1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 }; 105 106 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 107 { 108 struct btrfs_bio *bbio = bio_ctrl->bbio; 109 110 if (!bbio) 111 return; 112 113 /* Caller should ensure the bio has at least some range added */ 114 ASSERT(bbio->bio.bi_iter.bi_size); 115 116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 118 btrfs_submit_compressed_read(bbio); 119 else 120 btrfs_submit_bio(bbio, 0); 121 122 /* The bbio is owned by the end_io handler now */ 123 bio_ctrl->bbio = NULL; 124 } 125 126 /* 127 * Submit or fail the current bio in the bio_ctrl structure. 128 */ 129 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 130 { 131 struct btrfs_bio *bbio = bio_ctrl->bbio; 132 133 if (!bbio) 134 return; 135 136 if (ret) { 137 ASSERT(ret < 0); 138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 139 /* The bio is owned by the end_io handler now */ 140 bio_ctrl->bbio = NULL; 141 } else { 142 submit_one_bio(bio_ctrl); 143 } 144 } 145 146 int __init extent_buffer_init_cachep(void) 147 { 148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 149 sizeof(struct extent_buffer), 0, 0, 150 NULL); 151 if (!extent_buffer_cache) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 void __cold extent_buffer_free_cachep(void) 158 { 159 /* 160 * Make sure all delayed rcu free are flushed before we 161 * destroy caches. 162 */ 163 rcu_barrier(); 164 kmem_cache_destroy(extent_buffer_cache); 165 } 166 167 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 168 { 169 unsigned long index = start >> PAGE_SHIFT; 170 unsigned long end_index = end >> PAGE_SHIFT; 171 struct page *page; 172 173 while (index <= end_index) { 174 page = find_get_page(inode->i_mapping, index); 175 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 176 clear_page_dirty_for_io(page); 177 put_page(page); 178 index++; 179 } 180 } 181 182 static void process_one_page(struct btrfs_fs_info *fs_info, 183 struct page *page, struct page *locked_page, 184 unsigned long page_ops, u64 start, u64 end) 185 { 186 struct folio *folio = page_folio(page); 187 u32 len; 188 189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 190 len = end + 1 - start; 191 192 if (page_ops & PAGE_SET_ORDERED) 193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 194 if (page_ops & PAGE_START_WRITEBACK) { 195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 197 } 198 if (page_ops & PAGE_END_WRITEBACK) 199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 200 201 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 202 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 203 } 204 205 static void __process_pages_contig(struct address_space *mapping, 206 struct page *locked_page, u64 start, u64 end, 207 unsigned long page_ops) 208 { 209 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 210 pgoff_t start_index = start >> PAGE_SHIFT; 211 pgoff_t end_index = end >> PAGE_SHIFT; 212 pgoff_t index = start_index; 213 struct folio_batch fbatch; 214 int i; 215 216 folio_batch_init(&fbatch); 217 while (index <= end_index) { 218 int found_folios; 219 220 found_folios = filemap_get_folios_contig(mapping, &index, 221 end_index, &fbatch); 222 for (i = 0; i < found_folios; i++) { 223 struct folio *folio = fbatch.folios[i]; 224 225 process_one_page(fs_info, &folio->page, locked_page, 226 page_ops, start, end); 227 } 228 folio_batch_release(&fbatch); 229 cond_resched(); 230 } 231 } 232 233 static noinline void __unlock_for_delalloc(struct inode *inode, 234 struct page *locked_page, 235 u64 start, u64 end) 236 { 237 unsigned long index = start >> PAGE_SHIFT; 238 unsigned long end_index = end >> PAGE_SHIFT; 239 240 ASSERT(locked_page); 241 if (index == locked_page->index && end_index == index) 242 return; 243 244 __process_pages_contig(inode->i_mapping, locked_page, start, end, 245 PAGE_UNLOCK); 246 } 247 248 static noinline int lock_delalloc_pages(struct inode *inode, 249 struct page *locked_page, 250 u64 start, 251 u64 end) 252 { 253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 254 struct address_space *mapping = inode->i_mapping; 255 pgoff_t start_index = start >> PAGE_SHIFT; 256 pgoff_t end_index = end >> PAGE_SHIFT; 257 pgoff_t index = start_index; 258 u64 processed_end = start; 259 struct folio_batch fbatch; 260 261 if (index == locked_page->index && index == end_index) 262 return 0; 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 unsigned int found_folios, i; 267 268 found_folios = filemap_get_folios_contig(mapping, &index, 269 end_index, &fbatch); 270 if (found_folios == 0) 271 goto out; 272 273 for (i = 0; i < found_folios; i++) { 274 struct folio *folio = fbatch.folios[i]; 275 struct page *page = folio_page(folio, 0); 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_folio_start_writer_lock(fs_info, folio, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_folio_end_writer_lock(fs_info, folio, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 436 struct folio *folio = page_folio(page); 437 438 ASSERT(page_offset(page) <= start && 439 start + len <= page_offset(page) + PAGE_SIZE); 440 441 if (uptodate && btrfs_verify_page(page, start)) 442 btrfs_folio_set_uptodate(fs_info, folio, start, len); 443 else 444 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 445 446 if (!btrfs_is_subpage(fs_info, page->mapping)) 447 unlock_page(page); 448 else 449 btrfs_subpage_end_reader(fs_info, folio, start, len); 450 } 451 452 /* 453 * After a write IO is done, we need to: 454 * 455 * - clear the uptodate bits on error 456 * - clear the writeback bits in the extent tree for the range 457 * - filio_end_writeback() if there is no more pending io for the folio 458 * 459 * Scheduling is not allowed, so the extent state tree is expected 460 * to have one and only one object corresponding to this IO. 461 */ 462 static void end_bbio_data_write(struct btrfs_bio *bbio) 463 { 464 struct btrfs_fs_info *fs_info = bbio->fs_info; 465 struct bio *bio = &bbio->bio; 466 int error = blk_status_to_errno(bio->bi_status); 467 struct folio_iter fi; 468 const u32 sectorsize = fs_info->sectorsize; 469 470 ASSERT(!bio_flagged(bio, BIO_CLONED)); 471 bio_for_each_folio_all(fi, bio) { 472 struct folio *folio = fi.folio; 473 u64 start = folio_pos(folio) + fi.offset; 474 u32 len = fi.length; 475 476 /* Only order 0 (single page) folios are allowed for data. */ 477 ASSERT(folio_order(folio) == 0); 478 479 /* Our read/write should always be sector aligned. */ 480 if (!IS_ALIGNED(fi.offset, sectorsize)) 481 btrfs_err(fs_info, 482 "partial page write in btrfs with offset %zu and length %zu", 483 fi.offset, fi.length); 484 else if (!IS_ALIGNED(fi.length, sectorsize)) 485 btrfs_info(fs_info, 486 "incomplete page write with offset %zu and length %zu", 487 fi.offset, fi.length); 488 489 btrfs_finish_ordered_extent(bbio->ordered, 490 folio_page(folio, 0), start, len, !error); 491 if (error) 492 mapping_set_error(folio->mapping, error); 493 btrfs_folio_clear_writeback(fs_info, folio, start, len); 494 } 495 496 bio_put(bio); 497 } 498 499 /* 500 * Record previously processed extent range 501 * 502 * For endio_readpage_release_extent() to handle a full extent range, reducing 503 * the extent io operations. 504 */ 505 struct processed_extent { 506 struct btrfs_inode *inode; 507 /* Start of the range in @inode */ 508 u64 start; 509 /* End of the range in @inode */ 510 u64 end; 511 bool uptodate; 512 }; 513 514 /* 515 * Try to release processed extent range 516 * 517 * May not release the extent range right now if the current range is 518 * contiguous to processed extent. 519 * 520 * Will release processed extent when any of @inode, @uptodate, the range is 521 * no longer contiguous to the processed range. 522 * 523 * Passing @inode == NULL will force processed extent to be released. 524 */ 525 static void endio_readpage_release_extent(struct processed_extent *processed, 526 struct btrfs_inode *inode, u64 start, u64 end, 527 bool uptodate) 528 { 529 struct extent_state *cached = NULL; 530 struct extent_io_tree *tree; 531 532 /* The first extent, initialize @processed */ 533 if (!processed->inode) 534 goto update; 535 536 /* 537 * Contiguous to processed extent, just uptodate the end. 538 * 539 * Several things to notice: 540 * 541 * - bio can be merged as long as on-disk bytenr is contiguous 542 * This means we can have page belonging to other inodes, thus need to 543 * check if the inode still matches. 544 * - bvec can contain range beyond current page for multi-page bvec 545 * Thus we need to do processed->end + 1 >= start check 546 */ 547 if (processed->inode == inode && processed->uptodate == uptodate && 548 processed->end + 1 >= start && end >= processed->end) { 549 processed->end = end; 550 return; 551 } 552 553 tree = &processed->inode->io_tree; 554 /* 555 * Now we don't have range contiguous to the processed range, release 556 * the processed range now. 557 */ 558 unlock_extent(tree, processed->start, processed->end, &cached); 559 560 update: 561 /* Update processed to current range */ 562 processed->inode = inode; 563 processed->start = start; 564 processed->end = end; 565 processed->uptodate = uptodate; 566 } 567 568 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 569 { 570 struct folio *folio = page_folio(page); 571 572 ASSERT(folio_test_locked(folio)); 573 if (!btrfs_is_subpage(fs_info, folio->mapping)) 574 return; 575 576 ASSERT(folio_test_private(folio)); 577 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE); 578 } 579 580 /* 581 * After a data read IO is done, we need to: 582 * 583 * - clear the uptodate bits on error 584 * - set the uptodate bits if things worked 585 * - set the folio up to date if all extents in the tree are uptodate 586 * - clear the lock bit in the extent tree 587 * - unlock the folio if there are no other extents locked for it 588 * 589 * Scheduling is not allowed, so the extent state tree is expected 590 * to have one and only one object corresponding to this IO. 591 */ 592 static void end_bbio_data_read(struct btrfs_bio *bbio) 593 { 594 struct btrfs_fs_info *fs_info = bbio->fs_info; 595 struct bio *bio = &bbio->bio; 596 struct processed_extent processed = { 0 }; 597 struct folio_iter fi; 598 const u32 sectorsize = fs_info->sectorsize; 599 600 ASSERT(!bio_flagged(bio, BIO_CLONED)); 601 bio_for_each_folio_all(fi, &bbio->bio) { 602 bool uptodate = !bio->bi_status; 603 struct folio *folio = fi.folio; 604 struct inode *inode = folio->mapping->host; 605 u64 start; 606 u64 end; 607 u32 len; 608 609 /* For now only order 0 folios are supported for data. */ 610 ASSERT(folio_order(folio) == 0); 611 btrfs_debug(fs_info, 612 "%s: bi_sector=%llu, err=%d, mirror=%u", 613 __func__, bio->bi_iter.bi_sector, bio->bi_status, 614 bbio->mirror_num); 615 616 /* 617 * We always issue full-sector reads, but if some block in a 618 * folio fails to read, blk_update_request() will advance 619 * bv_offset and adjust bv_len to compensate. Print a warning 620 * for unaligned offsets, and an error if they don't add up to 621 * a full sector. 622 */ 623 if (!IS_ALIGNED(fi.offset, sectorsize)) 624 btrfs_err(fs_info, 625 "partial page read in btrfs with offset %zu and length %zu", 626 fi.offset, fi.length); 627 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 628 btrfs_info(fs_info, 629 "incomplete page read with offset %zu and length %zu", 630 fi.offset, fi.length); 631 632 start = folio_pos(folio) + fi.offset; 633 end = start + fi.length - 1; 634 len = fi.length; 635 636 if (likely(uptodate)) { 637 loff_t i_size = i_size_read(inode); 638 pgoff_t end_index = i_size >> folio_shift(folio); 639 640 /* 641 * Zero out the remaining part if this range straddles 642 * i_size. 643 * 644 * Here we should only zero the range inside the folio, 645 * not touch anything else. 646 * 647 * NOTE: i_size is exclusive while end is inclusive. 648 */ 649 if (folio_index(folio) == end_index && i_size <= end) { 650 u32 zero_start = max(offset_in_folio(folio, i_size), 651 offset_in_folio(folio, start)); 652 u32 zero_len = offset_in_folio(folio, end) + 1 - 653 zero_start; 654 655 folio_zero_range(folio, zero_start, zero_len); 656 } 657 } 658 659 /* Update page status and unlock. */ 660 end_page_read(folio_page(folio, 0), uptodate, start, len); 661 endio_readpage_release_extent(&processed, BTRFS_I(inode), 662 start, end, uptodate); 663 } 664 /* Release the last extent */ 665 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 666 bio_put(bio); 667 } 668 669 /* 670 * Populate every free slot in a provided array with pages. 671 * 672 * @nr_pages: number of pages to allocate 673 * @page_array: the array to fill with pages; any existing non-null entries in 674 * the array will be skipped 675 * @extra_gfp: the extra GFP flags for the allocation. 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 682 gfp_t extra_gfp) 683 { 684 unsigned int allocated; 685 686 for (allocated = 0; allocated < nr_pages;) { 687 unsigned int last = allocated; 688 689 allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp, 690 nr_pages, page_array); 691 692 if (allocated == nr_pages) 693 return 0; 694 695 /* 696 * During this iteration, no page could be allocated, even 697 * though alloc_pages_bulk_array() falls back to alloc_page() 698 * if it could not bulk-allocate. So we must be out of memory. 699 */ 700 if (allocated == last) { 701 for (int i = 0; i < allocated; i++) { 702 __free_page(page_array[i]); 703 page_array[i] = NULL; 704 } 705 return -ENOMEM; 706 } 707 708 memalloc_retry_wait(GFP_NOFS); 709 } 710 return 0; 711 } 712 713 /* 714 * Populate needed folios for the extent buffer. 715 * 716 * For now, the folios populated are always in order 0 (aka, single page). 717 */ 718 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp) 719 { 720 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 721 int num_pages = num_extent_pages(eb); 722 int ret; 723 724 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp); 725 if (ret < 0) 726 return ret; 727 728 for (int i = 0; i < num_pages; i++) 729 eb->folios[i] = page_folio(page_array[i]); 730 eb->folio_size = PAGE_SIZE; 731 eb->folio_shift = PAGE_SHIFT; 732 return 0; 733 } 734 735 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 736 struct page *page, u64 disk_bytenr, 737 unsigned int pg_offset) 738 { 739 struct bio *bio = &bio_ctrl->bbio->bio; 740 struct bio_vec *bvec = bio_last_bvec_all(bio); 741 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 742 743 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 744 /* 745 * For compression, all IO should have its logical bytenr set 746 * to the starting bytenr of the compressed extent. 747 */ 748 return bio->bi_iter.bi_sector == sector; 749 } 750 751 /* 752 * The contig check requires the following conditions to be met: 753 * 754 * 1) The pages are belonging to the same inode 755 * This is implied by the call chain. 756 * 757 * 2) The range has adjacent logical bytenr 758 * 759 * 3) The range has adjacent file offset 760 * This is required for the usage of btrfs_bio->file_offset. 761 */ 762 return bio_end_sector(bio) == sector && 763 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 764 page_offset(page) + pg_offset; 765 } 766 767 static void alloc_new_bio(struct btrfs_inode *inode, 768 struct btrfs_bio_ctrl *bio_ctrl, 769 u64 disk_bytenr, u64 file_offset) 770 { 771 struct btrfs_fs_info *fs_info = inode->root->fs_info; 772 struct btrfs_bio *bbio; 773 774 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 775 bio_ctrl->end_io_func, NULL); 776 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 777 bbio->inode = inode; 778 bbio->file_offset = file_offset; 779 bio_ctrl->bbio = bbio; 780 bio_ctrl->len_to_oe_boundary = U32_MAX; 781 782 /* Limit data write bios to the ordered boundary. */ 783 if (bio_ctrl->wbc) { 784 struct btrfs_ordered_extent *ordered; 785 786 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 787 if (ordered) { 788 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 789 ordered->file_offset + 790 ordered->disk_num_bytes - file_offset); 791 bbio->ordered = ordered; 792 } 793 794 /* 795 * Pick the last added device to support cgroup writeback. For 796 * multi-device file systems this means blk-cgroup policies have 797 * to always be set on the last added/replaced device. 798 * This is a bit odd but has been like that for a long time. 799 */ 800 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 801 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 802 } 803 } 804 805 /* 806 * @disk_bytenr: logical bytenr where the write will be 807 * @page: page to add to the bio 808 * @size: portion of page that we want to write to 809 * @pg_offset: offset of the new bio or to check whether we are adding 810 * a contiguous page to the previous one 811 * 812 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 813 * new one in @bio_ctrl->bbio. 814 * The mirror number for this IO should already be initizlied in 815 * @bio_ctrl->mirror_num. 816 */ 817 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 818 u64 disk_bytenr, struct page *page, 819 size_t size, unsigned long pg_offset) 820 { 821 struct btrfs_inode *inode = page_to_inode(page); 822 823 ASSERT(pg_offset + size <= PAGE_SIZE); 824 ASSERT(bio_ctrl->end_io_func); 825 826 if (bio_ctrl->bbio && 827 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 828 submit_one_bio(bio_ctrl); 829 830 do { 831 u32 len = size; 832 833 /* Allocate new bio if needed */ 834 if (!bio_ctrl->bbio) { 835 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 836 page_offset(page) + pg_offset); 837 } 838 839 /* Cap to the current ordered extent boundary if there is one. */ 840 if (len > bio_ctrl->len_to_oe_boundary) { 841 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 842 ASSERT(is_data_inode(&inode->vfs_inode)); 843 len = bio_ctrl->len_to_oe_boundary; 844 } 845 846 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 847 /* bio full: move on to a new one */ 848 submit_one_bio(bio_ctrl); 849 continue; 850 } 851 852 if (bio_ctrl->wbc) 853 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 854 855 size -= len; 856 pg_offset += len; 857 disk_bytenr += len; 858 859 /* 860 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 861 * sector aligned. alloc_new_bio() then sets it to the end of 862 * our ordered extent for writes into zoned devices. 863 * 864 * When len_to_oe_boundary is tracking an ordered extent, we 865 * trust the ordered extent code to align things properly, and 866 * the check above to cap our write to the ordered extent 867 * boundary is correct. 868 * 869 * When len_to_oe_boundary is U32_MAX, the cap above would 870 * result in a 4095 byte IO for the last page right before 871 * we hit the bio limit of UINT_MAX. bio_add_page() has all 872 * the checks required to make sure we don't overflow the bio, 873 * and we should just ignore len_to_oe_boundary completely 874 * unless we're using it to track an ordered extent. 875 * 876 * It's pretty hard to make a bio sized U32_MAX, but it can 877 * happen when the page cache is able to feed us contiguous 878 * pages for large extents. 879 */ 880 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 881 bio_ctrl->len_to_oe_boundary -= len; 882 883 /* Ordered extent boundary: move on to a new bio. */ 884 if (bio_ctrl->len_to_oe_boundary == 0) 885 submit_one_bio(bio_ctrl); 886 } while (size); 887 } 888 889 static int attach_extent_buffer_folio(struct extent_buffer *eb, 890 struct folio *folio, 891 struct btrfs_subpage *prealloc) 892 { 893 struct btrfs_fs_info *fs_info = eb->fs_info; 894 int ret = 0; 895 896 /* 897 * If the page is mapped to btree inode, we should hold the private 898 * lock to prevent race. 899 * For cloned or dummy extent buffers, their pages are not mapped and 900 * will not race with any other ebs. 901 */ 902 if (folio->mapping) 903 lockdep_assert_held(&folio->mapping->i_private_lock); 904 905 if (fs_info->nodesize >= PAGE_SIZE) { 906 if (!folio_test_private(folio)) 907 folio_attach_private(folio, eb); 908 else 909 WARN_ON(folio_get_private(folio) != eb); 910 return 0; 911 } 912 913 /* Already mapped, just free prealloc */ 914 if (folio_test_private(folio)) { 915 btrfs_free_subpage(prealloc); 916 return 0; 917 } 918 919 if (prealloc) 920 /* Has preallocated memory for subpage */ 921 folio_attach_private(folio, prealloc); 922 else 923 /* Do new allocation to attach subpage */ 924 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 925 return ret; 926 } 927 928 int set_page_extent_mapped(struct page *page) 929 { 930 return set_folio_extent_mapped(page_folio(page)); 931 } 932 933 int set_folio_extent_mapped(struct folio *folio) 934 { 935 struct btrfs_fs_info *fs_info; 936 937 ASSERT(folio->mapping); 938 939 if (folio_test_private(folio)) 940 return 0; 941 942 fs_info = folio_to_fs_info(folio); 943 944 if (btrfs_is_subpage(fs_info, folio->mapping)) 945 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 946 947 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 948 return 0; 949 } 950 951 void clear_page_extent_mapped(struct page *page) 952 { 953 struct folio *folio = page_folio(page); 954 struct btrfs_fs_info *fs_info; 955 956 ASSERT(page->mapping); 957 958 if (!folio_test_private(folio)) 959 return; 960 961 fs_info = page_to_fs_info(page); 962 if (btrfs_is_subpage(fs_info, page->mapping)) 963 return btrfs_detach_subpage(fs_info, folio); 964 965 folio_detach_private(folio); 966 } 967 968 static struct extent_map *__get_extent_map(struct inode *inode, struct page *page, 969 u64 start, u64 len, struct extent_map **em_cached) 970 { 971 struct extent_map *em; 972 973 ASSERT(em_cached); 974 975 if (*em_cached) { 976 em = *em_cached; 977 if (extent_map_in_tree(em) && start >= em->start && 978 start < extent_map_end(em)) { 979 refcount_inc(&em->refs); 980 return em; 981 } 982 983 free_extent_map(em); 984 *em_cached = NULL; 985 } 986 987 em = btrfs_get_extent(BTRFS_I(inode), page, start, len); 988 if (!IS_ERR(em)) { 989 BUG_ON(*em_cached); 990 refcount_inc(&em->refs); 991 *em_cached = em; 992 } 993 return em; 994 } 995 /* 996 * basic readpage implementation. Locked extent state structs are inserted 997 * into the tree that are removed when the IO is done (by the end_io 998 * handlers) 999 * XXX JDM: This needs looking at to ensure proper page locking 1000 * return 0 on success, otherwise return error 1001 */ 1002 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1003 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1004 { 1005 struct inode *inode = page->mapping->host; 1006 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1007 u64 start = page_offset(page); 1008 const u64 end = start + PAGE_SIZE - 1; 1009 u64 cur = start; 1010 u64 extent_offset; 1011 u64 last_byte = i_size_read(inode); 1012 u64 block_start; 1013 struct extent_map *em; 1014 int ret = 0; 1015 size_t pg_offset = 0; 1016 size_t iosize; 1017 size_t blocksize = fs_info->sectorsize; 1018 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1019 1020 ret = set_page_extent_mapped(page); 1021 if (ret < 0) { 1022 unlock_extent(tree, start, end, NULL); 1023 unlock_page(page); 1024 return ret; 1025 } 1026 1027 if (page->index == last_byte >> PAGE_SHIFT) { 1028 size_t zero_offset = offset_in_page(last_byte); 1029 1030 if (zero_offset) { 1031 iosize = PAGE_SIZE - zero_offset; 1032 memzero_page(page, zero_offset, iosize); 1033 } 1034 } 1035 bio_ctrl->end_io_func = end_bbio_data_read; 1036 begin_page_read(fs_info, page); 1037 while (cur <= end) { 1038 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1039 bool force_bio_submit = false; 1040 u64 disk_bytenr; 1041 1042 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1043 if (cur >= last_byte) { 1044 iosize = PAGE_SIZE - pg_offset; 1045 memzero_page(page, pg_offset, iosize); 1046 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1047 end_page_read(page, true, cur, iosize); 1048 break; 1049 } 1050 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached); 1051 if (IS_ERR(em)) { 1052 unlock_extent(tree, cur, end, NULL); 1053 end_page_read(page, false, cur, end + 1 - cur); 1054 return PTR_ERR(em); 1055 } 1056 extent_offset = cur - em->start; 1057 BUG_ON(extent_map_end(em) <= cur); 1058 BUG_ON(end < cur); 1059 1060 compress_type = extent_map_compression(em); 1061 1062 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1063 iosize = ALIGN(iosize, blocksize); 1064 if (compress_type != BTRFS_COMPRESS_NONE) 1065 disk_bytenr = em->block_start; 1066 else 1067 disk_bytenr = em->block_start + extent_offset; 1068 block_start = em->block_start; 1069 if (em->flags & EXTENT_FLAG_PREALLOC) 1070 block_start = EXTENT_MAP_HOLE; 1071 1072 /* 1073 * If we have a file range that points to a compressed extent 1074 * and it's followed by a consecutive file range that points 1075 * to the same compressed extent (possibly with a different 1076 * offset and/or length, so it either points to the whole extent 1077 * or only part of it), we must make sure we do not submit a 1078 * single bio to populate the pages for the 2 ranges because 1079 * this makes the compressed extent read zero out the pages 1080 * belonging to the 2nd range. Imagine the following scenario: 1081 * 1082 * File layout 1083 * [0 - 8K] [8K - 24K] 1084 * | | 1085 * | | 1086 * points to extent X, points to extent X, 1087 * offset 4K, length of 8K offset 0, length 16K 1088 * 1089 * [extent X, compressed length = 4K uncompressed length = 16K] 1090 * 1091 * If the bio to read the compressed extent covers both ranges, 1092 * it will decompress extent X into the pages belonging to the 1093 * first range and then it will stop, zeroing out the remaining 1094 * pages that belong to the other range that points to extent X. 1095 * So here we make sure we submit 2 bios, one for the first 1096 * range and another one for the third range. Both will target 1097 * the same physical extent from disk, but we can't currently 1098 * make the compressed bio endio callback populate the pages 1099 * for both ranges because each compressed bio is tightly 1100 * coupled with a single extent map, and each range can have 1101 * an extent map with a different offset value relative to the 1102 * uncompressed data of our extent and different lengths. This 1103 * is a corner case so we prioritize correctness over 1104 * non-optimal behavior (submitting 2 bios for the same extent). 1105 */ 1106 if (compress_type != BTRFS_COMPRESS_NONE && 1107 prev_em_start && *prev_em_start != (u64)-1 && 1108 *prev_em_start != em->start) 1109 force_bio_submit = true; 1110 1111 if (prev_em_start) 1112 *prev_em_start = em->start; 1113 1114 free_extent_map(em); 1115 em = NULL; 1116 1117 /* we've found a hole, just zero and go on */ 1118 if (block_start == EXTENT_MAP_HOLE) { 1119 memzero_page(page, pg_offset, iosize); 1120 1121 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1122 end_page_read(page, true, cur, iosize); 1123 cur = cur + iosize; 1124 pg_offset += iosize; 1125 continue; 1126 } 1127 /* the get_extent function already copied into the page */ 1128 if (block_start == EXTENT_MAP_INLINE) { 1129 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1130 end_page_read(page, true, cur, iosize); 1131 cur = cur + iosize; 1132 pg_offset += iosize; 1133 continue; 1134 } 1135 1136 if (bio_ctrl->compress_type != compress_type) { 1137 submit_one_bio(bio_ctrl); 1138 bio_ctrl->compress_type = compress_type; 1139 } 1140 1141 if (force_bio_submit) 1142 submit_one_bio(bio_ctrl); 1143 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1144 pg_offset); 1145 cur = cur + iosize; 1146 pg_offset += iosize; 1147 } 1148 1149 return 0; 1150 } 1151 1152 int btrfs_read_folio(struct file *file, struct folio *folio) 1153 { 1154 struct page *page = &folio->page; 1155 struct btrfs_inode *inode = page_to_inode(page); 1156 u64 start = page_offset(page); 1157 u64 end = start + PAGE_SIZE - 1; 1158 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1159 struct extent_map *em_cached = NULL; 1160 int ret; 1161 1162 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1163 1164 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL); 1165 free_extent_map(em_cached); 1166 1167 /* 1168 * If btrfs_do_readpage() failed we will want to submit the assembled 1169 * bio to do the cleanup. 1170 */ 1171 submit_one_bio(&bio_ctrl); 1172 return ret; 1173 } 1174 1175 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1176 u64 start, u64 end, 1177 struct extent_map **em_cached, 1178 struct btrfs_bio_ctrl *bio_ctrl, 1179 u64 *prev_em_start) 1180 { 1181 struct btrfs_inode *inode = page_to_inode(pages[0]); 1182 int index; 1183 1184 ASSERT(em_cached); 1185 1186 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1187 1188 for (index = 0; index < nr_pages; index++) { 1189 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1190 prev_em_start); 1191 put_page(pages[index]); 1192 } 1193 } 1194 1195 /* 1196 * helper for __extent_writepage, doing all of the delayed allocation setup. 1197 * 1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1199 * to write the page (copy into inline extent). In this case the IO has 1200 * been started and the page is already unlocked. 1201 * 1202 * This returns 0 if all went well (page still locked) 1203 * This returns < 0 if there were errors (page still locked) 1204 */ 1205 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1206 struct page *page, struct writeback_control *wbc) 1207 { 1208 const u64 page_start = page_offset(page); 1209 const u64 page_end = page_start + PAGE_SIZE - 1; 1210 u64 delalloc_start = page_start; 1211 u64 delalloc_end = page_end; 1212 u64 delalloc_to_write = 0; 1213 int ret = 0; 1214 1215 while (delalloc_start < page_end) { 1216 delalloc_end = page_end; 1217 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1218 &delalloc_start, &delalloc_end)) { 1219 delalloc_start = delalloc_end + 1; 1220 continue; 1221 } 1222 1223 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1224 delalloc_end, wbc); 1225 if (ret < 0) 1226 return ret; 1227 1228 delalloc_start = delalloc_end + 1; 1229 } 1230 1231 /* 1232 * delalloc_end is already one less than the total length, so 1233 * we don't subtract one from PAGE_SIZE 1234 */ 1235 delalloc_to_write += 1236 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1237 1238 /* 1239 * If btrfs_run_dealloc_range() already started I/O and unlocked 1240 * the pages, we just need to account for them here. 1241 */ 1242 if (ret == 1) { 1243 wbc->nr_to_write -= delalloc_to_write; 1244 return 1; 1245 } 1246 1247 if (wbc->nr_to_write < delalloc_to_write) { 1248 int thresh = 8192; 1249 1250 if (delalloc_to_write < thresh * 2) 1251 thresh = delalloc_to_write; 1252 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1253 thresh); 1254 } 1255 1256 return 0; 1257 } 1258 1259 /* 1260 * Find the first byte we need to write. 1261 * 1262 * For subpage, one page can contain several sectors, and 1263 * __extent_writepage_io() will just grab all extent maps in the page 1264 * range and try to submit all non-inline/non-compressed extents. 1265 * 1266 * This is a big problem for subpage, we shouldn't re-submit already written 1267 * data at all. 1268 * This function will lookup subpage dirty bit to find which range we really 1269 * need to submit. 1270 * 1271 * Return the next dirty range in [@start, @end). 1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1273 */ 1274 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1275 struct page *page, u64 *start, u64 *end) 1276 { 1277 struct folio *folio = page_folio(page); 1278 struct btrfs_subpage *subpage = folio_get_private(folio); 1279 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1280 u64 orig_start = *start; 1281 /* Declare as unsigned long so we can use bitmap ops */ 1282 unsigned long flags; 1283 int range_start_bit; 1284 int range_end_bit; 1285 1286 /* 1287 * For regular sector size == page size case, since one page only 1288 * contains one sector, we return the page offset directly. 1289 */ 1290 if (!btrfs_is_subpage(fs_info, page->mapping)) { 1291 *start = page_offset(page); 1292 *end = page_offset(page) + PAGE_SIZE; 1293 return; 1294 } 1295 1296 range_start_bit = spi->dirty_offset + 1297 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1298 1299 /* We should have the page locked, but just in case */ 1300 spin_lock_irqsave(&subpage->lock, flags); 1301 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1302 spi->dirty_offset + spi->bitmap_nr_bits); 1303 spin_unlock_irqrestore(&subpage->lock, flags); 1304 1305 range_start_bit -= spi->dirty_offset; 1306 range_end_bit -= spi->dirty_offset; 1307 1308 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1309 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1310 } 1311 1312 /* 1313 * helper for __extent_writepage. This calls the writepage start hooks, 1314 * and does the loop to map the page into extents and bios. 1315 * 1316 * We return 1 if the IO is started and the page is unlocked, 1317 * 0 if all went well (page still locked) 1318 * < 0 if there were errors (page still locked) 1319 */ 1320 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1321 struct page *page, 1322 struct btrfs_bio_ctrl *bio_ctrl, 1323 loff_t i_size, 1324 int *nr_ret) 1325 { 1326 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1327 u64 cur = page_offset(page); 1328 u64 end = cur + PAGE_SIZE - 1; 1329 u64 extent_offset; 1330 u64 block_start; 1331 struct extent_map *em; 1332 int ret = 0; 1333 int nr = 0; 1334 1335 ret = btrfs_writepage_cow_fixup(page); 1336 if (ret) { 1337 /* Fixup worker will requeue */ 1338 redirty_page_for_writepage(bio_ctrl->wbc, page); 1339 unlock_page(page); 1340 return 1; 1341 } 1342 1343 bio_ctrl->end_io_func = end_bbio_data_write; 1344 while (cur <= end) { 1345 u32 len = end - cur + 1; 1346 u64 disk_bytenr; 1347 u64 em_end; 1348 u64 dirty_range_start = cur; 1349 u64 dirty_range_end; 1350 u32 iosize; 1351 1352 if (cur >= i_size) { 1353 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1354 true); 1355 /* 1356 * This range is beyond i_size, thus we don't need to 1357 * bother writing back. 1358 * But we still need to clear the dirty subpage bit, or 1359 * the next time the page gets dirtied, we will try to 1360 * writeback the sectors with subpage dirty bits, 1361 * causing writeback without ordered extent. 1362 */ 1363 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len); 1364 break; 1365 } 1366 1367 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1368 &dirty_range_end); 1369 if (cur < dirty_range_start) { 1370 cur = dirty_range_start; 1371 continue; 1372 } 1373 1374 em = btrfs_get_extent(inode, NULL, cur, len); 1375 if (IS_ERR(em)) { 1376 ret = PTR_ERR_OR_ZERO(em); 1377 goto out_error; 1378 } 1379 1380 extent_offset = cur - em->start; 1381 em_end = extent_map_end(em); 1382 ASSERT(cur <= em_end); 1383 ASSERT(cur < end); 1384 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1385 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1386 1387 block_start = em->block_start; 1388 disk_bytenr = em->block_start + extent_offset; 1389 1390 ASSERT(!extent_map_is_compressed(em)); 1391 ASSERT(block_start != EXTENT_MAP_HOLE); 1392 ASSERT(block_start != EXTENT_MAP_INLINE); 1393 1394 /* 1395 * Note that em_end from extent_map_end() and dirty_range_end from 1396 * find_next_dirty_byte() are all exclusive 1397 */ 1398 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1399 free_extent_map(em); 1400 em = NULL; 1401 1402 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1403 if (!PageWriteback(page)) { 1404 btrfs_err(inode->root->fs_info, 1405 "page %lu not writeback, cur %llu end %llu", 1406 page->index, cur, end); 1407 } 1408 1409 /* 1410 * Although the PageDirty bit is cleared before entering this 1411 * function, subpage dirty bit is not cleared. 1412 * So clear subpage dirty bit here so next time we won't submit 1413 * page for range already written to disk. 1414 */ 1415 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize); 1416 1417 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1418 cur - page_offset(page)); 1419 cur += iosize; 1420 nr++; 1421 } 1422 1423 btrfs_folio_assert_not_dirty(fs_info, page_folio(page)); 1424 *nr_ret = nr; 1425 return 0; 1426 1427 out_error: 1428 /* 1429 * If we finish without problem, we should not only clear page dirty, 1430 * but also empty subpage dirty bits 1431 */ 1432 *nr_ret = nr; 1433 return ret; 1434 } 1435 1436 /* 1437 * the writepage semantics are similar to regular writepage. extent 1438 * records are inserted to lock ranges in the tree, and as dirty areas 1439 * are found, they are marked writeback. Then the lock bits are removed 1440 * and the end_io handler clears the writeback ranges 1441 * 1442 * Return 0 if everything goes well. 1443 * Return <0 for error. 1444 */ 1445 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1446 { 1447 struct folio *folio = page_folio(page); 1448 struct inode *inode = page->mapping->host; 1449 const u64 page_start = page_offset(page); 1450 int ret; 1451 int nr = 0; 1452 size_t pg_offset; 1453 loff_t i_size = i_size_read(inode); 1454 unsigned long end_index = i_size >> PAGE_SHIFT; 1455 1456 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1457 1458 WARN_ON(!PageLocked(page)); 1459 1460 pg_offset = offset_in_page(i_size); 1461 if (page->index > end_index || 1462 (page->index == end_index && !pg_offset)) { 1463 folio_invalidate(folio, 0, folio_size(folio)); 1464 folio_unlock(folio); 1465 return 0; 1466 } 1467 1468 if (page->index == end_index) 1469 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1470 1471 ret = set_page_extent_mapped(page); 1472 if (ret < 0) 1473 goto done; 1474 1475 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1476 if (ret == 1) 1477 return 0; 1478 if (ret) 1479 goto done; 1480 1481 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1482 if (ret == 1) 1483 return 0; 1484 1485 bio_ctrl->wbc->nr_to_write--; 1486 1487 done: 1488 if (nr == 0) { 1489 /* make sure the mapping tag for page dirty gets cleared */ 1490 set_page_writeback(page); 1491 end_page_writeback(page); 1492 } 1493 if (ret) { 1494 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1495 PAGE_SIZE, !ret); 1496 mapping_set_error(page->mapping, ret); 1497 } 1498 unlock_page(page); 1499 ASSERT(ret <= 0); 1500 return ret; 1501 } 1502 1503 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1504 { 1505 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1506 TASK_UNINTERRUPTIBLE); 1507 } 1508 1509 /* 1510 * Lock extent buffer status and pages for writeback. 1511 * 1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1513 * extent buffer is not dirty) 1514 * Return %true is the extent buffer is submitted to bio. 1515 */ 1516 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1517 struct writeback_control *wbc) 1518 { 1519 struct btrfs_fs_info *fs_info = eb->fs_info; 1520 bool ret = false; 1521 1522 btrfs_tree_lock(eb); 1523 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1524 btrfs_tree_unlock(eb); 1525 if (wbc->sync_mode != WB_SYNC_ALL) 1526 return false; 1527 wait_on_extent_buffer_writeback(eb); 1528 btrfs_tree_lock(eb); 1529 } 1530 1531 /* 1532 * We need to do this to prevent races in people who check if the eb is 1533 * under IO since we can end up having no IO bits set for a short period 1534 * of time. 1535 */ 1536 spin_lock(&eb->refs_lock); 1537 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1538 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1539 spin_unlock(&eb->refs_lock); 1540 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1541 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1542 -eb->len, 1543 fs_info->dirty_metadata_batch); 1544 ret = true; 1545 } else { 1546 spin_unlock(&eb->refs_lock); 1547 } 1548 btrfs_tree_unlock(eb); 1549 return ret; 1550 } 1551 1552 static void set_btree_ioerr(struct extent_buffer *eb) 1553 { 1554 struct btrfs_fs_info *fs_info = eb->fs_info; 1555 1556 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1557 1558 /* 1559 * A read may stumble upon this buffer later, make sure that it gets an 1560 * error and knows there was an error. 1561 */ 1562 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1563 1564 /* 1565 * We need to set the mapping with the io error as well because a write 1566 * error will flip the file system readonly, and then syncfs() will 1567 * return a 0 because we are readonly if we don't modify the err seq for 1568 * the superblock. 1569 */ 1570 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1571 1572 /* 1573 * If writeback for a btree extent that doesn't belong to a log tree 1574 * failed, increment the counter transaction->eb_write_errors. 1575 * We do this because while the transaction is running and before it's 1576 * committing (when we call filemap_fdata[write|wait]_range against 1577 * the btree inode), we might have 1578 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1579 * returns an error or an error happens during writeback, when we're 1580 * committing the transaction we wouldn't know about it, since the pages 1581 * can be no longer dirty nor marked anymore for writeback (if a 1582 * subsequent modification to the extent buffer didn't happen before the 1583 * transaction commit), which makes filemap_fdata[write|wait]_range not 1584 * able to find the pages tagged with SetPageError at transaction 1585 * commit time. So if this happens we must abort the transaction, 1586 * otherwise we commit a super block with btree roots that point to 1587 * btree nodes/leafs whose content on disk is invalid - either garbage 1588 * or the content of some node/leaf from a past generation that got 1589 * cowed or deleted and is no longer valid. 1590 * 1591 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1592 * not be enough - we need to distinguish between log tree extents vs 1593 * non-log tree extents, and the next filemap_fdatawait_range() call 1594 * will catch and clear such errors in the mapping - and that call might 1595 * be from a log sync and not from a transaction commit. Also, checking 1596 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1597 * not done and would not be reliable - the eb might have been released 1598 * from memory and reading it back again means that flag would not be 1599 * set (since it's a runtime flag, not persisted on disk). 1600 * 1601 * Using the flags below in the btree inode also makes us achieve the 1602 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1603 * writeback for all dirty pages and before filemap_fdatawait_range() 1604 * is called, the writeback for all dirty pages had already finished 1605 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1606 * filemap_fdatawait_range() would return success, as it could not know 1607 * that writeback errors happened (the pages were no longer tagged for 1608 * writeback). 1609 */ 1610 switch (eb->log_index) { 1611 case -1: 1612 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1613 break; 1614 case 0: 1615 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1616 break; 1617 case 1: 1618 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1619 break; 1620 default: 1621 BUG(); /* unexpected, logic error */ 1622 } 1623 } 1624 1625 /* 1626 * The endio specific version which won't touch any unsafe spinlock in endio 1627 * context. 1628 */ 1629 static struct extent_buffer *find_extent_buffer_nolock( 1630 struct btrfs_fs_info *fs_info, u64 start) 1631 { 1632 struct extent_buffer *eb; 1633 1634 rcu_read_lock(); 1635 eb = radix_tree_lookup(&fs_info->buffer_radix, 1636 start >> fs_info->sectorsize_bits); 1637 if (eb && atomic_inc_not_zero(&eb->refs)) { 1638 rcu_read_unlock(); 1639 return eb; 1640 } 1641 rcu_read_unlock(); 1642 return NULL; 1643 } 1644 1645 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1646 { 1647 struct extent_buffer *eb = bbio->private; 1648 struct btrfs_fs_info *fs_info = eb->fs_info; 1649 bool uptodate = !bbio->bio.bi_status; 1650 struct folio_iter fi; 1651 u32 bio_offset = 0; 1652 1653 if (!uptodate) 1654 set_btree_ioerr(eb); 1655 1656 bio_for_each_folio_all(fi, &bbio->bio) { 1657 u64 start = eb->start + bio_offset; 1658 struct folio *folio = fi.folio; 1659 u32 len = fi.length; 1660 1661 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1662 bio_offset += len; 1663 } 1664 1665 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1666 smp_mb__after_atomic(); 1667 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1668 1669 bio_put(&bbio->bio); 1670 } 1671 1672 static void prepare_eb_write(struct extent_buffer *eb) 1673 { 1674 u32 nritems; 1675 unsigned long start; 1676 unsigned long end; 1677 1678 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1679 1680 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1681 nritems = btrfs_header_nritems(eb); 1682 if (btrfs_header_level(eb) > 0) { 1683 end = btrfs_node_key_ptr_offset(eb, nritems); 1684 memzero_extent_buffer(eb, end, eb->len - end); 1685 } else { 1686 /* 1687 * Leaf: 1688 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1689 */ 1690 start = btrfs_item_nr_offset(eb, nritems); 1691 end = btrfs_item_nr_offset(eb, 0); 1692 if (nritems == 0) 1693 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1694 else 1695 end += btrfs_item_offset(eb, nritems - 1); 1696 memzero_extent_buffer(eb, start, end - start); 1697 } 1698 } 1699 1700 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1701 struct writeback_control *wbc) 1702 { 1703 struct btrfs_fs_info *fs_info = eb->fs_info; 1704 struct btrfs_bio *bbio; 1705 1706 prepare_eb_write(eb); 1707 1708 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1709 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1710 eb->fs_info, end_bbio_meta_write, eb); 1711 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1712 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1713 wbc_init_bio(wbc, &bbio->bio); 1714 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1715 bbio->file_offset = eb->start; 1716 if (fs_info->nodesize < PAGE_SIZE) { 1717 struct folio *folio = eb->folios[0]; 1718 bool ret; 1719 1720 folio_lock(folio); 1721 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1722 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1723 eb->len)) { 1724 folio_clear_dirty_for_io(folio); 1725 wbc->nr_to_write--; 1726 } 1727 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1728 eb->start - folio_pos(folio)); 1729 ASSERT(ret); 1730 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1731 folio_unlock(folio); 1732 } else { 1733 int num_folios = num_extent_folios(eb); 1734 1735 for (int i = 0; i < num_folios; i++) { 1736 struct folio *folio = eb->folios[i]; 1737 bool ret; 1738 1739 folio_lock(folio); 1740 folio_clear_dirty_for_io(folio); 1741 folio_start_writeback(folio); 1742 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1743 ASSERT(ret); 1744 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1745 eb->folio_size); 1746 wbc->nr_to_write -= folio_nr_pages(folio); 1747 folio_unlock(folio); 1748 } 1749 } 1750 btrfs_submit_bio(bbio, 0); 1751 } 1752 1753 /* 1754 * Submit one subpage btree page. 1755 * 1756 * The main difference to submit_eb_page() is: 1757 * - Page locking 1758 * For subpage, we don't rely on page locking at all. 1759 * 1760 * - Flush write bio 1761 * We only flush bio if we may be unable to fit current extent buffers into 1762 * current bio. 1763 * 1764 * Return >=0 for the number of submitted extent buffers. 1765 * Return <0 for fatal error. 1766 */ 1767 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1768 { 1769 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 1770 struct folio *folio = page_folio(page); 1771 int submitted = 0; 1772 u64 page_start = page_offset(page); 1773 int bit_start = 0; 1774 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1775 1776 /* Lock and write each dirty extent buffers in the range */ 1777 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1778 struct btrfs_subpage *subpage = folio_get_private(folio); 1779 struct extent_buffer *eb; 1780 unsigned long flags; 1781 u64 start; 1782 1783 /* 1784 * Take private lock to ensure the subpage won't be detached 1785 * in the meantime. 1786 */ 1787 spin_lock(&page->mapping->i_private_lock); 1788 if (!folio_test_private(folio)) { 1789 spin_unlock(&page->mapping->i_private_lock); 1790 break; 1791 } 1792 spin_lock_irqsave(&subpage->lock, flags); 1793 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1794 subpage->bitmaps)) { 1795 spin_unlock_irqrestore(&subpage->lock, flags); 1796 spin_unlock(&page->mapping->i_private_lock); 1797 bit_start++; 1798 continue; 1799 } 1800 1801 start = page_start + bit_start * fs_info->sectorsize; 1802 bit_start += sectors_per_node; 1803 1804 /* 1805 * Here we just want to grab the eb without touching extra 1806 * spin locks, so call find_extent_buffer_nolock(). 1807 */ 1808 eb = find_extent_buffer_nolock(fs_info, start); 1809 spin_unlock_irqrestore(&subpage->lock, flags); 1810 spin_unlock(&page->mapping->i_private_lock); 1811 1812 /* 1813 * The eb has already reached 0 refs thus find_extent_buffer() 1814 * doesn't return it. We don't need to write back such eb 1815 * anyway. 1816 */ 1817 if (!eb) 1818 continue; 1819 1820 if (lock_extent_buffer_for_io(eb, wbc)) { 1821 write_one_eb(eb, wbc); 1822 submitted++; 1823 } 1824 free_extent_buffer(eb); 1825 } 1826 return submitted; 1827 } 1828 1829 /* 1830 * Submit all page(s) of one extent buffer. 1831 * 1832 * @page: the page of one extent buffer 1833 * @eb_context: to determine if we need to submit this page, if current page 1834 * belongs to this eb, we don't need to submit 1835 * 1836 * The caller should pass each page in their bytenr order, and here we use 1837 * @eb_context to determine if we have submitted pages of one extent buffer. 1838 * 1839 * If we have, we just skip until we hit a new page that doesn't belong to 1840 * current @eb_context. 1841 * 1842 * If not, we submit all the page(s) of the extent buffer. 1843 * 1844 * Return >0 if we have submitted the extent buffer successfully. 1845 * Return 0 if we don't need to submit the page, as it's already submitted by 1846 * previous call. 1847 * Return <0 for fatal error. 1848 */ 1849 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1850 { 1851 struct writeback_control *wbc = ctx->wbc; 1852 struct address_space *mapping = page->mapping; 1853 struct folio *folio = page_folio(page); 1854 struct extent_buffer *eb; 1855 int ret; 1856 1857 if (!folio_test_private(folio)) 1858 return 0; 1859 1860 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 1861 return submit_eb_subpage(page, wbc); 1862 1863 spin_lock(&mapping->i_private_lock); 1864 if (!folio_test_private(folio)) { 1865 spin_unlock(&mapping->i_private_lock); 1866 return 0; 1867 } 1868 1869 eb = folio_get_private(folio); 1870 1871 /* 1872 * Shouldn't happen and normally this would be a BUG_ON but no point 1873 * crashing the machine for something we can survive anyway. 1874 */ 1875 if (WARN_ON(!eb)) { 1876 spin_unlock(&mapping->i_private_lock); 1877 return 0; 1878 } 1879 1880 if (eb == ctx->eb) { 1881 spin_unlock(&mapping->i_private_lock); 1882 return 0; 1883 } 1884 ret = atomic_inc_not_zero(&eb->refs); 1885 spin_unlock(&mapping->i_private_lock); 1886 if (!ret) 1887 return 0; 1888 1889 ctx->eb = eb; 1890 1891 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1892 if (ret) { 1893 if (ret == -EBUSY) 1894 ret = 0; 1895 free_extent_buffer(eb); 1896 return ret; 1897 } 1898 1899 if (!lock_extent_buffer_for_io(eb, wbc)) { 1900 free_extent_buffer(eb); 1901 return 0; 1902 } 1903 /* Implies write in zoned mode. */ 1904 if (ctx->zoned_bg) { 1905 /* Mark the last eb in the block group. */ 1906 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1907 ctx->zoned_bg->meta_write_pointer += eb->len; 1908 } 1909 write_one_eb(eb, wbc); 1910 free_extent_buffer(eb); 1911 return 1; 1912 } 1913 1914 int btree_write_cache_pages(struct address_space *mapping, 1915 struct writeback_control *wbc) 1916 { 1917 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1918 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1919 int ret = 0; 1920 int done = 0; 1921 int nr_to_write_done = 0; 1922 struct folio_batch fbatch; 1923 unsigned int nr_folios; 1924 pgoff_t index; 1925 pgoff_t end; /* Inclusive */ 1926 int scanned = 0; 1927 xa_mark_t tag; 1928 1929 folio_batch_init(&fbatch); 1930 if (wbc->range_cyclic) { 1931 index = mapping->writeback_index; /* Start from prev offset */ 1932 end = -1; 1933 /* 1934 * Start from the beginning does not need to cycle over the 1935 * range, mark it as scanned. 1936 */ 1937 scanned = (index == 0); 1938 } else { 1939 index = wbc->range_start >> PAGE_SHIFT; 1940 end = wbc->range_end >> PAGE_SHIFT; 1941 scanned = 1; 1942 } 1943 if (wbc->sync_mode == WB_SYNC_ALL) 1944 tag = PAGECACHE_TAG_TOWRITE; 1945 else 1946 tag = PAGECACHE_TAG_DIRTY; 1947 btrfs_zoned_meta_io_lock(fs_info); 1948 retry: 1949 if (wbc->sync_mode == WB_SYNC_ALL) 1950 tag_pages_for_writeback(mapping, index, end); 1951 while (!done && !nr_to_write_done && (index <= end) && 1952 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1953 tag, &fbatch))) { 1954 unsigned i; 1955 1956 for (i = 0; i < nr_folios; i++) { 1957 struct folio *folio = fbatch.folios[i]; 1958 1959 ret = submit_eb_page(&folio->page, &ctx); 1960 if (ret == 0) 1961 continue; 1962 if (ret < 0) { 1963 done = 1; 1964 break; 1965 } 1966 1967 /* 1968 * the filesystem may choose to bump up nr_to_write. 1969 * We have to make sure to honor the new nr_to_write 1970 * at any time 1971 */ 1972 nr_to_write_done = wbc->nr_to_write <= 0; 1973 } 1974 folio_batch_release(&fbatch); 1975 cond_resched(); 1976 } 1977 if (!scanned && !done) { 1978 /* 1979 * We hit the last page and there is more work to be done: wrap 1980 * back to the start of the file 1981 */ 1982 scanned = 1; 1983 index = 0; 1984 goto retry; 1985 } 1986 /* 1987 * If something went wrong, don't allow any metadata write bio to be 1988 * submitted. 1989 * 1990 * This would prevent use-after-free if we had dirty pages not 1991 * cleaned up, which can still happen by fuzzed images. 1992 * 1993 * - Bad extent tree 1994 * Allowing existing tree block to be allocated for other trees. 1995 * 1996 * - Log tree operations 1997 * Exiting tree blocks get allocated to log tree, bumps its 1998 * generation, then get cleaned in tree re-balance. 1999 * Such tree block will not be written back, since it's clean, 2000 * thus no WRITTEN flag set. 2001 * And after log writes back, this tree block is not traced by 2002 * any dirty extent_io_tree. 2003 * 2004 * - Offending tree block gets re-dirtied from its original owner 2005 * Since it has bumped generation, no WRITTEN flag, it can be 2006 * reused without COWing. This tree block will not be traced 2007 * by btrfs_transaction::dirty_pages. 2008 * 2009 * Now such dirty tree block will not be cleaned by any dirty 2010 * extent io tree. Thus we don't want to submit such wild eb 2011 * if the fs already has error. 2012 * 2013 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2014 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2015 */ 2016 if (ret > 0) 2017 ret = 0; 2018 if (!ret && BTRFS_FS_ERROR(fs_info)) 2019 ret = -EROFS; 2020 2021 if (ctx.zoned_bg) 2022 btrfs_put_block_group(ctx.zoned_bg); 2023 btrfs_zoned_meta_io_unlock(fs_info); 2024 return ret; 2025 } 2026 2027 /* 2028 * Walk the list of dirty pages of the given address space and write all of them. 2029 * 2030 * @mapping: address space structure to write 2031 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2032 * @bio_ctrl: holds context for the write, namely the bio 2033 * 2034 * If a page is already under I/O, write_cache_pages() skips it, even 2035 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2036 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2037 * and msync() need to guarantee that all the data which was dirty at the time 2038 * the call was made get new I/O started against them. If wbc->sync_mode is 2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2040 * existing IO to complete. 2041 */ 2042 static int extent_write_cache_pages(struct address_space *mapping, 2043 struct btrfs_bio_ctrl *bio_ctrl) 2044 { 2045 struct writeback_control *wbc = bio_ctrl->wbc; 2046 struct inode *inode = mapping->host; 2047 int ret = 0; 2048 int done = 0; 2049 int nr_to_write_done = 0; 2050 struct folio_batch fbatch; 2051 unsigned int nr_folios; 2052 pgoff_t index; 2053 pgoff_t end; /* Inclusive */ 2054 pgoff_t done_index; 2055 int range_whole = 0; 2056 int scanned = 0; 2057 xa_mark_t tag; 2058 2059 /* 2060 * We have to hold onto the inode so that ordered extents can do their 2061 * work when the IO finishes. The alternative to this is failing to add 2062 * an ordered extent if the igrab() fails there and that is a huge pain 2063 * to deal with, so instead just hold onto the inode throughout the 2064 * writepages operation. If it fails here we are freeing up the inode 2065 * anyway and we'd rather not waste our time writing out stuff that is 2066 * going to be truncated anyway. 2067 */ 2068 if (!igrab(inode)) 2069 return 0; 2070 2071 folio_batch_init(&fbatch); 2072 if (wbc->range_cyclic) { 2073 index = mapping->writeback_index; /* Start from prev offset */ 2074 end = -1; 2075 /* 2076 * Start from the beginning does not need to cycle over the 2077 * range, mark it as scanned. 2078 */ 2079 scanned = (index == 0); 2080 } else { 2081 index = wbc->range_start >> PAGE_SHIFT; 2082 end = wbc->range_end >> PAGE_SHIFT; 2083 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2084 range_whole = 1; 2085 scanned = 1; 2086 } 2087 2088 /* 2089 * We do the tagged writepage as long as the snapshot flush bit is set 2090 * and we are the first one who do the filemap_flush() on this inode. 2091 * 2092 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2093 * not race in and drop the bit. 2094 */ 2095 if (range_whole && wbc->nr_to_write == LONG_MAX && 2096 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2097 &BTRFS_I(inode)->runtime_flags)) 2098 wbc->tagged_writepages = 1; 2099 2100 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2101 tag = PAGECACHE_TAG_TOWRITE; 2102 else 2103 tag = PAGECACHE_TAG_DIRTY; 2104 retry: 2105 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2106 tag_pages_for_writeback(mapping, index, end); 2107 done_index = index; 2108 while (!done && !nr_to_write_done && (index <= end) && 2109 (nr_folios = filemap_get_folios_tag(mapping, &index, 2110 end, tag, &fbatch))) { 2111 unsigned i; 2112 2113 for (i = 0; i < nr_folios; i++) { 2114 struct folio *folio = fbatch.folios[i]; 2115 2116 done_index = folio_next_index(folio); 2117 /* 2118 * At this point we hold neither the i_pages lock nor 2119 * the page lock: the page may be truncated or 2120 * invalidated (changing page->mapping to NULL), 2121 * or even swizzled back from swapper_space to 2122 * tmpfs file mapping 2123 */ 2124 if (!folio_trylock(folio)) { 2125 submit_write_bio(bio_ctrl, 0); 2126 folio_lock(folio); 2127 } 2128 2129 if (unlikely(folio->mapping != mapping)) { 2130 folio_unlock(folio); 2131 continue; 2132 } 2133 2134 if (!folio_test_dirty(folio)) { 2135 /* Someone wrote it for us. */ 2136 folio_unlock(folio); 2137 continue; 2138 } 2139 2140 if (wbc->sync_mode != WB_SYNC_NONE) { 2141 if (folio_test_writeback(folio)) 2142 submit_write_bio(bio_ctrl, 0); 2143 folio_wait_writeback(folio); 2144 } 2145 2146 if (folio_test_writeback(folio) || 2147 !folio_clear_dirty_for_io(folio)) { 2148 folio_unlock(folio); 2149 continue; 2150 } 2151 2152 ret = __extent_writepage(&folio->page, bio_ctrl); 2153 if (ret < 0) { 2154 done = 1; 2155 break; 2156 } 2157 2158 /* 2159 * The filesystem may choose to bump up nr_to_write. 2160 * We have to make sure to honor the new nr_to_write 2161 * at any time. 2162 */ 2163 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2164 wbc->nr_to_write <= 0); 2165 } 2166 folio_batch_release(&fbatch); 2167 cond_resched(); 2168 } 2169 if (!scanned && !done) { 2170 /* 2171 * We hit the last page and there is more work to be done: wrap 2172 * back to the start of the file 2173 */ 2174 scanned = 1; 2175 index = 0; 2176 2177 /* 2178 * If we're looping we could run into a page that is locked by a 2179 * writer and that writer could be waiting on writeback for a 2180 * page in our current bio, and thus deadlock, so flush the 2181 * write bio here. 2182 */ 2183 submit_write_bio(bio_ctrl, 0); 2184 goto retry; 2185 } 2186 2187 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2188 mapping->writeback_index = done_index; 2189 2190 btrfs_add_delayed_iput(BTRFS_I(inode)); 2191 return ret; 2192 } 2193 2194 /* 2195 * Submit the pages in the range to bio for call sites which delalloc range has 2196 * already been ran (aka, ordered extent inserted) and all pages are still 2197 * locked. 2198 */ 2199 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2200 u64 start, u64 end, struct writeback_control *wbc, 2201 bool pages_dirty) 2202 { 2203 bool found_error = false; 2204 int ret = 0; 2205 struct address_space *mapping = inode->i_mapping; 2206 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2207 const u32 sectorsize = fs_info->sectorsize; 2208 loff_t i_size = i_size_read(inode); 2209 u64 cur = start; 2210 struct btrfs_bio_ctrl bio_ctrl = { 2211 .wbc = wbc, 2212 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2213 }; 2214 2215 if (wbc->no_cgroup_owner) 2216 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2217 2218 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2219 2220 while (cur <= end) { 2221 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2222 u32 cur_len = cur_end + 1 - cur; 2223 struct page *page; 2224 int nr = 0; 2225 2226 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2227 ASSERT(PageLocked(page)); 2228 if (pages_dirty && page != locked_page) { 2229 ASSERT(PageDirty(page)); 2230 clear_page_dirty_for_io(page); 2231 } 2232 2233 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2234 i_size, &nr); 2235 if (ret == 1) 2236 goto next_page; 2237 2238 /* Make sure the mapping tag for page dirty gets cleared. */ 2239 if (nr == 0) { 2240 set_page_writeback(page); 2241 end_page_writeback(page); 2242 } 2243 if (ret) { 2244 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2245 cur, cur_len, !ret); 2246 mapping_set_error(page->mapping, ret); 2247 } 2248 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len); 2249 if (ret < 0) 2250 found_error = true; 2251 next_page: 2252 put_page(page); 2253 cur = cur_end + 1; 2254 } 2255 2256 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2257 } 2258 2259 int extent_writepages(struct address_space *mapping, 2260 struct writeback_control *wbc) 2261 { 2262 struct inode *inode = mapping->host; 2263 int ret = 0; 2264 struct btrfs_bio_ctrl bio_ctrl = { 2265 .wbc = wbc, 2266 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2267 }; 2268 2269 /* 2270 * Allow only a single thread to do the reloc work in zoned mode to 2271 * protect the write pointer updates. 2272 */ 2273 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2274 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2275 submit_write_bio(&bio_ctrl, ret); 2276 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2277 return ret; 2278 } 2279 2280 void extent_readahead(struct readahead_control *rac) 2281 { 2282 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2283 struct page *pagepool[16]; 2284 struct extent_map *em_cached = NULL; 2285 u64 prev_em_start = (u64)-1; 2286 int nr; 2287 2288 while ((nr = readahead_page_batch(rac, pagepool))) { 2289 u64 contig_start = readahead_pos(rac); 2290 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2291 2292 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2293 &em_cached, &bio_ctrl, &prev_em_start); 2294 } 2295 2296 if (em_cached) 2297 free_extent_map(em_cached); 2298 submit_one_bio(&bio_ctrl); 2299 } 2300 2301 /* 2302 * basic invalidate_folio code, this waits on any locked or writeback 2303 * ranges corresponding to the folio, and then deletes any extent state 2304 * records from the tree 2305 */ 2306 int extent_invalidate_folio(struct extent_io_tree *tree, 2307 struct folio *folio, size_t offset) 2308 { 2309 struct extent_state *cached_state = NULL; 2310 u64 start = folio_pos(folio); 2311 u64 end = start + folio_size(folio) - 1; 2312 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2313 2314 /* This function is only called for the btree inode */ 2315 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2316 2317 start += ALIGN(offset, blocksize); 2318 if (start > end) 2319 return 0; 2320 2321 lock_extent(tree, start, end, &cached_state); 2322 folio_wait_writeback(folio); 2323 2324 /* 2325 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2326 * so here we only need to unlock the extent range to free any 2327 * existing extent state. 2328 */ 2329 unlock_extent(tree, start, end, &cached_state); 2330 return 0; 2331 } 2332 2333 /* 2334 * a helper for release_folio, this tests for areas of the page that 2335 * are locked or under IO and drops the related state bits if it is safe 2336 * to drop the page. 2337 */ 2338 static int try_release_extent_state(struct extent_io_tree *tree, 2339 struct page *page, gfp_t mask) 2340 { 2341 u64 start = page_offset(page); 2342 u64 end = start + PAGE_SIZE - 1; 2343 int ret = 1; 2344 2345 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2346 ret = 0; 2347 } else { 2348 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2349 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2350 EXTENT_QGROUP_RESERVED); 2351 2352 /* 2353 * At this point we can safely clear everything except the 2354 * locked bit, the nodatasum bit and the delalloc new bit. 2355 * The delalloc new bit will be cleared by ordered extent 2356 * completion. 2357 */ 2358 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2359 2360 /* if clear_extent_bit failed for enomem reasons, 2361 * we can't allow the release to continue. 2362 */ 2363 if (ret < 0) 2364 ret = 0; 2365 else 2366 ret = 1; 2367 } 2368 return ret; 2369 } 2370 2371 /* 2372 * a helper for release_folio. As long as there are no locked extents 2373 * in the range corresponding to the page, both state records and extent 2374 * map records are removed 2375 */ 2376 int try_release_extent_mapping(struct page *page, gfp_t mask) 2377 { 2378 struct extent_map *em; 2379 u64 start = page_offset(page); 2380 u64 end = start + PAGE_SIZE - 1; 2381 struct btrfs_inode *btrfs_inode = page_to_inode(page); 2382 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2383 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2384 2385 if (gfpflags_allow_blocking(mask) && 2386 page->mapping->host->i_size > SZ_16M) { 2387 u64 len; 2388 while (start <= end) { 2389 struct btrfs_fs_info *fs_info; 2390 u64 cur_gen; 2391 2392 len = end - start + 1; 2393 write_lock(&map->lock); 2394 em = lookup_extent_mapping(map, start, len); 2395 if (!em) { 2396 write_unlock(&map->lock); 2397 break; 2398 } 2399 if ((em->flags & EXTENT_FLAG_PINNED) || 2400 em->start != start) { 2401 write_unlock(&map->lock); 2402 free_extent_map(em); 2403 break; 2404 } 2405 if (test_range_bit_exists(tree, em->start, 2406 extent_map_end(em) - 1, 2407 EXTENT_LOCKED)) 2408 goto next; 2409 /* 2410 * If it's not in the list of modified extents, used 2411 * by a fast fsync, we can remove it. If it's being 2412 * logged we can safely remove it since fsync took an 2413 * extra reference on the em. 2414 */ 2415 if (list_empty(&em->list) || 2416 (em->flags & EXTENT_FLAG_LOGGING)) 2417 goto remove_em; 2418 /* 2419 * If it's in the list of modified extents, remove it 2420 * only if its generation is older then the current one, 2421 * in which case we don't need it for a fast fsync. 2422 * Otherwise don't remove it, we could be racing with an 2423 * ongoing fast fsync that could miss the new extent. 2424 */ 2425 fs_info = btrfs_inode->root->fs_info; 2426 spin_lock(&fs_info->trans_lock); 2427 cur_gen = fs_info->generation; 2428 spin_unlock(&fs_info->trans_lock); 2429 if (em->generation >= cur_gen) 2430 goto next; 2431 remove_em: 2432 /* 2433 * We only remove extent maps that are not in the list of 2434 * modified extents or that are in the list but with a 2435 * generation lower then the current generation, so there 2436 * is no need to set the full fsync flag on the inode (it 2437 * hurts the fsync performance for workloads with a data 2438 * size that exceeds or is close to the system's memory). 2439 */ 2440 remove_extent_mapping(map, em); 2441 /* once for the rb tree */ 2442 free_extent_map(em); 2443 next: 2444 start = extent_map_end(em); 2445 write_unlock(&map->lock); 2446 2447 /* once for us */ 2448 free_extent_map(em); 2449 2450 cond_resched(); /* Allow large-extent preemption. */ 2451 } 2452 } 2453 return try_release_extent_state(tree, page, mask); 2454 } 2455 2456 struct btrfs_fiemap_entry { 2457 u64 offset; 2458 u64 phys; 2459 u64 len; 2460 u32 flags; 2461 }; 2462 2463 /* 2464 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file 2465 * range from the inode's io tree, unlock the subvolume tree search path, flush 2466 * the fiemap cache and relock the file range and research the subvolume tree. 2467 * The value here is something negative that can't be confused with a valid 2468 * errno value and different from 1 because that's also a return value from 2469 * fiemap_fill_next_extent() and also it's often used to mean some btree search 2470 * did not find a key, so make it some distinct negative value. 2471 */ 2472 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1)) 2473 2474 /* 2475 * Used to: 2476 * 2477 * - Cache the next entry to be emitted to the fiemap buffer, so that we can 2478 * merge extents that are contiguous and can be grouped as a single one; 2479 * 2480 * - Store extents ready to be written to the fiemap buffer in an intermediary 2481 * buffer. This intermediary buffer is to ensure that in case the fiemap 2482 * buffer is memory mapped to the fiemap target file, we don't deadlock 2483 * during btrfs_page_mkwrite(). This is because during fiemap we are locking 2484 * an extent range in order to prevent races with delalloc flushing and 2485 * ordered extent completion, which is needed in order to reliably detect 2486 * delalloc in holes and prealloc extents. And this can lead to a deadlock 2487 * if the fiemap buffer is memory mapped to the file we are running fiemap 2488 * against (a silly, useless in practice scenario, but possible) because 2489 * btrfs_page_mkwrite() will try to lock the same extent range. 2490 */ 2491 struct fiemap_cache { 2492 /* An array of ready fiemap entries. */ 2493 struct btrfs_fiemap_entry *entries; 2494 /* Number of entries in the entries array. */ 2495 int entries_size; 2496 /* Index of the next entry in the entries array to write to. */ 2497 int entries_pos; 2498 /* 2499 * Once the entries array is full, this indicates what's the offset for 2500 * the next file extent item we must search for in the inode's subvolume 2501 * tree after unlocking the extent range in the inode's io tree and 2502 * releasing the search path. 2503 */ 2504 u64 next_search_offset; 2505 /* 2506 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it 2507 * to count ourselves emitted extents and stop instead of relying on 2508 * fiemap_fill_next_extent() because we buffer ready fiemap entries at 2509 * the @entries array, and we want to stop as soon as we hit the max 2510 * amount of extents to map, not just to save time but also to make the 2511 * logic at extent_fiemap() simpler. 2512 */ 2513 unsigned int extents_mapped; 2514 /* Fields for the cached extent (unsubmitted, not ready, extent). */ 2515 u64 offset; 2516 u64 phys; 2517 u64 len; 2518 u32 flags; 2519 bool cached; 2520 }; 2521 2522 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo, 2523 struct fiemap_cache *cache) 2524 { 2525 for (int i = 0; i < cache->entries_pos; i++) { 2526 struct btrfs_fiemap_entry *entry = &cache->entries[i]; 2527 int ret; 2528 2529 ret = fiemap_fill_next_extent(fieinfo, entry->offset, 2530 entry->phys, entry->len, 2531 entry->flags); 2532 /* 2533 * Ignore 1 (reached max entries) because we keep track of that 2534 * ourselves in emit_fiemap_extent(). 2535 */ 2536 if (ret < 0) 2537 return ret; 2538 } 2539 cache->entries_pos = 0; 2540 2541 return 0; 2542 } 2543 2544 /* 2545 * Helper to submit fiemap extent. 2546 * 2547 * Will try to merge current fiemap extent specified by @offset, @phys, 2548 * @len and @flags with cached one. 2549 * And only when we fails to merge, cached one will be submitted as 2550 * fiemap extent. 2551 * 2552 * Return value is the same as fiemap_fill_next_extent(). 2553 */ 2554 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2555 struct fiemap_cache *cache, 2556 u64 offset, u64 phys, u64 len, u32 flags) 2557 { 2558 struct btrfs_fiemap_entry *entry; 2559 u64 cache_end; 2560 2561 /* Set at the end of extent_fiemap(). */ 2562 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2563 2564 if (!cache->cached) 2565 goto assign; 2566 2567 /* 2568 * When iterating the extents of the inode, at extent_fiemap(), we may 2569 * find an extent that starts at an offset behind the end offset of the 2570 * previous extent we processed. This happens if fiemap is called 2571 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2572 * after we had to unlock the file range, release the search path, emit 2573 * the fiemap extents stored in the buffer (cache->entries array) and 2574 * the lock the remainder of the range and re-search the btree. 2575 * 2576 * For example we are in leaf X processing its last item, which is the 2577 * file extent item for file range [512K, 1M[, and after 2578 * btrfs_next_leaf() releases the path, there's an ordered extent that 2579 * completes for the file range [768K, 2M[, and that results in trimming 2580 * the file extent item so that it now corresponds to the file range 2581 * [512K, 768K[ and a new file extent item is inserted for the file 2582 * range [768K, 2M[, which may end up as the last item of leaf X or as 2583 * the first item of the next leaf - in either case btrfs_next_leaf() 2584 * will leave us with a path pointing to the new extent item, for the 2585 * file range [768K, 2M[, since that's the first key that follows the 2586 * last one we processed. So in order not to report overlapping extents 2587 * to user space, we trim the length of the previously cached extent and 2588 * emit it. 2589 * 2590 * Upon calling btrfs_next_leaf() we may also find an extent with an 2591 * offset smaller than or equals to cache->offset, and this happens 2592 * when we had a hole or prealloc extent with several delalloc ranges in 2593 * it, but after btrfs_next_leaf() released the path, delalloc was 2594 * flushed and the resulting ordered extents were completed, so we can 2595 * now have found a file extent item for an offset that is smaller than 2596 * or equals to what we have in cache->offset. We deal with this as 2597 * described below. 2598 */ 2599 cache_end = cache->offset + cache->len; 2600 if (cache_end > offset) { 2601 if (offset == cache->offset) { 2602 /* 2603 * We cached a dealloc range (found in the io tree) for 2604 * a hole or prealloc extent and we have now found a 2605 * file extent item for the same offset. What we have 2606 * now is more recent and up to date, so discard what 2607 * we had in the cache and use what we have just found. 2608 */ 2609 goto assign; 2610 } else if (offset > cache->offset) { 2611 /* 2612 * The extent range we previously found ends after the 2613 * offset of the file extent item we found and that 2614 * offset falls somewhere in the middle of that previous 2615 * extent range. So adjust the range we previously found 2616 * to end at the offset of the file extent item we have 2617 * just found, since this extent is more up to date. 2618 * Emit that adjusted range and cache the file extent 2619 * item we have just found. This corresponds to the case 2620 * where a previously found file extent item was split 2621 * due to an ordered extent completing. 2622 */ 2623 cache->len = offset - cache->offset; 2624 goto emit; 2625 } else { 2626 const u64 range_end = offset + len; 2627 2628 /* 2629 * The offset of the file extent item we have just found 2630 * is behind the cached offset. This means we were 2631 * processing a hole or prealloc extent for which we 2632 * have found delalloc ranges (in the io tree), so what 2633 * we have in the cache is the last delalloc range we 2634 * found while the file extent item we found can be 2635 * either for a whole delalloc range we previously 2636 * emmitted or only a part of that range. 2637 * 2638 * We have two cases here: 2639 * 2640 * 1) The file extent item's range ends at or behind the 2641 * cached extent's end. In this case just ignore the 2642 * current file extent item because we don't want to 2643 * overlap with previous ranges that may have been 2644 * emmitted already; 2645 * 2646 * 2) The file extent item starts behind the currently 2647 * cached extent but its end offset goes beyond the 2648 * end offset of the cached extent. We don't want to 2649 * overlap with a previous range that may have been 2650 * emmitted already, so we emit the currently cached 2651 * extent and then partially store the current file 2652 * extent item's range in the cache, for the subrange 2653 * going the cached extent's end to the end of the 2654 * file extent item. 2655 */ 2656 if (range_end <= cache_end) 2657 return 0; 2658 2659 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2660 phys += cache_end - offset; 2661 2662 offset = cache_end; 2663 len = range_end - cache_end; 2664 goto emit; 2665 } 2666 } 2667 2668 /* 2669 * Only merges fiemap extents if 2670 * 1) Their logical addresses are continuous 2671 * 2672 * 2) Their physical addresses are continuous 2673 * So truly compressed (physical size smaller than logical size) 2674 * extents won't get merged with each other 2675 * 2676 * 3) Share same flags 2677 */ 2678 if (cache->offset + cache->len == offset && 2679 cache->phys + cache->len == phys && 2680 cache->flags == flags) { 2681 cache->len += len; 2682 return 0; 2683 } 2684 2685 emit: 2686 /* Not mergeable, need to submit cached one */ 2687 2688 if (cache->entries_pos == cache->entries_size) { 2689 /* 2690 * We will need to research for the end offset of the last 2691 * stored extent and not from the current offset, because after 2692 * unlocking the range and releasing the path, if there's a hole 2693 * between that end offset and this current offset, a new extent 2694 * may have been inserted due to a new write, so we don't want 2695 * to miss it. 2696 */ 2697 entry = &cache->entries[cache->entries_size - 1]; 2698 cache->next_search_offset = entry->offset + entry->len; 2699 cache->cached = false; 2700 2701 return BTRFS_FIEMAP_FLUSH_CACHE; 2702 } 2703 2704 entry = &cache->entries[cache->entries_pos]; 2705 entry->offset = cache->offset; 2706 entry->phys = cache->phys; 2707 entry->len = cache->len; 2708 entry->flags = cache->flags; 2709 cache->entries_pos++; 2710 cache->extents_mapped++; 2711 2712 if (cache->extents_mapped == fieinfo->fi_extents_max) { 2713 cache->cached = false; 2714 return 1; 2715 } 2716 assign: 2717 cache->cached = true; 2718 cache->offset = offset; 2719 cache->phys = phys; 2720 cache->len = len; 2721 cache->flags = flags; 2722 2723 return 0; 2724 } 2725 2726 /* 2727 * Emit last fiemap cache 2728 * 2729 * The last fiemap cache may still be cached in the following case: 2730 * 0 4k 8k 2731 * |<- Fiemap range ->| 2732 * |<------------ First extent ----------->| 2733 * 2734 * In this case, the first extent range will be cached but not emitted. 2735 * So we must emit it before ending extent_fiemap(). 2736 */ 2737 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2738 struct fiemap_cache *cache) 2739 { 2740 int ret; 2741 2742 if (!cache->cached) 2743 return 0; 2744 2745 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2746 cache->len, cache->flags); 2747 cache->cached = false; 2748 if (ret > 0) 2749 ret = 0; 2750 return ret; 2751 } 2752 2753 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2754 { 2755 struct extent_buffer *clone = path->nodes[0]; 2756 struct btrfs_key key; 2757 int slot; 2758 int ret; 2759 2760 path->slots[0]++; 2761 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2762 return 0; 2763 2764 /* 2765 * Add a temporary extra ref to an already cloned extent buffer to 2766 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid 2767 * the cost of allocating a new one. 2768 */ 2769 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags)); 2770 atomic_inc(&clone->refs); 2771 2772 ret = btrfs_next_leaf(inode->root, path); 2773 if (ret != 0) 2774 goto out; 2775 2776 /* 2777 * Don't bother with cloning if there are no more file extent items for 2778 * our inode. 2779 */ 2780 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2781 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) { 2782 ret = 1; 2783 goto out; 2784 } 2785 2786 /* See the comment at fiemap_search_slot() about why we clone. */ 2787 copy_extent_buffer_full(clone, path->nodes[0]); 2788 /* 2789 * Important to preserve the start field, for the optimizations when 2790 * checking if extents are shared (see extent_fiemap()). 2791 */ 2792 clone->start = path->nodes[0]->start; 2793 2794 slot = path->slots[0]; 2795 btrfs_release_path(path); 2796 path->nodes[0] = clone; 2797 path->slots[0] = slot; 2798 out: 2799 if (ret) 2800 free_extent_buffer(clone); 2801 2802 return ret; 2803 } 2804 2805 /* 2806 * Search for the first file extent item that starts at a given file offset or 2807 * the one that starts immediately before that offset. 2808 * Returns: 0 on success, < 0 on error, 1 if not found. 2809 */ 2810 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2811 u64 file_offset) 2812 { 2813 const u64 ino = btrfs_ino(inode); 2814 struct btrfs_root *root = inode->root; 2815 struct extent_buffer *clone; 2816 struct btrfs_key key; 2817 int slot; 2818 int ret; 2819 2820 key.objectid = ino; 2821 key.type = BTRFS_EXTENT_DATA_KEY; 2822 key.offset = file_offset; 2823 2824 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2825 if (ret < 0) 2826 return ret; 2827 2828 if (ret > 0 && path->slots[0] > 0) { 2829 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2830 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2831 path->slots[0]--; 2832 } 2833 2834 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2835 ret = btrfs_next_leaf(root, path); 2836 if (ret != 0) 2837 return ret; 2838 2839 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2840 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2841 return 1; 2842 } 2843 2844 /* 2845 * We clone the leaf and use it during fiemap. This is because while 2846 * using the leaf we do expensive things like checking if an extent is 2847 * shared, which can take a long time. In order to prevent blocking 2848 * other tasks for too long, we use a clone of the leaf. We have locked 2849 * the file range in the inode's io tree, so we know none of our file 2850 * extent items can change. This way we avoid blocking other tasks that 2851 * want to insert items for other inodes in the same leaf or b+tree 2852 * rebalance operations (triggered for example when someone is trying 2853 * to push items into this leaf when trying to insert an item in a 2854 * neighbour leaf). 2855 * We also need the private clone because holding a read lock on an 2856 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2857 * when we check if extents are shared, as backref walking may need to 2858 * lock the same leaf we are processing. 2859 */ 2860 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2861 if (!clone) 2862 return -ENOMEM; 2863 2864 slot = path->slots[0]; 2865 btrfs_release_path(path); 2866 path->nodes[0] = clone; 2867 path->slots[0] = slot; 2868 2869 return 0; 2870 } 2871 2872 /* 2873 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2874 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2875 * extent. The end offset (@end) is inclusive. 2876 */ 2877 static int fiemap_process_hole(struct btrfs_inode *inode, 2878 struct fiemap_extent_info *fieinfo, 2879 struct fiemap_cache *cache, 2880 struct extent_state **delalloc_cached_state, 2881 struct btrfs_backref_share_check_ctx *backref_ctx, 2882 u64 disk_bytenr, u64 extent_offset, 2883 u64 extent_gen, 2884 u64 start, u64 end) 2885 { 2886 const u64 i_size = i_size_read(&inode->vfs_inode); 2887 u64 cur_offset = start; 2888 u64 last_delalloc_end = 0; 2889 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2890 bool checked_extent_shared = false; 2891 int ret; 2892 2893 /* 2894 * There can be no delalloc past i_size, so don't waste time looking for 2895 * it beyond i_size. 2896 */ 2897 while (cur_offset < end && cur_offset < i_size) { 2898 u64 delalloc_start; 2899 u64 delalloc_end; 2900 u64 prealloc_start; 2901 u64 prealloc_len = 0; 2902 bool delalloc; 2903 2904 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2905 delalloc_cached_state, 2906 &delalloc_start, 2907 &delalloc_end); 2908 if (!delalloc) 2909 break; 2910 2911 /* 2912 * If this is a prealloc extent we have to report every section 2913 * of it that has no delalloc. 2914 */ 2915 if (disk_bytenr != 0) { 2916 if (last_delalloc_end == 0) { 2917 prealloc_start = start; 2918 prealloc_len = delalloc_start - start; 2919 } else { 2920 prealloc_start = last_delalloc_end + 1; 2921 prealloc_len = delalloc_start - prealloc_start; 2922 } 2923 } 2924 2925 if (prealloc_len > 0) { 2926 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2927 ret = btrfs_is_data_extent_shared(inode, 2928 disk_bytenr, 2929 extent_gen, 2930 backref_ctx); 2931 if (ret < 0) 2932 return ret; 2933 else if (ret > 0) 2934 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2935 2936 checked_extent_shared = true; 2937 } 2938 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2939 disk_bytenr + extent_offset, 2940 prealloc_len, prealloc_flags); 2941 if (ret) 2942 return ret; 2943 extent_offset += prealloc_len; 2944 } 2945 2946 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2947 delalloc_end + 1 - delalloc_start, 2948 FIEMAP_EXTENT_DELALLOC | 2949 FIEMAP_EXTENT_UNKNOWN); 2950 if (ret) 2951 return ret; 2952 2953 last_delalloc_end = delalloc_end; 2954 cur_offset = delalloc_end + 1; 2955 extent_offset += cur_offset - delalloc_start; 2956 cond_resched(); 2957 } 2958 2959 /* 2960 * Either we found no delalloc for the whole prealloc extent or we have 2961 * a prealloc extent that spans i_size or starts at or after i_size. 2962 */ 2963 if (disk_bytenr != 0 && last_delalloc_end < end) { 2964 u64 prealloc_start; 2965 u64 prealloc_len; 2966 2967 if (last_delalloc_end == 0) { 2968 prealloc_start = start; 2969 prealloc_len = end + 1 - start; 2970 } else { 2971 prealloc_start = last_delalloc_end + 1; 2972 prealloc_len = end + 1 - prealloc_start; 2973 } 2974 2975 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2976 ret = btrfs_is_data_extent_shared(inode, 2977 disk_bytenr, 2978 extent_gen, 2979 backref_ctx); 2980 if (ret < 0) 2981 return ret; 2982 else if (ret > 0) 2983 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2984 } 2985 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2986 disk_bytenr + extent_offset, 2987 prealloc_len, prealloc_flags); 2988 if (ret) 2989 return ret; 2990 } 2991 2992 return 0; 2993 } 2994 2995 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2996 struct btrfs_path *path, 2997 u64 *last_extent_end_ret) 2998 { 2999 const u64 ino = btrfs_ino(inode); 3000 struct btrfs_root *root = inode->root; 3001 struct extent_buffer *leaf; 3002 struct btrfs_file_extent_item *ei; 3003 struct btrfs_key key; 3004 u64 disk_bytenr; 3005 int ret; 3006 3007 /* 3008 * Lookup the last file extent. We're not using i_size here because 3009 * there might be preallocation past i_size. 3010 */ 3011 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3012 /* There can't be a file extent item at offset (u64)-1 */ 3013 ASSERT(ret != 0); 3014 if (ret < 0) 3015 return ret; 3016 3017 /* 3018 * For a non-existing key, btrfs_search_slot() always leaves us at a 3019 * slot > 0, except if the btree is empty, which is impossible because 3020 * at least it has the inode item for this inode and all the items for 3021 * the root inode 256. 3022 */ 3023 ASSERT(path->slots[0] > 0); 3024 path->slots[0]--; 3025 leaf = path->nodes[0]; 3026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3027 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3028 /* No file extent items in the subvolume tree. */ 3029 *last_extent_end_ret = 0; 3030 return 0; 3031 } 3032 3033 /* 3034 * For an inline extent, the disk_bytenr is where inline data starts at, 3035 * so first check if we have an inline extent item before checking if we 3036 * have an implicit hole (disk_bytenr == 0). 3037 */ 3038 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3039 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3040 *last_extent_end_ret = btrfs_file_extent_end(path); 3041 return 0; 3042 } 3043 3044 /* 3045 * Find the last file extent item that is not a hole (when NO_HOLES is 3046 * not enabled). This should take at most 2 iterations in the worst 3047 * case: we have one hole file extent item at slot 0 of a leaf and 3048 * another hole file extent item as the last item in the previous leaf. 3049 * This is because we merge file extent items that represent holes. 3050 */ 3051 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3052 while (disk_bytenr == 0) { 3053 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3054 if (ret < 0) { 3055 return ret; 3056 } else if (ret > 0) { 3057 /* No file extent items that are not holes. */ 3058 *last_extent_end_ret = 0; 3059 return 0; 3060 } 3061 leaf = path->nodes[0]; 3062 ei = btrfs_item_ptr(leaf, path->slots[0], 3063 struct btrfs_file_extent_item); 3064 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3065 } 3066 3067 *last_extent_end_ret = btrfs_file_extent_end(path); 3068 return 0; 3069 } 3070 3071 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3072 u64 start, u64 len) 3073 { 3074 const u64 ino = btrfs_ino(inode); 3075 struct extent_state *cached_state = NULL; 3076 struct extent_state *delalloc_cached_state = NULL; 3077 struct btrfs_path *path; 3078 struct fiemap_cache cache = { 0 }; 3079 struct btrfs_backref_share_check_ctx *backref_ctx; 3080 u64 last_extent_end; 3081 u64 prev_extent_end; 3082 u64 range_start; 3083 u64 range_end; 3084 const u64 sectorsize = inode->root->fs_info->sectorsize; 3085 bool stopped = false; 3086 int ret; 3087 3088 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry); 3089 cache.entries = kmalloc_array(cache.entries_size, 3090 sizeof(struct btrfs_fiemap_entry), 3091 GFP_KERNEL); 3092 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3093 path = btrfs_alloc_path(); 3094 if (!cache.entries || !backref_ctx || !path) { 3095 ret = -ENOMEM; 3096 goto out; 3097 } 3098 3099 restart: 3100 range_start = round_down(start, sectorsize); 3101 range_end = round_up(start + len, sectorsize); 3102 prev_extent_end = range_start; 3103 3104 lock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3105 3106 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3107 if (ret < 0) 3108 goto out_unlock; 3109 btrfs_release_path(path); 3110 3111 path->reada = READA_FORWARD; 3112 ret = fiemap_search_slot(inode, path, range_start); 3113 if (ret < 0) { 3114 goto out_unlock; 3115 } else if (ret > 0) { 3116 /* 3117 * No file extent item found, but we may have delalloc between 3118 * the current offset and i_size. So check for that. 3119 */ 3120 ret = 0; 3121 goto check_eof_delalloc; 3122 } 3123 3124 while (prev_extent_end < range_end) { 3125 struct extent_buffer *leaf = path->nodes[0]; 3126 struct btrfs_file_extent_item *ei; 3127 struct btrfs_key key; 3128 u64 extent_end; 3129 u64 extent_len; 3130 u64 extent_offset = 0; 3131 u64 extent_gen; 3132 u64 disk_bytenr = 0; 3133 u64 flags = 0; 3134 int extent_type; 3135 u8 compression; 3136 3137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3138 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3139 break; 3140 3141 extent_end = btrfs_file_extent_end(path); 3142 3143 /* 3144 * The first iteration can leave us at an extent item that ends 3145 * before our range's start. Move to the next item. 3146 */ 3147 if (extent_end <= range_start) 3148 goto next_item; 3149 3150 backref_ctx->curr_leaf_bytenr = leaf->start; 3151 3152 /* We have in implicit hole (NO_HOLES feature enabled). */ 3153 if (prev_extent_end < key.offset) { 3154 const u64 hole_end = min(key.offset, range_end) - 1; 3155 3156 ret = fiemap_process_hole(inode, fieinfo, &cache, 3157 &delalloc_cached_state, 3158 backref_ctx, 0, 0, 0, 3159 prev_extent_end, hole_end); 3160 if (ret < 0) { 3161 goto out_unlock; 3162 } else if (ret > 0) { 3163 /* fiemap_fill_next_extent() told us to stop. */ 3164 stopped = true; 3165 break; 3166 } 3167 3168 /* We've reached the end of the fiemap range, stop. */ 3169 if (key.offset >= range_end) { 3170 stopped = true; 3171 break; 3172 } 3173 } 3174 3175 extent_len = extent_end - key.offset; 3176 ei = btrfs_item_ptr(leaf, path->slots[0], 3177 struct btrfs_file_extent_item); 3178 compression = btrfs_file_extent_compression(leaf, ei); 3179 extent_type = btrfs_file_extent_type(leaf, ei); 3180 extent_gen = btrfs_file_extent_generation(leaf, ei); 3181 3182 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3183 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3184 if (compression == BTRFS_COMPRESS_NONE) 3185 extent_offset = btrfs_file_extent_offset(leaf, ei); 3186 } 3187 3188 if (compression != BTRFS_COMPRESS_NONE) 3189 flags |= FIEMAP_EXTENT_ENCODED; 3190 3191 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3192 flags |= FIEMAP_EXTENT_DATA_INLINE; 3193 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3194 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3195 extent_len, flags); 3196 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3197 ret = fiemap_process_hole(inode, fieinfo, &cache, 3198 &delalloc_cached_state, 3199 backref_ctx, 3200 disk_bytenr, extent_offset, 3201 extent_gen, key.offset, 3202 extent_end - 1); 3203 } else if (disk_bytenr == 0) { 3204 /* We have an explicit hole. */ 3205 ret = fiemap_process_hole(inode, fieinfo, &cache, 3206 &delalloc_cached_state, 3207 backref_ctx, 0, 0, 0, 3208 key.offset, extent_end - 1); 3209 } else { 3210 /* We have a regular extent. */ 3211 if (fieinfo->fi_extents_max) { 3212 ret = btrfs_is_data_extent_shared(inode, 3213 disk_bytenr, 3214 extent_gen, 3215 backref_ctx); 3216 if (ret < 0) 3217 goto out_unlock; 3218 else if (ret > 0) 3219 flags |= FIEMAP_EXTENT_SHARED; 3220 } 3221 3222 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3223 disk_bytenr + extent_offset, 3224 extent_len, flags); 3225 } 3226 3227 if (ret < 0) { 3228 goto out_unlock; 3229 } else if (ret > 0) { 3230 /* emit_fiemap_extent() told us to stop. */ 3231 stopped = true; 3232 break; 3233 } 3234 3235 prev_extent_end = extent_end; 3236 next_item: 3237 if (fatal_signal_pending(current)) { 3238 ret = -EINTR; 3239 goto out_unlock; 3240 } 3241 3242 ret = fiemap_next_leaf_item(inode, path); 3243 if (ret < 0) { 3244 goto out_unlock; 3245 } else if (ret > 0) { 3246 /* No more file extent items for this inode. */ 3247 break; 3248 } 3249 cond_resched(); 3250 } 3251 3252 check_eof_delalloc: 3253 if (!stopped && prev_extent_end < range_end) { 3254 ret = fiemap_process_hole(inode, fieinfo, &cache, 3255 &delalloc_cached_state, backref_ctx, 3256 0, 0, 0, prev_extent_end, range_end - 1); 3257 if (ret < 0) 3258 goto out_unlock; 3259 prev_extent_end = range_end; 3260 } 3261 3262 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3263 const u64 i_size = i_size_read(&inode->vfs_inode); 3264 3265 if (prev_extent_end < i_size) { 3266 u64 delalloc_start; 3267 u64 delalloc_end; 3268 bool delalloc; 3269 3270 delalloc = btrfs_find_delalloc_in_range(inode, 3271 prev_extent_end, 3272 i_size - 1, 3273 &delalloc_cached_state, 3274 &delalloc_start, 3275 &delalloc_end); 3276 if (!delalloc) 3277 cache.flags |= FIEMAP_EXTENT_LAST; 3278 } else { 3279 cache.flags |= FIEMAP_EXTENT_LAST; 3280 } 3281 } 3282 3283 out_unlock: 3284 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3285 3286 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) { 3287 btrfs_release_path(path); 3288 ret = flush_fiemap_cache(fieinfo, &cache); 3289 if (ret) 3290 goto out; 3291 len -= cache.next_search_offset - start; 3292 start = cache.next_search_offset; 3293 goto restart; 3294 } else if (ret < 0) { 3295 goto out; 3296 } 3297 3298 /* 3299 * Must free the path before emitting to the fiemap buffer because we 3300 * may have a non-cloned leaf and if the fiemap buffer is memory mapped 3301 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger 3302 * waiting for an ordered extent that in order to complete needs to 3303 * modify that leaf, therefore leading to a deadlock. 3304 */ 3305 btrfs_free_path(path); 3306 path = NULL; 3307 3308 ret = flush_fiemap_cache(fieinfo, &cache); 3309 if (ret) 3310 goto out; 3311 3312 ret = emit_last_fiemap_cache(fieinfo, &cache); 3313 out: 3314 free_extent_state(delalloc_cached_state); 3315 kfree(cache.entries); 3316 btrfs_free_backref_share_ctx(backref_ctx); 3317 btrfs_free_path(path); 3318 return ret; 3319 } 3320 3321 static void __free_extent_buffer(struct extent_buffer *eb) 3322 { 3323 kmem_cache_free(extent_buffer_cache, eb); 3324 } 3325 3326 static int extent_buffer_under_io(const struct extent_buffer *eb) 3327 { 3328 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3329 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3330 } 3331 3332 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 3333 { 3334 struct btrfs_subpage *subpage; 3335 3336 lockdep_assert_held(&folio->mapping->i_private_lock); 3337 3338 if (folio_test_private(folio)) { 3339 subpage = folio_get_private(folio); 3340 if (atomic_read(&subpage->eb_refs)) 3341 return true; 3342 /* 3343 * Even there is no eb refs here, we may still have 3344 * end_page_read() call relying on page::private. 3345 */ 3346 if (atomic_read(&subpage->readers)) 3347 return true; 3348 } 3349 return false; 3350 } 3351 3352 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio) 3353 { 3354 struct btrfs_fs_info *fs_info = eb->fs_info; 3355 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3356 3357 /* 3358 * For mapped eb, we're going to change the folio private, which should 3359 * be done under the i_private_lock. 3360 */ 3361 if (mapped) 3362 spin_lock(&folio->mapping->i_private_lock); 3363 3364 if (!folio_test_private(folio)) { 3365 if (mapped) 3366 spin_unlock(&folio->mapping->i_private_lock); 3367 return; 3368 } 3369 3370 if (fs_info->nodesize >= PAGE_SIZE) { 3371 /* 3372 * We do this since we'll remove the pages after we've 3373 * removed the eb from the radix tree, so we could race 3374 * and have this page now attached to the new eb. So 3375 * only clear folio if it's still connected to 3376 * this eb. 3377 */ 3378 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 3379 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3380 BUG_ON(folio_test_dirty(folio)); 3381 BUG_ON(folio_test_writeback(folio)); 3382 /* We need to make sure we haven't be attached to a new eb. */ 3383 folio_detach_private(folio); 3384 } 3385 if (mapped) 3386 spin_unlock(&folio->mapping->i_private_lock); 3387 return; 3388 } 3389 3390 /* 3391 * For subpage, we can have dummy eb with folio private attached. In 3392 * this case, we can directly detach the private as such folio is only 3393 * attached to one dummy eb, no sharing. 3394 */ 3395 if (!mapped) { 3396 btrfs_detach_subpage(fs_info, folio); 3397 return; 3398 } 3399 3400 btrfs_folio_dec_eb_refs(fs_info, folio); 3401 3402 /* 3403 * We can only detach the folio private if there are no other ebs in the 3404 * page range and no unfinished IO. 3405 */ 3406 if (!folio_range_has_eb(fs_info, folio)) 3407 btrfs_detach_subpage(fs_info, folio); 3408 3409 spin_unlock(&folio->mapping->i_private_lock); 3410 } 3411 3412 /* Release all pages attached to the extent buffer */ 3413 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3414 { 3415 ASSERT(!extent_buffer_under_io(eb)); 3416 3417 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 3418 struct folio *folio = eb->folios[i]; 3419 3420 if (!folio) 3421 continue; 3422 3423 detach_extent_buffer_folio(eb, folio); 3424 3425 /* One for when we allocated the folio. */ 3426 folio_put(folio); 3427 } 3428 } 3429 3430 /* 3431 * Helper for releasing the extent buffer. 3432 */ 3433 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3434 { 3435 btrfs_release_extent_buffer_pages(eb); 3436 btrfs_leak_debug_del_eb(eb); 3437 __free_extent_buffer(eb); 3438 } 3439 3440 static struct extent_buffer * 3441 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3442 unsigned long len) 3443 { 3444 struct extent_buffer *eb = NULL; 3445 3446 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3447 eb->start = start; 3448 eb->len = len; 3449 eb->fs_info = fs_info; 3450 init_rwsem(&eb->lock); 3451 3452 btrfs_leak_debug_add_eb(eb); 3453 3454 spin_lock_init(&eb->refs_lock); 3455 atomic_set(&eb->refs, 1); 3456 3457 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3458 3459 return eb; 3460 } 3461 3462 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3463 { 3464 struct extent_buffer *new; 3465 int num_folios = num_extent_folios(src); 3466 int ret; 3467 3468 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3469 if (new == NULL) 3470 return NULL; 3471 3472 /* 3473 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3474 * btrfs_release_extent_buffer() have different behavior for 3475 * UNMAPPED subpage extent buffer. 3476 */ 3477 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3478 3479 ret = alloc_eb_folio_array(new, 0); 3480 if (ret) { 3481 btrfs_release_extent_buffer(new); 3482 return NULL; 3483 } 3484 3485 for (int i = 0; i < num_folios; i++) { 3486 struct folio *folio = new->folios[i]; 3487 int ret; 3488 3489 ret = attach_extent_buffer_folio(new, folio, NULL); 3490 if (ret < 0) { 3491 btrfs_release_extent_buffer(new); 3492 return NULL; 3493 } 3494 WARN_ON(folio_test_dirty(folio)); 3495 } 3496 copy_extent_buffer_full(new, src); 3497 set_extent_buffer_uptodate(new); 3498 3499 return new; 3500 } 3501 3502 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3503 u64 start, unsigned long len) 3504 { 3505 struct extent_buffer *eb; 3506 int num_folios = 0; 3507 int ret; 3508 3509 eb = __alloc_extent_buffer(fs_info, start, len); 3510 if (!eb) 3511 return NULL; 3512 3513 ret = alloc_eb_folio_array(eb, 0); 3514 if (ret) 3515 goto err; 3516 3517 num_folios = num_extent_folios(eb); 3518 for (int i = 0; i < num_folios; i++) { 3519 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 3520 if (ret < 0) 3521 goto err; 3522 } 3523 3524 set_extent_buffer_uptodate(eb); 3525 btrfs_set_header_nritems(eb, 0); 3526 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3527 3528 return eb; 3529 err: 3530 for (int i = 0; i < num_folios; i++) { 3531 if (eb->folios[i]) { 3532 detach_extent_buffer_folio(eb, eb->folios[i]); 3533 __folio_put(eb->folios[i]); 3534 } 3535 } 3536 __free_extent_buffer(eb); 3537 return NULL; 3538 } 3539 3540 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3541 u64 start) 3542 { 3543 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3544 } 3545 3546 static void check_buffer_tree_ref(struct extent_buffer *eb) 3547 { 3548 int refs; 3549 /* 3550 * The TREE_REF bit is first set when the extent_buffer is added 3551 * to the radix tree. It is also reset, if unset, when a new reference 3552 * is created by find_extent_buffer. 3553 * 3554 * It is only cleared in two cases: freeing the last non-tree 3555 * reference to the extent_buffer when its STALE bit is set or 3556 * calling release_folio when the tree reference is the only reference. 3557 * 3558 * In both cases, care is taken to ensure that the extent_buffer's 3559 * pages are not under io. However, release_folio can be concurrently 3560 * called with creating new references, which is prone to race 3561 * conditions between the calls to check_buffer_tree_ref in those 3562 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3563 * 3564 * The actual lifetime of the extent_buffer in the radix tree is 3565 * adequately protected by the refcount, but the TREE_REF bit and 3566 * its corresponding reference are not. To protect against this 3567 * class of races, we call check_buffer_tree_ref from the codepaths 3568 * which trigger io. Note that once io is initiated, TREE_REF can no 3569 * longer be cleared, so that is the moment at which any such race is 3570 * best fixed. 3571 */ 3572 refs = atomic_read(&eb->refs); 3573 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3574 return; 3575 3576 spin_lock(&eb->refs_lock); 3577 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3578 atomic_inc(&eb->refs); 3579 spin_unlock(&eb->refs_lock); 3580 } 3581 3582 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3583 { 3584 int num_folios= num_extent_folios(eb); 3585 3586 check_buffer_tree_ref(eb); 3587 3588 for (int i = 0; i < num_folios; i++) 3589 folio_mark_accessed(eb->folios[i]); 3590 } 3591 3592 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3593 u64 start) 3594 { 3595 struct extent_buffer *eb; 3596 3597 eb = find_extent_buffer_nolock(fs_info, start); 3598 if (!eb) 3599 return NULL; 3600 /* 3601 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3602 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3603 * another task running free_extent_buffer() might have seen that flag 3604 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3605 * writeback flags not set) and it's still in the tree (flag 3606 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3607 * decrementing the extent buffer's reference count twice. So here we 3608 * could race and increment the eb's reference count, clear its stale 3609 * flag, mark it as dirty and drop our reference before the other task 3610 * finishes executing free_extent_buffer, which would later result in 3611 * an attempt to free an extent buffer that is dirty. 3612 */ 3613 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3614 spin_lock(&eb->refs_lock); 3615 spin_unlock(&eb->refs_lock); 3616 } 3617 mark_extent_buffer_accessed(eb); 3618 return eb; 3619 } 3620 3621 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3622 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3623 u64 start) 3624 { 3625 struct extent_buffer *eb, *exists = NULL; 3626 int ret; 3627 3628 eb = find_extent_buffer(fs_info, start); 3629 if (eb) 3630 return eb; 3631 eb = alloc_dummy_extent_buffer(fs_info, start); 3632 if (!eb) 3633 return ERR_PTR(-ENOMEM); 3634 eb->fs_info = fs_info; 3635 again: 3636 ret = radix_tree_preload(GFP_NOFS); 3637 if (ret) { 3638 exists = ERR_PTR(ret); 3639 goto free_eb; 3640 } 3641 spin_lock(&fs_info->buffer_lock); 3642 ret = radix_tree_insert(&fs_info->buffer_radix, 3643 start >> fs_info->sectorsize_bits, eb); 3644 spin_unlock(&fs_info->buffer_lock); 3645 radix_tree_preload_end(); 3646 if (ret == -EEXIST) { 3647 exists = find_extent_buffer(fs_info, start); 3648 if (exists) 3649 goto free_eb; 3650 else 3651 goto again; 3652 } 3653 check_buffer_tree_ref(eb); 3654 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3655 3656 return eb; 3657 free_eb: 3658 btrfs_release_extent_buffer(eb); 3659 return exists; 3660 } 3661 #endif 3662 3663 static struct extent_buffer *grab_extent_buffer( 3664 struct btrfs_fs_info *fs_info, struct page *page) 3665 { 3666 struct folio *folio = page_folio(page); 3667 struct extent_buffer *exists; 3668 3669 /* 3670 * For subpage case, we completely rely on radix tree to ensure we 3671 * don't try to insert two ebs for the same bytenr. So here we always 3672 * return NULL and just continue. 3673 */ 3674 if (fs_info->nodesize < PAGE_SIZE) 3675 return NULL; 3676 3677 /* Page not yet attached to an extent buffer */ 3678 if (!folio_test_private(folio)) 3679 return NULL; 3680 3681 /* 3682 * We could have already allocated an eb for this page and attached one 3683 * so lets see if we can get a ref on the existing eb, and if we can we 3684 * know it's good and we can just return that one, else we know we can 3685 * just overwrite folio private. 3686 */ 3687 exists = folio_get_private(folio); 3688 if (atomic_inc_not_zero(&exists->refs)) 3689 return exists; 3690 3691 WARN_ON(PageDirty(page)); 3692 folio_detach_private(folio); 3693 return NULL; 3694 } 3695 3696 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3697 { 3698 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3699 btrfs_err(fs_info, "bad tree block start %llu", start); 3700 return -EINVAL; 3701 } 3702 3703 if (fs_info->nodesize < PAGE_SIZE && 3704 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3705 btrfs_err(fs_info, 3706 "tree block crosses page boundary, start %llu nodesize %u", 3707 start, fs_info->nodesize); 3708 return -EINVAL; 3709 } 3710 if (fs_info->nodesize >= PAGE_SIZE && 3711 !PAGE_ALIGNED(start)) { 3712 btrfs_err(fs_info, 3713 "tree block is not page aligned, start %llu nodesize %u", 3714 start, fs_info->nodesize); 3715 return -EINVAL; 3716 } 3717 if (!IS_ALIGNED(start, fs_info->nodesize) && 3718 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3719 btrfs_warn(fs_info, 3720 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3721 start, fs_info->nodesize); 3722 } 3723 return 0; 3724 } 3725 3726 3727 /* 3728 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3729 * Return >0 if there is already another extent buffer for the range, 3730 * and @found_eb_ret would be updated. 3731 * Return -EAGAIN if the filemap has an existing folio but with different size 3732 * than @eb. 3733 * The caller needs to free the existing folios and retry using the same order. 3734 */ 3735 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3736 struct extent_buffer **found_eb_ret) 3737 { 3738 3739 struct btrfs_fs_info *fs_info = eb->fs_info; 3740 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3741 const unsigned long index = eb->start >> PAGE_SHIFT; 3742 struct folio *existing_folio; 3743 int ret; 3744 3745 ASSERT(found_eb_ret); 3746 3747 /* Caller should ensure the folio exists. */ 3748 ASSERT(eb->folios[i]); 3749 3750 retry: 3751 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3752 GFP_NOFS | __GFP_NOFAIL); 3753 if (!ret) 3754 return 0; 3755 3756 existing_folio = filemap_lock_folio(mapping, index + i); 3757 /* The page cache only exists for a very short time, just retry. */ 3758 if (IS_ERR(existing_folio)) 3759 goto retry; 3760 3761 /* For now, we should only have single-page folios for btree inode. */ 3762 ASSERT(folio_nr_pages(existing_folio) == 1); 3763 3764 if (folio_size(existing_folio) != eb->folio_size) { 3765 folio_unlock(existing_folio); 3766 folio_put(existing_folio); 3767 return -EAGAIN; 3768 } 3769 3770 if (fs_info->nodesize < PAGE_SIZE) { 3771 /* 3772 * We're going to reuse the existing page, can drop our page 3773 * and subpage structure now. 3774 */ 3775 __free_page(folio_page(eb->folios[i], 0)); 3776 eb->folios[i] = existing_folio; 3777 } else { 3778 struct extent_buffer *existing_eb; 3779 3780 existing_eb = grab_extent_buffer(fs_info, 3781 folio_page(existing_folio, 0)); 3782 if (existing_eb) { 3783 /* The extent buffer still exists, we can use it directly. */ 3784 *found_eb_ret = existing_eb; 3785 folio_unlock(existing_folio); 3786 folio_put(existing_folio); 3787 return 1; 3788 } 3789 /* The extent buffer no longer exists, we can reuse the folio. */ 3790 __free_page(folio_page(eb->folios[i], 0)); 3791 eb->folios[i] = existing_folio; 3792 } 3793 return 0; 3794 } 3795 3796 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3797 u64 start, u64 owner_root, int level) 3798 { 3799 unsigned long len = fs_info->nodesize; 3800 int num_folios; 3801 int attached = 0; 3802 struct extent_buffer *eb; 3803 struct extent_buffer *existing_eb = NULL; 3804 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3805 struct btrfs_subpage *prealloc = NULL; 3806 u64 lockdep_owner = owner_root; 3807 bool page_contig = true; 3808 int uptodate = 1; 3809 int ret; 3810 3811 if (check_eb_alignment(fs_info, start)) 3812 return ERR_PTR(-EINVAL); 3813 3814 #if BITS_PER_LONG == 32 3815 if (start >= MAX_LFS_FILESIZE) { 3816 btrfs_err_rl(fs_info, 3817 "extent buffer %llu is beyond 32bit page cache limit", start); 3818 btrfs_err_32bit_limit(fs_info); 3819 return ERR_PTR(-EOVERFLOW); 3820 } 3821 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3822 btrfs_warn_32bit_limit(fs_info); 3823 #endif 3824 3825 eb = find_extent_buffer(fs_info, start); 3826 if (eb) 3827 return eb; 3828 3829 eb = __alloc_extent_buffer(fs_info, start, len); 3830 if (!eb) 3831 return ERR_PTR(-ENOMEM); 3832 3833 /* 3834 * The reloc trees are just snapshots, so we need them to appear to be 3835 * just like any other fs tree WRT lockdep. 3836 */ 3837 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3838 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3839 3840 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3841 3842 /* 3843 * Preallocate folio private for subpage case, so that we won't 3844 * allocate memory with i_private_lock nor page lock hold. 3845 * 3846 * The memory will be freed by attach_extent_buffer_page() or freed 3847 * manually if we exit earlier. 3848 */ 3849 if (fs_info->nodesize < PAGE_SIZE) { 3850 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3851 if (IS_ERR(prealloc)) { 3852 ret = PTR_ERR(prealloc); 3853 goto out; 3854 } 3855 } 3856 3857 reallocate: 3858 /* Allocate all pages first. */ 3859 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL); 3860 if (ret < 0) { 3861 btrfs_free_subpage(prealloc); 3862 goto out; 3863 } 3864 3865 num_folios = num_extent_folios(eb); 3866 /* Attach all pages to the filemap. */ 3867 for (int i = 0; i < num_folios; i++) { 3868 struct folio *folio; 3869 3870 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb); 3871 if (ret > 0) { 3872 ASSERT(existing_eb); 3873 goto out; 3874 } 3875 3876 /* 3877 * TODO: Special handling for a corner case where the order of 3878 * folios mismatch between the new eb and filemap. 3879 * 3880 * This happens when: 3881 * 3882 * - the new eb is using higher order folio 3883 * 3884 * - the filemap is still using 0-order folios for the range 3885 * This can happen at the previous eb allocation, and we don't 3886 * have higher order folio for the call. 3887 * 3888 * - the existing eb has already been freed 3889 * 3890 * In this case, we have to free the existing folios first, and 3891 * re-allocate using the same order. 3892 * Thankfully this is not going to happen yet, as we're still 3893 * using 0-order folios. 3894 */ 3895 if (unlikely(ret == -EAGAIN)) { 3896 ASSERT(0); 3897 goto reallocate; 3898 } 3899 attached++; 3900 3901 /* 3902 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3903 * reliable, as we may choose to reuse the existing page cache 3904 * and free the allocated page. 3905 */ 3906 folio = eb->folios[i]; 3907 eb->folio_size = folio_size(folio); 3908 eb->folio_shift = folio_shift(folio); 3909 spin_lock(&mapping->i_private_lock); 3910 /* Should not fail, as we have preallocated the memory */ 3911 ret = attach_extent_buffer_folio(eb, folio, prealloc); 3912 ASSERT(!ret); 3913 /* 3914 * To inform we have extra eb under allocation, so that 3915 * detach_extent_buffer_page() won't release the folio private 3916 * when the eb hasn't yet been inserted into radix tree. 3917 * 3918 * The ref will be decreased when the eb released the page, in 3919 * detach_extent_buffer_page(). 3920 * Thus needs no special handling in error path. 3921 */ 3922 btrfs_folio_inc_eb_refs(fs_info, folio); 3923 spin_unlock(&mapping->i_private_lock); 3924 3925 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3926 3927 /* 3928 * Check if the current page is physically contiguous with previous eb 3929 * page. 3930 * At this stage, either we allocated a large folio, thus @i 3931 * would only be 0, or we fall back to per-page allocation. 3932 */ 3933 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3934 page_contig = false; 3935 3936 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3937 uptodate = 0; 3938 3939 /* 3940 * We can't unlock the pages just yet since the extent buffer 3941 * hasn't been properly inserted in the radix tree, this 3942 * opens a race with btree_release_folio which can free a page 3943 * while we are still filling in all pages for the buffer and 3944 * we could crash. 3945 */ 3946 } 3947 if (uptodate) 3948 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3949 /* All pages are physically contiguous, can skip cross page handling. */ 3950 if (page_contig) 3951 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3952 again: 3953 ret = radix_tree_preload(GFP_NOFS); 3954 if (ret) 3955 goto out; 3956 3957 spin_lock(&fs_info->buffer_lock); 3958 ret = radix_tree_insert(&fs_info->buffer_radix, 3959 start >> fs_info->sectorsize_bits, eb); 3960 spin_unlock(&fs_info->buffer_lock); 3961 radix_tree_preload_end(); 3962 if (ret == -EEXIST) { 3963 ret = 0; 3964 existing_eb = find_extent_buffer(fs_info, start); 3965 if (existing_eb) 3966 goto out; 3967 else 3968 goto again; 3969 } 3970 /* add one reference for the tree */ 3971 check_buffer_tree_ref(eb); 3972 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3973 3974 /* 3975 * Now it's safe to unlock the pages because any calls to 3976 * btree_release_folio will correctly detect that a page belongs to a 3977 * live buffer and won't free them prematurely. 3978 */ 3979 for (int i = 0; i < num_folios; i++) 3980 unlock_page(folio_page(eb->folios[i], 0)); 3981 return eb; 3982 3983 out: 3984 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3985 3986 /* 3987 * Any attached folios need to be detached before we unlock them. This 3988 * is because when we're inserting our new folios into the mapping, and 3989 * then attaching our eb to that folio. If we fail to insert our folio 3990 * we'll lookup the folio for that index, and grab that EB. We do not 3991 * want that to grab this eb, as we're getting ready to free it. So we 3992 * have to detach it first and then unlock it. 3993 * 3994 * We have to drop our reference and NULL it out here because in the 3995 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3996 * Below when we call btrfs_release_extent_buffer() we will call 3997 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3998 * case. If we left eb->folios[i] populated in the subpage case we'd 3999 * double put our reference and be super sad. 4000 */ 4001 for (int i = 0; i < attached; i++) { 4002 ASSERT(eb->folios[i]); 4003 detach_extent_buffer_folio(eb, eb->folios[i]); 4004 unlock_page(folio_page(eb->folios[i], 0)); 4005 folio_put(eb->folios[i]); 4006 eb->folios[i] = NULL; 4007 } 4008 /* 4009 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 4010 * so it can be cleaned up without utlizing page->mapping. 4011 */ 4012 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4013 4014 btrfs_release_extent_buffer(eb); 4015 if (ret < 0) 4016 return ERR_PTR(ret); 4017 ASSERT(existing_eb); 4018 return existing_eb; 4019 } 4020 4021 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4022 { 4023 struct extent_buffer *eb = 4024 container_of(head, struct extent_buffer, rcu_head); 4025 4026 __free_extent_buffer(eb); 4027 } 4028 4029 static int release_extent_buffer(struct extent_buffer *eb) 4030 __releases(&eb->refs_lock) 4031 { 4032 lockdep_assert_held(&eb->refs_lock); 4033 4034 WARN_ON(atomic_read(&eb->refs) == 0); 4035 if (atomic_dec_and_test(&eb->refs)) { 4036 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4037 struct btrfs_fs_info *fs_info = eb->fs_info; 4038 4039 spin_unlock(&eb->refs_lock); 4040 4041 spin_lock(&fs_info->buffer_lock); 4042 radix_tree_delete(&fs_info->buffer_radix, 4043 eb->start >> fs_info->sectorsize_bits); 4044 spin_unlock(&fs_info->buffer_lock); 4045 } else { 4046 spin_unlock(&eb->refs_lock); 4047 } 4048 4049 btrfs_leak_debug_del_eb(eb); 4050 /* Should be safe to release our pages at this point */ 4051 btrfs_release_extent_buffer_pages(eb); 4052 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4053 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4054 __free_extent_buffer(eb); 4055 return 1; 4056 } 4057 #endif 4058 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4059 return 1; 4060 } 4061 spin_unlock(&eb->refs_lock); 4062 4063 return 0; 4064 } 4065 4066 void free_extent_buffer(struct extent_buffer *eb) 4067 { 4068 int refs; 4069 if (!eb) 4070 return; 4071 4072 refs = atomic_read(&eb->refs); 4073 while (1) { 4074 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4075 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4076 refs == 1)) 4077 break; 4078 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4079 return; 4080 } 4081 4082 spin_lock(&eb->refs_lock); 4083 if (atomic_read(&eb->refs) == 2 && 4084 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4085 !extent_buffer_under_io(eb) && 4086 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4087 atomic_dec(&eb->refs); 4088 4089 /* 4090 * I know this is terrible, but it's temporary until we stop tracking 4091 * the uptodate bits and such for the extent buffers. 4092 */ 4093 release_extent_buffer(eb); 4094 } 4095 4096 void free_extent_buffer_stale(struct extent_buffer *eb) 4097 { 4098 if (!eb) 4099 return; 4100 4101 spin_lock(&eb->refs_lock); 4102 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4103 4104 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4105 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4106 atomic_dec(&eb->refs); 4107 release_extent_buffer(eb); 4108 } 4109 4110 static void btree_clear_folio_dirty(struct folio *folio) 4111 { 4112 ASSERT(folio_test_dirty(folio)); 4113 ASSERT(folio_test_locked(folio)); 4114 folio_clear_dirty_for_io(folio); 4115 xa_lock_irq(&folio->mapping->i_pages); 4116 if (!folio_test_dirty(folio)) 4117 __xa_clear_mark(&folio->mapping->i_pages, 4118 folio_index(folio), PAGECACHE_TAG_DIRTY); 4119 xa_unlock_irq(&folio->mapping->i_pages); 4120 } 4121 4122 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4123 { 4124 struct btrfs_fs_info *fs_info = eb->fs_info; 4125 struct folio *folio = eb->folios[0]; 4126 bool last; 4127 4128 /* btree_clear_folio_dirty() needs page locked. */ 4129 folio_lock(folio); 4130 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 4131 if (last) 4132 btree_clear_folio_dirty(folio); 4133 folio_unlock(folio); 4134 WARN_ON(atomic_read(&eb->refs) == 0); 4135 } 4136 4137 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4138 struct extent_buffer *eb) 4139 { 4140 struct btrfs_fs_info *fs_info = eb->fs_info; 4141 int num_folios; 4142 4143 btrfs_assert_tree_write_locked(eb); 4144 4145 if (trans && btrfs_header_generation(eb) != trans->transid) 4146 return; 4147 4148 /* 4149 * Instead of clearing the dirty flag off of the buffer, mark it as 4150 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 4151 * write-ordering in zoned mode, without the need to later re-dirty 4152 * the extent_buffer. 4153 * 4154 * The actual zeroout of the buffer will happen later in 4155 * btree_csum_one_bio. 4156 */ 4157 if (btrfs_is_zoned(fs_info)) { 4158 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 4159 return; 4160 } 4161 4162 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4163 return; 4164 4165 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4166 fs_info->dirty_metadata_batch); 4167 4168 if (eb->fs_info->nodesize < PAGE_SIZE) 4169 return clear_subpage_extent_buffer_dirty(eb); 4170 4171 num_folios = num_extent_folios(eb); 4172 for (int i = 0; i < num_folios; i++) { 4173 struct folio *folio = eb->folios[i]; 4174 4175 if (!folio_test_dirty(folio)) 4176 continue; 4177 folio_lock(folio); 4178 btree_clear_folio_dirty(folio); 4179 folio_unlock(folio); 4180 } 4181 WARN_ON(atomic_read(&eb->refs) == 0); 4182 } 4183 4184 void set_extent_buffer_dirty(struct extent_buffer *eb) 4185 { 4186 int num_folios; 4187 bool was_dirty; 4188 4189 check_buffer_tree_ref(eb); 4190 4191 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4192 4193 num_folios = num_extent_folios(eb); 4194 WARN_ON(atomic_read(&eb->refs) == 0); 4195 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4196 4197 if (!was_dirty) { 4198 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4199 4200 /* 4201 * For subpage case, we can have other extent buffers in the 4202 * same page, and in clear_subpage_extent_buffer_dirty() we 4203 * have to clear page dirty without subpage lock held. 4204 * This can cause race where our page gets dirty cleared after 4205 * we just set it. 4206 * 4207 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4208 * its page for other reasons, we can use page lock to prevent 4209 * the above race. 4210 */ 4211 if (subpage) 4212 lock_page(folio_page(eb->folios[0], 0)); 4213 for (int i = 0; i < num_folios; i++) 4214 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 4215 eb->start, eb->len); 4216 if (subpage) 4217 unlock_page(folio_page(eb->folios[0], 0)); 4218 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4219 eb->len, 4220 eb->fs_info->dirty_metadata_batch); 4221 } 4222 #ifdef CONFIG_BTRFS_DEBUG 4223 for (int i = 0; i < num_folios; i++) 4224 ASSERT(folio_test_dirty(eb->folios[i])); 4225 #endif 4226 } 4227 4228 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4229 { 4230 struct btrfs_fs_info *fs_info = eb->fs_info; 4231 int num_folios = num_extent_folios(eb); 4232 4233 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4234 for (int i = 0; i < num_folios; i++) { 4235 struct folio *folio = eb->folios[i]; 4236 4237 if (!folio) 4238 continue; 4239 4240 /* 4241 * This is special handling for metadata subpage, as regular 4242 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4243 */ 4244 if (fs_info->nodesize >= PAGE_SIZE) 4245 folio_clear_uptodate(folio); 4246 else 4247 btrfs_subpage_clear_uptodate(fs_info, folio, 4248 eb->start, eb->len); 4249 } 4250 } 4251 4252 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4253 { 4254 struct btrfs_fs_info *fs_info = eb->fs_info; 4255 int num_folios = num_extent_folios(eb); 4256 4257 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4258 for (int i = 0; i < num_folios; i++) { 4259 struct folio *folio = eb->folios[i]; 4260 4261 /* 4262 * This is special handling for metadata subpage, as regular 4263 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4264 */ 4265 if (fs_info->nodesize >= PAGE_SIZE) 4266 folio_mark_uptodate(folio); 4267 else 4268 btrfs_subpage_set_uptodate(fs_info, folio, 4269 eb->start, eb->len); 4270 } 4271 } 4272 4273 static void end_bbio_meta_read(struct btrfs_bio *bbio) 4274 { 4275 struct extent_buffer *eb = bbio->private; 4276 struct btrfs_fs_info *fs_info = eb->fs_info; 4277 bool uptodate = !bbio->bio.bi_status; 4278 struct folio_iter fi; 4279 u32 bio_offset = 0; 4280 4281 eb->read_mirror = bbio->mirror_num; 4282 4283 if (uptodate && 4284 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4285 uptodate = false; 4286 4287 if (uptodate) { 4288 set_extent_buffer_uptodate(eb); 4289 } else { 4290 clear_extent_buffer_uptodate(eb); 4291 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4292 } 4293 4294 bio_for_each_folio_all(fi, &bbio->bio) { 4295 struct folio *folio = fi.folio; 4296 u64 start = eb->start + bio_offset; 4297 u32 len = fi.length; 4298 4299 if (uptodate) 4300 btrfs_folio_set_uptodate(fs_info, folio, start, len); 4301 else 4302 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 4303 4304 bio_offset += len; 4305 } 4306 4307 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4308 smp_mb__after_atomic(); 4309 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4310 free_extent_buffer(eb); 4311 4312 bio_put(&bbio->bio); 4313 } 4314 4315 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4316 struct btrfs_tree_parent_check *check) 4317 { 4318 struct btrfs_bio *bbio; 4319 bool ret; 4320 4321 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4322 return 0; 4323 4324 /* 4325 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4326 * operation, which could potentially still be in flight. In this case 4327 * we simply want to return an error. 4328 */ 4329 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4330 return -EIO; 4331 4332 /* Someone else is already reading the buffer, just wait for it. */ 4333 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4334 goto done; 4335 4336 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4337 eb->read_mirror = 0; 4338 check_buffer_tree_ref(eb); 4339 atomic_inc(&eb->refs); 4340 4341 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4342 REQ_OP_READ | REQ_META, eb->fs_info, 4343 end_bbio_meta_read, eb); 4344 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4345 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4346 bbio->file_offset = eb->start; 4347 memcpy(&bbio->parent_check, check, sizeof(*check)); 4348 if (eb->fs_info->nodesize < PAGE_SIZE) { 4349 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 4350 eb->start - folio_pos(eb->folios[0])); 4351 ASSERT(ret); 4352 } else { 4353 int num_folios = num_extent_folios(eb); 4354 4355 for (int i = 0; i < num_folios; i++) { 4356 struct folio *folio = eb->folios[i]; 4357 4358 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 4359 ASSERT(ret); 4360 } 4361 } 4362 btrfs_submit_bio(bbio, mirror_num); 4363 4364 done: 4365 if (wait == WAIT_COMPLETE) { 4366 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4367 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4368 return -EIO; 4369 } 4370 4371 return 0; 4372 } 4373 4374 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4375 unsigned long len) 4376 { 4377 btrfs_warn(eb->fs_info, 4378 "access to eb bytenr %llu len %u out of range start %lu len %lu", 4379 eb->start, eb->len, start, len); 4380 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4381 4382 return true; 4383 } 4384 4385 /* 4386 * Check if the [start, start + len) range is valid before reading/writing 4387 * the eb. 4388 * NOTE: @start and @len are offset inside the eb, not logical address. 4389 * 4390 * Caller should not touch the dst/src memory if this function returns error. 4391 */ 4392 static inline int check_eb_range(const struct extent_buffer *eb, 4393 unsigned long start, unsigned long len) 4394 { 4395 unsigned long offset; 4396 4397 /* start, start + len should not go beyond eb->len nor overflow */ 4398 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4399 return report_eb_range(eb, start, len); 4400 4401 return false; 4402 } 4403 4404 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4405 unsigned long start, unsigned long len) 4406 { 4407 const int unit_size = eb->folio_size; 4408 size_t cur; 4409 size_t offset; 4410 char *dst = (char *)dstv; 4411 unsigned long i = get_eb_folio_index(eb, start); 4412 4413 if (check_eb_range(eb, start, len)) { 4414 /* 4415 * Invalid range hit, reset the memory, so callers won't get 4416 * some random garbage for their uninitialized memory. 4417 */ 4418 memset(dstv, 0, len); 4419 return; 4420 } 4421 4422 if (eb->addr) { 4423 memcpy(dstv, eb->addr + start, len); 4424 return; 4425 } 4426 4427 offset = get_eb_offset_in_folio(eb, start); 4428 4429 while (len > 0) { 4430 char *kaddr; 4431 4432 cur = min(len, unit_size - offset); 4433 kaddr = folio_address(eb->folios[i]); 4434 memcpy(dst, kaddr + offset, cur); 4435 4436 dst += cur; 4437 len -= cur; 4438 offset = 0; 4439 i++; 4440 } 4441 } 4442 4443 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4444 void __user *dstv, 4445 unsigned long start, unsigned long len) 4446 { 4447 const int unit_size = eb->folio_size; 4448 size_t cur; 4449 size_t offset; 4450 char __user *dst = (char __user *)dstv; 4451 unsigned long i = get_eb_folio_index(eb, start); 4452 int ret = 0; 4453 4454 WARN_ON(start > eb->len); 4455 WARN_ON(start + len > eb->start + eb->len); 4456 4457 if (eb->addr) { 4458 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 4459 ret = -EFAULT; 4460 return ret; 4461 } 4462 4463 offset = get_eb_offset_in_folio(eb, start); 4464 4465 while (len > 0) { 4466 char *kaddr; 4467 4468 cur = min(len, unit_size - offset); 4469 kaddr = folio_address(eb->folios[i]); 4470 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4471 ret = -EFAULT; 4472 break; 4473 } 4474 4475 dst += cur; 4476 len -= cur; 4477 offset = 0; 4478 i++; 4479 } 4480 4481 return ret; 4482 } 4483 4484 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4485 unsigned long start, unsigned long len) 4486 { 4487 const int unit_size = eb->folio_size; 4488 size_t cur; 4489 size_t offset; 4490 char *kaddr; 4491 char *ptr = (char *)ptrv; 4492 unsigned long i = get_eb_folio_index(eb, start); 4493 int ret = 0; 4494 4495 if (check_eb_range(eb, start, len)) 4496 return -EINVAL; 4497 4498 if (eb->addr) 4499 return memcmp(ptrv, eb->addr + start, len); 4500 4501 offset = get_eb_offset_in_folio(eb, start); 4502 4503 while (len > 0) { 4504 cur = min(len, unit_size - offset); 4505 kaddr = folio_address(eb->folios[i]); 4506 ret = memcmp(ptr, kaddr + offset, cur); 4507 if (ret) 4508 break; 4509 4510 ptr += cur; 4511 len -= cur; 4512 offset = 0; 4513 i++; 4514 } 4515 return ret; 4516 } 4517 4518 /* 4519 * Check that the extent buffer is uptodate. 4520 * 4521 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4522 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4523 */ 4524 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 4525 { 4526 struct btrfs_fs_info *fs_info = eb->fs_info; 4527 struct folio *folio = eb->folios[i]; 4528 4529 ASSERT(folio); 4530 4531 /* 4532 * If we are using the commit root we could potentially clear a page 4533 * Uptodate while we're using the extent buffer that we've previously 4534 * looked up. We don't want to complain in this case, as the page was 4535 * valid before, we just didn't write it out. Instead we want to catch 4536 * the case where we didn't actually read the block properly, which 4537 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4538 */ 4539 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4540 return; 4541 4542 if (fs_info->nodesize < PAGE_SIZE) { 4543 struct folio *folio = eb->folios[0]; 4544 4545 ASSERT(i == 0); 4546 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 4547 eb->start, eb->len))) 4548 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 4549 } else { 4550 WARN_ON(!folio_test_uptodate(folio)); 4551 } 4552 } 4553 4554 static void __write_extent_buffer(const struct extent_buffer *eb, 4555 const void *srcv, unsigned long start, 4556 unsigned long len, bool use_memmove) 4557 { 4558 const int unit_size = eb->folio_size; 4559 size_t cur; 4560 size_t offset; 4561 char *kaddr; 4562 char *src = (char *)srcv; 4563 unsigned long i = get_eb_folio_index(eb, start); 4564 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4565 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4566 4567 if (check_eb_range(eb, start, len)) 4568 return; 4569 4570 if (eb->addr) { 4571 if (use_memmove) 4572 memmove(eb->addr + start, srcv, len); 4573 else 4574 memcpy(eb->addr + start, srcv, len); 4575 return; 4576 } 4577 4578 offset = get_eb_offset_in_folio(eb, start); 4579 4580 while (len > 0) { 4581 if (check_uptodate) 4582 assert_eb_folio_uptodate(eb, i); 4583 4584 cur = min(len, unit_size - offset); 4585 kaddr = folio_address(eb->folios[i]); 4586 if (use_memmove) 4587 memmove(kaddr + offset, src, cur); 4588 else 4589 memcpy(kaddr + offset, src, cur); 4590 4591 src += cur; 4592 len -= cur; 4593 offset = 0; 4594 i++; 4595 } 4596 } 4597 4598 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4599 unsigned long start, unsigned long len) 4600 { 4601 return __write_extent_buffer(eb, srcv, start, len, false); 4602 } 4603 4604 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4605 unsigned long start, unsigned long len) 4606 { 4607 const int unit_size = eb->folio_size; 4608 unsigned long cur = start; 4609 4610 if (eb->addr) { 4611 memset(eb->addr + start, c, len); 4612 return; 4613 } 4614 4615 while (cur < start + len) { 4616 unsigned long index = get_eb_folio_index(eb, cur); 4617 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4618 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4619 4620 assert_eb_folio_uptodate(eb, index); 4621 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4622 4623 cur += cur_len; 4624 } 4625 } 4626 4627 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4628 unsigned long len) 4629 { 4630 if (check_eb_range(eb, start, len)) 4631 return; 4632 return memset_extent_buffer(eb, 0, start, len); 4633 } 4634 4635 void copy_extent_buffer_full(const struct extent_buffer *dst, 4636 const struct extent_buffer *src) 4637 { 4638 const int unit_size = src->folio_size; 4639 unsigned long cur = 0; 4640 4641 ASSERT(dst->len == src->len); 4642 4643 while (cur < src->len) { 4644 unsigned long index = get_eb_folio_index(src, cur); 4645 unsigned long offset = get_eb_offset_in_folio(src, cur); 4646 unsigned long cur_len = min(src->len, unit_size - offset); 4647 void *addr = folio_address(src->folios[index]) + offset; 4648 4649 write_extent_buffer(dst, addr, cur, cur_len); 4650 4651 cur += cur_len; 4652 } 4653 } 4654 4655 void copy_extent_buffer(const struct extent_buffer *dst, 4656 const struct extent_buffer *src, 4657 unsigned long dst_offset, unsigned long src_offset, 4658 unsigned long len) 4659 { 4660 const int unit_size = dst->folio_size; 4661 u64 dst_len = dst->len; 4662 size_t cur; 4663 size_t offset; 4664 char *kaddr; 4665 unsigned long i = get_eb_folio_index(dst, dst_offset); 4666 4667 if (check_eb_range(dst, dst_offset, len) || 4668 check_eb_range(src, src_offset, len)) 4669 return; 4670 4671 WARN_ON(src->len != dst_len); 4672 4673 offset = get_eb_offset_in_folio(dst, dst_offset); 4674 4675 while (len > 0) { 4676 assert_eb_folio_uptodate(dst, i); 4677 4678 cur = min(len, (unsigned long)(unit_size - offset)); 4679 4680 kaddr = folio_address(dst->folios[i]); 4681 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4682 4683 src_offset += cur; 4684 len -= cur; 4685 offset = 0; 4686 i++; 4687 } 4688 } 4689 4690 /* 4691 * Calculate the folio and offset of the byte containing the given bit number. 4692 * 4693 * @eb: the extent buffer 4694 * @start: offset of the bitmap item in the extent buffer 4695 * @nr: bit number 4696 * @folio_index: return index of the folio in the extent buffer that contains 4697 * the given bit number 4698 * @folio_offset: return offset into the folio given by folio_index 4699 * 4700 * This helper hides the ugliness of finding the byte in an extent buffer which 4701 * contains a given bit. 4702 */ 4703 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4704 unsigned long start, unsigned long nr, 4705 unsigned long *folio_index, 4706 size_t *folio_offset) 4707 { 4708 size_t byte_offset = BIT_BYTE(nr); 4709 size_t offset; 4710 4711 /* 4712 * The byte we want is the offset of the extent buffer + the offset of 4713 * the bitmap item in the extent buffer + the offset of the byte in the 4714 * bitmap item. 4715 */ 4716 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4717 4718 *folio_index = offset >> eb->folio_shift; 4719 *folio_offset = offset_in_eb_folio(eb, offset); 4720 } 4721 4722 /* 4723 * Determine whether a bit in a bitmap item is set. 4724 * 4725 * @eb: the extent buffer 4726 * @start: offset of the bitmap item in the extent buffer 4727 * @nr: bit number to test 4728 */ 4729 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4730 unsigned long nr) 4731 { 4732 unsigned long i; 4733 size_t offset; 4734 u8 *kaddr; 4735 4736 eb_bitmap_offset(eb, start, nr, &i, &offset); 4737 assert_eb_folio_uptodate(eb, i); 4738 kaddr = folio_address(eb->folios[i]); 4739 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4740 } 4741 4742 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4743 { 4744 unsigned long index = get_eb_folio_index(eb, bytenr); 4745 4746 if (check_eb_range(eb, bytenr, 1)) 4747 return NULL; 4748 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4749 } 4750 4751 /* 4752 * Set an area of a bitmap to 1. 4753 * 4754 * @eb: the extent buffer 4755 * @start: offset of the bitmap item in the extent buffer 4756 * @pos: bit number of the first bit 4757 * @len: number of bits to set 4758 */ 4759 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4760 unsigned long pos, unsigned long len) 4761 { 4762 unsigned int first_byte = start + BIT_BYTE(pos); 4763 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4764 const bool same_byte = (first_byte == last_byte); 4765 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4766 u8 *kaddr; 4767 4768 if (same_byte) 4769 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4770 4771 /* Handle the first byte. */ 4772 kaddr = extent_buffer_get_byte(eb, first_byte); 4773 *kaddr |= mask; 4774 if (same_byte) 4775 return; 4776 4777 /* Handle the byte aligned part. */ 4778 ASSERT(first_byte + 1 <= last_byte); 4779 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4780 4781 /* Handle the last byte. */ 4782 kaddr = extent_buffer_get_byte(eb, last_byte); 4783 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4784 } 4785 4786 4787 /* 4788 * Clear an area of a bitmap. 4789 * 4790 * @eb: the extent buffer 4791 * @start: offset of the bitmap item in the extent buffer 4792 * @pos: bit number of the first bit 4793 * @len: number of bits to clear 4794 */ 4795 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4796 unsigned long start, unsigned long pos, 4797 unsigned long len) 4798 { 4799 unsigned int first_byte = start + BIT_BYTE(pos); 4800 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4801 const bool same_byte = (first_byte == last_byte); 4802 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4803 u8 *kaddr; 4804 4805 if (same_byte) 4806 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4807 4808 /* Handle the first byte. */ 4809 kaddr = extent_buffer_get_byte(eb, first_byte); 4810 *kaddr &= ~mask; 4811 if (same_byte) 4812 return; 4813 4814 /* Handle the byte aligned part. */ 4815 ASSERT(first_byte + 1 <= last_byte); 4816 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4817 4818 /* Handle the last byte. */ 4819 kaddr = extent_buffer_get_byte(eb, last_byte); 4820 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4821 } 4822 4823 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4824 { 4825 unsigned long distance = (src > dst) ? src - dst : dst - src; 4826 return distance < len; 4827 } 4828 4829 void memcpy_extent_buffer(const struct extent_buffer *dst, 4830 unsigned long dst_offset, unsigned long src_offset, 4831 unsigned long len) 4832 { 4833 const int unit_size = dst->folio_size; 4834 unsigned long cur_off = 0; 4835 4836 if (check_eb_range(dst, dst_offset, len) || 4837 check_eb_range(dst, src_offset, len)) 4838 return; 4839 4840 if (dst->addr) { 4841 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4842 4843 if (use_memmove) 4844 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4845 else 4846 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4847 return; 4848 } 4849 4850 while (cur_off < len) { 4851 unsigned long cur_src = cur_off + src_offset; 4852 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4853 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4854 unsigned long cur_len = min(src_offset + len - cur_src, 4855 unit_size - folio_off); 4856 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4857 const bool use_memmove = areas_overlap(src_offset + cur_off, 4858 dst_offset + cur_off, cur_len); 4859 4860 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4861 use_memmove); 4862 cur_off += cur_len; 4863 } 4864 } 4865 4866 void memmove_extent_buffer(const struct extent_buffer *dst, 4867 unsigned long dst_offset, unsigned long src_offset, 4868 unsigned long len) 4869 { 4870 unsigned long dst_end = dst_offset + len - 1; 4871 unsigned long src_end = src_offset + len - 1; 4872 4873 if (check_eb_range(dst, dst_offset, len) || 4874 check_eb_range(dst, src_offset, len)) 4875 return; 4876 4877 if (dst_offset < src_offset) { 4878 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4879 return; 4880 } 4881 4882 if (dst->addr) { 4883 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4884 return; 4885 } 4886 4887 while (len > 0) { 4888 unsigned long src_i; 4889 size_t cur; 4890 size_t dst_off_in_folio; 4891 size_t src_off_in_folio; 4892 void *src_addr; 4893 bool use_memmove; 4894 4895 src_i = get_eb_folio_index(dst, src_end); 4896 4897 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4898 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4899 4900 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4901 cur = min(cur, dst_off_in_folio + 1); 4902 4903 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4904 cur + 1; 4905 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4906 cur); 4907 4908 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4909 use_memmove); 4910 4911 dst_end -= cur; 4912 src_end -= cur; 4913 len -= cur; 4914 } 4915 } 4916 4917 #define GANG_LOOKUP_SIZE 16 4918 static struct extent_buffer *get_next_extent_buffer( 4919 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4920 { 4921 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4922 struct extent_buffer *found = NULL; 4923 u64 page_start = page_offset(page); 4924 u64 cur = page_start; 4925 4926 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4927 lockdep_assert_held(&fs_info->buffer_lock); 4928 4929 while (cur < page_start + PAGE_SIZE) { 4930 int ret; 4931 int i; 4932 4933 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4934 (void **)gang, cur >> fs_info->sectorsize_bits, 4935 min_t(unsigned int, GANG_LOOKUP_SIZE, 4936 PAGE_SIZE / fs_info->nodesize)); 4937 if (ret == 0) 4938 goto out; 4939 for (i = 0; i < ret; i++) { 4940 /* Already beyond page end */ 4941 if (gang[i]->start >= page_start + PAGE_SIZE) 4942 goto out; 4943 /* Found one */ 4944 if (gang[i]->start >= bytenr) { 4945 found = gang[i]; 4946 goto out; 4947 } 4948 } 4949 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4950 } 4951 out: 4952 return found; 4953 } 4954 4955 static int try_release_subpage_extent_buffer(struct page *page) 4956 { 4957 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 4958 u64 cur = page_offset(page); 4959 const u64 end = page_offset(page) + PAGE_SIZE; 4960 int ret; 4961 4962 while (cur < end) { 4963 struct extent_buffer *eb = NULL; 4964 4965 /* 4966 * Unlike try_release_extent_buffer() which uses folio private 4967 * to grab buffer, for subpage case we rely on radix tree, thus 4968 * we need to ensure radix tree consistency. 4969 * 4970 * We also want an atomic snapshot of the radix tree, thus go 4971 * with spinlock rather than RCU. 4972 */ 4973 spin_lock(&fs_info->buffer_lock); 4974 eb = get_next_extent_buffer(fs_info, page, cur); 4975 if (!eb) { 4976 /* No more eb in the page range after or at cur */ 4977 spin_unlock(&fs_info->buffer_lock); 4978 break; 4979 } 4980 cur = eb->start + eb->len; 4981 4982 /* 4983 * The same as try_release_extent_buffer(), to ensure the eb 4984 * won't disappear out from under us. 4985 */ 4986 spin_lock(&eb->refs_lock); 4987 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4988 spin_unlock(&eb->refs_lock); 4989 spin_unlock(&fs_info->buffer_lock); 4990 break; 4991 } 4992 spin_unlock(&fs_info->buffer_lock); 4993 4994 /* 4995 * If tree ref isn't set then we know the ref on this eb is a 4996 * real ref, so just return, this eb will likely be freed soon 4997 * anyway. 4998 */ 4999 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5000 spin_unlock(&eb->refs_lock); 5001 break; 5002 } 5003 5004 /* 5005 * Here we don't care about the return value, we will always 5006 * check the folio private at the end. And 5007 * release_extent_buffer() will release the refs_lock. 5008 */ 5009 release_extent_buffer(eb); 5010 } 5011 /* 5012 * Finally to check if we have cleared folio private, as if we have 5013 * released all ebs in the page, the folio private should be cleared now. 5014 */ 5015 spin_lock(&page->mapping->i_private_lock); 5016 if (!folio_test_private(page_folio(page))) 5017 ret = 1; 5018 else 5019 ret = 0; 5020 spin_unlock(&page->mapping->i_private_lock); 5021 return ret; 5022 5023 } 5024 5025 int try_release_extent_buffer(struct page *page) 5026 { 5027 struct folio *folio = page_folio(page); 5028 struct extent_buffer *eb; 5029 5030 if (page_to_fs_info(page)->nodesize < PAGE_SIZE) 5031 return try_release_subpage_extent_buffer(page); 5032 5033 /* 5034 * We need to make sure nobody is changing folio private, as we rely on 5035 * folio private as the pointer to extent buffer. 5036 */ 5037 spin_lock(&page->mapping->i_private_lock); 5038 if (!folio_test_private(folio)) { 5039 spin_unlock(&page->mapping->i_private_lock); 5040 return 1; 5041 } 5042 5043 eb = folio_get_private(folio); 5044 BUG_ON(!eb); 5045 5046 /* 5047 * This is a little awful but should be ok, we need to make sure that 5048 * the eb doesn't disappear out from under us while we're looking at 5049 * this page. 5050 */ 5051 spin_lock(&eb->refs_lock); 5052 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5053 spin_unlock(&eb->refs_lock); 5054 spin_unlock(&page->mapping->i_private_lock); 5055 return 0; 5056 } 5057 spin_unlock(&page->mapping->i_private_lock); 5058 5059 /* 5060 * If tree ref isn't set then we know the ref on this eb is a real ref, 5061 * so just return, this page will likely be freed soon anyway. 5062 */ 5063 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5064 spin_unlock(&eb->refs_lock); 5065 return 0; 5066 } 5067 5068 return release_extent_buffer(eb); 5069 } 5070 5071 /* 5072 * Attempt to readahead a child block. 5073 * 5074 * @fs_info: the fs_info 5075 * @bytenr: bytenr to read 5076 * @owner_root: objectid of the root that owns this eb 5077 * @gen: generation for the uptodate check, can be 0 5078 * @level: level for the eb 5079 * 5080 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5081 * normal uptodate check of the eb, without checking the generation. If we have 5082 * to read the block we will not block on anything. 5083 */ 5084 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5085 u64 bytenr, u64 owner_root, u64 gen, int level) 5086 { 5087 struct btrfs_tree_parent_check check = { 5088 .has_first_key = 0, 5089 .level = level, 5090 .transid = gen 5091 }; 5092 struct extent_buffer *eb; 5093 int ret; 5094 5095 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5096 if (IS_ERR(eb)) 5097 return; 5098 5099 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5100 free_extent_buffer(eb); 5101 return; 5102 } 5103 5104 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5105 if (ret < 0) 5106 free_extent_buffer_stale(eb); 5107 else 5108 free_extent_buffer(eb); 5109 } 5110 5111 /* 5112 * Readahead a node's child block. 5113 * 5114 * @node: parent node we're reading from 5115 * @slot: slot in the parent node for the child we want to read 5116 * 5117 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5118 * the slot in the node provided. 5119 */ 5120 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5121 { 5122 btrfs_readahead_tree_block(node->fs_info, 5123 btrfs_node_blockptr(node, slot), 5124 btrfs_header_owner(node), 5125 btrfs_node_ptr_generation(node, slot), 5126 btrfs_header_level(node) - 1); 5127 } 5128