xref: /linux/fs/btrfs/extent_io.c (revision be48bcf004f9d0c9207ff21d0edb3b42f253829e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37 
38 static struct kmem_cache *extent_buffer_cache;
39 
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 	struct btrfs_fs_info *fs_info = eb->fs_info;
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50 
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 	struct btrfs_fs_info *fs_info = eb->fs_info;
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 	list_del(&eb->leak_list);
58 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60 
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 	struct extent_buffer *eb;
64 	unsigned long flags;
65 
66 	/*
67 	 * If we didn't get into open_ctree our allocated_ebs will not be
68 	 * initialized, so just skip this.
69 	 */
70 	if (!fs_info->allocated_ebs.next)
71 		return;
72 
73 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		btrfs_err(fs_info,
79 		       "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 		       eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		WARN_ON_ONCE(1);
84 		kmem_cache_free(extent_buffer_cache, eb);
85 	}
86 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
91 #endif
92 
93 /*
94  * Structure to record info about the bio being assembled, and other info like
95  * how many bytes are there before stripe/ordered extent boundary.
96  */
97 struct btrfs_bio_ctrl {
98 	struct btrfs_bio *bbio;
99 	/* Last byte contained in bbio + 1 . */
100 	loff_t next_file_offset;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_oe_boundary;
103 	blk_opf_t opf;
104 	btrfs_bio_end_io_t end_io_func;
105 	struct writeback_control *wbc;
106 
107 	/*
108 	 * The sectors of the page which are going to be submitted by
109 	 * extent_writepage_io().
110 	 * This is to avoid touching ranges covered by compression/inline.
111 	 */
112 	unsigned long submit_bitmap;
113 	struct readahead_control *ractl;
114 };
115 
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)116 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
117 {
118 	struct btrfs_bio *bbio = bio_ctrl->bbio;
119 
120 	if (!bbio)
121 		return;
122 
123 	/* Caller should ensure the bio has at least some range added */
124 	ASSERT(bbio->bio.bi_iter.bi_size);
125 
126 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
127 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
128 		btrfs_submit_compressed_read(bbio);
129 	else
130 		btrfs_submit_bbio(bbio, 0);
131 
132 	/* The bbio is owned by the end_io handler now */
133 	bio_ctrl->bbio = NULL;
134 }
135 
136 /*
137  * Submit or fail the current bio in the bio_ctrl structure.
138  */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)139 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
140 {
141 	struct btrfs_bio *bbio = bio_ctrl->bbio;
142 
143 	if (!bbio)
144 		return;
145 
146 	if (ret) {
147 		ASSERT(ret < 0);
148 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
149 		/* The bio is owned by the end_io handler now */
150 		bio_ctrl->bbio = NULL;
151 	} else {
152 		submit_one_bio(bio_ctrl);
153 	}
154 }
155 
extent_buffer_init_cachep(void)156 int __init extent_buffer_init_cachep(void)
157 {
158 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
159 						sizeof(struct extent_buffer), 0, 0,
160 						NULL);
161 	if (!extent_buffer_cache)
162 		return -ENOMEM;
163 
164 	return 0;
165 }
166 
extent_buffer_free_cachep(void)167 void __cold extent_buffer_free_cachep(void)
168 {
169 	/*
170 	 * Make sure all delayed rcu free are flushed before we
171 	 * destroy caches.
172 	 */
173 	rcu_barrier();
174 	kmem_cache_destroy(extent_buffer_cache);
175 }
176 
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)177 static void process_one_folio(struct btrfs_fs_info *fs_info,
178 			      struct folio *folio, const struct folio *locked_folio,
179 			      unsigned long page_ops, u64 start, u64 end)
180 {
181 	u32 len;
182 
183 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
184 	len = end + 1 - start;
185 
186 	if (page_ops & PAGE_SET_ORDERED)
187 		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
188 	if (page_ops & PAGE_START_WRITEBACK) {
189 		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
190 		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
191 	}
192 	if (page_ops & PAGE_END_WRITEBACK)
193 		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
194 
195 	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
196 		btrfs_folio_end_lock(fs_info, folio, start, len);
197 }
198 
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)199 static void __process_folios_contig(struct address_space *mapping,
200 				    const struct folio *locked_folio, u64 start,
201 				    u64 end, unsigned long page_ops)
202 {
203 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
204 	pgoff_t index = start >> PAGE_SHIFT;
205 	pgoff_t end_index = end >> PAGE_SHIFT;
206 	struct folio_batch fbatch;
207 	int i;
208 
209 	folio_batch_init(&fbatch);
210 	while (index <= end_index) {
211 		int found_folios;
212 
213 		found_folios = filemap_get_folios_contig(mapping, &index,
214 				end_index, &fbatch);
215 		for (i = 0; i < found_folios; i++) {
216 			struct folio *folio = fbatch.folios[i];
217 
218 			process_one_folio(fs_info, folio, locked_folio,
219 					  page_ops, start, end);
220 		}
221 		folio_batch_release(&fbatch);
222 		cond_resched();
223 	}
224 }
225 
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)226 static noinline void unlock_delalloc_folio(const struct inode *inode,
227 					   struct folio *locked_folio,
228 					   u64 start, u64 end)
229 {
230 	ASSERT(locked_folio);
231 
232 	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
233 				PAGE_UNLOCK);
234 }
235 
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)236 static noinline int lock_delalloc_folios(struct inode *inode,
237 					 struct folio *locked_folio,
238 					 u64 start, u64 end)
239 {
240 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
241 	struct address_space *mapping = inode->i_mapping;
242 	pgoff_t index = start >> PAGE_SHIFT;
243 	pgoff_t end_index = end >> PAGE_SHIFT;
244 	u64 processed_end = start;
245 	struct folio_batch fbatch;
246 
247 	folio_batch_init(&fbatch);
248 	while (index <= end_index) {
249 		unsigned int found_folios, i;
250 
251 		found_folios = filemap_get_folios_contig(mapping, &index,
252 				end_index, &fbatch);
253 		if (found_folios == 0)
254 			goto out;
255 
256 		for (i = 0; i < found_folios; i++) {
257 			struct folio *folio = fbatch.folios[i];
258 			u64 range_start;
259 			u32 range_len;
260 
261 			if (folio == locked_folio)
262 				continue;
263 
264 			folio_lock(folio);
265 			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
266 				folio_unlock(folio);
267 				goto out;
268 			}
269 			range_start = max_t(u64, folio_pos(folio), start);
270 			range_len = min_t(u64, folio_end(folio), end + 1) - range_start;
271 			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
272 
273 			processed_end = range_start + range_len - 1;
274 		}
275 		folio_batch_release(&fbatch);
276 		cond_resched();
277 	}
278 
279 	return 0;
280 out:
281 	folio_batch_release(&fbatch);
282 	if (processed_end > start)
283 		unlock_delalloc_folio(inode, locked_folio, start, processed_end);
284 	return -EAGAIN;
285 }
286 
287 /*
288  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
289  * more than @max_bytes.
290  *
291  * @start:	The original start bytenr to search.
292  *		Will store the extent range start bytenr.
293  * @end:	The original end bytenr of the search range
294  *		Will store the extent range end bytenr.
295  *
296  * Return true if we find a delalloc range which starts inside the original
297  * range, and @start/@end will store the delalloc range start/end.
298  *
299  * Return false if we can't find any delalloc range which starts inside the
300  * original range, and @start/@end will be the non-delalloc range start/end.
301  */
302 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)303 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
304 						 struct folio *locked_folio,
305 						 u64 *start, u64 *end)
306 {
307 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
308 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
309 	const u64 orig_start = *start;
310 	const u64 orig_end = *end;
311 	/* The sanity tests may not set a valid fs_info. */
312 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
313 	u64 delalloc_start;
314 	u64 delalloc_end;
315 	bool found;
316 	struct extent_state *cached_state = NULL;
317 	int ret;
318 	int loops = 0;
319 
320 	/* Caller should pass a valid @end to indicate the search range end */
321 	ASSERT(orig_end > orig_start);
322 
323 	/* The range should at least cover part of the folio */
324 	ASSERT(!(orig_start >= folio_end(locked_folio) ||
325 		 orig_end <= folio_pos(locked_folio)));
326 again:
327 	/* step one, find a bunch of delalloc bytes starting at start */
328 	delalloc_start = *start;
329 	delalloc_end = 0;
330 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
331 					  max_bytes, &cached_state);
332 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
333 		*start = delalloc_start;
334 
335 		/* @delalloc_end can be -1, never go beyond @orig_end */
336 		*end = min(delalloc_end, orig_end);
337 		btrfs_free_extent_state(cached_state);
338 		return false;
339 	}
340 
341 	/*
342 	 * start comes from the offset of locked_folio.  We have to lock
343 	 * folios in order, so we can't process delalloc bytes before
344 	 * locked_folio
345 	 */
346 	if (delalloc_start < *start)
347 		delalloc_start = *start;
348 
349 	/*
350 	 * make sure to limit the number of folios we try to lock down
351 	 */
352 	if (delalloc_end + 1 - delalloc_start > max_bytes)
353 		delalloc_end = delalloc_start + max_bytes - 1;
354 
355 	/* step two, lock all the folioss after the folios that has start */
356 	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
357 				   delalloc_end);
358 	ASSERT(!ret || ret == -EAGAIN);
359 	if (ret == -EAGAIN) {
360 		/* some of the folios are gone, lets avoid looping by
361 		 * shortening the size of the delalloc range we're searching
362 		 */
363 		btrfs_free_extent_state(cached_state);
364 		cached_state = NULL;
365 		if (!loops) {
366 			max_bytes = PAGE_SIZE;
367 			loops = 1;
368 			goto again;
369 		} else {
370 			found = false;
371 			goto out_failed;
372 		}
373 	}
374 
375 	/* step three, lock the state bits for the whole range */
376 	btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
377 
378 	/* then test to make sure it is all still delalloc */
379 	ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
380 				   EXTENT_DELALLOC, cached_state);
381 
382 	btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
383 	if (!ret) {
384 		unlock_delalloc_folio(inode, locked_folio, delalloc_start,
385 				      delalloc_end);
386 		cond_resched();
387 		goto again;
388 	}
389 	*start = delalloc_start;
390 	*end = delalloc_end;
391 out_failed:
392 	return found;
393 }
394 
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)395 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
396 				  const struct folio *locked_folio,
397 				  struct extent_state **cached,
398 				  u32 clear_bits, unsigned long page_ops)
399 {
400 	btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
401 
402 	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
403 				end, page_ops);
404 }
405 
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)406 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
407 {
408 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
409 
410 	if (!fsverity_active(folio->mapping->host) ||
411 	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
412 	    start >= i_size_read(folio->mapping->host))
413 		return true;
414 	return fsverity_verify_folio(folio);
415 }
416 
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)417 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
418 {
419 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
420 
421 	ASSERT(folio_pos(folio) <= start &&
422 	       start + len <= folio_end(folio));
423 
424 	if (uptodate && btrfs_verify_folio(folio, start, len))
425 		btrfs_folio_set_uptodate(fs_info, folio, start, len);
426 	else
427 		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
428 
429 	if (!btrfs_is_subpage(fs_info, folio))
430 		folio_unlock(folio);
431 	else
432 		btrfs_folio_end_lock(fs_info, folio, start, len);
433 }
434 
435 /*
436  * After a write IO is done, we need to:
437  *
438  * - clear the uptodate bits on error
439  * - clear the writeback bits in the extent tree for the range
440  * - filio_end_writeback()  if there is no more pending io for the folio
441  *
442  * Scheduling is not allowed, so the extent state tree is expected
443  * to have one and only one object corresponding to this IO.
444  */
end_bbio_data_write(struct btrfs_bio * bbio)445 static void end_bbio_data_write(struct btrfs_bio *bbio)
446 {
447 	struct btrfs_fs_info *fs_info = bbio->fs_info;
448 	struct bio *bio = &bbio->bio;
449 	int error = blk_status_to_errno(bio->bi_status);
450 	struct folio_iter fi;
451 	const u32 sectorsize = fs_info->sectorsize;
452 
453 	ASSERT(!bio_flagged(bio, BIO_CLONED));
454 	bio_for_each_folio_all(fi, bio) {
455 		struct folio *folio = fi.folio;
456 		u64 start = folio_pos(folio) + fi.offset;
457 		u32 len = fi.length;
458 
459 		/* Our read/write should always be sector aligned. */
460 		if (!IS_ALIGNED(fi.offset, sectorsize))
461 			btrfs_err(fs_info,
462 		"partial page write in btrfs with offset %zu and length %zu",
463 				  fi.offset, fi.length);
464 		else if (!IS_ALIGNED(fi.length, sectorsize))
465 			btrfs_info(fs_info,
466 		"incomplete page write with offset %zu and length %zu",
467 				   fi.offset, fi.length);
468 
469 		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
470 					    !error);
471 		if (error)
472 			mapping_set_error(folio->mapping, error);
473 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
474 	}
475 
476 	bio_put(bio);
477 }
478 
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)479 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
480 {
481 	ASSERT(folio_test_locked(folio));
482 	if (!btrfs_is_subpage(fs_info, folio))
483 		return;
484 
485 	ASSERT(folio_test_private(folio));
486 	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
487 }
488 
489 /*
490  * After a data read IO is done, we need to:
491  *
492  * - clear the uptodate bits on error
493  * - set the uptodate bits if things worked
494  * - set the folio up to date if all extents in the tree are uptodate
495  * - clear the lock bit in the extent tree
496  * - unlock the folio if there are no other extents locked for it
497  *
498  * Scheduling is not allowed, so the extent state tree is expected
499  * to have one and only one object corresponding to this IO.
500  */
end_bbio_data_read(struct btrfs_bio * bbio)501 static void end_bbio_data_read(struct btrfs_bio *bbio)
502 {
503 	struct btrfs_fs_info *fs_info = bbio->fs_info;
504 	struct bio *bio = &bbio->bio;
505 	struct folio_iter fi;
506 
507 	ASSERT(!bio_flagged(bio, BIO_CLONED));
508 	bio_for_each_folio_all(fi, &bbio->bio) {
509 		bool uptodate = !bio->bi_status;
510 		struct folio *folio = fi.folio;
511 		struct inode *inode = folio->mapping->host;
512 		u64 start = folio_pos(folio) + fi.offset;
513 
514 		btrfs_debug(fs_info,
515 			"%s: bi_sector=%llu, err=%d, mirror=%u",
516 			__func__, bio->bi_iter.bi_sector, bio->bi_status,
517 			bbio->mirror_num);
518 
519 
520 		if (likely(uptodate)) {
521 			u64 end = start + fi.length - 1;
522 			loff_t i_size = i_size_read(inode);
523 
524 			/*
525 			 * Zero out the remaining part if this range straddles
526 			 * i_size.
527 			 *
528 			 * Here we should only zero the range inside the folio,
529 			 * not touch anything else.
530 			 *
531 			 * NOTE: i_size is exclusive while end is inclusive and
532 			 * folio_contains() takes PAGE_SIZE units.
533 			 */
534 			if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
535 			    i_size <= end) {
536 				u32 zero_start = max(offset_in_folio(folio, i_size),
537 						     offset_in_folio(folio, start));
538 				u32 zero_len = offset_in_folio(folio, end) + 1 -
539 					       zero_start;
540 
541 				folio_zero_range(folio, zero_start, zero_len);
542 			}
543 		}
544 
545 		/* Update page status and unlock. */
546 		end_folio_read(folio, uptodate, start, fi.length);
547 	}
548 	bio_put(bio);
549 }
550 
551 /*
552  * Populate every free slot in a provided array with folios using GFP_NOFS.
553  *
554  * @nr_folios:   number of folios to allocate
555  * @folio_array: the array to fill with folios; any existing non-NULL entries in
556  *		 the array will be skipped
557  *
558  * Return: 0        if all folios were able to be allocated;
559  *         -ENOMEM  otherwise, the partially allocated folios would be freed and
560  *                  the array slots zeroed
561  */
btrfs_alloc_folio_array(unsigned int nr_folios,struct folio ** folio_array)562 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
563 {
564 	for (int i = 0; i < nr_folios; i++) {
565 		if (folio_array[i])
566 			continue;
567 		folio_array[i] = folio_alloc(GFP_NOFS, 0);
568 		if (!folio_array[i])
569 			goto error;
570 	}
571 	return 0;
572 error:
573 	for (int i = 0; i < nr_folios; i++) {
574 		if (folio_array[i])
575 			folio_put(folio_array[i]);
576 	}
577 	return -ENOMEM;
578 }
579 
580 /*
581  * Populate every free slot in a provided array with pages, using GFP_NOFS.
582  *
583  * @nr_pages:   number of pages to allocate
584  * @page_array: the array to fill with pages; any existing non-null entries in
585  *		the array will be skipped
586  * @nofail:	whether using __GFP_NOFAIL flag
587  *
588  * Return: 0        if all pages were able to be allocated;
589  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
590  *                  the array slots zeroed
591  */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)592 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
593 			   bool nofail)
594 {
595 	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
596 	unsigned int allocated;
597 
598 	for (allocated = 0; allocated < nr_pages;) {
599 		unsigned int last = allocated;
600 
601 		allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
602 		if (unlikely(allocated == last)) {
603 			/* No progress, fail and do cleanup. */
604 			for (int i = 0; i < allocated; i++) {
605 				__free_page(page_array[i]);
606 				page_array[i] = NULL;
607 			}
608 			return -ENOMEM;
609 		}
610 	}
611 	return 0;
612 }
613 
614 /*
615  * Populate needed folios for the extent buffer.
616  *
617  * For now, the folios populated are always in order 0 (aka, single page).
618  */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)619 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
620 {
621 	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
622 	int num_pages = num_extent_pages(eb);
623 	int ret;
624 
625 	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
626 	if (ret < 0)
627 		return ret;
628 
629 	for (int i = 0; i < num_pages; i++)
630 		eb->folios[i] = page_folio(page_array[i]);
631 	eb->folio_size = PAGE_SIZE;
632 	eb->folio_shift = PAGE_SHIFT;
633 	return 0;
634 }
635 
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)636 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
637 				u64 disk_bytenr, loff_t file_offset)
638 {
639 	struct bio *bio = &bio_ctrl->bbio->bio;
640 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
641 
642 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
643 		/*
644 		 * For compression, all IO should have its logical bytenr set
645 		 * to the starting bytenr of the compressed extent.
646 		 */
647 		return bio->bi_iter.bi_sector == sector;
648 	}
649 
650 	/*
651 	 * To merge into a bio both the disk sector and the logical offset in
652 	 * the file need to be contiguous.
653 	 */
654 	return bio_ctrl->next_file_offset == file_offset &&
655 		bio_end_sector(bio) == sector;
656 }
657 
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)658 static void alloc_new_bio(struct btrfs_inode *inode,
659 			  struct btrfs_bio_ctrl *bio_ctrl,
660 			  u64 disk_bytenr, u64 file_offset)
661 {
662 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
663 	struct btrfs_bio *bbio;
664 
665 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
666 			       bio_ctrl->end_io_func, NULL);
667 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
668 	bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
669 	bbio->inode = inode;
670 	bbio->file_offset = file_offset;
671 	bio_ctrl->bbio = bbio;
672 	bio_ctrl->len_to_oe_boundary = U32_MAX;
673 	bio_ctrl->next_file_offset = file_offset;
674 
675 	/* Limit data write bios to the ordered boundary. */
676 	if (bio_ctrl->wbc) {
677 		struct btrfs_ordered_extent *ordered;
678 
679 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
680 		if (ordered) {
681 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
682 					ordered->file_offset +
683 					ordered->disk_num_bytes - file_offset);
684 			bbio->ordered = ordered;
685 		}
686 
687 		/*
688 		 * Pick the last added device to support cgroup writeback.  For
689 		 * multi-device file systems this means blk-cgroup policies have
690 		 * to always be set on the last added/replaced device.
691 		 * This is a bit odd but has been like that for a long time.
692 		 */
693 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
694 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
695 	}
696 }
697 
698 /*
699  * @disk_bytenr: logical bytenr where the write will be
700  * @page:	page to add to the bio
701  * @size:	portion of page that we want to write to
702  * @pg_offset:	offset of the new bio or to check whether we are adding
703  *              a contiguous page to the previous one
704  *
705  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
706  * new one in @bio_ctrl->bbio.
707  * The mirror number for this IO should already be initizlied in
708  * @bio_ctrl->mirror_num.
709  */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset)710 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
711 			       u64 disk_bytenr, struct folio *folio,
712 			       size_t size, unsigned long pg_offset)
713 {
714 	struct btrfs_inode *inode = folio_to_inode(folio);
715 	loff_t file_offset = folio_pos(folio) + pg_offset;
716 
717 	ASSERT(pg_offset + size <= folio_size(folio));
718 	ASSERT(bio_ctrl->end_io_func);
719 
720 	if (bio_ctrl->bbio &&
721 	    !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
722 		submit_one_bio(bio_ctrl);
723 
724 	do {
725 		u32 len = size;
726 
727 		/* Allocate new bio if needed */
728 		if (!bio_ctrl->bbio)
729 			alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
730 
731 		/* Cap to the current ordered extent boundary if there is one. */
732 		if (len > bio_ctrl->len_to_oe_boundary) {
733 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
734 			ASSERT(is_data_inode(inode));
735 			len = bio_ctrl->len_to_oe_boundary;
736 		}
737 
738 		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
739 			/* bio full: move on to a new one */
740 			submit_one_bio(bio_ctrl);
741 			continue;
742 		}
743 		bio_ctrl->next_file_offset += len;
744 
745 		if (bio_ctrl->wbc)
746 			wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
747 
748 		size -= len;
749 		pg_offset += len;
750 		disk_bytenr += len;
751 		file_offset += len;
752 
753 		/*
754 		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
755 		 * sector aligned.  alloc_new_bio() then sets it to the end of
756 		 * our ordered extent for writes into zoned devices.
757 		 *
758 		 * When len_to_oe_boundary is tracking an ordered extent, we
759 		 * trust the ordered extent code to align things properly, and
760 		 * the check above to cap our write to the ordered extent
761 		 * boundary is correct.
762 		 *
763 		 * When len_to_oe_boundary is U32_MAX, the cap above would
764 		 * result in a 4095 byte IO for the last folio right before
765 		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
766 		 * the checks required to make sure we don't overflow the bio,
767 		 * and we should just ignore len_to_oe_boundary completely
768 		 * unless we're using it to track an ordered extent.
769 		 *
770 		 * It's pretty hard to make a bio sized U32_MAX, but it can
771 		 * happen when the page cache is able to feed us contiguous
772 		 * folios for large extents.
773 		 */
774 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
775 			bio_ctrl->len_to_oe_boundary -= len;
776 
777 		/* Ordered extent boundary: move on to a new bio. */
778 		if (bio_ctrl->len_to_oe_boundary == 0)
779 			submit_one_bio(bio_ctrl);
780 	} while (size);
781 }
782 
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)783 static int attach_extent_buffer_folio(struct extent_buffer *eb,
784 				      struct folio *folio,
785 				      struct btrfs_folio_state *prealloc)
786 {
787 	struct btrfs_fs_info *fs_info = eb->fs_info;
788 	int ret = 0;
789 
790 	/*
791 	 * If the page is mapped to btree inode, we should hold the private
792 	 * lock to prevent race.
793 	 * For cloned or dummy extent buffers, their pages are not mapped and
794 	 * will not race with any other ebs.
795 	 */
796 	if (folio->mapping)
797 		lockdep_assert_held(&folio->mapping->i_private_lock);
798 
799 	if (!btrfs_meta_is_subpage(fs_info)) {
800 		if (!folio_test_private(folio))
801 			folio_attach_private(folio, eb);
802 		else
803 			WARN_ON(folio_get_private(folio) != eb);
804 		return 0;
805 	}
806 
807 	/* Already mapped, just free prealloc */
808 	if (folio_test_private(folio)) {
809 		btrfs_free_folio_state(prealloc);
810 		return 0;
811 	}
812 
813 	if (prealloc)
814 		/* Has preallocated memory for subpage */
815 		folio_attach_private(folio, prealloc);
816 	else
817 		/* Do new allocation to attach subpage */
818 		ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
819 	return ret;
820 }
821 
set_folio_extent_mapped(struct folio * folio)822 int set_folio_extent_mapped(struct folio *folio)
823 {
824 	struct btrfs_fs_info *fs_info;
825 
826 	ASSERT(folio->mapping);
827 
828 	if (folio_test_private(folio))
829 		return 0;
830 
831 	fs_info = folio_to_fs_info(folio);
832 
833 	if (btrfs_is_subpage(fs_info, folio))
834 		return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
835 
836 	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
837 	return 0;
838 }
839 
clear_folio_extent_mapped(struct folio * folio)840 void clear_folio_extent_mapped(struct folio *folio)
841 {
842 	struct btrfs_fs_info *fs_info;
843 
844 	ASSERT(folio->mapping);
845 
846 	if (!folio_test_private(folio))
847 		return;
848 
849 	fs_info = folio_to_fs_info(folio);
850 	if (btrfs_is_subpage(fs_info, folio))
851 		return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
852 
853 	folio_detach_private(folio);
854 }
855 
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)856 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
857 					 struct folio *folio, u64 start,
858 					 u64 len, struct extent_map **em_cached)
859 {
860 	struct extent_map *em;
861 
862 	ASSERT(em_cached);
863 
864 	if (*em_cached) {
865 		em = *em_cached;
866 		if (btrfs_extent_map_in_tree(em) && start >= em->start &&
867 		    start < btrfs_extent_map_end(em)) {
868 			refcount_inc(&em->refs);
869 			return em;
870 		}
871 
872 		btrfs_free_extent_map(em);
873 		*em_cached = NULL;
874 	}
875 
876 	em = btrfs_get_extent(inode, folio, start, len);
877 	if (!IS_ERR(em)) {
878 		BUG_ON(*em_cached);
879 		refcount_inc(&em->refs);
880 		*em_cached = em;
881 	}
882 
883 	return em;
884 }
885 
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)886 static void btrfs_readahead_expand(struct readahead_control *ractl,
887 				   const struct extent_map *em)
888 {
889 	const u64 ra_pos = readahead_pos(ractl);
890 	const u64 ra_end = ra_pos + readahead_length(ractl);
891 	const u64 em_end = em->start + em->ram_bytes;
892 
893 	/* No expansion for holes and inline extents. */
894 	if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
895 		return;
896 
897 	ASSERT(em_end >= ra_pos,
898 	       "extent_map %llu %llu ends before current readahead position %llu",
899 	       em->start, em->len, ra_pos);
900 	if (em_end > ra_end)
901 		readahead_expand(ractl, ra_pos, em_end - ra_pos);
902 }
903 
904 /*
905  * basic readpage implementation.  Locked extent state structs are inserted
906  * into the tree that are removed when the IO is done (by the end_io
907  * handlers)
908  * XXX JDM: This needs looking at to ensure proper page locking
909  * return 0 on success, otherwise return error
910  */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)911 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
912 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
913 {
914 	struct inode *inode = folio->mapping->host;
915 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
916 	u64 start = folio_pos(folio);
917 	const u64 end = start + folio_size(folio) - 1;
918 	u64 extent_offset;
919 	u64 last_byte = i_size_read(inode);
920 	struct extent_map *em;
921 	int ret = 0;
922 	const size_t blocksize = fs_info->sectorsize;
923 
924 	ret = set_folio_extent_mapped(folio);
925 	if (ret < 0) {
926 		folio_unlock(folio);
927 		return ret;
928 	}
929 
930 	if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
931 		size_t zero_offset = offset_in_folio(folio, last_byte);
932 
933 		if (zero_offset)
934 			folio_zero_range(folio, zero_offset,
935 					 folio_size(folio) - zero_offset);
936 	}
937 	bio_ctrl->end_io_func = end_bbio_data_read;
938 	begin_folio_read(fs_info, folio);
939 	for (u64 cur = start; cur <= end; cur += blocksize) {
940 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
941 		unsigned long pg_offset = offset_in_folio(folio, cur);
942 		bool force_bio_submit = false;
943 		u64 disk_bytenr;
944 		u64 block_start;
945 
946 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
947 		if (cur >= last_byte) {
948 			folio_zero_range(folio, pg_offset, end - cur + 1);
949 			end_folio_read(folio, true, cur, end - cur + 1);
950 			break;
951 		}
952 		if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
953 			end_folio_read(folio, true, cur, blocksize);
954 			continue;
955 		}
956 		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
957 		if (IS_ERR(em)) {
958 			end_folio_read(folio, false, cur, end + 1 - cur);
959 			return PTR_ERR(em);
960 		}
961 		extent_offset = cur - em->start;
962 		BUG_ON(btrfs_extent_map_end(em) <= cur);
963 		BUG_ON(end < cur);
964 
965 		compress_type = btrfs_extent_map_compression(em);
966 
967 		/*
968 		 * Only expand readahead for extents which are already creating
969 		 * the pages anyway in add_ra_bio_pages, which is compressed
970 		 * extents in the non subpage case.
971 		 */
972 		if (bio_ctrl->ractl &&
973 		    !btrfs_is_subpage(fs_info, folio) &&
974 		    compress_type != BTRFS_COMPRESS_NONE)
975 			btrfs_readahead_expand(bio_ctrl->ractl, em);
976 
977 		if (compress_type != BTRFS_COMPRESS_NONE)
978 			disk_bytenr = em->disk_bytenr;
979 		else
980 			disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
981 
982 		if (em->flags & EXTENT_FLAG_PREALLOC)
983 			block_start = EXTENT_MAP_HOLE;
984 		else
985 			block_start = btrfs_extent_map_block_start(em);
986 
987 		/*
988 		 * If we have a file range that points to a compressed extent
989 		 * and it's followed by a consecutive file range that points
990 		 * to the same compressed extent (possibly with a different
991 		 * offset and/or length, so it either points to the whole extent
992 		 * or only part of it), we must make sure we do not submit a
993 		 * single bio to populate the folios for the 2 ranges because
994 		 * this makes the compressed extent read zero out the folios
995 		 * belonging to the 2nd range. Imagine the following scenario:
996 		 *
997 		 *  File layout
998 		 *  [0 - 8K]                     [8K - 24K]
999 		 *    |                               |
1000 		 *    |                               |
1001 		 * points to extent X,         points to extent X,
1002 		 * offset 4K, length of 8K     offset 0, length 16K
1003 		 *
1004 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1005 		 *
1006 		 * If the bio to read the compressed extent covers both ranges,
1007 		 * it will decompress extent X into the folios belonging to the
1008 		 * first range and then it will stop, zeroing out the remaining
1009 		 * folios that belong to the other range that points to extent X.
1010 		 * So here we make sure we submit 2 bios, one for the first
1011 		 * range and another one for the third range. Both will target
1012 		 * the same physical extent from disk, but we can't currently
1013 		 * make the compressed bio endio callback populate the folios
1014 		 * for both ranges because each compressed bio is tightly
1015 		 * coupled with a single extent map, and each range can have
1016 		 * an extent map with a different offset value relative to the
1017 		 * uncompressed data of our extent and different lengths. This
1018 		 * is a corner case so we prioritize correctness over
1019 		 * non-optimal behavior (submitting 2 bios for the same extent).
1020 		 */
1021 		if (compress_type != BTRFS_COMPRESS_NONE &&
1022 		    prev_em_start && *prev_em_start != (u64)-1 &&
1023 		    *prev_em_start != em->start)
1024 			force_bio_submit = true;
1025 
1026 		if (prev_em_start)
1027 			*prev_em_start = em->start;
1028 
1029 		btrfs_free_extent_map(em);
1030 		em = NULL;
1031 
1032 		/* we've found a hole, just zero and go on */
1033 		if (block_start == EXTENT_MAP_HOLE) {
1034 			folio_zero_range(folio, pg_offset, blocksize);
1035 			end_folio_read(folio, true, cur, blocksize);
1036 			continue;
1037 		}
1038 		/* the get_extent function already copied into the folio */
1039 		if (block_start == EXTENT_MAP_INLINE) {
1040 			end_folio_read(folio, true, cur, blocksize);
1041 			continue;
1042 		}
1043 
1044 		if (bio_ctrl->compress_type != compress_type) {
1045 			submit_one_bio(bio_ctrl);
1046 			bio_ctrl->compress_type = compress_type;
1047 		}
1048 
1049 		if (force_bio_submit)
1050 			submit_one_bio(bio_ctrl);
1051 		submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1052 				    pg_offset);
1053 	}
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1059  *
1060  * @fileoff:	Both input and output.
1061  *		Input as the file offset where the check should start at.
1062  *		Output as where the next check should start at,
1063  *		if the function returns true.
1064  *
1065  * Return true if we can skip to @fileoff. The caller needs to check the new
1066  * @fileoff value to make sure it covers the full range, before skipping the
1067  * full OE.
1068  *
1069  * Return false if we must wait for the ordered extent.
1070  */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1071 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1072 				       struct btrfs_ordered_extent *ordered,
1073 				       u64 *fileoff)
1074 {
1075 	const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1076 	struct folio *folio;
1077 	const u32 blocksize = fs_info->sectorsize;
1078 	u64 cur = *fileoff;
1079 	bool ret;
1080 
1081 	folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1082 
1083 	/*
1084 	 * We should have locked the folio(s) for range [start, end], thus
1085 	 * there must be a folio and it must be locked.
1086 	 */
1087 	ASSERT(!IS_ERR(folio));
1088 	ASSERT(folio_test_locked(folio));
1089 
1090 	/*
1091 	 * There are several cases for the folio and OE combination:
1092 	 *
1093 	 * 1) Folio has no private flag
1094 	 *    The OE has all its IO done but not yet finished, and folio got
1095 	 *    invalidated.
1096 	 *
1097 	 * Have we have to wait for the OE to finish, as it may contain the
1098 	 * to-be-inserted data checksum.
1099 	 * Without the data checksum inserted into the csum tree, read will
1100 	 * just fail with missing csum.
1101 	 */
1102 	if (!folio_test_private(folio)) {
1103 		ret = false;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * 2) The first block is DIRTY.
1109 	 *
1110 	 * This means the OE is created by some other folios whose file pos is
1111 	 * before this one. And since we are holding the folio lock, the writeback
1112 	 * of this folio cannot start.
1113 	 *
1114 	 * We must skip the whole OE, because it will never start until we
1115 	 * finished our folio read and unlocked the folio.
1116 	 */
1117 	if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1118 		u64 range_len = min(folio_end(folio),
1119 				    ordered->file_offset + ordered->num_bytes) - cur;
1120 
1121 		ret = true;
1122 		/*
1123 		 * At least inside the folio, all the remaining blocks should
1124 		 * also be dirty.
1125 		 */
1126 		ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1127 		*fileoff = ordered->file_offset + ordered->num_bytes;
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * 3) The first block is uptodate.
1133 	 *
1134 	 * At least the first block can be skipped, but we are still not fully
1135 	 * sure. E.g. if the OE has some other folios in the range that cannot
1136 	 * be skipped.
1137 	 * So we return true and update @next_ret to the OE/folio boundary.
1138 	 */
1139 	if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1140 		u64 range_len = min(folio_end(folio),
1141 				    ordered->file_offset + ordered->num_bytes) - cur;
1142 
1143 		/*
1144 		 * The whole range to the OE end or folio boundary should also
1145 		 * be uptodate.
1146 		 */
1147 		ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1148 		ret = true;
1149 		*fileoff = cur + range_len;
1150 		goto out;
1151 	}
1152 
1153 	/*
1154 	 * 4) The first block is not uptodate.
1155 	 *
1156 	 * This means the folio is invalidated after the writeback was finished,
1157 	 * but by some other operations (e.g. block aligned buffered write) the
1158 	 * folio is inserted into filemap.
1159 	 * Very much the same as case 1).
1160 	 */
1161 	ret = false;
1162 out:
1163 	folio_put(folio);
1164 	return ret;
1165 }
1166 
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1167 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1168 				    struct btrfs_ordered_extent *ordered,
1169 				    u64 start, u64 end)
1170 {
1171 	const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1172 	u64 cur = max(start, ordered->file_offset);
1173 
1174 	while (cur < range_end) {
1175 		bool can_skip;
1176 
1177 		can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1178 		if (!can_skip)
1179 			return false;
1180 	}
1181 	return true;
1182 }
1183 
1184 /*
1185  * Locking helper to make sure we get a stable view of extent maps for the
1186  * involved range.
1187  *
1188  * This is for folio read paths (read and readahead), thus the involved range
1189  * should have all the folios locked.
1190  */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1191 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1192 				  struct extent_state **cached_state)
1193 {
1194 	u64 cur_pos;
1195 
1196 	/* Caller must provide a valid @cached_state. */
1197 	ASSERT(cached_state);
1198 
1199 	/* The range must at least be page aligned, as all read paths are folio based. */
1200 	ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1201 	ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1202 
1203 again:
1204 	btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1205 	cur_pos = start;
1206 	while (cur_pos < end) {
1207 		struct btrfs_ordered_extent *ordered;
1208 
1209 		ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1210 						     end - cur_pos + 1);
1211 		/*
1212 		 * No ordered extents in the range, and we hold the extent lock,
1213 		 * no one can modify the extent maps in the range, we're safe to return.
1214 		 */
1215 		if (!ordered)
1216 			break;
1217 
1218 		/* Check if we can skip waiting for the whole OE. */
1219 		if (can_skip_ordered_extent(inode, ordered, start, end)) {
1220 			cur_pos = min(ordered->file_offset + ordered->num_bytes,
1221 				      end + 1);
1222 			btrfs_put_ordered_extent(ordered);
1223 			continue;
1224 		}
1225 
1226 		/* Now wait for the OE to finish. */
1227 		btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1228 		btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1229 		btrfs_put_ordered_extent(ordered);
1230 		/* We have unlocked the whole range, restart from the beginning. */
1231 		goto again;
1232 	}
1233 }
1234 
btrfs_read_folio(struct file * file,struct folio * folio)1235 int btrfs_read_folio(struct file *file, struct folio *folio)
1236 {
1237 	struct btrfs_inode *inode = folio_to_inode(folio);
1238 	const u64 start = folio_pos(folio);
1239 	const u64 end = start + folio_size(folio) - 1;
1240 	struct extent_state *cached_state = NULL;
1241 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1242 	struct extent_map *em_cached = NULL;
1243 	int ret;
1244 
1245 	lock_extents_for_read(inode, start, end, &cached_state);
1246 	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1247 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1248 
1249 	btrfs_free_extent_map(em_cached);
1250 
1251 	/*
1252 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1253 	 * bio to do the cleanup.
1254 	 */
1255 	submit_one_bio(&bio_ctrl);
1256 	return ret;
1257 }
1258 
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1259 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1260 				u64 start, u32 len)
1261 {
1262 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1263 	const u64 folio_start = folio_pos(folio);
1264 	unsigned int start_bit;
1265 	unsigned int nbits;
1266 
1267 	ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1268 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1269 	nbits = len >> fs_info->sectorsize_bits;
1270 	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1271 	bitmap_set(delalloc_bitmap, start_bit, nbits);
1272 }
1273 
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1274 static bool find_next_delalloc_bitmap(struct folio *folio,
1275 				      unsigned long *delalloc_bitmap, u64 start,
1276 				      u64 *found_start, u32 *found_len)
1277 {
1278 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1279 	const u64 folio_start = folio_pos(folio);
1280 	const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1281 	unsigned int start_bit;
1282 	unsigned int first_zero;
1283 	unsigned int first_set;
1284 
1285 	ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1286 
1287 	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1288 	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1289 	if (first_set >= bitmap_size)
1290 		return false;
1291 
1292 	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1293 	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1294 	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1295 	return true;
1296 }
1297 
1298 /*
1299  * Do all of the delayed allocation setup.
1300  *
1301  * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1302  * The @folio should no longer be touched (treat it as already unlocked).
1303  *
1304  * Return 0 if there is still dirty block that needs to be submitted through
1305  * extent_writepage_io().
1306  * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1307  * submitted, and @folio is still kept locked.
1308  *
1309  * Return <0 if there is any error hit.
1310  * Any allocated ordered extent range covering this folio will be marked
1311  * finished (IOERR), and @folio is still kept locked.
1312  */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1313 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1314 						 struct folio *folio,
1315 						 struct btrfs_bio_ctrl *bio_ctrl)
1316 {
1317 	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1318 	struct writeback_control *wbc = bio_ctrl->wbc;
1319 	const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1320 	const u64 page_start = folio_pos(folio);
1321 	const u64 page_end = page_start + folio_size(folio) - 1;
1322 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1323 	unsigned long delalloc_bitmap = 0;
1324 	/*
1325 	 * Save the last found delalloc end. As the delalloc end can go beyond
1326 	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1327 	 * last delalloc end.
1328 	 */
1329 	u64 last_delalloc_end = 0;
1330 	/*
1331 	 * The range end (exclusive) of the last successfully finished delalloc
1332 	 * range.
1333 	 * Any range covered by ordered extent must either be manually marked
1334 	 * finished (error handling), or has IO submitted (and finish the
1335 	 * ordered extent normally).
1336 	 *
1337 	 * This records the end of ordered extent cleanup if we hit an error.
1338 	 */
1339 	u64 last_finished_delalloc_end = page_start;
1340 	u64 delalloc_start = page_start;
1341 	u64 delalloc_end = page_end;
1342 	u64 delalloc_to_write = 0;
1343 	int ret = 0;
1344 	int bit;
1345 
1346 	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1347 	if (btrfs_is_subpage(fs_info, folio)) {
1348 		ASSERT(blocks_per_folio > 1);
1349 		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1350 	} else {
1351 		bio_ctrl->submit_bitmap = 1;
1352 	}
1353 
1354 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1355 		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1356 
1357 		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1358 	}
1359 
1360 	/* Lock all (subpage) delalloc ranges inside the folio first. */
1361 	while (delalloc_start < page_end) {
1362 		delalloc_end = page_end;
1363 		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1364 					      &delalloc_start, &delalloc_end)) {
1365 			delalloc_start = delalloc_end + 1;
1366 			continue;
1367 		}
1368 		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1369 				    min(delalloc_end, page_end) + 1 - delalloc_start);
1370 		last_delalloc_end = delalloc_end;
1371 		delalloc_start = delalloc_end + 1;
1372 	}
1373 	delalloc_start = page_start;
1374 
1375 	if (!last_delalloc_end)
1376 		goto out;
1377 
1378 	/* Run the delalloc ranges for the above locked ranges. */
1379 	while (delalloc_start < page_end) {
1380 		u64 found_start;
1381 		u32 found_len;
1382 		bool found;
1383 
1384 		if (!is_subpage) {
1385 			/*
1386 			 * For non-subpage case, the found delalloc range must
1387 			 * cover this folio and there must be only one locked
1388 			 * delalloc range.
1389 			 */
1390 			found_start = page_start;
1391 			found_len = last_delalloc_end + 1 - found_start;
1392 			found = true;
1393 		} else {
1394 			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1395 					delalloc_start, &found_start, &found_len);
1396 		}
1397 		if (!found)
1398 			break;
1399 		/*
1400 		 * The subpage range covers the last sector, the delalloc range may
1401 		 * end beyond the folio boundary, use the saved delalloc_end
1402 		 * instead.
1403 		 */
1404 		if (found_start + found_len >= page_end)
1405 			found_len = last_delalloc_end + 1 - found_start;
1406 
1407 		if (ret >= 0) {
1408 			/*
1409 			 * Some delalloc range may be created by previous folios.
1410 			 * Thus we still need to clean up this range during error
1411 			 * handling.
1412 			 */
1413 			last_finished_delalloc_end = found_start;
1414 			/* No errors hit so far, run the current delalloc range. */
1415 			ret = btrfs_run_delalloc_range(inode, folio,
1416 						       found_start,
1417 						       found_start + found_len - 1,
1418 						       wbc);
1419 			if (ret >= 0)
1420 				last_finished_delalloc_end = found_start + found_len;
1421 			if (unlikely(ret < 0))
1422 				btrfs_err_rl(fs_info,
1423 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1424 					     btrfs_root_id(inode->root),
1425 					     btrfs_ino(inode),
1426 					     folio_pos(folio),
1427 					     blocks_per_folio,
1428 					     &bio_ctrl->submit_bitmap,
1429 					     found_start, found_len, ret);
1430 		} else {
1431 			/*
1432 			 * We've hit an error during previous delalloc range,
1433 			 * have to cleanup the remaining locked ranges.
1434 			 */
1435 			btrfs_unlock_extent(&inode->io_tree, found_start,
1436 					    found_start + found_len - 1, NULL);
1437 			unlock_delalloc_folio(&inode->vfs_inode, folio,
1438 					      found_start,
1439 					      found_start + found_len - 1);
1440 		}
1441 
1442 		/*
1443 		 * We have some ranges that's going to be submitted asynchronously
1444 		 * (compression or inline).  These range have their own control
1445 		 * on when to unlock the pages.  We should not touch them
1446 		 * anymore, so clear the range from the submission bitmap.
1447 		 */
1448 		if (ret > 0) {
1449 			unsigned int start_bit = (found_start - page_start) >>
1450 						 fs_info->sectorsize_bits;
1451 			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1452 						page_start) >> fs_info->sectorsize_bits;
1453 			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1454 		}
1455 		/*
1456 		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1457 		 * thus for the last range, we cannot touch the folio anymore.
1458 		 */
1459 		if (found_start + found_len >= last_delalloc_end + 1)
1460 			break;
1461 
1462 		delalloc_start = found_start + found_len;
1463 	}
1464 	/*
1465 	 * It's possible we had some ordered extents created before we hit
1466 	 * an error, cleanup non-async successfully created delalloc ranges.
1467 	 */
1468 	if (unlikely(ret < 0)) {
1469 		unsigned int bitmap_size = min(
1470 				(last_finished_delalloc_end - page_start) >>
1471 				fs_info->sectorsize_bits,
1472 				blocks_per_folio);
1473 
1474 		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1475 			btrfs_mark_ordered_io_finished(inode, folio,
1476 				page_start + (bit << fs_info->sectorsize_bits),
1477 				fs_info->sectorsize, false);
1478 		return ret;
1479 	}
1480 out:
1481 	if (last_delalloc_end)
1482 		delalloc_end = last_delalloc_end;
1483 	else
1484 		delalloc_end = page_end;
1485 	/*
1486 	 * delalloc_end is already one less than the total length, so
1487 	 * we don't subtract one from PAGE_SIZE.
1488 	 */
1489 	delalloc_to_write +=
1490 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1491 
1492 	/*
1493 	 * If all ranges are submitted asynchronously, we just need to account
1494 	 * for them here.
1495 	 */
1496 	if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1497 		wbc->nr_to_write -= delalloc_to_write;
1498 		return 1;
1499 	}
1500 
1501 	if (wbc->nr_to_write < delalloc_to_write) {
1502 		int thresh = 8192;
1503 
1504 		if (delalloc_to_write < thresh * 2)
1505 			thresh = delalloc_to_write;
1506 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1507 					 thresh);
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Return 0 if we have submitted or queued the sector for submission.
1515  * Return <0 for critical errors, and the sector will have its dirty flag cleared.
1516  *
1517  * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1518  */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1519 static int submit_one_sector(struct btrfs_inode *inode,
1520 			     struct folio *folio,
1521 			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1522 			     loff_t i_size)
1523 {
1524 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1525 	struct extent_map *em;
1526 	u64 block_start;
1527 	u64 disk_bytenr;
1528 	u64 extent_offset;
1529 	u64 em_end;
1530 	const u32 sectorsize = fs_info->sectorsize;
1531 
1532 	ASSERT(IS_ALIGNED(filepos, sectorsize));
1533 
1534 	/* @filepos >= i_size case should be handled by the caller. */
1535 	ASSERT(filepos < i_size);
1536 
1537 	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1538 	if (IS_ERR(em)) {
1539 		/*
1540 		 * When submission failed, we should still clear the folio dirty.
1541 		 * Or the folio will be written back again but without any
1542 		 * ordered extent.
1543 		 */
1544 		btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1545 		btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1546 		btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1547 		return PTR_ERR(em);
1548 	}
1549 
1550 	extent_offset = filepos - em->start;
1551 	em_end = btrfs_extent_map_end(em);
1552 	ASSERT(filepos <= em_end);
1553 	ASSERT(IS_ALIGNED(em->start, sectorsize));
1554 	ASSERT(IS_ALIGNED(em->len, sectorsize));
1555 
1556 	block_start = btrfs_extent_map_block_start(em);
1557 	disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1558 
1559 	ASSERT(!btrfs_extent_map_is_compressed(em));
1560 	ASSERT(block_start != EXTENT_MAP_HOLE);
1561 	ASSERT(block_start != EXTENT_MAP_INLINE);
1562 
1563 	btrfs_free_extent_map(em);
1564 	em = NULL;
1565 
1566 	/*
1567 	 * Although the PageDirty bit is cleared before entering this
1568 	 * function, subpage dirty bit is not cleared.
1569 	 * So clear subpage dirty bit here so next time we won't submit
1570 	 * a folio for a range already written to disk.
1571 	 */
1572 	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1573 	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1574 	/*
1575 	 * Above call should set the whole folio with writeback flag, even
1576 	 * just for a single subpage sector.
1577 	 * As long as the folio is properly locked and the range is correct,
1578 	 * we should always get the folio with writeback flag.
1579 	 */
1580 	ASSERT(folio_test_writeback(folio));
1581 
1582 	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1583 			    sectorsize, filepos - folio_pos(folio));
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Helper for extent_writepage().  This calls the writepage start hooks,
1589  * and does the loop to map the page into extents and bios.
1590  *
1591  * We return 1 if the IO is started and the page is unlocked,
1592  * 0 if all went well (page still locked)
1593  * < 0 if there were errors (page still locked)
1594  */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1595 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1596 						  struct folio *folio,
1597 						  u64 start, u32 len,
1598 						  struct btrfs_bio_ctrl *bio_ctrl,
1599 						  loff_t i_size)
1600 {
1601 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1602 	unsigned long range_bitmap = 0;
1603 	bool submitted_io = false;
1604 	bool error = false;
1605 	const u64 folio_start = folio_pos(folio);
1606 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1607 	u64 cur;
1608 	int bit;
1609 	int ret = 0;
1610 
1611 	ASSERT(start >= folio_start &&
1612 	       start + len <= folio_start + folio_size(folio));
1613 
1614 	ret = btrfs_writepage_cow_fixup(folio);
1615 	if (ret == -EAGAIN) {
1616 		/* Fixup worker will requeue */
1617 		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1618 		folio_unlock(folio);
1619 		return 1;
1620 	}
1621 	if (ret < 0) {
1622 		btrfs_folio_clear_dirty(fs_info, folio, start, len);
1623 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1624 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1625 		return ret;
1626 	}
1627 
1628 	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1629 		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1630 	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1631 		   blocks_per_folio);
1632 
1633 	bio_ctrl->end_io_func = end_bbio_data_write;
1634 
1635 	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1636 		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1637 
1638 		if (cur >= i_size) {
1639 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1640 						       start + len - cur, true);
1641 			/*
1642 			 * This range is beyond i_size, thus we don't need to
1643 			 * bother writing back.
1644 			 * But we still need to clear the dirty subpage bit, or
1645 			 * the next time the folio gets dirtied, we will try to
1646 			 * writeback the sectors with subpage dirty bits,
1647 			 * causing writeback without ordered extent.
1648 			 */
1649 			btrfs_folio_clear_dirty(fs_info, folio, cur,
1650 						start + len - cur);
1651 			break;
1652 		}
1653 		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1654 		if (unlikely(ret < 0)) {
1655 			/*
1656 			 * bio_ctrl may contain a bio crossing several folios.
1657 			 * Submit it immediately so that the bio has a chance
1658 			 * to finish normally, other than marked as error.
1659 			 */
1660 			submit_one_bio(bio_ctrl);
1661 			/*
1662 			 * Failed to grab the extent map which should be very rare.
1663 			 * Since there is no bio submitted to finish the ordered
1664 			 * extent, we have to manually finish this sector.
1665 			 */
1666 			btrfs_mark_ordered_io_finished(inode, folio, cur,
1667 						       fs_info->sectorsize, false);
1668 			error = true;
1669 			continue;
1670 		}
1671 		submitted_io = true;
1672 	}
1673 
1674 	/*
1675 	 * If we didn't submitted any sector (>= i_size), folio dirty get
1676 	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1677 	 * by folio_start_writeback() if the folio is not dirty).
1678 	 *
1679 	 * Here we set writeback and clear for the range. If the full folio
1680 	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1681 	 *
1682 	 * If we hit any error, the corresponding sector will have its dirty
1683 	 * flag cleared and writeback finished, thus no need to handle the error case.
1684 	 */
1685 	if (!submitted_io && !error) {
1686 		btrfs_folio_set_writeback(fs_info, folio, start, len);
1687 		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1688 	}
1689 	return ret;
1690 }
1691 
1692 /*
1693  * the writepage semantics are similar to regular writepage.  extent
1694  * records are inserted to lock ranges in the tree, and as dirty areas
1695  * are found, they are marked writeback.  Then the lock bits are removed
1696  * and the end_io handler clears the writeback ranges
1697  *
1698  * Return 0 if everything goes well.
1699  * Return <0 for error.
1700  */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1701 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1702 {
1703 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1704 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1705 	int ret;
1706 	size_t pg_offset;
1707 	loff_t i_size = i_size_read(&inode->vfs_inode);
1708 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
1709 	const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1710 
1711 	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1712 
1713 	WARN_ON(!folio_test_locked(folio));
1714 
1715 	pg_offset = offset_in_folio(folio, i_size);
1716 	if (folio->index > end_index ||
1717 	   (folio->index == end_index && !pg_offset)) {
1718 		folio_invalidate(folio, 0, folio_size(folio));
1719 		folio_unlock(folio);
1720 		return 0;
1721 	}
1722 
1723 	if (folio_contains(folio, end_index))
1724 		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1725 
1726 	/*
1727 	 * Default to unlock the whole folio.
1728 	 * The proper bitmap can only be initialized until writepage_delalloc().
1729 	 */
1730 	bio_ctrl->submit_bitmap = (unsigned long)-1;
1731 
1732 	/*
1733 	 * If the page is dirty but without private set, it's marked dirty
1734 	 * without informing the fs.
1735 	 * Nowadays that is a bug, since the introduction of
1736 	 * pin_user_pages*().
1737 	 *
1738 	 * So here we check if the page has private set to rule out such
1739 	 * case.
1740 	 * But we also have a long history of relying on the COW fixup,
1741 	 * so here we only enable this check for experimental builds until
1742 	 * we're sure it's safe.
1743 	 */
1744 	if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1745 	    unlikely(!folio_test_private(folio))) {
1746 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1747 		btrfs_err_rl(fs_info,
1748 	"root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1749 			     btrfs_root_id(inode->root),
1750 			     btrfs_ino(inode), folio_pos(folio));
1751 		ret = -EUCLEAN;
1752 		goto done;
1753 	}
1754 
1755 	ret = set_folio_extent_mapped(folio);
1756 	if (ret < 0)
1757 		goto done;
1758 
1759 	ret = writepage_delalloc(inode, folio, bio_ctrl);
1760 	if (ret == 1)
1761 		return 0;
1762 	if (ret)
1763 		goto done;
1764 
1765 	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1766 				  folio_size(folio), bio_ctrl, i_size);
1767 	if (ret == 1)
1768 		return 0;
1769 	if (ret < 0)
1770 		btrfs_err_rl(fs_info,
1771 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1772 			     btrfs_root_id(inode->root), btrfs_ino(inode),
1773 			     folio_pos(folio), blocks_per_folio,
1774 			     &bio_ctrl->submit_bitmap, ret);
1775 
1776 	bio_ctrl->wbc->nr_to_write--;
1777 
1778 done:
1779 	if (ret < 0)
1780 		mapping_set_error(folio->mapping, ret);
1781 	/*
1782 	 * Only unlock ranges that are submitted. As there can be some async
1783 	 * submitted ranges inside the folio.
1784 	 */
1785 	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1786 	ASSERT(ret <= 0);
1787 	return ret;
1788 }
1789 
1790 /*
1791  * Lock extent buffer status and pages for writeback.
1792  *
1793  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1794  * extent buffer is not dirty)
1795  * Return %true is the extent buffer is submitted to bio.
1796  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1797 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1798 			  struct writeback_control *wbc)
1799 {
1800 	struct btrfs_fs_info *fs_info = eb->fs_info;
1801 	bool ret = false;
1802 
1803 	btrfs_tree_lock(eb);
1804 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1805 		btrfs_tree_unlock(eb);
1806 		if (wbc->sync_mode != WB_SYNC_ALL)
1807 			return false;
1808 		wait_on_extent_buffer_writeback(eb);
1809 		btrfs_tree_lock(eb);
1810 	}
1811 
1812 	/*
1813 	 * We need to do this to prevent races in people who check if the eb is
1814 	 * under IO since we can end up having no IO bits set for a short period
1815 	 * of time.
1816 	 */
1817 	spin_lock(&eb->refs_lock);
1818 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1819 		XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1820 		unsigned long flags;
1821 
1822 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1823 		spin_unlock(&eb->refs_lock);
1824 
1825 		xas_lock_irqsave(&xas, flags);
1826 		xas_load(&xas);
1827 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1828 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1829 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1830 		xas_unlock_irqrestore(&xas, flags);
1831 
1832 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1833 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1834 					 -eb->len,
1835 					 fs_info->dirty_metadata_batch);
1836 		ret = true;
1837 	} else {
1838 		spin_unlock(&eb->refs_lock);
1839 	}
1840 	btrfs_tree_unlock(eb);
1841 	return ret;
1842 }
1843 
set_btree_ioerr(struct extent_buffer * eb)1844 static void set_btree_ioerr(struct extent_buffer *eb)
1845 {
1846 	struct btrfs_fs_info *fs_info = eb->fs_info;
1847 
1848 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1849 
1850 	/*
1851 	 * A read may stumble upon this buffer later, make sure that it gets an
1852 	 * error and knows there was an error.
1853 	 */
1854 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1855 
1856 	/*
1857 	 * We need to set the mapping with the io error as well because a write
1858 	 * error will flip the file system readonly, and then syncfs() will
1859 	 * return a 0 because we are readonly if we don't modify the err seq for
1860 	 * the superblock.
1861 	 */
1862 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1863 
1864 	/*
1865 	 * If writeback for a btree extent that doesn't belong to a log tree
1866 	 * failed, increment the counter transaction->eb_write_errors.
1867 	 * We do this because while the transaction is running and before it's
1868 	 * committing (when we call filemap_fdata[write|wait]_range against
1869 	 * the btree inode), we might have
1870 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1871 	 * returns an error or an error happens during writeback, when we're
1872 	 * committing the transaction we wouldn't know about it, since the pages
1873 	 * can be no longer dirty nor marked anymore for writeback (if a
1874 	 * subsequent modification to the extent buffer didn't happen before the
1875 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1876 	 * able to find the pages which contain errors at transaction
1877 	 * commit time. So if this happens we must abort the transaction,
1878 	 * otherwise we commit a super block with btree roots that point to
1879 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1880 	 * or the content of some node/leaf from a past generation that got
1881 	 * cowed or deleted and is no longer valid.
1882 	 *
1883 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1884 	 * not be enough - we need to distinguish between log tree extents vs
1885 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1886 	 * will catch and clear such errors in the mapping - and that call might
1887 	 * be from a log sync and not from a transaction commit. Also, checking
1888 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1889 	 * not done and would not be reliable - the eb might have been released
1890 	 * from memory and reading it back again means that flag would not be
1891 	 * set (since it's a runtime flag, not persisted on disk).
1892 	 *
1893 	 * Using the flags below in the btree inode also makes us achieve the
1894 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1895 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1896 	 * is called, the writeback for all dirty pages had already finished
1897 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1898 	 * filemap_fdatawait_range() would return success, as it could not know
1899 	 * that writeback errors happened (the pages were no longer tagged for
1900 	 * writeback).
1901 	 */
1902 	switch (eb->log_index) {
1903 	case -1:
1904 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1905 		break;
1906 	case 0:
1907 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1908 		break;
1909 	case 1:
1910 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1911 		break;
1912 	default:
1913 		BUG(); /* unexpected, logic error */
1914 	}
1915 }
1916 
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)1917 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
1918 {
1919 	struct btrfs_fs_info *fs_info = eb->fs_info;
1920 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1921 	unsigned long flags;
1922 
1923 	xas_lock_irqsave(&xas, flags);
1924 	xas_load(&xas);
1925 	xas_set_mark(&xas, mark);
1926 	xas_unlock_irqrestore(&xas, flags);
1927 }
1928 
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)1929 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
1930 {
1931 	struct btrfs_fs_info *fs_info = eb->fs_info;
1932 	XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1933 	unsigned long flags;
1934 
1935 	xas_lock_irqsave(&xas, flags);
1936 	xas_load(&xas);
1937 	xas_clear_mark(&xas, mark);
1938 	xas_unlock_irqrestore(&xas, flags);
1939 }
1940 
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)1941 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
1942 					  unsigned long start, unsigned long end)
1943 {
1944 	XA_STATE(xas, &fs_info->buffer_tree, start);
1945 	unsigned int tagged = 0;
1946 	void *eb;
1947 
1948 	xas_lock_irq(&xas);
1949 	xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
1950 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
1951 		if (++tagged % XA_CHECK_SCHED)
1952 			continue;
1953 		xas_pause(&xas);
1954 		xas_unlock_irq(&xas);
1955 		cond_resched();
1956 		xas_lock_irq(&xas);
1957 	}
1958 	xas_unlock_irq(&xas);
1959 }
1960 
1961 struct eb_batch {
1962 	unsigned int nr;
1963 	unsigned int cur;
1964 	struct extent_buffer *ebs[PAGEVEC_SIZE];
1965 };
1966 
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)1967 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
1968 {
1969 	batch->ebs[batch->nr++] = eb;
1970 	return (batch->nr < PAGEVEC_SIZE);
1971 }
1972 
eb_batch_init(struct eb_batch * batch)1973 static inline void eb_batch_init(struct eb_batch *batch)
1974 {
1975 	batch->nr = 0;
1976 	batch->cur = 0;
1977 }
1978 
eb_batch_next(struct eb_batch * batch)1979 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
1980 {
1981 	if (batch->cur >= batch->nr)
1982 		return NULL;
1983 	return batch->ebs[batch->cur++];
1984 }
1985 
eb_batch_release(struct eb_batch * batch)1986 static inline void eb_batch_release(struct eb_batch *batch)
1987 {
1988 	for (unsigned int i = 0; i < batch->nr; i++)
1989 		free_extent_buffer(batch->ebs[i]);
1990 	eb_batch_init(batch);
1991 }
1992 
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)1993 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
1994 						xa_mark_t mark)
1995 {
1996 	struct extent_buffer *eb;
1997 
1998 retry:
1999 	eb = xas_find_marked(xas, max, mark);
2000 
2001 	if (xas_retry(xas, eb))
2002 		goto retry;
2003 
2004 	if (!eb)
2005 		return NULL;
2006 
2007 	if (!refcount_inc_not_zero(&eb->refs)) {
2008 		xas_reset(xas);
2009 		goto retry;
2010 	}
2011 
2012 	if (unlikely(eb != xas_reload(xas))) {
2013 		free_extent_buffer(eb);
2014 		xas_reset(xas);
2015 		goto retry;
2016 	}
2017 
2018 	return eb;
2019 }
2020 
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2021 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2022 					    unsigned long *start,
2023 					    unsigned long end, xa_mark_t tag,
2024 					    struct eb_batch *batch)
2025 {
2026 	XA_STATE(xas, &fs_info->buffer_tree, *start);
2027 	struct extent_buffer *eb;
2028 
2029 	rcu_read_lock();
2030 	while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2031 		if (!eb_batch_add(batch, eb)) {
2032 			*start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2033 			goto out;
2034 		}
2035 	}
2036 	if (end == ULONG_MAX)
2037 		*start = ULONG_MAX;
2038 	else
2039 		*start = end + 1;
2040 out:
2041 	rcu_read_unlock();
2042 
2043 	return batch->nr;
2044 }
2045 
2046 /*
2047  * The endio specific version which won't touch any unsafe spinlock in endio
2048  * context.
2049  */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2050 static struct extent_buffer *find_extent_buffer_nolock(
2051 		struct btrfs_fs_info *fs_info, u64 start)
2052 {
2053 	struct extent_buffer *eb;
2054 	unsigned long index = (start >> fs_info->nodesize_bits);
2055 
2056 	rcu_read_lock();
2057 	eb = xa_load(&fs_info->buffer_tree, index);
2058 	if (eb && !refcount_inc_not_zero(&eb->refs))
2059 		eb = NULL;
2060 	rcu_read_unlock();
2061 	return eb;
2062 }
2063 
end_bbio_meta_write(struct btrfs_bio * bbio)2064 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2065 {
2066 	struct extent_buffer *eb = bbio->private;
2067 	struct folio_iter fi;
2068 
2069 	if (bbio->bio.bi_status != BLK_STS_OK)
2070 		set_btree_ioerr(eb);
2071 
2072 	bio_for_each_folio_all(fi, &bbio->bio) {
2073 		btrfs_meta_folio_clear_writeback(fi.folio, eb);
2074 	}
2075 
2076 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2077 	clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2078 	bio_put(&bbio->bio);
2079 }
2080 
prepare_eb_write(struct extent_buffer * eb)2081 static void prepare_eb_write(struct extent_buffer *eb)
2082 {
2083 	u32 nritems;
2084 	unsigned long start;
2085 	unsigned long end;
2086 
2087 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2088 
2089 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
2090 	nritems = btrfs_header_nritems(eb);
2091 	if (btrfs_header_level(eb) > 0) {
2092 		end = btrfs_node_key_ptr_offset(eb, nritems);
2093 		memzero_extent_buffer(eb, end, eb->len - end);
2094 	} else {
2095 		/*
2096 		 * Leaf:
2097 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2098 		 */
2099 		start = btrfs_item_nr_offset(eb, nritems);
2100 		end = btrfs_item_nr_offset(eb, 0);
2101 		if (nritems == 0)
2102 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2103 		else
2104 			end += btrfs_item_offset(eb, nritems - 1);
2105 		memzero_extent_buffer(eb, start, end - start);
2106 	}
2107 }
2108 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2109 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2110 					    struct writeback_control *wbc)
2111 {
2112 	struct btrfs_fs_info *fs_info = eb->fs_info;
2113 	struct btrfs_bio *bbio;
2114 
2115 	prepare_eb_write(eb);
2116 
2117 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2118 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2119 			       eb->fs_info, end_bbio_meta_write, eb);
2120 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2121 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2122 	wbc_init_bio(wbc, &bbio->bio);
2123 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
2124 	bbio->file_offset = eb->start;
2125 	for (int i = 0; i < num_extent_folios(eb); i++) {
2126 		struct folio *folio = eb->folios[i];
2127 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2128 		u32 range_len = min_t(u64, folio_end(folio),
2129 				      eb->start + eb->len) - range_start;
2130 
2131 		folio_lock(folio);
2132 		btrfs_meta_folio_clear_dirty(folio, eb);
2133 		btrfs_meta_folio_set_writeback(folio, eb);
2134 		if (!folio_test_dirty(folio))
2135 			wbc->nr_to_write -= folio_nr_pages(folio);
2136 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
2137 				     offset_in_folio(folio, range_start));
2138 		wbc_account_cgroup_owner(wbc, folio, range_len);
2139 		folio_unlock(folio);
2140 	}
2141 	btrfs_submit_bbio(bbio, 0);
2142 }
2143 
2144 /*
2145  * Wait for all eb writeback in the given range to finish.
2146  *
2147  * @fs_info:	The fs_info for this file system.
2148  * @start:	The offset of the range to start waiting on writeback.
2149  * @end:	The end of the range, inclusive. This is meant to be used in
2150  *		conjuction with wait_marked_extents, so this will usually be
2151  *		the_next_eb->start - 1.
2152  */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2153 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2154 				      u64 end)
2155 {
2156 	struct eb_batch batch;
2157 	unsigned long start_index = (start >> fs_info->nodesize_bits);
2158 	unsigned long end_index = (end >> fs_info->nodesize_bits);
2159 
2160 	eb_batch_init(&batch);
2161 	while (start_index <= end_index) {
2162 		struct extent_buffer *eb;
2163 		unsigned int nr_ebs;
2164 
2165 		nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2166 						 PAGECACHE_TAG_WRITEBACK, &batch);
2167 		if (!nr_ebs)
2168 			break;
2169 
2170 		while ((eb = eb_batch_next(&batch)) != NULL)
2171 			wait_on_extent_buffer_writeback(eb);
2172 		eb_batch_release(&batch);
2173 		cond_resched();
2174 	}
2175 }
2176 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2177 int btree_write_cache_pages(struct address_space *mapping,
2178 				   struct writeback_control *wbc)
2179 {
2180 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
2181 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2182 	int ret = 0;
2183 	int done = 0;
2184 	int nr_to_write_done = 0;
2185 	struct eb_batch batch;
2186 	unsigned int nr_ebs;
2187 	unsigned long index;
2188 	unsigned long end;
2189 	int scanned = 0;
2190 	xa_mark_t tag;
2191 
2192 	eb_batch_init(&batch);
2193 	if (wbc->range_cyclic) {
2194 		index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2195 		end = -1;
2196 
2197 		/*
2198 		 * Start from the beginning does not need to cycle over the
2199 		 * range, mark it as scanned.
2200 		 */
2201 		scanned = (index == 0);
2202 	} else {
2203 		index = (wbc->range_start >> fs_info->nodesize_bits);
2204 		end = (wbc->range_end >> fs_info->nodesize_bits);
2205 
2206 		scanned = 1;
2207 	}
2208 	if (wbc->sync_mode == WB_SYNC_ALL)
2209 		tag = PAGECACHE_TAG_TOWRITE;
2210 	else
2211 		tag = PAGECACHE_TAG_DIRTY;
2212 	btrfs_zoned_meta_io_lock(fs_info);
2213 retry:
2214 	if (wbc->sync_mode == WB_SYNC_ALL)
2215 		buffer_tree_tag_for_writeback(fs_info, index, end);
2216 	while (!done && !nr_to_write_done && (index <= end) &&
2217 	       (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2218 		struct extent_buffer *eb;
2219 
2220 		while ((eb = eb_batch_next(&batch)) != NULL) {
2221 			ctx.eb = eb;
2222 
2223 			ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2224 			if (ret) {
2225 				if (ret == -EBUSY)
2226 					ret = 0;
2227 
2228 				if (ret) {
2229 					done = 1;
2230 					break;
2231 				}
2232 				continue;
2233 			}
2234 
2235 			if (!lock_extent_buffer_for_io(eb, wbc))
2236 				continue;
2237 
2238 			/* Implies write in zoned mode. */
2239 			if (ctx.zoned_bg) {
2240 				/* Mark the last eb in the block group. */
2241 				btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2242 				ctx.zoned_bg->meta_write_pointer += eb->len;
2243 			}
2244 			write_one_eb(eb, wbc);
2245 		}
2246 		nr_to_write_done = (wbc->nr_to_write <= 0);
2247 		eb_batch_release(&batch);
2248 		cond_resched();
2249 	}
2250 	if (!scanned && !done) {
2251 		/*
2252 		 * We hit the last page and there is more work to be done: wrap
2253 		 * back to the start of the file
2254 		 */
2255 		scanned = 1;
2256 		index = 0;
2257 		goto retry;
2258 	}
2259 	/*
2260 	 * If something went wrong, don't allow any metadata write bio to be
2261 	 * submitted.
2262 	 *
2263 	 * This would prevent use-after-free if we had dirty pages not
2264 	 * cleaned up, which can still happen by fuzzed images.
2265 	 *
2266 	 * - Bad extent tree
2267 	 *   Allowing existing tree block to be allocated for other trees.
2268 	 *
2269 	 * - Log tree operations
2270 	 *   Exiting tree blocks get allocated to log tree, bumps its
2271 	 *   generation, then get cleaned in tree re-balance.
2272 	 *   Such tree block will not be written back, since it's clean,
2273 	 *   thus no WRITTEN flag set.
2274 	 *   And after log writes back, this tree block is not traced by
2275 	 *   any dirty extent_io_tree.
2276 	 *
2277 	 * - Offending tree block gets re-dirtied from its original owner
2278 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2279 	 *   reused without COWing. This tree block will not be traced
2280 	 *   by btrfs_transaction::dirty_pages.
2281 	 *
2282 	 *   Now such dirty tree block will not be cleaned by any dirty
2283 	 *   extent io tree. Thus we don't want to submit such wild eb
2284 	 *   if the fs already has error.
2285 	 *
2286 	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2287 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2288 	 */
2289 	if (ret > 0)
2290 		ret = 0;
2291 	if (!ret && BTRFS_FS_ERROR(fs_info))
2292 		ret = -EROFS;
2293 
2294 	if (ctx.zoned_bg)
2295 		btrfs_put_block_group(ctx.zoned_bg);
2296 	btrfs_zoned_meta_io_unlock(fs_info);
2297 	return ret;
2298 }
2299 
2300 /*
2301  * Walk the list of dirty pages of the given address space and write all of them.
2302  *
2303  * @mapping:   address space structure to write
2304  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2305  * @bio_ctrl:  holds context for the write, namely the bio
2306  *
2307  * If a page is already under I/O, write_cache_pages() skips it, even
2308  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2309  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2310  * and msync() need to guarantee that all the data which was dirty at the time
2311  * the call was made get new I/O started against them.  If wbc->sync_mode is
2312  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2313  * existing IO to complete.
2314  */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2315 static int extent_write_cache_pages(struct address_space *mapping,
2316 			     struct btrfs_bio_ctrl *bio_ctrl)
2317 {
2318 	struct writeback_control *wbc = bio_ctrl->wbc;
2319 	struct inode *inode = mapping->host;
2320 	int ret = 0;
2321 	int done = 0;
2322 	int nr_to_write_done = 0;
2323 	struct folio_batch fbatch;
2324 	unsigned int nr_folios;
2325 	pgoff_t index;
2326 	pgoff_t end;		/* Inclusive */
2327 	pgoff_t done_index;
2328 	int range_whole = 0;
2329 	int scanned = 0;
2330 	xa_mark_t tag;
2331 
2332 	/*
2333 	 * We have to hold onto the inode so that ordered extents can do their
2334 	 * work when the IO finishes.  The alternative to this is failing to add
2335 	 * an ordered extent if the igrab() fails there and that is a huge pain
2336 	 * to deal with, so instead just hold onto the inode throughout the
2337 	 * writepages operation.  If it fails here we are freeing up the inode
2338 	 * anyway and we'd rather not waste our time writing out stuff that is
2339 	 * going to be truncated anyway.
2340 	 */
2341 	if (!igrab(inode))
2342 		return 0;
2343 
2344 	folio_batch_init(&fbatch);
2345 	if (wbc->range_cyclic) {
2346 		index = mapping->writeback_index; /* Start from prev offset */
2347 		end = -1;
2348 		/*
2349 		 * Start from the beginning does not need to cycle over the
2350 		 * range, mark it as scanned.
2351 		 */
2352 		scanned = (index == 0);
2353 	} else {
2354 		index = wbc->range_start >> PAGE_SHIFT;
2355 		end = wbc->range_end >> PAGE_SHIFT;
2356 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2357 			range_whole = 1;
2358 		scanned = 1;
2359 	}
2360 
2361 	/*
2362 	 * We do the tagged writepage as long as the snapshot flush bit is set
2363 	 * and we are the first one who do the filemap_flush() on this inode.
2364 	 *
2365 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2366 	 * not race in and drop the bit.
2367 	 */
2368 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2369 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2370 			       &BTRFS_I(inode)->runtime_flags))
2371 		wbc->tagged_writepages = 1;
2372 
2373 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2374 		tag = PAGECACHE_TAG_TOWRITE;
2375 	else
2376 		tag = PAGECACHE_TAG_DIRTY;
2377 retry:
2378 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2379 		tag_pages_for_writeback(mapping, index, end);
2380 	done_index = index;
2381 	while (!done && !nr_to_write_done && (index <= end) &&
2382 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2383 							end, tag, &fbatch))) {
2384 		unsigned i;
2385 
2386 		for (i = 0; i < nr_folios; i++) {
2387 			struct folio *folio = fbatch.folios[i];
2388 
2389 			done_index = folio_next_index(folio);
2390 			/*
2391 			 * At this point we hold neither the i_pages lock nor
2392 			 * the folio lock: the folio may be truncated or
2393 			 * invalidated (changing folio->mapping to NULL).
2394 			 */
2395 			if (!folio_trylock(folio)) {
2396 				submit_write_bio(bio_ctrl, 0);
2397 				folio_lock(folio);
2398 			}
2399 
2400 			if (unlikely(folio->mapping != mapping)) {
2401 				folio_unlock(folio);
2402 				continue;
2403 			}
2404 
2405 			if (!folio_test_dirty(folio)) {
2406 				/* Someone wrote it for us. */
2407 				folio_unlock(folio);
2408 				continue;
2409 			}
2410 
2411 			/*
2412 			 * For subpage case, compression can lead to mixed
2413 			 * writeback and dirty flags, e.g:
2414 			 * 0     32K    64K    96K    128K
2415 			 * |     |//////||/////|   |//|
2416 			 *
2417 			 * In above case, [32K, 96K) is asynchronously submitted
2418 			 * for compression, and [124K, 128K) needs to be written back.
2419 			 *
2420 			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2421 			 * won't be submitted as the page still has writeback flag
2422 			 * and will be skipped in the next check.
2423 			 *
2424 			 * This mixed writeback and dirty case is only possible for
2425 			 * subpage case.
2426 			 *
2427 			 * TODO: Remove this check after migrating compression to
2428 			 * regular submission.
2429 			 */
2430 			if (wbc->sync_mode != WB_SYNC_NONE ||
2431 			    btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2432 				if (folio_test_writeback(folio))
2433 					submit_write_bio(bio_ctrl, 0);
2434 				folio_wait_writeback(folio);
2435 			}
2436 
2437 			if (folio_test_writeback(folio) ||
2438 			    !folio_clear_dirty_for_io(folio)) {
2439 				folio_unlock(folio);
2440 				continue;
2441 			}
2442 
2443 			ret = extent_writepage(folio, bio_ctrl);
2444 			if (ret < 0) {
2445 				done = 1;
2446 				break;
2447 			}
2448 
2449 			/*
2450 			 * The filesystem may choose to bump up nr_to_write.
2451 			 * We have to make sure to honor the new nr_to_write
2452 			 * at any time.
2453 			 */
2454 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2455 					    wbc->nr_to_write <= 0);
2456 		}
2457 		folio_batch_release(&fbatch);
2458 		cond_resched();
2459 	}
2460 	if (!scanned && !done) {
2461 		/*
2462 		 * We hit the last page and there is more work to be done: wrap
2463 		 * back to the start of the file
2464 		 */
2465 		scanned = 1;
2466 		index = 0;
2467 
2468 		/*
2469 		 * If we're looping we could run into a page that is locked by a
2470 		 * writer and that writer could be waiting on writeback for a
2471 		 * page in our current bio, and thus deadlock, so flush the
2472 		 * write bio here.
2473 		 */
2474 		submit_write_bio(bio_ctrl, 0);
2475 		goto retry;
2476 	}
2477 
2478 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2479 		mapping->writeback_index = done_index;
2480 
2481 	btrfs_add_delayed_iput(BTRFS_I(inode));
2482 	return ret;
2483 }
2484 
2485 /*
2486  * Submit the pages in the range to bio for call sites which delalloc range has
2487  * already been ran (aka, ordered extent inserted) and all pages are still
2488  * locked.
2489  */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2490 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2491 			       u64 start, u64 end, struct writeback_control *wbc,
2492 			       bool pages_dirty)
2493 {
2494 	bool found_error = false;
2495 	int ret = 0;
2496 	struct address_space *mapping = inode->i_mapping;
2497 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2498 	const u32 sectorsize = fs_info->sectorsize;
2499 	loff_t i_size = i_size_read(inode);
2500 	u64 cur = start;
2501 	struct btrfs_bio_ctrl bio_ctrl = {
2502 		.wbc = wbc,
2503 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2504 	};
2505 
2506 	if (wbc->no_cgroup_owner)
2507 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2508 
2509 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2510 
2511 	while (cur <= end) {
2512 		u64 cur_end;
2513 		u32 cur_len;
2514 		struct folio *folio;
2515 
2516 		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2517 
2518 		/*
2519 		 * This shouldn't happen, the pages are pinned and locked, this
2520 		 * code is just in case, but shouldn't actually be run.
2521 		 */
2522 		if (IS_ERR(folio)) {
2523 			cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2524 			cur_len = cur_end + 1 - cur;
2525 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2526 						       cur, cur_len, false);
2527 			mapping_set_error(mapping, PTR_ERR(folio));
2528 			cur = cur_end;
2529 			continue;
2530 		}
2531 
2532 		cur_end = min_t(u64, folio_end(folio) - 1, end);
2533 		cur_len = cur_end + 1 - cur;
2534 
2535 		ASSERT(folio_test_locked(folio));
2536 		if (pages_dirty && folio != locked_folio)
2537 			ASSERT(folio_test_dirty(folio));
2538 
2539 		/*
2540 		 * Set the submission bitmap to submit all sectors.
2541 		 * extent_writepage_io() will do the truncation correctly.
2542 		 */
2543 		bio_ctrl.submit_bitmap = (unsigned long)-1;
2544 		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2545 					  &bio_ctrl, i_size);
2546 		if (ret == 1)
2547 			goto next_page;
2548 
2549 		if (ret)
2550 			mapping_set_error(mapping, ret);
2551 		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2552 		if (ret < 0)
2553 			found_error = true;
2554 next_page:
2555 		folio_put(folio);
2556 		cur = cur_end + 1;
2557 	}
2558 
2559 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2560 }
2561 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2562 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2563 {
2564 	struct inode *inode = mapping->host;
2565 	int ret = 0;
2566 	struct btrfs_bio_ctrl bio_ctrl = {
2567 		.wbc = wbc,
2568 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2569 	};
2570 
2571 	/*
2572 	 * Allow only a single thread to do the reloc work in zoned mode to
2573 	 * protect the write pointer updates.
2574 	 */
2575 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2576 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2577 	submit_write_bio(&bio_ctrl, ret);
2578 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2579 	return ret;
2580 }
2581 
btrfs_readahead(struct readahead_control * rac)2582 void btrfs_readahead(struct readahead_control *rac)
2583 {
2584 	struct btrfs_bio_ctrl bio_ctrl = {
2585 		.opf = REQ_OP_READ | REQ_RAHEAD,
2586 		.ractl = rac
2587 	};
2588 	struct folio *folio;
2589 	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2590 	const u64 start = readahead_pos(rac);
2591 	const u64 end = start + readahead_length(rac) - 1;
2592 	struct extent_state *cached_state = NULL;
2593 	struct extent_map *em_cached = NULL;
2594 	u64 prev_em_start = (u64)-1;
2595 
2596 	lock_extents_for_read(inode, start, end, &cached_state);
2597 
2598 	while ((folio = readahead_folio(rac)) != NULL)
2599 		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2600 
2601 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2602 
2603 	if (em_cached)
2604 		btrfs_free_extent_map(em_cached);
2605 	submit_one_bio(&bio_ctrl);
2606 }
2607 
2608 /*
2609  * basic invalidate_folio code, this waits on any locked or writeback
2610  * ranges corresponding to the folio, and then deletes any extent state
2611  * records from the tree
2612  */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2613 int extent_invalidate_folio(struct extent_io_tree *tree,
2614 			  struct folio *folio, size_t offset)
2615 {
2616 	struct extent_state *cached_state = NULL;
2617 	u64 start = folio_pos(folio);
2618 	u64 end = start + folio_size(folio) - 1;
2619 	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2620 
2621 	/* This function is only called for the btree inode */
2622 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2623 
2624 	start += ALIGN(offset, blocksize);
2625 	if (start > end)
2626 		return 0;
2627 
2628 	btrfs_lock_extent(tree, start, end, &cached_state);
2629 	folio_wait_writeback(folio);
2630 
2631 	/*
2632 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2633 	 * so here we only need to unlock the extent range to free any
2634 	 * existing extent state.
2635 	 */
2636 	btrfs_unlock_extent(tree, start, end, &cached_state);
2637 	return 0;
2638 }
2639 
2640 /*
2641  * A helper for struct address_space_operations::release_folio, this tests for
2642  * areas of the folio that are locked or under IO and drops the related state
2643  * bits if it is safe to drop the folio.
2644  */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2645 static bool try_release_extent_state(struct extent_io_tree *tree,
2646 				     struct folio *folio)
2647 {
2648 	struct extent_state *cached_state = NULL;
2649 	u64 start = folio_pos(folio);
2650 	u64 end = start + folio_size(folio) - 1;
2651 	u32 range_bits;
2652 	u32 clear_bits;
2653 	bool ret = false;
2654 	int ret2;
2655 
2656 	btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2657 
2658 	/*
2659 	 * We can release the folio if it's locked only for ordered extent
2660 	 * completion, since that doesn't require using the folio.
2661 	 */
2662 	if ((range_bits & EXTENT_LOCKED) &&
2663 	    !(range_bits & EXTENT_FINISHING_ORDERED))
2664 		goto out;
2665 
2666 	clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2667 		       EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2668 		       EXTENT_FINISHING_ORDERED);
2669 	/*
2670 	 * At this point we can safely clear everything except the locked,
2671 	 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2672 	 * bit will be cleared by ordered extent completion.
2673 	 */
2674 	ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2675 	/*
2676 	 * If clear_extent_bit failed for enomem reasons, we can't allow the
2677 	 * release to continue.
2678 	 */
2679 	if (ret2 == 0)
2680 		ret = true;
2681 out:
2682 	btrfs_free_extent_state(cached_state);
2683 
2684 	return ret;
2685 }
2686 
2687 /*
2688  * a helper for release_folio.  As long as there are no locked extents
2689  * in the range corresponding to the page, both state records and extent
2690  * map records are removed
2691  */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2692 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2693 {
2694 	u64 start = folio_pos(folio);
2695 	u64 end = start + folio_size(folio) - 1;
2696 	struct btrfs_inode *inode = folio_to_inode(folio);
2697 	struct extent_io_tree *io_tree = &inode->io_tree;
2698 
2699 	while (start <= end) {
2700 		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2701 		const u64 len = end - start + 1;
2702 		struct extent_map_tree *extent_tree = &inode->extent_tree;
2703 		struct extent_map *em;
2704 
2705 		write_lock(&extent_tree->lock);
2706 		em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2707 		if (!em) {
2708 			write_unlock(&extent_tree->lock);
2709 			break;
2710 		}
2711 		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2712 			write_unlock(&extent_tree->lock);
2713 			btrfs_free_extent_map(em);
2714 			break;
2715 		}
2716 		if (btrfs_test_range_bit_exists(io_tree, em->start,
2717 						btrfs_extent_map_end(em) - 1,
2718 						EXTENT_LOCKED))
2719 			goto next;
2720 		/*
2721 		 * If it's not in the list of modified extents, used by a fast
2722 		 * fsync, we can remove it. If it's being logged we can safely
2723 		 * remove it since fsync took an extra reference on the em.
2724 		 */
2725 		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2726 			goto remove_em;
2727 		/*
2728 		 * If it's in the list of modified extents, remove it only if
2729 		 * its generation is older then the current one, in which case
2730 		 * we don't need it for a fast fsync. Otherwise don't remove it,
2731 		 * we could be racing with an ongoing fast fsync that could miss
2732 		 * the new extent.
2733 		 */
2734 		if (em->generation >= cur_gen)
2735 			goto next;
2736 remove_em:
2737 		/*
2738 		 * We only remove extent maps that are not in the list of
2739 		 * modified extents or that are in the list but with a
2740 		 * generation lower then the current generation, so there is no
2741 		 * need to set the full fsync flag on the inode (it hurts the
2742 		 * fsync performance for workloads with a data size that exceeds
2743 		 * or is close to the system's memory).
2744 		 */
2745 		btrfs_remove_extent_mapping(inode, em);
2746 		/* Once for the inode's extent map tree. */
2747 		btrfs_free_extent_map(em);
2748 next:
2749 		start = btrfs_extent_map_end(em);
2750 		write_unlock(&extent_tree->lock);
2751 
2752 		/* Once for us, for the lookup_extent_mapping() reference. */
2753 		btrfs_free_extent_map(em);
2754 
2755 		if (need_resched()) {
2756 			/*
2757 			 * If we need to resched but we can't block just exit
2758 			 * and leave any remaining extent maps.
2759 			 */
2760 			if (!gfpflags_allow_blocking(mask))
2761 				break;
2762 
2763 			cond_resched();
2764 		}
2765 	}
2766 	return try_release_extent_state(io_tree, folio);
2767 }
2768 
extent_buffer_under_io(const struct extent_buffer * eb)2769 static int extent_buffer_under_io(const struct extent_buffer *eb)
2770 {
2771 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2772 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2773 }
2774 
folio_range_has_eb(struct folio * folio)2775 static bool folio_range_has_eb(struct folio *folio)
2776 {
2777 	struct btrfs_folio_state *bfs;
2778 
2779 	lockdep_assert_held(&folio->mapping->i_private_lock);
2780 
2781 	if (folio_test_private(folio)) {
2782 		bfs = folio_get_private(folio);
2783 		if (atomic_read(&bfs->eb_refs))
2784 			return true;
2785 	}
2786 	return false;
2787 }
2788 
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2789 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2790 {
2791 	struct btrfs_fs_info *fs_info = eb->fs_info;
2792 	struct address_space *mapping = folio->mapping;
2793 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2794 
2795 	/*
2796 	 * For mapped eb, we're going to change the folio private, which should
2797 	 * be done under the i_private_lock.
2798 	 */
2799 	if (mapped)
2800 		spin_lock(&mapping->i_private_lock);
2801 
2802 	if (!folio_test_private(folio)) {
2803 		if (mapped)
2804 			spin_unlock(&mapping->i_private_lock);
2805 		return;
2806 	}
2807 
2808 	if (!btrfs_meta_is_subpage(fs_info)) {
2809 		/*
2810 		 * We do this since we'll remove the pages after we've removed
2811 		 * the eb from the xarray, so we could race and have this page
2812 		 * now attached to the new eb.  So only clear folio if it's
2813 		 * still connected to this eb.
2814 		 */
2815 		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2816 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2817 			BUG_ON(folio_test_dirty(folio));
2818 			BUG_ON(folio_test_writeback(folio));
2819 			/* We need to make sure we haven't be attached to a new eb. */
2820 			folio_detach_private(folio);
2821 		}
2822 		if (mapped)
2823 			spin_unlock(&mapping->i_private_lock);
2824 		return;
2825 	}
2826 
2827 	/*
2828 	 * For subpage, we can have dummy eb with folio private attached.  In
2829 	 * this case, we can directly detach the private as such folio is only
2830 	 * attached to one dummy eb, no sharing.
2831 	 */
2832 	if (!mapped) {
2833 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2834 		return;
2835 	}
2836 
2837 	btrfs_folio_dec_eb_refs(fs_info, folio);
2838 
2839 	/*
2840 	 * We can only detach the folio private if there are no other ebs in the
2841 	 * page range and no unfinished IO.
2842 	 */
2843 	if (!folio_range_has_eb(folio))
2844 		btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2845 
2846 	spin_unlock(&mapping->i_private_lock);
2847 }
2848 
2849 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2850 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2851 {
2852 	ASSERT(!extent_buffer_under_io(eb));
2853 
2854 	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2855 		struct folio *folio = eb->folios[i];
2856 
2857 		if (!folio)
2858 			continue;
2859 
2860 		detach_extent_buffer_folio(eb, folio);
2861 	}
2862 }
2863 
2864 /*
2865  * Helper for releasing the extent buffer.
2866  */
btrfs_release_extent_buffer(struct extent_buffer * eb)2867 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2868 {
2869 	btrfs_release_extent_buffer_folios(eb);
2870 	btrfs_leak_debug_del_eb(eb);
2871 	kmem_cache_free(extent_buffer_cache, eb);
2872 }
2873 
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2874 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2875 						   u64 start)
2876 {
2877 	struct extent_buffer *eb = NULL;
2878 
2879 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2880 	eb->start = start;
2881 	eb->len = fs_info->nodesize;
2882 	eb->fs_info = fs_info;
2883 	init_rwsem(&eb->lock);
2884 
2885 	btrfs_leak_debug_add_eb(eb);
2886 
2887 	spin_lock_init(&eb->refs_lock);
2888 	refcount_set(&eb->refs, 1);
2889 
2890 	ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2891 
2892 	return eb;
2893 }
2894 
2895 /*
2896  * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
2897  * does not call folio_put(), and we need to set the folios to NULL so that
2898  * btrfs_release_extent_buffer() will not detach them a second time.
2899  */
cleanup_extent_buffer_folios(struct extent_buffer * eb)2900 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
2901 {
2902 	const int num_folios = num_extent_folios(eb);
2903 
2904 	/* We canont use num_extent_folios() as loop bound as eb->folios changes. */
2905 	for (int i = 0; i < num_folios; i++) {
2906 		ASSERT(eb->folios[i]);
2907 		detach_extent_buffer_folio(eb, eb->folios[i]);
2908 		folio_put(eb->folios[i]);
2909 		eb->folios[i] = NULL;
2910 	}
2911 }
2912 
btrfs_clone_extent_buffer(const struct extent_buffer * src)2913 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2914 {
2915 	struct extent_buffer *new;
2916 	int num_folios;
2917 	int ret;
2918 
2919 	new = __alloc_extent_buffer(src->fs_info, src->start);
2920 	if (new == NULL)
2921 		return NULL;
2922 
2923 	/*
2924 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2925 	 * btrfs_release_extent_buffer() have different behavior for
2926 	 * UNMAPPED subpage extent buffer.
2927 	 */
2928 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2929 
2930 	ret = alloc_eb_folio_array(new, false);
2931 	if (ret)
2932 		goto release_eb;
2933 
2934 	ASSERT(num_extent_folios(src) == num_extent_folios(new),
2935 	       "%d != %d", num_extent_folios(src), num_extent_folios(new));
2936 	/* Explicitly use the cached num_extent value from now on. */
2937 	num_folios = num_extent_folios(src);
2938 	for (int i = 0; i < num_folios; i++) {
2939 		struct folio *folio = new->folios[i];
2940 
2941 		ret = attach_extent_buffer_folio(new, folio, NULL);
2942 		if (ret < 0)
2943 			goto cleanup_folios;
2944 		WARN_ON(folio_test_dirty(folio));
2945 	}
2946 	for (int i = 0; i < num_folios; i++)
2947 		folio_put(new->folios[i]);
2948 
2949 	copy_extent_buffer_full(new, src);
2950 	set_extent_buffer_uptodate(new);
2951 
2952 	return new;
2953 
2954 cleanup_folios:
2955 	cleanup_extent_buffer_folios(new);
2956 release_eb:
2957 	btrfs_release_extent_buffer(new);
2958 	return NULL;
2959 }
2960 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2961 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2962 						u64 start)
2963 {
2964 	struct extent_buffer *eb;
2965 	int ret;
2966 
2967 	eb = __alloc_extent_buffer(fs_info, start);
2968 	if (!eb)
2969 		return NULL;
2970 
2971 	ret = alloc_eb_folio_array(eb, false);
2972 	if (ret)
2973 		goto release_eb;
2974 
2975 	for (int i = 0; i < num_extent_folios(eb); i++) {
2976 		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2977 		if (ret < 0)
2978 			goto cleanup_folios;
2979 	}
2980 	for (int i = 0; i < num_extent_folios(eb); i++)
2981 		folio_put(eb->folios[i]);
2982 
2983 	set_extent_buffer_uptodate(eb);
2984 	btrfs_set_header_nritems(eb, 0);
2985 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2986 
2987 	return eb;
2988 
2989 cleanup_folios:
2990 	cleanup_extent_buffer_folios(eb);
2991 release_eb:
2992 	btrfs_release_extent_buffer(eb);
2993 	return NULL;
2994 }
2995 
check_buffer_tree_ref(struct extent_buffer * eb)2996 static void check_buffer_tree_ref(struct extent_buffer *eb)
2997 {
2998 	int refs;
2999 	/*
3000 	 * The TREE_REF bit is first set when the extent_buffer is added to the
3001 	 * xarray. It is also reset, if unset, when a new reference is created
3002 	 * by find_extent_buffer.
3003 	 *
3004 	 * It is only cleared in two cases: freeing the last non-tree
3005 	 * reference to the extent_buffer when its STALE bit is set or
3006 	 * calling release_folio when the tree reference is the only reference.
3007 	 *
3008 	 * In both cases, care is taken to ensure that the extent_buffer's
3009 	 * pages are not under io. However, release_folio can be concurrently
3010 	 * called with creating new references, which is prone to race
3011 	 * conditions between the calls to check_buffer_tree_ref in those
3012 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3013 	 *
3014 	 * The actual lifetime of the extent_buffer in the xarray is adequately
3015 	 * protected by the refcount, but the TREE_REF bit and its corresponding
3016 	 * reference are not. To protect against this class of races, we call
3017 	 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3018 	 * once io is initiated, TREE_REF can no longer be cleared, so that is
3019 	 * the moment at which any such race is best fixed.
3020 	 */
3021 	refs = refcount_read(&eb->refs);
3022 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3023 		return;
3024 
3025 	spin_lock(&eb->refs_lock);
3026 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3027 		refcount_inc(&eb->refs);
3028 	spin_unlock(&eb->refs_lock);
3029 }
3030 
mark_extent_buffer_accessed(struct extent_buffer * eb)3031 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3032 {
3033 	check_buffer_tree_ref(eb);
3034 
3035 	for (int i = 0; i < num_extent_folios(eb); i++)
3036 		folio_mark_accessed(eb->folios[i]);
3037 }
3038 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3039 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3040 					 u64 start)
3041 {
3042 	struct extent_buffer *eb;
3043 
3044 	eb = find_extent_buffer_nolock(fs_info, start);
3045 	if (!eb)
3046 		return NULL;
3047 	/*
3048 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3049 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3050 	 * another task running free_extent_buffer() might have seen that flag
3051 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3052 	 * writeback flags not set) and it's still in the tree (flag
3053 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3054 	 * decrementing the extent buffer's reference count twice.  So here we
3055 	 * could race and increment the eb's reference count, clear its stale
3056 	 * flag, mark it as dirty and drop our reference before the other task
3057 	 * finishes executing free_extent_buffer, which would later result in
3058 	 * an attempt to free an extent buffer that is dirty.
3059 	 */
3060 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3061 		spin_lock(&eb->refs_lock);
3062 		spin_unlock(&eb->refs_lock);
3063 	}
3064 	mark_extent_buffer_accessed(eb);
3065 	return eb;
3066 }
3067 
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3068 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3069 					u64 start)
3070 {
3071 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3072 	struct extent_buffer *eb, *exists = NULL;
3073 	int ret;
3074 
3075 	eb = find_extent_buffer(fs_info, start);
3076 	if (eb)
3077 		return eb;
3078 	eb = alloc_dummy_extent_buffer(fs_info, start);
3079 	if (!eb)
3080 		return ERR_PTR(-ENOMEM);
3081 	eb->fs_info = fs_info;
3082 again:
3083 	xa_lock_irq(&fs_info->buffer_tree);
3084 	exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3085 			      NULL, eb, GFP_NOFS);
3086 	if (xa_is_err(exists)) {
3087 		ret = xa_err(exists);
3088 		xa_unlock_irq(&fs_info->buffer_tree);
3089 		btrfs_release_extent_buffer(eb);
3090 		return ERR_PTR(ret);
3091 	}
3092 	if (exists) {
3093 		if (!refcount_inc_not_zero(&exists->refs)) {
3094 			/* The extent buffer is being freed, retry. */
3095 			xa_unlock_irq(&fs_info->buffer_tree);
3096 			goto again;
3097 		}
3098 		xa_unlock_irq(&fs_info->buffer_tree);
3099 		btrfs_release_extent_buffer(eb);
3100 		return exists;
3101 	}
3102 	xa_unlock_irq(&fs_info->buffer_tree);
3103 	check_buffer_tree_ref(eb);
3104 
3105 	return eb;
3106 #else
3107 	/* Stub to avoid linker error when compiled with optimizations turned off. */
3108 	return NULL;
3109 #endif
3110 }
3111 
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3112 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3113 						struct folio *folio)
3114 {
3115 	struct extent_buffer *exists;
3116 
3117 	lockdep_assert_held(&folio->mapping->i_private_lock);
3118 
3119 	/*
3120 	 * For subpage case, we completely rely on xarray to ensure we don't try
3121 	 * to insert two ebs for the same bytenr.  So here we always return NULL
3122 	 * and just continue.
3123 	 */
3124 	if (btrfs_meta_is_subpage(fs_info))
3125 		return NULL;
3126 
3127 	/* Page not yet attached to an extent buffer */
3128 	if (!folio_test_private(folio))
3129 		return NULL;
3130 
3131 	/*
3132 	 * We could have already allocated an eb for this folio and attached one
3133 	 * so lets see if we can get a ref on the existing eb, and if we can we
3134 	 * know it's good and we can just return that one, else we know we can
3135 	 * just overwrite folio private.
3136 	 */
3137 	exists = folio_get_private(folio);
3138 	if (refcount_inc_not_zero(&exists->refs))
3139 		return exists;
3140 
3141 	WARN_ON(folio_test_dirty(folio));
3142 	folio_detach_private(folio);
3143 	return NULL;
3144 }
3145 
3146 /*
3147  * Validate alignment constraints of eb at logical address @start.
3148  */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3149 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3150 {
3151 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3152 		btrfs_err(fs_info, "bad tree block start %llu", start);
3153 		return true;
3154 	}
3155 
3156 	if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) {
3157 		btrfs_err(fs_info,
3158 		"tree block is not nodesize aligned, start %llu nodesize %u",
3159 			  start, fs_info->nodesize);
3160 		return true;
3161 	}
3162 	if (fs_info->nodesize >= PAGE_SIZE &&
3163 	    !PAGE_ALIGNED(start)) {
3164 		btrfs_err(fs_info,
3165 		"tree block is not page aligned, start %llu nodesize %u",
3166 			  start, fs_info->nodesize);
3167 		return true;
3168 	}
3169 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3170 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3171 		btrfs_warn(fs_info,
3172 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3173 			      start, fs_info->nodesize);
3174 	}
3175 	return false;
3176 }
3177 
3178 /*
3179  * Return 0 if eb->folios[i] is attached to btree inode successfully.
3180  * Return >0 if there is already another extent buffer for the range,
3181  * and @found_eb_ret would be updated.
3182  * Return -EAGAIN if the filemap has an existing folio but with different size
3183  * than @eb.
3184  * The caller needs to free the existing folios and retry using the same order.
3185  */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3186 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3187 				      struct btrfs_folio_state *prealloc,
3188 				      struct extent_buffer **found_eb_ret)
3189 {
3190 
3191 	struct btrfs_fs_info *fs_info = eb->fs_info;
3192 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3193 	const pgoff_t index = eb->start >> PAGE_SHIFT;
3194 	struct folio *existing_folio;
3195 	int ret;
3196 
3197 	ASSERT(found_eb_ret);
3198 
3199 	/* Caller should ensure the folio exists. */
3200 	ASSERT(eb->folios[i]);
3201 
3202 retry:
3203 	existing_folio = NULL;
3204 	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3205 				GFP_NOFS | __GFP_NOFAIL);
3206 	if (!ret)
3207 		goto finish;
3208 
3209 	existing_folio = filemap_lock_folio(mapping, index + i);
3210 	/* The page cache only exists for a very short time, just retry. */
3211 	if (IS_ERR(existing_folio))
3212 		goto retry;
3213 
3214 	/* For now, we should only have single-page folios for btree inode. */
3215 	ASSERT(folio_nr_pages(existing_folio) == 1);
3216 
3217 	if (folio_size(existing_folio) != eb->folio_size) {
3218 		folio_unlock(existing_folio);
3219 		folio_put(existing_folio);
3220 		return -EAGAIN;
3221 	}
3222 
3223 finish:
3224 	spin_lock(&mapping->i_private_lock);
3225 	if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3226 		/* We're going to reuse the existing page, can drop our folio now. */
3227 		__free_page(folio_page(eb->folios[i], 0));
3228 		eb->folios[i] = existing_folio;
3229 	} else if (existing_folio) {
3230 		struct extent_buffer *existing_eb;
3231 
3232 		existing_eb = grab_extent_buffer(fs_info, existing_folio);
3233 		if (existing_eb) {
3234 			/* The extent buffer still exists, we can use it directly. */
3235 			*found_eb_ret = existing_eb;
3236 			spin_unlock(&mapping->i_private_lock);
3237 			folio_unlock(existing_folio);
3238 			folio_put(existing_folio);
3239 			return 1;
3240 		}
3241 		/* The extent buffer no longer exists, we can reuse the folio. */
3242 		__free_page(folio_page(eb->folios[i], 0));
3243 		eb->folios[i] = existing_folio;
3244 	}
3245 	eb->folio_size = folio_size(eb->folios[i]);
3246 	eb->folio_shift = folio_shift(eb->folios[i]);
3247 	/* Should not fail, as we have preallocated the memory. */
3248 	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3249 	ASSERT(!ret);
3250 	/*
3251 	 * To inform we have an extra eb under allocation, so that
3252 	 * detach_extent_buffer_page() won't release the folio private when the
3253 	 * eb hasn't been inserted into the xarray yet.
3254 	 *
3255 	 * The ref will be decreased when the eb releases the page, in
3256 	 * detach_extent_buffer_page().  Thus needs no special handling in the
3257 	 * error path.
3258 	 */
3259 	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3260 	spin_unlock(&mapping->i_private_lock);
3261 	return 0;
3262 }
3263 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3264 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3265 					  u64 start, u64 owner_root, int level)
3266 {
3267 	int attached = 0;
3268 	struct extent_buffer *eb;
3269 	struct extent_buffer *existing_eb = NULL;
3270 	struct btrfs_folio_state *prealloc = NULL;
3271 	u64 lockdep_owner = owner_root;
3272 	bool page_contig = true;
3273 	int uptodate = 1;
3274 	int ret;
3275 
3276 	if (check_eb_alignment(fs_info, start))
3277 		return ERR_PTR(-EINVAL);
3278 
3279 #if BITS_PER_LONG == 32
3280 	if (start >= MAX_LFS_FILESIZE) {
3281 		btrfs_err_rl(fs_info,
3282 		"extent buffer %llu is beyond 32bit page cache limit", start);
3283 		btrfs_err_32bit_limit(fs_info);
3284 		return ERR_PTR(-EOVERFLOW);
3285 	}
3286 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3287 		btrfs_warn_32bit_limit(fs_info);
3288 #endif
3289 
3290 	eb = find_extent_buffer(fs_info, start);
3291 	if (eb)
3292 		return eb;
3293 
3294 	eb = __alloc_extent_buffer(fs_info, start);
3295 	if (!eb)
3296 		return ERR_PTR(-ENOMEM);
3297 
3298 	/*
3299 	 * The reloc trees are just snapshots, so we need them to appear to be
3300 	 * just like any other fs tree WRT lockdep.
3301 	 */
3302 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3303 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3304 
3305 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3306 
3307 	/*
3308 	 * Preallocate folio private for subpage case, so that we won't
3309 	 * allocate memory with i_private_lock nor page lock hold.
3310 	 *
3311 	 * The memory will be freed by attach_extent_buffer_page() or freed
3312 	 * manually if we exit earlier.
3313 	 */
3314 	if (btrfs_meta_is_subpage(fs_info)) {
3315 		prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3316 		if (IS_ERR(prealloc)) {
3317 			ret = PTR_ERR(prealloc);
3318 			goto out;
3319 		}
3320 	}
3321 
3322 reallocate:
3323 	/* Allocate all pages first. */
3324 	ret = alloc_eb_folio_array(eb, true);
3325 	if (ret < 0) {
3326 		btrfs_free_folio_state(prealloc);
3327 		goto out;
3328 	}
3329 
3330 	/* Attach all pages to the filemap. */
3331 	for (int i = 0; i < num_extent_folios(eb); i++) {
3332 		struct folio *folio;
3333 
3334 		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3335 		if (ret > 0) {
3336 			ASSERT(existing_eb);
3337 			goto out;
3338 		}
3339 
3340 		/*
3341 		 * TODO: Special handling for a corner case where the order of
3342 		 * folios mismatch between the new eb and filemap.
3343 		 *
3344 		 * This happens when:
3345 		 *
3346 		 * - the new eb is using higher order folio
3347 		 *
3348 		 * - the filemap is still using 0-order folios for the range
3349 		 *   This can happen at the previous eb allocation, and we don't
3350 		 *   have higher order folio for the call.
3351 		 *
3352 		 * - the existing eb has already been freed
3353 		 *
3354 		 * In this case, we have to free the existing folios first, and
3355 		 * re-allocate using the same order.
3356 		 * Thankfully this is not going to happen yet, as we're still
3357 		 * using 0-order folios.
3358 		 */
3359 		if (unlikely(ret == -EAGAIN)) {
3360 			DEBUG_WARN("folio order mismatch between new eb and filemap");
3361 			goto reallocate;
3362 		}
3363 		attached++;
3364 
3365 		/*
3366 		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3367 		 * reliable, as we may choose to reuse the existing page cache
3368 		 * and free the allocated page.
3369 		 */
3370 		folio = eb->folios[i];
3371 		WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3372 
3373 		/*
3374 		 * Check if the current page is physically contiguous with previous eb
3375 		 * page.
3376 		 * At this stage, either we allocated a large folio, thus @i
3377 		 * would only be 0, or we fall back to per-page allocation.
3378 		 */
3379 		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3380 			page_contig = false;
3381 
3382 		if (!btrfs_meta_folio_test_uptodate(folio, eb))
3383 			uptodate = 0;
3384 
3385 		/*
3386 		 * We can't unlock the pages just yet since the extent buffer
3387 		 * hasn't been properly inserted into the xarray, this opens a
3388 		 * race with btree_release_folio() which can free a page while we
3389 		 * are still filling in all pages for the buffer and we could crash.
3390 		 */
3391 	}
3392 	if (uptodate)
3393 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3394 	/* All pages are physically contiguous, can skip cross page handling. */
3395 	if (page_contig)
3396 		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3397 again:
3398 	xa_lock_irq(&fs_info->buffer_tree);
3399 	existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3400 				   start >> fs_info->nodesize_bits, NULL, eb,
3401 				   GFP_NOFS);
3402 	if (xa_is_err(existing_eb)) {
3403 		ret = xa_err(existing_eb);
3404 		xa_unlock_irq(&fs_info->buffer_tree);
3405 		goto out;
3406 	}
3407 	if (existing_eb) {
3408 		if (!refcount_inc_not_zero(&existing_eb->refs)) {
3409 			xa_unlock_irq(&fs_info->buffer_tree);
3410 			goto again;
3411 		}
3412 		xa_unlock_irq(&fs_info->buffer_tree);
3413 		goto out;
3414 	}
3415 	xa_unlock_irq(&fs_info->buffer_tree);
3416 
3417 	/* add one reference for the tree */
3418 	check_buffer_tree_ref(eb);
3419 
3420 	/*
3421 	 * Now it's safe to unlock the pages because any calls to
3422 	 * btree_release_folio will correctly detect that a page belongs to a
3423 	 * live buffer and won't free them prematurely.
3424 	 */
3425 	for (int i = 0; i < num_extent_folios(eb); i++) {
3426 		folio_unlock(eb->folios[i]);
3427 		/*
3428 		 * A folio that has been added to an address_space mapping
3429 		 * should not continue holding the refcount from its original
3430 		 * allocation indefinitely.
3431 		 */
3432 		folio_put(eb->folios[i]);
3433 	}
3434 	return eb;
3435 
3436 out:
3437 	WARN_ON(!refcount_dec_and_test(&eb->refs));
3438 
3439 	/*
3440 	 * Any attached folios need to be detached before we unlock them.  This
3441 	 * is because when we're inserting our new folios into the mapping, and
3442 	 * then attaching our eb to that folio.  If we fail to insert our folio
3443 	 * we'll lookup the folio for that index, and grab that EB.  We do not
3444 	 * want that to grab this eb, as we're getting ready to free it.  So we
3445 	 * have to detach it first and then unlock it.
3446 	 *
3447 	 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3448 	 */
3449 	for (int i = 0; i < num_extent_pages(eb); i++) {
3450 		struct folio *folio = eb->folios[i];
3451 
3452 		if (i < attached) {
3453 			ASSERT(folio);
3454 			detach_extent_buffer_folio(eb, folio);
3455 			folio_unlock(folio);
3456 		} else if (!folio) {
3457 			continue;
3458 		}
3459 
3460 		folio_put(folio);
3461 		eb->folios[i] = NULL;
3462 	}
3463 	btrfs_release_extent_buffer(eb);
3464 	if (ret < 0)
3465 		return ERR_PTR(ret);
3466 	ASSERT(existing_eb);
3467 	return existing_eb;
3468 }
3469 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3470 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3471 {
3472 	struct extent_buffer *eb =
3473 			container_of(head, struct extent_buffer, rcu_head);
3474 
3475 	kmem_cache_free(extent_buffer_cache, eb);
3476 }
3477 
release_extent_buffer(struct extent_buffer * eb)3478 static int release_extent_buffer(struct extent_buffer *eb)
3479 	__releases(&eb->refs_lock)
3480 {
3481 	lockdep_assert_held(&eb->refs_lock);
3482 
3483 	if (refcount_dec_and_test(&eb->refs)) {
3484 		struct btrfs_fs_info *fs_info = eb->fs_info;
3485 
3486 		spin_unlock(&eb->refs_lock);
3487 
3488 		/*
3489 		 * We're erasing, theoretically there will be no allocations, so
3490 		 * just use GFP_ATOMIC.
3491 		 *
3492 		 * We use cmpxchg instead of erase because we do not know if
3493 		 * this eb is actually in the tree or not, we could be cleaning
3494 		 * up an eb that we allocated but never inserted into the tree.
3495 		 * Thus use cmpxchg to remove it from the tree if it is there,
3496 		 * or leave the other entry if this isn't in the tree.
3497 		 *
3498 		 * The documentation says that putting a NULL value is the same
3499 		 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3500 		 * in this case.
3501 		 */
3502 		xa_cmpxchg_irq(&fs_info->buffer_tree,
3503 			       eb->start >> fs_info->nodesize_bits, eb, NULL,
3504 			       GFP_ATOMIC);
3505 
3506 		btrfs_leak_debug_del_eb(eb);
3507 		/* Should be safe to release folios at this point. */
3508 		btrfs_release_extent_buffer_folios(eb);
3509 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3510 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3511 			kmem_cache_free(extent_buffer_cache, eb);
3512 			return 1;
3513 		}
3514 #endif
3515 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3516 		return 1;
3517 	}
3518 	spin_unlock(&eb->refs_lock);
3519 
3520 	return 0;
3521 }
3522 
free_extent_buffer(struct extent_buffer * eb)3523 void free_extent_buffer(struct extent_buffer *eb)
3524 {
3525 	int refs;
3526 	if (!eb)
3527 		return;
3528 
3529 	refs = refcount_read(&eb->refs);
3530 	while (1) {
3531 		if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3532 			if (refs == 1)
3533 				break;
3534 		} else if (refs <= 3) {
3535 			break;
3536 		}
3537 
3538 		/* Optimization to avoid locking eb->refs_lock. */
3539 		if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3540 			return;
3541 	}
3542 
3543 	spin_lock(&eb->refs_lock);
3544 	if (refcount_read(&eb->refs) == 2 &&
3545 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3546 	    !extent_buffer_under_io(eb) &&
3547 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3548 		refcount_dec(&eb->refs);
3549 
3550 	/*
3551 	 * I know this is terrible, but it's temporary until we stop tracking
3552 	 * the uptodate bits and such for the extent buffers.
3553 	 */
3554 	release_extent_buffer(eb);
3555 }
3556 
free_extent_buffer_stale(struct extent_buffer * eb)3557 void free_extent_buffer_stale(struct extent_buffer *eb)
3558 {
3559 	if (!eb)
3560 		return;
3561 
3562 	spin_lock(&eb->refs_lock);
3563 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3564 
3565 	if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3566 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3567 		refcount_dec(&eb->refs);
3568 	release_extent_buffer(eb);
3569 }
3570 
btree_clear_folio_dirty_tag(struct folio * folio)3571 static void btree_clear_folio_dirty_tag(struct folio *folio)
3572 {
3573 	ASSERT(!folio_test_dirty(folio));
3574 	ASSERT(folio_test_locked(folio));
3575 	xa_lock_irq(&folio->mapping->i_pages);
3576 	if (!folio_test_dirty(folio))
3577 		__xa_clear_mark(&folio->mapping->i_pages, folio->index,
3578 				PAGECACHE_TAG_DIRTY);
3579 	xa_unlock_irq(&folio->mapping->i_pages);
3580 }
3581 
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3582 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3583 			      struct extent_buffer *eb)
3584 {
3585 	struct btrfs_fs_info *fs_info = eb->fs_info;
3586 
3587 	btrfs_assert_tree_write_locked(eb);
3588 
3589 	if (trans && btrfs_header_generation(eb) != trans->transid)
3590 		return;
3591 
3592 	/*
3593 	 * Instead of clearing the dirty flag off of the buffer, mark it as
3594 	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3595 	 * write-ordering in zoned mode, without the need to later re-dirty
3596 	 * the extent_buffer.
3597 	 *
3598 	 * The actual zeroout of the buffer will happen later in
3599 	 * btree_csum_one_bio.
3600 	 */
3601 	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3602 		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3603 		return;
3604 	}
3605 
3606 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3607 		return;
3608 
3609 	buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3610 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3611 				 fs_info->dirty_metadata_batch);
3612 
3613 	for (int i = 0; i < num_extent_folios(eb); i++) {
3614 		struct folio *folio = eb->folios[i];
3615 		bool last;
3616 
3617 		if (!folio_test_dirty(folio))
3618 			continue;
3619 		folio_lock(folio);
3620 		last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3621 		if (last)
3622 			btree_clear_folio_dirty_tag(folio);
3623 		folio_unlock(folio);
3624 	}
3625 	WARN_ON(refcount_read(&eb->refs) == 0);
3626 }
3627 
set_extent_buffer_dirty(struct extent_buffer * eb)3628 void set_extent_buffer_dirty(struct extent_buffer *eb)
3629 {
3630 	bool was_dirty;
3631 
3632 	check_buffer_tree_ref(eb);
3633 
3634 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3635 
3636 	WARN_ON(refcount_read(&eb->refs) == 0);
3637 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3638 	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3639 
3640 	if (!was_dirty) {
3641 		bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3642 
3643 		/*
3644 		 * For subpage case, we can have other extent buffers in the
3645 		 * same page, and in clear_extent_buffer_dirty() we
3646 		 * have to clear page dirty without subpage lock held.
3647 		 * This can cause race where our page gets dirty cleared after
3648 		 * we just set it.
3649 		 *
3650 		 * Thankfully, clear_extent_buffer_dirty() has locked
3651 		 * its page for other reasons, we can use page lock to prevent
3652 		 * the above race.
3653 		 */
3654 		if (subpage)
3655 			folio_lock(eb->folios[0]);
3656 		for (int i = 0; i < num_extent_folios(eb); i++)
3657 			btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3658 		buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3659 		if (subpage)
3660 			folio_unlock(eb->folios[0]);
3661 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3662 					 eb->len,
3663 					 eb->fs_info->dirty_metadata_batch);
3664 	}
3665 #ifdef CONFIG_BTRFS_DEBUG
3666 	for (int i = 0; i < num_extent_folios(eb); i++)
3667 		ASSERT(folio_test_dirty(eb->folios[i]));
3668 #endif
3669 }
3670 
clear_extent_buffer_uptodate(struct extent_buffer * eb)3671 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3672 {
3673 
3674 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3675 	for (int i = 0; i < num_extent_folios(eb); i++) {
3676 		struct folio *folio = eb->folios[i];
3677 
3678 		if (!folio)
3679 			continue;
3680 
3681 		btrfs_meta_folio_clear_uptodate(folio, eb);
3682 	}
3683 }
3684 
set_extent_buffer_uptodate(struct extent_buffer * eb)3685 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3686 {
3687 
3688 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3689 	for (int i = 0; i < num_extent_folios(eb); i++)
3690 		btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3691 }
3692 
clear_extent_buffer_reading(struct extent_buffer * eb)3693 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3694 {
3695 	clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3696 }
3697 
end_bbio_meta_read(struct btrfs_bio * bbio)3698 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3699 {
3700 	struct extent_buffer *eb = bbio->private;
3701 	bool uptodate = !bbio->bio.bi_status;
3702 
3703 	/*
3704 	 * If the extent buffer is marked UPTODATE before the read operation
3705 	 * completes, other calls to read_extent_buffer_pages() will return
3706 	 * early without waiting for the read to finish, causing data races.
3707 	 */
3708 	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3709 
3710 	eb->read_mirror = bbio->mirror_num;
3711 
3712 	if (uptodate &&
3713 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3714 		uptodate = false;
3715 
3716 	if (uptodate)
3717 		set_extent_buffer_uptodate(eb);
3718 	else
3719 		clear_extent_buffer_uptodate(eb);
3720 
3721 	clear_extent_buffer_reading(eb);
3722 	free_extent_buffer(eb);
3723 
3724 	bio_put(&bbio->bio);
3725 }
3726 
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3727 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3728 				    const struct btrfs_tree_parent_check *check)
3729 {
3730 	struct btrfs_bio *bbio;
3731 
3732 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3733 		return 0;
3734 
3735 	/*
3736 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3737 	 * operation, which could potentially still be in flight.  In this case
3738 	 * we simply want to return an error.
3739 	 */
3740 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3741 		return -EIO;
3742 
3743 	/* Someone else is already reading the buffer, just wait for it. */
3744 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3745 		return 0;
3746 
3747 	/*
3748 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3749 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3750 	 * started and finished reading the same eb.  In this case, UPTODATE
3751 	 * will now be set, and we shouldn't read it in again.
3752 	 */
3753 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3754 		clear_extent_buffer_reading(eb);
3755 		return 0;
3756 	}
3757 
3758 	eb->read_mirror = 0;
3759 	check_buffer_tree_ref(eb);
3760 	refcount_inc(&eb->refs);
3761 
3762 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3763 			       REQ_OP_READ | REQ_META, eb->fs_info,
3764 			       end_bbio_meta_read, eb);
3765 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3766 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3767 	bbio->file_offset = eb->start;
3768 	memcpy(&bbio->parent_check, check, sizeof(*check));
3769 	for (int i = 0; i < num_extent_folios(eb); i++) {
3770 		struct folio *folio = eb->folios[i];
3771 		u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3772 		u32 range_len = min_t(u64, folio_end(folio),
3773 				      eb->start + eb->len) - range_start;
3774 
3775 		bio_add_folio_nofail(&bbio->bio, folio, range_len,
3776 				     offset_in_folio(folio, range_start));
3777 	}
3778 	btrfs_submit_bbio(bbio, mirror_num);
3779 	return 0;
3780 }
3781 
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3782 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3783 			     const struct btrfs_tree_parent_check *check)
3784 {
3785 	int ret;
3786 
3787 	ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3788 	if (ret < 0)
3789 		return ret;
3790 
3791 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3792 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3793 		return -EIO;
3794 	return 0;
3795 }
3796 
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3797 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3798 			    unsigned long len)
3799 {
3800 	btrfs_warn(eb->fs_info,
3801 		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3802 		eb->start, eb->len, start, len);
3803 	DEBUG_WARN();
3804 
3805 	return true;
3806 }
3807 
3808 /*
3809  * Check if the [start, start + len) range is valid before reading/writing
3810  * the eb.
3811  * NOTE: @start and @len are offset inside the eb, not logical address.
3812  *
3813  * Caller should not touch the dst/src memory if this function returns error.
3814  */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3815 static inline int check_eb_range(const struct extent_buffer *eb,
3816 				 unsigned long start, unsigned long len)
3817 {
3818 	unsigned long offset;
3819 
3820 	/* start, start + len should not go beyond eb->len nor overflow */
3821 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3822 		return report_eb_range(eb, start, len);
3823 
3824 	return false;
3825 }
3826 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3827 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3828 			unsigned long start, unsigned long len)
3829 {
3830 	const int unit_size = eb->folio_size;
3831 	size_t cur;
3832 	size_t offset;
3833 	char *dst = (char *)dstv;
3834 	unsigned long i = get_eb_folio_index(eb, start);
3835 
3836 	if (check_eb_range(eb, start, len)) {
3837 		/*
3838 		 * Invalid range hit, reset the memory, so callers won't get
3839 		 * some random garbage for their uninitialized memory.
3840 		 */
3841 		memset(dstv, 0, len);
3842 		return;
3843 	}
3844 
3845 	if (eb->addr) {
3846 		memcpy(dstv, eb->addr + start, len);
3847 		return;
3848 	}
3849 
3850 	offset = get_eb_offset_in_folio(eb, start);
3851 
3852 	while (len > 0) {
3853 		char *kaddr;
3854 
3855 		cur = min(len, unit_size - offset);
3856 		kaddr = folio_address(eb->folios[i]);
3857 		memcpy(dst, kaddr + offset, cur);
3858 
3859 		dst += cur;
3860 		len -= cur;
3861 		offset = 0;
3862 		i++;
3863 	}
3864 }
3865 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3866 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3867 				       void __user *dstv,
3868 				       unsigned long start, unsigned long len)
3869 {
3870 	const int unit_size = eb->folio_size;
3871 	size_t cur;
3872 	size_t offset;
3873 	char __user *dst = (char __user *)dstv;
3874 	unsigned long i = get_eb_folio_index(eb, start);
3875 	int ret = 0;
3876 
3877 	WARN_ON(start > eb->len);
3878 	WARN_ON(start + len > eb->start + eb->len);
3879 
3880 	if (eb->addr) {
3881 		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3882 			ret = -EFAULT;
3883 		return ret;
3884 	}
3885 
3886 	offset = get_eb_offset_in_folio(eb, start);
3887 
3888 	while (len > 0) {
3889 		char *kaddr;
3890 
3891 		cur = min(len, unit_size - offset);
3892 		kaddr = folio_address(eb->folios[i]);
3893 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3894 			ret = -EFAULT;
3895 			break;
3896 		}
3897 
3898 		dst += cur;
3899 		len -= cur;
3900 		offset = 0;
3901 		i++;
3902 	}
3903 
3904 	return ret;
3905 }
3906 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3907 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3908 			 unsigned long start, unsigned long len)
3909 {
3910 	const int unit_size = eb->folio_size;
3911 	size_t cur;
3912 	size_t offset;
3913 	char *kaddr;
3914 	char *ptr = (char *)ptrv;
3915 	unsigned long i = get_eb_folio_index(eb, start);
3916 	int ret = 0;
3917 
3918 	if (check_eb_range(eb, start, len))
3919 		return -EINVAL;
3920 
3921 	if (eb->addr)
3922 		return memcmp(ptrv, eb->addr + start, len);
3923 
3924 	offset = get_eb_offset_in_folio(eb, start);
3925 
3926 	while (len > 0) {
3927 		cur = min(len, unit_size - offset);
3928 		kaddr = folio_address(eb->folios[i]);
3929 		ret = memcmp(ptr, kaddr + offset, cur);
3930 		if (ret)
3931 			break;
3932 
3933 		ptr += cur;
3934 		len -= cur;
3935 		offset = 0;
3936 		i++;
3937 	}
3938 	return ret;
3939 }
3940 
3941 /*
3942  * Check that the extent buffer is uptodate.
3943  *
3944  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3945  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3946  */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)3947 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3948 {
3949 	struct btrfs_fs_info *fs_info = eb->fs_info;
3950 	struct folio *folio = eb->folios[i];
3951 
3952 	ASSERT(folio);
3953 
3954 	/*
3955 	 * If we are using the commit root we could potentially clear a page
3956 	 * Uptodate while we're using the extent buffer that we've previously
3957 	 * looked up.  We don't want to complain in this case, as the page was
3958 	 * valid before, we just didn't write it out.  Instead we want to catch
3959 	 * the case where we didn't actually read the block properly, which
3960 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3961 	 */
3962 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3963 		return;
3964 
3965 	if (btrfs_meta_is_subpage(fs_info)) {
3966 		folio = eb->folios[0];
3967 		ASSERT(i == 0);
3968 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3969 							 eb->start, eb->len)))
3970 			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3971 	} else {
3972 		WARN_ON(!folio_test_uptodate(folio));
3973 	}
3974 }
3975 
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)3976 static void __write_extent_buffer(const struct extent_buffer *eb,
3977 				  const void *srcv, unsigned long start,
3978 				  unsigned long len, bool use_memmove)
3979 {
3980 	const int unit_size = eb->folio_size;
3981 	size_t cur;
3982 	size_t offset;
3983 	char *kaddr;
3984 	const char *src = (const char *)srcv;
3985 	unsigned long i = get_eb_folio_index(eb, start);
3986 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3987 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3988 
3989 	if (check_eb_range(eb, start, len))
3990 		return;
3991 
3992 	if (eb->addr) {
3993 		if (use_memmove)
3994 			memmove(eb->addr + start, srcv, len);
3995 		else
3996 			memcpy(eb->addr + start, srcv, len);
3997 		return;
3998 	}
3999 
4000 	offset = get_eb_offset_in_folio(eb, start);
4001 
4002 	while (len > 0) {
4003 		if (check_uptodate)
4004 			assert_eb_folio_uptodate(eb, i);
4005 
4006 		cur = min(len, unit_size - offset);
4007 		kaddr = folio_address(eb->folios[i]);
4008 		if (use_memmove)
4009 			memmove(kaddr + offset, src, cur);
4010 		else
4011 			memcpy(kaddr + offset, src, cur);
4012 
4013 		src += cur;
4014 		len -= cur;
4015 		offset = 0;
4016 		i++;
4017 	}
4018 }
4019 
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4020 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4021 			 unsigned long start, unsigned long len)
4022 {
4023 	return __write_extent_buffer(eb, srcv, start, len, false);
4024 }
4025 
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4026 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4027 				 unsigned long start, unsigned long len)
4028 {
4029 	const int unit_size = eb->folio_size;
4030 	unsigned long cur = start;
4031 
4032 	if (eb->addr) {
4033 		memset(eb->addr + start, c, len);
4034 		return;
4035 	}
4036 
4037 	while (cur < start + len) {
4038 		unsigned long index = get_eb_folio_index(eb, cur);
4039 		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4040 		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4041 
4042 		assert_eb_folio_uptodate(eb, index);
4043 		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4044 
4045 		cur += cur_len;
4046 	}
4047 }
4048 
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4049 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4050 			   unsigned long len)
4051 {
4052 	if (check_eb_range(eb, start, len))
4053 		return;
4054 	return memset_extent_buffer(eb, 0, start, len);
4055 }
4056 
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4057 void copy_extent_buffer_full(const struct extent_buffer *dst,
4058 			     const struct extent_buffer *src)
4059 {
4060 	const int unit_size = src->folio_size;
4061 	unsigned long cur = 0;
4062 
4063 	ASSERT(dst->len == src->len);
4064 
4065 	while (cur < src->len) {
4066 		unsigned long index = get_eb_folio_index(src, cur);
4067 		unsigned long offset = get_eb_offset_in_folio(src, cur);
4068 		unsigned long cur_len = min(src->len, unit_size - offset);
4069 		void *addr = folio_address(src->folios[index]) + offset;
4070 
4071 		write_extent_buffer(dst, addr, cur, cur_len);
4072 
4073 		cur += cur_len;
4074 	}
4075 }
4076 
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4077 void copy_extent_buffer(const struct extent_buffer *dst,
4078 			const struct extent_buffer *src,
4079 			unsigned long dst_offset, unsigned long src_offset,
4080 			unsigned long len)
4081 {
4082 	const int unit_size = dst->folio_size;
4083 	u64 dst_len = dst->len;
4084 	size_t cur;
4085 	size_t offset;
4086 	char *kaddr;
4087 	unsigned long i = get_eb_folio_index(dst, dst_offset);
4088 
4089 	if (check_eb_range(dst, dst_offset, len) ||
4090 	    check_eb_range(src, src_offset, len))
4091 		return;
4092 
4093 	WARN_ON(src->len != dst_len);
4094 
4095 	offset = get_eb_offset_in_folio(dst, dst_offset);
4096 
4097 	while (len > 0) {
4098 		assert_eb_folio_uptodate(dst, i);
4099 
4100 		cur = min(len, (unsigned long)(unit_size - offset));
4101 
4102 		kaddr = folio_address(dst->folios[i]);
4103 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4104 
4105 		src_offset += cur;
4106 		len -= cur;
4107 		offset = 0;
4108 		i++;
4109 	}
4110 }
4111 
4112 /*
4113  * Calculate the folio and offset of the byte containing the given bit number.
4114  *
4115  * @eb:           the extent buffer
4116  * @start:        offset of the bitmap item in the extent buffer
4117  * @nr:           bit number
4118  * @folio_index:  return index of the folio in the extent buffer that contains
4119  *                the given bit number
4120  * @folio_offset: return offset into the folio given by folio_index
4121  *
4122  * This helper hides the ugliness of finding the byte in an extent buffer which
4123  * contains a given bit.
4124  */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4125 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4126 				    unsigned long start, unsigned long nr,
4127 				    unsigned long *folio_index,
4128 				    size_t *folio_offset)
4129 {
4130 	size_t byte_offset = BIT_BYTE(nr);
4131 	size_t offset;
4132 
4133 	/*
4134 	 * The byte we want is the offset of the extent buffer + the offset of
4135 	 * the bitmap item in the extent buffer + the offset of the byte in the
4136 	 * bitmap item.
4137 	 */
4138 	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4139 
4140 	*folio_index = offset >> eb->folio_shift;
4141 	*folio_offset = offset_in_eb_folio(eb, offset);
4142 }
4143 
4144 /*
4145  * Determine whether a bit in a bitmap item is set.
4146  *
4147  * @eb:     the extent buffer
4148  * @start:  offset of the bitmap item in the extent buffer
4149  * @nr:     bit number to test
4150  */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4151 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4152 			    unsigned long nr)
4153 {
4154 	unsigned long i;
4155 	size_t offset;
4156 	u8 *kaddr;
4157 
4158 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4159 	assert_eb_folio_uptodate(eb, i);
4160 	kaddr = folio_address(eb->folios[i]);
4161 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4162 }
4163 
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4164 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4165 {
4166 	unsigned long index = get_eb_folio_index(eb, bytenr);
4167 
4168 	if (check_eb_range(eb, bytenr, 1))
4169 		return NULL;
4170 	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4171 }
4172 
4173 /*
4174  * Set an area of a bitmap to 1.
4175  *
4176  * @eb:     the extent buffer
4177  * @start:  offset of the bitmap item in the extent buffer
4178  * @pos:    bit number of the first bit
4179  * @len:    number of bits to set
4180  */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4181 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4182 			      unsigned long pos, unsigned long len)
4183 {
4184 	unsigned int first_byte = start + BIT_BYTE(pos);
4185 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4186 	const bool same_byte = (first_byte == last_byte);
4187 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4188 	u8 *kaddr;
4189 
4190 	if (same_byte)
4191 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4192 
4193 	/* Handle the first byte. */
4194 	kaddr = extent_buffer_get_byte(eb, first_byte);
4195 	*kaddr |= mask;
4196 	if (same_byte)
4197 		return;
4198 
4199 	/* Handle the byte aligned part. */
4200 	ASSERT(first_byte + 1 <= last_byte);
4201 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4202 
4203 	/* Handle the last byte. */
4204 	kaddr = extent_buffer_get_byte(eb, last_byte);
4205 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4206 }
4207 
4208 
4209 /*
4210  * Clear an area of a bitmap.
4211  *
4212  * @eb:     the extent buffer
4213  * @start:  offset of the bitmap item in the extent buffer
4214  * @pos:    bit number of the first bit
4215  * @len:    number of bits to clear
4216  */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4217 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4218 				unsigned long start, unsigned long pos,
4219 				unsigned long len)
4220 {
4221 	unsigned int first_byte = start + BIT_BYTE(pos);
4222 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4223 	const bool same_byte = (first_byte == last_byte);
4224 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4225 	u8 *kaddr;
4226 
4227 	if (same_byte)
4228 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4229 
4230 	/* Handle the first byte. */
4231 	kaddr = extent_buffer_get_byte(eb, first_byte);
4232 	*kaddr &= ~mask;
4233 	if (same_byte)
4234 		return;
4235 
4236 	/* Handle the byte aligned part. */
4237 	ASSERT(first_byte + 1 <= last_byte);
4238 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4239 
4240 	/* Handle the last byte. */
4241 	kaddr = extent_buffer_get_byte(eb, last_byte);
4242 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4243 }
4244 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4245 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4246 {
4247 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4248 	return distance < len;
4249 }
4250 
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4251 void memcpy_extent_buffer(const struct extent_buffer *dst,
4252 			  unsigned long dst_offset, unsigned long src_offset,
4253 			  unsigned long len)
4254 {
4255 	const int unit_size = dst->folio_size;
4256 	unsigned long cur_off = 0;
4257 
4258 	if (check_eb_range(dst, dst_offset, len) ||
4259 	    check_eb_range(dst, src_offset, len))
4260 		return;
4261 
4262 	if (dst->addr) {
4263 		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4264 
4265 		if (use_memmove)
4266 			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4267 		else
4268 			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4269 		return;
4270 	}
4271 
4272 	while (cur_off < len) {
4273 		unsigned long cur_src = cur_off + src_offset;
4274 		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4275 		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4276 		unsigned long cur_len = min(src_offset + len - cur_src,
4277 					    unit_size - folio_off);
4278 		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4279 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4280 						       dst_offset + cur_off, cur_len);
4281 
4282 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4283 				      use_memmove);
4284 		cur_off += cur_len;
4285 	}
4286 }
4287 
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4288 void memmove_extent_buffer(const struct extent_buffer *dst,
4289 			   unsigned long dst_offset, unsigned long src_offset,
4290 			   unsigned long len)
4291 {
4292 	unsigned long dst_end = dst_offset + len - 1;
4293 	unsigned long src_end = src_offset + len - 1;
4294 
4295 	if (check_eb_range(dst, dst_offset, len) ||
4296 	    check_eb_range(dst, src_offset, len))
4297 		return;
4298 
4299 	if (dst_offset < src_offset) {
4300 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4301 		return;
4302 	}
4303 
4304 	if (dst->addr) {
4305 		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4306 		return;
4307 	}
4308 
4309 	while (len > 0) {
4310 		unsigned long src_i;
4311 		size_t cur;
4312 		size_t dst_off_in_folio;
4313 		size_t src_off_in_folio;
4314 		void *src_addr;
4315 		bool use_memmove;
4316 
4317 		src_i = get_eb_folio_index(dst, src_end);
4318 
4319 		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4320 		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4321 
4322 		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4323 		cur = min(cur, dst_off_in_folio + 1);
4324 
4325 		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4326 					 cur + 1;
4327 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4328 					    cur);
4329 
4330 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4331 				      use_memmove);
4332 
4333 		dst_end -= cur;
4334 		src_end -= cur;
4335 		len -= cur;
4336 	}
4337 }
4338 
try_release_subpage_extent_buffer(struct folio * folio)4339 static int try_release_subpage_extent_buffer(struct folio *folio)
4340 {
4341 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4342 	struct extent_buffer *eb;
4343 	unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4344 	unsigned long index = start;
4345 	unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4346 	int ret;
4347 
4348 	rcu_read_lock();
4349 	xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4350 		/*
4351 		 * The same as try_release_extent_buffer(), to ensure the eb
4352 		 * won't disappear out from under us.
4353 		 */
4354 		spin_lock(&eb->refs_lock);
4355 		rcu_read_unlock();
4356 
4357 		if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4358 			spin_unlock(&eb->refs_lock);
4359 			rcu_read_lock();
4360 			continue;
4361 		}
4362 
4363 		/*
4364 		 * If tree ref isn't set then we know the ref on this eb is a
4365 		 * real ref, so just return, this eb will likely be freed soon
4366 		 * anyway.
4367 		 */
4368 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4369 			spin_unlock(&eb->refs_lock);
4370 			break;
4371 		}
4372 
4373 		/*
4374 		 * Here we don't care about the return value, we will always
4375 		 * check the folio private at the end.  And
4376 		 * release_extent_buffer() will release the refs_lock.
4377 		 */
4378 		release_extent_buffer(eb);
4379 		rcu_read_lock();
4380 	}
4381 	rcu_read_unlock();
4382 
4383 	/*
4384 	 * Finally to check if we have cleared folio private, as if we have
4385 	 * released all ebs in the page, the folio private should be cleared now.
4386 	 */
4387 	spin_lock(&folio->mapping->i_private_lock);
4388 	if (!folio_test_private(folio))
4389 		ret = 1;
4390 	else
4391 		ret = 0;
4392 	spin_unlock(&folio->mapping->i_private_lock);
4393 	return ret;
4394 }
4395 
try_release_extent_buffer(struct folio * folio)4396 int try_release_extent_buffer(struct folio *folio)
4397 {
4398 	struct extent_buffer *eb;
4399 
4400 	if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4401 		return try_release_subpage_extent_buffer(folio);
4402 
4403 	/*
4404 	 * We need to make sure nobody is changing folio private, as we rely on
4405 	 * folio private as the pointer to extent buffer.
4406 	 */
4407 	spin_lock(&folio->mapping->i_private_lock);
4408 	if (!folio_test_private(folio)) {
4409 		spin_unlock(&folio->mapping->i_private_lock);
4410 		return 1;
4411 	}
4412 
4413 	eb = folio_get_private(folio);
4414 	BUG_ON(!eb);
4415 
4416 	/*
4417 	 * This is a little awful but should be ok, we need to make sure that
4418 	 * the eb doesn't disappear out from under us while we're looking at
4419 	 * this page.
4420 	 */
4421 	spin_lock(&eb->refs_lock);
4422 	if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4423 		spin_unlock(&eb->refs_lock);
4424 		spin_unlock(&folio->mapping->i_private_lock);
4425 		return 0;
4426 	}
4427 	spin_unlock(&folio->mapping->i_private_lock);
4428 
4429 	/*
4430 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4431 	 * so just return, this page will likely be freed soon anyway.
4432 	 */
4433 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4434 		spin_unlock(&eb->refs_lock);
4435 		return 0;
4436 	}
4437 
4438 	return release_extent_buffer(eb);
4439 }
4440 
4441 /*
4442  * Attempt to readahead a child block.
4443  *
4444  * @fs_info:	the fs_info
4445  * @bytenr:	bytenr to read
4446  * @owner_root: objectid of the root that owns this eb
4447  * @gen:	generation for the uptodate check, can be 0
4448  * @level:	level for the eb
4449  *
4450  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4451  * normal uptodate check of the eb, without checking the generation.  If we have
4452  * to read the block we will not block on anything.
4453  */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4454 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4455 				u64 bytenr, u64 owner_root, u64 gen, int level)
4456 {
4457 	struct btrfs_tree_parent_check check = {
4458 		.level = level,
4459 		.transid = gen
4460 	};
4461 	struct extent_buffer *eb;
4462 	int ret;
4463 
4464 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4465 	if (IS_ERR(eb))
4466 		return;
4467 
4468 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4469 		free_extent_buffer(eb);
4470 		return;
4471 	}
4472 
4473 	ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4474 	if (ret < 0)
4475 		free_extent_buffer_stale(eb);
4476 	else
4477 		free_extent_buffer(eb);
4478 }
4479 
4480 /*
4481  * Readahead a node's child block.
4482  *
4483  * @node:	parent node we're reading from
4484  * @slot:	slot in the parent node for the child we want to read
4485  *
4486  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4487  * the slot in the node provided.
4488  */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4489 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4490 {
4491 	btrfs_readahead_tree_block(node->fs_info,
4492 				   btrfs_node_blockptr(node, slot),
4493 				   btrfs_header_owner(node),
4494 				   btrfs_node_ptr_generation(node, slot),
4495 				   btrfs_header_level(node) - 1);
4496 }
4497