xref: /linux/fs/btrfs/extent_io.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	state = kmem_cache_alloc(extent_state_cache, mask);
230 	if (!state)
231 		return state;
232 	state->state = 0;
233 	state->failrec = NULL;
234 	RB_CLEAR_NODE(&state->rb_node);
235 	btrfs_leak_debug_add(&state->leak_list, &states);
236 	atomic_set(&state->refs, 1);
237 	init_waitqueue_head(&state->wq);
238 	trace_alloc_extent_state(state, mask, _RET_IP_);
239 	return state;
240 }
241 
242 void free_extent_state(struct extent_state *state)
243 {
244 	if (!state)
245 		return;
246 	if (atomic_dec_and_test(&state->refs)) {
247 		WARN_ON(extent_state_in_tree(state));
248 		btrfs_leak_debug_del(&state->leak_list);
249 		trace_free_extent_state(state, _RET_IP_);
250 		kmem_cache_free(extent_state_cache, state);
251 	}
252 }
253 
254 static struct rb_node *tree_insert(struct rb_root *root,
255 				   struct rb_node *search_start,
256 				   u64 offset,
257 				   struct rb_node *node,
258 				   struct rb_node ***p_in,
259 				   struct rb_node **parent_in)
260 {
261 	struct rb_node **p;
262 	struct rb_node *parent = NULL;
263 	struct tree_entry *entry;
264 
265 	if (p_in && parent_in) {
266 		p = *p_in;
267 		parent = *parent_in;
268 		goto do_insert;
269 	}
270 
271 	p = search_start ? &search_start : &root->rb_node;
272 	while (*p) {
273 		parent = *p;
274 		entry = rb_entry(parent, struct tree_entry, rb_node);
275 
276 		if (offset < entry->start)
277 			p = &(*p)->rb_left;
278 		else if (offset > entry->end)
279 			p = &(*p)->rb_right;
280 		else
281 			return parent;
282 	}
283 
284 do_insert:
285 	rb_link_node(node, parent, p);
286 	rb_insert_color(node, root);
287 	return NULL;
288 }
289 
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 				      struct rb_node **prev_ret,
292 				      struct rb_node **next_ret,
293 				      struct rb_node ***p_ret,
294 				      struct rb_node **parent_ret)
295 {
296 	struct rb_root *root = &tree->state;
297 	struct rb_node **n = &root->rb_node;
298 	struct rb_node *prev = NULL;
299 	struct rb_node *orig_prev = NULL;
300 	struct tree_entry *entry;
301 	struct tree_entry *prev_entry = NULL;
302 
303 	while (*n) {
304 		prev = *n;
305 		entry = rb_entry(prev, struct tree_entry, rb_node);
306 		prev_entry = entry;
307 
308 		if (offset < entry->start)
309 			n = &(*n)->rb_left;
310 		else if (offset > entry->end)
311 			n = &(*n)->rb_right;
312 		else
313 			return *n;
314 	}
315 
316 	if (p_ret)
317 		*p_ret = n;
318 	if (parent_ret)
319 		*parent_ret = prev;
320 
321 	if (prev_ret) {
322 		orig_prev = prev;
323 		while (prev && offset > prev_entry->end) {
324 			prev = rb_next(prev);
325 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 		}
327 		*prev_ret = prev;
328 		prev = orig_prev;
329 	}
330 
331 	if (next_ret) {
332 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 		while (prev && offset < prev_entry->start) {
334 			prev = rb_prev(prev);
335 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 		}
337 		*next_ret = prev;
338 	}
339 	return NULL;
340 }
341 
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 		       u64 offset,
345 		       struct rb_node ***p_ret,
346 		       struct rb_node **parent_ret)
347 {
348 	struct rb_node *prev = NULL;
349 	struct rb_node *ret;
350 
351 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 	if (!ret)
353 		return prev;
354 	return ret;
355 }
356 
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 					  u64 offset)
359 {
360 	return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362 
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 		     struct extent_state *other)
365 {
366 	if (tree->ops && tree->ops->merge_extent_hook)
367 		tree->ops->merge_extent_hook(tree->mapping->host, new,
368 					     other);
369 }
370 
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381 		        struct extent_state *state)
382 {
383 	struct extent_state *other;
384 	struct rb_node *other_node;
385 
386 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 		return;
388 
389 	other_node = rb_prev(&state->rb_node);
390 	if (other_node) {
391 		other = rb_entry(other_node, struct extent_state, rb_node);
392 		if (other->end == state->start - 1 &&
393 		    other->state == state->state) {
394 			merge_cb(tree, state, other);
395 			state->start = other->start;
396 			rb_erase(&other->rb_node, &tree->state);
397 			RB_CLEAR_NODE(&other->rb_node);
398 			free_extent_state(other);
399 		}
400 	}
401 	other_node = rb_next(&state->rb_node);
402 	if (other_node) {
403 		other = rb_entry(other_node, struct extent_state, rb_node);
404 		if (other->start == state->end + 1 &&
405 		    other->state == state->state) {
406 			merge_cb(tree, state, other);
407 			state->end = other->end;
408 			rb_erase(&other->rb_node, &tree->state);
409 			RB_CLEAR_NODE(&other->rb_node);
410 			free_extent_state(other);
411 		}
412 	}
413 }
414 
415 static void set_state_cb(struct extent_io_tree *tree,
416 			 struct extent_state *state, unsigned *bits)
417 {
418 	if (tree->ops && tree->ops->set_bit_hook)
419 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421 
422 static void clear_state_cb(struct extent_io_tree *tree,
423 			   struct extent_state *state, unsigned *bits)
424 {
425 	if (tree->ops && tree->ops->clear_bit_hook)
426 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428 
429 static void set_state_bits(struct extent_io_tree *tree,
430 			   struct extent_state *state, unsigned *bits,
431 			   struct extent_changeset *changeset);
432 
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444 			struct extent_state *state, u64 start, u64 end,
445 			struct rb_node ***p,
446 			struct rb_node **parent,
447 			unsigned *bits, struct extent_changeset *changeset)
448 {
449 	struct rb_node *node;
450 
451 	if (end < start)
452 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 		       end, start);
454 	state->start = start;
455 	state->end = end;
456 
457 	set_state_bits(tree, state, bits, changeset);
458 
459 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 		       "%llu %llu\n",
465 		       found->start, found->end, start, end);
466 		return -EEXIST;
467 	}
468 	merge_state(tree, state);
469 	return 0;
470 }
471 
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 		     u64 split)
474 {
475 	if (tree->ops && tree->ops->split_extent_hook)
476 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478 
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 		       struct extent_state *prealloc, u64 split)
495 {
496 	struct rb_node *node;
497 
498 	split_cb(tree, orig, split);
499 
500 	prealloc->start = orig->start;
501 	prealloc->end = split - 1;
502 	prealloc->state = orig->state;
503 	orig->start = split;
504 
505 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 			   &prealloc->rb_node, NULL, NULL);
507 	if (node) {
508 		free_extent_state(prealloc);
509 		return -EEXIST;
510 	}
511 	return 0;
512 }
513 
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 	struct rb_node *next = rb_next(&state->rb_node);
517 	if (next)
518 		return rb_entry(next, struct extent_state, rb_node);
519 	else
520 		return NULL;
521 }
522 
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 					    struct extent_state *state,
532 					    unsigned *bits, int wake,
533 					    struct extent_changeset *changeset)
534 {
535 	struct extent_state *next;
536 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537 
538 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 		u64 range = state->end - state->start + 1;
540 		WARN_ON(range > tree->dirty_bytes);
541 		tree->dirty_bytes -= range;
542 	}
543 	clear_state_cb(tree, state, bits);
544 	add_extent_changeset(state, bits_to_clear, changeset, 0);
545 	state->state &= ~bits_to_clear;
546 	if (wake)
547 		wake_up(&state->wq);
548 	if (state->state == 0) {
549 		next = next_state(state);
550 		if (extent_state_in_tree(state)) {
551 			rb_erase(&state->rb_node, &tree->state);
552 			RB_CLEAR_NODE(&state->rb_node);
553 			free_extent_state(state);
554 		} else {
555 			WARN_ON(1);
556 		}
557 	} else {
558 		merge_state(tree, state);
559 		next = next_state(state);
560 	}
561 	return next;
562 }
563 
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 	if (!prealloc)
568 		prealloc = alloc_extent_state(GFP_ATOMIC);
569 
570 	return prealloc;
571 }
572 
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 		    "Extent tree was modified by another "
577 		    "thread while locked.");
578 }
579 
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 			      unsigned bits, int wake, int delete,
594 			      struct extent_state **cached_state,
595 			      gfp_t mask, struct extent_changeset *changeset)
596 {
597 	struct extent_state *state;
598 	struct extent_state *cached;
599 	struct extent_state *prealloc = NULL;
600 	struct rb_node *node;
601 	u64 last_end;
602 	int err;
603 	int clear = 0;
604 
605 	btrfs_debug_check_extent_io_range(tree, start, end);
606 
607 	if (bits & EXTENT_DELALLOC)
608 		bits |= EXTENT_NORESERVE;
609 
610 	if (delete)
611 		bits |= ~EXTENT_CTLBITS;
612 	bits |= EXTENT_FIRST_DELALLOC;
613 
614 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 		clear = 1;
616 again:
617 	if (!prealloc && gfpflags_allow_blocking(mask)) {
618 		/*
619 		 * Don't care for allocation failure here because we might end
620 		 * up not needing the pre-allocated extent state at all, which
621 		 * is the case if we only have in the tree extent states that
622 		 * cover our input range and don't cover too any other range.
623 		 * If we end up needing a new extent state we allocate it later.
624 		 */
625 		prealloc = alloc_extent_state(mask);
626 	}
627 
628 	spin_lock(&tree->lock);
629 	if (cached_state) {
630 		cached = *cached_state;
631 
632 		if (clear) {
633 			*cached_state = NULL;
634 			cached_state = NULL;
635 		}
636 
637 		if (cached && extent_state_in_tree(cached) &&
638 		    cached->start <= start && cached->end > start) {
639 			if (clear)
640 				atomic_dec(&cached->refs);
641 			state = cached;
642 			goto hit_next;
643 		}
644 		if (clear)
645 			free_extent_state(cached);
646 	}
647 	/*
648 	 * this search will find the extents that end after
649 	 * our range starts
650 	 */
651 	node = tree_search(tree, start);
652 	if (!node)
653 		goto out;
654 	state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 	if (state->start > end)
657 		goto out;
658 	WARN_ON(state->end < start);
659 	last_end = state->end;
660 
661 	/* the state doesn't have the wanted bits, go ahead */
662 	if (!(state->state & bits)) {
663 		state = next_state(state);
664 		goto next;
665 	}
666 
667 	/*
668 	 *     | ---- desired range ---- |
669 	 *  | state | or
670 	 *  | ------------- state -------------- |
671 	 *
672 	 * We need to split the extent we found, and may flip
673 	 * bits on second half.
674 	 *
675 	 * If the extent we found extends past our range, we
676 	 * just split and search again.  It'll get split again
677 	 * the next time though.
678 	 *
679 	 * If the extent we found is inside our range, we clear
680 	 * the desired bit on it.
681 	 */
682 
683 	if (state->start < start) {
684 		prealloc = alloc_extent_state_atomic(prealloc);
685 		BUG_ON(!prealloc);
686 		err = split_state(tree, state, prealloc, start);
687 		if (err)
688 			extent_io_tree_panic(tree, err);
689 
690 		prealloc = NULL;
691 		if (err)
692 			goto out;
693 		if (state->end <= end) {
694 			state = clear_state_bit(tree, state, &bits, wake,
695 						changeset);
696 			goto next;
697 		}
698 		goto search_again;
699 	}
700 	/*
701 	 * | ---- desired range ---- |
702 	 *                        | state |
703 	 * We need to split the extent, and clear the bit
704 	 * on the first half
705 	 */
706 	if (state->start <= end && state->end > end) {
707 		prealloc = alloc_extent_state_atomic(prealloc);
708 		BUG_ON(!prealloc);
709 		err = split_state(tree, state, prealloc, end + 1);
710 		if (err)
711 			extent_io_tree_panic(tree, err);
712 
713 		if (wake)
714 			wake_up(&state->wq);
715 
716 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
717 
718 		prealloc = NULL;
719 		goto out;
720 	}
721 
722 	state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 	if (last_end == (u64)-1)
725 		goto out;
726 	start = last_end + 1;
727 	if (start <= end && state && !need_resched())
728 		goto hit_next;
729 
730 search_again:
731 	if (start > end)
732 		goto out;
733 	spin_unlock(&tree->lock);
734 	if (gfpflags_allow_blocking(mask))
735 		cond_resched();
736 	goto again;
737 
738 out:
739 	spin_unlock(&tree->lock);
740 	if (prealloc)
741 		free_extent_state(prealloc);
742 
743 	return 0;
744 
745 }
746 
747 static void wait_on_state(struct extent_io_tree *tree,
748 			  struct extent_state *state)
749 		__releases(tree->lock)
750 		__acquires(tree->lock)
751 {
752 	DEFINE_WAIT(wait);
753 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 	spin_unlock(&tree->lock);
755 	schedule();
756 	spin_lock(&tree->lock);
757 	finish_wait(&state->wq, &wait);
758 }
759 
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 			    unsigned long bits)
767 {
768 	struct extent_state *state;
769 	struct rb_node *node;
770 
771 	btrfs_debug_check_extent_io_range(tree, start, end);
772 
773 	spin_lock(&tree->lock);
774 again:
775 	while (1) {
776 		/*
777 		 * this search will find all the extents that end after
778 		 * our range starts
779 		 */
780 		node = tree_search(tree, start);
781 process_node:
782 		if (!node)
783 			break;
784 
785 		state = rb_entry(node, struct extent_state, rb_node);
786 
787 		if (state->start > end)
788 			goto out;
789 
790 		if (state->state & bits) {
791 			start = state->start;
792 			atomic_inc(&state->refs);
793 			wait_on_state(tree, state);
794 			free_extent_state(state);
795 			goto again;
796 		}
797 		start = state->end + 1;
798 
799 		if (start > end)
800 			break;
801 
802 		if (!cond_resched_lock(&tree->lock)) {
803 			node = rb_next(node);
804 			goto process_node;
805 		}
806 	}
807 out:
808 	spin_unlock(&tree->lock);
809 }
810 
811 static void set_state_bits(struct extent_io_tree *tree,
812 			   struct extent_state *state,
813 			   unsigned *bits, struct extent_changeset *changeset)
814 {
815 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816 
817 	set_state_cb(tree, state, bits);
818 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 		u64 range = state->end - state->start + 1;
820 		tree->dirty_bytes += range;
821 	}
822 	add_extent_changeset(state, bits_to_set, changeset, 1);
823 	state->state |= bits_to_set;
824 }
825 
826 static void cache_state_if_flags(struct extent_state *state,
827 				 struct extent_state **cached_ptr,
828 				 unsigned flags)
829 {
830 	if (cached_ptr && !(*cached_ptr)) {
831 		if (!flags || (state->state & flags)) {
832 			*cached_ptr = state;
833 			atomic_inc(&state->refs);
834 		}
835 	}
836 }
837 
838 static void cache_state(struct extent_state *state,
839 			struct extent_state **cached_ptr)
840 {
841 	return cache_state_if_flags(state, cached_ptr,
842 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844 
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855 
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 		 unsigned bits, unsigned exclusive_bits,
859 		 u64 *failed_start, struct extent_state **cached_state,
860 		 gfp_t mask, struct extent_changeset *changeset)
861 {
862 	struct extent_state *state;
863 	struct extent_state *prealloc = NULL;
864 	struct rb_node *node;
865 	struct rb_node **p;
866 	struct rb_node *parent;
867 	int err = 0;
868 	u64 last_start;
869 	u64 last_end;
870 
871 	btrfs_debug_check_extent_io_range(tree, start, end);
872 
873 	bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 	if (!prealloc && gfpflags_allow_blocking(mask)) {
876 		/*
877 		 * Don't care for allocation failure here because we might end
878 		 * up not needing the pre-allocated extent state at all, which
879 		 * is the case if we only have in the tree extent states that
880 		 * cover our input range and don't cover too any other range.
881 		 * If we end up needing a new extent state we allocate it later.
882 		 */
883 		prealloc = alloc_extent_state(mask);
884 	}
885 
886 	spin_lock(&tree->lock);
887 	if (cached_state && *cached_state) {
888 		state = *cached_state;
889 		if (state->start <= start && state->end > start &&
890 		    extent_state_in_tree(state)) {
891 			node = &state->rb_node;
892 			goto hit_next;
893 		}
894 	}
895 	/*
896 	 * this search will find all the extents that end after
897 	 * our range starts.
898 	 */
899 	node = tree_search_for_insert(tree, start, &p, &parent);
900 	if (!node) {
901 		prealloc = alloc_extent_state_atomic(prealloc);
902 		BUG_ON(!prealloc);
903 		err = insert_state(tree, prealloc, start, end,
904 				   &p, &parent, &bits, changeset);
905 		if (err)
906 			extent_io_tree_panic(tree, err);
907 
908 		cache_state(prealloc, cached_state);
909 		prealloc = NULL;
910 		goto out;
911 	}
912 	state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 	last_start = state->start;
915 	last_end = state->end;
916 
917 	/*
918 	 * | ---- desired range ---- |
919 	 * | state |
920 	 *
921 	 * Just lock what we found and keep going
922 	 */
923 	if (state->start == start && state->end <= end) {
924 		if (state->state & exclusive_bits) {
925 			*failed_start = state->start;
926 			err = -EEXIST;
927 			goto out;
928 		}
929 
930 		set_state_bits(tree, state, &bits, changeset);
931 		cache_state(state, cached_state);
932 		merge_state(tree, state);
933 		if (last_end == (u64)-1)
934 			goto out;
935 		start = last_end + 1;
936 		state = next_state(state);
937 		if (start < end && state && state->start == start &&
938 		    !need_resched())
939 			goto hit_next;
940 		goto search_again;
941 	}
942 
943 	/*
944 	 *     | ---- desired range ---- |
945 	 * | state |
946 	 *   or
947 	 * | ------------- state -------------- |
948 	 *
949 	 * We need to split the extent we found, and may flip bits on
950 	 * second half.
951 	 *
952 	 * If the extent we found extends past our
953 	 * range, we just split and search again.  It'll get split
954 	 * again the next time though.
955 	 *
956 	 * If the extent we found is inside our range, we set the
957 	 * desired bit on it.
958 	 */
959 	if (state->start < start) {
960 		if (state->state & exclusive_bits) {
961 			*failed_start = start;
962 			err = -EEXIST;
963 			goto out;
964 		}
965 
966 		prealloc = alloc_extent_state_atomic(prealloc);
967 		BUG_ON(!prealloc);
968 		err = split_state(tree, state, prealloc, start);
969 		if (err)
970 			extent_io_tree_panic(tree, err);
971 
972 		prealloc = NULL;
973 		if (err)
974 			goto out;
975 		if (state->end <= end) {
976 			set_state_bits(tree, state, &bits, changeset);
977 			cache_state(state, cached_state);
978 			merge_state(tree, state);
979 			if (last_end == (u64)-1)
980 				goto out;
981 			start = last_end + 1;
982 			state = next_state(state);
983 			if (start < end && state && state->start == start &&
984 			    !need_resched())
985 				goto hit_next;
986 		}
987 		goto search_again;
988 	}
989 	/*
990 	 * | ---- desired range ---- |
991 	 *     | state | or               | state |
992 	 *
993 	 * There's a hole, we need to insert something in it and
994 	 * ignore the extent we found.
995 	 */
996 	if (state->start > start) {
997 		u64 this_end;
998 		if (end < last_start)
999 			this_end = end;
1000 		else
1001 			this_end = last_start - 1;
1002 
1003 		prealloc = alloc_extent_state_atomic(prealloc);
1004 		BUG_ON(!prealloc);
1005 
1006 		/*
1007 		 * Avoid to free 'prealloc' if it can be merged with
1008 		 * the later extent.
1009 		 */
1010 		err = insert_state(tree, prealloc, start, this_end,
1011 				   NULL, NULL, &bits, changeset);
1012 		if (err)
1013 			extent_io_tree_panic(tree, err);
1014 
1015 		cache_state(prealloc, cached_state);
1016 		prealloc = NULL;
1017 		start = this_end + 1;
1018 		goto search_again;
1019 	}
1020 	/*
1021 	 * | ---- desired range ---- |
1022 	 *                        | state |
1023 	 * We need to split the extent, and set the bit
1024 	 * on the first half
1025 	 */
1026 	if (state->start <= end && state->end > end) {
1027 		if (state->state & exclusive_bits) {
1028 			*failed_start = start;
1029 			err = -EEXIST;
1030 			goto out;
1031 		}
1032 
1033 		prealloc = alloc_extent_state_atomic(prealloc);
1034 		BUG_ON(!prealloc);
1035 		err = split_state(tree, state, prealloc, end + 1);
1036 		if (err)
1037 			extent_io_tree_panic(tree, err);
1038 
1039 		set_state_bits(tree, prealloc, &bits, changeset);
1040 		cache_state(prealloc, cached_state);
1041 		merge_state(tree, prealloc);
1042 		prealloc = NULL;
1043 		goto out;
1044 	}
1045 
1046 search_again:
1047 	if (start > end)
1048 		goto out;
1049 	spin_unlock(&tree->lock);
1050 	if (gfpflags_allow_blocking(mask))
1051 		cond_resched();
1052 	goto again;
1053 
1054 out:
1055 	spin_unlock(&tree->lock);
1056 	if (prealloc)
1057 		free_extent_state(prealloc);
1058 
1059 	return err;
1060 
1061 }
1062 
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 		   unsigned bits, u64 * failed_start,
1065 		   struct extent_state **cached_state, gfp_t mask)
1066 {
1067 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 				cached_state, mask, NULL);
1069 }
1070 
1071 
1072 /**
1073  * convert_extent_bit - convert all bits in a given range from one bit to
1074  * 			another
1075  * @tree:	the io tree to search
1076  * @start:	the start offset in bytes
1077  * @end:	the end offset in bytes (inclusive)
1078  * @bits:	the bits to set in this range
1079  * @clear_bits:	the bits to clear in this range
1080  * @cached_state:	state that we're going to cache
1081  *
1082  * This will go through and set bits for the given range.  If any states exist
1083  * already in this range they are set with the given bit and cleared of the
1084  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1085  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1086  * boundary bits like LOCK.
1087  *
1088  * All allocations are done with GFP_NOFS.
1089  */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 		       unsigned bits, unsigned clear_bits,
1092 		       struct extent_state **cached_state)
1093 {
1094 	struct extent_state *state;
1095 	struct extent_state *prealloc = NULL;
1096 	struct rb_node *node;
1097 	struct rb_node **p;
1098 	struct rb_node *parent;
1099 	int err = 0;
1100 	u64 last_start;
1101 	u64 last_end;
1102 	bool first_iteration = true;
1103 
1104 	btrfs_debug_check_extent_io_range(tree, start, end);
1105 
1106 again:
1107 	if (!prealloc) {
1108 		/*
1109 		 * Best effort, don't worry if extent state allocation fails
1110 		 * here for the first iteration. We might have a cached state
1111 		 * that matches exactly the target range, in which case no
1112 		 * extent state allocations are needed. We'll only know this
1113 		 * after locking the tree.
1114 		 */
1115 		prealloc = alloc_extent_state(GFP_NOFS);
1116 		if (!prealloc && !first_iteration)
1117 			return -ENOMEM;
1118 	}
1119 
1120 	spin_lock(&tree->lock);
1121 	if (cached_state && *cached_state) {
1122 		state = *cached_state;
1123 		if (state->start <= start && state->end > start &&
1124 		    extent_state_in_tree(state)) {
1125 			node = &state->rb_node;
1126 			goto hit_next;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * this search will find all the extents that end after
1132 	 * our range starts.
1133 	 */
1134 	node = tree_search_for_insert(tree, start, &p, &parent);
1135 	if (!node) {
1136 		prealloc = alloc_extent_state_atomic(prealloc);
1137 		if (!prealloc) {
1138 			err = -ENOMEM;
1139 			goto out;
1140 		}
1141 		err = insert_state(tree, prealloc, start, end,
1142 				   &p, &parent, &bits, NULL);
1143 		if (err)
1144 			extent_io_tree_panic(tree, err);
1145 		cache_state(prealloc, cached_state);
1146 		prealloc = NULL;
1147 		goto out;
1148 	}
1149 	state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 	last_start = state->start;
1152 	last_end = state->end;
1153 
1154 	/*
1155 	 * | ---- desired range ---- |
1156 	 * | state |
1157 	 *
1158 	 * Just lock what we found and keep going
1159 	 */
1160 	if (state->start == start && state->end <= end) {
1161 		set_state_bits(tree, state, &bits, NULL);
1162 		cache_state(state, cached_state);
1163 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 		if (last_end == (u64)-1)
1165 			goto out;
1166 		start = last_end + 1;
1167 		if (start < end && state && state->start == start &&
1168 		    !need_resched())
1169 			goto hit_next;
1170 		goto search_again;
1171 	}
1172 
1173 	/*
1174 	 *     | ---- desired range ---- |
1175 	 * | state |
1176 	 *   or
1177 	 * | ------------- state -------------- |
1178 	 *
1179 	 * We need to split the extent we found, and may flip bits on
1180 	 * second half.
1181 	 *
1182 	 * If the extent we found extends past our
1183 	 * range, we just split and search again.  It'll get split
1184 	 * again the next time though.
1185 	 *
1186 	 * If the extent we found is inside our range, we set the
1187 	 * desired bit on it.
1188 	 */
1189 	if (state->start < start) {
1190 		prealloc = alloc_extent_state_atomic(prealloc);
1191 		if (!prealloc) {
1192 			err = -ENOMEM;
1193 			goto out;
1194 		}
1195 		err = split_state(tree, state, prealloc, start);
1196 		if (err)
1197 			extent_io_tree_panic(tree, err);
1198 		prealloc = NULL;
1199 		if (err)
1200 			goto out;
1201 		if (state->end <= end) {
1202 			set_state_bits(tree, state, &bits, NULL);
1203 			cache_state(state, cached_state);
1204 			state = clear_state_bit(tree, state, &clear_bits, 0,
1205 						NULL);
1206 			if (last_end == (u64)-1)
1207 				goto out;
1208 			start = last_end + 1;
1209 			if (start < end && state && state->start == start &&
1210 			    !need_resched())
1211 				goto hit_next;
1212 		}
1213 		goto search_again;
1214 	}
1215 	/*
1216 	 * | ---- desired range ---- |
1217 	 *     | state | or               | state |
1218 	 *
1219 	 * There's a hole, we need to insert something in it and
1220 	 * ignore the extent we found.
1221 	 */
1222 	if (state->start > start) {
1223 		u64 this_end;
1224 		if (end < last_start)
1225 			this_end = end;
1226 		else
1227 			this_end = last_start - 1;
1228 
1229 		prealloc = alloc_extent_state_atomic(prealloc);
1230 		if (!prealloc) {
1231 			err = -ENOMEM;
1232 			goto out;
1233 		}
1234 
1235 		/*
1236 		 * Avoid to free 'prealloc' if it can be merged with
1237 		 * the later extent.
1238 		 */
1239 		err = insert_state(tree, prealloc, start, this_end,
1240 				   NULL, NULL, &bits, NULL);
1241 		if (err)
1242 			extent_io_tree_panic(tree, err);
1243 		cache_state(prealloc, cached_state);
1244 		prealloc = NULL;
1245 		start = this_end + 1;
1246 		goto search_again;
1247 	}
1248 	/*
1249 	 * | ---- desired range ---- |
1250 	 *                        | state |
1251 	 * We need to split the extent, and set the bit
1252 	 * on the first half
1253 	 */
1254 	if (state->start <= end && state->end > end) {
1255 		prealloc = alloc_extent_state_atomic(prealloc);
1256 		if (!prealloc) {
1257 			err = -ENOMEM;
1258 			goto out;
1259 		}
1260 
1261 		err = split_state(tree, state, prealloc, end + 1);
1262 		if (err)
1263 			extent_io_tree_panic(tree, err);
1264 
1265 		set_state_bits(tree, prealloc, &bits, NULL);
1266 		cache_state(prealloc, cached_state);
1267 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 		prealloc = NULL;
1269 		goto out;
1270 	}
1271 
1272 search_again:
1273 	if (start > end)
1274 		goto out;
1275 	spin_unlock(&tree->lock);
1276 	cond_resched();
1277 	first_iteration = false;
1278 	goto again;
1279 
1280 out:
1281 	spin_unlock(&tree->lock);
1282 	if (prealloc)
1283 		free_extent_state(prealloc);
1284 
1285 	return err;
1286 }
1287 
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 			   unsigned bits, struct extent_changeset *changeset)
1291 {
1292 	/*
1293 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 	 * either fail with -EEXIST or changeset will record the whole
1296 	 * range.
1297 	 */
1298 	BUG_ON(bits & EXTENT_LOCKED);
1299 
1300 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 				changeset);
1302 }
1303 
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 		     unsigned bits, int wake, int delete,
1306 		     struct extent_state **cached, gfp_t mask)
1307 {
1308 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 				  cached, mask, NULL);
1310 }
1311 
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 		unsigned bits, struct extent_changeset *changeset)
1314 {
1315 	/*
1316 	 * Don't support EXTENT_LOCKED case, same reason as
1317 	 * set_record_extent_bits().
1318 	 */
1319 	BUG_ON(bits & EXTENT_LOCKED);
1320 
1321 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 				  changeset);
1323 }
1324 
1325 /*
1326  * either insert or lock state struct between start and end use mask to tell
1327  * us if waiting is desired.
1328  */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 		     struct extent_state **cached_state)
1331 {
1332 	int err;
1333 	u64 failed_start;
1334 
1335 	while (1) {
1336 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 				       EXTENT_LOCKED, &failed_start,
1338 				       cached_state, GFP_NOFS, NULL);
1339 		if (err == -EEXIST) {
1340 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 			start = failed_start;
1342 		} else
1343 			break;
1344 		WARN_ON(start > end);
1345 	}
1346 	return err;
1347 }
1348 
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 	int err;
1352 	u64 failed_start;
1353 
1354 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 			       &failed_start, NULL, GFP_NOFS, NULL);
1356 	if (err == -EEXIST) {
1357 		if (failed_start > start)
1358 			clear_extent_bit(tree, start, failed_start - 1,
1359 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 		return 0;
1361 	}
1362 	return 1;
1363 }
1364 
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 	unsigned long index = start >> PAGE_SHIFT;
1368 	unsigned long end_index = end >> PAGE_SHIFT;
1369 	struct page *page;
1370 
1371 	while (index <= end_index) {
1372 		page = find_get_page(inode->i_mapping, index);
1373 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 		clear_page_dirty_for_io(page);
1375 		put_page(page);
1376 		index++;
1377 	}
1378 }
1379 
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 	unsigned long index = start >> PAGE_SHIFT;
1383 	unsigned long end_index = end >> PAGE_SHIFT;
1384 	struct page *page;
1385 
1386 	while (index <= end_index) {
1387 		page = find_get_page(inode->i_mapping, index);
1388 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 		__set_page_dirty_nobuffers(page);
1390 		account_page_redirty(page);
1391 		put_page(page);
1392 		index++;
1393 	}
1394 }
1395 
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 	unsigned long index = start >> PAGE_SHIFT;
1402 	unsigned long end_index = end >> PAGE_SHIFT;
1403 	struct page *page;
1404 
1405 	while (index <= end_index) {
1406 		page = find_get_page(tree->mapping, index);
1407 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 		set_page_writeback(page);
1409 		put_page(page);
1410 		index++;
1411 	}
1412 }
1413 
1414 /* find the first state struct with 'bits' set after 'start', and
1415  * return it.  tree->lock must be held.  NULL will returned if
1416  * nothing was found after 'start'
1417  */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 			    u64 start, unsigned bits)
1421 {
1422 	struct rb_node *node;
1423 	struct extent_state *state;
1424 
1425 	/*
1426 	 * this search will find all the extents that end after
1427 	 * our range starts.
1428 	 */
1429 	node = tree_search(tree, start);
1430 	if (!node)
1431 		goto out;
1432 
1433 	while (1) {
1434 		state = rb_entry(node, struct extent_state, rb_node);
1435 		if (state->end >= start && (state->state & bits))
1436 			return state;
1437 
1438 		node = rb_next(node);
1439 		if (!node)
1440 			break;
1441 	}
1442 out:
1443 	return NULL;
1444 }
1445 
1446 /*
1447  * find the first offset in the io tree with 'bits' set. zero is
1448  * returned if we find something, and *start_ret and *end_ret are
1449  * set to reflect the state struct that was found.
1450  *
1451  * If nothing was found, 1 is returned. If found something, return 0.
1452  */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1455 			  struct extent_state **cached_state)
1456 {
1457 	struct extent_state *state;
1458 	struct rb_node *n;
1459 	int ret = 1;
1460 
1461 	spin_lock(&tree->lock);
1462 	if (cached_state && *cached_state) {
1463 		state = *cached_state;
1464 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 			n = rb_next(&state->rb_node);
1466 			while (n) {
1467 				state = rb_entry(n, struct extent_state,
1468 						 rb_node);
1469 				if (state->state & bits)
1470 					goto got_it;
1471 				n = rb_next(n);
1472 			}
1473 			free_extent_state(*cached_state);
1474 			*cached_state = NULL;
1475 			goto out;
1476 		}
1477 		free_extent_state(*cached_state);
1478 		*cached_state = NULL;
1479 	}
1480 
1481 	state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 	if (state) {
1484 		cache_state_if_flags(state, cached_state, 0);
1485 		*start_ret = state->start;
1486 		*end_ret = state->end;
1487 		ret = 0;
1488 	}
1489 out:
1490 	spin_unlock(&tree->lock);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * find a contiguous range of bytes in the file marked as delalloc, not
1496  * more than 'max_bytes'.  start and end are used to return the range,
1497  *
1498  * 1 is returned if we find something, 0 if nothing was in the tree
1499  */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 					u64 *start, u64 *end, u64 max_bytes,
1502 					struct extent_state **cached_state)
1503 {
1504 	struct rb_node *node;
1505 	struct extent_state *state;
1506 	u64 cur_start = *start;
1507 	u64 found = 0;
1508 	u64 total_bytes = 0;
1509 
1510 	spin_lock(&tree->lock);
1511 
1512 	/*
1513 	 * this search will find all the extents that end after
1514 	 * our range starts.
1515 	 */
1516 	node = tree_search(tree, cur_start);
1517 	if (!node) {
1518 		if (!found)
1519 			*end = (u64)-1;
1520 		goto out;
1521 	}
1522 
1523 	while (1) {
1524 		state = rb_entry(node, struct extent_state, rb_node);
1525 		if (found && (state->start != cur_start ||
1526 			      (state->state & EXTENT_BOUNDARY))) {
1527 			goto out;
1528 		}
1529 		if (!(state->state & EXTENT_DELALLOC)) {
1530 			if (!found)
1531 				*end = state->end;
1532 			goto out;
1533 		}
1534 		if (!found) {
1535 			*start = state->start;
1536 			*cached_state = state;
1537 			atomic_inc(&state->refs);
1538 		}
1539 		found++;
1540 		*end = state->end;
1541 		cur_start = state->end + 1;
1542 		node = rb_next(node);
1543 		total_bytes += state->end - state->start + 1;
1544 		if (total_bytes >= max_bytes)
1545 			break;
1546 		if (!node)
1547 			break;
1548 	}
1549 out:
1550 	spin_unlock(&tree->lock);
1551 	return found;
1552 }
1553 
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 					   struct page *locked_page,
1556 					   u64 start, u64 end)
1557 {
1558 	int ret;
1559 	struct page *pages[16];
1560 	unsigned long index = start >> PAGE_SHIFT;
1561 	unsigned long end_index = end >> PAGE_SHIFT;
1562 	unsigned long nr_pages = end_index - index + 1;
1563 	int i;
1564 
1565 	if (index == locked_page->index && end_index == index)
1566 		return;
1567 
1568 	while (nr_pages > 0) {
1569 		ret = find_get_pages_contig(inode->i_mapping, index,
1570 				     min_t(unsigned long, nr_pages,
1571 				     ARRAY_SIZE(pages)), pages);
1572 		for (i = 0; i < ret; i++) {
1573 			if (pages[i] != locked_page)
1574 				unlock_page(pages[i]);
1575 			put_page(pages[i]);
1576 		}
1577 		nr_pages -= ret;
1578 		index += ret;
1579 		cond_resched();
1580 	}
1581 }
1582 
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 					struct page *locked_page,
1585 					u64 delalloc_start,
1586 					u64 delalloc_end)
1587 {
1588 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 	unsigned long start_index = index;
1590 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 	unsigned long pages_locked = 0;
1592 	struct page *pages[16];
1593 	unsigned long nrpages;
1594 	int ret;
1595 	int i;
1596 
1597 	/* the caller is responsible for locking the start index */
1598 	if (index == locked_page->index && index == end_index)
1599 		return 0;
1600 
1601 	/* skip the page at the start index */
1602 	nrpages = end_index - index + 1;
1603 	while (nrpages > 0) {
1604 		ret = find_get_pages_contig(inode->i_mapping, index,
1605 				     min_t(unsigned long,
1606 				     nrpages, ARRAY_SIZE(pages)), pages);
1607 		if (ret == 0) {
1608 			ret = -EAGAIN;
1609 			goto done;
1610 		}
1611 		/* now we have an array of pages, lock them all */
1612 		for (i = 0; i < ret; i++) {
1613 			/*
1614 			 * the caller is taking responsibility for
1615 			 * locked_page
1616 			 */
1617 			if (pages[i] != locked_page) {
1618 				lock_page(pages[i]);
1619 				if (!PageDirty(pages[i]) ||
1620 				    pages[i]->mapping != inode->i_mapping) {
1621 					ret = -EAGAIN;
1622 					unlock_page(pages[i]);
1623 					put_page(pages[i]);
1624 					goto done;
1625 				}
1626 			}
1627 			put_page(pages[i]);
1628 			pages_locked++;
1629 		}
1630 		nrpages -= ret;
1631 		index += ret;
1632 		cond_resched();
1633 	}
1634 	ret = 0;
1635 done:
1636 	if (ret && pages_locked) {
1637 		__unlock_for_delalloc(inode, locked_page,
1638 			      delalloc_start,
1639 			      ((u64)(start_index + pages_locked - 1)) <<
1640 			      PAGE_SHIFT);
1641 	}
1642 	return ret;
1643 }
1644 
1645 /*
1646  * find a contiguous range of bytes in the file marked as delalloc, not
1647  * more than 'max_bytes'.  start and end are used to return the range,
1648  *
1649  * 1 is returned if we find something, 0 if nothing was in the tree
1650  */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 				    struct extent_io_tree *tree,
1653 				    struct page *locked_page, u64 *start,
1654 				    u64 *end, u64 max_bytes)
1655 {
1656 	u64 delalloc_start;
1657 	u64 delalloc_end;
1658 	u64 found;
1659 	struct extent_state *cached_state = NULL;
1660 	int ret;
1661 	int loops = 0;
1662 
1663 again:
1664 	/* step one, find a bunch of delalloc bytes starting at start */
1665 	delalloc_start = *start;
1666 	delalloc_end = 0;
1667 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 				    max_bytes, &cached_state);
1669 	if (!found || delalloc_end <= *start) {
1670 		*start = delalloc_start;
1671 		*end = delalloc_end;
1672 		free_extent_state(cached_state);
1673 		return 0;
1674 	}
1675 
1676 	/*
1677 	 * start comes from the offset of locked_page.  We have to lock
1678 	 * pages in order, so we can't process delalloc bytes before
1679 	 * locked_page
1680 	 */
1681 	if (delalloc_start < *start)
1682 		delalloc_start = *start;
1683 
1684 	/*
1685 	 * make sure to limit the number of pages we try to lock down
1686 	 */
1687 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 		delalloc_end = delalloc_start + max_bytes - 1;
1689 
1690 	/* step two, lock all the pages after the page that has start */
1691 	ret = lock_delalloc_pages(inode, locked_page,
1692 				  delalloc_start, delalloc_end);
1693 	if (ret == -EAGAIN) {
1694 		/* some of the pages are gone, lets avoid looping by
1695 		 * shortening the size of the delalloc range we're searching
1696 		 */
1697 		free_extent_state(cached_state);
1698 		cached_state = NULL;
1699 		if (!loops) {
1700 			max_bytes = PAGE_SIZE;
1701 			loops = 1;
1702 			goto again;
1703 		} else {
1704 			found = 0;
1705 			goto out_failed;
1706 		}
1707 	}
1708 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709 
1710 	/* step three, lock the state bits for the whole range */
1711 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712 
1713 	/* then test to make sure it is all still delalloc */
1714 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 			     EXTENT_DELALLOC, 1, cached_state);
1716 	if (!ret) {
1717 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 				     &cached_state, GFP_NOFS);
1719 		__unlock_for_delalloc(inode, locked_page,
1720 			      delalloc_start, delalloc_end);
1721 		cond_resched();
1722 		goto again;
1723 	}
1724 	free_extent_state(cached_state);
1725 	*start = delalloc_start;
1726 	*end = delalloc_end;
1727 out_failed:
1728 	return found;
1729 }
1730 
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 				 struct page *locked_page,
1733 				 unsigned clear_bits,
1734 				 unsigned long page_ops)
1735 {
1736 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 	int ret;
1738 	struct page *pages[16];
1739 	unsigned long index = start >> PAGE_SHIFT;
1740 	unsigned long end_index = end >> PAGE_SHIFT;
1741 	unsigned long nr_pages = end_index - index + 1;
1742 	int i;
1743 
1744 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 	if (page_ops == 0)
1746 		return;
1747 
1748 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 		mapping_set_error(inode->i_mapping, -EIO);
1750 
1751 	while (nr_pages > 0) {
1752 		ret = find_get_pages_contig(inode->i_mapping, index,
1753 				     min_t(unsigned long,
1754 				     nr_pages, ARRAY_SIZE(pages)), pages);
1755 		for (i = 0; i < ret; i++) {
1756 
1757 			if (page_ops & PAGE_SET_PRIVATE2)
1758 				SetPagePrivate2(pages[i]);
1759 
1760 			if (pages[i] == locked_page) {
1761 				put_page(pages[i]);
1762 				continue;
1763 			}
1764 			if (page_ops & PAGE_CLEAR_DIRTY)
1765 				clear_page_dirty_for_io(pages[i]);
1766 			if (page_ops & PAGE_SET_WRITEBACK)
1767 				set_page_writeback(pages[i]);
1768 			if (page_ops & PAGE_SET_ERROR)
1769 				SetPageError(pages[i]);
1770 			if (page_ops & PAGE_END_WRITEBACK)
1771 				end_page_writeback(pages[i]);
1772 			if (page_ops & PAGE_UNLOCK)
1773 				unlock_page(pages[i]);
1774 			put_page(pages[i]);
1775 		}
1776 		nr_pages -= ret;
1777 		index += ret;
1778 		cond_resched();
1779 	}
1780 }
1781 
1782 /*
1783  * count the number of bytes in the tree that have a given bit(s)
1784  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1785  * cached.  The total number found is returned.
1786  */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 		     u64 *start, u64 search_end, u64 max_bytes,
1789 		     unsigned bits, int contig)
1790 {
1791 	struct rb_node *node;
1792 	struct extent_state *state;
1793 	u64 cur_start = *start;
1794 	u64 total_bytes = 0;
1795 	u64 last = 0;
1796 	int found = 0;
1797 
1798 	if (WARN_ON(search_end <= cur_start))
1799 		return 0;
1800 
1801 	spin_lock(&tree->lock);
1802 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 		total_bytes = tree->dirty_bytes;
1804 		goto out;
1805 	}
1806 	/*
1807 	 * this search will find all the extents that end after
1808 	 * our range starts.
1809 	 */
1810 	node = tree_search(tree, cur_start);
1811 	if (!node)
1812 		goto out;
1813 
1814 	while (1) {
1815 		state = rb_entry(node, struct extent_state, rb_node);
1816 		if (state->start > search_end)
1817 			break;
1818 		if (contig && found && state->start > last + 1)
1819 			break;
1820 		if (state->end >= cur_start && (state->state & bits) == bits) {
1821 			total_bytes += min(search_end, state->end) + 1 -
1822 				       max(cur_start, state->start);
1823 			if (total_bytes >= max_bytes)
1824 				break;
1825 			if (!found) {
1826 				*start = max(cur_start, state->start);
1827 				found = 1;
1828 			}
1829 			last = state->end;
1830 		} else if (contig && found) {
1831 			break;
1832 		}
1833 		node = rb_next(node);
1834 		if (!node)
1835 			break;
1836 	}
1837 out:
1838 	spin_unlock(&tree->lock);
1839 	return total_bytes;
1840 }
1841 
1842 /*
1843  * set the private field for a given byte offset in the tree.  If there isn't
1844  * an extent_state there already, this does nothing.
1845  */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 		struct io_failure_record *failrec)
1848 {
1849 	struct rb_node *node;
1850 	struct extent_state *state;
1851 	int ret = 0;
1852 
1853 	spin_lock(&tree->lock);
1854 	/*
1855 	 * this search will find all the extents that end after
1856 	 * our range starts.
1857 	 */
1858 	node = tree_search(tree, start);
1859 	if (!node) {
1860 		ret = -ENOENT;
1861 		goto out;
1862 	}
1863 	state = rb_entry(node, struct extent_state, rb_node);
1864 	if (state->start != start) {
1865 		ret = -ENOENT;
1866 		goto out;
1867 	}
1868 	state->failrec = failrec;
1869 out:
1870 	spin_unlock(&tree->lock);
1871 	return ret;
1872 }
1873 
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 		struct io_failure_record **failrec)
1876 {
1877 	struct rb_node *node;
1878 	struct extent_state *state;
1879 	int ret = 0;
1880 
1881 	spin_lock(&tree->lock);
1882 	/*
1883 	 * this search will find all the extents that end after
1884 	 * our range starts.
1885 	 */
1886 	node = tree_search(tree, start);
1887 	if (!node) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	state = rb_entry(node, struct extent_state, rb_node);
1892 	if (state->start != start) {
1893 		ret = -ENOENT;
1894 		goto out;
1895 	}
1896 	*failrec = state->failrec;
1897 out:
1898 	spin_unlock(&tree->lock);
1899 	return ret;
1900 }
1901 
1902 /*
1903  * searches a range in the state tree for a given mask.
1904  * If 'filled' == 1, this returns 1 only if every extent in the tree
1905  * has the bits set.  Otherwise, 1 is returned if any bit in the
1906  * range is found set.
1907  */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 		   unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 	struct extent_state *state = NULL;
1912 	struct rb_node *node;
1913 	int bitset = 0;
1914 
1915 	spin_lock(&tree->lock);
1916 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 	    cached->end > start)
1918 		node = &cached->rb_node;
1919 	else
1920 		node = tree_search(tree, start);
1921 	while (node && start <= end) {
1922 		state = rb_entry(node, struct extent_state, rb_node);
1923 
1924 		if (filled && state->start > start) {
1925 			bitset = 0;
1926 			break;
1927 		}
1928 
1929 		if (state->start > end)
1930 			break;
1931 
1932 		if (state->state & bits) {
1933 			bitset = 1;
1934 			if (!filled)
1935 				break;
1936 		} else if (filled) {
1937 			bitset = 0;
1938 			break;
1939 		}
1940 
1941 		if (state->end == (u64)-1)
1942 			break;
1943 
1944 		start = state->end + 1;
1945 		if (start > end)
1946 			break;
1947 		node = rb_next(node);
1948 		if (!node) {
1949 			if (filled)
1950 				bitset = 0;
1951 			break;
1952 		}
1953 	}
1954 	spin_unlock(&tree->lock);
1955 	return bitset;
1956 }
1957 
1958 /*
1959  * helper function to set a given page up to date if all the
1960  * extents in the tree for that page are up to date
1961  */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 	u64 start = page_offset(page);
1965 	u64 end = start + PAGE_SIZE - 1;
1966 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 		SetPageUptodate(page);
1968 }
1969 
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 	int ret;
1973 	int err = 0;
1974 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975 
1976 	set_state_failrec(failure_tree, rec->start, NULL);
1977 	ret = clear_extent_bits(failure_tree, rec->start,
1978 				rec->start + rec->len - 1,
1979 				EXTENT_LOCKED | EXTENT_DIRTY);
1980 	if (ret)
1981 		err = ret;
1982 
1983 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 				rec->start + rec->len - 1,
1985 				EXTENT_DAMAGED);
1986 	if (ret && !err)
1987 		err = ret;
1988 
1989 	kfree(rec);
1990 	return err;
1991 }
1992 
1993 /*
1994  * this bypasses the standard btrfs submit functions deliberately, as
1995  * the standard behavior is to write all copies in a raid setup. here we only
1996  * want to write the one bad copy. so we do the mapping for ourselves and issue
1997  * submit_bio directly.
1998  * to avoid any synchronization issues, wait for the data after writing, which
1999  * actually prevents the read that triggered the error from finishing.
2000  * currently, there can be no more than two copies of every data bit. thus,
2001  * exactly one rewrite is required.
2002  */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 		      struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 	struct bio *bio;
2008 	struct btrfs_device *dev;
2009 	u64 map_length = 0;
2010 	u64 sector;
2011 	struct btrfs_bio *bbio = NULL;
2012 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 	int ret;
2014 
2015 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 	BUG_ON(!mirror_num);
2017 
2018 	/* we can't repair anything in raid56 yet */
2019 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 		return 0;
2021 
2022 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 	if (!bio)
2024 		return -EIO;
2025 	bio->bi_iter.bi_size = 0;
2026 	map_length = length;
2027 
2028 	/*
2029 	 * Avoid races with device replace and make sure our bbio has devices
2030 	 * associated to its stripes that don't go away while we are doing the
2031 	 * read repair operation.
2032 	 */
2033 	btrfs_bio_counter_inc_blocked(fs_info);
2034 	ret = btrfs_map_block(fs_info, WRITE, logical,
2035 			      &map_length, &bbio, mirror_num);
2036 	if (ret) {
2037 		btrfs_bio_counter_dec(fs_info);
2038 		bio_put(bio);
2039 		return -EIO;
2040 	}
2041 	BUG_ON(mirror_num != bbio->mirror_num);
2042 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 	bio->bi_iter.bi_sector = sector;
2044 	dev = bbio->stripes[mirror_num-1].dev;
2045 	btrfs_put_bbio(bbio);
2046 	if (!dev || !dev->bdev || !dev->writeable) {
2047 		btrfs_bio_counter_dec(fs_info);
2048 		bio_put(bio);
2049 		return -EIO;
2050 	}
2051 	bio->bi_bdev = dev->bdev;
2052 	bio_add_page(bio, page, length, pg_offset);
2053 
2054 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2055 		/* try to remap that extent elsewhere? */
2056 		btrfs_bio_counter_dec(fs_info);
2057 		bio_put(bio);
2058 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2059 		return -EIO;
2060 	}
2061 
2062 	btrfs_info_rl_in_rcu(fs_info,
2063 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2064 				  btrfs_ino(inode), start,
2065 				  rcu_str_deref(dev->name), sector);
2066 	btrfs_bio_counter_dec(fs_info);
2067 	bio_put(bio);
2068 	return 0;
2069 }
2070 
2071 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2072 			 int mirror_num)
2073 {
2074 	u64 start = eb->start;
2075 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2076 	int ret = 0;
2077 
2078 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2079 		return -EROFS;
2080 
2081 	for (i = 0; i < num_pages; i++) {
2082 		struct page *p = eb->pages[i];
2083 
2084 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2085 					PAGE_SIZE, start, p,
2086 					start - page_offset(p), mirror_num);
2087 		if (ret)
2088 			break;
2089 		start += PAGE_SIZE;
2090 	}
2091 
2092 	return ret;
2093 }
2094 
2095 /*
2096  * each time an IO finishes, we do a fast check in the IO failure tree
2097  * to see if we need to process or clean up an io_failure_record
2098  */
2099 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2100 		     unsigned int pg_offset)
2101 {
2102 	u64 private;
2103 	struct io_failure_record *failrec;
2104 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2105 	struct extent_state *state;
2106 	int num_copies;
2107 	int ret;
2108 
2109 	private = 0;
2110 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2111 				(u64)-1, 1, EXTENT_DIRTY, 0);
2112 	if (!ret)
2113 		return 0;
2114 
2115 	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2116 			&failrec);
2117 	if (ret)
2118 		return 0;
2119 
2120 	BUG_ON(!failrec->this_mirror);
2121 
2122 	if (failrec->in_validation) {
2123 		/* there was no real error, just free the record */
2124 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125 			 failrec->start);
2126 		goto out;
2127 	}
2128 	if (fs_info->sb->s_flags & MS_RDONLY)
2129 		goto out;
2130 
2131 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 					    failrec->start,
2134 					    EXTENT_LOCKED);
2135 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136 
2137 	if (state && state->start <= failrec->start &&
2138 	    state->end >= failrec->start + failrec->len - 1) {
2139 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 					      failrec->len);
2141 		if (num_copies > 1)  {
2142 			repair_io_failure(inode, start, failrec->len,
2143 					  failrec->logical, page,
2144 					  pg_offset, failrec->failed_mirror);
2145 		}
2146 	}
2147 
2148 out:
2149 	free_io_failure(inode, failrec);
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Can be called when
2156  * - hold extent lock
2157  * - under ordered extent
2158  * - the inode is freeing
2159  */
2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161 {
2162 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 	struct io_failure_record *failrec;
2164 	struct extent_state *state, *next;
2165 
2166 	if (RB_EMPTY_ROOT(&failure_tree->state))
2167 		return;
2168 
2169 	spin_lock(&failure_tree->lock);
2170 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 	while (state) {
2172 		if (state->start > end)
2173 			break;
2174 
2175 		ASSERT(state->end <= end);
2176 
2177 		next = next_state(state);
2178 
2179 		failrec = state->failrec;
2180 		free_extent_state(state);
2181 		kfree(failrec);
2182 
2183 		state = next;
2184 	}
2185 	spin_unlock(&failure_tree->lock);
2186 }
2187 
2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 		struct io_failure_record **failrec_ret)
2190 {
2191 	struct io_failure_record *failrec;
2192 	struct extent_map *em;
2193 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2194 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2195 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2196 	int ret;
2197 	u64 logical;
2198 
2199 	ret = get_state_failrec(failure_tree, start, &failrec);
2200 	if (ret) {
2201 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2202 		if (!failrec)
2203 			return -ENOMEM;
2204 
2205 		failrec->start = start;
2206 		failrec->len = end - start + 1;
2207 		failrec->this_mirror = 0;
2208 		failrec->bio_flags = 0;
2209 		failrec->in_validation = 0;
2210 
2211 		read_lock(&em_tree->lock);
2212 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2213 		if (!em) {
2214 			read_unlock(&em_tree->lock);
2215 			kfree(failrec);
2216 			return -EIO;
2217 		}
2218 
2219 		if (em->start > start || em->start + em->len <= start) {
2220 			free_extent_map(em);
2221 			em = NULL;
2222 		}
2223 		read_unlock(&em_tree->lock);
2224 		if (!em) {
2225 			kfree(failrec);
2226 			return -EIO;
2227 		}
2228 
2229 		logical = start - em->start;
2230 		logical = em->block_start + logical;
2231 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2232 			logical = em->block_start;
2233 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2234 			extent_set_compress_type(&failrec->bio_flags,
2235 						 em->compress_type);
2236 		}
2237 
2238 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2239 			 logical, start, failrec->len);
2240 
2241 		failrec->logical = logical;
2242 		free_extent_map(em);
2243 
2244 		/* set the bits in the private failure tree */
2245 		ret = set_extent_bits(failure_tree, start, end,
2246 					EXTENT_LOCKED | EXTENT_DIRTY);
2247 		if (ret >= 0)
2248 			ret = set_state_failrec(failure_tree, start, failrec);
2249 		/* set the bits in the inode's tree */
2250 		if (ret >= 0)
2251 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2252 		if (ret < 0) {
2253 			kfree(failrec);
2254 			return ret;
2255 		}
2256 	} else {
2257 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2258 			 failrec->logical, failrec->start, failrec->len,
2259 			 failrec->in_validation);
2260 		/*
2261 		 * when data can be on disk more than twice, add to failrec here
2262 		 * (e.g. with a list for failed_mirror) to make
2263 		 * clean_io_failure() clean all those errors at once.
2264 		 */
2265 	}
2266 
2267 	*failrec_ret = failrec;
2268 
2269 	return 0;
2270 }
2271 
2272 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2273 			   struct io_failure_record *failrec, int failed_mirror)
2274 {
2275 	int num_copies;
2276 
2277 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2278 				      failrec->logical, failrec->len);
2279 	if (num_copies == 1) {
2280 		/*
2281 		 * we only have a single copy of the data, so don't bother with
2282 		 * all the retry and error correction code that follows. no
2283 		 * matter what the error is, it is very likely to persist.
2284 		 */
2285 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2286 			 num_copies, failrec->this_mirror, failed_mirror);
2287 		return 0;
2288 	}
2289 
2290 	/*
2291 	 * there are two premises:
2292 	 *	a) deliver good data to the caller
2293 	 *	b) correct the bad sectors on disk
2294 	 */
2295 	if (failed_bio->bi_vcnt > 1) {
2296 		/*
2297 		 * to fulfill b), we need to know the exact failing sectors, as
2298 		 * we don't want to rewrite any more than the failed ones. thus,
2299 		 * we need separate read requests for the failed bio
2300 		 *
2301 		 * if the following BUG_ON triggers, our validation request got
2302 		 * merged. we need separate requests for our algorithm to work.
2303 		 */
2304 		BUG_ON(failrec->in_validation);
2305 		failrec->in_validation = 1;
2306 		failrec->this_mirror = failed_mirror;
2307 	} else {
2308 		/*
2309 		 * we're ready to fulfill a) and b) alongside. get a good copy
2310 		 * of the failed sector and if we succeed, we have setup
2311 		 * everything for repair_io_failure to do the rest for us.
2312 		 */
2313 		if (failrec->in_validation) {
2314 			BUG_ON(failrec->this_mirror != failed_mirror);
2315 			failrec->in_validation = 0;
2316 			failrec->this_mirror = 0;
2317 		}
2318 		failrec->failed_mirror = failed_mirror;
2319 		failrec->this_mirror++;
2320 		if (failrec->this_mirror == failed_mirror)
2321 			failrec->this_mirror++;
2322 	}
2323 
2324 	if (failrec->this_mirror > num_copies) {
2325 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2326 			 num_copies, failrec->this_mirror, failed_mirror);
2327 		return 0;
2328 	}
2329 
2330 	return 1;
2331 }
2332 
2333 
2334 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2335 				    struct io_failure_record *failrec,
2336 				    struct page *page, int pg_offset, int icsum,
2337 				    bio_end_io_t *endio_func, void *data)
2338 {
2339 	struct bio *bio;
2340 	struct btrfs_io_bio *btrfs_failed_bio;
2341 	struct btrfs_io_bio *btrfs_bio;
2342 
2343 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2344 	if (!bio)
2345 		return NULL;
2346 
2347 	bio->bi_end_io = endio_func;
2348 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2349 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2350 	bio->bi_iter.bi_size = 0;
2351 	bio->bi_private = data;
2352 
2353 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2354 	if (btrfs_failed_bio->csum) {
2355 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2356 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2357 
2358 		btrfs_bio = btrfs_io_bio(bio);
2359 		btrfs_bio->csum = btrfs_bio->csum_inline;
2360 		icsum *= csum_size;
2361 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2362 		       csum_size);
2363 	}
2364 
2365 	bio_add_page(bio, page, failrec->len, pg_offset);
2366 
2367 	return bio;
2368 }
2369 
2370 /*
2371  * this is a generic handler for readpage errors (default
2372  * readpage_io_failed_hook). if other copies exist, read those and write back
2373  * good data to the failed position. does not investigate in remapping the
2374  * failed extent elsewhere, hoping the device will be smart enough to do this as
2375  * needed
2376  */
2377 
2378 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2379 			      struct page *page, u64 start, u64 end,
2380 			      int failed_mirror)
2381 {
2382 	struct io_failure_record *failrec;
2383 	struct inode *inode = page->mapping->host;
2384 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2385 	struct bio *bio;
2386 	int read_mode;
2387 	int ret;
2388 
2389 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2390 
2391 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2392 	if (ret)
2393 		return ret;
2394 
2395 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2396 	if (!ret) {
2397 		free_io_failure(inode, failrec);
2398 		return -EIO;
2399 	}
2400 
2401 	if (failed_bio->bi_vcnt > 1)
2402 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2403 	else
2404 		read_mode = READ_SYNC;
2405 
2406 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2407 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2408 				      start - page_offset(page),
2409 				      (int)phy_offset, failed_bio->bi_end_io,
2410 				      NULL);
2411 	if (!bio) {
2412 		free_io_failure(inode, failrec);
2413 		return -EIO;
2414 	}
2415 
2416 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2417 		 read_mode, failrec->this_mirror, failrec->in_validation);
2418 
2419 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2420 					 failrec->this_mirror,
2421 					 failrec->bio_flags, 0);
2422 	if (ret) {
2423 		free_io_failure(inode, failrec);
2424 		bio_put(bio);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 /* lots and lots of room for performance fixes in the end_bio funcs */
2431 
2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2433 {
2434 	int uptodate = (err == 0);
2435 	struct extent_io_tree *tree;
2436 	int ret = 0;
2437 
2438 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2439 
2440 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2441 		ret = tree->ops->writepage_end_io_hook(page, start,
2442 					       end, NULL, uptodate);
2443 		if (ret)
2444 			uptodate = 0;
2445 	}
2446 
2447 	if (!uptodate) {
2448 		ClearPageUptodate(page);
2449 		SetPageError(page);
2450 		ret = ret < 0 ? ret : -EIO;
2451 		mapping_set_error(page->mapping, ret);
2452 	}
2453 }
2454 
2455 /*
2456  * after a writepage IO is done, we need to:
2457  * clear the uptodate bits on error
2458  * clear the writeback bits in the extent tree for this IO
2459  * end_page_writeback if the page has no more pending IO
2460  *
2461  * Scheduling is not allowed, so the extent state tree is expected
2462  * to have one and only one object corresponding to this IO.
2463  */
2464 static void end_bio_extent_writepage(struct bio *bio)
2465 {
2466 	struct bio_vec *bvec;
2467 	u64 start;
2468 	u64 end;
2469 	int i;
2470 
2471 	bio_for_each_segment_all(bvec, bio, i) {
2472 		struct page *page = bvec->bv_page;
2473 
2474 		/* We always issue full-page reads, but if some block
2475 		 * in a page fails to read, blk_update_request() will
2476 		 * advance bv_offset and adjust bv_len to compensate.
2477 		 * Print a warning for nonzero offsets, and an error
2478 		 * if they don't add up to a full page.  */
2479 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2480 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2481 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2482 				   "partial page write in btrfs with offset %u and length %u",
2483 					bvec->bv_offset, bvec->bv_len);
2484 			else
2485 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2486 				   "incomplete page write in btrfs with offset %u and "
2487 				   "length %u",
2488 					bvec->bv_offset, bvec->bv_len);
2489 		}
2490 
2491 		start = page_offset(page);
2492 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2493 
2494 		end_extent_writepage(page, bio->bi_error, start, end);
2495 		end_page_writeback(page);
2496 	}
2497 
2498 	bio_put(bio);
2499 }
2500 
2501 static void
2502 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2503 			      int uptodate)
2504 {
2505 	struct extent_state *cached = NULL;
2506 	u64 end = start + len - 1;
2507 
2508 	if (uptodate && tree->track_uptodate)
2509 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2510 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2511 }
2512 
2513 /*
2514  * after a readpage IO is done, we need to:
2515  * clear the uptodate bits on error
2516  * set the uptodate bits if things worked
2517  * set the page up to date if all extents in the tree are uptodate
2518  * clear the lock bit in the extent tree
2519  * unlock the page if there are no other extents locked for it
2520  *
2521  * Scheduling is not allowed, so the extent state tree is expected
2522  * to have one and only one object corresponding to this IO.
2523  */
2524 static void end_bio_extent_readpage(struct bio *bio)
2525 {
2526 	struct bio_vec *bvec;
2527 	int uptodate = !bio->bi_error;
2528 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2529 	struct extent_io_tree *tree;
2530 	u64 offset = 0;
2531 	u64 start;
2532 	u64 end;
2533 	u64 len;
2534 	u64 extent_start = 0;
2535 	u64 extent_len = 0;
2536 	int mirror;
2537 	int ret;
2538 	int i;
2539 
2540 	bio_for_each_segment_all(bvec, bio, i) {
2541 		struct page *page = bvec->bv_page;
2542 		struct inode *inode = page->mapping->host;
2543 
2544 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2545 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2546 			 bio->bi_error, io_bio->mirror_num);
2547 		tree = &BTRFS_I(inode)->io_tree;
2548 
2549 		/* We always issue full-page reads, but if some block
2550 		 * in a page fails to read, blk_update_request() will
2551 		 * advance bv_offset and adjust bv_len to compensate.
2552 		 * Print a warning for nonzero offsets, and an error
2553 		 * if they don't add up to a full page.  */
2554 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2556 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2557 				   "partial page read in btrfs with offset %u and length %u",
2558 					bvec->bv_offset, bvec->bv_len);
2559 			else
2560 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2561 				   "incomplete page read in btrfs with offset %u and "
2562 				   "length %u",
2563 					bvec->bv_offset, bvec->bv_len);
2564 		}
2565 
2566 		start = page_offset(page);
2567 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2568 		len = bvec->bv_len;
2569 
2570 		mirror = io_bio->mirror_num;
2571 		if (likely(uptodate && tree->ops &&
2572 			   tree->ops->readpage_end_io_hook)) {
2573 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2574 							      page, start, end,
2575 							      mirror);
2576 			if (ret)
2577 				uptodate = 0;
2578 			else
2579 				clean_io_failure(inode, start, page, 0);
2580 		}
2581 
2582 		if (likely(uptodate))
2583 			goto readpage_ok;
2584 
2585 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2586 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2587 			if (!ret && !bio->bi_error)
2588 				uptodate = 1;
2589 		} else {
2590 			/*
2591 			 * The generic bio_readpage_error handles errors the
2592 			 * following way: If possible, new read requests are
2593 			 * created and submitted and will end up in
2594 			 * end_bio_extent_readpage as well (if we're lucky, not
2595 			 * in the !uptodate case). In that case it returns 0 and
2596 			 * we just go on with the next page in our bio. If it
2597 			 * can't handle the error it will return -EIO and we
2598 			 * remain responsible for that page.
2599 			 */
2600 			ret = bio_readpage_error(bio, offset, page, start, end,
2601 						 mirror);
2602 			if (ret == 0) {
2603 				uptodate = !bio->bi_error;
2604 				offset += len;
2605 				continue;
2606 			}
2607 		}
2608 readpage_ok:
2609 		if (likely(uptodate)) {
2610 			loff_t i_size = i_size_read(inode);
2611 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2612 			unsigned off;
2613 
2614 			/* Zero out the end if this page straddles i_size */
2615 			off = i_size & (PAGE_SIZE-1);
2616 			if (page->index == end_index && off)
2617 				zero_user_segment(page, off, PAGE_SIZE);
2618 			SetPageUptodate(page);
2619 		} else {
2620 			ClearPageUptodate(page);
2621 			SetPageError(page);
2622 		}
2623 		unlock_page(page);
2624 		offset += len;
2625 
2626 		if (unlikely(!uptodate)) {
2627 			if (extent_len) {
2628 				endio_readpage_release_extent(tree,
2629 							      extent_start,
2630 							      extent_len, 1);
2631 				extent_start = 0;
2632 				extent_len = 0;
2633 			}
2634 			endio_readpage_release_extent(tree, start,
2635 						      end - start + 1, 0);
2636 		} else if (!extent_len) {
2637 			extent_start = start;
2638 			extent_len = end + 1 - start;
2639 		} else if (extent_start + extent_len == start) {
2640 			extent_len += end + 1 - start;
2641 		} else {
2642 			endio_readpage_release_extent(tree, extent_start,
2643 						      extent_len, uptodate);
2644 			extent_start = start;
2645 			extent_len = end + 1 - start;
2646 		}
2647 	}
2648 
2649 	if (extent_len)
2650 		endio_readpage_release_extent(tree, extent_start, extent_len,
2651 					      uptodate);
2652 	if (io_bio->end_io)
2653 		io_bio->end_io(io_bio, bio->bi_error);
2654 	bio_put(bio);
2655 }
2656 
2657 /*
2658  * this allocates from the btrfs_bioset.  We're returning a bio right now
2659  * but you can call btrfs_io_bio for the appropriate container_of magic
2660  */
2661 struct bio *
2662 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663 		gfp_t gfp_flags)
2664 {
2665 	struct btrfs_io_bio *btrfs_bio;
2666 	struct bio *bio;
2667 
2668 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2669 
2670 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2671 		while (!bio && (nr_vecs /= 2)) {
2672 			bio = bio_alloc_bioset(gfp_flags,
2673 					       nr_vecs, btrfs_bioset);
2674 		}
2675 	}
2676 
2677 	if (bio) {
2678 		bio->bi_bdev = bdev;
2679 		bio->bi_iter.bi_sector = first_sector;
2680 		btrfs_bio = btrfs_io_bio(bio);
2681 		btrfs_bio->csum = NULL;
2682 		btrfs_bio->csum_allocated = NULL;
2683 		btrfs_bio->end_io = NULL;
2684 	}
2685 	return bio;
2686 }
2687 
2688 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689 {
2690 	struct btrfs_io_bio *btrfs_bio;
2691 	struct bio *new;
2692 
2693 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694 	if (new) {
2695 		btrfs_bio = btrfs_io_bio(new);
2696 		btrfs_bio->csum = NULL;
2697 		btrfs_bio->csum_allocated = NULL;
2698 		btrfs_bio->end_io = NULL;
2699 
2700 #ifdef CONFIG_BLK_CGROUP
2701 		/* FIXME, put this into bio_clone_bioset */
2702 		if (bio->bi_css)
2703 			bio_associate_blkcg(new, bio->bi_css);
2704 #endif
2705 	}
2706 	return new;
2707 }
2708 
2709 /* this also allocates from the btrfs_bioset */
2710 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711 {
2712 	struct btrfs_io_bio *btrfs_bio;
2713 	struct bio *bio;
2714 
2715 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 	if (bio) {
2717 		btrfs_bio = btrfs_io_bio(bio);
2718 		btrfs_bio->csum = NULL;
2719 		btrfs_bio->csum_allocated = NULL;
2720 		btrfs_bio->end_io = NULL;
2721 	}
2722 	return bio;
2723 }
2724 
2725 
2726 static int __must_check submit_one_bio(int rw, struct bio *bio,
2727 				       int mirror_num, unsigned long bio_flags)
2728 {
2729 	int ret = 0;
2730 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 	struct page *page = bvec->bv_page;
2732 	struct extent_io_tree *tree = bio->bi_private;
2733 	u64 start;
2734 
2735 	start = page_offset(page) + bvec->bv_offset;
2736 
2737 	bio->bi_private = NULL;
2738 
2739 	bio_get(bio);
2740 
2741 	if (tree->ops && tree->ops->submit_bio_hook)
2742 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2743 					   mirror_num, bio_flags, start);
2744 	else
2745 		btrfsic_submit_bio(rw, bio);
2746 
2747 	bio_put(bio);
2748 	return ret;
2749 }
2750 
2751 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2752 		     unsigned long offset, size_t size, struct bio *bio,
2753 		     unsigned long bio_flags)
2754 {
2755 	int ret = 0;
2756 	if (tree->ops && tree->ops->merge_bio_hook)
2757 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2758 						bio_flags);
2759 	BUG_ON(ret < 0);
2760 	return ret;
2761 
2762 }
2763 
2764 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2765 			      struct writeback_control *wbc,
2766 			      struct page *page, sector_t sector,
2767 			      size_t size, unsigned long offset,
2768 			      struct block_device *bdev,
2769 			      struct bio **bio_ret,
2770 			      unsigned long max_pages,
2771 			      bio_end_io_t end_io_func,
2772 			      int mirror_num,
2773 			      unsigned long prev_bio_flags,
2774 			      unsigned long bio_flags,
2775 			      bool force_bio_submit)
2776 {
2777 	int ret = 0;
2778 	struct bio *bio;
2779 	int contig = 0;
2780 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2781 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 
2783 	if (bio_ret && *bio_ret) {
2784 		bio = *bio_ret;
2785 		if (old_compressed)
2786 			contig = bio->bi_iter.bi_sector == sector;
2787 		else
2788 			contig = bio_end_sector(bio) == sector;
2789 
2790 		if (prev_bio_flags != bio_flags || !contig ||
2791 		    force_bio_submit ||
2792 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2793 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2794 			ret = submit_one_bio(rw, bio, mirror_num,
2795 					     prev_bio_flags);
2796 			if (ret < 0) {
2797 				*bio_ret = NULL;
2798 				return ret;
2799 			}
2800 			bio = NULL;
2801 		} else {
2802 			if (wbc)
2803 				wbc_account_io(wbc, page, page_size);
2804 			return 0;
2805 		}
2806 	}
2807 
2808 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2809 			GFP_NOFS | __GFP_HIGH);
2810 	if (!bio)
2811 		return -ENOMEM;
2812 
2813 	bio_add_page(bio, page, page_size, offset);
2814 	bio->bi_end_io = end_io_func;
2815 	bio->bi_private = tree;
2816 	if (wbc) {
2817 		wbc_init_bio(wbc, bio);
2818 		wbc_account_io(wbc, page, page_size);
2819 	}
2820 
2821 	if (bio_ret)
2822 		*bio_ret = bio;
2823 	else
2824 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2825 
2826 	return ret;
2827 }
2828 
2829 static void attach_extent_buffer_page(struct extent_buffer *eb,
2830 				      struct page *page)
2831 {
2832 	if (!PagePrivate(page)) {
2833 		SetPagePrivate(page);
2834 		get_page(page);
2835 		set_page_private(page, (unsigned long)eb);
2836 	} else {
2837 		WARN_ON(page->private != (unsigned long)eb);
2838 	}
2839 }
2840 
2841 void set_page_extent_mapped(struct page *page)
2842 {
2843 	if (!PagePrivate(page)) {
2844 		SetPagePrivate(page);
2845 		get_page(page);
2846 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2847 	}
2848 }
2849 
2850 static struct extent_map *
2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852 		 u64 start, u64 len, get_extent_t *get_extent,
2853 		 struct extent_map **em_cached)
2854 {
2855 	struct extent_map *em;
2856 
2857 	if (em_cached && *em_cached) {
2858 		em = *em_cached;
2859 		if (extent_map_in_tree(em) && start >= em->start &&
2860 		    start < extent_map_end(em)) {
2861 			atomic_inc(&em->refs);
2862 			return em;
2863 		}
2864 
2865 		free_extent_map(em);
2866 		*em_cached = NULL;
2867 	}
2868 
2869 	em = get_extent(inode, page, pg_offset, start, len, 0);
2870 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 		BUG_ON(*em_cached);
2872 		atomic_inc(&em->refs);
2873 		*em_cached = em;
2874 	}
2875 	return em;
2876 }
2877 /*
2878  * basic readpage implementation.  Locked extent state structs are inserted
2879  * into the tree that are removed when the IO is done (by the end_io
2880  * handlers)
2881  * XXX JDM: This needs looking at to ensure proper page locking
2882  */
2883 static int __do_readpage(struct extent_io_tree *tree,
2884 			 struct page *page,
2885 			 get_extent_t *get_extent,
2886 			 struct extent_map **em_cached,
2887 			 struct bio **bio, int mirror_num,
2888 			 unsigned long *bio_flags, int rw,
2889 			 u64 *prev_em_start)
2890 {
2891 	struct inode *inode = page->mapping->host;
2892 	u64 start = page_offset(page);
2893 	u64 page_end = start + PAGE_SIZE - 1;
2894 	u64 end;
2895 	u64 cur = start;
2896 	u64 extent_offset;
2897 	u64 last_byte = i_size_read(inode);
2898 	u64 block_start;
2899 	u64 cur_end;
2900 	sector_t sector;
2901 	struct extent_map *em;
2902 	struct block_device *bdev;
2903 	int ret;
2904 	int nr = 0;
2905 	size_t pg_offset = 0;
2906 	size_t iosize;
2907 	size_t disk_io_size;
2908 	size_t blocksize = inode->i_sb->s_blocksize;
2909 	unsigned long this_bio_flag = 0;
2910 
2911 	set_page_extent_mapped(page);
2912 
2913 	end = page_end;
2914 	if (!PageUptodate(page)) {
2915 		if (cleancache_get_page(page) == 0) {
2916 			BUG_ON(blocksize != PAGE_SIZE);
2917 			unlock_extent(tree, start, end);
2918 			goto out;
2919 		}
2920 	}
2921 
2922 	if (page->index == last_byte >> PAGE_SHIFT) {
2923 		char *userpage;
2924 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2925 
2926 		if (zero_offset) {
2927 			iosize = PAGE_SIZE - zero_offset;
2928 			userpage = kmap_atomic(page);
2929 			memset(userpage + zero_offset, 0, iosize);
2930 			flush_dcache_page(page);
2931 			kunmap_atomic(userpage);
2932 		}
2933 	}
2934 	while (cur <= end) {
2935 		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936 		bool force_bio_submit = false;
2937 
2938 		if (cur >= last_byte) {
2939 			char *userpage;
2940 			struct extent_state *cached = NULL;
2941 
2942 			iosize = PAGE_SIZE - pg_offset;
2943 			userpage = kmap_atomic(page);
2944 			memset(userpage + pg_offset, 0, iosize);
2945 			flush_dcache_page(page);
2946 			kunmap_atomic(userpage);
2947 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2948 					    &cached, GFP_NOFS);
2949 			unlock_extent_cached(tree, cur,
2950 					     cur + iosize - 1,
2951 					     &cached, GFP_NOFS);
2952 			break;
2953 		}
2954 		em = __get_extent_map(inode, page, pg_offset, cur,
2955 				      end - cur + 1, get_extent, em_cached);
2956 		if (IS_ERR_OR_NULL(em)) {
2957 			SetPageError(page);
2958 			unlock_extent(tree, cur, end);
2959 			break;
2960 		}
2961 		extent_offset = cur - em->start;
2962 		BUG_ON(extent_map_end(em) <= cur);
2963 		BUG_ON(end < cur);
2964 
2965 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 			extent_set_compress_type(&this_bio_flag,
2968 						 em->compress_type);
2969 		}
2970 
2971 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 		cur_end = min(extent_map_end(em) - 1, end);
2973 		iosize = ALIGN(iosize, blocksize);
2974 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 			disk_io_size = em->block_len;
2976 			sector = em->block_start >> 9;
2977 		} else {
2978 			sector = (em->block_start + extent_offset) >> 9;
2979 			disk_io_size = iosize;
2980 		}
2981 		bdev = em->bdev;
2982 		block_start = em->block_start;
2983 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 			block_start = EXTENT_MAP_HOLE;
2985 
2986 		/*
2987 		 * If we have a file range that points to a compressed extent
2988 		 * and it's followed by a consecutive file range that points to
2989 		 * to the same compressed extent (possibly with a different
2990 		 * offset and/or length, so it either points to the whole extent
2991 		 * or only part of it), we must make sure we do not submit a
2992 		 * single bio to populate the pages for the 2 ranges because
2993 		 * this makes the compressed extent read zero out the pages
2994 		 * belonging to the 2nd range. Imagine the following scenario:
2995 		 *
2996 		 *  File layout
2997 		 *  [0 - 8K]                     [8K - 24K]
2998 		 *    |                               |
2999 		 *    |                               |
3000 		 * points to extent X,         points to extent X,
3001 		 * offset 4K, length of 8K     offset 0, length 16K
3002 		 *
3003 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 		 *
3005 		 * If the bio to read the compressed extent covers both ranges,
3006 		 * it will decompress extent X into the pages belonging to the
3007 		 * first range and then it will stop, zeroing out the remaining
3008 		 * pages that belong to the other range that points to extent X.
3009 		 * So here we make sure we submit 2 bios, one for the first
3010 		 * range and another one for the third range. Both will target
3011 		 * the same physical extent from disk, but we can't currently
3012 		 * make the compressed bio endio callback populate the pages
3013 		 * for both ranges because each compressed bio is tightly
3014 		 * coupled with a single extent map, and each range can have
3015 		 * an extent map with a different offset value relative to the
3016 		 * uncompressed data of our extent and different lengths. This
3017 		 * is a corner case so we prioritize correctness over
3018 		 * non-optimal behavior (submitting 2 bios for the same extent).
3019 		 */
3020 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 		    prev_em_start && *prev_em_start != (u64)-1 &&
3022 		    *prev_em_start != em->orig_start)
3023 			force_bio_submit = true;
3024 
3025 		if (prev_em_start)
3026 			*prev_em_start = em->orig_start;
3027 
3028 		free_extent_map(em);
3029 		em = NULL;
3030 
3031 		/* we've found a hole, just zero and go on */
3032 		if (block_start == EXTENT_MAP_HOLE) {
3033 			char *userpage;
3034 			struct extent_state *cached = NULL;
3035 
3036 			userpage = kmap_atomic(page);
3037 			memset(userpage + pg_offset, 0, iosize);
3038 			flush_dcache_page(page);
3039 			kunmap_atomic(userpage);
3040 
3041 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 					    &cached, GFP_NOFS);
3043 			unlock_extent_cached(tree, cur,
3044 					     cur + iosize - 1,
3045 					     &cached, GFP_NOFS);
3046 			cur = cur + iosize;
3047 			pg_offset += iosize;
3048 			continue;
3049 		}
3050 		/* the get_extent function already copied into the page */
3051 		if (test_range_bit(tree, cur, cur_end,
3052 				   EXTENT_UPTODATE, 1, NULL)) {
3053 			check_page_uptodate(tree, page);
3054 			unlock_extent(tree, cur, cur + iosize - 1);
3055 			cur = cur + iosize;
3056 			pg_offset += iosize;
3057 			continue;
3058 		}
3059 		/* we have an inline extent but it didn't get marked up
3060 		 * to date.  Error out
3061 		 */
3062 		if (block_start == EXTENT_MAP_INLINE) {
3063 			SetPageError(page);
3064 			unlock_extent(tree, cur, cur + iosize - 1);
3065 			cur = cur + iosize;
3066 			pg_offset += iosize;
3067 			continue;
3068 		}
3069 
3070 		pnr -= page->index;
3071 		ret = submit_extent_page(rw, tree, NULL, page,
3072 					 sector, disk_io_size, pg_offset,
3073 					 bdev, bio, pnr,
3074 					 end_bio_extent_readpage, mirror_num,
3075 					 *bio_flags,
3076 					 this_bio_flag,
3077 					 force_bio_submit);
3078 		if (!ret) {
3079 			nr++;
3080 			*bio_flags = this_bio_flag;
3081 		} else {
3082 			SetPageError(page);
3083 			unlock_extent(tree, cur, cur + iosize - 1);
3084 		}
3085 		cur = cur + iosize;
3086 		pg_offset += iosize;
3087 	}
3088 out:
3089 	if (!nr) {
3090 		if (!PageError(page))
3091 			SetPageUptodate(page);
3092 		unlock_page(page);
3093 	}
3094 	return 0;
3095 }
3096 
3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 					     struct page *pages[], int nr_pages,
3099 					     u64 start, u64 end,
3100 					     get_extent_t *get_extent,
3101 					     struct extent_map **em_cached,
3102 					     struct bio **bio, int mirror_num,
3103 					     unsigned long *bio_flags, int rw,
3104 					     u64 *prev_em_start)
3105 {
3106 	struct inode *inode;
3107 	struct btrfs_ordered_extent *ordered;
3108 	int index;
3109 
3110 	inode = pages[0]->mapping->host;
3111 	while (1) {
3112 		lock_extent(tree, start, end);
3113 		ordered = btrfs_lookup_ordered_range(inode, start,
3114 						     end - start + 1);
3115 		if (!ordered)
3116 			break;
3117 		unlock_extent(tree, start, end);
3118 		btrfs_start_ordered_extent(inode, ordered, 1);
3119 		btrfs_put_ordered_extent(ordered);
3120 	}
3121 
3122 	for (index = 0; index < nr_pages; index++) {
3123 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 			      mirror_num, bio_flags, rw, prev_em_start);
3125 		put_page(pages[index]);
3126 	}
3127 }
3128 
3129 static void __extent_readpages(struct extent_io_tree *tree,
3130 			       struct page *pages[],
3131 			       int nr_pages, get_extent_t *get_extent,
3132 			       struct extent_map **em_cached,
3133 			       struct bio **bio, int mirror_num,
3134 			       unsigned long *bio_flags, int rw,
3135 			       u64 *prev_em_start)
3136 {
3137 	u64 start = 0;
3138 	u64 end = 0;
3139 	u64 page_start;
3140 	int index;
3141 	int first_index = 0;
3142 
3143 	for (index = 0; index < nr_pages; index++) {
3144 		page_start = page_offset(pages[index]);
3145 		if (!end) {
3146 			start = page_start;
3147 			end = start + PAGE_SIZE - 1;
3148 			first_index = index;
3149 		} else if (end + 1 == page_start) {
3150 			end += PAGE_SIZE;
3151 		} else {
3152 			__do_contiguous_readpages(tree, &pages[first_index],
3153 						  index - first_index, start,
3154 						  end, get_extent, em_cached,
3155 						  bio, mirror_num, bio_flags,
3156 						  rw, prev_em_start);
3157 			start = page_start;
3158 			end = start + PAGE_SIZE - 1;
3159 			first_index = index;
3160 		}
3161 	}
3162 
3163 	if (end)
3164 		__do_contiguous_readpages(tree, &pages[first_index],
3165 					  index - first_index, start,
3166 					  end, get_extent, em_cached, bio,
3167 					  mirror_num, bio_flags, rw,
3168 					  prev_em_start);
3169 }
3170 
3171 static int __extent_read_full_page(struct extent_io_tree *tree,
3172 				   struct page *page,
3173 				   get_extent_t *get_extent,
3174 				   struct bio **bio, int mirror_num,
3175 				   unsigned long *bio_flags, int rw)
3176 {
3177 	struct inode *inode = page->mapping->host;
3178 	struct btrfs_ordered_extent *ordered;
3179 	u64 start = page_offset(page);
3180 	u64 end = start + PAGE_SIZE - 1;
3181 	int ret;
3182 
3183 	while (1) {
3184 		lock_extent(tree, start, end);
3185 		ordered = btrfs_lookup_ordered_range(inode, start,
3186 						PAGE_SIZE);
3187 		if (!ordered)
3188 			break;
3189 		unlock_extent(tree, start, end);
3190 		btrfs_start_ordered_extent(inode, ordered, 1);
3191 		btrfs_put_ordered_extent(ordered);
3192 	}
3193 
3194 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 			    bio_flags, rw, NULL);
3196 	return ret;
3197 }
3198 
3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 			    get_extent_t *get_extent, int mirror_num)
3201 {
3202 	struct bio *bio = NULL;
3203 	unsigned long bio_flags = 0;
3204 	int ret;
3205 
3206 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 				      &bio_flags, READ);
3208 	if (bio)
3209 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3210 	return ret;
3211 }
3212 
3213 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 			      unsigned long nr_written)
3215 {
3216 	wbc->nr_to_write -= nr_written;
3217 }
3218 
3219 /*
3220  * helper for __extent_writepage, doing all of the delayed allocation setup.
3221  *
3222  * This returns 1 if our fill_delalloc function did all the work required
3223  * to write the page (copy into inline extent).  In this case the IO has
3224  * been started and the page is already unlocked.
3225  *
3226  * This returns 0 if all went well (page still locked)
3227  * This returns < 0 if there were errors (page still locked)
3228  */
3229 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 			      struct page *page, struct writeback_control *wbc,
3231 			      struct extent_page_data *epd,
3232 			      u64 delalloc_start,
3233 			      unsigned long *nr_written)
3234 {
3235 	struct extent_io_tree *tree = epd->tree;
3236 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 	u64 nr_delalloc;
3238 	u64 delalloc_to_write = 0;
3239 	u64 delalloc_end = 0;
3240 	int ret;
3241 	int page_started = 0;
3242 
3243 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 		return 0;
3245 
3246 	while (delalloc_end < page_end) {
3247 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 					       page,
3249 					       &delalloc_start,
3250 					       &delalloc_end,
3251 					       BTRFS_MAX_EXTENT_SIZE);
3252 		if (nr_delalloc == 0) {
3253 			delalloc_start = delalloc_end + 1;
3254 			continue;
3255 		}
3256 		ret = tree->ops->fill_delalloc(inode, page,
3257 					       delalloc_start,
3258 					       delalloc_end,
3259 					       &page_started,
3260 					       nr_written);
3261 		/* File system has been set read-only */
3262 		if (ret) {
3263 			SetPageError(page);
3264 			/* fill_delalloc should be return < 0 for error
3265 			 * but just in case, we use > 0 here meaning the
3266 			 * IO is started, so we don't want to return > 0
3267 			 * unless things are going well.
3268 			 */
3269 			ret = ret < 0 ? ret : -EIO;
3270 			goto done;
3271 		}
3272 		/*
3273 		 * delalloc_end is already one less than the total length, so
3274 		 * we don't subtract one from PAGE_SIZE
3275 		 */
3276 		delalloc_to_write += (delalloc_end - delalloc_start +
3277 				      PAGE_SIZE) >> PAGE_SHIFT;
3278 		delalloc_start = delalloc_end + 1;
3279 	}
3280 	if (wbc->nr_to_write < delalloc_to_write) {
3281 		int thresh = 8192;
3282 
3283 		if (delalloc_to_write < thresh * 2)
3284 			thresh = delalloc_to_write;
3285 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 					 thresh);
3287 	}
3288 
3289 	/* did the fill delalloc function already unlock and start
3290 	 * the IO?
3291 	 */
3292 	if (page_started) {
3293 		/*
3294 		 * we've unlocked the page, so we can't update
3295 		 * the mapping's writeback index, just update
3296 		 * nr_to_write.
3297 		 */
3298 		wbc->nr_to_write -= *nr_written;
3299 		return 1;
3300 	}
3301 
3302 	ret = 0;
3303 
3304 done:
3305 	return ret;
3306 }
3307 
3308 /*
3309  * helper for __extent_writepage.  This calls the writepage start hooks,
3310  * and does the loop to map the page into extents and bios.
3311  *
3312  * We return 1 if the IO is started and the page is unlocked,
3313  * 0 if all went well (page still locked)
3314  * < 0 if there were errors (page still locked)
3315  */
3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 				 struct page *page,
3318 				 struct writeback_control *wbc,
3319 				 struct extent_page_data *epd,
3320 				 loff_t i_size,
3321 				 unsigned long nr_written,
3322 				 int write_flags, int *nr_ret)
3323 {
3324 	struct extent_io_tree *tree = epd->tree;
3325 	u64 start = page_offset(page);
3326 	u64 page_end = start + PAGE_SIZE - 1;
3327 	u64 end;
3328 	u64 cur = start;
3329 	u64 extent_offset;
3330 	u64 block_start;
3331 	u64 iosize;
3332 	sector_t sector;
3333 	struct extent_state *cached_state = NULL;
3334 	struct extent_map *em;
3335 	struct block_device *bdev;
3336 	size_t pg_offset = 0;
3337 	size_t blocksize;
3338 	int ret = 0;
3339 	int nr = 0;
3340 	bool compressed;
3341 
3342 	if (tree->ops && tree->ops->writepage_start_hook) {
3343 		ret = tree->ops->writepage_start_hook(page, start,
3344 						      page_end);
3345 		if (ret) {
3346 			/* Fixup worker will requeue */
3347 			if (ret == -EBUSY)
3348 				wbc->pages_skipped++;
3349 			else
3350 				redirty_page_for_writepage(wbc, page);
3351 
3352 			update_nr_written(page, wbc, nr_written);
3353 			unlock_page(page);
3354 			ret = 1;
3355 			goto done_unlocked;
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * we don't want to touch the inode after unlocking the page,
3361 	 * so we update the mapping writeback index now
3362 	 */
3363 	update_nr_written(page, wbc, nr_written + 1);
3364 
3365 	end = page_end;
3366 	if (i_size <= start) {
3367 		if (tree->ops && tree->ops->writepage_end_io_hook)
3368 			tree->ops->writepage_end_io_hook(page, start,
3369 							 page_end, NULL, 1);
3370 		goto done;
3371 	}
3372 
3373 	blocksize = inode->i_sb->s_blocksize;
3374 
3375 	while (cur <= end) {
3376 		u64 em_end;
3377 		unsigned long max_nr;
3378 
3379 		if (cur >= i_size) {
3380 			if (tree->ops && tree->ops->writepage_end_io_hook)
3381 				tree->ops->writepage_end_io_hook(page, cur,
3382 							 page_end, NULL, 1);
3383 			break;
3384 		}
3385 		em = epd->get_extent(inode, page, pg_offset, cur,
3386 				     end - cur + 1, 1);
3387 		if (IS_ERR_OR_NULL(em)) {
3388 			SetPageError(page);
3389 			ret = PTR_ERR_OR_ZERO(em);
3390 			break;
3391 		}
3392 
3393 		extent_offset = cur - em->start;
3394 		em_end = extent_map_end(em);
3395 		BUG_ON(em_end <= cur);
3396 		BUG_ON(end < cur);
3397 		iosize = min(em_end - cur, end - cur + 1);
3398 		iosize = ALIGN(iosize, blocksize);
3399 		sector = (em->block_start + extent_offset) >> 9;
3400 		bdev = em->bdev;
3401 		block_start = em->block_start;
3402 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 		free_extent_map(em);
3404 		em = NULL;
3405 
3406 		/*
3407 		 * compressed and inline extents are written through other
3408 		 * paths in the FS
3409 		 */
3410 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 		    block_start == EXTENT_MAP_INLINE) {
3412 			/*
3413 			 * end_io notification does not happen here for
3414 			 * compressed extents
3415 			 */
3416 			if (!compressed && tree->ops &&
3417 			    tree->ops->writepage_end_io_hook)
3418 				tree->ops->writepage_end_io_hook(page, cur,
3419 							 cur + iosize - 1,
3420 							 NULL, 1);
3421 			else if (compressed) {
3422 				/* we don't want to end_page_writeback on
3423 				 * a compressed extent.  this happens
3424 				 * elsewhere
3425 				 */
3426 				nr++;
3427 			}
3428 
3429 			cur += iosize;
3430 			pg_offset += iosize;
3431 			continue;
3432 		}
3433 
3434 		max_nr = (i_size >> PAGE_SHIFT) + 1;
3435 
3436 		set_range_writeback(tree, cur, cur + iosize - 1);
3437 		if (!PageWriteback(page)) {
3438 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 				   "page %lu not writeback, cur %llu end %llu",
3440 			       page->index, cur, end);
3441 		}
3442 
3443 		ret = submit_extent_page(write_flags, tree, wbc, page,
3444 					 sector, iosize, pg_offset,
3445 					 bdev, &epd->bio, max_nr,
3446 					 end_bio_extent_writepage,
3447 					 0, 0, 0, false);
3448 		if (ret)
3449 			SetPageError(page);
3450 
3451 		cur = cur + iosize;
3452 		pg_offset += iosize;
3453 		nr++;
3454 	}
3455 done:
3456 	*nr_ret = nr;
3457 
3458 done_unlocked:
3459 
3460 	/* drop our reference on any cached states */
3461 	free_extent_state(cached_state);
3462 	return ret;
3463 }
3464 
3465 /*
3466  * the writepage semantics are similar to regular writepage.  extent
3467  * records are inserted to lock ranges in the tree, and as dirty areas
3468  * are found, they are marked writeback.  Then the lock bits are removed
3469  * and the end_io handler clears the writeback ranges
3470  */
3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 			      void *data)
3473 {
3474 	struct inode *inode = page->mapping->host;
3475 	struct extent_page_data *epd = data;
3476 	u64 start = page_offset(page);
3477 	u64 page_end = start + PAGE_SIZE - 1;
3478 	int ret;
3479 	int nr = 0;
3480 	size_t pg_offset = 0;
3481 	loff_t i_size = i_size_read(inode);
3482 	unsigned long end_index = i_size >> PAGE_SHIFT;
3483 	int write_flags;
3484 	unsigned long nr_written = 0;
3485 
3486 	if (wbc->sync_mode == WB_SYNC_ALL)
3487 		write_flags = WRITE_SYNC;
3488 	else
3489 		write_flags = WRITE;
3490 
3491 	trace___extent_writepage(page, inode, wbc);
3492 
3493 	WARN_ON(!PageLocked(page));
3494 
3495 	ClearPageError(page);
3496 
3497 	pg_offset = i_size & (PAGE_SIZE - 1);
3498 	if (page->index > end_index ||
3499 	   (page->index == end_index && !pg_offset)) {
3500 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3501 		unlock_page(page);
3502 		return 0;
3503 	}
3504 
3505 	if (page->index == end_index) {
3506 		char *userpage;
3507 
3508 		userpage = kmap_atomic(page);
3509 		memset(userpage + pg_offset, 0,
3510 		       PAGE_SIZE - pg_offset);
3511 		kunmap_atomic(userpage);
3512 		flush_dcache_page(page);
3513 	}
3514 
3515 	pg_offset = 0;
3516 
3517 	set_page_extent_mapped(page);
3518 
3519 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3520 	if (ret == 1)
3521 		goto done_unlocked;
3522 	if (ret)
3523 		goto done;
3524 
3525 	ret = __extent_writepage_io(inode, page, wbc, epd,
3526 				    i_size, nr_written, write_flags, &nr);
3527 	if (ret == 1)
3528 		goto done_unlocked;
3529 
3530 done:
3531 	if (nr == 0) {
3532 		/* make sure the mapping tag for page dirty gets cleared */
3533 		set_page_writeback(page);
3534 		end_page_writeback(page);
3535 	}
3536 	if (PageError(page)) {
3537 		ret = ret < 0 ? ret : -EIO;
3538 		end_extent_writepage(page, ret, start, page_end);
3539 	}
3540 	unlock_page(page);
3541 	return ret;
3542 
3543 done_unlocked:
3544 	return 0;
3545 }
3546 
3547 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3548 {
3549 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3550 		       TASK_UNINTERRUPTIBLE);
3551 }
3552 
3553 static noinline_for_stack int
3554 lock_extent_buffer_for_io(struct extent_buffer *eb,
3555 			  struct btrfs_fs_info *fs_info,
3556 			  struct extent_page_data *epd)
3557 {
3558 	unsigned long i, num_pages;
3559 	int flush = 0;
3560 	int ret = 0;
3561 
3562 	if (!btrfs_try_tree_write_lock(eb)) {
3563 		flush = 1;
3564 		flush_write_bio(epd);
3565 		btrfs_tree_lock(eb);
3566 	}
3567 
3568 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3569 		btrfs_tree_unlock(eb);
3570 		if (!epd->sync_io)
3571 			return 0;
3572 		if (!flush) {
3573 			flush_write_bio(epd);
3574 			flush = 1;
3575 		}
3576 		while (1) {
3577 			wait_on_extent_buffer_writeback(eb);
3578 			btrfs_tree_lock(eb);
3579 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3580 				break;
3581 			btrfs_tree_unlock(eb);
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * We need to do this to prevent races in people who check if the eb is
3587 	 * under IO since we can end up having no IO bits set for a short period
3588 	 * of time.
3589 	 */
3590 	spin_lock(&eb->refs_lock);
3591 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3592 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3593 		spin_unlock(&eb->refs_lock);
3594 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3595 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3596 				     -eb->len,
3597 				     fs_info->dirty_metadata_batch);
3598 		ret = 1;
3599 	} else {
3600 		spin_unlock(&eb->refs_lock);
3601 	}
3602 
3603 	btrfs_tree_unlock(eb);
3604 
3605 	if (!ret)
3606 		return ret;
3607 
3608 	num_pages = num_extent_pages(eb->start, eb->len);
3609 	for (i = 0; i < num_pages; i++) {
3610 		struct page *p = eb->pages[i];
3611 
3612 		if (!trylock_page(p)) {
3613 			if (!flush) {
3614 				flush_write_bio(epd);
3615 				flush = 1;
3616 			}
3617 			lock_page(p);
3618 		}
3619 	}
3620 
3621 	return ret;
3622 }
3623 
3624 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625 {
3626 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3627 	smp_mb__after_atomic();
3628 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629 }
3630 
3631 static void set_btree_ioerr(struct page *page)
3632 {
3633 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3634 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3635 
3636 	SetPageError(page);
3637 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3638 		return;
3639 
3640 	/*
3641 	 * If writeback for a btree extent that doesn't belong to a log tree
3642 	 * failed, increment the counter transaction->eb_write_errors.
3643 	 * We do this because while the transaction is running and before it's
3644 	 * committing (when we call filemap_fdata[write|wait]_range against
3645 	 * the btree inode), we might have
3646 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3647 	 * returns an error or an error happens during writeback, when we're
3648 	 * committing the transaction we wouldn't know about it, since the pages
3649 	 * can be no longer dirty nor marked anymore for writeback (if a
3650 	 * subsequent modification to the extent buffer didn't happen before the
3651 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3652 	 * able to find the pages tagged with SetPageError at transaction
3653 	 * commit time. So if this happens we must abort the transaction,
3654 	 * otherwise we commit a super block with btree roots that point to
3655 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3656 	 * or the content of some node/leaf from a past generation that got
3657 	 * cowed or deleted and is no longer valid.
3658 	 *
3659 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3660 	 * not be enough - we need to distinguish between log tree extents vs
3661 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3662 	 * will catch and clear such errors in the mapping - and that call might
3663 	 * be from a log sync and not from a transaction commit. Also, checking
3664 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3665 	 * not done and would not be reliable - the eb might have been released
3666 	 * from memory and reading it back again means that flag would not be
3667 	 * set (since it's a runtime flag, not persisted on disk).
3668 	 *
3669 	 * Using the flags below in the btree inode also makes us achieve the
3670 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3671 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3672 	 * is called, the writeback for all dirty pages had already finished
3673 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3674 	 * filemap_fdatawait_range() would return success, as it could not know
3675 	 * that writeback errors happened (the pages were no longer tagged for
3676 	 * writeback).
3677 	 */
3678 	switch (eb->log_index) {
3679 	case -1:
3680 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3681 		break;
3682 	case 0:
3683 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3684 		break;
3685 	case 1:
3686 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3687 		break;
3688 	default:
3689 		BUG(); /* unexpected, logic error */
3690 	}
3691 }
3692 
3693 static void end_bio_extent_buffer_writepage(struct bio *bio)
3694 {
3695 	struct bio_vec *bvec;
3696 	struct extent_buffer *eb;
3697 	int i, done;
3698 
3699 	bio_for_each_segment_all(bvec, bio, i) {
3700 		struct page *page = bvec->bv_page;
3701 
3702 		eb = (struct extent_buffer *)page->private;
3703 		BUG_ON(!eb);
3704 		done = atomic_dec_and_test(&eb->io_pages);
3705 
3706 		if (bio->bi_error ||
3707 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3708 			ClearPageUptodate(page);
3709 			set_btree_ioerr(page);
3710 		}
3711 
3712 		end_page_writeback(page);
3713 
3714 		if (!done)
3715 			continue;
3716 
3717 		end_extent_buffer_writeback(eb);
3718 	}
3719 
3720 	bio_put(bio);
3721 }
3722 
3723 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3724 			struct btrfs_fs_info *fs_info,
3725 			struct writeback_control *wbc,
3726 			struct extent_page_data *epd)
3727 {
3728 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3729 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3730 	u64 offset = eb->start;
3731 	unsigned long i, num_pages;
3732 	unsigned long bio_flags = 0;
3733 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3734 	int ret = 0;
3735 
3736 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3737 	num_pages = num_extent_pages(eb->start, eb->len);
3738 	atomic_set(&eb->io_pages, num_pages);
3739 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3740 		bio_flags = EXTENT_BIO_TREE_LOG;
3741 
3742 	for (i = 0; i < num_pages; i++) {
3743 		struct page *p = eb->pages[i];
3744 
3745 		clear_page_dirty_for_io(p);
3746 		set_page_writeback(p);
3747 		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3748 					 PAGE_SIZE, 0, bdev, &epd->bio,
3749 					 -1, end_bio_extent_buffer_writepage,
3750 					 0, epd->bio_flags, bio_flags, false);
3751 		epd->bio_flags = bio_flags;
3752 		if (ret) {
3753 			set_btree_ioerr(p);
3754 			end_page_writeback(p);
3755 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 				end_extent_buffer_writeback(eb);
3757 			ret = -EIO;
3758 			break;
3759 		}
3760 		offset += PAGE_SIZE;
3761 		update_nr_written(p, wbc, 1);
3762 		unlock_page(p);
3763 	}
3764 
3765 	if (unlikely(ret)) {
3766 		for (; i < num_pages; i++) {
3767 			struct page *p = eb->pages[i];
3768 			clear_page_dirty_for_io(p);
3769 			unlock_page(p);
3770 		}
3771 	}
3772 
3773 	return ret;
3774 }
3775 
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 				   struct writeback_control *wbc)
3778 {
3779 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 	struct extent_buffer *eb, *prev_eb = NULL;
3782 	struct extent_page_data epd = {
3783 		.bio = NULL,
3784 		.tree = tree,
3785 		.extent_locked = 0,
3786 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 		.bio_flags = 0,
3788 	};
3789 	int ret = 0;
3790 	int done = 0;
3791 	int nr_to_write_done = 0;
3792 	struct pagevec pvec;
3793 	int nr_pages;
3794 	pgoff_t index;
3795 	pgoff_t end;		/* Inclusive */
3796 	int scanned = 0;
3797 	int tag;
3798 
3799 	pagevec_init(&pvec, 0);
3800 	if (wbc->range_cyclic) {
3801 		index = mapping->writeback_index; /* Start from prev offset */
3802 		end = -1;
3803 	} else {
3804 		index = wbc->range_start >> PAGE_SHIFT;
3805 		end = wbc->range_end >> PAGE_SHIFT;
3806 		scanned = 1;
3807 	}
3808 	if (wbc->sync_mode == WB_SYNC_ALL)
3809 		tag = PAGECACHE_TAG_TOWRITE;
3810 	else
3811 		tag = PAGECACHE_TAG_DIRTY;
3812 retry:
3813 	if (wbc->sync_mode == WB_SYNC_ALL)
3814 		tag_pages_for_writeback(mapping, index, end);
3815 	while (!done && !nr_to_write_done && (index <= end) &&
3816 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 		unsigned i;
3819 
3820 		scanned = 1;
3821 		for (i = 0; i < nr_pages; i++) {
3822 			struct page *page = pvec.pages[i];
3823 
3824 			if (!PagePrivate(page))
3825 				continue;
3826 
3827 			if (!wbc->range_cyclic && page->index > end) {
3828 				done = 1;
3829 				break;
3830 			}
3831 
3832 			spin_lock(&mapping->private_lock);
3833 			if (!PagePrivate(page)) {
3834 				spin_unlock(&mapping->private_lock);
3835 				continue;
3836 			}
3837 
3838 			eb = (struct extent_buffer *)page->private;
3839 
3840 			/*
3841 			 * Shouldn't happen and normally this would be a BUG_ON
3842 			 * but no sense in crashing the users box for something
3843 			 * we can survive anyway.
3844 			 */
3845 			if (WARN_ON(!eb)) {
3846 				spin_unlock(&mapping->private_lock);
3847 				continue;
3848 			}
3849 
3850 			if (eb == prev_eb) {
3851 				spin_unlock(&mapping->private_lock);
3852 				continue;
3853 			}
3854 
3855 			ret = atomic_inc_not_zero(&eb->refs);
3856 			spin_unlock(&mapping->private_lock);
3857 			if (!ret)
3858 				continue;
3859 
3860 			prev_eb = eb;
3861 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 			if (!ret) {
3863 				free_extent_buffer(eb);
3864 				continue;
3865 			}
3866 
3867 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 			if (ret) {
3869 				done = 1;
3870 				free_extent_buffer(eb);
3871 				break;
3872 			}
3873 			free_extent_buffer(eb);
3874 
3875 			/*
3876 			 * the filesystem may choose to bump up nr_to_write.
3877 			 * We have to make sure to honor the new nr_to_write
3878 			 * at any time
3879 			 */
3880 			nr_to_write_done = wbc->nr_to_write <= 0;
3881 		}
3882 		pagevec_release(&pvec);
3883 		cond_resched();
3884 	}
3885 	if (!scanned && !done) {
3886 		/*
3887 		 * We hit the last page and there is more work to be done: wrap
3888 		 * back to the start of the file
3889 		 */
3890 		scanned = 1;
3891 		index = 0;
3892 		goto retry;
3893 	}
3894 	flush_write_bio(&epd);
3895 	return ret;
3896 }
3897 
3898 /**
3899  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900  * @mapping: address space structure to write
3901  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902  * @writepage: function called for each page
3903  * @data: data passed to writepage function
3904  *
3905  * If a page is already under I/O, write_cache_pages() skips it, even
3906  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3907  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3908  * and msync() need to guarantee that all the data which was dirty at the time
3909  * the call was made get new I/O started against them.  If wbc->sync_mode is
3910  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911  * existing IO to complete.
3912  */
3913 static int extent_write_cache_pages(struct extent_io_tree *tree,
3914 			     struct address_space *mapping,
3915 			     struct writeback_control *wbc,
3916 			     writepage_t writepage, void *data,
3917 			     void (*flush_fn)(void *))
3918 {
3919 	struct inode *inode = mapping->host;
3920 	int ret = 0;
3921 	int done = 0;
3922 	int nr_to_write_done = 0;
3923 	struct pagevec pvec;
3924 	int nr_pages;
3925 	pgoff_t index;
3926 	pgoff_t end;		/* Inclusive */
3927 	pgoff_t done_index;
3928 	int range_whole = 0;
3929 	int scanned = 0;
3930 	int tag;
3931 
3932 	/*
3933 	 * We have to hold onto the inode so that ordered extents can do their
3934 	 * work when the IO finishes.  The alternative to this is failing to add
3935 	 * an ordered extent if the igrab() fails there and that is a huge pain
3936 	 * to deal with, so instead just hold onto the inode throughout the
3937 	 * writepages operation.  If it fails here we are freeing up the inode
3938 	 * anyway and we'd rather not waste our time writing out stuff that is
3939 	 * going to be truncated anyway.
3940 	 */
3941 	if (!igrab(inode))
3942 		return 0;
3943 
3944 	pagevec_init(&pvec, 0);
3945 	if (wbc->range_cyclic) {
3946 		index = mapping->writeback_index; /* Start from prev offset */
3947 		end = -1;
3948 	} else {
3949 		index = wbc->range_start >> PAGE_SHIFT;
3950 		end = wbc->range_end >> PAGE_SHIFT;
3951 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952 			range_whole = 1;
3953 		scanned = 1;
3954 	}
3955 	if (wbc->sync_mode == WB_SYNC_ALL)
3956 		tag = PAGECACHE_TAG_TOWRITE;
3957 	else
3958 		tag = PAGECACHE_TAG_DIRTY;
3959 retry:
3960 	if (wbc->sync_mode == WB_SYNC_ALL)
3961 		tag_pages_for_writeback(mapping, index, end);
3962 	done_index = index;
3963 	while (!done && !nr_to_write_done && (index <= end) &&
3964 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3965 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3966 		unsigned i;
3967 
3968 		scanned = 1;
3969 		for (i = 0; i < nr_pages; i++) {
3970 			struct page *page = pvec.pages[i];
3971 
3972 			done_index = page->index;
3973 			/*
3974 			 * At this point we hold neither mapping->tree_lock nor
3975 			 * lock on the page itself: the page may be truncated or
3976 			 * invalidated (changing page->mapping to NULL), or even
3977 			 * swizzled back from swapper_space to tmpfs file
3978 			 * mapping
3979 			 */
3980 			if (!trylock_page(page)) {
3981 				flush_fn(data);
3982 				lock_page(page);
3983 			}
3984 
3985 			if (unlikely(page->mapping != mapping)) {
3986 				unlock_page(page);
3987 				continue;
3988 			}
3989 
3990 			if (!wbc->range_cyclic && page->index > end) {
3991 				done = 1;
3992 				unlock_page(page);
3993 				continue;
3994 			}
3995 
3996 			if (wbc->sync_mode != WB_SYNC_NONE) {
3997 				if (PageWriteback(page))
3998 					flush_fn(data);
3999 				wait_on_page_writeback(page);
4000 			}
4001 
4002 			if (PageWriteback(page) ||
4003 			    !clear_page_dirty_for_io(page)) {
4004 				unlock_page(page);
4005 				continue;
4006 			}
4007 
4008 			ret = (*writepage)(page, wbc, data);
4009 
4010 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011 				unlock_page(page);
4012 				ret = 0;
4013 			}
4014 			if (ret < 0) {
4015 				/*
4016 				 * done_index is set past this page,
4017 				 * so media errors will not choke
4018 				 * background writeout for the entire
4019 				 * file. This has consequences for
4020 				 * range_cyclic semantics (ie. it may
4021 				 * not be suitable for data integrity
4022 				 * writeout).
4023 				 */
4024 				done_index = page->index + 1;
4025 				done = 1;
4026 				break;
4027 			}
4028 
4029 			/*
4030 			 * the filesystem may choose to bump up nr_to_write.
4031 			 * We have to make sure to honor the new nr_to_write
4032 			 * at any time
4033 			 */
4034 			nr_to_write_done = wbc->nr_to_write <= 0;
4035 		}
4036 		pagevec_release(&pvec);
4037 		cond_resched();
4038 	}
4039 	if (!scanned && !done) {
4040 		/*
4041 		 * We hit the last page and there is more work to be done: wrap
4042 		 * back to the start of the file
4043 		 */
4044 		scanned = 1;
4045 		index = 0;
4046 		goto retry;
4047 	}
4048 
4049 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4050 		mapping->writeback_index = done_index;
4051 
4052 	btrfs_add_delayed_iput(inode);
4053 	return ret;
4054 }
4055 
4056 static void flush_epd_write_bio(struct extent_page_data *epd)
4057 {
4058 	if (epd->bio) {
4059 		int rw = WRITE;
4060 		int ret;
4061 
4062 		if (epd->sync_io)
4063 			rw = WRITE_SYNC;
4064 
4065 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4066 		BUG_ON(ret < 0); /* -ENOMEM */
4067 		epd->bio = NULL;
4068 	}
4069 }
4070 
4071 static noinline void flush_write_bio(void *data)
4072 {
4073 	struct extent_page_data *epd = data;
4074 	flush_epd_write_bio(epd);
4075 }
4076 
4077 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4078 			  get_extent_t *get_extent,
4079 			  struct writeback_control *wbc)
4080 {
4081 	int ret;
4082 	struct extent_page_data epd = {
4083 		.bio = NULL,
4084 		.tree = tree,
4085 		.get_extent = get_extent,
4086 		.extent_locked = 0,
4087 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4088 		.bio_flags = 0,
4089 	};
4090 
4091 	ret = __extent_writepage(page, wbc, &epd);
4092 
4093 	flush_epd_write_bio(&epd);
4094 	return ret;
4095 }
4096 
4097 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4098 			      u64 start, u64 end, get_extent_t *get_extent,
4099 			      int mode)
4100 {
4101 	int ret = 0;
4102 	struct address_space *mapping = inode->i_mapping;
4103 	struct page *page;
4104 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105 		PAGE_SHIFT;
4106 
4107 	struct extent_page_data epd = {
4108 		.bio = NULL,
4109 		.tree = tree,
4110 		.get_extent = get_extent,
4111 		.extent_locked = 1,
4112 		.sync_io = mode == WB_SYNC_ALL,
4113 		.bio_flags = 0,
4114 	};
4115 	struct writeback_control wbc_writepages = {
4116 		.sync_mode	= mode,
4117 		.nr_to_write	= nr_pages * 2,
4118 		.range_start	= start,
4119 		.range_end	= end + 1,
4120 	};
4121 
4122 	while (start <= end) {
4123 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4124 		if (clear_page_dirty_for_io(page))
4125 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4126 		else {
4127 			if (tree->ops && tree->ops->writepage_end_io_hook)
4128 				tree->ops->writepage_end_io_hook(page, start,
4129 						 start + PAGE_SIZE - 1,
4130 						 NULL, 1);
4131 			unlock_page(page);
4132 		}
4133 		put_page(page);
4134 		start += PAGE_SIZE;
4135 	}
4136 
4137 	flush_epd_write_bio(&epd);
4138 	return ret;
4139 }
4140 
4141 int extent_writepages(struct extent_io_tree *tree,
4142 		      struct address_space *mapping,
4143 		      get_extent_t *get_extent,
4144 		      struct writeback_control *wbc)
4145 {
4146 	int ret = 0;
4147 	struct extent_page_data epd = {
4148 		.bio = NULL,
4149 		.tree = tree,
4150 		.get_extent = get_extent,
4151 		.extent_locked = 0,
4152 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4153 		.bio_flags = 0,
4154 	};
4155 
4156 	ret = extent_write_cache_pages(tree, mapping, wbc,
4157 				       __extent_writepage, &epd,
4158 				       flush_write_bio);
4159 	flush_epd_write_bio(&epd);
4160 	return ret;
4161 }
4162 
4163 int extent_readpages(struct extent_io_tree *tree,
4164 		     struct address_space *mapping,
4165 		     struct list_head *pages, unsigned nr_pages,
4166 		     get_extent_t get_extent)
4167 {
4168 	struct bio *bio = NULL;
4169 	unsigned page_idx;
4170 	unsigned long bio_flags = 0;
4171 	struct page *pagepool[16];
4172 	struct page *page;
4173 	struct extent_map *em_cached = NULL;
4174 	int nr = 0;
4175 	u64 prev_em_start = (u64)-1;
4176 
4177 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4178 		page = list_entry(pages->prev, struct page, lru);
4179 
4180 		prefetchw(&page->flags);
4181 		list_del(&page->lru);
4182 		if (add_to_page_cache_lru(page, mapping,
4183 					page->index, GFP_NOFS)) {
4184 			put_page(page);
4185 			continue;
4186 		}
4187 
4188 		pagepool[nr++] = page;
4189 		if (nr < ARRAY_SIZE(pagepool))
4190 			continue;
4191 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4192 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4193 		nr = 0;
4194 	}
4195 	if (nr)
4196 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4197 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4198 
4199 	if (em_cached)
4200 		free_extent_map(em_cached);
4201 
4202 	BUG_ON(!list_empty(pages));
4203 	if (bio)
4204 		return submit_one_bio(READ, bio, 0, bio_flags);
4205 	return 0;
4206 }
4207 
4208 /*
4209  * basic invalidatepage code, this waits on any locked or writeback
4210  * ranges corresponding to the page, and then deletes any extent state
4211  * records from the tree
4212  */
4213 int extent_invalidatepage(struct extent_io_tree *tree,
4214 			  struct page *page, unsigned long offset)
4215 {
4216 	struct extent_state *cached_state = NULL;
4217 	u64 start = page_offset(page);
4218 	u64 end = start + PAGE_SIZE - 1;
4219 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220 
4221 	start += ALIGN(offset, blocksize);
4222 	if (start > end)
4223 		return 0;
4224 
4225 	lock_extent_bits(tree, start, end, &cached_state);
4226 	wait_on_page_writeback(page);
4227 	clear_extent_bit(tree, start, end,
4228 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229 			 EXTENT_DO_ACCOUNTING,
4230 			 1, 1, &cached_state, GFP_NOFS);
4231 	return 0;
4232 }
4233 
4234 /*
4235  * a helper for releasepage, this tests for areas of the page that
4236  * are locked or under IO and drops the related state bits if it is safe
4237  * to drop the page.
4238  */
4239 static int try_release_extent_state(struct extent_map_tree *map,
4240 				    struct extent_io_tree *tree,
4241 				    struct page *page, gfp_t mask)
4242 {
4243 	u64 start = page_offset(page);
4244 	u64 end = start + PAGE_SIZE - 1;
4245 	int ret = 1;
4246 
4247 	if (test_range_bit(tree, start, end,
4248 			   EXTENT_IOBITS, 0, NULL))
4249 		ret = 0;
4250 	else {
4251 		if ((mask & GFP_NOFS) == GFP_NOFS)
4252 			mask = GFP_NOFS;
4253 		/*
4254 		 * at this point we can safely clear everything except the
4255 		 * locked bit and the nodatasum bit
4256 		 */
4257 		ret = clear_extent_bit(tree, start, end,
4258 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259 				 0, 0, NULL, mask);
4260 
4261 		/* if clear_extent_bit failed for enomem reasons,
4262 		 * we can't allow the release to continue.
4263 		 */
4264 		if (ret < 0)
4265 			ret = 0;
4266 		else
4267 			ret = 1;
4268 	}
4269 	return ret;
4270 }
4271 
4272 /*
4273  * a helper for releasepage.  As long as there are no locked extents
4274  * in the range corresponding to the page, both state records and extent
4275  * map records are removed
4276  */
4277 int try_release_extent_mapping(struct extent_map_tree *map,
4278 			       struct extent_io_tree *tree, struct page *page,
4279 			       gfp_t mask)
4280 {
4281 	struct extent_map *em;
4282 	u64 start = page_offset(page);
4283 	u64 end = start + PAGE_SIZE - 1;
4284 
4285 	if (gfpflags_allow_blocking(mask) &&
4286 	    page->mapping->host->i_size > SZ_16M) {
4287 		u64 len;
4288 		while (start <= end) {
4289 			len = end - start + 1;
4290 			write_lock(&map->lock);
4291 			em = lookup_extent_mapping(map, start, len);
4292 			if (!em) {
4293 				write_unlock(&map->lock);
4294 				break;
4295 			}
4296 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297 			    em->start != start) {
4298 				write_unlock(&map->lock);
4299 				free_extent_map(em);
4300 				break;
4301 			}
4302 			if (!test_range_bit(tree, em->start,
4303 					    extent_map_end(em) - 1,
4304 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4305 					    0, NULL)) {
4306 				remove_extent_mapping(map, em);
4307 				/* once for the rb tree */
4308 				free_extent_map(em);
4309 			}
4310 			start = extent_map_end(em);
4311 			write_unlock(&map->lock);
4312 
4313 			/* once for us */
4314 			free_extent_map(em);
4315 		}
4316 	}
4317 	return try_release_extent_state(map, tree, page, mask);
4318 }
4319 
4320 /*
4321  * helper function for fiemap, which doesn't want to see any holes.
4322  * This maps until we find something past 'last'
4323  */
4324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325 						u64 offset,
4326 						u64 last,
4327 						get_extent_t *get_extent)
4328 {
4329 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4330 	struct extent_map *em;
4331 	u64 len;
4332 
4333 	if (offset >= last)
4334 		return NULL;
4335 
4336 	while (1) {
4337 		len = last - offset;
4338 		if (len == 0)
4339 			break;
4340 		len = ALIGN(len, sectorsize);
4341 		em = get_extent(inode, NULL, 0, offset, len, 0);
4342 		if (IS_ERR_OR_NULL(em))
4343 			return em;
4344 
4345 		/* if this isn't a hole return it */
4346 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347 		    em->block_start != EXTENT_MAP_HOLE) {
4348 			return em;
4349 		}
4350 
4351 		/* this is a hole, advance to the next extent */
4352 		offset = extent_map_end(em);
4353 		free_extent_map(em);
4354 		if (offset >= last)
4355 			break;
4356 	}
4357 	return NULL;
4358 }
4359 
4360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4361 		__u64 start, __u64 len, get_extent_t *get_extent)
4362 {
4363 	int ret = 0;
4364 	u64 off = start;
4365 	u64 max = start + len;
4366 	u32 flags = 0;
4367 	u32 found_type;
4368 	u64 last;
4369 	u64 last_for_get_extent = 0;
4370 	u64 disko = 0;
4371 	u64 isize = i_size_read(inode);
4372 	struct btrfs_key found_key;
4373 	struct extent_map *em = NULL;
4374 	struct extent_state *cached_state = NULL;
4375 	struct btrfs_path *path;
4376 	struct btrfs_root *root = BTRFS_I(inode)->root;
4377 	int end = 0;
4378 	u64 em_start = 0;
4379 	u64 em_len = 0;
4380 	u64 em_end = 0;
4381 
4382 	if (len == 0)
4383 		return -EINVAL;
4384 
4385 	path = btrfs_alloc_path();
4386 	if (!path)
4387 		return -ENOMEM;
4388 	path->leave_spinning = 1;
4389 
4390 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4391 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4392 
4393 	/*
4394 	 * lookup the last file extent.  We're not using i_size here
4395 	 * because there might be preallocation past i_size
4396 	 */
4397 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4398 				       0);
4399 	if (ret < 0) {
4400 		btrfs_free_path(path);
4401 		return ret;
4402 	} else {
4403 		WARN_ON(!ret);
4404 		if (ret == 1)
4405 			ret = 0;
4406 	}
4407 
4408 	path->slots[0]--;
4409 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4410 	found_type = found_key.type;
4411 
4412 	/* No extents, but there might be delalloc bits */
4413 	if (found_key.objectid != btrfs_ino(inode) ||
4414 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4415 		/* have to trust i_size as the end */
4416 		last = (u64)-1;
4417 		last_for_get_extent = isize;
4418 	} else {
4419 		/*
4420 		 * remember the start of the last extent.  There are a
4421 		 * bunch of different factors that go into the length of the
4422 		 * extent, so its much less complex to remember where it started
4423 		 */
4424 		last = found_key.offset;
4425 		last_for_get_extent = last + 1;
4426 	}
4427 	btrfs_release_path(path);
4428 
4429 	/*
4430 	 * we might have some extents allocated but more delalloc past those
4431 	 * extents.  so, we trust isize unless the start of the last extent is
4432 	 * beyond isize
4433 	 */
4434 	if (last < isize) {
4435 		last = (u64)-1;
4436 		last_for_get_extent = isize;
4437 	}
4438 
4439 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4440 			 &cached_state);
4441 
4442 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4443 				   get_extent);
4444 	if (!em)
4445 		goto out;
4446 	if (IS_ERR(em)) {
4447 		ret = PTR_ERR(em);
4448 		goto out;
4449 	}
4450 
4451 	while (!end) {
4452 		u64 offset_in_extent = 0;
4453 
4454 		/* break if the extent we found is outside the range */
4455 		if (em->start >= max || extent_map_end(em) < off)
4456 			break;
4457 
4458 		/*
4459 		 * get_extent may return an extent that starts before our
4460 		 * requested range.  We have to make sure the ranges
4461 		 * we return to fiemap always move forward and don't
4462 		 * overlap, so adjust the offsets here
4463 		 */
4464 		em_start = max(em->start, off);
4465 
4466 		/*
4467 		 * record the offset from the start of the extent
4468 		 * for adjusting the disk offset below.  Only do this if the
4469 		 * extent isn't compressed since our in ram offset may be past
4470 		 * what we have actually allocated on disk.
4471 		 */
4472 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4473 			offset_in_extent = em_start - em->start;
4474 		em_end = extent_map_end(em);
4475 		em_len = em_end - em_start;
4476 		disko = 0;
4477 		flags = 0;
4478 
4479 		/*
4480 		 * bump off for our next call to get_extent
4481 		 */
4482 		off = extent_map_end(em);
4483 		if (off >= max)
4484 			end = 1;
4485 
4486 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4487 			end = 1;
4488 			flags |= FIEMAP_EXTENT_LAST;
4489 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4490 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4491 				  FIEMAP_EXTENT_NOT_ALIGNED);
4492 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4493 			flags |= (FIEMAP_EXTENT_DELALLOC |
4494 				  FIEMAP_EXTENT_UNKNOWN);
4495 		} else if (fieinfo->fi_extents_max) {
4496 			u64 bytenr = em->block_start -
4497 				(em->start - em->orig_start);
4498 
4499 			disko = em->block_start + offset_in_extent;
4500 
4501 			/*
4502 			 * As btrfs supports shared space, this information
4503 			 * can be exported to userspace tools via
4504 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4505 			 * then we're just getting a count and we can skip the
4506 			 * lookup stuff.
4507 			 */
4508 			ret = btrfs_check_shared(NULL, root->fs_info,
4509 						 root->objectid,
4510 						 btrfs_ino(inode), bytenr);
4511 			if (ret < 0)
4512 				goto out_free;
4513 			if (ret)
4514 				flags |= FIEMAP_EXTENT_SHARED;
4515 			ret = 0;
4516 		}
4517 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4518 			flags |= FIEMAP_EXTENT_ENCODED;
4519 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4520 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4521 
4522 		free_extent_map(em);
4523 		em = NULL;
4524 		if ((em_start >= last) || em_len == (u64)-1 ||
4525 		   (last == (u64)-1 && isize <= em_end)) {
4526 			flags |= FIEMAP_EXTENT_LAST;
4527 			end = 1;
4528 		}
4529 
4530 		/* now scan forward to see if this is really the last extent. */
4531 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4532 					   get_extent);
4533 		if (IS_ERR(em)) {
4534 			ret = PTR_ERR(em);
4535 			goto out;
4536 		}
4537 		if (!em) {
4538 			flags |= FIEMAP_EXTENT_LAST;
4539 			end = 1;
4540 		}
4541 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4542 					      em_len, flags);
4543 		if (ret) {
4544 			if (ret == 1)
4545 				ret = 0;
4546 			goto out_free;
4547 		}
4548 	}
4549 out_free:
4550 	free_extent_map(em);
4551 out:
4552 	btrfs_free_path(path);
4553 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4554 			     &cached_state, GFP_NOFS);
4555 	return ret;
4556 }
4557 
4558 static void __free_extent_buffer(struct extent_buffer *eb)
4559 {
4560 	btrfs_leak_debug_del(&eb->leak_list);
4561 	kmem_cache_free(extent_buffer_cache, eb);
4562 }
4563 
4564 int extent_buffer_under_io(struct extent_buffer *eb)
4565 {
4566 	return (atomic_read(&eb->io_pages) ||
4567 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4568 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569 }
4570 
4571 /*
4572  * Helper for releasing extent buffer page.
4573  */
4574 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4575 {
4576 	unsigned long index;
4577 	struct page *page;
4578 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4579 
4580 	BUG_ON(extent_buffer_under_io(eb));
4581 
4582 	index = num_extent_pages(eb->start, eb->len);
4583 	if (index == 0)
4584 		return;
4585 
4586 	do {
4587 		index--;
4588 		page = eb->pages[index];
4589 		if (!page)
4590 			continue;
4591 		if (mapped)
4592 			spin_lock(&page->mapping->private_lock);
4593 		/*
4594 		 * We do this since we'll remove the pages after we've
4595 		 * removed the eb from the radix tree, so we could race
4596 		 * and have this page now attached to the new eb.  So
4597 		 * only clear page_private if it's still connected to
4598 		 * this eb.
4599 		 */
4600 		if (PagePrivate(page) &&
4601 		    page->private == (unsigned long)eb) {
4602 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 			BUG_ON(PageDirty(page));
4604 			BUG_ON(PageWriteback(page));
4605 			/*
4606 			 * We need to make sure we haven't be attached
4607 			 * to a new eb.
4608 			 */
4609 			ClearPagePrivate(page);
4610 			set_page_private(page, 0);
4611 			/* One for the page private */
4612 			put_page(page);
4613 		}
4614 
4615 		if (mapped)
4616 			spin_unlock(&page->mapping->private_lock);
4617 
4618 		/* One for when we allocated the page */
4619 		put_page(page);
4620 	} while (index != 0);
4621 }
4622 
4623 /*
4624  * Helper for releasing the extent buffer.
4625  */
4626 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4627 {
4628 	btrfs_release_extent_buffer_page(eb);
4629 	__free_extent_buffer(eb);
4630 }
4631 
4632 static struct extent_buffer *
4633 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4634 		      unsigned long len)
4635 {
4636 	struct extent_buffer *eb = NULL;
4637 
4638 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4639 	eb->start = start;
4640 	eb->len = len;
4641 	eb->fs_info = fs_info;
4642 	eb->bflags = 0;
4643 	rwlock_init(&eb->lock);
4644 	atomic_set(&eb->write_locks, 0);
4645 	atomic_set(&eb->read_locks, 0);
4646 	atomic_set(&eb->blocking_readers, 0);
4647 	atomic_set(&eb->blocking_writers, 0);
4648 	atomic_set(&eb->spinning_readers, 0);
4649 	atomic_set(&eb->spinning_writers, 0);
4650 	eb->lock_nested = 0;
4651 	init_waitqueue_head(&eb->write_lock_wq);
4652 	init_waitqueue_head(&eb->read_lock_wq);
4653 
4654 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4655 
4656 	spin_lock_init(&eb->refs_lock);
4657 	atomic_set(&eb->refs, 1);
4658 	atomic_set(&eb->io_pages, 0);
4659 
4660 	/*
4661 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4662 	 */
4663 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4664 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4665 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4666 
4667 	return eb;
4668 }
4669 
4670 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4671 {
4672 	unsigned long i;
4673 	struct page *p;
4674 	struct extent_buffer *new;
4675 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4676 
4677 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4678 	if (new == NULL)
4679 		return NULL;
4680 
4681 	for (i = 0; i < num_pages; i++) {
4682 		p = alloc_page(GFP_NOFS);
4683 		if (!p) {
4684 			btrfs_release_extent_buffer(new);
4685 			return NULL;
4686 		}
4687 		attach_extent_buffer_page(new, p);
4688 		WARN_ON(PageDirty(p));
4689 		SetPageUptodate(p);
4690 		new->pages[i] = p;
4691 	}
4692 
4693 	copy_extent_buffer(new, src, 0, 0, src->len);
4694 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4695 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4696 
4697 	return new;
4698 }
4699 
4700 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4701 						  u64 start, unsigned long len)
4702 {
4703 	struct extent_buffer *eb;
4704 	unsigned long num_pages;
4705 	unsigned long i;
4706 
4707 	num_pages = num_extent_pages(start, len);
4708 
4709 	eb = __alloc_extent_buffer(fs_info, start, len);
4710 	if (!eb)
4711 		return NULL;
4712 
4713 	for (i = 0; i < num_pages; i++) {
4714 		eb->pages[i] = alloc_page(GFP_NOFS);
4715 		if (!eb->pages[i])
4716 			goto err;
4717 	}
4718 	set_extent_buffer_uptodate(eb);
4719 	btrfs_set_header_nritems(eb, 0);
4720 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4721 
4722 	return eb;
4723 err:
4724 	for (; i > 0; i--)
4725 		__free_page(eb->pages[i - 1]);
4726 	__free_extent_buffer(eb);
4727 	return NULL;
4728 }
4729 
4730 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731 						u64 start, u32 nodesize)
4732 {
4733 	unsigned long len;
4734 
4735 	if (!fs_info) {
4736 		/*
4737 		 * Called only from tests that don't always have a fs_info
4738 		 * available
4739 		 */
4740 		len = nodesize;
4741 	} else {
4742 		len = fs_info->tree_root->nodesize;
4743 	}
4744 
4745 	return __alloc_dummy_extent_buffer(fs_info, start, len);
4746 }
4747 
4748 static void check_buffer_tree_ref(struct extent_buffer *eb)
4749 {
4750 	int refs;
4751 	/* the ref bit is tricky.  We have to make sure it is set
4752 	 * if we have the buffer dirty.   Otherwise the
4753 	 * code to free a buffer can end up dropping a dirty
4754 	 * page
4755 	 *
4756 	 * Once the ref bit is set, it won't go away while the
4757 	 * buffer is dirty or in writeback, and it also won't
4758 	 * go away while we have the reference count on the
4759 	 * eb bumped.
4760 	 *
4761 	 * We can't just set the ref bit without bumping the
4762 	 * ref on the eb because free_extent_buffer might
4763 	 * see the ref bit and try to clear it.  If this happens
4764 	 * free_extent_buffer might end up dropping our original
4765 	 * ref by mistake and freeing the page before we are able
4766 	 * to add one more ref.
4767 	 *
4768 	 * So bump the ref count first, then set the bit.  If someone
4769 	 * beat us to it, drop the ref we added.
4770 	 */
4771 	refs = atomic_read(&eb->refs);
4772 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773 		return;
4774 
4775 	spin_lock(&eb->refs_lock);
4776 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4777 		atomic_inc(&eb->refs);
4778 	spin_unlock(&eb->refs_lock);
4779 }
4780 
4781 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782 		struct page *accessed)
4783 {
4784 	unsigned long num_pages, i;
4785 
4786 	check_buffer_tree_ref(eb);
4787 
4788 	num_pages = num_extent_pages(eb->start, eb->len);
4789 	for (i = 0; i < num_pages; i++) {
4790 		struct page *p = eb->pages[i];
4791 
4792 		if (p != accessed)
4793 			mark_page_accessed(p);
4794 	}
4795 }
4796 
4797 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798 					 u64 start)
4799 {
4800 	struct extent_buffer *eb;
4801 
4802 	rcu_read_lock();
4803 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4804 			       start >> PAGE_SHIFT);
4805 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4806 		rcu_read_unlock();
4807 		/*
4808 		 * Lock our eb's refs_lock to avoid races with
4809 		 * free_extent_buffer. When we get our eb it might be flagged
4810 		 * with EXTENT_BUFFER_STALE and another task running
4811 		 * free_extent_buffer might have seen that flag set,
4812 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813 		 * writeback flags not set) and it's still in the tree (flag
4814 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815 		 * of decrementing the extent buffer's reference count twice.
4816 		 * So here we could race and increment the eb's reference count,
4817 		 * clear its stale flag, mark it as dirty and drop our reference
4818 		 * before the other task finishes executing free_extent_buffer,
4819 		 * which would later result in an attempt to free an extent
4820 		 * buffer that is dirty.
4821 		 */
4822 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823 			spin_lock(&eb->refs_lock);
4824 			spin_unlock(&eb->refs_lock);
4825 		}
4826 		mark_extent_buffer_accessed(eb, NULL);
4827 		return eb;
4828 	}
4829 	rcu_read_unlock();
4830 
4831 	return NULL;
4832 }
4833 
4834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4836 					u64 start, u32 nodesize)
4837 {
4838 	struct extent_buffer *eb, *exists = NULL;
4839 	int ret;
4840 
4841 	eb = find_extent_buffer(fs_info, start);
4842 	if (eb)
4843 		return eb;
4844 	eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4845 	if (!eb)
4846 		return NULL;
4847 	eb->fs_info = fs_info;
4848 again:
4849 	ret = radix_tree_preload(GFP_NOFS);
4850 	if (ret)
4851 		goto free_eb;
4852 	spin_lock(&fs_info->buffer_lock);
4853 	ret = radix_tree_insert(&fs_info->buffer_radix,
4854 				start >> PAGE_SHIFT, eb);
4855 	spin_unlock(&fs_info->buffer_lock);
4856 	radix_tree_preload_end();
4857 	if (ret == -EEXIST) {
4858 		exists = find_extent_buffer(fs_info, start);
4859 		if (exists)
4860 			goto free_eb;
4861 		else
4862 			goto again;
4863 	}
4864 	check_buffer_tree_ref(eb);
4865 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866 
4867 	/*
4868 	 * We will free dummy extent buffer's if they come into
4869 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4870 	 * want the buffers to stay in memory until we're done with them, so
4871 	 * bump the ref count again.
4872 	 */
4873 	atomic_inc(&eb->refs);
4874 	return eb;
4875 free_eb:
4876 	btrfs_release_extent_buffer(eb);
4877 	return exists;
4878 }
4879 #endif
4880 
4881 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4882 					  u64 start)
4883 {
4884 	unsigned long len = fs_info->tree_root->nodesize;
4885 	unsigned long num_pages = num_extent_pages(start, len);
4886 	unsigned long i;
4887 	unsigned long index = start >> PAGE_SHIFT;
4888 	struct extent_buffer *eb;
4889 	struct extent_buffer *exists = NULL;
4890 	struct page *p;
4891 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4892 	int uptodate = 1;
4893 	int ret;
4894 
4895 	eb = find_extent_buffer(fs_info, start);
4896 	if (eb)
4897 		return eb;
4898 
4899 	eb = __alloc_extent_buffer(fs_info, start, len);
4900 	if (!eb)
4901 		return NULL;
4902 
4903 	for (i = 0; i < num_pages; i++, index++) {
4904 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4905 		if (!p)
4906 			goto free_eb;
4907 
4908 		spin_lock(&mapping->private_lock);
4909 		if (PagePrivate(p)) {
4910 			/*
4911 			 * We could have already allocated an eb for this page
4912 			 * and attached one so lets see if we can get a ref on
4913 			 * the existing eb, and if we can we know it's good and
4914 			 * we can just return that one, else we know we can just
4915 			 * overwrite page->private.
4916 			 */
4917 			exists = (struct extent_buffer *)p->private;
4918 			if (atomic_inc_not_zero(&exists->refs)) {
4919 				spin_unlock(&mapping->private_lock);
4920 				unlock_page(p);
4921 				put_page(p);
4922 				mark_extent_buffer_accessed(exists, p);
4923 				goto free_eb;
4924 			}
4925 			exists = NULL;
4926 
4927 			/*
4928 			 * Do this so attach doesn't complain and we need to
4929 			 * drop the ref the old guy had.
4930 			 */
4931 			ClearPagePrivate(p);
4932 			WARN_ON(PageDirty(p));
4933 			put_page(p);
4934 		}
4935 		attach_extent_buffer_page(eb, p);
4936 		spin_unlock(&mapping->private_lock);
4937 		WARN_ON(PageDirty(p));
4938 		eb->pages[i] = p;
4939 		if (!PageUptodate(p))
4940 			uptodate = 0;
4941 
4942 		/*
4943 		 * see below about how we avoid a nasty race with release page
4944 		 * and why we unlock later
4945 		 */
4946 	}
4947 	if (uptodate)
4948 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4949 again:
4950 	ret = radix_tree_preload(GFP_NOFS);
4951 	if (ret)
4952 		goto free_eb;
4953 
4954 	spin_lock(&fs_info->buffer_lock);
4955 	ret = radix_tree_insert(&fs_info->buffer_radix,
4956 				start >> PAGE_SHIFT, eb);
4957 	spin_unlock(&fs_info->buffer_lock);
4958 	radix_tree_preload_end();
4959 	if (ret == -EEXIST) {
4960 		exists = find_extent_buffer(fs_info, start);
4961 		if (exists)
4962 			goto free_eb;
4963 		else
4964 			goto again;
4965 	}
4966 	/* add one reference for the tree */
4967 	check_buffer_tree_ref(eb);
4968 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4969 
4970 	/*
4971 	 * there is a race where release page may have
4972 	 * tried to find this extent buffer in the radix
4973 	 * but failed.  It will tell the VM it is safe to
4974 	 * reclaim the, and it will clear the page private bit.
4975 	 * We must make sure to set the page private bit properly
4976 	 * after the extent buffer is in the radix tree so
4977 	 * it doesn't get lost
4978 	 */
4979 	SetPageChecked(eb->pages[0]);
4980 	for (i = 1; i < num_pages; i++) {
4981 		p = eb->pages[i];
4982 		ClearPageChecked(p);
4983 		unlock_page(p);
4984 	}
4985 	unlock_page(eb->pages[0]);
4986 	return eb;
4987 
4988 free_eb:
4989 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4990 	for (i = 0; i < num_pages; i++) {
4991 		if (eb->pages[i])
4992 			unlock_page(eb->pages[i]);
4993 	}
4994 
4995 	btrfs_release_extent_buffer(eb);
4996 	return exists;
4997 }
4998 
4999 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5000 {
5001 	struct extent_buffer *eb =
5002 			container_of(head, struct extent_buffer, rcu_head);
5003 
5004 	__free_extent_buffer(eb);
5005 }
5006 
5007 /* Expects to have eb->eb_lock already held */
5008 static int release_extent_buffer(struct extent_buffer *eb)
5009 {
5010 	WARN_ON(atomic_read(&eb->refs) == 0);
5011 	if (atomic_dec_and_test(&eb->refs)) {
5012 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5013 			struct btrfs_fs_info *fs_info = eb->fs_info;
5014 
5015 			spin_unlock(&eb->refs_lock);
5016 
5017 			spin_lock(&fs_info->buffer_lock);
5018 			radix_tree_delete(&fs_info->buffer_radix,
5019 					  eb->start >> PAGE_SHIFT);
5020 			spin_unlock(&fs_info->buffer_lock);
5021 		} else {
5022 			spin_unlock(&eb->refs_lock);
5023 		}
5024 
5025 		/* Should be safe to release our pages at this point */
5026 		btrfs_release_extent_buffer_page(eb);
5027 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5028 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5029 			__free_extent_buffer(eb);
5030 			return 1;
5031 		}
5032 #endif
5033 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5034 		return 1;
5035 	}
5036 	spin_unlock(&eb->refs_lock);
5037 
5038 	return 0;
5039 }
5040 
5041 void free_extent_buffer(struct extent_buffer *eb)
5042 {
5043 	int refs;
5044 	int old;
5045 	if (!eb)
5046 		return;
5047 
5048 	while (1) {
5049 		refs = atomic_read(&eb->refs);
5050 		if (refs <= 3)
5051 			break;
5052 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5053 		if (old == refs)
5054 			return;
5055 	}
5056 
5057 	spin_lock(&eb->refs_lock);
5058 	if (atomic_read(&eb->refs) == 2 &&
5059 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5060 		atomic_dec(&eb->refs);
5061 
5062 	if (atomic_read(&eb->refs) == 2 &&
5063 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5064 	    !extent_buffer_under_io(eb) &&
5065 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5066 		atomic_dec(&eb->refs);
5067 
5068 	/*
5069 	 * I know this is terrible, but it's temporary until we stop tracking
5070 	 * the uptodate bits and such for the extent buffers.
5071 	 */
5072 	release_extent_buffer(eb);
5073 }
5074 
5075 void free_extent_buffer_stale(struct extent_buffer *eb)
5076 {
5077 	if (!eb)
5078 		return;
5079 
5080 	spin_lock(&eb->refs_lock);
5081 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5082 
5083 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5084 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5085 		atomic_dec(&eb->refs);
5086 	release_extent_buffer(eb);
5087 }
5088 
5089 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5090 {
5091 	unsigned long i;
5092 	unsigned long num_pages;
5093 	struct page *page;
5094 
5095 	num_pages = num_extent_pages(eb->start, eb->len);
5096 
5097 	for (i = 0; i < num_pages; i++) {
5098 		page = eb->pages[i];
5099 		if (!PageDirty(page))
5100 			continue;
5101 
5102 		lock_page(page);
5103 		WARN_ON(!PagePrivate(page));
5104 
5105 		clear_page_dirty_for_io(page);
5106 		spin_lock_irq(&page->mapping->tree_lock);
5107 		if (!PageDirty(page)) {
5108 			radix_tree_tag_clear(&page->mapping->page_tree,
5109 						page_index(page),
5110 						PAGECACHE_TAG_DIRTY);
5111 		}
5112 		spin_unlock_irq(&page->mapping->tree_lock);
5113 		ClearPageError(page);
5114 		unlock_page(page);
5115 	}
5116 	WARN_ON(atomic_read(&eb->refs) == 0);
5117 }
5118 
5119 int set_extent_buffer_dirty(struct extent_buffer *eb)
5120 {
5121 	unsigned long i;
5122 	unsigned long num_pages;
5123 	int was_dirty = 0;
5124 
5125 	check_buffer_tree_ref(eb);
5126 
5127 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5128 
5129 	num_pages = num_extent_pages(eb->start, eb->len);
5130 	WARN_ON(atomic_read(&eb->refs) == 0);
5131 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5132 
5133 	for (i = 0; i < num_pages; i++)
5134 		set_page_dirty(eb->pages[i]);
5135 	return was_dirty;
5136 }
5137 
5138 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5139 {
5140 	unsigned long i;
5141 	struct page *page;
5142 	unsigned long num_pages;
5143 
5144 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5145 	num_pages = num_extent_pages(eb->start, eb->len);
5146 	for (i = 0; i < num_pages; i++) {
5147 		page = eb->pages[i];
5148 		if (page)
5149 			ClearPageUptodate(page);
5150 	}
5151 }
5152 
5153 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5154 {
5155 	unsigned long i;
5156 	struct page *page;
5157 	unsigned long num_pages;
5158 
5159 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5160 	num_pages = num_extent_pages(eb->start, eb->len);
5161 	for (i = 0; i < num_pages; i++) {
5162 		page = eb->pages[i];
5163 		SetPageUptodate(page);
5164 	}
5165 }
5166 
5167 int extent_buffer_uptodate(struct extent_buffer *eb)
5168 {
5169 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5170 }
5171 
5172 int read_extent_buffer_pages(struct extent_io_tree *tree,
5173 			     struct extent_buffer *eb, u64 start, int wait,
5174 			     get_extent_t *get_extent, int mirror_num)
5175 {
5176 	unsigned long i;
5177 	unsigned long start_i;
5178 	struct page *page;
5179 	int err;
5180 	int ret = 0;
5181 	int locked_pages = 0;
5182 	int all_uptodate = 1;
5183 	unsigned long num_pages;
5184 	unsigned long num_reads = 0;
5185 	struct bio *bio = NULL;
5186 	unsigned long bio_flags = 0;
5187 
5188 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5189 		return 0;
5190 
5191 	if (start) {
5192 		WARN_ON(start < eb->start);
5193 		start_i = (start >> PAGE_SHIFT) -
5194 			(eb->start >> PAGE_SHIFT);
5195 	} else {
5196 		start_i = 0;
5197 	}
5198 
5199 	num_pages = num_extent_pages(eb->start, eb->len);
5200 	for (i = start_i; i < num_pages; i++) {
5201 		page = eb->pages[i];
5202 		if (wait == WAIT_NONE) {
5203 			if (!trylock_page(page))
5204 				goto unlock_exit;
5205 		} else {
5206 			lock_page(page);
5207 		}
5208 		locked_pages++;
5209 		if (!PageUptodate(page)) {
5210 			num_reads++;
5211 			all_uptodate = 0;
5212 		}
5213 	}
5214 	if (all_uptodate) {
5215 		if (start_i == 0)
5216 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217 		goto unlock_exit;
5218 	}
5219 
5220 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5221 	eb->read_mirror = 0;
5222 	atomic_set(&eb->io_pages, num_reads);
5223 	for (i = start_i; i < num_pages; i++) {
5224 		page = eb->pages[i];
5225 		if (!PageUptodate(page)) {
5226 			ClearPageError(page);
5227 			err = __extent_read_full_page(tree, page,
5228 						      get_extent, &bio,
5229 						      mirror_num, &bio_flags,
5230 						      READ | REQ_META);
5231 			if (err)
5232 				ret = err;
5233 		} else {
5234 			unlock_page(page);
5235 		}
5236 	}
5237 
5238 	if (bio) {
5239 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5240 				     bio_flags);
5241 		if (err)
5242 			return err;
5243 	}
5244 
5245 	if (ret || wait != WAIT_COMPLETE)
5246 		return ret;
5247 
5248 	for (i = start_i; i < num_pages; i++) {
5249 		page = eb->pages[i];
5250 		wait_on_page_locked(page);
5251 		if (!PageUptodate(page))
5252 			ret = -EIO;
5253 	}
5254 
5255 	return ret;
5256 
5257 unlock_exit:
5258 	i = start_i;
5259 	while (locked_pages > 0) {
5260 		page = eb->pages[i];
5261 		i++;
5262 		unlock_page(page);
5263 		locked_pages--;
5264 	}
5265 	return ret;
5266 }
5267 
5268 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5269 			unsigned long start,
5270 			unsigned long len)
5271 {
5272 	size_t cur;
5273 	size_t offset;
5274 	struct page *page;
5275 	char *kaddr;
5276 	char *dst = (char *)dstv;
5277 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5278 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5279 
5280 	WARN_ON(start > eb->len);
5281 	WARN_ON(start + len > eb->start + eb->len);
5282 
5283 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5284 
5285 	while (len > 0) {
5286 		page = eb->pages[i];
5287 
5288 		cur = min(len, (PAGE_SIZE - offset));
5289 		kaddr = page_address(page);
5290 		memcpy(dst, kaddr + offset, cur);
5291 
5292 		dst += cur;
5293 		len -= cur;
5294 		offset = 0;
5295 		i++;
5296 	}
5297 }
5298 
5299 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5300 			unsigned long start,
5301 			unsigned long len)
5302 {
5303 	size_t cur;
5304 	size_t offset;
5305 	struct page *page;
5306 	char *kaddr;
5307 	char __user *dst = (char __user *)dstv;
5308 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5309 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5310 	int ret = 0;
5311 
5312 	WARN_ON(start > eb->len);
5313 	WARN_ON(start + len > eb->start + eb->len);
5314 
5315 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5316 
5317 	while (len > 0) {
5318 		page = eb->pages[i];
5319 
5320 		cur = min(len, (PAGE_SIZE - offset));
5321 		kaddr = page_address(page);
5322 		if (copy_to_user(dst, kaddr + offset, cur)) {
5323 			ret = -EFAULT;
5324 			break;
5325 		}
5326 
5327 		dst += cur;
5328 		len -= cur;
5329 		offset = 0;
5330 		i++;
5331 	}
5332 
5333 	return ret;
5334 }
5335 
5336 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5337 			       unsigned long min_len, char **map,
5338 			       unsigned long *map_start,
5339 			       unsigned long *map_len)
5340 {
5341 	size_t offset = start & (PAGE_SIZE - 1);
5342 	char *kaddr;
5343 	struct page *p;
5344 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5345 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5346 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5347 		PAGE_SHIFT;
5348 
5349 	if (i != end_i)
5350 		return -EINVAL;
5351 
5352 	if (i == 0) {
5353 		offset = start_offset;
5354 		*map_start = 0;
5355 	} else {
5356 		offset = 0;
5357 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5358 	}
5359 
5360 	if (start + min_len > eb->len) {
5361 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5362 		       "wanted %lu %lu\n",
5363 		       eb->start, eb->len, start, min_len);
5364 		return -EINVAL;
5365 	}
5366 
5367 	p = eb->pages[i];
5368 	kaddr = page_address(p);
5369 	*map = kaddr + offset;
5370 	*map_len = PAGE_SIZE - offset;
5371 	return 0;
5372 }
5373 
5374 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5375 			  unsigned long start,
5376 			  unsigned long len)
5377 {
5378 	size_t cur;
5379 	size_t offset;
5380 	struct page *page;
5381 	char *kaddr;
5382 	char *ptr = (char *)ptrv;
5383 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5384 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5385 	int ret = 0;
5386 
5387 	WARN_ON(start > eb->len);
5388 	WARN_ON(start + len > eb->start + eb->len);
5389 
5390 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5391 
5392 	while (len > 0) {
5393 		page = eb->pages[i];
5394 
5395 		cur = min(len, (PAGE_SIZE - offset));
5396 
5397 		kaddr = page_address(page);
5398 		ret = memcmp(ptr, kaddr + offset, cur);
5399 		if (ret)
5400 			break;
5401 
5402 		ptr += cur;
5403 		len -= cur;
5404 		offset = 0;
5405 		i++;
5406 	}
5407 	return ret;
5408 }
5409 
5410 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5411 			 unsigned long start, unsigned long len)
5412 {
5413 	size_t cur;
5414 	size_t offset;
5415 	struct page *page;
5416 	char *kaddr;
5417 	char *src = (char *)srcv;
5418 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5419 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5420 
5421 	WARN_ON(start > eb->len);
5422 	WARN_ON(start + len > eb->start + eb->len);
5423 
5424 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5425 
5426 	while (len > 0) {
5427 		page = eb->pages[i];
5428 		WARN_ON(!PageUptodate(page));
5429 
5430 		cur = min(len, PAGE_SIZE - offset);
5431 		kaddr = page_address(page);
5432 		memcpy(kaddr + offset, src, cur);
5433 
5434 		src += cur;
5435 		len -= cur;
5436 		offset = 0;
5437 		i++;
5438 	}
5439 }
5440 
5441 void memset_extent_buffer(struct extent_buffer *eb, char c,
5442 			  unsigned long start, unsigned long len)
5443 {
5444 	size_t cur;
5445 	size_t offset;
5446 	struct page *page;
5447 	char *kaddr;
5448 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5449 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5450 
5451 	WARN_ON(start > eb->len);
5452 	WARN_ON(start + len > eb->start + eb->len);
5453 
5454 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5455 
5456 	while (len > 0) {
5457 		page = eb->pages[i];
5458 		WARN_ON(!PageUptodate(page));
5459 
5460 		cur = min(len, PAGE_SIZE - offset);
5461 		kaddr = page_address(page);
5462 		memset(kaddr + offset, c, cur);
5463 
5464 		len -= cur;
5465 		offset = 0;
5466 		i++;
5467 	}
5468 }
5469 
5470 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5471 			unsigned long dst_offset, unsigned long src_offset,
5472 			unsigned long len)
5473 {
5474 	u64 dst_len = dst->len;
5475 	size_t cur;
5476 	size_t offset;
5477 	struct page *page;
5478 	char *kaddr;
5479 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5480 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5481 
5482 	WARN_ON(src->len != dst_len);
5483 
5484 	offset = (start_offset + dst_offset) &
5485 		(PAGE_SIZE - 1);
5486 
5487 	while (len > 0) {
5488 		page = dst->pages[i];
5489 		WARN_ON(!PageUptodate(page));
5490 
5491 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5492 
5493 		kaddr = page_address(page);
5494 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5495 
5496 		src_offset += cur;
5497 		len -= cur;
5498 		offset = 0;
5499 		i++;
5500 	}
5501 }
5502 
5503 /*
5504  * The extent buffer bitmap operations are done with byte granularity because
5505  * bitmap items are not guaranteed to be aligned to a word and therefore a
5506  * single word in a bitmap may straddle two pages in the extent buffer.
5507  */
5508 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5509 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5510 #define BITMAP_FIRST_BYTE_MASK(start) \
5511 	((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5512 #define BITMAP_LAST_BYTE_MASK(nbits) \
5513 	(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5514 
5515 /*
5516  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5517  * given bit number
5518  * @eb: the extent buffer
5519  * @start: offset of the bitmap item in the extent buffer
5520  * @nr: bit number
5521  * @page_index: return index of the page in the extent buffer that contains the
5522  * given bit number
5523  * @page_offset: return offset into the page given by page_index
5524  *
5525  * This helper hides the ugliness of finding the byte in an extent buffer which
5526  * contains a given bit.
5527  */
5528 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5529 				    unsigned long start, unsigned long nr,
5530 				    unsigned long *page_index,
5531 				    size_t *page_offset)
5532 {
5533 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5534 	size_t byte_offset = BIT_BYTE(nr);
5535 	size_t offset;
5536 
5537 	/*
5538 	 * The byte we want is the offset of the extent buffer + the offset of
5539 	 * the bitmap item in the extent buffer + the offset of the byte in the
5540 	 * bitmap item.
5541 	 */
5542 	offset = start_offset + start + byte_offset;
5543 
5544 	*page_index = offset >> PAGE_SHIFT;
5545 	*page_offset = offset & (PAGE_SIZE - 1);
5546 }
5547 
5548 /**
5549  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5550  * @eb: the extent buffer
5551  * @start: offset of the bitmap item in the extent buffer
5552  * @nr: bit number to test
5553  */
5554 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5555 			   unsigned long nr)
5556 {
5557 	char *kaddr;
5558 	struct page *page;
5559 	unsigned long i;
5560 	size_t offset;
5561 
5562 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5563 	page = eb->pages[i];
5564 	WARN_ON(!PageUptodate(page));
5565 	kaddr = page_address(page);
5566 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5567 }
5568 
5569 /**
5570  * extent_buffer_bitmap_set - set an area of a bitmap
5571  * @eb: the extent buffer
5572  * @start: offset of the bitmap item in the extent buffer
5573  * @pos: bit number of the first bit
5574  * @len: number of bits to set
5575  */
5576 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5577 			      unsigned long pos, unsigned long len)
5578 {
5579 	char *kaddr;
5580 	struct page *page;
5581 	unsigned long i;
5582 	size_t offset;
5583 	const unsigned int size = pos + len;
5584 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5585 	unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5586 
5587 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5588 	page = eb->pages[i];
5589 	WARN_ON(!PageUptodate(page));
5590 	kaddr = page_address(page);
5591 
5592 	while (len >= bits_to_set) {
5593 		kaddr[offset] |= mask_to_set;
5594 		len -= bits_to_set;
5595 		bits_to_set = BITS_PER_BYTE;
5596 		mask_to_set = ~0U;
5597 		if (++offset >= PAGE_SIZE && len > 0) {
5598 			offset = 0;
5599 			page = eb->pages[++i];
5600 			WARN_ON(!PageUptodate(page));
5601 			kaddr = page_address(page);
5602 		}
5603 	}
5604 	if (len) {
5605 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5606 		kaddr[offset] |= mask_to_set;
5607 	}
5608 }
5609 
5610 
5611 /**
5612  * extent_buffer_bitmap_clear - clear an area of a bitmap
5613  * @eb: the extent buffer
5614  * @start: offset of the bitmap item in the extent buffer
5615  * @pos: bit number of the first bit
5616  * @len: number of bits to clear
5617  */
5618 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5619 				unsigned long pos, unsigned long len)
5620 {
5621 	char *kaddr;
5622 	struct page *page;
5623 	unsigned long i;
5624 	size_t offset;
5625 	const unsigned int size = pos + len;
5626 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5627 	unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5628 
5629 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5630 	page = eb->pages[i];
5631 	WARN_ON(!PageUptodate(page));
5632 	kaddr = page_address(page);
5633 
5634 	while (len >= bits_to_clear) {
5635 		kaddr[offset] &= ~mask_to_clear;
5636 		len -= bits_to_clear;
5637 		bits_to_clear = BITS_PER_BYTE;
5638 		mask_to_clear = ~0U;
5639 		if (++offset >= PAGE_SIZE && len > 0) {
5640 			offset = 0;
5641 			page = eb->pages[++i];
5642 			WARN_ON(!PageUptodate(page));
5643 			kaddr = page_address(page);
5644 		}
5645 	}
5646 	if (len) {
5647 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5648 		kaddr[offset] &= ~mask_to_clear;
5649 	}
5650 }
5651 
5652 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5653 {
5654 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5655 	return distance < len;
5656 }
5657 
5658 static void copy_pages(struct page *dst_page, struct page *src_page,
5659 		       unsigned long dst_off, unsigned long src_off,
5660 		       unsigned long len)
5661 {
5662 	char *dst_kaddr = page_address(dst_page);
5663 	char *src_kaddr;
5664 	int must_memmove = 0;
5665 
5666 	if (dst_page != src_page) {
5667 		src_kaddr = page_address(src_page);
5668 	} else {
5669 		src_kaddr = dst_kaddr;
5670 		if (areas_overlap(src_off, dst_off, len))
5671 			must_memmove = 1;
5672 	}
5673 
5674 	if (must_memmove)
5675 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5676 	else
5677 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5678 }
5679 
5680 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5681 			   unsigned long src_offset, unsigned long len)
5682 {
5683 	size_t cur;
5684 	size_t dst_off_in_page;
5685 	size_t src_off_in_page;
5686 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5687 	unsigned long dst_i;
5688 	unsigned long src_i;
5689 
5690 	if (src_offset + len > dst->len) {
5691 		btrfs_err(dst->fs_info,
5692 			"memmove bogus src_offset %lu move "
5693 		       "len %lu dst len %lu", src_offset, len, dst->len);
5694 		BUG_ON(1);
5695 	}
5696 	if (dst_offset + len > dst->len) {
5697 		btrfs_err(dst->fs_info,
5698 			"memmove bogus dst_offset %lu move "
5699 		       "len %lu dst len %lu", dst_offset, len, dst->len);
5700 		BUG_ON(1);
5701 	}
5702 
5703 	while (len > 0) {
5704 		dst_off_in_page = (start_offset + dst_offset) &
5705 			(PAGE_SIZE - 1);
5706 		src_off_in_page = (start_offset + src_offset) &
5707 			(PAGE_SIZE - 1);
5708 
5709 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5710 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5711 
5712 		cur = min(len, (unsigned long)(PAGE_SIZE -
5713 					       src_off_in_page));
5714 		cur = min_t(unsigned long, cur,
5715 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5716 
5717 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5718 			   dst_off_in_page, src_off_in_page, cur);
5719 
5720 		src_offset += cur;
5721 		dst_offset += cur;
5722 		len -= cur;
5723 	}
5724 }
5725 
5726 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5727 			   unsigned long src_offset, unsigned long len)
5728 {
5729 	size_t cur;
5730 	size_t dst_off_in_page;
5731 	size_t src_off_in_page;
5732 	unsigned long dst_end = dst_offset + len - 1;
5733 	unsigned long src_end = src_offset + len - 1;
5734 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5735 	unsigned long dst_i;
5736 	unsigned long src_i;
5737 
5738 	if (src_offset + len > dst->len) {
5739 		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5740 		       "len %lu len %lu", src_offset, len, dst->len);
5741 		BUG_ON(1);
5742 	}
5743 	if (dst_offset + len > dst->len) {
5744 		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5745 		       "len %lu len %lu", dst_offset, len, dst->len);
5746 		BUG_ON(1);
5747 	}
5748 	if (dst_offset < src_offset) {
5749 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5750 		return;
5751 	}
5752 	while (len > 0) {
5753 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5754 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5755 
5756 		dst_off_in_page = (start_offset + dst_end) &
5757 			(PAGE_SIZE - 1);
5758 		src_off_in_page = (start_offset + src_end) &
5759 			(PAGE_SIZE - 1);
5760 
5761 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5762 		cur = min(cur, dst_off_in_page + 1);
5763 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5764 			   dst_off_in_page - cur + 1,
5765 			   src_off_in_page - cur + 1, cur);
5766 
5767 		dst_end -= cur;
5768 		src_end -= cur;
5769 		len -= cur;
5770 	}
5771 }
5772 
5773 int try_release_extent_buffer(struct page *page)
5774 {
5775 	struct extent_buffer *eb;
5776 
5777 	/*
5778 	 * We need to make sure nobody is attaching this page to an eb right
5779 	 * now.
5780 	 */
5781 	spin_lock(&page->mapping->private_lock);
5782 	if (!PagePrivate(page)) {
5783 		spin_unlock(&page->mapping->private_lock);
5784 		return 1;
5785 	}
5786 
5787 	eb = (struct extent_buffer *)page->private;
5788 	BUG_ON(!eb);
5789 
5790 	/*
5791 	 * This is a little awful but should be ok, we need to make sure that
5792 	 * the eb doesn't disappear out from under us while we're looking at
5793 	 * this page.
5794 	 */
5795 	spin_lock(&eb->refs_lock);
5796 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5797 		spin_unlock(&eb->refs_lock);
5798 		spin_unlock(&page->mapping->private_lock);
5799 		return 0;
5800 	}
5801 	spin_unlock(&page->mapping->private_lock);
5802 
5803 	/*
5804 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5805 	 * so just return, this page will likely be freed soon anyway.
5806 	 */
5807 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5808 		spin_unlock(&eb->refs_lock);
5809 		return 0;
5810 	}
5811 
5812 	return release_extent_buffer(eb);
5813 }
5814