1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 btrfs_err(fs_info, 79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu", 80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 107 /* 108 * The sectors of the page which are going to be submitted by 109 * extent_writepage_io(). 110 * This is to avoid touching ranges covered by compression/inline. 111 */ 112 unsigned long submit_bitmap; 113 struct readahead_control *ractl; 114 }; 115 116 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 117 { 118 struct btrfs_bio *bbio = bio_ctrl->bbio; 119 120 if (!bbio) 121 return; 122 123 /* Caller should ensure the bio has at least some range added */ 124 ASSERT(bbio->bio.bi_iter.bi_size); 125 126 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 127 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 128 btrfs_submit_compressed_read(bbio); 129 else 130 btrfs_submit_bbio(bbio, 0); 131 132 /* The bbio is owned by the end_io handler now */ 133 bio_ctrl->bbio = NULL; 134 } 135 136 /* 137 * Submit or fail the current bio in the bio_ctrl structure. 138 */ 139 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 140 { 141 struct btrfs_bio *bbio = bio_ctrl->bbio; 142 143 if (!bbio) 144 return; 145 146 if (ret) { 147 ASSERT(ret < 0); 148 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 149 /* The bio is owned by the end_io handler now */ 150 bio_ctrl->bbio = NULL; 151 } else { 152 submit_one_bio(bio_ctrl); 153 } 154 } 155 156 int __init extent_buffer_init_cachep(void) 157 { 158 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 159 sizeof(struct extent_buffer), 0, 0, 160 NULL); 161 if (!extent_buffer_cache) 162 return -ENOMEM; 163 164 return 0; 165 } 166 167 void __cold extent_buffer_free_cachep(void) 168 { 169 /* 170 * Make sure all delayed rcu free are flushed before we 171 * destroy caches. 172 */ 173 rcu_barrier(); 174 kmem_cache_destroy(extent_buffer_cache); 175 } 176 177 static void process_one_folio(struct btrfs_fs_info *fs_info, 178 struct folio *folio, const struct folio *locked_folio, 179 unsigned long page_ops, u64 start, u64 end) 180 { 181 u32 len; 182 183 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 184 len = end + 1 - start; 185 186 if (page_ops & PAGE_SET_ORDERED) 187 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 188 if (page_ops & PAGE_START_WRITEBACK) { 189 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 190 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 191 } 192 if (page_ops & PAGE_END_WRITEBACK) 193 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 194 195 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 196 btrfs_folio_end_lock(fs_info, folio, start, len); 197 } 198 199 static void __process_folios_contig(struct address_space *mapping, 200 const struct folio *locked_folio, u64 start, 201 u64 end, unsigned long page_ops) 202 { 203 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 204 pgoff_t index = start >> PAGE_SHIFT; 205 pgoff_t end_index = end >> PAGE_SHIFT; 206 struct folio_batch fbatch; 207 int i; 208 209 folio_batch_init(&fbatch); 210 while (index <= end_index) { 211 int found_folios; 212 213 found_folios = filemap_get_folios_contig(mapping, &index, 214 end_index, &fbatch); 215 for (i = 0; i < found_folios; i++) { 216 struct folio *folio = fbatch.folios[i]; 217 218 process_one_folio(fs_info, folio, locked_folio, 219 page_ops, start, end); 220 } 221 folio_batch_release(&fbatch); 222 cond_resched(); 223 } 224 } 225 226 static noinline void unlock_delalloc_folio(const struct inode *inode, 227 struct folio *locked_folio, 228 u64 start, u64 end) 229 { 230 ASSERT(locked_folio); 231 232 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 233 PAGE_UNLOCK); 234 } 235 236 static noinline int lock_delalloc_folios(struct inode *inode, 237 struct folio *locked_folio, 238 u64 start, u64 end) 239 { 240 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 241 struct address_space *mapping = inode->i_mapping; 242 pgoff_t index = start >> PAGE_SHIFT; 243 pgoff_t end_index = end >> PAGE_SHIFT; 244 u64 processed_end = start; 245 struct folio_batch fbatch; 246 247 folio_batch_init(&fbatch); 248 while (index <= end_index) { 249 unsigned int found_folios, i; 250 251 found_folios = filemap_get_folios_contig(mapping, &index, 252 end_index, &fbatch); 253 if (found_folios == 0) 254 goto out; 255 256 for (i = 0; i < found_folios; i++) { 257 struct folio *folio = fbatch.folios[i]; 258 u64 range_start; 259 u32 range_len; 260 261 if (folio == locked_folio) 262 continue; 263 264 folio_lock(folio); 265 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 266 folio_unlock(folio); 267 goto out; 268 } 269 range_start = max_t(u64, folio_pos(folio), start); 270 range_len = min_t(u64, folio_end(folio), end + 1) - range_start; 271 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 272 273 processed_end = range_start + range_len - 1; 274 } 275 folio_batch_release(&fbatch); 276 cond_resched(); 277 } 278 279 return 0; 280 out: 281 folio_batch_release(&fbatch); 282 if (processed_end > start) 283 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 284 return -EAGAIN; 285 } 286 287 /* 288 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 289 * more than @max_bytes. 290 * 291 * @start: The original start bytenr to search. 292 * Will store the extent range start bytenr. 293 * @end: The original end bytenr of the search range 294 * Will store the extent range end bytenr. 295 * 296 * Return true if we find a delalloc range which starts inside the original 297 * range, and @start/@end will store the delalloc range start/end. 298 * 299 * Return false if we can't find any delalloc range which starts inside the 300 * original range, and @start/@end will be the non-delalloc range start/end. 301 */ 302 EXPORT_FOR_TESTS 303 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 304 struct folio *locked_folio, 305 u64 *start, u64 *end) 306 { 307 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 308 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 309 const u64 orig_start = *start; 310 const u64 orig_end = *end; 311 /* The sanity tests may not set a valid fs_info. */ 312 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 313 u64 delalloc_start; 314 u64 delalloc_end; 315 bool found; 316 struct extent_state *cached_state = NULL; 317 int ret; 318 int loops = 0; 319 320 /* Caller should pass a valid @end to indicate the search range end */ 321 ASSERT(orig_end > orig_start); 322 323 /* The range should at least cover part of the folio */ 324 ASSERT(!(orig_start >= folio_end(locked_folio) || 325 orig_end <= folio_pos(locked_folio))); 326 again: 327 /* step one, find a bunch of delalloc bytes starting at start */ 328 delalloc_start = *start; 329 delalloc_end = 0; 330 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 331 max_bytes, &cached_state); 332 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 333 *start = delalloc_start; 334 335 /* @delalloc_end can be -1, never go beyond @orig_end */ 336 *end = min(delalloc_end, orig_end); 337 btrfs_free_extent_state(cached_state); 338 return false; 339 } 340 341 /* 342 * start comes from the offset of locked_folio. We have to lock 343 * folios in order, so we can't process delalloc bytes before 344 * locked_folio 345 */ 346 if (delalloc_start < *start) 347 delalloc_start = *start; 348 349 /* 350 * make sure to limit the number of folios we try to lock down 351 */ 352 if (delalloc_end + 1 - delalloc_start > max_bytes) 353 delalloc_end = delalloc_start + max_bytes - 1; 354 355 /* step two, lock all the folioss after the folios that has start */ 356 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 357 delalloc_end); 358 ASSERT(!ret || ret == -EAGAIN); 359 if (ret == -EAGAIN) { 360 /* some of the folios are gone, lets avoid looping by 361 * shortening the size of the delalloc range we're searching 362 */ 363 btrfs_free_extent_state(cached_state); 364 cached_state = NULL; 365 if (!loops) { 366 max_bytes = PAGE_SIZE; 367 loops = 1; 368 goto again; 369 } else { 370 found = false; 371 goto out_failed; 372 } 373 } 374 375 /* step three, lock the state bits for the whole range */ 376 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 377 378 /* then test to make sure it is all still delalloc */ 379 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 380 EXTENT_DELALLOC, cached_state); 381 382 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 383 if (!ret) { 384 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 385 delalloc_end); 386 cond_resched(); 387 goto again; 388 } 389 *start = delalloc_start; 390 *end = delalloc_end; 391 out_failed: 392 return found; 393 } 394 395 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 396 const struct folio *locked_folio, 397 struct extent_state **cached, 398 u32 clear_bits, unsigned long page_ops) 399 { 400 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 401 402 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 403 end, page_ops); 404 } 405 406 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 407 { 408 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 409 410 if (!fsverity_active(folio->mapping->host) || 411 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 412 start >= i_size_read(folio->mapping->host)) 413 return true; 414 return fsverity_verify_folio(folio); 415 } 416 417 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 418 { 419 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 420 421 ASSERT(folio_pos(folio) <= start && 422 start + len <= folio_end(folio)); 423 424 if (uptodate && btrfs_verify_folio(folio, start, len)) 425 btrfs_folio_set_uptodate(fs_info, folio, start, len); 426 else 427 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 428 429 if (!btrfs_is_subpage(fs_info, folio)) 430 folio_unlock(folio); 431 else 432 btrfs_folio_end_lock(fs_info, folio, start, len); 433 } 434 435 /* 436 * After a write IO is done, we need to: 437 * 438 * - clear the uptodate bits on error 439 * - clear the writeback bits in the extent tree for the range 440 * - filio_end_writeback() if there is no more pending io for the folio 441 * 442 * Scheduling is not allowed, so the extent state tree is expected 443 * to have one and only one object corresponding to this IO. 444 */ 445 static void end_bbio_data_write(struct btrfs_bio *bbio) 446 { 447 struct btrfs_fs_info *fs_info = bbio->fs_info; 448 struct bio *bio = &bbio->bio; 449 int error = blk_status_to_errno(bio->bi_status); 450 struct folio_iter fi; 451 const u32 sectorsize = fs_info->sectorsize; 452 453 ASSERT(!bio_flagged(bio, BIO_CLONED)); 454 bio_for_each_folio_all(fi, bio) { 455 struct folio *folio = fi.folio; 456 u64 start = folio_pos(folio) + fi.offset; 457 u32 len = fi.length; 458 459 /* Our read/write should always be sector aligned. */ 460 if (!IS_ALIGNED(fi.offset, sectorsize)) 461 btrfs_err(fs_info, 462 "partial page write in btrfs with offset %zu and length %zu", 463 fi.offset, fi.length); 464 else if (!IS_ALIGNED(fi.length, sectorsize)) 465 btrfs_info(fs_info, 466 "incomplete page write with offset %zu and length %zu", 467 fi.offset, fi.length); 468 469 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 470 !error); 471 if (error) 472 mapping_set_error(folio->mapping, error); 473 btrfs_folio_clear_writeback(fs_info, folio, start, len); 474 } 475 476 bio_put(bio); 477 } 478 479 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 480 { 481 ASSERT(folio_test_locked(folio)); 482 if (!btrfs_is_subpage(fs_info, folio)) 483 return; 484 485 ASSERT(folio_test_private(folio)); 486 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 487 } 488 489 /* 490 * After a data read IO is done, we need to: 491 * 492 * - clear the uptodate bits on error 493 * - set the uptodate bits if things worked 494 * - set the folio up to date if all extents in the tree are uptodate 495 * - clear the lock bit in the extent tree 496 * - unlock the folio if there are no other extents locked for it 497 * 498 * Scheduling is not allowed, so the extent state tree is expected 499 * to have one and only one object corresponding to this IO. 500 */ 501 static void end_bbio_data_read(struct btrfs_bio *bbio) 502 { 503 struct btrfs_fs_info *fs_info = bbio->fs_info; 504 struct bio *bio = &bbio->bio; 505 struct folio_iter fi; 506 507 ASSERT(!bio_flagged(bio, BIO_CLONED)); 508 bio_for_each_folio_all(fi, &bbio->bio) { 509 bool uptodate = !bio->bi_status; 510 struct folio *folio = fi.folio; 511 struct inode *inode = folio->mapping->host; 512 u64 start = folio_pos(folio) + fi.offset; 513 514 btrfs_debug(fs_info, 515 "%s: bi_sector=%llu, err=%d, mirror=%u", 516 __func__, bio->bi_iter.bi_sector, bio->bi_status, 517 bbio->mirror_num); 518 519 520 if (likely(uptodate)) { 521 u64 end = start + fi.length - 1; 522 loff_t i_size = i_size_read(inode); 523 524 /* 525 * Zero out the remaining part if this range straddles 526 * i_size. 527 * 528 * Here we should only zero the range inside the folio, 529 * not touch anything else. 530 * 531 * NOTE: i_size is exclusive while end is inclusive and 532 * folio_contains() takes PAGE_SIZE units. 533 */ 534 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 535 i_size <= end) { 536 u32 zero_start = max(offset_in_folio(folio, i_size), 537 offset_in_folio(folio, start)); 538 u32 zero_len = offset_in_folio(folio, end) + 1 - 539 zero_start; 540 541 folio_zero_range(folio, zero_start, zero_len); 542 } 543 } 544 545 /* Update page status and unlock. */ 546 end_folio_read(folio, uptodate, start, fi.length); 547 } 548 bio_put(bio); 549 } 550 551 /* 552 * Populate every free slot in a provided array with folios using GFP_NOFS. 553 * 554 * @nr_folios: number of folios to allocate 555 * @folio_array: the array to fill with folios; any existing non-NULL entries in 556 * the array will be skipped 557 * 558 * Return: 0 if all folios were able to be allocated; 559 * -ENOMEM otherwise, the partially allocated folios would be freed and 560 * the array slots zeroed 561 */ 562 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 563 { 564 for (int i = 0; i < nr_folios; i++) { 565 if (folio_array[i]) 566 continue; 567 folio_array[i] = folio_alloc(GFP_NOFS, 0); 568 if (!folio_array[i]) 569 goto error; 570 } 571 return 0; 572 error: 573 for (int i = 0; i < nr_folios; i++) { 574 if (folio_array[i]) 575 folio_put(folio_array[i]); 576 } 577 return -ENOMEM; 578 } 579 580 /* 581 * Populate every free slot in a provided array with pages, using GFP_NOFS. 582 * 583 * @nr_pages: number of pages to allocate 584 * @page_array: the array to fill with pages; any existing non-null entries in 585 * the array will be skipped 586 * @nofail: whether using __GFP_NOFAIL flag 587 * 588 * Return: 0 if all pages were able to be allocated; 589 * -ENOMEM otherwise, the partially allocated pages would be freed and 590 * the array slots zeroed 591 */ 592 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 593 bool nofail) 594 { 595 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 596 unsigned int allocated; 597 598 for (allocated = 0; allocated < nr_pages;) { 599 unsigned int last = allocated; 600 601 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 602 if (unlikely(allocated == last)) { 603 /* No progress, fail and do cleanup. */ 604 for (int i = 0; i < allocated; i++) { 605 __free_page(page_array[i]); 606 page_array[i] = NULL; 607 } 608 return -ENOMEM; 609 } 610 } 611 return 0; 612 } 613 614 /* 615 * Populate needed folios for the extent buffer. 616 * 617 * For now, the folios populated are always in order 0 (aka, single page). 618 */ 619 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 620 { 621 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 622 int num_pages = num_extent_pages(eb); 623 int ret; 624 625 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 626 if (ret < 0) 627 return ret; 628 629 for (int i = 0; i < num_pages; i++) 630 eb->folios[i] = page_folio(page_array[i]); 631 eb->folio_size = PAGE_SIZE; 632 eb->folio_shift = PAGE_SHIFT; 633 return 0; 634 } 635 636 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 637 u64 disk_bytenr, loff_t file_offset) 638 { 639 struct bio *bio = &bio_ctrl->bbio->bio; 640 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 641 642 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 643 /* 644 * For compression, all IO should have its logical bytenr set 645 * to the starting bytenr of the compressed extent. 646 */ 647 return bio->bi_iter.bi_sector == sector; 648 } 649 650 /* 651 * To merge into a bio both the disk sector and the logical offset in 652 * the file need to be contiguous. 653 */ 654 return bio_ctrl->next_file_offset == file_offset && 655 bio_end_sector(bio) == sector; 656 } 657 658 static void alloc_new_bio(struct btrfs_inode *inode, 659 struct btrfs_bio_ctrl *bio_ctrl, 660 u64 disk_bytenr, u64 file_offset) 661 { 662 struct btrfs_fs_info *fs_info = inode->root->fs_info; 663 struct btrfs_bio *bbio; 664 665 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 666 bio_ctrl->end_io_func, NULL); 667 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 668 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 669 bbio->inode = inode; 670 bbio->file_offset = file_offset; 671 bio_ctrl->bbio = bbio; 672 bio_ctrl->len_to_oe_boundary = U32_MAX; 673 bio_ctrl->next_file_offset = file_offset; 674 675 /* Limit data write bios to the ordered boundary. */ 676 if (bio_ctrl->wbc) { 677 struct btrfs_ordered_extent *ordered; 678 679 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 680 if (ordered) { 681 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 682 ordered->file_offset + 683 ordered->disk_num_bytes - file_offset); 684 bbio->ordered = ordered; 685 } 686 687 /* 688 * Pick the last added device to support cgroup writeback. For 689 * multi-device file systems this means blk-cgroup policies have 690 * to always be set on the last added/replaced device. 691 * This is a bit odd but has been like that for a long time. 692 */ 693 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 694 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 695 } 696 } 697 698 /* 699 * @disk_bytenr: logical bytenr where the write will be 700 * @page: page to add to the bio 701 * @size: portion of page that we want to write to 702 * @pg_offset: offset of the new bio or to check whether we are adding 703 * a contiguous page to the previous one 704 * 705 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 706 * new one in @bio_ctrl->bbio. 707 * The mirror number for this IO should already be initizlied in 708 * @bio_ctrl->mirror_num. 709 */ 710 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 711 u64 disk_bytenr, struct folio *folio, 712 size_t size, unsigned long pg_offset) 713 { 714 struct btrfs_inode *inode = folio_to_inode(folio); 715 loff_t file_offset = folio_pos(folio) + pg_offset; 716 717 ASSERT(pg_offset + size <= folio_size(folio)); 718 ASSERT(bio_ctrl->end_io_func); 719 720 if (bio_ctrl->bbio && 721 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 722 submit_one_bio(bio_ctrl); 723 724 do { 725 u32 len = size; 726 727 /* Allocate new bio if needed */ 728 if (!bio_ctrl->bbio) 729 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 730 731 /* Cap to the current ordered extent boundary if there is one. */ 732 if (len > bio_ctrl->len_to_oe_boundary) { 733 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 734 ASSERT(is_data_inode(inode)); 735 len = bio_ctrl->len_to_oe_boundary; 736 } 737 738 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 739 /* bio full: move on to a new one */ 740 submit_one_bio(bio_ctrl); 741 continue; 742 } 743 bio_ctrl->next_file_offset += len; 744 745 if (bio_ctrl->wbc) 746 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 747 748 size -= len; 749 pg_offset += len; 750 disk_bytenr += len; 751 file_offset += len; 752 753 /* 754 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 755 * sector aligned. alloc_new_bio() then sets it to the end of 756 * our ordered extent for writes into zoned devices. 757 * 758 * When len_to_oe_boundary is tracking an ordered extent, we 759 * trust the ordered extent code to align things properly, and 760 * the check above to cap our write to the ordered extent 761 * boundary is correct. 762 * 763 * When len_to_oe_boundary is U32_MAX, the cap above would 764 * result in a 4095 byte IO for the last folio right before 765 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 766 * the checks required to make sure we don't overflow the bio, 767 * and we should just ignore len_to_oe_boundary completely 768 * unless we're using it to track an ordered extent. 769 * 770 * It's pretty hard to make a bio sized U32_MAX, but it can 771 * happen when the page cache is able to feed us contiguous 772 * folios for large extents. 773 */ 774 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 775 bio_ctrl->len_to_oe_boundary -= len; 776 777 /* Ordered extent boundary: move on to a new bio. */ 778 if (bio_ctrl->len_to_oe_boundary == 0) 779 submit_one_bio(bio_ctrl); 780 } while (size); 781 } 782 783 static int attach_extent_buffer_folio(struct extent_buffer *eb, 784 struct folio *folio, 785 struct btrfs_folio_state *prealloc) 786 { 787 struct btrfs_fs_info *fs_info = eb->fs_info; 788 int ret = 0; 789 790 /* 791 * If the page is mapped to btree inode, we should hold the private 792 * lock to prevent race. 793 * For cloned or dummy extent buffers, their pages are not mapped and 794 * will not race with any other ebs. 795 */ 796 if (folio->mapping) 797 lockdep_assert_held(&folio->mapping->i_private_lock); 798 799 if (!btrfs_meta_is_subpage(fs_info)) { 800 if (!folio_test_private(folio)) 801 folio_attach_private(folio, eb); 802 else 803 WARN_ON(folio_get_private(folio) != eb); 804 return 0; 805 } 806 807 /* Already mapped, just free prealloc */ 808 if (folio_test_private(folio)) { 809 btrfs_free_folio_state(prealloc); 810 return 0; 811 } 812 813 if (prealloc) 814 /* Has preallocated memory for subpage */ 815 folio_attach_private(folio, prealloc); 816 else 817 /* Do new allocation to attach subpage */ 818 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 819 return ret; 820 } 821 822 int set_folio_extent_mapped(struct folio *folio) 823 { 824 struct btrfs_fs_info *fs_info; 825 826 ASSERT(folio->mapping); 827 828 if (folio_test_private(folio)) 829 return 0; 830 831 fs_info = folio_to_fs_info(folio); 832 833 if (btrfs_is_subpage(fs_info, folio)) 834 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 835 836 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 837 return 0; 838 } 839 840 void clear_folio_extent_mapped(struct folio *folio) 841 { 842 struct btrfs_fs_info *fs_info; 843 844 ASSERT(folio->mapping); 845 846 if (!folio_test_private(folio)) 847 return; 848 849 fs_info = folio_to_fs_info(folio); 850 if (btrfs_is_subpage(fs_info, folio)) 851 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 852 853 folio_detach_private(folio); 854 } 855 856 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 857 struct folio *folio, u64 start, 858 u64 len, struct extent_map **em_cached) 859 { 860 struct extent_map *em; 861 862 ASSERT(em_cached); 863 864 if (*em_cached) { 865 em = *em_cached; 866 if (btrfs_extent_map_in_tree(em) && start >= em->start && 867 start < btrfs_extent_map_end(em)) { 868 refcount_inc(&em->refs); 869 return em; 870 } 871 872 btrfs_free_extent_map(em); 873 *em_cached = NULL; 874 } 875 876 em = btrfs_get_extent(inode, folio, start, len); 877 if (!IS_ERR(em)) { 878 BUG_ON(*em_cached); 879 refcount_inc(&em->refs); 880 *em_cached = em; 881 } 882 883 return em; 884 } 885 886 static void btrfs_readahead_expand(struct readahead_control *ractl, 887 const struct extent_map *em) 888 { 889 const u64 ra_pos = readahead_pos(ractl); 890 const u64 ra_end = ra_pos + readahead_length(ractl); 891 const u64 em_end = em->start + em->ram_bytes; 892 893 /* No expansion for holes and inline extents. */ 894 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) 895 return; 896 897 ASSERT(em_end >= ra_pos, 898 "extent_map %llu %llu ends before current readahead position %llu", 899 em->start, em->len, ra_pos); 900 if (em_end > ra_end) 901 readahead_expand(ractl, ra_pos, em_end - ra_pos); 902 } 903 904 /* 905 * basic readpage implementation. Locked extent state structs are inserted 906 * into the tree that are removed when the IO is done (by the end_io 907 * handlers) 908 * XXX JDM: This needs looking at to ensure proper page locking 909 * return 0 on success, otherwise return error 910 */ 911 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 912 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 913 { 914 struct inode *inode = folio->mapping->host; 915 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 916 u64 start = folio_pos(folio); 917 const u64 end = start + folio_size(folio) - 1; 918 u64 extent_offset; 919 u64 last_byte = i_size_read(inode); 920 struct extent_map *em; 921 int ret = 0; 922 const size_t blocksize = fs_info->sectorsize; 923 924 ret = set_folio_extent_mapped(folio); 925 if (ret < 0) { 926 folio_unlock(folio); 927 return ret; 928 } 929 930 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 931 size_t zero_offset = offset_in_folio(folio, last_byte); 932 933 if (zero_offset) 934 folio_zero_range(folio, zero_offset, 935 folio_size(folio) - zero_offset); 936 } 937 bio_ctrl->end_io_func = end_bbio_data_read; 938 begin_folio_read(fs_info, folio); 939 for (u64 cur = start; cur <= end; cur += blocksize) { 940 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 941 unsigned long pg_offset = offset_in_folio(folio, cur); 942 bool force_bio_submit = false; 943 u64 disk_bytenr; 944 u64 block_start; 945 946 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 947 if (cur >= last_byte) { 948 folio_zero_range(folio, pg_offset, end - cur + 1); 949 end_folio_read(folio, true, cur, end - cur + 1); 950 break; 951 } 952 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 953 end_folio_read(folio, true, cur, blocksize); 954 continue; 955 } 956 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 957 if (IS_ERR(em)) { 958 end_folio_read(folio, false, cur, end + 1 - cur); 959 return PTR_ERR(em); 960 } 961 extent_offset = cur - em->start; 962 BUG_ON(btrfs_extent_map_end(em) <= cur); 963 BUG_ON(end < cur); 964 965 compress_type = btrfs_extent_map_compression(em); 966 967 /* 968 * Only expand readahead for extents which are already creating 969 * the pages anyway in add_ra_bio_pages, which is compressed 970 * extents in the non subpage case. 971 */ 972 if (bio_ctrl->ractl && 973 !btrfs_is_subpage(fs_info, folio) && 974 compress_type != BTRFS_COMPRESS_NONE) 975 btrfs_readahead_expand(bio_ctrl->ractl, em); 976 977 if (compress_type != BTRFS_COMPRESS_NONE) 978 disk_bytenr = em->disk_bytenr; 979 else 980 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 981 982 if (em->flags & EXTENT_FLAG_PREALLOC) 983 block_start = EXTENT_MAP_HOLE; 984 else 985 block_start = btrfs_extent_map_block_start(em); 986 987 /* 988 * If we have a file range that points to a compressed extent 989 * and it's followed by a consecutive file range that points 990 * to the same compressed extent (possibly with a different 991 * offset and/or length, so it either points to the whole extent 992 * or only part of it), we must make sure we do not submit a 993 * single bio to populate the folios for the 2 ranges because 994 * this makes the compressed extent read zero out the folios 995 * belonging to the 2nd range. Imagine the following scenario: 996 * 997 * File layout 998 * [0 - 8K] [8K - 24K] 999 * | | 1000 * | | 1001 * points to extent X, points to extent X, 1002 * offset 4K, length of 8K offset 0, length 16K 1003 * 1004 * [extent X, compressed length = 4K uncompressed length = 16K] 1005 * 1006 * If the bio to read the compressed extent covers both ranges, 1007 * it will decompress extent X into the folios belonging to the 1008 * first range and then it will stop, zeroing out the remaining 1009 * folios that belong to the other range that points to extent X. 1010 * So here we make sure we submit 2 bios, one for the first 1011 * range and another one for the third range. Both will target 1012 * the same physical extent from disk, but we can't currently 1013 * make the compressed bio endio callback populate the folios 1014 * for both ranges because each compressed bio is tightly 1015 * coupled with a single extent map, and each range can have 1016 * an extent map with a different offset value relative to the 1017 * uncompressed data of our extent and different lengths. This 1018 * is a corner case so we prioritize correctness over 1019 * non-optimal behavior (submitting 2 bios for the same extent). 1020 */ 1021 if (compress_type != BTRFS_COMPRESS_NONE && 1022 prev_em_start && *prev_em_start != (u64)-1 && 1023 *prev_em_start != em->start) 1024 force_bio_submit = true; 1025 1026 if (prev_em_start) 1027 *prev_em_start = em->start; 1028 1029 btrfs_free_extent_map(em); 1030 em = NULL; 1031 1032 /* we've found a hole, just zero and go on */ 1033 if (block_start == EXTENT_MAP_HOLE) { 1034 folio_zero_range(folio, pg_offset, blocksize); 1035 end_folio_read(folio, true, cur, blocksize); 1036 continue; 1037 } 1038 /* the get_extent function already copied into the folio */ 1039 if (block_start == EXTENT_MAP_INLINE) { 1040 end_folio_read(folio, true, cur, blocksize); 1041 continue; 1042 } 1043 1044 if (bio_ctrl->compress_type != compress_type) { 1045 submit_one_bio(bio_ctrl); 1046 bio_ctrl->compress_type = compress_type; 1047 } 1048 1049 if (force_bio_submit) 1050 submit_one_bio(bio_ctrl); 1051 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1052 pg_offset); 1053 } 1054 return 0; 1055 } 1056 1057 /* 1058 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1059 * 1060 * @fileoff: Both input and output. 1061 * Input as the file offset where the check should start at. 1062 * Output as where the next check should start at, 1063 * if the function returns true. 1064 * 1065 * Return true if we can skip to @fileoff. The caller needs to check the new 1066 * @fileoff value to make sure it covers the full range, before skipping the 1067 * full OE. 1068 * 1069 * Return false if we must wait for the ordered extent. 1070 */ 1071 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1072 struct btrfs_ordered_extent *ordered, 1073 u64 *fileoff) 1074 { 1075 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1076 struct folio *folio; 1077 const u32 blocksize = fs_info->sectorsize; 1078 u64 cur = *fileoff; 1079 bool ret; 1080 1081 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1082 1083 /* 1084 * We should have locked the folio(s) for range [start, end], thus 1085 * there must be a folio and it must be locked. 1086 */ 1087 ASSERT(!IS_ERR(folio)); 1088 ASSERT(folio_test_locked(folio)); 1089 1090 /* 1091 * There are several cases for the folio and OE combination: 1092 * 1093 * 1) Folio has no private flag 1094 * The OE has all its IO done but not yet finished, and folio got 1095 * invalidated. 1096 * 1097 * Have we have to wait for the OE to finish, as it may contain the 1098 * to-be-inserted data checksum. 1099 * Without the data checksum inserted into the csum tree, read will 1100 * just fail with missing csum. 1101 */ 1102 if (!folio_test_private(folio)) { 1103 ret = false; 1104 goto out; 1105 } 1106 1107 /* 1108 * 2) The first block is DIRTY. 1109 * 1110 * This means the OE is created by some other folios whose file pos is 1111 * before this one. And since we are holding the folio lock, the writeback 1112 * of this folio cannot start. 1113 * 1114 * We must skip the whole OE, because it will never start until we 1115 * finished our folio read and unlocked the folio. 1116 */ 1117 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1118 u64 range_len = min(folio_end(folio), 1119 ordered->file_offset + ordered->num_bytes) - cur; 1120 1121 ret = true; 1122 /* 1123 * At least inside the folio, all the remaining blocks should 1124 * also be dirty. 1125 */ 1126 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1127 *fileoff = ordered->file_offset + ordered->num_bytes; 1128 goto out; 1129 } 1130 1131 /* 1132 * 3) The first block is uptodate. 1133 * 1134 * At least the first block can be skipped, but we are still not fully 1135 * sure. E.g. if the OE has some other folios in the range that cannot 1136 * be skipped. 1137 * So we return true and update @next_ret to the OE/folio boundary. 1138 */ 1139 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1140 u64 range_len = min(folio_end(folio), 1141 ordered->file_offset + ordered->num_bytes) - cur; 1142 1143 /* 1144 * The whole range to the OE end or folio boundary should also 1145 * be uptodate. 1146 */ 1147 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1148 ret = true; 1149 *fileoff = cur + range_len; 1150 goto out; 1151 } 1152 1153 /* 1154 * 4) The first block is not uptodate. 1155 * 1156 * This means the folio is invalidated after the writeback was finished, 1157 * but by some other operations (e.g. block aligned buffered write) the 1158 * folio is inserted into filemap. 1159 * Very much the same as case 1). 1160 */ 1161 ret = false; 1162 out: 1163 folio_put(folio); 1164 return ret; 1165 } 1166 1167 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1168 struct btrfs_ordered_extent *ordered, 1169 u64 start, u64 end) 1170 { 1171 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1172 u64 cur = max(start, ordered->file_offset); 1173 1174 while (cur < range_end) { 1175 bool can_skip; 1176 1177 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1178 if (!can_skip) 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 /* 1185 * Locking helper to make sure we get a stable view of extent maps for the 1186 * involved range. 1187 * 1188 * This is for folio read paths (read and readahead), thus the involved range 1189 * should have all the folios locked. 1190 */ 1191 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1192 struct extent_state **cached_state) 1193 { 1194 u64 cur_pos; 1195 1196 /* Caller must provide a valid @cached_state. */ 1197 ASSERT(cached_state); 1198 1199 /* The range must at least be page aligned, as all read paths are folio based. */ 1200 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1201 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1202 1203 again: 1204 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1205 cur_pos = start; 1206 while (cur_pos < end) { 1207 struct btrfs_ordered_extent *ordered; 1208 1209 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1210 end - cur_pos + 1); 1211 /* 1212 * No ordered extents in the range, and we hold the extent lock, 1213 * no one can modify the extent maps in the range, we're safe to return. 1214 */ 1215 if (!ordered) 1216 break; 1217 1218 /* Check if we can skip waiting for the whole OE. */ 1219 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1220 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1221 end + 1); 1222 btrfs_put_ordered_extent(ordered); 1223 continue; 1224 } 1225 1226 /* Now wait for the OE to finish. */ 1227 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1228 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1229 btrfs_put_ordered_extent(ordered); 1230 /* We have unlocked the whole range, restart from the beginning. */ 1231 goto again; 1232 } 1233 } 1234 1235 int btrfs_read_folio(struct file *file, struct folio *folio) 1236 { 1237 struct btrfs_inode *inode = folio_to_inode(folio); 1238 const u64 start = folio_pos(folio); 1239 const u64 end = start + folio_size(folio) - 1; 1240 struct extent_state *cached_state = NULL; 1241 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1242 struct extent_map *em_cached = NULL; 1243 int ret; 1244 1245 lock_extents_for_read(inode, start, end, &cached_state); 1246 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1247 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1248 1249 btrfs_free_extent_map(em_cached); 1250 1251 /* 1252 * If btrfs_do_readpage() failed we will want to submit the assembled 1253 * bio to do the cleanup. 1254 */ 1255 submit_one_bio(&bio_ctrl); 1256 return ret; 1257 } 1258 1259 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1260 u64 start, u32 len) 1261 { 1262 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1263 const u64 folio_start = folio_pos(folio); 1264 unsigned int start_bit; 1265 unsigned int nbits; 1266 1267 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1268 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1269 nbits = len >> fs_info->sectorsize_bits; 1270 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1271 bitmap_set(delalloc_bitmap, start_bit, nbits); 1272 } 1273 1274 static bool find_next_delalloc_bitmap(struct folio *folio, 1275 unsigned long *delalloc_bitmap, u64 start, 1276 u64 *found_start, u32 *found_len) 1277 { 1278 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1279 const u64 folio_start = folio_pos(folio); 1280 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1281 unsigned int start_bit; 1282 unsigned int first_zero; 1283 unsigned int first_set; 1284 1285 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1286 1287 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1288 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1289 if (first_set >= bitmap_size) 1290 return false; 1291 1292 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1293 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1294 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1295 return true; 1296 } 1297 1298 /* 1299 * Do all of the delayed allocation setup. 1300 * 1301 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1302 * The @folio should no longer be touched (treat it as already unlocked). 1303 * 1304 * Return 0 if there is still dirty block that needs to be submitted through 1305 * extent_writepage_io(). 1306 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1307 * submitted, and @folio is still kept locked. 1308 * 1309 * Return <0 if there is any error hit. 1310 * Any allocated ordered extent range covering this folio will be marked 1311 * finished (IOERR), and @folio is still kept locked. 1312 */ 1313 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1314 struct folio *folio, 1315 struct btrfs_bio_ctrl *bio_ctrl) 1316 { 1317 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1318 struct writeback_control *wbc = bio_ctrl->wbc; 1319 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1320 const u64 page_start = folio_pos(folio); 1321 const u64 page_end = page_start + folio_size(folio) - 1; 1322 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1323 unsigned long delalloc_bitmap = 0; 1324 /* 1325 * Save the last found delalloc end. As the delalloc end can go beyond 1326 * page boundary, thus we cannot rely on subpage bitmap to locate the 1327 * last delalloc end. 1328 */ 1329 u64 last_delalloc_end = 0; 1330 /* 1331 * The range end (exclusive) of the last successfully finished delalloc 1332 * range. 1333 * Any range covered by ordered extent must either be manually marked 1334 * finished (error handling), or has IO submitted (and finish the 1335 * ordered extent normally). 1336 * 1337 * This records the end of ordered extent cleanup if we hit an error. 1338 */ 1339 u64 last_finished_delalloc_end = page_start; 1340 u64 delalloc_start = page_start; 1341 u64 delalloc_end = page_end; 1342 u64 delalloc_to_write = 0; 1343 int ret = 0; 1344 int bit; 1345 1346 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1347 if (btrfs_is_subpage(fs_info, folio)) { 1348 ASSERT(blocks_per_folio > 1); 1349 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1350 } else { 1351 bio_ctrl->submit_bitmap = 1; 1352 } 1353 1354 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1355 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1356 1357 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1358 } 1359 1360 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1361 while (delalloc_start < page_end) { 1362 delalloc_end = page_end; 1363 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1364 &delalloc_start, &delalloc_end)) { 1365 delalloc_start = delalloc_end + 1; 1366 continue; 1367 } 1368 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1369 min(delalloc_end, page_end) + 1 - delalloc_start); 1370 last_delalloc_end = delalloc_end; 1371 delalloc_start = delalloc_end + 1; 1372 } 1373 delalloc_start = page_start; 1374 1375 if (!last_delalloc_end) 1376 goto out; 1377 1378 /* Run the delalloc ranges for the above locked ranges. */ 1379 while (delalloc_start < page_end) { 1380 u64 found_start; 1381 u32 found_len; 1382 bool found; 1383 1384 if (!is_subpage) { 1385 /* 1386 * For non-subpage case, the found delalloc range must 1387 * cover this folio and there must be only one locked 1388 * delalloc range. 1389 */ 1390 found_start = page_start; 1391 found_len = last_delalloc_end + 1 - found_start; 1392 found = true; 1393 } else { 1394 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1395 delalloc_start, &found_start, &found_len); 1396 } 1397 if (!found) 1398 break; 1399 /* 1400 * The subpage range covers the last sector, the delalloc range may 1401 * end beyond the folio boundary, use the saved delalloc_end 1402 * instead. 1403 */ 1404 if (found_start + found_len >= page_end) 1405 found_len = last_delalloc_end + 1 - found_start; 1406 1407 if (ret >= 0) { 1408 /* 1409 * Some delalloc range may be created by previous folios. 1410 * Thus we still need to clean up this range during error 1411 * handling. 1412 */ 1413 last_finished_delalloc_end = found_start; 1414 /* No errors hit so far, run the current delalloc range. */ 1415 ret = btrfs_run_delalloc_range(inode, folio, 1416 found_start, 1417 found_start + found_len - 1, 1418 wbc); 1419 if (ret >= 0) 1420 last_finished_delalloc_end = found_start + found_len; 1421 if (unlikely(ret < 0)) 1422 btrfs_err_rl(fs_info, 1423 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1424 btrfs_root_id(inode->root), 1425 btrfs_ino(inode), 1426 folio_pos(folio), 1427 blocks_per_folio, 1428 &bio_ctrl->submit_bitmap, 1429 found_start, found_len, ret); 1430 } else { 1431 /* 1432 * We've hit an error during previous delalloc range, 1433 * have to cleanup the remaining locked ranges. 1434 */ 1435 btrfs_unlock_extent(&inode->io_tree, found_start, 1436 found_start + found_len - 1, NULL); 1437 unlock_delalloc_folio(&inode->vfs_inode, folio, 1438 found_start, 1439 found_start + found_len - 1); 1440 } 1441 1442 /* 1443 * We have some ranges that's going to be submitted asynchronously 1444 * (compression or inline). These range have their own control 1445 * on when to unlock the pages. We should not touch them 1446 * anymore, so clear the range from the submission bitmap. 1447 */ 1448 if (ret > 0) { 1449 unsigned int start_bit = (found_start - page_start) >> 1450 fs_info->sectorsize_bits; 1451 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1452 page_start) >> fs_info->sectorsize_bits; 1453 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1454 } 1455 /* 1456 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1457 * thus for the last range, we cannot touch the folio anymore. 1458 */ 1459 if (found_start + found_len >= last_delalloc_end + 1) 1460 break; 1461 1462 delalloc_start = found_start + found_len; 1463 } 1464 /* 1465 * It's possible we had some ordered extents created before we hit 1466 * an error, cleanup non-async successfully created delalloc ranges. 1467 */ 1468 if (unlikely(ret < 0)) { 1469 unsigned int bitmap_size = min( 1470 (last_finished_delalloc_end - page_start) >> 1471 fs_info->sectorsize_bits, 1472 blocks_per_folio); 1473 1474 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1475 btrfs_mark_ordered_io_finished(inode, folio, 1476 page_start + (bit << fs_info->sectorsize_bits), 1477 fs_info->sectorsize, false); 1478 return ret; 1479 } 1480 out: 1481 if (last_delalloc_end) 1482 delalloc_end = last_delalloc_end; 1483 else 1484 delalloc_end = page_end; 1485 /* 1486 * delalloc_end is already one less than the total length, so 1487 * we don't subtract one from PAGE_SIZE. 1488 */ 1489 delalloc_to_write += 1490 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1491 1492 /* 1493 * If all ranges are submitted asynchronously, we just need to account 1494 * for them here. 1495 */ 1496 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1497 wbc->nr_to_write -= delalloc_to_write; 1498 return 1; 1499 } 1500 1501 if (wbc->nr_to_write < delalloc_to_write) { 1502 int thresh = 8192; 1503 1504 if (delalloc_to_write < thresh * 2) 1505 thresh = delalloc_to_write; 1506 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1507 thresh); 1508 } 1509 1510 return 0; 1511 } 1512 1513 /* 1514 * Return 0 if we have submitted or queued the sector for submission. 1515 * Return <0 for critical errors. 1516 * 1517 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1518 */ 1519 static int submit_one_sector(struct btrfs_inode *inode, 1520 struct folio *folio, 1521 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1522 loff_t i_size) 1523 { 1524 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1525 struct extent_map *em; 1526 u64 block_start; 1527 u64 disk_bytenr; 1528 u64 extent_offset; 1529 u64 em_end; 1530 const u32 sectorsize = fs_info->sectorsize; 1531 1532 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1533 1534 /* @filepos >= i_size case should be handled by the caller. */ 1535 ASSERT(filepos < i_size); 1536 1537 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1538 if (IS_ERR(em)) 1539 return PTR_ERR(em); 1540 1541 extent_offset = filepos - em->start; 1542 em_end = btrfs_extent_map_end(em); 1543 ASSERT(filepos <= em_end); 1544 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1545 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1546 1547 block_start = btrfs_extent_map_block_start(em); 1548 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1549 1550 ASSERT(!btrfs_extent_map_is_compressed(em)); 1551 ASSERT(block_start != EXTENT_MAP_HOLE); 1552 ASSERT(block_start != EXTENT_MAP_INLINE); 1553 1554 btrfs_free_extent_map(em); 1555 em = NULL; 1556 1557 /* 1558 * Although the PageDirty bit is cleared before entering this 1559 * function, subpage dirty bit is not cleared. 1560 * So clear subpage dirty bit here so next time we won't submit 1561 * a folio for a range already written to disk. 1562 */ 1563 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1564 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1565 /* 1566 * Above call should set the whole folio with writeback flag, even 1567 * just for a single subpage sector. 1568 * As long as the folio is properly locked and the range is correct, 1569 * we should always get the folio with writeback flag. 1570 */ 1571 ASSERT(folio_test_writeback(folio)); 1572 1573 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1574 sectorsize, filepos - folio_pos(folio)); 1575 return 0; 1576 } 1577 1578 /* 1579 * Helper for extent_writepage(). This calls the writepage start hooks, 1580 * and does the loop to map the page into extents and bios. 1581 * 1582 * We return 1 if the IO is started and the page is unlocked, 1583 * 0 if all went well (page still locked) 1584 * < 0 if there were errors (page still locked) 1585 */ 1586 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1587 struct folio *folio, 1588 u64 start, u32 len, 1589 struct btrfs_bio_ctrl *bio_ctrl, 1590 loff_t i_size) 1591 { 1592 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1593 unsigned long range_bitmap = 0; 1594 bool submitted_io = false; 1595 bool error = false; 1596 const u64 folio_start = folio_pos(folio); 1597 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1598 u64 cur; 1599 int bit; 1600 int ret = 0; 1601 1602 ASSERT(start >= folio_start && 1603 start + len <= folio_start + folio_size(folio)); 1604 1605 ret = btrfs_writepage_cow_fixup(folio); 1606 if (ret == -EAGAIN) { 1607 /* Fixup worker will requeue */ 1608 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1609 folio_unlock(folio); 1610 return 1; 1611 } 1612 if (ret < 0) 1613 return ret; 1614 1615 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1616 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1617 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1618 blocks_per_folio); 1619 1620 bio_ctrl->end_io_func = end_bbio_data_write; 1621 1622 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1623 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1624 1625 if (cur >= i_size) { 1626 btrfs_mark_ordered_io_finished(inode, folio, cur, 1627 start + len - cur, true); 1628 /* 1629 * This range is beyond i_size, thus we don't need to 1630 * bother writing back. 1631 * But we still need to clear the dirty subpage bit, or 1632 * the next time the folio gets dirtied, we will try to 1633 * writeback the sectors with subpage dirty bits, 1634 * causing writeback without ordered extent. 1635 */ 1636 btrfs_folio_clear_dirty(fs_info, folio, cur, 1637 start + len - cur); 1638 break; 1639 } 1640 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1641 if (unlikely(ret < 0)) { 1642 /* 1643 * bio_ctrl may contain a bio crossing several folios. 1644 * Submit it immediately so that the bio has a chance 1645 * to finish normally, other than marked as error. 1646 */ 1647 submit_one_bio(bio_ctrl); 1648 /* 1649 * Failed to grab the extent map which should be very rare. 1650 * Since there is no bio submitted to finish the ordered 1651 * extent, we have to manually finish this sector. 1652 */ 1653 btrfs_mark_ordered_io_finished(inode, folio, cur, 1654 fs_info->sectorsize, false); 1655 error = true; 1656 continue; 1657 } 1658 submitted_io = true; 1659 } 1660 1661 /* 1662 * If we didn't submitted any sector (>= i_size), folio dirty get 1663 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1664 * by folio_start_writeback() if the folio is not dirty). 1665 * 1666 * Here we set writeback and clear for the range. If the full folio 1667 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1668 * 1669 * If we hit any error, the corresponding sector will still be dirty 1670 * thus no need to clear PAGECACHE_TAG_DIRTY. 1671 */ 1672 if (!submitted_io && !error) { 1673 btrfs_folio_set_writeback(fs_info, folio, start, len); 1674 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1675 } 1676 return ret; 1677 } 1678 1679 /* 1680 * the writepage semantics are similar to regular writepage. extent 1681 * records are inserted to lock ranges in the tree, and as dirty areas 1682 * are found, they are marked writeback. Then the lock bits are removed 1683 * and the end_io handler clears the writeback ranges 1684 * 1685 * Return 0 if everything goes well. 1686 * Return <0 for error. 1687 */ 1688 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1689 { 1690 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1691 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1692 int ret; 1693 size_t pg_offset; 1694 loff_t i_size = i_size_read(&inode->vfs_inode); 1695 const pgoff_t end_index = i_size >> PAGE_SHIFT; 1696 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1697 1698 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1699 1700 WARN_ON(!folio_test_locked(folio)); 1701 1702 pg_offset = offset_in_folio(folio, i_size); 1703 if (folio->index > end_index || 1704 (folio->index == end_index && !pg_offset)) { 1705 folio_invalidate(folio, 0, folio_size(folio)); 1706 folio_unlock(folio); 1707 return 0; 1708 } 1709 1710 if (folio_contains(folio, end_index)) 1711 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1712 1713 /* 1714 * Default to unlock the whole folio. 1715 * The proper bitmap can only be initialized until writepage_delalloc(). 1716 */ 1717 bio_ctrl->submit_bitmap = (unsigned long)-1; 1718 1719 /* 1720 * If the page is dirty but without private set, it's marked dirty 1721 * without informing the fs. 1722 * Nowadays that is a bug, since the introduction of 1723 * pin_user_pages*(). 1724 * 1725 * So here we check if the page has private set to rule out such 1726 * case. 1727 * But we also have a long history of relying on the COW fixup, 1728 * so here we only enable this check for experimental builds until 1729 * we're sure it's safe. 1730 */ 1731 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1732 unlikely(!folio_test_private(folio))) { 1733 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1734 btrfs_err_rl(fs_info, 1735 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1736 btrfs_root_id(inode->root), 1737 btrfs_ino(inode), folio_pos(folio)); 1738 ret = -EUCLEAN; 1739 goto done; 1740 } 1741 1742 ret = set_folio_extent_mapped(folio); 1743 if (ret < 0) 1744 goto done; 1745 1746 ret = writepage_delalloc(inode, folio, bio_ctrl); 1747 if (ret == 1) 1748 return 0; 1749 if (ret) 1750 goto done; 1751 1752 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1753 folio_size(folio), bio_ctrl, i_size); 1754 if (ret == 1) 1755 return 0; 1756 if (ret < 0) 1757 btrfs_err_rl(fs_info, 1758 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1759 btrfs_root_id(inode->root), btrfs_ino(inode), 1760 folio_pos(folio), blocks_per_folio, 1761 &bio_ctrl->submit_bitmap, ret); 1762 1763 bio_ctrl->wbc->nr_to_write--; 1764 1765 done: 1766 if (ret < 0) 1767 mapping_set_error(folio->mapping, ret); 1768 /* 1769 * Only unlock ranges that are submitted. As there can be some async 1770 * submitted ranges inside the folio. 1771 */ 1772 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1773 ASSERT(ret <= 0); 1774 return ret; 1775 } 1776 1777 /* 1778 * Lock extent buffer status and pages for writeback. 1779 * 1780 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1781 * extent buffer is not dirty) 1782 * Return %true is the extent buffer is submitted to bio. 1783 */ 1784 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1785 struct writeback_control *wbc) 1786 { 1787 struct btrfs_fs_info *fs_info = eb->fs_info; 1788 bool ret = false; 1789 1790 btrfs_tree_lock(eb); 1791 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1792 btrfs_tree_unlock(eb); 1793 if (wbc->sync_mode != WB_SYNC_ALL) 1794 return false; 1795 wait_on_extent_buffer_writeback(eb); 1796 btrfs_tree_lock(eb); 1797 } 1798 1799 /* 1800 * We need to do this to prevent races in people who check if the eb is 1801 * under IO since we can end up having no IO bits set for a short period 1802 * of time. 1803 */ 1804 spin_lock(&eb->refs_lock); 1805 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1806 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1807 unsigned long flags; 1808 1809 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1810 spin_unlock(&eb->refs_lock); 1811 1812 xas_lock_irqsave(&xas, flags); 1813 xas_load(&xas); 1814 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1815 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1816 xas_unlock_irqrestore(&xas, flags); 1817 1818 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1819 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1820 -eb->len, 1821 fs_info->dirty_metadata_batch); 1822 ret = true; 1823 } else { 1824 spin_unlock(&eb->refs_lock); 1825 } 1826 btrfs_tree_unlock(eb); 1827 return ret; 1828 } 1829 1830 static void set_btree_ioerr(struct extent_buffer *eb) 1831 { 1832 struct btrfs_fs_info *fs_info = eb->fs_info; 1833 1834 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1835 1836 /* 1837 * A read may stumble upon this buffer later, make sure that it gets an 1838 * error and knows there was an error. 1839 */ 1840 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1841 1842 /* 1843 * We need to set the mapping with the io error as well because a write 1844 * error will flip the file system readonly, and then syncfs() will 1845 * return a 0 because we are readonly if we don't modify the err seq for 1846 * the superblock. 1847 */ 1848 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1849 1850 /* 1851 * If writeback for a btree extent that doesn't belong to a log tree 1852 * failed, increment the counter transaction->eb_write_errors. 1853 * We do this because while the transaction is running and before it's 1854 * committing (when we call filemap_fdata[write|wait]_range against 1855 * the btree inode), we might have 1856 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1857 * returns an error or an error happens during writeback, when we're 1858 * committing the transaction we wouldn't know about it, since the pages 1859 * can be no longer dirty nor marked anymore for writeback (if a 1860 * subsequent modification to the extent buffer didn't happen before the 1861 * transaction commit), which makes filemap_fdata[write|wait]_range not 1862 * able to find the pages which contain errors at transaction 1863 * commit time. So if this happens we must abort the transaction, 1864 * otherwise we commit a super block with btree roots that point to 1865 * btree nodes/leafs whose content on disk is invalid - either garbage 1866 * or the content of some node/leaf from a past generation that got 1867 * cowed or deleted and is no longer valid. 1868 * 1869 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1870 * not be enough - we need to distinguish between log tree extents vs 1871 * non-log tree extents, and the next filemap_fdatawait_range() call 1872 * will catch and clear such errors in the mapping - and that call might 1873 * be from a log sync and not from a transaction commit. Also, checking 1874 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1875 * not done and would not be reliable - the eb might have been released 1876 * from memory and reading it back again means that flag would not be 1877 * set (since it's a runtime flag, not persisted on disk). 1878 * 1879 * Using the flags below in the btree inode also makes us achieve the 1880 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1881 * writeback for all dirty pages and before filemap_fdatawait_range() 1882 * is called, the writeback for all dirty pages had already finished 1883 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1884 * filemap_fdatawait_range() would return success, as it could not know 1885 * that writeback errors happened (the pages were no longer tagged for 1886 * writeback). 1887 */ 1888 switch (eb->log_index) { 1889 case -1: 1890 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1891 break; 1892 case 0: 1893 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1894 break; 1895 case 1: 1896 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1897 break; 1898 default: 1899 BUG(); /* unexpected, logic error */ 1900 } 1901 } 1902 1903 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 1904 { 1905 struct btrfs_fs_info *fs_info = eb->fs_info; 1906 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1907 unsigned long flags; 1908 1909 xas_lock_irqsave(&xas, flags); 1910 xas_load(&xas); 1911 xas_set_mark(&xas, mark); 1912 xas_unlock_irqrestore(&xas, flags); 1913 } 1914 1915 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 1916 { 1917 struct btrfs_fs_info *fs_info = eb->fs_info; 1918 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1919 unsigned long flags; 1920 1921 xas_lock_irqsave(&xas, flags); 1922 xas_load(&xas); 1923 xas_clear_mark(&xas, mark); 1924 xas_unlock_irqrestore(&xas, flags); 1925 } 1926 1927 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 1928 unsigned long start, unsigned long end) 1929 { 1930 XA_STATE(xas, &fs_info->buffer_tree, start); 1931 unsigned int tagged = 0; 1932 void *eb; 1933 1934 xas_lock_irq(&xas); 1935 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 1936 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 1937 if (++tagged % XA_CHECK_SCHED) 1938 continue; 1939 xas_pause(&xas); 1940 xas_unlock_irq(&xas); 1941 cond_resched(); 1942 xas_lock_irq(&xas); 1943 } 1944 xas_unlock_irq(&xas); 1945 } 1946 1947 struct eb_batch { 1948 unsigned int nr; 1949 unsigned int cur; 1950 struct extent_buffer *ebs[PAGEVEC_SIZE]; 1951 }; 1952 1953 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 1954 { 1955 batch->ebs[batch->nr++] = eb; 1956 return (batch->nr < PAGEVEC_SIZE); 1957 } 1958 1959 static inline void eb_batch_init(struct eb_batch *batch) 1960 { 1961 batch->nr = 0; 1962 batch->cur = 0; 1963 } 1964 1965 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 1966 { 1967 if (batch->cur >= batch->nr) 1968 return NULL; 1969 return batch->ebs[batch->cur++]; 1970 } 1971 1972 static inline void eb_batch_release(struct eb_batch *batch) 1973 { 1974 for (unsigned int i = 0; i < batch->nr; i++) 1975 free_extent_buffer(batch->ebs[i]); 1976 eb_batch_init(batch); 1977 } 1978 1979 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 1980 xa_mark_t mark) 1981 { 1982 struct extent_buffer *eb; 1983 1984 retry: 1985 eb = xas_find_marked(xas, max, mark); 1986 1987 if (xas_retry(xas, eb)) 1988 goto retry; 1989 1990 if (!eb) 1991 return NULL; 1992 1993 if (!refcount_inc_not_zero(&eb->refs)) { 1994 xas_reset(xas); 1995 goto retry; 1996 } 1997 1998 if (unlikely(eb != xas_reload(xas))) { 1999 free_extent_buffer(eb); 2000 xas_reset(xas); 2001 goto retry; 2002 } 2003 2004 return eb; 2005 } 2006 2007 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 2008 unsigned long *start, 2009 unsigned long end, xa_mark_t tag, 2010 struct eb_batch *batch) 2011 { 2012 XA_STATE(xas, &fs_info->buffer_tree, *start); 2013 struct extent_buffer *eb; 2014 2015 rcu_read_lock(); 2016 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 2017 if (!eb_batch_add(batch, eb)) { 2018 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); 2019 goto out; 2020 } 2021 } 2022 if (end == ULONG_MAX) 2023 *start = ULONG_MAX; 2024 else 2025 *start = end + 1; 2026 out: 2027 rcu_read_unlock(); 2028 2029 return batch->nr; 2030 } 2031 2032 /* 2033 * The endio specific version which won't touch any unsafe spinlock in endio 2034 * context. 2035 */ 2036 static struct extent_buffer *find_extent_buffer_nolock( 2037 struct btrfs_fs_info *fs_info, u64 start) 2038 { 2039 struct extent_buffer *eb; 2040 unsigned long index = (start >> fs_info->nodesize_bits); 2041 2042 rcu_read_lock(); 2043 eb = xa_load(&fs_info->buffer_tree, index); 2044 if (eb && !refcount_inc_not_zero(&eb->refs)) 2045 eb = NULL; 2046 rcu_read_unlock(); 2047 return eb; 2048 } 2049 2050 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2051 { 2052 struct extent_buffer *eb = bbio->private; 2053 struct folio_iter fi; 2054 2055 if (bbio->bio.bi_status != BLK_STS_OK) 2056 set_btree_ioerr(eb); 2057 2058 bio_for_each_folio_all(fi, &bbio->bio) { 2059 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2060 } 2061 2062 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2063 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2064 bio_put(&bbio->bio); 2065 } 2066 2067 static void prepare_eb_write(struct extent_buffer *eb) 2068 { 2069 u32 nritems; 2070 unsigned long start; 2071 unsigned long end; 2072 2073 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2074 2075 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2076 nritems = btrfs_header_nritems(eb); 2077 if (btrfs_header_level(eb) > 0) { 2078 end = btrfs_node_key_ptr_offset(eb, nritems); 2079 memzero_extent_buffer(eb, end, eb->len - end); 2080 } else { 2081 /* 2082 * Leaf: 2083 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2084 */ 2085 start = btrfs_item_nr_offset(eb, nritems); 2086 end = btrfs_item_nr_offset(eb, 0); 2087 if (nritems == 0) 2088 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2089 else 2090 end += btrfs_item_offset(eb, nritems - 1); 2091 memzero_extent_buffer(eb, start, end - start); 2092 } 2093 } 2094 2095 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2096 struct writeback_control *wbc) 2097 { 2098 struct btrfs_fs_info *fs_info = eb->fs_info; 2099 struct btrfs_bio *bbio; 2100 2101 prepare_eb_write(eb); 2102 2103 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2104 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2105 eb->fs_info, end_bbio_meta_write, eb); 2106 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2107 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2108 wbc_init_bio(wbc, &bbio->bio); 2109 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 2110 bbio->file_offset = eb->start; 2111 for (int i = 0; i < num_extent_folios(eb); i++) { 2112 struct folio *folio = eb->folios[i]; 2113 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2114 u32 range_len = min_t(u64, folio_end(folio), 2115 eb->start + eb->len) - range_start; 2116 2117 folio_lock(folio); 2118 btrfs_meta_folio_clear_dirty(folio, eb); 2119 btrfs_meta_folio_set_writeback(folio, eb); 2120 if (!folio_test_dirty(folio)) 2121 wbc->nr_to_write -= folio_nr_pages(folio); 2122 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2123 offset_in_folio(folio, range_start)); 2124 wbc_account_cgroup_owner(wbc, folio, range_len); 2125 folio_unlock(folio); 2126 } 2127 btrfs_submit_bbio(bbio, 0); 2128 } 2129 2130 /* 2131 * Wait for all eb writeback in the given range to finish. 2132 * 2133 * @fs_info: The fs_info for this file system. 2134 * @start: The offset of the range to start waiting on writeback. 2135 * @end: The end of the range, inclusive. This is meant to be used in 2136 * conjuction with wait_marked_extents, so this will usually be 2137 * the_next_eb->start - 1. 2138 */ 2139 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2140 u64 end) 2141 { 2142 struct eb_batch batch; 2143 unsigned long start_index = (start >> fs_info->nodesize_bits); 2144 unsigned long end_index = (end >> fs_info->nodesize_bits); 2145 2146 eb_batch_init(&batch); 2147 while (start_index <= end_index) { 2148 struct extent_buffer *eb; 2149 unsigned int nr_ebs; 2150 2151 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2152 PAGECACHE_TAG_WRITEBACK, &batch); 2153 if (!nr_ebs) 2154 break; 2155 2156 while ((eb = eb_batch_next(&batch)) != NULL) 2157 wait_on_extent_buffer_writeback(eb); 2158 eb_batch_release(&batch); 2159 cond_resched(); 2160 } 2161 } 2162 2163 int btree_write_cache_pages(struct address_space *mapping, 2164 struct writeback_control *wbc) 2165 { 2166 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2167 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2168 int ret = 0; 2169 int done = 0; 2170 int nr_to_write_done = 0; 2171 struct eb_batch batch; 2172 unsigned int nr_ebs; 2173 unsigned long index; 2174 unsigned long end; 2175 int scanned = 0; 2176 xa_mark_t tag; 2177 2178 eb_batch_init(&batch); 2179 if (wbc->range_cyclic) { 2180 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); 2181 end = -1; 2182 2183 /* 2184 * Start from the beginning does not need to cycle over the 2185 * range, mark it as scanned. 2186 */ 2187 scanned = (index == 0); 2188 } else { 2189 index = (wbc->range_start >> fs_info->nodesize_bits); 2190 end = (wbc->range_end >> fs_info->nodesize_bits); 2191 2192 scanned = 1; 2193 } 2194 if (wbc->sync_mode == WB_SYNC_ALL) 2195 tag = PAGECACHE_TAG_TOWRITE; 2196 else 2197 tag = PAGECACHE_TAG_DIRTY; 2198 btrfs_zoned_meta_io_lock(fs_info); 2199 retry: 2200 if (wbc->sync_mode == WB_SYNC_ALL) 2201 buffer_tree_tag_for_writeback(fs_info, index, end); 2202 while (!done && !nr_to_write_done && (index <= end) && 2203 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2204 struct extent_buffer *eb; 2205 2206 while ((eb = eb_batch_next(&batch)) != NULL) { 2207 ctx.eb = eb; 2208 2209 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2210 if (ret) { 2211 if (ret == -EBUSY) 2212 ret = 0; 2213 2214 if (ret) { 2215 done = 1; 2216 break; 2217 } 2218 continue; 2219 } 2220 2221 if (!lock_extent_buffer_for_io(eb, wbc)) 2222 continue; 2223 2224 /* Implies write in zoned mode. */ 2225 if (ctx.zoned_bg) { 2226 /* Mark the last eb in the block group. */ 2227 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2228 ctx.zoned_bg->meta_write_pointer += eb->len; 2229 } 2230 write_one_eb(eb, wbc); 2231 } 2232 nr_to_write_done = (wbc->nr_to_write <= 0); 2233 eb_batch_release(&batch); 2234 cond_resched(); 2235 } 2236 if (!scanned && !done) { 2237 /* 2238 * We hit the last page and there is more work to be done: wrap 2239 * back to the start of the file 2240 */ 2241 scanned = 1; 2242 index = 0; 2243 goto retry; 2244 } 2245 /* 2246 * If something went wrong, don't allow any metadata write bio to be 2247 * submitted. 2248 * 2249 * This would prevent use-after-free if we had dirty pages not 2250 * cleaned up, which can still happen by fuzzed images. 2251 * 2252 * - Bad extent tree 2253 * Allowing existing tree block to be allocated for other trees. 2254 * 2255 * - Log tree operations 2256 * Exiting tree blocks get allocated to log tree, bumps its 2257 * generation, then get cleaned in tree re-balance. 2258 * Such tree block will not be written back, since it's clean, 2259 * thus no WRITTEN flag set. 2260 * And after log writes back, this tree block is not traced by 2261 * any dirty extent_io_tree. 2262 * 2263 * - Offending tree block gets re-dirtied from its original owner 2264 * Since it has bumped generation, no WRITTEN flag, it can be 2265 * reused without COWing. This tree block will not be traced 2266 * by btrfs_transaction::dirty_pages. 2267 * 2268 * Now such dirty tree block will not be cleaned by any dirty 2269 * extent io tree. Thus we don't want to submit such wild eb 2270 * if the fs already has error. 2271 * 2272 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2273 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2274 */ 2275 if (ret > 0) 2276 ret = 0; 2277 if (!ret && BTRFS_FS_ERROR(fs_info)) 2278 ret = -EROFS; 2279 2280 if (ctx.zoned_bg) 2281 btrfs_put_block_group(ctx.zoned_bg); 2282 btrfs_zoned_meta_io_unlock(fs_info); 2283 return ret; 2284 } 2285 2286 /* 2287 * Walk the list of dirty pages of the given address space and write all of them. 2288 * 2289 * @mapping: address space structure to write 2290 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2291 * @bio_ctrl: holds context for the write, namely the bio 2292 * 2293 * If a page is already under I/O, write_cache_pages() skips it, even 2294 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2295 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2296 * and msync() need to guarantee that all the data which was dirty at the time 2297 * the call was made get new I/O started against them. If wbc->sync_mode is 2298 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2299 * existing IO to complete. 2300 */ 2301 static int extent_write_cache_pages(struct address_space *mapping, 2302 struct btrfs_bio_ctrl *bio_ctrl) 2303 { 2304 struct writeback_control *wbc = bio_ctrl->wbc; 2305 struct inode *inode = mapping->host; 2306 int ret = 0; 2307 int done = 0; 2308 int nr_to_write_done = 0; 2309 struct folio_batch fbatch; 2310 unsigned int nr_folios; 2311 pgoff_t index; 2312 pgoff_t end; /* Inclusive */ 2313 pgoff_t done_index; 2314 int range_whole = 0; 2315 int scanned = 0; 2316 xa_mark_t tag; 2317 2318 /* 2319 * We have to hold onto the inode so that ordered extents can do their 2320 * work when the IO finishes. The alternative to this is failing to add 2321 * an ordered extent if the igrab() fails there and that is a huge pain 2322 * to deal with, so instead just hold onto the inode throughout the 2323 * writepages operation. If it fails here we are freeing up the inode 2324 * anyway and we'd rather not waste our time writing out stuff that is 2325 * going to be truncated anyway. 2326 */ 2327 if (!igrab(inode)) 2328 return 0; 2329 2330 folio_batch_init(&fbatch); 2331 if (wbc->range_cyclic) { 2332 index = mapping->writeback_index; /* Start from prev offset */ 2333 end = -1; 2334 /* 2335 * Start from the beginning does not need to cycle over the 2336 * range, mark it as scanned. 2337 */ 2338 scanned = (index == 0); 2339 } else { 2340 index = wbc->range_start >> PAGE_SHIFT; 2341 end = wbc->range_end >> PAGE_SHIFT; 2342 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2343 range_whole = 1; 2344 scanned = 1; 2345 } 2346 2347 /* 2348 * We do the tagged writepage as long as the snapshot flush bit is set 2349 * and we are the first one who do the filemap_flush() on this inode. 2350 * 2351 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2352 * not race in and drop the bit. 2353 */ 2354 if (range_whole && wbc->nr_to_write == LONG_MAX && 2355 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2356 &BTRFS_I(inode)->runtime_flags)) 2357 wbc->tagged_writepages = 1; 2358 2359 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2360 tag = PAGECACHE_TAG_TOWRITE; 2361 else 2362 tag = PAGECACHE_TAG_DIRTY; 2363 retry: 2364 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2365 tag_pages_for_writeback(mapping, index, end); 2366 done_index = index; 2367 while (!done && !nr_to_write_done && (index <= end) && 2368 (nr_folios = filemap_get_folios_tag(mapping, &index, 2369 end, tag, &fbatch))) { 2370 unsigned i; 2371 2372 for (i = 0; i < nr_folios; i++) { 2373 struct folio *folio = fbatch.folios[i]; 2374 2375 done_index = folio_next_index(folio); 2376 /* 2377 * At this point we hold neither the i_pages lock nor 2378 * the folio lock: the folio may be truncated or 2379 * invalidated (changing folio->mapping to NULL). 2380 */ 2381 if (!folio_trylock(folio)) { 2382 submit_write_bio(bio_ctrl, 0); 2383 folio_lock(folio); 2384 } 2385 2386 if (unlikely(folio->mapping != mapping)) { 2387 folio_unlock(folio); 2388 continue; 2389 } 2390 2391 if (!folio_test_dirty(folio)) { 2392 /* Someone wrote it for us. */ 2393 folio_unlock(folio); 2394 continue; 2395 } 2396 2397 /* 2398 * For subpage case, compression can lead to mixed 2399 * writeback and dirty flags, e.g: 2400 * 0 32K 64K 96K 128K 2401 * | |//////||/////| |//| 2402 * 2403 * In above case, [32K, 96K) is asynchronously submitted 2404 * for compression, and [124K, 128K) needs to be written back. 2405 * 2406 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2407 * won't be submitted as the page still has writeback flag 2408 * and will be skipped in the next check. 2409 * 2410 * This mixed writeback and dirty case is only possible for 2411 * subpage case. 2412 * 2413 * TODO: Remove this check after migrating compression to 2414 * regular submission. 2415 */ 2416 if (wbc->sync_mode != WB_SYNC_NONE || 2417 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2418 if (folio_test_writeback(folio)) 2419 submit_write_bio(bio_ctrl, 0); 2420 folio_wait_writeback(folio); 2421 } 2422 2423 if (folio_test_writeback(folio) || 2424 !folio_clear_dirty_for_io(folio)) { 2425 folio_unlock(folio); 2426 continue; 2427 } 2428 2429 ret = extent_writepage(folio, bio_ctrl); 2430 if (ret < 0) { 2431 done = 1; 2432 break; 2433 } 2434 2435 /* 2436 * The filesystem may choose to bump up nr_to_write. 2437 * We have to make sure to honor the new nr_to_write 2438 * at any time. 2439 */ 2440 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2441 wbc->nr_to_write <= 0); 2442 } 2443 folio_batch_release(&fbatch); 2444 cond_resched(); 2445 } 2446 if (!scanned && !done) { 2447 /* 2448 * We hit the last page and there is more work to be done: wrap 2449 * back to the start of the file 2450 */ 2451 scanned = 1; 2452 index = 0; 2453 2454 /* 2455 * If we're looping we could run into a page that is locked by a 2456 * writer and that writer could be waiting on writeback for a 2457 * page in our current bio, and thus deadlock, so flush the 2458 * write bio here. 2459 */ 2460 submit_write_bio(bio_ctrl, 0); 2461 goto retry; 2462 } 2463 2464 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2465 mapping->writeback_index = done_index; 2466 2467 btrfs_add_delayed_iput(BTRFS_I(inode)); 2468 return ret; 2469 } 2470 2471 /* 2472 * Submit the pages in the range to bio for call sites which delalloc range has 2473 * already been ran (aka, ordered extent inserted) and all pages are still 2474 * locked. 2475 */ 2476 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2477 u64 start, u64 end, struct writeback_control *wbc, 2478 bool pages_dirty) 2479 { 2480 bool found_error = false; 2481 int ret = 0; 2482 struct address_space *mapping = inode->i_mapping; 2483 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2484 const u32 sectorsize = fs_info->sectorsize; 2485 loff_t i_size = i_size_read(inode); 2486 u64 cur = start; 2487 struct btrfs_bio_ctrl bio_ctrl = { 2488 .wbc = wbc, 2489 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2490 }; 2491 2492 if (wbc->no_cgroup_owner) 2493 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2494 2495 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2496 2497 while (cur <= end) { 2498 u64 cur_end; 2499 u32 cur_len; 2500 struct folio *folio; 2501 2502 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2503 2504 /* 2505 * This shouldn't happen, the pages are pinned and locked, this 2506 * code is just in case, but shouldn't actually be run. 2507 */ 2508 if (IS_ERR(folio)) { 2509 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2510 cur_len = cur_end + 1 - cur; 2511 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2512 cur, cur_len, false); 2513 mapping_set_error(mapping, PTR_ERR(folio)); 2514 cur = cur_end; 2515 continue; 2516 } 2517 2518 cur_end = min_t(u64, folio_end(folio) - 1, end); 2519 cur_len = cur_end + 1 - cur; 2520 2521 ASSERT(folio_test_locked(folio)); 2522 if (pages_dirty && folio != locked_folio) 2523 ASSERT(folio_test_dirty(folio)); 2524 2525 /* 2526 * Set the submission bitmap to submit all sectors. 2527 * extent_writepage_io() will do the truncation correctly. 2528 */ 2529 bio_ctrl.submit_bitmap = (unsigned long)-1; 2530 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2531 &bio_ctrl, i_size); 2532 if (ret == 1) 2533 goto next_page; 2534 2535 if (ret) 2536 mapping_set_error(mapping, ret); 2537 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2538 if (ret < 0) 2539 found_error = true; 2540 next_page: 2541 folio_put(folio); 2542 cur = cur_end + 1; 2543 } 2544 2545 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2546 } 2547 2548 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2549 { 2550 struct inode *inode = mapping->host; 2551 int ret = 0; 2552 struct btrfs_bio_ctrl bio_ctrl = { 2553 .wbc = wbc, 2554 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2555 }; 2556 2557 /* 2558 * Allow only a single thread to do the reloc work in zoned mode to 2559 * protect the write pointer updates. 2560 */ 2561 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2562 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2563 submit_write_bio(&bio_ctrl, ret); 2564 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2565 return ret; 2566 } 2567 2568 void btrfs_readahead(struct readahead_control *rac) 2569 { 2570 struct btrfs_bio_ctrl bio_ctrl = { 2571 .opf = REQ_OP_READ | REQ_RAHEAD, 2572 .ractl = rac 2573 }; 2574 struct folio *folio; 2575 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2576 const u64 start = readahead_pos(rac); 2577 const u64 end = start + readahead_length(rac) - 1; 2578 struct extent_state *cached_state = NULL; 2579 struct extent_map *em_cached = NULL; 2580 u64 prev_em_start = (u64)-1; 2581 2582 lock_extents_for_read(inode, start, end, &cached_state); 2583 2584 while ((folio = readahead_folio(rac)) != NULL) 2585 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2586 2587 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2588 2589 if (em_cached) 2590 btrfs_free_extent_map(em_cached); 2591 submit_one_bio(&bio_ctrl); 2592 } 2593 2594 /* 2595 * basic invalidate_folio code, this waits on any locked or writeback 2596 * ranges corresponding to the folio, and then deletes any extent state 2597 * records from the tree 2598 */ 2599 int extent_invalidate_folio(struct extent_io_tree *tree, 2600 struct folio *folio, size_t offset) 2601 { 2602 struct extent_state *cached_state = NULL; 2603 u64 start = folio_pos(folio); 2604 u64 end = start + folio_size(folio) - 1; 2605 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2606 2607 /* This function is only called for the btree inode */ 2608 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2609 2610 start += ALIGN(offset, blocksize); 2611 if (start > end) 2612 return 0; 2613 2614 btrfs_lock_extent(tree, start, end, &cached_state); 2615 folio_wait_writeback(folio); 2616 2617 /* 2618 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2619 * so here we only need to unlock the extent range to free any 2620 * existing extent state. 2621 */ 2622 btrfs_unlock_extent(tree, start, end, &cached_state); 2623 return 0; 2624 } 2625 2626 /* 2627 * A helper for struct address_space_operations::release_folio, this tests for 2628 * areas of the folio that are locked or under IO and drops the related state 2629 * bits if it is safe to drop the folio. 2630 */ 2631 static bool try_release_extent_state(struct extent_io_tree *tree, 2632 struct folio *folio) 2633 { 2634 struct extent_state *cached_state = NULL; 2635 u64 start = folio_pos(folio); 2636 u64 end = start + folio_size(folio) - 1; 2637 u32 range_bits; 2638 u32 clear_bits; 2639 bool ret = false; 2640 int ret2; 2641 2642 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2643 2644 /* 2645 * We can release the folio if it's locked only for ordered extent 2646 * completion, since that doesn't require using the folio. 2647 */ 2648 if ((range_bits & EXTENT_LOCKED) && 2649 !(range_bits & EXTENT_FINISHING_ORDERED)) 2650 goto out; 2651 2652 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2653 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2654 EXTENT_FINISHING_ORDERED); 2655 /* 2656 * At this point we can safely clear everything except the locked, 2657 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2658 * bit will be cleared by ordered extent completion. 2659 */ 2660 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2661 /* 2662 * If clear_extent_bit failed for enomem reasons, we can't allow the 2663 * release to continue. 2664 */ 2665 if (ret2 == 0) 2666 ret = true; 2667 out: 2668 btrfs_free_extent_state(cached_state); 2669 2670 return ret; 2671 } 2672 2673 /* 2674 * a helper for release_folio. As long as there are no locked extents 2675 * in the range corresponding to the page, both state records and extent 2676 * map records are removed 2677 */ 2678 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2679 { 2680 u64 start = folio_pos(folio); 2681 u64 end = start + folio_size(folio) - 1; 2682 struct btrfs_inode *inode = folio_to_inode(folio); 2683 struct extent_io_tree *io_tree = &inode->io_tree; 2684 2685 while (start <= end) { 2686 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2687 const u64 len = end - start + 1; 2688 struct extent_map_tree *extent_tree = &inode->extent_tree; 2689 struct extent_map *em; 2690 2691 write_lock(&extent_tree->lock); 2692 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2693 if (!em) { 2694 write_unlock(&extent_tree->lock); 2695 break; 2696 } 2697 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2698 write_unlock(&extent_tree->lock); 2699 btrfs_free_extent_map(em); 2700 break; 2701 } 2702 if (btrfs_test_range_bit_exists(io_tree, em->start, 2703 btrfs_extent_map_end(em) - 1, 2704 EXTENT_LOCKED)) 2705 goto next; 2706 /* 2707 * If it's not in the list of modified extents, used by a fast 2708 * fsync, we can remove it. If it's being logged we can safely 2709 * remove it since fsync took an extra reference on the em. 2710 */ 2711 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2712 goto remove_em; 2713 /* 2714 * If it's in the list of modified extents, remove it only if 2715 * its generation is older then the current one, in which case 2716 * we don't need it for a fast fsync. Otherwise don't remove it, 2717 * we could be racing with an ongoing fast fsync that could miss 2718 * the new extent. 2719 */ 2720 if (em->generation >= cur_gen) 2721 goto next; 2722 remove_em: 2723 /* 2724 * We only remove extent maps that are not in the list of 2725 * modified extents or that are in the list but with a 2726 * generation lower then the current generation, so there is no 2727 * need to set the full fsync flag on the inode (it hurts the 2728 * fsync performance for workloads with a data size that exceeds 2729 * or is close to the system's memory). 2730 */ 2731 btrfs_remove_extent_mapping(inode, em); 2732 /* Once for the inode's extent map tree. */ 2733 btrfs_free_extent_map(em); 2734 next: 2735 start = btrfs_extent_map_end(em); 2736 write_unlock(&extent_tree->lock); 2737 2738 /* Once for us, for the lookup_extent_mapping() reference. */ 2739 btrfs_free_extent_map(em); 2740 2741 if (need_resched()) { 2742 /* 2743 * If we need to resched but we can't block just exit 2744 * and leave any remaining extent maps. 2745 */ 2746 if (!gfpflags_allow_blocking(mask)) 2747 break; 2748 2749 cond_resched(); 2750 } 2751 } 2752 return try_release_extent_state(io_tree, folio); 2753 } 2754 2755 static int extent_buffer_under_io(const struct extent_buffer *eb) 2756 { 2757 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2758 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2759 } 2760 2761 static bool folio_range_has_eb(struct folio *folio) 2762 { 2763 struct btrfs_folio_state *bfs; 2764 2765 lockdep_assert_held(&folio->mapping->i_private_lock); 2766 2767 if (folio_test_private(folio)) { 2768 bfs = folio_get_private(folio); 2769 if (atomic_read(&bfs->eb_refs)) 2770 return true; 2771 } 2772 return false; 2773 } 2774 2775 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2776 { 2777 struct btrfs_fs_info *fs_info = eb->fs_info; 2778 struct address_space *mapping = folio->mapping; 2779 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2780 2781 /* 2782 * For mapped eb, we're going to change the folio private, which should 2783 * be done under the i_private_lock. 2784 */ 2785 if (mapped) 2786 spin_lock(&mapping->i_private_lock); 2787 2788 if (!folio_test_private(folio)) { 2789 if (mapped) 2790 spin_unlock(&mapping->i_private_lock); 2791 return; 2792 } 2793 2794 if (!btrfs_meta_is_subpage(fs_info)) { 2795 /* 2796 * We do this since we'll remove the pages after we've removed 2797 * the eb from the xarray, so we could race and have this page 2798 * now attached to the new eb. So only clear folio if it's 2799 * still connected to this eb. 2800 */ 2801 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2802 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2803 BUG_ON(folio_test_dirty(folio)); 2804 BUG_ON(folio_test_writeback(folio)); 2805 /* We need to make sure we haven't be attached to a new eb. */ 2806 folio_detach_private(folio); 2807 } 2808 if (mapped) 2809 spin_unlock(&mapping->i_private_lock); 2810 return; 2811 } 2812 2813 /* 2814 * For subpage, we can have dummy eb with folio private attached. In 2815 * this case, we can directly detach the private as such folio is only 2816 * attached to one dummy eb, no sharing. 2817 */ 2818 if (!mapped) { 2819 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2820 return; 2821 } 2822 2823 btrfs_folio_dec_eb_refs(fs_info, folio); 2824 2825 /* 2826 * We can only detach the folio private if there are no other ebs in the 2827 * page range and no unfinished IO. 2828 */ 2829 if (!folio_range_has_eb(folio)) 2830 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2831 2832 spin_unlock(&mapping->i_private_lock); 2833 } 2834 2835 /* Release all folios attached to the extent buffer */ 2836 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2837 { 2838 ASSERT(!extent_buffer_under_io(eb)); 2839 2840 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2841 struct folio *folio = eb->folios[i]; 2842 2843 if (!folio) 2844 continue; 2845 2846 detach_extent_buffer_folio(eb, folio); 2847 } 2848 } 2849 2850 /* 2851 * Helper for releasing the extent buffer. 2852 */ 2853 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2854 { 2855 btrfs_release_extent_buffer_folios(eb); 2856 btrfs_leak_debug_del_eb(eb); 2857 kmem_cache_free(extent_buffer_cache, eb); 2858 } 2859 2860 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2861 u64 start) 2862 { 2863 struct extent_buffer *eb = NULL; 2864 2865 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2866 eb->start = start; 2867 eb->len = fs_info->nodesize; 2868 eb->fs_info = fs_info; 2869 init_rwsem(&eb->lock); 2870 2871 btrfs_leak_debug_add_eb(eb); 2872 2873 spin_lock_init(&eb->refs_lock); 2874 refcount_set(&eb->refs, 1); 2875 2876 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2877 2878 return eb; 2879 } 2880 2881 /* 2882 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 2883 * does not call folio_put(), and we need to set the folios to NULL so that 2884 * btrfs_release_extent_buffer() will not detach them a second time. 2885 */ 2886 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 2887 { 2888 const int num_folios = num_extent_folios(eb); 2889 2890 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */ 2891 for (int i = 0; i < num_folios; i++) { 2892 ASSERT(eb->folios[i]); 2893 detach_extent_buffer_folio(eb, eb->folios[i]); 2894 folio_put(eb->folios[i]); 2895 eb->folios[i] = NULL; 2896 } 2897 } 2898 2899 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2900 { 2901 struct extent_buffer *new; 2902 int num_folios; 2903 int ret; 2904 2905 new = __alloc_extent_buffer(src->fs_info, src->start); 2906 if (new == NULL) 2907 return NULL; 2908 2909 /* 2910 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2911 * btrfs_release_extent_buffer() have different behavior for 2912 * UNMAPPED subpage extent buffer. 2913 */ 2914 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2915 2916 ret = alloc_eb_folio_array(new, false); 2917 if (ret) 2918 goto release_eb; 2919 2920 ASSERT(num_extent_folios(src) == num_extent_folios(new), 2921 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 2922 /* Explicitly use the cached num_extent value from now on. */ 2923 num_folios = num_extent_folios(src); 2924 for (int i = 0; i < num_folios; i++) { 2925 struct folio *folio = new->folios[i]; 2926 2927 ret = attach_extent_buffer_folio(new, folio, NULL); 2928 if (ret < 0) 2929 goto cleanup_folios; 2930 WARN_ON(folio_test_dirty(folio)); 2931 } 2932 for (int i = 0; i < num_folios; i++) 2933 folio_put(new->folios[i]); 2934 2935 copy_extent_buffer_full(new, src); 2936 set_extent_buffer_uptodate(new); 2937 2938 return new; 2939 2940 cleanup_folios: 2941 cleanup_extent_buffer_folios(new); 2942 release_eb: 2943 btrfs_release_extent_buffer(new); 2944 return NULL; 2945 } 2946 2947 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2948 u64 start) 2949 { 2950 struct extent_buffer *eb; 2951 int ret; 2952 2953 eb = __alloc_extent_buffer(fs_info, start); 2954 if (!eb) 2955 return NULL; 2956 2957 ret = alloc_eb_folio_array(eb, false); 2958 if (ret) 2959 goto release_eb; 2960 2961 for (int i = 0; i < num_extent_folios(eb); i++) { 2962 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2963 if (ret < 0) 2964 goto cleanup_folios; 2965 } 2966 for (int i = 0; i < num_extent_folios(eb); i++) 2967 folio_put(eb->folios[i]); 2968 2969 set_extent_buffer_uptodate(eb); 2970 btrfs_set_header_nritems(eb, 0); 2971 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2972 2973 return eb; 2974 2975 cleanup_folios: 2976 cleanup_extent_buffer_folios(eb); 2977 release_eb: 2978 btrfs_release_extent_buffer(eb); 2979 return NULL; 2980 } 2981 2982 static void check_buffer_tree_ref(struct extent_buffer *eb) 2983 { 2984 int refs; 2985 /* 2986 * The TREE_REF bit is first set when the extent_buffer is added to the 2987 * xarray. It is also reset, if unset, when a new reference is created 2988 * by find_extent_buffer. 2989 * 2990 * It is only cleared in two cases: freeing the last non-tree 2991 * reference to the extent_buffer when its STALE bit is set or 2992 * calling release_folio when the tree reference is the only reference. 2993 * 2994 * In both cases, care is taken to ensure that the extent_buffer's 2995 * pages are not under io. However, release_folio can be concurrently 2996 * called with creating new references, which is prone to race 2997 * conditions between the calls to check_buffer_tree_ref in those 2998 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2999 * 3000 * The actual lifetime of the extent_buffer in the xarray is adequately 3001 * protected by the refcount, but the TREE_REF bit and its corresponding 3002 * reference are not. To protect against this class of races, we call 3003 * check_buffer_tree_ref() from the code paths which trigger io. Note that 3004 * once io is initiated, TREE_REF can no longer be cleared, so that is 3005 * the moment at which any such race is best fixed. 3006 */ 3007 refs = refcount_read(&eb->refs); 3008 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3009 return; 3010 3011 spin_lock(&eb->refs_lock); 3012 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3013 refcount_inc(&eb->refs); 3014 spin_unlock(&eb->refs_lock); 3015 } 3016 3017 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3018 { 3019 check_buffer_tree_ref(eb); 3020 3021 for (int i = 0; i < num_extent_folios(eb); i++) 3022 folio_mark_accessed(eb->folios[i]); 3023 } 3024 3025 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3026 u64 start) 3027 { 3028 struct extent_buffer *eb; 3029 3030 eb = find_extent_buffer_nolock(fs_info, start); 3031 if (!eb) 3032 return NULL; 3033 /* 3034 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3035 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3036 * another task running free_extent_buffer() might have seen that flag 3037 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3038 * writeback flags not set) and it's still in the tree (flag 3039 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3040 * decrementing the extent buffer's reference count twice. So here we 3041 * could race and increment the eb's reference count, clear its stale 3042 * flag, mark it as dirty and drop our reference before the other task 3043 * finishes executing free_extent_buffer, which would later result in 3044 * an attempt to free an extent buffer that is dirty. 3045 */ 3046 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3047 spin_lock(&eb->refs_lock); 3048 spin_unlock(&eb->refs_lock); 3049 } 3050 mark_extent_buffer_accessed(eb); 3051 return eb; 3052 } 3053 3054 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3055 u64 start) 3056 { 3057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3058 struct extent_buffer *eb, *exists = NULL; 3059 int ret; 3060 3061 eb = find_extent_buffer(fs_info, start); 3062 if (eb) 3063 return eb; 3064 eb = alloc_dummy_extent_buffer(fs_info, start); 3065 if (!eb) 3066 return ERR_PTR(-ENOMEM); 3067 eb->fs_info = fs_info; 3068 again: 3069 xa_lock_irq(&fs_info->buffer_tree); 3070 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, 3071 NULL, eb, GFP_NOFS); 3072 if (xa_is_err(exists)) { 3073 ret = xa_err(exists); 3074 xa_unlock_irq(&fs_info->buffer_tree); 3075 btrfs_release_extent_buffer(eb); 3076 return ERR_PTR(ret); 3077 } 3078 if (exists) { 3079 if (!refcount_inc_not_zero(&exists->refs)) { 3080 /* The extent buffer is being freed, retry. */ 3081 xa_unlock_irq(&fs_info->buffer_tree); 3082 goto again; 3083 } 3084 xa_unlock_irq(&fs_info->buffer_tree); 3085 btrfs_release_extent_buffer(eb); 3086 return exists; 3087 } 3088 xa_unlock_irq(&fs_info->buffer_tree); 3089 check_buffer_tree_ref(eb); 3090 3091 return eb; 3092 #else 3093 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3094 return NULL; 3095 #endif 3096 } 3097 3098 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3099 struct folio *folio) 3100 { 3101 struct extent_buffer *exists; 3102 3103 lockdep_assert_held(&folio->mapping->i_private_lock); 3104 3105 /* 3106 * For subpage case, we completely rely on xarray to ensure we don't try 3107 * to insert two ebs for the same bytenr. So here we always return NULL 3108 * and just continue. 3109 */ 3110 if (btrfs_meta_is_subpage(fs_info)) 3111 return NULL; 3112 3113 /* Page not yet attached to an extent buffer */ 3114 if (!folio_test_private(folio)) 3115 return NULL; 3116 3117 /* 3118 * We could have already allocated an eb for this folio and attached one 3119 * so lets see if we can get a ref on the existing eb, and if we can we 3120 * know it's good and we can just return that one, else we know we can 3121 * just overwrite folio private. 3122 */ 3123 exists = folio_get_private(folio); 3124 if (refcount_inc_not_zero(&exists->refs)) 3125 return exists; 3126 3127 WARN_ON(folio_test_dirty(folio)); 3128 folio_detach_private(folio); 3129 return NULL; 3130 } 3131 3132 /* 3133 * Validate alignment constraints of eb at logical address @start. 3134 */ 3135 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3136 { 3137 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3138 btrfs_err(fs_info, "bad tree block start %llu", start); 3139 return true; 3140 } 3141 3142 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) { 3143 btrfs_err(fs_info, 3144 "tree block is not nodesize aligned, start %llu nodesize %u", 3145 start, fs_info->nodesize); 3146 return true; 3147 } 3148 if (fs_info->nodesize >= PAGE_SIZE && 3149 !PAGE_ALIGNED(start)) { 3150 btrfs_err(fs_info, 3151 "tree block is not page aligned, start %llu nodesize %u", 3152 start, fs_info->nodesize); 3153 return true; 3154 } 3155 if (!IS_ALIGNED(start, fs_info->nodesize) && 3156 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3157 btrfs_warn(fs_info, 3158 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3159 start, fs_info->nodesize); 3160 } 3161 return false; 3162 } 3163 3164 /* 3165 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3166 * Return >0 if there is already another extent buffer for the range, 3167 * and @found_eb_ret would be updated. 3168 * Return -EAGAIN if the filemap has an existing folio but with different size 3169 * than @eb. 3170 * The caller needs to free the existing folios and retry using the same order. 3171 */ 3172 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3173 struct btrfs_folio_state *prealloc, 3174 struct extent_buffer **found_eb_ret) 3175 { 3176 3177 struct btrfs_fs_info *fs_info = eb->fs_info; 3178 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3179 const pgoff_t index = eb->start >> PAGE_SHIFT; 3180 struct folio *existing_folio; 3181 int ret; 3182 3183 ASSERT(found_eb_ret); 3184 3185 /* Caller should ensure the folio exists. */ 3186 ASSERT(eb->folios[i]); 3187 3188 retry: 3189 existing_folio = NULL; 3190 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3191 GFP_NOFS | __GFP_NOFAIL); 3192 if (!ret) 3193 goto finish; 3194 3195 existing_folio = filemap_lock_folio(mapping, index + i); 3196 /* The page cache only exists for a very short time, just retry. */ 3197 if (IS_ERR(existing_folio)) 3198 goto retry; 3199 3200 /* For now, we should only have single-page folios for btree inode. */ 3201 ASSERT(folio_nr_pages(existing_folio) == 1); 3202 3203 if (folio_size(existing_folio) != eb->folio_size) { 3204 folio_unlock(existing_folio); 3205 folio_put(existing_folio); 3206 return -EAGAIN; 3207 } 3208 3209 finish: 3210 spin_lock(&mapping->i_private_lock); 3211 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3212 /* We're going to reuse the existing page, can drop our folio now. */ 3213 __free_page(folio_page(eb->folios[i], 0)); 3214 eb->folios[i] = existing_folio; 3215 } else if (existing_folio) { 3216 struct extent_buffer *existing_eb; 3217 3218 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3219 if (existing_eb) { 3220 /* The extent buffer still exists, we can use it directly. */ 3221 *found_eb_ret = existing_eb; 3222 spin_unlock(&mapping->i_private_lock); 3223 folio_unlock(existing_folio); 3224 folio_put(existing_folio); 3225 return 1; 3226 } 3227 /* The extent buffer no longer exists, we can reuse the folio. */ 3228 __free_page(folio_page(eb->folios[i], 0)); 3229 eb->folios[i] = existing_folio; 3230 } 3231 eb->folio_size = folio_size(eb->folios[i]); 3232 eb->folio_shift = folio_shift(eb->folios[i]); 3233 /* Should not fail, as we have preallocated the memory. */ 3234 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3235 ASSERT(!ret); 3236 /* 3237 * To inform we have an extra eb under allocation, so that 3238 * detach_extent_buffer_page() won't release the folio private when the 3239 * eb hasn't been inserted into the xarray yet. 3240 * 3241 * The ref will be decreased when the eb releases the page, in 3242 * detach_extent_buffer_page(). Thus needs no special handling in the 3243 * error path. 3244 */ 3245 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3246 spin_unlock(&mapping->i_private_lock); 3247 return 0; 3248 } 3249 3250 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3251 u64 start, u64 owner_root, int level) 3252 { 3253 int attached = 0; 3254 struct extent_buffer *eb; 3255 struct extent_buffer *existing_eb = NULL; 3256 struct btrfs_folio_state *prealloc = NULL; 3257 u64 lockdep_owner = owner_root; 3258 bool page_contig = true; 3259 int uptodate = 1; 3260 int ret; 3261 3262 if (check_eb_alignment(fs_info, start)) 3263 return ERR_PTR(-EINVAL); 3264 3265 #if BITS_PER_LONG == 32 3266 if (start >= MAX_LFS_FILESIZE) { 3267 btrfs_err_rl(fs_info, 3268 "extent buffer %llu is beyond 32bit page cache limit", start); 3269 btrfs_err_32bit_limit(fs_info); 3270 return ERR_PTR(-EOVERFLOW); 3271 } 3272 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3273 btrfs_warn_32bit_limit(fs_info); 3274 #endif 3275 3276 eb = find_extent_buffer(fs_info, start); 3277 if (eb) 3278 return eb; 3279 3280 eb = __alloc_extent_buffer(fs_info, start); 3281 if (!eb) 3282 return ERR_PTR(-ENOMEM); 3283 3284 /* 3285 * The reloc trees are just snapshots, so we need them to appear to be 3286 * just like any other fs tree WRT lockdep. 3287 */ 3288 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3289 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3290 3291 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3292 3293 /* 3294 * Preallocate folio private for subpage case, so that we won't 3295 * allocate memory with i_private_lock nor page lock hold. 3296 * 3297 * The memory will be freed by attach_extent_buffer_page() or freed 3298 * manually if we exit earlier. 3299 */ 3300 if (btrfs_meta_is_subpage(fs_info)) { 3301 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3302 if (IS_ERR(prealloc)) { 3303 ret = PTR_ERR(prealloc); 3304 goto out; 3305 } 3306 } 3307 3308 reallocate: 3309 /* Allocate all pages first. */ 3310 ret = alloc_eb_folio_array(eb, true); 3311 if (ret < 0) { 3312 btrfs_free_folio_state(prealloc); 3313 goto out; 3314 } 3315 3316 /* Attach all pages to the filemap. */ 3317 for (int i = 0; i < num_extent_folios(eb); i++) { 3318 struct folio *folio; 3319 3320 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3321 if (ret > 0) { 3322 ASSERT(existing_eb); 3323 goto out; 3324 } 3325 3326 /* 3327 * TODO: Special handling for a corner case where the order of 3328 * folios mismatch between the new eb and filemap. 3329 * 3330 * This happens when: 3331 * 3332 * - the new eb is using higher order folio 3333 * 3334 * - the filemap is still using 0-order folios for the range 3335 * This can happen at the previous eb allocation, and we don't 3336 * have higher order folio for the call. 3337 * 3338 * - the existing eb has already been freed 3339 * 3340 * In this case, we have to free the existing folios first, and 3341 * re-allocate using the same order. 3342 * Thankfully this is not going to happen yet, as we're still 3343 * using 0-order folios. 3344 */ 3345 if (unlikely(ret == -EAGAIN)) { 3346 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3347 goto reallocate; 3348 } 3349 attached++; 3350 3351 /* 3352 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3353 * reliable, as we may choose to reuse the existing page cache 3354 * and free the allocated page. 3355 */ 3356 folio = eb->folios[i]; 3357 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3358 3359 /* 3360 * Check if the current page is physically contiguous with previous eb 3361 * page. 3362 * At this stage, either we allocated a large folio, thus @i 3363 * would only be 0, or we fall back to per-page allocation. 3364 */ 3365 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3366 page_contig = false; 3367 3368 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3369 uptodate = 0; 3370 3371 /* 3372 * We can't unlock the pages just yet since the extent buffer 3373 * hasn't been properly inserted into the xarray, this opens a 3374 * race with btree_release_folio() which can free a page while we 3375 * are still filling in all pages for the buffer and we could crash. 3376 */ 3377 } 3378 if (uptodate) 3379 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3380 /* All pages are physically contiguous, can skip cross page handling. */ 3381 if (page_contig) 3382 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3383 again: 3384 xa_lock_irq(&fs_info->buffer_tree); 3385 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3386 start >> fs_info->nodesize_bits, NULL, eb, 3387 GFP_NOFS); 3388 if (xa_is_err(existing_eb)) { 3389 ret = xa_err(existing_eb); 3390 xa_unlock_irq(&fs_info->buffer_tree); 3391 goto out; 3392 } 3393 if (existing_eb) { 3394 if (!refcount_inc_not_zero(&existing_eb->refs)) { 3395 xa_unlock_irq(&fs_info->buffer_tree); 3396 goto again; 3397 } 3398 xa_unlock_irq(&fs_info->buffer_tree); 3399 goto out; 3400 } 3401 xa_unlock_irq(&fs_info->buffer_tree); 3402 3403 /* add one reference for the tree */ 3404 check_buffer_tree_ref(eb); 3405 3406 /* 3407 * Now it's safe to unlock the pages because any calls to 3408 * btree_release_folio will correctly detect that a page belongs to a 3409 * live buffer and won't free them prematurely. 3410 */ 3411 for (int i = 0; i < num_extent_folios(eb); i++) { 3412 folio_unlock(eb->folios[i]); 3413 /* 3414 * A folio that has been added to an address_space mapping 3415 * should not continue holding the refcount from its original 3416 * allocation indefinitely. 3417 */ 3418 folio_put(eb->folios[i]); 3419 } 3420 return eb; 3421 3422 out: 3423 WARN_ON(!refcount_dec_and_test(&eb->refs)); 3424 3425 /* 3426 * Any attached folios need to be detached before we unlock them. This 3427 * is because when we're inserting our new folios into the mapping, and 3428 * then attaching our eb to that folio. If we fail to insert our folio 3429 * we'll lookup the folio for that index, and grab that EB. We do not 3430 * want that to grab this eb, as we're getting ready to free it. So we 3431 * have to detach it first and then unlock it. 3432 * 3433 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3434 */ 3435 for (int i = 0; i < num_extent_pages(eb); i++) { 3436 struct folio *folio = eb->folios[i]; 3437 3438 if (i < attached) { 3439 ASSERT(folio); 3440 detach_extent_buffer_folio(eb, folio); 3441 folio_unlock(folio); 3442 } else if (!folio) { 3443 continue; 3444 } 3445 3446 folio_put(folio); 3447 eb->folios[i] = NULL; 3448 } 3449 btrfs_release_extent_buffer(eb); 3450 if (ret < 0) 3451 return ERR_PTR(ret); 3452 ASSERT(existing_eb); 3453 return existing_eb; 3454 } 3455 3456 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3457 { 3458 struct extent_buffer *eb = 3459 container_of(head, struct extent_buffer, rcu_head); 3460 3461 kmem_cache_free(extent_buffer_cache, eb); 3462 } 3463 3464 static int release_extent_buffer(struct extent_buffer *eb) 3465 __releases(&eb->refs_lock) 3466 { 3467 lockdep_assert_held(&eb->refs_lock); 3468 3469 if (refcount_dec_and_test(&eb->refs)) { 3470 struct btrfs_fs_info *fs_info = eb->fs_info; 3471 3472 spin_unlock(&eb->refs_lock); 3473 3474 /* 3475 * We're erasing, theoretically there will be no allocations, so 3476 * just use GFP_ATOMIC. 3477 * 3478 * We use cmpxchg instead of erase because we do not know if 3479 * this eb is actually in the tree or not, we could be cleaning 3480 * up an eb that we allocated but never inserted into the tree. 3481 * Thus use cmpxchg to remove it from the tree if it is there, 3482 * or leave the other entry if this isn't in the tree. 3483 * 3484 * The documentation says that putting a NULL value is the same 3485 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3486 * in this case. 3487 */ 3488 xa_cmpxchg_irq(&fs_info->buffer_tree, 3489 eb->start >> fs_info->nodesize_bits, eb, NULL, 3490 GFP_ATOMIC); 3491 3492 btrfs_leak_debug_del_eb(eb); 3493 /* Should be safe to release folios at this point. */ 3494 btrfs_release_extent_buffer_folios(eb); 3495 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3496 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3497 kmem_cache_free(extent_buffer_cache, eb); 3498 return 1; 3499 } 3500 #endif 3501 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3502 return 1; 3503 } 3504 spin_unlock(&eb->refs_lock); 3505 3506 return 0; 3507 } 3508 3509 void free_extent_buffer(struct extent_buffer *eb) 3510 { 3511 int refs; 3512 if (!eb) 3513 return; 3514 3515 refs = refcount_read(&eb->refs); 3516 while (1) { 3517 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { 3518 if (refs == 1) 3519 break; 3520 } else if (refs <= 3) { 3521 break; 3522 } 3523 3524 /* Optimization to avoid locking eb->refs_lock. */ 3525 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) 3526 return; 3527 } 3528 3529 spin_lock(&eb->refs_lock); 3530 if (refcount_read(&eb->refs) == 2 && 3531 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3532 !extent_buffer_under_io(eb) && 3533 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3534 refcount_dec(&eb->refs); 3535 3536 /* 3537 * I know this is terrible, but it's temporary until we stop tracking 3538 * the uptodate bits and such for the extent buffers. 3539 */ 3540 release_extent_buffer(eb); 3541 } 3542 3543 void free_extent_buffer_stale(struct extent_buffer *eb) 3544 { 3545 if (!eb) 3546 return; 3547 3548 spin_lock(&eb->refs_lock); 3549 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3550 3551 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3552 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3553 refcount_dec(&eb->refs); 3554 release_extent_buffer(eb); 3555 } 3556 3557 static void btree_clear_folio_dirty_tag(struct folio *folio) 3558 { 3559 ASSERT(!folio_test_dirty(folio)); 3560 ASSERT(folio_test_locked(folio)); 3561 xa_lock_irq(&folio->mapping->i_pages); 3562 if (!folio_test_dirty(folio)) 3563 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3564 PAGECACHE_TAG_DIRTY); 3565 xa_unlock_irq(&folio->mapping->i_pages); 3566 } 3567 3568 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3569 struct extent_buffer *eb) 3570 { 3571 struct btrfs_fs_info *fs_info = eb->fs_info; 3572 3573 btrfs_assert_tree_write_locked(eb); 3574 3575 if (trans && btrfs_header_generation(eb) != trans->transid) 3576 return; 3577 3578 /* 3579 * Instead of clearing the dirty flag off of the buffer, mark it as 3580 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3581 * write-ordering in zoned mode, without the need to later re-dirty 3582 * the extent_buffer. 3583 * 3584 * The actual zeroout of the buffer will happen later in 3585 * btree_csum_one_bio. 3586 */ 3587 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3588 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3589 return; 3590 } 3591 3592 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3593 return; 3594 3595 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3596 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3597 fs_info->dirty_metadata_batch); 3598 3599 for (int i = 0; i < num_extent_folios(eb); i++) { 3600 struct folio *folio = eb->folios[i]; 3601 bool last; 3602 3603 if (!folio_test_dirty(folio)) 3604 continue; 3605 folio_lock(folio); 3606 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3607 if (last) 3608 btree_clear_folio_dirty_tag(folio); 3609 folio_unlock(folio); 3610 } 3611 WARN_ON(refcount_read(&eb->refs) == 0); 3612 } 3613 3614 void set_extent_buffer_dirty(struct extent_buffer *eb) 3615 { 3616 bool was_dirty; 3617 3618 check_buffer_tree_ref(eb); 3619 3620 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3621 3622 WARN_ON(refcount_read(&eb->refs) == 0); 3623 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3624 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3625 3626 if (!was_dirty) { 3627 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3628 3629 /* 3630 * For subpage case, we can have other extent buffers in the 3631 * same page, and in clear_extent_buffer_dirty() we 3632 * have to clear page dirty without subpage lock held. 3633 * This can cause race where our page gets dirty cleared after 3634 * we just set it. 3635 * 3636 * Thankfully, clear_extent_buffer_dirty() has locked 3637 * its page for other reasons, we can use page lock to prevent 3638 * the above race. 3639 */ 3640 if (subpage) 3641 folio_lock(eb->folios[0]); 3642 for (int i = 0; i < num_extent_folios(eb); i++) 3643 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3644 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3645 if (subpage) 3646 folio_unlock(eb->folios[0]); 3647 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3648 eb->len, 3649 eb->fs_info->dirty_metadata_batch); 3650 } 3651 #ifdef CONFIG_BTRFS_DEBUG 3652 for (int i = 0; i < num_extent_folios(eb); i++) 3653 ASSERT(folio_test_dirty(eb->folios[i])); 3654 #endif 3655 } 3656 3657 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3658 { 3659 3660 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3661 for (int i = 0; i < num_extent_folios(eb); i++) { 3662 struct folio *folio = eb->folios[i]; 3663 3664 if (!folio) 3665 continue; 3666 3667 btrfs_meta_folio_clear_uptodate(folio, eb); 3668 } 3669 } 3670 3671 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3672 { 3673 3674 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3675 for (int i = 0; i < num_extent_folios(eb); i++) 3676 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3677 } 3678 3679 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3680 { 3681 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); 3682 } 3683 3684 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3685 { 3686 struct extent_buffer *eb = bbio->private; 3687 bool uptodate = !bbio->bio.bi_status; 3688 3689 /* 3690 * If the extent buffer is marked UPTODATE before the read operation 3691 * completes, other calls to read_extent_buffer_pages() will return 3692 * early without waiting for the read to finish, causing data races. 3693 */ 3694 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3695 3696 eb->read_mirror = bbio->mirror_num; 3697 3698 if (uptodate && 3699 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3700 uptodate = false; 3701 3702 if (uptodate) 3703 set_extent_buffer_uptodate(eb); 3704 else 3705 clear_extent_buffer_uptodate(eb); 3706 3707 clear_extent_buffer_reading(eb); 3708 free_extent_buffer(eb); 3709 3710 bio_put(&bbio->bio); 3711 } 3712 3713 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3714 const struct btrfs_tree_parent_check *check) 3715 { 3716 struct btrfs_bio *bbio; 3717 3718 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3719 return 0; 3720 3721 /* 3722 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3723 * operation, which could potentially still be in flight. In this case 3724 * we simply want to return an error. 3725 */ 3726 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3727 return -EIO; 3728 3729 /* Someone else is already reading the buffer, just wait for it. */ 3730 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3731 return 0; 3732 3733 /* 3734 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3735 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3736 * started and finished reading the same eb. In this case, UPTODATE 3737 * will now be set, and we shouldn't read it in again. 3738 */ 3739 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3740 clear_extent_buffer_reading(eb); 3741 return 0; 3742 } 3743 3744 eb->read_mirror = 0; 3745 check_buffer_tree_ref(eb); 3746 refcount_inc(&eb->refs); 3747 3748 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3749 REQ_OP_READ | REQ_META, eb->fs_info, 3750 end_bbio_meta_read, eb); 3751 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3752 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3753 bbio->file_offset = eb->start; 3754 memcpy(&bbio->parent_check, check, sizeof(*check)); 3755 for (int i = 0; i < num_extent_folios(eb); i++) { 3756 struct folio *folio = eb->folios[i]; 3757 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3758 u32 range_len = min_t(u64, folio_end(folio), 3759 eb->start + eb->len) - range_start; 3760 3761 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3762 offset_in_folio(folio, range_start)); 3763 } 3764 btrfs_submit_bbio(bbio, mirror_num); 3765 return 0; 3766 } 3767 3768 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3769 const struct btrfs_tree_parent_check *check) 3770 { 3771 int ret; 3772 3773 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3774 if (ret < 0) 3775 return ret; 3776 3777 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3778 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3779 return -EIO; 3780 return 0; 3781 } 3782 3783 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3784 unsigned long len) 3785 { 3786 btrfs_warn(eb->fs_info, 3787 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3788 eb->start, eb->len, start, len); 3789 DEBUG_WARN(); 3790 3791 return true; 3792 } 3793 3794 /* 3795 * Check if the [start, start + len) range is valid before reading/writing 3796 * the eb. 3797 * NOTE: @start and @len are offset inside the eb, not logical address. 3798 * 3799 * Caller should not touch the dst/src memory if this function returns error. 3800 */ 3801 static inline int check_eb_range(const struct extent_buffer *eb, 3802 unsigned long start, unsigned long len) 3803 { 3804 unsigned long offset; 3805 3806 /* start, start + len should not go beyond eb->len nor overflow */ 3807 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3808 return report_eb_range(eb, start, len); 3809 3810 return false; 3811 } 3812 3813 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3814 unsigned long start, unsigned long len) 3815 { 3816 const int unit_size = eb->folio_size; 3817 size_t cur; 3818 size_t offset; 3819 char *dst = (char *)dstv; 3820 unsigned long i = get_eb_folio_index(eb, start); 3821 3822 if (check_eb_range(eb, start, len)) { 3823 /* 3824 * Invalid range hit, reset the memory, so callers won't get 3825 * some random garbage for their uninitialized memory. 3826 */ 3827 memset(dstv, 0, len); 3828 return; 3829 } 3830 3831 if (eb->addr) { 3832 memcpy(dstv, eb->addr + start, len); 3833 return; 3834 } 3835 3836 offset = get_eb_offset_in_folio(eb, start); 3837 3838 while (len > 0) { 3839 char *kaddr; 3840 3841 cur = min(len, unit_size - offset); 3842 kaddr = folio_address(eb->folios[i]); 3843 memcpy(dst, kaddr + offset, cur); 3844 3845 dst += cur; 3846 len -= cur; 3847 offset = 0; 3848 i++; 3849 } 3850 } 3851 3852 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3853 void __user *dstv, 3854 unsigned long start, unsigned long len) 3855 { 3856 const int unit_size = eb->folio_size; 3857 size_t cur; 3858 size_t offset; 3859 char __user *dst = (char __user *)dstv; 3860 unsigned long i = get_eb_folio_index(eb, start); 3861 int ret = 0; 3862 3863 WARN_ON(start > eb->len); 3864 WARN_ON(start + len > eb->start + eb->len); 3865 3866 if (eb->addr) { 3867 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3868 ret = -EFAULT; 3869 return ret; 3870 } 3871 3872 offset = get_eb_offset_in_folio(eb, start); 3873 3874 while (len > 0) { 3875 char *kaddr; 3876 3877 cur = min(len, unit_size - offset); 3878 kaddr = folio_address(eb->folios[i]); 3879 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3880 ret = -EFAULT; 3881 break; 3882 } 3883 3884 dst += cur; 3885 len -= cur; 3886 offset = 0; 3887 i++; 3888 } 3889 3890 return ret; 3891 } 3892 3893 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3894 unsigned long start, unsigned long len) 3895 { 3896 const int unit_size = eb->folio_size; 3897 size_t cur; 3898 size_t offset; 3899 char *kaddr; 3900 char *ptr = (char *)ptrv; 3901 unsigned long i = get_eb_folio_index(eb, start); 3902 int ret = 0; 3903 3904 if (check_eb_range(eb, start, len)) 3905 return -EINVAL; 3906 3907 if (eb->addr) 3908 return memcmp(ptrv, eb->addr + start, len); 3909 3910 offset = get_eb_offset_in_folio(eb, start); 3911 3912 while (len > 0) { 3913 cur = min(len, unit_size - offset); 3914 kaddr = folio_address(eb->folios[i]); 3915 ret = memcmp(ptr, kaddr + offset, cur); 3916 if (ret) 3917 break; 3918 3919 ptr += cur; 3920 len -= cur; 3921 offset = 0; 3922 i++; 3923 } 3924 return ret; 3925 } 3926 3927 /* 3928 * Check that the extent buffer is uptodate. 3929 * 3930 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3931 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3932 */ 3933 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3934 { 3935 struct btrfs_fs_info *fs_info = eb->fs_info; 3936 struct folio *folio = eb->folios[i]; 3937 3938 ASSERT(folio); 3939 3940 /* 3941 * If we are using the commit root we could potentially clear a page 3942 * Uptodate while we're using the extent buffer that we've previously 3943 * looked up. We don't want to complain in this case, as the page was 3944 * valid before, we just didn't write it out. Instead we want to catch 3945 * the case where we didn't actually read the block properly, which 3946 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3947 */ 3948 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3949 return; 3950 3951 if (btrfs_meta_is_subpage(fs_info)) { 3952 folio = eb->folios[0]; 3953 ASSERT(i == 0); 3954 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3955 eb->start, eb->len))) 3956 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3957 } else { 3958 WARN_ON(!folio_test_uptodate(folio)); 3959 } 3960 } 3961 3962 static void __write_extent_buffer(const struct extent_buffer *eb, 3963 const void *srcv, unsigned long start, 3964 unsigned long len, bool use_memmove) 3965 { 3966 const int unit_size = eb->folio_size; 3967 size_t cur; 3968 size_t offset; 3969 char *kaddr; 3970 const char *src = (const char *)srcv; 3971 unsigned long i = get_eb_folio_index(eb, start); 3972 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3973 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3974 3975 if (check_eb_range(eb, start, len)) 3976 return; 3977 3978 if (eb->addr) { 3979 if (use_memmove) 3980 memmove(eb->addr + start, srcv, len); 3981 else 3982 memcpy(eb->addr + start, srcv, len); 3983 return; 3984 } 3985 3986 offset = get_eb_offset_in_folio(eb, start); 3987 3988 while (len > 0) { 3989 if (check_uptodate) 3990 assert_eb_folio_uptodate(eb, i); 3991 3992 cur = min(len, unit_size - offset); 3993 kaddr = folio_address(eb->folios[i]); 3994 if (use_memmove) 3995 memmove(kaddr + offset, src, cur); 3996 else 3997 memcpy(kaddr + offset, src, cur); 3998 3999 src += cur; 4000 len -= cur; 4001 offset = 0; 4002 i++; 4003 } 4004 } 4005 4006 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4007 unsigned long start, unsigned long len) 4008 { 4009 return __write_extent_buffer(eb, srcv, start, len, false); 4010 } 4011 4012 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4013 unsigned long start, unsigned long len) 4014 { 4015 const int unit_size = eb->folio_size; 4016 unsigned long cur = start; 4017 4018 if (eb->addr) { 4019 memset(eb->addr + start, c, len); 4020 return; 4021 } 4022 4023 while (cur < start + len) { 4024 unsigned long index = get_eb_folio_index(eb, cur); 4025 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4026 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4027 4028 assert_eb_folio_uptodate(eb, index); 4029 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4030 4031 cur += cur_len; 4032 } 4033 } 4034 4035 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4036 unsigned long len) 4037 { 4038 if (check_eb_range(eb, start, len)) 4039 return; 4040 return memset_extent_buffer(eb, 0, start, len); 4041 } 4042 4043 void copy_extent_buffer_full(const struct extent_buffer *dst, 4044 const struct extent_buffer *src) 4045 { 4046 const int unit_size = src->folio_size; 4047 unsigned long cur = 0; 4048 4049 ASSERT(dst->len == src->len); 4050 4051 while (cur < src->len) { 4052 unsigned long index = get_eb_folio_index(src, cur); 4053 unsigned long offset = get_eb_offset_in_folio(src, cur); 4054 unsigned long cur_len = min(src->len, unit_size - offset); 4055 void *addr = folio_address(src->folios[index]) + offset; 4056 4057 write_extent_buffer(dst, addr, cur, cur_len); 4058 4059 cur += cur_len; 4060 } 4061 } 4062 4063 void copy_extent_buffer(const struct extent_buffer *dst, 4064 const struct extent_buffer *src, 4065 unsigned long dst_offset, unsigned long src_offset, 4066 unsigned long len) 4067 { 4068 const int unit_size = dst->folio_size; 4069 u64 dst_len = dst->len; 4070 size_t cur; 4071 size_t offset; 4072 char *kaddr; 4073 unsigned long i = get_eb_folio_index(dst, dst_offset); 4074 4075 if (check_eb_range(dst, dst_offset, len) || 4076 check_eb_range(src, src_offset, len)) 4077 return; 4078 4079 WARN_ON(src->len != dst_len); 4080 4081 offset = get_eb_offset_in_folio(dst, dst_offset); 4082 4083 while (len > 0) { 4084 assert_eb_folio_uptodate(dst, i); 4085 4086 cur = min(len, (unsigned long)(unit_size - offset)); 4087 4088 kaddr = folio_address(dst->folios[i]); 4089 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4090 4091 src_offset += cur; 4092 len -= cur; 4093 offset = 0; 4094 i++; 4095 } 4096 } 4097 4098 /* 4099 * Calculate the folio and offset of the byte containing the given bit number. 4100 * 4101 * @eb: the extent buffer 4102 * @start: offset of the bitmap item in the extent buffer 4103 * @nr: bit number 4104 * @folio_index: return index of the folio in the extent buffer that contains 4105 * the given bit number 4106 * @folio_offset: return offset into the folio given by folio_index 4107 * 4108 * This helper hides the ugliness of finding the byte in an extent buffer which 4109 * contains a given bit. 4110 */ 4111 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4112 unsigned long start, unsigned long nr, 4113 unsigned long *folio_index, 4114 size_t *folio_offset) 4115 { 4116 size_t byte_offset = BIT_BYTE(nr); 4117 size_t offset; 4118 4119 /* 4120 * The byte we want is the offset of the extent buffer + the offset of 4121 * the bitmap item in the extent buffer + the offset of the byte in the 4122 * bitmap item. 4123 */ 4124 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4125 4126 *folio_index = offset >> eb->folio_shift; 4127 *folio_offset = offset_in_eb_folio(eb, offset); 4128 } 4129 4130 /* 4131 * Determine whether a bit in a bitmap item is set. 4132 * 4133 * @eb: the extent buffer 4134 * @start: offset of the bitmap item in the extent buffer 4135 * @nr: bit number to test 4136 */ 4137 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4138 unsigned long nr) 4139 { 4140 unsigned long i; 4141 size_t offset; 4142 u8 *kaddr; 4143 4144 eb_bitmap_offset(eb, start, nr, &i, &offset); 4145 assert_eb_folio_uptodate(eb, i); 4146 kaddr = folio_address(eb->folios[i]); 4147 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4148 } 4149 4150 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4151 { 4152 unsigned long index = get_eb_folio_index(eb, bytenr); 4153 4154 if (check_eb_range(eb, bytenr, 1)) 4155 return NULL; 4156 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4157 } 4158 4159 /* 4160 * Set an area of a bitmap to 1. 4161 * 4162 * @eb: the extent buffer 4163 * @start: offset of the bitmap item in the extent buffer 4164 * @pos: bit number of the first bit 4165 * @len: number of bits to set 4166 */ 4167 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4168 unsigned long pos, unsigned long len) 4169 { 4170 unsigned int first_byte = start + BIT_BYTE(pos); 4171 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4172 const bool same_byte = (first_byte == last_byte); 4173 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4174 u8 *kaddr; 4175 4176 if (same_byte) 4177 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4178 4179 /* Handle the first byte. */ 4180 kaddr = extent_buffer_get_byte(eb, first_byte); 4181 *kaddr |= mask; 4182 if (same_byte) 4183 return; 4184 4185 /* Handle the byte aligned part. */ 4186 ASSERT(first_byte + 1 <= last_byte); 4187 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4188 4189 /* Handle the last byte. */ 4190 kaddr = extent_buffer_get_byte(eb, last_byte); 4191 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4192 } 4193 4194 4195 /* 4196 * Clear an area of a bitmap. 4197 * 4198 * @eb: the extent buffer 4199 * @start: offset of the bitmap item in the extent buffer 4200 * @pos: bit number of the first bit 4201 * @len: number of bits to clear 4202 */ 4203 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4204 unsigned long start, unsigned long pos, 4205 unsigned long len) 4206 { 4207 unsigned int first_byte = start + BIT_BYTE(pos); 4208 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4209 const bool same_byte = (first_byte == last_byte); 4210 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4211 u8 *kaddr; 4212 4213 if (same_byte) 4214 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4215 4216 /* Handle the first byte. */ 4217 kaddr = extent_buffer_get_byte(eb, first_byte); 4218 *kaddr &= ~mask; 4219 if (same_byte) 4220 return; 4221 4222 /* Handle the byte aligned part. */ 4223 ASSERT(first_byte + 1 <= last_byte); 4224 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4225 4226 /* Handle the last byte. */ 4227 kaddr = extent_buffer_get_byte(eb, last_byte); 4228 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4229 } 4230 4231 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4232 { 4233 unsigned long distance = (src > dst) ? src - dst : dst - src; 4234 return distance < len; 4235 } 4236 4237 void memcpy_extent_buffer(const struct extent_buffer *dst, 4238 unsigned long dst_offset, unsigned long src_offset, 4239 unsigned long len) 4240 { 4241 const int unit_size = dst->folio_size; 4242 unsigned long cur_off = 0; 4243 4244 if (check_eb_range(dst, dst_offset, len) || 4245 check_eb_range(dst, src_offset, len)) 4246 return; 4247 4248 if (dst->addr) { 4249 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4250 4251 if (use_memmove) 4252 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4253 else 4254 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4255 return; 4256 } 4257 4258 while (cur_off < len) { 4259 unsigned long cur_src = cur_off + src_offset; 4260 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4261 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4262 unsigned long cur_len = min(src_offset + len - cur_src, 4263 unit_size - folio_off); 4264 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4265 const bool use_memmove = areas_overlap(src_offset + cur_off, 4266 dst_offset + cur_off, cur_len); 4267 4268 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4269 use_memmove); 4270 cur_off += cur_len; 4271 } 4272 } 4273 4274 void memmove_extent_buffer(const struct extent_buffer *dst, 4275 unsigned long dst_offset, unsigned long src_offset, 4276 unsigned long len) 4277 { 4278 unsigned long dst_end = dst_offset + len - 1; 4279 unsigned long src_end = src_offset + len - 1; 4280 4281 if (check_eb_range(dst, dst_offset, len) || 4282 check_eb_range(dst, src_offset, len)) 4283 return; 4284 4285 if (dst_offset < src_offset) { 4286 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4287 return; 4288 } 4289 4290 if (dst->addr) { 4291 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4292 return; 4293 } 4294 4295 while (len > 0) { 4296 unsigned long src_i; 4297 size_t cur; 4298 size_t dst_off_in_folio; 4299 size_t src_off_in_folio; 4300 void *src_addr; 4301 bool use_memmove; 4302 4303 src_i = get_eb_folio_index(dst, src_end); 4304 4305 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4306 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4307 4308 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4309 cur = min(cur, dst_off_in_folio + 1); 4310 4311 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4312 cur + 1; 4313 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4314 cur); 4315 4316 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4317 use_memmove); 4318 4319 dst_end -= cur; 4320 src_end -= cur; 4321 len -= cur; 4322 } 4323 } 4324 4325 static int try_release_subpage_extent_buffer(struct folio *folio) 4326 { 4327 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4328 struct extent_buffer *eb; 4329 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); 4330 unsigned long index = start; 4331 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; 4332 int ret; 4333 4334 rcu_read_lock(); 4335 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4336 /* 4337 * The same as try_release_extent_buffer(), to ensure the eb 4338 * won't disappear out from under us. 4339 */ 4340 spin_lock(&eb->refs_lock); 4341 rcu_read_unlock(); 4342 4343 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4344 spin_unlock(&eb->refs_lock); 4345 rcu_read_lock(); 4346 continue; 4347 } 4348 4349 /* 4350 * If tree ref isn't set then we know the ref on this eb is a 4351 * real ref, so just return, this eb will likely be freed soon 4352 * anyway. 4353 */ 4354 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4355 spin_unlock(&eb->refs_lock); 4356 break; 4357 } 4358 4359 /* 4360 * Here we don't care about the return value, we will always 4361 * check the folio private at the end. And 4362 * release_extent_buffer() will release the refs_lock. 4363 */ 4364 release_extent_buffer(eb); 4365 rcu_read_lock(); 4366 } 4367 rcu_read_unlock(); 4368 4369 /* 4370 * Finally to check if we have cleared folio private, as if we have 4371 * released all ebs in the page, the folio private should be cleared now. 4372 */ 4373 spin_lock(&folio->mapping->i_private_lock); 4374 if (!folio_test_private(folio)) 4375 ret = 1; 4376 else 4377 ret = 0; 4378 spin_unlock(&folio->mapping->i_private_lock); 4379 return ret; 4380 } 4381 4382 int try_release_extent_buffer(struct folio *folio) 4383 { 4384 struct extent_buffer *eb; 4385 4386 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4387 return try_release_subpage_extent_buffer(folio); 4388 4389 /* 4390 * We need to make sure nobody is changing folio private, as we rely on 4391 * folio private as the pointer to extent buffer. 4392 */ 4393 spin_lock(&folio->mapping->i_private_lock); 4394 if (!folio_test_private(folio)) { 4395 spin_unlock(&folio->mapping->i_private_lock); 4396 return 1; 4397 } 4398 4399 eb = folio_get_private(folio); 4400 BUG_ON(!eb); 4401 4402 /* 4403 * This is a little awful but should be ok, we need to make sure that 4404 * the eb doesn't disappear out from under us while we're looking at 4405 * this page. 4406 */ 4407 spin_lock(&eb->refs_lock); 4408 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4409 spin_unlock(&eb->refs_lock); 4410 spin_unlock(&folio->mapping->i_private_lock); 4411 return 0; 4412 } 4413 spin_unlock(&folio->mapping->i_private_lock); 4414 4415 /* 4416 * If tree ref isn't set then we know the ref on this eb is a real ref, 4417 * so just return, this page will likely be freed soon anyway. 4418 */ 4419 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4420 spin_unlock(&eb->refs_lock); 4421 return 0; 4422 } 4423 4424 return release_extent_buffer(eb); 4425 } 4426 4427 /* 4428 * Attempt to readahead a child block. 4429 * 4430 * @fs_info: the fs_info 4431 * @bytenr: bytenr to read 4432 * @owner_root: objectid of the root that owns this eb 4433 * @gen: generation for the uptodate check, can be 0 4434 * @level: level for the eb 4435 * 4436 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4437 * normal uptodate check of the eb, without checking the generation. If we have 4438 * to read the block we will not block on anything. 4439 */ 4440 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4441 u64 bytenr, u64 owner_root, u64 gen, int level) 4442 { 4443 struct btrfs_tree_parent_check check = { 4444 .level = level, 4445 .transid = gen 4446 }; 4447 struct extent_buffer *eb; 4448 int ret; 4449 4450 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4451 if (IS_ERR(eb)) 4452 return; 4453 4454 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4455 free_extent_buffer(eb); 4456 return; 4457 } 4458 4459 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4460 if (ret < 0) 4461 free_extent_buffer_stale(eb); 4462 else 4463 free_extent_buffer(eb); 4464 } 4465 4466 /* 4467 * Readahead a node's child block. 4468 * 4469 * @node: parent node we're reading from 4470 * @slot: slot in the parent node for the child we want to read 4471 * 4472 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4473 * the slot in the node provided. 4474 */ 4475 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4476 { 4477 btrfs_readahead_tree_block(node->fs_info, 4478 btrfs_node_blockptr(node, slot), 4479 btrfs_header_owner(node), 4480 btrfs_node_ptr_generation(node, slot), 4481 btrfs_header_level(node) - 1); 4482 } 4483