xref: /linux/fs/btrfs/extent-tree.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 	int ret;
92 	struct btrfs_key key;
93 	struct btrfs_path *path;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	key.objectid = start;
100 	key.offset = len;
101 	key.type = BTRFS_EXTENT_ITEM_KEY;
102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 	btrfs_free_path(path);
104 	return ret;
105 }
106 
107 /*
108  * helper function to lookup reference count and flags of a tree block.
109  *
110  * the head node for delayed ref is used to store the sum of all the
111  * reference count modifications queued up in the rbtree. the head
112  * node may also store the extent flags to set. This way you can check
113  * to see what the reference count and extent flags would be if all of
114  * the delayed refs are not processed.
115  */
116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 			     struct btrfs_fs_info *fs_info, u64 bytenr,
118 			     u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 	struct btrfs_root *extent_root;
121 	struct btrfs_delayed_ref_head *head;
122 	struct btrfs_delayed_ref_root *delayed_refs;
123 	struct btrfs_path *path;
124 	struct btrfs_extent_item *ei;
125 	struct extent_buffer *leaf;
126 	struct btrfs_key key;
127 	u32 item_size;
128 	u64 num_refs;
129 	u64 extent_flags;
130 	int ret;
131 
132 	/*
133 	 * If we don't have skinny metadata, don't bother doing anything
134 	 * different
135 	 */
136 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 		offset = fs_info->nodesize;
138 		metadata = 0;
139 	}
140 
141 	path = btrfs_alloc_path();
142 	if (!path)
143 		return -ENOMEM;
144 
145 	if (!trans) {
146 		path->skip_locking = 1;
147 		path->search_commit_root = 1;
148 	}
149 
150 search_again:
151 	key.objectid = bytenr;
152 	key.offset = offset;
153 	if (metadata)
154 		key.type = BTRFS_METADATA_ITEM_KEY;
155 	else
156 		key.type = BTRFS_EXTENT_ITEM_KEY;
157 
158 	extent_root = btrfs_extent_root(fs_info, bytenr);
159 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 	if (ret < 0)
161 		goto out_free;
162 
163 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 		if (path->slots[0]) {
165 			path->slots[0]--;
166 			btrfs_item_key_to_cpu(path->nodes[0], &key,
167 					      path->slots[0]);
168 			if (key.objectid == bytenr &&
169 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
170 			    key.offset == fs_info->nodesize)
171 				ret = 0;
172 		}
173 	}
174 
175 	if (ret == 0) {
176 		leaf = path->nodes[0];
177 		item_size = btrfs_item_size(leaf, path->slots[0]);
178 		if (item_size >= sizeof(*ei)) {
179 			ei = btrfs_item_ptr(leaf, path->slots[0],
180 					    struct btrfs_extent_item);
181 			num_refs = btrfs_extent_refs(leaf, ei);
182 			extent_flags = btrfs_extent_flags(leaf, ei);
183 		} else {
184 			ret = -EINVAL;
185 			btrfs_print_v0_err(fs_info);
186 			if (trans)
187 				btrfs_abort_transaction(trans, ret);
188 			else
189 				btrfs_handle_fs_error(fs_info, ret, NULL);
190 
191 			goto out_free;
192 		}
193 
194 		BUG_ON(num_refs == 0);
195 	} else {
196 		num_refs = 0;
197 		extent_flags = 0;
198 		ret = 0;
199 	}
200 
201 	if (!trans)
202 		goto out;
203 
204 	delayed_refs = &trans->transaction->delayed_refs;
205 	spin_lock(&delayed_refs->lock);
206 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 	if (head) {
208 		if (!mutex_trylock(&head->mutex)) {
209 			refcount_inc(&head->refs);
210 			spin_unlock(&delayed_refs->lock);
211 
212 			btrfs_release_path(path);
213 
214 			/*
215 			 * Mutex was contended, block until it's released and try
216 			 * again
217 			 */
218 			mutex_lock(&head->mutex);
219 			mutex_unlock(&head->mutex);
220 			btrfs_put_delayed_ref_head(head);
221 			goto search_again;
222 		}
223 		spin_lock(&head->lock);
224 		if (head->extent_op && head->extent_op->update_flags)
225 			extent_flags |= head->extent_op->flags_to_set;
226 		else
227 			BUG_ON(num_refs == 0);
228 
229 		num_refs += head->ref_mod;
230 		spin_unlock(&head->lock);
231 		mutex_unlock(&head->mutex);
232 	}
233 	spin_unlock(&delayed_refs->lock);
234 out:
235 	WARN_ON(num_refs == 0);
236 	if (refs)
237 		*refs = num_refs;
238 	if (flags)
239 		*flags = extent_flags;
240 out_free:
241 	btrfs_free_path(path);
242 	return ret;
243 }
244 
245 /*
246  * Back reference rules.  Back refs have three main goals:
247  *
248  * 1) differentiate between all holders of references to an extent so that
249  *    when a reference is dropped we can make sure it was a valid reference
250  *    before freeing the extent.
251  *
252  * 2) Provide enough information to quickly find the holders of an extent
253  *    if we notice a given block is corrupted or bad.
254  *
255  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256  *    maintenance.  This is actually the same as #2, but with a slightly
257  *    different use case.
258  *
259  * There are two kinds of back refs. The implicit back refs is optimized
260  * for pointers in non-shared tree blocks. For a given pointer in a block,
261  * back refs of this kind provide information about the block's owner tree
262  * and the pointer's key. These information allow us to find the block by
263  * b-tree searching. The full back refs is for pointers in tree blocks not
264  * referenced by their owner trees. The location of tree block is recorded
265  * in the back refs. Actually the full back refs is generic, and can be
266  * used in all cases the implicit back refs is used. The major shortcoming
267  * of the full back refs is its overhead. Every time a tree block gets
268  * COWed, we have to update back refs entry for all pointers in it.
269  *
270  * For a newly allocated tree block, we use implicit back refs for
271  * pointers in it. This means most tree related operations only involve
272  * implicit back refs. For a tree block created in old transaction, the
273  * only way to drop a reference to it is COW it. So we can detect the
274  * event that tree block loses its owner tree's reference and do the
275  * back refs conversion.
276  *
277  * When a tree block is COWed through a tree, there are four cases:
278  *
279  * The reference count of the block is one and the tree is the block's
280  * owner tree. Nothing to do in this case.
281  *
282  * The reference count of the block is one and the tree is not the
283  * block's owner tree. In this case, full back refs is used for pointers
284  * in the block. Remove these full back refs, add implicit back refs for
285  * every pointers in the new block.
286  *
287  * The reference count of the block is greater than one and the tree is
288  * the block's owner tree. In this case, implicit back refs is used for
289  * pointers in the block. Add full back refs for every pointers in the
290  * block, increase lower level extents' reference counts. The original
291  * implicit back refs are entailed to the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * not the block's owner tree. Add implicit back refs for every pointer in
295  * the new block, increase lower level extents' reference count.
296  *
297  * Back Reference Key composing:
298  *
299  * The key objectid corresponds to the first byte in the extent,
300  * The key type is used to differentiate between types of back refs.
301  * There are different meanings of the key offset for different types
302  * of back refs.
303  *
304  * File extents can be referenced by:
305  *
306  * - multiple snapshots, subvolumes, or different generations in one subvol
307  * - different files inside a single subvolume
308  * - different offsets inside a file (bookend extents in file.c)
309  *
310  * The extent ref structure for the implicit back refs has fields for:
311  *
312  * - Objectid of the subvolume root
313  * - objectid of the file holding the reference
314  * - original offset in the file
315  * - how many bookend extents
316  *
317  * The key offset for the implicit back refs is hash of the first
318  * three fields.
319  *
320  * The extent ref structure for the full back refs has field for:
321  *
322  * - number of pointers in the tree leaf
323  *
324  * The key offset for the implicit back refs is the first byte of
325  * the tree leaf
326  *
327  * When a file extent is allocated, The implicit back refs is used.
328  * the fields are filled in:
329  *
330  *     (root_key.objectid, inode objectid, offset in file, 1)
331  *
332  * When a file extent is removed file truncation, we find the
333  * corresponding implicit back refs and check the following fields:
334  *
335  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
336  *
337  * Btree extents can be referenced by:
338  *
339  * - Different subvolumes
340  *
341  * Both the implicit back refs and the full back refs for tree blocks
342  * only consist of key. The key offset for the implicit back refs is
343  * objectid of block's owner tree. The key offset for the full back refs
344  * is the first byte of parent block.
345  *
346  * When implicit back refs is used, information about the lowest key and
347  * level of the tree block are required. These information are stored in
348  * tree block info structure.
349  */
350 
351 /*
352  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355  */
356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 				     struct btrfs_extent_inline_ref *iref,
358 				     enum btrfs_inline_ref_type is_data)
359 {
360 	int type = btrfs_extent_inline_ref_type(eb, iref);
361 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362 
363 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_DATA_REF_KEY ||
366 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
367 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(eb->fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	btrfs_print_leaf((struct extent_buffer *)eb);
400 	btrfs_err(eb->fs_info,
401 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 		  eb->start, (unsigned long)iref, type);
403 	WARN_ON(1);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 		btrfs_print_v0_err(trans->fs_info);
623 		btrfs_abort_transaction(trans, -EINVAL);
624 		return -EINVAL;
625 	} else {
626 		BUG();
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 	if (iref) {
659 		/*
660 		 * If type is invalid, we should have bailed out earlier than
661 		 * this call.
662 		 */
663 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 		} else {
669 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 		}
672 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_extent_data_ref);
675 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 				      struct btrfs_shared_data_ref);
679 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 	} else {
681 		WARN_ON(1);
682 	}
683 	return num_refs;
684 }
685 
686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  u64 bytenr, u64 parent,
689 					  u64 root_objectid)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = root_objectid;
702 	}
703 
704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 	if (ret > 0)
706 		ret = -ENOENT;
707 	return ret;
708 }
709 
710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 					  struct btrfs_path *path,
712 					  u64 bytenr, u64 parent,
713 					  u64 root_objectid)
714 {
715 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 	struct btrfs_key key;
717 	int ret;
718 
719 	key.objectid = bytenr;
720 	if (parent) {
721 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 		key.offset = parent;
723 	} else {
724 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 		key.offset = root_objectid;
726 	}
727 
728 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 	btrfs_release_path(path);
730 	return ret;
731 }
732 
733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 	int type;
736 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_BLOCK_REF_KEY;
739 		else
740 			type = BTRFS_TREE_BLOCK_REF_KEY;
741 	} else {
742 		if (parent > 0)
743 			type = BTRFS_SHARED_DATA_REF_KEY;
744 		else
745 			type = BTRFS_EXTENT_DATA_REF_KEY;
746 	}
747 	return type;
748 }
749 
750 static int find_next_key(struct btrfs_path *path, int level,
751 			 struct btrfs_key *key)
752 
753 {
754 	for (; level < BTRFS_MAX_LEVEL; level++) {
755 		if (!path->nodes[level])
756 			break;
757 		if (path->slots[level] + 1 >=
758 		    btrfs_header_nritems(path->nodes[level]))
759 			continue;
760 		if (level == 0)
761 			btrfs_item_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		else
764 			btrfs_node_key_to_cpu(path->nodes[level], key,
765 					      path->slots[level] + 1);
766 		return 0;
767 	}
768 	return 1;
769 }
770 
771 /*
772  * look for inline back ref. if back ref is found, *ref_ret is set
773  * to the address of inline back ref, and 0 is returned.
774  *
775  * if back ref isn't found, *ref_ret is set to the address where it
776  * should be inserted, and -ENOENT is returned.
777  *
778  * if insert is true and there are too many inline back refs, the path
779  * points to the extent item, and -EAGAIN is returned.
780  *
781  * NOTE: inline back refs are ordered in the same way that back ref
782  *	 items in the tree are ordered.
783  */
784 static noinline_for_stack
785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 				 struct btrfs_path *path,
787 				 struct btrfs_extent_inline_ref **ref_ret,
788 				 u64 bytenr, u64 num_bytes,
789 				 u64 parent, u64 root_objectid,
790 				 u64 owner, u64 offset, int insert)
791 {
792 	struct btrfs_fs_info *fs_info = trans->fs_info;
793 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 	struct btrfs_key key;
795 	struct extent_buffer *leaf;
796 	struct btrfs_extent_item *ei;
797 	struct btrfs_extent_inline_ref *iref;
798 	u64 flags;
799 	u64 item_size;
800 	unsigned long ptr;
801 	unsigned long end;
802 	int extra_size;
803 	int type;
804 	int want;
805 	int ret;
806 	int err = 0;
807 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 	int needed;
809 
810 	key.objectid = bytenr;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	key.offset = num_bytes;
813 
814 	want = extent_ref_type(parent, owner);
815 	if (insert) {
816 		extra_size = btrfs_extent_inline_ref_size(want);
817 		path->search_for_extension = 1;
818 		path->keep_locks = 1;
819 	} else
820 		extra_size = -1;
821 
822 	/*
823 	 * Owner is our level, so we can just add one to get the level for the
824 	 * block we are interested in.
825 	 */
826 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 		key.type = BTRFS_METADATA_ITEM_KEY;
828 		key.offset = owner;
829 	}
830 
831 again:
832 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 	if (ret < 0) {
834 		err = ret;
835 		goto out;
836 	}
837 
838 	/*
839 	 * We may be a newly converted file system which still has the old fat
840 	 * extent entries for metadata, so try and see if we have one of those.
841 	 */
842 	if (ret > 0 && skinny_metadata) {
843 		skinny_metadata = false;
844 		if (path->slots[0]) {
845 			path->slots[0]--;
846 			btrfs_item_key_to_cpu(path->nodes[0], &key,
847 					      path->slots[0]);
848 			if (key.objectid == bytenr &&
849 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
850 			    key.offset == num_bytes)
851 				ret = 0;
852 		}
853 		if (ret) {
854 			key.objectid = bytenr;
855 			key.type = BTRFS_EXTENT_ITEM_KEY;
856 			key.offset = num_bytes;
857 			btrfs_release_path(path);
858 			goto again;
859 		}
860 	}
861 
862 	if (ret && !insert) {
863 		err = -ENOENT;
864 		goto out;
865 	} else if (WARN_ON(ret)) {
866 		err = -EIO;
867 		goto out;
868 	}
869 
870 	leaf = path->nodes[0];
871 	item_size = btrfs_item_size(leaf, path->slots[0]);
872 	if (unlikely(item_size < sizeof(*ei))) {
873 		err = -EINVAL;
874 		btrfs_print_v0_err(fs_info);
875 		btrfs_abort_transaction(trans, err);
876 		goto out;
877 	}
878 
879 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
880 	flags = btrfs_extent_flags(leaf, ei);
881 
882 	ptr = (unsigned long)(ei + 1);
883 	end = (unsigned long)ei + item_size;
884 
885 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
886 		ptr += sizeof(struct btrfs_tree_block_info);
887 		BUG_ON(ptr > end);
888 	}
889 
890 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
891 		needed = BTRFS_REF_TYPE_DATA;
892 	else
893 		needed = BTRFS_REF_TYPE_BLOCK;
894 
895 	err = -ENOENT;
896 	while (1) {
897 		if (ptr >= end) {
898 			if (ptr > end) {
899 				err = -EUCLEAN;
900 				btrfs_print_leaf(path->nodes[0]);
901 				btrfs_crit(fs_info,
902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
903 					path->slots[0], root_objectid, owner, offset, parent);
904 			}
905 			break;
906 		}
907 		iref = (struct btrfs_extent_inline_ref *)ptr;
908 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
909 		if (type == BTRFS_REF_TYPE_INVALID) {
910 			err = -EUCLEAN;
911 			goto out;
912 		}
913 
914 		if (want < type)
915 			break;
916 		if (want > type) {
917 			ptr += btrfs_extent_inline_ref_size(type);
918 			continue;
919 		}
920 
921 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
922 			struct btrfs_extent_data_ref *dref;
923 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
924 			if (match_extent_data_ref(leaf, dref, root_objectid,
925 						  owner, offset)) {
926 				err = 0;
927 				break;
928 			}
929 			if (hash_extent_data_ref_item(leaf, dref) <
930 			    hash_extent_data_ref(root_objectid, owner, offset))
931 				break;
932 		} else {
933 			u64 ref_offset;
934 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
935 			if (parent > 0) {
936 				if (parent == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < parent)
941 					break;
942 			} else {
943 				if (root_objectid == ref_offset) {
944 					err = 0;
945 					break;
946 				}
947 				if (ref_offset < root_objectid)
948 					break;
949 			}
950 		}
951 		ptr += btrfs_extent_inline_ref_size(type);
952 	}
953 	if (err == -ENOENT && insert) {
954 		if (item_size + extra_size >=
955 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
956 			err = -EAGAIN;
957 			goto out;
958 		}
959 		/*
960 		 * To add new inline back ref, we have to make sure
961 		 * there is no corresponding back ref item.
962 		 * For simplicity, we just do not add new inline back
963 		 * ref if there is any kind of item for this block
964 		 */
965 		if (find_next_key(path, 0, &key) == 0 &&
966 		    key.objectid == bytenr &&
967 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
968 			err = -EAGAIN;
969 			goto out;
970 		}
971 	}
972 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
973 out:
974 	if (insert) {
975 		path->keep_locks = 0;
976 		path->search_for_extension = 0;
977 		btrfs_unlock_up_safe(path, 1);
978 	}
979 	return err;
980 }
981 
982 /*
983  * helper to add new inline back ref
984  */
985 static noinline_for_stack
986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
987 				 struct btrfs_path *path,
988 				 struct btrfs_extent_inline_ref *iref,
989 				 u64 parent, u64 root_objectid,
990 				 u64 owner, u64 offset, int refs_to_add,
991 				 struct btrfs_delayed_extent_op *extent_op)
992 {
993 	struct extent_buffer *leaf;
994 	struct btrfs_extent_item *ei;
995 	unsigned long ptr;
996 	unsigned long end;
997 	unsigned long item_offset;
998 	u64 refs;
999 	int size;
1000 	int type;
1001 
1002 	leaf = path->nodes[0];
1003 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 	item_offset = (unsigned long)iref - (unsigned long)ei;
1005 
1006 	type = extent_ref_type(parent, owner);
1007 	size = btrfs_extent_inline_ref_size(type);
1008 
1009 	btrfs_extend_item(path, size);
1010 
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	refs = btrfs_extent_refs(leaf, ei);
1013 	refs += refs_to_add;
1014 	btrfs_set_extent_refs(leaf, ei, refs);
1015 	if (extent_op)
1016 		__run_delayed_extent_op(extent_op, leaf, ei);
1017 
1018 	ptr = (unsigned long)ei + item_offset;
1019 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1020 	if (ptr < end - size)
1021 		memmove_extent_buffer(leaf, ptr + size, ptr,
1022 				      end - size - ptr);
1023 
1024 	iref = (struct btrfs_extent_inline_ref *)ptr;
1025 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1026 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1027 		struct btrfs_extent_data_ref *dref;
1028 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1029 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1030 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1031 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1032 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1033 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1034 		struct btrfs_shared_data_ref *sref;
1035 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1036 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1037 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1038 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1039 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1040 	} else {
1041 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1042 	}
1043 	btrfs_mark_buffer_dirty(leaf);
1044 }
1045 
1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1047 				 struct btrfs_path *path,
1048 				 struct btrfs_extent_inline_ref **ref_ret,
1049 				 u64 bytenr, u64 num_bytes, u64 parent,
1050 				 u64 root_objectid, u64 owner, u64 offset)
1051 {
1052 	int ret;
1053 
1054 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1055 					   num_bytes, parent, root_objectid,
1056 					   owner, offset, 0);
1057 	if (ret != -ENOENT)
1058 		return ret;
1059 
1060 	btrfs_release_path(path);
1061 	*ref_ret = NULL;
1062 
1063 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1064 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1065 					    root_objectid);
1066 	} else {
1067 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1068 					     root_objectid, owner, offset);
1069 	}
1070 	return ret;
1071 }
1072 
1073 /*
1074  * helper to update/remove inline back ref
1075  */
1076 static noinline_for_stack
1077 void update_inline_extent_backref(struct btrfs_path *path,
1078 				  struct btrfs_extent_inline_ref *iref,
1079 				  int refs_to_mod,
1080 				  struct btrfs_delayed_extent_op *extent_op)
1081 {
1082 	struct extent_buffer *leaf = path->nodes[0];
1083 	struct btrfs_extent_item *ei;
1084 	struct btrfs_extent_data_ref *dref = NULL;
1085 	struct btrfs_shared_data_ref *sref = NULL;
1086 	unsigned long ptr;
1087 	unsigned long end;
1088 	u32 item_size;
1089 	int size;
1090 	int type;
1091 	u64 refs;
1092 
1093 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1094 	refs = btrfs_extent_refs(leaf, ei);
1095 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1096 	refs += refs_to_mod;
1097 	btrfs_set_extent_refs(leaf, ei, refs);
1098 	if (extent_op)
1099 		__run_delayed_extent_op(extent_op, leaf, ei);
1100 
1101 	/*
1102 	 * If type is invalid, we should have bailed out after
1103 	 * lookup_inline_extent_backref().
1104 	 */
1105 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1106 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1107 
1108 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1109 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 		refs = btrfs_extent_data_ref_count(leaf, dref);
1111 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1112 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1113 		refs = btrfs_shared_data_ref_count(leaf, sref);
1114 	} else {
1115 		refs = 1;
1116 		BUG_ON(refs_to_mod != -1);
1117 	}
1118 
1119 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1120 	refs += refs_to_mod;
1121 
1122 	if (refs > 0) {
1123 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1124 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1125 		else
1126 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1127 	} else {
1128 		size =  btrfs_extent_inline_ref_size(type);
1129 		item_size = btrfs_item_size(leaf, path->slots[0]);
1130 		ptr = (unsigned long)iref;
1131 		end = (unsigned long)ei + item_size;
1132 		if (ptr + size < end)
1133 			memmove_extent_buffer(leaf, ptr, ptr + size,
1134 					      end - ptr - size);
1135 		item_size -= size;
1136 		btrfs_truncate_item(path, item_size, 1);
1137 	}
1138 	btrfs_mark_buffer_dirty(leaf);
1139 }
1140 
1141 static noinline_for_stack
1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1143 				 struct btrfs_path *path,
1144 				 u64 bytenr, u64 num_bytes, u64 parent,
1145 				 u64 root_objectid, u64 owner,
1146 				 u64 offset, int refs_to_add,
1147 				 struct btrfs_delayed_extent_op *extent_op)
1148 {
1149 	struct btrfs_extent_inline_ref *iref;
1150 	int ret;
1151 
1152 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1153 					   num_bytes, parent, root_objectid,
1154 					   owner, offset, 1);
1155 	if (ret == 0) {
1156 		/*
1157 		 * We're adding refs to a tree block we already own, this
1158 		 * should not happen at all.
1159 		 */
1160 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1161 			btrfs_crit(trans->fs_info,
1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1163 				   bytenr, num_bytes, root_objectid);
1164 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1165 				WARN_ON(1);
1166 				btrfs_crit(trans->fs_info,
1167 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1168 				btrfs_print_leaf(path->nodes[0]);
1169 			}
1170 			return -EUCLEAN;
1171 		}
1172 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1173 	} else if (ret == -ENOENT) {
1174 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1175 					    root_objectid, owner, offset,
1176 					    refs_to_add, extent_op);
1177 		ret = 0;
1178 	}
1179 	return ret;
1180 }
1181 
1182 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1183 				 struct btrfs_root *root,
1184 				 struct btrfs_path *path,
1185 				 struct btrfs_extent_inline_ref *iref,
1186 				 int refs_to_drop, int is_data)
1187 {
1188 	int ret = 0;
1189 
1190 	BUG_ON(!is_data && refs_to_drop != 1);
1191 	if (iref)
1192 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1193 	else if (is_data)
1194 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1195 	else
1196 		ret = btrfs_del_item(trans, root, path);
1197 	return ret;
1198 }
1199 
1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1201 			       u64 *discarded_bytes)
1202 {
1203 	int j, ret = 0;
1204 	u64 bytes_left, end;
1205 	u64 aligned_start = ALIGN(start, 1 << 9);
1206 
1207 	if (WARN_ON(start != aligned_start)) {
1208 		len -= aligned_start - start;
1209 		len = round_down(len, 1 << 9);
1210 		start = aligned_start;
1211 	}
1212 
1213 	*discarded_bytes = 0;
1214 
1215 	if (!len)
1216 		return 0;
1217 
1218 	end = start + len;
1219 	bytes_left = len;
1220 
1221 	/* Skip any superblocks on this device. */
1222 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1223 		u64 sb_start = btrfs_sb_offset(j);
1224 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1225 		u64 size = sb_start - start;
1226 
1227 		if (!in_range(sb_start, start, bytes_left) &&
1228 		    !in_range(sb_end, start, bytes_left) &&
1229 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1230 			continue;
1231 
1232 		/*
1233 		 * Superblock spans beginning of range.  Adjust start and
1234 		 * try again.
1235 		 */
1236 		if (sb_start <= start) {
1237 			start += sb_end - start;
1238 			if (start > end) {
1239 				bytes_left = 0;
1240 				break;
1241 			}
1242 			bytes_left = end - start;
1243 			continue;
1244 		}
1245 
1246 		if (size) {
1247 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1248 						   GFP_NOFS);
1249 			if (!ret)
1250 				*discarded_bytes += size;
1251 			else if (ret != -EOPNOTSUPP)
1252 				return ret;
1253 		}
1254 
1255 		start = sb_end;
1256 		if (start > end) {
1257 			bytes_left = 0;
1258 			break;
1259 		}
1260 		bytes_left = end - start;
1261 	}
1262 
1263 	if (bytes_left) {
1264 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1265 					   GFP_NOFS);
1266 		if (!ret)
1267 			*discarded_bytes += bytes_left;
1268 	}
1269 	return ret;
1270 }
1271 
1272 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes)
1273 {
1274 	struct btrfs_device *dev = stripe->dev;
1275 	struct btrfs_fs_info *fs_info = dev->fs_info;
1276 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1277 	u64 phys = stripe->physical;
1278 	u64 len = stripe->length;
1279 	u64 discarded = 0;
1280 	int ret = 0;
1281 
1282 	/* Zone reset on a zoned filesystem */
1283 	if (btrfs_can_zone_reset(dev, phys, len)) {
1284 		u64 src_disc;
1285 
1286 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1287 		if (ret)
1288 			goto out;
1289 
1290 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1291 		    dev != dev_replace->srcdev)
1292 			goto out;
1293 
1294 		src_disc = discarded;
1295 
1296 		/* Send to replace target as well */
1297 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1298 					      &discarded);
1299 		discarded += src_disc;
1300 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1301 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1302 	} else {
1303 		ret = 0;
1304 		*bytes = 0;
1305 	}
1306 
1307 out:
1308 	*bytes = discarded;
1309 	return ret;
1310 }
1311 
1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1313 			 u64 num_bytes, u64 *actual_bytes)
1314 {
1315 	int ret = 0;
1316 	u64 discarded_bytes = 0;
1317 	u64 end = bytenr + num_bytes;
1318 	u64 cur = bytenr;
1319 	struct btrfs_io_context *bioc = NULL;
1320 
1321 	/*
1322 	 * Avoid races with device replace and make sure our bioc has devices
1323 	 * associated to its stripes that don't go away while we are discarding.
1324 	 */
1325 	btrfs_bio_counter_inc_blocked(fs_info);
1326 	while (cur < end) {
1327 		struct btrfs_io_stripe *stripe;
1328 		int i;
1329 
1330 		num_bytes = end - cur;
1331 		/* Tell the block device(s) that the sectors can be discarded */
1332 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1333 				      &num_bytes, &bioc, 0);
1334 		/*
1335 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1336 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1337 		 * thus we can't continue anyway.
1338 		 */
1339 		if (ret < 0)
1340 			goto out;
1341 
1342 		stripe = bioc->stripes;
1343 		for (i = 0; i < bioc->num_stripes; i++, stripe++) {
1344 			u64 bytes;
1345 			struct btrfs_device *device = stripe->dev;
1346 
1347 			if (!device->bdev) {
1348 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1349 				continue;
1350 			}
1351 
1352 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1353 				continue;
1354 
1355 			ret = do_discard_extent(stripe, &bytes);
1356 			if (!ret) {
1357 				discarded_bytes += bytes;
1358 			} else if (ret != -EOPNOTSUPP) {
1359 				/*
1360 				 * Logic errors or -ENOMEM, or -EIO, but
1361 				 * unlikely to happen.
1362 				 *
1363 				 * And since there are two loops, explicitly
1364 				 * go to out to avoid confusion.
1365 				 */
1366 				btrfs_put_bioc(bioc);
1367 				goto out;
1368 			}
1369 
1370 			/*
1371 			 * Just in case we get back EOPNOTSUPP for some reason,
1372 			 * just ignore the return value so we don't screw up
1373 			 * people calling discard_extent.
1374 			 */
1375 			ret = 0;
1376 		}
1377 		btrfs_put_bioc(bioc);
1378 		cur += num_bytes;
1379 	}
1380 out:
1381 	btrfs_bio_counter_dec(fs_info);
1382 
1383 	if (actual_bytes)
1384 		*actual_bytes = discarded_bytes;
1385 
1386 
1387 	if (ret == -EOPNOTSUPP)
1388 		ret = 0;
1389 	return ret;
1390 }
1391 
1392 /* Can return -ENOMEM */
1393 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1394 			 struct btrfs_ref *generic_ref)
1395 {
1396 	struct btrfs_fs_info *fs_info = trans->fs_info;
1397 	int ret;
1398 
1399 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1400 	       generic_ref->action);
1401 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1402 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1403 
1404 	if (generic_ref->type == BTRFS_REF_METADATA)
1405 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1406 	else
1407 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1408 
1409 	btrfs_ref_tree_mod(fs_info, generic_ref);
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * __btrfs_inc_extent_ref - insert backreference for a given extent
1416  *
1417  * The counterpart is in __btrfs_free_extent(), with examples and more details
1418  * how it works.
1419  *
1420  * @trans:	    Handle of transaction
1421  *
1422  * @node:	    The delayed ref node used to get the bytenr/length for
1423  *		    extent whose references are incremented.
1424  *
1425  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1426  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1427  *		    bytenr of the parent block. Since new extents are always
1428  *		    created with indirect references, this will only be the case
1429  *		    when relocating a shared extent. In that case, root_objectid
1430  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1431  *		    be 0
1432  *
1433  * @root_objectid:  The id of the root where this modification has originated,
1434  *		    this can be either one of the well-known metadata trees or
1435  *		    the subvolume id which references this extent.
1436  *
1437  * @owner:	    For data extents it is the inode number of the owning file.
1438  *		    For metadata extents this parameter holds the level in the
1439  *		    tree of the extent.
1440  *
1441  * @offset:	    For metadata extents the offset is ignored and is currently
1442  *		    always passed as 0. For data extents it is the fileoffset
1443  *		    this extent belongs to.
1444  *
1445  * @refs_to_add     Number of references to add
1446  *
1447  * @extent_op       Pointer to a structure, holding information necessary when
1448  *                  updating a tree block's flags
1449  *
1450  */
1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1452 				  struct btrfs_delayed_ref_node *node,
1453 				  u64 parent, u64 root_objectid,
1454 				  u64 owner, u64 offset, int refs_to_add,
1455 				  struct btrfs_delayed_extent_op *extent_op)
1456 {
1457 	struct btrfs_path *path;
1458 	struct extent_buffer *leaf;
1459 	struct btrfs_extent_item *item;
1460 	struct btrfs_key key;
1461 	u64 bytenr = node->bytenr;
1462 	u64 num_bytes = node->num_bytes;
1463 	u64 refs;
1464 	int ret;
1465 
1466 	path = btrfs_alloc_path();
1467 	if (!path)
1468 		return -ENOMEM;
1469 
1470 	/* this will setup the path even if it fails to insert the back ref */
1471 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1472 					   parent, root_objectid, owner,
1473 					   offset, refs_to_add, extent_op);
1474 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1475 		goto out;
1476 
1477 	/*
1478 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1479 	 * inline extent ref, so just update the reference count and add a
1480 	 * normal backref.
1481 	 */
1482 	leaf = path->nodes[0];
1483 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1484 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1485 	refs = btrfs_extent_refs(leaf, item);
1486 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1487 	if (extent_op)
1488 		__run_delayed_extent_op(extent_op, leaf, item);
1489 
1490 	btrfs_mark_buffer_dirty(leaf);
1491 	btrfs_release_path(path);
1492 
1493 	/* now insert the actual backref */
1494 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 		BUG_ON(refs_to_add != 1);
1496 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1497 					    root_objectid);
1498 	} else {
1499 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1500 					     root_objectid, owner, offset,
1501 					     refs_to_add);
1502 	}
1503 	if (ret)
1504 		btrfs_abort_transaction(trans, ret);
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1511 				struct btrfs_delayed_ref_node *node,
1512 				struct btrfs_delayed_extent_op *extent_op,
1513 				int insert_reserved)
1514 {
1515 	int ret = 0;
1516 	struct btrfs_delayed_data_ref *ref;
1517 	struct btrfs_key ins;
1518 	u64 parent = 0;
1519 	u64 ref_root = 0;
1520 	u64 flags = 0;
1521 
1522 	ins.objectid = node->bytenr;
1523 	ins.offset = node->num_bytes;
1524 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1525 
1526 	ref = btrfs_delayed_node_to_data_ref(node);
1527 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1528 
1529 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1530 		parent = ref->parent;
1531 	ref_root = ref->root;
1532 
1533 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1534 		if (extent_op)
1535 			flags |= extent_op->flags_to_set;
1536 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1537 						 flags, ref->objectid,
1538 						 ref->offset, &ins,
1539 						 node->ref_mod);
1540 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1541 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1542 					     ref->objectid, ref->offset,
1543 					     node->ref_mod, extent_op);
1544 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1545 		ret = __btrfs_free_extent(trans, node, parent,
1546 					  ref_root, ref->objectid,
1547 					  ref->offset, node->ref_mod,
1548 					  extent_op);
1549 	} else {
1550 		BUG();
1551 	}
1552 	return ret;
1553 }
1554 
1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1556 				    struct extent_buffer *leaf,
1557 				    struct btrfs_extent_item *ei)
1558 {
1559 	u64 flags = btrfs_extent_flags(leaf, ei);
1560 	if (extent_op->update_flags) {
1561 		flags |= extent_op->flags_to_set;
1562 		btrfs_set_extent_flags(leaf, ei, flags);
1563 	}
1564 
1565 	if (extent_op->update_key) {
1566 		struct btrfs_tree_block_info *bi;
1567 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1568 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1569 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1570 	}
1571 }
1572 
1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1574 				 struct btrfs_delayed_ref_head *head,
1575 				 struct btrfs_delayed_extent_op *extent_op)
1576 {
1577 	struct btrfs_fs_info *fs_info = trans->fs_info;
1578 	struct btrfs_root *root;
1579 	struct btrfs_key key;
1580 	struct btrfs_path *path;
1581 	struct btrfs_extent_item *ei;
1582 	struct extent_buffer *leaf;
1583 	u32 item_size;
1584 	int ret;
1585 	int err = 0;
1586 	int metadata = 1;
1587 
1588 	if (TRANS_ABORTED(trans))
1589 		return 0;
1590 
1591 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1592 		metadata = 0;
1593 
1594 	path = btrfs_alloc_path();
1595 	if (!path)
1596 		return -ENOMEM;
1597 
1598 	key.objectid = head->bytenr;
1599 
1600 	if (metadata) {
1601 		key.type = BTRFS_METADATA_ITEM_KEY;
1602 		key.offset = extent_op->level;
1603 	} else {
1604 		key.type = BTRFS_EXTENT_ITEM_KEY;
1605 		key.offset = head->num_bytes;
1606 	}
1607 
1608 	root = btrfs_extent_root(fs_info, key.objectid);
1609 again:
1610 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1611 	if (ret < 0) {
1612 		err = ret;
1613 		goto out;
1614 	}
1615 	if (ret > 0) {
1616 		if (metadata) {
1617 			if (path->slots[0] > 0) {
1618 				path->slots[0]--;
1619 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1620 						      path->slots[0]);
1621 				if (key.objectid == head->bytenr &&
1622 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1623 				    key.offset == head->num_bytes)
1624 					ret = 0;
1625 			}
1626 			if (ret > 0) {
1627 				btrfs_release_path(path);
1628 				metadata = 0;
1629 
1630 				key.objectid = head->bytenr;
1631 				key.offset = head->num_bytes;
1632 				key.type = BTRFS_EXTENT_ITEM_KEY;
1633 				goto again;
1634 			}
1635 		} else {
1636 			err = -EIO;
1637 			goto out;
1638 		}
1639 	}
1640 
1641 	leaf = path->nodes[0];
1642 	item_size = btrfs_item_size(leaf, path->slots[0]);
1643 
1644 	if (unlikely(item_size < sizeof(*ei))) {
1645 		err = -EINVAL;
1646 		btrfs_print_v0_err(fs_info);
1647 		btrfs_abort_transaction(trans, err);
1648 		goto out;
1649 	}
1650 
1651 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1652 	__run_delayed_extent_op(extent_op, leaf, ei);
1653 
1654 	btrfs_mark_buffer_dirty(leaf);
1655 out:
1656 	btrfs_free_path(path);
1657 	return err;
1658 }
1659 
1660 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1661 				struct btrfs_delayed_ref_node *node,
1662 				struct btrfs_delayed_extent_op *extent_op,
1663 				int insert_reserved)
1664 {
1665 	int ret = 0;
1666 	struct btrfs_delayed_tree_ref *ref;
1667 	u64 parent = 0;
1668 	u64 ref_root = 0;
1669 
1670 	ref = btrfs_delayed_node_to_tree_ref(node);
1671 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1672 
1673 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1674 		parent = ref->parent;
1675 	ref_root = ref->root;
1676 
1677 	if (node->ref_mod != 1) {
1678 		btrfs_err(trans->fs_info,
1679 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1680 			  node->bytenr, node->ref_mod, node->action, ref_root,
1681 			  parent);
1682 		return -EIO;
1683 	}
1684 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1685 		BUG_ON(!extent_op || !extent_op->update_flags);
1686 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1687 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1688 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1689 					     ref->level, 0, 1, extent_op);
1690 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1691 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1692 					  ref->level, 0, 1, extent_op);
1693 	} else {
1694 		BUG();
1695 	}
1696 	return ret;
1697 }
1698 
1699 /* helper function to actually process a single delayed ref entry */
1700 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1701 			       struct btrfs_delayed_ref_node *node,
1702 			       struct btrfs_delayed_extent_op *extent_op,
1703 			       int insert_reserved)
1704 {
1705 	int ret = 0;
1706 
1707 	if (TRANS_ABORTED(trans)) {
1708 		if (insert_reserved)
1709 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1710 		return 0;
1711 	}
1712 
1713 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1714 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1715 		ret = run_delayed_tree_ref(trans, node, extent_op,
1716 					   insert_reserved);
1717 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1718 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1719 		ret = run_delayed_data_ref(trans, node, extent_op,
1720 					   insert_reserved);
1721 	else
1722 		BUG();
1723 	if (ret && insert_reserved)
1724 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1725 	return ret;
1726 }
1727 
1728 static inline struct btrfs_delayed_ref_node *
1729 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1730 {
1731 	struct btrfs_delayed_ref_node *ref;
1732 
1733 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1734 		return NULL;
1735 
1736 	/*
1737 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1738 	 * This is to prevent a ref count from going down to zero, which deletes
1739 	 * the extent item from the extent tree, when there still are references
1740 	 * to add, which would fail because they would not find the extent item.
1741 	 */
1742 	if (!list_empty(&head->ref_add_list))
1743 		return list_first_entry(&head->ref_add_list,
1744 				struct btrfs_delayed_ref_node, add_list);
1745 
1746 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1747 		       struct btrfs_delayed_ref_node, ref_node);
1748 	ASSERT(list_empty(&ref->add_list));
1749 	return ref;
1750 }
1751 
1752 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1753 				      struct btrfs_delayed_ref_head *head)
1754 {
1755 	spin_lock(&delayed_refs->lock);
1756 	head->processing = 0;
1757 	delayed_refs->num_heads_ready++;
1758 	spin_unlock(&delayed_refs->lock);
1759 	btrfs_delayed_ref_unlock(head);
1760 }
1761 
1762 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1763 				struct btrfs_delayed_ref_head *head)
1764 {
1765 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1766 
1767 	if (!extent_op)
1768 		return NULL;
1769 
1770 	if (head->must_insert_reserved) {
1771 		head->extent_op = NULL;
1772 		btrfs_free_delayed_extent_op(extent_op);
1773 		return NULL;
1774 	}
1775 	return extent_op;
1776 }
1777 
1778 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1779 				     struct btrfs_delayed_ref_head *head)
1780 {
1781 	struct btrfs_delayed_extent_op *extent_op;
1782 	int ret;
1783 
1784 	extent_op = cleanup_extent_op(head);
1785 	if (!extent_op)
1786 		return 0;
1787 	head->extent_op = NULL;
1788 	spin_unlock(&head->lock);
1789 	ret = run_delayed_extent_op(trans, head, extent_op);
1790 	btrfs_free_delayed_extent_op(extent_op);
1791 	return ret ? ret : 1;
1792 }
1793 
1794 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1795 				  struct btrfs_delayed_ref_root *delayed_refs,
1796 				  struct btrfs_delayed_ref_head *head)
1797 {
1798 	int nr_items = 1;	/* Dropping this ref head update. */
1799 
1800 	/*
1801 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1802 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1803 	 */
1804 	if (head->total_ref_mod < 0 && head->is_data) {
1805 		spin_lock(&delayed_refs->lock);
1806 		delayed_refs->pending_csums -= head->num_bytes;
1807 		spin_unlock(&delayed_refs->lock);
1808 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1809 	}
1810 
1811 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1812 }
1813 
1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 			    struct btrfs_delayed_ref_head *head)
1816 {
1817 
1818 	struct btrfs_fs_info *fs_info = trans->fs_info;
1819 	struct btrfs_delayed_ref_root *delayed_refs;
1820 	int ret;
1821 
1822 	delayed_refs = &trans->transaction->delayed_refs;
1823 
1824 	ret = run_and_cleanup_extent_op(trans, head);
1825 	if (ret < 0) {
1826 		unselect_delayed_ref_head(delayed_refs, head);
1827 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1828 		return ret;
1829 	} else if (ret) {
1830 		return ret;
1831 	}
1832 
1833 	/*
1834 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 	 * and then re-check to make sure nobody got added.
1836 	 */
1837 	spin_unlock(&head->lock);
1838 	spin_lock(&delayed_refs->lock);
1839 	spin_lock(&head->lock);
1840 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 		spin_unlock(&head->lock);
1842 		spin_unlock(&delayed_refs->lock);
1843 		return 1;
1844 	}
1845 	btrfs_delete_ref_head(delayed_refs, head);
1846 	spin_unlock(&head->lock);
1847 	spin_unlock(&delayed_refs->lock);
1848 
1849 	if (head->must_insert_reserved) {
1850 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 		if (head->is_data) {
1852 			struct btrfs_root *csum_root;
1853 
1854 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1855 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1856 					      head->num_bytes);
1857 		}
1858 	}
1859 
1860 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1861 
1862 	trace_run_delayed_ref_head(fs_info, head, 0);
1863 	btrfs_delayed_ref_unlock(head);
1864 	btrfs_put_delayed_ref_head(head);
1865 	return ret;
1866 }
1867 
1868 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1869 					struct btrfs_trans_handle *trans)
1870 {
1871 	struct btrfs_delayed_ref_root *delayed_refs =
1872 		&trans->transaction->delayed_refs;
1873 	struct btrfs_delayed_ref_head *head = NULL;
1874 	int ret;
1875 
1876 	spin_lock(&delayed_refs->lock);
1877 	head = btrfs_select_ref_head(delayed_refs);
1878 	if (!head) {
1879 		spin_unlock(&delayed_refs->lock);
1880 		return head;
1881 	}
1882 
1883 	/*
1884 	 * Grab the lock that says we are going to process all the refs for
1885 	 * this head
1886 	 */
1887 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1888 	spin_unlock(&delayed_refs->lock);
1889 
1890 	/*
1891 	 * We may have dropped the spin lock to get the head mutex lock, and
1892 	 * that might have given someone else time to free the head.  If that's
1893 	 * true, it has been removed from our list and we can move on.
1894 	 */
1895 	if (ret == -EAGAIN)
1896 		head = ERR_PTR(-EAGAIN);
1897 
1898 	return head;
1899 }
1900 
1901 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1902 				    struct btrfs_delayed_ref_head *locked_ref,
1903 				    unsigned long *run_refs)
1904 {
1905 	struct btrfs_fs_info *fs_info = trans->fs_info;
1906 	struct btrfs_delayed_ref_root *delayed_refs;
1907 	struct btrfs_delayed_extent_op *extent_op;
1908 	struct btrfs_delayed_ref_node *ref;
1909 	int must_insert_reserved = 0;
1910 	int ret;
1911 
1912 	delayed_refs = &trans->transaction->delayed_refs;
1913 
1914 	lockdep_assert_held(&locked_ref->mutex);
1915 	lockdep_assert_held(&locked_ref->lock);
1916 
1917 	while ((ref = select_delayed_ref(locked_ref))) {
1918 		if (ref->seq &&
1919 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1920 			spin_unlock(&locked_ref->lock);
1921 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1922 			return -EAGAIN;
1923 		}
1924 
1925 		(*run_refs)++;
1926 		ref->in_tree = 0;
1927 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1928 		RB_CLEAR_NODE(&ref->ref_node);
1929 		if (!list_empty(&ref->add_list))
1930 			list_del(&ref->add_list);
1931 		/*
1932 		 * When we play the delayed ref, also correct the ref_mod on
1933 		 * head
1934 		 */
1935 		switch (ref->action) {
1936 		case BTRFS_ADD_DELAYED_REF:
1937 		case BTRFS_ADD_DELAYED_EXTENT:
1938 			locked_ref->ref_mod -= ref->ref_mod;
1939 			break;
1940 		case BTRFS_DROP_DELAYED_REF:
1941 			locked_ref->ref_mod += ref->ref_mod;
1942 			break;
1943 		default:
1944 			WARN_ON(1);
1945 		}
1946 		atomic_dec(&delayed_refs->num_entries);
1947 
1948 		/*
1949 		 * Record the must_insert_reserved flag before we drop the
1950 		 * spin lock.
1951 		 */
1952 		must_insert_reserved = locked_ref->must_insert_reserved;
1953 		locked_ref->must_insert_reserved = 0;
1954 
1955 		extent_op = locked_ref->extent_op;
1956 		locked_ref->extent_op = NULL;
1957 		spin_unlock(&locked_ref->lock);
1958 
1959 		ret = run_one_delayed_ref(trans, ref, extent_op,
1960 					  must_insert_reserved);
1961 
1962 		btrfs_free_delayed_extent_op(extent_op);
1963 		if (ret) {
1964 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1965 			btrfs_put_delayed_ref(ref);
1966 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1967 				    ret);
1968 			return ret;
1969 		}
1970 
1971 		btrfs_put_delayed_ref(ref);
1972 		cond_resched();
1973 
1974 		spin_lock(&locked_ref->lock);
1975 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 /*
1982  * Returns 0 on success or if called with an already aborted transaction.
1983  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1984  */
1985 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1986 					     unsigned long nr)
1987 {
1988 	struct btrfs_fs_info *fs_info = trans->fs_info;
1989 	struct btrfs_delayed_ref_root *delayed_refs;
1990 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1991 	ktime_t start = ktime_get();
1992 	int ret;
1993 	unsigned long count = 0;
1994 	unsigned long actual_count = 0;
1995 
1996 	delayed_refs = &trans->transaction->delayed_refs;
1997 	do {
1998 		if (!locked_ref) {
1999 			locked_ref = btrfs_obtain_ref_head(trans);
2000 			if (IS_ERR_OR_NULL(locked_ref)) {
2001 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2002 					continue;
2003 				} else {
2004 					break;
2005 				}
2006 			}
2007 			count++;
2008 		}
2009 		/*
2010 		 * We need to try and merge add/drops of the same ref since we
2011 		 * can run into issues with relocate dropping the implicit ref
2012 		 * and then it being added back again before the drop can
2013 		 * finish.  If we merged anything we need to re-loop so we can
2014 		 * get a good ref.
2015 		 * Or we can get node references of the same type that weren't
2016 		 * merged when created due to bumps in the tree mod seq, and
2017 		 * we need to merge them to prevent adding an inline extent
2018 		 * backref before dropping it (triggering a BUG_ON at
2019 		 * insert_inline_extent_backref()).
2020 		 */
2021 		spin_lock(&locked_ref->lock);
2022 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2023 
2024 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2025 						      &actual_count);
2026 		if (ret < 0 && ret != -EAGAIN) {
2027 			/*
2028 			 * Error, btrfs_run_delayed_refs_for_head already
2029 			 * unlocked everything so just bail out
2030 			 */
2031 			return ret;
2032 		} else if (!ret) {
2033 			/*
2034 			 * Success, perform the usual cleanup of a processed
2035 			 * head
2036 			 */
2037 			ret = cleanup_ref_head(trans, locked_ref);
2038 			if (ret > 0 ) {
2039 				/* We dropped our lock, we need to loop. */
2040 				ret = 0;
2041 				continue;
2042 			} else if (ret) {
2043 				return ret;
2044 			}
2045 		}
2046 
2047 		/*
2048 		 * Either success case or btrfs_run_delayed_refs_for_head
2049 		 * returned -EAGAIN, meaning we need to select another head
2050 		 */
2051 
2052 		locked_ref = NULL;
2053 		cond_resched();
2054 	} while ((nr != -1 && count < nr) || locked_ref);
2055 
2056 	/*
2057 	 * We don't want to include ref heads since we can have empty ref heads
2058 	 * and those will drastically skew our runtime down since we just do
2059 	 * accounting, no actual extent tree updates.
2060 	 */
2061 	if (actual_count > 0) {
2062 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2063 		u64 avg;
2064 
2065 		/*
2066 		 * We weigh the current average higher than our current runtime
2067 		 * to avoid large swings in the average.
2068 		 */
2069 		spin_lock(&delayed_refs->lock);
2070 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2071 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2072 		spin_unlock(&delayed_refs->lock);
2073 	}
2074 	return 0;
2075 }
2076 
2077 #ifdef SCRAMBLE_DELAYED_REFS
2078 /*
2079  * Normally delayed refs get processed in ascending bytenr order. This
2080  * correlates in most cases to the order added. To expose dependencies on this
2081  * order, we start to process the tree in the middle instead of the beginning
2082  */
2083 static u64 find_middle(struct rb_root *root)
2084 {
2085 	struct rb_node *n = root->rb_node;
2086 	struct btrfs_delayed_ref_node *entry;
2087 	int alt = 1;
2088 	u64 middle;
2089 	u64 first = 0, last = 0;
2090 
2091 	n = rb_first(root);
2092 	if (n) {
2093 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2094 		first = entry->bytenr;
2095 	}
2096 	n = rb_last(root);
2097 	if (n) {
2098 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099 		last = entry->bytenr;
2100 	}
2101 	n = root->rb_node;
2102 
2103 	while (n) {
2104 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 		WARN_ON(!entry->in_tree);
2106 
2107 		middle = entry->bytenr;
2108 
2109 		if (alt)
2110 			n = n->rb_left;
2111 		else
2112 			n = n->rb_right;
2113 
2114 		alt = 1 - alt;
2115 	}
2116 	return middle;
2117 }
2118 #endif
2119 
2120 /*
2121  * this starts processing the delayed reference count updates and
2122  * extent insertions we have queued up so far.  count can be
2123  * 0, which means to process everything in the tree at the start
2124  * of the run (but not newly added entries), or it can be some target
2125  * number you'd like to process.
2126  *
2127  * Returns 0 on success or if called with an aborted transaction
2128  * Returns <0 on error and aborts the transaction
2129  */
2130 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2131 			   unsigned long count)
2132 {
2133 	struct btrfs_fs_info *fs_info = trans->fs_info;
2134 	struct rb_node *node;
2135 	struct btrfs_delayed_ref_root *delayed_refs;
2136 	struct btrfs_delayed_ref_head *head;
2137 	int ret;
2138 	int run_all = count == (unsigned long)-1;
2139 
2140 	/* We'll clean this up in btrfs_cleanup_transaction */
2141 	if (TRANS_ABORTED(trans))
2142 		return 0;
2143 
2144 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2145 		return 0;
2146 
2147 	delayed_refs = &trans->transaction->delayed_refs;
2148 	if (count == 0)
2149 		count = delayed_refs->num_heads_ready;
2150 
2151 again:
2152 #ifdef SCRAMBLE_DELAYED_REFS
2153 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2154 #endif
2155 	ret = __btrfs_run_delayed_refs(trans, count);
2156 	if (ret < 0) {
2157 		btrfs_abort_transaction(trans, ret);
2158 		return ret;
2159 	}
2160 
2161 	if (run_all) {
2162 		btrfs_create_pending_block_groups(trans);
2163 
2164 		spin_lock(&delayed_refs->lock);
2165 		node = rb_first_cached(&delayed_refs->href_root);
2166 		if (!node) {
2167 			spin_unlock(&delayed_refs->lock);
2168 			goto out;
2169 		}
2170 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2171 				href_node);
2172 		refcount_inc(&head->refs);
2173 		spin_unlock(&delayed_refs->lock);
2174 
2175 		/* Mutex was contended, block until it's released and retry. */
2176 		mutex_lock(&head->mutex);
2177 		mutex_unlock(&head->mutex);
2178 
2179 		btrfs_put_delayed_ref_head(head);
2180 		cond_resched();
2181 		goto again;
2182 	}
2183 out:
2184 	return 0;
2185 }
2186 
2187 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2188 				struct extent_buffer *eb, u64 flags,
2189 				int level)
2190 {
2191 	struct btrfs_delayed_extent_op *extent_op;
2192 	int ret;
2193 
2194 	extent_op = btrfs_alloc_delayed_extent_op();
2195 	if (!extent_op)
2196 		return -ENOMEM;
2197 
2198 	extent_op->flags_to_set = flags;
2199 	extent_op->update_flags = true;
2200 	extent_op->update_key = false;
2201 	extent_op->level = level;
2202 
2203 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2204 	if (ret)
2205 		btrfs_free_delayed_extent_op(extent_op);
2206 	return ret;
2207 }
2208 
2209 static noinline int check_delayed_ref(struct btrfs_root *root,
2210 				      struct btrfs_path *path,
2211 				      u64 objectid, u64 offset, u64 bytenr)
2212 {
2213 	struct btrfs_delayed_ref_head *head;
2214 	struct btrfs_delayed_ref_node *ref;
2215 	struct btrfs_delayed_data_ref *data_ref;
2216 	struct btrfs_delayed_ref_root *delayed_refs;
2217 	struct btrfs_transaction *cur_trans;
2218 	struct rb_node *node;
2219 	int ret = 0;
2220 
2221 	spin_lock(&root->fs_info->trans_lock);
2222 	cur_trans = root->fs_info->running_transaction;
2223 	if (cur_trans)
2224 		refcount_inc(&cur_trans->use_count);
2225 	spin_unlock(&root->fs_info->trans_lock);
2226 	if (!cur_trans)
2227 		return 0;
2228 
2229 	delayed_refs = &cur_trans->delayed_refs;
2230 	spin_lock(&delayed_refs->lock);
2231 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2232 	if (!head) {
2233 		spin_unlock(&delayed_refs->lock);
2234 		btrfs_put_transaction(cur_trans);
2235 		return 0;
2236 	}
2237 
2238 	if (!mutex_trylock(&head->mutex)) {
2239 		refcount_inc(&head->refs);
2240 		spin_unlock(&delayed_refs->lock);
2241 
2242 		btrfs_release_path(path);
2243 
2244 		/*
2245 		 * Mutex was contended, block until it's released and let
2246 		 * caller try again
2247 		 */
2248 		mutex_lock(&head->mutex);
2249 		mutex_unlock(&head->mutex);
2250 		btrfs_put_delayed_ref_head(head);
2251 		btrfs_put_transaction(cur_trans);
2252 		return -EAGAIN;
2253 	}
2254 	spin_unlock(&delayed_refs->lock);
2255 
2256 	spin_lock(&head->lock);
2257 	/*
2258 	 * XXX: We should replace this with a proper search function in the
2259 	 * future.
2260 	 */
2261 	for (node = rb_first_cached(&head->ref_tree); node;
2262 	     node = rb_next(node)) {
2263 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2264 		/* If it's a shared ref we know a cross reference exists */
2265 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2266 			ret = 1;
2267 			break;
2268 		}
2269 
2270 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2271 
2272 		/*
2273 		 * If our ref doesn't match the one we're currently looking at
2274 		 * then we have a cross reference.
2275 		 */
2276 		if (data_ref->root != root->root_key.objectid ||
2277 		    data_ref->objectid != objectid ||
2278 		    data_ref->offset != offset) {
2279 			ret = 1;
2280 			break;
2281 		}
2282 	}
2283 	spin_unlock(&head->lock);
2284 	mutex_unlock(&head->mutex);
2285 	btrfs_put_transaction(cur_trans);
2286 	return ret;
2287 }
2288 
2289 static noinline int check_committed_ref(struct btrfs_root *root,
2290 					struct btrfs_path *path,
2291 					u64 objectid, u64 offset, u64 bytenr,
2292 					bool strict)
2293 {
2294 	struct btrfs_fs_info *fs_info = root->fs_info;
2295 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2296 	struct extent_buffer *leaf;
2297 	struct btrfs_extent_data_ref *ref;
2298 	struct btrfs_extent_inline_ref *iref;
2299 	struct btrfs_extent_item *ei;
2300 	struct btrfs_key key;
2301 	u32 item_size;
2302 	int type;
2303 	int ret;
2304 
2305 	key.objectid = bytenr;
2306 	key.offset = (u64)-1;
2307 	key.type = BTRFS_EXTENT_ITEM_KEY;
2308 
2309 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2310 	if (ret < 0)
2311 		goto out;
2312 	BUG_ON(ret == 0); /* Corruption */
2313 
2314 	ret = -ENOENT;
2315 	if (path->slots[0] == 0)
2316 		goto out;
2317 
2318 	path->slots[0]--;
2319 	leaf = path->nodes[0];
2320 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2321 
2322 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2323 		goto out;
2324 
2325 	ret = 1;
2326 	item_size = btrfs_item_size(leaf, path->slots[0]);
2327 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2328 
2329 	/* If extent item has more than 1 inline ref then it's shared */
2330 	if (item_size != sizeof(*ei) +
2331 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2332 		goto out;
2333 
2334 	/*
2335 	 * If extent created before last snapshot => it's shared unless the
2336 	 * snapshot has been deleted. Use the heuristic if strict is false.
2337 	 */
2338 	if (!strict &&
2339 	    (btrfs_extent_generation(leaf, ei) <=
2340 	     btrfs_root_last_snapshot(&root->root_item)))
2341 		goto out;
2342 
2343 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2344 
2345 	/* If this extent has SHARED_DATA_REF then it's shared */
2346 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2347 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2348 		goto out;
2349 
2350 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2351 	if (btrfs_extent_refs(leaf, ei) !=
2352 	    btrfs_extent_data_ref_count(leaf, ref) ||
2353 	    btrfs_extent_data_ref_root(leaf, ref) !=
2354 	    root->root_key.objectid ||
2355 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2356 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2357 		goto out;
2358 
2359 	ret = 0;
2360 out:
2361 	return ret;
2362 }
2363 
2364 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2365 			  u64 bytenr, bool strict, struct btrfs_path *path)
2366 {
2367 	int ret;
2368 
2369 	do {
2370 		ret = check_committed_ref(root, path, objectid,
2371 					  offset, bytenr, strict);
2372 		if (ret && ret != -ENOENT)
2373 			goto out;
2374 
2375 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2376 	} while (ret == -EAGAIN);
2377 
2378 out:
2379 	btrfs_release_path(path);
2380 	if (btrfs_is_data_reloc_root(root))
2381 		WARN_ON(ret > 0);
2382 	return ret;
2383 }
2384 
2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2386 			   struct btrfs_root *root,
2387 			   struct extent_buffer *buf,
2388 			   int full_backref, int inc)
2389 {
2390 	struct btrfs_fs_info *fs_info = root->fs_info;
2391 	u64 bytenr;
2392 	u64 num_bytes;
2393 	u64 parent;
2394 	u64 ref_root;
2395 	u32 nritems;
2396 	struct btrfs_key key;
2397 	struct btrfs_file_extent_item *fi;
2398 	struct btrfs_ref generic_ref = { 0 };
2399 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2400 	int i;
2401 	int action;
2402 	int level;
2403 	int ret = 0;
2404 
2405 	if (btrfs_is_testing(fs_info))
2406 		return 0;
2407 
2408 	ref_root = btrfs_header_owner(buf);
2409 	nritems = btrfs_header_nritems(buf);
2410 	level = btrfs_header_level(buf);
2411 
2412 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413 		return 0;
2414 
2415 	if (full_backref)
2416 		parent = buf->start;
2417 	else
2418 		parent = 0;
2419 	if (inc)
2420 		action = BTRFS_ADD_DELAYED_REF;
2421 	else
2422 		action = BTRFS_DROP_DELAYED_REF;
2423 
2424 	for (i = 0; i < nritems; i++) {
2425 		if (level == 0) {
2426 			btrfs_item_key_to_cpu(buf, &key, i);
2427 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2428 				continue;
2429 			fi = btrfs_item_ptr(buf, i,
2430 					    struct btrfs_file_extent_item);
2431 			if (btrfs_file_extent_type(buf, fi) ==
2432 			    BTRFS_FILE_EXTENT_INLINE)
2433 				continue;
2434 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435 			if (bytenr == 0)
2436 				continue;
2437 
2438 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2439 			key.offset -= btrfs_file_extent_offset(buf, fi);
2440 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2441 					       num_bytes, parent);
2442 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2443 					    key.offset, root->root_key.objectid,
2444 					    for_reloc);
2445 			if (inc)
2446 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2447 			else
2448 				ret = btrfs_free_extent(trans, &generic_ref);
2449 			if (ret)
2450 				goto fail;
2451 		} else {
2452 			bytenr = btrfs_node_blockptr(buf, i);
2453 			num_bytes = fs_info->nodesize;
2454 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2455 					       num_bytes, parent);
2456 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2457 					    root->root_key.objectid, for_reloc);
2458 			if (inc)
2459 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2460 			else
2461 				ret = btrfs_free_extent(trans, &generic_ref);
2462 			if (ret)
2463 				goto fail;
2464 		}
2465 	}
2466 	return 0;
2467 fail:
2468 	return ret;
2469 }
2470 
2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2472 		  struct extent_buffer *buf, int full_backref)
2473 {
2474 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2475 }
2476 
2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2478 		  struct extent_buffer *buf, int full_backref)
2479 {
2480 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2481 }
2482 
2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2484 {
2485 	struct btrfs_fs_info *fs_info = root->fs_info;
2486 	u64 flags;
2487 	u64 ret;
2488 
2489 	if (data)
2490 		flags = BTRFS_BLOCK_GROUP_DATA;
2491 	else if (root == fs_info->chunk_root)
2492 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2493 	else
2494 		flags = BTRFS_BLOCK_GROUP_METADATA;
2495 
2496 	ret = btrfs_get_alloc_profile(fs_info, flags);
2497 	return ret;
2498 }
2499 
2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2501 {
2502 	struct rb_node *leftmost;
2503 	u64 bytenr = 0;
2504 
2505 	read_lock(&fs_info->block_group_cache_lock);
2506 	/* Get the block group with the lowest logical start address. */
2507 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2508 	if (leftmost) {
2509 		struct btrfs_block_group *bg;
2510 
2511 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2512 		bytenr = bg->start;
2513 	}
2514 	read_unlock(&fs_info->block_group_cache_lock);
2515 
2516 	return bytenr;
2517 }
2518 
2519 static int pin_down_extent(struct btrfs_trans_handle *trans,
2520 			   struct btrfs_block_group *cache,
2521 			   u64 bytenr, u64 num_bytes, int reserved)
2522 {
2523 	struct btrfs_fs_info *fs_info = cache->fs_info;
2524 
2525 	spin_lock(&cache->space_info->lock);
2526 	spin_lock(&cache->lock);
2527 	cache->pinned += num_bytes;
2528 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2529 					     num_bytes);
2530 	if (reserved) {
2531 		cache->reserved -= num_bytes;
2532 		cache->space_info->bytes_reserved -= num_bytes;
2533 	}
2534 	spin_unlock(&cache->lock);
2535 	spin_unlock(&cache->space_info->lock);
2536 
2537 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2538 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2539 	return 0;
2540 }
2541 
2542 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2543 		     u64 bytenr, u64 num_bytes, int reserved)
2544 {
2545 	struct btrfs_block_group *cache;
2546 
2547 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2548 	BUG_ON(!cache); /* Logic error */
2549 
2550 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2551 
2552 	btrfs_put_block_group(cache);
2553 	return 0;
2554 }
2555 
2556 /*
2557  * this function must be called within transaction
2558  */
2559 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2560 				    u64 bytenr, u64 num_bytes)
2561 {
2562 	struct btrfs_block_group *cache;
2563 	int ret;
2564 
2565 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2566 	if (!cache)
2567 		return -EINVAL;
2568 
2569 	/*
2570 	 * pull in the free space cache (if any) so that our pin
2571 	 * removes the free space from the cache.  We have load_only set
2572 	 * to one because the slow code to read in the free extents does check
2573 	 * the pinned extents.
2574 	 */
2575 	btrfs_cache_block_group(cache, 1);
2576 	/*
2577 	 * Make sure we wait until the cache is completely built in case it is
2578 	 * missing or is invalid and therefore needs to be rebuilt.
2579 	 */
2580 	ret = btrfs_wait_block_group_cache_done(cache);
2581 	if (ret)
2582 		goto out;
2583 
2584 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2585 
2586 	/* remove us from the free space cache (if we're there at all) */
2587 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2588 out:
2589 	btrfs_put_block_group(cache);
2590 	return ret;
2591 }
2592 
2593 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2594 				   u64 start, u64 num_bytes)
2595 {
2596 	int ret;
2597 	struct btrfs_block_group *block_group;
2598 
2599 	block_group = btrfs_lookup_block_group(fs_info, start);
2600 	if (!block_group)
2601 		return -EINVAL;
2602 
2603 	btrfs_cache_block_group(block_group, 1);
2604 	/*
2605 	 * Make sure we wait until the cache is completely built in case it is
2606 	 * missing or is invalid and therefore needs to be rebuilt.
2607 	 */
2608 	ret = btrfs_wait_block_group_cache_done(block_group);
2609 	if (ret)
2610 		goto out;
2611 
2612 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2613 out:
2614 	btrfs_put_block_group(block_group);
2615 	return ret;
2616 }
2617 
2618 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2619 {
2620 	struct btrfs_fs_info *fs_info = eb->fs_info;
2621 	struct btrfs_file_extent_item *item;
2622 	struct btrfs_key key;
2623 	int found_type;
2624 	int i;
2625 	int ret = 0;
2626 
2627 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2628 		return 0;
2629 
2630 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2631 		btrfs_item_key_to_cpu(eb, &key, i);
2632 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2633 			continue;
2634 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2635 		found_type = btrfs_file_extent_type(eb, item);
2636 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2637 			continue;
2638 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2639 			continue;
2640 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2641 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2642 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2643 		if (ret)
2644 			break;
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 static void
2651 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2652 {
2653 	atomic_inc(&bg->reservations);
2654 }
2655 
2656 /*
2657  * Returns the free cluster for the given space info and sets empty_cluster to
2658  * what it should be based on the mount options.
2659  */
2660 static struct btrfs_free_cluster *
2661 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2662 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2663 {
2664 	struct btrfs_free_cluster *ret = NULL;
2665 
2666 	*empty_cluster = 0;
2667 	if (btrfs_mixed_space_info(space_info))
2668 		return ret;
2669 
2670 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2671 		ret = &fs_info->meta_alloc_cluster;
2672 		if (btrfs_test_opt(fs_info, SSD))
2673 			*empty_cluster = SZ_2M;
2674 		else
2675 			*empty_cluster = SZ_64K;
2676 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2677 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2678 		*empty_cluster = SZ_2M;
2679 		ret = &fs_info->data_alloc_cluster;
2680 	}
2681 
2682 	return ret;
2683 }
2684 
2685 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2686 			      u64 start, u64 end,
2687 			      const bool return_free_space)
2688 {
2689 	struct btrfs_block_group *cache = NULL;
2690 	struct btrfs_space_info *space_info;
2691 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2692 	struct btrfs_free_cluster *cluster = NULL;
2693 	u64 len;
2694 	u64 total_unpinned = 0;
2695 	u64 empty_cluster = 0;
2696 	bool readonly;
2697 
2698 	while (start <= end) {
2699 		readonly = false;
2700 		if (!cache ||
2701 		    start >= cache->start + cache->length) {
2702 			if (cache)
2703 				btrfs_put_block_group(cache);
2704 			total_unpinned = 0;
2705 			cache = btrfs_lookup_block_group(fs_info, start);
2706 			BUG_ON(!cache); /* Logic error */
2707 
2708 			cluster = fetch_cluster_info(fs_info,
2709 						     cache->space_info,
2710 						     &empty_cluster);
2711 			empty_cluster <<= 1;
2712 		}
2713 
2714 		len = cache->start + cache->length - start;
2715 		len = min(len, end + 1 - start);
2716 
2717 		down_read(&fs_info->commit_root_sem);
2718 		if (start < cache->last_byte_to_unpin && return_free_space) {
2719 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2720 
2721 			btrfs_add_free_space(cache, start, add_len);
2722 		}
2723 		up_read(&fs_info->commit_root_sem);
2724 
2725 		start += len;
2726 		total_unpinned += len;
2727 		space_info = cache->space_info;
2728 
2729 		/*
2730 		 * If this space cluster has been marked as fragmented and we've
2731 		 * unpinned enough in this block group to potentially allow a
2732 		 * cluster to be created inside of it go ahead and clear the
2733 		 * fragmented check.
2734 		 */
2735 		if (cluster && cluster->fragmented &&
2736 		    total_unpinned > empty_cluster) {
2737 			spin_lock(&cluster->lock);
2738 			cluster->fragmented = 0;
2739 			spin_unlock(&cluster->lock);
2740 		}
2741 
2742 		spin_lock(&space_info->lock);
2743 		spin_lock(&cache->lock);
2744 		cache->pinned -= len;
2745 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2746 		space_info->max_extent_size = 0;
2747 		if (cache->ro) {
2748 			space_info->bytes_readonly += len;
2749 			readonly = true;
2750 		} else if (btrfs_is_zoned(fs_info)) {
2751 			/* Need reset before reusing in a zoned block group */
2752 			space_info->bytes_zone_unusable += len;
2753 			readonly = true;
2754 		}
2755 		spin_unlock(&cache->lock);
2756 		if (!readonly && return_free_space &&
2757 		    global_rsv->space_info == space_info) {
2758 			spin_lock(&global_rsv->lock);
2759 			if (!global_rsv->full) {
2760 				u64 to_add = min(len, global_rsv->size -
2761 						      global_rsv->reserved);
2762 
2763 				global_rsv->reserved += to_add;
2764 				btrfs_space_info_update_bytes_may_use(fs_info,
2765 						space_info, to_add);
2766 				if (global_rsv->reserved >= global_rsv->size)
2767 					global_rsv->full = 1;
2768 				len -= to_add;
2769 			}
2770 			spin_unlock(&global_rsv->lock);
2771 		}
2772 		/* Add to any tickets we may have */
2773 		if (!readonly && return_free_space && len)
2774 			btrfs_try_granting_tickets(fs_info, space_info);
2775 		spin_unlock(&space_info->lock);
2776 	}
2777 
2778 	if (cache)
2779 		btrfs_put_block_group(cache);
2780 	return 0;
2781 }
2782 
2783 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2784 {
2785 	struct btrfs_fs_info *fs_info = trans->fs_info;
2786 	struct btrfs_block_group *block_group, *tmp;
2787 	struct list_head *deleted_bgs;
2788 	struct extent_io_tree *unpin;
2789 	u64 start;
2790 	u64 end;
2791 	int ret;
2792 
2793 	unpin = &trans->transaction->pinned_extents;
2794 
2795 	while (!TRANS_ABORTED(trans)) {
2796 		struct extent_state *cached_state = NULL;
2797 
2798 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2799 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2800 					    EXTENT_DIRTY, &cached_state);
2801 		if (ret) {
2802 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2803 			break;
2804 		}
2805 
2806 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2807 			ret = btrfs_discard_extent(fs_info, start,
2808 						   end + 1 - start, NULL);
2809 
2810 		clear_extent_dirty(unpin, start, end, &cached_state);
2811 		unpin_extent_range(fs_info, start, end, true);
2812 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2813 		free_extent_state(cached_state);
2814 		cond_resched();
2815 	}
2816 
2817 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2818 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2819 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2820 	}
2821 
2822 	/*
2823 	 * Transaction is finished.  We don't need the lock anymore.  We
2824 	 * do need to clean up the block groups in case of a transaction
2825 	 * abort.
2826 	 */
2827 	deleted_bgs = &trans->transaction->deleted_bgs;
2828 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2829 		u64 trimmed = 0;
2830 
2831 		ret = -EROFS;
2832 		if (!TRANS_ABORTED(trans))
2833 			ret = btrfs_discard_extent(fs_info,
2834 						   block_group->start,
2835 						   block_group->length,
2836 						   &trimmed);
2837 
2838 		list_del_init(&block_group->bg_list);
2839 		btrfs_unfreeze_block_group(block_group);
2840 		btrfs_put_block_group(block_group);
2841 
2842 		if (ret) {
2843 			const char *errstr = btrfs_decode_error(ret);
2844 			btrfs_warn(fs_info,
2845 			   "discard failed while removing blockgroup: errno=%d %s",
2846 				   ret, errstr);
2847 		}
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2854 				     u64 bytenr, u64 num_bytes, bool is_data)
2855 {
2856 	int ret;
2857 
2858 	if (is_data) {
2859 		struct btrfs_root *csum_root;
2860 
2861 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2862 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2863 		if (ret) {
2864 			btrfs_abort_transaction(trans, ret);
2865 			return ret;
2866 		}
2867 	}
2868 
2869 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2870 	if (ret) {
2871 		btrfs_abort_transaction(trans, ret);
2872 		return ret;
2873 	}
2874 
2875 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2876 	if (ret)
2877 		btrfs_abort_transaction(trans, ret);
2878 
2879 	return ret;
2880 }
2881 
2882 /*
2883  * Drop one or more refs of @node.
2884  *
2885  * 1. Locate the extent refs.
2886  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2887  *    Locate it, then reduce the refs number or remove the ref line completely.
2888  *
2889  * 2. Update the refs count in EXTENT/METADATA_ITEM
2890  *
2891  * Inline backref case:
2892  *
2893  * in extent tree we have:
2894  *
2895  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2896  *		refs 2 gen 6 flags DATA
2897  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2898  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2899  *
2900  * This function gets called with:
2901  *
2902  *    node->bytenr = 13631488
2903  *    node->num_bytes = 1048576
2904  *    root_objectid = FS_TREE
2905  *    owner_objectid = 257
2906  *    owner_offset = 0
2907  *    refs_to_drop = 1
2908  *
2909  * Then we should get some like:
2910  *
2911  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2912  *		refs 1 gen 6 flags DATA
2913  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2914  *
2915  * Keyed backref case:
2916  *
2917  * in extent tree we have:
2918  *
2919  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2920  *		refs 754 gen 6 flags DATA
2921  *	[...]
2922  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2923  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2924  *
2925  * This function get called with:
2926  *
2927  *    node->bytenr = 13631488
2928  *    node->num_bytes = 1048576
2929  *    root_objectid = FS_TREE
2930  *    owner_objectid = 866
2931  *    owner_offset = 0
2932  *    refs_to_drop = 1
2933  *
2934  * Then we should get some like:
2935  *
2936  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2937  *		refs 753 gen 6 flags DATA
2938  *
2939  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2940  */
2941 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2942 			       struct btrfs_delayed_ref_node *node, u64 parent,
2943 			       u64 root_objectid, u64 owner_objectid,
2944 			       u64 owner_offset, int refs_to_drop,
2945 			       struct btrfs_delayed_extent_op *extent_op)
2946 {
2947 	struct btrfs_fs_info *info = trans->fs_info;
2948 	struct btrfs_key key;
2949 	struct btrfs_path *path;
2950 	struct btrfs_root *extent_root;
2951 	struct extent_buffer *leaf;
2952 	struct btrfs_extent_item *ei;
2953 	struct btrfs_extent_inline_ref *iref;
2954 	int ret;
2955 	int is_data;
2956 	int extent_slot = 0;
2957 	int found_extent = 0;
2958 	int num_to_del = 1;
2959 	u32 item_size;
2960 	u64 refs;
2961 	u64 bytenr = node->bytenr;
2962 	u64 num_bytes = node->num_bytes;
2963 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2964 
2965 	extent_root = btrfs_extent_root(info, bytenr);
2966 	ASSERT(extent_root);
2967 
2968 	path = btrfs_alloc_path();
2969 	if (!path)
2970 		return -ENOMEM;
2971 
2972 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2973 
2974 	if (!is_data && refs_to_drop != 1) {
2975 		btrfs_crit(info,
2976 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2977 			   node->bytenr, refs_to_drop);
2978 		ret = -EINVAL;
2979 		btrfs_abort_transaction(trans, ret);
2980 		goto out;
2981 	}
2982 
2983 	if (is_data)
2984 		skinny_metadata = false;
2985 
2986 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 				    parent, root_objectid, owner_objectid,
2988 				    owner_offset);
2989 	if (ret == 0) {
2990 		/*
2991 		 * Either the inline backref or the SHARED_DATA_REF/
2992 		 * SHARED_BLOCK_REF is found
2993 		 *
2994 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2995 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2996 		 */
2997 		extent_slot = path->slots[0];
2998 		while (extent_slot >= 0) {
2999 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3000 					      extent_slot);
3001 			if (key.objectid != bytenr)
3002 				break;
3003 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3004 			    key.offset == num_bytes) {
3005 				found_extent = 1;
3006 				break;
3007 			}
3008 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3009 			    key.offset == owner_objectid) {
3010 				found_extent = 1;
3011 				break;
3012 			}
3013 
3014 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3015 			if (path->slots[0] - extent_slot > 5)
3016 				break;
3017 			extent_slot--;
3018 		}
3019 
3020 		if (!found_extent) {
3021 			if (iref) {
3022 				btrfs_crit(info,
3023 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3024 				btrfs_abort_transaction(trans, -EUCLEAN);
3025 				goto err_dump;
3026 			}
3027 			/* Must be SHARED_* item, remove the backref first */
3028 			ret = remove_extent_backref(trans, extent_root, path,
3029 						    NULL, refs_to_drop, is_data);
3030 			if (ret) {
3031 				btrfs_abort_transaction(trans, ret);
3032 				goto out;
3033 			}
3034 			btrfs_release_path(path);
3035 
3036 			/* Slow path to locate EXTENT/METADATA_ITEM */
3037 			key.objectid = bytenr;
3038 			key.type = BTRFS_EXTENT_ITEM_KEY;
3039 			key.offset = num_bytes;
3040 
3041 			if (!is_data && skinny_metadata) {
3042 				key.type = BTRFS_METADATA_ITEM_KEY;
3043 				key.offset = owner_objectid;
3044 			}
3045 
3046 			ret = btrfs_search_slot(trans, extent_root,
3047 						&key, path, -1, 1);
3048 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3049 				/*
3050 				 * Couldn't find our skinny metadata item,
3051 				 * see if we have ye olde extent item.
3052 				 */
3053 				path->slots[0]--;
3054 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3055 						      path->slots[0]);
3056 				if (key.objectid == bytenr &&
3057 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3058 				    key.offset == num_bytes)
3059 					ret = 0;
3060 			}
3061 
3062 			if (ret > 0 && skinny_metadata) {
3063 				skinny_metadata = false;
3064 				key.objectid = bytenr;
3065 				key.type = BTRFS_EXTENT_ITEM_KEY;
3066 				key.offset = num_bytes;
3067 				btrfs_release_path(path);
3068 				ret = btrfs_search_slot(trans, extent_root,
3069 							&key, path, -1, 1);
3070 			}
3071 
3072 			if (ret) {
3073 				btrfs_err(info,
3074 					  "umm, got %d back from search, was looking for %llu",
3075 					  ret, bytenr);
3076 				if (ret > 0)
3077 					btrfs_print_leaf(path->nodes[0]);
3078 			}
3079 			if (ret < 0) {
3080 				btrfs_abort_transaction(trans, ret);
3081 				goto out;
3082 			}
3083 			extent_slot = path->slots[0];
3084 		}
3085 	} else if (WARN_ON(ret == -ENOENT)) {
3086 		btrfs_print_leaf(path->nodes[0]);
3087 		btrfs_err(info,
3088 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3089 			bytenr, parent, root_objectid, owner_objectid,
3090 			owner_offset);
3091 		btrfs_abort_transaction(trans, ret);
3092 		goto out;
3093 	} else {
3094 		btrfs_abort_transaction(trans, ret);
3095 		goto out;
3096 	}
3097 
3098 	leaf = path->nodes[0];
3099 	item_size = btrfs_item_size(leaf, extent_slot);
3100 	if (unlikely(item_size < sizeof(*ei))) {
3101 		ret = -EINVAL;
3102 		btrfs_print_v0_err(info);
3103 		btrfs_abort_transaction(trans, ret);
3104 		goto out;
3105 	}
3106 	ei = btrfs_item_ptr(leaf, extent_slot,
3107 			    struct btrfs_extent_item);
3108 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3109 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3110 		struct btrfs_tree_block_info *bi;
3111 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3112 			btrfs_crit(info,
3113 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3114 				   key.objectid, key.type, key.offset,
3115 				   owner_objectid, item_size,
3116 				   sizeof(*ei) + sizeof(*bi));
3117 			btrfs_abort_transaction(trans, -EUCLEAN);
3118 			goto err_dump;
3119 		}
3120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3121 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3122 	}
3123 
3124 	refs = btrfs_extent_refs(leaf, ei);
3125 	if (refs < refs_to_drop) {
3126 		btrfs_crit(info,
3127 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3128 			  refs_to_drop, refs, bytenr);
3129 		btrfs_abort_transaction(trans, -EUCLEAN);
3130 		goto err_dump;
3131 	}
3132 	refs -= refs_to_drop;
3133 
3134 	if (refs > 0) {
3135 		if (extent_op)
3136 			__run_delayed_extent_op(extent_op, leaf, ei);
3137 		/*
3138 		 * In the case of inline back ref, reference count will
3139 		 * be updated by remove_extent_backref
3140 		 */
3141 		if (iref) {
3142 			if (!found_extent) {
3143 				btrfs_crit(info,
3144 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3145 				btrfs_abort_transaction(trans, -EUCLEAN);
3146 				goto err_dump;
3147 			}
3148 		} else {
3149 			btrfs_set_extent_refs(leaf, ei, refs);
3150 			btrfs_mark_buffer_dirty(leaf);
3151 		}
3152 		if (found_extent) {
3153 			ret = remove_extent_backref(trans, extent_root, path,
3154 						    iref, refs_to_drop, is_data);
3155 			if (ret) {
3156 				btrfs_abort_transaction(trans, ret);
3157 				goto out;
3158 			}
3159 		}
3160 	} else {
3161 		/* In this branch refs == 1 */
3162 		if (found_extent) {
3163 			if (is_data && refs_to_drop !=
3164 			    extent_data_ref_count(path, iref)) {
3165 				btrfs_crit(info,
3166 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3167 					   extent_data_ref_count(path, iref),
3168 					   refs_to_drop);
3169 				btrfs_abort_transaction(trans, -EUCLEAN);
3170 				goto err_dump;
3171 			}
3172 			if (iref) {
3173 				if (path->slots[0] != extent_slot) {
3174 					btrfs_crit(info,
3175 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3176 						   key.objectid, key.type,
3177 						   key.offset);
3178 					btrfs_abort_transaction(trans, -EUCLEAN);
3179 					goto err_dump;
3180 				}
3181 			} else {
3182 				/*
3183 				 * No inline ref, we must be at SHARED_* item,
3184 				 * And it's single ref, it must be:
3185 				 * |	extent_slot	  ||extent_slot + 1|
3186 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3187 				 */
3188 				if (path->slots[0] != extent_slot + 1) {
3189 					btrfs_crit(info,
3190 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3191 					btrfs_abort_transaction(trans, -EUCLEAN);
3192 					goto err_dump;
3193 				}
3194 				path->slots[0] = extent_slot;
3195 				num_to_del = 2;
3196 			}
3197 		}
3198 
3199 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3200 				      num_to_del);
3201 		if (ret) {
3202 			btrfs_abort_transaction(trans, ret);
3203 			goto out;
3204 		}
3205 		btrfs_release_path(path);
3206 
3207 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3208 	}
3209 	btrfs_release_path(path);
3210 
3211 out:
3212 	btrfs_free_path(path);
3213 	return ret;
3214 err_dump:
3215 	/*
3216 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3217 	 * dump for debug build.
3218 	 */
3219 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3220 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3221 			   path->slots[0], extent_slot);
3222 		btrfs_print_leaf(path->nodes[0]);
3223 	}
3224 
3225 	btrfs_free_path(path);
3226 	return -EUCLEAN;
3227 }
3228 
3229 /*
3230  * when we free an block, it is possible (and likely) that we free the last
3231  * delayed ref for that extent as well.  This searches the delayed ref tree for
3232  * a given extent, and if there are no other delayed refs to be processed, it
3233  * removes it from the tree.
3234  */
3235 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3236 				      u64 bytenr)
3237 {
3238 	struct btrfs_delayed_ref_head *head;
3239 	struct btrfs_delayed_ref_root *delayed_refs;
3240 	int ret = 0;
3241 
3242 	delayed_refs = &trans->transaction->delayed_refs;
3243 	spin_lock(&delayed_refs->lock);
3244 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3245 	if (!head)
3246 		goto out_delayed_unlock;
3247 
3248 	spin_lock(&head->lock);
3249 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3250 		goto out;
3251 
3252 	if (cleanup_extent_op(head) != NULL)
3253 		goto out;
3254 
3255 	/*
3256 	 * waiting for the lock here would deadlock.  If someone else has it
3257 	 * locked they are already in the process of dropping it anyway
3258 	 */
3259 	if (!mutex_trylock(&head->mutex))
3260 		goto out;
3261 
3262 	btrfs_delete_ref_head(delayed_refs, head);
3263 	head->processing = 0;
3264 
3265 	spin_unlock(&head->lock);
3266 	spin_unlock(&delayed_refs->lock);
3267 
3268 	BUG_ON(head->extent_op);
3269 	if (head->must_insert_reserved)
3270 		ret = 1;
3271 
3272 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3273 	mutex_unlock(&head->mutex);
3274 	btrfs_put_delayed_ref_head(head);
3275 	return ret;
3276 out:
3277 	spin_unlock(&head->lock);
3278 
3279 out_delayed_unlock:
3280 	spin_unlock(&delayed_refs->lock);
3281 	return 0;
3282 }
3283 
3284 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3285 			   u64 root_id,
3286 			   struct extent_buffer *buf,
3287 			   u64 parent, int last_ref)
3288 {
3289 	struct btrfs_fs_info *fs_info = trans->fs_info;
3290 	struct btrfs_ref generic_ref = { 0 };
3291 	int ret;
3292 
3293 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3294 			       buf->start, buf->len, parent);
3295 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3296 			    root_id, 0, false);
3297 
3298 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3299 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3300 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3301 		BUG_ON(ret); /* -ENOMEM */
3302 	}
3303 
3304 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3305 		struct btrfs_block_group *cache;
3306 		bool must_pin = false;
3307 
3308 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3309 			ret = check_ref_cleanup(trans, buf->start);
3310 			if (!ret) {
3311 				btrfs_redirty_list_add(trans->transaction, buf);
3312 				goto out;
3313 			}
3314 		}
3315 
3316 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3317 
3318 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3319 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3320 			btrfs_put_block_group(cache);
3321 			goto out;
3322 		}
3323 
3324 		/*
3325 		 * If this is a leaf and there are tree mod log users, we may
3326 		 * have recorded mod log operations that point to this leaf.
3327 		 * So we must make sure no one reuses this leaf's extent before
3328 		 * mod log operations are applied to a node, otherwise after
3329 		 * rewinding a node using the mod log operations we get an
3330 		 * inconsistent btree, as the leaf's extent may now be used as
3331 		 * a node or leaf for another different btree.
3332 		 * We are safe from races here because at this point no other
3333 		 * node or root points to this extent buffer, so if after this
3334 		 * check a new tree mod log user joins, it will not be able to
3335 		 * find a node pointing to this leaf and record operations that
3336 		 * point to this leaf.
3337 		 */
3338 		if (btrfs_header_level(buf) == 0 &&
3339 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3340 			must_pin = true;
3341 
3342 		if (must_pin || btrfs_is_zoned(fs_info)) {
3343 			btrfs_redirty_list_add(trans->transaction, buf);
3344 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3345 			btrfs_put_block_group(cache);
3346 			goto out;
3347 		}
3348 
3349 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3350 
3351 		btrfs_add_free_space(cache, buf->start, buf->len);
3352 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3353 		btrfs_put_block_group(cache);
3354 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3355 	}
3356 out:
3357 	if (last_ref) {
3358 		/*
3359 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3360 		 * matter anymore.
3361 		 */
3362 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3363 	}
3364 }
3365 
3366 /* Can return -ENOMEM */
3367 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3368 {
3369 	struct btrfs_fs_info *fs_info = trans->fs_info;
3370 	int ret;
3371 
3372 	if (btrfs_is_testing(fs_info))
3373 		return 0;
3374 
3375 	/*
3376 	 * tree log blocks never actually go into the extent allocation
3377 	 * tree, just update pinning info and exit early.
3378 	 */
3379 	if ((ref->type == BTRFS_REF_METADATA &&
3380 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3381 	    (ref->type == BTRFS_REF_DATA &&
3382 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3383 		/* unlocks the pinned mutex */
3384 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3385 		ret = 0;
3386 	} else if (ref->type == BTRFS_REF_METADATA) {
3387 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3388 	} else {
3389 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3390 	}
3391 
3392 	if (!((ref->type == BTRFS_REF_METADATA &&
3393 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3394 	      (ref->type == BTRFS_REF_DATA &&
3395 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3396 		btrfs_ref_tree_mod(fs_info, ref);
3397 
3398 	return ret;
3399 }
3400 
3401 enum btrfs_loop_type {
3402 	LOOP_CACHING_NOWAIT,
3403 	LOOP_CACHING_WAIT,
3404 	LOOP_ALLOC_CHUNK,
3405 	LOOP_NO_EMPTY_SIZE,
3406 };
3407 
3408 static inline void
3409 btrfs_lock_block_group(struct btrfs_block_group *cache,
3410 		       int delalloc)
3411 {
3412 	if (delalloc)
3413 		down_read(&cache->data_rwsem);
3414 }
3415 
3416 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3417 		       int delalloc)
3418 {
3419 	btrfs_get_block_group(cache);
3420 	if (delalloc)
3421 		down_read(&cache->data_rwsem);
3422 }
3423 
3424 static struct btrfs_block_group *btrfs_lock_cluster(
3425 		   struct btrfs_block_group *block_group,
3426 		   struct btrfs_free_cluster *cluster,
3427 		   int delalloc)
3428 	__acquires(&cluster->refill_lock)
3429 {
3430 	struct btrfs_block_group *used_bg = NULL;
3431 
3432 	spin_lock(&cluster->refill_lock);
3433 	while (1) {
3434 		used_bg = cluster->block_group;
3435 		if (!used_bg)
3436 			return NULL;
3437 
3438 		if (used_bg == block_group)
3439 			return used_bg;
3440 
3441 		btrfs_get_block_group(used_bg);
3442 
3443 		if (!delalloc)
3444 			return used_bg;
3445 
3446 		if (down_read_trylock(&used_bg->data_rwsem))
3447 			return used_bg;
3448 
3449 		spin_unlock(&cluster->refill_lock);
3450 
3451 		/* We should only have one-level nested. */
3452 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3453 
3454 		spin_lock(&cluster->refill_lock);
3455 		if (used_bg == cluster->block_group)
3456 			return used_bg;
3457 
3458 		up_read(&used_bg->data_rwsem);
3459 		btrfs_put_block_group(used_bg);
3460 	}
3461 }
3462 
3463 static inline void
3464 btrfs_release_block_group(struct btrfs_block_group *cache,
3465 			 int delalloc)
3466 {
3467 	if (delalloc)
3468 		up_read(&cache->data_rwsem);
3469 	btrfs_put_block_group(cache);
3470 }
3471 
3472 enum btrfs_extent_allocation_policy {
3473 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3474 	BTRFS_EXTENT_ALLOC_ZONED,
3475 };
3476 
3477 /*
3478  * Structure used internally for find_free_extent() function.  Wraps needed
3479  * parameters.
3480  */
3481 struct find_free_extent_ctl {
3482 	/* Basic allocation info */
3483 	u64 ram_bytes;
3484 	u64 num_bytes;
3485 	u64 min_alloc_size;
3486 	u64 empty_size;
3487 	u64 flags;
3488 	int delalloc;
3489 
3490 	/* Where to start the search inside the bg */
3491 	u64 search_start;
3492 
3493 	/* For clustered allocation */
3494 	u64 empty_cluster;
3495 	struct btrfs_free_cluster *last_ptr;
3496 	bool use_cluster;
3497 
3498 	bool have_caching_bg;
3499 	bool orig_have_caching_bg;
3500 
3501 	/* Allocation is called for tree-log */
3502 	bool for_treelog;
3503 
3504 	/* Allocation is called for data relocation */
3505 	bool for_data_reloc;
3506 
3507 	/* RAID index, converted from flags */
3508 	int index;
3509 
3510 	/*
3511 	 * Current loop number, check find_free_extent_update_loop() for details
3512 	 */
3513 	int loop;
3514 
3515 	/*
3516 	 * Whether we're refilling a cluster, if true we need to re-search
3517 	 * current block group but don't try to refill the cluster again.
3518 	 */
3519 	bool retry_clustered;
3520 
3521 	/*
3522 	 * Whether we're updating free space cache, if true we need to re-search
3523 	 * current block group but don't try updating free space cache again.
3524 	 */
3525 	bool retry_unclustered;
3526 
3527 	/* If current block group is cached */
3528 	int cached;
3529 
3530 	/* Max contiguous hole found */
3531 	u64 max_extent_size;
3532 
3533 	/* Total free space from free space cache, not always contiguous */
3534 	u64 total_free_space;
3535 
3536 	/* Found result */
3537 	u64 found_offset;
3538 
3539 	/* Hint where to start looking for an empty space */
3540 	u64 hint_byte;
3541 
3542 	/* Allocation policy */
3543 	enum btrfs_extent_allocation_policy policy;
3544 };
3545 
3546 
3547 /*
3548  * Helper function for find_free_extent().
3549  *
3550  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3551  * Return -EAGAIN to inform caller that we need to re-search this block group
3552  * Return >0 to inform caller that we find nothing
3553  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3554  */
3555 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3556 				      struct find_free_extent_ctl *ffe_ctl,
3557 				      struct btrfs_block_group **cluster_bg_ret)
3558 {
3559 	struct btrfs_block_group *cluster_bg;
3560 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3561 	u64 aligned_cluster;
3562 	u64 offset;
3563 	int ret;
3564 
3565 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3566 	if (!cluster_bg)
3567 		goto refill_cluster;
3568 	if (cluster_bg != bg && (cluster_bg->ro ||
3569 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3570 		goto release_cluster;
3571 
3572 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3573 			ffe_ctl->num_bytes, cluster_bg->start,
3574 			&ffe_ctl->max_extent_size);
3575 	if (offset) {
3576 		/* We have a block, we're done */
3577 		spin_unlock(&last_ptr->refill_lock);
3578 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3579 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3580 		*cluster_bg_ret = cluster_bg;
3581 		ffe_ctl->found_offset = offset;
3582 		return 0;
3583 	}
3584 	WARN_ON(last_ptr->block_group != cluster_bg);
3585 
3586 release_cluster:
3587 	/*
3588 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3589 	 * lets just skip it and let the allocator find whatever block it can
3590 	 * find. If we reach this point, we will have tried the cluster
3591 	 * allocator plenty of times and not have found anything, so we are
3592 	 * likely way too fragmented for the clustering stuff to find anything.
3593 	 *
3594 	 * However, if the cluster is taken from the current block group,
3595 	 * release the cluster first, so that we stand a better chance of
3596 	 * succeeding in the unclustered allocation.
3597 	 */
3598 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3599 		spin_unlock(&last_ptr->refill_lock);
3600 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3601 		return -ENOENT;
3602 	}
3603 
3604 	/* This cluster didn't work out, free it and start over */
3605 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3606 
3607 	if (cluster_bg != bg)
3608 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3609 
3610 refill_cluster:
3611 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3612 		spin_unlock(&last_ptr->refill_lock);
3613 		return -ENOENT;
3614 	}
3615 
3616 	aligned_cluster = max_t(u64,
3617 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3618 			bg->full_stripe_len);
3619 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3620 			ffe_ctl->num_bytes, aligned_cluster);
3621 	if (ret == 0) {
3622 		/* Now pull our allocation out of this cluster */
3623 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3624 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3625 				&ffe_ctl->max_extent_size);
3626 		if (offset) {
3627 			/* We found one, proceed */
3628 			spin_unlock(&last_ptr->refill_lock);
3629 			trace_btrfs_reserve_extent_cluster(bg,
3630 					ffe_ctl->search_start,
3631 					ffe_ctl->num_bytes);
3632 			ffe_ctl->found_offset = offset;
3633 			return 0;
3634 		}
3635 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3636 		   !ffe_ctl->retry_clustered) {
3637 		spin_unlock(&last_ptr->refill_lock);
3638 
3639 		ffe_ctl->retry_clustered = true;
3640 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3641 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3642 		return -EAGAIN;
3643 	}
3644 	/*
3645 	 * At this point we either didn't find a cluster or we weren't able to
3646 	 * allocate a block from our cluster.  Free the cluster we've been
3647 	 * trying to use, and go to the next block group.
3648 	 */
3649 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3650 	spin_unlock(&last_ptr->refill_lock);
3651 	return 1;
3652 }
3653 
3654 /*
3655  * Return >0 to inform caller that we find nothing
3656  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3657  * Return -EAGAIN to inform caller that we need to re-search this block group
3658  */
3659 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3660 					struct find_free_extent_ctl *ffe_ctl)
3661 {
3662 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3663 	u64 offset;
3664 
3665 	/*
3666 	 * We are doing an unclustered allocation, set the fragmented flag so
3667 	 * we don't bother trying to setup a cluster again until we get more
3668 	 * space.
3669 	 */
3670 	if (unlikely(last_ptr)) {
3671 		spin_lock(&last_ptr->lock);
3672 		last_ptr->fragmented = 1;
3673 		spin_unlock(&last_ptr->lock);
3674 	}
3675 	if (ffe_ctl->cached) {
3676 		struct btrfs_free_space_ctl *free_space_ctl;
3677 
3678 		free_space_ctl = bg->free_space_ctl;
3679 		spin_lock(&free_space_ctl->tree_lock);
3680 		if (free_space_ctl->free_space <
3681 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3682 		    ffe_ctl->empty_size) {
3683 			ffe_ctl->total_free_space = max_t(u64,
3684 					ffe_ctl->total_free_space,
3685 					free_space_ctl->free_space);
3686 			spin_unlock(&free_space_ctl->tree_lock);
3687 			return 1;
3688 		}
3689 		spin_unlock(&free_space_ctl->tree_lock);
3690 	}
3691 
3692 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3693 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3694 			&ffe_ctl->max_extent_size);
3695 
3696 	/*
3697 	 * If we didn't find a chunk, and we haven't failed on this block group
3698 	 * before, and this block group is in the middle of caching and we are
3699 	 * ok with waiting, then go ahead and wait for progress to be made, and
3700 	 * set @retry_unclustered to true.
3701 	 *
3702 	 * If @retry_unclustered is true then we've already waited on this
3703 	 * block group once and should move on to the next block group.
3704 	 */
3705 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3706 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3707 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3708 						      ffe_ctl->empty_size);
3709 		ffe_ctl->retry_unclustered = true;
3710 		return -EAGAIN;
3711 	} else if (!offset) {
3712 		return 1;
3713 	}
3714 	ffe_ctl->found_offset = offset;
3715 	return 0;
3716 }
3717 
3718 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3719 				   struct find_free_extent_ctl *ffe_ctl,
3720 				   struct btrfs_block_group **bg_ret)
3721 {
3722 	int ret;
3723 
3724 	/* We want to try and use the cluster allocator, so lets look there */
3725 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3726 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3727 		if (ret >= 0 || ret == -EAGAIN)
3728 			return ret;
3729 		/* ret == -ENOENT case falls through */
3730 	}
3731 
3732 	return find_free_extent_unclustered(block_group, ffe_ctl);
3733 }
3734 
3735 /*
3736  * Tree-log block group locking
3737  * ============================
3738  *
3739  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3740  * indicates the starting address of a block group, which is reserved only
3741  * for tree-log metadata.
3742  *
3743  * Lock nesting
3744  * ============
3745  *
3746  * space_info::lock
3747  *   block_group::lock
3748  *     fs_info::treelog_bg_lock
3749  */
3750 
3751 /*
3752  * Simple allocator for sequential-only block group. It only allows sequential
3753  * allocation. No need to play with trees. This function also reserves the
3754  * bytes as in btrfs_add_reserved_bytes.
3755  */
3756 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3757 			       struct find_free_extent_ctl *ffe_ctl,
3758 			       struct btrfs_block_group **bg_ret)
3759 {
3760 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3761 	struct btrfs_space_info *space_info = block_group->space_info;
3762 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3763 	u64 start = block_group->start;
3764 	u64 num_bytes = ffe_ctl->num_bytes;
3765 	u64 avail;
3766 	u64 bytenr = block_group->start;
3767 	u64 log_bytenr;
3768 	u64 data_reloc_bytenr;
3769 	int ret = 0;
3770 	bool skip = false;
3771 
3772 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3773 
3774 	/*
3775 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3776 	 * group, and vice versa.
3777 	 */
3778 	spin_lock(&fs_info->treelog_bg_lock);
3779 	log_bytenr = fs_info->treelog_bg;
3780 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3781 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3782 		skip = true;
3783 	spin_unlock(&fs_info->treelog_bg_lock);
3784 	if (skip)
3785 		return 1;
3786 
3787 	/*
3788 	 * Do not allow non-relocation blocks in the dedicated relocation block
3789 	 * group, and vice versa.
3790 	 */
3791 	spin_lock(&fs_info->relocation_bg_lock);
3792 	data_reloc_bytenr = fs_info->data_reloc_bg;
3793 	if (data_reloc_bytenr &&
3794 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3795 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3796 		skip = true;
3797 	spin_unlock(&fs_info->relocation_bg_lock);
3798 	if (skip)
3799 		return 1;
3800 
3801 	/* Check RO and no space case before trying to activate it */
3802 	spin_lock(&block_group->lock);
3803 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3804 		ret = 1;
3805 		/*
3806 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3807 		 * Return the error after taking the locks.
3808 		 */
3809 	}
3810 	spin_unlock(&block_group->lock);
3811 
3812 	if (!ret && !btrfs_zone_activate(block_group)) {
3813 		ret = 1;
3814 		/*
3815 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3816 		 * Return the error after taking the locks.
3817 		 */
3818 	}
3819 
3820 	spin_lock(&space_info->lock);
3821 	spin_lock(&block_group->lock);
3822 	spin_lock(&fs_info->treelog_bg_lock);
3823 	spin_lock(&fs_info->relocation_bg_lock);
3824 
3825 	if (ret)
3826 		goto out;
3827 
3828 	ASSERT(!ffe_ctl->for_treelog ||
3829 	       block_group->start == fs_info->treelog_bg ||
3830 	       fs_info->treelog_bg == 0);
3831 	ASSERT(!ffe_ctl->for_data_reloc ||
3832 	       block_group->start == fs_info->data_reloc_bg ||
3833 	       fs_info->data_reloc_bg == 0);
3834 
3835 	if (block_group->ro || block_group->zoned_data_reloc_ongoing) {
3836 		ret = 1;
3837 		goto out;
3838 	}
3839 
3840 	/*
3841 	 * Do not allow currently using block group to be tree-log dedicated
3842 	 * block group.
3843 	 */
3844 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3845 	    (block_group->used || block_group->reserved)) {
3846 		ret = 1;
3847 		goto out;
3848 	}
3849 
3850 	/*
3851 	 * Do not allow currently used block group to be the data relocation
3852 	 * dedicated block group.
3853 	 */
3854 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3855 	    (block_group->used || block_group->reserved)) {
3856 		ret = 1;
3857 		goto out;
3858 	}
3859 
3860 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3861 	avail = block_group->zone_capacity - block_group->alloc_offset;
3862 	if (avail < num_bytes) {
3863 		if (ffe_ctl->max_extent_size < avail) {
3864 			/*
3865 			 * With sequential allocator, free space is always
3866 			 * contiguous
3867 			 */
3868 			ffe_ctl->max_extent_size = avail;
3869 			ffe_ctl->total_free_space = avail;
3870 		}
3871 		ret = 1;
3872 		goto out;
3873 	}
3874 
3875 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3876 		fs_info->treelog_bg = block_group->start;
3877 
3878 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3879 		fs_info->data_reloc_bg = block_group->start;
3880 
3881 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3882 	block_group->alloc_offset += num_bytes;
3883 	spin_lock(&ctl->tree_lock);
3884 	ctl->free_space -= num_bytes;
3885 	spin_unlock(&ctl->tree_lock);
3886 
3887 	/*
3888 	 * We do not check if found_offset is aligned to stripesize. The
3889 	 * address is anyway rewritten when using zone append writing.
3890 	 */
3891 
3892 	ffe_ctl->search_start = ffe_ctl->found_offset;
3893 
3894 out:
3895 	if (ret && ffe_ctl->for_treelog)
3896 		fs_info->treelog_bg = 0;
3897 	if (ret && ffe_ctl->for_data_reloc &&
3898 	    fs_info->data_reloc_bg == block_group->start) {
3899 		/*
3900 		 * Do not allow further allocations from this block group.
3901 		 * Compared to increasing the ->ro, setting the
3902 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3903 		 *  writers to come in. See btrfs_inc_nocow_writers().
3904 		 *
3905 		 * We need to disable an allocation to avoid an allocation of
3906 		 * regular (non-relocation data) extent. With mix of relocation
3907 		 * extents and regular extents, we can dispatch WRITE commands
3908 		 * (for relocation extents) and ZONE APPEND commands (for
3909 		 * regular extents) at the same time to the same zone, which
3910 		 * easily break the write pointer.
3911 		 */
3912 		block_group->zoned_data_reloc_ongoing = 1;
3913 		fs_info->data_reloc_bg = 0;
3914 	}
3915 	spin_unlock(&fs_info->relocation_bg_lock);
3916 	spin_unlock(&fs_info->treelog_bg_lock);
3917 	spin_unlock(&block_group->lock);
3918 	spin_unlock(&space_info->lock);
3919 	return ret;
3920 }
3921 
3922 static int do_allocation(struct btrfs_block_group *block_group,
3923 			 struct find_free_extent_ctl *ffe_ctl,
3924 			 struct btrfs_block_group **bg_ret)
3925 {
3926 	switch (ffe_ctl->policy) {
3927 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3928 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3929 	case BTRFS_EXTENT_ALLOC_ZONED:
3930 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3931 	default:
3932 		BUG();
3933 	}
3934 }
3935 
3936 static void release_block_group(struct btrfs_block_group *block_group,
3937 				struct find_free_extent_ctl *ffe_ctl,
3938 				int delalloc)
3939 {
3940 	switch (ffe_ctl->policy) {
3941 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3942 		ffe_ctl->retry_clustered = false;
3943 		ffe_ctl->retry_unclustered = false;
3944 		break;
3945 	case BTRFS_EXTENT_ALLOC_ZONED:
3946 		/* Nothing to do */
3947 		break;
3948 	default:
3949 		BUG();
3950 	}
3951 
3952 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3953 	       ffe_ctl->index);
3954 	btrfs_release_block_group(block_group, delalloc);
3955 }
3956 
3957 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3958 				   struct btrfs_key *ins)
3959 {
3960 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3961 
3962 	if (!ffe_ctl->use_cluster && last_ptr) {
3963 		spin_lock(&last_ptr->lock);
3964 		last_ptr->window_start = ins->objectid;
3965 		spin_unlock(&last_ptr->lock);
3966 	}
3967 }
3968 
3969 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3970 			 struct btrfs_key *ins)
3971 {
3972 	switch (ffe_ctl->policy) {
3973 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3974 		found_extent_clustered(ffe_ctl, ins);
3975 		break;
3976 	case BTRFS_EXTENT_ALLOC_ZONED:
3977 		/* Nothing to do */
3978 		break;
3979 	default:
3980 		BUG();
3981 	}
3982 }
3983 
3984 static bool can_allocate_chunk(struct btrfs_fs_info *fs_info,
3985 			       struct find_free_extent_ctl *ffe_ctl)
3986 {
3987 	switch (ffe_ctl->policy) {
3988 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3989 		return true;
3990 	case BTRFS_EXTENT_ALLOC_ZONED:
3991 		/*
3992 		 * If we have enough free space left in an already
3993 		 * active block group and we can't activate any other
3994 		 * zone now, do not allow allocating a new chunk and
3995 		 * let find_free_extent() retry with a smaller size.
3996 		 */
3997 		if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size &&
3998 		    !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3999 			return false;
4000 		return true;
4001 	default:
4002 		BUG();
4003 	}
4004 }
4005 
4006 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4007 {
4008 	switch (ffe_ctl->policy) {
4009 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4010 		/*
4011 		 * If we can't allocate a new chunk we've already looped through
4012 		 * at least once, move on to the NO_EMPTY_SIZE case.
4013 		 */
4014 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4015 		return 0;
4016 	case BTRFS_EXTENT_ALLOC_ZONED:
4017 		/* Give up here */
4018 		return -ENOSPC;
4019 	default:
4020 		BUG();
4021 	}
4022 }
4023 
4024 /*
4025  * Return >0 means caller needs to re-search for free extent
4026  * Return 0 means we have the needed free extent.
4027  * Return <0 means we failed to locate any free extent.
4028  */
4029 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4030 					struct btrfs_key *ins,
4031 					struct find_free_extent_ctl *ffe_ctl,
4032 					bool full_search)
4033 {
4034 	struct btrfs_root *root = fs_info->chunk_root;
4035 	int ret;
4036 
4037 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4038 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4039 		ffe_ctl->orig_have_caching_bg = true;
4040 
4041 	if (ins->objectid) {
4042 		found_extent(ffe_ctl, ins);
4043 		return 0;
4044 	}
4045 
4046 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4047 		return 1;
4048 
4049 	ffe_ctl->index++;
4050 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4051 		return 1;
4052 
4053 	/*
4054 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4055 	 *			caching kthreads as we move along
4056 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4057 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4058 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4059 	 *		       again
4060 	 */
4061 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4062 		ffe_ctl->index = 0;
4063 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4064 			/*
4065 			 * We want to skip the LOOP_CACHING_WAIT step if we
4066 			 * don't have any uncached bgs and we've already done a
4067 			 * full search through.
4068 			 */
4069 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4070 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4071 			else
4072 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4073 		} else {
4074 			ffe_ctl->loop++;
4075 		}
4076 
4077 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4078 			struct btrfs_trans_handle *trans;
4079 			int exist = 0;
4080 
4081 			/*Check if allocation policy allows to create a new chunk */
4082 			if (!can_allocate_chunk(fs_info, ffe_ctl))
4083 				return -ENOSPC;
4084 
4085 			trans = current->journal_info;
4086 			if (trans)
4087 				exist = 1;
4088 			else
4089 				trans = btrfs_join_transaction(root);
4090 
4091 			if (IS_ERR(trans)) {
4092 				ret = PTR_ERR(trans);
4093 				return ret;
4094 			}
4095 
4096 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4097 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4098 
4099 			/* Do not bail out on ENOSPC since we can do more. */
4100 			if (ret == -ENOSPC)
4101 				ret = chunk_allocation_failed(ffe_ctl);
4102 			else if (ret < 0)
4103 				btrfs_abort_transaction(trans, ret);
4104 			else
4105 				ret = 0;
4106 			if (!exist)
4107 				btrfs_end_transaction(trans);
4108 			if (ret)
4109 				return ret;
4110 		}
4111 
4112 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4113 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4114 				return -ENOSPC;
4115 
4116 			/*
4117 			 * Don't loop again if we already have no empty_size and
4118 			 * no empty_cluster.
4119 			 */
4120 			if (ffe_ctl->empty_size == 0 &&
4121 			    ffe_ctl->empty_cluster == 0)
4122 				return -ENOSPC;
4123 			ffe_ctl->empty_size = 0;
4124 			ffe_ctl->empty_cluster = 0;
4125 		}
4126 		return 1;
4127 	}
4128 	return -ENOSPC;
4129 }
4130 
4131 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4132 					struct find_free_extent_ctl *ffe_ctl,
4133 					struct btrfs_space_info *space_info,
4134 					struct btrfs_key *ins)
4135 {
4136 	/*
4137 	 * If our free space is heavily fragmented we may not be able to make
4138 	 * big contiguous allocations, so instead of doing the expensive search
4139 	 * for free space, simply return ENOSPC with our max_extent_size so we
4140 	 * can go ahead and search for a more manageable chunk.
4141 	 *
4142 	 * If our max_extent_size is large enough for our allocation simply
4143 	 * disable clustering since we will likely not be able to find enough
4144 	 * space to create a cluster and induce latency trying.
4145 	 */
4146 	if (space_info->max_extent_size) {
4147 		spin_lock(&space_info->lock);
4148 		if (space_info->max_extent_size &&
4149 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4150 			ins->offset = space_info->max_extent_size;
4151 			spin_unlock(&space_info->lock);
4152 			return -ENOSPC;
4153 		} else if (space_info->max_extent_size) {
4154 			ffe_ctl->use_cluster = false;
4155 		}
4156 		spin_unlock(&space_info->lock);
4157 	}
4158 
4159 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4160 					       &ffe_ctl->empty_cluster);
4161 	if (ffe_ctl->last_ptr) {
4162 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4163 
4164 		spin_lock(&last_ptr->lock);
4165 		if (last_ptr->block_group)
4166 			ffe_ctl->hint_byte = last_ptr->window_start;
4167 		if (last_ptr->fragmented) {
4168 			/*
4169 			 * We still set window_start so we can keep track of the
4170 			 * last place we found an allocation to try and save
4171 			 * some time.
4172 			 */
4173 			ffe_ctl->hint_byte = last_ptr->window_start;
4174 			ffe_ctl->use_cluster = false;
4175 		}
4176 		spin_unlock(&last_ptr->lock);
4177 	}
4178 
4179 	return 0;
4180 }
4181 
4182 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4183 			      struct find_free_extent_ctl *ffe_ctl,
4184 			      struct btrfs_space_info *space_info,
4185 			      struct btrfs_key *ins)
4186 {
4187 	switch (ffe_ctl->policy) {
4188 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4189 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4190 						    space_info, ins);
4191 	case BTRFS_EXTENT_ALLOC_ZONED:
4192 		if (ffe_ctl->for_treelog) {
4193 			spin_lock(&fs_info->treelog_bg_lock);
4194 			if (fs_info->treelog_bg)
4195 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4196 			spin_unlock(&fs_info->treelog_bg_lock);
4197 		}
4198 		if (ffe_ctl->for_data_reloc) {
4199 			spin_lock(&fs_info->relocation_bg_lock);
4200 			if (fs_info->data_reloc_bg)
4201 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4202 			spin_unlock(&fs_info->relocation_bg_lock);
4203 		}
4204 		return 0;
4205 	default:
4206 		BUG();
4207 	}
4208 }
4209 
4210 /*
4211  * walks the btree of allocated extents and find a hole of a given size.
4212  * The key ins is changed to record the hole:
4213  * ins->objectid == start position
4214  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4215  * ins->offset == the size of the hole.
4216  * Any available blocks before search_start are skipped.
4217  *
4218  * If there is no suitable free space, we will record the max size of
4219  * the free space extent currently.
4220  *
4221  * The overall logic and call chain:
4222  *
4223  * find_free_extent()
4224  * |- Iterate through all block groups
4225  * |  |- Get a valid block group
4226  * |  |- Try to do clustered allocation in that block group
4227  * |  |- Try to do unclustered allocation in that block group
4228  * |  |- Check if the result is valid
4229  * |  |  |- If valid, then exit
4230  * |  |- Jump to next block group
4231  * |
4232  * |- Push harder to find free extents
4233  *    |- If not found, re-iterate all block groups
4234  */
4235 static noinline int find_free_extent(struct btrfs_root *root,
4236 				     struct btrfs_key *ins,
4237 				     struct find_free_extent_ctl *ffe_ctl)
4238 {
4239 	struct btrfs_fs_info *fs_info = root->fs_info;
4240 	int ret = 0;
4241 	int cache_block_group_error = 0;
4242 	struct btrfs_block_group *block_group = NULL;
4243 	struct btrfs_space_info *space_info;
4244 	bool full_search = false;
4245 
4246 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4247 
4248 	ffe_ctl->search_start = 0;
4249 	/* For clustered allocation */
4250 	ffe_ctl->empty_cluster = 0;
4251 	ffe_ctl->last_ptr = NULL;
4252 	ffe_ctl->use_cluster = true;
4253 	ffe_ctl->have_caching_bg = false;
4254 	ffe_ctl->orig_have_caching_bg = false;
4255 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4256 	ffe_ctl->loop = 0;
4257 	/* For clustered allocation */
4258 	ffe_ctl->retry_clustered = false;
4259 	ffe_ctl->retry_unclustered = false;
4260 	ffe_ctl->cached = 0;
4261 	ffe_ctl->max_extent_size = 0;
4262 	ffe_ctl->total_free_space = 0;
4263 	ffe_ctl->found_offset = 0;
4264 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4265 
4266 	if (btrfs_is_zoned(fs_info))
4267 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4268 
4269 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4270 	ins->objectid = 0;
4271 	ins->offset = 0;
4272 
4273 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4274 			       ffe_ctl->flags);
4275 
4276 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4277 	if (!space_info) {
4278 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4279 		return -ENOSPC;
4280 	}
4281 
4282 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4283 	if (ret < 0)
4284 		return ret;
4285 
4286 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4287 				    first_logical_byte(fs_info));
4288 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4289 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4290 		block_group = btrfs_lookup_block_group(fs_info,
4291 						       ffe_ctl->search_start);
4292 		/*
4293 		 * we don't want to use the block group if it doesn't match our
4294 		 * allocation bits, or if its not cached.
4295 		 *
4296 		 * However if we are re-searching with an ideal block group
4297 		 * picked out then we don't care that the block group is cached.
4298 		 */
4299 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4300 		    block_group->cached != BTRFS_CACHE_NO) {
4301 			down_read(&space_info->groups_sem);
4302 			if (list_empty(&block_group->list) ||
4303 			    block_group->ro) {
4304 				/*
4305 				 * someone is removing this block group,
4306 				 * we can't jump into the have_block_group
4307 				 * target because our list pointers are not
4308 				 * valid
4309 				 */
4310 				btrfs_put_block_group(block_group);
4311 				up_read(&space_info->groups_sem);
4312 			} else {
4313 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4314 							block_group->flags);
4315 				btrfs_lock_block_group(block_group,
4316 						       ffe_ctl->delalloc);
4317 				goto have_block_group;
4318 			}
4319 		} else if (block_group) {
4320 			btrfs_put_block_group(block_group);
4321 		}
4322 	}
4323 search:
4324 	ffe_ctl->have_caching_bg = false;
4325 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4326 	    ffe_ctl->index == 0)
4327 		full_search = true;
4328 	down_read(&space_info->groups_sem);
4329 	list_for_each_entry(block_group,
4330 			    &space_info->block_groups[ffe_ctl->index], list) {
4331 		struct btrfs_block_group *bg_ret;
4332 
4333 		/* If the block group is read-only, we can skip it entirely. */
4334 		if (unlikely(block_group->ro)) {
4335 			if (ffe_ctl->for_treelog)
4336 				btrfs_clear_treelog_bg(block_group);
4337 			if (ffe_ctl->for_data_reloc)
4338 				btrfs_clear_data_reloc_bg(block_group);
4339 			continue;
4340 		}
4341 
4342 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4343 		ffe_ctl->search_start = block_group->start;
4344 
4345 		/*
4346 		 * this can happen if we end up cycling through all the
4347 		 * raid types, but we want to make sure we only allocate
4348 		 * for the proper type.
4349 		 */
4350 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4351 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4352 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4353 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4354 				BTRFS_BLOCK_GROUP_RAID10;
4355 
4356 			/*
4357 			 * if they asked for extra copies and this block group
4358 			 * doesn't provide them, bail.  This does allow us to
4359 			 * fill raid0 from raid1.
4360 			 */
4361 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4362 				goto loop;
4363 
4364 			/*
4365 			 * This block group has different flags than we want.
4366 			 * It's possible that we have MIXED_GROUP flag but no
4367 			 * block group is mixed.  Just skip such block group.
4368 			 */
4369 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4370 			continue;
4371 		}
4372 
4373 have_block_group:
4374 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4375 		if (unlikely(!ffe_ctl->cached)) {
4376 			ffe_ctl->have_caching_bg = true;
4377 			ret = btrfs_cache_block_group(block_group, 0);
4378 
4379 			/*
4380 			 * If we get ENOMEM here or something else we want to
4381 			 * try other block groups, because it may not be fatal.
4382 			 * However if we can't find anything else we need to
4383 			 * save our return here so that we return the actual
4384 			 * error that caused problems, not ENOSPC.
4385 			 */
4386 			if (ret < 0) {
4387 				if (!cache_block_group_error)
4388 					cache_block_group_error = ret;
4389 				ret = 0;
4390 				goto loop;
4391 			}
4392 			ret = 0;
4393 		}
4394 
4395 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4396 			goto loop;
4397 
4398 		bg_ret = NULL;
4399 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4400 		if (ret == 0) {
4401 			if (bg_ret && bg_ret != block_group) {
4402 				btrfs_release_block_group(block_group,
4403 							  ffe_ctl->delalloc);
4404 				block_group = bg_ret;
4405 			}
4406 		} else if (ret == -EAGAIN) {
4407 			goto have_block_group;
4408 		} else if (ret > 0) {
4409 			goto loop;
4410 		}
4411 
4412 		/* Checks */
4413 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4414 						 fs_info->stripesize);
4415 
4416 		/* move on to the next group */
4417 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4418 		    block_group->start + block_group->length) {
4419 			btrfs_add_free_space_unused(block_group,
4420 					    ffe_ctl->found_offset,
4421 					    ffe_ctl->num_bytes);
4422 			goto loop;
4423 		}
4424 
4425 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4426 			btrfs_add_free_space_unused(block_group,
4427 					ffe_ctl->found_offset,
4428 					ffe_ctl->search_start - ffe_ctl->found_offset);
4429 
4430 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4431 					       ffe_ctl->num_bytes,
4432 					       ffe_ctl->delalloc);
4433 		if (ret == -EAGAIN) {
4434 			btrfs_add_free_space_unused(block_group,
4435 					ffe_ctl->found_offset,
4436 					ffe_ctl->num_bytes);
4437 			goto loop;
4438 		}
4439 		btrfs_inc_block_group_reservations(block_group);
4440 
4441 		/* we are all good, lets return */
4442 		ins->objectid = ffe_ctl->search_start;
4443 		ins->offset = ffe_ctl->num_bytes;
4444 
4445 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4446 					   ffe_ctl->num_bytes);
4447 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4448 		break;
4449 loop:
4450 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4451 		cond_resched();
4452 	}
4453 	up_read(&space_info->groups_sem);
4454 
4455 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4456 	if (ret > 0)
4457 		goto search;
4458 
4459 	if (ret == -ENOSPC && !cache_block_group_error) {
4460 		/*
4461 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4462 		 * any contiguous hole.
4463 		 */
4464 		if (!ffe_ctl->max_extent_size)
4465 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4466 		spin_lock(&space_info->lock);
4467 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4468 		spin_unlock(&space_info->lock);
4469 		ins->offset = ffe_ctl->max_extent_size;
4470 	} else if (ret == -ENOSPC) {
4471 		ret = cache_block_group_error;
4472 	}
4473 	return ret;
4474 }
4475 
4476 /*
4477  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4478  *			  hole that is at least as big as @num_bytes.
4479  *
4480  * @root           -	The root that will contain this extent
4481  *
4482  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4483  *			is used for accounting purposes. This value differs
4484  *			from @num_bytes only in the case of compressed extents.
4485  *
4486  * @num_bytes      -	Number of bytes to allocate on-disk.
4487  *
4488  * @min_alloc_size -	Indicates the minimum amount of space that the
4489  *			allocator should try to satisfy. In some cases
4490  *			@num_bytes may be larger than what is required and if
4491  *			the filesystem is fragmented then allocation fails.
4492  *			However, the presence of @min_alloc_size gives a
4493  *			chance to try and satisfy the smaller allocation.
4494  *
4495  * @empty_size     -	A hint that you plan on doing more COW. This is the
4496  *			size in bytes the allocator should try to find free
4497  *			next to the block it returns.  This is just a hint and
4498  *			may be ignored by the allocator.
4499  *
4500  * @hint_byte      -	Hint to the allocator to start searching above the byte
4501  *			address passed. It might be ignored.
4502  *
4503  * @ins            -	This key is modified to record the found hole. It will
4504  *			have the following values:
4505  *			ins->objectid == start position
4506  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4507  *			ins->offset == the size of the hole.
4508  *
4509  * @is_data        -	Boolean flag indicating whether an extent is
4510  *			allocated for data (true) or metadata (false)
4511  *
4512  * @delalloc       -	Boolean flag indicating whether this allocation is for
4513  *			delalloc or not. If 'true' data_rwsem of block groups
4514  *			is going to be acquired.
4515  *
4516  *
4517  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4518  * case -ENOSPC is returned then @ins->offset will contain the size of the
4519  * largest available hole the allocator managed to find.
4520  */
4521 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4522 			 u64 num_bytes, u64 min_alloc_size,
4523 			 u64 empty_size, u64 hint_byte,
4524 			 struct btrfs_key *ins, int is_data, int delalloc)
4525 {
4526 	struct btrfs_fs_info *fs_info = root->fs_info;
4527 	struct find_free_extent_ctl ffe_ctl = {};
4528 	bool final_tried = num_bytes == min_alloc_size;
4529 	u64 flags;
4530 	int ret;
4531 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4532 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4533 
4534 	flags = get_alloc_profile_by_root(root, is_data);
4535 again:
4536 	WARN_ON(num_bytes < fs_info->sectorsize);
4537 
4538 	ffe_ctl.ram_bytes = ram_bytes;
4539 	ffe_ctl.num_bytes = num_bytes;
4540 	ffe_ctl.min_alloc_size = min_alloc_size;
4541 	ffe_ctl.empty_size = empty_size;
4542 	ffe_ctl.flags = flags;
4543 	ffe_ctl.delalloc = delalloc;
4544 	ffe_ctl.hint_byte = hint_byte;
4545 	ffe_ctl.for_treelog = for_treelog;
4546 	ffe_ctl.for_data_reloc = for_data_reloc;
4547 
4548 	ret = find_free_extent(root, ins, &ffe_ctl);
4549 	if (!ret && !is_data) {
4550 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4551 	} else if (ret == -ENOSPC) {
4552 		if (!final_tried && ins->offset) {
4553 			num_bytes = min(num_bytes >> 1, ins->offset);
4554 			num_bytes = round_down(num_bytes,
4555 					       fs_info->sectorsize);
4556 			num_bytes = max(num_bytes, min_alloc_size);
4557 			ram_bytes = num_bytes;
4558 			if (num_bytes == min_alloc_size)
4559 				final_tried = true;
4560 			goto again;
4561 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4562 			struct btrfs_space_info *sinfo;
4563 
4564 			sinfo = btrfs_find_space_info(fs_info, flags);
4565 			btrfs_err(fs_info,
4566 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4567 				  flags, num_bytes, for_treelog, for_data_reloc);
4568 			if (sinfo)
4569 				btrfs_dump_space_info(fs_info, sinfo,
4570 						      num_bytes, 1);
4571 		}
4572 	}
4573 
4574 	return ret;
4575 }
4576 
4577 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4578 			       u64 start, u64 len, int delalloc)
4579 {
4580 	struct btrfs_block_group *cache;
4581 
4582 	cache = btrfs_lookup_block_group(fs_info, start);
4583 	if (!cache) {
4584 		btrfs_err(fs_info, "Unable to find block group for %llu",
4585 			  start);
4586 		return -ENOSPC;
4587 	}
4588 
4589 	btrfs_add_free_space(cache, start, len);
4590 	btrfs_free_reserved_bytes(cache, len, delalloc);
4591 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4592 
4593 	btrfs_put_block_group(cache);
4594 	return 0;
4595 }
4596 
4597 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4598 			      u64 len)
4599 {
4600 	struct btrfs_block_group *cache;
4601 	int ret = 0;
4602 
4603 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4604 	if (!cache) {
4605 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4606 			  start);
4607 		return -ENOSPC;
4608 	}
4609 
4610 	ret = pin_down_extent(trans, cache, start, len, 1);
4611 	btrfs_put_block_group(cache);
4612 	return ret;
4613 }
4614 
4615 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4616 				 u64 num_bytes)
4617 {
4618 	struct btrfs_fs_info *fs_info = trans->fs_info;
4619 	int ret;
4620 
4621 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4622 	if (ret)
4623 		return ret;
4624 
4625 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4626 	if (ret) {
4627 		ASSERT(!ret);
4628 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4629 			  bytenr, num_bytes);
4630 		return ret;
4631 	}
4632 
4633 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4634 	return 0;
4635 }
4636 
4637 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4638 				      u64 parent, u64 root_objectid,
4639 				      u64 flags, u64 owner, u64 offset,
4640 				      struct btrfs_key *ins, int ref_mod)
4641 {
4642 	struct btrfs_fs_info *fs_info = trans->fs_info;
4643 	struct btrfs_root *extent_root;
4644 	int ret;
4645 	struct btrfs_extent_item *extent_item;
4646 	struct btrfs_extent_inline_ref *iref;
4647 	struct btrfs_path *path;
4648 	struct extent_buffer *leaf;
4649 	int type;
4650 	u32 size;
4651 
4652 	if (parent > 0)
4653 		type = BTRFS_SHARED_DATA_REF_KEY;
4654 	else
4655 		type = BTRFS_EXTENT_DATA_REF_KEY;
4656 
4657 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4658 
4659 	path = btrfs_alloc_path();
4660 	if (!path)
4661 		return -ENOMEM;
4662 
4663 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4664 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4665 	if (ret) {
4666 		btrfs_free_path(path);
4667 		return ret;
4668 	}
4669 
4670 	leaf = path->nodes[0];
4671 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4672 				     struct btrfs_extent_item);
4673 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4674 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4675 	btrfs_set_extent_flags(leaf, extent_item,
4676 			       flags | BTRFS_EXTENT_FLAG_DATA);
4677 
4678 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4679 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4680 	if (parent > 0) {
4681 		struct btrfs_shared_data_ref *ref;
4682 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4683 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4684 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4685 	} else {
4686 		struct btrfs_extent_data_ref *ref;
4687 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4688 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4689 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4690 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4691 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4692 	}
4693 
4694 	btrfs_mark_buffer_dirty(path->nodes[0]);
4695 	btrfs_free_path(path);
4696 
4697 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4698 }
4699 
4700 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4701 				     struct btrfs_delayed_ref_node *node,
4702 				     struct btrfs_delayed_extent_op *extent_op)
4703 {
4704 	struct btrfs_fs_info *fs_info = trans->fs_info;
4705 	struct btrfs_root *extent_root;
4706 	int ret;
4707 	struct btrfs_extent_item *extent_item;
4708 	struct btrfs_key extent_key;
4709 	struct btrfs_tree_block_info *block_info;
4710 	struct btrfs_extent_inline_ref *iref;
4711 	struct btrfs_path *path;
4712 	struct extent_buffer *leaf;
4713 	struct btrfs_delayed_tree_ref *ref;
4714 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4715 	u64 flags = extent_op->flags_to_set;
4716 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4717 
4718 	ref = btrfs_delayed_node_to_tree_ref(node);
4719 
4720 	extent_key.objectid = node->bytenr;
4721 	if (skinny_metadata) {
4722 		extent_key.offset = ref->level;
4723 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4724 	} else {
4725 		extent_key.offset = node->num_bytes;
4726 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4727 		size += sizeof(*block_info);
4728 	}
4729 
4730 	path = btrfs_alloc_path();
4731 	if (!path)
4732 		return -ENOMEM;
4733 
4734 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4735 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4736 				      size);
4737 	if (ret) {
4738 		btrfs_free_path(path);
4739 		return ret;
4740 	}
4741 
4742 	leaf = path->nodes[0];
4743 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4744 				     struct btrfs_extent_item);
4745 	btrfs_set_extent_refs(leaf, extent_item, 1);
4746 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4747 	btrfs_set_extent_flags(leaf, extent_item,
4748 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4749 
4750 	if (skinny_metadata) {
4751 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4752 	} else {
4753 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4754 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4755 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4756 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4757 	}
4758 
4759 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4760 		btrfs_set_extent_inline_ref_type(leaf, iref,
4761 						 BTRFS_SHARED_BLOCK_REF_KEY);
4762 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4763 	} else {
4764 		btrfs_set_extent_inline_ref_type(leaf, iref,
4765 						 BTRFS_TREE_BLOCK_REF_KEY);
4766 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4767 	}
4768 
4769 	btrfs_mark_buffer_dirty(leaf);
4770 	btrfs_free_path(path);
4771 
4772 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4773 }
4774 
4775 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4776 				     struct btrfs_root *root, u64 owner,
4777 				     u64 offset, u64 ram_bytes,
4778 				     struct btrfs_key *ins)
4779 {
4780 	struct btrfs_ref generic_ref = { 0 };
4781 
4782 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4783 
4784 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4785 			       ins->objectid, ins->offset, 0);
4786 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4787 			    offset, 0, false);
4788 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4789 
4790 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4791 }
4792 
4793 /*
4794  * this is used by the tree logging recovery code.  It records that
4795  * an extent has been allocated and makes sure to clear the free
4796  * space cache bits as well
4797  */
4798 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4799 				   u64 root_objectid, u64 owner, u64 offset,
4800 				   struct btrfs_key *ins)
4801 {
4802 	struct btrfs_fs_info *fs_info = trans->fs_info;
4803 	int ret;
4804 	struct btrfs_block_group *block_group;
4805 	struct btrfs_space_info *space_info;
4806 
4807 	/*
4808 	 * Mixed block groups will exclude before processing the log so we only
4809 	 * need to do the exclude dance if this fs isn't mixed.
4810 	 */
4811 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4812 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4813 					      ins->offset);
4814 		if (ret)
4815 			return ret;
4816 	}
4817 
4818 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4819 	if (!block_group)
4820 		return -EINVAL;
4821 
4822 	space_info = block_group->space_info;
4823 	spin_lock(&space_info->lock);
4824 	spin_lock(&block_group->lock);
4825 	space_info->bytes_reserved += ins->offset;
4826 	block_group->reserved += ins->offset;
4827 	spin_unlock(&block_group->lock);
4828 	spin_unlock(&space_info->lock);
4829 
4830 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4831 					 offset, ins, 1);
4832 	if (ret)
4833 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4834 	btrfs_put_block_group(block_group);
4835 	return ret;
4836 }
4837 
4838 static struct extent_buffer *
4839 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4840 		      u64 bytenr, int level, u64 owner,
4841 		      enum btrfs_lock_nesting nest)
4842 {
4843 	struct btrfs_fs_info *fs_info = root->fs_info;
4844 	struct extent_buffer *buf;
4845 
4846 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4847 	if (IS_ERR(buf))
4848 		return buf;
4849 
4850 	/*
4851 	 * Extra safety check in case the extent tree is corrupted and extent
4852 	 * allocator chooses to use a tree block which is already used and
4853 	 * locked.
4854 	 */
4855 	if (buf->lock_owner == current->pid) {
4856 		btrfs_err_rl(fs_info,
4857 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4858 			buf->start, btrfs_header_owner(buf), current->pid);
4859 		free_extent_buffer(buf);
4860 		return ERR_PTR(-EUCLEAN);
4861 	}
4862 
4863 	/*
4864 	 * This needs to stay, because we could allocate a freed block from an
4865 	 * old tree into a new tree, so we need to make sure this new block is
4866 	 * set to the appropriate level and owner.
4867 	 */
4868 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4869 	__btrfs_tree_lock(buf, nest);
4870 	btrfs_clean_tree_block(buf);
4871 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4872 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4873 
4874 	set_extent_buffer_uptodate(buf);
4875 
4876 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4877 	btrfs_set_header_level(buf, level);
4878 	btrfs_set_header_bytenr(buf, buf->start);
4879 	btrfs_set_header_generation(buf, trans->transid);
4880 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4881 	btrfs_set_header_owner(buf, owner);
4882 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4883 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4884 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4885 		buf->log_index = root->log_transid % 2;
4886 		/*
4887 		 * we allow two log transactions at a time, use different
4888 		 * EXTENT bit to differentiate dirty pages.
4889 		 */
4890 		if (buf->log_index == 0)
4891 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4892 					buf->start + buf->len - 1, GFP_NOFS);
4893 		else
4894 			set_extent_new(&root->dirty_log_pages, buf->start,
4895 					buf->start + buf->len - 1);
4896 	} else {
4897 		buf->log_index = -1;
4898 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4899 			 buf->start + buf->len - 1, GFP_NOFS);
4900 	}
4901 	/* this returns a buffer locked for blocking */
4902 	return buf;
4903 }
4904 
4905 /*
4906  * finds a free extent and does all the dirty work required for allocation
4907  * returns the tree buffer or an ERR_PTR on error.
4908  */
4909 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4910 					     struct btrfs_root *root,
4911 					     u64 parent, u64 root_objectid,
4912 					     const struct btrfs_disk_key *key,
4913 					     int level, u64 hint,
4914 					     u64 empty_size,
4915 					     enum btrfs_lock_nesting nest)
4916 {
4917 	struct btrfs_fs_info *fs_info = root->fs_info;
4918 	struct btrfs_key ins;
4919 	struct btrfs_block_rsv *block_rsv;
4920 	struct extent_buffer *buf;
4921 	struct btrfs_delayed_extent_op *extent_op;
4922 	struct btrfs_ref generic_ref = { 0 };
4923 	u64 flags = 0;
4924 	int ret;
4925 	u32 blocksize = fs_info->nodesize;
4926 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4927 
4928 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4929 	if (btrfs_is_testing(fs_info)) {
4930 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4931 					    level, root_objectid, nest);
4932 		if (!IS_ERR(buf))
4933 			root->alloc_bytenr += blocksize;
4934 		return buf;
4935 	}
4936 #endif
4937 
4938 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4939 	if (IS_ERR(block_rsv))
4940 		return ERR_CAST(block_rsv);
4941 
4942 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4943 				   empty_size, hint, &ins, 0, 0);
4944 	if (ret)
4945 		goto out_unuse;
4946 
4947 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4948 				    root_objectid, nest);
4949 	if (IS_ERR(buf)) {
4950 		ret = PTR_ERR(buf);
4951 		goto out_free_reserved;
4952 	}
4953 
4954 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4955 		if (parent == 0)
4956 			parent = ins.objectid;
4957 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4958 	} else
4959 		BUG_ON(parent > 0);
4960 
4961 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4962 		extent_op = btrfs_alloc_delayed_extent_op();
4963 		if (!extent_op) {
4964 			ret = -ENOMEM;
4965 			goto out_free_buf;
4966 		}
4967 		if (key)
4968 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4969 		else
4970 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4971 		extent_op->flags_to_set = flags;
4972 		extent_op->update_key = skinny_metadata ? false : true;
4973 		extent_op->update_flags = true;
4974 		extent_op->level = level;
4975 
4976 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4977 				       ins.objectid, ins.offset, parent);
4978 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4979 				    root->root_key.objectid, false);
4980 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4981 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4982 		if (ret)
4983 			goto out_free_delayed;
4984 	}
4985 	return buf;
4986 
4987 out_free_delayed:
4988 	btrfs_free_delayed_extent_op(extent_op);
4989 out_free_buf:
4990 	btrfs_tree_unlock(buf);
4991 	free_extent_buffer(buf);
4992 out_free_reserved:
4993 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4994 out_unuse:
4995 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4996 	return ERR_PTR(ret);
4997 }
4998 
4999 struct walk_control {
5000 	u64 refs[BTRFS_MAX_LEVEL];
5001 	u64 flags[BTRFS_MAX_LEVEL];
5002 	struct btrfs_key update_progress;
5003 	struct btrfs_key drop_progress;
5004 	int drop_level;
5005 	int stage;
5006 	int level;
5007 	int shared_level;
5008 	int update_ref;
5009 	int keep_locks;
5010 	int reada_slot;
5011 	int reada_count;
5012 	int restarted;
5013 };
5014 
5015 #define DROP_REFERENCE	1
5016 #define UPDATE_BACKREF	2
5017 
5018 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5019 				     struct btrfs_root *root,
5020 				     struct walk_control *wc,
5021 				     struct btrfs_path *path)
5022 {
5023 	struct btrfs_fs_info *fs_info = root->fs_info;
5024 	u64 bytenr;
5025 	u64 generation;
5026 	u64 refs;
5027 	u64 flags;
5028 	u32 nritems;
5029 	struct btrfs_key key;
5030 	struct extent_buffer *eb;
5031 	int ret;
5032 	int slot;
5033 	int nread = 0;
5034 
5035 	if (path->slots[wc->level] < wc->reada_slot) {
5036 		wc->reada_count = wc->reada_count * 2 / 3;
5037 		wc->reada_count = max(wc->reada_count, 2);
5038 	} else {
5039 		wc->reada_count = wc->reada_count * 3 / 2;
5040 		wc->reada_count = min_t(int, wc->reada_count,
5041 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5042 	}
5043 
5044 	eb = path->nodes[wc->level];
5045 	nritems = btrfs_header_nritems(eb);
5046 
5047 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5048 		if (nread >= wc->reada_count)
5049 			break;
5050 
5051 		cond_resched();
5052 		bytenr = btrfs_node_blockptr(eb, slot);
5053 		generation = btrfs_node_ptr_generation(eb, slot);
5054 
5055 		if (slot == path->slots[wc->level])
5056 			goto reada;
5057 
5058 		if (wc->stage == UPDATE_BACKREF &&
5059 		    generation <= root->root_key.offset)
5060 			continue;
5061 
5062 		/* We don't lock the tree block, it's OK to be racy here */
5063 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5064 					       wc->level - 1, 1, &refs,
5065 					       &flags);
5066 		/* We don't care about errors in readahead. */
5067 		if (ret < 0)
5068 			continue;
5069 		BUG_ON(refs == 0);
5070 
5071 		if (wc->stage == DROP_REFERENCE) {
5072 			if (refs == 1)
5073 				goto reada;
5074 
5075 			if (wc->level == 1 &&
5076 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5077 				continue;
5078 			if (!wc->update_ref ||
5079 			    generation <= root->root_key.offset)
5080 				continue;
5081 			btrfs_node_key_to_cpu(eb, &key, slot);
5082 			ret = btrfs_comp_cpu_keys(&key,
5083 						  &wc->update_progress);
5084 			if (ret < 0)
5085 				continue;
5086 		} else {
5087 			if (wc->level == 1 &&
5088 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5089 				continue;
5090 		}
5091 reada:
5092 		btrfs_readahead_node_child(eb, slot);
5093 		nread++;
5094 	}
5095 	wc->reada_slot = slot;
5096 }
5097 
5098 /*
5099  * helper to process tree block while walking down the tree.
5100  *
5101  * when wc->stage == UPDATE_BACKREF, this function updates
5102  * back refs for pointers in the block.
5103  *
5104  * NOTE: return value 1 means we should stop walking down.
5105  */
5106 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5107 				   struct btrfs_root *root,
5108 				   struct btrfs_path *path,
5109 				   struct walk_control *wc, int lookup_info)
5110 {
5111 	struct btrfs_fs_info *fs_info = root->fs_info;
5112 	int level = wc->level;
5113 	struct extent_buffer *eb = path->nodes[level];
5114 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5115 	int ret;
5116 
5117 	if (wc->stage == UPDATE_BACKREF &&
5118 	    btrfs_header_owner(eb) != root->root_key.objectid)
5119 		return 1;
5120 
5121 	/*
5122 	 * when reference count of tree block is 1, it won't increase
5123 	 * again. once full backref flag is set, we never clear it.
5124 	 */
5125 	if (lookup_info &&
5126 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5127 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5128 		BUG_ON(!path->locks[level]);
5129 		ret = btrfs_lookup_extent_info(trans, fs_info,
5130 					       eb->start, level, 1,
5131 					       &wc->refs[level],
5132 					       &wc->flags[level]);
5133 		BUG_ON(ret == -ENOMEM);
5134 		if (ret)
5135 			return ret;
5136 		BUG_ON(wc->refs[level] == 0);
5137 	}
5138 
5139 	if (wc->stage == DROP_REFERENCE) {
5140 		if (wc->refs[level] > 1)
5141 			return 1;
5142 
5143 		if (path->locks[level] && !wc->keep_locks) {
5144 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5145 			path->locks[level] = 0;
5146 		}
5147 		return 0;
5148 	}
5149 
5150 	/* wc->stage == UPDATE_BACKREF */
5151 	if (!(wc->flags[level] & flag)) {
5152 		BUG_ON(!path->locks[level]);
5153 		ret = btrfs_inc_ref(trans, root, eb, 1);
5154 		BUG_ON(ret); /* -ENOMEM */
5155 		ret = btrfs_dec_ref(trans, root, eb, 0);
5156 		BUG_ON(ret); /* -ENOMEM */
5157 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5158 						  btrfs_header_level(eb));
5159 		BUG_ON(ret); /* -ENOMEM */
5160 		wc->flags[level] |= flag;
5161 	}
5162 
5163 	/*
5164 	 * the block is shared by multiple trees, so it's not good to
5165 	 * keep the tree lock
5166 	 */
5167 	if (path->locks[level] && level > 0) {
5168 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5169 		path->locks[level] = 0;
5170 	}
5171 	return 0;
5172 }
5173 
5174 /*
5175  * This is used to verify a ref exists for this root to deal with a bug where we
5176  * would have a drop_progress key that hadn't been updated properly.
5177  */
5178 static int check_ref_exists(struct btrfs_trans_handle *trans,
5179 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5180 			    int level)
5181 {
5182 	struct btrfs_path *path;
5183 	struct btrfs_extent_inline_ref *iref;
5184 	int ret;
5185 
5186 	path = btrfs_alloc_path();
5187 	if (!path)
5188 		return -ENOMEM;
5189 
5190 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5191 				    root->fs_info->nodesize, parent,
5192 				    root->root_key.objectid, level, 0);
5193 	btrfs_free_path(path);
5194 	if (ret == -ENOENT)
5195 		return 0;
5196 	if (ret < 0)
5197 		return ret;
5198 	return 1;
5199 }
5200 
5201 /*
5202  * helper to process tree block pointer.
5203  *
5204  * when wc->stage == DROP_REFERENCE, this function checks
5205  * reference count of the block pointed to. if the block
5206  * is shared and we need update back refs for the subtree
5207  * rooted at the block, this function changes wc->stage to
5208  * UPDATE_BACKREF. if the block is shared and there is no
5209  * need to update back, this function drops the reference
5210  * to the block.
5211  *
5212  * NOTE: return value 1 means we should stop walking down.
5213  */
5214 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5215 				 struct btrfs_root *root,
5216 				 struct btrfs_path *path,
5217 				 struct walk_control *wc, int *lookup_info)
5218 {
5219 	struct btrfs_fs_info *fs_info = root->fs_info;
5220 	u64 bytenr;
5221 	u64 generation;
5222 	u64 parent;
5223 	struct btrfs_key key;
5224 	struct btrfs_key first_key;
5225 	struct btrfs_ref ref = { 0 };
5226 	struct extent_buffer *next;
5227 	int level = wc->level;
5228 	int reada = 0;
5229 	int ret = 0;
5230 	bool need_account = false;
5231 
5232 	generation = btrfs_node_ptr_generation(path->nodes[level],
5233 					       path->slots[level]);
5234 	/*
5235 	 * if the lower level block was created before the snapshot
5236 	 * was created, we know there is no need to update back refs
5237 	 * for the subtree
5238 	 */
5239 	if (wc->stage == UPDATE_BACKREF &&
5240 	    generation <= root->root_key.offset) {
5241 		*lookup_info = 1;
5242 		return 1;
5243 	}
5244 
5245 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5246 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5247 			      path->slots[level]);
5248 
5249 	next = find_extent_buffer(fs_info, bytenr);
5250 	if (!next) {
5251 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5252 				root->root_key.objectid, level - 1);
5253 		if (IS_ERR(next))
5254 			return PTR_ERR(next);
5255 		reada = 1;
5256 	}
5257 	btrfs_tree_lock(next);
5258 
5259 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5260 				       &wc->refs[level - 1],
5261 				       &wc->flags[level - 1]);
5262 	if (ret < 0)
5263 		goto out_unlock;
5264 
5265 	if (unlikely(wc->refs[level - 1] == 0)) {
5266 		btrfs_err(fs_info, "Missing references.");
5267 		ret = -EIO;
5268 		goto out_unlock;
5269 	}
5270 	*lookup_info = 0;
5271 
5272 	if (wc->stage == DROP_REFERENCE) {
5273 		if (wc->refs[level - 1] > 1) {
5274 			need_account = true;
5275 			if (level == 1 &&
5276 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5277 				goto skip;
5278 
5279 			if (!wc->update_ref ||
5280 			    generation <= root->root_key.offset)
5281 				goto skip;
5282 
5283 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5284 					      path->slots[level]);
5285 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5286 			if (ret < 0)
5287 				goto skip;
5288 
5289 			wc->stage = UPDATE_BACKREF;
5290 			wc->shared_level = level - 1;
5291 		}
5292 	} else {
5293 		if (level == 1 &&
5294 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5295 			goto skip;
5296 	}
5297 
5298 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5299 		btrfs_tree_unlock(next);
5300 		free_extent_buffer(next);
5301 		next = NULL;
5302 		*lookup_info = 1;
5303 	}
5304 
5305 	if (!next) {
5306 		if (reada && level == 1)
5307 			reada_walk_down(trans, root, wc, path);
5308 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5309 				       generation, level - 1, &first_key);
5310 		if (IS_ERR(next)) {
5311 			return PTR_ERR(next);
5312 		} else if (!extent_buffer_uptodate(next)) {
5313 			free_extent_buffer(next);
5314 			return -EIO;
5315 		}
5316 		btrfs_tree_lock(next);
5317 	}
5318 
5319 	level--;
5320 	ASSERT(level == btrfs_header_level(next));
5321 	if (level != btrfs_header_level(next)) {
5322 		btrfs_err(root->fs_info, "mismatched level");
5323 		ret = -EIO;
5324 		goto out_unlock;
5325 	}
5326 	path->nodes[level] = next;
5327 	path->slots[level] = 0;
5328 	path->locks[level] = BTRFS_WRITE_LOCK;
5329 	wc->level = level;
5330 	if (wc->level == 1)
5331 		wc->reada_slot = 0;
5332 	return 0;
5333 skip:
5334 	wc->refs[level - 1] = 0;
5335 	wc->flags[level - 1] = 0;
5336 	if (wc->stage == DROP_REFERENCE) {
5337 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5338 			parent = path->nodes[level]->start;
5339 		} else {
5340 			ASSERT(root->root_key.objectid ==
5341 			       btrfs_header_owner(path->nodes[level]));
5342 			if (root->root_key.objectid !=
5343 			    btrfs_header_owner(path->nodes[level])) {
5344 				btrfs_err(root->fs_info,
5345 						"mismatched block owner");
5346 				ret = -EIO;
5347 				goto out_unlock;
5348 			}
5349 			parent = 0;
5350 		}
5351 
5352 		/*
5353 		 * If we had a drop_progress we need to verify the refs are set
5354 		 * as expected.  If we find our ref then we know that from here
5355 		 * on out everything should be correct, and we can clear the
5356 		 * ->restarted flag.
5357 		 */
5358 		if (wc->restarted) {
5359 			ret = check_ref_exists(trans, root, bytenr, parent,
5360 					       level - 1);
5361 			if (ret < 0)
5362 				goto out_unlock;
5363 			if (ret == 0)
5364 				goto no_delete;
5365 			ret = 0;
5366 			wc->restarted = 0;
5367 		}
5368 
5369 		/*
5370 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5371 		 * already accounted them at merge time (replace_path),
5372 		 * thus we could skip expensive subtree trace here.
5373 		 */
5374 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5375 		    need_account) {
5376 			ret = btrfs_qgroup_trace_subtree(trans, next,
5377 							 generation, level - 1);
5378 			if (ret) {
5379 				btrfs_err_rl(fs_info,
5380 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5381 					     ret);
5382 			}
5383 		}
5384 
5385 		/*
5386 		 * We need to update the next key in our walk control so we can
5387 		 * update the drop_progress key accordingly.  We don't care if
5388 		 * find_next_key doesn't find a key because that means we're at
5389 		 * the end and are going to clean up now.
5390 		 */
5391 		wc->drop_level = level;
5392 		find_next_key(path, level, &wc->drop_progress);
5393 
5394 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5395 				       fs_info->nodesize, parent);
5396 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5397 				    0, false);
5398 		ret = btrfs_free_extent(trans, &ref);
5399 		if (ret)
5400 			goto out_unlock;
5401 	}
5402 no_delete:
5403 	*lookup_info = 1;
5404 	ret = 1;
5405 
5406 out_unlock:
5407 	btrfs_tree_unlock(next);
5408 	free_extent_buffer(next);
5409 
5410 	return ret;
5411 }
5412 
5413 /*
5414  * helper to process tree block while walking up the tree.
5415  *
5416  * when wc->stage == DROP_REFERENCE, this function drops
5417  * reference count on the block.
5418  *
5419  * when wc->stage == UPDATE_BACKREF, this function changes
5420  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5421  * to UPDATE_BACKREF previously while processing the block.
5422  *
5423  * NOTE: return value 1 means we should stop walking up.
5424  */
5425 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5426 				 struct btrfs_root *root,
5427 				 struct btrfs_path *path,
5428 				 struct walk_control *wc)
5429 {
5430 	struct btrfs_fs_info *fs_info = root->fs_info;
5431 	int ret;
5432 	int level = wc->level;
5433 	struct extent_buffer *eb = path->nodes[level];
5434 	u64 parent = 0;
5435 
5436 	if (wc->stage == UPDATE_BACKREF) {
5437 		BUG_ON(wc->shared_level < level);
5438 		if (level < wc->shared_level)
5439 			goto out;
5440 
5441 		ret = find_next_key(path, level + 1, &wc->update_progress);
5442 		if (ret > 0)
5443 			wc->update_ref = 0;
5444 
5445 		wc->stage = DROP_REFERENCE;
5446 		wc->shared_level = -1;
5447 		path->slots[level] = 0;
5448 
5449 		/*
5450 		 * check reference count again if the block isn't locked.
5451 		 * we should start walking down the tree again if reference
5452 		 * count is one.
5453 		 */
5454 		if (!path->locks[level]) {
5455 			BUG_ON(level == 0);
5456 			btrfs_tree_lock(eb);
5457 			path->locks[level] = BTRFS_WRITE_LOCK;
5458 
5459 			ret = btrfs_lookup_extent_info(trans, fs_info,
5460 						       eb->start, level, 1,
5461 						       &wc->refs[level],
5462 						       &wc->flags[level]);
5463 			if (ret < 0) {
5464 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5465 				path->locks[level] = 0;
5466 				return ret;
5467 			}
5468 			BUG_ON(wc->refs[level] == 0);
5469 			if (wc->refs[level] == 1) {
5470 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5471 				path->locks[level] = 0;
5472 				return 1;
5473 			}
5474 		}
5475 	}
5476 
5477 	/* wc->stage == DROP_REFERENCE */
5478 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5479 
5480 	if (wc->refs[level] == 1) {
5481 		if (level == 0) {
5482 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5483 				ret = btrfs_dec_ref(trans, root, eb, 1);
5484 			else
5485 				ret = btrfs_dec_ref(trans, root, eb, 0);
5486 			BUG_ON(ret); /* -ENOMEM */
5487 			if (is_fstree(root->root_key.objectid)) {
5488 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5489 				if (ret) {
5490 					btrfs_err_rl(fs_info,
5491 	"error %d accounting leaf items, quota is out of sync, rescan required",
5492 					     ret);
5493 				}
5494 			}
5495 		}
5496 		/* make block locked assertion in btrfs_clean_tree_block happy */
5497 		if (!path->locks[level] &&
5498 		    btrfs_header_generation(eb) == trans->transid) {
5499 			btrfs_tree_lock(eb);
5500 			path->locks[level] = BTRFS_WRITE_LOCK;
5501 		}
5502 		btrfs_clean_tree_block(eb);
5503 	}
5504 
5505 	if (eb == root->node) {
5506 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5507 			parent = eb->start;
5508 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5509 			goto owner_mismatch;
5510 	} else {
5511 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5512 			parent = path->nodes[level + 1]->start;
5513 		else if (root->root_key.objectid !=
5514 			 btrfs_header_owner(path->nodes[level + 1]))
5515 			goto owner_mismatch;
5516 	}
5517 
5518 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5519 			      wc->refs[level] == 1);
5520 out:
5521 	wc->refs[level] = 0;
5522 	wc->flags[level] = 0;
5523 	return 0;
5524 
5525 owner_mismatch:
5526 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5527 		     btrfs_header_owner(eb), root->root_key.objectid);
5528 	return -EUCLEAN;
5529 }
5530 
5531 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5532 				   struct btrfs_root *root,
5533 				   struct btrfs_path *path,
5534 				   struct walk_control *wc)
5535 {
5536 	int level = wc->level;
5537 	int lookup_info = 1;
5538 	int ret;
5539 
5540 	while (level >= 0) {
5541 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5542 		if (ret > 0)
5543 			break;
5544 
5545 		if (level == 0)
5546 			break;
5547 
5548 		if (path->slots[level] >=
5549 		    btrfs_header_nritems(path->nodes[level]))
5550 			break;
5551 
5552 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5553 		if (ret > 0) {
5554 			path->slots[level]++;
5555 			continue;
5556 		} else if (ret < 0)
5557 			return ret;
5558 		level = wc->level;
5559 	}
5560 	return 0;
5561 }
5562 
5563 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5564 				 struct btrfs_root *root,
5565 				 struct btrfs_path *path,
5566 				 struct walk_control *wc, int max_level)
5567 {
5568 	int level = wc->level;
5569 	int ret;
5570 
5571 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5572 	while (level < max_level && path->nodes[level]) {
5573 		wc->level = level;
5574 		if (path->slots[level] + 1 <
5575 		    btrfs_header_nritems(path->nodes[level])) {
5576 			path->slots[level]++;
5577 			return 0;
5578 		} else {
5579 			ret = walk_up_proc(trans, root, path, wc);
5580 			if (ret > 0)
5581 				return 0;
5582 			if (ret < 0)
5583 				return ret;
5584 
5585 			if (path->locks[level]) {
5586 				btrfs_tree_unlock_rw(path->nodes[level],
5587 						     path->locks[level]);
5588 				path->locks[level] = 0;
5589 			}
5590 			free_extent_buffer(path->nodes[level]);
5591 			path->nodes[level] = NULL;
5592 			level++;
5593 		}
5594 	}
5595 	return 1;
5596 }
5597 
5598 /*
5599  * drop a subvolume tree.
5600  *
5601  * this function traverses the tree freeing any blocks that only
5602  * referenced by the tree.
5603  *
5604  * when a shared tree block is found. this function decreases its
5605  * reference count by one. if update_ref is true, this function
5606  * also make sure backrefs for the shared block and all lower level
5607  * blocks are properly updated.
5608  *
5609  * If called with for_reloc == 0, may exit early with -EAGAIN
5610  */
5611 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5612 {
5613 	struct btrfs_fs_info *fs_info = root->fs_info;
5614 	struct btrfs_path *path;
5615 	struct btrfs_trans_handle *trans;
5616 	struct btrfs_root *tree_root = fs_info->tree_root;
5617 	struct btrfs_root_item *root_item = &root->root_item;
5618 	struct walk_control *wc;
5619 	struct btrfs_key key;
5620 	int err = 0;
5621 	int ret;
5622 	int level;
5623 	bool root_dropped = false;
5624 	bool unfinished_drop = false;
5625 
5626 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5627 
5628 	path = btrfs_alloc_path();
5629 	if (!path) {
5630 		err = -ENOMEM;
5631 		goto out;
5632 	}
5633 
5634 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5635 	if (!wc) {
5636 		btrfs_free_path(path);
5637 		err = -ENOMEM;
5638 		goto out;
5639 	}
5640 
5641 	/*
5642 	 * Use join to avoid potential EINTR from transaction start. See
5643 	 * wait_reserve_ticket and the whole reservation callchain.
5644 	 */
5645 	if (for_reloc)
5646 		trans = btrfs_join_transaction(tree_root);
5647 	else
5648 		trans = btrfs_start_transaction(tree_root, 0);
5649 	if (IS_ERR(trans)) {
5650 		err = PTR_ERR(trans);
5651 		goto out_free;
5652 	}
5653 
5654 	err = btrfs_run_delayed_items(trans);
5655 	if (err)
5656 		goto out_end_trans;
5657 
5658 	/*
5659 	 * This will help us catch people modifying the fs tree while we're
5660 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5661 	 * dropped as we unlock the root node and parent nodes as we walk down
5662 	 * the tree, assuming nothing will change.  If something does change
5663 	 * then we'll have stale information and drop references to blocks we've
5664 	 * already dropped.
5665 	 */
5666 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5667 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5668 
5669 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5670 		level = btrfs_header_level(root->node);
5671 		path->nodes[level] = btrfs_lock_root_node(root);
5672 		path->slots[level] = 0;
5673 		path->locks[level] = BTRFS_WRITE_LOCK;
5674 		memset(&wc->update_progress, 0,
5675 		       sizeof(wc->update_progress));
5676 	} else {
5677 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5678 		memcpy(&wc->update_progress, &key,
5679 		       sizeof(wc->update_progress));
5680 
5681 		level = btrfs_root_drop_level(root_item);
5682 		BUG_ON(level == 0);
5683 		path->lowest_level = level;
5684 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5685 		path->lowest_level = 0;
5686 		if (ret < 0) {
5687 			err = ret;
5688 			goto out_end_trans;
5689 		}
5690 		WARN_ON(ret > 0);
5691 
5692 		/*
5693 		 * unlock our path, this is safe because only this
5694 		 * function is allowed to delete this snapshot
5695 		 */
5696 		btrfs_unlock_up_safe(path, 0);
5697 
5698 		level = btrfs_header_level(root->node);
5699 		while (1) {
5700 			btrfs_tree_lock(path->nodes[level]);
5701 			path->locks[level] = BTRFS_WRITE_LOCK;
5702 
5703 			ret = btrfs_lookup_extent_info(trans, fs_info,
5704 						path->nodes[level]->start,
5705 						level, 1, &wc->refs[level],
5706 						&wc->flags[level]);
5707 			if (ret < 0) {
5708 				err = ret;
5709 				goto out_end_trans;
5710 			}
5711 			BUG_ON(wc->refs[level] == 0);
5712 
5713 			if (level == btrfs_root_drop_level(root_item))
5714 				break;
5715 
5716 			btrfs_tree_unlock(path->nodes[level]);
5717 			path->locks[level] = 0;
5718 			WARN_ON(wc->refs[level] != 1);
5719 			level--;
5720 		}
5721 	}
5722 
5723 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5724 	wc->level = level;
5725 	wc->shared_level = -1;
5726 	wc->stage = DROP_REFERENCE;
5727 	wc->update_ref = update_ref;
5728 	wc->keep_locks = 0;
5729 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5730 
5731 	while (1) {
5732 
5733 		ret = walk_down_tree(trans, root, path, wc);
5734 		if (ret < 0) {
5735 			err = ret;
5736 			break;
5737 		}
5738 
5739 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5740 		if (ret < 0) {
5741 			err = ret;
5742 			break;
5743 		}
5744 
5745 		if (ret > 0) {
5746 			BUG_ON(wc->stage != DROP_REFERENCE);
5747 			break;
5748 		}
5749 
5750 		if (wc->stage == DROP_REFERENCE) {
5751 			wc->drop_level = wc->level;
5752 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5753 					      &wc->drop_progress,
5754 					      path->slots[wc->drop_level]);
5755 		}
5756 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5757 				      &wc->drop_progress);
5758 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5759 
5760 		BUG_ON(wc->level == 0);
5761 		if (btrfs_should_end_transaction(trans) ||
5762 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5763 			ret = btrfs_update_root(trans, tree_root,
5764 						&root->root_key,
5765 						root_item);
5766 			if (ret) {
5767 				btrfs_abort_transaction(trans, ret);
5768 				err = ret;
5769 				goto out_end_trans;
5770 			}
5771 
5772 			btrfs_end_transaction_throttle(trans);
5773 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5774 				btrfs_debug(fs_info,
5775 					    "drop snapshot early exit");
5776 				err = -EAGAIN;
5777 				goto out_free;
5778 			}
5779 
5780 		       /*
5781 			* Use join to avoid potential EINTR from transaction
5782 			* start. See wait_reserve_ticket and the whole
5783 			* reservation callchain.
5784 			*/
5785 			if (for_reloc)
5786 				trans = btrfs_join_transaction(tree_root);
5787 			else
5788 				trans = btrfs_start_transaction(tree_root, 0);
5789 			if (IS_ERR(trans)) {
5790 				err = PTR_ERR(trans);
5791 				goto out_free;
5792 			}
5793 		}
5794 	}
5795 	btrfs_release_path(path);
5796 	if (err)
5797 		goto out_end_trans;
5798 
5799 	ret = btrfs_del_root(trans, &root->root_key);
5800 	if (ret) {
5801 		btrfs_abort_transaction(trans, ret);
5802 		err = ret;
5803 		goto out_end_trans;
5804 	}
5805 
5806 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5807 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5808 				      NULL, NULL);
5809 		if (ret < 0) {
5810 			btrfs_abort_transaction(trans, ret);
5811 			err = ret;
5812 			goto out_end_trans;
5813 		} else if (ret > 0) {
5814 			/* if we fail to delete the orphan item this time
5815 			 * around, it'll get picked up the next time.
5816 			 *
5817 			 * The most common failure here is just -ENOENT.
5818 			 */
5819 			btrfs_del_orphan_item(trans, tree_root,
5820 					      root->root_key.objectid);
5821 		}
5822 	}
5823 
5824 	/*
5825 	 * This subvolume is going to be completely dropped, and won't be
5826 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5827 	 * commit transaction time.  So free it here manually.
5828 	 */
5829 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5830 	btrfs_qgroup_free_meta_all_pertrans(root);
5831 
5832 	if (test_bit(BTRFS_ROOT_REGISTERED, &root->state))
5833 		btrfs_add_dropped_root(trans, root);
5834 	else
5835 		btrfs_put_root(root);
5836 	root_dropped = true;
5837 out_end_trans:
5838 	btrfs_end_transaction_throttle(trans);
5839 out_free:
5840 	kfree(wc);
5841 	btrfs_free_path(path);
5842 out:
5843 	/*
5844 	 * We were an unfinished drop root, check to see if there are any
5845 	 * pending, and if not clear and wake up any waiters.
5846 	 */
5847 	if (!err && unfinished_drop)
5848 		btrfs_maybe_wake_unfinished_drop(fs_info);
5849 
5850 	/*
5851 	 * So if we need to stop dropping the snapshot for whatever reason we
5852 	 * need to make sure to add it back to the dead root list so that we
5853 	 * keep trying to do the work later.  This also cleans up roots if we
5854 	 * don't have it in the radix (like when we recover after a power fail
5855 	 * or unmount) so we don't leak memory.
5856 	 */
5857 	if (!for_reloc && !root_dropped)
5858 		btrfs_add_dead_root(root);
5859 	return err;
5860 }
5861 
5862 /*
5863  * drop subtree rooted at tree block 'node'.
5864  *
5865  * NOTE: this function will unlock and release tree block 'node'
5866  * only used by relocation code
5867  */
5868 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5869 			struct btrfs_root *root,
5870 			struct extent_buffer *node,
5871 			struct extent_buffer *parent)
5872 {
5873 	struct btrfs_fs_info *fs_info = root->fs_info;
5874 	struct btrfs_path *path;
5875 	struct walk_control *wc;
5876 	int level;
5877 	int parent_level;
5878 	int ret = 0;
5879 	int wret;
5880 
5881 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5882 
5883 	path = btrfs_alloc_path();
5884 	if (!path)
5885 		return -ENOMEM;
5886 
5887 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5888 	if (!wc) {
5889 		btrfs_free_path(path);
5890 		return -ENOMEM;
5891 	}
5892 
5893 	btrfs_assert_tree_write_locked(parent);
5894 	parent_level = btrfs_header_level(parent);
5895 	atomic_inc(&parent->refs);
5896 	path->nodes[parent_level] = parent;
5897 	path->slots[parent_level] = btrfs_header_nritems(parent);
5898 
5899 	btrfs_assert_tree_write_locked(node);
5900 	level = btrfs_header_level(node);
5901 	path->nodes[level] = node;
5902 	path->slots[level] = 0;
5903 	path->locks[level] = BTRFS_WRITE_LOCK;
5904 
5905 	wc->refs[parent_level] = 1;
5906 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5907 	wc->level = level;
5908 	wc->shared_level = -1;
5909 	wc->stage = DROP_REFERENCE;
5910 	wc->update_ref = 0;
5911 	wc->keep_locks = 1;
5912 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5913 
5914 	while (1) {
5915 		wret = walk_down_tree(trans, root, path, wc);
5916 		if (wret < 0) {
5917 			ret = wret;
5918 			break;
5919 		}
5920 
5921 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5922 		if (wret < 0)
5923 			ret = wret;
5924 		if (wret != 0)
5925 			break;
5926 	}
5927 
5928 	kfree(wc);
5929 	btrfs_free_path(path);
5930 	return ret;
5931 }
5932 
5933 /*
5934  * helper to account the unused space of all the readonly block group in the
5935  * space_info. takes mirrors into account.
5936  */
5937 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5938 {
5939 	struct btrfs_block_group *block_group;
5940 	u64 free_bytes = 0;
5941 	int factor;
5942 
5943 	/* It's df, we don't care if it's racy */
5944 	if (list_empty(&sinfo->ro_bgs))
5945 		return 0;
5946 
5947 	spin_lock(&sinfo->lock);
5948 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5949 		spin_lock(&block_group->lock);
5950 
5951 		if (!block_group->ro) {
5952 			spin_unlock(&block_group->lock);
5953 			continue;
5954 		}
5955 
5956 		factor = btrfs_bg_type_to_factor(block_group->flags);
5957 		free_bytes += (block_group->length -
5958 			       block_group->used) * factor;
5959 
5960 		spin_unlock(&block_group->lock);
5961 	}
5962 	spin_unlock(&sinfo->lock);
5963 
5964 	return free_bytes;
5965 }
5966 
5967 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5968 				   u64 start, u64 end)
5969 {
5970 	return unpin_extent_range(fs_info, start, end, false);
5971 }
5972 
5973 /*
5974  * It used to be that old block groups would be left around forever.
5975  * Iterating over them would be enough to trim unused space.  Since we
5976  * now automatically remove them, we also need to iterate over unallocated
5977  * space.
5978  *
5979  * We don't want a transaction for this since the discard may take a
5980  * substantial amount of time.  We don't require that a transaction be
5981  * running, but we do need to take a running transaction into account
5982  * to ensure that we're not discarding chunks that were released or
5983  * allocated in the current transaction.
5984  *
5985  * Holding the chunks lock will prevent other threads from allocating
5986  * or releasing chunks, but it won't prevent a running transaction
5987  * from committing and releasing the memory that the pending chunks
5988  * list head uses.  For that, we need to take a reference to the
5989  * transaction and hold the commit root sem.  We only need to hold
5990  * it while performing the free space search since we have already
5991  * held back allocations.
5992  */
5993 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5994 {
5995 	u64 start = SZ_1M, len = 0, end = 0;
5996 	int ret;
5997 
5998 	*trimmed = 0;
5999 
6000 	/* Discard not supported = nothing to do. */
6001 	if (!bdev_max_discard_sectors(device->bdev))
6002 		return 0;
6003 
6004 	/* Not writable = nothing to do. */
6005 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6006 		return 0;
6007 
6008 	/* No free space = nothing to do. */
6009 	if (device->total_bytes <= device->bytes_used)
6010 		return 0;
6011 
6012 	ret = 0;
6013 
6014 	while (1) {
6015 		struct btrfs_fs_info *fs_info = device->fs_info;
6016 		u64 bytes;
6017 
6018 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6019 		if (ret)
6020 			break;
6021 
6022 		find_first_clear_extent_bit(&device->alloc_state, start,
6023 					    &start, &end,
6024 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6025 
6026 		/* Check if there are any CHUNK_* bits left */
6027 		if (start > device->total_bytes) {
6028 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6029 			btrfs_warn_in_rcu(fs_info,
6030 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6031 					  start, end - start + 1,
6032 					  rcu_str_deref(device->name),
6033 					  device->total_bytes);
6034 			mutex_unlock(&fs_info->chunk_mutex);
6035 			ret = 0;
6036 			break;
6037 		}
6038 
6039 		/* Ensure we skip the reserved area in the first 1M */
6040 		start = max_t(u64, start, SZ_1M);
6041 
6042 		/*
6043 		 * If find_first_clear_extent_bit find a range that spans the
6044 		 * end of the device it will set end to -1, in this case it's up
6045 		 * to the caller to trim the value to the size of the device.
6046 		 */
6047 		end = min(end, device->total_bytes - 1);
6048 
6049 		len = end - start + 1;
6050 
6051 		/* We didn't find any extents */
6052 		if (!len) {
6053 			mutex_unlock(&fs_info->chunk_mutex);
6054 			ret = 0;
6055 			break;
6056 		}
6057 
6058 		ret = btrfs_issue_discard(device->bdev, start, len,
6059 					  &bytes);
6060 		if (!ret)
6061 			set_extent_bits(&device->alloc_state, start,
6062 					start + bytes - 1,
6063 					CHUNK_TRIMMED);
6064 		mutex_unlock(&fs_info->chunk_mutex);
6065 
6066 		if (ret)
6067 			break;
6068 
6069 		start += len;
6070 		*trimmed += bytes;
6071 
6072 		if (fatal_signal_pending(current)) {
6073 			ret = -ERESTARTSYS;
6074 			break;
6075 		}
6076 
6077 		cond_resched();
6078 	}
6079 
6080 	return ret;
6081 }
6082 
6083 /*
6084  * Trim the whole filesystem by:
6085  * 1) trimming the free space in each block group
6086  * 2) trimming the unallocated space on each device
6087  *
6088  * This will also continue trimming even if a block group or device encounters
6089  * an error.  The return value will be the last error, or 0 if nothing bad
6090  * happens.
6091  */
6092 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6093 {
6094 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6095 	struct btrfs_block_group *cache = NULL;
6096 	struct btrfs_device *device;
6097 	u64 group_trimmed;
6098 	u64 range_end = U64_MAX;
6099 	u64 start;
6100 	u64 end;
6101 	u64 trimmed = 0;
6102 	u64 bg_failed = 0;
6103 	u64 dev_failed = 0;
6104 	int bg_ret = 0;
6105 	int dev_ret = 0;
6106 	int ret = 0;
6107 
6108 	if (range->start == U64_MAX)
6109 		return -EINVAL;
6110 
6111 	/*
6112 	 * Check range overflow if range->len is set.
6113 	 * The default range->len is U64_MAX.
6114 	 */
6115 	if (range->len != U64_MAX &&
6116 	    check_add_overflow(range->start, range->len, &range_end))
6117 		return -EINVAL;
6118 
6119 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6120 	for (; cache; cache = btrfs_next_block_group(cache)) {
6121 		if (cache->start >= range_end) {
6122 			btrfs_put_block_group(cache);
6123 			break;
6124 		}
6125 
6126 		start = max(range->start, cache->start);
6127 		end = min(range_end, cache->start + cache->length);
6128 
6129 		if (end - start >= range->minlen) {
6130 			if (!btrfs_block_group_done(cache)) {
6131 				ret = btrfs_cache_block_group(cache, 0);
6132 				if (ret) {
6133 					bg_failed++;
6134 					bg_ret = ret;
6135 					continue;
6136 				}
6137 				ret = btrfs_wait_block_group_cache_done(cache);
6138 				if (ret) {
6139 					bg_failed++;
6140 					bg_ret = ret;
6141 					continue;
6142 				}
6143 			}
6144 			ret = btrfs_trim_block_group(cache,
6145 						     &group_trimmed,
6146 						     start,
6147 						     end,
6148 						     range->minlen);
6149 
6150 			trimmed += group_trimmed;
6151 			if (ret) {
6152 				bg_failed++;
6153 				bg_ret = ret;
6154 				continue;
6155 			}
6156 		}
6157 	}
6158 
6159 	if (bg_failed)
6160 		btrfs_warn(fs_info,
6161 			"failed to trim %llu block group(s), last error %d",
6162 			bg_failed, bg_ret);
6163 
6164 	mutex_lock(&fs_devices->device_list_mutex);
6165 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6166 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6167 			continue;
6168 
6169 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6170 		if (ret) {
6171 			dev_failed++;
6172 			dev_ret = ret;
6173 			break;
6174 		}
6175 
6176 		trimmed += group_trimmed;
6177 	}
6178 	mutex_unlock(&fs_devices->device_list_mutex);
6179 
6180 	if (dev_failed)
6181 		btrfs_warn(fs_info,
6182 			"failed to trim %llu device(s), last error %d",
6183 			dev_failed, dev_ret);
6184 	range->len = trimmed;
6185 	if (bg_ret)
6186 		return bg_ret;
6187 	return dev_ret;
6188 }
6189