1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 btrfs_err(fs_info, 79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu", 80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 107 /* 108 * The sectors of the page which are going to be submitted by 109 * extent_writepage_io(). 110 * This is to avoid touching ranges covered by compression/inline. 111 */ 112 unsigned long submit_bitmap; 113 struct readahead_control *ractl; 114 }; 115 116 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 117 { 118 struct btrfs_bio *bbio = bio_ctrl->bbio; 119 120 if (!bbio) 121 return; 122 123 /* Caller should ensure the bio has at least some range added */ 124 ASSERT(bbio->bio.bi_iter.bi_size); 125 126 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 127 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 128 btrfs_submit_compressed_read(bbio); 129 else 130 btrfs_submit_bbio(bbio, 0); 131 132 /* The bbio is owned by the end_io handler now */ 133 bio_ctrl->bbio = NULL; 134 } 135 136 /* 137 * Submit or fail the current bio in the bio_ctrl structure. 138 */ 139 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 140 { 141 struct btrfs_bio *bbio = bio_ctrl->bbio; 142 143 if (!bbio) 144 return; 145 146 if (ret) { 147 ASSERT(ret < 0); 148 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 149 /* The bio is owned by the end_io handler now */ 150 bio_ctrl->bbio = NULL; 151 } else { 152 submit_one_bio(bio_ctrl); 153 } 154 } 155 156 int __init extent_buffer_init_cachep(void) 157 { 158 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 159 sizeof(struct extent_buffer), 0, 0, 160 NULL); 161 if (!extent_buffer_cache) 162 return -ENOMEM; 163 164 return 0; 165 } 166 167 void __cold extent_buffer_free_cachep(void) 168 { 169 /* 170 * Make sure all delayed rcu free are flushed before we 171 * destroy caches. 172 */ 173 rcu_barrier(); 174 kmem_cache_destroy(extent_buffer_cache); 175 } 176 177 static void process_one_folio(struct btrfs_fs_info *fs_info, 178 struct folio *folio, const struct folio *locked_folio, 179 unsigned long page_ops, u64 start, u64 end) 180 { 181 u32 len; 182 183 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 184 len = end + 1 - start; 185 186 if (page_ops & PAGE_SET_ORDERED) 187 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 188 if (page_ops & PAGE_START_WRITEBACK) { 189 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 190 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 191 } 192 if (page_ops & PAGE_END_WRITEBACK) 193 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 194 195 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 196 btrfs_folio_end_lock(fs_info, folio, start, len); 197 } 198 199 static void __process_folios_contig(struct address_space *mapping, 200 const struct folio *locked_folio, u64 start, 201 u64 end, unsigned long page_ops) 202 { 203 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 204 pgoff_t index = start >> PAGE_SHIFT; 205 pgoff_t end_index = end >> PAGE_SHIFT; 206 struct folio_batch fbatch; 207 int i; 208 209 folio_batch_init(&fbatch); 210 while (index <= end_index) { 211 int found_folios; 212 213 found_folios = filemap_get_folios_contig(mapping, &index, 214 end_index, &fbatch); 215 for (i = 0; i < found_folios; i++) { 216 struct folio *folio = fbatch.folios[i]; 217 218 process_one_folio(fs_info, folio, locked_folio, 219 page_ops, start, end); 220 } 221 folio_batch_release(&fbatch); 222 cond_resched(); 223 } 224 } 225 226 static noinline void unlock_delalloc_folio(const struct inode *inode, 227 struct folio *locked_folio, 228 u64 start, u64 end) 229 { 230 ASSERT(locked_folio); 231 232 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 233 PAGE_UNLOCK); 234 } 235 236 static noinline int lock_delalloc_folios(struct inode *inode, 237 struct folio *locked_folio, 238 u64 start, u64 end) 239 { 240 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 241 struct address_space *mapping = inode->i_mapping; 242 pgoff_t index = start >> PAGE_SHIFT; 243 pgoff_t end_index = end >> PAGE_SHIFT; 244 u64 processed_end = start; 245 struct folio_batch fbatch; 246 247 folio_batch_init(&fbatch); 248 while (index <= end_index) { 249 unsigned int found_folios, i; 250 251 found_folios = filemap_get_folios_contig(mapping, &index, 252 end_index, &fbatch); 253 if (found_folios == 0) 254 goto out; 255 256 for (i = 0; i < found_folios; i++) { 257 struct folio *folio = fbatch.folios[i]; 258 u64 range_start; 259 u32 range_len; 260 261 if (folio == locked_folio) 262 continue; 263 264 folio_lock(folio); 265 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 266 folio_unlock(folio); 267 goto out; 268 } 269 range_start = max_t(u64, folio_pos(folio), start); 270 range_len = min_t(u64, folio_end(folio), end + 1) - range_start; 271 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 272 273 processed_end = range_start + range_len - 1; 274 } 275 folio_batch_release(&fbatch); 276 cond_resched(); 277 } 278 279 return 0; 280 out: 281 folio_batch_release(&fbatch); 282 if (processed_end > start) 283 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 284 return -EAGAIN; 285 } 286 287 /* 288 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 289 * more than @max_bytes. 290 * 291 * @start: The original start bytenr to search. 292 * Will store the extent range start bytenr. 293 * @end: The original end bytenr of the search range 294 * Will store the extent range end bytenr. 295 * 296 * Return true if we find a delalloc range which starts inside the original 297 * range, and @start/@end will store the delalloc range start/end. 298 * 299 * Return false if we can't find any delalloc range which starts inside the 300 * original range, and @start/@end will be the non-delalloc range start/end. 301 */ 302 EXPORT_FOR_TESTS 303 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 304 struct folio *locked_folio, 305 u64 *start, u64 *end) 306 { 307 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 308 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 309 const u64 orig_start = *start; 310 const u64 orig_end = *end; 311 /* The sanity tests may not set a valid fs_info. */ 312 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 313 u64 delalloc_start; 314 u64 delalloc_end; 315 bool found; 316 struct extent_state *cached_state = NULL; 317 int ret; 318 int loops = 0; 319 320 /* Caller should pass a valid @end to indicate the search range end */ 321 ASSERT(orig_end > orig_start); 322 323 /* The range should at least cover part of the folio */ 324 ASSERT(!(orig_start >= folio_end(locked_folio) || 325 orig_end <= folio_pos(locked_folio))); 326 again: 327 /* step one, find a bunch of delalloc bytes starting at start */ 328 delalloc_start = *start; 329 delalloc_end = 0; 330 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 331 max_bytes, &cached_state); 332 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 333 *start = delalloc_start; 334 335 /* @delalloc_end can be -1, never go beyond @orig_end */ 336 *end = min(delalloc_end, orig_end); 337 btrfs_free_extent_state(cached_state); 338 return false; 339 } 340 341 /* 342 * start comes from the offset of locked_folio. We have to lock 343 * folios in order, so we can't process delalloc bytes before 344 * locked_folio 345 */ 346 if (delalloc_start < *start) 347 delalloc_start = *start; 348 349 /* 350 * make sure to limit the number of folios we try to lock down 351 */ 352 if (delalloc_end + 1 - delalloc_start > max_bytes) 353 delalloc_end = delalloc_start + max_bytes - 1; 354 355 /* step two, lock all the folioss after the folios that has start */ 356 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 357 delalloc_end); 358 ASSERT(!ret || ret == -EAGAIN); 359 if (ret == -EAGAIN) { 360 /* some of the folios are gone, lets avoid looping by 361 * shortening the size of the delalloc range we're searching 362 */ 363 btrfs_free_extent_state(cached_state); 364 cached_state = NULL; 365 if (!loops) { 366 max_bytes = PAGE_SIZE; 367 loops = 1; 368 goto again; 369 } else { 370 found = false; 371 goto out_failed; 372 } 373 } 374 375 /* step three, lock the state bits for the whole range */ 376 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 377 378 /* then test to make sure it is all still delalloc */ 379 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 380 EXTENT_DELALLOC, cached_state); 381 382 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 383 if (!ret) { 384 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 385 delalloc_end); 386 cond_resched(); 387 goto again; 388 } 389 *start = delalloc_start; 390 *end = delalloc_end; 391 out_failed: 392 return found; 393 } 394 395 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 396 const struct folio *locked_folio, 397 struct extent_state **cached, 398 u32 clear_bits, unsigned long page_ops) 399 { 400 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 401 402 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 403 end, page_ops); 404 } 405 406 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 407 { 408 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 409 410 if (!fsverity_active(folio->mapping->host) || 411 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 412 start >= i_size_read(folio->mapping->host)) 413 return true; 414 return fsverity_verify_folio(folio); 415 } 416 417 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 418 { 419 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 420 421 ASSERT(folio_pos(folio) <= start && 422 start + len <= folio_end(folio)); 423 424 if (uptodate && btrfs_verify_folio(folio, start, len)) 425 btrfs_folio_set_uptodate(fs_info, folio, start, len); 426 else 427 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 428 429 if (!btrfs_is_subpage(fs_info, folio)) 430 folio_unlock(folio); 431 else 432 btrfs_folio_end_lock(fs_info, folio, start, len); 433 } 434 435 /* 436 * After a write IO is done, we need to: 437 * 438 * - clear the uptodate bits on error 439 * - clear the writeback bits in the extent tree for the range 440 * - filio_end_writeback() if there is no more pending io for the folio 441 * 442 * Scheduling is not allowed, so the extent state tree is expected 443 * to have one and only one object corresponding to this IO. 444 */ 445 static void end_bbio_data_write(struct btrfs_bio *bbio) 446 { 447 struct btrfs_fs_info *fs_info = bbio->fs_info; 448 struct bio *bio = &bbio->bio; 449 int error = blk_status_to_errno(bio->bi_status); 450 struct folio_iter fi; 451 const u32 sectorsize = fs_info->sectorsize; 452 453 ASSERT(!bio_flagged(bio, BIO_CLONED)); 454 bio_for_each_folio_all(fi, bio) { 455 struct folio *folio = fi.folio; 456 u64 start = folio_pos(folio) + fi.offset; 457 u32 len = fi.length; 458 459 /* Our read/write should always be sector aligned. */ 460 if (!IS_ALIGNED(fi.offset, sectorsize)) 461 btrfs_err(fs_info, 462 "partial page write in btrfs with offset %zu and length %zu", 463 fi.offset, fi.length); 464 else if (!IS_ALIGNED(fi.length, sectorsize)) 465 btrfs_info(fs_info, 466 "incomplete page write with offset %zu and length %zu", 467 fi.offset, fi.length); 468 469 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 470 !error); 471 if (error) 472 mapping_set_error(folio->mapping, error); 473 btrfs_folio_clear_writeback(fs_info, folio, start, len); 474 } 475 476 bio_put(bio); 477 } 478 479 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 480 { 481 ASSERT(folio_test_locked(folio)); 482 if (!btrfs_is_subpage(fs_info, folio)) 483 return; 484 485 ASSERT(folio_test_private(folio)); 486 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 487 } 488 489 /* 490 * After a data read IO is done, we need to: 491 * 492 * - clear the uptodate bits on error 493 * - set the uptodate bits if things worked 494 * - set the folio up to date if all extents in the tree are uptodate 495 * - clear the lock bit in the extent tree 496 * - unlock the folio if there are no other extents locked for it 497 * 498 * Scheduling is not allowed, so the extent state tree is expected 499 * to have one and only one object corresponding to this IO. 500 */ 501 static void end_bbio_data_read(struct btrfs_bio *bbio) 502 { 503 struct btrfs_fs_info *fs_info = bbio->fs_info; 504 struct bio *bio = &bbio->bio; 505 struct folio_iter fi; 506 507 ASSERT(!bio_flagged(bio, BIO_CLONED)); 508 bio_for_each_folio_all(fi, &bbio->bio) { 509 bool uptodate = !bio->bi_status; 510 struct folio *folio = fi.folio; 511 struct inode *inode = folio->mapping->host; 512 u64 start = folio_pos(folio) + fi.offset; 513 514 btrfs_debug(fs_info, 515 "%s: bi_sector=%llu, err=%d, mirror=%u", 516 __func__, bio->bi_iter.bi_sector, bio->bi_status, 517 bbio->mirror_num); 518 519 520 if (likely(uptodate)) { 521 u64 end = start + fi.length - 1; 522 loff_t i_size = i_size_read(inode); 523 524 /* 525 * Zero out the remaining part if this range straddles 526 * i_size. 527 * 528 * Here we should only zero the range inside the folio, 529 * not touch anything else. 530 * 531 * NOTE: i_size is exclusive while end is inclusive and 532 * folio_contains() takes PAGE_SIZE units. 533 */ 534 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 535 i_size <= end) { 536 u32 zero_start = max(offset_in_folio(folio, i_size), 537 offset_in_folio(folio, start)); 538 u32 zero_len = offset_in_folio(folio, end) + 1 - 539 zero_start; 540 541 folio_zero_range(folio, zero_start, zero_len); 542 } 543 } 544 545 /* Update page status and unlock. */ 546 end_folio_read(folio, uptodate, start, fi.length); 547 } 548 bio_put(bio); 549 } 550 551 /* 552 * Populate every free slot in a provided array with folios using GFP_NOFS. 553 * 554 * @nr_folios: number of folios to allocate 555 * @folio_array: the array to fill with folios; any existing non-NULL entries in 556 * the array will be skipped 557 * 558 * Return: 0 if all folios were able to be allocated; 559 * -ENOMEM otherwise, the partially allocated folios would be freed and 560 * the array slots zeroed 561 */ 562 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 563 { 564 for (int i = 0; i < nr_folios; i++) { 565 if (folio_array[i]) 566 continue; 567 folio_array[i] = folio_alloc(GFP_NOFS, 0); 568 if (!folio_array[i]) 569 goto error; 570 } 571 return 0; 572 error: 573 for (int i = 0; i < nr_folios; i++) { 574 if (folio_array[i]) 575 folio_put(folio_array[i]); 576 } 577 return -ENOMEM; 578 } 579 580 /* 581 * Populate every free slot in a provided array with pages, using GFP_NOFS. 582 * 583 * @nr_pages: number of pages to allocate 584 * @page_array: the array to fill with pages; any existing non-null entries in 585 * the array will be skipped 586 * @nofail: whether using __GFP_NOFAIL flag 587 * 588 * Return: 0 if all pages were able to be allocated; 589 * -ENOMEM otherwise, the partially allocated pages would be freed and 590 * the array slots zeroed 591 */ 592 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 593 bool nofail) 594 { 595 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 596 unsigned int allocated; 597 598 for (allocated = 0; allocated < nr_pages;) { 599 unsigned int last = allocated; 600 601 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 602 if (unlikely(allocated == last)) { 603 /* No progress, fail and do cleanup. */ 604 for (int i = 0; i < allocated; i++) { 605 __free_page(page_array[i]); 606 page_array[i] = NULL; 607 } 608 return -ENOMEM; 609 } 610 } 611 return 0; 612 } 613 614 /* 615 * Populate needed folios for the extent buffer. 616 * 617 * For now, the folios populated are always in order 0 (aka, single page). 618 */ 619 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 620 { 621 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 622 int num_pages = num_extent_pages(eb); 623 int ret; 624 625 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 626 if (ret < 0) 627 return ret; 628 629 for (int i = 0; i < num_pages; i++) 630 eb->folios[i] = page_folio(page_array[i]); 631 eb->folio_size = PAGE_SIZE; 632 eb->folio_shift = PAGE_SHIFT; 633 return 0; 634 } 635 636 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 637 u64 disk_bytenr, loff_t file_offset) 638 { 639 struct bio *bio = &bio_ctrl->bbio->bio; 640 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 641 642 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 643 /* 644 * For compression, all IO should have its logical bytenr set 645 * to the starting bytenr of the compressed extent. 646 */ 647 return bio->bi_iter.bi_sector == sector; 648 } 649 650 /* 651 * To merge into a bio both the disk sector and the logical offset in 652 * the file need to be contiguous. 653 */ 654 return bio_ctrl->next_file_offset == file_offset && 655 bio_end_sector(bio) == sector; 656 } 657 658 static void alloc_new_bio(struct btrfs_inode *inode, 659 struct btrfs_bio_ctrl *bio_ctrl, 660 u64 disk_bytenr, u64 file_offset) 661 { 662 struct btrfs_fs_info *fs_info = inode->root->fs_info; 663 struct btrfs_bio *bbio; 664 665 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 666 bio_ctrl->end_io_func, NULL); 667 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 668 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 669 bbio->inode = inode; 670 bbio->file_offset = file_offset; 671 bio_ctrl->bbio = bbio; 672 bio_ctrl->len_to_oe_boundary = U32_MAX; 673 bio_ctrl->next_file_offset = file_offset; 674 675 /* Limit data write bios to the ordered boundary. */ 676 if (bio_ctrl->wbc) { 677 struct btrfs_ordered_extent *ordered; 678 679 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 680 if (ordered) { 681 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 682 ordered->file_offset + 683 ordered->disk_num_bytes - file_offset); 684 bbio->ordered = ordered; 685 } 686 687 /* 688 * Pick the last added device to support cgroup writeback. For 689 * multi-device file systems this means blk-cgroup policies have 690 * to always be set on the last added/replaced device. 691 * This is a bit odd but has been like that for a long time. 692 */ 693 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 694 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 695 } 696 } 697 698 /* 699 * @disk_bytenr: logical bytenr where the write will be 700 * @page: page to add to the bio 701 * @size: portion of page that we want to write to 702 * @pg_offset: offset of the new bio or to check whether we are adding 703 * a contiguous page to the previous one 704 * 705 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 706 * new one in @bio_ctrl->bbio. 707 * The mirror number for this IO should already be initizlied in 708 * @bio_ctrl->mirror_num. 709 */ 710 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 711 u64 disk_bytenr, struct folio *folio, 712 size_t size, unsigned long pg_offset) 713 { 714 struct btrfs_inode *inode = folio_to_inode(folio); 715 loff_t file_offset = folio_pos(folio) + pg_offset; 716 717 ASSERT(pg_offset + size <= folio_size(folio)); 718 ASSERT(bio_ctrl->end_io_func); 719 720 if (bio_ctrl->bbio && 721 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 722 submit_one_bio(bio_ctrl); 723 724 do { 725 u32 len = size; 726 727 /* Allocate new bio if needed */ 728 if (!bio_ctrl->bbio) 729 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 730 731 /* Cap to the current ordered extent boundary if there is one. */ 732 if (len > bio_ctrl->len_to_oe_boundary) { 733 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 734 ASSERT(is_data_inode(inode)); 735 len = bio_ctrl->len_to_oe_boundary; 736 } 737 738 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 739 /* bio full: move on to a new one */ 740 submit_one_bio(bio_ctrl); 741 continue; 742 } 743 bio_ctrl->next_file_offset += len; 744 745 if (bio_ctrl->wbc) 746 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 747 748 size -= len; 749 pg_offset += len; 750 disk_bytenr += len; 751 file_offset += len; 752 753 /* 754 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 755 * sector aligned. alloc_new_bio() then sets it to the end of 756 * our ordered extent for writes into zoned devices. 757 * 758 * When len_to_oe_boundary is tracking an ordered extent, we 759 * trust the ordered extent code to align things properly, and 760 * the check above to cap our write to the ordered extent 761 * boundary is correct. 762 * 763 * When len_to_oe_boundary is U32_MAX, the cap above would 764 * result in a 4095 byte IO for the last folio right before 765 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 766 * the checks required to make sure we don't overflow the bio, 767 * and we should just ignore len_to_oe_boundary completely 768 * unless we're using it to track an ordered extent. 769 * 770 * It's pretty hard to make a bio sized U32_MAX, but it can 771 * happen when the page cache is able to feed us contiguous 772 * folios for large extents. 773 */ 774 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 775 bio_ctrl->len_to_oe_boundary -= len; 776 777 /* Ordered extent boundary: move on to a new bio. */ 778 if (bio_ctrl->len_to_oe_boundary == 0) 779 submit_one_bio(bio_ctrl); 780 } while (size); 781 } 782 783 static int attach_extent_buffer_folio(struct extent_buffer *eb, 784 struct folio *folio, 785 struct btrfs_folio_state *prealloc) 786 { 787 struct btrfs_fs_info *fs_info = eb->fs_info; 788 int ret = 0; 789 790 /* 791 * If the page is mapped to btree inode, we should hold the private 792 * lock to prevent race. 793 * For cloned or dummy extent buffers, their pages are not mapped and 794 * will not race with any other ebs. 795 */ 796 if (folio->mapping) 797 lockdep_assert_held(&folio->mapping->i_private_lock); 798 799 if (!btrfs_meta_is_subpage(fs_info)) { 800 if (!folio_test_private(folio)) 801 folio_attach_private(folio, eb); 802 else 803 WARN_ON(folio_get_private(folio) != eb); 804 return 0; 805 } 806 807 /* Already mapped, just free prealloc */ 808 if (folio_test_private(folio)) { 809 btrfs_free_folio_state(prealloc); 810 return 0; 811 } 812 813 if (prealloc) 814 /* Has preallocated memory for subpage */ 815 folio_attach_private(folio, prealloc); 816 else 817 /* Do new allocation to attach subpage */ 818 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 819 return ret; 820 } 821 822 int set_folio_extent_mapped(struct folio *folio) 823 { 824 struct btrfs_fs_info *fs_info; 825 826 ASSERT(folio->mapping); 827 828 if (folio_test_private(folio)) 829 return 0; 830 831 fs_info = folio_to_fs_info(folio); 832 833 if (btrfs_is_subpage(fs_info, folio)) 834 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 835 836 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 837 return 0; 838 } 839 840 void clear_folio_extent_mapped(struct folio *folio) 841 { 842 struct btrfs_fs_info *fs_info; 843 844 ASSERT(folio->mapping); 845 846 if (!folio_test_private(folio)) 847 return; 848 849 fs_info = folio_to_fs_info(folio); 850 if (btrfs_is_subpage(fs_info, folio)) 851 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); 852 853 folio_detach_private(folio); 854 } 855 856 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 857 struct folio *folio, u64 start, 858 u64 len, struct extent_map **em_cached) 859 { 860 struct extent_map *em; 861 862 ASSERT(em_cached); 863 864 if (*em_cached) { 865 em = *em_cached; 866 if (btrfs_extent_map_in_tree(em) && start >= em->start && 867 start < btrfs_extent_map_end(em)) { 868 refcount_inc(&em->refs); 869 return em; 870 } 871 872 btrfs_free_extent_map(em); 873 *em_cached = NULL; 874 } 875 876 em = btrfs_get_extent(inode, folio, start, len); 877 if (!IS_ERR(em)) { 878 BUG_ON(*em_cached); 879 refcount_inc(&em->refs); 880 *em_cached = em; 881 } 882 883 return em; 884 } 885 886 static void btrfs_readahead_expand(struct readahead_control *ractl, 887 const struct extent_map *em) 888 { 889 const u64 ra_pos = readahead_pos(ractl); 890 const u64 ra_end = ra_pos + readahead_length(ractl); 891 const u64 em_end = em->start + em->ram_bytes; 892 893 /* No expansion for holes and inline extents. */ 894 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) 895 return; 896 897 ASSERT(em_end >= ra_pos, 898 "extent_map %llu %llu ends before current readahead position %llu", 899 em->start, em->len, ra_pos); 900 if (em_end > ra_end) 901 readahead_expand(ractl, ra_pos, em_end - ra_pos); 902 } 903 904 /* 905 * basic readpage implementation. Locked extent state structs are inserted 906 * into the tree that are removed when the IO is done (by the end_io 907 * handlers) 908 * XXX JDM: This needs looking at to ensure proper page locking 909 * return 0 on success, otherwise return error 910 */ 911 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 912 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 913 { 914 struct inode *inode = folio->mapping->host; 915 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 916 u64 start = folio_pos(folio); 917 const u64 end = start + folio_size(folio) - 1; 918 u64 extent_offset; 919 u64 last_byte = i_size_read(inode); 920 struct extent_map *em; 921 int ret = 0; 922 const size_t blocksize = fs_info->sectorsize; 923 924 ret = set_folio_extent_mapped(folio); 925 if (ret < 0) { 926 folio_unlock(folio); 927 return ret; 928 } 929 930 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 931 size_t zero_offset = offset_in_folio(folio, last_byte); 932 933 if (zero_offset) 934 folio_zero_range(folio, zero_offset, 935 folio_size(folio) - zero_offset); 936 } 937 bio_ctrl->end_io_func = end_bbio_data_read; 938 begin_folio_read(fs_info, folio); 939 for (u64 cur = start; cur <= end; cur += blocksize) { 940 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 941 unsigned long pg_offset = offset_in_folio(folio, cur); 942 bool force_bio_submit = false; 943 u64 disk_bytenr; 944 u64 block_start; 945 946 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 947 if (cur >= last_byte) { 948 folio_zero_range(folio, pg_offset, end - cur + 1); 949 end_folio_read(folio, true, cur, end - cur + 1); 950 break; 951 } 952 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 953 end_folio_read(folio, true, cur, blocksize); 954 continue; 955 } 956 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 957 if (IS_ERR(em)) { 958 end_folio_read(folio, false, cur, end + 1 - cur); 959 return PTR_ERR(em); 960 } 961 extent_offset = cur - em->start; 962 BUG_ON(btrfs_extent_map_end(em) <= cur); 963 BUG_ON(end < cur); 964 965 compress_type = btrfs_extent_map_compression(em); 966 967 /* 968 * Only expand readahead for extents which are already creating 969 * the pages anyway in add_ra_bio_pages, which is compressed 970 * extents in the non subpage case. 971 */ 972 if (bio_ctrl->ractl && 973 !btrfs_is_subpage(fs_info, folio) && 974 compress_type != BTRFS_COMPRESS_NONE) 975 btrfs_readahead_expand(bio_ctrl->ractl, em); 976 977 if (compress_type != BTRFS_COMPRESS_NONE) 978 disk_bytenr = em->disk_bytenr; 979 else 980 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 981 982 if (em->flags & EXTENT_FLAG_PREALLOC) 983 block_start = EXTENT_MAP_HOLE; 984 else 985 block_start = btrfs_extent_map_block_start(em); 986 987 /* 988 * If we have a file range that points to a compressed extent 989 * and it's followed by a consecutive file range that points 990 * to the same compressed extent (possibly with a different 991 * offset and/or length, so it either points to the whole extent 992 * or only part of it), we must make sure we do not submit a 993 * single bio to populate the folios for the 2 ranges because 994 * this makes the compressed extent read zero out the folios 995 * belonging to the 2nd range. Imagine the following scenario: 996 * 997 * File layout 998 * [0 - 8K] [8K - 24K] 999 * | | 1000 * | | 1001 * points to extent X, points to extent X, 1002 * offset 4K, length of 8K offset 0, length 16K 1003 * 1004 * [extent X, compressed length = 4K uncompressed length = 16K] 1005 * 1006 * If the bio to read the compressed extent covers both ranges, 1007 * it will decompress extent X into the folios belonging to the 1008 * first range and then it will stop, zeroing out the remaining 1009 * folios that belong to the other range that points to extent X. 1010 * So here we make sure we submit 2 bios, one for the first 1011 * range and another one for the third range. Both will target 1012 * the same physical extent from disk, but we can't currently 1013 * make the compressed bio endio callback populate the folios 1014 * for both ranges because each compressed bio is tightly 1015 * coupled with a single extent map, and each range can have 1016 * an extent map with a different offset value relative to the 1017 * uncompressed data of our extent and different lengths. This 1018 * is a corner case so we prioritize correctness over 1019 * non-optimal behavior (submitting 2 bios for the same extent). 1020 */ 1021 if (compress_type != BTRFS_COMPRESS_NONE && 1022 prev_em_start && *prev_em_start != (u64)-1 && 1023 *prev_em_start != em->start) 1024 force_bio_submit = true; 1025 1026 if (prev_em_start) 1027 *prev_em_start = em->start; 1028 1029 btrfs_free_extent_map(em); 1030 em = NULL; 1031 1032 /* we've found a hole, just zero and go on */ 1033 if (block_start == EXTENT_MAP_HOLE) { 1034 folio_zero_range(folio, pg_offset, blocksize); 1035 end_folio_read(folio, true, cur, blocksize); 1036 continue; 1037 } 1038 /* the get_extent function already copied into the folio */ 1039 if (block_start == EXTENT_MAP_INLINE) { 1040 end_folio_read(folio, true, cur, blocksize); 1041 continue; 1042 } 1043 1044 if (bio_ctrl->compress_type != compress_type) { 1045 submit_one_bio(bio_ctrl); 1046 bio_ctrl->compress_type = compress_type; 1047 } 1048 1049 if (force_bio_submit) 1050 submit_one_bio(bio_ctrl); 1051 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1052 pg_offset); 1053 } 1054 return 0; 1055 } 1056 1057 /* 1058 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1059 * 1060 * @fileoff: Both input and output. 1061 * Input as the file offset where the check should start at. 1062 * Output as where the next check should start at, 1063 * if the function returns true. 1064 * 1065 * Return true if we can skip to @fileoff. The caller needs to check the new 1066 * @fileoff value to make sure it covers the full range, before skipping the 1067 * full OE. 1068 * 1069 * Return false if we must wait for the ordered extent. 1070 */ 1071 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1072 struct btrfs_ordered_extent *ordered, 1073 u64 *fileoff) 1074 { 1075 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1076 struct folio *folio; 1077 const u32 blocksize = fs_info->sectorsize; 1078 u64 cur = *fileoff; 1079 bool ret; 1080 1081 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1082 1083 /* 1084 * We should have locked the folio(s) for range [start, end], thus 1085 * there must be a folio and it must be locked. 1086 */ 1087 ASSERT(!IS_ERR(folio)); 1088 ASSERT(folio_test_locked(folio)); 1089 1090 /* 1091 * There are several cases for the folio and OE combination: 1092 * 1093 * 1) Folio has no private flag 1094 * The OE has all its IO done but not yet finished, and folio got 1095 * invalidated. 1096 * 1097 * Have we have to wait for the OE to finish, as it may contain the 1098 * to-be-inserted data checksum. 1099 * Without the data checksum inserted into the csum tree, read will 1100 * just fail with missing csum. 1101 */ 1102 if (!folio_test_private(folio)) { 1103 ret = false; 1104 goto out; 1105 } 1106 1107 /* 1108 * 2) The first block is DIRTY. 1109 * 1110 * This means the OE is created by some other folios whose file pos is 1111 * before this one. And since we are holding the folio lock, the writeback 1112 * of this folio cannot start. 1113 * 1114 * We must skip the whole OE, because it will never start until we 1115 * finished our folio read and unlocked the folio. 1116 */ 1117 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1118 u64 range_len = min(folio_end(folio), 1119 ordered->file_offset + ordered->num_bytes) - cur; 1120 1121 ret = true; 1122 /* 1123 * At least inside the folio, all the remaining blocks should 1124 * also be dirty. 1125 */ 1126 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1127 *fileoff = ordered->file_offset + ordered->num_bytes; 1128 goto out; 1129 } 1130 1131 /* 1132 * 3) The first block is uptodate. 1133 * 1134 * At least the first block can be skipped, but we are still not fully 1135 * sure. E.g. if the OE has some other folios in the range that cannot 1136 * be skipped. 1137 * So we return true and update @next_ret to the OE/folio boundary. 1138 */ 1139 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1140 u64 range_len = min(folio_end(folio), 1141 ordered->file_offset + ordered->num_bytes) - cur; 1142 1143 /* 1144 * The whole range to the OE end or folio boundary should also 1145 * be uptodate. 1146 */ 1147 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1148 ret = true; 1149 *fileoff = cur + range_len; 1150 goto out; 1151 } 1152 1153 /* 1154 * 4) The first block is not uptodate. 1155 * 1156 * This means the folio is invalidated after the writeback was finished, 1157 * but by some other operations (e.g. block aligned buffered write) the 1158 * folio is inserted into filemap. 1159 * Very much the same as case 1). 1160 */ 1161 ret = false; 1162 out: 1163 folio_put(folio); 1164 return ret; 1165 } 1166 1167 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1168 struct btrfs_ordered_extent *ordered, 1169 u64 start, u64 end) 1170 { 1171 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1172 u64 cur = max(start, ordered->file_offset); 1173 1174 while (cur < range_end) { 1175 bool can_skip; 1176 1177 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1178 if (!can_skip) 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 /* 1185 * Locking helper to make sure we get a stable view of extent maps for the 1186 * involved range. 1187 * 1188 * This is for folio read paths (read and readahead), thus the involved range 1189 * should have all the folios locked. 1190 */ 1191 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1192 struct extent_state **cached_state) 1193 { 1194 u64 cur_pos; 1195 1196 /* Caller must provide a valid @cached_state. */ 1197 ASSERT(cached_state); 1198 1199 /* The range must at least be page aligned, as all read paths are folio based. */ 1200 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1201 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1202 1203 again: 1204 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1205 cur_pos = start; 1206 while (cur_pos < end) { 1207 struct btrfs_ordered_extent *ordered; 1208 1209 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1210 end - cur_pos + 1); 1211 /* 1212 * No ordered extents in the range, and we hold the extent lock, 1213 * no one can modify the extent maps in the range, we're safe to return. 1214 */ 1215 if (!ordered) 1216 break; 1217 1218 /* Check if we can skip waiting for the whole OE. */ 1219 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1220 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1221 end + 1); 1222 btrfs_put_ordered_extent(ordered); 1223 continue; 1224 } 1225 1226 /* Now wait for the OE to finish. */ 1227 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1228 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1229 btrfs_put_ordered_extent(ordered); 1230 /* We have unlocked the whole range, restart from the beginning. */ 1231 goto again; 1232 } 1233 } 1234 1235 int btrfs_read_folio(struct file *file, struct folio *folio) 1236 { 1237 struct btrfs_inode *inode = folio_to_inode(folio); 1238 const u64 start = folio_pos(folio); 1239 const u64 end = start + folio_size(folio) - 1; 1240 struct extent_state *cached_state = NULL; 1241 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1242 struct extent_map *em_cached = NULL; 1243 int ret; 1244 1245 lock_extents_for_read(inode, start, end, &cached_state); 1246 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1247 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1248 1249 btrfs_free_extent_map(em_cached); 1250 1251 /* 1252 * If btrfs_do_readpage() failed we will want to submit the assembled 1253 * bio to do the cleanup. 1254 */ 1255 submit_one_bio(&bio_ctrl); 1256 return ret; 1257 } 1258 1259 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1260 u64 start, u32 len) 1261 { 1262 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1263 const u64 folio_start = folio_pos(folio); 1264 unsigned int start_bit; 1265 unsigned int nbits; 1266 1267 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1268 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1269 nbits = len >> fs_info->sectorsize_bits; 1270 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1271 bitmap_set(delalloc_bitmap, start_bit, nbits); 1272 } 1273 1274 static bool find_next_delalloc_bitmap(struct folio *folio, 1275 unsigned long *delalloc_bitmap, u64 start, 1276 u64 *found_start, u32 *found_len) 1277 { 1278 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1279 const u64 folio_start = folio_pos(folio); 1280 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1281 unsigned int start_bit; 1282 unsigned int first_zero; 1283 unsigned int first_set; 1284 1285 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1286 1287 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1288 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1289 if (first_set >= bitmap_size) 1290 return false; 1291 1292 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1293 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1294 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1295 return true; 1296 } 1297 1298 /* 1299 * Do all of the delayed allocation setup. 1300 * 1301 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1302 * The @folio should no longer be touched (treat it as already unlocked). 1303 * 1304 * Return 0 if there is still dirty block that needs to be submitted through 1305 * extent_writepage_io(). 1306 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1307 * submitted, and @folio is still kept locked. 1308 * 1309 * Return <0 if there is any error hit. 1310 * Any allocated ordered extent range covering this folio will be marked 1311 * finished (IOERR), and @folio is still kept locked. 1312 */ 1313 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1314 struct folio *folio, 1315 struct btrfs_bio_ctrl *bio_ctrl) 1316 { 1317 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1318 struct writeback_control *wbc = bio_ctrl->wbc; 1319 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1320 const u64 page_start = folio_pos(folio); 1321 const u64 page_end = page_start + folio_size(folio) - 1; 1322 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1323 unsigned long delalloc_bitmap = 0; 1324 /* 1325 * Save the last found delalloc end. As the delalloc end can go beyond 1326 * page boundary, thus we cannot rely on subpage bitmap to locate the 1327 * last delalloc end. 1328 */ 1329 u64 last_delalloc_end = 0; 1330 /* 1331 * The range end (exclusive) of the last successfully finished delalloc 1332 * range. 1333 * Any range covered by ordered extent must either be manually marked 1334 * finished (error handling), or has IO submitted (and finish the 1335 * ordered extent normally). 1336 * 1337 * This records the end of ordered extent cleanup if we hit an error. 1338 */ 1339 u64 last_finished_delalloc_end = page_start; 1340 u64 delalloc_start = page_start; 1341 u64 delalloc_end = page_end; 1342 u64 delalloc_to_write = 0; 1343 int ret = 0; 1344 int bit; 1345 1346 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1347 if (btrfs_is_subpage(fs_info, folio)) { 1348 ASSERT(blocks_per_folio > 1); 1349 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1350 } else { 1351 bio_ctrl->submit_bitmap = 1; 1352 } 1353 1354 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1355 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1356 1357 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1358 } 1359 1360 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1361 while (delalloc_start < page_end) { 1362 delalloc_end = page_end; 1363 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1364 &delalloc_start, &delalloc_end)) { 1365 delalloc_start = delalloc_end + 1; 1366 continue; 1367 } 1368 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1369 min(delalloc_end, page_end) + 1 - delalloc_start); 1370 last_delalloc_end = delalloc_end; 1371 delalloc_start = delalloc_end + 1; 1372 } 1373 delalloc_start = page_start; 1374 1375 if (!last_delalloc_end) 1376 goto out; 1377 1378 /* Run the delalloc ranges for the above locked ranges. */ 1379 while (delalloc_start < page_end) { 1380 u64 found_start; 1381 u32 found_len; 1382 bool found; 1383 1384 if (!is_subpage) { 1385 /* 1386 * For non-subpage case, the found delalloc range must 1387 * cover this folio and there must be only one locked 1388 * delalloc range. 1389 */ 1390 found_start = page_start; 1391 found_len = last_delalloc_end + 1 - found_start; 1392 found = true; 1393 } else { 1394 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1395 delalloc_start, &found_start, &found_len); 1396 } 1397 if (!found) 1398 break; 1399 /* 1400 * The subpage range covers the last sector, the delalloc range may 1401 * end beyond the folio boundary, use the saved delalloc_end 1402 * instead. 1403 */ 1404 if (found_start + found_len >= page_end) 1405 found_len = last_delalloc_end + 1 - found_start; 1406 1407 if (ret >= 0) { 1408 /* 1409 * Some delalloc range may be created by previous folios. 1410 * Thus we still need to clean up this range during error 1411 * handling. 1412 */ 1413 last_finished_delalloc_end = found_start; 1414 /* No errors hit so far, run the current delalloc range. */ 1415 ret = btrfs_run_delalloc_range(inode, folio, 1416 found_start, 1417 found_start + found_len - 1, 1418 wbc); 1419 if (ret >= 0) 1420 last_finished_delalloc_end = found_start + found_len; 1421 if (unlikely(ret < 0)) 1422 btrfs_err_rl(fs_info, 1423 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1424 btrfs_root_id(inode->root), 1425 btrfs_ino(inode), 1426 folio_pos(folio), 1427 blocks_per_folio, 1428 &bio_ctrl->submit_bitmap, 1429 found_start, found_len, ret); 1430 } else { 1431 /* 1432 * We've hit an error during previous delalloc range, 1433 * have to cleanup the remaining locked ranges. 1434 */ 1435 btrfs_unlock_extent(&inode->io_tree, found_start, 1436 found_start + found_len - 1, NULL); 1437 unlock_delalloc_folio(&inode->vfs_inode, folio, 1438 found_start, 1439 found_start + found_len - 1); 1440 } 1441 1442 /* 1443 * We have some ranges that's going to be submitted asynchronously 1444 * (compression or inline). These range have their own control 1445 * on when to unlock the pages. We should not touch them 1446 * anymore, so clear the range from the submission bitmap. 1447 */ 1448 if (ret > 0) { 1449 unsigned int start_bit = (found_start - page_start) >> 1450 fs_info->sectorsize_bits; 1451 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1452 page_start) >> fs_info->sectorsize_bits; 1453 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1454 } 1455 /* 1456 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1457 * thus for the last range, we cannot touch the folio anymore. 1458 */ 1459 if (found_start + found_len >= last_delalloc_end + 1) 1460 break; 1461 1462 delalloc_start = found_start + found_len; 1463 } 1464 /* 1465 * It's possible we had some ordered extents created before we hit 1466 * an error, cleanup non-async successfully created delalloc ranges. 1467 */ 1468 if (unlikely(ret < 0)) { 1469 unsigned int bitmap_size = min( 1470 (last_finished_delalloc_end - page_start) >> 1471 fs_info->sectorsize_bits, 1472 blocks_per_folio); 1473 1474 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1475 btrfs_mark_ordered_io_finished(inode, folio, 1476 page_start + (bit << fs_info->sectorsize_bits), 1477 fs_info->sectorsize, false); 1478 return ret; 1479 } 1480 out: 1481 if (last_delalloc_end) 1482 delalloc_end = last_delalloc_end; 1483 else 1484 delalloc_end = page_end; 1485 /* 1486 * delalloc_end is already one less than the total length, so 1487 * we don't subtract one from PAGE_SIZE. 1488 */ 1489 delalloc_to_write += 1490 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1491 1492 /* 1493 * If all ranges are submitted asynchronously, we just need to account 1494 * for them here. 1495 */ 1496 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1497 wbc->nr_to_write -= delalloc_to_write; 1498 return 1; 1499 } 1500 1501 if (wbc->nr_to_write < delalloc_to_write) { 1502 int thresh = 8192; 1503 1504 if (delalloc_to_write < thresh * 2) 1505 thresh = delalloc_to_write; 1506 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1507 thresh); 1508 } 1509 1510 return 0; 1511 } 1512 1513 /* 1514 * Return 0 if we have submitted or queued the sector for submission. 1515 * Return <0 for critical errors, and the sector will have its dirty flag cleared. 1516 * 1517 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1518 */ 1519 static int submit_one_sector(struct btrfs_inode *inode, 1520 struct folio *folio, 1521 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1522 loff_t i_size) 1523 { 1524 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1525 struct extent_map *em; 1526 u64 block_start; 1527 u64 disk_bytenr; 1528 u64 extent_offset; 1529 u64 em_end; 1530 const u32 sectorsize = fs_info->sectorsize; 1531 1532 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1533 1534 /* @filepos >= i_size case should be handled by the caller. */ 1535 ASSERT(filepos < i_size); 1536 1537 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1538 if (IS_ERR(em)) { 1539 /* 1540 * When submission failed, we should still clear the folio dirty. 1541 * Or the folio will be written back again but without any 1542 * ordered extent. 1543 */ 1544 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1545 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1546 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize); 1547 return PTR_ERR(em); 1548 } 1549 1550 extent_offset = filepos - em->start; 1551 em_end = btrfs_extent_map_end(em); 1552 ASSERT(filepos <= em_end); 1553 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1554 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1555 1556 block_start = btrfs_extent_map_block_start(em); 1557 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1558 1559 ASSERT(!btrfs_extent_map_is_compressed(em)); 1560 ASSERT(block_start != EXTENT_MAP_HOLE); 1561 ASSERT(block_start != EXTENT_MAP_INLINE); 1562 1563 btrfs_free_extent_map(em); 1564 em = NULL; 1565 1566 /* 1567 * Although the PageDirty bit is cleared before entering this 1568 * function, subpage dirty bit is not cleared. 1569 * So clear subpage dirty bit here so next time we won't submit 1570 * a folio for a range already written to disk. 1571 */ 1572 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1573 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1574 /* 1575 * Above call should set the whole folio with writeback flag, even 1576 * just for a single subpage sector. 1577 * As long as the folio is properly locked and the range is correct, 1578 * we should always get the folio with writeback flag. 1579 */ 1580 ASSERT(folio_test_writeback(folio)); 1581 1582 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1583 sectorsize, filepos - folio_pos(folio)); 1584 return 0; 1585 } 1586 1587 /* 1588 * Helper for extent_writepage(). This calls the writepage start hooks, 1589 * and does the loop to map the page into extents and bios. 1590 * 1591 * We return 1 if the IO is started and the page is unlocked, 1592 * 0 if all went well (page still locked) 1593 * < 0 if there were errors (page still locked) 1594 */ 1595 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1596 struct folio *folio, 1597 u64 start, u32 len, 1598 struct btrfs_bio_ctrl *bio_ctrl, 1599 loff_t i_size) 1600 { 1601 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1602 unsigned long range_bitmap = 0; 1603 bool submitted_io = false; 1604 bool error = false; 1605 const u64 folio_start = folio_pos(folio); 1606 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1607 u64 cur; 1608 int bit; 1609 int ret = 0; 1610 1611 ASSERT(start >= folio_start && 1612 start + len <= folio_start + folio_size(folio)); 1613 1614 ret = btrfs_writepage_cow_fixup(folio); 1615 if (ret == -EAGAIN) { 1616 /* Fixup worker will requeue */ 1617 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1618 folio_unlock(folio); 1619 return 1; 1620 } 1621 if (ret < 0) { 1622 btrfs_folio_clear_dirty(fs_info, folio, start, len); 1623 btrfs_folio_set_writeback(fs_info, folio, start, len); 1624 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1625 return ret; 1626 } 1627 1628 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1629 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1630 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1631 blocks_per_folio); 1632 1633 bio_ctrl->end_io_func = end_bbio_data_write; 1634 1635 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1636 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1637 1638 if (cur >= i_size) { 1639 btrfs_mark_ordered_io_finished(inode, folio, cur, 1640 start + len - cur, true); 1641 /* 1642 * This range is beyond i_size, thus we don't need to 1643 * bother writing back. 1644 * But we still need to clear the dirty subpage bit, or 1645 * the next time the folio gets dirtied, we will try to 1646 * writeback the sectors with subpage dirty bits, 1647 * causing writeback without ordered extent. 1648 */ 1649 btrfs_folio_clear_dirty(fs_info, folio, cur, 1650 start + len - cur); 1651 break; 1652 } 1653 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1654 if (unlikely(ret < 0)) { 1655 /* 1656 * bio_ctrl may contain a bio crossing several folios. 1657 * Submit it immediately so that the bio has a chance 1658 * to finish normally, other than marked as error. 1659 */ 1660 submit_one_bio(bio_ctrl); 1661 /* 1662 * Failed to grab the extent map which should be very rare. 1663 * Since there is no bio submitted to finish the ordered 1664 * extent, we have to manually finish this sector. 1665 */ 1666 btrfs_mark_ordered_io_finished(inode, folio, cur, 1667 fs_info->sectorsize, false); 1668 error = true; 1669 continue; 1670 } 1671 submitted_io = true; 1672 } 1673 1674 /* 1675 * If we didn't submitted any sector (>= i_size), folio dirty get 1676 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1677 * by folio_start_writeback() if the folio is not dirty). 1678 * 1679 * Here we set writeback and clear for the range. If the full folio 1680 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1681 * 1682 * If we hit any error, the corresponding sector will have its dirty 1683 * flag cleared and writeback finished, thus no need to handle the error case. 1684 */ 1685 if (!submitted_io && !error) { 1686 btrfs_folio_set_writeback(fs_info, folio, start, len); 1687 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1688 } 1689 return ret; 1690 } 1691 1692 /* 1693 * the writepage semantics are similar to regular writepage. extent 1694 * records are inserted to lock ranges in the tree, and as dirty areas 1695 * are found, they are marked writeback. Then the lock bits are removed 1696 * and the end_io handler clears the writeback ranges 1697 * 1698 * Return 0 if everything goes well. 1699 * Return <0 for error. 1700 */ 1701 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1702 { 1703 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1704 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1705 int ret; 1706 size_t pg_offset; 1707 loff_t i_size = i_size_read(&inode->vfs_inode); 1708 const pgoff_t end_index = i_size >> PAGE_SHIFT; 1709 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1710 1711 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1712 1713 WARN_ON(!folio_test_locked(folio)); 1714 1715 pg_offset = offset_in_folio(folio, i_size); 1716 if (folio->index > end_index || 1717 (folio->index == end_index && !pg_offset)) { 1718 folio_invalidate(folio, 0, folio_size(folio)); 1719 folio_unlock(folio); 1720 return 0; 1721 } 1722 1723 if (folio_contains(folio, end_index)) 1724 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1725 1726 /* 1727 * Default to unlock the whole folio. 1728 * The proper bitmap can only be initialized until writepage_delalloc(). 1729 */ 1730 bio_ctrl->submit_bitmap = (unsigned long)-1; 1731 1732 /* 1733 * If the page is dirty but without private set, it's marked dirty 1734 * without informing the fs. 1735 * Nowadays that is a bug, since the introduction of 1736 * pin_user_pages*(). 1737 * 1738 * So here we check if the page has private set to rule out such 1739 * case. 1740 * But we also have a long history of relying on the COW fixup, 1741 * so here we only enable this check for experimental builds until 1742 * we're sure it's safe. 1743 */ 1744 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1745 unlikely(!folio_test_private(folio))) { 1746 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1747 btrfs_err_rl(fs_info, 1748 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1749 btrfs_root_id(inode->root), 1750 btrfs_ino(inode), folio_pos(folio)); 1751 ret = -EUCLEAN; 1752 goto done; 1753 } 1754 1755 ret = set_folio_extent_mapped(folio); 1756 if (ret < 0) 1757 goto done; 1758 1759 ret = writepage_delalloc(inode, folio, bio_ctrl); 1760 if (ret == 1) 1761 return 0; 1762 if (ret) 1763 goto done; 1764 1765 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1766 folio_size(folio), bio_ctrl, i_size); 1767 if (ret == 1) 1768 return 0; 1769 if (ret < 0) 1770 btrfs_err_rl(fs_info, 1771 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1772 btrfs_root_id(inode->root), btrfs_ino(inode), 1773 folio_pos(folio), blocks_per_folio, 1774 &bio_ctrl->submit_bitmap, ret); 1775 1776 bio_ctrl->wbc->nr_to_write--; 1777 1778 done: 1779 if (ret < 0) 1780 mapping_set_error(folio->mapping, ret); 1781 /* 1782 * Only unlock ranges that are submitted. As there can be some async 1783 * submitted ranges inside the folio. 1784 */ 1785 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1786 ASSERT(ret <= 0); 1787 return ret; 1788 } 1789 1790 /* 1791 * Lock extent buffer status and pages for writeback. 1792 * 1793 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1794 * extent buffer is not dirty) 1795 * Return %true is the extent buffer is submitted to bio. 1796 */ 1797 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1798 struct writeback_control *wbc) 1799 { 1800 struct btrfs_fs_info *fs_info = eb->fs_info; 1801 bool ret = false; 1802 1803 btrfs_tree_lock(eb); 1804 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1805 btrfs_tree_unlock(eb); 1806 if (wbc->sync_mode != WB_SYNC_ALL) 1807 return false; 1808 wait_on_extent_buffer_writeback(eb); 1809 btrfs_tree_lock(eb); 1810 } 1811 1812 /* 1813 * We need to do this to prevent races in people who check if the eb is 1814 * under IO since we can end up having no IO bits set for a short period 1815 * of time. 1816 */ 1817 spin_lock(&eb->refs_lock); 1818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1819 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1820 unsigned long flags; 1821 1822 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1823 spin_unlock(&eb->refs_lock); 1824 1825 xas_lock_irqsave(&xas, flags); 1826 xas_load(&xas); 1827 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1828 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1829 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 1830 xas_unlock_irqrestore(&xas, flags); 1831 1832 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1833 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1834 -eb->len, 1835 fs_info->dirty_metadata_batch); 1836 ret = true; 1837 } else { 1838 spin_unlock(&eb->refs_lock); 1839 } 1840 btrfs_tree_unlock(eb); 1841 return ret; 1842 } 1843 1844 static void set_btree_ioerr(struct extent_buffer *eb) 1845 { 1846 struct btrfs_fs_info *fs_info = eb->fs_info; 1847 1848 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1849 1850 /* 1851 * A read may stumble upon this buffer later, make sure that it gets an 1852 * error and knows there was an error. 1853 */ 1854 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1855 1856 /* 1857 * We need to set the mapping with the io error as well because a write 1858 * error will flip the file system readonly, and then syncfs() will 1859 * return a 0 because we are readonly if we don't modify the err seq for 1860 * the superblock. 1861 */ 1862 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1863 1864 /* 1865 * If writeback for a btree extent that doesn't belong to a log tree 1866 * failed, increment the counter transaction->eb_write_errors. 1867 * We do this because while the transaction is running and before it's 1868 * committing (when we call filemap_fdata[write|wait]_range against 1869 * the btree inode), we might have 1870 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1871 * returns an error or an error happens during writeback, when we're 1872 * committing the transaction we wouldn't know about it, since the pages 1873 * can be no longer dirty nor marked anymore for writeback (if a 1874 * subsequent modification to the extent buffer didn't happen before the 1875 * transaction commit), which makes filemap_fdata[write|wait]_range not 1876 * able to find the pages which contain errors at transaction 1877 * commit time. So if this happens we must abort the transaction, 1878 * otherwise we commit a super block with btree roots that point to 1879 * btree nodes/leafs whose content on disk is invalid - either garbage 1880 * or the content of some node/leaf from a past generation that got 1881 * cowed or deleted and is no longer valid. 1882 * 1883 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1884 * not be enough - we need to distinguish between log tree extents vs 1885 * non-log tree extents, and the next filemap_fdatawait_range() call 1886 * will catch and clear such errors in the mapping - and that call might 1887 * be from a log sync and not from a transaction commit. Also, checking 1888 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1889 * not done and would not be reliable - the eb might have been released 1890 * from memory and reading it back again means that flag would not be 1891 * set (since it's a runtime flag, not persisted on disk). 1892 * 1893 * Using the flags below in the btree inode also makes us achieve the 1894 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1895 * writeback for all dirty pages and before filemap_fdatawait_range() 1896 * is called, the writeback for all dirty pages had already finished 1897 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1898 * filemap_fdatawait_range() would return success, as it could not know 1899 * that writeback errors happened (the pages were no longer tagged for 1900 * writeback). 1901 */ 1902 switch (eb->log_index) { 1903 case -1: 1904 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1905 break; 1906 case 0: 1907 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1908 break; 1909 case 1: 1910 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1911 break; 1912 default: 1913 BUG(); /* unexpected, logic error */ 1914 } 1915 } 1916 1917 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 1918 { 1919 struct btrfs_fs_info *fs_info = eb->fs_info; 1920 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1921 unsigned long flags; 1922 1923 xas_lock_irqsave(&xas, flags); 1924 xas_load(&xas); 1925 xas_set_mark(&xas, mark); 1926 xas_unlock_irqrestore(&xas, flags); 1927 } 1928 1929 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 1930 { 1931 struct btrfs_fs_info *fs_info = eb->fs_info; 1932 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); 1933 unsigned long flags; 1934 1935 xas_lock_irqsave(&xas, flags); 1936 xas_load(&xas); 1937 xas_clear_mark(&xas, mark); 1938 xas_unlock_irqrestore(&xas, flags); 1939 } 1940 1941 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 1942 unsigned long start, unsigned long end) 1943 { 1944 XA_STATE(xas, &fs_info->buffer_tree, start); 1945 unsigned int tagged = 0; 1946 void *eb; 1947 1948 xas_lock_irq(&xas); 1949 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 1950 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 1951 if (++tagged % XA_CHECK_SCHED) 1952 continue; 1953 xas_pause(&xas); 1954 xas_unlock_irq(&xas); 1955 cond_resched(); 1956 xas_lock_irq(&xas); 1957 } 1958 xas_unlock_irq(&xas); 1959 } 1960 1961 struct eb_batch { 1962 unsigned int nr; 1963 unsigned int cur; 1964 struct extent_buffer *ebs[PAGEVEC_SIZE]; 1965 }; 1966 1967 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 1968 { 1969 batch->ebs[batch->nr++] = eb; 1970 return (batch->nr < PAGEVEC_SIZE); 1971 } 1972 1973 static inline void eb_batch_init(struct eb_batch *batch) 1974 { 1975 batch->nr = 0; 1976 batch->cur = 0; 1977 } 1978 1979 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 1980 { 1981 if (batch->cur >= batch->nr) 1982 return NULL; 1983 return batch->ebs[batch->cur++]; 1984 } 1985 1986 static inline void eb_batch_release(struct eb_batch *batch) 1987 { 1988 for (unsigned int i = 0; i < batch->nr; i++) 1989 free_extent_buffer(batch->ebs[i]); 1990 eb_batch_init(batch); 1991 } 1992 1993 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 1994 xa_mark_t mark) 1995 { 1996 struct extent_buffer *eb; 1997 1998 retry: 1999 eb = xas_find_marked(xas, max, mark); 2000 2001 if (xas_retry(xas, eb)) 2002 goto retry; 2003 2004 if (!eb) 2005 return NULL; 2006 2007 if (!refcount_inc_not_zero(&eb->refs)) { 2008 xas_reset(xas); 2009 goto retry; 2010 } 2011 2012 if (unlikely(eb != xas_reload(xas))) { 2013 free_extent_buffer(eb); 2014 xas_reset(xas); 2015 goto retry; 2016 } 2017 2018 return eb; 2019 } 2020 2021 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 2022 unsigned long *start, 2023 unsigned long end, xa_mark_t tag, 2024 struct eb_batch *batch) 2025 { 2026 XA_STATE(xas, &fs_info->buffer_tree, *start); 2027 struct extent_buffer *eb; 2028 2029 rcu_read_lock(); 2030 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 2031 if (!eb_batch_add(batch, eb)) { 2032 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); 2033 goto out; 2034 } 2035 } 2036 if (end == ULONG_MAX) 2037 *start = ULONG_MAX; 2038 else 2039 *start = end + 1; 2040 out: 2041 rcu_read_unlock(); 2042 2043 return batch->nr; 2044 } 2045 2046 /* 2047 * The endio specific version which won't touch any unsafe spinlock in endio 2048 * context. 2049 */ 2050 static struct extent_buffer *find_extent_buffer_nolock( 2051 struct btrfs_fs_info *fs_info, u64 start) 2052 { 2053 struct extent_buffer *eb; 2054 unsigned long index = (start >> fs_info->nodesize_bits); 2055 2056 rcu_read_lock(); 2057 eb = xa_load(&fs_info->buffer_tree, index); 2058 if (eb && !refcount_inc_not_zero(&eb->refs)) 2059 eb = NULL; 2060 rcu_read_unlock(); 2061 return eb; 2062 } 2063 2064 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2065 { 2066 struct extent_buffer *eb = bbio->private; 2067 struct folio_iter fi; 2068 2069 if (bbio->bio.bi_status != BLK_STS_OK) 2070 set_btree_ioerr(eb); 2071 2072 bio_for_each_folio_all(fi, &bbio->bio) { 2073 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2074 } 2075 2076 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2077 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2078 bio_put(&bbio->bio); 2079 } 2080 2081 static void prepare_eb_write(struct extent_buffer *eb) 2082 { 2083 u32 nritems; 2084 unsigned long start; 2085 unsigned long end; 2086 2087 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2088 2089 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2090 nritems = btrfs_header_nritems(eb); 2091 if (btrfs_header_level(eb) > 0) { 2092 end = btrfs_node_key_ptr_offset(eb, nritems); 2093 memzero_extent_buffer(eb, end, eb->len - end); 2094 } else { 2095 /* 2096 * Leaf: 2097 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2098 */ 2099 start = btrfs_item_nr_offset(eb, nritems); 2100 end = btrfs_item_nr_offset(eb, 0); 2101 if (nritems == 0) 2102 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2103 else 2104 end += btrfs_item_offset(eb, nritems - 1); 2105 memzero_extent_buffer(eb, start, end - start); 2106 } 2107 } 2108 2109 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2110 struct writeback_control *wbc) 2111 { 2112 struct btrfs_fs_info *fs_info = eb->fs_info; 2113 struct btrfs_bio *bbio; 2114 2115 prepare_eb_write(eb); 2116 2117 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2118 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2119 eb->fs_info, end_bbio_meta_write, eb); 2120 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2121 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2122 wbc_init_bio(wbc, &bbio->bio); 2123 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 2124 bbio->file_offset = eb->start; 2125 for (int i = 0; i < num_extent_folios(eb); i++) { 2126 struct folio *folio = eb->folios[i]; 2127 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2128 u32 range_len = min_t(u64, folio_end(folio), 2129 eb->start + eb->len) - range_start; 2130 2131 folio_lock(folio); 2132 btrfs_meta_folio_clear_dirty(folio, eb); 2133 btrfs_meta_folio_set_writeback(folio, eb); 2134 if (!folio_test_dirty(folio)) 2135 wbc->nr_to_write -= folio_nr_pages(folio); 2136 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2137 offset_in_folio(folio, range_start)); 2138 wbc_account_cgroup_owner(wbc, folio, range_len); 2139 folio_unlock(folio); 2140 } 2141 btrfs_submit_bbio(bbio, 0); 2142 } 2143 2144 /* 2145 * Wait for all eb writeback in the given range to finish. 2146 * 2147 * @fs_info: The fs_info for this file system. 2148 * @start: The offset of the range to start waiting on writeback. 2149 * @end: The end of the range, inclusive. This is meant to be used in 2150 * conjuction with wait_marked_extents, so this will usually be 2151 * the_next_eb->start - 1. 2152 */ 2153 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2154 u64 end) 2155 { 2156 struct eb_batch batch; 2157 unsigned long start_index = (start >> fs_info->nodesize_bits); 2158 unsigned long end_index = (end >> fs_info->nodesize_bits); 2159 2160 eb_batch_init(&batch); 2161 while (start_index <= end_index) { 2162 struct extent_buffer *eb; 2163 unsigned int nr_ebs; 2164 2165 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2166 PAGECACHE_TAG_WRITEBACK, &batch); 2167 if (!nr_ebs) 2168 break; 2169 2170 while ((eb = eb_batch_next(&batch)) != NULL) 2171 wait_on_extent_buffer_writeback(eb); 2172 eb_batch_release(&batch); 2173 cond_resched(); 2174 } 2175 } 2176 2177 int btree_write_cache_pages(struct address_space *mapping, 2178 struct writeback_control *wbc) 2179 { 2180 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2181 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2182 int ret = 0; 2183 int done = 0; 2184 int nr_to_write_done = 0; 2185 struct eb_batch batch; 2186 unsigned int nr_ebs; 2187 unsigned long index; 2188 unsigned long end; 2189 int scanned = 0; 2190 xa_mark_t tag; 2191 2192 eb_batch_init(&batch); 2193 if (wbc->range_cyclic) { 2194 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); 2195 end = -1; 2196 2197 /* 2198 * Start from the beginning does not need to cycle over the 2199 * range, mark it as scanned. 2200 */ 2201 scanned = (index == 0); 2202 } else { 2203 index = (wbc->range_start >> fs_info->nodesize_bits); 2204 end = (wbc->range_end >> fs_info->nodesize_bits); 2205 2206 scanned = 1; 2207 } 2208 if (wbc->sync_mode == WB_SYNC_ALL) 2209 tag = PAGECACHE_TAG_TOWRITE; 2210 else 2211 tag = PAGECACHE_TAG_DIRTY; 2212 btrfs_zoned_meta_io_lock(fs_info); 2213 retry: 2214 if (wbc->sync_mode == WB_SYNC_ALL) 2215 buffer_tree_tag_for_writeback(fs_info, index, end); 2216 while (!done && !nr_to_write_done && (index <= end) && 2217 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2218 struct extent_buffer *eb; 2219 2220 while ((eb = eb_batch_next(&batch)) != NULL) { 2221 ctx.eb = eb; 2222 2223 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2224 if (ret) { 2225 if (ret == -EBUSY) 2226 ret = 0; 2227 2228 if (ret) { 2229 done = 1; 2230 break; 2231 } 2232 continue; 2233 } 2234 2235 if (!lock_extent_buffer_for_io(eb, wbc)) 2236 continue; 2237 2238 /* Implies write in zoned mode. */ 2239 if (ctx.zoned_bg) { 2240 /* Mark the last eb in the block group. */ 2241 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2242 ctx.zoned_bg->meta_write_pointer += eb->len; 2243 } 2244 write_one_eb(eb, wbc); 2245 } 2246 nr_to_write_done = (wbc->nr_to_write <= 0); 2247 eb_batch_release(&batch); 2248 cond_resched(); 2249 } 2250 if (!scanned && !done) { 2251 /* 2252 * We hit the last page and there is more work to be done: wrap 2253 * back to the start of the file 2254 */ 2255 scanned = 1; 2256 index = 0; 2257 goto retry; 2258 } 2259 /* 2260 * If something went wrong, don't allow any metadata write bio to be 2261 * submitted. 2262 * 2263 * This would prevent use-after-free if we had dirty pages not 2264 * cleaned up, which can still happen by fuzzed images. 2265 * 2266 * - Bad extent tree 2267 * Allowing existing tree block to be allocated for other trees. 2268 * 2269 * - Log tree operations 2270 * Exiting tree blocks get allocated to log tree, bumps its 2271 * generation, then get cleaned in tree re-balance. 2272 * Such tree block will not be written back, since it's clean, 2273 * thus no WRITTEN flag set. 2274 * And after log writes back, this tree block is not traced by 2275 * any dirty extent_io_tree. 2276 * 2277 * - Offending tree block gets re-dirtied from its original owner 2278 * Since it has bumped generation, no WRITTEN flag, it can be 2279 * reused without COWing. This tree block will not be traced 2280 * by btrfs_transaction::dirty_pages. 2281 * 2282 * Now such dirty tree block will not be cleaned by any dirty 2283 * extent io tree. Thus we don't want to submit such wild eb 2284 * if the fs already has error. 2285 * 2286 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2287 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2288 */ 2289 if (ret > 0) 2290 ret = 0; 2291 if (!ret && BTRFS_FS_ERROR(fs_info)) 2292 ret = -EROFS; 2293 2294 if (ctx.zoned_bg) 2295 btrfs_put_block_group(ctx.zoned_bg); 2296 btrfs_zoned_meta_io_unlock(fs_info); 2297 return ret; 2298 } 2299 2300 /* 2301 * Walk the list of dirty pages of the given address space and write all of them. 2302 * 2303 * @mapping: address space structure to write 2304 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2305 * @bio_ctrl: holds context for the write, namely the bio 2306 * 2307 * If a page is already under I/O, write_cache_pages() skips it, even 2308 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2309 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2310 * and msync() need to guarantee that all the data which was dirty at the time 2311 * the call was made get new I/O started against them. If wbc->sync_mode is 2312 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2313 * existing IO to complete. 2314 */ 2315 static int extent_write_cache_pages(struct address_space *mapping, 2316 struct btrfs_bio_ctrl *bio_ctrl) 2317 { 2318 struct writeback_control *wbc = bio_ctrl->wbc; 2319 struct inode *inode = mapping->host; 2320 int ret = 0; 2321 int done = 0; 2322 int nr_to_write_done = 0; 2323 struct folio_batch fbatch; 2324 unsigned int nr_folios; 2325 pgoff_t index; 2326 pgoff_t end; /* Inclusive */ 2327 pgoff_t done_index; 2328 int range_whole = 0; 2329 int scanned = 0; 2330 xa_mark_t tag; 2331 2332 /* 2333 * We have to hold onto the inode so that ordered extents can do their 2334 * work when the IO finishes. The alternative to this is failing to add 2335 * an ordered extent if the igrab() fails there and that is a huge pain 2336 * to deal with, so instead just hold onto the inode throughout the 2337 * writepages operation. If it fails here we are freeing up the inode 2338 * anyway and we'd rather not waste our time writing out stuff that is 2339 * going to be truncated anyway. 2340 */ 2341 if (!igrab(inode)) 2342 return 0; 2343 2344 folio_batch_init(&fbatch); 2345 if (wbc->range_cyclic) { 2346 index = mapping->writeback_index; /* Start from prev offset */ 2347 end = -1; 2348 /* 2349 * Start from the beginning does not need to cycle over the 2350 * range, mark it as scanned. 2351 */ 2352 scanned = (index == 0); 2353 } else { 2354 index = wbc->range_start >> PAGE_SHIFT; 2355 end = wbc->range_end >> PAGE_SHIFT; 2356 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2357 range_whole = 1; 2358 scanned = 1; 2359 } 2360 2361 /* 2362 * We do the tagged writepage as long as the snapshot flush bit is set 2363 * and we are the first one who do the filemap_flush() on this inode. 2364 * 2365 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2366 * not race in and drop the bit. 2367 */ 2368 if (range_whole && wbc->nr_to_write == LONG_MAX && 2369 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2370 &BTRFS_I(inode)->runtime_flags)) 2371 wbc->tagged_writepages = 1; 2372 2373 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2374 tag = PAGECACHE_TAG_TOWRITE; 2375 else 2376 tag = PAGECACHE_TAG_DIRTY; 2377 retry: 2378 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2379 tag_pages_for_writeback(mapping, index, end); 2380 done_index = index; 2381 while (!done && !nr_to_write_done && (index <= end) && 2382 (nr_folios = filemap_get_folios_tag(mapping, &index, 2383 end, tag, &fbatch))) { 2384 unsigned i; 2385 2386 for (i = 0; i < nr_folios; i++) { 2387 struct folio *folio = fbatch.folios[i]; 2388 2389 done_index = folio_next_index(folio); 2390 /* 2391 * At this point we hold neither the i_pages lock nor 2392 * the folio lock: the folio may be truncated or 2393 * invalidated (changing folio->mapping to NULL). 2394 */ 2395 if (!folio_trylock(folio)) { 2396 submit_write_bio(bio_ctrl, 0); 2397 folio_lock(folio); 2398 } 2399 2400 if (unlikely(folio->mapping != mapping)) { 2401 folio_unlock(folio); 2402 continue; 2403 } 2404 2405 if (!folio_test_dirty(folio)) { 2406 /* Someone wrote it for us. */ 2407 folio_unlock(folio); 2408 continue; 2409 } 2410 2411 /* 2412 * For subpage case, compression can lead to mixed 2413 * writeback and dirty flags, e.g: 2414 * 0 32K 64K 96K 128K 2415 * | |//////||/////| |//| 2416 * 2417 * In above case, [32K, 96K) is asynchronously submitted 2418 * for compression, and [124K, 128K) needs to be written back. 2419 * 2420 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2421 * won't be submitted as the page still has writeback flag 2422 * and will be skipped in the next check. 2423 * 2424 * This mixed writeback and dirty case is only possible for 2425 * subpage case. 2426 * 2427 * TODO: Remove this check after migrating compression to 2428 * regular submission. 2429 */ 2430 if (wbc->sync_mode != WB_SYNC_NONE || 2431 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2432 if (folio_test_writeback(folio)) 2433 submit_write_bio(bio_ctrl, 0); 2434 folio_wait_writeback(folio); 2435 } 2436 2437 if (folio_test_writeback(folio) || 2438 !folio_clear_dirty_for_io(folio)) { 2439 folio_unlock(folio); 2440 continue; 2441 } 2442 2443 ret = extent_writepage(folio, bio_ctrl); 2444 if (ret < 0) { 2445 done = 1; 2446 break; 2447 } 2448 2449 /* 2450 * The filesystem may choose to bump up nr_to_write. 2451 * We have to make sure to honor the new nr_to_write 2452 * at any time. 2453 */ 2454 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2455 wbc->nr_to_write <= 0); 2456 } 2457 folio_batch_release(&fbatch); 2458 cond_resched(); 2459 } 2460 if (!scanned && !done) { 2461 /* 2462 * We hit the last page and there is more work to be done: wrap 2463 * back to the start of the file 2464 */ 2465 scanned = 1; 2466 index = 0; 2467 2468 /* 2469 * If we're looping we could run into a page that is locked by a 2470 * writer and that writer could be waiting on writeback for a 2471 * page in our current bio, and thus deadlock, so flush the 2472 * write bio here. 2473 */ 2474 submit_write_bio(bio_ctrl, 0); 2475 goto retry; 2476 } 2477 2478 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2479 mapping->writeback_index = done_index; 2480 2481 btrfs_add_delayed_iput(BTRFS_I(inode)); 2482 return ret; 2483 } 2484 2485 /* 2486 * Submit the pages in the range to bio for call sites which delalloc range has 2487 * already been ran (aka, ordered extent inserted) and all pages are still 2488 * locked. 2489 */ 2490 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2491 u64 start, u64 end, struct writeback_control *wbc, 2492 bool pages_dirty) 2493 { 2494 bool found_error = false; 2495 int ret = 0; 2496 struct address_space *mapping = inode->i_mapping; 2497 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2498 const u32 sectorsize = fs_info->sectorsize; 2499 loff_t i_size = i_size_read(inode); 2500 u64 cur = start; 2501 struct btrfs_bio_ctrl bio_ctrl = { 2502 .wbc = wbc, 2503 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2504 }; 2505 2506 if (wbc->no_cgroup_owner) 2507 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2508 2509 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2510 2511 while (cur <= end) { 2512 u64 cur_end; 2513 u32 cur_len; 2514 struct folio *folio; 2515 2516 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2517 2518 /* 2519 * This shouldn't happen, the pages are pinned and locked, this 2520 * code is just in case, but shouldn't actually be run. 2521 */ 2522 if (IS_ERR(folio)) { 2523 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2524 cur_len = cur_end + 1 - cur; 2525 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2526 cur, cur_len, false); 2527 mapping_set_error(mapping, PTR_ERR(folio)); 2528 cur = cur_end; 2529 continue; 2530 } 2531 2532 cur_end = min_t(u64, folio_end(folio) - 1, end); 2533 cur_len = cur_end + 1 - cur; 2534 2535 ASSERT(folio_test_locked(folio)); 2536 if (pages_dirty && folio != locked_folio) 2537 ASSERT(folio_test_dirty(folio)); 2538 2539 /* 2540 * Set the submission bitmap to submit all sectors. 2541 * extent_writepage_io() will do the truncation correctly. 2542 */ 2543 bio_ctrl.submit_bitmap = (unsigned long)-1; 2544 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2545 &bio_ctrl, i_size); 2546 if (ret == 1) 2547 goto next_page; 2548 2549 if (ret) 2550 mapping_set_error(mapping, ret); 2551 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2552 if (ret < 0) 2553 found_error = true; 2554 next_page: 2555 folio_put(folio); 2556 cur = cur_end + 1; 2557 } 2558 2559 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2560 } 2561 2562 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2563 { 2564 struct inode *inode = mapping->host; 2565 int ret = 0; 2566 struct btrfs_bio_ctrl bio_ctrl = { 2567 .wbc = wbc, 2568 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2569 }; 2570 2571 /* 2572 * Allow only a single thread to do the reloc work in zoned mode to 2573 * protect the write pointer updates. 2574 */ 2575 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2576 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2577 submit_write_bio(&bio_ctrl, ret); 2578 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2579 return ret; 2580 } 2581 2582 void btrfs_readahead(struct readahead_control *rac) 2583 { 2584 struct btrfs_bio_ctrl bio_ctrl = { 2585 .opf = REQ_OP_READ | REQ_RAHEAD, 2586 .ractl = rac 2587 }; 2588 struct folio *folio; 2589 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2590 const u64 start = readahead_pos(rac); 2591 const u64 end = start + readahead_length(rac) - 1; 2592 struct extent_state *cached_state = NULL; 2593 struct extent_map *em_cached = NULL; 2594 u64 prev_em_start = (u64)-1; 2595 2596 lock_extents_for_read(inode, start, end, &cached_state); 2597 2598 while ((folio = readahead_folio(rac)) != NULL) 2599 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2600 2601 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2602 2603 if (em_cached) 2604 btrfs_free_extent_map(em_cached); 2605 submit_one_bio(&bio_ctrl); 2606 } 2607 2608 /* 2609 * basic invalidate_folio code, this waits on any locked or writeback 2610 * ranges corresponding to the folio, and then deletes any extent state 2611 * records from the tree 2612 */ 2613 int extent_invalidate_folio(struct extent_io_tree *tree, 2614 struct folio *folio, size_t offset) 2615 { 2616 struct extent_state *cached_state = NULL; 2617 u64 start = folio_pos(folio); 2618 u64 end = start + folio_size(folio) - 1; 2619 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2620 2621 /* This function is only called for the btree inode */ 2622 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2623 2624 start += ALIGN(offset, blocksize); 2625 if (start > end) 2626 return 0; 2627 2628 btrfs_lock_extent(tree, start, end, &cached_state); 2629 folio_wait_writeback(folio); 2630 2631 /* 2632 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2633 * so here we only need to unlock the extent range to free any 2634 * existing extent state. 2635 */ 2636 btrfs_unlock_extent(tree, start, end, &cached_state); 2637 return 0; 2638 } 2639 2640 /* 2641 * A helper for struct address_space_operations::release_folio, this tests for 2642 * areas of the folio that are locked or under IO and drops the related state 2643 * bits if it is safe to drop the folio. 2644 */ 2645 static bool try_release_extent_state(struct extent_io_tree *tree, 2646 struct folio *folio) 2647 { 2648 struct extent_state *cached_state = NULL; 2649 u64 start = folio_pos(folio); 2650 u64 end = start + folio_size(folio) - 1; 2651 u32 range_bits; 2652 u32 clear_bits; 2653 bool ret = false; 2654 int ret2; 2655 2656 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2657 2658 /* 2659 * We can release the folio if it's locked only for ordered extent 2660 * completion, since that doesn't require using the folio. 2661 */ 2662 if ((range_bits & EXTENT_LOCKED) && 2663 !(range_bits & EXTENT_FINISHING_ORDERED)) 2664 goto out; 2665 2666 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2667 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2668 EXTENT_FINISHING_ORDERED); 2669 /* 2670 * At this point we can safely clear everything except the locked, 2671 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2672 * bit will be cleared by ordered extent completion. 2673 */ 2674 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2675 /* 2676 * If clear_extent_bit failed for enomem reasons, we can't allow the 2677 * release to continue. 2678 */ 2679 if (ret2 == 0) 2680 ret = true; 2681 out: 2682 btrfs_free_extent_state(cached_state); 2683 2684 return ret; 2685 } 2686 2687 /* 2688 * a helper for release_folio. As long as there are no locked extents 2689 * in the range corresponding to the page, both state records and extent 2690 * map records are removed 2691 */ 2692 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2693 { 2694 u64 start = folio_pos(folio); 2695 u64 end = start + folio_size(folio) - 1; 2696 struct btrfs_inode *inode = folio_to_inode(folio); 2697 struct extent_io_tree *io_tree = &inode->io_tree; 2698 2699 while (start <= end) { 2700 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2701 const u64 len = end - start + 1; 2702 struct extent_map_tree *extent_tree = &inode->extent_tree; 2703 struct extent_map *em; 2704 2705 write_lock(&extent_tree->lock); 2706 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2707 if (!em) { 2708 write_unlock(&extent_tree->lock); 2709 break; 2710 } 2711 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2712 write_unlock(&extent_tree->lock); 2713 btrfs_free_extent_map(em); 2714 break; 2715 } 2716 if (btrfs_test_range_bit_exists(io_tree, em->start, 2717 btrfs_extent_map_end(em) - 1, 2718 EXTENT_LOCKED)) 2719 goto next; 2720 /* 2721 * If it's not in the list of modified extents, used by a fast 2722 * fsync, we can remove it. If it's being logged we can safely 2723 * remove it since fsync took an extra reference on the em. 2724 */ 2725 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2726 goto remove_em; 2727 /* 2728 * If it's in the list of modified extents, remove it only if 2729 * its generation is older then the current one, in which case 2730 * we don't need it for a fast fsync. Otherwise don't remove it, 2731 * we could be racing with an ongoing fast fsync that could miss 2732 * the new extent. 2733 */ 2734 if (em->generation >= cur_gen) 2735 goto next; 2736 remove_em: 2737 /* 2738 * We only remove extent maps that are not in the list of 2739 * modified extents or that are in the list but with a 2740 * generation lower then the current generation, so there is no 2741 * need to set the full fsync flag on the inode (it hurts the 2742 * fsync performance for workloads with a data size that exceeds 2743 * or is close to the system's memory). 2744 */ 2745 btrfs_remove_extent_mapping(inode, em); 2746 /* Once for the inode's extent map tree. */ 2747 btrfs_free_extent_map(em); 2748 next: 2749 start = btrfs_extent_map_end(em); 2750 write_unlock(&extent_tree->lock); 2751 2752 /* Once for us, for the lookup_extent_mapping() reference. */ 2753 btrfs_free_extent_map(em); 2754 2755 if (need_resched()) { 2756 /* 2757 * If we need to resched but we can't block just exit 2758 * and leave any remaining extent maps. 2759 */ 2760 if (!gfpflags_allow_blocking(mask)) 2761 break; 2762 2763 cond_resched(); 2764 } 2765 } 2766 return try_release_extent_state(io_tree, folio); 2767 } 2768 2769 static int extent_buffer_under_io(const struct extent_buffer *eb) 2770 { 2771 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2772 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2773 } 2774 2775 static bool folio_range_has_eb(struct folio *folio) 2776 { 2777 struct btrfs_folio_state *bfs; 2778 2779 lockdep_assert_held(&folio->mapping->i_private_lock); 2780 2781 if (folio_test_private(folio)) { 2782 bfs = folio_get_private(folio); 2783 if (atomic_read(&bfs->eb_refs)) 2784 return true; 2785 } 2786 return false; 2787 } 2788 2789 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2790 { 2791 struct btrfs_fs_info *fs_info = eb->fs_info; 2792 struct address_space *mapping = folio->mapping; 2793 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2794 2795 /* 2796 * For mapped eb, we're going to change the folio private, which should 2797 * be done under the i_private_lock. 2798 */ 2799 if (mapped) 2800 spin_lock(&mapping->i_private_lock); 2801 2802 if (!folio_test_private(folio)) { 2803 if (mapped) 2804 spin_unlock(&mapping->i_private_lock); 2805 return; 2806 } 2807 2808 if (!btrfs_meta_is_subpage(fs_info)) { 2809 /* 2810 * We do this since we'll remove the pages after we've removed 2811 * the eb from the xarray, so we could race and have this page 2812 * now attached to the new eb. So only clear folio if it's 2813 * still connected to this eb. 2814 */ 2815 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2816 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2817 BUG_ON(folio_test_dirty(folio)); 2818 BUG_ON(folio_test_writeback(folio)); 2819 /* We need to make sure we haven't be attached to a new eb. */ 2820 folio_detach_private(folio); 2821 } 2822 if (mapped) 2823 spin_unlock(&mapping->i_private_lock); 2824 return; 2825 } 2826 2827 /* 2828 * For subpage, we can have dummy eb with folio private attached. In 2829 * this case, we can directly detach the private as such folio is only 2830 * attached to one dummy eb, no sharing. 2831 */ 2832 if (!mapped) { 2833 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2834 return; 2835 } 2836 2837 btrfs_folio_dec_eb_refs(fs_info, folio); 2838 2839 /* 2840 * We can only detach the folio private if there are no other ebs in the 2841 * page range and no unfinished IO. 2842 */ 2843 if (!folio_range_has_eb(folio)) 2844 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2845 2846 spin_unlock(&mapping->i_private_lock); 2847 } 2848 2849 /* Release all folios attached to the extent buffer */ 2850 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2851 { 2852 ASSERT(!extent_buffer_under_io(eb)); 2853 2854 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2855 struct folio *folio = eb->folios[i]; 2856 2857 if (!folio) 2858 continue; 2859 2860 detach_extent_buffer_folio(eb, folio); 2861 } 2862 } 2863 2864 /* 2865 * Helper for releasing the extent buffer. 2866 */ 2867 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2868 { 2869 btrfs_release_extent_buffer_folios(eb); 2870 btrfs_leak_debug_del_eb(eb); 2871 kmem_cache_free(extent_buffer_cache, eb); 2872 } 2873 2874 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2875 u64 start) 2876 { 2877 struct extent_buffer *eb = NULL; 2878 2879 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2880 eb->start = start; 2881 eb->len = fs_info->nodesize; 2882 eb->fs_info = fs_info; 2883 init_rwsem(&eb->lock); 2884 2885 btrfs_leak_debug_add_eb(eb); 2886 2887 spin_lock_init(&eb->refs_lock); 2888 refcount_set(&eb->refs, 1); 2889 2890 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2891 2892 return eb; 2893 } 2894 2895 /* 2896 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 2897 * does not call folio_put(), and we need to set the folios to NULL so that 2898 * btrfs_release_extent_buffer() will not detach them a second time. 2899 */ 2900 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 2901 { 2902 const int num_folios = num_extent_folios(eb); 2903 2904 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */ 2905 for (int i = 0; i < num_folios; i++) { 2906 ASSERT(eb->folios[i]); 2907 detach_extent_buffer_folio(eb, eb->folios[i]); 2908 folio_put(eb->folios[i]); 2909 eb->folios[i] = NULL; 2910 } 2911 } 2912 2913 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2914 { 2915 struct extent_buffer *new; 2916 int num_folios; 2917 int ret; 2918 2919 new = __alloc_extent_buffer(src->fs_info, src->start); 2920 if (new == NULL) 2921 return NULL; 2922 2923 /* 2924 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2925 * btrfs_release_extent_buffer() have different behavior for 2926 * UNMAPPED subpage extent buffer. 2927 */ 2928 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2929 2930 ret = alloc_eb_folio_array(new, false); 2931 if (ret) 2932 goto release_eb; 2933 2934 ASSERT(num_extent_folios(src) == num_extent_folios(new), 2935 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 2936 /* Explicitly use the cached num_extent value from now on. */ 2937 num_folios = num_extent_folios(src); 2938 for (int i = 0; i < num_folios; i++) { 2939 struct folio *folio = new->folios[i]; 2940 2941 ret = attach_extent_buffer_folio(new, folio, NULL); 2942 if (ret < 0) 2943 goto cleanup_folios; 2944 WARN_ON(folio_test_dirty(folio)); 2945 } 2946 for (int i = 0; i < num_folios; i++) 2947 folio_put(new->folios[i]); 2948 2949 copy_extent_buffer_full(new, src); 2950 set_extent_buffer_uptodate(new); 2951 2952 return new; 2953 2954 cleanup_folios: 2955 cleanup_extent_buffer_folios(new); 2956 release_eb: 2957 btrfs_release_extent_buffer(new); 2958 return NULL; 2959 } 2960 2961 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2962 u64 start) 2963 { 2964 struct extent_buffer *eb; 2965 int ret; 2966 2967 eb = __alloc_extent_buffer(fs_info, start); 2968 if (!eb) 2969 return NULL; 2970 2971 ret = alloc_eb_folio_array(eb, false); 2972 if (ret) 2973 goto release_eb; 2974 2975 for (int i = 0; i < num_extent_folios(eb); i++) { 2976 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2977 if (ret < 0) 2978 goto cleanup_folios; 2979 } 2980 for (int i = 0; i < num_extent_folios(eb); i++) 2981 folio_put(eb->folios[i]); 2982 2983 set_extent_buffer_uptodate(eb); 2984 btrfs_set_header_nritems(eb, 0); 2985 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2986 2987 return eb; 2988 2989 cleanup_folios: 2990 cleanup_extent_buffer_folios(eb); 2991 release_eb: 2992 btrfs_release_extent_buffer(eb); 2993 return NULL; 2994 } 2995 2996 static void check_buffer_tree_ref(struct extent_buffer *eb) 2997 { 2998 int refs; 2999 /* 3000 * The TREE_REF bit is first set when the extent_buffer is added to the 3001 * xarray. It is also reset, if unset, when a new reference is created 3002 * by find_extent_buffer. 3003 * 3004 * It is only cleared in two cases: freeing the last non-tree 3005 * reference to the extent_buffer when its STALE bit is set or 3006 * calling release_folio when the tree reference is the only reference. 3007 * 3008 * In both cases, care is taken to ensure that the extent_buffer's 3009 * pages are not under io. However, release_folio can be concurrently 3010 * called with creating new references, which is prone to race 3011 * conditions between the calls to check_buffer_tree_ref in those 3012 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3013 * 3014 * The actual lifetime of the extent_buffer in the xarray is adequately 3015 * protected by the refcount, but the TREE_REF bit and its corresponding 3016 * reference are not. To protect against this class of races, we call 3017 * check_buffer_tree_ref() from the code paths which trigger io. Note that 3018 * once io is initiated, TREE_REF can no longer be cleared, so that is 3019 * the moment at which any such race is best fixed. 3020 */ 3021 refs = refcount_read(&eb->refs); 3022 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3023 return; 3024 3025 spin_lock(&eb->refs_lock); 3026 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3027 refcount_inc(&eb->refs); 3028 spin_unlock(&eb->refs_lock); 3029 } 3030 3031 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 3032 { 3033 check_buffer_tree_ref(eb); 3034 3035 for (int i = 0; i < num_extent_folios(eb); i++) 3036 folio_mark_accessed(eb->folios[i]); 3037 } 3038 3039 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3040 u64 start) 3041 { 3042 struct extent_buffer *eb; 3043 3044 eb = find_extent_buffer_nolock(fs_info, start); 3045 if (!eb) 3046 return NULL; 3047 /* 3048 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3049 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3050 * another task running free_extent_buffer() might have seen that flag 3051 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3052 * writeback flags not set) and it's still in the tree (flag 3053 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3054 * decrementing the extent buffer's reference count twice. So here we 3055 * could race and increment the eb's reference count, clear its stale 3056 * flag, mark it as dirty and drop our reference before the other task 3057 * finishes executing free_extent_buffer, which would later result in 3058 * an attempt to free an extent buffer that is dirty. 3059 */ 3060 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3061 spin_lock(&eb->refs_lock); 3062 spin_unlock(&eb->refs_lock); 3063 } 3064 mark_extent_buffer_accessed(eb); 3065 return eb; 3066 } 3067 3068 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3069 u64 start) 3070 { 3071 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3072 struct extent_buffer *eb, *exists = NULL; 3073 int ret; 3074 3075 eb = find_extent_buffer(fs_info, start); 3076 if (eb) 3077 return eb; 3078 eb = alloc_dummy_extent_buffer(fs_info, start); 3079 if (!eb) 3080 return ERR_PTR(-ENOMEM); 3081 eb->fs_info = fs_info; 3082 again: 3083 xa_lock_irq(&fs_info->buffer_tree); 3084 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, 3085 NULL, eb, GFP_NOFS); 3086 if (xa_is_err(exists)) { 3087 ret = xa_err(exists); 3088 xa_unlock_irq(&fs_info->buffer_tree); 3089 btrfs_release_extent_buffer(eb); 3090 return ERR_PTR(ret); 3091 } 3092 if (exists) { 3093 if (!refcount_inc_not_zero(&exists->refs)) { 3094 /* The extent buffer is being freed, retry. */ 3095 xa_unlock_irq(&fs_info->buffer_tree); 3096 goto again; 3097 } 3098 xa_unlock_irq(&fs_info->buffer_tree); 3099 btrfs_release_extent_buffer(eb); 3100 return exists; 3101 } 3102 xa_unlock_irq(&fs_info->buffer_tree); 3103 check_buffer_tree_ref(eb); 3104 3105 return eb; 3106 #else 3107 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3108 return NULL; 3109 #endif 3110 } 3111 3112 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3113 struct folio *folio) 3114 { 3115 struct extent_buffer *exists; 3116 3117 lockdep_assert_held(&folio->mapping->i_private_lock); 3118 3119 /* 3120 * For subpage case, we completely rely on xarray to ensure we don't try 3121 * to insert two ebs for the same bytenr. So here we always return NULL 3122 * and just continue. 3123 */ 3124 if (btrfs_meta_is_subpage(fs_info)) 3125 return NULL; 3126 3127 /* Page not yet attached to an extent buffer */ 3128 if (!folio_test_private(folio)) 3129 return NULL; 3130 3131 /* 3132 * We could have already allocated an eb for this folio and attached one 3133 * so lets see if we can get a ref on the existing eb, and if we can we 3134 * know it's good and we can just return that one, else we know we can 3135 * just overwrite folio private. 3136 */ 3137 exists = folio_get_private(folio); 3138 if (refcount_inc_not_zero(&exists->refs)) 3139 return exists; 3140 3141 WARN_ON(folio_test_dirty(folio)); 3142 folio_detach_private(folio); 3143 return NULL; 3144 } 3145 3146 /* 3147 * Validate alignment constraints of eb at logical address @start. 3148 */ 3149 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3150 { 3151 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3152 btrfs_err(fs_info, "bad tree block start %llu", start); 3153 return true; 3154 } 3155 3156 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) { 3157 btrfs_err(fs_info, 3158 "tree block is not nodesize aligned, start %llu nodesize %u", 3159 start, fs_info->nodesize); 3160 return true; 3161 } 3162 if (fs_info->nodesize >= PAGE_SIZE && 3163 !PAGE_ALIGNED(start)) { 3164 btrfs_err(fs_info, 3165 "tree block is not page aligned, start %llu nodesize %u", 3166 start, fs_info->nodesize); 3167 return true; 3168 } 3169 if (!IS_ALIGNED(start, fs_info->nodesize) && 3170 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3171 btrfs_warn(fs_info, 3172 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3173 start, fs_info->nodesize); 3174 } 3175 return false; 3176 } 3177 3178 /* 3179 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3180 * Return >0 if there is already another extent buffer for the range, 3181 * and @found_eb_ret would be updated. 3182 * Return -EAGAIN if the filemap has an existing folio but with different size 3183 * than @eb. 3184 * The caller needs to free the existing folios and retry using the same order. 3185 */ 3186 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3187 struct btrfs_folio_state *prealloc, 3188 struct extent_buffer **found_eb_ret) 3189 { 3190 3191 struct btrfs_fs_info *fs_info = eb->fs_info; 3192 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3193 const pgoff_t index = eb->start >> PAGE_SHIFT; 3194 struct folio *existing_folio; 3195 int ret; 3196 3197 ASSERT(found_eb_ret); 3198 3199 /* Caller should ensure the folio exists. */ 3200 ASSERT(eb->folios[i]); 3201 3202 retry: 3203 existing_folio = NULL; 3204 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3205 GFP_NOFS | __GFP_NOFAIL); 3206 if (!ret) 3207 goto finish; 3208 3209 existing_folio = filemap_lock_folio(mapping, index + i); 3210 /* The page cache only exists for a very short time, just retry. */ 3211 if (IS_ERR(existing_folio)) 3212 goto retry; 3213 3214 /* For now, we should only have single-page folios for btree inode. */ 3215 ASSERT(folio_nr_pages(existing_folio) == 1); 3216 3217 if (folio_size(existing_folio) != eb->folio_size) { 3218 folio_unlock(existing_folio); 3219 folio_put(existing_folio); 3220 return -EAGAIN; 3221 } 3222 3223 finish: 3224 spin_lock(&mapping->i_private_lock); 3225 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3226 /* We're going to reuse the existing page, can drop our folio now. */ 3227 __free_page(folio_page(eb->folios[i], 0)); 3228 eb->folios[i] = existing_folio; 3229 } else if (existing_folio) { 3230 struct extent_buffer *existing_eb; 3231 3232 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3233 if (existing_eb) { 3234 /* The extent buffer still exists, we can use it directly. */ 3235 *found_eb_ret = existing_eb; 3236 spin_unlock(&mapping->i_private_lock); 3237 folio_unlock(existing_folio); 3238 folio_put(existing_folio); 3239 return 1; 3240 } 3241 /* The extent buffer no longer exists, we can reuse the folio. */ 3242 __free_page(folio_page(eb->folios[i], 0)); 3243 eb->folios[i] = existing_folio; 3244 } 3245 eb->folio_size = folio_size(eb->folios[i]); 3246 eb->folio_shift = folio_shift(eb->folios[i]); 3247 /* Should not fail, as we have preallocated the memory. */ 3248 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3249 ASSERT(!ret); 3250 /* 3251 * To inform we have an extra eb under allocation, so that 3252 * detach_extent_buffer_page() won't release the folio private when the 3253 * eb hasn't been inserted into the xarray yet. 3254 * 3255 * The ref will be decreased when the eb releases the page, in 3256 * detach_extent_buffer_page(). Thus needs no special handling in the 3257 * error path. 3258 */ 3259 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3260 spin_unlock(&mapping->i_private_lock); 3261 return 0; 3262 } 3263 3264 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3265 u64 start, u64 owner_root, int level) 3266 { 3267 int attached = 0; 3268 struct extent_buffer *eb; 3269 struct extent_buffer *existing_eb = NULL; 3270 struct btrfs_folio_state *prealloc = NULL; 3271 u64 lockdep_owner = owner_root; 3272 bool page_contig = true; 3273 int uptodate = 1; 3274 int ret; 3275 3276 if (check_eb_alignment(fs_info, start)) 3277 return ERR_PTR(-EINVAL); 3278 3279 #if BITS_PER_LONG == 32 3280 if (start >= MAX_LFS_FILESIZE) { 3281 btrfs_err_rl(fs_info, 3282 "extent buffer %llu is beyond 32bit page cache limit", start); 3283 btrfs_err_32bit_limit(fs_info); 3284 return ERR_PTR(-EOVERFLOW); 3285 } 3286 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3287 btrfs_warn_32bit_limit(fs_info); 3288 #endif 3289 3290 eb = find_extent_buffer(fs_info, start); 3291 if (eb) 3292 return eb; 3293 3294 eb = __alloc_extent_buffer(fs_info, start); 3295 if (!eb) 3296 return ERR_PTR(-ENOMEM); 3297 3298 /* 3299 * The reloc trees are just snapshots, so we need them to appear to be 3300 * just like any other fs tree WRT lockdep. 3301 */ 3302 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3303 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3304 3305 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3306 3307 /* 3308 * Preallocate folio private for subpage case, so that we won't 3309 * allocate memory with i_private_lock nor page lock hold. 3310 * 3311 * The memory will be freed by attach_extent_buffer_page() or freed 3312 * manually if we exit earlier. 3313 */ 3314 if (btrfs_meta_is_subpage(fs_info)) { 3315 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3316 if (IS_ERR(prealloc)) { 3317 ret = PTR_ERR(prealloc); 3318 goto out; 3319 } 3320 } 3321 3322 reallocate: 3323 /* Allocate all pages first. */ 3324 ret = alloc_eb_folio_array(eb, true); 3325 if (ret < 0) { 3326 btrfs_free_folio_state(prealloc); 3327 goto out; 3328 } 3329 3330 /* Attach all pages to the filemap. */ 3331 for (int i = 0; i < num_extent_folios(eb); i++) { 3332 struct folio *folio; 3333 3334 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3335 if (ret > 0) { 3336 ASSERT(existing_eb); 3337 goto out; 3338 } 3339 3340 /* 3341 * TODO: Special handling for a corner case where the order of 3342 * folios mismatch between the new eb and filemap. 3343 * 3344 * This happens when: 3345 * 3346 * - the new eb is using higher order folio 3347 * 3348 * - the filemap is still using 0-order folios for the range 3349 * This can happen at the previous eb allocation, and we don't 3350 * have higher order folio for the call. 3351 * 3352 * - the existing eb has already been freed 3353 * 3354 * In this case, we have to free the existing folios first, and 3355 * re-allocate using the same order. 3356 * Thankfully this is not going to happen yet, as we're still 3357 * using 0-order folios. 3358 */ 3359 if (unlikely(ret == -EAGAIN)) { 3360 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3361 goto reallocate; 3362 } 3363 attached++; 3364 3365 /* 3366 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3367 * reliable, as we may choose to reuse the existing page cache 3368 * and free the allocated page. 3369 */ 3370 folio = eb->folios[i]; 3371 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3372 3373 /* 3374 * Check if the current page is physically contiguous with previous eb 3375 * page. 3376 * At this stage, either we allocated a large folio, thus @i 3377 * would only be 0, or we fall back to per-page allocation. 3378 */ 3379 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3380 page_contig = false; 3381 3382 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3383 uptodate = 0; 3384 3385 /* 3386 * We can't unlock the pages just yet since the extent buffer 3387 * hasn't been properly inserted into the xarray, this opens a 3388 * race with btree_release_folio() which can free a page while we 3389 * are still filling in all pages for the buffer and we could crash. 3390 */ 3391 } 3392 if (uptodate) 3393 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3394 /* All pages are physically contiguous, can skip cross page handling. */ 3395 if (page_contig) 3396 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3397 again: 3398 xa_lock_irq(&fs_info->buffer_tree); 3399 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3400 start >> fs_info->nodesize_bits, NULL, eb, 3401 GFP_NOFS); 3402 if (xa_is_err(existing_eb)) { 3403 ret = xa_err(existing_eb); 3404 xa_unlock_irq(&fs_info->buffer_tree); 3405 goto out; 3406 } 3407 if (existing_eb) { 3408 if (!refcount_inc_not_zero(&existing_eb->refs)) { 3409 xa_unlock_irq(&fs_info->buffer_tree); 3410 goto again; 3411 } 3412 xa_unlock_irq(&fs_info->buffer_tree); 3413 goto out; 3414 } 3415 xa_unlock_irq(&fs_info->buffer_tree); 3416 3417 /* add one reference for the tree */ 3418 check_buffer_tree_ref(eb); 3419 3420 /* 3421 * Now it's safe to unlock the pages because any calls to 3422 * btree_release_folio will correctly detect that a page belongs to a 3423 * live buffer and won't free them prematurely. 3424 */ 3425 for (int i = 0; i < num_extent_folios(eb); i++) { 3426 folio_unlock(eb->folios[i]); 3427 /* 3428 * A folio that has been added to an address_space mapping 3429 * should not continue holding the refcount from its original 3430 * allocation indefinitely. 3431 */ 3432 folio_put(eb->folios[i]); 3433 } 3434 return eb; 3435 3436 out: 3437 WARN_ON(!refcount_dec_and_test(&eb->refs)); 3438 3439 /* 3440 * Any attached folios need to be detached before we unlock them. This 3441 * is because when we're inserting our new folios into the mapping, and 3442 * then attaching our eb to that folio. If we fail to insert our folio 3443 * we'll lookup the folio for that index, and grab that EB. We do not 3444 * want that to grab this eb, as we're getting ready to free it. So we 3445 * have to detach it first and then unlock it. 3446 * 3447 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3448 */ 3449 for (int i = 0; i < num_extent_pages(eb); i++) { 3450 struct folio *folio = eb->folios[i]; 3451 3452 if (i < attached) { 3453 ASSERT(folio); 3454 detach_extent_buffer_folio(eb, folio); 3455 folio_unlock(folio); 3456 } else if (!folio) { 3457 continue; 3458 } 3459 3460 folio_put(folio); 3461 eb->folios[i] = NULL; 3462 } 3463 btrfs_release_extent_buffer(eb); 3464 if (ret < 0) 3465 return ERR_PTR(ret); 3466 ASSERT(existing_eb); 3467 return existing_eb; 3468 } 3469 3470 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3471 { 3472 struct extent_buffer *eb = 3473 container_of(head, struct extent_buffer, rcu_head); 3474 3475 kmem_cache_free(extent_buffer_cache, eb); 3476 } 3477 3478 static int release_extent_buffer(struct extent_buffer *eb) 3479 __releases(&eb->refs_lock) 3480 { 3481 lockdep_assert_held(&eb->refs_lock); 3482 3483 if (refcount_dec_and_test(&eb->refs)) { 3484 struct btrfs_fs_info *fs_info = eb->fs_info; 3485 3486 spin_unlock(&eb->refs_lock); 3487 3488 /* 3489 * We're erasing, theoretically there will be no allocations, so 3490 * just use GFP_ATOMIC. 3491 * 3492 * We use cmpxchg instead of erase because we do not know if 3493 * this eb is actually in the tree or not, we could be cleaning 3494 * up an eb that we allocated but never inserted into the tree. 3495 * Thus use cmpxchg to remove it from the tree if it is there, 3496 * or leave the other entry if this isn't in the tree. 3497 * 3498 * The documentation says that putting a NULL value is the same 3499 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3500 * in this case. 3501 */ 3502 xa_cmpxchg_irq(&fs_info->buffer_tree, 3503 eb->start >> fs_info->nodesize_bits, eb, NULL, 3504 GFP_ATOMIC); 3505 3506 btrfs_leak_debug_del_eb(eb); 3507 /* Should be safe to release folios at this point. */ 3508 btrfs_release_extent_buffer_folios(eb); 3509 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3510 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3511 kmem_cache_free(extent_buffer_cache, eb); 3512 return 1; 3513 } 3514 #endif 3515 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3516 return 1; 3517 } 3518 spin_unlock(&eb->refs_lock); 3519 3520 return 0; 3521 } 3522 3523 void free_extent_buffer(struct extent_buffer *eb) 3524 { 3525 int refs; 3526 if (!eb) 3527 return; 3528 3529 refs = refcount_read(&eb->refs); 3530 while (1) { 3531 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { 3532 if (refs == 1) 3533 break; 3534 } else if (refs <= 3) { 3535 break; 3536 } 3537 3538 /* Optimization to avoid locking eb->refs_lock. */ 3539 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) 3540 return; 3541 } 3542 3543 spin_lock(&eb->refs_lock); 3544 if (refcount_read(&eb->refs) == 2 && 3545 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3546 !extent_buffer_under_io(eb) && 3547 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3548 refcount_dec(&eb->refs); 3549 3550 /* 3551 * I know this is terrible, but it's temporary until we stop tracking 3552 * the uptodate bits and such for the extent buffers. 3553 */ 3554 release_extent_buffer(eb); 3555 } 3556 3557 void free_extent_buffer_stale(struct extent_buffer *eb) 3558 { 3559 if (!eb) 3560 return; 3561 3562 spin_lock(&eb->refs_lock); 3563 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3564 3565 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3566 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3567 refcount_dec(&eb->refs); 3568 release_extent_buffer(eb); 3569 } 3570 3571 static void btree_clear_folio_dirty_tag(struct folio *folio) 3572 { 3573 ASSERT(!folio_test_dirty(folio)); 3574 ASSERT(folio_test_locked(folio)); 3575 xa_lock_irq(&folio->mapping->i_pages); 3576 if (!folio_test_dirty(folio)) 3577 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3578 PAGECACHE_TAG_DIRTY); 3579 xa_unlock_irq(&folio->mapping->i_pages); 3580 } 3581 3582 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3583 struct extent_buffer *eb) 3584 { 3585 struct btrfs_fs_info *fs_info = eb->fs_info; 3586 3587 btrfs_assert_tree_write_locked(eb); 3588 3589 if (trans && btrfs_header_generation(eb) != trans->transid) 3590 return; 3591 3592 /* 3593 * Instead of clearing the dirty flag off of the buffer, mark it as 3594 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3595 * write-ordering in zoned mode, without the need to later re-dirty 3596 * the extent_buffer. 3597 * 3598 * The actual zeroout of the buffer will happen later in 3599 * btree_csum_one_bio. 3600 */ 3601 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3602 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3603 return; 3604 } 3605 3606 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3607 return; 3608 3609 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3610 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3611 fs_info->dirty_metadata_batch); 3612 3613 for (int i = 0; i < num_extent_folios(eb); i++) { 3614 struct folio *folio = eb->folios[i]; 3615 bool last; 3616 3617 if (!folio_test_dirty(folio)) 3618 continue; 3619 folio_lock(folio); 3620 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3621 if (last) 3622 btree_clear_folio_dirty_tag(folio); 3623 folio_unlock(folio); 3624 } 3625 WARN_ON(refcount_read(&eb->refs) == 0); 3626 } 3627 3628 void set_extent_buffer_dirty(struct extent_buffer *eb) 3629 { 3630 bool was_dirty; 3631 3632 check_buffer_tree_ref(eb); 3633 3634 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3635 3636 WARN_ON(refcount_read(&eb->refs) == 0); 3637 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3638 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3639 3640 if (!was_dirty) { 3641 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3642 3643 /* 3644 * For subpage case, we can have other extent buffers in the 3645 * same page, and in clear_extent_buffer_dirty() we 3646 * have to clear page dirty without subpage lock held. 3647 * This can cause race where our page gets dirty cleared after 3648 * we just set it. 3649 * 3650 * Thankfully, clear_extent_buffer_dirty() has locked 3651 * its page for other reasons, we can use page lock to prevent 3652 * the above race. 3653 */ 3654 if (subpage) 3655 folio_lock(eb->folios[0]); 3656 for (int i = 0; i < num_extent_folios(eb); i++) 3657 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3658 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3659 if (subpage) 3660 folio_unlock(eb->folios[0]); 3661 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3662 eb->len, 3663 eb->fs_info->dirty_metadata_batch); 3664 } 3665 #ifdef CONFIG_BTRFS_DEBUG 3666 for (int i = 0; i < num_extent_folios(eb); i++) 3667 ASSERT(folio_test_dirty(eb->folios[i])); 3668 #endif 3669 } 3670 3671 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3672 { 3673 3674 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3675 for (int i = 0; i < num_extent_folios(eb); i++) { 3676 struct folio *folio = eb->folios[i]; 3677 3678 if (!folio) 3679 continue; 3680 3681 btrfs_meta_folio_clear_uptodate(folio, eb); 3682 } 3683 } 3684 3685 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3686 { 3687 3688 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3689 for (int i = 0; i < num_extent_folios(eb); i++) 3690 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3691 } 3692 3693 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3694 { 3695 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); 3696 } 3697 3698 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3699 { 3700 struct extent_buffer *eb = bbio->private; 3701 bool uptodate = !bbio->bio.bi_status; 3702 3703 /* 3704 * If the extent buffer is marked UPTODATE before the read operation 3705 * completes, other calls to read_extent_buffer_pages() will return 3706 * early without waiting for the read to finish, causing data races. 3707 */ 3708 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3709 3710 eb->read_mirror = bbio->mirror_num; 3711 3712 if (uptodate && 3713 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3714 uptodate = false; 3715 3716 if (uptodate) 3717 set_extent_buffer_uptodate(eb); 3718 else 3719 clear_extent_buffer_uptodate(eb); 3720 3721 clear_extent_buffer_reading(eb); 3722 free_extent_buffer(eb); 3723 3724 bio_put(&bbio->bio); 3725 } 3726 3727 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3728 const struct btrfs_tree_parent_check *check) 3729 { 3730 struct btrfs_bio *bbio; 3731 3732 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3733 return 0; 3734 3735 /* 3736 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3737 * operation, which could potentially still be in flight. In this case 3738 * we simply want to return an error. 3739 */ 3740 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3741 return -EIO; 3742 3743 /* Someone else is already reading the buffer, just wait for it. */ 3744 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3745 return 0; 3746 3747 /* 3748 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3749 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3750 * started and finished reading the same eb. In this case, UPTODATE 3751 * will now be set, and we shouldn't read it in again. 3752 */ 3753 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3754 clear_extent_buffer_reading(eb); 3755 return 0; 3756 } 3757 3758 eb->read_mirror = 0; 3759 check_buffer_tree_ref(eb); 3760 refcount_inc(&eb->refs); 3761 3762 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3763 REQ_OP_READ | REQ_META, eb->fs_info, 3764 end_bbio_meta_read, eb); 3765 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3766 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3767 bbio->file_offset = eb->start; 3768 memcpy(&bbio->parent_check, check, sizeof(*check)); 3769 for (int i = 0; i < num_extent_folios(eb); i++) { 3770 struct folio *folio = eb->folios[i]; 3771 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3772 u32 range_len = min_t(u64, folio_end(folio), 3773 eb->start + eb->len) - range_start; 3774 3775 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3776 offset_in_folio(folio, range_start)); 3777 } 3778 btrfs_submit_bbio(bbio, mirror_num); 3779 return 0; 3780 } 3781 3782 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3783 const struct btrfs_tree_parent_check *check) 3784 { 3785 int ret; 3786 3787 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3788 if (ret < 0) 3789 return ret; 3790 3791 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3792 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3793 return -EIO; 3794 return 0; 3795 } 3796 3797 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3798 unsigned long len) 3799 { 3800 btrfs_warn(eb->fs_info, 3801 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3802 eb->start, eb->len, start, len); 3803 DEBUG_WARN(); 3804 3805 return true; 3806 } 3807 3808 /* 3809 * Check if the [start, start + len) range is valid before reading/writing 3810 * the eb. 3811 * NOTE: @start and @len are offset inside the eb, not logical address. 3812 * 3813 * Caller should not touch the dst/src memory if this function returns error. 3814 */ 3815 static inline int check_eb_range(const struct extent_buffer *eb, 3816 unsigned long start, unsigned long len) 3817 { 3818 unsigned long offset; 3819 3820 /* start, start + len should not go beyond eb->len nor overflow */ 3821 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3822 return report_eb_range(eb, start, len); 3823 3824 return false; 3825 } 3826 3827 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3828 unsigned long start, unsigned long len) 3829 { 3830 const int unit_size = eb->folio_size; 3831 size_t cur; 3832 size_t offset; 3833 char *dst = (char *)dstv; 3834 unsigned long i = get_eb_folio_index(eb, start); 3835 3836 if (check_eb_range(eb, start, len)) { 3837 /* 3838 * Invalid range hit, reset the memory, so callers won't get 3839 * some random garbage for their uninitialized memory. 3840 */ 3841 memset(dstv, 0, len); 3842 return; 3843 } 3844 3845 if (eb->addr) { 3846 memcpy(dstv, eb->addr + start, len); 3847 return; 3848 } 3849 3850 offset = get_eb_offset_in_folio(eb, start); 3851 3852 while (len > 0) { 3853 char *kaddr; 3854 3855 cur = min(len, unit_size - offset); 3856 kaddr = folio_address(eb->folios[i]); 3857 memcpy(dst, kaddr + offset, cur); 3858 3859 dst += cur; 3860 len -= cur; 3861 offset = 0; 3862 i++; 3863 } 3864 } 3865 3866 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3867 void __user *dstv, 3868 unsigned long start, unsigned long len) 3869 { 3870 const int unit_size = eb->folio_size; 3871 size_t cur; 3872 size_t offset; 3873 char __user *dst = (char __user *)dstv; 3874 unsigned long i = get_eb_folio_index(eb, start); 3875 int ret = 0; 3876 3877 WARN_ON(start > eb->len); 3878 WARN_ON(start + len > eb->start + eb->len); 3879 3880 if (eb->addr) { 3881 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3882 ret = -EFAULT; 3883 return ret; 3884 } 3885 3886 offset = get_eb_offset_in_folio(eb, start); 3887 3888 while (len > 0) { 3889 char *kaddr; 3890 3891 cur = min(len, unit_size - offset); 3892 kaddr = folio_address(eb->folios[i]); 3893 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3894 ret = -EFAULT; 3895 break; 3896 } 3897 3898 dst += cur; 3899 len -= cur; 3900 offset = 0; 3901 i++; 3902 } 3903 3904 return ret; 3905 } 3906 3907 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3908 unsigned long start, unsigned long len) 3909 { 3910 const int unit_size = eb->folio_size; 3911 size_t cur; 3912 size_t offset; 3913 char *kaddr; 3914 char *ptr = (char *)ptrv; 3915 unsigned long i = get_eb_folio_index(eb, start); 3916 int ret = 0; 3917 3918 if (check_eb_range(eb, start, len)) 3919 return -EINVAL; 3920 3921 if (eb->addr) 3922 return memcmp(ptrv, eb->addr + start, len); 3923 3924 offset = get_eb_offset_in_folio(eb, start); 3925 3926 while (len > 0) { 3927 cur = min(len, unit_size - offset); 3928 kaddr = folio_address(eb->folios[i]); 3929 ret = memcmp(ptr, kaddr + offset, cur); 3930 if (ret) 3931 break; 3932 3933 ptr += cur; 3934 len -= cur; 3935 offset = 0; 3936 i++; 3937 } 3938 return ret; 3939 } 3940 3941 /* 3942 * Check that the extent buffer is uptodate. 3943 * 3944 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3945 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3946 */ 3947 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3948 { 3949 struct btrfs_fs_info *fs_info = eb->fs_info; 3950 struct folio *folio = eb->folios[i]; 3951 3952 ASSERT(folio); 3953 3954 /* 3955 * If we are using the commit root we could potentially clear a page 3956 * Uptodate while we're using the extent buffer that we've previously 3957 * looked up. We don't want to complain in this case, as the page was 3958 * valid before, we just didn't write it out. Instead we want to catch 3959 * the case where we didn't actually read the block properly, which 3960 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3961 */ 3962 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3963 return; 3964 3965 if (btrfs_meta_is_subpage(fs_info)) { 3966 folio = eb->folios[0]; 3967 ASSERT(i == 0); 3968 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3969 eb->start, eb->len))) 3970 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3971 } else { 3972 WARN_ON(!folio_test_uptodate(folio)); 3973 } 3974 } 3975 3976 static void __write_extent_buffer(const struct extent_buffer *eb, 3977 const void *srcv, unsigned long start, 3978 unsigned long len, bool use_memmove) 3979 { 3980 const int unit_size = eb->folio_size; 3981 size_t cur; 3982 size_t offset; 3983 char *kaddr; 3984 const char *src = (const char *)srcv; 3985 unsigned long i = get_eb_folio_index(eb, start); 3986 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3987 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3988 3989 if (check_eb_range(eb, start, len)) 3990 return; 3991 3992 if (eb->addr) { 3993 if (use_memmove) 3994 memmove(eb->addr + start, srcv, len); 3995 else 3996 memcpy(eb->addr + start, srcv, len); 3997 return; 3998 } 3999 4000 offset = get_eb_offset_in_folio(eb, start); 4001 4002 while (len > 0) { 4003 if (check_uptodate) 4004 assert_eb_folio_uptodate(eb, i); 4005 4006 cur = min(len, unit_size - offset); 4007 kaddr = folio_address(eb->folios[i]); 4008 if (use_memmove) 4009 memmove(kaddr + offset, src, cur); 4010 else 4011 memcpy(kaddr + offset, src, cur); 4012 4013 src += cur; 4014 len -= cur; 4015 offset = 0; 4016 i++; 4017 } 4018 } 4019 4020 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4021 unsigned long start, unsigned long len) 4022 { 4023 return __write_extent_buffer(eb, srcv, start, len, false); 4024 } 4025 4026 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4027 unsigned long start, unsigned long len) 4028 { 4029 const int unit_size = eb->folio_size; 4030 unsigned long cur = start; 4031 4032 if (eb->addr) { 4033 memset(eb->addr + start, c, len); 4034 return; 4035 } 4036 4037 while (cur < start + len) { 4038 unsigned long index = get_eb_folio_index(eb, cur); 4039 unsigned int offset = get_eb_offset_in_folio(eb, cur); 4040 unsigned int cur_len = min(start + len - cur, unit_size - offset); 4041 4042 assert_eb_folio_uptodate(eb, index); 4043 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4044 4045 cur += cur_len; 4046 } 4047 } 4048 4049 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4050 unsigned long len) 4051 { 4052 if (check_eb_range(eb, start, len)) 4053 return; 4054 return memset_extent_buffer(eb, 0, start, len); 4055 } 4056 4057 void copy_extent_buffer_full(const struct extent_buffer *dst, 4058 const struct extent_buffer *src) 4059 { 4060 const int unit_size = src->folio_size; 4061 unsigned long cur = 0; 4062 4063 ASSERT(dst->len == src->len); 4064 4065 while (cur < src->len) { 4066 unsigned long index = get_eb_folio_index(src, cur); 4067 unsigned long offset = get_eb_offset_in_folio(src, cur); 4068 unsigned long cur_len = min(src->len, unit_size - offset); 4069 void *addr = folio_address(src->folios[index]) + offset; 4070 4071 write_extent_buffer(dst, addr, cur, cur_len); 4072 4073 cur += cur_len; 4074 } 4075 } 4076 4077 void copy_extent_buffer(const struct extent_buffer *dst, 4078 const struct extent_buffer *src, 4079 unsigned long dst_offset, unsigned long src_offset, 4080 unsigned long len) 4081 { 4082 const int unit_size = dst->folio_size; 4083 u64 dst_len = dst->len; 4084 size_t cur; 4085 size_t offset; 4086 char *kaddr; 4087 unsigned long i = get_eb_folio_index(dst, dst_offset); 4088 4089 if (check_eb_range(dst, dst_offset, len) || 4090 check_eb_range(src, src_offset, len)) 4091 return; 4092 4093 WARN_ON(src->len != dst_len); 4094 4095 offset = get_eb_offset_in_folio(dst, dst_offset); 4096 4097 while (len > 0) { 4098 assert_eb_folio_uptodate(dst, i); 4099 4100 cur = min(len, (unsigned long)(unit_size - offset)); 4101 4102 kaddr = folio_address(dst->folios[i]); 4103 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4104 4105 src_offset += cur; 4106 len -= cur; 4107 offset = 0; 4108 i++; 4109 } 4110 } 4111 4112 /* 4113 * Calculate the folio and offset of the byte containing the given bit number. 4114 * 4115 * @eb: the extent buffer 4116 * @start: offset of the bitmap item in the extent buffer 4117 * @nr: bit number 4118 * @folio_index: return index of the folio in the extent buffer that contains 4119 * the given bit number 4120 * @folio_offset: return offset into the folio given by folio_index 4121 * 4122 * This helper hides the ugliness of finding the byte in an extent buffer which 4123 * contains a given bit. 4124 */ 4125 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4126 unsigned long start, unsigned long nr, 4127 unsigned long *folio_index, 4128 size_t *folio_offset) 4129 { 4130 size_t byte_offset = BIT_BYTE(nr); 4131 size_t offset; 4132 4133 /* 4134 * The byte we want is the offset of the extent buffer + the offset of 4135 * the bitmap item in the extent buffer + the offset of the byte in the 4136 * bitmap item. 4137 */ 4138 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4139 4140 *folio_index = offset >> eb->folio_shift; 4141 *folio_offset = offset_in_eb_folio(eb, offset); 4142 } 4143 4144 /* 4145 * Determine whether a bit in a bitmap item is set. 4146 * 4147 * @eb: the extent buffer 4148 * @start: offset of the bitmap item in the extent buffer 4149 * @nr: bit number to test 4150 */ 4151 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4152 unsigned long nr) 4153 { 4154 unsigned long i; 4155 size_t offset; 4156 u8 *kaddr; 4157 4158 eb_bitmap_offset(eb, start, nr, &i, &offset); 4159 assert_eb_folio_uptodate(eb, i); 4160 kaddr = folio_address(eb->folios[i]); 4161 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4162 } 4163 4164 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4165 { 4166 unsigned long index = get_eb_folio_index(eb, bytenr); 4167 4168 if (check_eb_range(eb, bytenr, 1)) 4169 return NULL; 4170 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4171 } 4172 4173 /* 4174 * Set an area of a bitmap to 1. 4175 * 4176 * @eb: the extent buffer 4177 * @start: offset of the bitmap item in the extent buffer 4178 * @pos: bit number of the first bit 4179 * @len: number of bits to set 4180 */ 4181 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4182 unsigned long pos, unsigned long len) 4183 { 4184 unsigned int first_byte = start + BIT_BYTE(pos); 4185 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4186 const bool same_byte = (first_byte == last_byte); 4187 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4188 u8 *kaddr; 4189 4190 if (same_byte) 4191 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4192 4193 /* Handle the first byte. */ 4194 kaddr = extent_buffer_get_byte(eb, first_byte); 4195 *kaddr |= mask; 4196 if (same_byte) 4197 return; 4198 4199 /* Handle the byte aligned part. */ 4200 ASSERT(first_byte + 1 <= last_byte); 4201 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4202 4203 /* Handle the last byte. */ 4204 kaddr = extent_buffer_get_byte(eb, last_byte); 4205 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4206 } 4207 4208 4209 /* 4210 * Clear an area of a bitmap. 4211 * 4212 * @eb: the extent buffer 4213 * @start: offset of the bitmap item in the extent buffer 4214 * @pos: bit number of the first bit 4215 * @len: number of bits to clear 4216 */ 4217 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4218 unsigned long start, unsigned long pos, 4219 unsigned long len) 4220 { 4221 unsigned int first_byte = start + BIT_BYTE(pos); 4222 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4223 const bool same_byte = (first_byte == last_byte); 4224 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4225 u8 *kaddr; 4226 4227 if (same_byte) 4228 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4229 4230 /* Handle the first byte. */ 4231 kaddr = extent_buffer_get_byte(eb, first_byte); 4232 *kaddr &= ~mask; 4233 if (same_byte) 4234 return; 4235 4236 /* Handle the byte aligned part. */ 4237 ASSERT(first_byte + 1 <= last_byte); 4238 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4239 4240 /* Handle the last byte. */ 4241 kaddr = extent_buffer_get_byte(eb, last_byte); 4242 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4243 } 4244 4245 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4246 { 4247 unsigned long distance = (src > dst) ? src - dst : dst - src; 4248 return distance < len; 4249 } 4250 4251 void memcpy_extent_buffer(const struct extent_buffer *dst, 4252 unsigned long dst_offset, unsigned long src_offset, 4253 unsigned long len) 4254 { 4255 const int unit_size = dst->folio_size; 4256 unsigned long cur_off = 0; 4257 4258 if (check_eb_range(dst, dst_offset, len) || 4259 check_eb_range(dst, src_offset, len)) 4260 return; 4261 4262 if (dst->addr) { 4263 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4264 4265 if (use_memmove) 4266 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4267 else 4268 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4269 return; 4270 } 4271 4272 while (cur_off < len) { 4273 unsigned long cur_src = cur_off + src_offset; 4274 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4275 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4276 unsigned long cur_len = min(src_offset + len - cur_src, 4277 unit_size - folio_off); 4278 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4279 const bool use_memmove = areas_overlap(src_offset + cur_off, 4280 dst_offset + cur_off, cur_len); 4281 4282 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4283 use_memmove); 4284 cur_off += cur_len; 4285 } 4286 } 4287 4288 void memmove_extent_buffer(const struct extent_buffer *dst, 4289 unsigned long dst_offset, unsigned long src_offset, 4290 unsigned long len) 4291 { 4292 unsigned long dst_end = dst_offset + len - 1; 4293 unsigned long src_end = src_offset + len - 1; 4294 4295 if (check_eb_range(dst, dst_offset, len) || 4296 check_eb_range(dst, src_offset, len)) 4297 return; 4298 4299 if (dst_offset < src_offset) { 4300 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4301 return; 4302 } 4303 4304 if (dst->addr) { 4305 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4306 return; 4307 } 4308 4309 while (len > 0) { 4310 unsigned long src_i; 4311 size_t cur; 4312 size_t dst_off_in_folio; 4313 size_t src_off_in_folio; 4314 void *src_addr; 4315 bool use_memmove; 4316 4317 src_i = get_eb_folio_index(dst, src_end); 4318 4319 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4320 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4321 4322 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4323 cur = min(cur, dst_off_in_folio + 1); 4324 4325 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4326 cur + 1; 4327 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4328 cur); 4329 4330 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4331 use_memmove); 4332 4333 dst_end -= cur; 4334 src_end -= cur; 4335 len -= cur; 4336 } 4337 } 4338 4339 static int try_release_subpage_extent_buffer(struct folio *folio) 4340 { 4341 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4342 struct extent_buffer *eb; 4343 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); 4344 unsigned long index = start; 4345 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; 4346 int ret; 4347 4348 rcu_read_lock(); 4349 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4350 /* 4351 * The same as try_release_extent_buffer(), to ensure the eb 4352 * won't disappear out from under us. 4353 */ 4354 spin_lock(&eb->refs_lock); 4355 rcu_read_unlock(); 4356 4357 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4358 spin_unlock(&eb->refs_lock); 4359 rcu_read_lock(); 4360 continue; 4361 } 4362 4363 /* 4364 * If tree ref isn't set then we know the ref on this eb is a 4365 * real ref, so just return, this eb will likely be freed soon 4366 * anyway. 4367 */ 4368 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4369 spin_unlock(&eb->refs_lock); 4370 break; 4371 } 4372 4373 /* 4374 * Here we don't care about the return value, we will always 4375 * check the folio private at the end. And 4376 * release_extent_buffer() will release the refs_lock. 4377 */ 4378 release_extent_buffer(eb); 4379 rcu_read_lock(); 4380 } 4381 rcu_read_unlock(); 4382 4383 /* 4384 * Finally to check if we have cleared folio private, as if we have 4385 * released all ebs in the page, the folio private should be cleared now. 4386 */ 4387 spin_lock(&folio->mapping->i_private_lock); 4388 if (!folio_test_private(folio)) 4389 ret = 1; 4390 else 4391 ret = 0; 4392 spin_unlock(&folio->mapping->i_private_lock); 4393 return ret; 4394 } 4395 4396 int try_release_extent_buffer(struct folio *folio) 4397 { 4398 struct extent_buffer *eb; 4399 4400 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4401 return try_release_subpage_extent_buffer(folio); 4402 4403 /* 4404 * We need to make sure nobody is changing folio private, as we rely on 4405 * folio private as the pointer to extent buffer. 4406 */ 4407 spin_lock(&folio->mapping->i_private_lock); 4408 if (!folio_test_private(folio)) { 4409 spin_unlock(&folio->mapping->i_private_lock); 4410 return 1; 4411 } 4412 4413 eb = folio_get_private(folio); 4414 BUG_ON(!eb); 4415 4416 /* 4417 * This is a little awful but should be ok, we need to make sure that 4418 * the eb doesn't disappear out from under us while we're looking at 4419 * this page. 4420 */ 4421 spin_lock(&eb->refs_lock); 4422 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4423 spin_unlock(&eb->refs_lock); 4424 spin_unlock(&folio->mapping->i_private_lock); 4425 return 0; 4426 } 4427 spin_unlock(&folio->mapping->i_private_lock); 4428 4429 /* 4430 * If tree ref isn't set then we know the ref on this eb is a real ref, 4431 * so just return, this page will likely be freed soon anyway. 4432 */ 4433 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4434 spin_unlock(&eb->refs_lock); 4435 return 0; 4436 } 4437 4438 return release_extent_buffer(eb); 4439 } 4440 4441 /* 4442 * Attempt to readahead a child block. 4443 * 4444 * @fs_info: the fs_info 4445 * @bytenr: bytenr to read 4446 * @owner_root: objectid of the root that owns this eb 4447 * @gen: generation for the uptodate check, can be 0 4448 * @level: level for the eb 4449 * 4450 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4451 * normal uptodate check of the eb, without checking the generation. If we have 4452 * to read the block we will not block on anything. 4453 */ 4454 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4455 u64 bytenr, u64 owner_root, u64 gen, int level) 4456 { 4457 struct btrfs_tree_parent_check check = { 4458 .level = level, 4459 .transid = gen 4460 }; 4461 struct extent_buffer *eb; 4462 int ret; 4463 4464 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4465 if (IS_ERR(eb)) 4466 return; 4467 4468 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4469 free_extent_buffer(eb); 4470 return; 4471 } 4472 4473 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4474 if (ret < 0) 4475 free_extent_buffer_stale(eb); 4476 else 4477 free_extent_buffer(eb); 4478 } 4479 4480 /* 4481 * Readahead a node's child block. 4482 * 4483 * @node: parent node we're reading from 4484 * @slot: slot in the parent node for the child we want to read 4485 * 4486 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4487 * the slot in the node provided. 4488 */ 4489 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4490 { 4491 btrfs_readahead_tree_block(node->fs_info, 4492 btrfs_node_blockptr(node, slot), 4493 btrfs_header_owner(node), 4494 btrfs_node_ptr_generation(node, slot), 4495 btrfs_header_level(node) - 1); 4496 } 4497