1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 91 int ret; 92 struct btrfs_key key; 93 struct btrfs_path *path; 94 95 path = btrfs_alloc_path(); 96 if (!path) 97 return -ENOMEM; 98 99 key.objectid = start; 100 key.offset = len; 101 key.type = BTRFS_EXTENT_ITEM_KEY; 102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 103 btrfs_free_path(path); 104 return ret; 105 } 106 107 /* 108 * helper function to lookup reference count and flags of a tree block. 109 * 110 * the head node for delayed ref is used to store the sum of all the 111 * reference count modifications queued up in the rbtree. the head 112 * node may also store the extent flags to set. This way you can check 113 * to see what the reference count and extent flags would be if all of 114 * the delayed refs are not processed. 115 */ 116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 117 struct btrfs_fs_info *fs_info, u64 bytenr, 118 u64 offset, int metadata, u64 *refs, u64 *flags) 119 { 120 struct btrfs_root *extent_root; 121 struct btrfs_delayed_ref_head *head; 122 struct btrfs_delayed_ref_root *delayed_refs; 123 struct btrfs_path *path; 124 struct btrfs_extent_item *ei; 125 struct extent_buffer *leaf; 126 struct btrfs_key key; 127 u32 item_size; 128 u64 num_refs; 129 u64 extent_flags; 130 int ret; 131 132 /* 133 * If we don't have skinny metadata, don't bother doing anything 134 * different 135 */ 136 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 137 offset = fs_info->nodesize; 138 metadata = 0; 139 } 140 141 path = btrfs_alloc_path(); 142 if (!path) 143 return -ENOMEM; 144 145 if (!trans) { 146 path->skip_locking = 1; 147 path->search_commit_root = 1; 148 } 149 150 search_again: 151 key.objectid = bytenr; 152 key.offset = offset; 153 if (metadata) 154 key.type = BTRFS_METADATA_ITEM_KEY; 155 else 156 key.type = BTRFS_EXTENT_ITEM_KEY; 157 158 extent_root = btrfs_extent_root(fs_info, bytenr); 159 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 160 if (ret < 0) 161 goto out_free; 162 163 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 164 if (path->slots[0]) { 165 path->slots[0]--; 166 btrfs_item_key_to_cpu(path->nodes[0], &key, 167 path->slots[0]); 168 if (key.objectid == bytenr && 169 key.type == BTRFS_EXTENT_ITEM_KEY && 170 key.offset == fs_info->nodesize) 171 ret = 0; 172 } 173 } 174 175 if (ret == 0) { 176 leaf = path->nodes[0]; 177 item_size = btrfs_item_size(leaf, path->slots[0]); 178 if (item_size >= sizeof(*ei)) { 179 ei = btrfs_item_ptr(leaf, path->slots[0], 180 struct btrfs_extent_item); 181 num_refs = btrfs_extent_refs(leaf, ei); 182 extent_flags = btrfs_extent_flags(leaf, ei); 183 } else { 184 ret = -EINVAL; 185 btrfs_print_v0_err(fs_info); 186 if (trans) 187 btrfs_abort_transaction(trans, ret); 188 else 189 btrfs_handle_fs_error(fs_info, ret, NULL); 190 191 goto out_free; 192 } 193 194 BUG_ON(num_refs == 0); 195 } else { 196 num_refs = 0; 197 extent_flags = 0; 198 ret = 0; 199 } 200 201 if (!trans) 202 goto out; 203 204 delayed_refs = &trans->transaction->delayed_refs; 205 spin_lock(&delayed_refs->lock); 206 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 207 if (head) { 208 if (!mutex_trylock(&head->mutex)) { 209 refcount_inc(&head->refs); 210 spin_unlock(&delayed_refs->lock); 211 212 btrfs_release_path(path); 213 214 /* 215 * Mutex was contended, block until it's released and try 216 * again 217 */ 218 mutex_lock(&head->mutex); 219 mutex_unlock(&head->mutex); 220 btrfs_put_delayed_ref_head(head); 221 goto search_again; 222 } 223 spin_lock(&head->lock); 224 if (head->extent_op && head->extent_op->update_flags) 225 extent_flags |= head->extent_op->flags_to_set; 226 else 227 BUG_ON(num_refs == 0); 228 229 num_refs += head->ref_mod; 230 spin_unlock(&head->lock); 231 mutex_unlock(&head->mutex); 232 } 233 spin_unlock(&delayed_refs->lock); 234 out: 235 WARN_ON(num_refs == 0); 236 if (refs) 237 *refs = num_refs; 238 if (flags) 239 *flags = extent_flags; 240 out_free: 241 btrfs_free_path(path); 242 return ret; 243 } 244 245 /* 246 * Back reference rules. Back refs have three main goals: 247 * 248 * 1) differentiate between all holders of references to an extent so that 249 * when a reference is dropped we can make sure it was a valid reference 250 * before freeing the extent. 251 * 252 * 2) Provide enough information to quickly find the holders of an extent 253 * if we notice a given block is corrupted or bad. 254 * 255 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 256 * maintenance. This is actually the same as #2, but with a slightly 257 * different use case. 258 * 259 * There are two kinds of back refs. The implicit back refs is optimized 260 * for pointers in non-shared tree blocks. For a given pointer in a block, 261 * back refs of this kind provide information about the block's owner tree 262 * and the pointer's key. These information allow us to find the block by 263 * b-tree searching. The full back refs is for pointers in tree blocks not 264 * referenced by their owner trees. The location of tree block is recorded 265 * in the back refs. Actually the full back refs is generic, and can be 266 * used in all cases the implicit back refs is used. The major shortcoming 267 * of the full back refs is its overhead. Every time a tree block gets 268 * COWed, we have to update back refs entry for all pointers in it. 269 * 270 * For a newly allocated tree block, we use implicit back refs for 271 * pointers in it. This means most tree related operations only involve 272 * implicit back refs. For a tree block created in old transaction, the 273 * only way to drop a reference to it is COW it. So we can detect the 274 * event that tree block loses its owner tree's reference and do the 275 * back refs conversion. 276 * 277 * When a tree block is COWed through a tree, there are four cases: 278 * 279 * The reference count of the block is one and the tree is the block's 280 * owner tree. Nothing to do in this case. 281 * 282 * The reference count of the block is one and the tree is not the 283 * block's owner tree. In this case, full back refs is used for pointers 284 * in the block. Remove these full back refs, add implicit back refs for 285 * every pointers in the new block. 286 * 287 * The reference count of the block is greater than one and the tree is 288 * the block's owner tree. In this case, implicit back refs is used for 289 * pointers in the block. Add full back refs for every pointers in the 290 * block, increase lower level extents' reference counts. The original 291 * implicit back refs are entailed to the new block. 292 * 293 * The reference count of the block is greater than one and the tree is 294 * not the block's owner tree. Add implicit back refs for every pointer in 295 * the new block, increase lower level extents' reference count. 296 * 297 * Back Reference Key composing: 298 * 299 * The key objectid corresponds to the first byte in the extent, 300 * The key type is used to differentiate between types of back refs. 301 * There are different meanings of the key offset for different types 302 * of back refs. 303 * 304 * File extents can be referenced by: 305 * 306 * - multiple snapshots, subvolumes, or different generations in one subvol 307 * - different files inside a single subvolume 308 * - different offsets inside a file (bookend extents in file.c) 309 * 310 * The extent ref structure for the implicit back refs has fields for: 311 * 312 * - Objectid of the subvolume root 313 * - objectid of the file holding the reference 314 * - original offset in the file 315 * - how many bookend extents 316 * 317 * The key offset for the implicit back refs is hash of the first 318 * three fields. 319 * 320 * The extent ref structure for the full back refs has field for: 321 * 322 * - number of pointers in the tree leaf 323 * 324 * The key offset for the implicit back refs is the first byte of 325 * the tree leaf 326 * 327 * When a file extent is allocated, The implicit back refs is used. 328 * the fields are filled in: 329 * 330 * (root_key.objectid, inode objectid, offset in file, 1) 331 * 332 * When a file extent is removed file truncation, we find the 333 * corresponding implicit back refs and check the following fields: 334 * 335 * (btrfs_header_owner(leaf), inode objectid, offset in file) 336 * 337 * Btree extents can be referenced by: 338 * 339 * - Different subvolumes 340 * 341 * Both the implicit back refs and the full back refs for tree blocks 342 * only consist of key. The key offset for the implicit back refs is 343 * objectid of block's owner tree. The key offset for the full back refs 344 * is the first byte of parent block. 345 * 346 * When implicit back refs is used, information about the lowest key and 347 * level of the tree block are required. These information are stored in 348 * tree block info structure. 349 */ 350 351 /* 352 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 353 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 354 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 355 */ 356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 357 struct btrfs_extent_inline_ref *iref, 358 enum btrfs_inline_ref_type is_data) 359 { 360 int type = btrfs_extent_inline_ref_type(eb, iref); 361 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 362 363 if (type == BTRFS_TREE_BLOCK_REF_KEY || 364 type == BTRFS_SHARED_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_DATA_REF_KEY || 366 type == BTRFS_EXTENT_DATA_REF_KEY) { 367 if (is_data == BTRFS_REF_TYPE_BLOCK) { 368 if (type == BTRFS_TREE_BLOCK_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(eb->fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 btrfs_print_leaf((struct extent_buffer *)eb); 400 btrfs_err(eb->fs_info, 401 "eb %llu iref 0x%lx invalid extent inline ref type %d", 402 eb->start, (unsigned long)iref, type); 403 WARN_ON(1); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 622 btrfs_print_v0_err(trans->fs_info); 623 btrfs_abort_transaction(trans, -EINVAL); 624 return -EINVAL; 625 } else { 626 BUG(); 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 658 if (iref) { 659 /* 660 * If type is invalid, we should have bailed out earlier than 661 * this call. 662 */ 663 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 664 ASSERT(type != BTRFS_REF_TYPE_INVALID); 665 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 666 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 667 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 668 } else { 669 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 670 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 671 } 672 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 673 ref1 = btrfs_item_ptr(leaf, path->slots[0], 674 struct btrfs_extent_data_ref); 675 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 676 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 677 ref2 = btrfs_item_ptr(leaf, path->slots[0], 678 struct btrfs_shared_data_ref); 679 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 680 } else { 681 WARN_ON(1); 682 } 683 return num_refs; 684 } 685 686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 687 struct btrfs_path *path, 688 u64 bytenr, u64 parent, 689 u64 root_objectid) 690 { 691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 692 struct btrfs_key key; 693 int ret; 694 695 key.objectid = bytenr; 696 if (parent) { 697 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 698 key.offset = parent; 699 } else { 700 key.type = BTRFS_TREE_BLOCK_REF_KEY; 701 key.offset = root_objectid; 702 } 703 704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 705 if (ret > 0) 706 ret = -ENOENT; 707 return ret; 708 } 709 710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 711 struct btrfs_path *path, 712 u64 bytenr, u64 parent, 713 u64 root_objectid) 714 { 715 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 716 struct btrfs_key key; 717 int ret; 718 719 key.objectid = bytenr; 720 if (parent) { 721 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 722 key.offset = parent; 723 } else { 724 key.type = BTRFS_TREE_BLOCK_REF_KEY; 725 key.offset = root_objectid; 726 } 727 728 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 729 btrfs_release_path(path); 730 return ret; 731 } 732 733 static inline int extent_ref_type(u64 parent, u64 owner) 734 { 735 int type; 736 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 737 if (parent > 0) 738 type = BTRFS_SHARED_BLOCK_REF_KEY; 739 else 740 type = BTRFS_TREE_BLOCK_REF_KEY; 741 } else { 742 if (parent > 0) 743 type = BTRFS_SHARED_DATA_REF_KEY; 744 else 745 type = BTRFS_EXTENT_DATA_REF_KEY; 746 } 747 return type; 748 } 749 750 static int find_next_key(struct btrfs_path *path, int level, 751 struct btrfs_key *key) 752 753 { 754 for (; level < BTRFS_MAX_LEVEL; level++) { 755 if (!path->nodes[level]) 756 break; 757 if (path->slots[level] + 1 >= 758 btrfs_header_nritems(path->nodes[level])) 759 continue; 760 if (level == 0) 761 btrfs_item_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 else 764 btrfs_node_key_to_cpu(path->nodes[level], key, 765 path->slots[level] + 1); 766 return 0; 767 } 768 return 1; 769 } 770 771 /* 772 * look for inline back ref. if back ref is found, *ref_ret is set 773 * to the address of inline back ref, and 0 is returned. 774 * 775 * if back ref isn't found, *ref_ret is set to the address where it 776 * should be inserted, and -ENOENT is returned. 777 * 778 * if insert is true and there are too many inline back refs, the path 779 * points to the extent item, and -EAGAIN is returned. 780 * 781 * NOTE: inline back refs are ordered in the same way that back ref 782 * items in the tree are ordered. 783 */ 784 static noinline_for_stack 785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 786 struct btrfs_path *path, 787 struct btrfs_extent_inline_ref **ref_ret, 788 u64 bytenr, u64 num_bytes, 789 u64 parent, u64 root_objectid, 790 u64 owner, u64 offset, int insert) 791 { 792 struct btrfs_fs_info *fs_info = trans->fs_info; 793 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 794 struct btrfs_key key; 795 struct extent_buffer *leaf; 796 struct btrfs_extent_item *ei; 797 struct btrfs_extent_inline_ref *iref; 798 u64 flags; 799 u64 item_size; 800 unsigned long ptr; 801 unsigned long end; 802 int extra_size; 803 int type; 804 int want; 805 int ret; 806 int err = 0; 807 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 808 int needed; 809 810 key.objectid = bytenr; 811 key.type = BTRFS_EXTENT_ITEM_KEY; 812 key.offset = num_bytes; 813 814 want = extent_ref_type(parent, owner); 815 if (insert) { 816 extra_size = btrfs_extent_inline_ref_size(want); 817 path->search_for_extension = 1; 818 path->keep_locks = 1; 819 } else 820 extra_size = -1; 821 822 /* 823 * Owner is our level, so we can just add one to get the level for the 824 * block we are interested in. 825 */ 826 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 827 key.type = BTRFS_METADATA_ITEM_KEY; 828 key.offset = owner; 829 } 830 831 again: 832 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 833 if (ret < 0) { 834 err = ret; 835 goto out; 836 } 837 838 /* 839 * We may be a newly converted file system which still has the old fat 840 * extent entries for metadata, so try and see if we have one of those. 841 */ 842 if (ret > 0 && skinny_metadata) { 843 skinny_metadata = false; 844 if (path->slots[0]) { 845 path->slots[0]--; 846 btrfs_item_key_to_cpu(path->nodes[0], &key, 847 path->slots[0]); 848 if (key.objectid == bytenr && 849 key.type == BTRFS_EXTENT_ITEM_KEY && 850 key.offset == num_bytes) 851 ret = 0; 852 } 853 if (ret) { 854 key.objectid = bytenr; 855 key.type = BTRFS_EXTENT_ITEM_KEY; 856 key.offset = num_bytes; 857 btrfs_release_path(path); 858 goto again; 859 } 860 } 861 862 if (ret && !insert) { 863 err = -ENOENT; 864 goto out; 865 } else if (WARN_ON(ret)) { 866 err = -EIO; 867 goto out; 868 } 869 870 leaf = path->nodes[0]; 871 item_size = btrfs_item_size(leaf, path->slots[0]); 872 if (unlikely(item_size < sizeof(*ei))) { 873 err = -EINVAL; 874 btrfs_print_v0_err(fs_info); 875 btrfs_abort_transaction(trans, err); 876 goto out; 877 } 878 879 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 880 flags = btrfs_extent_flags(leaf, ei); 881 882 ptr = (unsigned long)(ei + 1); 883 end = (unsigned long)ei + item_size; 884 885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 886 ptr += sizeof(struct btrfs_tree_block_info); 887 BUG_ON(ptr > end); 888 } 889 890 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 891 needed = BTRFS_REF_TYPE_DATA; 892 else 893 needed = BTRFS_REF_TYPE_BLOCK; 894 895 err = -ENOENT; 896 while (1) { 897 if (ptr >= end) { 898 if (ptr > end) { 899 err = -EUCLEAN; 900 btrfs_print_leaf(path->nodes[0]); 901 btrfs_crit(fs_info, 902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 903 path->slots[0], root_objectid, owner, offset, parent); 904 } 905 break; 906 } 907 iref = (struct btrfs_extent_inline_ref *)ptr; 908 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 909 if (type == BTRFS_REF_TYPE_INVALID) { 910 err = -EUCLEAN; 911 goto out; 912 } 913 914 if (want < type) 915 break; 916 if (want > type) { 917 ptr += btrfs_extent_inline_ref_size(type); 918 continue; 919 } 920 921 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 922 struct btrfs_extent_data_ref *dref; 923 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 924 if (match_extent_data_ref(leaf, dref, root_objectid, 925 owner, offset)) { 926 err = 0; 927 break; 928 } 929 if (hash_extent_data_ref_item(leaf, dref) < 930 hash_extent_data_ref(root_objectid, owner, offset)) 931 break; 932 } else { 933 u64 ref_offset; 934 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 935 if (parent > 0) { 936 if (parent == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < parent) 941 break; 942 } else { 943 if (root_objectid == ref_offset) { 944 err = 0; 945 break; 946 } 947 if (ref_offset < root_objectid) 948 break; 949 } 950 } 951 ptr += btrfs_extent_inline_ref_size(type); 952 } 953 if (err == -ENOENT && insert) { 954 if (item_size + extra_size >= 955 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 956 err = -EAGAIN; 957 goto out; 958 } 959 /* 960 * To add new inline back ref, we have to make sure 961 * there is no corresponding back ref item. 962 * For simplicity, we just do not add new inline back 963 * ref if there is any kind of item for this block 964 */ 965 if (find_next_key(path, 0, &key) == 0 && 966 key.objectid == bytenr && 967 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 968 err = -EAGAIN; 969 goto out; 970 } 971 } 972 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 973 out: 974 if (insert) { 975 path->keep_locks = 0; 976 path->search_for_extension = 0; 977 btrfs_unlock_up_safe(path, 1); 978 } 979 return err; 980 } 981 982 /* 983 * helper to add new inline back ref 984 */ 985 static noinline_for_stack 986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 987 struct btrfs_path *path, 988 struct btrfs_extent_inline_ref *iref, 989 u64 parent, u64 root_objectid, 990 u64 owner, u64 offset, int refs_to_add, 991 struct btrfs_delayed_extent_op *extent_op) 992 { 993 struct extent_buffer *leaf; 994 struct btrfs_extent_item *ei; 995 unsigned long ptr; 996 unsigned long end; 997 unsigned long item_offset; 998 u64 refs; 999 int size; 1000 int type; 1001 1002 leaf = path->nodes[0]; 1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1004 item_offset = (unsigned long)iref - (unsigned long)ei; 1005 1006 type = extent_ref_type(parent, owner); 1007 size = btrfs_extent_inline_ref_size(type); 1008 1009 btrfs_extend_item(path, size); 1010 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 refs = btrfs_extent_refs(leaf, ei); 1013 refs += refs_to_add; 1014 btrfs_set_extent_refs(leaf, ei, refs); 1015 if (extent_op) 1016 __run_delayed_extent_op(extent_op, leaf, ei); 1017 1018 ptr = (unsigned long)ei + item_offset; 1019 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1020 if (ptr < end - size) 1021 memmove_extent_buffer(leaf, ptr + size, ptr, 1022 end - size - ptr); 1023 1024 iref = (struct btrfs_extent_inline_ref *)ptr; 1025 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1026 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1027 struct btrfs_extent_data_ref *dref; 1028 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1029 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1030 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1031 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1032 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1033 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1034 struct btrfs_shared_data_ref *sref; 1035 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1036 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1037 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1038 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1039 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1040 } else { 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1042 } 1043 btrfs_mark_buffer_dirty(leaf); 1044 } 1045 1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1047 struct btrfs_path *path, 1048 struct btrfs_extent_inline_ref **ref_ret, 1049 u64 bytenr, u64 num_bytes, u64 parent, 1050 u64 root_objectid, u64 owner, u64 offset) 1051 { 1052 int ret; 1053 1054 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1055 num_bytes, parent, root_objectid, 1056 owner, offset, 0); 1057 if (ret != -ENOENT) 1058 return ret; 1059 1060 btrfs_release_path(path); 1061 *ref_ret = NULL; 1062 1063 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1064 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1065 root_objectid); 1066 } else { 1067 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1068 root_objectid, owner, offset); 1069 } 1070 return ret; 1071 } 1072 1073 /* 1074 * helper to update/remove inline back ref 1075 */ 1076 static noinline_for_stack 1077 void update_inline_extent_backref(struct btrfs_path *path, 1078 struct btrfs_extent_inline_ref *iref, 1079 int refs_to_mod, 1080 struct btrfs_delayed_extent_op *extent_op) 1081 { 1082 struct extent_buffer *leaf = path->nodes[0]; 1083 struct btrfs_extent_item *ei; 1084 struct btrfs_extent_data_ref *dref = NULL; 1085 struct btrfs_shared_data_ref *sref = NULL; 1086 unsigned long ptr; 1087 unsigned long end; 1088 u32 item_size; 1089 int size; 1090 int type; 1091 u64 refs; 1092 1093 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1094 refs = btrfs_extent_refs(leaf, ei); 1095 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1096 refs += refs_to_mod; 1097 btrfs_set_extent_refs(leaf, ei, refs); 1098 if (extent_op) 1099 __run_delayed_extent_op(extent_op, leaf, ei); 1100 1101 /* 1102 * If type is invalid, we should have bailed out after 1103 * lookup_inline_extent_backref(). 1104 */ 1105 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1106 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1107 1108 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 refs = btrfs_extent_data_ref_count(leaf, dref); 1111 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1112 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1113 refs = btrfs_shared_data_ref_count(leaf, sref); 1114 } else { 1115 refs = 1; 1116 BUG_ON(refs_to_mod != -1); 1117 } 1118 1119 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1120 refs += refs_to_mod; 1121 1122 if (refs > 0) { 1123 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1124 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1125 else 1126 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1127 } else { 1128 size = btrfs_extent_inline_ref_size(type); 1129 item_size = btrfs_item_size(leaf, path->slots[0]); 1130 ptr = (unsigned long)iref; 1131 end = (unsigned long)ei + item_size; 1132 if (ptr + size < end) 1133 memmove_extent_buffer(leaf, ptr, ptr + size, 1134 end - ptr - size); 1135 item_size -= size; 1136 btrfs_truncate_item(path, item_size, 1); 1137 } 1138 btrfs_mark_buffer_dirty(leaf); 1139 } 1140 1141 static noinline_for_stack 1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1143 struct btrfs_path *path, 1144 u64 bytenr, u64 num_bytes, u64 parent, 1145 u64 root_objectid, u64 owner, 1146 u64 offset, int refs_to_add, 1147 struct btrfs_delayed_extent_op *extent_op) 1148 { 1149 struct btrfs_extent_inline_ref *iref; 1150 int ret; 1151 1152 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1153 num_bytes, parent, root_objectid, 1154 owner, offset, 1); 1155 if (ret == 0) { 1156 /* 1157 * We're adding refs to a tree block we already own, this 1158 * should not happen at all. 1159 */ 1160 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1161 btrfs_crit(trans->fs_info, 1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1163 bytenr, num_bytes, root_objectid); 1164 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1165 WARN_ON(1); 1166 btrfs_crit(trans->fs_info, 1167 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1168 btrfs_print_leaf(path->nodes[0]); 1169 } 1170 return -EUCLEAN; 1171 } 1172 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1173 } else if (ret == -ENOENT) { 1174 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1175 root_objectid, owner, offset, 1176 refs_to_add, extent_op); 1177 ret = 0; 1178 } 1179 return ret; 1180 } 1181 1182 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 struct btrfs_extent_inline_ref *iref, 1186 int refs_to_drop, int is_data) 1187 { 1188 int ret = 0; 1189 1190 BUG_ON(!is_data && refs_to_drop != 1); 1191 if (iref) 1192 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1193 else if (is_data) 1194 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1195 else 1196 ret = btrfs_del_item(trans, root, path); 1197 return ret; 1198 } 1199 1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1201 u64 *discarded_bytes) 1202 { 1203 int j, ret = 0; 1204 u64 bytes_left, end; 1205 u64 aligned_start = ALIGN(start, 1 << 9); 1206 1207 if (WARN_ON(start != aligned_start)) { 1208 len -= aligned_start - start; 1209 len = round_down(len, 1 << 9); 1210 start = aligned_start; 1211 } 1212 1213 *discarded_bytes = 0; 1214 1215 if (!len) 1216 return 0; 1217 1218 end = start + len; 1219 bytes_left = len; 1220 1221 /* Skip any superblocks on this device. */ 1222 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1223 u64 sb_start = btrfs_sb_offset(j); 1224 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1225 u64 size = sb_start - start; 1226 1227 if (!in_range(sb_start, start, bytes_left) && 1228 !in_range(sb_end, start, bytes_left) && 1229 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1230 continue; 1231 1232 /* 1233 * Superblock spans beginning of range. Adjust start and 1234 * try again. 1235 */ 1236 if (sb_start <= start) { 1237 start += sb_end - start; 1238 if (start > end) { 1239 bytes_left = 0; 1240 break; 1241 } 1242 bytes_left = end - start; 1243 continue; 1244 } 1245 1246 if (size) { 1247 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1248 GFP_NOFS); 1249 if (!ret) 1250 *discarded_bytes += size; 1251 else if (ret != -EOPNOTSUPP) 1252 return ret; 1253 } 1254 1255 start = sb_end; 1256 if (start > end) { 1257 bytes_left = 0; 1258 break; 1259 } 1260 bytes_left = end - start; 1261 } 1262 1263 if (bytes_left) { 1264 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1265 GFP_NOFS); 1266 if (!ret) 1267 *discarded_bytes += bytes_left; 1268 } 1269 return ret; 1270 } 1271 1272 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes) 1273 { 1274 struct btrfs_device *dev = stripe->dev; 1275 struct btrfs_fs_info *fs_info = dev->fs_info; 1276 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1277 u64 phys = stripe->physical; 1278 u64 len = stripe->length; 1279 u64 discarded = 0; 1280 int ret = 0; 1281 1282 /* Zone reset on a zoned filesystem */ 1283 if (btrfs_can_zone_reset(dev, phys, len)) { 1284 u64 src_disc; 1285 1286 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1287 if (ret) 1288 goto out; 1289 1290 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1291 dev != dev_replace->srcdev) 1292 goto out; 1293 1294 src_disc = discarded; 1295 1296 /* Send to replace target as well */ 1297 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1298 &discarded); 1299 discarded += src_disc; 1300 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1301 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1302 } else { 1303 ret = 0; 1304 *bytes = 0; 1305 } 1306 1307 out: 1308 *bytes = discarded; 1309 return ret; 1310 } 1311 1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1313 u64 num_bytes, u64 *actual_bytes) 1314 { 1315 int ret = 0; 1316 u64 discarded_bytes = 0; 1317 u64 end = bytenr + num_bytes; 1318 u64 cur = bytenr; 1319 struct btrfs_io_context *bioc = NULL; 1320 1321 /* 1322 * Avoid races with device replace and make sure our bioc has devices 1323 * associated to its stripes that don't go away while we are discarding. 1324 */ 1325 btrfs_bio_counter_inc_blocked(fs_info); 1326 while (cur < end) { 1327 struct btrfs_io_stripe *stripe; 1328 int i; 1329 1330 num_bytes = end - cur; 1331 /* Tell the block device(s) that the sectors can be discarded */ 1332 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1333 &num_bytes, &bioc, 0); 1334 /* 1335 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1336 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1337 * thus we can't continue anyway. 1338 */ 1339 if (ret < 0) 1340 goto out; 1341 1342 stripe = bioc->stripes; 1343 for (i = 0; i < bioc->num_stripes; i++, stripe++) { 1344 u64 bytes; 1345 struct btrfs_device *device = stripe->dev; 1346 1347 if (!device->bdev) { 1348 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1349 continue; 1350 } 1351 1352 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 1353 continue; 1354 1355 ret = do_discard_extent(stripe, &bytes); 1356 if (!ret) { 1357 discarded_bytes += bytes; 1358 } else if (ret != -EOPNOTSUPP) { 1359 /* 1360 * Logic errors or -ENOMEM, or -EIO, but 1361 * unlikely to happen. 1362 * 1363 * And since there are two loops, explicitly 1364 * go to out to avoid confusion. 1365 */ 1366 btrfs_put_bioc(bioc); 1367 goto out; 1368 } 1369 1370 /* 1371 * Just in case we get back EOPNOTSUPP for some reason, 1372 * just ignore the return value so we don't screw up 1373 * people calling discard_extent. 1374 */ 1375 ret = 0; 1376 } 1377 btrfs_put_bioc(bioc); 1378 cur += num_bytes; 1379 } 1380 out: 1381 btrfs_bio_counter_dec(fs_info); 1382 1383 if (actual_bytes) 1384 *actual_bytes = discarded_bytes; 1385 1386 1387 if (ret == -EOPNOTSUPP) 1388 ret = 0; 1389 return ret; 1390 } 1391 1392 /* Can return -ENOMEM */ 1393 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1394 struct btrfs_ref *generic_ref) 1395 { 1396 struct btrfs_fs_info *fs_info = trans->fs_info; 1397 int ret; 1398 1399 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1400 generic_ref->action); 1401 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1402 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1403 1404 if (generic_ref->type == BTRFS_REF_METADATA) 1405 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1406 else 1407 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1408 1409 btrfs_ref_tree_mod(fs_info, generic_ref); 1410 1411 return ret; 1412 } 1413 1414 /* 1415 * __btrfs_inc_extent_ref - insert backreference for a given extent 1416 * 1417 * The counterpart is in __btrfs_free_extent(), with examples and more details 1418 * how it works. 1419 * 1420 * @trans: Handle of transaction 1421 * 1422 * @node: The delayed ref node used to get the bytenr/length for 1423 * extent whose references are incremented. 1424 * 1425 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1426 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1427 * bytenr of the parent block. Since new extents are always 1428 * created with indirect references, this will only be the case 1429 * when relocating a shared extent. In that case, root_objectid 1430 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1431 * be 0 1432 * 1433 * @root_objectid: The id of the root where this modification has originated, 1434 * this can be either one of the well-known metadata trees or 1435 * the subvolume id which references this extent. 1436 * 1437 * @owner: For data extents it is the inode number of the owning file. 1438 * For metadata extents this parameter holds the level in the 1439 * tree of the extent. 1440 * 1441 * @offset: For metadata extents the offset is ignored and is currently 1442 * always passed as 0. For data extents it is the fileoffset 1443 * this extent belongs to. 1444 * 1445 * @refs_to_add Number of references to add 1446 * 1447 * @extent_op Pointer to a structure, holding information necessary when 1448 * updating a tree block's flags 1449 * 1450 */ 1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1452 struct btrfs_delayed_ref_node *node, 1453 u64 parent, u64 root_objectid, 1454 u64 owner, u64 offset, int refs_to_add, 1455 struct btrfs_delayed_extent_op *extent_op) 1456 { 1457 struct btrfs_path *path; 1458 struct extent_buffer *leaf; 1459 struct btrfs_extent_item *item; 1460 struct btrfs_key key; 1461 u64 bytenr = node->bytenr; 1462 u64 num_bytes = node->num_bytes; 1463 u64 refs; 1464 int ret; 1465 1466 path = btrfs_alloc_path(); 1467 if (!path) 1468 return -ENOMEM; 1469 1470 /* this will setup the path even if it fails to insert the back ref */ 1471 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1472 parent, root_objectid, owner, 1473 offset, refs_to_add, extent_op); 1474 if ((ret < 0 && ret != -EAGAIN) || !ret) 1475 goto out; 1476 1477 /* 1478 * Ok we had -EAGAIN which means we didn't have space to insert and 1479 * inline extent ref, so just update the reference count and add a 1480 * normal backref. 1481 */ 1482 leaf = path->nodes[0]; 1483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1485 refs = btrfs_extent_refs(leaf, item); 1486 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1487 if (extent_op) 1488 __run_delayed_extent_op(extent_op, leaf, item); 1489 1490 btrfs_mark_buffer_dirty(leaf); 1491 btrfs_release_path(path); 1492 1493 /* now insert the actual backref */ 1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1495 BUG_ON(refs_to_add != 1); 1496 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1497 root_objectid); 1498 } else { 1499 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1500 root_objectid, owner, offset, 1501 refs_to_add); 1502 } 1503 if (ret) 1504 btrfs_abort_transaction(trans, ret); 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1511 struct btrfs_delayed_ref_node *node, 1512 struct btrfs_delayed_extent_op *extent_op, 1513 int insert_reserved) 1514 { 1515 int ret = 0; 1516 struct btrfs_delayed_data_ref *ref; 1517 struct btrfs_key ins; 1518 u64 parent = 0; 1519 u64 ref_root = 0; 1520 u64 flags = 0; 1521 1522 ins.objectid = node->bytenr; 1523 ins.offset = node->num_bytes; 1524 ins.type = BTRFS_EXTENT_ITEM_KEY; 1525 1526 ref = btrfs_delayed_node_to_data_ref(node); 1527 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1528 1529 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1530 parent = ref->parent; 1531 ref_root = ref->root; 1532 1533 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1534 if (extent_op) 1535 flags |= extent_op->flags_to_set; 1536 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1537 flags, ref->objectid, 1538 ref->offset, &ins, 1539 node->ref_mod); 1540 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1541 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1542 ref->objectid, ref->offset, 1543 node->ref_mod, extent_op); 1544 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1545 ret = __btrfs_free_extent(trans, node, parent, 1546 ref_root, ref->objectid, 1547 ref->offset, node->ref_mod, 1548 extent_op); 1549 } else { 1550 BUG(); 1551 } 1552 return ret; 1553 } 1554 1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1556 struct extent_buffer *leaf, 1557 struct btrfs_extent_item *ei) 1558 { 1559 u64 flags = btrfs_extent_flags(leaf, ei); 1560 if (extent_op->update_flags) { 1561 flags |= extent_op->flags_to_set; 1562 btrfs_set_extent_flags(leaf, ei, flags); 1563 } 1564 1565 if (extent_op->update_key) { 1566 struct btrfs_tree_block_info *bi; 1567 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1568 bi = (struct btrfs_tree_block_info *)(ei + 1); 1569 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1570 } 1571 } 1572 1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1574 struct btrfs_delayed_ref_head *head, 1575 struct btrfs_delayed_extent_op *extent_op) 1576 { 1577 struct btrfs_fs_info *fs_info = trans->fs_info; 1578 struct btrfs_root *root; 1579 struct btrfs_key key; 1580 struct btrfs_path *path; 1581 struct btrfs_extent_item *ei; 1582 struct extent_buffer *leaf; 1583 u32 item_size; 1584 int ret; 1585 int err = 0; 1586 int metadata = 1; 1587 1588 if (TRANS_ABORTED(trans)) 1589 return 0; 1590 1591 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1592 metadata = 0; 1593 1594 path = btrfs_alloc_path(); 1595 if (!path) 1596 return -ENOMEM; 1597 1598 key.objectid = head->bytenr; 1599 1600 if (metadata) { 1601 key.type = BTRFS_METADATA_ITEM_KEY; 1602 key.offset = extent_op->level; 1603 } else { 1604 key.type = BTRFS_EXTENT_ITEM_KEY; 1605 key.offset = head->num_bytes; 1606 } 1607 1608 root = btrfs_extent_root(fs_info, key.objectid); 1609 again: 1610 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1611 if (ret < 0) { 1612 err = ret; 1613 goto out; 1614 } 1615 if (ret > 0) { 1616 if (metadata) { 1617 if (path->slots[0] > 0) { 1618 path->slots[0]--; 1619 btrfs_item_key_to_cpu(path->nodes[0], &key, 1620 path->slots[0]); 1621 if (key.objectid == head->bytenr && 1622 key.type == BTRFS_EXTENT_ITEM_KEY && 1623 key.offset == head->num_bytes) 1624 ret = 0; 1625 } 1626 if (ret > 0) { 1627 btrfs_release_path(path); 1628 metadata = 0; 1629 1630 key.objectid = head->bytenr; 1631 key.offset = head->num_bytes; 1632 key.type = BTRFS_EXTENT_ITEM_KEY; 1633 goto again; 1634 } 1635 } else { 1636 err = -EIO; 1637 goto out; 1638 } 1639 } 1640 1641 leaf = path->nodes[0]; 1642 item_size = btrfs_item_size(leaf, path->slots[0]); 1643 1644 if (unlikely(item_size < sizeof(*ei))) { 1645 err = -EINVAL; 1646 btrfs_print_v0_err(fs_info); 1647 btrfs_abort_transaction(trans, err); 1648 goto out; 1649 } 1650 1651 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1652 __run_delayed_extent_op(extent_op, leaf, ei); 1653 1654 btrfs_mark_buffer_dirty(leaf); 1655 out: 1656 btrfs_free_path(path); 1657 return err; 1658 } 1659 1660 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1661 struct btrfs_delayed_ref_node *node, 1662 struct btrfs_delayed_extent_op *extent_op, 1663 int insert_reserved) 1664 { 1665 int ret = 0; 1666 struct btrfs_delayed_tree_ref *ref; 1667 u64 parent = 0; 1668 u64 ref_root = 0; 1669 1670 ref = btrfs_delayed_node_to_tree_ref(node); 1671 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1672 1673 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1674 parent = ref->parent; 1675 ref_root = ref->root; 1676 1677 if (node->ref_mod != 1) { 1678 btrfs_err(trans->fs_info, 1679 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1680 node->bytenr, node->ref_mod, node->action, ref_root, 1681 parent); 1682 return -EIO; 1683 } 1684 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1685 BUG_ON(!extent_op || !extent_op->update_flags); 1686 ret = alloc_reserved_tree_block(trans, node, extent_op); 1687 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1688 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1689 ref->level, 0, 1, extent_op); 1690 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1691 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1692 ref->level, 0, 1, extent_op); 1693 } else { 1694 BUG(); 1695 } 1696 return ret; 1697 } 1698 1699 /* helper function to actually process a single delayed ref entry */ 1700 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1701 struct btrfs_delayed_ref_node *node, 1702 struct btrfs_delayed_extent_op *extent_op, 1703 int insert_reserved) 1704 { 1705 int ret = 0; 1706 1707 if (TRANS_ABORTED(trans)) { 1708 if (insert_reserved) 1709 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1710 return 0; 1711 } 1712 1713 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1714 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1715 ret = run_delayed_tree_ref(trans, node, extent_op, 1716 insert_reserved); 1717 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1718 node->type == BTRFS_SHARED_DATA_REF_KEY) 1719 ret = run_delayed_data_ref(trans, node, extent_op, 1720 insert_reserved); 1721 else 1722 BUG(); 1723 if (ret && insert_reserved) 1724 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1725 return ret; 1726 } 1727 1728 static inline struct btrfs_delayed_ref_node * 1729 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1730 { 1731 struct btrfs_delayed_ref_node *ref; 1732 1733 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1734 return NULL; 1735 1736 /* 1737 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1738 * This is to prevent a ref count from going down to zero, which deletes 1739 * the extent item from the extent tree, when there still are references 1740 * to add, which would fail because they would not find the extent item. 1741 */ 1742 if (!list_empty(&head->ref_add_list)) 1743 return list_first_entry(&head->ref_add_list, 1744 struct btrfs_delayed_ref_node, add_list); 1745 1746 ref = rb_entry(rb_first_cached(&head->ref_tree), 1747 struct btrfs_delayed_ref_node, ref_node); 1748 ASSERT(list_empty(&ref->add_list)); 1749 return ref; 1750 } 1751 1752 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1753 struct btrfs_delayed_ref_head *head) 1754 { 1755 spin_lock(&delayed_refs->lock); 1756 head->processing = 0; 1757 delayed_refs->num_heads_ready++; 1758 spin_unlock(&delayed_refs->lock); 1759 btrfs_delayed_ref_unlock(head); 1760 } 1761 1762 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1763 struct btrfs_delayed_ref_head *head) 1764 { 1765 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1766 1767 if (!extent_op) 1768 return NULL; 1769 1770 if (head->must_insert_reserved) { 1771 head->extent_op = NULL; 1772 btrfs_free_delayed_extent_op(extent_op); 1773 return NULL; 1774 } 1775 return extent_op; 1776 } 1777 1778 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1779 struct btrfs_delayed_ref_head *head) 1780 { 1781 struct btrfs_delayed_extent_op *extent_op; 1782 int ret; 1783 1784 extent_op = cleanup_extent_op(head); 1785 if (!extent_op) 1786 return 0; 1787 head->extent_op = NULL; 1788 spin_unlock(&head->lock); 1789 ret = run_delayed_extent_op(trans, head, extent_op); 1790 btrfs_free_delayed_extent_op(extent_op); 1791 return ret ? ret : 1; 1792 } 1793 1794 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1795 struct btrfs_delayed_ref_root *delayed_refs, 1796 struct btrfs_delayed_ref_head *head) 1797 { 1798 int nr_items = 1; /* Dropping this ref head update. */ 1799 1800 /* 1801 * We had csum deletions accounted for in our delayed refs rsv, we need 1802 * to drop the csum leaves for this update from our delayed_refs_rsv. 1803 */ 1804 if (head->total_ref_mod < 0 && head->is_data) { 1805 spin_lock(&delayed_refs->lock); 1806 delayed_refs->pending_csums -= head->num_bytes; 1807 spin_unlock(&delayed_refs->lock); 1808 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1809 } 1810 1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1812 } 1813 1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1815 struct btrfs_delayed_ref_head *head) 1816 { 1817 1818 struct btrfs_fs_info *fs_info = trans->fs_info; 1819 struct btrfs_delayed_ref_root *delayed_refs; 1820 int ret; 1821 1822 delayed_refs = &trans->transaction->delayed_refs; 1823 1824 ret = run_and_cleanup_extent_op(trans, head); 1825 if (ret < 0) { 1826 unselect_delayed_ref_head(delayed_refs, head); 1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1828 return ret; 1829 } else if (ret) { 1830 return ret; 1831 } 1832 1833 /* 1834 * Need to drop our head ref lock and re-acquire the delayed ref lock 1835 * and then re-check to make sure nobody got added. 1836 */ 1837 spin_unlock(&head->lock); 1838 spin_lock(&delayed_refs->lock); 1839 spin_lock(&head->lock); 1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 return 1; 1844 } 1845 btrfs_delete_ref_head(delayed_refs, head); 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 1849 if (head->must_insert_reserved) { 1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1851 if (head->is_data) { 1852 struct btrfs_root *csum_root; 1853 1854 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1855 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1856 head->num_bytes); 1857 } 1858 } 1859 1860 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1861 1862 trace_run_delayed_ref_head(fs_info, head, 0); 1863 btrfs_delayed_ref_unlock(head); 1864 btrfs_put_delayed_ref_head(head); 1865 return ret; 1866 } 1867 1868 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1869 struct btrfs_trans_handle *trans) 1870 { 1871 struct btrfs_delayed_ref_root *delayed_refs = 1872 &trans->transaction->delayed_refs; 1873 struct btrfs_delayed_ref_head *head = NULL; 1874 int ret; 1875 1876 spin_lock(&delayed_refs->lock); 1877 head = btrfs_select_ref_head(delayed_refs); 1878 if (!head) { 1879 spin_unlock(&delayed_refs->lock); 1880 return head; 1881 } 1882 1883 /* 1884 * Grab the lock that says we are going to process all the refs for 1885 * this head 1886 */ 1887 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1888 spin_unlock(&delayed_refs->lock); 1889 1890 /* 1891 * We may have dropped the spin lock to get the head mutex lock, and 1892 * that might have given someone else time to free the head. If that's 1893 * true, it has been removed from our list and we can move on. 1894 */ 1895 if (ret == -EAGAIN) 1896 head = ERR_PTR(-EAGAIN); 1897 1898 return head; 1899 } 1900 1901 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1902 struct btrfs_delayed_ref_head *locked_ref, 1903 unsigned long *run_refs) 1904 { 1905 struct btrfs_fs_info *fs_info = trans->fs_info; 1906 struct btrfs_delayed_ref_root *delayed_refs; 1907 struct btrfs_delayed_extent_op *extent_op; 1908 struct btrfs_delayed_ref_node *ref; 1909 int must_insert_reserved = 0; 1910 int ret; 1911 1912 delayed_refs = &trans->transaction->delayed_refs; 1913 1914 lockdep_assert_held(&locked_ref->mutex); 1915 lockdep_assert_held(&locked_ref->lock); 1916 1917 while ((ref = select_delayed_ref(locked_ref))) { 1918 if (ref->seq && 1919 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1920 spin_unlock(&locked_ref->lock); 1921 unselect_delayed_ref_head(delayed_refs, locked_ref); 1922 return -EAGAIN; 1923 } 1924 1925 (*run_refs)++; 1926 ref->in_tree = 0; 1927 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1928 RB_CLEAR_NODE(&ref->ref_node); 1929 if (!list_empty(&ref->add_list)) 1930 list_del(&ref->add_list); 1931 /* 1932 * When we play the delayed ref, also correct the ref_mod on 1933 * head 1934 */ 1935 switch (ref->action) { 1936 case BTRFS_ADD_DELAYED_REF: 1937 case BTRFS_ADD_DELAYED_EXTENT: 1938 locked_ref->ref_mod -= ref->ref_mod; 1939 break; 1940 case BTRFS_DROP_DELAYED_REF: 1941 locked_ref->ref_mod += ref->ref_mod; 1942 break; 1943 default: 1944 WARN_ON(1); 1945 } 1946 atomic_dec(&delayed_refs->num_entries); 1947 1948 /* 1949 * Record the must_insert_reserved flag before we drop the 1950 * spin lock. 1951 */ 1952 must_insert_reserved = locked_ref->must_insert_reserved; 1953 locked_ref->must_insert_reserved = 0; 1954 1955 extent_op = locked_ref->extent_op; 1956 locked_ref->extent_op = NULL; 1957 spin_unlock(&locked_ref->lock); 1958 1959 ret = run_one_delayed_ref(trans, ref, extent_op, 1960 must_insert_reserved); 1961 1962 btrfs_free_delayed_extent_op(extent_op); 1963 if (ret) { 1964 unselect_delayed_ref_head(delayed_refs, locked_ref); 1965 btrfs_put_delayed_ref(ref); 1966 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1967 ret); 1968 return ret; 1969 } 1970 1971 btrfs_put_delayed_ref(ref); 1972 cond_resched(); 1973 1974 spin_lock(&locked_ref->lock); 1975 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1976 } 1977 1978 return 0; 1979 } 1980 1981 /* 1982 * Returns 0 on success or if called with an already aborted transaction. 1983 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1984 */ 1985 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1986 unsigned long nr) 1987 { 1988 struct btrfs_fs_info *fs_info = trans->fs_info; 1989 struct btrfs_delayed_ref_root *delayed_refs; 1990 struct btrfs_delayed_ref_head *locked_ref = NULL; 1991 ktime_t start = ktime_get(); 1992 int ret; 1993 unsigned long count = 0; 1994 unsigned long actual_count = 0; 1995 1996 delayed_refs = &trans->transaction->delayed_refs; 1997 do { 1998 if (!locked_ref) { 1999 locked_ref = btrfs_obtain_ref_head(trans); 2000 if (IS_ERR_OR_NULL(locked_ref)) { 2001 if (PTR_ERR(locked_ref) == -EAGAIN) { 2002 continue; 2003 } else { 2004 break; 2005 } 2006 } 2007 count++; 2008 } 2009 /* 2010 * We need to try and merge add/drops of the same ref since we 2011 * can run into issues with relocate dropping the implicit ref 2012 * and then it being added back again before the drop can 2013 * finish. If we merged anything we need to re-loop so we can 2014 * get a good ref. 2015 * Or we can get node references of the same type that weren't 2016 * merged when created due to bumps in the tree mod seq, and 2017 * we need to merge them to prevent adding an inline extent 2018 * backref before dropping it (triggering a BUG_ON at 2019 * insert_inline_extent_backref()). 2020 */ 2021 spin_lock(&locked_ref->lock); 2022 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2023 2024 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2025 &actual_count); 2026 if (ret < 0 && ret != -EAGAIN) { 2027 /* 2028 * Error, btrfs_run_delayed_refs_for_head already 2029 * unlocked everything so just bail out 2030 */ 2031 return ret; 2032 } else if (!ret) { 2033 /* 2034 * Success, perform the usual cleanup of a processed 2035 * head 2036 */ 2037 ret = cleanup_ref_head(trans, locked_ref); 2038 if (ret > 0 ) { 2039 /* We dropped our lock, we need to loop. */ 2040 ret = 0; 2041 continue; 2042 } else if (ret) { 2043 return ret; 2044 } 2045 } 2046 2047 /* 2048 * Either success case or btrfs_run_delayed_refs_for_head 2049 * returned -EAGAIN, meaning we need to select another head 2050 */ 2051 2052 locked_ref = NULL; 2053 cond_resched(); 2054 } while ((nr != -1 && count < nr) || locked_ref); 2055 2056 /* 2057 * We don't want to include ref heads since we can have empty ref heads 2058 * and those will drastically skew our runtime down since we just do 2059 * accounting, no actual extent tree updates. 2060 */ 2061 if (actual_count > 0) { 2062 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2063 u64 avg; 2064 2065 /* 2066 * We weigh the current average higher than our current runtime 2067 * to avoid large swings in the average. 2068 */ 2069 spin_lock(&delayed_refs->lock); 2070 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2071 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2072 spin_unlock(&delayed_refs->lock); 2073 } 2074 return 0; 2075 } 2076 2077 #ifdef SCRAMBLE_DELAYED_REFS 2078 /* 2079 * Normally delayed refs get processed in ascending bytenr order. This 2080 * correlates in most cases to the order added. To expose dependencies on this 2081 * order, we start to process the tree in the middle instead of the beginning 2082 */ 2083 static u64 find_middle(struct rb_root *root) 2084 { 2085 struct rb_node *n = root->rb_node; 2086 struct btrfs_delayed_ref_node *entry; 2087 int alt = 1; 2088 u64 middle; 2089 u64 first = 0, last = 0; 2090 2091 n = rb_first(root); 2092 if (n) { 2093 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2094 first = entry->bytenr; 2095 } 2096 n = rb_last(root); 2097 if (n) { 2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2099 last = entry->bytenr; 2100 } 2101 n = root->rb_node; 2102 2103 while (n) { 2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2105 WARN_ON(!entry->in_tree); 2106 2107 middle = entry->bytenr; 2108 2109 if (alt) 2110 n = n->rb_left; 2111 else 2112 n = n->rb_right; 2113 2114 alt = 1 - alt; 2115 } 2116 return middle; 2117 } 2118 #endif 2119 2120 /* 2121 * this starts processing the delayed reference count updates and 2122 * extent insertions we have queued up so far. count can be 2123 * 0, which means to process everything in the tree at the start 2124 * of the run (but not newly added entries), or it can be some target 2125 * number you'd like to process. 2126 * 2127 * Returns 0 on success or if called with an aborted transaction 2128 * Returns <0 on error and aborts the transaction 2129 */ 2130 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2131 unsigned long count) 2132 { 2133 struct btrfs_fs_info *fs_info = trans->fs_info; 2134 struct rb_node *node; 2135 struct btrfs_delayed_ref_root *delayed_refs; 2136 struct btrfs_delayed_ref_head *head; 2137 int ret; 2138 int run_all = count == (unsigned long)-1; 2139 2140 /* We'll clean this up in btrfs_cleanup_transaction */ 2141 if (TRANS_ABORTED(trans)) 2142 return 0; 2143 2144 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2145 return 0; 2146 2147 delayed_refs = &trans->transaction->delayed_refs; 2148 if (count == 0) 2149 count = delayed_refs->num_heads_ready; 2150 2151 again: 2152 #ifdef SCRAMBLE_DELAYED_REFS 2153 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2154 #endif 2155 ret = __btrfs_run_delayed_refs(trans, count); 2156 if (ret < 0) { 2157 btrfs_abort_transaction(trans, ret); 2158 return ret; 2159 } 2160 2161 if (run_all) { 2162 btrfs_create_pending_block_groups(trans); 2163 2164 spin_lock(&delayed_refs->lock); 2165 node = rb_first_cached(&delayed_refs->href_root); 2166 if (!node) { 2167 spin_unlock(&delayed_refs->lock); 2168 goto out; 2169 } 2170 head = rb_entry(node, struct btrfs_delayed_ref_head, 2171 href_node); 2172 refcount_inc(&head->refs); 2173 spin_unlock(&delayed_refs->lock); 2174 2175 /* Mutex was contended, block until it's released and retry. */ 2176 mutex_lock(&head->mutex); 2177 mutex_unlock(&head->mutex); 2178 2179 btrfs_put_delayed_ref_head(head); 2180 cond_resched(); 2181 goto again; 2182 } 2183 out: 2184 return 0; 2185 } 2186 2187 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2188 struct extent_buffer *eb, u64 flags, 2189 int level) 2190 { 2191 struct btrfs_delayed_extent_op *extent_op; 2192 int ret; 2193 2194 extent_op = btrfs_alloc_delayed_extent_op(); 2195 if (!extent_op) 2196 return -ENOMEM; 2197 2198 extent_op->flags_to_set = flags; 2199 extent_op->update_flags = true; 2200 extent_op->update_key = false; 2201 extent_op->level = level; 2202 2203 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2204 if (ret) 2205 btrfs_free_delayed_extent_op(extent_op); 2206 return ret; 2207 } 2208 2209 static noinline int check_delayed_ref(struct btrfs_root *root, 2210 struct btrfs_path *path, 2211 u64 objectid, u64 offset, u64 bytenr) 2212 { 2213 struct btrfs_delayed_ref_head *head; 2214 struct btrfs_delayed_ref_node *ref; 2215 struct btrfs_delayed_data_ref *data_ref; 2216 struct btrfs_delayed_ref_root *delayed_refs; 2217 struct btrfs_transaction *cur_trans; 2218 struct rb_node *node; 2219 int ret = 0; 2220 2221 spin_lock(&root->fs_info->trans_lock); 2222 cur_trans = root->fs_info->running_transaction; 2223 if (cur_trans) 2224 refcount_inc(&cur_trans->use_count); 2225 spin_unlock(&root->fs_info->trans_lock); 2226 if (!cur_trans) 2227 return 0; 2228 2229 delayed_refs = &cur_trans->delayed_refs; 2230 spin_lock(&delayed_refs->lock); 2231 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2232 if (!head) { 2233 spin_unlock(&delayed_refs->lock); 2234 btrfs_put_transaction(cur_trans); 2235 return 0; 2236 } 2237 2238 if (!mutex_trylock(&head->mutex)) { 2239 refcount_inc(&head->refs); 2240 spin_unlock(&delayed_refs->lock); 2241 2242 btrfs_release_path(path); 2243 2244 /* 2245 * Mutex was contended, block until it's released and let 2246 * caller try again 2247 */ 2248 mutex_lock(&head->mutex); 2249 mutex_unlock(&head->mutex); 2250 btrfs_put_delayed_ref_head(head); 2251 btrfs_put_transaction(cur_trans); 2252 return -EAGAIN; 2253 } 2254 spin_unlock(&delayed_refs->lock); 2255 2256 spin_lock(&head->lock); 2257 /* 2258 * XXX: We should replace this with a proper search function in the 2259 * future. 2260 */ 2261 for (node = rb_first_cached(&head->ref_tree); node; 2262 node = rb_next(node)) { 2263 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2264 /* If it's a shared ref we know a cross reference exists */ 2265 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2266 ret = 1; 2267 break; 2268 } 2269 2270 data_ref = btrfs_delayed_node_to_data_ref(ref); 2271 2272 /* 2273 * If our ref doesn't match the one we're currently looking at 2274 * then we have a cross reference. 2275 */ 2276 if (data_ref->root != root->root_key.objectid || 2277 data_ref->objectid != objectid || 2278 data_ref->offset != offset) { 2279 ret = 1; 2280 break; 2281 } 2282 } 2283 spin_unlock(&head->lock); 2284 mutex_unlock(&head->mutex); 2285 btrfs_put_transaction(cur_trans); 2286 return ret; 2287 } 2288 2289 static noinline int check_committed_ref(struct btrfs_root *root, 2290 struct btrfs_path *path, 2291 u64 objectid, u64 offset, u64 bytenr, 2292 bool strict) 2293 { 2294 struct btrfs_fs_info *fs_info = root->fs_info; 2295 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2296 struct extent_buffer *leaf; 2297 struct btrfs_extent_data_ref *ref; 2298 struct btrfs_extent_inline_ref *iref; 2299 struct btrfs_extent_item *ei; 2300 struct btrfs_key key; 2301 u32 item_size; 2302 int type; 2303 int ret; 2304 2305 key.objectid = bytenr; 2306 key.offset = (u64)-1; 2307 key.type = BTRFS_EXTENT_ITEM_KEY; 2308 2309 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2310 if (ret < 0) 2311 goto out; 2312 BUG_ON(ret == 0); /* Corruption */ 2313 2314 ret = -ENOENT; 2315 if (path->slots[0] == 0) 2316 goto out; 2317 2318 path->slots[0]--; 2319 leaf = path->nodes[0]; 2320 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2321 2322 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2323 goto out; 2324 2325 ret = 1; 2326 item_size = btrfs_item_size(leaf, path->slots[0]); 2327 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2328 2329 /* If extent item has more than 1 inline ref then it's shared */ 2330 if (item_size != sizeof(*ei) + 2331 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2332 goto out; 2333 2334 /* 2335 * If extent created before last snapshot => it's shared unless the 2336 * snapshot has been deleted. Use the heuristic if strict is false. 2337 */ 2338 if (!strict && 2339 (btrfs_extent_generation(leaf, ei) <= 2340 btrfs_root_last_snapshot(&root->root_item))) 2341 goto out; 2342 2343 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2344 2345 /* If this extent has SHARED_DATA_REF then it's shared */ 2346 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2347 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2348 goto out; 2349 2350 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2351 if (btrfs_extent_refs(leaf, ei) != 2352 btrfs_extent_data_ref_count(leaf, ref) || 2353 btrfs_extent_data_ref_root(leaf, ref) != 2354 root->root_key.objectid || 2355 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2356 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2357 goto out; 2358 2359 ret = 0; 2360 out: 2361 return ret; 2362 } 2363 2364 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2365 u64 bytenr, bool strict, struct btrfs_path *path) 2366 { 2367 int ret; 2368 2369 do { 2370 ret = check_committed_ref(root, path, objectid, 2371 offset, bytenr, strict); 2372 if (ret && ret != -ENOENT) 2373 goto out; 2374 2375 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2376 } while (ret == -EAGAIN); 2377 2378 out: 2379 btrfs_release_path(path); 2380 if (btrfs_is_data_reloc_root(root)) 2381 WARN_ON(ret > 0); 2382 return ret; 2383 } 2384 2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct extent_buffer *buf, 2388 int full_backref, int inc) 2389 { 2390 struct btrfs_fs_info *fs_info = root->fs_info; 2391 u64 bytenr; 2392 u64 num_bytes; 2393 u64 parent; 2394 u64 ref_root; 2395 u32 nritems; 2396 struct btrfs_key key; 2397 struct btrfs_file_extent_item *fi; 2398 struct btrfs_ref generic_ref = { 0 }; 2399 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2400 int i; 2401 int action; 2402 int level; 2403 int ret = 0; 2404 2405 if (btrfs_is_testing(fs_info)) 2406 return 0; 2407 2408 ref_root = btrfs_header_owner(buf); 2409 nritems = btrfs_header_nritems(buf); 2410 level = btrfs_header_level(buf); 2411 2412 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2413 return 0; 2414 2415 if (full_backref) 2416 parent = buf->start; 2417 else 2418 parent = 0; 2419 if (inc) 2420 action = BTRFS_ADD_DELAYED_REF; 2421 else 2422 action = BTRFS_DROP_DELAYED_REF; 2423 2424 for (i = 0; i < nritems; i++) { 2425 if (level == 0) { 2426 btrfs_item_key_to_cpu(buf, &key, i); 2427 if (key.type != BTRFS_EXTENT_DATA_KEY) 2428 continue; 2429 fi = btrfs_item_ptr(buf, i, 2430 struct btrfs_file_extent_item); 2431 if (btrfs_file_extent_type(buf, fi) == 2432 BTRFS_FILE_EXTENT_INLINE) 2433 continue; 2434 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2435 if (bytenr == 0) 2436 continue; 2437 2438 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2439 key.offset -= btrfs_file_extent_offset(buf, fi); 2440 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2441 num_bytes, parent); 2442 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2443 key.offset, root->root_key.objectid, 2444 for_reloc); 2445 if (inc) 2446 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2447 else 2448 ret = btrfs_free_extent(trans, &generic_ref); 2449 if (ret) 2450 goto fail; 2451 } else { 2452 bytenr = btrfs_node_blockptr(buf, i); 2453 num_bytes = fs_info->nodesize; 2454 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2455 num_bytes, parent); 2456 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2457 root->root_key.objectid, for_reloc); 2458 if (inc) 2459 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2460 else 2461 ret = btrfs_free_extent(trans, &generic_ref); 2462 if (ret) 2463 goto fail; 2464 } 2465 } 2466 return 0; 2467 fail: 2468 return ret; 2469 } 2470 2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2472 struct extent_buffer *buf, int full_backref) 2473 { 2474 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2475 } 2476 2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2478 struct extent_buffer *buf, int full_backref) 2479 { 2480 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2481 } 2482 2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2484 { 2485 struct btrfs_fs_info *fs_info = root->fs_info; 2486 u64 flags; 2487 u64 ret; 2488 2489 if (data) 2490 flags = BTRFS_BLOCK_GROUP_DATA; 2491 else if (root == fs_info->chunk_root) 2492 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2493 else 2494 flags = BTRFS_BLOCK_GROUP_METADATA; 2495 2496 ret = btrfs_get_alloc_profile(fs_info, flags); 2497 return ret; 2498 } 2499 2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2501 { 2502 struct rb_node *leftmost; 2503 u64 bytenr = 0; 2504 2505 read_lock(&fs_info->block_group_cache_lock); 2506 /* Get the block group with the lowest logical start address. */ 2507 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2508 if (leftmost) { 2509 struct btrfs_block_group *bg; 2510 2511 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2512 bytenr = bg->start; 2513 } 2514 read_unlock(&fs_info->block_group_cache_lock); 2515 2516 return bytenr; 2517 } 2518 2519 static int pin_down_extent(struct btrfs_trans_handle *trans, 2520 struct btrfs_block_group *cache, 2521 u64 bytenr, u64 num_bytes, int reserved) 2522 { 2523 struct btrfs_fs_info *fs_info = cache->fs_info; 2524 2525 spin_lock(&cache->space_info->lock); 2526 spin_lock(&cache->lock); 2527 cache->pinned += num_bytes; 2528 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2529 num_bytes); 2530 if (reserved) { 2531 cache->reserved -= num_bytes; 2532 cache->space_info->bytes_reserved -= num_bytes; 2533 } 2534 spin_unlock(&cache->lock); 2535 spin_unlock(&cache->space_info->lock); 2536 2537 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2538 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2539 return 0; 2540 } 2541 2542 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2543 u64 bytenr, u64 num_bytes, int reserved) 2544 { 2545 struct btrfs_block_group *cache; 2546 2547 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2548 BUG_ON(!cache); /* Logic error */ 2549 2550 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2551 2552 btrfs_put_block_group(cache); 2553 return 0; 2554 } 2555 2556 /* 2557 * this function must be called within transaction 2558 */ 2559 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2560 u64 bytenr, u64 num_bytes) 2561 { 2562 struct btrfs_block_group *cache; 2563 int ret; 2564 2565 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2566 if (!cache) 2567 return -EINVAL; 2568 2569 /* 2570 * pull in the free space cache (if any) so that our pin 2571 * removes the free space from the cache. We have load_only set 2572 * to one because the slow code to read in the free extents does check 2573 * the pinned extents. 2574 */ 2575 btrfs_cache_block_group(cache, 1); 2576 /* 2577 * Make sure we wait until the cache is completely built in case it is 2578 * missing or is invalid and therefore needs to be rebuilt. 2579 */ 2580 ret = btrfs_wait_block_group_cache_done(cache); 2581 if (ret) 2582 goto out; 2583 2584 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2585 2586 /* remove us from the free space cache (if we're there at all) */ 2587 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2588 out: 2589 btrfs_put_block_group(cache); 2590 return ret; 2591 } 2592 2593 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2594 u64 start, u64 num_bytes) 2595 { 2596 int ret; 2597 struct btrfs_block_group *block_group; 2598 2599 block_group = btrfs_lookup_block_group(fs_info, start); 2600 if (!block_group) 2601 return -EINVAL; 2602 2603 btrfs_cache_block_group(block_group, 1); 2604 /* 2605 * Make sure we wait until the cache is completely built in case it is 2606 * missing or is invalid and therefore needs to be rebuilt. 2607 */ 2608 ret = btrfs_wait_block_group_cache_done(block_group); 2609 if (ret) 2610 goto out; 2611 2612 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2613 out: 2614 btrfs_put_block_group(block_group); 2615 return ret; 2616 } 2617 2618 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2619 { 2620 struct btrfs_fs_info *fs_info = eb->fs_info; 2621 struct btrfs_file_extent_item *item; 2622 struct btrfs_key key; 2623 int found_type; 2624 int i; 2625 int ret = 0; 2626 2627 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2628 return 0; 2629 2630 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2631 btrfs_item_key_to_cpu(eb, &key, i); 2632 if (key.type != BTRFS_EXTENT_DATA_KEY) 2633 continue; 2634 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2635 found_type = btrfs_file_extent_type(eb, item); 2636 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2637 continue; 2638 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2639 continue; 2640 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2641 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2642 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2643 if (ret) 2644 break; 2645 } 2646 2647 return ret; 2648 } 2649 2650 static void 2651 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2652 { 2653 atomic_inc(&bg->reservations); 2654 } 2655 2656 /* 2657 * Returns the free cluster for the given space info and sets empty_cluster to 2658 * what it should be based on the mount options. 2659 */ 2660 static struct btrfs_free_cluster * 2661 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2662 struct btrfs_space_info *space_info, u64 *empty_cluster) 2663 { 2664 struct btrfs_free_cluster *ret = NULL; 2665 2666 *empty_cluster = 0; 2667 if (btrfs_mixed_space_info(space_info)) 2668 return ret; 2669 2670 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2671 ret = &fs_info->meta_alloc_cluster; 2672 if (btrfs_test_opt(fs_info, SSD)) 2673 *empty_cluster = SZ_2M; 2674 else 2675 *empty_cluster = SZ_64K; 2676 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2677 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2678 *empty_cluster = SZ_2M; 2679 ret = &fs_info->data_alloc_cluster; 2680 } 2681 2682 return ret; 2683 } 2684 2685 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2686 u64 start, u64 end, 2687 const bool return_free_space) 2688 { 2689 struct btrfs_block_group *cache = NULL; 2690 struct btrfs_space_info *space_info; 2691 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2692 struct btrfs_free_cluster *cluster = NULL; 2693 u64 len; 2694 u64 total_unpinned = 0; 2695 u64 empty_cluster = 0; 2696 bool readonly; 2697 2698 while (start <= end) { 2699 readonly = false; 2700 if (!cache || 2701 start >= cache->start + cache->length) { 2702 if (cache) 2703 btrfs_put_block_group(cache); 2704 total_unpinned = 0; 2705 cache = btrfs_lookup_block_group(fs_info, start); 2706 BUG_ON(!cache); /* Logic error */ 2707 2708 cluster = fetch_cluster_info(fs_info, 2709 cache->space_info, 2710 &empty_cluster); 2711 empty_cluster <<= 1; 2712 } 2713 2714 len = cache->start + cache->length - start; 2715 len = min(len, end + 1 - start); 2716 2717 down_read(&fs_info->commit_root_sem); 2718 if (start < cache->last_byte_to_unpin && return_free_space) { 2719 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2720 2721 btrfs_add_free_space(cache, start, add_len); 2722 } 2723 up_read(&fs_info->commit_root_sem); 2724 2725 start += len; 2726 total_unpinned += len; 2727 space_info = cache->space_info; 2728 2729 /* 2730 * If this space cluster has been marked as fragmented and we've 2731 * unpinned enough in this block group to potentially allow a 2732 * cluster to be created inside of it go ahead and clear the 2733 * fragmented check. 2734 */ 2735 if (cluster && cluster->fragmented && 2736 total_unpinned > empty_cluster) { 2737 spin_lock(&cluster->lock); 2738 cluster->fragmented = 0; 2739 spin_unlock(&cluster->lock); 2740 } 2741 2742 spin_lock(&space_info->lock); 2743 spin_lock(&cache->lock); 2744 cache->pinned -= len; 2745 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2746 space_info->max_extent_size = 0; 2747 if (cache->ro) { 2748 space_info->bytes_readonly += len; 2749 readonly = true; 2750 } else if (btrfs_is_zoned(fs_info)) { 2751 /* Need reset before reusing in a zoned block group */ 2752 space_info->bytes_zone_unusable += len; 2753 readonly = true; 2754 } 2755 spin_unlock(&cache->lock); 2756 if (!readonly && return_free_space && 2757 global_rsv->space_info == space_info) { 2758 spin_lock(&global_rsv->lock); 2759 if (!global_rsv->full) { 2760 u64 to_add = min(len, global_rsv->size - 2761 global_rsv->reserved); 2762 2763 global_rsv->reserved += to_add; 2764 btrfs_space_info_update_bytes_may_use(fs_info, 2765 space_info, to_add); 2766 if (global_rsv->reserved >= global_rsv->size) 2767 global_rsv->full = 1; 2768 len -= to_add; 2769 } 2770 spin_unlock(&global_rsv->lock); 2771 } 2772 /* Add to any tickets we may have */ 2773 if (!readonly && return_free_space && len) 2774 btrfs_try_granting_tickets(fs_info, space_info); 2775 spin_unlock(&space_info->lock); 2776 } 2777 2778 if (cache) 2779 btrfs_put_block_group(cache); 2780 return 0; 2781 } 2782 2783 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2784 { 2785 struct btrfs_fs_info *fs_info = trans->fs_info; 2786 struct btrfs_block_group *block_group, *tmp; 2787 struct list_head *deleted_bgs; 2788 struct extent_io_tree *unpin; 2789 u64 start; 2790 u64 end; 2791 int ret; 2792 2793 unpin = &trans->transaction->pinned_extents; 2794 2795 while (!TRANS_ABORTED(trans)) { 2796 struct extent_state *cached_state = NULL; 2797 2798 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2799 ret = find_first_extent_bit(unpin, 0, &start, &end, 2800 EXTENT_DIRTY, &cached_state); 2801 if (ret) { 2802 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2803 break; 2804 } 2805 2806 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2807 ret = btrfs_discard_extent(fs_info, start, 2808 end + 1 - start, NULL); 2809 2810 clear_extent_dirty(unpin, start, end, &cached_state); 2811 unpin_extent_range(fs_info, start, end, true); 2812 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2813 free_extent_state(cached_state); 2814 cond_resched(); 2815 } 2816 2817 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2818 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2819 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2820 } 2821 2822 /* 2823 * Transaction is finished. We don't need the lock anymore. We 2824 * do need to clean up the block groups in case of a transaction 2825 * abort. 2826 */ 2827 deleted_bgs = &trans->transaction->deleted_bgs; 2828 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2829 u64 trimmed = 0; 2830 2831 ret = -EROFS; 2832 if (!TRANS_ABORTED(trans)) 2833 ret = btrfs_discard_extent(fs_info, 2834 block_group->start, 2835 block_group->length, 2836 &trimmed); 2837 2838 list_del_init(&block_group->bg_list); 2839 btrfs_unfreeze_block_group(block_group); 2840 btrfs_put_block_group(block_group); 2841 2842 if (ret) { 2843 const char *errstr = btrfs_decode_error(ret); 2844 btrfs_warn(fs_info, 2845 "discard failed while removing blockgroup: errno=%d %s", 2846 ret, errstr); 2847 } 2848 } 2849 2850 return 0; 2851 } 2852 2853 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2854 u64 bytenr, u64 num_bytes, bool is_data) 2855 { 2856 int ret; 2857 2858 if (is_data) { 2859 struct btrfs_root *csum_root; 2860 2861 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2862 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2863 if (ret) { 2864 btrfs_abort_transaction(trans, ret); 2865 return ret; 2866 } 2867 } 2868 2869 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2870 if (ret) { 2871 btrfs_abort_transaction(trans, ret); 2872 return ret; 2873 } 2874 2875 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2876 if (ret) 2877 btrfs_abort_transaction(trans, ret); 2878 2879 return ret; 2880 } 2881 2882 /* 2883 * Drop one or more refs of @node. 2884 * 2885 * 1. Locate the extent refs. 2886 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2887 * Locate it, then reduce the refs number or remove the ref line completely. 2888 * 2889 * 2. Update the refs count in EXTENT/METADATA_ITEM 2890 * 2891 * Inline backref case: 2892 * 2893 * in extent tree we have: 2894 * 2895 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2896 * refs 2 gen 6 flags DATA 2897 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2898 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2899 * 2900 * This function gets called with: 2901 * 2902 * node->bytenr = 13631488 2903 * node->num_bytes = 1048576 2904 * root_objectid = FS_TREE 2905 * owner_objectid = 257 2906 * owner_offset = 0 2907 * refs_to_drop = 1 2908 * 2909 * Then we should get some like: 2910 * 2911 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2912 * refs 1 gen 6 flags DATA 2913 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2914 * 2915 * Keyed backref case: 2916 * 2917 * in extent tree we have: 2918 * 2919 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2920 * refs 754 gen 6 flags DATA 2921 * [...] 2922 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2923 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2924 * 2925 * This function get called with: 2926 * 2927 * node->bytenr = 13631488 2928 * node->num_bytes = 1048576 2929 * root_objectid = FS_TREE 2930 * owner_objectid = 866 2931 * owner_offset = 0 2932 * refs_to_drop = 1 2933 * 2934 * Then we should get some like: 2935 * 2936 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2937 * refs 753 gen 6 flags DATA 2938 * 2939 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2940 */ 2941 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2942 struct btrfs_delayed_ref_node *node, u64 parent, 2943 u64 root_objectid, u64 owner_objectid, 2944 u64 owner_offset, int refs_to_drop, 2945 struct btrfs_delayed_extent_op *extent_op) 2946 { 2947 struct btrfs_fs_info *info = trans->fs_info; 2948 struct btrfs_key key; 2949 struct btrfs_path *path; 2950 struct btrfs_root *extent_root; 2951 struct extent_buffer *leaf; 2952 struct btrfs_extent_item *ei; 2953 struct btrfs_extent_inline_ref *iref; 2954 int ret; 2955 int is_data; 2956 int extent_slot = 0; 2957 int found_extent = 0; 2958 int num_to_del = 1; 2959 u32 item_size; 2960 u64 refs; 2961 u64 bytenr = node->bytenr; 2962 u64 num_bytes = node->num_bytes; 2963 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2964 2965 extent_root = btrfs_extent_root(info, bytenr); 2966 ASSERT(extent_root); 2967 2968 path = btrfs_alloc_path(); 2969 if (!path) 2970 return -ENOMEM; 2971 2972 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2973 2974 if (!is_data && refs_to_drop != 1) { 2975 btrfs_crit(info, 2976 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2977 node->bytenr, refs_to_drop); 2978 ret = -EINVAL; 2979 btrfs_abort_transaction(trans, ret); 2980 goto out; 2981 } 2982 2983 if (is_data) 2984 skinny_metadata = false; 2985 2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2987 parent, root_objectid, owner_objectid, 2988 owner_offset); 2989 if (ret == 0) { 2990 /* 2991 * Either the inline backref or the SHARED_DATA_REF/ 2992 * SHARED_BLOCK_REF is found 2993 * 2994 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2995 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2996 */ 2997 extent_slot = path->slots[0]; 2998 while (extent_slot >= 0) { 2999 btrfs_item_key_to_cpu(path->nodes[0], &key, 3000 extent_slot); 3001 if (key.objectid != bytenr) 3002 break; 3003 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3004 key.offset == num_bytes) { 3005 found_extent = 1; 3006 break; 3007 } 3008 if (key.type == BTRFS_METADATA_ITEM_KEY && 3009 key.offset == owner_objectid) { 3010 found_extent = 1; 3011 break; 3012 } 3013 3014 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3015 if (path->slots[0] - extent_slot > 5) 3016 break; 3017 extent_slot--; 3018 } 3019 3020 if (!found_extent) { 3021 if (iref) { 3022 btrfs_crit(info, 3023 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3024 btrfs_abort_transaction(trans, -EUCLEAN); 3025 goto err_dump; 3026 } 3027 /* Must be SHARED_* item, remove the backref first */ 3028 ret = remove_extent_backref(trans, extent_root, path, 3029 NULL, refs_to_drop, is_data); 3030 if (ret) { 3031 btrfs_abort_transaction(trans, ret); 3032 goto out; 3033 } 3034 btrfs_release_path(path); 3035 3036 /* Slow path to locate EXTENT/METADATA_ITEM */ 3037 key.objectid = bytenr; 3038 key.type = BTRFS_EXTENT_ITEM_KEY; 3039 key.offset = num_bytes; 3040 3041 if (!is_data && skinny_metadata) { 3042 key.type = BTRFS_METADATA_ITEM_KEY; 3043 key.offset = owner_objectid; 3044 } 3045 3046 ret = btrfs_search_slot(trans, extent_root, 3047 &key, path, -1, 1); 3048 if (ret > 0 && skinny_metadata && path->slots[0]) { 3049 /* 3050 * Couldn't find our skinny metadata item, 3051 * see if we have ye olde extent item. 3052 */ 3053 path->slots[0]--; 3054 btrfs_item_key_to_cpu(path->nodes[0], &key, 3055 path->slots[0]); 3056 if (key.objectid == bytenr && 3057 key.type == BTRFS_EXTENT_ITEM_KEY && 3058 key.offset == num_bytes) 3059 ret = 0; 3060 } 3061 3062 if (ret > 0 && skinny_metadata) { 3063 skinny_metadata = false; 3064 key.objectid = bytenr; 3065 key.type = BTRFS_EXTENT_ITEM_KEY; 3066 key.offset = num_bytes; 3067 btrfs_release_path(path); 3068 ret = btrfs_search_slot(trans, extent_root, 3069 &key, path, -1, 1); 3070 } 3071 3072 if (ret) { 3073 btrfs_err(info, 3074 "umm, got %d back from search, was looking for %llu", 3075 ret, bytenr); 3076 if (ret > 0) 3077 btrfs_print_leaf(path->nodes[0]); 3078 } 3079 if (ret < 0) { 3080 btrfs_abort_transaction(trans, ret); 3081 goto out; 3082 } 3083 extent_slot = path->slots[0]; 3084 } 3085 } else if (WARN_ON(ret == -ENOENT)) { 3086 btrfs_print_leaf(path->nodes[0]); 3087 btrfs_err(info, 3088 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3089 bytenr, parent, root_objectid, owner_objectid, 3090 owner_offset); 3091 btrfs_abort_transaction(trans, ret); 3092 goto out; 3093 } else { 3094 btrfs_abort_transaction(trans, ret); 3095 goto out; 3096 } 3097 3098 leaf = path->nodes[0]; 3099 item_size = btrfs_item_size(leaf, extent_slot); 3100 if (unlikely(item_size < sizeof(*ei))) { 3101 ret = -EINVAL; 3102 btrfs_print_v0_err(info); 3103 btrfs_abort_transaction(trans, ret); 3104 goto out; 3105 } 3106 ei = btrfs_item_ptr(leaf, extent_slot, 3107 struct btrfs_extent_item); 3108 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3109 key.type == BTRFS_EXTENT_ITEM_KEY) { 3110 struct btrfs_tree_block_info *bi; 3111 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3112 btrfs_crit(info, 3113 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3114 key.objectid, key.type, key.offset, 3115 owner_objectid, item_size, 3116 sizeof(*ei) + sizeof(*bi)); 3117 btrfs_abort_transaction(trans, -EUCLEAN); 3118 goto err_dump; 3119 } 3120 bi = (struct btrfs_tree_block_info *)(ei + 1); 3121 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3122 } 3123 3124 refs = btrfs_extent_refs(leaf, ei); 3125 if (refs < refs_to_drop) { 3126 btrfs_crit(info, 3127 "trying to drop %d refs but we only have %llu for bytenr %llu", 3128 refs_to_drop, refs, bytenr); 3129 btrfs_abort_transaction(trans, -EUCLEAN); 3130 goto err_dump; 3131 } 3132 refs -= refs_to_drop; 3133 3134 if (refs > 0) { 3135 if (extent_op) 3136 __run_delayed_extent_op(extent_op, leaf, ei); 3137 /* 3138 * In the case of inline back ref, reference count will 3139 * be updated by remove_extent_backref 3140 */ 3141 if (iref) { 3142 if (!found_extent) { 3143 btrfs_crit(info, 3144 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3145 btrfs_abort_transaction(trans, -EUCLEAN); 3146 goto err_dump; 3147 } 3148 } else { 3149 btrfs_set_extent_refs(leaf, ei, refs); 3150 btrfs_mark_buffer_dirty(leaf); 3151 } 3152 if (found_extent) { 3153 ret = remove_extent_backref(trans, extent_root, path, 3154 iref, refs_to_drop, is_data); 3155 if (ret) { 3156 btrfs_abort_transaction(trans, ret); 3157 goto out; 3158 } 3159 } 3160 } else { 3161 /* In this branch refs == 1 */ 3162 if (found_extent) { 3163 if (is_data && refs_to_drop != 3164 extent_data_ref_count(path, iref)) { 3165 btrfs_crit(info, 3166 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3167 extent_data_ref_count(path, iref), 3168 refs_to_drop); 3169 btrfs_abort_transaction(trans, -EUCLEAN); 3170 goto err_dump; 3171 } 3172 if (iref) { 3173 if (path->slots[0] != extent_slot) { 3174 btrfs_crit(info, 3175 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3176 key.objectid, key.type, 3177 key.offset); 3178 btrfs_abort_transaction(trans, -EUCLEAN); 3179 goto err_dump; 3180 } 3181 } else { 3182 /* 3183 * No inline ref, we must be at SHARED_* item, 3184 * And it's single ref, it must be: 3185 * | extent_slot ||extent_slot + 1| 3186 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3187 */ 3188 if (path->slots[0] != extent_slot + 1) { 3189 btrfs_crit(info, 3190 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3191 btrfs_abort_transaction(trans, -EUCLEAN); 3192 goto err_dump; 3193 } 3194 path->slots[0] = extent_slot; 3195 num_to_del = 2; 3196 } 3197 } 3198 3199 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3200 num_to_del); 3201 if (ret) { 3202 btrfs_abort_transaction(trans, ret); 3203 goto out; 3204 } 3205 btrfs_release_path(path); 3206 3207 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3208 } 3209 btrfs_release_path(path); 3210 3211 out: 3212 btrfs_free_path(path); 3213 return ret; 3214 err_dump: 3215 /* 3216 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3217 * dump for debug build. 3218 */ 3219 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3220 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3221 path->slots[0], extent_slot); 3222 btrfs_print_leaf(path->nodes[0]); 3223 } 3224 3225 btrfs_free_path(path); 3226 return -EUCLEAN; 3227 } 3228 3229 /* 3230 * when we free an block, it is possible (and likely) that we free the last 3231 * delayed ref for that extent as well. This searches the delayed ref tree for 3232 * a given extent, and if there are no other delayed refs to be processed, it 3233 * removes it from the tree. 3234 */ 3235 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3236 u64 bytenr) 3237 { 3238 struct btrfs_delayed_ref_head *head; 3239 struct btrfs_delayed_ref_root *delayed_refs; 3240 int ret = 0; 3241 3242 delayed_refs = &trans->transaction->delayed_refs; 3243 spin_lock(&delayed_refs->lock); 3244 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3245 if (!head) 3246 goto out_delayed_unlock; 3247 3248 spin_lock(&head->lock); 3249 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3250 goto out; 3251 3252 if (cleanup_extent_op(head) != NULL) 3253 goto out; 3254 3255 /* 3256 * waiting for the lock here would deadlock. If someone else has it 3257 * locked they are already in the process of dropping it anyway 3258 */ 3259 if (!mutex_trylock(&head->mutex)) 3260 goto out; 3261 3262 btrfs_delete_ref_head(delayed_refs, head); 3263 head->processing = 0; 3264 3265 spin_unlock(&head->lock); 3266 spin_unlock(&delayed_refs->lock); 3267 3268 BUG_ON(head->extent_op); 3269 if (head->must_insert_reserved) 3270 ret = 1; 3271 3272 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3273 mutex_unlock(&head->mutex); 3274 btrfs_put_delayed_ref_head(head); 3275 return ret; 3276 out: 3277 spin_unlock(&head->lock); 3278 3279 out_delayed_unlock: 3280 spin_unlock(&delayed_refs->lock); 3281 return 0; 3282 } 3283 3284 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3285 u64 root_id, 3286 struct extent_buffer *buf, 3287 u64 parent, int last_ref) 3288 { 3289 struct btrfs_fs_info *fs_info = trans->fs_info; 3290 struct btrfs_ref generic_ref = { 0 }; 3291 int ret; 3292 3293 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3294 buf->start, buf->len, parent); 3295 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3296 root_id, 0, false); 3297 3298 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3299 btrfs_ref_tree_mod(fs_info, &generic_ref); 3300 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3301 BUG_ON(ret); /* -ENOMEM */ 3302 } 3303 3304 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3305 struct btrfs_block_group *cache; 3306 bool must_pin = false; 3307 3308 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3309 ret = check_ref_cleanup(trans, buf->start); 3310 if (!ret) { 3311 btrfs_redirty_list_add(trans->transaction, buf); 3312 goto out; 3313 } 3314 } 3315 3316 cache = btrfs_lookup_block_group(fs_info, buf->start); 3317 3318 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3319 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3320 btrfs_put_block_group(cache); 3321 goto out; 3322 } 3323 3324 /* 3325 * If this is a leaf and there are tree mod log users, we may 3326 * have recorded mod log operations that point to this leaf. 3327 * So we must make sure no one reuses this leaf's extent before 3328 * mod log operations are applied to a node, otherwise after 3329 * rewinding a node using the mod log operations we get an 3330 * inconsistent btree, as the leaf's extent may now be used as 3331 * a node or leaf for another different btree. 3332 * We are safe from races here because at this point no other 3333 * node or root points to this extent buffer, so if after this 3334 * check a new tree mod log user joins, it will not be able to 3335 * find a node pointing to this leaf and record operations that 3336 * point to this leaf. 3337 */ 3338 if (btrfs_header_level(buf) == 0 && 3339 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3340 must_pin = true; 3341 3342 if (must_pin || btrfs_is_zoned(fs_info)) { 3343 btrfs_redirty_list_add(trans->transaction, buf); 3344 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3345 btrfs_put_block_group(cache); 3346 goto out; 3347 } 3348 3349 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3350 3351 btrfs_add_free_space(cache, buf->start, buf->len); 3352 btrfs_free_reserved_bytes(cache, buf->len, 0); 3353 btrfs_put_block_group(cache); 3354 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3355 } 3356 out: 3357 if (last_ref) { 3358 /* 3359 * Deleting the buffer, clear the corrupt flag since it doesn't 3360 * matter anymore. 3361 */ 3362 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3363 } 3364 } 3365 3366 /* Can return -ENOMEM */ 3367 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3368 { 3369 struct btrfs_fs_info *fs_info = trans->fs_info; 3370 int ret; 3371 3372 if (btrfs_is_testing(fs_info)) 3373 return 0; 3374 3375 /* 3376 * tree log blocks never actually go into the extent allocation 3377 * tree, just update pinning info and exit early. 3378 */ 3379 if ((ref->type == BTRFS_REF_METADATA && 3380 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3381 (ref->type == BTRFS_REF_DATA && 3382 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3383 /* unlocks the pinned mutex */ 3384 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3385 ret = 0; 3386 } else if (ref->type == BTRFS_REF_METADATA) { 3387 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3388 } else { 3389 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3390 } 3391 3392 if (!((ref->type == BTRFS_REF_METADATA && 3393 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3394 (ref->type == BTRFS_REF_DATA && 3395 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3396 btrfs_ref_tree_mod(fs_info, ref); 3397 3398 return ret; 3399 } 3400 3401 enum btrfs_loop_type { 3402 LOOP_CACHING_NOWAIT, 3403 LOOP_CACHING_WAIT, 3404 LOOP_ALLOC_CHUNK, 3405 LOOP_NO_EMPTY_SIZE, 3406 }; 3407 3408 static inline void 3409 btrfs_lock_block_group(struct btrfs_block_group *cache, 3410 int delalloc) 3411 { 3412 if (delalloc) 3413 down_read(&cache->data_rwsem); 3414 } 3415 3416 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3417 int delalloc) 3418 { 3419 btrfs_get_block_group(cache); 3420 if (delalloc) 3421 down_read(&cache->data_rwsem); 3422 } 3423 3424 static struct btrfs_block_group *btrfs_lock_cluster( 3425 struct btrfs_block_group *block_group, 3426 struct btrfs_free_cluster *cluster, 3427 int delalloc) 3428 __acquires(&cluster->refill_lock) 3429 { 3430 struct btrfs_block_group *used_bg = NULL; 3431 3432 spin_lock(&cluster->refill_lock); 3433 while (1) { 3434 used_bg = cluster->block_group; 3435 if (!used_bg) 3436 return NULL; 3437 3438 if (used_bg == block_group) 3439 return used_bg; 3440 3441 btrfs_get_block_group(used_bg); 3442 3443 if (!delalloc) 3444 return used_bg; 3445 3446 if (down_read_trylock(&used_bg->data_rwsem)) 3447 return used_bg; 3448 3449 spin_unlock(&cluster->refill_lock); 3450 3451 /* We should only have one-level nested. */ 3452 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3453 3454 spin_lock(&cluster->refill_lock); 3455 if (used_bg == cluster->block_group) 3456 return used_bg; 3457 3458 up_read(&used_bg->data_rwsem); 3459 btrfs_put_block_group(used_bg); 3460 } 3461 } 3462 3463 static inline void 3464 btrfs_release_block_group(struct btrfs_block_group *cache, 3465 int delalloc) 3466 { 3467 if (delalloc) 3468 up_read(&cache->data_rwsem); 3469 btrfs_put_block_group(cache); 3470 } 3471 3472 enum btrfs_extent_allocation_policy { 3473 BTRFS_EXTENT_ALLOC_CLUSTERED, 3474 BTRFS_EXTENT_ALLOC_ZONED, 3475 }; 3476 3477 /* 3478 * Structure used internally for find_free_extent() function. Wraps needed 3479 * parameters. 3480 */ 3481 struct find_free_extent_ctl { 3482 /* Basic allocation info */ 3483 u64 ram_bytes; 3484 u64 num_bytes; 3485 u64 min_alloc_size; 3486 u64 empty_size; 3487 u64 flags; 3488 int delalloc; 3489 3490 /* Where to start the search inside the bg */ 3491 u64 search_start; 3492 3493 /* For clustered allocation */ 3494 u64 empty_cluster; 3495 struct btrfs_free_cluster *last_ptr; 3496 bool use_cluster; 3497 3498 bool have_caching_bg; 3499 bool orig_have_caching_bg; 3500 3501 /* Allocation is called for tree-log */ 3502 bool for_treelog; 3503 3504 /* Allocation is called for data relocation */ 3505 bool for_data_reloc; 3506 3507 /* RAID index, converted from flags */ 3508 int index; 3509 3510 /* 3511 * Current loop number, check find_free_extent_update_loop() for details 3512 */ 3513 int loop; 3514 3515 /* 3516 * Whether we're refilling a cluster, if true we need to re-search 3517 * current block group but don't try to refill the cluster again. 3518 */ 3519 bool retry_clustered; 3520 3521 /* 3522 * Whether we're updating free space cache, if true we need to re-search 3523 * current block group but don't try updating free space cache again. 3524 */ 3525 bool retry_unclustered; 3526 3527 /* If current block group is cached */ 3528 int cached; 3529 3530 /* Max contiguous hole found */ 3531 u64 max_extent_size; 3532 3533 /* Total free space from free space cache, not always contiguous */ 3534 u64 total_free_space; 3535 3536 /* Found result */ 3537 u64 found_offset; 3538 3539 /* Hint where to start looking for an empty space */ 3540 u64 hint_byte; 3541 3542 /* Allocation policy */ 3543 enum btrfs_extent_allocation_policy policy; 3544 }; 3545 3546 3547 /* 3548 * Helper function for find_free_extent(). 3549 * 3550 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3551 * Return -EAGAIN to inform caller that we need to re-search this block group 3552 * Return >0 to inform caller that we find nothing 3553 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3554 */ 3555 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3556 struct find_free_extent_ctl *ffe_ctl, 3557 struct btrfs_block_group **cluster_bg_ret) 3558 { 3559 struct btrfs_block_group *cluster_bg; 3560 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3561 u64 aligned_cluster; 3562 u64 offset; 3563 int ret; 3564 3565 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3566 if (!cluster_bg) 3567 goto refill_cluster; 3568 if (cluster_bg != bg && (cluster_bg->ro || 3569 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3570 goto release_cluster; 3571 3572 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3573 ffe_ctl->num_bytes, cluster_bg->start, 3574 &ffe_ctl->max_extent_size); 3575 if (offset) { 3576 /* We have a block, we're done */ 3577 spin_unlock(&last_ptr->refill_lock); 3578 trace_btrfs_reserve_extent_cluster(cluster_bg, 3579 ffe_ctl->search_start, ffe_ctl->num_bytes); 3580 *cluster_bg_ret = cluster_bg; 3581 ffe_ctl->found_offset = offset; 3582 return 0; 3583 } 3584 WARN_ON(last_ptr->block_group != cluster_bg); 3585 3586 release_cluster: 3587 /* 3588 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3589 * lets just skip it and let the allocator find whatever block it can 3590 * find. If we reach this point, we will have tried the cluster 3591 * allocator plenty of times and not have found anything, so we are 3592 * likely way too fragmented for the clustering stuff to find anything. 3593 * 3594 * However, if the cluster is taken from the current block group, 3595 * release the cluster first, so that we stand a better chance of 3596 * succeeding in the unclustered allocation. 3597 */ 3598 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3599 spin_unlock(&last_ptr->refill_lock); 3600 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3601 return -ENOENT; 3602 } 3603 3604 /* This cluster didn't work out, free it and start over */ 3605 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3606 3607 if (cluster_bg != bg) 3608 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3609 3610 refill_cluster: 3611 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3612 spin_unlock(&last_ptr->refill_lock); 3613 return -ENOENT; 3614 } 3615 3616 aligned_cluster = max_t(u64, 3617 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3618 bg->full_stripe_len); 3619 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3620 ffe_ctl->num_bytes, aligned_cluster); 3621 if (ret == 0) { 3622 /* Now pull our allocation out of this cluster */ 3623 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3624 ffe_ctl->num_bytes, ffe_ctl->search_start, 3625 &ffe_ctl->max_extent_size); 3626 if (offset) { 3627 /* We found one, proceed */ 3628 spin_unlock(&last_ptr->refill_lock); 3629 trace_btrfs_reserve_extent_cluster(bg, 3630 ffe_ctl->search_start, 3631 ffe_ctl->num_bytes); 3632 ffe_ctl->found_offset = offset; 3633 return 0; 3634 } 3635 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3636 !ffe_ctl->retry_clustered) { 3637 spin_unlock(&last_ptr->refill_lock); 3638 3639 ffe_ctl->retry_clustered = true; 3640 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3641 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3642 return -EAGAIN; 3643 } 3644 /* 3645 * At this point we either didn't find a cluster or we weren't able to 3646 * allocate a block from our cluster. Free the cluster we've been 3647 * trying to use, and go to the next block group. 3648 */ 3649 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3650 spin_unlock(&last_ptr->refill_lock); 3651 return 1; 3652 } 3653 3654 /* 3655 * Return >0 to inform caller that we find nothing 3656 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3657 * Return -EAGAIN to inform caller that we need to re-search this block group 3658 */ 3659 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3660 struct find_free_extent_ctl *ffe_ctl) 3661 { 3662 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3663 u64 offset; 3664 3665 /* 3666 * We are doing an unclustered allocation, set the fragmented flag so 3667 * we don't bother trying to setup a cluster again until we get more 3668 * space. 3669 */ 3670 if (unlikely(last_ptr)) { 3671 spin_lock(&last_ptr->lock); 3672 last_ptr->fragmented = 1; 3673 spin_unlock(&last_ptr->lock); 3674 } 3675 if (ffe_ctl->cached) { 3676 struct btrfs_free_space_ctl *free_space_ctl; 3677 3678 free_space_ctl = bg->free_space_ctl; 3679 spin_lock(&free_space_ctl->tree_lock); 3680 if (free_space_ctl->free_space < 3681 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3682 ffe_ctl->empty_size) { 3683 ffe_ctl->total_free_space = max_t(u64, 3684 ffe_ctl->total_free_space, 3685 free_space_ctl->free_space); 3686 spin_unlock(&free_space_ctl->tree_lock); 3687 return 1; 3688 } 3689 spin_unlock(&free_space_ctl->tree_lock); 3690 } 3691 3692 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3693 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3694 &ffe_ctl->max_extent_size); 3695 3696 /* 3697 * If we didn't find a chunk, and we haven't failed on this block group 3698 * before, and this block group is in the middle of caching and we are 3699 * ok with waiting, then go ahead and wait for progress to be made, and 3700 * set @retry_unclustered to true. 3701 * 3702 * If @retry_unclustered is true then we've already waited on this 3703 * block group once and should move on to the next block group. 3704 */ 3705 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3706 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3707 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3708 ffe_ctl->empty_size); 3709 ffe_ctl->retry_unclustered = true; 3710 return -EAGAIN; 3711 } else if (!offset) { 3712 return 1; 3713 } 3714 ffe_ctl->found_offset = offset; 3715 return 0; 3716 } 3717 3718 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3719 struct find_free_extent_ctl *ffe_ctl, 3720 struct btrfs_block_group **bg_ret) 3721 { 3722 int ret; 3723 3724 /* We want to try and use the cluster allocator, so lets look there */ 3725 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3726 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3727 if (ret >= 0 || ret == -EAGAIN) 3728 return ret; 3729 /* ret == -ENOENT case falls through */ 3730 } 3731 3732 return find_free_extent_unclustered(block_group, ffe_ctl); 3733 } 3734 3735 /* 3736 * Tree-log block group locking 3737 * ============================ 3738 * 3739 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3740 * indicates the starting address of a block group, which is reserved only 3741 * for tree-log metadata. 3742 * 3743 * Lock nesting 3744 * ============ 3745 * 3746 * space_info::lock 3747 * block_group::lock 3748 * fs_info::treelog_bg_lock 3749 */ 3750 3751 /* 3752 * Simple allocator for sequential-only block group. It only allows sequential 3753 * allocation. No need to play with trees. This function also reserves the 3754 * bytes as in btrfs_add_reserved_bytes. 3755 */ 3756 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3757 struct find_free_extent_ctl *ffe_ctl, 3758 struct btrfs_block_group **bg_ret) 3759 { 3760 struct btrfs_fs_info *fs_info = block_group->fs_info; 3761 struct btrfs_space_info *space_info = block_group->space_info; 3762 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3763 u64 start = block_group->start; 3764 u64 num_bytes = ffe_ctl->num_bytes; 3765 u64 avail; 3766 u64 bytenr = block_group->start; 3767 u64 log_bytenr; 3768 u64 data_reloc_bytenr; 3769 int ret = 0; 3770 bool skip = false; 3771 3772 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3773 3774 /* 3775 * Do not allow non-tree-log blocks in the dedicated tree-log block 3776 * group, and vice versa. 3777 */ 3778 spin_lock(&fs_info->treelog_bg_lock); 3779 log_bytenr = fs_info->treelog_bg; 3780 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3781 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3782 skip = true; 3783 spin_unlock(&fs_info->treelog_bg_lock); 3784 if (skip) 3785 return 1; 3786 3787 /* 3788 * Do not allow non-relocation blocks in the dedicated relocation block 3789 * group, and vice versa. 3790 */ 3791 spin_lock(&fs_info->relocation_bg_lock); 3792 data_reloc_bytenr = fs_info->data_reloc_bg; 3793 if (data_reloc_bytenr && 3794 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3795 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3796 skip = true; 3797 spin_unlock(&fs_info->relocation_bg_lock); 3798 if (skip) 3799 return 1; 3800 3801 /* Check RO and no space case before trying to activate it */ 3802 spin_lock(&block_group->lock); 3803 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3804 ret = 1; 3805 /* 3806 * May need to clear fs_info->{treelog,data_reloc}_bg. 3807 * Return the error after taking the locks. 3808 */ 3809 } 3810 spin_unlock(&block_group->lock); 3811 3812 if (!ret && !btrfs_zone_activate(block_group)) { 3813 ret = 1; 3814 /* 3815 * May need to clear fs_info->{treelog,data_reloc}_bg. 3816 * Return the error after taking the locks. 3817 */ 3818 } 3819 3820 spin_lock(&space_info->lock); 3821 spin_lock(&block_group->lock); 3822 spin_lock(&fs_info->treelog_bg_lock); 3823 spin_lock(&fs_info->relocation_bg_lock); 3824 3825 if (ret) 3826 goto out; 3827 3828 ASSERT(!ffe_ctl->for_treelog || 3829 block_group->start == fs_info->treelog_bg || 3830 fs_info->treelog_bg == 0); 3831 ASSERT(!ffe_ctl->for_data_reloc || 3832 block_group->start == fs_info->data_reloc_bg || 3833 fs_info->data_reloc_bg == 0); 3834 3835 if (block_group->ro || block_group->zoned_data_reloc_ongoing) { 3836 ret = 1; 3837 goto out; 3838 } 3839 3840 /* 3841 * Do not allow currently using block group to be tree-log dedicated 3842 * block group. 3843 */ 3844 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3845 (block_group->used || block_group->reserved)) { 3846 ret = 1; 3847 goto out; 3848 } 3849 3850 /* 3851 * Do not allow currently used block group to be the data relocation 3852 * dedicated block group. 3853 */ 3854 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3855 (block_group->used || block_group->reserved)) { 3856 ret = 1; 3857 goto out; 3858 } 3859 3860 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3861 avail = block_group->zone_capacity - block_group->alloc_offset; 3862 if (avail < num_bytes) { 3863 if (ffe_ctl->max_extent_size < avail) { 3864 /* 3865 * With sequential allocator, free space is always 3866 * contiguous 3867 */ 3868 ffe_ctl->max_extent_size = avail; 3869 ffe_ctl->total_free_space = avail; 3870 } 3871 ret = 1; 3872 goto out; 3873 } 3874 3875 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3876 fs_info->treelog_bg = block_group->start; 3877 3878 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3879 fs_info->data_reloc_bg = block_group->start; 3880 3881 ffe_ctl->found_offset = start + block_group->alloc_offset; 3882 block_group->alloc_offset += num_bytes; 3883 spin_lock(&ctl->tree_lock); 3884 ctl->free_space -= num_bytes; 3885 spin_unlock(&ctl->tree_lock); 3886 3887 /* 3888 * We do not check if found_offset is aligned to stripesize. The 3889 * address is anyway rewritten when using zone append writing. 3890 */ 3891 3892 ffe_ctl->search_start = ffe_ctl->found_offset; 3893 3894 out: 3895 if (ret && ffe_ctl->for_treelog) 3896 fs_info->treelog_bg = 0; 3897 if (ret && ffe_ctl->for_data_reloc && 3898 fs_info->data_reloc_bg == block_group->start) { 3899 /* 3900 * Do not allow further allocations from this block group. 3901 * Compared to increasing the ->ro, setting the 3902 * ->zoned_data_reloc_ongoing flag still allows nocow 3903 * writers to come in. See btrfs_inc_nocow_writers(). 3904 * 3905 * We need to disable an allocation to avoid an allocation of 3906 * regular (non-relocation data) extent. With mix of relocation 3907 * extents and regular extents, we can dispatch WRITE commands 3908 * (for relocation extents) and ZONE APPEND commands (for 3909 * regular extents) at the same time to the same zone, which 3910 * easily break the write pointer. 3911 */ 3912 block_group->zoned_data_reloc_ongoing = 1; 3913 fs_info->data_reloc_bg = 0; 3914 } 3915 spin_unlock(&fs_info->relocation_bg_lock); 3916 spin_unlock(&fs_info->treelog_bg_lock); 3917 spin_unlock(&block_group->lock); 3918 spin_unlock(&space_info->lock); 3919 return ret; 3920 } 3921 3922 static int do_allocation(struct btrfs_block_group *block_group, 3923 struct find_free_extent_ctl *ffe_ctl, 3924 struct btrfs_block_group **bg_ret) 3925 { 3926 switch (ffe_ctl->policy) { 3927 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3928 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3929 case BTRFS_EXTENT_ALLOC_ZONED: 3930 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3931 default: 3932 BUG(); 3933 } 3934 } 3935 3936 static void release_block_group(struct btrfs_block_group *block_group, 3937 struct find_free_extent_ctl *ffe_ctl, 3938 int delalloc) 3939 { 3940 switch (ffe_ctl->policy) { 3941 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3942 ffe_ctl->retry_clustered = false; 3943 ffe_ctl->retry_unclustered = false; 3944 break; 3945 case BTRFS_EXTENT_ALLOC_ZONED: 3946 /* Nothing to do */ 3947 break; 3948 default: 3949 BUG(); 3950 } 3951 3952 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3953 ffe_ctl->index); 3954 btrfs_release_block_group(block_group, delalloc); 3955 } 3956 3957 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3958 struct btrfs_key *ins) 3959 { 3960 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3961 3962 if (!ffe_ctl->use_cluster && last_ptr) { 3963 spin_lock(&last_ptr->lock); 3964 last_ptr->window_start = ins->objectid; 3965 spin_unlock(&last_ptr->lock); 3966 } 3967 } 3968 3969 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3970 struct btrfs_key *ins) 3971 { 3972 switch (ffe_ctl->policy) { 3973 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3974 found_extent_clustered(ffe_ctl, ins); 3975 break; 3976 case BTRFS_EXTENT_ALLOC_ZONED: 3977 /* Nothing to do */ 3978 break; 3979 default: 3980 BUG(); 3981 } 3982 } 3983 3984 static bool can_allocate_chunk(struct btrfs_fs_info *fs_info, 3985 struct find_free_extent_ctl *ffe_ctl) 3986 { 3987 switch (ffe_ctl->policy) { 3988 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3989 return true; 3990 case BTRFS_EXTENT_ALLOC_ZONED: 3991 /* 3992 * If we have enough free space left in an already 3993 * active block group and we can't activate any other 3994 * zone now, do not allow allocating a new chunk and 3995 * let find_free_extent() retry with a smaller size. 3996 */ 3997 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size && 3998 !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3999 return false; 4000 return true; 4001 default: 4002 BUG(); 4003 } 4004 } 4005 4006 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 4007 { 4008 switch (ffe_ctl->policy) { 4009 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4010 /* 4011 * If we can't allocate a new chunk we've already looped through 4012 * at least once, move on to the NO_EMPTY_SIZE case. 4013 */ 4014 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 4015 return 0; 4016 case BTRFS_EXTENT_ALLOC_ZONED: 4017 /* Give up here */ 4018 return -ENOSPC; 4019 default: 4020 BUG(); 4021 } 4022 } 4023 4024 /* 4025 * Return >0 means caller needs to re-search for free extent 4026 * Return 0 means we have the needed free extent. 4027 * Return <0 means we failed to locate any free extent. 4028 */ 4029 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4030 struct btrfs_key *ins, 4031 struct find_free_extent_ctl *ffe_ctl, 4032 bool full_search) 4033 { 4034 struct btrfs_root *root = fs_info->chunk_root; 4035 int ret; 4036 4037 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4038 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4039 ffe_ctl->orig_have_caching_bg = true; 4040 4041 if (ins->objectid) { 4042 found_extent(ffe_ctl, ins); 4043 return 0; 4044 } 4045 4046 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4047 return 1; 4048 4049 ffe_ctl->index++; 4050 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4051 return 1; 4052 4053 /* 4054 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4055 * caching kthreads as we move along 4056 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4057 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4058 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4059 * again 4060 */ 4061 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4062 ffe_ctl->index = 0; 4063 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4064 /* 4065 * We want to skip the LOOP_CACHING_WAIT step if we 4066 * don't have any uncached bgs and we've already done a 4067 * full search through. 4068 */ 4069 if (ffe_ctl->orig_have_caching_bg || !full_search) 4070 ffe_ctl->loop = LOOP_CACHING_WAIT; 4071 else 4072 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4073 } else { 4074 ffe_ctl->loop++; 4075 } 4076 4077 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4078 struct btrfs_trans_handle *trans; 4079 int exist = 0; 4080 4081 /*Check if allocation policy allows to create a new chunk */ 4082 if (!can_allocate_chunk(fs_info, ffe_ctl)) 4083 return -ENOSPC; 4084 4085 trans = current->journal_info; 4086 if (trans) 4087 exist = 1; 4088 else 4089 trans = btrfs_join_transaction(root); 4090 4091 if (IS_ERR(trans)) { 4092 ret = PTR_ERR(trans); 4093 return ret; 4094 } 4095 4096 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4097 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4098 4099 /* Do not bail out on ENOSPC since we can do more. */ 4100 if (ret == -ENOSPC) 4101 ret = chunk_allocation_failed(ffe_ctl); 4102 else if (ret < 0) 4103 btrfs_abort_transaction(trans, ret); 4104 else 4105 ret = 0; 4106 if (!exist) 4107 btrfs_end_transaction(trans); 4108 if (ret) 4109 return ret; 4110 } 4111 4112 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4113 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4114 return -ENOSPC; 4115 4116 /* 4117 * Don't loop again if we already have no empty_size and 4118 * no empty_cluster. 4119 */ 4120 if (ffe_ctl->empty_size == 0 && 4121 ffe_ctl->empty_cluster == 0) 4122 return -ENOSPC; 4123 ffe_ctl->empty_size = 0; 4124 ffe_ctl->empty_cluster = 0; 4125 } 4126 return 1; 4127 } 4128 return -ENOSPC; 4129 } 4130 4131 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4132 struct find_free_extent_ctl *ffe_ctl, 4133 struct btrfs_space_info *space_info, 4134 struct btrfs_key *ins) 4135 { 4136 /* 4137 * If our free space is heavily fragmented we may not be able to make 4138 * big contiguous allocations, so instead of doing the expensive search 4139 * for free space, simply return ENOSPC with our max_extent_size so we 4140 * can go ahead and search for a more manageable chunk. 4141 * 4142 * If our max_extent_size is large enough for our allocation simply 4143 * disable clustering since we will likely not be able to find enough 4144 * space to create a cluster and induce latency trying. 4145 */ 4146 if (space_info->max_extent_size) { 4147 spin_lock(&space_info->lock); 4148 if (space_info->max_extent_size && 4149 ffe_ctl->num_bytes > space_info->max_extent_size) { 4150 ins->offset = space_info->max_extent_size; 4151 spin_unlock(&space_info->lock); 4152 return -ENOSPC; 4153 } else if (space_info->max_extent_size) { 4154 ffe_ctl->use_cluster = false; 4155 } 4156 spin_unlock(&space_info->lock); 4157 } 4158 4159 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4160 &ffe_ctl->empty_cluster); 4161 if (ffe_ctl->last_ptr) { 4162 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4163 4164 spin_lock(&last_ptr->lock); 4165 if (last_ptr->block_group) 4166 ffe_ctl->hint_byte = last_ptr->window_start; 4167 if (last_ptr->fragmented) { 4168 /* 4169 * We still set window_start so we can keep track of the 4170 * last place we found an allocation to try and save 4171 * some time. 4172 */ 4173 ffe_ctl->hint_byte = last_ptr->window_start; 4174 ffe_ctl->use_cluster = false; 4175 } 4176 spin_unlock(&last_ptr->lock); 4177 } 4178 4179 return 0; 4180 } 4181 4182 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4183 struct find_free_extent_ctl *ffe_ctl, 4184 struct btrfs_space_info *space_info, 4185 struct btrfs_key *ins) 4186 { 4187 switch (ffe_ctl->policy) { 4188 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4189 return prepare_allocation_clustered(fs_info, ffe_ctl, 4190 space_info, ins); 4191 case BTRFS_EXTENT_ALLOC_ZONED: 4192 if (ffe_ctl->for_treelog) { 4193 spin_lock(&fs_info->treelog_bg_lock); 4194 if (fs_info->treelog_bg) 4195 ffe_ctl->hint_byte = fs_info->treelog_bg; 4196 spin_unlock(&fs_info->treelog_bg_lock); 4197 } 4198 if (ffe_ctl->for_data_reloc) { 4199 spin_lock(&fs_info->relocation_bg_lock); 4200 if (fs_info->data_reloc_bg) 4201 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4202 spin_unlock(&fs_info->relocation_bg_lock); 4203 } 4204 return 0; 4205 default: 4206 BUG(); 4207 } 4208 } 4209 4210 /* 4211 * walks the btree of allocated extents and find a hole of a given size. 4212 * The key ins is changed to record the hole: 4213 * ins->objectid == start position 4214 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4215 * ins->offset == the size of the hole. 4216 * Any available blocks before search_start are skipped. 4217 * 4218 * If there is no suitable free space, we will record the max size of 4219 * the free space extent currently. 4220 * 4221 * The overall logic and call chain: 4222 * 4223 * find_free_extent() 4224 * |- Iterate through all block groups 4225 * | |- Get a valid block group 4226 * | |- Try to do clustered allocation in that block group 4227 * | |- Try to do unclustered allocation in that block group 4228 * | |- Check if the result is valid 4229 * | | |- If valid, then exit 4230 * | |- Jump to next block group 4231 * | 4232 * |- Push harder to find free extents 4233 * |- If not found, re-iterate all block groups 4234 */ 4235 static noinline int find_free_extent(struct btrfs_root *root, 4236 struct btrfs_key *ins, 4237 struct find_free_extent_ctl *ffe_ctl) 4238 { 4239 struct btrfs_fs_info *fs_info = root->fs_info; 4240 int ret = 0; 4241 int cache_block_group_error = 0; 4242 struct btrfs_block_group *block_group = NULL; 4243 struct btrfs_space_info *space_info; 4244 bool full_search = false; 4245 4246 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4247 4248 ffe_ctl->search_start = 0; 4249 /* For clustered allocation */ 4250 ffe_ctl->empty_cluster = 0; 4251 ffe_ctl->last_ptr = NULL; 4252 ffe_ctl->use_cluster = true; 4253 ffe_ctl->have_caching_bg = false; 4254 ffe_ctl->orig_have_caching_bg = false; 4255 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4256 ffe_ctl->loop = 0; 4257 /* For clustered allocation */ 4258 ffe_ctl->retry_clustered = false; 4259 ffe_ctl->retry_unclustered = false; 4260 ffe_ctl->cached = 0; 4261 ffe_ctl->max_extent_size = 0; 4262 ffe_ctl->total_free_space = 0; 4263 ffe_ctl->found_offset = 0; 4264 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4265 4266 if (btrfs_is_zoned(fs_info)) 4267 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4268 4269 ins->type = BTRFS_EXTENT_ITEM_KEY; 4270 ins->objectid = 0; 4271 ins->offset = 0; 4272 4273 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4274 ffe_ctl->flags); 4275 4276 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4277 if (!space_info) { 4278 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4279 return -ENOSPC; 4280 } 4281 4282 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4283 if (ret < 0) 4284 return ret; 4285 4286 ffe_ctl->search_start = max(ffe_ctl->search_start, 4287 first_logical_byte(fs_info)); 4288 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4289 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4290 block_group = btrfs_lookup_block_group(fs_info, 4291 ffe_ctl->search_start); 4292 /* 4293 * we don't want to use the block group if it doesn't match our 4294 * allocation bits, or if its not cached. 4295 * 4296 * However if we are re-searching with an ideal block group 4297 * picked out then we don't care that the block group is cached. 4298 */ 4299 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4300 block_group->cached != BTRFS_CACHE_NO) { 4301 down_read(&space_info->groups_sem); 4302 if (list_empty(&block_group->list) || 4303 block_group->ro) { 4304 /* 4305 * someone is removing this block group, 4306 * we can't jump into the have_block_group 4307 * target because our list pointers are not 4308 * valid 4309 */ 4310 btrfs_put_block_group(block_group); 4311 up_read(&space_info->groups_sem); 4312 } else { 4313 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4314 block_group->flags); 4315 btrfs_lock_block_group(block_group, 4316 ffe_ctl->delalloc); 4317 goto have_block_group; 4318 } 4319 } else if (block_group) { 4320 btrfs_put_block_group(block_group); 4321 } 4322 } 4323 search: 4324 ffe_ctl->have_caching_bg = false; 4325 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4326 ffe_ctl->index == 0) 4327 full_search = true; 4328 down_read(&space_info->groups_sem); 4329 list_for_each_entry(block_group, 4330 &space_info->block_groups[ffe_ctl->index], list) { 4331 struct btrfs_block_group *bg_ret; 4332 4333 /* If the block group is read-only, we can skip it entirely. */ 4334 if (unlikely(block_group->ro)) { 4335 if (ffe_ctl->for_treelog) 4336 btrfs_clear_treelog_bg(block_group); 4337 if (ffe_ctl->for_data_reloc) 4338 btrfs_clear_data_reloc_bg(block_group); 4339 continue; 4340 } 4341 4342 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4343 ffe_ctl->search_start = block_group->start; 4344 4345 /* 4346 * this can happen if we end up cycling through all the 4347 * raid types, but we want to make sure we only allocate 4348 * for the proper type. 4349 */ 4350 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4351 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4352 BTRFS_BLOCK_GROUP_RAID1_MASK | 4353 BTRFS_BLOCK_GROUP_RAID56_MASK | 4354 BTRFS_BLOCK_GROUP_RAID10; 4355 4356 /* 4357 * if they asked for extra copies and this block group 4358 * doesn't provide them, bail. This does allow us to 4359 * fill raid0 from raid1. 4360 */ 4361 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4362 goto loop; 4363 4364 /* 4365 * This block group has different flags than we want. 4366 * It's possible that we have MIXED_GROUP flag but no 4367 * block group is mixed. Just skip such block group. 4368 */ 4369 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4370 continue; 4371 } 4372 4373 have_block_group: 4374 ffe_ctl->cached = btrfs_block_group_done(block_group); 4375 if (unlikely(!ffe_ctl->cached)) { 4376 ffe_ctl->have_caching_bg = true; 4377 ret = btrfs_cache_block_group(block_group, 0); 4378 4379 /* 4380 * If we get ENOMEM here or something else we want to 4381 * try other block groups, because it may not be fatal. 4382 * However if we can't find anything else we need to 4383 * save our return here so that we return the actual 4384 * error that caused problems, not ENOSPC. 4385 */ 4386 if (ret < 0) { 4387 if (!cache_block_group_error) 4388 cache_block_group_error = ret; 4389 ret = 0; 4390 goto loop; 4391 } 4392 ret = 0; 4393 } 4394 4395 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4396 goto loop; 4397 4398 bg_ret = NULL; 4399 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4400 if (ret == 0) { 4401 if (bg_ret && bg_ret != block_group) { 4402 btrfs_release_block_group(block_group, 4403 ffe_ctl->delalloc); 4404 block_group = bg_ret; 4405 } 4406 } else if (ret == -EAGAIN) { 4407 goto have_block_group; 4408 } else if (ret > 0) { 4409 goto loop; 4410 } 4411 4412 /* Checks */ 4413 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4414 fs_info->stripesize); 4415 4416 /* move on to the next group */ 4417 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4418 block_group->start + block_group->length) { 4419 btrfs_add_free_space_unused(block_group, 4420 ffe_ctl->found_offset, 4421 ffe_ctl->num_bytes); 4422 goto loop; 4423 } 4424 4425 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4426 btrfs_add_free_space_unused(block_group, 4427 ffe_ctl->found_offset, 4428 ffe_ctl->search_start - ffe_ctl->found_offset); 4429 4430 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4431 ffe_ctl->num_bytes, 4432 ffe_ctl->delalloc); 4433 if (ret == -EAGAIN) { 4434 btrfs_add_free_space_unused(block_group, 4435 ffe_ctl->found_offset, 4436 ffe_ctl->num_bytes); 4437 goto loop; 4438 } 4439 btrfs_inc_block_group_reservations(block_group); 4440 4441 /* we are all good, lets return */ 4442 ins->objectid = ffe_ctl->search_start; 4443 ins->offset = ffe_ctl->num_bytes; 4444 4445 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4446 ffe_ctl->num_bytes); 4447 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4448 break; 4449 loop: 4450 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4451 cond_resched(); 4452 } 4453 up_read(&space_info->groups_sem); 4454 4455 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4456 if (ret > 0) 4457 goto search; 4458 4459 if (ret == -ENOSPC && !cache_block_group_error) { 4460 /* 4461 * Use ffe_ctl->total_free_space as fallback if we can't find 4462 * any contiguous hole. 4463 */ 4464 if (!ffe_ctl->max_extent_size) 4465 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4466 spin_lock(&space_info->lock); 4467 space_info->max_extent_size = ffe_ctl->max_extent_size; 4468 spin_unlock(&space_info->lock); 4469 ins->offset = ffe_ctl->max_extent_size; 4470 } else if (ret == -ENOSPC) { 4471 ret = cache_block_group_error; 4472 } 4473 return ret; 4474 } 4475 4476 /* 4477 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4478 * hole that is at least as big as @num_bytes. 4479 * 4480 * @root - The root that will contain this extent 4481 * 4482 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4483 * is used for accounting purposes. This value differs 4484 * from @num_bytes only in the case of compressed extents. 4485 * 4486 * @num_bytes - Number of bytes to allocate on-disk. 4487 * 4488 * @min_alloc_size - Indicates the minimum amount of space that the 4489 * allocator should try to satisfy. In some cases 4490 * @num_bytes may be larger than what is required and if 4491 * the filesystem is fragmented then allocation fails. 4492 * However, the presence of @min_alloc_size gives a 4493 * chance to try and satisfy the smaller allocation. 4494 * 4495 * @empty_size - A hint that you plan on doing more COW. This is the 4496 * size in bytes the allocator should try to find free 4497 * next to the block it returns. This is just a hint and 4498 * may be ignored by the allocator. 4499 * 4500 * @hint_byte - Hint to the allocator to start searching above the byte 4501 * address passed. It might be ignored. 4502 * 4503 * @ins - This key is modified to record the found hole. It will 4504 * have the following values: 4505 * ins->objectid == start position 4506 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4507 * ins->offset == the size of the hole. 4508 * 4509 * @is_data - Boolean flag indicating whether an extent is 4510 * allocated for data (true) or metadata (false) 4511 * 4512 * @delalloc - Boolean flag indicating whether this allocation is for 4513 * delalloc or not. If 'true' data_rwsem of block groups 4514 * is going to be acquired. 4515 * 4516 * 4517 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4518 * case -ENOSPC is returned then @ins->offset will contain the size of the 4519 * largest available hole the allocator managed to find. 4520 */ 4521 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4522 u64 num_bytes, u64 min_alloc_size, 4523 u64 empty_size, u64 hint_byte, 4524 struct btrfs_key *ins, int is_data, int delalloc) 4525 { 4526 struct btrfs_fs_info *fs_info = root->fs_info; 4527 struct find_free_extent_ctl ffe_ctl = {}; 4528 bool final_tried = num_bytes == min_alloc_size; 4529 u64 flags; 4530 int ret; 4531 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4532 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4533 4534 flags = get_alloc_profile_by_root(root, is_data); 4535 again: 4536 WARN_ON(num_bytes < fs_info->sectorsize); 4537 4538 ffe_ctl.ram_bytes = ram_bytes; 4539 ffe_ctl.num_bytes = num_bytes; 4540 ffe_ctl.min_alloc_size = min_alloc_size; 4541 ffe_ctl.empty_size = empty_size; 4542 ffe_ctl.flags = flags; 4543 ffe_ctl.delalloc = delalloc; 4544 ffe_ctl.hint_byte = hint_byte; 4545 ffe_ctl.for_treelog = for_treelog; 4546 ffe_ctl.for_data_reloc = for_data_reloc; 4547 4548 ret = find_free_extent(root, ins, &ffe_ctl); 4549 if (!ret && !is_data) { 4550 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4551 } else if (ret == -ENOSPC) { 4552 if (!final_tried && ins->offset) { 4553 num_bytes = min(num_bytes >> 1, ins->offset); 4554 num_bytes = round_down(num_bytes, 4555 fs_info->sectorsize); 4556 num_bytes = max(num_bytes, min_alloc_size); 4557 ram_bytes = num_bytes; 4558 if (num_bytes == min_alloc_size) 4559 final_tried = true; 4560 goto again; 4561 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4562 struct btrfs_space_info *sinfo; 4563 4564 sinfo = btrfs_find_space_info(fs_info, flags); 4565 btrfs_err(fs_info, 4566 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4567 flags, num_bytes, for_treelog, for_data_reloc); 4568 if (sinfo) 4569 btrfs_dump_space_info(fs_info, sinfo, 4570 num_bytes, 1); 4571 } 4572 } 4573 4574 return ret; 4575 } 4576 4577 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4578 u64 start, u64 len, int delalloc) 4579 { 4580 struct btrfs_block_group *cache; 4581 4582 cache = btrfs_lookup_block_group(fs_info, start); 4583 if (!cache) { 4584 btrfs_err(fs_info, "Unable to find block group for %llu", 4585 start); 4586 return -ENOSPC; 4587 } 4588 4589 btrfs_add_free_space(cache, start, len); 4590 btrfs_free_reserved_bytes(cache, len, delalloc); 4591 trace_btrfs_reserved_extent_free(fs_info, start, len); 4592 4593 btrfs_put_block_group(cache); 4594 return 0; 4595 } 4596 4597 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4598 u64 len) 4599 { 4600 struct btrfs_block_group *cache; 4601 int ret = 0; 4602 4603 cache = btrfs_lookup_block_group(trans->fs_info, start); 4604 if (!cache) { 4605 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4606 start); 4607 return -ENOSPC; 4608 } 4609 4610 ret = pin_down_extent(trans, cache, start, len, 1); 4611 btrfs_put_block_group(cache); 4612 return ret; 4613 } 4614 4615 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4616 u64 num_bytes) 4617 { 4618 struct btrfs_fs_info *fs_info = trans->fs_info; 4619 int ret; 4620 4621 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4622 if (ret) 4623 return ret; 4624 4625 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4626 if (ret) { 4627 ASSERT(!ret); 4628 btrfs_err(fs_info, "update block group failed for %llu %llu", 4629 bytenr, num_bytes); 4630 return ret; 4631 } 4632 4633 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4634 return 0; 4635 } 4636 4637 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4638 u64 parent, u64 root_objectid, 4639 u64 flags, u64 owner, u64 offset, 4640 struct btrfs_key *ins, int ref_mod) 4641 { 4642 struct btrfs_fs_info *fs_info = trans->fs_info; 4643 struct btrfs_root *extent_root; 4644 int ret; 4645 struct btrfs_extent_item *extent_item; 4646 struct btrfs_extent_inline_ref *iref; 4647 struct btrfs_path *path; 4648 struct extent_buffer *leaf; 4649 int type; 4650 u32 size; 4651 4652 if (parent > 0) 4653 type = BTRFS_SHARED_DATA_REF_KEY; 4654 else 4655 type = BTRFS_EXTENT_DATA_REF_KEY; 4656 4657 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4658 4659 path = btrfs_alloc_path(); 4660 if (!path) 4661 return -ENOMEM; 4662 4663 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4664 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4665 if (ret) { 4666 btrfs_free_path(path); 4667 return ret; 4668 } 4669 4670 leaf = path->nodes[0]; 4671 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4672 struct btrfs_extent_item); 4673 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4674 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4675 btrfs_set_extent_flags(leaf, extent_item, 4676 flags | BTRFS_EXTENT_FLAG_DATA); 4677 4678 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4679 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4680 if (parent > 0) { 4681 struct btrfs_shared_data_ref *ref; 4682 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4683 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4684 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4685 } else { 4686 struct btrfs_extent_data_ref *ref; 4687 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4688 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4689 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4690 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4691 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4692 } 4693 4694 btrfs_mark_buffer_dirty(path->nodes[0]); 4695 btrfs_free_path(path); 4696 4697 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4698 } 4699 4700 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4701 struct btrfs_delayed_ref_node *node, 4702 struct btrfs_delayed_extent_op *extent_op) 4703 { 4704 struct btrfs_fs_info *fs_info = trans->fs_info; 4705 struct btrfs_root *extent_root; 4706 int ret; 4707 struct btrfs_extent_item *extent_item; 4708 struct btrfs_key extent_key; 4709 struct btrfs_tree_block_info *block_info; 4710 struct btrfs_extent_inline_ref *iref; 4711 struct btrfs_path *path; 4712 struct extent_buffer *leaf; 4713 struct btrfs_delayed_tree_ref *ref; 4714 u32 size = sizeof(*extent_item) + sizeof(*iref); 4715 u64 flags = extent_op->flags_to_set; 4716 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4717 4718 ref = btrfs_delayed_node_to_tree_ref(node); 4719 4720 extent_key.objectid = node->bytenr; 4721 if (skinny_metadata) { 4722 extent_key.offset = ref->level; 4723 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4724 } else { 4725 extent_key.offset = node->num_bytes; 4726 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4727 size += sizeof(*block_info); 4728 } 4729 4730 path = btrfs_alloc_path(); 4731 if (!path) 4732 return -ENOMEM; 4733 4734 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4735 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4736 size); 4737 if (ret) { 4738 btrfs_free_path(path); 4739 return ret; 4740 } 4741 4742 leaf = path->nodes[0]; 4743 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4744 struct btrfs_extent_item); 4745 btrfs_set_extent_refs(leaf, extent_item, 1); 4746 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4747 btrfs_set_extent_flags(leaf, extent_item, 4748 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4749 4750 if (skinny_metadata) { 4751 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4752 } else { 4753 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4754 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4755 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4756 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4757 } 4758 4759 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4760 btrfs_set_extent_inline_ref_type(leaf, iref, 4761 BTRFS_SHARED_BLOCK_REF_KEY); 4762 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4763 } else { 4764 btrfs_set_extent_inline_ref_type(leaf, iref, 4765 BTRFS_TREE_BLOCK_REF_KEY); 4766 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4767 } 4768 4769 btrfs_mark_buffer_dirty(leaf); 4770 btrfs_free_path(path); 4771 4772 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4773 } 4774 4775 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4776 struct btrfs_root *root, u64 owner, 4777 u64 offset, u64 ram_bytes, 4778 struct btrfs_key *ins) 4779 { 4780 struct btrfs_ref generic_ref = { 0 }; 4781 4782 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4783 4784 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4785 ins->objectid, ins->offset, 0); 4786 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4787 offset, 0, false); 4788 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4789 4790 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4791 } 4792 4793 /* 4794 * this is used by the tree logging recovery code. It records that 4795 * an extent has been allocated and makes sure to clear the free 4796 * space cache bits as well 4797 */ 4798 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4799 u64 root_objectid, u64 owner, u64 offset, 4800 struct btrfs_key *ins) 4801 { 4802 struct btrfs_fs_info *fs_info = trans->fs_info; 4803 int ret; 4804 struct btrfs_block_group *block_group; 4805 struct btrfs_space_info *space_info; 4806 4807 /* 4808 * Mixed block groups will exclude before processing the log so we only 4809 * need to do the exclude dance if this fs isn't mixed. 4810 */ 4811 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4812 ret = __exclude_logged_extent(fs_info, ins->objectid, 4813 ins->offset); 4814 if (ret) 4815 return ret; 4816 } 4817 4818 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4819 if (!block_group) 4820 return -EINVAL; 4821 4822 space_info = block_group->space_info; 4823 spin_lock(&space_info->lock); 4824 spin_lock(&block_group->lock); 4825 space_info->bytes_reserved += ins->offset; 4826 block_group->reserved += ins->offset; 4827 spin_unlock(&block_group->lock); 4828 spin_unlock(&space_info->lock); 4829 4830 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4831 offset, ins, 1); 4832 if (ret) 4833 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4834 btrfs_put_block_group(block_group); 4835 return ret; 4836 } 4837 4838 static struct extent_buffer * 4839 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4840 u64 bytenr, int level, u64 owner, 4841 enum btrfs_lock_nesting nest) 4842 { 4843 struct btrfs_fs_info *fs_info = root->fs_info; 4844 struct extent_buffer *buf; 4845 4846 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4847 if (IS_ERR(buf)) 4848 return buf; 4849 4850 /* 4851 * Extra safety check in case the extent tree is corrupted and extent 4852 * allocator chooses to use a tree block which is already used and 4853 * locked. 4854 */ 4855 if (buf->lock_owner == current->pid) { 4856 btrfs_err_rl(fs_info, 4857 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4858 buf->start, btrfs_header_owner(buf), current->pid); 4859 free_extent_buffer(buf); 4860 return ERR_PTR(-EUCLEAN); 4861 } 4862 4863 /* 4864 * This needs to stay, because we could allocate a freed block from an 4865 * old tree into a new tree, so we need to make sure this new block is 4866 * set to the appropriate level and owner. 4867 */ 4868 btrfs_set_buffer_lockdep_class(owner, buf, level); 4869 __btrfs_tree_lock(buf, nest); 4870 btrfs_clean_tree_block(buf); 4871 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4872 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4873 4874 set_extent_buffer_uptodate(buf); 4875 4876 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4877 btrfs_set_header_level(buf, level); 4878 btrfs_set_header_bytenr(buf, buf->start); 4879 btrfs_set_header_generation(buf, trans->transid); 4880 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4881 btrfs_set_header_owner(buf, owner); 4882 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4883 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4884 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4885 buf->log_index = root->log_transid % 2; 4886 /* 4887 * we allow two log transactions at a time, use different 4888 * EXTENT bit to differentiate dirty pages. 4889 */ 4890 if (buf->log_index == 0) 4891 set_extent_dirty(&root->dirty_log_pages, buf->start, 4892 buf->start + buf->len - 1, GFP_NOFS); 4893 else 4894 set_extent_new(&root->dirty_log_pages, buf->start, 4895 buf->start + buf->len - 1); 4896 } else { 4897 buf->log_index = -1; 4898 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4899 buf->start + buf->len - 1, GFP_NOFS); 4900 } 4901 /* this returns a buffer locked for blocking */ 4902 return buf; 4903 } 4904 4905 /* 4906 * finds a free extent and does all the dirty work required for allocation 4907 * returns the tree buffer or an ERR_PTR on error. 4908 */ 4909 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4910 struct btrfs_root *root, 4911 u64 parent, u64 root_objectid, 4912 const struct btrfs_disk_key *key, 4913 int level, u64 hint, 4914 u64 empty_size, 4915 enum btrfs_lock_nesting nest) 4916 { 4917 struct btrfs_fs_info *fs_info = root->fs_info; 4918 struct btrfs_key ins; 4919 struct btrfs_block_rsv *block_rsv; 4920 struct extent_buffer *buf; 4921 struct btrfs_delayed_extent_op *extent_op; 4922 struct btrfs_ref generic_ref = { 0 }; 4923 u64 flags = 0; 4924 int ret; 4925 u32 blocksize = fs_info->nodesize; 4926 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4927 4928 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4929 if (btrfs_is_testing(fs_info)) { 4930 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4931 level, root_objectid, nest); 4932 if (!IS_ERR(buf)) 4933 root->alloc_bytenr += blocksize; 4934 return buf; 4935 } 4936 #endif 4937 4938 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4939 if (IS_ERR(block_rsv)) 4940 return ERR_CAST(block_rsv); 4941 4942 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4943 empty_size, hint, &ins, 0, 0); 4944 if (ret) 4945 goto out_unuse; 4946 4947 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4948 root_objectid, nest); 4949 if (IS_ERR(buf)) { 4950 ret = PTR_ERR(buf); 4951 goto out_free_reserved; 4952 } 4953 4954 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4955 if (parent == 0) 4956 parent = ins.objectid; 4957 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4958 } else 4959 BUG_ON(parent > 0); 4960 4961 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4962 extent_op = btrfs_alloc_delayed_extent_op(); 4963 if (!extent_op) { 4964 ret = -ENOMEM; 4965 goto out_free_buf; 4966 } 4967 if (key) 4968 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4969 else 4970 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4971 extent_op->flags_to_set = flags; 4972 extent_op->update_key = skinny_metadata ? false : true; 4973 extent_op->update_flags = true; 4974 extent_op->level = level; 4975 4976 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4977 ins.objectid, ins.offset, parent); 4978 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4979 root->root_key.objectid, false); 4980 btrfs_ref_tree_mod(fs_info, &generic_ref); 4981 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4982 if (ret) 4983 goto out_free_delayed; 4984 } 4985 return buf; 4986 4987 out_free_delayed: 4988 btrfs_free_delayed_extent_op(extent_op); 4989 out_free_buf: 4990 btrfs_tree_unlock(buf); 4991 free_extent_buffer(buf); 4992 out_free_reserved: 4993 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4994 out_unuse: 4995 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4996 return ERR_PTR(ret); 4997 } 4998 4999 struct walk_control { 5000 u64 refs[BTRFS_MAX_LEVEL]; 5001 u64 flags[BTRFS_MAX_LEVEL]; 5002 struct btrfs_key update_progress; 5003 struct btrfs_key drop_progress; 5004 int drop_level; 5005 int stage; 5006 int level; 5007 int shared_level; 5008 int update_ref; 5009 int keep_locks; 5010 int reada_slot; 5011 int reada_count; 5012 int restarted; 5013 }; 5014 5015 #define DROP_REFERENCE 1 5016 #define UPDATE_BACKREF 2 5017 5018 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5019 struct btrfs_root *root, 5020 struct walk_control *wc, 5021 struct btrfs_path *path) 5022 { 5023 struct btrfs_fs_info *fs_info = root->fs_info; 5024 u64 bytenr; 5025 u64 generation; 5026 u64 refs; 5027 u64 flags; 5028 u32 nritems; 5029 struct btrfs_key key; 5030 struct extent_buffer *eb; 5031 int ret; 5032 int slot; 5033 int nread = 0; 5034 5035 if (path->slots[wc->level] < wc->reada_slot) { 5036 wc->reada_count = wc->reada_count * 2 / 3; 5037 wc->reada_count = max(wc->reada_count, 2); 5038 } else { 5039 wc->reada_count = wc->reada_count * 3 / 2; 5040 wc->reada_count = min_t(int, wc->reada_count, 5041 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5042 } 5043 5044 eb = path->nodes[wc->level]; 5045 nritems = btrfs_header_nritems(eb); 5046 5047 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5048 if (nread >= wc->reada_count) 5049 break; 5050 5051 cond_resched(); 5052 bytenr = btrfs_node_blockptr(eb, slot); 5053 generation = btrfs_node_ptr_generation(eb, slot); 5054 5055 if (slot == path->slots[wc->level]) 5056 goto reada; 5057 5058 if (wc->stage == UPDATE_BACKREF && 5059 generation <= root->root_key.offset) 5060 continue; 5061 5062 /* We don't lock the tree block, it's OK to be racy here */ 5063 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5064 wc->level - 1, 1, &refs, 5065 &flags); 5066 /* We don't care about errors in readahead. */ 5067 if (ret < 0) 5068 continue; 5069 BUG_ON(refs == 0); 5070 5071 if (wc->stage == DROP_REFERENCE) { 5072 if (refs == 1) 5073 goto reada; 5074 5075 if (wc->level == 1 && 5076 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5077 continue; 5078 if (!wc->update_ref || 5079 generation <= root->root_key.offset) 5080 continue; 5081 btrfs_node_key_to_cpu(eb, &key, slot); 5082 ret = btrfs_comp_cpu_keys(&key, 5083 &wc->update_progress); 5084 if (ret < 0) 5085 continue; 5086 } else { 5087 if (wc->level == 1 && 5088 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5089 continue; 5090 } 5091 reada: 5092 btrfs_readahead_node_child(eb, slot); 5093 nread++; 5094 } 5095 wc->reada_slot = slot; 5096 } 5097 5098 /* 5099 * helper to process tree block while walking down the tree. 5100 * 5101 * when wc->stage == UPDATE_BACKREF, this function updates 5102 * back refs for pointers in the block. 5103 * 5104 * NOTE: return value 1 means we should stop walking down. 5105 */ 5106 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5107 struct btrfs_root *root, 5108 struct btrfs_path *path, 5109 struct walk_control *wc, int lookup_info) 5110 { 5111 struct btrfs_fs_info *fs_info = root->fs_info; 5112 int level = wc->level; 5113 struct extent_buffer *eb = path->nodes[level]; 5114 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5115 int ret; 5116 5117 if (wc->stage == UPDATE_BACKREF && 5118 btrfs_header_owner(eb) != root->root_key.objectid) 5119 return 1; 5120 5121 /* 5122 * when reference count of tree block is 1, it won't increase 5123 * again. once full backref flag is set, we never clear it. 5124 */ 5125 if (lookup_info && 5126 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5127 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5128 BUG_ON(!path->locks[level]); 5129 ret = btrfs_lookup_extent_info(trans, fs_info, 5130 eb->start, level, 1, 5131 &wc->refs[level], 5132 &wc->flags[level]); 5133 BUG_ON(ret == -ENOMEM); 5134 if (ret) 5135 return ret; 5136 BUG_ON(wc->refs[level] == 0); 5137 } 5138 5139 if (wc->stage == DROP_REFERENCE) { 5140 if (wc->refs[level] > 1) 5141 return 1; 5142 5143 if (path->locks[level] && !wc->keep_locks) { 5144 btrfs_tree_unlock_rw(eb, path->locks[level]); 5145 path->locks[level] = 0; 5146 } 5147 return 0; 5148 } 5149 5150 /* wc->stage == UPDATE_BACKREF */ 5151 if (!(wc->flags[level] & flag)) { 5152 BUG_ON(!path->locks[level]); 5153 ret = btrfs_inc_ref(trans, root, eb, 1); 5154 BUG_ON(ret); /* -ENOMEM */ 5155 ret = btrfs_dec_ref(trans, root, eb, 0); 5156 BUG_ON(ret); /* -ENOMEM */ 5157 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5158 btrfs_header_level(eb)); 5159 BUG_ON(ret); /* -ENOMEM */ 5160 wc->flags[level] |= flag; 5161 } 5162 5163 /* 5164 * the block is shared by multiple trees, so it's not good to 5165 * keep the tree lock 5166 */ 5167 if (path->locks[level] && level > 0) { 5168 btrfs_tree_unlock_rw(eb, path->locks[level]); 5169 path->locks[level] = 0; 5170 } 5171 return 0; 5172 } 5173 5174 /* 5175 * This is used to verify a ref exists for this root to deal with a bug where we 5176 * would have a drop_progress key that hadn't been updated properly. 5177 */ 5178 static int check_ref_exists(struct btrfs_trans_handle *trans, 5179 struct btrfs_root *root, u64 bytenr, u64 parent, 5180 int level) 5181 { 5182 struct btrfs_path *path; 5183 struct btrfs_extent_inline_ref *iref; 5184 int ret; 5185 5186 path = btrfs_alloc_path(); 5187 if (!path) 5188 return -ENOMEM; 5189 5190 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5191 root->fs_info->nodesize, parent, 5192 root->root_key.objectid, level, 0); 5193 btrfs_free_path(path); 5194 if (ret == -ENOENT) 5195 return 0; 5196 if (ret < 0) 5197 return ret; 5198 return 1; 5199 } 5200 5201 /* 5202 * helper to process tree block pointer. 5203 * 5204 * when wc->stage == DROP_REFERENCE, this function checks 5205 * reference count of the block pointed to. if the block 5206 * is shared and we need update back refs for the subtree 5207 * rooted at the block, this function changes wc->stage to 5208 * UPDATE_BACKREF. if the block is shared and there is no 5209 * need to update back, this function drops the reference 5210 * to the block. 5211 * 5212 * NOTE: return value 1 means we should stop walking down. 5213 */ 5214 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5215 struct btrfs_root *root, 5216 struct btrfs_path *path, 5217 struct walk_control *wc, int *lookup_info) 5218 { 5219 struct btrfs_fs_info *fs_info = root->fs_info; 5220 u64 bytenr; 5221 u64 generation; 5222 u64 parent; 5223 struct btrfs_key key; 5224 struct btrfs_key first_key; 5225 struct btrfs_ref ref = { 0 }; 5226 struct extent_buffer *next; 5227 int level = wc->level; 5228 int reada = 0; 5229 int ret = 0; 5230 bool need_account = false; 5231 5232 generation = btrfs_node_ptr_generation(path->nodes[level], 5233 path->slots[level]); 5234 /* 5235 * if the lower level block was created before the snapshot 5236 * was created, we know there is no need to update back refs 5237 * for the subtree 5238 */ 5239 if (wc->stage == UPDATE_BACKREF && 5240 generation <= root->root_key.offset) { 5241 *lookup_info = 1; 5242 return 1; 5243 } 5244 5245 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5246 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5247 path->slots[level]); 5248 5249 next = find_extent_buffer(fs_info, bytenr); 5250 if (!next) { 5251 next = btrfs_find_create_tree_block(fs_info, bytenr, 5252 root->root_key.objectid, level - 1); 5253 if (IS_ERR(next)) 5254 return PTR_ERR(next); 5255 reada = 1; 5256 } 5257 btrfs_tree_lock(next); 5258 5259 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5260 &wc->refs[level - 1], 5261 &wc->flags[level - 1]); 5262 if (ret < 0) 5263 goto out_unlock; 5264 5265 if (unlikely(wc->refs[level - 1] == 0)) { 5266 btrfs_err(fs_info, "Missing references."); 5267 ret = -EIO; 5268 goto out_unlock; 5269 } 5270 *lookup_info = 0; 5271 5272 if (wc->stage == DROP_REFERENCE) { 5273 if (wc->refs[level - 1] > 1) { 5274 need_account = true; 5275 if (level == 1 && 5276 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5277 goto skip; 5278 5279 if (!wc->update_ref || 5280 generation <= root->root_key.offset) 5281 goto skip; 5282 5283 btrfs_node_key_to_cpu(path->nodes[level], &key, 5284 path->slots[level]); 5285 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5286 if (ret < 0) 5287 goto skip; 5288 5289 wc->stage = UPDATE_BACKREF; 5290 wc->shared_level = level - 1; 5291 } 5292 } else { 5293 if (level == 1 && 5294 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5295 goto skip; 5296 } 5297 5298 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5299 btrfs_tree_unlock(next); 5300 free_extent_buffer(next); 5301 next = NULL; 5302 *lookup_info = 1; 5303 } 5304 5305 if (!next) { 5306 if (reada && level == 1) 5307 reada_walk_down(trans, root, wc, path); 5308 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5309 generation, level - 1, &first_key); 5310 if (IS_ERR(next)) { 5311 return PTR_ERR(next); 5312 } else if (!extent_buffer_uptodate(next)) { 5313 free_extent_buffer(next); 5314 return -EIO; 5315 } 5316 btrfs_tree_lock(next); 5317 } 5318 5319 level--; 5320 ASSERT(level == btrfs_header_level(next)); 5321 if (level != btrfs_header_level(next)) { 5322 btrfs_err(root->fs_info, "mismatched level"); 5323 ret = -EIO; 5324 goto out_unlock; 5325 } 5326 path->nodes[level] = next; 5327 path->slots[level] = 0; 5328 path->locks[level] = BTRFS_WRITE_LOCK; 5329 wc->level = level; 5330 if (wc->level == 1) 5331 wc->reada_slot = 0; 5332 return 0; 5333 skip: 5334 wc->refs[level - 1] = 0; 5335 wc->flags[level - 1] = 0; 5336 if (wc->stage == DROP_REFERENCE) { 5337 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5338 parent = path->nodes[level]->start; 5339 } else { 5340 ASSERT(root->root_key.objectid == 5341 btrfs_header_owner(path->nodes[level])); 5342 if (root->root_key.objectid != 5343 btrfs_header_owner(path->nodes[level])) { 5344 btrfs_err(root->fs_info, 5345 "mismatched block owner"); 5346 ret = -EIO; 5347 goto out_unlock; 5348 } 5349 parent = 0; 5350 } 5351 5352 /* 5353 * If we had a drop_progress we need to verify the refs are set 5354 * as expected. If we find our ref then we know that from here 5355 * on out everything should be correct, and we can clear the 5356 * ->restarted flag. 5357 */ 5358 if (wc->restarted) { 5359 ret = check_ref_exists(trans, root, bytenr, parent, 5360 level - 1); 5361 if (ret < 0) 5362 goto out_unlock; 5363 if (ret == 0) 5364 goto no_delete; 5365 ret = 0; 5366 wc->restarted = 0; 5367 } 5368 5369 /* 5370 * Reloc tree doesn't contribute to qgroup numbers, and we have 5371 * already accounted them at merge time (replace_path), 5372 * thus we could skip expensive subtree trace here. 5373 */ 5374 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5375 need_account) { 5376 ret = btrfs_qgroup_trace_subtree(trans, next, 5377 generation, level - 1); 5378 if (ret) { 5379 btrfs_err_rl(fs_info, 5380 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5381 ret); 5382 } 5383 } 5384 5385 /* 5386 * We need to update the next key in our walk control so we can 5387 * update the drop_progress key accordingly. We don't care if 5388 * find_next_key doesn't find a key because that means we're at 5389 * the end and are going to clean up now. 5390 */ 5391 wc->drop_level = level; 5392 find_next_key(path, level, &wc->drop_progress); 5393 5394 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5395 fs_info->nodesize, parent); 5396 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5397 0, false); 5398 ret = btrfs_free_extent(trans, &ref); 5399 if (ret) 5400 goto out_unlock; 5401 } 5402 no_delete: 5403 *lookup_info = 1; 5404 ret = 1; 5405 5406 out_unlock: 5407 btrfs_tree_unlock(next); 5408 free_extent_buffer(next); 5409 5410 return ret; 5411 } 5412 5413 /* 5414 * helper to process tree block while walking up the tree. 5415 * 5416 * when wc->stage == DROP_REFERENCE, this function drops 5417 * reference count on the block. 5418 * 5419 * when wc->stage == UPDATE_BACKREF, this function changes 5420 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5421 * to UPDATE_BACKREF previously while processing the block. 5422 * 5423 * NOTE: return value 1 means we should stop walking up. 5424 */ 5425 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5426 struct btrfs_root *root, 5427 struct btrfs_path *path, 5428 struct walk_control *wc) 5429 { 5430 struct btrfs_fs_info *fs_info = root->fs_info; 5431 int ret; 5432 int level = wc->level; 5433 struct extent_buffer *eb = path->nodes[level]; 5434 u64 parent = 0; 5435 5436 if (wc->stage == UPDATE_BACKREF) { 5437 BUG_ON(wc->shared_level < level); 5438 if (level < wc->shared_level) 5439 goto out; 5440 5441 ret = find_next_key(path, level + 1, &wc->update_progress); 5442 if (ret > 0) 5443 wc->update_ref = 0; 5444 5445 wc->stage = DROP_REFERENCE; 5446 wc->shared_level = -1; 5447 path->slots[level] = 0; 5448 5449 /* 5450 * check reference count again if the block isn't locked. 5451 * we should start walking down the tree again if reference 5452 * count is one. 5453 */ 5454 if (!path->locks[level]) { 5455 BUG_ON(level == 0); 5456 btrfs_tree_lock(eb); 5457 path->locks[level] = BTRFS_WRITE_LOCK; 5458 5459 ret = btrfs_lookup_extent_info(trans, fs_info, 5460 eb->start, level, 1, 5461 &wc->refs[level], 5462 &wc->flags[level]); 5463 if (ret < 0) { 5464 btrfs_tree_unlock_rw(eb, path->locks[level]); 5465 path->locks[level] = 0; 5466 return ret; 5467 } 5468 BUG_ON(wc->refs[level] == 0); 5469 if (wc->refs[level] == 1) { 5470 btrfs_tree_unlock_rw(eb, path->locks[level]); 5471 path->locks[level] = 0; 5472 return 1; 5473 } 5474 } 5475 } 5476 5477 /* wc->stage == DROP_REFERENCE */ 5478 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5479 5480 if (wc->refs[level] == 1) { 5481 if (level == 0) { 5482 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5483 ret = btrfs_dec_ref(trans, root, eb, 1); 5484 else 5485 ret = btrfs_dec_ref(trans, root, eb, 0); 5486 BUG_ON(ret); /* -ENOMEM */ 5487 if (is_fstree(root->root_key.objectid)) { 5488 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5489 if (ret) { 5490 btrfs_err_rl(fs_info, 5491 "error %d accounting leaf items, quota is out of sync, rescan required", 5492 ret); 5493 } 5494 } 5495 } 5496 /* make block locked assertion in btrfs_clean_tree_block happy */ 5497 if (!path->locks[level] && 5498 btrfs_header_generation(eb) == trans->transid) { 5499 btrfs_tree_lock(eb); 5500 path->locks[level] = BTRFS_WRITE_LOCK; 5501 } 5502 btrfs_clean_tree_block(eb); 5503 } 5504 5505 if (eb == root->node) { 5506 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5507 parent = eb->start; 5508 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5509 goto owner_mismatch; 5510 } else { 5511 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5512 parent = path->nodes[level + 1]->start; 5513 else if (root->root_key.objectid != 5514 btrfs_header_owner(path->nodes[level + 1])) 5515 goto owner_mismatch; 5516 } 5517 5518 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5519 wc->refs[level] == 1); 5520 out: 5521 wc->refs[level] = 0; 5522 wc->flags[level] = 0; 5523 return 0; 5524 5525 owner_mismatch: 5526 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5527 btrfs_header_owner(eb), root->root_key.objectid); 5528 return -EUCLEAN; 5529 } 5530 5531 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5532 struct btrfs_root *root, 5533 struct btrfs_path *path, 5534 struct walk_control *wc) 5535 { 5536 int level = wc->level; 5537 int lookup_info = 1; 5538 int ret; 5539 5540 while (level >= 0) { 5541 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5542 if (ret > 0) 5543 break; 5544 5545 if (level == 0) 5546 break; 5547 5548 if (path->slots[level] >= 5549 btrfs_header_nritems(path->nodes[level])) 5550 break; 5551 5552 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5553 if (ret > 0) { 5554 path->slots[level]++; 5555 continue; 5556 } else if (ret < 0) 5557 return ret; 5558 level = wc->level; 5559 } 5560 return 0; 5561 } 5562 5563 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5564 struct btrfs_root *root, 5565 struct btrfs_path *path, 5566 struct walk_control *wc, int max_level) 5567 { 5568 int level = wc->level; 5569 int ret; 5570 5571 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5572 while (level < max_level && path->nodes[level]) { 5573 wc->level = level; 5574 if (path->slots[level] + 1 < 5575 btrfs_header_nritems(path->nodes[level])) { 5576 path->slots[level]++; 5577 return 0; 5578 } else { 5579 ret = walk_up_proc(trans, root, path, wc); 5580 if (ret > 0) 5581 return 0; 5582 if (ret < 0) 5583 return ret; 5584 5585 if (path->locks[level]) { 5586 btrfs_tree_unlock_rw(path->nodes[level], 5587 path->locks[level]); 5588 path->locks[level] = 0; 5589 } 5590 free_extent_buffer(path->nodes[level]); 5591 path->nodes[level] = NULL; 5592 level++; 5593 } 5594 } 5595 return 1; 5596 } 5597 5598 /* 5599 * drop a subvolume tree. 5600 * 5601 * this function traverses the tree freeing any blocks that only 5602 * referenced by the tree. 5603 * 5604 * when a shared tree block is found. this function decreases its 5605 * reference count by one. if update_ref is true, this function 5606 * also make sure backrefs for the shared block and all lower level 5607 * blocks are properly updated. 5608 * 5609 * If called with for_reloc == 0, may exit early with -EAGAIN 5610 */ 5611 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5612 { 5613 struct btrfs_fs_info *fs_info = root->fs_info; 5614 struct btrfs_path *path; 5615 struct btrfs_trans_handle *trans; 5616 struct btrfs_root *tree_root = fs_info->tree_root; 5617 struct btrfs_root_item *root_item = &root->root_item; 5618 struct walk_control *wc; 5619 struct btrfs_key key; 5620 int err = 0; 5621 int ret; 5622 int level; 5623 bool root_dropped = false; 5624 bool unfinished_drop = false; 5625 5626 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5627 5628 path = btrfs_alloc_path(); 5629 if (!path) { 5630 err = -ENOMEM; 5631 goto out; 5632 } 5633 5634 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5635 if (!wc) { 5636 btrfs_free_path(path); 5637 err = -ENOMEM; 5638 goto out; 5639 } 5640 5641 /* 5642 * Use join to avoid potential EINTR from transaction start. See 5643 * wait_reserve_ticket and the whole reservation callchain. 5644 */ 5645 if (for_reloc) 5646 trans = btrfs_join_transaction(tree_root); 5647 else 5648 trans = btrfs_start_transaction(tree_root, 0); 5649 if (IS_ERR(trans)) { 5650 err = PTR_ERR(trans); 5651 goto out_free; 5652 } 5653 5654 err = btrfs_run_delayed_items(trans); 5655 if (err) 5656 goto out_end_trans; 5657 5658 /* 5659 * This will help us catch people modifying the fs tree while we're 5660 * dropping it. It is unsafe to mess with the fs tree while it's being 5661 * dropped as we unlock the root node and parent nodes as we walk down 5662 * the tree, assuming nothing will change. If something does change 5663 * then we'll have stale information and drop references to blocks we've 5664 * already dropped. 5665 */ 5666 set_bit(BTRFS_ROOT_DELETING, &root->state); 5667 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5668 5669 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5670 level = btrfs_header_level(root->node); 5671 path->nodes[level] = btrfs_lock_root_node(root); 5672 path->slots[level] = 0; 5673 path->locks[level] = BTRFS_WRITE_LOCK; 5674 memset(&wc->update_progress, 0, 5675 sizeof(wc->update_progress)); 5676 } else { 5677 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5678 memcpy(&wc->update_progress, &key, 5679 sizeof(wc->update_progress)); 5680 5681 level = btrfs_root_drop_level(root_item); 5682 BUG_ON(level == 0); 5683 path->lowest_level = level; 5684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5685 path->lowest_level = 0; 5686 if (ret < 0) { 5687 err = ret; 5688 goto out_end_trans; 5689 } 5690 WARN_ON(ret > 0); 5691 5692 /* 5693 * unlock our path, this is safe because only this 5694 * function is allowed to delete this snapshot 5695 */ 5696 btrfs_unlock_up_safe(path, 0); 5697 5698 level = btrfs_header_level(root->node); 5699 while (1) { 5700 btrfs_tree_lock(path->nodes[level]); 5701 path->locks[level] = BTRFS_WRITE_LOCK; 5702 5703 ret = btrfs_lookup_extent_info(trans, fs_info, 5704 path->nodes[level]->start, 5705 level, 1, &wc->refs[level], 5706 &wc->flags[level]); 5707 if (ret < 0) { 5708 err = ret; 5709 goto out_end_trans; 5710 } 5711 BUG_ON(wc->refs[level] == 0); 5712 5713 if (level == btrfs_root_drop_level(root_item)) 5714 break; 5715 5716 btrfs_tree_unlock(path->nodes[level]); 5717 path->locks[level] = 0; 5718 WARN_ON(wc->refs[level] != 1); 5719 level--; 5720 } 5721 } 5722 5723 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5724 wc->level = level; 5725 wc->shared_level = -1; 5726 wc->stage = DROP_REFERENCE; 5727 wc->update_ref = update_ref; 5728 wc->keep_locks = 0; 5729 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5730 5731 while (1) { 5732 5733 ret = walk_down_tree(trans, root, path, wc); 5734 if (ret < 0) { 5735 err = ret; 5736 break; 5737 } 5738 5739 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5740 if (ret < 0) { 5741 err = ret; 5742 break; 5743 } 5744 5745 if (ret > 0) { 5746 BUG_ON(wc->stage != DROP_REFERENCE); 5747 break; 5748 } 5749 5750 if (wc->stage == DROP_REFERENCE) { 5751 wc->drop_level = wc->level; 5752 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5753 &wc->drop_progress, 5754 path->slots[wc->drop_level]); 5755 } 5756 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5757 &wc->drop_progress); 5758 btrfs_set_root_drop_level(root_item, wc->drop_level); 5759 5760 BUG_ON(wc->level == 0); 5761 if (btrfs_should_end_transaction(trans) || 5762 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5763 ret = btrfs_update_root(trans, tree_root, 5764 &root->root_key, 5765 root_item); 5766 if (ret) { 5767 btrfs_abort_transaction(trans, ret); 5768 err = ret; 5769 goto out_end_trans; 5770 } 5771 5772 btrfs_end_transaction_throttle(trans); 5773 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5774 btrfs_debug(fs_info, 5775 "drop snapshot early exit"); 5776 err = -EAGAIN; 5777 goto out_free; 5778 } 5779 5780 /* 5781 * Use join to avoid potential EINTR from transaction 5782 * start. See wait_reserve_ticket and the whole 5783 * reservation callchain. 5784 */ 5785 if (for_reloc) 5786 trans = btrfs_join_transaction(tree_root); 5787 else 5788 trans = btrfs_start_transaction(tree_root, 0); 5789 if (IS_ERR(trans)) { 5790 err = PTR_ERR(trans); 5791 goto out_free; 5792 } 5793 } 5794 } 5795 btrfs_release_path(path); 5796 if (err) 5797 goto out_end_trans; 5798 5799 ret = btrfs_del_root(trans, &root->root_key); 5800 if (ret) { 5801 btrfs_abort_transaction(trans, ret); 5802 err = ret; 5803 goto out_end_trans; 5804 } 5805 5806 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5807 ret = btrfs_find_root(tree_root, &root->root_key, path, 5808 NULL, NULL); 5809 if (ret < 0) { 5810 btrfs_abort_transaction(trans, ret); 5811 err = ret; 5812 goto out_end_trans; 5813 } else if (ret > 0) { 5814 /* if we fail to delete the orphan item this time 5815 * around, it'll get picked up the next time. 5816 * 5817 * The most common failure here is just -ENOENT. 5818 */ 5819 btrfs_del_orphan_item(trans, tree_root, 5820 root->root_key.objectid); 5821 } 5822 } 5823 5824 /* 5825 * This subvolume is going to be completely dropped, and won't be 5826 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5827 * commit transaction time. So free it here manually. 5828 */ 5829 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5830 btrfs_qgroup_free_meta_all_pertrans(root); 5831 5832 if (test_bit(BTRFS_ROOT_REGISTERED, &root->state)) 5833 btrfs_add_dropped_root(trans, root); 5834 else 5835 btrfs_put_root(root); 5836 root_dropped = true; 5837 out_end_trans: 5838 btrfs_end_transaction_throttle(trans); 5839 out_free: 5840 kfree(wc); 5841 btrfs_free_path(path); 5842 out: 5843 /* 5844 * We were an unfinished drop root, check to see if there are any 5845 * pending, and if not clear and wake up any waiters. 5846 */ 5847 if (!err && unfinished_drop) 5848 btrfs_maybe_wake_unfinished_drop(fs_info); 5849 5850 /* 5851 * So if we need to stop dropping the snapshot for whatever reason we 5852 * need to make sure to add it back to the dead root list so that we 5853 * keep trying to do the work later. This also cleans up roots if we 5854 * don't have it in the radix (like when we recover after a power fail 5855 * or unmount) so we don't leak memory. 5856 */ 5857 if (!for_reloc && !root_dropped) 5858 btrfs_add_dead_root(root); 5859 return err; 5860 } 5861 5862 /* 5863 * drop subtree rooted at tree block 'node'. 5864 * 5865 * NOTE: this function will unlock and release tree block 'node' 5866 * only used by relocation code 5867 */ 5868 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5869 struct btrfs_root *root, 5870 struct extent_buffer *node, 5871 struct extent_buffer *parent) 5872 { 5873 struct btrfs_fs_info *fs_info = root->fs_info; 5874 struct btrfs_path *path; 5875 struct walk_control *wc; 5876 int level; 5877 int parent_level; 5878 int ret = 0; 5879 int wret; 5880 5881 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5882 5883 path = btrfs_alloc_path(); 5884 if (!path) 5885 return -ENOMEM; 5886 5887 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5888 if (!wc) { 5889 btrfs_free_path(path); 5890 return -ENOMEM; 5891 } 5892 5893 btrfs_assert_tree_write_locked(parent); 5894 parent_level = btrfs_header_level(parent); 5895 atomic_inc(&parent->refs); 5896 path->nodes[parent_level] = parent; 5897 path->slots[parent_level] = btrfs_header_nritems(parent); 5898 5899 btrfs_assert_tree_write_locked(node); 5900 level = btrfs_header_level(node); 5901 path->nodes[level] = node; 5902 path->slots[level] = 0; 5903 path->locks[level] = BTRFS_WRITE_LOCK; 5904 5905 wc->refs[parent_level] = 1; 5906 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5907 wc->level = level; 5908 wc->shared_level = -1; 5909 wc->stage = DROP_REFERENCE; 5910 wc->update_ref = 0; 5911 wc->keep_locks = 1; 5912 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5913 5914 while (1) { 5915 wret = walk_down_tree(trans, root, path, wc); 5916 if (wret < 0) { 5917 ret = wret; 5918 break; 5919 } 5920 5921 wret = walk_up_tree(trans, root, path, wc, parent_level); 5922 if (wret < 0) 5923 ret = wret; 5924 if (wret != 0) 5925 break; 5926 } 5927 5928 kfree(wc); 5929 btrfs_free_path(path); 5930 return ret; 5931 } 5932 5933 /* 5934 * helper to account the unused space of all the readonly block group in the 5935 * space_info. takes mirrors into account. 5936 */ 5937 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5938 { 5939 struct btrfs_block_group *block_group; 5940 u64 free_bytes = 0; 5941 int factor; 5942 5943 /* It's df, we don't care if it's racy */ 5944 if (list_empty(&sinfo->ro_bgs)) 5945 return 0; 5946 5947 spin_lock(&sinfo->lock); 5948 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5949 spin_lock(&block_group->lock); 5950 5951 if (!block_group->ro) { 5952 spin_unlock(&block_group->lock); 5953 continue; 5954 } 5955 5956 factor = btrfs_bg_type_to_factor(block_group->flags); 5957 free_bytes += (block_group->length - 5958 block_group->used) * factor; 5959 5960 spin_unlock(&block_group->lock); 5961 } 5962 spin_unlock(&sinfo->lock); 5963 5964 return free_bytes; 5965 } 5966 5967 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5968 u64 start, u64 end) 5969 { 5970 return unpin_extent_range(fs_info, start, end, false); 5971 } 5972 5973 /* 5974 * It used to be that old block groups would be left around forever. 5975 * Iterating over them would be enough to trim unused space. Since we 5976 * now automatically remove them, we also need to iterate over unallocated 5977 * space. 5978 * 5979 * We don't want a transaction for this since the discard may take a 5980 * substantial amount of time. We don't require that a transaction be 5981 * running, but we do need to take a running transaction into account 5982 * to ensure that we're not discarding chunks that were released or 5983 * allocated in the current transaction. 5984 * 5985 * Holding the chunks lock will prevent other threads from allocating 5986 * or releasing chunks, but it won't prevent a running transaction 5987 * from committing and releasing the memory that the pending chunks 5988 * list head uses. For that, we need to take a reference to the 5989 * transaction and hold the commit root sem. We only need to hold 5990 * it while performing the free space search since we have already 5991 * held back allocations. 5992 */ 5993 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5994 { 5995 u64 start = SZ_1M, len = 0, end = 0; 5996 int ret; 5997 5998 *trimmed = 0; 5999 6000 /* Discard not supported = nothing to do. */ 6001 if (!bdev_max_discard_sectors(device->bdev)) 6002 return 0; 6003 6004 /* Not writable = nothing to do. */ 6005 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6006 return 0; 6007 6008 /* No free space = nothing to do. */ 6009 if (device->total_bytes <= device->bytes_used) 6010 return 0; 6011 6012 ret = 0; 6013 6014 while (1) { 6015 struct btrfs_fs_info *fs_info = device->fs_info; 6016 u64 bytes; 6017 6018 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6019 if (ret) 6020 break; 6021 6022 find_first_clear_extent_bit(&device->alloc_state, start, 6023 &start, &end, 6024 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6025 6026 /* Check if there are any CHUNK_* bits left */ 6027 if (start > device->total_bytes) { 6028 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6029 btrfs_warn_in_rcu(fs_info, 6030 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6031 start, end - start + 1, 6032 rcu_str_deref(device->name), 6033 device->total_bytes); 6034 mutex_unlock(&fs_info->chunk_mutex); 6035 ret = 0; 6036 break; 6037 } 6038 6039 /* Ensure we skip the reserved area in the first 1M */ 6040 start = max_t(u64, start, SZ_1M); 6041 6042 /* 6043 * If find_first_clear_extent_bit find a range that spans the 6044 * end of the device it will set end to -1, in this case it's up 6045 * to the caller to trim the value to the size of the device. 6046 */ 6047 end = min(end, device->total_bytes - 1); 6048 6049 len = end - start + 1; 6050 6051 /* We didn't find any extents */ 6052 if (!len) { 6053 mutex_unlock(&fs_info->chunk_mutex); 6054 ret = 0; 6055 break; 6056 } 6057 6058 ret = btrfs_issue_discard(device->bdev, start, len, 6059 &bytes); 6060 if (!ret) 6061 set_extent_bits(&device->alloc_state, start, 6062 start + bytes - 1, 6063 CHUNK_TRIMMED); 6064 mutex_unlock(&fs_info->chunk_mutex); 6065 6066 if (ret) 6067 break; 6068 6069 start += len; 6070 *trimmed += bytes; 6071 6072 if (fatal_signal_pending(current)) { 6073 ret = -ERESTARTSYS; 6074 break; 6075 } 6076 6077 cond_resched(); 6078 } 6079 6080 return ret; 6081 } 6082 6083 /* 6084 * Trim the whole filesystem by: 6085 * 1) trimming the free space in each block group 6086 * 2) trimming the unallocated space on each device 6087 * 6088 * This will also continue trimming even if a block group or device encounters 6089 * an error. The return value will be the last error, or 0 if nothing bad 6090 * happens. 6091 */ 6092 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6093 { 6094 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6095 struct btrfs_block_group *cache = NULL; 6096 struct btrfs_device *device; 6097 u64 group_trimmed; 6098 u64 range_end = U64_MAX; 6099 u64 start; 6100 u64 end; 6101 u64 trimmed = 0; 6102 u64 bg_failed = 0; 6103 u64 dev_failed = 0; 6104 int bg_ret = 0; 6105 int dev_ret = 0; 6106 int ret = 0; 6107 6108 if (range->start == U64_MAX) 6109 return -EINVAL; 6110 6111 /* 6112 * Check range overflow if range->len is set. 6113 * The default range->len is U64_MAX. 6114 */ 6115 if (range->len != U64_MAX && 6116 check_add_overflow(range->start, range->len, &range_end)) 6117 return -EINVAL; 6118 6119 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6120 for (; cache; cache = btrfs_next_block_group(cache)) { 6121 if (cache->start >= range_end) { 6122 btrfs_put_block_group(cache); 6123 break; 6124 } 6125 6126 start = max(range->start, cache->start); 6127 end = min(range_end, cache->start + cache->length); 6128 6129 if (end - start >= range->minlen) { 6130 if (!btrfs_block_group_done(cache)) { 6131 ret = btrfs_cache_block_group(cache, 0); 6132 if (ret) { 6133 bg_failed++; 6134 bg_ret = ret; 6135 continue; 6136 } 6137 ret = btrfs_wait_block_group_cache_done(cache); 6138 if (ret) { 6139 bg_failed++; 6140 bg_ret = ret; 6141 continue; 6142 } 6143 } 6144 ret = btrfs_trim_block_group(cache, 6145 &group_trimmed, 6146 start, 6147 end, 6148 range->minlen); 6149 6150 trimmed += group_trimmed; 6151 if (ret) { 6152 bg_failed++; 6153 bg_ret = ret; 6154 continue; 6155 } 6156 } 6157 } 6158 6159 if (bg_failed) 6160 btrfs_warn(fs_info, 6161 "failed to trim %llu block group(s), last error %d", 6162 bg_failed, bg_ret); 6163 6164 mutex_lock(&fs_devices->device_list_mutex); 6165 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6166 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6167 continue; 6168 6169 ret = btrfs_trim_free_extents(device, &group_trimmed); 6170 if (ret) { 6171 dev_failed++; 6172 dev_ret = ret; 6173 break; 6174 } 6175 6176 trimmed += group_trimmed; 6177 } 6178 mutex_unlock(&fs_devices->device_list_mutex); 6179 6180 if (dev_failed) 6181 btrfs_warn(fs_info, 6182 "failed to trim %llu device(s), last error %d", 6183 dev_failed, dev_ret); 6184 range->len = trimmed; 6185 if (bg_ret) 6186 return bg_ret; 6187 return dev_ret; 6188 } 6189