1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 105 /* 106 * The sectors of the page which are going to be submitted by 107 * extent_writepage_io(). 108 * This is to avoid touching ranges covered by compression/inline. 109 */ 110 unsigned long submit_bitmap; 111 }; 112 113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 114 { 115 struct btrfs_bio *bbio = bio_ctrl->bbio; 116 117 if (!bbio) 118 return; 119 120 /* Caller should ensure the bio has at least some range added */ 121 ASSERT(bbio->bio.bi_iter.bi_size); 122 123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 125 btrfs_submit_compressed_read(bbio); 126 else 127 btrfs_submit_bbio(bbio, 0); 128 129 /* The bbio is owned by the end_io handler now */ 130 bio_ctrl->bbio = NULL; 131 } 132 133 /* 134 * Submit or fail the current bio in the bio_ctrl structure. 135 */ 136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 137 { 138 struct btrfs_bio *bbio = bio_ctrl->bbio; 139 140 if (!bbio) 141 return; 142 143 if (ret) { 144 ASSERT(ret < 0); 145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 146 /* The bio is owned by the end_io handler now */ 147 bio_ctrl->bbio = NULL; 148 } else { 149 submit_one_bio(bio_ctrl); 150 } 151 } 152 153 int __init extent_buffer_init_cachep(void) 154 { 155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 156 sizeof(struct extent_buffer), 0, 0, 157 NULL); 158 if (!extent_buffer_cache) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 void __cold extent_buffer_free_cachep(void) 165 { 166 /* 167 * Make sure all delayed rcu free are flushed before we 168 * destroy caches. 169 */ 170 rcu_barrier(); 171 kmem_cache_destroy(extent_buffer_cache); 172 } 173 174 static void process_one_folio(struct btrfs_fs_info *fs_info, 175 struct folio *folio, const struct folio *locked_folio, 176 unsigned long page_ops, u64 start, u64 end) 177 { 178 u32 len; 179 180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 181 len = end + 1 - start; 182 183 if (page_ops & PAGE_SET_ORDERED) 184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 185 if (page_ops & PAGE_START_WRITEBACK) { 186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 188 } 189 if (page_ops & PAGE_END_WRITEBACK) 190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 191 192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 193 btrfs_folio_end_writer_lock(fs_info, folio, start, len); 194 } 195 196 static void __process_folios_contig(struct address_space *mapping, 197 const struct folio *locked_folio, u64 start, 198 u64 end, unsigned long page_ops) 199 { 200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 201 pgoff_t start_index = start >> PAGE_SHIFT; 202 pgoff_t end_index = end >> PAGE_SHIFT; 203 pgoff_t index = start_index; 204 struct folio_batch fbatch; 205 int i; 206 207 folio_batch_init(&fbatch); 208 while (index <= end_index) { 209 int found_folios; 210 211 found_folios = filemap_get_folios_contig(mapping, &index, 212 end_index, &fbatch); 213 for (i = 0; i < found_folios; i++) { 214 struct folio *folio = fbatch.folios[i]; 215 216 process_one_folio(fs_info, folio, locked_folio, 217 page_ops, start, end); 218 } 219 folio_batch_release(&fbatch); 220 cond_resched(); 221 } 222 } 223 224 static noinline void __unlock_for_delalloc(const struct inode *inode, 225 const struct folio *locked_folio, 226 u64 start, u64 end) 227 { 228 unsigned long index = start >> PAGE_SHIFT; 229 unsigned long end_index = end >> PAGE_SHIFT; 230 231 ASSERT(locked_folio); 232 if (index == locked_folio->index && end_index == index) 233 return; 234 235 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 236 PAGE_UNLOCK); 237 } 238 239 static noinline int lock_delalloc_folios(struct inode *inode, 240 const struct folio *locked_folio, 241 u64 start, u64 end) 242 { 243 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 244 struct address_space *mapping = inode->i_mapping; 245 pgoff_t start_index = start >> PAGE_SHIFT; 246 pgoff_t end_index = end >> PAGE_SHIFT; 247 pgoff_t index = start_index; 248 u64 processed_end = start; 249 struct folio_batch fbatch; 250 251 if (index == locked_folio->index && index == end_index) 252 return 0; 253 254 folio_batch_init(&fbatch); 255 while (index <= end_index) { 256 unsigned int found_folios, i; 257 258 found_folios = filemap_get_folios_contig(mapping, &index, 259 end_index, &fbatch); 260 if (found_folios == 0) 261 goto out; 262 263 for (i = 0; i < found_folios; i++) { 264 struct folio *folio = fbatch.folios[i]; 265 u64 range_start; 266 u32 range_len; 267 268 if (folio == locked_folio) 269 continue; 270 271 folio_lock(folio); 272 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 273 folio_unlock(folio); 274 goto out; 275 } 276 range_start = max_t(u64, folio_pos(folio), start); 277 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 278 end + 1) - range_start; 279 btrfs_folio_set_writer_lock(fs_info, folio, range_start, range_len); 280 281 processed_end = range_start + range_len - 1; 282 } 283 folio_batch_release(&fbatch); 284 cond_resched(); 285 } 286 287 return 0; 288 out: 289 folio_batch_release(&fbatch); 290 if (processed_end > start) 291 __unlock_for_delalloc(inode, locked_folio, start, 292 processed_end); 293 return -EAGAIN; 294 } 295 296 /* 297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 298 * more than @max_bytes. 299 * 300 * @start: The original start bytenr to search. 301 * Will store the extent range start bytenr. 302 * @end: The original end bytenr of the search range 303 * Will store the extent range end bytenr. 304 * 305 * Return true if we find a delalloc range which starts inside the original 306 * range, and @start/@end will store the delalloc range start/end. 307 * 308 * Return false if we can't find any delalloc range which starts inside the 309 * original range, and @start/@end will be the non-delalloc range start/end. 310 */ 311 EXPORT_FOR_TESTS 312 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 313 struct folio *locked_folio, 314 u64 *start, u64 *end) 315 { 316 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 317 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 318 const u64 orig_start = *start; 319 const u64 orig_end = *end; 320 /* The sanity tests may not set a valid fs_info. */ 321 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 322 u64 delalloc_start; 323 u64 delalloc_end; 324 bool found; 325 struct extent_state *cached_state = NULL; 326 int ret; 327 int loops = 0; 328 329 /* Caller should pass a valid @end to indicate the search range end */ 330 ASSERT(orig_end > orig_start); 331 332 /* The range should at least cover part of the folio */ 333 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) || 334 orig_end <= folio_pos(locked_folio))); 335 again: 336 /* step one, find a bunch of delalloc bytes starting at start */ 337 delalloc_start = *start; 338 delalloc_end = 0; 339 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 340 max_bytes, &cached_state); 341 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 342 *start = delalloc_start; 343 344 /* @delalloc_end can be -1, never go beyond @orig_end */ 345 *end = min(delalloc_end, orig_end); 346 free_extent_state(cached_state); 347 return false; 348 } 349 350 /* 351 * start comes from the offset of locked_folio. We have to lock 352 * folios in order, so we can't process delalloc bytes before 353 * locked_folio 354 */ 355 if (delalloc_start < *start) 356 delalloc_start = *start; 357 358 /* 359 * make sure to limit the number of folios we try to lock down 360 */ 361 if (delalloc_end + 1 - delalloc_start > max_bytes) 362 delalloc_end = delalloc_start + max_bytes - 1; 363 364 /* step two, lock all the folioss after the folios that has start */ 365 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 366 delalloc_end); 367 ASSERT(!ret || ret == -EAGAIN); 368 if (ret == -EAGAIN) { 369 /* some of the folios are gone, lets avoid looping by 370 * shortening the size of the delalloc range we're searching 371 */ 372 free_extent_state(cached_state); 373 cached_state = NULL; 374 if (!loops) { 375 max_bytes = PAGE_SIZE; 376 loops = 1; 377 goto again; 378 } else { 379 found = false; 380 goto out_failed; 381 } 382 } 383 384 /* step three, lock the state bits for the whole range */ 385 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 386 387 /* then test to make sure it is all still delalloc */ 388 ret = test_range_bit(tree, delalloc_start, delalloc_end, 389 EXTENT_DELALLOC, cached_state); 390 391 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 392 if (!ret) { 393 __unlock_for_delalloc(inode, locked_folio, delalloc_start, 394 delalloc_end); 395 cond_resched(); 396 goto again; 397 } 398 *start = delalloc_start; 399 *end = delalloc_end; 400 out_failed: 401 return found; 402 } 403 404 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 405 const struct folio *locked_folio, 406 struct extent_state **cached, 407 u32 clear_bits, unsigned long page_ops) 408 { 409 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 410 411 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 412 end, page_ops); 413 } 414 415 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 416 { 417 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 418 419 if (!fsverity_active(folio->mapping->host) || 420 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 421 start >= i_size_read(folio->mapping->host)) 422 return true; 423 return fsverity_verify_folio(folio); 424 } 425 426 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 427 { 428 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 429 430 ASSERT(folio_pos(folio) <= start && 431 start + len <= folio_pos(folio) + PAGE_SIZE); 432 433 if (uptodate && btrfs_verify_folio(folio, start, len)) 434 btrfs_folio_set_uptodate(fs_info, folio, start, len); 435 else 436 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 437 438 if (!btrfs_is_subpage(fs_info, folio->mapping)) 439 folio_unlock(folio); 440 else 441 btrfs_subpage_end_reader(fs_info, folio, start, len); 442 } 443 444 /* 445 * After a write IO is done, we need to: 446 * 447 * - clear the uptodate bits on error 448 * - clear the writeback bits in the extent tree for the range 449 * - filio_end_writeback() if there is no more pending io for the folio 450 * 451 * Scheduling is not allowed, so the extent state tree is expected 452 * to have one and only one object corresponding to this IO. 453 */ 454 static void end_bbio_data_write(struct btrfs_bio *bbio) 455 { 456 struct btrfs_fs_info *fs_info = bbio->fs_info; 457 struct bio *bio = &bbio->bio; 458 int error = blk_status_to_errno(bio->bi_status); 459 struct folio_iter fi; 460 const u32 sectorsize = fs_info->sectorsize; 461 462 ASSERT(!bio_flagged(bio, BIO_CLONED)); 463 bio_for_each_folio_all(fi, bio) { 464 struct folio *folio = fi.folio; 465 u64 start = folio_pos(folio) + fi.offset; 466 u32 len = fi.length; 467 468 /* Only order 0 (single page) folios are allowed for data. */ 469 ASSERT(folio_order(folio) == 0); 470 471 /* Our read/write should always be sector aligned. */ 472 if (!IS_ALIGNED(fi.offset, sectorsize)) 473 btrfs_err(fs_info, 474 "partial page write in btrfs with offset %zu and length %zu", 475 fi.offset, fi.length); 476 else if (!IS_ALIGNED(fi.length, sectorsize)) 477 btrfs_info(fs_info, 478 "incomplete page write with offset %zu and length %zu", 479 fi.offset, fi.length); 480 481 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 482 !error); 483 if (error) 484 mapping_set_error(folio->mapping, error); 485 btrfs_folio_clear_writeback(fs_info, folio, start, len); 486 } 487 488 bio_put(bio); 489 } 490 491 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 492 { 493 ASSERT(folio_test_locked(folio)); 494 if (!btrfs_is_subpage(fs_info, folio->mapping)) 495 return; 496 497 ASSERT(folio_test_private(folio)); 498 btrfs_subpage_start_reader(fs_info, folio, folio_pos(folio), PAGE_SIZE); 499 } 500 501 /* 502 * After a data read IO is done, we need to: 503 * 504 * - clear the uptodate bits on error 505 * - set the uptodate bits if things worked 506 * - set the folio up to date if all extents in the tree are uptodate 507 * - clear the lock bit in the extent tree 508 * - unlock the folio if there are no other extents locked for it 509 * 510 * Scheduling is not allowed, so the extent state tree is expected 511 * to have one and only one object corresponding to this IO. 512 */ 513 static void end_bbio_data_read(struct btrfs_bio *bbio) 514 { 515 struct btrfs_fs_info *fs_info = bbio->fs_info; 516 struct bio *bio = &bbio->bio; 517 struct folio_iter fi; 518 const u32 sectorsize = fs_info->sectorsize; 519 520 ASSERT(!bio_flagged(bio, BIO_CLONED)); 521 bio_for_each_folio_all(fi, &bbio->bio) { 522 bool uptodate = !bio->bi_status; 523 struct folio *folio = fi.folio; 524 struct inode *inode = folio->mapping->host; 525 u64 start; 526 u64 end; 527 u32 len; 528 529 /* For now only order 0 folios are supported for data. */ 530 ASSERT(folio_order(folio) == 0); 531 btrfs_debug(fs_info, 532 "%s: bi_sector=%llu, err=%d, mirror=%u", 533 __func__, bio->bi_iter.bi_sector, bio->bi_status, 534 bbio->mirror_num); 535 536 /* 537 * We always issue full-sector reads, but if some block in a 538 * folio fails to read, blk_update_request() will advance 539 * bv_offset and adjust bv_len to compensate. Print a warning 540 * for unaligned offsets, and an error if they don't add up to 541 * a full sector. 542 */ 543 if (!IS_ALIGNED(fi.offset, sectorsize)) 544 btrfs_err(fs_info, 545 "partial page read in btrfs with offset %zu and length %zu", 546 fi.offset, fi.length); 547 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 548 btrfs_info(fs_info, 549 "incomplete page read with offset %zu and length %zu", 550 fi.offset, fi.length); 551 552 start = folio_pos(folio) + fi.offset; 553 end = start + fi.length - 1; 554 len = fi.length; 555 556 if (likely(uptodate)) { 557 loff_t i_size = i_size_read(inode); 558 pgoff_t end_index = i_size >> folio_shift(folio); 559 560 /* 561 * Zero out the remaining part if this range straddles 562 * i_size. 563 * 564 * Here we should only zero the range inside the folio, 565 * not touch anything else. 566 * 567 * NOTE: i_size is exclusive while end is inclusive. 568 */ 569 if (folio_index(folio) == end_index && i_size <= end) { 570 u32 zero_start = max(offset_in_folio(folio, i_size), 571 offset_in_folio(folio, start)); 572 u32 zero_len = offset_in_folio(folio, end) + 1 - 573 zero_start; 574 575 folio_zero_range(folio, zero_start, zero_len); 576 } 577 } 578 579 /* Update page status and unlock. */ 580 end_folio_read(folio, uptodate, start, len); 581 } 582 bio_put(bio); 583 } 584 585 /* 586 * Populate every free slot in a provided array with folios using GFP_NOFS. 587 * 588 * @nr_folios: number of folios to allocate 589 * @folio_array: the array to fill with folios; any existing non-NULL entries in 590 * the array will be skipped 591 * 592 * Return: 0 if all folios were able to be allocated; 593 * -ENOMEM otherwise, the partially allocated folios would be freed and 594 * the array slots zeroed 595 */ 596 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 597 { 598 for (int i = 0; i < nr_folios; i++) { 599 if (folio_array[i]) 600 continue; 601 folio_array[i] = folio_alloc(GFP_NOFS, 0); 602 if (!folio_array[i]) 603 goto error; 604 } 605 return 0; 606 error: 607 for (int i = 0; i < nr_folios; i++) { 608 if (folio_array[i]) 609 folio_put(folio_array[i]); 610 } 611 return -ENOMEM; 612 } 613 614 /* 615 * Populate every free slot in a provided array with pages, using GFP_NOFS. 616 * 617 * @nr_pages: number of pages to allocate 618 * @page_array: the array to fill with pages; any existing non-null entries in 619 * the array will be skipped 620 * @nofail: whether using __GFP_NOFAIL flag 621 * 622 * Return: 0 if all pages were able to be allocated; 623 * -ENOMEM otherwise, the partially allocated pages would be freed and 624 * the array slots zeroed 625 */ 626 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 627 bool nofail) 628 { 629 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 630 unsigned int allocated; 631 632 for (allocated = 0; allocated < nr_pages;) { 633 unsigned int last = allocated; 634 635 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 636 if (unlikely(allocated == last)) { 637 /* No progress, fail and do cleanup. */ 638 for (int i = 0; i < allocated; i++) { 639 __free_page(page_array[i]); 640 page_array[i] = NULL; 641 } 642 return -ENOMEM; 643 } 644 } 645 return 0; 646 } 647 648 /* 649 * Populate needed folios for the extent buffer. 650 * 651 * For now, the folios populated are always in order 0 (aka, single page). 652 */ 653 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 654 { 655 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 656 int num_pages = num_extent_pages(eb); 657 int ret; 658 659 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 660 if (ret < 0) 661 return ret; 662 663 for (int i = 0; i < num_pages; i++) 664 eb->folios[i] = page_folio(page_array[i]); 665 eb->folio_size = PAGE_SIZE; 666 eb->folio_shift = PAGE_SHIFT; 667 return 0; 668 } 669 670 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 671 struct folio *folio, u64 disk_bytenr, 672 unsigned int pg_offset) 673 { 674 struct bio *bio = &bio_ctrl->bbio->bio; 675 struct bio_vec *bvec = bio_last_bvec_all(bio); 676 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 677 struct folio *bv_folio = page_folio(bvec->bv_page); 678 679 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 680 /* 681 * For compression, all IO should have its logical bytenr set 682 * to the starting bytenr of the compressed extent. 683 */ 684 return bio->bi_iter.bi_sector == sector; 685 } 686 687 /* 688 * The contig check requires the following conditions to be met: 689 * 690 * 1) The folios are belonging to the same inode 691 * This is implied by the call chain. 692 * 693 * 2) The range has adjacent logical bytenr 694 * 695 * 3) The range has adjacent file offset 696 * This is required for the usage of btrfs_bio->file_offset. 697 */ 698 return bio_end_sector(bio) == sector && 699 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len == 700 folio_pos(folio) + pg_offset; 701 } 702 703 static void alloc_new_bio(struct btrfs_inode *inode, 704 struct btrfs_bio_ctrl *bio_ctrl, 705 u64 disk_bytenr, u64 file_offset) 706 { 707 struct btrfs_fs_info *fs_info = inode->root->fs_info; 708 struct btrfs_bio *bbio; 709 710 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 711 bio_ctrl->end_io_func, NULL); 712 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 713 bbio->inode = inode; 714 bbio->file_offset = file_offset; 715 bio_ctrl->bbio = bbio; 716 bio_ctrl->len_to_oe_boundary = U32_MAX; 717 718 /* Limit data write bios to the ordered boundary. */ 719 if (bio_ctrl->wbc) { 720 struct btrfs_ordered_extent *ordered; 721 722 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 723 if (ordered) { 724 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 725 ordered->file_offset + 726 ordered->disk_num_bytes - file_offset); 727 bbio->ordered = ordered; 728 } 729 730 /* 731 * Pick the last added device to support cgroup writeback. For 732 * multi-device file systems this means blk-cgroup policies have 733 * to always be set on the last added/replaced device. 734 * This is a bit odd but has been like that for a long time. 735 */ 736 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 737 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 738 } 739 } 740 741 /* 742 * @disk_bytenr: logical bytenr where the write will be 743 * @page: page to add to the bio 744 * @size: portion of page that we want to write to 745 * @pg_offset: offset of the new bio or to check whether we are adding 746 * a contiguous page to the previous one 747 * 748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 749 * new one in @bio_ctrl->bbio. 750 * The mirror number for this IO should already be initizlied in 751 * @bio_ctrl->mirror_num. 752 */ 753 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 754 u64 disk_bytenr, struct folio *folio, 755 size_t size, unsigned long pg_offset) 756 { 757 struct btrfs_inode *inode = folio_to_inode(folio); 758 759 ASSERT(pg_offset + size <= PAGE_SIZE); 760 ASSERT(bio_ctrl->end_io_func); 761 762 if (bio_ctrl->bbio && 763 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset)) 764 submit_one_bio(bio_ctrl); 765 766 do { 767 u32 len = size; 768 769 /* Allocate new bio if needed */ 770 if (!bio_ctrl->bbio) { 771 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 772 folio_pos(folio) + pg_offset); 773 } 774 775 /* Cap to the current ordered extent boundary if there is one. */ 776 if (len > bio_ctrl->len_to_oe_boundary) { 777 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 778 ASSERT(is_data_inode(inode)); 779 len = bio_ctrl->len_to_oe_boundary; 780 } 781 782 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 783 /* bio full: move on to a new one */ 784 submit_one_bio(bio_ctrl); 785 continue; 786 } 787 788 if (bio_ctrl->wbc) 789 wbc_account_cgroup_owner(bio_ctrl->wbc, &folio->page, 790 len); 791 792 size -= len; 793 pg_offset += len; 794 disk_bytenr += len; 795 796 /* 797 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 798 * sector aligned. alloc_new_bio() then sets it to the end of 799 * our ordered extent for writes into zoned devices. 800 * 801 * When len_to_oe_boundary is tracking an ordered extent, we 802 * trust the ordered extent code to align things properly, and 803 * the check above to cap our write to the ordered extent 804 * boundary is correct. 805 * 806 * When len_to_oe_boundary is U32_MAX, the cap above would 807 * result in a 4095 byte IO for the last folio right before 808 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 809 * the checks required to make sure we don't overflow the bio, 810 * and we should just ignore len_to_oe_boundary completely 811 * unless we're using it to track an ordered extent. 812 * 813 * It's pretty hard to make a bio sized U32_MAX, but it can 814 * happen when the page cache is able to feed us contiguous 815 * folios for large extents. 816 */ 817 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 818 bio_ctrl->len_to_oe_boundary -= len; 819 820 /* Ordered extent boundary: move on to a new bio. */ 821 if (bio_ctrl->len_to_oe_boundary == 0) 822 submit_one_bio(bio_ctrl); 823 } while (size); 824 } 825 826 static int attach_extent_buffer_folio(struct extent_buffer *eb, 827 struct folio *folio, 828 struct btrfs_subpage *prealloc) 829 { 830 struct btrfs_fs_info *fs_info = eb->fs_info; 831 int ret = 0; 832 833 /* 834 * If the page is mapped to btree inode, we should hold the private 835 * lock to prevent race. 836 * For cloned or dummy extent buffers, their pages are not mapped and 837 * will not race with any other ebs. 838 */ 839 if (folio->mapping) 840 lockdep_assert_held(&folio->mapping->i_private_lock); 841 842 if (fs_info->nodesize >= PAGE_SIZE) { 843 if (!folio_test_private(folio)) 844 folio_attach_private(folio, eb); 845 else 846 WARN_ON(folio_get_private(folio) != eb); 847 return 0; 848 } 849 850 /* Already mapped, just free prealloc */ 851 if (folio_test_private(folio)) { 852 btrfs_free_subpage(prealloc); 853 return 0; 854 } 855 856 if (prealloc) 857 /* Has preallocated memory for subpage */ 858 folio_attach_private(folio, prealloc); 859 else 860 /* Do new allocation to attach subpage */ 861 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 862 return ret; 863 } 864 865 int set_page_extent_mapped(struct page *page) 866 { 867 return set_folio_extent_mapped(page_folio(page)); 868 } 869 870 int set_folio_extent_mapped(struct folio *folio) 871 { 872 struct btrfs_fs_info *fs_info; 873 874 ASSERT(folio->mapping); 875 876 if (folio_test_private(folio)) 877 return 0; 878 879 fs_info = folio_to_fs_info(folio); 880 881 if (btrfs_is_subpage(fs_info, folio->mapping)) 882 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 883 884 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 885 return 0; 886 } 887 888 void clear_folio_extent_mapped(struct folio *folio) 889 { 890 struct btrfs_fs_info *fs_info; 891 892 ASSERT(folio->mapping); 893 894 if (!folio_test_private(folio)) 895 return; 896 897 fs_info = folio_to_fs_info(folio); 898 if (btrfs_is_subpage(fs_info, folio->mapping)) 899 return btrfs_detach_subpage(fs_info, folio); 900 901 folio_detach_private(folio); 902 } 903 904 static struct extent_map *__get_extent_map(struct inode *inode, 905 struct folio *folio, u64 start, 906 u64 len, struct extent_map **em_cached) 907 { 908 struct extent_map *em; 909 struct extent_state *cached_state = NULL; 910 911 ASSERT(em_cached); 912 913 if (*em_cached) { 914 em = *em_cached; 915 if (extent_map_in_tree(em) && start >= em->start && 916 start < extent_map_end(em)) { 917 refcount_inc(&em->refs); 918 return em; 919 } 920 921 free_extent_map(em); 922 *em_cached = NULL; 923 } 924 925 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), start, start + len - 1, &cached_state); 926 em = btrfs_get_extent(BTRFS_I(inode), folio, start, len); 927 if (!IS_ERR(em)) { 928 BUG_ON(*em_cached); 929 refcount_inc(&em->refs); 930 *em_cached = em; 931 } 932 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len - 1, &cached_state); 933 934 return em; 935 } 936 /* 937 * basic readpage implementation. Locked extent state structs are inserted 938 * into the tree that are removed when the IO is done (by the end_io 939 * handlers) 940 * XXX JDM: This needs looking at to ensure proper page locking 941 * return 0 on success, otherwise return error 942 */ 943 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 944 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 945 { 946 struct inode *inode = folio->mapping->host; 947 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 948 u64 start = folio_pos(folio); 949 const u64 end = start + PAGE_SIZE - 1; 950 u64 cur = start; 951 u64 extent_offset; 952 u64 last_byte = i_size_read(inode); 953 u64 block_start; 954 struct extent_map *em; 955 int ret = 0; 956 size_t pg_offset = 0; 957 size_t iosize; 958 size_t blocksize = fs_info->sectorsize; 959 960 ret = set_folio_extent_mapped(folio); 961 if (ret < 0) { 962 folio_unlock(folio); 963 return ret; 964 } 965 966 if (folio->index == last_byte >> folio_shift(folio)) { 967 size_t zero_offset = offset_in_folio(folio, last_byte); 968 969 if (zero_offset) { 970 iosize = folio_size(folio) - zero_offset; 971 folio_zero_range(folio, zero_offset, iosize); 972 } 973 } 974 bio_ctrl->end_io_func = end_bbio_data_read; 975 begin_folio_read(fs_info, folio); 976 while (cur <= end) { 977 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 978 bool force_bio_submit = false; 979 u64 disk_bytenr; 980 981 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 982 if (cur >= last_byte) { 983 iosize = folio_size(folio) - pg_offset; 984 folio_zero_range(folio, pg_offset, iosize); 985 end_folio_read(folio, true, cur, iosize); 986 break; 987 } 988 em = __get_extent_map(inode, folio, cur, end - cur + 1, 989 em_cached); 990 if (IS_ERR(em)) { 991 end_folio_read(folio, false, cur, end + 1 - cur); 992 return PTR_ERR(em); 993 } 994 extent_offset = cur - em->start; 995 BUG_ON(extent_map_end(em) <= cur); 996 BUG_ON(end < cur); 997 998 compress_type = extent_map_compression(em); 999 1000 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1001 iosize = ALIGN(iosize, blocksize); 1002 if (compress_type != BTRFS_COMPRESS_NONE) 1003 disk_bytenr = em->disk_bytenr; 1004 else 1005 disk_bytenr = extent_map_block_start(em) + extent_offset; 1006 block_start = extent_map_block_start(em); 1007 if (em->flags & EXTENT_FLAG_PREALLOC) 1008 block_start = EXTENT_MAP_HOLE; 1009 1010 /* 1011 * If we have a file range that points to a compressed extent 1012 * and it's followed by a consecutive file range that points 1013 * to the same compressed extent (possibly with a different 1014 * offset and/or length, so it either points to the whole extent 1015 * or only part of it), we must make sure we do not submit a 1016 * single bio to populate the folios for the 2 ranges because 1017 * this makes the compressed extent read zero out the folios 1018 * belonging to the 2nd range. Imagine the following scenario: 1019 * 1020 * File layout 1021 * [0 - 8K] [8K - 24K] 1022 * | | 1023 * | | 1024 * points to extent X, points to extent X, 1025 * offset 4K, length of 8K offset 0, length 16K 1026 * 1027 * [extent X, compressed length = 4K uncompressed length = 16K] 1028 * 1029 * If the bio to read the compressed extent covers both ranges, 1030 * it will decompress extent X into the folios belonging to the 1031 * first range and then it will stop, zeroing out the remaining 1032 * folios that belong to the other range that points to extent X. 1033 * So here we make sure we submit 2 bios, one for the first 1034 * range and another one for the third range. Both will target 1035 * the same physical extent from disk, but we can't currently 1036 * make the compressed bio endio callback populate the folios 1037 * for both ranges because each compressed bio is tightly 1038 * coupled with a single extent map, and each range can have 1039 * an extent map with a different offset value relative to the 1040 * uncompressed data of our extent and different lengths. This 1041 * is a corner case so we prioritize correctness over 1042 * non-optimal behavior (submitting 2 bios for the same extent). 1043 */ 1044 if (compress_type != BTRFS_COMPRESS_NONE && 1045 prev_em_start && *prev_em_start != (u64)-1 && 1046 *prev_em_start != em->start) 1047 force_bio_submit = true; 1048 1049 if (prev_em_start) 1050 *prev_em_start = em->start; 1051 1052 free_extent_map(em); 1053 em = NULL; 1054 1055 /* we've found a hole, just zero and go on */ 1056 if (block_start == EXTENT_MAP_HOLE) { 1057 folio_zero_range(folio, pg_offset, iosize); 1058 1059 end_folio_read(folio, true, cur, iosize); 1060 cur = cur + iosize; 1061 pg_offset += iosize; 1062 continue; 1063 } 1064 /* the get_extent function already copied into the folio */ 1065 if (block_start == EXTENT_MAP_INLINE) { 1066 end_folio_read(folio, true, cur, iosize); 1067 cur = cur + iosize; 1068 pg_offset += iosize; 1069 continue; 1070 } 1071 1072 if (bio_ctrl->compress_type != compress_type) { 1073 submit_one_bio(bio_ctrl); 1074 bio_ctrl->compress_type = compress_type; 1075 } 1076 1077 if (force_bio_submit) 1078 submit_one_bio(bio_ctrl); 1079 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize, 1080 pg_offset); 1081 cur = cur + iosize; 1082 pg_offset += iosize; 1083 } 1084 1085 return 0; 1086 } 1087 1088 int btrfs_read_folio(struct file *file, struct folio *folio) 1089 { 1090 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1091 struct extent_map *em_cached = NULL; 1092 int ret; 1093 1094 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1095 free_extent_map(em_cached); 1096 1097 /* 1098 * If btrfs_do_readpage() failed we will want to submit the assembled 1099 * bio to do the cleanup. 1100 */ 1101 submit_one_bio(&bio_ctrl); 1102 return ret; 1103 } 1104 1105 /* 1106 * helper for extent_writepage(), doing all of the delayed allocation setup. 1107 * 1108 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1109 * to write the page (copy into inline extent). In this case the IO has 1110 * been started and the page is already unlocked. 1111 * 1112 * This returns 0 if all went well (page still locked) 1113 * This returns < 0 if there were errors (page still locked) 1114 */ 1115 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1116 struct folio *folio, 1117 struct btrfs_bio_ctrl *bio_ctrl) 1118 { 1119 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1120 struct writeback_control *wbc = bio_ctrl->wbc; 1121 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping); 1122 const u64 page_start = folio_pos(folio); 1123 const u64 page_end = page_start + folio_size(folio) - 1; 1124 /* 1125 * Save the last found delalloc end. As the delalloc end can go beyond 1126 * page boundary, thus we cannot rely on subpage bitmap to locate the 1127 * last delalloc end. 1128 */ 1129 u64 last_delalloc_end = 0; 1130 u64 delalloc_start = page_start; 1131 u64 delalloc_end = page_end; 1132 u64 delalloc_to_write = 0; 1133 int ret = 0; 1134 1135 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1136 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) { 1137 ASSERT(fs_info->sectors_per_page > 1); 1138 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1139 } else { 1140 bio_ctrl->submit_bitmap = 1; 1141 } 1142 1143 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1144 while (delalloc_start < page_end) { 1145 delalloc_end = page_end; 1146 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1147 &delalloc_start, &delalloc_end)) { 1148 delalloc_start = delalloc_end + 1; 1149 continue; 1150 } 1151 btrfs_folio_set_writer_lock(fs_info, folio, delalloc_start, 1152 min(delalloc_end, page_end) + 1 - 1153 delalloc_start); 1154 last_delalloc_end = delalloc_end; 1155 delalloc_start = delalloc_end + 1; 1156 } 1157 delalloc_start = page_start; 1158 1159 if (!last_delalloc_end) 1160 goto out; 1161 1162 /* Run the delalloc ranges for the above locked ranges. */ 1163 while (delalloc_start < page_end) { 1164 u64 found_start; 1165 u32 found_len; 1166 bool found; 1167 1168 if (!is_subpage) { 1169 /* 1170 * For non-subpage case, the found delalloc range must 1171 * cover this folio and there must be only one locked 1172 * delalloc range. 1173 */ 1174 found_start = page_start; 1175 found_len = last_delalloc_end + 1 - found_start; 1176 found = true; 1177 } else { 1178 found = btrfs_subpage_find_writer_locked(fs_info, folio, 1179 delalloc_start, &found_start, &found_len); 1180 } 1181 if (!found) 1182 break; 1183 /* 1184 * The subpage range covers the last sector, the delalloc range may 1185 * end beyond the folio boundary, use the saved delalloc_end 1186 * instead. 1187 */ 1188 if (found_start + found_len >= page_end) 1189 found_len = last_delalloc_end + 1 - found_start; 1190 1191 if (ret >= 0) { 1192 /* No errors hit so far, run the current delalloc range. */ 1193 ret = btrfs_run_delalloc_range(inode, folio, 1194 found_start, 1195 found_start + found_len - 1, 1196 wbc); 1197 } else { 1198 /* 1199 * We've hit an error during previous delalloc range, 1200 * have to cleanup the remaining locked ranges. 1201 */ 1202 unlock_extent(&inode->io_tree, found_start, 1203 found_start + found_len - 1, NULL); 1204 __unlock_for_delalloc(&inode->vfs_inode, folio, 1205 found_start, 1206 found_start + found_len - 1); 1207 } 1208 1209 /* 1210 * We have some ranges that's going to be submitted asynchronously 1211 * (compression or inline). These range have their own control 1212 * on when to unlock the pages. We should not touch them 1213 * anymore, so clear the range from the submission bitmap. 1214 */ 1215 if (ret > 0) { 1216 unsigned int start_bit = (found_start - page_start) >> 1217 fs_info->sectorsize_bits; 1218 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1219 page_start) >> fs_info->sectorsize_bits; 1220 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1221 } 1222 /* 1223 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1224 * thus for the last range, we cannot touch the folio anymore. 1225 */ 1226 if (found_start + found_len >= last_delalloc_end + 1) 1227 break; 1228 1229 delalloc_start = found_start + found_len; 1230 } 1231 if (ret < 0) 1232 return ret; 1233 out: 1234 if (last_delalloc_end) 1235 delalloc_end = last_delalloc_end; 1236 else 1237 delalloc_end = page_end; 1238 /* 1239 * delalloc_end is already one less than the total length, so 1240 * we don't subtract one from PAGE_SIZE 1241 */ 1242 delalloc_to_write += 1243 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1244 1245 /* 1246 * If all ranges are submitted asynchronously, we just need to account 1247 * for them here. 1248 */ 1249 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) { 1250 wbc->nr_to_write -= delalloc_to_write; 1251 return 1; 1252 } 1253 1254 if (wbc->nr_to_write < delalloc_to_write) { 1255 int thresh = 8192; 1256 1257 if (delalloc_to_write < thresh * 2) 1258 thresh = delalloc_to_write; 1259 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1260 thresh); 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Return 0 if we have submitted or queued the sector for submission. 1268 * Return <0 for critical errors. 1269 * 1270 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1271 */ 1272 static int submit_one_sector(struct btrfs_inode *inode, 1273 struct folio *folio, 1274 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1275 loff_t i_size) 1276 { 1277 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1278 struct extent_map *em; 1279 u64 block_start; 1280 u64 disk_bytenr; 1281 u64 extent_offset; 1282 u64 em_end; 1283 const u32 sectorsize = fs_info->sectorsize; 1284 1285 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1286 1287 /* @filepos >= i_size case should be handled by the caller. */ 1288 ASSERT(filepos < i_size); 1289 1290 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1291 if (IS_ERR(em)) 1292 return PTR_ERR_OR_ZERO(em); 1293 1294 extent_offset = filepos - em->start; 1295 em_end = extent_map_end(em); 1296 ASSERT(filepos <= em_end); 1297 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1298 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1299 1300 block_start = extent_map_block_start(em); 1301 disk_bytenr = extent_map_block_start(em) + extent_offset; 1302 1303 ASSERT(!extent_map_is_compressed(em)); 1304 ASSERT(block_start != EXTENT_MAP_HOLE); 1305 ASSERT(block_start != EXTENT_MAP_INLINE); 1306 1307 free_extent_map(em); 1308 em = NULL; 1309 1310 /* 1311 * Although the PageDirty bit is cleared before entering this 1312 * function, subpage dirty bit is not cleared. 1313 * So clear subpage dirty bit here so next time we won't submit 1314 * a folio for a range already written to disk. 1315 */ 1316 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1317 btrfs_set_range_writeback(inode, filepos, filepos + sectorsize - 1); 1318 /* 1319 * Above call should set the whole folio with writeback flag, even 1320 * just for a single subpage sector. 1321 * As long as the folio is properly locked and the range is correct, 1322 * we should always get the folio with writeback flag. 1323 */ 1324 ASSERT(folio_test_writeback(folio)); 1325 1326 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1327 sectorsize, filepos - folio_pos(folio)); 1328 return 0; 1329 } 1330 1331 /* 1332 * Helper for extent_writepage(). This calls the writepage start hooks, 1333 * and does the loop to map the page into extents and bios. 1334 * 1335 * We return 1 if the IO is started and the page is unlocked, 1336 * 0 if all went well (page still locked) 1337 * < 0 if there were errors (page still locked) 1338 */ 1339 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1340 struct folio *folio, 1341 u64 start, u32 len, 1342 struct btrfs_bio_ctrl *bio_ctrl, 1343 loff_t i_size) 1344 { 1345 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1346 unsigned long range_bitmap = 0; 1347 bool submitted_io = false; 1348 const u64 folio_start = folio_pos(folio); 1349 u64 cur; 1350 int bit; 1351 int ret = 0; 1352 1353 ASSERT(start >= folio_start && 1354 start + len <= folio_start + folio_size(folio)); 1355 1356 ret = btrfs_writepage_cow_fixup(folio); 1357 if (ret) { 1358 /* Fixup worker will requeue */ 1359 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1360 folio_unlock(folio); 1361 return 1; 1362 } 1363 1364 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1365 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1366 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1367 fs_info->sectors_per_page); 1368 1369 bio_ctrl->end_io_func = end_bbio_data_write; 1370 1371 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) { 1372 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1373 1374 if (cur >= i_size) { 1375 btrfs_mark_ordered_io_finished(inode, folio, cur, 1376 start + len - cur, true); 1377 /* 1378 * This range is beyond i_size, thus we don't need to 1379 * bother writing back. 1380 * But we still need to clear the dirty subpage bit, or 1381 * the next time the folio gets dirtied, we will try to 1382 * writeback the sectors with subpage dirty bits, 1383 * causing writeback without ordered extent. 1384 */ 1385 btrfs_folio_clear_dirty(fs_info, folio, cur, 1386 start + len - cur); 1387 break; 1388 } 1389 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1390 if (ret < 0) 1391 goto out; 1392 submitted_io = true; 1393 } 1394 1395 btrfs_folio_assert_not_dirty(fs_info, folio, start, len); 1396 out: 1397 /* 1398 * If we didn't submitted any sector (>= i_size), folio dirty get 1399 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1400 * by folio_start_writeback() if the folio is not dirty). 1401 * 1402 * Here we set writeback and clear for the range. If the full folio 1403 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1404 */ 1405 if (!submitted_io) { 1406 btrfs_folio_set_writeback(fs_info, folio, start, len); 1407 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1408 } 1409 return ret; 1410 } 1411 1412 /* 1413 * the writepage semantics are similar to regular writepage. extent 1414 * records are inserted to lock ranges in the tree, and as dirty areas 1415 * are found, they are marked writeback. Then the lock bits are removed 1416 * and the end_io handler clears the writeback ranges 1417 * 1418 * Return 0 if everything goes well. 1419 * Return <0 for error. 1420 */ 1421 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1422 { 1423 struct inode *inode = folio->mapping->host; 1424 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1425 const u64 page_start = folio_pos(folio); 1426 int ret; 1427 size_t pg_offset; 1428 loff_t i_size = i_size_read(inode); 1429 unsigned long end_index = i_size >> PAGE_SHIFT; 1430 1431 trace_extent_writepage(folio, inode, bio_ctrl->wbc); 1432 1433 WARN_ON(!folio_test_locked(folio)); 1434 1435 pg_offset = offset_in_folio(folio, i_size); 1436 if (folio->index > end_index || 1437 (folio->index == end_index && !pg_offset)) { 1438 folio_invalidate(folio, 0, folio_size(folio)); 1439 folio_unlock(folio); 1440 return 0; 1441 } 1442 1443 if (folio->index == end_index) 1444 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1445 1446 /* 1447 * Default to unlock the whole folio. 1448 * The proper bitmap can only be initialized until writepage_delalloc(). 1449 */ 1450 bio_ctrl->submit_bitmap = (unsigned long)-1; 1451 ret = set_folio_extent_mapped(folio); 1452 if (ret < 0) 1453 goto done; 1454 1455 ret = writepage_delalloc(BTRFS_I(inode), folio, bio_ctrl); 1456 if (ret == 1) 1457 return 0; 1458 if (ret) 1459 goto done; 1460 1461 ret = extent_writepage_io(BTRFS_I(inode), folio, folio_pos(folio), 1462 PAGE_SIZE, bio_ctrl, i_size); 1463 if (ret == 1) 1464 return 0; 1465 1466 bio_ctrl->wbc->nr_to_write--; 1467 1468 done: 1469 if (ret) { 1470 btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio, 1471 page_start, PAGE_SIZE, !ret); 1472 mapping_set_error(folio->mapping, ret); 1473 } 1474 1475 /* 1476 * Only unlock ranges that are submitted. As there can be some async 1477 * submitted ranges inside the folio. 1478 */ 1479 btrfs_folio_end_writer_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1480 ASSERT(ret <= 0); 1481 return ret; 1482 } 1483 1484 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1485 { 1486 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1487 TASK_UNINTERRUPTIBLE); 1488 } 1489 1490 /* 1491 * Lock extent buffer status and pages for writeback. 1492 * 1493 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1494 * extent buffer is not dirty) 1495 * Return %true is the extent buffer is submitted to bio. 1496 */ 1497 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1498 struct writeback_control *wbc) 1499 { 1500 struct btrfs_fs_info *fs_info = eb->fs_info; 1501 bool ret = false; 1502 1503 btrfs_tree_lock(eb); 1504 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1505 btrfs_tree_unlock(eb); 1506 if (wbc->sync_mode != WB_SYNC_ALL) 1507 return false; 1508 wait_on_extent_buffer_writeback(eb); 1509 btrfs_tree_lock(eb); 1510 } 1511 1512 /* 1513 * We need to do this to prevent races in people who check if the eb is 1514 * under IO since we can end up having no IO bits set for a short period 1515 * of time. 1516 */ 1517 spin_lock(&eb->refs_lock); 1518 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1519 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1520 spin_unlock(&eb->refs_lock); 1521 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1522 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1523 -eb->len, 1524 fs_info->dirty_metadata_batch); 1525 ret = true; 1526 } else { 1527 spin_unlock(&eb->refs_lock); 1528 } 1529 btrfs_tree_unlock(eb); 1530 return ret; 1531 } 1532 1533 static void set_btree_ioerr(struct extent_buffer *eb) 1534 { 1535 struct btrfs_fs_info *fs_info = eb->fs_info; 1536 1537 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1538 1539 /* 1540 * A read may stumble upon this buffer later, make sure that it gets an 1541 * error and knows there was an error. 1542 */ 1543 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1544 1545 /* 1546 * We need to set the mapping with the io error as well because a write 1547 * error will flip the file system readonly, and then syncfs() will 1548 * return a 0 because we are readonly if we don't modify the err seq for 1549 * the superblock. 1550 */ 1551 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1552 1553 /* 1554 * If writeback for a btree extent that doesn't belong to a log tree 1555 * failed, increment the counter transaction->eb_write_errors. 1556 * We do this because while the transaction is running and before it's 1557 * committing (when we call filemap_fdata[write|wait]_range against 1558 * the btree inode), we might have 1559 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1560 * returns an error or an error happens during writeback, when we're 1561 * committing the transaction we wouldn't know about it, since the pages 1562 * can be no longer dirty nor marked anymore for writeback (if a 1563 * subsequent modification to the extent buffer didn't happen before the 1564 * transaction commit), which makes filemap_fdata[write|wait]_range not 1565 * able to find the pages which contain errors at transaction 1566 * commit time. So if this happens we must abort the transaction, 1567 * otherwise we commit a super block with btree roots that point to 1568 * btree nodes/leafs whose content on disk is invalid - either garbage 1569 * or the content of some node/leaf from a past generation that got 1570 * cowed or deleted and is no longer valid. 1571 * 1572 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1573 * not be enough - we need to distinguish between log tree extents vs 1574 * non-log tree extents, and the next filemap_fdatawait_range() call 1575 * will catch and clear such errors in the mapping - and that call might 1576 * be from a log sync and not from a transaction commit. Also, checking 1577 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1578 * not done and would not be reliable - the eb might have been released 1579 * from memory and reading it back again means that flag would not be 1580 * set (since it's a runtime flag, not persisted on disk). 1581 * 1582 * Using the flags below in the btree inode also makes us achieve the 1583 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1584 * writeback for all dirty pages and before filemap_fdatawait_range() 1585 * is called, the writeback for all dirty pages had already finished 1586 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1587 * filemap_fdatawait_range() would return success, as it could not know 1588 * that writeback errors happened (the pages were no longer tagged for 1589 * writeback). 1590 */ 1591 switch (eb->log_index) { 1592 case -1: 1593 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1594 break; 1595 case 0: 1596 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1597 break; 1598 case 1: 1599 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1600 break; 1601 default: 1602 BUG(); /* unexpected, logic error */ 1603 } 1604 } 1605 1606 /* 1607 * The endio specific version which won't touch any unsafe spinlock in endio 1608 * context. 1609 */ 1610 static struct extent_buffer *find_extent_buffer_nolock( 1611 const struct btrfs_fs_info *fs_info, u64 start) 1612 { 1613 struct extent_buffer *eb; 1614 1615 rcu_read_lock(); 1616 eb = radix_tree_lookup(&fs_info->buffer_radix, 1617 start >> fs_info->sectorsize_bits); 1618 if (eb && atomic_inc_not_zero(&eb->refs)) { 1619 rcu_read_unlock(); 1620 return eb; 1621 } 1622 rcu_read_unlock(); 1623 return NULL; 1624 } 1625 1626 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1627 { 1628 struct extent_buffer *eb = bbio->private; 1629 struct btrfs_fs_info *fs_info = eb->fs_info; 1630 bool uptodate = !bbio->bio.bi_status; 1631 struct folio_iter fi; 1632 u32 bio_offset = 0; 1633 1634 if (!uptodate) 1635 set_btree_ioerr(eb); 1636 1637 bio_for_each_folio_all(fi, &bbio->bio) { 1638 u64 start = eb->start + bio_offset; 1639 struct folio *folio = fi.folio; 1640 u32 len = fi.length; 1641 1642 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1643 bio_offset += len; 1644 } 1645 1646 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1647 smp_mb__after_atomic(); 1648 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1649 1650 bio_put(&bbio->bio); 1651 } 1652 1653 static void prepare_eb_write(struct extent_buffer *eb) 1654 { 1655 u32 nritems; 1656 unsigned long start; 1657 unsigned long end; 1658 1659 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1660 1661 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1662 nritems = btrfs_header_nritems(eb); 1663 if (btrfs_header_level(eb) > 0) { 1664 end = btrfs_node_key_ptr_offset(eb, nritems); 1665 memzero_extent_buffer(eb, end, eb->len - end); 1666 } else { 1667 /* 1668 * Leaf: 1669 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1670 */ 1671 start = btrfs_item_nr_offset(eb, nritems); 1672 end = btrfs_item_nr_offset(eb, 0); 1673 if (nritems == 0) 1674 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1675 else 1676 end += btrfs_item_offset(eb, nritems - 1); 1677 memzero_extent_buffer(eb, start, end - start); 1678 } 1679 } 1680 1681 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1682 struct writeback_control *wbc) 1683 { 1684 struct btrfs_fs_info *fs_info = eb->fs_info; 1685 struct btrfs_bio *bbio; 1686 1687 prepare_eb_write(eb); 1688 1689 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1690 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1691 eb->fs_info, end_bbio_meta_write, eb); 1692 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1693 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1694 wbc_init_bio(wbc, &bbio->bio); 1695 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1696 bbio->file_offset = eb->start; 1697 if (fs_info->nodesize < PAGE_SIZE) { 1698 struct folio *folio = eb->folios[0]; 1699 bool ret; 1700 1701 folio_lock(folio); 1702 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1703 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1704 eb->len)) { 1705 folio_clear_dirty_for_io(folio); 1706 wbc->nr_to_write--; 1707 } 1708 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1709 eb->start - folio_pos(folio)); 1710 ASSERT(ret); 1711 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len); 1712 folio_unlock(folio); 1713 } else { 1714 int num_folios = num_extent_folios(eb); 1715 1716 for (int i = 0; i < num_folios; i++) { 1717 struct folio *folio = eb->folios[i]; 1718 bool ret; 1719 1720 folio_lock(folio); 1721 folio_clear_dirty_for_io(folio); 1722 folio_start_writeback(folio); 1723 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1724 ASSERT(ret); 1725 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), 1726 eb->folio_size); 1727 wbc->nr_to_write -= folio_nr_pages(folio); 1728 folio_unlock(folio); 1729 } 1730 } 1731 btrfs_submit_bbio(bbio, 0); 1732 } 1733 1734 /* 1735 * Submit one subpage btree page. 1736 * 1737 * The main difference to submit_eb_page() is: 1738 * - Page locking 1739 * For subpage, we don't rely on page locking at all. 1740 * 1741 * - Flush write bio 1742 * We only flush bio if we may be unable to fit current extent buffers into 1743 * current bio. 1744 * 1745 * Return >=0 for the number of submitted extent buffers. 1746 * Return <0 for fatal error. 1747 */ 1748 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc) 1749 { 1750 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1751 int submitted = 0; 1752 u64 folio_start = folio_pos(folio); 1753 int bit_start = 0; 1754 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1755 1756 /* Lock and write each dirty extent buffers in the range */ 1757 while (bit_start < fs_info->sectors_per_page) { 1758 struct btrfs_subpage *subpage = folio_get_private(folio); 1759 struct extent_buffer *eb; 1760 unsigned long flags; 1761 u64 start; 1762 1763 /* 1764 * Take private lock to ensure the subpage won't be detached 1765 * in the meantime. 1766 */ 1767 spin_lock(&folio->mapping->i_private_lock); 1768 if (!folio_test_private(folio)) { 1769 spin_unlock(&folio->mapping->i_private_lock); 1770 break; 1771 } 1772 spin_lock_irqsave(&subpage->lock, flags); 1773 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page, 1774 subpage->bitmaps)) { 1775 spin_unlock_irqrestore(&subpage->lock, flags); 1776 spin_unlock(&folio->mapping->i_private_lock); 1777 bit_start++; 1778 continue; 1779 } 1780 1781 start = folio_start + bit_start * fs_info->sectorsize; 1782 bit_start += sectors_per_node; 1783 1784 /* 1785 * Here we just want to grab the eb without touching extra 1786 * spin locks, so call find_extent_buffer_nolock(). 1787 */ 1788 eb = find_extent_buffer_nolock(fs_info, start); 1789 spin_unlock_irqrestore(&subpage->lock, flags); 1790 spin_unlock(&folio->mapping->i_private_lock); 1791 1792 /* 1793 * The eb has already reached 0 refs thus find_extent_buffer() 1794 * doesn't return it. We don't need to write back such eb 1795 * anyway. 1796 */ 1797 if (!eb) 1798 continue; 1799 1800 if (lock_extent_buffer_for_io(eb, wbc)) { 1801 write_one_eb(eb, wbc); 1802 submitted++; 1803 } 1804 free_extent_buffer(eb); 1805 } 1806 return submitted; 1807 } 1808 1809 /* 1810 * Submit all page(s) of one extent buffer. 1811 * 1812 * @page: the page of one extent buffer 1813 * @eb_context: to determine if we need to submit this page, if current page 1814 * belongs to this eb, we don't need to submit 1815 * 1816 * The caller should pass each page in their bytenr order, and here we use 1817 * @eb_context to determine if we have submitted pages of one extent buffer. 1818 * 1819 * If we have, we just skip until we hit a new page that doesn't belong to 1820 * current @eb_context. 1821 * 1822 * If not, we submit all the page(s) of the extent buffer. 1823 * 1824 * Return >0 if we have submitted the extent buffer successfully. 1825 * Return 0 if we don't need to submit the page, as it's already submitted by 1826 * previous call. 1827 * Return <0 for fatal error. 1828 */ 1829 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx) 1830 { 1831 struct writeback_control *wbc = ctx->wbc; 1832 struct address_space *mapping = folio->mapping; 1833 struct extent_buffer *eb; 1834 int ret; 1835 1836 if (!folio_test_private(folio)) 1837 return 0; 1838 1839 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 1840 return submit_eb_subpage(folio, wbc); 1841 1842 spin_lock(&mapping->i_private_lock); 1843 if (!folio_test_private(folio)) { 1844 spin_unlock(&mapping->i_private_lock); 1845 return 0; 1846 } 1847 1848 eb = folio_get_private(folio); 1849 1850 /* 1851 * Shouldn't happen and normally this would be a BUG_ON but no point 1852 * crashing the machine for something we can survive anyway. 1853 */ 1854 if (WARN_ON(!eb)) { 1855 spin_unlock(&mapping->i_private_lock); 1856 return 0; 1857 } 1858 1859 if (eb == ctx->eb) { 1860 spin_unlock(&mapping->i_private_lock); 1861 return 0; 1862 } 1863 ret = atomic_inc_not_zero(&eb->refs); 1864 spin_unlock(&mapping->i_private_lock); 1865 if (!ret) 1866 return 0; 1867 1868 ctx->eb = eb; 1869 1870 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1871 if (ret) { 1872 if (ret == -EBUSY) 1873 ret = 0; 1874 free_extent_buffer(eb); 1875 return ret; 1876 } 1877 1878 if (!lock_extent_buffer_for_io(eb, wbc)) { 1879 free_extent_buffer(eb); 1880 return 0; 1881 } 1882 /* Implies write in zoned mode. */ 1883 if (ctx->zoned_bg) { 1884 /* Mark the last eb in the block group. */ 1885 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1886 ctx->zoned_bg->meta_write_pointer += eb->len; 1887 } 1888 write_one_eb(eb, wbc); 1889 free_extent_buffer(eb); 1890 return 1; 1891 } 1892 1893 int btree_write_cache_pages(struct address_space *mapping, 1894 struct writeback_control *wbc) 1895 { 1896 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1897 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1898 int ret = 0; 1899 int done = 0; 1900 int nr_to_write_done = 0; 1901 struct folio_batch fbatch; 1902 unsigned int nr_folios; 1903 pgoff_t index; 1904 pgoff_t end; /* Inclusive */ 1905 int scanned = 0; 1906 xa_mark_t tag; 1907 1908 folio_batch_init(&fbatch); 1909 if (wbc->range_cyclic) { 1910 index = mapping->writeback_index; /* Start from prev offset */ 1911 end = -1; 1912 /* 1913 * Start from the beginning does not need to cycle over the 1914 * range, mark it as scanned. 1915 */ 1916 scanned = (index == 0); 1917 } else { 1918 index = wbc->range_start >> PAGE_SHIFT; 1919 end = wbc->range_end >> PAGE_SHIFT; 1920 scanned = 1; 1921 } 1922 if (wbc->sync_mode == WB_SYNC_ALL) 1923 tag = PAGECACHE_TAG_TOWRITE; 1924 else 1925 tag = PAGECACHE_TAG_DIRTY; 1926 btrfs_zoned_meta_io_lock(fs_info); 1927 retry: 1928 if (wbc->sync_mode == WB_SYNC_ALL) 1929 tag_pages_for_writeback(mapping, index, end); 1930 while (!done && !nr_to_write_done && (index <= end) && 1931 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1932 tag, &fbatch))) { 1933 unsigned i; 1934 1935 for (i = 0; i < nr_folios; i++) { 1936 struct folio *folio = fbatch.folios[i]; 1937 1938 ret = submit_eb_page(folio, &ctx); 1939 if (ret == 0) 1940 continue; 1941 if (ret < 0) { 1942 done = 1; 1943 break; 1944 } 1945 1946 /* 1947 * the filesystem may choose to bump up nr_to_write. 1948 * We have to make sure to honor the new nr_to_write 1949 * at any time 1950 */ 1951 nr_to_write_done = wbc->nr_to_write <= 0; 1952 } 1953 folio_batch_release(&fbatch); 1954 cond_resched(); 1955 } 1956 if (!scanned && !done) { 1957 /* 1958 * We hit the last page and there is more work to be done: wrap 1959 * back to the start of the file 1960 */ 1961 scanned = 1; 1962 index = 0; 1963 goto retry; 1964 } 1965 /* 1966 * If something went wrong, don't allow any metadata write bio to be 1967 * submitted. 1968 * 1969 * This would prevent use-after-free if we had dirty pages not 1970 * cleaned up, which can still happen by fuzzed images. 1971 * 1972 * - Bad extent tree 1973 * Allowing existing tree block to be allocated for other trees. 1974 * 1975 * - Log tree operations 1976 * Exiting tree blocks get allocated to log tree, bumps its 1977 * generation, then get cleaned in tree re-balance. 1978 * Such tree block will not be written back, since it's clean, 1979 * thus no WRITTEN flag set. 1980 * And after log writes back, this tree block is not traced by 1981 * any dirty extent_io_tree. 1982 * 1983 * - Offending tree block gets re-dirtied from its original owner 1984 * Since it has bumped generation, no WRITTEN flag, it can be 1985 * reused without COWing. This tree block will not be traced 1986 * by btrfs_transaction::dirty_pages. 1987 * 1988 * Now such dirty tree block will not be cleaned by any dirty 1989 * extent io tree. Thus we don't want to submit such wild eb 1990 * if the fs already has error. 1991 * 1992 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 1993 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1994 */ 1995 if (ret > 0) 1996 ret = 0; 1997 if (!ret && BTRFS_FS_ERROR(fs_info)) 1998 ret = -EROFS; 1999 2000 if (ctx.zoned_bg) 2001 btrfs_put_block_group(ctx.zoned_bg); 2002 btrfs_zoned_meta_io_unlock(fs_info); 2003 return ret; 2004 } 2005 2006 /* 2007 * Walk the list of dirty pages of the given address space and write all of them. 2008 * 2009 * @mapping: address space structure to write 2010 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2011 * @bio_ctrl: holds context for the write, namely the bio 2012 * 2013 * If a page is already under I/O, write_cache_pages() skips it, even 2014 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2015 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2016 * and msync() need to guarantee that all the data which was dirty at the time 2017 * the call was made get new I/O started against them. If wbc->sync_mode is 2018 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2019 * existing IO to complete. 2020 */ 2021 static int extent_write_cache_pages(struct address_space *mapping, 2022 struct btrfs_bio_ctrl *bio_ctrl) 2023 { 2024 struct writeback_control *wbc = bio_ctrl->wbc; 2025 struct inode *inode = mapping->host; 2026 int ret = 0; 2027 int done = 0; 2028 int nr_to_write_done = 0; 2029 struct folio_batch fbatch; 2030 unsigned int nr_folios; 2031 pgoff_t index; 2032 pgoff_t end; /* Inclusive */ 2033 pgoff_t done_index; 2034 int range_whole = 0; 2035 int scanned = 0; 2036 xa_mark_t tag; 2037 2038 /* 2039 * We have to hold onto the inode so that ordered extents can do their 2040 * work when the IO finishes. The alternative to this is failing to add 2041 * an ordered extent if the igrab() fails there and that is a huge pain 2042 * to deal with, so instead just hold onto the inode throughout the 2043 * writepages operation. If it fails here we are freeing up the inode 2044 * anyway and we'd rather not waste our time writing out stuff that is 2045 * going to be truncated anyway. 2046 */ 2047 if (!igrab(inode)) 2048 return 0; 2049 2050 folio_batch_init(&fbatch); 2051 if (wbc->range_cyclic) { 2052 index = mapping->writeback_index; /* Start from prev offset */ 2053 end = -1; 2054 /* 2055 * Start from the beginning does not need to cycle over the 2056 * range, mark it as scanned. 2057 */ 2058 scanned = (index == 0); 2059 } else { 2060 index = wbc->range_start >> PAGE_SHIFT; 2061 end = wbc->range_end >> PAGE_SHIFT; 2062 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2063 range_whole = 1; 2064 scanned = 1; 2065 } 2066 2067 /* 2068 * We do the tagged writepage as long as the snapshot flush bit is set 2069 * and we are the first one who do the filemap_flush() on this inode. 2070 * 2071 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2072 * not race in and drop the bit. 2073 */ 2074 if (range_whole && wbc->nr_to_write == LONG_MAX && 2075 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2076 &BTRFS_I(inode)->runtime_flags)) 2077 wbc->tagged_writepages = 1; 2078 2079 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2080 tag = PAGECACHE_TAG_TOWRITE; 2081 else 2082 tag = PAGECACHE_TAG_DIRTY; 2083 retry: 2084 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2085 tag_pages_for_writeback(mapping, index, end); 2086 done_index = index; 2087 while (!done && !nr_to_write_done && (index <= end) && 2088 (nr_folios = filemap_get_folios_tag(mapping, &index, 2089 end, tag, &fbatch))) { 2090 unsigned i; 2091 2092 for (i = 0; i < nr_folios; i++) { 2093 struct folio *folio = fbatch.folios[i]; 2094 2095 done_index = folio_next_index(folio); 2096 /* 2097 * At this point we hold neither the i_pages lock nor 2098 * the page lock: the page may be truncated or 2099 * invalidated (changing page->mapping to NULL), 2100 * or even swizzled back from swapper_space to 2101 * tmpfs file mapping 2102 */ 2103 if (!folio_trylock(folio)) { 2104 submit_write_bio(bio_ctrl, 0); 2105 folio_lock(folio); 2106 } 2107 2108 if (unlikely(folio->mapping != mapping)) { 2109 folio_unlock(folio); 2110 continue; 2111 } 2112 2113 if (!folio_test_dirty(folio)) { 2114 /* Someone wrote it for us. */ 2115 folio_unlock(folio); 2116 continue; 2117 } 2118 2119 if (wbc->sync_mode != WB_SYNC_NONE) { 2120 if (folio_test_writeback(folio)) 2121 submit_write_bio(bio_ctrl, 0); 2122 folio_wait_writeback(folio); 2123 } 2124 2125 if (folio_test_writeback(folio) || 2126 !folio_clear_dirty_for_io(folio)) { 2127 folio_unlock(folio); 2128 continue; 2129 } 2130 2131 ret = extent_writepage(folio, bio_ctrl); 2132 if (ret < 0) { 2133 done = 1; 2134 break; 2135 } 2136 2137 /* 2138 * The filesystem may choose to bump up nr_to_write. 2139 * We have to make sure to honor the new nr_to_write 2140 * at any time. 2141 */ 2142 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2143 wbc->nr_to_write <= 0); 2144 } 2145 folio_batch_release(&fbatch); 2146 cond_resched(); 2147 } 2148 if (!scanned && !done) { 2149 /* 2150 * We hit the last page and there is more work to be done: wrap 2151 * back to the start of the file 2152 */ 2153 scanned = 1; 2154 index = 0; 2155 2156 /* 2157 * If we're looping we could run into a page that is locked by a 2158 * writer and that writer could be waiting on writeback for a 2159 * page in our current bio, and thus deadlock, so flush the 2160 * write bio here. 2161 */ 2162 submit_write_bio(bio_ctrl, 0); 2163 goto retry; 2164 } 2165 2166 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2167 mapping->writeback_index = done_index; 2168 2169 btrfs_add_delayed_iput(BTRFS_I(inode)); 2170 return ret; 2171 } 2172 2173 /* 2174 * Submit the pages in the range to bio for call sites which delalloc range has 2175 * already been ran (aka, ordered extent inserted) and all pages are still 2176 * locked. 2177 */ 2178 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2179 u64 start, u64 end, struct writeback_control *wbc, 2180 bool pages_dirty) 2181 { 2182 bool found_error = false; 2183 int ret = 0; 2184 struct address_space *mapping = inode->i_mapping; 2185 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2186 const u32 sectorsize = fs_info->sectorsize; 2187 loff_t i_size = i_size_read(inode); 2188 u64 cur = start; 2189 struct btrfs_bio_ctrl bio_ctrl = { 2190 .wbc = wbc, 2191 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2192 }; 2193 2194 if (wbc->no_cgroup_owner) 2195 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2196 2197 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2198 2199 while (cur <= end) { 2200 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2201 u32 cur_len = cur_end + 1 - cur; 2202 struct folio *folio; 2203 2204 folio = __filemap_get_folio(mapping, cur >> PAGE_SHIFT, 0, 0); 2205 2206 /* 2207 * This shouldn't happen, the pages are pinned and locked, this 2208 * code is just in case, but shouldn't actually be run. 2209 */ 2210 if (IS_ERR(folio)) { 2211 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2212 cur, cur_len, false); 2213 mapping_set_error(mapping, PTR_ERR(folio)); 2214 cur = cur_end + 1; 2215 continue; 2216 } 2217 2218 ASSERT(folio_test_locked(folio)); 2219 if (pages_dirty && folio != locked_folio) 2220 ASSERT(folio_test_dirty(folio)); 2221 2222 /* 2223 * Set the submission bitmap to submit all sectors. 2224 * extent_writepage_io() will do the truncation correctly. 2225 */ 2226 bio_ctrl.submit_bitmap = (unsigned long)-1; 2227 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2228 &bio_ctrl, i_size); 2229 if (ret == 1) 2230 goto next_page; 2231 2232 if (ret) { 2233 btrfs_mark_ordered_io_finished(BTRFS_I(inode), folio, 2234 cur, cur_len, !ret); 2235 mapping_set_error(mapping, ret); 2236 } 2237 btrfs_folio_end_writer_lock(fs_info, folio, cur, cur_len); 2238 if (ret < 0) 2239 found_error = true; 2240 next_page: 2241 folio_put(folio); 2242 cur = cur_end + 1; 2243 } 2244 2245 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2246 } 2247 2248 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2249 { 2250 struct inode *inode = mapping->host; 2251 int ret = 0; 2252 struct btrfs_bio_ctrl bio_ctrl = { 2253 .wbc = wbc, 2254 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2255 }; 2256 2257 /* 2258 * Allow only a single thread to do the reloc work in zoned mode to 2259 * protect the write pointer updates. 2260 */ 2261 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2262 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2263 submit_write_bio(&bio_ctrl, ret); 2264 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2265 return ret; 2266 } 2267 2268 void btrfs_readahead(struct readahead_control *rac) 2269 { 2270 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2271 struct folio *folio; 2272 struct extent_map *em_cached = NULL; 2273 u64 prev_em_start = (u64)-1; 2274 2275 while ((folio = readahead_folio(rac)) != NULL) 2276 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2277 2278 if (em_cached) 2279 free_extent_map(em_cached); 2280 submit_one_bio(&bio_ctrl); 2281 } 2282 2283 /* 2284 * basic invalidate_folio code, this waits on any locked or writeback 2285 * ranges corresponding to the folio, and then deletes any extent state 2286 * records from the tree 2287 */ 2288 int extent_invalidate_folio(struct extent_io_tree *tree, 2289 struct folio *folio, size_t offset) 2290 { 2291 struct extent_state *cached_state = NULL; 2292 u64 start = folio_pos(folio); 2293 u64 end = start + folio_size(folio) - 1; 2294 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2295 2296 /* This function is only called for the btree inode */ 2297 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2298 2299 start += ALIGN(offset, blocksize); 2300 if (start > end) 2301 return 0; 2302 2303 lock_extent(tree, start, end, &cached_state); 2304 folio_wait_writeback(folio); 2305 2306 /* 2307 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2308 * so here we only need to unlock the extent range to free any 2309 * existing extent state. 2310 */ 2311 unlock_extent(tree, start, end, &cached_state); 2312 return 0; 2313 } 2314 2315 /* 2316 * a helper for release_folio, this tests for areas of the page that 2317 * are locked or under IO and drops the related state bits if it is safe 2318 * to drop the page. 2319 */ 2320 static bool try_release_extent_state(struct extent_io_tree *tree, 2321 struct folio *folio, gfp_t mask) 2322 { 2323 u64 start = folio_pos(folio); 2324 u64 end = start + PAGE_SIZE - 1; 2325 bool ret; 2326 2327 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2328 ret = false; 2329 } else { 2330 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2331 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2332 EXTENT_QGROUP_RESERVED); 2333 int ret2; 2334 2335 /* 2336 * At this point we can safely clear everything except the 2337 * locked bit, the nodatasum bit and the delalloc new bit. 2338 * The delalloc new bit will be cleared by ordered extent 2339 * completion. 2340 */ 2341 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2342 2343 /* if clear_extent_bit failed for enomem reasons, 2344 * we can't allow the release to continue. 2345 */ 2346 if (ret2 < 0) 2347 ret = false; 2348 else 2349 ret = true; 2350 } 2351 return ret; 2352 } 2353 2354 /* 2355 * a helper for release_folio. As long as there are no locked extents 2356 * in the range corresponding to the page, both state records and extent 2357 * map records are removed 2358 */ 2359 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2360 { 2361 u64 start = folio_pos(folio); 2362 u64 end = start + PAGE_SIZE - 1; 2363 struct btrfs_inode *inode = folio_to_inode(folio); 2364 struct extent_io_tree *io_tree = &inode->io_tree; 2365 2366 while (start <= end) { 2367 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2368 const u64 len = end - start + 1; 2369 struct extent_map_tree *extent_tree = &inode->extent_tree; 2370 struct extent_map *em; 2371 2372 write_lock(&extent_tree->lock); 2373 em = lookup_extent_mapping(extent_tree, start, len); 2374 if (!em) { 2375 write_unlock(&extent_tree->lock); 2376 break; 2377 } 2378 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2379 write_unlock(&extent_tree->lock); 2380 free_extent_map(em); 2381 break; 2382 } 2383 if (test_range_bit_exists(io_tree, em->start, 2384 extent_map_end(em) - 1, EXTENT_LOCKED)) 2385 goto next; 2386 /* 2387 * If it's not in the list of modified extents, used by a fast 2388 * fsync, we can remove it. If it's being logged we can safely 2389 * remove it since fsync took an extra reference on the em. 2390 */ 2391 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2392 goto remove_em; 2393 /* 2394 * If it's in the list of modified extents, remove it only if 2395 * its generation is older then the current one, in which case 2396 * we don't need it for a fast fsync. Otherwise don't remove it, 2397 * we could be racing with an ongoing fast fsync that could miss 2398 * the new extent. 2399 */ 2400 if (em->generation >= cur_gen) 2401 goto next; 2402 remove_em: 2403 /* 2404 * We only remove extent maps that are not in the list of 2405 * modified extents or that are in the list but with a 2406 * generation lower then the current generation, so there is no 2407 * need to set the full fsync flag on the inode (it hurts the 2408 * fsync performance for workloads with a data size that exceeds 2409 * or is close to the system's memory). 2410 */ 2411 remove_extent_mapping(inode, em); 2412 /* Once for the inode's extent map tree. */ 2413 free_extent_map(em); 2414 next: 2415 start = extent_map_end(em); 2416 write_unlock(&extent_tree->lock); 2417 2418 /* Once for us, for the lookup_extent_mapping() reference. */ 2419 free_extent_map(em); 2420 2421 if (need_resched()) { 2422 /* 2423 * If we need to resched but we can't block just exit 2424 * and leave any remaining extent maps. 2425 */ 2426 if (!gfpflags_allow_blocking(mask)) 2427 break; 2428 2429 cond_resched(); 2430 } 2431 } 2432 return try_release_extent_state(io_tree, folio, mask); 2433 } 2434 2435 static void __free_extent_buffer(struct extent_buffer *eb) 2436 { 2437 kmem_cache_free(extent_buffer_cache, eb); 2438 } 2439 2440 static int extent_buffer_under_io(const struct extent_buffer *eb) 2441 { 2442 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2443 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2444 } 2445 2446 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio) 2447 { 2448 struct btrfs_subpage *subpage; 2449 2450 lockdep_assert_held(&folio->mapping->i_private_lock); 2451 2452 if (folio_test_private(folio)) { 2453 subpage = folio_get_private(folio); 2454 if (atomic_read(&subpage->eb_refs)) 2455 return true; 2456 /* 2457 * Even there is no eb refs here, we may still have 2458 * end_folio_read() call relying on page::private. 2459 */ 2460 if (atomic_read(&subpage->readers)) 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2467 { 2468 struct btrfs_fs_info *fs_info = eb->fs_info; 2469 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2470 2471 /* 2472 * For mapped eb, we're going to change the folio private, which should 2473 * be done under the i_private_lock. 2474 */ 2475 if (mapped) 2476 spin_lock(&folio->mapping->i_private_lock); 2477 2478 if (!folio_test_private(folio)) { 2479 if (mapped) 2480 spin_unlock(&folio->mapping->i_private_lock); 2481 return; 2482 } 2483 2484 if (fs_info->nodesize >= PAGE_SIZE) { 2485 /* 2486 * We do this since we'll remove the pages after we've 2487 * removed the eb from the radix tree, so we could race 2488 * and have this page now attached to the new eb. So 2489 * only clear folio if it's still connected to 2490 * this eb. 2491 */ 2492 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2493 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2494 BUG_ON(folio_test_dirty(folio)); 2495 BUG_ON(folio_test_writeback(folio)); 2496 /* We need to make sure we haven't be attached to a new eb. */ 2497 folio_detach_private(folio); 2498 } 2499 if (mapped) 2500 spin_unlock(&folio->mapping->i_private_lock); 2501 return; 2502 } 2503 2504 /* 2505 * For subpage, we can have dummy eb with folio private attached. In 2506 * this case, we can directly detach the private as such folio is only 2507 * attached to one dummy eb, no sharing. 2508 */ 2509 if (!mapped) { 2510 btrfs_detach_subpage(fs_info, folio); 2511 return; 2512 } 2513 2514 btrfs_folio_dec_eb_refs(fs_info, folio); 2515 2516 /* 2517 * We can only detach the folio private if there are no other ebs in the 2518 * page range and no unfinished IO. 2519 */ 2520 if (!folio_range_has_eb(fs_info, folio)) 2521 btrfs_detach_subpage(fs_info, folio); 2522 2523 spin_unlock(&folio->mapping->i_private_lock); 2524 } 2525 2526 /* Release all pages attached to the extent buffer */ 2527 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb) 2528 { 2529 ASSERT(!extent_buffer_under_io(eb)); 2530 2531 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2532 struct folio *folio = eb->folios[i]; 2533 2534 if (!folio) 2535 continue; 2536 2537 detach_extent_buffer_folio(eb, folio); 2538 2539 /* One for when we allocated the folio. */ 2540 folio_put(folio); 2541 } 2542 } 2543 2544 /* 2545 * Helper for releasing the extent buffer. 2546 */ 2547 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2548 { 2549 btrfs_release_extent_buffer_pages(eb); 2550 btrfs_leak_debug_del_eb(eb); 2551 __free_extent_buffer(eb); 2552 } 2553 2554 static struct extent_buffer * 2555 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 2556 unsigned long len) 2557 { 2558 struct extent_buffer *eb = NULL; 2559 2560 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2561 eb->start = start; 2562 eb->len = len; 2563 eb->fs_info = fs_info; 2564 init_rwsem(&eb->lock); 2565 2566 btrfs_leak_debug_add_eb(eb); 2567 2568 spin_lock_init(&eb->refs_lock); 2569 atomic_set(&eb->refs, 1); 2570 2571 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2572 2573 return eb; 2574 } 2575 2576 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2577 { 2578 struct extent_buffer *new; 2579 int num_folios = num_extent_folios(src); 2580 int ret; 2581 2582 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 2583 if (new == NULL) 2584 return NULL; 2585 2586 /* 2587 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2588 * btrfs_release_extent_buffer() have different behavior for 2589 * UNMAPPED subpage extent buffer. 2590 */ 2591 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2592 2593 ret = alloc_eb_folio_array(new, false); 2594 if (ret) { 2595 btrfs_release_extent_buffer(new); 2596 return NULL; 2597 } 2598 2599 for (int i = 0; i < num_folios; i++) { 2600 struct folio *folio = new->folios[i]; 2601 2602 ret = attach_extent_buffer_folio(new, folio, NULL); 2603 if (ret < 0) { 2604 btrfs_release_extent_buffer(new); 2605 return NULL; 2606 } 2607 WARN_ON(folio_test_dirty(folio)); 2608 } 2609 copy_extent_buffer_full(new, src); 2610 set_extent_buffer_uptodate(new); 2611 2612 return new; 2613 } 2614 2615 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2616 u64 start, unsigned long len) 2617 { 2618 struct extent_buffer *eb; 2619 int num_folios = 0; 2620 int ret; 2621 2622 eb = __alloc_extent_buffer(fs_info, start, len); 2623 if (!eb) 2624 return NULL; 2625 2626 ret = alloc_eb_folio_array(eb, false); 2627 if (ret) 2628 goto err; 2629 2630 num_folios = num_extent_folios(eb); 2631 for (int i = 0; i < num_folios; i++) { 2632 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2633 if (ret < 0) 2634 goto err; 2635 } 2636 2637 set_extent_buffer_uptodate(eb); 2638 btrfs_set_header_nritems(eb, 0); 2639 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2640 2641 return eb; 2642 err: 2643 for (int i = 0; i < num_folios; i++) { 2644 if (eb->folios[i]) { 2645 detach_extent_buffer_folio(eb, eb->folios[i]); 2646 folio_put(eb->folios[i]); 2647 } 2648 } 2649 __free_extent_buffer(eb); 2650 return NULL; 2651 } 2652 2653 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2654 u64 start) 2655 { 2656 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 2657 } 2658 2659 static void check_buffer_tree_ref(struct extent_buffer *eb) 2660 { 2661 int refs; 2662 /* 2663 * The TREE_REF bit is first set when the extent_buffer is added 2664 * to the radix tree. It is also reset, if unset, when a new reference 2665 * is created by find_extent_buffer. 2666 * 2667 * It is only cleared in two cases: freeing the last non-tree 2668 * reference to the extent_buffer when its STALE bit is set or 2669 * calling release_folio when the tree reference is the only reference. 2670 * 2671 * In both cases, care is taken to ensure that the extent_buffer's 2672 * pages are not under io. However, release_folio can be concurrently 2673 * called with creating new references, which is prone to race 2674 * conditions between the calls to check_buffer_tree_ref in those 2675 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2676 * 2677 * The actual lifetime of the extent_buffer in the radix tree is 2678 * adequately protected by the refcount, but the TREE_REF bit and 2679 * its corresponding reference are not. To protect against this 2680 * class of races, we call check_buffer_tree_ref from the codepaths 2681 * which trigger io. Note that once io is initiated, TREE_REF can no 2682 * longer be cleared, so that is the moment at which any such race is 2683 * best fixed. 2684 */ 2685 refs = atomic_read(&eb->refs); 2686 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2687 return; 2688 2689 spin_lock(&eb->refs_lock); 2690 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2691 atomic_inc(&eb->refs); 2692 spin_unlock(&eb->refs_lock); 2693 } 2694 2695 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2696 { 2697 int num_folios= num_extent_folios(eb); 2698 2699 check_buffer_tree_ref(eb); 2700 2701 for (int i = 0; i < num_folios; i++) 2702 folio_mark_accessed(eb->folios[i]); 2703 } 2704 2705 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2706 u64 start) 2707 { 2708 struct extent_buffer *eb; 2709 2710 eb = find_extent_buffer_nolock(fs_info, start); 2711 if (!eb) 2712 return NULL; 2713 /* 2714 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 2715 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 2716 * another task running free_extent_buffer() might have seen that flag 2717 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 2718 * writeback flags not set) and it's still in the tree (flag 2719 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 2720 * decrementing the extent buffer's reference count twice. So here we 2721 * could race and increment the eb's reference count, clear its stale 2722 * flag, mark it as dirty and drop our reference before the other task 2723 * finishes executing free_extent_buffer, which would later result in 2724 * an attempt to free an extent buffer that is dirty. 2725 */ 2726 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 2727 spin_lock(&eb->refs_lock); 2728 spin_unlock(&eb->refs_lock); 2729 } 2730 mark_extent_buffer_accessed(eb); 2731 return eb; 2732 } 2733 2734 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2735 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 2736 u64 start) 2737 { 2738 struct extent_buffer *eb, *exists = NULL; 2739 int ret; 2740 2741 eb = find_extent_buffer(fs_info, start); 2742 if (eb) 2743 return eb; 2744 eb = alloc_dummy_extent_buffer(fs_info, start); 2745 if (!eb) 2746 return ERR_PTR(-ENOMEM); 2747 eb->fs_info = fs_info; 2748 again: 2749 ret = radix_tree_preload(GFP_NOFS); 2750 if (ret) { 2751 exists = ERR_PTR(ret); 2752 goto free_eb; 2753 } 2754 spin_lock(&fs_info->buffer_lock); 2755 ret = radix_tree_insert(&fs_info->buffer_radix, 2756 start >> fs_info->sectorsize_bits, eb); 2757 spin_unlock(&fs_info->buffer_lock); 2758 radix_tree_preload_end(); 2759 if (ret == -EEXIST) { 2760 exists = find_extent_buffer(fs_info, start); 2761 if (exists) 2762 goto free_eb; 2763 else 2764 goto again; 2765 } 2766 check_buffer_tree_ref(eb); 2767 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 2768 2769 return eb; 2770 free_eb: 2771 btrfs_release_extent_buffer(eb); 2772 return exists; 2773 } 2774 #endif 2775 2776 static struct extent_buffer *grab_extent_buffer( 2777 struct btrfs_fs_info *fs_info, struct page *page) 2778 { 2779 struct folio *folio = page_folio(page); 2780 struct extent_buffer *exists; 2781 2782 lockdep_assert_held(&page->mapping->i_private_lock); 2783 2784 /* 2785 * For subpage case, we completely rely on radix tree to ensure we 2786 * don't try to insert two ebs for the same bytenr. So here we always 2787 * return NULL and just continue. 2788 */ 2789 if (fs_info->nodesize < PAGE_SIZE) 2790 return NULL; 2791 2792 /* Page not yet attached to an extent buffer */ 2793 if (!folio_test_private(folio)) 2794 return NULL; 2795 2796 /* 2797 * We could have already allocated an eb for this page and attached one 2798 * so lets see if we can get a ref on the existing eb, and if we can we 2799 * know it's good and we can just return that one, else we know we can 2800 * just overwrite folio private. 2801 */ 2802 exists = folio_get_private(folio); 2803 if (atomic_inc_not_zero(&exists->refs)) 2804 return exists; 2805 2806 WARN_ON(PageDirty(page)); 2807 folio_detach_private(folio); 2808 return NULL; 2809 } 2810 2811 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 2812 { 2813 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 2814 btrfs_err(fs_info, "bad tree block start %llu", start); 2815 return -EINVAL; 2816 } 2817 2818 if (fs_info->nodesize < PAGE_SIZE && 2819 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 2820 btrfs_err(fs_info, 2821 "tree block crosses page boundary, start %llu nodesize %u", 2822 start, fs_info->nodesize); 2823 return -EINVAL; 2824 } 2825 if (fs_info->nodesize >= PAGE_SIZE && 2826 !PAGE_ALIGNED(start)) { 2827 btrfs_err(fs_info, 2828 "tree block is not page aligned, start %llu nodesize %u", 2829 start, fs_info->nodesize); 2830 return -EINVAL; 2831 } 2832 if (!IS_ALIGNED(start, fs_info->nodesize) && 2833 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 2834 btrfs_warn(fs_info, 2835 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 2836 start, fs_info->nodesize); 2837 } 2838 return 0; 2839 } 2840 2841 2842 /* 2843 * Return 0 if eb->folios[i] is attached to btree inode successfully. 2844 * Return >0 if there is already another extent buffer for the range, 2845 * and @found_eb_ret would be updated. 2846 * Return -EAGAIN if the filemap has an existing folio but with different size 2847 * than @eb. 2848 * The caller needs to free the existing folios and retry using the same order. 2849 */ 2850 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 2851 struct btrfs_subpage *prealloc, 2852 struct extent_buffer **found_eb_ret) 2853 { 2854 2855 struct btrfs_fs_info *fs_info = eb->fs_info; 2856 struct address_space *mapping = fs_info->btree_inode->i_mapping; 2857 const unsigned long index = eb->start >> PAGE_SHIFT; 2858 struct folio *existing_folio = NULL; 2859 int ret; 2860 2861 ASSERT(found_eb_ret); 2862 2863 /* Caller should ensure the folio exists. */ 2864 ASSERT(eb->folios[i]); 2865 2866 retry: 2867 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 2868 GFP_NOFS | __GFP_NOFAIL); 2869 if (!ret) 2870 goto finish; 2871 2872 existing_folio = filemap_lock_folio(mapping, index + i); 2873 /* The page cache only exists for a very short time, just retry. */ 2874 if (IS_ERR(existing_folio)) { 2875 existing_folio = NULL; 2876 goto retry; 2877 } 2878 2879 /* For now, we should only have single-page folios for btree inode. */ 2880 ASSERT(folio_nr_pages(existing_folio) == 1); 2881 2882 if (folio_size(existing_folio) != eb->folio_size) { 2883 folio_unlock(existing_folio); 2884 folio_put(existing_folio); 2885 return -EAGAIN; 2886 } 2887 2888 finish: 2889 spin_lock(&mapping->i_private_lock); 2890 if (existing_folio && fs_info->nodesize < PAGE_SIZE) { 2891 /* We're going to reuse the existing page, can drop our folio now. */ 2892 __free_page(folio_page(eb->folios[i], 0)); 2893 eb->folios[i] = existing_folio; 2894 } else if (existing_folio) { 2895 struct extent_buffer *existing_eb; 2896 2897 existing_eb = grab_extent_buffer(fs_info, 2898 folio_page(existing_folio, 0)); 2899 if (existing_eb) { 2900 /* The extent buffer still exists, we can use it directly. */ 2901 *found_eb_ret = existing_eb; 2902 spin_unlock(&mapping->i_private_lock); 2903 folio_unlock(existing_folio); 2904 folio_put(existing_folio); 2905 return 1; 2906 } 2907 /* The extent buffer no longer exists, we can reuse the folio. */ 2908 __free_page(folio_page(eb->folios[i], 0)); 2909 eb->folios[i] = existing_folio; 2910 } 2911 eb->folio_size = folio_size(eb->folios[i]); 2912 eb->folio_shift = folio_shift(eb->folios[i]); 2913 /* Should not fail, as we have preallocated the memory. */ 2914 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 2915 ASSERT(!ret); 2916 /* 2917 * To inform we have an extra eb under allocation, so that 2918 * detach_extent_buffer_page() won't release the folio private when the 2919 * eb hasn't been inserted into radix tree yet. 2920 * 2921 * The ref will be decreased when the eb releases the page, in 2922 * detach_extent_buffer_page(). Thus needs no special handling in the 2923 * error path. 2924 */ 2925 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 2926 spin_unlock(&mapping->i_private_lock); 2927 return 0; 2928 } 2929 2930 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2931 u64 start, u64 owner_root, int level) 2932 { 2933 unsigned long len = fs_info->nodesize; 2934 int num_folios; 2935 int attached = 0; 2936 struct extent_buffer *eb; 2937 struct extent_buffer *existing_eb = NULL; 2938 struct btrfs_subpage *prealloc = NULL; 2939 u64 lockdep_owner = owner_root; 2940 bool page_contig = true; 2941 int uptodate = 1; 2942 int ret; 2943 2944 if (check_eb_alignment(fs_info, start)) 2945 return ERR_PTR(-EINVAL); 2946 2947 #if BITS_PER_LONG == 32 2948 if (start >= MAX_LFS_FILESIZE) { 2949 btrfs_err_rl(fs_info, 2950 "extent buffer %llu is beyond 32bit page cache limit", start); 2951 btrfs_err_32bit_limit(fs_info); 2952 return ERR_PTR(-EOVERFLOW); 2953 } 2954 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 2955 btrfs_warn_32bit_limit(fs_info); 2956 #endif 2957 2958 eb = find_extent_buffer(fs_info, start); 2959 if (eb) 2960 return eb; 2961 2962 eb = __alloc_extent_buffer(fs_info, start, len); 2963 if (!eb) 2964 return ERR_PTR(-ENOMEM); 2965 2966 /* 2967 * The reloc trees are just snapshots, so we need them to appear to be 2968 * just like any other fs tree WRT lockdep. 2969 */ 2970 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 2971 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 2972 2973 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 2974 2975 /* 2976 * Preallocate folio private for subpage case, so that we won't 2977 * allocate memory with i_private_lock nor page lock hold. 2978 * 2979 * The memory will be freed by attach_extent_buffer_page() or freed 2980 * manually if we exit earlier. 2981 */ 2982 if (fs_info->nodesize < PAGE_SIZE) { 2983 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 2984 if (IS_ERR(prealloc)) { 2985 ret = PTR_ERR(prealloc); 2986 goto out; 2987 } 2988 } 2989 2990 reallocate: 2991 /* Allocate all pages first. */ 2992 ret = alloc_eb_folio_array(eb, true); 2993 if (ret < 0) { 2994 btrfs_free_subpage(prealloc); 2995 goto out; 2996 } 2997 2998 num_folios = num_extent_folios(eb); 2999 /* Attach all pages to the filemap. */ 3000 for (int i = 0; i < num_folios; i++) { 3001 struct folio *folio; 3002 3003 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3004 if (ret > 0) { 3005 ASSERT(existing_eb); 3006 goto out; 3007 } 3008 3009 /* 3010 * TODO: Special handling for a corner case where the order of 3011 * folios mismatch between the new eb and filemap. 3012 * 3013 * This happens when: 3014 * 3015 * - the new eb is using higher order folio 3016 * 3017 * - the filemap is still using 0-order folios for the range 3018 * This can happen at the previous eb allocation, and we don't 3019 * have higher order folio for the call. 3020 * 3021 * - the existing eb has already been freed 3022 * 3023 * In this case, we have to free the existing folios first, and 3024 * re-allocate using the same order. 3025 * Thankfully this is not going to happen yet, as we're still 3026 * using 0-order folios. 3027 */ 3028 if (unlikely(ret == -EAGAIN)) { 3029 ASSERT(0); 3030 goto reallocate; 3031 } 3032 attached++; 3033 3034 /* 3035 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3036 * reliable, as we may choose to reuse the existing page cache 3037 * and free the allocated page. 3038 */ 3039 folio = eb->folios[i]; 3040 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3041 3042 /* 3043 * Check if the current page is physically contiguous with previous eb 3044 * page. 3045 * At this stage, either we allocated a large folio, thus @i 3046 * would only be 0, or we fall back to per-page allocation. 3047 */ 3048 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3049 page_contig = false; 3050 3051 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3052 uptodate = 0; 3053 3054 /* 3055 * We can't unlock the pages just yet since the extent buffer 3056 * hasn't been properly inserted in the radix tree, this 3057 * opens a race with btree_release_folio which can free a page 3058 * while we are still filling in all pages for the buffer and 3059 * we could crash. 3060 */ 3061 } 3062 if (uptodate) 3063 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3064 /* All pages are physically contiguous, can skip cross page handling. */ 3065 if (page_contig) 3066 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3067 again: 3068 ret = radix_tree_preload(GFP_NOFS); 3069 if (ret) 3070 goto out; 3071 3072 spin_lock(&fs_info->buffer_lock); 3073 ret = radix_tree_insert(&fs_info->buffer_radix, 3074 start >> fs_info->sectorsize_bits, eb); 3075 spin_unlock(&fs_info->buffer_lock); 3076 radix_tree_preload_end(); 3077 if (ret == -EEXIST) { 3078 ret = 0; 3079 existing_eb = find_extent_buffer(fs_info, start); 3080 if (existing_eb) 3081 goto out; 3082 else 3083 goto again; 3084 } 3085 /* add one reference for the tree */ 3086 check_buffer_tree_ref(eb); 3087 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3088 3089 /* 3090 * Now it's safe to unlock the pages because any calls to 3091 * btree_release_folio will correctly detect that a page belongs to a 3092 * live buffer and won't free them prematurely. 3093 */ 3094 for (int i = 0; i < num_folios; i++) 3095 unlock_page(folio_page(eb->folios[i], 0)); 3096 return eb; 3097 3098 out: 3099 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3100 3101 /* 3102 * Any attached folios need to be detached before we unlock them. This 3103 * is because when we're inserting our new folios into the mapping, and 3104 * then attaching our eb to that folio. If we fail to insert our folio 3105 * we'll lookup the folio for that index, and grab that EB. We do not 3106 * want that to grab this eb, as we're getting ready to free it. So we 3107 * have to detach it first and then unlock it. 3108 * 3109 * We have to drop our reference and NULL it out here because in the 3110 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3111 * Below when we call btrfs_release_extent_buffer() we will call 3112 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3113 * case. If we left eb->folios[i] populated in the subpage case we'd 3114 * double put our reference and be super sad. 3115 */ 3116 for (int i = 0; i < attached; i++) { 3117 ASSERT(eb->folios[i]); 3118 detach_extent_buffer_folio(eb, eb->folios[i]); 3119 unlock_page(folio_page(eb->folios[i], 0)); 3120 folio_put(eb->folios[i]); 3121 eb->folios[i] = NULL; 3122 } 3123 /* 3124 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3125 * so it can be cleaned up without utlizing page->mapping. 3126 */ 3127 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3128 3129 btrfs_release_extent_buffer(eb); 3130 if (ret < 0) 3131 return ERR_PTR(ret); 3132 ASSERT(existing_eb); 3133 return existing_eb; 3134 } 3135 3136 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3137 { 3138 struct extent_buffer *eb = 3139 container_of(head, struct extent_buffer, rcu_head); 3140 3141 __free_extent_buffer(eb); 3142 } 3143 3144 static int release_extent_buffer(struct extent_buffer *eb) 3145 __releases(&eb->refs_lock) 3146 { 3147 lockdep_assert_held(&eb->refs_lock); 3148 3149 WARN_ON(atomic_read(&eb->refs) == 0); 3150 if (atomic_dec_and_test(&eb->refs)) { 3151 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3152 struct btrfs_fs_info *fs_info = eb->fs_info; 3153 3154 spin_unlock(&eb->refs_lock); 3155 3156 spin_lock(&fs_info->buffer_lock); 3157 radix_tree_delete(&fs_info->buffer_radix, 3158 eb->start >> fs_info->sectorsize_bits); 3159 spin_unlock(&fs_info->buffer_lock); 3160 } else { 3161 spin_unlock(&eb->refs_lock); 3162 } 3163 3164 btrfs_leak_debug_del_eb(eb); 3165 /* Should be safe to release our pages at this point */ 3166 btrfs_release_extent_buffer_pages(eb); 3167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3168 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3169 __free_extent_buffer(eb); 3170 return 1; 3171 } 3172 #endif 3173 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3174 return 1; 3175 } 3176 spin_unlock(&eb->refs_lock); 3177 3178 return 0; 3179 } 3180 3181 void free_extent_buffer(struct extent_buffer *eb) 3182 { 3183 int refs; 3184 if (!eb) 3185 return; 3186 3187 refs = atomic_read(&eb->refs); 3188 while (1) { 3189 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3190 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3191 refs == 1)) 3192 break; 3193 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3194 return; 3195 } 3196 3197 spin_lock(&eb->refs_lock); 3198 if (atomic_read(&eb->refs) == 2 && 3199 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3200 !extent_buffer_under_io(eb) && 3201 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3202 atomic_dec(&eb->refs); 3203 3204 /* 3205 * I know this is terrible, but it's temporary until we stop tracking 3206 * the uptodate bits and such for the extent buffers. 3207 */ 3208 release_extent_buffer(eb); 3209 } 3210 3211 void free_extent_buffer_stale(struct extent_buffer *eb) 3212 { 3213 if (!eb) 3214 return; 3215 3216 spin_lock(&eb->refs_lock); 3217 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3218 3219 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3220 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3221 atomic_dec(&eb->refs); 3222 release_extent_buffer(eb); 3223 } 3224 3225 static void btree_clear_folio_dirty(struct folio *folio) 3226 { 3227 ASSERT(folio_test_dirty(folio)); 3228 ASSERT(folio_test_locked(folio)); 3229 folio_clear_dirty_for_io(folio); 3230 xa_lock_irq(&folio->mapping->i_pages); 3231 if (!folio_test_dirty(folio)) 3232 __xa_clear_mark(&folio->mapping->i_pages, 3233 folio_index(folio), PAGECACHE_TAG_DIRTY); 3234 xa_unlock_irq(&folio->mapping->i_pages); 3235 } 3236 3237 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3238 { 3239 struct btrfs_fs_info *fs_info = eb->fs_info; 3240 struct folio *folio = eb->folios[0]; 3241 bool last; 3242 3243 /* btree_clear_folio_dirty() needs page locked. */ 3244 folio_lock(folio); 3245 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 3246 if (last) 3247 btree_clear_folio_dirty(folio); 3248 folio_unlock(folio); 3249 WARN_ON(atomic_read(&eb->refs) == 0); 3250 } 3251 3252 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3253 struct extent_buffer *eb) 3254 { 3255 struct btrfs_fs_info *fs_info = eb->fs_info; 3256 int num_folios; 3257 3258 btrfs_assert_tree_write_locked(eb); 3259 3260 if (trans && btrfs_header_generation(eb) != trans->transid) 3261 return; 3262 3263 /* 3264 * Instead of clearing the dirty flag off of the buffer, mark it as 3265 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3266 * write-ordering in zoned mode, without the need to later re-dirty 3267 * the extent_buffer. 3268 * 3269 * The actual zeroout of the buffer will happen later in 3270 * btree_csum_one_bio. 3271 */ 3272 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3273 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3274 return; 3275 } 3276 3277 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3278 return; 3279 3280 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3281 fs_info->dirty_metadata_batch); 3282 3283 if (eb->fs_info->nodesize < PAGE_SIZE) 3284 return clear_subpage_extent_buffer_dirty(eb); 3285 3286 num_folios = num_extent_folios(eb); 3287 for (int i = 0; i < num_folios; i++) { 3288 struct folio *folio = eb->folios[i]; 3289 3290 if (!folio_test_dirty(folio)) 3291 continue; 3292 folio_lock(folio); 3293 btree_clear_folio_dirty(folio); 3294 folio_unlock(folio); 3295 } 3296 WARN_ON(atomic_read(&eb->refs) == 0); 3297 } 3298 3299 void set_extent_buffer_dirty(struct extent_buffer *eb) 3300 { 3301 int num_folios; 3302 bool was_dirty; 3303 3304 check_buffer_tree_ref(eb); 3305 3306 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3307 3308 num_folios = num_extent_folios(eb); 3309 WARN_ON(atomic_read(&eb->refs) == 0); 3310 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3311 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3312 3313 if (!was_dirty) { 3314 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3315 3316 /* 3317 * For subpage case, we can have other extent buffers in the 3318 * same page, and in clear_subpage_extent_buffer_dirty() we 3319 * have to clear page dirty without subpage lock held. 3320 * This can cause race where our page gets dirty cleared after 3321 * we just set it. 3322 * 3323 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3324 * its page for other reasons, we can use page lock to prevent 3325 * the above race. 3326 */ 3327 if (subpage) 3328 lock_page(folio_page(eb->folios[0], 0)); 3329 for (int i = 0; i < num_folios; i++) 3330 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 3331 eb->start, eb->len); 3332 if (subpage) 3333 unlock_page(folio_page(eb->folios[0], 0)); 3334 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3335 eb->len, 3336 eb->fs_info->dirty_metadata_batch); 3337 } 3338 #ifdef CONFIG_BTRFS_DEBUG 3339 for (int i = 0; i < num_folios; i++) 3340 ASSERT(folio_test_dirty(eb->folios[i])); 3341 #endif 3342 } 3343 3344 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3345 { 3346 struct btrfs_fs_info *fs_info = eb->fs_info; 3347 int num_folios = num_extent_folios(eb); 3348 3349 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3350 for (int i = 0; i < num_folios; i++) { 3351 struct folio *folio = eb->folios[i]; 3352 3353 if (!folio) 3354 continue; 3355 3356 /* 3357 * This is special handling for metadata subpage, as regular 3358 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3359 */ 3360 if (fs_info->nodesize >= PAGE_SIZE) 3361 folio_clear_uptodate(folio); 3362 else 3363 btrfs_subpage_clear_uptodate(fs_info, folio, 3364 eb->start, eb->len); 3365 } 3366 } 3367 3368 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3369 { 3370 struct btrfs_fs_info *fs_info = eb->fs_info; 3371 int num_folios = num_extent_folios(eb); 3372 3373 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3374 for (int i = 0; i < num_folios; i++) { 3375 struct folio *folio = eb->folios[i]; 3376 3377 /* 3378 * This is special handling for metadata subpage, as regular 3379 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3380 */ 3381 if (fs_info->nodesize >= PAGE_SIZE) 3382 folio_mark_uptodate(folio); 3383 else 3384 btrfs_subpage_set_uptodate(fs_info, folio, 3385 eb->start, eb->len); 3386 } 3387 } 3388 3389 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3390 { 3391 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3392 smp_mb__after_atomic(); 3393 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3394 } 3395 3396 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3397 { 3398 struct extent_buffer *eb = bbio->private; 3399 struct btrfs_fs_info *fs_info = eb->fs_info; 3400 bool uptodate = !bbio->bio.bi_status; 3401 struct folio_iter fi; 3402 u32 bio_offset = 0; 3403 3404 /* 3405 * If the extent buffer is marked UPTODATE before the read operation 3406 * completes, other calls to read_extent_buffer_pages() will return 3407 * early without waiting for the read to finish, causing data races. 3408 */ 3409 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3410 3411 eb->read_mirror = bbio->mirror_num; 3412 3413 if (uptodate && 3414 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3415 uptodate = false; 3416 3417 if (uptodate) { 3418 set_extent_buffer_uptodate(eb); 3419 } else { 3420 clear_extent_buffer_uptodate(eb); 3421 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3422 } 3423 3424 bio_for_each_folio_all(fi, &bbio->bio) { 3425 struct folio *folio = fi.folio; 3426 u64 start = eb->start + bio_offset; 3427 u32 len = fi.length; 3428 3429 if (uptodate) 3430 btrfs_folio_set_uptodate(fs_info, folio, start, len); 3431 else 3432 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 3433 3434 bio_offset += len; 3435 } 3436 3437 clear_extent_buffer_reading(eb); 3438 free_extent_buffer(eb); 3439 3440 bio_put(&bbio->bio); 3441 } 3442 3443 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3444 const struct btrfs_tree_parent_check *check) 3445 { 3446 struct btrfs_bio *bbio; 3447 bool ret; 3448 3449 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3450 return 0; 3451 3452 /* 3453 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3454 * operation, which could potentially still be in flight. In this case 3455 * we simply want to return an error. 3456 */ 3457 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3458 return -EIO; 3459 3460 /* Someone else is already reading the buffer, just wait for it. */ 3461 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3462 goto done; 3463 3464 /* 3465 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3466 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3467 * started and finished reading the same eb. In this case, UPTODATE 3468 * will now be set, and we shouldn't read it in again. 3469 */ 3470 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3471 clear_extent_buffer_reading(eb); 3472 return 0; 3473 } 3474 3475 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3476 eb->read_mirror = 0; 3477 check_buffer_tree_ref(eb); 3478 atomic_inc(&eb->refs); 3479 3480 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3481 REQ_OP_READ | REQ_META, eb->fs_info, 3482 end_bbio_meta_read, eb); 3483 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3484 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3485 bbio->file_offset = eb->start; 3486 memcpy(&bbio->parent_check, check, sizeof(*check)); 3487 if (eb->fs_info->nodesize < PAGE_SIZE) { 3488 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 3489 eb->start - folio_pos(eb->folios[0])); 3490 ASSERT(ret); 3491 } else { 3492 int num_folios = num_extent_folios(eb); 3493 3494 for (int i = 0; i < num_folios; i++) { 3495 struct folio *folio = eb->folios[i]; 3496 3497 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 3498 ASSERT(ret); 3499 } 3500 } 3501 btrfs_submit_bbio(bbio, mirror_num); 3502 3503 done: 3504 if (wait == WAIT_COMPLETE) { 3505 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3506 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3507 return -EIO; 3508 } 3509 3510 return 0; 3511 } 3512 3513 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3514 unsigned long len) 3515 { 3516 btrfs_warn(eb->fs_info, 3517 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3518 eb->start, eb->len, start, len); 3519 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3520 3521 return true; 3522 } 3523 3524 /* 3525 * Check if the [start, start + len) range is valid before reading/writing 3526 * the eb. 3527 * NOTE: @start and @len are offset inside the eb, not logical address. 3528 * 3529 * Caller should not touch the dst/src memory if this function returns error. 3530 */ 3531 static inline int check_eb_range(const struct extent_buffer *eb, 3532 unsigned long start, unsigned long len) 3533 { 3534 unsigned long offset; 3535 3536 /* start, start + len should not go beyond eb->len nor overflow */ 3537 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3538 return report_eb_range(eb, start, len); 3539 3540 return false; 3541 } 3542 3543 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3544 unsigned long start, unsigned long len) 3545 { 3546 const int unit_size = eb->folio_size; 3547 size_t cur; 3548 size_t offset; 3549 char *dst = (char *)dstv; 3550 unsigned long i = get_eb_folio_index(eb, start); 3551 3552 if (check_eb_range(eb, start, len)) { 3553 /* 3554 * Invalid range hit, reset the memory, so callers won't get 3555 * some random garbage for their uninitialized memory. 3556 */ 3557 memset(dstv, 0, len); 3558 return; 3559 } 3560 3561 if (eb->addr) { 3562 memcpy(dstv, eb->addr + start, len); 3563 return; 3564 } 3565 3566 offset = get_eb_offset_in_folio(eb, start); 3567 3568 while (len > 0) { 3569 char *kaddr; 3570 3571 cur = min(len, unit_size - offset); 3572 kaddr = folio_address(eb->folios[i]); 3573 memcpy(dst, kaddr + offset, cur); 3574 3575 dst += cur; 3576 len -= cur; 3577 offset = 0; 3578 i++; 3579 } 3580 } 3581 3582 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3583 void __user *dstv, 3584 unsigned long start, unsigned long len) 3585 { 3586 const int unit_size = eb->folio_size; 3587 size_t cur; 3588 size_t offset; 3589 char __user *dst = (char __user *)dstv; 3590 unsigned long i = get_eb_folio_index(eb, start); 3591 int ret = 0; 3592 3593 WARN_ON(start > eb->len); 3594 WARN_ON(start + len > eb->start + eb->len); 3595 3596 if (eb->addr) { 3597 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3598 ret = -EFAULT; 3599 return ret; 3600 } 3601 3602 offset = get_eb_offset_in_folio(eb, start); 3603 3604 while (len > 0) { 3605 char *kaddr; 3606 3607 cur = min(len, unit_size - offset); 3608 kaddr = folio_address(eb->folios[i]); 3609 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3610 ret = -EFAULT; 3611 break; 3612 } 3613 3614 dst += cur; 3615 len -= cur; 3616 offset = 0; 3617 i++; 3618 } 3619 3620 return ret; 3621 } 3622 3623 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3624 unsigned long start, unsigned long len) 3625 { 3626 const int unit_size = eb->folio_size; 3627 size_t cur; 3628 size_t offset; 3629 char *kaddr; 3630 char *ptr = (char *)ptrv; 3631 unsigned long i = get_eb_folio_index(eb, start); 3632 int ret = 0; 3633 3634 if (check_eb_range(eb, start, len)) 3635 return -EINVAL; 3636 3637 if (eb->addr) 3638 return memcmp(ptrv, eb->addr + start, len); 3639 3640 offset = get_eb_offset_in_folio(eb, start); 3641 3642 while (len > 0) { 3643 cur = min(len, unit_size - offset); 3644 kaddr = folio_address(eb->folios[i]); 3645 ret = memcmp(ptr, kaddr + offset, cur); 3646 if (ret) 3647 break; 3648 3649 ptr += cur; 3650 len -= cur; 3651 offset = 0; 3652 i++; 3653 } 3654 return ret; 3655 } 3656 3657 /* 3658 * Check that the extent buffer is uptodate. 3659 * 3660 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3661 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3662 */ 3663 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3664 { 3665 struct btrfs_fs_info *fs_info = eb->fs_info; 3666 struct folio *folio = eb->folios[i]; 3667 3668 ASSERT(folio); 3669 3670 /* 3671 * If we are using the commit root we could potentially clear a page 3672 * Uptodate while we're using the extent buffer that we've previously 3673 * looked up. We don't want to complain in this case, as the page was 3674 * valid before, we just didn't write it out. Instead we want to catch 3675 * the case where we didn't actually read the block properly, which 3676 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3677 */ 3678 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3679 return; 3680 3681 if (fs_info->nodesize < PAGE_SIZE) { 3682 folio = eb->folios[0]; 3683 ASSERT(i == 0); 3684 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3685 eb->start, eb->len))) 3686 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3687 } else { 3688 WARN_ON(!folio_test_uptodate(folio)); 3689 } 3690 } 3691 3692 static void __write_extent_buffer(const struct extent_buffer *eb, 3693 const void *srcv, unsigned long start, 3694 unsigned long len, bool use_memmove) 3695 { 3696 const int unit_size = eb->folio_size; 3697 size_t cur; 3698 size_t offset; 3699 char *kaddr; 3700 const char *src = (const char *)srcv; 3701 unsigned long i = get_eb_folio_index(eb, start); 3702 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3703 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3704 3705 if (check_eb_range(eb, start, len)) 3706 return; 3707 3708 if (eb->addr) { 3709 if (use_memmove) 3710 memmove(eb->addr + start, srcv, len); 3711 else 3712 memcpy(eb->addr + start, srcv, len); 3713 return; 3714 } 3715 3716 offset = get_eb_offset_in_folio(eb, start); 3717 3718 while (len > 0) { 3719 if (check_uptodate) 3720 assert_eb_folio_uptodate(eb, i); 3721 3722 cur = min(len, unit_size - offset); 3723 kaddr = folio_address(eb->folios[i]); 3724 if (use_memmove) 3725 memmove(kaddr + offset, src, cur); 3726 else 3727 memcpy(kaddr + offset, src, cur); 3728 3729 src += cur; 3730 len -= cur; 3731 offset = 0; 3732 i++; 3733 } 3734 } 3735 3736 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3737 unsigned long start, unsigned long len) 3738 { 3739 return __write_extent_buffer(eb, srcv, start, len, false); 3740 } 3741 3742 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3743 unsigned long start, unsigned long len) 3744 { 3745 const int unit_size = eb->folio_size; 3746 unsigned long cur = start; 3747 3748 if (eb->addr) { 3749 memset(eb->addr + start, c, len); 3750 return; 3751 } 3752 3753 while (cur < start + len) { 3754 unsigned long index = get_eb_folio_index(eb, cur); 3755 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3756 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3757 3758 assert_eb_folio_uptodate(eb, index); 3759 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 3760 3761 cur += cur_len; 3762 } 3763 } 3764 3765 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 3766 unsigned long len) 3767 { 3768 if (check_eb_range(eb, start, len)) 3769 return; 3770 return memset_extent_buffer(eb, 0, start, len); 3771 } 3772 3773 void copy_extent_buffer_full(const struct extent_buffer *dst, 3774 const struct extent_buffer *src) 3775 { 3776 const int unit_size = src->folio_size; 3777 unsigned long cur = 0; 3778 3779 ASSERT(dst->len == src->len); 3780 3781 while (cur < src->len) { 3782 unsigned long index = get_eb_folio_index(src, cur); 3783 unsigned long offset = get_eb_offset_in_folio(src, cur); 3784 unsigned long cur_len = min(src->len, unit_size - offset); 3785 void *addr = folio_address(src->folios[index]) + offset; 3786 3787 write_extent_buffer(dst, addr, cur, cur_len); 3788 3789 cur += cur_len; 3790 } 3791 } 3792 3793 void copy_extent_buffer(const struct extent_buffer *dst, 3794 const struct extent_buffer *src, 3795 unsigned long dst_offset, unsigned long src_offset, 3796 unsigned long len) 3797 { 3798 const int unit_size = dst->folio_size; 3799 u64 dst_len = dst->len; 3800 size_t cur; 3801 size_t offset; 3802 char *kaddr; 3803 unsigned long i = get_eb_folio_index(dst, dst_offset); 3804 3805 if (check_eb_range(dst, dst_offset, len) || 3806 check_eb_range(src, src_offset, len)) 3807 return; 3808 3809 WARN_ON(src->len != dst_len); 3810 3811 offset = get_eb_offset_in_folio(dst, dst_offset); 3812 3813 while (len > 0) { 3814 assert_eb_folio_uptodate(dst, i); 3815 3816 cur = min(len, (unsigned long)(unit_size - offset)); 3817 3818 kaddr = folio_address(dst->folios[i]); 3819 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3820 3821 src_offset += cur; 3822 len -= cur; 3823 offset = 0; 3824 i++; 3825 } 3826 } 3827 3828 /* 3829 * Calculate the folio and offset of the byte containing the given bit number. 3830 * 3831 * @eb: the extent buffer 3832 * @start: offset of the bitmap item in the extent buffer 3833 * @nr: bit number 3834 * @folio_index: return index of the folio in the extent buffer that contains 3835 * the given bit number 3836 * @folio_offset: return offset into the folio given by folio_index 3837 * 3838 * This helper hides the ugliness of finding the byte in an extent buffer which 3839 * contains a given bit. 3840 */ 3841 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 3842 unsigned long start, unsigned long nr, 3843 unsigned long *folio_index, 3844 size_t *folio_offset) 3845 { 3846 size_t byte_offset = BIT_BYTE(nr); 3847 size_t offset; 3848 3849 /* 3850 * The byte we want is the offset of the extent buffer + the offset of 3851 * the bitmap item in the extent buffer + the offset of the byte in the 3852 * bitmap item. 3853 */ 3854 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 3855 3856 *folio_index = offset >> eb->folio_shift; 3857 *folio_offset = offset_in_eb_folio(eb, offset); 3858 } 3859 3860 /* 3861 * Determine whether a bit in a bitmap item is set. 3862 * 3863 * @eb: the extent buffer 3864 * @start: offset of the bitmap item in the extent buffer 3865 * @nr: bit number to test 3866 */ 3867 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 3868 unsigned long nr) 3869 { 3870 unsigned long i; 3871 size_t offset; 3872 u8 *kaddr; 3873 3874 eb_bitmap_offset(eb, start, nr, &i, &offset); 3875 assert_eb_folio_uptodate(eb, i); 3876 kaddr = folio_address(eb->folios[i]); 3877 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 3878 } 3879 3880 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 3881 { 3882 unsigned long index = get_eb_folio_index(eb, bytenr); 3883 3884 if (check_eb_range(eb, bytenr, 1)) 3885 return NULL; 3886 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 3887 } 3888 3889 /* 3890 * Set an area of a bitmap to 1. 3891 * 3892 * @eb: the extent buffer 3893 * @start: offset of the bitmap item in the extent buffer 3894 * @pos: bit number of the first bit 3895 * @len: number of bits to set 3896 */ 3897 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 3898 unsigned long pos, unsigned long len) 3899 { 3900 unsigned int first_byte = start + BIT_BYTE(pos); 3901 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 3902 const bool same_byte = (first_byte == last_byte); 3903 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 3904 u8 *kaddr; 3905 3906 if (same_byte) 3907 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 3908 3909 /* Handle the first byte. */ 3910 kaddr = extent_buffer_get_byte(eb, first_byte); 3911 *kaddr |= mask; 3912 if (same_byte) 3913 return; 3914 3915 /* Handle the byte aligned part. */ 3916 ASSERT(first_byte + 1 <= last_byte); 3917 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 3918 3919 /* Handle the last byte. */ 3920 kaddr = extent_buffer_get_byte(eb, last_byte); 3921 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 3922 } 3923 3924 3925 /* 3926 * Clear an area of a bitmap. 3927 * 3928 * @eb: the extent buffer 3929 * @start: offset of the bitmap item in the extent buffer 3930 * @pos: bit number of the first bit 3931 * @len: number of bits to clear 3932 */ 3933 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 3934 unsigned long start, unsigned long pos, 3935 unsigned long len) 3936 { 3937 unsigned int first_byte = start + BIT_BYTE(pos); 3938 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 3939 const bool same_byte = (first_byte == last_byte); 3940 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 3941 u8 *kaddr; 3942 3943 if (same_byte) 3944 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 3945 3946 /* Handle the first byte. */ 3947 kaddr = extent_buffer_get_byte(eb, first_byte); 3948 *kaddr &= ~mask; 3949 if (same_byte) 3950 return; 3951 3952 /* Handle the byte aligned part. */ 3953 ASSERT(first_byte + 1 <= last_byte); 3954 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 3955 3956 /* Handle the last byte. */ 3957 kaddr = extent_buffer_get_byte(eb, last_byte); 3958 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 3959 } 3960 3961 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 3962 { 3963 unsigned long distance = (src > dst) ? src - dst : dst - src; 3964 return distance < len; 3965 } 3966 3967 void memcpy_extent_buffer(const struct extent_buffer *dst, 3968 unsigned long dst_offset, unsigned long src_offset, 3969 unsigned long len) 3970 { 3971 const int unit_size = dst->folio_size; 3972 unsigned long cur_off = 0; 3973 3974 if (check_eb_range(dst, dst_offset, len) || 3975 check_eb_range(dst, src_offset, len)) 3976 return; 3977 3978 if (dst->addr) { 3979 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 3980 3981 if (use_memmove) 3982 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 3983 else 3984 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 3985 return; 3986 } 3987 3988 while (cur_off < len) { 3989 unsigned long cur_src = cur_off + src_offset; 3990 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 3991 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 3992 unsigned long cur_len = min(src_offset + len - cur_src, 3993 unit_size - folio_off); 3994 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 3995 const bool use_memmove = areas_overlap(src_offset + cur_off, 3996 dst_offset + cur_off, cur_len); 3997 3998 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 3999 use_memmove); 4000 cur_off += cur_len; 4001 } 4002 } 4003 4004 void memmove_extent_buffer(const struct extent_buffer *dst, 4005 unsigned long dst_offset, unsigned long src_offset, 4006 unsigned long len) 4007 { 4008 unsigned long dst_end = dst_offset + len - 1; 4009 unsigned long src_end = src_offset + len - 1; 4010 4011 if (check_eb_range(dst, dst_offset, len) || 4012 check_eb_range(dst, src_offset, len)) 4013 return; 4014 4015 if (dst_offset < src_offset) { 4016 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4017 return; 4018 } 4019 4020 if (dst->addr) { 4021 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4022 return; 4023 } 4024 4025 while (len > 0) { 4026 unsigned long src_i; 4027 size_t cur; 4028 size_t dst_off_in_folio; 4029 size_t src_off_in_folio; 4030 void *src_addr; 4031 bool use_memmove; 4032 4033 src_i = get_eb_folio_index(dst, src_end); 4034 4035 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4036 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4037 4038 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4039 cur = min(cur, dst_off_in_folio + 1); 4040 4041 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4042 cur + 1; 4043 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4044 cur); 4045 4046 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4047 use_memmove); 4048 4049 dst_end -= cur; 4050 src_end -= cur; 4051 len -= cur; 4052 } 4053 } 4054 4055 #define GANG_LOOKUP_SIZE 16 4056 static struct extent_buffer *get_next_extent_buffer( 4057 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr) 4058 { 4059 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4060 struct extent_buffer *found = NULL; 4061 u64 folio_start = folio_pos(folio); 4062 u64 cur = folio_start; 4063 4064 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE)); 4065 lockdep_assert_held(&fs_info->buffer_lock); 4066 4067 while (cur < folio_start + PAGE_SIZE) { 4068 int ret; 4069 int i; 4070 4071 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4072 (void **)gang, cur >> fs_info->sectorsize_bits, 4073 min_t(unsigned int, GANG_LOOKUP_SIZE, 4074 PAGE_SIZE / fs_info->nodesize)); 4075 if (ret == 0) 4076 goto out; 4077 for (i = 0; i < ret; i++) { 4078 /* Already beyond page end */ 4079 if (gang[i]->start >= folio_start + PAGE_SIZE) 4080 goto out; 4081 /* Found one */ 4082 if (gang[i]->start >= bytenr) { 4083 found = gang[i]; 4084 goto out; 4085 } 4086 } 4087 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4088 } 4089 out: 4090 return found; 4091 } 4092 4093 static int try_release_subpage_extent_buffer(struct folio *folio) 4094 { 4095 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4096 u64 cur = folio_pos(folio); 4097 const u64 end = cur + PAGE_SIZE; 4098 int ret; 4099 4100 while (cur < end) { 4101 struct extent_buffer *eb = NULL; 4102 4103 /* 4104 * Unlike try_release_extent_buffer() which uses folio private 4105 * to grab buffer, for subpage case we rely on radix tree, thus 4106 * we need to ensure radix tree consistency. 4107 * 4108 * We also want an atomic snapshot of the radix tree, thus go 4109 * with spinlock rather than RCU. 4110 */ 4111 spin_lock(&fs_info->buffer_lock); 4112 eb = get_next_extent_buffer(fs_info, folio, cur); 4113 if (!eb) { 4114 /* No more eb in the page range after or at cur */ 4115 spin_unlock(&fs_info->buffer_lock); 4116 break; 4117 } 4118 cur = eb->start + eb->len; 4119 4120 /* 4121 * The same as try_release_extent_buffer(), to ensure the eb 4122 * won't disappear out from under us. 4123 */ 4124 spin_lock(&eb->refs_lock); 4125 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4126 spin_unlock(&eb->refs_lock); 4127 spin_unlock(&fs_info->buffer_lock); 4128 break; 4129 } 4130 spin_unlock(&fs_info->buffer_lock); 4131 4132 /* 4133 * If tree ref isn't set then we know the ref on this eb is a 4134 * real ref, so just return, this eb will likely be freed soon 4135 * anyway. 4136 */ 4137 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4138 spin_unlock(&eb->refs_lock); 4139 break; 4140 } 4141 4142 /* 4143 * Here we don't care about the return value, we will always 4144 * check the folio private at the end. And 4145 * release_extent_buffer() will release the refs_lock. 4146 */ 4147 release_extent_buffer(eb); 4148 } 4149 /* 4150 * Finally to check if we have cleared folio private, as if we have 4151 * released all ebs in the page, the folio private should be cleared now. 4152 */ 4153 spin_lock(&folio->mapping->i_private_lock); 4154 if (!folio_test_private(folio)) 4155 ret = 1; 4156 else 4157 ret = 0; 4158 spin_unlock(&folio->mapping->i_private_lock); 4159 return ret; 4160 4161 } 4162 4163 int try_release_extent_buffer(struct folio *folio) 4164 { 4165 struct extent_buffer *eb; 4166 4167 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 4168 return try_release_subpage_extent_buffer(folio); 4169 4170 /* 4171 * We need to make sure nobody is changing folio private, as we rely on 4172 * folio private as the pointer to extent buffer. 4173 */ 4174 spin_lock(&folio->mapping->i_private_lock); 4175 if (!folio_test_private(folio)) { 4176 spin_unlock(&folio->mapping->i_private_lock); 4177 return 1; 4178 } 4179 4180 eb = folio_get_private(folio); 4181 BUG_ON(!eb); 4182 4183 /* 4184 * This is a little awful but should be ok, we need to make sure that 4185 * the eb doesn't disappear out from under us while we're looking at 4186 * this page. 4187 */ 4188 spin_lock(&eb->refs_lock); 4189 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4190 spin_unlock(&eb->refs_lock); 4191 spin_unlock(&folio->mapping->i_private_lock); 4192 return 0; 4193 } 4194 spin_unlock(&folio->mapping->i_private_lock); 4195 4196 /* 4197 * If tree ref isn't set then we know the ref on this eb is a real ref, 4198 * so just return, this page will likely be freed soon anyway. 4199 */ 4200 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4201 spin_unlock(&eb->refs_lock); 4202 return 0; 4203 } 4204 4205 return release_extent_buffer(eb); 4206 } 4207 4208 /* 4209 * Attempt to readahead a child block. 4210 * 4211 * @fs_info: the fs_info 4212 * @bytenr: bytenr to read 4213 * @owner_root: objectid of the root that owns this eb 4214 * @gen: generation for the uptodate check, can be 0 4215 * @level: level for the eb 4216 * 4217 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4218 * normal uptodate check of the eb, without checking the generation. If we have 4219 * to read the block we will not block on anything. 4220 */ 4221 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4222 u64 bytenr, u64 owner_root, u64 gen, int level) 4223 { 4224 struct btrfs_tree_parent_check check = { 4225 .has_first_key = 0, 4226 .level = level, 4227 .transid = gen 4228 }; 4229 struct extent_buffer *eb; 4230 int ret; 4231 4232 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4233 if (IS_ERR(eb)) 4234 return; 4235 4236 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4237 free_extent_buffer(eb); 4238 return; 4239 } 4240 4241 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4242 if (ret < 0) 4243 free_extent_buffer_stale(eb); 4244 else 4245 free_extent_buffer(eb); 4246 } 4247 4248 /* 4249 * Readahead a node's child block. 4250 * 4251 * @node: parent node we're reading from 4252 * @slot: slot in the parent node for the child we want to read 4253 * 4254 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4255 * the slot in the node provided. 4256 */ 4257 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4258 { 4259 btrfs_readahead_tree_block(node->fs_info, 4260 btrfs_node_blockptr(node, slot), 4261 btrfs_header_owner(node), 4262 btrfs_node_ptr_generation(node, slot), 4263 btrfs_header_level(node) - 1); 4264 } 4265