1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/lockdep.h> 30 #include "hash.h" 31 #include "tree-log.h" 32 #include "disk-io.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "free-space-tree.h" 39 #include "math.h" 40 #include "sysfs.h" 41 #include "qgroup.h" 42 #include "ref-verify.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 /* 47 * control flags for do_chunk_alloc's force field 48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 49 * if we really need one. 50 * 51 * CHUNK_ALLOC_LIMITED means to only try and allocate one 52 * if we have very few chunks already allocated. This is 53 * used as part of the clustering code to help make sure 54 * we have a good pool of storage to cluster in, without 55 * filling the FS with empty chunks 56 * 57 * CHUNK_ALLOC_FORCE means it must try to allocate one 58 * 59 */ 60 enum { 61 CHUNK_ALLOC_NO_FORCE = 0, 62 CHUNK_ALLOC_LIMITED = 1, 63 CHUNK_ALLOC_FORCE = 2, 64 }; 65 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_fs_info *fs_info, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_fs_info *fs_info, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_fs_info *fs_info, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_fs_info *fs_info, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 94 u64 num_bytes); 95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_space_info *space_info, 97 u64 num_bytes); 98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_space_info *space_info, 100 u64 num_bytes); 101 102 static noinline int 103 block_group_cache_done(struct btrfs_block_group_cache *cache) 104 { 105 smp_mb(); 106 return cache->cached == BTRFS_CACHE_FINISHED || 107 cache->cached == BTRFS_CACHE_ERROR; 108 } 109 110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 111 { 112 return (cache->flags & bits) == bits; 113 } 114 115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 116 { 117 atomic_inc(&cache->count); 118 } 119 120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 121 { 122 if (atomic_dec_and_test(&cache->count)) { 123 WARN_ON(cache->pinned > 0); 124 WARN_ON(cache->reserved > 0); 125 126 /* 127 * If not empty, someone is still holding mutex of 128 * full_stripe_lock, which can only be released by caller. 129 * And it will definitely cause use-after-free when caller 130 * tries to release full stripe lock. 131 * 132 * No better way to resolve, but only to warn. 133 */ 134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(fs_info, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(fs_info, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 refcount_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (refcount_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 333 { 334 struct btrfs_fs_info *fs_info = block_group->fs_info; 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 fs_info->nodesize : fs_info->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 398 struct btrfs_fs_info *fs_info = block_group->fs_info; 399 struct btrfs_root *extent_root = fs_info->extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 path = btrfs_alloc_path(); 410 if (!path) 411 return -ENOMEM; 412 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 414 415 #ifdef CONFIG_BTRFS_DEBUG 416 /* 417 * If we're fragmenting we don't want to make anybody think we can 418 * allocate from this block group until we've had a chance to fragment 419 * the free space. 420 */ 421 if (btrfs_should_fragment_free_space(block_group)) 422 wakeup = false; 423 #endif 424 /* 425 * We don't want to deadlock with somebody trying to allocate a new 426 * extent for the extent root while also trying to search the extent 427 * root to add free space. So we skip locking and search the commit 428 * root, since its read-only 429 */ 430 path->skip_locking = 1; 431 path->search_commit_root = 1; 432 path->reada = READA_FORWARD; 433 434 key.objectid = last; 435 key.offset = 0; 436 key.type = BTRFS_EXTENT_ITEM_KEY; 437 438 next: 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 440 if (ret < 0) 441 goto out; 442 443 leaf = path->nodes[0]; 444 nritems = btrfs_header_nritems(leaf); 445 446 while (1) { 447 if (btrfs_fs_closing(fs_info) > 1) { 448 last = (u64)-1; 449 break; 450 } 451 452 if (path->slots[0] < nritems) { 453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 454 } else { 455 ret = find_next_key(path, 0, &key); 456 if (ret) 457 break; 458 459 if (need_resched() || 460 rwsem_is_contended(&fs_info->commit_root_sem)) { 461 if (wakeup) 462 caching_ctl->progress = last; 463 btrfs_release_path(path); 464 up_read(&fs_info->commit_root_sem); 465 mutex_unlock(&caching_ctl->mutex); 466 cond_resched(); 467 mutex_lock(&caching_ctl->mutex); 468 down_read(&fs_info->commit_root_sem); 469 goto next; 470 } 471 472 ret = btrfs_next_leaf(extent_root, path); 473 if (ret < 0) 474 goto out; 475 if (ret) 476 break; 477 leaf = path->nodes[0]; 478 nritems = btrfs_header_nritems(leaf); 479 continue; 480 } 481 482 if (key.objectid < last) { 483 key.objectid = last; 484 key.offset = 0; 485 key.type = BTRFS_EXTENT_ITEM_KEY; 486 487 if (wakeup) 488 caching_ctl->progress = last; 489 btrfs_release_path(path); 490 goto next; 491 } 492 493 if (key.objectid < block_group->key.objectid) { 494 path->slots[0]++; 495 continue; 496 } 497 498 if (key.objectid >= block_group->key.objectid + 499 block_group->key.offset) 500 break; 501 502 if (key.type == BTRFS_EXTENT_ITEM_KEY || 503 key.type == BTRFS_METADATA_ITEM_KEY) { 504 total_found += add_new_free_space(block_group, 505 fs_info, last, 506 key.objectid); 507 if (key.type == BTRFS_METADATA_ITEM_KEY) 508 last = key.objectid + 509 fs_info->nodesize; 510 else 511 last = key.objectid + key.offset; 512 513 if (total_found > CACHING_CTL_WAKE_UP) { 514 total_found = 0; 515 if (wakeup) 516 wake_up(&caching_ctl->wait); 517 } 518 } 519 path->slots[0]++; 520 } 521 ret = 0; 522 523 total_found += add_new_free_space(block_group, fs_info, last, 524 block_group->key.objectid + 525 block_group->key.offset); 526 caching_ctl->progress = (u64)-1; 527 528 out: 529 btrfs_free_path(path); 530 return ret; 531 } 532 533 static noinline void caching_thread(struct btrfs_work *work) 534 { 535 struct btrfs_block_group_cache *block_group; 536 struct btrfs_fs_info *fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 struct btrfs_root *extent_root; 539 int ret; 540 541 caching_ctl = container_of(work, struct btrfs_caching_control, work); 542 block_group = caching_ctl->block_group; 543 fs_info = block_group->fs_info; 544 extent_root = fs_info->extent_root; 545 546 mutex_lock(&caching_ctl->mutex); 547 down_read(&fs_info->commit_root_sem); 548 549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 550 ret = load_free_space_tree(caching_ctl); 551 else 552 ret = load_extent_tree_free(caching_ctl); 553 554 spin_lock(&block_group->lock); 555 block_group->caching_ctl = NULL; 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 557 spin_unlock(&block_group->lock); 558 559 #ifdef CONFIG_BTRFS_DEBUG 560 if (btrfs_should_fragment_free_space(block_group)) { 561 u64 bytes_used; 562 563 spin_lock(&block_group->space_info->lock); 564 spin_lock(&block_group->lock); 565 bytes_used = block_group->key.offset - 566 btrfs_block_group_used(&block_group->item); 567 block_group->space_info->bytes_used += bytes_used >> 1; 568 spin_unlock(&block_group->lock); 569 spin_unlock(&block_group->space_info->lock); 570 fragment_free_space(block_group); 571 } 572 #endif 573 574 caching_ctl->progress = (u64)-1; 575 576 up_read(&fs_info->commit_root_sem); 577 free_excluded_extents(fs_info, block_group); 578 mutex_unlock(&caching_ctl->mutex); 579 580 wake_up(&caching_ctl->wait); 581 582 put_caching_control(caching_ctl); 583 btrfs_put_block_group(block_group); 584 } 585 586 static int cache_block_group(struct btrfs_block_group_cache *cache, 587 int load_cache_only) 588 { 589 DEFINE_WAIT(wait); 590 struct btrfs_fs_info *fs_info = cache->fs_info; 591 struct btrfs_caching_control *caching_ctl; 592 int ret = 0; 593 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 595 if (!caching_ctl) 596 return -ENOMEM; 597 598 INIT_LIST_HEAD(&caching_ctl->list); 599 mutex_init(&caching_ctl->mutex); 600 init_waitqueue_head(&caching_ctl->wait); 601 caching_ctl->block_group = cache; 602 caching_ctl->progress = cache->key.objectid; 603 refcount_set(&caching_ctl->count, 1); 604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 605 caching_thread, NULL, NULL); 606 607 spin_lock(&cache->lock); 608 /* 609 * This should be a rare occasion, but this could happen I think in the 610 * case where one thread starts to load the space cache info, and then 611 * some other thread starts a transaction commit which tries to do an 612 * allocation while the other thread is still loading the space cache 613 * info. The previous loop should have kept us from choosing this block 614 * group, but if we've moved to the state where we will wait on caching 615 * block groups we need to first check if we're doing a fast load here, 616 * so we can wait for it to finish, otherwise we could end up allocating 617 * from a block group who's cache gets evicted for one reason or 618 * another. 619 */ 620 while (cache->cached == BTRFS_CACHE_FAST) { 621 struct btrfs_caching_control *ctl; 622 623 ctl = cache->caching_ctl; 624 refcount_inc(&ctl->count); 625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 626 spin_unlock(&cache->lock); 627 628 schedule(); 629 630 finish_wait(&ctl->wait, &wait); 631 put_caching_control(ctl); 632 spin_lock(&cache->lock); 633 } 634 635 if (cache->cached != BTRFS_CACHE_NO) { 636 spin_unlock(&cache->lock); 637 kfree(caching_ctl); 638 return 0; 639 } 640 WARN_ON(cache->caching_ctl); 641 cache->caching_ctl = caching_ctl; 642 cache->cached = BTRFS_CACHE_FAST; 643 spin_unlock(&cache->lock); 644 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 646 mutex_lock(&caching_ctl->mutex); 647 ret = load_free_space_cache(fs_info, cache); 648 649 spin_lock(&cache->lock); 650 if (ret == 1) { 651 cache->caching_ctl = NULL; 652 cache->cached = BTRFS_CACHE_FINISHED; 653 cache->last_byte_to_unpin = (u64)-1; 654 caching_ctl->progress = (u64)-1; 655 } else { 656 if (load_cache_only) { 657 cache->caching_ctl = NULL; 658 cache->cached = BTRFS_CACHE_NO; 659 } else { 660 cache->cached = BTRFS_CACHE_STARTED; 661 cache->has_caching_ctl = 1; 662 } 663 } 664 spin_unlock(&cache->lock); 665 #ifdef CONFIG_BTRFS_DEBUG 666 if (ret == 1 && 667 btrfs_should_fragment_free_space(cache)) { 668 u64 bytes_used; 669 670 spin_lock(&cache->space_info->lock); 671 spin_lock(&cache->lock); 672 bytes_used = cache->key.offset - 673 btrfs_block_group_used(&cache->item); 674 cache->space_info->bytes_used += bytes_used >> 1; 675 spin_unlock(&cache->lock); 676 spin_unlock(&cache->space_info->lock); 677 fragment_free_space(cache); 678 } 679 #endif 680 mutex_unlock(&caching_ctl->mutex); 681 682 wake_up(&caching_ctl->wait); 683 if (ret == 1) { 684 put_caching_control(caching_ctl); 685 free_excluded_extents(fs_info, cache); 686 return 0; 687 } 688 } else { 689 /* 690 * We're either using the free space tree or no caching at all. 691 * Set cached to the appropriate value and wakeup any waiters. 692 */ 693 spin_lock(&cache->lock); 694 if (load_cache_only) { 695 cache->caching_ctl = NULL; 696 cache->cached = BTRFS_CACHE_NO; 697 } else { 698 cache->cached = BTRFS_CACHE_STARTED; 699 cache->has_caching_ctl = 1; 700 } 701 spin_unlock(&cache->lock); 702 wake_up(&caching_ctl->wait); 703 } 704 705 if (load_cache_only) { 706 put_caching_control(caching_ctl); 707 return 0; 708 } 709 710 down_write(&fs_info->commit_root_sem); 711 refcount_inc(&caching_ctl->count); 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 713 up_write(&fs_info->commit_root_sem); 714 715 btrfs_get_block_group(cache); 716 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 718 719 return ret; 720 } 721 722 /* 723 * return the block group that starts at or after bytenr 724 */ 725 static struct btrfs_block_group_cache * 726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 727 { 728 return block_group_cache_tree_search(info, bytenr, 0); 729 } 730 731 /* 732 * return the block group that contains the given bytenr 733 */ 734 struct btrfs_block_group_cache *btrfs_lookup_block_group( 735 struct btrfs_fs_info *info, 736 u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 1); 739 } 740 741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 742 u64 flags) 743 { 744 struct list_head *head = &info->space_info; 745 struct btrfs_space_info *found; 746 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 748 749 rcu_read_lock(); 750 list_for_each_entry_rcu(found, head, list) { 751 if (found->flags & flags) { 752 rcu_read_unlock(); 753 return found; 754 } 755 } 756 rcu_read_unlock(); 757 return NULL; 758 } 759 760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 761 u64 owner, u64 root_objectid) 762 { 763 struct btrfs_space_info *space_info; 764 u64 flags; 765 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 768 flags = BTRFS_BLOCK_GROUP_SYSTEM; 769 else 770 flags = BTRFS_BLOCK_GROUP_METADATA; 771 } else { 772 flags = BTRFS_BLOCK_GROUP_DATA; 773 } 774 775 space_info = __find_space_info(fs_info, flags); 776 ASSERT(space_info); 777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 778 } 779 780 /* 781 * after adding space to the filesystem, we need to clear the full flags 782 * on all the space infos. 783 */ 784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 785 { 786 struct list_head *head = &info->space_info; 787 struct btrfs_space_info *found; 788 789 rcu_read_lock(); 790 list_for_each_entry_rcu(found, head, list) 791 found->full = 0; 792 rcu_read_unlock(); 793 } 794 795 /* simple helper to search for an existing data extent at a given offset */ 796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 797 { 798 int ret; 799 struct btrfs_key key; 800 struct btrfs_path *path; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 806 key.objectid = start; 807 key.offset = len; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 810 btrfs_free_path(path); 811 return ret; 812 } 813 814 /* 815 * helper function to lookup reference count and flags of a tree block. 816 * 817 * the head node for delayed ref is used to store the sum of all the 818 * reference count modifications queued up in the rbtree. the head 819 * node may also store the extent flags to set. This way you can check 820 * to see what the reference count and extent flags would be if all of 821 * the delayed refs are not processed. 822 */ 823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 824 struct btrfs_fs_info *fs_info, u64 bytenr, 825 u64 offset, int metadata, u64 *refs, u64 *flags) 826 { 827 struct btrfs_delayed_ref_head *head; 828 struct btrfs_delayed_ref_root *delayed_refs; 829 struct btrfs_path *path; 830 struct btrfs_extent_item *ei; 831 struct extent_buffer *leaf; 832 struct btrfs_key key; 833 u32 item_size; 834 u64 num_refs; 835 u64 extent_flags; 836 int ret; 837 838 /* 839 * If we don't have skinny metadata, don't bother doing anything 840 * different 841 */ 842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 843 offset = fs_info->nodesize; 844 metadata = 0; 845 } 846 847 path = btrfs_alloc_path(); 848 if (!path) 849 return -ENOMEM; 850 851 if (!trans) { 852 path->skip_locking = 1; 853 path->search_commit_root = 1; 854 } 855 856 search_again: 857 key.objectid = bytenr; 858 key.offset = offset; 859 if (metadata) 860 key.type = BTRFS_METADATA_ITEM_KEY; 861 else 862 key.type = BTRFS_EXTENT_ITEM_KEY; 863 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 865 if (ret < 0) 866 goto out_free; 867 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 869 if (path->slots[0]) { 870 path->slots[0]--; 871 btrfs_item_key_to_cpu(path->nodes[0], &key, 872 path->slots[0]); 873 if (key.objectid == bytenr && 874 key.type == BTRFS_EXTENT_ITEM_KEY && 875 key.offset == fs_info->nodesize) 876 ret = 0; 877 } 878 } 879 880 if (ret == 0) { 881 leaf = path->nodes[0]; 882 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 883 if (item_size >= sizeof(*ei)) { 884 ei = btrfs_item_ptr(leaf, path->slots[0], 885 struct btrfs_extent_item); 886 num_refs = btrfs_extent_refs(leaf, ei); 887 extent_flags = btrfs_extent_flags(leaf, ei); 888 } else { 889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 890 struct btrfs_extent_item_v0 *ei0; 891 BUG_ON(item_size != sizeof(*ei0)); 892 ei0 = btrfs_item_ptr(leaf, path->slots[0], 893 struct btrfs_extent_item_v0); 894 num_refs = btrfs_extent_refs_v0(leaf, ei0); 895 /* FIXME: this isn't correct for data */ 896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 897 #else 898 BUG(); 899 #endif 900 } 901 BUG_ON(num_refs == 0); 902 } else { 903 num_refs = 0; 904 extent_flags = 0; 905 ret = 0; 906 } 907 908 if (!trans) 909 goto out; 910 911 delayed_refs = &trans->transaction->delayed_refs; 912 spin_lock(&delayed_refs->lock); 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 914 if (head) { 915 if (!mutex_trylock(&head->mutex)) { 916 refcount_inc(&head->refs); 917 spin_unlock(&delayed_refs->lock); 918 919 btrfs_release_path(path); 920 921 /* 922 * Mutex was contended, block until it's released and try 923 * again 924 */ 925 mutex_lock(&head->mutex); 926 mutex_unlock(&head->mutex); 927 btrfs_put_delayed_ref_head(head); 928 goto search_again; 929 } 930 spin_lock(&head->lock); 931 if (head->extent_op && head->extent_op->update_flags) 932 extent_flags |= head->extent_op->flags_to_set; 933 else 934 BUG_ON(num_refs == 0); 935 936 num_refs += head->ref_mod; 937 spin_unlock(&head->lock); 938 mutex_unlock(&head->mutex); 939 } 940 spin_unlock(&delayed_refs->lock); 941 out: 942 WARN_ON(num_refs == 0); 943 if (refs) 944 *refs = num_refs; 945 if (flags) 946 *flags = extent_flags; 947 out_free: 948 btrfs_free_path(path); 949 return ret; 950 } 951 952 /* 953 * Back reference rules. Back refs have three main goals: 954 * 955 * 1) differentiate between all holders of references to an extent so that 956 * when a reference is dropped we can make sure it was a valid reference 957 * before freeing the extent. 958 * 959 * 2) Provide enough information to quickly find the holders of an extent 960 * if we notice a given block is corrupted or bad. 961 * 962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 963 * maintenance. This is actually the same as #2, but with a slightly 964 * different use case. 965 * 966 * There are two kinds of back refs. The implicit back refs is optimized 967 * for pointers in non-shared tree blocks. For a given pointer in a block, 968 * back refs of this kind provide information about the block's owner tree 969 * and the pointer's key. These information allow us to find the block by 970 * b-tree searching. The full back refs is for pointers in tree blocks not 971 * referenced by their owner trees. The location of tree block is recorded 972 * in the back refs. Actually the full back refs is generic, and can be 973 * used in all cases the implicit back refs is used. The major shortcoming 974 * of the full back refs is its overhead. Every time a tree block gets 975 * COWed, we have to update back refs entry for all pointers in it. 976 * 977 * For a newly allocated tree block, we use implicit back refs for 978 * pointers in it. This means most tree related operations only involve 979 * implicit back refs. For a tree block created in old transaction, the 980 * only way to drop a reference to it is COW it. So we can detect the 981 * event that tree block loses its owner tree's reference and do the 982 * back refs conversion. 983 * 984 * When a tree block is COWed through a tree, there are four cases: 985 * 986 * The reference count of the block is one and the tree is the block's 987 * owner tree. Nothing to do in this case. 988 * 989 * The reference count of the block is one and the tree is not the 990 * block's owner tree. In this case, full back refs is used for pointers 991 * in the block. Remove these full back refs, add implicit back refs for 992 * every pointers in the new block. 993 * 994 * The reference count of the block is greater than one and the tree is 995 * the block's owner tree. In this case, implicit back refs is used for 996 * pointers in the block. Add full back refs for every pointers in the 997 * block, increase lower level extents' reference counts. The original 998 * implicit back refs are entailed to the new block. 999 * 1000 * The reference count of the block is greater than one and the tree is 1001 * not the block's owner tree. Add implicit back refs for every pointer in 1002 * the new block, increase lower level extents' reference count. 1003 * 1004 * Back Reference Key composing: 1005 * 1006 * The key objectid corresponds to the first byte in the extent, 1007 * The key type is used to differentiate between types of back refs. 1008 * There are different meanings of the key offset for different types 1009 * of back refs. 1010 * 1011 * File extents can be referenced by: 1012 * 1013 * - multiple snapshots, subvolumes, or different generations in one subvol 1014 * - different files inside a single subvolume 1015 * - different offsets inside a file (bookend extents in file.c) 1016 * 1017 * The extent ref structure for the implicit back refs has fields for: 1018 * 1019 * - Objectid of the subvolume root 1020 * - objectid of the file holding the reference 1021 * - original offset in the file 1022 * - how many bookend extents 1023 * 1024 * The key offset for the implicit back refs is hash of the first 1025 * three fields. 1026 * 1027 * The extent ref structure for the full back refs has field for: 1028 * 1029 * - number of pointers in the tree leaf 1030 * 1031 * The key offset for the implicit back refs is the first byte of 1032 * the tree leaf 1033 * 1034 * When a file extent is allocated, The implicit back refs is used. 1035 * the fields are filled in: 1036 * 1037 * (root_key.objectid, inode objectid, offset in file, 1) 1038 * 1039 * When a file extent is removed file truncation, we find the 1040 * corresponding implicit back refs and check the following fields: 1041 * 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1043 * 1044 * Btree extents can be referenced by: 1045 * 1046 * - Different subvolumes 1047 * 1048 * Both the implicit back refs and the full back refs for tree blocks 1049 * only consist of key. The key offset for the implicit back refs is 1050 * objectid of block's owner tree. The key offset for the full back refs 1051 * is the first byte of parent block. 1052 * 1053 * When implicit back refs is used, information about the lowest key and 1054 * level of the tree block are required. These information are stored in 1055 * tree block info structure. 1056 */ 1057 1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1060 struct btrfs_fs_info *fs_info, 1061 struct btrfs_path *path, 1062 u64 owner, u32 extra_size) 1063 { 1064 struct btrfs_root *root = fs_info->extent_root; 1065 struct btrfs_extent_item *item; 1066 struct btrfs_extent_item_v0 *ei0; 1067 struct btrfs_extent_ref_v0 *ref0; 1068 struct btrfs_tree_block_info *bi; 1069 struct extent_buffer *leaf; 1070 struct btrfs_key key; 1071 struct btrfs_key found_key; 1072 u32 new_size = sizeof(*item); 1073 u64 refs; 1074 int ret; 1075 1076 leaf = path->nodes[0]; 1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1078 1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1080 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1081 struct btrfs_extent_item_v0); 1082 refs = btrfs_extent_refs_v0(leaf, ei0); 1083 1084 if (owner == (u64)-1) { 1085 while (1) { 1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1087 ret = btrfs_next_leaf(root, path); 1088 if (ret < 0) 1089 return ret; 1090 BUG_ON(ret > 0); /* Corruption */ 1091 leaf = path->nodes[0]; 1092 } 1093 btrfs_item_key_to_cpu(leaf, &found_key, 1094 path->slots[0]); 1095 BUG_ON(key.objectid != found_key.objectid); 1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1097 path->slots[0]++; 1098 continue; 1099 } 1100 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1101 struct btrfs_extent_ref_v0); 1102 owner = btrfs_ref_objectid_v0(leaf, ref0); 1103 break; 1104 } 1105 } 1106 btrfs_release_path(path); 1107 1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1109 new_size += sizeof(*bi); 1110 1111 new_size -= sizeof(*ei0); 1112 ret = btrfs_search_slot(trans, root, &key, path, 1113 new_size + extra_size, 1); 1114 if (ret < 0) 1115 return ret; 1116 BUG_ON(ret); /* Corruption */ 1117 1118 btrfs_extend_item(fs_info, path, new_size); 1119 1120 leaf = path->nodes[0]; 1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1122 btrfs_set_extent_refs(leaf, item, refs); 1123 /* FIXME: get real generation */ 1124 btrfs_set_extent_generation(leaf, item, 0); 1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1126 btrfs_set_extent_flags(leaf, item, 1127 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1128 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1129 bi = (struct btrfs_tree_block_info *)(item + 1); 1130 /* FIXME: get first key of the block */ 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1132 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1133 } else { 1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1135 } 1136 btrfs_mark_buffer_dirty(leaf); 1137 return 0; 1138 } 1139 #endif 1140 1141 /* 1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1145 */ 1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1147 struct btrfs_extent_inline_ref *iref, 1148 enum btrfs_inline_ref_type is_data) 1149 { 1150 int type = btrfs_extent_inline_ref_type(eb, iref); 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1152 1153 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1154 type == BTRFS_SHARED_BLOCK_REF_KEY || 1155 type == BTRFS_SHARED_DATA_REF_KEY || 1156 type == BTRFS_EXTENT_DATA_REF_KEY) { 1157 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1173 return type; 1174 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1175 ASSERT(eb->fs_info); 1176 /* 1177 * Every shared one has parent tree 1178 * block, which must be aligned to 1179 * nodesize. 1180 */ 1181 if (offset && 1182 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1183 return type; 1184 } 1185 } else { 1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1187 return type; 1188 } 1189 } 1190 1191 btrfs_print_leaf((struct extent_buffer *)eb); 1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1193 eb->start, type); 1194 WARN_ON(1); 1195 1196 return BTRFS_REF_TYPE_INVALID; 1197 } 1198 1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1200 { 1201 u32 high_crc = ~(u32)0; 1202 u32 low_crc = ~(u32)0; 1203 __le64 lenum; 1204 1205 lenum = cpu_to_le64(root_objectid); 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1207 lenum = cpu_to_le64(owner); 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1209 lenum = cpu_to_le64(offset); 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1211 1212 return ((u64)high_crc << 31) ^ (u64)low_crc; 1213 } 1214 1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1216 struct btrfs_extent_data_ref *ref) 1217 { 1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1219 btrfs_extent_data_ref_objectid(leaf, ref), 1220 btrfs_extent_data_ref_offset(leaf, ref)); 1221 } 1222 1223 static int match_extent_data_ref(struct extent_buffer *leaf, 1224 struct btrfs_extent_data_ref *ref, 1225 u64 root_objectid, u64 owner, u64 offset) 1226 { 1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1229 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1230 return 0; 1231 return 1; 1232 } 1233 1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1235 struct btrfs_fs_info *fs_info, 1236 struct btrfs_path *path, 1237 u64 bytenr, u64 parent, 1238 u64 root_objectid, 1239 u64 owner, u64 offset) 1240 { 1241 struct btrfs_root *root = fs_info->extent_root; 1242 struct btrfs_key key; 1243 struct btrfs_extent_data_ref *ref; 1244 struct extent_buffer *leaf; 1245 u32 nritems; 1246 int ret; 1247 int recow; 1248 int err = -ENOENT; 1249 1250 key.objectid = bytenr; 1251 if (parent) { 1252 key.type = BTRFS_SHARED_DATA_REF_KEY; 1253 key.offset = parent; 1254 } else { 1255 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1256 key.offset = hash_extent_data_ref(root_objectid, 1257 owner, offset); 1258 } 1259 again: 1260 recow = 0; 1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1262 if (ret < 0) { 1263 err = ret; 1264 goto fail; 1265 } 1266 1267 if (parent) { 1268 if (!ret) 1269 return 0; 1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1271 key.type = BTRFS_EXTENT_REF_V0_KEY; 1272 btrfs_release_path(path); 1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1274 if (ret < 0) { 1275 err = ret; 1276 goto fail; 1277 } 1278 if (!ret) 1279 return 0; 1280 #endif 1281 goto fail; 1282 } 1283 1284 leaf = path->nodes[0]; 1285 nritems = btrfs_header_nritems(leaf); 1286 while (1) { 1287 if (path->slots[0] >= nritems) { 1288 ret = btrfs_next_leaf(root, path); 1289 if (ret < 0) 1290 err = ret; 1291 if (ret) 1292 goto fail; 1293 1294 leaf = path->nodes[0]; 1295 nritems = btrfs_header_nritems(leaf); 1296 recow = 1; 1297 } 1298 1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1300 if (key.objectid != bytenr || 1301 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1302 goto fail; 1303 1304 ref = btrfs_item_ptr(leaf, path->slots[0], 1305 struct btrfs_extent_data_ref); 1306 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) { 1309 if (recow) { 1310 btrfs_release_path(path); 1311 goto again; 1312 } 1313 err = 0; 1314 break; 1315 } 1316 path->slots[0]++; 1317 } 1318 fail: 1319 return err; 1320 } 1321 1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1323 struct btrfs_fs_info *fs_info, 1324 struct btrfs_path *path, 1325 u64 bytenr, u64 parent, 1326 u64 root_objectid, u64 owner, 1327 u64 offset, int refs_to_add) 1328 { 1329 struct btrfs_root *root = fs_info->extent_root; 1330 struct btrfs_key key; 1331 struct extent_buffer *leaf; 1332 u32 size; 1333 u32 num_refs; 1334 int ret; 1335 1336 key.objectid = bytenr; 1337 if (parent) { 1338 key.type = BTRFS_SHARED_DATA_REF_KEY; 1339 key.offset = parent; 1340 size = sizeof(struct btrfs_shared_data_ref); 1341 } else { 1342 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1343 key.offset = hash_extent_data_ref(root_objectid, 1344 owner, offset); 1345 size = sizeof(struct btrfs_extent_data_ref); 1346 } 1347 1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1349 if (ret && ret != -EEXIST) 1350 goto fail; 1351 1352 leaf = path->nodes[0]; 1353 if (parent) { 1354 struct btrfs_shared_data_ref *ref; 1355 ref = btrfs_item_ptr(leaf, path->slots[0], 1356 struct btrfs_shared_data_ref); 1357 if (ret == 0) { 1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1359 } else { 1360 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1361 num_refs += refs_to_add; 1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1363 } 1364 } else { 1365 struct btrfs_extent_data_ref *ref; 1366 while (ret == -EEXIST) { 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (match_extent_data_ref(leaf, ref, root_objectid, 1370 owner, offset)) 1371 break; 1372 btrfs_release_path(path); 1373 key.offset++; 1374 ret = btrfs_insert_empty_item(trans, root, path, &key, 1375 size); 1376 if (ret && ret != -EEXIST) 1377 goto fail; 1378 1379 leaf = path->nodes[0]; 1380 } 1381 ref = btrfs_item_ptr(leaf, path->slots[0], 1382 struct btrfs_extent_data_ref); 1383 if (ret == 0) { 1384 btrfs_set_extent_data_ref_root(leaf, ref, 1385 root_objectid); 1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1389 } else { 1390 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1391 num_refs += refs_to_add; 1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1393 } 1394 } 1395 btrfs_mark_buffer_dirty(leaf); 1396 ret = 0; 1397 fail: 1398 btrfs_release_path(path); 1399 return ret; 1400 } 1401 1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_fs_info *fs_info, 1404 struct btrfs_path *path, 1405 int refs_to_drop, int *last_ref) 1406 { 1407 struct btrfs_key key; 1408 struct btrfs_extent_data_ref *ref1 = NULL; 1409 struct btrfs_shared_data_ref *ref2 = NULL; 1410 struct extent_buffer *leaf; 1411 u32 num_refs = 0; 1412 int ret = 0; 1413 1414 leaf = path->nodes[0]; 1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1416 1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1418 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1419 struct btrfs_extent_data_ref); 1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1422 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1423 struct btrfs_shared_data_ref); 1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1427 struct btrfs_extent_ref_v0 *ref0; 1428 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1429 struct btrfs_extent_ref_v0); 1430 num_refs = btrfs_ref_count_v0(leaf, ref0); 1431 #endif 1432 } else { 1433 BUG(); 1434 } 1435 1436 BUG_ON(num_refs < refs_to_drop); 1437 num_refs -= refs_to_drop; 1438 1439 if (num_refs == 0) { 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1441 *last_ref = 1; 1442 } else { 1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1448 else { 1449 struct btrfs_extent_ref_v0 *ref0; 1450 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1451 struct btrfs_extent_ref_v0); 1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1453 } 1454 #endif 1455 btrfs_mark_buffer_dirty(leaf); 1456 } 1457 return ret; 1458 } 1459 1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1461 struct btrfs_extent_inline_ref *iref) 1462 { 1463 struct btrfs_key key; 1464 struct extent_buffer *leaf; 1465 struct btrfs_extent_data_ref *ref1; 1466 struct btrfs_shared_data_ref *ref2; 1467 u32 num_refs = 0; 1468 int type; 1469 1470 leaf = path->nodes[0]; 1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1472 if (iref) { 1473 /* 1474 * If type is invalid, we should have bailed out earlier than 1475 * this call. 1476 */ 1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1478 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1482 } else { 1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1485 } 1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1487 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1488 struct btrfs_extent_data_ref); 1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1491 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1492 struct btrfs_shared_data_ref); 1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1496 struct btrfs_extent_ref_v0 *ref0; 1497 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1498 struct btrfs_extent_ref_v0); 1499 num_refs = btrfs_ref_count_v0(leaf, ref0); 1500 #endif 1501 } else { 1502 WARN_ON(1); 1503 } 1504 return num_refs; 1505 } 1506 1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1508 struct btrfs_fs_info *fs_info, 1509 struct btrfs_path *path, 1510 u64 bytenr, u64 parent, 1511 u64 root_objectid) 1512 { 1513 struct btrfs_root *root = fs_info->extent_root; 1514 struct btrfs_key key; 1515 int ret; 1516 1517 key.objectid = bytenr; 1518 if (parent) { 1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1520 key.offset = parent; 1521 } else { 1522 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1523 key.offset = root_objectid; 1524 } 1525 1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1527 if (ret > 0) 1528 ret = -ENOENT; 1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1530 if (ret == -ENOENT && parent) { 1531 btrfs_release_path(path); 1532 key.type = BTRFS_EXTENT_REF_V0_KEY; 1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1534 if (ret > 0) 1535 ret = -ENOENT; 1536 } 1537 #endif 1538 return ret; 1539 } 1540 1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1542 struct btrfs_fs_info *fs_info, 1543 struct btrfs_path *path, 1544 u64 bytenr, u64 parent, 1545 u64 root_objectid) 1546 { 1547 struct btrfs_key key; 1548 int ret; 1549 1550 key.objectid = bytenr; 1551 if (parent) { 1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1553 key.offset = parent; 1554 } else { 1555 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1556 key.offset = root_objectid; 1557 } 1558 1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1560 path, &key, 0); 1561 btrfs_release_path(path); 1562 return ret; 1563 } 1564 1565 static inline int extent_ref_type(u64 parent, u64 owner) 1566 { 1567 int type; 1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1569 if (parent > 0) 1570 type = BTRFS_SHARED_BLOCK_REF_KEY; 1571 else 1572 type = BTRFS_TREE_BLOCK_REF_KEY; 1573 } else { 1574 if (parent > 0) 1575 type = BTRFS_SHARED_DATA_REF_KEY; 1576 else 1577 type = BTRFS_EXTENT_DATA_REF_KEY; 1578 } 1579 return type; 1580 } 1581 1582 static int find_next_key(struct btrfs_path *path, int level, 1583 struct btrfs_key *key) 1584 1585 { 1586 for (; level < BTRFS_MAX_LEVEL; level++) { 1587 if (!path->nodes[level]) 1588 break; 1589 if (path->slots[level] + 1 >= 1590 btrfs_header_nritems(path->nodes[level])) 1591 continue; 1592 if (level == 0) 1593 btrfs_item_key_to_cpu(path->nodes[level], key, 1594 path->slots[level] + 1); 1595 else 1596 btrfs_node_key_to_cpu(path->nodes[level], key, 1597 path->slots[level] + 1); 1598 return 0; 1599 } 1600 return 1; 1601 } 1602 1603 /* 1604 * look for inline back ref. if back ref is found, *ref_ret is set 1605 * to the address of inline back ref, and 0 is returned. 1606 * 1607 * if back ref isn't found, *ref_ret is set to the address where it 1608 * should be inserted, and -ENOENT is returned. 1609 * 1610 * if insert is true and there are too many inline back refs, the path 1611 * points to the extent item, and -EAGAIN is returned. 1612 * 1613 * NOTE: inline back refs are ordered in the same way that back ref 1614 * items in the tree are ordered. 1615 */ 1616 static noinline_for_stack 1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1618 struct btrfs_fs_info *fs_info, 1619 struct btrfs_path *path, 1620 struct btrfs_extent_inline_ref **ref_ret, 1621 u64 bytenr, u64 num_bytes, 1622 u64 parent, u64 root_objectid, 1623 u64 owner, u64 offset, int insert) 1624 { 1625 struct btrfs_root *root = fs_info->extent_root; 1626 struct btrfs_key key; 1627 struct extent_buffer *leaf; 1628 struct btrfs_extent_item *ei; 1629 struct btrfs_extent_inline_ref *iref; 1630 u64 flags; 1631 u64 item_size; 1632 unsigned long ptr; 1633 unsigned long end; 1634 int extra_size; 1635 int type; 1636 int want; 1637 int ret; 1638 int err = 0; 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1640 int needed; 1641 1642 key.objectid = bytenr; 1643 key.type = BTRFS_EXTENT_ITEM_KEY; 1644 key.offset = num_bytes; 1645 1646 want = extent_ref_type(parent, owner); 1647 if (insert) { 1648 extra_size = btrfs_extent_inline_ref_size(want); 1649 path->keep_locks = 1; 1650 } else 1651 extra_size = -1; 1652 1653 /* 1654 * Owner is our parent level, so we can just add one to get the level 1655 * for the block we are interested in. 1656 */ 1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1658 key.type = BTRFS_METADATA_ITEM_KEY; 1659 key.offset = owner; 1660 } 1661 1662 again: 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1664 if (ret < 0) { 1665 err = ret; 1666 goto out; 1667 } 1668 1669 /* 1670 * We may be a newly converted file system which still has the old fat 1671 * extent entries for metadata, so try and see if we have one of those. 1672 */ 1673 if (ret > 0 && skinny_metadata) { 1674 skinny_metadata = false; 1675 if (path->slots[0]) { 1676 path->slots[0]--; 1677 btrfs_item_key_to_cpu(path->nodes[0], &key, 1678 path->slots[0]); 1679 if (key.objectid == bytenr && 1680 key.type == BTRFS_EXTENT_ITEM_KEY && 1681 key.offset == num_bytes) 1682 ret = 0; 1683 } 1684 if (ret) { 1685 key.objectid = bytenr; 1686 key.type = BTRFS_EXTENT_ITEM_KEY; 1687 key.offset = num_bytes; 1688 btrfs_release_path(path); 1689 goto again; 1690 } 1691 } 1692 1693 if (ret && !insert) { 1694 err = -ENOENT; 1695 goto out; 1696 } else if (WARN_ON(ret)) { 1697 err = -EIO; 1698 goto out; 1699 } 1700 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1704 if (item_size < sizeof(*ei)) { 1705 if (!insert) { 1706 err = -ENOENT; 1707 goto out; 1708 } 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1710 extra_size); 1711 if (ret < 0) { 1712 err = ret; 1713 goto out; 1714 } 1715 leaf = path->nodes[0]; 1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1717 } 1718 #endif 1719 BUG_ON(item_size < sizeof(*ei)); 1720 1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1722 flags = btrfs_extent_flags(leaf, ei); 1723 1724 ptr = (unsigned long)(ei + 1); 1725 end = (unsigned long)ei + item_size; 1726 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1728 ptr += sizeof(struct btrfs_tree_block_info); 1729 BUG_ON(ptr > end); 1730 } 1731 1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1733 needed = BTRFS_REF_TYPE_DATA; 1734 else 1735 needed = BTRFS_REF_TYPE_BLOCK; 1736 1737 err = -ENOENT; 1738 while (1) { 1739 if (ptr >= end) { 1740 WARN_ON(ptr > end); 1741 break; 1742 } 1743 iref = (struct btrfs_extent_inline_ref *)ptr; 1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1745 if (type == BTRFS_REF_TYPE_INVALID) { 1746 err = -EINVAL; 1747 goto out; 1748 } 1749 1750 if (want < type) 1751 break; 1752 if (want > type) { 1753 ptr += btrfs_extent_inline_ref_size(type); 1754 continue; 1755 } 1756 1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1758 struct btrfs_extent_data_ref *dref; 1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1760 if (match_extent_data_ref(leaf, dref, root_objectid, 1761 owner, offset)) { 1762 err = 0; 1763 break; 1764 } 1765 if (hash_extent_data_ref_item(leaf, dref) < 1766 hash_extent_data_ref(root_objectid, owner, offset)) 1767 break; 1768 } else { 1769 u64 ref_offset; 1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1771 if (parent > 0) { 1772 if (parent == ref_offset) { 1773 err = 0; 1774 break; 1775 } 1776 if (ref_offset < parent) 1777 break; 1778 } else { 1779 if (root_objectid == ref_offset) { 1780 err = 0; 1781 break; 1782 } 1783 if (ref_offset < root_objectid) 1784 break; 1785 } 1786 } 1787 ptr += btrfs_extent_inline_ref_size(type); 1788 } 1789 if (err == -ENOENT && insert) { 1790 if (item_size + extra_size >= 1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1792 err = -EAGAIN; 1793 goto out; 1794 } 1795 /* 1796 * To add new inline back ref, we have to make sure 1797 * there is no corresponding back ref item. 1798 * For simplicity, we just do not add new inline back 1799 * ref if there is any kind of item for this block 1800 */ 1801 if (find_next_key(path, 0, &key) == 0 && 1802 key.objectid == bytenr && 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1804 err = -EAGAIN; 1805 goto out; 1806 } 1807 } 1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1809 out: 1810 if (insert) { 1811 path->keep_locks = 0; 1812 btrfs_unlock_up_safe(path, 1); 1813 } 1814 return err; 1815 } 1816 1817 /* 1818 * helper to add new inline back ref 1819 */ 1820 static noinline_for_stack 1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1822 struct btrfs_path *path, 1823 struct btrfs_extent_inline_ref *iref, 1824 u64 parent, u64 root_objectid, 1825 u64 owner, u64 offset, int refs_to_add, 1826 struct btrfs_delayed_extent_op *extent_op) 1827 { 1828 struct extent_buffer *leaf; 1829 struct btrfs_extent_item *ei; 1830 unsigned long ptr; 1831 unsigned long end; 1832 unsigned long item_offset; 1833 u64 refs; 1834 int size; 1835 int type; 1836 1837 leaf = path->nodes[0]; 1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1839 item_offset = (unsigned long)iref - (unsigned long)ei; 1840 1841 type = extent_ref_type(parent, owner); 1842 size = btrfs_extent_inline_ref_size(type); 1843 1844 btrfs_extend_item(fs_info, path, size); 1845 1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1847 refs = btrfs_extent_refs(leaf, ei); 1848 refs += refs_to_add; 1849 btrfs_set_extent_refs(leaf, ei, refs); 1850 if (extent_op) 1851 __run_delayed_extent_op(extent_op, leaf, ei); 1852 1853 ptr = (unsigned long)ei + item_offset; 1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1855 if (ptr < end - size) 1856 memmove_extent_buffer(leaf, ptr + size, ptr, 1857 end - size - ptr); 1858 1859 iref = (struct btrfs_extent_inline_ref *)ptr; 1860 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 struct btrfs_extent_data_ref *dref; 1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1869 struct btrfs_shared_data_ref *sref; 1870 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1875 } else { 1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1877 } 1878 btrfs_mark_buffer_dirty(leaf); 1879 } 1880 1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1882 struct btrfs_fs_info *fs_info, 1883 struct btrfs_path *path, 1884 struct btrfs_extent_inline_ref **ref_ret, 1885 u64 bytenr, u64 num_bytes, u64 parent, 1886 u64 root_objectid, u64 owner, u64 offset) 1887 { 1888 int ret; 1889 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1891 bytenr, num_bytes, parent, 1892 root_objectid, owner, offset, 0); 1893 if (ret != -ENOENT) 1894 return ret; 1895 1896 btrfs_release_path(path); 1897 *ref_ret = NULL; 1898 1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1901 parent, root_objectid); 1902 } else { 1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1904 parent, root_objectid, owner, 1905 offset); 1906 } 1907 return ret; 1908 } 1909 1910 /* 1911 * helper to update/remove inline back ref 1912 */ 1913 static noinline_for_stack 1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1915 struct btrfs_path *path, 1916 struct btrfs_extent_inline_ref *iref, 1917 int refs_to_mod, 1918 struct btrfs_delayed_extent_op *extent_op, 1919 int *last_ref) 1920 { 1921 struct extent_buffer *leaf; 1922 struct btrfs_extent_item *ei; 1923 struct btrfs_extent_data_ref *dref = NULL; 1924 struct btrfs_shared_data_ref *sref = NULL; 1925 unsigned long ptr; 1926 unsigned long end; 1927 u32 item_size; 1928 int size; 1929 int type; 1930 u64 refs; 1931 1932 leaf = path->nodes[0]; 1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1934 refs = btrfs_extent_refs(leaf, ei); 1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1936 refs += refs_to_mod; 1937 btrfs_set_extent_refs(leaf, ei, refs); 1938 if (extent_op) 1939 __run_delayed_extent_op(extent_op, leaf, ei); 1940 1941 /* 1942 * If type is invalid, we should have bailed out after 1943 * lookup_inline_extent_backref(). 1944 */ 1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1946 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1947 1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1950 refs = btrfs_extent_data_ref_count(leaf, dref); 1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1952 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1953 refs = btrfs_shared_data_ref_count(leaf, sref); 1954 } else { 1955 refs = 1; 1956 BUG_ON(refs_to_mod != -1); 1957 } 1958 1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1960 refs += refs_to_mod; 1961 1962 if (refs > 0) { 1963 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1964 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1965 else 1966 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1967 } else { 1968 *last_ref = 1; 1969 size = btrfs_extent_inline_ref_size(type); 1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1971 ptr = (unsigned long)iref; 1972 end = (unsigned long)ei + item_size; 1973 if (ptr + size < end) 1974 memmove_extent_buffer(leaf, ptr, ptr + size, 1975 end - ptr - size); 1976 item_size -= size; 1977 btrfs_truncate_item(fs_info, path, item_size, 1); 1978 } 1979 btrfs_mark_buffer_dirty(leaf); 1980 } 1981 1982 static noinline_for_stack 1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1984 struct btrfs_fs_info *fs_info, 1985 struct btrfs_path *path, 1986 u64 bytenr, u64 num_bytes, u64 parent, 1987 u64 root_objectid, u64 owner, 1988 u64 offset, int refs_to_add, 1989 struct btrfs_delayed_extent_op *extent_op) 1990 { 1991 struct btrfs_extent_inline_ref *iref; 1992 int ret; 1993 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1995 bytenr, num_bytes, parent, 1996 root_objectid, owner, offset, 1); 1997 if (ret == 0) { 1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1999 update_inline_extent_backref(fs_info, path, iref, 2000 refs_to_add, extent_op, NULL); 2001 } else if (ret == -ENOENT) { 2002 setup_inline_extent_backref(fs_info, path, iref, parent, 2003 root_objectid, owner, offset, 2004 refs_to_add, extent_op); 2005 ret = 0; 2006 } 2007 return ret; 2008 } 2009 2010 static int insert_extent_backref(struct btrfs_trans_handle *trans, 2011 struct btrfs_fs_info *fs_info, 2012 struct btrfs_path *path, 2013 u64 bytenr, u64 parent, u64 root_objectid, 2014 u64 owner, u64 offset, int refs_to_add) 2015 { 2016 int ret; 2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2018 BUG_ON(refs_to_add != 1); 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2020 parent, root_objectid); 2021 } else { 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2023 parent, root_objectid, 2024 owner, offset, refs_to_add); 2025 } 2026 return ret; 2027 } 2028 2029 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2030 struct btrfs_fs_info *fs_info, 2031 struct btrfs_path *path, 2032 struct btrfs_extent_inline_ref *iref, 2033 int refs_to_drop, int is_data, int *last_ref) 2034 { 2035 int ret = 0; 2036 2037 BUG_ON(!is_data && refs_to_drop != 1); 2038 if (iref) { 2039 update_inline_extent_backref(fs_info, path, iref, 2040 -refs_to_drop, NULL, last_ref); 2041 } else if (is_data) { 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2043 last_ref); 2044 } else { 2045 *last_ref = 1; 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2047 } 2048 return ret; 2049 } 2050 2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2053 u64 *discarded_bytes) 2054 { 2055 int j, ret = 0; 2056 u64 bytes_left, end; 2057 u64 aligned_start = ALIGN(start, 1 << 9); 2058 2059 if (WARN_ON(start != aligned_start)) { 2060 len -= aligned_start - start; 2061 len = round_down(len, 1 << 9); 2062 start = aligned_start; 2063 } 2064 2065 *discarded_bytes = 0; 2066 2067 if (!len) 2068 return 0; 2069 2070 end = start + len; 2071 bytes_left = len; 2072 2073 /* Skip any superblocks on this device. */ 2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2075 u64 sb_start = btrfs_sb_offset(j); 2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2077 u64 size = sb_start - start; 2078 2079 if (!in_range(sb_start, start, bytes_left) && 2080 !in_range(sb_end, start, bytes_left) && 2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2082 continue; 2083 2084 /* 2085 * Superblock spans beginning of range. Adjust start and 2086 * try again. 2087 */ 2088 if (sb_start <= start) { 2089 start += sb_end - start; 2090 if (start > end) { 2091 bytes_left = 0; 2092 break; 2093 } 2094 bytes_left = end - start; 2095 continue; 2096 } 2097 2098 if (size) { 2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2100 GFP_NOFS, 0); 2101 if (!ret) 2102 *discarded_bytes += size; 2103 else if (ret != -EOPNOTSUPP) 2104 return ret; 2105 } 2106 2107 start = sb_end; 2108 if (start > end) { 2109 bytes_left = 0; 2110 break; 2111 } 2112 bytes_left = end - start; 2113 } 2114 2115 if (bytes_left) { 2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2117 GFP_NOFS, 0); 2118 if (!ret) 2119 *discarded_bytes += bytes_left; 2120 } 2121 return ret; 2122 } 2123 2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2125 u64 num_bytes, u64 *actual_bytes) 2126 { 2127 int ret; 2128 u64 discarded_bytes = 0; 2129 struct btrfs_bio *bbio = NULL; 2130 2131 2132 /* 2133 * Avoid races with device replace and make sure our bbio has devices 2134 * associated to its stripes that don't go away while we are discarding. 2135 */ 2136 btrfs_bio_counter_inc_blocked(fs_info); 2137 /* Tell the block device(s) that the sectors can be discarded */ 2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2139 &bbio, 0); 2140 /* Error condition is -ENOMEM */ 2141 if (!ret) { 2142 struct btrfs_bio_stripe *stripe = bbio->stripes; 2143 int i; 2144 2145 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2147 u64 bytes; 2148 if (!stripe->dev->can_discard) 2149 continue; 2150 2151 ret = btrfs_issue_discard(stripe->dev->bdev, 2152 stripe->physical, 2153 stripe->length, 2154 &bytes); 2155 if (!ret) 2156 discarded_bytes += bytes; 2157 else if (ret != -EOPNOTSUPP) 2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2159 2160 /* 2161 * Just in case we get back EOPNOTSUPP for some reason, 2162 * just ignore the return value so we don't screw up 2163 * people calling discard_extent. 2164 */ 2165 ret = 0; 2166 } 2167 btrfs_put_bbio(bbio); 2168 } 2169 btrfs_bio_counter_dec(fs_info); 2170 2171 if (actual_bytes) 2172 *actual_bytes = discarded_bytes; 2173 2174 2175 if (ret == -EOPNOTSUPP) 2176 ret = 0; 2177 return ret; 2178 } 2179 2180 /* Can return -ENOMEM */ 2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2182 struct btrfs_root *root, 2183 u64 bytenr, u64 num_bytes, u64 parent, 2184 u64 root_objectid, u64 owner, u64 offset) 2185 { 2186 struct btrfs_fs_info *fs_info = root->fs_info; 2187 int old_ref_mod, new_ref_mod; 2188 int ret; 2189 2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2191 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2192 2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2194 owner, offset, BTRFS_ADD_DELAYED_REF); 2195 2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2198 num_bytes, parent, 2199 root_objectid, (int)owner, 2200 BTRFS_ADD_DELAYED_REF, NULL, 2201 &old_ref_mod, &new_ref_mod); 2202 } else { 2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2204 num_bytes, parent, 2205 root_objectid, owner, offset, 2206 0, BTRFS_ADD_DELAYED_REF, 2207 &old_ref_mod, &new_ref_mod); 2208 } 2209 2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2212 2213 return ret; 2214 } 2215 2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2217 struct btrfs_fs_info *fs_info, 2218 struct btrfs_delayed_ref_node *node, 2219 u64 parent, u64 root_objectid, 2220 u64 owner, u64 offset, int refs_to_add, 2221 struct btrfs_delayed_extent_op *extent_op) 2222 { 2223 struct btrfs_path *path; 2224 struct extent_buffer *leaf; 2225 struct btrfs_extent_item *item; 2226 struct btrfs_key key; 2227 u64 bytenr = node->bytenr; 2228 u64 num_bytes = node->num_bytes; 2229 u64 refs; 2230 int ret; 2231 2232 path = btrfs_alloc_path(); 2233 if (!path) 2234 return -ENOMEM; 2235 2236 path->reada = READA_FORWARD; 2237 path->leave_spinning = 1; 2238 /* this will setup the path even if it fails to insert the back ref */ 2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2240 num_bytes, parent, root_objectid, 2241 owner, offset, 2242 refs_to_add, extent_op); 2243 if ((ret < 0 && ret != -EAGAIN) || !ret) 2244 goto out; 2245 2246 /* 2247 * Ok we had -EAGAIN which means we didn't have space to insert and 2248 * inline extent ref, so just update the reference count and add a 2249 * normal backref. 2250 */ 2251 leaf = path->nodes[0]; 2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2254 refs = btrfs_extent_refs(leaf, item); 2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2256 if (extent_op) 2257 __run_delayed_extent_op(extent_op, leaf, item); 2258 2259 btrfs_mark_buffer_dirty(leaf); 2260 btrfs_release_path(path); 2261 2262 path->reada = READA_FORWARD; 2263 path->leave_spinning = 1; 2264 /* now insert the actual backref */ 2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2266 root_objectid, owner, offset, refs_to_add); 2267 if (ret) 2268 btrfs_abort_transaction(trans, ret); 2269 out: 2270 btrfs_free_path(path); 2271 return ret; 2272 } 2273 2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_fs_info *fs_info, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279 { 2280 int ret = 0; 2281 struct btrfs_delayed_data_ref *ref; 2282 struct btrfs_key ins; 2283 u64 parent = 0; 2284 u64 ref_root = 0; 2285 u64 flags = 0; 2286 2287 ins.objectid = node->bytenr; 2288 ins.offset = node->num_bytes; 2289 ins.type = BTRFS_EXTENT_ITEM_KEY; 2290 2291 ref = btrfs_delayed_node_to_data_ref(node); 2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2293 2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2295 parent = ref->parent; 2296 ref_root = ref->root; 2297 2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2299 if (extent_op) 2300 flags |= extent_op->flags_to_set; 2301 ret = alloc_reserved_file_extent(trans, fs_info, 2302 parent, ref_root, flags, 2303 ref->objectid, ref->offset, 2304 &ins, node->ref_mod); 2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2307 ref_root, ref->objectid, 2308 ref->offset, node->ref_mod, 2309 extent_op); 2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2311 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2312 ref_root, ref->objectid, 2313 ref->offset, node->ref_mod, 2314 extent_op); 2315 } else { 2316 BUG(); 2317 } 2318 return ret; 2319 } 2320 2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2322 struct extent_buffer *leaf, 2323 struct btrfs_extent_item *ei) 2324 { 2325 u64 flags = btrfs_extent_flags(leaf, ei); 2326 if (extent_op->update_flags) { 2327 flags |= extent_op->flags_to_set; 2328 btrfs_set_extent_flags(leaf, ei, flags); 2329 } 2330 2331 if (extent_op->update_key) { 2332 struct btrfs_tree_block_info *bi; 2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2334 bi = (struct btrfs_tree_block_info *)(ei + 1); 2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2336 } 2337 } 2338 2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2340 struct btrfs_fs_info *fs_info, 2341 struct btrfs_delayed_ref_head *head, 2342 struct btrfs_delayed_extent_op *extent_op) 2343 { 2344 struct btrfs_key key; 2345 struct btrfs_path *path; 2346 struct btrfs_extent_item *ei; 2347 struct extent_buffer *leaf; 2348 u32 item_size; 2349 int ret; 2350 int err = 0; 2351 int metadata = !extent_op->is_data; 2352 2353 if (trans->aborted) 2354 return 0; 2355 2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2357 metadata = 0; 2358 2359 path = btrfs_alloc_path(); 2360 if (!path) 2361 return -ENOMEM; 2362 2363 key.objectid = head->bytenr; 2364 2365 if (metadata) { 2366 key.type = BTRFS_METADATA_ITEM_KEY; 2367 key.offset = extent_op->level; 2368 } else { 2369 key.type = BTRFS_EXTENT_ITEM_KEY; 2370 key.offset = head->num_bytes; 2371 } 2372 2373 again: 2374 path->reada = READA_FORWARD; 2375 path->leave_spinning = 1; 2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2377 if (ret < 0) { 2378 err = ret; 2379 goto out; 2380 } 2381 if (ret > 0) { 2382 if (metadata) { 2383 if (path->slots[0] > 0) { 2384 path->slots[0]--; 2385 btrfs_item_key_to_cpu(path->nodes[0], &key, 2386 path->slots[0]); 2387 if (key.objectid == head->bytenr && 2388 key.type == BTRFS_EXTENT_ITEM_KEY && 2389 key.offset == head->num_bytes) 2390 ret = 0; 2391 } 2392 if (ret > 0) { 2393 btrfs_release_path(path); 2394 metadata = 0; 2395 2396 key.objectid = head->bytenr; 2397 key.offset = head->num_bytes; 2398 key.type = BTRFS_EXTENT_ITEM_KEY; 2399 goto again; 2400 } 2401 } else { 2402 err = -EIO; 2403 goto out; 2404 } 2405 } 2406 2407 leaf = path->nodes[0]; 2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2410 if (item_size < sizeof(*ei)) { 2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2412 if (ret < 0) { 2413 err = ret; 2414 goto out; 2415 } 2416 leaf = path->nodes[0]; 2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2418 } 2419 #endif 2420 BUG_ON(item_size < sizeof(*ei)); 2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2422 __run_delayed_extent_op(extent_op, leaf, ei); 2423 2424 btrfs_mark_buffer_dirty(leaf); 2425 out: 2426 btrfs_free_path(path); 2427 return err; 2428 } 2429 2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2431 struct btrfs_fs_info *fs_info, 2432 struct btrfs_delayed_ref_node *node, 2433 struct btrfs_delayed_extent_op *extent_op, 2434 int insert_reserved) 2435 { 2436 int ret = 0; 2437 struct btrfs_delayed_tree_ref *ref; 2438 struct btrfs_key ins; 2439 u64 parent = 0; 2440 u64 ref_root = 0; 2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2442 2443 ref = btrfs_delayed_node_to_tree_ref(node); 2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2445 2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2447 parent = ref->parent; 2448 ref_root = ref->root; 2449 2450 ins.objectid = node->bytenr; 2451 if (skinny_metadata) { 2452 ins.offset = ref->level; 2453 ins.type = BTRFS_METADATA_ITEM_KEY; 2454 } else { 2455 ins.offset = node->num_bytes; 2456 ins.type = BTRFS_EXTENT_ITEM_KEY; 2457 } 2458 2459 if (node->ref_mod != 1) { 2460 btrfs_err(fs_info, 2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2462 node->bytenr, node->ref_mod, node->action, ref_root, 2463 parent); 2464 return -EIO; 2465 } 2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2467 BUG_ON(!extent_op || !extent_op->update_flags); 2468 ret = alloc_reserved_tree_block(trans, fs_info, 2469 parent, ref_root, 2470 extent_op->flags_to_set, 2471 &extent_op->key, 2472 ref->level, &ins); 2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2475 parent, ref_root, 2476 ref->level, 0, 1, 2477 extent_op); 2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2479 ret = __btrfs_free_extent(trans, fs_info, node, 2480 parent, ref_root, 2481 ref->level, 0, 1, extent_op); 2482 } else { 2483 BUG(); 2484 } 2485 return ret; 2486 } 2487 2488 /* helper function to actually process a single delayed ref entry */ 2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2490 struct btrfs_fs_info *fs_info, 2491 struct btrfs_delayed_ref_node *node, 2492 struct btrfs_delayed_extent_op *extent_op, 2493 int insert_reserved) 2494 { 2495 int ret = 0; 2496 2497 if (trans->aborted) { 2498 if (insert_reserved) 2499 btrfs_pin_extent(fs_info, node->bytenr, 2500 node->num_bytes, 1); 2501 return 0; 2502 } 2503 2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2507 insert_reserved); 2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2509 node->type == BTRFS_SHARED_DATA_REF_KEY) 2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2511 insert_reserved); 2512 else 2513 BUG(); 2514 return ret; 2515 } 2516 2517 static inline struct btrfs_delayed_ref_node * 2518 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2519 { 2520 struct btrfs_delayed_ref_node *ref; 2521 2522 if (RB_EMPTY_ROOT(&head->ref_tree)) 2523 return NULL; 2524 2525 /* 2526 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2527 * This is to prevent a ref count from going down to zero, which deletes 2528 * the extent item from the extent tree, when there still are references 2529 * to add, which would fail because they would not find the extent item. 2530 */ 2531 if (!list_empty(&head->ref_add_list)) 2532 return list_first_entry(&head->ref_add_list, 2533 struct btrfs_delayed_ref_node, add_list); 2534 2535 ref = rb_entry(rb_first(&head->ref_tree), 2536 struct btrfs_delayed_ref_node, ref_node); 2537 ASSERT(list_empty(&ref->add_list)); 2538 return ref; 2539 } 2540 2541 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2542 struct btrfs_delayed_ref_head *head) 2543 { 2544 spin_lock(&delayed_refs->lock); 2545 head->processing = 0; 2546 delayed_refs->num_heads_ready++; 2547 spin_unlock(&delayed_refs->lock); 2548 btrfs_delayed_ref_unlock(head); 2549 } 2550 2551 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2552 struct btrfs_fs_info *fs_info, 2553 struct btrfs_delayed_ref_head *head) 2554 { 2555 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2556 int ret; 2557 2558 if (!extent_op) 2559 return 0; 2560 head->extent_op = NULL; 2561 if (head->must_insert_reserved) { 2562 btrfs_free_delayed_extent_op(extent_op); 2563 return 0; 2564 } 2565 spin_unlock(&head->lock); 2566 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2567 btrfs_free_delayed_extent_op(extent_op); 2568 return ret ? ret : 1; 2569 } 2570 2571 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2572 struct btrfs_fs_info *fs_info, 2573 struct btrfs_delayed_ref_head *head) 2574 { 2575 struct btrfs_delayed_ref_root *delayed_refs; 2576 int ret; 2577 2578 delayed_refs = &trans->transaction->delayed_refs; 2579 2580 ret = cleanup_extent_op(trans, fs_info, head); 2581 if (ret < 0) { 2582 unselect_delayed_ref_head(delayed_refs, head); 2583 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2584 return ret; 2585 } else if (ret) { 2586 return ret; 2587 } 2588 2589 /* 2590 * Need to drop our head ref lock and re-acquire the delayed ref lock 2591 * and then re-check to make sure nobody got added. 2592 */ 2593 spin_unlock(&head->lock); 2594 spin_lock(&delayed_refs->lock); 2595 spin_lock(&head->lock); 2596 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2597 spin_unlock(&head->lock); 2598 spin_unlock(&delayed_refs->lock); 2599 return 1; 2600 } 2601 delayed_refs->num_heads--; 2602 rb_erase(&head->href_node, &delayed_refs->href_root); 2603 RB_CLEAR_NODE(&head->href_node); 2604 spin_unlock(&delayed_refs->lock); 2605 spin_unlock(&head->lock); 2606 atomic_dec(&delayed_refs->num_entries); 2607 2608 trace_run_delayed_ref_head(fs_info, head, 0); 2609 2610 if (head->total_ref_mod < 0) { 2611 struct btrfs_block_group_cache *cache; 2612 2613 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 2614 ASSERT(cache); 2615 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2616 -head->num_bytes); 2617 btrfs_put_block_group(cache); 2618 2619 if (head->is_data) { 2620 spin_lock(&delayed_refs->lock); 2621 delayed_refs->pending_csums -= head->num_bytes; 2622 spin_unlock(&delayed_refs->lock); 2623 } 2624 } 2625 2626 if (head->must_insert_reserved) { 2627 btrfs_pin_extent(fs_info, head->bytenr, 2628 head->num_bytes, 1); 2629 if (head->is_data) { 2630 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2631 head->num_bytes); 2632 } 2633 } 2634 2635 /* Also free its reserved qgroup space */ 2636 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2637 head->qgroup_reserved); 2638 btrfs_delayed_ref_unlock(head); 2639 btrfs_put_delayed_ref_head(head); 2640 return 0; 2641 } 2642 2643 /* 2644 * Returns 0 on success or if called with an already aborted transaction. 2645 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2646 */ 2647 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2648 struct btrfs_fs_info *fs_info, 2649 unsigned long nr) 2650 { 2651 struct btrfs_delayed_ref_root *delayed_refs; 2652 struct btrfs_delayed_ref_node *ref; 2653 struct btrfs_delayed_ref_head *locked_ref = NULL; 2654 struct btrfs_delayed_extent_op *extent_op; 2655 ktime_t start = ktime_get(); 2656 int ret; 2657 unsigned long count = 0; 2658 unsigned long actual_count = 0; 2659 int must_insert_reserved = 0; 2660 2661 delayed_refs = &trans->transaction->delayed_refs; 2662 while (1) { 2663 if (!locked_ref) { 2664 if (count >= nr) 2665 break; 2666 2667 spin_lock(&delayed_refs->lock); 2668 locked_ref = btrfs_select_ref_head(trans); 2669 if (!locked_ref) { 2670 spin_unlock(&delayed_refs->lock); 2671 break; 2672 } 2673 2674 /* grab the lock that says we are going to process 2675 * all the refs for this head */ 2676 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2677 spin_unlock(&delayed_refs->lock); 2678 /* 2679 * we may have dropped the spin lock to get the head 2680 * mutex lock, and that might have given someone else 2681 * time to free the head. If that's true, it has been 2682 * removed from our list and we can move on. 2683 */ 2684 if (ret == -EAGAIN) { 2685 locked_ref = NULL; 2686 count++; 2687 continue; 2688 } 2689 } 2690 2691 /* 2692 * We need to try and merge add/drops of the same ref since we 2693 * can run into issues with relocate dropping the implicit ref 2694 * and then it being added back again before the drop can 2695 * finish. If we merged anything we need to re-loop so we can 2696 * get a good ref. 2697 * Or we can get node references of the same type that weren't 2698 * merged when created due to bumps in the tree mod seq, and 2699 * we need to merge them to prevent adding an inline extent 2700 * backref before dropping it (triggering a BUG_ON at 2701 * insert_inline_extent_backref()). 2702 */ 2703 spin_lock(&locked_ref->lock); 2704 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2705 locked_ref); 2706 2707 /* 2708 * locked_ref is the head node, so we have to go one 2709 * node back for any delayed ref updates 2710 */ 2711 ref = select_delayed_ref(locked_ref); 2712 2713 if (ref && ref->seq && 2714 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2715 spin_unlock(&locked_ref->lock); 2716 unselect_delayed_ref_head(delayed_refs, locked_ref); 2717 locked_ref = NULL; 2718 cond_resched(); 2719 count++; 2720 continue; 2721 } 2722 2723 /* 2724 * We're done processing refs in this ref_head, clean everything 2725 * up and move on to the next ref_head. 2726 */ 2727 if (!ref) { 2728 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2729 if (ret > 0 ) { 2730 /* We dropped our lock, we need to loop. */ 2731 ret = 0; 2732 continue; 2733 } else if (ret) { 2734 return ret; 2735 } 2736 locked_ref = NULL; 2737 count++; 2738 continue; 2739 } 2740 2741 actual_count++; 2742 ref->in_tree = 0; 2743 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2744 RB_CLEAR_NODE(&ref->ref_node); 2745 if (!list_empty(&ref->add_list)) 2746 list_del(&ref->add_list); 2747 /* 2748 * When we play the delayed ref, also correct the ref_mod on 2749 * head 2750 */ 2751 switch (ref->action) { 2752 case BTRFS_ADD_DELAYED_REF: 2753 case BTRFS_ADD_DELAYED_EXTENT: 2754 locked_ref->ref_mod -= ref->ref_mod; 2755 break; 2756 case BTRFS_DROP_DELAYED_REF: 2757 locked_ref->ref_mod += ref->ref_mod; 2758 break; 2759 default: 2760 WARN_ON(1); 2761 } 2762 atomic_dec(&delayed_refs->num_entries); 2763 2764 /* 2765 * Record the must-insert_reserved flag before we drop the spin 2766 * lock. 2767 */ 2768 must_insert_reserved = locked_ref->must_insert_reserved; 2769 locked_ref->must_insert_reserved = 0; 2770 2771 extent_op = locked_ref->extent_op; 2772 locked_ref->extent_op = NULL; 2773 spin_unlock(&locked_ref->lock); 2774 2775 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2776 must_insert_reserved); 2777 2778 btrfs_free_delayed_extent_op(extent_op); 2779 if (ret) { 2780 unselect_delayed_ref_head(delayed_refs, locked_ref); 2781 btrfs_put_delayed_ref(ref); 2782 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2783 ret); 2784 return ret; 2785 } 2786 2787 btrfs_put_delayed_ref(ref); 2788 count++; 2789 cond_resched(); 2790 } 2791 2792 /* 2793 * We don't want to include ref heads since we can have empty ref heads 2794 * and those will drastically skew our runtime down since we just do 2795 * accounting, no actual extent tree updates. 2796 */ 2797 if (actual_count > 0) { 2798 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2799 u64 avg; 2800 2801 /* 2802 * We weigh the current average higher than our current runtime 2803 * to avoid large swings in the average. 2804 */ 2805 spin_lock(&delayed_refs->lock); 2806 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2807 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2808 spin_unlock(&delayed_refs->lock); 2809 } 2810 return 0; 2811 } 2812 2813 #ifdef SCRAMBLE_DELAYED_REFS 2814 /* 2815 * Normally delayed refs get processed in ascending bytenr order. This 2816 * correlates in most cases to the order added. To expose dependencies on this 2817 * order, we start to process the tree in the middle instead of the beginning 2818 */ 2819 static u64 find_middle(struct rb_root *root) 2820 { 2821 struct rb_node *n = root->rb_node; 2822 struct btrfs_delayed_ref_node *entry; 2823 int alt = 1; 2824 u64 middle; 2825 u64 first = 0, last = 0; 2826 2827 n = rb_first(root); 2828 if (n) { 2829 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2830 first = entry->bytenr; 2831 } 2832 n = rb_last(root); 2833 if (n) { 2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2835 last = entry->bytenr; 2836 } 2837 n = root->rb_node; 2838 2839 while (n) { 2840 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2841 WARN_ON(!entry->in_tree); 2842 2843 middle = entry->bytenr; 2844 2845 if (alt) 2846 n = n->rb_left; 2847 else 2848 n = n->rb_right; 2849 2850 alt = 1 - alt; 2851 } 2852 return middle; 2853 } 2854 #endif 2855 2856 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2857 { 2858 u64 num_bytes; 2859 2860 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2861 sizeof(struct btrfs_extent_inline_ref)); 2862 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2863 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2864 2865 /* 2866 * We don't ever fill up leaves all the way so multiply by 2 just to be 2867 * closer to what we're really going to want to use. 2868 */ 2869 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2870 } 2871 2872 /* 2873 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2874 * would require to store the csums for that many bytes. 2875 */ 2876 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2877 { 2878 u64 csum_size; 2879 u64 num_csums_per_leaf; 2880 u64 num_csums; 2881 2882 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2883 num_csums_per_leaf = div64_u64(csum_size, 2884 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2885 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2886 num_csums += num_csums_per_leaf - 1; 2887 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2888 return num_csums; 2889 } 2890 2891 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2892 struct btrfs_fs_info *fs_info) 2893 { 2894 struct btrfs_block_rsv *global_rsv; 2895 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2896 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2897 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2898 u64 num_bytes, num_dirty_bgs_bytes; 2899 int ret = 0; 2900 2901 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2902 num_heads = heads_to_leaves(fs_info, num_heads); 2903 if (num_heads > 1) 2904 num_bytes += (num_heads - 1) * fs_info->nodesize; 2905 num_bytes <<= 1; 2906 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2907 fs_info->nodesize; 2908 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2909 num_dirty_bgs); 2910 global_rsv = &fs_info->global_block_rsv; 2911 2912 /* 2913 * If we can't allocate any more chunks lets make sure we have _lots_ of 2914 * wiggle room since running delayed refs can create more delayed refs. 2915 */ 2916 if (global_rsv->space_info->full) { 2917 num_dirty_bgs_bytes <<= 1; 2918 num_bytes <<= 1; 2919 } 2920 2921 spin_lock(&global_rsv->lock); 2922 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2923 ret = 1; 2924 spin_unlock(&global_rsv->lock); 2925 return ret; 2926 } 2927 2928 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2929 struct btrfs_fs_info *fs_info) 2930 { 2931 u64 num_entries = 2932 atomic_read(&trans->transaction->delayed_refs.num_entries); 2933 u64 avg_runtime; 2934 u64 val; 2935 2936 smp_mb(); 2937 avg_runtime = fs_info->avg_delayed_ref_runtime; 2938 val = num_entries * avg_runtime; 2939 if (val >= NSEC_PER_SEC) 2940 return 1; 2941 if (val >= NSEC_PER_SEC / 2) 2942 return 2; 2943 2944 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2945 } 2946 2947 struct async_delayed_refs { 2948 struct btrfs_root *root; 2949 u64 transid; 2950 int count; 2951 int error; 2952 int sync; 2953 struct completion wait; 2954 struct btrfs_work work; 2955 }; 2956 2957 static inline struct async_delayed_refs * 2958 to_async_delayed_refs(struct btrfs_work *work) 2959 { 2960 return container_of(work, struct async_delayed_refs, work); 2961 } 2962 2963 static void delayed_ref_async_start(struct btrfs_work *work) 2964 { 2965 struct async_delayed_refs *async = to_async_delayed_refs(work); 2966 struct btrfs_trans_handle *trans; 2967 struct btrfs_fs_info *fs_info = async->root->fs_info; 2968 int ret; 2969 2970 /* if the commit is already started, we don't need to wait here */ 2971 if (btrfs_transaction_blocked(fs_info)) 2972 goto done; 2973 2974 trans = btrfs_join_transaction(async->root); 2975 if (IS_ERR(trans)) { 2976 async->error = PTR_ERR(trans); 2977 goto done; 2978 } 2979 2980 /* 2981 * trans->sync means that when we call end_transaction, we won't 2982 * wait on delayed refs 2983 */ 2984 trans->sync = true; 2985 2986 /* Don't bother flushing if we got into a different transaction */ 2987 if (trans->transid > async->transid) 2988 goto end; 2989 2990 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2991 if (ret) 2992 async->error = ret; 2993 end: 2994 ret = btrfs_end_transaction(trans); 2995 if (ret && !async->error) 2996 async->error = ret; 2997 done: 2998 if (async->sync) 2999 complete(&async->wait); 3000 else 3001 kfree(async); 3002 } 3003 3004 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3005 unsigned long count, u64 transid, int wait) 3006 { 3007 struct async_delayed_refs *async; 3008 int ret; 3009 3010 async = kmalloc(sizeof(*async), GFP_NOFS); 3011 if (!async) 3012 return -ENOMEM; 3013 3014 async->root = fs_info->tree_root; 3015 async->count = count; 3016 async->error = 0; 3017 async->transid = transid; 3018 if (wait) 3019 async->sync = 1; 3020 else 3021 async->sync = 0; 3022 init_completion(&async->wait); 3023 3024 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3025 delayed_ref_async_start, NULL, NULL); 3026 3027 btrfs_queue_work(fs_info->extent_workers, &async->work); 3028 3029 if (wait) { 3030 wait_for_completion(&async->wait); 3031 ret = async->error; 3032 kfree(async); 3033 return ret; 3034 } 3035 return 0; 3036 } 3037 3038 /* 3039 * this starts processing the delayed reference count updates and 3040 * extent insertions we have queued up so far. count can be 3041 * 0, which means to process everything in the tree at the start 3042 * of the run (but not newly added entries), or it can be some target 3043 * number you'd like to process. 3044 * 3045 * Returns 0 on success or if called with an aborted transaction 3046 * Returns <0 on error and aborts the transaction 3047 */ 3048 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3049 struct btrfs_fs_info *fs_info, unsigned long count) 3050 { 3051 struct rb_node *node; 3052 struct btrfs_delayed_ref_root *delayed_refs; 3053 struct btrfs_delayed_ref_head *head; 3054 int ret; 3055 int run_all = count == (unsigned long)-1; 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3057 3058 /* We'll clean this up in btrfs_cleanup_transaction */ 3059 if (trans->aborted) 3060 return 0; 3061 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3063 return 0; 3064 3065 delayed_refs = &trans->transaction->delayed_refs; 3066 if (count == 0) 3067 count = atomic_read(&delayed_refs->num_entries) * 2; 3068 3069 again: 3070 #ifdef SCRAMBLE_DELAYED_REFS 3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3072 #endif 3073 trans->can_flush_pending_bgs = false; 3074 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3075 if (ret < 0) { 3076 btrfs_abort_transaction(trans, ret); 3077 return ret; 3078 } 3079 3080 if (run_all) { 3081 if (!list_empty(&trans->new_bgs)) 3082 btrfs_create_pending_block_groups(trans, fs_info); 3083 3084 spin_lock(&delayed_refs->lock); 3085 node = rb_first(&delayed_refs->href_root); 3086 if (!node) { 3087 spin_unlock(&delayed_refs->lock); 3088 goto out; 3089 } 3090 head = rb_entry(node, struct btrfs_delayed_ref_head, 3091 href_node); 3092 refcount_inc(&head->refs); 3093 spin_unlock(&delayed_refs->lock); 3094 3095 /* Mutex was contended, block until it's released and retry. */ 3096 mutex_lock(&head->mutex); 3097 mutex_unlock(&head->mutex); 3098 3099 btrfs_put_delayed_ref_head(head); 3100 cond_resched(); 3101 goto again; 3102 } 3103 out: 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3105 return 0; 3106 } 3107 3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3109 struct btrfs_fs_info *fs_info, 3110 u64 bytenr, u64 num_bytes, u64 flags, 3111 int level, int is_data) 3112 { 3113 struct btrfs_delayed_extent_op *extent_op; 3114 int ret; 3115 3116 extent_op = btrfs_alloc_delayed_extent_op(); 3117 if (!extent_op) 3118 return -ENOMEM; 3119 3120 extent_op->flags_to_set = flags; 3121 extent_op->update_flags = true; 3122 extent_op->update_key = false; 3123 extent_op->is_data = is_data ? true : false; 3124 extent_op->level = level; 3125 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3127 num_bytes, extent_op); 3128 if (ret) 3129 btrfs_free_delayed_extent_op(extent_op); 3130 return ret; 3131 } 3132 3133 static noinline int check_delayed_ref(struct btrfs_root *root, 3134 struct btrfs_path *path, 3135 u64 objectid, u64 offset, u64 bytenr) 3136 { 3137 struct btrfs_delayed_ref_head *head; 3138 struct btrfs_delayed_ref_node *ref; 3139 struct btrfs_delayed_data_ref *data_ref; 3140 struct btrfs_delayed_ref_root *delayed_refs; 3141 struct btrfs_transaction *cur_trans; 3142 struct rb_node *node; 3143 int ret = 0; 3144 3145 cur_trans = root->fs_info->running_transaction; 3146 if (!cur_trans) 3147 return 0; 3148 3149 delayed_refs = &cur_trans->delayed_refs; 3150 spin_lock(&delayed_refs->lock); 3151 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3152 if (!head) { 3153 spin_unlock(&delayed_refs->lock); 3154 return 0; 3155 } 3156 3157 if (!mutex_trylock(&head->mutex)) { 3158 refcount_inc(&head->refs); 3159 spin_unlock(&delayed_refs->lock); 3160 3161 btrfs_release_path(path); 3162 3163 /* 3164 * Mutex was contended, block until it's released and let 3165 * caller try again 3166 */ 3167 mutex_lock(&head->mutex); 3168 mutex_unlock(&head->mutex); 3169 btrfs_put_delayed_ref_head(head); 3170 return -EAGAIN; 3171 } 3172 spin_unlock(&delayed_refs->lock); 3173 3174 spin_lock(&head->lock); 3175 /* 3176 * XXX: We should replace this with a proper search function in the 3177 * future. 3178 */ 3179 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3180 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3181 /* If it's a shared ref we know a cross reference exists */ 3182 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3183 ret = 1; 3184 break; 3185 } 3186 3187 data_ref = btrfs_delayed_node_to_data_ref(ref); 3188 3189 /* 3190 * If our ref doesn't match the one we're currently looking at 3191 * then we have a cross reference. 3192 */ 3193 if (data_ref->root != root->root_key.objectid || 3194 data_ref->objectid != objectid || 3195 data_ref->offset != offset) { 3196 ret = 1; 3197 break; 3198 } 3199 } 3200 spin_unlock(&head->lock); 3201 mutex_unlock(&head->mutex); 3202 return ret; 3203 } 3204 3205 static noinline int check_committed_ref(struct btrfs_root *root, 3206 struct btrfs_path *path, 3207 u64 objectid, u64 offset, u64 bytenr) 3208 { 3209 struct btrfs_fs_info *fs_info = root->fs_info; 3210 struct btrfs_root *extent_root = fs_info->extent_root; 3211 struct extent_buffer *leaf; 3212 struct btrfs_extent_data_ref *ref; 3213 struct btrfs_extent_inline_ref *iref; 3214 struct btrfs_extent_item *ei; 3215 struct btrfs_key key; 3216 u32 item_size; 3217 int type; 3218 int ret; 3219 3220 key.objectid = bytenr; 3221 key.offset = (u64)-1; 3222 key.type = BTRFS_EXTENT_ITEM_KEY; 3223 3224 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3225 if (ret < 0) 3226 goto out; 3227 BUG_ON(ret == 0); /* Corruption */ 3228 3229 ret = -ENOENT; 3230 if (path->slots[0] == 0) 3231 goto out; 3232 3233 path->slots[0]--; 3234 leaf = path->nodes[0]; 3235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3236 3237 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3238 goto out; 3239 3240 ret = 1; 3241 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3243 if (item_size < sizeof(*ei)) { 3244 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3245 goto out; 3246 } 3247 #endif 3248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3249 3250 if (item_size != sizeof(*ei) + 3251 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3252 goto out; 3253 3254 if (btrfs_extent_generation(leaf, ei) <= 3255 btrfs_root_last_snapshot(&root->root_item)) 3256 goto out; 3257 3258 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3259 3260 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3261 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3262 goto out; 3263 3264 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3265 if (btrfs_extent_refs(leaf, ei) != 3266 btrfs_extent_data_ref_count(leaf, ref) || 3267 btrfs_extent_data_ref_root(leaf, ref) != 3268 root->root_key.objectid || 3269 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3270 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3271 goto out; 3272 3273 ret = 0; 3274 out: 3275 return ret; 3276 } 3277 3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3279 u64 bytenr) 3280 { 3281 struct btrfs_path *path; 3282 int ret; 3283 int ret2; 3284 3285 path = btrfs_alloc_path(); 3286 if (!path) 3287 return -ENOENT; 3288 3289 do { 3290 ret = check_committed_ref(root, path, objectid, 3291 offset, bytenr); 3292 if (ret && ret != -ENOENT) 3293 goto out; 3294 3295 ret2 = check_delayed_ref(root, path, objectid, 3296 offset, bytenr); 3297 } while (ret2 == -EAGAIN); 3298 3299 if (ret2 && ret2 != -ENOENT) { 3300 ret = ret2; 3301 goto out; 3302 } 3303 3304 if (ret != -ENOENT || ret2 != -ENOENT) 3305 ret = 0; 3306 out: 3307 btrfs_free_path(path); 3308 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3309 WARN_ON(ret > 0); 3310 return ret; 3311 } 3312 3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3314 struct btrfs_root *root, 3315 struct extent_buffer *buf, 3316 int full_backref, int inc) 3317 { 3318 struct btrfs_fs_info *fs_info = root->fs_info; 3319 u64 bytenr; 3320 u64 num_bytes; 3321 u64 parent; 3322 u64 ref_root; 3323 u32 nritems; 3324 struct btrfs_key key; 3325 struct btrfs_file_extent_item *fi; 3326 int i; 3327 int level; 3328 int ret = 0; 3329 int (*process_func)(struct btrfs_trans_handle *, 3330 struct btrfs_root *, 3331 u64, u64, u64, u64, u64, u64); 3332 3333 3334 if (btrfs_is_testing(fs_info)) 3335 return 0; 3336 3337 ref_root = btrfs_header_owner(buf); 3338 nritems = btrfs_header_nritems(buf); 3339 level = btrfs_header_level(buf); 3340 3341 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3342 return 0; 3343 3344 if (inc) 3345 process_func = btrfs_inc_extent_ref; 3346 else 3347 process_func = btrfs_free_extent; 3348 3349 if (full_backref) 3350 parent = buf->start; 3351 else 3352 parent = 0; 3353 3354 for (i = 0; i < nritems; i++) { 3355 if (level == 0) { 3356 btrfs_item_key_to_cpu(buf, &key, i); 3357 if (key.type != BTRFS_EXTENT_DATA_KEY) 3358 continue; 3359 fi = btrfs_item_ptr(buf, i, 3360 struct btrfs_file_extent_item); 3361 if (btrfs_file_extent_type(buf, fi) == 3362 BTRFS_FILE_EXTENT_INLINE) 3363 continue; 3364 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3365 if (bytenr == 0) 3366 continue; 3367 3368 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3369 key.offset -= btrfs_file_extent_offset(buf, fi); 3370 ret = process_func(trans, root, bytenr, num_bytes, 3371 parent, ref_root, key.objectid, 3372 key.offset); 3373 if (ret) 3374 goto fail; 3375 } else { 3376 bytenr = btrfs_node_blockptr(buf, i); 3377 num_bytes = fs_info->nodesize; 3378 ret = process_func(trans, root, bytenr, num_bytes, 3379 parent, ref_root, level - 1, 0); 3380 if (ret) 3381 goto fail; 3382 } 3383 } 3384 return 0; 3385 fail: 3386 return ret; 3387 } 3388 3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3390 struct extent_buffer *buf, int full_backref) 3391 { 3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3393 } 3394 3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3396 struct extent_buffer *buf, int full_backref) 3397 { 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3399 } 3400 3401 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3402 struct btrfs_fs_info *fs_info, 3403 struct btrfs_path *path, 3404 struct btrfs_block_group_cache *cache) 3405 { 3406 int ret; 3407 struct btrfs_root *extent_root = fs_info->extent_root; 3408 unsigned long bi; 3409 struct extent_buffer *leaf; 3410 3411 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3412 if (ret) { 3413 if (ret > 0) 3414 ret = -ENOENT; 3415 goto fail; 3416 } 3417 3418 leaf = path->nodes[0]; 3419 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3420 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3421 btrfs_mark_buffer_dirty(leaf); 3422 fail: 3423 btrfs_release_path(path); 3424 return ret; 3425 3426 } 3427 3428 static struct btrfs_block_group_cache * 3429 next_block_group(struct btrfs_fs_info *fs_info, 3430 struct btrfs_block_group_cache *cache) 3431 { 3432 struct rb_node *node; 3433 3434 spin_lock(&fs_info->block_group_cache_lock); 3435 3436 /* If our block group was removed, we need a full search. */ 3437 if (RB_EMPTY_NODE(&cache->cache_node)) { 3438 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3439 3440 spin_unlock(&fs_info->block_group_cache_lock); 3441 btrfs_put_block_group(cache); 3442 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3443 } 3444 node = rb_next(&cache->cache_node); 3445 btrfs_put_block_group(cache); 3446 if (node) { 3447 cache = rb_entry(node, struct btrfs_block_group_cache, 3448 cache_node); 3449 btrfs_get_block_group(cache); 3450 } else 3451 cache = NULL; 3452 spin_unlock(&fs_info->block_group_cache_lock); 3453 return cache; 3454 } 3455 3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3457 struct btrfs_trans_handle *trans, 3458 struct btrfs_path *path) 3459 { 3460 struct btrfs_fs_info *fs_info = block_group->fs_info; 3461 struct btrfs_root *root = fs_info->tree_root; 3462 struct inode *inode = NULL; 3463 struct extent_changeset *data_reserved = NULL; 3464 u64 alloc_hint = 0; 3465 int dcs = BTRFS_DC_ERROR; 3466 u64 num_pages = 0; 3467 int retries = 0; 3468 int ret = 0; 3469 3470 /* 3471 * If this block group is smaller than 100 megs don't bother caching the 3472 * block group. 3473 */ 3474 if (block_group->key.offset < (100 * SZ_1M)) { 3475 spin_lock(&block_group->lock); 3476 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3477 spin_unlock(&block_group->lock); 3478 return 0; 3479 } 3480 3481 if (trans->aborted) 3482 return 0; 3483 again: 3484 inode = lookup_free_space_inode(fs_info, block_group, path); 3485 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3486 ret = PTR_ERR(inode); 3487 btrfs_release_path(path); 3488 goto out; 3489 } 3490 3491 if (IS_ERR(inode)) { 3492 BUG_ON(retries); 3493 retries++; 3494 3495 if (block_group->ro) 3496 goto out_free; 3497 3498 ret = create_free_space_inode(fs_info, trans, block_group, 3499 path); 3500 if (ret) 3501 goto out_free; 3502 goto again; 3503 } 3504 3505 /* 3506 * We want to set the generation to 0, that way if anything goes wrong 3507 * from here on out we know not to trust this cache when we load up next 3508 * time. 3509 */ 3510 BTRFS_I(inode)->generation = 0; 3511 ret = btrfs_update_inode(trans, root, inode); 3512 if (ret) { 3513 /* 3514 * So theoretically we could recover from this, simply set the 3515 * super cache generation to 0 so we know to invalidate the 3516 * cache, but then we'd have to keep track of the block groups 3517 * that fail this way so we know we _have_ to reset this cache 3518 * before the next commit or risk reading stale cache. So to 3519 * limit our exposure to horrible edge cases lets just abort the 3520 * transaction, this only happens in really bad situations 3521 * anyway. 3522 */ 3523 btrfs_abort_transaction(trans, ret); 3524 goto out_put; 3525 } 3526 WARN_ON(ret); 3527 3528 /* We've already setup this transaction, go ahead and exit */ 3529 if (block_group->cache_generation == trans->transid && 3530 i_size_read(inode)) { 3531 dcs = BTRFS_DC_SETUP; 3532 goto out_put; 3533 } 3534 3535 if (i_size_read(inode) > 0) { 3536 ret = btrfs_check_trunc_cache_free_space(fs_info, 3537 &fs_info->global_block_rsv); 3538 if (ret) 3539 goto out_put; 3540 3541 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3542 if (ret) 3543 goto out_put; 3544 } 3545 3546 spin_lock(&block_group->lock); 3547 if (block_group->cached != BTRFS_CACHE_FINISHED || 3548 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3549 /* 3550 * don't bother trying to write stuff out _if_ 3551 * a) we're not cached, 3552 * b) we're with nospace_cache mount option, 3553 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3554 */ 3555 dcs = BTRFS_DC_WRITTEN; 3556 spin_unlock(&block_group->lock); 3557 goto out_put; 3558 } 3559 spin_unlock(&block_group->lock); 3560 3561 /* 3562 * We hit an ENOSPC when setting up the cache in this transaction, just 3563 * skip doing the setup, we've already cleared the cache so we're safe. 3564 */ 3565 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3566 ret = -ENOSPC; 3567 goto out_put; 3568 } 3569 3570 /* 3571 * Try to preallocate enough space based on how big the block group is. 3572 * Keep in mind this has to include any pinned space which could end up 3573 * taking up quite a bit since it's not folded into the other space 3574 * cache. 3575 */ 3576 num_pages = div_u64(block_group->key.offset, SZ_256M); 3577 if (!num_pages) 3578 num_pages = 1; 3579 3580 num_pages *= 16; 3581 num_pages *= PAGE_SIZE; 3582 3583 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3584 if (ret) 3585 goto out_put; 3586 3587 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3588 num_pages, num_pages, 3589 &alloc_hint); 3590 /* 3591 * Our cache requires contiguous chunks so that we don't modify a bunch 3592 * of metadata or split extents when writing the cache out, which means 3593 * we can enospc if we are heavily fragmented in addition to just normal 3594 * out of space conditions. So if we hit this just skip setting up any 3595 * other block groups for this transaction, maybe we'll unpin enough 3596 * space the next time around. 3597 */ 3598 if (!ret) 3599 dcs = BTRFS_DC_SETUP; 3600 else if (ret == -ENOSPC) 3601 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3602 3603 out_put: 3604 iput(inode); 3605 out_free: 3606 btrfs_release_path(path); 3607 out: 3608 spin_lock(&block_group->lock); 3609 if (!ret && dcs == BTRFS_DC_SETUP) 3610 block_group->cache_generation = trans->transid; 3611 block_group->disk_cache_state = dcs; 3612 spin_unlock(&block_group->lock); 3613 3614 extent_changeset_free(data_reserved); 3615 return ret; 3616 } 3617 3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3619 struct btrfs_fs_info *fs_info) 3620 { 3621 struct btrfs_block_group_cache *cache, *tmp; 3622 struct btrfs_transaction *cur_trans = trans->transaction; 3623 struct btrfs_path *path; 3624 3625 if (list_empty(&cur_trans->dirty_bgs) || 3626 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3627 return 0; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) 3631 return -ENOMEM; 3632 3633 /* Could add new block groups, use _safe just in case */ 3634 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3635 dirty_list) { 3636 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3637 cache_save_setup(cache, trans, path); 3638 } 3639 3640 btrfs_free_path(path); 3641 return 0; 3642 } 3643 3644 /* 3645 * transaction commit does final block group cache writeback during a 3646 * critical section where nothing is allowed to change the FS. This is 3647 * required in order for the cache to actually match the block group, 3648 * but can introduce a lot of latency into the commit. 3649 * 3650 * So, btrfs_start_dirty_block_groups is here to kick off block group 3651 * cache IO. There's a chance we'll have to redo some of it if the 3652 * block group changes again during the commit, but it greatly reduces 3653 * the commit latency by getting rid of the easy block groups while 3654 * we're still allowing others to join the commit. 3655 */ 3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3657 struct btrfs_fs_info *fs_info) 3658 { 3659 struct btrfs_block_group_cache *cache; 3660 struct btrfs_transaction *cur_trans = trans->transaction; 3661 int ret = 0; 3662 int should_put; 3663 struct btrfs_path *path = NULL; 3664 LIST_HEAD(dirty); 3665 struct list_head *io = &cur_trans->io_bgs; 3666 int num_started = 0; 3667 int loops = 0; 3668 3669 spin_lock(&cur_trans->dirty_bgs_lock); 3670 if (list_empty(&cur_trans->dirty_bgs)) { 3671 spin_unlock(&cur_trans->dirty_bgs_lock); 3672 return 0; 3673 } 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3675 spin_unlock(&cur_trans->dirty_bgs_lock); 3676 3677 again: 3678 /* 3679 * make sure all the block groups on our dirty list actually 3680 * exist 3681 */ 3682 btrfs_create_pending_block_groups(trans, fs_info); 3683 3684 if (!path) { 3685 path = btrfs_alloc_path(); 3686 if (!path) 3687 return -ENOMEM; 3688 } 3689 3690 /* 3691 * cache_write_mutex is here only to save us from balance or automatic 3692 * removal of empty block groups deleting this block group while we are 3693 * writing out the cache 3694 */ 3695 mutex_lock(&trans->transaction->cache_write_mutex); 3696 while (!list_empty(&dirty)) { 3697 cache = list_first_entry(&dirty, 3698 struct btrfs_block_group_cache, 3699 dirty_list); 3700 /* 3701 * this can happen if something re-dirties a block 3702 * group that is already under IO. Just wait for it to 3703 * finish and then do it all again 3704 */ 3705 if (!list_empty(&cache->io_list)) { 3706 list_del_init(&cache->io_list); 3707 btrfs_wait_cache_io(trans, cache, path); 3708 btrfs_put_block_group(cache); 3709 } 3710 3711 3712 /* 3713 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3714 * if it should update the cache_state. Don't delete 3715 * until after we wait. 3716 * 3717 * Since we're not running in the commit critical section 3718 * we need the dirty_bgs_lock to protect from update_block_group 3719 */ 3720 spin_lock(&cur_trans->dirty_bgs_lock); 3721 list_del_init(&cache->dirty_list); 3722 spin_unlock(&cur_trans->dirty_bgs_lock); 3723 3724 should_put = 1; 3725 3726 cache_save_setup(cache, trans, path); 3727 3728 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3729 cache->io_ctl.inode = NULL; 3730 ret = btrfs_write_out_cache(fs_info, trans, 3731 cache, path); 3732 if (ret == 0 && cache->io_ctl.inode) { 3733 num_started++; 3734 should_put = 0; 3735 3736 /* 3737 * the cache_write_mutex is protecting 3738 * the io_list 3739 */ 3740 list_add_tail(&cache->io_list, io); 3741 } else { 3742 /* 3743 * if we failed to write the cache, the 3744 * generation will be bad and life goes on 3745 */ 3746 ret = 0; 3747 } 3748 } 3749 if (!ret) { 3750 ret = write_one_cache_group(trans, fs_info, 3751 path, cache); 3752 /* 3753 * Our block group might still be attached to the list 3754 * of new block groups in the transaction handle of some 3755 * other task (struct btrfs_trans_handle->new_bgs). This 3756 * means its block group item isn't yet in the extent 3757 * tree. If this happens ignore the error, as we will 3758 * try again later in the critical section of the 3759 * transaction commit. 3760 */ 3761 if (ret == -ENOENT) { 3762 ret = 0; 3763 spin_lock(&cur_trans->dirty_bgs_lock); 3764 if (list_empty(&cache->dirty_list)) { 3765 list_add_tail(&cache->dirty_list, 3766 &cur_trans->dirty_bgs); 3767 btrfs_get_block_group(cache); 3768 } 3769 spin_unlock(&cur_trans->dirty_bgs_lock); 3770 } else if (ret) { 3771 btrfs_abort_transaction(trans, ret); 3772 } 3773 } 3774 3775 /* if its not on the io list, we need to put the block group */ 3776 if (should_put) 3777 btrfs_put_block_group(cache); 3778 3779 if (ret) 3780 break; 3781 3782 /* 3783 * Avoid blocking other tasks for too long. It might even save 3784 * us from writing caches for block groups that are going to be 3785 * removed. 3786 */ 3787 mutex_unlock(&trans->transaction->cache_write_mutex); 3788 mutex_lock(&trans->transaction->cache_write_mutex); 3789 } 3790 mutex_unlock(&trans->transaction->cache_write_mutex); 3791 3792 /* 3793 * go through delayed refs for all the stuff we've just kicked off 3794 * and then loop back (just once) 3795 */ 3796 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3797 if (!ret && loops == 0) { 3798 loops++; 3799 spin_lock(&cur_trans->dirty_bgs_lock); 3800 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3801 /* 3802 * dirty_bgs_lock protects us from concurrent block group 3803 * deletes too (not just cache_write_mutex). 3804 */ 3805 if (!list_empty(&dirty)) { 3806 spin_unlock(&cur_trans->dirty_bgs_lock); 3807 goto again; 3808 } 3809 spin_unlock(&cur_trans->dirty_bgs_lock); 3810 } else if (ret < 0) { 3811 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3812 } 3813 3814 btrfs_free_path(path); 3815 return ret; 3816 } 3817 3818 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3819 struct btrfs_fs_info *fs_info) 3820 { 3821 struct btrfs_block_group_cache *cache; 3822 struct btrfs_transaction *cur_trans = trans->transaction; 3823 int ret = 0; 3824 int should_put; 3825 struct btrfs_path *path; 3826 struct list_head *io = &cur_trans->io_bgs; 3827 int num_started = 0; 3828 3829 path = btrfs_alloc_path(); 3830 if (!path) 3831 return -ENOMEM; 3832 3833 /* 3834 * Even though we are in the critical section of the transaction commit, 3835 * we can still have concurrent tasks adding elements to this 3836 * transaction's list of dirty block groups. These tasks correspond to 3837 * endio free space workers started when writeback finishes for a 3838 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3839 * allocate new block groups as a result of COWing nodes of the root 3840 * tree when updating the free space inode. The writeback for the space 3841 * caches is triggered by an earlier call to 3842 * btrfs_start_dirty_block_groups() and iterations of the following 3843 * loop. 3844 * Also we want to do the cache_save_setup first and then run the 3845 * delayed refs to make sure we have the best chance at doing this all 3846 * in one shot. 3847 */ 3848 spin_lock(&cur_trans->dirty_bgs_lock); 3849 while (!list_empty(&cur_trans->dirty_bgs)) { 3850 cache = list_first_entry(&cur_trans->dirty_bgs, 3851 struct btrfs_block_group_cache, 3852 dirty_list); 3853 3854 /* 3855 * this can happen if cache_save_setup re-dirties a block 3856 * group that is already under IO. Just wait for it to 3857 * finish and then do it all again 3858 */ 3859 if (!list_empty(&cache->io_list)) { 3860 spin_unlock(&cur_trans->dirty_bgs_lock); 3861 list_del_init(&cache->io_list); 3862 btrfs_wait_cache_io(trans, cache, path); 3863 btrfs_put_block_group(cache); 3864 spin_lock(&cur_trans->dirty_bgs_lock); 3865 } 3866 3867 /* 3868 * don't remove from the dirty list until after we've waited 3869 * on any pending IO 3870 */ 3871 list_del_init(&cache->dirty_list); 3872 spin_unlock(&cur_trans->dirty_bgs_lock); 3873 should_put = 1; 3874 3875 cache_save_setup(cache, trans, path); 3876 3877 if (!ret) 3878 ret = btrfs_run_delayed_refs(trans, fs_info, 3879 (unsigned long) -1); 3880 3881 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3882 cache->io_ctl.inode = NULL; 3883 ret = btrfs_write_out_cache(fs_info, trans, 3884 cache, path); 3885 if (ret == 0 && cache->io_ctl.inode) { 3886 num_started++; 3887 should_put = 0; 3888 list_add_tail(&cache->io_list, io); 3889 } else { 3890 /* 3891 * if we failed to write the cache, the 3892 * generation will be bad and life goes on 3893 */ 3894 ret = 0; 3895 } 3896 } 3897 if (!ret) { 3898 ret = write_one_cache_group(trans, fs_info, 3899 path, cache); 3900 /* 3901 * One of the free space endio workers might have 3902 * created a new block group while updating a free space 3903 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3904 * and hasn't released its transaction handle yet, in 3905 * which case the new block group is still attached to 3906 * its transaction handle and its creation has not 3907 * finished yet (no block group item in the extent tree 3908 * yet, etc). If this is the case, wait for all free 3909 * space endio workers to finish and retry. This is a 3910 * a very rare case so no need for a more efficient and 3911 * complex approach. 3912 */ 3913 if (ret == -ENOENT) { 3914 wait_event(cur_trans->writer_wait, 3915 atomic_read(&cur_trans->num_writers) == 1); 3916 ret = write_one_cache_group(trans, fs_info, 3917 path, cache); 3918 } 3919 if (ret) 3920 btrfs_abort_transaction(trans, ret); 3921 } 3922 3923 /* if its not on the io list, we need to put the block group */ 3924 if (should_put) 3925 btrfs_put_block_group(cache); 3926 spin_lock(&cur_trans->dirty_bgs_lock); 3927 } 3928 spin_unlock(&cur_trans->dirty_bgs_lock); 3929 3930 while (!list_empty(io)) { 3931 cache = list_first_entry(io, struct btrfs_block_group_cache, 3932 io_list); 3933 list_del_init(&cache->io_list); 3934 btrfs_wait_cache_io(trans, cache, path); 3935 btrfs_put_block_group(cache); 3936 } 3937 3938 btrfs_free_path(path); 3939 return ret; 3940 } 3941 3942 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3943 { 3944 struct btrfs_block_group_cache *block_group; 3945 int readonly = 0; 3946 3947 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3948 if (!block_group || block_group->ro) 3949 readonly = 1; 3950 if (block_group) 3951 btrfs_put_block_group(block_group); 3952 return readonly; 3953 } 3954 3955 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3956 { 3957 struct btrfs_block_group_cache *bg; 3958 bool ret = true; 3959 3960 bg = btrfs_lookup_block_group(fs_info, bytenr); 3961 if (!bg) 3962 return false; 3963 3964 spin_lock(&bg->lock); 3965 if (bg->ro) 3966 ret = false; 3967 else 3968 atomic_inc(&bg->nocow_writers); 3969 spin_unlock(&bg->lock); 3970 3971 /* no put on block group, done by btrfs_dec_nocow_writers */ 3972 if (!ret) 3973 btrfs_put_block_group(bg); 3974 3975 return ret; 3976 3977 } 3978 3979 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3980 { 3981 struct btrfs_block_group_cache *bg; 3982 3983 bg = btrfs_lookup_block_group(fs_info, bytenr); 3984 ASSERT(bg); 3985 if (atomic_dec_and_test(&bg->nocow_writers)) 3986 wake_up_atomic_t(&bg->nocow_writers); 3987 /* 3988 * Once for our lookup and once for the lookup done by a previous call 3989 * to btrfs_inc_nocow_writers() 3990 */ 3991 btrfs_put_block_group(bg); 3992 btrfs_put_block_group(bg); 3993 } 3994 3995 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3996 { 3997 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait, 3998 TASK_UNINTERRUPTIBLE); 3999 } 4000 4001 static const char *alloc_name(u64 flags) 4002 { 4003 switch (flags) { 4004 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4005 return "mixed"; 4006 case BTRFS_BLOCK_GROUP_METADATA: 4007 return "metadata"; 4008 case BTRFS_BLOCK_GROUP_DATA: 4009 return "data"; 4010 case BTRFS_BLOCK_GROUP_SYSTEM: 4011 return "system"; 4012 default: 4013 WARN_ON(1); 4014 return "invalid-combination"; 4015 }; 4016 } 4017 4018 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4019 struct btrfs_space_info **new) 4020 { 4021 4022 struct btrfs_space_info *space_info; 4023 int i; 4024 int ret; 4025 4026 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4027 if (!space_info) 4028 return -ENOMEM; 4029 4030 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4031 GFP_KERNEL); 4032 if (ret) { 4033 kfree(space_info); 4034 return ret; 4035 } 4036 4037 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4038 INIT_LIST_HEAD(&space_info->block_groups[i]); 4039 init_rwsem(&space_info->groups_sem); 4040 spin_lock_init(&space_info->lock); 4041 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4042 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4043 init_waitqueue_head(&space_info->wait); 4044 INIT_LIST_HEAD(&space_info->ro_bgs); 4045 INIT_LIST_HEAD(&space_info->tickets); 4046 INIT_LIST_HEAD(&space_info->priority_tickets); 4047 4048 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4049 info->space_info_kobj, "%s", 4050 alloc_name(space_info->flags)); 4051 if (ret) { 4052 percpu_counter_destroy(&space_info->total_bytes_pinned); 4053 kfree(space_info); 4054 return ret; 4055 } 4056 4057 *new = space_info; 4058 list_add_rcu(&space_info->list, &info->space_info); 4059 if (flags & BTRFS_BLOCK_GROUP_DATA) 4060 info->data_sinfo = space_info; 4061 4062 return ret; 4063 } 4064 4065 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4066 u64 total_bytes, u64 bytes_used, 4067 u64 bytes_readonly, 4068 struct btrfs_space_info **space_info) 4069 { 4070 struct btrfs_space_info *found; 4071 int factor; 4072 4073 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4074 BTRFS_BLOCK_GROUP_RAID10)) 4075 factor = 2; 4076 else 4077 factor = 1; 4078 4079 found = __find_space_info(info, flags); 4080 ASSERT(found); 4081 spin_lock(&found->lock); 4082 found->total_bytes += total_bytes; 4083 found->disk_total += total_bytes * factor; 4084 found->bytes_used += bytes_used; 4085 found->disk_used += bytes_used * factor; 4086 found->bytes_readonly += bytes_readonly; 4087 if (total_bytes > 0) 4088 found->full = 0; 4089 space_info_add_new_bytes(info, found, total_bytes - 4090 bytes_used - bytes_readonly); 4091 spin_unlock(&found->lock); 4092 *space_info = found; 4093 } 4094 4095 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4096 { 4097 u64 extra_flags = chunk_to_extended(flags) & 4098 BTRFS_EXTENDED_PROFILE_MASK; 4099 4100 write_seqlock(&fs_info->profiles_lock); 4101 if (flags & BTRFS_BLOCK_GROUP_DATA) 4102 fs_info->avail_data_alloc_bits |= extra_flags; 4103 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4104 fs_info->avail_metadata_alloc_bits |= extra_flags; 4105 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4106 fs_info->avail_system_alloc_bits |= extra_flags; 4107 write_sequnlock(&fs_info->profiles_lock); 4108 } 4109 4110 /* 4111 * returns target flags in extended format or 0 if restripe for this 4112 * chunk_type is not in progress 4113 * 4114 * should be called with either volume_mutex or balance_lock held 4115 */ 4116 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4117 { 4118 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4119 u64 target = 0; 4120 4121 if (!bctl) 4122 return 0; 4123 4124 if (flags & BTRFS_BLOCK_GROUP_DATA && 4125 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4126 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4127 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4128 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4129 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4130 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4131 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4132 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4133 } 4134 4135 return target; 4136 } 4137 4138 /* 4139 * @flags: available profiles in extended format (see ctree.h) 4140 * 4141 * Returns reduced profile in chunk format. If profile changing is in 4142 * progress (either running or paused) picks the target profile (if it's 4143 * already available), otherwise falls back to plain reducing. 4144 */ 4145 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4146 { 4147 u64 num_devices = fs_info->fs_devices->rw_devices; 4148 u64 target; 4149 u64 raid_type; 4150 u64 allowed = 0; 4151 4152 /* 4153 * see if restripe for this chunk_type is in progress, if so 4154 * try to reduce to the target profile 4155 */ 4156 spin_lock(&fs_info->balance_lock); 4157 target = get_restripe_target(fs_info, flags); 4158 if (target) { 4159 /* pick target profile only if it's already available */ 4160 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4161 spin_unlock(&fs_info->balance_lock); 4162 return extended_to_chunk(target); 4163 } 4164 } 4165 spin_unlock(&fs_info->balance_lock); 4166 4167 /* First, mask out the RAID levels which aren't possible */ 4168 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4169 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4170 allowed |= btrfs_raid_group[raid_type]; 4171 } 4172 allowed &= flags; 4173 4174 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4175 allowed = BTRFS_BLOCK_GROUP_RAID6; 4176 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4177 allowed = BTRFS_BLOCK_GROUP_RAID5; 4178 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4179 allowed = BTRFS_BLOCK_GROUP_RAID10; 4180 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4181 allowed = BTRFS_BLOCK_GROUP_RAID1; 4182 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4183 allowed = BTRFS_BLOCK_GROUP_RAID0; 4184 4185 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4186 4187 return extended_to_chunk(flags | allowed); 4188 } 4189 4190 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4191 { 4192 unsigned seq; 4193 u64 flags; 4194 4195 do { 4196 flags = orig_flags; 4197 seq = read_seqbegin(&fs_info->profiles_lock); 4198 4199 if (flags & BTRFS_BLOCK_GROUP_DATA) 4200 flags |= fs_info->avail_data_alloc_bits; 4201 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4202 flags |= fs_info->avail_system_alloc_bits; 4203 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4204 flags |= fs_info->avail_metadata_alloc_bits; 4205 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4206 4207 return btrfs_reduce_alloc_profile(fs_info, flags); 4208 } 4209 4210 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4211 { 4212 struct btrfs_fs_info *fs_info = root->fs_info; 4213 u64 flags; 4214 u64 ret; 4215 4216 if (data) 4217 flags = BTRFS_BLOCK_GROUP_DATA; 4218 else if (root == fs_info->chunk_root) 4219 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4220 else 4221 flags = BTRFS_BLOCK_GROUP_METADATA; 4222 4223 ret = get_alloc_profile(fs_info, flags); 4224 return ret; 4225 } 4226 4227 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4228 { 4229 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4230 } 4231 4232 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4233 { 4234 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4235 } 4236 4237 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4238 { 4239 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4240 } 4241 4242 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4243 bool may_use_included) 4244 { 4245 ASSERT(s_info); 4246 return s_info->bytes_used + s_info->bytes_reserved + 4247 s_info->bytes_pinned + s_info->bytes_readonly + 4248 (may_use_included ? s_info->bytes_may_use : 0); 4249 } 4250 4251 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4252 { 4253 struct btrfs_root *root = inode->root; 4254 struct btrfs_fs_info *fs_info = root->fs_info; 4255 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4256 u64 used; 4257 int ret = 0; 4258 int need_commit = 2; 4259 int have_pinned_space; 4260 4261 /* make sure bytes are sectorsize aligned */ 4262 bytes = ALIGN(bytes, fs_info->sectorsize); 4263 4264 if (btrfs_is_free_space_inode(inode)) { 4265 need_commit = 0; 4266 ASSERT(current->journal_info); 4267 } 4268 4269 again: 4270 /* make sure we have enough space to handle the data first */ 4271 spin_lock(&data_sinfo->lock); 4272 used = btrfs_space_info_used(data_sinfo, true); 4273 4274 if (used + bytes > data_sinfo->total_bytes) { 4275 struct btrfs_trans_handle *trans; 4276 4277 /* 4278 * if we don't have enough free bytes in this space then we need 4279 * to alloc a new chunk. 4280 */ 4281 if (!data_sinfo->full) { 4282 u64 alloc_target; 4283 4284 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4285 spin_unlock(&data_sinfo->lock); 4286 4287 alloc_target = btrfs_data_alloc_profile(fs_info); 4288 /* 4289 * It is ugly that we don't call nolock join 4290 * transaction for the free space inode case here. 4291 * But it is safe because we only do the data space 4292 * reservation for the free space cache in the 4293 * transaction context, the common join transaction 4294 * just increase the counter of the current transaction 4295 * handler, doesn't try to acquire the trans_lock of 4296 * the fs. 4297 */ 4298 trans = btrfs_join_transaction(root); 4299 if (IS_ERR(trans)) 4300 return PTR_ERR(trans); 4301 4302 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4303 CHUNK_ALLOC_NO_FORCE); 4304 btrfs_end_transaction(trans); 4305 if (ret < 0) { 4306 if (ret != -ENOSPC) 4307 return ret; 4308 else { 4309 have_pinned_space = 1; 4310 goto commit_trans; 4311 } 4312 } 4313 4314 goto again; 4315 } 4316 4317 /* 4318 * If we don't have enough pinned space to deal with this 4319 * allocation, and no removed chunk in current transaction, 4320 * don't bother committing the transaction. 4321 */ 4322 have_pinned_space = percpu_counter_compare( 4323 &data_sinfo->total_bytes_pinned, 4324 used + bytes - data_sinfo->total_bytes); 4325 spin_unlock(&data_sinfo->lock); 4326 4327 /* commit the current transaction and try again */ 4328 commit_trans: 4329 if (need_commit && 4330 !atomic_read(&fs_info->open_ioctl_trans)) { 4331 need_commit--; 4332 4333 if (need_commit > 0) { 4334 btrfs_start_delalloc_roots(fs_info, 0, -1); 4335 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4336 (u64)-1); 4337 } 4338 4339 trans = btrfs_join_transaction(root); 4340 if (IS_ERR(trans)) 4341 return PTR_ERR(trans); 4342 if (have_pinned_space >= 0 || 4343 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4344 &trans->transaction->flags) || 4345 need_commit > 0) { 4346 ret = btrfs_commit_transaction(trans); 4347 if (ret) 4348 return ret; 4349 /* 4350 * The cleaner kthread might still be doing iput 4351 * operations. Wait for it to finish so that 4352 * more space is released. 4353 */ 4354 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4355 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4356 goto again; 4357 } else { 4358 btrfs_end_transaction(trans); 4359 } 4360 } 4361 4362 trace_btrfs_space_reservation(fs_info, 4363 "space_info:enospc", 4364 data_sinfo->flags, bytes, 1); 4365 return -ENOSPC; 4366 } 4367 data_sinfo->bytes_may_use += bytes; 4368 trace_btrfs_space_reservation(fs_info, "space_info", 4369 data_sinfo->flags, bytes, 1); 4370 spin_unlock(&data_sinfo->lock); 4371 4372 return ret; 4373 } 4374 4375 int btrfs_check_data_free_space(struct inode *inode, 4376 struct extent_changeset **reserved, u64 start, u64 len) 4377 { 4378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4379 int ret; 4380 4381 /* align the range */ 4382 len = round_up(start + len, fs_info->sectorsize) - 4383 round_down(start, fs_info->sectorsize); 4384 start = round_down(start, fs_info->sectorsize); 4385 4386 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4387 if (ret < 0) 4388 return ret; 4389 4390 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4391 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4392 if (ret < 0) 4393 btrfs_free_reserved_data_space_noquota(inode, start, len); 4394 else 4395 ret = 0; 4396 return ret; 4397 } 4398 4399 /* 4400 * Called if we need to clear a data reservation for this inode 4401 * Normally in a error case. 4402 * 4403 * This one will *NOT* use accurate qgroup reserved space API, just for case 4404 * which we can't sleep and is sure it won't affect qgroup reserved space. 4405 * Like clear_bit_hook(). 4406 */ 4407 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4408 u64 len) 4409 { 4410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4411 struct btrfs_space_info *data_sinfo; 4412 4413 /* Make sure the range is aligned to sectorsize */ 4414 len = round_up(start + len, fs_info->sectorsize) - 4415 round_down(start, fs_info->sectorsize); 4416 start = round_down(start, fs_info->sectorsize); 4417 4418 data_sinfo = fs_info->data_sinfo; 4419 spin_lock(&data_sinfo->lock); 4420 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4421 data_sinfo->bytes_may_use = 0; 4422 else 4423 data_sinfo->bytes_may_use -= len; 4424 trace_btrfs_space_reservation(fs_info, "space_info", 4425 data_sinfo->flags, len, 0); 4426 spin_unlock(&data_sinfo->lock); 4427 } 4428 4429 /* 4430 * Called if we need to clear a data reservation for this inode 4431 * Normally in a error case. 4432 * 4433 * This one will handle the per-inode data rsv map for accurate reserved 4434 * space framework. 4435 */ 4436 void btrfs_free_reserved_data_space(struct inode *inode, 4437 struct extent_changeset *reserved, u64 start, u64 len) 4438 { 4439 struct btrfs_root *root = BTRFS_I(inode)->root; 4440 4441 /* Make sure the range is aligned to sectorsize */ 4442 len = round_up(start + len, root->fs_info->sectorsize) - 4443 round_down(start, root->fs_info->sectorsize); 4444 start = round_down(start, root->fs_info->sectorsize); 4445 4446 btrfs_free_reserved_data_space_noquota(inode, start, len); 4447 btrfs_qgroup_free_data(inode, reserved, start, len); 4448 } 4449 4450 static void force_metadata_allocation(struct btrfs_fs_info *info) 4451 { 4452 struct list_head *head = &info->space_info; 4453 struct btrfs_space_info *found; 4454 4455 rcu_read_lock(); 4456 list_for_each_entry_rcu(found, head, list) { 4457 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4458 found->force_alloc = CHUNK_ALLOC_FORCE; 4459 } 4460 rcu_read_unlock(); 4461 } 4462 4463 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4464 { 4465 return (global->size << 1); 4466 } 4467 4468 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4469 struct btrfs_space_info *sinfo, int force) 4470 { 4471 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4472 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4473 u64 thresh; 4474 4475 if (force == CHUNK_ALLOC_FORCE) 4476 return 1; 4477 4478 /* 4479 * We need to take into account the global rsv because for all intents 4480 * and purposes it's used space. Don't worry about locking the 4481 * global_rsv, it doesn't change except when the transaction commits. 4482 */ 4483 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4484 bytes_used += calc_global_rsv_need_space(global_rsv); 4485 4486 /* 4487 * in limited mode, we want to have some free space up to 4488 * about 1% of the FS size. 4489 */ 4490 if (force == CHUNK_ALLOC_LIMITED) { 4491 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4492 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4493 4494 if (sinfo->total_bytes - bytes_used < thresh) 4495 return 1; 4496 } 4497 4498 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4499 return 0; 4500 return 1; 4501 } 4502 4503 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4504 { 4505 u64 num_dev; 4506 4507 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4508 BTRFS_BLOCK_GROUP_RAID0 | 4509 BTRFS_BLOCK_GROUP_RAID5 | 4510 BTRFS_BLOCK_GROUP_RAID6)) 4511 num_dev = fs_info->fs_devices->rw_devices; 4512 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4513 num_dev = 2; 4514 else 4515 num_dev = 1; /* DUP or single */ 4516 4517 return num_dev; 4518 } 4519 4520 /* 4521 * If @is_allocation is true, reserve space in the system space info necessary 4522 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4523 * removing a chunk. 4524 */ 4525 void check_system_chunk(struct btrfs_trans_handle *trans, 4526 struct btrfs_fs_info *fs_info, u64 type) 4527 { 4528 struct btrfs_space_info *info; 4529 u64 left; 4530 u64 thresh; 4531 int ret = 0; 4532 u64 num_devs; 4533 4534 /* 4535 * Needed because we can end up allocating a system chunk and for an 4536 * atomic and race free space reservation in the chunk block reserve. 4537 */ 4538 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4539 4540 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4541 spin_lock(&info->lock); 4542 left = info->total_bytes - btrfs_space_info_used(info, true); 4543 spin_unlock(&info->lock); 4544 4545 num_devs = get_profile_num_devs(fs_info, type); 4546 4547 /* num_devs device items to update and 1 chunk item to add or remove */ 4548 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4549 btrfs_calc_trans_metadata_size(fs_info, 1); 4550 4551 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4552 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4553 left, thresh, type); 4554 dump_space_info(fs_info, info, 0, 0); 4555 } 4556 4557 if (left < thresh) { 4558 u64 flags = btrfs_system_alloc_profile(fs_info); 4559 4560 /* 4561 * Ignore failure to create system chunk. We might end up not 4562 * needing it, as we might not need to COW all nodes/leafs from 4563 * the paths we visit in the chunk tree (they were already COWed 4564 * or created in the current transaction for example). 4565 */ 4566 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4567 } 4568 4569 if (!ret) { 4570 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4571 &fs_info->chunk_block_rsv, 4572 thresh, BTRFS_RESERVE_NO_FLUSH); 4573 if (!ret) 4574 trans->chunk_bytes_reserved += thresh; 4575 } 4576 } 4577 4578 /* 4579 * If force is CHUNK_ALLOC_FORCE: 4580 * - return 1 if it successfully allocates a chunk, 4581 * - return errors including -ENOSPC otherwise. 4582 * If force is NOT CHUNK_ALLOC_FORCE: 4583 * - return 0 if it doesn't need to allocate a new chunk, 4584 * - return 1 if it successfully allocates a chunk, 4585 * - return errors including -ENOSPC otherwise. 4586 */ 4587 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4588 struct btrfs_fs_info *fs_info, u64 flags, int force) 4589 { 4590 struct btrfs_space_info *space_info; 4591 int wait_for_alloc = 0; 4592 int ret = 0; 4593 4594 /* Don't re-enter if we're already allocating a chunk */ 4595 if (trans->allocating_chunk) 4596 return -ENOSPC; 4597 4598 space_info = __find_space_info(fs_info, flags); 4599 if (!space_info) { 4600 ret = create_space_info(fs_info, flags, &space_info); 4601 if (ret) 4602 return ret; 4603 } 4604 4605 again: 4606 spin_lock(&space_info->lock); 4607 if (force < space_info->force_alloc) 4608 force = space_info->force_alloc; 4609 if (space_info->full) { 4610 if (should_alloc_chunk(fs_info, space_info, force)) 4611 ret = -ENOSPC; 4612 else 4613 ret = 0; 4614 spin_unlock(&space_info->lock); 4615 return ret; 4616 } 4617 4618 if (!should_alloc_chunk(fs_info, space_info, force)) { 4619 spin_unlock(&space_info->lock); 4620 return 0; 4621 } else if (space_info->chunk_alloc) { 4622 wait_for_alloc = 1; 4623 } else { 4624 space_info->chunk_alloc = 1; 4625 } 4626 4627 spin_unlock(&space_info->lock); 4628 4629 mutex_lock(&fs_info->chunk_mutex); 4630 4631 /* 4632 * The chunk_mutex is held throughout the entirety of a chunk 4633 * allocation, so once we've acquired the chunk_mutex we know that the 4634 * other guy is done and we need to recheck and see if we should 4635 * allocate. 4636 */ 4637 if (wait_for_alloc) { 4638 mutex_unlock(&fs_info->chunk_mutex); 4639 wait_for_alloc = 0; 4640 goto again; 4641 } 4642 4643 trans->allocating_chunk = true; 4644 4645 /* 4646 * If we have mixed data/metadata chunks we want to make sure we keep 4647 * allocating mixed chunks instead of individual chunks. 4648 */ 4649 if (btrfs_mixed_space_info(space_info)) 4650 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4651 4652 /* 4653 * if we're doing a data chunk, go ahead and make sure that 4654 * we keep a reasonable number of metadata chunks allocated in the 4655 * FS as well. 4656 */ 4657 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4658 fs_info->data_chunk_allocations++; 4659 if (!(fs_info->data_chunk_allocations % 4660 fs_info->metadata_ratio)) 4661 force_metadata_allocation(fs_info); 4662 } 4663 4664 /* 4665 * Check if we have enough space in SYSTEM chunk because we may need 4666 * to update devices. 4667 */ 4668 check_system_chunk(trans, fs_info, flags); 4669 4670 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4671 trans->allocating_chunk = false; 4672 4673 spin_lock(&space_info->lock); 4674 if (ret < 0 && ret != -ENOSPC) 4675 goto out; 4676 if (ret) 4677 space_info->full = 1; 4678 else 4679 ret = 1; 4680 4681 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4682 out: 4683 space_info->chunk_alloc = 0; 4684 spin_unlock(&space_info->lock); 4685 mutex_unlock(&fs_info->chunk_mutex); 4686 /* 4687 * When we allocate a new chunk we reserve space in the chunk block 4688 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4689 * add new nodes/leafs to it if we end up needing to do it when 4690 * inserting the chunk item and updating device items as part of the 4691 * second phase of chunk allocation, performed by 4692 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4693 * large number of new block groups to create in our transaction 4694 * handle's new_bgs list to avoid exhausting the chunk block reserve 4695 * in extreme cases - like having a single transaction create many new 4696 * block groups when starting to write out the free space caches of all 4697 * the block groups that were made dirty during the lifetime of the 4698 * transaction. 4699 */ 4700 if (trans->can_flush_pending_bgs && 4701 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4702 btrfs_create_pending_block_groups(trans, fs_info); 4703 btrfs_trans_release_chunk_metadata(trans); 4704 } 4705 return ret; 4706 } 4707 4708 static int can_overcommit(struct btrfs_fs_info *fs_info, 4709 struct btrfs_space_info *space_info, u64 bytes, 4710 enum btrfs_reserve_flush_enum flush, 4711 bool system_chunk) 4712 { 4713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4714 u64 profile; 4715 u64 space_size; 4716 u64 avail; 4717 u64 used; 4718 4719 /* Don't overcommit when in mixed mode. */ 4720 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4721 return 0; 4722 4723 if (system_chunk) 4724 profile = btrfs_system_alloc_profile(fs_info); 4725 else 4726 profile = btrfs_metadata_alloc_profile(fs_info); 4727 4728 used = btrfs_space_info_used(space_info, false); 4729 4730 /* 4731 * We only want to allow over committing if we have lots of actual space 4732 * free, but if we don't have enough space to handle the global reserve 4733 * space then we could end up having a real enospc problem when trying 4734 * to allocate a chunk or some other such important allocation. 4735 */ 4736 spin_lock(&global_rsv->lock); 4737 space_size = calc_global_rsv_need_space(global_rsv); 4738 spin_unlock(&global_rsv->lock); 4739 if (used + space_size >= space_info->total_bytes) 4740 return 0; 4741 4742 used += space_info->bytes_may_use; 4743 4744 avail = atomic64_read(&fs_info->free_chunk_space); 4745 4746 /* 4747 * If we have dup, raid1 or raid10 then only half of the free 4748 * space is actually useable. For raid56, the space info used 4749 * doesn't include the parity drive, so we don't have to 4750 * change the math 4751 */ 4752 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4753 BTRFS_BLOCK_GROUP_RAID1 | 4754 BTRFS_BLOCK_GROUP_RAID10)) 4755 avail >>= 1; 4756 4757 /* 4758 * If we aren't flushing all things, let us overcommit up to 4759 * 1/2th of the space. If we can flush, don't let us overcommit 4760 * too much, let it overcommit up to 1/8 of the space. 4761 */ 4762 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4763 avail >>= 3; 4764 else 4765 avail >>= 1; 4766 4767 if (used + bytes < space_info->total_bytes + avail) 4768 return 1; 4769 return 0; 4770 } 4771 4772 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4773 unsigned long nr_pages, int nr_items) 4774 { 4775 struct super_block *sb = fs_info->sb; 4776 4777 if (down_read_trylock(&sb->s_umount)) { 4778 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4779 up_read(&sb->s_umount); 4780 } else { 4781 /* 4782 * We needn't worry the filesystem going from r/w to r/o though 4783 * we don't acquire ->s_umount mutex, because the filesystem 4784 * should guarantee the delalloc inodes list be empty after 4785 * the filesystem is readonly(all dirty pages are written to 4786 * the disk). 4787 */ 4788 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4789 if (!current->journal_info) 4790 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4791 } 4792 } 4793 4794 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4795 u64 to_reclaim) 4796 { 4797 u64 bytes; 4798 u64 nr; 4799 4800 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4801 nr = div64_u64(to_reclaim, bytes); 4802 if (!nr) 4803 nr = 1; 4804 return nr; 4805 } 4806 4807 #define EXTENT_SIZE_PER_ITEM SZ_256K 4808 4809 /* 4810 * shrink metadata reservation for delalloc 4811 */ 4812 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4813 u64 orig, bool wait_ordered) 4814 { 4815 struct btrfs_space_info *space_info; 4816 struct btrfs_trans_handle *trans; 4817 u64 delalloc_bytes; 4818 u64 max_reclaim; 4819 u64 items; 4820 long time_left; 4821 unsigned long nr_pages; 4822 int loops; 4823 enum btrfs_reserve_flush_enum flush; 4824 4825 /* Calc the number of the pages we need flush for space reservation */ 4826 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4827 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4828 4829 trans = (struct btrfs_trans_handle *)current->journal_info; 4830 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4831 4832 delalloc_bytes = percpu_counter_sum_positive( 4833 &fs_info->delalloc_bytes); 4834 if (delalloc_bytes == 0) { 4835 if (trans) 4836 return; 4837 if (wait_ordered) 4838 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4839 return; 4840 } 4841 4842 loops = 0; 4843 while (delalloc_bytes && loops < 3) { 4844 max_reclaim = min(delalloc_bytes, to_reclaim); 4845 nr_pages = max_reclaim >> PAGE_SHIFT; 4846 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4847 /* 4848 * We need to wait for the async pages to actually start before 4849 * we do anything. 4850 */ 4851 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4852 if (!max_reclaim) 4853 goto skip_async; 4854 4855 if (max_reclaim <= nr_pages) 4856 max_reclaim = 0; 4857 else 4858 max_reclaim -= nr_pages; 4859 4860 wait_event(fs_info->async_submit_wait, 4861 atomic_read(&fs_info->async_delalloc_pages) <= 4862 (int)max_reclaim); 4863 skip_async: 4864 if (!trans) 4865 flush = BTRFS_RESERVE_FLUSH_ALL; 4866 else 4867 flush = BTRFS_RESERVE_NO_FLUSH; 4868 spin_lock(&space_info->lock); 4869 if (list_empty(&space_info->tickets) && 4870 list_empty(&space_info->priority_tickets)) { 4871 spin_unlock(&space_info->lock); 4872 break; 4873 } 4874 spin_unlock(&space_info->lock); 4875 4876 loops++; 4877 if (wait_ordered && !trans) { 4878 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4879 } else { 4880 time_left = schedule_timeout_killable(1); 4881 if (time_left) 4882 break; 4883 } 4884 delalloc_bytes = percpu_counter_sum_positive( 4885 &fs_info->delalloc_bytes); 4886 } 4887 } 4888 4889 struct reserve_ticket { 4890 u64 bytes; 4891 int error; 4892 struct list_head list; 4893 wait_queue_head_t wait; 4894 }; 4895 4896 /** 4897 * maybe_commit_transaction - possibly commit the transaction if its ok to 4898 * @root - the root we're allocating for 4899 * @bytes - the number of bytes we want to reserve 4900 * @force - force the commit 4901 * 4902 * This will check to make sure that committing the transaction will actually 4903 * get us somewhere and then commit the transaction if it does. Otherwise it 4904 * will return -ENOSPC. 4905 */ 4906 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4907 struct btrfs_space_info *space_info) 4908 { 4909 struct reserve_ticket *ticket = NULL; 4910 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4911 struct btrfs_trans_handle *trans; 4912 u64 bytes; 4913 4914 trans = (struct btrfs_trans_handle *)current->journal_info; 4915 if (trans) 4916 return -EAGAIN; 4917 4918 spin_lock(&space_info->lock); 4919 if (!list_empty(&space_info->priority_tickets)) 4920 ticket = list_first_entry(&space_info->priority_tickets, 4921 struct reserve_ticket, list); 4922 else if (!list_empty(&space_info->tickets)) 4923 ticket = list_first_entry(&space_info->tickets, 4924 struct reserve_ticket, list); 4925 bytes = (ticket) ? ticket->bytes : 0; 4926 spin_unlock(&space_info->lock); 4927 4928 if (!bytes) 4929 return 0; 4930 4931 /* See if there is enough pinned space to make this reservation */ 4932 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4933 bytes) >= 0) 4934 goto commit; 4935 4936 /* 4937 * See if there is some space in the delayed insertion reservation for 4938 * this reservation. 4939 */ 4940 if (space_info != delayed_rsv->space_info) 4941 return -ENOSPC; 4942 4943 spin_lock(&delayed_rsv->lock); 4944 if (delayed_rsv->size > bytes) 4945 bytes = 0; 4946 else 4947 bytes -= delayed_rsv->size; 4948 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4949 bytes) < 0) { 4950 spin_unlock(&delayed_rsv->lock); 4951 return -ENOSPC; 4952 } 4953 spin_unlock(&delayed_rsv->lock); 4954 4955 commit: 4956 trans = btrfs_join_transaction(fs_info->extent_root); 4957 if (IS_ERR(trans)) 4958 return -ENOSPC; 4959 4960 return btrfs_commit_transaction(trans); 4961 } 4962 4963 /* 4964 * Try to flush some data based on policy set by @state. This is only advisory 4965 * and may fail for various reasons. The caller is supposed to examine the 4966 * state of @space_info to detect the outcome. 4967 */ 4968 static void flush_space(struct btrfs_fs_info *fs_info, 4969 struct btrfs_space_info *space_info, u64 num_bytes, 4970 int state) 4971 { 4972 struct btrfs_root *root = fs_info->extent_root; 4973 struct btrfs_trans_handle *trans; 4974 int nr; 4975 int ret = 0; 4976 4977 switch (state) { 4978 case FLUSH_DELAYED_ITEMS_NR: 4979 case FLUSH_DELAYED_ITEMS: 4980 if (state == FLUSH_DELAYED_ITEMS_NR) 4981 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4982 else 4983 nr = -1; 4984 4985 trans = btrfs_join_transaction(root); 4986 if (IS_ERR(trans)) { 4987 ret = PTR_ERR(trans); 4988 break; 4989 } 4990 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4991 btrfs_end_transaction(trans); 4992 break; 4993 case FLUSH_DELALLOC: 4994 case FLUSH_DELALLOC_WAIT: 4995 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4996 state == FLUSH_DELALLOC_WAIT); 4997 break; 4998 case ALLOC_CHUNK: 4999 trans = btrfs_join_transaction(root); 5000 if (IS_ERR(trans)) { 5001 ret = PTR_ERR(trans); 5002 break; 5003 } 5004 ret = do_chunk_alloc(trans, fs_info, 5005 btrfs_metadata_alloc_profile(fs_info), 5006 CHUNK_ALLOC_NO_FORCE); 5007 btrfs_end_transaction(trans); 5008 if (ret > 0 || ret == -ENOSPC) 5009 ret = 0; 5010 break; 5011 case COMMIT_TRANS: 5012 ret = may_commit_transaction(fs_info, space_info); 5013 break; 5014 default: 5015 ret = -ENOSPC; 5016 break; 5017 } 5018 5019 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5020 ret); 5021 return; 5022 } 5023 5024 static inline u64 5025 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5026 struct btrfs_space_info *space_info, 5027 bool system_chunk) 5028 { 5029 struct reserve_ticket *ticket; 5030 u64 used; 5031 u64 expected; 5032 u64 to_reclaim = 0; 5033 5034 list_for_each_entry(ticket, &space_info->tickets, list) 5035 to_reclaim += ticket->bytes; 5036 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5037 to_reclaim += ticket->bytes; 5038 if (to_reclaim) 5039 return to_reclaim; 5040 5041 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5042 if (can_overcommit(fs_info, space_info, to_reclaim, 5043 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5044 return 0; 5045 5046 used = btrfs_space_info_used(space_info, true); 5047 5048 if (can_overcommit(fs_info, space_info, SZ_1M, 5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5050 expected = div_factor_fine(space_info->total_bytes, 95); 5051 else 5052 expected = div_factor_fine(space_info->total_bytes, 90); 5053 5054 if (used > expected) 5055 to_reclaim = used - expected; 5056 else 5057 to_reclaim = 0; 5058 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5059 space_info->bytes_reserved); 5060 return to_reclaim; 5061 } 5062 5063 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5064 struct btrfs_space_info *space_info, 5065 u64 used, bool system_chunk) 5066 { 5067 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5068 5069 /* If we're just plain full then async reclaim just slows us down. */ 5070 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5071 return 0; 5072 5073 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5074 system_chunk)) 5075 return 0; 5076 5077 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5078 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5079 } 5080 5081 static void wake_all_tickets(struct list_head *head) 5082 { 5083 struct reserve_ticket *ticket; 5084 5085 while (!list_empty(head)) { 5086 ticket = list_first_entry(head, struct reserve_ticket, list); 5087 list_del_init(&ticket->list); 5088 ticket->error = -ENOSPC; 5089 wake_up(&ticket->wait); 5090 } 5091 } 5092 5093 /* 5094 * This is for normal flushers, we can wait all goddamned day if we want to. We 5095 * will loop and continuously try to flush as long as we are making progress. 5096 * We count progress as clearing off tickets each time we have to loop. 5097 */ 5098 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5099 { 5100 struct btrfs_fs_info *fs_info; 5101 struct btrfs_space_info *space_info; 5102 u64 to_reclaim; 5103 int flush_state; 5104 int commit_cycles = 0; 5105 u64 last_tickets_id; 5106 5107 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5108 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5109 5110 spin_lock(&space_info->lock); 5111 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5112 false); 5113 if (!to_reclaim) { 5114 space_info->flush = 0; 5115 spin_unlock(&space_info->lock); 5116 return; 5117 } 5118 last_tickets_id = space_info->tickets_id; 5119 spin_unlock(&space_info->lock); 5120 5121 flush_state = FLUSH_DELAYED_ITEMS_NR; 5122 do { 5123 flush_space(fs_info, space_info, to_reclaim, flush_state); 5124 spin_lock(&space_info->lock); 5125 if (list_empty(&space_info->tickets)) { 5126 space_info->flush = 0; 5127 spin_unlock(&space_info->lock); 5128 return; 5129 } 5130 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5131 space_info, 5132 false); 5133 if (last_tickets_id == space_info->tickets_id) { 5134 flush_state++; 5135 } else { 5136 last_tickets_id = space_info->tickets_id; 5137 flush_state = FLUSH_DELAYED_ITEMS_NR; 5138 if (commit_cycles) 5139 commit_cycles--; 5140 } 5141 5142 if (flush_state > COMMIT_TRANS) { 5143 commit_cycles++; 5144 if (commit_cycles > 2) { 5145 wake_all_tickets(&space_info->tickets); 5146 space_info->flush = 0; 5147 } else { 5148 flush_state = FLUSH_DELAYED_ITEMS_NR; 5149 } 5150 } 5151 spin_unlock(&space_info->lock); 5152 } while (flush_state <= COMMIT_TRANS); 5153 } 5154 5155 void btrfs_init_async_reclaim_work(struct work_struct *work) 5156 { 5157 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5158 } 5159 5160 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5161 struct btrfs_space_info *space_info, 5162 struct reserve_ticket *ticket) 5163 { 5164 u64 to_reclaim; 5165 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5166 5167 spin_lock(&space_info->lock); 5168 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5169 false); 5170 if (!to_reclaim) { 5171 spin_unlock(&space_info->lock); 5172 return; 5173 } 5174 spin_unlock(&space_info->lock); 5175 5176 do { 5177 flush_space(fs_info, space_info, to_reclaim, flush_state); 5178 flush_state++; 5179 spin_lock(&space_info->lock); 5180 if (ticket->bytes == 0) { 5181 spin_unlock(&space_info->lock); 5182 return; 5183 } 5184 spin_unlock(&space_info->lock); 5185 5186 /* 5187 * Priority flushers can't wait on delalloc without 5188 * deadlocking. 5189 */ 5190 if (flush_state == FLUSH_DELALLOC || 5191 flush_state == FLUSH_DELALLOC_WAIT) 5192 flush_state = ALLOC_CHUNK; 5193 } while (flush_state < COMMIT_TRANS); 5194 } 5195 5196 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5197 struct btrfs_space_info *space_info, 5198 struct reserve_ticket *ticket, u64 orig_bytes) 5199 5200 { 5201 DEFINE_WAIT(wait); 5202 int ret = 0; 5203 5204 spin_lock(&space_info->lock); 5205 while (ticket->bytes > 0 && ticket->error == 0) { 5206 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5207 if (ret) { 5208 ret = -EINTR; 5209 break; 5210 } 5211 spin_unlock(&space_info->lock); 5212 5213 schedule(); 5214 5215 finish_wait(&ticket->wait, &wait); 5216 spin_lock(&space_info->lock); 5217 } 5218 if (!ret) 5219 ret = ticket->error; 5220 if (!list_empty(&ticket->list)) 5221 list_del_init(&ticket->list); 5222 if (ticket->bytes && ticket->bytes < orig_bytes) { 5223 u64 num_bytes = orig_bytes - ticket->bytes; 5224 space_info->bytes_may_use -= num_bytes; 5225 trace_btrfs_space_reservation(fs_info, "space_info", 5226 space_info->flags, num_bytes, 0); 5227 } 5228 spin_unlock(&space_info->lock); 5229 5230 return ret; 5231 } 5232 5233 /** 5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5235 * @root - the root we're allocating for 5236 * @space_info - the space info we want to allocate from 5237 * @orig_bytes - the number of bytes we want 5238 * @flush - whether or not we can flush to make our reservation 5239 * 5240 * This will reserve orig_bytes number of bytes from the space info associated 5241 * with the block_rsv. If there is not enough space it will make an attempt to 5242 * flush out space to make room. It will do this by flushing delalloc if 5243 * possible or committing the transaction. If flush is 0 then no attempts to 5244 * regain reservations will be made and this will fail if there is not enough 5245 * space already. 5246 */ 5247 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5248 struct btrfs_space_info *space_info, 5249 u64 orig_bytes, 5250 enum btrfs_reserve_flush_enum flush, 5251 bool system_chunk) 5252 { 5253 struct reserve_ticket ticket; 5254 u64 used; 5255 int ret = 0; 5256 5257 ASSERT(orig_bytes); 5258 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5259 5260 spin_lock(&space_info->lock); 5261 ret = -ENOSPC; 5262 used = btrfs_space_info_used(space_info, true); 5263 5264 /* 5265 * If we have enough space then hooray, make our reservation and carry 5266 * on. If not see if we can overcommit, and if we can, hooray carry on. 5267 * If not things get more complicated. 5268 */ 5269 if (used + orig_bytes <= space_info->total_bytes) { 5270 space_info->bytes_may_use += orig_bytes; 5271 trace_btrfs_space_reservation(fs_info, "space_info", 5272 space_info->flags, orig_bytes, 1); 5273 ret = 0; 5274 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5275 system_chunk)) { 5276 space_info->bytes_may_use += orig_bytes; 5277 trace_btrfs_space_reservation(fs_info, "space_info", 5278 space_info->flags, orig_bytes, 1); 5279 ret = 0; 5280 } 5281 5282 /* 5283 * If we couldn't make a reservation then setup our reservation ticket 5284 * and kick the async worker if it's not already running. 5285 * 5286 * If we are a priority flusher then we just need to add our ticket to 5287 * the list and we will do our own flushing further down. 5288 */ 5289 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5290 ticket.bytes = orig_bytes; 5291 ticket.error = 0; 5292 init_waitqueue_head(&ticket.wait); 5293 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5294 list_add_tail(&ticket.list, &space_info->tickets); 5295 if (!space_info->flush) { 5296 space_info->flush = 1; 5297 trace_btrfs_trigger_flush(fs_info, 5298 space_info->flags, 5299 orig_bytes, flush, 5300 "enospc"); 5301 queue_work(system_unbound_wq, 5302 &fs_info->async_reclaim_work); 5303 } 5304 } else { 5305 list_add_tail(&ticket.list, 5306 &space_info->priority_tickets); 5307 } 5308 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5309 used += orig_bytes; 5310 /* 5311 * We will do the space reservation dance during log replay, 5312 * which means we won't have fs_info->fs_root set, so don't do 5313 * the async reclaim as we will panic. 5314 */ 5315 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5316 need_do_async_reclaim(fs_info, space_info, 5317 used, system_chunk) && 5318 !work_busy(&fs_info->async_reclaim_work)) { 5319 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5320 orig_bytes, flush, "preempt"); 5321 queue_work(system_unbound_wq, 5322 &fs_info->async_reclaim_work); 5323 } 5324 } 5325 spin_unlock(&space_info->lock); 5326 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5327 return ret; 5328 5329 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5330 return wait_reserve_ticket(fs_info, space_info, &ticket, 5331 orig_bytes); 5332 5333 ret = 0; 5334 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5335 spin_lock(&space_info->lock); 5336 if (ticket.bytes) { 5337 if (ticket.bytes < orig_bytes) { 5338 u64 num_bytes = orig_bytes - ticket.bytes; 5339 space_info->bytes_may_use -= num_bytes; 5340 trace_btrfs_space_reservation(fs_info, "space_info", 5341 space_info->flags, 5342 num_bytes, 0); 5343 5344 } 5345 list_del_init(&ticket.list); 5346 ret = -ENOSPC; 5347 } 5348 spin_unlock(&space_info->lock); 5349 ASSERT(list_empty(&ticket.list)); 5350 return ret; 5351 } 5352 5353 /** 5354 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5355 * @root - the root we're allocating for 5356 * @block_rsv - the block_rsv we're allocating for 5357 * @orig_bytes - the number of bytes we want 5358 * @flush - whether or not we can flush to make our reservation 5359 * 5360 * This will reserve orgi_bytes number of bytes from the space info associated 5361 * with the block_rsv. If there is not enough space it will make an attempt to 5362 * flush out space to make room. It will do this by flushing delalloc if 5363 * possible or committing the transaction. If flush is 0 then no attempts to 5364 * regain reservations will be made and this will fail if there is not enough 5365 * space already. 5366 */ 5367 static int reserve_metadata_bytes(struct btrfs_root *root, 5368 struct btrfs_block_rsv *block_rsv, 5369 u64 orig_bytes, 5370 enum btrfs_reserve_flush_enum flush) 5371 { 5372 struct btrfs_fs_info *fs_info = root->fs_info; 5373 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5374 int ret; 5375 bool system_chunk = (root == fs_info->chunk_root); 5376 5377 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5378 orig_bytes, flush, system_chunk); 5379 if (ret == -ENOSPC && 5380 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5381 if (block_rsv != global_rsv && 5382 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5383 ret = 0; 5384 } 5385 if (ret == -ENOSPC) 5386 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5387 block_rsv->space_info->flags, 5388 orig_bytes, 1); 5389 return ret; 5390 } 5391 5392 static struct btrfs_block_rsv *get_block_rsv( 5393 const struct btrfs_trans_handle *trans, 5394 const struct btrfs_root *root) 5395 { 5396 struct btrfs_fs_info *fs_info = root->fs_info; 5397 struct btrfs_block_rsv *block_rsv = NULL; 5398 5399 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5400 (root == fs_info->csum_root && trans->adding_csums) || 5401 (root == fs_info->uuid_root)) 5402 block_rsv = trans->block_rsv; 5403 5404 if (!block_rsv) 5405 block_rsv = root->block_rsv; 5406 5407 if (!block_rsv) 5408 block_rsv = &fs_info->empty_block_rsv; 5409 5410 return block_rsv; 5411 } 5412 5413 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5414 u64 num_bytes) 5415 { 5416 int ret = -ENOSPC; 5417 spin_lock(&block_rsv->lock); 5418 if (block_rsv->reserved >= num_bytes) { 5419 block_rsv->reserved -= num_bytes; 5420 if (block_rsv->reserved < block_rsv->size) 5421 block_rsv->full = 0; 5422 ret = 0; 5423 } 5424 spin_unlock(&block_rsv->lock); 5425 return ret; 5426 } 5427 5428 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5429 u64 num_bytes, int update_size) 5430 { 5431 spin_lock(&block_rsv->lock); 5432 block_rsv->reserved += num_bytes; 5433 if (update_size) 5434 block_rsv->size += num_bytes; 5435 else if (block_rsv->reserved >= block_rsv->size) 5436 block_rsv->full = 1; 5437 spin_unlock(&block_rsv->lock); 5438 } 5439 5440 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5441 struct btrfs_block_rsv *dest, u64 num_bytes, 5442 int min_factor) 5443 { 5444 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5445 u64 min_bytes; 5446 5447 if (global_rsv->space_info != dest->space_info) 5448 return -ENOSPC; 5449 5450 spin_lock(&global_rsv->lock); 5451 min_bytes = div_factor(global_rsv->size, min_factor); 5452 if (global_rsv->reserved < min_bytes + num_bytes) { 5453 spin_unlock(&global_rsv->lock); 5454 return -ENOSPC; 5455 } 5456 global_rsv->reserved -= num_bytes; 5457 if (global_rsv->reserved < global_rsv->size) 5458 global_rsv->full = 0; 5459 spin_unlock(&global_rsv->lock); 5460 5461 block_rsv_add_bytes(dest, num_bytes, 1); 5462 return 0; 5463 } 5464 5465 /* 5466 * This is for space we already have accounted in space_info->bytes_may_use, so 5467 * basically when we're returning space from block_rsv's. 5468 */ 5469 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5470 struct btrfs_space_info *space_info, 5471 u64 num_bytes) 5472 { 5473 struct reserve_ticket *ticket; 5474 struct list_head *head; 5475 u64 used; 5476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5477 bool check_overcommit = false; 5478 5479 spin_lock(&space_info->lock); 5480 head = &space_info->priority_tickets; 5481 5482 /* 5483 * If we are over our limit then we need to check and see if we can 5484 * overcommit, and if we can't then we just need to free up our space 5485 * and not satisfy any requests. 5486 */ 5487 used = btrfs_space_info_used(space_info, true); 5488 if (used - num_bytes >= space_info->total_bytes) 5489 check_overcommit = true; 5490 again: 5491 while (!list_empty(head) && num_bytes) { 5492 ticket = list_first_entry(head, struct reserve_ticket, 5493 list); 5494 /* 5495 * We use 0 bytes because this space is already reserved, so 5496 * adding the ticket space would be a double count. 5497 */ 5498 if (check_overcommit && 5499 !can_overcommit(fs_info, space_info, 0, flush, false)) 5500 break; 5501 if (num_bytes >= ticket->bytes) { 5502 list_del_init(&ticket->list); 5503 num_bytes -= ticket->bytes; 5504 ticket->bytes = 0; 5505 space_info->tickets_id++; 5506 wake_up(&ticket->wait); 5507 } else { 5508 ticket->bytes -= num_bytes; 5509 num_bytes = 0; 5510 } 5511 } 5512 5513 if (num_bytes && head == &space_info->priority_tickets) { 5514 head = &space_info->tickets; 5515 flush = BTRFS_RESERVE_FLUSH_ALL; 5516 goto again; 5517 } 5518 space_info->bytes_may_use -= num_bytes; 5519 trace_btrfs_space_reservation(fs_info, "space_info", 5520 space_info->flags, num_bytes, 0); 5521 spin_unlock(&space_info->lock); 5522 } 5523 5524 /* 5525 * This is for newly allocated space that isn't accounted in 5526 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5527 * we use this helper. 5528 */ 5529 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5530 struct btrfs_space_info *space_info, 5531 u64 num_bytes) 5532 { 5533 struct reserve_ticket *ticket; 5534 struct list_head *head = &space_info->priority_tickets; 5535 5536 again: 5537 while (!list_empty(head) && num_bytes) { 5538 ticket = list_first_entry(head, struct reserve_ticket, 5539 list); 5540 if (num_bytes >= ticket->bytes) { 5541 trace_btrfs_space_reservation(fs_info, "space_info", 5542 space_info->flags, 5543 ticket->bytes, 1); 5544 list_del_init(&ticket->list); 5545 num_bytes -= ticket->bytes; 5546 space_info->bytes_may_use += ticket->bytes; 5547 ticket->bytes = 0; 5548 space_info->tickets_id++; 5549 wake_up(&ticket->wait); 5550 } else { 5551 trace_btrfs_space_reservation(fs_info, "space_info", 5552 space_info->flags, 5553 num_bytes, 1); 5554 space_info->bytes_may_use += num_bytes; 5555 ticket->bytes -= num_bytes; 5556 num_bytes = 0; 5557 } 5558 } 5559 5560 if (num_bytes && head == &space_info->priority_tickets) { 5561 head = &space_info->tickets; 5562 goto again; 5563 } 5564 } 5565 5566 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5567 struct btrfs_block_rsv *block_rsv, 5568 struct btrfs_block_rsv *dest, u64 num_bytes) 5569 { 5570 struct btrfs_space_info *space_info = block_rsv->space_info; 5571 u64 ret; 5572 5573 spin_lock(&block_rsv->lock); 5574 if (num_bytes == (u64)-1) 5575 num_bytes = block_rsv->size; 5576 block_rsv->size -= num_bytes; 5577 if (block_rsv->reserved >= block_rsv->size) { 5578 num_bytes = block_rsv->reserved - block_rsv->size; 5579 block_rsv->reserved = block_rsv->size; 5580 block_rsv->full = 1; 5581 } else { 5582 num_bytes = 0; 5583 } 5584 spin_unlock(&block_rsv->lock); 5585 5586 ret = num_bytes; 5587 if (num_bytes > 0) { 5588 if (dest) { 5589 spin_lock(&dest->lock); 5590 if (!dest->full) { 5591 u64 bytes_to_add; 5592 5593 bytes_to_add = dest->size - dest->reserved; 5594 bytes_to_add = min(num_bytes, bytes_to_add); 5595 dest->reserved += bytes_to_add; 5596 if (dest->reserved >= dest->size) 5597 dest->full = 1; 5598 num_bytes -= bytes_to_add; 5599 } 5600 spin_unlock(&dest->lock); 5601 } 5602 if (num_bytes) 5603 space_info_add_old_bytes(fs_info, space_info, 5604 num_bytes); 5605 } 5606 return ret; 5607 } 5608 5609 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5610 struct btrfs_block_rsv *dst, u64 num_bytes, 5611 int update_size) 5612 { 5613 int ret; 5614 5615 ret = block_rsv_use_bytes(src, num_bytes); 5616 if (ret) 5617 return ret; 5618 5619 block_rsv_add_bytes(dst, num_bytes, update_size); 5620 return 0; 5621 } 5622 5623 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5624 { 5625 memset(rsv, 0, sizeof(*rsv)); 5626 spin_lock_init(&rsv->lock); 5627 rsv->type = type; 5628 } 5629 5630 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5631 struct btrfs_block_rsv *rsv, 5632 unsigned short type) 5633 { 5634 btrfs_init_block_rsv(rsv, type); 5635 rsv->space_info = __find_space_info(fs_info, 5636 BTRFS_BLOCK_GROUP_METADATA); 5637 } 5638 5639 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5640 unsigned short type) 5641 { 5642 struct btrfs_block_rsv *block_rsv; 5643 5644 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5645 if (!block_rsv) 5646 return NULL; 5647 5648 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5649 return block_rsv; 5650 } 5651 5652 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5653 struct btrfs_block_rsv *rsv) 5654 { 5655 if (!rsv) 5656 return; 5657 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5658 kfree(rsv); 5659 } 5660 5661 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5662 { 5663 kfree(rsv); 5664 } 5665 5666 int btrfs_block_rsv_add(struct btrfs_root *root, 5667 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5668 enum btrfs_reserve_flush_enum flush) 5669 { 5670 int ret; 5671 5672 if (num_bytes == 0) 5673 return 0; 5674 5675 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5676 if (!ret) { 5677 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5678 return 0; 5679 } 5680 5681 return ret; 5682 } 5683 5684 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5685 { 5686 u64 num_bytes = 0; 5687 int ret = -ENOSPC; 5688 5689 if (!block_rsv) 5690 return 0; 5691 5692 spin_lock(&block_rsv->lock); 5693 num_bytes = div_factor(block_rsv->size, min_factor); 5694 if (block_rsv->reserved >= num_bytes) 5695 ret = 0; 5696 spin_unlock(&block_rsv->lock); 5697 5698 return ret; 5699 } 5700 5701 int btrfs_block_rsv_refill(struct btrfs_root *root, 5702 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5703 enum btrfs_reserve_flush_enum flush) 5704 { 5705 u64 num_bytes = 0; 5706 int ret = -ENOSPC; 5707 5708 if (!block_rsv) 5709 return 0; 5710 5711 spin_lock(&block_rsv->lock); 5712 num_bytes = min_reserved; 5713 if (block_rsv->reserved >= num_bytes) 5714 ret = 0; 5715 else 5716 num_bytes -= block_rsv->reserved; 5717 spin_unlock(&block_rsv->lock); 5718 5719 if (!ret) 5720 return 0; 5721 5722 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5723 if (!ret) { 5724 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5725 return 0; 5726 } 5727 5728 return ret; 5729 } 5730 5731 /** 5732 * btrfs_inode_rsv_refill - refill the inode block rsv. 5733 * @inode - the inode we are refilling. 5734 * @flush - the flusing restriction. 5735 * 5736 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5737 * block_rsv->size as the minimum size. We'll either refill the missing amount 5738 * or return if we already have enough space. This will also handle the resreve 5739 * tracepoint for the reserved amount. 5740 */ 5741 int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5742 enum btrfs_reserve_flush_enum flush) 5743 { 5744 struct btrfs_root *root = inode->root; 5745 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5746 u64 num_bytes = 0; 5747 int ret = -ENOSPC; 5748 5749 spin_lock(&block_rsv->lock); 5750 if (block_rsv->reserved < block_rsv->size) 5751 num_bytes = block_rsv->size - block_rsv->reserved; 5752 spin_unlock(&block_rsv->lock); 5753 5754 if (num_bytes == 0) 5755 return 0; 5756 5757 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5758 if (!ret) { 5759 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5760 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5761 btrfs_ino(inode), num_bytes, 1); 5762 } 5763 return ret; 5764 } 5765 5766 /** 5767 * btrfs_inode_rsv_release - release any excessive reservation. 5768 * @inode - the inode we need to release from. 5769 * 5770 * This is the same as btrfs_block_rsv_release, except that it handles the 5771 * tracepoint for the reservation. 5772 */ 5773 void btrfs_inode_rsv_release(struct btrfs_inode *inode) 5774 { 5775 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5776 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5777 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5778 u64 released = 0; 5779 5780 /* 5781 * Since we statically set the block_rsv->size we just want to say we 5782 * are releasing 0 bytes, and then we'll just get the reservation over 5783 * the size free'd. 5784 */ 5785 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0); 5786 if (released > 0) 5787 trace_btrfs_space_reservation(fs_info, "delalloc", 5788 btrfs_ino(inode), released, 0); 5789 } 5790 5791 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5792 struct btrfs_block_rsv *block_rsv, 5793 u64 num_bytes) 5794 { 5795 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5796 5797 if (global_rsv == block_rsv || 5798 block_rsv->space_info != global_rsv->space_info) 5799 global_rsv = NULL; 5800 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5801 } 5802 5803 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5804 { 5805 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5806 struct btrfs_space_info *sinfo = block_rsv->space_info; 5807 u64 num_bytes; 5808 5809 /* 5810 * The global block rsv is based on the size of the extent tree, the 5811 * checksum tree and the root tree. If the fs is empty we want to set 5812 * it to a minimal amount for safety. 5813 */ 5814 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5815 btrfs_root_used(&fs_info->csum_root->root_item) + 5816 btrfs_root_used(&fs_info->tree_root->root_item); 5817 num_bytes = max_t(u64, num_bytes, SZ_16M); 5818 5819 spin_lock(&sinfo->lock); 5820 spin_lock(&block_rsv->lock); 5821 5822 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5823 5824 if (block_rsv->reserved < block_rsv->size) { 5825 num_bytes = btrfs_space_info_used(sinfo, true); 5826 if (sinfo->total_bytes > num_bytes) { 5827 num_bytes = sinfo->total_bytes - num_bytes; 5828 num_bytes = min(num_bytes, 5829 block_rsv->size - block_rsv->reserved); 5830 block_rsv->reserved += num_bytes; 5831 sinfo->bytes_may_use += num_bytes; 5832 trace_btrfs_space_reservation(fs_info, "space_info", 5833 sinfo->flags, num_bytes, 5834 1); 5835 } 5836 } else if (block_rsv->reserved > block_rsv->size) { 5837 num_bytes = block_rsv->reserved - block_rsv->size; 5838 sinfo->bytes_may_use -= num_bytes; 5839 trace_btrfs_space_reservation(fs_info, "space_info", 5840 sinfo->flags, num_bytes, 0); 5841 block_rsv->reserved = block_rsv->size; 5842 } 5843 5844 if (block_rsv->reserved == block_rsv->size) 5845 block_rsv->full = 1; 5846 else 5847 block_rsv->full = 0; 5848 5849 spin_unlock(&block_rsv->lock); 5850 spin_unlock(&sinfo->lock); 5851 } 5852 5853 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5854 { 5855 struct btrfs_space_info *space_info; 5856 5857 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5858 fs_info->chunk_block_rsv.space_info = space_info; 5859 5860 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5861 fs_info->global_block_rsv.space_info = space_info; 5862 fs_info->trans_block_rsv.space_info = space_info; 5863 fs_info->empty_block_rsv.space_info = space_info; 5864 fs_info->delayed_block_rsv.space_info = space_info; 5865 5866 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5867 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5868 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5869 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5870 if (fs_info->quota_root) 5871 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5872 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5873 5874 update_global_block_rsv(fs_info); 5875 } 5876 5877 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5878 { 5879 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5880 (u64)-1); 5881 WARN_ON(fs_info->trans_block_rsv.size > 0); 5882 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5883 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5884 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5885 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5886 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5887 } 5888 5889 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5890 struct btrfs_fs_info *fs_info) 5891 { 5892 if (!trans->block_rsv) { 5893 ASSERT(!trans->bytes_reserved); 5894 return; 5895 } 5896 5897 if (!trans->bytes_reserved) 5898 return; 5899 5900 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 5901 trace_btrfs_space_reservation(fs_info, "transaction", 5902 trans->transid, trans->bytes_reserved, 0); 5903 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5904 trans->bytes_reserved); 5905 trans->bytes_reserved = 0; 5906 } 5907 5908 /* 5909 * To be called after all the new block groups attached to the transaction 5910 * handle have been created (btrfs_create_pending_block_groups()). 5911 */ 5912 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5913 { 5914 struct btrfs_fs_info *fs_info = trans->fs_info; 5915 5916 if (!trans->chunk_bytes_reserved) 5917 return; 5918 5919 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5920 5921 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5922 trans->chunk_bytes_reserved); 5923 trans->chunk_bytes_reserved = 0; 5924 } 5925 5926 /* Can only return 0 or -ENOSPC */ 5927 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5928 struct btrfs_inode *inode) 5929 { 5930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5931 struct btrfs_root *root = inode->root; 5932 /* 5933 * We always use trans->block_rsv here as we will have reserved space 5934 * for our orphan when starting the transaction, using get_block_rsv() 5935 * here will sometimes make us choose the wrong block rsv as we could be 5936 * doing a reloc inode for a non refcounted root. 5937 */ 5938 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5939 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5940 5941 /* 5942 * We need to hold space in order to delete our orphan item once we've 5943 * added it, so this takes the reservation so we can release it later 5944 * when we are truly done with the orphan item. 5945 */ 5946 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5947 5948 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5949 num_bytes, 1); 5950 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5951 } 5952 5953 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5954 { 5955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5956 struct btrfs_root *root = inode->root; 5957 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5958 5959 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5960 num_bytes, 0); 5961 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5962 } 5963 5964 /* 5965 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5966 * root: the root of the parent directory 5967 * rsv: block reservation 5968 * items: the number of items that we need do reservation 5969 * qgroup_reserved: used to return the reserved size in qgroup 5970 * 5971 * This function is used to reserve the space for snapshot/subvolume 5972 * creation and deletion. Those operations are different with the 5973 * common file/directory operations, they change two fs/file trees 5974 * and root tree, the number of items that the qgroup reserves is 5975 * different with the free space reservation. So we can not use 5976 * the space reservation mechanism in start_transaction(). 5977 */ 5978 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5979 struct btrfs_block_rsv *rsv, 5980 int items, 5981 u64 *qgroup_reserved, 5982 bool use_global_rsv) 5983 { 5984 u64 num_bytes; 5985 int ret; 5986 struct btrfs_fs_info *fs_info = root->fs_info; 5987 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5988 5989 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5990 /* One for parent inode, two for dir entries */ 5991 num_bytes = 3 * fs_info->nodesize; 5992 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 5993 if (ret) 5994 return ret; 5995 } else { 5996 num_bytes = 0; 5997 } 5998 5999 *qgroup_reserved = num_bytes; 6000 6001 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6002 rsv->space_info = __find_space_info(fs_info, 6003 BTRFS_BLOCK_GROUP_METADATA); 6004 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6005 BTRFS_RESERVE_FLUSH_ALL); 6006 6007 if (ret == -ENOSPC && use_global_rsv) 6008 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6009 6010 if (ret && *qgroup_reserved) 6011 btrfs_qgroup_free_meta(root, *qgroup_reserved); 6012 6013 return ret; 6014 } 6015 6016 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6017 struct btrfs_block_rsv *rsv) 6018 { 6019 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6020 } 6021 6022 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6023 struct btrfs_inode *inode) 6024 { 6025 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6026 u64 reserve_size = 0; 6027 u64 csum_leaves; 6028 unsigned outstanding_extents; 6029 6030 lockdep_assert_held(&inode->lock); 6031 outstanding_extents = inode->outstanding_extents; 6032 if (outstanding_extents) 6033 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6034 outstanding_extents + 1); 6035 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6036 inode->csum_bytes); 6037 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6038 csum_leaves); 6039 6040 spin_lock(&block_rsv->lock); 6041 block_rsv->size = reserve_size; 6042 spin_unlock(&block_rsv->lock); 6043 } 6044 6045 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6046 { 6047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6048 struct btrfs_root *root = inode->root; 6049 unsigned nr_extents; 6050 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6051 int ret = 0; 6052 bool delalloc_lock = true; 6053 6054 /* If we are a free space inode we need to not flush since we will be in 6055 * the middle of a transaction commit. We also don't need the delalloc 6056 * mutex since we won't race with anybody. We need this mostly to make 6057 * lockdep shut its filthy mouth. 6058 * 6059 * If we have a transaction open (can happen if we call truncate_block 6060 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6061 */ 6062 if (btrfs_is_free_space_inode(inode)) { 6063 flush = BTRFS_RESERVE_NO_FLUSH; 6064 delalloc_lock = false; 6065 } else if (current->journal_info) { 6066 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6067 } 6068 6069 if (flush != BTRFS_RESERVE_NO_FLUSH && 6070 btrfs_transaction_in_commit(fs_info)) 6071 schedule_timeout(1); 6072 6073 if (delalloc_lock) 6074 mutex_lock(&inode->delalloc_mutex); 6075 6076 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6077 6078 /* Add our new extents and calculate the new rsv size. */ 6079 spin_lock(&inode->lock); 6080 nr_extents = count_max_extents(num_bytes); 6081 btrfs_mod_outstanding_extents(inode, nr_extents); 6082 inode->csum_bytes += num_bytes; 6083 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6084 spin_unlock(&inode->lock); 6085 6086 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6087 ret = btrfs_qgroup_reserve_meta(root, 6088 nr_extents * fs_info->nodesize, true); 6089 if (ret) 6090 goto out_fail; 6091 } 6092 6093 ret = btrfs_inode_rsv_refill(inode, flush); 6094 if (unlikely(ret)) { 6095 btrfs_qgroup_free_meta(root, 6096 nr_extents * fs_info->nodesize); 6097 goto out_fail; 6098 } 6099 6100 if (delalloc_lock) 6101 mutex_unlock(&inode->delalloc_mutex); 6102 return 0; 6103 6104 out_fail: 6105 spin_lock(&inode->lock); 6106 nr_extents = count_max_extents(num_bytes); 6107 btrfs_mod_outstanding_extents(inode, -nr_extents); 6108 inode->csum_bytes -= num_bytes; 6109 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6110 spin_unlock(&inode->lock); 6111 6112 btrfs_inode_rsv_release(inode); 6113 if (delalloc_lock) 6114 mutex_unlock(&inode->delalloc_mutex); 6115 return ret; 6116 } 6117 6118 /** 6119 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6120 * @inode: the inode to release the reservation for. 6121 * @num_bytes: the number of bytes we are releasing. 6122 * 6123 * This will release the metadata reservation for an inode. This can be called 6124 * once we complete IO for a given set of bytes to release their metadata 6125 * reservations, or on error for the same reason. 6126 */ 6127 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6128 { 6129 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6130 6131 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6132 spin_lock(&inode->lock); 6133 inode->csum_bytes -= num_bytes; 6134 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6135 spin_unlock(&inode->lock); 6136 6137 if (btrfs_is_testing(fs_info)) 6138 return; 6139 6140 btrfs_inode_rsv_release(inode); 6141 } 6142 6143 /** 6144 * btrfs_delalloc_release_extents - release our outstanding_extents 6145 * @inode: the inode to balance the reservation for. 6146 * @num_bytes: the number of bytes we originally reserved with 6147 * 6148 * When we reserve space we increase outstanding_extents for the extents we may 6149 * add. Once we've set the range as delalloc or created our ordered extents we 6150 * have outstanding_extents to track the real usage, so we use this to free our 6151 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6152 * with btrfs_delalloc_reserve_metadata. 6153 */ 6154 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 6155 { 6156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6157 unsigned num_extents; 6158 6159 spin_lock(&inode->lock); 6160 num_extents = count_max_extents(num_bytes); 6161 btrfs_mod_outstanding_extents(inode, -num_extents); 6162 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6163 spin_unlock(&inode->lock); 6164 6165 if (btrfs_is_testing(fs_info)) 6166 return; 6167 6168 btrfs_inode_rsv_release(inode); 6169 } 6170 6171 /** 6172 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6173 * delalloc 6174 * @inode: inode we're writing to 6175 * @start: start range we are writing to 6176 * @len: how long the range we are writing to 6177 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6178 * current reservation. 6179 * 6180 * This will do the following things 6181 * 6182 * o reserve space in data space info for num bytes 6183 * and reserve precious corresponding qgroup space 6184 * (Done in check_data_free_space) 6185 * 6186 * o reserve space for metadata space, based on the number of outstanding 6187 * extents and how much csums will be needed 6188 * also reserve metadata space in a per root over-reserve method. 6189 * o add to the inodes->delalloc_bytes 6190 * o add it to the fs_info's delalloc inodes list. 6191 * (Above 3 all done in delalloc_reserve_metadata) 6192 * 6193 * Return 0 for success 6194 * Return <0 for error(-ENOSPC or -EQUOT) 6195 */ 6196 int btrfs_delalloc_reserve_space(struct inode *inode, 6197 struct extent_changeset **reserved, u64 start, u64 len) 6198 { 6199 int ret; 6200 6201 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6202 if (ret < 0) 6203 return ret; 6204 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6205 if (ret < 0) 6206 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6207 return ret; 6208 } 6209 6210 /** 6211 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6212 * @inode: inode we're releasing space for 6213 * @start: start position of the space already reserved 6214 * @len: the len of the space already reserved 6215 * @release_bytes: the len of the space we consumed or didn't use 6216 * 6217 * This function will release the metadata space that was not used and will 6218 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6219 * list if there are no delalloc bytes left. 6220 * Also it will handle the qgroup reserved space. 6221 */ 6222 void btrfs_delalloc_release_space(struct inode *inode, 6223 struct extent_changeset *reserved, 6224 u64 start, u64 len) 6225 { 6226 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6227 btrfs_free_reserved_data_space(inode, reserved, start, len); 6228 } 6229 6230 static int update_block_group(struct btrfs_trans_handle *trans, 6231 struct btrfs_fs_info *info, u64 bytenr, 6232 u64 num_bytes, int alloc) 6233 { 6234 struct btrfs_block_group_cache *cache = NULL; 6235 u64 total = num_bytes; 6236 u64 old_val; 6237 u64 byte_in_group; 6238 int factor; 6239 6240 /* block accounting for super block */ 6241 spin_lock(&info->delalloc_root_lock); 6242 old_val = btrfs_super_bytes_used(info->super_copy); 6243 if (alloc) 6244 old_val += num_bytes; 6245 else 6246 old_val -= num_bytes; 6247 btrfs_set_super_bytes_used(info->super_copy, old_val); 6248 spin_unlock(&info->delalloc_root_lock); 6249 6250 while (total) { 6251 cache = btrfs_lookup_block_group(info, bytenr); 6252 if (!cache) 6253 return -ENOENT; 6254 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6255 BTRFS_BLOCK_GROUP_RAID1 | 6256 BTRFS_BLOCK_GROUP_RAID10)) 6257 factor = 2; 6258 else 6259 factor = 1; 6260 /* 6261 * If this block group has free space cache written out, we 6262 * need to make sure to load it if we are removing space. This 6263 * is because we need the unpinning stage to actually add the 6264 * space back to the block group, otherwise we will leak space. 6265 */ 6266 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6267 cache_block_group(cache, 1); 6268 6269 byte_in_group = bytenr - cache->key.objectid; 6270 WARN_ON(byte_in_group > cache->key.offset); 6271 6272 spin_lock(&cache->space_info->lock); 6273 spin_lock(&cache->lock); 6274 6275 if (btrfs_test_opt(info, SPACE_CACHE) && 6276 cache->disk_cache_state < BTRFS_DC_CLEAR) 6277 cache->disk_cache_state = BTRFS_DC_CLEAR; 6278 6279 old_val = btrfs_block_group_used(&cache->item); 6280 num_bytes = min(total, cache->key.offset - byte_in_group); 6281 if (alloc) { 6282 old_val += num_bytes; 6283 btrfs_set_block_group_used(&cache->item, old_val); 6284 cache->reserved -= num_bytes; 6285 cache->space_info->bytes_reserved -= num_bytes; 6286 cache->space_info->bytes_used += num_bytes; 6287 cache->space_info->disk_used += num_bytes * factor; 6288 spin_unlock(&cache->lock); 6289 spin_unlock(&cache->space_info->lock); 6290 } else { 6291 old_val -= num_bytes; 6292 btrfs_set_block_group_used(&cache->item, old_val); 6293 cache->pinned += num_bytes; 6294 cache->space_info->bytes_pinned += num_bytes; 6295 cache->space_info->bytes_used -= num_bytes; 6296 cache->space_info->disk_used -= num_bytes * factor; 6297 spin_unlock(&cache->lock); 6298 spin_unlock(&cache->space_info->lock); 6299 6300 trace_btrfs_space_reservation(info, "pinned", 6301 cache->space_info->flags, 6302 num_bytes, 1); 6303 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6304 num_bytes); 6305 set_extent_dirty(info->pinned_extents, 6306 bytenr, bytenr + num_bytes - 1, 6307 GFP_NOFS | __GFP_NOFAIL); 6308 } 6309 6310 spin_lock(&trans->transaction->dirty_bgs_lock); 6311 if (list_empty(&cache->dirty_list)) { 6312 list_add_tail(&cache->dirty_list, 6313 &trans->transaction->dirty_bgs); 6314 trans->transaction->num_dirty_bgs++; 6315 btrfs_get_block_group(cache); 6316 } 6317 spin_unlock(&trans->transaction->dirty_bgs_lock); 6318 6319 /* 6320 * No longer have used bytes in this block group, queue it for 6321 * deletion. We do this after adding the block group to the 6322 * dirty list to avoid races between cleaner kthread and space 6323 * cache writeout. 6324 */ 6325 if (!alloc && old_val == 0) { 6326 spin_lock(&info->unused_bgs_lock); 6327 if (list_empty(&cache->bg_list)) { 6328 btrfs_get_block_group(cache); 6329 list_add_tail(&cache->bg_list, 6330 &info->unused_bgs); 6331 } 6332 spin_unlock(&info->unused_bgs_lock); 6333 } 6334 6335 btrfs_put_block_group(cache); 6336 total -= num_bytes; 6337 bytenr += num_bytes; 6338 } 6339 return 0; 6340 } 6341 6342 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6343 { 6344 struct btrfs_block_group_cache *cache; 6345 u64 bytenr; 6346 6347 spin_lock(&fs_info->block_group_cache_lock); 6348 bytenr = fs_info->first_logical_byte; 6349 spin_unlock(&fs_info->block_group_cache_lock); 6350 6351 if (bytenr < (u64)-1) 6352 return bytenr; 6353 6354 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6355 if (!cache) 6356 return 0; 6357 6358 bytenr = cache->key.objectid; 6359 btrfs_put_block_group(cache); 6360 6361 return bytenr; 6362 } 6363 6364 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6365 struct btrfs_block_group_cache *cache, 6366 u64 bytenr, u64 num_bytes, int reserved) 6367 { 6368 spin_lock(&cache->space_info->lock); 6369 spin_lock(&cache->lock); 6370 cache->pinned += num_bytes; 6371 cache->space_info->bytes_pinned += num_bytes; 6372 if (reserved) { 6373 cache->reserved -= num_bytes; 6374 cache->space_info->bytes_reserved -= num_bytes; 6375 } 6376 spin_unlock(&cache->lock); 6377 spin_unlock(&cache->space_info->lock); 6378 6379 trace_btrfs_space_reservation(fs_info, "pinned", 6380 cache->space_info->flags, num_bytes, 1); 6381 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6382 set_extent_dirty(fs_info->pinned_extents, bytenr, 6383 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6384 return 0; 6385 } 6386 6387 /* 6388 * this function must be called within transaction 6389 */ 6390 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6391 u64 bytenr, u64 num_bytes, int reserved) 6392 { 6393 struct btrfs_block_group_cache *cache; 6394 6395 cache = btrfs_lookup_block_group(fs_info, bytenr); 6396 BUG_ON(!cache); /* Logic error */ 6397 6398 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6399 6400 btrfs_put_block_group(cache); 6401 return 0; 6402 } 6403 6404 /* 6405 * this function must be called within transaction 6406 */ 6407 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6408 u64 bytenr, u64 num_bytes) 6409 { 6410 struct btrfs_block_group_cache *cache; 6411 int ret; 6412 6413 cache = btrfs_lookup_block_group(fs_info, bytenr); 6414 if (!cache) 6415 return -EINVAL; 6416 6417 /* 6418 * pull in the free space cache (if any) so that our pin 6419 * removes the free space from the cache. We have load_only set 6420 * to one because the slow code to read in the free extents does check 6421 * the pinned extents. 6422 */ 6423 cache_block_group(cache, 1); 6424 6425 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6426 6427 /* remove us from the free space cache (if we're there at all) */ 6428 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6429 btrfs_put_block_group(cache); 6430 return ret; 6431 } 6432 6433 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6434 u64 start, u64 num_bytes) 6435 { 6436 int ret; 6437 struct btrfs_block_group_cache *block_group; 6438 struct btrfs_caching_control *caching_ctl; 6439 6440 block_group = btrfs_lookup_block_group(fs_info, start); 6441 if (!block_group) 6442 return -EINVAL; 6443 6444 cache_block_group(block_group, 0); 6445 caching_ctl = get_caching_control(block_group); 6446 6447 if (!caching_ctl) { 6448 /* Logic error */ 6449 BUG_ON(!block_group_cache_done(block_group)); 6450 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6451 } else { 6452 mutex_lock(&caching_ctl->mutex); 6453 6454 if (start >= caching_ctl->progress) { 6455 ret = add_excluded_extent(fs_info, start, num_bytes); 6456 } else if (start + num_bytes <= caching_ctl->progress) { 6457 ret = btrfs_remove_free_space(block_group, 6458 start, num_bytes); 6459 } else { 6460 num_bytes = caching_ctl->progress - start; 6461 ret = btrfs_remove_free_space(block_group, 6462 start, num_bytes); 6463 if (ret) 6464 goto out_lock; 6465 6466 num_bytes = (start + num_bytes) - 6467 caching_ctl->progress; 6468 start = caching_ctl->progress; 6469 ret = add_excluded_extent(fs_info, start, num_bytes); 6470 } 6471 out_lock: 6472 mutex_unlock(&caching_ctl->mutex); 6473 put_caching_control(caching_ctl); 6474 } 6475 btrfs_put_block_group(block_group); 6476 return ret; 6477 } 6478 6479 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6480 struct extent_buffer *eb) 6481 { 6482 struct btrfs_file_extent_item *item; 6483 struct btrfs_key key; 6484 int found_type; 6485 int i; 6486 6487 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6488 return 0; 6489 6490 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6491 btrfs_item_key_to_cpu(eb, &key, i); 6492 if (key.type != BTRFS_EXTENT_DATA_KEY) 6493 continue; 6494 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6495 found_type = btrfs_file_extent_type(eb, item); 6496 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6497 continue; 6498 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6499 continue; 6500 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6501 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6502 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6503 } 6504 6505 return 0; 6506 } 6507 6508 static void 6509 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6510 { 6511 atomic_inc(&bg->reservations); 6512 } 6513 6514 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6515 const u64 start) 6516 { 6517 struct btrfs_block_group_cache *bg; 6518 6519 bg = btrfs_lookup_block_group(fs_info, start); 6520 ASSERT(bg); 6521 if (atomic_dec_and_test(&bg->reservations)) 6522 wake_up_atomic_t(&bg->reservations); 6523 btrfs_put_block_group(bg); 6524 } 6525 6526 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6527 { 6528 struct btrfs_space_info *space_info = bg->space_info; 6529 6530 ASSERT(bg->ro); 6531 6532 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6533 return; 6534 6535 /* 6536 * Our block group is read only but before we set it to read only, 6537 * some task might have had allocated an extent from it already, but it 6538 * has not yet created a respective ordered extent (and added it to a 6539 * root's list of ordered extents). 6540 * Therefore wait for any task currently allocating extents, since the 6541 * block group's reservations counter is incremented while a read lock 6542 * on the groups' semaphore is held and decremented after releasing 6543 * the read access on that semaphore and creating the ordered extent. 6544 */ 6545 down_write(&space_info->groups_sem); 6546 up_write(&space_info->groups_sem); 6547 6548 wait_on_atomic_t(&bg->reservations, atomic_t_wait, 6549 TASK_UNINTERRUPTIBLE); 6550 } 6551 6552 /** 6553 * btrfs_add_reserved_bytes - update the block_group and space info counters 6554 * @cache: The cache we are manipulating 6555 * @ram_bytes: The number of bytes of file content, and will be same to 6556 * @num_bytes except for the compress path. 6557 * @num_bytes: The number of bytes in question 6558 * @delalloc: The blocks are allocated for the delalloc write 6559 * 6560 * This is called by the allocator when it reserves space. If this is a 6561 * reservation and the block group has become read only we cannot make the 6562 * reservation and return -EAGAIN, otherwise this function always succeeds. 6563 */ 6564 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6565 u64 ram_bytes, u64 num_bytes, int delalloc) 6566 { 6567 struct btrfs_space_info *space_info = cache->space_info; 6568 int ret = 0; 6569 6570 spin_lock(&space_info->lock); 6571 spin_lock(&cache->lock); 6572 if (cache->ro) { 6573 ret = -EAGAIN; 6574 } else { 6575 cache->reserved += num_bytes; 6576 space_info->bytes_reserved += num_bytes; 6577 6578 trace_btrfs_space_reservation(cache->fs_info, 6579 "space_info", space_info->flags, 6580 ram_bytes, 0); 6581 space_info->bytes_may_use -= ram_bytes; 6582 if (delalloc) 6583 cache->delalloc_bytes += num_bytes; 6584 } 6585 spin_unlock(&cache->lock); 6586 spin_unlock(&space_info->lock); 6587 return ret; 6588 } 6589 6590 /** 6591 * btrfs_free_reserved_bytes - update the block_group and space info counters 6592 * @cache: The cache we are manipulating 6593 * @num_bytes: The number of bytes in question 6594 * @delalloc: The blocks are allocated for the delalloc write 6595 * 6596 * This is called by somebody who is freeing space that was never actually used 6597 * on disk. For example if you reserve some space for a new leaf in transaction 6598 * A and before transaction A commits you free that leaf, you call this with 6599 * reserve set to 0 in order to clear the reservation. 6600 */ 6601 6602 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6603 u64 num_bytes, int delalloc) 6604 { 6605 struct btrfs_space_info *space_info = cache->space_info; 6606 int ret = 0; 6607 6608 spin_lock(&space_info->lock); 6609 spin_lock(&cache->lock); 6610 if (cache->ro) 6611 space_info->bytes_readonly += num_bytes; 6612 cache->reserved -= num_bytes; 6613 space_info->bytes_reserved -= num_bytes; 6614 6615 if (delalloc) 6616 cache->delalloc_bytes -= num_bytes; 6617 spin_unlock(&cache->lock); 6618 spin_unlock(&space_info->lock); 6619 return ret; 6620 } 6621 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6622 { 6623 struct btrfs_caching_control *next; 6624 struct btrfs_caching_control *caching_ctl; 6625 struct btrfs_block_group_cache *cache; 6626 6627 down_write(&fs_info->commit_root_sem); 6628 6629 list_for_each_entry_safe(caching_ctl, next, 6630 &fs_info->caching_block_groups, list) { 6631 cache = caching_ctl->block_group; 6632 if (block_group_cache_done(cache)) { 6633 cache->last_byte_to_unpin = (u64)-1; 6634 list_del_init(&caching_ctl->list); 6635 put_caching_control(caching_ctl); 6636 } else { 6637 cache->last_byte_to_unpin = caching_ctl->progress; 6638 } 6639 } 6640 6641 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6642 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6643 else 6644 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6645 6646 up_write(&fs_info->commit_root_sem); 6647 6648 update_global_block_rsv(fs_info); 6649 } 6650 6651 /* 6652 * Returns the free cluster for the given space info and sets empty_cluster to 6653 * what it should be based on the mount options. 6654 */ 6655 static struct btrfs_free_cluster * 6656 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6657 struct btrfs_space_info *space_info, u64 *empty_cluster) 6658 { 6659 struct btrfs_free_cluster *ret = NULL; 6660 6661 *empty_cluster = 0; 6662 if (btrfs_mixed_space_info(space_info)) 6663 return ret; 6664 6665 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6666 ret = &fs_info->meta_alloc_cluster; 6667 if (btrfs_test_opt(fs_info, SSD)) 6668 *empty_cluster = SZ_2M; 6669 else 6670 *empty_cluster = SZ_64K; 6671 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6672 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6673 *empty_cluster = SZ_2M; 6674 ret = &fs_info->data_alloc_cluster; 6675 } 6676 6677 return ret; 6678 } 6679 6680 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6681 u64 start, u64 end, 6682 const bool return_free_space) 6683 { 6684 struct btrfs_block_group_cache *cache = NULL; 6685 struct btrfs_space_info *space_info; 6686 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6687 struct btrfs_free_cluster *cluster = NULL; 6688 u64 len; 6689 u64 total_unpinned = 0; 6690 u64 empty_cluster = 0; 6691 bool readonly; 6692 6693 while (start <= end) { 6694 readonly = false; 6695 if (!cache || 6696 start >= cache->key.objectid + cache->key.offset) { 6697 if (cache) 6698 btrfs_put_block_group(cache); 6699 total_unpinned = 0; 6700 cache = btrfs_lookup_block_group(fs_info, start); 6701 BUG_ON(!cache); /* Logic error */ 6702 6703 cluster = fetch_cluster_info(fs_info, 6704 cache->space_info, 6705 &empty_cluster); 6706 empty_cluster <<= 1; 6707 } 6708 6709 len = cache->key.objectid + cache->key.offset - start; 6710 len = min(len, end + 1 - start); 6711 6712 if (start < cache->last_byte_to_unpin) { 6713 len = min(len, cache->last_byte_to_unpin - start); 6714 if (return_free_space) 6715 btrfs_add_free_space(cache, start, len); 6716 } 6717 6718 start += len; 6719 total_unpinned += len; 6720 space_info = cache->space_info; 6721 6722 /* 6723 * If this space cluster has been marked as fragmented and we've 6724 * unpinned enough in this block group to potentially allow a 6725 * cluster to be created inside of it go ahead and clear the 6726 * fragmented check. 6727 */ 6728 if (cluster && cluster->fragmented && 6729 total_unpinned > empty_cluster) { 6730 spin_lock(&cluster->lock); 6731 cluster->fragmented = 0; 6732 spin_unlock(&cluster->lock); 6733 } 6734 6735 spin_lock(&space_info->lock); 6736 spin_lock(&cache->lock); 6737 cache->pinned -= len; 6738 space_info->bytes_pinned -= len; 6739 6740 trace_btrfs_space_reservation(fs_info, "pinned", 6741 space_info->flags, len, 0); 6742 space_info->max_extent_size = 0; 6743 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6744 if (cache->ro) { 6745 space_info->bytes_readonly += len; 6746 readonly = true; 6747 } 6748 spin_unlock(&cache->lock); 6749 if (!readonly && return_free_space && 6750 global_rsv->space_info == space_info) { 6751 u64 to_add = len; 6752 6753 spin_lock(&global_rsv->lock); 6754 if (!global_rsv->full) { 6755 to_add = min(len, global_rsv->size - 6756 global_rsv->reserved); 6757 global_rsv->reserved += to_add; 6758 space_info->bytes_may_use += to_add; 6759 if (global_rsv->reserved >= global_rsv->size) 6760 global_rsv->full = 1; 6761 trace_btrfs_space_reservation(fs_info, 6762 "space_info", 6763 space_info->flags, 6764 to_add, 1); 6765 len -= to_add; 6766 } 6767 spin_unlock(&global_rsv->lock); 6768 /* Add to any tickets we may have */ 6769 if (len) 6770 space_info_add_new_bytes(fs_info, space_info, 6771 len); 6772 } 6773 spin_unlock(&space_info->lock); 6774 } 6775 6776 if (cache) 6777 btrfs_put_block_group(cache); 6778 return 0; 6779 } 6780 6781 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6782 struct btrfs_fs_info *fs_info) 6783 { 6784 struct btrfs_block_group_cache *block_group, *tmp; 6785 struct list_head *deleted_bgs; 6786 struct extent_io_tree *unpin; 6787 u64 start; 6788 u64 end; 6789 int ret; 6790 6791 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6792 unpin = &fs_info->freed_extents[1]; 6793 else 6794 unpin = &fs_info->freed_extents[0]; 6795 6796 while (!trans->aborted) { 6797 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6798 ret = find_first_extent_bit(unpin, 0, &start, &end, 6799 EXTENT_DIRTY, NULL); 6800 if (ret) { 6801 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6802 break; 6803 } 6804 6805 if (btrfs_test_opt(fs_info, DISCARD)) 6806 ret = btrfs_discard_extent(fs_info, start, 6807 end + 1 - start, NULL); 6808 6809 clear_extent_dirty(unpin, start, end); 6810 unpin_extent_range(fs_info, start, end, true); 6811 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6812 cond_resched(); 6813 } 6814 6815 /* 6816 * Transaction is finished. We don't need the lock anymore. We 6817 * do need to clean up the block groups in case of a transaction 6818 * abort. 6819 */ 6820 deleted_bgs = &trans->transaction->deleted_bgs; 6821 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6822 u64 trimmed = 0; 6823 6824 ret = -EROFS; 6825 if (!trans->aborted) 6826 ret = btrfs_discard_extent(fs_info, 6827 block_group->key.objectid, 6828 block_group->key.offset, 6829 &trimmed); 6830 6831 list_del_init(&block_group->bg_list); 6832 btrfs_put_block_group_trimming(block_group); 6833 btrfs_put_block_group(block_group); 6834 6835 if (ret) { 6836 const char *errstr = btrfs_decode_error(ret); 6837 btrfs_warn(fs_info, 6838 "discard failed while removing blockgroup: errno=%d %s", 6839 ret, errstr); 6840 } 6841 } 6842 6843 return 0; 6844 } 6845 6846 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6847 struct btrfs_fs_info *info, 6848 struct btrfs_delayed_ref_node *node, u64 parent, 6849 u64 root_objectid, u64 owner_objectid, 6850 u64 owner_offset, int refs_to_drop, 6851 struct btrfs_delayed_extent_op *extent_op) 6852 { 6853 struct btrfs_key key; 6854 struct btrfs_path *path; 6855 struct btrfs_root *extent_root = info->extent_root; 6856 struct extent_buffer *leaf; 6857 struct btrfs_extent_item *ei; 6858 struct btrfs_extent_inline_ref *iref; 6859 int ret; 6860 int is_data; 6861 int extent_slot = 0; 6862 int found_extent = 0; 6863 int num_to_del = 1; 6864 u32 item_size; 6865 u64 refs; 6866 u64 bytenr = node->bytenr; 6867 u64 num_bytes = node->num_bytes; 6868 int last_ref = 0; 6869 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6870 6871 path = btrfs_alloc_path(); 6872 if (!path) 6873 return -ENOMEM; 6874 6875 path->reada = READA_FORWARD; 6876 path->leave_spinning = 1; 6877 6878 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6879 BUG_ON(!is_data && refs_to_drop != 1); 6880 6881 if (is_data) 6882 skinny_metadata = false; 6883 6884 ret = lookup_extent_backref(trans, info, path, &iref, 6885 bytenr, num_bytes, parent, 6886 root_objectid, owner_objectid, 6887 owner_offset); 6888 if (ret == 0) { 6889 extent_slot = path->slots[0]; 6890 while (extent_slot >= 0) { 6891 btrfs_item_key_to_cpu(path->nodes[0], &key, 6892 extent_slot); 6893 if (key.objectid != bytenr) 6894 break; 6895 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6896 key.offset == num_bytes) { 6897 found_extent = 1; 6898 break; 6899 } 6900 if (key.type == BTRFS_METADATA_ITEM_KEY && 6901 key.offset == owner_objectid) { 6902 found_extent = 1; 6903 break; 6904 } 6905 if (path->slots[0] - extent_slot > 5) 6906 break; 6907 extent_slot--; 6908 } 6909 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6910 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6911 if (found_extent && item_size < sizeof(*ei)) 6912 found_extent = 0; 6913 #endif 6914 if (!found_extent) { 6915 BUG_ON(iref); 6916 ret = remove_extent_backref(trans, info, path, NULL, 6917 refs_to_drop, 6918 is_data, &last_ref); 6919 if (ret) { 6920 btrfs_abort_transaction(trans, ret); 6921 goto out; 6922 } 6923 btrfs_release_path(path); 6924 path->leave_spinning = 1; 6925 6926 key.objectid = bytenr; 6927 key.type = BTRFS_EXTENT_ITEM_KEY; 6928 key.offset = num_bytes; 6929 6930 if (!is_data && skinny_metadata) { 6931 key.type = BTRFS_METADATA_ITEM_KEY; 6932 key.offset = owner_objectid; 6933 } 6934 6935 ret = btrfs_search_slot(trans, extent_root, 6936 &key, path, -1, 1); 6937 if (ret > 0 && skinny_metadata && path->slots[0]) { 6938 /* 6939 * Couldn't find our skinny metadata item, 6940 * see if we have ye olde extent item. 6941 */ 6942 path->slots[0]--; 6943 btrfs_item_key_to_cpu(path->nodes[0], &key, 6944 path->slots[0]); 6945 if (key.objectid == bytenr && 6946 key.type == BTRFS_EXTENT_ITEM_KEY && 6947 key.offset == num_bytes) 6948 ret = 0; 6949 } 6950 6951 if (ret > 0 && skinny_metadata) { 6952 skinny_metadata = false; 6953 key.objectid = bytenr; 6954 key.type = BTRFS_EXTENT_ITEM_KEY; 6955 key.offset = num_bytes; 6956 btrfs_release_path(path); 6957 ret = btrfs_search_slot(trans, extent_root, 6958 &key, path, -1, 1); 6959 } 6960 6961 if (ret) { 6962 btrfs_err(info, 6963 "umm, got %d back from search, was looking for %llu", 6964 ret, bytenr); 6965 if (ret > 0) 6966 btrfs_print_leaf(path->nodes[0]); 6967 } 6968 if (ret < 0) { 6969 btrfs_abort_transaction(trans, ret); 6970 goto out; 6971 } 6972 extent_slot = path->slots[0]; 6973 } 6974 } else if (WARN_ON(ret == -ENOENT)) { 6975 btrfs_print_leaf(path->nodes[0]); 6976 btrfs_err(info, 6977 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6978 bytenr, parent, root_objectid, owner_objectid, 6979 owner_offset); 6980 btrfs_abort_transaction(trans, ret); 6981 goto out; 6982 } else { 6983 btrfs_abort_transaction(trans, ret); 6984 goto out; 6985 } 6986 6987 leaf = path->nodes[0]; 6988 item_size = btrfs_item_size_nr(leaf, extent_slot); 6989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6990 if (item_size < sizeof(*ei)) { 6991 BUG_ON(found_extent || extent_slot != path->slots[0]); 6992 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6993 0); 6994 if (ret < 0) { 6995 btrfs_abort_transaction(trans, ret); 6996 goto out; 6997 } 6998 6999 btrfs_release_path(path); 7000 path->leave_spinning = 1; 7001 7002 key.objectid = bytenr; 7003 key.type = BTRFS_EXTENT_ITEM_KEY; 7004 key.offset = num_bytes; 7005 7006 ret = btrfs_search_slot(trans, extent_root, &key, path, 7007 -1, 1); 7008 if (ret) { 7009 btrfs_err(info, 7010 "umm, got %d back from search, was looking for %llu", 7011 ret, bytenr); 7012 btrfs_print_leaf(path->nodes[0]); 7013 } 7014 if (ret < 0) { 7015 btrfs_abort_transaction(trans, ret); 7016 goto out; 7017 } 7018 7019 extent_slot = path->slots[0]; 7020 leaf = path->nodes[0]; 7021 item_size = btrfs_item_size_nr(leaf, extent_slot); 7022 } 7023 #endif 7024 BUG_ON(item_size < sizeof(*ei)); 7025 ei = btrfs_item_ptr(leaf, extent_slot, 7026 struct btrfs_extent_item); 7027 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7028 key.type == BTRFS_EXTENT_ITEM_KEY) { 7029 struct btrfs_tree_block_info *bi; 7030 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7031 bi = (struct btrfs_tree_block_info *)(ei + 1); 7032 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7033 } 7034 7035 refs = btrfs_extent_refs(leaf, ei); 7036 if (refs < refs_to_drop) { 7037 btrfs_err(info, 7038 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7039 refs_to_drop, refs, bytenr); 7040 ret = -EINVAL; 7041 btrfs_abort_transaction(trans, ret); 7042 goto out; 7043 } 7044 refs -= refs_to_drop; 7045 7046 if (refs > 0) { 7047 if (extent_op) 7048 __run_delayed_extent_op(extent_op, leaf, ei); 7049 /* 7050 * In the case of inline back ref, reference count will 7051 * be updated by remove_extent_backref 7052 */ 7053 if (iref) { 7054 BUG_ON(!found_extent); 7055 } else { 7056 btrfs_set_extent_refs(leaf, ei, refs); 7057 btrfs_mark_buffer_dirty(leaf); 7058 } 7059 if (found_extent) { 7060 ret = remove_extent_backref(trans, info, path, 7061 iref, refs_to_drop, 7062 is_data, &last_ref); 7063 if (ret) { 7064 btrfs_abort_transaction(trans, ret); 7065 goto out; 7066 } 7067 } 7068 } else { 7069 if (found_extent) { 7070 BUG_ON(is_data && refs_to_drop != 7071 extent_data_ref_count(path, iref)); 7072 if (iref) { 7073 BUG_ON(path->slots[0] != extent_slot); 7074 } else { 7075 BUG_ON(path->slots[0] != extent_slot + 1); 7076 path->slots[0] = extent_slot; 7077 num_to_del = 2; 7078 } 7079 } 7080 7081 last_ref = 1; 7082 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7083 num_to_del); 7084 if (ret) { 7085 btrfs_abort_transaction(trans, ret); 7086 goto out; 7087 } 7088 btrfs_release_path(path); 7089 7090 if (is_data) { 7091 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7092 if (ret) { 7093 btrfs_abort_transaction(trans, ret); 7094 goto out; 7095 } 7096 } 7097 7098 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7099 if (ret) { 7100 btrfs_abort_transaction(trans, ret); 7101 goto out; 7102 } 7103 7104 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7105 if (ret) { 7106 btrfs_abort_transaction(trans, ret); 7107 goto out; 7108 } 7109 } 7110 btrfs_release_path(path); 7111 7112 out: 7113 btrfs_free_path(path); 7114 return ret; 7115 } 7116 7117 /* 7118 * when we free an block, it is possible (and likely) that we free the last 7119 * delayed ref for that extent as well. This searches the delayed ref tree for 7120 * a given extent, and if there are no other delayed refs to be processed, it 7121 * removes it from the tree. 7122 */ 7123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7124 u64 bytenr) 7125 { 7126 struct btrfs_delayed_ref_head *head; 7127 struct btrfs_delayed_ref_root *delayed_refs; 7128 int ret = 0; 7129 7130 delayed_refs = &trans->transaction->delayed_refs; 7131 spin_lock(&delayed_refs->lock); 7132 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7133 if (!head) 7134 goto out_delayed_unlock; 7135 7136 spin_lock(&head->lock); 7137 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7138 goto out; 7139 7140 if (head->extent_op) { 7141 if (!head->must_insert_reserved) 7142 goto out; 7143 btrfs_free_delayed_extent_op(head->extent_op); 7144 head->extent_op = NULL; 7145 } 7146 7147 /* 7148 * waiting for the lock here would deadlock. If someone else has it 7149 * locked they are already in the process of dropping it anyway 7150 */ 7151 if (!mutex_trylock(&head->mutex)) 7152 goto out; 7153 7154 /* 7155 * at this point we have a head with no other entries. Go 7156 * ahead and process it. 7157 */ 7158 rb_erase(&head->href_node, &delayed_refs->href_root); 7159 RB_CLEAR_NODE(&head->href_node); 7160 atomic_dec(&delayed_refs->num_entries); 7161 7162 /* 7163 * we don't take a ref on the node because we're removing it from the 7164 * tree, so we just steal the ref the tree was holding. 7165 */ 7166 delayed_refs->num_heads--; 7167 if (head->processing == 0) 7168 delayed_refs->num_heads_ready--; 7169 head->processing = 0; 7170 spin_unlock(&head->lock); 7171 spin_unlock(&delayed_refs->lock); 7172 7173 BUG_ON(head->extent_op); 7174 if (head->must_insert_reserved) 7175 ret = 1; 7176 7177 mutex_unlock(&head->mutex); 7178 btrfs_put_delayed_ref_head(head); 7179 return ret; 7180 out: 7181 spin_unlock(&head->lock); 7182 7183 out_delayed_unlock: 7184 spin_unlock(&delayed_refs->lock); 7185 return 0; 7186 } 7187 7188 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7189 struct btrfs_root *root, 7190 struct extent_buffer *buf, 7191 u64 parent, int last_ref) 7192 { 7193 struct btrfs_fs_info *fs_info = root->fs_info; 7194 int pin = 1; 7195 int ret; 7196 7197 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7198 int old_ref_mod, new_ref_mod; 7199 7200 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7201 root->root_key.objectid, 7202 btrfs_header_level(buf), 0, 7203 BTRFS_DROP_DELAYED_REF); 7204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7205 buf->len, parent, 7206 root->root_key.objectid, 7207 btrfs_header_level(buf), 7208 BTRFS_DROP_DELAYED_REF, NULL, 7209 &old_ref_mod, &new_ref_mod); 7210 BUG_ON(ret); /* -ENOMEM */ 7211 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7212 } 7213 7214 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7215 struct btrfs_block_group_cache *cache; 7216 7217 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7218 ret = check_ref_cleanup(trans, buf->start); 7219 if (!ret) 7220 goto out; 7221 } 7222 7223 pin = 0; 7224 cache = btrfs_lookup_block_group(fs_info, buf->start); 7225 7226 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7227 pin_down_extent(fs_info, cache, buf->start, 7228 buf->len, 1); 7229 btrfs_put_block_group(cache); 7230 goto out; 7231 } 7232 7233 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7234 7235 btrfs_add_free_space(cache, buf->start, buf->len); 7236 btrfs_free_reserved_bytes(cache, buf->len, 0); 7237 btrfs_put_block_group(cache); 7238 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7239 } 7240 out: 7241 if (pin) 7242 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7243 root->root_key.objectid); 7244 7245 if (last_ref) { 7246 /* 7247 * Deleting the buffer, clear the corrupt flag since it doesn't 7248 * matter anymore. 7249 */ 7250 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7251 } 7252 } 7253 7254 /* Can return -ENOMEM */ 7255 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7256 struct btrfs_root *root, 7257 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7258 u64 owner, u64 offset) 7259 { 7260 struct btrfs_fs_info *fs_info = root->fs_info; 7261 int old_ref_mod, new_ref_mod; 7262 int ret; 7263 7264 if (btrfs_is_testing(fs_info)) 7265 return 0; 7266 7267 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7268 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7269 root_objectid, owner, offset, 7270 BTRFS_DROP_DELAYED_REF); 7271 7272 /* 7273 * tree log blocks never actually go into the extent allocation 7274 * tree, just update pinning info and exit early. 7275 */ 7276 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7277 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7278 /* unlocks the pinned mutex */ 7279 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7280 old_ref_mod = new_ref_mod = 0; 7281 ret = 0; 7282 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7283 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7284 num_bytes, parent, 7285 root_objectid, (int)owner, 7286 BTRFS_DROP_DELAYED_REF, NULL, 7287 &old_ref_mod, &new_ref_mod); 7288 } else { 7289 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7290 num_bytes, parent, 7291 root_objectid, owner, offset, 7292 0, BTRFS_DROP_DELAYED_REF, 7293 &old_ref_mod, &new_ref_mod); 7294 } 7295 7296 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7297 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7298 7299 return ret; 7300 } 7301 7302 /* 7303 * when we wait for progress in the block group caching, its because 7304 * our allocation attempt failed at least once. So, we must sleep 7305 * and let some progress happen before we try again. 7306 * 7307 * This function will sleep at least once waiting for new free space to 7308 * show up, and then it will check the block group free space numbers 7309 * for our min num_bytes. Another option is to have it go ahead 7310 * and look in the rbtree for a free extent of a given size, but this 7311 * is a good start. 7312 * 7313 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7314 * any of the information in this block group. 7315 */ 7316 static noinline void 7317 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7318 u64 num_bytes) 7319 { 7320 struct btrfs_caching_control *caching_ctl; 7321 7322 caching_ctl = get_caching_control(cache); 7323 if (!caching_ctl) 7324 return; 7325 7326 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7327 (cache->free_space_ctl->free_space >= num_bytes)); 7328 7329 put_caching_control(caching_ctl); 7330 } 7331 7332 static noinline int 7333 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7334 { 7335 struct btrfs_caching_control *caching_ctl; 7336 int ret = 0; 7337 7338 caching_ctl = get_caching_control(cache); 7339 if (!caching_ctl) 7340 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7341 7342 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7343 if (cache->cached == BTRFS_CACHE_ERROR) 7344 ret = -EIO; 7345 put_caching_control(caching_ctl); 7346 return ret; 7347 } 7348 7349 int __get_raid_index(u64 flags) 7350 { 7351 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7352 return BTRFS_RAID_RAID10; 7353 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7354 return BTRFS_RAID_RAID1; 7355 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7356 return BTRFS_RAID_DUP; 7357 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7358 return BTRFS_RAID_RAID0; 7359 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7360 return BTRFS_RAID_RAID5; 7361 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7362 return BTRFS_RAID_RAID6; 7363 7364 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7365 } 7366 7367 int get_block_group_index(struct btrfs_block_group_cache *cache) 7368 { 7369 return __get_raid_index(cache->flags); 7370 } 7371 7372 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7373 [BTRFS_RAID_RAID10] = "raid10", 7374 [BTRFS_RAID_RAID1] = "raid1", 7375 [BTRFS_RAID_DUP] = "dup", 7376 [BTRFS_RAID_RAID0] = "raid0", 7377 [BTRFS_RAID_SINGLE] = "single", 7378 [BTRFS_RAID_RAID5] = "raid5", 7379 [BTRFS_RAID_RAID6] = "raid6", 7380 }; 7381 7382 static const char *get_raid_name(enum btrfs_raid_types type) 7383 { 7384 if (type >= BTRFS_NR_RAID_TYPES) 7385 return NULL; 7386 7387 return btrfs_raid_type_names[type]; 7388 } 7389 7390 enum btrfs_loop_type { 7391 LOOP_CACHING_NOWAIT = 0, 7392 LOOP_CACHING_WAIT = 1, 7393 LOOP_ALLOC_CHUNK = 2, 7394 LOOP_NO_EMPTY_SIZE = 3, 7395 }; 7396 7397 static inline void 7398 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7399 int delalloc) 7400 { 7401 if (delalloc) 7402 down_read(&cache->data_rwsem); 7403 } 7404 7405 static inline void 7406 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7407 int delalloc) 7408 { 7409 btrfs_get_block_group(cache); 7410 if (delalloc) 7411 down_read(&cache->data_rwsem); 7412 } 7413 7414 static struct btrfs_block_group_cache * 7415 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7416 struct btrfs_free_cluster *cluster, 7417 int delalloc) 7418 { 7419 struct btrfs_block_group_cache *used_bg = NULL; 7420 7421 spin_lock(&cluster->refill_lock); 7422 while (1) { 7423 used_bg = cluster->block_group; 7424 if (!used_bg) 7425 return NULL; 7426 7427 if (used_bg == block_group) 7428 return used_bg; 7429 7430 btrfs_get_block_group(used_bg); 7431 7432 if (!delalloc) 7433 return used_bg; 7434 7435 if (down_read_trylock(&used_bg->data_rwsem)) 7436 return used_bg; 7437 7438 spin_unlock(&cluster->refill_lock); 7439 7440 /* We should only have one-level nested. */ 7441 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7442 7443 spin_lock(&cluster->refill_lock); 7444 if (used_bg == cluster->block_group) 7445 return used_bg; 7446 7447 up_read(&used_bg->data_rwsem); 7448 btrfs_put_block_group(used_bg); 7449 } 7450 } 7451 7452 static inline void 7453 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7454 int delalloc) 7455 { 7456 if (delalloc) 7457 up_read(&cache->data_rwsem); 7458 btrfs_put_block_group(cache); 7459 } 7460 7461 /* 7462 * walks the btree of allocated extents and find a hole of a given size. 7463 * The key ins is changed to record the hole: 7464 * ins->objectid == start position 7465 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7466 * ins->offset == the size of the hole. 7467 * Any available blocks before search_start are skipped. 7468 * 7469 * If there is no suitable free space, we will record the max size of 7470 * the free space extent currently. 7471 */ 7472 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7473 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7474 u64 hint_byte, struct btrfs_key *ins, 7475 u64 flags, int delalloc) 7476 { 7477 int ret = 0; 7478 struct btrfs_root *root = fs_info->extent_root; 7479 struct btrfs_free_cluster *last_ptr = NULL; 7480 struct btrfs_block_group_cache *block_group = NULL; 7481 u64 search_start = 0; 7482 u64 max_extent_size = 0; 7483 u64 empty_cluster = 0; 7484 struct btrfs_space_info *space_info; 7485 int loop = 0; 7486 int index = __get_raid_index(flags); 7487 bool failed_cluster_refill = false; 7488 bool failed_alloc = false; 7489 bool use_cluster = true; 7490 bool have_caching_bg = false; 7491 bool orig_have_caching_bg = false; 7492 bool full_search = false; 7493 7494 WARN_ON(num_bytes < fs_info->sectorsize); 7495 ins->type = BTRFS_EXTENT_ITEM_KEY; 7496 ins->objectid = 0; 7497 ins->offset = 0; 7498 7499 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7500 7501 space_info = __find_space_info(fs_info, flags); 7502 if (!space_info) { 7503 btrfs_err(fs_info, "No space info for %llu", flags); 7504 return -ENOSPC; 7505 } 7506 7507 /* 7508 * If our free space is heavily fragmented we may not be able to make 7509 * big contiguous allocations, so instead of doing the expensive search 7510 * for free space, simply return ENOSPC with our max_extent_size so we 7511 * can go ahead and search for a more manageable chunk. 7512 * 7513 * If our max_extent_size is large enough for our allocation simply 7514 * disable clustering since we will likely not be able to find enough 7515 * space to create a cluster and induce latency trying. 7516 */ 7517 if (unlikely(space_info->max_extent_size)) { 7518 spin_lock(&space_info->lock); 7519 if (space_info->max_extent_size && 7520 num_bytes > space_info->max_extent_size) { 7521 ins->offset = space_info->max_extent_size; 7522 spin_unlock(&space_info->lock); 7523 return -ENOSPC; 7524 } else if (space_info->max_extent_size) { 7525 use_cluster = false; 7526 } 7527 spin_unlock(&space_info->lock); 7528 } 7529 7530 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7531 if (last_ptr) { 7532 spin_lock(&last_ptr->lock); 7533 if (last_ptr->block_group) 7534 hint_byte = last_ptr->window_start; 7535 if (last_ptr->fragmented) { 7536 /* 7537 * We still set window_start so we can keep track of the 7538 * last place we found an allocation to try and save 7539 * some time. 7540 */ 7541 hint_byte = last_ptr->window_start; 7542 use_cluster = false; 7543 } 7544 spin_unlock(&last_ptr->lock); 7545 } 7546 7547 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7548 search_start = max(search_start, hint_byte); 7549 if (search_start == hint_byte) { 7550 block_group = btrfs_lookup_block_group(fs_info, search_start); 7551 /* 7552 * we don't want to use the block group if it doesn't match our 7553 * allocation bits, or if its not cached. 7554 * 7555 * However if we are re-searching with an ideal block group 7556 * picked out then we don't care that the block group is cached. 7557 */ 7558 if (block_group && block_group_bits(block_group, flags) && 7559 block_group->cached != BTRFS_CACHE_NO) { 7560 down_read(&space_info->groups_sem); 7561 if (list_empty(&block_group->list) || 7562 block_group->ro) { 7563 /* 7564 * someone is removing this block group, 7565 * we can't jump into the have_block_group 7566 * target because our list pointers are not 7567 * valid 7568 */ 7569 btrfs_put_block_group(block_group); 7570 up_read(&space_info->groups_sem); 7571 } else { 7572 index = get_block_group_index(block_group); 7573 btrfs_lock_block_group(block_group, delalloc); 7574 goto have_block_group; 7575 } 7576 } else if (block_group) { 7577 btrfs_put_block_group(block_group); 7578 } 7579 } 7580 search: 7581 have_caching_bg = false; 7582 if (index == 0 || index == __get_raid_index(flags)) 7583 full_search = true; 7584 down_read(&space_info->groups_sem); 7585 list_for_each_entry(block_group, &space_info->block_groups[index], 7586 list) { 7587 u64 offset; 7588 int cached; 7589 7590 /* If the block group is read-only, we can skip it entirely. */ 7591 if (unlikely(block_group->ro)) 7592 continue; 7593 7594 btrfs_grab_block_group(block_group, delalloc); 7595 search_start = block_group->key.objectid; 7596 7597 /* 7598 * this can happen if we end up cycling through all the 7599 * raid types, but we want to make sure we only allocate 7600 * for the proper type. 7601 */ 7602 if (!block_group_bits(block_group, flags)) { 7603 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7604 BTRFS_BLOCK_GROUP_RAID1 | 7605 BTRFS_BLOCK_GROUP_RAID5 | 7606 BTRFS_BLOCK_GROUP_RAID6 | 7607 BTRFS_BLOCK_GROUP_RAID10; 7608 7609 /* 7610 * if they asked for extra copies and this block group 7611 * doesn't provide them, bail. This does allow us to 7612 * fill raid0 from raid1. 7613 */ 7614 if ((flags & extra) && !(block_group->flags & extra)) 7615 goto loop; 7616 } 7617 7618 have_block_group: 7619 cached = block_group_cache_done(block_group); 7620 if (unlikely(!cached)) { 7621 have_caching_bg = true; 7622 ret = cache_block_group(block_group, 0); 7623 BUG_ON(ret < 0); 7624 ret = 0; 7625 } 7626 7627 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7628 goto loop; 7629 7630 /* 7631 * Ok we want to try and use the cluster allocator, so 7632 * lets look there 7633 */ 7634 if (last_ptr && use_cluster) { 7635 struct btrfs_block_group_cache *used_block_group; 7636 unsigned long aligned_cluster; 7637 /* 7638 * the refill lock keeps out other 7639 * people trying to start a new cluster 7640 */ 7641 used_block_group = btrfs_lock_cluster(block_group, 7642 last_ptr, 7643 delalloc); 7644 if (!used_block_group) 7645 goto refill_cluster; 7646 7647 if (used_block_group != block_group && 7648 (used_block_group->ro || 7649 !block_group_bits(used_block_group, flags))) 7650 goto release_cluster; 7651 7652 offset = btrfs_alloc_from_cluster(used_block_group, 7653 last_ptr, 7654 num_bytes, 7655 used_block_group->key.objectid, 7656 &max_extent_size); 7657 if (offset) { 7658 /* we have a block, we're done */ 7659 spin_unlock(&last_ptr->refill_lock); 7660 trace_btrfs_reserve_extent_cluster(fs_info, 7661 used_block_group, 7662 search_start, num_bytes); 7663 if (used_block_group != block_group) { 7664 btrfs_release_block_group(block_group, 7665 delalloc); 7666 block_group = used_block_group; 7667 } 7668 goto checks; 7669 } 7670 7671 WARN_ON(last_ptr->block_group != used_block_group); 7672 release_cluster: 7673 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7674 * set up a new clusters, so lets just skip it 7675 * and let the allocator find whatever block 7676 * it can find. If we reach this point, we 7677 * will have tried the cluster allocator 7678 * plenty of times and not have found 7679 * anything, so we are likely way too 7680 * fragmented for the clustering stuff to find 7681 * anything. 7682 * 7683 * However, if the cluster is taken from the 7684 * current block group, release the cluster 7685 * first, so that we stand a better chance of 7686 * succeeding in the unclustered 7687 * allocation. */ 7688 if (loop >= LOOP_NO_EMPTY_SIZE && 7689 used_block_group != block_group) { 7690 spin_unlock(&last_ptr->refill_lock); 7691 btrfs_release_block_group(used_block_group, 7692 delalloc); 7693 goto unclustered_alloc; 7694 } 7695 7696 /* 7697 * this cluster didn't work out, free it and 7698 * start over 7699 */ 7700 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7701 7702 if (used_block_group != block_group) 7703 btrfs_release_block_group(used_block_group, 7704 delalloc); 7705 refill_cluster: 7706 if (loop >= LOOP_NO_EMPTY_SIZE) { 7707 spin_unlock(&last_ptr->refill_lock); 7708 goto unclustered_alloc; 7709 } 7710 7711 aligned_cluster = max_t(unsigned long, 7712 empty_cluster + empty_size, 7713 block_group->full_stripe_len); 7714 7715 /* allocate a cluster in this block group */ 7716 ret = btrfs_find_space_cluster(fs_info, block_group, 7717 last_ptr, search_start, 7718 num_bytes, 7719 aligned_cluster); 7720 if (ret == 0) { 7721 /* 7722 * now pull our allocation out of this 7723 * cluster 7724 */ 7725 offset = btrfs_alloc_from_cluster(block_group, 7726 last_ptr, 7727 num_bytes, 7728 search_start, 7729 &max_extent_size); 7730 if (offset) { 7731 /* we found one, proceed */ 7732 spin_unlock(&last_ptr->refill_lock); 7733 trace_btrfs_reserve_extent_cluster(fs_info, 7734 block_group, search_start, 7735 num_bytes); 7736 goto checks; 7737 } 7738 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7739 && !failed_cluster_refill) { 7740 spin_unlock(&last_ptr->refill_lock); 7741 7742 failed_cluster_refill = true; 7743 wait_block_group_cache_progress(block_group, 7744 num_bytes + empty_cluster + empty_size); 7745 goto have_block_group; 7746 } 7747 7748 /* 7749 * at this point we either didn't find a cluster 7750 * or we weren't able to allocate a block from our 7751 * cluster. Free the cluster we've been trying 7752 * to use, and go to the next block group 7753 */ 7754 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7755 spin_unlock(&last_ptr->refill_lock); 7756 goto loop; 7757 } 7758 7759 unclustered_alloc: 7760 /* 7761 * We are doing an unclustered alloc, set the fragmented flag so 7762 * we don't bother trying to setup a cluster again until we get 7763 * more space. 7764 */ 7765 if (unlikely(last_ptr)) { 7766 spin_lock(&last_ptr->lock); 7767 last_ptr->fragmented = 1; 7768 spin_unlock(&last_ptr->lock); 7769 } 7770 if (cached) { 7771 struct btrfs_free_space_ctl *ctl = 7772 block_group->free_space_ctl; 7773 7774 spin_lock(&ctl->tree_lock); 7775 if (ctl->free_space < 7776 num_bytes + empty_cluster + empty_size) { 7777 if (ctl->free_space > max_extent_size) 7778 max_extent_size = ctl->free_space; 7779 spin_unlock(&ctl->tree_lock); 7780 goto loop; 7781 } 7782 spin_unlock(&ctl->tree_lock); 7783 } 7784 7785 offset = btrfs_find_space_for_alloc(block_group, search_start, 7786 num_bytes, empty_size, 7787 &max_extent_size); 7788 /* 7789 * If we didn't find a chunk, and we haven't failed on this 7790 * block group before, and this block group is in the middle of 7791 * caching and we are ok with waiting, then go ahead and wait 7792 * for progress to be made, and set failed_alloc to true. 7793 * 7794 * If failed_alloc is true then we've already waited on this 7795 * block group once and should move on to the next block group. 7796 */ 7797 if (!offset && !failed_alloc && !cached && 7798 loop > LOOP_CACHING_NOWAIT) { 7799 wait_block_group_cache_progress(block_group, 7800 num_bytes + empty_size); 7801 failed_alloc = true; 7802 goto have_block_group; 7803 } else if (!offset) { 7804 goto loop; 7805 } 7806 checks: 7807 search_start = ALIGN(offset, fs_info->stripesize); 7808 7809 /* move on to the next group */ 7810 if (search_start + num_bytes > 7811 block_group->key.objectid + block_group->key.offset) { 7812 btrfs_add_free_space(block_group, offset, num_bytes); 7813 goto loop; 7814 } 7815 7816 if (offset < search_start) 7817 btrfs_add_free_space(block_group, offset, 7818 search_start - offset); 7819 BUG_ON(offset > search_start); 7820 7821 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7822 num_bytes, delalloc); 7823 if (ret == -EAGAIN) { 7824 btrfs_add_free_space(block_group, offset, num_bytes); 7825 goto loop; 7826 } 7827 btrfs_inc_block_group_reservations(block_group); 7828 7829 /* we are all good, lets return */ 7830 ins->objectid = search_start; 7831 ins->offset = num_bytes; 7832 7833 trace_btrfs_reserve_extent(fs_info, block_group, 7834 search_start, num_bytes); 7835 btrfs_release_block_group(block_group, delalloc); 7836 break; 7837 loop: 7838 failed_cluster_refill = false; 7839 failed_alloc = false; 7840 BUG_ON(index != get_block_group_index(block_group)); 7841 btrfs_release_block_group(block_group, delalloc); 7842 cond_resched(); 7843 } 7844 up_read(&space_info->groups_sem); 7845 7846 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7847 && !orig_have_caching_bg) 7848 orig_have_caching_bg = true; 7849 7850 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7851 goto search; 7852 7853 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7854 goto search; 7855 7856 /* 7857 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7858 * caching kthreads as we move along 7859 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7860 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7861 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7862 * again 7863 */ 7864 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7865 index = 0; 7866 if (loop == LOOP_CACHING_NOWAIT) { 7867 /* 7868 * We want to skip the LOOP_CACHING_WAIT step if we 7869 * don't have any uncached bgs and we've already done a 7870 * full search through. 7871 */ 7872 if (orig_have_caching_bg || !full_search) 7873 loop = LOOP_CACHING_WAIT; 7874 else 7875 loop = LOOP_ALLOC_CHUNK; 7876 } else { 7877 loop++; 7878 } 7879 7880 if (loop == LOOP_ALLOC_CHUNK) { 7881 struct btrfs_trans_handle *trans; 7882 int exist = 0; 7883 7884 trans = current->journal_info; 7885 if (trans) 7886 exist = 1; 7887 else 7888 trans = btrfs_join_transaction(root); 7889 7890 if (IS_ERR(trans)) { 7891 ret = PTR_ERR(trans); 7892 goto out; 7893 } 7894 7895 ret = do_chunk_alloc(trans, fs_info, flags, 7896 CHUNK_ALLOC_FORCE); 7897 7898 /* 7899 * If we can't allocate a new chunk we've already looped 7900 * through at least once, move on to the NO_EMPTY_SIZE 7901 * case. 7902 */ 7903 if (ret == -ENOSPC) 7904 loop = LOOP_NO_EMPTY_SIZE; 7905 7906 /* 7907 * Do not bail out on ENOSPC since we 7908 * can do more things. 7909 */ 7910 if (ret < 0 && ret != -ENOSPC) 7911 btrfs_abort_transaction(trans, ret); 7912 else 7913 ret = 0; 7914 if (!exist) 7915 btrfs_end_transaction(trans); 7916 if (ret) 7917 goto out; 7918 } 7919 7920 if (loop == LOOP_NO_EMPTY_SIZE) { 7921 /* 7922 * Don't loop again if we already have no empty_size and 7923 * no empty_cluster. 7924 */ 7925 if (empty_size == 0 && 7926 empty_cluster == 0) { 7927 ret = -ENOSPC; 7928 goto out; 7929 } 7930 empty_size = 0; 7931 empty_cluster = 0; 7932 } 7933 7934 goto search; 7935 } else if (!ins->objectid) { 7936 ret = -ENOSPC; 7937 } else if (ins->objectid) { 7938 if (!use_cluster && last_ptr) { 7939 spin_lock(&last_ptr->lock); 7940 last_ptr->window_start = ins->objectid; 7941 spin_unlock(&last_ptr->lock); 7942 } 7943 ret = 0; 7944 } 7945 out: 7946 if (ret == -ENOSPC) { 7947 spin_lock(&space_info->lock); 7948 space_info->max_extent_size = max_extent_size; 7949 spin_unlock(&space_info->lock); 7950 ins->offset = max_extent_size; 7951 } 7952 return ret; 7953 } 7954 7955 static void dump_space_info(struct btrfs_fs_info *fs_info, 7956 struct btrfs_space_info *info, u64 bytes, 7957 int dump_block_groups) 7958 { 7959 struct btrfs_block_group_cache *cache; 7960 int index = 0; 7961 7962 spin_lock(&info->lock); 7963 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7964 info->flags, 7965 info->total_bytes - btrfs_space_info_used(info, true), 7966 info->full ? "" : "not "); 7967 btrfs_info(fs_info, 7968 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7969 info->total_bytes, info->bytes_used, info->bytes_pinned, 7970 info->bytes_reserved, info->bytes_may_use, 7971 info->bytes_readonly); 7972 spin_unlock(&info->lock); 7973 7974 if (!dump_block_groups) 7975 return; 7976 7977 down_read(&info->groups_sem); 7978 again: 7979 list_for_each_entry(cache, &info->block_groups[index], list) { 7980 spin_lock(&cache->lock); 7981 btrfs_info(fs_info, 7982 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7983 cache->key.objectid, cache->key.offset, 7984 btrfs_block_group_used(&cache->item), cache->pinned, 7985 cache->reserved, cache->ro ? "[readonly]" : ""); 7986 btrfs_dump_free_space(cache, bytes); 7987 spin_unlock(&cache->lock); 7988 } 7989 if (++index < BTRFS_NR_RAID_TYPES) 7990 goto again; 7991 up_read(&info->groups_sem); 7992 } 7993 7994 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7995 u64 num_bytes, u64 min_alloc_size, 7996 u64 empty_size, u64 hint_byte, 7997 struct btrfs_key *ins, int is_data, int delalloc) 7998 { 7999 struct btrfs_fs_info *fs_info = root->fs_info; 8000 bool final_tried = num_bytes == min_alloc_size; 8001 u64 flags; 8002 int ret; 8003 8004 flags = get_alloc_profile_by_root(root, is_data); 8005 again: 8006 WARN_ON(num_bytes < fs_info->sectorsize); 8007 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8008 hint_byte, ins, flags, delalloc); 8009 if (!ret && !is_data) { 8010 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8011 } else if (ret == -ENOSPC) { 8012 if (!final_tried && ins->offset) { 8013 num_bytes = min(num_bytes >> 1, ins->offset); 8014 num_bytes = round_down(num_bytes, 8015 fs_info->sectorsize); 8016 num_bytes = max(num_bytes, min_alloc_size); 8017 ram_bytes = num_bytes; 8018 if (num_bytes == min_alloc_size) 8019 final_tried = true; 8020 goto again; 8021 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8022 struct btrfs_space_info *sinfo; 8023 8024 sinfo = __find_space_info(fs_info, flags); 8025 btrfs_err(fs_info, 8026 "allocation failed flags %llu, wanted %llu", 8027 flags, num_bytes); 8028 if (sinfo) 8029 dump_space_info(fs_info, sinfo, num_bytes, 1); 8030 } 8031 } 8032 8033 return ret; 8034 } 8035 8036 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8037 u64 start, u64 len, 8038 int pin, int delalloc) 8039 { 8040 struct btrfs_block_group_cache *cache; 8041 int ret = 0; 8042 8043 cache = btrfs_lookup_block_group(fs_info, start); 8044 if (!cache) { 8045 btrfs_err(fs_info, "Unable to find block group for %llu", 8046 start); 8047 return -ENOSPC; 8048 } 8049 8050 if (pin) 8051 pin_down_extent(fs_info, cache, start, len, 1); 8052 else { 8053 if (btrfs_test_opt(fs_info, DISCARD)) 8054 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8055 btrfs_add_free_space(cache, start, len); 8056 btrfs_free_reserved_bytes(cache, len, delalloc); 8057 trace_btrfs_reserved_extent_free(fs_info, start, len); 8058 } 8059 8060 btrfs_put_block_group(cache); 8061 return ret; 8062 } 8063 8064 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8065 u64 start, u64 len, int delalloc) 8066 { 8067 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8068 } 8069 8070 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8071 u64 start, u64 len) 8072 { 8073 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8074 } 8075 8076 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8077 struct btrfs_fs_info *fs_info, 8078 u64 parent, u64 root_objectid, 8079 u64 flags, u64 owner, u64 offset, 8080 struct btrfs_key *ins, int ref_mod) 8081 { 8082 int ret; 8083 struct btrfs_extent_item *extent_item; 8084 struct btrfs_extent_inline_ref *iref; 8085 struct btrfs_path *path; 8086 struct extent_buffer *leaf; 8087 int type; 8088 u32 size; 8089 8090 if (parent > 0) 8091 type = BTRFS_SHARED_DATA_REF_KEY; 8092 else 8093 type = BTRFS_EXTENT_DATA_REF_KEY; 8094 8095 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8096 8097 path = btrfs_alloc_path(); 8098 if (!path) 8099 return -ENOMEM; 8100 8101 path->leave_spinning = 1; 8102 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8103 ins, size); 8104 if (ret) { 8105 btrfs_free_path(path); 8106 return ret; 8107 } 8108 8109 leaf = path->nodes[0]; 8110 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8111 struct btrfs_extent_item); 8112 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8113 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8114 btrfs_set_extent_flags(leaf, extent_item, 8115 flags | BTRFS_EXTENT_FLAG_DATA); 8116 8117 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8118 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8119 if (parent > 0) { 8120 struct btrfs_shared_data_ref *ref; 8121 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8122 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8123 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8124 } else { 8125 struct btrfs_extent_data_ref *ref; 8126 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8127 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8128 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8129 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8130 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8131 } 8132 8133 btrfs_mark_buffer_dirty(path->nodes[0]); 8134 btrfs_free_path(path); 8135 8136 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8137 ins->offset); 8138 if (ret) 8139 return ret; 8140 8141 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8142 if (ret) { /* -ENOENT, logic error */ 8143 btrfs_err(fs_info, "update block group failed for %llu %llu", 8144 ins->objectid, ins->offset); 8145 BUG(); 8146 } 8147 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8148 return ret; 8149 } 8150 8151 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8152 struct btrfs_fs_info *fs_info, 8153 u64 parent, u64 root_objectid, 8154 u64 flags, struct btrfs_disk_key *key, 8155 int level, struct btrfs_key *ins) 8156 { 8157 int ret; 8158 struct btrfs_extent_item *extent_item; 8159 struct btrfs_tree_block_info *block_info; 8160 struct btrfs_extent_inline_ref *iref; 8161 struct btrfs_path *path; 8162 struct extent_buffer *leaf; 8163 u32 size = sizeof(*extent_item) + sizeof(*iref); 8164 u64 num_bytes = ins->offset; 8165 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8166 8167 if (!skinny_metadata) 8168 size += sizeof(*block_info); 8169 8170 path = btrfs_alloc_path(); 8171 if (!path) { 8172 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8173 fs_info->nodesize); 8174 return -ENOMEM; 8175 } 8176 8177 path->leave_spinning = 1; 8178 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8179 ins, size); 8180 if (ret) { 8181 btrfs_free_path(path); 8182 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8183 fs_info->nodesize); 8184 return ret; 8185 } 8186 8187 leaf = path->nodes[0]; 8188 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8189 struct btrfs_extent_item); 8190 btrfs_set_extent_refs(leaf, extent_item, 1); 8191 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8192 btrfs_set_extent_flags(leaf, extent_item, 8193 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8194 8195 if (skinny_metadata) { 8196 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8197 num_bytes = fs_info->nodesize; 8198 } else { 8199 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8200 btrfs_set_tree_block_key(leaf, block_info, key); 8201 btrfs_set_tree_block_level(leaf, block_info, level); 8202 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8203 } 8204 8205 if (parent > 0) { 8206 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8207 btrfs_set_extent_inline_ref_type(leaf, iref, 8208 BTRFS_SHARED_BLOCK_REF_KEY); 8209 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8210 } else { 8211 btrfs_set_extent_inline_ref_type(leaf, iref, 8212 BTRFS_TREE_BLOCK_REF_KEY); 8213 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8214 } 8215 8216 btrfs_mark_buffer_dirty(leaf); 8217 btrfs_free_path(path); 8218 8219 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8220 num_bytes); 8221 if (ret) 8222 return ret; 8223 8224 ret = update_block_group(trans, fs_info, ins->objectid, 8225 fs_info->nodesize, 1); 8226 if (ret) { /* -ENOENT, logic error */ 8227 btrfs_err(fs_info, "update block group failed for %llu %llu", 8228 ins->objectid, ins->offset); 8229 BUG(); 8230 } 8231 8232 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8233 fs_info->nodesize); 8234 return ret; 8235 } 8236 8237 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8238 struct btrfs_root *root, u64 owner, 8239 u64 offset, u64 ram_bytes, 8240 struct btrfs_key *ins) 8241 { 8242 struct btrfs_fs_info *fs_info = root->fs_info; 8243 int ret; 8244 8245 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8246 8247 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8248 root->root_key.objectid, owner, offset, 8249 BTRFS_ADD_DELAYED_EXTENT); 8250 8251 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8252 ins->offset, 0, 8253 root->root_key.objectid, owner, 8254 offset, ram_bytes, 8255 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8256 return ret; 8257 } 8258 8259 /* 8260 * this is used by the tree logging recovery code. It records that 8261 * an extent has been allocated and makes sure to clear the free 8262 * space cache bits as well 8263 */ 8264 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8265 struct btrfs_fs_info *fs_info, 8266 u64 root_objectid, u64 owner, u64 offset, 8267 struct btrfs_key *ins) 8268 { 8269 int ret; 8270 struct btrfs_block_group_cache *block_group; 8271 struct btrfs_space_info *space_info; 8272 8273 /* 8274 * Mixed block groups will exclude before processing the log so we only 8275 * need to do the exclude dance if this fs isn't mixed. 8276 */ 8277 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8278 ret = __exclude_logged_extent(fs_info, ins->objectid, 8279 ins->offset); 8280 if (ret) 8281 return ret; 8282 } 8283 8284 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8285 if (!block_group) 8286 return -EINVAL; 8287 8288 space_info = block_group->space_info; 8289 spin_lock(&space_info->lock); 8290 spin_lock(&block_group->lock); 8291 space_info->bytes_reserved += ins->offset; 8292 block_group->reserved += ins->offset; 8293 spin_unlock(&block_group->lock); 8294 spin_unlock(&space_info->lock); 8295 8296 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8297 0, owner, offset, ins, 1); 8298 btrfs_put_block_group(block_group); 8299 return ret; 8300 } 8301 8302 static struct extent_buffer * 8303 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8304 u64 bytenr, int level) 8305 { 8306 struct btrfs_fs_info *fs_info = root->fs_info; 8307 struct extent_buffer *buf; 8308 8309 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8310 if (IS_ERR(buf)) 8311 return buf; 8312 8313 btrfs_set_header_generation(buf, trans->transid); 8314 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8315 btrfs_tree_lock(buf); 8316 clean_tree_block(fs_info, buf); 8317 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8318 8319 btrfs_set_lock_blocking(buf); 8320 set_extent_buffer_uptodate(buf); 8321 8322 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8323 buf->log_index = root->log_transid % 2; 8324 /* 8325 * we allow two log transactions at a time, use different 8326 * EXENT bit to differentiate dirty pages. 8327 */ 8328 if (buf->log_index == 0) 8329 set_extent_dirty(&root->dirty_log_pages, buf->start, 8330 buf->start + buf->len - 1, GFP_NOFS); 8331 else 8332 set_extent_new(&root->dirty_log_pages, buf->start, 8333 buf->start + buf->len - 1); 8334 } else { 8335 buf->log_index = -1; 8336 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8337 buf->start + buf->len - 1, GFP_NOFS); 8338 } 8339 trans->dirty = true; 8340 /* this returns a buffer locked for blocking */ 8341 return buf; 8342 } 8343 8344 static struct btrfs_block_rsv * 8345 use_block_rsv(struct btrfs_trans_handle *trans, 8346 struct btrfs_root *root, u32 blocksize) 8347 { 8348 struct btrfs_fs_info *fs_info = root->fs_info; 8349 struct btrfs_block_rsv *block_rsv; 8350 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8351 int ret; 8352 bool global_updated = false; 8353 8354 block_rsv = get_block_rsv(trans, root); 8355 8356 if (unlikely(block_rsv->size == 0)) 8357 goto try_reserve; 8358 again: 8359 ret = block_rsv_use_bytes(block_rsv, blocksize); 8360 if (!ret) 8361 return block_rsv; 8362 8363 if (block_rsv->failfast) 8364 return ERR_PTR(ret); 8365 8366 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8367 global_updated = true; 8368 update_global_block_rsv(fs_info); 8369 goto again; 8370 } 8371 8372 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8373 static DEFINE_RATELIMIT_STATE(_rs, 8374 DEFAULT_RATELIMIT_INTERVAL * 10, 8375 /*DEFAULT_RATELIMIT_BURST*/ 1); 8376 if (__ratelimit(&_rs)) 8377 WARN(1, KERN_DEBUG 8378 "BTRFS: block rsv returned %d\n", ret); 8379 } 8380 try_reserve: 8381 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8382 BTRFS_RESERVE_NO_FLUSH); 8383 if (!ret) 8384 return block_rsv; 8385 /* 8386 * If we couldn't reserve metadata bytes try and use some from 8387 * the global reserve if its space type is the same as the global 8388 * reservation. 8389 */ 8390 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8391 block_rsv->space_info == global_rsv->space_info) { 8392 ret = block_rsv_use_bytes(global_rsv, blocksize); 8393 if (!ret) 8394 return global_rsv; 8395 } 8396 return ERR_PTR(ret); 8397 } 8398 8399 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8400 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8401 { 8402 block_rsv_add_bytes(block_rsv, blocksize, 0); 8403 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8404 } 8405 8406 /* 8407 * finds a free extent and does all the dirty work required for allocation 8408 * returns the tree buffer or an ERR_PTR on error. 8409 */ 8410 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8411 struct btrfs_root *root, 8412 u64 parent, u64 root_objectid, 8413 const struct btrfs_disk_key *key, 8414 int level, u64 hint, 8415 u64 empty_size) 8416 { 8417 struct btrfs_fs_info *fs_info = root->fs_info; 8418 struct btrfs_key ins; 8419 struct btrfs_block_rsv *block_rsv; 8420 struct extent_buffer *buf; 8421 struct btrfs_delayed_extent_op *extent_op; 8422 u64 flags = 0; 8423 int ret; 8424 u32 blocksize = fs_info->nodesize; 8425 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8426 8427 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8428 if (btrfs_is_testing(fs_info)) { 8429 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8430 level); 8431 if (!IS_ERR(buf)) 8432 root->alloc_bytenr += blocksize; 8433 return buf; 8434 } 8435 #endif 8436 8437 block_rsv = use_block_rsv(trans, root, blocksize); 8438 if (IS_ERR(block_rsv)) 8439 return ERR_CAST(block_rsv); 8440 8441 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8442 empty_size, hint, &ins, 0, 0); 8443 if (ret) 8444 goto out_unuse; 8445 8446 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8447 if (IS_ERR(buf)) { 8448 ret = PTR_ERR(buf); 8449 goto out_free_reserved; 8450 } 8451 8452 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8453 if (parent == 0) 8454 parent = ins.objectid; 8455 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8456 } else 8457 BUG_ON(parent > 0); 8458 8459 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8460 extent_op = btrfs_alloc_delayed_extent_op(); 8461 if (!extent_op) { 8462 ret = -ENOMEM; 8463 goto out_free_buf; 8464 } 8465 if (key) 8466 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8467 else 8468 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8469 extent_op->flags_to_set = flags; 8470 extent_op->update_key = skinny_metadata ? false : true; 8471 extent_op->update_flags = true; 8472 extent_op->is_data = false; 8473 extent_op->level = level; 8474 8475 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8476 root_objectid, level, 0, 8477 BTRFS_ADD_DELAYED_EXTENT); 8478 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8479 ins.offset, parent, 8480 root_objectid, level, 8481 BTRFS_ADD_DELAYED_EXTENT, 8482 extent_op, NULL, NULL); 8483 if (ret) 8484 goto out_free_delayed; 8485 } 8486 return buf; 8487 8488 out_free_delayed: 8489 btrfs_free_delayed_extent_op(extent_op); 8490 out_free_buf: 8491 free_extent_buffer(buf); 8492 out_free_reserved: 8493 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8494 out_unuse: 8495 unuse_block_rsv(fs_info, block_rsv, blocksize); 8496 return ERR_PTR(ret); 8497 } 8498 8499 struct walk_control { 8500 u64 refs[BTRFS_MAX_LEVEL]; 8501 u64 flags[BTRFS_MAX_LEVEL]; 8502 struct btrfs_key update_progress; 8503 int stage; 8504 int level; 8505 int shared_level; 8506 int update_ref; 8507 int keep_locks; 8508 int reada_slot; 8509 int reada_count; 8510 int for_reloc; 8511 }; 8512 8513 #define DROP_REFERENCE 1 8514 #define UPDATE_BACKREF 2 8515 8516 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8517 struct btrfs_root *root, 8518 struct walk_control *wc, 8519 struct btrfs_path *path) 8520 { 8521 struct btrfs_fs_info *fs_info = root->fs_info; 8522 u64 bytenr; 8523 u64 generation; 8524 u64 refs; 8525 u64 flags; 8526 u32 nritems; 8527 struct btrfs_key key; 8528 struct extent_buffer *eb; 8529 int ret; 8530 int slot; 8531 int nread = 0; 8532 8533 if (path->slots[wc->level] < wc->reada_slot) { 8534 wc->reada_count = wc->reada_count * 2 / 3; 8535 wc->reada_count = max(wc->reada_count, 2); 8536 } else { 8537 wc->reada_count = wc->reada_count * 3 / 2; 8538 wc->reada_count = min_t(int, wc->reada_count, 8539 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8540 } 8541 8542 eb = path->nodes[wc->level]; 8543 nritems = btrfs_header_nritems(eb); 8544 8545 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8546 if (nread >= wc->reada_count) 8547 break; 8548 8549 cond_resched(); 8550 bytenr = btrfs_node_blockptr(eb, slot); 8551 generation = btrfs_node_ptr_generation(eb, slot); 8552 8553 if (slot == path->slots[wc->level]) 8554 goto reada; 8555 8556 if (wc->stage == UPDATE_BACKREF && 8557 generation <= root->root_key.offset) 8558 continue; 8559 8560 /* We don't lock the tree block, it's OK to be racy here */ 8561 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8562 wc->level - 1, 1, &refs, 8563 &flags); 8564 /* We don't care about errors in readahead. */ 8565 if (ret < 0) 8566 continue; 8567 BUG_ON(refs == 0); 8568 8569 if (wc->stage == DROP_REFERENCE) { 8570 if (refs == 1) 8571 goto reada; 8572 8573 if (wc->level == 1 && 8574 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8575 continue; 8576 if (!wc->update_ref || 8577 generation <= root->root_key.offset) 8578 continue; 8579 btrfs_node_key_to_cpu(eb, &key, slot); 8580 ret = btrfs_comp_cpu_keys(&key, 8581 &wc->update_progress); 8582 if (ret < 0) 8583 continue; 8584 } else { 8585 if (wc->level == 1 && 8586 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8587 continue; 8588 } 8589 reada: 8590 readahead_tree_block(fs_info, bytenr); 8591 nread++; 8592 } 8593 wc->reada_slot = slot; 8594 } 8595 8596 /* 8597 * helper to process tree block while walking down the tree. 8598 * 8599 * when wc->stage == UPDATE_BACKREF, this function updates 8600 * back refs for pointers in the block. 8601 * 8602 * NOTE: return value 1 means we should stop walking down. 8603 */ 8604 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8605 struct btrfs_root *root, 8606 struct btrfs_path *path, 8607 struct walk_control *wc, int lookup_info) 8608 { 8609 struct btrfs_fs_info *fs_info = root->fs_info; 8610 int level = wc->level; 8611 struct extent_buffer *eb = path->nodes[level]; 8612 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8613 int ret; 8614 8615 if (wc->stage == UPDATE_BACKREF && 8616 btrfs_header_owner(eb) != root->root_key.objectid) 8617 return 1; 8618 8619 /* 8620 * when reference count of tree block is 1, it won't increase 8621 * again. once full backref flag is set, we never clear it. 8622 */ 8623 if (lookup_info && 8624 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8625 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8626 BUG_ON(!path->locks[level]); 8627 ret = btrfs_lookup_extent_info(trans, fs_info, 8628 eb->start, level, 1, 8629 &wc->refs[level], 8630 &wc->flags[level]); 8631 BUG_ON(ret == -ENOMEM); 8632 if (ret) 8633 return ret; 8634 BUG_ON(wc->refs[level] == 0); 8635 } 8636 8637 if (wc->stage == DROP_REFERENCE) { 8638 if (wc->refs[level] > 1) 8639 return 1; 8640 8641 if (path->locks[level] && !wc->keep_locks) { 8642 btrfs_tree_unlock_rw(eb, path->locks[level]); 8643 path->locks[level] = 0; 8644 } 8645 return 0; 8646 } 8647 8648 /* wc->stage == UPDATE_BACKREF */ 8649 if (!(wc->flags[level] & flag)) { 8650 BUG_ON(!path->locks[level]); 8651 ret = btrfs_inc_ref(trans, root, eb, 1); 8652 BUG_ON(ret); /* -ENOMEM */ 8653 ret = btrfs_dec_ref(trans, root, eb, 0); 8654 BUG_ON(ret); /* -ENOMEM */ 8655 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8656 eb->len, flag, 8657 btrfs_header_level(eb), 0); 8658 BUG_ON(ret); /* -ENOMEM */ 8659 wc->flags[level] |= flag; 8660 } 8661 8662 /* 8663 * the block is shared by multiple trees, so it's not good to 8664 * keep the tree lock 8665 */ 8666 if (path->locks[level] && level > 0) { 8667 btrfs_tree_unlock_rw(eb, path->locks[level]); 8668 path->locks[level] = 0; 8669 } 8670 return 0; 8671 } 8672 8673 /* 8674 * helper to process tree block pointer. 8675 * 8676 * when wc->stage == DROP_REFERENCE, this function checks 8677 * reference count of the block pointed to. if the block 8678 * is shared and we need update back refs for the subtree 8679 * rooted at the block, this function changes wc->stage to 8680 * UPDATE_BACKREF. if the block is shared and there is no 8681 * need to update back, this function drops the reference 8682 * to the block. 8683 * 8684 * NOTE: return value 1 means we should stop walking down. 8685 */ 8686 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8687 struct btrfs_root *root, 8688 struct btrfs_path *path, 8689 struct walk_control *wc, int *lookup_info) 8690 { 8691 struct btrfs_fs_info *fs_info = root->fs_info; 8692 u64 bytenr; 8693 u64 generation; 8694 u64 parent; 8695 u32 blocksize; 8696 struct btrfs_key key; 8697 struct extent_buffer *next; 8698 int level = wc->level; 8699 int reada = 0; 8700 int ret = 0; 8701 bool need_account = false; 8702 8703 generation = btrfs_node_ptr_generation(path->nodes[level], 8704 path->slots[level]); 8705 /* 8706 * if the lower level block was created before the snapshot 8707 * was created, we know there is no need to update back refs 8708 * for the subtree 8709 */ 8710 if (wc->stage == UPDATE_BACKREF && 8711 generation <= root->root_key.offset) { 8712 *lookup_info = 1; 8713 return 1; 8714 } 8715 8716 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8717 blocksize = fs_info->nodesize; 8718 8719 next = find_extent_buffer(fs_info, bytenr); 8720 if (!next) { 8721 next = btrfs_find_create_tree_block(fs_info, bytenr); 8722 if (IS_ERR(next)) 8723 return PTR_ERR(next); 8724 8725 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8726 level - 1); 8727 reada = 1; 8728 } 8729 btrfs_tree_lock(next); 8730 btrfs_set_lock_blocking(next); 8731 8732 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8733 &wc->refs[level - 1], 8734 &wc->flags[level - 1]); 8735 if (ret < 0) 8736 goto out_unlock; 8737 8738 if (unlikely(wc->refs[level - 1] == 0)) { 8739 btrfs_err(fs_info, "Missing references."); 8740 ret = -EIO; 8741 goto out_unlock; 8742 } 8743 *lookup_info = 0; 8744 8745 if (wc->stage == DROP_REFERENCE) { 8746 if (wc->refs[level - 1] > 1) { 8747 need_account = true; 8748 if (level == 1 && 8749 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8750 goto skip; 8751 8752 if (!wc->update_ref || 8753 generation <= root->root_key.offset) 8754 goto skip; 8755 8756 btrfs_node_key_to_cpu(path->nodes[level], &key, 8757 path->slots[level]); 8758 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8759 if (ret < 0) 8760 goto skip; 8761 8762 wc->stage = UPDATE_BACKREF; 8763 wc->shared_level = level - 1; 8764 } 8765 } else { 8766 if (level == 1 && 8767 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8768 goto skip; 8769 } 8770 8771 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8772 btrfs_tree_unlock(next); 8773 free_extent_buffer(next); 8774 next = NULL; 8775 *lookup_info = 1; 8776 } 8777 8778 if (!next) { 8779 if (reada && level == 1) 8780 reada_walk_down(trans, root, wc, path); 8781 next = read_tree_block(fs_info, bytenr, generation); 8782 if (IS_ERR(next)) { 8783 return PTR_ERR(next); 8784 } else if (!extent_buffer_uptodate(next)) { 8785 free_extent_buffer(next); 8786 return -EIO; 8787 } 8788 btrfs_tree_lock(next); 8789 btrfs_set_lock_blocking(next); 8790 } 8791 8792 level--; 8793 ASSERT(level == btrfs_header_level(next)); 8794 if (level != btrfs_header_level(next)) { 8795 btrfs_err(root->fs_info, "mismatched level"); 8796 ret = -EIO; 8797 goto out_unlock; 8798 } 8799 path->nodes[level] = next; 8800 path->slots[level] = 0; 8801 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8802 wc->level = level; 8803 if (wc->level == 1) 8804 wc->reada_slot = 0; 8805 return 0; 8806 skip: 8807 wc->refs[level - 1] = 0; 8808 wc->flags[level - 1] = 0; 8809 if (wc->stage == DROP_REFERENCE) { 8810 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8811 parent = path->nodes[level]->start; 8812 } else { 8813 ASSERT(root->root_key.objectid == 8814 btrfs_header_owner(path->nodes[level])); 8815 if (root->root_key.objectid != 8816 btrfs_header_owner(path->nodes[level])) { 8817 btrfs_err(root->fs_info, 8818 "mismatched block owner"); 8819 ret = -EIO; 8820 goto out_unlock; 8821 } 8822 parent = 0; 8823 } 8824 8825 if (need_account) { 8826 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8827 generation, level - 1); 8828 if (ret) { 8829 btrfs_err_rl(fs_info, 8830 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8831 ret); 8832 } 8833 } 8834 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8835 parent, root->root_key.objectid, 8836 level - 1, 0); 8837 if (ret) 8838 goto out_unlock; 8839 } 8840 8841 *lookup_info = 1; 8842 ret = 1; 8843 8844 out_unlock: 8845 btrfs_tree_unlock(next); 8846 free_extent_buffer(next); 8847 8848 return ret; 8849 } 8850 8851 /* 8852 * helper to process tree block while walking up the tree. 8853 * 8854 * when wc->stage == DROP_REFERENCE, this function drops 8855 * reference count on the block. 8856 * 8857 * when wc->stage == UPDATE_BACKREF, this function changes 8858 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8859 * to UPDATE_BACKREF previously while processing the block. 8860 * 8861 * NOTE: return value 1 means we should stop walking up. 8862 */ 8863 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8864 struct btrfs_root *root, 8865 struct btrfs_path *path, 8866 struct walk_control *wc) 8867 { 8868 struct btrfs_fs_info *fs_info = root->fs_info; 8869 int ret; 8870 int level = wc->level; 8871 struct extent_buffer *eb = path->nodes[level]; 8872 u64 parent = 0; 8873 8874 if (wc->stage == UPDATE_BACKREF) { 8875 BUG_ON(wc->shared_level < level); 8876 if (level < wc->shared_level) 8877 goto out; 8878 8879 ret = find_next_key(path, level + 1, &wc->update_progress); 8880 if (ret > 0) 8881 wc->update_ref = 0; 8882 8883 wc->stage = DROP_REFERENCE; 8884 wc->shared_level = -1; 8885 path->slots[level] = 0; 8886 8887 /* 8888 * check reference count again if the block isn't locked. 8889 * we should start walking down the tree again if reference 8890 * count is one. 8891 */ 8892 if (!path->locks[level]) { 8893 BUG_ON(level == 0); 8894 btrfs_tree_lock(eb); 8895 btrfs_set_lock_blocking(eb); 8896 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8897 8898 ret = btrfs_lookup_extent_info(trans, fs_info, 8899 eb->start, level, 1, 8900 &wc->refs[level], 8901 &wc->flags[level]); 8902 if (ret < 0) { 8903 btrfs_tree_unlock_rw(eb, path->locks[level]); 8904 path->locks[level] = 0; 8905 return ret; 8906 } 8907 BUG_ON(wc->refs[level] == 0); 8908 if (wc->refs[level] == 1) { 8909 btrfs_tree_unlock_rw(eb, path->locks[level]); 8910 path->locks[level] = 0; 8911 return 1; 8912 } 8913 } 8914 } 8915 8916 /* wc->stage == DROP_REFERENCE */ 8917 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8918 8919 if (wc->refs[level] == 1) { 8920 if (level == 0) { 8921 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8922 ret = btrfs_dec_ref(trans, root, eb, 1); 8923 else 8924 ret = btrfs_dec_ref(trans, root, eb, 0); 8925 BUG_ON(ret); /* -ENOMEM */ 8926 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8927 if (ret) { 8928 btrfs_err_rl(fs_info, 8929 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8930 ret); 8931 } 8932 } 8933 /* make block locked assertion in clean_tree_block happy */ 8934 if (!path->locks[level] && 8935 btrfs_header_generation(eb) == trans->transid) { 8936 btrfs_tree_lock(eb); 8937 btrfs_set_lock_blocking(eb); 8938 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8939 } 8940 clean_tree_block(fs_info, eb); 8941 } 8942 8943 if (eb == root->node) { 8944 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8945 parent = eb->start; 8946 else 8947 BUG_ON(root->root_key.objectid != 8948 btrfs_header_owner(eb)); 8949 } else { 8950 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8951 parent = path->nodes[level + 1]->start; 8952 else 8953 BUG_ON(root->root_key.objectid != 8954 btrfs_header_owner(path->nodes[level + 1])); 8955 } 8956 8957 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8958 out: 8959 wc->refs[level] = 0; 8960 wc->flags[level] = 0; 8961 return 0; 8962 } 8963 8964 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8965 struct btrfs_root *root, 8966 struct btrfs_path *path, 8967 struct walk_control *wc) 8968 { 8969 int level = wc->level; 8970 int lookup_info = 1; 8971 int ret; 8972 8973 while (level >= 0) { 8974 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8975 if (ret > 0) 8976 break; 8977 8978 if (level == 0) 8979 break; 8980 8981 if (path->slots[level] >= 8982 btrfs_header_nritems(path->nodes[level])) 8983 break; 8984 8985 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8986 if (ret > 0) { 8987 path->slots[level]++; 8988 continue; 8989 } else if (ret < 0) 8990 return ret; 8991 level = wc->level; 8992 } 8993 return 0; 8994 } 8995 8996 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8997 struct btrfs_root *root, 8998 struct btrfs_path *path, 8999 struct walk_control *wc, int max_level) 9000 { 9001 int level = wc->level; 9002 int ret; 9003 9004 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9005 while (level < max_level && path->nodes[level]) { 9006 wc->level = level; 9007 if (path->slots[level] + 1 < 9008 btrfs_header_nritems(path->nodes[level])) { 9009 path->slots[level]++; 9010 return 0; 9011 } else { 9012 ret = walk_up_proc(trans, root, path, wc); 9013 if (ret > 0) 9014 return 0; 9015 9016 if (path->locks[level]) { 9017 btrfs_tree_unlock_rw(path->nodes[level], 9018 path->locks[level]); 9019 path->locks[level] = 0; 9020 } 9021 free_extent_buffer(path->nodes[level]); 9022 path->nodes[level] = NULL; 9023 level++; 9024 } 9025 } 9026 return 1; 9027 } 9028 9029 /* 9030 * drop a subvolume tree. 9031 * 9032 * this function traverses the tree freeing any blocks that only 9033 * referenced by the tree. 9034 * 9035 * when a shared tree block is found. this function decreases its 9036 * reference count by one. if update_ref is true, this function 9037 * also make sure backrefs for the shared block and all lower level 9038 * blocks are properly updated. 9039 * 9040 * If called with for_reloc == 0, may exit early with -EAGAIN 9041 */ 9042 int btrfs_drop_snapshot(struct btrfs_root *root, 9043 struct btrfs_block_rsv *block_rsv, int update_ref, 9044 int for_reloc) 9045 { 9046 struct btrfs_fs_info *fs_info = root->fs_info; 9047 struct btrfs_path *path; 9048 struct btrfs_trans_handle *trans; 9049 struct btrfs_root *tree_root = fs_info->tree_root; 9050 struct btrfs_root_item *root_item = &root->root_item; 9051 struct walk_control *wc; 9052 struct btrfs_key key; 9053 int err = 0; 9054 int ret; 9055 int level; 9056 bool root_dropped = false; 9057 9058 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9059 9060 path = btrfs_alloc_path(); 9061 if (!path) { 9062 err = -ENOMEM; 9063 goto out; 9064 } 9065 9066 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9067 if (!wc) { 9068 btrfs_free_path(path); 9069 err = -ENOMEM; 9070 goto out; 9071 } 9072 9073 trans = btrfs_start_transaction(tree_root, 0); 9074 if (IS_ERR(trans)) { 9075 err = PTR_ERR(trans); 9076 goto out_free; 9077 } 9078 9079 if (block_rsv) 9080 trans->block_rsv = block_rsv; 9081 9082 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9083 level = btrfs_header_level(root->node); 9084 path->nodes[level] = btrfs_lock_root_node(root); 9085 btrfs_set_lock_blocking(path->nodes[level]); 9086 path->slots[level] = 0; 9087 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9088 memset(&wc->update_progress, 0, 9089 sizeof(wc->update_progress)); 9090 } else { 9091 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9092 memcpy(&wc->update_progress, &key, 9093 sizeof(wc->update_progress)); 9094 9095 level = root_item->drop_level; 9096 BUG_ON(level == 0); 9097 path->lowest_level = level; 9098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9099 path->lowest_level = 0; 9100 if (ret < 0) { 9101 err = ret; 9102 goto out_end_trans; 9103 } 9104 WARN_ON(ret > 0); 9105 9106 /* 9107 * unlock our path, this is safe because only this 9108 * function is allowed to delete this snapshot 9109 */ 9110 btrfs_unlock_up_safe(path, 0); 9111 9112 level = btrfs_header_level(root->node); 9113 while (1) { 9114 btrfs_tree_lock(path->nodes[level]); 9115 btrfs_set_lock_blocking(path->nodes[level]); 9116 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9117 9118 ret = btrfs_lookup_extent_info(trans, fs_info, 9119 path->nodes[level]->start, 9120 level, 1, &wc->refs[level], 9121 &wc->flags[level]); 9122 if (ret < 0) { 9123 err = ret; 9124 goto out_end_trans; 9125 } 9126 BUG_ON(wc->refs[level] == 0); 9127 9128 if (level == root_item->drop_level) 9129 break; 9130 9131 btrfs_tree_unlock(path->nodes[level]); 9132 path->locks[level] = 0; 9133 WARN_ON(wc->refs[level] != 1); 9134 level--; 9135 } 9136 } 9137 9138 wc->level = level; 9139 wc->shared_level = -1; 9140 wc->stage = DROP_REFERENCE; 9141 wc->update_ref = update_ref; 9142 wc->keep_locks = 0; 9143 wc->for_reloc = for_reloc; 9144 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9145 9146 while (1) { 9147 9148 ret = walk_down_tree(trans, root, path, wc); 9149 if (ret < 0) { 9150 err = ret; 9151 break; 9152 } 9153 9154 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9155 if (ret < 0) { 9156 err = ret; 9157 break; 9158 } 9159 9160 if (ret > 0) { 9161 BUG_ON(wc->stage != DROP_REFERENCE); 9162 break; 9163 } 9164 9165 if (wc->stage == DROP_REFERENCE) { 9166 level = wc->level; 9167 btrfs_node_key(path->nodes[level], 9168 &root_item->drop_progress, 9169 path->slots[level]); 9170 root_item->drop_level = level; 9171 } 9172 9173 BUG_ON(wc->level == 0); 9174 if (btrfs_should_end_transaction(trans) || 9175 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9176 ret = btrfs_update_root(trans, tree_root, 9177 &root->root_key, 9178 root_item); 9179 if (ret) { 9180 btrfs_abort_transaction(trans, ret); 9181 err = ret; 9182 goto out_end_trans; 9183 } 9184 9185 btrfs_end_transaction_throttle(trans); 9186 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9187 btrfs_debug(fs_info, 9188 "drop snapshot early exit"); 9189 err = -EAGAIN; 9190 goto out_free; 9191 } 9192 9193 trans = btrfs_start_transaction(tree_root, 0); 9194 if (IS_ERR(trans)) { 9195 err = PTR_ERR(trans); 9196 goto out_free; 9197 } 9198 if (block_rsv) 9199 trans->block_rsv = block_rsv; 9200 } 9201 } 9202 btrfs_release_path(path); 9203 if (err) 9204 goto out_end_trans; 9205 9206 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9207 if (ret) { 9208 btrfs_abort_transaction(trans, ret); 9209 err = ret; 9210 goto out_end_trans; 9211 } 9212 9213 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9214 ret = btrfs_find_root(tree_root, &root->root_key, path, 9215 NULL, NULL); 9216 if (ret < 0) { 9217 btrfs_abort_transaction(trans, ret); 9218 err = ret; 9219 goto out_end_trans; 9220 } else if (ret > 0) { 9221 /* if we fail to delete the orphan item this time 9222 * around, it'll get picked up the next time. 9223 * 9224 * The most common failure here is just -ENOENT. 9225 */ 9226 btrfs_del_orphan_item(trans, tree_root, 9227 root->root_key.objectid); 9228 } 9229 } 9230 9231 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9232 btrfs_add_dropped_root(trans, root); 9233 } else { 9234 free_extent_buffer(root->node); 9235 free_extent_buffer(root->commit_root); 9236 btrfs_put_fs_root(root); 9237 } 9238 root_dropped = true; 9239 out_end_trans: 9240 btrfs_end_transaction_throttle(trans); 9241 out_free: 9242 kfree(wc); 9243 btrfs_free_path(path); 9244 out: 9245 /* 9246 * So if we need to stop dropping the snapshot for whatever reason we 9247 * need to make sure to add it back to the dead root list so that we 9248 * keep trying to do the work later. This also cleans up roots if we 9249 * don't have it in the radix (like when we recover after a power fail 9250 * or unmount) so we don't leak memory. 9251 */ 9252 if (!for_reloc && !root_dropped) 9253 btrfs_add_dead_root(root); 9254 if (err && err != -EAGAIN) 9255 btrfs_handle_fs_error(fs_info, err, NULL); 9256 return err; 9257 } 9258 9259 /* 9260 * drop subtree rooted at tree block 'node'. 9261 * 9262 * NOTE: this function will unlock and release tree block 'node' 9263 * only used by relocation code 9264 */ 9265 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9266 struct btrfs_root *root, 9267 struct extent_buffer *node, 9268 struct extent_buffer *parent) 9269 { 9270 struct btrfs_fs_info *fs_info = root->fs_info; 9271 struct btrfs_path *path; 9272 struct walk_control *wc; 9273 int level; 9274 int parent_level; 9275 int ret = 0; 9276 int wret; 9277 9278 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9279 9280 path = btrfs_alloc_path(); 9281 if (!path) 9282 return -ENOMEM; 9283 9284 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9285 if (!wc) { 9286 btrfs_free_path(path); 9287 return -ENOMEM; 9288 } 9289 9290 btrfs_assert_tree_locked(parent); 9291 parent_level = btrfs_header_level(parent); 9292 extent_buffer_get(parent); 9293 path->nodes[parent_level] = parent; 9294 path->slots[parent_level] = btrfs_header_nritems(parent); 9295 9296 btrfs_assert_tree_locked(node); 9297 level = btrfs_header_level(node); 9298 path->nodes[level] = node; 9299 path->slots[level] = 0; 9300 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9301 9302 wc->refs[parent_level] = 1; 9303 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9304 wc->level = level; 9305 wc->shared_level = -1; 9306 wc->stage = DROP_REFERENCE; 9307 wc->update_ref = 0; 9308 wc->keep_locks = 1; 9309 wc->for_reloc = 1; 9310 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9311 9312 while (1) { 9313 wret = walk_down_tree(trans, root, path, wc); 9314 if (wret < 0) { 9315 ret = wret; 9316 break; 9317 } 9318 9319 wret = walk_up_tree(trans, root, path, wc, parent_level); 9320 if (wret < 0) 9321 ret = wret; 9322 if (wret != 0) 9323 break; 9324 } 9325 9326 kfree(wc); 9327 btrfs_free_path(path); 9328 return ret; 9329 } 9330 9331 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9332 { 9333 u64 num_devices; 9334 u64 stripped; 9335 9336 /* 9337 * if restripe for this chunk_type is on pick target profile and 9338 * return, otherwise do the usual balance 9339 */ 9340 stripped = get_restripe_target(fs_info, flags); 9341 if (stripped) 9342 return extended_to_chunk(stripped); 9343 9344 num_devices = fs_info->fs_devices->rw_devices; 9345 9346 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9347 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9348 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9349 9350 if (num_devices == 1) { 9351 stripped |= BTRFS_BLOCK_GROUP_DUP; 9352 stripped = flags & ~stripped; 9353 9354 /* turn raid0 into single device chunks */ 9355 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9356 return stripped; 9357 9358 /* turn mirroring into duplication */ 9359 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9360 BTRFS_BLOCK_GROUP_RAID10)) 9361 return stripped | BTRFS_BLOCK_GROUP_DUP; 9362 } else { 9363 /* they already had raid on here, just return */ 9364 if (flags & stripped) 9365 return flags; 9366 9367 stripped |= BTRFS_BLOCK_GROUP_DUP; 9368 stripped = flags & ~stripped; 9369 9370 /* switch duplicated blocks with raid1 */ 9371 if (flags & BTRFS_BLOCK_GROUP_DUP) 9372 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9373 9374 /* this is drive concat, leave it alone */ 9375 } 9376 9377 return flags; 9378 } 9379 9380 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9381 { 9382 struct btrfs_space_info *sinfo = cache->space_info; 9383 u64 num_bytes; 9384 u64 min_allocable_bytes; 9385 int ret = -ENOSPC; 9386 9387 /* 9388 * We need some metadata space and system metadata space for 9389 * allocating chunks in some corner cases until we force to set 9390 * it to be readonly. 9391 */ 9392 if ((sinfo->flags & 9393 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9394 !force) 9395 min_allocable_bytes = SZ_1M; 9396 else 9397 min_allocable_bytes = 0; 9398 9399 spin_lock(&sinfo->lock); 9400 spin_lock(&cache->lock); 9401 9402 if (cache->ro) { 9403 cache->ro++; 9404 ret = 0; 9405 goto out; 9406 } 9407 9408 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9409 cache->bytes_super - btrfs_block_group_used(&cache->item); 9410 9411 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9412 min_allocable_bytes <= sinfo->total_bytes) { 9413 sinfo->bytes_readonly += num_bytes; 9414 cache->ro++; 9415 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9416 ret = 0; 9417 } 9418 out: 9419 spin_unlock(&cache->lock); 9420 spin_unlock(&sinfo->lock); 9421 return ret; 9422 } 9423 9424 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9425 struct btrfs_block_group_cache *cache) 9426 9427 { 9428 struct btrfs_trans_handle *trans; 9429 u64 alloc_flags; 9430 int ret; 9431 9432 again: 9433 trans = btrfs_join_transaction(fs_info->extent_root); 9434 if (IS_ERR(trans)) 9435 return PTR_ERR(trans); 9436 9437 /* 9438 * we're not allowed to set block groups readonly after the dirty 9439 * block groups cache has started writing. If it already started, 9440 * back off and let this transaction commit 9441 */ 9442 mutex_lock(&fs_info->ro_block_group_mutex); 9443 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9444 u64 transid = trans->transid; 9445 9446 mutex_unlock(&fs_info->ro_block_group_mutex); 9447 btrfs_end_transaction(trans); 9448 9449 ret = btrfs_wait_for_commit(fs_info, transid); 9450 if (ret) 9451 return ret; 9452 goto again; 9453 } 9454 9455 /* 9456 * if we are changing raid levels, try to allocate a corresponding 9457 * block group with the new raid level. 9458 */ 9459 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9460 if (alloc_flags != cache->flags) { 9461 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9462 CHUNK_ALLOC_FORCE); 9463 /* 9464 * ENOSPC is allowed here, we may have enough space 9465 * already allocated at the new raid level to 9466 * carry on 9467 */ 9468 if (ret == -ENOSPC) 9469 ret = 0; 9470 if (ret < 0) 9471 goto out; 9472 } 9473 9474 ret = inc_block_group_ro(cache, 0); 9475 if (!ret) 9476 goto out; 9477 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9478 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9479 CHUNK_ALLOC_FORCE); 9480 if (ret < 0) 9481 goto out; 9482 ret = inc_block_group_ro(cache, 0); 9483 out: 9484 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9485 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9486 mutex_lock(&fs_info->chunk_mutex); 9487 check_system_chunk(trans, fs_info, alloc_flags); 9488 mutex_unlock(&fs_info->chunk_mutex); 9489 } 9490 mutex_unlock(&fs_info->ro_block_group_mutex); 9491 9492 btrfs_end_transaction(trans); 9493 return ret; 9494 } 9495 9496 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9497 struct btrfs_fs_info *fs_info, u64 type) 9498 { 9499 u64 alloc_flags = get_alloc_profile(fs_info, type); 9500 9501 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9502 } 9503 9504 /* 9505 * helper to account the unused space of all the readonly block group in the 9506 * space_info. takes mirrors into account. 9507 */ 9508 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9509 { 9510 struct btrfs_block_group_cache *block_group; 9511 u64 free_bytes = 0; 9512 int factor; 9513 9514 /* It's df, we don't care if it's racy */ 9515 if (list_empty(&sinfo->ro_bgs)) 9516 return 0; 9517 9518 spin_lock(&sinfo->lock); 9519 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9520 spin_lock(&block_group->lock); 9521 9522 if (!block_group->ro) { 9523 spin_unlock(&block_group->lock); 9524 continue; 9525 } 9526 9527 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9528 BTRFS_BLOCK_GROUP_RAID10 | 9529 BTRFS_BLOCK_GROUP_DUP)) 9530 factor = 2; 9531 else 9532 factor = 1; 9533 9534 free_bytes += (block_group->key.offset - 9535 btrfs_block_group_used(&block_group->item)) * 9536 factor; 9537 9538 spin_unlock(&block_group->lock); 9539 } 9540 spin_unlock(&sinfo->lock); 9541 9542 return free_bytes; 9543 } 9544 9545 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9546 { 9547 struct btrfs_space_info *sinfo = cache->space_info; 9548 u64 num_bytes; 9549 9550 BUG_ON(!cache->ro); 9551 9552 spin_lock(&sinfo->lock); 9553 spin_lock(&cache->lock); 9554 if (!--cache->ro) { 9555 num_bytes = cache->key.offset - cache->reserved - 9556 cache->pinned - cache->bytes_super - 9557 btrfs_block_group_used(&cache->item); 9558 sinfo->bytes_readonly -= num_bytes; 9559 list_del_init(&cache->ro_list); 9560 } 9561 spin_unlock(&cache->lock); 9562 spin_unlock(&sinfo->lock); 9563 } 9564 9565 /* 9566 * checks to see if its even possible to relocate this block group. 9567 * 9568 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9569 * ok to go ahead and try. 9570 */ 9571 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9572 { 9573 struct btrfs_root *root = fs_info->extent_root; 9574 struct btrfs_block_group_cache *block_group; 9575 struct btrfs_space_info *space_info; 9576 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9577 struct btrfs_device *device; 9578 struct btrfs_trans_handle *trans; 9579 u64 min_free; 9580 u64 dev_min = 1; 9581 u64 dev_nr = 0; 9582 u64 target; 9583 int debug; 9584 int index; 9585 int full = 0; 9586 int ret = 0; 9587 9588 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9589 9590 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9591 9592 /* odd, couldn't find the block group, leave it alone */ 9593 if (!block_group) { 9594 if (debug) 9595 btrfs_warn(fs_info, 9596 "can't find block group for bytenr %llu", 9597 bytenr); 9598 return -1; 9599 } 9600 9601 min_free = btrfs_block_group_used(&block_group->item); 9602 9603 /* no bytes used, we're good */ 9604 if (!min_free) 9605 goto out; 9606 9607 space_info = block_group->space_info; 9608 spin_lock(&space_info->lock); 9609 9610 full = space_info->full; 9611 9612 /* 9613 * if this is the last block group we have in this space, we can't 9614 * relocate it unless we're able to allocate a new chunk below. 9615 * 9616 * Otherwise, we need to make sure we have room in the space to handle 9617 * all of the extents from this block group. If we can, we're good 9618 */ 9619 if ((space_info->total_bytes != block_group->key.offset) && 9620 (btrfs_space_info_used(space_info, false) + min_free < 9621 space_info->total_bytes)) { 9622 spin_unlock(&space_info->lock); 9623 goto out; 9624 } 9625 spin_unlock(&space_info->lock); 9626 9627 /* 9628 * ok we don't have enough space, but maybe we have free space on our 9629 * devices to allocate new chunks for relocation, so loop through our 9630 * alloc devices and guess if we have enough space. if this block 9631 * group is going to be restriped, run checks against the target 9632 * profile instead of the current one. 9633 */ 9634 ret = -1; 9635 9636 /* 9637 * index: 9638 * 0: raid10 9639 * 1: raid1 9640 * 2: dup 9641 * 3: raid0 9642 * 4: single 9643 */ 9644 target = get_restripe_target(fs_info, block_group->flags); 9645 if (target) { 9646 index = __get_raid_index(extended_to_chunk(target)); 9647 } else { 9648 /* 9649 * this is just a balance, so if we were marked as full 9650 * we know there is no space for a new chunk 9651 */ 9652 if (full) { 9653 if (debug) 9654 btrfs_warn(fs_info, 9655 "no space to alloc new chunk for block group %llu", 9656 block_group->key.objectid); 9657 goto out; 9658 } 9659 9660 index = get_block_group_index(block_group); 9661 } 9662 9663 if (index == BTRFS_RAID_RAID10) { 9664 dev_min = 4; 9665 /* Divide by 2 */ 9666 min_free >>= 1; 9667 } else if (index == BTRFS_RAID_RAID1) { 9668 dev_min = 2; 9669 } else if (index == BTRFS_RAID_DUP) { 9670 /* Multiply by 2 */ 9671 min_free <<= 1; 9672 } else if (index == BTRFS_RAID_RAID0) { 9673 dev_min = fs_devices->rw_devices; 9674 min_free = div64_u64(min_free, dev_min); 9675 } 9676 9677 /* We need to do this so that we can look at pending chunks */ 9678 trans = btrfs_join_transaction(root); 9679 if (IS_ERR(trans)) { 9680 ret = PTR_ERR(trans); 9681 goto out; 9682 } 9683 9684 mutex_lock(&fs_info->chunk_mutex); 9685 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9686 u64 dev_offset; 9687 9688 /* 9689 * check to make sure we can actually find a chunk with enough 9690 * space to fit our block group in. 9691 */ 9692 if (device->total_bytes > device->bytes_used + min_free && 9693 !device->is_tgtdev_for_dev_replace) { 9694 ret = find_free_dev_extent(trans, device, min_free, 9695 &dev_offset, NULL); 9696 if (!ret) 9697 dev_nr++; 9698 9699 if (dev_nr >= dev_min) 9700 break; 9701 9702 ret = -1; 9703 } 9704 } 9705 if (debug && ret == -1) 9706 btrfs_warn(fs_info, 9707 "no space to allocate a new chunk for block group %llu", 9708 block_group->key.objectid); 9709 mutex_unlock(&fs_info->chunk_mutex); 9710 btrfs_end_transaction(trans); 9711 out: 9712 btrfs_put_block_group(block_group); 9713 return ret; 9714 } 9715 9716 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9717 struct btrfs_path *path, 9718 struct btrfs_key *key) 9719 { 9720 struct btrfs_root *root = fs_info->extent_root; 9721 int ret = 0; 9722 struct btrfs_key found_key; 9723 struct extent_buffer *leaf; 9724 int slot; 9725 9726 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9727 if (ret < 0) 9728 goto out; 9729 9730 while (1) { 9731 slot = path->slots[0]; 9732 leaf = path->nodes[0]; 9733 if (slot >= btrfs_header_nritems(leaf)) { 9734 ret = btrfs_next_leaf(root, path); 9735 if (ret == 0) 9736 continue; 9737 if (ret < 0) 9738 goto out; 9739 break; 9740 } 9741 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9742 9743 if (found_key.objectid >= key->objectid && 9744 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9745 struct extent_map_tree *em_tree; 9746 struct extent_map *em; 9747 9748 em_tree = &root->fs_info->mapping_tree.map_tree; 9749 read_lock(&em_tree->lock); 9750 em = lookup_extent_mapping(em_tree, found_key.objectid, 9751 found_key.offset); 9752 read_unlock(&em_tree->lock); 9753 if (!em) { 9754 btrfs_err(fs_info, 9755 "logical %llu len %llu found bg but no related chunk", 9756 found_key.objectid, found_key.offset); 9757 ret = -ENOENT; 9758 } else { 9759 ret = 0; 9760 } 9761 free_extent_map(em); 9762 goto out; 9763 } 9764 path->slots[0]++; 9765 } 9766 out: 9767 return ret; 9768 } 9769 9770 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9771 { 9772 struct btrfs_block_group_cache *block_group; 9773 u64 last = 0; 9774 9775 while (1) { 9776 struct inode *inode; 9777 9778 block_group = btrfs_lookup_first_block_group(info, last); 9779 while (block_group) { 9780 spin_lock(&block_group->lock); 9781 if (block_group->iref) 9782 break; 9783 spin_unlock(&block_group->lock); 9784 block_group = next_block_group(info, block_group); 9785 } 9786 if (!block_group) { 9787 if (last == 0) 9788 break; 9789 last = 0; 9790 continue; 9791 } 9792 9793 inode = block_group->inode; 9794 block_group->iref = 0; 9795 block_group->inode = NULL; 9796 spin_unlock(&block_group->lock); 9797 ASSERT(block_group->io_ctl.inode == NULL); 9798 iput(inode); 9799 last = block_group->key.objectid + block_group->key.offset; 9800 btrfs_put_block_group(block_group); 9801 } 9802 } 9803 9804 /* 9805 * Must be called only after stopping all workers, since we could have block 9806 * group caching kthreads running, and therefore they could race with us if we 9807 * freed the block groups before stopping them. 9808 */ 9809 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9810 { 9811 struct btrfs_block_group_cache *block_group; 9812 struct btrfs_space_info *space_info; 9813 struct btrfs_caching_control *caching_ctl; 9814 struct rb_node *n; 9815 9816 down_write(&info->commit_root_sem); 9817 while (!list_empty(&info->caching_block_groups)) { 9818 caching_ctl = list_entry(info->caching_block_groups.next, 9819 struct btrfs_caching_control, list); 9820 list_del(&caching_ctl->list); 9821 put_caching_control(caching_ctl); 9822 } 9823 up_write(&info->commit_root_sem); 9824 9825 spin_lock(&info->unused_bgs_lock); 9826 while (!list_empty(&info->unused_bgs)) { 9827 block_group = list_first_entry(&info->unused_bgs, 9828 struct btrfs_block_group_cache, 9829 bg_list); 9830 list_del_init(&block_group->bg_list); 9831 btrfs_put_block_group(block_group); 9832 } 9833 spin_unlock(&info->unused_bgs_lock); 9834 9835 spin_lock(&info->block_group_cache_lock); 9836 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9837 block_group = rb_entry(n, struct btrfs_block_group_cache, 9838 cache_node); 9839 rb_erase(&block_group->cache_node, 9840 &info->block_group_cache_tree); 9841 RB_CLEAR_NODE(&block_group->cache_node); 9842 spin_unlock(&info->block_group_cache_lock); 9843 9844 down_write(&block_group->space_info->groups_sem); 9845 list_del(&block_group->list); 9846 up_write(&block_group->space_info->groups_sem); 9847 9848 /* 9849 * We haven't cached this block group, which means we could 9850 * possibly have excluded extents on this block group. 9851 */ 9852 if (block_group->cached == BTRFS_CACHE_NO || 9853 block_group->cached == BTRFS_CACHE_ERROR) 9854 free_excluded_extents(info, block_group); 9855 9856 btrfs_remove_free_space_cache(block_group); 9857 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9858 ASSERT(list_empty(&block_group->dirty_list)); 9859 ASSERT(list_empty(&block_group->io_list)); 9860 ASSERT(list_empty(&block_group->bg_list)); 9861 ASSERT(atomic_read(&block_group->count) == 1); 9862 btrfs_put_block_group(block_group); 9863 9864 spin_lock(&info->block_group_cache_lock); 9865 } 9866 spin_unlock(&info->block_group_cache_lock); 9867 9868 /* now that all the block groups are freed, go through and 9869 * free all the space_info structs. This is only called during 9870 * the final stages of unmount, and so we know nobody is 9871 * using them. We call synchronize_rcu() once before we start, 9872 * just to be on the safe side. 9873 */ 9874 synchronize_rcu(); 9875 9876 release_global_block_rsv(info); 9877 9878 while (!list_empty(&info->space_info)) { 9879 int i; 9880 9881 space_info = list_entry(info->space_info.next, 9882 struct btrfs_space_info, 9883 list); 9884 9885 /* 9886 * Do not hide this behind enospc_debug, this is actually 9887 * important and indicates a real bug if this happens. 9888 */ 9889 if (WARN_ON(space_info->bytes_pinned > 0 || 9890 space_info->bytes_reserved > 0 || 9891 space_info->bytes_may_use > 0)) 9892 dump_space_info(info, space_info, 0, 0); 9893 list_del(&space_info->list); 9894 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9895 struct kobject *kobj; 9896 kobj = space_info->block_group_kobjs[i]; 9897 space_info->block_group_kobjs[i] = NULL; 9898 if (kobj) { 9899 kobject_del(kobj); 9900 kobject_put(kobj); 9901 } 9902 } 9903 kobject_del(&space_info->kobj); 9904 kobject_put(&space_info->kobj); 9905 } 9906 return 0; 9907 } 9908 9909 static void link_block_group(struct btrfs_block_group_cache *cache) 9910 { 9911 struct btrfs_space_info *space_info = cache->space_info; 9912 int index = get_block_group_index(cache); 9913 bool first = false; 9914 9915 down_write(&space_info->groups_sem); 9916 if (list_empty(&space_info->block_groups[index])) 9917 first = true; 9918 list_add_tail(&cache->list, &space_info->block_groups[index]); 9919 up_write(&space_info->groups_sem); 9920 9921 if (first) { 9922 struct raid_kobject *rkobj; 9923 int ret; 9924 9925 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9926 if (!rkobj) 9927 goto out_err; 9928 rkobj->raid_type = index; 9929 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9930 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9931 "%s", get_raid_name(index)); 9932 if (ret) { 9933 kobject_put(&rkobj->kobj); 9934 goto out_err; 9935 } 9936 space_info->block_group_kobjs[index] = &rkobj->kobj; 9937 } 9938 9939 return; 9940 out_err: 9941 btrfs_warn(cache->fs_info, 9942 "failed to add kobject for block cache, ignoring"); 9943 } 9944 9945 static struct btrfs_block_group_cache * 9946 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9947 u64 start, u64 size) 9948 { 9949 struct btrfs_block_group_cache *cache; 9950 9951 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9952 if (!cache) 9953 return NULL; 9954 9955 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9956 GFP_NOFS); 9957 if (!cache->free_space_ctl) { 9958 kfree(cache); 9959 return NULL; 9960 } 9961 9962 cache->key.objectid = start; 9963 cache->key.offset = size; 9964 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9965 9966 cache->fs_info = fs_info; 9967 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9968 set_free_space_tree_thresholds(cache); 9969 9970 atomic_set(&cache->count, 1); 9971 spin_lock_init(&cache->lock); 9972 init_rwsem(&cache->data_rwsem); 9973 INIT_LIST_HEAD(&cache->list); 9974 INIT_LIST_HEAD(&cache->cluster_list); 9975 INIT_LIST_HEAD(&cache->bg_list); 9976 INIT_LIST_HEAD(&cache->ro_list); 9977 INIT_LIST_HEAD(&cache->dirty_list); 9978 INIT_LIST_HEAD(&cache->io_list); 9979 btrfs_init_free_space_ctl(cache); 9980 atomic_set(&cache->trimming, 0); 9981 mutex_init(&cache->free_space_lock); 9982 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9983 9984 return cache; 9985 } 9986 9987 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9988 { 9989 struct btrfs_path *path; 9990 int ret; 9991 struct btrfs_block_group_cache *cache; 9992 struct btrfs_space_info *space_info; 9993 struct btrfs_key key; 9994 struct btrfs_key found_key; 9995 struct extent_buffer *leaf; 9996 int need_clear = 0; 9997 u64 cache_gen; 9998 u64 feature; 9999 int mixed; 10000 10001 feature = btrfs_super_incompat_flags(info->super_copy); 10002 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10003 10004 key.objectid = 0; 10005 key.offset = 0; 10006 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10007 path = btrfs_alloc_path(); 10008 if (!path) 10009 return -ENOMEM; 10010 path->reada = READA_FORWARD; 10011 10012 cache_gen = btrfs_super_cache_generation(info->super_copy); 10013 if (btrfs_test_opt(info, SPACE_CACHE) && 10014 btrfs_super_generation(info->super_copy) != cache_gen) 10015 need_clear = 1; 10016 if (btrfs_test_opt(info, CLEAR_CACHE)) 10017 need_clear = 1; 10018 10019 while (1) { 10020 ret = find_first_block_group(info, path, &key); 10021 if (ret > 0) 10022 break; 10023 if (ret != 0) 10024 goto error; 10025 10026 leaf = path->nodes[0]; 10027 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10028 10029 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10030 found_key.offset); 10031 if (!cache) { 10032 ret = -ENOMEM; 10033 goto error; 10034 } 10035 10036 if (need_clear) { 10037 /* 10038 * When we mount with old space cache, we need to 10039 * set BTRFS_DC_CLEAR and set dirty flag. 10040 * 10041 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10042 * truncate the old free space cache inode and 10043 * setup a new one. 10044 * b) Setting 'dirty flag' makes sure that we flush 10045 * the new space cache info onto disk. 10046 */ 10047 if (btrfs_test_opt(info, SPACE_CACHE)) 10048 cache->disk_cache_state = BTRFS_DC_CLEAR; 10049 } 10050 10051 read_extent_buffer(leaf, &cache->item, 10052 btrfs_item_ptr_offset(leaf, path->slots[0]), 10053 sizeof(cache->item)); 10054 cache->flags = btrfs_block_group_flags(&cache->item); 10055 if (!mixed && 10056 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10057 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10058 btrfs_err(info, 10059 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10060 cache->key.objectid); 10061 ret = -EINVAL; 10062 goto error; 10063 } 10064 10065 key.objectid = found_key.objectid + found_key.offset; 10066 btrfs_release_path(path); 10067 10068 /* 10069 * We need to exclude the super stripes now so that the space 10070 * info has super bytes accounted for, otherwise we'll think 10071 * we have more space than we actually do. 10072 */ 10073 ret = exclude_super_stripes(info, cache); 10074 if (ret) { 10075 /* 10076 * We may have excluded something, so call this just in 10077 * case. 10078 */ 10079 free_excluded_extents(info, cache); 10080 btrfs_put_block_group(cache); 10081 goto error; 10082 } 10083 10084 /* 10085 * check for two cases, either we are full, and therefore 10086 * don't need to bother with the caching work since we won't 10087 * find any space, or we are empty, and we can just add all 10088 * the space in and be done with it. This saves us _alot_ of 10089 * time, particularly in the full case. 10090 */ 10091 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10092 cache->last_byte_to_unpin = (u64)-1; 10093 cache->cached = BTRFS_CACHE_FINISHED; 10094 free_excluded_extents(info, cache); 10095 } else if (btrfs_block_group_used(&cache->item) == 0) { 10096 cache->last_byte_to_unpin = (u64)-1; 10097 cache->cached = BTRFS_CACHE_FINISHED; 10098 add_new_free_space(cache, info, 10099 found_key.objectid, 10100 found_key.objectid + 10101 found_key.offset); 10102 free_excluded_extents(info, cache); 10103 } 10104 10105 ret = btrfs_add_block_group_cache(info, cache); 10106 if (ret) { 10107 btrfs_remove_free_space_cache(cache); 10108 btrfs_put_block_group(cache); 10109 goto error; 10110 } 10111 10112 trace_btrfs_add_block_group(info, cache, 0); 10113 update_space_info(info, cache->flags, found_key.offset, 10114 btrfs_block_group_used(&cache->item), 10115 cache->bytes_super, &space_info); 10116 10117 cache->space_info = space_info; 10118 10119 link_block_group(cache); 10120 10121 set_avail_alloc_bits(info, cache->flags); 10122 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10123 inc_block_group_ro(cache, 1); 10124 } else if (btrfs_block_group_used(&cache->item) == 0) { 10125 spin_lock(&info->unused_bgs_lock); 10126 /* Should always be true but just in case. */ 10127 if (list_empty(&cache->bg_list)) { 10128 btrfs_get_block_group(cache); 10129 list_add_tail(&cache->bg_list, 10130 &info->unused_bgs); 10131 } 10132 spin_unlock(&info->unused_bgs_lock); 10133 } 10134 } 10135 10136 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10137 if (!(get_alloc_profile(info, space_info->flags) & 10138 (BTRFS_BLOCK_GROUP_RAID10 | 10139 BTRFS_BLOCK_GROUP_RAID1 | 10140 BTRFS_BLOCK_GROUP_RAID5 | 10141 BTRFS_BLOCK_GROUP_RAID6 | 10142 BTRFS_BLOCK_GROUP_DUP))) 10143 continue; 10144 /* 10145 * avoid allocating from un-mirrored block group if there are 10146 * mirrored block groups. 10147 */ 10148 list_for_each_entry(cache, 10149 &space_info->block_groups[BTRFS_RAID_RAID0], 10150 list) 10151 inc_block_group_ro(cache, 1); 10152 list_for_each_entry(cache, 10153 &space_info->block_groups[BTRFS_RAID_SINGLE], 10154 list) 10155 inc_block_group_ro(cache, 1); 10156 } 10157 10158 init_global_block_rsv(info); 10159 ret = 0; 10160 error: 10161 btrfs_free_path(path); 10162 return ret; 10163 } 10164 10165 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10166 struct btrfs_fs_info *fs_info) 10167 { 10168 struct btrfs_block_group_cache *block_group, *tmp; 10169 struct btrfs_root *extent_root = fs_info->extent_root; 10170 struct btrfs_block_group_item item; 10171 struct btrfs_key key; 10172 int ret = 0; 10173 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10174 10175 trans->can_flush_pending_bgs = false; 10176 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10177 if (ret) 10178 goto next; 10179 10180 spin_lock(&block_group->lock); 10181 memcpy(&item, &block_group->item, sizeof(item)); 10182 memcpy(&key, &block_group->key, sizeof(key)); 10183 spin_unlock(&block_group->lock); 10184 10185 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10186 sizeof(item)); 10187 if (ret) 10188 btrfs_abort_transaction(trans, ret); 10189 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10190 key.offset); 10191 if (ret) 10192 btrfs_abort_transaction(trans, ret); 10193 add_block_group_free_space(trans, fs_info, block_group); 10194 /* already aborted the transaction if it failed. */ 10195 next: 10196 list_del_init(&block_group->bg_list); 10197 } 10198 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10199 } 10200 10201 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10202 struct btrfs_fs_info *fs_info, u64 bytes_used, 10203 u64 type, u64 chunk_offset, u64 size) 10204 { 10205 struct btrfs_block_group_cache *cache; 10206 int ret; 10207 10208 btrfs_set_log_full_commit(fs_info, trans); 10209 10210 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10211 if (!cache) 10212 return -ENOMEM; 10213 10214 btrfs_set_block_group_used(&cache->item, bytes_used); 10215 btrfs_set_block_group_chunk_objectid(&cache->item, 10216 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10217 btrfs_set_block_group_flags(&cache->item, type); 10218 10219 cache->flags = type; 10220 cache->last_byte_to_unpin = (u64)-1; 10221 cache->cached = BTRFS_CACHE_FINISHED; 10222 cache->needs_free_space = 1; 10223 ret = exclude_super_stripes(fs_info, cache); 10224 if (ret) { 10225 /* 10226 * We may have excluded something, so call this just in 10227 * case. 10228 */ 10229 free_excluded_extents(fs_info, cache); 10230 btrfs_put_block_group(cache); 10231 return ret; 10232 } 10233 10234 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10235 10236 free_excluded_extents(fs_info, cache); 10237 10238 #ifdef CONFIG_BTRFS_DEBUG 10239 if (btrfs_should_fragment_free_space(cache)) { 10240 u64 new_bytes_used = size - bytes_used; 10241 10242 bytes_used += new_bytes_used >> 1; 10243 fragment_free_space(cache); 10244 } 10245 #endif 10246 /* 10247 * Ensure the corresponding space_info object is created and 10248 * assigned to our block group. We want our bg to be added to the rbtree 10249 * with its ->space_info set. 10250 */ 10251 cache->space_info = __find_space_info(fs_info, cache->flags); 10252 if (!cache->space_info) { 10253 ret = create_space_info(fs_info, cache->flags, 10254 &cache->space_info); 10255 if (ret) { 10256 btrfs_remove_free_space_cache(cache); 10257 btrfs_put_block_group(cache); 10258 return ret; 10259 } 10260 } 10261 10262 ret = btrfs_add_block_group_cache(fs_info, cache); 10263 if (ret) { 10264 btrfs_remove_free_space_cache(cache); 10265 btrfs_put_block_group(cache); 10266 return ret; 10267 } 10268 10269 /* 10270 * Now that our block group has its ->space_info set and is inserted in 10271 * the rbtree, update the space info's counters. 10272 */ 10273 trace_btrfs_add_block_group(fs_info, cache, 1); 10274 update_space_info(fs_info, cache->flags, size, bytes_used, 10275 cache->bytes_super, &cache->space_info); 10276 update_global_block_rsv(fs_info); 10277 10278 link_block_group(cache); 10279 10280 list_add_tail(&cache->bg_list, &trans->new_bgs); 10281 10282 set_avail_alloc_bits(fs_info, type); 10283 return 0; 10284 } 10285 10286 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10287 { 10288 u64 extra_flags = chunk_to_extended(flags) & 10289 BTRFS_EXTENDED_PROFILE_MASK; 10290 10291 write_seqlock(&fs_info->profiles_lock); 10292 if (flags & BTRFS_BLOCK_GROUP_DATA) 10293 fs_info->avail_data_alloc_bits &= ~extra_flags; 10294 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10295 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10296 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10297 fs_info->avail_system_alloc_bits &= ~extra_flags; 10298 write_sequnlock(&fs_info->profiles_lock); 10299 } 10300 10301 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10302 struct btrfs_fs_info *fs_info, u64 group_start, 10303 struct extent_map *em) 10304 { 10305 struct btrfs_root *root = fs_info->extent_root; 10306 struct btrfs_path *path; 10307 struct btrfs_block_group_cache *block_group; 10308 struct btrfs_free_cluster *cluster; 10309 struct btrfs_root *tree_root = fs_info->tree_root; 10310 struct btrfs_key key; 10311 struct inode *inode; 10312 struct kobject *kobj = NULL; 10313 int ret; 10314 int index; 10315 int factor; 10316 struct btrfs_caching_control *caching_ctl = NULL; 10317 bool remove_em; 10318 10319 block_group = btrfs_lookup_block_group(fs_info, group_start); 10320 BUG_ON(!block_group); 10321 BUG_ON(!block_group->ro); 10322 10323 /* 10324 * Free the reserved super bytes from this block group before 10325 * remove it. 10326 */ 10327 free_excluded_extents(fs_info, block_group); 10328 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10329 block_group->key.offset); 10330 10331 memcpy(&key, &block_group->key, sizeof(key)); 10332 index = get_block_group_index(block_group); 10333 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10334 BTRFS_BLOCK_GROUP_RAID1 | 10335 BTRFS_BLOCK_GROUP_RAID10)) 10336 factor = 2; 10337 else 10338 factor = 1; 10339 10340 /* make sure this block group isn't part of an allocation cluster */ 10341 cluster = &fs_info->data_alloc_cluster; 10342 spin_lock(&cluster->refill_lock); 10343 btrfs_return_cluster_to_free_space(block_group, cluster); 10344 spin_unlock(&cluster->refill_lock); 10345 10346 /* 10347 * make sure this block group isn't part of a metadata 10348 * allocation cluster 10349 */ 10350 cluster = &fs_info->meta_alloc_cluster; 10351 spin_lock(&cluster->refill_lock); 10352 btrfs_return_cluster_to_free_space(block_group, cluster); 10353 spin_unlock(&cluster->refill_lock); 10354 10355 path = btrfs_alloc_path(); 10356 if (!path) { 10357 ret = -ENOMEM; 10358 goto out; 10359 } 10360 10361 /* 10362 * get the inode first so any iput calls done for the io_list 10363 * aren't the final iput (no unlinks allowed now) 10364 */ 10365 inode = lookup_free_space_inode(fs_info, block_group, path); 10366 10367 mutex_lock(&trans->transaction->cache_write_mutex); 10368 /* 10369 * make sure our free spache cache IO is done before remove the 10370 * free space inode 10371 */ 10372 spin_lock(&trans->transaction->dirty_bgs_lock); 10373 if (!list_empty(&block_group->io_list)) { 10374 list_del_init(&block_group->io_list); 10375 10376 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10377 10378 spin_unlock(&trans->transaction->dirty_bgs_lock); 10379 btrfs_wait_cache_io(trans, block_group, path); 10380 btrfs_put_block_group(block_group); 10381 spin_lock(&trans->transaction->dirty_bgs_lock); 10382 } 10383 10384 if (!list_empty(&block_group->dirty_list)) { 10385 list_del_init(&block_group->dirty_list); 10386 btrfs_put_block_group(block_group); 10387 } 10388 spin_unlock(&trans->transaction->dirty_bgs_lock); 10389 mutex_unlock(&trans->transaction->cache_write_mutex); 10390 10391 if (!IS_ERR(inode)) { 10392 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10393 if (ret) { 10394 btrfs_add_delayed_iput(inode); 10395 goto out; 10396 } 10397 clear_nlink(inode); 10398 /* One for the block groups ref */ 10399 spin_lock(&block_group->lock); 10400 if (block_group->iref) { 10401 block_group->iref = 0; 10402 block_group->inode = NULL; 10403 spin_unlock(&block_group->lock); 10404 iput(inode); 10405 } else { 10406 spin_unlock(&block_group->lock); 10407 } 10408 /* One for our lookup ref */ 10409 btrfs_add_delayed_iput(inode); 10410 } 10411 10412 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10413 key.offset = block_group->key.objectid; 10414 key.type = 0; 10415 10416 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10417 if (ret < 0) 10418 goto out; 10419 if (ret > 0) 10420 btrfs_release_path(path); 10421 if (ret == 0) { 10422 ret = btrfs_del_item(trans, tree_root, path); 10423 if (ret) 10424 goto out; 10425 btrfs_release_path(path); 10426 } 10427 10428 spin_lock(&fs_info->block_group_cache_lock); 10429 rb_erase(&block_group->cache_node, 10430 &fs_info->block_group_cache_tree); 10431 RB_CLEAR_NODE(&block_group->cache_node); 10432 10433 if (fs_info->first_logical_byte == block_group->key.objectid) 10434 fs_info->first_logical_byte = (u64)-1; 10435 spin_unlock(&fs_info->block_group_cache_lock); 10436 10437 down_write(&block_group->space_info->groups_sem); 10438 /* 10439 * we must use list_del_init so people can check to see if they 10440 * are still on the list after taking the semaphore 10441 */ 10442 list_del_init(&block_group->list); 10443 if (list_empty(&block_group->space_info->block_groups[index])) { 10444 kobj = block_group->space_info->block_group_kobjs[index]; 10445 block_group->space_info->block_group_kobjs[index] = NULL; 10446 clear_avail_alloc_bits(fs_info, block_group->flags); 10447 } 10448 up_write(&block_group->space_info->groups_sem); 10449 if (kobj) { 10450 kobject_del(kobj); 10451 kobject_put(kobj); 10452 } 10453 10454 if (block_group->has_caching_ctl) 10455 caching_ctl = get_caching_control(block_group); 10456 if (block_group->cached == BTRFS_CACHE_STARTED) 10457 wait_block_group_cache_done(block_group); 10458 if (block_group->has_caching_ctl) { 10459 down_write(&fs_info->commit_root_sem); 10460 if (!caching_ctl) { 10461 struct btrfs_caching_control *ctl; 10462 10463 list_for_each_entry(ctl, 10464 &fs_info->caching_block_groups, list) 10465 if (ctl->block_group == block_group) { 10466 caching_ctl = ctl; 10467 refcount_inc(&caching_ctl->count); 10468 break; 10469 } 10470 } 10471 if (caching_ctl) 10472 list_del_init(&caching_ctl->list); 10473 up_write(&fs_info->commit_root_sem); 10474 if (caching_ctl) { 10475 /* Once for the caching bgs list and once for us. */ 10476 put_caching_control(caching_ctl); 10477 put_caching_control(caching_ctl); 10478 } 10479 } 10480 10481 spin_lock(&trans->transaction->dirty_bgs_lock); 10482 if (!list_empty(&block_group->dirty_list)) { 10483 WARN_ON(1); 10484 } 10485 if (!list_empty(&block_group->io_list)) { 10486 WARN_ON(1); 10487 } 10488 spin_unlock(&trans->transaction->dirty_bgs_lock); 10489 btrfs_remove_free_space_cache(block_group); 10490 10491 spin_lock(&block_group->space_info->lock); 10492 list_del_init(&block_group->ro_list); 10493 10494 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10495 WARN_ON(block_group->space_info->total_bytes 10496 < block_group->key.offset); 10497 WARN_ON(block_group->space_info->bytes_readonly 10498 < block_group->key.offset); 10499 WARN_ON(block_group->space_info->disk_total 10500 < block_group->key.offset * factor); 10501 } 10502 block_group->space_info->total_bytes -= block_group->key.offset; 10503 block_group->space_info->bytes_readonly -= block_group->key.offset; 10504 block_group->space_info->disk_total -= block_group->key.offset * factor; 10505 10506 spin_unlock(&block_group->space_info->lock); 10507 10508 memcpy(&key, &block_group->key, sizeof(key)); 10509 10510 mutex_lock(&fs_info->chunk_mutex); 10511 if (!list_empty(&em->list)) { 10512 /* We're in the transaction->pending_chunks list. */ 10513 free_extent_map(em); 10514 } 10515 spin_lock(&block_group->lock); 10516 block_group->removed = 1; 10517 /* 10518 * At this point trimming can't start on this block group, because we 10519 * removed the block group from the tree fs_info->block_group_cache_tree 10520 * so no one can't find it anymore and even if someone already got this 10521 * block group before we removed it from the rbtree, they have already 10522 * incremented block_group->trimming - if they didn't, they won't find 10523 * any free space entries because we already removed them all when we 10524 * called btrfs_remove_free_space_cache(). 10525 * 10526 * And we must not remove the extent map from the fs_info->mapping_tree 10527 * to prevent the same logical address range and physical device space 10528 * ranges from being reused for a new block group. This is because our 10529 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10530 * completely transactionless, so while it is trimming a range the 10531 * currently running transaction might finish and a new one start, 10532 * allowing for new block groups to be created that can reuse the same 10533 * physical device locations unless we take this special care. 10534 * 10535 * There may also be an implicit trim operation if the file system 10536 * is mounted with -odiscard. The same protections must remain 10537 * in place until the extents have been discarded completely when 10538 * the transaction commit has completed. 10539 */ 10540 remove_em = (atomic_read(&block_group->trimming) == 0); 10541 /* 10542 * Make sure a trimmer task always sees the em in the pinned_chunks list 10543 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10544 * before checking block_group->removed). 10545 */ 10546 if (!remove_em) { 10547 /* 10548 * Our em might be in trans->transaction->pending_chunks which 10549 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10550 * and so is the fs_info->pinned_chunks list. 10551 * 10552 * So at this point we must be holding the chunk_mutex to avoid 10553 * any races with chunk allocation (more specifically at 10554 * volumes.c:contains_pending_extent()), to ensure it always 10555 * sees the em, either in the pending_chunks list or in the 10556 * pinned_chunks list. 10557 */ 10558 list_move_tail(&em->list, &fs_info->pinned_chunks); 10559 } 10560 spin_unlock(&block_group->lock); 10561 10562 if (remove_em) { 10563 struct extent_map_tree *em_tree; 10564 10565 em_tree = &fs_info->mapping_tree.map_tree; 10566 write_lock(&em_tree->lock); 10567 /* 10568 * The em might be in the pending_chunks list, so make sure the 10569 * chunk mutex is locked, since remove_extent_mapping() will 10570 * delete us from that list. 10571 */ 10572 remove_extent_mapping(em_tree, em); 10573 write_unlock(&em_tree->lock); 10574 /* once for the tree */ 10575 free_extent_map(em); 10576 } 10577 10578 mutex_unlock(&fs_info->chunk_mutex); 10579 10580 ret = remove_block_group_free_space(trans, fs_info, block_group); 10581 if (ret) 10582 goto out; 10583 10584 btrfs_put_block_group(block_group); 10585 btrfs_put_block_group(block_group); 10586 10587 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10588 if (ret > 0) 10589 ret = -EIO; 10590 if (ret < 0) 10591 goto out; 10592 10593 ret = btrfs_del_item(trans, root, path); 10594 out: 10595 btrfs_free_path(path); 10596 return ret; 10597 } 10598 10599 struct btrfs_trans_handle * 10600 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10601 const u64 chunk_offset) 10602 { 10603 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10604 struct extent_map *em; 10605 struct map_lookup *map; 10606 unsigned int num_items; 10607 10608 read_lock(&em_tree->lock); 10609 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10610 read_unlock(&em_tree->lock); 10611 ASSERT(em && em->start == chunk_offset); 10612 10613 /* 10614 * We need to reserve 3 + N units from the metadata space info in order 10615 * to remove a block group (done at btrfs_remove_chunk() and at 10616 * btrfs_remove_block_group()), which are used for: 10617 * 10618 * 1 unit for adding the free space inode's orphan (located in the tree 10619 * of tree roots). 10620 * 1 unit for deleting the block group item (located in the extent 10621 * tree). 10622 * 1 unit for deleting the free space item (located in tree of tree 10623 * roots). 10624 * N units for deleting N device extent items corresponding to each 10625 * stripe (located in the device tree). 10626 * 10627 * In order to remove a block group we also need to reserve units in the 10628 * system space info in order to update the chunk tree (update one or 10629 * more device items and remove one chunk item), but this is done at 10630 * btrfs_remove_chunk() through a call to check_system_chunk(). 10631 */ 10632 map = em->map_lookup; 10633 num_items = 3 + map->num_stripes; 10634 free_extent_map(em); 10635 10636 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10637 num_items, 1); 10638 } 10639 10640 /* 10641 * Process the unused_bgs list and remove any that don't have any allocated 10642 * space inside of them. 10643 */ 10644 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10645 { 10646 struct btrfs_block_group_cache *block_group; 10647 struct btrfs_space_info *space_info; 10648 struct btrfs_trans_handle *trans; 10649 int ret = 0; 10650 10651 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10652 return; 10653 10654 spin_lock(&fs_info->unused_bgs_lock); 10655 while (!list_empty(&fs_info->unused_bgs)) { 10656 u64 start, end; 10657 int trimming; 10658 10659 block_group = list_first_entry(&fs_info->unused_bgs, 10660 struct btrfs_block_group_cache, 10661 bg_list); 10662 list_del_init(&block_group->bg_list); 10663 10664 space_info = block_group->space_info; 10665 10666 if (ret || btrfs_mixed_space_info(space_info)) { 10667 btrfs_put_block_group(block_group); 10668 continue; 10669 } 10670 spin_unlock(&fs_info->unused_bgs_lock); 10671 10672 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10673 10674 /* Don't want to race with allocators so take the groups_sem */ 10675 down_write(&space_info->groups_sem); 10676 spin_lock(&block_group->lock); 10677 if (block_group->reserved || 10678 btrfs_block_group_used(&block_group->item) || 10679 block_group->ro || 10680 list_is_singular(&block_group->list)) { 10681 /* 10682 * We want to bail if we made new allocations or have 10683 * outstanding allocations in this block group. We do 10684 * the ro check in case balance is currently acting on 10685 * this block group. 10686 */ 10687 spin_unlock(&block_group->lock); 10688 up_write(&space_info->groups_sem); 10689 goto next; 10690 } 10691 spin_unlock(&block_group->lock); 10692 10693 /* We don't want to force the issue, only flip if it's ok. */ 10694 ret = inc_block_group_ro(block_group, 0); 10695 up_write(&space_info->groups_sem); 10696 if (ret < 0) { 10697 ret = 0; 10698 goto next; 10699 } 10700 10701 /* 10702 * Want to do this before we do anything else so we can recover 10703 * properly if we fail to join the transaction. 10704 */ 10705 trans = btrfs_start_trans_remove_block_group(fs_info, 10706 block_group->key.objectid); 10707 if (IS_ERR(trans)) { 10708 btrfs_dec_block_group_ro(block_group); 10709 ret = PTR_ERR(trans); 10710 goto next; 10711 } 10712 10713 /* 10714 * We could have pending pinned extents for this block group, 10715 * just delete them, we don't care about them anymore. 10716 */ 10717 start = block_group->key.objectid; 10718 end = start + block_group->key.offset - 1; 10719 /* 10720 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10721 * btrfs_finish_extent_commit(). If we are at transaction N, 10722 * another task might be running finish_extent_commit() for the 10723 * previous transaction N - 1, and have seen a range belonging 10724 * to the block group in freed_extents[] before we were able to 10725 * clear the whole block group range from freed_extents[]. This 10726 * means that task can lookup for the block group after we 10727 * unpinned it from freed_extents[] and removed it, leading to 10728 * a BUG_ON() at btrfs_unpin_extent_range(). 10729 */ 10730 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10731 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10732 EXTENT_DIRTY); 10733 if (ret) { 10734 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10735 btrfs_dec_block_group_ro(block_group); 10736 goto end_trans; 10737 } 10738 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10739 EXTENT_DIRTY); 10740 if (ret) { 10741 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10742 btrfs_dec_block_group_ro(block_group); 10743 goto end_trans; 10744 } 10745 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10746 10747 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10748 spin_lock(&space_info->lock); 10749 spin_lock(&block_group->lock); 10750 10751 space_info->bytes_pinned -= block_group->pinned; 10752 space_info->bytes_readonly += block_group->pinned; 10753 percpu_counter_add(&space_info->total_bytes_pinned, 10754 -block_group->pinned); 10755 block_group->pinned = 0; 10756 10757 spin_unlock(&block_group->lock); 10758 spin_unlock(&space_info->lock); 10759 10760 /* DISCARD can flip during remount */ 10761 trimming = btrfs_test_opt(fs_info, DISCARD); 10762 10763 /* Implicit trim during transaction commit. */ 10764 if (trimming) 10765 btrfs_get_block_group_trimming(block_group); 10766 10767 /* 10768 * Btrfs_remove_chunk will abort the transaction if things go 10769 * horribly wrong. 10770 */ 10771 ret = btrfs_remove_chunk(trans, fs_info, 10772 block_group->key.objectid); 10773 10774 if (ret) { 10775 if (trimming) 10776 btrfs_put_block_group_trimming(block_group); 10777 goto end_trans; 10778 } 10779 10780 /* 10781 * If we're not mounted with -odiscard, we can just forget 10782 * about this block group. Otherwise we'll need to wait 10783 * until transaction commit to do the actual discard. 10784 */ 10785 if (trimming) { 10786 spin_lock(&fs_info->unused_bgs_lock); 10787 /* 10788 * A concurrent scrub might have added us to the list 10789 * fs_info->unused_bgs, so use a list_move operation 10790 * to add the block group to the deleted_bgs list. 10791 */ 10792 list_move(&block_group->bg_list, 10793 &trans->transaction->deleted_bgs); 10794 spin_unlock(&fs_info->unused_bgs_lock); 10795 btrfs_get_block_group(block_group); 10796 } 10797 end_trans: 10798 btrfs_end_transaction(trans); 10799 next: 10800 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10801 btrfs_put_block_group(block_group); 10802 spin_lock(&fs_info->unused_bgs_lock); 10803 } 10804 spin_unlock(&fs_info->unused_bgs_lock); 10805 } 10806 10807 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10808 { 10809 struct btrfs_space_info *space_info; 10810 struct btrfs_super_block *disk_super; 10811 u64 features; 10812 u64 flags; 10813 int mixed = 0; 10814 int ret; 10815 10816 disk_super = fs_info->super_copy; 10817 if (!btrfs_super_root(disk_super)) 10818 return -EINVAL; 10819 10820 features = btrfs_super_incompat_flags(disk_super); 10821 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10822 mixed = 1; 10823 10824 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10825 ret = create_space_info(fs_info, flags, &space_info); 10826 if (ret) 10827 goto out; 10828 10829 if (mixed) { 10830 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10831 ret = create_space_info(fs_info, flags, &space_info); 10832 } else { 10833 flags = BTRFS_BLOCK_GROUP_METADATA; 10834 ret = create_space_info(fs_info, flags, &space_info); 10835 if (ret) 10836 goto out; 10837 10838 flags = BTRFS_BLOCK_GROUP_DATA; 10839 ret = create_space_info(fs_info, flags, &space_info); 10840 } 10841 out: 10842 return ret; 10843 } 10844 10845 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10846 u64 start, u64 end) 10847 { 10848 return unpin_extent_range(fs_info, start, end, false); 10849 } 10850 10851 /* 10852 * It used to be that old block groups would be left around forever. 10853 * Iterating over them would be enough to trim unused space. Since we 10854 * now automatically remove them, we also need to iterate over unallocated 10855 * space. 10856 * 10857 * We don't want a transaction for this since the discard may take a 10858 * substantial amount of time. We don't require that a transaction be 10859 * running, but we do need to take a running transaction into account 10860 * to ensure that we're not discarding chunks that were released in 10861 * the current transaction. 10862 * 10863 * Holding the chunks lock will prevent other threads from allocating 10864 * or releasing chunks, but it won't prevent a running transaction 10865 * from committing and releasing the memory that the pending chunks 10866 * list head uses. For that, we need to take a reference to the 10867 * transaction. 10868 */ 10869 static int btrfs_trim_free_extents(struct btrfs_device *device, 10870 u64 minlen, u64 *trimmed) 10871 { 10872 u64 start = 0, len = 0; 10873 int ret; 10874 10875 *trimmed = 0; 10876 10877 /* Not writeable = nothing to do. */ 10878 if (!device->writeable) 10879 return 0; 10880 10881 /* No free space = nothing to do. */ 10882 if (device->total_bytes <= device->bytes_used) 10883 return 0; 10884 10885 ret = 0; 10886 10887 while (1) { 10888 struct btrfs_fs_info *fs_info = device->fs_info; 10889 struct btrfs_transaction *trans; 10890 u64 bytes; 10891 10892 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10893 if (ret) 10894 return ret; 10895 10896 down_read(&fs_info->commit_root_sem); 10897 10898 spin_lock(&fs_info->trans_lock); 10899 trans = fs_info->running_transaction; 10900 if (trans) 10901 refcount_inc(&trans->use_count); 10902 spin_unlock(&fs_info->trans_lock); 10903 10904 ret = find_free_dev_extent_start(trans, device, minlen, start, 10905 &start, &len); 10906 if (trans) 10907 btrfs_put_transaction(trans); 10908 10909 if (ret) { 10910 up_read(&fs_info->commit_root_sem); 10911 mutex_unlock(&fs_info->chunk_mutex); 10912 if (ret == -ENOSPC) 10913 ret = 0; 10914 break; 10915 } 10916 10917 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10918 up_read(&fs_info->commit_root_sem); 10919 mutex_unlock(&fs_info->chunk_mutex); 10920 10921 if (ret) 10922 break; 10923 10924 start += len; 10925 *trimmed += bytes; 10926 10927 if (fatal_signal_pending(current)) { 10928 ret = -ERESTARTSYS; 10929 break; 10930 } 10931 10932 cond_resched(); 10933 } 10934 10935 return ret; 10936 } 10937 10938 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10939 { 10940 struct btrfs_block_group_cache *cache = NULL; 10941 struct btrfs_device *device; 10942 struct list_head *devices; 10943 u64 group_trimmed; 10944 u64 start; 10945 u64 end; 10946 u64 trimmed = 0; 10947 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10948 int ret = 0; 10949 10950 /* 10951 * try to trim all FS space, our block group may start from non-zero. 10952 */ 10953 if (range->len == total_bytes) 10954 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10955 else 10956 cache = btrfs_lookup_block_group(fs_info, range->start); 10957 10958 while (cache) { 10959 if (cache->key.objectid >= (range->start + range->len)) { 10960 btrfs_put_block_group(cache); 10961 break; 10962 } 10963 10964 start = max(range->start, cache->key.objectid); 10965 end = min(range->start + range->len, 10966 cache->key.objectid + cache->key.offset); 10967 10968 if (end - start >= range->minlen) { 10969 if (!block_group_cache_done(cache)) { 10970 ret = cache_block_group(cache, 0); 10971 if (ret) { 10972 btrfs_put_block_group(cache); 10973 break; 10974 } 10975 ret = wait_block_group_cache_done(cache); 10976 if (ret) { 10977 btrfs_put_block_group(cache); 10978 break; 10979 } 10980 } 10981 ret = btrfs_trim_block_group(cache, 10982 &group_trimmed, 10983 start, 10984 end, 10985 range->minlen); 10986 10987 trimmed += group_trimmed; 10988 if (ret) { 10989 btrfs_put_block_group(cache); 10990 break; 10991 } 10992 } 10993 10994 cache = next_block_group(fs_info, cache); 10995 } 10996 10997 mutex_lock(&fs_info->fs_devices->device_list_mutex); 10998 devices = &fs_info->fs_devices->alloc_list; 10999 list_for_each_entry(device, devices, dev_alloc_list) { 11000 ret = btrfs_trim_free_extents(device, range->minlen, 11001 &group_trimmed); 11002 if (ret) 11003 break; 11004 11005 trimmed += group_trimmed; 11006 } 11007 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11008 11009 range->len = trimmed; 11010 return ret; 11011 } 11012 11013 /* 11014 * btrfs_{start,end}_write_no_snapshotting() are similar to 11015 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11016 * data into the page cache through nocow before the subvolume is snapshoted, 11017 * but flush the data into disk after the snapshot creation, or to prevent 11018 * operations while snapshotting is ongoing and that cause the snapshot to be 11019 * inconsistent (writes followed by expanding truncates for example). 11020 */ 11021 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11022 { 11023 percpu_counter_dec(&root->subv_writers->counter); 11024 /* 11025 * Make sure counter is updated before we wake up waiters. 11026 */ 11027 smp_mb(); 11028 if (waitqueue_active(&root->subv_writers->wait)) 11029 wake_up(&root->subv_writers->wait); 11030 } 11031 11032 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11033 { 11034 if (atomic_read(&root->will_be_snapshotted)) 11035 return 0; 11036 11037 percpu_counter_inc(&root->subv_writers->counter); 11038 /* 11039 * Make sure counter is updated before we check for snapshot creation. 11040 */ 11041 smp_mb(); 11042 if (atomic_read(&root->will_be_snapshotted)) { 11043 btrfs_end_write_no_snapshotting(root); 11044 return 0; 11045 } 11046 return 1; 11047 } 11048 11049 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11050 { 11051 while (true) { 11052 int ret; 11053 11054 ret = btrfs_start_write_no_snapshotting(root); 11055 if (ret) 11056 break; 11057 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait, 11058 TASK_UNINTERRUPTIBLE); 11059 } 11060 } 11061