1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1320 struct btrfs_extent_inline_ref *iref) 1321 { 1322 struct btrfs_key key; 1323 struct extent_buffer *leaf; 1324 struct btrfs_extent_data_ref *ref1; 1325 struct btrfs_shared_data_ref *ref2; 1326 u32 num_refs = 0; 1327 1328 leaf = path->nodes[0]; 1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1330 if (iref) { 1331 if (btrfs_extent_inline_ref_type(leaf, iref) == 1332 BTRFS_EXTENT_DATA_REF_KEY) { 1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1335 } else { 1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1338 } 1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1340 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1341 struct btrfs_extent_data_ref); 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1344 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_shared_data_ref); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1349 struct btrfs_extent_ref_v0 *ref0; 1350 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_ref_v0); 1352 num_refs = btrfs_ref_count_v0(leaf, ref0); 1353 #endif 1354 } else { 1355 WARN_ON(1); 1356 } 1357 return num_refs; 1358 } 1359 1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1361 struct btrfs_root *root, 1362 struct btrfs_path *path, 1363 u64 bytenr, u64 parent, 1364 u64 root_objectid) 1365 { 1366 struct btrfs_key key; 1367 int ret; 1368 1369 key.objectid = bytenr; 1370 if (parent) { 1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1372 key.offset = parent; 1373 } else { 1374 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1375 key.offset = root_objectid; 1376 } 1377 1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1379 if (ret > 0) 1380 ret = -ENOENT; 1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1382 if (ret == -ENOENT && parent) { 1383 btrfs_release_path(path); 1384 key.type = BTRFS_EXTENT_REF_V0_KEY; 1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1386 if (ret > 0) 1387 ret = -ENOENT; 1388 } 1389 #endif 1390 return ret; 1391 } 1392 1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1394 struct btrfs_root *root, 1395 struct btrfs_path *path, 1396 u64 bytenr, u64 parent, 1397 u64 root_objectid) 1398 { 1399 struct btrfs_key key; 1400 int ret; 1401 1402 key.objectid = bytenr; 1403 if (parent) { 1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1405 key.offset = parent; 1406 } else { 1407 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1408 key.offset = root_objectid; 1409 } 1410 1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1412 btrfs_release_path(path); 1413 return ret; 1414 } 1415 1416 static inline int extent_ref_type(u64 parent, u64 owner) 1417 { 1418 int type; 1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1420 if (parent > 0) 1421 type = BTRFS_SHARED_BLOCK_REF_KEY; 1422 else 1423 type = BTRFS_TREE_BLOCK_REF_KEY; 1424 } else { 1425 if (parent > 0) 1426 type = BTRFS_SHARED_DATA_REF_KEY; 1427 else 1428 type = BTRFS_EXTENT_DATA_REF_KEY; 1429 } 1430 return type; 1431 } 1432 1433 static int find_next_key(struct btrfs_path *path, int level, 1434 struct btrfs_key *key) 1435 1436 { 1437 for (; level < BTRFS_MAX_LEVEL; level++) { 1438 if (!path->nodes[level]) 1439 break; 1440 if (path->slots[level] + 1 >= 1441 btrfs_header_nritems(path->nodes[level])) 1442 continue; 1443 if (level == 0) 1444 btrfs_item_key_to_cpu(path->nodes[level], key, 1445 path->slots[level] + 1); 1446 else 1447 btrfs_node_key_to_cpu(path->nodes[level], key, 1448 path->slots[level] + 1); 1449 return 0; 1450 } 1451 return 1; 1452 } 1453 1454 /* 1455 * look for inline back ref. if back ref is found, *ref_ret is set 1456 * to the address of inline back ref, and 0 is returned. 1457 * 1458 * if back ref isn't found, *ref_ret is set to the address where it 1459 * should be inserted, and -ENOENT is returned. 1460 * 1461 * if insert is true and there are too many inline back refs, the path 1462 * points to the extent item, and -EAGAIN is returned. 1463 * 1464 * NOTE: inline back refs are ordered in the same way that back ref 1465 * items in the tree are ordered. 1466 */ 1467 static noinline_for_stack 1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1469 struct btrfs_root *root, 1470 struct btrfs_path *path, 1471 struct btrfs_extent_inline_ref **ref_ret, 1472 u64 bytenr, u64 num_bytes, 1473 u64 parent, u64 root_objectid, 1474 u64 owner, u64 offset, int insert) 1475 { 1476 struct btrfs_key key; 1477 struct extent_buffer *leaf; 1478 struct btrfs_extent_item *ei; 1479 struct btrfs_extent_inline_ref *iref; 1480 u64 flags; 1481 u64 item_size; 1482 unsigned long ptr; 1483 unsigned long end; 1484 int extra_size; 1485 int type; 1486 int want; 1487 int ret; 1488 int err = 0; 1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1490 SKINNY_METADATA); 1491 1492 key.objectid = bytenr; 1493 key.type = BTRFS_EXTENT_ITEM_KEY; 1494 key.offset = num_bytes; 1495 1496 want = extent_ref_type(parent, owner); 1497 if (insert) { 1498 extra_size = btrfs_extent_inline_ref_size(want); 1499 path->keep_locks = 1; 1500 } else 1501 extra_size = -1; 1502 1503 /* 1504 * Owner is our parent level, so we can just add one to get the level 1505 * for the block we are interested in. 1506 */ 1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1508 key.type = BTRFS_METADATA_ITEM_KEY; 1509 key.offset = owner; 1510 } 1511 1512 again: 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1514 if (ret < 0) { 1515 err = ret; 1516 goto out; 1517 } 1518 1519 /* 1520 * We may be a newly converted file system which still has the old fat 1521 * extent entries for metadata, so try and see if we have one of those. 1522 */ 1523 if (ret > 0 && skinny_metadata) { 1524 skinny_metadata = false; 1525 if (path->slots[0]) { 1526 path->slots[0]--; 1527 btrfs_item_key_to_cpu(path->nodes[0], &key, 1528 path->slots[0]); 1529 if (key.objectid == bytenr && 1530 key.type == BTRFS_EXTENT_ITEM_KEY && 1531 key.offset == num_bytes) 1532 ret = 0; 1533 } 1534 if (ret) { 1535 key.objectid = bytenr; 1536 key.type = BTRFS_EXTENT_ITEM_KEY; 1537 key.offset = num_bytes; 1538 btrfs_release_path(path); 1539 goto again; 1540 } 1541 } 1542 1543 if (ret && !insert) { 1544 err = -ENOENT; 1545 goto out; 1546 } else if (WARN_ON(ret)) { 1547 err = -EIO; 1548 goto out; 1549 } 1550 1551 leaf = path->nodes[0]; 1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1554 if (item_size < sizeof(*ei)) { 1555 if (!insert) { 1556 err = -ENOENT; 1557 goto out; 1558 } 1559 ret = convert_extent_item_v0(trans, root, path, owner, 1560 extra_size); 1561 if (ret < 0) { 1562 err = ret; 1563 goto out; 1564 } 1565 leaf = path->nodes[0]; 1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1567 } 1568 #endif 1569 BUG_ON(item_size < sizeof(*ei)); 1570 1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1572 flags = btrfs_extent_flags(leaf, ei); 1573 1574 ptr = (unsigned long)(ei + 1); 1575 end = (unsigned long)ei + item_size; 1576 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1578 ptr += sizeof(struct btrfs_tree_block_info); 1579 BUG_ON(ptr > end); 1580 } 1581 1582 err = -ENOENT; 1583 while (1) { 1584 if (ptr >= end) { 1585 WARN_ON(ptr > end); 1586 break; 1587 } 1588 iref = (struct btrfs_extent_inline_ref *)ptr; 1589 type = btrfs_extent_inline_ref_type(leaf, iref); 1590 if (want < type) 1591 break; 1592 if (want > type) { 1593 ptr += btrfs_extent_inline_ref_size(type); 1594 continue; 1595 } 1596 1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1598 struct btrfs_extent_data_ref *dref; 1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1600 if (match_extent_data_ref(leaf, dref, root_objectid, 1601 owner, offset)) { 1602 err = 0; 1603 break; 1604 } 1605 if (hash_extent_data_ref_item(leaf, dref) < 1606 hash_extent_data_ref(root_objectid, owner, offset)) 1607 break; 1608 } else { 1609 u64 ref_offset; 1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1611 if (parent > 0) { 1612 if (parent == ref_offset) { 1613 err = 0; 1614 break; 1615 } 1616 if (ref_offset < parent) 1617 break; 1618 } else { 1619 if (root_objectid == ref_offset) { 1620 err = 0; 1621 break; 1622 } 1623 if (ref_offset < root_objectid) 1624 break; 1625 } 1626 } 1627 ptr += btrfs_extent_inline_ref_size(type); 1628 } 1629 if (err == -ENOENT && insert) { 1630 if (item_size + extra_size >= 1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1632 err = -EAGAIN; 1633 goto out; 1634 } 1635 /* 1636 * To add new inline back ref, we have to make sure 1637 * there is no corresponding back ref item. 1638 * For simplicity, we just do not add new inline back 1639 * ref if there is any kind of item for this block 1640 */ 1641 if (find_next_key(path, 0, &key) == 0 && 1642 key.objectid == bytenr && 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1644 err = -EAGAIN; 1645 goto out; 1646 } 1647 } 1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1649 out: 1650 if (insert) { 1651 path->keep_locks = 0; 1652 btrfs_unlock_up_safe(path, 1); 1653 } 1654 return err; 1655 } 1656 1657 /* 1658 * helper to add new inline back ref 1659 */ 1660 static noinline_for_stack 1661 void setup_inline_extent_backref(struct btrfs_root *root, 1662 struct btrfs_path *path, 1663 struct btrfs_extent_inline_ref *iref, 1664 u64 parent, u64 root_objectid, 1665 u64 owner, u64 offset, int refs_to_add, 1666 struct btrfs_delayed_extent_op *extent_op) 1667 { 1668 struct extent_buffer *leaf; 1669 struct btrfs_extent_item *ei; 1670 unsigned long ptr; 1671 unsigned long end; 1672 unsigned long item_offset; 1673 u64 refs; 1674 int size; 1675 int type; 1676 1677 leaf = path->nodes[0]; 1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1679 item_offset = (unsigned long)iref - (unsigned long)ei; 1680 1681 type = extent_ref_type(parent, owner); 1682 size = btrfs_extent_inline_ref_size(type); 1683 1684 btrfs_extend_item(root, path, size); 1685 1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1687 refs = btrfs_extent_refs(leaf, ei); 1688 refs += refs_to_add; 1689 btrfs_set_extent_refs(leaf, ei, refs); 1690 if (extent_op) 1691 __run_delayed_extent_op(extent_op, leaf, ei); 1692 1693 ptr = (unsigned long)ei + item_offset; 1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1695 if (ptr < end - size) 1696 memmove_extent_buffer(leaf, ptr + size, ptr, 1697 end - size - ptr); 1698 1699 iref = (struct btrfs_extent_inline_ref *)ptr; 1700 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1702 struct btrfs_extent_data_ref *dref; 1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1709 struct btrfs_shared_data_ref *sref; 1710 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1717 } 1718 btrfs_mark_buffer_dirty(leaf); 1719 } 1720 1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1722 struct btrfs_root *root, 1723 struct btrfs_path *path, 1724 struct btrfs_extent_inline_ref **ref_ret, 1725 u64 bytenr, u64 num_bytes, u64 parent, 1726 u64 root_objectid, u64 owner, u64 offset) 1727 { 1728 int ret; 1729 1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1731 bytenr, num_bytes, parent, 1732 root_objectid, owner, offset, 0); 1733 if (ret != -ENOENT) 1734 return ret; 1735 1736 btrfs_release_path(path); 1737 *ref_ret = NULL; 1738 1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1741 root_objectid); 1742 } else { 1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1744 root_objectid, owner, offset); 1745 } 1746 return ret; 1747 } 1748 1749 /* 1750 * helper to update/remove inline back ref 1751 */ 1752 static noinline_for_stack 1753 void update_inline_extent_backref(struct btrfs_root *root, 1754 struct btrfs_path *path, 1755 struct btrfs_extent_inline_ref *iref, 1756 int refs_to_mod, 1757 struct btrfs_delayed_extent_op *extent_op, 1758 int *last_ref) 1759 { 1760 struct extent_buffer *leaf; 1761 struct btrfs_extent_item *ei; 1762 struct btrfs_extent_data_ref *dref = NULL; 1763 struct btrfs_shared_data_ref *sref = NULL; 1764 unsigned long ptr; 1765 unsigned long end; 1766 u32 item_size; 1767 int size; 1768 int type; 1769 u64 refs; 1770 1771 leaf = path->nodes[0]; 1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1773 refs = btrfs_extent_refs(leaf, ei); 1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1775 refs += refs_to_mod; 1776 btrfs_set_extent_refs(leaf, ei, refs); 1777 if (extent_op) 1778 __run_delayed_extent_op(extent_op, leaf, ei); 1779 1780 type = btrfs_extent_inline_ref_type(leaf, iref); 1781 1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1784 refs = btrfs_extent_data_ref_count(leaf, dref); 1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1786 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1787 refs = btrfs_shared_data_ref_count(leaf, sref); 1788 } else { 1789 refs = 1; 1790 BUG_ON(refs_to_mod != -1); 1791 } 1792 1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1794 refs += refs_to_mod; 1795 1796 if (refs > 0) { 1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1798 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1799 else 1800 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1801 } else { 1802 *last_ref = 1; 1803 size = btrfs_extent_inline_ref_size(type); 1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1805 ptr = (unsigned long)iref; 1806 end = (unsigned long)ei + item_size; 1807 if (ptr + size < end) 1808 memmove_extent_buffer(leaf, ptr, ptr + size, 1809 end - ptr - size); 1810 item_size -= size; 1811 btrfs_truncate_item(root, path, item_size, 1); 1812 } 1813 btrfs_mark_buffer_dirty(leaf); 1814 } 1815 1816 static noinline_for_stack 1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1818 struct btrfs_root *root, 1819 struct btrfs_path *path, 1820 u64 bytenr, u64 num_bytes, u64 parent, 1821 u64 root_objectid, u64 owner, 1822 u64 offset, int refs_to_add, 1823 struct btrfs_delayed_extent_op *extent_op) 1824 { 1825 struct btrfs_extent_inline_ref *iref; 1826 int ret; 1827 1828 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1829 bytenr, num_bytes, parent, 1830 root_objectid, owner, offset, 1); 1831 if (ret == 0) { 1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1833 update_inline_extent_backref(root, path, iref, 1834 refs_to_add, extent_op, NULL); 1835 } else if (ret == -ENOENT) { 1836 setup_inline_extent_backref(root, path, iref, parent, 1837 root_objectid, owner, offset, 1838 refs_to_add, extent_op); 1839 ret = 0; 1840 } 1841 return ret; 1842 } 1843 1844 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1845 struct btrfs_root *root, 1846 struct btrfs_path *path, 1847 u64 bytenr, u64 parent, u64 root_objectid, 1848 u64 owner, u64 offset, int refs_to_add) 1849 { 1850 int ret; 1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1852 BUG_ON(refs_to_add != 1); 1853 ret = insert_tree_block_ref(trans, root, path, bytenr, 1854 parent, root_objectid); 1855 } else { 1856 ret = insert_extent_data_ref(trans, root, path, bytenr, 1857 parent, root_objectid, 1858 owner, offset, refs_to_add); 1859 } 1860 return ret; 1861 } 1862 1863 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1864 struct btrfs_root *root, 1865 struct btrfs_path *path, 1866 struct btrfs_extent_inline_ref *iref, 1867 int refs_to_drop, int is_data, int *last_ref) 1868 { 1869 int ret = 0; 1870 1871 BUG_ON(!is_data && refs_to_drop != 1); 1872 if (iref) { 1873 update_inline_extent_backref(root, path, iref, 1874 -refs_to_drop, NULL, last_ref); 1875 } else if (is_data) { 1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1877 last_ref); 1878 } else { 1879 *last_ref = 1; 1880 ret = btrfs_del_item(trans, root, path); 1881 } 1882 return ret; 1883 } 1884 1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1887 u64 *discarded_bytes) 1888 { 1889 int j, ret = 0; 1890 u64 bytes_left, end; 1891 u64 aligned_start = ALIGN(start, 1 << 9); 1892 1893 if (WARN_ON(start != aligned_start)) { 1894 len -= aligned_start - start; 1895 len = round_down(len, 1 << 9); 1896 start = aligned_start; 1897 } 1898 1899 *discarded_bytes = 0; 1900 1901 if (!len) 1902 return 0; 1903 1904 end = start + len; 1905 bytes_left = len; 1906 1907 /* Skip any superblocks on this device. */ 1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1909 u64 sb_start = btrfs_sb_offset(j); 1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1911 u64 size = sb_start - start; 1912 1913 if (!in_range(sb_start, start, bytes_left) && 1914 !in_range(sb_end, start, bytes_left) && 1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1916 continue; 1917 1918 /* 1919 * Superblock spans beginning of range. Adjust start and 1920 * try again. 1921 */ 1922 if (sb_start <= start) { 1923 start += sb_end - start; 1924 if (start > end) { 1925 bytes_left = 0; 1926 break; 1927 } 1928 bytes_left = end - start; 1929 continue; 1930 } 1931 1932 if (size) { 1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1934 GFP_NOFS, 0); 1935 if (!ret) 1936 *discarded_bytes += size; 1937 else if (ret != -EOPNOTSUPP) 1938 return ret; 1939 } 1940 1941 start = sb_end; 1942 if (start > end) { 1943 bytes_left = 0; 1944 break; 1945 } 1946 bytes_left = end - start; 1947 } 1948 1949 if (bytes_left) { 1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1951 GFP_NOFS, 0); 1952 if (!ret) 1953 *discarded_bytes += bytes_left; 1954 } 1955 return ret; 1956 } 1957 1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1959 u64 num_bytes, u64 *actual_bytes) 1960 { 1961 int ret; 1962 u64 discarded_bytes = 0; 1963 struct btrfs_bio *bbio = NULL; 1964 1965 1966 /* Tell the block device(s) that the sectors can be discarded */ 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1968 bytenr, &num_bytes, &bbio, 0); 1969 /* Error condition is -ENOMEM */ 1970 if (!ret) { 1971 struct btrfs_bio_stripe *stripe = bbio->stripes; 1972 int i; 1973 1974 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1976 u64 bytes; 1977 if (!stripe->dev->can_discard) 1978 continue; 1979 1980 ret = btrfs_issue_discard(stripe->dev->bdev, 1981 stripe->physical, 1982 stripe->length, 1983 &bytes); 1984 if (!ret) 1985 discarded_bytes += bytes; 1986 else if (ret != -EOPNOTSUPP) 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1988 1989 /* 1990 * Just in case we get back EOPNOTSUPP for some reason, 1991 * just ignore the return value so we don't screw up 1992 * people calling discard_extent. 1993 */ 1994 ret = 0; 1995 } 1996 btrfs_put_bbio(bbio); 1997 } 1998 1999 if (actual_bytes) 2000 *actual_bytes = discarded_bytes; 2001 2002 2003 if (ret == -EOPNOTSUPP) 2004 ret = 0; 2005 return ret; 2006 } 2007 2008 /* Can return -ENOMEM */ 2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 u64 bytenr, u64 num_bytes, u64 parent, 2012 u64 root_objectid, u64 owner, u64 offset, 2013 int no_quota) 2014 { 2015 int ret; 2016 struct btrfs_fs_info *fs_info = root->fs_info; 2017 2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2019 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2020 2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2023 num_bytes, 2024 parent, root_objectid, (int)owner, 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2026 } else { 2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2028 num_bytes, 2029 parent, root_objectid, owner, offset, 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2031 } 2032 return ret; 2033 } 2034 2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2036 struct btrfs_root *root, 2037 struct btrfs_delayed_ref_node *node, 2038 u64 parent, u64 root_objectid, 2039 u64 owner, u64 offset, int refs_to_add, 2040 struct btrfs_delayed_extent_op *extent_op) 2041 { 2042 struct btrfs_fs_info *fs_info = root->fs_info; 2043 struct btrfs_path *path; 2044 struct extent_buffer *leaf; 2045 struct btrfs_extent_item *item; 2046 struct btrfs_key key; 2047 u64 bytenr = node->bytenr; 2048 u64 num_bytes = node->num_bytes; 2049 u64 refs; 2050 int ret; 2051 int no_quota = node->no_quota; 2052 2053 path = btrfs_alloc_path(); 2054 if (!path) 2055 return -ENOMEM; 2056 2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 2058 no_quota = 1; 2059 2060 path->reada = 1; 2061 path->leave_spinning = 1; 2062 /* this will setup the path even if it fails to insert the back ref */ 2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2064 bytenr, num_bytes, parent, 2065 root_objectid, owner, offset, 2066 refs_to_add, extent_op); 2067 if ((ret < 0 && ret != -EAGAIN) || !ret) 2068 goto out; 2069 2070 /* 2071 * Ok we had -EAGAIN which means we didn't have space to insert and 2072 * inline extent ref, so just update the reference count and add a 2073 * normal backref. 2074 */ 2075 leaf = path->nodes[0]; 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 refs = btrfs_extent_refs(leaf, item); 2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2080 if (extent_op) 2081 __run_delayed_extent_op(extent_op, leaf, item); 2082 2083 btrfs_mark_buffer_dirty(leaf); 2084 btrfs_release_path(path); 2085 2086 path->reada = 1; 2087 path->leave_spinning = 1; 2088 /* now insert the actual backref */ 2089 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2090 path, bytenr, parent, root_objectid, 2091 owner, offset, refs_to_add); 2092 if (ret) 2093 btrfs_abort_transaction(trans, root, ret); 2094 out: 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_delayed_ref_node *node, 2102 struct btrfs_delayed_extent_op *extent_op, 2103 int insert_reserved) 2104 { 2105 int ret = 0; 2106 struct btrfs_delayed_data_ref *ref; 2107 struct btrfs_key ins; 2108 u64 parent = 0; 2109 u64 ref_root = 0; 2110 u64 flags = 0; 2111 2112 ins.objectid = node->bytenr; 2113 ins.offset = node->num_bytes; 2114 ins.type = BTRFS_EXTENT_ITEM_KEY; 2115 2116 ref = btrfs_delayed_node_to_data_ref(node); 2117 trace_run_delayed_data_ref(node, ref, node->action); 2118 2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2120 parent = ref->parent; 2121 ref_root = ref->root; 2122 2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2124 if (extent_op) 2125 flags |= extent_op->flags_to_set; 2126 ret = alloc_reserved_file_extent(trans, root, 2127 parent, ref_root, flags, 2128 ref->objectid, ref->offset, 2129 &ins, node->ref_mod); 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2132 ref_root, ref->objectid, 2133 ref->offset, node->ref_mod, 2134 extent_op); 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2136 ret = __btrfs_free_extent(trans, root, node, parent, 2137 ref_root, ref->objectid, 2138 ref->offset, node->ref_mod, 2139 extent_op); 2140 } else { 2141 BUG(); 2142 } 2143 return ret; 2144 } 2145 2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2147 struct extent_buffer *leaf, 2148 struct btrfs_extent_item *ei) 2149 { 2150 u64 flags = btrfs_extent_flags(leaf, ei); 2151 if (extent_op->update_flags) { 2152 flags |= extent_op->flags_to_set; 2153 btrfs_set_extent_flags(leaf, ei, flags); 2154 } 2155 2156 if (extent_op->update_key) { 2157 struct btrfs_tree_block_info *bi; 2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2159 bi = (struct btrfs_tree_block_info *)(ei + 1); 2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2161 } 2162 } 2163 2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2165 struct btrfs_root *root, 2166 struct btrfs_delayed_ref_node *node, 2167 struct btrfs_delayed_extent_op *extent_op) 2168 { 2169 struct btrfs_key key; 2170 struct btrfs_path *path; 2171 struct btrfs_extent_item *ei; 2172 struct extent_buffer *leaf; 2173 u32 item_size; 2174 int ret; 2175 int err = 0; 2176 int metadata = !extent_op->is_data; 2177 2178 if (trans->aborted) 2179 return 0; 2180 2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2182 metadata = 0; 2183 2184 path = btrfs_alloc_path(); 2185 if (!path) 2186 return -ENOMEM; 2187 2188 key.objectid = node->bytenr; 2189 2190 if (metadata) { 2191 key.type = BTRFS_METADATA_ITEM_KEY; 2192 key.offset = extent_op->level; 2193 } else { 2194 key.type = BTRFS_EXTENT_ITEM_KEY; 2195 key.offset = node->num_bytes; 2196 } 2197 2198 again: 2199 path->reada = 1; 2200 path->leave_spinning = 1; 2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2202 path, 0, 1); 2203 if (ret < 0) { 2204 err = ret; 2205 goto out; 2206 } 2207 if (ret > 0) { 2208 if (metadata) { 2209 if (path->slots[0] > 0) { 2210 path->slots[0]--; 2211 btrfs_item_key_to_cpu(path->nodes[0], &key, 2212 path->slots[0]); 2213 if (key.objectid == node->bytenr && 2214 key.type == BTRFS_EXTENT_ITEM_KEY && 2215 key.offset == node->num_bytes) 2216 ret = 0; 2217 } 2218 if (ret > 0) { 2219 btrfs_release_path(path); 2220 metadata = 0; 2221 2222 key.objectid = node->bytenr; 2223 key.offset = node->num_bytes; 2224 key.type = BTRFS_EXTENT_ITEM_KEY; 2225 goto again; 2226 } 2227 } else { 2228 err = -EIO; 2229 goto out; 2230 } 2231 } 2232 2233 leaf = path->nodes[0]; 2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2236 if (item_size < sizeof(*ei)) { 2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2238 path, (u64)-1, 0); 2239 if (ret < 0) { 2240 err = ret; 2241 goto out; 2242 } 2243 leaf = path->nodes[0]; 2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2245 } 2246 #endif 2247 BUG_ON(item_size < sizeof(*ei)); 2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2249 __run_delayed_extent_op(extent_op, leaf, ei); 2250 2251 btrfs_mark_buffer_dirty(leaf); 2252 out: 2253 btrfs_free_path(path); 2254 return err; 2255 } 2256 2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2258 struct btrfs_root *root, 2259 struct btrfs_delayed_ref_node *node, 2260 struct btrfs_delayed_extent_op *extent_op, 2261 int insert_reserved) 2262 { 2263 int ret = 0; 2264 struct btrfs_delayed_tree_ref *ref; 2265 struct btrfs_key ins; 2266 u64 parent = 0; 2267 u64 ref_root = 0; 2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2269 SKINNY_METADATA); 2270 2271 ref = btrfs_delayed_node_to_tree_ref(node); 2272 trace_run_delayed_tree_ref(node, ref, node->action); 2273 2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2275 parent = ref->parent; 2276 ref_root = ref->root; 2277 2278 ins.objectid = node->bytenr; 2279 if (skinny_metadata) { 2280 ins.offset = ref->level; 2281 ins.type = BTRFS_METADATA_ITEM_KEY; 2282 } else { 2283 ins.offset = node->num_bytes; 2284 ins.type = BTRFS_EXTENT_ITEM_KEY; 2285 } 2286 2287 BUG_ON(node->ref_mod != 1); 2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2289 BUG_ON(!extent_op || !extent_op->update_flags); 2290 ret = alloc_reserved_tree_block(trans, root, 2291 parent, ref_root, 2292 extent_op->flags_to_set, 2293 &extent_op->key, 2294 ref->level, &ins, 2295 node->no_quota); 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2297 ret = __btrfs_inc_extent_ref(trans, root, node, 2298 parent, ref_root, 2299 ref->level, 0, 1, 2300 extent_op); 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2302 ret = __btrfs_free_extent(trans, root, node, 2303 parent, ref_root, 2304 ref->level, 0, 1, extent_op); 2305 } else { 2306 BUG(); 2307 } 2308 return ret; 2309 } 2310 2311 /* helper function to actually process a single delayed ref entry */ 2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct btrfs_delayed_ref_node *node, 2315 struct btrfs_delayed_extent_op *extent_op, 2316 int insert_reserved) 2317 { 2318 int ret = 0; 2319 2320 if (trans->aborted) { 2321 if (insert_reserved) 2322 btrfs_pin_extent(root, node->bytenr, 2323 node->num_bytes, 1); 2324 return 0; 2325 } 2326 2327 if (btrfs_delayed_ref_is_head(node)) { 2328 struct btrfs_delayed_ref_head *head; 2329 /* 2330 * we've hit the end of the chain and we were supposed 2331 * to insert this extent into the tree. But, it got 2332 * deleted before we ever needed to insert it, so all 2333 * we have to do is clean up the accounting 2334 */ 2335 BUG_ON(extent_op); 2336 head = btrfs_delayed_node_to_head(node); 2337 trace_run_delayed_ref_head(node, head, node->action); 2338 2339 if (insert_reserved) { 2340 btrfs_pin_extent(root, node->bytenr, 2341 node->num_bytes, 1); 2342 if (head->is_data) { 2343 ret = btrfs_del_csums(trans, root, 2344 node->bytenr, 2345 node->num_bytes); 2346 } 2347 } 2348 return ret; 2349 } 2350 2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2353 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2354 insert_reserved); 2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2356 node->type == BTRFS_SHARED_DATA_REF_KEY) 2357 ret = run_delayed_data_ref(trans, root, node, extent_op, 2358 insert_reserved); 2359 else 2360 BUG(); 2361 return ret; 2362 } 2363 2364 static inline struct btrfs_delayed_ref_node * 2365 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2366 { 2367 struct btrfs_delayed_ref_node *ref; 2368 2369 if (list_empty(&head->ref_list)) 2370 return NULL; 2371 2372 /* 2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2374 * This is to prevent a ref count from going down to zero, which deletes 2375 * the extent item from the extent tree, when there still are references 2376 * to add, which would fail because they would not find the extent item. 2377 */ 2378 list_for_each_entry(ref, &head->ref_list, list) { 2379 if (ref->action == BTRFS_ADD_DELAYED_REF) 2380 return ref; 2381 } 2382 2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2384 list); 2385 } 2386 2387 /* 2388 * Returns 0 on success or if called with an already aborted transaction. 2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2390 */ 2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *root, 2393 unsigned long nr) 2394 { 2395 struct btrfs_delayed_ref_root *delayed_refs; 2396 struct btrfs_delayed_ref_node *ref; 2397 struct btrfs_delayed_ref_head *locked_ref = NULL; 2398 struct btrfs_delayed_extent_op *extent_op; 2399 struct btrfs_fs_info *fs_info = root->fs_info; 2400 ktime_t start = ktime_get(); 2401 int ret; 2402 unsigned long count = 0; 2403 unsigned long actual_count = 0; 2404 int must_insert_reserved = 0; 2405 2406 delayed_refs = &trans->transaction->delayed_refs; 2407 while (1) { 2408 if (!locked_ref) { 2409 if (count >= nr) 2410 break; 2411 2412 spin_lock(&delayed_refs->lock); 2413 locked_ref = btrfs_select_ref_head(trans); 2414 if (!locked_ref) { 2415 spin_unlock(&delayed_refs->lock); 2416 break; 2417 } 2418 2419 /* grab the lock that says we are going to process 2420 * all the refs for this head */ 2421 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2422 spin_unlock(&delayed_refs->lock); 2423 /* 2424 * we may have dropped the spin lock to get the head 2425 * mutex lock, and that might have given someone else 2426 * time to free the head. If that's true, it has been 2427 * removed from our list and we can move on. 2428 */ 2429 if (ret == -EAGAIN) { 2430 locked_ref = NULL; 2431 count++; 2432 continue; 2433 } 2434 } 2435 2436 spin_lock(&locked_ref->lock); 2437 2438 /* 2439 * locked_ref is the head node, so we have to go one 2440 * node back for any delayed ref updates 2441 */ 2442 ref = select_delayed_ref(locked_ref); 2443 2444 if (ref && ref->seq && 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2446 spin_unlock(&locked_ref->lock); 2447 btrfs_delayed_ref_unlock(locked_ref); 2448 spin_lock(&delayed_refs->lock); 2449 locked_ref->processing = 0; 2450 delayed_refs->num_heads_ready++; 2451 spin_unlock(&delayed_refs->lock); 2452 locked_ref = NULL; 2453 cond_resched(); 2454 count++; 2455 continue; 2456 } 2457 2458 /* 2459 * record the must insert reserved flag before we 2460 * drop the spin lock. 2461 */ 2462 must_insert_reserved = locked_ref->must_insert_reserved; 2463 locked_ref->must_insert_reserved = 0; 2464 2465 extent_op = locked_ref->extent_op; 2466 locked_ref->extent_op = NULL; 2467 2468 if (!ref) { 2469 2470 2471 /* All delayed refs have been processed, Go ahead 2472 * and send the head node to run_one_delayed_ref, 2473 * so that any accounting fixes can happen 2474 */ 2475 ref = &locked_ref->node; 2476 2477 if (extent_op && must_insert_reserved) { 2478 btrfs_free_delayed_extent_op(extent_op); 2479 extent_op = NULL; 2480 } 2481 2482 if (extent_op) { 2483 spin_unlock(&locked_ref->lock); 2484 ret = run_delayed_extent_op(trans, root, 2485 ref, extent_op); 2486 btrfs_free_delayed_extent_op(extent_op); 2487 2488 if (ret) { 2489 /* 2490 * Need to reset must_insert_reserved if 2491 * there was an error so the abort stuff 2492 * can cleanup the reserved space 2493 * properly. 2494 */ 2495 if (must_insert_reserved) 2496 locked_ref->must_insert_reserved = 1; 2497 locked_ref->processing = 0; 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2499 btrfs_delayed_ref_unlock(locked_ref); 2500 return ret; 2501 } 2502 continue; 2503 } 2504 2505 /* 2506 * Need to drop our head ref lock and re-aqcuire the 2507 * delayed ref lock and then re-check to make sure 2508 * nobody got added. 2509 */ 2510 spin_unlock(&locked_ref->lock); 2511 spin_lock(&delayed_refs->lock); 2512 spin_lock(&locked_ref->lock); 2513 if (!list_empty(&locked_ref->ref_list) || 2514 locked_ref->extent_op) { 2515 spin_unlock(&locked_ref->lock); 2516 spin_unlock(&delayed_refs->lock); 2517 continue; 2518 } 2519 ref->in_tree = 0; 2520 delayed_refs->num_heads--; 2521 rb_erase(&locked_ref->href_node, 2522 &delayed_refs->href_root); 2523 spin_unlock(&delayed_refs->lock); 2524 } else { 2525 actual_count++; 2526 ref->in_tree = 0; 2527 list_del(&ref->list); 2528 } 2529 atomic_dec(&delayed_refs->num_entries); 2530 2531 if (!btrfs_delayed_ref_is_head(ref)) { 2532 /* 2533 * when we play the delayed ref, also correct the 2534 * ref_mod on head 2535 */ 2536 switch (ref->action) { 2537 case BTRFS_ADD_DELAYED_REF: 2538 case BTRFS_ADD_DELAYED_EXTENT: 2539 locked_ref->node.ref_mod -= ref->ref_mod; 2540 break; 2541 case BTRFS_DROP_DELAYED_REF: 2542 locked_ref->node.ref_mod += ref->ref_mod; 2543 break; 2544 default: 2545 WARN_ON(1); 2546 } 2547 } 2548 spin_unlock(&locked_ref->lock); 2549 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2551 must_insert_reserved); 2552 2553 btrfs_free_delayed_extent_op(extent_op); 2554 if (ret) { 2555 locked_ref->processing = 0; 2556 btrfs_delayed_ref_unlock(locked_ref); 2557 btrfs_put_delayed_ref(ref); 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2559 return ret; 2560 } 2561 2562 /* 2563 * If this node is a head, that means all the refs in this head 2564 * have been dealt with, and we will pick the next head to deal 2565 * with, so we must unlock the head and drop it from the cluster 2566 * list before we release it. 2567 */ 2568 if (btrfs_delayed_ref_is_head(ref)) { 2569 if (locked_ref->is_data && 2570 locked_ref->total_ref_mod < 0) { 2571 spin_lock(&delayed_refs->lock); 2572 delayed_refs->pending_csums -= ref->num_bytes; 2573 spin_unlock(&delayed_refs->lock); 2574 } 2575 btrfs_delayed_ref_unlock(locked_ref); 2576 locked_ref = NULL; 2577 } 2578 btrfs_put_delayed_ref(ref); 2579 count++; 2580 cond_resched(); 2581 } 2582 2583 /* 2584 * We don't want to include ref heads since we can have empty ref heads 2585 * and those will drastically skew our runtime down since we just do 2586 * accounting, no actual extent tree updates. 2587 */ 2588 if (actual_count > 0) { 2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2590 u64 avg; 2591 2592 /* 2593 * We weigh the current average higher than our current runtime 2594 * to avoid large swings in the average. 2595 */ 2596 spin_lock(&delayed_refs->lock); 2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2599 spin_unlock(&delayed_refs->lock); 2600 } 2601 return 0; 2602 } 2603 2604 #ifdef SCRAMBLE_DELAYED_REFS 2605 /* 2606 * Normally delayed refs get processed in ascending bytenr order. This 2607 * correlates in most cases to the order added. To expose dependencies on this 2608 * order, we start to process the tree in the middle instead of the beginning 2609 */ 2610 static u64 find_middle(struct rb_root *root) 2611 { 2612 struct rb_node *n = root->rb_node; 2613 struct btrfs_delayed_ref_node *entry; 2614 int alt = 1; 2615 u64 middle; 2616 u64 first = 0, last = 0; 2617 2618 n = rb_first(root); 2619 if (n) { 2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2621 first = entry->bytenr; 2622 } 2623 n = rb_last(root); 2624 if (n) { 2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2626 last = entry->bytenr; 2627 } 2628 n = root->rb_node; 2629 2630 while (n) { 2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2632 WARN_ON(!entry->in_tree); 2633 2634 middle = entry->bytenr; 2635 2636 if (alt) 2637 n = n->rb_left; 2638 else 2639 n = n->rb_right; 2640 2641 alt = 1 - alt; 2642 } 2643 return middle; 2644 } 2645 #endif 2646 2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2648 { 2649 u64 num_bytes; 2650 2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2652 sizeof(struct btrfs_extent_inline_ref)); 2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2655 2656 /* 2657 * We don't ever fill up leaves all the way so multiply by 2 just to be 2658 * closer to what we're really going to want to ouse. 2659 */ 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2661 } 2662 2663 /* 2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2665 * would require to store the csums for that many bytes. 2666 */ 2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2668 { 2669 u64 csum_size; 2670 u64 num_csums_per_leaf; 2671 u64 num_csums; 2672 2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2674 num_csums_per_leaf = div64_u64(csum_size, 2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2676 num_csums = div64_u64(csum_bytes, root->sectorsize); 2677 num_csums += num_csums_per_leaf - 1; 2678 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2679 return num_csums; 2680 } 2681 2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root) 2684 { 2685 struct btrfs_block_rsv *global_rsv; 2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2689 u64 num_bytes, num_dirty_bgs_bytes; 2690 int ret = 0; 2691 2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2693 num_heads = heads_to_leaves(root, num_heads); 2694 if (num_heads > 1) 2695 num_bytes += (num_heads - 1) * root->nodesize; 2696 num_bytes <<= 1; 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2699 num_dirty_bgs); 2700 global_rsv = &root->fs_info->global_block_rsv; 2701 2702 /* 2703 * If we can't allocate any more chunks lets make sure we have _lots_ of 2704 * wiggle room since running delayed refs can create more delayed refs. 2705 */ 2706 if (global_rsv->space_info->full) { 2707 num_dirty_bgs_bytes <<= 1; 2708 num_bytes <<= 1; 2709 } 2710 2711 spin_lock(&global_rsv->lock); 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2713 ret = 1; 2714 spin_unlock(&global_rsv->lock); 2715 return ret; 2716 } 2717 2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2719 struct btrfs_root *root) 2720 { 2721 struct btrfs_fs_info *fs_info = root->fs_info; 2722 u64 num_entries = 2723 atomic_read(&trans->transaction->delayed_refs.num_entries); 2724 u64 avg_runtime; 2725 u64 val; 2726 2727 smp_mb(); 2728 avg_runtime = fs_info->avg_delayed_ref_runtime; 2729 val = num_entries * avg_runtime; 2730 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2731 return 1; 2732 if (val >= NSEC_PER_SEC / 2) 2733 return 2; 2734 2735 return btrfs_check_space_for_delayed_refs(trans, root); 2736 } 2737 2738 struct async_delayed_refs { 2739 struct btrfs_root *root; 2740 int count; 2741 int error; 2742 int sync; 2743 struct completion wait; 2744 struct btrfs_work work; 2745 }; 2746 2747 static void delayed_ref_async_start(struct btrfs_work *work) 2748 { 2749 struct async_delayed_refs *async; 2750 struct btrfs_trans_handle *trans; 2751 int ret; 2752 2753 async = container_of(work, struct async_delayed_refs, work); 2754 2755 trans = btrfs_join_transaction(async->root); 2756 if (IS_ERR(trans)) { 2757 async->error = PTR_ERR(trans); 2758 goto done; 2759 } 2760 2761 /* 2762 * trans->sync means that when we call end_transaciton, we won't 2763 * wait on delayed refs 2764 */ 2765 trans->sync = true; 2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2767 if (ret) 2768 async->error = ret; 2769 2770 ret = btrfs_end_transaction(trans, async->root); 2771 if (ret && !async->error) 2772 async->error = ret; 2773 done: 2774 if (async->sync) 2775 complete(&async->wait); 2776 else 2777 kfree(async); 2778 } 2779 2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2781 unsigned long count, int wait) 2782 { 2783 struct async_delayed_refs *async; 2784 int ret; 2785 2786 async = kmalloc(sizeof(*async), GFP_NOFS); 2787 if (!async) 2788 return -ENOMEM; 2789 2790 async->root = root->fs_info->tree_root; 2791 async->count = count; 2792 async->error = 0; 2793 if (wait) 2794 async->sync = 1; 2795 else 2796 async->sync = 0; 2797 init_completion(&async->wait); 2798 2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2800 delayed_ref_async_start, NULL, NULL); 2801 2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2803 2804 if (wait) { 2805 wait_for_completion(&async->wait); 2806 ret = async->error; 2807 kfree(async); 2808 return ret; 2809 } 2810 return 0; 2811 } 2812 2813 /* 2814 * this starts processing the delayed reference count updates and 2815 * extent insertions we have queued up so far. count can be 2816 * 0, which means to process everything in the tree at the start 2817 * of the run (but not newly added entries), or it can be some target 2818 * number you'd like to process. 2819 * 2820 * Returns 0 on success or if called with an aborted transaction 2821 * Returns <0 on error and aborts the transaction 2822 */ 2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2824 struct btrfs_root *root, unsigned long count) 2825 { 2826 struct rb_node *node; 2827 struct btrfs_delayed_ref_root *delayed_refs; 2828 struct btrfs_delayed_ref_head *head; 2829 int ret; 2830 int run_all = count == (unsigned long)-1; 2831 2832 /* We'll clean this up in btrfs_cleanup_transaction */ 2833 if (trans->aborted) 2834 return 0; 2835 2836 if (root == root->fs_info->extent_root) 2837 root = root->fs_info->tree_root; 2838 2839 delayed_refs = &trans->transaction->delayed_refs; 2840 if (count == 0) 2841 count = atomic_read(&delayed_refs->num_entries) * 2; 2842 2843 again: 2844 #ifdef SCRAMBLE_DELAYED_REFS 2845 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2846 #endif 2847 ret = __btrfs_run_delayed_refs(trans, root, count); 2848 if (ret < 0) { 2849 btrfs_abort_transaction(trans, root, ret); 2850 return ret; 2851 } 2852 2853 if (run_all) { 2854 if (!list_empty(&trans->new_bgs)) 2855 btrfs_create_pending_block_groups(trans, root); 2856 2857 spin_lock(&delayed_refs->lock); 2858 node = rb_first(&delayed_refs->href_root); 2859 if (!node) { 2860 spin_unlock(&delayed_refs->lock); 2861 goto out; 2862 } 2863 count = (unsigned long)-1; 2864 2865 while (node) { 2866 head = rb_entry(node, struct btrfs_delayed_ref_head, 2867 href_node); 2868 if (btrfs_delayed_ref_is_head(&head->node)) { 2869 struct btrfs_delayed_ref_node *ref; 2870 2871 ref = &head->node; 2872 atomic_inc(&ref->refs); 2873 2874 spin_unlock(&delayed_refs->lock); 2875 /* 2876 * Mutex was contended, block until it's 2877 * released and try again 2878 */ 2879 mutex_lock(&head->mutex); 2880 mutex_unlock(&head->mutex); 2881 2882 btrfs_put_delayed_ref(ref); 2883 cond_resched(); 2884 goto again; 2885 } else { 2886 WARN_ON(1); 2887 } 2888 node = rb_next(node); 2889 } 2890 spin_unlock(&delayed_refs->lock); 2891 cond_resched(); 2892 goto again; 2893 } 2894 out: 2895 assert_qgroups_uptodate(trans); 2896 return 0; 2897 } 2898 2899 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 u64 bytenr, u64 num_bytes, u64 flags, 2902 int level, int is_data) 2903 { 2904 struct btrfs_delayed_extent_op *extent_op; 2905 int ret; 2906 2907 extent_op = btrfs_alloc_delayed_extent_op(); 2908 if (!extent_op) 2909 return -ENOMEM; 2910 2911 extent_op->flags_to_set = flags; 2912 extent_op->update_flags = 1; 2913 extent_op->update_key = 0; 2914 extent_op->is_data = is_data ? 1 : 0; 2915 extent_op->level = level; 2916 2917 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2918 num_bytes, extent_op); 2919 if (ret) 2920 btrfs_free_delayed_extent_op(extent_op); 2921 return ret; 2922 } 2923 2924 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2925 struct btrfs_root *root, 2926 struct btrfs_path *path, 2927 u64 objectid, u64 offset, u64 bytenr) 2928 { 2929 struct btrfs_delayed_ref_head *head; 2930 struct btrfs_delayed_ref_node *ref; 2931 struct btrfs_delayed_data_ref *data_ref; 2932 struct btrfs_delayed_ref_root *delayed_refs; 2933 int ret = 0; 2934 2935 delayed_refs = &trans->transaction->delayed_refs; 2936 spin_lock(&delayed_refs->lock); 2937 head = btrfs_find_delayed_ref_head(trans, bytenr); 2938 if (!head) { 2939 spin_unlock(&delayed_refs->lock); 2940 return 0; 2941 } 2942 2943 if (!mutex_trylock(&head->mutex)) { 2944 atomic_inc(&head->node.refs); 2945 spin_unlock(&delayed_refs->lock); 2946 2947 btrfs_release_path(path); 2948 2949 /* 2950 * Mutex was contended, block until it's released and let 2951 * caller try again 2952 */ 2953 mutex_lock(&head->mutex); 2954 mutex_unlock(&head->mutex); 2955 btrfs_put_delayed_ref(&head->node); 2956 return -EAGAIN; 2957 } 2958 spin_unlock(&delayed_refs->lock); 2959 2960 spin_lock(&head->lock); 2961 list_for_each_entry(ref, &head->ref_list, list) { 2962 /* If it's a shared ref we know a cross reference exists */ 2963 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2964 ret = 1; 2965 break; 2966 } 2967 2968 data_ref = btrfs_delayed_node_to_data_ref(ref); 2969 2970 /* 2971 * If our ref doesn't match the one we're currently looking at 2972 * then we have a cross reference. 2973 */ 2974 if (data_ref->root != root->root_key.objectid || 2975 data_ref->objectid != objectid || 2976 data_ref->offset != offset) { 2977 ret = 1; 2978 break; 2979 } 2980 } 2981 spin_unlock(&head->lock); 2982 mutex_unlock(&head->mutex); 2983 return ret; 2984 } 2985 2986 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2987 struct btrfs_root *root, 2988 struct btrfs_path *path, 2989 u64 objectid, u64 offset, u64 bytenr) 2990 { 2991 struct btrfs_root *extent_root = root->fs_info->extent_root; 2992 struct extent_buffer *leaf; 2993 struct btrfs_extent_data_ref *ref; 2994 struct btrfs_extent_inline_ref *iref; 2995 struct btrfs_extent_item *ei; 2996 struct btrfs_key key; 2997 u32 item_size; 2998 int ret; 2999 3000 key.objectid = bytenr; 3001 key.offset = (u64)-1; 3002 key.type = BTRFS_EXTENT_ITEM_KEY; 3003 3004 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3005 if (ret < 0) 3006 goto out; 3007 BUG_ON(ret == 0); /* Corruption */ 3008 3009 ret = -ENOENT; 3010 if (path->slots[0] == 0) 3011 goto out; 3012 3013 path->slots[0]--; 3014 leaf = path->nodes[0]; 3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3016 3017 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3018 goto out; 3019 3020 ret = 1; 3021 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3022 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3023 if (item_size < sizeof(*ei)) { 3024 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3025 goto out; 3026 } 3027 #endif 3028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3029 3030 if (item_size != sizeof(*ei) + 3031 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3032 goto out; 3033 3034 if (btrfs_extent_generation(leaf, ei) <= 3035 btrfs_root_last_snapshot(&root->root_item)) 3036 goto out; 3037 3038 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3039 if (btrfs_extent_inline_ref_type(leaf, iref) != 3040 BTRFS_EXTENT_DATA_REF_KEY) 3041 goto out; 3042 3043 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3044 if (btrfs_extent_refs(leaf, ei) != 3045 btrfs_extent_data_ref_count(leaf, ref) || 3046 btrfs_extent_data_ref_root(leaf, ref) != 3047 root->root_key.objectid || 3048 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3049 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3050 goto out; 3051 3052 ret = 0; 3053 out: 3054 return ret; 3055 } 3056 3057 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3058 struct btrfs_root *root, 3059 u64 objectid, u64 offset, u64 bytenr) 3060 { 3061 struct btrfs_path *path; 3062 int ret; 3063 int ret2; 3064 3065 path = btrfs_alloc_path(); 3066 if (!path) 3067 return -ENOENT; 3068 3069 do { 3070 ret = check_committed_ref(trans, root, path, objectid, 3071 offset, bytenr); 3072 if (ret && ret != -ENOENT) 3073 goto out; 3074 3075 ret2 = check_delayed_ref(trans, root, path, objectid, 3076 offset, bytenr); 3077 } while (ret2 == -EAGAIN); 3078 3079 if (ret2 && ret2 != -ENOENT) { 3080 ret = ret2; 3081 goto out; 3082 } 3083 3084 if (ret != -ENOENT || ret2 != -ENOENT) 3085 ret = 0; 3086 out: 3087 btrfs_free_path(path); 3088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3089 WARN_ON(ret > 0); 3090 return ret; 3091 } 3092 3093 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root, 3095 struct extent_buffer *buf, 3096 int full_backref, int inc) 3097 { 3098 u64 bytenr; 3099 u64 num_bytes; 3100 u64 parent; 3101 u64 ref_root; 3102 u32 nritems; 3103 struct btrfs_key key; 3104 struct btrfs_file_extent_item *fi; 3105 int i; 3106 int level; 3107 int ret = 0; 3108 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3109 u64, u64, u64, u64, u64, u64, int); 3110 3111 3112 if (btrfs_test_is_dummy_root(root)) 3113 return 0; 3114 3115 ref_root = btrfs_header_owner(buf); 3116 nritems = btrfs_header_nritems(buf); 3117 level = btrfs_header_level(buf); 3118 3119 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3120 return 0; 3121 3122 if (inc) 3123 process_func = btrfs_inc_extent_ref; 3124 else 3125 process_func = btrfs_free_extent; 3126 3127 if (full_backref) 3128 parent = buf->start; 3129 else 3130 parent = 0; 3131 3132 for (i = 0; i < nritems; i++) { 3133 if (level == 0) { 3134 btrfs_item_key_to_cpu(buf, &key, i); 3135 if (key.type != BTRFS_EXTENT_DATA_KEY) 3136 continue; 3137 fi = btrfs_item_ptr(buf, i, 3138 struct btrfs_file_extent_item); 3139 if (btrfs_file_extent_type(buf, fi) == 3140 BTRFS_FILE_EXTENT_INLINE) 3141 continue; 3142 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3143 if (bytenr == 0) 3144 continue; 3145 3146 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3147 key.offset -= btrfs_file_extent_offset(buf, fi); 3148 ret = process_func(trans, root, bytenr, num_bytes, 3149 parent, ref_root, key.objectid, 3150 key.offset, 1); 3151 if (ret) 3152 goto fail; 3153 } else { 3154 bytenr = btrfs_node_blockptr(buf, i); 3155 num_bytes = root->nodesize; 3156 ret = process_func(trans, root, bytenr, num_bytes, 3157 parent, ref_root, level - 1, 0, 3158 1); 3159 if (ret) 3160 goto fail; 3161 } 3162 } 3163 return 0; 3164 fail: 3165 return ret; 3166 } 3167 3168 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3169 struct extent_buffer *buf, int full_backref) 3170 { 3171 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3172 } 3173 3174 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3175 struct extent_buffer *buf, int full_backref) 3176 { 3177 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3178 } 3179 3180 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3181 struct btrfs_root *root, 3182 struct btrfs_path *path, 3183 struct btrfs_block_group_cache *cache) 3184 { 3185 int ret; 3186 struct btrfs_root *extent_root = root->fs_info->extent_root; 3187 unsigned long bi; 3188 struct extent_buffer *leaf; 3189 3190 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3191 if (ret) { 3192 if (ret > 0) 3193 ret = -ENOENT; 3194 goto fail; 3195 } 3196 3197 leaf = path->nodes[0]; 3198 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3199 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3200 btrfs_mark_buffer_dirty(leaf); 3201 fail: 3202 btrfs_release_path(path); 3203 return ret; 3204 3205 } 3206 3207 static struct btrfs_block_group_cache * 3208 next_block_group(struct btrfs_root *root, 3209 struct btrfs_block_group_cache *cache) 3210 { 3211 struct rb_node *node; 3212 3213 spin_lock(&root->fs_info->block_group_cache_lock); 3214 3215 /* If our block group was removed, we need a full search. */ 3216 if (RB_EMPTY_NODE(&cache->cache_node)) { 3217 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3218 3219 spin_unlock(&root->fs_info->block_group_cache_lock); 3220 btrfs_put_block_group(cache); 3221 cache = btrfs_lookup_first_block_group(root->fs_info, 3222 next_bytenr); 3223 return cache; 3224 } 3225 node = rb_next(&cache->cache_node); 3226 btrfs_put_block_group(cache); 3227 if (node) { 3228 cache = rb_entry(node, struct btrfs_block_group_cache, 3229 cache_node); 3230 btrfs_get_block_group(cache); 3231 } else 3232 cache = NULL; 3233 spin_unlock(&root->fs_info->block_group_cache_lock); 3234 return cache; 3235 } 3236 3237 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3238 struct btrfs_trans_handle *trans, 3239 struct btrfs_path *path) 3240 { 3241 struct btrfs_root *root = block_group->fs_info->tree_root; 3242 struct inode *inode = NULL; 3243 u64 alloc_hint = 0; 3244 int dcs = BTRFS_DC_ERROR; 3245 u64 num_pages = 0; 3246 int retries = 0; 3247 int ret = 0; 3248 3249 /* 3250 * If this block group is smaller than 100 megs don't bother caching the 3251 * block group. 3252 */ 3253 if (block_group->key.offset < (100 * 1024 * 1024)) { 3254 spin_lock(&block_group->lock); 3255 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3256 spin_unlock(&block_group->lock); 3257 return 0; 3258 } 3259 3260 if (trans->aborted) 3261 return 0; 3262 again: 3263 inode = lookup_free_space_inode(root, block_group, path); 3264 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3265 ret = PTR_ERR(inode); 3266 btrfs_release_path(path); 3267 goto out; 3268 } 3269 3270 if (IS_ERR(inode)) { 3271 BUG_ON(retries); 3272 retries++; 3273 3274 if (block_group->ro) 3275 goto out_free; 3276 3277 ret = create_free_space_inode(root, trans, block_group, path); 3278 if (ret) 3279 goto out_free; 3280 goto again; 3281 } 3282 3283 /* We've already setup this transaction, go ahead and exit */ 3284 if (block_group->cache_generation == trans->transid && 3285 i_size_read(inode)) { 3286 dcs = BTRFS_DC_SETUP; 3287 goto out_put; 3288 } 3289 3290 /* 3291 * We want to set the generation to 0, that way if anything goes wrong 3292 * from here on out we know not to trust this cache when we load up next 3293 * time. 3294 */ 3295 BTRFS_I(inode)->generation = 0; 3296 ret = btrfs_update_inode(trans, root, inode); 3297 if (ret) { 3298 /* 3299 * So theoretically we could recover from this, simply set the 3300 * super cache generation to 0 so we know to invalidate the 3301 * cache, but then we'd have to keep track of the block groups 3302 * that fail this way so we know we _have_ to reset this cache 3303 * before the next commit or risk reading stale cache. So to 3304 * limit our exposure to horrible edge cases lets just abort the 3305 * transaction, this only happens in really bad situations 3306 * anyway. 3307 */ 3308 btrfs_abort_transaction(trans, root, ret); 3309 goto out_put; 3310 } 3311 WARN_ON(ret); 3312 3313 if (i_size_read(inode) > 0) { 3314 ret = btrfs_check_trunc_cache_free_space(root, 3315 &root->fs_info->global_block_rsv); 3316 if (ret) 3317 goto out_put; 3318 3319 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3320 if (ret) 3321 goto out_put; 3322 } 3323 3324 spin_lock(&block_group->lock); 3325 if (block_group->cached != BTRFS_CACHE_FINISHED || 3326 !btrfs_test_opt(root, SPACE_CACHE)) { 3327 /* 3328 * don't bother trying to write stuff out _if_ 3329 * a) we're not cached, 3330 * b) we're with nospace_cache mount option. 3331 */ 3332 dcs = BTRFS_DC_WRITTEN; 3333 spin_unlock(&block_group->lock); 3334 goto out_put; 3335 } 3336 spin_unlock(&block_group->lock); 3337 3338 /* 3339 * Try to preallocate enough space based on how big the block group is. 3340 * Keep in mind this has to include any pinned space which could end up 3341 * taking up quite a bit since it's not folded into the other space 3342 * cache. 3343 */ 3344 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3345 if (!num_pages) 3346 num_pages = 1; 3347 3348 num_pages *= 16; 3349 num_pages *= PAGE_CACHE_SIZE; 3350 3351 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3352 if (ret) 3353 goto out_put; 3354 3355 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3356 num_pages, num_pages, 3357 &alloc_hint); 3358 if (!ret) 3359 dcs = BTRFS_DC_SETUP; 3360 btrfs_free_reserved_data_space(inode, num_pages); 3361 3362 out_put: 3363 iput(inode); 3364 out_free: 3365 btrfs_release_path(path); 3366 out: 3367 spin_lock(&block_group->lock); 3368 if (!ret && dcs == BTRFS_DC_SETUP) 3369 block_group->cache_generation = trans->transid; 3370 block_group->disk_cache_state = dcs; 3371 spin_unlock(&block_group->lock); 3372 3373 return ret; 3374 } 3375 3376 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3377 struct btrfs_root *root) 3378 { 3379 struct btrfs_block_group_cache *cache, *tmp; 3380 struct btrfs_transaction *cur_trans = trans->transaction; 3381 struct btrfs_path *path; 3382 3383 if (list_empty(&cur_trans->dirty_bgs) || 3384 !btrfs_test_opt(root, SPACE_CACHE)) 3385 return 0; 3386 3387 path = btrfs_alloc_path(); 3388 if (!path) 3389 return -ENOMEM; 3390 3391 /* Could add new block groups, use _safe just in case */ 3392 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3393 dirty_list) { 3394 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3395 cache_save_setup(cache, trans, path); 3396 } 3397 3398 btrfs_free_path(path); 3399 return 0; 3400 } 3401 3402 /* 3403 * transaction commit does final block group cache writeback during a 3404 * critical section where nothing is allowed to change the FS. This is 3405 * required in order for the cache to actually match the block group, 3406 * but can introduce a lot of latency into the commit. 3407 * 3408 * So, btrfs_start_dirty_block_groups is here to kick off block group 3409 * cache IO. There's a chance we'll have to redo some of it if the 3410 * block group changes again during the commit, but it greatly reduces 3411 * the commit latency by getting rid of the easy block groups while 3412 * we're still allowing others to join the commit. 3413 */ 3414 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3415 struct btrfs_root *root) 3416 { 3417 struct btrfs_block_group_cache *cache; 3418 struct btrfs_transaction *cur_trans = trans->transaction; 3419 int ret = 0; 3420 int should_put; 3421 struct btrfs_path *path = NULL; 3422 LIST_HEAD(dirty); 3423 struct list_head *io = &cur_trans->io_bgs; 3424 int num_started = 0; 3425 int loops = 0; 3426 3427 spin_lock(&cur_trans->dirty_bgs_lock); 3428 if (list_empty(&cur_trans->dirty_bgs)) { 3429 spin_unlock(&cur_trans->dirty_bgs_lock); 3430 return 0; 3431 } 3432 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3433 spin_unlock(&cur_trans->dirty_bgs_lock); 3434 3435 again: 3436 /* 3437 * make sure all the block groups on our dirty list actually 3438 * exist 3439 */ 3440 btrfs_create_pending_block_groups(trans, root); 3441 3442 if (!path) { 3443 path = btrfs_alloc_path(); 3444 if (!path) 3445 return -ENOMEM; 3446 } 3447 3448 /* 3449 * cache_write_mutex is here only to save us from balance or automatic 3450 * removal of empty block groups deleting this block group while we are 3451 * writing out the cache 3452 */ 3453 mutex_lock(&trans->transaction->cache_write_mutex); 3454 while (!list_empty(&dirty)) { 3455 cache = list_first_entry(&dirty, 3456 struct btrfs_block_group_cache, 3457 dirty_list); 3458 /* 3459 * this can happen if something re-dirties a block 3460 * group that is already under IO. Just wait for it to 3461 * finish and then do it all again 3462 */ 3463 if (!list_empty(&cache->io_list)) { 3464 list_del_init(&cache->io_list); 3465 btrfs_wait_cache_io(root, trans, cache, 3466 &cache->io_ctl, path, 3467 cache->key.objectid); 3468 btrfs_put_block_group(cache); 3469 } 3470 3471 3472 /* 3473 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3474 * if it should update the cache_state. Don't delete 3475 * until after we wait. 3476 * 3477 * Since we're not running in the commit critical section 3478 * we need the dirty_bgs_lock to protect from update_block_group 3479 */ 3480 spin_lock(&cur_trans->dirty_bgs_lock); 3481 list_del_init(&cache->dirty_list); 3482 spin_unlock(&cur_trans->dirty_bgs_lock); 3483 3484 should_put = 1; 3485 3486 cache_save_setup(cache, trans, path); 3487 3488 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3489 cache->io_ctl.inode = NULL; 3490 ret = btrfs_write_out_cache(root, trans, cache, path); 3491 if (ret == 0 && cache->io_ctl.inode) { 3492 num_started++; 3493 should_put = 0; 3494 3495 /* 3496 * the cache_write_mutex is protecting 3497 * the io_list 3498 */ 3499 list_add_tail(&cache->io_list, io); 3500 } else { 3501 /* 3502 * if we failed to write the cache, the 3503 * generation will be bad and life goes on 3504 */ 3505 ret = 0; 3506 } 3507 } 3508 if (!ret) { 3509 ret = write_one_cache_group(trans, root, path, cache); 3510 /* 3511 * Our block group might still be attached to the list 3512 * of new block groups in the transaction handle of some 3513 * other task (struct btrfs_trans_handle->new_bgs). This 3514 * means its block group item isn't yet in the extent 3515 * tree. If this happens ignore the error, as we will 3516 * try again later in the critical section of the 3517 * transaction commit. 3518 */ 3519 if (ret == -ENOENT) { 3520 ret = 0; 3521 spin_lock(&cur_trans->dirty_bgs_lock); 3522 if (list_empty(&cache->dirty_list)) { 3523 list_add_tail(&cache->dirty_list, 3524 &cur_trans->dirty_bgs); 3525 btrfs_get_block_group(cache); 3526 } 3527 spin_unlock(&cur_trans->dirty_bgs_lock); 3528 } else if (ret) { 3529 btrfs_abort_transaction(trans, root, ret); 3530 } 3531 } 3532 3533 /* if its not on the io list, we need to put the block group */ 3534 if (should_put) 3535 btrfs_put_block_group(cache); 3536 3537 if (ret) 3538 break; 3539 3540 /* 3541 * Avoid blocking other tasks for too long. It might even save 3542 * us from writing caches for block groups that are going to be 3543 * removed. 3544 */ 3545 mutex_unlock(&trans->transaction->cache_write_mutex); 3546 mutex_lock(&trans->transaction->cache_write_mutex); 3547 } 3548 mutex_unlock(&trans->transaction->cache_write_mutex); 3549 3550 /* 3551 * go through delayed refs for all the stuff we've just kicked off 3552 * and then loop back (just once) 3553 */ 3554 ret = btrfs_run_delayed_refs(trans, root, 0); 3555 if (!ret && loops == 0) { 3556 loops++; 3557 spin_lock(&cur_trans->dirty_bgs_lock); 3558 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3559 /* 3560 * dirty_bgs_lock protects us from concurrent block group 3561 * deletes too (not just cache_write_mutex). 3562 */ 3563 if (!list_empty(&dirty)) { 3564 spin_unlock(&cur_trans->dirty_bgs_lock); 3565 goto again; 3566 } 3567 spin_unlock(&cur_trans->dirty_bgs_lock); 3568 } 3569 3570 btrfs_free_path(path); 3571 return ret; 3572 } 3573 3574 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3575 struct btrfs_root *root) 3576 { 3577 struct btrfs_block_group_cache *cache; 3578 struct btrfs_transaction *cur_trans = trans->transaction; 3579 int ret = 0; 3580 int should_put; 3581 struct btrfs_path *path; 3582 struct list_head *io = &cur_trans->io_bgs; 3583 int num_started = 0; 3584 3585 path = btrfs_alloc_path(); 3586 if (!path) 3587 return -ENOMEM; 3588 3589 /* 3590 * We don't need the lock here since we are protected by the transaction 3591 * commit. We want to do the cache_save_setup first and then run the 3592 * delayed refs to make sure we have the best chance at doing this all 3593 * in one shot. 3594 */ 3595 while (!list_empty(&cur_trans->dirty_bgs)) { 3596 cache = list_first_entry(&cur_trans->dirty_bgs, 3597 struct btrfs_block_group_cache, 3598 dirty_list); 3599 3600 /* 3601 * this can happen if cache_save_setup re-dirties a block 3602 * group that is already under IO. Just wait for it to 3603 * finish and then do it all again 3604 */ 3605 if (!list_empty(&cache->io_list)) { 3606 list_del_init(&cache->io_list); 3607 btrfs_wait_cache_io(root, trans, cache, 3608 &cache->io_ctl, path, 3609 cache->key.objectid); 3610 btrfs_put_block_group(cache); 3611 } 3612 3613 /* 3614 * don't remove from the dirty list until after we've waited 3615 * on any pending IO 3616 */ 3617 list_del_init(&cache->dirty_list); 3618 should_put = 1; 3619 3620 cache_save_setup(cache, trans, path); 3621 3622 if (!ret) 3623 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3624 3625 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3626 cache->io_ctl.inode = NULL; 3627 ret = btrfs_write_out_cache(root, trans, cache, path); 3628 if (ret == 0 && cache->io_ctl.inode) { 3629 num_started++; 3630 should_put = 0; 3631 list_add_tail(&cache->io_list, io); 3632 } else { 3633 /* 3634 * if we failed to write the cache, the 3635 * generation will be bad and life goes on 3636 */ 3637 ret = 0; 3638 } 3639 } 3640 if (!ret) { 3641 ret = write_one_cache_group(trans, root, path, cache); 3642 if (ret) 3643 btrfs_abort_transaction(trans, root, ret); 3644 } 3645 3646 /* if its not on the io list, we need to put the block group */ 3647 if (should_put) 3648 btrfs_put_block_group(cache); 3649 } 3650 3651 while (!list_empty(io)) { 3652 cache = list_first_entry(io, struct btrfs_block_group_cache, 3653 io_list); 3654 list_del_init(&cache->io_list); 3655 btrfs_wait_cache_io(root, trans, cache, 3656 &cache->io_ctl, path, cache->key.objectid); 3657 btrfs_put_block_group(cache); 3658 } 3659 3660 btrfs_free_path(path); 3661 return ret; 3662 } 3663 3664 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3665 { 3666 struct btrfs_block_group_cache *block_group; 3667 int readonly = 0; 3668 3669 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3670 if (!block_group || block_group->ro) 3671 readonly = 1; 3672 if (block_group) 3673 btrfs_put_block_group(block_group); 3674 return readonly; 3675 } 3676 3677 static const char *alloc_name(u64 flags) 3678 { 3679 switch (flags) { 3680 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3681 return "mixed"; 3682 case BTRFS_BLOCK_GROUP_METADATA: 3683 return "metadata"; 3684 case BTRFS_BLOCK_GROUP_DATA: 3685 return "data"; 3686 case BTRFS_BLOCK_GROUP_SYSTEM: 3687 return "system"; 3688 default: 3689 WARN_ON(1); 3690 return "invalid-combination"; 3691 }; 3692 } 3693 3694 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3695 u64 total_bytes, u64 bytes_used, 3696 struct btrfs_space_info **space_info) 3697 { 3698 struct btrfs_space_info *found; 3699 int i; 3700 int factor; 3701 int ret; 3702 3703 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3704 BTRFS_BLOCK_GROUP_RAID10)) 3705 factor = 2; 3706 else 3707 factor = 1; 3708 3709 found = __find_space_info(info, flags); 3710 if (found) { 3711 spin_lock(&found->lock); 3712 found->total_bytes += total_bytes; 3713 found->disk_total += total_bytes * factor; 3714 found->bytes_used += bytes_used; 3715 found->disk_used += bytes_used * factor; 3716 if (total_bytes > 0) 3717 found->full = 0; 3718 spin_unlock(&found->lock); 3719 *space_info = found; 3720 return 0; 3721 } 3722 found = kzalloc(sizeof(*found), GFP_NOFS); 3723 if (!found) 3724 return -ENOMEM; 3725 3726 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3727 if (ret) { 3728 kfree(found); 3729 return ret; 3730 } 3731 3732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3733 INIT_LIST_HEAD(&found->block_groups[i]); 3734 init_rwsem(&found->groups_sem); 3735 spin_lock_init(&found->lock); 3736 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3737 found->total_bytes = total_bytes; 3738 found->disk_total = total_bytes * factor; 3739 found->bytes_used = bytes_used; 3740 found->disk_used = bytes_used * factor; 3741 found->bytes_pinned = 0; 3742 found->bytes_reserved = 0; 3743 found->bytes_readonly = 0; 3744 found->bytes_may_use = 0; 3745 found->full = 0; 3746 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3747 found->chunk_alloc = 0; 3748 found->flush = 0; 3749 init_waitqueue_head(&found->wait); 3750 INIT_LIST_HEAD(&found->ro_bgs); 3751 3752 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3753 info->space_info_kobj, "%s", 3754 alloc_name(found->flags)); 3755 if (ret) { 3756 kfree(found); 3757 return ret; 3758 } 3759 3760 *space_info = found; 3761 list_add_rcu(&found->list, &info->space_info); 3762 if (flags & BTRFS_BLOCK_GROUP_DATA) 3763 info->data_sinfo = found; 3764 3765 return ret; 3766 } 3767 3768 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3769 { 3770 u64 extra_flags = chunk_to_extended(flags) & 3771 BTRFS_EXTENDED_PROFILE_MASK; 3772 3773 write_seqlock(&fs_info->profiles_lock); 3774 if (flags & BTRFS_BLOCK_GROUP_DATA) 3775 fs_info->avail_data_alloc_bits |= extra_flags; 3776 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3777 fs_info->avail_metadata_alloc_bits |= extra_flags; 3778 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3779 fs_info->avail_system_alloc_bits |= extra_flags; 3780 write_sequnlock(&fs_info->profiles_lock); 3781 } 3782 3783 /* 3784 * returns target flags in extended format or 0 if restripe for this 3785 * chunk_type is not in progress 3786 * 3787 * should be called with either volume_mutex or balance_lock held 3788 */ 3789 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3790 { 3791 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3792 u64 target = 0; 3793 3794 if (!bctl) 3795 return 0; 3796 3797 if (flags & BTRFS_BLOCK_GROUP_DATA && 3798 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3799 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3800 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3801 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3802 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3803 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3804 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3805 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3806 } 3807 3808 return target; 3809 } 3810 3811 /* 3812 * @flags: available profiles in extended format (see ctree.h) 3813 * 3814 * Returns reduced profile in chunk format. If profile changing is in 3815 * progress (either running or paused) picks the target profile (if it's 3816 * already available), otherwise falls back to plain reducing. 3817 */ 3818 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3819 { 3820 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3821 u64 target; 3822 u64 tmp; 3823 3824 /* 3825 * see if restripe for this chunk_type is in progress, if so 3826 * try to reduce to the target profile 3827 */ 3828 spin_lock(&root->fs_info->balance_lock); 3829 target = get_restripe_target(root->fs_info, flags); 3830 if (target) { 3831 /* pick target profile only if it's already available */ 3832 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3833 spin_unlock(&root->fs_info->balance_lock); 3834 return extended_to_chunk(target); 3835 } 3836 } 3837 spin_unlock(&root->fs_info->balance_lock); 3838 3839 /* First, mask out the RAID levels which aren't possible */ 3840 if (num_devices == 1) 3841 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3842 BTRFS_BLOCK_GROUP_RAID5); 3843 if (num_devices < 3) 3844 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3845 if (num_devices < 4) 3846 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3847 3848 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3849 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3850 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3851 flags &= ~tmp; 3852 3853 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3854 tmp = BTRFS_BLOCK_GROUP_RAID6; 3855 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3856 tmp = BTRFS_BLOCK_GROUP_RAID5; 3857 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3858 tmp = BTRFS_BLOCK_GROUP_RAID10; 3859 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3860 tmp = BTRFS_BLOCK_GROUP_RAID1; 3861 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3862 tmp = BTRFS_BLOCK_GROUP_RAID0; 3863 3864 return extended_to_chunk(flags | tmp); 3865 } 3866 3867 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3868 { 3869 unsigned seq; 3870 u64 flags; 3871 3872 do { 3873 flags = orig_flags; 3874 seq = read_seqbegin(&root->fs_info->profiles_lock); 3875 3876 if (flags & BTRFS_BLOCK_GROUP_DATA) 3877 flags |= root->fs_info->avail_data_alloc_bits; 3878 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3879 flags |= root->fs_info->avail_system_alloc_bits; 3880 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3881 flags |= root->fs_info->avail_metadata_alloc_bits; 3882 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3883 3884 return btrfs_reduce_alloc_profile(root, flags); 3885 } 3886 3887 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3888 { 3889 u64 flags; 3890 u64 ret; 3891 3892 if (data) 3893 flags = BTRFS_BLOCK_GROUP_DATA; 3894 else if (root == root->fs_info->chunk_root) 3895 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3896 else 3897 flags = BTRFS_BLOCK_GROUP_METADATA; 3898 3899 ret = get_alloc_profile(root, flags); 3900 return ret; 3901 } 3902 3903 /* 3904 * This will check the space that the inode allocates from to make sure we have 3905 * enough space for bytes. 3906 */ 3907 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3908 { 3909 struct btrfs_space_info *data_sinfo; 3910 struct btrfs_root *root = BTRFS_I(inode)->root; 3911 struct btrfs_fs_info *fs_info = root->fs_info; 3912 u64 used; 3913 int ret = 0; 3914 int need_commit = 2; 3915 int have_pinned_space; 3916 3917 /* make sure bytes are sectorsize aligned */ 3918 bytes = ALIGN(bytes, root->sectorsize); 3919 3920 if (btrfs_is_free_space_inode(inode)) { 3921 need_commit = 0; 3922 ASSERT(current->journal_info); 3923 } 3924 3925 data_sinfo = fs_info->data_sinfo; 3926 if (!data_sinfo) 3927 goto alloc; 3928 3929 again: 3930 /* make sure we have enough space to handle the data first */ 3931 spin_lock(&data_sinfo->lock); 3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3934 data_sinfo->bytes_may_use; 3935 3936 if (used + bytes > data_sinfo->total_bytes) { 3937 struct btrfs_trans_handle *trans; 3938 3939 /* 3940 * if we don't have enough free bytes in this space then we need 3941 * to alloc a new chunk. 3942 */ 3943 if (!data_sinfo->full) { 3944 u64 alloc_target; 3945 3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3947 spin_unlock(&data_sinfo->lock); 3948 alloc: 3949 alloc_target = btrfs_get_alloc_profile(root, 1); 3950 /* 3951 * It is ugly that we don't call nolock join 3952 * transaction for the free space inode case here. 3953 * But it is safe because we only do the data space 3954 * reservation for the free space cache in the 3955 * transaction context, the common join transaction 3956 * just increase the counter of the current transaction 3957 * handler, doesn't try to acquire the trans_lock of 3958 * the fs. 3959 */ 3960 trans = btrfs_join_transaction(root); 3961 if (IS_ERR(trans)) 3962 return PTR_ERR(trans); 3963 3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3965 alloc_target, 3966 CHUNK_ALLOC_NO_FORCE); 3967 btrfs_end_transaction(trans, root); 3968 if (ret < 0) { 3969 if (ret != -ENOSPC) 3970 return ret; 3971 else { 3972 have_pinned_space = 1; 3973 goto commit_trans; 3974 } 3975 } 3976 3977 if (!data_sinfo) 3978 data_sinfo = fs_info->data_sinfo; 3979 3980 goto again; 3981 } 3982 3983 /* 3984 * If we don't have enough pinned space to deal with this 3985 * allocation, and no removed chunk in current transaction, 3986 * don't bother committing the transaction. 3987 */ 3988 have_pinned_space = percpu_counter_compare( 3989 &data_sinfo->total_bytes_pinned, 3990 used + bytes - data_sinfo->total_bytes); 3991 spin_unlock(&data_sinfo->lock); 3992 3993 /* commit the current transaction and try again */ 3994 commit_trans: 3995 if (need_commit && 3996 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3997 need_commit--; 3998 3999 if (need_commit > 0) 4000 btrfs_wait_ordered_roots(fs_info, -1); 4001 4002 trans = btrfs_join_transaction(root); 4003 if (IS_ERR(trans)) 4004 return PTR_ERR(trans); 4005 if (have_pinned_space >= 0 || 4006 trans->transaction->have_free_bgs || 4007 need_commit > 0) { 4008 ret = btrfs_commit_transaction(trans, root); 4009 if (ret) 4010 return ret; 4011 /* 4012 * make sure that all running delayed iput are 4013 * done 4014 */ 4015 down_write(&root->fs_info->delayed_iput_sem); 4016 up_write(&root->fs_info->delayed_iput_sem); 4017 goto again; 4018 } else { 4019 btrfs_end_transaction(trans, root); 4020 } 4021 } 4022 4023 trace_btrfs_space_reservation(root->fs_info, 4024 "space_info:enospc", 4025 data_sinfo->flags, bytes, 1); 4026 return -ENOSPC; 4027 } 4028 ret = btrfs_qgroup_reserve(root, write_bytes); 4029 if (ret) 4030 goto out; 4031 data_sinfo->bytes_may_use += bytes; 4032 trace_btrfs_space_reservation(root->fs_info, "space_info", 4033 data_sinfo->flags, bytes, 1); 4034 out: 4035 spin_unlock(&data_sinfo->lock); 4036 4037 return ret; 4038 } 4039 4040 /* 4041 * Called if we need to clear a data reservation for this inode. 4042 */ 4043 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 4044 { 4045 struct btrfs_root *root = BTRFS_I(inode)->root; 4046 struct btrfs_space_info *data_sinfo; 4047 4048 /* make sure bytes are sectorsize aligned */ 4049 bytes = ALIGN(bytes, root->sectorsize); 4050 4051 data_sinfo = root->fs_info->data_sinfo; 4052 spin_lock(&data_sinfo->lock); 4053 WARN_ON(data_sinfo->bytes_may_use < bytes); 4054 data_sinfo->bytes_may_use -= bytes; 4055 trace_btrfs_space_reservation(root->fs_info, "space_info", 4056 data_sinfo->flags, bytes, 0); 4057 spin_unlock(&data_sinfo->lock); 4058 } 4059 4060 static void force_metadata_allocation(struct btrfs_fs_info *info) 4061 { 4062 struct list_head *head = &info->space_info; 4063 struct btrfs_space_info *found; 4064 4065 rcu_read_lock(); 4066 list_for_each_entry_rcu(found, head, list) { 4067 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4068 found->force_alloc = CHUNK_ALLOC_FORCE; 4069 } 4070 rcu_read_unlock(); 4071 } 4072 4073 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4074 { 4075 return (global->size << 1); 4076 } 4077 4078 static int should_alloc_chunk(struct btrfs_root *root, 4079 struct btrfs_space_info *sinfo, int force) 4080 { 4081 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4082 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4083 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4084 u64 thresh; 4085 4086 if (force == CHUNK_ALLOC_FORCE) 4087 return 1; 4088 4089 /* 4090 * We need to take into account the global rsv because for all intents 4091 * and purposes it's used space. Don't worry about locking the 4092 * global_rsv, it doesn't change except when the transaction commits. 4093 */ 4094 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4095 num_allocated += calc_global_rsv_need_space(global_rsv); 4096 4097 /* 4098 * in limited mode, we want to have some free space up to 4099 * about 1% of the FS size. 4100 */ 4101 if (force == CHUNK_ALLOC_LIMITED) { 4102 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4103 thresh = max_t(u64, 64 * 1024 * 1024, 4104 div_factor_fine(thresh, 1)); 4105 4106 if (num_bytes - num_allocated < thresh) 4107 return 1; 4108 } 4109 4110 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4111 return 0; 4112 return 1; 4113 } 4114 4115 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4116 { 4117 u64 num_dev; 4118 4119 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4120 BTRFS_BLOCK_GROUP_RAID0 | 4121 BTRFS_BLOCK_GROUP_RAID5 | 4122 BTRFS_BLOCK_GROUP_RAID6)) 4123 num_dev = root->fs_info->fs_devices->rw_devices; 4124 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4125 num_dev = 2; 4126 else 4127 num_dev = 1; /* DUP or single */ 4128 4129 return num_dev; 4130 } 4131 4132 /* 4133 * If @is_allocation is true, reserve space in the system space info necessary 4134 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4135 * removing a chunk. 4136 */ 4137 void check_system_chunk(struct btrfs_trans_handle *trans, 4138 struct btrfs_root *root, 4139 u64 type) 4140 { 4141 struct btrfs_space_info *info; 4142 u64 left; 4143 u64 thresh; 4144 int ret = 0; 4145 u64 num_devs; 4146 4147 /* 4148 * Needed because we can end up allocating a system chunk and for an 4149 * atomic and race free space reservation in the chunk block reserve. 4150 */ 4151 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4152 4153 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4154 spin_lock(&info->lock); 4155 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4156 info->bytes_reserved - info->bytes_readonly - 4157 info->bytes_may_use; 4158 spin_unlock(&info->lock); 4159 4160 num_devs = get_profile_num_devs(root, type); 4161 4162 /* num_devs device items to update and 1 chunk item to add or remove */ 4163 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4164 btrfs_calc_trans_metadata_size(root, 1); 4165 4166 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4167 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4168 left, thresh, type); 4169 dump_space_info(info, 0, 0); 4170 } 4171 4172 if (left < thresh) { 4173 u64 flags; 4174 4175 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4176 /* 4177 * Ignore failure to create system chunk. We might end up not 4178 * needing it, as we might not need to COW all nodes/leafs from 4179 * the paths we visit in the chunk tree (they were already COWed 4180 * or created in the current transaction for example). 4181 */ 4182 ret = btrfs_alloc_chunk(trans, root, flags); 4183 } 4184 4185 if (!ret) { 4186 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4187 &root->fs_info->chunk_block_rsv, 4188 thresh, BTRFS_RESERVE_NO_FLUSH); 4189 if (!ret) 4190 trans->chunk_bytes_reserved += thresh; 4191 } 4192 } 4193 4194 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4195 struct btrfs_root *extent_root, u64 flags, int force) 4196 { 4197 struct btrfs_space_info *space_info; 4198 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4199 int wait_for_alloc = 0; 4200 int ret = 0; 4201 4202 /* Don't re-enter if we're already allocating a chunk */ 4203 if (trans->allocating_chunk) 4204 return -ENOSPC; 4205 4206 space_info = __find_space_info(extent_root->fs_info, flags); 4207 if (!space_info) { 4208 ret = update_space_info(extent_root->fs_info, flags, 4209 0, 0, &space_info); 4210 BUG_ON(ret); /* -ENOMEM */ 4211 } 4212 BUG_ON(!space_info); /* Logic error */ 4213 4214 again: 4215 spin_lock(&space_info->lock); 4216 if (force < space_info->force_alloc) 4217 force = space_info->force_alloc; 4218 if (space_info->full) { 4219 if (should_alloc_chunk(extent_root, space_info, force)) 4220 ret = -ENOSPC; 4221 else 4222 ret = 0; 4223 spin_unlock(&space_info->lock); 4224 return ret; 4225 } 4226 4227 if (!should_alloc_chunk(extent_root, space_info, force)) { 4228 spin_unlock(&space_info->lock); 4229 return 0; 4230 } else if (space_info->chunk_alloc) { 4231 wait_for_alloc = 1; 4232 } else { 4233 space_info->chunk_alloc = 1; 4234 } 4235 4236 spin_unlock(&space_info->lock); 4237 4238 mutex_lock(&fs_info->chunk_mutex); 4239 4240 /* 4241 * The chunk_mutex is held throughout the entirety of a chunk 4242 * allocation, so once we've acquired the chunk_mutex we know that the 4243 * other guy is done and we need to recheck and see if we should 4244 * allocate. 4245 */ 4246 if (wait_for_alloc) { 4247 mutex_unlock(&fs_info->chunk_mutex); 4248 wait_for_alloc = 0; 4249 goto again; 4250 } 4251 4252 trans->allocating_chunk = true; 4253 4254 /* 4255 * If we have mixed data/metadata chunks we want to make sure we keep 4256 * allocating mixed chunks instead of individual chunks. 4257 */ 4258 if (btrfs_mixed_space_info(space_info)) 4259 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4260 4261 /* 4262 * if we're doing a data chunk, go ahead and make sure that 4263 * we keep a reasonable number of metadata chunks allocated in the 4264 * FS as well. 4265 */ 4266 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4267 fs_info->data_chunk_allocations++; 4268 if (!(fs_info->data_chunk_allocations % 4269 fs_info->metadata_ratio)) 4270 force_metadata_allocation(fs_info); 4271 } 4272 4273 /* 4274 * Check if we have enough space in SYSTEM chunk because we may need 4275 * to update devices. 4276 */ 4277 check_system_chunk(trans, extent_root, flags); 4278 4279 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4280 trans->allocating_chunk = false; 4281 4282 spin_lock(&space_info->lock); 4283 if (ret < 0 && ret != -ENOSPC) 4284 goto out; 4285 if (ret) 4286 space_info->full = 1; 4287 else 4288 ret = 1; 4289 4290 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4291 out: 4292 space_info->chunk_alloc = 0; 4293 spin_unlock(&space_info->lock); 4294 mutex_unlock(&fs_info->chunk_mutex); 4295 /* 4296 * When we allocate a new chunk we reserve space in the chunk block 4297 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4298 * add new nodes/leafs to it if we end up needing to do it when 4299 * inserting the chunk item and updating device items as part of the 4300 * second phase of chunk allocation, performed by 4301 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4302 * large number of new block groups to create in our transaction 4303 * handle's new_bgs list to avoid exhausting the chunk block reserve 4304 * in extreme cases - like having a single transaction create many new 4305 * block groups when starting to write out the free space caches of all 4306 * the block groups that were made dirty during the lifetime of the 4307 * transaction. 4308 */ 4309 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) { 4310 btrfs_create_pending_block_groups(trans, trans->root); 4311 btrfs_trans_release_chunk_metadata(trans); 4312 } 4313 return ret; 4314 } 4315 4316 static int can_overcommit(struct btrfs_root *root, 4317 struct btrfs_space_info *space_info, u64 bytes, 4318 enum btrfs_reserve_flush_enum flush) 4319 { 4320 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4321 u64 profile = btrfs_get_alloc_profile(root, 0); 4322 u64 space_size; 4323 u64 avail; 4324 u64 used; 4325 4326 used = space_info->bytes_used + space_info->bytes_reserved + 4327 space_info->bytes_pinned + space_info->bytes_readonly; 4328 4329 /* 4330 * We only want to allow over committing if we have lots of actual space 4331 * free, but if we don't have enough space to handle the global reserve 4332 * space then we could end up having a real enospc problem when trying 4333 * to allocate a chunk or some other such important allocation. 4334 */ 4335 spin_lock(&global_rsv->lock); 4336 space_size = calc_global_rsv_need_space(global_rsv); 4337 spin_unlock(&global_rsv->lock); 4338 if (used + space_size >= space_info->total_bytes) 4339 return 0; 4340 4341 used += space_info->bytes_may_use; 4342 4343 spin_lock(&root->fs_info->free_chunk_lock); 4344 avail = root->fs_info->free_chunk_space; 4345 spin_unlock(&root->fs_info->free_chunk_lock); 4346 4347 /* 4348 * If we have dup, raid1 or raid10 then only half of the free 4349 * space is actually useable. For raid56, the space info used 4350 * doesn't include the parity drive, so we don't have to 4351 * change the math 4352 */ 4353 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4354 BTRFS_BLOCK_GROUP_RAID1 | 4355 BTRFS_BLOCK_GROUP_RAID10)) 4356 avail >>= 1; 4357 4358 /* 4359 * If we aren't flushing all things, let us overcommit up to 4360 * 1/2th of the space. If we can flush, don't let us overcommit 4361 * too much, let it overcommit up to 1/8 of the space. 4362 */ 4363 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4364 avail >>= 3; 4365 else 4366 avail >>= 1; 4367 4368 if (used + bytes < space_info->total_bytes + avail) 4369 return 1; 4370 return 0; 4371 } 4372 4373 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4374 unsigned long nr_pages, int nr_items) 4375 { 4376 struct super_block *sb = root->fs_info->sb; 4377 4378 if (down_read_trylock(&sb->s_umount)) { 4379 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4380 up_read(&sb->s_umount); 4381 } else { 4382 /* 4383 * We needn't worry the filesystem going from r/w to r/o though 4384 * we don't acquire ->s_umount mutex, because the filesystem 4385 * should guarantee the delalloc inodes list be empty after 4386 * the filesystem is readonly(all dirty pages are written to 4387 * the disk). 4388 */ 4389 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4390 if (!current->journal_info) 4391 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4392 } 4393 } 4394 4395 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4396 { 4397 u64 bytes; 4398 int nr; 4399 4400 bytes = btrfs_calc_trans_metadata_size(root, 1); 4401 nr = (int)div64_u64(to_reclaim, bytes); 4402 if (!nr) 4403 nr = 1; 4404 return nr; 4405 } 4406 4407 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4408 4409 /* 4410 * shrink metadata reservation for delalloc 4411 */ 4412 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4413 bool wait_ordered) 4414 { 4415 struct btrfs_block_rsv *block_rsv; 4416 struct btrfs_space_info *space_info; 4417 struct btrfs_trans_handle *trans; 4418 u64 delalloc_bytes; 4419 u64 max_reclaim; 4420 long time_left; 4421 unsigned long nr_pages; 4422 int loops; 4423 int items; 4424 enum btrfs_reserve_flush_enum flush; 4425 4426 /* Calc the number of the pages we need flush for space reservation */ 4427 items = calc_reclaim_items_nr(root, to_reclaim); 4428 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4429 4430 trans = (struct btrfs_trans_handle *)current->journal_info; 4431 block_rsv = &root->fs_info->delalloc_block_rsv; 4432 space_info = block_rsv->space_info; 4433 4434 delalloc_bytes = percpu_counter_sum_positive( 4435 &root->fs_info->delalloc_bytes); 4436 if (delalloc_bytes == 0) { 4437 if (trans) 4438 return; 4439 if (wait_ordered) 4440 btrfs_wait_ordered_roots(root->fs_info, items); 4441 return; 4442 } 4443 4444 loops = 0; 4445 while (delalloc_bytes && loops < 3) { 4446 max_reclaim = min(delalloc_bytes, to_reclaim); 4447 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4448 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4449 /* 4450 * We need to wait for the async pages to actually start before 4451 * we do anything. 4452 */ 4453 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4454 if (!max_reclaim) 4455 goto skip_async; 4456 4457 if (max_reclaim <= nr_pages) 4458 max_reclaim = 0; 4459 else 4460 max_reclaim -= nr_pages; 4461 4462 wait_event(root->fs_info->async_submit_wait, 4463 atomic_read(&root->fs_info->async_delalloc_pages) <= 4464 (int)max_reclaim); 4465 skip_async: 4466 if (!trans) 4467 flush = BTRFS_RESERVE_FLUSH_ALL; 4468 else 4469 flush = BTRFS_RESERVE_NO_FLUSH; 4470 spin_lock(&space_info->lock); 4471 if (can_overcommit(root, space_info, orig, flush)) { 4472 spin_unlock(&space_info->lock); 4473 break; 4474 } 4475 spin_unlock(&space_info->lock); 4476 4477 loops++; 4478 if (wait_ordered && !trans) { 4479 btrfs_wait_ordered_roots(root->fs_info, items); 4480 } else { 4481 time_left = schedule_timeout_killable(1); 4482 if (time_left) 4483 break; 4484 } 4485 delalloc_bytes = percpu_counter_sum_positive( 4486 &root->fs_info->delalloc_bytes); 4487 } 4488 } 4489 4490 /** 4491 * maybe_commit_transaction - possibly commit the transaction if its ok to 4492 * @root - the root we're allocating for 4493 * @bytes - the number of bytes we want to reserve 4494 * @force - force the commit 4495 * 4496 * This will check to make sure that committing the transaction will actually 4497 * get us somewhere and then commit the transaction if it does. Otherwise it 4498 * will return -ENOSPC. 4499 */ 4500 static int may_commit_transaction(struct btrfs_root *root, 4501 struct btrfs_space_info *space_info, 4502 u64 bytes, int force) 4503 { 4504 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4505 struct btrfs_trans_handle *trans; 4506 4507 trans = (struct btrfs_trans_handle *)current->journal_info; 4508 if (trans) 4509 return -EAGAIN; 4510 4511 if (force) 4512 goto commit; 4513 4514 /* See if there is enough pinned space to make this reservation */ 4515 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4516 bytes) >= 0) 4517 goto commit; 4518 4519 /* 4520 * See if there is some space in the delayed insertion reservation for 4521 * this reservation. 4522 */ 4523 if (space_info != delayed_rsv->space_info) 4524 return -ENOSPC; 4525 4526 spin_lock(&delayed_rsv->lock); 4527 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4528 bytes - delayed_rsv->size) >= 0) { 4529 spin_unlock(&delayed_rsv->lock); 4530 return -ENOSPC; 4531 } 4532 spin_unlock(&delayed_rsv->lock); 4533 4534 commit: 4535 trans = btrfs_join_transaction(root); 4536 if (IS_ERR(trans)) 4537 return -ENOSPC; 4538 4539 return btrfs_commit_transaction(trans, root); 4540 } 4541 4542 enum flush_state { 4543 FLUSH_DELAYED_ITEMS_NR = 1, 4544 FLUSH_DELAYED_ITEMS = 2, 4545 FLUSH_DELALLOC = 3, 4546 FLUSH_DELALLOC_WAIT = 4, 4547 ALLOC_CHUNK = 5, 4548 COMMIT_TRANS = 6, 4549 }; 4550 4551 static int flush_space(struct btrfs_root *root, 4552 struct btrfs_space_info *space_info, u64 num_bytes, 4553 u64 orig_bytes, int state) 4554 { 4555 struct btrfs_trans_handle *trans; 4556 int nr; 4557 int ret = 0; 4558 4559 switch (state) { 4560 case FLUSH_DELAYED_ITEMS_NR: 4561 case FLUSH_DELAYED_ITEMS: 4562 if (state == FLUSH_DELAYED_ITEMS_NR) 4563 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4564 else 4565 nr = -1; 4566 4567 trans = btrfs_join_transaction(root); 4568 if (IS_ERR(trans)) { 4569 ret = PTR_ERR(trans); 4570 break; 4571 } 4572 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4573 btrfs_end_transaction(trans, root); 4574 break; 4575 case FLUSH_DELALLOC: 4576 case FLUSH_DELALLOC_WAIT: 4577 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4578 state == FLUSH_DELALLOC_WAIT); 4579 break; 4580 case ALLOC_CHUNK: 4581 trans = btrfs_join_transaction(root); 4582 if (IS_ERR(trans)) { 4583 ret = PTR_ERR(trans); 4584 break; 4585 } 4586 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4587 btrfs_get_alloc_profile(root, 0), 4588 CHUNK_ALLOC_NO_FORCE); 4589 btrfs_end_transaction(trans, root); 4590 if (ret == -ENOSPC) 4591 ret = 0; 4592 break; 4593 case COMMIT_TRANS: 4594 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4595 break; 4596 default: 4597 ret = -ENOSPC; 4598 break; 4599 } 4600 4601 return ret; 4602 } 4603 4604 static inline u64 4605 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4606 struct btrfs_space_info *space_info) 4607 { 4608 u64 used; 4609 u64 expected; 4610 u64 to_reclaim; 4611 4612 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4613 16 * 1024 * 1024); 4614 spin_lock(&space_info->lock); 4615 if (can_overcommit(root, space_info, to_reclaim, 4616 BTRFS_RESERVE_FLUSH_ALL)) { 4617 to_reclaim = 0; 4618 goto out; 4619 } 4620 4621 used = space_info->bytes_used + space_info->bytes_reserved + 4622 space_info->bytes_pinned + space_info->bytes_readonly + 4623 space_info->bytes_may_use; 4624 if (can_overcommit(root, space_info, 1024 * 1024, 4625 BTRFS_RESERVE_FLUSH_ALL)) 4626 expected = div_factor_fine(space_info->total_bytes, 95); 4627 else 4628 expected = div_factor_fine(space_info->total_bytes, 90); 4629 4630 if (used > expected) 4631 to_reclaim = used - expected; 4632 else 4633 to_reclaim = 0; 4634 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4635 space_info->bytes_reserved); 4636 out: 4637 spin_unlock(&space_info->lock); 4638 4639 return to_reclaim; 4640 } 4641 4642 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4643 struct btrfs_fs_info *fs_info, u64 used) 4644 { 4645 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4646 4647 /* If we're just plain full then async reclaim just slows us down. */ 4648 if (space_info->bytes_used >= thresh) 4649 return 0; 4650 4651 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4652 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4653 } 4654 4655 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4656 struct btrfs_fs_info *fs_info, 4657 int flush_state) 4658 { 4659 u64 used; 4660 4661 spin_lock(&space_info->lock); 4662 /* 4663 * We run out of space and have not got any free space via flush_space, 4664 * so don't bother doing async reclaim. 4665 */ 4666 if (flush_state > COMMIT_TRANS && space_info->full) { 4667 spin_unlock(&space_info->lock); 4668 return 0; 4669 } 4670 4671 used = space_info->bytes_used + space_info->bytes_reserved + 4672 space_info->bytes_pinned + space_info->bytes_readonly + 4673 space_info->bytes_may_use; 4674 if (need_do_async_reclaim(space_info, fs_info, used)) { 4675 spin_unlock(&space_info->lock); 4676 return 1; 4677 } 4678 spin_unlock(&space_info->lock); 4679 4680 return 0; 4681 } 4682 4683 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4684 { 4685 struct btrfs_fs_info *fs_info; 4686 struct btrfs_space_info *space_info; 4687 u64 to_reclaim; 4688 int flush_state; 4689 4690 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4691 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4692 4693 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4694 space_info); 4695 if (!to_reclaim) 4696 return; 4697 4698 flush_state = FLUSH_DELAYED_ITEMS_NR; 4699 do { 4700 flush_space(fs_info->fs_root, space_info, to_reclaim, 4701 to_reclaim, flush_state); 4702 flush_state++; 4703 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4704 flush_state)) 4705 return; 4706 } while (flush_state < COMMIT_TRANS); 4707 } 4708 4709 void btrfs_init_async_reclaim_work(struct work_struct *work) 4710 { 4711 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4712 } 4713 4714 /** 4715 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4716 * @root - the root we're allocating for 4717 * @block_rsv - the block_rsv we're allocating for 4718 * @orig_bytes - the number of bytes we want 4719 * @flush - whether or not we can flush to make our reservation 4720 * 4721 * This will reserve orgi_bytes number of bytes from the space info associated 4722 * with the block_rsv. If there is not enough space it will make an attempt to 4723 * flush out space to make room. It will do this by flushing delalloc if 4724 * possible or committing the transaction. If flush is 0 then no attempts to 4725 * regain reservations will be made and this will fail if there is not enough 4726 * space already. 4727 */ 4728 static int reserve_metadata_bytes(struct btrfs_root *root, 4729 struct btrfs_block_rsv *block_rsv, 4730 u64 orig_bytes, 4731 enum btrfs_reserve_flush_enum flush) 4732 { 4733 struct btrfs_space_info *space_info = block_rsv->space_info; 4734 u64 used; 4735 u64 num_bytes = orig_bytes; 4736 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4737 int ret = 0; 4738 bool flushing = false; 4739 4740 again: 4741 ret = 0; 4742 spin_lock(&space_info->lock); 4743 /* 4744 * We only want to wait if somebody other than us is flushing and we 4745 * are actually allowed to flush all things. 4746 */ 4747 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4748 space_info->flush) { 4749 spin_unlock(&space_info->lock); 4750 /* 4751 * If we have a trans handle we can't wait because the flusher 4752 * may have to commit the transaction, which would mean we would 4753 * deadlock since we are waiting for the flusher to finish, but 4754 * hold the current transaction open. 4755 */ 4756 if (current->journal_info) 4757 return -EAGAIN; 4758 ret = wait_event_killable(space_info->wait, !space_info->flush); 4759 /* Must have been killed, return */ 4760 if (ret) 4761 return -EINTR; 4762 4763 spin_lock(&space_info->lock); 4764 } 4765 4766 ret = -ENOSPC; 4767 used = space_info->bytes_used + space_info->bytes_reserved + 4768 space_info->bytes_pinned + space_info->bytes_readonly + 4769 space_info->bytes_may_use; 4770 4771 /* 4772 * The idea here is that we've not already over-reserved the block group 4773 * then we can go ahead and save our reservation first and then start 4774 * flushing if we need to. Otherwise if we've already overcommitted 4775 * lets start flushing stuff first and then come back and try to make 4776 * our reservation. 4777 */ 4778 if (used <= space_info->total_bytes) { 4779 if (used + orig_bytes <= space_info->total_bytes) { 4780 space_info->bytes_may_use += orig_bytes; 4781 trace_btrfs_space_reservation(root->fs_info, 4782 "space_info", space_info->flags, orig_bytes, 1); 4783 ret = 0; 4784 } else { 4785 /* 4786 * Ok set num_bytes to orig_bytes since we aren't 4787 * overocmmitted, this way we only try and reclaim what 4788 * we need. 4789 */ 4790 num_bytes = orig_bytes; 4791 } 4792 } else { 4793 /* 4794 * Ok we're over committed, set num_bytes to the overcommitted 4795 * amount plus the amount of bytes that we need for this 4796 * reservation. 4797 */ 4798 num_bytes = used - space_info->total_bytes + 4799 (orig_bytes * 2); 4800 } 4801 4802 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4803 space_info->bytes_may_use += orig_bytes; 4804 trace_btrfs_space_reservation(root->fs_info, "space_info", 4805 space_info->flags, orig_bytes, 4806 1); 4807 ret = 0; 4808 } 4809 4810 /* 4811 * Couldn't make our reservation, save our place so while we're trying 4812 * to reclaim space we can actually use it instead of somebody else 4813 * stealing it from us. 4814 * 4815 * We make the other tasks wait for the flush only when we can flush 4816 * all things. 4817 */ 4818 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4819 flushing = true; 4820 space_info->flush = 1; 4821 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4822 used += orig_bytes; 4823 /* 4824 * We will do the space reservation dance during log replay, 4825 * which means we won't have fs_info->fs_root set, so don't do 4826 * the async reclaim as we will panic. 4827 */ 4828 if (!root->fs_info->log_root_recovering && 4829 need_do_async_reclaim(space_info, root->fs_info, used) && 4830 !work_busy(&root->fs_info->async_reclaim_work)) 4831 queue_work(system_unbound_wq, 4832 &root->fs_info->async_reclaim_work); 4833 } 4834 spin_unlock(&space_info->lock); 4835 4836 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4837 goto out; 4838 4839 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4840 flush_state); 4841 flush_state++; 4842 4843 /* 4844 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4845 * would happen. So skip delalloc flush. 4846 */ 4847 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4848 (flush_state == FLUSH_DELALLOC || 4849 flush_state == FLUSH_DELALLOC_WAIT)) 4850 flush_state = ALLOC_CHUNK; 4851 4852 if (!ret) 4853 goto again; 4854 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4855 flush_state < COMMIT_TRANS) 4856 goto again; 4857 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4858 flush_state <= COMMIT_TRANS) 4859 goto again; 4860 4861 out: 4862 if (ret == -ENOSPC && 4863 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4864 struct btrfs_block_rsv *global_rsv = 4865 &root->fs_info->global_block_rsv; 4866 4867 if (block_rsv != global_rsv && 4868 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4869 ret = 0; 4870 } 4871 if (ret == -ENOSPC) 4872 trace_btrfs_space_reservation(root->fs_info, 4873 "space_info:enospc", 4874 space_info->flags, orig_bytes, 1); 4875 if (flushing) { 4876 spin_lock(&space_info->lock); 4877 space_info->flush = 0; 4878 wake_up_all(&space_info->wait); 4879 spin_unlock(&space_info->lock); 4880 } 4881 return ret; 4882 } 4883 4884 static struct btrfs_block_rsv *get_block_rsv( 4885 const struct btrfs_trans_handle *trans, 4886 const struct btrfs_root *root) 4887 { 4888 struct btrfs_block_rsv *block_rsv = NULL; 4889 4890 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4891 block_rsv = trans->block_rsv; 4892 4893 if (root == root->fs_info->csum_root && trans->adding_csums) 4894 block_rsv = trans->block_rsv; 4895 4896 if (root == root->fs_info->uuid_root) 4897 block_rsv = trans->block_rsv; 4898 4899 if (!block_rsv) 4900 block_rsv = root->block_rsv; 4901 4902 if (!block_rsv) 4903 block_rsv = &root->fs_info->empty_block_rsv; 4904 4905 return block_rsv; 4906 } 4907 4908 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4909 u64 num_bytes) 4910 { 4911 int ret = -ENOSPC; 4912 spin_lock(&block_rsv->lock); 4913 if (block_rsv->reserved >= num_bytes) { 4914 block_rsv->reserved -= num_bytes; 4915 if (block_rsv->reserved < block_rsv->size) 4916 block_rsv->full = 0; 4917 ret = 0; 4918 } 4919 spin_unlock(&block_rsv->lock); 4920 return ret; 4921 } 4922 4923 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4924 u64 num_bytes, int update_size) 4925 { 4926 spin_lock(&block_rsv->lock); 4927 block_rsv->reserved += num_bytes; 4928 if (update_size) 4929 block_rsv->size += num_bytes; 4930 else if (block_rsv->reserved >= block_rsv->size) 4931 block_rsv->full = 1; 4932 spin_unlock(&block_rsv->lock); 4933 } 4934 4935 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4936 struct btrfs_block_rsv *dest, u64 num_bytes, 4937 int min_factor) 4938 { 4939 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4940 u64 min_bytes; 4941 4942 if (global_rsv->space_info != dest->space_info) 4943 return -ENOSPC; 4944 4945 spin_lock(&global_rsv->lock); 4946 min_bytes = div_factor(global_rsv->size, min_factor); 4947 if (global_rsv->reserved < min_bytes + num_bytes) { 4948 spin_unlock(&global_rsv->lock); 4949 return -ENOSPC; 4950 } 4951 global_rsv->reserved -= num_bytes; 4952 if (global_rsv->reserved < global_rsv->size) 4953 global_rsv->full = 0; 4954 spin_unlock(&global_rsv->lock); 4955 4956 block_rsv_add_bytes(dest, num_bytes, 1); 4957 return 0; 4958 } 4959 4960 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4961 struct btrfs_block_rsv *block_rsv, 4962 struct btrfs_block_rsv *dest, u64 num_bytes) 4963 { 4964 struct btrfs_space_info *space_info = block_rsv->space_info; 4965 4966 spin_lock(&block_rsv->lock); 4967 if (num_bytes == (u64)-1) 4968 num_bytes = block_rsv->size; 4969 block_rsv->size -= num_bytes; 4970 if (block_rsv->reserved >= block_rsv->size) { 4971 num_bytes = block_rsv->reserved - block_rsv->size; 4972 block_rsv->reserved = block_rsv->size; 4973 block_rsv->full = 1; 4974 } else { 4975 num_bytes = 0; 4976 } 4977 spin_unlock(&block_rsv->lock); 4978 4979 if (num_bytes > 0) { 4980 if (dest) { 4981 spin_lock(&dest->lock); 4982 if (!dest->full) { 4983 u64 bytes_to_add; 4984 4985 bytes_to_add = dest->size - dest->reserved; 4986 bytes_to_add = min(num_bytes, bytes_to_add); 4987 dest->reserved += bytes_to_add; 4988 if (dest->reserved >= dest->size) 4989 dest->full = 1; 4990 num_bytes -= bytes_to_add; 4991 } 4992 spin_unlock(&dest->lock); 4993 } 4994 if (num_bytes) { 4995 spin_lock(&space_info->lock); 4996 space_info->bytes_may_use -= num_bytes; 4997 trace_btrfs_space_reservation(fs_info, "space_info", 4998 space_info->flags, num_bytes, 0); 4999 spin_unlock(&space_info->lock); 5000 } 5001 } 5002 } 5003 5004 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5005 struct btrfs_block_rsv *dst, u64 num_bytes) 5006 { 5007 int ret; 5008 5009 ret = block_rsv_use_bytes(src, num_bytes); 5010 if (ret) 5011 return ret; 5012 5013 block_rsv_add_bytes(dst, num_bytes, 1); 5014 return 0; 5015 } 5016 5017 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5018 { 5019 memset(rsv, 0, sizeof(*rsv)); 5020 spin_lock_init(&rsv->lock); 5021 rsv->type = type; 5022 } 5023 5024 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5025 unsigned short type) 5026 { 5027 struct btrfs_block_rsv *block_rsv; 5028 struct btrfs_fs_info *fs_info = root->fs_info; 5029 5030 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5031 if (!block_rsv) 5032 return NULL; 5033 5034 btrfs_init_block_rsv(block_rsv, type); 5035 block_rsv->space_info = __find_space_info(fs_info, 5036 BTRFS_BLOCK_GROUP_METADATA); 5037 return block_rsv; 5038 } 5039 5040 void btrfs_free_block_rsv(struct btrfs_root *root, 5041 struct btrfs_block_rsv *rsv) 5042 { 5043 if (!rsv) 5044 return; 5045 btrfs_block_rsv_release(root, rsv, (u64)-1); 5046 kfree(rsv); 5047 } 5048 5049 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5050 { 5051 kfree(rsv); 5052 } 5053 5054 int btrfs_block_rsv_add(struct btrfs_root *root, 5055 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5056 enum btrfs_reserve_flush_enum flush) 5057 { 5058 int ret; 5059 5060 if (num_bytes == 0) 5061 return 0; 5062 5063 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5064 if (!ret) { 5065 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5066 return 0; 5067 } 5068 5069 return ret; 5070 } 5071 5072 int btrfs_block_rsv_check(struct btrfs_root *root, 5073 struct btrfs_block_rsv *block_rsv, int min_factor) 5074 { 5075 u64 num_bytes = 0; 5076 int ret = -ENOSPC; 5077 5078 if (!block_rsv) 5079 return 0; 5080 5081 spin_lock(&block_rsv->lock); 5082 num_bytes = div_factor(block_rsv->size, min_factor); 5083 if (block_rsv->reserved >= num_bytes) 5084 ret = 0; 5085 spin_unlock(&block_rsv->lock); 5086 5087 return ret; 5088 } 5089 5090 int btrfs_block_rsv_refill(struct btrfs_root *root, 5091 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5092 enum btrfs_reserve_flush_enum flush) 5093 { 5094 u64 num_bytes = 0; 5095 int ret = -ENOSPC; 5096 5097 if (!block_rsv) 5098 return 0; 5099 5100 spin_lock(&block_rsv->lock); 5101 num_bytes = min_reserved; 5102 if (block_rsv->reserved >= num_bytes) 5103 ret = 0; 5104 else 5105 num_bytes -= block_rsv->reserved; 5106 spin_unlock(&block_rsv->lock); 5107 5108 if (!ret) 5109 return 0; 5110 5111 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5112 if (!ret) { 5113 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5114 return 0; 5115 } 5116 5117 return ret; 5118 } 5119 5120 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5121 struct btrfs_block_rsv *dst_rsv, 5122 u64 num_bytes) 5123 { 5124 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5125 } 5126 5127 void btrfs_block_rsv_release(struct btrfs_root *root, 5128 struct btrfs_block_rsv *block_rsv, 5129 u64 num_bytes) 5130 { 5131 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5132 if (global_rsv == block_rsv || 5133 block_rsv->space_info != global_rsv->space_info) 5134 global_rsv = NULL; 5135 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5136 num_bytes); 5137 } 5138 5139 /* 5140 * helper to calculate size of global block reservation. 5141 * the desired value is sum of space used by extent tree, 5142 * checksum tree and root tree 5143 */ 5144 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5145 { 5146 struct btrfs_space_info *sinfo; 5147 u64 num_bytes; 5148 u64 meta_used; 5149 u64 data_used; 5150 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5151 5152 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5153 spin_lock(&sinfo->lock); 5154 data_used = sinfo->bytes_used; 5155 spin_unlock(&sinfo->lock); 5156 5157 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5158 spin_lock(&sinfo->lock); 5159 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5160 data_used = 0; 5161 meta_used = sinfo->bytes_used; 5162 spin_unlock(&sinfo->lock); 5163 5164 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5165 csum_size * 2; 5166 num_bytes += div_u64(data_used + meta_used, 50); 5167 5168 if (num_bytes * 3 > meta_used) 5169 num_bytes = div_u64(meta_used, 3); 5170 5171 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5172 } 5173 5174 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5175 { 5176 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5177 struct btrfs_space_info *sinfo = block_rsv->space_info; 5178 u64 num_bytes; 5179 5180 num_bytes = calc_global_metadata_size(fs_info); 5181 5182 spin_lock(&sinfo->lock); 5183 spin_lock(&block_rsv->lock); 5184 5185 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5186 5187 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5188 sinfo->bytes_reserved + sinfo->bytes_readonly + 5189 sinfo->bytes_may_use; 5190 5191 if (sinfo->total_bytes > num_bytes) { 5192 num_bytes = sinfo->total_bytes - num_bytes; 5193 block_rsv->reserved += num_bytes; 5194 sinfo->bytes_may_use += num_bytes; 5195 trace_btrfs_space_reservation(fs_info, "space_info", 5196 sinfo->flags, num_bytes, 1); 5197 } 5198 5199 if (block_rsv->reserved >= block_rsv->size) { 5200 num_bytes = block_rsv->reserved - block_rsv->size; 5201 sinfo->bytes_may_use -= num_bytes; 5202 trace_btrfs_space_reservation(fs_info, "space_info", 5203 sinfo->flags, num_bytes, 0); 5204 block_rsv->reserved = block_rsv->size; 5205 block_rsv->full = 1; 5206 } 5207 5208 spin_unlock(&block_rsv->lock); 5209 spin_unlock(&sinfo->lock); 5210 } 5211 5212 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5213 { 5214 struct btrfs_space_info *space_info; 5215 5216 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5217 fs_info->chunk_block_rsv.space_info = space_info; 5218 5219 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5220 fs_info->global_block_rsv.space_info = space_info; 5221 fs_info->delalloc_block_rsv.space_info = space_info; 5222 fs_info->trans_block_rsv.space_info = space_info; 5223 fs_info->empty_block_rsv.space_info = space_info; 5224 fs_info->delayed_block_rsv.space_info = space_info; 5225 5226 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5227 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5228 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5229 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5230 if (fs_info->quota_root) 5231 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5232 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5233 5234 update_global_block_rsv(fs_info); 5235 } 5236 5237 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5238 { 5239 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5240 (u64)-1); 5241 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5242 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5243 WARN_ON(fs_info->trans_block_rsv.size > 0); 5244 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5245 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5246 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5247 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5248 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5249 } 5250 5251 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5252 struct btrfs_root *root) 5253 { 5254 if (!trans->block_rsv) 5255 return; 5256 5257 if (!trans->bytes_reserved) 5258 return; 5259 5260 trace_btrfs_space_reservation(root->fs_info, "transaction", 5261 trans->transid, trans->bytes_reserved, 0); 5262 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5263 trans->bytes_reserved = 0; 5264 } 5265 5266 /* 5267 * To be called after all the new block groups attached to the transaction 5268 * handle have been created (btrfs_create_pending_block_groups()). 5269 */ 5270 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5271 { 5272 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5273 5274 if (!trans->chunk_bytes_reserved) 5275 return; 5276 5277 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5278 5279 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5280 trans->chunk_bytes_reserved); 5281 trans->chunk_bytes_reserved = 0; 5282 } 5283 5284 /* Can only return 0 or -ENOSPC */ 5285 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5286 struct inode *inode) 5287 { 5288 struct btrfs_root *root = BTRFS_I(inode)->root; 5289 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5290 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5291 5292 /* 5293 * We need to hold space in order to delete our orphan item once we've 5294 * added it, so this takes the reservation so we can release it later 5295 * when we are truly done with the orphan item. 5296 */ 5297 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5298 trace_btrfs_space_reservation(root->fs_info, "orphan", 5299 btrfs_ino(inode), num_bytes, 1); 5300 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5301 } 5302 5303 void btrfs_orphan_release_metadata(struct inode *inode) 5304 { 5305 struct btrfs_root *root = BTRFS_I(inode)->root; 5306 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5307 trace_btrfs_space_reservation(root->fs_info, "orphan", 5308 btrfs_ino(inode), num_bytes, 0); 5309 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5310 } 5311 5312 /* 5313 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5314 * root: the root of the parent directory 5315 * rsv: block reservation 5316 * items: the number of items that we need do reservation 5317 * qgroup_reserved: used to return the reserved size in qgroup 5318 * 5319 * This function is used to reserve the space for snapshot/subvolume 5320 * creation and deletion. Those operations are different with the 5321 * common file/directory operations, they change two fs/file trees 5322 * and root tree, the number of items that the qgroup reserves is 5323 * different with the free space reservation. So we can not use 5324 * the space reseravtion mechanism in start_transaction(). 5325 */ 5326 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5327 struct btrfs_block_rsv *rsv, 5328 int items, 5329 u64 *qgroup_reserved, 5330 bool use_global_rsv) 5331 { 5332 u64 num_bytes; 5333 int ret; 5334 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5335 5336 if (root->fs_info->quota_enabled) { 5337 /* One for parent inode, two for dir entries */ 5338 num_bytes = 3 * root->nodesize; 5339 ret = btrfs_qgroup_reserve(root, num_bytes); 5340 if (ret) 5341 return ret; 5342 } else { 5343 num_bytes = 0; 5344 } 5345 5346 *qgroup_reserved = num_bytes; 5347 5348 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5349 rsv->space_info = __find_space_info(root->fs_info, 5350 BTRFS_BLOCK_GROUP_METADATA); 5351 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5352 BTRFS_RESERVE_FLUSH_ALL); 5353 5354 if (ret == -ENOSPC && use_global_rsv) 5355 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5356 5357 if (ret) { 5358 if (*qgroup_reserved) 5359 btrfs_qgroup_free(root, *qgroup_reserved); 5360 } 5361 5362 return ret; 5363 } 5364 5365 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5366 struct btrfs_block_rsv *rsv, 5367 u64 qgroup_reserved) 5368 { 5369 btrfs_block_rsv_release(root, rsv, (u64)-1); 5370 } 5371 5372 /** 5373 * drop_outstanding_extent - drop an outstanding extent 5374 * @inode: the inode we're dropping the extent for 5375 * @num_bytes: the number of bytes we're relaseing. 5376 * 5377 * This is called when we are freeing up an outstanding extent, either called 5378 * after an error or after an extent is written. This will return the number of 5379 * reserved extents that need to be freed. This must be called with 5380 * BTRFS_I(inode)->lock held. 5381 */ 5382 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5383 { 5384 unsigned drop_inode_space = 0; 5385 unsigned dropped_extents = 0; 5386 unsigned num_extents = 0; 5387 5388 num_extents = (unsigned)div64_u64(num_bytes + 5389 BTRFS_MAX_EXTENT_SIZE - 1, 5390 BTRFS_MAX_EXTENT_SIZE); 5391 ASSERT(num_extents); 5392 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5393 BTRFS_I(inode)->outstanding_extents -= num_extents; 5394 5395 if (BTRFS_I(inode)->outstanding_extents == 0 && 5396 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5397 &BTRFS_I(inode)->runtime_flags)) 5398 drop_inode_space = 1; 5399 5400 /* 5401 * If we have more or the same amount of outsanding extents than we have 5402 * reserved then we need to leave the reserved extents count alone. 5403 */ 5404 if (BTRFS_I(inode)->outstanding_extents >= 5405 BTRFS_I(inode)->reserved_extents) 5406 return drop_inode_space; 5407 5408 dropped_extents = BTRFS_I(inode)->reserved_extents - 5409 BTRFS_I(inode)->outstanding_extents; 5410 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5411 return dropped_extents + drop_inode_space; 5412 } 5413 5414 /** 5415 * calc_csum_metadata_size - return the amount of metada space that must be 5416 * reserved/free'd for the given bytes. 5417 * @inode: the inode we're manipulating 5418 * @num_bytes: the number of bytes in question 5419 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5420 * 5421 * This adjusts the number of csum_bytes in the inode and then returns the 5422 * correct amount of metadata that must either be reserved or freed. We 5423 * calculate how many checksums we can fit into one leaf and then divide the 5424 * number of bytes that will need to be checksumed by this value to figure out 5425 * how many checksums will be required. If we are adding bytes then the number 5426 * may go up and we will return the number of additional bytes that must be 5427 * reserved. If it is going down we will return the number of bytes that must 5428 * be freed. 5429 * 5430 * This must be called with BTRFS_I(inode)->lock held. 5431 */ 5432 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5433 int reserve) 5434 { 5435 struct btrfs_root *root = BTRFS_I(inode)->root; 5436 u64 old_csums, num_csums; 5437 5438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5439 BTRFS_I(inode)->csum_bytes == 0) 5440 return 0; 5441 5442 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5443 if (reserve) 5444 BTRFS_I(inode)->csum_bytes += num_bytes; 5445 else 5446 BTRFS_I(inode)->csum_bytes -= num_bytes; 5447 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5448 5449 /* No change, no need to reserve more */ 5450 if (old_csums == num_csums) 5451 return 0; 5452 5453 if (reserve) 5454 return btrfs_calc_trans_metadata_size(root, 5455 num_csums - old_csums); 5456 5457 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5458 } 5459 5460 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5461 { 5462 struct btrfs_root *root = BTRFS_I(inode)->root; 5463 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5464 u64 to_reserve = 0; 5465 u64 csum_bytes; 5466 unsigned nr_extents = 0; 5467 int extra_reserve = 0; 5468 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5469 int ret = 0; 5470 bool delalloc_lock = true; 5471 u64 to_free = 0; 5472 unsigned dropped; 5473 5474 /* If we are a free space inode we need to not flush since we will be in 5475 * the middle of a transaction commit. We also don't need the delalloc 5476 * mutex since we won't race with anybody. We need this mostly to make 5477 * lockdep shut its filthy mouth. 5478 */ 5479 if (btrfs_is_free_space_inode(inode)) { 5480 flush = BTRFS_RESERVE_NO_FLUSH; 5481 delalloc_lock = false; 5482 } 5483 5484 if (flush != BTRFS_RESERVE_NO_FLUSH && 5485 btrfs_transaction_in_commit(root->fs_info)) 5486 schedule_timeout(1); 5487 5488 if (delalloc_lock) 5489 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5490 5491 num_bytes = ALIGN(num_bytes, root->sectorsize); 5492 5493 spin_lock(&BTRFS_I(inode)->lock); 5494 nr_extents = (unsigned)div64_u64(num_bytes + 5495 BTRFS_MAX_EXTENT_SIZE - 1, 5496 BTRFS_MAX_EXTENT_SIZE); 5497 BTRFS_I(inode)->outstanding_extents += nr_extents; 5498 nr_extents = 0; 5499 5500 if (BTRFS_I(inode)->outstanding_extents > 5501 BTRFS_I(inode)->reserved_extents) 5502 nr_extents = BTRFS_I(inode)->outstanding_extents - 5503 BTRFS_I(inode)->reserved_extents; 5504 5505 /* 5506 * Add an item to reserve for updating the inode when we complete the 5507 * delalloc io. 5508 */ 5509 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5510 &BTRFS_I(inode)->runtime_flags)) { 5511 nr_extents++; 5512 extra_reserve = 1; 5513 } 5514 5515 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5516 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5517 csum_bytes = BTRFS_I(inode)->csum_bytes; 5518 spin_unlock(&BTRFS_I(inode)->lock); 5519 5520 if (root->fs_info->quota_enabled) { 5521 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5522 if (ret) 5523 goto out_fail; 5524 } 5525 5526 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5527 if (unlikely(ret)) { 5528 if (root->fs_info->quota_enabled) 5529 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5530 goto out_fail; 5531 } 5532 5533 spin_lock(&BTRFS_I(inode)->lock); 5534 if (extra_reserve) { 5535 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5536 &BTRFS_I(inode)->runtime_flags); 5537 nr_extents--; 5538 } 5539 BTRFS_I(inode)->reserved_extents += nr_extents; 5540 spin_unlock(&BTRFS_I(inode)->lock); 5541 5542 if (delalloc_lock) 5543 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5544 5545 if (to_reserve) 5546 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5547 btrfs_ino(inode), to_reserve, 1); 5548 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5549 5550 return 0; 5551 5552 out_fail: 5553 spin_lock(&BTRFS_I(inode)->lock); 5554 dropped = drop_outstanding_extent(inode, num_bytes); 5555 /* 5556 * If the inodes csum_bytes is the same as the original 5557 * csum_bytes then we know we haven't raced with any free()ers 5558 * so we can just reduce our inodes csum bytes and carry on. 5559 */ 5560 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5561 calc_csum_metadata_size(inode, num_bytes, 0); 5562 } else { 5563 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5564 u64 bytes; 5565 5566 /* 5567 * This is tricky, but first we need to figure out how much we 5568 * free'd from any free-ers that occured during this 5569 * reservation, so we reset ->csum_bytes to the csum_bytes 5570 * before we dropped our lock, and then call the free for the 5571 * number of bytes that were freed while we were trying our 5572 * reservation. 5573 */ 5574 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5575 BTRFS_I(inode)->csum_bytes = csum_bytes; 5576 to_free = calc_csum_metadata_size(inode, bytes, 0); 5577 5578 5579 /* 5580 * Now we need to see how much we would have freed had we not 5581 * been making this reservation and our ->csum_bytes were not 5582 * artificially inflated. 5583 */ 5584 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5585 bytes = csum_bytes - orig_csum_bytes; 5586 bytes = calc_csum_metadata_size(inode, bytes, 0); 5587 5588 /* 5589 * Now reset ->csum_bytes to what it should be. If bytes is 5590 * more than to_free then we would have free'd more space had we 5591 * not had an artificially high ->csum_bytes, so we need to free 5592 * the remainder. If bytes is the same or less then we don't 5593 * need to do anything, the other free-ers did the correct 5594 * thing. 5595 */ 5596 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5597 if (bytes > to_free) 5598 to_free = bytes - to_free; 5599 else 5600 to_free = 0; 5601 } 5602 spin_unlock(&BTRFS_I(inode)->lock); 5603 if (dropped) 5604 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5605 5606 if (to_free) { 5607 btrfs_block_rsv_release(root, block_rsv, to_free); 5608 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5609 btrfs_ino(inode), to_free, 0); 5610 } 5611 if (delalloc_lock) 5612 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5613 return ret; 5614 } 5615 5616 /** 5617 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5618 * @inode: the inode to release the reservation for 5619 * @num_bytes: the number of bytes we're releasing 5620 * 5621 * This will release the metadata reservation for an inode. This can be called 5622 * once we complete IO for a given set of bytes to release their metadata 5623 * reservations. 5624 */ 5625 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5626 { 5627 struct btrfs_root *root = BTRFS_I(inode)->root; 5628 u64 to_free = 0; 5629 unsigned dropped; 5630 5631 num_bytes = ALIGN(num_bytes, root->sectorsize); 5632 spin_lock(&BTRFS_I(inode)->lock); 5633 dropped = drop_outstanding_extent(inode, num_bytes); 5634 5635 if (num_bytes) 5636 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5637 spin_unlock(&BTRFS_I(inode)->lock); 5638 if (dropped > 0) 5639 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5640 5641 if (btrfs_test_is_dummy_root(root)) 5642 return; 5643 5644 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5645 btrfs_ino(inode), to_free, 0); 5646 5647 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5648 to_free); 5649 } 5650 5651 /** 5652 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5653 * @inode: inode we're writing to 5654 * @num_bytes: the number of bytes we want to allocate 5655 * 5656 * This will do the following things 5657 * 5658 * o reserve space in the data space info for num_bytes 5659 * o reserve space in the metadata space info based on number of outstanding 5660 * extents and how much csums will be needed 5661 * o add to the inodes ->delalloc_bytes 5662 * o add it to the fs_info's delalloc inodes list. 5663 * 5664 * This will return 0 for success and -ENOSPC if there is no space left. 5665 */ 5666 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5667 { 5668 int ret; 5669 5670 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5671 if (ret) 5672 return ret; 5673 5674 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5675 if (ret) { 5676 btrfs_free_reserved_data_space(inode, num_bytes); 5677 return ret; 5678 } 5679 5680 return 0; 5681 } 5682 5683 /** 5684 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5685 * @inode: inode we're releasing space for 5686 * @num_bytes: the number of bytes we want to free up 5687 * 5688 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5689 * called in the case that we don't need the metadata AND data reservations 5690 * anymore. So if there is an error or we insert an inline extent. 5691 * 5692 * This function will release the metadata space that was not used and will 5693 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5694 * list if there are no delalloc bytes left. 5695 */ 5696 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5697 { 5698 btrfs_delalloc_release_metadata(inode, num_bytes); 5699 btrfs_free_reserved_data_space(inode, num_bytes); 5700 } 5701 5702 static int update_block_group(struct btrfs_trans_handle *trans, 5703 struct btrfs_root *root, u64 bytenr, 5704 u64 num_bytes, int alloc) 5705 { 5706 struct btrfs_block_group_cache *cache = NULL; 5707 struct btrfs_fs_info *info = root->fs_info; 5708 u64 total = num_bytes; 5709 u64 old_val; 5710 u64 byte_in_group; 5711 int factor; 5712 5713 /* block accounting for super block */ 5714 spin_lock(&info->delalloc_root_lock); 5715 old_val = btrfs_super_bytes_used(info->super_copy); 5716 if (alloc) 5717 old_val += num_bytes; 5718 else 5719 old_val -= num_bytes; 5720 btrfs_set_super_bytes_used(info->super_copy, old_val); 5721 spin_unlock(&info->delalloc_root_lock); 5722 5723 while (total) { 5724 cache = btrfs_lookup_block_group(info, bytenr); 5725 if (!cache) 5726 return -ENOENT; 5727 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5728 BTRFS_BLOCK_GROUP_RAID1 | 5729 BTRFS_BLOCK_GROUP_RAID10)) 5730 factor = 2; 5731 else 5732 factor = 1; 5733 /* 5734 * If this block group has free space cache written out, we 5735 * need to make sure to load it if we are removing space. This 5736 * is because we need the unpinning stage to actually add the 5737 * space back to the block group, otherwise we will leak space. 5738 */ 5739 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5740 cache_block_group(cache, 1); 5741 5742 byte_in_group = bytenr - cache->key.objectid; 5743 WARN_ON(byte_in_group > cache->key.offset); 5744 5745 spin_lock(&cache->space_info->lock); 5746 spin_lock(&cache->lock); 5747 5748 if (btrfs_test_opt(root, SPACE_CACHE) && 5749 cache->disk_cache_state < BTRFS_DC_CLEAR) 5750 cache->disk_cache_state = BTRFS_DC_CLEAR; 5751 5752 old_val = btrfs_block_group_used(&cache->item); 5753 num_bytes = min(total, cache->key.offset - byte_in_group); 5754 if (alloc) { 5755 old_val += num_bytes; 5756 btrfs_set_block_group_used(&cache->item, old_val); 5757 cache->reserved -= num_bytes; 5758 cache->space_info->bytes_reserved -= num_bytes; 5759 cache->space_info->bytes_used += num_bytes; 5760 cache->space_info->disk_used += num_bytes * factor; 5761 spin_unlock(&cache->lock); 5762 spin_unlock(&cache->space_info->lock); 5763 } else { 5764 old_val -= num_bytes; 5765 btrfs_set_block_group_used(&cache->item, old_val); 5766 cache->pinned += num_bytes; 5767 cache->space_info->bytes_pinned += num_bytes; 5768 cache->space_info->bytes_used -= num_bytes; 5769 cache->space_info->disk_used -= num_bytes * factor; 5770 spin_unlock(&cache->lock); 5771 spin_unlock(&cache->space_info->lock); 5772 5773 set_extent_dirty(info->pinned_extents, 5774 bytenr, bytenr + num_bytes - 1, 5775 GFP_NOFS | __GFP_NOFAIL); 5776 /* 5777 * No longer have used bytes in this block group, queue 5778 * it for deletion. 5779 */ 5780 if (old_val == 0) { 5781 spin_lock(&info->unused_bgs_lock); 5782 if (list_empty(&cache->bg_list)) { 5783 btrfs_get_block_group(cache); 5784 list_add_tail(&cache->bg_list, 5785 &info->unused_bgs); 5786 } 5787 spin_unlock(&info->unused_bgs_lock); 5788 } 5789 } 5790 5791 spin_lock(&trans->transaction->dirty_bgs_lock); 5792 if (list_empty(&cache->dirty_list)) { 5793 list_add_tail(&cache->dirty_list, 5794 &trans->transaction->dirty_bgs); 5795 trans->transaction->num_dirty_bgs++; 5796 btrfs_get_block_group(cache); 5797 } 5798 spin_unlock(&trans->transaction->dirty_bgs_lock); 5799 5800 btrfs_put_block_group(cache); 5801 total -= num_bytes; 5802 bytenr += num_bytes; 5803 } 5804 return 0; 5805 } 5806 5807 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5808 { 5809 struct btrfs_block_group_cache *cache; 5810 u64 bytenr; 5811 5812 spin_lock(&root->fs_info->block_group_cache_lock); 5813 bytenr = root->fs_info->first_logical_byte; 5814 spin_unlock(&root->fs_info->block_group_cache_lock); 5815 5816 if (bytenr < (u64)-1) 5817 return bytenr; 5818 5819 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5820 if (!cache) 5821 return 0; 5822 5823 bytenr = cache->key.objectid; 5824 btrfs_put_block_group(cache); 5825 5826 return bytenr; 5827 } 5828 5829 static int pin_down_extent(struct btrfs_root *root, 5830 struct btrfs_block_group_cache *cache, 5831 u64 bytenr, u64 num_bytes, int reserved) 5832 { 5833 spin_lock(&cache->space_info->lock); 5834 spin_lock(&cache->lock); 5835 cache->pinned += num_bytes; 5836 cache->space_info->bytes_pinned += num_bytes; 5837 if (reserved) { 5838 cache->reserved -= num_bytes; 5839 cache->space_info->bytes_reserved -= num_bytes; 5840 } 5841 spin_unlock(&cache->lock); 5842 spin_unlock(&cache->space_info->lock); 5843 5844 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5845 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5846 if (reserved) 5847 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5848 return 0; 5849 } 5850 5851 /* 5852 * this function must be called within transaction 5853 */ 5854 int btrfs_pin_extent(struct btrfs_root *root, 5855 u64 bytenr, u64 num_bytes, int reserved) 5856 { 5857 struct btrfs_block_group_cache *cache; 5858 5859 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5860 BUG_ON(!cache); /* Logic error */ 5861 5862 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5863 5864 btrfs_put_block_group(cache); 5865 return 0; 5866 } 5867 5868 /* 5869 * this function must be called within transaction 5870 */ 5871 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5872 u64 bytenr, u64 num_bytes) 5873 { 5874 struct btrfs_block_group_cache *cache; 5875 int ret; 5876 5877 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5878 if (!cache) 5879 return -EINVAL; 5880 5881 /* 5882 * pull in the free space cache (if any) so that our pin 5883 * removes the free space from the cache. We have load_only set 5884 * to one because the slow code to read in the free extents does check 5885 * the pinned extents. 5886 */ 5887 cache_block_group(cache, 1); 5888 5889 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5890 5891 /* remove us from the free space cache (if we're there at all) */ 5892 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5893 btrfs_put_block_group(cache); 5894 return ret; 5895 } 5896 5897 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5898 { 5899 int ret; 5900 struct btrfs_block_group_cache *block_group; 5901 struct btrfs_caching_control *caching_ctl; 5902 5903 block_group = btrfs_lookup_block_group(root->fs_info, start); 5904 if (!block_group) 5905 return -EINVAL; 5906 5907 cache_block_group(block_group, 0); 5908 caching_ctl = get_caching_control(block_group); 5909 5910 if (!caching_ctl) { 5911 /* Logic error */ 5912 BUG_ON(!block_group_cache_done(block_group)); 5913 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5914 } else { 5915 mutex_lock(&caching_ctl->mutex); 5916 5917 if (start >= caching_ctl->progress) { 5918 ret = add_excluded_extent(root, start, num_bytes); 5919 } else if (start + num_bytes <= caching_ctl->progress) { 5920 ret = btrfs_remove_free_space(block_group, 5921 start, num_bytes); 5922 } else { 5923 num_bytes = caching_ctl->progress - start; 5924 ret = btrfs_remove_free_space(block_group, 5925 start, num_bytes); 5926 if (ret) 5927 goto out_lock; 5928 5929 num_bytes = (start + num_bytes) - 5930 caching_ctl->progress; 5931 start = caching_ctl->progress; 5932 ret = add_excluded_extent(root, start, num_bytes); 5933 } 5934 out_lock: 5935 mutex_unlock(&caching_ctl->mutex); 5936 put_caching_control(caching_ctl); 5937 } 5938 btrfs_put_block_group(block_group); 5939 return ret; 5940 } 5941 5942 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5943 struct extent_buffer *eb) 5944 { 5945 struct btrfs_file_extent_item *item; 5946 struct btrfs_key key; 5947 int found_type; 5948 int i; 5949 5950 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5951 return 0; 5952 5953 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5954 btrfs_item_key_to_cpu(eb, &key, i); 5955 if (key.type != BTRFS_EXTENT_DATA_KEY) 5956 continue; 5957 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5958 found_type = btrfs_file_extent_type(eb, item); 5959 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5960 continue; 5961 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5962 continue; 5963 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5964 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5965 __exclude_logged_extent(log, key.objectid, key.offset); 5966 } 5967 5968 return 0; 5969 } 5970 5971 /** 5972 * btrfs_update_reserved_bytes - update the block_group and space info counters 5973 * @cache: The cache we are manipulating 5974 * @num_bytes: The number of bytes in question 5975 * @reserve: One of the reservation enums 5976 * @delalloc: The blocks are allocated for the delalloc write 5977 * 5978 * This is called by the allocator when it reserves space, or by somebody who is 5979 * freeing space that was never actually used on disk. For example if you 5980 * reserve some space for a new leaf in transaction A and before transaction A 5981 * commits you free that leaf, you call this with reserve set to 0 in order to 5982 * clear the reservation. 5983 * 5984 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5985 * ENOSPC accounting. For data we handle the reservation through clearing the 5986 * delalloc bits in the io_tree. We have to do this since we could end up 5987 * allocating less disk space for the amount of data we have reserved in the 5988 * case of compression. 5989 * 5990 * If this is a reservation and the block group has become read only we cannot 5991 * make the reservation and return -EAGAIN, otherwise this function always 5992 * succeeds. 5993 */ 5994 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5995 u64 num_bytes, int reserve, int delalloc) 5996 { 5997 struct btrfs_space_info *space_info = cache->space_info; 5998 int ret = 0; 5999 6000 spin_lock(&space_info->lock); 6001 spin_lock(&cache->lock); 6002 if (reserve != RESERVE_FREE) { 6003 if (cache->ro) { 6004 ret = -EAGAIN; 6005 } else { 6006 cache->reserved += num_bytes; 6007 space_info->bytes_reserved += num_bytes; 6008 if (reserve == RESERVE_ALLOC) { 6009 trace_btrfs_space_reservation(cache->fs_info, 6010 "space_info", space_info->flags, 6011 num_bytes, 0); 6012 space_info->bytes_may_use -= num_bytes; 6013 } 6014 6015 if (delalloc) 6016 cache->delalloc_bytes += num_bytes; 6017 } 6018 } else { 6019 if (cache->ro) 6020 space_info->bytes_readonly += num_bytes; 6021 cache->reserved -= num_bytes; 6022 space_info->bytes_reserved -= num_bytes; 6023 6024 if (delalloc) 6025 cache->delalloc_bytes -= num_bytes; 6026 } 6027 spin_unlock(&cache->lock); 6028 spin_unlock(&space_info->lock); 6029 return ret; 6030 } 6031 6032 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6033 struct btrfs_root *root) 6034 { 6035 struct btrfs_fs_info *fs_info = root->fs_info; 6036 struct btrfs_caching_control *next; 6037 struct btrfs_caching_control *caching_ctl; 6038 struct btrfs_block_group_cache *cache; 6039 6040 down_write(&fs_info->commit_root_sem); 6041 6042 list_for_each_entry_safe(caching_ctl, next, 6043 &fs_info->caching_block_groups, list) { 6044 cache = caching_ctl->block_group; 6045 if (block_group_cache_done(cache)) { 6046 cache->last_byte_to_unpin = (u64)-1; 6047 list_del_init(&caching_ctl->list); 6048 put_caching_control(caching_ctl); 6049 } else { 6050 cache->last_byte_to_unpin = caching_ctl->progress; 6051 } 6052 } 6053 6054 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6055 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6056 else 6057 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6058 6059 up_write(&fs_info->commit_root_sem); 6060 6061 update_global_block_rsv(fs_info); 6062 } 6063 6064 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6065 const bool return_free_space) 6066 { 6067 struct btrfs_fs_info *fs_info = root->fs_info; 6068 struct btrfs_block_group_cache *cache = NULL; 6069 struct btrfs_space_info *space_info; 6070 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6071 u64 len; 6072 bool readonly; 6073 6074 while (start <= end) { 6075 readonly = false; 6076 if (!cache || 6077 start >= cache->key.objectid + cache->key.offset) { 6078 if (cache) 6079 btrfs_put_block_group(cache); 6080 cache = btrfs_lookup_block_group(fs_info, start); 6081 BUG_ON(!cache); /* Logic error */ 6082 } 6083 6084 len = cache->key.objectid + cache->key.offset - start; 6085 len = min(len, end + 1 - start); 6086 6087 if (start < cache->last_byte_to_unpin) { 6088 len = min(len, cache->last_byte_to_unpin - start); 6089 if (return_free_space) 6090 btrfs_add_free_space(cache, start, len); 6091 } 6092 6093 start += len; 6094 space_info = cache->space_info; 6095 6096 spin_lock(&space_info->lock); 6097 spin_lock(&cache->lock); 6098 cache->pinned -= len; 6099 space_info->bytes_pinned -= len; 6100 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6101 if (cache->ro) { 6102 space_info->bytes_readonly += len; 6103 readonly = true; 6104 } 6105 spin_unlock(&cache->lock); 6106 if (!readonly && global_rsv->space_info == space_info) { 6107 spin_lock(&global_rsv->lock); 6108 if (!global_rsv->full) { 6109 len = min(len, global_rsv->size - 6110 global_rsv->reserved); 6111 global_rsv->reserved += len; 6112 space_info->bytes_may_use += len; 6113 if (global_rsv->reserved >= global_rsv->size) 6114 global_rsv->full = 1; 6115 } 6116 spin_unlock(&global_rsv->lock); 6117 } 6118 spin_unlock(&space_info->lock); 6119 } 6120 6121 if (cache) 6122 btrfs_put_block_group(cache); 6123 return 0; 6124 } 6125 6126 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6127 struct btrfs_root *root) 6128 { 6129 struct btrfs_fs_info *fs_info = root->fs_info; 6130 struct btrfs_block_group_cache *block_group, *tmp; 6131 struct list_head *deleted_bgs; 6132 struct extent_io_tree *unpin; 6133 u64 start; 6134 u64 end; 6135 int ret; 6136 6137 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6138 unpin = &fs_info->freed_extents[1]; 6139 else 6140 unpin = &fs_info->freed_extents[0]; 6141 6142 while (!trans->aborted) { 6143 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6144 ret = find_first_extent_bit(unpin, 0, &start, &end, 6145 EXTENT_DIRTY, NULL); 6146 if (ret) { 6147 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6148 break; 6149 } 6150 6151 if (btrfs_test_opt(root, DISCARD)) 6152 ret = btrfs_discard_extent(root, start, 6153 end + 1 - start, NULL); 6154 6155 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6156 unpin_extent_range(root, start, end, true); 6157 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6158 cond_resched(); 6159 } 6160 6161 /* 6162 * Transaction is finished. We don't need the lock anymore. We 6163 * do need to clean up the block groups in case of a transaction 6164 * abort. 6165 */ 6166 deleted_bgs = &trans->transaction->deleted_bgs; 6167 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6168 u64 trimmed = 0; 6169 6170 ret = -EROFS; 6171 if (!trans->aborted) 6172 ret = btrfs_discard_extent(root, 6173 block_group->key.objectid, 6174 block_group->key.offset, 6175 &trimmed); 6176 6177 list_del_init(&block_group->bg_list); 6178 btrfs_put_block_group_trimming(block_group); 6179 btrfs_put_block_group(block_group); 6180 6181 if (ret) { 6182 const char *errstr = btrfs_decode_error(ret); 6183 btrfs_warn(fs_info, 6184 "Discard failed while removing blockgroup: errno=%d %s\n", 6185 ret, errstr); 6186 } 6187 } 6188 6189 return 0; 6190 } 6191 6192 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6193 u64 owner, u64 root_objectid) 6194 { 6195 struct btrfs_space_info *space_info; 6196 u64 flags; 6197 6198 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6199 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6200 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6201 else 6202 flags = BTRFS_BLOCK_GROUP_METADATA; 6203 } else { 6204 flags = BTRFS_BLOCK_GROUP_DATA; 6205 } 6206 6207 space_info = __find_space_info(fs_info, flags); 6208 BUG_ON(!space_info); /* Logic bug */ 6209 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6210 } 6211 6212 6213 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6214 struct btrfs_root *root, 6215 struct btrfs_delayed_ref_node *node, u64 parent, 6216 u64 root_objectid, u64 owner_objectid, 6217 u64 owner_offset, int refs_to_drop, 6218 struct btrfs_delayed_extent_op *extent_op) 6219 { 6220 struct btrfs_key key; 6221 struct btrfs_path *path; 6222 struct btrfs_fs_info *info = root->fs_info; 6223 struct btrfs_root *extent_root = info->extent_root; 6224 struct extent_buffer *leaf; 6225 struct btrfs_extent_item *ei; 6226 struct btrfs_extent_inline_ref *iref; 6227 int ret; 6228 int is_data; 6229 int extent_slot = 0; 6230 int found_extent = 0; 6231 int num_to_del = 1; 6232 int no_quota = node->no_quota; 6233 u32 item_size; 6234 u64 refs; 6235 u64 bytenr = node->bytenr; 6236 u64 num_bytes = node->num_bytes; 6237 int last_ref = 0; 6238 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6239 SKINNY_METADATA); 6240 6241 if (!info->quota_enabled || !is_fstree(root_objectid)) 6242 no_quota = 1; 6243 6244 path = btrfs_alloc_path(); 6245 if (!path) 6246 return -ENOMEM; 6247 6248 path->reada = 1; 6249 path->leave_spinning = 1; 6250 6251 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6252 BUG_ON(!is_data && refs_to_drop != 1); 6253 6254 if (is_data) 6255 skinny_metadata = 0; 6256 6257 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6258 bytenr, num_bytes, parent, 6259 root_objectid, owner_objectid, 6260 owner_offset); 6261 if (ret == 0) { 6262 extent_slot = path->slots[0]; 6263 while (extent_slot >= 0) { 6264 btrfs_item_key_to_cpu(path->nodes[0], &key, 6265 extent_slot); 6266 if (key.objectid != bytenr) 6267 break; 6268 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6269 key.offset == num_bytes) { 6270 found_extent = 1; 6271 break; 6272 } 6273 if (key.type == BTRFS_METADATA_ITEM_KEY && 6274 key.offset == owner_objectid) { 6275 found_extent = 1; 6276 break; 6277 } 6278 if (path->slots[0] - extent_slot > 5) 6279 break; 6280 extent_slot--; 6281 } 6282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6283 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6284 if (found_extent && item_size < sizeof(*ei)) 6285 found_extent = 0; 6286 #endif 6287 if (!found_extent) { 6288 BUG_ON(iref); 6289 ret = remove_extent_backref(trans, extent_root, path, 6290 NULL, refs_to_drop, 6291 is_data, &last_ref); 6292 if (ret) { 6293 btrfs_abort_transaction(trans, extent_root, ret); 6294 goto out; 6295 } 6296 btrfs_release_path(path); 6297 path->leave_spinning = 1; 6298 6299 key.objectid = bytenr; 6300 key.type = BTRFS_EXTENT_ITEM_KEY; 6301 key.offset = num_bytes; 6302 6303 if (!is_data && skinny_metadata) { 6304 key.type = BTRFS_METADATA_ITEM_KEY; 6305 key.offset = owner_objectid; 6306 } 6307 6308 ret = btrfs_search_slot(trans, extent_root, 6309 &key, path, -1, 1); 6310 if (ret > 0 && skinny_metadata && path->slots[0]) { 6311 /* 6312 * Couldn't find our skinny metadata item, 6313 * see if we have ye olde extent item. 6314 */ 6315 path->slots[0]--; 6316 btrfs_item_key_to_cpu(path->nodes[0], &key, 6317 path->slots[0]); 6318 if (key.objectid == bytenr && 6319 key.type == BTRFS_EXTENT_ITEM_KEY && 6320 key.offset == num_bytes) 6321 ret = 0; 6322 } 6323 6324 if (ret > 0 && skinny_metadata) { 6325 skinny_metadata = false; 6326 key.objectid = bytenr; 6327 key.type = BTRFS_EXTENT_ITEM_KEY; 6328 key.offset = num_bytes; 6329 btrfs_release_path(path); 6330 ret = btrfs_search_slot(trans, extent_root, 6331 &key, path, -1, 1); 6332 } 6333 6334 if (ret) { 6335 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6336 ret, bytenr); 6337 if (ret > 0) 6338 btrfs_print_leaf(extent_root, 6339 path->nodes[0]); 6340 } 6341 if (ret < 0) { 6342 btrfs_abort_transaction(trans, extent_root, ret); 6343 goto out; 6344 } 6345 extent_slot = path->slots[0]; 6346 } 6347 } else if (WARN_ON(ret == -ENOENT)) { 6348 btrfs_print_leaf(extent_root, path->nodes[0]); 6349 btrfs_err(info, 6350 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6351 bytenr, parent, root_objectid, owner_objectid, 6352 owner_offset); 6353 btrfs_abort_transaction(trans, extent_root, ret); 6354 goto out; 6355 } else { 6356 btrfs_abort_transaction(trans, extent_root, ret); 6357 goto out; 6358 } 6359 6360 leaf = path->nodes[0]; 6361 item_size = btrfs_item_size_nr(leaf, extent_slot); 6362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6363 if (item_size < sizeof(*ei)) { 6364 BUG_ON(found_extent || extent_slot != path->slots[0]); 6365 ret = convert_extent_item_v0(trans, extent_root, path, 6366 owner_objectid, 0); 6367 if (ret < 0) { 6368 btrfs_abort_transaction(trans, extent_root, ret); 6369 goto out; 6370 } 6371 6372 btrfs_release_path(path); 6373 path->leave_spinning = 1; 6374 6375 key.objectid = bytenr; 6376 key.type = BTRFS_EXTENT_ITEM_KEY; 6377 key.offset = num_bytes; 6378 6379 ret = btrfs_search_slot(trans, extent_root, &key, path, 6380 -1, 1); 6381 if (ret) { 6382 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6383 ret, bytenr); 6384 btrfs_print_leaf(extent_root, path->nodes[0]); 6385 } 6386 if (ret < 0) { 6387 btrfs_abort_transaction(trans, extent_root, ret); 6388 goto out; 6389 } 6390 6391 extent_slot = path->slots[0]; 6392 leaf = path->nodes[0]; 6393 item_size = btrfs_item_size_nr(leaf, extent_slot); 6394 } 6395 #endif 6396 BUG_ON(item_size < sizeof(*ei)); 6397 ei = btrfs_item_ptr(leaf, extent_slot, 6398 struct btrfs_extent_item); 6399 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6400 key.type == BTRFS_EXTENT_ITEM_KEY) { 6401 struct btrfs_tree_block_info *bi; 6402 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6403 bi = (struct btrfs_tree_block_info *)(ei + 1); 6404 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6405 } 6406 6407 refs = btrfs_extent_refs(leaf, ei); 6408 if (refs < refs_to_drop) { 6409 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6410 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6411 ret = -EINVAL; 6412 btrfs_abort_transaction(trans, extent_root, ret); 6413 goto out; 6414 } 6415 refs -= refs_to_drop; 6416 6417 if (refs > 0) { 6418 if (extent_op) 6419 __run_delayed_extent_op(extent_op, leaf, ei); 6420 /* 6421 * In the case of inline back ref, reference count will 6422 * be updated by remove_extent_backref 6423 */ 6424 if (iref) { 6425 BUG_ON(!found_extent); 6426 } else { 6427 btrfs_set_extent_refs(leaf, ei, refs); 6428 btrfs_mark_buffer_dirty(leaf); 6429 } 6430 if (found_extent) { 6431 ret = remove_extent_backref(trans, extent_root, path, 6432 iref, refs_to_drop, 6433 is_data, &last_ref); 6434 if (ret) { 6435 btrfs_abort_transaction(trans, extent_root, ret); 6436 goto out; 6437 } 6438 } 6439 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6440 root_objectid); 6441 } else { 6442 if (found_extent) { 6443 BUG_ON(is_data && refs_to_drop != 6444 extent_data_ref_count(path, iref)); 6445 if (iref) { 6446 BUG_ON(path->slots[0] != extent_slot); 6447 } else { 6448 BUG_ON(path->slots[0] != extent_slot + 1); 6449 path->slots[0] = extent_slot; 6450 num_to_del = 2; 6451 } 6452 } 6453 6454 last_ref = 1; 6455 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6456 num_to_del); 6457 if (ret) { 6458 btrfs_abort_transaction(trans, extent_root, ret); 6459 goto out; 6460 } 6461 btrfs_release_path(path); 6462 6463 if (is_data) { 6464 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6465 if (ret) { 6466 btrfs_abort_transaction(trans, extent_root, ret); 6467 goto out; 6468 } 6469 } 6470 6471 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6472 if (ret) { 6473 btrfs_abort_transaction(trans, extent_root, ret); 6474 goto out; 6475 } 6476 } 6477 btrfs_release_path(path); 6478 6479 out: 6480 btrfs_free_path(path); 6481 return ret; 6482 } 6483 6484 /* 6485 * when we free an block, it is possible (and likely) that we free the last 6486 * delayed ref for that extent as well. This searches the delayed ref tree for 6487 * a given extent, and if there are no other delayed refs to be processed, it 6488 * removes it from the tree. 6489 */ 6490 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6491 struct btrfs_root *root, u64 bytenr) 6492 { 6493 struct btrfs_delayed_ref_head *head; 6494 struct btrfs_delayed_ref_root *delayed_refs; 6495 int ret = 0; 6496 6497 delayed_refs = &trans->transaction->delayed_refs; 6498 spin_lock(&delayed_refs->lock); 6499 head = btrfs_find_delayed_ref_head(trans, bytenr); 6500 if (!head) 6501 goto out_delayed_unlock; 6502 6503 spin_lock(&head->lock); 6504 if (!list_empty(&head->ref_list)) 6505 goto out; 6506 6507 if (head->extent_op) { 6508 if (!head->must_insert_reserved) 6509 goto out; 6510 btrfs_free_delayed_extent_op(head->extent_op); 6511 head->extent_op = NULL; 6512 } 6513 6514 /* 6515 * waiting for the lock here would deadlock. If someone else has it 6516 * locked they are already in the process of dropping it anyway 6517 */ 6518 if (!mutex_trylock(&head->mutex)) 6519 goto out; 6520 6521 /* 6522 * at this point we have a head with no other entries. Go 6523 * ahead and process it. 6524 */ 6525 head->node.in_tree = 0; 6526 rb_erase(&head->href_node, &delayed_refs->href_root); 6527 6528 atomic_dec(&delayed_refs->num_entries); 6529 6530 /* 6531 * we don't take a ref on the node because we're removing it from the 6532 * tree, so we just steal the ref the tree was holding. 6533 */ 6534 delayed_refs->num_heads--; 6535 if (head->processing == 0) 6536 delayed_refs->num_heads_ready--; 6537 head->processing = 0; 6538 spin_unlock(&head->lock); 6539 spin_unlock(&delayed_refs->lock); 6540 6541 BUG_ON(head->extent_op); 6542 if (head->must_insert_reserved) 6543 ret = 1; 6544 6545 mutex_unlock(&head->mutex); 6546 btrfs_put_delayed_ref(&head->node); 6547 return ret; 6548 out: 6549 spin_unlock(&head->lock); 6550 6551 out_delayed_unlock: 6552 spin_unlock(&delayed_refs->lock); 6553 return 0; 6554 } 6555 6556 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6557 struct btrfs_root *root, 6558 struct extent_buffer *buf, 6559 u64 parent, int last_ref) 6560 { 6561 int pin = 1; 6562 int ret; 6563 6564 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6565 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6566 buf->start, buf->len, 6567 parent, root->root_key.objectid, 6568 btrfs_header_level(buf), 6569 BTRFS_DROP_DELAYED_REF, NULL, 0); 6570 BUG_ON(ret); /* -ENOMEM */ 6571 } 6572 6573 if (!last_ref) 6574 return; 6575 6576 if (btrfs_header_generation(buf) == trans->transid) { 6577 struct btrfs_block_group_cache *cache; 6578 6579 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6580 ret = check_ref_cleanup(trans, root, buf->start); 6581 if (!ret) 6582 goto out; 6583 } 6584 6585 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6586 6587 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6588 pin_down_extent(root, cache, buf->start, buf->len, 1); 6589 btrfs_put_block_group(cache); 6590 goto out; 6591 } 6592 6593 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6594 6595 btrfs_add_free_space(cache, buf->start, buf->len); 6596 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6597 btrfs_put_block_group(cache); 6598 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6599 pin = 0; 6600 } 6601 out: 6602 if (pin) 6603 add_pinned_bytes(root->fs_info, buf->len, 6604 btrfs_header_level(buf), 6605 root->root_key.objectid); 6606 6607 /* 6608 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6609 * anymore. 6610 */ 6611 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6612 } 6613 6614 /* Can return -ENOMEM */ 6615 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6616 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6617 u64 owner, u64 offset, int no_quota) 6618 { 6619 int ret; 6620 struct btrfs_fs_info *fs_info = root->fs_info; 6621 6622 if (btrfs_test_is_dummy_root(root)) 6623 return 0; 6624 6625 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6626 6627 /* 6628 * tree log blocks never actually go into the extent allocation 6629 * tree, just update pinning info and exit early. 6630 */ 6631 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6632 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6633 /* unlocks the pinned mutex */ 6634 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6635 ret = 0; 6636 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6637 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6638 num_bytes, 6639 parent, root_objectid, (int)owner, 6640 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6641 } else { 6642 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6643 num_bytes, 6644 parent, root_objectid, owner, 6645 offset, BTRFS_DROP_DELAYED_REF, 6646 NULL, no_quota); 6647 } 6648 return ret; 6649 } 6650 6651 /* 6652 * when we wait for progress in the block group caching, its because 6653 * our allocation attempt failed at least once. So, we must sleep 6654 * and let some progress happen before we try again. 6655 * 6656 * This function will sleep at least once waiting for new free space to 6657 * show up, and then it will check the block group free space numbers 6658 * for our min num_bytes. Another option is to have it go ahead 6659 * and look in the rbtree for a free extent of a given size, but this 6660 * is a good start. 6661 * 6662 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6663 * any of the information in this block group. 6664 */ 6665 static noinline void 6666 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6667 u64 num_bytes) 6668 { 6669 struct btrfs_caching_control *caching_ctl; 6670 6671 caching_ctl = get_caching_control(cache); 6672 if (!caching_ctl) 6673 return; 6674 6675 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6676 (cache->free_space_ctl->free_space >= num_bytes)); 6677 6678 put_caching_control(caching_ctl); 6679 } 6680 6681 static noinline int 6682 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6683 { 6684 struct btrfs_caching_control *caching_ctl; 6685 int ret = 0; 6686 6687 caching_ctl = get_caching_control(cache); 6688 if (!caching_ctl) 6689 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6690 6691 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6692 if (cache->cached == BTRFS_CACHE_ERROR) 6693 ret = -EIO; 6694 put_caching_control(caching_ctl); 6695 return ret; 6696 } 6697 6698 int __get_raid_index(u64 flags) 6699 { 6700 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6701 return BTRFS_RAID_RAID10; 6702 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6703 return BTRFS_RAID_RAID1; 6704 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6705 return BTRFS_RAID_DUP; 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6707 return BTRFS_RAID_RAID0; 6708 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6709 return BTRFS_RAID_RAID5; 6710 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6711 return BTRFS_RAID_RAID6; 6712 6713 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6714 } 6715 6716 int get_block_group_index(struct btrfs_block_group_cache *cache) 6717 { 6718 return __get_raid_index(cache->flags); 6719 } 6720 6721 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6722 [BTRFS_RAID_RAID10] = "raid10", 6723 [BTRFS_RAID_RAID1] = "raid1", 6724 [BTRFS_RAID_DUP] = "dup", 6725 [BTRFS_RAID_RAID0] = "raid0", 6726 [BTRFS_RAID_SINGLE] = "single", 6727 [BTRFS_RAID_RAID5] = "raid5", 6728 [BTRFS_RAID_RAID6] = "raid6", 6729 }; 6730 6731 static const char *get_raid_name(enum btrfs_raid_types type) 6732 { 6733 if (type >= BTRFS_NR_RAID_TYPES) 6734 return NULL; 6735 6736 return btrfs_raid_type_names[type]; 6737 } 6738 6739 enum btrfs_loop_type { 6740 LOOP_CACHING_NOWAIT = 0, 6741 LOOP_CACHING_WAIT = 1, 6742 LOOP_ALLOC_CHUNK = 2, 6743 LOOP_NO_EMPTY_SIZE = 3, 6744 }; 6745 6746 static inline void 6747 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6748 int delalloc) 6749 { 6750 if (delalloc) 6751 down_read(&cache->data_rwsem); 6752 } 6753 6754 static inline void 6755 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6756 int delalloc) 6757 { 6758 btrfs_get_block_group(cache); 6759 if (delalloc) 6760 down_read(&cache->data_rwsem); 6761 } 6762 6763 static struct btrfs_block_group_cache * 6764 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6765 struct btrfs_free_cluster *cluster, 6766 int delalloc) 6767 { 6768 struct btrfs_block_group_cache *used_bg; 6769 bool locked = false; 6770 again: 6771 spin_lock(&cluster->refill_lock); 6772 if (locked) { 6773 if (used_bg == cluster->block_group) 6774 return used_bg; 6775 6776 up_read(&used_bg->data_rwsem); 6777 btrfs_put_block_group(used_bg); 6778 } 6779 6780 used_bg = cluster->block_group; 6781 if (!used_bg) 6782 return NULL; 6783 6784 if (used_bg == block_group) 6785 return used_bg; 6786 6787 btrfs_get_block_group(used_bg); 6788 6789 if (!delalloc) 6790 return used_bg; 6791 6792 if (down_read_trylock(&used_bg->data_rwsem)) 6793 return used_bg; 6794 6795 spin_unlock(&cluster->refill_lock); 6796 down_read(&used_bg->data_rwsem); 6797 locked = true; 6798 goto again; 6799 } 6800 6801 static inline void 6802 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6803 int delalloc) 6804 { 6805 if (delalloc) 6806 up_read(&cache->data_rwsem); 6807 btrfs_put_block_group(cache); 6808 } 6809 6810 /* 6811 * walks the btree of allocated extents and find a hole of a given size. 6812 * The key ins is changed to record the hole: 6813 * ins->objectid == start position 6814 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6815 * ins->offset == the size of the hole. 6816 * Any available blocks before search_start are skipped. 6817 * 6818 * If there is no suitable free space, we will record the max size of 6819 * the free space extent currently. 6820 */ 6821 static noinline int find_free_extent(struct btrfs_root *orig_root, 6822 u64 num_bytes, u64 empty_size, 6823 u64 hint_byte, struct btrfs_key *ins, 6824 u64 flags, int delalloc) 6825 { 6826 int ret = 0; 6827 struct btrfs_root *root = orig_root->fs_info->extent_root; 6828 struct btrfs_free_cluster *last_ptr = NULL; 6829 struct btrfs_block_group_cache *block_group = NULL; 6830 u64 search_start = 0; 6831 u64 max_extent_size = 0; 6832 int empty_cluster = 2 * 1024 * 1024; 6833 struct btrfs_space_info *space_info; 6834 int loop = 0; 6835 int index = __get_raid_index(flags); 6836 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6837 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6838 bool failed_cluster_refill = false; 6839 bool failed_alloc = false; 6840 bool use_cluster = true; 6841 bool have_caching_bg = false; 6842 6843 WARN_ON(num_bytes < root->sectorsize); 6844 ins->type = BTRFS_EXTENT_ITEM_KEY; 6845 ins->objectid = 0; 6846 ins->offset = 0; 6847 6848 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6849 6850 space_info = __find_space_info(root->fs_info, flags); 6851 if (!space_info) { 6852 btrfs_err(root->fs_info, "No space info for %llu", flags); 6853 return -ENOSPC; 6854 } 6855 6856 /* 6857 * If the space info is for both data and metadata it means we have a 6858 * small filesystem and we can't use the clustering stuff. 6859 */ 6860 if (btrfs_mixed_space_info(space_info)) 6861 use_cluster = false; 6862 6863 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6864 last_ptr = &root->fs_info->meta_alloc_cluster; 6865 if (!btrfs_test_opt(root, SSD)) 6866 empty_cluster = 64 * 1024; 6867 } 6868 6869 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6870 btrfs_test_opt(root, SSD)) { 6871 last_ptr = &root->fs_info->data_alloc_cluster; 6872 } 6873 6874 if (last_ptr) { 6875 spin_lock(&last_ptr->lock); 6876 if (last_ptr->block_group) 6877 hint_byte = last_ptr->window_start; 6878 spin_unlock(&last_ptr->lock); 6879 } 6880 6881 search_start = max(search_start, first_logical_byte(root, 0)); 6882 search_start = max(search_start, hint_byte); 6883 6884 if (!last_ptr) 6885 empty_cluster = 0; 6886 6887 if (search_start == hint_byte) { 6888 block_group = btrfs_lookup_block_group(root->fs_info, 6889 search_start); 6890 /* 6891 * we don't want to use the block group if it doesn't match our 6892 * allocation bits, or if its not cached. 6893 * 6894 * However if we are re-searching with an ideal block group 6895 * picked out then we don't care that the block group is cached. 6896 */ 6897 if (block_group && block_group_bits(block_group, flags) && 6898 block_group->cached != BTRFS_CACHE_NO) { 6899 down_read(&space_info->groups_sem); 6900 if (list_empty(&block_group->list) || 6901 block_group->ro) { 6902 /* 6903 * someone is removing this block group, 6904 * we can't jump into the have_block_group 6905 * target because our list pointers are not 6906 * valid 6907 */ 6908 btrfs_put_block_group(block_group); 6909 up_read(&space_info->groups_sem); 6910 } else { 6911 index = get_block_group_index(block_group); 6912 btrfs_lock_block_group(block_group, delalloc); 6913 goto have_block_group; 6914 } 6915 } else if (block_group) { 6916 btrfs_put_block_group(block_group); 6917 } 6918 } 6919 search: 6920 have_caching_bg = false; 6921 down_read(&space_info->groups_sem); 6922 list_for_each_entry(block_group, &space_info->block_groups[index], 6923 list) { 6924 u64 offset; 6925 int cached; 6926 6927 btrfs_grab_block_group(block_group, delalloc); 6928 search_start = block_group->key.objectid; 6929 6930 /* 6931 * this can happen if we end up cycling through all the 6932 * raid types, but we want to make sure we only allocate 6933 * for the proper type. 6934 */ 6935 if (!block_group_bits(block_group, flags)) { 6936 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6937 BTRFS_BLOCK_GROUP_RAID1 | 6938 BTRFS_BLOCK_GROUP_RAID5 | 6939 BTRFS_BLOCK_GROUP_RAID6 | 6940 BTRFS_BLOCK_GROUP_RAID10; 6941 6942 /* 6943 * if they asked for extra copies and this block group 6944 * doesn't provide them, bail. This does allow us to 6945 * fill raid0 from raid1. 6946 */ 6947 if ((flags & extra) && !(block_group->flags & extra)) 6948 goto loop; 6949 } 6950 6951 have_block_group: 6952 cached = block_group_cache_done(block_group); 6953 if (unlikely(!cached)) { 6954 ret = cache_block_group(block_group, 0); 6955 BUG_ON(ret < 0); 6956 ret = 0; 6957 } 6958 6959 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6960 goto loop; 6961 if (unlikely(block_group->ro)) 6962 goto loop; 6963 6964 /* 6965 * Ok we want to try and use the cluster allocator, so 6966 * lets look there 6967 */ 6968 if (last_ptr) { 6969 struct btrfs_block_group_cache *used_block_group; 6970 unsigned long aligned_cluster; 6971 /* 6972 * the refill lock keeps out other 6973 * people trying to start a new cluster 6974 */ 6975 used_block_group = btrfs_lock_cluster(block_group, 6976 last_ptr, 6977 delalloc); 6978 if (!used_block_group) 6979 goto refill_cluster; 6980 6981 if (used_block_group != block_group && 6982 (used_block_group->ro || 6983 !block_group_bits(used_block_group, flags))) 6984 goto release_cluster; 6985 6986 offset = btrfs_alloc_from_cluster(used_block_group, 6987 last_ptr, 6988 num_bytes, 6989 used_block_group->key.objectid, 6990 &max_extent_size); 6991 if (offset) { 6992 /* we have a block, we're done */ 6993 spin_unlock(&last_ptr->refill_lock); 6994 trace_btrfs_reserve_extent_cluster(root, 6995 used_block_group, 6996 search_start, num_bytes); 6997 if (used_block_group != block_group) { 6998 btrfs_release_block_group(block_group, 6999 delalloc); 7000 block_group = used_block_group; 7001 } 7002 goto checks; 7003 } 7004 7005 WARN_ON(last_ptr->block_group != used_block_group); 7006 release_cluster: 7007 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7008 * set up a new clusters, so lets just skip it 7009 * and let the allocator find whatever block 7010 * it can find. If we reach this point, we 7011 * will have tried the cluster allocator 7012 * plenty of times and not have found 7013 * anything, so we are likely way too 7014 * fragmented for the clustering stuff to find 7015 * anything. 7016 * 7017 * However, if the cluster is taken from the 7018 * current block group, release the cluster 7019 * first, so that we stand a better chance of 7020 * succeeding in the unclustered 7021 * allocation. */ 7022 if (loop >= LOOP_NO_EMPTY_SIZE && 7023 used_block_group != block_group) { 7024 spin_unlock(&last_ptr->refill_lock); 7025 btrfs_release_block_group(used_block_group, 7026 delalloc); 7027 goto unclustered_alloc; 7028 } 7029 7030 /* 7031 * this cluster didn't work out, free it and 7032 * start over 7033 */ 7034 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7035 7036 if (used_block_group != block_group) 7037 btrfs_release_block_group(used_block_group, 7038 delalloc); 7039 refill_cluster: 7040 if (loop >= LOOP_NO_EMPTY_SIZE) { 7041 spin_unlock(&last_ptr->refill_lock); 7042 goto unclustered_alloc; 7043 } 7044 7045 aligned_cluster = max_t(unsigned long, 7046 empty_cluster + empty_size, 7047 block_group->full_stripe_len); 7048 7049 /* allocate a cluster in this block group */ 7050 ret = btrfs_find_space_cluster(root, block_group, 7051 last_ptr, search_start, 7052 num_bytes, 7053 aligned_cluster); 7054 if (ret == 0) { 7055 /* 7056 * now pull our allocation out of this 7057 * cluster 7058 */ 7059 offset = btrfs_alloc_from_cluster(block_group, 7060 last_ptr, 7061 num_bytes, 7062 search_start, 7063 &max_extent_size); 7064 if (offset) { 7065 /* we found one, proceed */ 7066 spin_unlock(&last_ptr->refill_lock); 7067 trace_btrfs_reserve_extent_cluster(root, 7068 block_group, search_start, 7069 num_bytes); 7070 goto checks; 7071 } 7072 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7073 && !failed_cluster_refill) { 7074 spin_unlock(&last_ptr->refill_lock); 7075 7076 failed_cluster_refill = true; 7077 wait_block_group_cache_progress(block_group, 7078 num_bytes + empty_cluster + empty_size); 7079 goto have_block_group; 7080 } 7081 7082 /* 7083 * at this point we either didn't find a cluster 7084 * or we weren't able to allocate a block from our 7085 * cluster. Free the cluster we've been trying 7086 * to use, and go to the next block group 7087 */ 7088 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7089 spin_unlock(&last_ptr->refill_lock); 7090 goto loop; 7091 } 7092 7093 unclustered_alloc: 7094 spin_lock(&block_group->free_space_ctl->tree_lock); 7095 if (cached && 7096 block_group->free_space_ctl->free_space < 7097 num_bytes + empty_cluster + empty_size) { 7098 if (block_group->free_space_ctl->free_space > 7099 max_extent_size) 7100 max_extent_size = 7101 block_group->free_space_ctl->free_space; 7102 spin_unlock(&block_group->free_space_ctl->tree_lock); 7103 goto loop; 7104 } 7105 spin_unlock(&block_group->free_space_ctl->tree_lock); 7106 7107 offset = btrfs_find_space_for_alloc(block_group, search_start, 7108 num_bytes, empty_size, 7109 &max_extent_size); 7110 /* 7111 * If we didn't find a chunk, and we haven't failed on this 7112 * block group before, and this block group is in the middle of 7113 * caching and we are ok with waiting, then go ahead and wait 7114 * for progress to be made, and set failed_alloc to true. 7115 * 7116 * If failed_alloc is true then we've already waited on this 7117 * block group once and should move on to the next block group. 7118 */ 7119 if (!offset && !failed_alloc && !cached && 7120 loop > LOOP_CACHING_NOWAIT) { 7121 wait_block_group_cache_progress(block_group, 7122 num_bytes + empty_size); 7123 failed_alloc = true; 7124 goto have_block_group; 7125 } else if (!offset) { 7126 if (!cached) 7127 have_caching_bg = true; 7128 goto loop; 7129 } 7130 checks: 7131 search_start = ALIGN(offset, root->stripesize); 7132 7133 /* move on to the next group */ 7134 if (search_start + num_bytes > 7135 block_group->key.objectid + block_group->key.offset) { 7136 btrfs_add_free_space(block_group, offset, num_bytes); 7137 goto loop; 7138 } 7139 7140 if (offset < search_start) 7141 btrfs_add_free_space(block_group, offset, 7142 search_start - offset); 7143 BUG_ON(offset > search_start); 7144 7145 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7146 alloc_type, delalloc); 7147 if (ret == -EAGAIN) { 7148 btrfs_add_free_space(block_group, offset, num_bytes); 7149 goto loop; 7150 } 7151 7152 /* we are all good, lets return */ 7153 ins->objectid = search_start; 7154 ins->offset = num_bytes; 7155 7156 trace_btrfs_reserve_extent(orig_root, block_group, 7157 search_start, num_bytes); 7158 btrfs_release_block_group(block_group, delalloc); 7159 break; 7160 loop: 7161 failed_cluster_refill = false; 7162 failed_alloc = false; 7163 BUG_ON(index != get_block_group_index(block_group)); 7164 btrfs_release_block_group(block_group, delalloc); 7165 } 7166 up_read(&space_info->groups_sem); 7167 7168 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7169 goto search; 7170 7171 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7172 goto search; 7173 7174 /* 7175 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7176 * caching kthreads as we move along 7177 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7178 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7179 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7180 * again 7181 */ 7182 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7183 index = 0; 7184 loop++; 7185 if (loop == LOOP_ALLOC_CHUNK) { 7186 struct btrfs_trans_handle *trans; 7187 int exist = 0; 7188 7189 trans = current->journal_info; 7190 if (trans) 7191 exist = 1; 7192 else 7193 trans = btrfs_join_transaction(root); 7194 7195 if (IS_ERR(trans)) { 7196 ret = PTR_ERR(trans); 7197 goto out; 7198 } 7199 7200 ret = do_chunk_alloc(trans, root, flags, 7201 CHUNK_ALLOC_FORCE); 7202 /* 7203 * Do not bail out on ENOSPC since we 7204 * can do more things. 7205 */ 7206 if (ret < 0 && ret != -ENOSPC) 7207 btrfs_abort_transaction(trans, 7208 root, ret); 7209 else 7210 ret = 0; 7211 if (!exist) 7212 btrfs_end_transaction(trans, root); 7213 if (ret) 7214 goto out; 7215 } 7216 7217 if (loop == LOOP_NO_EMPTY_SIZE) { 7218 empty_size = 0; 7219 empty_cluster = 0; 7220 } 7221 7222 goto search; 7223 } else if (!ins->objectid) { 7224 ret = -ENOSPC; 7225 } else if (ins->objectid) { 7226 ret = 0; 7227 } 7228 out: 7229 if (ret == -ENOSPC) 7230 ins->offset = max_extent_size; 7231 return ret; 7232 } 7233 7234 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7235 int dump_block_groups) 7236 { 7237 struct btrfs_block_group_cache *cache; 7238 int index = 0; 7239 7240 spin_lock(&info->lock); 7241 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7242 info->flags, 7243 info->total_bytes - info->bytes_used - info->bytes_pinned - 7244 info->bytes_reserved - info->bytes_readonly, 7245 (info->full) ? "" : "not "); 7246 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7247 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7248 info->total_bytes, info->bytes_used, info->bytes_pinned, 7249 info->bytes_reserved, info->bytes_may_use, 7250 info->bytes_readonly); 7251 spin_unlock(&info->lock); 7252 7253 if (!dump_block_groups) 7254 return; 7255 7256 down_read(&info->groups_sem); 7257 again: 7258 list_for_each_entry(cache, &info->block_groups[index], list) { 7259 spin_lock(&cache->lock); 7260 printk(KERN_INFO "BTRFS: " 7261 "block group %llu has %llu bytes, " 7262 "%llu used %llu pinned %llu reserved %s\n", 7263 cache->key.objectid, cache->key.offset, 7264 btrfs_block_group_used(&cache->item), cache->pinned, 7265 cache->reserved, cache->ro ? "[readonly]" : ""); 7266 btrfs_dump_free_space(cache, bytes); 7267 spin_unlock(&cache->lock); 7268 } 7269 if (++index < BTRFS_NR_RAID_TYPES) 7270 goto again; 7271 up_read(&info->groups_sem); 7272 } 7273 7274 int btrfs_reserve_extent(struct btrfs_root *root, 7275 u64 num_bytes, u64 min_alloc_size, 7276 u64 empty_size, u64 hint_byte, 7277 struct btrfs_key *ins, int is_data, int delalloc) 7278 { 7279 bool final_tried = false; 7280 u64 flags; 7281 int ret; 7282 7283 flags = btrfs_get_alloc_profile(root, is_data); 7284 again: 7285 WARN_ON(num_bytes < root->sectorsize); 7286 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7287 flags, delalloc); 7288 7289 if (ret == -ENOSPC) { 7290 if (!final_tried && ins->offset) { 7291 num_bytes = min(num_bytes >> 1, ins->offset); 7292 num_bytes = round_down(num_bytes, root->sectorsize); 7293 num_bytes = max(num_bytes, min_alloc_size); 7294 if (num_bytes == min_alloc_size) 7295 final_tried = true; 7296 goto again; 7297 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7298 struct btrfs_space_info *sinfo; 7299 7300 sinfo = __find_space_info(root->fs_info, flags); 7301 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7302 flags, num_bytes); 7303 if (sinfo) 7304 dump_space_info(sinfo, num_bytes, 1); 7305 } 7306 } 7307 7308 return ret; 7309 } 7310 7311 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7312 u64 start, u64 len, 7313 int pin, int delalloc) 7314 { 7315 struct btrfs_block_group_cache *cache; 7316 int ret = 0; 7317 7318 cache = btrfs_lookup_block_group(root->fs_info, start); 7319 if (!cache) { 7320 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7321 start); 7322 return -ENOSPC; 7323 } 7324 7325 if (pin) 7326 pin_down_extent(root, cache, start, len, 1); 7327 else { 7328 if (btrfs_test_opt(root, DISCARD)) 7329 ret = btrfs_discard_extent(root, start, len, NULL); 7330 btrfs_add_free_space(cache, start, len); 7331 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7332 } 7333 7334 btrfs_put_block_group(cache); 7335 7336 trace_btrfs_reserved_extent_free(root, start, len); 7337 7338 return ret; 7339 } 7340 7341 int btrfs_free_reserved_extent(struct btrfs_root *root, 7342 u64 start, u64 len, int delalloc) 7343 { 7344 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7345 } 7346 7347 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7348 u64 start, u64 len) 7349 { 7350 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7351 } 7352 7353 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7354 struct btrfs_root *root, 7355 u64 parent, u64 root_objectid, 7356 u64 flags, u64 owner, u64 offset, 7357 struct btrfs_key *ins, int ref_mod) 7358 { 7359 int ret; 7360 struct btrfs_fs_info *fs_info = root->fs_info; 7361 struct btrfs_extent_item *extent_item; 7362 struct btrfs_extent_inline_ref *iref; 7363 struct btrfs_path *path; 7364 struct extent_buffer *leaf; 7365 int type; 7366 u32 size; 7367 7368 if (parent > 0) 7369 type = BTRFS_SHARED_DATA_REF_KEY; 7370 else 7371 type = BTRFS_EXTENT_DATA_REF_KEY; 7372 7373 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7374 7375 path = btrfs_alloc_path(); 7376 if (!path) 7377 return -ENOMEM; 7378 7379 path->leave_spinning = 1; 7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7381 ins, size); 7382 if (ret) { 7383 btrfs_free_path(path); 7384 return ret; 7385 } 7386 7387 leaf = path->nodes[0]; 7388 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7389 struct btrfs_extent_item); 7390 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7391 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7392 btrfs_set_extent_flags(leaf, extent_item, 7393 flags | BTRFS_EXTENT_FLAG_DATA); 7394 7395 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7396 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7397 if (parent > 0) { 7398 struct btrfs_shared_data_ref *ref; 7399 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7400 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7401 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7402 } else { 7403 struct btrfs_extent_data_ref *ref; 7404 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7405 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7406 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7407 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7408 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7409 } 7410 7411 btrfs_mark_buffer_dirty(path->nodes[0]); 7412 btrfs_free_path(path); 7413 7414 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7415 if (ret) { /* -ENOENT, logic error */ 7416 btrfs_err(fs_info, "update block group failed for %llu %llu", 7417 ins->objectid, ins->offset); 7418 BUG(); 7419 } 7420 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7421 return ret; 7422 } 7423 7424 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7425 struct btrfs_root *root, 7426 u64 parent, u64 root_objectid, 7427 u64 flags, struct btrfs_disk_key *key, 7428 int level, struct btrfs_key *ins, 7429 int no_quota) 7430 { 7431 int ret; 7432 struct btrfs_fs_info *fs_info = root->fs_info; 7433 struct btrfs_extent_item *extent_item; 7434 struct btrfs_tree_block_info *block_info; 7435 struct btrfs_extent_inline_ref *iref; 7436 struct btrfs_path *path; 7437 struct extent_buffer *leaf; 7438 u32 size = sizeof(*extent_item) + sizeof(*iref); 7439 u64 num_bytes = ins->offset; 7440 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7441 SKINNY_METADATA); 7442 7443 if (!skinny_metadata) 7444 size += sizeof(*block_info); 7445 7446 path = btrfs_alloc_path(); 7447 if (!path) { 7448 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7449 root->nodesize); 7450 return -ENOMEM; 7451 } 7452 7453 path->leave_spinning = 1; 7454 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7455 ins, size); 7456 if (ret) { 7457 btrfs_free_path(path); 7458 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7459 root->nodesize); 7460 return ret; 7461 } 7462 7463 leaf = path->nodes[0]; 7464 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7465 struct btrfs_extent_item); 7466 btrfs_set_extent_refs(leaf, extent_item, 1); 7467 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7468 btrfs_set_extent_flags(leaf, extent_item, 7469 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7470 7471 if (skinny_metadata) { 7472 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7473 num_bytes = root->nodesize; 7474 } else { 7475 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7476 btrfs_set_tree_block_key(leaf, block_info, key); 7477 btrfs_set_tree_block_level(leaf, block_info, level); 7478 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7479 } 7480 7481 if (parent > 0) { 7482 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7483 btrfs_set_extent_inline_ref_type(leaf, iref, 7484 BTRFS_SHARED_BLOCK_REF_KEY); 7485 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7486 } else { 7487 btrfs_set_extent_inline_ref_type(leaf, iref, 7488 BTRFS_TREE_BLOCK_REF_KEY); 7489 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7490 } 7491 7492 btrfs_mark_buffer_dirty(leaf); 7493 btrfs_free_path(path); 7494 7495 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7496 1); 7497 if (ret) { /* -ENOENT, logic error */ 7498 btrfs_err(fs_info, "update block group failed for %llu %llu", 7499 ins->objectid, ins->offset); 7500 BUG(); 7501 } 7502 7503 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7504 return ret; 7505 } 7506 7507 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7508 struct btrfs_root *root, 7509 u64 root_objectid, u64 owner, 7510 u64 offset, struct btrfs_key *ins) 7511 { 7512 int ret; 7513 7514 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7515 7516 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7517 ins->offset, 0, 7518 root_objectid, owner, offset, 7519 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7520 return ret; 7521 } 7522 7523 /* 7524 * this is used by the tree logging recovery code. It records that 7525 * an extent has been allocated and makes sure to clear the free 7526 * space cache bits as well 7527 */ 7528 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7529 struct btrfs_root *root, 7530 u64 root_objectid, u64 owner, u64 offset, 7531 struct btrfs_key *ins) 7532 { 7533 int ret; 7534 struct btrfs_block_group_cache *block_group; 7535 7536 /* 7537 * Mixed block groups will exclude before processing the log so we only 7538 * need to do the exlude dance if this fs isn't mixed. 7539 */ 7540 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7541 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7542 if (ret) 7543 return ret; 7544 } 7545 7546 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7547 if (!block_group) 7548 return -EINVAL; 7549 7550 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7551 RESERVE_ALLOC_NO_ACCOUNT, 0); 7552 BUG_ON(ret); /* logic error */ 7553 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7554 0, owner, offset, ins, 1); 7555 btrfs_put_block_group(block_group); 7556 return ret; 7557 } 7558 7559 static struct extent_buffer * 7560 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7561 u64 bytenr, int level) 7562 { 7563 struct extent_buffer *buf; 7564 7565 buf = btrfs_find_create_tree_block(root, bytenr); 7566 if (!buf) 7567 return ERR_PTR(-ENOMEM); 7568 btrfs_set_header_generation(buf, trans->transid); 7569 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7570 btrfs_tree_lock(buf); 7571 clean_tree_block(trans, root->fs_info, buf); 7572 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7573 7574 btrfs_set_lock_blocking(buf); 7575 btrfs_set_buffer_uptodate(buf); 7576 7577 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7578 buf->log_index = root->log_transid % 2; 7579 /* 7580 * we allow two log transactions at a time, use different 7581 * EXENT bit to differentiate dirty pages. 7582 */ 7583 if (buf->log_index == 0) 7584 set_extent_dirty(&root->dirty_log_pages, buf->start, 7585 buf->start + buf->len - 1, GFP_NOFS); 7586 else 7587 set_extent_new(&root->dirty_log_pages, buf->start, 7588 buf->start + buf->len - 1, GFP_NOFS); 7589 } else { 7590 buf->log_index = -1; 7591 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7592 buf->start + buf->len - 1, GFP_NOFS); 7593 } 7594 trans->blocks_used++; 7595 /* this returns a buffer locked for blocking */ 7596 return buf; 7597 } 7598 7599 static struct btrfs_block_rsv * 7600 use_block_rsv(struct btrfs_trans_handle *trans, 7601 struct btrfs_root *root, u32 blocksize) 7602 { 7603 struct btrfs_block_rsv *block_rsv; 7604 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7605 int ret; 7606 bool global_updated = false; 7607 7608 block_rsv = get_block_rsv(trans, root); 7609 7610 if (unlikely(block_rsv->size == 0)) 7611 goto try_reserve; 7612 again: 7613 ret = block_rsv_use_bytes(block_rsv, blocksize); 7614 if (!ret) 7615 return block_rsv; 7616 7617 if (block_rsv->failfast) 7618 return ERR_PTR(ret); 7619 7620 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7621 global_updated = true; 7622 update_global_block_rsv(root->fs_info); 7623 goto again; 7624 } 7625 7626 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7627 static DEFINE_RATELIMIT_STATE(_rs, 7628 DEFAULT_RATELIMIT_INTERVAL * 10, 7629 /*DEFAULT_RATELIMIT_BURST*/ 1); 7630 if (__ratelimit(&_rs)) 7631 WARN(1, KERN_DEBUG 7632 "BTRFS: block rsv returned %d\n", ret); 7633 } 7634 try_reserve: 7635 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7636 BTRFS_RESERVE_NO_FLUSH); 7637 if (!ret) 7638 return block_rsv; 7639 /* 7640 * If we couldn't reserve metadata bytes try and use some from 7641 * the global reserve if its space type is the same as the global 7642 * reservation. 7643 */ 7644 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7645 block_rsv->space_info == global_rsv->space_info) { 7646 ret = block_rsv_use_bytes(global_rsv, blocksize); 7647 if (!ret) 7648 return global_rsv; 7649 } 7650 return ERR_PTR(ret); 7651 } 7652 7653 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7654 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7655 { 7656 block_rsv_add_bytes(block_rsv, blocksize, 0); 7657 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7658 } 7659 7660 /* 7661 * finds a free extent and does all the dirty work required for allocation 7662 * returns the tree buffer or an ERR_PTR on error. 7663 */ 7664 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7665 struct btrfs_root *root, 7666 u64 parent, u64 root_objectid, 7667 struct btrfs_disk_key *key, int level, 7668 u64 hint, u64 empty_size) 7669 { 7670 struct btrfs_key ins; 7671 struct btrfs_block_rsv *block_rsv; 7672 struct extent_buffer *buf; 7673 struct btrfs_delayed_extent_op *extent_op; 7674 u64 flags = 0; 7675 int ret; 7676 u32 blocksize = root->nodesize; 7677 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7678 SKINNY_METADATA); 7679 7680 if (btrfs_test_is_dummy_root(root)) { 7681 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7682 level); 7683 if (!IS_ERR(buf)) 7684 root->alloc_bytenr += blocksize; 7685 return buf; 7686 } 7687 7688 block_rsv = use_block_rsv(trans, root, blocksize); 7689 if (IS_ERR(block_rsv)) 7690 return ERR_CAST(block_rsv); 7691 7692 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7693 empty_size, hint, &ins, 0, 0); 7694 if (ret) 7695 goto out_unuse; 7696 7697 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7698 if (IS_ERR(buf)) { 7699 ret = PTR_ERR(buf); 7700 goto out_free_reserved; 7701 } 7702 7703 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7704 if (parent == 0) 7705 parent = ins.objectid; 7706 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7707 } else 7708 BUG_ON(parent > 0); 7709 7710 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7711 extent_op = btrfs_alloc_delayed_extent_op(); 7712 if (!extent_op) { 7713 ret = -ENOMEM; 7714 goto out_free_buf; 7715 } 7716 if (key) 7717 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7718 else 7719 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7720 extent_op->flags_to_set = flags; 7721 if (skinny_metadata) 7722 extent_op->update_key = 0; 7723 else 7724 extent_op->update_key = 1; 7725 extent_op->update_flags = 1; 7726 extent_op->is_data = 0; 7727 extent_op->level = level; 7728 7729 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7730 ins.objectid, ins.offset, 7731 parent, root_objectid, level, 7732 BTRFS_ADD_DELAYED_EXTENT, 7733 extent_op, 0); 7734 if (ret) 7735 goto out_free_delayed; 7736 } 7737 return buf; 7738 7739 out_free_delayed: 7740 btrfs_free_delayed_extent_op(extent_op); 7741 out_free_buf: 7742 free_extent_buffer(buf); 7743 out_free_reserved: 7744 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7745 out_unuse: 7746 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7747 return ERR_PTR(ret); 7748 } 7749 7750 struct walk_control { 7751 u64 refs[BTRFS_MAX_LEVEL]; 7752 u64 flags[BTRFS_MAX_LEVEL]; 7753 struct btrfs_key update_progress; 7754 int stage; 7755 int level; 7756 int shared_level; 7757 int update_ref; 7758 int keep_locks; 7759 int reada_slot; 7760 int reada_count; 7761 int for_reloc; 7762 }; 7763 7764 #define DROP_REFERENCE 1 7765 #define UPDATE_BACKREF 2 7766 7767 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7768 struct btrfs_root *root, 7769 struct walk_control *wc, 7770 struct btrfs_path *path) 7771 { 7772 u64 bytenr; 7773 u64 generation; 7774 u64 refs; 7775 u64 flags; 7776 u32 nritems; 7777 u32 blocksize; 7778 struct btrfs_key key; 7779 struct extent_buffer *eb; 7780 int ret; 7781 int slot; 7782 int nread = 0; 7783 7784 if (path->slots[wc->level] < wc->reada_slot) { 7785 wc->reada_count = wc->reada_count * 2 / 3; 7786 wc->reada_count = max(wc->reada_count, 2); 7787 } else { 7788 wc->reada_count = wc->reada_count * 3 / 2; 7789 wc->reada_count = min_t(int, wc->reada_count, 7790 BTRFS_NODEPTRS_PER_BLOCK(root)); 7791 } 7792 7793 eb = path->nodes[wc->level]; 7794 nritems = btrfs_header_nritems(eb); 7795 blocksize = root->nodesize; 7796 7797 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7798 if (nread >= wc->reada_count) 7799 break; 7800 7801 cond_resched(); 7802 bytenr = btrfs_node_blockptr(eb, slot); 7803 generation = btrfs_node_ptr_generation(eb, slot); 7804 7805 if (slot == path->slots[wc->level]) 7806 goto reada; 7807 7808 if (wc->stage == UPDATE_BACKREF && 7809 generation <= root->root_key.offset) 7810 continue; 7811 7812 /* We don't lock the tree block, it's OK to be racy here */ 7813 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7814 wc->level - 1, 1, &refs, 7815 &flags); 7816 /* We don't care about errors in readahead. */ 7817 if (ret < 0) 7818 continue; 7819 BUG_ON(refs == 0); 7820 7821 if (wc->stage == DROP_REFERENCE) { 7822 if (refs == 1) 7823 goto reada; 7824 7825 if (wc->level == 1 && 7826 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7827 continue; 7828 if (!wc->update_ref || 7829 generation <= root->root_key.offset) 7830 continue; 7831 btrfs_node_key_to_cpu(eb, &key, slot); 7832 ret = btrfs_comp_cpu_keys(&key, 7833 &wc->update_progress); 7834 if (ret < 0) 7835 continue; 7836 } else { 7837 if (wc->level == 1 && 7838 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7839 continue; 7840 } 7841 reada: 7842 readahead_tree_block(root, bytenr); 7843 nread++; 7844 } 7845 wc->reada_slot = slot; 7846 } 7847 7848 /* 7849 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7850 * for later qgroup accounting. 7851 * 7852 * Current, this function does nothing. 7853 */ 7854 static int account_leaf_items(struct btrfs_trans_handle *trans, 7855 struct btrfs_root *root, 7856 struct extent_buffer *eb) 7857 { 7858 int nr = btrfs_header_nritems(eb); 7859 int i, extent_type; 7860 struct btrfs_key key; 7861 struct btrfs_file_extent_item *fi; 7862 u64 bytenr, num_bytes; 7863 7864 for (i = 0; i < nr; i++) { 7865 btrfs_item_key_to_cpu(eb, &key, i); 7866 7867 if (key.type != BTRFS_EXTENT_DATA_KEY) 7868 continue; 7869 7870 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7871 /* filter out non qgroup-accountable extents */ 7872 extent_type = btrfs_file_extent_type(eb, fi); 7873 7874 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7875 continue; 7876 7877 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7878 if (!bytenr) 7879 continue; 7880 7881 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7882 } 7883 return 0; 7884 } 7885 7886 /* 7887 * Walk up the tree from the bottom, freeing leaves and any interior 7888 * nodes which have had all slots visited. If a node (leaf or 7889 * interior) is freed, the node above it will have it's slot 7890 * incremented. The root node will never be freed. 7891 * 7892 * At the end of this function, we should have a path which has all 7893 * slots incremented to the next position for a search. If we need to 7894 * read a new node it will be NULL and the node above it will have the 7895 * correct slot selected for a later read. 7896 * 7897 * If we increment the root nodes slot counter past the number of 7898 * elements, 1 is returned to signal completion of the search. 7899 */ 7900 static int adjust_slots_upwards(struct btrfs_root *root, 7901 struct btrfs_path *path, int root_level) 7902 { 7903 int level = 0; 7904 int nr, slot; 7905 struct extent_buffer *eb; 7906 7907 if (root_level == 0) 7908 return 1; 7909 7910 while (level <= root_level) { 7911 eb = path->nodes[level]; 7912 nr = btrfs_header_nritems(eb); 7913 path->slots[level]++; 7914 slot = path->slots[level]; 7915 if (slot >= nr || level == 0) { 7916 /* 7917 * Don't free the root - we will detect this 7918 * condition after our loop and return a 7919 * positive value for caller to stop walking the tree. 7920 */ 7921 if (level != root_level) { 7922 btrfs_tree_unlock_rw(eb, path->locks[level]); 7923 path->locks[level] = 0; 7924 7925 free_extent_buffer(eb); 7926 path->nodes[level] = NULL; 7927 path->slots[level] = 0; 7928 } 7929 } else { 7930 /* 7931 * We have a valid slot to walk back down 7932 * from. Stop here so caller can process these 7933 * new nodes. 7934 */ 7935 break; 7936 } 7937 7938 level++; 7939 } 7940 7941 eb = path->nodes[root_level]; 7942 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7943 return 1; 7944 7945 return 0; 7946 } 7947 7948 /* 7949 * root_eb is the subtree root and is locked before this function is called. 7950 * TODO: Modify this function to mark all (including complete shared node) 7951 * to dirty_extent_root to allow it get accounted in qgroup. 7952 */ 7953 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7954 struct btrfs_root *root, 7955 struct extent_buffer *root_eb, 7956 u64 root_gen, 7957 int root_level) 7958 { 7959 int ret = 0; 7960 int level; 7961 struct extent_buffer *eb = root_eb; 7962 struct btrfs_path *path = NULL; 7963 7964 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7965 BUG_ON(root_eb == NULL); 7966 7967 if (!root->fs_info->quota_enabled) 7968 return 0; 7969 7970 if (!extent_buffer_uptodate(root_eb)) { 7971 ret = btrfs_read_buffer(root_eb, root_gen); 7972 if (ret) 7973 goto out; 7974 } 7975 7976 if (root_level == 0) { 7977 ret = account_leaf_items(trans, root, root_eb); 7978 goto out; 7979 } 7980 7981 path = btrfs_alloc_path(); 7982 if (!path) 7983 return -ENOMEM; 7984 7985 /* 7986 * Walk down the tree. Missing extent blocks are filled in as 7987 * we go. Metadata is accounted every time we read a new 7988 * extent block. 7989 * 7990 * When we reach a leaf, we account for file extent items in it, 7991 * walk back up the tree (adjusting slot pointers as we go) 7992 * and restart the search process. 7993 */ 7994 extent_buffer_get(root_eb); /* For path */ 7995 path->nodes[root_level] = root_eb; 7996 path->slots[root_level] = 0; 7997 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7998 walk_down: 7999 level = root_level; 8000 while (level >= 0) { 8001 if (path->nodes[level] == NULL) { 8002 int parent_slot; 8003 u64 child_gen; 8004 u64 child_bytenr; 8005 8006 /* We need to get child blockptr/gen from 8007 * parent before we can read it. */ 8008 eb = path->nodes[level + 1]; 8009 parent_slot = path->slots[level + 1]; 8010 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8011 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8012 8013 eb = read_tree_block(root, child_bytenr, child_gen); 8014 if (IS_ERR(eb)) { 8015 ret = PTR_ERR(eb); 8016 goto out; 8017 } else if (!extent_buffer_uptodate(eb)) { 8018 free_extent_buffer(eb); 8019 ret = -EIO; 8020 goto out; 8021 } 8022 8023 path->nodes[level] = eb; 8024 path->slots[level] = 0; 8025 8026 btrfs_tree_read_lock(eb); 8027 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8028 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8029 } 8030 8031 if (level == 0) { 8032 ret = account_leaf_items(trans, root, path->nodes[level]); 8033 if (ret) 8034 goto out; 8035 8036 /* Nonzero return here means we completed our search */ 8037 ret = adjust_slots_upwards(root, path, root_level); 8038 if (ret) 8039 break; 8040 8041 /* Restart search with new slots */ 8042 goto walk_down; 8043 } 8044 8045 level--; 8046 } 8047 8048 ret = 0; 8049 out: 8050 btrfs_free_path(path); 8051 8052 return ret; 8053 } 8054 8055 /* 8056 * helper to process tree block while walking down the tree. 8057 * 8058 * when wc->stage == UPDATE_BACKREF, this function updates 8059 * back refs for pointers in the block. 8060 * 8061 * NOTE: return value 1 means we should stop walking down. 8062 */ 8063 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8064 struct btrfs_root *root, 8065 struct btrfs_path *path, 8066 struct walk_control *wc, int lookup_info) 8067 { 8068 int level = wc->level; 8069 struct extent_buffer *eb = path->nodes[level]; 8070 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8071 int ret; 8072 8073 if (wc->stage == UPDATE_BACKREF && 8074 btrfs_header_owner(eb) != root->root_key.objectid) 8075 return 1; 8076 8077 /* 8078 * when reference count of tree block is 1, it won't increase 8079 * again. once full backref flag is set, we never clear it. 8080 */ 8081 if (lookup_info && 8082 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8083 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8084 BUG_ON(!path->locks[level]); 8085 ret = btrfs_lookup_extent_info(trans, root, 8086 eb->start, level, 1, 8087 &wc->refs[level], 8088 &wc->flags[level]); 8089 BUG_ON(ret == -ENOMEM); 8090 if (ret) 8091 return ret; 8092 BUG_ON(wc->refs[level] == 0); 8093 } 8094 8095 if (wc->stage == DROP_REFERENCE) { 8096 if (wc->refs[level] > 1) 8097 return 1; 8098 8099 if (path->locks[level] && !wc->keep_locks) { 8100 btrfs_tree_unlock_rw(eb, path->locks[level]); 8101 path->locks[level] = 0; 8102 } 8103 return 0; 8104 } 8105 8106 /* wc->stage == UPDATE_BACKREF */ 8107 if (!(wc->flags[level] & flag)) { 8108 BUG_ON(!path->locks[level]); 8109 ret = btrfs_inc_ref(trans, root, eb, 1); 8110 BUG_ON(ret); /* -ENOMEM */ 8111 ret = btrfs_dec_ref(trans, root, eb, 0); 8112 BUG_ON(ret); /* -ENOMEM */ 8113 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8114 eb->len, flag, 8115 btrfs_header_level(eb), 0); 8116 BUG_ON(ret); /* -ENOMEM */ 8117 wc->flags[level] |= flag; 8118 } 8119 8120 /* 8121 * the block is shared by multiple trees, so it's not good to 8122 * keep the tree lock 8123 */ 8124 if (path->locks[level] && level > 0) { 8125 btrfs_tree_unlock_rw(eb, path->locks[level]); 8126 path->locks[level] = 0; 8127 } 8128 return 0; 8129 } 8130 8131 /* 8132 * helper to process tree block pointer. 8133 * 8134 * when wc->stage == DROP_REFERENCE, this function checks 8135 * reference count of the block pointed to. if the block 8136 * is shared and we need update back refs for the subtree 8137 * rooted at the block, this function changes wc->stage to 8138 * UPDATE_BACKREF. if the block is shared and there is no 8139 * need to update back, this function drops the reference 8140 * to the block. 8141 * 8142 * NOTE: return value 1 means we should stop walking down. 8143 */ 8144 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8145 struct btrfs_root *root, 8146 struct btrfs_path *path, 8147 struct walk_control *wc, int *lookup_info) 8148 { 8149 u64 bytenr; 8150 u64 generation; 8151 u64 parent; 8152 u32 blocksize; 8153 struct btrfs_key key; 8154 struct extent_buffer *next; 8155 int level = wc->level; 8156 int reada = 0; 8157 int ret = 0; 8158 bool need_account = false; 8159 8160 generation = btrfs_node_ptr_generation(path->nodes[level], 8161 path->slots[level]); 8162 /* 8163 * if the lower level block was created before the snapshot 8164 * was created, we know there is no need to update back refs 8165 * for the subtree 8166 */ 8167 if (wc->stage == UPDATE_BACKREF && 8168 generation <= root->root_key.offset) { 8169 *lookup_info = 1; 8170 return 1; 8171 } 8172 8173 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8174 blocksize = root->nodesize; 8175 8176 next = btrfs_find_tree_block(root->fs_info, bytenr); 8177 if (!next) { 8178 next = btrfs_find_create_tree_block(root, bytenr); 8179 if (!next) 8180 return -ENOMEM; 8181 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8182 level - 1); 8183 reada = 1; 8184 } 8185 btrfs_tree_lock(next); 8186 btrfs_set_lock_blocking(next); 8187 8188 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8189 &wc->refs[level - 1], 8190 &wc->flags[level - 1]); 8191 if (ret < 0) { 8192 btrfs_tree_unlock(next); 8193 return ret; 8194 } 8195 8196 if (unlikely(wc->refs[level - 1] == 0)) { 8197 btrfs_err(root->fs_info, "Missing references."); 8198 BUG(); 8199 } 8200 *lookup_info = 0; 8201 8202 if (wc->stage == DROP_REFERENCE) { 8203 if (wc->refs[level - 1] > 1) { 8204 need_account = true; 8205 if (level == 1 && 8206 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8207 goto skip; 8208 8209 if (!wc->update_ref || 8210 generation <= root->root_key.offset) 8211 goto skip; 8212 8213 btrfs_node_key_to_cpu(path->nodes[level], &key, 8214 path->slots[level]); 8215 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8216 if (ret < 0) 8217 goto skip; 8218 8219 wc->stage = UPDATE_BACKREF; 8220 wc->shared_level = level - 1; 8221 } 8222 } else { 8223 if (level == 1 && 8224 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8225 goto skip; 8226 } 8227 8228 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8229 btrfs_tree_unlock(next); 8230 free_extent_buffer(next); 8231 next = NULL; 8232 *lookup_info = 1; 8233 } 8234 8235 if (!next) { 8236 if (reada && level == 1) 8237 reada_walk_down(trans, root, wc, path); 8238 next = read_tree_block(root, bytenr, generation); 8239 if (IS_ERR(next)) { 8240 return PTR_ERR(next); 8241 } else if (!extent_buffer_uptodate(next)) { 8242 free_extent_buffer(next); 8243 return -EIO; 8244 } 8245 btrfs_tree_lock(next); 8246 btrfs_set_lock_blocking(next); 8247 } 8248 8249 level--; 8250 BUG_ON(level != btrfs_header_level(next)); 8251 path->nodes[level] = next; 8252 path->slots[level] = 0; 8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8254 wc->level = level; 8255 if (wc->level == 1) 8256 wc->reada_slot = 0; 8257 return 0; 8258 skip: 8259 wc->refs[level - 1] = 0; 8260 wc->flags[level - 1] = 0; 8261 if (wc->stage == DROP_REFERENCE) { 8262 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8263 parent = path->nodes[level]->start; 8264 } else { 8265 BUG_ON(root->root_key.objectid != 8266 btrfs_header_owner(path->nodes[level])); 8267 parent = 0; 8268 } 8269 8270 if (need_account) { 8271 ret = account_shared_subtree(trans, root, next, 8272 generation, level - 1); 8273 if (ret) { 8274 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8275 "%d accounting shared subtree. Quota " 8276 "is out of sync, rescan required.\n", 8277 root->fs_info->sb->s_id, ret); 8278 } 8279 } 8280 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8281 root->root_key.objectid, level - 1, 0, 0); 8282 BUG_ON(ret); /* -ENOMEM */ 8283 } 8284 btrfs_tree_unlock(next); 8285 free_extent_buffer(next); 8286 *lookup_info = 1; 8287 return 1; 8288 } 8289 8290 /* 8291 * helper to process tree block while walking up the tree. 8292 * 8293 * when wc->stage == DROP_REFERENCE, this function drops 8294 * reference count on the block. 8295 * 8296 * when wc->stage == UPDATE_BACKREF, this function changes 8297 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8298 * to UPDATE_BACKREF previously while processing the block. 8299 * 8300 * NOTE: return value 1 means we should stop walking up. 8301 */ 8302 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8303 struct btrfs_root *root, 8304 struct btrfs_path *path, 8305 struct walk_control *wc) 8306 { 8307 int ret; 8308 int level = wc->level; 8309 struct extent_buffer *eb = path->nodes[level]; 8310 u64 parent = 0; 8311 8312 if (wc->stage == UPDATE_BACKREF) { 8313 BUG_ON(wc->shared_level < level); 8314 if (level < wc->shared_level) 8315 goto out; 8316 8317 ret = find_next_key(path, level + 1, &wc->update_progress); 8318 if (ret > 0) 8319 wc->update_ref = 0; 8320 8321 wc->stage = DROP_REFERENCE; 8322 wc->shared_level = -1; 8323 path->slots[level] = 0; 8324 8325 /* 8326 * check reference count again if the block isn't locked. 8327 * we should start walking down the tree again if reference 8328 * count is one. 8329 */ 8330 if (!path->locks[level]) { 8331 BUG_ON(level == 0); 8332 btrfs_tree_lock(eb); 8333 btrfs_set_lock_blocking(eb); 8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8335 8336 ret = btrfs_lookup_extent_info(trans, root, 8337 eb->start, level, 1, 8338 &wc->refs[level], 8339 &wc->flags[level]); 8340 if (ret < 0) { 8341 btrfs_tree_unlock_rw(eb, path->locks[level]); 8342 path->locks[level] = 0; 8343 return ret; 8344 } 8345 BUG_ON(wc->refs[level] == 0); 8346 if (wc->refs[level] == 1) { 8347 btrfs_tree_unlock_rw(eb, path->locks[level]); 8348 path->locks[level] = 0; 8349 return 1; 8350 } 8351 } 8352 } 8353 8354 /* wc->stage == DROP_REFERENCE */ 8355 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8356 8357 if (wc->refs[level] == 1) { 8358 if (level == 0) { 8359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8360 ret = btrfs_dec_ref(trans, root, eb, 1); 8361 else 8362 ret = btrfs_dec_ref(trans, root, eb, 0); 8363 BUG_ON(ret); /* -ENOMEM */ 8364 ret = account_leaf_items(trans, root, eb); 8365 if (ret) { 8366 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8367 "%d accounting leaf items. Quota " 8368 "is out of sync, rescan required.\n", 8369 root->fs_info->sb->s_id, ret); 8370 } 8371 } 8372 /* make block locked assertion in clean_tree_block happy */ 8373 if (!path->locks[level] && 8374 btrfs_header_generation(eb) == trans->transid) { 8375 btrfs_tree_lock(eb); 8376 btrfs_set_lock_blocking(eb); 8377 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8378 } 8379 clean_tree_block(trans, root->fs_info, eb); 8380 } 8381 8382 if (eb == root->node) { 8383 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8384 parent = eb->start; 8385 else 8386 BUG_ON(root->root_key.objectid != 8387 btrfs_header_owner(eb)); 8388 } else { 8389 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8390 parent = path->nodes[level + 1]->start; 8391 else 8392 BUG_ON(root->root_key.objectid != 8393 btrfs_header_owner(path->nodes[level + 1])); 8394 } 8395 8396 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8397 out: 8398 wc->refs[level] = 0; 8399 wc->flags[level] = 0; 8400 return 0; 8401 } 8402 8403 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8404 struct btrfs_root *root, 8405 struct btrfs_path *path, 8406 struct walk_control *wc) 8407 { 8408 int level = wc->level; 8409 int lookup_info = 1; 8410 int ret; 8411 8412 while (level >= 0) { 8413 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8414 if (ret > 0) 8415 break; 8416 8417 if (level == 0) 8418 break; 8419 8420 if (path->slots[level] >= 8421 btrfs_header_nritems(path->nodes[level])) 8422 break; 8423 8424 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8425 if (ret > 0) { 8426 path->slots[level]++; 8427 continue; 8428 } else if (ret < 0) 8429 return ret; 8430 level = wc->level; 8431 } 8432 return 0; 8433 } 8434 8435 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8436 struct btrfs_root *root, 8437 struct btrfs_path *path, 8438 struct walk_control *wc, int max_level) 8439 { 8440 int level = wc->level; 8441 int ret; 8442 8443 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8444 while (level < max_level && path->nodes[level]) { 8445 wc->level = level; 8446 if (path->slots[level] + 1 < 8447 btrfs_header_nritems(path->nodes[level])) { 8448 path->slots[level]++; 8449 return 0; 8450 } else { 8451 ret = walk_up_proc(trans, root, path, wc); 8452 if (ret > 0) 8453 return 0; 8454 8455 if (path->locks[level]) { 8456 btrfs_tree_unlock_rw(path->nodes[level], 8457 path->locks[level]); 8458 path->locks[level] = 0; 8459 } 8460 free_extent_buffer(path->nodes[level]); 8461 path->nodes[level] = NULL; 8462 level++; 8463 } 8464 } 8465 return 1; 8466 } 8467 8468 /* 8469 * drop a subvolume tree. 8470 * 8471 * this function traverses the tree freeing any blocks that only 8472 * referenced by the tree. 8473 * 8474 * when a shared tree block is found. this function decreases its 8475 * reference count by one. if update_ref is true, this function 8476 * also make sure backrefs for the shared block and all lower level 8477 * blocks are properly updated. 8478 * 8479 * If called with for_reloc == 0, may exit early with -EAGAIN 8480 */ 8481 int btrfs_drop_snapshot(struct btrfs_root *root, 8482 struct btrfs_block_rsv *block_rsv, int update_ref, 8483 int for_reloc) 8484 { 8485 struct btrfs_path *path; 8486 struct btrfs_trans_handle *trans; 8487 struct btrfs_root *tree_root = root->fs_info->tree_root; 8488 struct btrfs_root_item *root_item = &root->root_item; 8489 struct walk_control *wc; 8490 struct btrfs_key key; 8491 int err = 0; 8492 int ret; 8493 int level; 8494 bool root_dropped = false; 8495 8496 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8497 8498 path = btrfs_alloc_path(); 8499 if (!path) { 8500 err = -ENOMEM; 8501 goto out; 8502 } 8503 8504 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8505 if (!wc) { 8506 btrfs_free_path(path); 8507 err = -ENOMEM; 8508 goto out; 8509 } 8510 8511 trans = btrfs_start_transaction(tree_root, 0); 8512 if (IS_ERR(trans)) { 8513 err = PTR_ERR(trans); 8514 goto out_free; 8515 } 8516 8517 if (block_rsv) 8518 trans->block_rsv = block_rsv; 8519 8520 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8521 level = btrfs_header_level(root->node); 8522 path->nodes[level] = btrfs_lock_root_node(root); 8523 btrfs_set_lock_blocking(path->nodes[level]); 8524 path->slots[level] = 0; 8525 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8526 memset(&wc->update_progress, 0, 8527 sizeof(wc->update_progress)); 8528 } else { 8529 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8530 memcpy(&wc->update_progress, &key, 8531 sizeof(wc->update_progress)); 8532 8533 level = root_item->drop_level; 8534 BUG_ON(level == 0); 8535 path->lowest_level = level; 8536 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8537 path->lowest_level = 0; 8538 if (ret < 0) { 8539 err = ret; 8540 goto out_end_trans; 8541 } 8542 WARN_ON(ret > 0); 8543 8544 /* 8545 * unlock our path, this is safe because only this 8546 * function is allowed to delete this snapshot 8547 */ 8548 btrfs_unlock_up_safe(path, 0); 8549 8550 level = btrfs_header_level(root->node); 8551 while (1) { 8552 btrfs_tree_lock(path->nodes[level]); 8553 btrfs_set_lock_blocking(path->nodes[level]); 8554 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8555 8556 ret = btrfs_lookup_extent_info(trans, root, 8557 path->nodes[level]->start, 8558 level, 1, &wc->refs[level], 8559 &wc->flags[level]); 8560 if (ret < 0) { 8561 err = ret; 8562 goto out_end_trans; 8563 } 8564 BUG_ON(wc->refs[level] == 0); 8565 8566 if (level == root_item->drop_level) 8567 break; 8568 8569 btrfs_tree_unlock(path->nodes[level]); 8570 path->locks[level] = 0; 8571 WARN_ON(wc->refs[level] != 1); 8572 level--; 8573 } 8574 } 8575 8576 wc->level = level; 8577 wc->shared_level = -1; 8578 wc->stage = DROP_REFERENCE; 8579 wc->update_ref = update_ref; 8580 wc->keep_locks = 0; 8581 wc->for_reloc = for_reloc; 8582 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8583 8584 while (1) { 8585 8586 ret = walk_down_tree(trans, root, path, wc); 8587 if (ret < 0) { 8588 err = ret; 8589 break; 8590 } 8591 8592 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8593 if (ret < 0) { 8594 err = ret; 8595 break; 8596 } 8597 8598 if (ret > 0) { 8599 BUG_ON(wc->stage != DROP_REFERENCE); 8600 break; 8601 } 8602 8603 if (wc->stage == DROP_REFERENCE) { 8604 level = wc->level; 8605 btrfs_node_key(path->nodes[level], 8606 &root_item->drop_progress, 8607 path->slots[level]); 8608 root_item->drop_level = level; 8609 } 8610 8611 BUG_ON(wc->level == 0); 8612 if (btrfs_should_end_transaction(trans, tree_root) || 8613 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8614 ret = btrfs_update_root(trans, tree_root, 8615 &root->root_key, 8616 root_item); 8617 if (ret) { 8618 btrfs_abort_transaction(trans, tree_root, ret); 8619 err = ret; 8620 goto out_end_trans; 8621 } 8622 8623 btrfs_end_transaction_throttle(trans, tree_root); 8624 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8625 pr_debug("BTRFS: drop snapshot early exit\n"); 8626 err = -EAGAIN; 8627 goto out_free; 8628 } 8629 8630 trans = btrfs_start_transaction(tree_root, 0); 8631 if (IS_ERR(trans)) { 8632 err = PTR_ERR(trans); 8633 goto out_free; 8634 } 8635 if (block_rsv) 8636 trans->block_rsv = block_rsv; 8637 } 8638 } 8639 btrfs_release_path(path); 8640 if (err) 8641 goto out_end_trans; 8642 8643 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8644 if (ret) { 8645 btrfs_abort_transaction(trans, tree_root, ret); 8646 goto out_end_trans; 8647 } 8648 8649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8650 ret = btrfs_find_root(tree_root, &root->root_key, path, 8651 NULL, NULL); 8652 if (ret < 0) { 8653 btrfs_abort_transaction(trans, tree_root, ret); 8654 err = ret; 8655 goto out_end_trans; 8656 } else if (ret > 0) { 8657 /* if we fail to delete the orphan item this time 8658 * around, it'll get picked up the next time. 8659 * 8660 * The most common failure here is just -ENOENT. 8661 */ 8662 btrfs_del_orphan_item(trans, tree_root, 8663 root->root_key.objectid); 8664 } 8665 } 8666 8667 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8668 btrfs_add_dropped_root(trans, root); 8669 } else { 8670 free_extent_buffer(root->node); 8671 free_extent_buffer(root->commit_root); 8672 btrfs_put_fs_root(root); 8673 } 8674 root_dropped = true; 8675 out_end_trans: 8676 btrfs_end_transaction_throttle(trans, tree_root); 8677 out_free: 8678 kfree(wc); 8679 btrfs_free_path(path); 8680 out: 8681 /* 8682 * So if we need to stop dropping the snapshot for whatever reason we 8683 * need to make sure to add it back to the dead root list so that we 8684 * keep trying to do the work later. This also cleans up roots if we 8685 * don't have it in the radix (like when we recover after a power fail 8686 * or unmount) so we don't leak memory. 8687 */ 8688 if (!for_reloc && root_dropped == false) 8689 btrfs_add_dead_root(root); 8690 if (err && err != -EAGAIN) 8691 btrfs_std_error(root->fs_info, err); 8692 return err; 8693 } 8694 8695 /* 8696 * drop subtree rooted at tree block 'node'. 8697 * 8698 * NOTE: this function will unlock and release tree block 'node' 8699 * only used by relocation code 8700 */ 8701 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8702 struct btrfs_root *root, 8703 struct extent_buffer *node, 8704 struct extent_buffer *parent) 8705 { 8706 struct btrfs_path *path; 8707 struct walk_control *wc; 8708 int level; 8709 int parent_level; 8710 int ret = 0; 8711 int wret; 8712 8713 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8714 8715 path = btrfs_alloc_path(); 8716 if (!path) 8717 return -ENOMEM; 8718 8719 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8720 if (!wc) { 8721 btrfs_free_path(path); 8722 return -ENOMEM; 8723 } 8724 8725 btrfs_assert_tree_locked(parent); 8726 parent_level = btrfs_header_level(parent); 8727 extent_buffer_get(parent); 8728 path->nodes[parent_level] = parent; 8729 path->slots[parent_level] = btrfs_header_nritems(parent); 8730 8731 btrfs_assert_tree_locked(node); 8732 level = btrfs_header_level(node); 8733 path->nodes[level] = node; 8734 path->slots[level] = 0; 8735 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8736 8737 wc->refs[parent_level] = 1; 8738 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8739 wc->level = level; 8740 wc->shared_level = -1; 8741 wc->stage = DROP_REFERENCE; 8742 wc->update_ref = 0; 8743 wc->keep_locks = 1; 8744 wc->for_reloc = 1; 8745 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8746 8747 while (1) { 8748 wret = walk_down_tree(trans, root, path, wc); 8749 if (wret < 0) { 8750 ret = wret; 8751 break; 8752 } 8753 8754 wret = walk_up_tree(trans, root, path, wc, parent_level); 8755 if (wret < 0) 8756 ret = wret; 8757 if (wret != 0) 8758 break; 8759 } 8760 8761 kfree(wc); 8762 btrfs_free_path(path); 8763 return ret; 8764 } 8765 8766 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8767 { 8768 u64 num_devices; 8769 u64 stripped; 8770 8771 /* 8772 * if restripe for this chunk_type is on pick target profile and 8773 * return, otherwise do the usual balance 8774 */ 8775 stripped = get_restripe_target(root->fs_info, flags); 8776 if (stripped) 8777 return extended_to_chunk(stripped); 8778 8779 num_devices = root->fs_info->fs_devices->rw_devices; 8780 8781 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8782 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8783 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8784 8785 if (num_devices == 1) { 8786 stripped |= BTRFS_BLOCK_GROUP_DUP; 8787 stripped = flags & ~stripped; 8788 8789 /* turn raid0 into single device chunks */ 8790 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8791 return stripped; 8792 8793 /* turn mirroring into duplication */ 8794 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8795 BTRFS_BLOCK_GROUP_RAID10)) 8796 return stripped | BTRFS_BLOCK_GROUP_DUP; 8797 } else { 8798 /* they already had raid on here, just return */ 8799 if (flags & stripped) 8800 return flags; 8801 8802 stripped |= BTRFS_BLOCK_GROUP_DUP; 8803 stripped = flags & ~stripped; 8804 8805 /* switch duplicated blocks with raid1 */ 8806 if (flags & BTRFS_BLOCK_GROUP_DUP) 8807 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8808 8809 /* this is drive concat, leave it alone */ 8810 } 8811 8812 return flags; 8813 } 8814 8815 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8816 { 8817 struct btrfs_space_info *sinfo = cache->space_info; 8818 u64 num_bytes; 8819 u64 min_allocable_bytes; 8820 int ret = -ENOSPC; 8821 8822 /* 8823 * We need some metadata space and system metadata space for 8824 * allocating chunks in some corner cases until we force to set 8825 * it to be readonly. 8826 */ 8827 if ((sinfo->flags & 8828 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8829 !force) 8830 min_allocable_bytes = 1 * 1024 * 1024; 8831 else 8832 min_allocable_bytes = 0; 8833 8834 spin_lock(&sinfo->lock); 8835 spin_lock(&cache->lock); 8836 8837 if (cache->ro) { 8838 cache->ro++; 8839 ret = 0; 8840 goto out; 8841 } 8842 8843 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8844 cache->bytes_super - btrfs_block_group_used(&cache->item); 8845 8846 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8847 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8848 min_allocable_bytes <= sinfo->total_bytes) { 8849 sinfo->bytes_readonly += num_bytes; 8850 cache->ro++; 8851 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8852 ret = 0; 8853 } 8854 out: 8855 spin_unlock(&cache->lock); 8856 spin_unlock(&sinfo->lock); 8857 return ret; 8858 } 8859 8860 int btrfs_inc_block_group_ro(struct btrfs_root *root, 8861 struct btrfs_block_group_cache *cache) 8862 8863 { 8864 struct btrfs_trans_handle *trans; 8865 u64 alloc_flags; 8866 int ret; 8867 8868 again: 8869 trans = btrfs_join_transaction(root); 8870 if (IS_ERR(trans)) 8871 return PTR_ERR(trans); 8872 8873 /* 8874 * we're not allowed to set block groups readonly after the dirty 8875 * block groups cache has started writing. If it already started, 8876 * back off and let this transaction commit 8877 */ 8878 mutex_lock(&root->fs_info->ro_block_group_mutex); 8879 if (trans->transaction->dirty_bg_run) { 8880 u64 transid = trans->transid; 8881 8882 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8883 btrfs_end_transaction(trans, root); 8884 8885 ret = btrfs_wait_for_commit(root, transid); 8886 if (ret) 8887 return ret; 8888 goto again; 8889 } 8890 8891 /* 8892 * if we are changing raid levels, try to allocate a corresponding 8893 * block group with the new raid level. 8894 */ 8895 alloc_flags = update_block_group_flags(root, cache->flags); 8896 if (alloc_flags != cache->flags) { 8897 ret = do_chunk_alloc(trans, root, alloc_flags, 8898 CHUNK_ALLOC_FORCE); 8899 /* 8900 * ENOSPC is allowed here, we may have enough space 8901 * already allocated at the new raid level to 8902 * carry on 8903 */ 8904 if (ret == -ENOSPC) 8905 ret = 0; 8906 if (ret < 0) 8907 goto out; 8908 } 8909 8910 ret = inc_block_group_ro(cache, 0); 8911 if (!ret) 8912 goto out; 8913 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8914 ret = do_chunk_alloc(trans, root, alloc_flags, 8915 CHUNK_ALLOC_FORCE); 8916 if (ret < 0) 8917 goto out; 8918 ret = inc_block_group_ro(cache, 0); 8919 out: 8920 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8921 alloc_flags = update_block_group_flags(root, cache->flags); 8922 lock_chunks(root->fs_info->chunk_root); 8923 check_system_chunk(trans, root, alloc_flags); 8924 unlock_chunks(root->fs_info->chunk_root); 8925 } 8926 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8927 8928 btrfs_end_transaction(trans, root); 8929 return ret; 8930 } 8931 8932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8933 struct btrfs_root *root, u64 type) 8934 { 8935 u64 alloc_flags = get_alloc_profile(root, type); 8936 return do_chunk_alloc(trans, root, alloc_flags, 8937 CHUNK_ALLOC_FORCE); 8938 } 8939 8940 /* 8941 * helper to account the unused space of all the readonly block group in the 8942 * space_info. takes mirrors into account. 8943 */ 8944 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8945 { 8946 struct btrfs_block_group_cache *block_group; 8947 u64 free_bytes = 0; 8948 int factor; 8949 8950 /* It's df, we don't care if it's racey */ 8951 if (list_empty(&sinfo->ro_bgs)) 8952 return 0; 8953 8954 spin_lock(&sinfo->lock); 8955 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8956 spin_lock(&block_group->lock); 8957 8958 if (!block_group->ro) { 8959 spin_unlock(&block_group->lock); 8960 continue; 8961 } 8962 8963 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8964 BTRFS_BLOCK_GROUP_RAID10 | 8965 BTRFS_BLOCK_GROUP_DUP)) 8966 factor = 2; 8967 else 8968 factor = 1; 8969 8970 free_bytes += (block_group->key.offset - 8971 btrfs_block_group_used(&block_group->item)) * 8972 factor; 8973 8974 spin_unlock(&block_group->lock); 8975 } 8976 spin_unlock(&sinfo->lock); 8977 8978 return free_bytes; 8979 } 8980 8981 void btrfs_dec_block_group_ro(struct btrfs_root *root, 8982 struct btrfs_block_group_cache *cache) 8983 { 8984 struct btrfs_space_info *sinfo = cache->space_info; 8985 u64 num_bytes; 8986 8987 BUG_ON(!cache->ro); 8988 8989 spin_lock(&sinfo->lock); 8990 spin_lock(&cache->lock); 8991 if (!--cache->ro) { 8992 num_bytes = cache->key.offset - cache->reserved - 8993 cache->pinned - cache->bytes_super - 8994 btrfs_block_group_used(&cache->item); 8995 sinfo->bytes_readonly -= num_bytes; 8996 list_del_init(&cache->ro_list); 8997 } 8998 spin_unlock(&cache->lock); 8999 spin_unlock(&sinfo->lock); 9000 } 9001 9002 /* 9003 * checks to see if its even possible to relocate this block group. 9004 * 9005 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9006 * ok to go ahead and try. 9007 */ 9008 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9009 { 9010 struct btrfs_block_group_cache *block_group; 9011 struct btrfs_space_info *space_info; 9012 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9013 struct btrfs_device *device; 9014 struct btrfs_trans_handle *trans; 9015 u64 min_free; 9016 u64 dev_min = 1; 9017 u64 dev_nr = 0; 9018 u64 target; 9019 int index; 9020 int full = 0; 9021 int ret = 0; 9022 9023 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9024 9025 /* odd, couldn't find the block group, leave it alone */ 9026 if (!block_group) 9027 return -1; 9028 9029 min_free = btrfs_block_group_used(&block_group->item); 9030 9031 /* no bytes used, we're good */ 9032 if (!min_free) 9033 goto out; 9034 9035 space_info = block_group->space_info; 9036 spin_lock(&space_info->lock); 9037 9038 full = space_info->full; 9039 9040 /* 9041 * if this is the last block group we have in this space, we can't 9042 * relocate it unless we're able to allocate a new chunk below. 9043 * 9044 * Otherwise, we need to make sure we have room in the space to handle 9045 * all of the extents from this block group. If we can, we're good 9046 */ 9047 if ((space_info->total_bytes != block_group->key.offset) && 9048 (space_info->bytes_used + space_info->bytes_reserved + 9049 space_info->bytes_pinned + space_info->bytes_readonly + 9050 min_free < space_info->total_bytes)) { 9051 spin_unlock(&space_info->lock); 9052 goto out; 9053 } 9054 spin_unlock(&space_info->lock); 9055 9056 /* 9057 * ok we don't have enough space, but maybe we have free space on our 9058 * devices to allocate new chunks for relocation, so loop through our 9059 * alloc devices and guess if we have enough space. if this block 9060 * group is going to be restriped, run checks against the target 9061 * profile instead of the current one. 9062 */ 9063 ret = -1; 9064 9065 /* 9066 * index: 9067 * 0: raid10 9068 * 1: raid1 9069 * 2: dup 9070 * 3: raid0 9071 * 4: single 9072 */ 9073 target = get_restripe_target(root->fs_info, block_group->flags); 9074 if (target) { 9075 index = __get_raid_index(extended_to_chunk(target)); 9076 } else { 9077 /* 9078 * this is just a balance, so if we were marked as full 9079 * we know there is no space for a new chunk 9080 */ 9081 if (full) 9082 goto out; 9083 9084 index = get_block_group_index(block_group); 9085 } 9086 9087 if (index == BTRFS_RAID_RAID10) { 9088 dev_min = 4; 9089 /* Divide by 2 */ 9090 min_free >>= 1; 9091 } else if (index == BTRFS_RAID_RAID1) { 9092 dev_min = 2; 9093 } else if (index == BTRFS_RAID_DUP) { 9094 /* Multiply by 2 */ 9095 min_free <<= 1; 9096 } else if (index == BTRFS_RAID_RAID0) { 9097 dev_min = fs_devices->rw_devices; 9098 min_free = div64_u64(min_free, dev_min); 9099 } 9100 9101 /* We need to do this so that we can look at pending chunks */ 9102 trans = btrfs_join_transaction(root); 9103 if (IS_ERR(trans)) { 9104 ret = PTR_ERR(trans); 9105 goto out; 9106 } 9107 9108 mutex_lock(&root->fs_info->chunk_mutex); 9109 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9110 u64 dev_offset; 9111 9112 /* 9113 * check to make sure we can actually find a chunk with enough 9114 * space to fit our block group in. 9115 */ 9116 if (device->total_bytes > device->bytes_used + min_free && 9117 !device->is_tgtdev_for_dev_replace) { 9118 ret = find_free_dev_extent(trans, device, min_free, 9119 &dev_offset, NULL); 9120 if (!ret) 9121 dev_nr++; 9122 9123 if (dev_nr >= dev_min) 9124 break; 9125 9126 ret = -1; 9127 } 9128 } 9129 mutex_unlock(&root->fs_info->chunk_mutex); 9130 btrfs_end_transaction(trans, root); 9131 out: 9132 btrfs_put_block_group(block_group); 9133 return ret; 9134 } 9135 9136 static int find_first_block_group(struct btrfs_root *root, 9137 struct btrfs_path *path, struct btrfs_key *key) 9138 { 9139 int ret = 0; 9140 struct btrfs_key found_key; 9141 struct extent_buffer *leaf; 9142 int slot; 9143 9144 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9145 if (ret < 0) 9146 goto out; 9147 9148 while (1) { 9149 slot = path->slots[0]; 9150 leaf = path->nodes[0]; 9151 if (slot >= btrfs_header_nritems(leaf)) { 9152 ret = btrfs_next_leaf(root, path); 9153 if (ret == 0) 9154 continue; 9155 if (ret < 0) 9156 goto out; 9157 break; 9158 } 9159 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9160 9161 if (found_key.objectid >= key->objectid && 9162 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9163 ret = 0; 9164 goto out; 9165 } 9166 path->slots[0]++; 9167 } 9168 out: 9169 return ret; 9170 } 9171 9172 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9173 { 9174 struct btrfs_block_group_cache *block_group; 9175 u64 last = 0; 9176 9177 while (1) { 9178 struct inode *inode; 9179 9180 block_group = btrfs_lookup_first_block_group(info, last); 9181 while (block_group) { 9182 spin_lock(&block_group->lock); 9183 if (block_group->iref) 9184 break; 9185 spin_unlock(&block_group->lock); 9186 block_group = next_block_group(info->tree_root, 9187 block_group); 9188 } 9189 if (!block_group) { 9190 if (last == 0) 9191 break; 9192 last = 0; 9193 continue; 9194 } 9195 9196 inode = block_group->inode; 9197 block_group->iref = 0; 9198 block_group->inode = NULL; 9199 spin_unlock(&block_group->lock); 9200 iput(inode); 9201 last = block_group->key.objectid + block_group->key.offset; 9202 btrfs_put_block_group(block_group); 9203 } 9204 } 9205 9206 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9207 { 9208 struct btrfs_block_group_cache *block_group; 9209 struct btrfs_space_info *space_info; 9210 struct btrfs_caching_control *caching_ctl; 9211 struct rb_node *n; 9212 9213 down_write(&info->commit_root_sem); 9214 while (!list_empty(&info->caching_block_groups)) { 9215 caching_ctl = list_entry(info->caching_block_groups.next, 9216 struct btrfs_caching_control, list); 9217 list_del(&caching_ctl->list); 9218 put_caching_control(caching_ctl); 9219 } 9220 up_write(&info->commit_root_sem); 9221 9222 spin_lock(&info->unused_bgs_lock); 9223 while (!list_empty(&info->unused_bgs)) { 9224 block_group = list_first_entry(&info->unused_bgs, 9225 struct btrfs_block_group_cache, 9226 bg_list); 9227 list_del_init(&block_group->bg_list); 9228 btrfs_put_block_group(block_group); 9229 } 9230 spin_unlock(&info->unused_bgs_lock); 9231 9232 spin_lock(&info->block_group_cache_lock); 9233 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9234 block_group = rb_entry(n, struct btrfs_block_group_cache, 9235 cache_node); 9236 rb_erase(&block_group->cache_node, 9237 &info->block_group_cache_tree); 9238 RB_CLEAR_NODE(&block_group->cache_node); 9239 spin_unlock(&info->block_group_cache_lock); 9240 9241 down_write(&block_group->space_info->groups_sem); 9242 list_del(&block_group->list); 9243 up_write(&block_group->space_info->groups_sem); 9244 9245 if (block_group->cached == BTRFS_CACHE_STARTED) 9246 wait_block_group_cache_done(block_group); 9247 9248 /* 9249 * We haven't cached this block group, which means we could 9250 * possibly have excluded extents on this block group. 9251 */ 9252 if (block_group->cached == BTRFS_CACHE_NO || 9253 block_group->cached == BTRFS_CACHE_ERROR) 9254 free_excluded_extents(info->extent_root, block_group); 9255 9256 btrfs_remove_free_space_cache(block_group); 9257 btrfs_put_block_group(block_group); 9258 9259 spin_lock(&info->block_group_cache_lock); 9260 } 9261 spin_unlock(&info->block_group_cache_lock); 9262 9263 /* now that all the block groups are freed, go through and 9264 * free all the space_info structs. This is only called during 9265 * the final stages of unmount, and so we know nobody is 9266 * using them. We call synchronize_rcu() once before we start, 9267 * just to be on the safe side. 9268 */ 9269 synchronize_rcu(); 9270 9271 release_global_block_rsv(info); 9272 9273 while (!list_empty(&info->space_info)) { 9274 int i; 9275 9276 space_info = list_entry(info->space_info.next, 9277 struct btrfs_space_info, 9278 list); 9279 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9280 if (WARN_ON(space_info->bytes_pinned > 0 || 9281 space_info->bytes_reserved > 0 || 9282 space_info->bytes_may_use > 0)) { 9283 dump_space_info(space_info, 0, 0); 9284 } 9285 } 9286 list_del(&space_info->list); 9287 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9288 struct kobject *kobj; 9289 kobj = space_info->block_group_kobjs[i]; 9290 space_info->block_group_kobjs[i] = NULL; 9291 if (kobj) { 9292 kobject_del(kobj); 9293 kobject_put(kobj); 9294 } 9295 } 9296 kobject_del(&space_info->kobj); 9297 kobject_put(&space_info->kobj); 9298 } 9299 return 0; 9300 } 9301 9302 static void __link_block_group(struct btrfs_space_info *space_info, 9303 struct btrfs_block_group_cache *cache) 9304 { 9305 int index = get_block_group_index(cache); 9306 bool first = false; 9307 9308 down_write(&space_info->groups_sem); 9309 if (list_empty(&space_info->block_groups[index])) 9310 first = true; 9311 list_add_tail(&cache->list, &space_info->block_groups[index]); 9312 up_write(&space_info->groups_sem); 9313 9314 if (first) { 9315 struct raid_kobject *rkobj; 9316 int ret; 9317 9318 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9319 if (!rkobj) 9320 goto out_err; 9321 rkobj->raid_type = index; 9322 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9323 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9324 "%s", get_raid_name(index)); 9325 if (ret) { 9326 kobject_put(&rkobj->kobj); 9327 goto out_err; 9328 } 9329 space_info->block_group_kobjs[index] = &rkobj->kobj; 9330 } 9331 9332 return; 9333 out_err: 9334 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9335 } 9336 9337 static struct btrfs_block_group_cache * 9338 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9339 { 9340 struct btrfs_block_group_cache *cache; 9341 9342 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9343 if (!cache) 9344 return NULL; 9345 9346 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9347 GFP_NOFS); 9348 if (!cache->free_space_ctl) { 9349 kfree(cache); 9350 return NULL; 9351 } 9352 9353 cache->key.objectid = start; 9354 cache->key.offset = size; 9355 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9356 9357 cache->sectorsize = root->sectorsize; 9358 cache->fs_info = root->fs_info; 9359 cache->full_stripe_len = btrfs_full_stripe_len(root, 9360 &root->fs_info->mapping_tree, 9361 start); 9362 atomic_set(&cache->count, 1); 9363 spin_lock_init(&cache->lock); 9364 init_rwsem(&cache->data_rwsem); 9365 INIT_LIST_HEAD(&cache->list); 9366 INIT_LIST_HEAD(&cache->cluster_list); 9367 INIT_LIST_HEAD(&cache->bg_list); 9368 INIT_LIST_HEAD(&cache->ro_list); 9369 INIT_LIST_HEAD(&cache->dirty_list); 9370 INIT_LIST_HEAD(&cache->io_list); 9371 btrfs_init_free_space_ctl(cache); 9372 atomic_set(&cache->trimming, 0); 9373 9374 return cache; 9375 } 9376 9377 int btrfs_read_block_groups(struct btrfs_root *root) 9378 { 9379 struct btrfs_path *path; 9380 int ret; 9381 struct btrfs_block_group_cache *cache; 9382 struct btrfs_fs_info *info = root->fs_info; 9383 struct btrfs_space_info *space_info; 9384 struct btrfs_key key; 9385 struct btrfs_key found_key; 9386 struct extent_buffer *leaf; 9387 int need_clear = 0; 9388 u64 cache_gen; 9389 9390 root = info->extent_root; 9391 key.objectid = 0; 9392 key.offset = 0; 9393 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9394 path = btrfs_alloc_path(); 9395 if (!path) 9396 return -ENOMEM; 9397 path->reada = 1; 9398 9399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9400 if (btrfs_test_opt(root, SPACE_CACHE) && 9401 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9402 need_clear = 1; 9403 if (btrfs_test_opt(root, CLEAR_CACHE)) 9404 need_clear = 1; 9405 9406 while (1) { 9407 ret = find_first_block_group(root, path, &key); 9408 if (ret > 0) 9409 break; 9410 if (ret != 0) 9411 goto error; 9412 9413 leaf = path->nodes[0]; 9414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9415 9416 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9417 found_key.offset); 9418 if (!cache) { 9419 ret = -ENOMEM; 9420 goto error; 9421 } 9422 9423 if (need_clear) { 9424 /* 9425 * When we mount with old space cache, we need to 9426 * set BTRFS_DC_CLEAR and set dirty flag. 9427 * 9428 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9429 * truncate the old free space cache inode and 9430 * setup a new one. 9431 * b) Setting 'dirty flag' makes sure that we flush 9432 * the new space cache info onto disk. 9433 */ 9434 if (btrfs_test_opt(root, SPACE_CACHE)) 9435 cache->disk_cache_state = BTRFS_DC_CLEAR; 9436 } 9437 9438 read_extent_buffer(leaf, &cache->item, 9439 btrfs_item_ptr_offset(leaf, path->slots[0]), 9440 sizeof(cache->item)); 9441 cache->flags = btrfs_block_group_flags(&cache->item); 9442 9443 key.objectid = found_key.objectid + found_key.offset; 9444 btrfs_release_path(path); 9445 9446 /* 9447 * We need to exclude the super stripes now so that the space 9448 * info has super bytes accounted for, otherwise we'll think 9449 * we have more space than we actually do. 9450 */ 9451 ret = exclude_super_stripes(root, cache); 9452 if (ret) { 9453 /* 9454 * We may have excluded something, so call this just in 9455 * case. 9456 */ 9457 free_excluded_extents(root, cache); 9458 btrfs_put_block_group(cache); 9459 goto error; 9460 } 9461 9462 /* 9463 * check for two cases, either we are full, and therefore 9464 * don't need to bother with the caching work since we won't 9465 * find any space, or we are empty, and we can just add all 9466 * the space in and be done with it. This saves us _alot_ of 9467 * time, particularly in the full case. 9468 */ 9469 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9470 cache->last_byte_to_unpin = (u64)-1; 9471 cache->cached = BTRFS_CACHE_FINISHED; 9472 free_excluded_extents(root, cache); 9473 } else if (btrfs_block_group_used(&cache->item) == 0) { 9474 cache->last_byte_to_unpin = (u64)-1; 9475 cache->cached = BTRFS_CACHE_FINISHED; 9476 add_new_free_space(cache, root->fs_info, 9477 found_key.objectid, 9478 found_key.objectid + 9479 found_key.offset); 9480 free_excluded_extents(root, cache); 9481 } 9482 9483 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9484 if (ret) { 9485 btrfs_remove_free_space_cache(cache); 9486 btrfs_put_block_group(cache); 9487 goto error; 9488 } 9489 9490 ret = update_space_info(info, cache->flags, found_key.offset, 9491 btrfs_block_group_used(&cache->item), 9492 &space_info); 9493 if (ret) { 9494 btrfs_remove_free_space_cache(cache); 9495 spin_lock(&info->block_group_cache_lock); 9496 rb_erase(&cache->cache_node, 9497 &info->block_group_cache_tree); 9498 RB_CLEAR_NODE(&cache->cache_node); 9499 spin_unlock(&info->block_group_cache_lock); 9500 btrfs_put_block_group(cache); 9501 goto error; 9502 } 9503 9504 cache->space_info = space_info; 9505 spin_lock(&cache->space_info->lock); 9506 cache->space_info->bytes_readonly += cache->bytes_super; 9507 spin_unlock(&cache->space_info->lock); 9508 9509 __link_block_group(space_info, cache); 9510 9511 set_avail_alloc_bits(root->fs_info, cache->flags); 9512 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9513 inc_block_group_ro(cache, 1); 9514 } else if (btrfs_block_group_used(&cache->item) == 0) { 9515 spin_lock(&info->unused_bgs_lock); 9516 /* Should always be true but just in case. */ 9517 if (list_empty(&cache->bg_list)) { 9518 btrfs_get_block_group(cache); 9519 list_add_tail(&cache->bg_list, 9520 &info->unused_bgs); 9521 } 9522 spin_unlock(&info->unused_bgs_lock); 9523 } 9524 } 9525 9526 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9527 if (!(get_alloc_profile(root, space_info->flags) & 9528 (BTRFS_BLOCK_GROUP_RAID10 | 9529 BTRFS_BLOCK_GROUP_RAID1 | 9530 BTRFS_BLOCK_GROUP_RAID5 | 9531 BTRFS_BLOCK_GROUP_RAID6 | 9532 BTRFS_BLOCK_GROUP_DUP))) 9533 continue; 9534 /* 9535 * avoid allocating from un-mirrored block group if there are 9536 * mirrored block groups. 9537 */ 9538 list_for_each_entry(cache, 9539 &space_info->block_groups[BTRFS_RAID_RAID0], 9540 list) 9541 inc_block_group_ro(cache, 1); 9542 list_for_each_entry(cache, 9543 &space_info->block_groups[BTRFS_RAID_SINGLE], 9544 list) 9545 inc_block_group_ro(cache, 1); 9546 } 9547 9548 init_global_block_rsv(info); 9549 ret = 0; 9550 error: 9551 btrfs_free_path(path); 9552 return ret; 9553 } 9554 9555 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9556 struct btrfs_root *root) 9557 { 9558 struct btrfs_block_group_cache *block_group, *tmp; 9559 struct btrfs_root *extent_root = root->fs_info->extent_root; 9560 struct btrfs_block_group_item item; 9561 struct btrfs_key key; 9562 int ret = 0; 9563 9564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9565 if (ret) 9566 goto next; 9567 9568 spin_lock(&block_group->lock); 9569 memcpy(&item, &block_group->item, sizeof(item)); 9570 memcpy(&key, &block_group->key, sizeof(key)); 9571 spin_unlock(&block_group->lock); 9572 9573 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9574 sizeof(item)); 9575 if (ret) 9576 btrfs_abort_transaction(trans, extent_root, ret); 9577 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9578 key.objectid, key.offset); 9579 if (ret) 9580 btrfs_abort_transaction(trans, extent_root, ret); 9581 next: 9582 list_del_init(&block_group->bg_list); 9583 } 9584 } 9585 9586 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9587 struct btrfs_root *root, u64 bytes_used, 9588 u64 type, u64 chunk_objectid, u64 chunk_offset, 9589 u64 size) 9590 { 9591 int ret; 9592 struct btrfs_root *extent_root; 9593 struct btrfs_block_group_cache *cache; 9594 9595 extent_root = root->fs_info->extent_root; 9596 9597 btrfs_set_log_full_commit(root->fs_info, trans); 9598 9599 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9600 if (!cache) 9601 return -ENOMEM; 9602 9603 btrfs_set_block_group_used(&cache->item, bytes_used); 9604 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9605 btrfs_set_block_group_flags(&cache->item, type); 9606 9607 cache->flags = type; 9608 cache->last_byte_to_unpin = (u64)-1; 9609 cache->cached = BTRFS_CACHE_FINISHED; 9610 ret = exclude_super_stripes(root, cache); 9611 if (ret) { 9612 /* 9613 * We may have excluded something, so call this just in 9614 * case. 9615 */ 9616 free_excluded_extents(root, cache); 9617 btrfs_put_block_group(cache); 9618 return ret; 9619 } 9620 9621 add_new_free_space(cache, root->fs_info, chunk_offset, 9622 chunk_offset + size); 9623 9624 free_excluded_extents(root, cache); 9625 9626 /* 9627 * Call to ensure the corresponding space_info object is created and 9628 * assigned to our block group, but don't update its counters just yet. 9629 * We want our bg to be added to the rbtree with its ->space_info set. 9630 */ 9631 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9632 &cache->space_info); 9633 if (ret) { 9634 btrfs_remove_free_space_cache(cache); 9635 btrfs_put_block_group(cache); 9636 return ret; 9637 } 9638 9639 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9640 if (ret) { 9641 btrfs_remove_free_space_cache(cache); 9642 btrfs_put_block_group(cache); 9643 return ret; 9644 } 9645 9646 /* 9647 * Now that our block group has its ->space_info set and is inserted in 9648 * the rbtree, update the space info's counters. 9649 */ 9650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9651 &cache->space_info); 9652 if (ret) { 9653 btrfs_remove_free_space_cache(cache); 9654 spin_lock(&root->fs_info->block_group_cache_lock); 9655 rb_erase(&cache->cache_node, 9656 &root->fs_info->block_group_cache_tree); 9657 RB_CLEAR_NODE(&cache->cache_node); 9658 spin_unlock(&root->fs_info->block_group_cache_lock); 9659 btrfs_put_block_group(cache); 9660 return ret; 9661 } 9662 update_global_block_rsv(root->fs_info); 9663 9664 spin_lock(&cache->space_info->lock); 9665 cache->space_info->bytes_readonly += cache->bytes_super; 9666 spin_unlock(&cache->space_info->lock); 9667 9668 __link_block_group(cache->space_info, cache); 9669 9670 list_add_tail(&cache->bg_list, &trans->new_bgs); 9671 9672 set_avail_alloc_bits(extent_root->fs_info, type); 9673 9674 return 0; 9675 } 9676 9677 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9678 { 9679 u64 extra_flags = chunk_to_extended(flags) & 9680 BTRFS_EXTENDED_PROFILE_MASK; 9681 9682 write_seqlock(&fs_info->profiles_lock); 9683 if (flags & BTRFS_BLOCK_GROUP_DATA) 9684 fs_info->avail_data_alloc_bits &= ~extra_flags; 9685 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9686 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9687 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9688 fs_info->avail_system_alloc_bits &= ~extra_flags; 9689 write_sequnlock(&fs_info->profiles_lock); 9690 } 9691 9692 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9693 struct btrfs_root *root, u64 group_start, 9694 struct extent_map *em) 9695 { 9696 struct btrfs_path *path; 9697 struct btrfs_block_group_cache *block_group; 9698 struct btrfs_free_cluster *cluster; 9699 struct btrfs_root *tree_root = root->fs_info->tree_root; 9700 struct btrfs_key key; 9701 struct inode *inode; 9702 struct kobject *kobj = NULL; 9703 int ret; 9704 int index; 9705 int factor; 9706 struct btrfs_caching_control *caching_ctl = NULL; 9707 bool remove_em; 9708 9709 root = root->fs_info->extent_root; 9710 9711 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9712 BUG_ON(!block_group); 9713 BUG_ON(!block_group->ro); 9714 9715 /* 9716 * Free the reserved super bytes from this block group before 9717 * remove it. 9718 */ 9719 free_excluded_extents(root, block_group); 9720 9721 memcpy(&key, &block_group->key, sizeof(key)); 9722 index = get_block_group_index(block_group); 9723 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9724 BTRFS_BLOCK_GROUP_RAID1 | 9725 BTRFS_BLOCK_GROUP_RAID10)) 9726 factor = 2; 9727 else 9728 factor = 1; 9729 9730 /* make sure this block group isn't part of an allocation cluster */ 9731 cluster = &root->fs_info->data_alloc_cluster; 9732 spin_lock(&cluster->refill_lock); 9733 btrfs_return_cluster_to_free_space(block_group, cluster); 9734 spin_unlock(&cluster->refill_lock); 9735 9736 /* 9737 * make sure this block group isn't part of a metadata 9738 * allocation cluster 9739 */ 9740 cluster = &root->fs_info->meta_alloc_cluster; 9741 spin_lock(&cluster->refill_lock); 9742 btrfs_return_cluster_to_free_space(block_group, cluster); 9743 spin_unlock(&cluster->refill_lock); 9744 9745 path = btrfs_alloc_path(); 9746 if (!path) { 9747 ret = -ENOMEM; 9748 goto out; 9749 } 9750 9751 /* 9752 * get the inode first so any iput calls done for the io_list 9753 * aren't the final iput (no unlinks allowed now) 9754 */ 9755 inode = lookup_free_space_inode(tree_root, block_group, path); 9756 9757 mutex_lock(&trans->transaction->cache_write_mutex); 9758 /* 9759 * make sure our free spache cache IO is done before remove the 9760 * free space inode 9761 */ 9762 spin_lock(&trans->transaction->dirty_bgs_lock); 9763 if (!list_empty(&block_group->io_list)) { 9764 list_del_init(&block_group->io_list); 9765 9766 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9767 9768 spin_unlock(&trans->transaction->dirty_bgs_lock); 9769 btrfs_wait_cache_io(root, trans, block_group, 9770 &block_group->io_ctl, path, 9771 block_group->key.objectid); 9772 btrfs_put_block_group(block_group); 9773 spin_lock(&trans->transaction->dirty_bgs_lock); 9774 } 9775 9776 if (!list_empty(&block_group->dirty_list)) { 9777 list_del_init(&block_group->dirty_list); 9778 btrfs_put_block_group(block_group); 9779 } 9780 spin_unlock(&trans->transaction->dirty_bgs_lock); 9781 mutex_unlock(&trans->transaction->cache_write_mutex); 9782 9783 if (!IS_ERR(inode)) { 9784 ret = btrfs_orphan_add(trans, inode); 9785 if (ret) { 9786 btrfs_add_delayed_iput(inode); 9787 goto out; 9788 } 9789 clear_nlink(inode); 9790 /* One for the block groups ref */ 9791 spin_lock(&block_group->lock); 9792 if (block_group->iref) { 9793 block_group->iref = 0; 9794 block_group->inode = NULL; 9795 spin_unlock(&block_group->lock); 9796 iput(inode); 9797 } else { 9798 spin_unlock(&block_group->lock); 9799 } 9800 /* One for our lookup ref */ 9801 btrfs_add_delayed_iput(inode); 9802 } 9803 9804 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9805 key.offset = block_group->key.objectid; 9806 key.type = 0; 9807 9808 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9809 if (ret < 0) 9810 goto out; 9811 if (ret > 0) 9812 btrfs_release_path(path); 9813 if (ret == 0) { 9814 ret = btrfs_del_item(trans, tree_root, path); 9815 if (ret) 9816 goto out; 9817 btrfs_release_path(path); 9818 } 9819 9820 spin_lock(&root->fs_info->block_group_cache_lock); 9821 rb_erase(&block_group->cache_node, 9822 &root->fs_info->block_group_cache_tree); 9823 RB_CLEAR_NODE(&block_group->cache_node); 9824 9825 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9826 root->fs_info->first_logical_byte = (u64)-1; 9827 spin_unlock(&root->fs_info->block_group_cache_lock); 9828 9829 down_write(&block_group->space_info->groups_sem); 9830 /* 9831 * we must use list_del_init so people can check to see if they 9832 * are still on the list after taking the semaphore 9833 */ 9834 list_del_init(&block_group->list); 9835 if (list_empty(&block_group->space_info->block_groups[index])) { 9836 kobj = block_group->space_info->block_group_kobjs[index]; 9837 block_group->space_info->block_group_kobjs[index] = NULL; 9838 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9839 } 9840 up_write(&block_group->space_info->groups_sem); 9841 if (kobj) { 9842 kobject_del(kobj); 9843 kobject_put(kobj); 9844 } 9845 9846 if (block_group->has_caching_ctl) 9847 caching_ctl = get_caching_control(block_group); 9848 if (block_group->cached == BTRFS_CACHE_STARTED) 9849 wait_block_group_cache_done(block_group); 9850 if (block_group->has_caching_ctl) { 9851 down_write(&root->fs_info->commit_root_sem); 9852 if (!caching_ctl) { 9853 struct btrfs_caching_control *ctl; 9854 9855 list_for_each_entry(ctl, 9856 &root->fs_info->caching_block_groups, list) 9857 if (ctl->block_group == block_group) { 9858 caching_ctl = ctl; 9859 atomic_inc(&caching_ctl->count); 9860 break; 9861 } 9862 } 9863 if (caching_ctl) 9864 list_del_init(&caching_ctl->list); 9865 up_write(&root->fs_info->commit_root_sem); 9866 if (caching_ctl) { 9867 /* Once for the caching bgs list and once for us. */ 9868 put_caching_control(caching_ctl); 9869 put_caching_control(caching_ctl); 9870 } 9871 } 9872 9873 spin_lock(&trans->transaction->dirty_bgs_lock); 9874 if (!list_empty(&block_group->dirty_list)) { 9875 WARN_ON(1); 9876 } 9877 if (!list_empty(&block_group->io_list)) { 9878 WARN_ON(1); 9879 } 9880 spin_unlock(&trans->transaction->dirty_bgs_lock); 9881 btrfs_remove_free_space_cache(block_group); 9882 9883 spin_lock(&block_group->space_info->lock); 9884 list_del_init(&block_group->ro_list); 9885 9886 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9887 WARN_ON(block_group->space_info->total_bytes 9888 < block_group->key.offset); 9889 WARN_ON(block_group->space_info->bytes_readonly 9890 < block_group->key.offset); 9891 WARN_ON(block_group->space_info->disk_total 9892 < block_group->key.offset * factor); 9893 } 9894 block_group->space_info->total_bytes -= block_group->key.offset; 9895 block_group->space_info->bytes_readonly -= block_group->key.offset; 9896 block_group->space_info->disk_total -= block_group->key.offset * factor; 9897 9898 spin_unlock(&block_group->space_info->lock); 9899 9900 memcpy(&key, &block_group->key, sizeof(key)); 9901 9902 lock_chunks(root); 9903 if (!list_empty(&em->list)) { 9904 /* We're in the transaction->pending_chunks list. */ 9905 free_extent_map(em); 9906 } 9907 spin_lock(&block_group->lock); 9908 block_group->removed = 1; 9909 /* 9910 * At this point trimming can't start on this block group, because we 9911 * removed the block group from the tree fs_info->block_group_cache_tree 9912 * so no one can't find it anymore and even if someone already got this 9913 * block group before we removed it from the rbtree, they have already 9914 * incremented block_group->trimming - if they didn't, they won't find 9915 * any free space entries because we already removed them all when we 9916 * called btrfs_remove_free_space_cache(). 9917 * 9918 * And we must not remove the extent map from the fs_info->mapping_tree 9919 * to prevent the same logical address range and physical device space 9920 * ranges from being reused for a new block group. This is because our 9921 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9922 * completely transactionless, so while it is trimming a range the 9923 * currently running transaction might finish and a new one start, 9924 * allowing for new block groups to be created that can reuse the same 9925 * physical device locations unless we take this special care. 9926 * 9927 * There may also be an implicit trim operation if the file system 9928 * is mounted with -odiscard. The same protections must remain 9929 * in place until the extents have been discarded completely when 9930 * the transaction commit has completed. 9931 */ 9932 remove_em = (atomic_read(&block_group->trimming) == 0); 9933 /* 9934 * Make sure a trimmer task always sees the em in the pinned_chunks list 9935 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9936 * before checking block_group->removed). 9937 */ 9938 if (!remove_em) { 9939 /* 9940 * Our em might be in trans->transaction->pending_chunks which 9941 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9942 * and so is the fs_info->pinned_chunks list. 9943 * 9944 * So at this point we must be holding the chunk_mutex to avoid 9945 * any races with chunk allocation (more specifically at 9946 * volumes.c:contains_pending_extent()), to ensure it always 9947 * sees the em, either in the pending_chunks list or in the 9948 * pinned_chunks list. 9949 */ 9950 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9951 } 9952 spin_unlock(&block_group->lock); 9953 9954 if (remove_em) { 9955 struct extent_map_tree *em_tree; 9956 9957 em_tree = &root->fs_info->mapping_tree.map_tree; 9958 write_lock(&em_tree->lock); 9959 /* 9960 * The em might be in the pending_chunks list, so make sure the 9961 * chunk mutex is locked, since remove_extent_mapping() will 9962 * delete us from that list. 9963 */ 9964 remove_extent_mapping(em_tree, em); 9965 write_unlock(&em_tree->lock); 9966 /* once for the tree */ 9967 free_extent_map(em); 9968 } 9969 9970 unlock_chunks(root); 9971 9972 btrfs_put_block_group(block_group); 9973 btrfs_put_block_group(block_group); 9974 9975 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9976 if (ret > 0) 9977 ret = -EIO; 9978 if (ret < 0) 9979 goto out; 9980 9981 ret = btrfs_del_item(trans, root, path); 9982 out: 9983 btrfs_free_path(path); 9984 return ret; 9985 } 9986 9987 /* 9988 * Process the unused_bgs list and remove any that don't have any allocated 9989 * space inside of them. 9990 */ 9991 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9992 { 9993 struct btrfs_block_group_cache *block_group; 9994 struct btrfs_space_info *space_info; 9995 struct btrfs_root *root = fs_info->extent_root; 9996 struct btrfs_trans_handle *trans; 9997 int ret = 0; 9998 9999 if (!fs_info->open) 10000 return; 10001 10002 spin_lock(&fs_info->unused_bgs_lock); 10003 while (!list_empty(&fs_info->unused_bgs)) { 10004 u64 start, end; 10005 int trimming; 10006 10007 block_group = list_first_entry(&fs_info->unused_bgs, 10008 struct btrfs_block_group_cache, 10009 bg_list); 10010 space_info = block_group->space_info; 10011 list_del_init(&block_group->bg_list); 10012 if (ret || btrfs_mixed_space_info(space_info)) { 10013 btrfs_put_block_group(block_group); 10014 continue; 10015 } 10016 spin_unlock(&fs_info->unused_bgs_lock); 10017 10018 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 10019 10020 /* Don't want to race with allocators so take the groups_sem */ 10021 down_write(&space_info->groups_sem); 10022 spin_lock(&block_group->lock); 10023 if (block_group->reserved || 10024 btrfs_block_group_used(&block_group->item) || 10025 block_group->ro) { 10026 /* 10027 * We want to bail if we made new allocations or have 10028 * outstanding allocations in this block group. We do 10029 * the ro check in case balance is currently acting on 10030 * this block group. 10031 */ 10032 spin_unlock(&block_group->lock); 10033 up_write(&space_info->groups_sem); 10034 goto next; 10035 } 10036 spin_unlock(&block_group->lock); 10037 10038 /* We don't want to force the issue, only flip if it's ok. */ 10039 ret = inc_block_group_ro(block_group, 0); 10040 up_write(&space_info->groups_sem); 10041 if (ret < 0) { 10042 ret = 0; 10043 goto next; 10044 } 10045 10046 /* 10047 * Want to do this before we do anything else so we can recover 10048 * properly if we fail to join the transaction. 10049 */ 10050 /* 1 for btrfs_orphan_reserve_metadata() */ 10051 trans = btrfs_start_transaction(root, 1); 10052 if (IS_ERR(trans)) { 10053 btrfs_dec_block_group_ro(root, block_group); 10054 ret = PTR_ERR(trans); 10055 goto next; 10056 } 10057 10058 /* 10059 * We could have pending pinned extents for this block group, 10060 * just delete them, we don't care about them anymore. 10061 */ 10062 start = block_group->key.objectid; 10063 end = start + block_group->key.offset - 1; 10064 /* 10065 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10066 * btrfs_finish_extent_commit(). If we are at transaction N, 10067 * another task might be running finish_extent_commit() for the 10068 * previous transaction N - 1, and have seen a range belonging 10069 * to the block group in freed_extents[] before we were able to 10070 * clear the whole block group range from freed_extents[]. This 10071 * means that task can lookup for the block group after we 10072 * unpinned it from freed_extents[] and removed it, leading to 10073 * a BUG_ON() at btrfs_unpin_extent_range(). 10074 */ 10075 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10076 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10077 EXTENT_DIRTY, GFP_NOFS); 10078 if (ret) { 10079 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10080 btrfs_dec_block_group_ro(root, block_group); 10081 goto end_trans; 10082 } 10083 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10084 EXTENT_DIRTY, GFP_NOFS); 10085 if (ret) { 10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10087 btrfs_dec_block_group_ro(root, block_group); 10088 goto end_trans; 10089 } 10090 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10091 10092 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10093 spin_lock(&space_info->lock); 10094 spin_lock(&block_group->lock); 10095 10096 space_info->bytes_pinned -= block_group->pinned; 10097 space_info->bytes_readonly += block_group->pinned; 10098 percpu_counter_add(&space_info->total_bytes_pinned, 10099 -block_group->pinned); 10100 block_group->pinned = 0; 10101 10102 spin_unlock(&block_group->lock); 10103 spin_unlock(&space_info->lock); 10104 10105 /* DISCARD can flip during remount */ 10106 trimming = btrfs_test_opt(root, DISCARD); 10107 10108 /* Implicit trim during transaction commit. */ 10109 if (trimming) 10110 btrfs_get_block_group_trimming(block_group); 10111 10112 /* 10113 * Btrfs_remove_chunk will abort the transaction if things go 10114 * horribly wrong. 10115 */ 10116 ret = btrfs_remove_chunk(trans, root, 10117 block_group->key.objectid); 10118 10119 if (ret) { 10120 if (trimming) 10121 btrfs_put_block_group_trimming(block_group); 10122 goto end_trans; 10123 } 10124 10125 /* 10126 * If we're not mounted with -odiscard, we can just forget 10127 * about this block group. Otherwise we'll need to wait 10128 * until transaction commit to do the actual discard. 10129 */ 10130 if (trimming) { 10131 WARN_ON(!list_empty(&block_group->bg_list)); 10132 spin_lock(&trans->transaction->deleted_bgs_lock); 10133 list_move(&block_group->bg_list, 10134 &trans->transaction->deleted_bgs); 10135 spin_unlock(&trans->transaction->deleted_bgs_lock); 10136 btrfs_get_block_group(block_group); 10137 } 10138 end_trans: 10139 btrfs_end_transaction(trans, root); 10140 next: 10141 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 10142 btrfs_put_block_group(block_group); 10143 spin_lock(&fs_info->unused_bgs_lock); 10144 } 10145 spin_unlock(&fs_info->unused_bgs_lock); 10146 } 10147 10148 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10149 { 10150 struct btrfs_space_info *space_info; 10151 struct btrfs_super_block *disk_super; 10152 u64 features; 10153 u64 flags; 10154 int mixed = 0; 10155 int ret; 10156 10157 disk_super = fs_info->super_copy; 10158 if (!btrfs_super_root(disk_super)) 10159 return 1; 10160 10161 features = btrfs_super_incompat_flags(disk_super); 10162 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10163 mixed = 1; 10164 10165 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10166 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10167 if (ret) 10168 goto out; 10169 10170 if (mixed) { 10171 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10172 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10173 } else { 10174 flags = BTRFS_BLOCK_GROUP_METADATA; 10175 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10176 if (ret) 10177 goto out; 10178 10179 flags = BTRFS_BLOCK_GROUP_DATA; 10180 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10181 } 10182 out: 10183 return ret; 10184 } 10185 10186 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10187 { 10188 return unpin_extent_range(root, start, end, false); 10189 } 10190 10191 /* 10192 * It used to be that old block groups would be left around forever. 10193 * Iterating over them would be enough to trim unused space. Since we 10194 * now automatically remove them, we also need to iterate over unallocated 10195 * space. 10196 * 10197 * We don't want a transaction for this since the discard may take a 10198 * substantial amount of time. We don't require that a transaction be 10199 * running, but we do need to take a running transaction into account 10200 * to ensure that we're not discarding chunks that were released in 10201 * the current transaction. 10202 * 10203 * Holding the chunks lock will prevent other threads from allocating 10204 * or releasing chunks, but it won't prevent a running transaction 10205 * from committing and releasing the memory that the pending chunks 10206 * list head uses. For that, we need to take a reference to the 10207 * transaction. 10208 */ 10209 static int btrfs_trim_free_extents(struct btrfs_device *device, 10210 u64 minlen, u64 *trimmed) 10211 { 10212 u64 start = 0, len = 0; 10213 int ret; 10214 10215 *trimmed = 0; 10216 10217 /* Not writeable = nothing to do. */ 10218 if (!device->writeable) 10219 return 0; 10220 10221 /* No free space = nothing to do. */ 10222 if (device->total_bytes <= device->bytes_used) 10223 return 0; 10224 10225 ret = 0; 10226 10227 while (1) { 10228 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10229 struct btrfs_transaction *trans; 10230 u64 bytes; 10231 10232 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10233 if (ret) 10234 return ret; 10235 10236 down_read(&fs_info->commit_root_sem); 10237 10238 spin_lock(&fs_info->trans_lock); 10239 trans = fs_info->running_transaction; 10240 if (trans) 10241 atomic_inc(&trans->use_count); 10242 spin_unlock(&fs_info->trans_lock); 10243 10244 ret = find_free_dev_extent_start(trans, device, minlen, start, 10245 &start, &len); 10246 if (trans) 10247 btrfs_put_transaction(trans); 10248 10249 if (ret) { 10250 up_read(&fs_info->commit_root_sem); 10251 mutex_unlock(&fs_info->chunk_mutex); 10252 if (ret == -ENOSPC) 10253 ret = 0; 10254 break; 10255 } 10256 10257 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10258 up_read(&fs_info->commit_root_sem); 10259 mutex_unlock(&fs_info->chunk_mutex); 10260 10261 if (ret) 10262 break; 10263 10264 start += len; 10265 *trimmed += bytes; 10266 10267 if (fatal_signal_pending(current)) { 10268 ret = -ERESTARTSYS; 10269 break; 10270 } 10271 10272 cond_resched(); 10273 } 10274 10275 return ret; 10276 } 10277 10278 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10279 { 10280 struct btrfs_fs_info *fs_info = root->fs_info; 10281 struct btrfs_block_group_cache *cache = NULL; 10282 struct btrfs_device *device; 10283 struct list_head *devices; 10284 u64 group_trimmed; 10285 u64 start; 10286 u64 end; 10287 u64 trimmed = 0; 10288 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10289 int ret = 0; 10290 10291 /* 10292 * try to trim all FS space, our block group may start from non-zero. 10293 */ 10294 if (range->len == total_bytes) 10295 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10296 else 10297 cache = btrfs_lookup_block_group(fs_info, range->start); 10298 10299 while (cache) { 10300 if (cache->key.objectid >= (range->start + range->len)) { 10301 btrfs_put_block_group(cache); 10302 break; 10303 } 10304 10305 start = max(range->start, cache->key.objectid); 10306 end = min(range->start + range->len, 10307 cache->key.objectid + cache->key.offset); 10308 10309 if (end - start >= range->minlen) { 10310 if (!block_group_cache_done(cache)) { 10311 ret = cache_block_group(cache, 0); 10312 if (ret) { 10313 btrfs_put_block_group(cache); 10314 break; 10315 } 10316 ret = wait_block_group_cache_done(cache); 10317 if (ret) { 10318 btrfs_put_block_group(cache); 10319 break; 10320 } 10321 } 10322 ret = btrfs_trim_block_group(cache, 10323 &group_trimmed, 10324 start, 10325 end, 10326 range->minlen); 10327 10328 trimmed += group_trimmed; 10329 if (ret) { 10330 btrfs_put_block_group(cache); 10331 break; 10332 } 10333 } 10334 10335 cache = next_block_group(fs_info->tree_root, cache); 10336 } 10337 10338 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10339 devices = &root->fs_info->fs_devices->alloc_list; 10340 list_for_each_entry(device, devices, dev_alloc_list) { 10341 ret = btrfs_trim_free_extents(device, range->minlen, 10342 &group_trimmed); 10343 if (ret) 10344 break; 10345 10346 trimmed += group_trimmed; 10347 } 10348 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10349 10350 range->len = trimmed; 10351 return ret; 10352 } 10353 10354 /* 10355 * btrfs_{start,end}_write_no_snapshoting() are similar to 10356 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10357 * data into the page cache through nocow before the subvolume is snapshoted, 10358 * but flush the data into disk after the snapshot creation, or to prevent 10359 * operations while snapshoting is ongoing and that cause the snapshot to be 10360 * inconsistent (writes followed by expanding truncates for example). 10361 */ 10362 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10363 { 10364 percpu_counter_dec(&root->subv_writers->counter); 10365 /* 10366 * Make sure counter is updated before we wake up 10367 * waiters. 10368 */ 10369 smp_mb(); 10370 if (waitqueue_active(&root->subv_writers->wait)) 10371 wake_up(&root->subv_writers->wait); 10372 } 10373 10374 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10375 { 10376 if (atomic_read(&root->will_be_snapshoted)) 10377 return 0; 10378 10379 percpu_counter_inc(&root->subv_writers->counter); 10380 /* 10381 * Make sure counter is updated before we check for snapshot creation. 10382 */ 10383 smp_mb(); 10384 if (atomic_read(&root->will_be_snapshoted)) { 10385 btrfs_end_write_no_snapshoting(root); 10386 return 0; 10387 } 10388 return 1; 10389 } 10390