1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 37 /* 38 * control flags for do_chunk_alloc's force field 39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 40 * if we really need one. 41 * 42 * CHUNK_ALLOC_LIMITED means to only try and allocate one 43 * if we have very few chunks already allocated. This is 44 * used as part of the clustering code to help make sure 45 * we have a good pool of storage to cluster in, without 46 * filling the FS with empty chunks 47 * 48 * CHUNK_ALLOC_FORCE means it must try to allocate one 49 * 50 */ 51 enum { 52 CHUNK_ALLOC_NO_FORCE = 0, 53 CHUNK_ALLOC_LIMITED = 1, 54 CHUNK_ALLOC_FORCE = 2, 55 }; 56 57 /* 58 * Control how reservations are dealt with. 59 * 60 * RESERVE_FREE - freeing a reservation. 61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 62 * ENOSPC accounting 63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 64 * bytes_may_use as the ENOSPC accounting is done elsewhere 65 */ 66 enum { 67 RESERVE_FREE = 0, 68 RESERVE_ALLOC = 1, 69 RESERVE_ALLOC_NO_ACCOUNT = 2, 70 }; 71 72 static int update_block_group(struct btrfs_trans_handle *trans, 73 struct btrfs_root *root, 74 u64 bytenr, u64 num_bytes, int alloc); 75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, u64 parent, 78 u64 root_objectid, u64 owner_objectid, 79 u64 owner_offset, int refs_to_drop, 80 struct btrfs_delayed_extent_op *extra_op); 81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 82 struct extent_buffer *leaf, 83 struct btrfs_extent_item *ei); 84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 85 struct btrfs_root *root, 86 u64 parent, u64 root_objectid, 87 u64 flags, u64 owner, u64 offset, 88 struct btrfs_key *ins, int ref_mod); 89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, struct btrfs_disk_key *key, 93 int level, struct btrfs_key *ins); 94 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 95 struct btrfs_root *extent_root, u64 alloc_bytes, 96 u64 flags, int force); 97 static int find_next_key(struct btrfs_path *path, int level, 98 struct btrfs_key *key); 99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 100 int dump_block_groups); 101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 102 u64 num_bytes, int reserve); 103 104 static noinline int 105 block_group_cache_done(struct btrfs_block_group_cache *cache) 106 { 107 smp_mb(); 108 return cache->cached == BTRFS_CACHE_FINISHED; 109 } 110 111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 112 { 113 return (cache->flags & bits) == bits; 114 } 115 116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 117 { 118 atomic_inc(&cache->count); 119 } 120 121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 122 { 123 if (atomic_dec_and_test(&cache->count)) { 124 WARN_ON(cache->pinned > 0); 125 WARN_ON(cache->reserved > 0); 126 kfree(cache->free_space_ctl); 127 kfree(cache); 128 } 129 } 130 131 /* 132 * this adds the block group to the fs_info rb tree for the block group 133 * cache 134 */ 135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 136 struct btrfs_block_group_cache *block_group) 137 { 138 struct rb_node **p; 139 struct rb_node *parent = NULL; 140 struct btrfs_block_group_cache *cache; 141 142 spin_lock(&info->block_group_cache_lock); 143 p = &info->block_group_cache_tree.rb_node; 144 145 while (*p) { 146 parent = *p; 147 cache = rb_entry(parent, struct btrfs_block_group_cache, 148 cache_node); 149 if (block_group->key.objectid < cache->key.objectid) { 150 p = &(*p)->rb_left; 151 } else if (block_group->key.objectid > cache->key.objectid) { 152 p = &(*p)->rb_right; 153 } else { 154 spin_unlock(&info->block_group_cache_lock); 155 return -EEXIST; 156 } 157 } 158 159 rb_link_node(&block_group->cache_node, parent, p); 160 rb_insert_color(&block_group->cache_node, 161 &info->block_group_cache_tree); 162 spin_unlock(&info->block_group_cache_lock); 163 164 return 0; 165 } 166 167 /* 168 * This will return the block group at or after bytenr if contains is 0, else 169 * it will return the block group that contains the bytenr 170 */ 171 static struct btrfs_block_group_cache * 172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 173 int contains) 174 { 175 struct btrfs_block_group_cache *cache, *ret = NULL; 176 struct rb_node *n; 177 u64 end, start; 178 179 spin_lock(&info->block_group_cache_lock); 180 n = info->block_group_cache_tree.rb_node; 181 182 while (n) { 183 cache = rb_entry(n, struct btrfs_block_group_cache, 184 cache_node); 185 end = cache->key.objectid + cache->key.offset - 1; 186 start = cache->key.objectid; 187 188 if (bytenr < start) { 189 if (!contains && (!ret || start < ret->key.objectid)) 190 ret = cache; 191 n = n->rb_left; 192 } else if (bytenr > start) { 193 if (contains && bytenr <= end) { 194 ret = cache; 195 break; 196 } 197 n = n->rb_right; 198 } else { 199 ret = cache; 200 break; 201 } 202 } 203 if (ret) 204 btrfs_get_block_group(ret); 205 spin_unlock(&info->block_group_cache_lock); 206 207 return ret; 208 } 209 210 static int add_excluded_extent(struct btrfs_root *root, 211 u64 start, u64 num_bytes) 212 { 213 u64 end = start + num_bytes - 1; 214 set_extent_bits(&root->fs_info->freed_extents[0], 215 start, end, EXTENT_UPTODATE, GFP_NOFS); 216 set_extent_bits(&root->fs_info->freed_extents[1], 217 start, end, EXTENT_UPTODATE, GFP_NOFS); 218 return 0; 219 } 220 221 static void free_excluded_extents(struct btrfs_root *root, 222 struct btrfs_block_group_cache *cache) 223 { 224 u64 start, end; 225 226 start = cache->key.objectid; 227 end = start + cache->key.offset - 1; 228 229 clear_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE, GFP_NOFS); 231 clear_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 } 234 235 static int exclude_super_stripes(struct btrfs_root *root, 236 struct btrfs_block_group_cache *cache) 237 { 238 u64 bytenr; 239 u64 *logical; 240 int stripe_len; 241 int i, nr, ret; 242 243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 245 cache->bytes_super += stripe_len; 246 ret = add_excluded_extent(root, cache->key.objectid, 247 stripe_len); 248 BUG_ON(ret); /* -ENOMEM */ 249 } 250 251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 252 bytenr = btrfs_sb_offset(i); 253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 254 cache->key.objectid, bytenr, 255 0, &logical, &nr, &stripe_len); 256 BUG_ON(ret); /* -ENOMEM */ 257 258 while (nr--) { 259 cache->bytes_super += stripe_len; 260 ret = add_excluded_extent(root, logical[nr], 261 stripe_len); 262 BUG_ON(ret); /* -ENOMEM */ 263 } 264 265 kfree(logical); 266 } 267 return 0; 268 } 269 270 static struct btrfs_caching_control * 271 get_caching_control(struct btrfs_block_group_cache *cache) 272 { 273 struct btrfs_caching_control *ctl; 274 275 spin_lock(&cache->lock); 276 if (cache->cached != BTRFS_CACHE_STARTED) { 277 spin_unlock(&cache->lock); 278 return NULL; 279 } 280 281 /* We're loading it the fast way, so we don't have a caching_ctl. */ 282 if (!cache->caching_ctl) { 283 spin_unlock(&cache->lock); 284 return NULL; 285 } 286 287 ctl = cache->caching_ctl; 288 atomic_inc(&ctl->count); 289 spin_unlock(&cache->lock); 290 return ctl; 291 } 292 293 static void put_caching_control(struct btrfs_caching_control *ctl) 294 { 295 if (atomic_dec_and_test(&ctl->count)) 296 kfree(ctl); 297 } 298 299 /* 300 * this is only called by cache_block_group, since we could have freed extents 301 * we need to check the pinned_extents for any extents that can't be used yet 302 * since their free space will be released as soon as the transaction commits. 303 */ 304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 305 struct btrfs_fs_info *info, u64 start, u64 end) 306 { 307 u64 extent_start, extent_end, size, total_added = 0; 308 int ret; 309 310 while (start < end) { 311 ret = find_first_extent_bit(info->pinned_extents, start, 312 &extent_start, &extent_end, 313 EXTENT_DIRTY | EXTENT_UPTODATE); 314 if (ret) 315 break; 316 317 if (extent_start <= start) { 318 start = extent_end + 1; 319 } else if (extent_start > start && extent_start < end) { 320 size = extent_start - start; 321 total_added += size; 322 ret = btrfs_add_free_space(block_group, start, 323 size); 324 BUG_ON(ret); /* -ENOMEM or logic error */ 325 start = extent_end + 1; 326 } else { 327 break; 328 } 329 } 330 331 if (start < end) { 332 size = end - start; 333 total_added += size; 334 ret = btrfs_add_free_space(block_group, start, size); 335 BUG_ON(ret); /* -ENOMEM or logic error */ 336 } 337 338 return total_added; 339 } 340 341 static noinline void caching_thread(struct btrfs_work *work) 342 { 343 struct btrfs_block_group_cache *block_group; 344 struct btrfs_fs_info *fs_info; 345 struct btrfs_caching_control *caching_ctl; 346 struct btrfs_root *extent_root; 347 struct btrfs_path *path; 348 struct extent_buffer *leaf; 349 struct btrfs_key key; 350 u64 total_found = 0; 351 u64 last = 0; 352 u32 nritems; 353 int ret = 0; 354 355 caching_ctl = container_of(work, struct btrfs_caching_control, work); 356 block_group = caching_ctl->block_group; 357 fs_info = block_group->fs_info; 358 extent_root = fs_info->extent_root; 359 360 path = btrfs_alloc_path(); 361 if (!path) 362 goto out; 363 364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 365 366 /* 367 * We don't want to deadlock with somebody trying to allocate a new 368 * extent for the extent root while also trying to search the extent 369 * root to add free space. So we skip locking and search the commit 370 * root, since its read-only 371 */ 372 path->skip_locking = 1; 373 path->search_commit_root = 1; 374 path->reada = 1; 375 376 key.objectid = last; 377 key.offset = 0; 378 key.type = BTRFS_EXTENT_ITEM_KEY; 379 again: 380 mutex_lock(&caching_ctl->mutex); 381 /* need to make sure the commit_root doesn't disappear */ 382 down_read(&fs_info->extent_commit_sem); 383 384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 385 if (ret < 0) 386 goto err; 387 388 leaf = path->nodes[0]; 389 nritems = btrfs_header_nritems(leaf); 390 391 while (1) { 392 if (btrfs_fs_closing(fs_info) > 1) { 393 last = (u64)-1; 394 break; 395 } 396 397 if (path->slots[0] < nritems) { 398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 399 } else { 400 ret = find_next_key(path, 0, &key); 401 if (ret) 402 break; 403 404 if (need_resched() || 405 btrfs_next_leaf(extent_root, path)) { 406 caching_ctl->progress = last; 407 btrfs_release_path(path); 408 up_read(&fs_info->extent_commit_sem); 409 mutex_unlock(&caching_ctl->mutex); 410 cond_resched(); 411 goto again; 412 } 413 leaf = path->nodes[0]; 414 nritems = btrfs_header_nritems(leaf); 415 continue; 416 } 417 418 if (key.objectid < block_group->key.objectid) { 419 path->slots[0]++; 420 continue; 421 } 422 423 if (key.objectid >= block_group->key.objectid + 424 block_group->key.offset) 425 break; 426 427 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 428 total_found += add_new_free_space(block_group, 429 fs_info, last, 430 key.objectid); 431 last = key.objectid + key.offset; 432 433 if (total_found > (1024 * 1024 * 2)) { 434 total_found = 0; 435 wake_up(&caching_ctl->wait); 436 } 437 } 438 path->slots[0]++; 439 } 440 ret = 0; 441 442 total_found += add_new_free_space(block_group, fs_info, last, 443 block_group->key.objectid + 444 block_group->key.offset); 445 caching_ctl->progress = (u64)-1; 446 447 spin_lock(&block_group->lock); 448 block_group->caching_ctl = NULL; 449 block_group->cached = BTRFS_CACHE_FINISHED; 450 spin_unlock(&block_group->lock); 451 452 err: 453 btrfs_free_path(path); 454 up_read(&fs_info->extent_commit_sem); 455 456 free_excluded_extents(extent_root, block_group); 457 458 mutex_unlock(&caching_ctl->mutex); 459 out: 460 wake_up(&caching_ctl->wait); 461 462 put_caching_control(caching_ctl); 463 btrfs_put_block_group(block_group); 464 } 465 466 static int cache_block_group(struct btrfs_block_group_cache *cache, 467 struct btrfs_trans_handle *trans, 468 struct btrfs_root *root, 469 int load_cache_only) 470 { 471 DEFINE_WAIT(wait); 472 struct btrfs_fs_info *fs_info = cache->fs_info; 473 struct btrfs_caching_control *caching_ctl; 474 int ret = 0; 475 476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 477 if (!caching_ctl) 478 return -ENOMEM; 479 480 INIT_LIST_HEAD(&caching_ctl->list); 481 mutex_init(&caching_ctl->mutex); 482 init_waitqueue_head(&caching_ctl->wait); 483 caching_ctl->block_group = cache; 484 caching_ctl->progress = cache->key.objectid; 485 atomic_set(&caching_ctl->count, 1); 486 caching_ctl->work.func = caching_thread; 487 488 spin_lock(&cache->lock); 489 /* 490 * This should be a rare occasion, but this could happen I think in the 491 * case where one thread starts to load the space cache info, and then 492 * some other thread starts a transaction commit which tries to do an 493 * allocation while the other thread is still loading the space cache 494 * info. The previous loop should have kept us from choosing this block 495 * group, but if we've moved to the state where we will wait on caching 496 * block groups we need to first check if we're doing a fast load here, 497 * so we can wait for it to finish, otherwise we could end up allocating 498 * from a block group who's cache gets evicted for one reason or 499 * another. 500 */ 501 while (cache->cached == BTRFS_CACHE_FAST) { 502 struct btrfs_caching_control *ctl; 503 504 ctl = cache->caching_ctl; 505 atomic_inc(&ctl->count); 506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 507 spin_unlock(&cache->lock); 508 509 schedule(); 510 511 finish_wait(&ctl->wait, &wait); 512 put_caching_control(ctl); 513 spin_lock(&cache->lock); 514 } 515 516 if (cache->cached != BTRFS_CACHE_NO) { 517 spin_unlock(&cache->lock); 518 kfree(caching_ctl); 519 return 0; 520 } 521 WARN_ON(cache->caching_ctl); 522 cache->caching_ctl = caching_ctl; 523 cache->cached = BTRFS_CACHE_FAST; 524 spin_unlock(&cache->lock); 525 526 /* 527 * We can't do the read from on-disk cache during a commit since we need 528 * to have the normal tree locking. Also if we are currently trying to 529 * allocate blocks for the tree root we can't do the fast caching since 530 * we likely hold important locks. 531 */ 532 if (trans && (!trans->transaction->in_commit) && 533 (root && root != root->fs_info->tree_root) && 534 btrfs_test_opt(root, SPACE_CACHE)) { 535 ret = load_free_space_cache(fs_info, cache); 536 537 spin_lock(&cache->lock); 538 if (ret == 1) { 539 cache->caching_ctl = NULL; 540 cache->cached = BTRFS_CACHE_FINISHED; 541 cache->last_byte_to_unpin = (u64)-1; 542 } else { 543 if (load_cache_only) { 544 cache->caching_ctl = NULL; 545 cache->cached = BTRFS_CACHE_NO; 546 } else { 547 cache->cached = BTRFS_CACHE_STARTED; 548 } 549 } 550 spin_unlock(&cache->lock); 551 wake_up(&caching_ctl->wait); 552 if (ret == 1) { 553 put_caching_control(caching_ctl); 554 free_excluded_extents(fs_info->extent_root, cache); 555 return 0; 556 } 557 } else { 558 /* 559 * We are not going to do the fast caching, set cached to the 560 * appropriate value and wakeup any waiters. 561 */ 562 spin_lock(&cache->lock); 563 if (load_cache_only) { 564 cache->caching_ctl = NULL; 565 cache->cached = BTRFS_CACHE_NO; 566 } else { 567 cache->cached = BTRFS_CACHE_STARTED; 568 } 569 spin_unlock(&cache->lock); 570 wake_up(&caching_ctl->wait); 571 } 572 573 if (load_cache_only) { 574 put_caching_control(caching_ctl); 575 return 0; 576 } 577 578 down_write(&fs_info->extent_commit_sem); 579 atomic_inc(&caching_ctl->count); 580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 581 up_write(&fs_info->extent_commit_sem); 582 583 btrfs_get_block_group(cache); 584 585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 586 587 return ret; 588 } 589 590 /* 591 * return the block group that starts at or after bytenr 592 */ 593 static struct btrfs_block_group_cache * 594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 595 { 596 struct btrfs_block_group_cache *cache; 597 598 cache = block_group_cache_tree_search(info, bytenr, 0); 599 600 return cache; 601 } 602 603 /* 604 * return the block group that contains the given bytenr 605 */ 606 struct btrfs_block_group_cache *btrfs_lookup_block_group( 607 struct btrfs_fs_info *info, 608 u64 bytenr) 609 { 610 struct btrfs_block_group_cache *cache; 611 612 cache = block_group_cache_tree_search(info, bytenr, 1); 613 614 return cache; 615 } 616 617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 618 u64 flags) 619 { 620 struct list_head *head = &info->space_info; 621 struct btrfs_space_info *found; 622 623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 624 625 rcu_read_lock(); 626 list_for_each_entry_rcu(found, head, list) { 627 if (found->flags & flags) { 628 rcu_read_unlock(); 629 return found; 630 } 631 } 632 rcu_read_unlock(); 633 return NULL; 634 } 635 636 /* 637 * after adding space to the filesystem, we need to clear the full flags 638 * on all the space infos. 639 */ 640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 641 { 642 struct list_head *head = &info->space_info; 643 struct btrfs_space_info *found; 644 645 rcu_read_lock(); 646 list_for_each_entry_rcu(found, head, list) 647 found->full = 0; 648 rcu_read_unlock(); 649 } 650 651 static u64 div_factor(u64 num, int factor) 652 { 653 if (factor == 10) 654 return num; 655 num *= factor; 656 do_div(num, 10); 657 return num; 658 } 659 660 static u64 div_factor_fine(u64 num, int factor) 661 { 662 if (factor == 100) 663 return num; 664 num *= factor; 665 do_div(num, 100); 666 return num; 667 } 668 669 u64 btrfs_find_block_group(struct btrfs_root *root, 670 u64 search_start, u64 search_hint, int owner) 671 { 672 struct btrfs_block_group_cache *cache; 673 u64 used; 674 u64 last = max(search_hint, search_start); 675 u64 group_start = 0; 676 int full_search = 0; 677 int factor = 9; 678 int wrapped = 0; 679 again: 680 while (1) { 681 cache = btrfs_lookup_first_block_group(root->fs_info, last); 682 if (!cache) 683 break; 684 685 spin_lock(&cache->lock); 686 last = cache->key.objectid + cache->key.offset; 687 used = btrfs_block_group_used(&cache->item); 688 689 if ((full_search || !cache->ro) && 690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 691 if (used + cache->pinned + cache->reserved < 692 div_factor(cache->key.offset, factor)) { 693 group_start = cache->key.objectid; 694 spin_unlock(&cache->lock); 695 btrfs_put_block_group(cache); 696 goto found; 697 } 698 } 699 spin_unlock(&cache->lock); 700 btrfs_put_block_group(cache); 701 cond_resched(); 702 } 703 if (!wrapped) { 704 last = search_start; 705 wrapped = 1; 706 goto again; 707 } 708 if (!full_search && factor < 10) { 709 last = search_start; 710 full_search = 1; 711 factor = 10; 712 goto again; 713 } 714 found: 715 return group_start; 716 } 717 718 /* simple helper to search for an existing extent at a given offset */ 719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 720 { 721 int ret; 722 struct btrfs_key key; 723 struct btrfs_path *path; 724 725 path = btrfs_alloc_path(); 726 if (!path) 727 return -ENOMEM; 728 729 key.objectid = start; 730 key.offset = len; 731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 733 0, 0); 734 btrfs_free_path(path); 735 return ret; 736 } 737 738 /* 739 * helper function to lookup reference count and flags of extent. 740 * 741 * the head node for delayed ref is used to store the sum of all the 742 * reference count modifications queued up in the rbtree. the head 743 * node may also store the extent flags to set. This way you can check 744 * to see what the reference count and extent flags would be if all of 745 * the delayed refs are not processed. 746 */ 747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 748 struct btrfs_root *root, u64 bytenr, 749 u64 num_bytes, u64 *refs, u64 *flags) 750 { 751 struct btrfs_delayed_ref_head *head; 752 struct btrfs_delayed_ref_root *delayed_refs; 753 struct btrfs_path *path; 754 struct btrfs_extent_item *ei; 755 struct extent_buffer *leaf; 756 struct btrfs_key key; 757 u32 item_size; 758 u64 num_refs; 759 u64 extent_flags; 760 int ret; 761 762 path = btrfs_alloc_path(); 763 if (!path) 764 return -ENOMEM; 765 766 key.objectid = bytenr; 767 key.type = BTRFS_EXTENT_ITEM_KEY; 768 key.offset = num_bytes; 769 if (!trans) { 770 path->skip_locking = 1; 771 path->search_commit_root = 1; 772 } 773 again: 774 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 775 &key, path, 0, 0); 776 if (ret < 0) 777 goto out_free; 778 779 if (ret == 0) { 780 leaf = path->nodes[0]; 781 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 782 if (item_size >= sizeof(*ei)) { 783 ei = btrfs_item_ptr(leaf, path->slots[0], 784 struct btrfs_extent_item); 785 num_refs = btrfs_extent_refs(leaf, ei); 786 extent_flags = btrfs_extent_flags(leaf, ei); 787 } else { 788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 789 struct btrfs_extent_item_v0 *ei0; 790 BUG_ON(item_size != sizeof(*ei0)); 791 ei0 = btrfs_item_ptr(leaf, path->slots[0], 792 struct btrfs_extent_item_v0); 793 num_refs = btrfs_extent_refs_v0(leaf, ei0); 794 /* FIXME: this isn't correct for data */ 795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 796 #else 797 BUG(); 798 #endif 799 } 800 BUG_ON(num_refs == 0); 801 } else { 802 num_refs = 0; 803 extent_flags = 0; 804 ret = 0; 805 } 806 807 if (!trans) 808 goto out; 809 810 delayed_refs = &trans->transaction->delayed_refs; 811 spin_lock(&delayed_refs->lock); 812 head = btrfs_find_delayed_ref_head(trans, bytenr); 813 if (head) { 814 if (!mutex_trylock(&head->mutex)) { 815 atomic_inc(&head->node.refs); 816 spin_unlock(&delayed_refs->lock); 817 818 btrfs_release_path(path); 819 820 /* 821 * Mutex was contended, block until it's released and try 822 * again 823 */ 824 mutex_lock(&head->mutex); 825 mutex_unlock(&head->mutex); 826 btrfs_put_delayed_ref(&head->node); 827 goto again; 828 } 829 if (head->extent_op && head->extent_op->update_flags) 830 extent_flags |= head->extent_op->flags_to_set; 831 else 832 BUG_ON(num_refs == 0); 833 834 num_refs += head->node.ref_mod; 835 mutex_unlock(&head->mutex); 836 } 837 spin_unlock(&delayed_refs->lock); 838 out: 839 WARN_ON(num_refs == 0); 840 if (refs) 841 *refs = num_refs; 842 if (flags) 843 *flags = extent_flags; 844 out_free: 845 btrfs_free_path(path); 846 return ret; 847 } 848 849 /* 850 * Back reference rules. Back refs have three main goals: 851 * 852 * 1) differentiate between all holders of references to an extent so that 853 * when a reference is dropped we can make sure it was a valid reference 854 * before freeing the extent. 855 * 856 * 2) Provide enough information to quickly find the holders of an extent 857 * if we notice a given block is corrupted or bad. 858 * 859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 860 * maintenance. This is actually the same as #2, but with a slightly 861 * different use case. 862 * 863 * There are two kinds of back refs. The implicit back refs is optimized 864 * for pointers in non-shared tree blocks. For a given pointer in a block, 865 * back refs of this kind provide information about the block's owner tree 866 * and the pointer's key. These information allow us to find the block by 867 * b-tree searching. The full back refs is for pointers in tree blocks not 868 * referenced by their owner trees. The location of tree block is recorded 869 * in the back refs. Actually the full back refs is generic, and can be 870 * used in all cases the implicit back refs is used. The major shortcoming 871 * of the full back refs is its overhead. Every time a tree block gets 872 * COWed, we have to update back refs entry for all pointers in it. 873 * 874 * For a newly allocated tree block, we use implicit back refs for 875 * pointers in it. This means most tree related operations only involve 876 * implicit back refs. For a tree block created in old transaction, the 877 * only way to drop a reference to it is COW it. So we can detect the 878 * event that tree block loses its owner tree's reference and do the 879 * back refs conversion. 880 * 881 * When a tree block is COW'd through a tree, there are four cases: 882 * 883 * The reference count of the block is one and the tree is the block's 884 * owner tree. Nothing to do in this case. 885 * 886 * The reference count of the block is one and the tree is not the 887 * block's owner tree. In this case, full back refs is used for pointers 888 * in the block. Remove these full back refs, add implicit back refs for 889 * every pointers in the new block. 890 * 891 * The reference count of the block is greater than one and the tree is 892 * the block's owner tree. In this case, implicit back refs is used for 893 * pointers in the block. Add full back refs for every pointers in the 894 * block, increase lower level extents' reference counts. The original 895 * implicit back refs are entailed to the new block. 896 * 897 * The reference count of the block is greater than one and the tree is 898 * not the block's owner tree. Add implicit back refs for every pointer in 899 * the new block, increase lower level extents' reference count. 900 * 901 * Back Reference Key composing: 902 * 903 * The key objectid corresponds to the first byte in the extent, 904 * The key type is used to differentiate between types of back refs. 905 * There are different meanings of the key offset for different types 906 * of back refs. 907 * 908 * File extents can be referenced by: 909 * 910 * - multiple snapshots, subvolumes, or different generations in one subvol 911 * - different files inside a single subvolume 912 * - different offsets inside a file (bookend extents in file.c) 913 * 914 * The extent ref structure for the implicit back refs has fields for: 915 * 916 * - Objectid of the subvolume root 917 * - objectid of the file holding the reference 918 * - original offset in the file 919 * - how many bookend extents 920 * 921 * The key offset for the implicit back refs is hash of the first 922 * three fields. 923 * 924 * The extent ref structure for the full back refs has field for: 925 * 926 * - number of pointers in the tree leaf 927 * 928 * The key offset for the implicit back refs is the first byte of 929 * the tree leaf 930 * 931 * When a file extent is allocated, The implicit back refs is used. 932 * the fields are filled in: 933 * 934 * (root_key.objectid, inode objectid, offset in file, 1) 935 * 936 * When a file extent is removed file truncation, we find the 937 * corresponding implicit back refs and check the following fields: 938 * 939 * (btrfs_header_owner(leaf), inode objectid, offset in file) 940 * 941 * Btree extents can be referenced by: 942 * 943 * - Different subvolumes 944 * 945 * Both the implicit back refs and the full back refs for tree blocks 946 * only consist of key. The key offset for the implicit back refs is 947 * objectid of block's owner tree. The key offset for the full back refs 948 * is the first byte of parent block. 949 * 950 * When implicit back refs is used, information about the lowest key and 951 * level of the tree block are required. These information are stored in 952 * tree block info structure. 953 */ 954 955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 957 struct btrfs_root *root, 958 struct btrfs_path *path, 959 u64 owner, u32 extra_size) 960 { 961 struct btrfs_extent_item *item; 962 struct btrfs_extent_item_v0 *ei0; 963 struct btrfs_extent_ref_v0 *ref0; 964 struct btrfs_tree_block_info *bi; 965 struct extent_buffer *leaf; 966 struct btrfs_key key; 967 struct btrfs_key found_key; 968 u32 new_size = sizeof(*item); 969 u64 refs; 970 int ret; 971 972 leaf = path->nodes[0]; 973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 974 975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 976 ei0 = btrfs_item_ptr(leaf, path->slots[0], 977 struct btrfs_extent_item_v0); 978 refs = btrfs_extent_refs_v0(leaf, ei0); 979 980 if (owner == (u64)-1) { 981 while (1) { 982 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 983 ret = btrfs_next_leaf(root, path); 984 if (ret < 0) 985 return ret; 986 BUG_ON(ret > 0); /* Corruption */ 987 leaf = path->nodes[0]; 988 } 989 btrfs_item_key_to_cpu(leaf, &found_key, 990 path->slots[0]); 991 BUG_ON(key.objectid != found_key.objectid); 992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 993 path->slots[0]++; 994 continue; 995 } 996 ref0 = btrfs_item_ptr(leaf, path->slots[0], 997 struct btrfs_extent_ref_v0); 998 owner = btrfs_ref_objectid_v0(leaf, ref0); 999 break; 1000 } 1001 } 1002 btrfs_release_path(path); 1003 1004 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1005 new_size += sizeof(*bi); 1006 1007 new_size -= sizeof(*ei0); 1008 ret = btrfs_search_slot(trans, root, &key, path, 1009 new_size + extra_size, 1); 1010 if (ret < 0) 1011 return ret; 1012 BUG_ON(ret); /* Corruption */ 1013 1014 btrfs_extend_item(trans, root, path, new_size); 1015 1016 leaf = path->nodes[0]; 1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1018 btrfs_set_extent_refs(leaf, item, refs); 1019 /* FIXME: get real generation */ 1020 btrfs_set_extent_generation(leaf, item, 0); 1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1022 btrfs_set_extent_flags(leaf, item, 1023 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1024 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1025 bi = (struct btrfs_tree_block_info *)(item + 1); 1026 /* FIXME: get first key of the block */ 1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1028 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1029 } else { 1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1031 } 1032 btrfs_mark_buffer_dirty(leaf); 1033 return 0; 1034 } 1035 #endif 1036 1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1038 { 1039 u32 high_crc = ~(u32)0; 1040 u32 low_crc = ~(u32)0; 1041 __le64 lenum; 1042 1043 lenum = cpu_to_le64(root_objectid); 1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1045 lenum = cpu_to_le64(owner); 1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1047 lenum = cpu_to_le64(offset); 1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1049 1050 return ((u64)high_crc << 31) ^ (u64)low_crc; 1051 } 1052 1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1054 struct btrfs_extent_data_ref *ref) 1055 { 1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1057 btrfs_extent_data_ref_objectid(leaf, ref), 1058 btrfs_extent_data_ref_offset(leaf, ref)); 1059 } 1060 1061 static int match_extent_data_ref(struct extent_buffer *leaf, 1062 struct btrfs_extent_data_ref *ref, 1063 u64 root_objectid, u64 owner, u64 offset) 1064 { 1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1067 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1068 return 0; 1069 return 1; 1070 } 1071 1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1073 struct btrfs_root *root, 1074 struct btrfs_path *path, 1075 u64 bytenr, u64 parent, 1076 u64 root_objectid, 1077 u64 owner, u64 offset) 1078 { 1079 struct btrfs_key key; 1080 struct btrfs_extent_data_ref *ref; 1081 struct extent_buffer *leaf; 1082 u32 nritems; 1083 int ret; 1084 int recow; 1085 int err = -ENOENT; 1086 1087 key.objectid = bytenr; 1088 if (parent) { 1089 key.type = BTRFS_SHARED_DATA_REF_KEY; 1090 key.offset = parent; 1091 } else { 1092 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1093 key.offset = hash_extent_data_ref(root_objectid, 1094 owner, offset); 1095 } 1096 again: 1097 recow = 0; 1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1099 if (ret < 0) { 1100 err = ret; 1101 goto fail; 1102 } 1103 1104 if (parent) { 1105 if (!ret) 1106 return 0; 1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1108 key.type = BTRFS_EXTENT_REF_V0_KEY; 1109 btrfs_release_path(path); 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret < 0) { 1112 err = ret; 1113 goto fail; 1114 } 1115 if (!ret) 1116 return 0; 1117 #endif 1118 goto fail; 1119 } 1120 1121 leaf = path->nodes[0]; 1122 nritems = btrfs_header_nritems(leaf); 1123 while (1) { 1124 if (path->slots[0] >= nritems) { 1125 ret = btrfs_next_leaf(root, path); 1126 if (ret < 0) 1127 err = ret; 1128 if (ret) 1129 goto fail; 1130 1131 leaf = path->nodes[0]; 1132 nritems = btrfs_header_nritems(leaf); 1133 recow = 1; 1134 } 1135 1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1137 if (key.objectid != bytenr || 1138 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1139 goto fail; 1140 1141 ref = btrfs_item_ptr(leaf, path->slots[0], 1142 struct btrfs_extent_data_ref); 1143 1144 if (match_extent_data_ref(leaf, ref, root_objectid, 1145 owner, offset)) { 1146 if (recow) { 1147 btrfs_release_path(path); 1148 goto again; 1149 } 1150 err = 0; 1151 break; 1152 } 1153 path->slots[0]++; 1154 } 1155 fail: 1156 return err; 1157 } 1158 1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1160 struct btrfs_root *root, 1161 struct btrfs_path *path, 1162 u64 bytenr, u64 parent, 1163 u64 root_objectid, u64 owner, 1164 u64 offset, int refs_to_add) 1165 { 1166 struct btrfs_key key; 1167 struct extent_buffer *leaf; 1168 u32 size; 1169 u32 num_refs; 1170 int ret; 1171 1172 key.objectid = bytenr; 1173 if (parent) { 1174 key.type = BTRFS_SHARED_DATA_REF_KEY; 1175 key.offset = parent; 1176 size = sizeof(struct btrfs_shared_data_ref); 1177 } else { 1178 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1179 key.offset = hash_extent_data_ref(root_objectid, 1180 owner, offset); 1181 size = sizeof(struct btrfs_extent_data_ref); 1182 } 1183 1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1185 if (ret && ret != -EEXIST) 1186 goto fail; 1187 1188 leaf = path->nodes[0]; 1189 if (parent) { 1190 struct btrfs_shared_data_ref *ref; 1191 ref = btrfs_item_ptr(leaf, path->slots[0], 1192 struct btrfs_shared_data_ref); 1193 if (ret == 0) { 1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1195 } else { 1196 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1197 num_refs += refs_to_add; 1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1199 } 1200 } else { 1201 struct btrfs_extent_data_ref *ref; 1202 while (ret == -EEXIST) { 1203 ref = btrfs_item_ptr(leaf, path->slots[0], 1204 struct btrfs_extent_data_ref); 1205 if (match_extent_data_ref(leaf, ref, root_objectid, 1206 owner, offset)) 1207 break; 1208 btrfs_release_path(path); 1209 key.offset++; 1210 ret = btrfs_insert_empty_item(trans, root, path, &key, 1211 size); 1212 if (ret && ret != -EEXIST) 1213 goto fail; 1214 1215 leaf = path->nodes[0]; 1216 } 1217 ref = btrfs_item_ptr(leaf, path->slots[0], 1218 struct btrfs_extent_data_ref); 1219 if (ret == 0) { 1220 btrfs_set_extent_data_ref_root(leaf, ref, 1221 root_objectid); 1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1225 } else { 1226 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1227 num_refs += refs_to_add; 1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1229 } 1230 } 1231 btrfs_mark_buffer_dirty(leaf); 1232 ret = 0; 1233 fail: 1234 btrfs_release_path(path); 1235 return ret; 1236 } 1237 1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1239 struct btrfs_root *root, 1240 struct btrfs_path *path, 1241 int refs_to_drop) 1242 { 1243 struct btrfs_key key; 1244 struct btrfs_extent_data_ref *ref1 = NULL; 1245 struct btrfs_shared_data_ref *ref2 = NULL; 1246 struct extent_buffer *leaf; 1247 u32 num_refs = 0; 1248 int ret = 0; 1249 1250 leaf = path->nodes[0]; 1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1252 1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1254 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_extent_data_ref); 1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1258 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1259 struct btrfs_shared_data_ref); 1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1263 struct btrfs_extent_ref_v0 *ref0; 1264 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1265 struct btrfs_extent_ref_v0); 1266 num_refs = btrfs_ref_count_v0(leaf, ref0); 1267 #endif 1268 } else { 1269 BUG(); 1270 } 1271 1272 BUG_ON(num_refs < refs_to_drop); 1273 num_refs -= refs_to_drop; 1274 1275 if (num_refs == 0) { 1276 ret = btrfs_del_item(trans, root, path); 1277 } else { 1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1283 else { 1284 struct btrfs_extent_ref_v0 *ref0; 1285 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1286 struct btrfs_extent_ref_v0); 1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1288 } 1289 #endif 1290 btrfs_mark_buffer_dirty(leaf); 1291 } 1292 return ret; 1293 } 1294 1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1296 struct btrfs_path *path, 1297 struct btrfs_extent_inline_ref *iref) 1298 { 1299 struct btrfs_key key; 1300 struct extent_buffer *leaf; 1301 struct btrfs_extent_data_ref *ref1; 1302 struct btrfs_shared_data_ref *ref2; 1303 u32 num_refs = 0; 1304 1305 leaf = path->nodes[0]; 1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1307 if (iref) { 1308 if (btrfs_extent_inline_ref_type(leaf, iref) == 1309 BTRFS_EXTENT_DATA_REF_KEY) { 1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1312 } else { 1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1315 } 1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1317 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_data_ref); 1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1321 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1322 struct btrfs_shared_data_ref); 1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1326 struct btrfs_extent_ref_v0 *ref0; 1327 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1328 struct btrfs_extent_ref_v0); 1329 num_refs = btrfs_ref_count_v0(leaf, ref0); 1330 #endif 1331 } else { 1332 WARN_ON(1); 1333 } 1334 return num_refs; 1335 } 1336 1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1338 struct btrfs_root *root, 1339 struct btrfs_path *path, 1340 u64 bytenr, u64 parent, 1341 u64 root_objectid) 1342 { 1343 struct btrfs_key key; 1344 int ret; 1345 1346 key.objectid = bytenr; 1347 if (parent) { 1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1349 key.offset = parent; 1350 } else { 1351 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1352 key.offset = root_objectid; 1353 } 1354 1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1356 if (ret > 0) 1357 ret = -ENOENT; 1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1359 if (ret == -ENOENT && parent) { 1360 btrfs_release_path(path); 1361 key.type = BTRFS_EXTENT_REF_V0_KEY; 1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 } 1366 #endif 1367 return ret; 1368 } 1369 1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1389 btrfs_release_path(path); 1390 return ret; 1391 } 1392 1393 static inline int extent_ref_type(u64 parent, u64 owner) 1394 { 1395 int type; 1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1397 if (parent > 0) 1398 type = BTRFS_SHARED_BLOCK_REF_KEY; 1399 else 1400 type = BTRFS_TREE_BLOCK_REF_KEY; 1401 } else { 1402 if (parent > 0) 1403 type = BTRFS_SHARED_DATA_REF_KEY; 1404 else 1405 type = BTRFS_EXTENT_DATA_REF_KEY; 1406 } 1407 return type; 1408 } 1409 1410 static int find_next_key(struct btrfs_path *path, int level, 1411 struct btrfs_key *key) 1412 1413 { 1414 for (; level < BTRFS_MAX_LEVEL; level++) { 1415 if (!path->nodes[level]) 1416 break; 1417 if (path->slots[level] + 1 >= 1418 btrfs_header_nritems(path->nodes[level])) 1419 continue; 1420 if (level == 0) 1421 btrfs_item_key_to_cpu(path->nodes[level], key, 1422 path->slots[level] + 1); 1423 else 1424 btrfs_node_key_to_cpu(path->nodes[level], key, 1425 path->slots[level] + 1); 1426 return 0; 1427 } 1428 return 1; 1429 } 1430 1431 /* 1432 * look for inline back ref. if back ref is found, *ref_ret is set 1433 * to the address of inline back ref, and 0 is returned. 1434 * 1435 * if back ref isn't found, *ref_ret is set to the address where it 1436 * should be inserted, and -ENOENT is returned. 1437 * 1438 * if insert is true and there are too many inline back refs, the path 1439 * points to the extent item, and -EAGAIN is returned. 1440 * 1441 * NOTE: inline back refs are ordered in the same way that back ref 1442 * items in the tree are ordered. 1443 */ 1444 static noinline_for_stack 1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root, 1447 struct btrfs_path *path, 1448 struct btrfs_extent_inline_ref **ref_ret, 1449 u64 bytenr, u64 num_bytes, 1450 u64 parent, u64 root_objectid, 1451 u64 owner, u64 offset, int insert) 1452 { 1453 struct btrfs_key key; 1454 struct extent_buffer *leaf; 1455 struct btrfs_extent_item *ei; 1456 struct btrfs_extent_inline_ref *iref; 1457 u64 flags; 1458 u64 item_size; 1459 unsigned long ptr; 1460 unsigned long end; 1461 int extra_size; 1462 int type; 1463 int want; 1464 int ret; 1465 int err = 0; 1466 1467 key.objectid = bytenr; 1468 key.type = BTRFS_EXTENT_ITEM_KEY; 1469 key.offset = num_bytes; 1470 1471 want = extent_ref_type(parent, owner); 1472 if (insert) { 1473 extra_size = btrfs_extent_inline_ref_size(want); 1474 path->keep_locks = 1; 1475 } else 1476 extra_size = -1; 1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1478 if (ret < 0) { 1479 err = ret; 1480 goto out; 1481 } 1482 if (ret && !insert) { 1483 err = -ENOENT; 1484 goto out; 1485 } 1486 BUG_ON(ret); /* Corruption */ 1487 1488 leaf = path->nodes[0]; 1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1491 if (item_size < sizeof(*ei)) { 1492 if (!insert) { 1493 err = -ENOENT; 1494 goto out; 1495 } 1496 ret = convert_extent_item_v0(trans, root, path, owner, 1497 extra_size); 1498 if (ret < 0) { 1499 err = ret; 1500 goto out; 1501 } 1502 leaf = path->nodes[0]; 1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1504 } 1505 #endif 1506 BUG_ON(item_size < sizeof(*ei)); 1507 1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1509 flags = btrfs_extent_flags(leaf, ei); 1510 1511 ptr = (unsigned long)(ei + 1); 1512 end = (unsigned long)ei + item_size; 1513 1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1515 ptr += sizeof(struct btrfs_tree_block_info); 1516 BUG_ON(ptr > end); 1517 } else { 1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1519 } 1520 1521 err = -ENOENT; 1522 while (1) { 1523 if (ptr >= end) { 1524 WARN_ON(ptr > end); 1525 break; 1526 } 1527 iref = (struct btrfs_extent_inline_ref *)ptr; 1528 type = btrfs_extent_inline_ref_type(leaf, iref); 1529 if (want < type) 1530 break; 1531 if (want > type) { 1532 ptr += btrfs_extent_inline_ref_size(type); 1533 continue; 1534 } 1535 1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1537 struct btrfs_extent_data_ref *dref; 1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1539 if (match_extent_data_ref(leaf, dref, root_objectid, 1540 owner, offset)) { 1541 err = 0; 1542 break; 1543 } 1544 if (hash_extent_data_ref_item(leaf, dref) < 1545 hash_extent_data_ref(root_objectid, owner, offset)) 1546 break; 1547 } else { 1548 u64 ref_offset; 1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1550 if (parent > 0) { 1551 if (parent == ref_offset) { 1552 err = 0; 1553 break; 1554 } 1555 if (ref_offset < parent) 1556 break; 1557 } else { 1558 if (root_objectid == ref_offset) { 1559 err = 0; 1560 break; 1561 } 1562 if (ref_offset < root_objectid) 1563 break; 1564 } 1565 } 1566 ptr += btrfs_extent_inline_ref_size(type); 1567 } 1568 if (err == -ENOENT && insert) { 1569 if (item_size + extra_size >= 1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1571 err = -EAGAIN; 1572 goto out; 1573 } 1574 /* 1575 * To add new inline back ref, we have to make sure 1576 * there is no corresponding back ref item. 1577 * For simplicity, we just do not add new inline back 1578 * ref if there is any kind of item for this block 1579 */ 1580 if (find_next_key(path, 0, &key) == 0 && 1581 key.objectid == bytenr && 1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1583 err = -EAGAIN; 1584 goto out; 1585 } 1586 } 1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1588 out: 1589 if (insert) { 1590 path->keep_locks = 0; 1591 btrfs_unlock_up_safe(path, 1); 1592 } 1593 return err; 1594 } 1595 1596 /* 1597 * helper to add new inline back ref 1598 */ 1599 static noinline_for_stack 1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1601 struct btrfs_root *root, 1602 struct btrfs_path *path, 1603 struct btrfs_extent_inline_ref *iref, 1604 u64 parent, u64 root_objectid, 1605 u64 owner, u64 offset, int refs_to_add, 1606 struct btrfs_delayed_extent_op *extent_op) 1607 { 1608 struct extent_buffer *leaf; 1609 struct btrfs_extent_item *ei; 1610 unsigned long ptr; 1611 unsigned long end; 1612 unsigned long item_offset; 1613 u64 refs; 1614 int size; 1615 int type; 1616 1617 leaf = path->nodes[0]; 1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1619 item_offset = (unsigned long)iref - (unsigned long)ei; 1620 1621 type = extent_ref_type(parent, owner); 1622 size = btrfs_extent_inline_ref_size(type); 1623 1624 btrfs_extend_item(trans, root, path, size); 1625 1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1627 refs = btrfs_extent_refs(leaf, ei); 1628 refs += refs_to_add; 1629 btrfs_set_extent_refs(leaf, ei, refs); 1630 if (extent_op) 1631 __run_delayed_extent_op(extent_op, leaf, ei); 1632 1633 ptr = (unsigned long)ei + item_offset; 1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1635 if (ptr < end - size) 1636 memmove_extent_buffer(leaf, ptr + size, ptr, 1637 end - size - ptr); 1638 1639 iref = (struct btrfs_extent_inline_ref *)ptr; 1640 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1642 struct btrfs_extent_data_ref *dref; 1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1649 struct btrfs_shared_data_ref *sref; 1650 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1655 } else { 1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1657 } 1658 btrfs_mark_buffer_dirty(leaf); 1659 } 1660 1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1662 struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref **ref_ret, 1665 u64 bytenr, u64 num_bytes, u64 parent, 1666 u64 root_objectid, u64 owner, u64 offset) 1667 { 1668 int ret; 1669 1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1671 bytenr, num_bytes, parent, 1672 root_objectid, owner, offset, 0); 1673 if (ret != -ENOENT) 1674 return ret; 1675 1676 btrfs_release_path(path); 1677 *ref_ret = NULL; 1678 1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1681 root_objectid); 1682 } else { 1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1684 root_objectid, owner, offset); 1685 } 1686 return ret; 1687 } 1688 1689 /* 1690 * helper to update/remove inline back ref 1691 */ 1692 static noinline_for_stack 1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1694 struct btrfs_root *root, 1695 struct btrfs_path *path, 1696 struct btrfs_extent_inline_ref *iref, 1697 int refs_to_mod, 1698 struct btrfs_delayed_extent_op *extent_op) 1699 { 1700 struct extent_buffer *leaf; 1701 struct btrfs_extent_item *ei; 1702 struct btrfs_extent_data_ref *dref = NULL; 1703 struct btrfs_shared_data_ref *sref = NULL; 1704 unsigned long ptr; 1705 unsigned long end; 1706 u32 item_size; 1707 int size; 1708 int type; 1709 u64 refs; 1710 1711 leaf = path->nodes[0]; 1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1713 refs = btrfs_extent_refs(leaf, ei); 1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1715 refs += refs_to_mod; 1716 btrfs_set_extent_refs(leaf, ei, refs); 1717 if (extent_op) 1718 __run_delayed_extent_op(extent_op, leaf, ei); 1719 1720 type = btrfs_extent_inline_ref_type(leaf, iref); 1721 1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1724 refs = btrfs_extent_data_ref_count(leaf, dref); 1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1726 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1727 refs = btrfs_shared_data_ref_count(leaf, sref); 1728 } else { 1729 refs = 1; 1730 BUG_ON(refs_to_mod != -1); 1731 } 1732 1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1734 refs += refs_to_mod; 1735 1736 if (refs > 0) { 1737 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1738 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1739 else 1740 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1741 } else { 1742 size = btrfs_extent_inline_ref_size(type); 1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1744 ptr = (unsigned long)iref; 1745 end = (unsigned long)ei + item_size; 1746 if (ptr + size < end) 1747 memmove_extent_buffer(leaf, ptr, ptr + size, 1748 end - ptr - size); 1749 item_size -= size; 1750 btrfs_truncate_item(trans, root, path, item_size, 1); 1751 } 1752 btrfs_mark_buffer_dirty(leaf); 1753 } 1754 1755 static noinline_for_stack 1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path, 1759 u64 bytenr, u64 num_bytes, u64 parent, 1760 u64 root_objectid, u64 owner, 1761 u64 offset, int refs_to_add, 1762 struct btrfs_delayed_extent_op *extent_op) 1763 { 1764 struct btrfs_extent_inline_ref *iref; 1765 int ret; 1766 1767 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1768 bytenr, num_bytes, parent, 1769 root_objectid, owner, offset, 1); 1770 if (ret == 0) { 1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1772 update_inline_extent_backref(trans, root, path, iref, 1773 refs_to_add, extent_op); 1774 } else if (ret == -ENOENT) { 1775 setup_inline_extent_backref(trans, root, path, iref, parent, 1776 root_objectid, owner, offset, 1777 refs_to_add, extent_op); 1778 ret = 0; 1779 } 1780 return ret; 1781 } 1782 1783 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1784 struct btrfs_root *root, 1785 struct btrfs_path *path, 1786 u64 bytenr, u64 parent, u64 root_objectid, 1787 u64 owner, u64 offset, int refs_to_add) 1788 { 1789 int ret; 1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1791 BUG_ON(refs_to_add != 1); 1792 ret = insert_tree_block_ref(trans, root, path, bytenr, 1793 parent, root_objectid); 1794 } else { 1795 ret = insert_extent_data_ref(trans, root, path, bytenr, 1796 parent, root_objectid, 1797 owner, offset, refs_to_add); 1798 } 1799 return ret; 1800 } 1801 1802 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 struct btrfs_extent_inline_ref *iref, 1806 int refs_to_drop, int is_data) 1807 { 1808 int ret = 0; 1809 1810 BUG_ON(!is_data && refs_to_drop != 1); 1811 if (iref) { 1812 update_inline_extent_backref(trans, root, path, iref, 1813 -refs_to_drop, NULL); 1814 } else if (is_data) { 1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1816 } else { 1817 ret = btrfs_del_item(trans, root, path); 1818 } 1819 return ret; 1820 } 1821 1822 static int btrfs_issue_discard(struct block_device *bdev, 1823 u64 start, u64 len) 1824 { 1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1826 } 1827 1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1829 u64 num_bytes, u64 *actual_bytes) 1830 { 1831 int ret; 1832 u64 discarded_bytes = 0; 1833 struct btrfs_bio *bbio = NULL; 1834 1835 1836 /* Tell the block device(s) that the sectors can be discarded */ 1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1838 bytenr, &num_bytes, &bbio, 0); 1839 /* Error condition is -ENOMEM */ 1840 if (!ret) { 1841 struct btrfs_bio_stripe *stripe = bbio->stripes; 1842 int i; 1843 1844 1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1846 if (!stripe->dev->can_discard) 1847 continue; 1848 1849 ret = btrfs_issue_discard(stripe->dev->bdev, 1850 stripe->physical, 1851 stripe->length); 1852 if (!ret) 1853 discarded_bytes += stripe->length; 1854 else if (ret != -EOPNOTSUPP) 1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1856 1857 /* 1858 * Just in case we get back EOPNOTSUPP for some reason, 1859 * just ignore the return value so we don't screw up 1860 * people calling discard_extent. 1861 */ 1862 ret = 0; 1863 } 1864 kfree(bbio); 1865 } 1866 1867 if (actual_bytes) 1868 *actual_bytes = discarded_bytes; 1869 1870 1871 return ret; 1872 } 1873 1874 /* Can return -ENOMEM */ 1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1876 struct btrfs_root *root, 1877 u64 bytenr, u64 num_bytes, u64 parent, 1878 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1879 { 1880 int ret; 1881 struct btrfs_fs_info *fs_info = root->fs_info; 1882 1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1884 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1885 1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1888 num_bytes, 1889 parent, root_objectid, (int)owner, 1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1891 } else { 1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1893 num_bytes, 1894 parent, root_objectid, owner, offset, 1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1896 } 1897 return ret; 1898 } 1899 1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1901 struct btrfs_root *root, 1902 u64 bytenr, u64 num_bytes, 1903 u64 parent, u64 root_objectid, 1904 u64 owner, u64 offset, int refs_to_add, 1905 struct btrfs_delayed_extent_op *extent_op) 1906 { 1907 struct btrfs_path *path; 1908 struct extent_buffer *leaf; 1909 struct btrfs_extent_item *item; 1910 u64 refs; 1911 int ret; 1912 int err = 0; 1913 1914 path = btrfs_alloc_path(); 1915 if (!path) 1916 return -ENOMEM; 1917 1918 path->reada = 1; 1919 path->leave_spinning = 1; 1920 /* this will setup the path even if it fails to insert the back ref */ 1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1922 path, bytenr, num_bytes, parent, 1923 root_objectid, owner, offset, 1924 refs_to_add, extent_op); 1925 if (ret == 0) 1926 goto out; 1927 1928 if (ret != -EAGAIN) { 1929 err = ret; 1930 goto out; 1931 } 1932 1933 leaf = path->nodes[0]; 1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1935 refs = btrfs_extent_refs(leaf, item); 1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1937 if (extent_op) 1938 __run_delayed_extent_op(extent_op, leaf, item); 1939 1940 btrfs_mark_buffer_dirty(leaf); 1941 btrfs_release_path(path); 1942 1943 path->reada = 1; 1944 path->leave_spinning = 1; 1945 1946 /* now insert the actual backref */ 1947 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1948 path, bytenr, parent, root_objectid, 1949 owner, offset, refs_to_add); 1950 if (ret) 1951 btrfs_abort_transaction(trans, root, ret); 1952 out: 1953 btrfs_free_path(path); 1954 return err; 1955 } 1956 1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1958 struct btrfs_root *root, 1959 struct btrfs_delayed_ref_node *node, 1960 struct btrfs_delayed_extent_op *extent_op, 1961 int insert_reserved) 1962 { 1963 int ret = 0; 1964 struct btrfs_delayed_data_ref *ref; 1965 struct btrfs_key ins; 1966 u64 parent = 0; 1967 u64 ref_root = 0; 1968 u64 flags = 0; 1969 1970 ins.objectid = node->bytenr; 1971 ins.offset = node->num_bytes; 1972 ins.type = BTRFS_EXTENT_ITEM_KEY; 1973 1974 ref = btrfs_delayed_node_to_data_ref(node); 1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1976 parent = ref->parent; 1977 else 1978 ref_root = ref->root; 1979 1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1981 if (extent_op) { 1982 BUG_ON(extent_op->update_key); 1983 flags |= extent_op->flags_to_set; 1984 } 1985 ret = alloc_reserved_file_extent(trans, root, 1986 parent, ref_root, flags, 1987 ref->objectid, ref->offset, 1988 &ins, node->ref_mod); 1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1991 node->num_bytes, parent, 1992 ref_root, ref->objectid, 1993 ref->offset, node->ref_mod, 1994 extent_op); 1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1996 ret = __btrfs_free_extent(trans, root, node->bytenr, 1997 node->num_bytes, parent, 1998 ref_root, ref->objectid, 1999 ref->offset, node->ref_mod, 2000 extent_op); 2001 } else { 2002 BUG(); 2003 } 2004 return ret; 2005 } 2006 2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2008 struct extent_buffer *leaf, 2009 struct btrfs_extent_item *ei) 2010 { 2011 u64 flags = btrfs_extent_flags(leaf, ei); 2012 if (extent_op->update_flags) { 2013 flags |= extent_op->flags_to_set; 2014 btrfs_set_extent_flags(leaf, ei, flags); 2015 } 2016 2017 if (extent_op->update_key) { 2018 struct btrfs_tree_block_info *bi; 2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2020 bi = (struct btrfs_tree_block_info *)(ei + 1); 2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2022 } 2023 } 2024 2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2026 struct btrfs_root *root, 2027 struct btrfs_delayed_ref_node *node, 2028 struct btrfs_delayed_extent_op *extent_op) 2029 { 2030 struct btrfs_key key; 2031 struct btrfs_path *path; 2032 struct btrfs_extent_item *ei; 2033 struct extent_buffer *leaf; 2034 u32 item_size; 2035 int ret; 2036 int err = 0; 2037 2038 if (trans->aborted) 2039 return 0; 2040 2041 path = btrfs_alloc_path(); 2042 if (!path) 2043 return -ENOMEM; 2044 2045 key.objectid = node->bytenr; 2046 key.type = BTRFS_EXTENT_ITEM_KEY; 2047 key.offset = node->num_bytes; 2048 2049 path->reada = 1; 2050 path->leave_spinning = 1; 2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2052 path, 0, 1); 2053 if (ret < 0) { 2054 err = ret; 2055 goto out; 2056 } 2057 if (ret > 0) { 2058 err = -EIO; 2059 goto out; 2060 } 2061 2062 leaf = path->nodes[0]; 2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2065 if (item_size < sizeof(*ei)) { 2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2067 path, (u64)-1, 0); 2068 if (ret < 0) { 2069 err = ret; 2070 goto out; 2071 } 2072 leaf = path->nodes[0]; 2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2074 } 2075 #endif 2076 BUG_ON(item_size < sizeof(*ei)); 2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 __run_delayed_extent_op(extent_op, leaf, ei); 2079 2080 btrfs_mark_buffer_dirty(leaf); 2081 out: 2082 btrfs_free_path(path); 2083 return err; 2084 } 2085 2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2087 struct btrfs_root *root, 2088 struct btrfs_delayed_ref_node *node, 2089 struct btrfs_delayed_extent_op *extent_op, 2090 int insert_reserved) 2091 { 2092 int ret = 0; 2093 struct btrfs_delayed_tree_ref *ref; 2094 struct btrfs_key ins; 2095 u64 parent = 0; 2096 u64 ref_root = 0; 2097 2098 ins.objectid = node->bytenr; 2099 ins.offset = node->num_bytes; 2100 ins.type = BTRFS_EXTENT_ITEM_KEY; 2101 2102 ref = btrfs_delayed_node_to_tree_ref(node); 2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2104 parent = ref->parent; 2105 else 2106 ref_root = ref->root; 2107 2108 BUG_ON(node->ref_mod != 1); 2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2110 BUG_ON(!extent_op || !extent_op->update_flags || 2111 !extent_op->update_key); 2112 ret = alloc_reserved_tree_block(trans, root, 2113 parent, ref_root, 2114 extent_op->flags_to_set, 2115 &extent_op->key, 2116 ref->level, &ins); 2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2119 node->num_bytes, parent, ref_root, 2120 ref->level, 0, 1, extent_op); 2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2122 ret = __btrfs_free_extent(trans, root, node->bytenr, 2123 node->num_bytes, parent, ref_root, 2124 ref->level, 0, 1, extent_op); 2125 } else { 2126 BUG(); 2127 } 2128 return ret; 2129 } 2130 2131 /* helper function to actually process a single delayed ref entry */ 2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_delayed_ref_node *node, 2135 struct btrfs_delayed_extent_op *extent_op, 2136 int insert_reserved) 2137 { 2138 int ret = 0; 2139 2140 if (trans->aborted) 2141 return 0; 2142 2143 if (btrfs_delayed_ref_is_head(node)) { 2144 struct btrfs_delayed_ref_head *head; 2145 /* 2146 * we've hit the end of the chain and we were supposed 2147 * to insert this extent into the tree. But, it got 2148 * deleted before we ever needed to insert it, so all 2149 * we have to do is clean up the accounting 2150 */ 2151 BUG_ON(extent_op); 2152 head = btrfs_delayed_node_to_head(node); 2153 if (insert_reserved) { 2154 btrfs_pin_extent(root, node->bytenr, 2155 node->num_bytes, 1); 2156 if (head->is_data) { 2157 ret = btrfs_del_csums(trans, root, 2158 node->bytenr, 2159 node->num_bytes); 2160 } 2161 } 2162 mutex_unlock(&head->mutex); 2163 return ret; 2164 } 2165 2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2168 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2169 insert_reserved); 2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2171 node->type == BTRFS_SHARED_DATA_REF_KEY) 2172 ret = run_delayed_data_ref(trans, root, node, extent_op, 2173 insert_reserved); 2174 else 2175 BUG(); 2176 return ret; 2177 } 2178 2179 static noinline struct btrfs_delayed_ref_node * 2180 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2181 { 2182 struct rb_node *node; 2183 struct btrfs_delayed_ref_node *ref; 2184 int action = BTRFS_ADD_DELAYED_REF; 2185 again: 2186 /* 2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2188 * this prevents ref count from going down to zero when 2189 * there still are pending delayed ref. 2190 */ 2191 node = rb_prev(&head->node.rb_node); 2192 while (1) { 2193 if (!node) 2194 break; 2195 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2196 rb_node); 2197 if (ref->bytenr != head->node.bytenr) 2198 break; 2199 if (ref->action == action) 2200 return ref; 2201 node = rb_prev(node); 2202 } 2203 if (action == BTRFS_ADD_DELAYED_REF) { 2204 action = BTRFS_DROP_DELAYED_REF; 2205 goto again; 2206 } 2207 return NULL; 2208 } 2209 2210 /* 2211 * Returns 0 on success or if called with an already aborted transaction. 2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2213 */ 2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct list_head *cluster) 2217 { 2218 struct btrfs_delayed_ref_root *delayed_refs; 2219 struct btrfs_delayed_ref_node *ref; 2220 struct btrfs_delayed_ref_head *locked_ref = NULL; 2221 struct btrfs_delayed_extent_op *extent_op; 2222 int ret; 2223 int count = 0; 2224 int must_insert_reserved = 0; 2225 2226 delayed_refs = &trans->transaction->delayed_refs; 2227 while (1) { 2228 if (!locked_ref) { 2229 /* pick a new head ref from the cluster list */ 2230 if (list_empty(cluster)) 2231 break; 2232 2233 locked_ref = list_entry(cluster->next, 2234 struct btrfs_delayed_ref_head, cluster); 2235 2236 /* grab the lock that says we are going to process 2237 * all the refs for this head */ 2238 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2239 2240 /* 2241 * we may have dropped the spin lock to get the head 2242 * mutex lock, and that might have given someone else 2243 * time to free the head. If that's true, it has been 2244 * removed from our list and we can move on. 2245 */ 2246 if (ret == -EAGAIN) { 2247 locked_ref = NULL; 2248 count++; 2249 continue; 2250 } 2251 } 2252 2253 /* 2254 * locked_ref is the head node, so we have to go one 2255 * node back for any delayed ref updates 2256 */ 2257 ref = select_delayed_ref(locked_ref); 2258 2259 if (ref && ref->seq && 2260 btrfs_check_delayed_seq(delayed_refs, ref->seq)) { 2261 /* 2262 * there are still refs with lower seq numbers in the 2263 * process of being added. Don't run this ref yet. 2264 */ 2265 list_del_init(&locked_ref->cluster); 2266 mutex_unlock(&locked_ref->mutex); 2267 locked_ref = NULL; 2268 delayed_refs->num_heads_ready++; 2269 spin_unlock(&delayed_refs->lock); 2270 cond_resched(); 2271 spin_lock(&delayed_refs->lock); 2272 continue; 2273 } 2274 2275 /* 2276 * record the must insert reserved flag before we 2277 * drop the spin lock. 2278 */ 2279 must_insert_reserved = locked_ref->must_insert_reserved; 2280 locked_ref->must_insert_reserved = 0; 2281 2282 extent_op = locked_ref->extent_op; 2283 locked_ref->extent_op = NULL; 2284 2285 if (!ref) { 2286 /* All delayed refs have been processed, Go ahead 2287 * and send the head node to run_one_delayed_ref, 2288 * so that any accounting fixes can happen 2289 */ 2290 ref = &locked_ref->node; 2291 2292 if (extent_op && must_insert_reserved) { 2293 kfree(extent_op); 2294 extent_op = NULL; 2295 } 2296 2297 if (extent_op) { 2298 spin_unlock(&delayed_refs->lock); 2299 2300 ret = run_delayed_extent_op(trans, root, 2301 ref, extent_op); 2302 kfree(extent_op); 2303 2304 if (ret) { 2305 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret); 2306 return ret; 2307 } 2308 2309 goto next; 2310 } 2311 2312 list_del_init(&locked_ref->cluster); 2313 locked_ref = NULL; 2314 } 2315 2316 ref->in_tree = 0; 2317 rb_erase(&ref->rb_node, &delayed_refs->root); 2318 delayed_refs->num_entries--; 2319 /* 2320 * we modified num_entries, but as we're currently running 2321 * delayed refs, skip 2322 * wake_up(&delayed_refs->seq_wait); 2323 * here. 2324 */ 2325 spin_unlock(&delayed_refs->lock); 2326 2327 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2328 must_insert_reserved); 2329 2330 btrfs_put_delayed_ref(ref); 2331 kfree(extent_op); 2332 count++; 2333 2334 if (ret) { 2335 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret); 2336 return ret; 2337 } 2338 2339 next: 2340 do_chunk_alloc(trans, root->fs_info->extent_root, 2341 2 * 1024 * 1024, 2342 btrfs_get_alloc_profile(root, 0), 2343 CHUNK_ALLOC_NO_FORCE); 2344 cond_resched(); 2345 spin_lock(&delayed_refs->lock); 2346 } 2347 return count; 2348 } 2349 2350 2351 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs, 2352 unsigned long num_refs) 2353 { 2354 struct list_head *first_seq = delayed_refs->seq_head.next; 2355 2356 spin_unlock(&delayed_refs->lock); 2357 pr_debug("waiting for more refs (num %ld, first %p)\n", 2358 num_refs, first_seq); 2359 wait_event(delayed_refs->seq_wait, 2360 num_refs != delayed_refs->num_entries || 2361 delayed_refs->seq_head.next != first_seq); 2362 pr_debug("done waiting for more refs (num %ld, first %p)\n", 2363 delayed_refs->num_entries, delayed_refs->seq_head.next); 2364 spin_lock(&delayed_refs->lock); 2365 } 2366 2367 /* 2368 * this starts processing the delayed reference count updates and 2369 * extent insertions we have queued up so far. count can be 2370 * 0, which means to process everything in the tree at the start 2371 * of the run (but not newly added entries), or it can be some target 2372 * number you'd like to process. 2373 * 2374 * Returns 0 on success or if called with an aborted transaction 2375 * Returns <0 on error and aborts the transaction 2376 */ 2377 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2378 struct btrfs_root *root, unsigned long count) 2379 { 2380 struct rb_node *node; 2381 struct btrfs_delayed_ref_root *delayed_refs; 2382 struct btrfs_delayed_ref_node *ref; 2383 struct list_head cluster; 2384 int ret; 2385 u64 delayed_start; 2386 int run_all = count == (unsigned long)-1; 2387 int run_most = 0; 2388 unsigned long num_refs = 0; 2389 int consider_waiting; 2390 2391 /* We'll clean this up in btrfs_cleanup_transaction */ 2392 if (trans->aborted) 2393 return 0; 2394 2395 if (root == root->fs_info->extent_root) 2396 root = root->fs_info->tree_root; 2397 2398 do_chunk_alloc(trans, root->fs_info->extent_root, 2399 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0), 2400 CHUNK_ALLOC_NO_FORCE); 2401 2402 delayed_refs = &trans->transaction->delayed_refs; 2403 INIT_LIST_HEAD(&cluster); 2404 again: 2405 consider_waiting = 0; 2406 spin_lock(&delayed_refs->lock); 2407 if (count == 0) { 2408 count = delayed_refs->num_entries * 2; 2409 run_most = 1; 2410 } 2411 while (1) { 2412 if (!(run_all || run_most) && 2413 delayed_refs->num_heads_ready < 64) 2414 break; 2415 2416 /* 2417 * go find something we can process in the rbtree. We start at 2418 * the beginning of the tree, and then build a cluster 2419 * of refs to process starting at the first one we are able to 2420 * lock 2421 */ 2422 delayed_start = delayed_refs->run_delayed_start; 2423 ret = btrfs_find_ref_cluster(trans, &cluster, 2424 delayed_refs->run_delayed_start); 2425 if (ret) 2426 break; 2427 2428 if (delayed_start >= delayed_refs->run_delayed_start) { 2429 if (consider_waiting == 0) { 2430 /* 2431 * btrfs_find_ref_cluster looped. let's do one 2432 * more cycle. if we don't run any delayed ref 2433 * during that cycle (because we can't because 2434 * all of them are blocked) and if the number of 2435 * refs doesn't change, we avoid busy waiting. 2436 */ 2437 consider_waiting = 1; 2438 num_refs = delayed_refs->num_entries; 2439 } else { 2440 wait_for_more_refs(delayed_refs, num_refs); 2441 /* 2442 * after waiting, things have changed. we 2443 * dropped the lock and someone else might have 2444 * run some refs, built new clusters and so on. 2445 * therefore, we restart staleness detection. 2446 */ 2447 consider_waiting = 0; 2448 } 2449 } 2450 2451 ret = run_clustered_refs(trans, root, &cluster); 2452 if (ret < 0) { 2453 spin_unlock(&delayed_refs->lock); 2454 btrfs_abort_transaction(trans, root, ret); 2455 return ret; 2456 } 2457 2458 count -= min_t(unsigned long, ret, count); 2459 2460 if (count == 0) 2461 break; 2462 2463 if (ret || delayed_refs->run_delayed_start == 0) { 2464 /* refs were run, let's reset staleness detection */ 2465 consider_waiting = 0; 2466 } 2467 } 2468 2469 if (run_all) { 2470 node = rb_first(&delayed_refs->root); 2471 if (!node) 2472 goto out; 2473 count = (unsigned long)-1; 2474 2475 while (node) { 2476 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2477 rb_node); 2478 if (btrfs_delayed_ref_is_head(ref)) { 2479 struct btrfs_delayed_ref_head *head; 2480 2481 head = btrfs_delayed_node_to_head(ref); 2482 atomic_inc(&ref->refs); 2483 2484 spin_unlock(&delayed_refs->lock); 2485 /* 2486 * Mutex was contended, block until it's 2487 * released and try again 2488 */ 2489 mutex_lock(&head->mutex); 2490 mutex_unlock(&head->mutex); 2491 2492 btrfs_put_delayed_ref(ref); 2493 cond_resched(); 2494 goto again; 2495 } 2496 node = rb_next(node); 2497 } 2498 spin_unlock(&delayed_refs->lock); 2499 schedule_timeout(1); 2500 goto again; 2501 } 2502 out: 2503 spin_unlock(&delayed_refs->lock); 2504 return 0; 2505 } 2506 2507 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2508 struct btrfs_root *root, 2509 u64 bytenr, u64 num_bytes, u64 flags, 2510 int is_data) 2511 { 2512 struct btrfs_delayed_extent_op *extent_op; 2513 int ret; 2514 2515 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2516 if (!extent_op) 2517 return -ENOMEM; 2518 2519 extent_op->flags_to_set = flags; 2520 extent_op->update_flags = 1; 2521 extent_op->update_key = 0; 2522 extent_op->is_data = is_data ? 1 : 0; 2523 2524 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2525 num_bytes, extent_op); 2526 if (ret) 2527 kfree(extent_op); 2528 return ret; 2529 } 2530 2531 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2532 struct btrfs_root *root, 2533 struct btrfs_path *path, 2534 u64 objectid, u64 offset, u64 bytenr) 2535 { 2536 struct btrfs_delayed_ref_head *head; 2537 struct btrfs_delayed_ref_node *ref; 2538 struct btrfs_delayed_data_ref *data_ref; 2539 struct btrfs_delayed_ref_root *delayed_refs; 2540 struct rb_node *node; 2541 int ret = 0; 2542 2543 ret = -ENOENT; 2544 delayed_refs = &trans->transaction->delayed_refs; 2545 spin_lock(&delayed_refs->lock); 2546 head = btrfs_find_delayed_ref_head(trans, bytenr); 2547 if (!head) 2548 goto out; 2549 2550 if (!mutex_trylock(&head->mutex)) { 2551 atomic_inc(&head->node.refs); 2552 spin_unlock(&delayed_refs->lock); 2553 2554 btrfs_release_path(path); 2555 2556 /* 2557 * Mutex was contended, block until it's released and let 2558 * caller try again 2559 */ 2560 mutex_lock(&head->mutex); 2561 mutex_unlock(&head->mutex); 2562 btrfs_put_delayed_ref(&head->node); 2563 return -EAGAIN; 2564 } 2565 2566 node = rb_prev(&head->node.rb_node); 2567 if (!node) 2568 goto out_unlock; 2569 2570 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2571 2572 if (ref->bytenr != bytenr) 2573 goto out_unlock; 2574 2575 ret = 1; 2576 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2577 goto out_unlock; 2578 2579 data_ref = btrfs_delayed_node_to_data_ref(ref); 2580 2581 node = rb_prev(node); 2582 if (node) { 2583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2584 if (ref->bytenr == bytenr) 2585 goto out_unlock; 2586 } 2587 2588 if (data_ref->root != root->root_key.objectid || 2589 data_ref->objectid != objectid || data_ref->offset != offset) 2590 goto out_unlock; 2591 2592 ret = 0; 2593 out_unlock: 2594 mutex_unlock(&head->mutex); 2595 out: 2596 spin_unlock(&delayed_refs->lock); 2597 return ret; 2598 } 2599 2600 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2601 struct btrfs_root *root, 2602 struct btrfs_path *path, 2603 u64 objectid, u64 offset, u64 bytenr) 2604 { 2605 struct btrfs_root *extent_root = root->fs_info->extent_root; 2606 struct extent_buffer *leaf; 2607 struct btrfs_extent_data_ref *ref; 2608 struct btrfs_extent_inline_ref *iref; 2609 struct btrfs_extent_item *ei; 2610 struct btrfs_key key; 2611 u32 item_size; 2612 int ret; 2613 2614 key.objectid = bytenr; 2615 key.offset = (u64)-1; 2616 key.type = BTRFS_EXTENT_ITEM_KEY; 2617 2618 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2619 if (ret < 0) 2620 goto out; 2621 BUG_ON(ret == 0); /* Corruption */ 2622 2623 ret = -ENOENT; 2624 if (path->slots[0] == 0) 2625 goto out; 2626 2627 path->slots[0]--; 2628 leaf = path->nodes[0]; 2629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2630 2631 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2632 goto out; 2633 2634 ret = 1; 2635 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2637 if (item_size < sizeof(*ei)) { 2638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2639 goto out; 2640 } 2641 #endif 2642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2643 2644 if (item_size != sizeof(*ei) + 2645 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2646 goto out; 2647 2648 if (btrfs_extent_generation(leaf, ei) <= 2649 btrfs_root_last_snapshot(&root->root_item)) 2650 goto out; 2651 2652 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2653 if (btrfs_extent_inline_ref_type(leaf, iref) != 2654 BTRFS_EXTENT_DATA_REF_KEY) 2655 goto out; 2656 2657 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2658 if (btrfs_extent_refs(leaf, ei) != 2659 btrfs_extent_data_ref_count(leaf, ref) || 2660 btrfs_extent_data_ref_root(leaf, ref) != 2661 root->root_key.objectid || 2662 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2663 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2664 goto out; 2665 2666 ret = 0; 2667 out: 2668 return ret; 2669 } 2670 2671 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2672 struct btrfs_root *root, 2673 u64 objectid, u64 offset, u64 bytenr) 2674 { 2675 struct btrfs_path *path; 2676 int ret; 2677 int ret2; 2678 2679 path = btrfs_alloc_path(); 2680 if (!path) 2681 return -ENOENT; 2682 2683 do { 2684 ret = check_committed_ref(trans, root, path, objectid, 2685 offset, bytenr); 2686 if (ret && ret != -ENOENT) 2687 goto out; 2688 2689 ret2 = check_delayed_ref(trans, root, path, objectid, 2690 offset, bytenr); 2691 } while (ret2 == -EAGAIN); 2692 2693 if (ret2 && ret2 != -ENOENT) { 2694 ret = ret2; 2695 goto out; 2696 } 2697 2698 if (ret != -ENOENT || ret2 != -ENOENT) 2699 ret = 0; 2700 out: 2701 btrfs_free_path(path); 2702 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2703 WARN_ON(ret > 0); 2704 return ret; 2705 } 2706 2707 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2708 struct btrfs_root *root, 2709 struct extent_buffer *buf, 2710 int full_backref, int inc, int for_cow) 2711 { 2712 u64 bytenr; 2713 u64 num_bytes; 2714 u64 parent; 2715 u64 ref_root; 2716 u32 nritems; 2717 struct btrfs_key key; 2718 struct btrfs_file_extent_item *fi; 2719 int i; 2720 int level; 2721 int ret = 0; 2722 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2723 u64, u64, u64, u64, u64, u64, int); 2724 2725 ref_root = btrfs_header_owner(buf); 2726 nritems = btrfs_header_nritems(buf); 2727 level = btrfs_header_level(buf); 2728 2729 if (!root->ref_cows && level == 0) 2730 return 0; 2731 2732 if (inc) 2733 process_func = btrfs_inc_extent_ref; 2734 else 2735 process_func = btrfs_free_extent; 2736 2737 if (full_backref) 2738 parent = buf->start; 2739 else 2740 parent = 0; 2741 2742 for (i = 0; i < nritems; i++) { 2743 if (level == 0) { 2744 btrfs_item_key_to_cpu(buf, &key, i); 2745 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2746 continue; 2747 fi = btrfs_item_ptr(buf, i, 2748 struct btrfs_file_extent_item); 2749 if (btrfs_file_extent_type(buf, fi) == 2750 BTRFS_FILE_EXTENT_INLINE) 2751 continue; 2752 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2753 if (bytenr == 0) 2754 continue; 2755 2756 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2757 key.offset -= btrfs_file_extent_offset(buf, fi); 2758 ret = process_func(trans, root, bytenr, num_bytes, 2759 parent, ref_root, key.objectid, 2760 key.offset, for_cow); 2761 if (ret) 2762 goto fail; 2763 } else { 2764 bytenr = btrfs_node_blockptr(buf, i); 2765 num_bytes = btrfs_level_size(root, level - 1); 2766 ret = process_func(trans, root, bytenr, num_bytes, 2767 parent, ref_root, level - 1, 0, 2768 for_cow); 2769 if (ret) 2770 goto fail; 2771 } 2772 } 2773 return 0; 2774 fail: 2775 return ret; 2776 } 2777 2778 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2779 struct extent_buffer *buf, int full_backref, int for_cow) 2780 { 2781 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2782 } 2783 2784 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2785 struct extent_buffer *buf, int full_backref, int for_cow) 2786 { 2787 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2788 } 2789 2790 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2791 struct btrfs_root *root, 2792 struct btrfs_path *path, 2793 struct btrfs_block_group_cache *cache) 2794 { 2795 int ret; 2796 struct btrfs_root *extent_root = root->fs_info->extent_root; 2797 unsigned long bi; 2798 struct extent_buffer *leaf; 2799 2800 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2801 if (ret < 0) 2802 goto fail; 2803 BUG_ON(ret); /* Corruption */ 2804 2805 leaf = path->nodes[0]; 2806 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2807 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2808 btrfs_mark_buffer_dirty(leaf); 2809 btrfs_release_path(path); 2810 fail: 2811 if (ret) { 2812 btrfs_abort_transaction(trans, root, ret); 2813 return ret; 2814 } 2815 return 0; 2816 2817 } 2818 2819 static struct btrfs_block_group_cache * 2820 next_block_group(struct btrfs_root *root, 2821 struct btrfs_block_group_cache *cache) 2822 { 2823 struct rb_node *node; 2824 spin_lock(&root->fs_info->block_group_cache_lock); 2825 node = rb_next(&cache->cache_node); 2826 btrfs_put_block_group(cache); 2827 if (node) { 2828 cache = rb_entry(node, struct btrfs_block_group_cache, 2829 cache_node); 2830 btrfs_get_block_group(cache); 2831 } else 2832 cache = NULL; 2833 spin_unlock(&root->fs_info->block_group_cache_lock); 2834 return cache; 2835 } 2836 2837 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2838 struct btrfs_trans_handle *trans, 2839 struct btrfs_path *path) 2840 { 2841 struct btrfs_root *root = block_group->fs_info->tree_root; 2842 struct inode *inode = NULL; 2843 u64 alloc_hint = 0; 2844 int dcs = BTRFS_DC_ERROR; 2845 int num_pages = 0; 2846 int retries = 0; 2847 int ret = 0; 2848 2849 /* 2850 * If this block group is smaller than 100 megs don't bother caching the 2851 * block group. 2852 */ 2853 if (block_group->key.offset < (100 * 1024 * 1024)) { 2854 spin_lock(&block_group->lock); 2855 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2856 spin_unlock(&block_group->lock); 2857 return 0; 2858 } 2859 2860 again: 2861 inode = lookup_free_space_inode(root, block_group, path); 2862 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2863 ret = PTR_ERR(inode); 2864 btrfs_release_path(path); 2865 goto out; 2866 } 2867 2868 if (IS_ERR(inode)) { 2869 BUG_ON(retries); 2870 retries++; 2871 2872 if (block_group->ro) 2873 goto out_free; 2874 2875 ret = create_free_space_inode(root, trans, block_group, path); 2876 if (ret) 2877 goto out_free; 2878 goto again; 2879 } 2880 2881 /* We've already setup this transaction, go ahead and exit */ 2882 if (block_group->cache_generation == trans->transid && 2883 i_size_read(inode)) { 2884 dcs = BTRFS_DC_SETUP; 2885 goto out_put; 2886 } 2887 2888 /* 2889 * We want to set the generation to 0, that way if anything goes wrong 2890 * from here on out we know not to trust this cache when we load up next 2891 * time. 2892 */ 2893 BTRFS_I(inode)->generation = 0; 2894 ret = btrfs_update_inode(trans, root, inode); 2895 WARN_ON(ret); 2896 2897 if (i_size_read(inode) > 0) { 2898 ret = btrfs_truncate_free_space_cache(root, trans, path, 2899 inode); 2900 if (ret) 2901 goto out_put; 2902 } 2903 2904 spin_lock(&block_group->lock); 2905 if (block_group->cached != BTRFS_CACHE_FINISHED) { 2906 /* We're not cached, don't bother trying to write stuff out */ 2907 dcs = BTRFS_DC_WRITTEN; 2908 spin_unlock(&block_group->lock); 2909 goto out_put; 2910 } 2911 spin_unlock(&block_group->lock); 2912 2913 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 2914 if (!num_pages) 2915 num_pages = 1; 2916 2917 /* 2918 * Just to make absolutely sure we have enough space, we're going to 2919 * preallocate 12 pages worth of space for each block group. In 2920 * practice we ought to use at most 8, but we need extra space so we can 2921 * add our header and have a terminator between the extents and the 2922 * bitmaps. 2923 */ 2924 num_pages *= 16; 2925 num_pages *= PAGE_CACHE_SIZE; 2926 2927 ret = btrfs_check_data_free_space(inode, num_pages); 2928 if (ret) 2929 goto out_put; 2930 2931 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2932 num_pages, num_pages, 2933 &alloc_hint); 2934 if (!ret) 2935 dcs = BTRFS_DC_SETUP; 2936 btrfs_free_reserved_data_space(inode, num_pages); 2937 2938 out_put: 2939 iput(inode); 2940 out_free: 2941 btrfs_release_path(path); 2942 out: 2943 spin_lock(&block_group->lock); 2944 if (!ret && dcs == BTRFS_DC_SETUP) 2945 block_group->cache_generation = trans->transid; 2946 block_group->disk_cache_state = dcs; 2947 spin_unlock(&block_group->lock); 2948 2949 return ret; 2950 } 2951 2952 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2953 struct btrfs_root *root) 2954 { 2955 struct btrfs_block_group_cache *cache; 2956 int err = 0; 2957 struct btrfs_path *path; 2958 u64 last = 0; 2959 2960 path = btrfs_alloc_path(); 2961 if (!path) 2962 return -ENOMEM; 2963 2964 again: 2965 while (1) { 2966 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2967 while (cache) { 2968 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2969 break; 2970 cache = next_block_group(root, cache); 2971 } 2972 if (!cache) { 2973 if (last == 0) 2974 break; 2975 last = 0; 2976 continue; 2977 } 2978 err = cache_save_setup(cache, trans, path); 2979 last = cache->key.objectid + cache->key.offset; 2980 btrfs_put_block_group(cache); 2981 } 2982 2983 while (1) { 2984 if (last == 0) { 2985 err = btrfs_run_delayed_refs(trans, root, 2986 (unsigned long)-1); 2987 if (err) /* File system offline */ 2988 goto out; 2989 } 2990 2991 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2992 while (cache) { 2993 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 2994 btrfs_put_block_group(cache); 2995 goto again; 2996 } 2997 2998 if (cache->dirty) 2999 break; 3000 cache = next_block_group(root, cache); 3001 } 3002 if (!cache) { 3003 if (last == 0) 3004 break; 3005 last = 0; 3006 continue; 3007 } 3008 3009 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3010 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3011 cache->dirty = 0; 3012 last = cache->key.objectid + cache->key.offset; 3013 3014 err = write_one_cache_group(trans, root, path, cache); 3015 if (err) /* File system offline */ 3016 goto out; 3017 3018 btrfs_put_block_group(cache); 3019 } 3020 3021 while (1) { 3022 /* 3023 * I don't think this is needed since we're just marking our 3024 * preallocated extent as written, but just in case it can't 3025 * hurt. 3026 */ 3027 if (last == 0) { 3028 err = btrfs_run_delayed_refs(trans, root, 3029 (unsigned long)-1); 3030 if (err) /* File system offline */ 3031 goto out; 3032 } 3033 3034 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3035 while (cache) { 3036 /* 3037 * Really this shouldn't happen, but it could if we 3038 * couldn't write the entire preallocated extent and 3039 * splitting the extent resulted in a new block. 3040 */ 3041 if (cache->dirty) { 3042 btrfs_put_block_group(cache); 3043 goto again; 3044 } 3045 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3046 break; 3047 cache = next_block_group(root, cache); 3048 } 3049 if (!cache) { 3050 if (last == 0) 3051 break; 3052 last = 0; 3053 continue; 3054 } 3055 3056 err = btrfs_write_out_cache(root, trans, cache, path); 3057 3058 /* 3059 * If we didn't have an error then the cache state is still 3060 * NEED_WRITE, so we can set it to WRITTEN. 3061 */ 3062 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3063 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3064 last = cache->key.objectid + cache->key.offset; 3065 btrfs_put_block_group(cache); 3066 } 3067 out: 3068 3069 btrfs_free_path(path); 3070 return err; 3071 } 3072 3073 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3074 { 3075 struct btrfs_block_group_cache *block_group; 3076 int readonly = 0; 3077 3078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3079 if (!block_group || block_group->ro) 3080 readonly = 1; 3081 if (block_group) 3082 btrfs_put_block_group(block_group); 3083 return readonly; 3084 } 3085 3086 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3087 u64 total_bytes, u64 bytes_used, 3088 struct btrfs_space_info **space_info) 3089 { 3090 struct btrfs_space_info *found; 3091 int i; 3092 int factor; 3093 3094 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3095 BTRFS_BLOCK_GROUP_RAID10)) 3096 factor = 2; 3097 else 3098 factor = 1; 3099 3100 found = __find_space_info(info, flags); 3101 if (found) { 3102 spin_lock(&found->lock); 3103 found->total_bytes += total_bytes; 3104 found->disk_total += total_bytes * factor; 3105 found->bytes_used += bytes_used; 3106 found->disk_used += bytes_used * factor; 3107 found->full = 0; 3108 spin_unlock(&found->lock); 3109 *space_info = found; 3110 return 0; 3111 } 3112 found = kzalloc(sizeof(*found), GFP_NOFS); 3113 if (!found) 3114 return -ENOMEM; 3115 3116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3117 INIT_LIST_HEAD(&found->block_groups[i]); 3118 init_rwsem(&found->groups_sem); 3119 spin_lock_init(&found->lock); 3120 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3121 found->total_bytes = total_bytes; 3122 found->disk_total = total_bytes * factor; 3123 found->bytes_used = bytes_used; 3124 found->disk_used = bytes_used * factor; 3125 found->bytes_pinned = 0; 3126 found->bytes_reserved = 0; 3127 found->bytes_readonly = 0; 3128 found->bytes_may_use = 0; 3129 found->full = 0; 3130 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3131 found->chunk_alloc = 0; 3132 found->flush = 0; 3133 init_waitqueue_head(&found->wait); 3134 *space_info = found; 3135 list_add_rcu(&found->list, &info->space_info); 3136 return 0; 3137 } 3138 3139 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3140 { 3141 u64 extra_flags = chunk_to_extended(flags) & 3142 BTRFS_EXTENDED_PROFILE_MASK; 3143 3144 if (flags & BTRFS_BLOCK_GROUP_DATA) 3145 fs_info->avail_data_alloc_bits |= extra_flags; 3146 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3147 fs_info->avail_metadata_alloc_bits |= extra_flags; 3148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3149 fs_info->avail_system_alloc_bits |= extra_flags; 3150 } 3151 3152 /* 3153 * returns target flags in extended format or 0 if restripe for this 3154 * chunk_type is not in progress 3155 */ 3156 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3157 { 3158 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3159 u64 target = 0; 3160 3161 BUG_ON(!mutex_is_locked(&fs_info->volume_mutex) && 3162 !spin_is_locked(&fs_info->balance_lock)); 3163 3164 if (!bctl) 3165 return 0; 3166 3167 if (flags & BTRFS_BLOCK_GROUP_DATA && 3168 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3169 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3170 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3171 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3172 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3173 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3174 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3175 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3176 } 3177 3178 return target; 3179 } 3180 3181 /* 3182 * @flags: available profiles in extended format (see ctree.h) 3183 * 3184 * Returns reduced profile in chunk format. If profile changing is in 3185 * progress (either running or paused) picks the target profile (if it's 3186 * already available), otherwise falls back to plain reducing. 3187 */ 3188 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3189 { 3190 /* 3191 * we add in the count of missing devices because we want 3192 * to make sure that any RAID levels on a degraded FS 3193 * continue to be honored. 3194 */ 3195 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3196 root->fs_info->fs_devices->missing_devices; 3197 u64 target; 3198 3199 /* 3200 * see if restripe for this chunk_type is in progress, if so 3201 * try to reduce to the target profile 3202 */ 3203 spin_lock(&root->fs_info->balance_lock); 3204 target = get_restripe_target(root->fs_info, flags); 3205 if (target) { 3206 /* pick target profile only if it's already available */ 3207 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3208 spin_unlock(&root->fs_info->balance_lock); 3209 return extended_to_chunk(target); 3210 } 3211 } 3212 spin_unlock(&root->fs_info->balance_lock); 3213 3214 if (num_devices == 1) 3215 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3216 if (num_devices < 4) 3217 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3218 3219 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3220 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3221 BTRFS_BLOCK_GROUP_RAID10))) { 3222 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3223 } 3224 3225 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3226 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3227 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3228 } 3229 3230 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3231 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3232 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3233 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3234 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3235 } 3236 3237 return extended_to_chunk(flags); 3238 } 3239 3240 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3241 { 3242 if (flags & BTRFS_BLOCK_GROUP_DATA) 3243 flags |= root->fs_info->avail_data_alloc_bits; 3244 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3245 flags |= root->fs_info->avail_system_alloc_bits; 3246 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3247 flags |= root->fs_info->avail_metadata_alloc_bits; 3248 3249 return btrfs_reduce_alloc_profile(root, flags); 3250 } 3251 3252 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3253 { 3254 u64 flags; 3255 3256 if (data) 3257 flags = BTRFS_BLOCK_GROUP_DATA; 3258 else if (root == root->fs_info->chunk_root) 3259 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3260 else 3261 flags = BTRFS_BLOCK_GROUP_METADATA; 3262 3263 return get_alloc_profile(root, flags); 3264 } 3265 3266 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 3267 { 3268 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 3269 BTRFS_BLOCK_GROUP_DATA); 3270 } 3271 3272 /* 3273 * This will check the space that the inode allocates from to make sure we have 3274 * enough space for bytes. 3275 */ 3276 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3277 { 3278 struct btrfs_space_info *data_sinfo; 3279 struct btrfs_root *root = BTRFS_I(inode)->root; 3280 u64 used; 3281 int ret = 0, committed = 0, alloc_chunk = 1; 3282 3283 /* make sure bytes are sectorsize aligned */ 3284 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3285 3286 if (root == root->fs_info->tree_root || 3287 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3288 alloc_chunk = 0; 3289 committed = 1; 3290 } 3291 3292 data_sinfo = BTRFS_I(inode)->space_info; 3293 if (!data_sinfo) 3294 goto alloc; 3295 3296 again: 3297 /* make sure we have enough space to handle the data first */ 3298 spin_lock(&data_sinfo->lock); 3299 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3300 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3301 data_sinfo->bytes_may_use; 3302 3303 if (used + bytes > data_sinfo->total_bytes) { 3304 struct btrfs_trans_handle *trans; 3305 3306 /* 3307 * if we don't have enough free bytes in this space then we need 3308 * to alloc a new chunk. 3309 */ 3310 if (!data_sinfo->full && alloc_chunk) { 3311 u64 alloc_target; 3312 3313 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3314 spin_unlock(&data_sinfo->lock); 3315 alloc: 3316 alloc_target = btrfs_get_alloc_profile(root, 1); 3317 trans = btrfs_join_transaction(root); 3318 if (IS_ERR(trans)) 3319 return PTR_ERR(trans); 3320 3321 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3322 bytes + 2 * 1024 * 1024, 3323 alloc_target, 3324 CHUNK_ALLOC_NO_FORCE); 3325 btrfs_end_transaction(trans, root); 3326 if (ret < 0) { 3327 if (ret != -ENOSPC) 3328 return ret; 3329 else 3330 goto commit_trans; 3331 } 3332 3333 if (!data_sinfo) { 3334 btrfs_set_inode_space_info(root, inode); 3335 data_sinfo = BTRFS_I(inode)->space_info; 3336 } 3337 goto again; 3338 } 3339 3340 /* 3341 * If we have less pinned bytes than we want to allocate then 3342 * don't bother committing the transaction, it won't help us. 3343 */ 3344 if (data_sinfo->bytes_pinned < bytes) 3345 committed = 1; 3346 spin_unlock(&data_sinfo->lock); 3347 3348 /* commit the current transaction and try again */ 3349 commit_trans: 3350 if (!committed && 3351 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3352 committed = 1; 3353 trans = btrfs_join_transaction(root); 3354 if (IS_ERR(trans)) 3355 return PTR_ERR(trans); 3356 ret = btrfs_commit_transaction(trans, root); 3357 if (ret) 3358 return ret; 3359 goto again; 3360 } 3361 3362 return -ENOSPC; 3363 } 3364 data_sinfo->bytes_may_use += bytes; 3365 trace_btrfs_space_reservation(root->fs_info, "space_info", 3366 data_sinfo->flags, bytes, 1); 3367 spin_unlock(&data_sinfo->lock); 3368 3369 return 0; 3370 } 3371 3372 /* 3373 * Called if we need to clear a data reservation for this inode. 3374 */ 3375 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3376 { 3377 struct btrfs_root *root = BTRFS_I(inode)->root; 3378 struct btrfs_space_info *data_sinfo; 3379 3380 /* make sure bytes are sectorsize aligned */ 3381 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3382 3383 data_sinfo = BTRFS_I(inode)->space_info; 3384 spin_lock(&data_sinfo->lock); 3385 data_sinfo->bytes_may_use -= bytes; 3386 trace_btrfs_space_reservation(root->fs_info, "space_info", 3387 data_sinfo->flags, bytes, 0); 3388 spin_unlock(&data_sinfo->lock); 3389 } 3390 3391 static void force_metadata_allocation(struct btrfs_fs_info *info) 3392 { 3393 struct list_head *head = &info->space_info; 3394 struct btrfs_space_info *found; 3395 3396 rcu_read_lock(); 3397 list_for_each_entry_rcu(found, head, list) { 3398 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3399 found->force_alloc = CHUNK_ALLOC_FORCE; 3400 } 3401 rcu_read_unlock(); 3402 } 3403 3404 static int should_alloc_chunk(struct btrfs_root *root, 3405 struct btrfs_space_info *sinfo, u64 alloc_bytes, 3406 int force) 3407 { 3408 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3409 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3410 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3411 u64 thresh; 3412 3413 if (force == CHUNK_ALLOC_FORCE) 3414 return 1; 3415 3416 /* 3417 * We need to take into account the global rsv because for all intents 3418 * and purposes it's used space. Don't worry about locking the 3419 * global_rsv, it doesn't change except when the transaction commits. 3420 */ 3421 num_allocated += global_rsv->size; 3422 3423 /* 3424 * in limited mode, we want to have some free space up to 3425 * about 1% of the FS size. 3426 */ 3427 if (force == CHUNK_ALLOC_LIMITED) { 3428 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3429 thresh = max_t(u64, 64 * 1024 * 1024, 3430 div_factor_fine(thresh, 1)); 3431 3432 if (num_bytes - num_allocated < thresh) 3433 return 1; 3434 } 3435 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3436 3437 /* 256MB or 2% of the FS */ 3438 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2)); 3439 /* system chunks need a much small threshold */ 3440 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM) 3441 thresh = 32 * 1024 * 1024; 3442 3443 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8)) 3444 return 0; 3445 return 1; 3446 } 3447 3448 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3449 { 3450 u64 num_dev; 3451 3452 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3453 type & BTRFS_BLOCK_GROUP_RAID0) 3454 num_dev = root->fs_info->fs_devices->rw_devices; 3455 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3456 num_dev = 2; 3457 else 3458 num_dev = 1; /* DUP or single */ 3459 3460 /* metadata for updaing devices and chunk tree */ 3461 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3462 } 3463 3464 static void check_system_chunk(struct btrfs_trans_handle *trans, 3465 struct btrfs_root *root, u64 type) 3466 { 3467 struct btrfs_space_info *info; 3468 u64 left; 3469 u64 thresh; 3470 3471 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3472 spin_lock(&info->lock); 3473 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3474 info->bytes_reserved - info->bytes_readonly; 3475 spin_unlock(&info->lock); 3476 3477 thresh = get_system_chunk_thresh(root, type); 3478 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3479 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3480 left, thresh, type); 3481 dump_space_info(info, 0, 0); 3482 } 3483 3484 if (left < thresh) { 3485 u64 flags; 3486 3487 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3488 btrfs_alloc_chunk(trans, root, flags); 3489 } 3490 } 3491 3492 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *extent_root, u64 alloc_bytes, 3494 u64 flags, int force) 3495 { 3496 struct btrfs_space_info *space_info; 3497 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3498 int wait_for_alloc = 0; 3499 int ret = 0; 3500 3501 space_info = __find_space_info(extent_root->fs_info, flags); 3502 if (!space_info) { 3503 ret = update_space_info(extent_root->fs_info, flags, 3504 0, 0, &space_info); 3505 BUG_ON(ret); /* -ENOMEM */ 3506 } 3507 BUG_ON(!space_info); /* Logic error */ 3508 3509 again: 3510 spin_lock(&space_info->lock); 3511 if (force < space_info->force_alloc) 3512 force = space_info->force_alloc; 3513 if (space_info->full) { 3514 spin_unlock(&space_info->lock); 3515 return 0; 3516 } 3517 3518 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { 3519 spin_unlock(&space_info->lock); 3520 return 0; 3521 } else if (space_info->chunk_alloc) { 3522 wait_for_alloc = 1; 3523 } else { 3524 space_info->chunk_alloc = 1; 3525 } 3526 3527 spin_unlock(&space_info->lock); 3528 3529 mutex_lock(&fs_info->chunk_mutex); 3530 3531 /* 3532 * The chunk_mutex is held throughout the entirety of a chunk 3533 * allocation, so once we've acquired the chunk_mutex we know that the 3534 * other guy is done and we need to recheck and see if we should 3535 * allocate. 3536 */ 3537 if (wait_for_alloc) { 3538 mutex_unlock(&fs_info->chunk_mutex); 3539 wait_for_alloc = 0; 3540 goto again; 3541 } 3542 3543 /* 3544 * If we have mixed data/metadata chunks we want to make sure we keep 3545 * allocating mixed chunks instead of individual chunks. 3546 */ 3547 if (btrfs_mixed_space_info(space_info)) 3548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3549 3550 /* 3551 * if we're doing a data chunk, go ahead and make sure that 3552 * we keep a reasonable number of metadata chunks allocated in the 3553 * FS as well. 3554 */ 3555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3556 fs_info->data_chunk_allocations++; 3557 if (!(fs_info->data_chunk_allocations % 3558 fs_info->metadata_ratio)) 3559 force_metadata_allocation(fs_info); 3560 } 3561 3562 /* 3563 * Check if we have enough space in SYSTEM chunk because we may need 3564 * to update devices. 3565 */ 3566 check_system_chunk(trans, extent_root, flags); 3567 3568 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3569 if (ret < 0 && ret != -ENOSPC) 3570 goto out; 3571 3572 spin_lock(&space_info->lock); 3573 if (ret) 3574 space_info->full = 1; 3575 else 3576 ret = 1; 3577 3578 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3579 space_info->chunk_alloc = 0; 3580 spin_unlock(&space_info->lock); 3581 out: 3582 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3583 return ret; 3584 } 3585 3586 /* 3587 * shrink metadata reservation for delalloc 3588 */ 3589 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, 3590 bool wait_ordered) 3591 { 3592 struct btrfs_block_rsv *block_rsv; 3593 struct btrfs_space_info *space_info; 3594 struct btrfs_trans_handle *trans; 3595 u64 reserved; 3596 u64 max_reclaim; 3597 u64 reclaimed = 0; 3598 long time_left; 3599 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3600 int loops = 0; 3601 unsigned long progress; 3602 3603 trans = (struct btrfs_trans_handle *)current->journal_info; 3604 block_rsv = &root->fs_info->delalloc_block_rsv; 3605 space_info = block_rsv->space_info; 3606 3607 smp_mb(); 3608 reserved = space_info->bytes_may_use; 3609 progress = space_info->reservation_progress; 3610 3611 if (reserved == 0) 3612 return 0; 3613 3614 smp_mb(); 3615 if (root->fs_info->delalloc_bytes == 0) { 3616 if (trans) 3617 return 0; 3618 btrfs_wait_ordered_extents(root, 0, 0); 3619 return 0; 3620 } 3621 3622 max_reclaim = min(reserved, to_reclaim); 3623 nr_pages = max_t(unsigned long, nr_pages, 3624 max_reclaim >> PAGE_CACHE_SHIFT); 3625 while (loops < 1024) { 3626 /* have the flusher threads jump in and do some IO */ 3627 smp_mb(); 3628 nr_pages = min_t(unsigned long, nr_pages, 3629 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); 3630 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, 3631 WB_REASON_FS_FREE_SPACE); 3632 3633 spin_lock(&space_info->lock); 3634 if (reserved > space_info->bytes_may_use) 3635 reclaimed += reserved - space_info->bytes_may_use; 3636 reserved = space_info->bytes_may_use; 3637 spin_unlock(&space_info->lock); 3638 3639 loops++; 3640 3641 if (reserved == 0 || reclaimed >= max_reclaim) 3642 break; 3643 3644 if (trans && trans->transaction->blocked) 3645 return -EAGAIN; 3646 3647 if (wait_ordered && !trans) { 3648 btrfs_wait_ordered_extents(root, 0, 0); 3649 } else { 3650 time_left = schedule_timeout_interruptible(1); 3651 3652 /* We were interrupted, exit */ 3653 if (time_left) 3654 break; 3655 } 3656 3657 /* we've kicked the IO a few times, if anything has been freed, 3658 * exit. There is no sense in looping here for a long time 3659 * when we really need to commit the transaction, or there are 3660 * just too many writers without enough free space 3661 */ 3662 3663 if (loops > 3) { 3664 smp_mb(); 3665 if (progress != space_info->reservation_progress) 3666 break; 3667 } 3668 3669 } 3670 3671 return reclaimed >= to_reclaim; 3672 } 3673 3674 /** 3675 * maybe_commit_transaction - possibly commit the transaction if its ok to 3676 * @root - the root we're allocating for 3677 * @bytes - the number of bytes we want to reserve 3678 * @force - force the commit 3679 * 3680 * This will check to make sure that committing the transaction will actually 3681 * get us somewhere and then commit the transaction if it does. Otherwise it 3682 * will return -ENOSPC. 3683 */ 3684 static int may_commit_transaction(struct btrfs_root *root, 3685 struct btrfs_space_info *space_info, 3686 u64 bytes, int force) 3687 { 3688 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3689 struct btrfs_trans_handle *trans; 3690 3691 trans = (struct btrfs_trans_handle *)current->journal_info; 3692 if (trans) 3693 return -EAGAIN; 3694 3695 if (force) 3696 goto commit; 3697 3698 /* See if there is enough pinned space to make this reservation */ 3699 spin_lock(&space_info->lock); 3700 if (space_info->bytes_pinned >= bytes) { 3701 spin_unlock(&space_info->lock); 3702 goto commit; 3703 } 3704 spin_unlock(&space_info->lock); 3705 3706 /* 3707 * See if there is some space in the delayed insertion reservation for 3708 * this reservation. 3709 */ 3710 if (space_info != delayed_rsv->space_info) 3711 return -ENOSPC; 3712 3713 spin_lock(&space_info->lock); 3714 spin_lock(&delayed_rsv->lock); 3715 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3716 spin_unlock(&delayed_rsv->lock); 3717 spin_unlock(&space_info->lock); 3718 return -ENOSPC; 3719 } 3720 spin_unlock(&delayed_rsv->lock); 3721 spin_unlock(&space_info->lock); 3722 3723 commit: 3724 trans = btrfs_join_transaction(root); 3725 if (IS_ERR(trans)) 3726 return -ENOSPC; 3727 3728 return btrfs_commit_transaction(trans, root); 3729 } 3730 3731 /** 3732 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3733 * @root - the root we're allocating for 3734 * @block_rsv - the block_rsv we're allocating for 3735 * @orig_bytes - the number of bytes we want 3736 * @flush - wether or not we can flush to make our reservation 3737 * 3738 * This will reserve orgi_bytes number of bytes from the space info associated 3739 * with the block_rsv. If there is not enough space it will make an attempt to 3740 * flush out space to make room. It will do this by flushing delalloc if 3741 * possible or committing the transaction. If flush is 0 then no attempts to 3742 * regain reservations will be made and this will fail if there is not enough 3743 * space already. 3744 */ 3745 static int reserve_metadata_bytes(struct btrfs_root *root, 3746 struct btrfs_block_rsv *block_rsv, 3747 u64 orig_bytes, int flush) 3748 { 3749 struct btrfs_space_info *space_info = block_rsv->space_info; 3750 u64 used; 3751 u64 num_bytes = orig_bytes; 3752 int retries = 0; 3753 int ret = 0; 3754 bool committed = false; 3755 bool flushing = false; 3756 bool wait_ordered = false; 3757 3758 again: 3759 ret = 0; 3760 spin_lock(&space_info->lock); 3761 /* 3762 * We only want to wait if somebody other than us is flushing and we are 3763 * actually alloed to flush. 3764 */ 3765 while (flush && !flushing && space_info->flush) { 3766 spin_unlock(&space_info->lock); 3767 /* 3768 * If we have a trans handle we can't wait because the flusher 3769 * may have to commit the transaction, which would mean we would 3770 * deadlock since we are waiting for the flusher to finish, but 3771 * hold the current transaction open. 3772 */ 3773 if (current->journal_info) 3774 return -EAGAIN; 3775 ret = wait_event_interruptible(space_info->wait, 3776 !space_info->flush); 3777 /* Must have been interrupted, return */ 3778 if (ret) { 3779 printk(KERN_DEBUG "btrfs: %s returning -EINTR\n", __func__); 3780 return -EINTR; 3781 } 3782 3783 spin_lock(&space_info->lock); 3784 } 3785 3786 ret = -ENOSPC; 3787 used = space_info->bytes_used + space_info->bytes_reserved + 3788 space_info->bytes_pinned + space_info->bytes_readonly + 3789 space_info->bytes_may_use; 3790 3791 /* 3792 * The idea here is that we've not already over-reserved the block group 3793 * then we can go ahead and save our reservation first and then start 3794 * flushing if we need to. Otherwise if we've already overcommitted 3795 * lets start flushing stuff first and then come back and try to make 3796 * our reservation. 3797 */ 3798 if (used <= space_info->total_bytes) { 3799 if (used + orig_bytes <= space_info->total_bytes) { 3800 space_info->bytes_may_use += orig_bytes; 3801 trace_btrfs_space_reservation(root->fs_info, 3802 "space_info", space_info->flags, orig_bytes, 1); 3803 ret = 0; 3804 } else { 3805 /* 3806 * Ok set num_bytes to orig_bytes since we aren't 3807 * overocmmitted, this way we only try and reclaim what 3808 * we need. 3809 */ 3810 num_bytes = orig_bytes; 3811 } 3812 } else { 3813 /* 3814 * Ok we're over committed, set num_bytes to the overcommitted 3815 * amount plus the amount of bytes that we need for this 3816 * reservation. 3817 */ 3818 wait_ordered = true; 3819 num_bytes = used - space_info->total_bytes + 3820 (orig_bytes * (retries + 1)); 3821 } 3822 3823 if (ret) { 3824 u64 profile = btrfs_get_alloc_profile(root, 0); 3825 u64 avail; 3826 3827 /* 3828 * If we have a lot of space that's pinned, don't bother doing 3829 * the overcommit dance yet and just commit the transaction. 3830 */ 3831 avail = (space_info->total_bytes - space_info->bytes_used) * 8; 3832 do_div(avail, 10); 3833 if (space_info->bytes_pinned >= avail && flush && !committed) { 3834 space_info->flush = 1; 3835 flushing = true; 3836 spin_unlock(&space_info->lock); 3837 ret = may_commit_transaction(root, space_info, 3838 orig_bytes, 1); 3839 if (ret) 3840 goto out; 3841 committed = true; 3842 goto again; 3843 } 3844 3845 spin_lock(&root->fs_info->free_chunk_lock); 3846 avail = root->fs_info->free_chunk_space; 3847 3848 /* 3849 * If we have dup, raid1 or raid10 then only half of the free 3850 * space is actually useable. 3851 */ 3852 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3853 BTRFS_BLOCK_GROUP_RAID1 | 3854 BTRFS_BLOCK_GROUP_RAID10)) 3855 avail >>= 1; 3856 3857 /* 3858 * If we aren't flushing don't let us overcommit too much, say 3859 * 1/8th of the space. If we can flush, let it overcommit up to 3860 * 1/2 of the space. 3861 */ 3862 if (flush) 3863 avail >>= 3; 3864 else 3865 avail >>= 1; 3866 spin_unlock(&root->fs_info->free_chunk_lock); 3867 3868 if (used + num_bytes < space_info->total_bytes + avail) { 3869 space_info->bytes_may_use += orig_bytes; 3870 trace_btrfs_space_reservation(root->fs_info, 3871 "space_info", space_info->flags, orig_bytes, 1); 3872 ret = 0; 3873 } else { 3874 wait_ordered = true; 3875 } 3876 } 3877 3878 /* 3879 * Couldn't make our reservation, save our place so while we're trying 3880 * to reclaim space we can actually use it instead of somebody else 3881 * stealing it from us. 3882 */ 3883 if (ret && flush) { 3884 flushing = true; 3885 space_info->flush = 1; 3886 } 3887 3888 spin_unlock(&space_info->lock); 3889 3890 if (!ret || !flush) 3891 goto out; 3892 3893 /* 3894 * We do synchronous shrinking since we don't actually unreserve 3895 * metadata until after the IO is completed. 3896 */ 3897 ret = shrink_delalloc(root, num_bytes, wait_ordered); 3898 if (ret < 0) 3899 goto out; 3900 3901 ret = 0; 3902 3903 /* 3904 * So if we were overcommitted it's possible that somebody else flushed 3905 * out enough space and we simply didn't have enough space to reclaim, 3906 * so go back around and try again. 3907 */ 3908 if (retries < 2) { 3909 wait_ordered = true; 3910 retries++; 3911 goto again; 3912 } 3913 3914 ret = -ENOSPC; 3915 if (committed) 3916 goto out; 3917 3918 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3919 if (!ret) { 3920 committed = true; 3921 goto again; 3922 } 3923 3924 out: 3925 if (flushing) { 3926 spin_lock(&space_info->lock); 3927 space_info->flush = 0; 3928 wake_up_all(&space_info->wait); 3929 spin_unlock(&space_info->lock); 3930 } 3931 return ret; 3932 } 3933 3934 static struct btrfs_block_rsv *get_block_rsv( 3935 const struct btrfs_trans_handle *trans, 3936 const struct btrfs_root *root) 3937 { 3938 struct btrfs_block_rsv *block_rsv = NULL; 3939 3940 if (root->ref_cows || root == root->fs_info->csum_root) 3941 block_rsv = trans->block_rsv; 3942 3943 if (!block_rsv) 3944 block_rsv = root->block_rsv; 3945 3946 if (!block_rsv) 3947 block_rsv = &root->fs_info->empty_block_rsv; 3948 3949 return block_rsv; 3950 } 3951 3952 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3953 u64 num_bytes) 3954 { 3955 int ret = -ENOSPC; 3956 spin_lock(&block_rsv->lock); 3957 if (block_rsv->reserved >= num_bytes) { 3958 block_rsv->reserved -= num_bytes; 3959 if (block_rsv->reserved < block_rsv->size) 3960 block_rsv->full = 0; 3961 ret = 0; 3962 } 3963 spin_unlock(&block_rsv->lock); 3964 return ret; 3965 } 3966 3967 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3968 u64 num_bytes, int update_size) 3969 { 3970 spin_lock(&block_rsv->lock); 3971 block_rsv->reserved += num_bytes; 3972 if (update_size) 3973 block_rsv->size += num_bytes; 3974 else if (block_rsv->reserved >= block_rsv->size) 3975 block_rsv->full = 1; 3976 spin_unlock(&block_rsv->lock); 3977 } 3978 3979 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 3980 struct btrfs_block_rsv *block_rsv, 3981 struct btrfs_block_rsv *dest, u64 num_bytes) 3982 { 3983 struct btrfs_space_info *space_info = block_rsv->space_info; 3984 3985 spin_lock(&block_rsv->lock); 3986 if (num_bytes == (u64)-1) 3987 num_bytes = block_rsv->size; 3988 block_rsv->size -= num_bytes; 3989 if (block_rsv->reserved >= block_rsv->size) { 3990 num_bytes = block_rsv->reserved - block_rsv->size; 3991 block_rsv->reserved = block_rsv->size; 3992 block_rsv->full = 1; 3993 } else { 3994 num_bytes = 0; 3995 } 3996 spin_unlock(&block_rsv->lock); 3997 3998 if (num_bytes > 0) { 3999 if (dest) { 4000 spin_lock(&dest->lock); 4001 if (!dest->full) { 4002 u64 bytes_to_add; 4003 4004 bytes_to_add = dest->size - dest->reserved; 4005 bytes_to_add = min(num_bytes, bytes_to_add); 4006 dest->reserved += bytes_to_add; 4007 if (dest->reserved >= dest->size) 4008 dest->full = 1; 4009 num_bytes -= bytes_to_add; 4010 } 4011 spin_unlock(&dest->lock); 4012 } 4013 if (num_bytes) { 4014 spin_lock(&space_info->lock); 4015 space_info->bytes_may_use -= num_bytes; 4016 trace_btrfs_space_reservation(fs_info, "space_info", 4017 space_info->flags, num_bytes, 0); 4018 space_info->reservation_progress++; 4019 spin_unlock(&space_info->lock); 4020 } 4021 } 4022 } 4023 4024 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4025 struct btrfs_block_rsv *dst, u64 num_bytes) 4026 { 4027 int ret; 4028 4029 ret = block_rsv_use_bytes(src, num_bytes); 4030 if (ret) 4031 return ret; 4032 4033 block_rsv_add_bytes(dst, num_bytes, 1); 4034 return 0; 4035 } 4036 4037 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 4038 { 4039 memset(rsv, 0, sizeof(*rsv)); 4040 spin_lock_init(&rsv->lock); 4041 } 4042 4043 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 4044 { 4045 struct btrfs_block_rsv *block_rsv; 4046 struct btrfs_fs_info *fs_info = root->fs_info; 4047 4048 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4049 if (!block_rsv) 4050 return NULL; 4051 4052 btrfs_init_block_rsv(block_rsv); 4053 block_rsv->space_info = __find_space_info(fs_info, 4054 BTRFS_BLOCK_GROUP_METADATA); 4055 return block_rsv; 4056 } 4057 4058 void btrfs_free_block_rsv(struct btrfs_root *root, 4059 struct btrfs_block_rsv *rsv) 4060 { 4061 btrfs_block_rsv_release(root, rsv, (u64)-1); 4062 kfree(rsv); 4063 } 4064 4065 static inline int __block_rsv_add(struct btrfs_root *root, 4066 struct btrfs_block_rsv *block_rsv, 4067 u64 num_bytes, int flush) 4068 { 4069 int ret; 4070 4071 if (num_bytes == 0) 4072 return 0; 4073 4074 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4075 if (!ret) { 4076 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4077 return 0; 4078 } 4079 4080 return ret; 4081 } 4082 4083 int btrfs_block_rsv_add(struct btrfs_root *root, 4084 struct btrfs_block_rsv *block_rsv, 4085 u64 num_bytes) 4086 { 4087 return __block_rsv_add(root, block_rsv, num_bytes, 1); 4088 } 4089 4090 int btrfs_block_rsv_add_noflush(struct btrfs_root *root, 4091 struct btrfs_block_rsv *block_rsv, 4092 u64 num_bytes) 4093 { 4094 return __block_rsv_add(root, block_rsv, num_bytes, 0); 4095 } 4096 4097 int btrfs_block_rsv_check(struct btrfs_root *root, 4098 struct btrfs_block_rsv *block_rsv, int min_factor) 4099 { 4100 u64 num_bytes = 0; 4101 int ret = -ENOSPC; 4102 4103 if (!block_rsv) 4104 return 0; 4105 4106 spin_lock(&block_rsv->lock); 4107 num_bytes = div_factor(block_rsv->size, min_factor); 4108 if (block_rsv->reserved >= num_bytes) 4109 ret = 0; 4110 spin_unlock(&block_rsv->lock); 4111 4112 return ret; 4113 } 4114 4115 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, 4116 struct btrfs_block_rsv *block_rsv, 4117 u64 min_reserved, int flush) 4118 { 4119 u64 num_bytes = 0; 4120 int ret = -ENOSPC; 4121 4122 if (!block_rsv) 4123 return 0; 4124 4125 spin_lock(&block_rsv->lock); 4126 num_bytes = min_reserved; 4127 if (block_rsv->reserved >= num_bytes) 4128 ret = 0; 4129 else 4130 num_bytes -= block_rsv->reserved; 4131 spin_unlock(&block_rsv->lock); 4132 4133 if (!ret) 4134 return 0; 4135 4136 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4137 if (!ret) { 4138 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4139 return 0; 4140 } 4141 4142 return ret; 4143 } 4144 4145 int btrfs_block_rsv_refill(struct btrfs_root *root, 4146 struct btrfs_block_rsv *block_rsv, 4147 u64 min_reserved) 4148 { 4149 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); 4150 } 4151 4152 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, 4153 struct btrfs_block_rsv *block_rsv, 4154 u64 min_reserved) 4155 { 4156 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); 4157 } 4158 4159 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4160 struct btrfs_block_rsv *dst_rsv, 4161 u64 num_bytes) 4162 { 4163 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4164 } 4165 4166 void btrfs_block_rsv_release(struct btrfs_root *root, 4167 struct btrfs_block_rsv *block_rsv, 4168 u64 num_bytes) 4169 { 4170 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4171 if (global_rsv->full || global_rsv == block_rsv || 4172 block_rsv->space_info != global_rsv->space_info) 4173 global_rsv = NULL; 4174 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4175 num_bytes); 4176 } 4177 4178 /* 4179 * helper to calculate size of global block reservation. 4180 * the desired value is sum of space used by extent tree, 4181 * checksum tree and root tree 4182 */ 4183 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4184 { 4185 struct btrfs_space_info *sinfo; 4186 u64 num_bytes; 4187 u64 meta_used; 4188 u64 data_used; 4189 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4190 4191 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4192 spin_lock(&sinfo->lock); 4193 data_used = sinfo->bytes_used; 4194 spin_unlock(&sinfo->lock); 4195 4196 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4197 spin_lock(&sinfo->lock); 4198 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4199 data_used = 0; 4200 meta_used = sinfo->bytes_used; 4201 spin_unlock(&sinfo->lock); 4202 4203 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4204 csum_size * 2; 4205 num_bytes += div64_u64(data_used + meta_used, 50); 4206 4207 if (num_bytes * 3 > meta_used) 4208 num_bytes = div64_u64(meta_used, 3) * 2; 4209 4210 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4211 } 4212 4213 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4214 { 4215 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4216 struct btrfs_space_info *sinfo = block_rsv->space_info; 4217 u64 num_bytes; 4218 4219 num_bytes = calc_global_metadata_size(fs_info); 4220 4221 spin_lock(&block_rsv->lock); 4222 spin_lock(&sinfo->lock); 4223 4224 block_rsv->size = num_bytes; 4225 4226 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4227 sinfo->bytes_reserved + sinfo->bytes_readonly + 4228 sinfo->bytes_may_use; 4229 4230 if (sinfo->total_bytes > num_bytes) { 4231 num_bytes = sinfo->total_bytes - num_bytes; 4232 block_rsv->reserved += num_bytes; 4233 sinfo->bytes_may_use += num_bytes; 4234 trace_btrfs_space_reservation(fs_info, "space_info", 4235 sinfo->flags, num_bytes, 1); 4236 } 4237 4238 if (block_rsv->reserved >= block_rsv->size) { 4239 num_bytes = block_rsv->reserved - block_rsv->size; 4240 sinfo->bytes_may_use -= num_bytes; 4241 trace_btrfs_space_reservation(fs_info, "space_info", 4242 sinfo->flags, num_bytes, 0); 4243 sinfo->reservation_progress++; 4244 block_rsv->reserved = block_rsv->size; 4245 block_rsv->full = 1; 4246 } 4247 4248 spin_unlock(&sinfo->lock); 4249 spin_unlock(&block_rsv->lock); 4250 } 4251 4252 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4253 { 4254 struct btrfs_space_info *space_info; 4255 4256 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4257 fs_info->chunk_block_rsv.space_info = space_info; 4258 4259 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4260 fs_info->global_block_rsv.space_info = space_info; 4261 fs_info->delalloc_block_rsv.space_info = space_info; 4262 fs_info->trans_block_rsv.space_info = space_info; 4263 fs_info->empty_block_rsv.space_info = space_info; 4264 fs_info->delayed_block_rsv.space_info = space_info; 4265 4266 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4267 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4268 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4269 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4270 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4271 4272 update_global_block_rsv(fs_info); 4273 } 4274 4275 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4276 { 4277 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4278 (u64)-1); 4279 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4280 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4281 WARN_ON(fs_info->trans_block_rsv.size > 0); 4282 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4283 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4284 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4285 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4286 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4287 } 4288 4289 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4290 struct btrfs_root *root) 4291 { 4292 if (!trans->bytes_reserved) 4293 return; 4294 4295 trace_btrfs_space_reservation(root->fs_info, "transaction", 4296 trans->transid, trans->bytes_reserved, 0); 4297 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4298 trans->bytes_reserved = 0; 4299 } 4300 4301 /* Can only return 0 or -ENOSPC */ 4302 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4303 struct inode *inode) 4304 { 4305 struct btrfs_root *root = BTRFS_I(inode)->root; 4306 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4307 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4308 4309 /* 4310 * We need to hold space in order to delete our orphan item once we've 4311 * added it, so this takes the reservation so we can release it later 4312 * when we are truly done with the orphan item. 4313 */ 4314 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4315 trace_btrfs_space_reservation(root->fs_info, "orphan", 4316 btrfs_ino(inode), num_bytes, 1); 4317 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4318 } 4319 4320 void btrfs_orphan_release_metadata(struct inode *inode) 4321 { 4322 struct btrfs_root *root = BTRFS_I(inode)->root; 4323 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4324 trace_btrfs_space_reservation(root->fs_info, "orphan", 4325 btrfs_ino(inode), num_bytes, 0); 4326 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4327 } 4328 4329 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4330 struct btrfs_pending_snapshot *pending) 4331 { 4332 struct btrfs_root *root = pending->root; 4333 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4334 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4335 /* 4336 * two for root back/forward refs, two for directory entries 4337 * and one for root of the snapshot. 4338 */ 4339 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4340 dst_rsv->space_info = src_rsv->space_info; 4341 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4342 } 4343 4344 /** 4345 * drop_outstanding_extent - drop an outstanding extent 4346 * @inode: the inode we're dropping the extent for 4347 * 4348 * This is called when we are freeing up an outstanding extent, either called 4349 * after an error or after an extent is written. This will return the number of 4350 * reserved extents that need to be freed. This must be called with 4351 * BTRFS_I(inode)->lock held. 4352 */ 4353 static unsigned drop_outstanding_extent(struct inode *inode) 4354 { 4355 unsigned drop_inode_space = 0; 4356 unsigned dropped_extents = 0; 4357 4358 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4359 BTRFS_I(inode)->outstanding_extents--; 4360 4361 if (BTRFS_I(inode)->outstanding_extents == 0 && 4362 BTRFS_I(inode)->delalloc_meta_reserved) { 4363 drop_inode_space = 1; 4364 BTRFS_I(inode)->delalloc_meta_reserved = 0; 4365 } 4366 4367 /* 4368 * If we have more or the same amount of outsanding extents than we have 4369 * reserved then we need to leave the reserved extents count alone. 4370 */ 4371 if (BTRFS_I(inode)->outstanding_extents >= 4372 BTRFS_I(inode)->reserved_extents) 4373 return drop_inode_space; 4374 4375 dropped_extents = BTRFS_I(inode)->reserved_extents - 4376 BTRFS_I(inode)->outstanding_extents; 4377 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4378 return dropped_extents + drop_inode_space; 4379 } 4380 4381 /** 4382 * calc_csum_metadata_size - return the amount of metada space that must be 4383 * reserved/free'd for the given bytes. 4384 * @inode: the inode we're manipulating 4385 * @num_bytes: the number of bytes in question 4386 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4387 * 4388 * This adjusts the number of csum_bytes in the inode and then returns the 4389 * correct amount of metadata that must either be reserved or freed. We 4390 * calculate how many checksums we can fit into one leaf and then divide the 4391 * number of bytes that will need to be checksumed by this value to figure out 4392 * how many checksums will be required. If we are adding bytes then the number 4393 * may go up and we will return the number of additional bytes that must be 4394 * reserved. If it is going down we will return the number of bytes that must 4395 * be freed. 4396 * 4397 * This must be called with BTRFS_I(inode)->lock held. 4398 */ 4399 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4400 int reserve) 4401 { 4402 struct btrfs_root *root = BTRFS_I(inode)->root; 4403 u64 csum_size; 4404 int num_csums_per_leaf; 4405 int num_csums; 4406 int old_csums; 4407 4408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4409 BTRFS_I(inode)->csum_bytes == 0) 4410 return 0; 4411 4412 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4413 if (reserve) 4414 BTRFS_I(inode)->csum_bytes += num_bytes; 4415 else 4416 BTRFS_I(inode)->csum_bytes -= num_bytes; 4417 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4418 num_csums_per_leaf = (int)div64_u64(csum_size, 4419 sizeof(struct btrfs_csum_item) + 4420 sizeof(struct btrfs_disk_key)); 4421 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4422 num_csums = num_csums + num_csums_per_leaf - 1; 4423 num_csums = num_csums / num_csums_per_leaf; 4424 4425 old_csums = old_csums + num_csums_per_leaf - 1; 4426 old_csums = old_csums / num_csums_per_leaf; 4427 4428 /* No change, no need to reserve more */ 4429 if (old_csums == num_csums) 4430 return 0; 4431 4432 if (reserve) 4433 return btrfs_calc_trans_metadata_size(root, 4434 num_csums - old_csums); 4435 4436 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4437 } 4438 4439 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4440 { 4441 struct btrfs_root *root = BTRFS_I(inode)->root; 4442 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4443 u64 to_reserve = 0; 4444 u64 csum_bytes; 4445 unsigned nr_extents = 0; 4446 int extra_reserve = 0; 4447 int flush = 1; 4448 int ret; 4449 4450 /* Need to be holding the i_mutex here if we aren't free space cache */ 4451 if (btrfs_is_free_space_inode(root, inode)) 4452 flush = 0; 4453 4454 if (flush && btrfs_transaction_in_commit(root->fs_info)) 4455 schedule_timeout(1); 4456 4457 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4458 num_bytes = ALIGN(num_bytes, root->sectorsize); 4459 4460 spin_lock(&BTRFS_I(inode)->lock); 4461 BTRFS_I(inode)->outstanding_extents++; 4462 4463 if (BTRFS_I(inode)->outstanding_extents > 4464 BTRFS_I(inode)->reserved_extents) 4465 nr_extents = BTRFS_I(inode)->outstanding_extents - 4466 BTRFS_I(inode)->reserved_extents; 4467 4468 /* 4469 * Add an item to reserve for updating the inode when we complete the 4470 * delalloc io. 4471 */ 4472 if (!BTRFS_I(inode)->delalloc_meta_reserved) { 4473 nr_extents++; 4474 extra_reserve = 1; 4475 } 4476 4477 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4478 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4479 csum_bytes = BTRFS_I(inode)->csum_bytes; 4480 spin_unlock(&BTRFS_I(inode)->lock); 4481 4482 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4483 if (ret) { 4484 u64 to_free = 0; 4485 unsigned dropped; 4486 4487 spin_lock(&BTRFS_I(inode)->lock); 4488 dropped = drop_outstanding_extent(inode); 4489 /* 4490 * If the inodes csum_bytes is the same as the original 4491 * csum_bytes then we know we haven't raced with any free()ers 4492 * so we can just reduce our inodes csum bytes and carry on. 4493 * Otherwise we have to do the normal free thing to account for 4494 * the case that the free side didn't free up its reserve 4495 * because of this outstanding reservation. 4496 */ 4497 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4498 calc_csum_metadata_size(inode, num_bytes, 0); 4499 else 4500 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4501 spin_unlock(&BTRFS_I(inode)->lock); 4502 if (dropped) 4503 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4504 4505 if (to_free) { 4506 btrfs_block_rsv_release(root, block_rsv, to_free); 4507 trace_btrfs_space_reservation(root->fs_info, 4508 "delalloc", 4509 btrfs_ino(inode), 4510 to_free, 0); 4511 } 4512 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4513 return ret; 4514 } 4515 4516 spin_lock(&BTRFS_I(inode)->lock); 4517 if (extra_reserve) { 4518 BTRFS_I(inode)->delalloc_meta_reserved = 1; 4519 nr_extents--; 4520 } 4521 BTRFS_I(inode)->reserved_extents += nr_extents; 4522 spin_unlock(&BTRFS_I(inode)->lock); 4523 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4524 4525 if (to_reserve) 4526 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4527 btrfs_ino(inode), to_reserve, 1); 4528 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4529 4530 return 0; 4531 } 4532 4533 /** 4534 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4535 * @inode: the inode to release the reservation for 4536 * @num_bytes: the number of bytes we're releasing 4537 * 4538 * This will release the metadata reservation for an inode. This can be called 4539 * once we complete IO for a given set of bytes to release their metadata 4540 * reservations. 4541 */ 4542 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4543 { 4544 struct btrfs_root *root = BTRFS_I(inode)->root; 4545 u64 to_free = 0; 4546 unsigned dropped; 4547 4548 num_bytes = ALIGN(num_bytes, root->sectorsize); 4549 spin_lock(&BTRFS_I(inode)->lock); 4550 dropped = drop_outstanding_extent(inode); 4551 4552 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4553 spin_unlock(&BTRFS_I(inode)->lock); 4554 if (dropped > 0) 4555 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4556 4557 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4558 btrfs_ino(inode), to_free, 0); 4559 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4560 to_free); 4561 } 4562 4563 /** 4564 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4565 * @inode: inode we're writing to 4566 * @num_bytes: the number of bytes we want to allocate 4567 * 4568 * This will do the following things 4569 * 4570 * o reserve space in the data space info for num_bytes 4571 * o reserve space in the metadata space info based on number of outstanding 4572 * extents and how much csums will be needed 4573 * o add to the inodes ->delalloc_bytes 4574 * o add it to the fs_info's delalloc inodes list. 4575 * 4576 * This will return 0 for success and -ENOSPC if there is no space left. 4577 */ 4578 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4579 { 4580 int ret; 4581 4582 ret = btrfs_check_data_free_space(inode, num_bytes); 4583 if (ret) 4584 return ret; 4585 4586 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4587 if (ret) { 4588 btrfs_free_reserved_data_space(inode, num_bytes); 4589 return ret; 4590 } 4591 4592 return 0; 4593 } 4594 4595 /** 4596 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4597 * @inode: inode we're releasing space for 4598 * @num_bytes: the number of bytes we want to free up 4599 * 4600 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4601 * called in the case that we don't need the metadata AND data reservations 4602 * anymore. So if there is an error or we insert an inline extent. 4603 * 4604 * This function will release the metadata space that was not used and will 4605 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4606 * list if there are no delalloc bytes left. 4607 */ 4608 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4609 { 4610 btrfs_delalloc_release_metadata(inode, num_bytes); 4611 btrfs_free_reserved_data_space(inode, num_bytes); 4612 } 4613 4614 static int update_block_group(struct btrfs_trans_handle *trans, 4615 struct btrfs_root *root, 4616 u64 bytenr, u64 num_bytes, int alloc) 4617 { 4618 struct btrfs_block_group_cache *cache = NULL; 4619 struct btrfs_fs_info *info = root->fs_info; 4620 u64 total = num_bytes; 4621 u64 old_val; 4622 u64 byte_in_group; 4623 int factor; 4624 4625 /* block accounting for super block */ 4626 spin_lock(&info->delalloc_lock); 4627 old_val = btrfs_super_bytes_used(info->super_copy); 4628 if (alloc) 4629 old_val += num_bytes; 4630 else 4631 old_val -= num_bytes; 4632 btrfs_set_super_bytes_used(info->super_copy, old_val); 4633 spin_unlock(&info->delalloc_lock); 4634 4635 while (total) { 4636 cache = btrfs_lookup_block_group(info, bytenr); 4637 if (!cache) 4638 return -ENOENT; 4639 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4640 BTRFS_BLOCK_GROUP_RAID1 | 4641 BTRFS_BLOCK_GROUP_RAID10)) 4642 factor = 2; 4643 else 4644 factor = 1; 4645 /* 4646 * If this block group has free space cache written out, we 4647 * need to make sure to load it if we are removing space. This 4648 * is because we need the unpinning stage to actually add the 4649 * space back to the block group, otherwise we will leak space. 4650 */ 4651 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4652 cache_block_group(cache, trans, NULL, 1); 4653 4654 byte_in_group = bytenr - cache->key.objectid; 4655 WARN_ON(byte_in_group > cache->key.offset); 4656 4657 spin_lock(&cache->space_info->lock); 4658 spin_lock(&cache->lock); 4659 4660 if (btrfs_test_opt(root, SPACE_CACHE) && 4661 cache->disk_cache_state < BTRFS_DC_CLEAR) 4662 cache->disk_cache_state = BTRFS_DC_CLEAR; 4663 4664 cache->dirty = 1; 4665 old_val = btrfs_block_group_used(&cache->item); 4666 num_bytes = min(total, cache->key.offset - byte_in_group); 4667 if (alloc) { 4668 old_val += num_bytes; 4669 btrfs_set_block_group_used(&cache->item, old_val); 4670 cache->reserved -= num_bytes; 4671 cache->space_info->bytes_reserved -= num_bytes; 4672 cache->space_info->bytes_used += num_bytes; 4673 cache->space_info->disk_used += num_bytes * factor; 4674 spin_unlock(&cache->lock); 4675 spin_unlock(&cache->space_info->lock); 4676 } else { 4677 old_val -= num_bytes; 4678 btrfs_set_block_group_used(&cache->item, old_val); 4679 cache->pinned += num_bytes; 4680 cache->space_info->bytes_pinned += num_bytes; 4681 cache->space_info->bytes_used -= num_bytes; 4682 cache->space_info->disk_used -= num_bytes * factor; 4683 spin_unlock(&cache->lock); 4684 spin_unlock(&cache->space_info->lock); 4685 4686 set_extent_dirty(info->pinned_extents, 4687 bytenr, bytenr + num_bytes - 1, 4688 GFP_NOFS | __GFP_NOFAIL); 4689 } 4690 btrfs_put_block_group(cache); 4691 total -= num_bytes; 4692 bytenr += num_bytes; 4693 } 4694 return 0; 4695 } 4696 4697 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4698 { 4699 struct btrfs_block_group_cache *cache; 4700 u64 bytenr; 4701 4702 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4703 if (!cache) 4704 return 0; 4705 4706 bytenr = cache->key.objectid; 4707 btrfs_put_block_group(cache); 4708 4709 return bytenr; 4710 } 4711 4712 static int pin_down_extent(struct btrfs_root *root, 4713 struct btrfs_block_group_cache *cache, 4714 u64 bytenr, u64 num_bytes, int reserved) 4715 { 4716 spin_lock(&cache->space_info->lock); 4717 spin_lock(&cache->lock); 4718 cache->pinned += num_bytes; 4719 cache->space_info->bytes_pinned += num_bytes; 4720 if (reserved) { 4721 cache->reserved -= num_bytes; 4722 cache->space_info->bytes_reserved -= num_bytes; 4723 } 4724 spin_unlock(&cache->lock); 4725 spin_unlock(&cache->space_info->lock); 4726 4727 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4728 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4729 return 0; 4730 } 4731 4732 /* 4733 * this function must be called within transaction 4734 */ 4735 int btrfs_pin_extent(struct btrfs_root *root, 4736 u64 bytenr, u64 num_bytes, int reserved) 4737 { 4738 struct btrfs_block_group_cache *cache; 4739 4740 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4741 BUG_ON(!cache); /* Logic error */ 4742 4743 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4744 4745 btrfs_put_block_group(cache); 4746 return 0; 4747 } 4748 4749 /* 4750 * this function must be called within transaction 4751 */ 4752 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4753 struct btrfs_root *root, 4754 u64 bytenr, u64 num_bytes) 4755 { 4756 struct btrfs_block_group_cache *cache; 4757 4758 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4759 BUG_ON(!cache); /* Logic error */ 4760 4761 /* 4762 * pull in the free space cache (if any) so that our pin 4763 * removes the free space from the cache. We have load_only set 4764 * to one because the slow code to read in the free extents does check 4765 * the pinned extents. 4766 */ 4767 cache_block_group(cache, trans, root, 1); 4768 4769 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4770 4771 /* remove us from the free space cache (if we're there at all) */ 4772 btrfs_remove_free_space(cache, bytenr, num_bytes); 4773 btrfs_put_block_group(cache); 4774 return 0; 4775 } 4776 4777 /** 4778 * btrfs_update_reserved_bytes - update the block_group and space info counters 4779 * @cache: The cache we are manipulating 4780 * @num_bytes: The number of bytes in question 4781 * @reserve: One of the reservation enums 4782 * 4783 * This is called by the allocator when it reserves space, or by somebody who is 4784 * freeing space that was never actually used on disk. For example if you 4785 * reserve some space for a new leaf in transaction A and before transaction A 4786 * commits you free that leaf, you call this with reserve set to 0 in order to 4787 * clear the reservation. 4788 * 4789 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4790 * ENOSPC accounting. For data we handle the reservation through clearing the 4791 * delalloc bits in the io_tree. We have to do this since we could end up 4792 * allocating less disk space for the amount of data we have reserved in the 4793 * case of compression. 4794 * 4795 * If this is a reservation and the block group has become read only we cannot 4796 * make the reservation and return -EAGAIN, otherwise this function always 4797 * succeeds. 4798 */ 4799 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4800 u64 num_bytes, int reserve) 4801 { 4802 struct btrfs_space_info *space_info = cache->space_info; 4803 int ret = 0; 4804 4805 spin_lock(&space_info->lock); 4806 spin_lock(&cache->lock); 4807 if (reserve != RESERVE_FREE) { 4808 if (cache->ro) { 4809 ret = -EAGAIN; 4810 } else { 4811 cache->reserved += num_bytes; 4812 space_info->bytes_reserved += num_bytes; 4813 if (reserve == RESERVE_ALLOC) { 4814 trace_btrfs_space_reservation(cache->fs_info, 4815 "space_info", space_info->flags, 4816 num_bytes, 0); 4817 space_info->bytes_may_use -= num_bytes; 4818 } 4819 } 4820 } else { 4821 if (cache->ro) 4822 space_info->bytes_readonly += num_bytes; 4823 cache->reserved -= num_bytes; 4824 space_info->bytes_reserved -= num_bytes; 4825 space_info->reservation_progress++; 4826 } 4827 spin_unlock(&cache->lock); 4828 spin_unlock(&space_info->lock); 4829 return ret; 4830 } 4831 4832 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4833 struct btrfs_root *root) 4834 { 4835 struct btrfs_fs_info *fs_info = root->fs_info; 4836 struct btrfs_caching_control *next; 4837 struct btrfs_caching_control *caching_ctl; 4838 struct btrfs_block_group_cache *cache; 4839 4840 down_write(&fs_info->extent_commit_sem); 4841 4842 list_for_each_entry_safe(caching_ctl, next, 4843 &fs_info->caching_block_groups, list) { 4844 cache = caching_ctl->block_group; 4845 if (block_group_cache_done(cache)) { 4846 cache->last_byte_to_unpin = (u64)-1; 4847 list_del_init(&caching_ctl->list); 4848 put_caching_control(caching_ctl); 4849 } else { 4850 cache->last_byte_to_unpin = caching_ctl->progress; 4851 } 4852 } 4853 4854 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4855 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4856 else 4857 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4858 4859 up_write(&fs_info->extent_commit_sem); 4860 4861 update_global_block_rsv(fs_info); 4862 } 4863 4864 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4865 { 4866 struct btrfs_fs_info *fs_info = root->fs_info; 4867 struct btrfs_block_group_cache *cache = NULL; 4868 u64 len; 4869 4870 while (start <= end) { 4871 if (!cache || 4872 start >= cache->key.objectid + cache->key.offset) { 4873 if (cache) 4874 btrfs_put_block_group(cache); 4875 cache = btrfs_lookup_block_group(fs_info, start); 4876 BUG_ON(!cache); /* Logic error */ 4877 } 4878 4879 len = cache->key.objectid + cache->key.offset - start; 4880 len = min(len, end + 1 - start); 4881 4882 if (start < cache->last_byte_to_unpin) { 4883 len = min(len, cache->last_byte_to_unpin - start); 4884 btrfs_add_free_space(cache, start, len); 4885 } 4886 4887 start += len; 4888 4889 spin_lock(&cache->space_info->lock); 4890 spin_lock(&cache->lock); 4891 cache->pinned -= len; 4892 cache->space_info->bytes_pinned -= len; 4893 if (cache->ro) 4894 cache->space_info->bytes_readonly += len; 4895 spin_unlock(&cache->lock); 4896 spin_unlock(&cache->space_info->lock); 4897 } 4898 4899 if (cache) 4900 btrfs_put_block_group(cache); 4901 return 0; 4902 } 4903 4904 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4905 struct btrfs_root *root) 4906 { 4907 struct btrfs_fs_info *fs_info = root->fs_info; 4908 struct extent_io_tree *unpin; 4909 u64 start; 4910 u64 end; 4911 int ret; 4912 4913 if (trans->aborted) 4914 return 0; 4915 4916 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4917 unpin = &fs_info->freed_extents[1]; 4918 else 4919 unpin = &fs_info->freed_extents[0]; 4920 4921 while (1) { 4922 ret = find_first_extent_bit(unpin, 0, &start, &end, 4923 EXTENT_DIRTY); 4924 if (ret) 4925 break; 4926 4927 if (btrfs_test_opt(root, DISCARD)) 4928 ret = btrfs_discard_extent(root, start, 4929 end + 1 - start, NULL); 4930 4931 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4932 unpin_extent_range(root, start, end); 4933 cond_resched(); 4934 } 4935 4936 return 0; 4937 } 4938 4939 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4940 struct btrfs_root *root, 4941 u64 bytenr, u64 num_bytes, u64 parent, 4942 u64 root_objectid, u64 owner_objectid, 4943 u64 owner_offset, int refs_to_drop, 4944 struct btrfs_delayed_extent_op *extent_op) 4945 { 4946 struct btrfs_key key; 4947 struct btrfs_path *path; 4948 struct btrfs_fs_info *info = root->fs_info; 4949 struct btrfs_root *extent_root = info->extent_root; 4950 struct extent_buffer *leaf; 4951 struct btrfs_extent_item *ei; 4952 struct btrfs_extent_inline_ref *iref; 4953 int ret; 4954 int is_data; 4955 int extent_slot = 0; 4956 int found_extent = 0; 4957 int num_to_del = 1; 4958 u32 item_size; 4959 u64 refs; 4960 4961 path = btrfs_alloc_path(); 4962 if (!path) 4963 return -ENOMEM; 4964 4965 path->reada = 1; 4966 path->leave_spinning = 1; 4967 4968 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4969 BUG_ON(!is_data && refs_to_drop != 1); 4970 4971 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4972 bytenr, num_bytes, parent, 4973 root_objectid, owner_objectid, 4974 owner_offset); 4975 if (ret == 0) { 4976 extent_slot = path->slots[0]; 4977 while (extent_slot >= 0) { 4978 btrfs_item_key_to_cpu(path->nodes[0], &key, 4979 extent_slot); 4980 if (key.objectid != bytenr) 4981 break; 4982 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4983 key.offset == num_bytes) { 4984 found_extent = 1; 4985 break; 4986 } 4987 if (path->slots[0] - extent_slot > 5) 4988 break; 4989 extent_slot--; 4990 } 4991 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4992 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4993 if (found_extent && item_size < sizeof(*ei)) 4994 found_extent = 0; 4995 #endif 4996 if (!found_extent) { 4997 BUG_ON(iref); 4998 ret = remove_extent_backref(trans, extent_root, path, 4999 NULL, refs_to_drop, 5000 is_data); 5001 if (ret) 5002 goto abort; 5003 btrfs_release_path(path); 5004 path->leave_spinning = 1; 5005 5006 key.objectid = bytenr; 5007 key.type = BTRFS_EXTENT_ITEM_KEY; 5008 key.offset = num_bytes; 5009 5010 ret = btrfs_search_slot(trans, extent_root, 5011 &key, path, -1, 1); 5012 if (ret) { 5013 printk(KERN_ERR "umm, got %d back from search" 5014 ", was looking for %llu\n", ret, 5015 (unsigned long long)bytenr); 5016 if (ret > 0) 5017 btrfs_print_leaf(extent_root, 5018 path->nodes[0]); 5019 } 5020 if (ret < 0) 5021 goto abort; 5022 extent_slot = path->slots[0]; 5023 } 5024 } else if (ret == -ENOENT) { 5025 btrfs_print_leaf(extent_root, path->nodes[0]); 5026 WARN_ON(1); 5027 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5028 "parent %llu root %llu owner %llu offset %llu\n", 5029 (unsigned long long)bytenr, 5030 (unsigned long long)parent, 5031 (unsigned long long)root_objectid, 5032 (unsigned long long)owner_objectid, 5033 (unsigned long long)owner_offset); 5034 } else { 5035 goto abort; 5036 } 5037 5038 leaf = path->nodes[0]; 5039 item_size = btrfs_item_size_nr(leaf, extent_slot); 5040 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5041 if (item_size < sizeof(*ei)) { 5042 BUG_ON(found_extent || extent_slot != path->slots[0]); 5043 ret = convert_extent_item_v0(trans, extent_root, path, 5044 owner_objectid, 0); 5045 if (ret < 0) 5046 goto abort; 5047 5048 btrfs_release_path(path); 5049 path->leave_spinning = 1; 5050 5051 key.objectid = bytenr; 5052 key.type = BTRFS_EXTENT_ITEM_KEY; 5053 key.offset = num_bytes; 5054 5055 ret = btrfs_search_slot(trans, extent_root, &key, path, 5056 -1, 1); 5057 if (ret) { 5058 printk(KERN_ERR "umm, got %d back from search" 5059 ", was looking for %llu\n", ret, 5060 (unsigned long long)bytenr); 5061 btrfs_print_leaf(extent_root, path->nodes[0]); 5062 } 5063 if (ret < 0) 5064 goto abort; 5065 extent_slot = path->slots[0]; 5066 leaf = path->nodes[0]; 5067 item_size = btrfs_item_size_nr(leaf, extent_slot); 5068 } 5069 #endif 5070 BUG_ON(item_size < sizeof(*ei)); 5071 ei = btrfs_item_ptr(leaf, extent_slot, 5072 struct btrfs_extent_item); 5073 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5074 struct btrfs_tree_block_info *bi; 5075 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5076 bi = (struct btrfs_tree_block_info *)(ei + 1); 5077 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5078 } 5079 5080 refs = btrfs_extent_refs(leaf, ei); 5081 BUG_ON(refs < refs_to_drop); 5082 refs -= refs_to_drop; 5083 5084 if (refs > 0) { 5085 if (extent_op) 5086 __run_delayed_extent_op(extent_op, leaf, ei); 5087 /* 5088 * In the case of inline back ref, reference count will 5089 * be updated by remove_extent_backref 5090 */ 5091 if (iref) { 5092 BUG_ON(!found_extent); 5093 } else { 5094 btrfs_set_extent_refs(leaf, ei, refs); 5095 btrfs_mark_buffer_dirty(leaf); 5096 } 5097 if (found_extent) { 5098 ret = remove_extent_backref(trans, extent_root, path, 5099 iref, refs_to_drop, 5100 is_data); 5101 if (ret) 5102 goto abort; 5103 } 5104 } else { 5105 if (found_extent) { 5106 BUG_ON(is_data && refs_to_drop != 5107 extent_data_ref_count(root, path, iref)); 5108 if (iref) { 5109 BUG_ON(path->slots[0] != extent_slot); 5110 } else { 5111 BUG_ON(path->slots[0] != extent_slot + 1); 5112 path->slots[0] = extent_slot; 5113 num_to_del = 2; 5114 } 5115 } 5116 5117 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5118 num_to_del); 5119 if (ret) 5120 goto abort; 5121 btrfs_release_path(path); 5122 5123 if (is_data) { 5124 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5125 if (ret) 5126 goto abort; 5127 } 5128 5129 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5130 if (ret) 5131 goto abort; 5132 } 5133 out: 5134 btrfs_free_path(path); 5135 return ret; 5136 5137 abort: 5138 btrfs_abort_transaction(trans, extent_root, ret); 5139 goto out; 5140 } 5141 5142 /* 5143 * when we free an block, it is possible (and likely) that we free the last 5144 * delayed ref for that extent as well. This searches the delayed ref tree for 5145 * a given extent, and if there are no other delayed refs to be processed, it 5146 * removes it from the tree. 5147 */ 5148 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5149 struct btrfs_root *root, u64 bytenr) 5150 { 5151 struct btrfs_delayed_ref_head *head; 5152 struct btrfs_delayed_ref_root *delayed_refs; 5153 struct btrfs_delayed_ref_node *ref; 5154 struct rb_node *node; 5155 int ret = 0; 5156 5157 delayed_refs = &trans->transaction->delayed_refs; 5158 spin_lock(&delayed_refs->lock); 5159 head = btrfs_find_delayed_ref_head(trans, bytenr); 5160 if (!head) 5161 goto out; 5162 5163 node = rb_prev(&head->node.rb_node); 5164 if (!node) 5165 goto out; 5166 5167 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5168 5169 /* there are still entries for this ref, we can't drop it */ 5170 if (ref->bytenr == bytenr) 5171 goto out; 5172 5173 if (head->extent_op) { 5174 if (!head->must_insert_reserved) 5175 goto out; 5176 kfree(head->extent_op); 5177 head->extent_op = NULL; 5178 } 5179 5180 /* 5181 * waiting for the lock here would deadlock. If someone else has it 5182 * locked they are already in the process of dropping it anyway 5183 */ 5184 if (!mutex_trylock(&head->mutex)) 5185 goto out; 5186 5187 /* 5188 * at this point we have a head with no other entries. Go 5189 * ahead and process it. 5190 */ 5191 head->node.in_tree = 0; 5192 rb_erase(&head->node.rb_node, &delayed_refs->root); 5193 5194 delayed_refs->num_entries--; 5195 if (waitqueue_active(&delayed_refs->seq_wait)) 5196 wake_up(&delayed_refs->seq_wait); 5197 5198 /* 5199 * we don't take a ref on the node because we're removing it from the 5200 * tree, so we just steal the ref the tree was holding. 5201 */ 5202 delayed_refs->num_heads--; 5203 if (list_empty(&head->cluster)) 5204 delayed_refs->num_heads_ready--; 5205 5206 list_del_init(&head->cluster); 5207 spin_unlock(&delayed_refs->lock); 5208 5209 BUG_ON(head->extent_op); 5210 if (head->must_insert_reserved) 5211 ret = 1; 5212 5213 mutex_unlock(&head->mutex); 5214 btrfs_put_delayed_ref(&head->node); 5215 return ret; 5216 out: 5217 spin_unlock(&delayed_refs->lock); 5218 return 0; 5219 } 5220 5221 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5222 struct btrfs_root *root, 5223 struct extent_buffer *buf, 5224 u64 parent, int last_ref, int for_cow) 5225 { 5226 struct btrfs_block_group_cache *cache = NULL; 5227 int ret; 5228 5229 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5230 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5231 buf->start, buf->len, 5232 parent, root->root_key.objectid, 5233 btrfs_header_level(buf), 5234 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5235 BUG_ON(ret); /* -ENOMEM */ 5236 } 5237 5238 if (!last_ref) 5239 return; 5240 5241 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5242 5243 if (btrfs_header_generation(buf) == trans->transid) { 5244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5245 ret = check_ref_cleanup(trans, root, buf->start); 5246 if (!ret) 5247 goto out; 5248 } 5249 5250 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5251 pin_down_extent(root, cache, buf->start, buf->len, 1); 5252 goto out; 5253 } 5254 5255 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5256 5257 btrfs_add_free_space(cache, buf->start, buf->len); 5258 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5259 } 5260 out: 5261 /* 5262 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5263 * anymore. 5264 */ 5265 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5266 btrfs_put_block_group(cache); 5267 } 5268 5269 /* Can return -ENOMEM */ 5270 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5271 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5272 u64 owner, u64 offset, int for_cow) 5273 { 5274 int ret; 5275 struct btrfs_fs_info *fs_info = root->fs_info; 5276 5277 /* 5278 * tree log blocks never actually go into the extent allocation 5279 * tree, just update pinning info and exit early. 5280 */ 5281 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5282 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5283 /* unlocks the pinned mutex */ 5284 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5285 ret = 0; 5286 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5287 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5288 num_bytes, 5289 parent, root_objectid, (int)owner, 5290 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5291 } else { 5292 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5293 num_bytes, 5294 parent, root_objectid, owner, 5295 offset, BTRFS_DROP_DELAYED_REF, 5296 NULL, for_cow); 5297 } 5298 return ret; 5299 } 5300 5301 static u64 stripe_align(struct btrfs_root *root, u64 val) 5302 { 5303 u64 mask = ((u64)root->stripesize - 1); 5304 u64 ret = (val + mask) & ~mask; 5305 return ret; 5306 } 5307 5308 /* 5309 * when we wait for progress in the block group caching, its because 5310 * our allocation attempt failed at least once. So, we must sleep 5311 * and let some progress happen before we try again. 5312 * 5313 * This function will sleep at least once waiting for new free space to 5314 * show up, and then it will check the block group free space numbers 5315 * for our min num_bytes. Another option is to have it go ahead 5316 * and look in the rbtree for a free extent of a given size, but this 5317 * is a good start. 5318 */ 5319 static noinline int 5320 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5321 u64 num_bytes) 5322 { 5323 struct btrfs_caching_control *caching_ctl; 5324 DEFINE_WAIT(wait); 5325 5326 caching_ctl = get_caching_control(cache); 5327 if (!caching_ctl) 5328 return 0; 5329 5330 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5331 (cache->free_space_ctl->free_space >= num_bytes)); 5332 5333 put_caching_control(caching_ctl); 5334 return 0; 5335 } 5336 5337 static noinline int 5338 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5339 { 5340 struct btrfs_caching_control *caching_ctl; 5341 DEFINE_WAIT(wait); 5342 5343 caching_ctl = get_caching_control(cache); 5344 if (!caching_ctl) 5345 return 0; 5346 5347 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5348 5349 put_caching_control(caching_ctl); 5350 return 0; 5351 } 5352 5353 static int __get_block_group_index(u64 flags) 5354 { 5355 int index; 5356 5357 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5358 index = 0; 5359 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5360 index = 1; 5361 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5362 index = 2; 5363 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5364 index = 3; 5365 else 5366 index = 4; 5367 5368 return index; 5369 } 5370 5371 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5372 { 5373 return __get_block_group_index(cache->flags); 5374 } 5375 5376 enum btrfs_loop_type { 5377 LOOP_CACHING_NOWAIT = 0, 5378 LOOP_CACHING_WAIT = 1, 5379 LOOP_ALLOC_CHUNK = 2, 5380 LOOP_NO_EMPTY_SIZE = 3, 5381 }; 5382 5383 /* 5384 * walks the btree of allocated extents and find a hole of a given size. 5385 * The key ins is changed to record the hole: 5386 * ins->objectid == block start 5387 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5388 * ins->offset == number of blocks 5389 * Any available blocks before search_start are skipped. 5390 */ 5391 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5392 struct btrfs_root *orig_root, 5393 u64 num_bytes, u64 empty_size, 5394 u64 hint_byte, struct btrfs_key *ins, 5395 u64 data) 5396 { 5397 int ret = 0; 5398 struct btrfs_root *root = orig_root->fs_info->extent_root; 5399 struct btrfs_free_cluster *last_ptr = NULL; 5400 struct btrfs_block_group_cache *block_group = NULL; 5401 struct btrfs_block_group_cache *used_block_group; 5402 u64 search_start = 0; 5403 int empty_cluster = 2 * 1024 * 1024; 5404 int allowed_chunk_alloc = 0; 5405 int done_chunk_alloc = 0; 5406 struct btrfs_space_info *space_info; 5407 int loop = 0; 5408 int index = 0; 5409 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5410 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5411 bool found_uncached_bg = false; 5412 bool failed_cluster_refill = false; 5413 bool failed_alloc = false; 5414 bool use_cluster = true; 5415 bool have_caching_bg = false; 5416 5417 WARN_ON(num_bytes < root->sectorsize); 5418 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5419 ins->objectid = 0; 5420 ins->offset = 0; 5421 5422 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5423 5424 space_info = __find_space_info(root->fs_info, data); 5425 if (!space_info) { 5426 printk(KERN_ERR "No space info for %llu\n", data); 5427 return -ENOSPC; 5428 } 5429 5430 /* 5431 * If the space info is for both data and metadata it means we have a 5432 * small filesystem and we can't use the clustering stuff. 5433 */ 5434 if (btrfs_mixed_space_info(space_info)) 5435 use_cluster = false; 5436 5437 if (orig_root->ref_cows || empty_size) 5438 allowed_chunk_alloc = 1; 5439 5440 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5441 last_ptr = &root->fs_info->meta_alloc_cluster; 5442 if (!btrfs_test_opt(root, SSD)) 5443 empty_cluster = 64 * 1024; 5444 } 5445 5446 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5447 btrfs_test_opt(root, SSD)) { 5448 last_ptr = &root->fs_info->data_alloc_cluster; 5449 } 5450 5451 if (last_ptr) { 5452 spin_lock(&last_ptr->lock); 5453 if (last_ptr->block_group) 5454 hint_byte = last_ptr->window_start; 5455 spin_unlock(&last_ptr->lock); 5456 } 5457 5458 search_start = max(search_start, first_logical_byte(root, 0)); 5459 search_start = max(search_start, hint_byte); 5460 5461 if (!last_ptr) 5462 empty_cluster = 0; 5463 5464 if (search_start == hint_byte) { 5465 block_group = btrfs_lookup_block_group(root->fs_info, 5466 search_start); 5467 used_block_group = block_group; 5468 /* 5469 * we don't want to use the block group if it doesn't match our 5470 * allocation bits, or if its not cached. 5471 * 5472 * However if we are re-searching with an ideal block group 5473 * picked out then we don't care that the block group is cached. 5474 */ 5475 if (block_group && block_group_bits(block_group, data) && 5476 block_group->cached != BTRFS_CACHE_NO) { 5477 down_read(&space_info->groups_sem); 5478 if (list_empty(&block_group->list) || 5479 block_group->ro) { 5480 /* 5481 * someone is removing this block group, 5482 * we can't jump into the have_block_group 5483 * target because our list pointers are not 5484 * valid 5485 */ 5486 btrfs_put_block_group(block_group); 5487 up_read(&space_info->groups_sem); 5488 } else { 5489 index = get_block_group_index(block_group); 5490 goto have_block_group; 5491 } 5492 } else if (block_group) { 5493 btrfs_put_block_group(block_group); 5494 } 5495 } 5496 search: 5497 have_caching_bg = false; 5498 down_read(&space_info->groups_sem); 5499 list_for_each_entry(block_group, &space_info->block_groups[index], 5500 list) { 5501 u64 offset; 5502 int cached; 5503 5504 used_block_group = block_group; 5505 btrfs_get_block_group(block_group); 5506 search_start = block_group->key.objectid; 5507 5508 /* 5509 * this can happen if we end up cycling through all the 5510 * raid types, but we want to make sure we only allocate 5511 * for the proper type. 5512 */ 5513 if (!block_group_bits(block_group, data)) { 5514 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5515 BTRFS_BLOCK_GROUP_RAID1 | 5516 BTRFS_BLOCK_GROUP_RAID10; 5517 5518 /* 5519 * if they asked for extra copies and this block group 5520 * doesn't provide them, bail. This does allow us to 5521 * fill raid0 from raid1. 5522 */ 5523 if ((data & extra) && !(block_group->flags & extra)) 5524 goto loop; 5525 } 5526 5527 have_block_group: 5528 cached = block_group_cache_done(block_group); 5529 if (unlikely(!cached)) { 5530 found_uncached_bg = true; 5531 ret = cache_block_group(block_group, trans, 5532 orig_root, 0); 5533 BUG_ON(ret < 0); 5534 ret = 0; 5535 } 5536 5537 if (unlikely(block_group->ro)) 5538 goto loop; 5539 5540 /* 5541 * Ok we want to try and use the cluster allocator, so 5542 * lets look there 5543 */ 5544 if (last_ptr) { 5545 /* 5546 * the refill lock keeps out other 5547 * people trying to start a new cluster 5548 */ 5549 spin_lock(&last_ptr->refill_lock); 5550 used_block_group = last_ptr->block_group; 5551 if (used_block_group != block_group && 5552 (!used_block_group || 5553 used_block_group->ro || 5554 !block_group_bits(used_block_group, data))) { 5555 used_block_group = block_group; 5556 goto refill_cluster; 5557 } 5558 5559 if (used_block_group != block_group) 5560 btrfs_get_block_group(used_block_group); 5561 5562 offset = btrfs_alloc_from_cluster(used_block_group, 5563 last_ptr, num_bytes, used_block_group->key.objectid); 5564 if (offset) { 5565 /* we have a block, we're done */ 5566 spin_unlock(&last_ptr->refill_lock); 5567 trace_btrfs_reserve_extent_cluster(root, 5568 block_group, search_start, num_bytes); 5569 goto checks; 5570 } 5571 5572 WARN_ON(last_ptr->block_group != used_block_group); 5573 if (used_block_group != block_group) { 5574 btrfs_put_block_group(used_block_group); 5575 used_block_group = block_group; 5576 } 5577 refill_cluster: 5578 BUG_ON(used_block_group != block_group); 5579 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5580 * set up a new clusters, so lets just skip it 5581 * and let the allocator find whatever block 5582 * it can find. If we reach this point, we 5583 * will have tried the cluster allocator 5584 * plenty of times and not have found 5585 * anything, so we are likely way too 5586 * fragmented for the clustering stuff to find 5587 * anything. 5588 * 5589 * However, if the cluster is taken from the 5590 * current block group, release the cluster 5591 * first, so that we stand a better chance of 5592 * succeeding in the unclustered 5593 * allocation. */ 5594 if (loop >= LOOP_NO_EMPTY_SIZE && 5595 last_ptr->block_group != block_group) { 5596 spin_unlock(&last_ptr->refill_lock); 5597 goto unclustered_alloc; 5598 } 5599 5600 /* 5601 * this cluster didn't work out, free it and 5602 * start over 5603 */ 5604 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5605 5606 if (loop >= LOOP_NO_EMPTY_SIZE) { 5607 spin_unlock(&last_ptr->refill_lock); 5608 goto unclustered_alloc; 5609 } 5610 5611 /* allocate a cluster in this block group */ 5612 ret = btrfs_find_space_cluster(trans, root, 5613 block_group, last_ptr, 5614 search_start, num_bytes, 5615 empty_cluster + empty_size); 5616 if (ret == 0) { 5617 /* 5618 * now pull our allocation out of this 5619 * cluster 5620 */ 5621 offset = btrfs_alloc_from_cluster(block_group, 5622 last_ptr, num_bytes, 5623 search_start); 5624 if (offset) { 5625 /* we found one, proceed */ 5626 spin_unlock(&last_ptr->refill_lock); 5627 trace_btrfs_reserve_extent_cluster(root, 5628 block_group, search_start, 5629 num_bytes); 5630 goto checks; 5631 } 5632 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5633 && !failed_cluster_refill) { 5634 spin_unlock(&last_ptr->refill_lock); 5635 5636 failed_cluster_refill = true; 5637 wait_block_group_cache_progress(block_group, 5638 num_bytes + empty_cluster + empty_size); 5639 goto have_block_group; 5640 } 5641 5642 /* 5643 * at this point we either didn't find a cluster 5644 * or we weren't able to allocate a block from our 5645 * cluster. Free the cluster we've been trying 5646 * to use, and go to the next block group 5647 */ 5648 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5649 spin_unlock(&last_ptr->refill_lock); 5650 goto loop; 5651 } 5652 5653 unclustered_alloc: 5654 spin_lock(&block_group->free_space_ctl->tree_lock); 5655 if (cached && 5656 block_group->free_space_ctl->free_space < 5657 num_bytes + empty_cluster + empty_size) { 5658 spin_unlock(&block_group->free_space_ctl->tree_lock); 5659 goto loop; 5660 } 5661 spin_unlock(&block_group->free_space_ctl->tree_lock); 5662 5663 offset = btrfs_find_space_for_alloc(block_group, search_start, 5664 num_bytes, empty_size); 5665 /* 5666 * If we didn't find a chunk, and we haven't failed on this 5667 * block group before, and this block group is in the middle of 5668 * caching and we are ok with waiting, then go ahead and wait 5669 * for progress to be made, and set failed_alloc to true. 5670 * 5671 * If failed_alloc is true then we've already waited on this 5672 * block group once and should move on to the next block group. 5673 */ 5674 if (!offset && !failed_alloc && !cached && 5675 loop > LOOP_CACHING_NOWAIT) { 5676 wait_block_group_cache_progress(block_group, 5677 num_bytes + empty_size); 5678 failed_alloc = true; 5679 goto have_block_group; 5680 } else if (!offset) { 5681 if (!cached) 5682 have_caching_bg = true; 5683 goto loop; 5684 } 5685 checks: 5686 search_start = stripe_align(root, offset); 5687 5688 /* move on to the next group */ 5689 if (search_start + num_bytes > 5690 used_block_group->key.objectid + used_block_group->key.offset) { 5691 btrfs_add_free_space(used_block_group, offset, num_bytes); 5692 goto loop; 5693 } 5694 5695 if (offset < search_start) 5696 btrfs_add_free_space(used_block_group, offset, 5697 search_start - offset); 5698 BUG_ON(offset > search_start); 5699 5700 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5701 alloc_type); 5702 if (ret == -EAGAIN) { 5703 btrfs_add_free_space(used_block_group, offset, num_bytes); 5704 goto loop; 5705 } 5706 5707 /* we are all good, lets return */ 5708 ins->objectid = search_start; 5709 ins->offset = num_bytes; 5710 5711 trace_btrfs_reserve_extent(orig_root, block_group, 5712 search_start, num_bytes); 5713 if (offset < search_start) 5714 btrfs_add_free_space(used_block_group, offset, 5715 search_start - offset); 5716 BUG_ON(offset > search_start); 5717 if (used_block_group != block_group) 5718 btrfs_put_block_group(used_block_group); 5719 btrfs_put_block_group(block_group); 5720 break; 5721 loop: 5722 failed_cluster_refill = false; 5723 failed_alloc = false; 5724 BUG_ON(index != get_block_group_index(block_group)); 5725 if (used_block_group != block_group) 5726 btrfs_put_block_group(used_block_group); 5727 btrfs_put_block_group(block_group); 5728 } 5729 up_read(&space_info->groups_sem); 5730 5731 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5732 goto search; 5733 5734 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5735 goto search; 5736 5737 /* 5738 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5739 * caching kthreads as we move along 5740 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5741 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5742 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5743 * again 5744 */ 5745 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5746 index = 0; 5747 loop++; 5748 if (loop == LOOP_ALLOC_CHUNK) { 5749 if (allowed_chunk_alloc) { 5750 ret = do_chunk_alloc(trans, root, num_bytes + 5751 2 * 1024 * 1024, data, 5752 CHUNK_ALLOC_LIMITED); 5753 if (ret < 0) { 5754 btrfs_abort_transaction(trans, 5755 root, ret); 5756 goto out; 5757 } 5758 allowed_chunk_alloc = 0; 5759 if (ret == 1) 5760 done_chunk_alloc = 1; 5761 } else if (!done_chunk_alloc && 5762 space_info->force_alloc == 5763 CHUNK_ALLOC_NO_FORCE) { 5764 space_info->force_alloc = CHUNK_ALLOC_LIMITED; 5765 } 5766 5767 /* 5768 * We didn't allocate a chunk, go ahead and drop the 5769 * empty size and loop again. 5770 */ 5771 if (!done_chunk_alloc) 5772 loop = LOOP_NO_EMPTY_SIZE; 5773 } 5774 5775 if (loop == LOOP_NO_EMPTY_SIZE) { 5776 empty_size = 0; 5777 empty_cluster = 0; 5778 } 5779 5780 goto search; 5781 } else if (!ins->objectid) { 5782 ret = -ENOSPC; 5783 } else if (ins->objectid) { 5784 ret = 0; 5785 } 5786 out: 5787 5788 return ret; 5789 } 5790 5791 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5792 int dump_block_groups) 5793 { 5794 struct btrfs_block_group_cache *cache; 5795 int index = 0; 5796 5797 spin_lock(&info->lock); 5798 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5799 (unsigned long long)info->flags, 5800 (unsigned long long)(info->total_bytes - info->bytes_used - 5801 info->bytes_pinned - info->bytes_reserved - 5802 info->bytes_readonly), 5803 (info->full) ? "" : "not "); 5804 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5805 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5806 (unsigned long long)info->total_bytes, 5807 (unsigned long long)info->bytes_used, 5808 (unsigned long long)info->bytes_pinned, 5809 (unsigned long long)info->bytes_reserved, 5810 (unsigned long long)info->bytes_may_use, 5811 (unsigned long long)info->bytes_readonly); 5812 spin_unlock(&info->lock); 5813 5814 if (!dump_block_groups) 5815 return; 5816 5817 down_read(&info->groups_sem); 5818 again: 5819 list_for_each_entry(cache, &info->block_groups[index], list) { 5820 spin_lock(&cache->lock); 5821 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 5822 "%llu pinned %llu reserved\n", 5823 (unsigned long long)cache->key.objectid, 5824 (unsigned long long)cache->key.offset, 5825 (unsigned long long)btrfs_block_group_used(&cache->item), 5826 (unsigned long long)cache->pinned, 5827 (unsigned long long)cache->reserved); 5828 btrfs_dump_free_space(cache, bytes); 5829 spin_unlock(&cache->lock); 5830 } 5831 if (++index < BTRFS_NR_RAID_TYPES) 5832 goto again; 5833 up_read(&info->groups_sem); 5834 } 5835 5836 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5837 struct btrfs_root *root, 5838 u64 num_bytes, u64 min_alloc_size, 5839 u64 empty_size, u64 hint_byte, 5840 struct btrfs_key *ins, u64 data) 5841 { 5842 bool final_tried = false; 5843 int ret; 5844 5845 data = btrfs_get_alloc_profile(root, data); 5846 again: 5847 /* 5848 * the only place that sets empty_size is btrfs_realloc_node, which 5849 * is not called recursively on allocations 5850 */ 5851 if (empty_size || root->ref_cows) { 5852 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5853 num_bytes + 2 * 1024 * 1024, data, 5854 CHUNK_ALLOC_NO_FORCE); 5855 if (ret < 0 && ret != -ENOSPC) { 5856 btrfs_abort_transaction(trans, root, ret); 5857 return ret; 5858 } 5859 } 5860 5861 WARN_ON(num_bytes < root->sectorsize); 5862 ret = find_free_extent(trans, root, num_bytes, empty_size, 5863 hint_byte, ins, data); 5864 5865 if (ret == -ENOSPC) { 5866 if (!final_tried) { 5867 num_bytes = num_bytes >> 1; 5868 num_bytes = num_bytes & ~(root->sectorsize - 1); 5869 num_bytes = max(num_bytes, min_alloc_size); 5870 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5871 num_bytes, data, CHUNK_ALLOC_FORCE); 5872 if (ret < 0 && ret != -ENOSPC) { 5873 btrfs_abort_transaction(trans, root, ret); 5874 return ret; 5875 } 5876 if (num_bytes == min_alloc_size) 5877 final_tried = true; 5878 goto again; 5879 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5880 struct btrfs_space_info *sinfo; 5881 5882 sinfo = __find_space_info(root->fs_info, data); 5883 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5884 "wanted %llu\n", (unsigned long long)data, 5885 (unsigned long long)num_bytes); 5886 if (sinfo) 5887 dump_space_info(sinfo, num_bytes, 1); 5888 } 5889 } 5890 5891 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5892 5893 return ret; 5894 } 5895 5896 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 5897 u64 start, u64 len, int pin) 5898 { 5899 struct btrfs_block_group_cache *cache; 5900 int ret = 0; 5901 5902 cache = btrfs_lookup_block_group(root->fs_info, start); 5903 if (!cache) { 5904 printk(KERN_ERR "Unable to find block group for %llu\n", 5905 (unsigned long long)start); 5906 return -ENOSPC; 5907 } 5908 5909 if (btrfs_test_opt(root, DISCARD)) 5910 ret = btrfs_discard_extent(root, start, len, NULL); 5911 5912 if (pin) 5913 pin_down_extent(root, cache, start, len, 1); 5914 else { 5915 btrfs_add_free_space(cache, start, len); 5916 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 5917 } 5918 btrfs_put_block_group(cache); 5919 5920 trace_btrfs_reserved_extent_free(root, start, len); 5921 5922 return ret; 5923 } 5924 5925 int btrfs_free_reserved_extent(struct btrfs_root *root, 5926 u64 start, u64 len) 5927 { 5928 return __btrfs_free_reserved_extent(root, start, len, 0); 5929 } 5930 5931 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 5932 u64 start, u64 len) 5933 { 5934 return __btrfs_free_reserved_extent(root, start, len, 1); 5935 } 5936 5937 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5938 struct btrfs_root *root, 5939 u64 parent, u64 root_objectid, 5940 u64 flags, u64 owner, u64 offset, 5941 struct btrfs_key *ins, int ref_mod) 5942 { 5943 int ret; 5944 struct btrfs_fs_info *fs_info = root->fs_info; 5945 struct btrfs_extent_item *extent_item; 5946 struct btrfs_extent_inline_ref *iref; 5947 struct btrfs_path *path; 5948 struct extent_buffer *leaf; 5949 int type; 5950 u32 size; 5951 5952 if (parent > 0) 5953 type = BTRFS_SHARED_DATA_REF_KEY; 5954 else 5955 type = BTRFS_EXTENT_DATA_REF_KEY; 5956 5957 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5958 5959 path = btrfs_alloc_path(); 5960 if (!path) 5961 return -ENOMEM; 5962 5963 path->leave_spinning = 1; 5964 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5965 ins, size); 5966 if (ret) { 5967 btrfs_free_path(path); 5968 return ret; 5969 } 5970 5971 leaf = path->nodes[0]; 5972 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5973 struct btrfs_extent_item); 5974 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5975 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5976 btrfs_set_extent_flags(leaf, extent_item, 5977 flags | BTRFS_EXTENT_FLAG_DATA); 5978 5979 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5980 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5981 if (parent > 0) { 5982 struct btrfs_shared_data_ref *ref; 5983 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5984 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5985 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5986 } else { 5987 struct btrfs_extent_data_ref *ref; 5988 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5989 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5990 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5991 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5992 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5993 } 5994 5995 btrfs_mark_buffer_dirty(path->nodes[0]); 5996 btrfs_free_path(path); 5997 5998 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5999 if (ret) { /* -ENOENT, logic error */ 6000 printk(KERN_ERR "btrfs update block group failed for %llu " 6001 "%llu\n", (unsigned long long)ins->objectid, 6002 (unsigned long long)ins->offset); 6003 BUG(); 6004 } 6005 return ret; 6006 } 6007 6008 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6009 struct btrfs_root *root, 6010 u64 parent, u64 root_objectid, 6011 u64 flags, struct btrfs_disk_key *key, 6012 int level, struct btrfs_key *ins) 6013 { 6014 int ret; 6015 struct btrfs_fs_info *fs_info = root->fs_info; 6016 struct btrfs_extent_item *extent_item; 6017 struct btrfs_tree_block_info *block_info; 6018 struct btrfs_extent_inline_ref *iref; 6019 struct btrfs_path *path; 6020 struct extent_buffer *leaf; 6021 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6022 6023 path = btrfs_alloc_path(); 6024 if (!path) 6025 return -ENOMEM; 6026 6027 path->leave_spinning = 1; 6028 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6029 ins, size); 6030 if (ret) { 6031 btrfs_free_path(path); 6032 return ret; 6033 } 6034 6035 leaf = path->nodes[0]; 6036 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6037 struct btrfs_extent_item); 6038 btrfs_set_extent_refs(leaf, extent_item, 1); 6039 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6040 btrfs_set_extent_flags(leaf, extent_item, 6041 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6042 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6043 6044 btrfs_set_tree_block_key(leaf, block_info, key); 6045 btrfs_set_tree_block_level(leaf, block_info, level); 6046 6047 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6048 if (parent > 0) { 6049 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6050 btrfs_set_extent_inline_ref_type(leaf, iref, 6051 BTRFS_SHARED_BLOCK_REF_KEY); 6052 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6053 } else { 6054 btrfs_set_extent_inline_ref_type(leaf, iref, 6055 BTRFS_TREE_BLOCK_REF_KEY); 6056 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6057 } 6058 6059 btrfs_mark_buffer_dirty(leaf); 6060 btrfs_free_path(path); 6061 6062 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6063 if (ret) { /* -ENOENT, logic error */ 6064 printk(KERN_ERR "btrfs update block group failed for %llu " 6065 "%llu\n", (unsigned long long)ins->objectid, 6066 (unsigned long long)ins->offset); 6067 BUG(); 6068 } 6069 return ret; 6070 } 6071 6072 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6073 struct btrfs_root *root, 6074 u64 root_objectid, u64 owner, 6075 u64 offset, struct btrfs_key *ins) 6076 { 6077 int ret; 6078 6079 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6080 6081 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6082 ins->offset, 0, 6083 root_objectid, owner, offset, 6084 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6085 return ret; 6086 } 6087 6088 /* 6089 * this is used by the tree logging recovery code. It records that 6090 * an extent has been allocated and makes sure to clear the free 6091 * space cache bits as well 6092 */ 6093 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6094 struct btrfs_root *root, 6095 u64 root_objectid, u64 owner, u64 offset, 6096 struct btrfs_key *ins) 6097 { 6098 int ret; 6099 struct btrfs_block_group_cache *block_group; 6100 struct btrfs_caching_control *caching_ctl; 6101 u64 start = ins->objectid; 6102 u64 num_bytes = ins->offset; 6103 6104 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6105 cache_block_group(block_group, trans, NULL, 0); 6106 caching_ctl = get_caching_control(block_group); 6107 6108 if (!caching_ctl) { 6109 BUG_ON(!block_group_cache_done(block_group)); 6110 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6111 BUG_ON(ret); /* -ENOMEM */ 6112 } else { 6113 mutex_lock(&caching_ctl->mutex); 6114 6115 if (start >= caching_ctl->progress) { 6116 ret = add_excluded_extent(root, start, num_bytes); 6117 BUG_ON(ret); /* -ENOMEM */ 6118 } else if (start + num_bytes <= caching_ctl->progress) { 6119 ret = btrfs_remove_free_space(block_group, 6120 start, num_bytes); 6121 BUG_ON(ret); /* -ENOMEM */ 6122 } else { 6123 num_bytes = caching_ctl->progress - start; 6124 ret = btrfs_remove_free_space(block_group, 6125 start, num_bytes); 6126 BUG_ON(ret); /* -ENOMEM */ 6127 6128 start = caching_ctl->progress; 6129 num_bytes = ins->objectid + ins->offset - 6130 caching_ctl->progress; 6131 ret = add_excluded_extent(root, start, num_bytes); 6132 BUG_ON(ret); /* -ENOMEM */ 6133 } 6134 6135 mutex_unlock(&caching_ctl->mutex); 6136 put_caching_control(caching_ctl); 6137 } 6138 6139 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6140 RESERVE_ALLOC_NO_ACCOUNT); 6141 BUG_ON(ret); /* logic error */ 6142 btrfs_put_block_group(block_group); 6143 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6144 0, owner, offset, ins, 1); 6145 return ret; 6146 } 6147 6148 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6149 struct btrfs_root *root, 6150 u64 bytenr, u32 blocksize, 6151 int level) 6152 { 6153 struct extent_buffer *buf; 6154 6155 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6156 if (!buf) 6157 return ERR_PTR(-ENOMEM); 6158 btrfs_set_header_generation(buf, trans->transid); 6159 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6160 btrfs_tree_lock(buf); 6161 clean_tree_block(trans, root, buf); 6162 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6163 6164 btrfs_set_lock_blocking(buf); 6165 btrfs_set_buffer_uptodate(buf); 6166 6167 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6168 /* 6169 * we allow two log transactions at a time, use different 6170 * EXENT bit to differentiate dirty pages. 6171 */ 6172 if (root->log_transid % 2 == 0) 6173 set_extent_dirty(&root->dirty_log_pages, buf->start, 6174 buf->start + buf->len - 1, GFP_NOFS); 6175 else 6176 set_extent_new(&root->dirty_log_pages, buf->start, 6177 buf->start + buf->len - 1, GFP_NOFS); 6178 } else { 6179 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6180 buf->start + buf->len - 1, GFP_NOFS); 6181 } 6182 trans->blocks_used++; 6183 /* this returns a buffer locked for blocking */ 6184 return buf; 6185 } 6186 6187 static struct btrfs_block_rsv * 6188 use_block_rsv(struct btrfs_trans_handle *trans, 6189 struct btrfs_root *root, u32 blocksize) 6190 { 6191 struct btrfs_block_rsv *block_rsv; 6192 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6193 int ret; 6194 6195 block_rsv = get_block_rsv(trans, root); 6196 6197 if (block_rsv->size == 0) { 6198 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6199 /* 6200 * If we couldn't reserve metadata bytes try and use some from 6201 * the global reserve. 6202 */ 6203 if (ret && block_rsv != global_rsv) { 6204 ret = block_rsv_use_bytes(global_rsv, blocksize); 6205 if (!ret) 6206 return global_rsv; 6207 return ERR_PTR(ret); 6208 } else if (ret) { 6209 return ERR_PTR(ret); 6210 } 6211 return block_rsv; 6212 } 6213 6214 ret = block_rsv_use_bytes(block_rsv, blocksize); 6215 if (!ret) 6216 return block_rsv; 6217 if (ret) { 6218 static DEFINE_RATELIMIT_STATE(_rs, 6219 DEFAULT_RATELIMIT_INTERVAL, 6220 /*DEFAULT_RATELIMIT_BURST*/ 2); 6221 if (__ratelimit(&_rs)) { 6222 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); 6223 WARN_ON(1); 6224 } 6225 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6226 if (!ret) { 6227 return block_rsv; 6228 } else if (ret && block_rsv != global_rsv) { 6229 ret = block_rsv_use_bytes(global_rsv, blocksize); 6230 if (!ret) 6231 return global_rsv; 6232 } 6233 } 6234 6235 return ERR_PTR(-ENOSPC); 6236 } 6237 6238 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6239 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6240 { 6241 block_rsv_add_bytes(block_rsv, blocksize, 0); 6242 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6243 } 6244 6245 /* 6246 * finds a free extent and does all the dirty work required for allocation 6247 * returns the key for the extent through ins, and a tree buffer for 6248 * the first block of the extent through buf. 6249 * 6250 * returns the tree buffer or NULL. 6251 */ 6252 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6253 struct btrfs_root *root, u32 blocksize, 6254 u64 parent, u64 root_objectid, 6255 struct btrfs_disk_key *key, int level, 6256 u64 hint, u64 empty_size, int for_cow) 6257 { 6258 struct btrfs_key ins; 6259 struct btrfs_block_rsv *block_rsv; 6260 struct extent_buffer *buf; 6261 u64 flags = 0; 6262 int ret; 6263 6264 6265 block_rsv = use_block_rsv(trans, root, blocksize); 6266 if (IS_ERR(block_rsv)) 6267 return ERR_CAST(block_rsv); 6268 6269 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6270 empty_size, hint, &ins, 0); 6271 if (ret) { 6272 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6273 return ERR_PTR(ret); 6274 } 6275 6276 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6277 blocksize, level); 6278 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6279 6280 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6281 if (parent == 0) 6282 parent = ins.objectid; 6283 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6284 } else 6285 BUG_ON(parent > 0); 6286 6287 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6288 struct btrfs_delayed_extent_op *extent_op; 6289 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6290 BUG_ON(!extent_op); /* -ENOMEM */ 6291 if (key) 6292 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6293 else 6294 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6295 extent_op->flags_to_set = flags; 6296 extent_op->update_key = 1; 6297 extent_op->update_flags = 1; 6298 extent_op->is_data = 0; 6299 6300 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6301 ins.objectid, 6302 ins.offset, parent, root_objectid, 6303 level, BTRFS_ADD_DELAYED_EXTENT, 6304 extent_op, for_cow); 6305 BUG_ON(ret); /* -ENOMEM */ 6306 } 6307 return buf; 6308 } 6309 6310 struct walk_control { 6311 u64 refs[BTRFS_MAX_LEVEL]; 6312 u64 flags[BTRFS_MAX_LEVEL]; 6313 struct btrfs_key update_progress; 6314 int stage; 6315 int level; 6316 int shared_level; 6317 int update_ref; 6318 int keep_locks; 6319 int reada_slot; 6320 int reada_count; 6321 int for_reloc; 6322 }; 6323 6324 #define DROP_REFERENCE 1 6325 #define UPDATE_BACKREF 2 6326 6327 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6328 struct btrfs_root *root, 6329 struct walk_control *wc, 6330 struct btrfs_path *path) 6331 { 6332 u64 bytenr; 6333 u64 generation; 6334 u64 refs; 6335 u64 flags; 6336 u32 nritems; 6337 u32 blocksize; 6338 struct btrfs_key key; 6339 struct extent_buffer *eb; 6340 int ret; 6341 int slot; 6342 int nread = 0; 6343 6344 if (path->slots[wc->level] < wc->reada_slot) { 6345 wc->reada_count = wc->reada_count * 2 / 3; 6346 wc->reada_count = max(wc->reada_count, 2); 6347 } else { 6348 wc->reada_count = wc->reada_count * 3 / 2; 6349 wc->reada_count = min_t(int, wc->reada_count, 6350 BTRFS_NODEPTRS_PER_BLOCK(root)); 6351 } 6352 6353 eb = path->nodes[wc->level]; 6354 nritems = btrfs_header_nritems(eb); 6355 blocksize = btrfs_level_size(root, wc->level - 1); 6356 6357 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6358 if (nread >= wc->reada_count) 6359 break; 6360 6361 cond_resched(); 6362 bytenr = btrfs_node_blockptr(eb, slot); 6363 generation = btrfs_node_ptr_generation(eb, slot); 6364 6365 if (slot == path->slots[wc->level]) 6366 goto reada; 6367 6368 if (wc->stage == UPDATE_BACKREF && 6369 generation <= root->root_key.offset) 6370 continue; 6371 6372 /* We don't lock the tree block, it's OK to be racy here */ 6373 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6374 &refs, &flags); 6375 /* We don't care about errors in readahead. */ 6376 if (ret < 0) 6377 continue; 6378 BUG_ON(refs == 0); 6379 6380 if (wc->stage == DROP_REFERENCE) { 6381 if (refs == 1) 6382 goto reada; 6383 6384 if (wc->level == 1 && 6385 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6386 continue; 6387 if (!wc->update_ref || 6388 generation <= root->root_key.offset) 6389 continue; 6390 btrfs_node_key_to_cpu(eb, &key, slot); 6391 ret = btrfs_comp_cpu_keys(&key, 6392 &wc->update_progress); 6393 if (ret < 0) 6394 continue; 6395 } else { 6396 if (wc->level == 1 && 6397 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6398 continue; 6399 } 6400 reada: 6401 ret = readahead_tree_block(root, bytenr, blocksize, 6402 generation); 6403 if (ret) 6404 break; 6405 nread++; 6406 } 6407 wc->reada_slot = slot; 6408 } 6409 6410 /* 6411 * hepler to process tree block while walking down the tree. 6412 * 6413 * when wc->stage == UPDATE_BACKREF, this function updates 6414 * back refs for pointers in the block. 6415 * 6416 * NOTE: return value 1 means we should stop walking down. 6417 */ 6418 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6419 struct btrfs_root *root, 6420 struct btrfs_path *path, 6421 struct walk_control *wc, int lookup_info) 6422 { 6423 int level = wc->level; 6424 struct extent_buffer *eb = path->nodes[level]; 6425 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6426 int ret; 6427 6428 if (wc->stage == UPDATE_BACKREF && 6429 btrfs_header_owner(eb) != root->root_key.objectid) 6430 return 1; 6431 6432 /* 6433 * when reference count of tree block is 1, it won't increase 6434 * again. once full backref flag is set, we never clear it. 6435 */ 6436 if (lookup_info && 6437 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6438 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6439 BUG_ON(!path->locks[level]); 6440 ret = btrfs_lookup_extent_info(trans, root, 6441 eb->start, eb->len, 6442 &wc->refs[level], 6443 &wc->flags[level]); 6444 BUG_ON(ret == -ENOMEM); 6445 if (ret) 6446 return ret; 6447 BUG_ON(wc->refs[level] == 0); 6448 } 6449 6450 if (wc->stage == DROP_REFERENCE) { 6451 if (wc->refs[level] > 1) 6452 return 1; 6453 6454 if (path->locks[level] && !wc->keep_locks) { 6455 btrfs_tree_unlock_rw(eb, path->locks[level]); 6456 path->locks[level] = 0; 6457 } 6458 return 0; 6459 } 6460 6461 /* wc->stage == UPDATE_BACKREF */ 6462 if (!(wc->flags[level] & flag)) { 6463 BUG_ON(!path->locks[level]); 6464 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6465 BUG_ON(ret); /* -ENOMEM */ 6466 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6467 BUG_ON(ret); /* -ENOMEM */ 6468 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6469 eb->len, flag, 0); 6470 BUG_ON(ret); /* -ENOMEM */ 6471 wc->flags[level] |= flag; 6472 } 6473 6474 /* 6475 * the block is shared by multiple trees, so it's not good to 6476 * keep the tree lock 6477 */ 6478 if (path->locks[level] && level > 0) { 6479 btrfs_tree_unlock_rw(eb, path->locks[level]); 6480 path->locks[level] = 0; 6481 } 6482 return 0; 6483 } 6484 6485 /* 6486 * hepler to process tree block pointer. 6487 * 6488 * when wc->stage == DROP_REFERENCE, this function checks 6489 * reference count of the block pointed to. if the block 6490 * is shared and we need update back refs for the subtree 6491 * rooted at the block, this function changes wc->stage to 6492 * UPDATE_BACKREF. if the block is shared and there is no 6493 * need to update back, this function drops the reference 6494 * to the block. 6495 * 6496 * NOTE: return value 1 means we should stop walking down. 6497 */ 6498 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6499 struct btrfs_root *root, 6500 struct btrfs_path *path, 6501 struct walk_control *wc, int *lookup_info) 6502 { 6503 u64 bytenr; 6504 u64 generation; 6505 u64 parent; 6506 u32 blocksize; 6507 struct btrfs_key key; 6508 struct extent_buffer *next; 6509 int level = wc->level; 6510 int reada = 0; 6511 int ret = 0; 6512 6513 generation = btrfs_node_ptr_generation(path->nodes[level], 6514 path->slots[level]); 6515 /* 6516 * if the lower level block was created before the snapshot 6517 * was created, we know there is no need to update back refs 6518 * for the subtree 6519 */ 6520 if (wc->stage == UPDATE_BACKREF && 6521 generation <= root->root_key.offset) { 6522 *lookup_info = 1; 6523 return 1; 6524 } 6525 6526 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6527 blocksize = btrfs_level_size(root, level - 1); 6528 6529 next = btrfs_find_tree_block(root, bytenr, blocksize); 6530 if (!next) { 6531 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6532 if (!next) 6533 return -ENOMEM; 6534 reada = 1; 6535 } 6536 btrfs_tree_lock(next); 6537 btrfs_set_lock_blocking(next); 6538 6539 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6540 &wc->refs[level - 1], 6541 &wc->flags[level - 1]); 6542 if (ret < 0) { 6543 btrfs_tree_unlock(next); 6544 return ret; 6545 } 6546 6547 BUG_ON(wc->refs[level - 1] == 0); 6548 *lookup_info = 0; 6549 6550 if (wc->stage == DROP_REFERENCE) { 6551 if (wc->refs[level - 1] > 1) { 6552 if (level == 1 && 6553 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6554 goto skip; 6555 6556 if (!wc->update_ref || 6557 generation <= root->root_key.offset) 6558 goto skip; 6559 6560 btrfs_node_key_to_cpu(path->nodes[level], &key, 6561 path->slots[level]); 6562 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6563 if (ret < 0) 6564 goto skip; 6565 6566 wc->stage = UPDATE_BACKREF; 6567 wc->shared_level = level - 1; 6568 } 6569 } else { 6570 if (level == 1 && 6571 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6572 goto skip; 6573 } 6574 6575 if (!btrfs_buffer_uptodate(next, generation)) { 6576 btrfs_tree_unlock(next); 6577 free_extent_buffer(next); 6578 next = NULL; 6579 *lookup_info = 1; 6580 } 6581 6582 if (!next) { 6583 if (reada && level == 1) 6584 reada_walk_down(trans, root, wc, path); 6585 next = read_tree_block(root, bytenr, blocksize, generation); 6586 if (!next) 6587 return -EIO; 6588 btrfs_tree_lock(next); 6589 btrfs_set_lock_blocking(next); 6590 } 6591 6592 level--; 6593 BUG_ON(level != btrfs_header_level(next)); 6594 path->nodes[level] = next; 6595 path->slots[level] = 0; 6596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6597 wc->level = level; 6598 if (wc->level == 1) 6599 wc->reada_slot = 0; 6600 return 0; 6601 skip: 6602 wc->refs[level - 1] = 0; 6603 wc->flags[level - 1] = 0; 6604 if (wc->stage == DROP_REFERENCE) { 6605 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6606 parent = path->nodes[level]->start; 6607 } else { 6608 BUG_ON(root->root_key.objectid != 6609 btrfs_header_owner(path->nodes[level])); 6610 parent = 0; 6611 } 6612 6613 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6614 root->root_key.objectid, level - 1, 0, 0); 6615 BUG_ON(ret); /* -ENOMEM */ 6616 } 6617 btrfs_tree_unlock(next); 6618 free_extent_buffer(next); 6619 *lookup_info = 1; 6620 return 1; 6621 } 6622 6623 /* 6624 * hepler to process tree block while walking up the tree. 6625 * 6626 * when wc->stage == DROP_REFERENCE, this function drops 6627 * reference count on the block. 6628 * 6629 * when wc->stage == UPDATE_BACKREF, this function changes 6630 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6631 * to UPDATE_BACKREF previously while processing the block. 6632 * 6633 * NOTE: return value 1 means we should stop walking up. 6634 */ 6635 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6636 struct btrfs_root *root, 6637 struct btrfs_path *path, 6638 struct walk_control *wc) 6639 { 6640 int ret; 6641 int level = wc->level; 6642 struct extent_buffer *eb = path->nodes[level]; 6643 u64 parent = 0; 6644 6645 if (wc->stage == UPDATE_BACKREF) { 6646 BUG_ON(wc->shared_level < level); 6647 if (level < wc->shared_level) 6648 goto out; 6649 6650 ret = find_next_key(path, level + 1, &wc->update_progress); 6651 if (ret > 0) 6652 wc->update_ref = 0; 6653 6654 wc->stage = DROP_REFERENCE; 6655 wc->shared_level = -1; 6656 path->slots[level] = 0; 6657 6658 /* 6659 * check reference count again if the block isn't locked. 6660 * we should start walking down the tree again if reference 6661 * count is one. 6662 */ 6663 if (!path->locks[level]) { 6664 BUG_ON(level == 0); 6665 btrfs_tree_lock(eb); 6666 btrfs_set_lock_blocking(eb); 6667 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6668 6669 ret = btrfs_lookup_extent_info(trans, root, 6670 eb->start, eb->len, 6671 &wc->refs[level], 6672 &wc->flags[level]); 6673 if (ret < 0) { 6674 btrfs_tree_unlock_rw(eb, path->locks[level]); 6675 return ret; 6676 } 6677 BUG_ON(wc->refs[level] == 0); 6678 if (wc->refs[level] == 1) { 6679 btrfs_tree_unlock_rw(eb, path->locks[level]); 6680 return 1; 6681 } 6682 } 6683 } 6684 6685 /* wc->stage == DROP_REFERENCE */ 6686 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6687 6688 if (wc->refs[level] == 1) { 6689 if (level == 0) { 6690 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6691 ret = btrfs_dec_ref(trans, root, eb, 1, 6692 wc->for_reloc); 6693 else 6694 ret = btrfs_dec_ref(trans, root, eb, 0, 6695 wc->for_reloc); 6696 BUG_ON(ret); /* -ENOMEM */ 6697 } 6698 /* make block locked assertion in clean_tree_block happy */ 6699 if (!path->locks[level] && 6700 btrfs_header_generation(eb) == trans->transid) { 6701 btrfs_tree_lock(eb); 6702 btrfs_set_lock_blocking(eb); 6703 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6704 } 6705 clean_tree_block(trans, root, eb); 6706 } 6707 6708 if (eb == root->node) { 6709 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6710 parent = eb->start; 6711 else 6712 BUG_ON(root->root_key.objectid != 6713 btrfs_header_owner(eb)); 6714 } else { 6715 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6716 parent = path->nodes[level + 1]->start; 6717 else 6718 BUG_ON(root->root_key.objectid != 6719 btrfs_header_owner(path->nodes[level + 1])); 6720 } 6721 6722 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0); 6723 out: 6724 wc->refs[level] = 0; 6725 wc->flags[level] = 0; 6726 return 0; 6727 } 6728 6729 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6730 struct btrfs_root *root, 6731 struct btrfs_path *path, 6732 struct walk_control *wc) 6733 { 6734 int level = wc->level; 6735 int lookup_info = 1; 6736 int ret; 6737 6738 while (level >= 0) { 6739 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6740 if (ret > 0) 6741 break; 6742 6743 if (level == 0) 6744 break; 6745 6746 if (path->slots[level] >= 6747 btrfs_header_nritems(path->nodes[level])) 6748 break; 6749 6750 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6751 if (ret > 0) { 6752 path->slots[level]++; 6753 continue; 6754 } else if (ret < 0) 6755 return ret; 6756 level = wc->level; 6757 } 6758 return 0; 6759 } 6760 6761 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6762 struct btrfs_root *root, 6763 struct btrfs_path *path, 6764 struct walk_control *wc, int max_level) 6765 { 6766 int level = wc->level; 6767 int ret; 6768 6769 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6770 while (level < max_level && path->nodes[level]) { 6771 wc->level = level; 6772 if (path->slots[level] + 1 < 6773 btrfs_header_nritems(path->nodes[level])) { 6774 path->slots[level]++; 6775 return 0; 6776 } else { 6777 ret = walk_up_proc(trans, root, path, wc); 6778 if (ret > 0) 6779 return 0; 6780 6781 if (path->locks[level]) { 6782 btrfs_tree_unlock_rw(path->nodes[level], 6783 path->locks[level]); 6784 path->locks[level] = 0; 6785 } 6786 free_extent_buffer(path->nodes[level]); 6787 path->nodes[level] = NULL; 6788 level++; 6789 } 6790 } 6791 return 1; 6792 } 6793 6794 /* 6795 * drop a subvolume tree. 6796 * 6797 * this function traverses the tree freeing any blocks that only 6798 * referenced by the tree. 6799 * 6800 * when a shared tree block is found. this function decreases its 6801 * reference count by one. if update_ref is true, this function 6802 * also make sure backrefs for the shared block and all lower level 6803 * blocks are properly updated. 6804 */ 6805 int btrfs_drop_snapshot(struct btrfs_root *root, 6806 struct btrfs_block_rsv *block_rsv, int update_ref, 6807 int for_reloc) 6808 { 6809 struct btrfs_path *path; 6810 struct btrfs_trans_handle *trans; 6811 struct btrfs_root *tree_root = root->fs_info->tree_root; 6812 struct btrfs_root_item *root_item = &root->root_item; 6813 struct walk_control *wc; 6814 struct btrfs_key key; 6815 int err = 0; 6816 int ret; 6817 int level; 6818 6819 path = btrfs_alloc_path(); 6820 if (!path) { 6821 err = -ENOMEM; 6822 goto out; 6823 } 6824 6825 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6826 if (!wc) { 6827 btrfs_free_path(path); 6828 err = -ENOMEM; 6829 goto out; 6830 } 6831 6832 trans = btrfs_start_transaction(tree_root, 0); 6833 if (IS_ERR(trans)) { 6834 err = PTR_ERR(trans); 6835 goto out_free; 6836 } 6837 6838 if (block_rsv) 6839 trans->block_rsv = block_rsv; 6840 6841 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6842 level = btrfs_header_level(root->node); 6843 path->nodes[level] = btrfs_lock_root_node(root); 6844 btrfs_set_lock_blocking(path->nodes[level]); 6845 path->slots[level] = 0; 6846 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6847 memset(&wc->update_progress, 0, 6848 sizeof(wc->update_progress)); 6849 } else { 6850 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6851 memcpy(&wc->update_progress, &key, 6852 sizeof(wc->update_progress)); 6853 6854 level = root_item->drop_level; 6855 BUG_ON(level == 0); 6856 path->lowest_level = level; 6857 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6858 path->lowest_level = 0; 6859 if (ret < 0) { 6860 err = ret; 6861 goto out_end_trans; 6862 } 6863 WARN_ON(ret > 0); 6864 6865 /* 6866 * unlock our path, this is safe because only this 6867 * function is allowed to delete this snapshot 6868 */ 6869 btrfs_unlock_up_safe(path, 0); 6870 6871 level = btrfs_header_level(root->node); 6872 while (1) { 6873 btrfs_tree_lock(path->nodes[level]); 6874 btrfs_set_lock_blocking(path->nodes[level]); 6875 6876 ret = btrfs_lookup_extent_info(trans, root, 6877 path->nodes[level]->start, 6878 path->nodes[level]->len, 6879 &wc->refs[level], 6880 &wc->flags[level]); 6881 if (ret < 0) { 6882 err = ret; 6883 goto out_end_trans; 6884 } 6885 BUG_ON(wc->refs[level] == 0); 6886 6887 if (level == root_item->drop_level) 6888 break; 6889 6890 btrfs_tree_unlock(path->nodes[level]); 6891 WARN_ON(wc->refs[level] != 1); 6892 level--; 6893 } 6894 } 6895 6896 wc->level = level; 6897 wc->shared_level = -1; 6898 wc->stage = DROP_REFERENCE; 6899 wc->update_ref = update_ref; 6900 wc->keep_locks = 0; 6901 wc->for_reloc = for_reloc; 6902 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6903 6904 while (1) { 6905 ret = walk_down_tree(trans, root, path, wc); 6906 if (ret < 0) { 6907 err = ret; 6908 break; 6909 } 6910 6911 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6912 if (ret < 0) { 6913 err = ret; 6914 break; 6915 } 6916 6917 if (ret > 0) { 6918 BUG_ON(wc->stage != DROP_REFERENCE); 6919 break; 6920 } 6921 6922 if (wc->stage == DROP_REFERENCE) { 6923 level = wc->level; 6924 btrfs_node_key(path->nodes[level], 6925 &root_item->drop_progress, 6926 path->slots[level]); 6927 root_item->drop_level = level; 6928 } 6929 6930 BUG_ON(wc->level == 0); 6931 if (btrfs_should_end_transaction(trans, tree_root)) { 6932 ret = btrfs_update_root(trans, tree_root, 6933 &root->root_key, 6934 root_item); 6935 if (ret) { 6936 btrfs_abort_transaction(trans, tree_root, ret); 6937 err = ret; 6938 goto out_end_trans; 6939 } 6940 6941 btrfs_end_transaction_throttle(trans, tree_root); 6942 trans = btrfs_start_transaction(tree_root, 0); 6943 if (IS_ERR(trans)) { 6944 err = PTR_ERR(trans); 6945 goto out_free; 6946 } 6947 if (block_rsv) 6948 trans->block_rsv = block_rsv; 6949 } 6950 } 6951 btrfs_release_path(path); 6952 if (err) 6953 goto out_end_trans; 6954 6955 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6956 if (ret) { 6957 btrfs_abort_transaction(trans, tree_root, ret); 6958 goto out_end_trans; 6959 } 6960 6961 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6962 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6963 NULL, NULL); 6964 if (ret < 0) { 6965 btrfs_abort_transaction(trans, tree_root, ret); 6966 err = ret; 6967 goto out_end_trans; 6968 } else if (ret > 0) { 6969 /* if we fail to delete the orphan item this time 6970 * around, it'll get picked up the next time. 6971 * 6972 * The most common failure here is just -ENOENT. 6973 */ 6974 btrfs_del_orphan_item(trans, tree_root, 6975 root->root_key.objectid); 6976 } 6977 } 6978 6979 if (root->in_radix) { 6980 btrfs_free_fs_root(tree_root->fs_info, root); 6981 } else { 6982 free_extent_buffer(root->node); 6983 free_extent_buffer(root->commit_root); 6984 kfree(root); 6985 } 6986 out_end_trans: 6987 btrfs_end_transaction_throttle(trans, tree_root); 6988 out_free: 6989 kfree(wc); 6990 btrfs_free_path(path); 6991 out: 6992 if (err) 6993 btrfs_std_error(root->fs_info, err); 6994 return err; 6995 } 6996 6997 /* 6998 * drop subtree rooted at tree block 'node'. 6999 * 7000 * NOTE: this function will unlock and release tree block 'node' 7001 * only used by relocation code 7002 */ 7003 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7004 struct btrfs_root *root, 7005 struct extent_buffer *node, 7006 struct extent_buffer *parent) 7007 { 7008 struct btrfs_path *path; 7009 struct walk_control *wc; 7010 int level; 7011 int parent_level; 7012 int ret = 0; 7013 int wret; 7014 7015 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7016 7017 path = btrfs_alloc_path(); 7018 if (!path) 7019 return -ENOMEM; 7020 7021 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7022 if (!wc) { 7023 btrfs_free_path(path); 7024 return -ENOMEM; 7025 } 7026 7027 btrfs_assert_tree_locked(parent); 7028 parent_level = btrfs_header_level(parent); 7029 extent_buffer_get(parent); 7030 path->nodes[parent_level] = parent; 7031 path->slots[parent_level] = btrfs_header_nritems(parent); 7032 7033 btrfs_assert_tree_locked(node); 7034 level = btrfs_header_level(node); 7035 path->nodes[level] = node; 7036 path->slots[level] = 0; 7037 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7038 7039 wc->refs[parent_level] = 1; 7040 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7041 wc->level = level; 7042 wc->shared_level = -1; 7043 wc->stage = DROP_REFERENCE; 7044 wc->update_ref = 0; 7045 wc->keep_locks = 1; 7046 wc->for_reloc = 1; 7047 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7048 7049 while (1) { 7050 wret = walk_down_tree(trans, root, path, wc); 7051 if (wret < 0) { 7052 ret = wret; 7053 break; 7054 } 7055 7056 wret = walk_up_tree(trans, root, path, wc, parent_level); 7057 if (wret < 0) 7058 ret = wret; 7059 if (wret != 0) 7060 break; 7061 } 7062 7063 kfree(wc); 7064 btrfs_free_path(path); 7065 return ret; 7066 } 7067 7068 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7069 { 7070 u64 num_devices; 7071 u64 stripped; 7072 7073 /* 7074 * if restripe for this chunk_type is on pick target profile and 7075 * return, otherwise do the usual balance 7076 */ 7077 stripped = get_restripe_target(root->fs_info, flags); 7078 if (stripped) 7079 return extended_to_chunk(stripped); 7080 7081 /* 7082 * we add in the count of missing devices because we want 7083 * to make sure that any RAID levels on a degraded FS 7084 * continue to be honored. 7085 */ 7086 num_devices = root->fs_info->fs_devices->rw_devices + 7087 root->fs_info->fs_devices->missing_devices; 7088 7089 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7090 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7091 7092 if (num_devices == 1) { 7093 stripped |= BTRFS_BLOCK_GROUP_DUP; 7094 stripped = flags & ~stripped; 7095 7096 /* turn raid0 into single device chunks */ 7097 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7098 return stripped; 7099 7100 /* turn mirroring into duplication */ 7101 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7102 BTRFS_BLOCK_GROUP_RAID10)) 7103 return stripped | BTRFS_BLOCK_GROUP_DUP; 7104 } else { 7105 /* they already had raid on here, just return */ 7106 if (flags & stripped) 7107 return flags; 7108 7109 stripped |= BTRFS_BLOCK_GROUP_DUP; 7110 stripped = flags & ~stripped; 7111 7112 /* switch duplicated blocks with raid1 */ 7113 if (flags & BTRFS_BLOCK_GROUP_DUP) 7114 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7115 7116 /* this is drive concat, leave it alone */ 7117 } 7118 7119 return flags; 7120 } 7121 7122 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7123 { 7124 struct btrfs_space_info *sinfo = cache->space_info; 7125 u64 num_bytes; 7126 u64 min_allocable_bytes; 7127 int ret = -ENOSPC; 7128 7129 7130 /* 7131 * We need some metadata space and system metadata space for 7132 * allocating chunks in some corner cases until we force to set 7133 * it to be readonly. 7134 */ 7135 if ((sinfo->flags & 7136 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7137 !force) 7138 min_allocable_bytes = 1 * 1024 * 1024; 7139 else 7140 min_allocable_bytes = 0; 7141 7142 spin_lock(&sinfo->lock); 7143 spin_lock(&cache->lock); 7144 7145 if (cache->ro) { 7146 ret = 0; 7147 goto out; 7148 } 7149 7150 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7151 cache->bytes_super - btrfs_block_group_used(&cache->item); 7152 7153 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7154 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7155 min_allocable_bytes <= sinfo->total_bytes) { 7156 sinfo->bytes_readonly += num_bytes; 7157 cache->ro = 1; 7158 ret = 0; 7159 } 7160 out: 7161 spin_unlock(&cache->lock); 7162 spin_unlock(&sinfo->lock); 7163 return ret; 7164 } 7165 7166 int btrfs_set_block_group_ro(struct btrfs_root *root, 7167 struct btrfs_block_group_cache *cache) 7168 7169 { 7170 struct btrfs_trans_handle *trans; 7171 u64 alloc_flags; 7172 int ret; 7173 7174 BUG_ON(cache->ro); 7175 7176 trans = btrfs_join_transaction(root); 7177 if (IS_ERR(trans)) 7178 return PTR_ERR(trans); 7179 7180 alloc_flags = update_block_group_flags(root, cache->flags); 7181 if (alloc_flags != cache->flags) { 7182 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7183 CHUNK_ALLOC_FORCE); 7184 if (ret < 0) 7185 goto out; 7186 } 7187 7188 ret = set_block_group_ro(cache, 0); 7189 if (!ret) 7190 goto out; 7191 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7192 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7193 CHUNK_ALLOC_FORCE); 7194 if (ret < 0) 7195 goto out; 7196 ret = set_block_group_ro(cache, 0); 7197 out: 7198 btrfs_end_transaction(trans, root); 7199 return ret; 7200 } 7201 7202 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7203 struct btrfs_root *root, u64 type) 7204 { 7205 u64 alloc_flags = get_alloc_profile(root, type); 7206 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7207 CHUNK_ALLOC_FORCE); 7208 } 7209 7210 /* 7211 * helper to account the unused space of all the readonly block group in the 7212 * list. takes mirrors into account. 7213 */ 7214 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7215 { 7216 struct btrfs_block_group_cache *block_group; 7217 u64 free_bytes = 0; 7218 int factor; 7219 7220 list_for_each_entry(block_group, groups_list, list) { 7221 spin_lock(&block_group->lock); 7222 7223 if (!block_group->ro) { 7224 spin_unlock(&block_group->lock); 7225 continue; 7226 } 7227 7228 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7229 BTRFS_BLOCK_GROUP_RAID10 | 7230 BTRFS_BLOCK_GROUP_DUP)) 7231 factor = 2; 7232 else 7233 factor = 1; 7234 7235 free_bytes += (block_group->key.offset - 7236 btrfs_block_group_used(&block_group->item)) * 7237 factor; 7238 7239 spin_unlock(&block_group->lock); 7240 } 7241 7242 return free_bytes; 7243 } 7244 7245 /* 7246 * helper to account the unused space of all the readonly block group in the 7247 * space_info. takes mirrors into account. 7248 */ 7249 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7250 { 7251 int i; 7252 u64 free_bytes = 0; 7253 7254 spin_lock(&sinfo->lock); 7255 7256 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7257 if (!list_empty(&sinfo->block_groups[i])) 7258 free_bytes += __btrfs_get_ro_block_group_free_space( 7259 &sinfo->block_groups[i]); 7260 7261 spin_unlock(&sinfo->lock); 7262 7263 return free_bytes; 7264 } 7265 7266 void btrfs_set_block_group_rw(struct btrfs_root *root, 7267 struct btrfs_block_group_cache *cache) 7268 { 7269 struct btrfs_space_info *sinfo = cache->space_info; 7270 u64 num_bytes; 7271 7272 BUG_ON(!cache->ro); 7273 7274 spin_lock(&sinfo->lock); 7275 spin_lock(&cache->lock); 7276 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7277 cache->bytes_super - btrfs_block_group_used(&cache->item); 7278 sinfo->bytes_readonly -= num_bytes; 7279 cache->ro = 0; 7280 spin_unlock(&cache->lock); 7281 spin_unlock(&sinfo->lock); 7282 } 7283 7284 /* 7285 * checks to see if its even possible to relocate this block group. 7286 * 7287 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7288 * ok to go ahead and try. 7289 */ 7290 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7291 { 7292 struct btrfs_block_group_cache *block_group; 7293 struct btrfs_space_info *space_info; 7294 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7295 struct btrfs_device *device; 7296 u64 min_free; 7297 u64 dev_min = 1; 7298 u64 dev_nr = 0; 7299 u64 target; 7300 int index; 7301 int full = 0; 7302 int ret = 0; 7303 7304 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7305 7306 /* odd, couldn't find the block group, leave it alone */ 7307 if (!block_group) 7308 return -1; 7309 7310 min_free = btrfs_block_group_used(&block_group->item); 7311 7312 /* no bytes used, we're good */ 7313 if (!min_free) 7314 goto out; 7315 7316 space_info = block_group->space_info; 7317 spin_lock(&space_info->lock); 7318 7319 full = space_info->full; 7320 7321 /* 7322 * if this is the last block group we have in this space, we can't 7323 * relocate it unless we're able to allocate a new chunk below. 7324 * 7325 * Otherwise, we need to make sure we have room in the space to handle 7326 * all of the extents from this block group. If we can, we're good 7327 */ 7328 if ((space_info->total_bytes != block_group->key.offset) && 7329 (space_info->bytes_used + space_info->bytes_reserved + 7330 space_info->bytes_pinned + space_info->bytes_readonly + 7331 min_free < space_info->total_bytes)) { 7332 spin_unlock(&space_info->lock); 7333 goto out; 7334 } 7335 spin_unlock(&space_info->lock); 7336 7337 /* 7338 * ok we don't have enough space, but maybe we have free space on our 7339 * devices to allocate new chunks for relocation, so loop through our 7340 * alloc devices and guess if we have enough space. if this block 7341 * group is going to be restriped, run checks against the target 7342 * profile instead of the current one. 7343 */ 7344 ret = -1; 7345 7346 /* 7347 * index: 7348 * 0: raid10 7349 * 1: raid1 7350 * 2: dup 7351 * 3: raid0 7352 * 4: single 7353 */ 7354 target = get_restripe_target(root->fs_info, block_group->flags); 7355 if (target) { 7356 index = __get_block_group_index(extended_to_chunk(target)); 7357 } else { 7358 /* 7359 * this is just a balance, so if we were marked as full 7360 * we know there is no space for a new chunk 7361 */ 7362 if (full) 7363 goto out; 7364 7365 index = get_block_group_index(block_group); 7366 } 7367 7368 if (index == 0) { 7369 dev_min = 4; 7370 /* Divide by 2 */ 7371 min_free >>= 1; 7372 } else if (index == 1) { 7373 dev_min = 2; 7374 } else if (index == 2) { 7375 /* Multiply by 2 */ 7376 min_free <<= 1; 7377 } else if (index == 3) { 7378 dev_min = fs_devices->rw_devices; 7379 do_div(min_free, dev_min); 7380 } 7381 7382 mutex_lock(&root->fs_info->chunk_mutex); 7383 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7384 u64 dev_offset; 7385 7386 /* 7387 * check to make sure we can actually find a chunk with enough 7388 * space to fit our block group in. 7389 */ 7390 if (device->total_bytes > device->bytes_used + min_free) { 7391 ret = find_free_dev_extent(device, min_free, 7392 &dev_offset, NULL); 7393 if (!ret) 7394 dev_nr++; 7395 7396 if (dev_nr >= dev_min) 7397 break; 7398 7399 ret = -1; 7400 } 7401 } 7402 mutex_unlock(&root->fs_info->chunk_mutex); 7403 out: 7404 btrfs_put_block_group(block_group); 7405 return ret; 7406 } 7407 7408 static int find_first_block_group(struct btrfs_root *root, 7409 struct btrfs_path *path, struct btrfs_key *key) 7410 { 7411 int ret = 0; 7412 struct btrfs_key found_key; 7413 struct extent_buffer *leaf; 7414 int slot; 7415 7416 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7417 if (ret < 0) 7418 goto out; 7419 7420 while (1) { 7421 slot = path->slots[0]; 7422 leaf = path->nodes[0]; 7423 if (slot >= btrfs_header_nritems(leaf)) { 7424 ret = btrfs_next_leaf(root, path); 7425 if (ret == 0) 7426 continue; 7427 if (ret < 0) 7428 goto out; 7429 break; 7430 } 7431 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7432 7433 if (found_key.objectid >= key->objectid && 7434 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7435 ret = 0; 7436 goto out; 7437 } 7438 path->slots[0]++; 7439 } 7440 out: 7441 return ret; 7442 } 7443 7444 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7445 { 7446 struct btrfs_block_group_cache *block_group; 7447 u64 last = 0; 7448 7449 while (1) { 7450 struct inode *inode; 7451 7452 block_group = btrfs_lookup_first_block_group(info, last); 7453 while (block_group) { 7454 spin_lock(&block_group->lock); 7455 if (block_group->iref) 7456 break; 7457 spin_unlock(&block_group->lock); 7458 block_group = next_block_group(info->tree_root, 7459 block_group); 7460 } 7461 if (!block_group) { 7462 if (last == 0) 7463 break; 7464 last = 0; 7465 continue; 7466 } 7467 7468 inode = block_group->inode; 7469 block_group->iref = 0; 7470 block_group->inode = NULL; 7471 spin_unlock(&block_group->lock); 7472 iput(inode); 7473 last = block_group->key.objectid + block_group->key.offset; 7474 btrfs_put_block_group(block_group); 7475 } 7476 } 7477 7478 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7479 { 7480 struct btrfs_block_group_cache *block_group; 7481 struct btrfs_space_info *space_info; 7482 struct btrfs_caching_control *caching_ctl; 7483 struct rb_node *n; 7484 7485 down_write(&info->extent_commit_sem); 7486 while (!list_empty(&info->caching_block_groups)) { 7487 caching_ctl = list_entry(info->caching_block_groups.next, 7488 struct btrfs_caching_control, list); 7489 list_del(&caching_ctl->list); 7490 put_caching_control(caching_ctl); 7491 } 7492 up_write(&info->extent_commit_sem); 7493 7494 spin_lock(&info->block_group_cache_lock); 7495 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7496 block_group = rb_entry(n, struct btrfs_block_group_cache, 7497 cache_node); 7498 rb_erase(&block_group->cache_node, 7499 &info->block_group_cache_tree); 7500 spin_unlock(&info->block_group_cache_lock); 7501 7502 down_write(&block_group->space_info->groups_sem); 7503 list_del(&block_group->list); 7504 up_write(&block_group->space_info->groups_sem); 7505 7506 if (block_group->cached == BTRFS_CACHE_STARTED) 7507 wait_block_group_cache_done(block_group); 7508 7509 /* 7510 * We haven't cached this block group, which means we could 7511 * possibly have excluded extents on this block group. 7512 */ 7513 if (block_group->cached == BTRFS_CACHE_NO) 7514 free_excluded_extents(info->extent_root, block_group); 7515 7516 btrfs_remove_free_space_cache(block_group); 7517 btrfs_put_block_group(block_group); 7518 7519 spin_lock(&info->block_group_cache_lock); 7520 } 7521 spin_unlock(&info->block_group_cache_lock); 7522 7523 /* now that all the block groups are freed, go through and 7524 * free all the space_info structs. This is only called during 7525 * the final stages of unmount, and so we know nobody is 7526 * using them. We call synchronize_rcu() once before we start, 7527 * just to be on the safe side. 7528 */ 7529 synchronize_rcu(); 7530 7531 release_global_block_rsv(info); 7532 7533 while(!list_empty(&info->space_info)) { 7534 space_info = list_entry(info->space_info.next, 7535 struct btrfs_space_info, 7536 list); 7537 if (space_info->bytes_pinned > 0 || 7538 space_info->bytes_reserved > 0 || 7539 space_info->bytes_may_use > 0) { 7540 WARN_ON(1); 7541 dump_space_info(space_info, 0, 0); 7542 } 7543 list_del(&space_info->list); 7544 kfree(space_info); 7545 } 7546 return 0; 7547 } 7548 7549 static void __link_block_group(struct btrfs_space_info *space_info, 7550 struct btrfs_block_group_cache *cache) 7551 { 7552 int index = get_block_group_index(cache); 7553 7554 down_write(&space_info->groups_sem); 7555 list_add_tail(&cache->list, &space_info->block_groups[index]); 7556 up_write(&space_info->groups_sem); 7557 } 7558 7559 int btrfs_read_block_groups(struct btrfs_root *root) 7560 { 7561 struct btrfs_path *path; 7562 int ret; 7563 struct btrfs_block_group_cache *cache; 7564 struct btrfs_fs_info *info = root->fs_info; 7565 struct btrfs_space_info *space_info; 7566 struct btrfs_key key; 7567 struct btrfs_key found_key; 7568 struct extent_buffer *leaf; 7569 int need_clear = 0; 7570 u64 cache_gen; 7571 7572 root = info->extent_root; 7573 key.objectid = 0; 7574 key.offset = 0; 7575 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7576 path = btrfs_alloc_path(); 7577 if (!path) 7578 return -ENOMEM; 7579 path->reada = 1; 7580 7581 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7582 if (btrfs_test_opt(root, SPACE_CACHE) && 7583 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7584 need_clear = 1; 7585 if (btrfs_test_opt(root, CLEAR_CACHE)) 7586 need_clear = 1; 7587 7588 while (1) { 7589 ret = find_first_block_group(root, path, &key); 7590 if (ret > 0) 7591 break; 7592 if (ret != 0) 7593 goto error; 7594 leaf = path->nodes[0]; 7595 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7596 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7597 if (!cache) { 7598 ret = -ENOMEM; 7599 goto error; 7600 } 7601 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7602 GFP_NOFS); 7603 if (!cache->free_space_ctl) { 7604 kfree(cache); 7605 ret = -ENOMEM; 7606 goto error; 7607 } 7608 7609 atomic_set(&cache->count, 1); 7610 spin_lock_init(&cache->lock); 7611 cache->fs_info = info; 7612 INIT_LIST_HEAD(&cache->list); 7613 INIT_LIST_HEAD(&cache->cluster_list); 7614 7615 if (need_clear) 7616 cache->disk_cache_state = BTRFS_DC_CLEAR; 7617 7618 read_extent_buffer(leaf, &cache->item, 7619 btrfs_item_ptr_offset(leaf, path->slots[0]), 7620 sizeof(cache->item)); 7621 memcpy(&cache->key, &found_key, sizeof(found_key)); 7622 7623 key.objectid = found_key.objectid + found_key.offset; 7624 btrfs_release_path(path); 7625 cache->flags = btrfs_block_group_flags(&cache->item); 7626 cache->sectorsize = root->sectorsize; 7627 7628 btrfs_init_free_space_ctl(cache); 7629 7630 /* 7631 * We need to exclude the super stripes now so that the space 7632 * info has super bytes accounted for, otherwise we'll think 7633 * we have more space than we actually do. 7634 */ 7635 exclude_super_stripes(root, cache); 7636 7637 /* 7638 * check for two cases, either we are full, and therefore 7639 * don't need to bother with the caching work since we won't 7640 * find any space, or we are empty, and we can just add all 7641 * the space in and be done with it. This saves us _alot_ of 7642 * time, particularly in the full case. 7643 */ 7644 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7645 cache->last_byte_to_unpin = (u64)-1; 7646 cache->cached = BTRFS_CACHE_FINISHED; 7647 free_excluded_extents(root, cache); 7648 } else if (btrfs_block_group_used(&cache->item) == 0) { 7649 cache->last_byte_to_unpin = (u64)-1; 7650 cache->cached = BTRFS_CACHE_FINISHED; 7651 add_new_free_space(cache, root->fs_info, 7652 found_key.objectid, 7653 found_key.objectid + 7654 found_key.offset); 7655 free_excluded_extents(root, cache); 7656 } 7657 7658 ret = update_space_info(info, cache->flags, found_key.offset, 7659 btrfs_block_group_used(&cache->item), 7660 &space_info); 7661 BUG_ON(ret); /* -ENOMEM */ 7662 cache->space_info = space_info; 7663 spin_lock(&cache->space_info->lock); 7664 cache->space_info->bytes_readonly += cache->bytes_super; 7665 spin_unlock(&cache->space_info->lock); 7666 7667 __link_block_group(space_info, cache); 7668 7669 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7670 BUG_ON(ret); /* Logic error */ 7671 7672 set_avail_alloc_bits(root->fs_info, cache->flags); 7673 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7674 set_block_group_ro(cache, 1); 7675 } 7676 7677 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7678 if (!(get_alloc_profile(root, space_info->flags) & 7679 (BTRFS_BLOCK_GROUP_RAID10 | 7680 BTRFS_BLOCK_GROUP_RAID1 | 7681 BTRFS_BLOCK_GROUP_DUP))) 7682 continue; 7683 /* 7684 * avoid allocating from un-mirrored block group if there are 7685 * mirrored block groups. 7686 */ 7687 list_for_each_entry(cache, &space_info->block_groups[3], list) 7688 set_block_group_ro(cache, 1); 7689 list_for_each_entry(cache, &space_info->block_groups[4], list) 7690 set_block_group_ro(cache, 1); 7691 } 7692 7693 init_global_block_rsv(info); 7694 ret = 0; 7695 error: 7696 btrfs_free_path(path); 7697 return ret; 7698 } 7699 7700 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7701 struct btrfs_root *root, u64 bytes_used, 7702 u64 type, u64 chunk_objectid, u64 chunk_offset, 7703 u64 size) 7704 { 7705 int ret; 7706 struct btrfs_root *extent_root; 7707 struct btrfs_block_group_cache *cache; 7708 7709 extent_root = root->fs_info->extent_root; 7710 7711 root->fs_info->last_trans_log_full_commit = trans->transid; 7712 7713 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7714 if (!cache) 7715 return -ENOMEM; 7716 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7717 GFP_NOFS); 7718 if (!cache->free_space_ctl) { 7719 kfree(cache); 7720 return -ENOMEM; 7721 } 7722 7723 cache->key.objectid = chunk_offset; 7724 cache->key.offset = size; 7725 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7726 cache->sectorsize = root->sectorsize; 7727 cache->fs_info = root->fs_info; 7728 7729 atomic_set(&cache->count, 1); 7730 spin_lock_init(&cache->lock); 7731 INIT_LIST_HEAD(&cache->list); 7732 INIT_LIST_HEAD(&cache->cluster_list); 7733 7734 btrfs_init_free_space_ctl(cache); 7735 7736 btrfs_set_block_group_used(&cache->item, bytes_used); 7737 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7738 cache->flags = type; 7739 btrfs_set_block_group_flags(&cache->item, type); 7740 7741 cache->last_byte_to_unpin = (u64)-1; 7742 cache->cached = BTRFS_CACHE_FINISHED; 7743 exclude_super_stripes(root, cache); 7744 7745 add_new_free_space(cache, root->fs_info, chunk_offset, 7746 chunk_offset + size); 7747 7748 free_excluded_extents(root, cache); 7749 7750 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7751 &cache->space_info); 7752 BUG_ON(ret); /* -ENOMEM */ 7753 update_global_block_rsv(root->fs_info); 7754 7755 spin_lock(&cache->space_info->lock); 7756 cache->space_info->bytes_readonly += cache->bytes_super; 7757 spin_unlock(&cache->space_info->lock); 7758 7759 __link_block_group(cache->space_info, cache); 7760 7761 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7762 BUG_ON(ret); /* Logic error */ 7763 7764 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 7765 sizeof(cache->item)); 7766 if (ret) { 7767 btrfs_abort_transaction(trans, extent_root, ret); 7768 return ret; 7769 } 7770 7771 set_avail_alloc_bits(extent_root->fs_info, type); 7772 7773 return 0; 7774 } 7775 7776 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7777 { 7778 u64 extra_flags = chunk_to_extended(flags) & 7779 BTRFS_EXTENDED_PROFILE_MASK; 7780 7781 if (flags & BTRFS_BLOCK_GROUP_DATA) 7782 fs_info->avail_data_alloc_bits &= ~extra_flags; 7783 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7784 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7785 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7786 fs_info->avail_system_alloc_bits &= ~extra_flags; 7787 } 7788 7789 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7790 struct btrfs_root *root, u64 group_start) 7791 { 7792 struct btrfs_path *path; 7793 struct btrfs_block_group_cache *block_group; 7794 struct btrfs_free_cluster *cluster; 7795 struct btrfs_root *tree_root = root->fs_info->tree_root; 7796 struct btrfs_key key; 7797 struct inode *inode; 7798 int ret; 7799 int index; 7800 int factor; 7801 7802 root = root->fs_info->extent_root; 7803 7804 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7805 BUG_ON(!block_group); 7806 BUG_ON(!block_group->ro); 7807 7808 /* 7809 * Free the reserved super bytes from this block group before 7810 * remove it. 7811 */ 7812 free_excluded_extents(root, block_group); 7813 7814 memcpy(&key, &block_group->key, sizeof(key)); 7815 index = get_block_group_index(block_group); 7816 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7817 BTRFS_BLOCK_GROUP_RAID1 | 7818 BTRFS_BLOCK_GROUP_RAID10)) 7819 factor = 2; 7820 else 7821 factor = 1; 7822 7823 /* make sure this block group isn't part of an allocation cluster */ 7824 cluster = &root->fs_info->data_alloc_cluster; 7825 spin_lock(&cluster->refill_lock); 7826 btrfs_return_cluster_to_free_space(block_group, cluster); 7827 spin_unlock(&cluster->refill_lock); 7828 7829 /* 7830 * make sure this block group isn't part of a metadata 7831 * allocation cluster 7832 */ 7833 cluster = &root->fs_info->meta_alloc_cluster; 7834 spin_lock(&cluster->refill_lock); 7835 btrfs_return_cluster_to_free_space(block_group, cluster); 7836 spin_unlock(&cluster->refill_lock); 7837 7838 path = btrfs_alloc_path(); 7839 if (!path) { 7840 ret = -ENOMEM; 7841 goto out; 7842 } 7843 7844 inode = lookup_free_space_inode(tree_root, block_group, path); 7845 if (!IS_ERR(inode)) { 7846 ret = btrfs_orphan_add(trans, inode); 7847 if (ret) { 7848 btrfs_add_delayed_iput(inode); 7849 goto out; 7850 } 7851 clear_nlink(inode); 7852 /* One for the block groups ref */ 7853 spin_lock(&block_group->lock); 7854 if (block_group->iref) { 7855 block_group->iref = 0; 7856 block_group->inode = NULL; 7857 spin_unlock(&block_group->lock); 7858 iput(inode); 7859 } else { 7860 spin_unlock(&block_group->lock); 7861 } 7862 /* One for our lookup ref */ 7863 btrfs_add_delayed_iput(inode); 7864 } 7865 7866 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7867 key.offset = block_group->key.objectid; 7868 key.type = 0; 7869 7870 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7871 if (ret < 0) 7872 goto out; 7873 if (ret > 0) 7874 btrfs_release_path(path); 7875 if (ret == 0) { 7876 ret = btrfs_del_item(trans, tree_root, path); 7877 if (ret) 7878 goto out; 7879 btrfs_release_path(path); 7880 } 7881 7882 spin_lock(&root->fs_info->block_group_cache_lock); 7883 rb_erase(&block_group->cache_node, 7884 &root->fs_info->block_group_cache_tree); 7885 spin_unlock(&root->fs_info->block_group_cache_lock); 7886 7887 down_write(&block_group->space_info->groups_sem); 7888 /* 7889 * we must use list_del_init so people can check to see if they 7890 * are still on the list after taking the semaphore 7891 */ 7892 list_del_init(&block_group->list); 7893 if (list_empty(&block_group->space_info->block_groups[index])) 7894 clear_avail_alloc_bits(root->fs_info, block_group->flags); 7895 up_write(&block_group->space_info->groups_sem); 7896 7897 if (block_group->cached == BTRFS_CACHE_STARTED) 7898 wait_block_group_cache_done(block_group); 7899 7900 btrfs_remove_free_space_cache(block_group); 7901 7902 spin_lock(&block_group->space_info->lock); 7903 block_group->space_info->total_bytes -= block_group->key.offset; 7904 block_group->space_info->bytes_readonly -= block_group->key.offset; 7905 block_group->space_info->disk_total -= block_group->key.offset * factor; 7906 spin_unlock(&block_group->space_info->lock); 7907 7908 memcpy(&key, &block_group->key, sizeof(key)); 7909 7910 btrfs_clear_space_info_full(root->fs_info); 7911 7912 btrfs_put_block_group(block_group); 7913 btrfs_put_block_group(block_group); 7914 7915 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 7916 if (ret > 0) 7917 ret = -EIO; 7918 if (ret < 0) 7919 goto out; 7920 7921 ret = btrfs_del_item(trans, root, path); 7922 out: 7923 btrfs_free_path(path); 7924 return ret; 7925 } 7926 7927 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 7928 { 7929 struct btrfs_space_info *space_info; 7930 struct btrfs_super_block *disk_super; 7931 u64 features; 7932 u64 flags; 7933 int mixed = 0; 7934 int ret; 7935 7936 disk_super = fs_info->super_copy; 7937 if (!btrfs_super_root(disk_super)) 7938 return 1; 7939 7940 features = btrfs_super_incompat_flags(disk_super); 7941 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 7942 mixed = 1; 7943 7944 flags = BTRFS_BLOCK_GROUP_SYSTEM; 7945 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7946 if (ret) 7947 goto out; 7948 7949 if (mixed) { 7950 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 7951 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7952 } else { 7953 flags = BTRFS_BLOCK_GROUP_METADATA; 7954 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7955 if (ret) 7956 goto out; 7957 7958 flags = BTRFS_BLOCK_GROUP_DATA; 7959 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7960 } 7961 out: 7962 return ret; 7963 } 7964 7965 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 7966 { 7967 return unpin_extent_range(root, start, end); 7968 } 7969 7970 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 7971 u64 num_bytes, u64 *actual_bytes) 7972 { 7973 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 7974 } 7975 7976 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 7977 { 7978 struct btrfs_fs_info *fs_info = root->fs_info; 7979 struct btrfs_block_group_cache *cache = NULL; 7980 u64 group_trimmed; 7981 u64 start; 7982 u64 end; 7983 u64 trimmed = 0; 7984 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 7985 int ret = 0; 7986 7987 /* 7988 * try to trim all FS space, our block group may start from non-zero. 7989 */ 7990 if (range->len == total_bytes) 7991 cache = btrfs_lookup_first_block_group(fs_info, range->start); 7992 else 7993 cache = btrfs_lookup_block_group(fs_info, range->start); 7994 7995 while (cache) { 7996 if (cache->key.objectid >= (range->start + range->len)) { 7997 btrfs_put_block_group(cache); 7998 break; 7999 } 8000 8001 start = max(range->start, cache->key.objectid); 8002 end = min(range->start + range->len, 8003 cache->key.objectid + cache->key.offset); 8004 8005 if (end - start >= range->minlen) { 8006 if (!block_group_cache_done(cache)) { 8007 ret = cache_block_group(cache, NULL, root, 0); 8008 if (!ret) 8009 wait_block_group_cache_done(cache); 8010 } 8011 ret = btrfs_trim_block_group(cache, 8012 &group_trimmed, 8013 start, 8014 end, 8015 range->minlen); 8016 8017 trimmed += group_trimmed; 8018 if (ret) { 8019 btrfs_put_block_group(cache); 8020 break; 8021 } 8022 } 8023 8024 cache = next_block_group(fs_info->tree_root, cache); 8025 } 8026 8027 range->len = trimmed; 8028 return ret; 8029 } 8030