1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 105 /* 106 * The sectors of the page which are going to be submitted by 107 * extent_writepage_io(). 108 * This is to avoid touching ranges covered by compression/inline. 109 */ 110 unsigned long submit_bitmap; 111 }; 112 113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 114 { 115 struct btrfs_bio *bbio = bio_ctrl->bbio; 116 117 if (!bbio) 118 return; 119 120 /* Caller should ensure the bio has at least some range added */ 121 ASSERT(bbio->bio.bi_iter.bi_size); 122 123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 125 btrfs_submit_compressed_read(bbio); 126 else 127 btrfs_submit_bbio(bbio, 0); 128 129 /* The bbio is owned by the end_io handler now */ 130 bio_ctrl->bbio = NULL; 131 } 132 133 /* 134 * Submit or fail the current bio in the bio_ctrl structure. 135 */ 136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 137 { 138 struct btrfs_bio *bbio = bio_ctrl->bbio; 139 140 if (!bbio) 141 return; 142 143 if (ret) { 144 ASSERT(ret < 0); 145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 146 /* The bio is owned by the end_io handler now */ 147 bio_ctrl->bbio = NULL; 148 } else { 149 submit_one_bio(bio_ctrl); 150 } 151 } 152 153 int __init extent_buffer_init_cachep(void) 154 { 155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 156 sizeof(struct extent_buffer), 0, 0, 157 NULL); 158 if (!extent_buffer_cache) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 void __cold extent_buffer_free_cachep(void) 165 { 166 /* 167 * Make sure all delayed rcu free are flushed before we 168 * destroy caches. 169 */ 170 rcu_barrier(); 171 kmem_cache_destroy(extent_buffer_cache); 172 } 173 174 static void process_one_folio(struct btrfs_fs_info *fs_info, 175 struct folio *folio, const struct folio *locked_folio, 176 unsigned long page_ops, u64 start, u64 end) 177 { 178 u32 len; 179 180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 181 len = end + 1 - start; 182 183 if (page_ops & PAGE_SET_ORDERED) 184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 185 if (page_ops & PAGE_START_WRITEBACK) { 186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 188 } 189 if (page_ops & PAGE_END_WRITEBACK) 190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 191 192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 193 btrfs_folio_end_lock(fs_info, folio, start, len); 194 } 195 196 static void __process_folios_contig(struct address_space *mapping, 197 const struct folio *locked_folio, u64 start, 198 u64 end, unsigned long page_ops) 199 { 200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 201 pgoff_t index = start >> PAGE_SHIFT; 202 pgoff_t end_index = end >> PAGE_SHIFT; 203 struct folio_batch fbatch; 204 int i; 205 206 folio_batch_init(&fbatch); 207 while (index <= end_index) { 208 int found_folios; 209 210 found_folios = filemap_get_folios_contig(mapping, &index, 211 end_index, &fbatch); 212 for (i = 0; i < found_folios; i++) { 213 struct folio *folio = fbatch.folios[i]; 214 215 process_one_folio(fs_info, folio, locked_folio, 216 page_ops, start, end); 217 } 218 folio_batch_release(&fbatch); 219 cond_resched(); 220 } 221 } 222 223 static noinline void unlock_delalloc_folio(const struct inode *inode, 224 const struct folio *locked_folio, 225 u64 start, u64 end) 226 { 227 unsigned long index = start >> PAGE_SHIFT; 228 unsigned long end_index = end >> PAGE_SHIFT; 229 230 ASSERT(locked_folio); 231 if (index == locked_folio->index && end_index == index) 232 return; 233 234 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 235 PAGE_UNLOCK); 236 } 237 238 static noinline int lock_delalloc_folios(struct inode *inode, 239 const struct folio *locked_folio, 240 u64 start, u64 end) 241 { 242 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 243 struct address_space *mapping = inode->i_mapping; 244 pgoff_t index = start >> PAGE_SHIFT; 245 pgoff_t end_index = end >> PAGE_SHIFT; 246 u64 processed_end = start; 247 struct folio_batch fbatch; 248 249 if (index == locked_folio->index && index == end_index) 250 return 0; 251 252 folio_batch_init(&fbatch); 253 while (index <= end_index) { 254 unsigned int found_folios, i; 255 256 found_folios = filemap_get_folios_contig(mapping, &index, 257 end_index, &fbatch); 258 if (found_folios == 0) 259 goto out; 260 261 for (i = 0; i < found_folios; i++) { 262 struct folio *folio = fbatch.folios[i]; 263 u64 range_start; 264 u32 range_len; 265 266 if (folio == locked_folio) 267 continue; 268 269 folio_lock(folio); 270 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 271 folio_unlock(folio); 272 goto out; 273 } 274 range_start = max_t(u64, folio_pos(folio), start); 275 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 276 end + 1) - range_start; 277 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 278 279 processed_end = range_start + range_len - 1; 280 } 281 folio_batch_release(&fbatch); 282 cond_resched(); 283 } 284 285 return 0; 286 out: 287 folio_batch_release(&fbatch); 288 if (processed_end > start) 289 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 290 return -EAGAIN; 291 } 292 293 /* 294 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 295 * more than @max_bytes. 296 * 297 * @start: The original start bytenr to search. 298 * Will store the extent range start bytenr. 299 * @end: The original end bytenr of the search range 300 * Will store the extent range end bytenr. 301 * 302 * Return true if we find a delalloc range which starts inside the original 303 * range, and @start/@end will store the delalloc range start/end. 304 * 305 * Return false if we can't find any delalloc range which starts inside the 306 * original range, and @start/@end will be the non-delalloc range start/end. 307 */ 308 EXPORT_FOR_TESTS 309 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 310 struct folio *locked_folio, 311 u64 *start, u64 *end) 312 { 313 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 314 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 315 const u64 orig_start = *start; 316 const u64 orig_end = *end; 317 /* The sanity tests may not set a valid fs_info. */ 318 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 319 u64 delalloc_start; 320 u64 delalloc_end; 321 bool found; 322 struct extent_state *cached_state = NULL; 323 int ret; 324 int loops = 0; 325 326 /* Caller should pass a valid @end to indicate the search range end */ 327 ASSERT(orig_end > orig_start); 328 329 /* The range should at least cover part of the folio */ 330 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) || 331 orig_end <= folio_pos(locked_folio))); 332 again: 333 /* step one, find a bunch of delalloc bytes starting at start */ 334 delalloc_start = *start; 335 delalloc_end = 0; 336 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 337 max_bytes, &cached_state); 338 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 339 *start = delalloc_start; 340 341 /* @delalloc_end can be -1, never go beyond @orig_end */ 342 *end = min(delalloc_end, orig_end); 343 free_extent_state(cached_state); 344 return false; 345 } 346 347 /* 348 * start comes from the offset of locked_folio. We have to lock 349 * folios in order, so we can't process delalloc bytes before 350 * locked_folio 351 */ 352 if (delalloc_start < *start) 353 delalloc_start = *start; 354 355 /* 356 * make sure to limit the number of folios we try to lock down 357 */ 358 if (delalloc_end + 1 - delalloc_start > max_bytes) 359 delalloc_end = delalloc_start + max_bytes - 1; 360 361 /* step two, lock all the folioss after the folios that has start */ 362 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 363 delalloc_end); 364 ASSERT(!ret || ret == -EAGAIN); 365 if (ret == -EAGAIN) { 366 /* some of the folios are gone, lets avoid looping by 367 * shortening the size of the delalloc range we're searching 368 */ 369 free_extent_state(cached_state); 370 cached_state = NULL; 371 if (!loops) { 372 max_bytes = PAGE_SIZE; 373 loops = 1; 374 goto again; 375 } else { 376 found = false; 377 goto out_failed; 378 } 379 } 380 381 /* step three, lock the state bits for the whole range */ 382 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 383 384 /* then test to make sure it is all still delalloc */ 385 ret = test_range_bit(tree, delalloc_start, delalloc_end, 386 EXTENT_DELALLOC, cached_state); 387 388 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 389 if (!ret) { 390 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 391 delalloc_end); 392 cond_resched(); 393 goto again; 394 } 395 *start = delalloc_start; 396 *end = delalloc_end; 397 out_failed: 398 return found; 399 } 400 401 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 402 const struct folio *locked_folio, 403 struct extent_state **cached, 404 u32 clear_bits, unsigned long page_ops) 405 { 406 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 407 408 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 409 end, page_ops); 410 } 411 412 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 413 { 414 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 415 416 if (!fsverity_active(folio->mapping->host) || 417 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 418 start >= i_size_read(folio->mapping->host)) 419 return true; 420 return fsverity_verify_folio(folio); 421 } 422 423 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 424 { 425 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 426 427 ASSERT(folio_pos(folio) <= start && 428 start + len <= folio_pos(folio) + folio_size(folio)); 429 430 if (uptodate && btrfs_verify_folio(folio, start, len)) 431 btrfs_folio_set_uptodate(fs_info, folio, start, len); 432 else 433 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 434 435 if (!btrfs_is_subpage(fs_info, folio)) 436 folio_unlock(folio); 437 else 438 btrfs_folio_end_lock(fs_info, folio, start, len); 439 } 440 441 /* 442 * After a write IO is done, we need to: 443 * 444 * - clear the uptodate bits on error 445 * - clear the writeback bits in the extent tree for the range 446 * - filio_end_writeback() if there is no more pending io for the folio 447 * 448 * Scheduling is not allowed, so the extent state tree is expected 449 * to have one and only one object corresponding to this IO. 450 */ 451 static void end_bbio_data_write(struct btrfs_bio *bbio) 452 { 453 struct btrfs_fs_info *fs_info = bbio->fs_info; 454 struct bio *bio = &bbio->bio; 455 int error = blk_status_to_errno(bio->bi_status); 456 struct folio_iter fi; 457 const u32 sectorsize = fs_info->sectorsize; 458 459 ASSERT(!bio_flagged(bio, BIO_CLONED)); 460 bio_for_each_folio_all(fi, bio) { 461 struct folio *folio = fi.folio; 462 u64 start = folio_pos(folio) + fi.offset; 463 u32 len = fi.length; 464 465 /* Only order 0 (single page) folios are allowed for data. */ 466 ASSERT(folio_order(folio) == 0); 467 468 /* Our read/write should always be sector aligned. */ 469 if (!IS_ALIGNED(fi.offset, sectorsize)) 470 btrfs_err(fs_info, 471 "partial page write in btrfs with offset %zu and length %zu", 472 fi.offset, fi.length); 473 else if (!IS_ALIGNED(fi.length, sectorsize)) 474 btrfs_info(fs_info, 475 "incomplete page write with offset %zu and length %zu", 476 fi.offset, fi.length); 477 478 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 479 !error); 480 if (error) 481 mapping_set_error(folio->mapping, error); 482 btrfs_folio_clear_writeback(fs_info, folio, start, len); 483 } 484 485 bio_put(bio); 486 } 487 488 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 489 { 490 ASSERT(folio_test_locked(folio)); 491 if (!btrfs_is_subpage(fs_info, folio)) 492 return; 493 494 ASSERT(folio_test_private(folio)); 495 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 496 } 497 498 /* 499 * After a data read IO is done, we need to: 500 * 501 * - clear the uptodate bits on error 502 * - set the uptodate bits if things worked 503 * - set the folio up to date if all extents in the tree are uptodate 504 * - clear the lock bit in the extent tree 505 * - unlock the folio if there are no other extents locked for it 506 * 507 * Scheduling is not allowed, so the extent state tree is expected 508 * to have one and only one object corresponding to this IO. 509 */ 510 static void end_bbio_data_read(struct btrfs_bio *bbio) 511 { 512 struct btrfs_fs_info *fs_info = bbio->fs_info; 513 struct bio *bio = &bbio->bio; 514 struct folio_iter fi; 515 const u32 sectorsize = fs_info->sectorsize; 516 517 ASSERT(!bio_flagged(bio, BIO_CLONED)); 518 bio_for_each_folio_all(fi, &bbio->bio) { 519 bool uptodate = !bio->bi_status; 520 struct folio *folio = fi.folio; 521 struct inode *inode = folio->mapping->host; 522 u64 start; 523 u64 end; 524 u32 len; 525 526 btrfs_debug(fs_info, 527 "%s: bi_sector=%llu, err=%d, mirror=%u", 528 __func__, bio->bi_iter.bi_sector, bio->bi_status, 529 bbio->mirror_num); 530 531 /* 532 * We always issue full-sector reads, but if some block in a 533 * folio fails to read, blk_update_request() will advance 534 * bv_offset and adjust bv_len to compensate. Print a warning 535 * for unaligned offsets, and an error if they don't add up to 536 * a full sector. 537 */ 538 if (!IS_ALIGNED(fi.offset, sectorsize)) 539 btrfs_err(fs_info, 540 "partial page read in btrfs with offset %zu and length %zu", 541 fi.offset, fi.length); 542 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 543 btrfs_info(fs_info, 544 "incomplete page read with offset %zu and length %zu", 545 fi.offset, fi.length); 546 547 start = folio_pos(folio) + fi.offset; 548 end = start + fi.length - 1; 549 len = fi.length; 550 551 if (likely(uptodate)) { 552 loff_t i_size = i_size_read(inode); 553 554 /* 555 * Zero out the remaining part if this range straddles 556 * i_size. 557 * 558 * Here we should only zero the range inside the folio, 559 * not touch anything else. 560 * 561 * NOTE: i_size is exclusive while end is inclusive and 562 * folio_contains() takes PAGE_SIZE units. 563 */ 564 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 565 i_size <= end) { 566 u32 zero_start = max(offset_in_folio(folio, i_size), 567 offset_in_folio(folio, start)); 568 u32 zero_len = offset_in_folio(folio, end) + 1 - 569 zero_start; 570 571 folio_zero_range(folio, zero_start, zero_len); 572 } 573 } 574 575 /* Update page status and unlock. */ 576 end_folio_read(folio, uptodate, start, len); 577 } 578 bio_put(bio); 579 } 580 581 /* 582 * Populate every free slot in a provided array with folios using GFP_NOFS. 583 * 584 * @nr_folios: number of folios to allocate 585 * @folio_array: the array to fill with folios; any existing non-NULL entries in 586 * the array will be skipped 587 * 588 * Return: 0 if all folios were able to be allocated; 589 * -ENOMEM otherwise, the partially allocated folios would be freed and 590 * the array slots zeroed 591 */ 592 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 593 { 594 for (int i = 0; i < nr_folios; i++) { 595 if (folio_array[i]) 596 continue; 597 folio_array[i] = folio_alloc(GFP_NOFS, 0); 598 if (!folio_array[i]) 599 goto error; 600 } 601 return 0; 602 error: 603 for (int i = 0; i < nr_folios; i++) { 604 if (folio_array[i]) 605 folio_put(folio_array[i]); 606 } 607 return -ENOMEM; 608 } 609 610 /* 611 * Populate every free slot in a provided array with pages, using GFP_NOFS. 612 * 613 * @nr_pages: number of pages to allocate 614 * @page_array: the array to fill with pages; any existing non-null entries in 615 * the array will be skipped 616 * @nofail: whether using __GFP_NOFAIL flag 617 * 618 * Return: 0 if all pages were able to be allocated; 619 * -ENOMEM otherwise, the partially allocated pages would be freed and 620 * the array slots zeroed 621 */ 622 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 623 bool nofail) 624 { 625 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 626 unsigned int allocated; 627 628 for (allocated = 0; allocated < nr_pages;) { 629 unsigned int last = allocated; 630 631 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 632 if (unlikely(allocated == last)) { 633 /* No progress, fail and do cleanup. */ 634 for (int i = 0; i < allocated; i++) { 635 __free_page(page_array[i]); 636 page_array[i] = NULL; 637 } 638 return -ENOMEM; 639 } 640 } 641 return 0; 642 } 643 644 /* 645 * Populate needed folios for the extent buffer. 646 * 647 * For now, the folios populated are always in order 0 (aka, single page). 648 */ 649 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 650 { 651 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 652 int num_pages = num_extent_pages(eb); 653 int ret; 654 655 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 656 if (ret < 0) 657 return ret; 658 659 for (int i = 0; i < num_pages; i++) 660 eb->folios[i] = page_folio(page_array[i]); 661 eb->folio_size = PAGE_SIZE; 662 eb->folio_shift = PAGE_SHIFT; 663 return 0; 664 } 665 666 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 667 struct folio *folio, u64 disk_bytenr, 668 unsigned int pg_offset) 669 { 670 struct bio *bio = &bio_ctrl->bbio->bio; 671 struct bio_vec *bvec = bio_last_bvec_all(bio); 672 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 673 struct folio *bv_folio = page_folio(bvec->bv_page); 674 675 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 676 /* 677 * For compression, all IO should have its logical bytenr set 678 * to the starting bytenr of the compressed extent. 679 */ 680 return bio->bi_iter.bi_sector == sector; 681 } 682 683 /* 684 * The contig check requires the following conditions to be met: 685 * 686 * 1) The folios are belonging to the same inode 687 * This is implied by the call chain. 688 * 689 * 2) The range has adjacent logical bytenr 690 * 691 * 3) The range has adjacent file offset 692 * This is required for the usage of btrfs_bio->file_offset. 693 */ 694 return bio_end_sector(bio) == sector && 695 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len == 696 folio_pos(folio) + pg_offset; 697 } 698 699 static void alloc_new_bio(struct btrfs_inode *inode, 700 struct btrfs_bio_ctrl *bio_ctrl, 701 u64 disk_bytenr, u64 file_offset) 702 { 703 struct btrfs_fs_info *fs_info = inode->root->fs_info; 704 struct btrfs_bio *bbio; 705 706 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 707 bio_ctrl->end_io_func, NULL); 708 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 709 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 710 bbio->inode = inode; 711 bbio->file_offset = file_offset; 712 bio_ctrl->bbio = bbio; 713 bio_ctrl->len_to_oe_boundary = U32_MAX; 714 715 /* Limit data write bios to the ordered boundary. */ 716 if (bio_ctrl->wbc) { 717 struct btrfs_ordered_extent *ordered; 718 719 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 720 if (ordered) { 721 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 722 ordered->file_offset + 723 ordered->disk_num_bytes - file_offset); 724 bbio->ordered = ordered; 725 } 726 727 /* 728 * Pick the last added device to support cgroup writeback. For 729 * multi-device file systems this means blk-cgroup policies have 730 * to always be set on the last added/replaced device. 731 * This is a bit odd but has been like that for a long time. 732 */ 733 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 734 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 735 } 736 } 737 738 /* 739 * @disk_bytenr: logical bytenr where the write will be 740 * @page: page to add to the bio 741 * @size: portion of page that we want to write to 742 * @pg_offset: offset of the new bio or to check whether we are adding 743 * a contiguous page to the previous one 744 * 745 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 746 * new one in @bio_ctrl->bbio. 747 * The mirror number for this IO should already be initizlied in 748 * @bio_ctrl->mirror_num. 749 */ 750 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 751 u64 disk_bytenr, struct folio *folio, 752 size_t size, unsigned long pg_offset) 753 { 754 struct btrfs_inode *inode = folio_to_inode(folio); 755 756 ASSERT(pg_offset + size <= folio_size(folio)); 757 ASSERT(bio_ctrl->end_io_func); 758 759 if (bio_ctrl->bbio && 760 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset)) 761 submit_one_bio(bio_ctrl); 762 763 do { 764 u32 len = size; 765 766 /* Allocate new bio if needed */ 767 if (!bio_ctrl->bbio) { 768 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 769 folio_pos(folio) + pg_offset); 770 } 771 772 /* Cap to the current ordered extent boundary if there is one. */ 773 if (len > bio_ctrl->len_to_oe_boundary) { 774 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 775 ASSERT(is_data_inode(inode)); 776 len = bio_ctrl->len_to_oe_boundary; 777 } 778 779 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 780 /* bio full: move on to a new one */ 781 submit_one_bio(bio_ctrl); 782 continue; 783 } 784 785 if (bio_ctrl->wbc) 786 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, 787 len); 788 789 size -= len; 790 pg_offset += len; 791 disk_bytenr += len; 792 793 /* 794 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 795 * sector aligned. alloc_new_bio() then sets it to the end of 796 * our ordered extent for writes into zoned devices. 797 * 798 * When len_to_oe_boundary is tracking an ordered extent, we 799 * trust the ordered extent code to align things properly, and 800 * the check above to cap our write to the ordered extent 801 * boundary is correct. 802 * 803 * When len_to_oe_boundary is U32_MAX, the cap above would 804 * result in a 4095 byte IO for the last folio right before 805 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 806 * the checks required to make sure we don't overflow the bio, 807 * and we should just ignore len_to_oe_boundary completely 808 * unless we're using it to track an ordered extent. 809 * 810 * It's pretty hard to make a bio sized U32_MAX, but it can 811 * happen when the page cache is able to feed us contiguous 812 * folios for large extents. 813 */ 814 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 815 bio_ctrl->len_to_oe_boundary -= len; 816 817 /* Ordered extent boundary: move on to a new bio. */ 818 if (bio_ctrl->len_to_oe_boundary == 0) 819 submit_one_bio(bio_ctrl); 820 } while (size); 821 } 822 823 static int attach_extent_buffer_folio(struct extent_buffer *eb, 824 struct folio *folio, 825 struct btrfs_subpage *prealloc) 826 { 827 struct btrfs_fs_info *fs_info = eb->fs_info; 828 int ret = 0; 829 830 /* 831 * If the page is mapped to btree inode, we should hold the private 832 * lock to prevent race. 833 * For cloned or dummy extent buffers, their pages are not mapped and 834 * will not race with any other ebs. 835 */ 836 if (folio->mapping) 837 lockdep_assert_held(&folio->mapping->i_private_lock); 838 839 if (!btrfs_meta_is_subpage(fs_info)) { 840 if (!folio_test_private(folio)) 841 folio_attach_private(folio, eb); 842 else 843 WARN_ON(folio_get_private(folio) != eb); 844 return 0; 845 } 846 847 /* Already mapped, just free prealloc */ 848 if (folio_test_private(folio)) { 849 btrfs_free_subpage(prealloc); 850 return 0; 851 } 852 853 if (prealloc) 854 /* Has preallocated memory for subpage */ 855 folio_attach_private(folio, prealloc); 856 else 857 /* Do new allocation to attach subpage */ 858 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 859 return ret; 860 } 861 862 int set_folio_extent_mapped(struct folio *folio) 863 { 864 struct btrfs_fs_info *fs_info; 865 866 ASSERT(folio->mapping); 867 868 if (folio_test_private(folio)) 869 return 0; 870 871 fs_info = folio_to_fs_info(folio); 872 873 if (btrfs_is_subpage(fs_info, folio)) 874 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 875 876 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 877 return 0; 878 } 879 880 void clear_folio_extent_mapped(struct folio *folio) 881 { 882 struct btrfs_fs_info *fs_info; 883 884 ASSERT(folio->mapping); 885 886 if (!folio_test_private(folio)) 887 return; 888 889 fs_info = folio_to_fs_info(folio); 890 if (btrfs_is_subpage(fs_info, folio)) 891 return btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 892 893 folio_detach_private(folio); 894 } 895 896 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 897 struct folio *folio, u64 start, 898 u64 len, struct extent_map **em_cached) 899 { 900 struct extent_map *em; 901 902 ASSERT(em_cached); 903 904 if (*em_cached) { 905 em = *em_cached; 906 if (extent_map_in_tree(em) && start >= em->start && 907 start < extent_map_end(em)) { 908 refcount_inc(&em->refs); 909 return em; 910 } 911 912 free_extent_map(em); 913 *em_cached = NULL; 914 } 915 916 em = btrfs_get_extent(inode, folio, start, len); 917 if (!IS_ERR(em)) { 918 BUG_ON(*em_cached); 919 refcount_inc(&em->refs); 920 *em_cached = em; 921 } 922 923 return em; 924 } 925 /* 926 * basic readpage implementation. Locked extent state structs are inserted 927 * into the tree that are removed when the IO is done (by the end_io 928 * handlers) 929 * XXX JDM: This needs looking at to ensure proper page locking 930 * return 0 on success, otherwise return error 931 */ 932 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 933 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 934 { 935 struct inode *inode = folio->mapping->host; 936 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 937 u64 start = folio_pos(folio); 938 const u64 end = start + folio_size(folio) - 1; 939 u64 extent_offset; 940 u64 last_byte = i_size_read(inode); 941 struct extent_map *em; 942 int ret = 0; 943 const size_t blocksize = fs_info->sectorsize; 944 945 ret = set_folio_extent_mapped(folio); 946 if (ret < 0) { 947 folio_unlock(folio); 948 return ret; 949 } 950 951 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 952 size_t zero_offset = offset_in_folio(folio, last_byte); 953 954 if (zero_offset) 955 folio_zero_range(folio, zero_offset, 956 folio_size(folio) - zero_offset); 957 } 958 bio_ctrl->end_io_func = end_bbio_data_read; 959 begin_folio_read(fs_info, folio); 960 for (u64 cur = start; cur <= end; cur += blocksize) { 961 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 962 unsigned long pg_offset = offset_in_folio(folio, cur); 963 bool force_bio_submit = false; 964 u64 disk_bytenr; 965 u64 block_start; 966 967 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 968 if (cur >= last_byte) { 969 folio_zero_range(folio, pg_offset, end - cur + 1); 970 end_folio_read(folio, true, cur, end - cur + 1); 971 break; 972 } 973 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 974 end_folio_read(folio, true, cur, blocksize); 975 continue; 976 } 977 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 978 if (IS_ERR(em)) { 979 end_folio_read(folio, false, cur, end + 1 - cur); 980 return PTR_ERR(em); 981 } 982 extent_offset = cur - em->start; 983 BUG_ON(extent_map_end(em) <= cur); 984 BUG_ON(end < cur); 985 986 compress_type = extent_map_compression(em); 987 988 if (compress_type != BTRFS_COMPRESS_NONE) 989 disk_bytenr = em->disk_bytenr; 990 else 991 disk_bytenr = extent_map_block_start(em) + extent_offset; 992 993 if (em->flags & EXTENT_FLAG_PREALLOC) 994 block_start = EXTENT_MAP_HOLE; 995 else 996 block_start = extent_map_block_start(em); 997 998 /* 999 * If we have a file range that points to a compressed extent 1000 * and it's followed by a consecutive file range that points 1001 * to the same compressed extent (possibly with a different 1002 * offset and/or length, so it either points to the whole extent 1003 * or only part of it), we must make sure we do not submit a 1004 * single bio to populate the folios for the 2 ranges because 1005 * this makes the compressed extent read zero out the folios 1006 * belonging to the 2nd range. Imagine the following scenario: 1007 * 1008 * File layout 1009 * [0 - 8K] [8K - 24K] 1010 * | | 1011 * | | 1012 * points to extent X, points to extent X, 1013 * offset 4K, length of 8K offset 0, length 16K 1014 * 1015 * [extent X, compressed length = 4K uncompressed length = 16K] 1016 * 1017 * If the bio to read the compressed extent covers both ranges, 1018 * it will decompress extent X into the folios belonging to the 1019 * first range and then it will stop, zeroing out the remaining 1020 * folios that belong to the other range that points to extent X. 1021 * So here we make sure we submit 2 bios, one for the first 1022 * range and another one for the third range. Both will target 1023 * the same physical extent from disk, but we can't currently 1024 * make the compressed bio endio callback populate the folios 1025 * for both ranges because each compressed bio is tightly 1026 * coupled with a single extent map, and each range can have 1027 * an extent map with a different offset value relative to the 1028 * uncompressed data of our extent and different lengths. This 1029 * is a corner case so we prioritize correctness over 1030 * non-optimal behavior (submitting 2 bios for the same extent). 1031 */ 1032 if (compress_type != BTRFS_COMPRESS_NONE && 1033 prev_em_start && *prev_em_start != (u64)-1 && 1034 *prev_em_start != em->start) 1035 force_bio_submit = true; 1036 1037 if (prev_em_start) 1038 *prev_em_start = em->start; 1039 1040 free_extent_map(em); 1041 em = NULL; 1042 1043 /* we've found a hole, just zero and go on */ 1044 if (block_start == EXTENT_MAP_HOLE) { 1045 folio_zero_range(folio, pg_offset, blocksize); 1046 end_folio_read(folio, true, cur, blocksize); 1047 continue; 1048 } 1049 /* the get_extent function already copied into the folio */ 1050 if (block_start == EXTENT_MAP_INLINE) { 1051 end_folio_read(folio, true, cur, blocksize); 1052 continue; 1053 } 1054 1055 if (bio_ctrl->compress_type != compress_type) { 1056 submit_one_bio(bio_ctrl); 1057 bio_ctrl->compress_type = compress_type; 1058 } 1059 1060 if (force_bio_submit) 1061 submit_one_bio(bio_ctrl); 1062 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1063 pg_offset); 1064 } 1065 return 0; 1066 } 1067 1068 /* 1069 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1070 * 1071 * @fileoff: Both input and output. 1072 * Input as the file offset where the check should start at. 1073 * Output as where the next check should start at, 1074 * if the function returns true. 1075 * 1076 * Return true if we can skip to @fileoff. The caller needs to check the new 1077 * @fileoff value to make sure it covers the full range, before skipping the 1078 * full OE. 1079 * 1080 * Return false if we must wait for the ordered extent. 1081 */ 1082 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1083 struct btrfs_ordered_extent *ordered, 1084 u64 *fileoff) 1085 { 1086 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1087 struct folio *folio; 1088 const u32 blocksize = fs_info->sectorsize; 1089 u64 cur = *fileoff; 1090 bool ret; 1091 1092 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1093 1094 /* 1095 * We should have locked the folio(s) for range [start, end], thus 1096 * there must be a folio and it must be locked. 1097 */ 1098 ASSERT(!IS_ERR(folio)); 1099 ASSERT(folio_test_locked(folio)); 1100 1101 /* 1102 * There are several cases for the folio and OE combination: 1103 * 1104 * 1) Folio has no private flag 1105 * The OE has all its IO done but not yet finished, and folio got 1106 * invalidated. 1107 * 1108 * Have we have to wait for the OE to finish, as it may contain the 1109 * to-be-inserted data checksum. 1110 * Without the data checksum inserted into the csum tree, read will 1111 * just fail with missing csum. 1112 */ 1113 if (!folio_test_private(folio)) { 1114 ret = false; 1115 goto out; 1116 } 1117 1118 /* 1119 * 2) The first block is DIRTY. 1120 * 1121 * This means the OE is created by some other folios whose file pos is 1122 * before this one. And since we are holding the folio lock, the writeback 1123 * of this folio cannot start. 1124 * 1125 * We must skip the whole OE, because it will never start until we 1126 * finished our folio read and unlocked the folio. 1127 */ 1128 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1129 u64 range_len = min(folio_pos(folio) + folio_size(folio), 1130 ordered->file_offset + ordered->num_bytes) - cur; 1131 1132 ret = true; 1133 /* 1134 * At least inside the folio, all the remaining blocks should 1135 * also be dirty. 1136 */ 1137 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1138 *fileoff = ordered->file_offset + ordered->num_bytes; 1139 goto out; 1140 } 1141 1142 /* 1143 * 3) The first block is uptodate. 1144 * 1145 * At least the first block can be skipped, but we are still not fully 1146 * sure. E.g. if the OE has some other folios in the range that cannot 1147 * be skipped. 1148 * So we return true and update @next_ret to the OE/folio boundary. 1149 */ 1150 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1151 u64 range_len = min(folio_pos(folio) + folio_size(folio), 1152 ordered->file_offset + ordered->num_bytes) - cur; 1153 1154 /* 1155 * The whole range to the OE end or folio boundary should also 1156 * be uptodate. 1157 */ 1158 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1159 ret = true; 1160 *fileoff = cur + range_len; 1161 goto out; 1162 } 1163 1164 /* 1165 * 4) The first block is not uptodate. 1166 * 1167 * This means the folio is invalidated after the writeback was finished, 1168 * but by some other operations (e.g. block aligned buffered write) the 1169 * folio is inserted into filemap. 1170 * Very much the same as case 1). 1171 */ 1172 ret = false; 1173 out: 1174 folio_put(folio); 1175 return ret; 1176 } 1177 1178 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1179 struct btrfs_ordered_extent *ordered, 1180 u64 start, u64 end) 1181 { 1182 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1183 u64 cur = max(start, ordered->file_offset); 1184 1185 while (cur < range_end) { 1186 bool can_skip; 1187 1188 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1189 if (!can_skip) 1190 return false; 1191 } 1192 return true; 1193 } 1194 1195 /* 1196 * Locking helper to make sure we get a stable view of extent maps for the 1197 * involved range. 1198 * 1199 * This is for folio read paths (read and readahead), thus the involved range 1200 * should have all the folios locked. 1201 */ 1202 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1203 struct extent_state **cached_state) 1204 { 1205 u64 cur_pos; 1206 1207 /* Caller must provide a valid @cached_state. */ 1208 ASSERT(cached_state); 1209 1210 /* The range must at least be page aligned, as all read paths are folio based. */ 1211 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1212 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1213 1214 again: 1215 lock_extent(&inode->io_tree, start, end, cached_state); 1216 cur_pos = start; 1217 while (cur_pos < end) { 1218 struct btrfs_ordered_extent *ordered; 1219 1220 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1221 end - cur_pos + 1); 1222 /* 1223 * No ordered extents in the range, and we hold the extent lock, 1224 * no one can modify the extent maps in the range, we're safe to return. 1225 */ 1226 if (!ordered) 1227 break; 1228 1229 /* Check if we can skip waiting for the whole OE. */ 1230 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1231 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1232 end + 1); 1233 btrfs_put_ordered_extent(ordered); 1234 continue; 1235 } 1236 1237 /* Now wait for the OE to finish. */ 1238 unlock_extent(&inode->io_tree, start, end, cached_state); 1239 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1240 btrfs_put_ordered_extent(ordered); 1241 /* We have unlocked the whole range, restart from the beginning. */ 1242 goto again; 1243 } 1244 } 1245 1246 int btrfs_read_folio(struct file *file, struct folio *folio) 1247 { 1248 struct btrfs_inode *inode = folio_to_inode(folio); 1249 const u64 start = folio_pos(folio); 1250 const u64 end = start + folio_size(folio) - 1; 1251 struct extent_state *cached_state = NULL; 1252 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1253 struct extent_map *em_cached = NULL; 1254 int ret; 1255 1256 lock_extents_for_read(inode, start, end, &cached_state); 1257 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1258 unlock_extent(&inode->io_tree, start, end, &cached_state); 1259 1260 free_extent_map(em_cached); 1261 1262 /* 1263 * If btrfs_do_readpage() failed we will want to submit the assembled 1264 * bio to do the cleanup. 1265 */ 1266 submit_one_bio(&bio_ctrl); 1267 return ret; 1268 } 1269 1270 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1271 u64 start, u32 len) 1272 { 1273 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1274 const u64 folio_start = folio_pos(folio); 1275 unsigned int start_bit; 1276 unsigned int nbits; 1277 1278 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1279 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1280 nbits = len >> fs_info->sectorsize_bits; 1281 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1282 bitmap_set(delalloc_bitmap, start_bit, nbits); 1283 } 1284 1285 static bool find_next_delalloc_bitmap(struct folio *folio, 1286 unsigned long *delalloc_bitmap, u64 start, 1287 u64 *found_start, u32 *found_len) 1288 { 1289 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1290 const u64 folio_start = folio_pos(folio); 1291 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1292 unsigned int start_bit; 1293 unsigned int first_zero; 1294 unsigned int first_set; 1295 1296 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1297 1298 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1299 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1300 if (first_set >= bitmap_size) 1301 return false; 1302 1303 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1304 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1305 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1306 return true; 1307 } 1308 1309 /* 1310 * Do all of the delayed allocation setup. 1311 * 1312 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1313 * The @folio should no longer be touched (treat it as already unlocked). 1314 * 1315 * Return 0 if there is still dirty block that needs to be submitted through 1316 * extent_writepage_io(). 1317 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1318 * submitted, and @folio is still kept locked. 1319 * 1320 * Return <0 if there is any error hit. 1321 * Any allocated ordered extent range covering this folio will be marked 1322 * finished (IOERR), and @folio is still kept locked. 1323 */ 1324 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1325 struct folio *folio, 1326 struct btrfs_bio_ctrl *bio_ctrl) 1327 { 1328 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1329 struct writeback_control *wbc = bio_ctrl->wbc; 1330 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1331 const u64 page_start = folio_pos(folio); 1332 const u64 page_end = page_start + folio_size(folio) - 1; 1333 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1334 unsigned long delalloc_bitmap = 0; 1335 /* 1336 * Save the last found delalloc end. As the delalloc end can go beyond 1337 * page boundary, thus we cannot rely on subpage bitmap to locate the 1338 * last delalloc end. 1339 */ 1340 u64 last_delalloc_end = 0; 1341 /* 1342 * The range end (exclusive) of the last successfully finished delalloc 1343 * range. 1344 * Any range covered by ordered extent must either be manually marked 1345 * finished (error handling), or has IO submitted (and finish the 1346 * ordered extent normally). 1347 * 1348 * This records the end of ordered extent cleanup if we hit an error. 1349 */ 1350 u64 last_finished_delalloc_end = page_start; 1351 u64 delalloc_start = page_start; 1352 u64 delalloc_end = page_end; 1353 u64 delalloc_to_write = 0; 1354 int ret = 0; 1355 int bit; 1356 1357 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1358 if (btrfs_is_subpage(fs_info, folio)) { 1359 ASSERT(blocks_per_folio > 1); 1360 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1361 } else { 1362 bio_ctrl->submit_bitmap = 1; 1363 } 1364 1365 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1366 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1367 1368 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1369 } 1370 1371 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1372 while (delalloc_start < page_end) { 1373 delalloc_end = page_end; 1374 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1375 &delalloc_start, &delalloc_end)) { 1376 delalloc_start = delalloc_end + 1; 1377 continue; 1378 } 1379 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1380 min(delalloc_end, page_end) + 1 - delalloc_start); 1381 last_delalloc_end = delalloc_end; 1382 delalloc_start = delalloc_end + 1; 1383 } 1384 delalloc_start = page_start; 1385 1386 if (!last_delalloc_end) 1387 goto out; 1388 1389 /* Run the delalloc ranges for the above locked ranges. */ 1390 while (delalloc_start < page_end) { 1391 u64 found_start; 1392 u32 found_len; 1393 bool found; 1394 1395 if (!is_subpage) { 1396 /* 1397 * For non-subpage case, the found delalloc range must 1398 * cover this folio and there must be only one locked 1399 * delalloc range. 1400 */ 1401 found_start = page_start; 1402 found_len = last_delalloc_end + 1 - found_start; 1403 found = true; 1404 } else { 1405 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1406 delalloc_start, &found_start, &found_len); 1407 } 1408 if (!found) 1409 break; 1410 /* 1411 * The subpage range covers the last sector, the delalloc range may 1412 * end beyond the folio boundary, use the saved delalloc_end 1413 * instead. 1414 */ 1415 if (found_start + found_len >= page_end) 1416 found_len = last_delalloc_end + 1 - found_start; 1417 1418 if (ret >= 0) { 1419 /* 1420 * Some delalloc range may be created by previous folios. 1421 * Thus we still need to clean up this range during error 1422 * handling. 1423 */ 1424 last_finished_delalloc_end = found_start; 1425 /* No errors hit so far, run the current delalloc range. */ 1426 ret = btrfs_run_delalloc_range(inode, folio, 1427 found_start, 1428 found_start + found_len - 1, 1429 wbc); 1430 if (ret >= 0) 1431 last_finished_delalloc_end = found_start + found_len; 1432 if (unlikely(ret < 0)) 1433 btrfs_err_rl(fs_info, 1434 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1435 btrfs_root_id(inode->root), 1436 btrfs_ino(inode), 1437 folio_pos(folio), 1438 blocks_per_folio, 1439 &bio_ctrl->submit_bitmap, 1440 found_start, found_len, ret); 1441 } else { 1442 /* 1443 * We've hit an error during previous delalloc range, 1444 * have to cleanup the remaining locked ranges. 1445 */ 1446 unlock_extent(&inode->io_tree, found_start, 1447 found_start + found_len - 1, NULL); 1448 unlock_delalloc_folio(&inode->vfs_inode, folio, 1449 found_start, 1450 found_start + found_len - 1); 1451 } 1452 1453 /* 1454 * We have some ranges that's going to be submitted asynchronously 1455 * (compression or inline). These range have their own control 1456 * on when to unlock the pages. We should not touch them 1457 * anymore, so clear the range from the submission bitmap. 1458 */ 1459 if (ret > 0) { 1460 unsigned int start_bit = (found_start - page_start) >> 1461 fs_info->sectorsize_bits; 1462 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1463 page_start) >> fs_info->sectorsize_bits; 1464 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1465 } 1466 /* 1467 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1468 * thus for the last range, we cannot touch the folio anymore. 1469 */ 1470 if (found_start + found_len >= last_delalloc_end + 1) 1471 break; 1472 1473 delalloc_start = found_start + found_len; 1474 } 1475 /* 1476 * It's possible we had some ordered extents created before we hit 1477 * an error, cleanup non-async successfully created delalloc ranges. 1478 */ 1479 if (unlikely(ret < 0)) { 1480 unsigned int bitmap_size = min( 1481 (last_finished_delalloc_end - page_start) >> 1482 fs_info->sectorsize_bits, 1483 blocks_per_folio); 1484 1485 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1486 btrfs_mark_ordered_io_finished(inode, folio, 1487 page_start + (bit << fs_info->sectorsize_bits), 1488 fs_info->sectorsize, false); 1489 return ret; 1490 } 1491 out: 1492 if (last_delalloc_end) 1493 delalloc_end = last_delalloc_end; 1494 else 1495 delalloc_end = page_end; 1496 /* 1497 * delalloc_end is already one less than the total length, so 1498 * we don't subtract one from PAGE_SIZE. 1499 */ 1500 delalloc_to_write += 1501 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1502 1503 /* 1504 * If all ranges are submitted asynchronously, we just need to account 1505 * for them here. 1506 */ 1507 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1508 wbc->nr_to_write -= delalloc_to_write; 1509 return 1; 1510 } 1511 1512 if (wbc->nr_to_write < delalloc_to_write) { 1513 int thresh = 8192; 1514 1515 if (delalloc_to_write < thresh * 2) 1516 thresh = delalloc_to_write; 1517 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1518 thresh); 1519 } 1520 1521 return 0; 1522 } 1523 1524 /* 1525 * Return 0 if we have submitted or queued the sector for submission. 1526 * Return <0 for critical errors. 1527 * 1528 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1529 */ 1530 static int submit_one_sector(struct btrfs_inode *inode, 1531 struct folio *folio, 1532 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1533 loff_t i_size) 1534 { 1535 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1536 struct extent_map *em; 1537 u64 block_start; 1538 u64 disk_bytenr; 1539 u64 extent_offset; 1540 u64 em_end; 1541 const u32 sectorsize = fs_info->sectorsize; 1542 1543 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1544 1545 /* @filepos >= i_size case should be handled by the caller. */ 1546 ASSERT(filepos < i_size); 1547 1548 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1549 if (IS_ERR(em)) 1550 return PTR_ERR(em); 1551 1552 extent_offset = filepos - em->start; 1553 em_end = extent_map_end(em); 1554 ASSERT(filepos <= em_end); 1555 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1556 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1557 1558 block_start = extent_map_block_start(em); 1559 disk_bytenr = extent_map_block_start(em) + extent_offset; 1560 1561 ASSERT(!extent_map_is_compressed(em)); 1562 ASSERT(block_start != EXTENT_MAP_HOLE); 1563 ASSERT(block_start != EXTENT_MAP_INLINE); 1564 1565 free_extent_map(em); 1566 em = NULL; 1567 1568 /* 1569 * Although the PageDirty bit is cleared before entering this 1570 * function, subpage dirty bit is not cleared. 1571 * So clear subpage dirty bit here so next time we won't submit 1572 * a folio for a range already written to disk. 1573 */ 1574 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1575 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1576 /* 1577 * Above call should set the whole folio with writeback flag, even 1578 * just for a single subpage sector. 1579 * As long as the folio is properly locked and the range is correct, 1580 * we should always get the folio with writeback flag. 1581 */ 1582 ASSERT(folio_test_writeback(folio)); 1583 1584 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1585 sectorsize, filepos - folio_pos(folio)); 1586 return 0; 1587 } 1588 1589 /* 1590 * Helper for extent_writepage(). This calls the writepage start hooks, 1591 * and does the loop to map the page into extents and bios. 1592 * 1593 * We return 1 if the IO is started and the page is unlocked, 1594 * 0 if all went well (page still locked) 1595 * < 0 if there were errors (page still locked) 1596 */ 1597 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1598 struct folio *folio, 1599 u64 start, u32 len, 1600 struct btrfs_bio_ctrl *bio_ctrl, 1601 loff_t i_size) 1602 { 1603 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1604 unsigned long range_bitmap = 0; 1605 bool submitted_io = false; 1606 bool error = false; 1607 const u64 folio_start = folio_pos(folio); 1608 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1609 u64 cur; 1610 int bit; 1611 int ret = 0; 1612 1613 ASSERT(start >= folio_start && 1614 start + len <= folio_start + folio_size(folio)); 1615 1616 ret = btrfs_writepage_cow_fixup(folio); 1617 if (ret == -EAGAIN) { 1618 /* Fixup worker will requeue */ 1619 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1620 folio_unlock(folio); 1621 return 1; 1622 } 1623 if (ret < 0) 1624 return ret; 1625 1626 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1627 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1628 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1629 blocks_per_folio); 1630 1631 bio_ctrl->end_io_func = end_bbio_data_write; 1632 1633 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1634 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1635 1636 if (cur >= i_size) { 1637 btrfs_mark_ordered_io_finished(inode, folio, cur, 1638 start + len - cur, true); 1639 /* 1640 * This range is beyond i_size, thus we don't need to 1641 * bother writing back. 1642 * But we still need to clear the dirty subpage bit, or 1643 * the next time the folio gets dirtied, we will try to 1644 * writeback the sectors with subpage dirty bits, 1645 * causing writeback without ordered extent. 1646 */ 1647 btrfs_folio_clear_dirty(fs_info, folio, cur, 1648 start + len - cur); 1649 break; 1650 } 1651 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1652 if (unlikely(ret < 0)) { 1653 /* 1654 * bio_ctrl may contain a bio crossing several folios. 1655 * Submit it immediately so that the bio has a chance 1656 * to finish normally, other than marked as error. 1657 */ 1658 submit_one_bio(bio_ctrl); 1659 /* 1660 * Failed to grab the extent map which should be very rare. 1661 * Since there is no bio submitted to finish the ordered 1662 * extent, we have to manually finish this sector. 1663 */ 1664 btrfs_mark_ordered_io_finished(inode, folio, cur, 1665 fs_info->sectorsize, false); 1666 error = true; 1667 continue; 1668 } 1669 submitted_io = true; 1670 } 1671 1672 /* 1673 * If we didn't submitted any sector (>= i_size), folio dirty get 1674 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1675 * by folio_start_writeback() if the folio is not dirty). 1676 * 1677 * Here we set writeback and clear for the range. If the full folio 1678 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1679 * 1680 * If we hit any error, the corresponding sector will still be dirty 1681 * thus no need to clear PAGECACHE_TAG_DIRTY. 1682 */ 1683 if (!submitted_io && !error) { 1684 btrfs_folio_set_writeback(fs_info, folio, start, len); 1685 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1686 } 1687 return ret; 1688 } 1689 1690 /* 1691 * the writepage semantics are similar to regular writepage. extent 1692 * records are inserted to lock ranges in the tree, and as dirty areas 1693 * are found, they are marked writeback. Then the lock bits are removed 1694 * and the end_io handler clears the writeback ranges 1695 * 1696 * Return 0 if everything goes well. 1697 * Return <0 for error. 1698 */ 1699 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1700 { 1701 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1702 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1703 int ret; 1704 size_t pg_offset; 1705 loff_t i_size = i_size_read(&inode->vfs_inode); 1706 unsigned long end_index = i_size >> PAGE_SHIFT; 1707 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1708 1709 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1710 1711 WARN_ON(!folio_test_locked(folio)); 1712 1713 pg_offset = offset_in_folio(folio, i_size); 1714 if (folio->index > end_index || 1715 (folio->index == end_index && !pg_offset)) { 1716 folio_invalidate(folio, 0, folio_size(folio)); 1717 folio_unlock(folio); 1718 return 0; 1719 } 1720 1721 if (folio->index == end_index) 1722 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1723 1724 /* 1725 * Default to unlock the whole folio. 1726 * The proper bitmap can only be initialized until writepage_delalloc(). 1727 */ 1728 bio_ctrl->submit_bitmap = (unsigned long)-1; 1729 1730 /* 1731 * If the page is dirty but without private set, it's marked dirty 1732 * without informing the fs. 1733 * Nowadays that is a bug, since the introduction of 1734 * pin_user_pages*(). 1735 * 1736 * So here we check if the page has private set to rule out such 1737 * case. 1738 * But we also have a long history of relying on the COW fixup, 1739 * so here we only enable this check for experimental builds until 1740 * we're sure it's safe. 1741 */ 1742 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1743 unlikely(!folio_test_private(folio))) { 1744 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1745 btrfs_err_rl(fs_info, 1746 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1747 inode->root->root_key.objectid, 1748 btrfs_ino(inode), folio_pos(folio)); 1749 ret = -EUCLEAN; 1750 goto done; 1751 } 1752 1753 ret = set_folio_extent_mapped(folio); 1754 if (ret < 0) 1755 goto done; 1756 1757 ret = writepage_delalloc(inode, folio, bio_ctrl); 1758 if (ret == 1) 1759 return 0; 1760 if (ret) 1761 goto done; 1762 1763 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1764 folio_size(folio), bio_ctrl, i_size); 1765 if (ret == 1) 1766 return 0; 1767 if (ret < 0) 1768 btrfs_err_rl(fs_info, 1769 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1770 btrfs_root_id(inode->root), btrfs_ino(inode), 1771 folio_pos(folio), blocks_per_folio, 1772 &bio_ctrl->submit_bitmap, ret); 1773 1774 bio_ctrl->wbc->nr_to_write--; 1775 1776 done: 1777 if (ret < 0) 1778 mapping_set_error(folio->mapping, ret); 1779 /* 1780 * Only unlock ranges that are submitted. As there can be some async 1781 * submitted ranges inside the folio. 1782 */ 1783 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1784 ASSERT(ret <= 0); 1785 return ret; 1786 } 1787 1788 /* 1789 * Lock extent buffer status and pages for writeback. 1790 * 1791 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1792 * extent buffer is not dirty) 1793 * Return %true is the extent buffer is submitted to bio. 1794 */ 1795 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1796 struct writeback_control *wbc) 1797 { 1798 struct btrfs_fs_info *fs_info = eb->fs_info; 1799 bool ret = false; 1800 1801 btrfs_tree_lock(eb); 1802 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1803 btrfs_tree_unlock(eb); 1804 if (wbc->sync_mode != WB_SYNC_ALL) 1805 return false; 1806 wait_on_extent_buffer_writeback(eb); 1807 btrfs_tree_lock(eb); 1808 } 1809 1810 /* 1811 * We need to do this to prevent races in people who check if the eb is 1812 * under IO since we can end up having no IO bits set for a short period 1813 * of time. 1814 */ 1815 spin_lock(&eb->refs_lock); 1816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1817 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1818 spin_unlock(&eb->refs_lock); 1819 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1820 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1821 -eb->len, 1822 fs_info->dirty_metadata_batch); 1823 ret = true; 1824 } else { 1825 spin_unlock(&eb->refs_lock); 1826 } 1827 btrfs_tree_unlock(eb); 1828 return ret; 1829 } 1830 1831 static void set_btree_ioerr(struct extent_buffer *eb) 1832 { 1833 struct btrfs_fs_info *fs_info = eb->fs_info; 1834 1835 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1836 1837 /* 1838 * A read may stumble upon this buffer later, make sure that it gets an 1839 * error and knows there was an error. 1840 */ 1841 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1842 1843 /* 1844 * We need to set the mapping with the io error as well because a write 1845 * error will flip the file system readonly, and then syncfs() will 1846 * return a 0 because we are readonly if we don't modify the err seq for 1847 * the superblock. 1848 */ 1849 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1850 1851 /* 1852 * If writeback for a btree extent that doesn't belong to a log tree 1853 * failed, increment the counter transaction->eb_write_errors. 1854 * We do this because while the transaction is running and before it's 1855 * committing (when we call filemap_fdata[write|wait]_range against 1856 * the btree inode), we might have 1857 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1858 * returns an error or an error happens during writeback, when we're 1859 * committing the transaction we wouldn't know about it, since the pages 1860 * can be no longer dirty nor marked anymore for writeback (if a 1861 * subsequent modification to the extent buffer didn't happen before the 1862 * transaction commit), which makes filemap_fdata[write|wait]_range not 1863 * able to find the pages which contain errors at transaction 1864 * commit time. So if this happens we must abort the transaction, 1865 * otherwise we commit a super block with btree roots that point to 1866 * btree nodes/leafs whose content on disk is invalid - either garbage 1867 * or the content of some node/leaf from a past generation that got 1868 * cowed or deleted and is no longer valid. 1869 * 1870 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1871 * not be enough - we need to distinguish between log tree extents vs 1872 * non-log tree extents, and the next filemap_fdatawait_range() call 1873 * will catch and clear such errors in the mapping - and that call might 1874 * be from a log sync and not from a transaction commit. Also, checking 1875 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1876 * not done and would not be reliable - the eb might have been released 1877 * from memory and reading it back again means that flag would not be 1878 * set (since it's a runtime flag, not persisted on disk). 1879 * 1880 * Using the flags below in the btree inode also makes us achieve the 1881 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1882 * writeback for all dirty pages and before filemap_fdatawait_range() 1883 * is called, the writeback for all dirty pages had already finished 1884 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1885 * filemap_fdatawait_range() would return success, as it could not know 1886 * that writeback errors happened (the pages were no longer tagged for 1887 * writeback). 1888 */ 1889 switch (eb->log_index) { 1890 case -1: 1891 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1892 break; 1893 case 0: 1894 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1895 break; 1896 case 1: 1897 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1898 break; 1899 default: 1900 BUG(); /* unexpected, logic error */ 1901 } 1902 } 1903 1904 /* 1905 * The endio specific version which won't touch any unsafe spinlock in endio 1906 * context. 1907 */ 1908 static struct extent_buffer *find_extent_buffer_nolock( 1909 const struct btrfs_fs_info *fs_info, u64 start) 1910 { 1911 struct extent_buffer *eb; 1912 1913 rcu_read_lock(); 1914 eb = radix_tree_lookup(&fs_info->buffer_radix, 1915 start >> fs_info->sectorsize_bits); 1916 if (eb && atomic_inc_not_zero(&eb->refs)) { 1917 rcu_read_unlock(); 1918 return eb; 1919 } 1920 rcu_read_unlock(); 1921 return NULL; 1922 } 1923 1924 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1925 { 1926 struct extent_buffer *eb = bbio->private; 1927 struct folio_iter fi; 1928 1929 if (bbio->bio.bi_status != BLK_STS_OK) 1930 set_btree_ioerr(eb); 1931 1932 bio_for_each_folio_all(fi, &bbio->bio) { 1933 btrfs_meta_folio_clear_writeback(fi.folio, eb); 1934 } 1935 1936 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1937 smp_mb__after_atomic(); 1938 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1939 1940 bio_put(&bbio->bio); 1941 } 1942 1943 static void prepare_eb_write(struct extent_buffer *eb) 1944 { 1945 u32 nritems; 1946 unsigned long start; 1947 unsigned long end; 1948 1949 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1950 1951 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1952 nritems = btrfs_header_nritems(eb); 1953 if (btrfs_header_level(eb) > 0) { 1954 end = btrfs_node_key_ptr_offset(eb, nritems); 1955 memzero_extent_buffer(eb, end, eb->len - end); 1956 } else { 1957 /* 1958 * Leaf: 1959 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1960 */ 1961 start = btrfs_item_nr_offset(eb, nritems); 1962 end = btrfs_item_nr_offset(eb, 0); 1963 if (nritems == 0) 1964 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1965 else 1966 end += btrfs_item_offset(eb, nritems - 1); 1967 memzero_extent_buffer(eb, start, end - start); 1968 } 1969 } 1970 1971 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1972 struct writeback_control *wbc) 1973 { 1974 struct btrfs_fs_info *fs_info = eb->fs_info; 1975 struct btrfs_bio *bbio; 1976 1977 prepare_eb_write(eb); 1978 1979 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1980 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1981 eb->fs_info, end_bbio_meta_write, eb); 1982 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1983 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1984 wbc_init_bio(wbc, &bbio->bio); 1985 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1986 bbio->file_offset = eb->start; 1987 for (int i = 0; i < num_extent_folios(eb); i++) { 1988 struct folio *folio = eb->folios[i]; 1989 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 1990 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 1991 eb->start + eb->len) - range_start; 1992 1993 folio_lock(folio); 1994 btrfs_meta_folio_clear_dirty(folio, eb); 1995 btrfs_meta_folio_set_writeback(folio, eb); 1996 if (!folio_test_dirty(folio)) 1997 wbc->nr_to_write -= folio_nr_pages(folio); 1998 bio_add_folio_nofail(&bbio->bio, folio, range_len, 1999 offset_in_folio(folio, range_start)); 2000 wbc_account_cgroup_owner(wbc, folio, range_len); 2001 folio_unlock(folio); 2002 } 2003 btrfs_submit_bbio(bbio, 0); 2004 } 2005 2006 /* 2007 * Submit one subpage btree page. 2008 * 2009 * The main difference to submit_eb_page() is: 2010 * - Page locking 2011 * For subpage, we don't rely on page locking at all. 2012 * 2013 * - Flush write bio 2014 * We only flush bio if we may be unable to fit current extent buffers into 2015 * current bio. 2016 * 2017 * Return >=0 for the number of submitted extent buffers. 2018 * Return <0 for fatal error. 2019 */ 2020 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc) 2021 { 2022 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 2023 int submitted = 0; 2024 u64 folio_start = folio_pos(folio); 2025 int bit_start = 0; 2026 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2027 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 2028 2029 /* Lock and write each dirty extent buffers in the range */ 2030 while (bit_start < blocks_per_folio) { 2031 struct btrfs_subpage *subpage = folio_get_private(folio); 2032 struct extent_buffer *eb; 2033 unsigned long flags; 2034 u64 start; 2035 2036 /* 2037 * Take private lock to ensure the subpage won't be detached 2038 * in the meantime. 2039 */ 2040 spin_lock(&folio->mapping->i_private_lock); 2041 if (!folio_test_private(folio)) { 2042 spin_unlock(&folio->mapping->i_private_lock); 2043 break; 2044 } 2045 spin_lock_irqsave(&subpage->lock, flags); 2046 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * blocks_per_folio, 2047 subpage->bitmaps)) { 2048 spin_unlock_irqrestore(&subpage->lock, flags); 2049 spin_unlock(&folio->mapping->i_private_lock); 2050 bit_start++; 2051 continue; 2052 } 2053 2054 start = folio_start + bit_start * fs_info->sectorsize; 2055 bit_start += sectors_per_node; 2056 2057 /* 2058 * Here we just want to grab the eb without touching extra 2059 * spin locks, so call find_extent_buffer_nolock(). 2060 */ 2061 eb = find_extent_buffer_nolock(fs_info, start); 2062 spin_unlock_irqrestore(&subpage->lock, flags); 2063 spin_unlock(&folio->mapping->i_private_lock); 2064 2065 /* 2066 * The eb has already reached 0 refs thus find_extent_buffer() 2067 * doesn't return it. We don't need to write back such eb 2068 * anyway. 2069 */ 2070 if (!eb) 2071 continue; 2072 2073 if (lock_extent_buffer_for_io(eb, wbc)) { 2074 write_one_eb(eb, wbc); 2075 submitted++; 2076 } 2077 free_extent_buffer(eb); 2078 } 2079 return submitted; 2080 } 2081 2082 /* 2083 * Submit all page(s) of one extent buffer. 2084 * 2085 * @page: the page of one extent buffer 2086 * @eb_context: to determine if we need to submit this page, if current page 2087 * belongs to this eb, we don't need to submit 2088 * 2089 * The caller should pass each page in their bytenr order, and here we use 2090 * @eb_context to determine if we have submitted pages of one extent buffer. 2091 * 2092 * If we have, we just skip until we hit a new page that doesn't belong to 2093 * current @eb_context. 2094 * 2095 * If not, we submit all the page(s) of the extent buffer. 2096 * 2097 * Return >0 if we have submitted the extent buffer successfully. 2098 * Return 0 if we don't need to submit the page, as it's already submitted by 2099 * previous call. 2100 * Return <0 for fatal error. 2101 */ 2102 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx) 2103 { 2104 struct writeback_control *wbc = ctx->wbc; 2105 struct address_space *mapping = folio->mapping; 2106 struct extent_buffer *eb; 2107 int ret; 2108 2109 if (!folio_test_private(folio)) 2110 return 0; 2111 2112 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 2113 return submit_eb_subpage(folio, wbc); 2114 2115 spin_lock(&mapping->i_private_lock); 2116 if (!folio_test_private(folio)) { 2117 spin_unlock(&mapping->i_private_lock); 2118 return 0; 2119 } 2120 2121 eb = folio_get_private(folio); 2122 2123 /* 2124 * Shouldn't happen and normally this would be a BUG_ON but no point 2125 * crashing the machine for something we can survive anyway. 2126 */ 2127 if (WARN_ON(!eb)) { 2128 spin_unlock(&mapping->i_private_lock); 2129 return 0; 2130 } 2131 2132 if (eb == ctx->eb) { 2133 spin_unlock(&mapping->i_private_lock); 2134 return 0; 2135 } 2136 ret = atomic_inc_not_zero(&eb->refs); 2137 spin_unlock(&mapping->i_private_lock); 2138 if (!ret) 2139 return 0; 2140 2141 ctx->eb = eb; 2142 2143 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 2144 if (ret) { 2145 if (ret == -EBUSY) 2146 ret = 0; 2147 free_extent_buffer(eb); 2148 return ret; 2149 } 2150 2151 if (!lock_extent_buffer_for_io(eb, wbc)) { 2152 free_extent_buffer(eb); 2153 return 0; 2154 } 2155 /* Implies write in zoned mode. */ 2156 if (ctx->zoned_bg) { 2157 /* Mark the last eb in the block group. */ 2158 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 2159 ctx->zoned_bg->meta_write_pointer += eb->len; 2160 } 2161 write_one_eb(eb, wbc); 2162 free_extent_buffer(eb); 2163 return 1; 2164 } 2165 2166 int btree_write_cache_pages(struct address_space *mapping, 2167 struct writeback_control *wbc) 2168 { 2169 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2170 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2171 int ret = 0; 2172 int done = 0; 2173 int nr_to_write_done = 0; 2174 struct folio_batch fbatch; 2175 unsigned int nr_folios; 2176 pgoff_t index; 2177 pgoff_t end; /* Inclusive */ 2178 int scanned = 0; 2179 xa_mark_t tag; 2180 2181 folio_batch_init(&fbatch); 2182 if (wbc->range_cyclic) { 2183 index = mapping->writeback_index; /* Start from prev offset */ 2184 end = -1; 2185 /* 2186 * Start from the beginning does not need to cycle over the 2187 * range, mark it as scanned. 2188 */ 2189 scanned = (index == 0); 2190 } else { 2191 index = wbc->range_start >> PAGE_SHIFT; 2192 end = wbc->range_end >> PAGE_SHIFT; 2193 scanned = 1; 2194 } 2195 if (wbc->sync_mode == WB_SYNC_ALL) 2196 tag = PAGECACHE_TAG_TOWRITE; 2197 else 2198 tag = PAGECACHE_TAG_DIRTY; 2199 btrfs_zoned_meta_io_lock(fs_info); 2200 retry: 2201 if (wbc->sync_mode == WB_SYNC_ALL) 2202 tag_pages_for_writeback(mapping, index, end); 2203 while (!done && !nr_to_write_done && (index <= end) && 2204 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 2205 tag, &fbatch))) { 2206 unsigned i; 2207 2208 for (i = 0; i < nr_folios; i++) { 2209 struct folio *folio = fbatch.folios[i]; 2210 2211 ret = submit_eb_page(folio, &ctx); 2212 if (ret == 0) 2213 continue; 2214 if (ret < 0) { 2215 done = 1; 2216 break; 2217 } 2218 2219 /* 2220 * the filesystem may choose to bump up nr_to_write. 2221 * We have to make sure to honor the new nr_to_write 2222 * at any time 2223 */ 2224 nr_to_write_done = wbc->nr_to_write <= 0; 2225 } 2226 folio_batch_release(&fbatch); 2227 cond_resched(); 2228 } 2229 if (!scanned && !done) { 2230 /* 2231 * We hit the last page and there is more work to be done: wrap 2232 * back to the start of the file 2233 */ 2234 scanned = 1; 2235 index = 0; 2236 goto retry; 2237 } 2238 /* 2239 * If something went wrong, don't allow any metadata write bio to be 2240 * submitted. 2241 * 2242 * This would prevent use-after-free if we had dirty pages not 2243 * cleaned up, which can still happen by fuzzed images. 2244 * 2245 * - Bad extent tree 2246 * Allowing existing tree block to be allocated for other trees. 2247 * 2248 * - Log tree operations 2249 * Exiting tree blocks get allocated to log tree, bumps its 2250 * generation, then get cleaned in tree re-balance. 2251 * Such tree block will not be written back, since it's clean, 2252 * thus no WRITTEN flag set. 2253 * And after log writes back, this tree block is not traced by 2254 * any dirty extent_io_tree. 2255 * 2256 * - Offending tree block gets re-dirtied from its original owner 2257 * Since it has bumped generation, no WRITTEN flag, it can be 2258 * reused without COWing. This tree block will not be traced 2259 * by btrfs_transaction::dirty_pages. 2260 * 2261 * Now such dirty tree block will not be cleaned by any dirty 2262 * extent io tree. Thus we don't want to submit such wild eb 2263 * if the fs already has error. 2264 * 2265 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2266 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2267 */ 2268 if (ret > 0) 2269 ret = 0; 2270 if (!ret && BTRFS_FS_ERROR(fs_info)) 2271 ret = -EROFS; 2272 2273 if (ctx.zoned_bg) 2274 btrfs_put_block_group(ctx.zoned_bg); 2275 btrfs_zoned_meta_io_unlock(fs_info); 2276 return ret; 2277 } 2278 2279 /* 2280 * Walk the list of dirty pages of the given address space and write all of them. 2281 * 2282 * @mapping: address space structure to write 2283 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2284 * @bio_ctrl: holds context for the write, namely the bio 2285 * 2286 * If a page is already under I/O, write_cache_pages() skips it, even 2287 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2288 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2289 * and msync() need to guarantee that all the data which was dirty at the time 2290 * the call was made get new I/O started against them. If wbc->sync_mode is 2291 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2292 * existing IO to complete. 2293 */ 2294 static int extent_write_cache_pages(struct address_space *mapping, 2295 struct btrfs_bio_ctrl *bio_ctrl) 2296 { 2297 struct writeback_control *wbc = bio_ctrl->wbc; 2298 struct inode *inode = mapping->host; 2299 int ret = 0; 2300 int done = 0; 2301 int nr_to_write_done = 0; 2302 struct folio_batch fbatch; 2303 unsigned int nr_folios; 2304 pgoff_t index; 2305 pgoff_t end; /* Inclusive */ 2306 pgoff_t done_index; 2307 int range_whole = 0; 2308 int scanned = 0; 2309 xa_mark_t tag; 2310 2311 /* 2312 * We have to hold onto the inode so that ordered extents can do their 2313 * work when the IO finishes. The alternative to this is failing to add 2314 * an ordered extent if the igrab() fails there and that is a huge pain 2315 * to deal with, so instead just hold onto the inode throughout the 2316 * writepages operation. If it fails here we are freeing up the inode 2317 * anyway and we'd rather not waste our time writing out stuff that is 2318 * going to be truncated anyway. 2319 */ 2320 if (!igrab(inode)) 2321 return 0; 2322 2323 folio_batch_init(&fbatch); 2324 if (wbc->range_cyclic) { 2325 index = mapping->writeback_index; /* Start from prev offset */ 2326 end = -1; 2327 /* 2328 * Start from the beginning does not need to cycle over the 2329 * range, mark it as scanned. 2330 */ 2331 scanned = (index == 0); 2332 } else { 2333 index = wbc->range_start >> PAGE_SHIFT; 2334 end = wbc->range_end >> PAGE_SHIFT; 2335 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2336 range_whole = 1; 2337 scanned = 1; 2338 } 2339 2340 /* 2341 * We do the tagged writepage as long as the snapshot flush bit is set 2342 * and we are the first one who do the filemap_flush() on this inode. 2343 * 2344 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2345 * not race in and drop the bit. 2346 */ 2347 if (range_whole && wbc->nr_to_write == LONG_MAX && 2348 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2349 &BTRFS_I(inode)->runtime_flags)) 2350 wbc->tagged_writepages = 1; 2351 2352 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2353 tag = PAGECACHE_TAG_TOWRITE; 2354 else 2355 tag = PAGECACHE_TAG_DIRTY; 2356 retry: 2357 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2358 tag_pages_for_writeback(mapping, index, end); 2359 done_index = index; 2360 while (!done && !nr_to_write_done && (index <= end) && 2361 (nr_folios = filemap_get_folios_tag(mapping, &index, 2362 end, tag, &fbatch))) { 2363 unsigned i; 2364 2365 for (i = 0; i < nr_folios; i++) { 2366 struct folio *folio = fbatch.folios[i]; 2367 2368 done_index = folio_next_index(folio); 2369 /* 2370 * At this point we hold neither the i_pages lock nor 2371 * the folio lock: the folio may be truncated or 2372 * invalidated (changing folio->mapping to NULL). 2373 */ 2374 if (!folio_trylock(folio)) { 2375 submit_write_bio(bio_ctrl, 0); 2376 folio_lock(folio); 2377 } 2378 2379 if (unlikely(folio->mapping != mapping)) { 2380 folio_unlock(folio); 2381 continue; 2382 } 2383 2384 if (!folio_test_dirty(folio)) { 2385 /* Someone wrote it for us. */ 2386 folio_unlock(folio); 2387 continue; 2388 } 2389 2390 /* 2391 * For subpage case, compression can lead to mixed 2392 * writeback and dirty flags, e.g: 2393 * 0 32K 64K 96K 128K 2394 * | |//////||/////| |//| 2395 * 2396 * In above case, [32K, 96K) is asynchronously submitted 2397 * for compression, and [124K, 128K) needs to be written back. 2398 * 2399 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2400 * won't be submitted as the page still has writeback flag 2401 * and will be skipped in the next check. 2402 * 2403 * This mixed writeback and dirty case is only possible for 2404 * subpage case. 2405 * 2406 * TODO: Remove this check after migrating compression to 2407 * regular submission. 2408 */ 2409 if (wbc->sync_mode != WB_SYNC_NONE || 2410 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2411 if (folio_test_writeback(folio)) 2412 submit_write_bio(bio_ctrl, 0); 2413 folio_wait_writeback(folio); 2414 } 2415 2416 if (folio_test_writeback(folio) || 2417 !folio_clear_dirty_for_io(folio)) { 2418 folio_unlock(folio); 2419 continue; 2420 } 2421 2422 ret = extent_writepage(folio, bio_ctrl); 2423 if (ret < 0) { 2424 done = 1; 2425 break; 2426 } 2427 2428 /* 2429 * The filesystem may choose to bump up nr_to_write. 2430 * We have to make sure to honor the new nr_to_write 2431 * at any time. 2432 */ 2433 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2434 wbc->nr_to_write <= 0); 2435 } 2436 folio_batch_release(&fbatch); 2437 cond_resched(); 2438 } 2439 if (!scanned && !done) { 2440 /* 2441 * We hit the last page and there is more work to be done: wrap 2442 * back to the start of the file 2443 */ 2444 scanned = 1; 2445 index = 0; 2446 2447 /* 2448 * If we're looping we could run into a page that is locked by a 2449 * writer and that writer could be waiting on writeback for a 2450 * page in our current bio, and thus deadlock, so flush the 2451 * write bio here. 2452 */ 2453 submit_write_bio(bio_ctrl, 0); 2454 goto retry; 2455 } 2456 2457 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2458 mapping->writeback_index = done_index; 2459 2460 btrfs_add_delayed_iput(BTRFS_I(inode)); 2461 return ret; 2462 } 2463 2464 /* 2465 * Submit the pages in the range to bio for call sites which delalloc range has 2466 * already been ran (aka, ordered extent inserted) and all pages are still 2467 * locked. 2468 */ 2469 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2470 u64 start, u64 end, struct writeback_control *wbc, 2471 bool pages_dirty) 2472 { 2473 bool found_error = false; 2474 int ret = 0; 2475 struct address_space *mapping = inode->i_mapping; 2476 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2477 const u32 sectorsize = fs_info->sectorsize; 2478 loff_t i_size = i_size_read(inode); 2479 u64 cur = start; 2480 struct btrfs_bio_ctrl bio_ctrl = { 2481 .wbc = wbc, 2482 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2483 }; 2484 2485 if (wbc->no_cgroup_owner) 2486 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2487 2488 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2489 2490 while (cur <= end) { 2491 u64 cur_end; 2492 u32 cur_len; 2493 struct folio *folio; 2494 2495 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2496 2497 /* 2498 * This shouldn't happen, the pages are pinned and locked, this 2499 * code is just in case, but shouldn't actually be run. 2500 */ 2501 if (IS_ERR(folio)) { 2502 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2503 cur_len = cur_end + 1 - cur; 2504 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2505 cur, cur_len, false); 2506 mapping_set_error(mapping, PTR_ERR(folio)); 2507 cur = cur_end; 2508 continue; 2509 } 2510 2511 cur_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1, end); 2512 cur_len = cur_end + 1 - cur; 2513 2514 ASSERT(folio_test_locked(folio)); 2515 if (pages_dirty && folio != locked_folio) 2516 ASSERT(folio_test_dirty(folio)); 2517 2518 /* 2519 * Set the submission bitmap to submit all sectors. 2520 * extent_writepage_io() will do the truncation correctly. 2521 */ 2522 bio_ctrl.submit_bitmap = (unsigned long)-1; 2523 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2524 &bio_ctrl, i_size); 2525 if (ret == 1) 2526 goto next_page; 2527 2528 if (ret) 2529 mapping_set_error(mapping, ret); 2530 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2531 if (ret < 0) 2532 found_error = true; 2533 next_page: 2534 folio_put(folio); 2535 cur = cur_end + 1; 2536 } 2537 2538 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2539 } 2540 2541 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2542 { 2543 struct inode *inode = mapping->host; 2544 int ret = 0; 2545 struct btrfs_bio_ctrl bio_ctrl = { 2546 .wbc = wbc, 2547 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2548 }; 2549 2550 /* 2551 * Allow only a single thread to do the reloc work in zoned mode to 2552 * protect the write pointer updates. 2553 */ 2554 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2555 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2556 submit_write_bio(&bio_ctrl, ret); 2557 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2558 return ret; 2559 } 2560 2561 void btrfs_readahead(struct readahead_control *rac) 2562 { 2563 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2564 struct folio *folio; 2565 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2566 const u64 start = readahead_pos(rac); 2567 const u64 end = start + readahead_length(rac) - 1; 2568 struct extent_state *cached_state = NULL; 2569 struct extent_map *em_cached = NULL; 2570 u64 prev_em_start = (u64)-1; 2571 2572 lock_extents_for_read(inode, start, end, &cached_state); 2573 2574 while ((folio = readahead_folio(rac)) != NULL) 2575 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2576 2577 unlock_extent(&inode->io_tree, start, end, &cached_state); 2578 2579 if (em_cached) 2580 free_extent_map(em_cached); 2581 submit_one_bio(&bio_ctrl); 2582 } 2583 2584 /* 2585 * basic invalidate_folio code, this waits on any locked or writeback 2586 * ranges corresponding to the folio, and then deletes any extent state 2587 * records from the tree 2588 */ 2589 int extent_invalidate_folio(struct extent_io_tree *tree, 2590 struct folio *folio, size_t offset) 2591 { 2592 struct extent_state *cached_state = NULL; 2593 u64 start = folio_pos(folio); 2594 u64 end = start + folio_size(folio) - 1; 2595 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2596 2597 /* This function is only called for the btree inode */ 2598 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2599 2600 start += ALIGN(offset, blocksize); 2601 if (start > end) 2602 return 0; 2603 2604 lock_extent(tree, start, end, &cached_state); 2605 folio_wait_writeback(folio); 2606 2607 /* 2608 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2609 * so here we only need to unlock the extent range to free any 2610 * existing extent state. 2611 */ 2612 unlock_extent(tree, start, end, &cached_state); 2613 return 0; 2614 } 2615 2616 /* 2617 * a helper for release_folio, this tests for areas of the page that 2618 * are locked or under IO and drops the related state bits if it is safe 2619 * to drop the page. 2620 */ 2621 static bool try_release_extent_state(struct extent_io_tree *tree, 2622 struct folio *folio) 2623 { 2624 u64 start = folio_pos(folio); 2625 u64 end = start + folio_size(folio) - 1; 2626 bool ret; 2627 2628 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2629 ret = false; 2630 } else { 2631 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2632 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2633 EXTENT_QGROUP_RESERVED); 2634 int ret2; 2635 2636 /* 2637 * At this point we can safely clear everything except the 2638 * locked bit, the nodatasum bit and the delalloc new bit. 2639 * The delalloc new bit will be cleared by ordered extent 2640 * completion. 2641 */ 2642 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2643 2644 /* if clear_extent_bit failed for enomem reasons, 2645 * we can't allow the release to continue. 2646 */ 2647 if (ret2 < 0) 2648 ret = false; 2649 else 2650 ret = true; 2651 } 2652 return ret; 2653 } 2654 2655 /* 2656 * a helper for release_folio. As long as there are no locked extents 2657 * in the range corresponding to the page, both state records and extent 2658 * map records are removed 2659 */ 2660 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2661 { 2662 u64 start = folio_pos(folio); 2663 u64 end = start + folio_size(folio) - 1; 2664 struct btrfs_inode *inode = folio_to_inode(folio); 2665 struct extent_io_tree *io_tree = &inode->io_tree; 2666 2667 while (start <= end) { 2668 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2669 const u64 len = end - start + 1; 2670 struct extent_map_tree *extent_tree = &inode->extent_tree; 2671 struct extent_map *em; 2672 2673 write_lock(&extent_tree->lock); 2674 em = lookup_extent_mapping(extent_tree, start, len); 2675 if (!em) { 2676 write_unlock(&extent_tree->lock); 2677 break; 2678 } 2679 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2680 write_unlock(&extent_tree->lock); 2681 free_extent_map(em); 2682 break; 2683 } 2684 if (test_range_bit_exists(io_tree, em->start, 2685 extent_map_end(em) - 1, EXTENT_LOCKED)) 2686 goto next; 2687 /* 2688 * If it's not in the list of modified extents, used by a fast 2689 * fsync, we can remove it. If it's being logged we can safely 2690 * remove it since fsync took an extra reference on the em. 2691 */ 2692 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2693 goto remove_em; 2694 /* 2695 * If it's in the list of modified extents, remove it only if 2696 * its generation is older then the current one, in which case 2697 * we don't need it for a fast fsync. Otherwise don't remove it, 2698 * we could be racing with an ongoing fast fsync that could miss 2699 * the new extent. 2700 */ 2701 if (em->generation >= cur_gen) 2702 goto next; 2703 remove_em: 2704 /* 2705 * We only remove extent maps that are not in the list of 2706 * modified extents or that are in the list but with a 2707 * generation lower then the current generation, so there is no 2708 * need to set the full fsync flag on the inode (it hurts the 2709 * fsync performance for workloads with a data size that exceeds 2710 * or is close to the system's memory). 2711 */ 2712 remove_extent_mapping(inode, em); 2713 /* Once for the inode's extent map tree. */ 2714 free_extent_map(em); 2715 next: 2716 start = extent_map_end(em); 2717 write_unlock(&extent_tree->lock); 2718 2719 /* Once for us, for the lookup_extent_mapping() reference. */ 2720 free_extent_map(em); 2721 2722 if (need_resched()) { 2723 /* 2724 * If we need to resched but we can't block just exit 2725 * and leave any remaining extent maps. 2726 */ 2727 if (!gfpflags_allow_blocking(mask)) 2728 break; 2729 2730 cond_resched(); 2731 } 2732 } 2733 return try_release_extent_state(io_tree, folio); 2734 } 2735 2736 static int extent_buffer_under_io(const struct extent_buffer *eb) 2737 { 2738 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2739 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2740 } 2741 2742 static bool folio_range_has_eb(struct folio *folio) 2743 { 2744 struct btrfs_subpage *subpage; 2745 2746 lockdep_assert_held(&folio->mapping->i_private_lock); 2747 2748 if (folio_test_private(folio)) { 2749 subpage = folio_get_private(folio); 2750 if (atomic_read(&subpage->eb_refs)) 2751 return true; 2752 } 2753 return false; 2754 } 2755 2756 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2757 { 2758 struct btrfs_fs_info *fs_info = eb->fs_info; 2759 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2760 2761 /* 2762 * For mapped eb, we're going to change the folio private, which should 2763 * be done under the i_private_lock. 2764 */ 2765 if (mapped) 2766 spin_lock(&folio->mapping->i_private_lock); 2767 2768 if (!folio_test_private(folio)) { 2769 if (mapped) 2770 spin_unlock(&folio->mapping->i_private_lock); 2771 return; 2772 } 2773 2774 if (!btrfs_meta_is_subpage(fs_info)) { 2775 /* 2776 * We do this since we'll remove the pages after we've 2777 * removed the eb from the radix tree, so we could race 2778 * and have this page now attached to the new eb. So 2779 * only clear folio if it's still connected to 2780 * this eb. 2781 */ 2782 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2783 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2784 BUG_ON(folio_test_dirty(folio)); 2785 BUG_ON(folio_test_writeback(folio)); 2786 /* We need to make sure we haven't be attached to a new eb. */ 2787 folio_detach_private(folio); 2788 } 2789 if (mapped) 2790 spin_unlock(&folio->mapping->i_private_lock); 2791 return; 2792 } 2793 2794 /* 2795 * For subpage, we can have dummy eb with folio private attached. In 2796 * this case, we can directly detach the private as such folio is only 2797 * attached to one dummy eb, no sharing. 2798 */ 2799 if (!mapped) { 2800 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2801 return; 2802 } 2803 2804 btrfs_folio_dec_eb_refs(fs_info, folio); 2805 2806 /* 2807 * We can only detach the folio private if there are no other ebs in the 2808 * page range and no unfinished IO. 2809 */ 2810 if (!folio_range_has_eb(folio)) 2811 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2812 2813 spin_unlock(&folio->mapping->i_private_lock); 2814 } 2815 2816 /* Release all folios attached to the extent buffer */ 2817 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2818 { 2819 ASSERT(!extent_buffer_under_io(eb)); 2820 2821 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2822 struct folio *folio = eb->folios[i]; 2823 2824 if (!folio) 2825 continue; 2826 2827 detach_extent_buffer_folio(eb, folio); 2828 2829 /* One for when we allocated the folio. */ 2830 folio_put(folio); 2831 } 2832 } 2833 2834 /* 2835 * Helper for releasing the extent buffer. 2836 */ 2837 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2838 { 2839 btrfs_release_extent_buffer_folios(eb); 2840 btrfs_leak_debug_del_eb(eb); 2841 kmem_cache_free(extent_buffer_cache, eb); 2842 } 2843 2844 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2845 u64 start) 2846 { 2847 struct extent_buffer *eb = NULL; 2848 2849 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2850 eb->start = start; 2851 eb->len = fs_info->nodesize; 2852 eb->fs_info = fs_info; 2853 init_rwsem(&eb->lock); 2854 2855 btrfs_leak_debug_add_eb(eb); 2856 2857 spin_lock_init(&eb->refs_lock); 2858 atomic_set(&eb->refs, 1); 2859 2860 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2861 2862 return eb; 2863 } 2864 2865 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2866 { 2867 struct extent_buffer *new; 2868 int ret; 2869 2870 new = __alloc_extent_buffer(src->fs_info, src->start); 2871 if (new == NULL) 2872 return NULL; 2873 2874 /* 2875 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2876 * btrfs_release_extent_buffer() have different behavior for 2877 * UNMAPPED subpage extent buffer. 2878 */ 2879 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2880 2881 ret = alloc_eb_folio_array(new, false); 2882 if (ret) { 2883 btrfs_release_extent_buffer(new); 2884 return NULL; 2885 } 2886 2887 for (int i = 0; i < num_extent_folios(src); i++) { 2888 struct folio *folio = new->folios[i]; 2889 2890 ret = attach_extent_buffer_folio(new, folio, NULL); 2891 if (ret < 0) { 2892 btrfs_release_extent_buffer(new); 2893 return NULL; 2894 } 2895 WARN_ON(folio_test_dirty(folio)); 2896 } 2897 copy_extent_buffer_full(new, src); 2898 set_extent_buffer_uptodate(new); 2899 2900 return new; 2901 } 2902 2903 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2904 u64 start) 2905 { 2906 struct extent_buffer *eb; 2907 int ret; 2908 2909 eb = __alloc_extent_buffer(fs_info, start); 2910 if (!eb) 2911 return NULL; 2912 2913 ret = alloc_eb_folio_array(eb, false); 2914 if (ret) 2915 goto out; 2916 2917 for (int i = 0; i < num_extent_folios(eb); i++) { 2918 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2919 if (ret < 0) 2920 goto out_detach; 2921 } 2922 2923 set_extent_buffer_uptodate(eb); 2924 btrfs_set_header_nritems(eb, 0); 2925 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2926 2927 return eb; 2928 2929 out_detach: 2930 for (int i = 0; i < num_extent_folios(eb); i++) { 2931 if (eb->folios[i]) { 2932 detach_extent_buffer_folio(eb, eb->folios[i]); 2933 folio_put(eb->folios[i]); 2934 } 2935 } 2936 out: 2937 kmem_cache_free(extent_buffer_cache, eb); 2938 return NULL; 2939 } 2940 2941 static void check_buffer_tree_ref(struct extent_buffer *eb) 2942 { 2943 int refs; 2944 /* 2945 * The TREE_REF bit is first set when the extent_buffer is added 2946 * to the radix tree. It is also reset, if unset, when a new reference 2947 * is created by find_extent_buffer. 2948 * 2949 * It is only cleared in two cases: freeing the last non-tree 2950 * reference to the extent_buffer when its STALE bit is set or 2951 * calling release_folio when the tree reference is the only reference. 2952 * 2953 * In both cases, care is taken to ensure that the extent_buffer's 2954 * pages are not under io. However, release_folio can be concurrently 2955 * called with creating new references, which is prone to race 2956 * conditions between the calls to check_buffer_tree_ref in those 2957 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2958 * 2959 * The actual lifetime of the extent_buffer in the radix tree is 2960 * adequately protected by the refcount, but the TREE_REF bit and 2961 * its corresponding reference are not. To protect against this 2962 * class of races, we call check_buffer_tree_ref from the codepaths 2963 * which trigger io. Note that once io is initiated, TREE_REF can no 2964 * longer be cleared, so that is the moment at which any such race is 2965 * best fixed. 2966 */ 2967 refs = atomic_read(&eb->refs); 2968 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2969 return; 2970 2971 spin_lock(&eb->refs_lock); 2972 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2973 atomic_inc(&eb->refs); 2974 spin_unlock(&eb->refs_lock); 2975 } 2976 2977 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2978 { 2979 check_buffer_tree_ref(eb); 2980 2981 for (int i = 0; i < num_extent_folios(eb); i++) 2982 folio_mark_accessed(eb->folios[i]); 2983 } 2984 2985 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2986 u64 start) 2987 { 2988 struct extent_buffer *eb; 2989 2990 eb = find_extent_buffer_nolock(fs_info, start); 2991 if (!eb) 2992 return NULL; 2993 /* 2994 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 2995 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 2996 * another task running free_extent_buffer() might have seen that flag 2997 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 2998 * writeback flags not set) and it's still in the tree (flag 2999 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3000 * decrementing the extent buffer's reference count twice. So here we 3001 * could race and increment the eb's reference count, clear its stale 3002 * flag, mark it as dirty and drop our reference before the other task 3003 * finishes executing free_extent_buffer, which would later result in 3004 * an attempt to free an extent buffer that is dirty. 3005 */ 3006 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3007 spin_lock(&eb->refs_lock); 3008 spin_unlock(&eb->refs_lock); 3009 } 3010 mark_extent_buffer_accessed(eb); 3011 return eb; 3012 } 3013 3014 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3015 u64 start) 3016 { 3017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3018 struct extent_buffer *eb, *exists = NULL; 3019 int ret; 3020 3021 eb = find_extent_buffer(fs_info, start); 3022 if (eb) 3023 return eb; 3024 eb = alloc_dummy_extent_buffer(fs_info, start); 3025 if (!eb) 3026 return ERR_PTR(-ENOMEM); 3027 eb->fs_info = fs_info; 3028 again: 3029 ret = radix_tree_preload(GFP_NOFS); 3030 if (ret) { 3031 exists = ERR_PTR(ret); 3032 goto free_eb; 3033 } 3034 spin_lock(&fs_info->buffer_lock); 3035 ret = radix_tree_insert(&fs_info->buffer_radix, 3036 start >> fs_info->sectorsize_bits, eb); 3037 spin_unlock(&fs_info->buffer_lock); 3038 radix_tree_preload_end(); 3039 if (ret == -EEXIST) { 3040 exists = find_extent_buffer(fs_info, start); 3041 if (exists) 3042 goto free_eb; 3043 else 3044 goto again; 3045 } 3046 check_buffer_tree_ref(eb); 3047 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3048 3049 return eb; 3050 free_eb: 3051 btrfs_release_extent_buffer(eb); 3052 return exists; 3053 #else 3054 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3055 return NULL; 3056 #endif 3057 } 3058 3059 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3060 struct folio *folio) 3061 { 3062 struct extent_buffer *exists; 3063 3064 lockdep_assert_held(&folio->mapping->i_private_lock); 3065 3066 /* 3067 * For subpage case, we completely rely on radix tree to ensure we 3068 * don't try to insert two ebs for the same bytenr. So here we always 3069 * return NULL and just continue. 3070 */ 3071 if (btrfs_meta_is_subpage(fs_info)) 3072 return NULL; 3073 3074 /* Page not yet attached to an extent buffer */ 3075 if (!folio_test_private(folio)) 3076 return NULL; 3077 3078 /* 3079 * We could have already allocated an eb for this folio and attached one 3080 * so lets see if we can get a ref on the existing eb, and if we can we 3081 * know it's good and we can just return that one, else we know we can 3082 * just overwrite folio private. 3083 */ 3084 exists = folio_get_private(folio); 3085 if (atomic_inc_not_zero(&exists->refs)) 3086 return exists; 3087 3088 WARN_ON(folio_test_dirty(folio)); 3089 folio_detach_private(folio); 3090 return NULL; 3091 } 3092 3093 /* 3094 * Validate alignment constraints of eb at logical address @start. 3095 */ 3096 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3097 { 3098 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3099 btrfs_err(fs_info, "bad tree block start %llu", start); 3100 return true; 3101 } 3102 3103 if (fs_info->nodesize < PAGE_SIZE && 3104 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3105 btrfs_err(fs_info, 3106 "tree block crosses page boundary, start %llu nodesize %u", 3107 start, fs_info->nodesize); 3108 return true; 3109 } 3110 if (fs_info->nodesize >= PAGE_SIZE && 3111 !PAGE_ALIGNED(start)) { 3112 btrfs_err(fs_info, 3113 "tree block is not page aligned, start %llu nodesize %u", 3114 start, fs_info->nodesize); 3115 return true; 3116 } 3117 if (!IS_ALIGNED(start, fs_info->nodesize) && 3118 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3119 btrfs_warn(fs_info, 3120 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3121 start, fs_info->nodesize); 3122 } 3123 return false; 3124 } 3125 3126 /* 3127 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3128 * Return >0 if there is already another extent buffer for the range, 3129 * and @found_eb_ret would be updated. 3130 * Return -EAGAIN if the filemap has an existing folio but with different size 3131 * than @eb. 3132 * The caller needs to free the existing folios and retry using the same order. 3133 */ 3134 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3135 struct btrfs_subpage *prealloc, 3136 struct extent_buffer **found_eb_ret) 3137 { 3138 3139 struct btrfs_fs_info *fs_info = eb->fs_info; 3140 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3141 const unsigned long index = eb->start >> PAGE_SHIFT; 3142 struct folio *existing_folio = NULL; 3143 int ret; 3144 3145 ASSERT(found_eb_ret); 3146 3147 /* Caller should ensure the folio exists. */ 3148 ASSERT(eb->folios[i]); 3149 3150 retry: 3151 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3152 GFP_NOFS | __GFP_NOFAIL); 3153 if (!ret) 3154 goto finish; 3155 3156 existing_folio = filemap_lock_folio(mapping, index + i); 3157 /* The page cache only exists for a very short time, just retry. */ 3158 if (IS_ERR(existing_folio)) { 3159 existing_folio = NULL; 3160 goto retry; 3161 } 3162 3163 /* For now, we should only have single-page folios for btree inode. */ 3164 ASSERT(folio_nr_pages(existing_folio) == 1); 3165 3166 if (folio_size(existing_folio) != eb->folio_size) { 3167 folio_unlock(existing_folio); 3168 folio_put(existing_folio); 3169 return -EAGAIN; 3170 } 3171 3172 finish: 3173 spin_lock(&mapping->i_private_lock); 3174 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3175 /* We're going to reuse the existing page, can drop our folio now. */ 3176 __free_page(folio_page(eb->folios[i], 0)); 3177 eb->folios[i] = existing_folio; 3178 } else if (existing_folio) { 3179 struct extent_buffer *existing_eb; 3180 3181 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3182 if (existing_eb) { 3183 /* The extent buffer still exists, we can use it directly. */ 3184 *found_eb_ret = existing_eb; 3185 spin_unlock(&mapping->i_private_lock); 3186 folio_unlock(existing_folio); 3187 folio_put(existing_folio); 3188 return 1; 3189 } 3190 /* The extent buffer no longer exists, we can reuse the folio. */ 3191 __free_page(folio_page(eb->folios[i], 0)); 3192 eb->folios[i] = existing_folio; 3193 } 3194 eb->folio_size = folio_size(eb->folios[i]); 3195 eb->folio_shift = folio_shift(eb->folios[i]); 3196 /* Should not fail, as we have preallocated the memory. */ 3197 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3198 ASSERT(!ret); 3199 /* 3200 * To inform we have an extra eb under allocation, so that 3201 * detach_extent_buffer_page() won't release the folio private when the 3202 * eb hasn't been inserted into radix tree yet. 3203 * 3204 * The ref will be decreased when the eb releases the page, in 3205 * detach_extent_buffer_page(). Thus needs no special handling in the 3206 * error path. 3207 */ 3208 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3209 spin_unlock(&mapping->i_private_lock); 3210 return 0; 3211 } 3212 3213 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3214 u64 start, u64 owner_root, int level) 3215 { 3216 int attached = 0; 3217 struct extent_buffer *eb; 3218 struct extent_buffer *existing_eb = NULL; 3219 struct btrfs_subpage *prealloc = NULL; 3220 u64 lockdep_owner = owner_root; 3221 bool page_contig = true; 3222 int uptodate = 1; 3223 int ret; 3224 3225 if (check_eb_alignment(fs_info, start)) 3226 return ERR_PTR(-EINVAL); 3227 3228 #if BITS_PER_LONG == 32 3229 if (start >= MAX_LFS_FILESIZE) { 3230 btrfs_err_rl(fs_info, 3231 "extent buffer %llu is beyond 32bit page cache limit", start); 3232 btrfs_err_32bit_limit(fs_info); 3233 return ERR_PTR(-EOVERFLOW); 3234 } 3235 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3236 btrfs_warn_32bit_limit(fs_info); 3237 #endif 3238 3239 eb = find_extent_buffer(fs_info, start); 3240 if (eb) 3241 return eb; 3242 3243 eb = __alloc_extent_buffer(fs_info, start); 3244 if (!eb) 3245 return ERR_PTR(-ENOMEM); 3246 3247 /* 3248 * The reloc trees are just snapshots, so we need them to appear to be 3249 * just like any other fs tree WRT lockdep. 3250 */ 3251 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3252 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3253 3254 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3255 3256 /* 3257 * Preallocate folio private for subpage case, so that we won't 3258 * allocate memory with i_private_lock nor page lock hold. 3259 * 3260 * The memory will be freed by attach_extent_buffer_page() or freed 3261 * manually if we exit earlier. 3262 */ 3263 if (btrfs_meta_is_subpage(fs_info)) { 3264 prealloc = btrfs_alloc_subpage(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3265 if (IS_ERR(prealloc)) { 3266 ret = PTR_ERR(prealloc); 3267 goto out; 3268 } 3269 } 3270 3271 reallocate: 3272 /* Allocate all pages first. */ 3273 ret = alloc_eb_folio_array(eb, true); 3274 if (ret < 0) { 3275 btrfs_free_subpage(prealloc); 3276 goto out; 3277 } 3278 3279 /* Attach all pages to the filemap. */ 3280 for (int i = 0; i < num_extent_folios(eb); i++) { 3281 struct folio *folio; 3282 3283 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3284 if (ret > 0) { 3285 ASSERT(existing_eb); 3286 goto out; 3287 } 3288 3289 /* 3290 * TODO: Special handling for a corner case where the order of 3291 * folios mismatch between the new eb and filemap. 3292 * 3293 * This happens when: 3294 * 3295 * - the new eb is using higher order folio 3296 * 3297 * - the filemap is still using 0-order folios for the range 3298 * This can happen at the previous eb allocation, and we don't 3299 * have higher order folio for the call. 3300 * 3301 * - the existing eb has already been freed 3302 * 3303 * In this case, we have to free the existing folios first, and 3304 * re-allocate using the same order. 3305 * Thankfully this is not going to happen yet, as we're still 3306 * using 0-order folios. 3307 */ 3308 if (unlikely(ret == -EAGAIN)) { 3309 ASSERT(0); 3310 goto reallocate; 3311 } 3312 attached++; 3313 3314 /* 3315 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3316 * reliable, as we may choose to reuse the existing page cache 3317 * and free the allocated page. 3318 */ 3319 folio = eb->folios[i]; 3320 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3321 3322 /* 3323 * Check if the current page is physically contiguous with previous eb 3324 * page. 3325 * At this stage, either we allocated a large folio, thus @i 3326 * would only be 0, or we fall back to per-page allocation. 3327 */ 3328 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3329 page_contig = false; 3330 3331 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3332 uptodate = 0; 3333 3334 /* 3335 * We can't unlock the pages just yet since the extent buffer 3336 * hasn't been properly inserted in the radix tree, this 3337 * opens a race with btree_release_folio which can free a page 3338 * while we are still filling in all pages for the buffer and 3339 * we could crash. 3340 */ 3341 } 3342 if (uptodate) 3343 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3344 /* All pages are physically contiguous, can skip cross page handling. */ 3345 if (page_contig) 3346 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3347 again: 3348 ret = radix_tree_preload(GFP_NOFS); 3349 if (ret) 3350 goto out; 3351 3352 spin_lock(&fs_info->buffer_lock); 3353 ret = radix_tree_insert(&fs_info->buffer_radix, 3354 start >> fs_info->sectorsize_bits, eb); 3355 spin_unlock(&fs_info->buffer_lock); 3356 radix_tree_preload_end(); 3357 if (ret == -EEXIST) { 3358 ret = 0; 3359 existing_eb = find_extent_buffer(fs_info, start); 3360 if (existing_eb) 3361 goto out; 3362 else 3363 goto again; 3364 } 3365 /* add one reference for the tree */ 3366 check_buffer_tree_ref(eb); 3367 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3368 3369 /* 3370 * Now it's safe to unlock the pages because any calls to 3371 * btree_release_folio will correctly detect that a page belongs to a 3372 * live buffer and won't free them prematurely. 3373 */ 3374 for (int i = 0; i < num_extent_folios(eb); i++) 3375 folio_unlock(eb->folios[i]); 3376 return eb; 3377 3378 out: 3379 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3380 3381 /* 3382 * Any attached folios need to be detached before we unlock them. This 3383 * is because when we're inserting our new folios into the mapping, and 3384 * then attaching our eb to that folio. If we fail to insert our folio 3385 * we'll lookup the folio for that index, and grab that EB. We do not 3386 * want that to grab this eb, as we're getting ready to free it. So we 3387 * have to detach it first and then unlock it. 3388 * 3389 * We have to drop our reference and NULL it out here because in the 3390 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3391 * Below when we call btrfs_release_extent_buffer() we will call 3392 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3393 * case. If we left eb->folios[i] populated in the subpage case we'd 3394 * double put our reference and be super sad. 3395 */ 3396 for (int i = 0; i < attached; i++) { 3397 ASSERT(eb->folios[i]); 3398 detach_extent_buffer_folio(eb, eb->folios[i]); 3399 folio_unlock(eb->folios[i]); 3400 folio_put(eb->folios[i]); 3401 eb->folios[i] = NULL; 3402 } 3403 /* 3404 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3405 * so it can be cleaned up without utilizing folio->mapping. 3406 */ 3407 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3408 3409 btrfs_release_extent_buffer(eb); 3410 if (ret < 0) 3411 return ERR_PTR(ret); 3412 ASSERT(existing_eb); 3413 return existing_eb; 3414 } 3415 3416 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3417 { 3418 struct extent_buffer *eb = 3419 container_of(head, struct extent_buffer, rcu_head); 3420 3421 kmem_cache_free(extent_buffer_cache, eb); 3422 } 3423 3424 static int release_extent_buffer(struct extent_buffer *eb) 3425 __releases(&eb->refs_lock) 3426 { 3427 lockdep_assert_held(&eb->refs_lock); 3428 3429 WARN_ON(atomic_read(&eb->refs) == 0); 3430 if (atomic_dec_and_test(&eb->refs)) { 3431 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3432 struct btrfs_fs_info *fs_info = eb->fs_info; 3433 3434 spin_unlock(&eb->refs_lock); 3435 3436 spin_lock(&fs_info->buffer_lock); 3437 radix_tree_delete(&fs_info->buffer_radix, 3438 eb->start >> fs_info->sectorsize_bits); 3439 spin_unlock(&fs_info->buffer_lock); 3440 } else { 3441 spin_unlock(&eb->refs_lock); 3442 } 3443 3444 btrfs_leak_debug_del_eb(eb); 3445 /* Should be safe to release folios at this point. */ 3446 btrfs_release_extent_buffer_folios(eb); 3447 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3448 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3449 kmem_cache_free(extent_buffer_cache, eb); 3450 return 1; 3451 } 3452 #endif 3453 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3454 return 1; 3455 } 3456 spin_unlock(&eb->refs_lock); 3457 3458 return 0; 3459 } 3460 3461 void free_extent_buffer(struct extent_buffer *eb) 3462 { 3463 int refs; 3464 if (!eb) 3465 return; 3466 3467 refs = atomic_read(&eb->refs); 3468 while (1) { 3469 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3470 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3471 refs == 1)) 3472 break; 3473 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3474 return; 3475 } 3476 3477 spin_lock(&eb->refs_lock); 3478 if (atomic_read(&eb->refs) == 2 && 3479 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3480 !extent_buffer_under_io(eb) && 3481 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3482 atomic_dec(&eb->refs); 3483 3484 /* 3485 * I know this is terrible, but it's temporary until we stop tracking 3486 * the uptodate bits and such for the extent buffers. 3487 */ 3488 release_extent_buffer(eb); 3489 } 3490 3491 void free_extent_buffer_stale(struct extent_buffer *eb) 3492 { 3493 if (!eb) 3494 return; 3495 3496 spin_lock(&eb->refs_lock); 3497 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3498 3499 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3500 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3501 atomic_dec(&eb->refs); 3502 release_extent_buffer(eb); 3503 } 3504 3505 static void btree_clear_folio_dirty_tag(struct folio *folio) 3506 { 3507 ASSERT(!folio_test_dirty(folio)); 3508 ASSERT(folio_test_locked(folio)); 3509 xa_lock_irq(&folio->mapping->i_pages); 3510 if (!folio_test_dirty(folio)) 3511 __xa_clear_mark(&folio->mapping->i_pages, 3512 folio_index(folio), PAGECACHE_TAG_DIRTY); 3513 xa_unlock_irq(&folio->mapping->i_pages); 3514 } 3515 3516 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3517 struct extent_buffer *eb) 3518 { 3519 struct btrfs_fs_info *fs_info = eb->fs_info; 3520 3521 btrfs_assert_tree_write_locked(eb); 3522 3523 if (trans && btrfs_header_generation(eb) != trans->transid) 3524 return; 3525 3526 /* 3527 * Instead of clearing the dirty flag off of the buffer, mark it as 3528 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3529 * write-ordering in zoned mode, without the need to later re-dirty 3530 * the extent_buffer. 3531 * 3532 * The actual zeroout of the buffer will happen later in 3533 * btree_csum_one_bio. 3534 */ 3535 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3536 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3537 return; 3538 } 3539 3540 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3541 return; 3542 3543 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3544 fs_info->dirty_metadata_batch); 3545 3546 for (int i = 0; i < num_extent_folios(eb); i++) { 3547 struct folio *folio = eb->folios[i]; 3548 bool last; 3549 3550 if (!folio_test_dirty(folio)) 3551 continue; 3552 folio_lock(folio); 3553 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3554 if (last) 3555 btree_clear_folio_dirty_tag(folio); 3556 folio_unlock(folio); 3557 } 3558 WARN_ON(atomic_read(&eb->refs) == 0); 3559 } 3560 3561 void set_extent_buffer_dirty(struct extent_buffer *eb) 3562 { 3563 bool was_dirty; 3564 3565 check_buffer_tree_ref(eb); 3566 3567 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3568 3569 WARN_ON(atomic_read(&eb->refs) == 0); 3570 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3571 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3572 3573 if (!was_dirty) { 3574 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3575 3576 /* 3577 * For subpage case, we can have other extent buffers in the 3578 * same page, and in clear_extent_buffer_dirty() we 3579 * have to clear page dirty without subpage lock held. 3580 * This can cause race where our page gets dirty cleared after 3581 * we just set it. 3582 * 3583 * Thankfully, clear_extent_buffer_dirty() has locked 3584 * its page for other reasons, we can use page lock to prevent 3585 * the above race. 3586 */ 3587 if (subpage) 3588 folio_lock(eb->folios[0]); 3589 for (int i = 0; i < num_extent_folios(eb); i++) 3590 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3591 if (subpage) 3592 folio_unlock(eb->folios[0]); 3593 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3594 eb->len, 3595 eb->fs_info->dirty_metadata_batch); 3596 } 3597 #ifdef CONFIG_BTRFS_DEBUG 3598 for (int i = 0; i < num_extent_folios(eb); i++) 3599 ASSERT(folio_test_dirty(eb->folios[i])); 3600 #endif 3601 } 3602 3603 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3604 { 3605 3606 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3607 for (int i = 0; i < num_extent_folios(eb); i++) { 3608 struct folio *folio = eb->folios[i]; 3609 3610 if (!folio) 3611 continue; 3612 3613 btrfs_meta_folio_clear_uptodate(folio, eb); 3614 } 3615 } 3616 3617 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3618 { 3619 3620 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3621 for (int i = 0; i < num_extent_folios(eb); i++) 3622 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3623 } 3624 3625 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3626 { 3627 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3628 smp_mb__after_atomic(); 3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3630 } 3631 3632 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3633 { 3634 struct extent_buffer *eb = bbio->private; 3635 bool uptodate = !bbio->bio.bi_status; 3636 3637 /* 3638 * If the extent buffer is marked UPTODATE before the read operation 3639 * completes, other calls to read_extent_buffer_pages() will return 3640 * early without waiting for the read to finish, causing data races. 3641 */ 3642 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3643 3644 eb->read_mirror = bbio->mirror_num; 3645 3646 if (uptodate && 3647 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3648 uptodate = false; 3649 3650 if (uptodate) { 3651 set_extent_buffer_uptodate(eb); 3652 } else { 3653 clear_extent_buffer_uptodate(eb); 3654 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3655 } 3656 3657 clear_extent_buffer_reading(eb); 3658 free_extent_buffer(eb); 3659 3660 bio_put(&bbio->bio); 3661 } 3662 3663 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3664 const struct btrfs_tree_parent_check *check) 3665 { 3666 struct btrfs_bio *bbio; 3667 3668 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3669 return 0; 3670 3671 /* 3672 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3673 * operation, which could potentially still be in flight. In this case 3674 * we simply want to return an error. 3675 */ 3676 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3677 return -EIO; 3678 3679 /* Someone else is already reading the buffer, just wait for it. */ 3680 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3681 return 0; 3682 3683 /* 3684 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3685 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3686 * started and finished reading the same eb. In this case, UPTODATE 3687 * will now be set, and we shouldn't read it in again. 3688 */ 3689 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3690 clear_extent_buffer_reading(eb); 3691 return 0; 3692 } 3693 3694 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3695 eb->read_mirror = 0; 3696 check_buffer_tree_ref(eb); 3697 atomic_inc(&eb->refs); 3698 3699 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3700 REQ_OP_READ | REQ_META, eb->fs_info, 3701 end_bbio_meta_read, eb); 3702 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3703 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3704 bbio->file_offset = eb->start; 3705 memcpy(&bbio->parent_check, check, sizeof(*check)); 3706 for (int i = 0; i < num_extent_folios(eb); i++) { 3707 struct folio *folio = eb->folios[i]; 3708 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3709 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 3710 eb->start + eb->len) - range_start; 3711 3712 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3713 offset_in_folio(folio, range_start)); 3714 } 3715 btrfs_submit_bbio(bbio, mirror_num); 3716 return 0; 3717 } 3718 3719 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3720 const struct btrfs_tree_parent_check *check) 3721 { 3722 int ret; 3723 3724 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3725 if (ret < 0) 3726 return ret; 3727 3728 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3729 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3730 return -EIO; 3731 return 0; 3732 } 3733 3734 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3735 unsigned long len) 3736 { 3737 btrfs_warn(eb->fs_info, 3738 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3739 eb->start, eb->len, start, len); 3740 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3741 3742 return true; 3743 } 3744 3745 /* 3746 * Check if the [start, start + len) range is valid before reading/writing 3747 * the eb. 3748 * NOTE: @start and @len are offset inside the eb, not logical address. 3749 * 3750 * Caller should not touch the dst/src memory if this function returns error. 3751 */ 3752 static inline int check_eb_range(const struct extent_buffer *eb, 3753 unsigned long start, unsigned long len) 3754 { 3755 unsigned long offset; 3756 3757 /* start, start + len should not go beyond eb->len nor overflow */ 3758 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3759 return report_eb_range(eb, start, len); 3760 3761 return false; 3762 } 3763 3764 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3765 unsigned long start, unsigned long len) 3766 { 3767 const int unit_size = eb->folio_size; 3768 size_t cur; 3769 size_t offset; 3770 char *dst = (char *)dstv; 3771 unsigned long i = get_eb_folio_index(eb, start); 3772 3773 if (check_eb_range(eb, start, len)) { 3774 /* 3775 * Invalid range hit, reset the memory, so callers won't get 3776 * some random garbage for their uninitialized memory. 3777 */ 3778 memset(dstv, 0, len); 3779 return; 3780 } 3781 3782 if (eb->addr) { 3783 memcpy(dstv, eb->addr + start, len); 3784 return; 3785 } 3786 3787 offset = get_eb_offset_in_folio(eb, start); 3788 3789 while (len > 0) { 3790 char *kaddr; 3791 3792 cur = min(len, unit_size - offset); 3793 kaddr = folio_address(eb->folios[i]); 3794 memcpy(dst, kaddr + offset, cur); 3795 3796 dst += cur; 3797 len -= cur; 3798 offset = 0; 3799 i++; 3800 } 3801 } 3802 3803 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3804 void __user *dstv, 3805 unsigned long start, unsigned long len) 3806 { 3807 const int unit_size = eb->folio_size; 3808 size_t cur; 3809 size_t offset; 3810 char __user *dst = (char __user *)dstv; 3811 unsigned long i = get_eb_folio_index(eb, start); 3812 int ret = 0; 3813 3814 WARN_ON(start > eb->len); 3815 WARN_ON(start + len > eb->start + eb->len); 3816 3817 if (eb->addr) { 3818 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3819 ret = -EFAULT; 3820 return ret; 3821 } 3822 3823 offset = get_eb_offset_in_folio(eb, start); 3824 3825 while (len > 0) { 3826 char *kaddr; 3827 3828 cur = min(len, unit_size - offset); 3829 kaddr = folio_address(eb->folios[i]); 3830 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3831 ret = -EFAULT; 3832 break; 3833 } 3834 3835 dst += cur; 3836 len -= cur; 3837 offset = 0; 3838 i++; 3839 } 3840 3841 return ret; 3842 } 3843 3844 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3845 unsigned long start, unsigned long len) 3846 { 3847 const int unit_size = eb->folio_size; 3848 size_t cur; 3849 size_t offset; 3850 char *kaddr; 3851 char *ptr = (char *)ptrv; 3852 unsigned long i = get_eb_folio_index(eb, start); 3853 int ret = 0; 3854 3855 if (check_eb_range(eb, start, len)) 3856 return -EINVAL; 3857 3858 if (eb->addr) 3859 return memcmp(ptrv, eb->addr + start, len); 3860 3861 offset = get_eb_offset_in_folio(eb, start); 3862 3863 while (len > 0) { 3864 cur = min(len, unit_size - offset); 3865 kaddr = folio_address(eb->folios[i]); 3866 ret = memcmp(ptr, kaddr + offset, cur); 3867 if (ret) 3868 break; 3869 3870 ptr += cur; 3871 len -= cur; 3872 offset = 0; 3873 i++; 3874 } 3875 return ret; 3876 } 3877 3878 /* 3879 * Check that the extent buffer is uptodate. 3880 * 3881 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3882 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3883 */ 3884 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3885 { 3886 struct btrfs_fs_info *fs_info = eb->fs_info; 3887 struct folio *folio = eb->folios[i]; 3888 3889 ASSERT(folio); 3890 3891 /* 3892 * If we are using the commit root we could potentially clear a page 3893 * Uptodate while we're using the extent buffer that we've previously 3894 * looked up. We don't want to complain in this case, as the page was 3895 * valid before, we just didn't write it out. Instead we want to catch 3896 * the case where we didn't actually read the block properly, which 3897 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3898 */ 3899 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3900 return; 3901 3902 if (btrfs_meta_is_subpage(fs_info)) { 3903 folio = eb->folios[0]; 3904 ASSERT(i == 0); 3905 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3906 eb->start, eb->len))) 3907 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3908 } else { 3909 WARN_ON(!folio_test_uptodate(folio)); 3910 } 3911 } 3912 3913 static void __write_extent_buffer(const struct extent_buffer *eb, 3914 const void *srcv, unsigned long start, 3915 unsigned long len, bool use_memmove) 3916 { 3917 const int unit_size = eb->folio_size; 3918 size_t cur; 3919 size_t offset; 3920 char *kaddr; 3921 const char *src = (const char *)srcv; 3922 unsigned long i = get_eb_folio_index(eb, start); 3923 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3924 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3925 3926 if (check_eb_range(eb, start, len)) 3927 return; 3928 3929 if (eb->addr) { 3930 if (use_memmove) 3931 memmove(eb->addr + start, srcv, len); 3932 else 3933 memcpy(eb->addr + start, srcv, len); 3934 return; 3935 } 3936 3937 offset = get_eb_offset_in_folio(eb, start); 3938 3939 while (len > 0) { 3940 if (check_uptodate) 3941 assert_eb_folio_uptodate(eb, i); 3942 3943 cur = min(len, unit_size - offset); 3944 kaddr = folio_address(eb->folios[i]); 3945 if (use_memmove) 3946 memmove(kaddr + offset, src, cur); 3947 else 3948 memcpy(kaddr + offset, src, cur); 3949 3950 src += cur; 3951 len -= cur; 3952 offset = 0; 3953 i++; 3954 } 3955 } 3956 3957 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3958 unsigned long start, unsigned long len) 3959 { 3960 return __write_extent_buffer(eb, srcv, start, len, false); 3961 } 3962 3963 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3964 unsigned long start, unsigned long len) 3965 { 3966 const int unit_size = eb->folio_size; 3967 unsigned long cur = start; 3968 3969 if (eb->addr) { 3970 memset(eb->addr + start, c, len); 3971 return; 3972 } 3973 3974 while (cur < start + len) { 3975 unsigned long index = get_eb_folio_index(eb, cur); 3976 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3977 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3978 3979 assert_eb_folio_uptodate(eb, index); 3980 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 3981 3982 cur += cur_len; 3983 } 3984 } 3985 3986 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 3987 unsigned long len) 3988 { 3989 if (check_eb_range(eb, start, len)) 3990 return; 3991 return memset_extent_buffer(eb, 0, start, len); 3992 } 3993 3994 void copy_extent_buffer_full(const struct extent_buffer *dst, 3995 const struct extent_buffer *src) 3996 { 3997 const int unit_size = src->folio_size; 3998 unsigned long cur = 0; 3999 4000 ASSERT(dst->len == src->len); 4001 4002 while (cur < src->len) { 4003 unsigned long index = get_eb_folio_index(src, cur); 4004 unsigned long offset = get_eb_offset_in_folio(src, cur); 4005 unsigned long cur_len = min(src->len, unit_size - offset); 4006 void *addr = folio_address(src->folios[index]) + offset; 4007 4008 write_extent_buffer(dst, addr, cur, cur_len); 4009 4010 cur += cur_len; 4011 } 4012 } 4013 4014 void copy_extent_buffer(const struct extent_buffer *dst, 4015 const struct extent_buffer *src, 4016 unsigned long dst_offset, unsigned long src_offset, 4017 unsigned long len) 4018 { 4019 const int unit_size = dst->folio_size; 4020 u64 dst_len = dst->len; 4021 size_t cur; 4022 size_t offset; 4023 char *kaddr; 4024 unsigned long i = get_eb_folio_index(dst, dst_offset); 4025 4026 if (check_eb_range(dst, dst_offset, len) || 4027 check_eb_range(src, src_offset, len)) 4028 return; 4029 4030 WARN_ON(src->len != dst_len); 4031 4032 offset = get_eb_offset_in_folio(dst, dst_offset); 4033 4034 while (len > 0) { 4035 assert_eb_folio_uptodate(dst, i); 4036 4037 cur = min(len, (unsigned long)(unit_size - offset)); 4038 4039 kaddr = folio_address(dst->folios[i]); 4040 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4041 4042 src_offset += cur; 4043 len -= cur; 4044 offset = 0; 4045 i++; 4046 } 4047 } 4048 4049 /* 4050 * Calculate the folio and offset of the byte containing the given bit number. 4051 * 4052 * @eb: the extent buffer 4053 * @start: offset of the bitmap item in the extent buffer 4054 * @nr: bit number 4055 * @folio_index: return index of the folio in the extent buffer that contains 4056 * the given bit number 4057 * @folio_offset: return offset into the folio given by folio_index 4058 * 4059 * This helper hides the ugliness of finding the byte in an extent buffer which 4060 * contains a given bit. 4061 */ 4062 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4063 unsigned long start, unsigned long nr, 4064 unsigned long *folio_index, 4065 size_t *folio_offset) 4066 { 4067 size_t byte_offset = BIT_BYTE(nr); 4068 size_t offset; 4069 4070 /* 4071 * The byte we want is the offset of the extent buffer + the offset of 4072 * the bitmap item in the extent buffer + the offset of the byte in the 4073 * bitmap item. 4074 */ 4075 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4076 4077 *folio_index = offset >> eb->folio_shift; 4078 *folio_offset = offset_in_eb_folio(eb, offset); 4079 } 4080 4081 /* 4082 * Determine whether a bit in a bitmap item is set. 4083 * 4084 * @eb: the extent buffer 4085 * @start: offset of the bitmap item in the extent buffer 4086 * @nr: bit number to test 4087 */ 4088 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4089 unsigned long nr) 4090 { 4091 unsigned long i; 4092 size_t offset; 4093 u8 *kaddr; 4094 4095 eb_bitmap_offset(eb, start, nr, &i, &offset); 4096 assert_eb_folio_uptodate(eb, i); 4097 kaddr = folio_address(eb->folios[i]); 4098 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4099 } 4100 4101 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4102 { 4103 unsigned long index = get_eb_folio_index(eb, bytenr); 4104 4105 if (check_eb_range(eb, bytenr, 1)) 4106 return NULL; 4107 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4108 } 4109 4110 /* 4111 * Set an area of a bitmap to 1. 4112 * 4113 * @eb: the extent buffer 4114 * @start: offset of the bitmap item in the extent buffer 4115 * @pos: bit number of the first bit 4116 * @len: number of bits to set 4117 */ 4118 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4119 unsigned long pos, unsigned long len) 4120 { 4121 unsigned int first_byte = start + BIT_BYTE(pos); 4122 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4123 const bool same_byte = (first_byte == last_byte); 4124 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4125 u8 *kaddr; 4126 4127 if (same_byte) 4128 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4129 4130 /* Handle the first byte. */ 4131 kaddr = extent_buffer_get_byte(eb, first_byte); 4132 *kaddr |= mask; 4133 if (same_byte) 4134 return; 4135 4136 /* Handle the byte aligned part. */ 4137 ASSERT(first_byte + 1 <= last_byte); 4138 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4139 4140 /* Handle the last byte. */ 4141 kaddr = extent_buffer_get_byte(eb, last_byte); 4142 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4143 } 4144 4145 4146 /* 4147 * Clear an area of a bitmap. 4148 * 4149 * @eb: the extent buffer 4150 * @start: offset of the bitmap item in the extent buffer 4151 * @pos: bit number of the first bit 4152 * @len: number of bits to clear 4153 */ 4154 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4155 unsigned long start, unsigned long pos, 4156 unsigned long len) 4157 { 4158 unsigned int first_byte = start + BIT_BYTE(pos); 4159 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4160 const bool same_byte = (first_byte == last_byte); 4161 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4162 u8 *kaddr; 4163 4164 if (same_byte) 4165 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4166 4167 /* Handle the first byte. */ 4168 kaddr = extent_buffer_get_byte(eb, first_byte); 4169 *kaddr &= ~mask; 4170 if (same_byte) 4171 return; 4172 4173 /* Handle the byte aligned part. */ 4174 ASSERT(first_byte + 1 <= last_byte); 4175 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4176 4177 /* Handle the last byte. */ 4178 kaddr = extent_buffer_get_byte(eb, last_byte); 4179 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4180 } 4181 4182 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4183 { 4184 unsigned long distance = (src > dst) ? src - dst : dst - src; 4185 return distance < len; 4186 } 4187 4188 void memcpy_extent_buffer(const struct extent_buffer *dst, 4189 unsigned long dst_offset, unsigned long src_offset, 4190 unsigned long len) 4191 { 4192 const int unit_size = dst->folio_size; 4193 unsigned long cur_off = 0; 4194 4195 if (check_eb_range(dst, dst_offset, len) || 4196 check_eb_range(dst, src_offset, len)) 4197 return; 4198 4199 if (dst->addr) { 4200 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4201 4202 if (use_memmove) 4203 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4204 else 4205 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4206 return; 4207 } 4208 4209 while (cur_off < len) { 4210 unsigned long cur_src = cur_off + src_offset; 4211 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4212 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4213 unsigned long cur_len = min(src_offset + len - cur_src, 4214 unit_size - folio_off); 4215 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4216 const bool use_memmove = areas_overlap(src_offset + cur_off, 4217 dst_offset + cur_off, cur_len); 4218 4219 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4220 use_memmove); 4221 cur_off += cur_len; 4222 } 4223 } 4224 4225 void memmove_extent_buffer(const struct extent_buffer *dst, 4226 unsigned long dst_offset, unsigned long src_offset, 4227 unsigned long len) 4228 { 4229 unsigned long dst_end = dst_offset + len - 1; 4230 unsigned long src_end = src_offset + len - 1; 4231 4232 if (check_eb_range(dst, dst_offset, len) || 4233 check_eb_range(dst, src_offset, len)) 4234 return; 4235 4236 if (dst_offset < src_offset) { 4237 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4238 return; 4239 } 4240 4241 if (dst->addr) { 4242 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4243 return; 4244 } 4245 4246 while (len > 0) { 4247 unsigned long src_i; 4248 size_t cur; 4249 size_t dst_off_in_folio; 4250 size_t src_off_in_folio; 4251 void *src_addr; 4252 bool use_memmove; 4253 4254 src_i = get_eb_folio_index(dst, src_end); 4255 4256 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4257 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4258 4259 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4260 cur = min(cur, dst_off_in_folio + 1); 4261 4262 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4263 cur + 1; 4264 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4265 cur); 4266 4267 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4268 use_memmove); 4269 4270 dst_end -= cur; 4271 src_end -= cur; 4272 len -= cur; 4273 } 4274 } 4275 4276 #define GANG_LOOKUP_SIZE 16 4277 static struct extent_buffer *get_next_extent_buffer( 4278 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr) 4279 { 4280 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4281 struct extent_buffer *found = NULL; 4282 u64 folio_start = folio_pos(folio); 4283 u64 cur = folio_start; 4284 4285 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE)); 4286 lockdep_assert_held(&fs_info->buffer_lock); 4287 4288 while (cur < folio_start + PAGE_SIZE) { 4289 int ret; 4290 int i; 4291 4292 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4293 (void **)gang, cur >> fs_info->sectorsize_bits, 4294 min_t(unsigned int, GANG_LOOKUP_SIZE, 4295 PAGE_SIZE / fs_info->nodesize)); 4296 if (ret == 0) 4297 goto out; 4298 for (i = 0; i < ret; i++) { 4299 /* Already beyond page end */ 4300 if (gang[i]->start >= folio_start + PAGE_SIZE) 4301 goto out; 4302 /* Found one */ 4303 if (gang[i]->start >= bytenr) { 4304 found = gang[i]; 4305 goto out; 4306 } 4307 } 4308 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4309 } 4310 out: 4311 return found; 4312 } 4313 4314 static int try_release_subpage_extent_buffer(struct folio *folio) 4315 { 4316 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4317 u64 cur = folio_pos(folio); 4318 const u64 end = cur + PAGE_SIZE; 4319 int ret; 4320 4321 while (cur < end) { 4322 struct extent_buffer *eb = NULL; 4323 4324 /* 4325 * Unlike try_release_extent_buffer() which uses folio private 4326 * to grab buffer, for subpage case we rely on radix tree, thus 4327 * we need to ensure radix tree consistency. 4328 * 4329 * We also want an atomic snapshot of the radix tree, thus go 4330 * with spinlock rather than RCU. 4331 */ 4332 spin_lock(&fs_info->buffer_lock); 4333 eb = get_next_extent_buffer(fs_info, folio, cur); 4334 if (!eb) { 4335 /* No more eb in the page range after or at cur */ 4336 spin_unlock(&fs_info->buffer_lock); 4337 break; 4338 } 4339 cur = eb->start + eb->len; 4340 4341 /* 4342 * The same as try_release_extent_buffer(), to ensure the eb 4343 * won't disappear out from under us. 4344 */ 4345 spin_lock(&eb->refs_lock); 4346 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4347 spin_unlock(&eb->refs_lock); 4348 spin_unlock(&fs_info->buffer_lock); 4349 break; 4350 } 4351 spin_unlock(&fs_info->buffer_lock); 4352 4353 /* 4354 * If tree ref isn't set then we know the ref on this eb is a 4355 * real ref, so just return, this eb will likely be freed soon 4356 * anyway. 4357 */ 4358 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4359 spin_unlock(&eb->refs_lock); 4360 break; 4361 } 4362 4363 /* 4364 * Here we don't care about the return value, we will always 4365 * check the folio private at the end. And 4366 * release_extent_buffer() will release the refs_lock. 4367 */ 4368 release_extent_buffer(eb); 4369 } 4370 /* 4371 * Finally to check if we have cleared folio private, as if we have 4372 * released all ebs in the page, the folio private should be cleared now. 4373 */ 4374 spin_lock(&folio->mapping->i_private_lock); 4375 if (!folio_test_private(folio)) 4376 ret = 1; 4377 else 4378 ret = 0; 4379 spin_unlock(&folio->mapping->i_private_lock); 4380 return ret; 4381 4382 } 4383 4384 int try_release_extent_buffer(struct folio *folio) 4385 { 4386 struct extent_buffer *eb; 4387 4388 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4389 return try_release_subpage_extent_buffer(folio); 4390 4391 /* 4392 * We need to make sure nobody is changing folio private, as we rely on 4393 * folio private as the pointer to extent buffer. 4394 */ 4395 spin_lock(&folio->mapping->i_private_lock); 4396 if (!folio_test_private(folio)) { 4397 spin_unlock(&folio->mapping->i_private_lock); 4398 return 1; 4399 } 4400 4401 eb = folio_get_private(folio); 4402 BUG_ON(!eb); 4403 4404 /* 4405 * This is a little awful but should be ok, we need to make sure that 4406 * the eb doesn't disappear out from under us while we're looking at 4407 * this page. 4408 */ 4409 spin_lock(&eb->refs_lock); 4410 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4411 spin_unlock(&eb->refs_lock); 4412 spin_unlock(&folio->mapping->i_private_lock); 4413 return 0; 4414 } 4415 spin_unlock(&folio->mapping->i_private_lock); 4416 4417 /* 4418 * If tree ref isn't set then we know the ref on this eb is a real ref, 4419 * so just return, this page will likely be freed soon anyway. 4420 */ 4421 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4422 spin_unlock(&eb->refs_lock); 4423 return 0; 4424 } 4425 4426 return release_extent_buffer(eb); 4427 } 4428 4429 /* 4430 * Attempt to readahead a child block. 4431 * 4432 * @fs_info: the fs_info 4433 * @bytenr: bytenr to read 4434 * @owner_root: objectid of the root that owns this eb 4435 * @gen: generation for the uptodate check, can be 0 4436 * @level: level for the eb 4437 * 4438 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4439 * normal uptodate check of the eb, without checking the generation. If we have 4440 * to read the block we will not block on anything. 4441 */ 4442 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4443 u64 bytenr, u64 owner_root, u64 gen, int level) 4444 { 4445 struct btrfs_tree_parent_check check = { 4446 .level = level, 4447 .transid = gen 4448 }; 4449 struct extent_buffer *eb; 4450 int ret; 4451 4452 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4453 if (IS_ERR(eb)) 4454 return; 4455 4456 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4457 free_extent_buffer(eb); 4458 return; 4459 } 4460 4461 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4462 if (ret < 0) 4463 free_extent_buffer_stale(eb); 4464 else 4465 free_extent_buffer(eb); 4466 } 4467 4468 /* 4469 * Readahead a node's child block. 4470 * 4471 * @node: parent node we're reading from 4472 * @slot: slot in the parent node for the child we want to read 4473 * 4474 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4475 * the slot in the node provided. 4476 */ 4477 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4478 { 4479 btrfs_readahead_tree_block(node->fs_info, 4480 btrfs_node_blockptr(node, slot), 4481 btrfs_header_owner(node), 4482 btrfs_node_ptr_generation(node, slot), 4483 btrfs_header_level(node) - 1); 4484 } 4485