. The alternative to this is failing to add 2052 * an ordered extent if the igrab() fails there and that is a huge pain 2053 * to deal with, so instead just hold onto the inode throughout the 2054 * writepages operation. If it fails here we are freeing up the inode 2055 * anyway and we'd rather not waste our time writing out stuff that is 2056 * going to be truncated anyway. 2057 */ 2058 if (!igrab(inode)) 2059 return 0; 2060 2061 folio_batch_init(&fbatch); 2062 if (wbc->range_cyclic) { 2063 index = mapping->writeback_index; /* Start from prev offset */ 2064 end = -1; 2065 /* 2066 * Start from the beginning does not need to cycle over the 2067 * range, mark it as scanned. 2068 */ 2069 scanned = (index == 0); 2070 } else { 2071 index = wbc->range_start >> PAGE_SHIFT; 2072 end = wbc->range_end >> PAGE_SHIFT; 2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2074 range_whole = 1; 2075 scanned = 1; 2076 } 2077 2078 /* 2079 * We do the tagged writepage as long as the snapshot flush bit is set 2080 * and we are the first one who do the filemap_flush() on this inode. 2081 * 2082 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2083 * not race in and drop the bit. 2084 */ 2085 if (range_whole && wbc->nr_to_write == LONG_MAX && 2086 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2087 &BTRFS_I(inode)->runtime_flags)) 2088 wbc->tagged_writepages = 1; 2089 2090 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2091 tag = PAGECACHE_TAG_TOWRITE; 2092 else 2093 tag = PAGECACHE_TAG_DIRTY; 2094 retry: 2095 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2096 tag_pages_for_writeback(mapping, index, end); 2097 done_index = index; 2098 while (!done && !nr_to_write_done && (index <= end) && 2099 (nr_folios = filemap_get_folios_tag(mapping, &index, 2100 end, tag, &fbatch))) { 2101 unsigned i; 2102 2103 for (i = 0; i < nr_folios; i++) { 2104 struct folio *folio = fbatch.folios[i]; 2105 2106 done_index = folio_next_index(folio); 2107 /* 2108 * At this point we hold neither the i_pages lock nor 2109 * the page lock: the page may be truncated or 2110 * invalidated (changing page->mapping to NULL), 2111 * or even swizzled back from swapper_space to 2112 * tmpfs file mapping 2113 */ 2114 if (!folio_trylock(folio)) { 2115 submit_write_bio(bio_ctrl, 0); 2116 folio_lock(folio); 2117 } 2118 2119 if (unlikely(folio->mapping != mapping)) { 2120 folio_unlock(folio); 2121 continue; 2122 } 2123 2124 if (!folio_test_dirty(folio)) { 2125 /* Someone wrote it for us. */ 2126 folio_unlock(folio); 2127 continue; 2128 } 2129 2130 if (wbc->sync_mode != WB_SYNC_NONE) { 2131 if (folio_test_writeback(folio)) 2132 submit_write_bio(bio_ctrl, 0); 2133 folio_wait_writeback(folio); 2134 } 2135 2136 if (folio_test_writeback(folio) || 2137 !folio_clear_dirty_for_io(folio)) { 2138 folio_unlock(folio); 2139 continue; 2140 } 2141 2142 ret = __extent_writepage(&folio->page, bio_ctrl); 2143 if (ret < 0) { 2144 done = 1; 2145 break; 2146 } 2147 2148 /* 2149 * The filesystem may choose to bump up nr_to_write. 2150 * We have to make sure to honor the new nr_to_write 2151 * at any time. 2152 */ 2153 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2154 wbc->nr_to_write <= 0); 2155 } 2156 folio_batch_release(&fbatch); 2157 cond_resched(); 2158 } 2159 if (!scanned && !done) { 2160 /* 2161 * We hit the last page and there is more work to be done: wrap 2162 * back to the start of the file 2163 */ 2164 scanned = 1; 2165 index = 0; 2166 2167 /* 2168 * If we're looping we could run into a page that is locked by a 2169 * writer and that writer could be waiting on writeback for a 2170 * page in our current bio, and thus deadlock, so flush the 2171 * write bio here. 2172 */ 2173 submit_write_bio(bio_ctrl, 0); 2174 goto retry; 2175 } 2176 2177 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2178 mapping->writeback_index = done_index; 2179 2180 btrfs_add_delayed_iput(BTRFS_I(inode)); 2181 return ret; 2182 } 2183 2184 /* 2185 * Submit the pages in the range to bio for call sites which delalloc range has 2186 * already been ran (aka, ordered extent inserted) and all pages are still 2187 * locked. 2188 */ 2189 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2190 u64 start, u64 end, struct writeback_control *wbc, 2191 bool pages_dirty) 2192 { 2193 bool found_error = false; 2194 int ret = 0; 2195 struct address_space *mapping = inode->i_mapping; 2196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2197 const u32 sectorsize = fs_info->sectorsize; 2198 loff_t i_size = i_size_read(inode); 2199 u64 cur = start; 2200 struct btrfs_bio_ctrl bio_ctrl = { 2201 .wbc = wbc, 2202 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2203 }; 2204 2205 if (wbc->no_cgroup_owner) 2206 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2207 2208 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2209 2210 while (cur <= end) { 2211 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2212 u32 cur_len = cur_end + 1 - cur; 2213 struct page *page; 2214 int nr = 0; 2215 2216 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2217 ASSERT(PageLocked(page)); 2218 if (pages_dirty && page != locked_page) { 2219 ASSERT(PageDirty(page)); 2220 clear_page_dirty_for_io(page); 2221 } 2222 2223 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2224 i_size, &nr); 2225 if (ret == 1) 2226 goto next_page; 2227 2228 /* Make sure the mapping tag for page dirty gets cleared. */ 2229 if (nr == 0) { 2230 set_page_writeback(page); 2231 end_page_writeback(page); 2232 } 2233 if (ret) { 2234 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2235 cur, cur_len, !ret); 2236 mapping_set_error(page->mapping, ret); 2237 } 2238 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len); 2239 if (ret < 0) 2240 found_error = true; 2241 next_page: 2242 put_page(page); 2243 cur = cur_end + 1; 2244 } 2245 2246 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2247 } 2248 2249 int extent_writepages(struct address_space *mapping, 2250 struct writeback_control *wbc) 2251 { 2252 struct inode *inode = mapping->host; 2253 int ret = 0; 2254 struct btrfs_bio_ctrl bio_ctrl = { 2255 .wbc = wbc, 2256 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2257 }; 2258 2259 /* 2260 * Allow only a single thread to do the reloc work in zoned mode to 2261 * protect the write pointer updates. 2262 */ 2263 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2264 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2265 submit_write_bio(&bio_ctrl, ret); 2266 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2267 return ret; 2268 } 2269 2270 void extent_readahead(struct readahead_control *rac) 2271 { 2272 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2273 struct page *pagepool[16]; 2274 struct extent_map *em_cached = NULL; 2275 u64 prev_em_start = (u64)-1; 2276 int nr; 2277 2278 while ((nr = readahead_page_batch(rac, pagepool))) { 2279 u64 contig_start = readahead_pos(rac); 2280 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2281 2282 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2283 &em_cached, &bio_ctrl, &prev_em_start); 2284 } 2285 2286 if (em_cached) 2287 free_extent_map(em_cached); 2288 submit_one_bio(&bio_ctrl); 2289 } 2290 2291 /* 2292 * basic invalidate_folio code, this waits on any locked or writeback 2293 * ranges corresponding to the folio, and then deletes any extent state 2294 * records from the tree 2295 */ 2296 int extent_invalidate_folio(struct extent_io_tree *tree, 2297 struct folio *folio, size_t offset) 2298 { 2299 struct extent_state *cached_state = NULL; 2300 u64 start = folio_pos(folio); 2301 u64 end = start + folio_size(folio) - 1; 2302 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2303 2304 /* This function is only called for the btree inode */ 2305 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2306 2307 start += ALIGN(offset, blocksize); 2308 if (start > end) 2309 return 0; 2310 2311 lock_extent(tree, start, end, &cached_state); 2312 folio_wait_writeback(folio); 2313 2314 /* 2315 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2316 * so here we only need to unlock the extent range to free any 2317 * existing extent state. 2318 */ 2319 unlock_extent(tree, start, end, &cached_state); 2320 return 0; 2321 } 2322 2323 /* 2324 * a helper for release_folio, this tests for areas of the page that 2325 * are locked or under IO and drops the related state bits if it is safe 2326 * to drop the page. 2327 */ 2328 static int try_release_extent_state(struct extent_io_tree *tree, 2329 struct page *page, gfp_t mask) 2330 { 2331 u64 start = page_offset(page); 2332 u64 end = start + PAGE_SIZE - 1; 2333 int ret = 1; 2334 2335 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2336 ret = 0; 2337 } else { 2338 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2339 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2340 EXTENT_QGROUP_RESERVED); 2341 2342 /* 2343 * At this point we can safely clear everything except the 2344 * locked bit, the nodatasum bit and the delalloc new bit. 2345 * The delalloc new bit will be cleared by ordered extent 2346 * completion. 2347 */ 2348 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2349 2350 /* if clear_extent_bit failed for enomem reasons, 2351 * we can't allow the release to continue. 2352 */ 2353 if (ret < 0) 2354 ret = 0; 2355 else 2356 ret = 1; 2357 } 2358 return ret; 2359 } 2360 2361 /* 2362 * a helper for release_folio. As long as there are no locked extents 2363 * in the range corresponding to the page, both state records and extent 2364 * map records are removed 2365 */ 2366 int try_release_extent_mapping(struct page *page, gfp_t mask) 2367 { 2368 struct extent_map *em; 2369 u64 start = page_offset(page); 2370 u64 end = start + PAGE_SIZE - 1; 2371 struct btrfs_inode *btrfs_inode = page_to_inode(page); 2372 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2373 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2374 2375 if (gfpflags_allow_blocking(mask) && 2376 page->mapping->host->i_size > SZ_16M) { 2377 u64 len; 2378 while (start <= end) { 2379 struct btrfs_fs_info *fs_info; 2380 u64 cur_gen; 2381 2382 len = end - start + 1; 2383 write_lock(&map->lock); 2384 em = lookup_extent_mapping(map, start, len); 2385 if (!em) { 2386 write_unlock(&map->lock); 2387 break; 2388 } 2389 if ((em->flags & EXTENT_FLAG_PINNED) || 2390 em->start != start) { 2391 write_unlock(&map->lock); 2392 free_extent_map(em); 2393 break; 2394 } 2395 if (test_range_bit_exists(tree, em->start, 2396 extent_map_end(em) - 1, 2397 EXTENT_LOCKED)) 2398 goto next; 2399 /* 2400 * If it's not in the list of modified extents, used 2401 * by a fast fsync, we can remove it. If it's being 2402 * logged we can safely remove it since fsync took an 2403 * extra reference on the em. 2404 */ 2405 if (list_empty(&em->list) || 2406 (em->flags & EXTENT_FLAG_LOGGING)) 2407 goto remove_em; 2408 /* 2409 * If it's in the list of modified extents, remove it 2410 * only if its generation is older then the current one, 2411 * in which case we don't need it for a fast fsync. 2412 * Otherwise don't remove it, we could be racing with an 2413 * ongoing fast fsync that could miss the new extent. 2414 */ 2415 fs_info = btrfs_inode->root->fs_info; 2416 spin_lock(&fs_info->trans_lock); 2417 cur_gen = fs_info->generation; 2418 spin_unlock(&fs_info->trans_lock); 2419 if (em->generation >= cur_gen) 2420 goto next; 2421 remove_em: 2422 /* 2423 * We only remove extent maps that are not in the list of 2424 * modified extents or that are in the list but with a 2425 * generation lower then the current generation, so there 2426 * is no need to set the full fsync flag on the inode (it 2427 * hurts the fsync performance for workloads with a data 2428 * size that exceeds or is close to the system's memory). 2429 */ 2430 remove_extent_mapping(map, em); 2431 /* once for the rb tree */ 2432 free_extent_map(em); 2433 next: 2434 start = extent_map_end(em); 2435 write_unlock(&map->lock); 2436 2437 /* once for us */ 2438 free_extent_map(em); 2439 2440 cond_resched(); /* Allow large-extent preemption. */ 2441 } 2442 } 2443 return try_release_extent_state(tree, page, mask); 2444 } 2445 2446 struct btrfs_fiemap_entry { 2447 u64 offset; 2448 u64 phys; 2449 u64 len; 2450 u32 flags; 2451 }; 2452 2453 /* 2454 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file 2455 * range from the inode's io tree, unlock the subvolume tree search path, flush 2456 * the fiemap cache and relock the file range and research the subvolume tree. 2457 * The value here is something negative that can't be confused with a valid 2458 * errno value and different from 1 because that's also a return value from 2459 * fiemap_fill_next_extent() and also it's often used to mean some btree search 2460 * did not find a key, so make it some distinct negative value. 2461 */ 2462 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1)) 2463 2464 /* 2465 * Used to: 2466 * 2467 * - Cache the next entry to be emitted to the fiemap buffer, so that we can 2468 * merge extents that are contiguous and can be grouped as a single one; 2469 * 2470 * - Store extents ready to be written to the fiemap buffer in an intermediary 2471 * buffer. This intermediary buffer is to ensure that in case the fiemap 2472 * buffer is memory mapped to the fiemap target file, we don't deadlock 2473 * during btrfs_page_mkwrite(). This is because during fiemap we are locking 2474 * an extent range in order to prevent races with delalloc flushing and 2475 * ordered extent completion, which is needed in order to reliably detect 2476 * delalloc in holes and prealloc extents. And this can lead to a deadlock 2477 * if the fiemap buffer is memory mapped to the file we are running fiemap 2478 * against (a silly, useless in practice scenario, but possible) because 2479 * btrfs_page_mkwrite() will try to lock the same extent range. 2480 */ 2481 struct fiemap_cache { 2482 /* An array of ready fiemap entries. */ 2483 struct btrfs_fiemap_entry *entries; 2484 /* Number of entries in the entries array. */ 2485 int entries_size; 2486 /* Index of the next entry in the entries array to write to. */ 2487 int entries_pos; 2488 /* 2489 * Once the entries array is full, this indicates what's the offset for 2490 * the next file extent item we must search for in the inode's subvolume 2491 * tree after unlocking the extent range in the inode's io tree and 2492 * releasing the search path. 2493 */ 2494 u64 next_search_offset; 2495 /* 2496 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it 2497 * to count ourselves emitted extents and stop instead of relying on 2498 * fiemap_fill_next_extent() because we buffer ready fiemap entries at 2499 * the @entries array, and we want to stop as soon as we hit the max 2500 * amount of extents to map, not just to save time but also to make the 2501 * logic at extent_fiemap() simpler. 2502 */ 2503 unsigned int extents_mapped; 2504 /* Fields for the cached extent (unsubmitted, not ready, extent). */ 2505 u64 offset; 2506 u64 phys; 2507 u64 len; 2508 u32 flags; 2509 bool cached; 2510 }; 2511 2512 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo, 2513 struct fiemap_cache *cache) 2514 { 2515 for (int i = 0; i < cache->entries_pos; i++) { 2516 struct btrfs_fiemap_entry *entry = &cache->entries[i]; 2517 int ret; 2518 2519 ret = fiemap_fill_next_extent(fieinfo, entry->offset, 2520 entry->phys, entry->len, 2521 entry->flags); 2522 /* 2523 * Ignore 1 (reached max entries) because we keep track of that 2524 * ourselves in emit_fiemap_extent(). 2525 */ 2526 if (ret < 0) 2527 return ret; 2528 } 2529 cache->entries_pos = 0; 2530 2531 return 0; 2532 } 2533 2534 /* 2535 * Helper to submit fiemap extent. 2536 * 2537 * Will try to merge current fiemap extent specified by @offset, @phys, 2538 * @len and @flags with cached one. 2539 * And only when we fails to merge, cached one will be submitted as 2540 * fiemap extent. 2541 * 2542 * Return value is the same as fiemap_fill_next_extent(). 2543 */ 2544 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2545 struct fiemap_cache *cache, 2546 u64 offset, u64 phys, u64 len, u32 flags) 2547 { 2548 struct btrfs_fiemap_entry *entry; 2549 u64 cache_end; 2550 2551 /* Set at the end of extent_fiemap(). */ 2552 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2553 2554 if (!cache->cached) 2555 goto assign; 2556 2557 /* 2558 * When iterating the extents of the inode, at extent_fiemap(), we may 2559 * find an extent that starts at an offset behind the end offset of the 2560 * previous extent we processed. This happens if fiemap is called 2561 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2562 * after we had to unlock the file range, release the search path, emit 2563 * the fiemap extents stored in the buffer (cache->entries array) and 2564 * the lock the remainder of the range and re-search the btree. 2565 * 2566 * For example we are in leaf X processing its last item, which is the 2567 * file extent item for file range [512K, 1M[, and after 2568 * btrfs_next_leaf() releases the path, there's an ordered extent that 2569 * completes for the file range [768K, 2M[, and that results in trimming 2570 * the file extent item so that it now corresponds to the file range 2571 * [512K, 768K[ and a new file extent item is inserted for the file 2572 * range [768K, 2M[, which may end up as the last item of leaf X or as 2573 * the first item of the next leaf - in either case btrfs_next_leaf() 2574 * will leave us with a path pointing to the new extent item, for the 2575 * file range [768K, 2M[, since that's the first key that follows the 2576 * last one we processed. So in order not to report overlapping extents 2577 * to user space, we trim the length of the previously cached extent and 2578 * emit it. 2579 * 2580 * Upon calling btrfs_next_leaf() we may also find an extent with an 2581 * offset smaller than or equals to cache->offset, and this happens 2582 * when we had a hole or prealloc extent with several delalloc ranges in 2583 * it, but after btrfs_next_leaf() released the path, delalloc was 2584 * flushed and the resulting ordered extents were completed, so we can 2585 * now have found a file extent item for an offset that is smaller than 2586 * or equals to what we have in cache->offset. We deal with this as 2587 * described below. 2588 */ 2589 cache_end = cache->offset + cache->len; 2590 if (cache_end > offset) { 2591 if (offset == cache->offset) { 2592 /* 2593 * We cached a dealloc range (found in the io tree) for 2594 * a hole or prealloc extent and we have now found a 2595 * file extent item for the same offset. What we have 2596 * now is more recent and up to date, so discard what 2597 * we had in the cache and use what we have just found. 2598 */ 2599 goto assign; 2600 } else if (offset > cache->offset) { 2601 /* 2602 * The extent range we previously found ends after the 2603 * offset of the file extent item we found and that 2604 * offset falls somewhere in the middle of that previous 2605 * extent range. So adjust the range we previously found 2606 * to end at the offset of the file extent item we have 2607 * just found, since this extent is more up to date. 2608 * Emit that adjusted range and cache the file extent 2609 * item we have just found. This corresponds to the case 2610 * where a previously found file extent item was split 2611 * due to an ordered extent completing. 2612 */ 2613 cache->len = offset - cache->offset; 2614 goto emit; 2615 } else { 2616 const u64 range_end = offset + len; 2617 2618 /* 2619 * The offset of the file extent item we have just found 2620 * is behind the cached offset. This means we were 2621 * processing a hole or prealloc extent for which we 2622 * have found delalloc ranges (in the io tree), so what 2623 * we have in the cache is the last delalloc range we 2624 * found while the file extent item we found can be 2625 * either for a whole delalloc range we previously 2626 * emmitted or only a part of that range. 2627 * 2628 * We have two cases here: 2629 * 2630 * 1) The file extent item's range ends at or behind the 2631 * cached extent's end. In this case just ignore the 2632 * current file extent item because we don't want to 2633 * overlap with previous ranges that may have been 2634 * emmitted already; 2635 * 2636 * 2) The file extent item starts behind the currently 2637 * cached extent but its end offset goes beyond the 2638 * end offset of the cached extent. We don't want to 2639 * overlap with a previous range that may have been 2640 * emmitted already, so we emit the currently cached 2641 * extent and then partially store the current file 2642 * extent item's range in the cache, for the subrange 2643 * going the cached extent's end to the end of the 2644 * file extent item. 2645 */ 2646 if (range_end <= cache_end) 2647 return 0; 2648 2649 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2650 phys += cache_end - offset; 2651 2652 offset = cache_end; 2653 len = range_end - cache_end; 2654 goto emit; 2655 } 2656 } 2657 2658 /* 2659 * Only merges fiemap extents if 2660 * 1) Their logical addresses are continuous 2661 * 2662 * 2) Their physical addresses are continuous 2663 * So truly compressed (physical size smaller than logical size) 2664 * extents won't get merged with each other 2665 * 2666 * 3) Share same flags 2667 */ 2668 if (cache->offset + cache->len == offset && 2669 cache->phys + cache->len == phys && 2670 cache->flags == flags) { 2671 cache->len += len; 2672 return 0; 2673 } 2674 2675 emit: 2676 /* Not mergeable, need to submit cached one */ 2677 2678 if (cache->entries_pos == cache->entries_size) { 2679 /* 2680 * We will need to research for the end offset of the last 2681 * stored extent and not from the current offset, because after 2682 * unlocking the range and releasing the path, if there's a hole 2683 * between that end offset and this current offset, a new extent 2684 * may have been inserted due to a new write, so we don't want 2685 * to miss it. 2686 */ 2687 entry = &cache->entries[cache->entries_size - 1]; 2688 cache->next_search_offset = entry->offset + entry->len; 2689 cache->cached = false; 2690 2691 return BTRFS_FIEMAP_FLUSH_CACHE; 2692 } 2693 2694 entry = &cache->entries[cache->entries_pos]; 2695 entry->offset = cache->offset; 2696 entry->phys = cache->phys; 2697 entry->len = cache->len; 2698 entry->flags = cache->flags; 2699 cache->entries_pos++; 2700 cache->extents_mapped++; 2701 2702 if (cache->extents_mapped == fieinfo->fi_extents_max) { 2703 cache->cached = false; 2704 return 1; 2705 } 2706 assign: 2707 cache->cached = true; 2708 cache->offset = offset; 2709 cache->phys = phys; 2710 cache->len = len; 2711 cache->flags = flags; 2712 2713 return 0; 2714 } 2715 2716 /* 2717 * Emit last fiemap cache 2718 * 2719 * The last fiemap cache may still be cached in the following case: 2720 * 0 4k 8k 2721 * |<- Fiemap range ->| 2722 * |<------------ First extent ----------->| 2723 * 2724 * In this case, the first extent range will be cached but not emitted. 2725 * So we must emit it before ending extent_fiemap(). 2726 */ 2727 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2728 struct fiemap_cache *cache) 2729 { 2730 int ret; 2731 2732 if (!cache->cached) 2733 return 0; 2734 2735 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2736 cache->len, cache->flags); 2737 cache->cached = false; 2738 if (ret > 0) 2739 ret = 0; 2740 return ret; 2741 } 2742 2743 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2744 { 2745 struct extent_buffer *clone = path->nodes[0]; 2746 struct btrfs_key key; 2747 int slot; 2748 int ret; 2749 2750 path->slots[0]++; 2751 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2752 return 0; 2753 2754 /* 2755 * Add a temporary extra ref to an already cloned extent buffer to 2756 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid 2757 * the cost of allocating a new one. 2758 */ 2759 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags)); 2760 atomic_inc(&clone->refs); 2761 2762 ret = btrfs_next_leaf(inode->root, path); 2763 if (ret != 0) 2764 goto out; 2765 2766 /* 2767 * Don't bother with cloning if there are no more file extent items for 2768 * our inode. 2769 */ 2770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2771 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) { 2772 ret = 1; 2773 goto out; 2774 } 2775 2776 /* See the comment at fiemap_search_slot() about why we clone. */ 2777 copy_extent_buffer_full(clone, path->nodes[0]); 2778 /* 2779 * Important to preserve the start field, for the optimizations when 2780 * checking if extents are shared (see extent_fiemap()). 2781 */ 2782 clone->start = path->nodes[0]->start; 2783 2784 slot = path->slots[0]; 2785 btrfs_release_path(path); 2786 path->nodes[0] = clone; 2787 path->slots[0] = slot; 2788 out: 2789 if (ret) 2790 free_extent_buffer(clone); 2791 2792 return ret; 2793 } 2794 2795 /* 2796 * Search for the first file extent item that starts at a given file offset or 2797 * the one that starts immediately before that offset. 2798 * Returns: 0 on success, < 0 on error, 1 if not found. 2799 */ 2800 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2801 u64 file_offset) 2802 { 2803 const u64 ino = btrfs_ino(inode); 2804 struct btrfs_root *root = inode->root; 2805 struct extent_buffer *clone; 2806 struct btrfs_key key; 2807 int slot; 2808 int ret; 2809 2810 key.objectid = ino; 2811 key.type = BTRFS_EXTENT_DATA_KEY; 2812 key.offset = file_offset; 2813 2814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2815 if (ret < 0) 2816 return ret; 2817 2818 if (ret > 0 && path->slots[0] > 0) { 2819 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2820 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2821 path->slots[0]--; 2822 } 2823 2824 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2825 ret = btrfs_next_leaf(root, path); 2826 if (ret != 0) 2827 return ret; 2828 2829 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2830 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2831 return 1; 2832 } 2833 2834 /* 2835 * We clone the leaf and use it during fiemap. This is because while 2836 * using the leaf we do expensive things like checking if an extent is 2837 * shared, which can take a long time. In order to prevent blocking 2838 * other tasks for too long, we use a clone of the leaf. We have locked 2839 * the file range in the inode's io tree, so we know none of our file 2840 * extent items can change. This way we avoid blocking other tasks that 2841 * want to insert items for other inodes in the same leaf or b+tree 2842 * rebalance operations (triggered for example when someone is trying 2843 * to push items into this leaf when trying to insert an item in a 2844 * neighbour leaf). 2845 * We also need the private clone because holding a read lock on an 2846 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2847 * when we check if extents are shared, as backref walking may need to 2848 * lock the same leaf we are processing. 2849 */ 2850 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2851 if (!clone) 2852 return -ENOMEM; 2853 2854 slot = path->slots[0]; 2855 btrfs_release_path(path); 2856 path->nodes[0] = clone; 2857 path->slots[0] = slot; 2858 2859 return 0; 2860 } 2861 2862 /* 2863 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2864 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2865 * extent. The end offset (@end) is inclusive. 2866 */ 2867 static int fiemap_process_hole(struct btrfs_inode *inode, 2868 struct fiemap_extent_info *fieinfo, 2869 struct fiemap_cache *cache, 2870 struct extent_state **delalloc_cached_state, 2871 struct btrfs_backref_share_check_ctx *backref_ctx, 2872 u64 disk_bytenr, u64 extent_offset, 2873 u64 extent_gen, 2874 u64 start, u64 end) 2875 { 2876 const u64 i_size = i_size_read(&inode->vfs_inode); 2877 u64 cur_offset = start; 2878 u64 last_delalloc_end = 0; 2879 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2880 bool checked_extent_shared = false; 2881 int ret; 2882 2883 /* 2884 * There can be no delalloc past i_size, so don't waste time looking for 2885 * it beyond i_size. 2886 */ 2887 while (cur_offset < end && cur_offset < i_size) { 2888 u64 delalloc_start; 2889 u64 delalloc_end; 2890 u64 prealloc_start; 2891 u64 prealloc_len = 0; 2892 bool delalloc; 2893 2894 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2895 delalloc_cached_state, 2896 &delalloc_start, 2897 &delalloc_end); 2898 if (!delalloc) 2899 break; 2900 2901 /* 2902 * If this is a prealloc extent we have to report every section 2903 * of it that has no delalloc. 2904 */ 2905 if (disk_bytenr != 0) { 2906 if (last_delalloc_end == 0) { 2907 prealloc_start = start; 2908 prealloc_len = delalloc_start - start; 2909 } else { 2910 prealloc_start = last_delalloc_end + 1; 2911 prealloc_len = delalloc_start - prealloc_start; 2912 } 2913 } 2914 2915 if (prealloc_len > 0) { 2916 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2917 ret = btrfs_is_data_extent_shared(inode, 2918 disk_bytenr, 2919 extent_gen, 2920 backref_ctx); 2921 if (ret < 0) 2922 return ret; 2923 else if (ret > 0) 2924 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2925 2926 checked_extent_shared = true; 2927 } 2928 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2929 disk_bytenr + extent_offset, 2930 prealloc_len, prealloc_flags); 2931 if (ret) 2932 return ret; 2933 extent_offset += prealloc_len; 2934 } 2935 2936 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2937 delalloc_end + 1 - delalloc_start, 2938 FIEMAP_EXTENT_DELALLOC | 2939 FIEMAP_EXTENT_UNKNOWN); 2940 if (ret) 2941 return ret; 2942 2943 last_delalloc_end = delalloc_end; 2944 cur_offset = delalloc_end + 1; 2945 extent_offset += cur_offset - delalloc_start; 2946 cond_resched(); 2947 } 2948 2949 /* 2950 * Either we found no delalloc for the whole prealloc extent or we have 2951 * a prealloc extent that spans i_size or starts at or after i_size. 2952 */ 2953 if (disk_bytenr != 0 && last_delalloc_end < end) { 2954 u64 prealloc_start; 2955 u64 prealloc_len; 2956 2957 if (last_delalloc_end == 0) { 2958 prealloc_start = start; 2959 prealloc_len = end + 1 - start; 2960 } else { 2961 prealloc_start = last_delalloc_end + 1; 2962 prealloc_len = end + 1 - prealloc_start; 2963 } 2964 2965 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2966 ret = btrfs_is_data_extent_shared(inode, 2967 disk_bytenr, 2968 extent_gen, 2969 backref_ctx); 2970 if (ret < 0) 2971 return ret; 2972 else if (ret > 0) 2973 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2974 } 2975 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2976 disk_bytenr + extent_offset, 2977 prealloc_len, prealloc_flags); 2978 if (ret) 2979 return ret; 2980 } 2981 2982 return 0; 2983 } 2984 2985 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2986 struct btrfs_path *path, 2987 u64 *last_extent_end_ret) 2988 { 2989 const u64 ino = btrfs_ino(inode); 2990 struct btrfs_root *root = inode->root; 2991 struct extent_buffer *leaf; 2992 struct btrfs_file_extent_item *ei; 2993 struct btrfs_key key; 2994 u64 disk_bytenr; 2995 int ret; 2996 2997 /* 2998 * Lookup the last file extent. We're not using i_size here because 2999 * there might be preallocation past i_size. 3000 */ 3001 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3002 /* There can't be a file extent item at offset (u64)-1 */ 3003 ASSERT(ret != 0); 3004 if (ret < 0) 3005 return ret; 3006 3007 /* 3008 * For a non-existing key, btrfs_search_slot() always leaves us at a 3009 * slot > 0, except if the btree is empty, which is impossible because 3010 * at least it has the inode item for this inode and all the items for 3011 * the root inode 256. 3012 */ 3013 ASSERT(path->slots[0] > 0); 3014 path->slots[0]--; 3015 leaf = path->nodes[0]; 3016 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3017 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3018 /* No file extent items in the subvolume tree. */ 3019 *last_extent_end_ret = 0; 3020 return 0; 3021 } 3022 3023 /* 3024 * For an inline extent, the disk_bytenr is where inline data starts at, 3025 * so first check if we have an inline extent item before checking if we 3026 * have an implicit hole (disk_bytenr == 0). 3027 */ 3028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3029 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3030 *last_extent_end_ret = btrfs_file_extent_end(path); 3031 return 0; 3032 } 3033 3034 /* 3035 * Find the last file extent item that is not a hole (when NO_HOLES is 3036 * not enabled). This should take at most 2 iterations in the worst 3037 * case: we have one hole file extent item at slot 0 of a leaf and 3038 * another hole file extent item as the last item in the previous leaf. 3039 * This is because we merge file extent items that represent holes. 3040 */ 3041 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3042 while (disk_bytenr == 0) { 3043 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3044 if (ret < 0) { 3045 return ret; 3046 } else if (ret > 0) { 3047 /* No file extent items that are not holes. */ 3048 *last_extent_end_ret = 0; 3049 return 0; 3050 } 3051 leaf = path->nodes[0]; 3052 ei = btrfs_item_ptr(leaf, path->slots[0], 3053 struct btrfs_file_extent_item); 3054 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3055 } 3056 3057 *last_extent_end_ret = btrfs_file_extent_end(path); 3058 return 0; 3059 } 3060 3061 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3062 u64 start, u64 len) 3063 { 3064 const u64 ino = btrfs_ino(inode); 3065 struct extent_state *cached_state = NULL; 3066 struct extent_state *delalloc_cached_state = NULL; 3067 struct btrfs_path *path; 3068 struct fiemap_cache cache = { 0 }; 3069 struct btrfs_backref_share_check_ctx *backref_ctx; 3070 u64 last_extent_end; 3071 u64 prev_extent_end; 3072 u64 range_start; 3073 u64 range_end; 3074 const u64 sectorsize = inode->root->fs_info->sectorsize; 3075 bool stopped = false; 3076 int ret; 3077 3078 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry); 3079 cache.entries = kmalloc_array(cache.entries_size, 3080 sizeof(struct btrfs_fiemap_entry), 3081 GFP_KERNEL); 3082 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3083 path = btrfs_alloc_path(); 3084 if (!cache.entries || !backref_ctx || !path) { 3085 ret = -ENOMEM; 3086 goto out; 3087 } 3088 3089 restart: 3090 range_start = round_down(start, sectorsize); 3091 range_end = round_up(start + len, sectorsize); 3092 prev_extent_end = range_start; 3093 3094 lock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3095 3096 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3097 if (ret < 0) 3098 goto out_unlock; 3099 btrfs_release_path(path); 3100 3101 path->reada = READA_FORWARD; 3102 ret = fiemap_search_slot(inode, path, range_start); 3103 if (ret < 0) { 3104 goto out_unlock; 3105 } else if (ret > 0) { 3106 /* 3107 * No file extent item found, but we may have delalloc between 3108 * the current offset and i_size. So check for that. 3109 */ 3110 ret = 0; 3111 goto check_eof_delalloc; 3112 } 3113 3114 while (prev_extent_end < range_end) { 3115 struct extent_buffer *leaf = path->nodes[0]; 3116 struct btrfs_file_extent_item *ei; 3117 struct btrfs_key key; 3118 u64 extent_end; 3119 u64 extent_len; 3120 u64 extent_offset = 0; 3121 u64 extent_gen; 3122 u64 disk_bytenr = 0; 3123 u64 flags = 0; 3124 int extent_type; 3125 u8 compression; 3126 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3128 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3129 break; 3130 3131 extent_end = btrfs_file_extent_end(path); 3132 3133 /* 3134 * The first iteration can leave us at an extent item that ends 3135 * before our range's start. Move to the next item. 3136 */ 3137 if (extent_end <= range_start) 3138 goto next_item; 3139 3140 backref_ctx->curr_leaf_bytenr = leaf->start; 3141 3142 /* We have in implicit hole (NO_HOLES feature enabled). */ 3143 if (prev_extent_end < key.offset) { 3144 const u64 hole_end = min(key.offset, range_end) - 1; 3145 3146 ret = fiemap_process_hole(inode, fieinfo, &cache, 3147 &delalloc_cached_state, 3148 backref_ctx, 0, 0, 0, 3149 prev_extent_end, hole_end); 3150 if (ret < 0) { 3151 goto out_unlock; 3152 } else if (ret > 0) { 3153 /* fiemap_fill_next_extent() told us to stop. */ 3154 stopped = true; 3155 break; 3156 } 3157 3158 /* We've reached the end of the fiemap range, stop. */ 3159 if (key.offset >= range_end) { 3160 stopped = true; 3161 break; 3162 } 3163 } 3164 3165 extent_len = extent_end - key.offset; 3166 ei = btrfs_item_ptr(leaf, path->slots[0], 3167 struct btrfs_file_extent_item); 3168 compression = btrfs_file_extent_compression(leaf, ei); 3169 extent_type = btrfs_file_extent_type(leaf, ei); 3170 extent_gen = btrfs_file_extent_generation(leaf, ei); 3171 3172 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3173 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3174 if (compression == BTRFS_COMPRESS_NONE) 3175 extent_offset = btrfs_file_extent_offset(leaf, ei); 3176 } 3177 3178 if (compression != BTRFS_COMPRESS_NONE) 3179 flags |= FIEMAP_EXTENT_ENCODED; 3180 3181 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3182 flags |= FIEMAP_EXTENT_DATA_INLINE; 3183 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3184 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3185 extent_len, flags); 3186 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3187 ret = fiemap_process_hole(inode, fieinfo, &cache, 3188 &delalloc_cached_state, 3189 backref_ctx, 3190 disk_bytenr, extent_offset, 3191 extent_gen, key.offset, 3192 extent_end - 1); 3193 } else if (disk_bytenr == 0) { 3194 /* We have an explicit hole. */ 3195 ret = fiemap_process_hole(inode, fieinfo, &cache, 3196 &delalloc_cached_state, 3197 backref_ctx, 0, 0, 0, 3198 key.offset, extent_end - 1); 3199 } else { 3200 /* We have a regular extent. */ 3201 if (fieinfo->fi_extents_max) { 3202 ret = btrfs_is_data_extent_shared(inode, 3203 disk_bytenr, 3204 extent_gen, 3205 backref_ctx); 3206 if (ret < 0) 3207 goto out_unlock; 3208 else if (ret > 0) 3209 flags |= FIEMAP_EXTENT_SHARED; 3210 } 3211 3212 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3213 disk_bytenr + extent_offset, 3214 extent_len, flags); 3215 } 3216 3217 if (ret < 0) { 3218 goto out_unlock; 3219 } else if (ret > 0) { 3220 /* emit_fiemap_extent() told us to stop. */ 3221 stopped = true; 3222 break; 3223 } 3224 3225 prev_extent_end = extent_end; 3226 next_item: 3227 if (fatal_signal_pending(current)) { 3228 ret = -EINTR; 3229 goto out_unlock; 3230 } 3231 3232 ret = fiemap_next_leaf_item(inode, path); 3233 if (ret < 0) { 3234 goto out_unlock; 3235 } else if (ret > 0) { 3236 /* No more file extent items for this inode. */ 3237 break; 3238 } 3239 cond_resched(); 3240 } 3241 3242 check_eof_delalloc: 3243 if (!stopped && prev_extent_end < range_end) { 3244 ret = fiemap_process_hole(inode, fieinfo, &cache, 3245 &delalloc_cached_state, backref_ctx, 3246 0, 0, 0, prev_extent_end, range_end - 1); 3247 if (ret < 0) 3248 goto out_unlock; 3249 prev_extent_end = range_end; 3250 } 3251 3252 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3253 const u64 i_size = i_size_read(&inode->vfs_inode); 3254 3255 if (prev_extent_end < i_size) { 3256 u64 delalloc_start; 3257 u64 delalloc_end; 3258 bool delalloc; 3259 3260 delalloc = btrfs_find_delalloc_in_range(inode, 3261 prev_extent_end, 3262 i_size - 1, 3263 &delalloc_cached_state, 3264 &delalloc_start, 3265 &delalloc_end); 3266 if (!delalloc) 3267 cache.flags |= FIEMAP_EXTENT_LAST; 3268 } else { 3269 cache.flags |= FIEMAP_EXTENT_LAST; 3270 } 3271 } 3272 3273 out_unlock: 3274 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3275 3276 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) { 3277 btrfs_release_path(path); 3278 ret = flush_fiemap_cache(fieinfo, &cache); 3279 if (ret) 3280 goto out; 3281 len -= cache.next_search_offset - start; 3282 start = cache.next_search_offset; 3283 goto restart; 3284 } else if (ret < 0) { 3285 goto out; 3286 } 3287 3288 /* 3289 * Must free the path before emitting to the fiemap buffer because we 3290 * may have a non-cloned leaf and if the fiemap buffer is memory mapped 3291 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger 3292 * waiting for an ordered extent that in order to complete needs to 3293 * modify that leaf, therefore leading to a deadlock. 3294 */ 3295 btrfs_free_path(path); 3296 path = NULL; 3297 3298 ret = flush_fiemap_cache(fieinfo, &cache); 3299 if (ret) 3300 goto out; 3301 3302 ret = emit_last_fiemap_cache(fieinfo, &cache); 3303 out: 3304 free_extent_state(delalloc_cached_state); 3305 kfree(cache.entries); 3306 btrfs_free_backref_share_ctx(backref_ctx); 3307 btrfs_free_path(path); 3308 return ret; 3309 } 3310 3311 static void __free_extent_buffer(struct extent_buffer *eb) 3312 { 3313 kmem_cache_free(extent_buffer_cache, eb); 3314 } 3315 3316 static int extent_buffer_under_io(const struct extent_buffer *eb) 3317 { 3318 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3319 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3320 } 3321 3322 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 3323 { 3324 struct btrfs_subpage *subpage; 3325 3326 lockdep_assert_held(&folio->mapping->i_private_lock); 3327 3328 if (folio_test_private(folio)) { 3329 subpage = folio_get_private(folio); 3330 if (atomic_read(&subpage->eb_refs)) 3331 return true; 3332 /* 3333 * Even there is no eb refs here, we may still have 3334 * end_page_read() call relying on page::private. 3335 */ 3336 if (atomic_read(&subpage->readers)) 3337 return true; 3338 } 3339 return false; 3340 } 3341 3342 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio) 3343 { 3344 struct btrfs_fs_info *fs_info = eb->fs_info; 3345 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3346 3347 /* 3348 * For mapped eb, we're going to change the folio private, which should 3349 * be done under the i_private_lock. 3350 */ 3351 if (mapped) 3352 spin_lock(&folio->mapping->i_private_lock); 3353 3354 if (!folio_test_private(folio)) { 3355 if (mapped) 3356 spin_unlock(&folio->mapping->i_private_lock); 3357 return; 3358 } 3359 3360 if (fs_info->nodesize >= PAGE_SIZE) { 3361 /* 3362 * We do this since we'll remove the pages after we've 3363 * removed the eb from the radix tree, so we could race 3364 * and have this page now attached to the new eb. So 3365 * only clear folio if it's still connected to 3366 * this eb. 3367 */ 3368 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 3369 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3370 BUG_ON(folio_test_dirty(folio)); 3371 BUG_ON(folio_test_writeback(folio)); 3372 /* We need to make sure we haven't be attached to a new eb. */ 3373 folio_detach_private(folio); 3374 } 3375 if (mapped) 3376 spin_unlock(&folio->mapping->i_private_lock); 3377 return; 3378 } 3379 3380 /* 3381 * For subpage, we can have dummy eb with folio private attached. In 3382 * this case, we can directly detach the private as such folio is only 3383 * attached to one dummy eb, no sharing. 3384 */ 3385 if (!mapped) { 3386 btrfs_detach_subpage(fs_info, folio); 3387 return; 3388 } 3389 3390 btrfs_folio_dec_eb_refs(fs_info, folio); 3391 3392 /* 3393 * We can only detach the folio private if there are no other ebs in the 3394 * page range and no unfinished IO. 3395 */ 3396 if (!folio_range_has_eb(fs_info, folio)) 3397 btrfs_detach_subpage(fs_info, folio); 3398 3399 spin_unlock(&folio->mapping->i_private_lock); 3400 } 3401 3402 /* Release all pages attached to the extent buffer */ 3403 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3404 { 3405 ASSERT(!extent_buffer_under_io(eb)); 3406 3407 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 3408 struct folio *folio = eb->folios[i]; 3409 3410 if (!folio) 3411 continue; 3412 3413 detach_extent_buffer_folio(eb, folio); 3414 3415 /* One for when we allocated the folio. */ 3416 folio_put(folio); 3417 } 3418 } 3419 3420 /* 3421 * Helper for releasing the extent buffer. 3422 */ 3423 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3424 { 3425 btrfs_release_extent_buffer_pages(eb); 3426 btrfs_leak_debug_del_eb(eb); 3427 __free_extent_buffer(eb); 3428 } 3429 3430 static struct extent_buffer * 3431 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3432 unsigned long len) 3433 { 3434 struct extent_buffer *eb = NULL; 3435 3436 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3437 eb->start = start; 3438 eb->len = len; 3439 eb->fs_info = fs_info; 3440 init_rwsem(&eb->lock); 3441 3442 btrfs_leak_debug_add_eb(eb); 3443 3444 spin_lock_init(&eb->refs_lock); 3445 atomic_set(&eb->refs, 1); 3446 3447 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3448 3449 return eb; 3450 } 3451 3452 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3453 { 3454 struct extent_buffer *new; 3455 int num_folios = num_extent_folios(src); 3456 int ret; 3457 3458 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3459 if (new == NULL) 3460 return NULL; 3461 3462 /* 3463 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3464 * btrfs_release_extent_buffer() have different behavior for 3465 * UNMAPPED subpage extent buffer. 3466 */ 3467 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3468 3469 ret = alloc_eb_folio_array(new, 0); 3470 if (ret) { 3471 btrfs_release_extent_buffer(new); 3472 return NULL; 3473 } 3474 3475 for (int i = 0; i < num_folios; i++) { 3476 struct folio *folio = new->folios[i]; 3477 int ret; 3478 3479 ret = attach_extent_buffer_folio(new, folio, NULL); 3480 if (ret < 0) { 3481 btrfs_release_extent_buffer(new); 3482 return NULL; 3483 } 3484 WARN_ON(folio_test_dirty(folio)); 3485 } 3486 copy_extent_buffer_full(new, src); 3487 set_extent_buffer_uptodate(new); 3488 3489 return new; 3490 } 3491 3492 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3493 u64 start, unsigned long len) 3494 { 3495 struct extent_buffer *eb; 3496 int num_folios = 0; 3497 int ret; 3498 3499 eb = __alloc_extent_buffer(fs_info, start, len); 3500 if (!eb) 3501 return NULL; 3502 3503 ret = alloc_eb_folio_array(eb, 0); 3504 if (ret) 3505 goto err; 3506 3507 num_folios = num_extent_folios(eb); 3508 for (int i = 0; i < num_folios; i++) { 3509 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3510 if (ret < 0) 3511 goto err; 3512 } 3513 3514 set_extent_buffer_uptodate(eb); 3515 btrfs_set_header_nritems(eb, 0); 3516 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3517 3518 return eb; 3519 err: 3520 for (int i = 0; i < num_folios; i++) { 3521 if (eb->folios[i]) { 3522 detach_extent_buffer_folio(eb, eb->folios[i]); 3523 __folio_put(eb->folios[i]); 3524 } 3525 } 3526 __free_extent_buffer(eb); 3527 return NULL; 3528 } 3529 3530 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3531 u64 start) 3532 { 3533 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3534 } 3535 3536 static void check_buffer_tree_ref(struct extent_buffer *eb) 3537 { 3538 int refs; 3539 /* 3540 * The TREE_REF bit is first set when the extent_buffer is added 3541 * to the radix tree. It is also reset, if unset, when a new reference 3542 * is created by find_extent_buffer. 3543 * 3544 * It is only cleared in two cases: freeing the last non-tree 3545 * reference to the extent_buffer when its STALE bit is set or 3546 * calling release_folio when the tree reference is the only reference. 3547 * 3548 * In both cases, care is taken to ensure that the extent_buffer's 3549 * pages are not under io. However, release_folio can be concurrently 3550 * called with creating new references, which is prone to race 3551 * conditions between the calls to check_buffer_tree_ref in those 3552 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3553 * 3554 * The actual lifetime of the extent_buffer in the radix tree is 3555 * adequately protected by the refcount, but the TREE_REF bit and 3556 * its corresponding reference are not. To protect against this 3557 * class of races, we call check_buffer_tree_ref from the codepaths 3558 * which trigger io. Note that once io is initiated, TREE_REF can no 3559 * longer be cleared, so that is the moment at which any such race is 3560 * best fixed. 3561 */ 3562 refs = atomic_read(&eb->refs); 3563 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3564 return; 3565 3566 spin_lock(&eb->refs_lock); 3567 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3568 atomic_inc(&eb->refs); 3569 spin_unlock(&eb->refs_lock); 3570 } 3571 3572 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3573 { 3574 int num_folios= num_extent_folios(eb); 3575 3576 check_buffer_tree_ref(eb); 3577 3578 for (int i = 0; i < num_folios; i++) 3579 folio_mark_accessed(eb->folios[i]); 3580 } 3581 3582 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3583 u64 start) 3584 { 3585 struct extent_buffer *eb; 3586 3587 eb = find_extent_buffer_nolock(fs_info, start); 3588 if (!eb) 3589 return NULL; 3590 /* 3591 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3592 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3593 * another task running free_extent_buffer() might have seen that flag 3594 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3595 * writeback flags not set) and it's still in the tree (flag 3596 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3597 * decrementing the extent buffer's reference count twice. So here we 3598 * could race and increment the eb's reference count, clear its stale 3599 * flag, mark it as dirty and drop our reference before the other task 3600 * finishes executing free_extent_buffer, which would later result in 3601 * an attempt to free an extent buffer that is dirty. 3602 */ 3603 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3604 spin_lock(&eb->refs_lock); 3605 spin_unlock(&eb->refs_lock); 3606 } 3607 mark_extent_buffer_accessed(eb); 3608 return eb; 3609 } 3610 3611 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3612 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3613 u64 start) 3614 { 3615 struct extent_buffer *eb, *exists = NULL; 3616 int ret; 3617 3618 eb = find_extent_buffer(fs_info, start); 3619 if (eb) 3620 return eb; 3621 eb = alloc_dummy_extent_buffer(fs_info, start); 3622 if (!eb) 3623 return ERR_PTR(-ENOMEM); 3624 eb->fs_info = fs_info; 3625 again: 3626 ret = radix_tree_preload(GFP_NOFS); 3627 if (ret) { 3628 exists = ERR_PTR(ret); 3629 goto free_eb; 3630 } 3631 spin_lock(&fs_info->buffer_lock); 3632 ret = radix_tree_insert(&fs_info->buffer_radix, 3633 start >> fs_info->sectorsize_bits, eb); 3634 spin_unlock(&fs_info->buffer_lock); 3635 radix_tree_preload_end(); 3636 if (ret == -EEXIST) { 3637 exists = find_extent_buffer(fs_info, start); 3638 if (exists) 3639 goto free_eb; 3640 else 3641 goto again; 3642 } 3643 check_buffer_tree_ref(eb); 3644 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3645 3646 return eb; 3647 free_eb: 3648 btrfs_release_extent_buffer(eb); 3649 return exists; 3650 } 3651 #endif 3652 3653 static struct extent_buffer *grab_extent_buffer( 3654 struct btrfs_fs_info *fs_info, struct page *page) 3655 { 3656 struct folio *folio = page_folio(page); 3657 struct extent_buffer *exists; 3658 3659 /* 3660 * For subpage case, we completely rely on radix tree to ensure we 3661 * don't try to insert two ebs for the same bytenr. So here we always 3662 * return NULL and just continue. 3663 */ 3664 if (fs_info->nodesize < PAGE_SIZE) 3665 return NULL; 3666 3667 /* Page not yet attached to an extent buffer */ 3668 if (!folio_test_private(folio)) 3669 return NULL; 3670 3671 /* 3672 * We could have already allocated an eb for this page and attached one 3673 * so lets see if we can get a ref on the existing eb, and if we can we 3674 * know it's good and we can just return that one, else we know we can 3675 * just overwrite folio private. 3676 */ 3677 exists = folio_get_private(folio); 3678 if (atomic_inc_not_zero(&exists->refs)) 3679 return exists; 3680 3681 WARN_ON(PageDirty(page)); 3682 folio_detach_private(folio); 3683 return NULL; 3684 } 3685 3686 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3687 { 3688 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3689 btrfs_err(fs_info, "bad tree block start %llu", start); 3690 return -EINVAL; 3691 } 3692 3693 if (fs_info->nodesize < PAGE_SIZE && 3694 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3695 btrfs_err(fs_info, 3696 "tree block crosses page boundary, start %llu nodesize %u", 3697 start, fs_info->nodesize); 3698 return -EINVAL; 3699 } 3700 if (fs_info->nodesize >= PAGE_SIZE && 3701 !PAGE_ALIGNED(start)) { 3702 btrfs_err(fs_info, 3703 "tree block is not page aligned, start %llu nodesize %u", 3704 start, fs_info->nodesize); 3705 return -EINVAL; 3706 } 3707 if (!IS_ALIGNED(start, fs_info->nodesize) && 3708 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3709 btrfs_warn(fs_info, 3710 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3711 start, fs_info->nodesize); 3712 } 3713 return 0; 3714 } 3715 3716 3717 /* 3718 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3719 * Return >0 if there is already another extent buffer for the range, 3720 * and @found_eb_ret would be updated. 3721 * Return -EAGAIN if the filemap has an existing folio but with different size 3722 * than @eb. 3723 * The caller needs to free the existing folios and retry using the same order. 3724 */ 3725 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3726 struct extent_buffer **found_eb_ret) 3727 { 3728 3729 struct btrfs_fs_info *fs_info = eb->fs_info; 3730 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3731 const unsigned long index = eb->start >> PAGE_SHIFT; 3732 struct folio *existing_folio; 3733 int ret; 3734 3735 ASSERT(found_eb_ret); 3736 3737 /* Caller should ensure the folio exists. */ 3738 ASSERT(eb->folios[i]); 3739 3740 retry: 3741 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3742 GFP_NOFS | __GFP_NOFAIL); 3743 if (!ret) 3744 return 0; 3745 3746 existing_folio = filemap_lock_folio(mapping, index + i); 3747 /* The page cache only exists for a very short time, just retry. */ 3748 if (IS_ERR(existing_folio)) 3749 goto retry; 3750 3751 /* For now, we should only have single-page folios for btree inode. */ 3752 ASSERT(folio_nr_pages(existing_folio) == 1); 3753 3754 if (folio_size(existing_folio) != eb->folio_size) { 3755 folio_unlock(existing_folio); 3756 folio_put(existing_folio); 3757 return -EAGAIN; 3758 } 3759 3760 if (fs_info->nodesize < PAGE_SIZE) { 3761 /* 3762 * We're going to reuse the existing page, can drop our page 3763 * and subpage structure now. 3764 */ 3765 __free_page(folio_page(eb->folios[i], 0)); 3766 eb->folios[i] = existing_folio; 3767 } else { 3768 struct extent_buffer *existing_eb; 3769 3770 existing_eb = grab_extent_buffer(fs_info, 3771 folio_page(existing_folio, 0)); 3772 if (existing_eb) { 3773 /* The extent buffer still exists, we can use it directly. */ 3774 *found_eb_ret = existing_eb; 3775 folio_unlock(existing_folio); 3776 folio_put(existing_folio); 3777 return 1; 3778 } 3779 /* The extent buffer no longer exists, we can reuse the folio. */ 3780 __free_page(folio_page(eb->folios[i], 0)); 3781 eb->folios[i] = existing_folio; 3782 } 3783 return 0; 3784 } 3785 3786 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3787 u64 start, u64 owner_root, int level) 3788 { 3789 unsigned long len = fs_info->nodesize; 3790 int num_folios; 3791 int attached = 0; 3792 struct extent_buffer *eb; 3793 struct extent_buffer *existing_eb = NULL; 3794 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3795 struct btrfs_subpage *prealloc = NULL; 3796 u64 lockdep_owner = owner_root; 3797 bool page_contig = true; 3798 int uptodate = 1; 3799 int ret; 3800 3801 if (check_eb_alignment(fs_info, start)) 3802 return ERR_PTR(-EINVAL); 3803 3804 #if BITS_PER_LONG == 32 3805 if (start >= MAX_LFS_FILESIZE) { 3806 btrfs_err_rl(fs_info, 3807 "extent buffer %llu is beyond 32bit page cache limit", start); 3808 btrfs_err_32bit_limit(fs_info); 3809 return ERR_PTR(-EOVERFLOW); 3810 } 3811 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3812 btrfs_warn_32bit_limit(fs_info); 3813 #endif 3814 3815 eb = find_extent_buffer(fs_info, start); 3816 if (eb) 3817 return eb; 3818 3819 eb = __alloc_extent_buffer(fs_info, start, len); 3820 if (!eb) 3821 return ERR_PTR(-ENOMEM); 3822 3823 /* 3824 * The reloc trees are just snapshots, so we need them to appear to be 3825 * just like any other fs tree WRT lockdep. 3826 */ 3827 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3828 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3829 3830 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3831 3832 /* 3833 * Preallocate folio private for subpage case, so that we won't 3834 * allocate memory with i_private_lock nor page lock hold. 3835 * 3836 * The memory will be freed by attach_extent_buffer_page() or freed 3837 * manually if we exit earlier. 3838 */ 3839 if (fs_info->nodesize < PAGE_SIZE) { 3840 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3841 if (IS_ERR(prealloc)) { 3842 ret = PTR_ERR(prealloc); 3843 goto out; 3844 } 3845 } 3846 3847 reallocate: 3848 /* Allocate all pages first. */ 3849 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL); 3850 if (ret < 0) { 3851 btrfs_free_subpage(prealloc); 3852 goto out; 3853 } 3854 3855 num_folios = num_extent_folios(eb); 3856 /* Attach all pages to the filemap. */ 3857 for (int i = 0; i < num_folios; i++) { 3858 struct folio *folio; 3859 3860 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb); 3861 if (ret > 0) { 3862 ASSERT(existing_eb); 3863 goto out; 3864 } 3865 3866 /* 3867 * TODO: Special handling for a corner case where the order of 3868 * folios mismatch between the new eb and filemap. 3869 * 3870 * This happens when: 3871 * 3872 * - the new eb is using higher order folio 3873 * 3874 * - the filemap is still using 0-order folios for the range 3875 * This can happen at the previous eb allocation, and we don't 3876 * have higher order folio for the call. 3877 * 3878 * - the existing eb has already been freed 3879 * 3880 * In this case, we have to free the existing folios first, and 3881 * re-allocate using the same order. 3882 * Thankfully this is not going to happen yet, as we're still 3883 * using 0-order folios. 3884 */ 3885 if (unlikely(ret == -EAGAIN)) { 3886 ASSERT(0); 3887 goto reallocate; 3888 } 3889 attached++; 3890 3891 /* 3892 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3893 * reliable, as we may choose to reuse the existing page cache 3894 * and free the allocated page. 3895 */ 3896 folio = eb->folios[i]; 3897 eb->folio_size = folio_size(folio); 3898 eb->folio_shift = folio_shift(folio); 3899 spin_lock(&mapping->i_private_lock); 3900 /* Should not fail, as we have preallocated the memory */ 3901 ret = attach_extent_buffer_folio(eb, folio, prealloc); 3902 ASSERT(!ret); 3903 /* 3904 * To inform we have extra eb under allocation, so that 3905 * detach_extent_buffer_page() won't release the folio private 3906 * when the eb hasn't yet been inserted into radix tree. 3907 * 3908 * The ref will be decreased when the eb released the page, in 3909 * detach_extent_buffer_page(). 3910 * Thus needs no special handling in error path. 3911 */ 3912 btrfs_folio_inc_eb_refs(fs_info, folio); 3913 spin_unlock(&mapping->i_private_lock); 3914 3915 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3916 3917 /* 3918 * Check if the current page is physically contiguous with previous eb 3919 * page. 3920 * At this stage, either we allocated a large folio, thus @i 3921 * would only be 0, or we fall back to per-page allocation. 3922 */ 3923 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3924 page_contig = false; 3925 3926 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3927 uptodate = 0; 3928 3929 /* 3930 * We can't unlock the pages just yet since the extent buffer 3931 * hasn't been properly inserted in the radix tree, this 3932 * opens a race with btree_release_folio which can free a page 3933 * while we are still filling in all pages for the buffer and 3934 * we could crash. 3935 */ 3936 } 3937 if (uptodate) 3938 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3939 /* All pages are physically contiguous, can skip cross page handling. */ 3940 if (page_contig) 3941 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3942 again: 3943 ret = radix_tree_preload(GFP_NOFS); 3944 if (ret) 3945 goto out; 3946 3947 spin_lock(&fs_info->buffer_lock); 3948 ret = radix_tree_insert(&fs_info->buffer_radix, 3949 start >> fs_info->sectorsize_bits, eb); 3950 spin_unlock(&fs_info->buffer_lock); 3951 radix_tree_preload_end(); 3952 if (ret == -EEXIST) { 3953 ret = 0; 3954 existing_eb = find_extent_buffer(fs_info, start); 3955 if (existing_eb) 3956 goto out; 3957 else 3958 goto again; 3959 } 3960 /* add one reference for the tree */ 3961 check_buffer_tree_ref(eb); 3962 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3963 3964 /* 3965 * Now it's safe to unlock the pages because any calls to 3966 * btree_release_folio will correctly detect that a page belongs to a 3967 * live buffer and won't free them prematurely. 3968 */ 3969 for (int i = 0; i < num_folios; i++) 3970 unlock_page(folio_page(eb->folios[i], 0)); 3971 return eb; 3972 3973 out: 3974 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3975 3976 /* 3977 * Any attached folios need to be detached before we unlock them. This 3978 * is because when we're inserting our new folios into the mapping, and 3979 * then attaching our eb to that folio. If we fail to insert our folio 3980 * we'll lookup the folio for that index, and grab that EB. We do not 3981 * want that to grab this eb, as we're getting ready to free it. So we 3982 * have to detach it first and then unlock it. 3983 * 3984 * We have to drop our reference and NULL it out here because in the 3985 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3986 * Below when we call btrfs_release_extent_buffer() we will call 3987 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3988 * case. If we left eb->folios[i] populated in the subpage case we'd 3989 * double put our reference and be super sad. 3990 */ 3991 for (int i = 0; i < attached; i++) { 3992 ASSERT(eb->folios[i]); 3993 detach_extent_buffer_folio(eb, eb->folios[i]); 3994 unlock_page(folio_page(eb->folios[i], 0)); 3995 folio_put(eb->folios[i]); 3996 eb->folios[i] = NULL; 3997 } 3998 /* 3999 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 4000 * so it can be cleaned up without utlizing page->mapping. 4001 */ 4002 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4003 4004 btrfs_release_extent_buffer(eb); 4005 if (ret < 0) 4006 return ERR_PTR(ret); 4007 ASSERT(existing_eb); 4008 return existing_eb; 4009 } 4010 4011 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4012 { 4013 struct extent_buffer *eb = 4014 container_of(head, struct extent_buffer, rcu_head); 4015 4016 __free_extent_buffer(eb); 4017 } 4018 4019 static int release_extent_buffer(struct extent_buffer *eb) 4020 __releases(&eb->refs_lock) 4021 { 4022 lockdep_assert_held(&eb->refs_lock); 4023 4024 WARN_ON(atomic_read(&eb->refs) == 0); 4025 if (atomic_dec_and_test(&eb->refs)) { 4026 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4027 struct btrfs_fs_info *fs_info = eb->fs_info; 4028 4029 spin_unlock(&eb->refs_lock); 4030 4031 spin_lock(&fs_info->buffer_lock); 4032 radix_tree_delete(&fs_info->buffer_radix, 4033 eb->start >> fs_info->sectorsize_bits); 4034 spin_unlock(&fs_info->buffer_lock); 4035 } else { 4036 spin_unlock(&eb->refs_lock); 4037 } 4038 4039 btrfs_leak_debug_del_eb(eb); 4040 /* Should be safe to release our pages at this point */ 4041 btrfs_release_extent_buffer_pages(eb); 4042 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4043 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4044 __free_extent_buffer(eb); 4045 return 1; 4046 } 4047 #endif 4048 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4049 return 1; 4050 } 4051 spin_unlock(&eb->refs_lock); 4052 4053 return 0; 4054 } 4055 4056 void free_extent_buffer(struct extent_buffer *eb) 4057 { 4058 int refs; 4059 if (!eb) 4060 return; 4061 4062 refs = atomic_read(&eb->refs); 4063 while (1) { 4064 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4065 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4066 refs == 1)) 4067 break; 4068 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4069 return; 4070 } 4071 4072 spin_lock(&eb->refs_lock); 4073 if (atomic_read(&eb->refs) == 2 && 4074 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4075 !extent_buffer_under_io(eb) && 4076 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4077 atomic_dec(&eb->refs); 4078 4079 /* 4080 * I know this is terrible, but it's temporary until we stop tracking 4081 * the uptodate bits and such for the extent buffers. 4082 */ 4083 release_extent_buffer(eb); 4084 } 4085 4086 void free_extent_buffer_stale(struct extent_buffer *eb) 4087 { 4088 if (!eb) 4089 return; 4090 4091 spin_lock(&eb->refs_lock); 4092 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4093 4094 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4095 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4096 atomic_dec(&eb->refs); 4097 release_extent_buffer(eb); 4098 } 4099 4100 static void btree_clear_folio_dirty(struct folio *folio) 4101 { 4102 ASSERT(folio_test_dirty(folio)); 4103 ASSERT(folio_test_locked(folio)); 4104 folio_clear_dirty_for_io(folio); 4105 xa_lock_irq(&folio->mapping->i_pages); 4106 if (!folio_test_dirty(folio)) 4107 __xa_clear_mark(&folio->mapping->i_pages, 4108 folio_index(folio), PAGECACHE_TAG_DIRTY); 4109 xa_unlock_irq(&folio->mapping->i_pages); 4110 } 4111 4112 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4113 { 4114 struct btrfs_fs_info *fs_info = eb->fs_info; 4115 struct folio *folio = eb->folios[0]; 4116 bool last; 4117 4118 /* btree_clear_folio_dirty() needs page locked. */ 4119 folio_lock(folio); 4120 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 4121 if (last) 4122 btree_clear_folio_dirty(folio); 4123 folio_unlock(folio); 4124 WARN_ON(atomic_read(&eb->refs) == 0); 4125 } 4126 4127 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4128 struct extent_buffer *eb) 4129 { 4130 struct btrfs_fs_info *fs_info = eb->fs_info; 4131 int num_folios; 4132 4133 btrfs_assert_tree_write_locked(eb); 4134 4135 if (trans && btrfs_header_generation(eb) != trans->transid) 4136 return; 4137 4138 /* 4139 * Instead of clearing the dirty flag off of the buffer, mark it as 4140 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 4141 * write-ordering in zoned mode, without the need to later re-dirty 4142 * the extent_buffer. 4143 * 4144 * The actual zeroout of the buffer will happen later in 4145 * btree_csum_one_bio. 4146 */ 4147 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4148 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 4149 return; 4150 } 4151 4152 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4153 return; 4154 4155 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4156 fs_info->dirty_metadata_batch); 4157 4158 if (eb->fs_info->nodesize < PAGE_SIZE) 4159 return clear_subpage_extent_buffer_dirty(eb); 4160 4161 num_folios = num_extent_folios(eb); 4162 for (int i = 0; i < num_folios; i++) { 4163 struct folio *folio = eb->folios[i]; 4164 4165 if (!folio_test_dirty(folio)) 4166 continue; 4167 folio_lock(folio); 4168 btree_clear_folio_dirty(folio); 4169 folio_unlock(folio); 4170 } 4171 WARN_ON(atomic_read(&eb->refs) == 0); 4172 } 4173 4174 void set_extent_buffer_dirty(struct extent_buffer *eb) 4175 { 4176 int num_folios; 4177 bool was_dirty; 4178 4179 check_buffer_tree_ref(eb); 4180 4181 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4182 4183 num_folios = num_extent_folios(eb); 4184 WARN_ON(atomic_read(&eb->refs) == 0); 4185 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4186 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 4187 4188 if (!was_dirty) { 4189 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4190 4191 /* 4192 * For subpage case, we can have other extent buffers in the 4193 * same page, and in clear_subpage_extent_buffer_dirty() we 4194 * have to clear page dirty without subpage lock held. 4195 * This can cause race where our page gets dirty cleared after 4196 * we just set it. 4197 * 4198 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4199 * its page for other reasons, we can use page lock to prevent 4200 * the above race. 4201 */ 4202 if (subpage) 4203 lock_page(folio_page(eb->folios[0], 0)); 4204 for (int i = 0; i < num_folios; i++) 4205 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 4206 eb->start, eb->len); 4207 if (subpage) 4208 unlock_page(folio_page(eb->folios[0], 0)); 4209 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4210 eb->len, 4211 eb->fs_info->dirty_metadata_batch); 4212 } 4213 #ifdef CONFIG_BTRFS_DEBUG 4214 for (int i = 0; i < num_folios; i++) 4215 ASSERT(folio_test_dirty(eb->folios[i])); 4216 #endif 4217 } 4218 4219 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4220 { 4221 struct btrfs_fs_info *fs_info = eb->fs_info; 4222 int num_folios = num_extent_folios(eb); 4223 4224 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4225 for (int i = 0; i < num_folios; i++) { 4226 struct folio *folio = eb->folios[i]; 4227 4228 if (!folio) 4229 continue; 4230 4231 /* 4232 * This is special handling for metadata subpage, as regular 4233 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4234 */ 4235 if (fs_info->nodesize >= PAGE_SIZE) 4236 folio_clear_uptodate(folio); 4237 else 4238 btrfs_subpage_clear_uptodate(fs_info, folio, 4239 eb->start, eb->len); 4240 } 4241 } 4242 4243 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4244 { 4245 struct btrfs_fs_info *fs_info = eb->fs_info; 4246 int num_folios = num_extent_folios(eb); 4247 4248 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4249 for (int i = 0; i < num_folios; i++) { 4250 struct folio *folio = eb->folios[i]; 4251 4252 /* 4253 * This is special handling for metadata subpage, as regular 4254 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4255 */ 4256 if (fs_info->nodesize >= PAGE_SIZE) 4257 folio_mark_uptodate(folio); 4258 else 4259 btrfs_subpage_set_uptodate(fs_info, folio, 4260 eb->start, eb->len); 4261 } 4262 } 4263 4264 static void end_bbio_meta_read(struct btrfs_bio *bbio) 4265 { 4266 struct extent_buffer *eb = bbio->private; 4267 struct btrfs_fs_info *fs_info = eb->fs_info; 4268 bool uptodate = !bbio->bio.bi_status; 4269 struct folio_iter fi; 4270 u32 bio_offset = 0; 4271 4272 eb->read_mirror = bbio->mirror_num; 4273 4274 if (uptodate && 4275 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4276 uptodate = false; 4277 4278 if (uptodate) { 4279 set_extent_buffer_uptodate(eb); 4280 } else { 4281 clear_extent_buffer_uptodate(eb); 4282 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4283 } 4284 4285 bio_for_each_folio_all(fi, &bbio->bio) { 4286 struct folio *folio = fi.folio; 4287 u64 start = eb->start + bio_offset; 4288 u32 len = fi.length; 4289 4290 if (uptodate) 4291 btrfs_folio_set_uptodate(fs_info, folio, start, len); 4292 else 4293 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 4294 4295 bio_offset += len; 4296 } 4297 4298 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4299 smp_mb__after_atomic(); 4300 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4301 free_extent_buffer(eb); 4302 4303 bio_put(&bbio->bio); 4304 } 4305 4306 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4307 struct btrfs_tree_parent_check *check) 4308 { 4309 struct btrfs_bio *bbio; 4310 bool ret; 4311 4312 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4313 return 0; 4314 4315 /* 4316 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4317 * operation, which could potentially still be in flight. In this case 4318 * we simply want to return an error. 4319 */ 4320 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4321 return -EIO; 4322 4323 /* Someone else is already reading the buffer, just wait for it. */ 4324 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4325 goto done; 4326 4327 /* 4328 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 4329 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 4330 * started and finished reading the same eb. In this case, UPTODATE 4331 * will now be set, and we shouldn't read it in again. 4332 */ 4333 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 4334 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4335 smp_mb__after_atomic(); 4336 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4337 return 0; 4338 } 4339 4340 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4341 eb->read_mirror = 0; 4342 check_buffer_tree_ref(eb); 4343 atomic_inc(&eb->refs); 4344 4345 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4346 REQ_OP_READ | REQ_META, eb->fs_info, 4347 end_bbio_meta_read, eb); 4348 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4349 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4350 bbio->file_offset = eb->start; 4351 memcpy(&bbio->parent_check, check, sizeof(*check)); 4352 if (eb->fs_info->nodesize < PAGE_SIZE) { 4353 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 4354 eb->start - folio_pos(eb->folios[0])); 4355 ASSERT(ret); 4356 } else { 4357 int num_folios = num_extent_folios(eb); 4358 4359 for (int i = 0; i < num_folios; i++) { 4360 struct folio *folio = eb->folios[i]; 4361 4362 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 4363 ASSERT(ret); 4364 } 4365 } 4366 btrfs_submit_bio(bbio, mirror_num); 4367 4368 done: 4369 if (wait == WAIT_COMPLETE) { 4370 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4371 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4372 return -EIO; 4373 } 4374 4375 return 0; 4376 } 4377 4378 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4379 unsigned long len) 4380 { 4381 btrfs_warn(eb->fs_info, 4382 "access to eb bytenr %llu len %u out of range start %lu len %lu", 4383 eb->start, eb->len, start, len); 4384 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4385 4386 return true; 4387 } 4388 4389 /* 4390 * Check if the [start, start + len) range is valid before reading/writing 4391 * the eb. 4392 * NOTE: @start and @len are offset inside the eb, not logical address. 4393 * 4394 * Caller should not touch the dst/src memory if this function returns error. 4395 */ 4396 static inline int check_eb_range(const struct extent_buffer *eb, 4397 unsigned long start, unsigned long len) 4398 { 4399 unsigned long offset; 4400 4401 /* start, start + len should not go beyond eb->len nor overflow */ 4402 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4403 return report_eb_range(eb, start, len); 4404 4405 return false; 4406 } 4407 4408 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4409 unsigned long start, unsigned long len) 4410 { 4411 const int unit_size = eb->folio_size; 4412 size_t cur; 4413 size_t offset; 4414 char *dst = (char *)dstv; 4415 unsigned long i = get_eb_folio_index(eb, start); 4416 4417 if (check_eb_range(eb, start, len)) { 4418 /* 4419 * Invalid range hit, reset the memory, so callers won't get 4420 * some random garbage for their uninitialized memory. 4421 */ 4422 memset(dstv, 0, len); 4423 return; 4424 } 4425 4426 if (eb->addr) { 4427 memcpy(dstv, eb->addr + start, len); 4428 return; 4429 } 4430 4431 offset = get_eb_offset_in_folio(eb, start); 4432 4433 while (len > 0) { 4434 char *kaddr; 4435 4436 cur = min(len, unit_size - offset); 4437 kaddr = folio_address(eb->folios[i]); 4438 memcpy(dst, kaddr + offset, cur); 4439 4440 dst += cur; 4441 len -= cur; 4442 offset = 0; 4443 i++; 4444 } 4445 } 4446 4447 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4448 void __user *dstv, 4449 unsigned long start, unsigned long len) 4450 { 4451 const int unit_size = eb->folio_size; 4452 size_t cur; 4453 size_t offset; 4454 char __user *dst = (char __user *)dstv; 4455 unsigned long i = get_eb_folio_index(eb, start); 4456 int ret = 0; 4457 4458 WARN_ON(start > eb->len); 4459 WARN_ON(start + len > eb->start + eb->len); 4460 4461 if (eb->addr) { 4462 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 4463 ret = -EFAULT; 4464 return ret; 4465 } 4466 4467 offset = get_eb_offset_in_folio(eb, start); 4468 4469 while (len > 0) { 4470 char *kaddr; 4471 4472 cur = min(len, unit_size - offset); 4473 kaddr = folio_address(eb->folios[i]); 4474 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4475 ret = -EFAULT; 4476 break; 4477 } 4478 4479 dst += cur; 4480 len -= cur; 4481 offset = 0; 4482 i++; 4483 } 4484 4485 return ret; 4486 } 4487 4488 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4489 unsigned long start, unsigned long len) 4490 { 4491 const int unit_size = eb->folio_size; 4492 size_t cur; 4493 size_t offset; 4494 char *kaddr; 4495 char *ptr = (char *)ptrv; 4496 unsigned long i = get_eb_folio_index(eb, start); 4497 int ret = 0; 4498 4499 if (check_eb_range(eb, start, len)) 4500 return -EINVAL; 4501 4502 if (eb->addr) 4503 return memcmp(ptrv, eb->addr + start, len); 4504 4505 offset = get_eb_offset_in_folio(eb, start); 4506 4507 while (len > 0) { 4508 cur = min(len, unit_size - offset); 4509 kaddr = folio_address(eb->folios[i]); 4510 ret = memcmp(ptr, kaddr + offset, cur); 4511 if (ret) 4512 break; 4513 4514 ptr += cur; 4515 len -= cur; 4516 offset = 0; 4517 i++; 4518 } 4519 return ret; 4520 } 4521 4522 /* 4523 * Check that the extent buffer is uptodate. 4524 * 4525 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4526 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4527 */ 4528 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4529 { 4530 struct btrfs_fs_info *fs_info = eb->fs_info; 4531 struct folio *folio = eb->folios[i]; 4532 4533 ASSERT(folio); 4534 4535 /* 4536 * If we are using the commit root we could potentially clear a page 4537 * Uptodate while we're using the extent buffer that we've previously 4538 * looked up. We don't want to complain in this case, as the page was 4539 * valid before, we just didn't write it out. Instead we want to catch 4540 * the case where we didn't actually read the block properly, which 4541 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4542 */ 4543 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4544 return; 4545 4546 if (fs_info->nodesize < PAGE_SIZE) { 4547 struct folio *folio = eb->folios[0]; 4548 4549 ASSERT(i == 0); 4550 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4551 eb->start, eb->len))) 4552 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4553 } else { 4554 WARN_ON(!folio_test_uptodate(folio)); 4555 } 4556 } 4557 4558 static void __write_extent_buffer(const struct extent_buffer *eb, 4559 const void *srcv, unsigned long start, 4560 unsigned long len, bool use_memmove) 4561 { 4562 const int unit_size = eb->folio_size; 4563 size_t cur; 4564 size_t offset; 4565 char *kaddr; 4566 char *src = (char *)srcv; 4567 unsigned long i = get_eb_folio_index(eb, start); 4568 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4569 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4570 4571 if (check_eb_range(eb, start, len)) 4572 return; 4573 4574 if (eb->addr) { 4575 if (use_memmove) 4576 memmove(eb->addr + start, srcv, len); 4577 else 4578 memcpy(eb->addr + start, srcv, len); 4579 return; 4580 } 4581 4582 offset = get_eb_offset_in_folio(eb, start); 4583 4584 while (len > 0) { 4585 if (check_uptodate) 4586 assert_eb_folio_uptodate(eb, i); 4587 4588 cur = min(len, unit_size - offset); 4589 kaddr = folio_address(eb->folios[i]); 4590 if (use_memmove) 4591 memmove(kaddr + offset, src, cur); 4592 else 4593 memcpy(kaddr + offset, src, cur); 4594 4595 src += cur; 4596 len -= cur; 4597 offset = 0; 4598 i++; 4599 } 4600 } 4601 4602 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4603 unsigned long start, unsigned long len) 4604 { 4605 return __write_extent_buffer(eb, srcv, start, len, false); 4606 } 4607 4608 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4609 unsigned long start, unsigned long len) 4610 { 4611 const int unit_size = eb->folio_size; 4612 unsigned long cur = start; 4613 4614 if (eb->addr) { 4615 memset(eb->addr + start, c, len); 4616 return; 4617 } 4618 4619 while (cur < start + len) { 4620 unsigned long index = get_eb_folio_index(eb, cur); 4621 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4622 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4623 4624 assert_eb_folio_uptodate(eb, index); 4625 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4626 4627 cur += cur_len; 4628 } 4629 } 4630 4631 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4632 unsigned long len) 4633 { 4634 if (check_eb_range(eb, start, len)) 4635 return; 4636 return memset_extent_buffer(eb, 0, start, len); 4637 } 4638 4639 void copy_extent_buffer_full(const struct extent_buffer *dst, 4640 const struct extent_buffer *src) 4641 { 4642 const int unit_size = src->folio_size; 4643 unsigned long cur = 0; 4644 4645 ASSERT(dst->len == src->len); 4646 4647 while (cur < src->len) { 4648 unsigned long index = get_eb_folio_index(src, cur); 4649 unsigned long offset = get_eb_offset_in_folio(src, cur); 4650 unsigned long cur_len = min(src->len, unit_size - offset); 4651 void *addr = folio_address(src->folios[index]) + offset; 4652 4653 write_extent_buffer(dst, addr, cur, cur_len); 4654 4655 cur += cur_len; 4656 } 4657 } 4658 4659 void copy_extent_buffer(const struct extent_buffer *dst, 4660 const struct extent_buffer *src, 4661 unsigned long dst_offset, unsigned long src_offset, 4662 unsigned long len) 4663 { 4664 const int unit_size = dst->folio_size; 4665 u64 dst_len = dst->len; 4666 size_t cur; 4667 size_t offset; 4668 char *kaddr; 4669 unsigned long i = get_eb_folio_index(dst, dst_offset); 4670 4671 if (check_eb_range(dst, dst_offset, len) || 4672 check_eb_range(src, src_offset, len)) 4673 return; 4674 4675 WARN_ON(src->len != dst_len); 4676 4677 offset = get_eb_offset_in_folio(dst, dst_offset); 4678 4679 while (len > 0) { 4680 assert_eb_folio_uptodate(dst, i); 4681 4682 cur = min(len, (unsigned long)(unit_size - offset)); 4683 4684 kaddr = folio_address(dst->folios[i]); 4685 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4686 4687 src_offset += cur; 4688 len -= cur; 4689 offset = 0; 4690 i++; 4691 } 4692 } 4693 4694 /* 4695 * Calculate the folio and offset of the byte containing the given bit number. 4696 * 4697 * @eb: the extent buffer 4698 * @start: offset of the bitmap item in the extent buffer 4699 * @nr: bit number 4700 * @folio_index: return index of the folio in the extent buffer that contains 4701 * the given bit number 4702 * @folio_offset: return offset into the folio given by folio_index 4703 * 4704 * This helper hides the ugliness of finding the byte in an extent buffer which 4705 * contains a given bit. 4706 */ 4707 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4708 unsigned long start, unsigned long nr, 4709 unsigned long *folio_index, 4710 size_t *folio_offset) 4711 { 4712 size_t byte_offset = BIT_BYTE(nr); 4713 size_t offset; 4714 4715 /* 4716 * The byte we want is the offset of the extent buffer + the offset of 4717 * the bitmap item in the extent buffer + the offset of the byte in the 4718 * bitmap item. 4719 */ 4720 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4721 4722 *folio_index = offset >> eb->folio_shift; 4723 *folio_offset = offset_in_eb_folio(eb, offset); 4724 } 4725 4726 /* 4727 * Determine whether a bit in a bitmap item is set. 4728 * 4729 * @eb: the extent buffer 4730 * @start: offset of the bitmap item in the extent buffer 4731 * @nr: bit number to test 4732 */ 4733 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4734 unsigned long nr) 4735 { 4736 unsigned long i; 4737 size_t offset; 4738 u8 *kaddr; 4739 4740 eb_bitmap_offset(eb, start, nr, &i, &offset); 4741 assert_eb_folio_uptodate(eb, i); 4742 kaddr = folio_address(eb->folios[i]); 4743 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4744 } 4745 4746 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4747 { 4748 unsigned long index = get_eb_folio_index(eb, bytenr); 4749 4750 if (check_eb_range(eb, bytenr, 1)) 4751 return NULL; 4752 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4753 } 4754 4755 /* 4756 * Set an area of a bitmap to 1. 4757 * 4758 * @eb: the extent buffer 4759 * @start: offset of the bitmap item in the extent buffer 4760 * @pos: bit number of the first bit 4761 * @len: number of bits to set 4762 */ 4763 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4764 unsigned long pos, unsigned long len) 4765 { 4766 unsigned int first_byte = start + BIT_BYTE(pos); 4767 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4768 const bool same_byte = (first_byte == last_byte); 4769 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4770 u8 *kaddr; 4771 4772 if (same_byte) 4773 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4774 4775 /* Handle the first byte. */ 4776 kaddr = extent_buffer_get_byte(eb, first_byte); 4777 *kaddr |= mask; 4778 if (same_byte) 4779 return; 4780 4781 /* Handle the byte aligned part. */ 4782 ASSERT(first_byte + 1 <= last_byte); 4783 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4784 4785 /* Handle the last byte. */ 4786 kaddr = extent_buffer_get_byte(eb, last_byte); 4787 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4788 } 4789 4790 4791 /* 4792 * Clear an area of a bitmap. 4793 * 4794 * @eb: the extent buffer 4795 * @start: offset of the bitmap item in the extent buffer 4796 * @pos: bit number of the first bit 4797 * @len: number of bits to clear 4798 */ 4799 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4800 unsigned long start, unsigned long pos, 4801 unsigned long len) 4802 { 4803 unsigned int first_byte = start + BIT_BYTE(pos); 4804 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4805 const bool same_byte = (first_byte == last_byte); 4806 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4807 u8 *kaddr; 4808 4809 if (same_byte) 4810 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4811 4812 /* Handle the first byte. */ 4813 kaddr = extent_buffer_get_byte(eb, first_byte); 4814 *kaddr &= ~mask; 4815 if (same_byte) 4816 return; 4817 4818 /* Handle the byte aligned part. */ 4819 ASSERT(first_byte + 1 <= last_byte); 4820 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4821 4822 /* Handle the last byte. */ 4823 kaddr = extent_buffer_get_byte(eb, last_byte); 4824 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4825 } 4826 4827 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4828 { 4829 unsigned long distance = (src > dst) ? src - dst : dst - src; 4830 return distance < len; 4831 } 4832 4833 void memcpy_extent_buffer(const struct extent_buffer *dst, 4834 unsigned long dst_offset, unsigned long src_offset, 4835 unsigned long len) 4836 { 4837 const int unit_size = dst->folio_size; 4838 unsigned long cur_off = 0; 4839 4840 if (check_eb_range(dst, dst_offset, len) || 4841 check_eb_range(dst, src_offset, len)) 4842 return; 4843 4844 if (dst->addr) { 4845 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4846 4847 if (use_memmove) 4848 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4849 else 4850 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4851 return; 4852 } 4853 4854 while (cur_off < len) { 4855 unsigned long cur_src = cur_off + src_offset; 4856 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4857 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4858 unsigned long cur_len = min(src_offset + len - cur_src, 4859 unit_size - folio_off); 4860 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4861 const bool use_memmove = areas_overlap(src_offset + cur_off, 4862 dst_offset + cur_off, cur_len); 4863 4864 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4865 use_memmove); 4866 cur_off += cur_len; 4867 } 4868 } 4869 4870 void memmove_extent_buffer(const struct extent_buffer *dst, 4871 unsigned long dst_offset, unsigned long src_offset, 4872 unsigned long len) 4873 { 4874 unsigned long dst_end = dst_offset + len - 1; 4875 unsigned long src_end = src_offset + len - 1; 4876 4877 if (check_eb_range(dst, dst_offset, len) || 4878 check_eb_range(dst, src_offset, len)) 4879 return; 4880 4881 if (dst_offset < src_offset) { 4882 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4883 return; 4884 } 4885 4886 if (dst->addr) { 4887 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4888 return; 4889 } 4890 4891 while (len > 0) { 4892 unsigned long src_i; 4893 size_t cur; 4894 size_t dst_off_in_folio; 4895 size_t src_off_in_folio; 4896 void *src_addr; 4897 bool use_memmove; 4898 4899 src_i = get_eb_folio_index(dst, src_end); 4900 4901 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4902 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4903 4904 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4905 cur = min(cur, dst_off_in_folio + 1); 4906 4907 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4908 cur + 1; 4909 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4910 cur); 4911 4912 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4913 use_memmove); 4914 4915 dst_end -= cur; 4916 src_end -= cur; 4917 len -= cur; 4918 } 4919 } 4920 4921 #define GANG_LOOKUP_SIZE 16 4922 static struct extent_buffer *get_next_extent_buffer( 4923 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4924 { 4925 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4926 struct extent_buffer *found = NULL; 4927 u64 page_start = page_offset(page); 4928 u64 cur = page_start; 4929 4930 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4931 lockdep_assert_held(&fs_info->buffer_lock); 4932 4933 while (cur < page_start + PAGE_SIZE) { 4934 int ret; 4935 int i; 4936 4937 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4938 (void **)gang, cur >> fs_info->sectorsize_bits, 4939 min_t(unsigned int, GANG_LOOKUP_SIZE, 4940 PAGE_SIZE / fs_info->nodesize)); 4941 if (ret == 0) 4942 goto out; 4943 for (i = 0; i < ret; i++) { 4944 /* Already beyond page end */ 4945 if (gang[i]->start >= page_start + PAGE_SIZE) 4946 goto out; 4947 /* Found one */ 4948 if (gang[i]->start >= bytenr) { 4949 found = gang[i]; 4950 goto out; 4951 } 4952 } 4953 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4954 } 4955 out: 4956 return found; 4957 } 4958 4959 static int try_release_subpage_extent_buffer(struct page *page) 4960 { 4961 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 4962 u64 cur = page_offset(page); 4963 const u64 end = page_offset(page) + PAGE_SIZE; 4964 int ret; 4965 4966 while (cur < end) { 4967 struct extent_buffer *eb = NULL; 4968 4969 /* 4970 * Unlike try_release_extent_buffer() which uses folio private 4971 * to grab buffer, for subpage case we rely on radix tree, thus 4972 * we need to ensure radix tree consistency. 4973 * 4974 * We also want an atomic snapshot of the radix tree, thus go 4975 * with spinlock rather than RCU. 4976 */ 4977 spin_lock(&fs_info->buffer_lock); 4978 eb = get_next_extent_buffer(fs_info, page, cur); 4979 if (!eb) { 4980 /* No more eb in the page range after or at cur */ 4981 spin_unlock(&fs_info->buffer_lock); 4982 break; 4983 } 4984 cur = eb->start + eb->len; 4985 4986 /* 4987 * The same as try_release_extent_buffer(), to ensure the eb 4988 * won't disappear out from under us. 4989 */ 4990 spin_lock(&eb->refs_lock); 4991 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4992 spin_unlock(&eb->refs_lock); 4993 spin_unlock(&fs_info->buffer_lock); 4994 break; 4995 } 4996 spin_unlock(&fs_info->buffer_lock); 4997 4998 /* 4999 * If tree ref isn't set then we know the ref on this eb is a 5000 * real ref, so just return, this eb will likely be freed soon 5001 * anyway. 5002 */ 5003 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5004 spin_unlock(&eb->refs_lock); 5005 break; 5006 } 5007 5008 /* 5009 * Here we don't care about the return value, we will always 5010 * check the folio private at the end. And 5011 * release_extent_buffer() will release the refs_lock. 5012 */ 5013 release_extent_buffer(eb); 5014 } 5015 /* 5016 * Finally to check if we have cleared folio private, as if we have 5017 * released all ebs in the page, the folio private should be cleared now. 5018 */ 5019 spin_lock(&page->mapping->i_private_lock); 5020 if (!folio_test_private(page_folio(page))) 5021 ret = 1; 5022 else 5023 ret = 0; 5024 spin_unlock(&page->mapping->i_private_lock); 5025 return ret; 5026 5027 } 5028 5029 int try_release_extent_buffer(struct page *page) 5030 { 5031 struct folio *folio = page_folio(page); 5032 struct extent_buffer *eb; 5033 5034 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 5035 return try_release_subpage_extent_buffer(page); 5036 5037 /* 5038 * We need to make sure nobody is changing folio private, as we rely on 5039 * folio private as the pointer to extent buffer. 5040 */ 5041 spin_lock(&page->mapping->i_private_lock); 5042 if (!folio_test_private(folio)) { 5043 spin_unlock(&page->mapping->i_private_lock); 5044 return 1; 5045 } 5046 5047 eb = folio_get_private(folio); 5048 BUG_ON(!eb); 5049 5050 /* 5051 * This is a little awful but should be ok, we need to make sure that 5052 * the eb doesn't disappear out from under us while we're looking at 5053 * this page. 5054 */ 5055 spin_lock(&eb->refs_lock); 5056 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5057 spin_unlock(&eb->refs_lock); 5058 spin_unlock(&page->mapping->i_private_lock); 5059 return 0; 5060 } 5061 spin_unlock(&page->mapping->i_private_lock); 5062 5063 /* 5064 * If tree ref isn't set then we know the ref on this eb is a real ref, 5065 * so just return, this page will likely be freed soon anyway. 5066 */ 5067 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5068 spin_unlock(&eb->refs_lock); 5069 return 0; 5070 } 5071 5072 return release_extent_buffer(eb); 5073 } 5074 5075 /* 5076 * Attempt to readahead a child block. 5077 * 5078 * @fs_info: the fs_info 5079 * @bytenr: bytenr to read 5080 * @owner_root: objectid of the root that owns this eb 5081 * @gen: generation for the uptodate check, can be 0 5082 * @level: level for the eb 5083 * 5084 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5085 * normal uptodate check of the eb, without checking the generation. If we have 5086 * to read the block we will not block on anything. 5087 */ 5088 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5089 u64 bytenr, u64 owner_root, u64 gen, int level) 5090 { 5091 struct btrfs_tree_parent_check check = { 5092 .has_first_key = 0, 5093 .level = level, 5094 .transid = gen 5095 }; 5096 struct extent_buffer *eb; 5097 int ret; 5098 5099 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5100 if (IS_ERR(eb)) 5101 return; 5102 5103 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5104 free_extent_buffer(eb); 5105 return; 5106 } 5107 5108 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5109 if (ret < 0) 5110 free_extent_buffer_stale(eb); 5111 else 5112 free_extent_buffer(eb); 5113 } 5114 5115 /* 5116 * Readahead a node's child block. 5117 * 5118 * @node: parent node we're reading from 5119 * @slot: slot in the parent node for the child we want to read 5120 * 5121 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5122 * the slot in the node provided. 5123 */ 5124 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5125 { 5126 btrfs_readahead_tree_block(node->fs_info, 5127 btrfs_node_blockptr(node, slot), 5128 btrfs_header_owner(node), 5129 btrfs_node_ptr_generation(node, slot), 5130 btrfs_header_level(node) - 1); 5131 } 5132